1978_Fairchild_Optoelectronics_Data_Book 1978 Fairchild Optoelectronics Data Book

User Manual: 1978_Fairchild_Optoelectronics_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 300

Download1978_Fairchild_Optoelectronics_Data_Book 1978 Fairchild Optoelectronics Data Book
Open PDF In BrowserView PDF
A.;
Oa

I=AIRCHILO
464 Ellis Street, Mountain View, California 94042

@1978 Fairchild Camera and Instrument Corporation/464 Ellis Street, Mountain View, California 94042/(415) 962-5011/TWX 910-379-6435

OPTOELECTRONICS
DATA BOOK
INTRODUCTION
Fairchild Camera & I nstrument Corporation is one of the world's largest semiconductor
device producers, and is a recognized leader in semiconductor technology. As part of
this organization, which has pioneered the development of many products that have
become industry standards, the Optoelectronics Division benefits from broad capabilities in device design and manufacture. These benefits are passed on to you, the
customer, in the form of advanced design, excellence of performance, continuity of
supply, and cost-effectiveness.
As the customer, you and your needs have dictated the form and content of this
Optoelectronic Data Book. This book has been sectioned for your convenience and
organized as follows:

SELECTION GUIDES
Quick reference guides and short form data for designers seeking devices to meet their
needs. These selection guides are arranged by product to make the location of
information easy. They also contain basic parameter information for each device and
indicate the page number of the complete data sheet.
CHAPTERS 1 AND 2
Basic technical information concerning the structure and manufacture of optoelectronic devices, soldering and cleaning considerations for those devices, and the
reliability of LED digits.
PRODUCT INFORMATION
Optoelectronic devices arranged in chapters by product type. Each chapter contains a
short introduction to, and cross-reference index for, devices withi n a particular device
category, and complete data sheets for individual devices.
The wide range of Fairchild-developed optoelectronic products, along with a deliberate
program to second-source many popular configurations produced by other optoelectronic suppliers, affords Fairchild one of the broadest LED lamp, digit, display, and
coupler product lines of any supplier. Products manufactured by Fairchild include
direct-drive watch, clock, and multimeter displays, and multiplexed calculator, 16segment alphanumeric, and dot-matrix displays.
Most of the products in this Data Book are multiple-sourced industry-standard devices
with availability assured for years to come.
Not included in this book are Fairchild's liquid crystal display (LED) devices. Information on these is currently available in the optoelectronics short-form catalog, and a Data
Book covering only LCDs is soon to be issued.

STANDARD DEFINITIONS OF SYMBOLS AND TERMS USED IN SPECIFYING
OPTOELECTRONIC DEVICES

ADDRESSES OF FAIRCHILD SALES OFFICES, REPRESENTATIVES, AND
DISTRIBUTORS

As well as supplying a full line of standard devices, Fairchild has the capability of
supplying custom devices tailored to your application. A complete service organization
is available to assist you: a sales force consisting of sales engineers, representatives,
and distributors; field application engineers to help you with circuit design or device
application; and customer service coordinators to expedite your order. Our goal is to
give you reliable, cost-effective optoelectronic devices, timely delivery, and excellent
service while maintaining our position on the leading edge of this field of expanding
technology.

TABLE OF CONTENTS
NUMERICAL INDEX OF DEVICES ................................................................. iv
SELECTION GUIDES ............................................................................. XI
CHAPTER 1 OPTOELECTRONIC TECHOLOGY
Arch itectu re .................................................................................
Crystal Growth ..............................................................................
Processing ..................................................................................
Epitaxy ......................................................................................
Wafer Fabrication ............................................................................
Encapsulation Materials ......................................................................
Soldering Methods ...........................................................................
Cleaning ....................................................................................

1-3
1-3
1-4
1-4
1-5
1-5
1-8
1-8

CHAPTER 2 DISCRETE LED DIGIT RELIABILITY
Design Considerations .......................................................................
Device Testing ...............................................................................
Reliability Monitor and Control ...............................................................
Failure Modes ...............................................................................
Comprehensive Testing ......................................................................

2-2
2-2
2-4
2-5
2-5

CHAPTER 3 VISIBLE LED LAMPS AND MOUNTING HARDWARE
Introduction ................................................................................. 3-3
Cross-Reference ............................................................................. 3-5
Data Sheets ............................... "" ........ ,.................................... 3-14
CHAPTER 4 SEVEN-SEGMENT DISPLAYS AND DISPLAY ARRAYS
Introduction ...... , ........ , .......... , ............................. , .. ,., ................... 4-2
Cross-Reference ...................................... , ................. , .................... 4-4
Data Sheets ......... ,.,., .... , ... , ................... , ......... , ............. , .. , ...... '.... 4-9
CHAPTER 5 PHOTOTRANSISTORS, INFRARED EMITTERS, AND SENSORS
Introduction ............ " .............. , ........... , .......... , ...... , ............... ,., .... 5-2
Data Sheets .. ' ...... , ........ , ................................. , ..... , .... ,., ... ".......... 5-3
CHAPTER 6 PHOTOCOUPLERS
Introduction .......... ' .......... , ................. , ...................... , .................. 6-2
Cross-Reference Index ...................... ,., ............... , .......... , ............. , ..... 6-3
Data Sheets .................................... , ............................... ,............ 6-8
CHAPTER 7 PACKAGE OUTLINES .................... , ................. , ........................ 7-3
Packages Connection Diagrams ............................................................. 7-20
CHAPTER 8 DEFINITIONS OF SYMBOLS AND TERMS

...... ,.,.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8-3

CHAPTER 9 FAIRCHILD FIELD SALES OFFICES, SALES REPRESENTATIVES
AND DISTRIBUTOR LOCATIONS ......... , .... , ..................... ,." ...................... 9-3

NUMERICAL INDEX OF DEVICES

Type

Opto Package

Connection
Diagram

Data Sheet
Page No.

Coupler Tx Output

Opto·37
Opto·37
Opto·37
Opto-37
Opto-37

024
024
024
024
024

6·8
6-8
6-10
6-10
6-12

FCD825C
FCD830
FCD830C
FCD831
FCD831C

Opto-37
Opto-37
Opto-37
Opto-37
Opto-37

024
024
024
024
024

6-12
6-14
6-14
6-16
6-16

FCD836
FCD836C
FCD850
FCD850C
FCD855

Opto-37
Opto-37
Opto-37
Opto-37
Opto-37

024
024
024
024
024

6-18
6-18
6-20
6-20
6-20

Opto-37
Opto-37
Opto-37
Opto-37
Opto-37

024
024
024
024
024

6-20
6-22
6-22
6-22
6-22

Opto-45
Opto-45
Opto-24
Opto-25
Opto-17

025
025
017
018
017

6-24
6-24
4-9
4-9
4-11

Opto-18
Opto-1
Opto-2
Opto-2
Opt0-8

012

4-11
3-51
3-52
3-52
3-14

Device
FCD810
FCD810C
FCD820
FCD820C
FCD825

Coupler, Darl. Output

FCD855C
FCD860
FCD860C
FCD865
FCD865C
FCD880
FCD885
FCS6400
FCS6401
FCSSOOO
FCS8024
FLS010
FLS011
FLS012
FLV104A

Coupler Dual Tx Output
LED Display

Lamp Mounting Hardware

LED Lamp

FLV110
FLV111
FLV112
FLV117
FLV118

Opto-5
Opto-5
Opto-5
Opto-5
Opto-5

3-17
3-19
3-19
3-19
3-19

FLV140
FLV141
FLV150
FLV151
FLV160

Opto-4
Opto-4
Opto-4
Opto-4
Opto-7

3-17
3-21
3-17
3-21
3-17

FLV161
FLV251
FLV252
FLV310
FLV311

Opto-7
Opto-4
Opto-4
Opto-5
Opto-5

3-21
3-23
3-23
3-25
3-27

FLV340
FLV341
FLV350
FLV351
FLV360

Opto-4
Opto-4
Opto-6
Opto-6
Opto-7

3-25
3-27
3-25
3-27
3-25

Iv

NUMERICAL INDEX OF DEVICES (Cont'd)

Device

Type

FLV361
FLV410
FLV411
FLV440
FLV441

LED Lamp

Opto Package

Connection
Diagram

Data Sheet
Page No.

Opto·7
Opto·5
Opto·5
Opto-4
Opto·4

3·27
3·29
3-31
3-29
3-31

FLV450
FLV451
FLV460
FLV461
FLV51 0

Opto-6
Opto-6
Opto·7
Opto·7
Opto-5

3-29
3·31
3·29
3·31
3-33

FLV540
FLV550
FLV560
FNA6
FNA12

Opto·4
Opto-6
Opto·7
Optp-43
Opto·44

3-33
3-33
3-33
4·14
4-16

LED Display

FNA5420
FNA5421
FNA5520
FNA5521
FND350

Opto·20
Opto-21
Opto-22
Opto·23
Opto·12

FND357
FND358
FND360
FND367
FND368

Opto-12
Opto·12
Opto-12
Opto-12
Opto·12

4-20
4-24
4·20
4·20
4-24

FND500
FND501
FND507
FND508
FND530

Opto-13
Opto·13
Opto-13
Opto-13
Opto·13

4·26
4-30
4-26
4·30
4-33

FND531
FND537
FND538
FND540
FND541

Opto·13
Opto-13
Opto-13
Opt-13
Opto-13

4-35
4-33
4-35
4·33
4·35

FND547
FND548
FND550
FND551
FND557

Opto·13
Opto-13
Opto-13
Opto·13
Opto-13

4-33
4-35
4·33
4-35
4·33

FND558
FND560
FND561
FND567
FND568

Opto·13
Opto-13
Opto·13
Opto·13
Opto·13

4·35
4-26
4-30
4-26
4-30

FND800
FND800A
FND801A
FND807
FND807A

Opto·14
Opto·14
Opto-14
Opto-14
Opto·14

4-37
4·39
4·42
4·37
4·39

v

013
014
015
016

4·18
4·18
4·18
4-18
4-20

NUMERICAL INDEX OF DEVICES (Cont'd)

Connection
Diagram

Data Sheet
Page No.

Type

Opto Package

LED Display

Opto·14
Opto-14
Opto-14
OptO-14
Opto-14

4·42
4-42
4-44
4-46
4-42

Opto-14
Opto-14
Opto-16
Opto-16
Opto-32 (2 pes.)

4-44
4-46
4-48
4-48
5-3

Opto-34 (2 pes.)
Opto-35 (2 pes.)
Opto-36
Opto-36
Opto-36

5-3
5-3
5-7
5-9
5-7

FPA104A
FPA105
FPA105A
FPA106
FPA106A

Opto-36
Opto-36
Opto-36
Opto-36
Opto-36

5-9
5-7
5-9
5-7
5-9

FPA107
FPA107A
FPA108
FPA108A
FPA700

Opto-36
Opto-36
Opto-36
Opto-36
Opto-33

5-7
5-9
5-7
5-9
5-11

Opto-33
Opto-34
Opto-34
Opto-35
Opto-35

5-11
5-14
5-14
5-17
5-17

Opto-32
Opto-31
Opto-29
Opto-30
Opto-29

5-20
5-23
5-25
5-25
5'27

Opto-30
Opto-26
Opto-26
Opto-26
Opto-27

5-27
5-29
5-29
5-29
5-31

FPT102
FPT110
FPT110A
FPT110B
FPT120

Opto-27
Opto-28
Opto-28
Opto-28
Opto-26

5-35
5-29
5-29
5-29
5-37

FPT130
FPT131
FPT132
FPT136
FPT137

Opto-28
Opto-26
Opto-26
Opto-28
Opto-28

5·37
5-40
5-43
5-40
5-43

Device
FND808A
FND846A
FND847
FND847A
FND849A
FND850
FND850A
FND6710
FND6740
FPA100
FPA101
FPA102
FPA103
FPA103A
FPA104

Reflective Sensor

Source Sensor Array

Sensor Array

FPA700A
FPA710
FPA710A
FPA720
FPA720A
FPE100
FPE106
FPE500
FPE510
FPE520
FPE530
FPT100
FPT100A
FPT100B
FPT101

Infrared Emitters

Photo Transistor

vi

NUMERICAL INDEX OF DEVICES (Cont'd)

Connection
Diagram

Data Sheet
Page No.

Device

Type

Opto Package

FPT220
FPT230
FPT320
FPT330
FPT400

Photo Transistor

Opto-26
Opto-28
Opto-26
Opto-28
Opto-26

5·37
5·37
5-37
5-37
5-45

FPT41 0
FPT500
FPT500A
FPT510
FPT510A

Opto-28
Opto-29
Opto-29
Opto-30
Opto-30

5-45
5-46
5-46
5-48
5-48

FPT520
FPT520A
FPT530
FPT530A
FPT540

Opto-29
Opto-29
Opto-30
Opto-30
Opto-29

5-46
5-46
5-48
5-48
5-46

FPT540A
FPT550
FPT550A
FPT560
FPT570

Opto-29
Opto·30
Opto-30
Opto-29
Opto-30

5-46
5-48
5-48
5-50
5-50

FPT610
FPT630
H11A1
H11A2
H11A3

Opto-31
Opto-31
Opto-37
Opto-37
Opto-37

024
024
024

5-51
5-51
6-26
6-26
626

Opto-37
Opto-37
Opto-37
Opto-37
Opto-37

024
024
024
024
024

6-26
6-28
6-28
6-30
6-30

Opto-37
Opto-37
Opto-37
Opto-15
Opto-15

024
024
024
07
07

6-30
6-30
6-30
4-50
4-50

Opto-15'
Opto-37
Opto-37
Opto-37
Opto-37

09
024
024
024
024

4-52
6-32
6-32
6-32
6-34

Opto-37
Opto-37
Opto-37
Opto-37
Opto-37

024
024
024
024
024

6-34
6-34
6-36
6-36
6-36

Opto-37
Opto-9
Opto-9
Opto-9
Opto-9

024

6-36
3·35
3-35
3-35
3-35

H11A4
H11B1
H11B2
IL1
IU2
IU5
IU6
IL74
MAN71A
MAN72A
MAN74A
MCA230
MCA231
MCA255
MCT2

Coupler Tx Output

Coupler Darl. Output
Coupler Tx Output

LED Display

Coupler Darl. Output

Coupler Tx Output

MCT2E
MCT26
MOC1000
MOC1001
MOC1002
MOC1003
MV5050
MV5051
MV5052
MV5053

LED Lamp

vii

NUMERICAL INDEX OF DEVICES (Cont'd)

Connection
Diagram

Data Sheet
Page No.

Type

Opto Package

LEO Lamp

Opto·10
Opto·10
Opto'10
Opto·10
Opto·10

3·37
3·37
3·37
3·37
3·39

MV5056
MV5152
MV5153
MV5154
MV5252

Opto·10
Opto-10
Opto-9
Opto-10
Opto-10

3-39
3-47
3-41
3-41
3-43

MV5253
MV5254
MV5352
MV5353
MV5354

Opto-9
Opto-10
Opto-10
Opto-9
Opto-10

3-43
3-43
3-45
3-45
3-45

MV5752
MV5753
MV5754
TIL111
TIL 112

Opto-10
Opto-9
Opto-10
Opto-37
Opto-37

024
024

3-47
3-47
6-38
6-40

Opto-37
Opto-37
Opto-37
Opto-37
Opto-37

024
024
024
024
024

6-42
6-38
6-40
6-38
6-38

Opto-37
Opto-37
Opto-11
Opto-11
Opto-11

024
024

6-40
6-42
3-49
3-49
3-49

024
024
024
024
024

6-44

Coupler Oarl. Output

Opto-37
Opto-37
Opto-37
Opto-37
Opto-37

Coupler Tx Output

Opto-37
Opto-37
Opto-37
Opto-37
Opto-37

024
024
024
024
024

6'46
6-46
6-46
6.46
6-48

Opto-37
Opto-37

024
024

6-48
6-48

Device
MV5054·1
MV5054·2
MV5054·3
MV5054·4
MV5055

TIL113
TIL114
TIL115
TIL116
TIL117
TIL118
TIL119
TlL209A
TIL211
TIL213
4N25
4N26
4N27
4N28
4N29
4N30
4N31
4N32
4N33
4N35

Coupler Tx Output
Coupler Oarl. Output
Coupler Tx Output

Coupler Oarl. Output
LED Lamp

Coupler Tx Output

4N36
4N37

viii

3-~7

6~44

6-44
6-44
6-46

OPTO
SELECTION
GUIDE

FAIRCHILD OPTOELECTRONICS

OPTO
LED VISIBLE LAMPS

Item

DEVICE NO.

IF
mA
Typ

Luminous
Intensity
IF = 20mA
mcd
Typ

Clear

100

(4.0mW/sr)

2.0

Opto-8

Lens
Characteristic

IF

VF
20mA
V
Typ

=

Package
No.

1

FLV104A

2

FLV110

Red Diffused

20

2.0

1.7

Opto-5

3

FLV111

Clear Point Source

20

2.0

1.7

Opto-5

4

FLV112

Clear Diffused

20

2.0

1.7

Opto-5

5

FLV117

Red Diffused

50

1.0

1.9

Opto-5

6

FLV140

Red Diffused

20

2.0

1.7

Opto-4

7

FLV141

Red Point Source

20

2.0

1.7

Opto-4

8

FLV150

Red Diffused

20

2.0

1.7

Opto-4

9

FLV151

Red Point Source

20

2.0

1.7

Opto-4

10

FLV152

Red Point Source

20

3.0

1.7

Opto-4

11

FLV160

Red Diffused

20

2.0

1.7

Opto-7

12

FLV161

Red Point Source

20

2.0

1.7

Opto-7

Red Point Source

10

5.0

2.1

Opto-4
Opto-4

13

FLV251

14

FLV252

Red Point Source

10

8.0

2.1

15

FLV310

Green Diffused

20

3.2

2.3

Opto-5

16

FLV311

Green Point Source

20

3.2

2.3

Opto-5

17

FLV315

Green Diffused

20

2.5

3.0

Opto-5

18

FLV340

Green Diffused

20

3.2

2.3

Opto-4

19

FLV341

Green Point Source

20

3.2

2.3

Opto-4

20

FLV350

Green Diffused

20

3.2

2.3

Opto-6

21

FLV351

Green Point Source

20

3.2

2.3

Opto-6

22

FLV355

Green Diffused

20

2.5

3.0

Opto-6

23

FLV360

Green Diffused

20

3.2

2.3

Opto-7

24

FLV361

Green Point Source

20

3.2

2.3

Opto-7

25

FLV365

Green Diffused

20

2.5

3.0

Opto-7
Opto-5

26

FlV410

Yellow Diffused

20

3.2

2.3

27

FLV411

Yellow Point Source

20

3.2

2.3

Opto-5

28

FLV440

Yellow Diffused

20

3.2

2.3

Opto-4

29

FLV441

Yellow Point Source

20

3.2

2.3

Opto-4

xi

FAIRCHILD OPTOELECTRONICS

OPTO
LED VISIBLE LAMPS

Item

DEVICE NO.

(Cont'd)

IF
mA
Typ

Lens
Characteristic

Luminous
Intensity
IF ~ 20mA
mcd
Typ

VF
V
Typ

Package
No.

1

FLV450

Yellow Diffused

20

3.2

2.3

Opto-6

2

FLV451

Yellow Point Source

20

3.2

2.3

Opto-6

3

FLV460

Yellow Diffused

20

3.2

2.3

Opto-7

4

FLV461

Yellow Point Source

20

3.2

2.3

Opto-7

5

FLV510

Red Diffused

10

3.0

1.9

Opto-S

6

FLV511

Red Point Source

10

3.0

1.9

Opto-S

7

FLV540

Red Diffused

10

3.0

1.9

Opto-4

8

FLV541

Red Point Source

10

3.0

1.9

Opto-4

9

FLV550

Red Diffused

10

3.0

1.9

Opto-6

10

FLV551

Red Point Source

10

3.0

1.9

Opto-6

--

11

FLV560

Red Diffused

10

3.0

1.9

Opto-7

12

FLV561

Red Point Source

10

3.0

1.9

Opto-7

13

MV5050

Clear Point Source

20

2.0

1.7

Opto-9

14

MV5051

Clear Diffused

20

1.6

1.7

Opto-9

15

MV5052

Red Point Source

20

2.0

1.7

Opto-9

16

MV5053

Red Diffused

20

1.6

1.7

Opto-9

17

MV5054-1

Red Semi-Diffused

20

2.0

1.7

Opto-10

18

MV5054-2

Red Semi-Diffused

20

3.0

1.7

Opto-10

19

MV5054-3

Red Semi-Diffused

20

4.0

1.7

Opto-10

20

MV5152

Amber Point Source

20

16.0

1.9

Opto-10

21

MV5153

Amber Diffused

20

4.0

1.9

Opto-9

22

MV5154

Amber Semi-Diffused

20

8.0

1.9

Opto-10

23

MV5252

Green Point Source

20

6.0

2.3

Opto-10

24

MV5253

Green Diffused

20

1.S

2.3

Opto-9

2S

MV5254

Green Semi-Diffused

20

3.0

2.3

Opto-10

26

MV5352

Yellow Point Source

20

10.0

2.3

Opto-10

27

MV5353

Yellow Diffused

20

6.0

2.3

Opto-9

28

MV5354

Yellow Semi-Diffused

20

10.0

2.3

Opto-10

29

MV5752

Red Point Source

20

16.0

1.9

Opto-10

30

MV5753

Red Diffused

20

4.0

1.9

Opto-9

xii

.-

'.-

FAIRCHILD OPTOELECTRONICS

OPTO
LED VISIBLE LAMPS

Item

(Cont'd)

IF
mA
Typ

Lens
Characteristic

DEVICE NO.

Luminous
Intensity
IF = 20mA
mcd
Typ

VF
V
Typ

Package
No.

1

MV5754

Red Semi-Diffused

20

B.O

1.9

Opto-10

2

TIL209A

Red Diffused T-1

20

2.0

1.7

Opto-11

3

TIL211

Green Diffused T-1

20

0.5

1.7

Opto-11

4

TIL213

Yellow Diffused T-1

20

0.5

1.7

Opto-11

LED LAMP MOUNTING HARDWARE
Item

DEVICE
NO.

Panel
Thickness

Panel
Hole

Description

Package
No.

5

FLS010

.060 to .250

.265
±.002

Single-Part Construction (Flat Black Finish)

Opto-1

6

FLS011

0.187

.250
±.003

3-Piece Construction: Hex Nut, Threaded
Barrel and Bezel (Bezel in Silver Finish)

Opto-2

7

FLS012

0.187

.250
±.003

3-Piece Construction: Hex Nut, Threaded
Barrel and Bezel (Bezel in Black Finish)

Opto-2

8

MP52

0.125

.. 250
±.003

Mounting Clip for MV Series Lamps

Opto-3

7-SEGMENT NUMERIC DISPLAYS
c::

CI
CII III

0

z

w

0

E
~

e

c::

...

'!-cn
u.c CII

:;;

IV CI.c
....(J
IV CII c
.c::t_

0

0

w

~

lii

"0
0.

0

"0
0

.2
ii
.;:
u
III
CII

'0

0.

iii

E

'ij
CII

0

0

CI
~ :l.
CII
-0
In
s:::o
......
CII ...
es:
~ II es:
::IC11 E LLE>
>~
0 111

,lI:-

IV ::I

ClIO.

0.

II

-LL

CI
CII

III~ es:

.2
tiCII
2E

OIV
::I >-E
g:;; 0"0 0'"CI
._c:: NU ......
u.!l!
E Cllil ::I.. '610
::Ie LL
0
....1-....I

ci

z

CII
CI
IV

,lI:

U

IV

0.

450

01 Opto-12

1.7

450

02 Opto-12

450

01 Opto-12

9

FND350

0.362

CA

Red

7-Segment Display

RH

200

1.7

10

FND351

0.362

CA

Red

Overflow ±1 Digit

RH

200

---

7-Segment Display

RH

200

1.7

Red

Overflow ±1 Digit

RH

200

1.7

450

02 Opto-12

Red

7-Segment Display

RH

200

1.7

900

01 Opto-12

Red

Overflow ± Digit

RH

200

1.7

900

02 Opto-12

Red

7-Segment Display

RH

200

1.7

900

01 Opto-12

CC

Red

Overflow ±1 Digit

RH

200

1.7

900

02 Opto-12

0.500

CC

Red

7-Segment Display

RH

200

1.7

600

03 Opto-13

18 FND501

0.500

CC

Red

Overflow ±1 Digit

RH

200

1.7

600

04 Opto-13

19 FND507

0.500

CA

Red

7-Segment Display

RH

200

1.7

600

03 Opto-13

20 FND508

0.500

CA

Red

Overflow ±1 Digit

RH

200

1.7

600

04 Opto-13

11
12
13

FND357

0.362

CC

FND358

0.362

CC

FND360

0.362

CA

14
_. FND361

0.362

CA

15

FND367

0.362

CC

16

FND368

0.362

17 FND500

Red

xiii

FAIRCHILD OPTOELECTRONICS

OPTO
7-SEGMENT NUMERIC DISPLAYS

(Cont'd)
CI
GI

0

z

W

'!-cn
CJ ..c:: GI

:;:

(,)

0

E

~

W

Q

:t:III

0

Il.

'0

Il.

.S!
Q.
.;:

>-

III CI..c::
...
- e
..c::J:_
III Q>

C

'0

e

o.

0

iii
E

CJ

'uGI

en

'0

GI

0

Q

Q

I/)

e

en

~d
~o
o. 0-

:;lIct

CI
GI

I/)

......

ct

LL.C§>

OGlE >N

~.!!!
RI :::I

.fll.

II
LL.

-

CI
GI

en~ct
:::I >- E

.S!
U

~E

e lll
0"

g~o~ Og'
._ eN CJ ~Q
E GI II :t CI
:::ICLL.
..J
__
0
..J.

c:i

Z

GI
CI
RI

~

u

RI

Il.

1

FND530

0.500

CC

Grn

7-Segment Display

RH

80

2.2

2000

03 Opto-13

2

FND531

0.500

CC

Grn

Overflow ±1 Digit

RH

80

2.2

2000

04 Opto-13

3

FND537

0.500

CA

Grn

7-Segment Display

RH

80

2.2

2000

03 Opto-13

4

FND538

0.500

CA

Grn

Overflow ±1 Digit

RH

80

2.2

2000

04 Opto-13

5

FND540

0.500

CC

Yel

7-Segment Display

RH

80

2.2

2000

03 Opto-13

6

FND541

0.500

CC

Yel

Overflow ± Digit

RH

80

2.2

2000

04 Opto-13

7

FND547

0.500

CA

Yel

7-Segment Display

RH

80

2.2

2000

03 Opto-13

8

FND548

0.500

CA

Yel

9

FND550

0.500

CC

10

FND551

0.500

CC

0.500

Overflow ± Digit

RH

80

2.2

2000

04 Opto-13

Amb

7-Segment Display

RH

80

2.2

2000

03 Opto-13

Amb

Overflow ±1 Digit

RH

80

2.2

2000

04 Opto-13

CA

Amb

7-Segment Display

RH.

80

2.2

2000

03 Opto-13

Overflow ±1 Digit

RH

80

2.2

2000

11

FND557

12

FND558

0.500

CA

Amb

13

FND560

0.500

CC

Red

7-Segment Display

RH

200

2.2

1200

03 Opto-13

14

FND561

0.500

CC

Red

Overflow ±1 Digit

RH

200

1.7

1200

04 Opto-13

15

FND567

0.500

CA

Red

7-Segment Display

RH

200

1.7

1200

03 Opto-13

16

FND568

0.500

CA

Red

Overflow ±1 Digit

RH

200

1.7

1200

04 Opto-13

17

FND800

0.800

CC

Red

7-Segment Display

RH

200

1.7

600

05 Opto-14

18

FND807

0.800

CA

Red

7-Segment Display

RH

200

1.7

600

05 Opto-14

19

FND847

0.800

CA

Red

7-Segment Display

LH

200

1.7

600

06 Opto-14

20

FND850

0.800

CC

Red

7-Segment Display

LH

200

1.7

600

06 Opto-14

21

FND6710

0.560

CA

Red

Dual Digit Display

RH

200

1.7

500

010 Opto-16

22

FND6730'

0.560

CA

Red

11/2 Digit ±18 Display RH

200

1.7

500

23

FND6740

0.560

CC

Red

Dual Digit Display

RH

200

1.7

500

24

FND6750'

0.560

CC

Red

1/2 Digit ±18 Display

RH

200

1.7

500

-

25

MAN71A

0.300

200

1.7

450

07 Opto-15

CA Red
._
-

---~

7-Segment Display

-

RH

.

-

04 Opto-13

-- - - -

-

-

010 Opto-16

-

26

MAN72A

0.300

CA

Red

7-Segment Display

LH

200

1.7

450

07 Opto-15

27

MAN73A

0.300

CA

Red

Overflow ±1 Digit

None

200

1.7

450

08 Opto-15

28

MAN74A

0.300

CC

Red

7-Segment Display

RH

200

1.7

450

09 Opto-15

--

* Available 2nd Half, 1978

xiv

FAIRCHILD OPTOELECTRONICS

OPTO
7-SEGMENT NUMERIC DISPLAY ARRAYS

Item

DEVICE
NO.

Digits

Luminous
VF
IF = 8.0 rnA Intensity / Seg
@mA
/-I cd
V
AM/PM
Typ
Typ

Seg/Seg
Match
Typ

Logic/
No.
of Connection Package
Pins
Diagram
No.

1

FCS6400

4

No

1.7

200

10

±33%

34

017

Opto-24

2

FCS6401

3 1/2

Yes

1.7

200

10

±33%

34

018

Opto-25

3

FCS8000

3 1/2

Yes

1.65

350

8.0

±33%

34

011

Opto-17

4
-'
5

FCS8024

4

No

1.65

350

8.0

±33%

34

012

Opto-18

FNA3420'31

4

No

1.7

600

20

±33%

13

-

6

FNA5420

4

No

1.7

600

20

±33%

13

013

Opto-20

7

FNA5421

3 1/2

No

1.7

600

20

±33%

13

014

Opto-21

8

FNA5427

4

No

1.7

600

20

±33%

13

013

Opto-20

9

FNA5428

3 1/2

No

1.7

600

20

±33%

13

014

Opto-21

10

FNA5520

5

No

1.7

600

20

±33%

14

015

Opto-22

-

11

FNA5521

41/2

No

1.7

600

20

±33%

14

016

Opto-23

12

FNA5527

5

No

1.7

600

20

±33%

14

015

Opto-22

13

FNA5528

41/2

No

1.7

600

20

±33%

14

016

Opto-23

LIQUID CRYSTAL DISPLAYS
Always a leader in high-technology, state-of-the-art electronics, Fairchild has now entered the liquid
crystal display (LCD) market. Initial entries are 3112-, 5112-, and 6-digit watch and a-digit calculator
,displays, and the product range will continue to expand as customer needs and desires are identified.
In order to properly introduce the LCD products, and to ensure that only the most current data on this
rapidly growing line is presented, a separate LCD Data Book is being prepared.
Until the new Data Book is available, please contact our factory for information on how the Fairchild
LCDs can meet your needs.

xv

FAIRCHILD OPTOELECTRONICS

OPTO
COUPLERS-TRANSISTOR OUTPUT
MAX RATINGS @ TA

25°C

Transistor

Po
Item

DEVICE
NO.

1 FCD810 11

Diode

rnW

IC
rnA

VCEO
V

VR
V

IF
rnA

VISO
kV

250

25

20

3.0

60

1.5ac

2 FCD810A 1l1

250

25

20

3.0

60

1.5

3

FCD810B 111

250

25

20

3.0

60

2.5

4

FCD810C 111

250

25

20

3.0

60

5.0

5

FCD8'10D I1 )

250

25

20

3.0

60

6.0

6

FCD820 11 .3 )

250

25

30

3.0

60

1.5ac

7

FCD820A (1 )

250

25

30

3.0

60

1.5

8

FCD820B (1 )

250

25

30

3.0

60

2.5

9

FCD820C I11

250

25

30

3.0

60

5.0

10

FCD820D (1 )

250

25

30

3.0

60

6.0

11

FCD825 11.5)

250

25

30

3.0

60

1.5ac

12 FCD825A 11 .51

250

25

30

3.0

60

1.5

FCD825B 11.5)

250

25

30

3.0

60

2.5

14 FCD825C 11 .5)

250

25

30

3.0

60

5.0

15 FCD825D 11 .5 )

13

>

250

25

30

3.0

60

6.0

16

FCD830 12 .31

250

25

30

3.0

60

1.5

17

FCD830A I21

250

25

30

3.0

60

1.5ac

250

25

30

3.0

60

2.5

250

25

30

3.0

60

18 FCD830B I21
19

FCD830C(2)

1. Standard transistor output
2. H)gh speed transistor output
guaranteed 2.0·l's max t, and tf with 100 f! RL
8.0 I'S typ at 1 K f! RL
3. CTR guaranteed with transistor in saturation
4. JEDEC registered data and conditions
5. CTR typ at 1.0mA 40%

xvi

I

5.0

FAIRCHILD OPTOELECTRONICS

COUPLED CHARACTERISTICS

Min Currenl Transfer Ralio
@IF @VCE
IC/IF
rnA
V
%

Ir, If
ps

Typ
10

10

10

4.0

INPUT
DIODE
CHARACT.

VF
V
Max

@IF
rnA

1.S

10

OUTPUT
TRANSISTOR
CHARACT.

VCE(sat)
V
Max

@IC
rnA

@IF
rnA

c:
......2 E
.5:! U f!
C)GlC)
o c: 10
..J c: '-

0.7

2.6

SO

024

00
U

Package
No.
Opto-37

10

10

10

4.0

1.S

10

0.7

2.6

SO

024

Opto-37

10

10

10

4.0

1.S

10

0.7

1.6

SO

024

Opto-37

10

4.0

1.S

10

0.7

2.6

SO

024

Opto-37

024

Opto-37

10

10

10

10

10

4.0

1.S

10

0.7

2.6

SO

20

10

0.4

2.S

1.S

60

0.4

2.0

10

024

Opto-37

20

10

10

2.S

1.S

60

0.4

2.2

1S

024

Opto-37

20

10

10

2.S

1.S

60

0.4

2.2

1S

024

Opto-37

20

10

10

2.S

1.S

60

0.4

2.2

1S

024

Opto-37

20

10

10

2.S

1.S

60

0.4

2.2

1S

024

Opto-37

SO

10

10

3.0

1.S

60

0.4

2.0

10

024

Opto-37

SO

10

10

3.0

1.S

60

0.4

2.0

10

024

Opto-37

SO

10

10

3.0

1.S

60

0.4

2.0

10

024

Opto-37

SO

10

10

3.0

1.S

60

0.4

2.0

10

024

Opto-37

SO

10

10

3.0

1.S

60

0.4

2.0

10

024

Opto-37

20

10

0.4

1.6

1.S

60

0.4

2.0

10

024

Opto-37

20

10

10

1.6

1.S

60

0.4

2.2

15

024

Opto-37

20

10

10

1.6

1.S

60

0.4

2.2

15

024

Opto-37

20

10

10

1.6

1.S

60

0.4

2.2

15

024

Opto-37

xvii

FAIRCHILD OPTOELECTRONICS

OPTO
COUPLERS-TRANSISTOR OUTPUT

(Cont'd)

MAX RATINGS @ TA

= 25°C

Transistor
DEVICE
NO.

Item

Diode

PD
mW

IC
mA

VCEO
V

VR
V

IF
mA

VI SO
kV

60

6.0

1

FCD830D I21

250

25

30

3.0

2

FCD831 121

250

25

30

3.0

60

1.5ac

3

FCD831A I21

250

25

30

3.0

60

1.5

4

FCD831B I21

250

25

30

3.0

60

2.5

5

FCD831C I21

250

25

30

3.0

60

5.0

6

FCD831D I21

250

25

30

3.0

60

6.0

7

FCD836 121

250

25

20

3.0

60

1.5ac

8

FCD836CI21

250

25

20

3.0

60

5.0

9

FCD8360 121

250

25

20

3.0

60

6.0

4N2S 141

250

-

30

3.0

80

2.5

11

4N26 141

250

-

30

3.0

80

1.5

12

4N27 141

250

-

30

3.0

80

1.5

13

4N2S141

250

-

30

3.0

80

0.5

14

4N35 141

400

-

30

6.0

60

3.5

15

4N36 141

400

-

30

6.0

60

2.5

16

4N37 '41

400

-

30

6.0

60

1.5

17

1L1

200

-

30

3.0

150

2.5

18

IL12

200

-

30

3.0

150

1.0

200

-

30

3.0

150

1.5

10

19

IL1S

1. Standard transistor output
2 High speed transistor output
guaranteed 2.0 !1s max te and tf with 100 fl RL
8.0!1s typ at 1K fl RL
3. CTR guaranteed with transistor In saturation
4 JEDEC registered data and conditions
5. CTR typ at 1.0mA = 40%

xviii

FAIRCHILD OPTOELECTRONICS

COUPLED CHARACTERISTICS

Min Current Transfer Ratio
@IF @VCE
IC/IF
%
rnA
V

INPUT
DIODE
CHARACT.

OUTPUT
TRANSISTOR
CHARACT.

c:
____ .2 E

tr, If

VF

I-'s

V

Typ

Max

@IF
rnA

VCE(sal)
V

@IC @IF
rnA
rnA

Max

.-

(J-ra
._
CJ ...

Q)CIlOl

o c: ra
c: .00
U

Package
No.

..J

20

10

10

1.6

1.5

60

0.4

2.2

15

024

Opto-37

10

10

10

1.6

1.5

60

0.5

2.0

50

024

Opto-37

10

10

10

1.6

1.5

60

0.5

2.0

50

024

Opto-37

10

10

10

1.6

1.5

60

0.5

2.0

50

024

Opto-37

10

10

10

1.6

1.5

60

0.5

2.0

50

024

Opto-37

10

10

10

1.6

1.5

60

0.5

2.0

50

024

Opto-37

024

Opto-37

6.0

10

10

1.6

1.5

20

0.7

2.0

50

6.0

10

10

1.6

1.5

20

0.7

2.0

50

024

Opto-37

6.0

10

10

1.6

1.5

20

0.7

2.0

50

024

Opto-37
Opto-37

20

10

10

2.5

1.5

50

0.5

2.0

50

024

20

10

10

2.5

1.5

50

0.5

2.0

50

024

Opto-37

10

10

10

2.5

1.5

50

0.5

2.0

50

024

Opto-37

10

10

10

2.5

1.5

50

0.5

2.0

50

024

Opto-37

100

10

10

8.0

1.5

10

0.3

0.5

10

024

Opto-37

100

10

10

8.0

1.5

10

0.3

0.5

10

024

Opto-37

100

10

10

8.0

1.5

10

0.3

0.5

10

024

Opto-37

20

10

10

2.0

1.5

60

0.5

1.6

16

024

Opto-37

10

10

5.0

2.0

1.5

10

0.5

2.0

50

024

Opto-37

10

10

2.0

1.5

60

0.5

2.0

50

024

Opto-37

6.0

xix

-

FAIRCHILD OPTOELECTRONICS

OPTO
COUPLERS-TRANSISTOR OUTPUT

(Cont'd)

MAX RATINGS @ TA

~

25°C

Transistor

Item

--

--

DEVICE
NO.

1

1L16

Diode

PD
mW

IC
mA

VCEO
V

VR
V

IF
mA

VISO
kV

200

-

30

3.0

150

1.5

2

IL74

150

-

20

3.0

150

1.5

3

H11A1

250

100

30

3.0

60

2.5

4

H11A2

250

100

30

3.0

60

1.5

5

H11A3

250

100

30

3.0

60

2.5

6

H11A4

250

100

30

3.0

60

1.5

7

MCT2

250

-

30

3.0

60

1.5

8

MCT2E

250

-

30

3.0

60

2.5

9

MCT26

250

-

30

3.0

60

1.5

TlL11113 1

250

-

30

3.0

100

1.5

20

3.0

100

1.5
2.5

10
11
_.

TIL112

250

-

12

TIL11413 1

250

-

30

3.0

100

13

TIL115

250

-

20

3.0

100

2.5

14

TIL 116

250

-

30

3.0

100

2.5

15

TlL117

250

-

30

3.0

100

2.5

16

TlL118

250

-

20

3.0

100

1.5

17

MOC1000

250

-

30

3.0

80

1.5

18

MOC1001

250

-

30

3.0

80

2.5

19

MOC1002

250

-

30

3.0

80

1.5

20

MOC1003

250

-

30

3.0

80

0.5

1. Standard transistor output
2. High speed transistor output
guaranteed 2.0 I1S max t, and tl with 100 J! RL
B.O j.lS typ at 1K l! RL
3. CTR guaranteed with transistor in saturation
4. JEDEC registered data and conditions
5. CTR typ at 1 .0mA ~ 40%

xx

FAIRCHILD OPTOELECTRONICS

COUPLED CHARACTERISTICS

I

INPUT
DIODE
CHAR ACT.

OUTPUT
TRANSISTOR
CHARACT.

c:

Min Currenl Transfer Ratio
IC/IF
@IF @VCE
%
rnA
V

.......
-00 E
0._
I r, If

VCE(sal)
V
Max

@IC @IF
rnA
rnA

~

@lIF
rnA

Typ

VF
V
Max

60

0.5

1.6

50

024

Opto-37

-

0.5

2.0

16

024

Opto-37

f'S

0)010)

o c:
<0
c: .-

oJ

00

0

.---

Package
No.

6.0

10

10

2.0

1.5

12.5

16

5.0

25.0

-

50

10

10

2.0

1.5

10

0.4

0.5

10

024

Opto-37

20

10

10

2.0

1.5

10

0.4

0.5

10

024

Opto-37

20

10

10

2.0

1.5

10

0.4

0.5

10

024

Opto-37

10

10

10

2.0

1.5

10

0.4

0.5

10

024

Opto-37

20

10

10

2.5

1.5

20

0.4

2.0

16

024

Opto-37

20

10

10

2.5

1.5

20

0.4

2.0

16

024

Opto-37

6.0

10

10

2.0

1.5

20

0.5

1.6

60

024

Opto-37

12

16

0.4

5.0

1.4

16

0.4

2.0

16

024

Opto-37

2.0

10

5.0

15.0

1.5

10

0.5

2.0

50

024

Opto-37

-

12

16

0.4

5.0

1.4

16

0.4

2.0

16

024

Opto-37

2.0

10

5.0

15.0

1.5

10

0.5

2.0

50

024

Opto-37

20

10

10

7.0

1.5

60

0.4

2.2

15

024

Opto-37

50

10

10

9.0

1.4

16

0.4

0.5

10

024

Opto-37

10

10

5.0

15.0

1.5

10

0.5

2.0

50

024

Opto-37

20

10

10

2.8

1.5

50

0.5

2.0

50

024

Opto-37

20

10

10

2.8

1.5

50

0.5

2.0

50

024

Opto-37
Opto-37
Opto-37

10

10

10

2.8

1.5

50

0.5

2.0

50

024

10

10

10

2.8

1.5

50

0.5

2.0

50

024

xxi

FAIRCHILD OPTOELECTRONICS

OPTO
COUPLERS-DARLINGTON OUTPUT
MAX RATINGS @ TA

'=

25°C

Transistor

Po
Item

DEVICE
NO.

Diode

mW

IC
mA

VCEO
V

VR
V

'F
mA

1

FCD850

250

125

30

3.0

80

V, SO
kV

1.5ac

2

FCD850C

250

125

30

3.0

80

5.0

3

FCD850D

250

125

30

3.0

80

6.0

4

FCD855

250

125

55

3.0

80

1.5ac

5

FCD855C

250

125

55

3.0

80

5.0

6

FCD855D

250

125

55

3.0

80

6.0

7

FCD860 (3 )

250

125

30

3.0

80

1.5ac

8

FCD860C

I31

250

125

30

3.0

80

5.0

9

FCD860D I31

250

125

30

3.0

80

6.0

10

FCD865 131

250

125

30

3.0

80

1.5ac

11

FCD865C '31

250

125

30

3.0

80

5.0

12

FCD865D (3 )

250

125

30

3.0

80

6.0

13

4N29 141

250

125

30

3.0

80

2.5

14

4N30

(4 )

250

125

30

3.0

80

1.5

15

4N31

141

250

125

30

3.0

80

1.5

16

4N32 141

250

125

30

3.0

80

2.5

17

4N33 (4 )

250

125

30

3.0

80

1.5

18

H11B1

250

100

25

3.0

60

2.5

19

H11B2

250

100

25

3.0

60

1.5

20

TIL 113 131

250

-

30

3.0

100

1.5

21

TIl119

250

-

30

3.0

100

1.5

22

MCA230

250

-

30

3.0

60

1.5

23

MCA231 131

250

50

30

3.0

60

1.5

24

MCA255

250

-

55

3.0

60

1.5

..

·

·
·

1. Standard transistor output
2. High speed transistor output
guaranteed 2 P.s max t, and tf with 1O0ll RL
8p.s typ at 1KO RL
3. CTR guaranteed with transistor In saturation
4. JEDEC registered data and conditions
5. CTR typ at 1 .0mA = 40%

xxii

-.

...

FAIRCHILD OPTOELECTRONICS

INPUT
DIODE
CHARACT.

COUPLED CHARACTERISTICS

OUTPUT
DARLINGTON
CHARACT.
c:

Min Currenl Transfer Ralio
IC/IF
%

I
I

I

@IF @VCE
rnA
V

Ir

If

VF

/lS

/lS

V

Typ

Typ

Max

@IF
rnA

ICEO
/lA
Max

@VCE

V

...... .2 E
.~ '0 ~
ClGlCl
o c: C\l
...J c: .()

Package
No.

024

Opto-37

00

100

10

5.0

15

150

1.5

20

0.1

10

100

10

5.0

15

150

1.5

20

0.1

10

024

Opto-37

100

10

5.0

15

150

1.5

20

0.1

10

024

Opto-37

100

10

5.0

15

150

1.5

20

0.1

10

024

Opto-37

100

10

5.0

15

150

1.5

20

0.1

10

024

Opto-37

100

10

5.0

15

150

1.5

20

0.1

10

024

Opto-37

200

1.0

1.0

80

150

1.5

20

0.1

10

024

Opto-37

200

1.0

1.0

80

150

1.5

20

0.1

10

024

Opto-37

200

1.0

1.0

80

150

1.5

20

0.1

10

024

Opto-37

.

.. -

400

0.5

1.0

80

150

1.5

20

0.1

10

024

Opto-37

400

0.5

1.0

80

150

1.5

20

0.1

10

024

Opto-37

400

0.5

1.0

80

150

1.5

20

0.1

10

024

Opto-37

100

10

10

10

45

1.5

50

0.1

10

024

Opto-37

100

10

10

10

45

1.5

50

0.1

10

024

Opto-37

50

10

10

10

45

1.5

50

0.1

10

024

Opto-37

500

10

10

10

120

1.5

50

0.1

10

024

Opto-37

500

10

10

10

120

1.5

50

0.1

10

024

Opto-37

500

1.0

5.0

125

100

1.5

10

0.1

10

024

Opto-37

200

1.0

5.0

125

100

1.5

10

0.1

10

024

Opto-37
Opto-37

300

10

1.0

50

50

1.5

10

0.1

10

024

300

10

2.0

50

50

1.5

10

0.1

10

024

Opto-37

100

10

5.0

5.0

35

1.5

20

0.1

10

024

Opto-37

024

Opto-37

024

Opto-37

200

5.0

1.0

5.0

35

100

10

5.0

5.0

35

I

1.5

10

0.1

10

1.5

20

0.1

10

xxiii

FAIRCHILD OPTOELECTRONICS

OPTO
PHOTO TRANSISTORS

DEVICE
Item
NO.

Description

ICE (II)
VCE = S.OV
rnA
Min Typ Max

VCEO
IC = 1.0mA
V
Min
Typ

VCE(sat)
H = 20mW/cm 2
V
Min Typ Max

tr/tf
}J.s Package
Typ
No.

1

FPT100

Plastic, Dome Lens
General Purpose

30

50

H = 5.0mW/cm2
0.2 1.4

-

Ie = 500}J.A
0.16 0.3

2.8

Opto-26

2

FPT100A

Plastic, Dome Lens
1:3 Sensitivity

30

50

H = 5.0mW/cm2
1.0 1.4 3.0

-

le= 500}J.A
0.16 0.3

2.8

Opto-26

3

FPT100B

Plastic, Dome Lens
1:2 Sensitivity

30

50

H = 5.0mW/cm2
1.3 1.4 2.6

-

Ie = 500}J.A
0.16 0.3

2.8

Opto-26

4

FPT101

Miniature, .080" Dia.
Hermetic Package

H=20mW/cm 2
0.8 3.5

-

Ie =' O.4mA
0.25 0.3

2.8

Opto-27

5

FPT102

Photodiode
Hermetic Package

0.2

Opto-27

6

FPT110

Plastic Flat Lens
General Purpose

30

50

H = 5.0mW/cm2
0.2 0.88

-

Ie = 500}J.A
0.16 0.33

2.8

Opto-28

7

FP110A

Plastic Flat Lens
1:3 Sensitivity

30

50

H = 5.0mW/cm 2
0.6 0.88 1.8

-

Ie = 500}J.A
0.16 0.33

2.8

Opto-28

8

FPT110B

Plastic Flat Lens
1:2 Sensitivity

30

50

H = 5.0mW/cm2
0.8 0.88 1.6

-

Ie = 500}J.A
0.16 0.33

2.8

Opto-28

9

FPT120

Plastic, Dome Lens
High Sensitivity

20

50

H = 1.0mW/cm2
0.4 1.5

-

Ie = 1.0mA
0.25 0.55

18

Opto-26

to

FPT120A

Plastic, Dome Lens
1:3 Sensitivity

15

30

H = 1.0mW/cm2
1.5 2.4 4.5

-

Ie = 1.0mA
0.25 0.55

18

Opto-26

11

FPT120B

Plastic, Dome Lens
1: 1.5 Sensitivity

15

30

H = 1.0mW/cm2
2.0 2.4 4.0

-

Ie = 1.0mA
0.25 0.55

18

Opto-26

12

FPT120C

Plastic Cup,
Dome Lens

11

20

H = 5.0mW/cm2
16 25

-

Ie = 1.0mA
0.35 0.55

18

Opto-26

13

FPT130

Plastic, Flat Lens
High Sensitivity

20

50

H = 1.0mW/cm2
0.4 0.9

-

Ie = 1.0mA
0.25 0.55

18

Opto-28

14

FPT130A

Plastic, Flat Lens
1:3 Sensitivity

15

30

H = 1.0mW/cm2
0.9 1.5
2.7

-

Ie = 1.0mA
0.25 0.55

18

Opto-28

15

FPT130B

Plastic, Flat Lens
1:2 Sensitivity

15

30

H = 1.0mW/cm2
1.2 1.5 2.4

-

Ie = 1.0mA
0.25 0.55

18

Opto-28

16

FPT131

Plastic, Dome Lens

15

50

H = 5.0mW/cm2
0.1 1.4

-

Ie = 500}J.A
0.16 0.7

2.8

Opto-26

17

FPT132

Plastic, Dome Lens

10

30

H = 1.0mW/cm2
0.2 1.5

-

Ie = 1.0mA
0.15 0.7

18

Opto-26

18

FPT136

Plastic, Flat Lens

15

50

H = 5.0mW/cm2
0.1 0.88

-

Ie = 500}J.A
0.16 0.7

2.8

Opto-28

le=O.lmA,
H S 0.1}J.W/cm2
30
60
IR = 5.0}J.A,
H S 0.1}J.W/cm2
50
120

VR = -10.0V,
HSO.l}J.W/cm2
O.lnA 25nA

xxiv

VR = -10V
12}J.A 20}J.A -

FAIRCHILD OPTOELECTRONICS

OPTO
PHOTO TRANSISTORS

(Cont'd)
VCEO
= 1.0mA
V
Min Typ

IC
DEVICE
Item
NO.

Description

ICE(lt)
VCE = 5.0V
mA
Min Typ Max

VCE(sat)
H = 20mW/cm 2
V
Min Typ Max

tr/tf
Typ

Package
No.

Ils

1

FPT137

Plastic, Flat Lens

10

30

H = 1.0mW/cm2
0.2
0.9

-

Ie = 1.0mA
0.15 0.7

18

Opto-28

2

FPT220

Plastic, Dome Lens
1:2 Sensitivity

20

50

H = 1.0mW/cm2
1.0
1.5 2.0

-

Ie = 1.0mA
0.25 0.55

18

Opto-26

3

FPT230

Plastic Flat Lens
1:2 Sensitivity

20

50

H = 1.0mW/cm2
1.2
0.6
0.9

-

Ie = 1.0mA
0.25 0.55

18

Opto-28

4

FPT320

Plastic, Dome Lens
1:3 Sensitivity

20

50

H = 1.0mW/cm2
0.75
1.5 2.25

-

Ie = 1.0mA
0.25 0.55

18

Opto-2 6

5

FPT330

Plastic, Flat Lens
1:3 Sensitivity

20

50

H = 1.0mW/cm2
0.45
0.9 1.35

-

Ie = 1.0mA
0.25 0.55

18

Opto-28

6

FPT400

Plastic, Dome Lens
Photo Darlington

30

50

H = 1.0mW/cm2
7.5
12

-

0.9

1.0

100

Opto-2 6

7

FPT410

Plastic, Flat Lens
Photo Darlington

30

50

H 0: 1.0mW/cm2
5.0
8.0

-

0.9

1.0

100

Opto-28

8

FPT500

TO-18, Dome Lens

45

60

H = 1.0mW/cm2
1.0
-

-

0.2 0.33

3.0

Opto-2 9

9

FPT500A

TO-18, Dome Lens
1:3 Sensitivity

45

60

H = 1.0mW/cm2
2.0
- 6.0

-

0.2 0.33

3.0

Opto-2 9

10

FPT510

TO-18, Flat Lens

45

60

H = 5.0mW/cm2
0.5
-

-

0.2 0.33

3.0

Opto-3o

11

FPT510A

TO-18, Flat Lens
1:3 Sensitivity

45

60

H = 5.0mW/cm2
1.0
3.0

-

0.2 0.33

3.0

Opto-3

12

FPT520

TO-18, Dome Lens

30

50

H = 1.0mW/cm2
5.0
-

-

0.2 0.33

10

Opto-2 9

13

FPT520A

TO-18, Dome Lens
1:3 Sensitivity

30

50

H = 1.0mW/cm2
6.0
18

-

0.2 0.33

10

Opto-2 9

14

FPT530

TO-18, Flat Lens

30

50

H = 5.0mW/cm2
3.0

-

0.2 0.33

10

Opto-3o

15

H = 5.0mW/cm2
12
4.0
-

-

0.2 0.33

10

Opto-3o

--

Flat Lens
50
30
1:3 Sensitivity
----- --------------_.-.. .__.... _.. _-_.-.-_...

16

FPT540

TO-18, Dome Lens

12

20

H = 1.0mW/cm2
8.0 -

-

0.35 0.55

18

Opto-29

17

FPT540A

TO-18, Dome Lens
1:3 Sensitivity

12

20

H = 1.0mW/cm2
10 30

-

0.35 0.55

18

Opto-29

18

FPT550

TO-18, Flat Lens

12

20

H = 5.0mW/cm2
8.0 -

-

0.35 0.55

18

Opto-30

FPT530A

TO~18,

o

----------

xxv

FAIRCHILD OPTOELECTRONICS

OPTO
PHOTO TRANSISTORS

DEVICE
Item
NO.

(Cont'd)

Description

VCEO
IC = 1.0mA
V
Min Typ

ICE(lt)
VCE = S.OV
mA
Min Typ Max

VCE(sat)
H = 20mW/cm 2
V
Min Typ Max

TO-18, Flat Lens
1:3 Sensitivity

12

20

H = 5.0mW/cm 2
24
8.0 -

-

FPTS60

TO-18, Dome Lens
Photo Darlington

30

50

H = 0.5mW/cm2
10 15

-

0.9

3

FPTS70

TO-18, Flat Lens
Photo Darlington

30

50

H = 0.5mW/cm2
1.0 6.0

-

0.9

4

FPT610

Miniature,
.085" x .150"

30

50

H = 5.0mW/cm2
0.2 1.4

-

5

FPT630

X .095" Tall
Flat Lens

20

50

H = 1.0mW/cm2
0.4 0.9

1

FPTSSOA

2

tr/tf
/1S Package
No.
Typ

0.35 0.55

18

Opto-30

1.0

100

Opto-2 9

1.0

100

Opto-3 o

Ie = 500/1A
0.16 0.3

2.8

Opto-31

-

Ie = 1.0mA
0.25 0.55

18

Opto-31

IF
mA
Max

VF
IF = 100mA
V
Typ

Wave Length
@ Peak
Emission
nm
Typ

Axial
Intensity
IF = 100mA
mW/sr
Package
Typ
No.

INFRARED EMITTERS

DEVICE
NO.
Item

Description

6

FPE100

Metal Header Package
Wide Beam

100

1.35

890

0.3

Opto-32

7

FPE104

Lead Frame Package
Narrow Beam

100

1.35

890

10

Opto-8

8

FPE106

Miniature
.085" x .150" x .095"
Tall Flat Lens

100

1.35

890

0.4

Opto-31

9

FPESOO

TO-18, Dome Lens

250

1.35

890

10.0

Opto-29

10

FPES10

TO-18, Flat Lens

250

1.35

890

1.0

Opto-30

11

FPE520

TO-18, Dome Lens

250

1.35

940

50

Opto-29

12

FPES30

TO-18, Flat Lens

250

1.35

940

5.0

Opto-30

xxvi

FAIRCHILD OPTOELECTRONICS

OPTO
SOURCE/SENSOR ARRAYS
Source

Item

DEVICE
NO.

Description

Sensor

Matching Factor

ICE(II)
VCE(sat)
VF
H = 1.0mW/cm 2 (GaAs)
IF
IF = SOmA VCE= S.OV ICE·= 4.0mA
V
rnA/ceil
V
rnA
Typ
Max
Typ
Typ

IOUT(Min)
IOUT(Max)
IF = SOmA, VCE = S.OV
Packag e
distance = 0.05"'
Min
Typ
No.

1

FPA100

9-Element Source/
Sensor Array
0.100" Centers

75

1.25

4.5

0.4

0.5

0.65

Opto-33
(2 pcs')

2

FPA101

12-Element Source/
Sensor Array
0.250" Centers

75

1.25

4.5

0.4

0.5

0.65

Opto-34
(2 pcs')

3

FPA102

10-Element Source/
Sensor Array
0.087" Centers

75

1.25

4.5

0.4

0.5

0.65

Opto-35
(2 pcs')

SENSOR ARRAYS
Matching Factor
ICE(II)
IOUT(Min)
vCE(sat)
H--10mW/cm2 H·20mW/cm 2
vCEO
IOUT(Max)
ICE IC 1.0mA Tung.@28S4°K IC = SOOmA IF - SOmA, VCE- S.OV
distance = 0.05"
Package
rnA
V
rnA
V
Typ
Typ
Min
Typ
Max
Typ
No.

tem

DEVICE
NO.

4

FPA700

9-Element Sensor
Array
0.100" Centers

25

20

1.75

0.16

0.5

0.65

Opto-33

5

FPA700A

9-Element Sensor
Array
0.100" Centers

25

20

1.75

0.16

0.75

0.85

Opto-33

6

FPA710

12-Element Sensor
Array
0.250" Centers

25

20

1.75

0.16

0.5

0.65

Opto-34

7

FPA710A

12-Element Sensor
Array
0.250" Centers

25

20

1.75

0.16

0.75

0.85

Opto-34

8

FPA720

1O-Element Sensor
Array
0.087" Centers

25

20

1.75

0.16

0.5

0.65

Opto-35

9

FPA720A

1O-Element Sensor
Array
0.87" Centers

25

20

1.75

0.16

0.75

0.85

Opto-35

-

Description

xxvii

FAIRCHILD OPTOELECTRONICS

OPTO
REFLECTIVE SENSORS
PhotoTransistor

Diode

Item

DEVICE
NO.(1)

Description

IF
mA
Max

VF
IF'" 20mA
V
Typ

Combined

lOUT
IF = SOmA. VCE = SV
VCEO
ICE = 1.0mA
distance =.40"
Package
p.A
p.A
V
Max
Min
Min
No.

1

FPA1 03/1 06

Light Reflective
Transducer

75

1.25

12

20

-

Opto-3 6

2

FPA 104/1.07

Light Reflective
Transducer

75

1.25

12

60

1S0

Opto-3 6

3

FPA10S/108

Light Reflective
Transducer

75

1.25

12

SO

160

Opto-3 6

DICE
Item

DEVICE NO.

Die Size
Inches

Description

4

FLX2121

.015 x .015

A high-efficiency. long life red GaAsP LED. Typical luminous
intensity = 0.7 mcd @ VF = 1.7 Vand IF = 20 mAo

5

FNX8019
FNX8009

.116 x .070

6

.100 x .062

7

FNX8039

.OSO x .049

S

FNX8041

.040 x .026

GaAsP monolithic 719 segment display with a 5° slant. Dimensions given are digit sizes-die is larger by .OOS" vertical and no
more than .016" in horizontal direction. Half digits (numeral-one)
are available for the 0.100", and 0.116" display. The FNXS019,
S009 and S039 are 9-segment and can be used as 7-segment. The
other is 7-segment only.

9

FNX8209

.050 x .063

A current-sinking digit driver for common-cathode LED displays.
The monolithic chip contains four independent npn transistors,
each capable of sinking 63 mA with IB = 1.0 mA.

10

FPX1010

.040 x .040

An npn Planar 12) phototransistor, hFE = 100 Min; VCEO =30 V Min;
VCBO = 50 V Min; ICE(It) = 0.3 mA Min @ H =5.0 mW/cm 2
(tungsten @ 2854° K); typical tr and tf = 3.0 /ls @ ICE =4.0 mA and
RL = 100 U; VCE(sat) = 0.4 V Max @ Ic = 500 /lA.

11

FPX1011

.040 x .040

An npn Planar phototransistor with high illumination sensitivity
hFE = 500 Min; VCEO = 12 V Min; VCBO = 30 V Min; ICE(It) = 0.3 mA
Min @ H = 1.0 mW/cm2 (tungsten@2854°K), typical trand tf= 1S
/lS@ICE = 4.0 mAand RL = 100 ll;VCE(sat)= 0.5VMax@lc=500 /lA.

1. FPA 106,107,108 have infrared filters.
2. Planar is a patented Fairchild process.

xxviii

I

OPTOELECTRONIC TECHNOLOGY

•

~-------------------------------

CHAPTER 1
OPTOELECTRONIC TECHNOLOGY
Solid state optoelectronic technology has significantly improved the capabilities,
reliability, and life expectancy of all types of displays and indicators. Several techniques, each seeking to optimize a different set of parameters, have been developed for
manufacturing specific optoelectronic devices. Preparation of the basic materials is
essentially the same for all techniques, with the major differences being in the assembly
processes and materials selected for final device fabrication.
ARCHITECTURE
Optoelectronics is based upon the ability of certain semiconductor materials to change
the form of energy. For example, in such light-sensitive devices as photodiodes and
phototransistors, electromagnetic energy in the form of photons is absorbed by the ptype region of a pn junction. When absorbed in this manner, the protons release holes
and electrons; the movement of the released electrons across the junction constitutes
the current produced by the device.

The complementary device is the light-emitting diode (LED). The structure of the LED
is such that, when current is applied to it, electrons and holes combine and effectively
annihilate one another as charge carries. The energy is released from the LED in the
form of photons. As would be expected, different semiconductor materials have
different absorption and emission characteristics.
Generally, LED devices emitting light in the visble spectrum consist of a gallium
arsenide (GaAs) or gallium phosphide (GaP) substrate with an epitaxial layer (a single
crystal, grown on the substrate, that duplicates the orientation of the substrate) of
gallium arsenide phosphide (GaAs) tailored to give the desired color and light emission
characteristics. the GaAs and GaP materials are frequently referred to as III-V
compounds because of their positions in the chemical periodic table. Devices that emit
light in the infrared spectrum (IRLED's) typically are formed by diffusing an element,
such as zinc, into a gallium arsenide compound.
Photodiodes and phototransistors use either bulk or epitaxial silicon, depending upon
the final device configuration and desired characteristics. Optically coupled isolators
consist of a GaAs infrared LED and a silicon phototransistor that are electrically
isolated but optically coupled.
CRYST AL GROWTH
The majority of visible LED products have a gallium arsenide substrate. The single
crystals necessary for reproducible-device manufacture are prepared by either a
Bridgman or Czochralski method. In the former, a seed of singie-crystal GaAs, previously prepared and oriented in the appropriate crystal-line direction, is placed in a
"boat" that has a semi-cylindrical cross-section. The boat is placed at one end of a
quartz reaction vessel into which, at a high temperature (approximately 1250°C), is
introduced high-purity gallium and arsenic. The gallium and arsenic combine and, with
the continued application of heat, become a homogenous liquid. As the heat source is
slowly moved away from the seed end of the vessel, a crystal begins to grow onto the
seed. If all parameters are correct, the new crystal assumes the orientation of the seed.
To give the crystal the desired electrical properties, the material is doped with special
impurity atoms. Unwanted impurities are held toa level of less than one part per million.

'-3

•

In the Czochralski method, polycrystalline GaAs material is first synthesized separately, using the Bridgman technique. This material is then placed in a quartz cup or
crucible, covered with liquid glass, and melted. An overpressure of inert gas over the
glass prevents the gallium arsenide from breaking down into separate elements. A seed
crystal, prepared in a manner similar to that used in the Bridgman technique, is lowered
on a rotating rod to the surface of the molten GaAs. When the correct temperature has
been established, the rotating seed is slowly pulled up, causing a crystal to grow onto it.
The diameter and shape of the new crystal are determined by controlling the temperature of the liquid GaAs and the speed with which the seed is raised; electrical properties
are determined by doping. Gallium phosphide single-crystal ingots are produced by the
Czochralski method in much the same manner as gallium arsenide crystals, except that
a higher liquid temperature and much greater overpressure are required.
The Czochralski process takes a great deal of operator skill and experience, but can be
used to grow larger and longer crystals than is possible with the Bridgman technique.
The Bridgman method, however, lends itself more readily to automation. At Fairchild,
both techniques are used to achieve an optimum product mix and the lowest possible
materials cost.
PROCESSING
After the single-crystal ingot has cooled, it is visually inspected and its electrical
properties measured. The ingot is then placed on a precision diamond saw, aligned with
a laser to the orientation needed for the next process step (epitaxy), and a slice removed from the exposed end. This slice is examined with an x-ray diffractometer to
verify that proper orientation has been achieved. If orientation is correct, the entire
ingot is cut into thin slices. These slices are cleaned, lapped, and chemically polished to
a damage-free finish. After a final cleaning, the slices, or substrate wafers, are inspected
for thickness, parallelism, and polish quality.
EPITAXY
In one of the most critical steps in the LED manufacturing process, each polished GaAs
or GaP substrate wafer next has an epitaxial layer deposited on it. This layer is an alloy
of GaAs and GaP, the final composition of which determines the color of the light
emitted by the LED.

To grow the epitaxial layer, the wafer is placed in a chemical vapor deposition (CVO)
reactor, th rough which gases can flow. The wafer is heated in hydrogen and etched with
hydrogen chloride gas to clean its surfaces to a greater degree than is possible with
mechanical devices in air. Very-high-purity atoms of arsenic, phosphorous, gallium,
and dopant material are then deposited on the wafer in a manner that duplicates the
single-crystal nature of the wafer. The composition of the alloy is varied to attain the
desired final composition, with the dopant depositing the correct amount of impurity
atoms in the layer.
With the layer deposited, the epitaxial wafer is inspected and tested to ensure that it
emits the correct light color. The epi wafer then becomes the starting material for the
wafer fabrication process.
1·4

WAFER FABRICATION
The first step in wafer fabrication is growing a layer of silicon nitride over the epi-wafer
surface. Windows are then defined on the wafer using photolithographic techniques,
and the necessary impurities diffused into the surface at a high temperature. The shape
of the junctions thus formed is dictated by the type of device being manufactured. The
nitride layer not only defines the junctions, or dice, but also provides passivation to
ensure long-term reliability and high light output.

Again using photolithography, aluminum metal patterns are deposited on the wafer to
make contact with the dice. The wafer is then lapped from its back side to a final
thickness, which depends upon required die size. Gold and germanium are evaporated
onto the back of the wafer and alloyed into the substrate in a furnance. A final layer of
gold is applied to provide the best surface for subsequent steps.
After further visual and electrical testing, lines are scribed between the dice on the
wafer. This puts a fracture along the crystallographic planes so that a small strain
breaks the wafer into individual dice. The dice are bonded onto headers, lead frames, or
printed circuit boards to form a strong mechanical connection, as well as to make good
electrical contact. Wires are bonded to the front~side metallization to make electrical
contact between the device and the package leads. The device is then packaged by
encapsulation, or by attaching a light pipe and lens to the lead frame or printed circuit
board.
ENCAPSULATION MATERIALS
The plastic materials used in die encapsulation must exhibit the following properties:

A high degree of light transmission within the rated environmental
conditions for the life of the device.
Good adherence of the material tothe die, including protection ofthe die
from moisture.
Thermal expansion coefficients approximating those of the other materials in the device.
Handling and curing properties that are practical for high-volume manufacturing.
.
The choice of materials having all of these properties is limited. Additionally, digits that
use internal reflecting cavities or light pipes require plastic parts that either have
intrinsically high reflectance or are capalbe of being plated to obtain high reflectance.
This further limits the choice of materials in those applications, and often precludes the
use of fillers. These fillers, which are used in the epoxies and silicones added to the
encapsulations of other electronic components, can tailor the expansion, viscocity, and
adhesion properties of plastics to promote compatibility of the various piece parts and
improve environmental ratings. Because of the limitations on the use of fillers, the
maximum temperature rating for LED lamps is typically 100° C and for digits is typically
85° C. These temperatures are lower than those normally encountered in the soldering
operation.
1-5

•

1-6

1-7

Since material choice is so limited, the range of cleaning solvents that do not attack the
lamp or digit is also reduced. Some popular solvents produce minor cosmetic blemishes, while others destroy the effective use of the device.
SOLDERING METHODS
When incorporating LED devices into circuits, care must be taken that the maximum
temperature rating and maximum solder temperature-time rating are not exceeded.
The latter specification is the point at which the maximum temperature internal to the
device is reached, allowing in the case of digits, for example, a slightly increased
ambient temperature of approximately 40°C. If the digit temperature exceeds 40°C
prior to soldering, such as occurs with the preheat step sometimes used in wave
soldering, a reduced soldering time is necessary.
For example, with the digit temperature initially at 55°C, the maximum soldering time
would be about 2 1/2 seconds. Wave soldering conditions, in particular, vary widely,
and the preheat temperature itself may exceed the digit maximum temperature rating.
Elimination of preheating might be considered in such a case; at a minimum, the
heating should be greatly reduced and soldering time minimized within acceptable
soldering criteria. Alternative solutions are to place a thermal shield over the devices
d uri ng the preheat stage, to use sockets or socket pi ns, or to change to hand solderi ng.
Stress on leads during soldering should also be considered. Bending of leads to hold
devices in place is satisfactory, but care should be taken in bending the leads in printed
circuit board holes to avoid high tensile forces. Over-heating during soldering could
then weaken the device internally, possibly causing a board assembly or field failure.
CLEANING
For pre-solder cleaning and fluxing, chemicals should be chosen that do not damage
the device case or leads. If the customary chemicals are unsatisfactory, it will be readily
apparent from a visual examination of the package and lead surfaces. For example,
leads are commonly silver-plated; an unsatisfactory flux generally forms silver sulfide,
which turns the plated leads a dark brown or black and may interfere with solderability.
For devices having polycarbonate cases, cleaning solvents should be limited to such
non-corrosive types as Freon> TF, isopropyl alcohol, and methly alcohol. Lead-frame
lamps may also be cleaned with acetone, chlorobenzene, chlorothane N.U., toluene, or
xylene. Care should be taken in all cases to avoid contamination of the solvent. Freon>
TE is also satisfactory; however, it may result in minor cosmetic defects, such as
softening or blistering of the device back-fill epoxy surface.
"Trademark of E.I. duPont De Nemours Company

Another consideration, especially in the case of digits with air cavities, is the possibility
of the solvent leaking into the package. The emitting die is enclosed in epoxy, so solvent
within the digit should not present a reliability problem. Instead, the appearance of the
digit may be affected, either in the off condition, the on condition, or both. The effect
may be of a minor, acceptable nature.

'.8

A more pronounced leakage situation occurs when a heated digit is immersed in a cool
solvent, creating a siphonage of solvent into the package. This leakage can be
minimized by avoiding device immersion. Instead, for example, water, detergent, and
other cleaners may be sprayed onto the bottom of the printed circuit board with the digit
seating plane in a horizontal, downward pOSition so that the solvents would tend to flow
over the board surface.

1·9

I-------DISCRETE LED DIGIT RELIABILITY

.......

•

CHAPTER 2
DISCRETE LED DIGIT RELIABILITY
Display digits are typically used in groups, and the failure of a single element represents
a failure of the entire display. Reliability musttherefore bea major consideration in digit
dev~lopment and manufacture.
The design and production of Fairchild digits draws upon expertise gained through
years of experience in high-volume production of plastic-encapsulated integrated
circuits and optical products, for which a high level of reliability has been established.
DESIGN CONSIDERATIONS
The LED die used for each digit segment of decimal pOint is identical t that used in
individual LED lamp products, so that extensive experience with design criteria for
reliable performance is directly applicable. Also directly applicable are years of working
with the metal contact systems of silicon integrated circuits, which require much the
same level of ohmic contact and mechanical integrity as die metallization.
The inherent die reliability is preserved through careful selection of the materials and
processes used to attach the die to the leadframe. The die and bonding wires, for
example, are protected by complete encapsulation, and an encapsulated header allows
the die and bonding wires to withstand mechanical and thermal stresses. The lens cap
likewise has adequate dimensional tolerances to assure minimal machanical stress on
the integral header lenses under environmenta stress conditions. The epoxy back-fill
encapsulation used to attach the header and lens cap provide a good moisture seal.
All purchased materials for Fairchild digits are controlled through Optoelectronics Division product engineering, and through reliability and quality assurance (R&QA).
Materials are purchased and inspected per control documents approved by R&QA;
three methods are used to determine quality:
Direct inspection per control documents, in which emphasis is placed on
checking dimensions and physical properties of plastic piece parts and
lead frames.
Functional testing, in which tests are conducted to assure die attachment
and bonding quality of the lead frames and dice.
Chemical inspection, in which a scanning electron microscope (SEM)
and an Auger electron spectroscope are used for detailed chemical
analysis.
DEVICE TESTING
The following QA sample inspection levels are applied both before a digit batch is
shipped and after 100% production testing to customer specifications:
Catastrophic (opens and shorts) - 0.25% AQL
Optoelectrical parameters -1.0% AQL
Mechanicallvisuallight-up -1.0% AQL
Mechanicallvisual non-light-up -1.5% AQL
2-2

Additionally, special customer requirements are accommodated through an internal
specification system. All internal test specifications are veri fed as satisfying customer
requirements before being forwarded to the test area.
Fairchild provides digits that meet or exceed customer reliability requirements. However, reliability in the customer application is the final measure of performance. Besides
digit design, assembly, and testing, therefore, digit end reliability is also affected by the
customer's processes for handling the digit, the digit operating circuit, and the equipmentthat contains the digit.
The analysis of assembly and system failures by customers and by Fairchild on
returned digits provides one of the most important inuputs to the Fairchild total
reliability program.
RELIABILITY MONITOR AND CONTROL
Reliability monitor programs are established in each of Fairchild's manufacturing
facilities, as well as atthe reliability engineering facility. Functional testing is conducted
under simulated environmental conditions, and accelerated stress testing is conducted
to highlight any latent failure mechanisms. Several of these tests, described below, are
part of Fairchild's continuing stress test program. The results presented typify those for
the accelerated life test conditions applied in the tests and should not be used as an
implied warranty of performance in any given application.
Burn-In
A high-temperature burn-in test has been conducted weekly with an
average sample size of over 3000 digits per month. The test consists of
operation at a bias of 20 mA per segment and decimal point with an
ambient temperature of 70°C for two hours duration. As most early
failures occur within this period, this test has had good correlation with
failures in customer burn-in. As shown in Table 2-1, results are almost
the same for longer-term tests. Compared to the indicated failure rate of
about 1/4%, the customer-re'portedsystem burn-in failure rate generally
averages in the range of 1/4%, to 1/2%, dueto the various processes used
in printed circuit board assembly. This is in addition to incoming and
printed circuit board assembly failures, priorto burn-in, which have been
reported to be about 0.4%.
Temperature Cycling and Shock
Subjecting digits to recurring thermal stres measures the dimensional
and thermal expansion compatibility of internal parts. Results of reduced cycle, air-to-air temperature cycling tests and thermal-shock
tests, shown in Tables 2-2 and 2-3, are used to assure continued control
of assembly operations and piece-part acceptability.
Mechanical Shock
Another dimensional compatibility test used for assembly process and
piece-part monitoring consists of a one-meter drop of digits in two axes
in a test fixture. Significant failures quickly flag a problem for prompt
action. Table 2-4 shows representative test results.
2·4

Gross Leak
Although back-fill epoxy encapsulation protects the digitfrom moisture,
this encapsulation is not always totally effective. As a result, a small part
of the production distribution will leak if immersed in fluid. This must be
considered if, for example, thermal shock is likely to occur in a liquid
bath or flux removal is accomplished in a bath. A weekly monitor
measures the integrity of the back seal in a gross leak test. This test
consists of preheating digits at 60°C and immersing them in Freon* TF
for 30 seconds. This test functionally evaluates an assumed immersion
cleaning technique. Accumulated test results are given in Table 2-5.
Solderability
Frequent solderability monitoring is conducted. This test criterion is
90% solder coverage in a 260°C, 5-second solder dip. Table 2-6 shows
typical test results.
FAILURES MODES
Failures generated by the monitoring tests, life tests, and in the field are analyzed to
identify needed corrective action in device design, assembly, or testing. The major
failure mode has been found to be an open segment, which is often caused by
excessive heating either during printed circuit board soldering or during operation
when a bias exceeding the device ratings is applied.
COMPREHENSIVE TESTING
Several times a year, all digit types are evaluated in a series of comprehensive reliability
tests, including extended temperature cycling, thermal shock, and operating life tests.

New LED digit types are qualified priorto introduction by an even more extensive series
of reliability tests. Acceptance criteria are established for each test to assure good
performance in the variety of environments expected in each application.

NOTE: The data in the following tables represents results obtained in
recent history. LED digit reliability is expected to show the continued
improvement evidenced in past data.

TABLE 2-1,
OPERATING MONITOR TEST RESULTS
IF = 20 mA/Segment and Decimal Point

DEVICE

CONDITIONS

FND357
70°C, 2 hrs*
FND500/507 70°C, 2 hrs'
FND357
25°C, 100 hrs
FND500/507 25°C, 100 hrs

SAMPLE FAILURES PERCENTAGE
16,383
6,321

26
11

0.16

1,090
3,323

2
6

0.18
0.18

0.17

'Long term failure rates should not be based on these results since they are only a measure of
Infant mortality.

'Trademark of E.I. duPOnt De Nemours Company

2·5

TABLE 2-2.
TEMPERATURE CYCLING MONITOR RESULTS
TA
DEVICE TYPE
FND357
FND500/507

= 25°C to +S5°C, 2 Cycles
SAMPLE

FAILURES

PERCENTAGE

4,721
3,365

1S
6

0.4
0.2

TABLE 2-3.
THERMAL SHOCK MONITOR RESULTS
TA
DEVICE TYPE
FND357
FND500/507
FNDSOO/S07

= 0 °C +S5°C Water Baths, 15 Cycles
SAMPLE

FAILURES

PERCENTAGE

2,500
4,S24
450

5
14

0.20
0.29
0.22

TABLE 2-4.
MECHANICAL SHOCK MONITOR RESULTS
One Meter Drop in Two Axes (Concrete Surface)
DEVICE TYPE
FND357
FND500/507

SAMPLE

FAILURES

PERCENTAGE

3,960

16
2

0.40
0.45

440

TABLE 2-5.
GROSS LEAK MONITOR RESULTS
60°C Bake, Immersion in 25°C Freon TF for 30 Seconds
DEVICE TYPE
FND357
FND500/507
FNDSOO/S07

SAMPLE

FAILURES

PERCENTAGE

2,199
3,296
1,900

47
SO
11

2.1
2.4
0.6

TABLE 2-6.
SOLDERABILITY MONITOR RESULTS
DEVICE TYPE
FND357
FND500/507
FNDSOO/S07

SAMPLE

FAILURES

PERCENTAGE

1,600
2,300
1,050

1

5

0.1
0.2

o
2-6

0

VISIBLE LED LAMPS AND
MOUNTING HARDWARE

CHAPTER 3
INTRODUCTION
A solid state, or light-emitting diode (LED), lamp is a pn junction that emits light when
forward-biased. These lamps have a multitude of uses, from complex array displays to
simple on/off status indicators.
The Fairchild LED lamp products that emit light in the visible spectrum are made of
complex gallium phosphide or gallium arsenide phosphide compounds. The light
output of such compounds typically peaks at a wave-length of from 565 to 670
nanometers (nm); this peak can be varied by changing the exact composition for a
particular purpose (see Table 31-l.
Since these devices characteristically resemble a forward-biased diode with a breakdown voltage of approximately 1. 6 V, they are ideal for use in all forms of lOW-Voltage,
low-power circuits. Among the other advantages solid state lamps have over other light
sources are:
Very fast response times (rise and fall times in the submicrosecond
rangel.
Small size
Low power consumption
Light weight
Long life (typically greater than 100,000 hours)
Low impedance (compatible with most semiconductor circuity)
Low heat generation
TABLE 3-1.
VISIBLE LED PERFORMANCE

LED
TYPE

COLOR
OF LIGHT

GaAsP/GaAs
GaAsP/GaAs
GaAsP/GaP
GaAsP/GaP
GaP/GaP

Red
Red
Amber
Yellow
Green

WAVELENGTH
OF LIGHT (nm)

RELATIVE
OPTICAL
SENSITIVITY
(LUMENS/
OPTICAL W)

EFFICIENCY
(PERCENT)

VISUAL MERIT
(LUMENS/
ELECTRICAL W)

670
660
635
585
565

20
40
140
500
590

0.1
0.03
0.14
0.04
0.05

0.02
0.012
0.2
0.2
0.30

COMMERICAL DEVICE
PERFORMANCE

3-3

•

FAIRCHILD LED LAMP CROSS REFERENCE

KEY
COMPETITOR:
HP
MON
NAT
DIA
TI
LIT
XCT

Hewlett-Packard
Monsanto
National Semiconductor
Dialight
Texas Instruments
Litronix
Xciton

NC-P
NC-C
NC-E
A
B

Not Crossable Because of Package Differences
Not Crossable Because of Color Differences
Not Crossable Because of Electrical Differences
Fairchild Device is a Direct Replacement
Fairchild Device is Easily Crossable with Minor
Electrical Deviations as Noted
Fairchild Device is Easily Crossable with Minor
Mechanical Deviations as Noted
Significant Electrical Differences Between Devices
as Noted
Significant Mechanical Differences Between Devices
as Noted

CODE:

C
D
E

NOTES:
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

Fairchild Device is Screened for Intensity
Competitor Device is Point Source
Competitor Device has Pins Bent 90 Degrees
Competitor Device has .090" Pin Spacing
Competitor Device is Clear Diffused Package
Competitor Device is Water Clear Package
Package Height/Dimension Difference Between Devices
Pin Length Difference Between Devices
.025" Square Pins and .285" Lens on Competitor Device
Viewing Angle Difference Between Devices
Wavelength Difference Between Devices
.025" Square Pins with Standoffs on Competitor Device
Competitor Device is T-1 1/2 Lamp Size
Competitor Lamp is Flangeless Lamp
Competitor Lamp is Subminiature Sized with Radial Pins
Competitor Lamp has Metal Base
Fairchild Device is GaP Technology
Competitor Device has .075" Pin Spacing
3-5

•

FAIRCHILD LED CROSS REFERENCE

DEVICE

FAIRCHILD
DEVICE
CODE

COMPETITOR DESCRIPTION

1N5765
HP
JANTX 1 N5765 HP
JAN 1N5765
HP
5082-4100
HP
5082-4101
HP
5082-4150
HP
5082-4160
HP
5082-4190
HP
5082-4403
HP
5082-4415
HP
5082-4420
HP
5082-4440
HP
5082-4444
HP
5082-4468
HP
5082-4480
HP
5082-4483
HP
5082-4484
HP
5082-4486
HP
5082-4487
HP
5082-4488
HP
5082-4494
HP
5082-4520
HP
5082-4550
HP
5082-4555
HP
5082-4557
HP
5082-4558
HP
5082-4570
HP
5082-4584
HP
5082-4590
HP
5082-4592
HP
5082-4595
HP
HP
5082-4597
5082-4620
HP
5082-4650
HP
5082-4655
HP
5082-4657
HP
5082-4658
HP
5082-4670
HP
5082-4684
HP
5082-4690
HP
5082-4693
HP
5082-4694
HP
5082-4695
HP
5082-4707
HP
5082-4732
HP
5082-4790
HP
5082-4791
HP
5082-4850
HP
5082-4855
HP
5082-4860
HP

Hermetic LED Lamp, Red
Hermetic LED Lamp, Red
Hermetic LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Yellow
LED Lamp, Red
LED Lamp, Green
LED Lamp, Red
LED Lamp, Red
Hermetic LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
Hermetic LED Lamp, Yellow
LED Lamp, Yellow
LED Lamp, Yellow
LED Lamp, Yellow
LED Lamp, Yellow
Rectangular LED, Yellow
LED Lamp, Yellow
LED Lamp, Yellow
LED Lamp, Yellow
LED Lamp, Yellow
LED Lamp, Yellow
Hermetic LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
Rectangular LED, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
Mounting Clip
Voltage Sensing LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
3-6

FLV160
FLV160
FLV160
FLV160
TIL209A
TIL209A
TIL209A
TIL209A
TIL209A
TIL209A
TIL209A
MV5353
MV5353
MV5354
MV5354
TIL213
FLV440
FLV440
FLV441
FLV441
MV5753
MV5753
MV5754
MV5752
TIL209A
FLV540
FLV540
FLV540
FLV540
MP52
FLV140
FLV140
MV5053
MV5053

NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
C
E
NC-P
C
E
NC-E
C
E
C
E
E
E
C
NC-P
C
C
C

B/C
NC-P
C
C

B/C
C

B/C
NC-P
C
C
C
C
NC-P

B/C
C

B/C
E
E
A
NC
C

B/C
C
C
NC-E

NOTES
TO-46 pkg.
TO-46 pkg.
TO-46 pkg.
15
15
15
15
15
8,16
3,16
TO-46 pkg.
8,16
3,16
Resistor
4,8
4,5,8
4,8
4,6,8
4,5,7,8
4,5,7,8
4,8
TO-46 pkg.
8
8
8
1,8
4,8
8
1,8
8
1,8
TO-46 pkg.
8
8
8
8
4, Super GaAsP
8
1,8
2,8
2,8

8
1,8
12
12
Resistor

"--

FAIRCHILD LED CROSS REFERENCE

FAIRCHILD
DEVICE
CODE

DEVICE

COMPETITOR DESCRIPTION

5082-4880
5082-4881
5082-4882
5082-4883
5082-4884
5082-4885
5082-4886
5082-4887
5082-4888
5082-4920
5082-4950
5082-4955
5082-4957
5082-4958
5082-4970
5082-4984
5082-4990
5082-4992
5082-4995
5082-4997

HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP

LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lam'p, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Green
LED Lamp, Green
LED Lamp, Green
LED Lamp, Green
LED Lamp, Green
Rectangular LED, Green
LED Lamp, Green
LED Lamp, Green
LED Lamp, Green
LED Lamp, Green
LED Lamp, Green

MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV
MV

MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON

LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED

10B
50
52
53
54
55
5020
5021
5022
5023
5024
5025
5026
5050
5051
5052
5053
5054-1
5054-2
5054-3
5055
5056
5074B
5074C
5075B
5075C
5077B

Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,

Red
Red
Green
Green
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red

MV5054-1
MV5054-1
MV5054-2
MV5054-1
MV5054-1
MV5054-2
MV5054-1
MV5054-1
MV5054-2
MV5253
MV5253
MV5254
MV5252
TIL211
FLV340
FLV340
FLV341
FLV341

FLV161
FLV160
FLV161
FLV160
FLV160
FLV160
FLV160
MV5050
MV5051
MV5052
MV5053
MV5054-1
MV5054-2
MV5054-3
MV5055
MV5056
TIL209A
TIL209A
TIL209A
TIL209A
TIL209A

3-7

C
C
C
E
E
E
E
E
E
NC-P
C

B/C
B/C
B/C
NC-P
C
C

NOTES
12,16
12,16
12,16
6,12,16
6,12,16
6,12,16
5,12,16
5,12,16
5,12,16
TO-46 pkg,
8
1,8
1,8
1,8

B/C

4
8
1,8
8
1,8

NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
E
E
C
C
C
C
C
A
A
A
A
A
A
A
A
A
C
C
C
C
E

6,10
5,10
10
10
10
10
10
8
8
8
8
8
8
8
8
8
8
8
8
8
7,8

B/C
C

•

FAIRCHILD LED CROSS REFERENCE

DEVICE

COMPETITOR DESCRIPTION

MV 5077C
MV 5152
MV 5153
MV 5154
MV 5252
MV 5253
MV 5254
MV 5352
MV 5353
MV 5354
MV 5752
MV 5753
MV 5754
MV 5174B
MV 5174C
MV 5177B
MV 5177C
MV 5274B
MV 5274C
MV 5277B
MV 5277C
MV 5374B
MV 5374C
MV 5377B
MV 5377C
MV 57748
MV 5774C
MV 5777B
MV 5777C
MV 5094
MV 5491
MP 21
MP 22
MP 51
MP 52

MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON

LED Lamp, Red
LED Lamp, Orange
LED Lamp, Orange
LED Lamp, Orange
LED Lamp, Green
LED Lamp, Green
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Yellow
LED Lamp, Yellow
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Orange
LED Lamp, Orange
LED Lamp, Orange
LED Lamp, Orange
LED Lamp, Green
LED Lamp, Green
LED Lamp, Green
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Yellow
LED Lamp, Yellow
LED Lamp, Yellow
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, RedlGreen
LED Lamp, RedlGreen
Mounting Hardware, Clear
Mounting Hardware, Black
Mounting Hardware, Clear
Mounting Hardware, Black

NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL

NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT

LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED

4944
5072A
5076A
5020
5022
5023
5024
5026
5027
5040
5041
5042

Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,

Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red

3-8

FAIRCHILD
CODE
DEVICE

NOTES

TIL209A
MV5152
MV5153
MV5154
MV5252
MV5253
MV5254
MV5352
MV5353
MV5354
MV5752
MV5753
MV5754

7,8
8
8
8
8
8
8
8
8
8
8
8
8

TIL211
TIL211
TIL211
TIL211
TIL213
TIL213
TIL213
TIL213
TIL209A
TIL209A
TIL209A
TIL209A

E
A
A
A
A
A
A
A
A
A
A
A
A
NC-P
NC-P
NC-P
NC-P
C
C
E
E
C
C
E
E

MP52
MP52

B/C
B/C
DIE
DIE
NC-P
NC-P/E
NC-P
NC-P
E
A

TIL209A
TIL209A
FLV161
FLV161
FLV160
FLV160
FLV160
FLV160
FLV141
FLV140
FLV141

NC-E
E
A
E
E
E
E
E
B/E
E
E
C

8
8
7,8
7,8
8
8
7,8
7,8
8,11
8,11
1,7,8,11
1,7,8,11
Bipolar
Tri-state

Clear

2,7
6,12,13
13
13
13
13
1,13
6,7,14
5,7,14
7,14

FAIRCHILD LED CROSS REFERENCE

FAIRCHILD
CODE
DEVICE

DEVICE

COMPETITOR DESCRIPTION

NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL
NSL

NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT

LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED

Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,

DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA
DIA

Mini
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED

LED Indicator Lights
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Green
Lamp, Green
Lamp, Green
Lamp, Yellow
Lamp, Yellow
Lamp, Green
Lamp, Yellow
Lamp, Yellow
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Red
Lamp, Green
Lamp, Yellow
Logic Indicators

5043
5046
5050
5052
5053
5056
5057
5080
5081
5082
5086
5252
5253
5352
5353

249-SERIES
521-9165
521-9166
521-9178
521-9179
521-9180
521-9181
521-9183
521-9184
521-9185
521-9186
521-9189
521-9190
521-9195
521-9200
521-9201
521-9202
521-9203
521-9204
521-9205
521-9206
521-9207
521-9208
521-9214
521-9215
521-9216
521-9217
521-9222
521-9223
521-9230
521-9253
521-9254
547-SERIES

Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Red
Green
Green
Green
Green

FLV140
FLV140
MV5050
MV5052
MV5053
MV5053
TIL209A
TIL209A
TIL209A
TIL209A
MV5252
MV5253
MV5253
MV5353

3-9

FLV110
FLV112
FLV160
FLV160
FLV130

TIL209A
FLV111
FLV117
FLV310
FLV310
FLV410
FLV410
TIL211
TIL213
FLV117
TIL209A
MV5053

FLV131
FLV311
FLV411

C
C
C
C
C
C
NC-P
E
E
E
B
C
C
C
C
NC-P
A
A
A
C
A
NC-P
NC-E
NC-E
NC-P
NC-P
A
A
NC-P
A
NC-P
E
C
E
C
A
A
NC-P
E
NC-P
E
A
NC-P
NC-P
A
A
A
NC-P

NOTES
7,14
7,14
12
12
12
12
6
1,5
2
1
8
8
8
8

7

Resistor
Resistor

2,12
12
2,12
12

3
Resistor
4,7

•

FAIRCHILD LED CROSS REFERENCE

FAIRCHILD
DEVICE
CODE

DEVICE

COMPETITOR DESCRIPTION

549-0101
549-0104
550-SERIES
555-SERIES
558-SERIES
559-SERIES
507-SERIES

DIA
DIA
DIA
DIA
DIA
DIA
DIA

LED
LED
LED
LED
LED
LED
LED

TIL 209A
TIL 211
TIL 220
TIL 221
TIL 222
TIL 261
TIL 262
TIL 263
TIL 264
TIL 265
TIL 266
TIL 267
TIL 268
TIL 269
TIL 270
TIL 271
TIL 272
TIL 273
TIL 274
TIL 275
TIL 276
TIL 277
TIL 278
TIL 279
TIL 280
TIL 281
TIL 282
TIL 283
TIL 284
TIL 285
TIL 286
TIL 287
TIL 288
TIL 289
TIL 290

TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI

LED Lamp, Red
LED Lamp, Green
LED Lamp, Red
LED Lamp, Red
LED Lamp, Green
LED Light Sources, Red
LED Light Sources, Red
LED Light Sources, Red
LED Light Sources, Red
LED Light Sources, Red
LED Light Sources, Red
LED Light Sources, Red
LED Light Sources, Red
LED Light Sources, Red
LED Light Sources, Red
LED Light Sources, Green
LED Light Sources, Green
LED Light Sources, Green
LED Light Sources, Green
LED Light Sources, Green
LED Light Sources, Green
LED Light Sources, Green
LED Light Sources, Green
LED Light Sources, Green
LED Light Sources, Green
LED Light Sources, Amber
LED Light Sources, Amber
LED Light Sources, Amber
LED Light Sources, Amber
LED Light Sources, Amber
LED Light Sources, Amber
LED Light Sources, Amber
LED Light Sources, Amber
LED Light Sources, Amber
LED Light Sources, Amber

RL 2
RL 2-02
RL 2-03
RL 2-04
RL 20

LIT
LIT
LIT
LIT
LIT

LED
LED
LED
LED
LED

NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P

Lamp, Red
Lamp, Red
Logic Indicators
Logic Indicators
Indicators
Indicators
Lamp Cartridges

Lamp,
Lamp,
Lamp,
Lamp,
Lamp,

TIL209A
TIL211
MV5053
MV5050
MV5253

FLV110
FLV251
FLV112
FLV111
MV5054-1

Red
Red
Red
Red
Red
3-10

NOTES

A
A
C
C
C
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P

8,12
8,12
8,12

A
B
A

A
A

17

FAIRCHILD LED CROSS REFERENCE

DEVICE

COMPETITOR DESCRIPTION

RL 21
RL 50
RL 50-01
RL 50-02
RL 50-03
RL 54
RL 55
RL 55-5
YL 56
GL 56
RL 209
RL T-l
RL 209-02
RL 209-03
RL 209-04
RL Tl-02
RL Tl-03
RL Tl-04
RL 2000
RL 4403
RL 4415
GL 4484
YL 4484
RL 4484
GL 4850
YL 4850
RL 4850
RL 5054-1
RL 5054-2
RL C200
RL C201
RL C210
RL C410
OL 30

LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT

LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Yellow
LED Lamp, Green
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Red
LED Lamp, Orange

XC 212
XC 212G
XC 212Y
XC 212A
XC 209
XC 209G
XC 209Y
XC 209A
XC 209-02
XC 209G-02
XC 209Y-02
XC 209A-02
XC 209-03
XC 209G-03

XCT
XCT
XCT
XCT
XCI
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT

LED
LED
LED
LED
LEO
LED
LED
LED
LED
LED
LED
LED
LED
LED

Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,

FAIRCHILD
DEVICE
CODE
MV5053

TIL209A
TIL209A
TIL209A
TIL209A
TIL209A
TIL209A
TIL209A
TIL209A
MV5054-2
MV5053
MV5053
TIL211
TIL213
TIL209A
MV5253
MV5353
MV5053
MV5054-1
MV5054-2

Red
Green
Yellow
Amber
Red
Geen
Yellow
Amber
Red
Green
Yellow
Amber
Red
Green

TiL209A
TIL211
TIL 213
TIL209A
TIL211
TIL213
TIL209A
TIL211
3-11

NOTES

C
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
C
E
E
E
E
E
E
E
C
C
E
C
C
C
C
C
C
C
C
NC-E
NC-E
NC-E
NC-E
NC-E

8,12

NC-P
NC-P
NC-P
NC-P
A
A
A
NC-C
E
E
E
NC-C
E
E

T
T
T
T

8,18
8,14,18
2,8,18
5,8,18
6,8,18
2,8,14,18
5,8,14,18
6,8,14,18
8,12
8,12
3,8,12
8,18
8,18
8,18
8
8
8,12
8,12
8,12

2
2
2
5
5

3/4
3/4
3/4
3/4

FAIRCHILD LED CROSS REFERENCE

DEVICE

COMPETITOR DESCRIPTION

XC 209Y-03
XC 209-04
XC 209G-04
XC 209Y-04
XC 520
XC 521
XC 521G
XC 521Y
XC 522
XC 522G
XC 522Y
XC 522A
XC 524
XC 524G
XC 524Y
XC 524A
XC 526
XC 526G
XC 526Y
XC 526A
XC 526-2
XC 526G-2
XC 526Y-2
XC 526A-2
XC 5025
XC 5025G
XC 5025Y
XC 5025A
XC 110
XC 110G
XC 110Y
XC 110A
XC 111
XC 111G
XC 111Y
XC 111A
XC 112
XC 112G
XC 112Y
XC 554-3
XC 554G-2
XC 554Y-2
XC 554A-2
XC 554-6
XC 554G-4
XC 554Y-4
XC 554A-4
XC 554-9
XC 554G-6

XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT

FAIRCHILD
CODE
DEVICE

LED Lamp, Yellow
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Red
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Amber
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Amber
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Amber
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Amber
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Amber
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Amber
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Amber
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Amber
LED Lamp, Red
LED Lamp, Green
LED Lamp, Yellow
LED Lamp, Amber
LED Lamp, Red
LED Lamp, Green

TIL213
TIL209A
TIL211
TIL213
FLV161
FLV160
FLV360
FLV460
FLV161
FLV361
FLV461
FLV161
FLV361
FLV461
FLV160
FLV360
FLV460
FLV560
FLV360
FLV460
FLV160
FLV360
FLV460
FLV110
FLV310
FLV410
FLV111

FLV112

MV5752
MV5252
MV5352
MV5752
MV5252
MV5352
MV5752
MV5252
3-12

E
E
E
E
E
E
E
E
C
C
C
NC-C
E
E
E
NC-C
C
C
C
NC-C
C

B/C
B/C
NC-C
E
E
E
NC-C
C
C
C
NC-C
C
NC-P
NC-P
NC-C
C
NC-P
NC-P
C
C
C
NC-C
C
C
C
NC-C

B/C
B/C

NOTES
5
6
6
6
6,7,8
5,7,8
5,7,8
5,7,8
7,8
7,8
7,8
1,7,8,10
1,7,8,10
1,7,8,10
7,8
7,8
7,8
7,8
1,7,8
1,7,8
7,8,10
7,8,10
7,8,10
8
8
8
8
2
2
8
5
5
8,12
8,12
8,12
8,12
8,12
8,12
1,8,12
1,8,12

FAIRCHILD LED CROSS REFERENCE

DEVICE

COMPETITOR DESCRIPTION

XC 554Y-6
XC 554A-6
XC 556
XC 556G
XC 556Y
XC 556A
XC 556-2
XC 556G-2
XC 556Y-2
XC 556A-2
XC 556-3
XC 5053
XC 5053G
XC 5053Y
XC 5053A
XC 5055
XC 5055G
XC 5055Y
XC 21
XC 21G
XC 21Y
XC 21A
XC 22
XC 22G
XC 22Y
XC 22A
XC 22-2
XC 22G-2
XC 25
XC 25G
XC 25Y
XC 25A
XC 22-5V
XC 22-5VA
XC 22-5VG
XC 22-5VY
XC 209-5V
XC 209-5VG
XC 209-5VY
XC 5053-5V
XC 5053-5VA
XC 5053-5VG
XC 5053-5VY

XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT
XCT

LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED
LED

Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,
Lamp,

FAIRCHILD
DEVICE
CODE

Yellow
Amber
Red
Green
Yellow
Amber
Red
Green
Yellow
Amber
Red
Red
Green
Yellow
Amber
Red
Green
Yellow
Red
Green
Yellow
Amber
Red
Green
Yellow
Amber
Red
Green
Red
Green
Yellow
Amber
Red
Amber
Green
Yellow
Red
Green
Yellow
Red
Amber
Green
Yellow

MV5352
MV5054-1
MV5253
MV5353
MV5054-2
MV5253
MV5353
MV5054-3
MV5053
MV5253
MV5353
MV5053
MV5053
MV5353
FLV141
FLV341
FLV441
FLV140
FLV340
FLV440
FLV540
FLV340
FLV140
FLV340
FLV440

3·13

B/C
NC-C
C
C
C
NC-C
C

B/C
B/C
NC-C
C
C
E
E
NC-C
E
E
E
E
E
E
NC-C
E
E
E
NC-C
E
E
E
E
E
NC-C
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P

NOTES
1,8,12
8,12
8,12
8,12
8,12
1,8,12
1,8,12
8,12
8,12
8,10,12
8,10,12
8,10,12
8,10,12
8,10,12
7,8,12
7,8,12
7,8,12
7,8,12
7,8,12
7,8,12
7,8,11,12
7,8,12
7,8,10,12
7,8,10,12
7,8,10,12
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor

•

FLV104A
NARROW BEAM GaAsP LAMP
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FLV104A narrow beam visible lamp is a high intensity
source specifically intended for excitation of photosensors, especially photo-diodes and
transistors, when the separation distances are measured from mm to several meters.

The FLV104A is the visible beam companion device to the FPE104 infrared LED. Both
devices have identical optics and therefore identical radiation patterns.

• VERY HIGH AXIAL INTENSITY
• NARROW BEAMWIDTH
• DETECTABLE AT 30 FEET

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65°C

-55°C to +100°C
-55°C to +125°C
260°C
98%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from TA = 25°C

200 mW
2.6 mW;oC

Maximum Voltages and Currents
VR
Reverse Voltage
IF
Forward Current
if
Peak. Forward Current (100 f.1.S pulsewidth 1% duty cycle)

3.0 V

~ 1.0 A

100 mA

ELECTRICAL CHARACTERISTICS: iTA = 25°C
SYMBOL
VF
BV.

CHARACTERISTIC
Forward Voltage
Reverse Breakdown Voltage

MIN

TYP

MAX

UNITS

2.0
8.0

2.5

3.0

Volts
Volts

3-14

TESTCOND.

IF
I.

= 100 rnA
= 10 p,A

FAIRCHILD. FLV104A
OPTOELECTRONIC CHARACTERISTICS:
SYMBOL

IF = 100 rnA, TA = 250(;
CHARACTERISTIC

IL
I
L
N

Axial Luminous Intensity
Axial Radiometric Intensity
Average Effective Luminence
Average Effective Radiance (Axial)
Effective Emitting Source Area (Axial)
Temperature CoeffiCient of Intensity
(Note 1)
Excitation Coefficient of Intensity
(Note 1)
Peak Spectral Wavelength
Spectral Bandwidth
Temperature Spectral Shift COefficient
(Note 2)
Excitation Spectral Shift CoeffiCient
(Note 2)
Beam Angle at 50% Axial Intensity
Beam Axis to Mechanical Axis
Light Output Rise and Fall Time
(Note 3)
Capacitance (V=0,f=1.0 MHz)

As
ai/aT
alal F
~pk

a~

~pk/aT
a~pk/aTF

1i50

ali.
t, and t,

Co

TYP

MIN

UNITS

MAX

mcd
mw/sr
cd/cm2
mw/sr/cm2
cm 2
%rc

150
4.0
5.0
140
.028
0.5

50

1.0

%/'C

670
20
0.17

nm
nm
nm/'C

0.1

nm/mA

4.3
1.5
10

Degrees
Degrees
ns

100

pF

TYPICAL CHARACTERISTIC CURVES
SPOT DIAMETER
VERSUS SEPARATION DISTANCE
(NEAR FIELD)

BEAM PATTERN
OF INTENSITY
100
#.
I

50

~
iii

zw

I-

7

/ \

6

I

\

I

20

\

a:

:3

E
I
a:

\

!!:

w

I-

/

""«z
w

2:

5 2V
a:

:;;

\

«
is

"-

w

1
-10

-6

-2

0

2

\
\

3

I-

V

~
In

"

2

o

10

6

=1100~A

\1\

4

W

10

IF

\

E

~ r---..

10%

r---.. ......... 5~%
.......,

"-I"--

::::-r-

2

4

90%

MAX

o

ANGLE OFF BEAM AXIS-DEGREES

8

10

SOURCE SENSOR SEPARATION

DISTANCE Ds/s - mm

SPOT DIAMETER
VERSUS SEPARAnON DISTANCE
(NEAR FIELD)

FORWARD V-I
CHARACTERISTICS
100

20

IV'

IF::: 100mA

16

E
E

~

f---

-~

-_.

10% AXIAL INTENSITV

I

a:
w

y

12

I-

w

:;;

«

is

V
8

I-

0

0.

In

4

o

--

V

./

VI /

60

60% AXIAL
INTENSITY"";:;;

,V/1/

40

V

V

,;'

20

~

I-- 1--90% AXIAL INTENSITY
4

6

/

10

1.1

SOURCE/SENSOR SEPARATION DISTANCE-em

,V

1.2

1.3

/
1.4

1.5

1.6

~

1.7

1.8

VF-FORWARD VOLTAGE-Y

3·15

/

V

,,/'

--- ."

o

y

80

/

1.9

2.0

FAIRCHILD. FLV104A
TYPICAL CHARACTERISTIC CURVES (Cont'd)

AVERAGE AXIAL
IRRADIANCE, H (NOTE 8)

EMISSION SPECTRUM
.01

1.0

'"wI

.,u

w

;::

I-

S
w

s

\

1\

/

0: 20

W

10
30

50

.0001
100

1\

V

II:

\

\

:i!w

X



I-

'\~

::> 100

iX
I-

80

w

::;;
0

is

V ,/ / ' ~


;::

40

0:

20

sw

o~
0

V(!.
,<,\oo~

/

60

0:

w

!«

VT,~y
,'I'

0

u

./
./

-

~?- V

~

20

40

60

80

100

IF - EXCITATION CURRENT - mA

NARROW BEAM SHAPE

=

...,.-=:::=-"-' cm----"I

eQUIVALENT POINT

1~

1

SOURCE LOCATION

NOTES:
1. <\I/<\T and <\1/<\1, are the percentage derating lactGrs lor all radiometric output characteristics relerenced to their typical value at 25·C ambient and
I, = 100 mAo
2. <\Apk/<\T and <\Apk/<\I, are the derating lactors lor all wavelength characteristics referenced to their typical value at 25·C ambient and I, = 100 mAo
3. Time lor a HI% to 90% change in light intensity with a step change in current.
4. Normalization: LED intenSity - 10 mw/sr. sensor 1 mm2 area.
5. Projected source point is the distance, Sp from which LED inverse square LAW characteristics may be computed lor S ;;. 5 cm.
H =
6. Irrediance (H) normalized to 4 mw/cm' @ S

":*

1·:m

x

= 1 cm.
3·16

(S~~p).

,1.

\

"

60

!!!

.1-

...

:I

~

30

U
X

20

w

\

/

o

600

620

~

640

660

a:

/

10

u.

680

I

1.2

INTENSITY VERSUS
FORWARD CURRENT
100

~ULS'ED

~Z

150

~

~ l/

~ 100

~V

~

80

V r-

U

. . . .V

60

."

50

IF

~

1.6

1.8

30

40

FORWARD CURRENT

2.0

V

"
\

FLV117
\FLV118

\

" -"
.........

20

20

~

\ \

t--

FLV",\
FLV118

o
10

/
I'

'\

/

o

/

~

40

1/

o

II

FORWARD VOLTAGE

LUMINOUS DC

.~ V

W

II:

vV

V V

~

RADIANT DC

II

~55°C

INTENSITY VERSUS
VIEWING ANGLE

260

200

I
I

/

/

1.4
VF

i\ - WAVELENGTH - nm

#-

I

/

.J!-

700

I

/25 0 C/

0

~

I

I

a:

\

I

I I

100°C

0

/

20

,

Z
0

~

r--

~ 40

5...a:

/ /

40

a:
a:
u

Z

!2

I

E

/

80

.

50
0(

~

o

50

mA

30

t'-....

ANGULAR DISPLACEMENT

~

r--..

60

90

DEGREES FROM NORMAL

WAVELENGTH
VERSUS TEMPERATURE

INTENSITY
VERSUS TEMPERATURE
690

250

\

\

200
I

~

..........

~

....:r
o

'\

150

Z

~
~ 100

........

\
~

~

Z

50

~K

"'o

670

~

RADI,NT INTENSITY

o
~50

/

/

~

\

W

II:

~ 680

LUMINOUS INTENSITY

1\

#-

50

~

660

><
0(

............

~

r--....

I

~

./

V

/

"

r--

640
-50

100

TJ - JUNCTION TEMPERATURE

650

V
o

50

100

TJ - JUNCTION TEMPERATURE - °C

°C

3-20

150

FLV141 • FLV151 • FLV161
RED GaAsP LED LAMPS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FLV141, FLV151, and FLV161 are red light emitting
diodes encapsulated in non-diffused plastic. These LED devices provide an intense
light source for back lighting applications. Visual light emission is in the 600 nm to 700
nm range.
•
•
•
•

•

•
•
•

SOLID STATE THUS NO REPLACEMENT REQUIRED
NO SOCKET REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE LEADS ON FLV141. ANDFLV151
FOR GOOD HEAT SINKING
FOR RIGHT ANGLE BENDING
FITS STANDARD SOCKETS AND DRILLED HOLES
HEAVYCOPPERLEADSONFLV161
FOR WIRE WRAPPING
FOR RIGID STANDOFF FROM PC BOARD
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
HIGH TEMPERATURE EPOXY ENCAPUSLATION WITHSTANDS SEVERE
ENVIRONMENTAL TEMPERATURES
LOW POWER CONSUMPTION MEANS IC COMPATIBILITY

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering. 5 s)
Relative Humidity at 85°C

PIN CONNECTIONS

ANODE

CATHODE

FLV141
FLV151

-55°C to +125°C
-55°C to +100 o c
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

125 mW
1.3 mW/oC
CATHODE

ANODE

Maximum Voltage and Currents
VR
Reverse Voltage
IF
Forward de Current
if
Peak Forward Current (1.0 I1S pulse width)

3.0 V
50 mA
1.0 A

FLV161

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL

CHARACTERISTIC

VF

Forward Voltage

BVR

Reverse Breakdown Voltage

10

Axial Luminous Intensity

8,/2

Angle of Half Intensity

Apk

Peak Wavelength

MIN

3.0
0.8

3-21

TYP

MAX

1.7
6.0
2.0
±35
665

2.0

UNITS

TEST CONDITIONS

= 20 mA
= 10llA
IF = 20 mA
IF = 20 mA
IF = 20 mA

V

IF

V

IR

mcd
degrees
nm

•

FAIRCHILD • FLV141 • FLV151 • FLV161
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

EMISSION SPECTRUM
50

100
0(

E
,
...

I

80

I

il

eo

I I
I I I

~ 40

\

0:
0:

:>

z

0

~

40

1:i

30

100°Cj

lJ25 cI
1-55 C
0

20

O

Q

0:

/

20

\

/

o
600

620

840

680

~
0:

s:,

r-...

6aO

WAVELENGTH -

j\ -

1.4

1.2

v /'

/ V

lj
RADIANT DC

100

50

V

1/

~

~
~ ./

~V

10

",

V

",

80

~

60

1""-

~

V

\

i!:

\

!II
>=

~0:

LUMINOUS DC

30

2.0

1,\

1\

40

\
~

20

20

1.8

INTENSITY VERSUS
VIEWING ANGLE
100

PULSED

II

1.5

VF - FORWARD VOLTAGE - V

~M

250

200

I

/
II

/

~

700

1

/

10

INTENSITY VERSUS
FORWARD CURRENT

150

I
I

0

40

\

"-

90

50

30

50

IF - FORWARD CURRENT - mA

ANGULAR DISPLACEMENT - DEGREES FROM NORMAL

INTENSITY VERSUS
TEMPERATURE

PEAK WAVELENGTH
VERSUS TEMPERATURE

200

690

\

200

~ 680

LUMINOUS INTENSITY

\

,

'\

150

r--.."
100

~

(,!)

\
~

~

60

"
50
TJ

~

RADI,NT INTENSITY

I~"(

50

/

670

;

~

....... r-...

I

;.

r-

880

650

.40

100

JUNCTION TEMPERATURE - °C

V
......

- 60

V

/'

/

~

50

100

TJ - JUNCTION TEMPERATURE - °C

3·22

150

FLV251·FLV252
RED GaP LED POINT SOURCE LAMPS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FlV251 and FlV252 are red GaP light emitting
diodes encapsulated in red epoxy. These devices provide an intense light source with
visual emission in the 600 to 850 nm range.

•
•
•
•
•
•
•
•
•

PIN CONNECTION

THREE TIMES BRIGHTER THAN GaAsP LAMPS AT EQUIVALENT CURRENTS
SOLID STATE THUS NO REPLACEMENT IS REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE PINS FOR GOOD HEAT SINKING AND RIGHT ANGLE BENDING
FITS STANDARD SOCKETS AND DRILLED HOLES
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
HIGH TEMPERATURE EPOXY ENCAPSULATION WITHSTANDS SEVERE
ENVIRONMENTAL TEMPERATURES
FLV251 LIGHTS UP 1/4" DIAMETER CIRCLE WITH 3.0 mcd MINIMUM AT 10 mA
FLV252 LIGHTS UP 1/4" DIAMETER CIRCLE WITH 6.0 mcd MINIMUM AT 10 mA

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 85°C

-55°C to +100°C
-55°C to +1 OO°C
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate linearly from 50° C

120mW
1.6 mW;oC

Maximum Voltage and Currents
VR
Reverse Voltage
IF
Forward de Current

ELECTRICAL AND RADIANT CHAflACTHlISTICS: TA
SYMBOL
VF

5.0 V

35 mA

~

25°C

CHARACTERISTIC

MIN

Forward Voltage

BVR

Reverse Breakdown Voltage

10

Axial Luminous Intensity

5.0

TYP

MAX

2.1

2.8
3.0

UNITS
V

TEST CONDITIONS

V

IF=10mA
IFo 20 rnA

15

V

IR = 100llA

FLV251

3.0

5.0

mcd

IF=10mA

FLV252

6.0

8.0

mcd

IF=10mA

81;'

Viewing Angle to Half Intensity

±20

degrees

IF = 20 rnA

Apk

Peak Wavelength

690

nm

IF= lOrnA

3·23

•

FAIRCHILD • FLV251 • FLV252
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

EMISSION SPECTRUM
100

50

I/" 1\

\

80

"E

I

60
!

:l
a:

'J

"ca:

20

I

10

~
a:
ir

1""- .......
700

+100°C
+25°C
-55°C

:>

\

650

30

a:

1\

V

I

>-

1\
\

/

600

/, '/

I

I
I

40

20

I, 'I

'/,

40

750

'IV
v I

V V

o

1.5

1.0

850

INTENSITY VERSUS
FORWARD CURRENT
I-- i--_ . r120

I

80

l> Vi

-- i---

..& ~

~r--

-

i \WMINOUS DC

I

40

I\,
\

20

I

r---

o
20

30

3.6

\
\

60

i

10

3.0

~

80

o

o

2.5

INTENSITY VERSUS
VIEWING ANGLE
100

I

I
II

40

i

I

PULSED

160

2.0

VF - FORWARD VOLTAGE - V

). - WAVELENGTH - nm

200

~ 'J

II I

'"

r-

800

'I

~

o

50

40

30

ANGULAR DISPLACEMENT

IF -- FORWARD CURRENT - mA

INTENSITY VERSUS
TEMPERATURE
200

~

160

i·- 1---' ...

\

I

,
120

" "'-

;::
w

>

~

i

\.

,

~

'"~

'\

80

I
I

i"-

I"
i

j

40

RADIANT

""

-- -

--

........

f - r-- ... -----

o

·60

20
TJ

0

20

60

100

JUNCTION TEMPERATURE - °C

3·24

140

60
~.

90

DEGREES FROM AXIS

FLV310·FLV340·FLV350·FLV360
GREEN GaP LED LAMPS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FLV310, FLV340, FLV350 and FLV360 are green
light emitting diodes encapsulated in green diffused plastic. These devices provide an
intense large light source with wide angle viewing. Visual light emission is in the 525
to 625 nm range.

•
•
•
•

•
•
•
•

PIN CONNECTIONS

HIGH LUMINOUS INTENSITY FOR ROOM AMBIENT LIGHT LEVELS
SOLID STATE THUS NO REPLACEMENT IS REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE PINS ON FLV310, FLV340 AND FLV350
FOR GOOD HEAT SINKING
FOR RIGHT ANGLE BENDING
FITS STANDARD SOCKETS AND DRILLED HOLES
HEAVY COPPER PINS ON FLV360 FOR WIRE WRAP APPLICATIONS AND
RIGID STANDOFF FROM PC BOARD
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
HIGH TEMPERATURE EPOXY ENCAPSULATION WITHSTANDS SEVERE
ENVIRONMENTAL TEMPERATURES
LOW POWER MEANS IC COMPATIBILITY

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 85°C

FLV310
FLV340
FLV350

-55°C to +l00°C
-55°C to +1 oooC
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 50°C

ANODE

CATHODE

120 mW
1.6 mW;oC

Maximum Voltage and Currents
VR
Reverse Voltage
IF
Forward dc Current
if
Peak Forward Current\(1.0 ps pulse width)

FLV360

5.0V
35 mA
1.0 A

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL

CHARACTERISTIC

VF

Forward Voltage
Reverse Breakdown Voltage

BVR

MIN

5.0
1.6

TYP

MAX

2.3
18

3.0

UNITS

IF = 20 mA
IR =l00pA
IF = 20 mA
IF = 20 mA
I F =10mA

10

Axial Luminous Intensity

fJ,;,

Viewing Angle to Half Intensity

3.2
±25

degrees

Apk

Peak Wavelength

565

nm

3-25

TEST CONDITIONS

V
V
mcd

•

FAIRCHILD • FLV31 0 • FLV340 • FLV350 • FLV360
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

EMISSION SPECTRUM
100

50

80

40

"E

/, '/
'/J
/ '/

...
I

ffi

60

a:
a:

'/

30
+10QoC
+25"'C
-55°C

::>

"ca:

40

~
It

20

I

10

500

I

1'550

600

---

650

c...... t-

700

750

o

1.5

1.0

800

INTENSITY VERSUS
FORWARD CURRENT
100

320

V

'"~
V

160

80

/

80

-/

'"

o

60

/
,..- V

\

'\.

".......... LUMINOUS DC

_\
\

40

"'- ....... ~

20

./'
10

o
20

30

3.5

1\

./
o

3.0

2.5

INTENSITY VERSUS
VIEWING ANGLE

400

PULseD

2.0

VF - FORWARD VOLTAGE - V

;, - WAVELENGTH - nm

240

'/ /
/

/
//

.!:

o

Q:

I. /

a:

20

.; '/

40

50

o

IF - FORWARD CURRENT - mA

PEAK WAVELENGTH
VERSUS TEMPERATURE
590

~

580

I

~
~

570

~

560

~

~

V

....- ....-

....-

I

~550

540
-60

30

60

-90

ANGULAR DISPLACEMENT - DEGREES FROM NORMAL

-20

20

60

100

TJ - JONCTION TEMPERATURE - DC

3-26

140

FLV311·FLV341·FLV351·FLV361
GREEN GaP LED POINT-SOURCE LAMPS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FLV311, FLV341, FLV351 and FLV361 are green
light emitting diodes encapsulated in green plastic for backlighting applications. These
devices provide an intense light source with visual light in the 525 to 625 nm range.

•
•
•
•
•
•
•
•
•

PIN CONNECTIONS

HIGH LUMINOUS INTENSITY
SOLID STATE THUS NO REPLACEMENT IS REQUIRED
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
HIGH TEMPERATURE EPOXY ENCAPSULATION WITHSTANDS SEVERE
ENVIRONMENTAL TEMPERATURES
FLEXIBLE PINS FOR GOOD HEAT SINKING AND RIGHT ANGLE BENDING
LOW POWER CONSUMPTION MEANS IC COMPATIBILITY
FLV341 IS LESS THAN 1/4" TALL, FOR LOW PROFILE BACKLIGHTING
FLV351 HAS A STANDARD MECHANICAL OUTliNE
FLV361 FEATURES .025" PINS WITH STANDOFF

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 85°C

FlV311
FLV341
FLV351

-55°C to +100 o C
-55°C to +100 o C
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 50°C

120mW
1.6 mW;oC

Maximum Voltage and Currents
VR
Reverse Voltage
IF
Forward dc Current
if
Peak Forward Current (1.0 ps pulse width)
ELECTRICAL AND RADIANT CHARACTERISTICS: TA
SYMBOL

CHARACTERISTIC

VF

Forward Voltage
Reverse Breakdown Voltage
Axial Luminous Intensity
Viewing Angle to Half Intensity
Peak Wavelength

BVR

10

8'/2
Apk

~

ANODE

5.0V
35 mA
1.0 A

CATHODE

FLV361

25°C
MIN
5.0
1.6

3-27

TYP

MAX·

UNITS

2.3
lB
3.2
±20
565

3.0

V
V
rncd
degrees
nm

TEST CONDITIONS
IF
IR
IF

~
~
~

20 rnA
lOOIlA
20 rnA

IF = 20 rnA
IF = 20 rnA

•

FAIRCHILD. FLV311 • FLV341 • FLV351 • FLV361
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FORWARO CURRENT VERSUS
FORWARD VOLTAGE

EMISSION SPECTRUM
100

50

ao

40

"E

/. VI

'I,
I 'I

l-

i

50

,100 C
·25 'C

30

::>

"ca:
"~
o

500

v

"-

550

600

,,--650

700

--

750

7I
/ VV

""
1.0

1.5

}, - WAVELENGTH - nm

VF

INTENSITY VERSUS
FORWARD CURRENT
100

320

V

V

V

40

30

.- .--

\
\

.......... LUMINOUS DC

20

20

3.5

V

. /V

/
10

3.0

FORWARD VOLTAGE

1\
\

60

V V

0

0

t--. V

. -r-- i-'--

2.5

1,\

80

/

V
PULSED

160

2.0

-_.

INTENSITY VERSUS
VIEWING ANGLE

400

240

'/.

II

10

800

t--,

t:r 'I
'(

20

i?

20

55 'C

-

40

o

50

o

IF - FORWARD CURRENT - rnA

30

'-

60

90

ANGULAR DISPLACEMENT - DEGREES FROM NORMAL

PEAK WAVELENGTH
VERSUS TEMPERATURE
590

580

~

v

~ 570

~

~ 560

:--

,..- , . /

-

I

'6.

~

-I--

650

540
-60

-20

20

60

100

TJ -JUNCTION TEMPERATURE -"C

3-28

140

FLV410·FLV440·FLV450·FLV460
YELLOW GaP LED LAM PS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FLV410, FLV440, FLV450 and FLV460 are yellow
light-emitting diodes encapsulated in yellow diffused plastic. These devices provide an
intense large area light source with wide angle viewing. Visual light emission is in the to
625 nm range.

•
•
•
•

•
•
•
•

PIN CONNECTIONS

HIGH LUMINOUS INTENSITY FOR ROOM AMBIENT LIGHT LEVELS
SOLID STATE THUS NO REPLACEMENT IS REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE PINS ON FLV410, FLV440 AND FLV450
FOR GOOD HEAT SINKING
FOR RIGHT ANGLE BENDING
FITS STANDARD SOCKETS AND DRILLED HOLES
HEAVY COPPER PINS ON FLV460 FOR WIRE WRAP APPLICATIONS AND
RIGID STANDOFF FROM PC BOARD
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
HIGH TEMPERATURE EPOXY ENCAPSULATION WITHSTANDS SEVERE
ENVIRONMENTAL TEMPERATURES
LOW POWER MEANS IC COMPATIBILITY

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 85°C

FLV410
FLV440
FLV450

-55°C to +1 OO°C
-55°C to +100 0 C
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

120mW
1.6 mW;oC

Maximum Voltage and Currents
VR
Reverse Voltage
IF
Forward de Current
Ipk
Peak Forward Current (1.0 /1S pulse width)
Elt:CTRICAL AND RADIANT CHARACTERISTICS: TA
SYMBOL

CHARACTERISTIC

~

CATHODE

ANODE

5.0V
10 mA
1.0 A

FLV460

25°C
MIN

TYP

MAX

2.3

3.0

UNITS

TEST CONDITIONS

VF

Forward Voltage

BVR

Reverse Breakdown Voltage

5.0

18

V

10

Axial Luminous Intensity

1.6

3.2

mcd

IF = 20 mA

(hh

Viewing Angle to Half Intensity

±25

degrees

IF = 20 mA

Apk

Peak Wa~elength

585

nm

IF = 20 mA

3·29

V

IF = 20 mA
IR

= 100,uA

•

FAIRCHILD. FLV41 0 • FLV440. FLV450. FLV460
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

EMISSION SPECTRUM
100

f

80

50

\

C
1

1

!iw

80

;;

a:
a:

'I

30

Hoooe

:>

!!!

~
~

/

E

i<

Z
0

'I

40

"a:
0

40

S
w
a:

~
a:

f2

20

1

'\,

J
600 550

o

600

~
660

700

- r--.
750

+25OC

-56"C
20

I I

,'IV

10

V 'j

!!-

V V

o

800

100

i< 320

V

1

~

~

~

a:
1

80

80

1

..
..
~

Z

V /'
PULSED

2: '80

9

i<

/ ./
I

"

\

\

w

~

~

40

a:
1

V

20

o
40

30

50

o

30

i'-,
.........

.......

80

........

r90

ANGULAR DISPLACEMENT - DEGREES FROM NORMAL

IF - FORWARD CURRENT - mA

PEAK WAVELENGTH
VERSUS TEMPERATURE
~
800

~

.....

~

1

~ 690
Z

~

\

'"

w

i"-LUMINOUS DC

9
20

3.5

\

80

!!:

t--. ~

./
10

3.0

INTENSITY VERSUS
VIEWING ANGLE

400

~

2.5

VF - FORWARD VOLTAGE - V

INTENSITY VERSUS
FORWARD CURRENT

w

2.0

1.6

1.0

A - WAVELE:NGTH - nm

~ 240

~. 'I
~I

680

~

~ 570
1 &80
I

-80

-20

20

80

100

TJ - JUNCTION TEMPERATURE - °C

3·30

140

FLV411 • FLV441 • FLV451 • FLV461
YELLOW GaP POINT SOURCE LED LAMPS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION-The FLV411. FLV441. FLV451 and FLV461 are yellow
light emitting diodes encapsulated yellow non-diffused plastic. These LED devices
provide an intense large area light source with narrow angle viewing. Visual light
emission is in the 525 to 625 nm range.

•
•
•
•

•
•
•
•

HIGH LUMINOUS INTENSITY FOR ROOM AMBIENT LIGHT LEVELS
SOLID STATE THUS NO REPLACEMENT IS REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE PINS ON FLV411, FLV441 AND FLV451
FOR GOOD HEAT SINKING
FOR RIGHT ANGLE BENDING
FITS STANDARD SOCKETS AND DRILLED HOLES
HEAVY COPPER PINS ON FLV461 FOR WIRE WRAP APPLICATIONS AND RIGID
STANDOFF FROM PC BOARD
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
HIGH TEMPERATURE EPOXY ENCAPSULATION WITHSTANDS SEVERE
ENVIRONMENTAL TEMPERATURES
LOW POWER MEANS IC COMPATIBILITY

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Junction Temperature
Storage Temperature
Pin Temperature (Soldering. 5 s)
Relative Humidity at 85°C

...-------,.
il
PIN CONNECTIONS

-&+-e-

ANOOE

-a-

100 mW

1.14 mW/oC

Maximum Voltage and Currents
VR
Reverse Voltage
IF
Forward DC Current
Ipk
Forward Peak Current (pulse = 1.0 /ls)

CATHODE

FLV411
FLV441
FLV451

125°C
-55°C to +150°C
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

I

ANODE

5.0 V
35mA

CATHODE

1.0A
FLV461

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL

VF
BVR
10
81/2

Apk

CHARACTERISTICS
Forward Voltage
Reverse Voltage
Axial Luminous Intensity
Angle of Half Intensity
Peak Wavelength

MIN
5.0

1.6

TYP

MAX

UNITS

2.3

3.0

V
V
mcd
degrees
nm

18
3.2

±20
570
3-31

TEST CONDITIONS
IF=20mA
IR = 100 p.A
IF = 20 mA
IF = 20 mA
IF = 20 mA

FAIRCHILD FLV411 • FLV441 • FLV451 • FLV461
TYPICAL ELECTRICAL CHARACTERISTICS

FORWARD CURRENT
VERSUS FORWARD VOLTAGE

EMISSION SPECTRUM
'00

r

6.

\

•,
Ii
~

40

30

~

I- - -

U
0

40

~

20

.

'0

~

,

o

&00

/ 660

r--

I"
600

860

700

760

o

800

1.0

A - WAVELENGTH - nm

HOOGe
+215°C
-IUiOC

0

-I '/
Cf..

LUMINOUS DC

0

'I
'.5

.-,

/
2.6

3.0

~
~

~

~,

40

,

o

30

~

..-

~

"'- ......

20

670

i ...

\,.

60

~,

-

~660

5"

-eo

90

ANGULAR DISPLACEMENt - DEGREES FROM AXIS

20

20

60

100

TJ - JUNCTION TEMPERATURE - OC

3-32

40

IF - FORWARD CURRENT - mA

~
z

P

o

30

~ 680

1\
\

~

20

WAVELENGTH
VERSUS TEMPERATURE

\

.0

10

.oo
~

~

1 1

V

0

3.6

VF - FORWARD VOLTAGE - V

I'\.

&0

V/

~

/

2.0

,;:

PULSED

INTENSITY
VERSUS VIEWING ANGLE
'00

/
//

0

I '/

~
20

...

1/1
'II
1'/
'I

E

INTENSITY VERSUS
FORWARD CURRENT

140

50

FLV510·FLV540·FLV550·FLV560
RED SUPER GaAsP LED LAMPS
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The FLV510, FLV540, FLV550 and FLV560 are red light
emitting diodes encapsulated in red diffused plastic. These devices provide an intense
large area light source with wide angle viewing. Visual light emission is in the 600 to
700 nm range.

•
•
•
•

•
•
•
•

PIN CONNECTIONS

HIGH LUMINOUS INTENSITY FOR ROOM AMBIENT LIGHT LEVELS
SOLID STATE THUS NO REPLACEMENT IS REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE PINS ON FLV510, FLV540 AND FLV550
FOR GOOD HEAT SINKING
FOR RIGHT ANGLE BENDING
FITS STANDARD SOCKETS AND DRILLED HOLES
HEAVY COPPER PINS ON FLV560 FOR WIRE WRAP APPLICATIONS AND
RIGID STANDOFF FROM PC BOARD
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
HIGH TEMPERATURE EPOXY ENCAPSULATION WITHSTANDS SEVERE
ENVIRONMENTAL TEMPERATURES
LOW POWER MEANS IC COMPATIBILITY

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 85 'C

VF

j1S

pulse width)

Reverse Breakdown Voltage
Axial

~uminous

CATHODE

FLV560

= 25°C

CHARACTERISTIC

10

ANODE

5.0V
35 mA
1.0 A

MIN

Forward Voltage

BVR

FLV510
FLV540
FLV550

200mW
2.6 mW;oC

ELECTRICAL AND RADIANT CHARACTERISTICS: TA
SYMBOL

CATHODE

-55°C to +100°C
-55°C to +100°C
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 25°C
Maximum Voltage and Currents
VR
Reverse Voltage
IF
Forward dc Current
if
Peak Forward Current (10

ANOOE

Intensity

TYP

MAX

2.1

2.8

UNITS
V

IF

3.0

V

IF

= 10 mA
= 20 mA

5.0

8.0

V

IR = 100j./A

1.2

3.0

mcd

2.0

5.0

mcd

IF =10mA
IF = 20 mA

8,;,

Viewing Angle to Half Intensity

±35

degrees

il pk

Peak Wavelength

640

nm

3-33

TEST CONDITIONS

IF = 20 mA
IF =10mA

FAIRCHILD. FLV51 0 • FLV540. FLV550 • FLV560
.TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FORWARD CURRENT
VERSUS FORWARD VOLTAGE

EMISSION SPECTRUM
100

50

I,

,!J 'I

..

E 40

80

l 'I

I

...

~
a:
a:

60

""0
a:

40

V

~
I

10

.!!-

\

V
550

600

650

o

700

WAVElENGTH

1.0

750

nm

INTENSITY VERSUS
FORWARD CURRENT

/

/

~,
w

V

v
1.5

IV

/

J
2,0

2,5

3,0

3,6

\

60

\

PULSED

>
~ 200

40

a:

9

'I

"

80

/

~

(II

:jo

INTENSITY VERSUS
VIEWING ANGLE
100

,,'" 400

'j

'/

V

/

-.,

VF - FORWARD VOLTAGE - V

600

~ 300

f - --

/

r-'

I..........

A

20

+100 oC
+26°C
-55°C

a:
~

I

20

30

/

100

20

IV
/

o
10
IF

20

30

FORWARD CURRENT

40

50

mA

....... t-o

30

60

90

ANGULAR DISPLACEMENT - DEGREES FROM AXIS

INTENSITY VERSUS
TEMPERATURE
200

*' 160
I

\
\.

~

~ 120

'\

~

1'\

S 80
a: 40

~

"

RADIANT

.......

o
-60

-20

0

20

60

100

TJ - JUNCTION TEMPERATURE - DC

3-34

140

MV5050·MV5051·MV5052·MV5053
RED GaAsP LED LAM PS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The MV5050, MV5051, MV5052 and MV5053 are red
light emitting diodes encapsulated in diffused plastic. These devices provide an intense
large area light source with wide angle viewing. Visual light emission is in the 600 nm to
700 nm range.
•
•
•
•

•
•
•
•
•
•
•

CONNECTION DIAGRAM
(TOP VIEW)

SOLID STATE THUS NO REPLACEMENT REQUIRED
NO SOCKET REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE PINS ON ALL LAMPS
FOR GOOD HEAT SINKING
FOR RIGHT ANGLE BENDING
FITS STANDARD SOCKETS OR DRILLED HOLES
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
HIGH TEMPERATURE EPOXY ENCAPSULATION WITHSTANDS SEVERE
ENVIRONMENTAL TEMPERATURES
LOW POWER CONSUMPTION MEANS IC COMPATIBILITY
MV5050 IN CLEAR NON-DIFFUSED EPOXY
MV5051 IN CLEAR DIFFUSED EPOXY
MV5052 IN RED NON-DIFFUSED EPOXY
MV5053 IN RED DIFFUSED EPOXY

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 85°C

-55°C to +1 OO°C
-55°C to +l00 oC
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

125 mW
1.3 mW/oC

Maximum Voltage and Currents
VR
Reverse Voltage
5.0 V
100 mA
IF
Forward Current at TA = 25°C
15 mA
at TA = 100°C
if
Peak Forward Current (1.0 f.lS pulse width, 0.1 % duty cycle)
1.0A
ELECTRICAL AND RADIANT CHARACTERISTICS: TA
SYMBOL

CHARACTERISTIC

VF

Forward Voltage

BVR

Reverse Breakdown Voltage
Axial Luminous Intensity
MV5050/MV5052
MV50511 MV5053
Viewing Angle to Half Intensity
MV5050
MV50511 MV5052
MV5053
Peak Wavelength

10

81/2

Api<

= 25°C
MIN

5.0

TYP

MAX

1.7

2.2

25

UNITS

TEST CONDITIONS

V
V
mcd

IF = 20 mA

degrees

IF = 20 mA

nm

IF = 20 mA

IR = l00IlA
IF = 20 mA

2.0

1.6
±25
±35
±40

660
3-35

•

FAIRCHILD. MV5050 • MV5051 • MV5053
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

EMISSION SPECTRUM
100

/

80
I

E

Z

w

\

z

60

;::

5
20

t::

u
><
w

\

600

620

640
~

660

/

~

a:

10

0

/

u.

I'...

680

I

/25 0 C/

20

a:

~

/

o

I

I

C

1

w

II:

I

100 O C/

«

\

~ 40

v

30

0

iw

/ /
/ / I

40

a:
a:
:>
u

Z

.,!2.,

I

I
I-

\

I


II:

~

RADIANT DC

/'

V

100

...-

<1<
I

0;

80

Z

W

I-

~

70

w

LUMINOUS DC

>

5

~V

/

90

>

I-

70 0

w

II:

50 40 30 20 10

o

10
IF

~

20

40

30

FORWARO CURRENT

~

50

ANGULAR DISPLACEMENT

~

DEGREES FROM AXIS

rnA

PEAK WAVELENGTH
VERSUS TEMPERATURE

INTENSITY VERSUS
TEMPERATURE
250

690

r-...

\

200
I

~

U) 150
Z

~

~

~ 100

Z

1\
........

~

~

/

\

50

o

s:

'"

50

'"

~
............

670

>
«

RADIANT INTENSITY

I\'K.

~60

680

t!)

w

o

I
:I:
l-

'\

5
II:

§

JUMIJOUSIINTE1NSIJ- I--

1\ II

<1<

.

660

0I

..........

-

",,0.

650

640

100

TJ - JUNCTION TEMPERATURE - °C

. /V

~50

V
o

/

v

/

50

100

TJ - JUNCTION TEMPERATURE - °C

3-36

150

MV5054·1· MV5054·2 • MV5054·3
RED GaAsP LED LAMPS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The MV5054 series lamps are red light emitting diodes
encapsulated in red diffused plastic. These devices provide an intense large area light
source with wide angle viewing. Visual light emission is in the 600 nm to 700 nm range.
Three brightness levels are available.

•
•
•
•

•
•
•
•
•
•

CONNECTION DIAGRAM
(TOP VIEW)

SOLID STATE THUS NO REPLACEMENT REQUIRED
NO SOCKET REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE PINS ON ALL LAMPS
FOR GOOD HEAT SINKING
FOR RIGHT ANGLE BENDING
FITS STANDARD SOCKETS OR DRILLED HOLES
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
HIGH TEMPERATURE EPOXY ENCAPSULATION WITHSTANDS SEVERE
ENVIRONMENTAL TEMPERATURES
LOW POWER CONSUMPTION MEANS IC COMPATIBILITY
MVSOS4-1 HAS 2.0 mcd TYP LUMINOUS INTENSITY
MVSOS4-2 HAS 3.0 mcd TYP LUMINOUS INTENSITY
MVSOS4-3 HAS 4.0 mcd TYP LUMINOUS INTENSITY

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 sl
Relative Humidity at 85°C

-55°C to +lOO o C
-55°C to +1 OO°C
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

125 mW
1.3 mWjOC

Maximum Voltage and Currents
5.0V
VR
Reverse Voltage
l00mA
IF
Forward Current at TA = 25°C
15 mA
at TA = 100°C
1.0 A
if
Peak Forward Current (1.0 /1S pulse width, 0.1 % duty cycle)
ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL

CHARACTERISTIC

VF

Forward Voltage
Reverse Breakdown Voltage
Axial Luminous Intensity
MV50S4-1
MV50S4-2
MVSOS4-3
Viewing Angle to Half Intensity
Peak Wavelength

BVR

10

'1/2
Api<

MIN

TYP

MAX
2.2

5.0

1.8
25

1.0
2.0
3.0

2.0
3.0
4.0
±12

660
3-37

UNITS

TEST CONDITIONS

V
V
mcd

IF= 10mA
IR =100/1A
IF= 10mA

degrees
nm

IF=20mA
IF=20mA

•

FAIRCHILD. MV5054-1 • MV5054-2 • MV5054-3
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

1/,

EMISSION SPECTRUM
100

80
if/.
I

C

E

1\

I

1\

II:
II:

w



~

!Ii!

J

I

/

....Z

I

Z

~

50

1.4

1.2

A - WAVELENGTH - nm

/

/

/

J

1.6

1.8

2.0

VF = FORWARD VOLTAGE - V

INTENSITY VERSUS
VIEWING ANGLE

INTENSITY VERSUS
FORWARD CURRENT
20.0

,....

118.0
I

~
iii 12.0

MV5054-3

/'

z

~

/

..
::>

8.0

~

i
3

h

4.0

I. V

o ~

o

. /V

-

---

~ 100
>

..

I-

/"

"

40°

!::
Z
w

....

.........MVS054-2

/

/

;""

~
w

50°

S

60°

>

MV50S4-1

w

70°

II:

80°

1:±±:i:::El:::jC:f±t±:::ij90°

20

40

80

80

50 40 30 10 20

100

0

IF - FORWARD CURRENT - mA

ANGULAR DISPLACEMENT - DEGREES FROM AXIS

INTENSITY VERSUS
TEMPERATURE

PEAK WAVELENGTH
VERSUS TEMPERATURE
690

260

\

\

200
I

~
Z

I
!I:

....e>
z

'(
160

~

t"-

~ 100

......

~
w

1\

N

S

RAO~ANT

50

O

-50

o

~

INTENSITY

'~"
C

i'""'- t......

"
60

I/""

680

1/

/

670

>

~~
\

w

II:

E
c

JUMIJOUSIINTElsIJ- f--

\ V

if/.

...

660

I

f"(~

/

650

""

V

V

t640

100

TJ - JUNCTION TEMPERATURE - °C

-50

o

60

100

TJ - JUNCTION TEMPERATURE - °C

3-38

160

MV5055 • MV5056
WIDE ANGLE RED GaAsP LED LAMPS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The MV5055 and MV5056 are red light emitting diodes
encapsulated in diffused plastic. These LED devices provide an intense large area light
source. Visual light emission is in the 600 nm to 700 nm range. The design has
maximized viewing angle.
•
•
•
•

•
•
•
•
•

CONNECTION DIAGRAM
(TOP VIEW)

SOLID STATE THUS NO REPLACEMENT REQUIRED
NO SOCKET REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE PINS ON ALL LAMPS
FOR GOOD HEAT SINKING
FOR RIGHT ANGLE BENDING
FITS STANDARD SOCKETS FOR DRILLED HOLES
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
HIGH TEMPERATURE EPOXY ENCAPSULATION WITHSTAND SEVERE
ENVIRONMENTAL TEMPERATURES
LOW POWER CONSUMPTION MEANS IC COMPATIBILITY
MV5055 IN RED DIFFUSED EPOXY
MV5056 IN RED DIFFUSED EPOXY

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Operating Temperature
Storage Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 85°C

~
-a-+e--

ANOOE

I

CATHODE

-55°C to +110°C
-55°C to +100°C
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

125 mW
1.3 mW/oC

Maximum Voltage and Currents
VR
Reverse Voltage
IF
Forward Current at TA = 25°C
at TA = 100°C
IPK
Forward Peak Current (1.0 /As pulse)

5.0 V

100 mA
15mA
1.0 A

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL

VF
VR
10

81/2

Xpk

CHARACTERISTICS
Forward Voltage
Reverse Voltage
Axial Luminous Intensity
MV5055
MV5056
Viewing Angle to Half Intensity
MVS055
MV5056
Peak Wavelength

MIN

TYP

MAX
2.2

5.0

1.7
25

UNITS
V
V
mcd

TEST CONDITIONS
IF=20mA
IR = 100 /loA
IF=2OmA

0.6
0.8
degrees .IF = 20 mA
±75
±55

680
3-39

nm

IF=20mA

FAIRCHILD • MV5055 • MV5056
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

..

EMISSION SPECTRUM

,

•

INTENSITY VERSUS
FORWARD CURRENT
25.

/ /

80

I

iI

II

eo

I

\

\
\

..
/

2.

•

FORWARD CURRENT
VERSUS
FORWARD VOLTAGE

100

820

840
A

~

•
I'...

•• 0

WAVELENGTH

eeo

700

PULSED

~

AM

)/ /~

I~

I I
I I

\
,\

RADIA.NT INTENSITY

~K.

5.

"

~4O'ft3O%2O"It10*10

50
TJ

~
§

50

V

84.

oc

.28001121
OIA.

r~l
· .--w--.
1

Material: polypro or equivalent
For mounting drill 8 .. 25" hole

V

680

"<.~ 660

--

/

I

......

'00

./'

/'

670

MP52 MOUNTING HARDWARE

3-40

..

30

E
c 180

~

JUNCTION TEMPERATURE -

2.

•••

1

r- ~ r ~M,~ousIINTE~SIJfI I 'j

ANGULAR DISPlACEMENT· DEGREES FROM

,.

WAVELENGTH
VERSUS TEMI»ERATURE

250

'<;

lUMINOUS DC

IF - FORWARD CURRENT - rnA

INTENSITY
VERSUS TEMPERATURE

r---

~ /'

./
.1/

2.•

YF = FORWARD VOLTAGE - V

INTENSITY
VERSUS ANGLE

",-

W

RADIANT DC

..

..

•'.2

,/

2 ••

I

I
'00..,
I
'/2.'C/
/55..,
/
I
/
/
I
I
,
, I' '.a

•
\

V

I

L

-so

50

'00

TJ - JUNCTION TEMPeRATURE - QC

'5.

MV5152 • MV5153 • MV5154
AMBER SUPER GaAsP LED LAMPS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The MV5152. MV5153 and MV5154 are red light emitting diodes encapsulated in amber epoxy. Viewing angle can be selected from point
source to wide angle. Visual light emission is in the 590 nm to 660 nm range.

•
•
•
•

•
•
•
•
•

CONNECTION DIAGRAM
(TOP VIEW)

HIGH LUMINOUS INTENSITY FOR AMBIENT LIGHT LEVELS
SOLID STATE - NO REPLACEMENT REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE PINS ON ALL LAMPS
FOR GOOD HEAT SINKING
FOR RIGHT ANGLE BENDING
FITS STANDARD SOCKETS OR DRILLED HOLES
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
LOW POWER FOR IC COMPATIBILITY
MV5152 FOR POINT SOURCE LAMPS
MV5153 FOR WIDE ANGLE LAMPS
MV5154 FOR INTERMEDIATE DISPERSION LAMPS

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering. 5 s)
Relative Humidity at 85°C

ANODE

CATHODE

-55°C to +100°C
-55°C to +l00 oC
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

105 mW
1.14 mW/oC

Maximum Voltage and Currents
VR
Reverse Voltage
IF
Forward Current at TA = 25°C
if
Peak Forward Current (1.0 ps pulse width. 0.1 % duty cycle)

5.0V
35 mA
1.0 A

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL

CHARACTERISTIC

VF

Forward Voltage

BVR

Reverse Breakdown Voltage
Axial Luminous Intensity
MV5152
MV5153
MV5154
Viewing Angle to Half Intensity
MV5152
MV5153
MV5154
Peak Wavelength

'0

8, / 2

~pk

MIN

TYP

MAX

UNITS

3.0

5.0

2.0
25

V
V
mcd

TEST CONDITIONS
'F= 20 mA
'R = 100pA
'F= 20 mA

degrees

'F= 20 mA

nm

'F= 20 mA

20
4.0
8.0
±10
±32
±12
635

3-41

/

•

FAIRCHILD. MV5152 • MV5153 • MV5154
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

EMISSION SPECTRUM
100

50

f

80

40

=

' 40

'jrl

20

Ii. I

s:

:3w

a:

1

a: 20

/

\

... V

0

550

600

0
"I

/

10

V

~

i"700

650

1.5

i\ - WAVELENGTH - nm

/ /
/

VV

/

0
1.0

750

-:f Vi

2.5

2.0

3.0

3.5

VF - FORWARD VOLTAGE - V

INTENSITY VERSUS
VIEWING ANGLE

INTENSITY VERSUS
TEMPERATURE
500

/
1ft

400

V

I

~
~ 300

L

i!!

!!:

~w

"'2w

PULSED

~

w

>

~

'/

100

o

I

~

/

/

~ 200

a:

?J? 100

/

o

w

a:

/
20

40

30

50

50 40 30 20 10

INTENSITY VERSUS
FORWARD CURRENT
200

*-

160

I

~

\

r\

~ 120

"\

....w

!!:
~

'\.. .-

80

"

~w

a:

40

RADIANT

......,

I"--..

o
-60

0

ANGULAR DISPLACEMENT - DEGREES FROM AXIS

IF - FORWARD CURRENT - mA

-20

0

20

60

100

TJ - JUNCTION TEMPERATURE - °C

3-42

140

MV5252-MV5253-MV5254
GREEN GaP LED LAM PS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The MV5252, MV5253 and MV5254 are green light
emitting diodes encapsulated in green epoxy. Viewing angle can be selected from point
source to wide angle. Visual light emission is in the 530 nm to 590 nm range.

•
•
•
•

•
•
•
•
•

CONNECTION DIAGRAM
(TOP VIEW)

HIGH LUMINOUS INTENSITY FOR AMBIENT LIGHT LEVELS
SOLID STATE - NO REPLACEMENT REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE PINS ON ALL LAMPS
FOR GOOD HEAT SINKING
FOR RIGHT ANGLE BENDING
FITS STANDARD SOCKETS OR DRILLED HOLES
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
LOW POWER FOR IC COMPATIBILITY
MV5252 FOR POINT SOURCE LAMPS
MV5253 FOR WIDE ANGLE LAMPS
MV5254 FOR INTERMEDIATE DISPERSION LAMPS

ANODE

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 85°C

CATHODE

-55°C to +100°C
-55°C to +100 o C
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

105 mW
1.14 mW;oC

Maximum Voltage and Currents
VR
Reverse Voltage
IF
Forward Current at TA = 25°C
if
Peak Forward Current (1.0 fiS pulse width, 0.1 % duty cycle)

5.0 V
35 mA

1.0 A

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL

CHARACTERISTIC

VF

Forward Voltage

eVR

Reverse Breakdown Voltage
Axial Luminous Intensity
MV5252
MV5253
MV5254
Viewing Angle to Half Intensity
MV5252
MV5253
MV5254
Peak Wavelength

10

81/ 2

il pk

MIN

TYP

MAX
3.0

5.0

2.2
25

UNITS

TEST CONDITIONS

V
V
mcd

IF= 20 rnA
IR = l00I'A
IF = 20 rnA

degrees

IF= 20 rnA

nrn

IF =20rnA

30.0
3.0
6.0
±10
±32
±12
565
3·43

FAIRCHILD. MV5252 • MV5253 • MV5254
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

EMISSION SPECTRUM
100

50

{,

\

80

C

E

II<

I

..

I

Z

~

....
..~

I-

Z

80

+100"C f--,

30

+25°C

II:
II:

!!!

40

..."

20

...0

~

Q
II:

>

II:

/ '/

Z

40

-55°C

,/1

~

o

600

/

"660

600

I-860

700

10

V

.......

750

1.0

A - WAVELENGYH - nm

/1 V
/

V V

o

800

tf 'I

/, VI

20

II:

I
~

I. '/
'/

1.5

2.5

2.0

3.0

3.5

VF - FORWARD VOLTAGE - V

INTENSITY VERSUS
VIEWING ANGLE

INTENSITY VERSUS
FORWARD CURRENT
400

32D

/

'"
100
I

~
~

/ ./

240

/ ./
PULSED

160

~~

80

o

o

V

Z

......, ~

~

~

5..

'LUMINOUS DC

II:

./
10

2D

30

40

50

50 40 30 20 10

IF - FORWARD CURRENT -rnA

PEAK WAVELENGTH
VERSUS TEMPERATURE
69D

580

i!:

'z"
~

~
~

~

- ~

570

~

....

....

560

I

~

550

540
-60

0

ANGULAR DISPLACEMENT - DEGREES FROM AXIS

-20

2D

60

TJ -JUNCTION TEMPERATURE _

3-44

100

°c

140

MV5352-MV5353-MV5354
YELLOW GaP LED LAMPS
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The MV5352. MV5353 and MV5354 are yellow light
emitting diodes encapsulated in yellow epoxy. Viewing angle can be selected from point
source to wide angle. Visual light emission is in the 525 nm to 625 nm range.

•
•
•
•

•
•
•
•
•

CONNECTION DIAGRAM
(TOP VIEW)

HIGH LUMINOUS INTENSITY FOR AMBIENT LIGHT LEVELS
SOLID STATE - NO REPLACEMENT REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE PINS ON ALL LAMPS
FOR GOOD HEAT SINKING
FOR RIGHT ANGLE BENDING
FITS STANDARD SOCKETS OR DRILLED HOLES
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
LOW POWER FOR IC COMPATIBILITY
MV5352 FOR POINT SOURCE LAMPS
MV5353 FOR WIDE ANGLE LAMPS
MV5354 FOR INTERMEDIATE DISPERSION LAMPS

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering. 5 s)
Relative Humidity at 85°C

ANODE

-55°C to +100°C
-55°C to +100 oC
260°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

105 mW
1.14 mW;oC

Maximum Voltage and Currents
VR
Reverse Voltage
IF
Forward Current at TA = 25°C
if
Peak Forward Current (1.0 f.1S pulse width. 0.1 % duty cycle)
ELECTRICAL AND RADIANT CHARACTERISTICS: TA
SYMBOL

CHARACTERISTIC

VF
BVR

Forward Voltage
Reverse Breakdown Voltage
Axial Luminous Intensity
MV5352
MV5353
MV5354
Viewing Angle to Half Intensity
MV5352
MV5353
MV5354
Peak Wavelength

10

81/ 2

~pk

CATHODE

5.0V
35 mA

1.0 A

= 25°C
MIN

TYP

MAX
3.0

5.0

2.1
25

UNITS

TEST CONDITIONS

V
V
mcd

IF = 20 rnA
IR = 100/lA
IF = 20 rnA

degrees

IF = 20 rnA

nm

IF = 20 rnA

20
6.0
10
±10
±32
±12
585
3-45

•

FAIRCHILD. MV5352 • MV5353 • MV5354
TYPICAL ElECTRICAL CHARACTERISTIC CURVES

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

EMISSION SPECTRUM
100

'"

50

A

80

of

E

I

I

...2

2

0

iii
(I)

60

w
a:
a:

iw

+100°C
+25°C
-55°C

30

::>

'Ii
l 'I
!---. 'I
-:f if/
'lrt

t.)

w

>
;::

I. ~/

40

0

40

a:

20

J I

of

5w

;:

a:

20

/

450

500

550

it

\

il

o

a:

\

I

/

10

V

.!!-

\

600

650

700

/

V V

o

750

/ /

1.0

i\ - WAVELENGTH - nm

1.5

2.5

2.0

3.0

3.5

VF - FORWARD VOLTAGE - V

INTENSITY VERSUS
VIEWING ANGLE

INTENSITY VERSUS
FORWARD CURRENT
400

v

320

I

V /'

240

.,~

/ V

PULSED
160

L,V

80

2

I!!

r-... ~/

;!:
w

>

l::2::

~w

.......... LUMINOUS DC

a:

./

,../
10

20

40

30

50

50 40 30 20 10

IF - FORWARD CURRENT - rnA

PEAK WAVELENGTH
VERSUS TEMPERATURE
590

§

580
~

I

:r

.....- V

t;

~ 570

>

....... f-"""

~

~

560

I

~

550

540

-60

0

ANGULAR DISPLACEMENT - DEGREES FROM AXIS

-20

60

20

TJ -JUNCTION TEMPERATURE _

3-46

100

°c

140

MV5752-MV5753-MV5754
RED SUPER GaAsP LED LAM PS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The MV5752, MV5753 and MV5754 are red light emitting diodes encapsulated in red epoxy:Viewing angle can be selected from point source
to wide angle. Visual light emission is in the 590 nm to 660 nm range.

•
•
•
•

•
•
•
•
•

CONNECTION DIAGRAM
(TOP VIEW)

HIGH LUMINOUS INTENSITY FOR AMBIENT LIGHT LEVELS
SOLID STATE - NO REPLACEMENT REQUIRED
HIGH ON/OFF CONTRAST
FLEXIBLE PINS ON ALL LAMPS
FOR GOOD HEAT SINKING
FOR RIGHT ANGLE BENDING
FITS STANDARD SOCKETS OR DRILLED HOLES
SINGLE MOLDED BODY ELIMINATES THERMAL CYCLING PROBLEMS
LOW POWER FOR IC COMPATIBILITY
MV5752 FOR POINT SOURCE LAMPS
MV5753 FOR WIDE ANGLE LAMPS
MV5754 FOR INTERMEDIATE DISPERSION LAMPS

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 85°C
Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

SYMBOL

CHARACTERISTIC

VF

Forward Voltage

BVR

Reverse Breakdown Voltage
Axial Luminous Intensity
MV5752
MV5753
MV5754

10

81/ 2

Apk

CATHODE

105 mW
1.14 mW;oC

Maximum Voltage and Currents
VR
Reverse Voltage
'F
Forward Current at TA = 25°C
if
Peak Forward Current (1.0 ps pulse width, 0.1 % duty cycle)
ELECTRICAL AND RADIANT CHARACTERISTICS: TA

ANODE

-55°C to +100 oC
-55°C to +100°C
260°C
85%

5.0V
35 mA
1.0 A

= 25°C
MIN

5.0

TYP

MAX

2.0

3.0

25

UNITS

TEST CONDITIONS

V

'F= 20 rnA

V
rncd

'R = 100I1A
IF = 20 rnA

16
4.0
8.0

Viewing Angle to Half Intensity
MV5752
MV5753
MV5754

±10
±32
±12

Peak Wavelength

635

degrees

3-47

nrn

'F

= 20 rnA

'F = 20 rnA

•

FAIRCHILD. MV5752. MV5753 • MV5754
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

EMISSION SPECTRUM
100

50

80

«

'#

"

0

I

....

"w
::>
"c

60

+10QoC
+25°C
-55°C

30

II:
II:

III

:i!w
w 40

>

II:

20

s:
l?

10

«

>=

:3w
II:

40

E

I

iii

I. II
'Ii
I VI

I

20

~

0

\

~

550

'/11
/ /

II:

V
600

I

650

/
/

.!:

i'-

/ /

/ /V

o

750

700

'/.
-:f VI
--,

1.0

1.5

). - WAVELENGTH - nm

/

2.0

2.5

3.0

3.5

VF- FORWARD VOLTAGE - V

INTENSITY VERSUS
VIEWING ANGLE

INTENSITY VERSUS
FORWARD CURRENT
500

/
'#

400

/

I

~
iii 300

1/

/

"....

w

~

J

~ 200

~

W
II:

/

100

o

PULSED

/
i/

o

20

40

30

50 40 30 20 10

50

INTENSITY VERSUS
TEMPERATURE
200

'#

160

I

~
iii 120

\
\.
'\

"~
~

"\ to<-

80

"-

~

w

a: 40

RADIANT

. . . . t---.,

o
-60

0

ANGULAR DISPLACEMENT - DEGREES FROM AXIS

IF - FORWARD CURRENT - mA

-20

0

20

60

100

TJ - JUNCTION TEMPERATURE - °C

3-48

140

TIL209A· TIL211· TIL213
RED/GREEN AND YELLOW T-1 LED LAMPS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The TIl209A is a red GaAsP T-1 lamp. TheTIl211 is a
green GaP T-1 lamp, and the TIl213 is a yellow T-1 lamp. These devices provide a lowcost lamp for applications where space is at a premium.

•
•
•
•

PIN CONNECTION

SMALL SIZE
THREE COLORS AVAILABLE
LOW POWER CONSUMPTION MEANS IC COMPATABILITY
NO SOCKET REQUIRED

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Operating Temperature
Storage Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 85°C

CATHODE

ANODE

-40°C to +80°C
-40°C to +80°C
230°C
85%

Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate linearly from 25°C

100mW
1.33 mW;oC

Maximum Voltage and Currents
VR
Reverse Voltage
IF
Forward dc Current
TIl209A
Tll211, TIl213
if
Peak Forward Current (1.0 JiS pulse width)

3.0 V
40 mA
30 mA
1.0 A

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL
VF

CHARACTERISTIC

MIN

MAX

UNITS

TEST CONDITIONS

= 20 mA

TIL209A

1.6

2.0

'v'

I~

TIL211, TIL213

2.3

3.0

V

IF = 25 rnA

V

IR=100J.lA

VR

Reverse Voltage

10

Axial Lurninous Intensity

3.0

TIL209A, TIL211 , TIL213

Apk

TYP

Forward Voltage

= 20

TIL209A

500

1000

J.lcd

IF

TIL211,1'1L213

800

4000

J.lcd

IF = 25 rnA

rnA

TIL209A
TIL211

665

nrn

IF

rnA

565

nrn

IF

rnA

TIL213

585

nrn

Peak Wavelength

3-49

= 20
= 20
IF = 20

rnA

FAIRCHILD. TIL209A • TIL211 • TIL213
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

EMISSION SPECTRUM
100

~

/

80

I

"I

.,.,260

Z

~

~

I

20

600

620

~ !l

\

640

660

680

700

540

40

::>
()

30

E

>-

~

c

V

""

/

II

/
1.2

1.4

I

20

0:
<[

0:

:i'

10

I

I

V

""
1.8

1.0

2.0

1.5

VF - FORWARD VOLTAGE - V

RELATIVE LUMINOUS INTENSITY
VERSUS FORWARD CURRENT

~

5.0

'3

5.0

2.0

>-

2.0

w

TA = 25°C

~
o
w

>

1.0

~~

0.5

.

0.2

.,~~

~~
:!;
(/)
::>

~

V

0:0

~~
0:",

z

3.0

3.5

10
TA

25"C

1.0

0.5

)oN

>-11

u; LL
zw>~

/, rl
'/1
/ 'I
'/.
'-/ III

VF - FORWARD VOLTAGE - V

TIL 209A

::>

640

/

vv

o

1.6

['..

620

I I
II

;:

I

1/

/

<[

+100°C
+25°C
'-55°C

()

/ -55°C

0:

30

0:
0:

::>

o

20

c

I

I'\.

600

40

<[

lo0 o

10

f""..

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

I I I
I I I
1/ II
I
CI
I
/25 el

0:
0:

0:

580

560

50

I

;:

\

~

TIL 211. TIL 213

I

:i'

'"

/

TIL 209A

E

~
()
1:i

\

). WAVElENGTH - nm

<[

z
0
;::

\

A - WAVELENGTH - nm

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

~

I

~

50

>-

/

0: 20

\

/

o

I

\ . . Tll213

\

I

~ 40

\

1\

.,~ 60

\

~ 40

X

I-- ()r,l2"

I

\

~

"'\ I

I

80

\

I

Z

0:

EMISSION SPECTRUM
100

1/

0.2
O. 1
0.05

~

/

o
0.02
0.01
0.1 0.2

0.5

1

5

10

20

50100

IF - FORWARD CURRENT - rnA

Z
~

0.02

:3

0.0 1

10

20

50

IF - FORWARD CURRENT - rnA

TIL 209A

TIL 211. TIL 213

3·50

100

FLSOIO
FRONT PANEL ADAPTER
FOR LED LAMP

GENERAL DESCRIPTION - The FLS010 is a panel mount adapter specially designed
for use with all Fairchild .200" LED lamps.

•
•
•
•
•
•
•
•
•

PHYSICAL DIMENSIONS

SINGLE PART CONSTRUCTION
SIMPLE ASSEMBLY TECHNIQUE
BLACK FINISH GIVES MAXIMUM ON/OFF CONTRAST
FITS PANELS .060" to .250" THICK
FITS LAMPS .280" THROUGH .360" TALL
REMOVABLE FROM EITHER FRONT OR REAR
ORIENTS TO FLAT ON LED FOR EASY POLARITY INSPECTION
NEARLY FLUSH WITH FRONT PANEL SURFACE
REQUIRES STANDARD H-SIZE DRILL HOLE IN PANEL

MOUNTING INSTRUCTIONS
1. The panel hole for the mounting clip should be 0.265" (±.002") and the hole edges
should be deburred (this permits a 17/64 or H size drill to be used).
2. Insert the LED, lens first, with the flat flush against the tab, into the tab end of the
clip. Press firmly until the tab snaps over the flat and locks the unit into the clip.
PANEL THICKNESS

3. Insert the mounting clip and LED assembly into the panel hole, pins first, from the
front side of the panel. Use a hollowed cylinder whose internal diameter is greater
than .200" and less than .24" (i.e. either a piece of 3/8" poly-flo tubing or 3/16"
nut driver) to "press fit" the clip into the panel until the flange is seated snugly on the
panel.

3-51

.060 - .250

FLSOll · FLS012
PANEL MOUNTING HARDWARE KIT
FOR T-l 3/4 LED LAMPS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - Simplify the assembly and removal of LED la mps by using
the FLSOll or FLS012 mounting hardware kit.
•

•
•
•
•
•
•
•
•

THREE PIECES:
A GLASS FILLED BLACK NYLON BARREl.
A STEEL HEX NUT, CHROME PLATED.
A KNURLED STEEL BEZEL, EITHER CHROME PLATED (FLSOlll
OR BLACK (FLS0121.
ASSEMBLE THE HARDWARE FROM EITHER tHE FRONT OR REAR OF THE PANEL.
INSTALL THROUGH A STANDARD 1/4 INCH DIAMETER HOLE; EITHER DRILLED OR
PUNCHED, WITH NO CRITICAL TOLERANCES.
ACCOMMODATES STANDARD T-l 3/4 LED LAMPS WITH .185 INCH TO .203 INCH
BARREL DIAMETER. ALSO FITS TO-18 CASE LAMPS.
FINGERS EASILY GRASP THE THICK KNURLED BEZEl.
LARGE .062 INCH DIAMETER HOLES THROUGH THE BARREL ALLOW SOLDERED OR
WIRE WRAPPED PINS TO PASS THROUGH.
ADJUST TO ANY PANel THICKNESS UP TO 3/16 INCH.
FINE THREADS RESIST LOOSENING FROM VIBRATION.
BLACK BEZEL OFFERS MAXIMUM ON/OFF CONTRAST RATIO.

ORDERING INFORMATION:
For silver bezel retaining nut version, order FLSOll. For black bezel retaining nut
version, order FLS012.
MOUNTING OPTIONS

_~~~II;;;;;;II~::~~~

MOUNTING
_THROUGH

NOTE: .440 Dimension varies with LED used.

3-52

SEVEN-SEGMEI'.
Wired for multiplexed: (ie: all segments tied together>'
Competitor device is common anode. FSC device is common cathode
Competitor device uses super GaAsP die. FSC device has GaAsP die
Logic chip built into competitor device.
Only right hand decimal available on MAN72A device
No alarm indicator is on the Fairchild device
Minor mechanical spacing differences
Competitor device packaged in vinyl film. FSC device is in vial
Competitor device is waffle packed. FSC part is packed in vial.
Minor character height difference in die size
4-4

DEVICE CHARACTERISTICS
DEVICE
HDSP-2000
5082-7010
5082-7011
5082-7100
5082-7101
5082-7102
5082-7240
5082-7241
5082-7265
5082-7275
5082-7285
5082-7295
5082-7300
5082-7302
5082-7304
5082-7340
5082-7356
5082-7357
5082-7358
5082-7359
5082-7391
5082-7392
5082-7393
5082-7395
5082-7402
5082-7403
5082-'1404
5082-7405
5082-7412
5082-7413
5082-7414
5082-7415
5082-7432
5082-7433
5082-7440
5082-7441
5082-7442
5082-7444
5082-7445
5082-7446
5082-7447
5082-7448
5082-7449
5082-7500
5082-7610
5082-7611
5082-7613
5082-7616
5082-7620
5082-7621
5082-7623
5082-7626
5082-7630
5082-7631
5082-7633
5082-7636
5082-7650
5082-7651
5082-7653
5082-7656
5082-7660
5082-7661
5082-7663
5082-7666
5082-7670
5082-7671
5082-7673
5082-7676
5082-7730
5082-7731
5082-7736
5082-7740
5082-7750
5082-7751

COMPETITOR SIZE
HP
HP
HP

~~\

HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP

.3
.27
.27
.27
.27
.27
.102
.102
.175
.175
.175
.175
.29
.29
.29
.29
.29
.29
.29
.29
.29
.29
.29
.29
.11
.11
.11
.11
.11
.11
.11
.11
.11
.11
.105
.105
.100
.100
.100
.115
.112
.105
.105
1.50
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.3
.3
.3
.3
.43
.43

COLOR

POLARITY

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M·
CA
CA
CC
U
CA
CA
CC
U
CA
CA
CC
U
CA
CA
CC
U
CA
CA
CC
U
CA
CA
CC
U
CA
CA
U
CC
CA
CA

y
y
Y
Y
G
G
G
G
R
R
R
R

Y
Y
Y
Y
G
G
G
G
R
R
R
R
R
R

DESCRIPTION
4-Character Alphanumeric Dis.
Numeric Indicator
Overflow ± 1
3-Character Alphanumeric Dis.
4-Character Alphanumeric Dis.
5-Character Alphanumeric Dis.
8-Digit Calculator Display
9-Digit Calculator Display
5-Digit Monolithic Indicators
15-Digit Monolithic Indicators
5-Digit Monolithic Indicators
15-Digit Monolithic Indicators
Numeric Indicator
Numeric Indicator
Overflow + 1 Indicator
Hexadecimal Indicator
Numeric Indicator
Numeric Indicator
Overflow + 1 Indicator
Hexadecimal Indicator
Numeric Indicator
Numeric Indicator
Overflow + 1
Hexadecimal Display
3-Digit Monolithic Display
3-Digit Monolithic Display
4-Digit Monolithic Display
5-Digit Monolithic Display
3-Digit Monolithic Display
3-Digit Monolithic Display
4-Digit Monolithic Display
5-Digit Monolithic Display
2-Digit Monolithic Display
3-Digit Monolithic Display
8-Digit Calculator Display
9-Digit Calculator Display
12-Digit Calculator Display
14-Digit Calculator Display
12-Digit Calculator Display
16-Digit Calculator Display
14-Digit Calculator Display
8-Digit Calculator Display
9-Digit Calculator Display
Numeric Indicator
7-Segment Display
7-Segment Display
7-Segment Display
Overflow + 1
7-Segment Display
7-Segment Display
7-Segment Display
Overflow + 1
7-Segment Display
7-Segment Display
7-Segment Display
Overflow + 1
7-Segment Display
7-Segment Display
7-Segment Display
Overflow + 1
7-Segment Display
7-Segment Display
7-Segment Display
Overflow + 1
7-Segment Display
7-Segment Display
7-Segment Display
Overflow + 1
7-Segment Display
7-Segment Display
Overflow + 1
7-Segment Display
7-Segment Display
7-Segment Display

4-5

FAIRCHILD
DECIMAL DEVICE
N
LH
N
N
N
N
RH
RH
C
C
RH
RH
RH
RH
N
N
RH
LH
N
N
RH
LH
N
N
C
C
C
C
RH
RH
RH
RH
N
N
RH
RH
RH
RH
RH
RH
RH
RH
RH
LH
LH
RH
RH
RH
LH
RH
RH
RH
LH
RH
RH
RH
LH
RH
RH
RH
LH
RH
RH
RH
LH
RH
RH
RH
LH
RH
RH
RH
LH
RH

MAN72A
MAN71A
MAN74A
MAN73A

FND567
FND567
FND560
FND568

FND537
FND537
FND530
FND531
MAN72A
MAN71A
MAN73A
MAN74A
FND507
FND507

CODE NOTES
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
B
B

Y
X
NC-C
NC-C
NC-C
NC-C
NC-C
NC-C
NC-C
NC-C
B/E
B/E
B/E
B/E
NC-C
NC-C
NC-C
NC-C
E
E
E
E
A
A

X
X
E
E

4
4
4
4

•
4
12
12
1,12
1,12

1,3,5,12
1,3,12
1,3,12
1,12,13

1,3,5
1,3
1,3
1,3

1
1
1,3,5
1,3

DEVICE CHARACTERISTICS
DEVICE
5082-7756
5082-7760
5082-7811
5082-7821
5082-7832
5082-7842
5082-7851
5082-7852
5082-7853
5082-7861
5082-7862
5082-7883
5082-7871
5082-7881
5082-7890
5082-7892
DL10
DL 101
DL lOA
DL lOlA
DL34M
DL44M
DL 57
DL 416
DL 701
DL 702
- DL 704
DL 707
DL 707R
DL 721
DL 722
DL 727
DL 728
DL 740
DL 741
DL 746
DL 747
DL 749
DL 750
DL 751
DL 752
DL 3531
DL 4120
DL 4500
DL 4520A
DL 4530
DL 5175
DL 5179
MAN 1
MANIA
MAN2A
MAN 10
MAN lOA
MAN 51A
MAN 52A
MAN 53A
MAN 54A
MAN 71A
MAN 72A
MAN 73A
MAN 74A
MAN 81A
MAN 82A
MAN 83A
MAN 84A
MAN 1001
MAN 100tA
MAN 101
MAN lOlA
MAN 3610A
MAN 3620A
MAN 3630A
MAN 3640A
MAN 4610A

COMPETITOR SIZE
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON

.43
.43
.053
.053
.080
.OBO
.100
.100
.100
.100
.100
.100
.120
.120
.011
.011
.27
.27
.27
.27
.11
.15
.32
.160
.3
.3
.3
.3
.3
.5
.5
.5
.5
.83
.63
.63
.63
.63
.63
.63
.83
.5
1.0
.5
.5
.5
.102
.105
.27
.27
.32
.27
.27
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3
.3
.27
.27
.27
.27
.3
.3
.3
.3
.4

COLOR

POLARITY

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

U
CC
M
M
M
M
M
M
M
M
M
M
M
M
M
M
CA
CA
CA
CA
CC
CC

G
G
G
G
R
R
R
R

Y
Y
Y
Y
R
R
R
R

0
0
0
0
0

CC
CA
CC
CC
CA
CA
CA
CC
CA
CC
CA
CA
CA
CA
CC
CC
CC
CC
CA
CC
CC
CC
CA
M
M
CA
CA
CA
CA
CA
CA
CA
CC
CA
CA
CA
CC
CA
CA
CA
CC
CA
CA
CA
CA
CA
CA
CA
CC
CA

DESCRIPTION
Overflow + 1
7-Segment Display
7-Segment Monolithic Die
7-Segment Monolithic Die
7-Segment Monolithic Die
7-Segment Monolithic Die
7-Segment Monolithic Die
9-Segment Monolithic Die
1 or Colon Monolithic Die
7-Segment Monolithic Die
9-Segment Monolithic Die
1 or Colon Monolithic Die
7-Segment Monolithic Die
7-Segment Monolithic Die
Colon Monolithic Die
Colon Monolithic Die
Monochromatic 7-Seg. Display
Monochromatic Overflow + 1
Monochromatic 7-Seg. Display
Monochromatic Overflow + 1
Lensed Monolithic Display
Lensed Monolithic Display
Alpha,Numeric Display
4-Digit Alpha-Numeric Display
Overflow + 1
7-Segment Display
7-Segment Display
7-Segment Display
7-Segment Display
1 1/2-Digit, 7-Segment Display
1 1/2-Digit, 7-Segment Display
Dual Digit, 7-Segment Display
Dual Digit, 7-Segment Display
Overflow + 1
7-Segment Display
Overflow + 1
7-Segment Display
Overflow + 1
7-Segment Display
7-Segment Display
Overflow + 1
3 1I2-Digit Display Array
4-Digit Clock Display Array
4-Digit Clock Display Array
4-Dig it Clock Display Array
4-Digit Display Array
Monolithic Watch Displays
Monolithic Watch Displays
Monochromatic 7-Seg. Display
Monochromatic 7-Seg. Display
Alpha-Numeric Display
Monochromatic 7-Seg. Display
Monochromatic 7-Seg. Display
7-Segment Display
7-Segment Display
Overflow + 1
7-Segment Display
7-Segment Display
7-Segment Display
Overflow + 1
7-Segment Display
7-Segment Display
7-Segment Display
Overflow + 1
7-Segment Display
Monochromatic Overflow + 1
Monochromatic Overflow + 1
Monochromatic Overflow + 1
Monochromatic Overflow + 1
7-Segment Display
7-Segment Display
Overflow + 1
7-Segment Display
7-Segment Display

4-6

FAIRCHILD
DECIMAL DEVICE
RH
RH
N
N
N
N
N
N
N
N
N
N
N
N
N
N
LH
N
LH
N
RH
RH
LH
N
N
LH
RH
LH
RH
RH
RH
RH
RH
N
LH
N
LH
N
LH
LH
N
RH
RH
N
N
RH
N
N
LH
LH
LH
LH
LH
RH
LH
N
RH
RH
LH
N
RH
RH
LH
N
RH
N
N
N
N
RH
LH
N
RH
RH

FND501
FND500
FNXB050
FNXB050
FNXB038
FNX8038
FNX8008
FNX8009
FNXB012
FNX8008
FNX8008
FNX8012
FNXB010
FNX8010
FLX2110
FLX2110

MAN73A
MAN74A
MAN74A
MAN72A
MAN71A
FND6730
FND6750
FND6710
FND6740
FND847
FND847
FND850
FND850
FNA5421
FCS8024
FCS5599
FNA5420

MAN71A
MAN72A
MAN73A
MAN74A

MAN3610A
MAN3620A
MAN3830A
MAN3640A
FND558

CODE NOTES
E
E
C
C
A
A
A
A
A
A
A
A
C
C
C
C
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
X

Y
Y
A
A
E
E
C
C
NC-P
C
NC-P
C
NC-P
C
C
NC-P
E
E
NC-P
E
E
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-C
NC-C
NC-C
NC-C
A
A
X

Y
NC-C
NC-C
NC-C
NC-C
NC-P
NC-P
NC-P
NC-P
X
X
X
X
E

1,3
1,3
17
18
17
18
17
17
17
18
18
18
17,19
18,19

4
2
2,5
2
2
2
1,2,6
1,2,6
2,6
2,6
2,3,7,8
2,3,7,8
2,3,7,8
2,3,7,8
1,2,10,11
1,2,9
2,10
1,2,9
1,2,10,11

4

2
2
2
2

2
2
2
2
1,2,3

DEVICE CHARACTERISTICS
DEVICE
MAN 4630A
MAN 4640A
MAN 6610
MAN 6630
MAN 6640
MAN 6650
MAN 6660
MAN 6680
MAN 6710
MAN 6730
MAN 6740
MAN 6750
NSN 334
NSN 373
NSN 374
NSN 381
NSN 382
NSN 534
NSN 561
NSN 562
NSN 563
NSN 564
NSN 734
NSN 781
NSN 782
NSN 783
NSN 784
NSB 3382
NSB 3881
NSB 3882
NSB 5382
NSB 5881
NSB 5882
NSB 5917
NSB 5921
NSB 5922
NSB 7382
NSB 7881
NSB 7882
NSC 0014
NSW3101
NSW 9060
NSW9070
NSW 9075
NSW 1080
NSW 1090
NSW9100
NSW 1116
TIL 302
TIL 303
TIL 304
TIL 305
TIL 306
TIL 307
TIL 308
TIL 309
TIL 311
TIL 312
TIL 313
TIL 314
TIL 315
TIL 316
TIL 317
TIL 321
TIL 322
TIL 323
TIL 324
TIL 325
TIL 326
TIL 327
TIL 328
TIL 329
TIL 330
TIL 331

COMPETITOR SIZE
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
NAT
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI

.4
.4
.56
.56
.56
.56
.56
.56
.56
.56
.56
.56
.3
.3
.3
.3
.3
.5
.5
.5
.5
.5
.7
.7
.7
.7
.7
.3
.3
.3
.5
.5
.5
.5
.5
.5
.7
.7
.7

.060
.070
.075
.080
.090
.101
.116
.27
.27
.27
.3
.27
.27
.27
.27
.3
.3
.3
.3
.3
.3
.3
.5
.5
.5
.5
.5
.5
.3
.3
.3
.5
.5

COLOR

POLARITY

0
0
0
0
0
0
0
0

CA
CC
CA
CA
CC
CC
CA
CC

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R.
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

G
G
A
A
R
R

G
G
A
A
R

G
A
R

G

cA

CA
CC
CC
CA
CC
CA
CC
CA
CA
CC
CA
CC
CA
CA
CC
CA
CC
CA
CA
CC
CA
CA
CC
CA
CA
CC
CA
CA
CC
CA

CA
CA
CA

CA
CC
CA
CC
CA
CC
CA
CC
CA
CC
CA
CC
CA
CA
CA
CA
CA

DESCRIPTION
Overflow + 1
7-Segment Display
Dual Digit, 7-Segment Display
1 1/2-Digit, 7-Segment Display
Dual Digit, 7-Segment Display
1 1/2-Digit, 7-Segment Display
Single Display, 7-Seg. Display
Single Display, 7-Seg. Display
Dual Digit, 7-Segment Display
1 1/2 Digit, 7-Segment Display
Dual Digit, 7-Segment Display
11/2-Digit, 7-Segment Display
1 1/2-Digit Display Array
2-Digit Display Array
2-Digit Display Array
2-Dlgit Display Array
2-Digit Display Array
1 1/2-Digit Display Array
2-Digit Display Array
2-Digit Display Array
2-Digit Display Array
2-Digit Display Array
1 1/2-Digit Display Array
2-Digit Display Array
2-Digit Display Array
2-Digit Display Array
2-Digit Display Array
3 1/2-Digit Display Array
4-Digit Display Array
4-Digit Display Array
3 1/2-Digit Display Array
4-Digit Display Array
4-Digit Display Array
4 1/2-Digit Display Array
5-Digit Display Array
5-Digit Display Array
3 1/2-Digit Display Array
4-Digit Display Array
4-Digit Display Array
Decimal PI. Monolithic Die
Full Colon Monolithic Die
9-Segment Monolithic Display
9-Segment Monolithic Display
9-Segment Monolithic Display
II-Segment Monolithic Display
II-Segment Monolithic Display
9-Segment MonOlithic Display
9-Segment Monolithic Display
Monochromatic 7-Seg. Display
Monochromatic 7-Seg. Display
Monochromatic Overflow + 1
Alpha-Numeric Display
Monochromatic 7-Seg. Display
Monochromatic 7-Seg. Display
Monochromatic 7-Seg. Display
Monochromatic 7-Seg. Display
Hexadecimal Display
7-Segment Display
7-Segment Display
7-Segment Display
7-Segment Display
7-Segment Display
7-Seg ment Display
7-Segment Display
7-Segment Display
7-Segment Display
7-Segment Display
7-Segment Display
7-Segment Display
Overflow + 1
Overflow + 1
Overflow + 1
Overflow + 1
Overflow + 1

4-7

FAIRCHILD
DECIMAL DEVICE
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
RH
N
N

FND557
FND550
FND6710
FND6730
FND6740
FND6750

FND6710
FND6730
FND6740
FND6750

FNA3420
FNA3420
FNA5421
FNA5420
FNA5420
FNA5521
FNA5520
FNA5520

FLX2110
FNX8099

FNX8009
FNX8019
LH
RH
LH
LH
LH
LH
RH
BS
BS
RH
BS
RH
BS
RH
RH
RH
RH
RH
RH
RH
LH
LH
LH
RH
RH

MAN72A
MAN74A

FND507
FNDSOO
FND537
FND530
FND557
FND550
MAN73A

FND508
FND538

CODE NOTES

E
E
X
X
X
X
NC-P
NC-P
A
A
A
A
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
W
C

E
E
C

E
E
C

E
W
W
W
C
A
NC-P
NC-P
NC-P
NC-P
NC-P
A
A
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
B
Y
NC-C
NC-C
NC-C
NC-C
A
A
A
A
A
A

y
NC-C
NC-C
A
A

1,2,3
1,2,3
2
2
2
2

2
2
2
2
9
9
9
10
10
9
10
10
9
9
9
10
10
9
9
10
1,10
1,10
1,10
1,10
1,10
1,10
1,10
1,10
10
10
10
19

4
13
13
13
13
13
14
1

•

DEVICE CHARACTERISTICS
DEVICE

TIL 332
TIL 360
TIL 361
TIL 362
TIL 363
TIL 364
TIL 365
TIL 366
TIL 367
TIL 368
TIL 369
TIL 370
TIL 371
TIL 372
TIL 373
TIL 374
TIL 375
TIL 379-12
TIL 380-8
TIL 380-9
TIL 382
TIL 383
TIL 384
TIL 385
TIL 392-6
TIL 392-8
TIL 392-9
TIL 393-6
TIL 393-8
TIL 393-9
TIL 394-8
TIL 394-9
TIL 396
TIL 397
TIL 398
TIL 399

COMPETITOR SIZE

TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI
TI

.5
.1
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.5
.106
.110
.110
.100
.100
.116
.116
.102
.102
.102
.102
.102
.102
.110
.110
.100
.100
.100
.100

COLOR

POLARITY

A

CA

R
R
G
A

R
G
A

R
G
A

R
G
A

R
C
A

R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R

CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC
CC

DESCRIPTION

Overflow + 1
6-Digit, 7-Segment Display
2-Digit, 7-Segment Display
2-Digit, 7-Segment Display
2-Digit, 7-Segment Display
3 1/2-Digit, Clock Display
3 1/2-Digit, Clock Display
3 1I2-Digit, Clock Display
3 1I2-Digit, Clock Display
3 1/2-Digit, Clock Display
3 1/2-Digit, Clock Display
4-Digit, Clock Display
4-Digit, Clock Display
4-Digit, Clock Display
4-Digit, Clock Display
4-Digit, Clock Display
4-Digit, Clock Display
12-Digit, Monolithic Display
8-Digit, Monolithic Display
9-Digit, Monolithic Display
4-Digit Watch Displays
4-Digit Watch Displays
4-Digit Watch Displays
4-Digit Watch Displays
6-Digit Calculator Display
8-Digit Calculator Display
9-Digit Calculator Display
6-Digit Calculator Display
8-Digit Calculator Display
9-Digit Calculator Display
8-Digit Calculator Display
9-Digit Calculator Display
4-Digit Watch Display
4-Digit Watch Display
4-Digit Watch Display
4-Digit Watch Display

4-8

FAIRCHILD
DECIMAL DEVICE
RH

FND558

RH
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

RH
RH
RH

FNA5220

FCS5599

FCS5599

FCS5599

FCS5599

CODE NOTES

A
NC-P
C
NC-C
NC-C
E
NG-C
NC-C
C
NC-C
NC-C
E
NC-C
NC-C
C
NC-C
NC-C
NC-P
NC-P
NC-P

N
N
N
N

RH
RH
RH
RH
RH
RH
RH
RH
N
N
N
N

NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P
NC-P

1,15,16

1,16

1,15,16

1,16

FCS6400 • FCS6401
RED GaAsP 0.6" 3 1/2 AND 4-DIGIT LED CLOCK DISPLAYS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FCS6400 (4-digit) and FCS6401 (3 1/2-digit) are
common cathode, solid state numeric display modules. The FCS6401 display incorporates AM and PM indication for use in 12 hour operating mode.
All modules are compact and mounted on a board for easy insertion, allowing maximum
flexibility to the end user. Their red faceplates combine high contrast with clean, simple
appearance.

PIN CONNECTIONS

•

•
•
•
•
•

PIN COMPATIBLE WITH TOSHIBA TLR2047/TLR4040
LOW DRIVE CURRENT REQUIREMENTS
IC COMPATIBLE
COMPACT THIN PACKAGE, EASILY INCORPORATED IN THE SYSTEM
PC BOARD TYPE TERMINALS ALLOW EASY CONNECTION BY WIRE OR PIN
SOLDERING OR WITH CARD-EDGE CONNECTOR
• WIDE VIEWING ANGLE WITH HIGH CONTRAST RED FACEPLATE
• APPLICATIONS INCLUDE WALL CLOCKS, DESK CLOCKS, CLOCK RADIOS
INTERVAL TIMERS
• COMMON CATHODE DIRECT DRIVE

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 3 s at
1.5 mm from seating plane)

-20°C to +75°C
-20°C to +75°C
260°C

Maximum Voltages and Currents
VR
Reverse Voltage
IF(Avg)
Average Forward Current (segment or decimal)
Ipk
Peak Current (segment or decimal)

3.0 V
20 mA
60 mA

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL

VF
IA
~I

Apk
~A

0

CHARACTERISTICS
Forward Voltage
Average Luminous Intensity per Segment
Intensity Matching (Note 1)
Peak Wavelength
Spectral Line Half-Width
Viewing Angle

MIN

TYP

MAX
2.1

0.08

1.9
0.20

UNITS
V
mcd

3
665
25
±30

(Note 1: Segment to Segment from average Segment intensity)

4·9

nm
nm
degrees

TEST CONDITIONS
IF = 10.0 mA/Segment
IF = 10.0 mA/Segment
IF = 10.0 mA/Segment

FAIRCHILD FCS6400 • FCS6401
PIN

ASSIGNMENT

FC6401

FC6400
Com. Cath. Digits 1 & 2
2 N/C
3 N/C
4 Segment A 1 Anode
5 Segment F1 Anode
6 Segment G1 Anode
7 Segment E1 Anode
8 Segment 01 Anode
9 Segment C1 Anode
10 Segment 91 Anode
11 Segment F2 Anode
12 Segment G2 Anode
13 Segment A2 Anode
14 Segment 92 Anode
15 Segment E2 Anode
16 Segment 02 Anode
17 Segment C2 Anode

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Colon Anode
Colon Anode
Segment F3 Anode
Segment G3 Anode
Segment A3 Anode
Segment 93 Anode
Segment 03 Anode
Segment E3 Anode
Segment C3 Anode
Segment F4 Anode
Segment G4 Anode
Segment A4 Anode
Segment 94 Anode
Segment E4 Anode
Segment 04 Anode
Segment C4 Anode
Com. Cath. Digits 3 & 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

4-10

Com. Cath. Digits 1 & 2
PM IND. Anode
AM IND.

N/C
N/C
N/C
N/C
N/C
Segment
Segment
Segment
Segment
Segment
Segment
Segment
Segment
Segment

C1 Anode
91 Anode
F2 Anode
G2 Anode
A2 Anode
92 Anode
E2 Anode
02 Anode
C2 Anode

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Colon Anode
Colon Anode
Segment F3 Anode
Segment G3 Anode
Segment A3 Anode
Segment 93 Anode
Segment 03 Anode
Segment E3 Anode
Segment C3 Anode
Segment F4 Anode
Segment G4 Anode
Segment A4 Anode
Segment 94 Anode
Segment E4 Anode
Segment 04 Anode
Segment C4 Anode
Com. Cath. Digits 3 & 4

FCS8000·FCS8024
RED GaAsP 0.8" 3 1/2 AN D 4 DIGIT LED CLOCK DISPLAYS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FCS8000 is a 3-1/2 digit, common-cathode, solid
state numeric display module. It includes an AM-PM indicator and pinouts compatible with the Fairchild 3817 MOS clock circuit. The FCS8024 is a 4-digit, commoncathode version for European format. Standard interface circuits will allow operation
with TTL, DTl, or CMOS SSI and MSI circuits.

CONNECTION DIAGRAMS

All modules are compact and mounted on a board for easy insertion, allowing maximum
flexibility to the end user. Their red faceplates combine high contrast with clean, simple appearance.

•
•
•
•
•
•
•

FCSBOOO

IC COMPATIBLE WITH SIMPLE INTERFACE CIRCUITS
COMPACT THIN 0.47 INCH PACKAGE, EASILY INCORPORATED IN THE SYSTEM
PC BOARD TYPE TERMINALS ALLOW EASY CONNECTION BY WIRE OR PIN
SOLDERING OR WITH CARD-EDGE CONNECTOR
WIDE VIEWING ANGLE WITH HIGH CONTRAST RED FACEPLATE
LOW POWER TYPICALLY B rnA PER SEGMENT AVERAGE AT ONLY 1.B V
APPLICATIONS INCLUDE WALL CLOCKS, DESK CLOCKS, CLOCK RADIOS
INTERVAL TIMERS
COMMON-CATHODE FOR EASY DRIVING

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 60°C

FCS8024

-40°C to +80°C
-40°C to +80 oC
230°C
90%

Maximum Voltages and Currents
VR
Reverse Voltage
IF (Avg)
Average Forward Current (Segment or Decimal)
Ipk
Peak Current (Segment or Decimal)

3.0 V
20 mA
60mA

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

= 8.0 mA/Segment
= 8.0 mA/Segment
'F = 8.0 mA/Segment

VF

Forward Voltage

1.65

V

'F

'ii

Average Luminous Intensity per Segment

350

Jicd

'F

ll.liI
il pk

Intensity Matching (Note 1)

±33

%

Peak Wavelength

660

nm

ll.iI

Spectral Line Half-Width

81/2

Viewing Angle at Half Intensity

25

> ±30
4·11

nm
degrees

•

FAIRCHILD • FCS8000 • FCS8024
PIN NAMES

FCS8024

FCS8000
Pin
No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Pin
No.

Segment

NC
NC
Indicator
NC
Indicator
10 Hrs. C
10 Hrs. B
NC
Hrs. F
Hrs. G
Hrs. E
Hrs. A
Hrs. B
Hrs. D
Hrs. C
Colons
NC

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Pin
No.

Segment

10 Min.
10Min.
10Min.
10 Min.
10Min.
10Min.
10Min.
NC
Min. F
Min. E
Min. G
Min. A
Min. B
Min. C
Min. D
NC
VLED

F
E
G
A
D
B
C

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

Pin
No.

Segment

10 Hrs.
10 Hrs.
10 Hrs.
10 Hrs.
10 Hrs.
10 Hrs.
10 Hrs.
NC
Hrs. F
Hrs. G
Hrs. E
Hrs. A
Hrs. B
Hrs. D
Hrs. C
Colons
NC

A
E
D
G
F
C
B

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Segment

10 Min.
10 Min.
10Min.
10 Min.
10 Min.
10 Min.
10 Min.
NC
Min. F
Min. E
Min. G
Min. A
Min. B
Min. C
Min. D
NC
VLED

.FCS8000 • FCS8001 BLOCK DIAGRAM

DOZE

Vss

28

60/60 Hz INPUT

36

SECONDS
DISPLAY

60/60 Hz
SELECT

12/24 HR.
SELECT

SLEEP OUT

FCM7030

VOO

FCS8000

4-12

F
E
G
A
D
B
C

FAIRCHILD • FCS8000 • FCS8024
FCS8024 • FCS8025 BLOCK DIAGRAM

50/60 Hz
SELECT

DOZE
SLEEP

SET
HR/MIN

VOISPLAY

OSC. IN

asc.

OUT ALARM 8 ALARM A DISPLAY A DISPLAV B

Vss
CP

RADIO

our

FCM7015

32

ALARM OUT

VDD

VLED

FCS8024

FORWARD CURRENT VERSUS
FORWARD VOLTAGE (TJ)

1 125

I
I-

~ 100
a:

a
o

7&

~a:

50

I
~

26

~

I

)
0.5

1.0

1.6

I
I

2.0

2.6

VF - FORWARD VOLTAGE - V

4-13

3.0

•

FNA6
RED GaAsP 6-SEGMENT LED BAR GRAPH DISPLAY
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FNA6 is a 6-segment LED bar graph display with each
segment aligned horizontally. This display device is for applications where viewing is within thirty feet of the display.

•
•
•
•

CONNECTION DIAGRAM

LOW CURRENT REQUIREMENTS OF TYPICALLY 10 rnA SEGMENT
LOW VOLTAGE OF TYPICALLY 1.7 V,
MAXIMIZED CONTRAST RATIO WITH INTEGRAL LENS CAP
EACH LED HAS COMMON-ANODE AND COMMON-CATHODE.

0 [[

62::J~2::J2::J6 II
M
, , AfiM fOl(5[A MA
345

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Operating Temperature
Storage Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at BO°C

fi

189101112

PIN

1 Segment A cathode
2 Segment A anode
3 Segment B cathode
4 Segment B anode
5 Segment C cathode
6 Segment C anode
7 Segment D cathode
8 Segment D anode
9 Segment E cathode
10 Segment E anode
11 Segment F cathode
12 Segment F anode

-25'C to +85'C
-25'C to +85'C
260'C
90%

Maximum Voltage and Currents
VA
Reverse Voltage
IF(AVGI
Average Forward Current/Segment or Decimal Point
Derate from 25'C Ambient Temperature (Fig. 2)
Peak Forward Current/Segment or Decimal Point
(100 JLS pulse width) pps, TA = 25'C

3.0V
25 mA
.03 mA/'C
200 mA

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25'C

SYMBOL

CHARACTERISTIC

MIN

V,
BVR
10

Forward Voltage
Reverse Breakdown Voltage
Axial luminous Intensity, Each Segment
Viewing Angle to Half Intensity
Peak Wavelength
Average Segment luminance
Intensity Matching,
Segment to Segment

1.5
3.0
240

8V2
A,k

La
Il.lo

4-14

TYP
1.7
12
450
±25
665
35
±33

MAX

UNITS

TEST CONDITIONS

2.0

V
V
,",cd
degrees
nm
III

I, = 20 mA
IR = 1.0 mA
I, = 20 mA

%

I, = 20 mA
I, = 20 mA
I, = 20 mA

0

FAIRCHILD. FNA6
TYPICAL CHARACTERISTICS CURVES
FORWARD CURRENT
VERSUS
FORWARD VOLTAGE

MAXIMUM AVERAGE
CURRENT RATING VERSUS
AMBIENT TEMPERATURE

ANGULAR DISTRIBUTION
OF LUMINOUS INTENSITY
100

~

~

~

16

'\
~t-t-+-+-+'\-->t--t--t-+-t

;.Z

I".

801-+'rl\-t~-t-+-+-+--;

801-+--+'IH
\~-t-+-+-+--;

'\

ac "1-+-+-+-+-+-+-f->I\.'-

a: 30

~

,

o

100

~

',"

o

0.4

1\
5.0

,

.!;-

1.6

0

2.0

40

~
iii

z

1000

~
~

~"§. 800

~.:.

~ ffi

\

~::;

600

a: a:
"'"

"' .......

~~

--

60

e - VIEWING ANGLE -

400

200

r-

~o

o
90

80

'"

o"
z

:!
.3

r-

I
I

-

"'~V

/ /
~

~..Q

/

V

/

~~V

/'

o

10

15

20

25

'"

r--

'\

~

15'">~

60

"'" 100

~

~

40

I'\,

'"

........

r-...

3

~

W

>

~
a:

20

,

'........

........

I

o
o

30

200
,

>

9

100

RELATIVE LUMINOUS INTENSITY
VERSUS JUNCTION
TEMPERATURE

W

~
a:

80

IF(AVG) - AVERAGE FORWARD CURRENT
PER SEGMENT "rnA

DEGREES

RELATIVE LUMINOUS EFFICIENCY
(mcd PER rnA) VERSUS PEAK
CURRENT PER SEGMENT

V

f~

We.?
e.?W

\

20

U

60

1200

\

100

40

20

AVERAGE LUMINOUS INTENSITY
VERSUS AVERAGE
FORWARD CURRENT

60

',"
>

o

ANGULAR DISTRIBUTION
OF LUMINOUS INTENSITY

9

~

r\.

TA - AMBIENT TEMPERATURE - °C

W

~

I\.

10

VF - FORWARD VOLTAGE - V

>

,

1.2

"\

15>-'"

~

0.8

1,\

!: 80

a:

a:
~

/

>

"'"0z

"-...

"oa:

.!;- 10

:!
3

'\

15

15a:
20

a:
~

1':

20

~

>-

15a:
~

'\

>-

E 40

a:

26

9
50

100

150

200

o

250

-20

IF - FORWARD CURRENT (PULSED) - rnA

20

40

60

TJ - JUNCTION TEMPERATURE - °C

4·25

80

•

FND500·FND507·FND560·FND567
RED GaAsP O.5-INCH SINGLE DIGIT NUMERIC LED DISPLAY
OPTOELECTRONICS PRODUCTS GROUP

GENERAL DESCRIPTION - The FND500, FND507, FND560 and FND567 are red
GaAsP Single Digit 7-segment displays with a 0.5-inch character height. The FND500
and FND560 are common-cathode configuration, and the FND507 and FND567 are
common-anode configuration. These displays are designed for applications in which the
viewer is within twenty feet pf the display. Each digit has a brightness code (05, 06,
07 .. ) for brightness consistency within a display. The FND560 and FND567 are
suitable for applications in high ambient light.

•
•
•
•
•
•
•
•

PIN CONNECTIONS
(FRONT VIEW)

10

ELECTRICAL AND RADIANT CHARACTERISTICS: TA
SYMBOL

FD~OB
o

1

PIN

-25°C to +85°C
-25°C to +85°C
260°C
98%

Forward Voltage

BVR

Reverse Breakdown Voltage
Axial Luminous Intensity, Average for
Each Segment
FND500, FND507
FND560, FND567
Intensity Matching, Segment to Segment
Intensity Matching Within One Intensity Class

Ll.10

3.0 V
25 mA
0.3 mA/oC
200mA

1
2

3
4
5
6
7

8
9
10

3

4

5

FND507/567 FND500/560
Segment E
Sllgment D
CommcAnode
Segment C
Decimal Point
Segment B
Segment A
Comm~Anode

,Segment F
Segment G

MIN

TYP

MAX

1.5
3.0

1.7
12

2.0

300
740

600
1200
±33
±20

UNITS

Segment E
Segment D
Comm~Cathode

Segment C
Decimal Point
Segment B
Segment A
Comm~Cathode

Segment F
Segment G

TEST CONDITIONS

V
V

'F
'R

= 20 mA
= 1.0 mA

/lcd

'F
'F
'F
'F

= 20 mA
= 20 mA
= 20 mA
= 20 mA. all segments at once

/lcd

%
%

35
70
±27

ttL
ttL
degrees

'F
'F

= 20 mA
= 20 mA

81/ 2

Average Segment Luminance
FND500, FND507
FND560, FND567
Viewing Angle to Half Intensity

Apk

Peak Wavelength

665

nm

'F

= 20 mA

LO

2

DP

= 25°C

CHARACTERISTIC

VF
'0

7

'D=D~

ABSOLUTE MAXIMUM RATINGS

Maximum Voltage and Currents
VR
Reverse Voltage
IF(Avg)
Average Forward Current/Segment or Decimal Point
Derate from 25°C Ambient Temperature
if
Peak Forward: Current/Segment or Decimal Point
(100 tiS pulse width) 1000 pps, TA = 25°C

8
A

LOW FORWARD VOLTAGE - TYPICALLY 1.7 V
FITS STANDARD DIP SOCKETS WITH 0.6" PIN ROW
DECIMAL POINT ON LOWER RIGHT-HAND SIDE
OVERFLOW POINT ON UPPER LEFT-HAND SIDE WITH DIGIT REVERSED
MAXIMIZED CONTRAST RATIO WITH INTEGRAL LENS CAP
HORIZONTAL STACKING 0.6" MINIMUM, 1" TYPICAL
COMMON-CATHODE OR COMMON-ANODE
FND560/567 SUITABLE FOR USE IN HIGH AMBIENT LIGHT

Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65°C

9

~c::::Jc::::JDc::J

4-26

FAIRCHILD • FND500· FND507 • FND560· FND567
TYPICAL CHARACTERISTIC CURVES
MAXIMUM AVERAGE CURRENT
RATING VERSUS
AMBIENT TEMPERATURE

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

ANGULAR DISTRIBUTION
OF LUMINOUS INTENSITY
100

'\

'\.

'\.

VF

\

20

I

"

16
FORWARD VOLTAGE

1\

40

I
I

/
0.4

\

60

'\.

20

0

I'\.

.0

0o

20

V

TA

.0

60

00

30

AMBIENT TEMPERATURE

--.. r-;-..,
90
'0

6 - VIEWING ANGLE - DEGREES

AVERAGE LUMINOUS INTENSITY
VERSUS AVERAGE
FORWARD CURRENT

1/

/

Y

RELATIVE LUMINOUS EFFICIENCY
(mcd PER mAl VERSUS PEAK
CURRENT PER SEGMENT
100

/

/
II

-

v

r-

200

-..

P

00

/

-

£G
~~¢

~Op L

'''~

'\

I'\.

.g

, ,~
Q

I- -

RELATIVE LUMINOUS
INTENSITY VERSUS
JUNCTION TEMPERATURE

"-

100

;;

t-

3

Y ."Q~

........

......

......

./
o
15

25

IF(AVG) - AVERAGE fORWARD CURRENT
PER SEGMENT - mA

o

100

o

-20

IF - FORWARD CURRENT (PULSED) - mA

APPLICATIONS

DRIVING THE FND500 WITH THE 9368 LATCH/
DECODER/DRIVER FROM BCD LOGIC

The 9368 contains internal resistors which limit the segment currentto 19 mAo High impedance inputs to the 9368
when not enabled. allow party-line drive from either TIL
or MOS logic gates.

4-27

0204060
TJ -, JUNCTION TEMPERATURE -- 0C

•

FAIRCHILD • FND500 • FND507 • FND560. FND567
APPLICATIONS (Cont'd)

1

'., , ., """'h

''''''''''"'h

93747_SEGM£NT

9374 7-SEGMEIIIT

DECODERIDRIVER/LIllCH

",O"ffT

OECOD~R!DRlVER/LATCH

RBO.

~

iii

bod

0

I

9

_

DRIVING THE FND507 WITH THE 9374 LATCH/
DECODER/DRIVER CURRENT LIMITED FROM BCD LOGIC

High impedance inputs to the 9374 when not enabled, allow party-line driver from either TTL or MaS logic gates.

MO$lOGIC

0.
0,
0,
0,
0.
0,
0,

J.

i-l
1,12 13 14 IS!6 C INV

HEl(LED
OI(JIT;LIIMPDRIVER

I

I

*Source 5.0 to 50 rnA per segment with a programmable resistor to ground.
output, leave open; inverting logic output; ground this pin.

**Non~inverting

MULTIPLEXING SIX FND500s WITH THE 75491
SEGMENT DRIVER AND 75492 DIGIT DRIVER
The 75491 segment driver has four inputs which are MaS
compatible and four outputs. Output current is programmable from 5.0 to 50 mA with one external resistor. A
master/slave pin, allows a second 75491 to be tied to the
first 75491 and have the same segment drive current. A
decimal-point pin reduces the output current in channel
four by half. The 75492 digit driver has six channels, is
MaS compatible, will sink 600 mA per channel, and has a
pin for inverting the drive logic.

4-28

FAIRCHILD. FND500. FND507 • FND560 • FND567
MOUNTING INSTRUCTIONS

Mount the FND500 directly to a PC board using straight,
accurately controlled pins for horizontal and vertical
alignment. A 0.0035" standoff allows solder flux removal'. Long pins allow additional cooling behind the digit
when mounted vertically.

The FND500 will insert into stackable 40-pin DIP sockets,
such as Barnes 821-23013-404.

•

·Only certain cleaning- solutions are allowed: Freon TF. methyl alcohol,
isopropyl alcohol, or water.

An angled mounting may be obtained by soldering the
front pins into the PC board, then raising the back pins
with a stackable socket strip such as Robinson Nugent's
24-pin WB-25 with wire-wrap pins, or SB-25with DIPsolder pins.

Right angle sockets simplify some designs. Vertical alignment of the sockets is necessary, as shown with the Augat
socket GX51-73-1G1.

A convenient method for making a removable display is to
first solder all the digits to a 1/32 PC board with appropriate interconnections for multiplexing, then attach the
display to the mother board with a substrate clip, such as
AMP485092-4.

4-29

FND501·FND50S·FND561·FND56S
RED GaAsPO.5 INCH ±1 LED DISPLAY
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FNDS01, FND S61, FNDS08 and FNDS68 are Red
GaAsP overflow LED displays with a nominal O.S inch character height. The FND SOl
has common-cathode configuration. The FNDS08 has common-anode configuration.
These display devices are for applications where the viewer is within twenty feet of the
display. Each digit has a brightness code (OS, 06, 07 ... ) for constructing arrays with
closely matched digits. The FNDS61 and FNDS68 are suitable for applications in high
ambient light.

•
•
•
•
•
•

PIN CONNECTIONS
(TOP VIEW)

10

=====

LOW VOLTAGE OF TYPICALLY 1.7VF
FITS STANDARD DIP SOCKETS WITH 0.6" PIN ROW
DECIMAL POINT ON LOWER RIGHT·HAND SIDE
MAXIMIZED CONTRAST RATIO WITH INTEGRAL LENS CAP
HORIZONTAL STACKING 0.6" MINIMUM, 1" TYPICAL
COMMON·CATHODE OR COMMON-ANODE

DP

=====
PIN

ABSOLUTE MAXIMUM RATINGS

I

Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65°C

2
3
4
5
6

-25°C to +85°C
-25°C to +85°C
260°C
98%

7

8
9

10

Maximum Voltage and Currents
VR
Reverse Voltage
IF(Avg)
Average Forward Current/Segment or Decimal Point
Derate from 25°C Ambient Temperature
if
Peak Forward Current/Segment or Decimal Point
(100 ps pulse width) 1000 pps, TA = 25°C

FND5011561

Minus
Cathode ±
Segment C
Cathode I/D.P.
D.P.
Segment 8
Cathode I/D.P.
Cathode ±
Plus
N.C.

FND5081568

Minus
Anode ±
Segment C
Anode I/D.P.
D.P.
Segment B
Anode I/D.P.
Anode ±
Plus
N.C.

3.0V
25 mA
0.3 mA/oC
200mA

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL
VF
BVR
10

alO
LO

81/2

A

CHARCTERISTIC
Forward Voltage
Resverse Breakdown Voltage
Axial Luminous Intensity, Each Segment
FND501, FND508
FND561, FND568
Intensity Matching, Segment to Segment
Intensity Matching Within One Intensity Class
Average Segment Luminance
FND501, FND508
FND561, FND568
Viewing Angle to Hall Intensity
Peak Wavelength

MIN

TYP

MAX

UNITS

2.0

·v

3.0

1.7
12

300
740

4·30

V

600
1200
±33
±20

/lcd
/lcd
%
%

35
70
±27
665

ttL
ItL
degrees
nm

TEST CONDITIONS
IF = 20 rnA
IR = 1.0mA
IF =
IF=
IF =
IF =

20 mA
20 mA
20 mA
20 rnA, all segments at once

IF= 20 mA
IF = 20 mA
IF = 20 rnA

FAIRCHILD. FND501 • FND508 • FND561 • FND568
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FORWARD CURRENT
VERSUS
FORWARD VOLTAGE

MAXIMUM AVERAGE
CURRENT RATING VERSUS
AMBIENT TEMPERATURE

50

5

40

0

"z
"

---30

"<
~

i

20

-"

--

"

,

~

f?

10

~f

-

0

Q

~

08

0.4

1.2

20

V F - FORWARD VOLTAGE - VOLTS

~
iii
~
~

60

>-

"

'"

>-~

-""

~

"

\

0~

:ii>-

•f<.<>ff

900

"Z
~w

~r!

w::;

""

40

\

W

~0:

1200

"'"
o
z,

>

;::

"W

WO:

'\

" ........
o

P1l

600

0:'"

20

o

30

.........
60

-

iE

300

>

"

lP

§

80

--

I

I

/

/

./

~0"7
~,,~

~-

/ /./
./

90

10

15

25

20

IF(AVG) - AVERAGE FORWARD CURRENT
PER SEGMENT - mA

RELATIVE LUMINOUS EFFICIENCY
(mcd PER rnA) VERSUS
PEAK CURRENT PER SEGMENT

v

1/

V

V ~"O~

>w
,,"-

8 - VIEWING ANGLE - DEGREES

100

°c

1500

'"
z"

100

80

>-

0

:ii

60

----

t::

,

SO

-

AVERAGE LUMINOUS INTENSITY
VERSUS
AVERAGE FORWARD CURRENT

1\

if'

40

J

T A - AMBIENT TEMPERATURE _

ANGULAR DISTRIBUTION
OF LUMINOUS INTENSITY
100

.....

~--

o
o

2.0

1.6

I-[\,

-

,

o
o

---

I\.

5.0

-"

/

t!

"

5

0
U
Q

i-

"- '\I

~

RELATIVE LUMINOUS
INTENSITY VERSUS
JUNCTION TEMPERATURE
200

l"-

.......

'" "-

60

100

"-

"-

40

i'-.

.......

20

..........
o

o

50

100

150

200

o

250

-20

IF - FORWARD CURRENT (PULSED) - rnA

20

40

T J - JUNCTION TEMPERATURE _

4-31

60

°c

80

•

FAIRCHILD. FND501 • FND508 • FND561 • FND568
MOUNTING INSTRUCTIONS

Fig. 1
Mount the FND500 series directly to a PC board using the
straight, accurately controlled pins for horizontal and vertical
alignment. A 0.035" standoff allows solder flux removal. Long
pins allow additional cooling behind the digit when mounted
vertically. *
*On,ly certain cleaning solutions are allowed: Freon TF, methyl alcohol. isopropyl alcohol. or water.

Fig. 2
The FND500 series will insert into stackable 40-pin DIP sockets,
such as Barnes B21-23013-404.

4-32

FND530 • FND537

FND540 • FND547

GREEN GaP

YELLOW SUPER GaAsP

FND550 • FND557
AMBER SUPER GaAsP
1/2-INCH 7-SEGMENT LED DISPLAYS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FND530. and FND537 are green GaP 7-segment
displays with a normal 1/2 inch character height. The FND540 and FND547 are yellow
Super GaAsP 1/2-inch digits, common cathode and common anode, respectively. The
FND550 and FND557 are amber super GaAsP 7-segment digits with a normal 1/2 inch
character height. The FND550 is common-cathode configuration while the FND557 is
common-anode. These display devices are for applications where the viewer is within
20 feet of the display. Each digit has a brightness code (09, 10, 11 ... ) for constructing
arrays with closely matched digits.
•
•
•
•
•
•
•

PIN CONNECTIONS
(FRONT VIEW)
10

FU~U8

'D=D'.

Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pi:1 Temperature (Soldering, 5 s)
Relative Humidity at 60° C

-25° C to +85° C
-25°C to +85°C
260°C
90%

Maximum Voltage and Currents
VR
Reverse Voltage.
IF(Avg)
Average Forward Current (Segment or
Decimal Points
IPK
Peak Forward Current (Segments or Decimals)

VF
BVA

10

0'/2
Apk

10

dTo

7

D
DP
CJ c:J c::::J CJ CJ
1
2
3
4
5

ABSOLUTE MAXIMUM RATINGS

SYMBOL

8

A

FITS STANDARD SOCKETS WITH 0.6 INCH PIN ROW
INTENSITY CODE MARKING FOR UNIFORM DISPLAYS
RIGHT-HAND DECIMAL
MAXIMIZED CONTRAST RATIO WITH INTEGRAL LENS CAP
MAXIMIZED USE OF DIGIT FACE
COMMON-CATHODE OR COMMON-ANODE
FND550/FND557 SUITABLE FOR USE IN HIGH AMBIENT LIGHT

ELECTRICAL AND RADIANT CHARACTERISTICS: TA

9

c::::J c::J CJ c:::J CJ

3.0 V
20 mA
80 mA

FND530/540/550
FND537/547/557
Pin
1 SegmentE
Segment E
2 SegmentD
Segment D
3 CDmm.-CathDde Comm.-Anode
4 SegmentC
Segment C
5 Decimal Point
Decimal Point
6 SegmentS
Segment B
Segment A
7 Segment A
8 Comm.-Cathode Comm.-Anode
Segment F
9 SegmentF
Segment G
10 SegmentG

= 25°C

CHARACTERISTIC
Forward Voltage
Reverse Sreadkdown Voltage
Axial luminous Intensity
Average each Segment
FND530, FND537
FND540, FND547
FND550, FND557
Viewing Angle to Hall Intensity
Peak Wavelength
FND530, FND537
FND 540, FND547
FND550, FND557
Average Segment luminance
FND530, FND537
FND540, FND547
FND550, FND557
Intensity Matching Segment-to-Segment
Intensity Matching within one Intensity Class

MIN

TYP

MAX

2.2

3.2

600
600
700
±30

2000
1000
2000

V
V

IF
IA

= 20 mA
= 1.0 rnA

!lcd
!lcd
!lcd
degrees

IF
IF
IF
IF

= 20 mA
= 20 rnA
= 20 rnA
= 20 rnA

565
585
635

nm
nrn
nm

IF
IF
IF

= 20 mA
= 20 mA
= 20 mA

104
52
104
±33
±20

Itl
Itl
Itl
%
%

IF
IF
IF
IF
IF

= 20 mA
= 20 mA
= 20 mA
= 20 mA
= 20 mA

3.0

4-33

TEST CONDITIONS

UNITS

•

FAIRCHILD FND530 • FND537 • FND540 • FND547 • FND550 • FND557
TYPICAL CHARACTERISTIC CURVES
MAXIMUM AVERAGE CURRENT
RATING VERSUS
AMBIENT TEMPERATURE

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

1

ANGULAR DISTRIBUTION
OF LUMINOUS INTENSITY

25r-;--r-,--,-;--r-,--,-;-,

* 100r~,--'-;--r-'--'-;--r-'-'

~ 20r-~~~--r-f--r~--r-f-~

~ 80t-+c_\~~--r-+-+-+--+-+~

I

1
~z

40f-++-+--~++-+-ir-+~

I

I

!Z

~ 20~+-r~--r-+~/~--r-+~
I
~
II
~ 10f-++-+--~~+-+--~+~

II:

1

~ 15~4-~-+--~d-~-+--~4-~

....

z

~

~ 10~4-~-+--~4-~~~~--~4-~

~

o

>

i~

9

TA - AMBIENT TEMPERATURE "- DC

8 - VIEWING ANGLE - DEGREES

AVERAGE LUMINOUS INTENSITY
VERSUS AVERAGE
FORWARD CURRENT

3000,-,-,-r-r-r-r-,-,-,-;-,-,

i

2500 t-t-r-r-+-+-+-+--+--+-++--l

EMISSION SPECTRUM

100

"'"
~ ~ 2000~+-+-+--+--+-+-t/-,I~~r-H

*

i!Z

iii

80

Z
0

'"
~

/

~S

w

"'"
V
~ ffi 1000 ~+-+-+/~'-+-+-+~--j--tt-H

>

....

1=

co

f-+-+--f-~

I

:; 1500 I---'HHHHV-iY-+-+-+-+----l

o

V

50 t-+-+--+~

15

20

25

~

:3

30

t-- .. ~--HH--l

I

I

III
500

IF IAVGI- AVERAGE FORWARD CURRENT PER SEGMENT - rnA

8 +---tt-+~

.. z

40 t-4-~-+~
20

r- ~'" .t-+--+-I

! ~

f-++-+::;

:3

II:

V
10

~

o

w

600

'\.

w

I

~

1\

40~4-~-+~~\-+--~4-~-+-;

5~ 20f-++-+--~~,,~~++-+-1

VF - FORWARD VOLTAGE - V

~

:i1

"I
°0~~~2~0~~4~0~~5~0~~8~0~~'00

::>w

; 60f-++1\\\++-+--~++-+-1

'"

~L.0~~1~.4~-"~.8~--2~2~~2~5~~3.0

..z

ffi
....

ffl

w
~ 30~+~-+--~+~~/--~4-~

550

V
'V\

\

600

\
650

700

A - WAVELENGTH - nm

MOUNTING INSTRUCTIONS

;r'

Mount the FNSSOO series directly to a PC board using
the straight, accurately controlled pins for horizontal
and vertical alignment. A 0.003S" standoff allows solder
flux removal. -Long pins allow additional cooling behind the digit when mounted vertically.

The FNDSOO series will insert into stackable40-pin DIP
sockets, such as Barnes 821-23013-404.
'Only certain cleaning solutions are allowed: Freon TF, methYl alcohol,
isopropyl alcohol, or water.

4·34

FND531/538 • FND541/548 • FND551/558
GREEN GaP YELLOW SUPER GaAsP AMBER SUPER GaAsP
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FND531 and FND538 are green GaP ±Idisplays with
a nominal 1/2 inch character height. The FND531 is common-cathode configuration,
while the FND538 is common-anode. The FND541 and FND548 are yellow super
GaAsP ±Idigits with a nominal 1/2 inch character height. The FND541 is commoncathode configuration while the FND548 is common-anode. The FND551 and FND558
are amber super GaAsP ±Idigits with a nominal 1/2 inch character height. The FND551
is common-cathode configuration while the FND558 is common-anode. These display
devices are for applications where the viewer is within 20 feet of the display. Each digit
has a brightness code (09,10,11 ... ) for constructing arrays with closely matched
digits.
•
•
•
•
•
•

CONNECTION DIAGRAM
(TOP VIEW)
10

=====

c}DB

FITS STANDARD SOCKETS WITH 0.6 INCH PIN ROW
INTENSITY CODE MARKING FOR UNIFORM DISPLAYS
RIGHT-HAND DECIMAL
MAXIMIZED CONTRAST RATIO WITH INTEGRAL LENS CAP
MAXIMIZED USE OF DIGIT FACE
COMMON-CATHODE OR COMMON-ANODE

I I I oC

I

DP

=====
FND531
FND541
FND551

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 60°C

PIN
I
2
3
4
5
6
7
S
9
10

-25°C to +85°C
-25° C to +85° C
260°C
90%

Maximum Voltage and Currents
VR
Reverse Voltage
IF (Avg)
Average Forward Current (Segment or
Decimal Points)
IF
Peak Forward Current (Segments or Decimals)

3.0 V
20 mA
80 mA

FND538
FND548
FND558

Minus
Minus
Cathode ±
Anode ±
Segment C
Segment C
Cathode IID.P. Anode I/D.P.
D.P.
D.P.
Segment B
Segment B
Cathode I/D.P. Anode I/D.P.
Cathode ±
Anode ±
Plus
Plus
N.C.
N.C.

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL
VF
BVR
10

01/2

Apk

Lo
810

CHARACTERISTIC
Forward Voltage
Reverse Voltage Breakdown
Axial Luminous Intensity
Average each Segment
FND531, FND538
FND541, FND548
FND551, FND558
Viewing Angle to Half Intensity
Peak Wavelength
FND531, FND538
FND541, FND548
FND551, FND558
Average Segment Luminance
Intensity Matching Segment-to-Segment
Intensity Matching within one IntenSity Class

MIN

TYP

MAX

2.2

3.2

V
V

IF
IR

= 20 mA
= 1.0 mA

2000
2000
2000
±30

"cd
"cd
"cd
degrees

IF
IF
IF

= 20 mA
= 20 mA
= 20 mA

565
570
635
104
±33
±20

nm
nm
nm
ttL
%
%

IF
IF
IF
IF
IF
IF

= 20 mA
= 20 mA
= 20 mA
= 20 mA
= 20 mA
= 20 mA

3.0

600
700
700

4·35

TEST CONDITIONS

UNITS

•

FND531 • FND538 • FND541 • FND548 • FND551 • FND558
TYPICAL CHARACTERISTIC CURVES

MAXIMUM AVERAGE CURRENT
RATING VERSUS
AMBIENT TEMPERATURE

FORWARD CURRENT VERSUS
FORWARD VOLTAGE
60

"E,

/

40

Z

!!-

~

'"zw

100

80

I-

!!

"'"0z
i
3

60

1.4

~

i

12,
2.2

2.6

!!-

3.0

20

40

60

I
I

80

100

VF - FORWARO VOLTAGE - V

TA - AMBIENT TEMPERATURE - °C

ANGULAR DISTRIBUTION
OF LUMINOUS INTENSITY

AVERAGE LUMINOUS INTENSITY
VERSUS AVERAGE FORWARD CURRENT

"\

>

3000

i"''g

2500

~
z

\

\

5 i!.2000

:lEz
-':IE 1600

w"
"w

"-

20

,

9
20

V

"w

"'"
~ ffi
,,0.

\

0:

/

z'

-I-

\

[\

40

w
w

1.8

"

o0:

V

1.0

~

10

U

I
o

..,

~

/

10

~

0:

J

0

15

IEw

/

20

II:

"",.

~

/

U

~

20

0:

30

"0
II:

~

"w
'"

w

0:
0:

25

,
IE

/

I-

~

40

1000

I

500

I"
60

/

/

/

V

V

V
80

10

100

EMISSION SPECTRUM
100

(}II\

~

~
z z
!!: ""

60

~ c~
z z
"" ""

40

20

450

""\

\

80

o

15

20

25

30

IF (AVG) - AVERAGE FORWARD CURRENT PER SEGMENT - mA

8 - VIEWING ANGLE - DEGREES

J

550

z r- I-~

~

t - I--

r--""

-I--

I--

z

\ I
\ /

~ ~V
500

i!ic I--I--

\

I(

\

I~
800

650

h - WAVELENGTH - nm

4-36

I'::,
700

FND800-FND807
RED GaAsP 0.8 INCH SINGLE DIGIT NUMERIC LED DISPLAY
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FNDSOO and FNDS07 are Red GaAsP Single Digit.
7-Segment LED Displays with a nominal O.S" character height. The FNDSOO has common-cathode configuration. The FNDS07 has common-anode configuration. These display devices are for applications where the viewer is within thirty feet of the display.
Each digit has a brightness code (06, 07. 08 ... ) for constructing arrays with closely
matched digits.

PIN CONNECTIONS
(TOP VIEW)

'~o

3

•
•
•
•
•
•
•
•

4

LOW CURRENT REQUIREMENTS OF TYPICALLY 10 mA/SEGMENT
LOW VOLTAGE OF TYPICALLY 1.7 VF
FITS STANDARD DIP SOCKETS WITH 0.6" PIN ROW
DECIMAL POINT ON LOWER RIGHT-HAND SIDE
OVERFLOW POINT ON UPPER LEFT-HAND SIDE WITH DIGIT REVERSED
MAXIMIZED CONTRAST RATIO WITH INTEGRAL LENS CAP
HORIZONTAL STACKING 1" TYPICAL
COMMON-CATHODE OR COMMON-ANODE

6

SYMBOL

CHARACTERiSTIC

VF
BV R

Forward Voltage
Reverse Breakdown Voltage

10

Axial Luminous Intensity. Average for
Each Segment
Intensity Matching, Segment-to-Segment

~IO

o

8

0

9

o

1
2

3

-25°C to +S5°C
-25°C to +S5°C
260°C
9S%

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C

3.0V
25 mA
0.3 mA/oC
200 mA

...

M~N

~m

MAX

1.5

1.7
12
1100

2.0

3.0
380

Intensity Matching Within One Intensity Class

4
5
6
7
B
9
10
11
12
13
14
15
16
17
18

8

u~
0
0

G

C

E

0

0

I

I

FNDBOO
Omitted
Segment A
Segment F
Common-Cath.
Segment E
Comrnorr-Cath.
N.C.
Omitted

Omitted
Decimal Point
Segment D
Common-Cath.
Segment C

16
16
14
13
12
11
10

FNDB07
Omitted

Segment A
Segment F

Common-Anode
Segment E
Common-Anode
N.C.
Omitted
Omitted
Decimal Point
Segment 0

Omitted
Comrnon-Cath.

Common-Anode
Segment C
Segment G
Segment 8
Omitted
Com mon Anode

Omitted

Omitted

Segment G
Segment 8

TEST

UNITS

6

CO~JDITIO~JS

V

IF = 20 mA

V
/lcd

IR = 1.0mA
IF = 20 mA

±33
±20

%

IF=20mA

%

IF = 20 mA all segments at once

64

ftL

IF = 20 mA

La

Average Segment Luminance

91/ 2

Viewing Angle to Half Intensity

±25

degrees

~pk

Peak Wavelength

665

nm

4-37

F

~il' ~~o~

7

PIN

Maximum Voltage and Currents
Reverse Voltage
VR
Average Forward Current, Segment or Decimal Point
IF(Avg)
Derate from 25°C Ambient Temperature
Peak Current/Segment or Decimal Point
Ipk
(100 tiS pulse width) 1000 pps, TA = 25°C

a

18
17

DP

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65°C

0

A

IF

= 20 mA

/

FAIRCHILD. FND800 • FND807
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

MAXIMUM AVERAGE CURRENT
RATING VERSUS
AMBIENT TEMPERATURE

FORWARD CURRENT VERSUS
FORWARD VOLTAGE
50

'I:

6

"\

40

'\

I

~

30

6

20

0

10

0

'\.
I\.

:J

"iil

i~

I\..

I

.!!-

/
0.4

0.8

1.2

1.6

o

o

2.0

20

~1500

'\.

60

~

~

60

'"
i!'

L

~

!i1

~

1\

\

40

~w
'ffi"

/

300

/

I

t60

~

90

-

I
II

L

o
o

RELAtiVE LUMINOUS EFFICIENCY
(mcd PER mAl VERSUS PEAK
CURRENT PER SEGMENT

r-

V

10

200

......

~

'"
I

~

>
~

!i1

I"'

~

'!l0

100

.;!:

40

:3'"

"'
~

w

>

~

20

60

100

150

200

25

RELATIVE LUMINOUS INTENSITY
VERSUS JUNCTION
TEMPERATURE

60

00

20

15

.9 IF (AVGl - AVERAGE FORWARD CURRENT PER SEGMENT - rnA

VIEWING ANGLE - DEGREES

r

/

:;

30
(J -

/

~ 600

I\..
0

/

900

'!l

\.

20

80

/

'"~'200

\

100

100

°c

AVERAGE LUMINOUS INTENSITY
VERSUS AVERAGE
FORWARD CURRENT

ANGULAR DISTRIBUTION
OF LUMINOUS INTENSITY
100

80

60

40

T A - AMBIENT TEMPERATURE _

V F - FORWARD VOLTAGE

i.........

.........
o

250

-20

IF - FORWARD CURRENT (PULSED) - rnA

20

40

60

t J - JUNCTION TEMPERATURE - °c

'4-38

.60

FND800A • FND807A
RED GaAsP 0.8 INCH SINGLE DIGIT NUMERIC LED DISPLAY
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FND800A and FND807 A are Red GaAsP Single Digit,
7-Segment LED Displays with a nominal 0.8" character height. The FND 800 has
common cathode configuration. The FND807 has common anode configuration. These
display devices are for applications where the viewer is within thirty feet of the display.
Each digit has a brightness code (05, 06, 07 ... ) for constructing arrays with closely
matched digits. This second-generation design maximizes viewing angle.
•
•
•
•
•
•
•
•

PIN CONNECTIONS
(TOP VIEW)

' ~ ll'
o

LOW CURRENT REQUIREMENTS OF TYPICALLY 20 mA/SEGMENT
LOW VOLTAGE OF TYPICALLY 1.7 VF
FITS STANDARD DIP SOCKETS WITH 0.6" PIN ROW
DECIMAL POINT ON LOWER RIGHT-HAND SIDE
OVERFLOW POINT ON UPPER LEFT-HAND SIDE WITH DIGIT REVERSED
MAXIMIZED CONTRAST RATIO WITH INTEGRAL LENS CAP
HORIZONTAL STACKING 1" TYPICAL
COMMON CATHODE OR COMMON ANODE

A

F

8

0

7

G

~u

D

E

D

o

ll~
0
D

u~o~
D

C
0

I

I

18
17
16
15
14
13
12
11
10

DP

ABSOLUTE MAXIMUM RATINGS
PIN

Maximum Temperature and Humidity
Junction Temperature
Storage Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity @ 65°C

-25°C to +85°C
-25°C to +85°C
260°C
98%

Maximum Voltage and Currents
VR
Reverse Voltage
IF(Avg)
Average Forward Current, Segment or Decimal Point
Derate from 25°C Ambient Temperature (Fig. 2)
Ipk
Peak Current, Segment or Decimal Point
(100 /ls pulse width) 1000 PPS, TA = 25°C

ELECTRICAL AND RADIANT CHARACTERIS1'iCS:l A
SYMBOL

VF
VA
10
alo

La
81/2
Apk

;

3.0 V
25 mA
0.3 rnA/DC
200 mA

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

FND800

Omitted
Segment A
Segment F
Common Cath.
Segment E
Common Cath.
N.C.
Omitted
Omitted
Decimal Point
Segment D
Common Cath.
Segment C
Segment G
Segment B
Omitted
Common Cath.
Omitted

FND807
Omitted
Segment A
Segment F
Common Anode
Segment E
Common Anode
N.C.
Omitted
Omitted
Decimal Point
Segment D
Common Anode
Segment C
Segment G
Segment B
Omitted
Common Anode
Omitted

2:;° C

CHARACTERISTICS
Forward Voltage
Reverse Voltage
Axial Luminous Intensity, Each Segment
Intensity Matching, Segment to Segment
Intensity Matching, Within One
Intensity Class
Average Segment Luminance
Viewing Angle to Half Intensity
Peak Wavelength

MIN
3.0
240

TYP

MAX

1.7
12
600
±33
±15

2.0

35
30
665
4·39

UNITS
V
V
"cd
%
%
ttL
degrees
nm

TEST CONDITIONS
IF; 20 mA
IA; 1.0 rnA
IF; 20 mA
IF; 20 rnA
IF; 20 mAonalisegmentsatonce
IF;20mA
IF; 20 mA

•

FAIRCHILD FND800A • FND807A
TYPICAL CHARACTERISTIC CURVES
MAXIMUM AVERAGE
CURRENT RATING VERSUS
AMBIENT TEMPERATURE

FORWARD CURRENT
VERSUS
FORWARD VOTLAGE
50

2.

~

'\

I

"

>z

40

I

"
"'"~

'"w I.

30

'\

~

~

u
c

"ui1
"~

20

fr
I

~

'\

~

>-

i

20

~

E

10

fr

~

"-

10

~

5.0

I
~

/

00

1.2

0.8

0.4

1.6

o
o

2.0

20

V F - FORWARD VOLTAGE

ANGULAR DISTRIBUTION
OF LUMINOUS INTENSITY
100

I 1000

~

\

'"~
'"w

500

//

~'

~

>
>-

\

~

\

40

3
o
z

::

0

~

>

"

20

"

10

DUTY~CTOR

~

60

90

:

VIEWING ANGLE - DEGREES

1.0

2.0

ili

u

~"J

-

r-

/'

I
II

r-

'"

'\

I

>
>-

iii

ili><:

60

"0z

:;;

100

"-

::

40

w

g

0

I

.....

,
""- "'-

>

~

i'-

I
_0

_0

0

50

100

150

200

100

,'\

"-

~

>

~

50

200

:;;
::

20

RELATIVE LUMINOUS
INTENSITY VERSUS
JUNCTION TEMPERATURE

o
z

w

10

'.0

IF (AVG) - AVERAGE FORWARD CURRENT PER SEGMENT - mA

RELATIVE LUMINOUS EFFICIENCY
(mcd PER mAl VERSUS
PEAK CURRENT PER SEGMENT
100

I

I

I

r-

30

I

DC

50

w

"e-

1A

:;;

\

\.

20

5..

100

,

HEATING EFFECT WITH
SEVEN SEGMENTS AND
DECIMAL POINT

200

~

:\

80

100

°c

AVERAGE LUMINOUS INTENSITY
VERSUS
AVERAGE FORWARD CURRENT

~

60

I

eo

60

~

1,\

80

't"

40

T A -AMBIENT TEMPERATURE _

250

20

IF - FORWARD CURRENT lPULSED) - rnA

40

60

T J - JUNCTION TEMPERATURe - °C

4-40

FND801A - FND808A -FND846A - FND849A
RED GaAsP 0.8 INCH OVERFLOW LED DISPLAYS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FND801 A and FND808A are overflow (±1) digits for
use with the FND800A and FND807A, respectively. The FND846A and FND849A are
overflow (±1) digits for use with the FND847A and FND850A respectively. These
display devices are for applications where the viewer is within twenty feet of the display.
Each digit has a brightness code for constructing displays with closely matched digits.

PIN CONNECTIONS
(TIP VIEW)

1
2
3

ONE DIE PER SEGMENT INSURES LOW VOLTAGE DROP OF TYPICALLY 1.7 VF
LOW CURRENT REQUIREMENTS OF TYPICALLY 20 mA/SEGMENT
FITS STANDARD DIP SOCKETS WITH 0.6" PIN ROW
DECIMAL POINT ON RIGHT OR LEFT SIDE
MAXIMIZED CONTRAST RATIO WITH INTEGRAL LENS CAP
HORIZONTAL STACKING 1" TYPICAL
COMMON CATHODE OR COMMON ANODE

•
•
•
•
•
•
•

•
5

6
7
8
9

0
0
0
0
0
0
0
0

~

F{PB
~
~c

o.

E

~I

DP

/0
0
0
0
0
0
0
0

.0

18
17
16
15

"13
12
11
10

DP

ABSOLUTE MAXIMUM RATINGS
PIN

Maximum Temperature and Humidity
Junction Temperature
Storage Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity @ 65°C

-25°C to +85°C
-25° C to +85° C
260°C
98%

1
2
3
4
5

Maximum Voltage and Currents

VR
IF(Avg)
Ipk

6

Reverse Voltage
Avergae Forward Current, Segment or Decimal Point
Derate from 25°C Ambient Temperature (Fig. 2)
Peak Current, Segment or Decimal Point
(100 j.lS pulse width) 1000 PPS, TA = 25°C

3.0 V
25 mA
0.3 mAloC
200 mA

7
8
9
10
11
12
13
14
15
16
17
18

FND801A
FND846A
Omitted
Segment A
Segment F
Common Cath.
Segment E
Common Cath.
N.C.
Omitted
Omitted
Decimal Point
Segment D
Common Cath.
Segment C
Segment G
Segment B
Omitted
Common Cath.
Omitted

FND808A
FND849A
Omitted
Segment A
Segment F
Common Anode
Segment E
Common Anode
N.C.
Omitted
Omitted
Decimal Point
Segment D
Common Anode
Segment C
Segment G
Segment B
Omitted
Common Anode
Omitted

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C

SYMBOL

VF
VR
10
Lilo

Lo
61/2
Apk

CHARACTERISTICS
Forward Voltage
Reverse Voltage
Axial Luminous Intensity, Each Segment
Intensity Matching, Segment to Segment
Intensity Matching, Within One
IntenSity Class
Average Segment Lumenance
Viewing Angle to Half Intensity
Peak Wavelength

MIN

TYP

MAX

1.5
3.0
240

1.7
12
600
±33
±15

2.0

35
+25
660
4-42

UNITS
V
V
I'cd
%
%
ftL
degrees
nm

TEST CONDITIONS

IF=20mA
IR=1.0mA
IF=20mA
IF =20 mA
IF = 20 mA on all
segments at once
IF =20 mA
IF =20 mA

FAIRCHILD FND801A • FND808A • FND846A • FND849A
TYPICAL CHARACTERISTIC CURVES
FORWARD CURRENT
VERSUS
FORWARD VOLTAGE

MAXIMUM AVERAGE
CURRENT RATING VERSUS
AMBIENT TEMPERATURE

50

.

25

E

"\

I

z>-

20

~

f -.

~

"
w

'\

...-

C'-..

15

'\.

>-

~
a

.~

~
0

:t

0.8

0.4

1.2

'--

1.6

~

o

2.0

20

~

'\.

1000

~

\

~

,
\

40

>

I

'~'

>

>-

~

HEATING EFFECT WITH

200

,

~

\

100

o
z

>
«
,

I'-

0

50

'"
g

~

>

5

90

!?

VIEWING ANGLE - DEGREES

ro-urY~CTOA
I

20

:

1

10

1.0

2.0

I

I

>

u

80

:0

13

*
is

r-

II

-

........

"-

w

I"

~
~

is0
Z

i

100

"-

"i'...

:0

40

>

~

"\

I

>
>-

i

:0

"'-

>

>'

g

20

I

I

_0

!?

o

o

50

100

150

200

100

200

--

z;

50

20

RELATIVE LUMINOUS
INTENSITY VERSUS
JUNCTION TEMPERATURE

80

0

5.0

IF (AVG) - AVERAGE FORWARD CURRENT PER SEGMENT - mA

RELATIVE LUMINOUS EFFICIENCY
(mcd PER mAl VERSUS
PEAK CURRENT PER SEGMENT

r

I

G

80

100

DECIMAL POINT

DC

i

:0

SEVEN SEGMENTS AND

5%~~

~

!?

{I -

500

"it'

i\'

20

"-

"c

AVERAGE LUMINOUS INTENSITY
VERSUS
AVERAGE FORWARD CURRENT

1

80

~

100

80

40

T A - AMBIENT TEMPERATURE -

ANGULAR DISTRIBUTION
OF LUMINOUS INTENSITY

80

--_.

o

VF - FORWARD VOLTAGE - VOLTS

100

._ ..

5.0

-"

/

~

10

........
o-20

250

IF - FORWARD CURRENT (PUlseD! - rnA

..........

20

40

TJ - JUNCTION TEMPERATURE -

4-43

80

°c

80

•

FND847·FND850
RED GaAsP 0.8 INCH SINGLE DIGIT NUMERIC LED DISPLAY
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The FND847 and FND850 are red GaAsP single digit, 7segment LED displays with a nominal 0.8" character height. The FND850 has commoncathode configuration. The FND847 has common-anode configuration. These display
devices are for applications where the viewer is within thirty feet of the display. Each
digit has a brightness code (06,07,08 ... Jfor constructing arrays with closely matched
digits.

PIN CONNECTIONS
(TOP VIEW)

1
2

•
•
•
•
•
•
•
•

LOW CURRENT REQUIREMENTS OF TYPICALLY 5.0 mA/SEGMENT
LOW VOLTAGE OF TYPICALLY'. 7 VF
FITS STANDARD DIP SOCKETS WITH 0.6" PIN ROW
DECIMAL POINT ON LOWER LEFT-HAND SIDE
OVERFLOW POINT ON UPPER RIGHT-HAND SIDE WITH DIGIT REVERSED
MAXIMIZED CONTRAST RATIO WITH INTEGRAL LENS CAP
HORIZONTAL STACKING '" TYPICAL
COMMON-CATHODE OR COMMON-ANODE

o
0

F

8
G

ll~
0
0

8

~u u~

9

c:.l

6
7

o

E

0

C

0

I

0
0
0

18
17
16
16
14
13
12
11
10

DP

ABSOLUTE MAXIMUM RATINGS
-25°C to +85°C
-25°C to +85°C
260°C
98%

Maximum Voltage and Currents
VR
Reverse Voltage
IF(AvgJ
Average Forward Current/Segment or Decimal Point
Derate from 25°C Ambient Temperature
i.f
Peak Forward Current/Segment or Decimal Point
(1001lS pulse width) 1000 pps, TA = 25°C

~D'

3
4

PIN

Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65°C

A

200mA

FND847
Omitted
Segment A
Segment F
Common-Anode
Segment E
Common-Anode
D.P.
Omitted
Omitted
N.C.
Segment D
Common-Anode
Segment C
Segment G
Segment B
Omitted
Common·Anode
Omitted

2
3
4
5
6
7
8

Segment A
Segment F

9

Omitted
N.C.
Segment 0

10
11
12
13
14
15
16
17
18

3.0V
25 mA
0.3 mA/oC

FND850

Omitted

Common~Cath.

Segment E

Cornmon-Cath.
D.P.
Omitted

Common-Cath.
Segment C
Segment G
Segment B
Omitted
Cornmon-Cath.
Omitted

ELECTRICAL AND RADIANT CHARACTERISTICS: TA = 25°C
SYMBOL
VF
BV R

10
~IO

CHARACTERISTIC
Forward Voltage
Reverse Breakdown Voltage
Axial Luminous Intensity, Average for
Each Segment
IntenSity Matching, Segment to Segment
Intensity Matching Within One Intensity Class

MIN

TVP

MAX

1.5
3.0
380

1.7
12
1100

2.0

±33
±20

64

UNITS
V
V
/lcd

%
%

LO
6,/2

Average Segment Luminance
Viewing Angle to Half Intensity

±25

ftL
degrees

Apk

Peak Wavelength

665

nm

4-44

TEST CONDITIONS
IF = 20 mA
IR = 1.0 mA
IF = 20 mA

= 20 mA
= 20 mA. atl segments at once
IF = 20 mA

IF
IF

IF

= 20 mA

FAIRCHILD • FND847. FND850
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

MAXIMUM AVERAGE CURRENT
RATING VERSUS
AMBIENT TEMPERATURE

FORWARD CURRENT VERSUS
FORWARD VOLTAGE
50

21

1I

;
".

'" '\I\..

20

::I
~

15

r\..

~
0:

::>

u

I\.

10

~

;

0:

lZ

0

5.0

I

j

0

0 .•

0.4

1.•

1.2

o
o

2.0

ANGULAR DISTRIBUTION
OF LUMINOUS INTENSITY

..
I

BO

>

i

~

z

i

3

~

~

,

/

900

/

fg

/

~ 600

~

.

~
30

BO

• - VIEWING ANGLE - DEGREES

~
~I

~

-

V

/

o
o

10

15

RELATIVE LUMINOUS INTENSITY
VERSUS JUNCTION
TEMPERATURE

.......

.

'\

I

I"

>

l-

ii!

~

fg
0

z

100

i

3

""

~

~

~

~
0

50

100

160

25

20

200

l"-

I
1

/

300

.9 IF IAVGI- AVERAGE fORWARD CURRENT PER SEGMENT -

RELATIVE LUMINOUS EFFICIENCY
(mcd PER mAl VERSUS PEAK
CURRENT PER SEGMENT

~

/

~

\..

100

/

/

!

~

20

_·c

AVERAGE LUMINOUS INTENSITY
VERSUS AVERAGE
FORWARD CURRENT

~

!

100

BO

~

\

40

BO

~1200

~

~

i

~1500
!;;
!Il.,

'" \ ,

BO

40

20

TA - AMBIENT TEMPERATURE

V F - FORWARD VOLTAGE

100

•

~

o-20

200

IF - FORWARD CURRENT (PULSEDI - mA

20

40

I.......

BO

T J - JUNCTION TEMPERATURE _ °C

4-45

"

BO

mA

FND847A • FND850A
RED GaAsP 0.8 INCH SINGLE DIGIT NUMERIC LED DISPLAY
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FND847 A and FND850A are Red GaAsP Single Digit,
7-Segment LED Displays with a nominal 0.8" character height. The FND850A has
common cathode configuration. The FND847A has common anode configuration.
These display devices are for applications where the viewer is within thirty feet of the
display. Each digit has a brightness code (05,06,07 .. .I for constructing arrays with
closely matched digits. This second-generation design maximizes viewing angle.
•
•
•
•
•
•
•
•

CONNECTION DIAGRAM
(TOP VIEW)

'~o

LOW CURRENT REQUIREMENTS OF TYPICALLY 20 rnA/SEGMENT
LOW VOLTAGE OF TYPICALLY 1.7 VF
FITS STANDARD DIP SOCKETS WITH 0.6" PIN ROW
DECIMAL POINT ON LOWER LEFT-HAND SIDE
.OVERFLOW POINT ON UPPER RIGHT-HAND SIDE WITH DIGIT REVERSED
MAXIMIZED CONTRAST RATIO WITH INTEGRAL LENS CAP
HORIZONTAL STACKING 1" TYPICAL
COMMON CATHODE OR COMMON ANODE

a

A

F

4

0

&

~a

8
7

D~

B

o

E

0

o

0

I

0

0

G

u~

18
17
18
1&
14
13

C

0

12

1

0
0

10

11

Qop

ABSOLUTE MAXIMUM RATINGS

PIN FND850A

Maximum Temperature and Humidity
Junction Temperature
Storage Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity @ 65°C

1
2
3
4
5
6
7
a

-25° C to +85° C
-25°C to +85°C
260°C
98%

Maximum Voltage and Current.
VR
IF(Avg)
Ipk

Reverse Voltage
Average Forward Current/Segment or Decimal Point
Derate from 25°C Ambient Temperature (Fig. 2)
Peak Current/Segment or Decimal Point
(100 JoLS pulse width) 1000 PPS, TA = 25°C

3.0 V
25mA
0.3 mA/oC
200mA

9
10
11
12
13
14
15
16
17
1a

Omitted
Segment A
Segment F
Common Cath.
Segment E
Common Cath.
D.P.
Omitted
Omitted
N.C.
Segment 0
Common Cath.
Segment C
Segment G
Segment B
Omitted
Common Cath.
Omitted

FND847A
Omitted
Segment A
Segment F
Common Anode
Segment E
Common Anode
D.P.
Omitted
Omitted
N.C.
Segment 0
Common Anode
Segment C
Segment G
Segment B
Omitted
Common Anode
Omitted

ELECTRICAL CHARACTERISTICS: TA = 25°C
SYMBOL
VF
BVR
10
alo

La
1/1/2
Apk

CHARACTERISTICS
Forward Voltage
Reverse Breakdown Voltage
Axial Luminous Intensity, Each Segment
Intensity Matching, Segment to Segment
Intensity Matching, Within One
Intensity Class
Average Segment Luminance
Viewing Angle to Half Intensity
Peak Wavelength

MIN
3.0
240

TYP

MAX

1.7
12

2.0

600

±33
±2O
35
30
665
4-46

UNITS
V
V
"cd
%
%

ftL
degrees
nm

TEST CONDITIONS
IF=20mA
IR=1.0mA
IF=20mA
IF=20mA
IF = 20 mA on all segments at once
IF=20mA
IF=20mA

FAIRCHILD FND847A • FND850A
TYPICAL CHARACTERISTIC CURVES
MAXIMUM AVERAGE
CURRENT RATIO VERSUS
AMBIENT TEMPERATURE

FORWARD CURRENT
VERSUS
FORWARD VOLTAGE
50

25

"E,
~

" '"

~

E
I

~

a
:i!
"~

~

30

w

~

15

t\.

~

ia

20

10

"~

10

:?

1\

0.8

0.4

1.2

5.0

.0-

/

o
o

1.6

o

2.0

o

~ 1000

1,\

z

:>
~

!
~

w



"~
~

DUT/~~CTOR

i5

>

60

~
i

3

50

w

>

I

DC

"
~

" r--

30

100

g

5%lh:?

100

°i

3

HEATING EFFECT W ITH
SEVEN SEGMENTS AND
DECIMAL POINT

200

z

1,\

~

//.

'k'

~

\

0

500

~

w

~

80

100

°c

AVERAGE LUMINOUS INTENSITY
VERSUS
AVERAGE FORWARD CURRENT

-',

'",

80

T A - AMBIENT TEMPERATURE -

ANGULAR DISTRIBUTION
OF LUMINOUS INTENSITY
100

60

'"

20

V F - FORWARD VOUAGE

G

~

:i!

:?

.0-

"'\r\.

20

"ill'"

........

........

_0

o
o

50

100

150

200

o-20

250

IF - FORWARD CURRENT (PULSEDf - rnA

20

40

T J - JUNCTION TEMPERATURE -

4-47

60

°c

9D

•

FND6710 • FND6740
RED GaAsP D.56-INCH
DUAL DIGIT NUMERIC LED DISPLAYS
OPTOELECTRONICS PRODUCTS GROUP

GENERAL DESCRIPTION-FND6710 and FND6740 are high performance red GaAsP
7-segment displays available in two digit form with righthand decimal pOints. The
FND6710 is common anode, the FND6740 is common cathode.
•
•
•
•
•
•
•
•

PIN CONNECTIONS

PIN COMPATIBLE WITH MAN6700SERIES AND DL721/727 SERIES
LOW CURRENT REQUIREMENTS - TYPICALLY 8 MA/SEG.
LOW FORWARD VOLTAGE - TYPICALLY 1.7 V
STANDARD DOUBLE DIP LEAD CONFIGURATION
STACKABLE ON 0.5 INCH CENTERS
COMMON-ANODE AND COMMON-CATHODE VERSIONS
MAXIMIZED CONTRAST RATIO
WIDE VIEWING ANGLE

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Operating Temperature
Storage Temperature
Pin Temperature (soldering, 55)
Relative Humidity at 65° C

-40°C to +85°C
-40°C to +85°C
-40°C to +85°C
260°C
98%

Maximum Voltage and Current
VR
Reverse Voltage
IF (Avg)
Average Forward Current/Segment or Decimal
pOint Derate from 25°C Ambient Temperature
if
Peak Current/Segment or Decimal pOint
(100 p's pulse) 1000 pps, TA = 25°C

5.0V
25 mA
200 mA

PIN ASSIGNMENT
FND6740

FND6710
PIN
1
2
3
4
5
6
7
8
9

ASSIGNMENT
E Cath. Digit 1
D Cath. Digit 1
C Cath. Digit 1
DP Cath. Digit 1
E Cath. Digit 2
D Cath. Digit 2
G Cath. Digit 2
C Cath. Digit 2
DP Cath. Digit 2

10
11
12
13
14
15
16
17
18

B Cath. Digit 2
A Cath. Digit 2
F Cath. Digit 2
Digit 2 Anode
Digit 1 Anode
B Cath. Digit 1
A Cath. Digit 1
G Cath. Digit 1
F Cath. Digit 1

ELECTRICAL AND RADIANT CHARACTERISTICS: TA
SYMBOL

VF
IR
11.10
10
Apk

PIN
1
2
3
4
5
6
7
8
9

ASSIGNMENT
C Cath. Digit 1
D Cath. Digit 1
B Cath. Digit 1
DP Cath. Digit 1
E Cath. Digit 2
D Cath. Digit 2
G Cath. Digit 2
C Cath. Digit 2
DP Cath. Digit 2

10
11
12
13
14
15
16
17
18

B Cath. Digit 2
A Cath. Digit 2
F Cath. Digit 2
Digit 2 Anode
Digit 1 Anode
A Cath. Digit 1
No Connection
No Connection
No Connection

= 25°C per digit.

CHARACTERISTIC
Forward Voltage
Reverse Current
Axial Luminous Intensity. Each Segment
Intensity Matching. segment to segment
Peak Wavelength

MIN

TYP

MAX

1.5

1.7

2.0
100

125

250
±33
665

4-48

UNITS
V
p.A
p.cd
%

nm

CONDITIONS
IF = 20 mA
VR = 5.0 V
IF = 10 mA
IF = 10 mA
IF = 20 mA

FAIRCHILD • FND6710 • FND6740
TYPICAL CHARACTERISTIC CURVES
MAXIMUM AVERAGE CURRENT
RATING VERSUS
AMBIENT TEMPERATURE

FORWARD CURRENT VERSUS
FORWARD VOLTAGE

6.
~

4.

ANGULAR DISTRIBUTION
OF LUMINOUS INTENSITY

I'\.

,

#

"\

~

'\

I'\.

~

!

t'-..

w

80

•

\

•

\

~

o
!
2

3

4.

\

~

.

•

./
.4

•. 8

1.2

VF - FORWARD VOLTAGE

2 .•
V

AVERAGE LUMINOUS INTENSITY
VERSUS AVERAGE
FORWARD CURRENT
1500

~

TA

AMBIENT TEMPERATURE

/

V

•

30

RELATIVE LUMINOUS EFFICIENCY
(MCD per rnA) VERSUS PEAK
CURRENT PER SEGMENT

,.•

--

V

10
IF(AVG)

AVERAGE FORWARD CURRENT
PER SEGMENT - mA

r-

25

•

20

.

r-....

3.

r--

8 - VIEWING ANGLE - DEGREES

RELATIVE LUMINOUS
INTENSITY VERSUS
JUNCTION TEMPERATURE

......

1
L

'\

'\

r-r-

I

-t+i-

'\

I

i'-.J
I

2•

L

·0

'C

·•

/

60.

~

4.

I/

1200

9. 0

S!

..

·

~
~

.

~

.

r- --c--

2.

100
IF - FORWARD CURRENT (PULSED)

4-49

mA

!

'i..

I

-+-- -t-r+

o
20
40
60
TJ - JUNCTION TEMPERATURE
°C

8.

•

MAN71A • MAN72A
RED GaAsP 0.3 INCH 7-SEGMENT DIGIT
OPTOELECTRONICS GROUP

GENERAL DESCRIPTION - The MAN71A and MAN72A are common-anode gallium
arsenide phosphide 7-segment displays with a nominal character height of 0.3 inch. They
can be mounted in arrays with 0.400 inch center-to-center spacing_

•
•
•
•
•
•
•
•

CONNECTION DIAGRAM

LOW POWER CONSUMPTION
SOLID STATE RELIABILITY - LONG OPERATION LIFE
IMPACT RESISTANT PLASTIC CASE
STANDARD 14-PIN DIP CONFIGURATION
WIDE VIEWING ANGLE
MAN71A HAS RIGHT HAND DECIMAL POINT
MAN72A HAS LEFT HAND DECIMAL POINT
INTENSITY CODING FOR UNIFORM DISPLAYS

PIN
NO.
1
2
3

ABSOLUTE MAXIMUM RATINGS

MAN71A

PIN
NO.

Cathode A

Cathode A

Cathode F
Common-anode
No pin

Cathode F
Common-anode
No pin
No pin
Cathode D.P.

No pin

NC

Maximum Temperature and Humidity
Storage Te mperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65°C

7
8

_40°C to +85°C
_40°C· to +85°C
260°C

Cathode E

Cathode E
Cathode D

Cathode 0

9 Common-anode
10 Cathode C
11 Cathode G
12 No pin
13 Cathode B
14 Common-anode

98%

Maximum Voltage and Currents
VR
Reverse Voltage
Average Forward Current/Segment or Decimal Point
IF(Avg)
Derate from 25°C Ambient Temperature
Peak Forward Current/Segment or Decimal Point (100 J.lS
pulse) 1000 pps, T A; 25°C

5.0 V
30mA
2_0 mA/C
200mA

MAN72A

NC
10
11
12
13
14

Cathode C
Cathode G
No pin

Cathode B
Common-anode

°

ELECTRICAL AND RADIANT CHARACTERISTICS: T A; 25 C
SYMBOL
VF

CHARACTERISTIC

IR

Reverse Current, Each Segment

10

Axial Luminous Intensity, Each Segment

lIlO

Intensity Matching, Segment-to-Se9me-nt
Intensity Matching Within One Intensity Class
Peak Wavelength

Apk

MIN

Forward Voltage, Each Segment

TYP

MAX

1.6

2.0

4-50

V

TEST CONDITIONS
IF = 20 mA

p.A

VR = 5.0 V

p.cd

IF = 10 mA

±33

%

IF=20mA

±20

%

660

nm

100
125

UNITS

250

IF = 20 mA, all segments at once
iF=20mA

FAI RCHI LD MAN71 A • MAN72A
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

LUMINOUS INTENSITY VERSUS
TEMPERATURE

LUMINOUS INTENSITY VERSUS
FORWARD CURRENT
170

500

160

/

400

300

200

/

100

V

V

V

/

150

/

140

....

130

..................

120

...........

110

...............

100

...............

90

...............

80
70
60
10

15

20

25

50
·50

30

·25

25

AMBIENT TEMPERATURE-' C

IF (PER SEGMENT1-mA

FORWARD CURRENT VERSUS
FORWARD VOLTAGE
100

I

90

80
70
60
50
40

I

30
20

j

10

I

,~'/
1.0

,5

1.5

VF - FORWARD VOLTAGE - V

4-51

2.0

50

70

•

MAN74A
RED GaAsP 0.3 INCH 7-SEGMENT DIGIT
OPTOELECTRONICS GROUP

GENERAL DESCRIPTION - The MAN74A is a common-cathode gallium arsenide
phosphide 7-segment display with a nominal character height of 0.3 inch. It can be
mounted in arrays with 0.400 inch center-to-center spacing.

CONNECTION DIAGRAM

1

•
•
•
•
•

2

LOW POWER CONSUMPTION
SOLID STATE RELIABILITY - LONG OPERATION LIFE
IMPACT RESISTANT PLASTIC CASE
STANDARD 14·PIN DIP CONFIGURATION
WIDE VIEWING ANGLE

0"

0

0

13

DD"1fo "
Odlo
,
.
o
0

• MAN74A HAS RIGHT HAND DECIMAL POINT
•

0

INTENSITY CODING FOR UNIFORM DISPLAYS

0

'0

9

D·

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65°C

PIN
NO.

_40°C to +85°C
-40°C to +85°C
260°C
98%

Maximum Voltage and Currents
VR
Reverse Voltage
IF(Avg)
Average Forward Current/Segment or Decimal Point
Derate from 25°C Ambient Temperature
Peak Forward Current/Segment or Deci mal Point (100 IJS
pulse) 1000 pps, TA = 25 C

MAN74A

1 Anode F
2 Anode G
3 No pin
4 Common cathode
5 No pin
6 Anode E
7 Anode D
8 Anode C
9 Anode D.P. right hand
10 No pin
11 Nopin
12 Common cathode
13 Anode B
14 Anode A

5.0 V
30mA
2.0mAfC
200mA

ELECTRICAL AND RADIANT CHARACTERISTICS: T A = 25°C
SYMBOL

CHARACTERISTIC

VF

Forward Voltage, Each Segment

IR

Reverse Current, Each Segment

10

Axial Luminous Intensity, Each Segment

61 0
Xpk

MIN

TYP

MAX

1.6

2.0
100

UNITS

TEST CONDITIONS

V

IF=20mA

/JA

VR =5.0 V

250

/Jed

IF=10mA

Intensity Matching, Segment·to·Segrnent

±33

%

IF=20mA

Intensity Matching Within One IntensitY Cia..

±2O

%

Peak Wavelength

660

nm

125

4-52

IF = 20 rnA, all segments at once
IF=20mA

FAIRCHILD MAN74A
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

LUMINOUS INTENSITY VERSUS
TEMPERATURE

LUMINOUS INTENSITY VERSUS
FORWARD CURRENT
170

500

160

/

400

300

200

/

100

V

V

V

150

./

/

140

....

130

........

120

r-...
...........

110

...............

100

...............

90

..............

80
70
60

10

15

20

25

50
-50

30

-25

25

AMBIENT TEMPERATURE- 'c

IF (PER SEGMENT)-mA

FORWARD CURRENT VERSUS
FORWARD VOLTAGE
100

I

90
80

'E"
I

70

>~

60

u

::>

50

a:

~

40

f2
A-

30

a:
a:

c

a:

I

I

20

I

10

V
.5

1.0

1.5

VF - FORWARD VOLTAGE - V

4-53

2.0

50

70

•

NSISTORS, INFRARED
AND SENSORS

CHAPTER 5
INTRODUCTION
A photocoupler consists basically of a light-emitting photodiode and a light-sensitive
semiconductor detector, optically coupled to enable an optical signal to be transmitted
from the emitter to the detector. This optical transmission of the signal enables
electrical isolation of several thousands of volts to be achieved between input and
output of the photocoupler.
Since the photocoupler (also sometimes referred to as an optically coupled isolator or
optocouplerl has no moving parts, such as contacts, to bounce, arc, or erode, it has a
considerably increased reliability factor over equivalent mechanical products.
Important features of the photocoupler are:
On-and-off switching speed in the one-to two-microsecond region.
Electrical isolation resistance between input and output on the order of
1011 ohms, and coupling capacitance of approximately 1 pF.
Data transmission rates from dc through the MHz frequency ranges.
Provide unidirectional operation with no feedback to the input.
Directly interface with other semiconductor components.
The ability of the photocoupler to isolate such sensitive objects as people and delicate
instruments from high voltage equipment is generating a rapidly growing, diversified
market in such areas as medical monitors, electrostatic paper copiers, power control
equipment, and telecommunications systems.

5-2

FPAIOO • FPAIOl • FPAI02
EMITTER AND SENSOR MATCHED PAIR ARRAYS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPA100, FPA101 and FPA102 are source/sensor
arrays each of which consist of a set of two modules: one, an array of infrared emitters
and two, an array of infrared sensors.
The source module consists of an array of gallium arsenide infrared emitting diodes.
When forward biased, these diodes emit an intense narrow band of infrared (nonvisible) radiation at a wavelength of 900 nm. The sensor modules consist of an array
of npn phototransistors which are sensitive to visible as well as infrared radiation
(400 to 1100 nm). They are most sensitive to infrared radiation so that the source
module's emission wavelength is very nearly perfect for maximum coupling efficiency.
The source and sensor modules of each set are identical in construction; when the
modules are placed facing one another, each infrared emitting diode has a phototransistor directly opposite it.
The FPA100 has nine source/sensor pairs in a single line on 0.100" centers, matching
the format of standard punched paper tape. The FPA101 has twelve source/sensor
pairs in a single line on 0.250" centers, matching the row spacing of standard tab
cards. The FPA102 has ten source/sensor pairs in a single line on 0.087" centers,
matching the column spacing of standard tab cards.
•
•
•
•

o
o

o

o

o
o

•

o
o

o
o

a

o

REDUCES MECHANICAL DESIGN AND PACKAGING PROBLEMS
LOW TEMPERATURE COEFFICIENT
DESIGNED FOR READING PUNCHED CARDS AND PUNCHED TAPES WITH THE SENSOR
OUTPUTS OPERABLE DIRECTLY INTO STANDARD DIGITAL INTEGRATED CIRCUITS.
APPLICATIONS: TRANS MISSILE READING SHAFT ENCODING AND MULTI-CHANNEL
OPTICAL COUPLING

FPA 101

ABSOLUTE MAXIMUM RATINGS

Maximum Temperalures and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 10 s)
Relative Humidity at 65°C
Maximum Power Dissipation (Note 1)
Total Dissipation at TA = 25°C for Source Array
Derate Linearly from 25°C
Total Dissipation at TA = 25°C for Sensor Array
Derate Linearly from 25°C
Maximum Voltages and Currents
Source Array
Forward de Current/Cell
IF
Reverse Voltage
VR
Sensor Array
Collector to Emitter Sustaining Voltage (Note 2)
VCEO(sus)
Collector Current
IC

-40·C to +100·C
-40°C to +100·C
260°C
98%
110mW/cell
1.47rnW/"C
167rnW/eell
2.22 rnW/"C

75 rnA
3.0 V
12 V
25 rnA

FPA100

FPA102

ELECTRICAL CHARACTERISTICS: T A = 25°C
SOURCE ARRAY
SYMBOL
VF
BV R

CHARACTERISTIC
Forward Voltage
Reverse Breakdown Voltage

MIN

TYP

MAX

UNITS

TEST CONDITIONS

1.50

3.0

1.25
6.0

V
V

IF =50 mA
IR =l00j.tA

5-3

FAIRCHILD. FPA 100 • FPA 101 • FPA 102
SENSOR ARRAY
SYMBOL

CHARACTERISTIC

VCE(sat)
ICEO

Collector Dark Current (Note 2)

ICE(lt)

Photo Current (Note 4)

VCEO(Sus)
BVECO

TYP

MIN

Sustaining Voltage (Notes 2 and 3)
Emitter to Collector Breakdown
Voltage (Note 2)
Saturation Voltage (Note 4)

12

UNITS

MAX

TEST CONDITIONS

20
5.0

V
V

IC ~ 1.0 rnA, (pulsed)
IEC = 100 /1A

0.4

V

IC ~ 4 rnA, H ~ 10 mW/cm'
(GaAs)
VCE ~ 5.0 V, H ,,;; 0.1 /LW/cm'

10

100

nA

4.5

VCE = 5.0 V, H
(GaAs)

rnA

= 1.0 mW/cm2

COMBINATION SOURCE/SENSOR ARRAY
SYMBOL

CHARACTERISTIC

lOUT
lOUT min
lOUT max

TYP

MAX

UNITS

Output Current

MIN
4.5

9.0

13.5

rnA

Matching Factor

0.5

0.65

VCE(sat)

Saturation Voltage

0.4

tr
tf

Light Current Fall Time (Note 5)
Light Current Rise Time (Note 5)

40
40

0.7

TEST CONDITIONS
liN = 50 rnA, d
VCE = 5.0V
liN = 50 rnA, d

= .050",
=.050",

VCE = 5.0 V
liN = 50 rnA, d = .050",
lOUT = 3.7 rnA
liN ~ 50 rnA. d ~ .050"
liN ~ 50 rnA. d ~ .050"

V
/is
/is

NOTES:
1. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operation.

Measured with radiation flux intensity of less than .1 I1W/cm' over the spectrum from 0.1 micron to 1.5 microns.
Rating refers to a high current point where collector to emitter voltage is lowest.
Measured at an irradiance of 5.0 mW/cm2 as emitted from a gallium arsenide diode.
Rise time is defined as the time required for ICE to rise from 10% to 90% of the peak value. Fall time is defined as the time required for ICE to decrease
from 90% to 10% of the peak value.
6. The center of each element is aligned to ±.010" along the length and ±.005" across the width.
7. Emitter terminal side of phototransistor (sensor array) or anode terminal side of diode (source array) defined by white dot.

2.
3.
4.
5.

8. Leads alternate from emitter to collector (sensor) or anode to cathode (source), beginning from this end of the package.

9. The center of each element is aligned to ± .010" across the width and ± .005" along the length.

TYPICAL CHARACTERISTIC CURVES

FORWARD CURRENT
VERSUS FORWARD VOLTAGE (D.C.)
100

1

COLLECTOR DARK
CURRENT VERSUS
TEMPERATURE

MAXIMUM Po VERSUS
AMBIENT TEMPERATURE
260

100k

~

I

g
~

60

1k

Q

SfuRcl.

40

~

f'.,

I
0.4
VF -

0.8

1.2

FORWARD VOLTAGE - V

1 .•

o

o

20
TA -

40

60

80

AMBIENT TEMPERATURE -

5-4

"a:

100

a:

10

~::l

1.

<.>
I

o. 1

o

r--...

i'- ~

J

0

/

Cl

...... 1'-..

I

20

~

25 •0 V

<.>

""

:>

I

~

:>

fsENSo~

<.>

i

10 k

g

80

VCE

I

~
100

°C

iil
E

°v

.0 1
-20

/"

:P

20

L

40

60

TEMPERATURE _

<:Ie

80

100

FAIRCHILD. FPA100 • FPA101 • FPA102
TYPICAL CHARACTERISTIC CURVES (Cont'd)

RISE AND FALL TIME
VERSUS COLLECTOR CURRENT

RELATIVE SPECTRAL
RESPONSE
100

"-

..

/ \

80

/

I

60

~

>

~

a:

~

\
\

V

~

a:
w

1\

/

w
:0
i= 120

~

/

40

II

II

I

Vee

~1"'

ItJ

\

't00

40

\

=25°C

~

\

8Of--

0

TA

'\ I~

"

1\

20

160

Vee'" 5.0 V

I

200

w

z

240

r-

0
0.3

0.6

0.7

0.9

0.11

A. - WAVELENGTH -

0.1

0.13

1.0
Ie -

pm

RELATIVE OUTPUT
VERSUS AMBIENT
TEMPERATURE

OUTPUT CURRENT
VERSUS DISTANCE
60

100

10

COLLECTOR CURRENT - rnA

OUTPUT CURRENT
VERSUS COLLECTOR
VOLTAGE

115

10

0-

"EI
0-

15a:
a:

:>

"

g 110
20 "

0-

:>

i!:

'"

10

5.0

"
15
~

~." ~

80

f - ---" K:j",.

:>

.."
0-

I

:>

2.0

......

r--........

1.0
20

40

60

80

95

.,........ V"""

--

V

100

I'-

:>
0

!

a:

90

III

0-

:>

9

86

10

20

30

40

50

60

70

20

LA

liN" 10mA

0

TA - AMBIENT TEMPERATURE - °C

d - DISTANCE - MILS

LA
I

2

I

oj
0

30

4

I

5

80
-10

40lmA

Iv

6

"
i!:

•

1

V

:>

:>
0

a:

120

15a:

50 lmA

II V

8

0-

0-

I"--.

0-

.9

105

~ 100

"'.q

" <8
",.q r-..

:>
0

"EI

1

2

VeE -

d" .050"

3

5

4

COLLECTOR VOLTAGE -

V

TYPICAL CIRCUITS

Vcc
Q

'" ' t.........

Vcc

ro~OUT
T 2 l7400

c

~

LIMIT

SENSOR

Vcc
;I

~

5.0

_1° "1_
50

..

m~ ~
I C

SOURCE.........

oo""""l~

R PUll UP (OPTIONAL)

1

n

OUT
T2 l

-=-

For a "hole" condition, point A for all sensors will be less than
O.S V. For a "no hole" condition (where signal due to tape
transmission is"; 15% of "hole"), point A will be greater than
2.0 V. These are the worst case conditions req u ired to switch
this type of logicl.

~

-=-

500

V

P-""-

,.,.

/SENSOR

SENSOR

6-5

FAIRCHILD. FPA100 • FPA101 • FPA102
SOURCE CIRCUITS

01

+

n

~11 ~21 ~~

02

~l:----~Rln

On

~---#-O
On

'--AN\,-- - - _ -

Use where Vsupply > 1.5 nand
transmission < 20%.

__

Use where Vsupply < 1.5 nand
transmission < 20%. Rows
must contain equal number
of diodes.

TYPICAL APPLICATION

FPA100

5·6

~02

*on

Use where Vsupply < 1.5 nand
transmission > 20%. RL may be
adjusted so outputs of sensors are
perfectly matched.

FPAI03 • FPAI04 • FPAI05
FPAI06 • FPAI07 • FPAI08
LIGHT REFLECTION EMITTER/SENSOR ARRAY
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION-The FPA103/104/105/106/107/108 consists of a gallium
arsenide infrared emitting diode and a silicon npn phototransistor. The axial radiant
intensity of the diode and the axial response of the phototransistor are both
perpendicular to the face of the device. The phototransistor thus responds to
radiation emitted from the diode only when a reflective object or surface is in the field
of view of the phototransistor.
The diode used in the FPA103/104/105/106/107/108 is similar to Fairchild's FPE100
gallium arsenide infrared emitting diode. It emits an intense, narrow band of
radiation, peaking at approximately 900 nm (non-visible) when forward biased. The
phototransistor used in this device is sensitive to radiation over the wavelength range
of 400 to 1100 nm.

•

The FPA106/107/108 is electrically equivalent to the FPA103/104/105 respectively
with the addition of an infrared filter to prevent visible light from entering the
phototransistor.
•
•
•
•

REDUCES MECHANICAL DESIGN AND PACKAGING PROBLEMS
HIGH SENSITIVITY
EXCElLENT STABILITY
LOW TEMPERATURE COEFFICIENT

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 10 s)
Relative Humidity at 65°C
Input Diode
Forward D.C. Current
Reverse Voltage
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

-40°C to +100°C
-40°C to +100°C

0-

CONNECTION DIAGRAM

(TOP VIEW)

98%
75 mA
3.0 V
110mW
1.47mW;oC

Output Transistor
Collector D.C. Current
Collector to Emitter Voltage
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

CATHODE

COLLECTOR.

•

ANODE

EMITTER

WHITE DOT

25 mA
12 V
167 mW
2.22 mW/oC

ELECTRICAL CHARACTERISTICS-INPUT DIODE: TA ~ 25° C

SYMBOL
VF

BVR

CHARACTERISTIC
Forward Voltage
Reverse Breakdown Voltage

MIN

TYP

MAX

UNITS

1.5

3.0

1.25
6.0

V
V

MAX

UNITS

TEST CONDITIONS
IF = 50 mA
IR =100J-lA

ELECTRICAL CHARACTERISTICS-OUTPUT TRANSISTOR: TA = 25° C

SYMBOL
VCEO(sus)
BV ECO

CHARACTERISTIC
Sustaining Voltage (Note 2)
Emitter to Collector Breakdown
Voltage (Note 2)

MIN

TYP

12

20
5.0

5·7

V
V

TEST CONDITIONS
IC = 1.0 mA (pulsed)
IEC = 100 J-lA

FAIRCHILD. FPA103 • FPA104 • FPA105. FPA106. FPA107. FPA108
ELECTRICAL CHARACTERISTICS - COMBINATION: T A = 25°C
SYMBOL

'C

'CEO
VCE(sat)

tr & tf

CHARACTERISTICS

MIN

Photo Current
(GaAs Source, Note 1)
103 - 106
104 - 107
105 - 108
Collector Dark Current
(Note 2)
Saturation Voltage
(Note 1)
Rise & Fall Time
(Note 3)

TYP

MAX

UNITS

TEST CONDITIONS
'F = 50 rnA, VCE = 5.0 V,
d = 0.40"

20
60
80

80

JJ.A
JJ.A

10

180
160
100

IJ.A
nA

0.3

0.7

V

100

'F = 50 rnA, VCE = 5.0 V,
Non-reflecting external surface
'F = 50 rnA, 'C = 5.0 JJ.A,
d = 0.40"
'C = 80 JJ.A, VCC = 5.0 V,
RL = 1 kfl

/J.s

NOTE:
1. Photocurrent is that obtained from a 4.0" x 4.0" 90 % white surface placed at a distance of .40" from the face of the device. For test purposes, an Eastman

Kodak neutral white test card with 90% diffuse reflectance was employed.
2. Measured with radiation flux intensity of less than .1 J.L W Icm 2 over the spectrum from 0.1 micron to 1.5 microns.
3. Rise time is defined as the time required for ICE to rise from 10% to 90% ofthe peak value. Fall time is defined as the time required for ICE to decrease

from 90% to 10% of the peak value.
4. White dot defines collector of phototransistor. Read pinout clockwise, top view; collector, source cathode, source anode, emitter,

TYPICAL ELECTRICAL CHARACTERISTICS
OUTPUT CURRENT VERSUS
INPUT CURRENT

SPECTRAL
CHARACTERISTICS

OUTPUT CURRENT VERSUS
DEVICE TO CARD SPACING
2.0

'00

1/1 \

90

"I

80

'"Z

70

w

~

*~
w

>

"

30

60

90

o

IF - INPUT CURRENT - rnA

~

50
40
30

INTERFACING CIRCUIT

+5,QV

+5,QV

~ ":'~:I . . . .:~:r-. I
750:I
-=-

:~~kf

I

I
::1

I

I

'::'

~
%DTl930

Output

'::'

I

Data
Enable

FPA103/104/10S

5-8

II

1\

~~:~g~

20

0
300

DEVICE TO CARD SPACING - INCHES

\
\

FPA103
FPA104
FPA105/

60

'0
0.01 0~-'--='0.'='2-'--:'0.""4-"--0::'6~'--:0:':.8~'--:"0

/

FPt'O~

\

\

J

I\...
500

,

700

900

WAVELENGTH

1100
nm

1300

FPA103A· FPA104A • FPA105A
FPA106A • FPA107A FPA108A

•
LIGHT REFLECTION EMITTER/SENSOR ARRAYS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPA 103A/1 04A/1 05A/1 06A/1 07 A/1 08A consists of a
gallium arsenide infrared emitting diode and a silicon npn phototransistor. The axial
radiant intensity of the diode and the axial response of the phototransistor are both
perpendicular to the face of the device. The phototransistor thus responds to radiation
emitted from the diode only when a reflective object or surface is in the field of view of
the phototransistor.
The diode used in the FPA103A/104A/105A/106A/107A/108A is similar to Fairchild's
FPE100 gallium arsenide infrared emitting diode. It emits an intense, narrow band of
radiation, peaking at approximately 900 nm (non-visible) when forward biased. The
phototransistor used in this device is sensitive to radiation overthe wavelength range of
400 to 1100 nm.
The FPA 106A/107 A/108A is electrically equivalent to the FPA 103A/104A/105A respectively with the addition of an infrared filter to prevent visible light from entering the
phototransistor.
•
•
•
•
•

•

REDUCES MECHANICAL DESIGN AND PACKAGING PROBLEMS
HIGH SENSITIVITY
EXCELLENT STABILITY
LOW TEMPERATURE COEFFICIENT
EXCELLENT CROSS-TALK CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 10 s)
Relative Humidity at 65°C
Input Diode
Forward D.C. Current
Reverse Voltage
Power Dissipation at TA = 25°C
Derate Linearly from T A = 25° C
Output Transistor
Collector D.C. Current
Collector to Emitter Voltage
Power Dissipation at TA = 25°C
Derate Linearly from T A = 25° C

CONNECTION DIAGRAM
(TOP VIEW)

-40°C to +100°C
-40°C to +100°C
260°C
98%

C A T H O O E D e ANODE

75 mA
3.0 V
110 mW
1.47 mW/oC

COLLECTOR.

e

EMITTER

WHITE DOT

25 mA
12 V
167 mW
2.22 mW/oC

ELECTRICAL CHARACTERISTICS-INPUT DIODE: TA = 25°C
SYMBOL

VF
BVR

CHARACTERISTIC
Forward Voltage
Reverse Breakdown Voltage

ELECTRICAL CHARACTERISTICS-OUTPUT TRANSISTOR: TA
SYMBOL
VCEO(SUS)
BVECO

MIN

TYP

MAX
1.5

3.0

1.25
6.0

MIN

TYP

MAX

12

20
5.0

TEST CONDITIONS

UNITS
V
V

IF
IR

= 50 rnA
= 100llA

= 25°C

CHARACTERISTIC
Sustaining Voltage (Note 2)
Emitter to Collector Breakdown
Voltage (Note 2)
5-9

UNITS
V
V

TEST CONDITIONS
Ic = 1.0 rnA (pulsed)
IEC = 100 IlA

FAIRCHILD FPA103A • FPA104A • FPA10SA • FPA106A • FPA107A • FPA108A
ELECTRICAL CHARACTERISTICS-COMBINATION: TA = 25°C
SYMBOL

CHARACTERISTICS

ICEO
VCE(s.!)
tr &tr

TYP

MIN

Photo Current
(GaAs Source, Note 1)
103A - 10SA
104A - 107A
105A - 108A
Collector Dark Current
(Note 2)
Saturation Voltage
(Note 1)
Rise & Fall Time
(Note 3)

Ic

MAX

TEST CONDITIONS

UNITS

IF = 50 rnA, VCE = 5.0 V,
d = 0.040"
100
250
300

300

10

750
600
100

JJ.A
JJ.A
JJ.A
nA

0.3

0.7

V

100

IF = 50 rnA, VCE = 5.0 V,
Non-reflecting external surface
IF = 50 rnA, Ic = 5.0 JJ.A,
d = 0.40"
Ic = 80 JJ.A, Vcc = 5.0 V,
RL = 1 k!1

JJ.s

NOTE:
1. Photocurrent is that obtained from a 4.0" x 4.0" 90% white surface placed at a distance of .40" from the face of the device. Fortest purposes, an Eastman
Kodak neutral white test card with 90% diffuse reflectance was employed.
2. Measured with· radiation flux intensity of less than.1 IlW/cm 2 over the spectrum of 0.1 micron to 1.5 microns.
3. Risetime is defined asthe time required for ICE to rise from 10% to 90% of the peak value. Fall time isdefined as the time required for ICE to decrease from
90% to 10% of the peak value.
4. White dot defines collector of phototransistor. Read pinout clockwise, top view; collector, source·cathode, source anode, emitter.

TYPICAL ELECTRICAL CHARACTERISTICS
OUTPUT CURRENT VERSUS
INPUT CURRENT
200
O!0.4J··
TA'" 26°C

1- 160

...

Vc ~1v.

~

W

I

:i
::>
0100

...::>

~

5
1: &0

0/
0

200

/
/ L

"...I

/

i
.......

\

50

~

~HIT~ C~RD

4.0" x 4.0"
90% REFlECTANCE

>=

40

"'-

5.0

a:

30

a:
~

~

0

0.4

0.2

0 .•

0 .•

0
300

10

+5.0V

~
750

I
I
I

1.0.
1.0 k

I

...

I

I'

125. V
I R1 ~

I
I

c1

I

I

0:-

8.2.

~~N~
Data
Output

1J2DTL 930
0:-

I

Data
Enable

"=' FPA103/104/105

5-10

\

/

/

\
FPA106
FPA107

I

-

-

I I
500

700
~

INTERFACING CIRCUIT

v

:~:~~ /

50

10

o - DeVICE TO CARD SPACING - INCHES

+5.0

60

FPt'081

........

0.01

90

70

20

r-...

IF - INPUT CURRENT - mA

I
FPA103

w

10

~
.0

.."
e

80

z

::>

II,

90

I' I I

U

:J

)'"
30

VCE" 5.0 V
TA=25°C -

::>

VBE 5.0 V

100

IF=50~A..

100

V

,

0

SPECTRAL
CHARACTERISTICS

OUTPUT CURRENT VERSUS
DEVICE TO CARD SPACING

900

1100

- WAVELENGTH - nm

1300

FPA700 • FPA700A
9-ELEMENT PHOTOTRANSISTOR TAPE READER ARRAY
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPA700 and FPA700A are 9-element npn Planar"
phototransistor arrays having exceptionally stable characteristics and high illumination sensitivity. Each transistor is electrically isolated and mounted on 100 mil
centers. The case is a plastic compound with transparent resin encapsulation which
exhibits stable characteristics under high humidity conditions.
•
•
•

HIGH ILLUMINATION SENSITIVITY
EXHIBITS STABLE CHARACTERISTICS UNDER HIGH HUMIDITY
ESPECIALLY DESIGNED FOR PUNCHED OR MARKED CARD READING AND OPTICAL
ENCODER APPLICATIONS

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 10 s)
Relative Humidity at 65'C

-40°C to +100'C
-40'C to +85°C
260°C
98%

Maximum Power Dissipation per Cell
Total Dissipation at TC = 25'C
Derate Linearly from 25°C
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

200mW
3.33 mWI'C

133mW
2.22 mWI"C

Maximum Voltages and Currents (Note 1)
VCEO(sus)
Coliector to Emitter Sustaining Voltage
IC
Coliector Current

FPA700/700A

20V
25 rnA

ELECTRICAL CHARACTERISTICS: T A = 25°C
SYMBOL

CHARACTERISTIC

FPA700
MIN TYP MAX

FPA700A
MIN TYP MAX UNITS

TEST CONDITIONS

=1.0 rnA

VCE(sat)

Collector-Emitter Sustaining Voltage
(Note 2)
Emitter-Collector Breakdown Voltage
(Note 2)
Collector-Emitter Saturation Voltage

ICEO
ICE(lt)

Collector Dark Current/Cell (Note 2)
Photo Current, Tungsten Source (Note 3)

ICE(lt)

Photo Current, Tungsten Source (Note 3)

1.75

1.75

rnA

VCE

=5.0 V, H =10 mW/cm 2

ICE(lt)

Photo Current, GaAs Source (Note 4)

2.25

2.25

rnA

VCE

=5.0 V, H =5 mW/cm 2

tr

Light qurrent Rise Time (Note 6)

4.0

4.0

/.IS

GaAs, IC =2.0 rnA,

It

Light Current Fall Time (Note 6)

4.0

4.0

P.s

RL

Smin/Smax

Matching Factor (Notes 3 and 5)

0.65

1.0 0.75 0.85

VCEO(sus)
BVECO

20

20

35
7.0

200

0.5

0.16

0.33

4.0
750

100

35

V

IC

7.0

V

IEC

V

IC

nA
~

VCE
VCE

=5.0 V
=5.0 V, H =5 mW/cm 2

0.16 0.33

200

4.0
750

100

1.0

=100~
=500 /.lA, H =20 mW/cm 2

= 100 n, VCC = 5.0V

VCE

=5.0 V, H =5 mW/cm 2

"Planar is a patented Fairchild process.
5-11

FAIRCHILD • FPA700 • FPA700A
TYPICAL CHARACTERISTIC CURVES

PHOTO CURRENT
CHARACTERISTICS

PHOTO CURRENT
VERSUS COLLECTOR

10000

V

a::

10

1

W
w
::I
0
<>

TA= 26°C
tC= 2864°K

....-

0.01
1.0

4

20.0
~

100

10

I ill

17.5

3

16.0
12.6

2

10.0
7.6
5.0

I

0.1

0.1

22.6

w

a::
a::
::>
<>
a::

V

1 .0

l,.

...z

"v



",0

~w

V

1\
\

/

60

w

~

/

/

80

\

V-

40

a:

/

20

I

1\
1\

V
10J 1
-20

o
0

20

40

60

80

100

300

RISE AND FALL TIME
VERSUS COLLECTOR CURRENT
3&
30

\r\,.

I

1\'\

900

1100

SWITCHING CIRCUIT
FOR RISE AND FALL TIMES

,

\ I'r--

w

~

700

1\

26

~ 20

500

A -WAVELENGTH-nm

TEMPERATURE -OC

16

1"'\

10

..........

"'-

r--

10000

t-...

JjO-

'-...

5

o
0.1

1.0

Ie -

-

H-

-Iff-

11J0=

SOURCE GaAS

10

COLLECTOR CURRENT - mA

5-12

OUT

1300

FAIRCHILD • FPA700 • FPA700A
TYPICAL CHARACTERISTIC CURVES (Cont'd)

ANGULAR RESPONSE
100

TA

"'I

=25°C

80

/

/ '\

\

.'"

\

~

60

I

>
;::

40

:sw
0:

20

o

/

I

-100

\
0

20

9z

15

~
I

10

Vee= 5.0 V
TA = 25°C

(

0:

/
-20

20

u.

\

-60

//

o

\

I

0:

...--

25

I
>

w

'z0"
..
w
'"
w

-

TURN-OFF DELAY TIMES
30

,

J

\

60

5

!\

o

100

o

3

5

6

Ie - INPUT CURRENT - mA

ANGLE - DEGREES

•

CIRCUIT FOR TURN-ON
AND TURN-OFF DELAY

TURN-ON DELAY TIMES
6

.'"
:s>w

I

5

Vee = 5.0 V

\

0
Z

0

Z

0:

I

2

+

'0
~o.

o

~

~

:::l

....

.;-t>o--t>o--o

TA'" 25°C

4

o

2

H

"
4

Ie -

............

VOUT

TTL1/6-9016

r--

6

INPUT CURRENT -

10

12

mA

NOTES:
1. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operation.
2. Measured with radiation flux intensity of less than .1 J1W/cm2 over the spectrum from 0.1 micron to 1.5 microns.
3. Measured at noted irradiance as emitted from a tungsten lamp at a color temperature of 2854°K. The effective photosensitive area is (0.8 mm2).
Illuminance (in lumens/fF) = ii-radiance H (in mW/cm2) x 20 at a color temperature of 2854°K.
4. Measured at an irradiance of 5.0 mW/cm 2 as emitted from a gallium arsenide diode.
5. Matching factor is the ratio of minimum sensitivity to maximum sensitivity of any two cells.
6. Rise time is defined as the time required for ICE to rise from 10% to 90% of the peak value. Fall time is defined as the time required for ICE to decrease
from 90% to 10% of the peak value.
7. The center of each element is aligned to ±.010" along the length and t.OOS" across the width.
8. Emitter terminal side of phototransistor (sensor array) or anode terminal side of diode (source array) defined by white dot.

5-13

FPA710 • FPA710A
12-ELEMENT PHOTOTRANSISTOR CARD READER ARRAY
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPA710 and FPA710A are 12-element npn Planar'
phototransistor arrays having exceptionally stable characteristics and high illumination sensitivity. Each transistor is electrically isolated and mounted on 250 mil
centers. The case is a plastic compound with transparent resin encapsulation which
exhibits stable characteristics under high humidity conditions.

li'

•
•

o
o
o

o

o

o

HIGH ILLUMINATION SENSITIVITY
ESPECIALLY DESIGNED FOR PUNCHED OR MARKED CARD READING AND OPTICAL
ENCODER APPLICATIONS

o

o
o
o

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 10 s)
Relative Humidity at 65°C

-40°C to +100°C
-40°C to +85°C
260°C
98%

Maximum Power Dissipation per Cell
Total Dissipation at T C = 25°C
Derate Linearly from 25° C
Total Dissipation at T A = 25°C
Derate Linearly from 25° C

~:1

200 mW
3.33 mW/oC
133 mW
2.22 mW/oC

Maximum Voltages and Currents (Note 1)
VCEO(sus)
Collector to Emitter Sustaining Voltage
'C
Collector Current

20 V
25 mA

FPA710/710A

ELECTRICAL CHARACTERISTICS: TA = 25°C
SYMBOL

CHARACTERISTIC

VCE(sat)

Collector-Emitter Sustaining Voltage
(Note 2)
Emitter-Collector Breakdown Voltage
(Note 2)
Collector-Emitter Saturation Voltage

' CEO
'CE(lt)

Collector Dark Current (Note 2)
Photo Current, Tungsten Source (Note 3)

VCEO(SUS)
BV ECO

FPA710
MIN TYP MAX
20

FPA710A
UNITS
MIN TYP MAX
20

35
7.0
0.16

0.33

4.0
750

100

200

200

TEST CONDITIONS

35

V

'C = 1.0 mA (pulsed)

7.0

V

'EC = 100 J1,A
'C = 500 J,J.A, H = 20 mW/cm 2

0.16

0.33

V

4.0
750

100

nA
J1,A

VCE = 5.0 V
VCE = 5.0 V, H = 5 mW/cm2
VCE = 5.0 V, H = 10 mW/cm2

'CE(lt)

Photo Current, Tungsten Source (Note 3)

1.75

1.75

mA

'CE(lt)

Photo Current, GaAs Source (Note 4)

2.25

2.25

mA

VCE = 5.0 V, H = 5 mW/cm2

tr

Light Current Rise Time (Note 6)

4.0

4.0

J,J.s

GaAs, 'C =2.0mA,

tf

Light Current Fall Time (Note 6)

4.0

4.0

J,J.S

RL =100n,V CC =5.0 V

Smin/Smax

Matching Factor (Notes 3 and 5)

0.5

0.65

1.0

0.75

0.85

1.0

VCE = 5.0 V, H = 5 mW/cm2
'Planar is a patented Fairchild process.

5-14

FAIRCHILD • FPA71 0 • FPA710A
TYPICAL CHARACTERISTIC CURVES

PHOTO CURRENT
CHARACTERISTICS

PHOTO CURRENT
VERSUS COLLECTOR

10000

I

~ 1000

~

;;

./

1.0

22.5

4

15.0

...

12.5

0

2

10.0

j

TA= 25°C
TC = 2864°K

/'

7.5

0

u

5.0

I

0.1

!:?

1111

0.0 1
0.1

17.5

:::J
U

u

1.0

100

10

H

'--

o

1000

=25"C=2854"K-

20.0

....

II:

./

TA
TC

25.0

W
II:
II:

,C;

10

g
!:?

...zI

4""''''V


100

II:
II:

....

..

I.~ ./

...I

iii

u
I

5

V

2.SmW/cm

I

o

ILLUMINATION - (fe)

15

10

20

VCE - COLLECTOR VOLTAGE - V

COLLECTOR DARK
CURRENT VERSUS
TEMPERATURE

RELATIVE SPECTRAL RESPONSE
120

-$>~

r

.,.

100

v

/

'#.

I

w

w

60

II:

/

>
>=
~

\

V

40

W

,/

1\
\

L

W

'/

./

80

.'"

,,,,,-0
I

'"0
z

II:

/

20

/

\

'/

o

10J1
-20

35

30

0

I"

20

60

100

300

500

700

900

1100

RISE AND FALL TIME
VERSUS COLLECTOR CURRENT

SWITCHING CIRCUIT
FOR RISE AND FALL
TIMES

1\

Vee == 5.0 V

\

~

1\'\

r--..

\ "r-..,

15

I\.

10

.........

I

r--

""-r--..

5

JoL-

r-0.1

1.0

--

10000

'-...,
o

80

A -WAVElENGTH-nm

w

~

40

TEMPERATURE-"C

25
o

20

i¥

SOURCE GaAs

10

IC - COLLECTOR CURRENT - mA

5·15

1300

•

FAIRCHILD • FPA710 • FPA710A
TYPICAL CHARACTERISTIC CURVES (Cont'd)

TURN-OFF DELAY TIMES

ANGULAR RESPONSE
100

V "\

80

.

1\

/

TA = 25°C

"'

30

\


;::

a:

20

/

/

o

-100

20

0

15

Z
a:

\

.--

foVee = 5.0V
TA 25°C

IV

=

(

:>

I-

1\

:3w

:3w

"......

\

I

40

25

>-

w

Z

"I

/

\
-20

-60

0

20

60

10

I
I

"

~o.

1\

o

100

o

2

ANGLE - DEGREES

Ie -

3

5

4

INPUT CURRENT -

6

mA

CIRCUIT FOR TURN-ON
AND TURN-OFF DELAY

TURN-ON DELAY TIMES
6

.
"-

>-

:3w

"

5

I

4

\

\

Z

0

Z

3

a:

I
~

2

~o.

o

o

2

j1>o--f>o---o
~
I

H

1\

:>

I-

Vee = 5.0 v
TA= 25°C

"
4

IC -

""-.

VOUT

TTL 1'6.9."

I---

6

10

12

INPUT CURRENT - mA

NOTES:
1. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operation.
2. Measured with radiation flux intensity of less than .1 J.1W/cm2 over the spectrum from 0.1 micron to 1.5 microns.
3. Measured at noted irradiance as emitted from a tungsten lamp at a color temperature of 2854° K. The effective photosensitive area is (0.8 mm2).
Illuminance (in lumens/ft2 ) :: jrradiance H (in mW/cm2) x 20 at a color temperature of 2854°K.
4. Measured at an irradiance of 5.0 mW/cm2 as emitted from a gallium arsenide diode.
5. Matching factor is the ratio of minimum sensitivity to maximum sensitivity of any two cells.
6. Rise time is defined as the time required for ICE to rise from 10% to 90% of the peak value. Fall time is defined as the time required,for ICE to decrease
from 90% to 10% of the peak value.
7. The center of each element is aligned to ±.010" along the length and ±.005" across the width.
8. Leads alternate from emitter to collector (sensor) or anode to cathode (source), beginning from this end of the package.

5-16

FPA720 • FPA720A
IO-ELEMENT PHOTOTRANSISTOR CARD READER ARRAY
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPA720 and FPA720A are 9-element npn Planar'
phototransistor arrays having exceptionally stable characteristics and high illumination sensitivity. Each transistor is electrically isolated and mounted on 100 mil
centers. The case is a plastic compound with transparent resin encapsulation which
exhibits stable characteristics under high humidity conditions.
<=9

<=

•
•

<=9
<=9

HIGH ILLUMINATION SENSITIVITY
ESPECIALLY DESIGNED FOR PUNCHED OR MARKED CARD READING AND OPTICAL
ENCODER APPLICATIONS

=
=
=

•

=

=
=

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 10 s)
Relative Humidity at 65°C

-40°C to +100°C
-40°C to +85°C
260°C
98%

Maximum Power Dissipation per Cell
Total Dissipation atTC = 25°C
Derate Linearly from 25°C
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

200mW
3.33mWrC
133mW
2.22 mW/oC

Maximum Voltages and Currents (Note 1)
VCEO(sus)
Collector to Emitter Sustaining Voltage
IC
Collector Current

FPA720/720A

20 V
25 rnA

ELECTRICAL CHARACTERISTICS: T A = 25°C
SYMBOL

CHARACTERISTIC

FPA720
MIN TYP MAX

VCE(sat)

COllector-Emitter Sustaining Voltage
(Note 7)
Emitter-Collector Breakdown Voltage
(Note 7)
Collector-Emitter Saturation Voltage

ICED
ICE(lt)

Collector Dark Current/Cell (Note 2)
Photo Current, Tungsten Source (Note 3)

ICE(II)

Photo Current, Tungsten Source (Note 3)

1.75

ICE(lt)

Photo Current, GaAs Source (Note 4)

VCEO(sus)
BVECO

20

35

FPA720A
MIN TYP MAX UNITS
20

7.0

TEST CONDITIONS

= 1.0 rnA

35

V

IC

7.0

V

IEC = 1001lA
IC = 500 J.1A, H

0.16

0.33

V

4.0
750

100

nA
J.1A

VCE
VCE

1.75

rnA

VCE = 5.0 V, H

2.25

2.25

rnA

VCE

0.16

0.33

4.0
750

100

200

200

= 5.0 V
= 5.0 V,

= 5.0 V,

Light Current Rise Time (Note 6)

4.0

4.0

J.1s

GaAs, IC

tf

Light Current Fall Time (Note 6)

4.0

4.0

J.1S

RL

Smin/Smax

Matching Factor (Notes 3 and 5)

0.65

1.0

0.75

0.85

1.0

H

H

= 20 mW/cm 2
= 5 mW/cm 2
= 10 mW/cm 2
= 5 mW/cm 2

= 2.0 rnA,
= 100n, VCC =5.0 V

tr

0.5

(pulsed)

VCE

= 5.0 V,

H

= 5 mW/cm 2

'Planar is a patented Fairchild process.
5·17

FAIRCHILD • FPA720 • FPA720A
TYPICAL CHARACTERISTIC CURVES

PHOTO CURRENT VERSUS
COLLECTOR VOLTAGE

PHOTO CURRENT
CHARACTER ISTICS
10000

II

~ 1000

5

,/
E

1-1 1/

I

I

.,~

I-

iii

100

"

10

u

w

II:
II:

~

U

0

I-

u

1.0

10

100

III

7.5

0

0.1

0.1

10.0

u
I

Te:::: 2854°K

0.01

12.5

2

j

TA:::: 25°C

/

},}

"""'""' -

II:

1.0

I

15.0

"

,c.
//

8

20.0
17.5

Z

II:

t

22.5

I-

-Ic.~;'
~~~.~

II:
II:

4

TA=25°CTC = 2854°K-

25.0

r



;:

:3w

.
~

25
20

w

~

15
10

r\

20

40

60

o
80

100

300

700

900

1100

SWITCHING CIRCUIT FOR
RISE AND FALL TIMES

\

~

5.0 V

-

H-

...........

r-

1000n

"'-.. t-...
~

0.1

500

1\ -WAVELENGTH-nm

"-

o

1\
\

1/

Vce

\'\ r-..
\ "r-..
"-

5

L

20

RISE AND FALL TIME
VERSUS COLLECTOR CURRENT

30

V

40

II:

TEMPERATURE _oc

35

/

60

w

/'

0

1\
\
\

/

80

0

LL-

Un-=:

SOURCE GaAS

i-;,:_

1.0

10

IC - COllECTOR CURRENT - mA

5-18

OUT

1300

FAIRCHILD • FPA720 • FPA720A
TYPICAL CHARACTERISTIC CURVES (Cont'd)

TURN-OFF DELAY TIMES

ANGULAR RESPONSE
100

80

1/

w

z

60

w

a:
w

40

~w

a:

:3w

\

/

-100

-20

-60

0

20

60

10

I

,

\

V

Vee" 5.0 V
TA:::: 25°C

(

15

Z
a:
....:J

-

/

20

""0

1\

o

,/'

C

\

/

20

".-

25

I
>

/
/

"(II

>

w

"-

\

1

(II

0

1\

/

TA::: 25°C

'"I

30

/ "\

"
.P-

1\

o

100

ANGLE - DEGREES

o

2
Ie -

3

4

INPUT CURRENT - mA

CIRCUIT FOR TURN-ON
AND TURN-OFF DELAY

TURN-ON DELAY TIMES

w

"-

I
>

:3

\
4

\

w

C
Z

0

Z
:J
....

3

a:

I

vee" 5.0 V
TA= 25°C

,;1>~VOUT

\

2

..
+

"

~

"-

~

H

...........

o

o

4

8

10

m

"6-9016

12

Ie - INPUT CURRENT - rnA

NOTES:
1. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operation.
2. Measured with radiation flux intensity of less than.1 j1W/cm 2 over the spectrum from 0.1 micron to 1.5 microns.
3. Measured at noted irradiance as emitted from a tungsten lamp at a color temperature of 2854°K. The effective photosensitive area is (0.8 mm2).
Illuminance (in lumens/f!') = irradiance H (in mW/cm') x 20 at a color temperature of 2854°K.
4. Measured at an irradiance of 5.0 mW/cm 2 as emitted from a gallium arsenide diode.
5. Matching factor is the ratiO of minimum sensitivity to maximum sensitivity of any two cells.
6. Rise time is defined as the time required for ICE to rise from 10% to 90% of the peak value. Fall time is defined as the time required for ICE to decrease
from 90% to 10% of the peak value.
7. Rating refers to a high current point where collector to emitter voltage is lowest.
8. The center of each element is aligned to ±.010" along the length and ±.005" across the width.
9. Emitter terminal side of phototransistor (sensor array) or anode terminal side of diode (source array) defined by white dot.

5-19

•

FPEIOO
GaAs INFRARED EMITIER
OPTOELE:CTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPE100 is a gallium arsenide infrared light emitting
diode. When forward-biased, it emits an intense, narrow band of radiation peaking at
approximately 900 nm non-visible. The device is packaged on a modified TO-46 header
with a clear plastic lens dome.
This solid state lamp is ideally suited for use in conjunction with silicon photosensors,
since their spectral peaks are closely matched. The FPE100 employs a Planar' process
and is especially designed for high reliability and long life.

•
•
•

HIGH RELIABILITY
LONG LIFE
IDEALLY SUITED FOR USE IN CONJUNCTION WITH SILICON PHOTOSENSORS

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures and Humidity
Storage Temperature
Operating Junction Temperature
Pin Temperature (Soldering, 10 s)'
Relative Humidity at 65°C
Maximum Power Dissipation
Total Dissipation at T A = 25°C
Derate Linearly from 25°C
Maximum Voltages and Currents
VR
Reverse Voltage
IF
Forward dc Current

-10°C to +100°C
-10°C to +100°C
260°C
98 %
150 mW
2 mW/oC
FPE100
3.0 V
100 mA

ELECTRICAL CHARACTERISTICS: TA = 25°C
SYMBOL
VF
BVR

CHARACTERISTIC
Forward Voltage At IF = 100 mA
Reverse Breakdown Voltage (IR = 100 IJ.A)

OPTO ELECTRONIC CHARACTERISTICS @ 'F
SYMBOL

MIN

TYP

MAX

UNITS

1.9

3.0

1.35
6.0

V
V

MIN

TYP

MAX

UNITS

= 100 mA: T A = 25°C

CHARACTERISTIC

10
Po
A
f:>.A
9'/,

Axial Intensity
Infrared Total Power Output
Quantum Efficiency
Spectral Bandwidth
Beam angle at 50% Axial Intensity

f:>.Po/f:>.T
tr
tf

Temperature Dependence of Power Output
Emission Rise Time (IF = 50 mA 10-90%)
Emission Fall Time (IF = 50 mA 10-90%)

0.1

0.3
1.2
1.1
50
75

mW/sr
mW
%
nm
degrees

-0.8
50
60

%/oC
ns
ns
'Planar

5·20

IS

a patented Fairchild process.

FAIRCHILD. FPE100
TYPICAL CHARACTERISTIC CURVES
RADIANT OUTPUT
VERSUS DUTY CYCLE
'00

\

80

r\.

'"

IF~RW~RD I~ 6dom~

-

TA~25°C

-

PULSE WIDTH "'15tzS

I-

"~:>

60

I'-.

0

'"2:

.......

40

~

..............

......
20
NOTE: POWER OUTPUT DROP IS
t-DUE TO HE~T1N? EFrECT'-

o

20

'0

*' 100
"-..
~I- 80
...........
:>

30

~

...............

...............

60

"
~

40

~a:

20

40

-......

60

76

60

~FOR

'"
!;

Jo FOR IF'" 10 rnA ...

./

~

iii

/

60

25

V

'00
80

!;

1/

/

"'~

/

a:

~ '.0

~

"'

~

0'

H4-ft-----h4-Ht-+-++++--+--t+t+--1

0.0',L.-LJ

25

II \
II

a:

760

~

I,
~
800

a:

V/

840

?

/\

75

Z

40

,Ioom~

50lA
'00

60

o
20

IF=100mA

1""-

''""

20

/

IJ \

./

1'-

SENSOR USED
PIN DIODE WITH

'IL ~ ~o" I I

I~
920

\
1\ \

V'

~
880

50~mA

960

1000

FORWARD CURRENT· rnA

i\ - WAVELENGTH - nm

TIME - 60 ns/DIVISION

RADIANT OUTPUT
VERSUS PULSE WIDTH

RADIATION PATTERN

FORWARD CURRENT
VERSUS FORWARD
VOLTAGE (DC)
'00

IF~RW~RDI ~ ~oo~A

\.

"

DUTY CYCLE'" 0.01 %
TA:: 26°C

i'-...

"e

........

60

/
I
I
II

80

I-

.......

;:

!

80

~a:

ffi

1t

>;

~'"

/'

o

~

!/

~~mtl1
; H4-f+-++1-H-44+++-+-++++---I
/

'00

Z
0

75

o

0

"...

",-

~

":

'~!t=t=tl!~

==

'00
TA '" 26°C

, 100

~
a:

2

10

TYPICAL EMISSION
SPECTRUM

'25

==

is

TA - AMBIENT TEMPERATURE _ °C

RADIANT OUTPUT
VERSUS DC FORWARD
CURRENT

~
"'
2:

-

DUTY CYCLE

a:

DUTY CYCLE - %

~

~ !~:. ~~OC
r-

*'

a:

a:

o

,oo~rrn-'-n-nT~~TTr-r-rrrr'

'20

o
!;
"
C

I--..

RADIANT OUTPUT
VERSUS FORWARD CURRENT
(PULSED)

RADIANT OUTPUT
VERSUS TEMPERATURE

15

a:
a:

i'-...

60

II

:>

"a:
Q

40

~
it

40

a:

20
- NOTE :

'.0

I

20

:;~~~~ ~~l~~J::F~~6~- r2.0

3.0

PULSE WIDTH· ms

4.0

/

'.0

0.8
ANGULAR POSITION FROM SOURCE AXIS - DEGREES

5-21

'.0

I
'.2

'.4

FORWARD VOLTAGE - V

1.6

1.8

•

FAIRCHILD • FPE100
TYPICAL CHARACTERISTIC CURVES (Cont'd)
FORWARD VOLTAGE
VERSUS FORWARD CURRENT
(PULSED)

PEAK POWER
DISSIPATION CAPABILITY
100

~===I~==~====~~T~A=~i2~50~C~--

~ 30~

~

~

~

iii

'"
"::;
is

::;

~

I

~ ~~~;~CLE = .01% --+-t+I---,H-H-t1f-t

~

3.0

Hf-Hri--+-+-+++-+-H++-++m-l

-

g

III I-+-Irl+-+-t-ttt-.l

Q

3.0 --16%---1-'<---+-----f------l

1.0

~~~I ~ ,t;

4.0
w

I"

10

•. 0

a: 2.0

'\.
~

~

V

a:
~

:;

II

,.....f-'
1.0

0
1.0

100

10

1000

FORWARD CURRENT - rnA

POWER DISSIPATION
VERSUS AMBIENT
TEMPERATURE

TA' AMBIENT TEMPERATURE· °C

2 AMP LIGHT PULSER

800n

~T
22on
(

3p~

~~LK2N2696

~Pfd
.Olpfd

I

~

soon

FPE100:::S

V

+------.......
l. 2N5148
200n

A light pulser with low voltage Jow average current requirement
Peak current through 2 A
Pulse with::::: 5 JiS
Period between pulses 20 ms
Average current drain 20 mA

5·22

~

200pfd

10000

FPEI06
GaAs INFRARED EMlnER
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPE106 is a gallium arsenide infrared light emitting
diode in a miniature ceramic case having exceptionally stable characteristics. This
device is used in applications where space is limited such as custom tape and card
readers.

•
•
•

•

EXCEPTIONALLY STABLE CHARACTERISTICS
MINITATURE - B5 x 185 x 95 MII,S
SUITABLE FOR PC CARD MOUNTING

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 10 s)
Relative Humidity at 65°C

-40°C to + 100°C
-40°C to +85°C
260°C
98%

FPE106

PIN CONNECTIONS

Maximum Power Dissipation
Total Dissipation at TA = 25 D C
Derate Linearly from 25°C

150mW
2.5 mW;oC

ANODE

CATHODE

~~~
WHITE DOT

Maximum Voltages and Currents
VR
Reverse Voltage
'F
Forward Current

3.0V
100mA

ELECTRICAL CHARACTERISTICS: TA = 25 D C
_

SYMBOL
VF
VR
10
01/2
Apk

CHARACTERISTICS

TYP

MAX

UNITS

1.5

3.0
35
3.5

1.3
6.0
200
80
890

V
V

Forward Voltage
Reverse Voltage

Axial Intensity
Beam Angle at Half Power
Peak Spectral Wavelength

I

• • •_ _m~

MIN

i

5-23

pWjsr

degrees
nm

TEST CONDITIONS
'F = 50 mA
'R=100jJ.A
'F = 50 mA

FAIRCHILD • FPE106
TYPICAL CHARACTERISTIC CURVES

RADIANT OUTPUT
VERSUS DC FORWARD
CURRENT

RADIANT OUTPUT
VERSUS TEMPERATURE
'20

';/e.

'25

100

~

I-

~

~

80

"-,

I'-..

..............

o

!z
"
Q

"a:
w

~

a:

60

~

-

r-- r-..

40

e

26

50

76

.r

:J

/

~

~

1/

50

25

o

'00

V

o

1/

/

20

40

EMISSION SPECTRUM

RADIANT
EMISSION TRANSIENT
RESPONSE

FORIF:::10mA~

80

60~A

.r

'00

II"

"-

..
w

60

~

50

w

26

::la:

11

>

40

~a:

I

/,

20

-d
800

VI

840

,II

\ 1
j\

V_ ./

........

[\..

SENSOR USED
PIN DIODE WITH

IL~~OOi

I~
920

1
1\ \

J \

II

~
880

606m~

,IOJA

IK

75

Z

760

'00

FORWARD CURRENT - rnA

}. FOR IF ::: 100 rnA

o

80

60

TA - AMBIENT TEMPERATURE - °C

'00
}.

1/

w

>

~Wa:

V

75

Z

o

20

o

TA::: 25°C

100

960

I

1000
TIME - 50 ns/DIVISION

" - WAVELENGTH - nm

FORWARD CURRENT
VERSUS FORWARD
VOLTAGE (DC)

RADIATION PATTERN
'00

"~

I

I
I
I

80

I-

iiia:

60

a:

:J
U

0

a:

40

~

20

"s:a:

I
I
/

°0.4
ANGULAR POSITION FROM SOURCE AXIS - DEGREES

0.6

0;8

1.0

1.2

1.4

FORWARD VOLTAGE - V

5-24

1.6

'.8

FPE500·FPE510

GaAs INFRARED EMITTERS
OPTOELECTRON ICS PROD UCT GROUP

GENERAL DESCRIPTION - The FPE500jFPE510 are gallium arsenide infrared emitting diodes. When forward-biased, they emit an intense, narrow band of radiation peaking at approximately 900 nm (non-visible). The devices are packaged in TO-18 style
hermetically sealed packages with a glass lens.

FPE500

FPE510

These solid state lamps are ideally suited for use in conjunction with silicon photosensors, since their spectral peaks are closely matched. The FPE500jFPE51 0 use a Planar' process and are especially designed for high reliability and long life.

•
•
•
•

•

•

HIGH RELIABILITY
LONG LIFE
IDEALLY SUITED FOR USE IN CONJUNCTION WITH SILICON PHOTOSENSORS
APPLICATIONS INCLUDE: PUNCHED CARD AND PAPER TAPE READING.
OPTICAL SHAFT ENCODERS, CHOPPERS. HIGH-SPEED HIGH VOLTAGE
ISOLATION SWITCHES AND HIGH SPEED OPTO-ELECTRONIC SIGNAL LINKS
HERMETIC METAL PACKAGE FOR STABILITY AND RELIABILITY

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65°C

-65°C to +200°C
-65°C to +125°C
260°C
85%

Maximum Power Distribution
Po
Power Dissipation
Derate Linearly from 25°C

SYMBOL
VF

= 25°C,

(+)DCATHODE (-)
o

3.0V
150 mA
IF

= 100 mA

CHARACTERISTIC

MIN

Forward Voltage

TYP

MAX

1.35

1.7

UNITS

Reverse Breakdown Voltage

3.0

6.0

V

10

Axial Intensity
FPE500
FPE510

3.0
0.3

10
1.0

mW/Sr
mW/Sr

Po

Infrared Total Power Output

~PoI~T

Temperature Dependence of I?ower, OU,tput

BW

Spectral Bandwidth

8 th

Viewing Angle to Half Intensity
FPE500
FPE510

1.2
-0.8

Emission Rise and Fall Time
5-25

TEST CONDITIONS

V

BV R

tr,tf

0

250mW
2.5 mW;oC

Maximum Voltages and Currents
VR
Reverse Voltage
Forward Current
IF
ELECTRICAL CHARACTERISTICS: TA

ANODE

IR

=

IF

= 50

lOOIlA

mW
%/oC

50

nm

9.0
30

degrees
degrees

10

ns

mA. 10-90%

FAIRCHILD. FPE500 • FPE510
TYPICAL CHARACTERISTIC CURVES

RADIATION PATTERN

POWER DISSIPATION VERSUS
AMBIENT TEMPERATURE
250

~

••

100

\.

200

~

'\.
'\

- '50
0

°
0

'\

0

0

50

26

'00

120

"~R~ARJ ~ 6~0 ~A_

PULSE WIDTH == '5 ps

TA == 25°C

\.

',"

i

-

f
o

8O

~

"-

g

r-...

40

-....

NOTE: Power output drop is
00

Idue jO hei'ingl

'0

r-- :U

100

t'-..
80

affer

>

~

t--

t-

60

0.3

.,

40

o.

7.

26

50

5

90

,

/"

',"
;

V

Z
0

/

0

~

i

o

20

80

80

> lORI"2

solmA
'00

.

70

w

~

'0

~
~

30
20

FORWARD CURRENT - mA

760

V

If \

50

';
0

,bo m~ 5o~mA

/~

75

z

6O

o
'00

30501003005001k 3k5kl0k

RADIANT EMISSTION
TRANSIENT RESPONSE

~ lOOmA

80

II

V

V'

J

1\

\

v' I'-- _I'-b
1

PIN DIODE WITH

~
800

840

880

"

920

). - WAVELENGTH - nm

5-26

RL=50Q

960

\

\

SENSOR USEO

'0
40

3 Ii 10

FORWARD CURRENT - MA

~ 40

5//
o

rY

).FORIF=10mA

TA = 12 50C

,

ac

TYPICAL EMISSION SPECTRUM
'00

'00

0.0

'00

TA - AMBIENT TEMPERATURE -

12

V

0.0
0.0 3

O

DUTY CYCLE - %

RADIANT OUTPUT VERSUS
DC FORWARD CURRENT

/

'.0

o. 6

o
40

20

/

'0
6. 0
3.0

~

20

I

RADIANT OUTPUT VERSUS
FORWARD CURRENT (PULSED)

C

I'--

0.8

FORWARD VOLTAGE - V

'00
50 I-- TA 26"C
lSE WIDTH - 1
30
DUTY CYCLE = 2

~

5

0

0.4

ANGULAR POSITION FROM SOURCE AXIS - DEGREES

RADIANT OUTPUT VERSUS
TEMPERATURE

\

I

J

°

126

76

RADIANT OUTPUT VERSUS
DUTY CYCLE

80

~

°

'\

TA - AMBIENT TEMPERATURE - °C

~

FORWARD CURRENT VERSUS
FORWARD VOLTAGE (DC)

1000
TIME - 50 ns/OMSION

FPE520 · FPE530
GaAs INFRARED EMlnERS
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPE520 and FPE530 are gallium arsenide infrared
emitting diodes. When forward-biased. they .emit an intense. narrow band of radiation
peaking at approximately 940 nm (non-visible). The devices are packaged in TO-18
style hermetically sealed packages with a glass lens.

FPE520

FPE530

These solid state lamps are ideally suited for use in conjunction with silicon photosensors. since their spectral peaks are closely matched.

•
•
•
•

•

HIGH RELIABILITY
LONG LIFE
IDEALLY SUITED FOR USE IN CONJUNCTION WITH SILICON PHOTOSENSORS
APPLICATIONS: PUNCHED CARD AND PAPER TAPE READING. OPTICAL SHAFT
ENCODERS. CHOPPERS. HIGH-SPEED HIGH VOLTAGE ISOLATION SWITCHES
AND HIGH-SPEED OPTOELECTRONIC SIGNAL LINKS
HERMETIC METAL PACKAGE FOR STABILITY AND RELIABILITY
CONNECTION DIAGRAM
(BOTTOM VIEW)

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures
Storage Temperature
Operating Temperature
Pin Temperature (Soldering. 5 s)
Relative Humidity at 85°C
Maximum Power Dissipation
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

-65°C to +200°C
-65°C to +150°C
260°C
85%

ANODE

G

250 mW
2.0 mW/oC

Maximum Voltages and Currents
VR
Reverse Voltage
IF
Forward Current

I+I~CATHODE

3.0V
150 mA

ELECTRICAL CHARACTERISTICS: TA = 25°C. IF = 100 mAo unless otherwise specified
SYMBOL

CHARACTERISTIC

VF

Forward Voltage

VR

Reverse Voltage

10

Axial Intensity

3.0

TYP

MAX

1.35

1.7

UNITS

V

FPE520

10

50

mW/sr

1.0

5.0

mW/sr

5.0
-0.8

'YorC

940
50

nm
nm

Infrared Total Power Output
Temperature Dependence of Power Output

-'pk
BW

Peak Spectral Wavelength
Spectral Bandwidth

(lth

Viewing Angle to Half Intensity
9.0

degrees

FPE530

30

degrees

500

5-27

IR

=

IF

= 50 mA.

l00pA

mW

FPE520
Emission Rise and Fall Time

TEST CONDITIONS

V

6.0

FPE530
Po
to PO/ to T

t r• tf

MIN

ns

10-90%

1'1

FAIRCHILD. FPE520. FPE530
TYPICAL CHARACTERISTIC CURVES

POWER DISSIPATION VERSUS
AMBIENT TEMPERATURE

FORWARD CURRENT VERSUS
FORWARD VOLTAGE (DC)

RADIATION PAITERN

260

100

""

\

~

~,

....

'\

i5

o

25

50

::0

'\.

o

~

75

100

~

~

80

",
5

..
....

0.4

RADIANT OUTPUT VERSUS
TEMPERATURE

f

-

.......

....

~
o
!Z

60

"

40

.......

:!

o

i'-..

"a:

r--..

a:

........

20

!

Idue

80

40

~

20

20

30

40

o

25

50

~
a:

25

V

o
o

/

",

/

0 1

V
1

3

5 10

30501D03005001k 3k5kl0k

FORWARD CURRENT - rnA

RADIANT EiMISSION
TRANSIENT RESPONSE

, JOR"F2_

70

u;

60

'"
~

"

,
w

It
illa:

50

~

~

10
60

80

FORWARD CURRENT - rnA

100

II \

o

740

860

II

25

\

fJ \

Ij

V

,/

'-

\

"'- r--

SENSOR USED

~

PIN DIODE WITH

R,L~~OOI

,,~

~
800

50

~

a:

I

20

r.

/~

75

"~ I

30

l~O~A 50~mA

50 'mA

V

'"z

~ 40
a:

40

100

~ 100mA

80

z

0

V
20

/

1.0

0.01

100

76

"FOR IF = 10 rnA

/

~

60

90

75

L

0.5
0.3

100

/'

50

o

!Z

:!:
o
<
~
>

EMISSION SPECTRUM

~125OC

o

"a:

10
5.0
3.0

fA - AMBIENT TEMPERATURE - °C

I 100

~

.......

1 /.As
DUTY CYCLE == 2%

0.03

"

o

r-

t-- PULSE WIDTH =

~ 0.05

RADIANT OUTPUT VERSUS
DC FORWARD CURRENT

~
5

....

~

DUTY CYCLE - %

TA

r--.

f-- fA =:: 25°C

30

~

jO hetn91 effe1ct

10

125

r-....

60

~

a:

NOTE: Power output drop is

,

"

r-....

1.6

1.2

RADIANT OUTPUT VERSUS
FORWARD CURRENT (PULSED)
100
50

100

0.8

FORWARD VOLTAGE - V

120

::0

::0

"~

15 JlS

\

0

~

'=

I
J

ANGULAR POSITION FROM SOURCE AXIS - DEGREES

'F~RJAR~ ~ 5~0 ~A-

PULSE WIDTH
fA '= 26°C

I

20

125

RADIANT OUTPUT VERSUS
DUTY CYCLE

\

40

~

a:

fA - AMBIENT TEMPERATURE - °C

100

60

a:
a:

'\
o

I

80

920

980

A - WAVELENGTH - nm

5·28

1040

1100
TIME

~

500 ns DIVISION

I

FPTIOO/A/B-FPTIIO/A/B
GENERAL PURPOSE SILICON PLANAR*
PHOTOTRANSISTOR
OPTOE LECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPTlOO and FPTll0 are 3-terminal npn Planar*
phototransistors which have exceptionally stable characteristics and high illumination
sensitivity. The availability of the base pin gives wide latitude for flexible circuit design.
The case is a special plastic compound with transparent resin encapsulation which exhibits stable characteristics under high humidity conditions. The controlled sensitivities offered in the A and B versions gives the circuit designer increased flexibility .

PIN CONNECTIONS

• EXCEPTIONALLY STABLE CHARACTERISTICS
• CONTROLLED SENSITIVITIES

BASE
EMITIERO

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures/Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65°C
Maximum Power Dissipation (Notes 1 and 2)
Total Dissipation at TC = 25°C
Total Dissipation at TA = 25°C
Maximum Voltages and Current (Note 5)
VCBO Collector to Base Voltage
VCEO Collector to Emitter Sustaining Voltage (Note 3)
IC
Collector Current

~

4~o

-55°C to +100°C
-55°C to +85°C
260°C
98%

?>

COLLECTOR

y ~_080FLAT

200 mW
100mW
50V
30 V
25 mA

ELECTRICAL CHARACTERISTICS: TA = 25°C
FPT100jNB
SYMBOL

FPT110jNB
UNITS

CHARACTERISTIC
MIN

TYP

MAX

0.25
0.025

25
0.5
100

TEST CONDITIONS

TYP

MAX

0.25
0.025

25
0.5

nA
J1A

2.0
1.0

100

0.6

nA
J1NmWjcm'

MIN

ICBO
ICBO

Collector Dark Current
Collector Dark Current

ICEO
RCB

Collector Dark Current
Responsivity (Tungsten)

0.6

2.0
1.6

RCB

Responsivity (GaAs)

1.8

4.8

1.8

3.0

J1AjmWjcm'

ICE(II)

Photo Current (Tungsten)

0.2

1.4

0.2

.88

mA

ICE(lt)

Photo Current (GaAs)

0.6

4.2

0.6

2.7

mA

tr
tf
VCE(sat)

Light Current Rise Time
Light Current Fall Time
Collector to Emitter
Saturation Vollage
Collector to Base Breakdown
Voltage
Collector to Emitter
Sustaining Voltage
Emitter to Collector
Breakdown

BVCBO
VCEO(sus)
BVECO

2.8
2.8
0.16

2.8
2.8
0.16

0.3

J1S
J1S

0.33

V

50

120

50

120

V

30

50

30

50

V

7.0

V

7.0

*Planar

5-29

VCB = 10 V (Note 5)
VCB= 10V, TA =65°C
(Note 5)
VCE = 5.0 V (Note 5)
VCB=10V
(Notes 3 and 8)
VCB=10V
(Notes 4 and 8)
VCE = 5.0 V
H = 5.0 mW/cm'
(Notes 3 and 7)
VCE = 5.0V
H = 5.0 mWjcm 2
(Notes 4 and 7)
(Note 6)
(Note 6)
IC = 500J1A
H = 20 mWjcm'
IC = 100 J1A (Note 5)
IC = 1.0 mA (pulsed)
(Note 5)
IE = 100 J1A (Note 5)

IS

a patented Fairchild process.

•

FAIRCHILD. FPTlOO/A/B • FPTl10/A/B
ELECTRICAL CHARACTERISTICS: TA ~ 25°C unless otherwise noted (Cont'd)
The following values affect the A and B versions only:
SYMBOL

CHARACTERISTIC

ICE(lt)'

ICE(lt)

MIN

MAX

Photo Current (Tungsten Source)
FPT100A
FPTll0A

1.0

3.0

Photo Current (Tungsten Source)
FPT100B
FPTll0B

1.3

MIN

MAX

UNITS

0.6

1.8

rnA
rnA

VCE = 5.0 V (Note 3)
H ~ 5.0 rnW/crn'

0.8

1.6

rnA
rnA

VCE ~ 5.0 V (Note 3)
H ~ 5.0 rnW/crn'

2.6

TEST CONDITIONS

NOTES:
1 These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
2. These ratings give a maximum junction temperature of a5°C and junction to case thermal resistance of 300°C/W (derating factor of
3.33 mWjOC), and a junction to ambient thermal resistance of 60QoCjW (derating factor of 1.67 mW;OC).
3. Measured at noted irradiance as emitted from a tungsten filament lamp at a color temperature of 2854°K. The effective photosensitive area is typically

1.25 mm' (FPTlOOA,lB) and 0.78 mm' (FPTll0A/B).
4. These are values obtained at noted irradiance as emitted from a GaAs source at 900 nm.
5. Measured with radiation flux intensity of Jess than .1 /lWjcm2 over the spectrum from 100 to 1500 nm.
6. Rise time is defined as the time required for ICE to rise from 10% of peak value. Fall time is defined as the time required for ICE to decrease from 90%
to 10% of peak value. Test conditions are: ICE = 4.0 mA, VCE = 5.0 V, RL ::= 1000, GaAs Source.
7. No electrical connection to base lead.
B. No electrical connection to emitter lead.

TYPICAL ELECTRICAL CHARACTERISTIC CURVES

FPT100/A/B PHOTO
CURRENT CHARACTERISTICS

FPT110/A/B PHOTO
CURRENT CHARACTERISTICS

.01 H+.Iol"'l-++++-++H++++tI--+-t-H-j

·01I7"f-H+-H+tH-+++f-+--HH+++++I

.OO'~0~'~~'~'~-'~0~'~0~'~00~'~0~0~'0~OO~W5~OOO
ILLUMINATION-FT -CD

ILLUMI NA TION-FT ·-CU

RADIATION mW/cm2

IRRADIANCE mW/cm 2

COLLECTOR CURRENT
VERSUS COLLECTOR VOLTAGE

COLLECTOR
BASE CHARACTERISTICS
18 r T
-AT".'-5o'e--'----'---'-'1---"1---"---"-'
TC'" 2854°K -j--r~r,-o-to,-,-.
Wc-,,"c,;t--(

l:'0-mc:' m

15~-+-4--t,~-4~~-F~~F=~

1I

"-

I

a

oc

~

a

~

1

1

1

1

i 12 tj~/tj:;:;:::~~1:50:,,~IO':7~.51~-mw='~'m:'jj
V

8
I

E

s.5mW/cm2___

V

6.2mW/cm2

v

3.9mW/cm2

./

fl

~

V

~.I

J

I'

50

10

'0

30

40

1

f~ "" 2.~ mW/cm 2

I I I

11--,--,---,

1.7mW/cm2

oV

1

100 fc"" 5 mW/cm 2

./

~

-

V /

I'

o ,--,,'---1.-.1.-...1---'--'----'-

50

-0.75 -0.5 -0.25 0

Vce - COLLECTOR VOLTAGE

10

20

30

40

50

Ves - COLLECTOR TO BASE VOLTAGE

5-30

60

70

FAIRCHILD. FPT100/A/B • FPT110/A/B
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (Cont'd)

COLLECTOR DARK CURRENT
VERSUS TEMPERATURE

ANGULAR RESPONSE
100

90
TA=25°C

80
70

60

I
V

v "-

40

0

100

90

\

1000

V

1\

I
I

50

0

'0

0/

\

0

20

40

60

V ~.

-20

20

30

5

\\

2

i'- ol,6kh

0.1

/'

,

>

1'--

Sr

n

r'-.. ~OIQ
01

Vcc=S.OV
TA =2SvC

25

RL

\

3

o

I

\

9

80

40

100
).. - WAVE LENGTH - nm

TURN OFF
DElAY TIMES FOR CIRCUIT

1

vcU5h 1v\ \ "-

I

TEMPERATURE _ "C

RISE AND FALL TIME
VERSUS COLLECTOR CURRENT

TA '" 2SoC

r--+---f---r-t--+f--+-f+-+--j--+

o, /

80100

ANGLE - DEGREES

8

50
40

V//

1\
-20

/

1

60

"C~/

/

\

o

,

I~c..<:."

\
\

-100-80 -60 -40

70

ril\~;,0"/

100

/

20

SPECTRAL CHARACTERISTICS

10 k

g

20

~

15

.----

Vee =, 5.0 V
TA = 2S C

<

(

\

o
z

o
z

~

~

,

\

>

z

~

\

,

~

10

j

J

1

r--

1.0

TURN ON
DELAY TIMES FOR CIRCUIT

o

10

o

o

Ie - COLLECTOR CURRENT - rnA

Ie-COLLECTOR CURRENT -rnA

SWITCHING CIRCUIT
FOR RISE AND FALL TIMES

~

-.... r--

o
Ie - COLLECTOR CURRENT -rnA

CIRCUIT FOR
TURN ON AND TURN OFF DATA

Vee

VOUT
- 0 OUT

TTL 1/6···9016

RI

SOURCE

GaAs

5-31

•

FPTIOI
HERMETIC COAXIAL SILICON PHOTOTRANSISTOR
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPT1 01 is a miniature phototransistor in a hermetic
welded case. A large photosensitive base combined with a flat window affords exceptional sensitivity without the need for critical alignment. In tape and card reader applications, the flat window permits flush mounting in the wear-plate thereby minimizing
cross-talk. The spectral response, extending from 400 to 1100 nm, is compatible with
daylight, tungsten and gallium arsenide sources.

•
•
•
•

~

11

PRECISION OPTICAL ALIGNMENT
MINIATURE-80 MILS IN DIAMETER
SUITABLE FOR PC BOARD MOUNTING
APPLICATIONS INCLUDE: TAPE AND CARD READERS

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures and Humidity
Storage Temperature

-65°C to +150°C
-65°C to +150°C
260°C
98 %

Operating Temperature
Pin Temperature (Soldering, 10 s)
Relative Humidity at 65°C

Maximum Power Dissipation
Total Dissipation at T C = 25°C

75 mW
0.6 mW/oC

Derate linearly from 25°C
Maximum Voltages and Currents (Note 1)
VCEO
Collector to Emitter Sustaining Voltage
Emitter to Collector Sustaining Voltage
VECO
IC
Collector Current

FPT 101

30 V
5V
25 mA

ELECTRICAL CI-jARACTERISTlCS: T A = 25°C
SYMBOL
VCEO(sus)

CHARACTERISTIC
Collector-Emitter Sustaining Voltage

MIN

TYP

30

60

MAX

UNITS
V

BVECO

Emitter-Collector Breakdown Voltage

7.0

VCE(sat)

Collector Saturation Voltage (Note 2)

0.25

0.3

V

'CEO

Collector Dark Current

2.0

100

nA

'CE(lt)

Collector Photo Current (Notes 2 & 4)

ICE(lt)

Collector Photo Current (Notes 2 & 4)

08

V

3.5

mA

0.8

mA

TEST CONDITIONS

= 0.1 mA, H < 0.1 /.lW/cm2
IC =0.1 mA, H < 0.1 /.lW/cm 2
IC =0.4 mA, H = 20 mW/cm 2
VCE = 5.0 V, H < 0.1 /.lW/cm 2
VCE =5.0 V, H = 20 mW/cm 2
VCE = 5.0 V, H =5.0 mW/cm 2
IC

NOTES:
1.
2.
3.
4.

These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operation.
I rradiation source is an unfiltered tungsten lamp operated at 2854° K color temperature. Unless otherwise stated, all H values refertothis color temperature.
Switching time is defined here as the 10% to 90% rise time of ICE for an irradiance step input. The rise and fall times are essentially equal.
Silicon radiometric photocurrent efficiency with typical GaAs irradiance is approximately three times greater than with tungsten at 2854°K
color temperature. Therefore, all graphs with H as a parameter or variable will apply for GaAs irradiation if the H values are divided by three.
5. Emitter is connected to the case.

5·32

FAIRCHILD. FPT1 01
TYPICAL ELECTRICAL CHARACTERISTIC CURVES

PHOTO
CURRENT VERSUS ANGLE
OF INCIDENCE

RELATIVE SPECTRAL RESPONSE
100

100
90

I

80

"
'"z
:r
w

70

50

>

40

'"w

~

/

60

:3

\

'"z

60

~

1

'"

300

500

900

700

1100

-75

2.0

OJ

1.0

'"'"::>
>:r
C>
::J
I

"E

V

ffi

~

'"'"::>
u

H 10mW/cm 2

/"

~

5mW/cm z

::J

0.5

9

10

L
5.0

//

4.0

1/

3.0

f/

2 .0

H=l mW/cm2
1.0

o

10
veE

~

12

14

I

I

I

I

1

1

1

I ~:

Ho;3dmw/lm

6.0
~ 5.0

4.0

::J
I

3.0

1

H=5mW/cm2

1.0

i.O

I

'"a 0.6

/

I'

"E

H-20mwcm2~

1.0

w

I

0.05

0.1

0.2

0.3

0.4

0.5

I

g o.1
w

0.6

~
0.7

Vce(SAT) - COLLECTOR·EMITIER VOLTAGE - v

W/C

V

0.05

1
0.0 0

5.0

.--::: ~

H-30mWcm2

~
::>

~

_~~~:wcf~ ~
1.0

_._- --_.-

II V/

0.5

:r

C>
::J

II.

C>
::J

I

r j'

SATURATION
VOLTAGE CHARACTERISTICS

~

~

Il//

a'" o. 5

H=1~W/c~2

'j

V

5

TA = 125°C

>-

I

I I

H-

E

HH-3~mWcm2~

:r

g o. 1

H=10mW/cm.2

VCE - COLLECTOR-EMITTER VOLTAGE -

of

I

H-SmW/cm2

-

10

>-

1::
0::

~

C>
::J

II .,,-

TA=85°C

H=10mW/cm2

JdwJ-

o

6.0

L.---'"

I

//
'/

II

2.0

SATURATION
VOLTAGE CHARACTERISTICS

2-

50
V

H-20mW/cm.2

~

!d

~25OC

0
0

H =10m w/cm 2

I

40

30

0

5

10

TA=26°C

0.020

"E

H=20mW/cm2

I

75jW
20

COLLECTOR-EMITTER VOLTAGE -

TA=

VeE - COLLECTOR-EMITTER VOLTAGE-V

10

-

I I

1

TA = 25"C

COLLECTOR
CHARACTERISTICS

H=30mW/cm2_

1

r--

10

VCE -

o

COLLECTOR-EMITIER VOLTAGE-V

5.0

OJ

-

:..-

SATURATION
VOLTAGE CHARACTERISTICS

~
a:

"

o

0

0.2

0.1

DEGREES

o

75

TA=85°C

"w
!d

45

COLLECTOR
CHARACTERISTICS

~H=20m~

H

'"

!d

20

I

~

\

;;:

\
¢ - ANGLE -

TA~25'C!.1

>-

1\

10

w

-45

H'''30m~cm2

"E

15

I

/

o 1/

1300

:r

C>
::J

\

1/

20

COLLECTOR
CHARACTERISTICS

5.0

'"'"
>-

I

II-WAVELENGTH-nm

10

ffi

\

I

40

10

o

20

I

>-

OJ

'"w

>

\

"E

\

::>

:3

V

20

/
II

'w"I
:r

I
II

30

/ 1'\

80

\

MAXIMUM POWER
LIMITS
2.

VIII
~/ I

0.1

lilt.

I

H-10,mw cmz

rill

-w o. 1

H=SjWCm 2

hili

!d
.05

0.2

0.3

0.4

0.5

0.6

0.7

Vce(SAT)- COLLECtOR-EMITTER VOLTAGE - V

5-33

02

o

~1

H=10 mWCj2
1

H~5TWcmi

~2

0.3

0.4

0.5

~6

VCE (SATj- COLLECTOR-EMIITER VOLTAGE -

~7

V

•

FAIRCHILD. FPT1 01
TYPICAL ELECTRICAL CHARACTERISTIC CURVES (Cont'd)

LIGHT
CURRENT VERSUS
IRRADIANCE

LIGHT
CURRENT VERSUS
IRRADIANCE
1.0

1.0

I

'",

TIA ~ 1'5 O C

>-

~

0.1

TA

~

V

85OC:x:

TA"B5°C

/

:I:

>6

'//

"TA ~ 25°C

/

/

Tft 125°C
0.1

0.05

"
OJ
::l

'/

V

E

a:
a: 0.05
u
>-

II

01/

0.01

0.01

~O.005 I~

VeE

0;;

SV
0.005

/

I~

"TA

25°C
VeE = 25 V

!d

III

0.00 1
0.5 1.0

0.1

III

0.00 1
0.1

50 100

5.0 10

0.5 1.0

H -IRRADIANCE - mW/cm1

DARK CURRENT
CHARACTERISTICS

I

I- 10-ti

iii

VCE

~ 10-1

"
(J

~ 10-

Cl

I la-

o

~,o-

!d

/
L '/

~

LIGHT CURRENT
VERSUS TIME

v/
V

10- 4

:I:

3.0

20

OJ
::l

d

40

I

"

KEI~5V

://
"

v

>-

60

80

\

\

2.0

I
1.0

10-

10-20

50 100

5.0 10

H-IRRADIANCE-mW/cm2

l

/

100

\
0.2

AMBIENT TEMPERATURE _DC

0.6

0.4

" '-..

0.8

1.0

t-TIME- 115

SWITCHING TIME
VERSUS LIGHT
CURRENT

SWITCHING TIME
VERSUS
LIGHT CURRENT
26
22

18

14

10

2
0.01
ICE (It) - LIGHT CURRENT - mA
(NOTE 3)

I

Vee =5V

r--- R),Li

",
\.,
0.050.1

Rl'" 500 n

d'0~'

0.5 1.0

5.0 10

ICE (It) - LIGHT CURRENT - rnA
(NOTE 3)

5-34

FPTI02
HERMETIC COAXIAL SILICON PHOTODIODE
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPT102 is a miniature light-sensing diode in a
hermetic, welded case. In the reverse-bias mode of operation, excellent photocurrent
linearity is obtained. In the photovoltaic mode, the open-circuit voltage varies in a
logarithmic manner being most sensitive to low-level light variations.

•
•
•
•
•

•

SENSITIVE AT LOW LEVEL LIGHT APPLICATIONS
EXCELLENT PHOTOCURRENT LINEARITY
FAST RESPONSE TO LIGHT PULSES
PRECISION OPTICAL ALIGNMENT
MINIATURE-SO MILS IN DIAMETER

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures and Humidity
Storage Temperature
Junction Temperature
Pin Temperature (Soldering, 10 s)
Relative Humidity at 65°C

-55°C to +150°C
-55°C to +100°C
260°C
98 %

Maximum Power Dissipation
Total Dissipation at T CO 25°C
Derate Linearly from T CO 25°C

75 mW
0.6 mW/oC
FPT102

Maximum Voltages
VR
Reverse Voltage

50 V

ELECTRICAL CHARACTERISTICS: TA 0 25°C
SYMBOL
BV

CHARACTERISTIC

Breakdown Voltage
Open Circuit Voltage (Note 1)
VOC
Dark Current
IR
Photo Current (Note 1)
IL
Short CirCUit Current (Note 1)
IL(sc)
R(Tungsten) Responsitivity (Notes 1 & 2)
Responsitivity 0.9).1. (Note 2)
R@0.9).1.
Open Circuit Capacitance
Co
CR
Reversed Bias Capacitance
Responsitivity (absolute) at
R(max)
Spectral Peak .(Note 2)
NEP
Noise Equivalent Power (Note 2)
D
Detectivity (Note 2)

MIN

TYP

50
380

120
400
0.1
20
20
1.0
3.0
70
20
0.6

12
12
0.6

1.0 x 10. 14
8.8 x 10 '2

5-35

MAX

25

UNITS
V
mV
nA
).1.A
).1.A
).1.A/mW/cm 2
).1.A/mW/cm 2
pF
pF
A/W

W
cmYHZ
--W--

TEST CONDITIONS
IR 0 5.0 ).1.A, H ~ 0.1 ).1.W/cm 2
No olas, H c 20 mW/cm'
V R 0 -10.0 V, H ~ 0.1 ).1.W/cm 2
V R 0 -10.0 V, H 020 mW/cm 2
No bias, H 0 20 mW/cm 2
No bias, T CO 2854°K
No bias, GaAs
VR 0 0, H"" 0.1 mW/cm 2
VRo-10 V, H"" 0.1 ).1.W/cm 2
V ROO, " 0 0.80 ).1.
V R 0-10 V, " 00.80).1., ilf 0 1.0 Hz
VR 0 10 V," 0 0.80).1., f 01.0 kHz,
ilf 0 1.0 Hz

FAIRCHILD. FPT1 02
TYPICAL ELECTRICAL CHARACTERISTICS

o.

TYPICAL VOLTAGE
VERSUS CURRENT
CHARACTERISTIC

•

> 0.4
I

w

g

-

g

0.2

,

TYPICAL SHORT
CIRCUIT CURRENT
VERSUS IRRADIATION
30

/

I
~

z

-..... ........
'\

w

~

,

1

~
I

~
~

30 mW/em'

'~Imw/T\
\

10

20

Il - LIGHT CURRENT -

5

~

10mW/cm1

o
o

20

10

1/

30

/

o

300

\

/

10

20

\

I

0.5

60

1 1 00

). -WAVELENGTH-nm

I
I

~ 40

i
,300

20

o

I
i~

\

-15

0

- ANGLE -

15

3.0

I

1\

\

2.0

~

I

45

DEGREES

1.0

1'75

I
II

\
0.2

0.4

0.'

t-TlME- JlI

NOTES:
1. Irradiation source is an unfiltered tungsten lamp operated at 2854°K color temperature.
2. Sensitive Area = 7.75 x 10- 3 cm 2, (Response at metalization is negligible.)

5-36

.0

10

v-

I

V
~

4.0

E

1\
·46

5.0

TYPICAL LIGHT
CURRENT VERSUS TIME

~

/

·76

1.0

IRRADIANCE _ mW/em'

5.0

1\
\

I

w

1\
\
900

0.1

/ 1,\

80

~

700

o

30

TYPICAL PHOTO
CURRENT VERSUS ANGLE
OF INCIDENCE

V

500

VV

H-

~
~

I
II

//

V

100

80

0

/

1/

pA

100

40

V

I

g

RELATIVE
SPECTRAL RESPONSE

80

V

u

~

TYPICAL OPEN
CIRCUIT VOLTAGE VERSUS
IRRADIATION
0.'

f'..
0.8

1.0

FPT120/220/320-FPT130/230/330
HIGH SENSITIVITY SILICON PHOTOTRANSISORS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPT120!220!320 FPT130!230!330 are silicon nitride
protected npn Planar· phototransistors having exceptionally stable characteristics
and high illumination sensitivity. The case is made of a special plastic compound
with transparent resin encapsulation. The controlled sensitivities offered in the 230,
330, 220 and 320 versions gives the circuit designer increased flexibility.

•
•

•

HIGH ILLUMINATION SENSITIVITY
AVAILABILITY OF BASE-PINS FOR FLEXIBLE CIRCUIT DESIGN

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures/Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering. 10 s)
Relative Humidity at 65° C

-55°C to +100°C
-55° C to +85° C
260°C
98 %

Maximum Power Dissipation (Note 1)
Total Dissipation at T C = 25° C
Derate Linearly from T C = 25° C
Total Dissipation at T A =25° C
Derate Linearly from T A = 25° C

200 mW
3.33 mWrC
100 mW
1.67 mWrC

Maximum Voltage and Currents
VCEO
Collector to Emitter Sustaining Voltage (Note 4)
IC
Collector Current

FPT130
FPT230
FPT330

FPT120
FPT220
FPT320

20 V
25 mA

ELECTRICAL CHARACTERISTICS: T A = 25°C
FPT /120/220/320
SYMBOL

UNITS
MIN

VCEO(sus)

Collector-Emitter Sustaining Voltage (Note 4)

BVECO

Emitter-Collector Breakdown Voltage (Note 4)

VCE(sat)

ICE(lt)

Collector-Emitter Saturation Voltage,
Tungsten Source (Note 2)
Collector Dark Current (Note 4)
Photo Current, Tungsten Source (Note 2)

ICE(lt)

Photo Current, Tungsten Source (Note 2)

ICE(lt)

Photo Current, GaAs Source (Note 3)

tr
tf

Ught Current Rise Time (Note 5)
Ught Current Fall Time (Note 5)

ICEO

FPT /130/230/330

CHARACTERISTIC
TYP MAX

20

50

MIN
20

0.4

0.25

0.b5

10
1.5

100
0.4

7.5
0.7

4.5
18
18

50

5.0

5.0

0.7

TEST CONDITIONS

TYP MAX
V

IC = 1 mA (Pulsed)

V

I EC =100/-LA

0.25

0.55

V

iC

10
0.9

100

nA
rnA

V C C 5.OV
V CE =5.0V

4.5

rnA

VCE =5.0V H~5 mW!cm 2

2.7

mA

VCE=5.0VH~1

18
18

Ils

~

i rnA

H

~

H~1

20 tnW!crn'

mW!cm 2

mW!crn 2

IlS

·Planar is a patented Fairchild process.

5-37

FAIRCHILD FPT120A • FPT120B • FPT120C • FPT130A • FPT130B
ELECTRICAL CHARACTERISTICS: TA = 25°C
FPT120A
MIN TYP MAX

CHARACTERISTIC

SYMBOL
ICE(lt)

Photo Current, Tungsten Source (Note 2)

1.5

ICE(lt)

Photo Current, Tungsten Source (Note 2)

2.0

ICE(lt)

Photo Current, Tungsten Source (Note 2)

16

FPT130A
UNITS
MIN TYP MAX

4.5

0.9

4.0

1.2

FPT120B

TEST CONDITIONS

2.7

rnA

VCE = 5.0 V
H = 1 rnW/crn2

2.4

rnA

VCE=5.0V
H = 1 rnW/crn2

rnA

VCE = 5.0 V

FPT130B

FPT120C
25

H

=5

mW/cm'

NOTES:

1. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
2. Measured at noted irradiance as emitted from a tungsten filament lamp at a color temperature of 2854°K. The effective photosensitive area is typically
1.25 mm' (FPT120NB) and 0.78 mm' (FPT130NB) .
. 3. These are values obtained at noted irradiance as emitted from a GaAs source at 900 nm.
4. Measured with radiation flux intensity Of less than .1 J.1W/cm 2 over the spectrum from 100-1500 nm.
5. Rise time is defined as the time required for ICE to rise from 10% to 90% of peak value. Fall time is defined as the time required for ICE to decrease
from 90% to 10% of peak value. Test conditions are: VCE = 5.0 V, ICC = 4.0 mA, RL ~ 100 n, GaAs source.

TYPICAL ELECTRICAL CHARACTERISTIC CURVES
FPT 120A/120B/12OC
COLLECTOR CURRENT
VERSUS COLLECTOR VOLTAGE

f.-

FPT 130A/130B
COLLECTOR CURRENT
VERSUS COLLECTOR VOLTAGE

-

H= 1.60

-

H = 1.20

yoV
0

H 1=

I
12

16

HJ33

y-

o. ~o mW/cm2

I

H=1.S7

/'-

H = o.so

0

20

H 1=0.6omw/cm2

I

".-

T
12

0

16

20

VCE -COLLECTOR VOLTAGE-V

VCE-COLLECTOR VOLTAGE-V

COLLECTOR-EMITTER
SATURATION VOLTAGE VERSUS
COLLECTOR CURRENT

COLLECTOR-EMITTER
SATURATION VOLTAGE VERSUS
COLLECTOR CURRENT

"EI

~

~

~

I

...

...
~
~

~
~

~

(J

(J

~

g
j

'"g

v

(J

o(J

v

(J

~

o(J

I--

I

I

I--

I--

0.4

0.8

1.2

1.6

2.0

0.4

0.8

1.2

1.6

VCE(sat) - COLLECTOR-EMITTER
SATURATION VOLTAGE - V

VCE(sat) - COLLECTOR-EMITIER
SATURATION VOLTAGE - V

5-38

2.0

FAIRCHILD FPT120A • FPT120B • FPT120C • FPT130A • FPT130B
TYPICAL ElECTRICAL CHARACTERISTIC CURVES (Cont'd)
PHOTO CURRENT
CHARACTERISTICS

ANGULAR RESPONSE

100

n:"

:l

U

1.0

~

o

g
:::l
o
u

V

V

,>"

IV ",in[ •.,"
/ I~;:/

O. 1

I
~o.o 1

!d

V

"2854"K
VeE =5.0V
TUNGSTEN SOURCE

Te

/

1/

I II

1111

0.00 1
0.10.2

1

2

1020

100200

1000
ANGLE-DEGR EES

ILLUMINATION - te

IRRADIANCE-mW/cm

COLLECTOR DARK
CURRENT VERSUS TEMPERATURE

RELATIVE SPECTRAL
RESPONSE

10k

100

L6.0v

veE

~

90

10aO

V

I

...

ffi

100

~

:l

w

:l'

/
V

70

~

Vc;o
,c;

1.0

w



(J

II:

0

I-

r

~

:l

5. 3mW; : : :. /

(J

0

3.9ro""/C",~

I

2.4mW/crn2.___

W
II:
II:

:>
(J

II:

~:l

V /

o

V /

(J

I

V

9

9

0.66 mW/cm2

o/
o

10

20

30

40

50

veE - COLLECTOR VOLTAGE - V

VeE -

COLLECTOR BASE
CHARACTERISTICS

PHOTO CURRENT
CHARACTERISTICS
10 k

~
I

!Zw
II:
II:

:>
(J

1k

~

""-I

,c,'I-o~


(J

'(

lX

/

9"

9.0 1

I

.00 1
0.1

10

,,.. '"

100

1k

ILLUMINATION FT -

o

5 k

-0.75

CD

I

/'

I

100fc=5~mW/cm2

r

""

:".-

I

I
150fc=7.S lmW)cm2

Z

,c,~,?

I I

200fc-10mW/cm2 ,

10

I-

V'

Illlc,~~")-

V'

I

~~~:~:;~OK

,/

I

II_I.~

100

II:

g

12

II

TA" 25°C

TC = 2854°K

COLLECTOR VOLTAGE - V

--

I

I

50fcl=2.5Imw~cm'

-0.25 0

I
I

I
I

10

30

50

VCB-COLLECTOR-BASE VOLTAGE-V

00

~~

IRRADIANCE mW/cm l

COLLECTOR DARK
CURRENT VERSUS TEMPERATURE

ANGULAR RESPONSE

10k

~

1k

~

100

v

II:
II:

.
:>

(J

~~

~O

J

1.0

90.1

HS
.Joc,':

10

/
/'

V

.o

I
w

Z

.Jo

,,0

/~

"..

f.."L f
--

o.

:3II:

.JoeY

W

>

~

II:

/'

,/

.0

-20

o

20

40

50

80

100
ANGLE-DEGREES

TEMPERATURE _ °C

5-41

70

•

FAIRCHILD. FPT131 • FPT136
TYPICAL CHARACTERISTIC CURVES (Cont'd)

RISE AND FALL TIME
VERSUS COLLECTOR CURRENT
21

.
"-

I
w

::;
;:

RELATIVE SPECTRAL RESPONSE
100

VCC=5.0 VI
TA=25°C

\I\"r-.
1\\ ""- 1, ld

18

...

RL

\1\

15

'z"

~

12

"-

1\

::l
~

...I

.01

1.0

0.1

r

w

>
;:

T-

a:

20

/

1\
\

/

o

10

\

t"'"
40

~

1~od

"-

\

/

60

ifla:

..... 5 O
j

o

/

80

I

w

300

500

Ie - COLLECTOR CURRENT - rnA

700

900

1100

1300

;, -WAVELENGTH-nm

TURN-OFF TIMES
FOR CIRCUIT SHOWN

TURN-ON DELAY
TIMES FOR CIRCUIT SHOWN

30

.
"-

VCC=5.0N,!
TA=25°C

25

V

I

>

~
C

t::

0

20

---

VCC=5.0 V
T A=25°C

I-'l.
I

~

(

15

c
z

o
Z

Z
I

\

a:
~

a:

:;)

I-

10

I

J.
o

o

3

o
o

4

""

--.......

t--

IC-INPUTCURRENT -rnA

IC-INPUTCURRENT-mA

CIRCUIT FOR TURN-ON
AND TURN-OFF DATA

SWITCHING CIRCUIT
FOR RISE AND FALL TIMES
Vee:= 5.0 V

HZ~

-

o-t>O----O

VOUT

TTl1/6-9016

H_

FOR IC=2.0mA

OUT
RL

SOURCE GaAs

NOTES:
1. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
2. Measured at noted irradiance as emitted from a tungsten filament lamp at a color temperature of 2854°K. The effective photosensitive area is typically
1.25 mm' (FPT131) and 0.78 mm' (FPT136).
3. These are values obtained at noted irradiance as emitted from a GaAs source at 900 nm.
4. Measured with radiation flux intensity of less than .1 J1W/cm 2 over the spectrum from 100-1500 nm.
5. Rise time is defined as the time required for ICE to rise from 10% to 90% of peak value. Fall time is defined as the time required for ICE to decrease
from 90% to 10% of peak value. Test conditions are: ICE = 4.0 mA, VCE = 5.0 V, RL = 100 n, GaAs source.
B. No electrical connection to base pin.
7. No electrical connection to emitter pin.

5-42

FPT132· FPT137
GENERAL PURPOSE, HIGH SENSITIVITY SILICON
PHOTOTRANSISTORS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPT132 and FPT137 are silicon nitride protected
npn Planar' phototransistors having exceptionally stable characteristics and high
illumination sensitivity. The case is made of a speCial plastic compound with transparent resin encapsulation which exhibits stable characteristics under high humidity
conditions .

•

• HIGH ILLUMINATION SENSITIVITY
• LOW COST
FPT132

FPT137

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures/Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65°C

-55°C to +100°C
-55°C to +85°C
260°C
98%

Maximum Power Dissipation (Note 3)
Total Dissipation at TC = 25°C
Derate Linearly from 25°C
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

CONNECTION DIAGRAM

200 mW
3.33mWrC
100mW
1.67 mW/oC

Maximum Voltages and Current (Note 4)
VCEO
Collector to Emitter Sustaining Voltage (Note 4)
IC
Collector Current

10V
25mA

ELECTRICAL CHARACTERISTICS: T A = 25°C
SYMBOL

CHARACTERISTIC

VCEO(sus)

Collector-Emitter Sustaining Voltage (Note 4)

BVECO

Emitter-Collector Breakdown Voltage (Note 4)

VCE(sat)
ICEO
ICE(lt)

Collector-Emitter Saturation Voltage,
Tungsten Source (Note 2)
Collector Dark Current (Note 4)
Photo Current, Tungsten Source (Note 2)

ICE(lt)

Photo Current, Tungsten Source (Note 2)

ICE(lt)

Photo Current, GaAs Source (Note 3)

tr
tf

Light Current Rise Time (Note 5)
Light Current Fall Time (Note 5)

MIN

FPT132
TYP MAX
30

10

FPT137
UNITS
MIN TYP MAX
10

3.0
0.15

0.7

10
1.5

500

0.2

0.2

7.5
0.4

4.5
18
18

0.4

TEST CONDITIONS

30

V

IC

3.0

V

IEC = 100 I1A
IC = 1 mA, H

=

1 mA (Pulsed)

0.15

0.7

V

10
0.9

500

nA
mA

VCE=5.0V
VCE = 5.0 V, H

4.5

mA

VCE = 5.0 V. H = 5 mW/cm2

2.7

mA

VCE = 5.0 V, H = 1 mW/cm'

18
18

I1s
I1s

=

!

20 mW/cm'

=

1 mW/cm'

'Planar is a patented Fairchild process.
5-43

FAIRCHILD. FPT132 • FPT137
TYPICAL CHARACTERISTIC CURVES

FPT137

FPT132

PHOTO CURRENT

COLLECTOR CURRENT
VERSUS COLLECTOR VOLTAGE

,

CHARACTERISTICS

,

H~046mW/cm'--l-

veE

VeE - COLLECTOR VOLTAGE ~"V

COLLECTOR VOlTAGE- V

.

COLLECTOR DARK
CURRENT VERSUS TEMPERATURE

"

,

,

RELATiVe SPECTRAL RESPONSE
,
" '1·,
,

VeE I050V

~ 100

/

,
,

,
.,

,

V

,
,
,
, 1/

Vv~o

V

,

,

,
,

,

:l

,
,

ANGULAR RESPONSE

I
I
//

~

"'

ROUNOLENS

" " "

,

-t FLA~LENS

, 1\

\
A
\\

RISE TIME AND
FALL TIME VERSUS
COLLECTOR CURRENT

I I II

1'Nd

VCC"S.DV
TA=2EiOC

1

,
,

,\

" " "

"NI

•rIT"

Ie - COLLECTOR CURRENT - iliA

NOTES:
1 These are steady sta~e limits The factory should be consulted on applications involving pulsed or low duly cycle operations.
2 Measured at noted Irradlance as emitted from a tungsten filament lamp at a color temperature 01 2854°K. The eHective photosensitive ares is typicaUy
1.25 mm' (FPTI32), and 0.75 mm~(FPTI37).
3 These are values obtained at noted rrradiance as emltled from a GaAs source at 900 nm.
4 Measured with radiation flux intenSity of less than 1 IJWJcm~ over the spectrum from 100-1SOO nm
S. Rise time IS defined as the time reqUired for ICE to nse from 10% to 90% of peak value. Fall time is defined as the time required for ICE to decrease
from 90% to 10% of peak value. Test conditions are: VCE "" 5.0 V, ICE"" 4.0 mA, AL = 100n, GaAs source.

5·44

\

FPT400 • FPT410
VERY HIGH SENSITIVITY PHOTO-DARLINGTONS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPT400 and FPT410 are 3-terminal npn Planar'
photo-Darlingtons having exceptionally stable characteristics and high illumination
sensitivity. The availability of the base pins gives wide latitude for flexible circuit design.
The case is a special plastic compound with transparent resin encapsulation which exhibits stable characteristics under high humidity conditions.

•
•
•
•

FPT400

FPT410

•

SUPER HIGH ILLUMINATION SENSITIVITY
EXCEPTIONALLY STABLE CHARACTERISTICS
EXCELLENT FOR LOW LIGHT LEVEL APPLICATIONS
HIGH OUTPUT CURRENT

ABSOLUTE MAXIMUM RATINGS
Maximum Temperatures and Humidity
Storage Temperature
Operating Temperature
Relative Humidity at 65°C

-55°C to + 100°C
-55°C to +85°C
98%

Maximum Power Dissipation (Note 7 and 8)
Total Dissipation at T C = 25°C
Derate linearly from 25°C
Total Dissipation at TA= 25°C
Derate Linearly from 25°C

CONNECTION DIAGRAM

"@

200mW
3.3 mW;oC
100mW
1.67 mW/oC

E

Maximum Voltages and Currents
VCB
Collector to Base Voltage
VCE
Collector to Emitter Voltage
'C
Collector Current

30 V
30V
50 mA

ELECTRICAL CHARACTERISTICS: TA = 25°C
SYMBOL

CHARACTERISTIC

VCEO(sus)
V CBO
V ECO

Collector-Emitter Sustaining Voltage

VCE(sat)

Collector-Emitter Saturation Voltage

'CEO
'CE(lt)

Collector Dark Current

Collector-Base Voltage

60

V

'C

=

1.0 mA (Note 3)

60

V

iC

=

100 IlA (Note 3)

10

V

'E

= 100 IlA (Note 3)
= 5.0 mA H = 5.0

0.9

1.0

V

'C

10

100

nA

VCE

=

mW/cm' (Note I)

5.0 V (Note 3)

Photo Current (Tungsten)
FPT400
FPT41

3.0
2.0

7.5
5.0

mA
mA

V CE = 5.q V, H
(Notes " 5)

= 1.0 mW/cm 2

Photo Current (GaAs)
FPT400
FPT410

6.0
4.0

15
10

mA
mA

V CE = 5.0 V, H
(Notes 2, 5)

=

a

'CE(lt)

TEST CONDITIONS

TYP

30
:;0

Emitter-Collector Voltage

MAX

UNITS

MIN

tr

Light Current Rise Time

100

IlS

(Note 4)

tf

Light Current Fall Time

100

IlS

(Note 4)

5-45

1.0 mW/cm'

FPTSOO·S20·S40
FPTSOOA·S20A·S40A
HERMETIC TO-18 SILICON PHOTOTRANSISTORS
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - FPT500/FPT520/FPT540 series are nitride-passivated
npn Planar* silicon phototransistors. These devices are packaged in a TO-18 style, hermetically sealed package with lens cap. For most applications two pins are used·(Collector and Emitter pins). The availability of base pin gives wide latitude for flexible circuit design. Phototransistors can be used as a photo diode (collector-base) which has an
excellent photo current linearity (for analog applications).
•
•
•
•
•

HIGH ILLUMINATION SENSITIVITY
EXCEPTIONALLY STABLE CHARACTERISTICS
LARGE RANGE OF CONTROLLED SENSITIVITIES
HERMETIC METAL PACKAGE
HIGH OPERATING TEMPERATURE

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65 'C

-65°C to +200 o C
-55 'C to +150°C
260°C
98%
CONNECTION DIAGRAM

Maximum Power Dissipation
Total Dissipation at TC = 25°C
Derate Linearly from 25°C
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

600mW
4.8 mW;oC
300mW
2.4 mW;oC

Maximum Voltages and Currents
VCB
Collector to Base Voltage
FPT500/FPT500A
FPT5201 FPT520A
FPT540/FPT540A
VCE(sus)
Collector to Emitter Sustaining Voltage
FPT500/500A
FPT5201 FPT520A
FPT540/FPT540A
Collector Current
ELECTRICAL CHARACTERISTICS: TA

VCEO(sus)
VCBO
VEBO
VCE(sat)

CHARACTERISTIC
Collector-Emitter
Sustaining Voltage
Collector-Base Voltage
Emitter-Collector
Voltage
Collector-Emitter
Saturation Voltage

45 V
30V
12 V
50 mA

= 25°C
FPT500/500A

SYMBOL

60V
50V
30V

MIN

TYP

MAX

FPT520/520A
MIN

TYP

MAX

FPT540/540A
MIN

TYP

MAX

UNITS

TEST CONDITIONS

45

60

30

60

12

30

V

IC = 1.0 mA (Note 3)

60

100

50

BO

30

50

V

IC

7.0

V

IE

10

10
0.16

0.33

0.16

V

0.33
0.25

5-46

0.55

V

= 100 /lA (Note 3)
= 100 /lA (Note 3)
IC = 500 /lA (Note 1)
H = 2.0 mW/cm'
IC = 1.0 mA (Note 1)
H = 2.0 mW/cm'

FAIRCHILD. FPT500 • FPT520 • FPT540 SERIES
ELECTRICAL CHARACTERISTICS: TA = 25°C (Cont'd)
FPT500/500A
SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

FPT540/540A

FPT520/520A
MIN

TYP

MAX

MIN

TYP

MAX

UNITS

ICEO
ICBO

Collector Dark Current

10

100

10

100

10

100

nA

Collector Dark Current

0.25

25

0.25

25

0.25

25

nA

ICB(lt)

Photo Current

10

10

10

JiA

850

50% Angular Response

15

15

15

degrees

tr
tf

Light Current Rise Time
Light Current Fall Time

3.0
3.0

8.0
8.0

18
18

JiS

FPT500

FPT520

FPT540

JiS

TEST CONDITIONS
VCE = 5.0 V (Note 3)
V CB = 10 V (Note 3)
V CB = 5.0 V (Note 6)
H = 1.0 mW/cm'

(Note 4)
(Note 4)

ICE(lt)

Photo Current
(Tungsten)

1.0

3.0

5.0

8.0

8.0

15

mA

V CE =5.0V
H = 1.0 mW/cm'
(Notes 1, 5)

ICE(lt)

Photo Current (GaAs)

3.0

6.0

10

24

16

30

mA

VCE = 5.0 V
H = 1.0 mW/cm'
(Notes 2, 5)

mA

V CE = 5.0 V
H = 1.0 mW/cm'
(Notes 1, 5)

FPT520A

FPT500A

ICE(lt)

Photo Current
(Tungsten)

2.0

6.0

6.0

FPT540A
18

10

30

NOTES:

1. Measured at noted irradiance as emitted from a Tungsten filament lamp at a color temperature of 2854°K. The effective photosensitive area is typically
7 rnm 2 .
2. These are values obtained at noted irradiance as emitted from a GaAs source at 900 nm.
3. Measured with radiation flux intensity of less than 0.1 jlW/cm'!. over the spectrum from 100-1500 nm.
4. Rise time is defined as the time required for ICE to rise from 10% to 90% of peak value. Fall time is defined as the time required for ICE to decrease from
90% to 10% of peak value. Test conditions are: VeE = 10 V, ICC =: 10 rnA. RL = 100 n, GaAs source.
5. No electrical connection to base pin.
6. No electrical connection to emitter pin.

5-47

•

FPT510 · 530 · 550
FPT510A·530A·550A
HERMETIC TO-18 SILICON PHOTOTRANSISTORS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - FPT510/FPT530/FPT550 series are nitride-passivated
npn Planar' silicon phototransistors. These devices are packaged in a TO-18 style, hermetically sealed package with lens cap. For most applications two pins are used (Collector and Emitter pins). The availability of base pin gives wide latitude for flexible circuit design. Phototransistors can be used as a photo diode (collector-base) which has an
excellent photo current linearity (for analog applications).
•
•
•
•
•

HIGH ILLUMINATION SENSITIVITY
EXCEPTIONALLY STABLE CHARACTERISTICS
LARGE RANGE OF SENSITIVITIES
HERMETIC METAL PACKAGE
HIGH OPERATING TEMPERATURE

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65°C

-65°C to +200°C
-55°C to +150 0 C
260 0 C
98%

Maximum Power Dissipation
Total Dissipation at TC = 25°C
Derate Linearly from 25°C
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

CONNECTION DIAGRAM

600mW
4.8 mW/oC
300mW
2.4 mW;oC

Maximum Voltages and Currents
VCB
Collector to Base Voltage
FPT51 0/ FPT510A
FPT530/ FPT530A
FPT550/FPT550A
Collector to Emitter Sustaining Voltage
VCE(sus)
FPT510/510A
FPT530/FPT530A
FPT550/FPT550A
Collector Current

60 V
50V
30 V
45 V
30V
12 V
50 rnA

ELECTRICAL CHARACTERISTICS: TA = 25°C
FPT510j510A
SYMBOL

CHARACTERISTIC

VEBO

Collector-Emitter
Sustaining Voltage
Collector-Base Voltage
Emitter-Collector
Voltage

VCE(sat)

Collector-Emitter
Satu ration Voltage

VCEO(sus)
VCBO

MIN

TYP

45
60

MAX

FPT530/530A

60

12

30

V

80

30

50

V

7.0

V

60

30

100

50

10
0.16

10
0.33

0.16

0.33

V
0.25

5-48

MAX

UNITS

TYP

TYP

MAX

FPT550/550A
MIN

MIN

0.55

V

TEST CONDITIONS

= 1.0 mA (Note 3)
IC = 100 pA (Note 3)
IE = 100 pA (Note 3)
IC = 500 pA (Note 1)
H = 2.0 mWjcm'
IC = 1.0 mA (Note 1)
H = 2.0 mWjcm'

IC

FAIRCHILD. FPT51 0 • FPT530 • FPT550
ELECTRICAL CHARACTERISTICS: TA

= 25°C (Cont'd)
FPT510/510A

SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

FPT550/550A

FPT530/530A
MIN

TYP

MAX

MIN

TYP

MAX

UNITS

ICEO
I CBO

Collector Dark Current

10

100

10

100

10

100

nA

Collector Dark Current

0.25

25

0.25

25

0.25

25

nA

TEST CONDITIONS

= 5.0 V (Note 3)
= 10 V (Note 3)
V CB = 5.0 V (Note 6)
VCE
VCB

ICB(lt)

Photo Current

5.0

5.0

5.0

JiA

850

50% Angular Response

15

15

15

degrees

tr

Light Current Rise Time

3.0

8.0

18

JiS

(Note 4)

It

Light Current Fall Time

3.0

8.0

18

JiS

(Note 4)

FPT51 0

FPT530

H = 5.0 mW/cm'

FPT550

ICE(lt)

Photo Current
(Tungsten)

0.5

1.5

3.0

5.0

8.0

10

mA

VCE =5.0V
H = 5.0 mW/cm'
(Notes 1, 5)

ICE(lt)

Photo Current (GaAs)

1.5

4.5

6.0

15

16

30

mA

V CE =5.0V
H = 5.0 mW/cm'
(Notes 2, 5)

mA

VCE=5.0V
H = 5.0 mW/cm'
(Notes 1, 5)

FPT530A

FPT510A

ICE(lt)

Photo Current
(Tungsten)

1.0

3.0

4.0

FPT550A
12

8.0

24

NOTES:
1. Measured at noted irradiance as emitted from a Tungsten filament lamp at a color temperature of 2854°K. The effective photosensitive area is typically

7mm2.
2. These are values obtained at noted irradiance as emitted from a GaAs source at 900 nm.
3. Measured with radiation flux intensity of less than 0.1 I-/W/cm 2 over the spectrum from 100-1500 nm.
4. Rise time is defined as the time required for ICE to rise from 10% to 90% of peak value. Fall time is defined as the time required for ICE to decrease from
90% to 10% of peak value. Test conditions are: VeE::::: 10 V, ICC = 10 rnA, RL ::::: 100 0, GaAs source.
5. No electrical connection to base pin.
6. No electrical connection to emitter pin.

5-49

•

FPT560·FPT570
VERY HIGH SENSITIVITY PHOTO-DARLINGTONS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - FPT560/FPT570 are nitride passivated silicon photo
Darlingtons. Each device is packaged in a TO-18 style. hermetically sealed package with
lens cap. For most applications two pins are used (Collector and Emitter pins). The
availability of base pin gives wide latitude for flexible circuit design.
•
•
•
•

FPT560

FPT570

SUPER HIGH ILLUMINATION SENSITIVITY
EXCEPTIONALLY STABLE CHARACTERISTICS
EXCELLENT FOR LOW LIGHT LEVEL APPLICATIONS
HIGH OUTPUT CURRENT

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering. 5 5)
Relative Humidity at 65°C

-65°C to +200°C
-55°C to +150 0 C
260°C
98%

Maximum Power Dissipation
Total Dissipation at TC = 25°C
Derate Linearly from 25°C
Total Dissipation at TA = 25°C
Derate Linearly from 25°C

CONNECTION DIAGRAM
C

600mW
4,8 mW;oC
300mW
2.4 mW/oC

Maximum Voltages and Currents
VCS
Collector to Sase Voltage
VCE
Collector to Emitter Voltage
IC
Collector Current

30V
30 V
125 mA

E

ELECTRICAL CHARACTERISTICS: TA = 25°C
SYMBOL

CHARACTERISTIC

VCEO(susl
VCBO
VECO

Collector-Emitter Sustaining Voltage
Collector-Base Voltage
Emitter-Collector Voltage

VCE(satl
ICEO

Collector-Emitter Saturation Voltage
Collector Dark Current

ICE(ltl

Photo Current (Tungsten I
FPT560
FPT570
Photo Current (GaAsl
FPT560
FPT570

ICE(1t1

850
tr
tf

MIN

TYP

30
30

60
60
10

10
1.0

30
3.0

50% Response Angle
Light Current Rise Time
Light Current Fall Time

MAX

UNITS

TEST CONDITIONS

V
nA

= 1,0 mA (Note 31
= 100 pA (Note 31
IE = 100 /1A (Note 31
IC = 25 mA. H = 2,0 mWjcm' (Note
V CE = 5,0 V (Note 31

30
6,0

mA
mA

V CE = 5.0 V. H
(Notes 1, 51

90
18
15
100
100

mA
mA

VCE = 5.0 V. H = 1.0 mWjcm'
(Notes 2. 51

V
V
V

0,9

1,0

10

100

IC
IC

= 1,0 mWjcm'

degrees
/1S
/1S

(Note 41
(Note 41

NOTES:

1. Measured at noted irradiance as emitted from a Tungsten filament lamp at a color temperature of 2854°K. The effective photosensitive area is typically
7mm 2 •
2. These are values obtained at noted irradiance as emitted from a GaAs source at 900 nm.
3. Measured with radiation flux intensity 'of less than 0.1 J.1Wjcm 2 over the spectrum from 100-1500 nm.
4. Rise time is defined as the time required for ICE to rise from 10% to 90% of peak value. Fall time is defined as the time required for ICE to decrease from
90% to 10% of peak value. Test conditions are: VCE = 10 V. ICC = 10 mAo RL = 100 n. GaAs source,
5. No electrical connection to base pin.
6. No electrical connection to emitter pin.

5-50

11

FPT610 • FPT630
MINIATURE CERAMIC SILICON PHOTOTRANSISTORS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FPT610 and FPT630 are miniature phototransistors
having exceptional stable characteristics. They utilize a ceramic case with transparent
resin encapsulation. The spectral response, extending from 400 to 1100 nm, is compatible with daylight, tungsten and gallium arsenide sources.
•
•
•
•

HIGH ILLUMINATION SENSITIVITY
EXCEPTIONALLY STABLE CHARACTERISTICS
CAN BE STAKED ON .087" CENTERS
MINIATURE - 85 x 185 x 95 MILS HIGH

ABSOLUTE MAXIMUM RATINGS
Maximum Temperature and Humidity
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Relative Humidity at 65°C

-40°C to +100°C
-40°C to +100 oC
260°C
98%

Maximum Power Dissipation
Total Dissipation at T A = 25°C
Derate Linearly from 25°C

CONNECTION DIAGRAM

100mW
1.33 mW;oC

Maximum Voltages and Currents
VCE(sus) Collector to Emitter Sustaining Voltage
FPT610
FPT630
Collector Current
IC

30V
20V
50 mA

ELECTRICAL CHARACTERISTICS: TA = 25°C
FPT630

FPT61 0
SYMBOL

UNITS

CHARACTERISTIC
MIN

TYP

30

60

MAX

MIN

TYP

20

40

TEST CONDITIONS

MAX

VCEO(sus)

Collector-Emitter Sustaining
Voltage (Note 1)

V

VECO

Emitter-Collector Voltage (Note 1)

VCE(sat)

Collector-Emitter Saturation
Voltage (Note 2)

ICEO

Collector Dark Current (Note 1)

ICE(lt)

Photo Current (Tungsten) (Note 2)

0.2

1.0

2.0

5.0

ICE(lt)

Photo Current (GaAs) (Note 3)

0.4

3.0

4.0

15

mA

VCE = 5.0V
H = 5.0 mW/cm'

tr

Rise Time (Note 4)

3.0

18

JlS

IC = 2.0 mA,
RL=l00n

tf

Fall Time (Note 4)

3.0

18

JlS

IC = 2.0 mA,
RL = lOOn

10

10
0.16

0.33

10

100

0.16

0.33

10

100

IC = 1.0 mA

V

IE = 100 JlA

V

IC = 500JlA
H = 20 mW/cm'

nA

VCE = 5.0 V

mA

VCE = 5.0V
H = 5.0 mW/cm'

NOTES:
1. Measured with radiation flux intensity of less than 0.1 /JW/cm 2 over the spectrum from 100 - 1500 nm.
2. Measured at noted irradiance as emitted from a Tungesten filament lamp at a color temperature of 2854°K.
3 These are values obtained at noted irradiance as emitted from A GaAs source at 900 nm.
4. Rise time is defined as the time required for ICE to rise from 10% to 90% of peak value. Fall time is defined as the time required for ICE to decrease
from 90% to 10% of peak value. Test conditIons are· ICE = 4.0 mA, VCE = 5.0 V, RL = 100 0, GaAs Source.

5-51

•

I~_P_H_O_TO

__
C_O_U_P_LE_R_S__________________

~11111

CHAPTER 6
INTRODUCTION
Phototransistor operation is a result of the photo-effect in certain types of semiconductors. Light of the proper wavelength generates hole-electron pairs within the
transistor, and an applied voltage causes these carriers to move, resulting in current
flow. The intensity of the applied light determines the number of carrier pairs and,
therefore, the magnitude of the resultant current.
In a phototransistor, the actual carrier generation takes place in the vicinity of the
collector-base junction. A hole generated in the base remains there, while a hole
generated in the collector is drawn into the base by the strong field at the junction. The
same process results in electrons tending to accumulate in the collector. However,
charge does not actually accumulate; rather, it tries to distribute evenly throughout the
bulk regions. Consequently, holes diffuse across the base region in the direction of the
base-emitter junction. When the holes reach this junction, they are injected into the
emitter, causing the emitter in turn to inject electrons into the base. Since the emitter
injection efficiency is much greater than that of the base, each injected hole results in
many injected electrons. At this point, normal transistor action occurs, with the emitterinjector electrons migrating across the base and being down into the collector. The
injected electrons combine with the photo-induced electrons and appear as the
terminal-collector current.
A phototransistor may thus be considered to be a diffused-junction, photo-sensitive
diode in parallel with the collector-base junction of a silicon npn transistor. as the
current increases, the collector voltage decreases. When VeE is equal to VBE, the
photocurrent source becomes a photovoltaic source and allows the phototransistor to
saturate.
A phototransistor may be used as a photodiode simply by using the collector and base
leads and leaving the emitter open. Although this reduces sensitivity and efficiency, it
does increase speed. Photodiode operation is generally required for switching and
digital applications; phototransistor operation is used for analog circuits.
INFRAREDmEMITTING LEOs
An infrared-emitting LED (IRLED) is identical to a visible LED, except that zinc is
diffused into the gallium arsenide compound. The resulting pn junction emits light in
the 890-nanometer wave-length range. This light is invisible to the human eye, but is
ideally matched to the spectral response of silicon photodetectors. When used in
conjunction with photodiodes or phototransistors, IRLEDs form a system offering
useful ac and dc characteristics. For both large, fixed equipment and portable, batteryoperated equipment, this combination of devices offers the following features:

Low cost
High-speed operation
High reliability
Low power requirements
Small size
Integrated circuit campatibility.

6-2

COUPLER CROSS REFERENCE KEY
COMPETITOR:
GE
HP
LIT
MaN
MOT
TI

General Electric
Hewlett-Packard
Litronix
Monsanto
Motorola
Texas Instruments

MIN CTR:
Minimum current transfer ratio with VCE = 10 V, IF = 10 mA

MIN ISO VOLTAGE:
Minimum isolation voltage (peak) in volts (dc)

TYPICAL RESPONSE TIME:
Typical rise time (tr) and fall time (tf) in microseconds under test conditions RL = 100 0, Ic = 2 mA,
VCE = 10 V

CODE:

NC-P
NC-E
A
B
C
D

E
X
Y

NOTES:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32

Not crossable because of package differences
Not crossable because of electrical differences
Fairchild device is a direct replacement
Fairchild device is easily crossable with minor electrical deviations as noted
Fairchild device is easily crossable with minor mechanical deviations as noted
Significant electrical differences between devices as noted
Significant mechanical differences between devices as noted
Direct replacement available 2nd quarter 1978
Device could be easily crossed with high volume order.
Competitor device is 8 lead plastic dip package
Competitor device has different pin-out
Competitor device is logic gate with open collector
Competitor device is TO-18 metal can package
Competitor device is reliability conditioned
Competitor device is dual channel
Package dimension difference between devices
FSC device has transistor output
Competitor device is slotted coupler
Isolation voltage on competitor device is tested 1 second rms
Competitor device has special electrical: VCEO = 80 V, VCBO = 80 V, VECO
Competitor device specified with special test circuit
Competitor device has 2 emitters; ac or polarity insensitive inputs
Competitor device has BVCEO = 55 V minimum
Competitor device has VF = 1.0 V typical, 1.15 V max at IF = .5 mA
Competitor device is a reflective array
Competitor device is a matched emitter-detector pair
Competitor device is in a clear epoxy package
Competitor device has 4 channels in a 16 lead plastic dip package
Competitor device has BVCEO = 80 V min.
Competitor device is a DTLlTTL compatible optically isolated gate
Competitor device has TTL compatible input and output
Competitor device has 16 pin dual inline ceramic package
Competitor device has hermetic package
Motorola device has 20% CTR min. GE device is a 10% CTR min.
Motorola device has isolation voltage of 2500 Vdc min.
Same device as HP 6N137
Same device as HP 6N138
Same device as HP 6N139
Response time test condition/measurement difference
Same device as HP 6N135
Same device as HP 6N136
6-3

=7 V

•

COUPLER CROSS REFERENCE KEY (cont'd)
NOTES (cont'd)l:
33
34
35
36

37
38
39
40
41
42
43
44
45

Same device as HCPL-2502
Same device as HCPL-2530
Same device as HCPL-2531
Same device as HCPL-2601
Same device as HCPL-2630
Same device as 6N134
Same device as 6N134TXV
Same device as 6N134TXVB
FCS cross is selected from device listed
High VCEO couplers (200 V-300 V)
Competition specifications not available at this time
Min ISO voltage test condition/measurement difference
Min CTR test condition/measurement difference

COUPLER CROSS REFERENCE

DEVICE
4N22
4N23
4N24
4N25
4N25A
4N26
4N27
4N28
4N29
4N29A
4N30
4N31
4N32
4N32A
4N33
4N35
4N36
4N37
4N38
4N38A
4N39
4N40
4N45
4N46
6N134
6N134TXV
6N134TXVB
6N135
6N136
6N137
6N138
6N139
5082-4350
5082-4351
5082-4352
5082-4354
5082-4355
5082-4360

COMPETITOR
TI
TI
TI
MON/GEIMOT
GEiMOT
MON/GE/MOT
MON/GEIMOT
MON/GEIMOT
MON/GE/MOT
GEiMOT
MON/GEIMOT
MON/GEIMOT
MON/GEIMOT
GEiMOT
MON/GE/MOT
MON/GEIMOT
MON/GEIMOT
MON/GEIMOT
GEiMOT
GEiMOT
GE
GE
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP

OUTPUT DEVICE
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Darlington
Darlington
Darlington
Darlington
Darlington
Darlington
Darlington
Transistor
Transistor
Transistor
Transistor
Transistor
SCR
SCR
Darlington
Darlington
Logic Gate
Logic Gate
Logic Gate
Transistor
Transistor
Logic Gate
Photo Diode
Photo Diode
Photo Circuit
Transistor
Transistor
Transistor
TranSistor
Logic Gate

TYPICAL
MIN ISO RESPONSE TIME
MIN CTR VOLTAGE (t,
tt)
(%)
(V)
(1'8)

-

25
60
100
20
20
20
10
10
100
100
100
50
500
500
500
100
100
100
10
10

200
200

7
19
600
300
400
7
19
15
7
19
600

1000
1000
1000
2500
1775
1500
1500
500
2500
1775
1500
1500
2500
1775
1500
3550
2500
1500
1500
2500
1500
1500
3000
3000
1500
1500
1500
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
6-4

15
15
15
2.5
2.5
2.5
2.5
2.5
.6
.6
.6
.6
.6
.6
.6
5
5
5
5
5

15
15
15
2.6
2.6
2.6
2.6
2.6
17
17
17
17
45
45
45
5
5
5
5
5

5
5
.065
.065
.065
.5
.2
.025
5
1
.5
.2
.2
.3
.2
.025

150
150
.055
.055
.055
.4

.3
.025
5
4
.4
.3
.3
.4
.3
.025

FAIRCHILD
DEVICE

4N25
4N25
4N26
4N27
4N28
4N29
4N29
4N30
4N31
4N32
4N32
4N33
4N35
4N36
4N37

CODE
NC-P
NC-P
NC-P
A
AlY
A
A
A
A
AlY
A
A
A
AlY
A
A
A
A
Y
Y
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E

NOTES
2,24
2,24
2,24
10,26

30
10,26
30
30
30
10,26
30

11,25
11,25,26

2,30
2,30
6,22,23,24
6,22,23,24
5,6,22,23,24
1,2,30
1,2,30
1,2,21,30
1,2,30
1,2,30
1,2,30,31
1,2,30,32
1,2,30,33
1,2,6,30,34
1,2,6,30,35
1,2,21,27,30

COUPLER CROSS REFERENCE KEY (cont'd)

DEVICE

COMPETITOR

OUTPUT DEVICE

5082-4361
5082-4364
5082-4365
5082-4370
5082-4371
HCPL-2502
HCPL-2530
HCPL-2531
HCPL-2601
HCPL-2602
HCPL-2630
HCPL-2730
HCPL-2731
HCPL-2770
TX4365
TXB4365
TXHCPL2770
TXBHCPL2770
H11A1
H11A2
H11A3
H11A4
H11A5
H11A10
H11A520
H11A550
H11A5100
H11AA1
H11AA2
H11B1
H11B2
H11B3
H11B255
H11BX522
H11C1
H11C2
H11C3
H11C4
H11C5
H11C6
H11D1
H11D2
H11D3
H11D4
H13A1
H13A2
H13B1
H13B2
H15A1
H15A2
H15B1
H15B2
H17A1

HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
HP
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE
GE

Logic Gate
Gate
Logic Gate
Photo Diode
Photo Diode
Transistor
Transistor
Transistor
Logic Gate
Photo Circuit
Gate
Photo Circuit
Photo Circuit
Photo Circuit
Logic Gate
Logic Gate
Photo Circuit
Photo Circuit
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Darlington
Darlington
Darlington
Darlington
Darlington
SCR
SCR
SCR
SCR
SCR
SCR
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Darlington
Darlington
Transistor
Transistor
Darlington
Darlington
Transistor

H17B1

GE

H19A1
H19B1
H74A1
H74C1
H74C2
IU
IL5
IL12
IU5

GE
GE
GE
GE
GE
LIT
LIT
LIT
LIT

MINCTR
(%)

TYPICAL
MIN ISO RESPONSE TIME
VOLTAGE (I,
If)
(V)
(pI)

-

20
20
20
10

3000
3000
1500
3000
3000
3000
3000
3000
3000
3000
3000
3000
3000
1500
1500
1500
1500
1500
2500
1500
2500
1500
1500
1500
5000
5000
5000
1500
1500
2500
1500
1500
1500
2500
2500
2100
1500
2500
2100
1500
2500
1500
1500
1500

20
10
400
200

5650
5650
5650
5650

300
400
15
7
19

300
400
300

300
300
50
20
20
10
30
10
20
50
100
20
10
500
200
100
100
200

.025
.025
.065
5
1
.2
.3
.2
.025
.025
.025
5
5
10
.065
.065
10
10
2
2
2
2
2
5
5
5
5

.015
.025
.055
5
4
.3
.4
.3
.025
.015
.025
10
10
2
.055
.055
2
2
2
2
2
2
2
5
5
5
5

125
125
125
125

100
100
100
100

5
5
5
5
5
5
150
150
3
3
125
125
5

5
5
5
5
5
5
150
150
3
3
100
100
5

Darlington

150

150

Transistor
Darlington
Transistor
SCR
SCR
Transistor
Transistor
Transistor
Transistor

5
150

5
150

2
2
2
2

2
2
2
2

20
50
10
6

1500
1500
1500
2500
2500
1000
1500

6-5

FAIRCHILD
DEVICE

H11A1
H11A2
H11A3
H11A4
FCD820A
FCD810A
FCD820D
FCD825D
4N35

Hf1B1
H11B2
FCD850
FCD855
FCD860C

FPA108
FPA108

CODE
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
A
A
A
A
Y
Y
A
A

DIY
NC-E
NC-E
A
A
A
B
B
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-P
NC-P
NC-P
NC-P
D
D

IL1
FCD825B
IL12
IU5

41
12,41

41
13
13

14
15

E

42
42
42
42
9
9
9
9
7,16
7,16
7,16,30
7,16,30
17

E

8,17,30

DIY
DIY
FPT610
FPE106
FP106
FPT61 0

NOTES
1,2,22,30,36
1,2,6,30,37
6,22,23,24,38
1,2,28,30
1,2,29,30
1,2,30
1,2,6,30
1,2,6,30
1,2,22,30
1,2,30
1,2,30
1,2,6,22,30
1,2,6,22,30
23,24,30
6,22,23,24,39
5,6,22,23,24,4'
23,24,30
5,23,24,30

NC-P
NC-P
NC-E
NC-E
NC-E
A
A
A
A

17,18
17,18
22

30

•

COUPLER CROSS REFERENCE KEY (cont'd)

DEVICE
ILl6
IL74
IL 100
ILlOI
ILA30
ILA55
ILD74
ILQ74
ILCA2-30
ILCA2-55
ILCT6
MCA7
MCA8
MCA81
MCA230
MCA231
MCA255
MCL600
MCL601
MCL610
MCL611
MCT2
MCT2E
MCT4
MCT4R
MCT6
MCT8
MCT26
MCT66
MCT210
MCS2
MCS2400
MCS6200
MCS6201
MCT271
MCT272
MCT273
MCT274
MCT275
MCT276
MCT277
MCT81
MOC119
MOC1005
MOC1006
MOC1200
MOC8030
MOC8050
MOC3000
MOC3001
MOC3002
MOC3003
MOC5000
MOC5001
TIL 102
TIL 103
TIL107
TiL 108
TIL 109
TILlII
TILl 12
TILl13
TILl14
TILlIS
TILl16
TiLl 17

COMPETITOR
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
LIT
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MON
MOT
MOT
MOT
MOT
MOT
MOT
MOT
MOT
MOT
MOT
MOT
MOT
TI
TI
Ti
TI
Ti
Ti
TI
TI
TI
TI
Ti
TI

OUTPUT DEVICE
Transistor
Transistor
Photo Circuit (K)
Photo Circuit (K)
Darlington
Darlington
Transistor
Transistor
Darlington
Darlington
Transistor
Darlington
Darlington
Darlington
Darlington
Darlington
Darlington
Logic Gate
Logic Gate
Logic Gate
Logic Gate
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
SCR
SCR
Dual SCR
Dual SCR
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Darlington
Transistor
Transistor
Darlington
Darlington
Darlington
Photo Circuit
Photo Circuit
Photo Circuit
Photo Circuit
Photo Circuit
Photo Circuit
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Transistor
Darlington
Transistor
Transistor
Transistor
Transistor

TYPICAL
MIN ISO RESPONSE TIME
MIN CTR VOLTAGE (Ir
If)
(%)
(V)
(,,8)

-

6
125
1000 Typ
1000 Typ
100
100
125
125
100
100
50
0.1
15
4
100
200
100

20
20
15
15
20
6
6
150

1500
1500
1500

2
6
.015
.015
10
10
6
6
10
10
2.4
600
300
150
5
5
5

25
25
35
35
2.4
600
1000
200
35
35
35

2000

.01

.01

2000
1500
2500
1000
1000
1500

.01
2.5
2.5
2
2
2.4
3
2
2.4
4

.01
2.6
2.6
2
2
2.4
4
2
2.4
5

1500
1500
2500
1500
1500
1500
1500
1500
1500
1500
1500

1500
1500
4000
1500
1500
1500
2500

5000
5000
1500
25
100
3
10
.7
12
2
300
12
2
20
50

35

6·6

MCA230
MCA255

MCA230
MCA255

CODE
A
A
NC-E
NC-E
A
A
NC-E
NC-E
A
A
NC-P

DIY
MCA230
MCA231
MCA255

MCT2
MCT2

MCT26
4N35

4

1500
5000
5000
1500
1500
1500
5000
5000

.250
500
1000
1000
1000
1000
5000
1500
1500
1500
2500
1500
2500
2500

ILl6
IL74

NC-P
NC-P
A
A
A
NC-E
NC-E
NC-E
NC-E
A
A
NC-P
NC-P
X
NC-P
A
X

DIY
NC-E
NC-E
NC-E
NC-E

3
300
20
10
100
300
500

2
25
.015
.015
35

FAIRCHILD
DEVICE

TILl19
FCD820C
FCD810C
4N3O

.65
.3
3

.4
3

6

6

5
5
5
2
2
50
2
2
2
2

5
5
5

2
2
50
2
2
2
2

TIL 111
TIL112
TILl 13
TILl14
TlL11S
TIL116
TiLl 17

NC-P
A
A
A
A
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-E
NC-P
NC-P
NC-P
NC-P
NC-P
A
A
A
A
A
A
A

NOTES
30
1,30
1,30
30
30
1,6,30
19,30
30
30
1,6
2,7,8,16
9
9

1,43
1,3
1,43
1,3

2,4
2,4,5
1,2,6
9
1,2,6
41

1
1
43
43
43
43
43
43
43
9

20
20

2,24,30
2,24,30
2,24,30
2,24,30
2,30

30

COUPLER CROSS REFERENCE

DEVICE
TIL 118
TlL119
TIL 120
TIL 121

COMPETITOR
TI
TI
TI
TI

OUTPUT DEVICE
Transistor
Darlington
Transistor
Transistor

TYPICAL
MIN ISO RESPONSE TIME
MIN CTR VOLTAGE (Ir
If)
(%)
(V)
(I's)

-

10
300
25
50

1500
1500
1000
1000

2
50
3

2
50
3

6

6

FAIRCHILD
DEVICE
TIL118
TIL119

CODE
A
A
NC-P
NC-P

NOTES
30
2,24
2,24

•

6-7

FCD810· FCD810C
OPTICALLY-COUPLED ISOLATOR
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FCD810 series of optoisolators combines a gallium
arsenide infrared emitting diode and a silicon npn phototransistor in close proximity.
Optical intercoupling provides a high degree of ac and dc isolation. A capability for
continuous operation of the input diode results in a frequency response extending to
dc. Connection to the transistor base is also provided for design flexibility.

•
•
•
•

ANODEI"~6

GLASSOLATEDTM
1500 V TO 6000 V MINIMUM ISOLATION INPUT-TO-OUTPUT
10" n ISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.0 pF

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate Linearly from 25°C

CONNECTION DIAGRAM
DIP (TOP VIEW)

-55°C to +150°C
-55°e to +1 oooe
260 0 e
250mW

CATHODE ~._)

2

N C.

3

~

Anode (+)
Cathode (-)

3.0V
60mA
3.0A
100mW
1.33 mW/oC

4
5
6

Emitter
Collector
Base

20V
50V
25 mA
150mW
2.0 mW/oe

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C

VF
BVR

CHARACTERISTIC

COLLECTOR

4

EMITTER

Input Diode

NC

OUTPUT TRANSISTOR
VCE
Collector to Emitter Voltage
VCB
Collector to Base Voltage
'C
Collector Current
Po
Power DisSipation at TA = 25°C
Derate Linearly from 25°C

Forward Voltage
Reverse Breakdown Voltage

5

PIN NUMBERS

3.3 mW/oe

INPUT DIODE
Reverse Voltage
VR
Forward Current
'F
Peak Forward Current (1 I1S pulse width, 300 pps)
if
Power Dissipation at TA = 25°C
Po
Derate Linearly from 25°C

SYMBOL

BASE

MIN

TYP

MAX
1.5

3.0

1.2
B.O

UNITS
V
V

TEST CONDITIONS
' F =10mA
'R= 1.0mA

Output npn

Phototransistor

FAIRCHILD • FCD810 • FCD810C
ELECTRICAL CHARACTERISTICS ~ OUTPUT TRANSISTOR: TA = 25°C
SYMBOL

CHARACTERISTIC

MIN

TYP
50

VCEO

Collector-Emitter Voltage

20

VCBO
ICEO
ICBO

Collector-Base Voltage

50

hFE
Ccb

Forward Current Gain
Collector-Base Capacitance

Ceb

Emitter-Base Capacitance

V IO

~

TEST CONDITIONS

V

IC = 1.0 rnA. IF = 0

V
nA

100

nA

IC = l00pA.I F = 0
VCE= 10V.I F =0
VCB = 10 V. IF = 0

20

pF

VCE = 5.0 V. IC = l00pA
V CB = 10V

10

pF

V EB =0

Collector-Base Leakage Current
50

UNITS

100

Collector-Emitter Leakage Current

ELECTRICAL CHARACTERISTICS
SYMBOL

MAX

250

COUPLED: TA = 25°C

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

Input-to-Output Voltage
FCD810

1500

FCD810C

5000

VCE(sat)
IctIF(CTR)

Collector-Emitter Saturation Voltage

RIO

Input-to-Output Resistance

CIO
tr·tf

V rms
Vpk
V

IC = 2.6 rnA. IF = 50 rnA

25

%

Input-to-Output Capacitance

1.0

pF

VCE = 10V.I F = 10 rnA
VIO = 500 V
f = 1.0 MHz

Collector Rise and Fall Times (Note 2)

4.0

ps

I C = 2.0 rnA. V CE = 10 V. RL = 100 n

Collector Current Transfer Ratio (Note 1)

0.3
10

0.7

n

10"

NOTES:
1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.
2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current to
decrease from 90% to 10% of peak value.

TYPICAL ELECTRICAL CHARACTERISTIC CURVES

MAXIMUM POWER
DISSIPATION RATING VERSUS
AMBIENT TEMPERATURE

LOW LEVEL TRANSFER
CHARACTERISTICS
TA - 25 C

\
\.

12!llA

'\ \

8.0~A

VeE -OUTPUT VOLTAGE

'\l\
V

T A - AMBIENT TEMPERATURE

6-9

-"c

•

FCD820·FCD820C
OPTICALLY-COUPLED ISOLATOR
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FCD820 series of optoisolators combines a gallium
arsenide infrared emitting diode and a silicon npn phototransistor in close proximity.
Optical intercoupling provides a high degree of ac and dc isolation. A capability for
continuous operation of the input diode results in a frequency response extending to
dc. Connection to the transistor base is also provided for design flexibility. The FCD820
is covered under U.L. component recognition program, reference file E55299.

•
•
•
•
•

GLASSOLATEDTM
HIGH CURRENT TRANSFER RATIO - TYPICALLY 50%
1500 VTO 6000 V MINIMUM ISOLATION INPUT·TO-OUTPUT
10" o ISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.0 pF

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Total Package Power Dissipation at TA
(LED plus Detector)
Derate Linearly from 25°C

CONNECTION DIAGRAM
DIP (TOP VIEW)

ANODEI+I~6
CATHODE (-J

2

N.C.

3

-55°C to +150°C
-55°C to +1 Oooc
260°C
250mW

= 25°C

1
2

3
4
5
6

3.0V
60mA
3.0A
100 mW
1.33 mW;oC

OUTPUT TRANSISTOR
VCE
Collector to Emitter Voltage
VCB
Collector to Base Voltage
IC
Collector Current
PD
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

Anode (+)
Cathode (-)
NC
Emitter

Collector
Base

30 V
70V
25 mA
150mW
2.0 mW/oC

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C
SYMBOL

CHARACTERISTIC

VF

Forward Voltage

BVR

Reverse Breakdown Voltage

MIN

TYP

MAX
1.5

3.0

1.2
8.0

6-10

UNITS
V
V

BASE

5

COLLECTOR

4

EMITTER

PIN NUMBERS

3.3 mW/oC

INPUT DIODE
Reverse Voltage
VR
Forward Current
IF
Peak Forward Current (1 IlS pulse width, 300 pps)
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

'\.;::

TEST CONDITIONS
IF
IR

= 60 mA
= 10IlA

Input Diode

Output npn
Phototransistor

FAIRCHILD • FCD820 • FCD820C
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL

CHARACTERISTIC

MIN

TYP

UNITS

TEST CONDITIONS

VCEO

Collector-Emitter Voltage

30

65

V

IC = 1.0 mA. IF = 0

VCBO

Collector-Base Voltage

70

165

V

IC = 100 IJA. IF = 0

ICEO
ICBO

Collector-Emitter Leakage Current

50

nA

VCE = 10 V, IF = 0

20

nA

V CB =10V,I F =0

hFE

Forward Current Gain

Ccb
Ceb

Collector-Base Capacitance

20

pF

V CB = 10 V

Emitter-Base Capacitance

10

pF

VES = 0

MAX

Collector-Base Leakage Current
100

250

V CE = 5.0 V, IC = 100 IJA

ELECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL
V IO

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

Input-to-Output Voltage
FCD820

1500

V rms

FCD820C

5000

Vpk

VCE(SAT)

Collector-Emitter Saturation Voltage

IclIF(CTR)

Collector Current Transler Ratio (Note 1)

RIO

Input-to-Output Resistance

CIO
tr,tl

0.24

0.40

V

IC = 2.2 mA. IF= 15 mA
(FCD820, IC = 2.0 mA. IF = 10 mAl
VCE =10V,I F =10mA
(FCD820, VCE = 0.4 V)
V IO = 500 V

50

%

Input-to-Output Capacitance

1.0

pF

1= 1.0 MHz

Collector Rise and Fall Times (Note 2)

2.5

IJS

IC = 2.0 mA. V CE = 10 V, R L = 100 (")

20

(")

10'·'

NOTES:
1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.

2, Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fait time is defined as the time required for the current to
decrease from 90% to 10% of peak value.

TYPICAL ELECTRICAL CHARACTERISTIC CURVES

LOW LEVEL TRANSFER
CHARACTERISTICS
12.0

MAXIMUM POWER
DISSIPATION RATING VERSUS
AMBIENT TEMPERATURE

Il/=J:=,::,.;:!,;;;,m;;;,:=F===;T"'I,.~':::5'C~
I

lsmA

I,NPUT

DIOD~

1\

lOrnA

"l\
Vee

~

OUTPUT VOLTAGE - V

TA - AMBIENT TEMPERATURE _·C

•

FCD825 • FCD825C
OPTICALLY - COUPLED ISOLATOR
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FCD825 series of optoisolators have a npn silicon
Planar' phototransistor and a gallium arsenide diode in close proximity. Optical intercoupling provides a high degree of ac and dc isolation. A capability for continuous operation of the input diode results in a frequency response extending to dc. Connection
to the transistor base is also provided for design flexibility.

•
•
•
•
•

GLASSOLATEDTM
HIGH CURRENT TRANSFER RATIO - TYPICALLY 80%
1500 V TO 6000 V MINIMUM ISOLATION INPUT-TO-OUTPUT
10" n ISOLATION RESISTANCE
lOW COUPLING CAPACITANCE - TYPICALLY 1.0 pF

CONNECTION DIAGRAM
DIP (TOP VIEW)

ANODE 1'1

~6

CATHODE H.

N.C

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate linearly from 25°C

-55°C to +150 oC
-55°C to +1 OooC
260°C
250 mW
3.3 mWrC

INPUT DIODE

VR

'F

if
PD

Reverse Voltage
Forward Current
Peak Forward Current (1 /1S pulse width, 300 pps)
Power Dissipation at TA = 25°C
Derate linearly from 25°C

3.0 V
60 mA
3.0A
100 mW
1.33 mWrC

OUTPUT TRANSISTOR
VCE
Collector to Em itter Voltage
VCB
Collector to Base Voltage
'C
Collector Current
PD
Power Dissipation at TA = 25°C
Derate linearly from 25°C

~

2

3

BASE

5

COLLECTOR

4

EMITTER

PIN NUMBERS

1 Anode (+1
2
3
4
5

6

Cathode

(-I

NC
Emitter
Corrector
Base

Input Diode

Output npn
Phototransistor

30V
70V
25 mA
150mW
2.0 mWrC

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C
SYMBOL
VF
BVR

CHARACTERISTIC

MIN

TYP

MAX

1.3

1.5

3.0

8.0

Forward Voltage
Reverse Breakdown Voltage

UNITS

TEST CONDITIONS

V

'F = 60 rnA

V

'R =10/lA
*Pranar is a patented Fairchild process.

6-12

FAIRCHILD • FCD825 • FCD825C
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL
VCEO
VCBO
ICEO
ICBO
hFE
Ccb
Ceb

CHARACTERISTIC

MIN

TYP

30
70

50
150

Collector-Emitter Voltage
Collector-Base Voltage
Collector-Emitter Leakage Current
Collector-Base Leakage Current
Forward Current Gain
Collector-Base Capacitance
Emitter-Base Capacitance

MAX

UNITS
V
V

2.0

50
20

100

TEST CONDITIONS

nA
nA

IC =
IC =
VCE
VCB

pF
pF

VCE = 5.0 V. IC = 100 pA
V CB = 10V
VEB =0

350
20
10

1.0 mA. IF = 0
10 pA. IF = 0
= 10V.I F =0
=10V.I F =0

ElECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL
VIO

VCE(sat)
IclIF(CTR)
RIO
CIO
tr·tf

CHARACTERISTIC
Input-to-Output Voltage
FCD825
FCD825C
Collector-Emitter Saturation Voltage
Collector Current Transfer Ratio (Note 1)
Input-to-Output Resistance
Input-to-Output Capacitance
Collector Rise and Fall Times (Note 2)

TYP

MIN

MAX

1500

UNITS

TEST CONDITIONS

Vrms

5000

Vpk
0.24

50

0.4

V

IC = 2.0 mA. IF = 10 mA
VCE = 10V.I F = 10 mA

80

%

1.0
3.5

pF

VIO = 500 V
f = 1.0 MHz

ps

IC = 2.0 mA. V CE = 10 V. RL = 100 n

n

10"

NOTES:
1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.

2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current to
decrease from 90% to 10% of peak value.

6-13

FCD830·FCD830C
OPTICALLY - COUPLED ISOLATOR
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The FCD830 series of optoisolators have a npn silicon
Planar* phototransistor in close proximity with a gallium arsenide diode. Optical coupling provides a high degree of ac and dc isolation. A capability for continuous operation
of the input diode results in a frequency response extending to dc. Connection to the
transistor base is also provided for design flexibility.

•
•
•
•
•
•

GLASSOLATEDTM
HIGH CURRENT TRANSFER RATIO - TYPICALLY 50%
1500 V TO 6000 V MINIMUM ISOLATION INPUT-TO-OUTPUT
10" ISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.0 pF
HIGH SPEED

CONNECTION DIAGRAM
DIP (TOP VIEW)

ANODE {+{

CATHODE (-I

N.C.

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate linearly from 25°C

B'
~

2

3

BASE

5

COLLECTOR

4

EMITTER

-55°C to +150°C
-55°C to +1 OO°C
260°C
250mW

PIN NUMBERS

INPUT DIODE
Reverse Voltage
VR
Forward Current
IF
Peak Forward Current (1 /1S pulse width, 300 pps)
if
Power Dissipation at TA = 25°C
Po
Derate linearly from 25°C

3.0 V
60 mA
3.0A
100mW
1.33 mW/oC

OUTPUT TRANSISTOR
VCE
Collector to Emitter Voltage
VCB
Collector to Base Voltage
IC
Collector Current
Po
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

1 Anode (+)
2 Cathode (-)
3 NC
4 Emitter
5 Collector
6 Base

Input Diode

Output npn
Phototransistor

30V
70V
20 mA
150mW
2.6 mW;oC

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C
SYMBOL
VF
BVR

CHARACTERISTIC

MIN

TYP

MAX

1.3

1.5

3.0

8.0

Forward Voltage
Reverse Breakdown Voltage

UNITS
V
V

TEST CONDITIONS
IF= 60 mA
IR = 10ilA
*Planar

6-14

IS

a patented Fairchild process.

FAIRCHILD • FCD830 • FCD830C
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL

CHARACTERISTIC

MIN

TYP

UNITS

MAX

TEST CONDITIONS

VCEO
V CBO

Collector-Emitter Voltage

30

65

V

IC = 1.0 rnA. IF = 0

Collector-Base Voltage

70

165

V

IC= 10pA.I F =0

ICEO
ICBO

Collector-Emitter Leakage Current

2.0

50

nA

V CE = 10 V, IF = 0

Collector-Base Leakage Current

0.1

20

nA

V CB = 10 V, IF = 0

hFE
Ccb
Ceb

Forward Current Gain

100

VCE = 5.0 V, IC = 100pA

Collector-Base Capacitance
Emitter-Base Capacitance

7.5

pF

VCB = 10V

10

pF

VEB =0

ELECTRICAL CHARACTERISTICS - COUPLED: T A = 25°C
SYMBOL
V IO

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

Input-to-Output Voltage
FCD830

1500

FCD830C

5000

VCE(satl

Collector-Emitter Saturation Voltage

IC/IF(CTR)

Collector Current Transfer Ratio
(Note 1)

V rms
Vpk
0.24

20

0.40

V

IC = 2,2 mA, IF = 15 mA
(FCD830, IC = 2.0 rnA, IF = 10 rnA)
VCE=10V,IF=10mA
(FCD830, VCE = 0.4 VI

50

%

pF

VIO=500V
f = 1.0 MHz

I'S

IC= 2.0mA, VCC= 10 V, RL = 100

n

RIO

Input-ta-Output Resistance

CIO

Input-to-Output Capacitance

1.0

tr,tf

Collector Rise and Fall Times
(Note 21

1.6

1011
2.0

n

NOTES:
1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.
2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current to
decrease from 90% to 10% of peak value.

6-15

•

FCD831·FCD831C
OPTICALLY - COUPLED ISOLATOR
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The FCD831 series of optoisolators combines a gallium
arsenide infrared emitting diode and a silicon npn phototransistor in close proximity.
Optical intercoupling provides a high degree of ac and dc isolation. A capability for
continuous operation of the input diode results in a frequency response extending to
dc. Connection to the transistor base is also provided for design flexibility.

•
•
•
•
•

CONNECTION DIAGRAM
DIP (TOP VIEW)

GLASSOLATEDTM
1500 V TO 6000 V MINIMUM ISOLATION INPUT-TO-OUTPUT
10" ClISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.0 pF
HIGH SPEED

ANODE i"

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering. 5 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate Linearly from 25°C

SYMBOL

BVR

CHARACTERISTIC
Forward Voltage
Reverse Breakdown Voltage

N.C.

3

\!:

,ASE

5

COLLECTOR

4

EMITTER

PIN NUMBERS

3.3 mW;oC
3.0V
60 mA
3.0A
100 mW
1.33 mW;oC

OUTPUT TRANSISTOR
VCE
Collector to Emitter Voltage
VCB
Collector to Base Voltage
IC
Collector Current
Po
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

VF

2

-55°C to +150°C
-55°C to +100 oC
260°C
250mW

INPUT DIODE
Reverse Voltage
VR
Forward Cu rrent
IF
Peak Forward Current (1 .us pulse width. 300 pps)
if
Power Dissipation at TA = 25°C
Po
Derate Linearly from 25°C

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA

~6

CATHODE (-J

1 Anode (+)
2 Cathode (-)

}

3
4
5
6

}

Input Diode

NC

Emitter
Collector
Base

Output npn
Phototransistor

30V
70V
20mA
150mW
2.0 mW/oC

= 25°C
MIN

TYP

MAX
1.5

3.0

1.3
8.0

6-16

UNITS
V
V

TEST CONDITIONS
IF = 60 rnA
IR = 10.uA

FAIRCHILD • FCD831 • FCD831C
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

VCEO
V CBO
ICEO

Collector-Emitter Voltage

30

65

V

IC = 1.0 rnA, IF = 0

Collector-Base Voltage

70

165

V
nA

ICBO

Collector-Base Leakage Current

nA

IC = 101lA. IF = 0
V CE =10V,I F =0
V CB =10V,I F =0

hFE
Ccb
Ceb

Forward Current Gain

7.5

pF

VCB=10V

10

pF

VEB =0

Collector-Emitter Leakage Current

2.0

Collector-Base Capacitance

100

Emitter-Base Capacitance

0.1

50

250

20

VCE = 5.0 V, IC = 100 IIA

ELECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL
V IO

CHARACTERISTIC

TYP

MIN

MAX

UNITS

TEST CONDITIONS

Input-to-Output Voltage
FCD831
FCD831C

VCE(sat)
IC/IF(CTR)

Collector-Emitter Saturation Voltage

RIO
CIO

Input-to-Output Resistance

t"tf

1500
5000

V rms

Vpk
V

IC = 2.0 rnA. IF = 50 rnA

15

%

n

VCE = 10 V, IF = 10 rnA
V IO = 500 V

Input-to-Output Capacitance

1.0

pF

f = 1.0 MHz

Collector Rise and Fall Times (Note 2)

1.6

liS

IC = 2.0 rnA. VCE = 10 V. RL = 100 n

Collector Current Transfer Ratio (Note 1)

0.30
10

0.5

10"
2.0

NOTES:
1 Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.
2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current to
decrease from 90% to 10% of peak value.

6·17

•

FCD836-FCD836C
OPTICALLY -COUPLED ISOLATOR
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FCD836 series of optoisolators combines a gallium
arsenide infrared emitting diode and a silicon npn phototransistor in close proximity.
Optical intercoupling provides a high degree of ac and dc isolation. A capability for
continuous operation of the input diode results in a frequency response extending to
dc. Connection to the transistor base is also provided for design flexibility.

•
•
•
•
•

GLASSOLATEDTM
1500 V TO 6000 V MINIMUM ISOLATION INPUT-TO-OUTPUT
10" n ISOLATION RESISTANCE
lOW COUPLING CAPACITANCE - TYPICAllY 1.0 pF
HIGH SPEED

CONNECTION DIAGRAM
DIP (TOP VIEW)

ANODE ,.,
CATHODE (_)

N.C.

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate linearly from 25°C

B'
2

~

3

3.3 mW;oC
3.0 V
60mA
3.0A
100 mW
1.33 mWjOC

OUTPUT TRANSISTOR
V CE
Collector to Em itter Voltage
VCB
Collector to Base Voltage
'C
Collector Current
Po
Power Dissipation at TA = 25°C
Derate linearly from 25°C

VF
BVR

1
2
3
4
5
6

Anode 1+)
Cathode ("-)
NC
Emitter
Collector
Base

20 V
30 V
20mA
150 mW
2.0 mWjOC

MIN

TYP

MAX

1.3

1.5

3.0

8.0

Forward Voltage
Reverse Breakdown Voltage

4

EMITTER

PIN NUMBERS

ElECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C
CHARACTERISTIC

COLLECTOR

-55°C to +150 oC
-55°C to +1 OooC
260°C
250mW

INPUT DIODE
Reverse Voltage
VR
Forward Current
'F
Peak Forward Current (1 j.l.S pulse width, 300 pps)
if
Power Dissipation at TA = 25°C
Po
Derate linearly from 25°C

SYMBOL

aASE

5

6-18

UNITS
V
V

TEST CONDITIONS
' F =10mA
'R = 10./iA

}
}

Input Diode

Output npn
Phototransistor

FAIRCHILD. FCD836 • FCD836C
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL

MIN

TYP

UNITS

TEST CONDITIONS

VCEO

Collector-Emitter Voltage

CHARACTERISTIC

20

50

V

IC = 1.0 mA. IF = 0

VCBO

Collector-Base Voltage

30

60

V

ICEO

Collector-Emitter Leakage Current

ICBO
hFE
Ccb

Collector-Base Leakage Current
Collector-Base Capacitance

Ceb

Emitter-Base Capacitance

Forward Current Gain

50

MAX

2.0

100

nA

0.1

20

nA

IC = 10 /lA, IF = 0
V CE = 10V, IF=O
V CB =10V,I F =0

7.5

pF

VCE = 5.0 V, IC = 100 /lA
VCB = 10V

10

pF

VEB =0

250

ELECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL
V IO

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

Input-to-Output Voltage
FCD836

1500

FCD836C

5000

VCE(sat)
IdIF(CTR)

Collector-Emitter Saturation Voltage

RIO
CIO

Input-to-Output Resistance

tr,It

V rms
V pk
V

IC = 2.0 mA, IF = 50 mA

10

%

V CE = 10V, IF= 10mA

n

Input-to-Output Capacitance

1.0

pF

VIO = 500 V
f= 1.0 MHz

Collector Rise and Fall Times (Note 2)

1.6

/lS

IC = 2.0 mA. V CE = 10 V, R L = 100

Collector Current Transfer Ratio (Note 1)

0.35
6.0

0.7

10"
2.0

n

NOTES:
1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.
2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current to
decrease from 90% to 10% of peak value.

6-19

•

FCD850·FCD850C
FCD855· FCD855C
OPTICALLY - COUPLED DARLINGTON ISOLATOR
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FCD850, FCD855 series of optoisolators have a npn
silicon Planar" Darlington phototransistor coupled to a gallium arsenide diode. Each
is mounted in a 6-pin plastic dual in-line package. The FCD850/FCD850C has a minimum collector-emitter breakdown voltage of 30 V; the FCD855/FCD855C has a minimum collector-emitter breakdown voltage of 55 V.
•
•
•
•
•

CONNECTION DIAGRAM
DIP (TOP VIEW)

GLASSOLATEDTM
HIGH CURRENT TRANSFER RATIO
5000 V TO 6000 V MINIMUM ISOLATION INPUT-TO-OUTPUT
10" 0 ISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.0 pF

ABSOLUTE MAXIMUM RATINGS
-55°C to +150 o C
-55°C to + 100°C
260°C
250mW

Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 10 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate Linearly from 25°C

3.3 mWjOC

INPUT DIODE
Reverse Voltage
VR
Forward Current
'F
Peak Forward Current (1 /lS pulse width, 300 pps)
if
Power Dissipation at TA = 25°C
PD
Derate Linearly from 25°C
OUTPUT TRANSISTOR (DARLINGTON)
Collector to Em itter Voltage
Collector to Base Voltage
Emitter to Collector Voltage
Collector Current
Power Dissipation at TA = 25°C
Derate Linearly from 25°C
ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA
SYMBOL
VF
BVR
C

CHARACTERISTIC
Forward Voltage
Reverse Breakdown Voltage
Capacitance

3.0V
60 mA
3.0A
150 mW
1.33 mW;oC

FCD850

FCD855

30V
30 V
7.0V
125 mA
150mW

55 V
55 V
7.0V
125 mA
150 mW
2.0 mW;oC

2.0 mWjOC

PIN NUMBERS

Anode (+1 }
Cathode (-I

Input Diode

NC
4
5

Emitter
Collector

6

Base

Output npn
Phototransistor

= 25°C
MIN

TYP

MAX
1.5

3.0

1.25
5.0
150

UNITS
V
V

pF

TEi'T CONDITIONS
'F = 20 mA
'R = 10fJA
VR = 0 V, f = 1 MHz
*Planar is a patented Fairchild process.

6-20

FAIRCHILD. FCD850 • FCD855 SERIES
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL
VCEO

CHARACTERISTIC
Collector-Emitter Voltage
FCD850, FCD850C
FCD855, FCD855C

VECO

Emitter-Collector Voltage

VEBO

Emitter-Base Voltage
Collector-Emitter Leakage Current

ICEO
hFE
Ccb

MIN

TYP

MAX

30
55
7,0

TEST CONDITIONS

V
V

IC = lOOpA. IF = 0

V

8.0
100

Forward Current Gain
Collector-Base Capacitance

UNITS

7000
25

V
nA
pF

IC = 100pA. IF = 0
IE = 100pA. IF = 0
IE = 100pA. IF = 0
VCE = 10 V, IF = 0
VCE = 5,0 V, IC = 25 rnA
VCB = 10 V

ELECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL

VIO

VCE(sat)
IC
RIO
CIO
tr

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

Input-to-Output Voltage (Note 1)
FCD850, FCD855

1500

FCD850C, FCD855C

5000

V rms

Vpk

Collector-Emitter Saturation Voltage

1,0

V

150

rnA

10"
1.5

n

IC = 50 rnA. IF = 50 rnA
V CE =5,OV,I F =10mA
V IO = 500 V

pF

VIO = 0, f = 1.0 MHz

Rise Time (Note 2)

15

ps

IC = 125 rnA. VCC = 13,5 V,

Fall Time (Note 2)

150

ps

IC = 125 rnA. VCC = 13,5 V,
RL = 100 n

Collector Output Current
Input-to-Output Resistance

10

Input-to-Output Capacitance

RL = 100 n
tf

NOTES:
1. Isolation voltage defined as min of 5 seconds continuous application.
2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current to
decrease from 90% to 10% of peak value.

6-21

•

FCD860· FCD860C
FCD865 ·FCD865C
OPTICALLY-COUPLED DARLINGTON ISOLATOR
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The FCD860, FCD865 series of optoisolators have a npn
silicon Planar' Darlington phototransistor coupled to a gallium arsenide diode. Each is
mounted in a 6-pin plastic dual in-line package. The series was designed specifically as
a high sensitivity type for operation in the 1.0 rnA input region.

•
•
•
•
•

CONNECTION DIAGRAM
DIP (TOP VIEW)

GLASSOLATEDTM
HIGH CURRENT TRANSFER RATIO AT LOW INPUT CURRENT
5000 V TO 6000 V MINIMUM ISOLATION INPUT-TO-OUTPUT
10" n ISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.5 pF

ABSOLUTE MAXIMUM RATINGS
-55°C to +150°C
-55°C to +1 OooC
260°C
250mW

Storage Temperature
Operating Temperature
Pin Temperature (Soldering, lOs)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate linearly from 25°C

PIN NUMBERS
Anode (+)
}
Cathode (-)

INPUT DIODE
Reverse Voltage
VR
Forward Current
'F
Peak Forward Current (1 flS pulse width, 300 pps)
if
Power Dissipation at TA = 25°C
Po
Derate linearly from 25°C
OUTPUT TRANSISTOR (DARLINGTON)
VCE
Collector to Emitter Voltage
VCB
Collector to Base Voltage
VEC
Emitter to Col/ector Voltage
Po
Power Dissipation at TA = 25°C
(lc max 100 rnA at VCE = 1.5 V)
Derate linearly from 25°C

Input Diode

NC

3.0 V

4

Emitter

BOmA

5

Collector

3.0A
150 mW
2.0 mW/oC

6

Base

Output npn
Phototransistor

30V
30 V
7.0V
150mW
2.0 mW;oC

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C
SYMBOL
VF
BVR
C

CHARACTERISTIC
Forward Voltage
Reverse Breakdown Voltage
Capacitance

MIN

TYP

MAX

1.25
5.0
150

1.5

3.0

UNITS
V
V
pF

TEST CONDITIONS
'F = 20 rnA
' R =10IlA
·VR =OV.f=lMHz
·Planar

6·22

IS

a patented FaIrchild process.

FAIRCHILD. FCD860 • FCD865 SERIES
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C (DARLINGTON)
SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

VCEO
VCBO

Collector-Emitter Voltage

30

V

IC = 1.0 mA. IF = 0

Collector-Base Voltage

30

V

IC= 1OJlA, IF=O

VECO
V EBO

Emitter-Collector Voltage

7.0

V

IE = 100 JiA. IF = 0

Emitter-Base Voltage

6.0

V

ICEO

Collector-Emitter Leakage Current

hFE

Forward Current Gain

IE = 100 JiA. IF = 0
V CE =10V,I F =0
V CE = 5.0 V, IC = 25 rnA

B.O
100

nA

MAX

UNITS

20k

ELECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL

VIO

VCE(sat)
IC

CHARACTERISTIC

MIN

TYP

TEST CONDITIONS

Input-to-Output Voltage (Note 1)
FCDB60, FCDB65

1500

FCDB60C, FCDB65C

5000

Vrms

Collector-Emitter Saturation Voltage

1.0

Vpk
V

IC = 2.0 mA. IF = 1.0 rnA

Collector Output Current
FCDB60, FCDB60C

2.0

rnA

VCE = 1.0 V, IF = 1.0 mA

FCDB65, FCDB65C

2.0

rnA

VCE = 1.0 V, IF = 0.5 rnA
V IO = 500 V
VIO = 0, I = 1.0 MHz

RIO

Input-to-Output Resistance

CIO
tr,tl

0

Input-to-Output Capacitance

10"
1.5

pF

Rise and Fall Times (Note 2)

BO

JlS

IC= 10 rnA. VCC= 10V,
RL =1000

NOTES:
1. Isolation voltage defined as min of 5 seconds continuous application.
2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current to
decrease from 90% to 10% of peak value.

6-23

•

FCD880 • FCD885
DUAL OPTICALLY-COUPLED ISOLATOR
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The FCD 880 and FCD 885 comprise two distinct
optoisolators with transistor output, in a single 8-pin dual in-line package. Each channel
consists of a galli um arsenide emitter optically coupled to a photo-transistor.

•
•
•
•
•
•

CONNECTION DIAGRAM
DIP (TOP VIEW)

HtGH CURRENT TRANSFER RATIO
2500 V MINIMUM ISOLATION INPUT-To-OUTPUT
10" 0 ISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.0 pF
I/O COMPATIBLE WITH INTEGRATED CIRCUITS
TWO PACKAGES FITS INTO A StANDARD 16-PlN DIP SOCKET

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Total Package Power Dissipation at TA = 25°C
Derate Linearly from 25°C

- 55°C to
-55°C to

260°C
400mW
5.3 mW/oC

INPUT DIODE (EACH CHANNEL)
VR
Reverse Voltage
IF
Forw ard Cu rrent
if
Peak Forward Current (1 /LS pulse, 300 pps)
Po
Power Dissipation at TA = 25°C
Derate Linearly from 50° C

3.0V
SOmA
3.0A
100 mW
2 mW/oC

OUTPUT TRANSISTOR (EACH CHANNEL)
V CE
Collector to Emitter Voltage
Emitter to Collector Voltage
V ECO
Po
Power Dissipation at TA = 25°C
Derate Linearly from 25°C
Collector Current
Ie
ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA
SYMBOL

CHARACTERISTIC

VF
V.
CJ

Forward Voltage
Reverse Voltge
Junction Capacitance

+ 150°C

+ 100°C

PIN NUMBER

1 ANODE
2
3
4
5
8
7
8

CATHODE
CATHODE
ANODE
EMITTER
COLLECTOR
COLLECTOR
EMITTER

CHANNEL #1
CHANNEL #2
CHANNEL #1
CHANNEL #2

30 V
S.O V
150 mW
2 mW/oC
30 mA

= 25"C
MIN

TYP

MAX

UNITS

1.25
5.5
100

1.5

3.0

V
V
pF

6·24

TEST CONDITIONS
IF = 60mA
I. = lOI£A
VF = OV

FAIRCHILD. FCD880 • FCD885
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL

VCEO
VECO
leEo
CeE

le/l,(CTR)

R,o
C ,O
t"t,

MIN

TYP

30
6.0

65
10
5.0
8.0

Collector-Emitter Voltage
Emitter-Collector Voltage
Collector-Emitter Leakage Current
Collector-Emitter Capacitance

ELECTRICAL CHARACERISTICS - COUPLED: TA
SYMBOL

FCD880

CHARACTERISTIC

FCD885
MAX

MIN

TYP

30
6.0

65

100

10
5.0
8.0

MAX

100

UNITS

TEST CONDITIONS

V
V
nA
pF

Ie = 1.0 mA, I, = 0
Ie = l00!LA
VeE = 10 V, I, = 0
VeE = 0

= 25°C

CHARACTERISTIC

MIN

TYP

Input-ta-Output Voltage
Collector-Emitter Saturation Voltage
FDC880
FCD885
Collector Current Transfer Ratio (Note 1)
FCD880
FCD885
Input-to-Output Resistance
Input-to-Output Capacitance
Collector Rise and Fall Times (Note 2)

2500

4000
0.24
0.2

30
10

50
20
10"
1.0
2.0

MAX

UNITS

TEST CONDITIONS

V
0.4
0.3

= 2.0 mA, I, = 16 mA
= 250 !LA, I, = 20 mA

V
V

Ie
Ie

%
%
n
pF

VeE = 10 V, I, = 10 mA
VeE = 10 V, I, = 10 mA
V,O = 500 V
f = 1.0 MHz
Ie = 2.0 mA, VeE = 10 V,
Rl = lOOn

!L S

NOTES:
1. Collector currenttransler ratio is delined as the ratio 01 the collector current to the lorward bias input current.
2. Rise time is defined as the time lor the coliector current to rise Irom 10% to 90% 01 peak value. Fall time is delined as the time required lor the current to decrease
from 90% to 10% 01 peak value.

6-25

•

HIIAI • HIIA2 • HIIA3· HIIA4
OPTICALLY - COU PLED ISOLATOR
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION
The H11A 1, H11A2, H11A3 and H11A4 optical isolators
are electrical and mechanical replacements for the Gent;lral Electric series. Optical intercoupling provides a high degree of ac and dc isolation. A capability for continuous
operation of the input diode results in a frequency response extending to dc. Connection to the base is also provided for design flexibility.

•
•
•
•

GLASSOLATED'M
ELECTRICALLY EQUIVALENT TO GE DEVICES
PIN-FOR-PIN EQUIVALENT TO GE DEVICES
AVAILABILITY OF BASE PIN FOR FLEXIBLE DESIGN

ANODE

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate Linearly from 25°C

CHARACTERISTIC

VF

Forward Voltage

IR

Reverse Current

2

N.C.

3

~

BASE

5

COLLECTOR

4

EM1TTER

PIN NUMBERS

3.0 V
60 mA
3.0A
100mW
1.33 mW/oC

OUTPUT TRANSISTOR
VCE
Collector to Emitter Voltage
VCB
Collector to Base Voltage
IC
Collector Current
PD
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

SYMBOL

"'~6

CATHODE l~)

-55°C to +150°C
-55°C to +100°C
260°C
250 mW

INPUT DIODE
Reverse Voltage
VR
Forward Current
IF
Peak Forward Current (1 /1S pulse width, 300 pps)
if
Power Dissipation at TA = 25°C
PD
Derate Linearly from 25°C

ELECTRICAL CHARACTERISTICS -INPUT DIODE: TA

CONNECTION DIAGRAM
DIP (TOP VIEW)

}

Input Diode

}

Output npn
Phototransistor

1 Anode (+)
2 Cathode (-)

3 NC
4 Emitter
5 Collector
6 Base

30 V
70V
100 mA

150mW
2.0 mW/oC

= 25°C
MIN

6-26

TYP

MAX

UNITS

1.1

1.5

V

10

I1A

TEST CONDITIONS
I F =10mA
VR

= 3.0

V

FAIRCHILD. H11A1 • H11A2. H11A3. H11A4
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

Collector-Emitter Voltage

30

V

IC = 10 mA. IF = 0

Collector-Base Voltage

70

V

IC= lOOI'A.IF=O

Emitter-Collector Voltage

7.0

V
nA

IE = 1001'A. IF = 0
VCE =10V,IF=0

UNITS

TEST CONDITIONS

VCEO
V CBO
VECO
ICEO

Collector-Emitter Leakage Current

5.0

50

TYP

MAX

ELECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL
VISO

VCE(sat)
IC/IF(CTR)

CHARACTERISTIC

MIN

Isolation Voltage (Note-3)
HllAl,HllA3

2500

V

HllA2, HllA4

1500

V

Peak

V

IC = 0.5 mA. IF = 50 mA

Collector-Emitter Saturation Voltage

0.1

0.4

Collector Current Transfer Ratio (Note 1)

Peak

V CE = 10 V, IF = 10 mA

HllAl

50

%

HllA2, HllA3

20

%

HllA4

10

%

RIO

Input-ta-Output Resistance

CIO
t r ,tf

Input-to-Output Capacitance

2.0

pF

0

V IO = 500 V
f= 1.0 MHz

Collector Rise and Fall Times (Note 2)

2.0

I'S

IC = 2.0 mA. VCE= 10 V, RL = 1000

10"

NOTES:
1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.
2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current
to decrease from 90% to 10% of peak value.

3. Isolation voltage defined as min. of 5 sec. continuous application.

6-27

•

HIIBI • HIIB2
OPTICALLY -COUPLED DARLINGTON ISOLATOR
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The Hll Bl and Hll B2 optical isolators are electrical
and mechanical replacements for the General Electric series. Optical intercoupling
provides a high degree of ac and dc isolation. A capability for continuous operation of
the input diode results in a frequency response extending to dc. Connection to the base
is also provided for design flexibility.

•
•
•
•

GLASSOLATEDTM
ELECTRICALLY EQUIVALENT TO GE DEVICES
PIN-FOR-PIN EQUIVALENT TO GE DEVICES
AVAILABILITY OF BASE PIN FOR FLEXIBLE DESIGN

ANODE ('1

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, lOs)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate Linearly from 25°C

if
PD

3.3 mW;oC
60 mA
3.0V
3.0A
100 mW
1.33 mW/oC

Forward dc Current Continuous
Reverse Voltage
Peak Forward Current (1 /1S pulse width, 300 pps)
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

OUTPUT TRANSISTOR (DARLINGTON)
VCEO
Collector to Emitter Voltage
VCBO
Collector to Base Voltage
VECO
Emitter to Collector Voltage
PD
Power Dissipation at TA = 25°C
(Max 'C 100 mA at VCE = 1.5 V)
Derate Linearly from 25°C
ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA
SYMBOL

CHARACTERISTIC

VF

Forward Voltage

'R
C

Reverse Current

~6

CATHODE (-l.

2

N.C

3

~

BASE

5

COLLECTOR

4

EMITTER

-55°C to +150°C
-55°C to +1 OO°C
260°C
250mW

INPUT DIODE

'F
VR

CONNECTION DIAGRAM
DIP (TOP VIEW)

PIN NUMBERS
1
2
3
4
5
6

Anode (+)
Cathode (-)
NC
Emitter
Collector
Base

} Input Diode

}

25 V
30V
7.0V
150mW
2.0 mW;oC
~

25°C
MIN

Capacitance

TYP

MAX

1.2

1.5

V

'F~10mA

10

JiA
pF

V R ~ 3.0 V

150

6-28

UNITS

TEST CONDITIONS

VR

~

0 V, f

~

1 MHz

Output npn
Phototransistor

FAIRCHILD. H11 B1 • H11 B2
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR (DARLINGTON): TA = 25°C
SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS
Ie = 10 rnA. IF = 0
IE = 100 /lA. IF = a

BVCEO

Collector-Emitter Breakdown Voltage

25

V

BVECO

Emitter-Collector Breakdown Voltage

7.0

V

BVCBO

Collector-Base Breakdown Voltage

30

'CEO
CCE

Collector-Emitter Leakage Current

V

lOa

Capacitance Collector-Emitter Junction

6.0

Ie = 100 /LA

nA

VCE=10V.IF=0

pF

VCE = 10 V. f = 1.0 MHz

ELECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL
IC

V,SO

R,SO

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

Collector Output Current (Pulsed)
Hl1Bl

50

mA

HllB2

20

mA

'F = 10 mA, VCE = 5 V

Isolation Voltage (Note 2)
HllBl

2500

V

HllB2

1500

V

Peak

n

V = 500 V

Isolation Resistance

VCE(sat)

Collector-Emitter Saturation Voltage

C'SO
ton

Isolation Capacitance

toff

10"
1.0

Peak

V

IC = 1.0 mA, IF = 1.0 mA

2.0

pF

V = O. f = 1.0 MHz

Turn-on Time (Note 1)

125

/lS

IC = 10 mA, Vce = 10 V. RL = 100

Turn-off Time

100

/lS

Ie = 10 mA, Vee = 10 V. RL = 100

n
n

NOTES:
1. Turn-on time is defined as the time fOf the (base collector) current to rise from 10% to 90% of peak value. Turn-off time is defined as the time required for
the current to decrease from 90% to 10% of peak value.
2. Isolation voltage defined as min of 5 seconds continuous application.

6-29

•

ILl · ILl2 • ILlS • ILl6 • IL74
OPTICALLY-COUPLED ISOLATORS
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The 1L1, 1L12, 1L15, 1L16 and IL74 series of optically
coupled isolators are electrical and mechanical replacements for the Litronix series.
Optical intercoupling provides a high degree of ac and dc isolation. A capability for
continuous operation of the input diode results in a frequency response extending to dc.
Connection to the base is also provided for design flexibility.

•
•
•
•

GLASSOLATEDTM
HIGH CURRENT TRANSFER RATIO
10" 0 ISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.0 pF

CONNECTION DIAGRAM
DIP (TOP VIEW)

ANODE

(+J~6

CATHODE (--) 2

\J

N.C. 3

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate Linearly from 25°C

1 Anode (+)
2 Cathode (-)

3.0V
60mA
3.0A
100mW
1.33 mW/oC

3
4
5
6

NC
Emitter
Collector
Base

30V
70V
150mW
2.0 mW/oC

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C

BVR

CHARACTERISTICS
Forward Voltage
Ill, IllS, III 6
III 2
IL74
Reverse Breakdown Voltage
IL1/ILlS,ILl6
ILl2

EMIITER

PIN NUMBERS
2.6 mW/oC

OUTPUT TRANSISTOR
Collector to Emitter Voltage
VCE
Collector to Base Voltage
VCB
Power Dissipation at TA = 25°C
PD
Derate Linearly from 25°C

VF

4

-55°C to +150°C
-55°C to +1 Oooc
260°C
200mW

INPUT DIODE
Reverse Voltage
VR
Forward Current
IF
Peak Forward Current (1 /1S pulse width, 300 pps)
if
Power Dissipation at TA = 25°C
PD
Derate Linearly from 25°C

SYMBOL

BASE

5 COLLECTOR

MIN

TYP

MAX

UNITS

1.3
1.3
1.5

1.5
1.5
1.75

V
V
V

IF = 60 mA
IF= lOrnA
IF= lOrnA

V
V

IR=10/lA
IR = 100 /lA

3
3

6-30

TEST CONDITIONS

}

Input Diode

npn
}. Output
Phototransistor

FAIRCHILD. 1L1 • IL 12 • IL 15 • IL 16 • IL74
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL

CHARACTERISTIC
Collector-Emitter Voltage
ILl, 1L15, 1L16
IL12,IL74
Emitter-Collector Voltage
ILl, 1L15, IL16
IL12
Collector-Emitter Leakage Current
1L1
1L12
1L15,IL16
IL74
Forward Current Gain
1L12

VCEO

VECO

ICEO

hFE

MIN

TYP

30
20

50
40

MAX

7.0
4.0
50
250
100
500

TEST CONOITIONS

UNITS
V
V

IC = 1.0 rnA, IF = 0
IC = 1.0 rnA, IF = 0

V
V

IE = 100 pA, I F= 0
IE = loopA, IF = 0

nA
nA
nA
nA

VCE
VCE
VCE
VCE

50

=
=
=
=

10 V, IF = 0
5.0 V, IF = 0
5.0 V, IF = 0
5.0 V, IF = 0

VCE = 5.0 V, IC = 100 pA

ELECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL
VIO

VCE(satl

ICN(CTRI

CIO
NOTES:

CHARACTERISTIC
Input-to-Output Voltage
1L1
1L12
1L15, 1L16, IL74
Collector-Emitter Saturation Voltage
ILl
IL15,1L16
IL74
Collector Current Transler Ratio (Note 1I
1L1
1L12
1L15
IL16
IL74
Input-to-Output Capacitance
IL12, IL15, 1L16

MIN

TYP

MAX

2500
1000
1500

TEST CONDITIONS

V
V
V
0.5
0.5
0.5

20
10
6.0
6.0
12.5

UNITS

30

2.0

V
V
V

IF = 16 rnA, IC = 1.6 rnA
IF = 50 rnA, IC = 2 rnA
IF = 16 rnA, IC = 2 rnA

%
%
%
%
%

VCE =
VCE =
VCE=
VCE=
VCE =

pF

1= 1.0 MHz

1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.

6-31

10V, IF = lOrnA
5.0 V, IF = 10 rnA
10V, IF= lOrnA
10V, IF= lOrnA
5.0 V, IF = 16 rnA

•

MCA230 • MCA231 • MCA255
OPTICALLY-COUPLED DARLINGTON ISOLATOR
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The MCA230, MCA231 and MCA255 series of optically
coupled isolators are electrical and mechanical replacements for the Monsanto series.
Optical intercoupling provides a high degree of ac and dc isolation. Connection to the
base is also provided for design flexibility.

•
•
•
•

GLASSOLATEDTM
HIGH CURRENT TRANSFER RATIO AT LOW INPUT CURRENT
10" n ISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.5 pF

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 10 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate Linearly from 25°C

ANOOE (+)

~6

CATHODE I-J

2

N.C.

3

~

VF
BVR

CHARACTERISTIC
Forward Voltage
Reverse Breakdown Voltage

5 COLLECTOR

4

EMITTER

PIN NUMBERS

4.0 mWjOC

3.0V
60mA
3.0A
90mW
2.0 mW;oC

MCA230/231

30\1
30V
210mW
2.8 mWjOC

1 Anode (+)
2 Cathode (-)
3 NC
4 Emitter
5 Collector
6 Base

MCA255
55 V
55 V
210mW
2.8 mW/oC

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C
SYMBOL

BASE

-55°C to +150 oC
-55°C to +1 OooC
260°C
300mW

INPUT DIODE
Reverse Voltage
VR
Forward Current
IF
Peak Forward Current (1 /1S pulse width, 300 pps)
if
Power Dissipation at TA = 25°C
Po
Derate Linearly from 55°C
OUTPUTTRANSISTOR (DARLINGTON)
VCE
Collector to Emitter Voltage
VCB
Collector to Base Voltage
Po
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

CONNECTION DIAGRAM
DIP (TOP VIEW)

MIN

TYP

MAX
1.5

3.0

1.2
5.0

6·32

UNITS
V
V

TEST CONDITIONS
IF = 20 mA
IR=10JlA

Input Diode

Output npn
Phototransistor

FAIRCHILD • MCA230 • MCA231 • MCA255
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA
SYMBOL

CHARACTERISTIC

UNITS

TEST CONDITIONS

30

V

30
55

V

IC = 0.1 mA. IF = 0
IC = 1. 0 mA. IF = 0
IC = 0.1 mA. IF = 0

MCA230'231

30

V

IC = 10 mA. IF = 0

MCA255

55
nA

VCE = 10 V, IF = 0

VCEO

Collector-Emitter Voltage

VCBO

MCA230/230
MCA231
MCA255
Collector-Base Voltage

ICEO
hFE
VEBO

SYMBOL

VISO

MIN

TYP

Collector-Emitter Leakage Current

1.0

Emitter-Base Voltage
MCA230(255
MCA231

CHARACTERISTIC

MAX

100

25,000

Forward Current Gain

ELECTRICAL CHARACTERISTICS - COUPLED: TA

IC

= 25°C

VCE = 5.0 V, IC = 500/lA
IE=10/lA

8

V
V

6

= 25°C
MIN

TYP

MAX

UNITS

TEST CONDITIONS

Collector Output Current
MCA230

10

40

mA

VCE = 5.0 V, IF = 10 mA

MCA231

2.0

4.0

mA

VCE = 1.0 V, IF = 1.0 mA

MCA255

10

40

mA

VCE = 5.0 V, IF = 10 mA

1500

2000

Vdc

10"

0

V= 500 V

Isolation Voltage

RISO

Isolation Resistance

VCE(satl

Collector-Emitter Saturation Voltage
MCA230, MCA255

0.8

1.0

V

IC = 50 mA. IF = 50 mA

MCA231

0.8

1.0

V

IC = 2.0 mA. IF = 1.0 mA

0.8
0.8
0.9
40

1.0
1.0
1.2

ton

MCA231
MCA231
MCA231
Turn-on Time

V
V
V
/lS

IC = 2 mA, IF = 1 mA
IC=10mA,IF=5mA
IC = 40 mA. IF = 10 mA
IC = 1.0 mA. VCC = 10V, RL = 1000

toff

Turn-off Time (See Note 11

50

/lS

NOTES:
1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.
2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current to
decrease from 90% to 10% of peak value.

6-33

•

MCT2 • MCT2E • MCT26
OPTICALLY - COUPLED ISOLATOR
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The MCT2, MCT2E and MCT26 optical isolators are electrical and mechanical replacements for the Monsanto series. Optical intercoupling provides a high degree of ac and dc isolation. A capability for continuous operation of the
input diode results in a frequency response extending to dc. Connection to the base is
also provided for design flexibility.

•
•
•
•

CONNECTION DIAGRAM
DIP (TOP VIEW)

ANODE("~6

GLASSOLATEDTM
ELECTRICALLY EQUIVALENT TO MONSANTO DEVICES
PIN-FOR-PIN EQUIVALENT TO MONSANTO DEVICES
AVAILABILITY, OF BASE PIN FOR FLEXIBLE DESIGN

H

2

N.C.

3

CATHODE

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate Linearly from 25°C

\.l::

OUTPUT TRANSISTOR
VCE
Collector to Emitter Voltage
VCB
Collector to Base Voltage
VE:;CO
Emitter to Collector Voltage
PD
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

30V
30 V
7.0 V
200mW
2.6 mW/oC

CHARACTERISTIC

BVR

Reverse Breakdown Voltage

EMITTER

PIN NUMBERS
1 Anode (+)
2 Cathode (-)
3 NC
4 Emitter
5 Collector
6 Base

}

Input Diode

}

Output npn
Phototransistor

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C

Forward Voltage

4

3.3 mW;oC
3.0V
60mA
3.0A
200mW
2.6 mW/oC

SYMBOL

COLLECTOR

-55°C to +150°C
-55°C to + 100°C
260°C
250mW

INPUT DIODE
Reverse Voltage
VR
Forward Current
'F
Peak Forward Current (1 /1S pulse width, 300 pps)
if
Power Dissipation at TA = 25°C
PD
Derate Linearly from 25°C

VF

BASE

5

MIN

TYP

MAX
1.5

3.0

1.25
5.5

6-34

UNITS

TEST CONDITIONS

V

'F

V

'R

= 20 mA
= lO~A

FAIRCHILD. MCT2 • MCT2E • MCT26
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
MCT2/MCT2E
SYMBOL

CHARACTERISTIC

MIN

TYP

MCT26

MAX

MIN

MAX

TYP

UNITS

TEST CONDITIONS

VCEO

Collector-Emitter Voltage

30

65

30

75

V

IC = 1.0 mA IF = 0

VCBO

Collector-Base Voltage

70

165

30

100

V

IC = 100l'A

VECO

Emitter-Collector Voltage

7.0

14

7.0

12

V

IC = 100l'A

ICEO

Collector-Emitter Leakage Current

5.0

50

nA

VCE = 10 V, IF = 0

nA

VCE = 5.0 V, IF = 0

ICBO

Collector-Base Leakage Current

0.1

20

nA

VCB = 10 V, IF = 0

nA

VCB = 5.0 V, IF = 0

100

5.0

100

1.0
hFE
Cce

Forward Current Gain

Ccb

Collector-Base Capacitance

Ceb

Emitter-Base Capacitance

100

100

250

Collector-Emitter Capacitance

150

VCE = 5.0 V, IC = 100 I'A
pF

VCE = 0

20

pF

VCB=10V

10

pF

VBE = 0

8.0

8.0

ELECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL
VIO

VCE(sat)

CHARACTERISTIC

MIN

TYP

MCT2

1500

2300

MCT2E

2500

MCT26

1500

2500

1= 60 Hz

Vdc
V rms

MCT26

800

V rms

Collector-Emitter Saturation Voltage
0.24

0.4

V

IC = 2.0 mA IF = 16 mA

0.2

0.3

V

IC = 250l'A IF = 20 mA

%
%

VCE = 10 V, IF = 10 mA

n
n

VIO = 500 V

pF

1= 1.0 MHz

Collector CurrentTransler Ratio(Note 1)
MCT26

Ir,tl

TEST CONDITIONS

Vdc

800

MCT2, MCT2E

CIO

Vdc

MCT2

MCT2, MCT2E

RIO

UNITS

Input-to-Output Voltage

MCT26
IC/IF(CTR)

MAX

20

50

6

14

Input-to-Output Resistance
MCT2

10"

MCT2E

10"

10'2

Input-to-Output Capacitance
MCT2, MCT2E

1.0

MCT26

1.0

2.0

pF

Collector Rise and Fall Times (Note 2)
MCT26

2.0

I'S

Ie = 2.0 mA VCE = 10 V

NOTES:
1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.
2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current
to decrease from 90% to 10% of peak value.

6-35

•

MOCIOOO • MOCIOOI • MOCI002· MOCI003
OPTICALLY - COU PLED ISOLATOR
OPTOELECTRON ICS PRODUCT GROUP

GENERAL DESCRIPTION - The MOC1000, MOC1001, MOC1002 and MOC1003 are
gallium arsenide light emitting diodes coupled to a silicon phototransistor. They are designed for applications requiring electrical isolation, high-current transfer ratios, small
package size and low cost (i.e., interfacing and coupling systems, phase and feedback
controls, solid state relays and general purpose switching circuits).

•
•
•
•
•
•
•
•

EXCELLENT FREQUENCY RESPONSE - 300 kHz (TYP)
HIGH TRANSFER RATIO - 60% (TYP) MOC1000, MOC1001
ECONOMICAL, COMPACT, DUAL IN-LINE PLASTIC PACKAGE
FAST SWITCHING - 2.8 /ls (TYP)
GLASSOlATEDTM
ELECTRICALLY EQUIVALENT TO MOTOROLA DEVICES
PIN-FOR-PIN EQUIVALENT TO MOTOROLA DEVICES
AVAILABILITY OF BASE PIN FOR FlEXIBLE DESIGN

ANOOEI"~6

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate Linearly from 25°C

IF

if
PD

CATHODE (-)

2

N.C.

3

\t

3.3 mW/oC

3.0V
80 mA
3.0A
150mW
2.0 mW/oC

Reverse Voltage
Forward Current
Peak Forward Current (1 /lS pulse width, 300 pps)
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

OUTPUT TRANSISTOR
VCE
Collector to Emitter Voltage
VCB
Collector to Base Voltage
PD
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

CHARACTERISTIC

VF

Forward Voltage
Reverse Current

'R

COLLECTOR

4

EMITTER

PIN NUMBERS
1 Anode (+)
2 Cathode (-)
3 NC
4 Emitter
5 Collector
6 Base

}

Input Diode

}

Output npn
Phototransistor

30 V
70V
150mW
2.0 mW/oC

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C
SYMBOL

BASE

5

-55°C to +150°C
-55°C to +1 OO°C
260°C
250 mW

INPUT DIODE

VR

CONNECTION DIAGRAM
DIP (TOP VIEW)

MIN

6-36

TYP

MAX

1.2
0.05

1.5
100

UNITS
V
/lA

TEST CONDITIONS
'F = 50 rnA Pulsed
V R = 3.0 V, RL = 1.0 MO

FAIRCHILD • MOC1000 • MOC1001 • MOC1002 • MOC1003
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

V CEO

Collector-Emitter Voltage

30

V

IC = 1.0 mA. IB = 0

VCBO

Collector-Base Voltage

VECO

Emitter-Collector Voltage

70
7.0

V
V

IC = 1001lA, IB = 0
IE = 1001lA. IB = 0

ICEO
ICBO

Collector-Emitter Leakage Current

50

nA

20

nA

VCE = 10 V, IF = 0
VCB = 10 V, IF = 0

hFE

Forward Current Gain

3.5

Collector-Base Leakage Current

VCE = 5.0 V, IC = 100 IlA

200

ELECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL
Via

VCE(sat)
IclIF(CTR)

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

Input-to-Output Voltage
MOC1000, MOC1002

1500

Vpk

MOC100l

2500

Vpk
Vpk
V

MOC1003
Collector-Emitter Saturation Voltage

RIO

Collector Current Transfer Ratio (Note 1)
MOC1000, MOC100l
MOC1002, MOC1003
Input-to-Output Resistance

Cia

Input-to-Output Capacitance

t"tf

Collector Rise and Fall Times (Note 2)

500
0.2

0.5

IC = 2.0 mA, IF = 50 mA
V CE =10V,I F =10mA

60
30

%
%

10"
1.3

n

Via = 500 V

pF

2.8

IlS

f = 1.0 MHz, V = '"
IC = 2.0 mA. V CE = 10 V, RL = 100 n

20
10

NOTES:
1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.
2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current

to decrease from 90% to 10% of peak value.

6·37

•

TILIII • TILl14 · TILl16 • TILl17
OPTICALLV-COUPLED ISOLATOR
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The TIL 111, TIL 114, TIL 116 and TIL 117 series of optically coupled isolators are electrical and mechanical replacement for the Texas Instruments series. Optical intercoupling provides a high degree of ac and dc isolation. Connection to the base is also provided for design flexibility.

•
•
•
•
•

GLASSOLATEDTM
HIGH CURRENT TRANSFER RATIO
HIGH-SPEED SWITCHING - TYPICALLY 2/1s
10" (} ISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.0 pF

ANODE('(~6

ABSOLUTE MAXIMUM RATINGS
Storage Temperatu re
Operating Temperature
Pin Temperature (Soldering, 5 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate Linearly from 25°C

OUTPUT TRANSISTOR
VCE
Collector to Emitter Voltage
VCB
Collector to Base Voltage
Po
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

30 V
70V
150mW
2.6 mW;oC

VF

CHARACTERISTIC

MIN

TVP

MAX

1.2

1.4
1.5

Forward Voltage
Till 11 , Till 14, Till 17
Reverse Breakdown Voltage

N.C.

3

~

1.2
5.0

3.0

6·38

BASE

5

COLLECTOR

4

EMITTER

PIN NUMBERS

Anode 1+1
Cathode I-I

}

Input Diode

}

Output npn
Phototransistor

NC

3
4
5

Emitter
Collector

6

Base

= 25°C

TIL116
BVR

2

3.3 mW;oC
3.0V
100 mA
3.0A
150mW
2.6 mW;oC

SYMBOL

CATHODE (-)

-55°C to +150 oC
-55°C to +1 OO°C
260°C
250mW

INPUT DIODE
Reverse Voltage
VR
Forward Current
IF
Peak Forward Current (1 /is pulse width, 300 pps)
if
Power Dissipation at TA = 25°C
Po
Derate Linearly from 25°C

ELECTRICAL CHARACTERISTICS -INPUT DIODE: TA

CONNECTION DIAGRAM
DIP (TOP VIEW)

TEST CONDITIONS

UNITS

V
V

IF

V

IR

= 16 rnA

IF = 60 rnA

= 10/1A

FAIRCHILD • TIL 111 • TIL 114 • TIL 116 • TIL 117
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: T A = 25°C
SYMBOL

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS

VCEO

Collector-Emitter Voltage

30

V

IC = 1.0 mA, IF = 0

VCBO

Collector-Base Voltage

70

V

IC=10jlA,IF=0

VEBO

Emitter-Base Voltage

ICEO

Collector-Emitter Leakage Current

1.0

50

nA

VCE=10V,IF=0

ICBO

Collector-Base Leakage Current

0.1

20

nA

VCB=10V,IF=0

hFE

Forward Current Gain

7

V

IE= 10jlA

TIL111,TIL114

100

300

VCE=5V,IC=10mA

TIL116

100

300

VCE= 5V,IC= 100jlA

TILl17

200

550

VCE=5V,IC=10mA

ELECTRICAL CHARACTERISTICS - COUPLEO: TA = 25°C
SYMBOL

CHARACTERISTIC

TYP

MAX

UNITS

TEST CONDITIONS

TIL111, TILl14

2.0

7.0

mA

VCE=0.4V,IF=16mA

TILl16

2.0

5.0

mA

VCE = 10 V, IF = 10 mA

TIL117

5.0

9.0

mA

VCE = 10 V, IF = 10 mA

10

20

jlA

VCB = 0.4 V, IF = 16 mA

IB

Collector-Base Current

VISO

Isolation Voltage
TILlll

1500

Vdc

TILl14, TILl16, TILl17

2500

Vdc

RISO

Isolation Resistance

VCE(satl

Collector-Emitter Saturation Voltage

tott

10"

{).

V=500V

TILlll, TIL114

0.25

0.4

TILl16

0.25
0_25

0.4
0.4

V

IC=0_5mA,IF= 10mA

1.0

1.3

pF

V = 0, f = 1.0 MHz

jlS

IC 2.0 mA, VCC
(See Note 2)

TIL117
CISO
ton,

MIN

Collector Output Current

IC

Isolation Capacitance

V

IC = 2.0 mA,lF = 16 mA
IC = 2.2 mA, IF = 15 mA

=

Turn-on, Turn-off Time
TILlll, TIL114

2

5

TlL116

2

7

jlS

TILl17

2

9

jlS

=10 V, RL =100 ()

NOTES:
1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.
2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the "time required for the current to
decrease from 90% to 10% of peak value.

6-39

•

TILll2 · TILll5 · TILll8
OPTICALLY -COU PLED ISOLATOR
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The TIL 112, TIL 115 and TIL 118 series of optical isolators
are electrical and mechanical replacements for the Texas Instrument series. Optical intercoupling provides a high degree of ac and dc isolation. Connection to the base is also
provided for design flexibility.

•
•
•
•
•

GLASSOLATEDTM
HIGH CURRENT TRANSFER RATIO
HIGH-SPEED SWITCHING - TYPICALLY 2 liS
10" n ISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.0 pF

CONNECTION DIAGRAM
DIP (TOP VIEW)

ANODEI')~6

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 5 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate Linearly from 25°C

CATHODE I-I

2

N.C.

3

-55°C to +150 oC
-55°C to +l00 oC
260°C
250mW

INPUT DIODE
Reverse Voltage
VR
Forward Current
IF
Peak Forward Current (1 ps pulse width, 300 pps)
if
Power Dissipation at TA = 25°C
PD
Derate Linearly from 25°C

3.0V
100mA
3.0A
150mW
2.0 mW/oC

OUTPUT TRANSISTOR
VCE
Collector to Emitter Voltage
VCB
Collector to Base Voltage
PD
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

20V
30V
150mW
2.0mW/oC

~

BASE

5

COLLECTOR

4

EMITTER

PIN NUMBERS

,

2
3
4
5
6

Anode (+1
Cathode (-I
NC
Emitter
Collector
Base

}

Input Diode

}

Output npn
Phototransistor

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C
SYMBOL
VF
BVR

CHARACTERISTIC
Forward Voltage
Reverse Breakdown Voltage

MIN

TYP

MAX
1.5

3.0

1.2
5.0

UNITS
V
V

TEST CONDITIONS
IF= lOrnA
IR = 10llA

FAIRCHILD. TIL112. TIL115 • TIL118
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL

UNITS

TEST CONDITIONS

VCEO

Collector-Emitter Voltage

CHARACTER ISTIC

MIN
20

TYP

MAX

V

I C = 1.0 mA, IF = 0

VCBO

Collector-Base Voltage

30

V

IC = 10 !LA, IF = 0

VEBO

Emitter-Collector Voltage
(VECO on TI L118)

4.0

V

IE = 10 !LA, IF = 0

ICEO

Collector-Emitter Leakage Current

1.0

100

nA

VCE=5.0V,IF=0

ICBO

Collector-Base Leakage Current

0.1

50

nA

VCB= 5.0 V, IF =0

hFE

Forward Current Gain

50

200

MIN

TYP

TIL112, TIL115

0.2

2.0

mA

VCE= 5.0 V, IF = 10mA

TIL118

1.0

2.0

mA

VCE = 5.0 V, IF = 10 mA

2

10

!LA

VCB= 5.0 V, IF = 10mA

VCE=5.0V,IC= 1O !L A

ELECTRICAL CHARACTERISTICS - COUPLED: T A = 25°C
SYMBOL
IC

CHARACTER ISTIC

MAX

UNITS

TEST CONDITIONS

Collector Output Current

IB

Collector-Base Current

VISO

Isolation Voltage

TIL112, TIL115
TIL112, TIL118

1500

TIL115

2500

RISO

Isolation Resistance

CISO

Isolation Capacitance

Vdc
Vdc
10"
2

n

V = 500 V

pF

f = 1 MHz

VCE(sat)

Collector-Emitter Saturation Voltage

0.5

V

IC = 2.0 mA, IF = 50 mA

ton

Turn-on Time

2.0

15

!LS

IC = 2.0 mA, VCC = 10 V, RL = 100

toff

Turn-off Time (See Note 1)

2.0

15

!LS

IC = 2.0 mA, VCC = 10 V, RL = 100

n
n

NOTES:
1. Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.
2. Rise time is defined as the time for the collector current to rise from 10% to 90% of peak value. Fall time is defined as the time required for the current to
decrease from 90% to 10% of peak value.

6-41

•

TILl13 • TILl19
OPTICALLY-COUPLED DARLINGTON ISOLATOR
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The TIL 113 and TIL 119 optical isolators are electrical
and mechanical replacements for the Texas Instrument series. Optical coupling provides a high degree of ac and dc isolation. A capability for continuous operation of the
input diode results in a frequency response extending to dc. Connection to the base is
also provided for design flexibility.

•
•
•
•

GLASSOLATEDTM
ELECTRICALLY EQUIVALENT TO TI DEVICES
PIN-FOR-PIN EQUIVALENT
AVAILABILITY OF BASE PIN FOR FLEXIBLE DESIGN

CONNECTION DIAGRAM
DIP (TOP VIEW)

ANODE 1+1

CATHODE 1-)

N.C.

ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Operating Temperature
Pin Temperature (Soldering, 10 s)
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)
Derate Linearly from 25°C

SYMBOL

CHARACTERISTIC

\J

3

BASE

5

COLLECTOR

4

EMITTER

PIN NUMBERS
100mA
3.0V
3.0A
150mW
2.0 mW;oC

OUTPUT TRANSISTOR (DARLINGTON)
VCEO
Collector to Emitter Voltage
VCBO
Collector to Base Voltage
VECO
Emitter to Collector Voltage
PD
Power Dissipation at TA = 25°C
(Max IC 100 mA at VCE = 1.5 V)
Derate Linearly from 25°C

VF
IR

2

-55°C to +150 oC
-55°C to +1 OooC
260°C
250mW

INPUT DIODE
Forward dc Current Continuous
IF
Reverse Voltage
VR
Peak Forward Current (1 J.lS pulse width, 300 pps)
if
Power Dissipation at TA = 25°C
PD
Derate Linearly from 25°C

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA

B6

1
2
3
4
5
6

Anode (+)
Cathode (-)
NC
Emitter
Collector
Base

}

Input Diode

}

Output npn
Phototransistor

30V
30V
7.0V
150mW

~

25°C
MIN

Forward Voltage
Reverse Current

6-42

TYP

MAX

UNITS

1.5
100

V
IlA

TEST CONDITIONS
IF~10mA

VR ~ 3.0 V

FAIRCHILD • TIL 113 • TIL 119
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR (DARLINGTON): TA = 25°C
SYMBOL

CHARACTERISTIC
Collector-Emitter Breakdown Voltage

30

BVCBO

30

BV ECO

Collector-Base Breakdown Voltage
TIL113
Emitter-Collector Breakdown Voltage

BVEBO

Emitter-Base Breakdown Voltage

ICEO
hFE

Collector-Emitter Leakage Current

TILl19
TILl13

TYP

MIN

BV CEO

MAX

UNITS

TEST CONDITIONS

V

IC = 1.0 mA. IF = 0
IC = 10 /1A. , IF = 0

7.0
7.0

V

I E =10/1A,IF=0

V

IE=10/1A,I F =0
V CE=10V,I F =0

nA

DC Forward Current Gain TIL 113

15,000

VCE = 1.0 V, IC = 10 mA, IF = ¢

ELECTRICAL CHARACTERISTICS - COUPLED (TA = 25°C)
SYMBOL
IC

MIN

TYP

TILl13

30

100

mA

IF= 10mA, VCE= 1.0V

TILl19

30

160

mA

IF = 10 mA. VCE = 2.0 V

CHARACTERISTIC

VISO

Isolation Voltage (Note 2)

RISO

Isolation Resistance

VCE(sat)

Collector-Emitter Saturation Voltage

CISO
ton, toft
ton, toft

MAX

UNITS

TEST CONDITIONS

Collector Output Current (Pulsed)

1500

V

Peak

10"

()

V = 500 V

TIL113

1.0

V

IC = 125 mA. IB = 0, IF = 50 mA

TILl19

1.0

V

Ic=10mA.IF=10mA

pF

V = 0, f = 1.0 MHz

/1s
/1S

IC = 125 mA. VCC = 15 V, RL = 100 ()
IC=2.5 mA. VCC= 10V, R L= 100 ()

Isolation Capacitance

1.0

Turn-on, Turn-oft Time (Note 1) TIL 113
Turn-on, Turn-oft Time (Note 1) TIL 119

50
50

1.3

NOTES:
1. Turn-on time is defined as the time for the (base collector) current to rise from 10% to 90% of peak value. Turn-off time is defined as the time required for
the current to decrease from 90% to 10% of peak value.
2. Isolation voltage defined as min of 5 seconds continuous applicatIOn.

6-43

•

4N2S-4N26-4N27-4N28
OPTICALLY -COUPLED ISOLATOR
OPTOELECTRONICS PRODUCT GROUP

GENERAL DESCRIPTION - The 4N25, 4N26, 4N27 and 4N28 series of optoisolators
have a npn silicon Planar* phototransistor coupled to a gallium arsenide diode. Each is
mounted in a 6-pin plastic dual in-line package.

•
•
•
•
•

GLASSOLATEDTM
HIGH CURRENT TRANSFER RATIO - TYPICALLY 50%
500 V TO 2500 V MINIMUM ISOLATION INPUT-TO-OUTPUT
10" Q ISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.0 pF

ANOOE ,.,

ABSOLUTE MAXIMUM RATINGS
Storage Temperature**
Operating Temperature
Pin Temperature (Soldering, 10 s)**
Total Package Power Dissipation at TA = 25°C**
(LED plus Detector)
Derate Linearly from 25°C**
INPUT DIODE
VR **
'F**
i(*
PD **

CONNECTION DIAGRAM
DIP (TOP VIEW)

-55°C to 150°C
-55°C to 100°C
260°C
250mW
3.3 mW;oC

Reverse Voltage
Forward Current
Peak Forward Current (1 /.is pulse width, 300 pps)
Power DisSipation at TA = 25°C
Derate Linearly from 25°C

3.0V
80 mA
3.0A
150 mW
2.0 mW/oC

OUTPUT TRANSISTOR
Collector to Emitter Voltage
Collector to Base Voltage
Emitter to Collector Voltage
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

~6

CATHODE (-)

2

N,C.

3

\.;::

BASE

S

COLLECTOR

4

EMITTER

PIN NUMBERS
1
2
3
4
5
6

Anode (+)
Cathode (-)
NC
Emitter
Collector
Base

}

Input Diode

}

Output npn
Phototransistor

30V
70V
7.0V
150 mW
2.0 mW;oC

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C
SYMBOL

CHARACTERISTIC

VF**
IR**
C

Forward Voltage
Reverse Leakage Current
Capacitance

MIN

TYP

MAX

1.2
0.05

1.5
100

150

**Indicates JEOEC registered values.

UNITS
V
/lA
pF

TEST CONDITIONS
'F = 50 mA
VR = 3.0 V, RL
VR

= 1 MQ

= 0 V, f = 1 MHz
*Planar IS a patented Fairchild process.

6·44

FAIRCHILD. 4N25 • 4N26 • 4N27 • 4N28
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL

..

CHARACTERISTIC

MIN

TYP

MAX

UNITS

TEST CONDITIONS
IC = 1.0 mA. IB = 0

VCEO
VCBO"

Collector-Emitter Voltage
Collector-Base Voltage

30
70

65
165

V
V

VECO"
ICEO "

Emitter-Collector Voltage
Collector-Emitter Leakage Current

7.0

14

V

ICBO"
hFE
Ccb

4N25,4N26,4N27
4N2S
Collector-Base Leakage Current
Forward Current Gain
Collector-Base Capacitance

ELECTRICAL CHARACTERISTICS - COUPLED: TA
SYMBOL
VIO"

CHARACTERISTIC
Input-to-Output Voltage
4N25

VCE(sat)"

4N26,4N27
4N2S
Collector-Emitter Saturation Voltage

le"'*

Collector Output Current
4N25,4N26

RIO
BW
CIO

4N27,4N2S
Input-to-Output Resistance
Collector Bandwidth
Input-to-Output Capacitance

3.5

50

100
0.1
250

20

65

IC = looJ.lA. IE = 0
IE = looJ.lA. IB = 0

= 10 V, Base Open
= 10 V, Base Open
= 10 V, Emitter Open

nA
nA
nA

VCE
VCE
VCB

pF

VCE = 5.0 V, IC = 500 J.lA
VCB = 0, f = 1 MHz

= 25°C
MIN

TYP

MAX

2500
1500
500

UNITS

TEST CONDITIONS

Vpk
Vpk

0.2
2.0

5.0

1.0

3.0

10"
300
1.3

**Indlcates JEDEC registered values.

6-45

0.5

Vpk
V

IC = 2.0 rnA. IF = 50 mA

mA
mA
n
kHz
pF

VCE = 10V,I F = 10 mA.IS =0
V CE = 10V,I F = 10 mA. IS =0
VIO = 500 V
IC=2.0mA. VCC= 10V, RL = lOOn
VIO = 0, f = 1.0 MHz

•

4N29·4N30·4N31·4N32·4N33
OPTICALLY-COUPLED DARLINGTON ISOLATOR
OPTOELECTRONICS PRODUCTS GROUP

GENERAL DESCRIPTION - The 4N29, 4N30, 4N31, 4N32 and 4N33 series of optoisolators have a npn silicon Planar* photo-Darlington transistor coupled to a gallium arsenide diode. Each is mounted in a six pin plastic DIP package.

•
•
•
•

CONNECTION DIAGRAM
DIP (TOP VIEW)

HIGH CURRENT TRANSFER RATIO
1500 or 2500 V MINIMUM ISOLATION INPUT-TO-OUTPUT
10" ClISOLATION RESISTANCE
LOW COUPLING CAPACITANCE

ABSOLUTE MAXIMUM RATINGS
-55°C to 150°C
-55°C to 100°C
260°C
250mW

Storage Temperature**
Operating Temperature
Pin Temperature (Soldering, 10 s)**
Total Package Power Dissipation at TA = 25°C
(LED plus Detector)**
Derate Linearly from 25°C**
INPUT DIODE**
IF
Forward dc Current Continuous
VR
Reverse Voltage
if
Peak Forward Current (1 IlS pulse width, 300 pps)
PD
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

BOmA
3.0V
3.0A
150mW
2.0 mW/oC

OUTPUT TRANSISTOR (DARLINGTON)**
VCEO
Collector to Emitter Voltage
VCBO
Collector to Base Voltage
Emitter to Base Voltage
VEBO
VECO
Emitter to Collector Voltage
PD
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

30V
50V
B.OV
5.0V
150mW
2.0 mW/oC

PIN NUMBERS
1 Anode (+)
2 Cathode (-)
3 NC
4 Emitter
5 Collector
6 Base

}

Input Diode

}

Output npn
Phototransistor

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C
SYMBOL
VF**
IR**
C

CHARACTERISTIC

MIN

Forward Voltage
Reverse Leakage Current
Capacitance

6-46

TYP

MAX

1.2
0.05
150

1.5
100

UNITS
V
/1A
pF

TEST CONDITIONS
I = 50 mA
VR = 3.0V
VR = 0 V, f = 1 MHz

FAIRCHILD. 4N29 • 4N30. 4N31 • 4N32 .4N33
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR (DARLINGTON): TA = 25°C
SYMBOL
BVCEO

..

BVCBO"
BV ECO "
'CEO"
hFE

CHARACTERISTIC

MIN

TYP

Collector-Emitter Breakdown Voltage

30

70

Collector-Base Breakdown Voltage

30

Emitter-Collector Breakdown Voltage

5.0

MAX

UNITS

TEST CONDITIONS

V

'C = 100 /lA. 'B = 0
'C = 100/lA, 'E = 0

V
V
100

Collector-Emitter Dark Current

nA

2000

DC Current Gain

'E = 100 /lA. 'B = 0
V CE = 10 V, Base Open
VCE = 5.0 V, 'C = 500/lA

ELECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL

CHARACTERISTIC

I ••
C

Collector Output Current

V,SO

..
.. ..

MIN

TYP

MAX

UNITS

TEST CONDITIONS

4N32,4N33

50

mA

V CE = 10 V, 'F = 10 mA

4N29,4N30

10

mA

V CE = 10 V, 'F = 10 mA

5.0

mA

V CE = 10 V, 'F = 10 mA

4N29,4N32

2500

Vdc

4N30,4N31,4N33

1500

4N31
Isolation Voltage

R,S O

Isolation Resistance

VCE(sat)

Collector-Emitter Saturation Voltage

Vdc
10"

n

V=500V

'c = 2.0 mA. 'F

4N31

1.2

V

4N29,4N30,4N32,4N33

1.0

V

C,SO

Isolation Capacitance

ton

Turn-on Time

toft

Turn-off Time (See Note 1)

= 8.0 mA

'C = 2.0 mA. 'F = 8.0 mA
V = 0, f = 1.0 MHz

1.5

pF

10

/lS

' C =50mA, VCC= 10V, RL = 180n,
'F = 200 mA

4N29,4N30,4N31

20

45

/lS

'C = 50 mA. VCC = 10 V, RL = 180 n,

4N32,4N33

60

120

/lS

'F = 200 rnA

*Planar is a patented Fairchild process.
**Indicates JEDEC Registered Data.
NOTE:
1. Turn-on time is defined as the time for the (base collector) current to rise from 10% to 90% of peak value. Turn-off time is defined as the time required for
the current to decrease from 90% to 10% of peak value.

6-47

•

4N3S·4N36·4N37
OPTICALLY -COUPLED ISOLATOR
OPTOELECTRONICS PRODUCTS GROUP

GENERAL DESCRIPTION - The 4N35. 4N36 and 4N37 series of optoisolators have a
npn silicon Planar* phtotransistor in close proximity to a gallium arsenide diode. Optical coupling provides a high degree of ac and dc isolation. A capability for continuous
operation of the input diode results in a frequency response extending to dc. Connection to the transistor base is also provided for design flexibility. This isolator series is
covered under U.L. component recognition program. reference file E55299.

•
•

•
•
•

GLASSOLATEDTM
HIGH CURRENT TRANSFER RATIO - MINIMUM 100%
1500 V TO 3600 V MINIMUM ISOLATION INPUT-TO-OUTPUT
10" ClISOLATION RESISTANCE
LOW COUPLING CAPACITANCE - TYPICALLY 1.0 pF

ABSOLUTE MAXIMUM RATINGS
Storage Temperature**
Operating Temperature
Pin Temperature (Soldering. 10 s)**
Relative Humidity at 85°C**

CONNECTION DIAGRAM
DIP (TOP VIEW)

ANODE'"

~6

CATHODE (-I

2

N.C.

3

~

BASE

5

COLLECTOR

4

EMITTER

-55°C to +150°C
-55°C to +1 oooC
260°C
85%
PIN NUMBERS

INPUT DIODE
6.0V
60mA
3.0A
100mW
1.33 mW;oC

Reverse Voltage
Forward Current
Peak Forward Current (1 /J.S pulse width. 300 pps)
Power Dissipation at TA = 25°C
Derate Linearly from 25°C
OUTPUT TRANSISTOR
Collector to Emitter Voltage
Collector to Base Voltage
Emitter to Collector Voltage
Collector Current
Power Dissipation at TA = 25°C
Derate Linearly from 25°C

1 Anode (+)
2 Cathode (-)
3 NC
4 Emitter
5 Collector
6 Base

}
}

Input Diode

Output npn·
Phototransistor

30V
70V
7.0V
100mA
300mW
4.0mW/oC

ELECTRICAL CHARACTERISTICS - INPUT DIODE: TA = 25°C
SYMBOL

CHARACTERISTIC

MIN

VF"
'R"
C

Forward Voltage
Reverse Leakage Current
Capacitance

0.8

**Indicates JEDEC registered values.

TYP

MAX

UNITS

.01

1.5
10
100

V
JlA
pF

TEST CONDITIONS
'F= lOrnA
VR = 6.0 V
VR = 0 V. f = 1 MHz
*Planar is a patented Fairchild process.

FAIRCHILD. 4N35 • 4N36 • 4N37
ELECTRICAL CHARACTERISTICS - OUTPUT TRANSISTOR: TA = 25°C
SYMBOL

CHARACTERISTIC

MIN

TYP

Collector-Emitter Voltage

30

65

V

IC= 10 mA

V CBO **

Collector-Base Voltage

70

165

V

IC = 100pA

V ECO

Emitter-Collector Voltage

7.0

14

V

V CEO

..

..

hFE

Collector-Emitter Leakage Current
Collector-Emitter Leakage Current
Forward Current Gain

Ccb

Collector-Base Capacitance

ICEO'
ICEO"

MAX

5
100

UNITS

50
500

"e=100pA.IF=0

nA
/lA

VCE = 10 V, IF = a
VCE = 30 V, IF = 0, TA = 100°C
V CE = 5.0 V, IC = 100 pA

pF

V CB = 10

250
25

TEST CONDITIONS

ELECTRICAL CHARACTERISTICS - COUPLED: TA = 25°C
SYMBOL

110"

..

VCE(sat)
IC/IF(CTR)"

CHARACTERISTIC

MIN

TYP

Input-to-Output Current
4N35
4N36
4N37
Collector-Emitter Saturation Voltage

MAX

100
100
100
0.3

UNITS

TEST CONDITIONS

/lA
V

Pulse Width = 8 ms
VIO = 3550 V
VIO = 2500 V
VIO = 1500 V
IC=0.5 mA.IF= lamA

pA
pA

Collector Current Transfer Ratio (Note 1)
Collector Current Transfer Ratio (Note 1)

100

%

V CE = 10 V, IF = 10 mA

40

%

VCE = 10 V, IF = 10 mA
TA = -55°C to 100°C

R ••
10
CIO

Input-to-Output Resistance

10"

ton
toff

IC/IF(CTR)"

..

0

V IO = 500 V

1.0

2.5

pF

V IO = 0, f = 1.0 MHz

Turn-on Time

5

10

ps

IC = 2.0 mA. VCC = 10 V, RL = 100 0

Turn-off Time

5

10

ps

IC = 2.0 mA. VCC = 10 V, RL = 100 0

Input-ta-Output Capacitance

**Indicates JEDEC registered values.

NOTES:
1 Collector current transfer ratio is defined as the ratio of the collector current to the forward bias input current.

6-49

•

~1_PA_C_K_A_G_E_O_U_T_L_!N_E_S__________________1111

FAIRCHILD PACKAGE OUTLINES
Opto-2

.

Opto-1

1/4-40

Gz,J]\Wou.
kt
IJ::t
[j'

.030 (0.7621--1

1

UNS-2A THO

\~"'imo ""~

_

IT

_

_.312(7.9251_
MAX.
-

.156
(3.9621

I--

(1:~;:'1

.206 (5.2071
.086 (2.1591

--I

f)'==r-

TO:;JI25~~L~~'

+

~
'-BEZEL FINISH:
I \.!
I--

.100(2.5401

lib

BLACK OR SILVER,

--I 1--.

1:)70

(1

--'-

CD

-t-Rc::f~
""'Fi.J--..I_
81

T1f.-

.204(5.1821
OIA.

T'

--fk

.375 _~
(9.5251

056 (14221

.~030

(0.7621

.235 (5.9691
OIA.

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)

Opto-3

Opto-4

l

_ _ . 310 (7 8741

.026
106351

OIA.

1

~--

r---

1
.265
(6.7311

-

~,~l,~jJ

.200 (5.081
.180 (4.571

-

_ _ .280(7.1121)
OIA.

1

f

B

1

B

A

.986(25021
.925(23.501

1_ ...-.015 (.381) X
.017(.432)

--L---~_~D
t.04O MIN (1.016)

NOTES:

NOTES:

An dimensions in inches (bold) and millimeters (parentheses)

All dimensions in inches (bold) and
millimeters (parentheses)
Tolerance unless specified = ±.015 (±.381)

7·3
- - - ---_. --_ ... _ . _ - - -

•

FAIRCHILD PACKAGE OUTLINES

Opto-S

Opto-6

i

f

.230
(5.842)

.230
(5.842)

~

~
.350 (8.890)
.315 (8.001)

Icrr'--------\

.015 (.381) X
.017 (.432)
1.00 (25.40)

0

.94 (r8)

-.----~

.015 (.381) X
.017 (.432)

1.00 (25.40)

.94_(lr3_.88_)_ _ _ _

t.04O MIN (1.016)

Opto-7

,~--o

-

f.04O MIN (1.016)

Opto-B

.200 (5.080)
.090 (2.286)

1

.3501890)
.315 (8.001)

1.00 (25.40)
.94 (23.88)

.425

' 'i'

.290
(7.366)

.355 (9.0H)t
.320 (8.128)
.295

I

1,-0-------;

j

(7·r)~L. .-:=T

-==_-::---':=

+- .025 (.635) X
.025 (.635)
1.120 (28.448)
1.060 (26.924)

+
.025

t

(.635)

1.040 MIN (1.016)

i.04O MIN (1.016)

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Tolerance unless specified = ±.015 (±.381)

7-4

O-D

_.015 (.381) X
.017 (.432)

FAIRCHILD PACKAGE OUTLINES
Opto-10

Opto-9

.102

~

-r-t_(CJ2'5~91)-II'

t

.230
(5.842)

.230
(5.842)

~

~

I-1~0(5.334)

_

.190 (4.826)

.350 (8,890)1
.315 (8.001)

.350 (8.890)1
.315 (8.001)

li

ITr-L--)- - - I

300 L-_ _ _-I
(1°,...)

L........-.....,.....-J

.015 (.381) X
.017 (.432)

.015 (.381) X
.017 (.432)

1.045 (26.543)

1.000 (25.400)

.985_.~25_'0_1_9)

o__~

.940_(t,3_.87_5_)_ _ _ _

O
__ ~

____

t.04O MIN (1.016)

t.040 MIN (1.016)

Opto-11

to

.150

(3.*10)

~

~

.130 (3.302)
.110 (2.7g4)

_

.020 (.508) X
.020 (.508)

.890 (22.606)

~r

~~

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
Tolerance unless specified = ±.015 (±.381)

7·5

•

FAIRCHILD PACKAGE OUTLINES

Opto-12

I,-r/-r;-r/-r

ORIENTATION MARKS

T,l,Ou
o~o

.020 10.508)
1[::::====>,.1.01610.406)
210
\1==:::>T.
.)
1.508)

.555114.097) I
.545 113.843) :

l
~.400110.160)
[::::::===:::=:>
REF.

~r r==-1~

19.195)

!

r

(

12.540)

DP~+

~ .1 1

II~ .192 1~ .07012.73)
li~~?)
.060 (1524)

~
13.555)
.140
TYP. 5°

.030
10.762)

.310 (7.87)
.290 (7.366)-

r-

.30617.747)
.295 17f93)

.100

'1===
d I

-

1 .905)
--.'--.075-----'-1
.17014.318)
.13013.302)

J

--SEATING PLANE

.34018.636)
.330 18.382)

,,-r,-r,-',---'-,

ORIENTATION MARKS

I{?O0

+',. r- '" ~H
19.195)
TYP.

I

13.555)
TYP.

14.877)
TYP.

+,,, "'~I
.060 11.524)

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
For polarity indication the top surface Is ribbed.
The unit LED segments cannot necessarily be seen
through the lens cap.
Lens cap color is red for red LED.
Pins 1 and 6 are common.
All dimensions are ±.015 inch.

7-6

FAIRCHILD PACKAGE OUTLINES

Opto-13

n=r· ~c:::::::::J
n DJ

(163S3~OO

~c:::::::::JD

.655 (16.6371
.645

(1

r-I
I
I

I
I

I
I

[Jc:::::::::J 0

(IT
.600 (15.24)

bbl
t

.305 (7.7471
.295 (74931

.010 (2541

'J'---+-- --------------.340 (S.6361
.330 (S.3S21

,,.t,,~

u

~ ~ ~ ~ ~~'r ,:~,
I. 1.100
I 1(254)

_
.020 (50S)
.016.(.4061

....
--

.200
t--·-r-(50S)

NOTES:
All dimensions in inches (bold) and
mi IIi meters (parentheses)
For polarity indication the surface is ribbed.
The unlit LED segments cannot
necessarily be seen through the lens cap.
Lens cap color is red for red LED
Pins 3 and 8 are common
All dimensions are ±.015 inch

7-7

•

FAIRCHILD PACKAGE OUTLINES

Opto-14

I-(12.19).480
-I
--

~' ~ I

r
I
I
I

- l

1.09
(27.68)

J=~_o J

I
I

~--

i

P

t

j

1

J

i

.100
(2.54)
_ . 8 3 0 _ __.
(21.10)

i

~
.027_
(.690)

I
i=--

i

.465
(11.81)

.500
(12.70)

~

~

~ ._ _ _~1)
.150

=
III

.600
(15.24)

.010
-(0.25)

I

NOTES:
All dimensions in inches (bold) and
millimeters (parentheses)
For polarity indication the surface is ribbed.
The unlit LED segments cannot
necessarily be seen through the lens cap.
Lens cap color is red for red LED
Pins 4, 6, 12 and 17 are common
All dimensions are ±.015 inch

7-8

r

.700
(17.78)

F>
F>

I
I
I
I
I

---.-l
P
p
P

I

.800
(20.32)

.018
(0.45)

1

FAIRCHILD PACKAGE OUTLINES
Opto-15

-~t-

.030
(.760)

.145

~l

llc:::::lV- T

I
L

il' lL-

.300
(7.620)

DP

140~~6)~
(3.66)

r-----r-l

--:-r
(52~~)

I

(~:~)

t

(15.24)

.100 12.54)

~~3) ~

(s:)rR
L

.600

==J

(U:::,

~F;;;::;;;;j+~

.075
(1.91)

I

--.l

.750

TYP

.400
(10.16) MAX

0- -r

_=-_Ufl

(~~)

.145

(3.66) MIN

=1L

.059(1.50)

(~~~).035 PTHR-;;--

~)

L(7~)--l
Opto-16
.055 [1.3971

.325 •

I
[

.093 [2.362)

PIN 1

·~···t=J-l

n~n n~n

r u:ru@ u:ru@

.565
14

14 PLS

... (8.255) .....
TYP

PIN 18

•

•

I· • • • • I •

t

.750

1
[19.05)

PIN9

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)

7-9

1
.600

115.24)

1

•

FAIRCHILD PACKAGE OUTLINES

Opto-17
3.600
1+----------(88.900)----------1
.135
(3.429)

3.220
1+---------(81.788) - - - - - - - - - 1

.240
(6.096)

'"

'c

L--+-,L.f-_-_-P~M~+_,_.

-I
J'(~9146 ~)

::1 1-m::

AM+ff,'fE3):

(20.32)

(34 PLACES)

H
(11.938)

.046 .360
(1.143) (9.144)

E

E

1

s.

E

C~._

_ _ _0_,_c_o_CL_:_N__O_'__C
___O_'__

PIN' 1

470

"'j'"
1.44

' ,

=ttE , 140--_______
0315

.100,...11-

•

'

(2.54)

CE~.~~~ED--------~

.14

(83.820)

Opto-18

(34 PLACES)

PIN11'

-

.100,...11-

.'

.14

134----'-----~1

, ,

'0315~

I

(2.541

0---------

...1.. .•
"

I
'

CENTERED

3.300

•

(83.820)

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)

7·10

FAIRCHILD PACKAGE OUTLINES
Opto-20

-Ii-j

q

.0251.6351 MAX STAKING

I"
.500
112.71

(5~:~2)

-I

~, ~=~ ~=~ F~~~.

[Jo

PIN PROJECTION

.217

-.&t

(5.512)

r

~:~o ~:~o E~:~CO

17 8
_(
)

I

.25
16.351

-t

11_

.062

.031 DIA THRU
(13 PLACES)

(1.575) - -

Opto-21

I"

PIN PROJECTION

"I

(59.182)

.-----t===;-~rn~~=~;--F~~~;;-i~. -.&t

n=n n=n

~~~hU=~U;....:OEU~I~~UCO
DIGIT 4

.217
(5.512)

_+

(17.018)

t

i-j

.25
16.351

.031 DIA THRU
(13 PLACES)

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)

1-11

-I-

q

.0251.6351 MAX STAKING

2.33

.062
(1.575) - -

11_

FAIRCHILD PACKAGE OUTLINES
Opto-22

.025 (.635) MAX STAKING
PIN PROJECTION
2.91
(73.914)

~It

.500
112.71

1
t

DIGIT 5

.031 DIA THRU'
(14 HOLES)
.12
10.78 I
(3.05)
-t~r-

______________________

Cl

~

'W2) + 1
(5'r=r=-t-I::===============::::I
.062

NOTES:
All dimensions in inches (bold) and millimeter (parentheses)
Tolerance unless specified:
.xx = ±.01O (0.25) .xxx = ±.005 (0.125)

11.581

Opto-23

I"

"I

2.91
(73.914)

-.6tOt rfr~
1(17.018)

1239~1 ~
I

~

~=~ ~=~ ~=~
n F~~~B
=
=
n= n=n

=U

0

---L-____

E~c:b~~ ~=~ U=~
0

0

U=U oOP

~~~~~~~~~~~----_D_I_G_IT--5~

.025 (.635) MAX STAKING
PIN PROJECTION

41_

t

.500
112.71

•

.031 DIA THRU--r
(14 HOLES) I .125
10.781
13.181

-.--r-----------------------~

.2;17~ t . 1

(5~-t-I::===============:::j
.062
11.581

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)

7·12

Cl

FAIRCHILD PACKAGE OUTLINES

Opto-24

1-----------3.31184.071-----------1
.708
117.981

.708
117.981

.025 1.6351 MAX STAKING
PIN PROJECTION--j
RED DIFFUSER FILM
.005 1.1271 THK.

I

L

PART CL
1 - - - - - - - - - - - - - - - ' - ' - - - - - 3 . 5 3 (89.66)'-----1

>uJ1
.06211.571

'--

NOTE:
All dimensions in inches (bold) and millimeters (parentheses)
Colon cathodes tied to digits 3 & 4

•

Opto-25

1----------3.31184.0711-----------1

.708
117.981

.025 1.6351 MAX STAKING
PIN PROJECTION~
RED DIFFUSER FILM
.005 1.1271 THK.

~
~

~

L

PART CL
1---------------'-'-----3.53189.661-----.,

NOTE:
All dimensions in inches (bold) and millimeters (parentheses)
AM/PM Ind. cathodes tied to digits 1 & 2.
Colon cathodes tied to digits 3 & 4~

7·13

="J1
.08211.571

'--

FAIRCHILD PACKAGE OUTLINES
Op10-26

Oplo-27
.084 (2.134)
.078 (1.981)
WINDOW

.200
(5.08)1

DIA.~

LENS
.210 (5.334)

PHOTOSENSITIVE
AREA

u.......1-TT...."..J~556)

.105 (2.667)

~ ~

REF.

3PINS~

1

.400 (10.16)
MIN.

I

.022 (.559)
.016 (.406)
DIA.

------'--~

.100 (2.54)

FPT101
EMITTER

.050 (1.27)

FPT102
ANODE (+)

BASE

\

y

Y

--

FPT101
COLLECTOR

<

/
\

.153 (3.886)
.147 (3.734)

COLLECTOR

EMITTER

45°

.180 (4.572)
.166 (4.216)

//

FPT102
CATHODE (-)

'-.080 (2.032)
FLAT

_I

O
--I

.450(11.43)

I .021 (.533)
1-.015 (.381)
DIA.

Oplo-28

i

Oplo-29

.200
(5.08rl.126 (3.200)
DIA.
.100 (2.540)

.195 (4.953)
.178 (4.521)
DIA .
.030
(0.762)
MAX.

I

~~:~ ~ -~~i",
!

I----j----

I

.230 (5.842)
.209 (5.309)
DIA.

t

L·065 (1.651)
.210 (5.334) .035 (0.889)
.170 (4.318)

Seating L'-=n==r?-'Plan-e--t-

r

MIN .

3 PINS
.022 (.559)
. 016(.406)DIA.

2 PINS
~
.019 (0.483)
.016 (0.406)
DIA.

.500 (12.700)

U·

.100 (2.540)
T.P.
PIN NO.2
CATHODE (-)

\

460~,

45°

.046

(1.16~L.048

.036 (0.914)

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)

7-14

GLASS

(1.219)
.028 (0.711)

FAIRCHILD PACKAGE OUTLINES

.230 (5.842)
.195 (4.953)
.

~___~ .. 209(5.309)

I,

DIA.

'-"Q.t--jc ._ _ _ ~

178D(~521)
.030

__i

I I ' f -._-

(0.762)1
MAX. I

1.210 (5.334)
.170 (4.318)

-r-

1

.020 (0.508)
.000

ANODE (IR)
PHOTOTRANSISTOR
EMITIER-

I

.185
(4'699)
MAX .
.100
(2.54)

PHOTOTRANSISTOR
-COLLECTOR
CATHODE (IR)

I-

Seating
I
Plan-e--t-

~ ~ ~.500J:~700)

3 PINS.019 (0.483)
.016 (0.406)
DIA.

rr

Opto-31

Opto-30

WHITE DOT

I .

t

+

--

.095 (2.413)

.100 (2.540)
T.P .
-PIN NO.2 BASE

. 050 (1.270)
T.P.

.085

F~"'-+"r"--"""'...j..".....J

0

.400

PIN NO.lEMITIER

(10.16)
MIN.

~

~
45° T.P.·"

..,

o

I I .020 (.508)
--I l--- .016 (.406)

GLASS
.048 (1.219)
028 (0.711)

.046(1.168) '" '"
.036 (0.914)

Opto-33

--J" l- .057
(1.448) NOTE 6
.043 (1.092)
-! I, I!-.103 (262) TYP .

.055 (1397)
.050 (1.27)

Opto-32

~

_------t-.231 (5867)
.205 (5.207)
.135 (3.429)
.085 (2 159)

_J._}
T---

.105 (2.667)
.095 (2.413)
NOTE 6

WHITE DOT
NOTE 4
9 UNITS
@ .100 (2.54) PITCH
TOL.

NO CONNECTION
ANODE (+)

~~
j~

~/ ,

\

\ '0 "/
~L

.040
(1.016)

.

(.

I

FLAT WITH SEATING

,125 t r n P L A N E WITHIN ,010
(3.175)

)

i

I• .
I •I. 230 (5.84)2

.205
190 (5.207)
4826)

_ '\

1:"9-~_;

450

NON~~ULATIV~
,

:'00 (254)
.050 (1.27)

~
,_-J-:/

.900 (22.86)

-1..----.-_+'--

,30~~Z.62)

CATHODE (-)
(CONNECTED
TO CASE)

.040
(1.016)

'

LI

~u
.380
(9.652)

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)

7·15

SEATING PLANE

.018
(0.457)
DIA.

•

FAIRCHILD PACKAGE OUTLINES
Opto-34

Opto-35
.057 (1.448)

.052 (1.308)
.049 (1.232)

375
H(9525)*

J _-.l_
-----r T: :-

.047 (11 94)
.042 (1.067) '-

rr±-ri,---'---------.

-T~J2 (3.352)

.103 (2.616)
.097 (2.464)

T

.118 (2.997)
.257 (6528)
.243 (6172)
NOTE 7

12 UNITS
TOL. NON-CUMULATIVE

I-- .043 (1.092)

--.i I 1---.

L'

,

, ,

NOTE 6

103 (2.616)
.. 097 (2.464)

---~-T-~~~

T--

.092 2.337)
.082 (2.083)
10 UNITS
NOTE 6
@ .087 (2.210) PITCH
TOl. NON·CUMUlATIVE
WHITE

L

3.0
(7.62)

@ .250 (635) PITCH

-.I

.867
(22.022)

_NO~~'

PLASTlcjl
BODY

PLASTIC
BODY

-125

m

.125
(3175) .
.
(3.175),
.385 (9.779)
.375 (9.525)

+

I

=r= '

.300 (7.62) ~
MIN.

FLAT WITH SEATING
PLANE WITHIN .010 (.254)

FLAT WITH SEATING
PLANE WITHIN .010

(254)
SEATING PLANE

LEATING PLANE

r------j I L

[.;.245.-1
(6.223)

I

I
-~

t

.215 (5461)
.200 (5.08)

.300 (7.62)
MIN.

i

.225 (5.715)

-',;j~.018 (.457)

---.II-.-- .01 DIA.
8 (.457)

DIA.

Opto-36

rr-

PLASTIC BODY ____

.240J
(6.096)

/'

I

.090 (2286)
.084 (2.134)

-~- 1
050~127)

1:5;

(4

/""'"SOURCE

L

~36 (0.914)

WHITE DOT

'i
.057 (1.448) J
1--1
.043 (1092)"""""'"1

NOTE 2

~SENSOR

I

.103 (2616)

J---------+I.- .097 (2464)

FLAT WITH SEATING
PLANE WITHIN .010 (.254)

I

.195 (4 953)
.180 (4. 572)

,

,

I,

SEATING PLANE

I,

j

I,

-r

.300 (7 62)
MIN

~.018

!

(.457)

DIA.

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)

7-16

FAIRCHILD PACKAGE OUTLINES

.045

rhrr-

Oplo-37
.340
(8636)

11.143) - -

r

.050 i1.270)

3

-f

~

. 250(6.35)

.062 (1575) DIA .

L~:;:::=r=I6
.050
(1.27)

.300(762)
- - PIN eTR. TYP

r-.032
.120
(.813) (3.048)

~~

T--r--.150(3.81)

L~

-

___

.018(.457) _
±.003(.076) -

IL- t----.,. -

.100(2.54)

~_

.010(254)
+.002(051 )

L----..

340(8636)
TYP

~I

•

NOTES:
All dimensions in inches (bold) and millimeters (parentheses)
7-17

FAIRCHILD PACKAGE OUTLINES

OplO 43

-1-'0251.635) MAX STAKING
PIN PROJECTION

.0301.735) R

.275 (6.98).110 (2.79)-

):71 (~R1l
1·370-!;)~

.125 (3.18)

.045 (1.141)

TYP.

L.075 (1.91)

.062(1.57)-11-

1.780 (45.211
TOLERANCE ± .015

NOTES:
1. All clmanllona In inch. . (bold)
and mlm_ (psrontheses)
2. Each segment has separate Anode/Cathode
3. Lens cap color is red for red LED.
4. Marking (on back): FNAOOO6
XXX
(XXX = data code)

Oplo 44
.100 TYP
12.54)
.050

1'.271

f

.400

"TI

FROSTED

---I

I

~-+--~----~------~4---~

~H~-+-+----~--+---~

.100

12+141

.040

~:

+-____"'-___ 12

!-!1_ _ _ _"""_ _ _ _

t

1.050 ELEMENT
L_~::7~ ____

I··---------I'~~:~I---------·I

(1.0'61

-+-~++HH~+r~~++~~+T

11--I

L.050TYP

1'.27)

NOTE:
All dimensions in inches (bold) and millimeters (parentheses)
Tolerance :!..015

7·18

_

FAIRCHILD PACKAGE OUTLINES

Opto 45

w

w

Q

W

;8
iL:ii

0

~j!:

Zc

iL"

Q

0

Nj!:
!!c

Q."

W

i8
.062 (1.575) DIA

li
I ~"

I

~"

~~

~"
ZO

g iL~
" "

.380 (9.652)

-a::

1

~~

~I
1

1_.040 (1.016)
030
.140
-~rl
S

~~r)

(3r )

.040(1,016)

:-;~of6~=)
(3.048)

I

.018 (0 457)
TVP
.009 (0 229)
TVP

·1 :.

.120
(3.046)

1

I

I

·1 ~ .1

.320 (8 128)
.100 (2 54)
TVP

NOTES:
All dimensions in inches (bold) and
mill i meters (parenth eses)
Package weight is 0.4 gram

7-19

•

FAIRCHILD LOGIC/CONNECTION DIAGRAMS

OPTOELECTRONICS
01

02
,---

:~'~:'
'0

5

PIN
1
2
3
4

5
6
7

8
9
10

FND350/357/360/367

c~

0

DP\±!

PIN FND351/358/361/368
1 Common-Cathode
2 Plus Sign
3 Minus Sign
4 NC
5 Omitted
6 Common-Cathode
7 Decimal Point
8 Segment C
9 Segment B
10 NC

Common-Cathode
Segment F
Segment G
Segment E
Segment 0
Common-Cathode
Decimal Point
Segment C
Segment B
Segment A

04

03
10

9

8

7
6

10

6

7

9

8

7

6

=====

=====
A

,~'

D·

G

, ~'

D~

DP

DP

=====

=====

I
D

1

2

FND507/537
PIN 547/557/567
1 Segment E
2 Segment 0
3 Comm-Anode
4 Segment C
5 Decimal Point
6 Segment B
7 Segment A
8 Comm-Anode
9 Segment F
10 Segment G

3

4

1

5

2

FND501/531
541/551/561
Minus
2 Cathode ±
3 Segment C
4 Cathode 1/DP
5 Decimal Point
6 Segment B
7 Cathode 1/DP
8 Cathode ±
9 Plus
10 NC

FND500/530
540/550/560
Segment E
Segment 0
Comm-Cathode
Segment C
Decimal Point
Segment B
Segment A
Comm-Cathode
Segment F
Segment G

PIN
1

7·20

3

4

5

FND508/538
548/558/568
Minus
Anode ±
Segment C
Anode 1/DP
Decimal Point
Segment B
Anode 1/DP
Anode ±
Plus
NC

FAIRCHILD LOGIC/CONNECTION DIAGRAMS

OPTOELECTRONICS

06

05

:~ u' n~ :

:~ u'

A

3

D

4

0

F

B

G

0

16

D

15

I

DoD

9

0

I

1

00

11

10

OP

PIN

FND800

1 Omitted
2 Segment A
3 Segment F
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18

Common-Cath.
Segment E
Common-Cath.
NC
Omitted
Omitted
Decimal Point
Segment D
Common-Cath.
Segment C
Segment G
Segment B
Omitted
Common-Cath.
Omitted

0

4

0

7

0

B

0

9

0

:~a'

:~ a:--"cU ~::
8

3

n~::

A

F

B
G

Ci l l

E

0

I

1

0

16

0

16

~::

0

12

0

11

0

10

OOP

FND807

PIN

1
2
3
4
5
6
7
8

FND850

Omitted
Segment A
Segment F
Common-Cath.
Segment E
Common-Cath.
DP
Omitted
9 Omitted
10 NC
11 Segment D
12 Common-Cath.
13 Segment C
14 Segment G
15 Segment B
16 Omitted
17 Common-Cath.
18 Omitted

Omitted
Segment A
Segment F
Common-Anode
Segment E
Common-Anode
NC
Omitted
Omitted
Decimal Point
Segment D
Common-Anode
Segment C
Segment G
Segment B
Omitted
Common-Anode
Omitted

7·21

FND847

Omitted
Segment A
Segment F
Common-Anode
Segment E
Common-Anode
DP
Omitted
Omitted
NC
Segment D
Common-Anode
Segment C
Segment G
Segment B
Omitted
Common-Anode
Omitted

•

FAIRCHILD LOGIC/CONNECTION DIAGRAMS

OPTOELECTRONICS
07

PIN

1
2
3
4
5
6
7

8
9

10
11
12
13
14

MAN71 A

MAN72A

Cathode A
Cathode F
Common-Anode
No pin
No pin
NC
Cathode E
Cathode D
Common-Anode
Cathode C
Cathode G
No pin
Cathode B
Common-Anode

Cathode A
Cathode F
Common-Anode
No pin
No pin.
Cathode DP
Cathode E
Cathode D
NC
Cathode C
Cathode G
No pin
Cathode B
Common-Anode

09
PIN

2

0
0

0
0

ADD

4

1
2
3
4

13
12

DgfbcO,

6

D

D

9

7

0

0

8

MAN74A

Anode F
Anode G
No pin
Common-Cathode
5 No pin
6 Anode E
7 Anode D
8 Anode C
9 Anode DP
10 No pin
11 No pin
12 Common-Cathode
13 Anode B
14 Anode A

14

7-22

FAIRCHILD LOGIC/CONNECTION DIAGRAMS

OPTOELECTRONICS
011

010
10

18
A

A

'il~D' 'il~'
-D:D~ 'D:D~
0

:j BooB

I

BI

0

9

PIN
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

FND6710

FND6740

E Cath. Digit 1
o Cath. Digit 1
C Cath. Digit 1
DP Cath. Digit 1
E Cath. Digit 2
o Cath. Digit 2
G Cath. Digit 2
C Cath. Digit 2
DP Cath. Digit 2
B Cath. Digit 2
A Cath. Digit 2
F Cath. Digit 2
Digit 2 Anode
Digit 1 Anode
B Cath. Digit 1
A Cath. Digit 1
G Cath. Digit 1
F Cath. Digit 1

C Cath. Digit 1
o Cath. Digit 1
B Cath. Digit 1
DP Cath. Digit 1
E Cath. Digit 2
o Cath. Digit 2
G Cath. Digit 2
C Cath. Digit 2
DP Cath. Digit 2
B Cath. Digit 2
A Cath. Digit 2
F Cath. Digit 2
Digit 2 Anode
Digit 1 Anode
A Cath. Digit 1
NC
NC
NC

PIN

FCS8000

1 NC
2 NC
3 Indicator
4 NC
5 Indicator
6 10 Hrs. C
7 10 Hrs. B
8 NC
9 Hrs. F
10 Hrs. G
11 Hrs. E
12 Hrs. A
13 Hrs. B
14 Hrs.D
15 Hrs. C
16 Colons
17 NC

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

10 Min.
10 Min.
10 Min.
10 Min.
10 Min.
10 Min.
10 Min.
NC
Min. F
Min. E
Min. G
Min. A
Min. B
Min. C
Min. 0
NC

F
E
G
A

0
B
C

VLED

012
PIN

IBB~'BBI

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

17
7-23

FCS8024
10 Hrs.
10 Hrs.
10 Hrs.
10 Hrs.
10 Hrs.
10 Hrs.
10 Hrs.
NC
Hrs. F
Hrs. G
Hrs. E
Hrs. A
Hrs. B
Hrs.D
Hrs. C
Colons
NC

A
E

0
G
F
C
B

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

10 Min.
10 Min.
10 Min.
10 Min.
10 Min.
10 Min.
10 Min.
NC
Min. F
Min. E
Min. G
Min. A
Min. B
Min. C
Min. 0
NC

VLED

F
E
G
A

0
B
C

•

FAIRCHILD LOGIC/CONNECTION DIAGRAMS

OPTOELECTRONICS
013

DIGIT 1

DIGIT 2

DIGIT 3

DIGIT 4
13

PIN
1
2
3
4
5
6

FNA5420
Digit 1 Com.
Seg. G
NC
Seg. F
Seg. D
Digit 2 Com.
7 Seg. A
8 Seg. B
9 Digit 3 Com.
10 RNDP
11 Seg. C
12 Seg. E
13 Digit 4 Com.

FNA5427
Digit 1 Com. Cath.
Seg. G "Plus" Sign Anode
NC
Seg. F
Seg. D "Minus" Sign Anode
Digit 2 Com. Cath.
Seg. A
Seg. B
Digit 3 Com. Cath.
RHDP
Seg. C
Seg. E
Digit 4 Com. Cath.

Anode

Anode

Anode

Anode

Preliminary Pin Assignment

014

DIGIT 1

DIGIT 2

DIGIT 3

DIGIT 4
13

PIN
1
2
3
4
5
6
7
8
9
10
11
12
13

FNA5428
Digit 1 Com. Anode
Seg. G "Plus" Sign Cathode
NC
Seg. F
Seg. D "Minus" Sign Cath.
Digit 2 Com. Anode
Seg. A
Seg. B
Digit 3 Com. Anode
RHDP
Seg. C
Seg. E
Digit 4 Com. Anode

Preliminary Pin Assignment

7-24

FNA5421
Digit 1 Com.
Seg. G
LHDP
Seg. F
Seg. D
Digit 2 Com.
Seg. A
Seg. B
Digit 3 Com.
RHDP
Seg. C
Seg. E
Digit 4 Com.

Cath.

Cath.

Cath.

Cath.

FAIRCHILD LOGIC/CONNECTION DIAGRAMS

OPTOELECTRONICS
015

DIGIT 1

DIGIT 2

DIGIT 3

DIGIT 4

DIGIT 5

14

PIN

2
3
4
5
6
7
8
9
10
11
12
13
14

FNA5520*
LHDP Anodes
Digit 1 Com. Cathodes
Seg. G, "Plus" Sign Anodes
Seg. F Anodes
Seg. D, "Minus" Sign Anodes
Digit 2 com. Cathodes
Seg. A Anodes
Seg. B Anodes
Digit 3 Com. Cathodes
RHDP Anodes
Seg. C Anodes
Seg. E Anodes
Digit 4 Com. Cathodes
Digit 5 Com. Cathodes

FNA5527*
LHDP Cathodes
Digit 1 Com. Anode
Seg. G, "Plus Sign Cath.
Seg. F Cath.
Seg. D, "Minus" Sign Cath.
Digit 2 Com. Anode
Seg. A Cath.
Seg. B Cath.
Digit 3 Com. Anode
RHDP Cath.
Seg. C Cath.
Seg. E Cath.
Digit 4 Com. Anode
Digit 5 Com. Anode

016

DIGIT 1

DIGIT 2

DIGIT 3

DIGIT 4

DIGIT 5

14

PIN
1
2
3
4
5
6
7
8
9
10
11
12
13
14

FNA5521
NC
Com. Cath. Digit 1
Seg. G/"Plus" Ind. Anodes
Seg. F Anodes
Seg. D Anodes/Minus
Com. Cath. Digit 2
Seg. A Anodes
Seg. B Anodes
Com. Cath. Digit 3
DP Anodes
Seg. C Anodes
Seg. E Anodes
Com. Cath. Digit 4
Com. Cath. Digit 5

'Prellmlnary Pin Assignment

7-25

FNA552S*
NC
Com. Anode Digit 1
Seg. G, "Plus" Sign Cath.
Seg. F Cath.
Seg. D Cath.
Digit 2 Com. Anode
Seg. A Cath.
Seg. B Cath.
Digit 3 Com. Anode
DP Cath.
Seg. C Cath.
Seg. E Cath.
Digit 4 Com. Anode
Digit 5 Com. Anode

•

FAIRCHILD LOGIC/CONNECTION DIAGRAMS

OPTOELECTRONICS
017

o

o

AM
Q IND

PM
Q IND

DIGIT 1

PIN
1
2
3
4
5
6
7
8
9
10
11
12

FCS6400
Com. Cath. Digits 1 & 2
NC

N/C
Segment
Segment
Segment
Segment
Segment
Segment
Segment
Segment
Segment

A 1 Anode
F1 Anode
G1 Anode
E1 Anode
D1
C1 Anode
81 Anode
F2 Anode
G2 Anode

13
14
15
16
17
18
19
20
21
22
23
24

Segment A2 Anode
Segment 82 Anode
Segment E2 Anode
Segment D2 Anode
Segment C2 Anode
Colon Anode
Colon Anode
Segment F3 Anode
Segment G3 Anode
Segment A3 Anode
Segment 83 Anode
Segment D3 Anode

25
26
27
28
29
30
31
32
33
34

Segment E3 Anode
Segment C3
Segment F4
Segment G4 Anode
Segment A4 Anode
Segment 84 Anode
Segment E4 Anode
Segment D4 Anode
Segment C4 Anode
Com. Cath. Digits 3 & 4

25
26
27
28
29
30
31
32
33
34

Segment E3 Anode
Segment C3 Anode
Segment F4 Anode
Segment G4 Anode
Segment A4 Anod.e
Segment 84 Anode
Segment E4 Anode
Segment D4 Anode
Segment C4 Anode
Com. Cath. Digits 3 & 4

018

PIN
1
2
3
4
5
6
7
8
9
10
11
12

FCS6401
Com. Cath. Digits 1 & 2
PM IND. Anode
AM IND.

N/C
N/C
N/C
N/C
N/C
Segment
Segment
Segment
Segment

C1 Anode
81 Anode
F2 Anode
G2 Anode

13
14
15
16
17
18
19
20
21
22
23
24

Segment A2 Anode
Segment 82 Anode
Segment E2 Anode
Segment D2 Anode
Segment C2 Anode
Colon Anode
Colon Anode
Segment F3 Anode
Segment G3 Anode
Segment A3 Anode
Segment 83 Anode
Segment D3 Anode

7-26

FAIRCHILD LOGIC/CONNECTION DIAGRAMS

OPTOELECTRONICS
024

PIN
1 Anode (+) }
2 Cathode (-)
3 NC
4 Emitter
5 Collector
6 Base

ANODE (+) 1

CATHODE (-) 2

5

COLLECTOR

4

EMITTER

I

Input Diode

Output npn
Phototransistor

025

PIN
1
2
3
4
5
6
7
8

7-27

ANODE
CATHODE
CATHODE
ANODE
EMITIER
COLLECTOR
COLLECTOR
EMITIER

CHANNEL #1
CHANNEL #2
CHANNEL #1
CHANNEL #2

I. .

__
F_S_Y_M_B_O_L_S_A_N__
D__________
. _D_E_F_IN_IT_I_O_N_S_O
TERMS

~.'

-OPTODEFINITION OF SYMBOLS AND TERMS
Angstrom (A)

Conversion Efficiency (of a Photoemlsslve Device)

A unit of length particularly for measuring electromagnetic wavelengths; one angstrom = 10-10 meters = 10-4
microns = 3.937 X 10-9 in.

The ratio of maximum available luminous or radiant flux
output to total input power.

Angular Alignment
A measure of the deviation of the optical axis from the
mechanical axis.

The maximum angle of incidence for which light will be
transmitted from one medium to another. Light approaching the interface at angles greater than the critical angle
will be reflected back into the first medium.

Ar4a Source

Dark Current (10)

A source with a diameter greater than 10% of the distance
between it and the detector.

The current which flows in a photodetector when there is
no incident radiation on the detector.

Axial Intensity (10):

D-C Transfer Ratio (of an Optically Coupled Isolator)

Critical Angle

The ratio of the dc output current to the dc input current.

The ratio of the flux emitted by a source and contained
within an incremental on axis solid angle subtended by a
sensor [units: lumens/steradian (photometric) or watts/
steradian (radiometricl]

Darlington Amplifier
A composite configuration of transistors which provides a
high input impedance and a high degree of amplification.

BL (also "8")
Darlington Connector Phototranslstor
A photometric unit of luminance in (lumens/steradian)/ft 2
or foot-Lamberts.

A phototransistor the collector and emitter of which are
connected to the collector and base, respectively, of a
second transistor. The emitter current of the input transistor is amplified by the second transistor and the device has
very high sensitivity to light.
GRAPHIC SYMBOL:

Blackbody
A 100% efficient radiator and absorber of radiant energy
used as a standard for all irradiance measurements.
Blackbody Luminous Efficiency
As a function of temperature, the efficiency of an incandescent blackbody in terms of visible light.
Candela
A photometric unit of luminous intensity (in lumens per
steradian) defined as 1/60 the intensity of a one cm 2
blackbody radiator at platinum's solidification temperature (2,046 0 KL

Delay Time (Id)
The time interval from the pOint at which the leading edge
of the input pulse has reached 10% of its maximum amplitude to the pOint at which the leading edge of the output
pulse has reached 10% of its maximum amplitude.

Candela/cm2
Luminance unit called "stilb".

Diode
(111r) candela/cm2

A semiconductor device which passes current in only one
direction.

Luminance unit called "Lambert".
Color Temperature
The temperature of a blackbody whose radiation has the
same visible color as that of a given non-blackbody radiator. TYPICAL UNIT: K (formerly 0 KL

8-3

•

DEFINITION OF SYMBOLS AND TERMS CON'T.
Duty Cycle

Half Intensity beam angle (OHI)

A measure of the effect of a pulsed input to a lamp.
Expressed as a percentage of on time as compared to total
time.

The angle within which the radiant intensity is not less
than half the maximum.
illumination (Ev)

E
The luminous flux density incident on a surface; the ratio
of flux to area of illuminated surface.
TYPICAL UNITS: Im/ft2, Ix = Im/m2.1 Im/ft2 = 10.764 Ix.

Photometric unit of illuminance in lumens/ft2 (footcandle)
Emission Beam Angle Between Half·Power Points (OHP)

Infrared Light-Emitting Diode (Infrared Emitter)
The angle centered on the optical axis of a light-emitting
diode within which the relative radiant power output or
photon intensity is not less than half of the maximum
output or intensity.

An optoelectronic device containing a semiconductor p-n
junction which emits radiant energy in the 0.78-l'm to 100I'm wavelength region when forward-biased.

Fall Time (tf)
The time duration during which the trailing edge of a pulse
is decreasing from 90% to 10% of its maximum amplitude.
Flux
Power passing through a surface (energy per unit time);
number of photons passing through a surface per unit
time. Expressed in lumens or watts.

Irradlance (H or Ee)

Flux Density

The radiant flux density incident on a surface; the ratio of
flux to area of irradiated surface.
TYPICAL UNITS: W/ft2, W/m 2. 1 W/ft2 = 10.764 W/m2.

A measure of the strength of a wave; flux per unit area
normal to the direction of the flux; number of photons
passing through a surface per unit time per unit area.
Expressed in watts/cm 2 or lumens/ft2.

Light

Unit of illumination. Defined as the illuminance on a
surface of one square foot on which there is a uniformly
distributed flux of one lumen, or lumens/ft2.

For the purpose of these definitions, radiant energy transmitted by wave motion with wavelengths from about 0.3
I'm to 30 I'm; this includes visible wavelengths (0.38 I'm to
0.78 I'm) and those wavelengths, such as ultraviolet and
infrared, which can be handled by optical techniques used
for the visible region. In more restricted usage, radiant
energy within the limits of the visual spectrum.

Foot-lambert

Light Current (lL)

Unit of luminance or brightness. Defined as the uniform
luminance of a surface emitting or reflecting light at the
rate of one lumen per square foot.

The current that flows through a photosensitive device,
such as a phototransistor or a photodiode, when it is
exposed to illumination or irradiance.

Forward Voltage (V F)

Light-Emitting Diode (LED)

The voltage across a semiconductor diode associated
with the flow of forward current. The p-region is at a
positive potential with respect to the n-region.

Light-emitting diode that emits visible light.

Foot-candle

GaAs, GaAsP, GaP
The most commonly used emitter materials are gallium
arsenide (GaAs), gallium arsenide phosphide (GaAsP)
and gallium phosphide (GaP).
H

Lumen

Irradiance or radiation flux density in watts/cm 2 (radiometric unit).

Unit of flux; flux through one steradian from a uniform
point source of one candle.

8·4

DEFINITION OF SYMBOLS AND TERMS CON'T.
luminescence

Photodlode

Emission of light due to any other cause than high temperature (incandescence).

A solid state device, much like an ordinary diode except
that incident light on the pn junction causes the device to
conduct. It acts asan open circuit(ideally) in the dark. The
photodiode is characterized by a linear relationship between input radiation and output current. It has faster
switching speeds than a phototransistor.

luminance (l) (Photometric Brightness)
The luminous intensity of a surface in a given direction per
unit of projected area of the surface a!l viewed from that
direction.
TYPICAL UNITS: fl, cd/ft2, cd/m2. 1 fL = (1/rr) cd/ft2 =
3.4263 cd/m2.

luminous Flux (v)
The time rate of flow of light.
TYPICAL UNIT: 1m
NOTE: Luminous flux is related to radiant flux by the eyeresponse curve of the International Commission on illumination (CIE). At the peak response (A = 555 nm), 1 W =
680 1m.

Photometric Axis
The direction from the source of radiant energy in which
the measurement of photometric parameters is performed

luminous Intensity (Iv)

Photometric Brightness

Luminous flux per unit solid angle in a given direction.
TYPICAL UNIT: cd. 1 cd = 1 Im/sr

See luminance.
Photon

Off-State Collector Current (of an Optically Coupled Isolalor) (IC(off)

A quantum (the smallest possible unit) of radiant energy; a
photon carries q quantity of energy equal to Planck's
constant times the frequency.

The output current when the input current is zero.

Phototranslstor

On-State Collector Current (of an Optically Coupled Isolator) (lC(on)

Solid state device similar to an ordinary transistor except
that light incident on the pn junctions controls the response of this device; offers built-in gain and greater
sensitivity than photodiodes.

The output current when the input current is above a
threshold level. An increase in the input current will usually result in a corresponding increase in the on-state collector current.
Optical Axis
A line about which the radiant-energy pattern is centered;
usually perpendicular to the active area.
Optically Coupled Isolator

Point Source

An optoelectronic device consisting of a photoemissive
device and a photodetector integrated into a single entity
and intended for the transfer of a signal from the input to
the output.

Radiation source whose maximum dimension is less than
1/10 the distance between source and receiver.

Quantum Efficiency (of a Photosensitive Device)

Photocurrent

The ratio of the number of carriers generated to the
number of photons incident upon the active region.

The difference between light current (Ill and dark current
lie) in a photodetector.

Radiant Flux (e)

Photodetector

The time rate of flow of 'radiant energy.
TYPICAL UNIT: W

A device which senses incident radiation.

8-5

DEFINITION OF SYMBOLS AND TERMS CON'T.
Radiant Pulse Fall Time (tf)

Threshold Voltage

The time required for a photometric quantity to change
from 90% to 10% of its peak value for a step change in
electrical input.

Voltage at which a pn junction begins to pass a current; in
a solid state lamp, the voltage at which light is first emitted.
Visible Emission, Visible Light

Radiant Pulse Time (t,)
Radiation which is characterized by wavelengths of about
0.38 I'm to 0.78 I'm.

The time required for a photometric quantity to change
from 10% to 90% of its peak value for a step change in
electrical input.

Vlslble-Llght-Emlttlng Diode (VLED)
An optoelectronic device containing a semiconductor
junction which emits visible light when forward-biased.

Rise Time (t,)
The time duration during which the leading edge of a
pulse is increasing from 10% to 90% of its maximum
amplitude.
Spectral Output (of a Llght·Emlttlng Diode)
A description of the radiant-energy or light-emission
characteristic versus wavelength. This information is usually given by stating the wavelength at peak emission and
the bandwidth between half-power points or by means of a
curve.
Spectral Distribution of Energy (EA)

Wavelength at Peak Emission (Ap)

A plot showing the variation of spectral emission with
wavelength.

The wavelength at which the power output from a lightemitting diode is maximum
TYPICAL UNITS: 1\, I'm, nm. 1 X = 10-4 I'm = 0.1 nm.

Spectral Response (of a Photosensitive Device)
Radiation and illumination Sources
A curve of the electrical-output characteristic versus
wavelength of radiant energy incident upon the device.

The effect of a radiation source on a photodevice is
dependent on the device spectral response and the spectral distribution of energy from the source. To discuss
such energy, two related sets of terminology are available.
The first, radiometric, is a physical system, and the secone, photometric, is a physiological system, which defines
energy relative to its visual effect.

Steradian
Solid angle subtending an area on the surface of a sphere
equal to the square of the radius; there are 41T steradians in
a sphere.

The defining factor for the photometric system is the
spectral response curve of a standard observer, whereas
the defining spectral response of the radiometric system
can be imagined as unit response for all wavelengths.

Storage Time (ts)
The time interval from a point at which the trailing edge of
the input pulse has dropped to 90% of its maximum amplitude to a point at which the trailing edge of the output
pulse has dropped to 90% of its maximum amplitude.

2Steradlan: The solid equivalent of a radian

8·6

DEFINITION OF SYMBOLS AND TERMS CON'T.
CONVERSION TABLE

Radiometric
all wavelengths

Photometric
visible light

Total Flux

Radiant Flux, P.
In Watts

Luminous Flux, F, in
Lumens

Emitted Flux
Density at a

Radiant Emittance, W,

Luminous Emittance, L,
in Lumens/lt2 (Iootlamberts), or lumens/
em2 (Lamberts)

Description
Symbol
A

X

cd
°C
oK

Unit

Foot
Footcandle

fL
Hz
in
KL
1m
Ix
m

Footlambert
Hertz
Inch
Kelvin
Lambert
Lumen
Lux
Meter
Micron
Nit
Ohm
Second
Steradian
Stilb
Volt
Watt

n
sr
sb
V
W

1

X= 10-10 m = 10-4 I'm = 0.1

nm

1 cd = 1 Im/sr

in Watts/cm2

Source Surface

See K

It
fc

I'
nt

Note

Ampere
Angstrom
Candela
Degree Celsius

Source Intensity

(Point Source)

The equivalent unit Im/ft2 is
preferred
1 fL = (1 hr) cd/lt2 = 3.4263 cd/m2

Radiance, 8r, in

Luminance, BL. in

(Watts/Steradian) /em2

(Lumens/Steradian) /lt2
(Iootlambert )

Irradiance, H, in
Incident on a
Watts/em 2
Receiver Surface

Illuminance, E, in

Lumens/lt2 (Iooteandle)

= 1 Im/m2

The equivalent unit I'm is preferred
1 nt = 1 cd/m2

POINT SOURCE RELATIONSHIPS

1 sb = 1 cd/cm2

Description

Radiometric

Photometric

Point Source
Intensity

Ir, Watts/Steradian

IL, Lumens/Steradian

Incident Flux
Density

H (Irradianee) = IrI,2

E (Illuminance) = IL/,2

watts/distance 2

lumens/distance 2

Total Flux Output P = 4".1, Watts
of Point Source

F = 4".IL Lumens

DESIGN RELATIONSHIPS FOR AN AREA SOURCE

TO:

MULTIPL Y BY:

Nanometers
Millimicrons

0.1

Angstroms

Microns
Micrometers

0.0001

Nanometers
Millimicrons

Angstroms

10

Microns
Micrometers

Angstroms

10,000

Nanometers
Millimicrons

Microns
Micrometers

.001

Microns
Micrometers

Nanometers
Millimicrons

1000

Angstroms

Source Intensity

(Area Source)
Flux Density

UNITS OF MEASUREMENT

TO CONVERT
FROM:

Luminous intensity, ILl
in Lumens/Steradian

(Candela)

Formerly ° K, degree Kelvin

1 Ix

Radiant Intensity, I"
in Watts/Steradian

Description

Radiometric

Source Intensity

Sr, Watts/cm 2/steradian BlI Lumens/cm 2 j
steradian

Emitted FI ux
Density

W = ".B" Watts/em2

L = rrBL, Lumens/cm 2

Incident Flux

BrAs
H - ,2 + d/22,
Watts/em 2

BL As
E - ,2 +d/22, Lumens/em2

Density

8-7

Photometric

•

FAIRCHILD FIELD SALES OFFICES,
SALES REPRESENTATIVES AND
DISTRIBUTOR LOCATIONS

FAIRCHILD FRANCHISED DISTRIBUTORS
UNITED STATES AND CANADA
ALABAMA
HALLMARK ELECTRONICS
4739 Commercial Drive
Huntsville, Alabama 35805
Tel: 205-837-8700 TWX: 810-726-2187
HAMILTON/AVNET ELECTRONICS
805 Oster Orive, N.W.
Huntsville, Alabama 35805
Tel: 205-533-1170
Telex: None - use HAMAVLECB CAL 73-0511
(Regional Hq. in Dallas, Texas)
.
ARIZONA
HAMILTON/AVNET ELECTRONICS
2615 S. 21st Street
Phoenix, Arizona 85034
Tel: 602-275-7851 TWX: 910-951-1535
LIBERTY ELECTRONICS
8155 North 24th Ave.
Phoenix, Arizona 85021
Tol: 602-249-2232 TWX: 910-951-4282
STERLING ELECTRONICS
P.O. Drawer 20867 (zip code 85036)
2001 E. University Drive
Phoenix, Arizona 85034
Tel: 602-258-4531 Telex: 667317
CALIFORNIA
AVNET ELECTRONICS
350 McCormick Avenue
Costa Mesa. California 92626
Tel: 714-754-6111 (Orange County)
213-558-2345 (Los Angeles)
TWX: 910-595-1928
BELL INDUSTRIES
ElectroniC Distributor Division
1161 N. Fair Oaks Avenue
Sunnyvale. California 94086
Tel. 408-734-8570 TWX: 910-339-9378
ELMAR ELECTRONICS
2288 Charleston Rd.
Mountain View. California 94042
Tel. 415-961-3611 TWX: 910-379-6437
G.S. MARSHALL COMPANY
8005 Deering Avenue
Canoga Park. Cahfornia 91304
Tel 213-999-5001
G.S. MARSHALL COMPANY
9674 Telstar Avenue
EI Monte. California 91731
Tel. 213-686-0141 TWX. 910-587-1565
G.S. MARSHALL COMPANY
17975 Skypark Blvd.
IrVine. California 92707
Tel 7 I 4-556-6400
G.S. MARSHALL COMPANY
8057 Raytheon Rd. Suite 1
San Diego. California 921 I 1
Tel. 714-278-6350 TWX: 910-335-1191
HAMILTON ELECTRO SALES
10912 W. Washington Blvd.
Culver City. California 90230
Tel. 213-558-2121 TWX. 910-340-6364
HAMILTON/AVNET ELECTRONICS
575 E. Middlefield Road
Mountain View, California 94040
Tel 415-961-7000 TWX: 910-379-6486
HAMILTON/AVNET ELECTRONICS
8917 Complex Drive
San Diego. California 92123
Tel. 714-279-2421
Telex HAMAVELEC SDG 69-5415
LIBERTY ELECTRONICS
124 Maryland Street
EI SegundO. California 90245
Tel 213-322-8100 TWX. 910-348-7111

CRAMER ELECTRONICS
5465 East Evans Place at Hudson
Denver. Colorado 80222

Tel: 303-758-2100
ELMAR ELECTRONICS
6777 E. 50th Avenue
Commerce City, Colorado 80022
Tel: 303-287-9611 TWX: 910-936-0770
G.S. MARSHALL COMPANY
5633 Kendall Court
Arvada, Colorado 80002
Tol: 303-423-9670 TWX: 910-938-2902
HAMIL TON/AVNET ELECTRONICS
5921 N. Broadway
Denver, Colorado 80216
Tel: 303-534-1212 TWX. 910-931-0510
CONNECTICUT
CRAMER ELECTRONICS
35 Dodge Avenue
Wharton Brook Industrial Center
North Haven. Connecticut 06473
Tel. 203-239-5641
HAMILTON/AVNET ELECTRONICS
643 Danbury Road
Georgetown. Connecticut 06829
Tel: 203-762-0361
TWX: None - use 710-897-1405
(RegIOnal Hq. in Mt. Laurel. N.J.)
HARVEY ELECTRONICS
112 Main Street
Norwalk, Connecticut 06851
Tel: 203-853-1515
SCHWEBER ELECTRONICS
Finance Drive
Commerce Industrial Park
Danbury. Connecticut 06810
Tel: 203-792-3500
FLORIDA
CRAMER ELECTRONICS
4035 N. 29th Avenue
Hollywood. Florida 33020
Tel: 305-923-8181
CRAMER ELECTRONICS
345 North Graham Avenue
Orlando, Flonda 32814
Tel: 305-894-1511
HALLMARK ELECTRONICS
1302 W. McNab Road
Ft. Lauderdale, Florida 33309
Tel: 305-971-9280 TWX: 510-956-3092
HALLMARK ELECTRONICS
7233 Lake Ellenor Drive
Orlando, Florida 32809
Tel: 305-855-4020 TWX: 810-850-0183
HAMILTON/AVNET ELECTRONICS
6800 N.w. 20th Avenue
Ft. Lauderdale, Flonda 33309
Tel. 305-971-2900 TWX: 510-954-9808
SCHWEBER ELECTRONICS
2830 North 28th Terrace
Hollywood, Flonda 33020
Tel: 305-927-0511 TWX: 510-954-0304
GEORGIA
HAMILTON/AVNET ELECTRONICS
6700 Interstate 85 Access Raod, Suite 1E
Norcross. Ga. 30071
Tel: 404-448-0800
Telex: None - use HAMAVLECB DAL 73 0511
(Regional Hq. in Dallas, Texas)
LYKES ELECTRONICS CORP.
6447 Atlantic Blvd.
Norcross, Georgia 30071
Tel. 404-449-9400

LIBERTY ELECTRONICS/SAN DIEGO
8248 Mercury Court
San Diego. California 92111
Tel 714-565-9171 TWX. 910-335·1590

ILLINOIS
HALLMARK ELECTRONICS INC.
180 Crossen Avenue
Elk Grove Village, Illinois 60007
Tel. 312·437-8800

COLORADO
CENTURY ELECTRONICS
8155 West 48th Avenue
Wheatfldge. Colorado 80033
Tel. 303-424-1985 TWX. 910-938-0393

HAMIL TON/AVNET ELECTRONICS
3901 N. 25th Avenue
Schiller Park. Illinois 60176
Tel. 312-678-6310 TWX: 910-227-0060
KIERULFF ELECTRONICS
85 Gordon Streel
Elk Grove Village, illinOIS 60007
Tel. 312-640-0200 TWX. 910·227-3166

9-3

SCHWEBER ELECTRONICS. INC.
1275 Summel Avenue
Elk Grove Village, III. 60007
Tol: 312-593-2740 TWX: 910-222-3453
SEMICONDUCTOR SPECIALISTS. INC
(mailing address)
O'Hare International Airport
P.O. Box 66125
Chicago, Illinois 60868
(shiPping address)
195 Spangler Avenue
Elmhurst Industrial Park
Elmhurst, Illinois 60126
Tol: 312-279-1000 TWX: 910-254-0169
INDIANA
GRAHAM ELECTRONICS SUPPLY. INC.
133 So. Pennsylvania Street
Indianapolis, Indiana 46204
Tel: 317-634-8486 TWX; 810-341-3481
PIONEER INOIANA ELECTRONICS. INC.
6408 Caslleplace Drive
Indianapolis, Indiana 48250
Tel: 317-849-7300 TWX: 810·260-1794
KANSAS
HALLMARK ELECTRONICS, INC.
11870 West 91st Street
.
Shawnee Mission, Kansas 66214
Tel: 913-888-4746
HAMILTON/AVNET ELECTRONICS
37 Lenexa Industrial Center
9900 Pflumm Road
Lenexa, Kansas 66215
Tel: 913-888-8900
Telex: None - use HAMAVLECB OAL 73-0511
(Regional Hq. in Dallas, Texas)
LOUISIANA
STERLING ELECTRONICS CORP.
4613 Fairfield
Metairie. Louisiana 70002
Tel: 504-887-7610
Telex: STERLE LEe MRIE 58-328

MARYLAND
HALLMARK ELECTRONICS. INC.
6655 Amberton Drive
Ballimore, Maryland 21227
Tel: 301~796-9300
HAMIL TON/AVNET ELECTRONICS
(mailing address)
Friendship International Airport
P.O. Box 8647
Baltimore, Maryland 21240
(shipping address)
7235 Standard Drive
Hanover, Maryland 21076
Tel: 301-796-5000 TWX: 710-862-1861
Telex: HAMAVLECA HNVE 87-968
PIONEER WASHINGTON ELECTRONICS. INC.
9100 Gaither Road
Gaithersburg, Maryland 20760
Tel. 301-948-0710 TWX; 710-828-9784
SCHWEBER ELECTRONICS
5640 Fisher Lane
Rockville, Maryland 20852
Tel: 301-881-2970 TWX: 710-828-0536
MASSACHUSETTS
CRAMER ELECTRONICS
85 Wells Avenue
Newton Centre, MassachuseUs 02159
Tel: 617-964·4000
GERBER ELECTRONICS
852 PrOVidence Highway
U.S. Route 1
Dedham, MassachuseUs 02026
Tel. 617-329-2400
HAMILTON/AVNET ELECTRONICS
100 E. Commerce Way
Woburn, Massachusetts 01801
Tel. 617-933-8000 TWX; 710- 332-1201
HARVEY ELECTRONICS
44 Hartwell Ave.
LeXington, Massachusetts 02173
Tel: 617-861-9200 TWX: 710-326-6617
SCHWEBER ELECTRONICS
213 Third Avenue
Waltham, Massachusetts 02154
Tel. 617-890-8484

FAIRCHILD FRANCHISED DISTRIBUTORS (Cont'd)
UNITED STATES AND CANADA
MICHIGAN
HAMILTON/AVNET ELECTRONICS
12870 Farmington Rd.
Livonia. Michigan 48150
Tel: 313~522·4700 TWX; 810-242-8775
PIONEER/DETROIT
, 3485 Stamford
Livonia, Michigan 48150
Tel. 313-525-1800

CRAMER ELECTRONICS
6716 Joy Road
E. Syracuse, N. V. 13057
Tel: 315-437-£671

SCHWEBER ELECTRONICS
23880 Commerce Park Road
Beachwood, Ohio 44122
Tel: 216-464-2970 TWX: 810-427-9441

COMPONENTS PLUS, INC.
40 Oser Avenue
Hauppauge, L.I.. New York 11787

SHERIDAN SALES COMPANY
23224 Commerce Park Road
Beachwood, Ohio 44122
Tel: 216-831-0130 TWX: 810-427-2957

Tel: 516-231-9200 TWX: 510-227-9869
HAMILTON/AVNET ELECTRONICS

SCHWEBER ELECTRON ICS
86 Executive Drive
Troy, Michigan 48084

Tel: 313-583-9242
SHERIDAN SALES CO.
24543 Indoplex Drive
(P.O. Box 5291
Farmington. Mich. 48024
Tel: 313-477-3800
MINNESOTA
HAMILTON/AVNET ELECTRONICS
7683 Washington Ave. South
Edina. Mmnesota 55435
Tel. 612-941-3801
TWX: None - use 910-227-0060
(Regional Hq. in Chicago, III.)
SCHWEBER ELECTRONICS
7402 Washington Ave. South
Eden Prairie, Minnesota 55343
Tel: 612-941-5280
SEMICONDUCTOR SPECIALISTS. INC.
8030 Cedar Avenue South
Minneapolis, Minnesota 55420
Tel: 612-854-6841 TWX: 910-576-2812
MISSOURI
HALLMARK ELECTRONICS. INC.
13789 Rider Trail
Earth City. MiSSOUri 63045
Tel. 314-291-5350
HAMILTON/AVNET ELECTRONICS
364 Brookes Lane
Hazelwood. Missouri 63042
Tel: 314-731-1144 TWX. 910-762-0606
NEW JERSEY
HAMILTON/AVNET ELECTRONICS
218 Little Falls Road
Cedar Grove. New Jersey 07009
Tel: 201-239-0800 TWX. 710-994-5787
HAMILTON/AVNET ELECTRONICS
113 G8Ither Drive
East Gate Industrial Park
Mt. Laurel. N.J. 08057
Tel. 609-234-2133 TWX: 710-897-1405
SCHWEBER ELECTRONICS
43 Belmont Dnve
Somerset. N.J. 08873
Tel. 201-469-6008 TWX. 710-480-4733
STERLING ELECTRONICS
774 Pfeiffer Blvd.
Perth Amboy. N.J. 08861
Tel. 201-442-8000 Telex. 138-679
WILSHIRE ELECTRONICS
855 Industrial Highway. Unit 5
Cinnaminson. New Jersey 08077
Tel: 215-627-1920
WILSHIRE ELECTRONICS
1111 Paulison Avenue
Clifton. New Jersey 07011
Tel: 201-365-2600 TWX. 710-989-7052
NEW MEXICO
CENTURY ELECTRONICS
121 Elizabeth. N.E.
Albuquerque. New ~exico 87123
Tel. 505-292-2700 TWX: 910-989-0625
HAMILTON/AVNET ELECTRONICS
2450 Baylor Or. s.e.
Albuquerque. New MeXICO 87119
Tel: 505-765-1500
TWX: None - use 910-379-6486
(Regional Hq. in Mt. View. Ca.)
NEW YORK
CRAMER ELECTRONICS
129 Oser Avenue
Hauppauge. N.Y. 11787
Tel: 516-231-5682

167 Clay Road
Rochester, New York 14623

Tel: 716-442-7820
TWX: None - use 710-332-1201
(Regional Hq. in Burlington, Ma.)
HAMILTON/AVNET ELECTRONICS
6500 Joy Road
E. Syracuse, New York 13057
Tel: 315-437-2642 TWX: 710-541-0959
HAMILTON/AVNET ELECTRONICS
70 State Street
Westbury, LI., New York 11590
Tel: 516-333-5800 TWX: 510-222-8237
ROCHESTER RADIO SUPPLY CO" INC.
140 W. Main Street
(P.O. Box 19711
Rochester, New York 14603
Tel: 716-454-7800
SCHWEBER ELECTRONICS
Jericho Turnpike
Westbury, L.1.,New York 11590
Tel: 516-334~7474 TWX: 510~222-3660
SCHWEBER ELECTRONICS, INC.
2 Town Line Circle
Rochester, New York 14623
Tel: 716-461-4000
JACO ELECTRONICS, INC.
145 Oser Ave.
Hauppauge, L.1.,New York 11787
Tel: 516-273-1234 TWX: 510-227-6232
SUMMIT DISTRIBUTORS, INC.
916 Main Street
Buffalo, New York 14202
Tel: 716-884-3450 TWX: 710-522-1692
NORTH CAROLINA
CRAMER ELECTRONICS
938 Burke Street
Winston Salem, N.C. 27102
Tel: 919-725-8711
HAMILTON/AVNET
2803 Industrial Drive
Raleigh, North Carollna 27609
Tel: 919-829-8030
HALLMARK ELECTRONICS
1208 Front Street, Bldg. K
Raleigh, North Carollna 27609
Tel: 919-832-4465 TWX: 510-928-1831
KIRKMAN ELECTRONICS, INC.
901 W. Second Street
Winston Salem, North Carolina 27108
Tel: 919-722-9131
PIONEER/CAROLINA ELECTRONICS
2906 Baltic Avenue
Greensboro, North Carolina 27406
Tel: 919-273-4441
OHIO
HAMILTON/AVNET ELECTRONICS
761 Beta Drive, Suite E
Cleveland, Ohio 44143
Tel: 216-461~1400
TWX: None - use 910-227-0060
(Regional Hq. in Chicago, III.)
HAMILTON/AVNET ELECTRONICS
118 Westpark Road
Dayton, Ohio 45459
Tel: 513-433-0610 TWX: 810-450-2531

9-4

(shipping address)
10 Knollcrest Drive
Reading, Ohio 45237
Tel: 513-761-5432 TWX: 810-461-2670
OKLAHOMA
HALLMARK ELECTRONICS
4846 South 83rd East Avenue
Tulsa, Oklahoma 74145
Tel: 918--835-8458 TWX: 910-845-2290
RADIO INC. INDUSTRIAL ELECTRONICS
1000 South Main
Tulsa, Oklahoma 74119
Tel: 918-587-9123
PENNSYLVANIA
HALLMARK ELECTRONICS, INC.
458 Pike Road
Huntingdon Valley, Pennsylvania 19006
Tel: 215-355-7300 TWX: 510-667-1727
PIONEER/DELAWARE VALLEY ELECTRONICS
141 Gibraltar Road
Horsham, Pa. 19044
Tel: 609-541-1120 TWX: 510-£85-6778
PIONEER ELECTRONICS, INC.
560 Alpha Drive
Pittsburgh, Pennsylvania 15238
Tel: 412-782-2300 TWX: 710-795-3122
SCHWEBER ELECTRONICS
101 Rock Road
Horsham, Pennsylvania 19044
Tel: 215-441-0600
SHERIDAN SALES COMPANY
1717 Penn Ave.
Suite 5009
Pittsburgh, Pennsylvania 15221
Tel: 412-244-1640
SOUTH CAROLINA
DIXIE ELECTRONICS, INC.
P.O. Box 408 (Zip Code 29202)
1900 Barnwell Street
Columbia, South Carolina 29201
Tel: 803-779-5332
TEXAS
ALLIED ELECTRONICS
401 East 8th Street
Fort Worth, Texas 76102
Tel: 817-336-5401
CRAMER ELECTRONICS
13740 Midway Road, Suite 700
Dalias, Texas 75240
Tel: 214-661-9300
HALLMARK ELECTRONICS CORP.
10109 McKalla Place Suite F
Austin, Texas 78758
Tel: 512-837-2814
HALLMARK ELECTRONICS
9333 Forest Lane
Dallas, Texas 75231
Tel: 214-231-6111
HALLMARK ELECTRONICS,INC.
BOOO Westglen
Houston, Texas 77063
Tel: 713-781-6100
HAMILTON/AVNET ELECTRONICS
4445 Sigma Road
Dallas, Texas 75240
Tel: 214-661-8661
Telex: HAMAVLECB DAL 73-0511

PIONEER/CLEVELAND
4800 East 131st Street
Cleveland, Ohio 44105
Tel: 216-587-3600
PIONEER/DAYTON
1900 Troy Street
Dayton, Ohio 45404
Tel: 513-236-9900 TWX:

SHERIDAN SALES CO.
(mailing address)
P.O. Box 37826
Cincinnati. Ohio 45222

810~459~1622

HAMILTON/AVNET ELECTRONICS
3939 Ann Arbor
Houston, Texas 77042
Tel: 713-780-1771
Telex: HAMAVLECB HOU 78~2589

FAIRCHILD FRANCHISED DISTRIBUTORS (Cont'd)
UNITED STATES AND CANADA

SCHWEBER ELECTRONICS, INC,
14177 Proton Road
Dallas, Texas 75240
Tel: 214-661-5010 TWX: 910-860-5493
SCHWEBEA ELECTRONICS, INC
7420 Harwin Drive
Houston, Texas 77036
Tet: 713-784-3600 TWX: 910-881-1109
STERLING ELECTRONICS
4201 Southwest Freeway
Houston, Texas 77027
Tel: 713-627-9800 TWX: 901-88'~5042
Telex: STELECO HOUA 77-5299

UTAH
CENTURY ELECTRONICS
2258 South 2700 West
Salt Lake City, Utah 84119
Tel: 801-487-8551 TWX: 910-925-5686
HAMIL TON/AVNET ELECTRONICS
1585 West 2100 South
Salt Lake City, Utah 84119
Tel: 801-972·2800
TWX: None - use 910·379-6486
(Regional Hq, in Mt. View, Ca.l

WASHINGTON
HAMIL TON/AVNET ELECTRONICS
13407 Northrup Way
Bellevue, Washington 98005
Tel: 206-746-8750 TWX: 910-443-2449
LIBERTY ELECTRONICS
1750 132nd Ave. N.E.
Bellevue, Washington 98005
Tel: 206-453-8300 TWX: 910-444-1379
RADAR ELECTRIC CO" INC
168 Western Avenue West
Seattle, Washington 98119
Tel: 206-282-2511 TWX: 910-444-2052

WISCONSIN
HAMIL TON/AVNET ELECTRONICS
2975 Moorland Road
New Berlin, WisconSin 53151
Tel: 414-784~4510

MARSH ELECTRONICS, INC.
1563 South 100 Street
Milwaukee, Wisconsin 53214
Tel: 414-475-6000
SEMICONDUCTOR SPECIALISTS, INC.
10855 W. Potter Road
Wauwatosa, Wisconsin 53226
Tel' 414-257-1330 TWX: 910-262-3022

CANADA
CAM GAAD SUPPLY LTD.
640 42nd Avenue S.E.
Calgary, Alberta, T2G 1Y6, Canada
Tel: 403-287-0520 Telex: 03-822811
CAM GARD SUPPLY L TO

10505 ll1th Street
Edmonton, Alberta TSH 3E8, Canada
Tel: 403-426-1805 Telex: 03-72960
CAM GARD SUPPLY LTD
4910 52nd Street
Red Deer, Alberta, T4N 2C8, Canada
Tel: 403-346-2088
CAM GARo SUPPLY LTD.
825 Notre Dame Drive
Kamloops, British Columbia, V2C 5N8, Canada
Tel: 604·372~3338
CAM GARD SUPPLY LTD.
1777 Ellice Avenue
Winnepeg, Manitoba, R3H OW5, Canada
Tel: 204·786~8401 Telex: 07-57622
CAM GARD SUPPLY LTD.
Rookwood Avenue
Fredericton, New Brunswick, E3B 4Y9, Canada
Tel: 506-455-8891
CAM GARD SUPPLY LTD
15 Mount Royal Blvd
Moncton, New Brunswick, E1C 8NG, Canada
Tel: 506-855-2200
CAM GARO SUPPLY LTD
Courtenay Center
Saint John, New Brunswick, E2L 2X6, Canada
Tel' 506~657-4666 Telex: 01-447489
CAM GARD SUPPLY LTD.
3065 Robie Street
Halifax, Nova Scotia, B3K 4P6, Canada
Tel: 902-454-8581 Telex: 0'-921528
CAM GARO SUPPLY L TO
1303 Scarth Street
Regina. Saskatchewan, S4R 2E7, Canada
Tel: 306·525-1317 Telex: 07·12667
CAM GARD SUPPLY LTD
1501 Ontario Avenue
Saskatoon, Saskatchewan, S7K 157, Canada
Tel: 306-652~6424 Telex: 07-42825

FUTURE ELECTRONICS CORPORATION
130 Albert Street
Ottawa. OntariO, Kl P 5G4, Canada
Tel: 613-232-7757
FUTURE ELECTRONICS CORPORATION
44 Fasket Drive, Unit 24
Aexdale, Ontario, M9W IK5, Canada
Tel: 416-677-7820

FUTURE ELECTRONICS CORPORATION
5647 Ferrier Street
Montreal, Quebec, H4P 2K5, Canada
Tel: 514-735-5775
HAMil TON/AVNET INTERNATIONAL
( CANADA) LTD.
6291 Dorman Rd" Unit 16
Mississauga, Ontario, L4V 1H2, Canada
Tel: 416-677·7432 TWX: 610·492·8867
HAMILTON/AVNET INTERNATIONAL
(CANADA) LTD.
1735 Courtwood Crescent
Ottawa, OntariO, K1Z 5L9, Canada
Tel: 613-226-1700
HAMILTON/AVNET INTERNATIONAL
( CANADA) LTD.
2670 Paulus Street
SI. Laurent, Quebec, H4S lG2, Canada
Tel: 514-331-6443 TWX: 610-421~3731
RAE. INDUSTRIAL ELECTRONICS, LTD.
1629 Main Street
Vancouver, British Columbia, V6A 2W5, Canada
Tel: 604-687·2621 TWX: 610·929-3065
Telex: RAE-VCR 04-54550
SEMAO ELECTRONICS L TO
625 Marshall Ave., Suite 2
Dorval, Quebec, H9P 1E1, Canada
Tel: 514-636-4614 TWX: 610-422-3048
SEMAD ELECTRONICS LTD
1111 Finch Avech Ave. W" Suite 102
Downsview, Ontario, M3J 2E5, Canada
Tel: 416-635·9880 TWX: 610-492-2510
SEMAO ELECTRONICS L TO
1485 Laperriere Ave.
Ottawa, OntariO, K 1Z 7S8, Canada
Te!: 613-722-6571 TWX: 610-562-8966

ELECTRO SONIC INDUSTRIAL SALES
(TORONTO) LTD
1100 Gordon Baker Rd.
Willowdale, Ontario, M2H 3B3, Canada
Tel: 416-494-1666
Telex: ESSCO TOR 06-22030

II

9-5

FAIRCHILD SALES REPRESENTATIVES
UNITED STATES AND CANADA
ALABAMA
CARTWRIGHT & BEAN. INC.
2400 Bob Wallace Ave., Suite 201
Huntsville, Alabama 35805
Tel: 205-533-3509

MARYLAND
DELTA III ASSOCIATES
5801 Annapolis Road, Suite 500
Bladensburg. Maryland 20710
Tel: 301-119-0911 TWX: 110-826-9654

OHIO
THE LYONS CORPORATION
4812 Frederick Road, Suite 105
Dayton, Ohio 45414
Tel: 513-218-0114

CALIFORNIA
CElTEC COMPANY
18009 Sky Park Circle Suite B
Irvine, California 92715
Tel: 114-551-5021

MASSACHUSETTS
SPECTRUM ASSOCIATES. INC.
888 Worcester Street
Wellesley, Massachusetts 02181
Tel: 611-231-2196 TWX: 110-348-0424

THE LYONS CORPORATION
6151 Wilson Mills Road, Suite 101
Highland Heights, Ohio 44143
Tel: 216-461-8288

CElTEC COMPANY
15300 Ventura Blvd., Room 200
Sherman Oaks. California 91403
Tel: 213-9911-3440 TWX: 910-495-2010

MICHIGAN
RATHSBURG ASSOCIATES
16621 E. Warren Ave.
Detroit, Michigan 48224
Tel: 313-882-1717 Telex: 23-5229

CElTEC COMPANY
7867 COnvoy Court, Suite 312
San Diego, California 92111
Tel: 114-219-1961 TWX: 910-335-1512
MAGNA SALES. INC.
3212 Scott Blvd.
Santa Clara, California 95050
Tel: 406-965-1150 TWX: 910-336-0241
COLORADO
SIMPSON ASSOCIATES. INC.
2552 Ridge Road
Littleton, COlorado 80120
Tel: 303-194-8381 TWX: 910-935-0119
CONNECTICUT
PHOENIX SALES COMPANY
389 Main Street
Ridgefield. Connecticut 06877

Tel: 203-438-9644 TWX: 710-467-0662
FLORIDA
LECTROMECH. INC.
303 Whooping Loop
Altamonte Springs, Florida 32701
Tel: 305-631-1511 TWX: 81(1-853-0262
LECTROMECH. INC.
2741 North 29th Avenue, Suite 218
Hollywood, Florida 33020
Tel: 305-920-2291 TWX: 510-954-9193
LECTROMECH. INC.
2280 U.S. Highway 19 North
Suite 119 Bldg L
Clearwater, Florida 33515
GEORGIA
CARTWRIGHT & BEAN. INC.
P.O. Box 52846 (Zip Code 30355)
90 W. Wieuca Square, Suite 155
Atlanta, Georgia 30342
Tel: 404-255-5262 TWX: 810-151-3220
ILLINOIS
MICRO SALES. INC.
2258-8 Landmelr Road
Elk Grove Village, Illinois 60007
Tel: 312-956-1000 TWX: 910-222-1833
INDIANA
LESLIE M. DEVOE COMPANY
4215 East 82nd Street Suite D
Indianapolis, Indiana 46250
Tel: 317-842-3245 TWX: 810-260-1435
IOWA
B.C. ELECTRONICS SALES. INC.
4403 First Avenue S.E., SUite 412
Cedar Rapids, Iowa 52402
Tel: 313-393-5818

MINNESOTA
PSI COMPANY
7710 computer Avenue
Minneapolis, Minnesota 55435
Tel: 612-835-1111 TWX: 910-516-3483
MISSISSIPPI
CARTWRIGHT & BEAN. INC.
P.O. Box 16728
5250 Galaxy Drive, Suite J
Jackson, Mississippi 39207
Tel: 601-981-1368
MISSOURI
B.C. ELECTRONIC SALES. INC.
300 Brookes Drive. Suite 105
Hazelwood, Missouri 63042
Tel: 314-131-1255TWX: 910-162-0600
NEW JERSEY
LORAC SALES. INC.
580 Valley Road
Wayne. New Jersey 07470
Tel: 201-696-8815 TWX: 110-988-5846
N.EW YORK
LORAC SALES. INC.
550 Old Country Road, Room 410
Hicksville, New York 11801
Tel: 51&-681-8746 TWX: 510-224-6480
TRI-TECH ELECTRONICS. INC.
3215 East Main Street
Endwell, New York 13760
Tel: 607-754-1094 TWX: 510-252-0891
TRI-TECH ELECTRONICS. INC.
290 Perinton Hills Office Park
Fairport, New York 14450
Tel: 71&-223-5720
TRI-TECH ELECTRONICS. INC.
6836 East Genesee Street
Fayetteville, New York 13066
Tel: 315-446-2881 TWX: 710-541-0604
TRI-TECH ELECTRONICS. INC.
15 COllege View Avenue
Poughkeepsie. New York 12603
Tel: 914-473-3880
NORTH CAROLINA
CARTWRIGHT & BEAN. INC.
1165 Commercial Ave.
Charlotte, North Carolina 28205
Tel: 704-377-5673
CARTWRIGHT & BEAN. INC.
P.O. Box 18465
3948 Browning Place
Raleigh, North CarOlina 27609
Tel: 919-781-6560

KANSAS
B.C. ELECTRONIC SALES. INC.
P.O. Box 788
11495 Lenexa Drive
Olathe, Kansas 66061
Tel: 913-888_0 TWX: 910-149-6414

9-6

OKLAHOMA
TECHNICAL MARKETING
9717 East 42nd Stieet, Suite 210
Tulsa, Oklahoma 74101
Tel: 918-622-5984
OREGON
aUADRA CORPORATION
19145 S.W. Murphy C1.
Aloha, Oregon 97005
Tel: 503-225-0350 TWX: 910-443-2318
PENNSYLVANIA
BGR ASSOCIATES
2500 Office Center
2500 Maryland Road
Willow Grove, Pennsylvania 19090
Tel: 215-657-3301
TENNESSEE
CARTWRIGHT & BEAN. INC.
P.O. Box 4760
560 S. Cooper Street
Memphis, Tennessee 38104
Tel: 901-276-4442
CARTWRIGHT & BEAN, INC.
8501 Kingston Pike
Knoxville, Tennessee 37919
Tel: 615-693-7450
TEXAS
TECHNICAL MARKETING
4445 Alpha Road. Suite 102
Dallas, Texas 75240
Tel: 214-387-3601 TWX: 910-860-5158
TECHNICAL MARKETING
6430 Hillcroft, Suite 104
Houston, Texas 77036
Tel; 113-111-9228
UTAH
SIMPSON ASSOCIATES. INC.
P.O. Box 151430
Salt Lake City. Utah 84115
Tel: 801-486-3731
WASHINGTON
aUADRA CORPORATION
14825 N.E. 40th Street
Suite 340
Redmond, Washington 98052
Tel: 206-883-3550 TWX: 910-449-2592
WISCONSIN
LARSEN ASSOCIATES
10855 West Potter Road
Wauwatosa. Wisconsin 53226
Tel: 414-258-0529 TWX: 910-262-3160
CANADA
R.N. LONGMAN SALES. INC. (L.S.I.!
1590 Matheson Blvd, Unit 26-A
Mississauga, Ontario, L4W 1J1, Canada
Tel: 416-825-6110 TWX: 610-492-4311
R.N. LONGMAN SALES. INC. (L.S.I.!
1385 Mazurette Street West, Suite 3
Montreal, Quebec, H4N 1G8. Canada
Tel: 514-382-2552 TWX: 610-421-3178

FAIRCHILD SALES OFFICES
UNITED STATES AND CANADA

ALABAMA
Huntsville Offiee"
Executive Plaza

Suite 107
4717 University Drive, N.W.
Huntsville, Alabama 35805
Tel: 205-837-8960
ARIZONA
Phoenix Office
4414 N. 19th Avenue 85015

SulteG
Tel: 602-264-4948 TWX: 910-951-1544
CALIFORNIA
los Angeles Office·
Crocker Bank Bldg.
15760 Ventura Blvd. Suite 1027
Encino 91436
Tel: 213-990-9800 TWX: 910-495-1776

Santa Ana Office'
2101 East Forth St. 92705
Bldg. 8. Suite 185
Tel: 714-558-1881 TWX: 910-595-1109
Santa Clara Office"
3212-3214 Scott Blvd.

Santa Clara. 95050

INDIANA
Flo Wayne Office
2118 Inwood Drive 46805
Suite 111
Tel: 219-483-6453 TWX: 810-332-1507
Indianapolis Office'
Room 205
7202 N. Shadeland 46250
Tel: 317-849-5412 TWX: 810-260-1793
KANSAS
Kansas City Office
Corporate Woods
10875 Grandview, Suite 2255
Overland Park 66210
Tel: 913-649-3974
MARYLAND
Bladensburg Office
5801 Annapolis Road 20710
Suite 500
Tel: 301-779-0954 TWX: 710-826-9654
MASSACHUSETTS
Boston Office'
888 Worcester Street
Wellesley Hills 02181
Tel: 617-237-3400 TWX: 710-348-0424

Tel: 408-244-1400 TWX: 910-338-0241
FLORIDA
Ft. Lauderdale Office
Executive Plaza
Suite 300-e
1001 Northwest 62nd Street
Ft. Lauderdale, Florida 33309
Tel: 305-771-0320 TWX: 510-955 __ 8

Orlando Office'
Crane's Roost Office Park
303 Whooping Loop
Altamonte Springs 32701
Tel: 305-834-7000 TWX: 810-850-0152
GEORGIA
Atlanta Office"
1641 Wellshire Lane
Dunwoody. Ga. 30338
Tel: 404-394-5298
ILLINOIS
Chicago Office"
The Tower - Suite 6'0
Rolling Meadows 60008
Tel: 312-640-1000

MICHIGAN
Detroit Office'
Johnston Building, Suite 24
20793 Farmington Road
Farmington Hills 48024
Tel: 313-478-7400 TWX: 810-242-2973
MINNESOTA
Minneapolis Office'
7600 Park lawn Avenue
Room 251
Edina 55435
Tel: 612-835-3322 TWX; 910-576-2944
NEW JERSEY
Wayne Office
580 Valley Road 07490
Suite 1
Tel: 201-696-7070

NEW YORK
Melville Office'
275 Broadhollow Road 11746
Tel: 516-293-2900 TWX: 510-224-6480
Poughkeepsie Office
15 College View Ave. 12803
Tel: 914-452-4200 TWX: 510-248-0030
Rochester Office'
260 Perinton Hills Office Park
Fairport 14450
Tel: 716-223-7700
OHIO
Dayton Office
4812 Frederick Road 45414
Suite 105
Tet; 513-278-8278 TWX: 810-459-1803
OKLAHOMA
Tulsa Office
9717 E. 42nd Street 74101
Suite 210
Tel: 918-663-7131
PENNSYLVANIA
Philadelphia Office'
2500 Office Center
2500 Maryland Road
Willow Grove. Pa. 19090
Tel: 215-657-2711
TEXAS
Dallas Office'
13771 N. Central Expressway 75231
Suite 809
Tel: 214-234-3391 TWX: 910-867-4757
Houston Office'
6430 Hittcroft 77081
Suite 102
Tel: 713-771-3547 TWX: 910-881-6278
CANADA
Toronto Regional Office
Fairchild Semiconductor
1590 Matheson Blvd, Unit 26
Mississauga. Ontario L4W lJl, Canada
Tel: 416-625-7070 TWX. 610-492-4311

NEW MEXICO
Albuquerque Office
2403 San Mateo N.E. 87110
Plaza 13
Tel: 505-265-5601 TWX: 910-989-1186

II

9-7

INTERNATIONAL
FAIRCHILD SALES OFFICES
JAPAN
TOK-Fairchild
Pola Bldg. 7th Floor
1-15-21 Shibuya
Tokyo 150, Japan
Tel: 034008351 Telex: 242173

AUSTRALIA
Fairchitd Australia Pty Ltd
72 Whiting Street
Artarmon 2064
New South Wales
Australia
Tel: Sydney (02)-438-2733

KOREA
Fairchild Semikor Ltd
551-1 Shin Dae Bank-Dong
Kwan Ak-Ku
Seoul 151, Korea
Tel: 697741 & 691410 Telex FAIRKOR 22705

(mailing address)
P.O. Box 450
North Sydney 2060
New South Wales
Australia

(mailing address)
Central P.O. Box 2806

AUSTRIA AND EASTERN EUROPE
Fairchild Electronics
A-l0l0 Wi en
Schweden platz 2
Tel: 0222 635821 Telex: 75096

MEXICO
Fairchild Mexicana S.A
Blvd. Adolfo Lopez Mateos No. 163
Mexico 19, D.F.
Tel: 905-563-5411 Telex: 017-71-038

BRAZIL
Fairchild Semicondutores Ltda
Caixa Postal 30407
Rua Alagoas, 663
01242 Sao Paulo, Brazil
Tel: 66-9092 Telex: 011-23831
Cable: FAIRLEC

SCANDINAVIA
Fairchild Semiconductor AS
Svartengsgatan 6
S-11620 Stockholm
Sweden
Tel: 8-449255 Telex: 17759

FRANCE
Fairchild Camera & Instrument SA
121, Avenue d'ltalie
750013-Paris, France
Tel: 00331-5485566
Telex: 0042200614 or 260937

SINGAPORE
Fairchild Semiconductor Ply Ltd
No. 11, Lorong 3
Toa Payoh
Singapore 12
Tel: 531-066 Telex: FAIRSIN-RS 21376

GERMANY
Fairchild Camera and Ins1rument (Deutschland)
8046 Garching Hochbruck
Daimlerstr 15
Munich, Germany
Tel: (089) 320031 Telex: 52 4831 fair d

TAIWAN
Fairchild Semiconductor (Taiwan) Ltd
Hsietsu Building, Room 502
47 Chung Shan North Road
Sec. 3 Taipei, Taiwan
Tel: 573205 thru 573207

Fairchild Camera and Instrument (Deutschland)
3000 Hannover
Koenigsworther Strasse 23
Hanover, Germany
Tel: 051117844 Telex:09 22922

BENELUX
Fairchild Semiconductor
Pardijslaan 39
Eindhoven, Holland
Tel: 00-31-40-446909 Telex: 00-1451024

Fairchild Camera and Instrument (Deutschland)
7251 Leonberg
Poststrabe 37
Tel: 07152 41026 Telex: 07 245711

UNITED KINGDOM
Fairchild Camera and Instrument (UK) Ltd
Semiconductor DiviSion
230 High Street
Potters Bar
Hertfordshi re EN6 5BU
England
Tel: 0707 51111 Telex: 0051 262835

Fairchild Camera and Instrument (Deutschland)
85 Nuernberg
Waldluststrasse 1
Tel: 0911 407005 Telex: 06 23665
HONG KONG
Fairchild Semiconductor (HK) ltd
135 Hoi Bun Road
Kwun Tong
Kowloon, Hong Kong
Tel: K-890271 Telex: HKG-531

Fairchild Semiconductor Ltd.
Shiel House
Craigshill
Livingston
West Lothian, Scotland
Tel: Livingston 0589 32891 Telex: 72629

ITALY
Fairchild Semiconduttori, S.P.A.
Via Flamenia Vecchia 653
00191 Roma, Italy
Tel: 06 327 4006 Telex: 63046 (FAIR ROM)
Fairchild Semiconduttori S.PA
Via Rosellini, 12
20124 Milano, Italy
Tel: 02 6887451 Telex: 36522

9-8



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date                     : 2013:08:09 16:40:14-08:00
Modify Date                     : 2013:08:10 11:34:28-07:00
Metadata Date                   : 2013:08:10 11:34:28-07:00
Producer                        : Adobe Acrobat 9.55 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:a95ec7ab-84a4-5a48-836a-7effe7cb4154
Instance ID                     : uuid:0723c500-357f-844e-8d4c-2f720d92dbf9
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 300
EXIF Metadata provided by EXIF.tools

Navigation menu