1978_Fairchild_TTL_Data_Book 1978 Fairchild TTL Data Book
User Manual: 1978_Fairchild_TTL_Data_Book
Open the PDF directly: View PDF .
Page Count: 752
Download | |
Open PDF In Browser | View PDF |
F=AIRCHIL.C 01978 Fairchild Camera and Instrument Corporatlon/464 Ellis Street, Mountain View, California 94042/(415) 982-50~1/TWX 910-379-6435 Fairchild reserves the right to make changes In the circuitry or specifications in this book at any time without notice. Manufactured under one of the following U.S. Patents: 2981877, 3015048, 3064167, 3108359, 3117260, other patents pending. INTRODUCTION This TTL DATA BOOK is a complete reference source for all Fairchild semiconductor SSI/MSI TTL products (except Fairchild Advanced Schottky TTL, FAST, devices). It is organized into the following sections: Section 1 - Product Indices and Selection Guides The Product Indices are divided according to the numbering system used, i.e., 54/74 Family TTL, 9XXX Family TTL, etc. Each index indicates which speed versions are available for the given product number and on which page the data sheet can be found. Selection Guides within this section are divided according to the device function. SSI functions are tabulated by speed family, MSI functions by their significant parameters. Section 2 - TTL Characteristics Section 2 defines the dc and ac parameter symbols used throughout this data book and discusses the general scheme for naming the various types of logic inputs and outputs. Speed/power trade-offs and basic gate schematics are compared for the different TTL circuit families. Input/output characteristics, thresholds and noise margins are discussed. Wiring, line driving and decoupling recommendations, as well as specific examples of interfacing TTL to other types of logic circuits, are included. Section 3 - Loading, Specifications and Waveforms This section contains dc specifications and ratings common to all devices in each family of circuits. Included is a discussion of the unit load method of normalizing the input and output characteristics of a circuit, and how to translate the numbers given in the Input Loading/Fan-Out table of a data sheet into the actual values of hH, ilL, IOH and IOL currents. The various load configurations for ac testing, a table of RL and CL values for SSI gates and waveforms that help to define the various ac parameters are also included. Section 4 through 7 - Family Data Sheets Individual data sheets are grouped by product family (Le., 54174, 9XXX TTL, etc.) and arranged in numerical order within these families. The last two digits of the device number are repeated on the outside corner of each page for the convenience of the reader. Section 8 - Other Digital Products Shortform information on older logic families (DTL, CTL, RTL) is given for reference. Section 9 - Ordering Information and Package Outlines The simplified purchasing code which identifies not only the device type, but also the package type and temperature range, is explained. Detailed physical dimension drawings for each package are given. Section 10 - Fairchild Field Sales Offices, Representatives and Distributors iii TABLE OF CONTENTS SECTION 1 PRODUCT INDICES AND SELECTION GUIDES Indices 54/74 Family TTL ............................................................................ 1-3 9XXX Family TTL ........................................................................... 1-10 93XX Family TTL ........................................................................... 1-10 96XX Family TTL ........................................................................... 1-12 Selection Guides SSI Functions ..........................................................................••.. 1-12 Single and Dual Flip-Flops .................................................................. 1-15 Latches .................................................................................... 1-16 Multiple Flip-Flops ......................................................................... 1-17 Multiplexers ................................................................................ 1-17 Decoders/Demultiplexers ................................................................... 1-19 Registers .................................................................................. 1-20 Counters .................................................................................. 1-23 Monostables (One-Shots) ................................................................... 1-24 Line and Bus Drivers/Transceivers/Receivers ................................................ 1-25 Display Decoder/Drivers .................................................................... 1-26 Arithmetic Operators ....................................................................... 1-27 Random Access Memories .................................................................. 1-28 SECTION 2 TTL CHARACTERISTICS Glossary ..................................................................................... 2-3 Logic Symbols and Terminology .............................................................. 2-6 TTL Circuit Families .......................................................................... 2-8 Input Characteristics ....................................................................... 2-12 Unused Inputs ............................................................................. 2-13 Output Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-13 Increasing Fan-Out ......................................................................... 2-15 3-State Outputs ............................................................................ 2-15 Open-Collector Outputs .................................................................... 2~16 Thresholds and Noise Margins .............................................................. 2-17 Crosstalk .................................................................................. 2-19 Transmission Lines ......................................................................... 2-20 Transmission Line Effects .................................................................. 2-21 Backplane Data Bus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-24 Decoupling ................................................................................ 2-24 Grounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2-24 Supply Voltage and Temperature ............................................................ 2-25 Interfacing ................................................................................. 2-25 SECTION 3 LOADING. SPECIFICATIONS AND WAVEFORMS Unit Loads (U.L.) ............................................................................. 3-3 Absolute Maximum Ratings ...................................................................3-4 Recommended Operating Conditions .......................................................... 3-4 DC Characteristics Tables .................................................................... 3-5 AC Loading and Waveforms ................................................................ 3-11 v SECTION 4 54n4 FAMILY DATA SHEETS ........................................................ .4-3 SECTION 5 9XXX FAMILY DATA SHEETS ................. ........................................ 5-3 SECTION 6 93XX FAMILY DATA SHEETS ........................................................ . 6-3 SECTION 7 96XX FAMILY DATA SHEETS ..•....... ................................................ 7-3 SECTION 8 OTHER DIGITAL PRODUCTS RTL Micrologic and CTL Counting Micrologic Elements ........................................ 8-3 DTL Micrologic ..............................................................................8-3 SECTION 9 ORDERING INFORMATION AND PACKAGE OUTLINES Ordering Information .........................................................................9-3 Package Outlines .........•.................................................................. 9-4 SECTION 10 FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DiSTRIBUTORS ...... 10-3 vi SECTION 1 • Indices 54174 Family TTL 9XXx Family TTL 93XX Family TTL 96XX Family TTL • Selection Guides SSI Functions Single and Dual Flip-Flops Latches Multiple Flip-Flops Multiplexers Decoders/Demultiplexers Registers Counters Monostables (One-Shots) Line and Bus Drivers/Transceivers/Receivers Display Decoder/Drivers Arithmetic Operators Random Access Memories Section 1 PRODUCT INDICES AND SELECTION GUIDES INDICES 54174 FAMILY TTL 54/74 TTL 54H174H H-TTL 54S174S S-TTL 54LS174LS LS-TTL 00 Quad 2-lnput NAND Gate X X X X 01 Quad 2-lnput NAND Gate X X 02 Quad 2-lnput NOR Gate X X X 4-5 03 Quad 2-lnput NAND Gate X X X 4-6 04 Hex Inverter X X X 4-7 04A Hex Inverter DEVICE NO. DESCRIPTION X Hex Inverter 05A Hex Inverter 06 Hex Inverter Buffer/Driver X 07 Hex Buffer/Driver X X X 4-3 4-4 4-7 X 05 PAGE NO. X X 4-8 4-8 X 4-9 4-10 X X X 4-11 X X 4-12 08 Quad 2-lnput AND Gate X 09 Quad 2-lnput AND Gate X 10 Triple 3-lnput NAND Gate X X X X 4-13 X X X 4-14 11 Triple 3-lnput AND Gate X 12 Triple 3-lnput NAND Gate X 13 Dual 4-lnput Schmitt Trigger X 14 Hex Schmitt Trigger Inverter X 15 Triple 3-lnput AND Gate 16 Hex I nverter Buffer/Driver X 17 Hex Buffer/Driver X 20 Dual 4-lnput NAND Gate X X 21 Dual 4-lnput Positive AND Gate X X 22 Dual 4-lnput NAND Gate X X 23 Expandable Dual 4-lnput NOR Gate X 4-24 25 Dual 4-lnput NOR Gate X 4-26 26 Quad 2-lnput NAND Buffer X X 4-27 27 Triple 3-lnput NOR Gate X X 4-28 28 Quad 2-lnput NOR Buffer X 4-29 30 8-lnput NAND Gate X 4-30 4-15 X X 1-3 X 4-16 X 4-17 X 4-18 4-19 4-20 \ X X X X X 4-21 X 4-22 X 4-23 • PRODUCT INDICES AND SELECTION GUIDES 54/74 FAMILY TTL (Cont'd) DEVICE NO. 32 DESCRIPTION 54n4 TTL Quad 2-lnput OR Gate 54H174H H-TTL X 54S174S S-TTL 54LS174LS LS-TTL PAGE NO. X X 4-31 33 Quad 2-lnput NOR Buffer X 4-32 37 Quad 2-lnput NAND Buffer X X 4-33 38 Quad 2-lnput NAND Buffer X X 4-34 39 Quad 2-lnput NAND Buffer X 40 Dual 4-lnput NAND Buffer X 4-36 41 1-of-10 Decoder/Driver (Nixie) 42 1-of-10 Decoder 42A 1-of-10 Decoder X 4-37 43A 1-of-10 Decoder X 4-37 44A 1-of-10 Decoder X 4-37 X 4-41 X 4-44 X 4-35 X X 6-48 9315 X 45 1-of-10 Decoder/Driver 46A BCD to 7-Segment Decoder/Driver 47 BCD to 7-Segment Decoder/Driver 47A BCD to 7-Segment Decoder/Driver X X 4-37 4-44 4-44 48 BCD to 7-Segment Decoder X X 4-48 49 BCD to 7-Segment Decoder X X 4-51 50 Expandable Dual 2-Wide, 2-lnput AND-OR-Invert Gate X X 51 Dual 2-Wide AND-OR-Invert Gate X X 52 Expandable 2-2-2-3-lnput AND-OR Gate 53 Expandable AND-OR-Invert Gate 54 4-Wide, 2-lnput AND-OR-Invert Gate 55 AND-OR-Invert Gate 60 Dual 4-lnput Expander 61 4-54 X X 4-56 X 4-57 X X 4-59 X X X 4-61 X X 4-63 X 4-64 Triple 3-lnput Expander X 4-67 62 3-2-2-3-lnput AND-OR Expander X 64 4-2-3-2-lnput AND-OR-Invert Gate X 4-70 65 4-2-3-2-lnput AND-OR-Invert Gate X 4-71 70 J K Edge-Trigger Flip-Flop 71 J K Master/Slave Flip-Flop X 4-74 72 J K Master/Slave Flip-Flop X X 4-76 73 Dual J K Flip-Flop X X X 4-68 4-72 X 1-4 X 4-78 PRODUCT INDICES AND SELECTION GUIDES 54174 FAMILY TTL (Cont'd) DEVICE NO. DESCRIPTION 54/74 TTL 54H174H H-TTL 54S174S S-TTL 54LS174LS LS-TTL PAGE NO. X X X 4-81 X 4-86 74 Dual D-Type Positive Edge-Triggered Flip-Flop X 75 4-Bit Bistable Latch X 76 Dual JK Flip-Flop X 77 Quad D-Type Latch X 78 Dual J K Flip-Flop 4-84 X 4-89 X X 4-90 80 Gated Full Adder X 4-93 82 2-Bit Full Adder X 4-95 83A 4-Bit Binary Full Adder X X 4-98 85 4-Bit Magnitude Comparator X X 4-101 86 Quad 2-lnput Exclusive-OR Gate X X 4-105 87 4-Bit True/Complement, Zero/One Element 89 64-Bit Random Access Memory 90 Decade Counter X 4-106 X X X 4-108 X 4-111 90A Decade Counter X 4-111 91A 8-Bit Shift Register X 4-114 92 Divide-by-Twelve Counter 92A Divide-by-Twelve Cou nter X 4-117 X 4-120 4-117 X 93 Divide-by-Sixteen Cou nter 93A Divide-by-Sixteen Counter X 4-120 94 4-Bit Shift Register X 4-123 95A 4-Bit Right/Left Shift Register X 958 4-Bit Right/Left Shift Register 96 5-Bit Shift Register X 4-129 97 Synchronous Modulo-64 Bit Rate Multiplier X 4-132 101 JK Edge-Triggered Flip-Flop X 4-138 102 J K Edge-Triggered Flip-Flop X 4-140 103 Dual JK Edge-Triggered Flip-Flop X 4-142 106 Dual J K Edge-Triggered Flip-Flop X 4-144 107 Dual JK Flip-Flop 108 Dual JK Edge-Triggered Flip-Flop 109 Dual JK Positive Edge-Triggered Flip-Flop 4-126 X X X 4-146 4-149 X X 1-5 4-126 X 4-151 • PRODUCT INDICES AND SELECTION GUIDES 54174 FAMILY TTL (Cont'd) DEVICE NO. DESCRIPTION 54174 TTL 54H174H H-TTL 54S174S S-TTL 54LS174LS LS-TTL PAGE NO. 112 Dual JK Negative Edge-Triggered Flip-Flop X X 4-153 113 Dual JK Edge-Triggered Flip-Flop X X 4-155 114 Dual Negative Edge-Triggered Flip-Flop X X 4-157 116 Dual 4-Bit Latch 121 Monostable Multivi brator X 4-159 122 Retriggerable Resettable Multivibrator X 4-163 123 Dual Retriggerable Resettable Multivibrator X 4-166 125 Quad Bus Buffer Gate X 125A Quad Bus Buffer Gate 126 Quad Bus Buffer Gate X 132 Quad 2-lnput Sch mitt Trigger NAND Gate X 133 13-lnput NAND Gate 6-24 9308 4-169 X 4-169 X 4-170 X X 4-171 X X 4-172 134 12-lnput NAND Gate X 4-173 135 Quad Exclusive-OR/NOR Gate X 4-174 136 Quad 2-lnput Exclusive-OR Gate 137 1-of-8 Decoder/Demultiplexer X 138 1-of-8 Decoder/Demultiplexer X X 4-180 139 Dual 1-of-4 Decoder X X 4-183 140 Dual 4-lnput NAND Line Driver X X 4-175 4-176 4-186 141 1-of-10 Decoder/Driver (Nixie) X 4-187 145 1-of-10 Decoder/Driver X 4-189 150 16-lnput Multiplexer X 4-192 151 8-lnput Multiplexer 151A 8-lnput Multiplexer 152 8-lnput Multiplexer 152A 8-lnput Multiplexer X 153 Dual 4-lnput Multiplexer X 154 1-of-16 Decoder/Demultiplexer X 155 Dual 1-of-4 Decoder/Demultiplexer X X 4-205 156 Dual 1-of-4 Decoder/Demultiplexer X X 4-208 157 Quad 2-lnput Multiplexer X X 4-210 X X 4-194 X X 1-6 4-194 4-197 4-197 X X 4-199 4-202 X PRODUCT INDICES AND SELECTION GUIDES 54174 FAMILY TTL (Cont'd) DEVICE NO. 54174 DESCRIPTION TTL 54H174H H-TTL 54S174S S-TTL 54LS/74LS LS-TTL PAGE NO. X X 4-213 93S10 X 4-215/ 6-30 158 Quad 2-lnput Multiplexer 160 Synchronous Presettable BCD Decade Cou nter X 161 Synchronous Presettable Binary Counter X X 4-221 162 Synchronous Presettable BCD Decade Counter X X 4-215 163 Synchronous Presettable Binary Counter X X 4-221 164 Serial-In Parallel-Out Shift Register X X 4-224 165 8-Bit Parallel-to-Serial Converter X X 4-227 166 8-Bit Shift Register X 167 Synchronous Decade Rate Multiplier X 168 Synchronous Bidirectional BCD Decade Counter X 4-239 169 Synchronous Bidirectional Modulo-16 Binary Counter X 4-242 4-230 4-232 170 4 x 4 Register File X X 4-244 173 4-Bit D-Type Register X X 4-247 174 Hex D Flip-Flop X X X 4-250 175 Quad D Flip-Flop X X X 4-253 176 Presettable Decade Counter X 4-256 177 Presettable Binary Counter X 4-260 178 4-Bit Shift Register X 4-262 179 4-Bit Shift Register X 4-264 180 8-Bit Parity Generator/Checker X 4-267 181 4-Bit Arithmetic Logic Unit 9341 93S41 182 Carry Lookahead Generator 9342 93S42 183 Dual High Speed Adder 189 64-Bit Random Access Memory X 4-277 190 Up/Down Decade Counter X X 4-280 191 Up/Down Binary Counter X X 4-285 192 Up/Down Decade Counter X X 4-287 193 Up/Down Binary Counter X X 4-291 X 6-94 4-275 X X 1-7 4-269/ 6-87 PRODUCT INDICES AND SELECTION GUIDES 54174 FAMILY TTL (Cont'd) DEVICE NO. 54174 DESCRIPTION 194 4~Bit 194A 4-Bit Bidirectional Universal Shift Register 195 Universal 4-Bit Shift Register 195A Universal 4-Bit Shift Register 196 Presettable Decade Counter TTL Bidirectional Universal Shift Register 54H/74H H-TTL X 54S/74S S-TTL 54LS174LS LS-TTL 4-293 X X X 93HOO PAGE NO. 4-293 4-296/ 6-3 93S00 X 4-296 X X 4-299 X 4-303 197 Presettable Binary Counter X 198 8-Bit Right/Left Shift Register X 4-305 199 8-Bit Parallel I/O Shift Register X 4-308 240 Octal Buffer/Line Driver X X 4-311 241 Octal Buffer/Line Driver X X 4-311 242 Quad Bus Transceiver X 4-314 243 Quad Bus Transceiver X 4-314 244 Octal Buffer/Line Driver X 4-311 245 Octal Bus Transceiver X 4-316 247 BCD to 7-Segment Decoder/Driver X 4-318 248 BCD to 7-Segment Decoder X 4-319 249 BCD to 7-Segment Decoder X 4-320 251 8-lnput Multiplexer X X 4-321 253 Dual 4-lnput Multiplexer X X 4-324 256 Dual 4-Bit Addressable Latch X 4-327 257 Quad 2-lnput Multiplexer X 4-330 257A Quad 2-lnput Multiplexer X 4-333 258 Quad 2-lnput Multiplexer X 4-334 258A Quad 2-lnput Multiplexer X 4-337 259 8-Bit Addressable Latch X 4-338 260 Dual 5-lnput NOR Gate X 4-341 266 Quad 2-lnput Exclusive-NOR Gate X 4-342 273 8-Bit Register X 4-343 279 Quad Set-Reset Latch X 4-345 280 9-Bit Parity Generator/Checker 283 4-Bit Binary Full Adder X 4-348 289 64-Bit Random Access Memory X 4-352 X X X X 4-346 X X X 1-8 PRODUCT INDICES AND SELECTION GUIDES 54/74 FAMILY TTL (Cont'd) DEVICE NO. 54174 DESCRIPTION TTL 54H/74H H-TTL 54S1748 S-TTL 54LS/74LS LS-TTL PAGE NO. 290 BCD Decade Counter X X 4-355 293 Modulo-16 Binary Counter X X 4-356 295A 4-Bit Shift Register X 4-357 298 Quad 2-Port Register X 4-360 299 8-lnput Universal Shift/Storage Register X 4-363 322 8-Bit Serial/Parallel Register X 4-366 323 8-Bit Universal Shift/Storage Register X 4-370 347 BCD to 7-Segment Decoder X 4-373 X 352 Dual 4-lnput Multiplexer X 4-374 353 Dual 4-lnput Multiplexer X 4-377 365A Hex 3-State Buffer X 4-380 366A Hex 3-State Inverter Buffer X 4-381 367A Hex 3-State Buffer X 4-382 368A Hex 3-State Inverter Buffer X 4-383 373 Octal Transparent Latch X 4-384 374 Octal D-Type Flip-Flop X 4-387 375 4-Bit Latch X 4-389 377 Octal D Flip-Flop X 4-391 378 Parallel D Register X 4-394 379 Quad Parallel Register X 4-397 384 8-Bit Serial/Parallel Twos Complement Multiplier X 4-400 390 Dual Decade Counter X 4-405 393 Dual Modulo-16 Counter X 4-408 395 Shift Register X 4-410 447 BCD to 7-Segment Decoder X 4-413 490 Dual Decade Cou nter X 4-414 502 8-Bit Successive Approximation Register X 4-416 503 8-Bit Successive Approximation Register X 4-420 504 12-Bit Successive Approximation Register X 4-423 533 Octal Transparent Latch X 4-425 1-9 • PRODUCT INDICES AND SELECTION GUIDES 54/74 FAMILY TTL (Cont'd) DEVICE NO. 54/74 TTL DESCRIPTION 54H174H H-TTL 54S174S S-TTL 54LS174LS LS-TTL PAGE NO. 534 Octal D-Type Flip-Flop X 4-426 540 Octal Buffer/Line Driver X 4-427 541 Octal Buffer/Line Driver X 4-427 563 Octal D-Type Latch X 4-429 564 Octal D-Type Latch X 4-430 573 Octal D-Type Flip-Flop X 4-431 574 Octal D-Type Flip-Flop X 4-432 670 4 x 4 Register File X 4-433 9XXX FAMILY TTL DEVICE NO. DESCRIPTION PAGE NO. DEVICE NO. PAGE NO. DESCRIPTION 9000 JK Flip-Flop 5-3 9009 NAND Buffer 5-17 9001 JK Flip-Flop 5-3 9012 NAND Gate 5-10 9002 NAND Gate 5-10 9014 Quad Exclusive-OR Gate 5-19 9003 NAND Gate 5-10 9015 Quad NOR Gate 5-22 9004 NAND Gate 5-10 9016 Hex Inverter 5-10 9005 Extendable AN D-OR-Invert Gate 5-13 9017 Hex Inverter 5-10 9006 Extender 5-13 9020 Dual JK Flip-Flop 5-3 9007 NAND Gate 5-10 9022 Dual JK Flip-Flop 5-3 9008 Entendable AND-OR-Invert Gate 5-13 9024 Dual JK (or D) Flip-Flop 5-24 93XX FAMILY TTL DEVICE NO. DESCRIPTION 93XX TTL 93H H-TTL 93L L-TTL 93S S-TTL X X X 00 4-Bit Universal Shift Register X PAGE NO. 6-3 01 1-of-10 Decoder X 02 1-of-10 Decoder X 6-10 04 Dual Full Adder X 6-13 05 Variable Modulus Counter X 6-16 07 7-Segment Decoder X 08 Dual 4-Bit Latch X X 6-24 09 Dual 4-lnput Multiplexer X X 6-27 1-10 X 6-7 6-20 PRODUCT INDICES AND SELECTION GUIDES 93XX FAMilY TTL (Cont'd) DEVICE NO. DESCRIPTION 93XX TTL 93H H-TTL 93l l-TTL 93S S-TTl PAGE NO. X 6-30 10 BCD Decade Counter X X 11 1-of-16 Decoder/Demultiplexer X X 12 8-lnput Multiplexer X X 13 8-lnput Multiplexer X 14 Quad Latch X 15 1-of-10 Decoder X 16 4-Bit Binary Counter X 17B 7-Segment Decoder/Driver X 17C 7-Segment Decoder/Driver X 6-51 18 8-lnput Priority Encoder X 6-56 19 Decade Sequencer X 6-59 20 Decade Sequencer X 6-59 21 Dual 1-of-4 Decoder X X 6-64 22 Quad 2-lnput Multiplexer X X 6-66 24 5-Bit Comparator X X 6-69 28 Dual 8-Bit Shift Register X X 6-72 34 8-lnput Addressable Latch X X 6-75 38 8-Bit Multiple Port Register X X 6-78 40 4-Bit Arithmetic Logic Unit X 41 4-Bit Arithmetic Logic Unit X 42 Carry Lookahead Generator X 43 4-Bit by 2-Bit Twos Complement Multiplier 44 Binary (4-Bit by 2-Bitl Full Multiplier 46 High Speed 6-Bit Identity Comparator 47 High Speed 6-Bit Identity Comparator 48 12-lnput Parity Checker/Generator 62 9-lnput P.arity Checker/Generator 68 7-Segment Decoder/Driver/Latch X 6-117 70 7-Segment Decoder/Driver/Latch X 6-123 72 High Speed 4-Bit Shift Register 74 7-Segment Decoder/Driver/Latch X 6-130 86 4-Bit Quad Exclusive-NOR X 6-138 6-36 X 6-42 6-45 X 6-48 X X 6-30 6-51 X 6-82 X X 6-87 X 6-94 X 6-98 6-101 X X 6-106 X 6-109 6-111 X X X 1-11 6-39 6-114 6-127 PRODUCT INDICES AND SELECTION GUIDES 96XX FAMILY TTL DEVICE NO. 96XX TTL DESCRIPTION 96L L-TTL 96S S-TTL 96LS LS-TTL PAGE NO. 00 Retriggerable Resettable Monostable Multivibrator X 7-3 01 Retriggerable Monostable Multivibrator X 7-8 02 Dual Retriggerable Resettable Monostable Multivibrator X 32 X 7-14/ 7-20 Address Multiplexer/Refresh Counter X 7-27 42 Address Multiplexer/Refresh Counter X 7-30 101 Quad 2-lnput Positive NAND Buffer X 7-33 103 Quad Bus Transceiver X 7-34 106 Quad 2-lnput NOR Receiver X 7-36 X X SELECTION GUIDES SSI FUNCTIONS FUNCTION NAND Gates I 9XXX I 54/74 I 54H174H I 54S/74S I 54LS/74LS Hex Inverters 9016 5417404 54H174H04 54S174S04 54S174S04A 54LS174LS04 Hex Inverters (DC') 9017 5417405 54H174H05 54S174S05 54S174S05A 54LS17 4LS05 Hex Inverter (15 V) 5417416 Hex Inverter (30 V) 5417406 Hex Schmitt Trigger 5417414 Quad 2-lnput 9002 5417400 Quad 2-lnput (DC') 9012 5417403 Quad 2-lnput (DC') 5417401 54LS174LS14 54H174HOO 54S174S00 54LS174LSOO 54S/74S03 54LS174LS03 54H174H01 Quad 2-lnput (12 V) 7426 54LS/74LS26 Quad 2-lnput (48 V) 5417437 54LS/74LS37 'oc = Op"n-collector; 3S = 3-State 1-12 .- - PRODUCT INDICES AND SELECTION GUIDES SSI FUNCTIONS (Cont'd) FUNCTION NAND Gates (Cont'd) I 9XXX Quad 2-lnput (OC*/48 rnA) Quad 2-lnput Line Driver 54174 I 54H174H I 545174S 5417438 96101 9003 Triple 3-lnput (OC*) I 54LS174LS 54LS174LS38 5417439 54174132 Quad 2-lnput Schmitt Triple 3-lnput I 5417410 54S/748132 54LS/7 4LS 132 54H/74H10 54S17481 0 54LS174LS10 54H174H20 54S/74820 54LS/74LS20 5417412 Dual4-lnput 9004 5417420 Dual 4-lnput Schmitt 5417413 Dual 4-lnput (OC*) 5417422 54H174H22 54S/74822 54LS174LS22 5417440 54H/74H40 54S/74840 54LS/74LS40 Dual 4-lnput Buffer 9009 54LS/74LS13 Dual 4-lnput Line Driver 54S/748140 9007 8-lnput 5417430 8-lnput 54H174H30 54S/74830 54LS174LS30 13-lnput 54S/748133 54LS174LS133 12-1 n put (3S*) 54S/748134 NOR Gates 54/7402 Quad 2-lnput 54S174802 54LS/74LS02 9015 Quad 2-lnput 5417427 Triple 3-lnput Dual 4-lnput wiSt robe 5417425 Dual 4-lnput (Exp) 5417423 54LS/74LS27 Dual5-lnput 54S/748260 54LS174LS260 Quad 2-lnput 54LS174LS28 Quad 2-lnput (OC*) 54LS174LS33 AND Gates Hex Buffer (OC*/15 V) 5417417 Hex Buffer (OC*/30 V) 54/7407 Quad 2-lnput 54/7408 Quad 2-lnput (OC*) 5417409 Triple 3-lnput 5417411 54H174H08 54H174H11 Triple 3-lnput (OC*) 5417421 Dual4-lnput '0 C = Open-Collector; 3S 54H174H21 = 3-State 1-13 54S/74808 54LS174LS08 54S174809 54LS174LS09 54S174811 54LS174LS11 54S174815 54LS174LS15 54LS/74LS21 PRODUCT INDICES AND SELECTION GUIDES SSI FUNCTIONS (Cont'd) FUNCTION 1 9XXX 54/74 1 54H174H 1 1 54S/74S 1 54LS174LS OR Gates Quad 2~lnput 15417432 1 I 1 Exclusive-OR Gates 5417486 Quad 2-lnput 548174832 1 54L8174L832 54L8174L886 548174886 Quad 2-lnput (OC*) 54L8174L8 136 9014 Quad 2-lnput ORINOR Quad 2-lnput ORINOR 5481748135 Exclusive-NOR Gate Quad 2-lnput (OC*) 19386 (8242) 1 AND-OR Gates 2-2-2-3 Input (Exp) AND-OR-INVERT Gates Dual 2-2 Input (Exp) I I 9005 Dual 2-2 Input 2-2-2-3 Input (Exp) 9008 2-2-2-3 Input 1 I 54H174H52 5417450 54H174H50 5417451 54H174H51 5417453 54H174H53 5417454 54H174H54 I I I I 548174851 2-2-3-3 Input 54L8174L8266 54L8174L851 54L8174L854 2-2-3-4 Input 548174864 2-2-3-4 Input (OC*) 548174865 4-4 Input (Exp) 54H174H55 4-4 Input 54L8174L855 Gate Expanders 54H174H61 Triple 3-lnput Dual 4-lnput 9006 5417460 54H174H60 54H174H62 2-2-3-3 AND-OR Buffer Gates and Drivers Quad Buffer (38*) 54174125 54L8174L8125A Quad Buffer (38*) 54174126 54L8174L8126 Hex (38*) 54L8174L8365A Hex Inverter (38*) 54L8174L8366A Hex (38*) 54L8/74L8367A ' Hex Inverter (38*) 54L8/74L8368A ·oc = Open-Colleclor; 3S = 3-Slale 1-14 PRODUCT INDICES AND SELECTION GUIDES SINGLE AND DUAL FLIP-FLOPS FUNCTION DEVICE NO. INPUTS 9000 3J. 3K. JK Single JK 9001 2J. 2K. J. K. JK Single JK 54H174H71 (AO!) (2 + 21J. (2 + 2lK Single JK 54H174H101 Single JK CLOCK EDGE ...r ...r DIRECT SET DIRECT CLEAR GUARANTEED CLOCK FREQ. MHz X X 20 (Typl X X 50 (Typl \... X 25 (AO!) (2 + 21J. (2 + 2lK '- X 40 Single JK 5417472 3J.3K '- X X 15 Single JK 54H174H72 3J.3K \... X X 25 Single JK 54H/74H102 3J.3K ""\... X X 40 Single JK 5417470 2J. 2K. J. K J X X 20 Dual D 5417474 D ...r X X 15 Dual D 54H174H74 D J X X 35 Dual D 548174S74 D .r .r X X 75 D X X 30 X 50 (Typl X 50 (Typl X 15 X 15 X 25 Dual D 54LS/74LS74 Dual JK 9020 J.K. J. K. JK ...r Dual JK 9022 J. K. JK Dual JK 5417473 J. K ..r \... Dual JK 54174107 J.K Dual JK 54H174H73 J.K Dual JK 54H174H103 J. K Dual JK 54S1748113 J. K Dual JK 54LS/74L8113 J.K X \... \... ''- X 40 X 80 \.. X 30 Dual JK 5417476 J. K \... X X 15 Dual JK 54H174H76 J. K '- X X 25 Dual JK 54H/74H106 J. K X X 40 X X 80 X X 30 Dual JK 54S174S112 J. K Dual JK 54LS/74LS112 J. K \... \... \... Dual JK 54H/74H78 J. K \.. X X 25 Dual JK 54H174H108 J. K '- X X 40 Dual JK 54LS/74LS73 J. K '- X 30 Dual JK 54S/74S114 J. K \.. X X 80 Dual JK 54LS174LS114 J. K '- X X 30 Dual JK 9024, 54174109 J. K X X 25 ...r 1-15 • PRODUCT INDICES AND SELECTION GUIDES SINGLE AND DUAL FLIP-FLOPS (Cont'd) DEVICE NO. FUNCTION INPUTS CLOCK EDGE DIRECT SET DIRECT CLEAR GUARANTEED CLOCK FREQ. MHz Dual JK 54S/74S109 J, K J X X 75 Dual JK 54LS/74LS109 J, K ..r X X 30 Dual JK 54LS/74LS76 J, K Dual JK 54LS174LS107 J, K Dual JK 54LS/74LS78 J, K \.. \.. "\. X X X 30 X 30 X 30 LATCHES ENABLE INPUTS (LEVEL) MIN ENABLE PULSE WIDTH ns MAX DELAY ENABLE TO OUTPUT-ns L 1 (U 18 24 L 1 (U 30 45 L 1 (U 18 24 4XD L 1 (U 30 45 8XD 2XL 2 X2 AND 18 30 8XD 2XL 2 X 2 AND 30 45 DATA INPUTS COMMON CLEAR 9314 4 X (R1Sl) 4-Bit RS Latch 93L14 4 X (R1Sl) 4-Bit D Latch 9314 4XD 4-Bit D Latch 93L14 Dual 4-Bit D Latch 9308 FUNCTION 4-Bit RS Latch DEVICE NO. (54174116) Dual 4-Bit D Latch 93L08 4-Bit RS Latch 54174279 4 X (RS) 4-Bit RS Latch 54LS174LS279 4 X (RS) 4-Bit D Latch 5417475 4XD 2 (H) 20 30 4-Bit D Latch 54/7477 4XD 2 (H) 20 30 4-Bit D Latch 54LS/74LS375 4XD 2 (H) 20 30 Dual4-Bit Addr. Latch 54LS/74L S256 8XD L 2(U 17 27 8-Bit Addr. Latch 9334 1XD L 1 (U 17 24 8-Bit Addr. Latch 93L34 1XD L 8-Bit D Latch 54LS/74LS373 8XD 8-Bit D Latch 54LS174LS573 1 (U 26 45 1 (H) 15 30 8XD 1 (U 15 30 8-Bit D Latch 54LS/74LS533 8XD 1 (H) 15 30 8-Bit D Latch 54LS174LS563 8XD 1 (H) 15 30 8-Bit Addr. Latch 54LS174LS259 1XD 1 (U 17 27 16-Bit D Latch 54174170 4XD 2 25 45 16-Bit D Latch 54LS174LS170 4XD 2 25 35 16-Bit D Latch 54LS174LS670 4XD 2 25 35 64-Bit Memory 5417489 4XD 2 (U 40 70 L 1-16 PRODUCT INDICES AND SELECTION GUIDES LATCHES (Cont'd) FUNCTION DEVICE NO. DATA INPUTS COMMON CLEAR ENABLE INPUTS (LEVEL) MIN ENABLE PULSE WIDTH ns MAX DELAY ENABLE TO OUTPUT-ns 25 (Typ) 30 (Typ) 54LSn4LS89 4XD 2 (U 64-Bit Memory 54S/74S189 4XD 2 (U 20 40 64-Bit Memory 54LSn4LS189 4XD 2 (U 25 (Typ) 30 (Typ) 64-Bit Memory 54S/74S289 4XD 2 (U 20 40 64-Bit Memory 54LS/74LS289 4XD 2 (U 25 (Typ) 30 (Typ) 64-Bit Memory MULTIPLE FLIP-FLOPS DEVICE NO. FUNCTION DATA INPUTS COMMON CLEAR CPINPUTS (LEVEL) GUARANTEED CLOCK FREQ. MHz 4-Bit D Flip-Flop 54174175 4XD L 1 (f) 25 4-Bit D Flip-Flop 54Sn4S175 4XD L 1 (f) 75 4-Bit D Flip-Flop 54LS/74LS175 4XD L 1 (J) 30 4-Bit D Flip-Flop 54174298 2X4XD 1( "\... ) 25 4-Bit D Flip-Flop 54LS174LS298 2X4XD 1 (\...) 25 6-Bit D Flip-Flop 54174174 6XD L 1(J) 25 6-Bit D Flip-Flop 54S/74S174 6XD L 1 (f) 75 L 1 (f) 30 6-Bit D Flip-Flop 54LS174LS174 6XD 8-Bit Multiple Port Register 9338 1XD 1 (U 27 8-Bit Multiple Port Register 93L38 1XD 1 (U 14 8-Bit D Flip-Flop 54LS/74LS374 8XD 1 (f) 35 8-Bit D Flip-Flop 54LS174LS534 8XD 1(f) 35 8-Bit D Flip-Flop 54LS/74LS564 8XD 1 (f) 35 , MULTIPLEXERS DEVICE NO. FUNCTION ENABLE INPUTS TRUE OUTPUT COMPLEMENT OUTPUT Quad 2-lnput 9322 1 X Quad 2-lnput 93L22 1 X Quad 2-lnput 54/74157 1 X Quad 2-lnput 54S174S157 1 X Quad 2-lnput 54LS/74LS157 1 X Quad 2-lnput 54S/74S158 1 X 54LSn4LS158 1 X Quad 2~lnput 1-17 PRODUCT INDICES AND SELECTION GUIDES MUL TIPLEXERS (Cont'd) ENABLE INPUTS TRUE OUTPUT 54S/74S257 1 3S' Quad 2-lnput 54LS/7 4L S257 1 3S' Quad 2-lnput 54LS174LS257 A 1 3S' Quad 2-lnput 54S174S258 1 3S' Quad 2-lnput 54LS174LS258 1 3S' Quad 2-lnput 54LS174LS258A 1 3S' Quad 2-lnput 54174298 Clocked (Edge-Trigger) X (Latched) Quad 2-lnput 54LS174LS298 Clocked (Edge-Trigger) X (Latched) Dual4-lnput 9309 X X Dual4-lnput 93L09 X X Dual 4-lnput 54174153 2 Dual4-lnput 54S/74S153 2 X Dual4-lnput 54LS/74LS153 2 X Dual4-lnput 54S174S253 2 3S' Dual 4-lnput 54LS174LS253 2 3S' Dual 4-lnput 54LS/74LS352 2 X Dual4-lnput 54LS174LS353 2 3S' 8-lnput 9312 1 X X 8-lnput 93L12 1 X X 8-lnput 93S12 1 X X 8-lnput 93.13 1 X ac' 8-lnput 54174151A 1 X X 8-lnput 54S/74S151 1 X X 8-lnput 54LS/74LS151 1 X X 8-lnput 54S/74S251 1 3S' 3S' 8-lnput 54LS174LS251 1 3S' 3S' 8-lnput 54174152A 8-lnput 54LS/74LS152 12-lnput 96LS42 1 X 14-lnput 96LS32 1 X 16-lnput 54174150 1 X DEVICE NO. FUNCTION Quad 2-lnput 'OC = Open-Collector; 35 COMPLEMENT OUTPUT X X X = 3-5tate 1-18 PRODUCT INDICES AND SELECTION GUIDES DECODERS/DEMULTIPLEXERS FUNCTION DEVICE NO. ADDRESS INPUTS ACTIVE LOW ENABLE ACTIVE LOW OUTPUTS OPEN-COLLECTOR OUTPUT VOLTAGE V Dual 1-of-4 9321 2+2 1+ 1 4+4 Dual 1-of-4 93L21 2+2 1+ 1 4+4 Dual 1-of-4 54S/74S139 2+2 1+ 1 4+4 Dual 1-of-4 54LS/74LS139 2+2 1+ 1 4+4 Dual 1-of-4 54174155 2 2+1 4+4 Dual 1-of-4 54LS/73LS155 2 2+1 4+4 Dual 1-of-4 54174156 2 2+ 1 4+4 5.5 Dual 1-of-4 54LS/74LS156 2 2+ 1 4+4 5.5 1-of-8 9301 3 1 8 1-of-8 93L01 3 1 8 1-01-8 9302 3 1 8 1-of-8 9334 3 1 8 --. • 5.5 1-of-8 93L34 3 1 8 1-01-8 54LS/74LS259 3 1 8H 1-of-8 5417445 3 1 8 1-of-8 5417442A 3 1 8 1-of-8 54LS/74LS42 3 1 8 1-of-8 54S/74S138 3 2 8 1-of-8 54LS174LS138 3 2 8 1-of-8 54/74145 3 1 8 1-of-8 w/lnput Latches 54S/74S137 3 2 8 1-of-10 9301 4 (BCD) 10 1-of-10 93L01 4 (BCD) 10 1-01-10 9302 4 (BCD) 10 5.5 1-01-10 5417445 4 (BCD) 10 30 10 1-01-10 5417442A 4 (BCD) 1-01-10 54LS174LS42 4 (BCD) 10 1-01-10 54/7443A 4 (Excess-3) 10 1-01-10 5417444A 4 (Excess-3 Gray) 10 1-01-10 54174145 4 (BCD) 10 1-01-16 9311 4 2 1-19 16 30 15 15 PRODUCT INDICES AND SELECTION GUIDES DECODERS/DEMULTIPLEXERS (Cont'd) FUNCTION DEVICE NO. ADDRESS INPUTS ACTIVE LOW ENABLE ACTIVE LOW OUTPUTS 1-of-16 93L11 4 2 16 1-of-16 54/74154 4 2 16 1-of-10 Decade Sequencer 9319 Clock 10 1;-of-10 Decade Sequencer 9320 Clock 10 OPEN-COLLECTOR OUTPUT VOLTAGE V 3 K Pull-up REGISTERS NO. OF FUNCTION DEVICE NO. BITS SERIAL EiIITRY PARALLEL ENTRY NO. OF BITS1 CLOCK EDGE GUARANTEED CLOCK FREQ. MHz Parallel-in/Parallel-out Shift Right 9300 4 J, K 4S ..r 30 Parallel-in/Parallel-out Shift Right 93HOO 4 J, R' 4S ..r 45 Parallel-in/Parallel-out Shift Right 93LOO 4 J, K 4S ..r 10 Parallel-in/Parallel-out Shift Right 93S00 4 J, K 4S ..r 70 Parallel-i n/Parallel-o ut Shift Right 93H72 4 D 4S ..r 45 Serial/Parallel-in, Parallel-out, Shift Right 54/7494 4 D 2 X 4A (MUX) ..r 10 Parallel-i n/Parallel-out Shift Right 5417495A 4 D 4S "- 25 Parallel-in/Parallel-out Shift Right 54LS/74LS95B 4 D 4S "- 30 Parallel-in/Parallel-out Shift Right 54/74178 4 D 4S \.. 25 Parallel-in/Parallel-out Shift Right 54/74179 4 D 4S \.. 25 Parallel-in/Parallel-out Shift Right 54LS/74LS195A 4 J, K 4S J 30 Parall el-i n/Paral1 el-out Shift Right (3S2) 54LS/74LS295A 4 D 4S \.. 30 1. S = Synchronous; A = Asynchronous 2. OC = Open-Collector; 3S = 3-State ) 1-20 PRODUCT INDICES AND SELECTION GUIDES REGISTERS (Cont'd FUNCTION DEVICE NO. NO.OF BITS SERIAL ENTRY PARALLEL ENTRY NO. OF BITS1 CLOCK EDGE GUARANTEED CLOCKFREQ. MHz Paraliel-in/Parallel-out Shift Right (3S2) 54LS/74LS395 4 0 4S ""\.. 30 Parall el-i n/Parallel-o ut Bidirectional 54174194 4 OR,OL 4S f 25 Parallel-i n/Paral1 el-o ut Bidirectional 54S/74S194 4 DR, OL 4S f 70 Parallel-in/Parallel-out Bidirectional 54LS174LS194A 4 OR,OL 4S ..r 30 Quad 0 (3S2) 54174173 4 4S ..r 25 Quad 0 (3S2) 54LS/74LS173 4 4S .r 30 Quad 0 Flip-Flop 54/74175 4 4S Quad 0 Flip-Flop 54S/74S175 4 4S Quad 0 Flip-Flop 54LS174LS175 4 4S Quad 2-Port Register 54/74298 4 20 (MUX) 54LS/74LS298 4 20 (MUX) "\... \... 30 Quad 2-Port Register Quad 0 54LS/74LS379 4 4S .f 30 Parall el-i n/Paral1 el-o ut Shift Right 5417496 5 5A ..r 10 Hex 0 Flip-Flop 54/74174 6 6S ..r 25 6S f 75 ..r ..r ..r 30 0 .f ..r ..r 25 75 30 30 Hex 0 Flip-Flop 54S174S174 6 Hex 0 Flip-Flop 54LS/74LS174 6 6S Parallel 0 Register 54LS/74LS378 6 6S Multiport Register 9338 8 0 Multiport Register 93L38 8 0 .r 20 Parallel-in/Parallel-out Shift Right 54174199 8 J, K 8S ..r 25 Serial/Paraliel-i n, Parallel/Serial-out Shift Right (3S2) 54LS/74LS322 8 20 85 f 35 Serial-in/Parallel-out Shift Right 54174164 8 20 f 25 Serial-in/Parallel-out Shift Right 54LS/74LS164 8 20 f 25 1. s = Synchronous; A = Asynchronous 2. OC = Open-Collector; 3S = State 1-21 30 25 PRODUCT INDICES AND SELECTION GUIDES REGISTERS (Cont'd) FUNCTION DEVICE NO. NO.OF BITS SERIAL ENTRY PARALLEL ENTRY NO. OF BITS1 CLOCK EDGE GUARANTEED CLOCK FREQ. MHz Parallel/Serial-in, Serial-out, Shift Right 54/74165 8 D 8A J 25 Parall el/Seri al-i n, Serial-out, Shift Right 54Lsn4LS165 8 D 8A J 30 Parallel/Serial-in, Serial-out,Shift Right 54/74166 8 D 8S J 25 Serial-i n/Serial-out Shift Right 54/7491 A 8 2D J 10 Successive Approx Register 54LS/74LSS02 8 D J 15 Successive Approx Register 54LS/74LSS03 8 D ...r 15 Parallel-in/Parallel-out Bidirectional 54/74198 8 DR, DL 8S J 25 Parall el-i n/Parallel-out Bidirectional (3S2) 54LS/74LS299 8 DR,DL 8S J 35 Parallel-in/Parallel-out Bidirectional (3S2) 54LS/74LS323 8 DR,DL 8S J 35 Octal D Register 54LS/74LS273 8 8S J 30 Octal D Flip-Flop (3S2) 54LS/74LS374 8 8S J 35 Octal D Flip"Flop 54LS/74LS377 8 8S J 30 Octal D Flip-Flop (3S2) 54LSn4LS574 8 8S ...r 35 Successive Approx Register 54LSn4LSS04 12 D J 15 Serial-in/Serial-out Shift Right 9328 2X8 2X2D (MUX) J 20 Serial-in/Serial-out Shift Right 93L28 2X8 2X2D (MUX) J 5.0 Register File (OC2) 54174170 4X4 4A \.... Register File (OC2) 54LS/74LS170 4X4 4A \.... Register File (3S2) 54LS/74LS670 4X4 4A \.... 1. 2. s = Synchronous; A = Asynchronous oc = Open-Collector; 3S = 3-State 1-22 PRODUCT INDICES AND SELECTION GUIDES COUNTERS FUNCTION DEVICE NO. MODULUS PARALLEL ENTRY* CLOCK EDGE GUARANTEED CLOCK FREQ. MHz Asynchronous 54174290 2X5 '- 32 Asynchronous 5417490A 2x5 '- 32 Asynchronous 54LS/74LS90 2X5 "'\... 32 Asynchronous 5417492A 2X6 54LS/74LS92 2X6 ''- 32 Asynchronous Asynchronous 54174293 2X8 "'\... 32 Asynchronous 5417493A 2X8 ""\.... 32 Asynchronous 54LS/74LS93 2X8 "'\... 32 Asynchronous 54/74176 2X5 35 Asynchronous 54174177 2X8 A ''- Asynchronous 54174196 2X5 A ""'\... 50 Asynchronous 54LS/74LS196 2X5 A ""\.... 45 Asynchronous 54/74197 2X8 A Asynchronous 54LS/74LS197 A ""- 50 2X8 Asynchronous 54LS/74LS290 2X5 ""'\... 32 Asynchronous 54LS/74LS293 2X8 '- 32 Asynchronous 54LS/74LS390 2X5 "'\.... 40 Asynchronous 54LS/74LS393 2X8 '- 40 Asynchronous 54LS/74LS490 2X5 \... 40 Variable Modulo 9305 2 X 5, 6, 7, 8 J 23 Synchronous 9310 10 (Presettable) S 93L10 10 (Presettable) S Synchronous 93S10 10 (Presettable) S Synchronous 9316 16 (Presettable) S Synchronous 93L16 16 (Presettable) S f f f J J 30 Synchronous Synchronous 93S16 16 (Presettable) S ..r Synchronous 54/74160 10 (Presettable) S .r 25 Synchronous 54LS/74LS160 10 (Presettable) S f 25 Synchronous 54174161 16 (Presettable) S 25 Synchronous 54LS/74LS161 16 (Presettable) S J ...r 25 Synchronous 54174162 10 (Presettable) S ..r 25 Synchronous 54LS/74LS162 10 (Presettable) S .r 25 Synchronous 54174163 16 (Presettable) S J 25 ·s = Synchronous; A A = Asynchronous 1-23 32 35 50 13 70 30 13 70 PRODUCT INDICES AND SELECTION GUIDES COUNTERS (Cont'd) MODULUS PARALLEL ENTRY· Synchronous 54LS/74LS163 16 (Presettable) S Up/Down 54LS174LS168 10 (Presettable) Up/Down 54LS/74LS169 DEVICE NO. FUNCTION GUARANTEED CLOCK FREQ. MHz CLOCK EDGE S ..r ..r 25 16 (Presettable) S ..r 25 A ..r 25 25 Up/Down 54174192 10 Up/Down 54LS/74LS192 10 A ..r 30 Up/Down 54174193 16 A J 25 Up/Down 54LS/74LS193 16 A ..r 30 Up/Down 54174190 10 A Up/Down 54LS/74LS190 10 A Up/Down 54174191 16 A Up/Down 54LS/74LS191 16 A Rate Multiplier 54/7497 m.f.l64 Rate Multiplier 54174167 m.f.l10 J J 20 ..r ..r ...r ...r 20 20 20 25 25 MONOSTABLES (ONE-SHOTS) PULSE WIDTH VARIATION (%) FUNCTION DEVICE NO. vs. TEMP Single Retriggerable 9600 ±1.5 Single Retriggerable 9601 Dual Retriggerable 9602 Dual Retriggerable 96L02 MIN OUTPUT NO.OF INPUTS vs. Vee POS NEG RESETTABLE (tw) ns ±1.5 3 2 X 75 ±2.7 ±1.0 2 2 ±1.5 ±1.5 1 1 X 72 ±1.6 ±1.5 1 1 X 110 X 21 50 Dual Retriggerable 96S02 ±1.0 ±1.0 1 1 Single Non-Retriggerable 54/74121 ±0.25 ±0.15 1 2 Single Retriggerable 54174122 ±2.7 ±1.0 2 2 X Dual Retriggerable 54174123 ±2.7 ±1.0 1 1 X 45 96LS02 ±1.0 ±O.B 1 X 35 Dual Retriggerable ·5 = Synchronous; A = Asynchronous 1-24 1 40 45 PRODUCT INDICES AND SELECTION GUIDES LINE AND BUS DRIVERS/TRANSCEIVERS/RECEIVERS FUNCTION DEVICE NO. COMPANION RECEIVER 10L los mA mA (MIN) Quad 2 NAND Driver 5417437 Any TTL 48 -20 Quad 2 NAND Driver (OC*) 5417438 96106 48 OC* Quad 2 NAND Driver (OC*) 96101 96106 80 OC* Quad 2 NAND Driver 9009 Any TTL 52.8 -40 Dual 2 NAND Driver 5417440 Any TTL 48 -20 Dual 2 NAND Driver 54H174H40 Any TTL 60 -40 Dual 2 NAND Driver 54S174S40 Any TTL 60 -50 54S/74S140 Any TTL 60 -50 Octal Inverting Bus Driver (38*) 54LS/74LS240 Any TTL 64 -40 Octal Inverting Bus Driver (38*) 54S174S240 Any TTL 64 -50 Octal Non-Inverting Bus Driver (38*) 54LS174LS241 Any TTL 64 -40 Dual 2 NAND Driver (50 0) Octal Non-Inverting Bus Driver (38*) 54S174S241 Any TTL 64 -50 Octal Bus Transceiver 54LS/74LS245 Any TTL 24 -40 Octal Inverting Bus Transceiver 54LS174LS540 Any TTL 64 -40 Octal Non-Inverting Bus Transceiver 54LS/74LSS41 Any TTL 64 -40 Quad Inverting Bus Transceiver 54LS/74LS242 Any TTL 24 -40 Quad Non-Inverting Bus Transceiver 54LS174LS243 Any TTL 24 -40 Quad Bus Transceiver 96103 96103 70 -18 Quad 2-NOR Receiver 96106 7.8 -18 ·oc = Open-Collector; 3$ = 3-$tate 1-25 • PRODUCT INDICES AND SELECTION GUIDES DISPLAY DECODER/DRIVERS FUNCTION 1-of-10 Cold Cathode (CC") DEVICE NO. OUTPUT OUTPUT CURRENT VOLTAGE mA V BLANKING RIPPLE ABOVE BCD BLANKING 9-INPUT 9315 (54/7441) 7.0 1-of-10 Cold Cathode 74141 7.0 55 L X 1-of-10 Driver (CC") 9302 16 5.5 L X 1-of-10 Driver (C.C") 54/7445 80 30 L X 1-of-10 Driver (CC") 54174145 7-Seg Decoder 9307 7-Seg Decoder 54/7448 55 ACTIVE HIGH/LOW L 80 15 L 12.5 5.5 H X 1.3 5.5 H X X 7-Seg Decoder (CC') 5417449 10 5.5 H X 7-Seg Decoder/Driver 9317B 40 20 L X X 7-Seg Decoder/Driver 9317C 20 30 L X X 7-Seg Decoder/Driver (CC') 54/7446A 40 30 L X 7-Seg Decoder/Driver (CC') 54/7447A 40 15 L X 7-Seg Decoder/Driver (CC') 54LS/74LS47 24 15 L X 7-Seg Decoder/Driver 54LS/74LS48 1.3 5.5 H X 7-Seg Decoder/Driver (CC') 54LS/74LS49 8.0 5.5 H X 7-Seg Decoder/Driver (CC") 54LS/74LS247 24 15 L X 7-Seg Decoder/Driver 54LS/74LS248 1.3 5.5 H X 7-Seg Decoder/Driver (CC') 54LS/74LS249 8.0 5.5 H X 7-Seg Decoder/Driver (CC") 54LS/74LS347 24 7.0 L X 7-Seg Decoder/Driver (CC") 54LS/74LS447 24 7.0 L X 7-Seg LED Driver Common Cathode 9368 20 1.7 H X 7-Seg LED Driver Common Anode (CC') 9370 25 5.5 L X 7-Seg LED Driver Common Anode (CC') 9374 15 10 L X ·oc = Open-Collector 1-26 PRODUCT INDICES AND SELECTION GUIDES ARITHMETIC OPERATORS DEVICE NO. FUNCTION DESCRIPTION NO. OF BITS Adder 54/7480 Gated 1-Bit with Carry 1 Adder 9304 Dual 1-Bit with Carry 2 Adder 54H174H183 Dual 1-Bit with Carry 2 Adder 5417482 Full 2-Bit with Carry 2 Adder 5417483A Full Binary 4-Bit with Carry 4 Adder 54LS174LS83A Full Binary 4-Bit with Carry 4 Adder 54/74283 Full Binary 4-Bit with Carry 4 Adder 54LS174LS283 Full Binary 4-Bit with Carry 4 Arithmetic Logic Unit 9340 ALU with Internal CLA* 4 Arithmetic Logic Unit 9341 (54/74181) ALU with External CLA* 4 Arithmetic Logic Unit 93L41 ALU with External CLA* 4 Arithmetic Logic Unit 54LS/74LS181 ALU with External CLA* 4 Arithmetic Logic Unit 93S41 ALU with External CLA* 4 Carry Lookahead 9342 (54174182) CLA generator for 9341 Carry Lookahead 93S42 (54S/74S182) CLA generator for 93S41/9405 Comparator 9386 (8242) 4-Bit Indentity Exclusive-NOR (OC*) 4 Comparator 54/7485 4-Bit Magnitude with Expander 4 Comparator 54LS174LS85 4-Bit Magnitude with Expander 4 Comparator 9324 5-Bit Magnitude 5 Comparator 93L24 5-Bit Magnitude 5 Comparator 93S46 6-Bit Identity with Expander 6 Comparator 93S47 6-Bit Identity (OC*) 6 Encoder 9318 Priority 8-Bit with Expander 8 Encoder 93L18 Priority 8-Bit with Expander Multiplier 9344 Binary 4 X 2-Bit 4X2 Multiplier 93S43 2s Complement 4X2 Multiplier 54LS/74LS384 Serial/Parallel 2s Complement 8 Parity 54174180 8-Bit Parity Generator/Checker 8 Parity 93S62 9-Bit Parity Generator/Checker 9 Parity 9348 12-Bit Parity Generator/Checker 12 9 8 Parity 54LS/74LS280 9-Bit Parity Generator/Checker True/Complement 54H/74H87 4-Bit True/Complement Zero/One Element 4 True/Complement 54S/74S135 Dual 2-Bit Exclusive OR/NOR 4 'CLA = Carry Lookahead; OC = Open-Collector 1-27 • PRODUCT INDICES AND SELECTION GUIDES RANDOM ACCESS MEMORIES ORGANIZATION DEVICE NO. CHIP SELECT ACCESS TIME-ns (MAX) MIUCOM ADDRESS ACCESS TIME-ns (MAX) MIL/COM DESCRIPTION READ/WRITE CYCLE TIME MIL COM O°C to +70°C -55°C to +125°C ns (MAX) ns (MAX) TTL 16 X 4 1 7489 1 oel 1 60/60 1 50/50 1 115 1 115 SCHOTTKY 16 X 4 54S/74S189 351 50135 32/22 55 70 16 X 4 54S/745289 oel 50135 25/17 55 70 LOW POWER SCHOTTK,( 16 X 4 54Lsn4LS89 oel 37/372 10/102 722 722 16 X 4 54LS/74LS189 351 37/372 10/102 722 722 16 X 4 54Lsn4LS289 oel 37/372 10/102 722 722 1. OC = Open-Collector; 3S = 3-State 2. Typical Value 1-28 SECTION 2 • Glossary • Logic Symbols and Terminology • TTL Circuit Families • Input Characteristics • Unused Inputs • Output Characteristics • Increasing Fan-Out • 3-State Outputs • Open-Collector Outputs • Thresholds and Noise Margins • Crosstalk • Transmission Lines • Transmission Line Effects • Backplane Data Bus • Decoupling • Grounds • Supply Voltage and Temperature • Interfacing TTL CHARACTERISTICS Section 2 TTL CHARACTERISTICS GLOSSARY Currents - Positive current is defined as conventional current flow into a device. Negative current is defined as conventional current flow out of a device. All current limits are specified as absolute values. lee Supply Current - The current flowing into the Vee supply terminal of a circuit with the specified input conditions and the outputs open. When not specified, input conditions are chosen to guarantee worst case operation. hH Input HIGH Current-The current flowing into an input when a specified HIGH voltage is applied. hl Input LOW Current - The current flowing out of an input when a specified LOW voltage isapplied. 10H Output HIGH Current - The leakage current flowing into a turned off open-collector output with a specified HIGH output voltage applied. For an output with an internal pull-up circuit, the 10H is the current flowing out of the output when it is in the HIGH state. 10l Output LOW Current - The current flowing into an output when it is in the LOW state. los Output Short Circuit Current - The current flowing out of a HIGH-state output when that output is short circuited to ground (or other specified potential). 10ZH Output OFF Current HIGH - The current flowing into a disabled 3-state output with a specified HIGH output voltage applied. 10Zl Output OFF Current LOW - The current flowing out of a disabled 3-state output with a specified LOW output voltage applied. Voltages-All voltages are referenced to the ground pin. Negative voltage limits are specified as absolute values (i.e., -10 V is greater than -1.0 Vl. Vee Supply Voltage - The range of power supply voltage over which the device is guaranteed to operate within the specified limits. VeD(Max) Input Clamp Diode Voltage - The most negative voltage at an input when a specified current is forced out of that input terminal. This parameter guarantees the integrity of the input diode, intended to clamp negative ringing at the input terminal. Input HIGH Voltage - The range of input voltages that represents a logic HIGH in the system. VIH(Min) Minimum Input HIGH Voltage- The minimum allowed input HIGH in a logic system. This value represents the guaranteed input HIGH threshold for the device. Input LOW Voltage - The range of input voltages that represents a logic LOW in the system. Vll(Max) Maximum Input LOW Voltage - The maximum allowed input LOW in a system. This value represents the guaranteed input LOW threshold for the device. 2-3 • TTL CHARACTERISTICS GLOSSARY (Cont'd) VOH(Min) Output HIGH Voltage - The minimum voltage at an output terminal for the specified output current IOH and at the minimum value of Vee. VOL(Max) Output LOW Voltage - The maximum voltage at an output terminal sinking the maximum specified load current IQL. VT+ Positive-Going Threshold Voltage - The input voltage of a variable threshold device (Le., Schmitt Trigger) that is interpreted as a VIH as the input transition rises from below VT-(Min). VT- Negative-Going Threshold Voltage - The input voltage of a variable threshold device (Le., Schmitt Trigger) that is interpreted as a VIL as the input transition falls from above VT+(Max). AC Switching Parameters fmax Toggle Frequency/Operating Frequency - The maximum rate at which clock pulses may be applied to a sequential circuit. Above this frequency the device may cease to function. tPLH Propagation Delay Time - The time between the specified reference points, normally 1.5 V (1.3 V for LS) on the input and output voltage waveforms, with the output changing from the defined LOW level to the defined HIGH level. tPHL Propagation Delay Time - The time between the specified reference points, normally 1.5 V (1.3 V for LS) on the input and output voltage waveforms, with the output changing from the defined HIGH level to the defined LOW level. tw Pulse Width - The time between 1.5 V (1.3 V for LS) amplitude pOints on the leading and trailing edges of a pulse. th Hold Time - The interval immediately following the active transition of the timing pulse (usually the clock pulse) or following the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its continued recognition. A negative hold time indicates that the correct logic level may be released prior tothe active transition of the timing pulse and still be recognized. ts Setup Time - The interval immediately preceding the active transition of the timing pulse (usually the clock pulse) or preceding the transition of the control input to its latching level, during which interval the data to be recognized must be maintained at the input to ensure its recognition. A negative setup time indicates that the correct logic level may be initiated sometime after the active transition of the timing pulse and still be recognized. tpHZ Output Disable Time (of a 3-State Output) from HIGH Level- The time between the 1.5 V (1.3 V for LS) level on the input and a voltage 0.5 V below the steady state output HIGH level with the 3-state output changing from the defined HIGH level to a high impedance (off) state. tPLZ Output Disable Time (of a 3-State Output) from LOW Level- The time between the 1.5 V (1.3 V for LS) level on the input and a voltage 0.5 V above the steady state output LOW level with the 3state output changing from the defined LOW level to a high impedance (off) state. tPZH Output Enable Time (of a 3-StateOutput) to a HIGH Level- The time between the 1.5 V (1.3 V for LS) levels of the input and output voltage waveforms with the 3-state output changing from a high impedance (off) state to a HIGH level. 2-4 TTL CHARACTERISTICS GLOSSARY (Cont'd) tPZL Output Enable Time (of a 3-State Output) to a LOW Level- The time between the 1.5 V (1.3 V for LS) levels of the input and output voltage waveforms with the 3-state output changing from a high impedance (off) state to a LOW level. tree Recovery Time - The time between the 1.5 V (1.3 V for LS) level on the trailing edge of an asynchronous input control pulse and the same level on a synchronous input (clock) pulse such that the device will respond to the synchronous input. Miscellaneous C Marking code letter indicating that the device is guaranteed to meet the specifications for the Commercial temperature range. D Package code letter for ceramic Dual In-line Packages. F Package code letter for ceramic flatpaks. M Marking code letter indicating that the device is guaranteed to meet the specifications for the Military temperature range. P Package code letter for plastic Dual In-line Packages. OB Marking code indicating in-house 3851"0, level B reliability screening (military grade only). OM, OR Marking code indicating Matrix VI commercial/industrial reliability screening. XC, XM Shorthand for the commercial or military temperature range specifications or devices: the letter X stands for the code letter of any package in which the device is available. 2-5 TTL CHARACTERISTICS LOGIC SYMBOLS AND TERMINOLOGY The logic symbols used to represent the MSI devices follow Mil Std 8068 for logic symbols. MSI elements are represented by rectangular blocks with appropriate external AND/OR gates when necessary. A small circle at an external input means that the specific input is active LOW; i.e., it produces the desired function, in conjunction with other inputs, if its voltage is the lower of the two logic levels in the system. A circleat the output indicates that when the function designated is True, the output is LOW. Generally, inputs are at the top and left and outputs appear at the bottom and right of the logic symbol. An exception is the asynchronous Master Reset in some sequential circuits which is always at the left hand bottom corner. Inputs and outputs are labeled with mnemonic letters as illustrated in Table 2-1. Note that an active LOW function labeled outside of the logic symbol is given a bar over the label, 'while the same function inside the symbol is labeled without the bar. When several inputs or outputs use the same letter, subscript numbers starting with zero are used in an order natural for device operation. This nomenclature is used throughout this book and may differ from nomenclafure used on other data books (notably early 7400 MSJ), where outputs use alphabetic subscripts or use number sequences starting with one. TABLE 2-1 LABEL MEANING EXAMPLE 10 Ix General term for inputs to combinatorial circuits. J, K S, R D Inputs to JK, SR, and D flip-flops and latches. Ax, Sx Address or Select inputs, used to select an input, output, data route, junction, or memory location. 11 So 12 s, p Parallel data inputs to shift registers and counters. 2-6 2 3 4 9312 9301 Enable, active LOW on all TTL/MSI. A latch can receive new data when its Enable input is in the active state. Parallel Enable, a control input used to synchronously load information in parallel into an otherwise autonomous circuit. 1 9324 10 5 6 7 9 TTL CHARACTERISTICS LOGIC SYMBOLS AND TERMINOLOGY (Cont'd) TABLE 2-1 (Cont'd) LABEL MEANING EXAMPLE lrLll PL Parallel Load; similar to Parallel Enable except that PL overrides the clock and forces parallel loading asynchronously. PL Po p, P2 P3 CPo 74196 CP, 8--<: 6--<: MR 00 Q1 Q2 03 X!!!)2 1 iii i MR Master Reset, asynchronously resets ali outputs to zero, overriding ali other inputs. PE Po p, Pz P3 7 - CEP '0- CEl 2- 9310 r--'5 TC CP MR 00 Q, 02 03 T,~ ,l ,12 ,I, ,CL Clear, resets outputs to zero but does not override all other inputs. 23- X Y D E Ao 9334 A, A2 CL 00 0, 02 03 04 05 as Q7 ! 1 ~ i ~ LID ,1, 12 CP CE, CEP, CET Clock Pulse, generally a HIGH-to-LOW-to-HIGH transition. An active HIGH clock (no circle) means outputs change on LOW-toHI GH clock transition. 1iii i PE Po P, P2 P3 7 - CEP '0- 2- Count Enable inputs for counters. 9316 CET TC 1--'5 CP MR 00 0, Q2 03 r,~ ,13 ,12 ,I, 'I'i't iii i I lOa ha 12a 13a lOb hb 12b 13h 1 3 - So Zx, OX, Fx General terms for outputs of combinatorial circuits. ax TC OE General term for latch and flip-flop outputs. If they pass through an enable gate before exiting the package, a or Q changes to 0 or O. Terminal Count output (1111 for up binary counters, 1001 for up decimal counters, or 0000 for down countersl. Output Enable, used to force 3-state outputs into the high impeddance state. 9309 3 - 5, Z, Z, ,~ ,15 Zb r ! l iii i PE Po p, P2 P3 7 - CEP '0- CET 2- 9310 TC 1--'5 CP MR 00 Q1 02 03 1,~ ,~ ,~ ,I, ~l'jr'f IE Do 01 02 03 7 - CP 'b[) 2-02 74173 OE MR 00 ,~ 2-7 Zb 0, 02 03 r 1l l TTL CHARACTERISTICS TTL CIRCUIT FAMILIES Each family is designed around certain performance objectives, within the economic limitations of a particular process. The key performance factors that distinguish the families are power consumption, speed and the ability to drive wiring capacitance. For com paris on purposes the. power supply current and propagation delay or switching rate for several popular circuit types in the various families are shown in Table 2-2 below. The propagation delays are in ns, the supply currents in mA and the toggle frequencies in MHz. All values listed are worst-case guaranteed, rather than typical figures. TABLE 2-2 CIRCUIT TYPE 2-lnput NAND 7400 tPLH/tPHL Icc TTL H-TTL S-TTL 22115 2.0/5.5 10/10 4.2/10 4.5/5.0 4.0/9.0 10/10 0.4/1.1 LP-TTL LS-TTL D-Type Flip-Flop 7474 f max Icc 15 7.0 35 38 75 25 30 4.0 JK Flip-flop f max Icc 25 7.0 40 38 80 25 30 4.0 tPLH/tPHL Icc 14/14 23.5 7.5/6.5 39 22/30 6.6 14/14 8.0 f max Icc 30 92 70 127 13 27.5 25 32 f max Icc 30 63 70 120 10 23 30 21 9024/7411217 4H 108 4-lnput Multiplexer 9322174157 Synchronous Counter 9310174160 4-Bit Shift Register 9300174195 45 112 In three of the families - TTL, H-TTL and LP-TTL -the transistors are turned on by applying sufficient base current for the lowest expected current gain. The average transistor, having greater current gain, receives far more base current than necessary, which forward biases the collector-base junction and saturates the transistor. In order to turn off such a saturated transistor, the excess base charge must first be removed, resulting in considerable delay. Gold doping is commonly used to speed up the charge recombination, but this decreases the current gain. Schottky clamped transistors (Figure 2-1) overcome this Ii mitation. They use a surface barrier diode with very low forward voltage drop (0.3 V) as a bypass between base and collector. When the transistor starts conducting and is about to become saturated, the excess input current is not fed into the base, but routed through the Schottky diode into the collector (Baker Clamp), As a result the transistor is never fully saturated and recovers quickly when the base current is interrupted. Since gold doping is not required, the transistors also have higher current gain, require less base current, and turn on faster. As a result of the faster turn-on and recovery, S-TTL circuits achieve roughly twice the speed of H-TTL at about the same level of power consumption, as indicated in the table. On the other hand, LS-TTL circuits (also Schottky clamped) use much less power than H-TTL, yet operate at about the same speed. Compared to S-TTL, LS-TTL processing produces shallower diffusions and smaller transistors with greater bandwidth. Thus, LSTTL circuits operate at about half the speed of S-TTL while using only about 20% as much power. Fig. 2-1 Schottky Transistor 2-8 TTL CHARACTERISTICS TTL CIRCUIT FAMILIES (Cont'd) Schematics of the basic gates of the various families are shown in Figures 2-2 through 2-7. All are similar, containing an input AND gate, a phase splitter 02 with emitter and collector load resistors, a pull-up mechanism 03/04 and a pull-down transistor 05. In all except the LS-TTL circuit, the AND function is formed by a multiemitter transistor in which the emitter-base junctions serve to isolate the input signal sources from each other and steer the current from the 4 kO gate resistor. When an input is LOW, the gate current flows out through the base-emitter junction and 01 is saturated, making the base voltage of 02 only Slightly more positive than the LOW input voltage, and 02 does not conduct. Moreover, the low emitter-to-collector resistance of 01 in this condition allows the input signal source to wlthdraw charge from the base of 02 and help toturn it off quickly. With all inputs HIGH, the gate current flows through the base-collector junction of 01 and turns on 02. In this situation, a small quantity of charge is injected into the base of 01. Part of this charge recombi nes in the base region and part of it drifts over to be "collected" by the emitters. This inverse beta current is a significant part of the input leakage current hH. This same phenomenon occurs when the gate current exits througha LOW input. Current is injected into the base from the LOW emitter and part of it is collected by the HIGH emitters. An input signal exceeding the +5.5 V rating applied to one input can cause breakdown between it and a LOW input, with the possibility of damage or of being biased in a negative resistance region, depending on the source impedance. Biasing in the negative resistance region can lead to oscillation that is difficult to diagnose. The phase splitter 02 is so named because the collector and emitter voltages change in opposite directions when 02 turns on or off. When 02 turns off, the emitter voltage falls and it stops providing base current to the pull-down transistor 05; Simultaneously the 02 collector voltage rises and pulls up the base of 03. The 03/04 circuitry provides current gain and the low impedance necessary to pull the output up to the HIGH level while charging wiring capacitance. The amount of current available to charge capacitance is limited by the small resistor (s) connected from Vee to the collector(s) of 03/04. This charging current shows up as a current spike at the Vee pin and it is normal practice to add rf bypass capacitors on logic boards to supply this sudden demand for current and thus prevent negative-going spikes on Vee. When 02 turns on, the collector voltage falls and pulls down the base of 03; simultaneously 02 emitter voltage rises and supplies base current to 05. As 05 starts conducting, it begins to discharge load capacitance and pull the output down to the LOW level. The discharge current shows up as a current spike atthe ground pin and is one of the principal reasons for recommending that system designers allow generous amounts of ground metal on circuit boards. vee Vee Fig. 2-2 7410 Gate Fig. 2-3 9003 Gate 2-9 TTL CHARACTERISTICS TTL CIRCUIT FAMILIES (Cont'd) Although Fairchild does not offer LP-TTL gates or flip-flops, the input and output circuitry of Figure 2-4 is representative of 93L Series MSI. As shown, the resistor values are four times those of Figures 2-2 and2-3. This decreases the input loading ilL; the output drive capabilityand the power consumption. The speed-power tradeoff is evident from the values listed inthe table for the LP-TTL multiplexer, counter and shift register, compared to the TTL counterpart.s. Another speed-power trade-off is evident in the H-TTL gate of Figure 2-5. Compared to Figure 2-2, several resistor values are halved and the output pull-up changed to a Darlington configuration. As seen from the values listed in the table, both speed and power consumption are approximately doubled. The S-TTL gate of Figure 2-6 is quite similar to the H-TTL gate and consumes about the same amount of power, yet operates at twice the speed. The base of the pull-down output transistor 05 is returned to ground throug h 06 and a pair of resistors instead of through a simple resistor. This arrangement is called a squaring network since it squares up the transfer characteristics by preventing conduction in the phase splitter 02 until the input voltage rises high enough to allow 02 to supply base current to 05. The squaring network also improves the propagation delay by providing a low resistance path to discharge capacitance at the base of OSduring turn-off. Vee vee 16k 6k 600 n 320!l Fig. 2-5 74H10 Gate Fig. 2-4 LP-TTL Gate Vee 110n 06 2.8 kn 76011 vee 55 n A~r---K 01 OUTPUT y B--I w +0.75 r----,-----,---.,.-----r-, LL) I 0.5 t---S400 GATE -S5 ol Cl '..." I- 0 0.4 > ~ ... 0 125°C 0.3 I- :;) Q. I- :;) ./ 0.2 0 I -' 0 > 0.1 ~ ..... o o ~~ S.O 10 ~ > cj ~ ~ ~ +0.51---+---+---+::oool!!~9 ~ rv,/ g +0.251---+~~;.q---+----I ...~ V"'25°C ~~ / ~ :;) ~ 15 O~-~H---~---+-----; I- o I 5 > 20 25 30 35 40 -1.0 '--_ _-'-_ _--1._ _ _- ' -_ _- ' -5.0 +10 +15 45 IOL-OUTPUT LOW CURRENT-rnA IOL - OUTPUT LOW CURRENT - rnA Fig. 2-12 TTL Gate Output LOW Characteristics Fig. 2-13 LS-TTL Gate Output LOW Characteristics 2-13 • TTL CHARACTERISTICS OUTPUT CHARACTERISTICS (Cont'd) In the HIGH state a totem-pole output presents a low impedance and is capable of sourcing considerable current. Figure 2-14 shows the output HIGH characteristics of a 5400 gate at three temperatures. With no load current the VOH is about 3.5 Vat 25 0 C. For 10H increasing to about 6.0 mA, the characteristic has the shape of a fixed voltage minus the logarithmically increasing voltage drop across two pn junctions. For 10H greater than 6.0mA, the pull-up transistor 03 (Figure 2-2) saturates and the slope of the characteristic is just the 1300 current limiting resistor plus the saturation resistance of 03. The maximum 10H current, where the characteristic intersects the horizontal axis, correlates with the short-circuit output current parameter los and is often regarded as a measure of the circuit's ability to charge line capacitance. The output HIGH characteristics of the 54S140 Line Driver are shown in Figure 2-15, with the axes oriented differently than in Figure 2-13. The 'S140 pull-up is a Darlington circuit with a 250 collector resistor to limit the short-circuit output current. This low resistance allows the 'S140 to source very large values of 10H, as suggested by the graph. The 'S140 is guaranteed to force a 2.0V signal across a 50 Oload to ground, making it an attractive circuit for driving long interconnections that must be treated as transmission lines. Figure 2-16 shows the 54LSOO output HIGH characteristic, which is quite similar to the 5400 gate of Figure 2-14. Due to the 5.0 kO resistor from 03 to output (Figure 2-7) the LS circuits provide higher output voltage for low values of IOH, as shown in Figure 2-17. This provides greater protection against negative-going noise on a quiescent HIGH signal. 4.5 > I w Cl I 4.0 ,r 3.5 ~ « ....... 0 3.0 2.5 .... :::I a. .... :::I 2.0 I a > w -40 -Vee =5V 54S140 § -60 a: 1.5 ~ 0.5 -80 !; -100 /.~ I!: t\. 12rC 5 -120 ~ I J: E -140 ~ -160 5.0 20 25 15 10 iOHr-OUTPUT HIGH CURRENT-mA 30 0 > / / l F 5 'c 4.0 " '- ~ 3.0 ~ i: :::I -55'C2.0 a. .... :::I 0 I ~~ !-....;:: 125'C 'I' 1"-,25'C o 1.0 2.0 3.0 VaH-OUTPUT HIGH VOLTAGE-V a > o o w 4.0 ~ g 4.5 4.0 ~ J: CJ ~ Z !; II. !; o ~t-.. ~ 1.0 J: > I vle =15) _ 54LSOO '<, ......-25'C J: CJ .... ~ 5.0 > « .... ... ~ '-- Fig. 2-15 S-TTL Line Driver Output HIGH Characteristics 5.0 I ~ ); ~r-----55'C 'r ~ Fig. 2-14 TTL Output HIGH Characteristics w CJ ~ ~ i: " 1.0 5 'r/J '/ 25'l::~ ~ () -55'C o o -20 I !z y--- 25'C 0 I -5J,C_ ~ ~'" Cl i: 125~C '.:::: ~ > J: r- Vee = 5 V 5400 GATE- ~ ~~ I I 3.5 ~ Vee = 5 V 54LSOO I +125'C'- ~ ......... +25'C -55'C 3.0 ~ ~~ 4.0 8.0 12 16 20 IOH-OUTPUT HIGH CURRENT-mA 2. 5 0 24 Fig. 2-16 LS-TTL Gate Output HIGH Characteristics 2-14 0.1 0.2 0.3 0.4 IOH-OUTPUT HIGH CURRENT-mA 0.5 Fig. 2-17 LS-TTL Gate Output HIGH Characteristics at Low Loading TTL CHARACTERISTICS INCREASING FAN OUT To increase fan-out, inputs and outputs of gates on the same package may be paralleled. It is advisable to limit the gates being paralleled to those in a single package to avoid large transient supply currents due to different switching times of the gates. This is not detrimental to the devices, but could cause logic problems if the gates are being used as clock drivers. 3-STATE OUTPUTS In the newer TTL families there are many circuits that have an auxilliary control input whereby both the output pull-up and pull-down circuitry can be disabled. This condition is called the high impedance (high-Z) state and allows the outputs of different circuits to be connected to a common line or data bus. A typical 3-state output, shown in Figure 2-18, has pull-up and pull-down circuitry quite similar to Figure 2-7. The significant difference is that the enable function is connected through a diode to the base of 03. A LOW signal on the enable turns off both 02 and 03 and thus disables both the pull-up and pull-down circuitry. In this disabled condition the outputs are tested for leakage at 2.4 V (loZH) and at 0.4 V or 0.5 V (lOZL) to ensurethat they do not cause excessive loading on a data bus. When the circuit is in the bi-state mode, i.e., enabled, the output HIGH and LOW characteristics are the same as those of other circuit types having the same drive capabilities. ~----~----------------~---vcc * 'Not used in Buffers "Used only in Buffers Fig. 2-18 Typical 3-State Output Control • TTL CHARACTERISTICS OPEN-COLLECTOR OUTPUTS A number of available circuits have no pull-up circuit on the outputs. Some are special purpose, such as the 74141 high voltage display driver, the 7445 high current display driver, the 9370 LED driver or the 96101 terminated bus driver. For circuits of this type, no external pull-up is necessary other than the intended load. Other open-collector circuits, less dedicated in nature, are used for interfacing orforwired-OR(actuallywiredAND) functions. The latter is achieved by connecting open-collector outputs together and adding an external pull-up resistor. The value of the pull-up resistor is determined by considering the fan-out of the OR tie and the number of devices in the OR tie. The pull-up resistor value is chosen from a range between maximum value (established to maintain the required VOH with all the OR-tied outputs HIGH) and a minimum value (established so that theOR tie fan-out is not exceeded when only one output is LOW)' MINIMUM AND MAXIMUM PULL-UP RESISTOR VALUES . _( VCC(Max) - VOL ) RX(MIn) - IOL - N2(LOW) e 1.6 mA where: Rx N1 N2 IOH = ICEX IOL VOL VOH Vcc = = = = = = = = VCC(Min) - VOH ) _ ( RX(Max)- N1 e loH+N2(HIGH)e40,uA External Pull-Up Resistor Number of Wired-OR Outputs Number of Input Unit Loads Being Driven Output HIGH Leakage Current LOW Level Fan-Out Current of Driving Element Output LOW Voltage Level (0.5 V) Output HIGH Voltage Level (2.4 V) Power Supply Voltage Example: Four 74LS03 gate outputs driving four other LS gates or MSI inputs. R (5.25V-0.5V 4.75V) 7420 X(Min) = 8.0 mA -1.6 rnA = 6.4 mA = 2.35V \ 49 k" 4.75V -2.4 V R X(Max)= ( 4 e 100,uA+2 e 40,uA=0.48rnAj=' u where: N1 N2(HIGH) N2(LOW) IOH IOL VOL VOH =4 = 4 e 0.5 U.L. = 2 U.L. = 4 e 0.25 U.L. = 1 U.L. = 100 ,uA = 8.0 rnA = 0.5 V = 2.4 V Any value of pull-up resistor between 7420 and 4.90 can be used. The lower values yield the fastest speeds while the higher values yield the lowest power dissipation. 2-16 TTL CHARACTERISTICS THRESHOLDS AND NOISE MARGINS The noise margins most often cited for TTL are obtained by subtracting the guaranteed maximum input HIGH level VIH of a driven input from the guaranteed minimum output HIGH level VOH of the driving source, and subtracting the guaranteed maximum output LOW level VOL of the driver from the guaranteed minimum input LOW level VIL of a driven circuit. The guaranteed worst-case values of these parameters vary slightly among the various circuit families and are summarized in Table 2-3. Note that although the 9000 Series VIH and VIL specifications have different limits at different temperatures (see data sheets), they are grouped with the 54/74 family in the table as a matter of convenience. Note also that the VOL limit listed for 74LS is 0.5 V, whereas these circuits are also specified at 0.4 V at a lower level of IOL. Noise margins obtained by the aforementioned subtractions are listed in Tables 2-4 through 2-7, for all combinations of driving and driven circuit types in the various circuit families. Noise margins calculated in this manner are quite conservative, since it is assumed that both the driver output characteristics and the receiver input characteristics are worst-case and that Vee is on the low side for the driver and on the high side for the receiver. Table 2-3 Parameter Limits Military (-55 to +125°C) Fairchild TTL Families TTL H-TTL LP-TTL S-TTL LS-TTL Standard TTL, 9000, 54/74 High Speed TTL, 54H/74H Low Power TTL, 93L (MSI) Schottky TTL, 54S/74S, 93S Low Power Schottky TTL, 54LS/74LS Commercial (0 to +70°C) VIL VIH VOL VOH VIL VIH VOL VOH 0.8 0.8 0.7 0.8 0.7 2.0 2.0 2.0 2.0 2.0 0.4 0.4 0.3 0.5 0.4 0.8 0.8 0.8 0.8 0.8 2.0 2.0 2.0 2.0 2.0 0.4 0.4 0.3 0.5 0.5 2.4 2.4 2.4 2.5 2.5 2.4 2.4 2.4 2.7 2.7 Units V V V V V VOL and VOH are the voltges generated at the output. V,L and V,H are the voltage required at the input to generate the appropriate levels. The numbers given above are guaranteed worst-case values. Table 2-4 ~ LOW Level Noise Margins (Military) From TTL H-TTL LP-TTL S-TTL LS-TTL Units TTL H-TTL LP-TTL S-TTL LS-TTL 400 400 500 300 400 400 400 500 300 400 300 300 400 200 300 400 400 500 300 400 300 300 400 200 300 mV mV mV mV mV From "VOL" to "VIL" Table 2-5 ~ HIGH Level Noise Margins (Military) From TTL H-TTL LP-TTL S-TTL LS-TTL Units TTL H-TTL LP-TTL S-TTL LS-TTL 400 400 400 500 500 400 400 400 500 500 400 400 400 500 500 400 400 400 500 500 400 400 400 500 500 mV mV mV mV mV From "VOH" to "VIH" 2-17 • TTL CHARACTERISTICS Table 2-6 ~ LOW Level Noise Margins (Commercial) From TTL H-TTL LP-TTL S-TTL LS-TTL Units TTL H-TTL LP-TTL S-TTL LS-TTL 400 400 500 300 300 400 400 500 300 300 400 400 500 300 300 400 400 500 300 300 400 400 500 300 300 mV mV mV mV mV From "VOL" to "VIL" Table 2-7 ~ HIGH Level Noise Margins (Commercial) From TTL H-TTL LP-TTL S-TTL LS-TTL UNITS TTL H-TTL LP-TTL S-TTL LS-TTL 400 400 400 700 700 400 400 400 700 700 400 400 400 700 700 400 400 400 700 700 400 400 400 700 700 mV mV mV mV mV From "VOH" to "VIH" THRESHOLDS AND NOISE MARGINS (Cont'd) A more meaningful interpretation of noise margin can be gained by examining the relationship between input and output voltage of a circuit. Figures 2-19,2-20 and 2-21 show the voltage transfer function of TTL, S-TTL and LS-TTL inverting gates, respectively. The steepest part of a particular curve, where the output changes rapidly for small changes in input, is called the threshold region. Input signals above or below this region cause little or no change in output and thus are of no concern. Problems can occur when an input voltage, whether steadystate, transient or a combination of both, causes an output voltage to rise or fall into the threshold region of its driven loads. Thus, noise of this magnitude can propagate, which is a useful criterion. The transfer characteristics of Figures 2-19 through 2-21 are essentially steady-state and thus apply for noise disturbances of long duration. For short pulses, however, the finite response time of a circuit has an effect on noise sensitivity. Figure 2-22 illustrates pulse noise immunity of TTL gates of the various families. These data are obtained by applying positive pulses to an otherwise LOW input and noting the combinations of pulse amplitude and duration required to cause the output to fall to 2.0 V, which is the guaranteed input HIGH level for TTL circuits. The curves show that S-TTL responds to the shortest pulses, as might be expected, and that pulse durations greater than about 4.0 ns have essentailly the same effect as dc input voltge. The curves show that plain TTL (7400) is the least sensitive to noise pulses, with H-TTL and LS-TTL responses intermediate between those of 7400 and S-TTL. The flat portion of the various curves shows that LS-TTL is the most sensitive to long duration pulses, while 7400 is least sensitive. This can also be deduced by comparing the transfer functions of Figures 2-19 and 2-21; the LS-TTL threshold regions are nearer the left hand axis, indicating that a lowervalue of input voltage is required to affect the output voltage than is the case with plain TTL. 2-18 TTL CHARACTERISTICS 4.0 -- ~ > I 3.0 w 5.0 ~ Cl ... => 0 .'ss,b o'er-- 25'C f-- 75'C- Vee = 5 V r---.. 25'C l -55 C t--- Cl ... > I ~ee J5V ...:::l> ...:::l'" 2.0 I 1.0 0 V \ \ "\ 1.0 1\ \ => 0 o 1.0 2.0 V,N -INPUT VOLTAGE - v -1.0 0.5 3.0 Fig. 2-19 Voltage Transfer Function of a 9000 Series Gate 0.7 VOUT -y., 4.0 Cl ...« ....J 0 > ...:::l ...:::l'" 3.0 VIN-D-VOUT 2.0 0 > I 2.4 I w C :::l ... -55'C \~\ :::; '"::Ii 0 ! Vee =5V TA = +25'C >- > VOH +25'C \\ 1.7 -2.0V 3.0 5.0 w J\.. Fig. 2-20 Voltage Transfer Function of an S-TTL Gate 0.1' -\Lo > I \ 0.9 1.1 1.3 1.5 V,N -INPUT VOLTAGE - V V,N.J - +125'C " \ > o I". \ \ >- > ~ o 15 20 10 5.0 INPUT PULSE WIDTH - ns 25 Fig. 2-22 Pulse Noise Immunity of TTL Gates CROSSTALK Crosstalk, the coupling of energy from one circuit to another via parasitic capacitance and inductance, causes increased problems in digital systems as the rise and fall times of the circuit decrease. The subject is extremely complicated, and no simple formula can give correct values in all cases forthe amplitude of noise coupled from one circuit to another. In some circumstances where the input and output resistances of the circuits are high, a lumped equivalent circuit model can be drawn and reasonable calculations made. However, when the connections act as transmission lines, the situation is extremely complicated. TTL elements have a low output impedance in both HIGH and LOW logic states, and it is very difficult to couple enough energy into a short interconnection between devices to switch an adjacent circuit erroneously. Noise introduced via capacitive coupling will have the same polarity as the disturbing signal and its amplitude will be inversely proportional to the rise or fall time of the disturbing signal. Noise introduced via magnetic coupling can be of either polarity. Open wire connections between TTL circuits should not be bundled, tied or routed together. 2-19 TTL CHARACTERISTICS CROSSTALK (Cont'd) Long parallel signal wires should be separated by ground wires to minimize coupling, particularly if one leads to the Clock (or asynchronous Set or Clear) input of a flip-flop, counter orregister.ln the case of ripple counters such as the 'LS90/'92/'93/,2901'293/'390/'393 and '490, the output of one stage may be internally connected to the Clock input of the next stage. Excessive coupling between outputs can therefore cause erratic counting. This situation most often occurs when counter outputs are taken off-card to a display unit by means of flat cable. In these cases it is best to use every other wire in the cable for ground in order to prevent erratic operation. In the case of parallel signal wires that do not involve a Clock or Asynchronous Set/Reset input, and close coupling of signal wires is unavoidable, it is advisable to wait until induced disturbances (following a signal change on one or more wires) have died out before sampling the data on a line. A disturbance induced in one wire by a signal change on another will have a time duration equal to twice the propagation delay of the wires. If two wires are closely coupled over a distance of three feet, involving a propagation delay of perhaps 5.0 ns, for example, an induced disturbance will have a duration of 10 ns. TRANSMISSION LINES Practical transmission lines, cables and strip lines used for TTL interconnections have a characteristic impedance between 500 and 1500. Thus none of the standard or low power TTL circuits can drive a transmission line, and only the 'S40/'S140 is truly capable of driving a 500 line under worst case condirions. These considerations, applicable only when the round trip delay of the line is longer than the rise orfall time of the driving signal (2td > tr), do not affect most TTL interconnections. Short interconnections do not behave like a resistive transmission line, but more like a capacitive load. Since the rise time of different TTL outputs is known, the longest interconnection that can be tolerated without causing transmission line effects can easily be calculated and is listed in Table 2-8 below. Table 2-8 PC Board Interconnections TTL FAMILY RISE TIME FALL TIME MAX INTERCONNECTION LENGTH 93L 14-18 ns 4-6 ns 18 in. (45 cm) 9XXX, 93XX, 54/74 6-9 ns 4-6 ns 18 in. (45 cm) 54H174H, 54LS/74LS 4-6 ns 2-3 ns 9 in. (22.5 cm) 1.8-2.8 ns 1.6-2.6 ns 7.5 in. (19 cm) 54S174S,93S Assuming 1.7 ns/foot propagation speed, typical for epoxy fiberglass PC boards with Ir = 4.7. Slightly longer interconnections show minimal transmission line effects; the longer the interconnections, the greater the chance that system performance may be degraded due to reflections and ringing. The discussion of transmission line effects gives additional information on transmission line phenomena on longer lines. Good system operation can generally be obtained by designing around 100 0 lines. AO.026 inch (0.65 mm) trace on an epoxy-glass board (~r =4.7) with a ground plane on the otherside represents a 100 0 line. Wire of 28 to 30 gauge (0.25 mm to 0.30 mm) twisted together forms a twisted pair line with a characteristic impedance of 100 n to 115 n. Wire over ground screen (3/4" squares) gives 150 n to 250 n impedance with a significant improvement in propagation speed, since the dielectric constant approaches that of air. Transmission lines are also discussed in the FAIRCHILD ECL DATABOOK, the FAIRCHILD INTERFACE HANDBOOK and the FAIRCHILD TTL APPLICATIONS BOOK. 2-20 TTL CHARACTERISTICS TRANSMISSION LINE EFFECTS The fast rise and fall times ofTTL outputs (2.0 ns to 6.0 ns) produce transmission line effects even with relatively short « 2 ft) interconnections. Consider one TTL device driving another, and the driver switching from the LOW to the HIGH state. If the propagation delay of the interconnection is long compared to the rise time of the signal, the arrangement behaves like a transmission line driven by a generator with a non-linear output impedance. Simple transmission line theory shows that the initial voltage step at the output just after the driver has switched is where Zo is the characteristic impedance of the line, Ro is the output impedance of the driver, and VE is the equivalent output voltage source in the driver, Vee minus the forward drop of the pull-up transistors. Figure 2-23 shows how the initial voltge step can be determined graphically by superimposing lines of constant impedance on the static input and output characteristics of TTL elements. The constant impedance lines are drawn from the intersection of the VIN and VOL characteristics, which is the quiescent condition preceding a LOW-to-HIGH transition. Afterthis transition the VOH characteristic applies, and the intersection of a particular impedance line with the VOH characteristic determines the initial voltage step. The VOH characteristic shown in Figure 2-23 has an Ro of about 80 nand VE of approximately 4.0 V, for calculation purposes. ImA 30 20 VOL 10 6.0 -1.0 VOLTS \ \zo=son Fig. 2-23 Initial Output Voltage of TTL Driving Transmission Line 2-21 TTL CHARACTERISTICS TRANSMISSION LINE EFFECTS (Cont'd) This initial voltage step propagates down the line and reflects at the end, assuming the typical case where the line is open-ended or terminated in an impedance greater than its characteristic impedance Zoo Arriving back at the source, this reflected wave increases VOUT. If the total round-trip delay is larger than the rise time of the driving signal, there is a staircase response at the driver output and anywhere along the line. If one of the loads (gate inputs) is connected to the line close to the driver, the initial output voltage VOUT might not exceed VIH. This input is then undetermined until after the round trip of the transmission line, thus slowing down the response of the system. Figure 2-24 shows the driver output waveform for four different line impedances. For Zo of 25 nand 50 n the initial voltage step is in the threshold region of a TTL input and the output voltage only rises above the guaranteed 2.0 V VIH level after a reflection returns from the end of the line. If VOUT is increased to > 2.0V by either increasing Zo or decreasing Ro, additional delay does not occur. Ro is a characteristic of the driver output configuration, varying between the different TTL speed categories. Zo can be changed by varying the width of the conductor and its distance from ground. Table 2-9 lists the lowest transmission line impedance that can be driven by different TTL devices to insure an initial voltage step of 2.0 V. Note that the worst case value, assuming a +30% tolerance on the current limiting resistor and a -10% tolerance on Vee, is 80% higher than the value for nominal conditions. Table 2~9 Transmission Line Drive Capability Lowest Transmission Line Impedance n TTL FAMILY OR DEVICE 54/74 9XXX,93XX 54H174H 54S/74S 93L 9009 544017440 54H/74H40 54S174S40 54S140174S140 Supply.Voltage (Vee) COLLECTOR RESISTOR Rn WORST CASE (R + 30%) 130 80 58 55 320 50 100 60 25 241.4 148.5 107.7 110.0 594.2 92.8 185.7 111.4 50.0 I I 1 I I I I I 4.50 I NOMINAL 204.8 126.0 91.3 92.2 504.2 78.7 157.5 94.5 41.9 136.8 84.2 61.0 61.1 336.8 52.6 105.2 63.1 27.7 84.6 52.0 37.7 37.5 208.3 32.5 65.1 39.0 17.0 4.75 5.00 5.25 1 I .. I 1 75.8 46.6 33.8 33.4 186.6 29.1 58.3 35.0 15.2 I ., 5.50 I I ,.. BEST CASE (R - 30%) Commercial grade range Military grade range .- A graphical method provides excellent insight into the effects of high speed digital circuits driving interconnections acting as transmission lines. The method is basically to draw a load line for each input and output situation. Each load line starts at the previous quiescent point, determined where the previous load line cuts the appropriate characteristic. The magnitude of the slope of the load lines is identical and equal to the characteristic impedance of the line, but alternate load lines have opposite signs representing the change in direction of current flow. The pOints where the load lines cut the input and output characteristics represent the voltage and current value at the input or output, respectively, for that reflection. This method, illustrated in Figure 2-25, is shown with and without the input diode, and illustrates how the input diode on TTL elements assists in eliminating spurious switching due to reflection. 2-22 TTL CHARACTERISTICS 5.0 4.0 ~--~--~-----~~-----~~ns • ~--'---~-----~-----~--ns __ --~---k-----~-----~--ns ~ __ ~--~------k-----~ 100 50 __ ns 150 Fig. 2-24 TTL Driving Transmission Line ImA 80 OUTPUT A 70 VOLTS 4 60 - - THEORETICAL --ACTUAL 3 2 WITH INPUT DIODE 4+-~~+-~~~~~~~0 -1 NANO'" I , I , , I ' SECONDS 0 20 40 60 80100120140160180 Zo=140nSLOPE INPUTB' 4 - - THEORETICAL --ACTUAL V VOLTS VOLTS 4 3 2 WITHOUT INPUT --tt---t---7r-fr-~::-::;"e;---1 0 DIODE -1 -2 -30 NANO"" I I , I , , SECONDS 0 20 40 60 80100120140160180 Fig. 2-25 Ringing Caused by Reflections 2-23 -3 TTL CHARACTERISTICS BACKPLANE DATA BUS Unterminated lines can impose a limitation on .maximum data rate because of the waiting time required for reflections and ringing to damp out. For higher data rates, wherein terminations are required to control reflections, a common technique is to use open-collector drivers and terminate each end of a signal wire with a resistive divider between Vee and ground as shown in Figure 2-26. To terminate a 120 n twisted pair, for example, a 180 n resistor to Vee and a 390 n resistor to ground offers a Thevenin equivalent resistance of 123 n and a no-load voltage of 3.4 V with a Vee of 5.0 V. Under nominal conditions and assuming a quiescent LOW level of 0.5 V, a driver must be able to sink about 24 mA from each end of the line, or 48 mA total. The quiescent LOW current flowing in the line furnishes the pull-up mechanism when a driver turns off. When the quiescent current is interrupted, a voltage change is generated whose magnitude is the product ofthe line impedance and the current. Thus the interruption of 24 mA flowing in a 120 n line causes a voltage rise of about 2.9 V, from the quiescent 0.5 V to 3.4 V. With variations in Vee and resistor tolerances, the quiescent LOW current can be considerably more than 48 mA, and a circuit such as the 96101 Quad Bus Driver, which is guaranteed to sink 80 mA, is recommended. The96106 Quad NOR has higher noise margin and lower input loading than other TTL gates and is therefore well suited as a line receiver. The 96103 Quad Transceiver combines the input attributes of the 96106 with an open-collector driver capable of sinking 70 mAo For communications between subsystems that are located in separate enclosures, wherein attenuation and noise are important factors, the general practice is to use specialized drivers and receivers. Drivers with complementary outputs·, such as the 9614, 9634 or 9638, can drive terminated twisted pair lines. Line receivers with differential inputs·, such as the 9615, 9620 or 9637 provide good common-mode noise rejection and accommodate attenuated input signals. DECOUPLING Decoupling capacitors should be used on every pc card, at least one for every 5 to 10 standard TTL packages, one for every five 74H and 745 packages and one for every one-shot (monostable), line driver and line receiver package. They should be good quality rf capacitors of 0.01 /IF to 0.1 /IF with short leads. It is particularly important to place good rf capacitors near sequential (bistable) devices. In addition, a larger capacitor (preferably a tantalum capacitor) of 2.0 /IF to 20 /IF should be included on each card. GROUNDS A good ground system is essential for a pc card containing a large number of packages. The ground can either be a good ground bus, or better yet, a ground plane which, incorporated with the Vee supply, forms a transmission line power system. Power transmission systems, which can be attached to a pc card to give an excellent power system without the cost of a multilayer pc card, are commercially available. Ground loops on or off pc cards are to be avoided unless they approximate a ground plane. -- 96101 DRIVERS +5.0 V +5.0 V 180n 180n 390n 390 n 96108 RECEIVERS Fig. 2-26 High Speed Backplane Data Bus Using Twisted Pair or Flat Cable "Refer to FAIRCHILD LINEAR INTEGRATED CIRCUIT DATA BOOK 2-24 TTL CHARACTERISTICS SUPPLY VOLTAGE AND TEMPERATURE The nominal supply voltage Vcc for all TTL circuits is +5.0 V. Commercial grade parts are guaranteed to perform with ±5% supply tolerance (±250 mY) over an ambient temperature range of O°C to 75°C (some to 70°C). Mil grade parts are guaranteed to perform with a ±10% supply tolerance (±500 mY) over an ambient temperature range of -55°C to 125°C. The actual junction temperature can be calculated by multiplying the power dissipation of the device with the thermal resistance of the package and adding it to the measured ambient temperature TA or package (case) temperature Tc. Table 2-1 lists some of the standard Dual In-line Packages (DIP) and Flatpaks used by Fairehild, including typical junction-to-ambient thermal resistance 6JA and typical junction-to-case thermal resistance 6Jc. Designers should bear in mind that localized temperatures can rise well above the general ambient in a system enclosure. On a large pc board mounted in a horizontal plane, for example, the local temperature surrounding an IC in the middle of the board can bequite high duetothe heating effect ofthe surrounding packages and the very poor natural convection. Low velocity forced air cooling is usually sufficient to alleviate such stagnant air conditions. Table 2-10 Thermal Resistances PACKAGE 6JA,oC/W 6JC,oC/W 14-Pin Flatpak 16-Pin Flatpak 24-Pin Flatpak 128 123 90 50 47 44 14-Pin CerDIP 16-Pin CerDIP 24-Pin CerDIP 115 100 60 35 30 25 14-Pin Plastic DIP 16-Pin Plastic DIP 24-Pin Plastic DIP 125 120 74 48 45 40 Example: A 9301 in CerDIP dissipates typically 145 mW. At +55°C ambient temperature the junction temperature is: TJ = (0.145 X 100) + 55 = 70°C INTERFACING All circuits in the Fairchild TTL families, in fact all TTL devices presently manufactured, are compatible. Any TTL output can drive a certain number of TTL inputs, as described in Section 3. There are only subtle differences in the worst case noise immunity when low power, standard and Schottky TTL circuits are intermixed. Open-collector outputs, however, require a pull-up resistor to drive TTL inputs reliably, as discussed earlier. While TTL is the dominating logic family, and many systems use TTL exclusively, there are cases where different semiconductor technologies are used in one system, either to improve the performance or to lower the cost, size and power dissipation. The following explains how TTL circuits can interface with DTL, ECL (CMU, CTL, and discrete transistors. Interfacing TTL and DTL - Both DTL and TTL are current sinking families, operating on a +5.0 V supply. They interface perfectly. When TTL drives DTL, one DTL input represents 1 U.L. in the LOW state, much less than 1 U.L. in the HIGH state. When DTL drives TTL, a 2 kO output has a drive capability of 8 U.L., a 6 kO output has a drive capability of 4 U.L. 2-25 TTL CHARACTERISTICS INTERFACING (Cont'd) Interfacing TTL and ECL - Mixing ECL and TTL logic families offers the design engineer a new level of freedom and opens the entire vhf frequency spectrum to the advantages of digital measurement, control and logiC operation. The chief advantages of emitter coupled logic are high speed, flexibility, design versatility and transmission line compatibility. But application and interfacing cost problems have traditionally discouraged the use of ECL in many areas, particularly in low cost, less sophisticated systems. Using 95K or 10K compensated ECL with new ECL/TTL interface devices and several new interfacing methods promises to extend the advantages of ECL to many low cost systems. The most practical interfacing method for smaller systems involves using a common supply of+5.0 V to +5.2 V. Care must be exercised with both logiC families when using this technique to assure proper bypassing of the power supply to prevent any coupling of noise between circl.lit families. If only a few 95K or 10K ECL packages are designed into a predominantly TTL system the safest method is to use a 0.01 f.lF miniature ceramic capacitor across each ECL device. This value capacitor has the highest Q, or bypassing efficiency. When larger systems are operated on a common supply, separate power busses to each logic family help prevent problems. Otherwise, good high frequency bypassing techniques are usually sufficient. 95K series ECL devices are fully compensated sq that input thresholds and output levels are immune to broad variations in ambient temperature and supply voltage. This feature makes it easier to interface with TTL and to operate with the TTL power supply. 95K and 10K devices have high input impedance with input pull-down resistors (> 20 knl to the negative supply. In the TTL to ECL interface circuits in Figure 2-27 it is assumed that the ECL devices have high input impedance. 9500 series ECL elements are temperature compensated and have internal 2 kn pull-down resistors at each input and output. These resistors provide partial termination of interconnecting transmission lines, in many cases eliminating the need for external terminations. For ECL inputs with 2·kH pull-down reSistors, the 750 n resistors shown in the TTL to ECL circuits should be changed to 1.2 kH in orderto provide the proper ECL input signal levels. All circuits described operate with ±5% ECL and ±10% TTL supply variations, except those with ECL and TTL on a common supply. In.those cases the supply can be ±10% with95K or 10K ECL, ±5% with 9500 series ECL. All resistors are 1/4 W, ±5% composition type. TTL to ECL conversion is easily accomplished with resistors, which simultaneously attenuate the TTL signal swing, shift the signal levels, and provide low impedance for damping and immunity to stray noise pick-up. The resistors should be located as near as possible to the ECL circuit for optimum effect. The circuits in Figure 2-27 assume an unloaded TTL gate as the standard TTL source. ECL input impedance is predominately capacitive (= 3 pF); the net RC time constant of this capacitance with the indicated resistors assures a net propagation delay governed primarily by the TTL signal. +5V 470 n 750 n -5.2 V Fig. 2-27 TTL to ECL Conversion 2-26 TTL CHARACTERISTICS INTERFACING (Cont'd) When interfacing between high voltage-swing TTL logic and low voltage-swing ECl logic. the more difficult conversion is from ECl to TTL. This requires a voltage amplifier to build up the 0.8 V logic swing to a minimum of 2.5 V. The circuits shown in Figure 2-28 may be used to interface from ECl to TTL. The higher speed converters usually have the lowest fan-out - only one or two TTL gates. This fan-out can be increased simply by adding a TTL buffer gate to the output of the converter. Another option. if ultimate speed is required. is to use additional logic converters. Interfacing TTL and CTL - CTl (Complementary Transistor logic) is a family of high speed digital circuits used mainly in computers. It uses AND gates and"wired-OR outputs for logic flexibility. but logiC levels are not restored in each gate. level restoring buffers (956) are therefore required. and all interfacing should be done with restored logic levels. The CTl input threshold is'" 1 V. similar to TTL. but 1.0 rnA to 2.0 rnA are required to pull the CTl input reliably over the threshold. A normal TTL output can drive a CTl input. but noise immunity is improved considerably by a 1 kn pull-up resistor (Figure 2-29). The CTl output emitter follower can source >30 rnA but cannot sink current. A resistive termination is therefore required. When the resistor is returned to ground. it may not exceed 250 n to guarantee a VOL of < 400 mV at a fan-out of 1 U.L. A better. less power consuming way for a fan-out of 1 U.L. is to use the built-in pull-down resistor (1 kn to -2.0 Vl. For increased fanout. this resistor can be reduced by a parallel external resistor to 180 n (8 U.U. as indicated in Figure 2-30. r---------------, I vcc= ..... v CTL I •• I I . I I , I I 220n I I l--~-------B COMMON POWER SUPPLY VeE = -2 V OR QROUND TTL TO CTL Fig. 2-29 TTL to CTL Conversion r--------------, I CTL I I I •• 24GB •• I I ·5.' V SEPARATE POWER SUPPLIES I I 1 kU I Fig. 2-28 ECl to TTL Conversion I L ___-=-_______ _ CTL TO TTL I __ ...1 VEe =-2V ADDITIONAL PULL-DOWN RESISTOR FOR INCREASED FAN OUT Fig. 2-30 CTL to TTL Conversion 2-27 TTL CHARACTERISTICS INTERFACING (Cont'd) Interfacing TTL and CMOS - With a 5.0 V power supply, a B Series (buffered) CMOS output is guaranteed to sink 0.4 mA at VOL = 0.4 V, which matches the input requirements of a standard LS-TTL input. If the CMOS supply voltage Voo is greater than 5.0 V, the LS-TTL input must be one having an input diode, as opposed to an emitter. This insures that the high VOH of CMOS (=- Voo) will not cause breakdown of the LS-TTL input. A CMOS input threshold VIH may be as high as 70% of Voo, while its VIL will be no lower than 30% of Voo. Thus a TTL output signal is satisfactory at the LOW level, but a pull-up resistor is required to ensure an adequate HIGH level for the CMOS input. The resistor should connect to the CMOS Voo supply, and if this exceeds 5.5 V, the TTL driver must have the capability of not conducting appreciably at this higher voltage. Most LS-TTL outputs can withstand 10 V, as discussed in Section 3. TTL Driving Transistors - Although high voltage, high current ICs, such as the 9644, are available, it is sometimes necessary to control greater currents or voltages than integrated circuits are capable of handling. When this condition arises, a discrete transistor with sufficient capacity can be driven from a TTL output. Discrete transistors are also used to shift voltages from TTL levels to logic levels for which a standard interface driver is not available. The two circuits of Figure 2-31 show how TTL can drive npn transistors. The first circuit is the most efficient but requires an open-collector TTL or DTL output. The other circuit limits the output current from the TTL totempole output through a series resistor. Shifting a TTL Output to Negative Levels - The circuit of Figure 2-32 uses a pnp transistor to shift the TTL output to a negative level. When the TTL output is HIGH, the transistor is cut off and the output voltage is -Vx. When the TTL output is LOW, the transistor conducts and the output voltage is if the transistor is not saturated, or slightly positive if the transistor is allowed to saturate. ----~~-------.------------------Vee Vee R2 R3 =R2 R3 +-------+-------VOUT OPEN COLLECTOR TTL OR DTL R1 Ib > 10 mA. -vx Fig. 2-32 PNP Transistor Shifting TTL Output Fig. 2-31 TTL Driving NPN Transistors 2-28 TTL CHARACTERISTICS INTERFACING (Cont'd) High Voltage Drivers - A TTL output can be used to drive high voltage, low current loads through the simple, non-inverting circuits shown in Figure 2-33. This can be useful for driving gas discharge displays or small relays, where the TTL output can handle the current but not the voltage. Load current should not exceed (IOL-4)mA. Transistors Driving TTL -It is sometimes difficult to drive the relatively low impedance and narrow voltage range of TTL inputs directly from external sources, particularly in a rough, electrically noisy environment. The circuits shown in Figure 2-34 can handle input signal swings in excess of ±100 V without harming the circuits. The second circuit has an input RC filter that suppresses noise. Unambiguous TTL voltage levels are generated by the positive feedback (Schmitt trigger) connection. vee VL 9301 1/10 DECODER > Vee Vee 1k 1 kO TO OTHER DISPLAYS Fig. 2-33 Non-Inverting High Voltage Drivers Vee 10 kll Vee 100 kll 10 kO 10 kO 5.6 kll Fig. 2-34 Transistors Driving TTL 2-29 • SECTION 3 • Unit Loads (U.L.l • Absol~te Maximum Ratings • Recommended Operating Conditions • DC Characteristics Tables 54XX. 74XX & 93XX Family DC Characteristics 54H. 74H. & 93H Family DC Characteristics 54$. 74S & 93S Family DC Characteristics 54LS. 74LS & 96LS Family DC. Characteristics 9XXX Family DC Characteristics 93L Family DC Characteristics • AC Loading and Waveforms AC Loads for SSI Gates Waveforms Section 3 LOADING, SPECIFICATIONS AND WAVEFORMS This section contains dc specifications and ratings common to all devices in each family of circuits. These specifications plus the distinctive characteristics given in the individual data sheet are necessary to fully define a circuit for testing or procurement purposes. Included is a discussion of the Unit Load method of normalizing the input and output characteristics of a circuit, and how to translate the numbers given in the Input Loading/Fan-Out table of a data sheet into the actual values of IIH, ilL, IOH and IOL currents. The various load configurations for ac testing, a table of RL and CL values for SSI gates and waveforms that help to define the various ac parameters are also included. UNIT LOADS (U.L.) For convenience in system design the input loading and fan-out characteristics of each circuit are specified in terms of unit loads. One unit load in the HIGH state is defined as 40J.lA; thus both the input HIGH leakage current IIH and the output HIGH current sourcing capability IOH are normalized to 40 J.lA. Similarly, one unit load in the LOW state is defined as 1.6 mA and both the input LOW current IlL and the output LOW current sinking capability IOL are normalized to 1.6 mAo On the data sheets the input and output load factors are listed in the Input Loading/Fan-Out table. The table from the 5417404 Hex Inverter is reproduced below. INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 54/74 (U.L.) HIGH/LOW 54174H (U.L.) HIGH/LOW 54174S (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.0/1.0 20/10 1.25/1.25 12.5/12.5 1.25/1.25 25/12.5 0.5/0.25 10/5.0 (2.5) The input loading and fan-out factors are arranged in four columns, since this hex inverter is available in standard TTL, H-TTL, S-TTL and LS-TTL. Under the 54174H heading, for example, the input HIGH/LOW load factors are 1.25/1.25, with the first number representing IIH and the second representing ilL. For purposes of testing or procurement these load factors can be easily translated to actual test limits by simply multiplying them by 40 J.lA and 1.6 mA, respectively. The second set of numbers represents the rated output HIGH/LOW load currents IOH and IOL, respectively. In the 54174S column the output HIGH/LOW drive factors of 25/12.5 translate to 1.0 mA and 20 mA by multiplying them by 40 J.lA and 1.6 mA, respectively. For any input or output for which the Military and Commercial grade specifications differ, the Military grade loading or fan-out factors are shown in parenthesis immediately below the Commercial grade factors. In the case of the 54174LS04 in the sample table shown, the output LOW fan-out for the Commercial grade (74LS04) is shown as 5.0 (equivalent to 8.0 mAl, while the rating for the Military grade (54LS04) is 2.5 (or 4.0 mAl. The output HIGH fan-out rating for the Military grade is the same as for the Commercial grade and thus the rating of 10 loads (or 400 J.lA IOH) is not repeated in parenthesis. For convenience in system design the input and output loading factors should not be translated into J.lA and mAo It is only necessary to add up the input loading factors of all inputs connected to a particular logic function and compare the total unit loadi ng with the fan-out capability of the source of that particular function. For example, a function that connects to one input of each of the hex inverter types in the table above must drive the total loading calculated below. Input HIGH Loading = 1.0 + 1.25 + 1.25 + 0.5 = 4.0 Unit Loads Input LOW Loading = 1.0 + 1.25 + 1.25 + 0.25 = 3.75 Unit Loads 3-3 • LOADING. SPECIFICATIONS AND WAVEFORMS UNIT LOADS (U.L.) (Cont'd) To extend the example, this amount of loading can be driven by anyone of the hex inverters in the Commercial grade, since all outputs have fan-out capabilities greater than 4.0/3.75. In the Military grade, however, the 54LS04 has a rated output LOW drive factor of only 2.5 and thus could not be guaranteed to drive 3.75 unit loads. Thus a different type of driver would be selected for operation over the Military temperature range. In the case of an open-collector output, which is not capable of supplying IOH current or of establishing a VOH level, the output HIGH load factor does not apply and thus the abbreviation OC is substituted. It is assumed that the system designer will specify a pull-up resistor value that will establish the desired VOH while supplying the cumulative hH of the driven loads plus the.IOH leakage current of the output (or outputs, in the case of wiredcollector logic) as specified in either the pertinent Family DC Characteristics table or on the data sheet. ABSOLUTE MAXIMUM RATINGS1 (beyond which useful life may be impaired) Storage Temperature Ambient Temperature Under Bias Junction Temperature Under Bias Vee Pin Potential to Ground Pin Input Voltage2: Emitter Inputs LS-TTL3 Diode and pnp Inputs Input Current2,4 Voltage Applied to Outputs in HIGH State: Open Collector Standard TTL, H-TTL, S-TTL, LP-TTL Standard LS-TTLS (with recommended operating Vee) 3-State LS-TTL (with Vee = 0 V) Current Applied to Outputs in LOW State (Max) -65°C to +150°C -55° C to +125° C -55° C to +175° C -O.S V to +7.0 V -0.5 V to +5.5 V -0.5 V to +15 V -30 rnA to +5.0 rnA -0.5 V to +7.0 V -0.5 V to Vee Value -0.5 V to +10 V -0.5 V to +5.5 V twice the rated IOL RECOMMENDED OPERATING CONDITIONS1 Free Air Ambient Temperature Military (XM) Commercial (XC) Supply Voltage Military (XM) Commercial (XC) Min Max -55°C O°C +125°C +70°C +4.5 V +4.75 V +5.5 V +5.25 V NOTES: 1. Unless otherwise res.tricted or extended by detail specifications. 2. Either input voltage IImit.or input current limit is sUllicientto protect Inputs. 3. Refer to input breakdown test In 54LS17:4LS family DC Characteristics or individual data sheets for em iller type LS-TTL inputs. 4. Except 9315/7441 limited to -10 mA to +1.0 mAo Also, steady-state clamp diode currents greater than -2.0 mA in LS-TTL inputs can cause logic malfunctions; see discussion in Section 2. 5. Except 'LSOO, 'LS02, 'LS04, 'LS10, 'LS11, 'LS20, 'LS32, 'LS74, 'LS86, 'LS109, 'LS112, 'LS113 and 'LS114 limited to -0.5 V to +Vcc Value. 3-4 LOADING, SPECIFICATIONS AND WAVEFORMS DC CHARACTERISTICS TABLES Most of the circuits described in this data book were designed within the general framework of one of the distinctive families of TTL circuits, i.e., TTL, H-TTL, S-TTL, LP-TTL or LS-TTL. Many dc specifications are common to almost all circuits of a particular family, e.g., VIH, Vll, VOH,Veo, etc. and toavoid needless repetition these common parameters do not appear on the individual data sheets. On the following pages are tables of dc characteristics containing the parameters, limits and conditions common tothevarious families of TTL circuits. These are intended to augment the distinctive parameters, such as accharacteristics, input loading, fan-out and power supply current listed on the individual data sheets. In some cases a particular circuit will depart from its family characteristics in one or more parameters and in these cases the limits or conditions shown on the individual data sheets take precedence over the values listed in the family characteristics table. 54XX, 74XX, 93XX & 96XX FAMILY DC CHARACTERISTICS1 SYMBOL2 LlMITS3 PARAMETER Min VIH Input HIGH Voltage Vil Input LOW Voltage Veo Input Clamp Diode Voltage VOH Output HIGH Voltage VOL Output LOW Voltage Input HIGH Current IIH UNITS Typ4 V Recognized as a HIGH Signal Over Recommended Vee and T A Range 0.8 V Recognized as a LOW Signal Over Recommended Vee and TA Range -1.5 V Min = -12 mA 10H = 40 /-LA Multiplied V Min Output HIGH U.L. Shown on Data Sheet 0.4 V Min 10l = 1.6 mA Multiplied by Output LOW U.L. Shown on Data Sheet 40 80 n(40) /-LA Max hH = 40 /-LA Multiplied by Input HIGH U.L. Shown on Data Sheet; VIN = 2.4 V 1.0 mA Max VIN -1.6 -3.2 nH.6) mA Max III = 1.6 mA Multiplied by Input LOW U.L. Shown on Data Sheet; VIN = 0.4 V 250 /-LA Min VOH 2.0 2.4 3.4 0.2 1.0 U.L. 2.0 U.L. n U.L. Input HIGH Current, Breakdown Test, All Inputs 1.0 U.L. 2.0 U.L. n U.L. CONDITIONS3 Vee 5 Max liN = 5.5 V III Input LOW Current 10H Output HIGH Current, Open-Collector 10ZH 3-State Output OFF Current HIGH 40 /-LA Max VOUT = 2.4 10Zl 3-State Output OFF Current LOW -40 /-LA Max VOUT = 0.4 V IOS6 Output Short Circuit Current -57 -57 -70 -70 -70 mA Max VOUT =0 V Std 7 54XX . 74XX' 54XX Buffers 74XX 93XX -20 -18 -20 -18 -20 Noles on following pages. 3-5 by = 5.5 V V • LOADIING, SPECIFICATIONS AND WAVEFORMS 54H, 74H, & 93H FAMILY DC CHARACTERISTICSI SYMBOL2 LIMITS3 PARAMETER Min VIH Typ4 UNITS 2.0 Input HIGH Voltage Vee 5 CONDITIONS3 Max Recognized as a HIGH Signal Over Recommended V Vee and T A Range VIL 0.8 Input LOW Voltage Recognized as a LOW Signal Over Recommended V Vee and T A Range VeD Input Clamp Diode Voltage VOH Output HIGH Voltage VOL Output LOW Voltage IIH Input HIGH Current -1.5 V Min hN=-12mA V Min 0.4 V Min 50 100 n(40) p.A Max hH = 40 p.A Multiplied by Input HIGH U.L. Shown on Data Sheet; VIN = 2.4 V 1.0 mA Max VIN = 5.5 V -2.0 -4.0 n(-1.6) mA Max hL = 1.6 mA Multiplied by Input LOW U.L. Shown on Data Sheet; VIN = 0.4 V 250 p.A Min VOH = 5.5 V -100 mA Max VOUT = 0 V 10H = 40 p.A Multiplied by 2.4 3.4 Output HIGH U.L. Shown on Data Sheet 10L = 1.6 mA Multiplied by 1.25 2.5 n 0.2 U.L. U.L. U.L. Input HIGH Current, Breakdown Test, All Inputs hL 10H loS6 Input LOW Current 1.25 2.5 n U.L. U.L. U.L. Output HIGH Current, Open-Collector Output Short Circuit Current -40 Output LOW U.L. Shown on Data Sheet 1. Unless otherwise noted. conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages. For definitions of symbols and terminology please see Section 2. Unless otherwise stated on individual.data sheets. Typical characteristics refer to TA = +25 0 e and Vee = +5.0 V. Min and Max refer to the values listed in the table of recommended operating conditions. For testing los. the use of high speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests. los tests should be performed last. 7. Standard refers to the totem-pole pull-up circuitry commonly used for the particular family. as distinguished from buffers. line drivers or 3-state outputs. 2. 3. 4. 5. S. 3-6 LOADING, SPECIFICATIONS AND WAVEFORMS 54S, 74S & 93S FAMILY DC CHARACTERISTICS1 SYMBOL2 LIMITS3 PARAMETER Min UNITS Typ4 V Recognized as a HIGH Signal Over Recommended Vee and TA Range 0.8 V Recognized as a LOW Signal Over Recommended Vee and T A Range -1.2 V Min hN V Min by Output HIGH U.L. Shown on Data Sheet V Min IOl = 1.6 mA Multiplied by Output LOW U.L. Shown on Data Sheet 50 100 n(40) p,A Max hH = 40 p,A Multiplied by Input HIGH U.L. Shown on Data Sheet; VIN = 2.7 V 1.0 mA Max VIN -2.0 -4.0 n(-1.6) mA Max hl = -1.6 mA Multiplied by Input LOW U.L. Shown on Data Sheet; VIN = 0.5 V 250 p,A Min VOH 2.0 VIH Input HIGH Voltage Vil Input LOW Voltage VeD Input Clamp Diode Voltage VOH Output HIGH Voltage VOL Output LOW Voltage hH 1.25 U.L. Input HIGH Current 2.5 U.L. nU.L. Std.7 Mil. Std.7 Com. 3-State 2.5 2.7 2.4 3.4 3.4 3.2 0.35 0.5 Input HIGH Current, Breakdown Test, All Inputs 1.25 U.L. 2.5 U.L. n U.L. CONDITIONS3 Vee 5 Max = -18 mA IOH = 40 p,A Multiplied = 5.5 V hl Input LOW Current IOH Output HIGH Current, Open-Collector 10ZH 3-State Output OFF Current HIGH 50 p,A Max VOUT = 2.4 V IOZl 3-State Output OFF Current LOW -50 p,A Max VOUT = 0.5 V IOS6 Output Short Circuit Current mA Max VOUT =0 V 1. 2. 3. 4. 5. 6. 7. Standard7/ 3-State Buffers/ Line Dvrs -40 -100 -50 -225 = 5.5 V Unless otherwise noted, conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages. For definitions of symbols and terminology please see Section 2. Unless otherwise stated on individual data sheets. Typical characteristics refer to TA = +25°C and Vee = +5.0 V. Min and Max refer to the values listed in the table of recommended operating conditions. For testing los, the use of high speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last. Standard refers to the totem-pole pull-up circuitry commonly used for the particular family, as distinguished from buffers, line drivers or 3-state outputs. 3-7 LOADING, SPECIFICATIONS AND WAVEFORMS 54LS, 74LS 8. 96LS FAMILY DC CHARACTERISTICS1 SYMBOL2 LlMITS3 PARAMETER Min Input HIGH Voltage Vil Input LOW Voltage Veo Input Clamp Diode Voltage VOH Std.? Mil. Std.7 Com. Output HIGH 3-State/Buffers Voltage Line Dvrs hH Output LOW Voltage UNITS Mil. Com. 2.5 2.7 2.4 2.0 Vee s CONDITIONS3 Max V Recognized as a HIGH Signal Over Recommended Vee and T A Range 0.7 0.8 V Recognized as a LOW Signal Over Recommended Vee and T A Range -1.5 V Min hN = -18 mA V Min 10H = 40 J1.A Multiplied by Output HIGH U.L. Shown on Data Sheet 2.0 VIH VOL Typ4 3.4 3.4 3.3 2.9 10l = 1.6 mA Multiplied by Output LOW U.L. Shown on Data Sheet 10l - 1.6 mA Multiplied by Output LOW U.L. Shown in Parenthesis on Data Sheet Com. 0.35 0.5 V Min Mil. & Com. 0.25 0.4 V Min 20 40 n(40) J1.A Max hH = 40 J1.A Multiplied by Input HIGH U.L. Shown on Data Sheet; VIN = 2.7 V 100 J1.A Max VIN=10V8 -0.4 -0.8 n(-1.6) mA Max hl = -1.6 mA Multiplied by Input LOW U.L. Shown on Data Sheet; VIN = 0.4 V 100 J1.A Min VOH = 5.5V 0.5 U.L. Input HIGH Current 1.0 UL n U.L. Input HIGH Current, Breakdown Test, All Inputs 0.25 U.L. 0.5 U.L. nUL ill Input LOW Current 10H Output HIGH Current, Open-Collector 10ZH 3-State Output OFF Current HIGH 20 J1.A Max VOUT = 2.4 V 10Zl 3-State Output OFF Current LOW -20 J1.A Max VOUT =0.4 V IOS6 Output Short Circuit Current mA Max VOUT = 0 V Standard? 3-State/ Buffers Line Dvrs -20 -100 -30 -130 -40 -225 1. Unless otherwise noted, conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages. For definitions of symbols and terminology please see Section 2. Unless otherwise stated on individual data sheets. Typical characteristics refer to TA = +2S'C and Vee = +S.O V. Min and Max refer to the values listed in the table of recommended operating conditions. For testing los, the use of high speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last. 7. Standard refers to the totem-pole pull-up circuitry commonly used for the particular family, as distinguished from buffers, line drivers or 3-state outputs. B. Except 5.5 V for 'LS03, 'LS05, 'LS22, 'LS74, 'LS109, 'LS112, 'LS113, 'LS114, 'LS136 (which have emitter inputsl and as shown on other data sheets. 2. 3. 4. 5. 6. 3-8 LOADING, SPECIFICATIONS AND WAVEFORMS 9XXX FAMILY DC CHARACTERISTICS1 SYMBOL2 LIMITS3 PARAMETER Min Typ4 UNITS Vee 5 CONDITIONS3 Max VIH Input HIGH Voltage (See Data Sheets) V Recognized as a HIGH Signal Over Recommended Vee and T A Range VIL Input LOW Voltage (See Data Sheets) V Recognized as a LOW Signal Over Recommended Vee and T A Range Veo Input Clamp Diode Voltage VOH Output HIGH Voltage VOL Output LOW Voltage (See Data Sheets) hH Input HIGH Current IlL Input LOW Current (See Data Sheets) 10H Output HIGH Current, Open-Collector IOS6 Output Short Circuit Current -1.5 2.4 Min hN=-12mA V Min 10H = 40 JJ.A Multiplied by Output HIGH U.L. Shown on Data Sheet 40 80 n(40l JJ.A Max IIH = 40 JJ.A Multiplied by Input HIGH U.L. Shown on Data Sheet; VIN = 4.5 V 250 JJ.A Min VOH = 5.5 V -100 -120 -150 -100 -110 mA Max VOUT = 0 V 3.4 1.0 U.L. 2.0 U.L. n U.L. Std.7 Mil. Std.7 Com. 9009 9024 Mil. 9024 Com. V -30 -30 -40 -40 -35 1. Unless otherwise noted, conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages. 2. For definitions of symbols and terminology please see Section 2. 3. Unless otherwise stated on individual data sheets. 4. Typical characteristics refer to TA = +25°e and Vee = +5.0 V. 5. Min and Max refer to the values listed in the table of recommended operating conditions. 6. For testing los, the useof high speed test apparatus and/or sample-and-holdtechniques are preferable in orderto minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, los tests should be performed last. 7. Standard refers to the totem-pole pull-up circuitry commonly used forthe particular family, as distinguished from buffers, line drivers or 3-state outputs. 3-9 LOADING, SPECIFICATIONS AND WAVEFORMS 93L FAMILY DC CHARACTERISTICS1 SYMBOL2 LIMITS3 PARAMETER Min Input HIGH Voltage VIL Input LOW Voltage VeD Input Clamp Diode Voltage Recognized as a HIGH Signal Over Recommended Vee and T A Range 0.7 O.B V Recognized as a LOW Signal Over Recommended Vee and TA Range -1.5 V Min V Min 0.3 0.4 V V Min Min 0.5 U.L. 1.0 U.L. n U.L. 20 40 n(40) J.LA Max Input HIGH U.L. Shown on Data Sheet; VIN = 2.4 V 1.0 rnA Max VIN -0.4 -O.B n(-1.6) rnA Max hL = -1.6 rnA Multiplied by Input LOW U.L. Shown on Data Sheet; VIN = 0.3 V -25 rnA Max VOUT VOL Input HIGH Current 3.6 Input HIGH Current, Breakdown Test, All Inputs 0.25 U.L. 0.5 U.L. n U.L. ilL Input LOW Current IOS6 Output Short Circuit Current 1. 2. 3. 4. 5. 6. = -10 rnA 10H = -400 J.LA 10L = 4.B rnA 10L = B.O rnA hH = 40 J.LA Multiplied by hN Mil. & Com. Com. Output HIGH Voltage Output LOW Voltage 2.4 CONDITIONS3 Vee 5 V Mil. Com. VOH hH UNITS Max 2.0 VIH I I Typ4 -2.5 = 5.5 V =0 V Unless otherwise noted. conditions and limits apply throughout the temperature range for which the particular device type is rated. The ground pin is the reference level for all applied and resultant voltages. For definitions of symbols and terminology please see Section 2. Unless otherwise stated on individual data sheets. Typical characteristics refer to TA = +25'e and Vce = +5.0 V. Min and Max refer to the values listed in the table of recommended operating conditions. For testing los. the use of high speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a HIGH output may raise the· chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests. los tests should 3-10 be performed last. LOADING, SPECIFICATIONS AND WAVEFORMS AC LOADING AND WAVEFORMS Figure 3-1 shows the ac test load configuration used for circuits of the 54174, 54174H and 54/74S families having totem-pole outputs. The diodes and resistor are not used for testing circuits of the 54174lS, 9XXX, 93XX, 93H, 93S, 93l, 96XX or 96lS families. Figure 3-2 shows the test load configuration for open-collector outputs. For S SI gates, RL and CL values are listed in the table below. For flip-flops and MSI, RL and CL values are listed in the column headings of the ac tables on the data sheets. Figure 3-3 shows the test circuit for measuring Enable and Disable times of 3-state outputs; RL and CL values are given in the column headings of the ac table in the data sheet, except in certain tests they are superceded by RL or CL values listed in the Test Conditions column of the same table. A pulse generator signal swing of 0 V to +3.0 V, terminated at the test socket, is recommended for ac testing. A 1.0 MHz square wave is recommended for most propagation delay tests, with rise and fall times of 2.5 ns for STTL, 10 ns for lP-TTl and 6.0 ns for circuits of other families. The generatorPRR must necessarily be increased for testing f max and decreased for testing one-shot pulse widths. Two pulse generators are usually required for testing such parameters as set-up time, hold time, recovery time, etc. AC LOADS FOR SSI GATES SSI DEVICES 54174 AC TEST 54H174H 54LS/74LS CL RL CL RL CL RL CL RL 4 kn 400 n 25 pF 25 pF 280 n 280 n 15 pF 15 pF 280 n 280 n 15 pF 15 pF 2 kn 2 kn 15 pF 280 n 15 pF 2 kO 15 pF 2 kn 50 pF 6670 50 pF 667 n 50 pF 5 pF 667 n 667 n 15 pF - '01, '03, '05 '12, '22 tPLH tPHL 15 pF 15 pF '09, '15, '65 tPLH/tPHL 15 pF 400 n '06, '07, '16, '17 tPLH/tPHL 15 pF 110 n '26 tPLH/tPHL 15 pF 1 kn '28, '33, '37, '38 tPLH/tpHL 45 pF 133 n '40, '140 tPLH/tPHL 15 pF 133 n '125, '126, '365 '366, '367, '368 tPLH, HL, ZL, ZH tPHZ, LZ 50 pF 5 pF 4000 400 n '134 tPLH/tPHL tpzH/tpZL tpHz/tPLZ All Standard Gates with Totem tPLH/tpHL Pole Outputs 54S/74S 15 pF 25 pF 400 n 25 pF 3-11 93 n 280 n 50 pF 930 15 pF 50 pF 50 pF 280 n 280 n 280 n 15 pF 280 n • LOADING, SPECIFICATIONS AND WAVEFORMS I - Ve-;- - - - - "7l I I I I I I I I I I -=- L ____ __--===---.J Fig. 3-1 'Not Used for LS-TTL "Includes Jig and Probe Capacitance Test Load for Totem-Pole Outputs in Bi-State Mode Vee Rl ~ o I Fig. 3-2 Cl' 'Includes Jig and Probe Capacitance Test Load for Open-Collector Outputs PARAMETER SW1 SW2 tPZH Open Closed Closed Closed Closed Open Closed Closed TOD.U.T ...........-K tPZL tPLZ 1 kn (5 kn for LS) tPHZ 'Includes Jig and Probe Capacitance Fig. 3-3 Vm Fig. 3-4. ~ Enable and Disable Test Loads for 3-State Outputs 1.5 V (1.3 V for LS) Vm Fig. 3-5 Waveform for Inverting Functions 3-12 ~ 1.5 V (1.3 V for LS) Waveform for Non-Inverting Functions LOADING, SPECIFICATIONS AND WAVEFORMS Fig. 3-6 Set-up and Hold Times, Rising-Edge Clock Fig. 3-7 Set-up and Hold Times, Falling-Edge Clock • 1 14...---------lmax--------4~~1 I. .I-----IW(L)-----I~~I ',.C' jl~----------~~I \-IW(H) - jl~Y-m-=-1-.5-Y-(1-.3-Y-lo-r-L-S) '-----~ ~IPHL_I _ IPLH 1 F - Y O U T- - - , - r I VOUT Fig. 3-8 IPHL - Propagation Delays from Rising-Edge Clock or Enable 3-13 LOADING, SPECIFICATIONS AND WAVEFORMS I! or cy; VOUT 'lOUT Fig. 3-9 Propagation Delays from Failing-Edge Clock or Enable _tw_ SET CLEAR ----IttPLH a_ _ -----:....----. 1 1-°" \ \ . ._ _ _ _ _ _ _ _.... Flg.3-10 tPLH Vm=1.5.V(1.3VlorLS) Propagation Delays from Set and Clear (or Reset) 3-14 LOADING, SPECIFICATIONS AND WAVEFORMS VE VE Your Fig. 3-11 3-State Output LOW Enable and Disable Times VE VE Fig. 3-12 E or Pi: 3~State Vm Output HIGH Enable and Disable Times = 1.5 V (1.3 V for LS) Flg.3-13 Setup and Hold Times to Active LOW Enable or Parallel Load Fig.3-14 Setup and Hold Times to Active HIGH Enable or Parallel Load 3-15 LOADING, SPECIFICATIONS AND WAVEFORMS IVretCH) \. ~IVretCL) 1- -IIPHL '0", \ _______ PARAMETER Vref(H) Vref(L) Vm Fig. 3-15 MS,MR,PL,Ci MS,MR,PL,CL CPorE 1- F -IIPLH FAMILY 54/74 54LS/74LS 54S/74S 1.7 V 0.9 V 1.5 V 1.6 V 0.8 V 1.3 V .1.8 V 1.2 V 1.5 V Waveforms for Schmitt Trigger Devices I- Iw ~I loom ~;:.~" * - r- Vm IPHL VOUT Vm IPLH \lOUT ,_ F Flg.3-16 Asynchronous Set, Reset, Parallel Load or Clear, Active Rising Edge Clock or Active LOW Enable 3-16 LOADING, SPECIFICATIONS AND WAVEFORMS ---"'t ---9rV-m-=-1'5-V- rll MR,Pi,C[ MR,MS,PL,CL ~ ::~" ---....I CP or E VOUT tPLH Ir VOUT __________-JI'~ Flg.3-17 ------------- Asynchronous Set, Reset, Parallel Load or Clear, Active Failing Edge Clock or Active HIGH Enable ~H' II'"(H'~ n,. . , ~ C_p _ _ _ _... Flg.3-18 ~HI (U' '0' '" Setup and Hold Times, Active HIGH Clock ~ ' 6A [I IT 31 =t:J c::= m I!I I!lGND Vee[I INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS :!iJVee [I ORDERING CODE: See Section 9 PKGS ~ 54/74 (U.L.) HIGH/LOW 54/74H (U.L.) HIGH/LOW 54/74S (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.0/1.0 20/10 1.25/1.25 12.5/12.5 1.25/1.25 25/12.5 0.5/0.25 10/5.0 (2.5) IT IT ~c:; :!l [2 f---t> :§) ~ DC AND AC CHARACTERISTICS: See Section 3' SYMBOL PARAMETER 54/74 54/74H 54/74S 54/74LS UNITS CONDITIONS Min Max Min Max Min Max Min Max ICCH Power Supply 12 26 24 2.4 ICCl Current 33 58 54 6.6 tPlH tPHL Propagation Delay 22 15 10 10 2.0 2.0 4.5 5.0 10 10 tPlH tPHl Propagation Delay (54/74S04A only) 1.0 1.0 3.5 4.0 ·DC limits apply over operating temperature range; AC limits apply at TA = +25 0 4-7 C and Vee = +5.0 V. mA VIN = Gnd Vcc = Max VIN = Open ns Fig. 3-1, 3-4 ns Fig. 3-1, 3-4 • 05 CONNECTION DIAGRAMS PINOUT A 54/7405 54H/74H05 54S/74S05 54S/74S05A 54LS/74LS05 0:: II IT II HEX INVERTER [I [I (With Open-Collector Output) GNOIT ORDERING CODE: See Section 9 PIN PKGS COMMERCIAL GRADE MILITARY GRADE VCC = +5.0 V ±5%. T A = 0° C to + 70° C VCC = +5.0 V. ±10%. TA = -55°C to +125°C OUT A 7405PC.74H05PC 74S05PC.74S05APC 74LS05PC Ceramic DIP (D) A 7405DC. 74H05DC 74S05DC.74S05ADC 74LS05DC 5405DM. 54H05DM 54S05DM. 54S05ADM 54LS05DM A 74S05FC. 74S05AFC 74LS05FC 54S05FM. 54S05AFM 54LS05FM B 7405FC.74H05FC 5405FM. 54H05FM Inputs Outputs DC ~~ DC rm~ DC ~~ PKG TYPE 9A 6A "...... IT II IT 31 =c;:J rm [I .... [I 54/74 (U.L.) HIGH/LOW 54174H (U.L.) HIGH/LOW 54174S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 OC""/10 1.25/1.25 OC""/12.5 1.25/1.25 OC""/12.5 0.5/0.25 OC""/5.0 (2.5) IT I:EJ c:= ~~ VeelI INPUT LOADING/FAN-OUT: See Section 3 for U.l. definitions PINS I:EJ Vee PINOUT B Plastic DIP (P) Flatpak (F) - GNO "IC4= ~~ H ;!J DC AND AC CHARACTERISTICS: See Section 3" SYMBOL PARAMETER 54/74 54174H 54/74S 54/74LS CONDITIONS UNITS Min Max Min Max Min Max Min Max ICCH Power Supply 12 26 19.8 2.4 ICCl Current 33 58 54 6.6 tPlH tPHl Propagation Delay 55 15 18 15 2.0 2.0 7.5 7.0 22 18 tPlH tPHl Propagation Delay (54S174S05A only) 2.0 1.5 5.5 5.0 ·DC limits apply over operating temperature range; AC limits apply al TA = +25°C and Vee = +5.0 V. ··OC- Collector 4-8 mA V,N V,N = Gnd VCC = Max = Open ns Fig. 3-2. 3-4 ns Fig. 3-2. 3-4 06 CONNECTION DIAGRAM PINOUT A 54/7406 HEX INVERTER BUFFER/DRIVER (With Open-Collector High-Voltage Output) (1 ~ ORDERING CODE: See Section 9 PIN PKGS Plastic DIP(P) OUT ~ COMMERCIAL GRADE VCC = +5.0 V ±5%, TA = O°C to +70°C MILITARY GRADE VCC = +5.0 V ±10%, TA = -55°C to +125°C II PKG 11 11 TYPE A 7406PC Ceramic DIPm) A 7406DC 5406DM 6A Flatpak (F) A 7406FC 5406FM 31 [! 9A [! GNOIT ~vee ~ LYe Pll~ Dc ~~ DC ~~ INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 54/74 (U.L.) HIGH/LOW 1.0/1.0 OC"/10 DC AND AC CHARATERISTICS: See Section 3' SYMBOL 54/74 PARAMETER Min VOL IOH ICCH Output LOW Voltage XC 0.7 XM 0.7 XC, XM 0.4 Output HIGH Current 0.25 48 Power Supply Current V 15 23 Propagation Delay 'DC limits apply over operating temperature range; AC limits apply at TA "OC-Open Collector mA mA ns = +25'C and Vee = +5.0 4-9 IOL = 40 IOL = 30 mA mA = Min VIN = VIH Vcc = 16 mA VOH = 30 V, Vcc = Min IOl 51 ICCl tPlH tpHl CONDITIONS UNITS Max = Vil VIN = Gnd VIN = Open VIN Fig. 3-2, 3-4 V. Vcc = Max • 07 CONNECTION DIAGRAM PINOUT A 54/7407 HEX BUFFER/DRIVER (With Open-Collector High-Voltage Output) IT - ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE VCC = +5.0 V ±5%, TA = O°C to +70°C Plastic DIP(P) A 7407PC Ceramic DIP (0) A 7407DC Flatpak (F) A 7407FC MILITARY GRADE VCC = +5.0 V ±10%, TA = -55°C to +125°C II PKG r- 11.. TYPE ~ Y ,L :El Vee E.l ill [I ~C TIl :m =:J II C 1]]] 9A II 5407DM 6A GNO[I 5407FM 31 INPUT LOADING/FAN-OUT: See Section 3· for U.L. definitions PINS Inputs Outputs 54/74 (U.L.) HIGH/LOW 1.0/1.0 OC**/10 DC AND AC CHARACTERISTICS: See Section 3* SYMBOL 54174 PARAMETER Min XC VOL IOH ICCH Output LOW Voltage 0.7 XM 0.7 XC, XM 0.4 Output HIGH Current 0.25 41 Power Supply Current 10 30 Propagation Delay ·DC limits apply over operating temperature range; AC limits apply at ··OC-Open Collector TA mA mA ns = +25'C and Vee = +5.0 V. 4-10 = 40 mA VCC = Min IOL = 30 mA VIN = VIL IOL = 16 mA VOH = 30 V, VCC = Min, VIN = VIH VIN = Open Vcc = Max VIN = Gnd IOL V 30 ICCL tPLH tPHL CONDITIONS UNITS Max Fig. 3-2, 3-5 08 CONNECTION DIAGRAMS PINOUT A 54/7408 54H/74H08 54S/74S08 54LS/74LS08 QUAD 2-INPUT AND GATE • ORDERING CODE: See Section 9 PIN PKGS COMMERCIAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vcc = +5.0 V ±10%, TA = -55°C to +125°C OUT Plastic DIP(P) A 740BPC, 74HOBPC 74S0BPC, 74LSOBPC Ceramic DIP (D) A 740BDC, 74HOBDC 74S0BDC, 74LSOBDC 540BDM, 54HOBDM 54S0BDM,54LSOBDM A 740BFC, 74S0BFC 74LSOBFC 540BFM, 54S0BFM 54LSOBFM B 74HOBFC 54HOBFM Flatpak (F) PKG TYPE PINOUT B 9A 6A 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 54/74 (U.L.) HIGH/LOW 54/74H (U.L.) HIGH/LOW 54/74S (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.0/1.0 20/10 1.25/1.25 12.5/12.5 1.25/1.25 25/12.5 0.5/0.25 10/5.0 (2.5) DC AND AC CHARACTERISTICS: See Section 3* SYMBOL PARAMETER 54174 54174H 54/74LS 54/74S CONDITIONS UNITS Min Max Min Max Min Max Min Max ICCH Power Supply 21 40 32 4.B ICCl Current 33 64 57 B.B tPlH tPHL Propagation Delay 27 19 12 12 7.0 7.5 13 11 'DC limits apply over operating temperature range; AC limits apply at TA = 2.5 2.5 +25'C and 4-11 Vee = +5.0 V. mA VIN = Open VIN ns Vcc = Gnd Fig. 3-1, 3-5 = Max 09 CONNECTION DIAGRAM PINOUT A 54/7409 54S/74S09 54LS/74LS09 QUAD 2-INPUT AND GATE (With Open-Collector Output) 0:: 11 IT 11 IT ORDERING CODE: See Section 9 PIN PKGS Plastic DIP(P) OUT A COMMERCIAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vcc = +5,0 V ±10%, TA = -55°C to +125°C PKG TYPE 7409PC, 74S09PC 74LS09PC 9A ~ GNOI::z: Ceramic DIP (0) A 7409DC, 74S09DC 74LS09DC 5409DM, 54S09DM 54LS09DM 6A Flatpak (F) A 7409FC, 74S09FC 74LS09FC 5409FM,54S09FM 54LS09FM 31 ~ ~~ ~~ ~vcc t131 ~ ITI 10] ~ ~ II INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 54/74 (U.L.) HIGH/LOW 54/74S (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.0/1.0 OC**/10 1.25/1.25 OC**/12.5 0.5/0.25 OC**/5.0 (2.5) DC AND AC CHARACTERISTICS: See Section 3* SYMBOL PARAMETER 54/74 54/74S 54/74LS CONDITIONS UNITS Min Max Min Max Min Max ICCH Power Supply Current 21 ICCl 33 tPlH tPHl 32 24 Propagation Delay 2.0 2.0 32 4.8 57 8.8 10 10 20 15 'OC limits apply over operating temperature range; AC limits apply at TA ; +25 0 C and Vee; +5.0 V. "OC-Open Collector 4-12 mA VIN VIN ns = Open Vcc = Max = Gnd Fig. 3-2, 3-5 10 CONNECTION DIAGRAMS PINOUT A 54/7410 54H/74H10 54S/74S10 54LS/74LS10 IT II IT TRIPLE 3-INPUT NAND GATE [I II ~ GNOII ~ ~t= ~~ ~vec ~ ~ ~ ~ ~ ~ ORDERING CODE: See Section 9 PIN PKGS Plastic DIP(P) Ceramic DIP (0) Flatpak (Fl OUT COMMERCIAL GRADE MILITARY GRADE VCC = +5.0 V ±5%, TA = 0° C to +70° C VCC = +5.0 V ±10%, TA = -55°C to +125°C A 7410PC, 74H10PC 74S10PC, 74LS10PC A 7410DC, 74H10DC 74S10DC, 74LS10DC 5410DM,54H10DM 54S10DM, 54LS10DM A 74S10FC, 74LS10FC 54S10FM,54LS10FM B 7410FC, 74H10FC 5410FM,54H10FM PINOUT B PKG TYPE 9A IT II IT 6A 31 Vee [I II ~ II INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 54/74 (U.L.) HIGH/LOW 54/74H (U.L.) HIGH/LOW 54174S (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.0/1.0 20/10 1.25/1.25 12.5/12.5 1.25/1.25 25/12.5 0.5/0.25 10/5.0 (2.5) ~ ~ ~ ~ TIl :ill TIlGND ~ ' - - :!] ]] DC AND AC CHARATERISTICS: See Section 3' SYMBOL PARAMETER 54174 54174H 54174S 54174LS CONDITIONS UNITS Min Max Min Max Min Max Min Max ICCH Power Supply ICCl Current tPlH "tPHl Propagation Delay 'DC limits apply over operating temperature range; 6.0 12.6 16.5 30 22 15 10 10 2.0 2.0 12 1.2 27 3.3 4.5 5.0 15 15 AC limits apply at TA = +25°C and Vee = +5.0 4-13 V. mA VIN VIN ns = Gnd Vcc = Max = Open Fig. 3-1, 3-4 • 11 CONNECTION DIAGRAMS PINOUT A 54/7411 54H/74H11 548/74811 54L8/74LS11 IT 11 11 TRIPLE 3-INPUT AND GATE [I IT [! GNOIT ~vee ~ ~~ ~ .------ ~~ ~ ~ ~ ~ ORDERING CODE: See Section 9 PIN PKGS COMMERCIAL GRADE MILITARY GRADE VCC = +5.0 V ±5%. TA = O°C to +70°C VCC = +5.0 V ±10%. TA = -55°C to +125°C OUT Plastic DIP (P) Ceramic DIP (D) Flatpak (F) A 7411PC.74HllPC 74S11 PC. 74LSllPC A 7411 DC. 74Hl1DC 74S11 DC. 74LS11DC 5411DM.54HllDM 54S11 OM. 54LSll OM A 74S11FC.74LSllFC 54S11 FM. 54LSll FM B 7411FC.74HllFC 5411FM.54HllFM PINOUT B PKG TYPE 9A 6A 31 IT IT IT Vee IT [I [I IT INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions PINS 54174 (U.L.) HIGH/LOW 54/74H (U.L.) HIGH/LOW 54174S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW Inputs Outputs 1.0/1.0 20/10 1.25/1.25 12.5/12.5 1.25/1.25 25/12.5 0.5/0.25 10/5.0 (2.5) ~ ~ ;Q '-- ~ ~ ~ ~GNO ~ ~ ~ DC AND AC CHARACTERISTICS: See Section 3' SYMBOL PARAMETER 54/74 54/74H 54174S 54174LS CONDITIONS UNITS Min Max Min Max Min Max Min Max ICCH Power Supply 15 30 24 3.6 ICCL Current 24 48 42 6.6 tPLH tPHL Propagation Delay 27 19 12 12 7.0 7.5 13 11 'oc limits apply ovt.r operating temperature range; AC limits apply at TA = 2.5 2.5 +25°C and Vee = +5.0 4-14 V. mA = Open VIN = Gnd ns Figs. 3-1. 3-5 VIN Vcc = Max 12 CONNECTION DIAGRAM PINOUT A 54/7412 TRIPLE 3-INPUT NAND GATE (With Open-Collector Output) IT IT: II II II ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C ~ PKG TYPE Plastic DIP(P) A 7412PC Ceramic DIP A2~ :TIl'C RBi DESCRIPTION - The '46A, '47 A and 'LS47 accept four lines of BCD (8421) input data, generate their complements internally and decode the data with seven AND/OR gates having open-collector outputs to drive indicator segments directly. Each segment output is guaranteed to sink 40 mA (24 mA for the 'LS47) in the ON (LOW) state and withstand 15 V (30 V for the '46A) in the OFF (HIGH) state with a maximum leakage current of 250J.lA. Auxiliary inputs provide blanking, lamp test and cascadable zero-suppression fuctions. Also see the 'LS247 data sheet. A3[I ~d GNO!I }F LOGIC SYMBOL • • • • OPEN-COLLECTOR OUTPUTS DRIVE INDICATOR SEGMENTS DIRECTLY CASCADABLE ZERO-SUPPRESSION CAPABILITY LAMP TEST INPUT PKGS OUT 1 Ao A1 J 1 111 1 LT ORDERING CODE: See Section 9 PIN 7 COMMERCIAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vcc = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 7446APC, 7447APC 74LS47PC Ceramic DIP)D) A 7446ADC, 7447ADC 74LS47DC 5446ADM,5447ADM 54LS47DM 7B Flatpak (F) A 7446AFC, 7447AFC 74LS47FC 5446AFM, 5447 AFM 54LS47FM 4L 9B a A2 bed RBI A3 e f BII 9 RBO XIX!!!!! Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-A3 RBI LT BIIRBO - - a-g 54174 (U.L.) DESCRIPTION HIGH/LOW BCD Inputs Ripple Blanking Input (Active LOW) Lamp Test Input (Active LOW) Blanking Input (Active LOW) or Ripple Blanking Output (Active LOW) Segment Outputs (Active LOW) 1.0/1.0 1.0/1.0 1.0/1.0 -/2.5 5.0/5.0 OC*/25 'OC-Open Collector 4-44 54174LS (U.L.) HIGH/LOW 0.5/0.25 0.5/0.25 0.5/0.25 -/0.75 1.25/2.0 (1.0) OC*/15 (7.5) 46. 47 FUNCTIONAL DESCRIPTION - The '46A, '47A and 'LS47 decode the input data in the pattern indicated in the Truth Table and the segment identification illustration. If the input data is decimal zero, a LOW signal applied to the RBI blanks the display and causes a multidigit display. For example, by grounding the RBI of the highest order decoder and connecting its BI/RBO to RBI of the next lowest order decoder, etc., leading zeros will be suppressed. Similarly, by grounding RBI of the lowest order decoder and connecting its BI/RBO to RBI of the next highest order decoder, etc., trailing zeros will be suppressed. Leading and traili ng zeros can be suppressed simultaneously by using external gates, ie: by driving RBI of an intermediate decoder from an OR gate whose inputs are BI/RBO of the next highest and lowest order decoders. BI/RBO also serves as an unconditional blanking input. The internal NAND gate that generates the RBO signal has a resistive pull-up, as opposed to a totem pole, and thus BI/RBO can be forced LOW by enternal means, using wired-collector logic. A LOW signal thus applied to BI/RBO turns off all segment outputs. This blanking feature can be used to control display intensity by varying the duty cycle of the blanking signal. A LOW signal applied to L T turns on all segment outputs, provided that BI/RBO is not forced LOW. LOGIC DIAGRAM RIPPLE-BLANKING INPUT INPUT r -________ ________ BLANKING INPUT OR RIPPLE-BLANKING OUTPUT LAMP-TEST INPUT A~ ~ Ao OUTPUT NUMERICAL DESIGNATIONS - I-I I I I --I I-I I-I II II- I I_I 1- I 11-I 11-1 -I I -I I I-I I 112 RESULTANT DISPLAYS 3 4 5 7 9 4-45 10 11 12 13 14 15 46 • 47 TRUTH TABLE I INPUTS DECIMAL OR FUNCTION LT BIIRBO a - b -c d -e T -9 H H H H L H L L L L L L L L H L L H L L L H L H L H H H H H L L L H L H L H H H H H H L H L L L H H L L L L L L L H L L H L H H L H L L L L H L L L L H L L H H L L H L H L H H H H H H L H H H L L H H L H L H L H H H L L H L H L H H H L H H L L L L L L L H H X L X L H X L X H H L L H H H H H L H H H H L H H H H L L H H H L L H H H L L H H H L L H H H L RBI A3 A2 A1 Ao H H H H H X X X L L L L L L L L L L H H L H L H 8 H H H H H X X X X X L L L L H H H H H L L L H H L 9 10 11 12 13 H H H H H X X X X X H H H H H L L L H H 14 15 H H X H L X X X L X H H X L X H H X L X 0 1 2 3 4 5 6 7 BT RBI LT OUTPUTS NOTE 1 1 2 3 4 NOTES: (ll lii7RiiO is wire-AND logic serving as blanking input (Si) and/or ripple-blanking outputtRBO). T~lanking outtBl) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (RBIl must be open or at a HIGH level if blanking or a decimal 0 is not desired. X = input may be HIGH or LOW. (2) When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a HIGH level regardless of the state of any other input condition. (3) When ripple-blanking input(RBii and inputs Ao, A" A2 and A3 are LOW level, with the lamp test input at HIGH level, all segment outputs go to a HIGH level and the ripple-blanking output (RBOi goes to a LOW level (response condition). (4) When the blanking input/ripple-blanking output input, all segment outputs go to a LOW level. Isi7REiO) is open or held at a HIGH level, and a LOW level is applied to lamp test 4-46 46 • 47 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER Min 10H Output HIGH Current OFF State ata-g los Output Short Circuit Current at BI/RBO Icc Power Supply Current - Max '46 250 '47 250 -4.0 ~ 54174LS Min Il A 250 -0.3 85 103 XC UNITS CONDITIONS Max VOH = 30 V Vee = Max VOH = 15 V -2.0 mA Vee = Max 13 13 mA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74 SYMBOL PARAMETER 54174LS CL = 15 pF CL = 15 pF RL = 120 n RL = 665 n Min Max Min UNITS CONDITIONS Max tPLH tpHL Propagation Delay An to "8-9 100 100 100 100 ns Figs. 3-2, 3-20 tpLH tpHL Propag~tio!! RBI to a-f 100 100 100 100 ns Figs. 3-2, 3-4 LT= HIGH, Ao-A3=LOW Delay 4-47 48 CONNECTION DIAGRAM PINOUT A 54/7448 - 54LS/74LS48 AnI} BCD TO 7-SEGMENT DECODER A11} ~I t:T[! BI/RB08: :illg TIJa RBi~ E]b A2~ :TIle DESCRIPTION - The '48 translates four lines of BCD (8421) input data into the 7-segment numeral code and provides seven corresponding outputs having pull-up resistors, as opposed to totem pole pull-ups. These outputs can serve as logic signals, with a HIGH output corresponding to a lighted lamp segment, or can provide a 1.3 rnA base current to npn lamp driver transistors. Auxiliary inputs provide lamp test, blanking and cascadable zerosuppression functions. ~vcc A3[f J21d GNO[! ;IJe LOGIC SYMBOL The '48 decodes the input data in the pattern indicated in the Truth Table and the segment identification illustration. For a detailed description of the blanking, lamp test and zero-suppression functions refer tothe '46A data sheet, but note that the segment output states of the '48 are the logical inverse of those of the '46A. Also see the 'LS248 data sheet. 7 1 2 5 3 6 I I I I! ! Ao A1 A2 A3 ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A Ceramic DIP (0) A 7448DC, 74LS48DC 5448DM, 54LS48DM 7B Flatpak (F) A 7448FC, 74LS48FC 5448FM, 54LS48FM 4L 7448PC, 74LS48PC 9B a b e d e LT I RBI 9 BII RBO IIIIIII I 13 12 11 10 9 15 14 4 VCC = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-AJ 54174 (U.L.) DESCRIPTION HIGH/LOW RBI LT BI/RBO BCD Inputs Ripple Blanking Input (Active LOW) Lamp Test Input (Active LOW) Blanking Input (Active LOW) or Ripple Blanking Output (Active LOW) a-g Segment Outputs (Active HIGH) 1.011.0 1.0/1.0 1.0/1.0 -/2.5 5.0/5.0 10/4.0 4-48 54174LS (U.L.) HIGH/LOW 0.5/0.25 0.5/0.25 0.5/0.25 -/0.75 1.25/2.0 (1.0) 2.5/3.75 (1.25) 48 NUMERICAL DESIGNATIONS - - - _I -I 1 1 I-I -I I I - I I I I- I 1 4 RESULTANT DISPLAYS - -I - I I II I I I I -I I-I I I-I -I 1- 5 6 10 9 13 12 11 I I- 14 15 TRUTH TABLE I INPUTS DECIMAL OR FUNCTION LT - -RBI H H H H H H H H H H a b c d e f 9 NOTE H H H H H L H H H H H H H H L H H L H H H L H L H L L L L L H H 1 1 L H L H L H H H H H L H L H H H L L H H H H H H H L H H L H L L H L H H H H L H H H H L H L H H L L H L H L H H H H H H H L L L H H L L H L H L H L L L H H L H L H L L L H L L H H H H H H H H H H H L H X X X X L L L L X X X X H H L L H L L L L H L L L L H L L L L H H L L L H H L L L H H L L L H H L L L H A3 A2 A1 Ao X X X L L L L L L L L L L H H L H L H X X X X X L L L L H H H H H L L L H H L 10 11 12 13 H X H X H X H I X H X H H H H H L L L H H 14 15 H H X X X H H L X 0 1 2 3 4 5 6 7 8 9 -81 X RBI LT H L -BI/RBO OUTPUTS 2 3 4 NOTES: BI/RBO is wired-AND logic serving as blanking input lSi> and/or ripple-blanking output IRBOI. The blanking out lSi) must be open or held at a HIGH level when output functions 0 through 15 are desired. and ripple-blanking input IRBII must be open or at a HIGH level if blanking of a decimal 0 is not desired. X = input may be HIGH or LOW. (1) (2) When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a LOW level. regardless of the state of any other input condition. (3) When ripple-blanking input IRBII and inputs AD. A1. A2. and A3 are at LOW level. with the lamp test input at HIGH level. all segment outputs go to a LOW level and the ripple-blanking output IRBO) goes to a LOW level Iresponse condition!. (4) When the blanking inpuVripple-blanking output input. all segment outputs go to a HIGH level. iSi/RBO) is open or held at a HIGH level, and a LOW level is applied to lamp test 4-49 • 48 LOGIC DIAGRAM RIPPLE-BLANKING INPUT 1 INPUT I J OUTPUT DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER Min 10H Output HIGH Current at a-g los Output Short Circuit Current at BIIRBO Ice Power Supply Current Max -1.3 Min -0.3 76 XM XC 90 UNITS CONDITIONS Max -1.3 -4.0 I I 54174LS mA Vee = Min, VOUT = 0.85 V -2.0 mA Vee = Max, VOUT = 0 V 38 38 mA Vee = Max All Inputs = 4.5 V AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74 SYMBOL PARAMETER 54174LS CL = 15 pF CL = 15 pF RL = 1 k.o. Min Max Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay An to a-g 100 100 100 100 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay RBI to a-f 100 100 100 100 ns Figs. 3-1, 3-5 Cf=HIGH,Ao-A3=HIGH 4-50 49 CONNECTION DIAGRAM PINOUT A 54/7449 54LS/74LS49 - AlIT ~vcc rm, A2[I BCD TO 7-SEGMENT DECODER Birr rmg A3[I rm ~b el1 ~c ~d GNO[I DESCRIPTION - The '49 translates four lines of BCD (8421) input data into the 7-segment numeral code as shown in the Truth Table. It has open-collector outputs and is logically the 14-pin version of the '48, without the lamp test and ripple blanking features. Also see the 'LS249 data sheet. LOGIC SYMBOL i i ii! ORDERING CODE: See Section 9 PIN PKGS OUT MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to HO°C Vee = +5.0 V ±10%, TA = -55°C to +125°C Plastic DIP(P) A 74LS49PC Ceramic DIP (0) A 74LS49DC A 7449FC, 74LS49FC Flatpak (F) Al Ao COMMERCIAL GRADE A2 A3 BI PKG TYPE a c b e d , 9 9A ), 1! ! ! ,131 54LS49DM SA Vcc = Pin 14 GND = Pin 7 5449FM, 54LS49FM 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions 54174 (U.L.) DESCRIPTION PIN NAMES BI a-g 54174LS (U.L.) HIGH/LOW HIGH/LOW BCD Inputs Blanking Input (Active LOW) Segment Outputs (Active HIGH) AIJ-A3 1.0/1.0 1.0/1.0 OC*/S.25 0.5/0.25 0.5/0.25 OC*/5.0 OC*/(2.5) • OC - Open Collector NUMERICAL DESIGNATIONS-RESULTANT DISPLAYS - I I I I 0 - - - I I I 1 1 I I 1-I -I I-I I - I , 2 3 4 5 6 - 1 I-I I-I I I-I -I 1- -I 8 7 4-51 9 '0 " a Ao[I I I I- I '2 '3 1'4 '5 49 TRUTH TABLE INPUTS DECIMAL OR FUNCTION A3 OUTPUTS A2 Al Ao -BI a b c d e f 9 NOTE 1 0 1 2 3 L L L L L L L L L L H H L H L H H H H H H L H H H H H H H H L H H L H H H L H L H L L L L L H H 4 5 L L L L H H H H L L H H L H L H H H H H L H L H H L L H H H H H L H H L L L H L H H H L H H H L 10 11 H H H H L L L L L L H H L H L H H H H H H H L L H H L L H H L H H L H H H L H L H H L L H H H H 12 13 14 15 BI H H H H X H H H H X L L H H X L H L H X H H H H L L H L L L H L L L L L L L L L L H H L L L L H L L H H H L L H H H L L 6 7 8 9 2 NOTES: (1) The blanking input must be open or held at a HIGH level when output functions 0 through 15 are desired. (2) When a LOW level is applied to the blanking input all segment outputs go to a LOW level regardless of the state of any other input condition. X = input may be HIGH or LOW. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM 81 A3 ~~ 9 ( J{ J { { I J( J I (( 4-52 rJ ( (( (r 49 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGEJunless otherwise specified) SYMBOL 54174 PARAMETER Min VIL Input LOW Voltage IOH Output HIGH Current lee Power Supply Current AC CHARACTERISTICS: Vee ~ XC ~ = +5.0 V, XC TA Max PARAMETER Min V 250 250 p.A Vee = Min, VOH 47 56 15 15 mA Vee = Max, Inputs = 15 pF = 665 0 Min CONDITIONS 0.7 0.8 = +25°C (See Section CL RL UNITS Max 0.6 0.8 54/74 SYMBOL 54174LS Max = 5.5 = 4.5 V 3 for waveforms and load configurations) 54174LS CL = 15 pF RL = 3 kO Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Antoa-g 100 100 100 100 ns Figs. 3-2, 3-20 tPLH tPHL Propagation Delay Bltoa-g 100 100 100 100 ns Figs. 3-2, 3-5 RL = 6 kO for 'LS49 4-53 V • 50 CONNECTION DIAGRAMS PINOUT A 54/7450 54H/74H50 EXPANDABLE DUAL 2-WIDE 2-INPUT AND-DR-INVERT GATE PINOUT B ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE VCC = +5.0 V ±5%, TA = O°C to +70°C VCC = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 7450PC, 74H50PC Ceramic DIP(Q) A 7450DC, 74H50DC 5450DM, 54H50DM 6A Flatpak (F) B 7450FC, 74H50FC 5450FM, 54H50FM 31 9A INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 54/74 (U.L.) HIGH/LOW 54174H (U.L.) HIGH/LOW 1.0/1.0 20/10 1.25/1.25 12.5/12.5 DC CHARACTERISTICS OVER OPERATING T,EMPERATURE RANGE: Expander Pins Open SYMBOL PARAMETER 54174 54174H UNITS CONDITIONS Min Max Min Max ICCH ICCl Power Supply Current 8.0 14 4-54 12.8 24 mA VIN = Gnd VIN - Open I I VCC = Max 50 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE: Using Expander Pins 54174 PARAMETER SYMBOL 54174H UNITS CONDITIONS Min Max Min Max VOH VOH VOL VOL XM 2.4 XC 2.4 Output HIGH Voltage XM 2.4 XC 2.4 Output HIGH Voltage XM 0.4 XC 0.4 Output LOW Voltage XM 0.4 XC 0.4 Output LOW Voltage VBE(Q) Base-Emitter Voltage of Output Transistor XM XC XM XC hNX Expander-Node Input Current XM XC Ix Expander Current XM XC a 1.0 1.0 1.1 1.0 -5.85 -6.3 2.9 3.1 V h 12 h 12 = = = V h=0.15mA 12 = -0.15 mA h = 270 mA 12 = -270 mA V h = 470 /LA Rl = 68 0 h - 600 /LA Rl = 63 0 IOl = 20 mA V h = 0.3 mA Rl = 1380 h = 0.43 mA Rl = 1300 IOl = 16 mA V h h h h IOl = 20 mA Rl =00 IOl-16 mA Rl =00 = = - 320 /LA -320 /LA 570 /LA -570 /LA IOH = -500 /LA IOH = -400 mA 700 u.A 1.1 mA 0.41 mA 0.62 mA mA Vx = 1.4 V. Vee = Min TA = Min mA Vl = 0.4 V. IOl = 16 mA Vee = Min, TA = Min AC CHARACTERISTICS: Vee = +5.0 V. TA = +25°C (See Section 3 for waveforms and load configurations) 54174 PARAMETER SYMBOL 54/74H UNITS CONDITIONS Min Max Min Max tPlH tPHl Propagation Delay tPlH tPHl Propagation Delay 22 15 11 11 ns Expander Pins Open Figs. 3-1. 3-4 11' 7.4' ns Q = 25 pF Rl = 280 O. Cx = 15 pF "Typical Value ADDED PROPAGATION DELAY TIME VI EXPANDER-NODE CAPACITANCE 4.0 10 CL =1•• pF f- CL 3.51- AL "" 2800 TA = 25°C RL I-TA J 25PF = 2800 / = HOC / 3.0 2.S 2.0 /' 1.5 ./" 1.0 Sv o o 10 / / V V . / .- I-- o. V V 15 / 54Hson4HSO 54H53174HS3- i V HS5n4 j55 20 25 o o 30 ex-EXPANDER-NODE CAPACITANCE-pF 54HSO/74HSO S4HS3I74H53 54Hssn4H55 10 15 20 25 ex-EXPANDER-NODE CAPACITANCE-pF 4-55 30 • 51 CONNECTION DIAGRAMS PINOUT A II 54/7451 54H/74H51 54S/74S51 54LS/74LS51 II II II II II I i I DUAL 2-WIDE, 2-INPUT AOI GATE I DUAL 2-WIDE, 2-INPUT/3-INPUT AOI GATE (,LS51) GNOIT - ~Yee ~~ ~ ~NC TIlNC }ID 11 ]] L.......- PINOUT B II ORDERING CODE: See Section 9 PIN PKGS Plastic OIP(P) Ceramic DIP w % "x: CL =125 pF RL = 2801l TA = 25'C' .... w 10 .......... 9 > w 0 w 2.5 . ;:: ;:: .. 3.0 0 :I >j w Q 2.0 1.5 0 ;:: c c 1.0 "... 0 0.5 ..... 10 7 w 8 >j w 5 3 "...c 2 ..... 0 15 20 25 30 / 25'C / / / 4 0 ~ o ",......... 5 0 ::::ri = Z ,.......,. 0 TA 8 -- :II Q ,.......,. ,."t.' l ~;;.- Z I. -~~ / V / j't' 54H52J74H52 1V 0 0 5 10 15 20 25 Cx - EXPANDER-NODE CAPACITANCE - pF Cx - EXPANDER·NODE CAPACITANCE - pF 4-58 30 53 CONNECTION DIAGRAMS PINOUT A 54/7453 54H/74H53 EXPANDABLE 4-WIDE, 2-INPUT AOI GATE. ('53) EXPANDABLE 2-2-2-3-INPUT AOI GATE ('H53) ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = 0° C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C Plastic DIP(P) A 7453PC B 74H53PC Ceramic DIP (0) A 7453DC 5453DM B 74H53DC 54H53DM Flatpak C 7453FC 5453FM 0 74H53FC 54H53FM (F) PKG PINOUT B TYPE 9A 6A 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 54174 (U.L.) HIGH/LOW 54/74H (U.L.) HIGH/LOW 1.0/1.0 20/10 1.25/1.25 12.5/12.5 PINOUT 0 PINOUT C 4-59 • 53 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE: Using Expander Pins SYMBOL 54174 PARAMETER 54/74H UNITS CONDITIONS Min Max Min Max XM VOH Output HIGH Voltage 2.4 r--- V XC XM VOH Output HIGH Voltage 2.4 V 2.4 Output LOW Voltage XC VOL Output LOW Voltage ~ ~ XM VBE(Q) Base-Emitter Voltage of Output Transistor Q hNX Expander-Node Input Current ~ XC Ix Expander Current ----xc ICCH ICCL Power Supply Current rxc XM V IOL = 20 mA V h = 0.3 mA Rl = 1380 h = 0.43 mA Rl = 1300 IOL = 16 mA V h h h h IOL = 20 mA Rl =00 IOL = 16 mA Rl =00 0.4 0.4 l- XC IOH = -400 p.A h = 470 p.A Rl = 68 0 h = 600 p.A Rl =630 0.4 r--- XM 12 = -0.15 mA h - 270 p.A 12 = -270 p.A XM VOL IOH = -500 p.A h =0.15 mA 2.4 r--XC h = 320 p.A 12= -320 p.A h - 570p.A 12 = -570 p.A 0.4 1.0 1.0 1.1 1.0 -5.85 -6.3 2.9 3.1 8.0 9.5 11 14 = 700 JJ.A = 1.1 mA = 0.41 mA - 0.62 mA mA Vx=1.4V mA Vl = 0.4 V, IOL = 16 mA mA VIN = Gnd VIN = Open VCC = Max AC CHARACTERISTICS: Vcc = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) SYMBOL PARAMETER 54174 54174H UNITS CONDITIONS Min Max Min Max tPLH tPHL Propagation Delay tPLH tPHL Propagation Delay 22 15 ·Typical Value 4-60 11 11 ns Expander Pins Open Figs. 3-1, 3-4 11.4' 7.4' ns Cx = 15 pF 54 CONNECTION DIAGRAMS PINOUT A 54/7454 54H/74H54 54LS/74LS54 4-WIDE, 2-INPUT AND-OR-INVERT GATE ORDERING CODE: See Section 9 PIN PKGS Plastic DIP(P) Ceramic DIP (0) Flatpak (F) OUT COMMERCIAL GRADE = +5.0 V ±5%, TA = O°C to +70°C Vee A 7454PC B 74H54PC C 74LS54PC A 7454DC MILITARY GRADE Vee TA = +5.0 V ±10%, = -55°C to +125°C PKG TYPE 9A PINOUT B 5454DM B 74H54DC 54H54DM C 74LS54DC 54LS54DM C 74LS54FC 54LS54FM 0 74H54FC 54H54FM E 7454FC 5454FM 6A 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 54174 (U.L.) HIGH/LOW 54174H (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 20/10 1.25/1.25 12.5/12.5 0.5/0.25 10/5.0 (2.5) PINOUT C PINOUT 0 4-61 PINOUT E • 54 DC AND AC CHARACTERISTICS: See Section 3· PARAMETER SYMBOL 54/74 54/74H 54n4LS UNITS CONDITIONS Min Max Min max Min Max ICCH !cCL Power Supply Current tPLH tPHL Propagation Delay °DC limits apply over = Gnd Iv - Max = Openl CC- 8.0 9.5 11 14 1.6 2.0 mA VIN VIN 22 15 11 11 15 15 ns Figs. 3-1, 3-4 operating temperature range; AC limits apply at TA = +25°C and Vee = +5.0 V. 4-62 55 CONNECTION DIAGRAMS PINOUT A 54H/74H55 54LS/74LS55 EXPANDABLE 4-INPUT AOI GATE (,H55) 2-WIDE, 4-INPUT AOI GATE ('LS55) PINOUT B ORDERING CODE: See Section 9 PIN PKGS Plastic DIP(P) Ceramic DIP (D) Flatpak (F) OUT COMMERCIAL GRADE = +5.0 V ±5%, TA = O°C to +70°C Vee MILITARY GRADE Vee TA = +5.0 V ±10%, = -55°C to +125°C PINOUT C A 74H55PC B 74LS55PC A 74H55DC 54H55DM B 74LS55DC 54LS55DM B 74LS55FC 54LS55FM C 74H55FC 54H55FM 9A 6A 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs PKG TYPE 54174H (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.25/1.25 12.5/12.5 0.5/0.25 10/5.0 (2.5) 4-63 • 55 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE: Using Expander Pins SYMBOL 54/74H PARAMETER 54174LS UNITS CONDITIONS Min Max Min Max VOH VOL XM 2.4 XC 2.4 Output HIGH Voltage XM 0.4 XC 0.4 Output LOW Voltage VSE(Q) Base-Emitter Voltage of Input Transistor Q XM XC 1.0 1.0 hNX Expander-Node Input Current XM XC -5.85 -6.3 ICCH ICCl Power Supply Current 6.4 12 0.8 1.3 V 11 12 11 12 = = = 320 iJ,A -320 iJ,A 570 iJ,A -570 iJ,A V 11 = 470 iJ,A R1 = 68 n 11 = 600 iJ,A R1 = 63 n IOL = 20 mA V 11 = 700 iJ,A 11 = 1.1 mA IOl = 20 mA R1 = 0 n mA Vx=1.4V mA VIN = Gnd VIN - Open IOH = -500 iJ,A Vcc = Max AC CHARACTERISTICS: Vcc = +5.0 V, TA = +25 0 C (See Section 3 for waveforms and load configurations) SYMBOL PARAMETER 54174H 54/74LS UNITS CONDITIONS Min Max Min Max tPLH tPHl Propagation Delay tPlH tPHl Propagation Delay 11 11 11.4 ' 7.7' 'Typical Value 4-64 15 15 ns Expander Pins Open Figs. 3-1, 3-4 ns CL = 25 pF (Gnd to X) Cx = 15 pF 60 CONNECTION DIAGRAMS PINOUT A 54/7460 54H/74H60 [! I - - - DUAL 4-INPUT EXPANDER 11 11 IT IT IT ORDERING CODE: See Section 9 PIN PKGS OUT MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vcc = +5.0 V ±10%, TA = -55°C to +125°C A 7460PC, 74H60PC Ceramic DIP -IT I - - - EI }!) m TIl GNO 1m '---- ]] L.....- II DC AND AC CHARACTERISTICS: See Section 33 SYMBOL PARAMETER 54/74 54/74H UNITS CONDITIONS4 Min Max Min Max VON Output ON Voltage 0.4 V Vcc = Min, VIN = 2.0 V V1 = 1.0 V, R = 1.1 kO TA = Min V TA = -55°C ION = 5.85 mA TA = O°C ION = 6.3 mA Vcc = Min. VIN = 2.0 V V1 = 1.0 V V TA = +125°C ION = 7.85 mA TA = +70°C ION = 7.4 mA Vcc = Max, VIN = 2.0 V, V1 = 0.6 V 0.4 VON Output ON Voltage 0.4 0.4 VON Output ON Voltage 0.4 1. A maximum 01 lour expanders may be connected to one expandable ANO-OR-Invert gate 2. Expander Outputs 3. DC limits IIPply over operating temperature range; AC limits apply at TA = +25'C and Vee = +5.0 V. 4. V, is applied to x output terminal during test. 4-65 60 DC AND AC CHARACTERISTICS: See Section 31 (Cont'd) SYMBOL PARAMETER 54174 54/74H UNITS CONDITIONS2 Min Max Min Max 150 IOFF Output OFF Current = -55°C TA = O°C TA = -55°C TA = O°C JJ.A 270 320 IOFF TA Output OFF Current p.A 570 -0.47 -0.6 -0.3 0.43 ION Output ON Current lee(OFF) lee(ON) Power Supply Current 4.0 2.5 tPLH tPHL Propagation Delay 30 20 4.5 3.5 Vee = Min, VIN = 0.8 V, V1 = 4.5 V, R = 1.2 kO Vee = Min, VIN = 0.8 V, V1 = 4.5 V, R = 575 0 mA TA = -55°C TA - O°C Vee = Min, VIN = 2.0 V, V1 = 1.0 V mA VIN = Open VIN - Gnd Vee = Max, V1 = 0.85 V ns Figs. 3-1, 3-4 OUTPUT CAPACITANCE: Vee and Ground Terminals Open SYMBOL PARAMETER 54174 54174H UNITS CONDITIONS Min Max Min Max Cx Effective Capacitance of Output Transistor 01 1. DC limits apply over operating temperature range; 2. V, is applied to x output terminal during test. 3. Typical Value 1.33 Ae limits apply at TA = 4-66 pF +25°C and Vee = +5.0 V. f = 1.0 MHz, TA = +25°C 61 CONNECTION DIAGRAMS PINOUT A 54H/74H61 C!: IT IT TRIPLE 3-INPUT EXPANDER [4 ~ ORDERING CODE: See Section 9 COMMERCIAL GRADE PIN PKGS OUT II II MILITARY .GRADE PKG Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C GNO!I TYPE Plastic DIP (P) A 74H61 PC Ceramic DIP(D) A 74H61DC 54H61DM 6A Flatpak (F) B 74H61FC 54H61FM 31 ~ ~ ~ ~~ 1lJ; t!J ~ PINOUT B ~ IT IT IT Vee IT IT IT II ( - - - - 54/74H (U.L.) HIGH/LOW 1.25/1.25 Inputs Outputs rm 9A INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS ~vcc ~ rm ~ ~GNO :!PJ ]] '--- ~ ' I' DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174H PARAMETER Min UNITS CONDITIONS Max TA = -55°C ION = 4.5 mA TA - O°C ION = 5.35 mA 1.0 VON Output ON Voltage V 1.0 Vee = Min, VIH = 2.0 V IOFF Output OFF Current 50 p.A Vee = Min, VIL = 0.8 V TA = Max, VOFF = 2.2 V lee(ON) lee(OFF) Power Supply Current 16 7.0 mA VIN = Open VIN - Gnd Vee OUTPUT CAPACITANCE: Vee and Ground Terminals Open 54174H PARAMETER SYMBOL Min Cx CONDITIONS UNITS Max Effective Capacitance of Output Transistor Q1 1.3" "Expander Outputs ""Typical Value 4-67 pF f = 1.0 MHz, TA = +25°C = Max • 62 CONNECTION DIAGRAMS PINOUT A 54H/74H62 II 3-2-2-3-INPUT AND-OR EXPANDER IT ORDERING CODE: See Section 9 PIN PKGS COMMERCIAL GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C OUT MILITARY GRADE Vee = +5.0 V ±10%, TA =-55°C to +125°C PKG TYPE Plastic DIP(P) A 74H62PC Ceramic DIP (0) A 74H62DC 54H62DM 6A Flatpak (F) B 74H62FC 54H62FM 31 - 11 m [! ill II :Thl [!: II II GNO[f 9A PINOUT B ~ L ~ ~ II [I IT Vee INPUT LOADING/FAN-OUT: See Section 3 for U.l. definitions 54174H (U.L.) HIGH/LOW PINS [! t!TI GND II ~ I ~ [!: ~ IT 1.25/1.25 Note 2 Inputs Outputs 1 I!l Vee 1lI DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54174H PARAMETER SYMBOL UNITS V T = -55°C ION = 5.85 rnA TA - O°C ION = 6.3 rnA Vee = Min, VIN = 2.0 V, V1 = 1.0 V V TA = +125°C ION = 7.85 rnA TA = +70°C ION = 7.4 rnA Vee = Max, VIN = 2.0 V, V1 = 0.6 V 0.4 VON Output ON Voltage 0.4 0.4 VON Output ON Voltage 0.4 320 IOFF Output OFF Current TA = -55°C p.A 570 ION Output ON Current lee(ON) lee(OFF) Power Supply Current -470 -600 7.0 9.0 1. A maximum of one expander may be connected to one expandable AND-OR-Invert gate 2. Expander Outputs 3. V1 is applied to x output CONDITIONS3 Max Min terminal during test 4-68 TA = O°C Vee = Min, VIN = 0.8 V, V1 = 4.5 V, R = 575 (} p.A TA =-55°C TA = O°C Vee = Min, VIN = 2.0 V, V1=1.0V rnA VIN = Open VIN - Gnd Vee = Max, V1 = 0.85 V 62 OUTPUT CAPACITANCE: Vee and Ground Terminals Open SYMBOL 54174H PARAMETER Min Cx Effective Capacitance of Output Transistor Q1 UNITS CONDITIONS Max 1.3- pF f = 1.0 MHz, TA = +25°C 'Typical Value • 4-69 64 CONNECTION DIAGRAM PINOUT A 54S/74S64 4-2-3-2-INPUT AND-DR-INVERT GATE ORDERING CODE: See Section 9 PIN PKGS OUT ~ 0:: COMMERCIAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vcc = +5.0 V ±10%, TA = -55°C to +125°C ElVee PKG II - TIl TYPE [I 12 9A 11 IT IT Plastic DIP (P) A 74S64PC Ceramic DIP (0) A 74S64DC 54S64DM 6A Flatpak (F) A 74S64FC 54S64FM 31 ~~ =hllree= , TIl ~ ~ ~~ GNOIT INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions PINS Inputs Outputs 54/74S (U.L.) HIGH/LOW 1.25/1.25 25/12.5 DC AND AC CHARACTERISTICS: See Section 3* SYMBOL 54174S PARAMETER Min ICCH 12.5 Power Supply Current rnA Propagation Delay CONDITIONS 2.0 2.0 5.5 5.5 'DC limits apply over operating temperature range; AC limits apply at TA = +25°C and Vee *'*ICCl is measured with all inputs of one gate open and remaining inputs grounded. 4-70 VIN = Gnd ** 16 ICCL tpLH tpHL UNITS Max ns = +5.0 V. Figs. 3-1, 3-4 Vcc = Max 65 CONNECTION DIAGRAM PINOUT A 545/74565 4-2-3-2-INPUT AND-DR-INVERT GATE (With Open-Collector Output) ORDERING CODE: See Section 9 PIN PKGS Plastic DIP (P) OUT A COMMERCIAL GRADE MILITARY GRADE VCC = +5.0 V ±5%, TA = O°C to +70°C VCC = +5.0 V ±10%, TA = -55°C to +125°C 74S65PC PKG TYPE 9A II IT I - - 12: IT IT [I Ceramic DIP (0) A 74S65DC 54S65DM 6A Flatpak (F) A 74S65FC 54S65FM 31 TI.l Vee TIl ~ m~ tJhK m TIl ~ t;L.J- ~ ~ GNOIT INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS 54/74S (U.L.) HIGH/LOW Inputs Outputs 1.25/1.25 OCI/12.5 DC AND AC CHARACTERISTICS: See Section 32 SYMBOL 54174S PARAMETER Min ICCH 11 Power Supply Current mA 16 ICCl tplH tpHl Propagation Delay CONDITIONS UNITS Max 2.0 2.0 Note 3 7.5 8.5 10C-Open Collector 2DC limits apply over operating temperature range; AC limits apply at TA = +25°C and 31eel is measured with all inputs of one gate open and remaining inputs grounded. 4-71 VIN = 0 V Figs. 3-2, 3-4 ns Vee = +5.0 V. VCC = Max 70 CONNECTION DIAGRAMS PINOUT A 54/7470 I!il Vee ~ NCO:: JK EDGE-TRIGGERED FLIP-FLOP eDIT J1[1: DESCRIPTION - The '70 is a gated input edge-triggered J K flip-flop offering Direct Clear and Set inputs, and complementary a and a outputs. Information at the J and K inputs is tranferred to the outputs on the positive edge of the clock pulse. Direct-coupled clock triggering occurs at a specified voltage level of the clock pulse. When the clock input threshold voltage has been passed, the gate inputs are locked out. These flip-flops are designed for medium to high speed applications and offer a significant saving in system power dissipation and package count where input gating is required. J2G: J3[I a[I GNO[I tm ~~~ till SD tg]cp ~G£ K2 ~K1 ~K3 ~O PINOUT B TRUTH TABLE Asynchronous Inputs: LOW input to So sets a to HIGH level LOW input to CD sets a to LOW level Clear or Set function can only occur when clock input is LOW Simultaneous LOW on CD and 'So is indeterminate INPUTS OUTPUT @ tn + 1 @tn a K J L H L H L L H H an L H an K1IT cp[I 5DIT vccG: CD [I J = J1 • J2 • J3 K = K1 • K2 • 1<3 tn = Bit time before clock pulse. tn + 1 = B.!,! tim~ after clock pulse. If inputs J3 or K3 are not used they must be grounded. H = HIGH Voltage Level L = LOW Voltage Level NC[I 3l K2 Ll~ :DJm TIl K3 SD 0 0 H~ ORDERING CODE: See Section 9 PKGS OUT COMMERCIAL GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C MILITARY GRADE Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG =P TYPE ), J SD Of-CP ..&-. Plastic DIP(P) A 7470PC Ceramic DIP (D) A 7470DC Flatpak B (F) 7470FC 9A 5470DM =i- K Co OP- y 6A vce = Pin 14 (4) GND = Pin 7 (11) 5470FM 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES J1. K1, J2, J~ K2, K:3 CP CD So a,Q } DESCRIPTION 54174 (U.L.) HIGH/LOW Data Inputs 1.0/1.0 Clock Pulse Input (Active Rising Edge) Direct Clear Input (Active LOW) Direct Set Input (Active LOW) Outputs 1.0/1.0 2.0/2.0 2.0/2.0 20/10 4-72 ~Q }]J3 }] J2 J1[I LOGIC SYMBOL PIN o GNO 70 LOGIC DIAGRAM 1- 1 ~ J Q ~ ~ a ~co So- K1 K2 K3 L" -=--I .f J "'\. -...J- '----L... f t===-- J, ~ • J2 J3 CP DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER Min lee 26 Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, UNITS TA CONDITIONS Max = +25° C (See Section mA Vee = Max, Vep =0 3 for waveforms and load configurations) 54174 SYMBOL CL RL DESCRIPTION = 15 pF = 400 n Min fmax Maximum Clock Frequency tPLH tPHL Propagation Delay CP to Q or Q tPLH tpHL Propagation Delay SD or CD to Q or Q AC OPERATING REQUIREMENTS: Vee SYMBOL TA Fig. 3-1, 3-8 50 50 ns Figs. 3-1, 3-8 50 50 ns Figs. 3-1, 3-10 = +25°C Min ts (H) CONDITIONS MHz 54174 PARAMETER UNITS Max 20 = +5.0 V, UNITS CONDITIONS Max Setup Time HIGH, In or Kn to CP 20 ns Fig. 3-6 th (H) Hold Time HIGH, I n or Kn to CP 5.0 ns Fig. 3-6 ts(U Setup Time LOW, In or Kn to CP 20 ns Fig. 3-6 th (U Hold Time LOW, In or Kn to CP 5.0 ns Fig. 3-6 tw (H) tw (U CP Pulse Width 20 30 ns Fig. 3-8 tw (U SD or CD Pulse Width LOW 25 ns Fig. 3-10 4-73 V 71 CONNECTION DIAGRAMS PINOUT A 54H/74H71 JK MASTER/SLAVE FLIP-FLOP (With AND-OR Inputs) DESCRIPTION.- The '71 is a high speed JK master/slave flip-flop with AND-OR gate inputs. The AND-OR gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the circuitry which connects the master and slave sections. Thesequence of operation is as follows: 1) isolate slave from master; 2) enter information from ANDOR gate inputs to master; 3) disable AND-OR gate inputs; 4) transfer information from master to slave. The logic state of J and K inputs must not be allowed to change when the clock pulse is in a HIGH state. TRUTH TABLE PINOUT B CLOCK WAVEFORM INPUTS OUTPU @ tn HIGH @ tn + 1 LOW J K Q L L H H L H L H Qn L H an Asynchronous Input: LOW input to So sets Q to HIGH level Set is independent of clock = J (J'A • J,s) + (J2A • J2S) K = (K'A • K,s) + (K2A • K2S) H = HIGH Voltage Level L = LOW Voltage Level tn = Bit time before clock pulse. tn + , = Bit time after clock pulse. LOGIC SYMBOL ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74H71PC Ceramic DIP (D) A 74H71DC 54H71DM 6A B 74H71FC 54H71FM 31 Flatpak (F) 9A Vcc = Pin 14 (4) GND = Pin 7 (11) INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES 54/74H (U.L.) HIGH/LOW J1A, J1B, J2A, J2B } K1A, K1B, K2A, K2B Data Inputs 1.25/1.25 CP Clock Pulse Input (Active Falling Edge) Direct Set Input (Active LOW) Outputs 2.5/2.5 3.75/3.75 12.5/12.5 So Q,Q 4-74 71 LOGIC DIAGRAM r- Q -"'\ So K1A K1B K2A K28 ~~ ~H - a ~ '--J- ~ I ~~ J'A J'B J2A J28 1 CP DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174H PARAMETER Min lee UNITS CONDITIONS Max Power Supply Current 30 mA Vee = Max, Vep =0 V AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174H SYMBOL PARAMETER CL =.25 pF RL = 280 n Min fmax Maximum Clock Frequency tPLH tPHL Propagation Delay CP to Q or Q tPLH tPHL Propagation Delay So to Q or Q UNITS CONDITIONS Max 25 MHz Figs. 3-1, 3-9 21 27 ns Figs. 3-1, 3-9 13 24 ns Figs. 3-1, 3-10 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL 54174H PARAMETER Min UNITS CONDITIONS Max ts (H) Setup Time HIGH, In or Kn to CP 0 ns Fig. 3-18 th (H) Hold Time HIGH, In or Kn to CP 0 ns Fig. 3-18 ts(U Setup Time LOW, I n or Kn to CP 0 ns Fig. 3-18 th (U Hold Time LOW, In or Kn to CP 0 ns Fig. 3-18 tw (H) tw (U CP Pulse Width 12 28 ns Fig. 3-9 tw (U So Pulse Width LOW 16 ns Fig. 3-10 4-75 • 72 CONNECTION DIAGRAMS PINOUT A 54/7472 54H/74H72 NCD: CO IT JK MASTER/SLAVE FLIP-FLOP Jd2: (With AND Inputs) Jd:I e ~ TIl Vee :ill So rmCl' CD Sot>- ~~K2 Jdl 1 - DESCRIPTION - The '72 is a high speed JK master/slave flip-flop with AND gate inputs. The AND gate inputs for entry into the master section are controlled by the clock pulse. The clock pulse also regulates the circuitry which connects the master and slave sections. The sequence of operation is as follows: 1) isolate slave from master; 2) enter information from AND gate inputs to master; 3) disable AND gate inputs; 4) transfer information from master to slave. The logic state of J and K inputs must not be allowed to change when the clock pulse is in a HIGH state. TRUTH TABLE CLOCK WAVEFORM INPUTS OUTPUl @tn J K L L H H L H L H GNOIT @ tn + 1 HIGH K,D: t- C"PIT LOW a 3 2 Vee 1 4 CD an L H an tn = Bit time before clock pulse. tn + 1 = Bit time after clock pulse. H = HIGH Voltage Loevel L = LOW Voltage Level OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C ~K' ~o IT IT ilb -pSo K ~ ~K3 ~K2 L or- fmo !TIl GNO CP ~a ~ fJrO~ ~J3 ~J2 J, IT t- LOGIC SYMBOL ORDERING CODE: See Section 9 PIN [1 cr NC[I Asynchronous Inputs: LOW input to So sets a to HIGH level LOW input to CD sets a to LOW level Clear and Set are independent of clock Simultaneous LOW on CD and So is indeterminate rut PINOUT B So J = (J'A • J,sl + (J2A • J2s1 K = (K'A • K,sl + (K2A • K2S1 PKGS alI tTIlK3 PKG TYPE ~'~ 0- CP Kco°cr- Plastic DIP(P) A 7472PC, 74H72PC Ceramic DIP (0) A 7472DC, 74H72DC 5472DM, 54H72DM 6A Flatpak (F) B 7472FC, 74H72FC 5472FM, 54H72FM 31 '( 9A = Pin 14 (4) GND = Pin 7 (11) NC = Pin 1 (6) Vee INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION 54174 (U.L.) HIGH/LOW 54174H (U.L.) HIGH/LOW Jl-J3. Kl-Ka CP Data Inputs Clock Pulse Input (Active Falling Edge) Direct Clear Input (Active LOW) Direct Set Input (Active LOW) Outputs 1.0/1.0 2.0/2.0 2.0/2.0 2.0/2.0 20/10 1.25/1.25 2.5/2.5 2.5/2.5 2.5/2.5 12.5/12.5 CD So a,a 4-76 72 LOGIC DIAGRAM r- Q ~ '-J- ~ SD '- }- K1 K2 J I K3 0 ........-L....I CD ~ -< L b ~ J, ~J2 I J3 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74 PARAMETER Min lee Max = +5.0 V, TA PARAMETER = 15 pF = 400 n CL RL Min Max 15 f max Maximum Clock Frequency tPLH tpHL Propagation Delay CP to Q or Q 25 40 tPLH tPHL So or CD to Propagation Delay Q or Q 25 40 AC OPERATING REQUIREMENTS: Vee SYMBOL PARAMETER = +5.0 V, ts (H) ts (U Setup Time In or Kn to CP th (H) th (U In or Kn to CP Hold Time mA Vee = Max, Vep =0 54/74H = 25 pF = 280 n CL RL Min UNITS CONDITIONS Max MHz Figs. 3-1, 3-9 21 27 ns Figs. 3-1, 3-9 13 24 ns Figs. 3-1, 3-10 = +25°C 54/74 Min CONDITIONS Max 54/74H Min UNITS CONDITIONS Max 0 0 ns Fig. 3-18 0 0 ns Fig. 3-18 tw (H) tw (U CP Pulse Width 20 47 12 28 ns Fig. 3-9 tw (U SO or CD Pulse Width LOW 25 16 ns Fig. 3-10 4-77 V 3 for waveforms and load configurations) 25 TA UNITS Max 25 = +25°C (See Section 54/74 SYMBOL Min 20 Power Supply Current AC CHARACTERISTICS: Vee 54/74H 73 CONNECTION DIAGRAM PINOUT A 54/7473 54H/74H73 54LS/74LS73 DUAL JK FLIP-FLOP (With Separate Clears and Clocks) DESCRIPTION - The '73 and 'H73 dual JK master/slave flip-flops have a separate clock for each flip-flop. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slavesections. The sequence of operation is as follows: 1) isolate slave from master; 2) enter information from J and K inputs to master; 3) disable J and K inputll; 4) transfer information from master to slave. TRUTH TABLE CLOCK WAVEFORM INPUTS OUTPUT @tn HIGH @ tn + 1 3 2 LOW J K a L L H H L H L H an L H an 4 LOGIC SYMBOL H = HIGH Voltage Level L = LOW Voltage Level tn = Bit time before clock pulse. tn + 1 = Bit time after clock pulse. Asynchronous Input: LOW input to CD sets a to LOW level Clear is independent of clock The 'LS73 offers individual J, K, clear, and clock inputs. These dual flip-flops are designed so that when the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock pulse is HIGH and the bistable will perform according to the Truth Table as long as minimum setup times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse. 1400 ORDERING CODE: See Section 9 PIN PKGS OUT 1 CP 3 K Co 0 12L~f-9 5~ 13 1.!!. CP K CD 2 COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C Vcc = Pin 4 GND = Pin 11 PKG TYPE· Plastic DIP(P) A 7473PC, 74H73PC 74LS73PC Ceramic DIP (D) A 7473DC, 74H73DC 74LS73DC 5473DM,54H73DM 54LS73DM 6A Flatpak (F) A 7473FC, 74H73FC 74LS73FC 5473FM, 54H73FM 54LS73FM 31 9A 4-78 6 I I 0 P-B 73 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES J1, J2. K1. K2 CP1. B"2 CD1.CD2 01.02. Ch. 02 Data Inputs Clock Pulse Inputs (Active Falling Edge) Direct Clear Inputs (Active LOW) Outputs 54/74 (U.L.) HIGH/LOW 54174H (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 1.25/1.25 1.25/1.25 2.5/2.5 12.5/12.5 0.5/0.25 2.0/0.5 1.5/0.5 10/5.0 (2.5) 2.012.0 2.0/2.0 20/10 LOGIC DIAGRAMS (one half shown) '73, 'H73 Q--~--------------~ ~------------------~~Q .......-----.-+--CD K CP--+---------------------------------------~ 'LS73 Q--~-----------~ ~------------~--Q ......-----CD K----------i I--------J CP------+---------------~~-----" 4-79 • 73 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER Min lee = +5.0 V, TA PARAMETER Max 54174LS Min UNITS 8.0 50 CL RL = 15 pF = 400 n Min Max 54174H mA Max = Max, =0 V load configurations) = 15 pF Min UNITS CONDITIONS Max f max Maximum Clock Frequency MHz Fig. 3-1, 3-9 tPLH tPHL Propagation Delay CPn to Q or Q 25 40 21 27 20 30 ns Figs. 3-1, 3-9 tPLH tPHL !:ropagation pelay CDn to Q or Q 25 40 13 24 20 30 ns Figs. 3-1, 3-10 UNITS CONDITIONS AC OPERATING REQUIREMENTS: Vee SYMBOL PARAMETER 25 Vee Vep 54174LS CL = 25 pF CL RL = 280 n Min CONDITIONS Max = +25°C (See Section 3 for waveforms and 54174 SYMBOL 54174H Min 40 Power Supply Current AC CHARACTERISTICS: Vee Max 15 30 = +5.0 V TA = +25°C 54174 Min Max 54/74H Min Max 54174LS Min Max ts (H) Setup Time .!:!!GH In or Kn to CPn 0 0 20 ns th (H) Hold Time HIGH I n or Kn to CPn 0 0 0 ns ts(U Setup Time~W In or Kn to CPn 0 0 20 ns th (U Hold Time LOW I n or Kn to CPn 0 0 0 ns tw (H) tw (U CPn Pulse Width 20 47 12 16 13.5 20 ns Fig. 3-9 tw (U CDn Pulse Width LOW 25 16 25 ns Figs. 3-1, 3-10 4-80 Fig. 3-18 ('73, 'H73) Fig. 3-7 ('I:.S73) 74 CONNECTION DIAGRAMS PINOUT A 54/7474 54H/74H74 54S/74S74 54LS/7 4LS7 4 C01C!: 01[i CP, DUAL D-TYPE POSITIVE EDGETRIGGERED FLIP-FLOP IT 5018: '-" ~ CP1D,~ S01 g;;; fr ~ a,IT Q1IT GNO DESCRIPTION - The '74 devices are dual D-type flip-flops with Direct Clear and Set inputs and complementary (0,0) outputs. Information at the input is transferred to the outputs on the positive edge of the clock pulse. Clock triggering occurs at a voltage level of the clock pulse and is not directly related to the transition time of the positive going pulse. After the Clock Pulse input threshold voltage has been passed, the Data input is locked out and information present will not be transferred to the outputs until the next rising edge of the Clock Pulse input. ~vee r--- ~C02 cz: P1J02 ~CP2 l 02CP2W= ~S02 CO2 ~a2 S02 [ ,at ~ Lr- ~02 -- PINOUT B CP, C!: ~01 01[i C01 ~501 1L-01 aJ-..s- rm a1 IT r----< C01 a 1f:>---- P1J 01 ~ Vee 8: C02 IT TRUTH TABLE (Each Half) INPUT @ tn OUTPUTS @ tn + 1 D 0 0 L H L H H L Asynchronous Inputs: LOW input to So sets 0 to HIGH level LOW input to CD sets 0 to LOW level Clear and Set are independent of clock Simultaneous LOW on CD and So makes both 0 and Q HIGH 02 IT CP2 rDJGNO ~ cz: r------c;;; H = HIGH Voltage Level L = LOW Voltage Level tn = ~Q2 02 a2 s02 ~a2 P:!S02 LOGIC SYMBOL Bit time before clock pulse. tn , , = Bit time after clock pulse. ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C TYPE A 7474PC, 74H74PC 74S74PC, 74LS74PC Ceramic DIP (D) A 7474DC, 74H74DC 74S74DC, 74LS74DC 5474DM,54H74DM 54S74DM,54LS74DM A 74S74FC, 74LS74FC 54S74FM,54LS74FM B 7474FC, 74H74FC 5474FM,54H74FM 9A 4-81 6A 31 J. So, 0, - 0, t - - cp, CD' Plastic DIP(P) Flatpak (F) PKG - 0, p- S02 - 02 - CP2 CO2 'J' Vee = Pin 14 (4) GND = Pin 7 (11) a2t- a2 p- 74 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions Dl, D2 CP1, CP2 COl, CO2 SOl, S02 01, ch, 02, 54174 (U.L.) DESCRIPTION PIN NAMES 02 54174H (U.L.) HIGH/LOW 54174S (U.L.) HIGH/LOW HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 2.0/2.0 1.25/1.25 2.5/2.5 1.25/1.25 2.5/2.5 0.5/0.25 1.0/0.5 3.0/2.0 3.75/2.5 3.75/3.75 1.5/0.75 2.0/1.0 2.5/1.25 2.5/2.5 1.0/0.5 20/10 12.5/12.5 25/12.5 10/5.0 (2.5) Data Inputs Clock Pulse Inputs (Active Rising Edge) Direct Clear Inputs (Active LOW) Direct Set Inputs (Active LOW) Outputs LOGIC DIAGRAM (one half shown) Q CP -+-+-+-:--1 D~===L.J DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER 54174 Min Icc Power Supply ~ XC Current Max 54174H Min Max 54/74S Min 42 50 30 30 Max 54174LS Min 8.0 8.0 50 50 UNITS CONDITIONS Max mA Vcc VCP = Max, =0 V AC CHARACTERISTICS: Vcc = +5.0 V, TA = +25 0 C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER 54174H 54174S 54174LS CL = 15 pF CL = 25 pF CL = 15 pF CL = 15 pF RL = 400 n RL = 280 n RL = 280 n Min Max Min Max Min Max fmax Maximum Clock Frequency tPLH tPHL Propagation Delay CPn to On or On 25 40 15 20 9.0 11 tPLH tPHL Propagation Delay COn orSOn toOn orOn 25 40 20 30 tPLH tPHL Propagation Delay COn orSon toOn orOn 25 40 20 30 15 35 CONDITIONS Max MHz Figs. 3-1, 3-8 25 35 ns Figs. 3-1, 3-8 6.0 13.5 15 35 ns Vcp 2': 2.0 V Figs. 3-1, 3-10 6.0 8.0 15 24 ns Vcp::; 0.8 V Figs. 3-1, 3-10 75 4-82 Min UNITS 30 74 AC OPERATING REQUIREMENTS: Vee SYMBOL PARAMETER = +5.0 V, 54174 Min Max TA = +25°C 54174H Min Max 54174S Min Max 54/74LS Min UNITS CONDITIONS Max ts (H) Setup Time HIGH On to CPn 20 th (H) Hold Time HIGH On to CPn 5.0 0 0 5.0 ns ts(U Setup Time LOW On to CPn 20 15 3.0 20 ns th (U Hold Time LOW On to CPn 5.0 0 0 5.0 ns tw (H) tw (U CPn Pulse Width 30 37 15 13.5 6.0 7.3 18 15.5 ns Fig. 3-8 tw (U CDn or SDn Pulse Width LOW 30 25 7.0 15 ns Fig. 3-10 10 3.0 10 ns Fig. 3-6 Fig. 3-6 4-83 • 75 CONNECTION DIAGRAM PINOUT A 54/7475 4-BIT BISTABLE LATCH - Q1[I 0, :m01 [I !§lO2 odI ~Q2 II Vee II P1l E12 E3.4 03 ~GNO ~O3 ~Q3 ~O4 [I IT Q4 IT 04 DESCRIPTION - The '75 latch is used as temporary storage for binary information between processing units and input/output or indicator units. Information present at a data (0) input is transferred to the 0 output when the Enable is HIGH and the 0 output will follow the data input as long as the Enable remains HIGH. When the Enable goes LOW, the information (that was present at the data input at the time the transition occurred) is retained at the o output until the Enable is permitted to go HIGH. LOGIC SYMBOL The '75 features complementary 0 and Q output from a 4-bit latch and isavailable in 16-pin packages. For higher component de!!..Sity applications, the '77 4-bit latch is available in the 14-pin package with 0 outputs omitted. 6 7 I I I I 13- ORDERING CODE: See Section 9 3 2 0, D2 D3 D4 01 02 03 04 E1.2 4 - E3.4 PIN PKGS OUT Plastic DIP(P) A COMMERCIAL GRADE = +5.0 V ±5%, = O°C to +70°C Vee TA MILITARY GRADE = +5.0 V ±10%, = -55°C to +125°C Vee TA 7475PC PKG TYPE I I I I I 11I I I 16 1 15 14 10 9B Vcc = Pin 5 GND Ceramic DIP (0) A 7475DC 5475DM 6B Flatpak (F) A 7475FC 5475FM 4L = Pin 12 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES D1-D4 E1,2 E2,3 01-04 01-04 DESCRIPTION Data Inputs Enable Input, Latches 1, 2 Enable Input, Latches 3, 4 Latch Outputs Complementary Latch Outputs· 54/74 (U.l.) HIGH/LOW 2.0/2.0 4.0/4.0 4.0/4.0 10/10 10/10 4-84 9 8 75 LOGIC DIAGRAM a TRUTH TABLE (Each Latch) INPUT ~~~~"'"? @ tn a LATCH I-x- ENABLE OUTPUT @ tn + 0 Q H L H L 1 NOTES: tn = bit time before enable negative-going transition. tn t 1 = bit time after enable negative-going transition. DATA H = HIGH Voltage Level L = LOW Voltage Level DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54/74 PARAMETER SYMBOL UNITS Min lee Power Supply Current AC CHARACTERISTICS: Vee ~ = +5.0 V, 46 53 XC TA CONDITIONS Max = +25°C (See Section mA Vee = Max, All Inputs = Gnd 3 for waveforms and load configurations) 54/74 PARAMETER SYMBOL CL RL = 15 pF UNITS CONDITIONS = 400 n Max Min tpLH tpHL Propagation Delay D to Q 30 25 ns Figs. 3-1, 3-5 tPLH tpHL Propagation Delay D to 40 15 ns Figs. 3-1, 3-4 tPLH tpHL Propagation Delay E to Q, Q 30 15 ns Figs. 3-1, 3-8 a AC OPERATING REQUIREMENTS: Vee SYMBOL = +5.0 V, TA = +25° C 54174 PARAMETER Min UNITS CONDITIONS Max ts (H) Setup Time HIGH, D to E 20 ns Fig. 3-14 th (H) Hold Time HIGH, D to E 0 ns Fig. 3-14 ts(U Setup Time LOW, D to E 20 ns Fig. 3-14 th (U Hold Time LOW, D to E 0 ns Fig. 3-14 tw (H) E Pulse Width HIGH 20 ns Fig. 3-8 4-85 • 76 CONNECTION DIAGRAM PINOUT A 54/7476 54H/74H76 54LS/74LS76 DUAL JK FLIP-FLOP (With Separate Sets, Clears and Clocks) DESCRIPTION - The '76 and 'H76 are dual JK master/slave flip-flops with separate Direct Set, Direct Clear and Clock Pulse inputs for each flip-flop. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows: 1) isolate slave from master; 2) enter information from J and K inputs to master; 3) disable J and K inputs; 4) transfer information from master to slave. CLOCK WAVEFORM TRUTH TABLE INPUTS OUTPUT @tn @ tn + 1 J K' a L L H H L H L H On L H an HIGH LOW H = HIGH Voltage Level L = LOW Voltage Level tn = Bit time before clock pulse. tn + 1 = Bit time after clock pulse. Asynchronous Inputs: LOW input to So sets to HIGH level to LOW level LOW input to CD sets Clear and Set are independent of clock Simultaneous LOW on CD and So makes both and Q HIGH a a a The 'LS76 is a dual JK, negative edge-triggered flip-flop also offering indivIdual Direct Set, Direct Clear and Clock Pulse inputs. When the Clock Pulse input is HIGH, the JK inputs are enabled and data is accepted. This data will be transferred to the outputs according to the Truth Table on the HIGH-toLOW clock transitions. ORDERING CODE: See Section 9 PIN PKGS OUT LOGIC SYMBOL 7 2 4 11 16 10 3 COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 7476PC, 74H76PC 74LS76PC Ceramic DIP (0) A 7476DC, 74H76DC 74LS76DC 5476DM, 54H76DM 54LS76DM 68 Flatpak (F) A 7476FC, 74H76FC 74LS76FC 5476FM, 54H76FM 54LS76FM 4L 98 4-86 8 Vcc = Pin 5 GND = Pin 13 76 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES Jl, J2, Kl, K2 CP1, CP2 ~01, CO2 501,502 Ql, Ql, 02, 02 Data Inputs Clock Pulse Inputs (Active Falling Edge) Direct Clear Inputs (Active LOW) Direct Set Inputs (Active LOW) Outputs 54174 (U.L.) HIGH/LOW 54174H .(U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.0/1.0 2.012.0 2.0/2.0 2.0/2.0 20/10 1.25/1.25 2.5/2.5 2.5/2.5 2.5/2.5 12.5/12.5 0.5/0.25 2.0/0.5 1.5/0.5 1.5/0.5 10/5.0 (2.5) L6GIC DIAGRAMS (one half shown) '76, 'H76 Q-1--------------__ r---------------~-a So - t........-----+ .....-----.-+- CD F==--J K CP~~---------------__i TO OTHER FLIP-FLOP 'LS76 Q~~--------~ ~--------~~a .....- - - - 8 0 Co-----. I-------K cp-+---------~---~ 4-87 • 76 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER 54/74 Min lee Max 54/74H Min 40 Power Supply Current Max 54/74LS Min 50 UNITS CONDITIONS Max 8.0 mA Vee = Max, Vep = 0 V AC CHARACTERISTICS: Vee = +5.0 V,TA = +25°C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER 54174H 54/74LS CL = 15 pF CL = 25 pF CL = 15 pF UNITS RL=400n RL = 280 n Min Max 15 Min Max fmax Maximum Clock Frequency 25 tPLH tPHL Propagation Delay CPn to On or an 25 40 21 27 tPLH tpHL Propagation Delay COn or SOn to On or an 25 40 13 24 Min CONDITIONS Max MHz Figs. 3-1, 3-9 20 30 ns Figs. 3-1, 3-9 20 30 ns Figs. 3-1, 3-10 UNITS CONDITIONS 30 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL PARAMETER 54/74 Min Max 54/74H Min Max 54/74LS Min Max 18 (H) Setup Time HIGH In or Kn to CPn 0 0 20 ns th (H) Hold Time HIGH In or Kn to CPn 0 0 0 ns Fig. 3-18 ('76, 'H76) 18(Ll Setup Time LOW I n or Kn to CPn 0 0 20 ns Fig. 3-7 ('LS76) th (Ll Hold Time LOW In or Kn to CPn 0 0 0 ns tw (H) tw (Ll CPn Pulse Width 20 47 12 28 20 13.5 ns Fig. 3-9 tw COn or SOn Pulse Width LOW 25 16 25 ns Fig. 3-10 (Ll 4-88 77 CONNECTION DIAGRAM PINOUT A 54/7477 QUAD D-TYPE LATCH - D1IT Dd]: TI)02 E3.4!I In1 E1.2 Vee DESCRIPTION - The '77 contains four D-type latches used for temporary storage. Each latch shares an Enable input with one other latch. When the Enable input is HIGH, a latch is transparent, Le., the 0 output follows the D input each time itchanges. When the Enable goes LOW, the information PKG J TYPE CP SO a J So Q 9A 4-90 6A Vcc = Pin 14 (4) GND = Pin 7 (11) 31 78 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION 54174H (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW J1, J2, K1, K2 CP Data Inputs Clock Pulse Input (Active Falling Edge) Direct Clear Input (Active LOW) Direct Set Inputs (Active LOW) Outputs 1.25/1.25 2.5/2.5 5.0/5.0 2.5/2.5 12.5/12.5 0.5/0.25 4.0/1.0 3.0/1.0 1.5/0.5 10/5.0 (2.5) Co S01, S02 01, ck 02, ch LOGIC DIAGRAM (one half shown) Q - .....- - - - - - - - - - - - - . . a ~----------......- .....----....-ii-- Co K----I cp-~--------------------_t TO OTHER FLIP-FLOP DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174H PARAMETER Min lee Power Supply Current AC CHARACTERISITICS: Vee = +5.0 Max Min V, TA PARAMETER 8.0 = +25°C (See Section Max 25 CONDITIONS rnA Vee = Max, Vep 54/74LS Min UNITS CONDITIONS Max fmax Maximum Clock Frequency MHz Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP to On or an 21 27 20 30 ns Figs. 3-1, 3-9 tpLH Propagation Delay tPHL CD or SOn to On or an 13 24 20 30 ns Figs. 3-1, 3-10 30 4-91 =0 V 3 for waveforms and load configurations) CL = 25 pF CL = 15 pF RL = 280 n Min UNITS Max 50 54174H SYMBOL 54/74LS 78 AC OPERATING REQUIREMENTS: Vee SYMBOL PARAMETER = +5.0 V, TA = +25°C 54/74H Min Max 54/74LS Min UNITS CONDITIONS Max Setup Time HIGH In or Kn to CP 0 20 ns th (H) Hold Time HIGH In or Kn to CP 0 0 ns ts(U Setup Time J::2W I n or Kn to CP 0 20 ns th (U Hold Time LOW In or Kn to CP 0 0 ns tw (H) tw (U CP Pulse Width 12 28 20 13.5 ns Fig. 3-9 tw (U Co or SOn Pulse Width LOW 16 25 ns Fig. 3-10 ts (H) 4-92 Fig. 3-18 ('H78) Fig. 3-7 ('LS78) 80 CONNECTION DIAGRAMS PINOUT A 54/7480 a" GATED FULL ADDER - 0: :EJvcc acl1 nJ a2 cnl:! ma, Cn+l[i TIJAC lIT ~l! !ill A· ]]A2 GNOU ]:lA' PINOUT B DESCRIPTION - The '80 is a single-bit, high speed, binary full adder with gated complementary inputs, complementary sum (~ and~) outputs and inverted carry output. It is designed for medium and high speed, multiplebit, parallel-add/serial carry applications. The circuit utilizes DTL for the gated inputs and high speed, high fan-out TTL for the sum and carry outputs. The circuit is entirely compatible with both DTL and TTL logic families. The implementation of a single-inversion, high speed, Darlingtion-connected serial-carry circuit minimizes the necessity for extensive "Iookahead" and carry-cascading circuits. AcO: :EJA"c a,l1 nJ A2 a21:! mA, vcc[i TIlGNO IT acl! !illi ]]I CnU ]:lcn+' a" LOGIC SYMBOL ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C i i 1j YY1j 1 i PKG A1 A2 A* Ac 81 82 8· Be TYPE 3 - Cn Plastic DIPIP) A 7480PC Ceramic DIP (0) A 7480DC 5480DM SA Flatpak (F) B 7480FC 5480FM 31 9A Cn+1 I I ! ! ! vcc = Pin 14 GND = Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions PIN NAMES A" A2, B" B2 A", B" Ae, Be C n en +' ~,T A", B" DESCRIPTION 54174 (U.L.) HIGH/LOW 0.4/1.0 -/1.63 0.4/1.0 5.0/5.0 5.0/5.0 10/10 3.0/3.0 Operand Inputs Inverted Operand Inputs Control Inputs Carry Input Inverted Carry Output Sum Outputs When Used As Outputs 4-93 • 80 TRUTH TABLE INPUTS OUTPUTS I I H H H L H L L H L H H L H L L L L H H L H L L H Cn B A Cn L L L L L L H H L H L H H H H H L L H H L H L H + 1 LOGIC DIAGRAM A, T":""oo.. A2 I' A' ~ , :=:D I? p- w-O-' ::::r Ac Be NOTES: (11 A = A'. Ac, B = B' • Be B' = B, • B2 where A, • A2. B' are used as inputs, A, and A2 or B, and B2 respectively must beconnected to Gnd. (21 When A' or ~ ......... Cn ~ A, and A2 or B, and B2 are used as inputs, A' or B' respectively must be open or used to perform Dot-OR logic. (31 When - - Cn+1 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unlsess otherwise specified) SYMBOL 54174 PARAMETER UNITS Min Max CONDITIONS los Output ShO.!,t Ci rcuit Current at Cn + 1 XM XC -20 -18 -70 -70 mA Vee = Max los Output Short Circuit Curren't at A', B' XM XC -0.9 -0.9 -2.9 -2.9 mA Vee = Max lee Power Supply Current XM XC 31 35 mA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25 0 C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER CL = 15 pF Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Cn to en + 1 17 12 ns Figs. 3-1, 3-4 RL = 780 n tPLH tPHL PropaQ!ltion Delay Be to Cn + 1 25 55 ns Figs. 3-1, 3-5 RL = 780 n tPLH tPHL Propagation Delay Ae to I 70 ns Figs. 3-1, 3-4 RL=400n tPLH tPHL Propagation Delay Be to I 55 75 ns Figs. 3-1, 3-5 RL = 400 n tPLH tPHL Propagation Delay Al to A' or Bl to B' 65 25 ns Figs. 3-1, 3-4 RL not used 80 4-94 82 CONNECTION DIAGRAM PINOUT A 54/7482 2-BIT FULL ADDER DESCRIPTION - The '82 is a full adder which performs the addition of two 2-bit binary numbers. The sum (~) outputs are provided for each bit and the resultant carry (C2) is obtained from the second bit. Designed for medium to high speed, multiple-bit, parallel-add/serial-carry applications, the circuit utilizes high speed, high fan-out TTL. The implementation of a single-inversion, high speed, Darlington-connected serial-carry circuit withi n each bit mini mizes the necessity for extensive "Iookahead" an d carrycascading circuits. ORDERING CODE: See Section 9 PIN PKGS 2 3 14 MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C I I I I PKG TYPE Plastic DIP(P) A 7482PC Ceramic DIP (0) A 7482DC 5482DM 6A Flatpak (F) A 7482FC 5482FM 31 9A Vcc = Pin 14 GND = Pin 11 NC = Pins 6,7,8,9 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES A1, B1 A2, B2 CIN ~1 ~2 C2 DESCRIPTION Bit Bit Bit Bit Bit Bit 1 2 1 1 2 2 13 5 - C'N COMMERCIAL GRADE OUT LOGIC SYMBOL Operand Inputs Operand Inputs Carry Input Sum Output Sum Output Carry Output 54174 (U.L.) HIGH/LOW 4.0/4.0 1.0/1.0 4.0/4.0 10/10 10/10 5.0/5.0 4-95 82 TRUTH TABLE OUTPUTS INPUTS C,N =0 C,N = 1 A1 81 A2 82 I1 I2 C2 I1 I2 C2 L H L H L L H H L L L L L L L L L H H L L L L H L L L L H L L H L H H H L L L L L H L H L L H H H H H H L L L L L H H L H H H L L L L H H L L H H L L L L H H H L H L H L L H H L L L L H H H H L H H L H H H L L L L H H L L H H L L L L H H H L H L H L L H H H H H H H H H H L H H L L L L H H H H H H L L H L H H H H H H H H = HIGH Voltage Level L = LOW Voltage Level LOGIC DIAGRAM 4-96 82 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL los Output Short Circuit Current at In los 54174 PARAMETER Output Short Circuit Current at C2 Max XM -20 -55 XC -18 -55 XM -20 -70 XC -18 -70 r-- r---XM lee Power Supply Current AC CHARACTERISTICS: Vee = +5.0 r--- 50 XC 58 V, TA = +25 0 CONDITIONS UNITS Min mA Vee = Max mA Vee = Max mA Vce = Max; A1, A2, CIN = 4.5 V; B1, B2 = Gnd C (See Section 3 for waveforms an d load configurations) 54174 SYMBOL PARAMETER CL RL = 15 pF = 400 n Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay CIN to l1 34 40 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay B2 to l2 40 35 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay CIN to l2 38 42 ns Figs. 3-1, 3-20 'tPLH tPHL Propagation Delay CIN to C2 19 27 ns Figs. 3-1, 3-5 RL = 780 n 4-97 • 83A CONNECTION DIAGRAM PINOUT A 5417483A 54LS/74LS83A 4-BIT BINARY FULL ADDER (With Fast Carry) DESCRIPTION - The '83A high speed 4-bit binary full adders with internal carry lookahead accept two 4-bit binary words(Ao --' A3, So - 63) and a Carry input (Co)' They generate the binary Sum outputs (So - S3) and the Carry output (C4) from the most significant bit. They operate with either HIGH or active LOW operands (positive or negative logic). The '283 is recommended for new designs since it features standard corner power pins. ORDERING CODE: See Section 9 ______ -.____ COMMERCIAL GRADE ~------------------._----------------,_--~13 PIN PKGS OUT 7 3' 4 1 16 Co 14 r----------------r--------------~ PKG Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C TYPE 9 A 7483APC, 74LS83APC Ceramic DIP (D) A 7483ADC, 74LS83ADC 5483ADM, 54LS83ADM 66 A 7483AFC, 74LS83AFC 5483AFM, 54LS83AFM 4L (F) 10 11 8 MILITARY GRADE Plastic DIP(P) Flatpak LOGIC SYMBOL 6 2 15 96 Vce = Pin 5 GND = Pin 12 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions 54/74 (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW So-53 A Operand Inputs 6 Operand Inputs Carry Input Sum Outputs 1.0/1.0 1.0/1.0 1.0/1.0 20/10 C4 Carry Output 10/5.0 1.0/0.5 1.0/0.5 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) PIN NAMES Ao-A3 60-63 Co DESCRIPTION 4-98 83A FU NCTIONAL DESCRIPTION - The '83A adds two 4-bit binary words (A and B) plus the incoming carry. The binary sum appears on the sum outputs (So - S3) and outgoing carry (C4) outputs. Co + (Ao + Bo) + 2 (AI + Bl) + 4 (A2 + B2) + 8 (A3 + B3) = So + 2S1 + 4S2 + 8S3 + 16C4 Where: (+) = plus Due to the symmetry of the binary add function the '83A can be used with either all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic)' Note that with active HI GH inputs, Carry In can not be left open, but must be held LOW when no carry in is intended. Interchanging inputs of equal weight does not affect the operation, thus Co, Ao, Bo can be arbitrarily assigned to pins 10, 11, 13, etc. TRUTH TABLE INPUTS Co Ao AI A2 As Bo OUTPUTS Bl B2 B3 So SI S2 S3 C4 Logic Levels L L H L H H L L H H H L L H Active HIGH Active LOW 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 H = HIGH Voltage Level L = LOW Voltage Level LOGIC DIAGRAM Co Ao Bo A3 4-99 B3 (10 + 9 = 19) (carry + 5 + 6 = 12) • 83A DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL Min los Output Short Circuit Current at Sn los Output Short Circuit Current at C4 lee Power Supply Current AC CHARACTERISTICS: Vee 54174LS 54174 PARAMETER XM I--XC XM I--XC Max Min Max -20 -55 -20 -100 -18 -55 -20 -100 -20 -70 -20 -100 -18 -70 -20 -100 XM I--XC 99 39 110 39 mA Vee = Max mA Vee = Max mA Vee = Max, Inputs = Gnd ('LS83A) Inputs = 4.5 V ('83A) = 5.0 V, TA = 25° C (See Section 3 for waveforms and load configurations) 54174 SYMBOL CONDITIONS UNITS PARAMETER CL RL 54174LS = 15 p'F CL = 15 pF = 400 fl Min Max Min UNITS CONDITIONS Max tPLH tpHL Propagation Delay Co to Sn 21 21 24 24 ns Fi gs. 3-1, 3-20 tPLH tPHL Propagation Delay An or Bn to Sn 24 24 24 24 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay Co to C4 14 16 17 17 ns Figs. 3-1, 3-5 RL = 780 fl ('83A) tPLH tPHL Propagation Delay An or Bn to C4 14 16 17 17 ns Figs. 3-1, 3-5 RL = 780 fl ('83A) 4-100 85 CONNECTION DIAGRAM PINOUT A 54/7485 54LS/74LS85 ~vcc ~ B31I II IA =s II !TIl A3 IT IT ~A2 ~A1 ~B1 ~AO ~BO IA s OA >s ~B2 OFS[! OAB, A < B, A = B OUTPUTS AVAILABLE 1f 1j YY i 1,1 1t ORDERING CODE: See Section 9 PIN PKGS OUT i Ao A1 A2 A3 Bo B1 B2 B3 2 - IA s OA>S I 5 Plastic DIP (P) A 7485PC, 74LS85PC Ceramic DIP (0) A 7485DC, 74LS85DC 5485DM, 54LS85DM 6B Flatpak (F) A 7485FC, 74LS85FC 5485FM, 54LS85FM 4L OA <8 I 7 OA =s I 6 9B vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION 54174 (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 3.0/3.0 3.0/3.0 3.0/3.0 1.0/1.0 10/10 1.5/0.75 1.5/0.75 1.5/0.75 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) 10/5.0 (2.5) Ao-As Bo-B3 IA = S IA < S, IA > S OA > S Word A Inputs Word B Inputs A = B Expansion Input A < B, A > B Expansion Inputs A Greater Than B Output OA < B A Less Than B Output 10/10 OA = B A Equal B Output 10/10 4-101 85 FUNCTIONAL DESCRIPTION-The '85 compares two 4-bit words (A, 8). Each word has four parallel inputs (Ao-A3, 80-83) of which A3 and 83 are the most significant. Three expanderinputs (IA > B, IA < B, IA = B) allow cascading without external gates. The three outputs (OA > B, OA < B, OA = B) have only two gate delays from the expander inputs, thus reducing the delay time when units are cascaded for long words. The IA = B input to the least significant position must be held HIGH for proper compare operation. For serial (ripple) expansion, the A > 8, A < 8 and A = 8 outputs are connected respectively to the IA > B, IA < B, and IA = B inputs of the next most significant comparator. LOGIC DIAGRAM 80 l AD A1 9" .. . T' 1 'f ! Y OA8 IA=8 IA<8 . ·,t I . 82 t~tI" OA =8 4-102 83 . t- . 1 I" "I 11 T9 1 Y OA >8 -) 85 TRUTH TABLE COMPARING INPUTS CASCADING INPUTS OUTPUTS A1. B1 AfJ. Bo IA > B IA < B IA = B X X X X X X X X X X X X X X X X X X X X H L H L L H L H L L L L X X AfJ>Bo AfJB3 A3 < B3 A3 = B3 A3 = B3 X X A2 > B2 A2 < B2 A3 = A3 = A3 = A3 = B3 B3 B3 B3 A2 A2 A2 A2 = = = = B2 B2 B2 B2 A1 A1 A1 A1 > < = = B1 B1 B1 B1 A3 = B3 A3 = B3 As = B3 As = B3 As = B3 A2 A2 A2 A2 A2 = = = = = B2 B2 B2 B2 B2 A1 A1 A1 A1 A1 = = = = = OA>B OAe A,,"'- OAe #. IA S IA>e , .A j'jA{j'BiBrTBI' Ar AI' ArArBr·Bi'BrBr . An Al A2 A3 80 8, 82 83 Ao Al A2 A3 Bo 8, 82 83 IA>B IA a DA e IAB #3 ArArArAr BrBrBrBr F1 r-- 0DABS ... r-NC IA-B J An Al A2 A3 80 8, 82 83 A'4- IA>e DA>B L- 1 OA B IAB OA>B L - IAB ------------- IA=B 54LS174LS85 IA B r-A>8 OA B or OA < B 26 30 36 30 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay An or Bn to OA = B 35 30 45 45 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay An Ixx to OA > B or OA < B 11 17 22 17 ns Figs. 3-1, 3-4 tPLH tPHL Propagation. Delay IA = B to OA = B 20 17 22 17 ns Figs. 3-1, 3-5 4-104 86 CONNECTION DIAGRAM PINOUT A 54/7486 54S/74S86 54LS/74LS86 QUAD 2-INPUT EXCLUSIVE-OR GATE IT ----, ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C II IT IT PKG Plastic DIP(P) A 7486PC, 74S86PC 74LS86PC Ceramic DIP(D) A 7486DC, 74S86DC 74LS86DC 5486DM, 54S86DM 54LS86DM 6A Flatpak (F) A 7486FC, 74S86FC 74LS86FC 5486FM, 54S86FM 54LS86FM 31 ~ II ~ TYPE [I 9A GNOIT ~vee ~ . -~ ~ ~ . -~ ~ ~ ~~ INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS 54174 (U.L.) HIGH/LOW 54174S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW Inputs Outputs 1.011.0 20/10 1.25/1.25 25/12.5 1.0/0.375 10/5.0 (2.5) DC AND AC CHARACTERISTICS: See Section 3' SYMBOL 54174 PARAMETER 54174S 54/74LS UNITS CONDITIONS Min Max Min Max Min Max I I XM XC 43 50 lee Power Supply Current tPLH tPHL Propagation Delay 23 17 tPLH tPHL Propagation Delay 30 22 ·DC limits apply over operating temperature range; AC limits apply at TA = 75 75 10 10 mA Vee 3.5 3.0 10.5 10 12 17 ns Other Input LOW Figs. 3-1, 3-5 3.5 3.0 10.5 10 13 12 ns Other Input HIGH Figs. 3-1, 3-4 +25"C and Vee 4-105 = +5.0 V. = Max, VIN = Gnd • 87 CONNECTION DIAGRAM PINOUT A 54H/74H87 4-BIT TRUE/COMPLEMENT, ZERO/ONE ELEMENT - o,lI ~vcc ~14 ~O4 NC!I PlNC sdJ: h[I DESCRIPTION - The '87 performs four operations at its outputs, depending on the state of the Select inputs SI and S2. The outputs can be forced HIGH or LOW, or can follow the Datainputs in eithertheTrueor Complement form. The Select input coding and the output responses are shown in the Truth Table. 12 ~b (I od]: ~O3 GNOII ~s, ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C Plastic DIP (P) A 74H87PC Ceramic DIP (D) A 74H87DC PKG TYPE LOGIC SYMBOL i i rI 9A 54H87DM 6A I, 18- Flatpak (F) A 54H87FM 74H87FC 31 12 13 14 s, 52 0, 02 03 04 1! ! 1l INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 11-14 SI, S2 01-04 54174H (U.L.) HIGH/LOW DESCRIPTION Data Inputs Select Inputs Outputs 1.25/1.25 1.25/1.25 25/12.5 TRUTH TABLE SELECT INPUTS OUTPUTS SI S2 J01 D2 L L H H L H L H 11 h H L 12 12 H L = HIGH Voltage Level L = LOW Voltage Level H 4-106 0:3 04 13 T4 14 H L i3 H L VCC ~ Pin 14 GND ~ Pin 7 87 LOGIC DIAGRAM DATA INPUTS 01 CONTROL INPUTS 02 • v 03 04 OUTPUTS DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174H PARAMETER Min VOH Output HIGH Voltage Ice Power Supply Current CONDITIONS UNITS Max V 2.4 XM 78 XC 89 mA Vee = Min, IOH VIH = 2.0 V, VIL Vee = = -1.0 mA, = 0.8 V Max AC CHARACTERISTICS: Vee = 5.0 V, TA = 25° C (See Section 3 for waveforms and load configurations) 54174H SYMBOL PARAMETER CL = 25 pF RL = 280 n Min UNITS Max tpLH tPHL Propagation Delay In to On 20 19 ns tPLH tPHL Propagation Delay Sn to On 25 25 ns 4-107 CONDITIONS Figs. 3-1, 3-20 89 CONNECTION DIAGRAM PINOUT A 54/7489 54LS/74LS89 ~ AOO:: 64-BIT RANDOM ACCESS MEMORY (With Open-Collector Outputs) mVCC cs[I illA1 WE [I :E]A2 [I :m A3 011} rm 04 0, ~04 ~03 ~(h 02[! DESCRIPTION - The '89 a high speed, low power 64-bit Random Access Memory organized as a 16-word by 4-bit array. Address inputs are buffered to minimize loading, and addresses are fully decoded on-chip. Outputs are open-collector type and are in the off (HIGH) state when both the Chip Select (CS) and Write Enable (WE) are HIGH. For all other combinations of CS and WE the outputs are active, presenting the complement of either the stored data (READ mode) or the information present on the D inputs. • • • • 02 [I GNOII LOGIC SYMBOL OPEN-COLLECTOR OUTPUTS FOR WIRED-AND APPLICATIONS BUFFERED INPUTS MINIMIZE LOADING ADDRESS DECODING ON-CHIP DIODE CLAMPED INPUTS MINIMIZE RINGING 1i i T 1 1j cs 0, 02 03 04 WE ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE Vcc TA MILITARY GRADE = +5.0 V ±5%, Vcc = O°C to +70°C TA PKG = +5.0 V ±10%, = -55°C to +125°C TYPE Plastic DIP (P) A 7489PC, 74LS89PC Ceramic DIP (0) A 7489DC, 74LS89DC 5489DM, 54LS89DM 78 Flatpak (F) A 7489FC, 74LS89FC 5489FM, 54LS89FM 4L 98 1151413- Ao A1 A2 A3 0, 02 03 04 !!!X Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-A3 CS WE D1-D4 01-04 'oc - 54174 (U.L.) HIGH/LOW DESCRIPTION Address Inputs Chip Select Input (Active LOW) Write Enable Input (Active LOW) Data Inputs I nverted Data Outputs 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 OC'n.5 Open Collector 4-108 54174LS (U.L.) HIGH/LOW 0.5/0.013 0.5/0.013 0.5/0.013 0.5/0.013 OC'/10 (5.0) 89 FUNCTION TABLE INPUTS OPERATION CONDITION OF OUTPUTS CS WE L L L H Write Read Complement of Data Inputs Complement of Selected Word H H L H Inhibit Entry Hold Undetermined (Off) HIGH H = HIGH Voltage Level L = LOW Voltage Level LOGIC DIAGRAM r':>---.....- WE I\,.....JIO-......-+-- CS Ao DECODER DRIVERS 16-WORD x 4-BIT MEMORY CELL ARRAY ADDRESS DECODER 4-109 89 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74 PARAMETER Min IOH VOL Output HIGH Current Output LOW Voltage 54/74LS Max Min 20 I XM, XC I XC Ice Power Supply Current Co Off-State Output Capacitance UNITS CONDITIONS /lA Vee = Min, VOH = 5.5 V Max 20 0.4 0.45 V Vee = Min 0.4 0.5 V 40 mA Vee = Min, CS = Gnd pF Vo = 2.4 V, f = 1 MHz 105 4.0* IOL=12mA IOL=16mA IOL - 8.0 mA IOL = 16 mA 4.0' Vee = Min AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74 SYMBOL PARAMETER 54/74LS CL = 30 pF CL = 15 pF RL = 3000 RL = 2 kO Min Max Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay CS to On 50 50 10* 10* ns Figs. 3-2, 3-5 '89 has 600 0 to Gnd tPLH tpHL Propagation Delay An to On 60 60 37* 37* ns Figs. 3-2, 3-20 '89 has 600 0 to Gnd trec Recovery Time WE to On 70 30* ns Figs. 3-2, 3-4, 3-5 '89 has 600 0 to Gnd AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL PARAMETER 54/74 Min Max 54/74LS Min UNITS CONDITIONS Max ts (H) t8 (l) Setup Time HIGH or LOW On to WE 40 40 25* 25* ns Fig. 3-13 ts (H) t8 (l) Setup Time HIGH or LOW An to WE 0 0 10* 10' ns Fig. 3-21 th (H) th (l) Hold Time HIGH or LOW On or An to WE 5.0 5.0 0* ns Figs. 3-13, 3-21 tw WE Pulse Width LOW 40 25* ns Fig. 3-21 (l) O· ·Typical Value 4-110 90 CONNECTION DIAGRAM PINOUT A 54/7490A 54LS/74LS90 CP, ~cpo MR'[1: ~NC ~oo IT MRl IT DECADE COUNTER ~ ~03 ~GND ~01 ~02 NCG Vee II MSli1: DESCRIPTION - The '90 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divideby-five counter. It can be connected to operate with a conventional BCD output pattern or it can be connected to provide a 50% duty cycle output. In the BCD mode, HIGH signals on the Master Set (MS) inputs set the outputs to BCD nine. HIGH signals on the Master Reset (MR) inputs force all outputs LOW. For a similar counter with corner power pins, see the 'LS290; for dual versions, see the 'LS390 and 'LS490. ORDERING CODE: See Section 9 PIN PKGS OUT MILITARY GRADE = +5.0 V ±5%, TA = O°C to +70°C LOGIC SYMBOL 6 7 t9 MS COMMERCIAL GRADE Vee MS2IT Vee TA PKG = +5.0 V ±10%, = -55°C to +125°C TYPE Plastic DIP (P) A 7490APC, 74LS90PC Ceramic DIP (D) A 7490ADC, 74LS90DC 5490ADM, 54LS90DM 6A Flatpak (F) A 7490AFC, 74LS90FC 5490AFM, 54LS90FM 31 9A 14--0 cPo 1--0 CP, MR 00 0, 02 03 ~ 2 3 12 9 8 11 vCC = Pin 5 GND = Pin 10 NC = Pins 4, 13 INPUT LOADING/FAN-OUT: See Section 3 for U.L. defintions PIN NAMES 00 +2 Section Clock Input (Active Falling Edge) +5 Section Clock Input (Active Falling Edge) Asynchronous Master Reset Inputs (Active HIGH) Asynchronous Master Set (Preset 9) Inputs (Active HIGH) +2 Section Output' 01-03 +5 Section Outputs CPo CP1 MR1, MR2 MS1, MS2 'The 00 output is guaranteed to drive the full rated fan-oat plus the HIGH/LOW 54174LS (U.L.) HIGH/LOW 2.0/2.0 0.125/1.5 3.0/3.0 0.250/2.0 1.0/1.0 0.5/0.25 1.0/1.0 0.5/0.25 20/10 10/5.0 (2.5) 10/5.0 (2.5) 54174 (U.L.) DESCRIPTION 20/10 ep, input. 4-111 • 90 FU NCTIONAL DESCRIPTION - The '90 is a 4-bit ripple type decade counter. It consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divide-by-five section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-to-LOW clock transition. State changes of the 0 outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not beused for clocks or strobes. The 00 output of each device is designed and specified to drive the rated fan-out plus the CP1 input. A gated AND asynchronous Master Reset (MR1, M R2) is provided which overrides the clocks and resets (clears) all the flip-flops. A gated AN D asy nchronous Master Set (MS1, MS2) is provided which overrides the clocks and the MR inputs and sets the outputs to nine (HLLHl. Since the output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes.: A. BCD Decade (8421) Counter - The CP1 input must be externally connected to the 00 output. The CPo input receives the incoming count and a BCD count sequence is produced. B. Symmetrical Bi-quinary Divide-By-Ten Counter - The 03 output must be externally connected to the CPo input. The input count is then applied to the CP1 input and a divide-by-ten square wave is obtained at output 00. C. Divide-By-Two and Divide-By-Five Counter - No external interconnections are required. The first flip-flop is used as a binary element for the divide-by-two function (CPo as the input and 00 as the outputl. The CP1 input is used to obtain binary divide-by-five operation at the 03 output. MODE SELECTION RESET/SET INPUTS MR1 MR2 BCD COUNT SEQUENCE OUTPUTS OUTPUTS COUNT MS1 MS2 00 01 03 03 H H X H H X L X H X L H L L H L L L L L L L L H L X L X X L X L L X X L X L L X 00 01 02 03 1 2 3 4 L H L H L L L H H L L L L L H L L L L L 5 6 7 8 9 H L H L H L H H L L H H H L L L L L H H 0 Count Count Count Count H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial NOTE: Output 00 is connected to Input CP, for BCD count. LOGIC DIAGRAM MR, MR2 =D J CPo I I so 01- So co Q K So 0--< ~cP CP K -J ~CP Q so co y =D K r-r---OICP Q So co t--I---fl-l-L..J s co Q Y CP, MR, MR2 at- 00 4-112 t- 90 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174LS 54174 PARAMETER Min hH Input HIGH Current, CPo 1.0 0.2 mA hH Input HIGH Current CP1 1.0 0.4 mA lee Power Supply Current 42 15 mA AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See PARAMETER CL RL = 15 pF = 4000 Min = Max, Vee = Max, Vee = Max Vee VIN VIN Max 54174LS CL = 15 Min pF UNITS CONDITIONS Max f max Maximum Count Frequency, CPo 32 32 MHz Figs. 3-1, 3-9 f max Maximum Count Frequency, CP1 16 16 MHz Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CPo to 00 16 18 16 18 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CPo to 03 48 50 48 50 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP1 to 01 16 21 16 21 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP1 to 02 32 35 32 35 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP1 to 03 32 35 32 35 ns Figs. 3-1, 3-9 tPLH Propagation Delay MS to 00 and 03 30 30 ns Figs. 3-1, 3-17 tPHL Propagation Delay MS to 01 and 03 40 40 ns Figs. 3-1, 3-17 tPHL Propagation Delay MR to On 40 40 ns Figs. 3-1, 3-17 AC OPERATING REQUIREMENTS: Vee SYMBOL PARAMETER = +5.0 V, TA = +25°C 54174 Min = 5.5 V = 5.5 V Section 3 for waveforms and load configurations) 54/74 SYMBOL CONDITIONS UNITS Max Max 54/74LS Min UNITS CONDITIONS Max tw (H) CPo Pulse Width HIGH 15 15 ns Fig. 3-9 tw (H) CP1 Pulse Width HIGH 30 30 ns Fig. 3-9 tw (H) MS Pulse Width HIGH 15 15 ns Fig. 3-17 tw (H) MR Pulse Width HIGH 15 15 ns Fig. 3-17 tree Recovery Time, MS to CP 25 25 ns Fig. 3-17 tree Recovery Time, MR to CP 25 25 ns Fig. 3-17 4-113 • 91 CONNECTION DIAGRAMS PINOUT A 54/7491A SO ~ NclI 8-BIT SHIFT REGISTER NCrr ~Q ~A Ncii fillB Ncii Vee ~GND II NC[I t!Jcp NC[I fIlNC PINOUT B Ima NC II Ncii ~Q NCrr ~A ~GND VecG: NC[I ~B NC[I ~cp ~NC NC[I DESCRIPTION - The '91 is a serial-in, serial-out, 8-bit shift register. It is composed of eight RS master/slave flip-flops, input gating and a clock driver. The register is capable of storing and transferring data at clock rates up to 18 MHz while maintaining a typical noise immunity level of 1.0 V. LOGIC SYMBOL (Pinout A only) ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE "~ 11 B 0 9 Plastic DIP(P) A 7491APC Ceramic DIP (D) A 7491ADC 7491ADM 6A B 7491AFC 7491AFM 31 Flatpak (F) CP , 07 13 07 14 9A Vee = Pin 5 GND= Pin 10 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES A, B CP Q7 Eh DESCRIPTION Serial Data Inputs Clock Pulse Input (Active Rising Edge) Data Output Complementary Data Output 4-114 54174 (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 10/10 10/10 91 FUNCTIONAL DESCRIPTION - Single-rail data and input control are gated through inputs A and B and an internal inverter to form the complementary inputs to the first bit of the shift register. Drive for the internal common clock line is provided by an inverting clock driver. Each ofthe inputs(A, B, and CP) appear as only one TTL input load. The clock pulse i nverter/driver causes these circu its to shift information to the output on the positive edge of an input clock pulse, thus enabling the shift register to be fully compatible with other edge-triggered synchronous functions. LOGIC DIAGRAM INPUTS o ::=::(Jor-1 CP----t>.~~------~----~~----~------+-----~------~----~ TRUTH TABLE INPUTS OUTPUT tn tn + 8 A B 07 L L H H L H L H L L L H NOTES: tn = Bit time before clock pulse. In + 8 = Bit time after eight clock pulses. H = HIGH Voltage Level L = LOW Voltage Level TYPICAL INPUT/OUTPUT WAVEFORMS rLJ1 L 1 2 !!I_~IUU17 8 9 !!I_R !JUU1JlJ115 16 17 18 19 !!!_'!!!nnJlJlJL23 24 2S 28 27 CLOCK-PULSE INPUT INPUT A OUTPUTQ L_____ ____ ---1n L _______ ---1.---.L 4-115 91 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER Min Icc Power Supply Current I I UNITS CONDITIONS Max XM XC 50 58 mA Vee = Max' "Icc is measured after the eighth clock pulse with the output open and A and B inputs grounded AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER CL RL = 15 pF = 400 n Min fmax Maximum Shift Frequency tPLH tPHL Propagation Eelay CP to 07 or 07 SYMBOL CONDITIONS Max 10 40 40 AC OPERATING REQUIREMENTS: Vee +5.0 V, TA UNITS MHz Figs. 3-1, 3-8 ns Figs. 3-1, 3-8 = +25°C 54174 PARAMETER Min UNITS CONDITIONS Max ts (H) Setup Time HIGH, D to CP 25 ns Fig. 3-6 th (H) Hold Time HIGH, D to CP 0 ns Fig. 3-6 ts(U Setup Time LOW, D to CP 25 ns Fig. 3-6 0 ns Fig. 3-6 25 ns Fig. 3-8 lh(U Hold Time La"", D to CP tw CP Pulse Width HIGH (H) 4-116 92 CONNECTION DIAGRAM PINOUT A 54/7492A 54LS/74LS92 cp,[I DIVIDE-8Y-TWELVE COUNTER NCIT DESCRIPTION - The '92 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divide-by-six. HIGH signals on the Master Reset (MR) inputs override the clocks and force all outputs to the LOW state. ~cpo ~ TIlNC NC[I TIl 00 NCG ]]0, Vee!} ~GND MRd1 ]]02 MR2(I f!l 03 • LOGIC SYMBOL 14....,-0 cPo ORDERING CODE: See Section 9 PIN PKGS OUT 1....,-0 CP, MR COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE ~II 6 7 Plastic DIP(P) A 7492APC, 74LS92PC Ceramic DIP (D) A 7492ADC, 74LS92DC 5492ADM, 54LS92DM 6A Flatpak (F) A 7492AFC, 74LS92FC 5492AFM, 54LS92FM 31 9A 00 0, 0203 12 11 9 8 Vcc = Pin 5 GND = Pin 10 NC = Pins 2, 3, 4, 13 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION 00 +2 Section Clock Input (Active Falling Edge) +6 Section Clock Input (Active Falling Edge) Asynchronous Master Reset Input (Active HIGH) +2 Section Output- Q1-03 +6 Section Outputs CPo CP1 MR1. MR2 "The 00 output is guaranteed to drive the full rated fan-out plus the 54174 (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 2.0/2.0 0.125/1.5 3.0/3.0 0.250/2.0 1.0/1.0 0.5/0.25 20/10 10/5.0 (2.5) 10/5.0 (2.5) 20/10 cp, input. 4-117 92 FUNCTIONAL DESCRIPTION - The '92 is a 4-bit ripple type divide-by-twelve counter. Each device consists of four master/slave flip-flops which are internally connected to provide a divide-by-two section and a divideby-six section. Each section has a separate clock input which initiates state changes of the counter on the HIGH-toLOW clock transition. State changes of the outputs do not occur simultaneously because of internal ripple delays. Therefore, decoded output signals are subject to decoding spikes and should not be used for clocks or strobes. The 00 output of each device is designed and specified to drive the rated fan-out plus the CP1 input of the device. A gated AND asynchronous Master Reset (MR1, MR2) is provided which overrides the clocks and resets (clears) all the flip-flops. Since tl;le output from the divide-by-two section is not internally connected to the succeeding stages, the devices may be operated in various counting modes: a A. Modulo 12, Divide-By-Twelve Counter- The CP1 input must be externally connected to the 00 output. The CPo input receives the incoming count and OJ produces a symmetrical divide-by-twelve square wave output. B. Divide-By-Two and Divide-By-Six Counter - No external interconnections are required. The first flipflop is used as a binary element for the divide-by-two function. The CP, input is used to obtain divide-by-three operation at the 01 and 02 outputs and divide-by-six operation at the 03 output. TRUTH TABLE MODE SELECTION TABLE RESET INPUTS MR1 MR2 H L H L H H L L 00 01 02 L L L Count Count Count OUTPUT COUNT OUTPUTS 03 L H = HIGH Voltage Level L = LOW Voltage Level 00 01 02 03 0 1 2 3 L H L H L L H H L L L L L L L L 4 5 6 7 L H L H L L L L H H L L L L H H 8 9 10 11 L H L H H H L L L L H H H H H H NOTE: Output 00 connected to Cp, LOGIC DIAGRAM J Q~ CPo ~ CP K LJ .......(l CD - CP K Q J Q Q CD Y Y ~ K Co Q Y cp, - f- c1--_-+--4R Co CD CP CL 4-124 CD CD aD 94 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74 PARAMETER Min lee Power Supply Current UNITS CONDITIONS Max ~ 50 58 XC mA Vee = Max AC CHARACTERISTICS: Vee = 5.0 V, TA = 25°C (See Section 3 for waveforms and load configurations) 54/74 SYMBOL PARAMETER CL = 15 pF RL = 400 n Min UNITS CONDITIONS Max f max Maximum Shift Frequency tPLH tPHL Propagation Delay CP to aD tPLH Propagation Delay, PLn to 35 tPHL Propagation Delay, 40 10 40 40 aD CL to aD MHz Figs. 3-1, 3-8 ns Figs. 3-1, 3-8 ns Figs. 3-1, 3-17 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL 54/74 PARAMETER Min UNITS CONDITIONS Max ts (H) Setup Time HIGH, Ds to CP 35 ns th (H) Hold Time HIGH, Ds to CP 0 ns ts (U Setup Time LOW, Ds to CP 25 ns th (U Hold Time LOW, Ds to CP 0 ns tw (H) CP Pulse Width HIGH 35 ns Fig. 3-8 tw (H) CL Pulse Width HIGH 30 ns Fig. 3-16 tw (H) PL n Pulse Width HIGH 30 ns Fig. 3-16 4-125 Fig. 3-6 Fig. 3-6 • 95 CONNECTION DIAGRAM PINOUT A 54/7495A 54LS/74LS95B OS 4-BIT RIGHT/LEFT SHIFT REGISTER IT ~vcc ~ Poll ~ao p,[! ~a, p,8: ~a, P3[I ~a3 PE IT: ~CP' GNOIT ~CP' DESCRIPTION - The '95 is a 4-bit shift register with serial and parallel synchronous operating modes. The serial shift right and parallel load are activated by separate clock inputs which are selected by a mode control input. The data is transferred from the serial or parallel D inputs to the 0 outputs synchronous with the H IGH-to-LOW transition of the appropriate clock input. LOGIC SYMBOL • • • • SYNCHRONOUS, EXPANDABLE SHIFT RIGHT SYNCHRONOUS SHIFT LEFT CAPABILITY SYNCHRONOUS PARALLEL LOAD SEPARATE SHIFT AND LOAD CLOCK INPUTS i I i 1j PE Po PIN PKGS OUT MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C A 7495APC, 74LS95BPC Ceramic DIP (D) A 7495ADC, 74LS95BDC Flatpak (F) p, P3 8-0 cp, COMMERCIAL GRADE Plastic DIP(P) p, 9-0 cp, ORDERING CODE: See Section 9 PKG 1- OS ao a, a, a3 )3 1t 111 )0 Vcc = Pin 14 = Pin 7 TYPE 9A 5495ADM, 54LS95BDM 6A GND A 7495AFC, 74LS95BFC 5495AFM, 54LS95BFM 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES CP1 CP2 Ds PO-P3 PE 00-03 DESCRIPTION Serial Clock Input (Active Falling Edge) Parallel Clock Input (Active Falling Edge) Serial Data Input Parallel Data Inputs Parallel Enable Input (Active HIGH) Parallel Outputs 4-126 54174 (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 2.0/2.0 0.5/0.25 0.5/0.25 20/10 0.5/0.25 0.5/0.25 1.0/0.5 10/5.0 (2.5) 95 FUNCTIONAL DESCRIPTION - The '95 is a 4-bit shift register with serial and parallel synchronous operating modes. It has a Serial (Os) and four Parallel (Po - P3) Data inputs and four Parallel Data outputs (00 - 03). The serial or parallel mode of operation is controlled by a Parallel Enable input (PE) and two Clock inputs, CP1 and CP2. The serial (right-shift) or parallel data transfers occur synchronous with the HIGH-to-LOWtransition ofthe selected clock input. When PE is HIGH, CP2 is enabled. A HIGH-to-LOW transition on enabled CP2 transfers parallel data from the Po - Pa inputs tothe 00 - 03 outputs. When PE is LOW, CP1 is enabled. AHIGH-to-LOWtransition on enabled CP1 transfers the data from Serial input (Os) to 00 and shifts the data in 00 to 01, 01 to 02, and 02 to 03 respectively (right-shift). A left-shift is accomplished by externally connecting 03 to P2, 02 to P1, and 01 to Po, and operating the '95 in the parallel mode (PE = HIGH), For normal operation, PE should only change states when both Clock inputs are LOW. However, changing PEfrom LOWto HIGH while CP2 is HIGH, orchanging PE from HIGH to LOW while CP1 is HIGH and CP2 is LOW will not cause any changes on the register outputs. MODE SELECT TABLE OPERATING MODE INPUTS PE CP1 CP2 Ds Pn 00 01 02 03 Shift L L L- 1- X X I h X X L H qo qo q1 q1 q2 q2 Parallel Load H X 1. X pn pO P1 P2 P3 1.. L L H H L L L L X X X X X X X X No Change No Change No Change Undetermined L L H H H H H H X X X X X X X X Undetermined No Change Undetermined No Change Mode Change S 1. S 1.. r L S • OUTPUTS I = LOW Voltage Level one set-up time prior to the HIGH-to-LOW clock transition. h = HIGH Voltage Level one set-up time prior to the HIGH-to-LOW clock transition. pn = Lower case letters indicate the state of the referenced input (or outputl one set-up time prior to the HIGH-la-LOW clock Iransilion. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM p, Po P3 PE DS--~---r----------, cp, --II------ILJ CP, --------L.J 03 00 4-127 95 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER Min Icc Max Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, TA PARAMETER = 15 pF = 400 n CL RL fmax Maximum Shift Frequency tPLH tPHL Propagation Delay CP1 or CP2 to an Max 25 21 CONDITIONS mA Vee = +5.0 V, = 15 pF Min Min UNITS CONDITONS 27 27 MHz Figs. 3-1, 3-9 ns Figs. 3-1, 3-9 = +25°C 54174 PARAMETER load configurations) Max 30 TA = Max 54174LS CL 27 32 AC OPERATING REQUIREMENTS: Vee UNITS Max = +25°C (See Section 3 for waveforms and Min SYMBOL Min 63 54174 SYMBOL 54174LS Max 54174LS Min UNITS CONDITIONS Max ts (H) ts(U Setup Time !:!!.GH or LOW Ds or Pn to CPn 15 15 20 20 ns Fig. 3-7 th (H) th'(U Hold Time HIGH or LOW Ds or Pn to CPn 0 0 10 10 ns Fig. 3-7 tw (H) CPn Pulse Width HIGH 20 20 ns Fig. 3-9 ten (U Enable Time LOW PE to CP1 15 25 ns Fig. a tinh (H) Inhibit Time HIGH PE to CP1 5.0 20 ns Fig. a ten (H) Enable Time HIGH PE to Ci5:2 15 25 ns Fig. a tinh (U Inhibit Time LOW PE to CP2 5.0 20 ns Fig. a PE) -- V ;rvm 1\ 1--t.,(LI- cp, t _...J / \ f+---t'"h(HI_V-- j4-tmh(LI_ cp, ;rvm \ ~t,"(HI. t / \ Vm \ Fig. a 4-128 = 1.5 V (1.3 V FOR LSI 96 CONNECTION DIAGRAM PINOUT A 54/7496 5-BIT SHIFT REGISTER DESCRIPTION - The '96 consists of five RS master/slave flip-flops connected to perform parallel-to-serial or serial-to-parallel conversion of binary data. Since both inputs and outputs to all flip-flops are accessible, parallelin/parallel-out or serial-in/serial-out operation may be performed. All flip-flops are simultaneously set to the LOW state by applying a low level voltage to the clear input. This condition may be applied independent of the state of the clock input. • The flip-flops may be independently set to the HIGH state by applying a high level voltage to both the preset input of the specific flip-flop and the common parallel load input. The parallel enable input is provided to allow setting eagh flip-flop independently or setting two or more flip-flops simultaneously. Preset is independent of the state of the clock input or clear input. Transfer of information to the output pins occurs when the clock input goes from a LOW level to a HIGH level. Since the flip-flops are RS master/slave circuits, the proper information must appear at the RS inputs of each flip-flop prior to the rising edge of the clock input voltage waveform. The serial input provides this information to the first flip-flop, while the. outputs of the subsequent flip-flops provide information for the remaining RS inputs. The clear input must be at a HIGH level and the parallel load input must be at a LOW level for serial shifting. LOGIC SYMBOL 8 2 3 4 6 7 PL Po p, P2 P3 P4 9 ORDERING CODE: See Section 9 PKGS COMMERCIAL GRADE MILITARY GRADE PIN r----------------r----------------,PKG Vee = +5.0 V ±10%, Vee = +5.0 V ±5%, OUT TA = -55°C to +1250C TYPE TA = O°C to +70°C Plastic DIP(P) A 7496PC Ceramic DIP (D) A 7496DC Flatpak (F) A 7496FC Os cp 16 15 14 13 11 10 98 5496DM 78 5496FM 4L Vcc = Pin 5 GNO'" Pin 12 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES CP CL Os Po-P4 PL 00-Q4 DESCRIPTION Clock Pulse Input (Active Rising Edge) Asynchronous Clear Input (Active LOW) Serial Data Input Parallel Data Inputs Asynchronous Parallel Load Input (Active HIGH) Parallel Outputs 4-129 54/74 (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 5.0/5.0 10/10 96 MODE SELECT TABLE INPUTS PL Pn CL Os L H H L X H** L ** X L H H H OPERATION' CP X X X X X X H,L J an L H L an Clear; all outputs forced LOW Selectively Preset; each output set to its P input -1 Shift right; Os---..Oo; 00----..01, etc. 'Simultaneous Preset and Clear operations produce undefined states. "To insure proper presetting. P inputs must remain stable while PL is LOW. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM Po P3 00 PL ------------------~~--~----~~--~----~~--~----~~--_r--__, os -----I'~>_ _ _dl~ s o CP CP CP CP o R R CD CD CD CD cp ____-I'~----~----------~----------~----------~----------~ 4-130 R CD 96 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54/74 PARAMETER SYMBOL Min lee Power Supply Current UNITS CONDITIONS Max ~ 68 79 XC mA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25° C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER CL = 15 pF RL=400n Min f max Maximum Shift Frequency tPLH tpHL Propagation Delay CP to an tPLH Propagation Delay, PL or Pn to an tPHL cL to an UNITS CONDITIONS Max 10 Propagation Delay, MHz Figs. 3-1, 3-8 40 40 ns Figs. 3-1, 3-8 35 ns Figs. 3-1, 3-"16 55 ns Figs. 3-1, 3-16 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL 54/54 PARAMETER Min UNITS CONDITIONS Max tw (U CP Pulse Width LOW 35 ns Fig. 3-8 tw (U CL Pulse Width LOW 30 ns Fig. 3-16 tw (H) PL Pulse Width HIGH 30 ns Fig. 3-16 ts (H) Setup Time HIGH, Ds to CP 30 ns Fig. 3-6 th (H) Hold Time HIGH, Ds to CP 0 ns Fig. 3-6 ts (U Setup Time LOW, Ds to CP 30 ns Fig. 3-6 th (U Hold Time LOW, Ds to CP 0 ns Fig. 3-6 4-131 • 97 CONNECTION DIAGRAM PINOUT A 54/7497 SYNCHRONOUS MODULO-64 BIT RATE MULTIPLIER DESCRIPTION - The '97 contains a synchronous 6-stage binary counter and six decoding gates that serve to gate the clock through to the output at a sub-multiple of the input frequency. The output pulse rate, relative to the clock frequency, is determined by signals applied to the Select (So - 55) inputs. Both true and complement outputs are available, along with an enable input for each. A Count Enable input and a Terminal Count output are provided for cascading two or more packages. An asynctlronous Master Reset input prevents counting and resets the counter. ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5:0 V ±10%, TA = -55°C to +125°C s,o:: - :ill S3 S5!I TIJS2 solI ElM!! oz[I :g]Ev ove!: TeE! ~CE ~EZ GNO[! ~CP PKG TYPE Plastic DIP(P) A 7497PC Ceramic DIP (0) A 7497DC 5497DM 7B Flatpak (F) A 7497FC 5497FM 4L 9B INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions SO-55 Ez Ey CE CP MR Oz Oy TC 54/74 (U.L.) DESCRIPTION PIN NAMES HIGH/LOW Rate Select Inputs 5z Enable Input (Active LOW) Oy Enable Input Count Enable Input (Active LOW) Clock Pulse Input (Active Rising Edge) Asynchronous Master Reset Input (Active HIGH) Gated Clock Output (Active LOW) Complement Output (Active HIGH) Terminal Count Output (Active LOW> 1.0/1.0 1.011.0 1.0/1.0 1.0/1.0 2.0/2.0 1.0/1.0 10/10 10/10 10/10 LOGIC SYMBOL i 1YYi i 11 -- ---4-+---r--~+---~~-+---r--~+---t-~~-+-r--~ Ez Oz 4-134 97 MODE AND RATE SELECT TABLE (Note 1) OUTPUTS INPUTS Oy OZ TC X 64 64 H H H L L H H H 1 1 L L L L 64 64 64 64 H H H H 2 4 2 4 8 8 16 L H H L 64 64 64 64 H H L H 32 63 S3 S2 S1 So X X X X X X L L L L L L L L L L L H L L L L L L L L L L L H L L H L L H L L H L L L L L L L H H H H L H H L L H H H L H H L L H H L S5 H L L X L L H L L L L L L L L L L L L L L L L L L NOTES Ey 54 MR CE Ez CLOCK PULSES H 40 1 1 2 3 3 16 1 1 1 1 3 3 3 3 32 63 63 40 1 1 1 1 3 3 4 5 H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial NOTES: 1. Numerals indicate number of pulses per cycle. _ _ 2. This is a simplified illustration of the clear function. CP and Ez also affect the logic level of Oy and Oz. A LOW signal on Ev will cause Ov to remain HIGH. 3. Each rate illustrated assumes 80- S5 are constant throughout the cycle; however, these illustrations in no way prohibit variable-rate operation. 4. Ey is used to inhibit output y. 5. fout = m • !in = (32 + 8) fin = 40 fin = 0.625 fin 64 64 64 PULSE PATTERN TABLE m 1 2 3 4 5 OUTPUT PULSE PATTERN AT Oz 1111111111111111111111111111111011111111111111111111111111111111 1111111111111110111111111111111111111111111111101111111111111111 1111111111111110111111111111111011111111111111101111111111111111 1111111011111111111111101111111111111110111111111111111011111111 1111111011111111111111101111111011111110111111111111111011111111 6 1111111011111110111111101111111111111110111111101111111vl1111111 8 1110111111101111111011111110111111101111111011111110111111101111 10 1110111111101110111011111110111111101111111011101110111111101111 12 1110111011101111111011101110111111101110111011111110111011101111 14 1110111011101110111011101110111111101110111011101110111011101111 16 20 24 28 32 1011101110111011101110111011101110111011101110111011101110111011 1011101010111011101110101011101110111010101110111011101110111011 1010101110101011101010111010101110101011101010111010101110101011 1010101010101011101010101010101110101010101010111010101010101011 010101 .... .... 0101 4-135 97 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54/74 PARAMETER SYMBOL los Output Short Circuit Current lee Power Supply Current UNITS CONDITIONS Min Max -18 -55 mA Vcc = Max 120 mA Vee = Max All Inputs = 4.5 V AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74 PARAMETER SYMBOL CL = 15 pF RL=400n Min UNITS CONDITIONS Max 25 f max Maximum Clock Frequency MHz Figs. 3-1, 3-8 tPLH tPHL Propagation Delay Ez to Oz 18 23 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay Ez to Oy 30 33 ns tpLH tPHL Propagation Delay Ey to Oy 14 10 ns tPLH tPHL Propagation Delay Sn to Oy 23 23 ns tPLH tPHL Propagation Delay Sn to Oz 14 14 ns tPLH tPHL Propagation Delay CP to Oy 39 30 ns tPLH tPHL Propagation Delay CP to Oz 18 26 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay CP to TC 30 33 ns Figs. 3-1, 3-8 tPLH tPHL Propagation Delay CE to TC 20 21 ns Figs. 3-1, 3-5 tpLH Propagation Delay MR to Oy 36 ns tPHL Propagation Delay MR to Oz 23 Figs. 3-1, 3-4 Figs. 3-1, 3-5 Figs. 3-1, 3-4 Figs. 3-1, 3-16 4-136 ns 97 AC OPERATING REQUIREMENTS: Vee SYMBOL = +5.0 V, = +25°C TA 54/74 PARAMETER Min UNITS CONDITIONS Max ts(U Setup Time LOW ~ to CP Rising 25 th (U Hold Time LOW ~ to CP Rising 0 tw CP -10 ns ts (U Setup Time LOW CE to CP Falling 0 tw CP -10 ns th (U Hold Time LOW CE to CP Falling 20 tinh (H) Inhibit Time HIGH CE to CP Falling 10 ns Fig. b toN (H) CP Pulse Width HIGH 20 ns Fig. 3-8 tw (H) MR Pulse Width HIGH 15 ns Fig. 3-16 C! ns Fig. b Fig. , _ T -10 ENABLED--...., , ns ~DISABLED----...... I Vm I .. , , . - - DISABLED--...,...---- ENABLED ..... ~ .... I,(L) .... I-- ~ CP ..l..",, J i+-- IwCP - LJ !+-linn(H) \ Vm = I.SV J Fig. b , ,.,,,) -l<- I f,,, \ --1 ~lwCP T Fig. c 4-137 C , Vm = I.SV ~ 101 CONNECTION DIAGRAMS PINOUT A 54H/74H101 JK EDGE-TRIGGERED FLIP-FLOP (with AND-OR Inputs) DESCRIPTION - The '101 is a high speed JK negative edge-triggered flipflop. The AND-OR gate inputs are inhibited while the clock input is LOW. When the clock goes HIGH, the inputs are enabled and data will be accepted. The logic state of J and K inputs may be allowed to change when the clock pulse is in a HIGH state and the bistable will perform according to the Truth Table as long as minimum setup times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse. TRUTH TABLE INPUTS OUTPUT @tn Asynchronous Input: LOW input-to So sets a to HIGH level Set is independent of clock @ tn + 1 J K a L L H H L H L H an L H On PINOUT B J = (J1A • J1B) + (J2A • J2B) K = (K1A • K1B) + (K2A • K2B) tn = Bit time before clock pulse. tn + 1 = Bit time after clock pulse. H = HIGH Voltage Level L = LOW Voltage Level LOGIC SYMBOL ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vcc = +5.0 V ±10%, TA = -55°C to +1250C PKG TYPE Plastic DIP(P) A 74H101PC Ceramic DIP (0) A 74H101DC 54H101DM 6A B 74H101FC 54H101FM 31 Flatpak (F) 9A Vcc = Pin 14 GND = Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES J1A, J1B, J2A, J2B} K1A, K1B, K2A, K2B CP So a,Q 54174H (U.L.) HIGH/LOW Data Inputs 1.25/1.25 Clock Pulse Input (Active Falling Edge) Direct Set Input (Active LOW> Outputs 0*/3.0 2.5/1.25 12.5/12.5 'CP Sourcing Current, see DC Characteristics Table 4-138 101 LOGIC DIAGRAM - -• .r Q \.. L -I SO K1A~ K1Bo-I"" K2Bo--f'""""""""; Q ...... -»--k: ~~~'. =3- K2A~ "- _ - iL-oJ1B -E~J2A ~ ~J2B _ CP DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54174H PARAMETER SYMBOL hH Input HIGH Current at CP Icc Power Supply Current AC CHARACTERISTICS: Vcc = +5.0 V. TA UNITS Min Max 0 -1.0 mA 38 mA CONDITIONS = Max. Vcp = 2.4 V Vcc = Max. Vcp = 0 V Vcc = +25°C (See Section 3 for waveforms and load configurations) 54/74H SYMBOL CL = 25 pF RL = 280 n PARAMETER Min UNITS CONDITIONS Max fmax Maximum Clock Frequency MHz Figs. 3-1. 3-9 tPLH tPHL Propagation Delay CP to or Q 15 20 ns Figs. 3-1. 3-9 tPLH tPHL Propagation Delay So to or Q 12 20 ns Vcp;?: 2.0 V Figs. 3-1. 3-10 tPLH tPHL Propagation Delay So to or Q 12 35 ns Vcp:5 0.8 V Figs. 3-1. 3-10 a a a AC OPERATING REQUIREMENTS: Vcc SYMBOL 40 = +5.0 V. TA = +25°C 54174H PARAMETER Min UNITS CONDITIONS Max ts (H) ts(U Setup Time I n or Kn to CP 10 13 ns th (H) th (U Hold Time I n or Kn to CP 0 0 ns CP Pulse Width 10 15 ns Fig. 3-9 So Pulse Width LOW 16 ns Fig. 3-10 tw (H) tw(U tw (U 4-139 Fig. 3-7 102 CONNECTION DIAGRAMS PINOUT A 54H/74H102 JK EDGE-TRIGGERED FLIP-FLOP (With AND Inputs) DESCRIPTION - The '102 is a high speed JK negative edge-triggered flipflop. It features gated J K inputs and an asynchronous Clear input. The AND gate inputs are inhibited while the clock input is LOW. When the clock goes HIGH, the inputs are enabled and data will be accepted. The logic state of J and K inputs may be allowed to change when the clock pulse is in a HIGH state and the bistable will perform according to the Truth Table as long as minimum setup times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse. Asynchronous Inputs: LOW input to So sets to HIGH level LOW input to CD sets to LOW level Clear and Set are independent of clock Simultaneous LOW on CD and So makes both and El HIGH J '= (J1A • J1e) + (hA • he) TRUTH TABLE a a INPUTS OUTPUT @tn @ tn J K a L L H H L H L H On L H an PINOUT B +1 a K = (K1A • K1e) + (K2A • K2e) tn = Bit time before clock pulse. tn + 1 = Bit time alter clock pulse. H = HIGH Voltage Level L = LOW Voltage Level LOGIC SYMBOL ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE ______________ -+______________ ~ ~ Vee = +5.0 V ±5%, TA = O°C to +70°C Plastic DIP(P) A 74H102PC Ceramic DIP(D) A 74H102DC Flatpa~ (F) B Vee 74H102FC TA = +5.0 V ±10% = -55°C to +1250C PKG TYPE 9A 54H102DM 54H102FM Vee = Pin 14 (4) GNO = Pin 7 (11) 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES J" J2, J3 } Kl, K2, K3 CP CD So o,a DESCRIPTION Data Inputs 54174H HIGH/LOW 1.25/1.25 Clock Pulse Input (Active Falling Edge) Direct Clear Input (Active LOW) Dir.ect Set Input (Active LOW) Outputs .cp Sourcing Current, see DC Characteristics Table 4-140 0*/3.0 2.5/1~25 2.5/1.25 12.5/12.5 102 LOGIC DIAGRAM §o K1 K2 K3 ... J"' I- Q I -'4 I I ...... - - - .r .A Q 1 Co ~ J1- I -14 ;.--a #- - ~ ~ .r - , - - i-----a .J I~ 'l J2 J3 CP DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74H PARAMETER hH Input HIGH Current at CP lee Power Supply Current UNITS CONDITIONS -1.0 mA Vce = Max, Vcp = 2.4 V 38 mA Vce = Max, Vep= 0 V Min Max 0 AC CHARACTERISTICS: Vce = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74H SYMBOL PARAMETER CL = 25 pF RL=280n Min fmax Maximum Clock Frequency tPLH tPHL Propagation Delay CP to Q or Q tPLH tPHL tPLH tPHL UNITS CONDITIONS Max 40 MHz Figs. 3-1, 3-9 15 20 ns Figs. 3-1, 3-9 Propagation Delay Co or So to Q or Q 12 20 ns Vcp;::: 2.0 V Figs. 3-1, 3-10 Propagation Delay CD or So to Q or Q 12 35 ns Vcp :50.8 V Figs. 3-1, 3-10 AC OPERATING REQUIREMENTS: Vcc = +5.0 V, TA = +25°C SYMBOL 54/74H PARAMETER Min UNITS CONDITIONS Max ts (H) ts(U In or Kn to CP 10 13 ns tt'(H) th(U Hold Time In or Kn to CP 0 0 ns tw (H) tw (U CP Pulse Width 10 15 ns Fig. 3-9 tw (U CD or So Pulse Width LOW 16 ns Fig. 3-10 Setup Time 4-141 Fig. 3-7 • 103 CONNECTION DIAGRAM PINOUT A 54H/74H103 DUAL JK EDGE-TRIGGERED FLIP-FLOP (With Separate Clears and Clocks) ~Pt Cl'1IT ~011I DESCRIPTION - The '103 is a high speed JK negative edge-triggered fHpflop. It features individual J, K, clock and asynchronous clear inputs to each flip-flop. When the clock goes HIGH, the inputs are enabled and data will be accepted. The logic state of J and K inputs may be allowed to change when the clock pulse is in a HIGH state and the bistable will perform according to the Truth Table as long as minimum setup times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse. INPUTS OUTPUT @tn J K 0 L L H H L H L H On L H an + - IT -----.J JdI 1 tn = Bit time before clock pulse. tn + 1 = Bit time after clock pulse. H = HIGH Voltage Level L = LOW Voltage Level L- - o~ J COMMERCIAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA =O°C to +70°C Vcc = +5.0 V ±10%, TA = -55°C to +125°C L J ~ 1!!. K PKG TYPE A 74H103PC Ceramic DIP (0) A 74H103DC 54H103DM 6A Flatpak (F) A 74H103FC 54H103FM 31 Or-9 ~ CP 3- K Co 0 Plastic DIP(P) CD I 2 9A Vcc = Pin 14 GND = Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES J1, .12, K1, K2 CP1, CP:! Co1, CD2 01,02, Q1, Q2 ~a2 LOGIC SYMBOL 1-0 CP OUT ~GND ~~o- L~K2 CP2!I ORDERING CODE: See Section 9 PKGS ~a1 e02!I rJcoa-1-- ~a2 14- PIN ~a1 Asynchronous Input: LOW input to CD sets 0 to LOW level Clear is independent of clock TRUTH TABLE @tn K1IT Vee ~J1 Data Inputs Clock Pulse Inputs (Active Falling Edge) Direct Clear Inputs (Active LOW> Outputs 'CP Sourcing Current. see DC Characteristics Table 4-142 54/74H (U.L.) HIGH/LOW 1.25/1.25 0*/3.0 2.5/1.25 12.5/12.5 Op....8 103 LOGIC DIAGRAM (one half shown) Ii Q -"-'~ K - r=:3 I "' ...... 1 - ~ I~ - ~ "'-- ..J [ 1 ~ CO -. r .r I \.. I I ,.. J ~ DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174H PARAMETER hH Input HIGH Current at CP Icc Power Supply Current AC CHARACTERISTICS: Vcc = +5.0 V, TA CONDITIONS UNITS Min Max 0 -1.0 mA Vcc 76 mA Vcc = +25°C (See Section 3 for waveforms and = Max, = Max, Vcp Vcp = 2.4 V =0 V load configurations) 54174H SYMBOL PARAMETER CL RL = 25 pF = 280 n Min f max Maximum Clock Frequency tPLH tPHL Propagation Delay CPn to an or an tPLH tPHL tPLH tPHL CONDITIONS Max MHz Figs. 3-1, 3-9 15 20 ns Figs. 3-1, 3-9 Propagation Delay COn to an or an 12 20 ns Vcp ~ 2.0 V Figs. 3-1, 3-10 Propagation Delay COn to an or an 12 35 ns Vcp:5 0.8 V Figs. 3-1, 3-10 AC OPERATING REQUIREMENTS: VCC SYMBOL UNITS 40 = +5.0 V, = +25°C TA 54174H PARAMETER Min UNITS CONDITIONS Max ts (H) ts(U Setup Time In or Kn to CPn 10 13 ns th (H) th (U Hold Time In or Kn to CPn 0 0 ns tw (H) tw (U CPn Pulse Width 10 15 ns Fig. 3-9 tw (U COn Pulse Width LOW 16 ns Fig. 3-10 4-143 Fig. 3-7 106 CONNECTION DIAGRAM PINOUT A 54H/74H106 cp,IT DUAL JK EDGE-TRIGGERED FLIP-FLOP (With Separate Sets, Clear and Clocks) DESCRIPTION - The '106 is a high speed JK negative edge-triggered flipflop. It features individual J, K, clock and asynchronous set and clear inputs to each flip-flop. When the clock goes HIGH, the inputs are enabled and data will be accepted. The logic state of J and K inputs may be allowed to change when the clock pulse is in a HIGH state and the bistable will perform according to the Truth Table as long as minimum setup times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse. INPUTS OUTPUl @tn @tn + 1 J K 0 L L H H L H L On L H an H so,l! Co, I! CP [.,K QoQP-- ~Q, J'/1 ~Q' 2lJGND -----I ,.-----, TIJ K2 CP21I hIL~Jt TI]Q2 f-c CP vcc[[ 502 II -!fJ co Q C02[! ~Q2 T.-- ~J2 Asynchronous Inp~ts: LOW input to So sets 0 to HIGH level LOW input to Co sets 0 to LOW level Clear and Set are independent of clock Simultaneous LOW on Co and SO makes both 0 and a HIGH In = Bit time before clock pulse. tn + , = Bit time after clock pulse. H = HIGH Voltage Level L = LOW Voltage Level TRUTH TABLE - ~K' -~~ ;J COQr--_ LOGIC SYMBOL 7 2 4- J So Q t"-15 !.. J So Q t"-11 PIN PKGS OUT COMMERCIAL GRADE = +5.0 V ±5%, = O°C to +70°C Vee TA 8-<1 CP 1-< CP ORDERING CODE: See Section 9 MILITARY GRADE = +5.0 V ±10%, = -55°C to +125°C Vee TA PKG TYPE Plastic DIP(P) A 74H106PC Ceramic DIP (D) A 74H106DC 54H106DM 68 Flatpak (F) A 74H106FC 54H106FM 4L 18- K CD Q ~14 :!! K CD Q ~10 T 3 98 Vcc = Pin 5 GND = Pin 13 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES J1, J2, Kl, K2 CP1, CP2 COl, CO2 501,502 01,02, 01, Q2 DESCRIPTION Data Inputs Clock Pulse Inputs (Active Falling Edge) Direct Clear Inputs (Active LOW) Direct Set Inputs (Active LOW) Outputs .cp Sourcing Current, see OC Characteristics Table 4-144 54174H (U.L.) HIGH/LOW 1.25/1.25 0*/3.0 2.5/1.25 2.5/1.25 12.5/12.5 106 LOGIC DIAGRAM (one half shown) Q Q .r ,. r=:3- E:::- -\. -I ...... I 1 ~~ ~ ~ So K I FI~I - ~ - " I I CD 1 .r - -\. I 1 J • l DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL hH Icc 54/74H PARAMETER Input HIGH Current at CPn Max 0 -1.0 mA Vcc 76 mA Vcc Power Supply Current AC CHARACTERISTICS: Vcc = +5.0 V, TA CONDITIONS UNITS Min = +25°C (S~e Section = Max, = Max, Vcp Vcp = 2.4 V =0 V 3 for waveforms and load configurations) 54/74H SYMBOL CL = 25 pF RL = 280 n PARAMETER Min f max Maximum Clock Frequency tPLH tPHL Propagation Delay CPn to an or On tPLH tPHL tPLH tPHL CONDITIONS Max MHz Figs. 3-1, 3-9 15 20 n~ Figs. 3-1, 3-9 Propagation Delay COn or SOn to an or an 12 20 ns Vcp ~ 2.0V Figs. 3-1, 3-10 ~ropag~tion Delay COn or SOn to an or an 12 35 ns Vcp:5 0.8 V Figs. 3-1, 3-10 ·AC OPERATING REQUIREMENTS: Vcc SYMBOL UNITS 40 = +5.0 V, TA = +25°C 54174H PARAMETER Min UNITS CONDITIONS Max ts (H) ts (U Setup Time In or Kn to CPn 10 13 ns th (H) th (U Hold Time In or Kn to CPn 0 0 ns tw (H) tw (U CPn Pulse Width 10 15 ns Fig. 3-9 tw (U COn or SOn Pulse Width LOW 16 ns Fig. 3-10 4-145 Fig. 3-7 107 CONNECTION DIAGRAM PINOUT A 54/74107 54LS/74LS107 DUAL JK FLIP-FLOP (With Separate Clears and Clocks) DESCRIPTION - The '107 dual JK master/slave flip-flops have a separate clock for each flip-flop. Inputs to the master section are controlled by the clock pulse. The clock pulse also regulates the state of the coupling transistors which connect the master and slave sections. The sequence of operation is as follows: 1) isolate slave from master; 2) enter information from J and K inputs to master; 3) disable J and K inputs; 4) transfer information from master to slave. TRUTH TABLE CLOCK WAVEFORM INPUTS OUTPUT @tn HIGH @ tn + 1 J K 0 L L H H L H L H On L H an LOW LOGIC SYMBOL H = HIGH Voltage Level L = LOW Voltage Level In = Billime before clock pulse. In + 1 = Billime afler clock pulse. Asynchronous Input: LOW input to Co sets 0 to LOW level Clear is independent of clock The 'LS107 offers individual J, K, clear, and clock inputs. These dual flip-flops are designed so that when the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the clock is HIGH and the bistable will perform according tothe Truth Table as long as minimum setup times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse. Q J 3 8 J Q 5 4 ORDERING CODE: See Section 9 PIN PKGS OUT 13 COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +125°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74107PC, 74LS107PC Ceramic DIP -3 K Ceramic DIP(D) A 74H108DC 54H108DM SA Flatpak (F) A 74H108FC 54H108FM 31 = Pin 14 = Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES CD S01, S02 01, 02, 01, 02 Data Inputs Clock Pulse Input (Active Falling Edge) Direct Clear Input (Active LOW) Direct Set Inputs (Active LOW) Outputs 'CP Sourcing Current. see DC Characteristics Table 4-149 CD y Y Vec 54/74H (U.L.) HIGH/LOW 1.25/1.25 O*/S.O 5.0/2.5 2.5/1.25 12.5/12.5 Q -6 CP !... TYPE 9A 74H108PC ---0 1- K Co PKG 1!J So GND J1, J2, K1,K2 CP :N)S02 a ORDERING CODE: See Section 9 PKGS - oCo K cpp Loso Jr- LOGIC SYMBOL 4- PIN t ~~ a a INPUTS OUTPUT @tn 1 odl Asynchronous Inputs: LOW input to So sets to HIGH level LOW input to CD sets to LOW level Clear and Set are independent of clock Simultaneous LOW on CD and So makes both and Q HIGH TRUTH TABLE EJvcc a,II --.... -£OSo Jr- LTIl SOl cp arC! ~OCoK liI co Jll1 -, ---v:rrI J2 Q 1>-5 • 108 LOGIC DIAGRAM (one half shown) ~----------------------~~-oQ Qo-~------------------------, TO OTHER ,FLIP-FLOP SoO-4-~~~~--+---~---------+---+---------, .---------___1~--~------___11_+--_+_--_< 1-+-+---0 CD Ko---~ DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE .(unless otherwise specified) SYMBOL 54/74H PARAMETER IIH Input HIGH Current at CP Icc Power Supply Current AC CHARACTERISTICS: Vcc = +5.0 V, TA UNITS CONDITIONS -1.0 mA Vcc = Max, Vcp = 2.4 V 76 mA Vcc = Max, Vcp = 0 V Min Max 0 = +25°C (See Section 3 for waveforms and load configurations) 54174H SYMBOL CL = 25 pF RL = 280 n PARAMETER Min UNITS CONDITIONS Max f max Maximum Clock Frequency MHz Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP to an or On 15 20 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay Co or Son to an or On 12 20 ns Vcp = ~ 2.0 V Figs. 3-1,3-10 tPLH tPHL Propagation Delay CD or SOn to an or an 12 35 ns Vcp =:5 0.8 V Figs. 3-1, 3-10 AC OPERATING REQUIREMENTS: Vcc SYMBOL 40 = +5.0 V, TA = +25°C 54/74H PARAMETER Min ts (H) UNITS CONDITIONS Max ts(L) Setup Time I n or Kn to CP 10 13 ns th (H) th (L) Hold Time I n or Kn to CP 0 0 ns tw (H) tw (L) CP Pulse Width 10 15 ns Fig. 3-9 tw Co or SOn Pulse Width LOW 16 ns Fig. 3-10 (L) 4-150 Fig. 3-7 109 CONNECTION DIAGRAM PINOUT A 548/748109 54L8/74L8109 CO, DESCRIPTION - The '109 consists of two high speed, completely independent transition clocked J Kflip-flops. The clocki~g operation is independent of rise and fall times ofthe clock waveform. The JK design allows operation as a D flip-flop (refer to '74 data sheet! by connecting theJ and K inputs together. The '109 is functionally equivalent to the 9024. TRUTH TABLE INPUTS OUTPUTS @ tn @ tn + 1 J K L L H H H L H L 0 0 No Change L H H L Toggles ~vcc [I ~rJ, IT - J , coo- ~C02 DUAL JK POSITIVE EDGE-TRIGGERED FLIP-FLOP Kp- So, [] --< So, CP r-- 0, [! - J GNOI! 1 r! 4- CP PIN PKGS OUT 3-< K CD 0 COMMERCIAL GRADE MILITARY GRADE = +5.0 V ±5%, TA = O°C to +70°C Vee Vee TA PKG = +5.0 V ±10%, = -55°C to +125°C A Ceramic DI.pm) A 74S109DC, 74LS109DC 54S109DM, 54LS109DM SA A 74S109FC, 74LS109FC 54S109FM,54LS109FM 31 Flatpak (F) 74S109PC, 74LS109PC ~CP2 ~02 L PJ 9A ~ J !! CP ~ K So 0 CD 1~ T, Vcc = Pin 16 = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions Jl, J2, Kl, K2 CP1, CP2 COl, CO2 SOl, S02 01,02, ell. Q2 DESCRIPTION 54174S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW Data Inputs Clock Pulse Inputs (Active Rising Edge) Direct Clear Inputs (Active LOW) Direct Set Inputs (Active LOW) Outputs 1.25/1.25 2.5/2.5 5.0/5.0 2.5/2.5 25/12.5 0.5/0.25 1.0/0.5 1.0/1.0 1.0/0.5 10/5.0 (2.5) 4-151 r- 1O 0 ~9 GND PIN NAMES Q2 ~ !! TYPE Plastic DIP(P) K2 LOGIC SYMBOL 2- J So 0 ORDERING CODE: See Section 9 rm So p- ~S02 0, <:i,1! --<~ Asynchronous Inputs: LOW input to So sets 0 to HIGH level LOW input to Co sets 0 to LOW level Clear and Set are independent of clock Simultaneous LOW on Co and So makes both 0 and Q HIGH tn = Bit time before clock pulse. tn + , = Bit time after clock pulse. H = HIGH Voltage Level L = LOW Voltage Level r-- ~J2 Rd1: --< K, cp,~ - cp, 109 LOGIC DIAGRAM (one half shown) So----------+-~~ Co ----_-+----1 CP ------1-+.... DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74S PARAMETER Min Icc Max Power Supply Current AC CHARACTERISTICS: Vec = +5.0 V, TA PARAMETER CL RL = 15 pF = 280 0 Min Max Maximum Clock Frequency tPLH tPHL Propagation Delay CPn to an or an 9.0 11 tPLH tPHL Propagation Delay COn or SOn to an or an tPLH tPHL Propagation Delay COn or SOn to an or an 75 8.0 CONDITIONS mA Vcc Vcp =0 V load configurations) = 15 pF CL Min UNITS CONDITIONS Max MHz Figs. 3-1, 3-8 25 35 ns Figs. 3-1, 3-8 6.0 12 15 35 ns Vcp ~ 2.0 V Figs. 3-1, 3-10 6.0 12 15 24 ns Vcp:5 0.8 V Figs. 3-1, 3-10 = +25°C 54/74S Min = Max, 54174LS 30 AC OPERATING REQUIREMENTS: Vcc "" +5.0 V, TA PARAMETER UNITS Max = +25°C (See Section 3 for waveforms and fmax SYMBOL Min 52 54/74S SYMBOL 54174LS Max 54/74LS Min UNITS CONDITIONS Max ts (H) ts (U . Setup Time In or Kn to CPn 6.0 6.0 18 18 ns th (H) th (U Hold Time In or Kn to CPn 0 0 0 0 ns tw (H) tw (U CPn Pulse Width 7.0 6.5 20 13.5 ns Fig. 3-8 tw (U COn or SOn Pulse Width LOW 6.0 15 ns Fig. 3-10 4-152 Fig.3-6 112 CONNECTION DIAGRAM PINOUT A 545/745112 54L5/74L5112 DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP DESCRIPTION - The '112 features individual J, K, Clock and asynchronous Set and Clear inputs to each flipcflop. When the clock goes HIGH, the inputs are enabled and data will be accepted. The logic level of the J and K inputs may change when the clock is HIGH and the bistable will perform according to the Truth Table as long as minimum setup and hold times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse. TRUTH TABLE INPUTS OUTPUT @ tn @ tn J K a L L H H L H L H an L H an + 1 • Asynchronous Inputs: LOW input to So sets a to HIGH level LOW input to Co sets a to LOW level Clear and Set are independent of clock Simultaneous LOW on Co and So makes both a and Q HIGH LOGIC SYMBOL tn = Bit time before clock pulse. tn + 1 = Bit time after clock pulse. H = HIGH Voltage Level L = LOW Voltage Level 10 4 3 SD 5 Q 11 J SD Q 9 ORDERING CODE: See Section 9 PIN PKGS OUT Plastic DIP(P) A 2 COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C 7 PKG 74S112PC, 74LS112PC TYPE 98 14 15 Vcc = Pin 16 GND = Pin 8 Ceramic DIP (0) A 74S112DC, 74LS112DC 54S112DM,54LS112DM 68 Flatpak (F) A 74S112FC, 74LS112FC 54S112FM,54LS112FM 4L INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES h J2, Kl, K2 CP1, CP2 COl, CO2 501,502 01, 02, 01, 02 DESCRIPTION 54174S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW Data Inputs Clock Pulse Inputs (Active Falling Edge) Direct Clear Inputs (Active LOW) Direct Set Inputs (Active LOW) Outputs 1.25/1.0 2.5/2.5 2.5/4.375 2.5/4.375 25/12.5 0.5/0.25 2.0/0.5 1.5/0.5 1.5/0.5 10/5.0 (2.5) 4-153 112 LOGIC DIAGRAM (one half shown) Q 0--+--0< _----0 So coo----~ 1-------oK DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER 54174S Min Icc Power Supply Current Max 54174LS Min B.O 50 UNITS CONDITIONS Max mA Vee = Max, Vep = 0 V AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174S SYMBOL PARAMETER 54174LS CL = 15 pF CL = 15 pF RL = 2BO n Min Max BO f max Maximum Clock Frequency tPLH tpHL Propagation Delay CPn to an or an 7.0 7.0 tPLH tpHL Propagation Delay COn or SOn to an or an 7.0 7.0 Min UNITS CONDITIONS Max 30 MHz Figs. 3-1, 3-9 16 24 ns Figs. 3-1, 3-9 16 24 ns Figs. 3-1, 3-10 ACOPERATING REQUIREMENTS: Vee = +5.0 V, TA =+25°C SYMBOL PARAMETER 54/74S Min ts (H) Max 54/74LS Min UNITS CONDITIONS Max ts(U Setup Time In or Kn to CPn 7.0 7.0 20 15 ns th (H) th (U Hold Time I n or Kn to CPn 0 0 0 0 ns tw (H) tw (U CPn Pulse Width 6.0 6.5 20 15 ns Fig. 3-9 tw (U COn or SOn Pulse Width LOW B.O 15 ns Fig. 3-10 4-154 Fig. 3-7 113 CONNECTION DIAGRAM PINOUT A 548/748113 54L8/74L8113 cp,u DUAL JK EDGE-TRIGGERED FLIP-FLOP K,[l J,[1 DESCRIPTION - The '113 offers individual J, K, Set and Clock inputs. When the clock goes HIGH the inputs are enabled and data may be entered. The logic level of the J and K inputs may be changed when the clock pulse is HIGH and the bistable will perform according to the Truth Table as long as minimum setup and hold times are observed. Input data is transferred to the outputs on the falling edge of the clock pulse. TRUTH TABLE INPUTS OUTPUT @tn @ tn J K a L L H H L H L H an L H On + 1 Q'E! GNOIT PKGS OUT ~K2 rm tn = Bit time before clock pulse. tn + , = Bit time after clock pulse. H = HIGH Voltage Level L = LOW Voltage Level 1tl ~ ~ ~Q2 ~a2 LOGIC SYMBOL '0' 10 4 COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG 1 CP 2 K 11,CP" Q H 13-- -....J==:;- - Q '-~ P- J ~Q k=* 110 K c'f; DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER 54174S Min lee Power Supply Current Max 54174LS Min 8.0 50 UNITS CONDITIONS Max mA Vee = Max, Vep = 0 V AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174S SYMBOL PARAMETER 54174LS CL =15ipF CL = 15 pF RL = 280 n Min Max f max Maximum Clock Frequency 80 tPLH tPHL Propagation Delay CPn to On or Cin 7.0 7.0 tPLH tpHL !:r0pagation ~Iay SOn to On or On 7.0 7.0 Min UNITS CONDITIONS Max 30 MHz Figs. 3-1, 3-9 16 24 ns Figs. 3-1, 3-9 16 24 ns Figs. 3-1, 3-10 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL PARAMETER 54174S Min Max 54/74LS Min UNITS CONDITIONS Max ts (H) ta(U Setup Time In or Kn to CPn 7.0 7.0 20 15 ns th (H) th (U Hold Time I n or Kn to CPn 0 0 0 0 ns tw (H) tw (U CPn Pulse Width 6.0 6.5 20 15 ns Fig. 3-9 tw (U SOn Pulse Width LOW 8.0 15 ns Fig. 3-10 4-156 Fig. 3-7 114 CONNECTION DIAGRAM PINOUT A 545/745114 54L5/74L5114 DUAL JK NEGATIVE EDGE-TRIGGERED FLIP-FLOP coO: K1U (With Common Clocks and Clears) J,[} -S01l..! ~ DESCRIPTION - The '114 features individual J, K and set inputs and common clock and common clear inputs. When the clock goes HIGH the inputs are enabled and data will be accepted. The logic level of the J and K inputs may be allowed to change when the Clock Pulse is HIGH and the bistable will perform according to the truth table a;; long as the minimum setup times are observed. Input data is transferred to the outputs on the negative-going edge of the clock pulse. TRUTH TABLE @ tn + 1 J K a L L H H L H L H an L H an PKGS OUT Plastic DIP(P) A f WJ"~IfrL co CD 02 t 3- J MILITARY GRADE = +5.0 V ±5%, = O°C to +70°C = +5.0 V ±10%, = -55°C to +125°C 74S114PC, 74LS114PC TYPE So }]02 'r 11 02 1b 1 9A 0f.-5 >----c cp 1.!J So a P-6 B. K Co ? ? Vcc = Pin 14 = Pin 7 GND Ceramic DIP (D) A 74S114DC, 74LS114DC 54S114DM,54LS114DM 6A Flatpak (F) A 74S114FC, 74LS114FC 54S114FM, 54LS114FM 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES h J2, K1, K2 CP CD S01, S02 01, 02, 01,02 DESCRIPTION Data Inputs Clock Pulse Input (Active Falling Edge) Direct Clear Input (Active LOW) Direct Set Inputs (Active LOW) Outputs 4-157 0-9 L-c CP 2-K Co PKG Vee TA S02 02 b 13 - Vee :ill J2 LfC'~ IT GNO[2 = HIGH Voltage Level L = LOW Voltage Level tn = Bit time before clock pulse. tn + 1 = Bit time after clock pulse. TA :illK2 01 UJ '=;. ~ ..,..,.,..!.QJ S02 H COMMERCIAL GRADE S01 ~' LOGIC SYMBOL ORDERING CODE: See Section 9 PIN 0, Asynchronous Inputs: LOW input to So sets a to HIGH level LOW input to CD sets a to LOW level Clear and Set are independent of clock Simultaneous LOW on CD and So makes both a and 0 HIGH INPUTS OUTPUT @ tn 0,[[ ~vcc TIlCi> 54174S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.25/1.0 5.0/5.0 5.0/8.75 2.5/4.375 25/12.5 0.5/0.25 2.0/0.5 1.5/0.5 1.5/0.5 10/5.0 (2.5) a 0-8 • 114 LOGIC DIAGRAM (one half shown) - - ~ - Q r '--X:- ~ ~Q .Co TO OTHER FLlp·FLOP I ~ k* I I J So K Jp DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174S PARAMETER Min lee Power Supply Current AC CHARACTERISTICS: Vee Max 54174LS Min 8.0 50 = +5.0 V, TA CL RL PARAMETER = 15 pF = 280 n Min Max fmax Maximum Clock Frequency tPLH tPHL Propagation_Delay CP to a ora 7.0 7.0 tPLH tpHL Propagation Delay Co or SOn to a or 7.0 7.0 SYMBOL 80 a AC OPERATING REQUIREMENTS: Ve PARAMETER mA Vee = +25°C (See Section 3 for waveforms and 54174S SYMBOL CONDITIONS UNITS Max = Max, Vep = 0 V lOad configurations) 54174LS CL = 15 pF Min UNITS CONDITIONS Max MHz Figs. 3-1, 3-9 16 24 ns Figs. 3-1, 3-9 16 24 ns Figs. 3-1, 3-10 30 = +5.0 V, TA = +25°C 54174S Min Max 54/74LS Min UNITS CONDITIONS Max ts (H) ts (l) Setup Time_ In or Kn to CP 7.0 7.0 20 15 ns Fig. 3-7 th (H) th (l) Hold Time I n or Kn to CP 0 0 0 0 ns Fig. 3-7 tw (H) tw (l) CP Pulse Width 6.0 6.5 20 15 ns Fig. 3-9 tw Co or SOn Pulse Width 8.0 15 ns Fig. 3-10 4-158 121 CONNECTION DIAGRAM PINOUT A 54/74121 MONOSTABLE MULTIVIBRATOR - orr DESCRIPTION - The '121 features positive and negative dc level triggering inputs and complementary outputs. Input pin 5 directly activates a Schmitt circuit which provides temperature compensated level detection, increases immunity to positive-going noise and assures jitter-free response to slowly rising triggers. Elvcc NC [I TIlNC AdI AdI ~NC ~RXCX BIT ~cx ~RINT orr ~NC GNO[2 When triggering occurs, internal feedback latches the circuit, prevents retriggering while the output pulse is in progress and increases immunity to negative-going noise. Noise immunity is typically 1.2 V at the inputs and 1.5 V on Vee. LOGIC SYMBOL Output pulse width stability is primarily a function of the external Rx and Cx chosen for the application. A 2 kO internal resistor is provided for optional use where output pulse width stability requirements are less stringent. Maximum duty cycle capability ranges from 67% with a 2 kO resistor to 90% with a 40 kO resistor. Duty cycles beyond this range tend to reduce the output pulse width. Otherwise, output pulse width follows the relationship: tw = 0.69 RxCx yr 9- ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C MILITARY GRADE Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A Ceramic DIP (D) A 74121DC 54121DM 6A Flatpak (F) A 74121FC 54121FM 31 74121PC RxCx Cx 0-6 RINT 1~ 4- 9A Vec = Pin 14 GND = Pin 7 NC = Pins 2,8,12,13 INPUT LOADING/FAN-OUT: See Section 3 for U.L.definitions PIN NAMES A1, A2 B a,a o 5B DESCRIPTION Trigger Inputs (Active Falling Edge) Schmitt Trigger Input (Active Rising Edge) Outputs 4-159 54/74 (U.L.) HIGH/LOW 1.0/1.0 2.0/2.0 20110 0--1 • 121 TRIGGERING TRUTH TABLE A1 INPUTS k B H RESPONSE I H L X X L .r L ""l. L X X 1- H L H No Trigger Trigger Trigger ....r L L- X X L- H '- L H NOTE: Triggering occurs only when the is output is HIGH (not In timing cycle) and one of the above triggering situations is satisfied. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial No Trigger No Trigger Trigger No Trigger No Trigger Trigger DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54174 PARAMETER SYMBOL Min VT+ Positive-going Threshold Voltage at An or B Inputs VT- Negative-going Threshold Voltage at An or B Inputs los Output Short Circuit Current Icc Power Supply Current CONDITIONS V Vee = Min V Vee = Min -55 -55 rnA Vee = Max 25 40 rnA Vee = Max 2.0 0.8 XM XC -20 -18 I Quiescent State I UNITS Max Fired State AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174 PARAMETER SYMBOL UNITS CL = 15 pF Min Max 15 55 ns 25 70 ns 20 65 ns 30 80 ns CONDITIONS tPLH Propagation Delay Bto Q tPLH An to Q tPHL Propagation Delay B to 0 tPHL An to Q tw Pulse Width Using Internal Timing Resistor 70 150 ns Cx = 80 pF tw Pulse Width with Zero Timing Capacitance 20 50 ns Cx = 0 pF tw Pulse Width Using External Timing Resistor 600 800 ns Cx = 100 pF 6.0 8.0 ms Rx=10kO Pin 9 = Open Fig. 3-1, a Cx = 1.0j.lF tHOLD Minimum Duration of Trigger Pulse 50 ns ex = 80 pF, Rx = Open Propagation Delay Propagation Delay 4-160 Cx = 80 pF Fig. 3-1, Fig. a Rx = Open Fig. 3-1 Fig. a Pin 9 = Vee Pin 9 = Vee, Fig. a 121 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA.= +25°C SYBMOL 54/74 PARAMETER Min Vr-f Input Pulse Rise/Fall Slew Rate Rx External Timing Resistor Cx External Timing Capacitor tw Output Pulse Width UNITS 1.0 1.0 VllJ,s Vis 1.4 1.4 40 30 kO 0 1000 p.F 40 sec 67 90 90 % @An @8 XC XM XM,XC XM XC Duty Cycle _ \ _tHOlD_ A -',... \ / B / \ Q J ""' ~.5V ~L ~ - ~_tPlH l \~Vm ~ - \r tw ~tPHl a CONDITIONS Max '--- C I 1\ Fig. a 4-161 Fig. a Rx=2kO Rx-30kO Rx = 40 kO • 121 TYPICAL CHARACTERISTICS +30% ::z: +1.0% ~ +1.0 Ii Ii ~ +0.5 V / ./ - I V- -50 50 I ~ 75 100 T A - AMBIENT TEMPERATURE _ 0 TA =25'l -1.0 4.5 125 c I 1.8 ~....c g '\" 1.7 , e g 1.8 :t := .. ~ 1.5 " ~ :Ii 1.4 Vee = 5 Y 1.3 ~ I f".. r--..... ....... ........ 1.2 -75 -1 -1.0% -75 5.5 50 e 40 z 30 ~ 0: I'-- 20 i 10 ~ 70 CL~F I f- c, • '00 C, .50 w 80 :Ii PI' 1':--" .... ,....- ~ CL~ ;: - c,~ ~ >- 50 :l w e z z :> .... 1~ CL 40 ""'- ~ ..... ~ -- 0 0: 30 1--74121.- I 20 Vee , =5 V " Cr =80 pF RT = i'NTE~NAL o rn 125 Fig. d Variation In Output Pulse Width Versus Ambient Temperature 1--'74121_ 'i, -50 -25 25 50 75 100 TA -AMBIENT TEMPERATURE _ °c 80 ::J n ~7412i- ~ 70 ;: ~ tw=420nl @TA=25'C / I I ...- / ..0.5% ~ I NEGjTIVE ~G T~f~LO Vr74121 :t :> I! ~ 60 ,-,SITIVE GOING THRESHOLO VT. ffi "~ ~ ~ 80 l(v,.! -JI- LCKLSH / ! Fig. c Variation In Output Pulse Width Versus Supply Voltage > ...... 0% S 5.25 4.75 5.0 Vee-SUPPLY VOLTAGE-V Fig. b Variation In Internal Timing Resistor Value Versus Ambient Temperaure w I tw =420 •• @Ycc""5V CT""80pF ~ 25 [ ~ V = -0.5 RT = 10 kn (EXTERNAL) I-'" -25 w ~ +0.5% ---I-- .... / ! ~(4121 ~ ·10% -75 Ii 1--74121_ = T A - AMBIENT TEMPERATURE _ .. C Flg_ e Schmitt Trigger Threshold Voltage Versus Ambient Temperature Fig. f Propagation Delay Time B Input to Q Output Versus Ambient Temperature Flg_ g Propagation Delay Time B Input to Q Output Versus Ambient Temperature ~ ~ ~ ~ 75 100 RT =IINTErNAL TA - AMBIENT TEMPERATURE - "C ~ 25 -25 50 125 o 25 50 75 100 -50 -25 TA-AMBIENT TEMPERATURE_OC -50 25 Vee = 5 V Cr=80pF 10 -75 10ms l- ji . , 10 ... J..t ....... 10J'1 Z I~\~ G< Yee =5 V TA 4 8 8 10 20 40 I '"" lOOn" /' -6'."~'I>. ~~ 10 ~I j /'/' ~9 = 25"C I I 10na 1 ~~ '+~ 9~ .. § C1? ....... ~ 100 ~I ... ~oII0f i-'" 100 ns ... ~~~ I- No Trigger Trigger Trigger :::I 10 3 8 6 ..,0 y.\~ 'l~ 4 3 \\ y.\~ ~ 2 'O~ 1-10 2 :::I 8 6 H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial j: iii o... .., y.{\ 4 3 2 10 1 2 3 4 6810 2 3 4 6 8102 2 34 TIMING CAPACITANCE Cx - pF Fig. 8. 4-167 6810 3 123 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74 PARAMETER los Output Short Circuit Current lee Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, TA UNITS CONDITIONS Min Max -10 -40 mA Vee = Max 66 mA Vee = Max = +25°C (See Section 3 for waveforms and load configurations) 54/74 SYMBOL CL = 15 pF RL = 400 0 PARAMETER Min UNITS CONDITIONS Max tPLH Propagation Delay B to Q 28 ns tPLH Propagation Delay Ato Q 33 ns tPHL Propagation Delay B to Q 36 ns tPHL Propagation Delay A to Q 40 ns tPLH Propagation Delay COn to Q 40 ns tPHL Propagation Delay COn to Q 27 ns tw(min) Pulse Width with Zero Timing Capacitor 65 ns Cx = 0 pF, Rx = 5 kO Fig. 3-1, Fig. a tw Pulse Width with External Timing Components 3.37 Ils Cx = 1000 pF, Rx Fig. 3-1, Fig. a 2.76 AC OPERATING REQUIREMENTS: Vee SYMBOL = +5.0 V, TA 54/74 Min Rx External Timing Resistor Cx External Timing Capacitor ~ = 10 kO UNITS CONDITIONS Max 40 Trigger Pulse Width Cx = 0 pF, Rx = 5 kO Figs. 3-1, 3-10 = +25°C PARAMETER tw Cx = 0 pF, Rx = 5 kO Fig. 3-1, Fig. a ns 5.0 5.0 50 25 kO No Restrictions pF 4-168 Over Operating Temperature Range 125 CONNECTION DIAGRAM PINOUT A 54/74125 54LS/74LS125A - E('1 o[! QUAD BUS BUFFER GATE ou (With 3-State Outputs) E[! o[! ORDERING CODE: See Section 9 PIN PKGS OUT Vee = +5.0 V ±5%, TA = O°C to +70°C Plastic DIP(P) A 74125PC, 74LS125APC Ceramic DIP (D) A 74125DC, 74LS125ADC Flatpak (F) MILITARY GRADE COMMERCIAL GRADE Vee = +5.0 V ±10%, TA = -55°C to +125°C o[! PKG GNOII Inputs Outputs 3JCC 74125FC, 74LS125AFC 54125FM,54LS125AFM 54/74 (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 130/10 (50l 0.5/0.25 65/15 (25)/(7.5) TIl 0 ~E 11 0 ]]0 6A INPUTS A ffio TRUTH TABLE 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS ~CC EJvcc 'i31-,-,E TYPE 9A 54125DM, 54LS125ADM - E D L L H L H X OUTPUT L H Z H = HIGH Voltage l.evel L = LOW Voltage Level x = Immaterial Z = High Impedance DC AND AC CHARACTERISTICS: See Seciton 3' SYMBOL 54/74 PARAMETER 54174LS UNITS CONDITIONS Min Max Min Max VOH Output HIGH Voltage ~ ~ ~ XC 2.4 2.4 los Output Short Circuit Current ~ XM -30 -28 lee 2.4 2.4 V 10H 10H 10H IOH = -2.0 mA = -5.2 mA = -1.0 mA = -2.6 mA = Max Vee = Min, VIN = VIH or VIL -70 -70 -30 -130 -30 -130 mA Vee Power Supply Current 54 20 mA Outputs OFF, VIN = Gnd VE = 4.5 V, Vee = Max tPLH tPHL Propagation Delay Data to Output 13 18 15 18 ns Figs. 3-3, 3-5 tPZH tPZL Output Enable Time 17 25 16 25 ns Figs. 3-3, 3-11, 3-12 tPLZ tPHZ Output Disable Time 8.0 12 25 25 ns Figs. 3-3, 3-11, 3-12 "DC limits apply over operating temperature range; AC limits apply at TA = +25°C and Vee = +5.0 V. 4-169 126 CONNECTION DIAGRAM PINOUT A 54/74126 54LS/74LS126 o[I QUAD BUS BUFFER GATE olI (With 3-State Outputs) E[I o[I ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE A 74126PC, 74LS126PC Ceramic DIP (0) A 74126DC, 74LS126DC A Vee = +5.0 V ±10%, TA = -55°C to +125°C Vee = +5.0 V ±5%, TA = O°C to +70°C Plastic DIP (P) Flatpak (F) MILITARY GRADE o[! PKG GNOIT 74126FC, 74LS126FC 54126FM, 54LS126FM Inputs Outputs 54174 (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 130/10 (50) 0.5/0.25 65/15 (25)/(7.5) ~o 5J~ o rm E ~o ~o TRUTH TABLE 6A INPUTS 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS bJ4= rm Vee I1iIE TYPE 9A 54126DM,54LS126DM iEl ~ Err E 0 H H L L H X OUTPUT L H Z H = HIGH Voltage Level L = LOW Voltage Level x = Immaterial Z = High Impedance DC AND AC CHARACTERISTICS: See Section 3' SYMBOL 54174LS 54174 PARAMETER UNITS CONDITIONS Min Max Min Max XM VOH Output HIGH Voltage los Output Short Circuit Current lee Power Supply Current XC ~ 2.4 2.4 XC XM XC V 2.4 2.4 -30 -28 -70 -70 -30 -130 -30 -130 mA 24 mA 62 20 IOH = -2.0 IOH = -5.2 10H = -1.0 10H - -2.6 Vee mA mA Vee = Min, mA VIN = VIH or VIL mA = Max Outputs LOW, VE = 4.5 V Outputs OFF, VE = 0 V tPLH tPHL Propagation Delay Data to Output 13 18 15 18 ns Figs. 3-3, 3-5 tP.ZH tPZL Output Enable Time 18 25 20 30 ns Figs. 3-3, 3-11, 3-12 tPLZ tPHZ Output Disable Time 16 18 30 30 ns Figs. 3-3, 3-11, 3-12 'DC limits apply over operating temperature range; AC limits apply at TA = +25°C and Vee = +5.0 V. 4-170 Vec VIN = Max = Gnd 132 CONNECTION DIAGRAM PINOUT A 54/74132 548/748132 54L8/74L8132 QUAD 2-INPUT SCHMITT TRIGGER NAND GATE PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG II II TYPE [I A 74132PC, 74S132PC 74LS132PC Ceramic DIP (0) A 74132DC, 74S132DC 74LS132DC 54132DM,54S132DM 54LS132DM 6A Flatpak (F) A 74132FC, 74S132FC 74LS132FC 54132FM,54S132FM 54LS132FM 31 Plastic DIP (P) ~ 11 ORDERING CODE: See Section 9 II 9A II GNOII =Jrr= =0~ ~vee ~ ~ ~ ~ ~ ~ INPUT LOADING/FAN-OUT: See Section 3 for U.L. defintions PINS 54174 (U.L.) HIGH/LOW 54174S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW Inputs Outputs 1.0/0.75 20/10 1.25/1.25 25/12.5 0.5/0.25 10/5.0 (2.5) DC AND AC CHARACTERISTICS: See Section 3' SYMBOL PARAMETER 54/74S 54174 54174LS CONDITIONS UNITS Min Max Min Max Min Max VT+ Positive-going Threshold Voltage 1.5 2.0 1.6 1.9 1.4 1.9 V Vee = +5.0 V VT- Negative-going Threshold Voltage 0.6 1.1 1.1 1.4 0.5 1.0 V Vee = +5.0 V VT+-VT- Hysteresis Voltage 0.4 0.2 0.4 V Vee = +5.0 V IT+ I n put Cu rrent at Positivegoing Threshold -0.43 *, -0.9 *' -0.14** rnA Vee = +5.0 V, VIN = VT+ IT- Input Current at Negativegoing Threshold -0.56 ** -1.1 ** -0.18*' rnA Vee = +5.0 V, VIN = VT- los Output Short Circuit Current rnA Vee = Max, VOUT =0 V leeH leel Power Supply Current 24 40 44 68 11 14 rnA VIN VIN tPlH tPHl Propagation Delay 22 22 10.5 13 20 20 ns Figs. 3-1, 3-4 '~c -18 -55 limits apply over operating temperature range; AC limits apply at TA = +25'C and Vee = +5.0 V. "Typical Value 4-171 = Gnd IVee = Max = Openl • 133 CONNECTION DIAGRAM PINOUT A 548/748133 54L8/7 4L8 133 13-INPUT NAND GATE ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE VCC = +5.0 V ±5%, TA = O°C to +70°C MILITARY GRADE VCC = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74S133PC, 74LS133PC Ceramic DIP (D) A 74S133DC, 74LS133DC 54S133DM,54LS133DM 68 Flatpak (F) A 74S133FC, 74LS133FC 54S133FM, 54LS133FM 4L 98 ~vcc II iL- ~ ~ ,----IT ~ 1.-!! ~ [! ~ II ~~ ~ GNO[! ~ [I [! " INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions PINS Inputs Outputs 54174S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.25/1.25 25/12.5 0.5/0.25 10/5.0 (2.5) DC AND AC CHARACTERISTICS: See Section 3' SYMBOL PARAMETER 54174S 54174LS UNITS CONDITIONS Min Max Min Max ICCH Power Supply Current ICCl tPlH tPHl Propagation Delay 'DC limits apply over operating temperature range; 5.0 0.5 10 1.1 6.0 7.0 15 38 mA VIN ns AC limits apply at TA = +25'C and Vee = +5.0 V. 4-172 VIN = Gnd = Open Figs. 3-1, 3-4 Vcc = Max 134 CONNECTION DIAGRAM PINOUT A 54S/74S134 12-INPUT NAND GATE IT (With 3-State Outputs) II - ~vcc r--- ~E ~ [! f4 rm II I! II ~ - ORDERING CODE: See Section 9 tJ1] ~- rm PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, T A = 0 0 C to +70 0 C Vee = +5.0 V ±10%, TA = -55 0 C to +125°C y TYPE A 74S134PC Ceramic DIP(Dl A 74S134DC 54S134DM 68 Flatpak (Fl A 74S134FC 54S134FM 4L TRUTH TABLE 98 INPUTS OUTPUTS A ......... L Enable Y H ......... H Any In LOW X ......... X L L H L H Z H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions Inputs Outputs ~ PKG Plastic DIP (Pl PINS ~ 'l!o-- GNO[! 54174S (U.L.) HIGH/LOW 1.25/1.25 50/12.5 DC AND AC CHARACTERISTICS: See Section 3" SYMBOL 54174S PARAMETER Min VOH Output HIGH Voltage lee Power Supply Current tPLH tPHL Propagation Delay Data to Output tPZH tPZL tPHZ tpLZ I I XM XC UNITS CONDITIONS Max 2.4 2.4 V IOH = -2.0 mA IOH - -6.5 mA I I Vee = Min VIN = 0.8 V 13 16 25 mA VIN = 0 V, VE' = 0 V VIN - 5'.0 V, V'E - 0 V VIN - 5.0 V, VE - 5.0 V 6.0 7.5 ns Figs. 3-3, 3-4 Output Enable Time 19.5 21 ns Figs. 3-3, 3-11,3-12 Output Disable Time 8.5 14 ns Figs. 3-3, 3-11,3-12 Outputs HIGH Outputs LOW Outputs OFF 2.0 2.0 'oe limits apply over operating temperature range; Ae limits apply at TA = +25°e and Vce = +5.0 V. 4-173 Vee = Max 135 CONNECTION DIAGRAM PINOUT A 549/749135 AlI QUAD EXCLUSIVE-OR/NOR GATE alI v[I cIT ORDERING CODE: See Section 9 PIN PKGS Plastic DIP(Pl OUT IT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C [! PKG II TYPE GNOI! A 74S135PC Ceramic DIP(Dl A 74S135DC 54S135DM 68 Flatpak (Fl A 74S135FC 54S135FM 4L 98 Inputs Outputs ~~ :ill ~ :ill TIl :m :II 54/74S (U.L.) HIGH/LOW 1.25/1.25 25/12.5 OUTPUT A 8 C y L L H H L H L H L L L L L H H L L L H H L H L H H H H H H L L H H = HIGH Voltage Level L = LOW Voltage Level DC AND AC CHARACTERISTICS: See Section 3* SYMBOL :ill TRUTH TABLE INPUTS INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS ~-~ :ill Vee 54174S PARAMETER Min UNITS CONDITIONS Max = Max, VIN = Gnd A or 8 = L, C = L lee Power Supply Current 99 rnA tpLH tPHL Propagation Delay from A or 8 to Y 13 10 ns tPLH tPHL Propagation Delay from A or 8 to Y 12 13.5 ns A or 8 = H, C Fig. 3-1, 3-4 =L tPLH tPHL Propagation Delay from A or 8 to Y 13 10 ns A or 8 = L, C Fig. 3-1, 3-4 =H tPLH tPHL Propagation DeJay from A or 8 to Y 12 13 ns A or 8 = H, C Fig. 3-1, 3-5 =H tPLH tPHL Propagation Delay from C to Y 12 12 ns A = 8, tPLH tPHL Propagation Delay from C to Y 11.5 12 ns A ~ "CC limits apply over operating temperature range; AC limits apply at TA = +25·C and Vee = + 5.0 V. 4-174 Vee Fig. 3-1, 3-5 Fig. 3-1, 3-5 8, Fig. 3-1, 3-4 136 CONNECTION DIAGRAM PINOUT A 54LS/74LS136 QUAD 2-INPUT EXCLUSIVE-OR GATE tEl IT 1 - - - - (With Open-Collector Outputs) II IT IT f II II .--- till !ill .--- t!ID Vee ~ tL:= ~ GNDl..!. r1 t!J ~ tIl ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C TRUTH TABLE PKG TYPE Plastic DIP(P) A 74LS136PC Ceramic DIP (D) A 74LS136DC 54LS136DM 6A A B Z Flatpak (F) A 74LS136FC 54LS136FM 31 L L H H L H L H L H H L 9A Inputs Outputs OUTPUT H = HIGH Voltage Level L = LOW Voltage Level INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS INPUTS 54/74LS (U.L.) HIGH/LOW 1.0/0.375 OC**/5.0 (2.5) DC AND AC CHARACTERISTICS: See Section 3* SYMBOL 54174LS PARAMETER Min UNITS CONDITIONS Max Power Supply Current 10 mA Vee = Max tpLH tpHL Propagation Delay 23 23 ns Other Input LOW Figs. 3-2, 3-5 tPLH tpHL Propagation Delay 23 23 ns Other Input HIGH Figs. 3-2, 3-4 lee 'DC limits apply over operating temperature range; AC limits apply at TA = +25'C and "OC-Open Collector 4-175 Vee = +5.0 V. • 137 CONNECTION DIAGRAM PINOUT A 548/748137 1-0F-8 DECODER/DEMUL TIPLEXER Ao (With Input Latches) DESCRIPTION - The 'S137 is a very high speed 1-of-8 decoder/demultiplexer with latches on the three address inputs. This device essentially combines the function and speed of the 'S1381-of-8 decoder with a 3-bit storage latch. When the latch is enabled (LE = LOW), the '8137 acts as a 1-of-8 active LOW decoder. When the Latch Enable (LB goes from LOW to HIGH, the last data present at the inputs before this transition is stored in the latches. Further address changes are ignored as long as LE remains HIGH. The output enable gate (E1 • E2) controls the state of the outputs independent of the Address inputs or latch operation. All outputs are HIGH unless E1 is LOWand E2 is HIGH. The 'S137 is ideally suited for implementing non-overlapping decoders in 3-state systems and strobed (stored address) applications in bus oriented systems. The 'S137 is fabricated with the Schottky barrier diode process for high speed. - 0: ~vcc Ad]: 1m 00 Adl ~O' LEE! ~O2 Ed]: rm03 Ed:! rm 04 ~O5 ~06 o-II GNO[! LOGIC SYMBOL • SCHOTTKY PROCESS FOR HIGH SPEED • COMBINES 1-0F-8 DECODER WITH 3-BIT LATCH • MULTIPLE INPUT ENABLE FOR EASY EXPANSION OR INDEPENDENT CONTROLS • ACTIVE LOW MUTUALLY EXCLUSIVE OUTPUTS ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74S137PC Ceramic DIP (D) A 74S137DC 54S137DM 68 Flatpak· (F) A 74S137FC 54S137FM 4L 98 4 1 2 3 LE Ao A, A2 8 E, E2 00 0, 02 03 04 05 06 07 !!!!X!!! Vee = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES AeJ-A2 LE E1 E2 50-57 DESCRIPTION Address Inputs Latch Enable Input (Active LOW) Enable Input (Active LOW) Enable Input (Active HIGH) Outputs (Active LOW) 54/74S (U.L.) HIGH/LOW 1.25/1.25 1.2511.25 1.25/1.25 1.25/1.25 25/12.5 4-176 137 TRUTH TABLE INPUTS OUTPUTS LE E1 E2 Ao A1 A2 00 01 5:! 03 04 05 06 07 H X X L H X H X L X X X X X X X X X H H H H H H STABLE H H H H H H H H H H L L L L L L L L H H H H L H L H L L H H L L L L L H H H H L H H H H L H H H H L H H H H H H H H H H H H H H H H L L L L L L L L H H H H L H L H L L H H H H H H H H H H H H H H H H H H H H H H L H H H H L H H H H L H H H H L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM Ao 06 05 4-177 137 FUNCTIONAL DESCRIPTION - The 'S137. is a very high speed 1-of-8 decoder/demultiplexer fabricated with the Schottky barrier diode process. The decoder accepts three binary weighted inputs (Ao, Al, A2,) and when enabled provides ei ght mutually exclusive active LOW outputs (00 - Or)' The'S 137 also features a 3-bit latch on the Address !!!puts. The device functions as a 1-of-8 decoder (same as 'S138) when the Latch Enable (LE) is LOW. When LE is HIGH, the address present one setup time prior to the LOW-to-HIGH transition of LE will be stored in the address latches and the outputs will not be affected by further address changes. The output enable control is an AND gate comprised of one active LOW input (El) and one active HIGH input (E2)' All outputs are HIGH unless the enable inputs (El • 1:2) are in their true (active) state. A non-overlapping decoder with edge-triggered address inputs can be easily implemented by tying the Latch Enable input [E to the active HIGH Enable input (E2)' When this input (LE. 1:2) is LOW, all outputs are forced HIGH and a new address enters the latches. When the LE. 1:2 input goes HIGH, the address is stored in the latches and the corresponding output gate is enabled (goes LOW)' In this configuration, the address must be stable only one setup time prior to the LOW-to-HIGH transition of the LE • E2 input. The addressed output remains active LOW as long as the (LE • 1:2) input remains HIGH, even if the address changes. Data or control information can thus be strobed into the 'S137 from very noisy or bus oriented systems using a LOW pulse width equal to the minimum latch enable pulse width tw(U. The multiple enable inputs along with the address latches allows easy expansion to a 1-of-64 decoder with nonoverlap ping outputs (see Figure a), STROBE DECODER ENABLE Xo X, J X2 LE Ao Al A2 El E2 93S137 00 0, 02 03 04 05 06 07 INPUT ADDRESS ? 'I' 'I' 'I' ? TO OTHER FIVE DECODERS I X3 X4 Xs (] LE Ao Al A2 (] El E2 LE Ao Al A2 El E2 LE Ao Al A2 0 El E2 93S137 93S137 93S137 00 0, 02 03 04 05 06 07 00 0, 02 03 04 05 06 07 000, 02 03 04 05 06 07 rr!X!11XX !X!!JO!J2J3 r!r'r!!!! Fig. a High Speed 1-of-64 pecoder with Input Data Storage 4-178 137 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54/74S PARAMETER SYMBOL Min Icc UNITS CONDITIONS Max 95 Power Supply Current mA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25° C (See Section 3 for waveforms and load configurations) 54174S PARAMETER SYMBOL CL = 15 pF RL=280n Min UNITS CONDITIONS Max tPLH tPHL Propaaation Delay An to On 12 20 ns Figs. 3-1, 3-20 tPLH tPHL ~ropaHation Delay E1 to On 10 12 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay E2 to On 12 12 ns Figs. 3-1, 3-4 tPLH tPHL Propagation Delay LE to On 12 20 ns Figs. 3-1, 3-9 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL 54/74S PARAMETER Min UNITS ts (H) Setup Time HIGH An to LE 4.5 ns th (H) Hold Time HIGH An to LE 0 ns ts(U Setup Time LOW An to LE 6.5 ns th (U Hold Ti me LOW An to LE 0 ns tw (U LE Pulse Width LOW 7.0 ns 4-179 CONDITIONS Max Fig. 3-13 Fig. 3-13 Fig. 3-21 138 CONNECTION DIAGRAM PINOUT A 548/748138 54L8/7 4L8 138 Ao 1-0F-8 DECODER/DEMUL TIPLEXER - IT E1vcc AlII moo I! iE1 ts1 A2 Id1 Ellh E3 [! ]]04 IT ;m05 GNOI! ~tse ~h DESCRIPTION - The '138 is a high speed 1-of-8 decoder/demUltiplexer. This device is ideally suited for high speed bipolar memory chip select address decoding. The multiple input enables allow parallel expansion to a 1-0f-24 decoder using just three '138 devices or to a 1-of-32 decoder using four '138 devices and one inverter. The '138 is fabricated with the Schottky barrier diode process for high speed. SCHOTTKY PROCESS FOR HIGH SPEED DEMUL TIPLEXING CAPABILITY MULTIPLE INPUT ENABLE FOR EASY EXPANSION ACTIVE LOW MUTUALLY EXCLUSIVE OUTPUTS • • • • E102 E"d::! LOGIC SYMBOL 1 2 3 458 ElijJ E3 I E2 ~ Ao Al A2 E ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74S138PC, 74LS138PC Ceramic DIP (0) A 74S138DC, 74LS1.38DC 54S138DM,54LS138DM 68 A 74S138FC, 74LS138FC 54S138FM,54LS138FM 4L Flatpak (F) 00 01 02 03 04 05 Oe 07 XXXIX!!! 98 Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 1vl-A2 E1, E2 Ea 50-07 DESCRIPTION Address Inputs Enable Inputs (Active LOW) Enable Input (Active HIGH) Outputs (Active LOW) 4-180 54174S (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.25/1.25 1.25/1.25 1.25/1.25 25/12.5 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) 138 FUNCTIONAL DESCRIPTION - The '138 is a high speed 1-of-8 decoder/demultiplexer fabricated with the low power Schottky barrrier diode process. The decoder accepts three binary weighted inputs (Ao, A1, A2) and when enabled provides eight mutually exclusive active LOW outputs (00 - 0,). The '138 features three Enable inputs, two active LOW(E1,"E2) and one active HIGH(Eal. All outputs will beHIGH unless E1 andE2 are LOWand Ea is HIGH. This multiple enable function allows easy parallel expansion of the device to a 1-of-32(Slines to 32 lines) decoder with just four '138 devices and one inverter. (See Figure aJ The '138 can be used as an 8-output demultiplexer by using one of the active LOW Enable inputs as the data input and the other Enable inputs as strobes. The Enable inputs which are not used must be permanently tied to their appropriate active HIGH or active LOW state. TRUTH TABLE INPUTS OUTPUTS E1 E2 Ea Ao A1 A2 00 01 02 03 04 05 Os 07 H X X X H X X X L X X X X X X X X X H H H H H H H H H H H H H H H H H H H H H H H H L L L L L L L L H H H H L H L H L L H H L L L L L H H H H L H H H H L H H H H L H H H H H H H H H H H H H H H H L L L L L L L L H H H H L H L H L L H H H H H H H H H H H H H H H H H H H H H H L H H H H L H H H H L H H· H H L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM 4-181 138 , , Ao A, A2 J 9LS04 -t>- A3 A4 III Ao A, A2 I~ III? Ao A, A2 E 00 0, 02 03 04 Os 06 07 III Ao A, A2 E 00 0, 02 03 04 Os 06 07 *r3 E 00 0, 02 03 04 05 06 07 Ao A, A2 ~ E 00 0, 02 03 04 05 06 07 l !.I.!.I.I.!.I........II.I.I.I.I.LI........I.I.I.I.II.I.I.........X.l.I.I.II.J !, Fig. a DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER 54/74S Min lee Power Supply Current AC CHARACTERISTICS: Vee Max Min 74 UNITS CONDITIONS Max 10 rnA Vee = Max = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74S SYMBOL 54/74LS PARAMETER CL RL = 15 pF = 280 n Min Max 54174LS CL = 15 pF Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay An to an 12 12 18 27 ns Figs. 3-1, 3-4, 3-5 tPLH tPHL Propagation Delay E1 or ~ to On 8.0 11 15 24 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay E3 to On 11 11 18 28 ns Figs. 3·1, 3-4 4·182 139 139 CONNECTION DIAGRAM PINOUT A 548/748139 54L8/74L8139 DUAL 1-0F-4 DECODER • DESCRIPTION - The '139 is a high speed dual 1-of-4 decoder/demultiplexer. The device has two independent decoders, each accepting two inputs and providing four mutually exclusive active LOW outputs. Each decoder has an active LOW Enable input which can be used as a data input for a 4-output demultiplexer. Each half of the '139 can be used as a function generator providing all four minterms of two variables. The '139 is fabricated with the Schottky barrier diode process for high speed. • • • • SCHOTTKY PROCESS FOR HIGH SPEED MULTIFUNCTION CAPABILITY TWO COMPLETELY INDEPENDENT 1-0F-4 DECODERS ACTIVE LOW MUTUALLY EXCLUSIVE OUTPUTS LOGIC SYMBOL 1i i E ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic OIP(P) A 74S139PC, 74LS139PC Ceramic DIP (0) A 74S139DC, 74LS139DC 54S139DM,54LS139DM 68 Flatpak (F) A 74S139FC, 74LS139FC 54S139FM,54LS139FM 4L 98 Ao Al rT1j E Ao Al DECODER. DECODER b 0001 0203 00 0, 02 03 r!!! ! X! ! Vce = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao, A1 E 50-03 DESCRIPTION Address Inputs Enable Input (Active LOW) Outputs (Active LOW) 4-183 54/74S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.25/1.25 1.25/1.25 25/12.5 0.5/0.25 0.5/0.25 10/5.0 (2.5) 139 FUNCTIONAL DESCRIPTION - The '139 is a high speed dual 1-of-4 decoder/demultiplexer fabricated with the Schottky barrier diode process. The device has two independent decoders, each of which accepts two binary weighted inputs (Ao, A1) and provides four mutually exclusive active LOW outputs (()o - 03!. Each decoder has an active LOW enable @. When Eis HIGH all outputs are forced HIGH. Theenablecan be used as the data input for a 4-output demultiplexer application. Each half of the '139 generates all four minterms of two variables. These four minterms are useful in some applications, replacing multiple gate functions as shown in Figure a, and thereby reducing the number of packages required in a logic network. TRUTH TABLE INPUTS OUTPUTS E Ao A1 00 01 02 03 H L L L L X L H L H X L L H H H L H H H H H L H H H H H L H H H H H L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Fig. a LOGIC DIAGRAM 4-184 139 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwisespecified) SYMBOL 54/74LS PARAMETER Min lee Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, Max PARAMETER Min 11 TA = +25 0 CL UNITS CONDITIONS Max 90 mA Vee = Max C (See Section 3 for waveforms and load configurations) 54/74LS SYMBOL 54/74S = 15 pF Min Max 54/74S CL RL = 15 pF = 280 n Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Ao or A1 to On 18 27 12 12 ns Figs. 3-1, 3-4, 3-5 tPLH tPHL Propagation Delay Eto On 15 24 8.0 10 ns Figs. 3-1, 3-5 4-185 140 CONNECTION DIAGRAM PINOUT A 548/748140 DUAL 4-INPUT NAND LINE DRIVER· IT r- - ORDERING CODE: See Section 9 PIN PKGS OUT COMMERC,IAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vcc = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A Ceramic DIP(Q) A 74S140DC 54S140DM 6A A 74S140FC 54S140FM 31 Flatpak (F) 74S140PC 9A ...... II r---NCIl: iBJvee - ~ ~ ~ ..c [I r----l II 11 GNDII ~~ ~ ~ :!J INPUT LOADING/FAN·OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 54174S (U.L.) HIGH/LOW 2.5/2.5 75/37.5 DC AND AC CHARACTERISTICS: See Section 3" SYMBOL 54174S PARAMETER Min VOH Output HIGH Voltage VOL Output LOW Voltage los Output Short Circuit Current UNITS CONDITIONS Max 2.0 0.5 -50 -225 V Vcc = Min, VIN = 0.5 V, Ro = 50 n to Gnd V Vcc = Min, 10l VIN = 2.0 V mA Vcc = Max, VOUT = 0 V ICCH ICCl Power Supply Current 18 44 mA VIN = Gnd VIN - Open tPlH tPHl Propagation Delay 6.5 6.5 ns Figs. 3-1, 3-4 ·DC limits apply over operating temperature range; AC limits apply at TA = +25'C and Vee = +5.0 V. 4-186 = 60 mA Vcc = Max 141 CONNECTION DIAGRAM PINOUT A 74141 1-0F-10 DECODER/DRIVER (NIXIE) (With Open-Collector Outputs) • LOGIC SYMBOL DESCRIPTION -The '141 is a BCD-to-decimal decoder driver that is designed to accept a 4-bit BCD code input and drive cold-cathode indicator tubes. This decoder utilizes design improvements that minimize switching transients in order to maintain a stable display. The segments and numeric designations chosen to represent the decimal numbers are shown in the Truth Table. For binary inputs 10 through 15, the outputs are OFF. These invalid codes can be used in blanking leading ortrailing-edgezeroes in a display. The ten high performance, npn output transistors have a maximum reverse current of 50 J.LA at 55 V. Typical power dissipation is 55 mW. t Ao i I i 00 01 02 03 04 as 06 07 ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE = +5.0 V ±5%, = O°C to +70°C Vee TA PKG TYPE Plastic DIP(P) A 74141 PC 9B Ceramic DIP (D) A 74141DC 6B Vcc = Pin 5 GND = Pin 12 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES Ao A1-A3 00-09 BCD Input BCD Inputs Outputs (Active LOW) 74XX (U.L.) HIGH/LOW 1.0/1.0 2.0/2.0 OC*/7.0mA 'OC-- Open Collector 4-187 as 09 141 FUNCTIONAL DESCRIPTION - The 1-of-10 decoder/driver accepts BCD inputs from all TTL circuits and produces the correct output selection to directly drive gas filled cold cathode indicator tubes. The outputs are selected as shown in the Truth Table. It is capable of driving all known available cold cathode indicator tubes having 7.0 mA or less cathode current. LOGIC DIAGRAM TRUTH TABLE A3 Ao INPUTS OUTPUT As A2 A1 Ao ONt L L L L L L L L L L H H L H L H 0 1 2 3 L L L L H H H H L L H H L H L H 4 5 6 7 H H H L L X L L H L H X 9 NONE H H X X NONE 8 tAli other outputs are off H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 74XX PARAMETER Min UNITS CONDITIONS Max V Vee = Min 10 = 7.0 mA V Vee = Max 10 = 0.5 mA 50 p.A Vee = Max Vo = 55 V Output HIGH Current (for Input Counts 10 thru 15) 5.0 15 p.A Power Supply Current 25 mA VOL Output LOW Voltage VOH Output HIGH Voltage (for Input Counts 0 thru 9) 10H Output HIGH Current IOH lee 2.5 60 4-188 = 55°C Vee = Max = 70°C Vo = 30 V Vee = Max Ail Inputs = Gnd TA TA 145 CONNECTION DIAGRAM PINOUT A 54/74145 1-0F-10 DECODER/DRIVER (With Open-Collector Outputs) DESCRIPTION - The '145 decoder/drivers are designed to accept BCD inputs and provide appropriate outputs to drive 7-segment numerical displays. All outputs remain OFF for all invalid binary input conditions. These devices are designed for use as indicator/relay drivers or as open-collector logic circuit drivers. Each of the high breakdown (15 V) output transistors will sink up to 80 mA of current. colI - mAo ChI:! EJA1 chIT }!]A2 j]]A3 0.[[ • OPEN-COLLECTOR OUTPUTS • 80 mA CURRENT SINKING • 15 V GUARANTEED BREAKDOWN 05[[ :mag 06 [I ~O8 GND!! ~Ci? ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP (P) A 74145PC Ceramic DIP (0) A 74145DC 54145DM 7B Flatpak (F) A 74145FC 54145FM 4L 9B INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions Ao-A3 00-09 54174 (U.L.) HIGH/LOW DESCRIPTION PIN NAMES 1.011.0 BCD Inputs Outputs (Active LOW) OC*/12.5 'oe-Open Collector LOGIC SYMBOL 15 1 2 13 14 3 4 5 6 4-189 7 12 9 10 11 mvcc 0, [! • 145 TRUTH TABLE OUTPUTS INPUTS D2 03 04 05 06 07 08 09 Ao A1 A2 A3 00 01 L H L H L L H H L L L L L L L L L H H H H L H H H H L H H H H L H H H H H H H H H H H H H H H H H H H H H H H H L H L H L L H H H H H H L L L L H H H H H H H H H H H H H H H H L H H H H L H H H H L H H H H L H H H H H H H H L H L H L L H H L L L L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L H H H H L H H L H L H L L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H = HIGH Voltage Level L = LOW Voltage Level LOGIC DIAGRAM 4-190 145 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER Min CONDITIONS UNITS Max = Min, = 80 rnA = 15 V VOL Output LOW Voltage 0.9 V IOH Output HIGH Current 250 p.A Vee = Max, VOH lee Power Supply Current rnA Vee XC 70 XM 62 Vce IOL = Max, VIN = Gnd AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER CL = 15 pF RL = 100 n Min tPLH tPHL Propagation Delay An to On CONDITIONS Max 50 50 4-191 UNITS ns Figs. 3-2, 3-20 150 CONNECTION DIAGRAM PINOUT A 54/74150 16-INPUT MULTIPLEXER 17[ - 16[[ DESCRIPTION -Signals applied to the Select (So-Sa) inputs determine which of the data inputs (10 - I1s) is routed through to the output. Data from the selected input appears at the output (2) in inverted form. When the active-LOW Enable input is HIGH, the output will be HIGH, regardless of other input conditions. 15[! PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +70°C ~11O 14!! ~111 Is!! I,[!: t!!l 112 II ml13 lo[! 14 11 ORDERING CODE: See Section 9 ml PKG E[[ ml15 TYPE 2fi] :ill SO s3ffi ElS1 GNOIE llls2 Plastic DIP (P) A 74150PC Ceramic DIP (0) A 74150DC 54150DM 6N Flatpak IF) A 74150FC 54150FM 4M 9N INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES io-l1s So-Sa E Z Data Inputs Select Inputs Enable Input (Active LOW) I nverted Data Output LOGIC SYMBOL i r iii iii 2j YY2j 'j 'j YT 10 11 12 Is r. 15 16 17 Is 19 110 111 112 113 114 1,5 151413'1- 54/74 (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 20/10 9-0 E So S, S2 S3 Z ! Vcc = Pin 24 GND = Pin 12 4-192 ~vCC 1m Is iBl I9 150 LOGIC DIAGRAM E'lo h j I. Is III III 'I- I. 15 III III . DATA INPUT 17 I. I. 16 III III ~ I 1111 h1 ho h. h3 Tiffl rz, ' '!,U DATA SELECT (BINARY) • ,-.,..-A--------. h. ,. ,. j OUT~UTZ TRUTH TABLE INPUTS OUTPUT 53 S2 S1 So E X L L L X L L L X L L H X L H L H L L L H H H H H H H H L L H H L H L H L L L L Z H 10 11 12 . . . . . . 112 113 114 115 H = HIGH Voltage Level L = LOW Voltage Level Immaterial X= DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54174 PARAMETER SYMBOL los Output Short Circuit Current lee Power Supply Current AC CHARACTERISTICS: Vee = +5.0 ~ XC V, TA UNITS CONDITIONS Min Max -20 -18 -55 -55 mA Vee = Max 68 mA Vee = Max, VIN = +25°C = 4.5V (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER CL RL = 15 pF = 400 n Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Sn to Z, 3 Levels 35 33 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay In to Z 20 14 ns Figs. 3-1, 3-4 tPLH tpHL E Propagation Delay to Z 24 30 ns Figs. 3-1, 3-5 4-193 151 CONNECTION DIAGRAM PINOUT A 54/74151A 54S/74S151 54LS/74LS151 - hIT :ill Vee :lli 14 12 [I h[I 10 IT 8-INPUT MULTIPLEXER ~15 E]la Ell? zIT :ill :ITl SO EIT ~Sl GNO[! ]]S2 LOGIC SYMBOL DESCRIPTION - The '151 is a high speed 8-input digital multiplexer. It provides in one package, the ability to select one line of data from up to eight sources. The '151 can be used as a universal function generator to generate any logic function of four variables. 80th assertion and negation outputs are provided. r 11 i 111j 1I 11E 10 h 12 13 14 15 16 17 SO ORDERING CODE: See Section 9 PIN PKGS OUT l O - S, 9 - S2 COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG z z TYPE ! ! Plastic DIP(P) A 74151APC, 74S151PC 74LS151PC Ceramic DIP (0) A 74151ADC, 74S151DC 74LS151DC 54151ADM,54S151DM 54LS151DM 68 Flatpak (F) A 74151AFC, 74S151FC 74LS151FC 54151AFM,54S151FM 54LS151FM 4L 98 Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 10-17 DESCRIPTION Z Data Inputs Select Inputs Enable Input (Active LOW) Data Output Z Inverted Data Output So-S2 E 4-194 54174 (U.L.) HIGH/LOW 54174S (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 20/10 1.25/1.25 1.25/1.25 1.25/1.25 25/12.5 20/10 25/12.5 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) 151 FUNCTIONAL DESCRIPTION - The '151 is a logical implementation of a single pole, 8-position switch with the switch position controlled by the state ofthree Select inputs, So, Sl, S2. Both assertion and negation outputs are provided. The Enable input (E) is active LOW. When it is not activated, the negation output is HIGH and the assertion output is LOW regardless of all other inputs. The logic function provided at the output is: Z= (10 • So • ~11 • 52 + h • So • Sl • 82 + 12 • So • Sl • S2 + 13 • So • Sl • 82 14 • So • 51 • S2 + Is • So • 51 • S2 + 16 • So • Sl • S2 + 17 • So • Sl • S2), E• + The '151 provides the ability, il'1 one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the '151 can provide any logic function of four variables and its negation. TRUTH TABLE OUTPUTS INPUTS E 52 Sl So Z Z H L L L X L L L X L L H X L H L H 10 11 L 10 L L L L L L H H H H H L L H H H L H L H 13 T4 Ts i6 17 i2 h 12 13 14 Is 16 17 H = HIGH Voltage Level L = LOW Voltage Level LOGIC DIAGRAM I, 10 ..... ..... ..... ..... So ..... ..... A ..... r 12 14 15 16 ..... ..... ..... T y T y ..... + + I I' 'rt + . + ill ~~ 7 ~ z z 4-195 -t .f . t ~ I" I 151 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54174 PARAMETER SYMBOL los Output Short Circuit Current lec Power Supply Current ~ XC 54174S 54/74LS UNITS CONDITIONS Min Max Min Max Min Max -20 -18 -55 -55 -40 -40 -100 -100 -20 -20 -100 -100 rnA Vee = Max 10 rnA Vee = Max 48 70 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174 PARAMETER SYMBOL 54174S 54174LS Q = 15 pF CL = 15 pF CL = 15 pF UNITS RL=400n RL = 280 n Min Max Min Max Min CONDITIONS Max tpLH tpHL Propagation Delay Sn to Z 26 30 15 13.5 23 34 ns Fi gs. 3-1, 3-20 tpLH tPHL Propagation Delay Sn to Z 38 38 18 18 48 30 ns Fi gs. 3-1, 3-20 tpLH tpHL Propagation Delay E toZ 21 23 13 12 24 30 ns Figs. 3-1, 3-5 tPLH tPHL E to Z 33 33 16.5 18 42 32 ns Figs. 3-1, 3-4 tPLH tpHL Propagation Delay In to L 14 14 7.0 7.0 21 20 ns Figs. 3-1, 3-4 tPLH tpHL Propagation Delay In to Z 20 27 12 12 32 26 ns Figs. 3-1, 3-5 Propagation Delay 4-196 152 CONNECTION DIAGRAM PINOUT A 54/74152A 54LS/74LS152 14 - IT ~vCC ~Is II 12 IT rm 1,[1 [!:TI 15 IT z!1 ~so ~Sl 13 a-INPUT MULTIPLEXER 10 PJ GNOIT DESCRIPTION - The '152 is a high speed 8-input digital multiplexer. It provides, in one package, the ability to select one line of data from up to eight sources. The '152 can be used as a universal function generator to generate any logic function of four variables. It is supplied in Flatpak only; for Dual In-line Package applications use the 'LS151. 5 Flatpak (F) OUT A 4 3 1 13 12 11 2 I I I I I I I I 11 12 13 14 15 16 17 9 - 5, ORDERING CODE: See Section 9 PKGS S2 LOGIC SYMBOL 10 1 0 - SO PIN 16 8 - 52 COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = 0° C to + 70° C Vee = +5.0 V ±10%, TA = -55° C to +125° C 74152AFC,74LS152FC z PKG ! TYPE 54152AFM,54LS152FM vcc = Pin 14 GND = Pin 7 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION 54/74 (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 20/10 0.5/0.25 0.5/0.25 10/5.0 (2.5) Data Inputs Select Inputs Inverted Data Output 10-17 So-S2 Z LOGIC DIAGRAM 10 50 5, 52 ..... .... I ........ T I> T 14 13 12 11 15 16 17 ....... - .... ... _ -.... _...... - ...... , , I r y , 1 T ,u. r r ~ z 4-197 r t7 r T ,U 152 FUNCTIONAL DESCRIPTION - The '152 is a logical implementation of a single pole, 8-position switch with the switch position controlled by the state of three Select inputs, So, S1, S2. The logic function provided at the output is: Z = (10 • So • S1 14 • So • • 82 + h • So • S1 • 82 + 12 • So • S1 • 82 + 13 • So • S1 • 82 + 81 • S2 + 15 • So • ~h • S2 + 16 • So • S1 • S2 + 17 • So • S1 • S2). The '152 provides the ability, in one package, to select from eight sources of data or control information. TRUTH TABLE OUTPUT INPUTS S2 S1 So Z L L L L L L H H L H L H To T1 T2 H H H H L L H H L H L H 14 15 T6 17 i3 H = HIGH Voltage Level L = LOW Voltage Level DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL los Output Short Circuit Current Icc Power Supply Current 54174LS 54174 PARAMETER 1¥cXC UNITS CONDITIONS Min Max Min Max -20 -18 -55 -55 -20 -20 -100 -100 mA Vee = Max 9.0 mA Vee = Max 43 AC CHARACTERISTICS: Vee = +5.0V, TA = +125° C (See Section 3 for waveforms an d load configurations) 54174 SYMBOL PARAMETER 54174LS CL = 15 pF CL = 15 pF RL = 400 n Min Max Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Sn to Z 26 30 23 32 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay In to Z 14 14 21 20 ns Figs. 3-1, 3-4 4-198 153 CONNECTION DIAGRAM PINOUT A 54/74153 54S/74S153 54LS/74LS153 DUAL 4-INPUT MULTIPLEXER EaIJ: DESCRIPTION - The '153 is a high speed dual4-input multiplexer with common select inputs and individual enable inputs for each section. It can select two lines of data from four sources. The two buffered outputs present data in the true (non-inverted) form. In addition to multiplexer operation, the '153 can generate any two functions of three variables. s,1I mEb :EJSa I,a[[ ~lab ~12b 11 ~"b 12a[! PIN PKGS OUT Za[! COMMERCIAL GRADE Vee TA MILITARY GRADE = +5.0 V ±5%, Vee = O°C to +70°C TA = +5.0 PKG V ±10%, = -55°C to +125°C 1!] vcc 13aII lOa ORDERING CODE: See Section 9 - GNOII ~IOb ~Zb TYPE Plastic DIP (P) A 74153PC, 74S153PC 74LS153PC Ceramic DIP (0) A 74153DC, 74S153DC 74LS153DC 54153DM,54S153DM 53LS153DM 6B Flatpak (F) A 74153FC, 74S153FC 74LS153FC 54153FM,54S153FM 54LS153FM 4L 9B INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION Za Side A Data Inputs Side B Data Inputs Common Select Inputs Side A Enable Input (Active LOW> Side B Enable Input (Active LOW> Side A Output Zb Side B Output IOa-13a IOb-l3b So, S1 fa Eb 54174 (U.L.) HIGH/LOW 54174S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 20/10 1.25/1.25 1.25/1.25 1.25/1.25 1.25/1.25 1.25/1.25 25/12.5 20/10 25/12.5 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) LOGIC SYMBOL 1 iii 142- i 1, Y ! 1j 1j Eo lOa I'a 12a 13a lOb I'b 12b 13b Eb So Vee = Pin 16 GND = Pin 8 s, Za Zb I ! 7 .4-199 153 FU NCTIONAL DESCRIPTION - The '153 is a du al 4-input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs (So, S1). Thetwo 4-input multiplexer circuits have individual active LOW Enables (~, Eb) which can be used to strobe the outputs independently. When the Eb) are HIGH, the corresponding outputs (Za, Zb) are forced LOW. The '153 is the logic Enables implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are shown below. (Ea, Ea • (loa • S1 • So + h a • 51 • So + 12a • S1 • So + l3a • S1 • So) = Eb • (lab • 51 • So + hb • 51 • So + 12b • S1 • So + 13b • S1 • So) Za = Zb The '153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application is a function generator. The '153 can generate two functions of three variables. This is useful for implementing highly irregular random logic. TRUTH TABLE SELECT INPUTS INPUTS (a or b) OUTPUT So S1 E 10 h 12 13 Z X L L H X L L L H L L L X L H X X X X L X X X X X X X X L L H L H L L H H L H H H H L L L L L X X X X X H X X X X X L H X X X X X L H H L H L H H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM 4-200 153 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER los Output Short Circuit Current XM XC lee Power Supply Current XM XC AC CHARACTERISTICS: Vee = +5.0 V, TA PARAMETER 54174LS UNITS CONDITIONS Max Min Max Min Max -20 -18 -55 -57 -40 -40 -100 -100 -20 -20 -100 -100 mA Vee = Max 10 10 mA Vee = Max 70 70 52 60 = +25 0 C (See Section 3 for waveforms and load configuration) 54174 SYMBOL 54/74S Min 54174S 54/74LS CL = 30 pF CL = 15 pF CL RL = 400 n RL = 280 n Min Max Min Max = 15 pF Min UNITS CONDITIONS Max tPLH tpHL Propagation Delay Sn to Zn 34 34 18 18 29 29 ns Figs. 3-1, 3-20 tPLH tPHL fropagation Delay En to Zn 30 23 15 13.5 29 32 ns Figs. 3-1, 3-4 tPLH tPHL Propagation Delay In to Zn 18 23 9.0 9.0 15 20 ns Figs. 3-1, 3-5 4-201 • 154 CONNECTION DIAGRAM PINOUT A 54/74154 1-0F-16 DECODER/DEMUL TIPLEXER CiolI DESCRIPTION - The '154 is a multipurpose decoder designed to accept four inputs and provide 16 mutually exclusive outputs. By means of the Address (Ao - Aa) inputs, data applied to one of the Enable inputs can be routed to any one of the outputs in True (non-inverted) form. PIN PKGS OUT Plastic DIP(P) A Vee MILITARY GRADE = +5.0 V ±5%, Vee TA = O°C to +70°C = +5.0 V ±10%, TA = -55°C to +125°C 74154PC o,!! BlAo 02 I! ch[! B1A' ]]A2 o.!! ~Aa Os!! 061l }!JEo PKG od!: TYPE Os mo,s 1!Io,. I! Og~ 9N Ceramic DIP(D) A 74154DC 54154DM 6N Flatpak (F) A 74154FC 54154FM 4M nlO'3 B10'2 TIl 0" 010ffi GNolB INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-Aa Eo, E1 50-015 54174 (U.L.) HIGH/LOW DESCRIPTION Address Inputs Enable Inputs (Active LOW) Outputs (Active LOW) 1.0/1.0 1.0/1.0 20/10 LOGIC SYMBOL 'e-) Eo 23 22 21 20 Ao A, A2 A3 E, E 00 0, 02 03 O. 05 06 07 Os Og 0100,,0,20,30,.0'5 rrrr!!Y!!!X!!11X Vcc = Pin 24 GND = Pin 12 4-202 ~vcc ]!IE, ORDERING CODE: See Section 9 COMMERCIAL GRADE - 154 TRUTH TABLE INPUTS OUTPUTS 00 01 02 03 04 05 06 07 08 09 010 011 012 013 014 015 Eo El Ao Al A2 A3 H H L L H L H L X X X L X X X L X X X L X X X L H H H L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L L L L L L L L L L H L H L H L H H L L L L L H H L L L L L H H H H H L H H H H H L H H H H H L H H H H H L H H H H H L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L L L L L L L L L L L H L H L H H L L H H H L L L L L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L H H H H H L H H H H H L H H H H H L H H H H H L H H H H H H H H H H H H H H H H H H H H H H H H H L L L L L L L L L L H L H L H H L L H H L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L H H H H H L H H H H H L H H H H H L H H H H H L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM 4-203 154 FUNCTIONAL DESCRIPTION - The '154 decoder accepts four inputs and provides 16 mutually exclusive active LOW outputs, as shown by the logic symbol. The active LOW outputs facilitate addressing other MSI units with active LOW enable. The '154 can demultiplex data by routing it from one input to one of 16 possi"ble decoder oiJtputs. The desired output is addressed and the data is applied to one of the enable inputs. Providing that the other enable is LOW, the addressed output will follow the state of the applied data. DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified> SYMBOL 54/74 PARAMETER los Output Short Circuit Current XM XC lee Power Supply Current XM XC AC CHARACTERISTICS: Vee = +5.0 V, TA UNITS CONDITIONS Min Max -20 -18 -55 -57 mA Vee = Max 49 56 mA Vee = Max = +25°C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER CL = 15 pF RL = 400.n Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay An to On 31 28 ns Figs. 3-1, 3-20 tPLH tpHL Propagation Delay En to On 23 24 ns Figs. 3-1, 3-5 4-204 155 CONNECTION DIAGRAM PINOUT A 54/74155 54LS/74LS155 DUAL 1-0F-4 DECODER/DEMULTIPLEXER EalI DESCRIPTION - The '155 contains two decoders with common Address(Ao, Al) inputs and separate enable gates. Decoder "a" has an enable gate with one active HIGH and one active LOW input, while decoder "b" has two active LOW inputs. If the enable functions are satisfied, one output of each decoder will be LOW, as selected by the Address inputs. ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C Ear! - ~vcc ~Eb (>salI ~Eb ~Ao 02a[[ ~03b 01a[! tTI1 02b OoalI ~01b GND[[ ~OOb A1[! PKG TYPE Plastic DIP (P) A 74155PC, 74LS155PC Ceramic DIP (D) A 74155DC, 74LS155DC 54155DM,54LS155DM 6B Flatpak (F) A 74155FC, 74LS155FC 54155FM,54LS155FM 4L 9B INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao, Al Ea, Eb Ea 00-5.3 DESCRIPTION 54174 (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.0/1.0 1.011.0 1.0/1.0 20/10 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) Address Inputs Enable Inputs (Active LOW) Enable Input (Active HIGH) Outputs (Active LOW) LOGIC DIAGRAM 133 M 8 E E AD DECODER a A1 000,0203 AD - DECODER b A1 00 0, 02 03 !!! r !!!! 4-205 Vcc = Pin 16 GND = Pin 8 • 155 FUNCTIONAL DESCRIPTION - The '155 and '156 are dual 1-of-4 decoder/demultiplexers with common Address inputs and separate gated Enable inputs. When enabled, each decoder section accepts the binary weighted Address inputs (Ao, All and provides four mutually exclusive active LOW outputs (00-53>. If the Enable requirements of each decoder are not met, all outputs of that decoder are HIGH. Each decoder section has a 2-input enable gate. The enable gate for decoder "a" requires one active HIGH input and one active LOW input (Ea, Ea.>. In demultiplexing applications, decoder "a" can accept either true or complemented data by using the Ea or Ea inputs respectively. The enable gate for decoder "b" requires two active LOW inputs (Eb, Eb>' The devices can be used as a 1-of-8 decoder/demultiplexer by tying Ea to Eb and relabeling the common connection as A2. The other Et, and Ea are connected together to form the common enable. The '155 and '156 can be used to generate all four minterms of two variables. These four minterms are useful in some applications replacing multiple gate functions as shown in Figure B. The '156 has the further advantage of being able to AND the minterm functions by tying outputs together. Any number ofterms can be wired-AND as shown below. f = (E + Ao + All. (E + Ao + All • (E + Ao + All. (E + Ao + All where = E = Ea + Ea.; E = Eb + Eb Fig. a LOGIC DIAGRAM Ea Ea Ao Al 4-206 155 TRUTH TABLE ADDRESS ENABLE a ENABLE b OUTPUT a OUTPUT b Ao AI Ea Ea 00 01 02 03 Eb Eb 00 01 02 03 X X L X X L L X H X H L H H L H H H H H H H H H H X L X H L H H L H H H H H H H H H H L H L H H H H H L L L H H H L H H H L H H H L L L L L L L H H H L H H H L H H H L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER los Output Short Circuit Current ~ Icc Power Supply Current ~ XC AC CHARACTERISTICS: Vee XM UNITS Min Max Min Max -20 -18 -55 -57 -20 -20 -100 -100 ns 10 10 mA 35 40 CONDITIONS Vee = Max Vee = Max; Ea. Eb = Gnd Ea = 4.5 V Ao. AI. = +5.0 V. TA = +25°C (See Section 3 for waveforms and 54/74 SYMBOL 54/74LS PARAMETER 54/74LS CL = 15 pF CL RL = 400 n Min Max load configurations) = 15 pF Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay An to On 32 32 18 27 ns Figs. 3-1. 3-20 tPLH tPHL Propagation Delay Ea or Eb to 'On 20 27 15 24 ns Figs. 3-1. 3-5 tPLH tpHL Propagation Delay Ea to On 24 30 25 25 ns Figs. 3-1. 3-4 4-207 156 CONNECTION DIAGRAM PINOUT A 54/74156 54LS/74LS156 - EalI DUAL 1-0F-4 DECODER/DEMUL TIPLEXER ~vcc ~'Eb ~'Eb 'Ea£I (With Open-Collector Outputs) A,[I im 03aG: DESCRIPTION - The '156 contains two decoders with common Address (1vJ, A1) inputs and separate enable gates. Decoder "a" has an enable gate with one active HIGH and one active LOW input, while decoder "b" has two active LOW inputs. If the enable functions are satistied, one output of each decoder will be LOW, as selected by the Address inputs. For functional description, truth table and logic diagram, please refer to the '155 data sheet. PIN PKGS OUT COMMERCIAL GRADE ~(hb OoalI ~O'b GND[! ~OOb LOGIC SYMBOL 133 ,i.l) DECODERs MILITARY GRADE = +5.0 V ±5%, = O°C to +70°C Vee TA O'a[[ A E E ORDERING CODE: See Section 9 = +5.0 V ±10%, = -55°C to +125°C Vee TA Ao PKG A1 000,0203 TYPE !!!! Plastic DIP(P) A 74156PC, 74LS156PC Ceramic DIP ----------,rr--~r---~++--.tt----4~--~+---~HH--, Z, 'S157 • 'LS157 4-211 Zb 10. • 157 TRUTH TABLE INPUTS OUTPUT E S 10 h Z H L L L L X H H L L X X X L H X L H X X L L H L H H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER los Output Short Circuit Current lee Power Supply Current ~ XC 54174S 54/74LS UNITS CONDITIONS Min Max Min Max Min Max -20 -18 -55 -55 -40 -40 -100 -100 -20 -20 -100 -100 mA Vee = Max 16 mA Vee = Max Alllnputs=4.5V 48 78 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174 PARAMETER SYMBOL 54174S 54174LS CL = 15 pF CL = 15 pF CL = 15 pF RL = 400 n RL = 280 n Min Max Min Max Min UNITS CONDITIONS Max tPLH tpHL Propagation Delay S to Zn 23 27 15 15 26 24 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay E to Zn 20 21 12.5 12 20 21 ns Figs. 3-1, 3-4 tPLH tPHL Propagation Delay In to Zn 14 14 7.5 6.5 14 14 ns Figs. 3-1, 3-5 4-212 158 CONNECTION DIAGRAM PINOUT A 54S/74S158 54LS/7 4LS 158 11,[! y,!! DESCRIPTION - The '158 is a high speed quad 2-input multiplexer. It selects four bits of data from two sources using the common Select and Enable inputs. The four buffered outputs present the selected data in the inverted form. The '158 can also generate any four of the 16 different functions of two variables. IOb[]: ElI, hb[! :TIlIOd Zb!I IQ) hd GNOI! }lZd LOGIC SYMBOL ORDERING CODE: See Section 9 PKGS Plastic DIP(P) OUT A Ceramic DIP (D) A Flatpak (F) A COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C ~vcc ~E ~Ioc ~bc loall QUAD 2-INPUT MULTIPLEXER PIN - sO: 1 iii i YYY1, PKG Vee = +5.0 V ±10%, TA = -55°C to +125°C TYPE 74S158PC, 74LS158PC 1-S 98 74S158DC, 74LS158DC 54S158DM,54LS158DM 68 74S158FC, 74LS158FC 54S158FM,54LS158FM 4L E lOa l1a lOb hb loc he IOd I1d Z, Zb Y Y 4 7 Z, Zd ! ! Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 10a-lod ha-hd E S "Za-Zd DESCRIPTION Source 0 Data Inputs Source 1 Data Inputs Enable Input (Active LOW) Select Input Inverted Outputs 54/74S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.25/1.25 1.25/1.25 2.5/2.5 2.5/2.5 25/12.5 0.5/0.25 0.5/0.25 1.0/0.5 1.0/0.5 10/5.0 (2.5) TRUTH TABLE INPUTS OUTPUTS ~ S 10 h Z H L L L L X L L H H X L H X X X X X L H H H L H L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 4-213 • 158 FUNCTIONAL DESCRIPTION - The '158 is a quad 2-input multiplexer fabricated with the Schottky barrier diode process for high speed. It selects four bits of data from two sources under the control of a common Select input (S) and presents the data in inverted form at the four outputs. The Enable inpuHE) is active LOW. When Eis HI GH, all of the outputs (Z) are forced HIGH regardless of all.other inputs. The '158 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. A common use of the '158 isthe moving of data from two groups of registers to four common output busses. The particular register from which the data comes is determined by the state of the Select input. A le~s obvious use is asa function generator. The '158 can generate four functions of two variables with one variable common. This is useful for implementing gating functions. LOGIC DIAGRAM 1o. lOb ICd 10, l'b n ~--+---+-'---+---H--------+--~ (~I I~ ~ (1 ( ( I I DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74S PARAMETER Min lee Power Supply Current AC CHARACTERISTICS: Vee Max tpHL tpLH tpHL UNITS CONDITIONS Max 8.0 mA Vee = Max· = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) PARAMETER CL RL = 15 pF = 280 n Min tpLH Min 61 54174S SYMBOL 54174LS Max 54174LS CL = 15 pF Min UNITS CONDITIONS Max Propagation Delay, S to Z 12 12 20 24 ns Figs. 3-1., 3-20 E to Z 11.5 12 16 16 ns Figs. 3-1, 3-5 Propagation Delay, In to Z 6.0 6.0 13 11 ns Figs. 3-1, 3-4 Propagation Delay, "IcC measured with outputs open and 4.5 V applied to all inputs. 4-214 160 • 162 CONNECTION DIAGRAM PINOUT A 54/74160 54/74162 • 54LS/74LS160 • 54LS/74LS162 SYNCHRONOUS PRESETTABLE BCD DECADE COUNTERS DESCRIPTION - The '160 and '162 are high speed synchronous decade counters operating in the BCD (8421) sequence. They are synchronously presettable for application in programmable dividers alid have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The '160 has an asynchronous Mastef Reset input that overrides all other inputs and forces the outputs LOW. The '162 has a Synchronous Reset input that overrides counting and parallel loading and allows all outputs to be simultaneously reset on the rising edge of the clock. For the S-TTL and LP-TTL versions, please see the 9310 data sheet. • • • • SYNCHRONOUS COUNTING AND LOADING HIGH SPEED SYNCHRONOUS EXPANSION TYPICAL COUNT RATE OF 35 MHz LS VERSIONS FULLY EDGE TRIGGERED PKGS OUT :ill Vee cpIT :lliTC Poll :mao P11! El01 P21] :ill 02 m P31! 03 CEP[! :m GNOI! ]]PE 'MR for '160 'SR for '162 LOGIC SYMBOL PE Po P, P2 P3 7 - CEP COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125° PKG 1 0 - CET TC ~15 2 - CP TYPE Plastic DIP(P) A 74160PC, 74LS160PC 74162PC, 74LS162PC Ceramic DIP (0) A 74160DC, 74LS160DC 74162DC, 74LS162DC 54160DM,54LS160DM 54162DM, 54LS162DM 7B Flatpak (F) A 74160FC, 74LS160FC 74162FC, 74LS162FC 54160FM,54LS160FM 54162FM,54LS162FM 4L 9B 'R 00 01 02 03 r1~ Vee = Pin 16 GND = Pin 8 }3 1~ }1 'MR for '160 'SR for '162 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION 00-03 Count Enable Parallel Input Count Enable Trickle Input Clock Pulse Input (Active Rising Edge) Asynchronous Master Reset Input (Active LOW) Synchronous Reset Input (Active LOW) Parallel Data Inputs Parallel Enable Input (Active LOW) Flip-flop Outputs TC Terminal Count Output CEP CET CP MR ('160) SR ('162) Po- P:l PE CET 1iii i ORDERING CODE: See Section 9 PIN - *liE 54/74 (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 2.0/2.0 2.0/2.0 1.0/1.0 0.6/0.3 1.0/0.5 0.6/0.3 0.5/0.25 1.0/1.0 1.0/1.0 1.0/1.0 20/10 0.5/0.25 0.5/0.25 0.6/0.3 10/5.0 (2.5) 10/5.0 (2.5) 20/10 160 -162 LOGIC DIAGRAMS '160 Po CET CEP TC CP~>-----+-~--+---~----+-~--+---~--~--~~--+-----------+-~ Qo '162 Po SR--~~~~+-+----+----~r-r---~--~r-+---~----------, TC Qo 4-216 160 • 162 LOGIC DIAGRAMS 'LS160 Po PE -'" I '" CEP IT5~ P3 I I I tJ tJ tJ CET CP ~~ ~f '\, .. I 1 r+ i!Jt ~ if- ~ Lj TC ~ -" -----.J I aD ~ aDI HCD aD I 1CD aD I I LJ I ~ I I I I a3 'LS162 Po P3 PE-----.,........[>---.,---,.-+-----rl--------?-+----------, CEP l:=rn1;:±~~~~p cp------l> ~~~~~~~~~~~~~ a3 aD 4-217 TC 160 • 162 FUNCTIONAL DESCRIPTION - The '160 and '162 count modul0-10 in the BCD (8421) sequence. From state 9 (HLLH) they increment to state 0 (LLLU. The '161 and '163 count modul0-16 binary sequence. From state 15 (HHHH) they increment to state 0 (LLLU. The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master; Reset of the '160 and '161) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset ('160 and '161), synchronous reset ('162 and '163), parallel load, count-up and hold. Five control inputs - Master Reset (MR, '160 and '161), Synchronous Reset (SR, '162 and '163), Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CET)determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CPo A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CPo With PE and MR ('160, '161) or SR ('162, '163) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting. The TTL versions ('160-'163, as opposed to the 'LS160-'LS163) contain master/slave flip-flops which are "next-state catching" because of the J K feedback. This means that when CP is LOW, information that would change the state of a flip-flop, whether from the counting logic or the parallel entry logic if either mode is momentarily enabled, enters the master and is locked in. Thus to avoid inadvertently changing the state of a master latch, and the subsequent transfer of the erroneous information to the slave when the clock rises, it is necessary to insure that neither the counting mode, the synchronous reset mode, nor the parallel entry mode is momentarily enabled while CP is LOW. The LS-TTLversions ('LS160 - 'LS163) use D-type edge-triggered flip-flops and changi ng the SR, PE, CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed. The Terminal Count (TC) output is HIGH when CET is HIGH and the counter is in its maximum count state (9 for the decade counters, 15 for the binary counters). To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. These two schemes are shown in the 9310 data sheet. The TC output is subject to decoding spikes dueto internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers. In the LS-TTL versions ('LS160, 'LS162) of the decade counters, the TC output is fully decoded and can only be HIGH in state 9. In the TTL versions ('160, '162), however, the TC output can also be HIGH in the illegal states 11,13 and 15. If a decade counter is preset to an illegal state, or assumes an illegal state when power is applied, it will return tothe normal sequence within two counts, as shown in the state diagrams. LOGIC EQUATIONS: Count Enable = CEP • CET • PE ('160, '162) TC = Qo • Q3 • CET ('LS160, 'LS162) TC = Qo • 01 • Q2 • Q3 • CET ('161, 'LS161, '163, 'LS163) TC = Qo. Q1 • Q2 • Q3 • CET MODE SELECT TABLE 'SR PE L H H H H X L H H H CET CEP Action on the Rising Clock Edge ( I ) X X H L X X X H X L RESET (Clear) LOAD (P n -'Qn) COUNT !increment) NO CHANGE (Hold) NO CHANGE (Hold) '160, '162 >For the "62 and "63 only. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 4-218 STATE DIAGRAMS 'LS160, 'LS162 160 • 162 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74 PARAMETER Min Max 54174LS Min UNITS CONDITIONS Max lecH Power Supply Current Outputs HIGH XM XC 85 94 31 31 mA Vee = Max, PE = Gnd Other Inputs = 4.5 V Cp=...r- ICCL Power Supply Current Outputs LOW XM XC 91 101 32 32 mA Vec = Max All Inputs = Gnd CP=...r- AC CHARACTERISTICS: Vcc = +5.0 V, TA = +25 0 C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER 54/74LS CL = 15 pF CL = 15 pF RL = 400 n Min Max 25 Min UNITS CONDITIONS Max 25 MHz Fi gs. 3-1, 3-8 25 21 ns Figs. 3-1, 3-8 20 23 24 27 ns Figs. 3-1, 3-8 PE = 4.5 V Propagtion Delay CP to On 25 29 24 27 ns Figs. 3-1, 3-8 PE = Gnd tPLH tPHL Propagation Delay CET to TC 16 16 14 23 ns Figs. 3-1, 3-5 tPHL Propagation Delay MR to On ('160 and '161) 38 28 ns Figs. 3-1, 3-16 f max Maximum Count Frequency tPLH tPHL Propagation Delay CP to TC 35 35 tPLH tPHL Propagtion Delay CP to On tPLH tPHL 4-219 • 160 • 162 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL PARAMETER 54174 Min ts (H) ts (U Setup Time, HIGH or LOW Pn toCP th (H) th (U Max 54174LS Min UNITS CONDITIONS Max 20 20 20 20 ns Hold Time, HIGH or LOW Pn to CP 0 0 5.0 5.0 ns ts (H) ts(U Setup Time, HIGH or LOW PE to CP 25 25 25 25 ns th (H) th (U Hold Time, HIGH or LOW PE to CP 0 0 0 0 ns ts (H) ts (U Setup Time, HIGH or LOW CEP, CET or SA to CP 20 20 25 25 ns th (H) th (U Hold Time, HIGH or LOW CEP, CET or SR to CP 0 0 0 0 ns tw (H) tw (U CP Pulse Width, HIGH or LOW 15 25 15 25 ns Fig. 3-8 tw (U MR Pulse Width LOW ('160 and '161) 20 15 ns Fig. 3-16 tree Recovery Time MR to CP ('160 and '161) 20 ns Fig. 3-16 4-220 Fig. 3-6 Fig. 3-6 Fig. 3-6 161 • 163 CONNECTION DIAGRAM PINOUT A 54/74161 • 54LS/74LS161 54/74163 .54LS/74LS163 SYNCHRONOUS PRESETTABLE BINARY COUNTERS DESCRIPTION - The '161 and '163 are high speed synchronous modul0-16 binary counters. They are synchronously presettable for application in programmable dividers and have two types of Count Enable inputs plus a Terminal Count output for versatility in forming synchronous multistage counters. The '161 has an asynchronous Master Reset input that overrides all other inputs and forces the outputs LOW. The '163 has a Synchronous Reset input that overrides counting and parallel loading and allows the outputs to be simultaneously reset on the rising edge of the clock. For functional description and detail specifications please refer to the '160 data sheet. For S-TTL and LP-TTL versions please see the 9316 data sheet. 'MR for '161 'SR for '163 LOGIC SYMBOL 9 3 4 5 6 PE Po p, P2 P3 CEP 10 eET TC 15 CP 1 14 13 12 11 • SYNCHRONOUS COUNTING AND LOADING • HIGH SPEED SYNCHRONOUS EXPANSION • LS VERSIONS FULLY EDGE TRIGGERED 'MR for '161 'SR for '163 STATE DIAGRAM ORDERING CODE: See Section 9 PIN PKGS OUT Vee = Pin 16 Gnd = Pin 8 COMMERCIAL GRADE MILITARY GRADE Vce = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP (P) A 74161 PC, 74LS161PC 74163PC, 74LS163PC Ceramic DIP (0) A 74161DC, 74LS161 DC 74163DC, 74LS163DC 54161DM, 54LS161 OM 54163DM,54LS163DM 78 Flatpak (F) A 74161FC,74LS161FC 74163FC, 74LS163FC 54161FM, 54LS161 FM 54163FM,54LS163FM 4L 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION 00-03 Count Enable Parallel Input Count Enable Trickle Input Clock Pulse Input (Active Rising Edge) Asynchronous Master Reset Input (Active LOW) Synchronous Reset Input (Active LOW) Parallel Data Inputs Parallel Enable Input (Active LOW) Flip-flop Outputs TC Terminal Count Output CEP CET CP MR ('161) SR ('163) PO-P3 PE 54/74 (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 2.0/2.0 2.0/2.0 1.0/1.0 0.6/0.3 1.0/0.5 0.6/0.3 0.5/0.25 1.011.0 1.0/1.0 1.0/1.0 20/10 0.5/0.25 0.5/0.25 0.6/0.3 10/5.0 (2.5) 10/5.0 (2.5) 20/10 4-221 • 161 • 163 LOGIC DIAGRAMS '161 TC 'LS161 Po P3 J I E t .~ CE _~ .~ 0 J 0 0 CE , i1c ~~~ ~~r ~ w CP ... v 1C~ R ----<>:> 1 f-.r g-.r D I DI I K I LJ I DJ I I r ~ D --.-1 L I Q3 Qo 4-222 TC 161 • 163 LOGIC DIAGRAMS '163 Po ~ ~ CEP CET I t I e e t t t - ~ t - • n CP TC ...v l I K CP ~ I f- I I I I I I t- f- 00 r-----I I I t- 'LS163 Po .... I _ ~ I .. CEP CET I I d (j 0 ~ r;~ ~ ~~ ~ CP SA ... ;:... I CP LJ D I t I ~LJ D : I t I LJ 00 4-223 D I I I I I I LJ t D I [ ~ TC I 164 CONNECTION DIAGRAM PINOUT A 54/74164 54LS/74LS164 SERIAL-IN PARALLEL-OUT SHIFT REGISTER DESCRIPTION - The '164 is a high speed 8-bit serial-in parallel-out shift register. Serial data is entered through a 2-input AND gate synchronous with the LOW-to-HI GH transition of the clock. The device features an asynchronous Master Reset which clears the register setting all outputs LOW independent of the clock. It utilizes the Schottky diode clamped process to achieve high speeds. • • • • TYPICAL SHIFT FREQUENCY OF 35 MHz ASYNCHRONOUS MASTER RESET GATED SERIAL DATA INPUT FULLY SYNCHRONOUS DATA TRANSFERS PIN OUT ~ COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C ~vcc TIlo? 00 IT ~06 01 [I ~05 II 03 II ~04 ~MR GNO[I ~cp 02 ORDERING CODE: See Section 9 PKGS AIT alI PKG TYPE Plastic DIP (P) A 74164PC, 74LS164PC Ceramic DIP (D) A 74164DC, 74LS164DC 54164DM,54LS164DM 6A Flatpak (F) A 74164FC, 74LS164FC 54164FM, 54LS164FM 31 9A INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES A, B CP MR 00-07 DESCRIPTION 54174 (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 10/5.0 0.5/0.25 Data Inputs Clock Pulse Input (Active Rising Edge) Master Reset Input (Active LOW) Outputs LOGIC SYMBOL A 2 8 Vce = Pin 14 GND = Pin 7 y 9 3 4 5 6 4-224 10 11 12 13 0.5/0.25 0.5/0.25 10/5.0 (2.5) 164 FUNCTIONAL DESCRIPTION - The '164 is an edge-triggered 8-bit shift register with serial data entry and an output from each of the eight stages. Data is entered serially through one of two inputs (A or B); either of these inputs can be used as an active HIGH Enable for data entry through the other input. An unused input must be tied HIGH, or both inputs connected together. Each LOW-to-HIGH transition on the Clock (CP) input shifts data one place to the right and enters into 00 the logical AND of the two data inputs (A • B) that existed before the rising clock edge. A LOW level on the Master Reset (MR) input overrides all other inputs and clears the register asynchronously, forcing all 0 outputs LOW. MODE SELECT TABLE OPERATING MODE INPUTS MR A OUTPUTS B 00 • 01-07 Reset (Clear) L X X L L-L Shift H H H H I I h h I h I h L L L H qo-qs qo-qs qo-qs qo-qs L (I) = LOW Voltage Levels H Ih) = HIGH Voltage Levels X = Immaterial qn = Lower case letters indicate the state of the referenced input or output one setup time priortothe LOW-to-HIGH clock transition. LOGIC DIAGRAM A o B CP-{>.O+--4-~~--~~~-+--~~~--~--+--+~--~~~-+--~ MR~o---~~----~~---4--~--~--r---+--+----~~---+--4---~ 00 a, 05 4-225 a 164 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMTER ~ los Output Short Circuit Current lee Power Supply Current AC CHARACTERISTICS: Vee XC = +5.0 V, 54174LS Min Max -10 -9.0 -27.5 -27.5 -20 -20 -100 -100 mA Vee = Max 27 mA A, B = Gnd, Vee = Max CP = 2.4 V, MR = S-- = +25°C (See Section 3 for waveforms and 54174 SYMBOL PARAMETER Max Maximum Clock Frequency tPLH tPHL Propagation Delay CP to an 27 32 tPLH tPHL Propagation Delay CP to an 30 37 tPHL Propagation Delay MR to an 36 tPHL Propagation Delay MR to an 42 SYMBOL = +5.0 V, 25 TA PARAMETER Min UNITS CONDITIONS Max 25 f max load configurations) 54174LS CL = 15 pF CL = 15 pF RL = 800.n Min AC CHARACTERISTICS: Vee CONDITIONS Max 54 TA UNITS Min 27 32 36 MHz Figs. 3-1, 3-8 ns Figs. 3-1, 3-8 ns Figs. 3-1, 3-8 CL = 50 pF ns Figs. 3-1,3-16 ns Figs. 3-1, 3-16 CL = 50 pF = +25°C 54/74 Min Max 54/74LS Min UNITS CONDITIONS Max ts (H) ts (U Setup Time HIGH or LOW A or B to CP 15 15 15 15 ns th (H) th (U Hold Time HIGH or LOW A or B to CP 0 0 5.0 5.0 ns tw (H) tw (U CP Pulse Width HIGH or LOW 20 20 20 20 ns Fig. 3-8 tw (U MR Pulse Width LOW 20 20 ns Fig. 3-16 tree Recovery Time MR to CP 20 ns Fig. 3-16 4-226 Fig. 3-6 165 CONN£CTION DIAGRAM PINOUT A 54/74165 54LS/7 4LS 165 a-BIT PARALLEL-TO-SERIAL CONVERTER DESCRIPTION - The '165 is an a-bit parallel load or serial-in register with complementary outputs available from the last stage. Parallel inputing occurs asynchronously when the Parallel Load (PU input is LOW. With PL HIGH, serial shifting occurs on the rising edge of the clock; new data enters via the Serial Data (Os) input. The 2-input OR clock can be used to combine two independent clock sources, or one input can act as an active LOW clock enable. PL[! PIN PKGS OUT Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG :EjP3 Ps~ TI]P2 P6~ E]p, P7[! :IT] Po I! ~Ds GND!:! ]]07 07 MILITARY GRADE mvcc lil CP2 P411 ORDERING CODE: See Section 9 COMMERCIAL GRADE - cp,[! TYPE Plastic DIP(P) A 74165PC, 74LS165PC Ceramic DIP (0) A 74165DC, 74LS165DC 54165DM,54LS165DM 68 Flatpak (F) A 74165FC, 74LS165FC 54165FM,54LS165FM 4L 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES Q7 Clock Pulse Inputs (Active Rising Edge) Serial Data Input Asynchronous Parallel Load Input (Active LOW) Parallel Data Inputs Serial Output From Last Stage Q7 Complementary Output CP1, CP2 Os PL Po-F7 54/74 (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 2.0/2.0 0.5/0.25 0.5/0.25 1.5/0.75 1.0/1.0 20/10 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) 20/10 LOGIC SYMBOL 1 11 12 13 14 3 4 5 6 b I p,I I I I I I I PL Po P2 P3 P4 Ps P6 P7 10 Os 07 - 9 1:=D CP 07 4-227 0-7 Vee = Pin 16 GND = Pin 8 165 FUNCTIONAL DESCRIPTION - The '165 contains eight clocked master/slave RS flip-flops connected as a shift register with auxiliary gating to provide overriding asynchronous parallel entry. Parallel data enters when the PLsignal is LOW. The parallel data can change while PL is LOW provided that the recommended setup and hold times are observed. For clocked operation, PL must be HIGH. The two clock inputs perform identically; one can be used as a clock inhibit by applying a HIGH signal. To avoid double clocking, however, the inhibit signal should only go HIGH while the clock is HIGH. Otherwise, the rising inhibit signal will causethesame response as a rising clock edge. The flip-flops are edge-triggered for serial operations. The serial input data can change at any ti me, provided only that the recommended setup and hold times are observed, with respect to the riSing edge of the clock. TRUTH TABLE CONTENTS CP PL 1 2 L H H H H X X J Po ..r 00 01 Ds 00 00 01 L H ...r ...r L H 00 01 P1 Ds 00 04 Os RESPONSE Os 07 02 03 P2 Ps Ps Pr 03 04 05 Os 03 04 Os Os 07 02 03 04 Os Os 03 04 Os Os 07 01 02 01 02 P3 02 P4 H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM cp, c", PL-cD------+ 4-228 Parallel Entry Right Shift No Change Right Shift No Change 165 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER I los Output Short Circuit Current Icc Power Supply Current AC CHARACTERISTICS: Vee l = +5.0 V, XM XC Min Max -20 -18 -55 -55 PARAMETER Min TA 36 = +25°C (See Section CL RL = 15 pF = 400 n Min Max UNITS CONDITIONS Max 63 54174 SYMBOL 54174LS = Max mA Vee mA Vee = Max, PL = Pn ="l.. CP1, CP2 = 15 Min pF UNITS CONDITIONS Max tPLH tPHL Propagation Delay PL to 07 or 07 31 40 30 30 ns Figs. 3-1, 3-16 tPLH tPHL Propagation Delay CP1 to 07 or 07 24 31 30 30 ns Figs. 3-1, 3-8 tPLH tPHL Propagation Delay P7 to 07 17 36 25 30 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay P7 to 07 27 27 30 25 ns Figs. 3-1, 3-4 SYMBOL PARAMETER = +5.0 V, 30 TA MHz Figs. 3-1, 3-8 = +25°C 54/74 Min Max 54174LS Min UNITS CONDITIONS Max ts (H) ts (Ll Setup Time HIGH or LOW Pn to PL 10 10 10 10 ns th (H) th (Ll Hold Time HIGH or LOW Pn to PL 0 0 5.0 5.0 ns ts (H) ts (Ll Setup Time HIGH or LOW Ds to CPn 20 20 10 10 ns th (H) th (Ll Hold Time HIGH or LOW Ds to CPn 0 0 5.0 5.0 ns ts (H) Setup Time HIGH CP1 to CP2 or CP2 to CP1 30 30 ns tw (H) CPn Pulse Width HIGH 25 20 ns tw (Ll PL Pulse Width LOW 15 15 ns tree Recovery Ti me PL to CPn 45 15 ns Fig. 3-13 Fig. 3-6 Fig. 3-8 Fig. 3-16 4-229 V 54174LS CL Maximum Clock Frequency AC OPERATING REQUIREMENTS: Vee = 4.5 3 for waveforms and load configurations) fmax 20 --u- • 166 CONNECTION DIAGRAM PINOUT A 54/74166 a-BIT SHIFT REGISTER DESCRIPTION - The '166 is an a-bit, serial- or parallel-in, serial-out shift register using edge triggered D-type flip-flops. Serial and parallel entry are synchronous, with state changes initiated by the rising edge of the clock. An asynchronous Master Reset overrides. other inputs and clears all flipflops. The circuit can be clocked from two sources or one CP input can be used to trigger the other. osIT • • • • P3[I 35 MHz TYPICAL SHIFT FREQUENCY ASYNCHRONOUS MASTER RESET SYNCHRONOUS PARALLEL ENTRY GATED CLOCK INPUT CIRCUITRY PKGS OUT Po II pdI P21I COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C GNO[! PJMA PKG TYPE Plastic DIP(P) A 74166PC Ceramic DIP (D) A 74166DC 54166DM 78 Flatpak (F) A 74166FC 54166FM 4L 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions CP1, CP2 Ds PE PO-P7 QR Q7 54/74 (U.L.) HIGH/LOW DESCRIPTION PIN NAMES Clock Pulse Inputs (Active Rising Edge) Serial Data Input Parallel Enable Input (Active LOW) Parallel Data Inputs Asynchronous Master Reset Input (Active LOW) Last Stage Output 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.011.0 20/10 LOGIC SYMBOL 15 2 1- :::J;" 6 ~ 3 4 5 10 11 12 14 !IIIIIIII PE Po p, P2 P3 P4 Ps Pa P7 Os CP MA 07 ! 1l 4-230 Vee = Pin 16 GND = Pin 8 ~vcc ~PE ~P7 ~07 ~Pa rm p5 rm p4 CP2[I cp,[! ORDERING CODE: See Section 9 PIN - 166 FUNCTIONAL DESCRIPTION - Operation is synchronous (except for Master Reset) and state changes are initiated by the rising edge of either clock input if the other clock input is LOW. When one of the clock inputs is used as an active HIGH clock inhibit. it should attain the HIGH state while the other clock is still in the HIGH state following the previous operation. When the Parallel Enable (PE) input is LOW. data is loaded into the register from the Parallel Data (Po - P7) inputs on the next rising edge of the clock. When PE is HIGH. information is shifted from the Serial Data (Os) input to 00 and all data in the register is shifted one bit position (i.e .• 00-+0,. 0,-+02. etc') on the rising edge of the clock. MODE SELECT TABLE INPUTS MR PE RESPONSE CP, CP2 L X X X Asynchronous Reset; On = LOW H H X X H* X X H* Hold H H L L L J' J H H H H L J' f I Parallel Load; Pn-+On L Shift; Ds~ 00.00--0,. etc. L "The HIGH signal on one CP input must be established while the other CP input is HIGH. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM 4-231 • 166 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER Min lee UNITS CONDITIONS mA Vee = Max, CPl = .....rOs = 4.5 V CP2, MR, PE, Pn = Gnd Max Power Supply Current 127 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25° C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER CL = 15 pF RL=400n Min UNITS CONDITIONS Max 25 f max Maximum Clock Frequency MHz tPLH tPHL Propagation Delay CPn to 07 26 30 ns tPHL Propagation Delay MR to 07 35 ns Figs. 3-1, 3-8 Figs. 3-1, 3-16 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA= +25°C SYMBOL 54174 PARAMETER Min UNITS CONDITIONS Max ts (H) ts (U Setup Time HIGH or LOW Os or Pn to CPn 20 20 ns th (H) th (L) Hold Time HIGH or LOW Os or Pn to CPn 0 0 ns ts (H) ts (U Setup Time HIGH or LOW PE to CPn 30 30 ns th (H) th (L) Hold Time HIGH or LOW PE to CPn 0 0 ns tw (H) CPn Pulse Width HIGH 20 ns Fig. 3-8 tw (U MR Pulse Width LOW 20 ns Fig. 3-16 4-232 Fig. 3-6 167 CONNECTION DIAGRAM PINOUT A 54/74167 ~ SYNCHRONOUS DECADE RATE MULTIPLIER DESCRIPTION - The '167 contains a synchronous decade counter and four decoding gates that serve to gate the clock through to the output at a submultiple of the clock frequency. The output pulse rate, relative to the clock frequency, is determined by signals applied to the Select (So - Sa) inputs. Both true and complement outputs are available, along with an enable input for each. A Count Enable input and a Terminal Count output are provided for cascading two or more packages. Asynchronous Master Reset and Master Set inputs prevent counting and clear the counter or set it to maximum, respectively. NCrr ~vcc sdI ms, S3[! :Elso MS[1 E]MR azl]: TIlEy OyE! ]]CE TC[!: ~Ez GND[! }]cp LOGIC SYMBOL 4 11--0 ORDERING CODE: See Section 9 9- PIN PKGS COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C OUT Plastic DIP(P) A 74167PC Ceramic DIP (0) A 74167DC Flatpak (F) A 74167FC PKG TYPE 14 15 2 3 I I I I I 10~ 12- MS So S1 S2 S3 CE CP TC 0-7 Ez Ey MR oz Oy !! 9B 1l 54167DM 7B Vee = Pin 16 GND = Pin 8 54167FM 4L INPUT LOADING/FAN-OUT: See Sectiol'1 3 for U.L. definitions DESCRIPTION PIN NAMES So-S3 E.z Ey CE CP MS MR Oz Oy TC Rate Select Inputs Enable Input (Active LOW) Oy Enable Input Count Enable Input (Active LOW) Clock Pulse Input (Active Rising Edge) Asynchronous Master Set Input (Active HIGH) (Set to 9) Asynchronous Master Reset Input (Active HIGH) Gated Clock Output (Active LOW) Complement Output (Active HIGH) Terminal Count Output (Active LOW) Oz 4-233 54174 (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 2.0/2.0 1.0/1.0 1.0/1.0 10/10 10/10 10/10 167 o .., ...u tI) a ... U lIO: 0 U 1 I~ ...u UI ::I! 4-234 a: ::I! 167 TRUTH TABLE INPUTS OUTPUTS CLOCK PULSES Ey MR CE EZ S3 S2 Sl So H L L L X L L L H L L L X L L L X L L L X L L H X L H L 10 10 10 H H H H L L H H 1 2 L L L L L L L L L L L L L L L L L H H H H L L H H L H L 10 10 10 10 H H H H L L L L L L L L L L L L L L L L H H H H H L L L L H L L H H H L H L H 10 10 10 10 10 L L L L L L L L L L L L L L L H H H H H H H H H L L L H H L L H L H H 10 10 10 10 10 X Oy Oz TC NOTES 1 2 1 1 1 1 2 2 2 3 4 5 6 3 4 5 6 1 1 1 1 2 2 2 2 H H H H H 7 8 9 8 9 7 8 9 8 9 1 1 1 1 1 2 2 2 2,3 2, 3 H H H H L 8 9 8 9 H 8 9 8 9 9 1 1 1 1 1 2,3 2,3 2,3 2,3 H 4 1. This is a simplified illustration of the clear function. CP and E.z also affectthe logic level of Oy and Oz. A LOW signal on Ey will cause Oy to remain HIGH. 2. Each rate illustrated assumes So- S3 are constant throughtout the cycle; however, these illustrations in no way prohibit variable-rate operation. 3. These input condtions exceed the range of the decade rate Select inputs. 4. Ey can be used to inhibit output Oy. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial PULSE PATTERN TABLE PULSE PATTERN S3 S2 Sl So m Oz L L L L L L L H L H H L H L H L 1 1 1 1 101 1 1 1 1 101 1 1 101 1 101 0 1 101 10101 101 0 1 1 1 1 L L L H H H H H L L L H H L L H L H L H 10100 1 000 1 1 0 0 0 0 o 000 1 o0 0 0 0 1 1 1 1 1 2 3 4 5 6 7 8 9 H = HIGH Voltage Level L = LOW Voltage Level 4-235 1 1 1 0 0 0 1 0 000 000 0 0 0 0 0 0 • 167 FUNCTIONAL DESCRIPTION - The '167 contains four JK flip-flops connected as a synchronous decade counter with a count sequence of 0-1-2-3-4-8-9-10-11-12. A LOWsignal ontheCount Enable(CEl input permits cou nting, with all state changes initiated si multaneously by the rising edge of the clock. When the count reaches maximum (12) the Terminal Count (TC) output goes LOW if CE is LOW. A HIGH signal on Master Reset ~R) clears the flip-flops and prevents counting, although output pulses can still occur if the clock is running, Ez is LOW and Sa is HIGH. A HIGH signal on Master Set (MS) prevents counting and sets the counter to 12, the only state in which no output pulses can occur. The flip-flop outputs are decoded by a 4-wideAND-OR-INVERT gate. Each AND gate also contains the buffered and inverted CP and Z-enable (Ez) functions, as well as one of the Select (So - Sa) inputs. The Z output Oz is normally HIGH and goes LOW when CP and Ez are LOWand any of the AND gates has its other inputs HIGH. The AND gates are enabled at different times and different rates relative to the clock. For example, the gate to which 50 is connected is enabled only when the counter is in state five, assuming that So is HIGH. Thus, during one complete cycle of the counter (10 clocks) the So gate can contribute only pulse to the output rate. The 51 gate is enabled twice per cycle, the S2 gate fourtimes per cycle(etcJ. The output pulse rate thus depends on the clock 'rate and which of the So -S3 inputs are HIGH, as expressed in the following formula. fout =m. fin where m = S3 • 10 23 + 52 • 22 + 51 • 21 + So • 20 Thus by appropriate choice of signals applied to the So - Sa inputs, the output pulse rate can range from 1/10 to 9/10 of the clock rate. The select codes, m values and Oz pulse pattern are shown in the Pulse Pattern Table. In the Oz pattern, each column represents a clock period, with the state-12 column on the right. A one indicates that the Oz output will be HIGH during that entire clock period, while azeroindicatesthatOz will beLOWwhen the clock is LOW during that period. Note that the output pulses are evenly spaced only when m is one or two, assuming that the clock frequency is constant, and that no output pulses can occur in state 12 of the counter. The V output Oy is the complement of Oz and is thus normally LOW. A LOW signal on the V-enable input Ey disables Oy. To expand the multiplier to 2-digit rate select, two packages can be cascaded as shown in Figure a. Both circuits operate from the basic clock, with the i'C output of the first acting to enable both counting and the output pulses of the second package. Thus the second counter advances at only 1/10 the rate of the first and a full cycle of-the two counters combined requires 100 clocks. Output pulses contributed by the second counter occur only when the first counter is in state 12. All output pulses are opposite in phase to the clock. MSB ENABLE tt Lt LSB So S, S2 S3 CE r - CP #1 TC 1I I I So S, S2 S3 H CE ; - - - CP '-- --c Ez lEY Oz #2 Ez oy I I L-----I~ CLOCK fin Fig. a Cascading for 2-Dlglt Rate Select 4-236 lou, 167 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL los Icc 54174 PARAMETER Output Short Circuit Current UNITS Min Max -18 -55 Power Supply Current 99 CONDITIONS mA Vee = Max mA Vee = Max; MS = Gnd Other Inputs = 4.5 V AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER CL = 15 pF RL = 400 n Min UNITS Max fmax Maximum Clock Frequency tpLH tPHL Propagation Delay CP to TC 25 30 33 ns tPLH tPHL Propagation Delay Ez to Oy 30 33 ns tPLH tPHL Propagation Delay Ey to Ov 14 10 ns tPLH tPHL Propagation Delay Sn to Oz 14 10 ns tPLH tPHL Propagation Delay CP to Oy 39 30 ns tPLH tPHL Propagation Delay Ez to Oz 18 23 ns tPLH tPHL Propagation Delay Sn to Oy 23 23 ns tpLH tPHL Propagation Delay CP to Oz 18 26 ns tPLH tPHL Propagation Delay CE to TC 20 21 ns tPHL Propagation Delay MS to TC 27 ns tPLH Propagation Delay MR to Oy 36 ns tPHL Propag!!.!!.on Delay MR TO Oz 23 ns 4-237 CONDITIONS MHz Figs. 3-1, 3-8 Figs. 3-1, 3-4 Figs. 3-1, 3-5 Figs. 3-1, 3-16 • 167 AC OPERATING REQUIREMENTS: Vee SYMBOL = +5.0 V, = 25°C TA 54/74 PARAMETER UNITS Min CONDITIONS Max ts(U Setup Time LOW CE to CP Rising 25 th (H) Hold Time HIGH CE to CP Rising 0 tw CP-10 ns ts(U Setup Time LOW CE to CP Falling 0 tw CP-10 ns th (U Hold Time LOW CE to CP Falling 20 tinh (H) Inhibit Time HIGH CE to CP Falling 10 ns Fig. b tw (H) CP Pulse Width HIGH 20 ns Fig. 3-8 tw (H) MR Pulse Width HIGH 15 ns tw (H) MS Pulse Width HIGH 15 ns ~ , ns Fig. b Fig. c ~ T-10 , ..... I+- ts(L) ..... ~ CP Fig. 3-16 _ _ DISABLED----...., ENABLED-----..,. \ ns '--'.. .("", Vm , I*- tinn(H) ~ 1\ J I Vm = 1.5V ~twCP_ Fig. b _ _ DISABLED---...,,---ENABLED .... ~,,} -~, f", , Ci I CP ---' ~ T ;4-twCP Fig. c 4-238 Vm = 1.5V ~ 168 CONNECTION DIAGRAM PINOUT A 54LS/74LS168 SYNCHRONOUS BI-DIRECTIONAL BCD DECADE COUNTER - utilE ~vcc CP[! liJfC Pol! :moo P1[! }i]01 P21! :rn02 P31! 03 m CEP[! :mCET GNO[! ]]PE DESCRIPTION - The '168 is a fully synchronous 4-stage up/down counter featuring a preset capability for programmable operation, carry lookahead for easy cascading and a U/O input to control the direction of counting. It counts in the BCD (8421) sequence and all state changes, whether in counting or parallel loading, are initiated by the LOW-to-HIGH transition of the clock. LOGIC SYMBOL 1iii i PE Po P, P2 P3 1- ORDERING CODE: See Section 9 PIN PKGS OUT utO 7--- . 1) Count Enable = CEP • CET • PE Up: TC = 00 .03. (UiO) • CET 3) Down: TC = 00 • 01 • 02 • 03. (UfO) • CET 2) STATE DIAGRAM 54LS/74LS168 '168 and '169 MODE SELECT TABLE PE CEP CET UfD Action on Rising Clock Edge L H H H H X L L H X Load (Pn---On) Count Up (increment) Count Down (decrement) No Change (Hold) No Change (Hold) X L L X H X H L X X H = HIGH Vollage Level L = LOW Vollage Level X = Immaterial ---!.~ - - __ Count Up Count Down LOGIC DIAGRAM IJJ CEP CET P, P, CJ CJ !D UIO ~ l6 IU - b 1~ leI rr ,u, l{ L ~ U L ~ 4f- I~ r- CP .. ~? ~r ~J, 1.1. lR-RD, D, I Of RD, 4-240 tl t;J Ii L ;~ leE ..I.I~ D, I'""" ~ 168 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74LS PARAMETER Min lee Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, UNITS 34 TA CONDITIONS Max = +25°C (See Section rnA Vee = Max 3 for waveforms and load configurations) 54174LS SYMBOL CL PARAMETER = 15 pF Min f max Maximum Clock Frequency tPLH tPHL Propagation Delay CP to an tPLH tPHL UNITS CONDITIONS Max MHz Figs. 3-1, 3-8 20 20 ns Figs. 3-1,3-8 Propagation Delay CP to TC 30 30 ns Figs. 3-1, 3-8 tPLH tPHL Propagation Delay CET to TC 15 20 ns Figs. 3-1, tPLH tPHL Propagation Delay UfO to TC 25 25 ns Figs. 3-1, 3-20 AC OPERATING REQUIREMENTS: Vee SYMBOL 25 = +5.0 V, TA 3~5 = +25°C 54174LS PARAMETER Min UNITS CONDITIONS Max ts (H) ts(U Setup Time HIGH or LOW Pn, CEP or CET to CP 15 15 ns Fig. 3-6 th (H) th (U Hold Time HIGH or LOW Pn, CEP or CET to CP 5.0 5.0 ns Fig. 3-6 ts (H) tg(U Setup Time HIGH or LOW PE to CP 20 20 ns Fig. 3-6 th (H) th (U Hold Time HIGH or LOW PE to CP 0 0 ns Fig. 3-6 ts (H) ts (U Setup Time HIGH or LOW UfO to CP 25 25 ns Fig. 3-6 th (H) th (U Hold Time HIGH or LOW UfO to CP 0 0 ns Fig. 3-6 tw (H) tw (U CP Pulse Width HIGH or LOW 10 20 ns Fig. 3-8 4-241 • 169 CONNECTION DIAGRAM PINOUT A 54LS/74LS169 SYNCHRONOUS BI-DIRECTIONAL MODULO-16 BINARY COUNTER - U/oIT ~vcc ~TC ~oo cplI Po II ~o, p, [! ~02 ~03 P2[! P31! CEPIT ~CET GNO[! ~PE DESCRIPTION - The '169 is a fully synchronous 4-stage up/down counter featuring a preset capability for programmable operation, carry lookahead for easy cascading and a UfO input to control the direction of counting. All state changes, whether in counting or parallel loading, are initiated by the LOW-toHIGH transition of the clock. For a functional description and detail specifications, please refer to the '168 data sheet. LOGIC SYMBOL 1iii i PE Po ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE Vee TA = +5.0 V ±5%, = O°C to +70°C MILITARY GRADE = +5.0 V ±10%, = -55°C to +125°C Vee TA PKG TYPE Plastic DIP(P) A 74LS169PC Ceramic DIP (D) A 74LS169DC 54LS169DM 68 Flatpak (F) A 74LS169FC 54LS169FM 4L 98 17- I LJ I 11 , ~rf~ .I. ~ I LJ' LJ Q, h Q, Q, STATE DIAGRAM MODE SELECT TABLE PE CEP CET UfO L H H H H X L L H X X L L X H X H L X X Action on Rising Clock Edge Load (P n - a n ) Count Up (increment) Count Oown (decrement) No Change (Hold) No Change (Hold) H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial ~ 4-243 - COUNT UP COUNT DOWN • 170 CONNECTION DIAGRAM PINOUT A 54/74170 54lS/7 4LS 170 4 x4 REGISTER FILE (With Open-Collector Outputs) DESCRIPTION - The '170 contains 16 high speed, low power, transparent D-type latches arranged as four words of four bits each, to function as a 4 X 4 register file. Separate read and write inputs, both address and enable, allow simultaneous read and write operation. Open-collector outputs make it possible to connect up to 128 outputs in a wired-AND configuration to increase the word capacity up to 512 words. Any number of these devices can be operated in parallel to generate an n-bit length. The '670 provides a similar function to this device but it features 3-state outputs. LOGIC SYMBOL • • • • SIMULTANEOUS READ/WRITE OPERATION EXPANDABLE TO 512 WORDS OF n-BITS TYPICAL ACCESS TIME OF 20 ns LOW LEAKAGE OPEN-COLLECTOR OUTPUTS FOR EXPANSION 12 14 ORDERING CODE~ PIN PKGS OUT See Section 9 13 15 1 WE 0, WAo 02 2 WA, RAo COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG 4 RA1 TYPE RE 9B 11 Plastic DIP (P) A 74170PC, 74LS170PC Ceramic DIP (0) A 74170DC, 74LS170DC 54170DM,54LS170DM 7B Flatpak (F) A 74170FC, 74LS170FC 54170FM,54LS170DM 4L 10 9 7 6 Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 01-04 WAo, WA1 WE RAo, RA1 RE 01-04 54174 (U.L.) DESCRIPTION HIGH/LOW Data Inputs Write Address Inputs Write Enable Input (Active LOW) Read Address Inputs Read Enable Input (Active LOW) Data Outputs 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 OC* 110 'OC-Open Colleclor 4-244 54174LS (U.L.) HIGH/LOW 0.5/0.25 0.5/0.25 1.010.5 0.5/0.25 1.010.5 OC*/5.0 (2.5) 170 LOGIC DIAGRAM ~ WAo - to. I ~7 ~~~----+-~----~--~-----+~ """ o I~ (j IW~RD IGaO IGaO IIL--_--I--. I ~J I G r~W~~RD--I--J Q 0 RE--< RAo ~-- ------<~>l..........I_)- READ FUNCTION TABLE WRITE FUNCTION TABLE WRITE INPUTS WE WA, WAo L L L L H L L H H L H L H X X H = HIGH READ INPUTS o INPUTS TO Word 0 Word 1 Word 2 Word 3 None (hold) Voltage Level L = LOW Voltage 4-245 RE RA, RAo L L L L H L L H H X L H L H X Level OUTPUTS FROM Word 0 Word 1 Word 2 Word 3 None (HIGH Z) x = Immaterial 170 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER Min IOH Output HIGH Current Power Supply Current lee XC - XM 54174LS Max Min UNITS CONDITIONS Max 30 20 150 40 140 40 J.LA mA Vcc = Min, VOH = 5.5 V iVee = Max; On, WE, JRE = 4.5 V; WAn, RAn =Gnd AC CHARACTERISTICS: Vee = +5.0 V, TA = +25 0 C (See Section 3 for waveforms and load configurations) 54/74 SYMBOL PARAMETER 54174LS CL=15pF CL = 15 pF RL = 400 n Min Max Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay' RAo or RA1 to On 35 40 35 35 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay RE to On 15 30 30 30 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay WE to On 40 45 35 35 ns Figs. 3-1, 3-9 tpLH tPHL Propagation Delay On to On 30 45 35 35 ns Figs. 3-1, 3-5 'Measured at least 25 ns after entry of new data at selected location. AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25 0 C SYMBOL PARAMETER 54174 Min Max 54/74LS Min UNITS Is Setup Time HIGH or LOW On to rising WE 10 10 ns th Hold Time HIGH or LOW On to rising WE 15 5.0 ns ts Setup Time HIGH or LOW WAn to falling WE 15 10 ns th Hold Time HIGH or LOW WAn to rising WE 5.0 5.0 ns tw (U WE or RE Pulse Width LOW 25 25 ns Fig. a 4-246 CONDITIONS Max Fig. a 173 CONNECTION DIAGRAM PINOUT A 54/74173 54LS/74LS173 - OE1IT 4-BIT 0-TYPE REGISTER (With 3-State Outputs) OE, [I 00 IT :ill Vee :ill MR ~oo 1m 018: DESCRIPTION - The '173 is a high speed 4-bit register featuring 3-state outputs for use in bus-organized systems. The clock is fully edge-triggered allowing either a load from the D inputs or a hold (retain register contents) depending on the state of the Input Enable lines (1E1, iE2l. A HIGH on either Output Enable line (OE1, OE2) brings the output to a high impedence state without affecting the actual register contents. A HIGH on the Master Reset (MR) input resets the register regardless of the state of the Clock (CP), the Output Enable (OE1, OE2) or the Input Enable (1E1, IE2) lines. 01 0, IT 03 [I ~O' ~03 cpIT ~iE' GNO[! ~iE1 LOGIC SYMBOL 8 • FULLY EDGE-TRIGGERED • 3-STATE OUTPUTS • GATED INPUT AND OUTPUT ENABLES "U"" 1 ORDERING CODE: See Section 9 PIN PKGS OUT 2 Do 0, 0, 03 IE COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE 7 CP 1~=m --<> 2 OE 2 MR 00 Plastic DIP(P! A 74173PC, 74LS173PC Ceramic DIP (0) A 74173DC, 74LS173DC Flatpak (F) A 98 ,15 54173DM,54LS173DM 78 01 0, !!!! Vee = Pin 16 GND = Pin 8 74173FC, 74LS173FC 54173FM, 54LS173FM 4L INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Do-.23 IE1,IE2 OE1, OE2 CP MR 00-03 54174 (U.L.) DESCRIPTION Data Inputs Input Enable Inputs (Active LOW) 3-State Output Enable Inputs (Active LOW) Clock Pulse Input (Active Rising Edge) Asynchronous Master'Reset Input (Active HIGH) 3-State Outputs 4-247 03 HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 0.5/0.25 0.5/0.25 0.5/0.25 1.0/1.0 1.0/1.0 0.5/0.25 0.5/0.25 130/10 (50) 65/5.0 (25)/(2.5) • 173 TRUTH TABLE INPUTS OUTPUT MR CP IE1 IE2 Dn X X H X X X X X X X L L H L L X L H H L L L L L X L S S S ..r an L an an an L H When either 0E1 or 01:2 are HIGH, the output is in the OFF statelhigh impedenacel; however this does not affect the contents or sequential operating of the register. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM Do 1E1---- ffi, --~L_~1I~---jIt------------IIr_----------_t1l------------tl CP Co Q Q Co Co Co Q Q Q Q Q MR OE1 OE, 00 0, 02 4-248 03 Q 173 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER los Output Short Circuit Current Icc Power Supply Current AC CHARACTERISTICS: Vee = +5.0 Min Max -30 -70 -20 -100 mA 28 mA 72 V, TA PARAMETER UNITS Max = +25°C (See Section 54174 SYMBOL 54174LS Min CL RL = 50 pF = 400 0 Min Max 25 CONDITIONS = Max Vee = Max, Vee MR = L CP, OE1 = 4.5 V OE2, iE1, 1E2, Dn = Gnd 3 for waveforms and load configurations) 54174LS CL = 15 pF Min UNITS CONDITIONS Max fmax Maximum Clock Frequency tPLH tPHL Propagation Delay CP to On 43 31 40 25 ns tPHL Propagation Delay, MR to On 27 25 ns Figs. 3-1, 3-16 tpzH tPZL Output Enable Time 30 30 20 20 ns Figs. 3-3, 3-11, 3-12 RL = 2 kO ('LS173) tPHZ tPLz Output Disable Time 14 20 16 16 ns Figs. 3-3, 3-11, 3-12 RL = 2 kO ('LS173) CL = 5 pF AC OPERATING REQUIREMENTS: Vee SYMBOL PARAMETER = +5.0 V, 30 TA Figs. 3-1, 3-8 = +25°C 54/74 Min MHz Max 54/74LS Min UNITS t5 (H) t5 (U Setup Time HIGH or LOW Dn to CP 10 10 10 10 ns th (H) th (U Hold Time HIGH or LOW Dn to CP 10 10 10 10 ns t5 (H) t5 (U Setup Time HIGH or LOW iE to CP 17 17 17 17 ns th (H) th (U Hold Time HIGH or LOW IE to CP 2.0 2.0 2.0 2.0 ns tw (U CP Pulse Width LOW 20 17 ns tw (H) MR Pulse Width HIGH 20 17 ns tree Recovery Time, MR to CP 10 15 ns 4-249 CONDITIONS Max Fig. 3-6 Fig. 3-8 Fig. 3-16 • 174 CONNECTION DIAGRAM PINOUT A 54/74174 54S/74S174 54LS/74LS174 Mlil} HEX D FLIP-FLOP aol1 - :ill Vee oo[l ma m0 5 01~ :ill 04 a, []: D1la4 5 a2[! ~03 ~a3 GNO!:! ~cp 02[! DESCRIPTION - The '174 is a high speed hex 0 flip-flop. The device is used primarily as a 6-bit edge-triggered storage register. The information on the 0 inputs is transferred to storage during the LOW-to-HIGH clock transition. The device has a Master Resetto simultaneously clear all flip-flops. • EDGE-TRIGGERED D-TYPE INPUTS • BUFFERED POSITIVE EDGE-TRIGGERED CLOCK • ASYNCHRONOUS COMMON RESET 3 PKGS Plastic OIP(P) OUT 6 11 13 14 4 I I III I DO 0, 02 03 04 05 9 - cp ORDERING CODE: See Section 9 PIN LOGIC SYMBOL 1-(l MR ao a, a2 a3 a4 a5 COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE A 74174PC, 74S174PC, 74LS174PC Ceramic DIP (0) A 741740C, 74S1740C, 74LS1740C 541740M, 54S1740M,54LS1740M 68 Flatpak (F) A 74174FC, 74S174FC, 74LS174FC 54174FM, 54S174FM,54LS174FM 4L ! ! ! lllllt 98 Vcc = Pin 16 = Pin 8 GND INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 00-05 CP ~ 00-05 DESCRIPTION Data Inputs Clock Pulse Input (Active Rising Edge) Master Reset Input (Active LOW) Flip-Flop Outputs 4-250 54/74 (U.L.) HIGH/LOW 54174S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 20/10 1.25/1.25 1.25/1.25 1.25/1.25 25/12.5 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) 174 FUNCTIONAL DESCRIPTION - The '174 consists of six edge-triggered 0 flip-flops with individual 0 inputs and a outputs. The Clock (CP) and Master Reset (MR) are common to all flip-flops. Each- 0 input's state is transferred to the corresponding flip-flop's output following the LOW-to-HIGH Clock (CP) transition. A LOW input to the Master Reset (MR) will force all outputs LOW independent of Clock or Data inputs. The '174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements. TRUTH TABLE OUTPUTS INPUTS @ tn, MR = H @ tn On an H L H L + 1 • In = Bit time before positive"going clock transition tn +1 = Bit time after positive-going clock transition H = HIGH Voltage Level L = LOW Voltage Level LOGIC DIAGRAM MR CP 05 Do 03 o o 0 o o 0 o o CP co 05 03 4-251 00 174 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER 54174 Min lee Power Supply Current Max 54174S Min 65 Max 54174LS Min 144 UNITS CONDITIONS Max 26 mA Vee = Max On = MR = 4.5 V CP=...r- AC CHARACTERISTICS: Vee = +5.0 V, TA = +25° C (See Section 3 for waveforms and load configurations) 54/74 SYMBOL PARAMETER 54174S 54174LS CL = 15 pF CL = 15 pF CL = 15 pF RL = 400 n RL = 280 n Min Max 25 Min Max f max Maximum Clock Frequency 75 tpLH tPHL Propagation Delay CP to an 30 35 12 17 tPHL Propagation Delay MR to an 35 22 Min UNITS CONDITIONS Max MHz Figs. 3-1, 3-8 25 22 ns Figs. 3-1, 3-8 35 ns Figs. 3-1, 3-16 UNITS CONDITIONS 30 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL PARAMETER 54174 Min Max 54/74S Min Max 54174LS Min Max ts (H) ts (U Setup Time HIGH or LOW On to CP 20 20 5.0 5.0 10 10 ns th (H) th (U Hold Time HIGH or LOW On to CP 5.0 5.0 3.0 3.0 5.0 5.0 ns tw (H) CP Pulse Width HIGH 20 7.0 18 ns tw (U MR Pulse Width LOW 20 7.0 18 ns tree Recovery Time MR to CP 25 5.0 12 ns 4-252 Fig. 3-6 Fig. 3-8 Fig. 3-16 175 CONNECTION DIAGRAM PINOUT A 54/74175 54S/74S175 ~vcc ~a3 ~O3 ~ MFiD: 54LS/74LS175 ao 11 oo[l QUAD D FLIP-FLOP tm 03 008 ~D2 o,~ Q,[! DESCRIPTION - The '175 is a high speed quad D flip-flop. The device is useful for general flip-flop requirements where clock and clear inputs are commono The information on the D inputs is stored during the LOW-to-HIGH clock transition. 80th true and complemented outputs of each flip-flop are provided. A Master Reset input resets all flip-flops, independent of the Clock or D inputs, when LOW. tTIJ02 a, IT ~a2 GNO[! t2JCP LOGIC SYMBOL • • • • EDGE-TRIGGERED D-TYPE INPUTS BUFFERED POSITIVE EDGE-TRIGGERED CLOCK ASYNCHRONOUS COMMON RESET TRUE AND COMPLEMENT OUTPUT i i 9- ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5% TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE A 74175PC, 74S175PC 74LS175PC Ceramic DIP (D) A 74175DC, 74S175DC 74LS175DC 54175DM,54S175DM 54LS175DM 68 A 74175FC, 74S175FC 74LS175FC 54175FM,54S175FM 54LS175FM 4L Do 0, 1r 0, 03 1-<1 MR ao ao a, a, a, a2 a3 a3 errrrrTfT 3 Plastic DIP(P) Flatpak (F) cp 112 2 6 7 11 10 14 15 98 Vce = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION Do-D3 CP MR 00-03 Data Inputs Clock Pulse Input (Active Rising Edge) Master Reset Input (Active LOW) True Outputs 00-Q3 Complement Outputs 4-253 54/74 (U.L.) HIGH/LOW 54174S (U.L.) 1.0/1.0 1.0/1.0 1.0/1.0 20/10 1.25/1.25 1.25/1.25 1.25/1.25 25/12.5 20/10 25/12.5 HIGH/LOW 54/74LS (U.L.) HIGH/LOW 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) • 175 FUNCTIONAL DESCRIPTION - The '175 consists of four edge-triggered 0 flip-flops with individual 0 inputs and a and Q outputs. The Clock and Master Reset are common. The four flip-flops will store the state of their individual 0 inputs on the LOW-to-HIGH clock (CPl transition, causing individual a and Q outputs to follow. A LOW input on the Master Reset (MRl will force all a outputs LOWandQ outputs HIGH independent of Clock or Data inputs. The '175 is useful for general logic applications where a common Master Reset and Clock are acceptable. TRUTH TABLE INPUTS OUTPUTS @ tn, MR = H tn tn = Bit + 1 @ tn + 1 On an an L H L H H L time before clock posltlve-gomg transition after clock positive-going transition = Bit time H = HIGH Voltage Level L = LOW Voltage Level LOGIC DIAGRAM MR CP D3 Do 00 00 4-254 175 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER 54174 Min lee Power Supply Current Max 54174S Min 45 Max 54174LS Min 96 UNITS CONDITIONS Max 18 mA Vee = Max Dn = MR = 4.5 V CP =.r-- AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER 54174S 54174LS CL = 15 pF CL=15pF CL = 15 pF RL = 400 n RL = 280 n Min Max 25 Min Max fmax Maximum Clock Frequency tPLH tpHL Propagation Delay CP to On 30 35 12 17 tPHL Propagation Delay MR to On 35 tPLH Propagation Delay MR to an 25 75 Min UNITS CONDITIONS Max MHz Figs. 3-1, 3-8 25 25 ns Figs. 3-1, 3-8 22 33 ns Figs. 3-1, 3-16 15 24 ns Figs. 3-1, 3-16 54174S 54/74LS UNITS CONDITIONS 30 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL PARAMETER 54174 Min Max Min Max Min Max ts (H) ts(U Setup Time HIGH or LOW Dn to CP 20 20 5.0 5.0 10 10 ns th (H) th (U Hold Time HIGH or LOW Dn to CP 5.0 5.0 3.0 3.0 5.0 5.0 ns tw (H) CP Pulse Width HIGH 20 7.0 15 ns Fig. 3-8 tw (U MR Pulse Width LOW 20 7.0 18 ns Fig. 3-16 tree Recovery Ti me MR to CP 25 5.0 12 ns Fig. 3-16 4-255 Fig. 3-6 • 176 CONNECTION DIAGRAM PINOUT A 54/74176 PRESETTABLE DECADE COUNTER pL DESCRIPTION - The '176 is a presettable decade ripple cou nter partitioned into divide-by-two and divide-by-five sections, with separate clock inputs for the two sections. It can be connected to operate either in a BCD (8421) sequence or in a bi-quinary sequence producing a 50% duty cycle output. A LOW signal on the Master Reset (MR) input overrides all other inputs and forces the 0 outputs LOW. A LOW signal on the Parallel Load (PU input causes the 0 outputs to assume the state of their respective Parallel Data(Pn) inputs, regardless of the clock. In the counting mode, state changes are initiated by the falling edge of the clock. IT TIl Vee ~ od:! TIlMR pd} :ill 03 Pori TIl P3 oorr ~P1 CP1[! ]]01 GNO[I ~cpo LOGIC SYMBOL 1 4 10 3 11 ~ IIII PL Po P, P2 P3 8--<: cPo ORDERING CODE: See Section 9 PIN PKGS OUT 6--<: CP, COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA=-55°Cto+125°C PKG TYPE Plastic DIP (P) A 74176PC Ceramic DIP (D) A 74176DC 54176DM 6A Flatpak (F) A 74176FC 54176FM 31 MR 00 0, 0203 ~ IIII 13 5 9 2 12 9A Vee = Pin 14 GND = Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES CPo CP1 MR PO-P3 PL 00-03 ·Qo DESCRIPTION +2 Section Clock Input (Active Falling Edge) +5 Section Clock Input (Active Falling Edge) Asynchronous Master Reset Input (Active LOW) Parallel Data Inputs Asynchronous Parallel Load Input (Active LOW) Flip-flop Outputs' is guaranteed to drive CP1 in addition to the full rated load. 4-256 54174 (U.L.) HIGH/LOW 2.0/3.0 3.0/3.0 2.0/2.0 1.0/1.0 1.0/1.0 20/10 176 FUNCTIONAL DESCRIPTION - The '176 is an asynchronously presettable decade ripple cou nter partitioned into divide-by-two and divide-by-five sections. In the counting modes, state changes are initiated by the HIGHto-LOW transition of the clock signals. State changes of the Q outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the Q outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The CPo input serves the Qo flip-flop while the CP1 input serves the divide-by-five section. The Qo output is designed and specified to drive the rated fan-out plus the CP1 input. The '176 can be connected up to operate in two different count sequences. With the input frequency co nnected to CPo and with Qo driving CP1, the circuit counts in the BCD (8421) sequence. With the input frequency connected to CP1 and Q3 driving CPo, 00 becomes the low frequency output and has a 50% duty cycle waveform. Note that the maximum counting rate is reduced in the latter (bi-quinary) configuration because of the interstage gating delay within the divide-by-five section. The '176 has an asynchronous active LOW Master Reset input (Kim) which overrides all other inputs and forceS all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input (PLl overrides the clock inputs and loads the data from Parallel Data (Po - P3) inputs into flip-flops. While PL is LOW, the counters act as transparent latches and any change in the Pn inputs will be reflected in the outputs. In order for the intended parallel data to be entered and stored, the recommended setup and hold times with respect to the rising edge of PL should be observed. LOGIC DIAGRAM Po MR ---4~----~01~~~--------------~~----------~-----------. CPa -------------+-<>1 K Co CPl ----------------------+-~----------------r_--------+_--' 00 4-257 a 1-+-+--' • 176 + 5 STATE DIAGRAM o BCD STATE DIAGRAM r J 0-- ~ --EJ 4 1 3 ~~--EJ 3--EJ 211 10 '13 ' ~ " MODE SELECT TABLE INPUTS RESPONSE MR PL CP L X X H L X H H L On forced LOW Pn .... On Count Up H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74 PARAMETER Min lee Power Supply Current UNITS 48 4-258 CONDITIONS Max rnA Vee = Max All inputs = Gnd 176 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25° C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER CL RL = 15 pF = 400 n Min UNITS CONDITIONS Max f max Maximum Count Frequency at CPo 35 MHz Figs. 3-1, 3-9 f max Maximum Count Frequency at CP1 17.5 MHz Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CPo to 00 13 17 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP1 to 01 17 26 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP1 to 02 41 51 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP1 to 03 for '176 20 26 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP1 to 03 for '177 66 75 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay Pn to an 29 46 ns Figs. 3-1, 3-5 tPLH tpHL Propagation Delay PL to an 43 48 ns Figs. 3-1, 3-16 tpHL Propagation Delay MR to an 48 ns Figs. 3-1, 3-16 AC OPERATING REQUIREMENTS: Vee SYMBOL = +5.0 V, TA = +25°C 54174 PARAMETER Min UNITS CONDITIONS Max ts (H) Setup Time HIGH Pn to PL 15 ns Fig. 3-13 th (H) Hold Time HIGH Pn to PL 0 ns Fig. 3-13 ts(U Setup Time LOW Pn to PL 20 ns Fig. 3-13 th (U Hold Time LOW Pn to PL 0 ns Fig. 3-13 tw (H) CPo Pulse Width HIGH 14 ns Fig. 3-9 tw (H) CP1 Pulse Width HIGH 28 ns Fig. 3-9 tw (U PL Pulse Width LOW 25 ns Fig. 3-16 tw (U MR Pulse Width LOW 20 ns Fig. 3-16 tree Recovery Ti me MR or PL to CP n 25 ns Fig. 3-16 4-259 • 177 CONNECTION DIAGRAM PINOUT A 54/74177 PRESETTABLE BINARY COUNTER pt 0:: 02 [I ~ E]Vcc TIl MR pdI m PorI :ill P3 [I ~P1 CP1[I ~01 00 03 :II CPo GNO[I DESCRIPTION - The'177 is a presettable modul0-16 ripple cou nter partitioned into divide-by-two and.divide-by-eight sections, with a separate clock input for each section. In the counting mode, state changes are initiated by the falling edge of the clock. A LOW signal on the Master Reset (MR) input overrides all other inputs and forces the outputs LOW. A LOW signal on the Parallel Load (PU input overrides the clocks and causes the Q outputs to assume the state of their respective Parallel Data (P n) inputs. For detail specifications, please refer to the '176 data sheet. ORDERING CODE: See Section 9 PIN PKGS COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70° C Vee = +5.0 V ±10%, TA = -55°C to +125°C OUT PKG TYPE Plastic DIP (P) A 74177PC Ceramic DIP (0) A 74177DC 54177DM 6A A 74177FC 54177FM 31 Flatpak (F) LOGIC SYMBOL 1 4 10 3 11 61 I I I PL Po P, P2 P3 8-0 CPa 6-0 CP, MR 00 0, 02 03 ~ 13 I I 2I 12I 5 9 9A Vcc = Pin 14 GND = Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES CPo CP1 MR PO-P3 PL QO-Q3 DESCRIPTION +2 Section Clock Input (Active Falling Edge) +8 Section Clock Input (Active Falling Edge) Asynchronous Master Reset Input (Active LOW) Parallel Data Inputs Asynchronous Parallel Load Input (Active LOW) Flip-flop Outputs' - '00 is guaranteed to drive CP, in addition to the full rated load. 4-260 54174 (U.L.) HIGH/LOW 2.0/3.0 2.0/2.0 2.0/2.0 1.0/1.0 1.0/1.0 20/10 177 FUNCTIONAL DESCRIPTION-The '177 is an asynchronously presettable binary ripple counter partitioned into divide-by-two and divide-by-eight sections. In the counting modes, state changes are initiated by the HIGH-to-LOW transition of the clock signals. State changes of the 0 outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the On outputs, designers should bear in mind that the unequal delays can lead to decoding spikes and thus a decoded signal should not be used as a clock or strobe. The CPo input serves the 00 flip-flop while the CP1 input serves the divide-by-eight section. The 00 output is designed and specified to drive the rated fan-out plus the CP1 input. With the input frequency connected toCPo and with 00 drivingCP1, the '177 forms a straightforward modul0-16 counter, with 00 the least significant output and 03 the most significant output. The '177 has an asynchronous active LOW Master Reset input (MRl which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input (PU overrides the clock inputs and loads the data from Parallel Data (Po - P3l inputs into the flip-flops. While PL is LOW, the counters act as transparent latches and any change in the Pn inputs will be reflected in the outputs . MODE SELECT TABLE INPUTS MR PL CP L H H X L H X X L • STATE DIAGRAM RESPONSE On forced LOW Pn ..... On Count Up H ~ HIGH Voltage Level L ~ LOW Voltage Level X ~ Immaterial LOGIC DIAGRAM Po MR --~~------Ol.~~+-------------~+-----------~r-----------, Pi. ------()£...-' CPo -----------_+-<11 CP, ----------------------r-----~----------_+--------_+~ 00 03 4-261 178 CONNECTION DIAGRAM PINOUT A 54/74178 4-BIT SHIFT REGISTER ...., B]vcc P1u II ll)P2 Ds[! :g)P3 0011 I!lSE c"IT }ill 03 Po 011]: ]]PE GNDIT ]]02 LOGIC SYMBOL DESCRIPTION - The '178 features synchronous parallel or serial entry and parallel outputs. The flip-flops are fully edge-triggered, with state changes initiated by a HIGH-to-LOW transition of the clock. Parallel Enable and Serial Enable inputs are used to select Load, Shift and Hold modes of operation. The '178 is the 14-pin version of the '179. For detail specifications, please refer to the '179 data sheet. ii PE Po 1 Yy Pl P2 P3 3 - Ds 5 -- Ds------------~ cp--o~--------~--~~------~--~--;_------~--~--_+------~--_, Qo Q3 4-263 179 CONNECTION DIAGRAM PINOUT A 54/74179 4-BIT SHIFT REGISTER DESCRIPTION - The '179 features synchronous parallel or serial entry, asynchronous reset and parallel outputs, with the complement output of the fourth stage also available. The flip-flops are fully edge-triggered, with state changes initiated by a HIGH-to-LOW transition of the clock. Parallel Enable and Serial Enable inputs are used to select Load, Shift and Hold modes of operation. A LOW signal on the Master Reset input overrides all other inputs and forces the Q outputs to the LOW state. PKGS OUT 10 3 .- ORDERING CODE: See Section 9 PIN LOGIC SYMBOL COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C·to +125°C PKG 2 15 14 PE Po p, P2 P3 6 Ds cp 13 SE 03 TYPE Plastic DIP(P) A 74179PC Ceramic DIP (D) A 74179DC 54179DM 68 Flatpak (F) A 74179FC 54179FM 4L 98 1 5 7 9 11 Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES PE Po-P3 Ds SE CP MR Qj-Q3 Ch DESCRIPTION Parallel Enable Input Parallel Data Inputs Serial Data Input Shift Enable Input Clock Pulse Input (Active Falling Edge) Asynchronous Master Reset Input (Active LOW) Flip-flop Outputs Fourth Stage Complement Output 4-264 54174 (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 20/10 20/10 12 179 FUNCTIONAL DESCRIPTION - The '179 contains four D-type edge-triggered flip-flops and sufficient interstage logic to perform parallel load, shift right or hold operations. All state changes except reset are initiated by a HIGH-to-LOW transition of the clock. A LOW signal on MR overrides all other inputs and forces the 0 outputs LOWand cb HIGH. With MR HIGH, aHIGH signal on SE prevents parallel loading and permits a right shift each time the clock makes a HIGH-to-LOW transition. When MR and SE are LOW, the signal applied to PE determines whether the circuit is in a parallel load or a hold mode, as shown in the Mode Select Table. The SE, PE, Ds and Pn inputs can change when the clock is in either state, provided only that the recommended setup and hold times are observed. MODE SELECT TABLE INPUTS RESPONSE MR SE PE CP L H H H X H L L X X H L '"'- X 1X • Asynchronous Reset; On--LOW; 03-HIGH Right Shift. Ds--Qo; 00-01, etc. Parallel load. Pn --On Hold H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM Po P3 PE--i~~~~:)O------~~--~~--------~----+---------~~--~---------, SE--i;~~~~)o----~~HHr--Hr-----~--~+--++-------~-+~--~------, os--------------~ CP CP 0 co CP CD 0 CP CD 0 0 0 0 00 0, 02 CP CD 0 0 MR 4-265 03 03 179 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER Min lee Power Supply Current UNITS CONDITIONS mA Vee = Max, Pn = Gnd Os, PE, SE, MR = 4.5 V CP = L. Max XM 70 75 --xc AC CHARACTERISTICS: Vee = +5.0 V, TA = +25° C (See Section 3 for waveforms and load configurations) 54/74 SYMBOL PARAMETER CL = 15 pF RL=400n Min UNITS CONDITIONS Max MHz Figs. 3-1, 3-9 26 35 ns Figs. 3-1, 3-9 Propagation Delay MR to 03 23 ns Propagation Delay MR to an 36 fmax Maximum Clock Frequency tPLH tpHL Propagation Delay CP to an tPLH tPHL 25 Figs. 3-1, 3-17 ns AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL 54174 PARAMETER Min UNITS CONDITIONS Max ts (H) ts(U Setup Time HIGH or LOW Os or Pn to CP 30 30 ns th (H) th (Ll Hold Time HIGH or LOW Os or Pn to CP 5.0 5.0 ns ts (H) ts (U Setup Time HIGH or LOW PE or SE to CP 35 35 ns th (H) th (U Hold Time HIGH or LOW PE or SE to CP 5.0 5.0 ns tw (H) CP Pulse Width HIGH 20 ns Fig. 3-9 tw (Ll MR Pulse Width LOW 20 ns Fig. 3-17 tree Recovery Time MR to CP 15 ns Fig. 3-17 4-266 Fig. 3-7 180 CONNECTION DIAGRAM PINOUT A 54/74180 a-BIT PARITY GENERATOR/CHECKER DESCRIPTION - The '180 is a monolithic, 8-bit parity checker/generator which features control inputs and even/odd outputs to enhance operation in either odd or even parity applications. Cascading these circuits allows unlimited word length expansion. Typical application would be to generate and check parity on data being transmitted from one register to another. Typical power dissipation is 170 mW. 16 IT 17 ~vcc ~ II ~IS EI[I ~14 olII ~13 LE[I ~12 Lo!I ~11 ~IO GNO[I LOGIC SYMBOL i i 7111 1j T1i ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V, ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE 10 11 12 13 Is 14 4 - 01 3 - EI Plastic DIP(P) A 74180PC Ceramic DIP (D) A 74180DC Flatpak (F) A 74180FC 9A LO 54180DM 6A 6 54180FM 31 LE 1 Vcc = Pin 14 GND= Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions 10-17 01 EI Io IE 54174 (U.L.) DESCRIPTION PIN NAMES HIGH/LOW Data Inputs Odd Input Even Input Odd Parity Output Even Parity Output 1.0/1.0 2.0/2.0 2.0/2.0 20/10 20/10 TRUTH TABLE OUTPUTS INPUTS I OF 1's AT o THRU 7 EVEN ODD EVEN ODD EVEN ODD EVEN H H L L L H H L L L H H ODD X X L H L H H L H L H L L H I I 4-267 H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial I 5 16 17 180 LOGIC DIAGRAM :::::)D}D- ..-----I -i)soD-~E :~=)D DATA INPUTS :::::)D} D ...po.- ~,o >-- ""'-' :~=)D 01 EI DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER los Output Short Circuit Current ~ XC lee Power Supply Current ~ UNITS CONDITIONS Min Max -20 -18 -55 -55 mA Vee = Max 49 56 mA Vee = Max, In = Open 01, EI = 4.5 V XC AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER CL = 15 pF RL = 400 n Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay In to ~E 60 68 ns Figs. 3-1, 3-5 01 = Gnd tPLH tPHL Propagation Delay In to ~o 48 38 ns Figs. 3-1, 3-4 01 = Gnd tPLH tPHL Propagation Delay In to ~E 48 38 ns Figs. 3-1, 3-5 EI = Gnd tPLH tPHL Propagation Delay In to ~o 60 68 ns Figs. 3-1, 3-4 EI = Gnd tPLH tpHL Propagation Delay EI or 01 to ~E 20 10 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay EI or 01 to ~o 20 10 ns Figs. 3-1, 3-4 4-268 181 CONNECTION DIAGRAM PINOUT A 54LS/74LS181 - BoIT iol! 4-BIT ARITHMETIC LOGIC UNIT lEI Vee rm A1 ~i' S3[! S1[! ~A2 ~12 solI [rnA3 col! rm 1h S2[i DESCRIPTION - The '181 is a 4-bit Arithmetic Logic Unit (ALU) which can perform all the possible 16 logic operations on two variables and a variety of arithmetic operations. For improved TTL, S-TTL and LP-TTL versions, please see the 9341 data sheet. ~G M!! I'D!! • PROVIDES 16 ARITHMETIC OPERATIONS ADD,SUBTRACT,COMPARE,DOUBLE,PLUS TWELVE OTHER ARITHMETIC OPERATIONS • PROVIDES ALL 16 LOGIC OPERATIONS OF TWO VARIABLES EXCLUSIVE - OR, COMPARE, AND, NAND, OR, NOR, PLUS TEN OTHER LOGIC OPERATIONS • FULL LOOKAHEAD FOR HIGH SPEED ARITHMETIC OPERATION ON LONG WORDS PKGS OUT llIII!II 7- COMMERCIAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vcc = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE AD 10 A1 ., A2 82 Aa 83 Co Cn +4 1--11 1- M 1 - 80 5 - 8, A=B 1-- 10 G11>-'7 p 11>-'5 . - I, a - .. A 74LS181PC Ceramic DIP (D) A 74LS181DC 54LS181DM 6N A 74LS181FC 54LS181FM 4M (F) ~F3 LOGIC SYMBOL Plastic DIP (PI Flatpak ~P !mA'B GND~ ORDERING CODE: See Section 9 PIN ~Cn+4 1',1i] r2fij 9N F, F, F3 ! ! ~ ! Fo Vee = Pin 24 GND = Pin 12 INPUT· LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES Ao-Aa Fo-F3 Operand Inputs (Active LOW) Operand Inputs (Active LOW) Function Select Inputs Mode Control Input Carry Input Function Outputs (Active LOW) A=B Comparator Output G P Carry Generate Output (Active LOW> Carry Propagate Output (Active LOW) Carry Output Bo-~ So-53 M Cn Cn +4 'oc- Open Collector 4-269 54/74LS (U.L.) HIGH/LOW 1.5/0.75 1.5/0.75 2.0/1.0 0.5/0.25 2.5/1.25 10/5.0 (2.5) OC"/5.0 (2.5) 10/10 10/5.0 10/5.0 (2.5) 181 FUNCTIONAL DESCRIPTION - The 'LS181 is a 4-bit high speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs (So - Sa) and the Mode Control input (M), itcan perform all the 16 possible logic operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table lists these operations. When the Mode Control input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4-bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the Cn + 4 output, or for carry lookahead between packages using the signals j5 (Carry Propagate) and G (Carry Generate). In the ADD mode, Pindicates that F is 15 or more, while G indicates that Fis 16 or more. In the SU8TRACT mode, j5 indicates that Fis zero or less, while G indicates that Fis less than zero. j5 and Gare not affected by carry in. When speed requirements are not stringent, it can be used in a simple ripple carry mode by connecting the Carry output (Cn + 4) signal to the Carry input (Cn) of the next unit. For high speed operation the device is used in conjunction with the 9342 or 93S42 carry lookahead circuit. One carry lookahead package is required for each group of four 'LS181 devices. Carry lookahead can be provided at various levels and offers high speed capability over extremely long word lengths. The A = 8 output from the device goes HIGH when all four Foutputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the subtract mode. The A= 8 output is open-collector and can be wired-AND with other A = 8 outputs to give a comparison for more than four bits. The A = 8 signal can also be used with the Cn + 4 signal to indicate A > 8 and A < 8. The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus 8 minus 1 (2s complement notation) without a carry in and generates A minus 8 when a carry is applied. 8ecause subtraction is actually performed by complementary addition (1 s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow. As indicated, this device can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed tothe operands labeled inside the logic symbol. FUNCTION TABLE MODE SELECT INPUTS ACTIVE LOW OPERANDS & Fn OUTPUTS ACTIVE HIGH OPERANDS & Fn OUTPUTS Sa S2 Sl So LOGIC (M=H) ARITHMETIC" (M = U (Cn = U LOGIC ARITHMETIC" (M=H) (M = U (Cn = H) L L L L L L L L L L H H L H L H A A8 A+8 Logic'1 A minus 1 A8 minus 1 AS minus 1 minus 1 A A+B A8 LogicO A A+8 A+B minus 1 L L L L H H H H L L H H L H L H A+B S A(±) 8 A+S A plus (A + B) AB plus (A + B) A minus 8 minus 1 A+B AB S A(f)8 AS A plus AS (A + B) plus AS A minus 8 minus 1 AB minus 1 H H H H L L L L L L H H L H L H A8 A(f)B 8 A+B A plus (A + 8) A plus 8 AS plus (A + B) A+8 A+8 A(f)8 B AB A plus AB A plus B (A + 8) plus AB A8 minus 1 H H H H H H H H L L H H L H L H Logic 0 A8 A8 A A plus A' AB plus A A8 minus A A Logic 1 A+B A+B A A plus A' (A + B) plus A (A + S) plus A A minus 1 'each bit is shifted to the next more significant position **arithmetic operations expressed in 2s complement notation 4-270 181 LOGIC SYMBOLS ACTIVE LOW OPERANDS ACTIVE HIGH OPERANDS 1 2 7 Cn 8 M 6 So 5 S, 4 S2 3 S3 2322 21 20 19 18 2 Cn+4 54LS/74LS181 4-BIT ARITHMETIC LOGIC UNIT A=S G P 9 10 11 16 14 17 15 7 Cn 8 M 6 So 5 S1 4 S2 3 S3 13 1 23 22 21 20 19 18 en + 4 16 54LS174LS181 A=B 4-BIT ARITHMETIC LOGIC UNIT G 14 17 P 15 10 9 11 • 13 LOGIC DIAGRAM en M Ao BO 8, i, i3 .---~----,r----,r-+1---~------+----+--~----+-----~----~4-~--~----~SO ? F3 4-271 ji C n +4 181 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54174LS PARAMETER SYMBOL UNITS CONDITIONS 100 ,..A Vee = Min, VOH = 5.5 V ~ XC 32 34 rnA XM 35 37 rnA Min IOH Icc Max Output HIGH Current, A = B Power Supply Current ---xc Vee = Max Bn, Cn = Gnd Sn, M, )l;n = 4.5 V Vee - Max An, Bn, Cn = Gnd M, Sn = 4.5 V AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174LS PARAMETER SYMBOL CL = 15 pF Min UNITS CONDITIONS Max tpLH tpHL Propagation Delay Cn to en + 4 27 20 ns M = Gnd, Figs. 3-1, 3-5 Tables I & II tpLH tPHL Propagation Delay Cn to;: 26 20 ns M = Gnd, Figs. 3-1, 3-5 Table I tPLH tPHL Propagation Delay A or 8 to G 29 23 ns M, 81, 52 = Gnd; 81, Sa = 4.5 V; Figs. 3-1, 3-5 Table I tPLH tpHL Propagation Delay A orato ~ 32 26 ns M, So, 53 = Gnd; Sl, S2 = 4.5 V; Figs. 3-1,3-4, 3-5; Table II tPLH tPHL Propagation Delay A or eto j5" 30 30 ns tPLH tpHL Propagation Delay A or eto P- 30 33 ns M, So, Sa = Gnd; 81, 82 = 4.5 V; Figs. 3-1, 3-4, 3-5; Table II tpLH tPHL Propagation Delay Ai or to Fi 32 25 ns M, Sl, S2 = Gnd; So, Sa = 4.5 V; Figs. 3-1, 3-5: Table I tPLH tPHL Propagation Delay Ai or Bi to Fi 32 32 ns M,So, Sa = Gnd; Sl, S2 = 4.5 V; Figs. 3-1, 3-4, 3-5; Table II tpLH tPHL A or Propagation Delay eto F 33 29 ns M =4.5 V; Figs. 3-1, 3-5; Table III tpLH tpHL Propagation Delay )I; orB to Cn + 4 38 38 ns M, 81, 52 = Gnd; So, Sa = 4.5 V; Figs. 3-1,3-4; Table I -a 4-272 M, Sl, S2 = Gnd; So, Sa = 4.5 V; Figs. 3-1, 3-4; Table I 181 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (Cont'd) 54174LS SYMBOL PARAMETER CL = 15 pF Min UNITS CONDITIONS Max lPLH tPHL Propagation Delay A or B to Cn + 4 41 41 ns lPLH lPHL Propagation Delay A or"Bto A = B 50 62 ns M, So, 53 = Gnd; 8" 82 = 4.5 V; Figs. 3-1, 3-4, 3-5; Table" M, FUNCTION INPUTS: So SUM MODE TEST TABLE I SYMBOL INPUT UNDER TEST OTHER INPUT So, 83 = Gnd; 8" V; RL = 2 kO to 5.0 V; Figs. 3-2, 3-4, 3-5; Table" 82 = 4.5 = 83 = 4.5 V, 8, = 82 = M = 0 V OTHER DATA INPUTS SAME BIT APPLY 4.5 V APPLY GND APPLY 4.5 V. APPLY GND OUTPUT UNDER TEST tPLH tPHL Ai Si None Remaining A. and B' en Fi tPLH tPHL Bi Ai None Remaining AandB en Fi tPLH tPHL A B None None Remaining A and S, en p tPLH tPHL S A None None A and S, en tPLH tPHL A None B Remaining Remaining S A, en tPLH tPHL B None A Remaining B Remaining A, Cn tPLH tPHL A None B Remaining Remaining B A,en tPLH tPHL 8 None A Remaining Remaining S A, en tPLH tPHL en None None All All A 8 4-273 Remaining -P G G en +4 en +4 Any F or en + 4 • 181 FUNCTION INPUTS: 8, = 82 = 4.5 V, So = 83 = M = 0 V DIFF MODE TEST TABLE II SYMBOL INPUT UNDER TEST OTHER INPUT SAME BIT OTHER DATA INPUTS APPLY 4.5 V APPLY GND A None B tPLH tPHL B A None tPLH A None B None A and S, Cn B A None None A and B, Cn A B None None A and S, Cn B None A None A andS, A None B Remaining -B A None A B None None B None A None Cn None None A andB tPLH tPHL tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL LOGIC MODE TEST TABLE III SYMBOL tPLH tPHL tPLH tPHL INPUT UNDER TEST APPLY 4.5 V APPLY GND Remaining Remaining S, Cn Fi Remaining B,Cn Fi Remaining p A Remaining A A Remaining A SAME BIT Remaining Remaining IT IT Remaining B, Cn A=B Remaining B,Cn A=B Remaining A and S, Cn Cn + Remaining Aand B, Cn Cn + 4 None = 82 Cn + 4 4 = M = 4.5 V, 80 = 83 = 0 V OTHER DATA INPUTS APPLY 4.5 V APPLY GND APPLY 4.5 V A B None None A andB, B A None None A and S, 4-274 p Remaining Cn All FUNCTION INPUTS: 8, OTHER INPUT OUTPUT UNDER TEST APPLY GND OUTPUT UNDER TEST Remaining Cn AnyF Remaining Cn AnyF 183 CONNECTION DIAGRAM PINOUT A - 54H/74H183 Aa[I DUAL HIGH SPEED ADDER NC@: twAb Ba 11: tm Bb tIn C;b tEl c;a8: ~COb Coa~ m t!J Sa II NC GNOII Sb LOGIC SYMBOL 1i i lr y y Aa Ba Cia Ab Bb Cib Sa Coa Sb Cob !! ! TRUTH TABLE (Each Half) INPUTS ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILIT ARY GRADE Vee = +5.0 V ±5%. TA = O°C to +70°C Vee = +5.0 V ±10%. TA = -55°C to +125°C PKG TYPE Plastic DIP (P) A 74H183PC Ceramic DIP (0) A 74H183DC 54H183DM 6A Flatpak (F) A 74H183FC 54H183FM 31 9A ,1o VCC = Pin 14 GND = Pin 7 DESCRIPTION - The '183 contains two independent full adders. Each adder has an individual carry output for use in multiple-input. carry-save techniques to produce the true sum and true carry outputs with no more than two gate delays. Typical propagation delay is 12 ns. OUTPUTS A B Ci S Co L H L L L L H L L L L H L H H H L L L L H H L H H L H H L H H H L L L H H H H H H = HIGH Voltage Level L = LOW Voltage Level INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Aa. Ba Ab. Bb Cia. Cib Sa. Bb Coa• Cob DESCRIPTION Side a Operand Inputs Side b Operand Inputs Carry Inputs Sum Outputs Carry Outputs 54/74H (U.L.) HIGH/LOW 3.75/3.75 3.75/3.75 3.75/3.75 25/12.5 25/12.5 4-275 Vee • 183 LOGIC DIAGRAM C;--4> B-L{> A--4> )( lrh U )( ) ~ ~ CO s DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174H PARAMETER Min Icc Power Supply Current I I UNITS CONDITIONS Max XM XC 69 75 mA Vee = Max All Inputs = Gnd AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74H SYMBOL PARAMETER CL = 25 pF RL = 280 n Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Ax, Bx or Cix to Sx 15 18 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay Ax, Bx or Cix to Cox 15 18 ns Figs. 3-1, 3-5 4-276 189 CONNECTION DIAGRAM PINOUT A 54S/74S189 54LS/74LS189 64-BIT RANDOM ACCESS MEMORY Cs[I (With 3-State Outputs) WE~ G: ~A3 @]04 02j! }TI04 IT TIl 03 GNO[! }]Ch 02 DESCRIPTION - The '189 is a high speed 64-bit RAM organized as a 16word by 4-bit array. Address inputs are buffered to minimize loading and are fully decoded on-chip. The outputs are 3-state and are in the high impedance state whenever the Chip Select (CS) input is HIGH. The outputs are active only in the Read mode and the output data is the complement of the stored data. LOGIC SYMBOL 3-STATE OUTPUTS FOR DATA BUS APPLICATIOfllS' BUFFERED INPUTS MINIMIZE LOADING ADDRESS DECODING ON-CHIP DIODE CLAMPED INPUTS MINIMIZE RING' .....~ 1i i T 1 1j cs l15- <~;;i· ORDERING CODE: See Section 9 PIN PKGS OUT ~vcc ~A1 ~A2 01~ 0, • • • • - AoD: 0, 02 03 04 WE Ao A1 1 4 - A2 COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP (P) A 74S189PC, 74LS189PC Ceramic DIP(D) A 74S189DC, 74LS189DC 54S189DM,54LS189DM 68 Flatpak (F) A 74S189FC, 74LS189FC 54S189FM,54LS189FM 4L 1 3 - A3 01 02 03 04 r! r X 98 Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-As CS WE Dl-D4 01-04 DESCRIPTION Address Inputs Chip Select Input (Active LOW) Write Enable Input (Active LOW) Data Inputs Inverted Data Outputs 4-277 54174S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 0.63/0.16 0.63/0.16 0.63/0.16 0.63/0.16 162/10 (50) 0.5/0.013 0.5/0.013 0.5/0.013 0.5/0.013 10/10 (5.0) • 189 FUNCTION TABLE INPUTS CS WE L L H L H X OPERATION CONDITION OF OUTPUTS Write Read Inhibit High Impedance Complement of Stored Data High Impedance H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial , . r r I' -. _. LOGIC DIAGRAM DATA BUFFERS AoA,A2A3- DECODER DRIVERS - WE I. CS I I I I ADDRESS DECODER - --\ 16-WORD x 4-BIT MEMORY CELL ARRAY -I I I I I 11I I 0, 02 03 -- I"" OUTPUT BUFFERS O. DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74S PARAMETER Min VOL Output LOW Voltage Max 54174LS Min --? - - - 190 D~~;;~~~--~-----------------4~--------------~~-----------UID UIO ENABLE - - - 0 CE L-----OICE CP CP RC C>- - - ClOCK---+-----------------4----------------~~------------ Fig. b Synchronous N-Stage Counter Using Ripple Carry/Borrow • DIRECTION CONTROL ENABLE rcp "-~: - - U/D --1:>0--<> c.-.:=po--orcp ' - U/D ' - U/D CE CE TC- TCI-- CLOCK Fig. c Synchronous N-Stage Counter with Parallel Gated Carry/Borrow OlD tPLH TC Vm !PlH1_ -l- ~.'.5V ' - _ _ _ _ _J Fig.ld 4-283 Vm p.3V for LS) 190 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER Min lee Power Supply Current I I Max 54174LS Min 99 XM XC 35 35 105 UNITS CONDITIONS Max mA Vee = Max All Inputs = Gnd AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174 SYMBOL PARAMETER 54174LS CL = 15 pF CL = 15 pF RL=400n Min Max 20 Min UNITS CONDITIONS Max f max Maximum Count Frequency 20 MHz tPLH tPHL Propagation Delay CP to On 24 36 24 36 ns tPLH tPHL Propagation Delay CP to TC 42 52 42 52 ns tPLH tPHL Propagation Delay CP to RC 20 24 20 24 ns tPLH tPHL Propagation Delay Pn to On 22 50 22 50 ns tPLH tPHL Propagation Delay CE to RC 33 33 33 33 ns tPLH tPHL Propagation Delay PL to On 33 50 33 50 ns tPLH tPHL Propagation Delay U/D to RC 45 45 45 45 ns tPLH tPHL Propagation Delay U!D to TC 33 33 33 33 ns Figs. 3-1,3-8 Figs. 3-1, 3-5 Figs. 3-1,3-16 Fig. 3-1, Fig. d AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL PARAMETER 54174 Min Max 54174LS Min UNITS CONDITIONS Max ts (H) ts(U Setup Time HIGH or LOW Pn to PL 20 20 20 20 ns th (H) th (U Hold Time HIGH or LOW Pn to PL 0 0 5.0 5.0 ns ts(U Setup Time LOW CE to CP 20 20 ns th (U Hold Time LOW CE to CP 0 0 ns tw (U Fig. 3-13 Fig. 3-6 CP Pulse Width LOW 25 20 ns Fig. 3-8 tw (U PL Pulse Width LOW 35 35 ns Fig. 3-16 tree Recovery Ti me PL to CP 20 20 ns Fig. 3-16 4-284 191 CONNECTION DIAGRAM PINOUT A 54/74191 54LS/74LS191 UP/DOWN BINARY COUNTER (With Preset and Ripple Clock) DESCRIPTION - The '191 is a reversible modul0-16 binary counter featuring synchronous counting and asychronous presetting. The preset feature allows the '191 to be used in programmable dividers. The Count Enable input, the Terminal Count output and the Ripple Clock output make possible a variety of methods of implementing mUlti-stage counters. In the counting modes, state changes are initiated by the rising edge of the clock. For detail specifications and functional description, please refer to the '190 data sheet. • • • • HIGH SPEED - 30 MHz TYPICAL COUNT FREQUENCY SYNCHRONOUS COUNTING ASYNCHRONOUS PARALLEL LOAD CASCADABLE • LOGIC SYMBOL 11 15 1 10 9 ORDERING CODE: See Section 9 PIN PKGS OUT 13 MILITARY GRADE COMMERCIAL GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C PKG Vee = +5.0 V ±10% TA = -55°C to +125°C TYPE Plastic DIP(P) A 74191PC, 74LS191PC Ceramic DIP (D) A 74191DC, 74LS191DC 54191DM,54LS191DM 78 Flatpak (F) A 74191FC, 74LS191FC 54191FM,54LS191FM 4L CE 14 TC CP 98 Vee = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION 54174 (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 3.0/3.0 1.0/1.0 1.0/1.0 1.0/1.0 1.5/0.75 0.5/0.25 0.5/0.25 0.5/0.25 1.0/1.0 20/10 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) 10/5.0 (2.5) 00-03 Count Enable Input (Active LOW) Clock Pulse Input (Active Rising Edge) Parallel Data Inputs Asynchronous Parallel Load Input (Active LOW) Up/Down Count Control Input Flip-flop Outputs RC Ripple Clock Output (Active LOW) 20/10 TC Terminal Count Output (Active HIGH) 20/10 CE CP PO-P3 PL UID 4-285 12 191 RC TRUTH TABLE MODE SELECT TABLE INPUTS PL H H L H L L X H INPUTS MODE CE UfO CP S L H X X Count Up Count Down Preset (Asyn.l No Change (Hold) ..r X X OUTPUT CE TC' CP RC L H X H X L V '"'l.r H H X X 'TC is generated internally H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial STATE DIAGRAM -COUNTUP ----+- COUNT DOWN LOGIC DIAGRAM CP U/D CE Po ~~ f-- ~7 rQ ~ ~7 f- (, t r~ PRESET CLEAR a a ~ 6) ll: eeL '~J PRESET CLEAR a 0 ~ I RC TC 00 4-286 UJ ~~ ~~ l '" ecL '~J PRESET CLEAR a 0 ~ Lf~.~ ~ 192 CONNECTION DIAGRAM PINOUT A 54/74192 54LS/7 4LS 192 ~vcc a,[~ ~Po UP/DOWN DECADE COUNTER aoIT ~MR (With Separate Up/Down Clocks) CPD[i ~TCD CPu [1 ~TCu ad} ~PI a3[! ~P2 ~P3 DESCRIPTION - The '192 is an up/down BCD decade (8421) counter. Separate Count Up and Count Down Clocks are used and in either counting mode the circuits operate synchronously. The outputs change state synchronous with the LOW-to-HIGH transitions on the clock inputs. GND []: Separate Terminal Count Up and Terminal Count Down outputs are provided which are used as the clocks for a subsequent stage without extra logic, thus simplifying multistage counter. designs. Individual preset inputs allow the circuits to be used as programmable counters. Both the Parallel Load (PU and the Master Reset (MR) inputs asynchronously ,override the clocks. PIN OUT r ~ l ri PL Po P, COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Plastic DIP (P) A 74192PC, 74LS192PC Ceramic DIP (0) A 74192DC, 74LS192DC Flatpak (F) A PKG Vee = +5.0 V ±10%, TA = -55°C to +125°C 54192DM,54LS192DM 5- cPu 4- CPD 54192FM, 54LS192FM 1 P2 P3 TCu TYPE MR TCD ao a, a2 a3 98 1~ ! !!! 68 0-12 0-13 Vcc = Pin 16 GND 74192FC, 74LS192FC • LOGIC SYMBOL ORDERING CODE: See Section 9 PKGS - P,[!: = Pin 8 4L INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES CPu CPD MR PL PO-P3 00-03 TCD TCu DESCRIPTION Count Up Clock Input (Active Rising Edge) Count Down Clock Input (Active Rising Edge) Asynchronous Master Reset Input (Active HIGH) Asynchronous Parallel Load Input (Active LOW) Parallel Data Inputs Flip-flop Outputs Terminal Count Down (Borrow) Output (Active LOW) Terminal Count Up (Carry) Output (Active LOW) 54174 (U~L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.0/1.0 0.5/0.25 1.0/1.0 0.5/0.25 1.0/1.0 0.5/0.25 1.0/1.0 0.5/0.25 1.0/1.0 20/10 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) 10/5.0 (2.5) 20/10 20/10 4-287 192 FUNCTIONAL DESCRIPTION - The '192 and '193 are asynchronously presettable decade and 4-bit binary synchronous up/down (reversible) counters. The operating modes of the '192 decade counter and the '193 binary counter are identical, with the only difference being the count sequences as noted in the State Diagram. Each circuit contains four master/slave flip-flops, with internal gating and steering logicto provide master reset, individual preset, count up and count down operations. Each flip-flop contains JK feedback from slave to master such that a LOW-to-HIGH transition on its T input causes the slave, and thus the output to change state. Synchronous switching, as opposed to ripple counting, is achieved by driving the steering gates of all stages from a common Count Up line and acommon Count Down line, thereby causing all state changes to be initiated simultaneously. A LOW-to-HIGH transition on the Count Up input will advance the count by one; a similar transition on the Count Down input will decrease the count by one. While counting with one clock input, the other should be held HIGH. Otherwise, the circuit will either count by twos or not at all, depending on the state of the first flip-flop, which cannot toggle as long as either Clock input is LOW. a The Terminal Count Up (TCu) and Terminal Count Down (TCrr) outputs are normally HIGH. When a circuit has reached the maximum count state (9 for the '192,15 for the '193), the next HIGH-to-LOWtransition of the Count Up Clock will cause TCu to go LOW. TCu will stay LOW until CPu goes HIGH again, thus effectively repeating the Count Up Clock, but delayed by two gate delays. Similarly, the TCD output will go LOW when the circuit is in the zero state and the Count Down Clock goes LOW. Since the TC outputs repeat the clock waveforms, they can be used as the clock input signals to the next higher order circuit in a multistage counter. TCu = 00 • 03 • CPu 01 • 02 • 03 • CPD = 00 • TCD Each circuit has an asynchronous parallel load capability permitting the counter to be preset. When the Parallel Load (PU and the Master Reset (MR) inputs are LOW, information present on the Parallel Data inputs (Po - P3) is loaded into the counter and appears on the outputs regardless of the conditions of the clock inputs. A HIGH signal on the Master Reset input will disable the preset gates, override both Clock inputs, and latch each a output in the LOW state. If one of the Clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that Clock will be interpreted as a legitimate signal and will be counted. LOGIC DIAGRAM Po Pi: (LOA P3 DL ... TC u ICARRY CPu I UP COUNT) OU TPUT) r-~~ !: U. ) b~}o-b 0 b ~or-+- 0 1--_ T OI- l-- T of- T op- iL ~~ iL~ f-~ - 6 ]1 cPo ... MR .... 00 Teo 03 192 STATE DIAGRAM MODE SELECT TABLE MR H L L L L PL CPu X L H H H X X H S H MODE CPo X X H H S Reset (AsynJ Preset (AsynJ No Change Count Up Count Down H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174 PARAMETER Min Max -20 -18 -65 -65 -20 -20 -100 -100 mA Vce 34 34 mA Vee = Max; MR, PL = Gnd Other Inputs = 4.5 V XM XC lee Power Supply Current XM XC 89 102 V, TA = +25°C (See PARAMETER CL RL = 15 pF = 400 n Min Max 25 54174LS CL = 15 pF Min Maximum Count Frequency 30 tPLH tPHL Propagation Delay CPu or CPo to an 38 47 31 28 tPLH tPHL Propagation Delay CPu to TCu 26 24 16 21 tPLH tPHL Propagation Delay CPo to TCo 24 24 16 24 tPLH tpHL Propagation Delay Pn to an MHz tPLH tPHL Propagation Delay PL to an tPHL Propagation Delay, MR to 20 30 40 40 32 30 35 25 4-289 UNITS CONDITIONS Max fmax an = Max Section 3 for waveforms and load configurations) 54174 SYMBOL CONDITIONS Max Output Short Circuit Current = +5.0 UNITS Min los AC CHARACTERISTICS: Vee 54174LS Figs. 3-1, 3-8 ns ns Figs. 3-1, 3-5 ns Figs. 3-1, 3-5 ns Figs. 3-1, 3-16 192 AC OPERATING REQUIREMENTS: Vee SYMBOL PARAMETER = +5.0 V, TA = +25°C 54174 Min Max 54/74LS Min ts (H) ts (U Setup..I.!me HIGH or LOW Pn to PL 20 20 20 10 th (H) th (U Hold Time HIGH or LOW Pn to PL 0 3.0 3.0 3.0 tw (U CP Pulse Width LOW 20 17 tw (U PL Pulse Width LOW 20 20 tw (H) MR Pulse Width HIGH 20 15 tree Recovery Time, MR to CP 6.0 3.0 tree Recovery Ti me, PL to CP 6.0 10 4-290 UNITS CONDITIONS Max ns Fig. 3-13 CPu = CPo = LOW ns Fig. 3-8 ns Fig. 3-16 193 CONNECTION DIAGRAM PINOUT A 54/74193 54LS/74LS193 - P'[l: ~vcc 1m Po UP/DOWN BINARY COUNTER a, II 00 [! (With Separate Up/down Clocks) cPo[! TIl TCo cPu IT :illTcu 02!! ITIPi: 03[! ~P2 GNOII ]]P3 DESCRIPTION - The '193 is an up/down modul0-16 binary counter. Separate Count Up and Count Down Clocks are used and in either counting mode the circuits operate synchronously. The outputs change state synchronous with the LOW-to-HIGH transitions on the clock inputs. Separate Terminal Count Up and Terminal Count Down outputs are provided which are used as the clocks for subsequent stages without extra logic, thus simplifying multistage counter designs. Individual preset inputs allow the circuits tOI be used as programmable counters. Both the Parallel Load (PLl and the Master Reset (MAl inputs asynchronously override the clocks. Forfunctional description and detail specifications please refer to the '192 data sheet. B]MR LOGIC SYMBOL 1r i l1j ORDERING CODE: See Section 9 PIN PKGS OUT PL Po p, P2 P3 5 - cPu TCu 0-12 COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG 4- CPo TCo 0-13 02 03 TYPE MR 00 9B 1~ !!!! Plastic DIP(P) A 74193PC, 74LS193PC Ceramic DIP (D) A 74193DC, 74LS193DC 54193DM, 54LS193DM 68 Flatpak (f) A 74193FC, 74LS193FC 54193FM,54LS193FM 4L A, Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions PIN NAMES CPu CPo MR PL Po-P3 00-Q3 TCo TCu DESCRIPTION Count Up Clock Input (Active Rising Edge) Count Down Clock Input (Active Rising Edge) Asynchronous Master Reset Input (Active HIGH) Asynchronous Parallel Load Input (Active LOW) Parallel Data Inputs Flip-flop Outputs Terminal Count Down (Borrow) Output (Active LOW) Terminal Count Up (Carry) Output (Active LOW) 4-291 54/74 (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.0/1.0 0.5/0.25 1.0/1.0 0.5/0.25 1.0/1.0 0.5/0.25 1.0/1.0 0.5/0.25 1.0/1.0 20/10 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) 10/5.0 (2.5) 20/10 20/10 193 STATE DIAGRAM MODE SELECT TABLE MR H L L L L PL CPU X L H H H CPO MODE X X H H X X H S Reset (AsynJ Preset (AsynJ No Change Count Up Count Down S H H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance -COUNTUP ----COUNT DOWN LOGIC EQUATIONS FOR TERMINAL COUNT TCu = Qo • Q1 • Q2 • Q3 • CPu TCo = 00 • 01 • 02 • 03 • CPO LOGIC DIAGRAM Po (LO AD)_" -.... " C Pu'" (UP COU NT) r- --l ~I-t }-b }~,0' b t: 1 it rL t= T "[Or-- Or-- T 0- T T C PD (DO WN COU NT)" ... ~ (CLEAR) TCu (CA RRY OUT PUT) 00 4-292 ~ 0'-- T ~ TCD (BOR ROW OUT PUT) 194 CONNECTION DIAGRAM PINOUT A 54/74194 548/748194 54L8/74L8194A - MFiIT DSRII TIl 00 II :E]01 Po 4-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER DESCRIPTION - The '194 is a high speed 4-bit bidirectional universal shift register. As a high speed multifunctional sequential building block, it is useful in a wide variety of applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial, and parallel-parallel data register transfers. The '194 is similar in operation to the '195 universal shift register, with added features of shift left without external connections and hold (do nothing) modes of operation. ~vcc p,!:!: :m02 P21I :m03 P31I TIlcp DSL[I ~S1 GND[! :II So LOGIC SYMBOL • GUARANTEED SHIFT FREQUENCY OF 30 MHz (,LS194A) OR 70 MHz (,5194) • ASYNCHRONOUS MASTER RESET • HOLD (DO NOTHING) MODE • FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS iriiil ORDERING CODE: See Section 9 9~ PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP (P) A 74194PC 74S194PC, 74LS194APC 98 Ceramic DIP (D) A 54194DM 74194DC, 74S194DC, 74LS194ADC 54S194DM,54LS194ADM 68 Flatpak (F) A 54194FM 74194FC, 74S194FC, 74LS194AFC 54S194FM, 54LS194AFM 4L DSR Po P, P2 P3 DSL SO 1 0 - s, 1 1 - CP MR 00 0, 02 03 ! }s L }3 1l Vee = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES So, S1 PO-P3 DSR DSL CP MR 00-03 DESCRIPTION Mode Control Inputs Parallel Data Inputs Serial Data Input (Shift Right) Serial Data I nput (Shift Left) Clock Pulse Input (Active Rising Edge) Asynchronous Master Reset Input (Active LOW) Parallel Outputs 4-293 54174 (U.L.) HIGH/LOW 541745 (U.L.) HIGH/LOW 54/74L5 (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.25/1.25 1.0/1.0 1.0/1.0 1.0/1.0 1.25/1.25 1.25/1.25 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 20/10 25/12.5 10/5.0 (2.5) • 194 FU NCTIONAL DESCRIPTION - The '194 contains four edge-triggered D flip-flops and the necessary interstage logic to synchronously perform shift right, shift left, parallel load and hold operations. Signals applied to the Select (So, S1) inputs determine the type of operation, as shown in the Mode Select Table. Signals on the Select, Parallel data (Po - P3) and Serial data (DSR, DSL) inputs can change when the clock is in either state, provided only that the recommended setup and hold times, with respect to the clock rising edge, are observed. Synchronous state changes occur within 8.0 ns (typical, '194) or 15 ns (typical, 'LS194A), making the devices especially useful for implementing high speed memory or CPU buffer registers. A LOW signal on Master Reset (MR) overrides all other inputs and forces the outputs LOW. MODE SELECT TABLE OUTPUTS INPUTS OPERATING MODE Reset MR S1 So L X DSR DSL X X X Pn 00 01 02 03 X L L L L Hold H I I X X X qo q1 q2 q3 Shift Left H H h h I I X X I h X X q1 q1 q2 q2 q3 q3 L H Shift Right H H I I h h I h X X X X L H qo qo q1 q1 q2 q2 Parallel Load H h h X X pn po P1 P2 P3 I = LOW voltage level one setup time prior to the LOW-to-HIGH clock transition. h = HIGH voltage level one setup time prior to the LOW-to-HIGH clock transition. po (qol = Lower case letters indicate the state of the referenced input (or outputl one setup time prior to the LOW-to-HIGH clock transition. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM P, Po s,---{>O~----~--~----~------~--~----~------~--~----~------~---r----, SO---{~~----+-~+-~-4rl-------~--H-~--N-------~--H-ot--~------,---tr1t-, r-Itt----t-- Dsc DSR - - - - - - - - - - - - , cP---C~--------------~--~--t---------4----r--t---------4----r--+---------~ MR--~~------------------~--t-------------~--t-------------~--+-------------~ 0, 00 4-294 194 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER 54/74 Min lee Max 54/74S Min 63 Power Supply Current Max 54/74LS Min 135 UNITS CONDITIONS Max 23 mA Vee = Max Sn. MR. DSR. DSL = 4.5 V Pn = Gnd CP=...r- AC CHARACTERISTICS: Vee = +5.0 V. TA = +25 0 C (See Section 3 for waveforms and load configuration) 54/74 SYMBOL PARAMETER 54/74S 54/74LS CL = 15 pF CL = 15 pI': CL = 15 pF RL = 400 0. RL = 280 0. Min Max 25 Min Max 70 Min UNITS CONDITIONS Max f max Maximum Shift Frequency tPLH tPHL Propagation Delay CP to an 22 26 8.0 12 30 21 24 MHz ns tPHL Propagation Delay MR to an 30 23 26 ns Figs. 3-1. 3-16 UNITS CONDITIONS Figs. 3-1. 3-8 AC OPERATING REQUIREMENTS: Vee = +5.0 V. TA = +25 0 C SYMBOL PARAMETER 54/74 Min Max 54/74S Min Max 54/74LS Min Max ts (H) ts (U Setup Time HIGH or LOW Pn or DSR or DSL to CP 20 20 6.0 6.0 16 16 ns th (H) th (U Hold Time HIGH or LOW Pn or DSR or DSL to CP 0 0 0 0 0 0 ns ts (H) ts (U Setup Time HIGH or LOW Sn to CP 30 30 9.0 9.0 25 25 ns th (H) th (U Hold Time HIGH or LOW Sn to CP 0 0 0 0 0 0 ns Fig. 3-6 tw (H) CP Pulse Width HIGH 20 7.0 17 ns tw (U MR Pulse Width LOW 20 12 12 ns tree Recovery Time MR to CP 25 5.0 18 ns 4-295 Fig. 3-8 Fig. 3-16 • 195 CONNECTION DIAGRAM PINOUT A 54/74195 54LS/74LS195A MFio:~tmvcc J [! till Qo ~Q1 KIT UNIVERSAL 4-BIT SHIFT REGISTER II E]Q2 P1~ ;mQ3 P2[! ]:leb P3[I ~cp GNO[! ~PE Po DESCRIPTION - The '195 is a high speed 4-bit shift register offering typical shift frequencies of 50 MHz. It is useful for a wide variety of register and counting applications. The '195 is pin and functionally identical to the 9300, 93LOO and 93HOO. • TYPICAL SHIFT RIGHT FREQUENCY OF 50 MHz ('lS195A) • ASYNCHRONOUS MASTER RESET • J, K INPUTS TO FIRST STAGE • FUllY SYNCHRONOUS SERIAL OR PARAllEL DATA TRANSFERS lOGIC SYMBOL 1iii i PE Po P, P2 P3 ORDERING CODE: See Section 9 PIN PKGS OUT 2-J COMMERCIAL GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C MiliTARY GRADE PKG Vee = +5.0 V ±10%, TA = -55°C to +125°C TYPE Plastic DIP (P) A 74195PC, 74LS195APC Ceramic DIP (0) A 74195DC, 74LS195ADC 54195DM,54LS195ADM 68 Flatpak (F) A 74195FC, 74LS195AFC 54195FM,54LS195AFM 4L 98 1 0 - CP 3--(l K Q3 P-11 MR Qo Q1 Q2 Q3 I 11 I r 1 15 14 13 12 Vce = Pin 16 Gnd = Pin 8 INPUT lOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES PE PO-P3 J K CP MR 00-03 ch DESCRIPTION Parallel Enable Input (Active LOW) Parallel Data Inputs First Stage J Input (Active HIGH) First Stage K Input (Active LOW) Clock Pulse Input (Active Rising Edge) AsynchronolJs Master Reset Input (Active LOW) Parallel Outputs Complementary Last Stage Output (Active LOW) 4-296 54/74 (U.l.) HIGH/LOW 54/74lS (U.l.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 20/10 10/5.0 (2.5) 10/5.0 (2.5) 20/10 195 FUNCTIONAL DESCRIPTION - The Logic Diagram and Truth Table indicate the functional characteristics of the '195 4-bit shift register. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial to parallel, or parallel to serial data transfers at very high speeds. The '195 has two primary modes of operation, shift right(Oo ~ 01) and parallel load, which are controlled by the state of the Parallel Enable (PE) input. When the PE input is HIGH, serial data enters the firstflip-flop 00 via the J and K inputs and is shifted one bit in the direction 00~01 ~02-+03 following each LOW-to-HIGH clock transition. The JK inputs provide the flexibility of the JK type input for special applications, and the simple D type input for general applications by tying the two pins together. When the PE input is LOW, the '195 appears as four common clocked D flip-flops. The data on the parallel inputs Po, P1, P2, P3 is transferred to the respective 00, 01, 02, 03 outputs following the LOW-to-HIGH clock transition. Shift left operation (03 ~02) can be achieved by tying the On outputs to the Pn - 1 inputs and holding the PE input LOW. All serial and parallel data transfers are synchronous, occuring after each LOW-to-HI GH clock transition. Since the '195 utilizes edge-triggering, there is no restriction on the activity of the J, K. Pn and PE inputs for logic operation - except for the setup and release time requirements. A LOW on the asynchronous Master Reset (MR) input sets all 0 outputs LOW, independent of any other input condition. MODE SELECT TABLE OUTPUTS INPUTS OPERATING MODES MR PE J K Pn 00 01 02 03 03 Asynchronous Reset L X X X X L L L L H Shift, Shift, Shift, Shift, H H H H h h h h h I h I h I I h X X X X H L qo qo qo qo qo qo ql q1 q1 ql q2 q2 q2 q2 q2 q2 q2 q2 H I X X Pn po PI P2 P3 ;53 Set First Stage Reset First Stage Toggle First Stage Retain First Stage Parallel Load H ; HIGH Voltage Level L; LOW Voltage Level X; Immatenal I ; LOW voltage level one setup time prior to the LOW to HIGH clock transition. h ; HIGH voltage level one setup time prior to the LOW to HIGH clock transition. Pn (qn); Lower case letters indicate the state of the referenced input (or output) one setup time prior to the LOW to HIGH clock transition. LOGIC DIAGRAM PE J K P, Po P3 00 4-297 MIl CP • 195 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER 54/74 Min lee Power Supply Current Max 54174LS Min 63 UNITS CONDITIONS Max 21 mA Vee = Max, PE = Gnd J, Pn, MR = 4.5 V CP =-.r K AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74 SYMBOL PARAMETER 54/74LS CL = 15 pF CL = 15 pF RL = 400 n Min Max 30 Min UNITS CONDITIONS Max 30 f max Maximum Clock Frequency tPLH tPHL Propagation Delay CP to an 22 26 21 24 ns tPHL Propagation Delay, MR to an 30 26 ns MHz Figs. 3-1, 3-8 Figs. 3-1, 3-16 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL PARAMETER 54/74 Min Max 54/74LS Min UNITS ts (H) ts (U Setup Time HIGH or LOW J, K or Pn to CP 20 20 15 15 ns th (H) th (U Hold Time HIGH or LOW J, K or Pn to CP 0 0 0 0 ns ts (H) ts (U Setup Time HIGH or LOW PE to CP 25 25 25 25 ns th (H) th (U Hold Time HIGH or LOW PE to CP -10 -10 0 0 ns tw (H) CP Pulse Width HIGH 16 16 ns tw (U MR Pulse Width LOW 12 12 ns tree Recovery Time, MR to CP 25 20 ns 4-298 CONDITIONS Max Fig. 3-6 Fig. 3-8 Fig. 3-16 196 CONNECTION DIAGRAM PINOUT A 54/74196 54LS/7 4LS 196 DESCRIPTION - The '196 decade ripple counter is partitioned into divideby-two and divide-by-five sections which can be combined to count either in BCD (8421) sequence or in a bi-quinary mode producing a 50% duty cycle output. Both circuit types have a Master Reset (MR) input which overrides all other inputs and asynchronously forces all outputs LOW. A Parallel Load input (PU overrides clocked operations and asynchronously loads the data on the Parallel Data inputs (P n ) into the flip-flops. This preset feature makes the circuits usable as programmable counters. The circuits can also be used as 4-bit latches, loading data from the Parallel Data inputs when PL is LOW and storing the data when PL is HIGH. In the counting modes, state changes are initiated by the falling edge of the clock. • HIGH COUNTING RATES-TYPICALLY 60 MHz • CHOICE OF COUNTING MODES-BCD, BI-QUINARY, BINARY • ASYNCHRONOUS PRESET AND MASTER RESET PIN OUT ;El Vee od}: pdI EJMR Po [I TIl P3 EJ03 [I JE] P, CP1[I }l01 00 GNolI ]JCPo LOGIC SYMBOL 1 4 10 3 11 bll I I PL Po P, P2 P3 ORDERING CODE: See Section 9 PKGS - PiC!: PRESETTABLE DECADE COUNTERS 8--(l CPa COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74196PC, 74LS196PC Ceramic DIP (0) A 74196DC, 74LS196DC 54196DM,54LS196DM 6A Flatpak (F) A 74196FC, 74LS196FC 54196FM,54LS196FM 31 9A 6--(l CP, MR 00 0, 0203 Y I I 2I 12I 13 5 Vce = 9 Pin 14 GND = Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES CPo CP1 MR PO-P3 PI. 00- 03* 54174 (U.L.) HIGH/LOW DESCRIPTION +2 Section Clock Input (Active Falling Edge) +5 Section Clock Input (Active Falling Edge) Asynchronous Master Reset Input (Active LOW) Parallel Data Inputs Asynchronous Parallel Load Input (Active LOW) Flip-flop Outputs* '00 is guaranteed to drive the full rated fan-out plus the CP1 input. 4-299 54174LS (U.L.) HIGH/LOW 2.0/3.0 1.0/1.5 3.0/4.0 2.0/1.75 2.0/2.0 1.0/0.5 1.0/1.0 1.0/1.0 0.5/0.25 0.5/0.25 20/10 10/5.0 (2.5) 196 FUNCTIONAL DESCRIPTION - The '196 and '197 are asynchronous presettable decade and binary ripple counters. The '196 decade counter is partitioned into divide-by-two and divide-by-five sections while the '197 is partitioned into divide-by-two and divide-by-eight sections, with all sections having a separate Clock input. In the counting modes, state changes are initiated by the HIGH-to-LOW transition of the clock signals. State changes of the 0 outputs, however, do not occur simultaneously because of the internal ripple delays. When using external logic to decode the 0 outputs, designers should bear in mind that the unequal delays can lead to decodi ng spikes and thus a decoded signal should not be used as a clock or strobe. The CPo input serves the 00 flip-flop in both circuit types while the CP1 input serves the divide-by-five or divide-by-eight section. The 00 output is designed and specified to drive the rated fan-out plus the CP1 input. With the input frequency connected to CPo and with 00 driving CP1, the '197 forms a straight forward modul0-16 counter, with 00 the least significant output and 03 the most significant output. The '196 decade counter can be connected up to operate in two different count sequences. With the input frequency connected to CPo and with 00 driving CP1, the circuit counts in the BCD (8421) sequence. With the input frequency connected to CP1 and 03 driving CPo, 00 becomes the low frequency output and has a 50% duty cycle waveform. Note thatthe maximum counting rate is reduced in the latter (bi-quinary) configuration because of the interstage gating delay within the divide-by-five section. The '196 and '197 have an asynchronous active LOW Master Reset input (MR) which overrides all other inputs and forces all outputs LOW. The counters are also asynchronously presettable. A LOW on the Parallel Load input (PL.) overrides the clock inputs and loads the data from Parallel Data (Po - P3) inputs into the flip-flops. While PL is LOW, the counters act as transparent latches and any change in the Pn inputs will be reflected in the outputs. In order for the intended parallel data to be entered and stored, the recommended setup and hold times with respect to the rising edge of PL should be observed. LOGIC DIAGRAM MR --~--------ol)~~~------------~+-~--------~r-----------, Pl ------<01..-' J So CPo a ------------r~ KCOat-t--f---J CPl ---------------------4_----~------------+_--------4_~ 00 4-300 196 +5 STATE DIAGR~M BCD STATE DIAGRAM 211 3 10 4112 3 6 . 5 ~ MODE SELECT TABLE INPUTS RESPONSE MR PL CP L H H X X X L H On forced LOW Pn-On Count Up 1.. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74 PARMETER Min hH Input HIGH Current Ice Power Supply Current CPo '196 CP '197 CP1 Max 54174LS Min UNITS CONDITIONS Max 1.0 1.0 1.0 0.2 0.4 0.2 rnA Vee = Max, VIN = 5.5 V 59 20 rnA Vee = Max All Inputs = Gnd 4-301 196 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and 54174 SYMBOL 54174LS CL = 15 pF CL RL = 400 n PARAMETER Min Max load configurations) = 15 pF Min UNITS CONDITIONS Max f max Maximum Count Frequency at CPo '196 '197 50 50 45 50 MHz Figs. 3-1, 3-9 f max Maximum Count Frequency at CP1 '196 '197 25 25 22.5 25 MHz Fig. 3-9 tPLH tPHL Propagation Delay CPo to 00 12 15 12 12 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP1 to 01 18 21 14 14 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP1 to 02 '196 36 42 34 32 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP1 to 02 '197 36 42 36 34 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP1 to 03 '196 21 18 18 18 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay CP1 to 03 '197 54 63 50 55 ns Figs. 3-1, 3-9 tPLH tPHL Propagation Delay Pn to On 24 38 15 35 ns Figs. 3-2, 3-5 tPLH tPHL Propagation Delay PL to On 33 36 24 35 ns Figs. 3-1, 3-17 tPHL Propagation Delay MR to On 37 37 ns Figs. 3-1, 3-17 AC OPERATING REQUIREMENTS: Vee SYMBOL = +5.0 V, TA = +25°C 54174 PARAMETER Min Max 54174LS Min UNITS CONDITIONS Max ts (H) ts (U Setup Time HIGH or LOW Pn to PL 10 15 8.0 12 ns Fig. 3-;13 th (H) th (U Hold Time HIGH or LOW· Pn to PL 0 0 0 6.0 ns Fig. 3-13 tw (H) CPa Pulse Width HIGH '196 '197 20 20 12 10 ns Fig. 3-9 tw (H) CP1 Pulse Width HIGH '196 '197 30 30 24 20 ns Fig. 3-9 tw (U PL Pulse Width LOW 20 18 ns Fig. 3-17 tw (U MR Pulse Width LOW 15 12 ns Fig. 3-17 tree Recovery Ti me PL to CPn 20 16 ns Fig. 3-17 tree Recovery Time MR to CPn 20 18 ns Fig. 3-17 4-302 197 CONNECTION DIAGRAM PINOUT A 54/74197 54LS/74LS197 pLIT PRESETTABLE BINARY COUNTERS adI PoE! ~vcc ~MR ~a3 ~P3 ao[I ~P' cp,[I ~a, ~ DESCRIPTION - The '197 ripple counter contains divide-by-two and divideby-eight sections which can be combined to form a modul0-16 binary counter. State changes are initiated by the falling edge of the clock. The '197 has a Master Reset (M R) input which overrides all other inputs and asynchronously forces all outputs LOW. A Parallel Load input (PU overrides clocked operations and asynchronously loads the data on the Parallel Data inputs (Pn) into the flip-flops.This preset feature makes the circuit usable as a programmable counter. The circuit can also be used as a 4-bit latch, loading data from the Parallel Data inputs when PL is LOW and storing the data when PL is HIGH. For detail specifications and functional description, please refer tothe '196 data sheet. pdI LOGIC SYMBOL • HIGH COUNTING RATES-TYPICALLY 70 MHz • ASYNCHRONOUS PRESET • ASYNCHRONOUS MASTER RESET 1 PKGS OUT 4 10 ~.lJ PL Po 8-0 CPo ORDERING CODE: See Section 9 PIN ~CPo GNOIT . COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP (P) A 74197PC, 74LS197PC Ceramic DIP (D) A 74197DC, 74LS197DC 54197DM,54LS197DM 6A Flatpak (F) A 74197FC, 74LS197FC 54197FM,54LS197FM 31 9A 6-0 p, 3 11 II P2 P3 cp, MR ao Q, Q2 a3 ~ IIII 13 5 9 2 12 Vee = Pin 14 GND = Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 54174 (U.L.) HIGH/LOW DESCRIPTION 00 +2 Section Clock Input (Active Falling Edge) +8 Section Clock Input (Active Falling Edge) Asynchronous Master Reset Input (Active LOW) Parallel Data Inputs Asynchronous Parallel Load Input (Active LOW) +2 Section Output- 01-03 +8 Section Outputs CPo CP1 MR PO-P3 PL 2.0/3.0 1.0/1.5 2.0/2.0 1.0/0.81 2.0/2.0 1.0/0.5 1.0/1.0 1.0/1.0 0.5/0.25 0.5/0.25 20/10 10/5.0 (2.5) 10/5.0 (2.5) 20/10 *00 output is guaranteed to drive the full rated fan-out plus the CP1 input. 4-303 54174LS (U.L.) HIGH/LOW • 197 + 16 STATE DIAGRAM MODE SELECTION TABLE INPUTS MR PL CP L H H X L H X X '-- RESPONSE an forced LOW Pn ...·O n Count Up H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM Po P3 PL CPo --------------+-~I 00 4-304 198 CONNECTION DIAGRAM PINOUT A 54/74198 8-BIT RIL SHIFT REGISTER DESCRIPTION - The '198 features synchronous parallel load, hold, shift right and shift left modes, as determined by the Select (So, Sl) inputs. State changes are initiated by the rising edge of the clock. An asynchronous Master Reset (MR) input overrides all other inputs and clears the register. The '198 is useful for serial-serial, serial-parallel, parallel-serial and parallel-parallel register transfers. • • • • PARALLEL IN/PARALLEL OUT SYNCHRONOUS PARALLEL LOAD SHIFT RIGHT AND SHIFT LEFT CAPABILITY ASYNCHRONOUS OVERRIDING CLEAR ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C solI - Pol! !Bl0SL ~P7 oo[! P,[I 1m 07 a, II pdI !BP6 02 [I P3l!: illps mas 03[2 E]P4 cP[jJ: E]04 !!J06 IT)MR GNO [j1 PKG TYPE Plastic DIP(P) A 74198PC Ceramic DIP (0) A 74198DC 54198DM 6N Flatpak (F) "A 74198FC 54198FM 4M 9N INPUT LOADING/FAN-OUT: See Section 3 for U.l. definitions PIN NAMES So, Sl Po-P7 DSR DSL CP MR 00-07 54/74 (U.L.) HIGH/LOW DESCRIPTION Mode Select Inputs Parallel Data Inputs Serial Data Input (Shift Right) Serial Data Input (Shift Left) Clock Pulse Input (Active Rising Edge) Asynchronous Master Reset Input (Active LOW) Flip-flop Outputs 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 20/10 LOGIC SYMBOL iii I i 'j Y'j 22j 1' DSR Po p, P2 P3 P4 P5 P6 P7 OSL ,- So 23- S, ,,- CP Mil 00 A, 02 03 04 AS 06 07 I 1 ! !,~ L,161 8L 1 4-305 ~vcc ~s, OSR[I Vcc = Pin 24 GND = Pin 12 • 198 FUNCTIONAL DESCRIPTION - The '198 contains eight edge-triggered D-type flip-flops and the interstage gating required to perform synchronous parallel load, shift right, and shift left operations. Serial data enters at DSR for shift right and at DSl for shift left operations. Parallel data is applied to the Po - P7 inputs. State changes are initiated by the rising edge of the clock. The DSR, DSl and Po - P7 inputs can change when the clock is in either state, provided only that the recommended setup and hold times are observed. The operating mode is determined by So and S" as shown in the Mode Select Table. Clocking of the flip-flops is inhibited when both So and S, are LOW. To avoid inadvertently clocking the register, the Select inputs should only be changed while CP is HIGH. A LOW signal on MR overrides all other inputs and forces the outputs LOW. MODE SELECT TABLE INPUTS RESPONSE So' S,' X X X X H L H L H H L L MR CP L H H H H ...r ...r ...r Asynchronous Reset; Outputs = LOW Parallel Load; Pn-On Shift Right; DSR--OO, 00--0" etc . Shift Left; DSl-07, 07--06, etc. Hold 'Select inputs should be changed only while CP is HIGH H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM DSR P5 Po Pe P7 DSL So~~-------+--~~-----+-r----~~------+4r-----~~-----r;-----~'~------r. 4-306 198 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74 PARAMETER Min lee Power Supply Current I I UNITS CONDITIONS Max XC XM 116 104 rnA Vee = Max; So, S, = 4.5 V CP =.s ; MR, Pn = Gnd AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74 SYMBOL PARAMETER CL = 15 pF RL=400n Min f max Maximum Shift Frequency tPLH tPHL Propagation Delay CP to Q n tPHL Propagation Delay MR to Q n UNITS CONDITIONS Max 25 MHz Figs. 3-1, 3-8 26 30 ns Figs. 3-1, 3-8 35 ns Figs. 3-1,3-16 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL 54/74 PARAMETER Min UNITS CONDITIONS Max ts (H) ts(U Setup Time HIGH or LOW Pn, DSL, DSR to CP 20 20 ns th (H) th (U Hold Time HIGH or LOW Pn, DSL, DSR to CP 0 0 ns ts (H) ts (U Setup Time HIGH or LOW So or S, to CP 30 30 ns th (H) th (U Hold Time HIGH or LOW So or S, to CP 0 0 ns tw (H) CP Pulse Width HIGH 20 ns Fig. 3-8 tw (U MR Pulse Width LOW 20 ns Fig. 3-16 4-307 Fig. 3-6 I 199 CONNECTION DIAGRAM PINOUT A 54/74199 8-BIT PARALLEL liD SHIFT REGISTER DESCRIPTION - The '199 is a parallel in, parallel out register featuring synchronous parallel load, shift right and hold modes. State changes are initiated by the rising edge of the clock. Serial entry into the first stage is via J and K inputs for maximum flexibility. Two clock inputs are provided and it is possible to use one as an inhibit. An asynchronous Master Reset(MR) input overrides all other inputs and clears the register. • PARALLEL IN/PARALLEL OUT • SYNCHRONOUS PARALLEL LOAD • ASYNCHRONOUS OVERRIDING CLEAR • JK ENTRY TO FIRST STAGE ORDERING CODE: See Section 9 PKGS PIN OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C r----------------+--------------~ PKG TYPE Plastic DIP (P) A 74199PC Ceramic DIP (0) A 74199DC 54199DM 6N Flatpak (F) A 74199FC 54199FM 4M 9N INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions K J Po-P7 CP1, CP2 MR PE 00-Q7 54174 (U.L.) HIGH/LOW DESCRIPTION PIN NAMES Serial Data Input (Active LOW) Serial Data Input (Active HIGH) Parallel Data Inputs Clock Pulse Inputs (Active Rising Edge) Asynchronous Master Reset Input (Active LOW) Parallel Enable Input (Active LOW) Flip-flop Outputs 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 20/10 LOGIC SYMBOL 23 3 5 7 9 16 18 20 22 PE Po P1 P2 P3 P4 Ps P6 py 13 11 Vcc = Pin 24 GND = Pin 12 14 4 6 8 10 15 17 19 21 4-308 199 FUNCTIONAL DESCRIPTION - The '199 contains eight edge-triggered O-type flip-flops and the interstage gating required to perform synchronous parallel load and shift right operations. Parallel input data is applied to the Po - P7 inputs, while serial entry to 00 is via J and K. State changes are initiated by the rising edge of the clock. The J, K Po - P7 and PE inputs can change while the clock is in either state, provided only that the recommended setup and hold times are observed. Either CP input can be used as the clock; if one is not used it must be tied LOW. One CP input can be used to inhibit the other by applying a HIGH signal, but this should only be done while the other CPis in the HIGH state or else false triggering may result. A LOW signal on MR overrides all other inputs and forces the outputs LOW. MODE SELECT TABLE INPUTS RESPONSE MR PE CP1* CP2* L X X X Asynchronous Reset; Outputs = LOW H H X X H X X H Hold H H L L J L H H H H L J J L J L Parallel Load; Pn - • an Shift Right, 00-01,01-02. etc. *See discussion for precautions on CP changes H ; HIGH Voltage Level L; LOW Voltage Level X ; Immaterial SERIAL ENTRY TABLE (MR = PE = I.IIGH) INPUTS J K L L H H L H L H *tn, tn + 1 00 at tn + 1* L 00 at tn (No Change) 00 at tn (Toggles) H = time before, after rising CP edge LOGIC DIAGRAM Po Ps Ps ~==~~:t1---~L----1----~--~1----J----~--~ PE~~~--~++-tt--~---++-~r---H---~--++--~--~---r---+~~--~4---. MR~~~----~--~---+--~--~~~----+-~----~--~---+--~--~--~ 00 Os 4-309 Os 199 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74 PARAMETER Min XC Icc XM = +5.0 V, TA CONDITIONS mA Vee = Max; J, K, Pn = 4.5 V CP1 =I CP2, MR, PE = Gnd 116 Power Supply Current AC CHARACTERISTICS: Vee UNITS Max 104 = +25°C (See Section 3 for waveforms and load configurations) 54/74 SYMBOL PARAMETER CL RL = 15 pF = 400 n Min fmax Maximum Shift Frequency tPLH tPHL Propagation Delay CP1 or CP2 to On tPHL Propagation Delay MR to On UNITS CONDITIONS Max 25 MHz Figs. 3-1, 3-8 26 30 ns Figs. 3-1, 3-8 35 ns Figs. 3-1, 3-16 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL 54/74 PARAMETER Min UNITS CONDITIONS Max ts (H) ts(U Setup Time HIGH or LOW Pn, K, J to CP 20 20 ns th (H) th (U Hold Time HIGH or LOW Pn , K, J to CP 0 0 ns ts (H) ts(U Setup Time HIGH or LOW PE to CP 30 30 ns th (H) th (U Hold Time HIGH or LOW PE to CP 0 0 ns tw (H) CP Pulse Width HIGH 20 ns Fig. 3-8 tw (U MR Pulse Width LOW 20 ns Fig. 3-16 4-310 Fig. 3-6 240 • 241 • 244 CONNECTION DIAGRAMS PINOUT A OE,II £! 54S/74S240 • 54LS/74LS240 54S/74S241 • 54LS/74LS241 54LS/74LS244 II E !! [! OCTAL BUFFER/LINE DRIVER IT (With 3-State Outputs) [! [! GNDffi - iID Vee \~ ~~ \~ ~~ ti!I OE, :l!l ~ ~ ~ ~ ~ fm ~ PINOUT B DESCRIPTION - The '240, '241 and '244 are octal buffers and line drivers designed to be employed as memory address drivers, clock drivers and bus oriented transmitters/receivers ~hich provide improved PC board density. • HYSTERESIS AT INPUTS TO IMPROVE NOISE MARGINS • 3-STATE OUTPUTS DRIVE BUS LINES OR BUFFER MEMORY ADDRESS REGISTERS • OUTPUTS SINK 24 mA (74LS) OR 40 mA(74S) • 15 mA SOURCE CURRENT • INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS • FULLY TTL AND CMOS COMPATIBLE ORDERING CODE: See Section 9 OE'l.!. £! II E !! [! IT II II GNDffi PIN PKGS OUT Plastic DIP(P) Ceramic DIP (0) Flatpak (F) A COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V, ±5%, TA = O°C to +70°C Vee = +5.0 V, ±10%, TA = -55°C to +125°C - iID Vee ~~ ~~ ~ri ~~ :!!JOE, 1!l TIl 1!l m El 1lI :rn 'i1] PKG OEl[! f-ot>-- 74S240PC, 74LS240PC B 74S241 PC, 74LS241PC C 74LS244PC A 74S240DC, 74LS240DC 54S240DM,54LS240DM B 74S241 DC, 74LS241DC 54S241 OM, 54LS241DM C 74LS244DC 54LS244DM A 74S240FC, 74LS240FC 54S240FM, 54LS240FM B 74S241FC, 74LS241FC 54S241FM,54LS241FM C 74LS244FC 54LS244FM PINOUT C TYPE 9Z 4E 11 II E !! I! IT ~vcc t!~=:= rLX+- ~~~ m [i H>--__ L ~ GNDffi El 'ij] :rn 19 4F :!!JOE, 1!l TIl 1!l ~ 111 INPUT LOADING/FAN-OUT: See Section 9 PIN NAMES OE1,OE2 OE2 54174S (U.L.) DESCRIPTION 3-State Output Enable (Active LOW) 3-State Output Enable (Active HIGH) Inputs Outputs 4-311 HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.25/1.25 1.25/1.25 1.25/0.25 75/40 (30) 0.5/0.25 0.5/0.25 0.5/0.125 75/15 (7.5) 240 • 241 • 244 TRUTH TABLES 'S240, 'LS240 INPUTS INPUTS OUTPUT OE1,01:2 0 L L L H X H 'S241, 'LS241 H L Z H = HIGH Voltage Level 'LS244 INPUTS OUTPUT OEl 01:2 0 L L H L H X H H L OE1,01:2 L H L L H Z L = LOW Voltage Level X = Immaterial Z OUTPUT 0 L H X L H Z = High Impedance DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74S DESCRIPTION Min VOH Output HIGH Voltage Max 54/74LS Min I XM XC 2.0 2.0 2.0 2.0 V I XM XC 2.4 2.4 2.4 2.4 V XC 2.7 2.7 V ~ VOL 0.4 0.4 0.5 ~ XC Output LOW Voltage 0.55 0.55 XM rxc los Output Short Circuit Current ('240) HIGH ('241) ('244) lee Power Supply Current ('240) LOW ('241) ('244) ('240) OFF ('241) ('244) UNITS XM XC XM XC XM XC XM XC XM XC XM XC XM XC XM XC XM XC -50 -225 123 135 147 160 145 150 170 180 145 150 170 180 4-312 V V -40 CONDITIONS Max -225 23 23 23 23 23 23 44 44 46 46 46 46 50· 50 54 54 54 54 VIH = 2.0 V 10H = -12 rnA VIL = 0.5 V 10H = -15 rnA Vee = Min Vee = Min, VIH = 2.0 V VIL = Max, 10H = -3.0 rnA Vee - Min, VIH - 2.0 V VIL = Max, 10H = -1.0 rnA 10L IOL 10L 10L IOL = 12 = 12 =24 - 48 -64 rnA rnA rnA rnA rnA rnA Vee = Max rnA Vee = Max rnA Vee = Max rnA Vee = Max Vee = Min Vee = Min 240 • 241 • 244 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74S SYMBOL PARAMETER 54/74LS CL = 50 pF CL = 50 pF RL=90n Min Max Min UNITS Max tPLH tPHL Propagation Delay Data to Output ('240) 7.0 7.0 14 18 ns tPLH tPHL Propagation Delay Data to Output ('241) 9.0 9.0 18 18 ns tPLH tPHL Propagation Delay Data to Output ('244) 18 18 ns tPZH tPZL Output Enable Time ('S240) 10 15 tPZH tPZL Output Enable Time ('LS240, 'LS241, 'S241) 12 15 tPLZ tPHZ Output Disable Time 15 9.0 4-313 CONDITIONS Figs. 3-1, 3-4 Figs. 3-1, 3-5 ns Figs. 3-3, 3-11, 3-12 23 30 ns Figs. 3-3, 3-11, 3-12 RL = 667 n (,LS) 25 18 ns Figs. 3-3, 3-11, 3-12 RL = 667 n, CL = 5 pF (,LS) • 242 • 243 CONNECTION DIAGRAMS PINOUT A 54LS/74LS242 54LS/74LS243 QUAD BUS TRANSCEIVER (With 3-State Outputs) 'E{I r---ot>-NcII IT II IT II EJvcc - r ----~--~+----H~--+H----~---+~--~~--~ So OE z 4-322 Z 251 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER los Output Short Circuit Current lee Power Supply Current 54174S 54174LS Min Max Min Max -40 -100 -20 -100 10 Outputs ON Outputs OFF 85 UNITS CONDITIONS mA Vee = Max mA Vee = Max; In, Sn = 4.5 V OE = Gnd Vee = Max; OE, In = 4.5 V 12 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174S SYMBOL PARAMETER 54/74LS CL = 15 pF CL = 15 pF RL = 280!1 Min Max Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Sn to Z 15 13.5 23 33 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay Sn to Z 18 19.5 45 30 ns Figs. 3-1, 3-20 tPLH tpHL Propagation Delay In to Z 12 12 28 26 ns Figs. 3-1, 3-5 tpLH tPHL Propagation Delay In to Z 7.0 7.0 15 15 ns Figs. 3-1, 3-4 tPZH tPZL Output Enable Time OE to Z orZ 19.5 21 20 25 ns Figs. 3-3, 3-11,3-12 RL = 2 k!1 ('LS251) tPHZ tPLZ Output Disable Time OE to Z orZ 8.5 14 25 20 ns Figs. 3-3, 3-11, 3-12 RL = 2 k!1 ('LS251) CL = 5 pF 4-323 • 253 CONNECTION DIAGRAM PINOUT A 54S/74S253 54LS/74LS253 DUAL 4-INPUT MULTIPLEXER (With 3-State Outputs) DESCRIPTION - The '253 is a dual 4-input multiplexer with 3-state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output Enable (OE) inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families. • SCHOTTKY PROCESS FOR HIGH SPEED • MULTIFUNCTION CAPABILITY • NON-INVERTING 3-STATE OUTPUTS OEa C!: sdI loa IT ~ till Vee ~OEb !ElSa i1a IT IT lOa [I ~i1b Za IT :I2] lab GNO!I ]JZb 12a TIl lob J] 12b ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74S253PC, 74LS253PC Ceramic DIP (D) A 74S253DC, 74LS253DC 54S253DM, 54LS253DM 68 Flatpak (F) A 74S253FC, 74LS253FC 54S253FM, 54LS253FM 4L 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES lOa -l3a lOb -13b So, S1 OEa OEb la, Zb DESCRIPTION 54/74S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 1.25/1.25 1.25/1.25 1.25/1.25 1.25/1.25 1.25/1.25 162/12.5 (50l 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 65/5.0 (25)/(2.5) Side A Data Inputs Side 8 Data Inputs Common Select Inputs Side A Output Enable Input (Active LOW) Side 8 Output Enable Input (Active LOW) 3-State Outputs 1 iii i T1f 1j Y~ LOGIC SYMBOL OEa lOa l'a 12a loa lab i1b 12b lob OEb 14- So 2 - S, Za Zb ! ! 4-324 VCC = Pin 16 GND = Pin 8 253 FUNCTIONAL DESCRITION - This device contains two identical 4-input multiplexers with 3-state outputs. They select two bits from four sources selected by common select inputs(So, Sl). The4-input multiplexers have individual Output Enable (OEs, OEb) inputs which when HIGH, force the outputs to a high impedance (high Z) state. This device is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two select inputs. The logic equations for the outputs are shown below: Za = OEs • (lOa • 81 • So + ha • 51 • So + 12a • Sl • So + 13a • Sl • So) Zb = OEb • (lab • 51 • &> + hb • 81 • So + 12b • Sl • &> + 13b • Sl • So) If the outputs of 3-state devices are tied together, all but one device must be i n the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap. TRUTH TABLE SELECT INPUTS DATA INPUTS OUTPUT OUTPUT ENABLE So Sl 10 h 12 13 OE Z X L L H X L L L X L H X X X X L XX X X X X X X H L L L (Z) L H L H L L H H L H H H H X X X X X H X X X X X L H X X X X X L H L L L L L H L H L H Address inputs So and 8, are common to both sections. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial (Z)= High Impedance LOGIC DIAGRAM 4-325 253 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL los lee PARAMETER Output Short Circuit Current Power Supply Current 54/74S 54/74LS Min Max Min Max -40 -100 -20 -100 Outputs HIGH 70 Outputs LOW 80 12 Outputs OFF 100 14 UNITS CONDITIONS mA Vee = Max mA Vee = Max, OEn = Gnd In, Sn = 4.5 V Vee = Max In Sn OEn = Gnd Vee = Max, OEn = 4.5 V In, Sn = Gnd AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74S SYMBOL PARAMETER 54/74LS CL = 15 pF CL = 15 pF RL = 280 D Min Max Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Sn to Zn 18 18 29 24 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay In to Zn 9.0 9.0 20 15 ns Figs. 3-1, 3-5 tPZH tPZL Output Enable Time 19.5 21 22 22 ns Figs. 3-3, 3-11, 3-12 RL=2kD,CL=15pF ('LS253); CL =50 pF('S253) tPHZ tPLZ Output Disable Time 8.5 14 32 22 ns Figs. 3-3, 3-11,3-12 RL = 2 kD, ('LS253) CL = 5 pF 4-326 256 CONNECTION DIAGRAM PINOUT A 54LS/74LS256 DUAL 4-BIT ADDRESSABLE LATCH - Aou DESCRIPTION - The '256 is a dual 4-bit addressable latch with common control inputs; these include two Address inputs (Ao, A1), an active LOW Enable input (E) and an active LOW Clear input (Cll. Each latch has a Data input (D) and four outputs (00 - 031. P1JCi D,I1 ~E Q2a[! ~Db ~Q3b ~Q2b Q3aU ~Qlb GND[! ~QOb OoaC! Qla[! When the Enable@ is HIGH and the Clear input (CLl is LOW, all outputs (00.03) are LOW. Dual 4-channel demultiplexing occurs when the CL and E are both LOW. When CL is HIGH and Eis LOW, the selected output (00-03), determined by the Address inputs, follows D. When the Egoes HIGH, the contents of the latch are stored. When operating in the addressable latch mode (E = LOW, CL = HIGH), changing more than one bit of the Address (Ao, A1) could impose a transient wrong address. Therefore, this should be done only while in the memory mode (E = CL = HIGHI. SERIAL-TO-PARALLEL CAPABILITY OUTPUT FROM EACH STORAGE BIT AVAILABLE RANDOM (ADDRESSABLE) DATA ENTRY EASILY EXPANDABLE ACTIVE LOW COMMON CLEAR • • • • • LOGIC SYMBOL i D, 2 6 E Ao A, ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = 0° C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C CL PKG TYPE Plastic DIP (P) A 74LS256PC Ceramic DIP (D) A 74LS256DC 54LS256DM 6B Flatpak (F) A 74LS256FC 54LS256FM 4L 9B ~vcc Al[! 115 1 Ir E A, CL OOa Q, a Q2a 03a QObQlbQ2bQ3b 1! l ! 1~ )1 1~ ! Vee = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION CL 00a-03a Common Address Inputs Data Inputs Common Enable Input (Active LOW) Conditional Clear Input (Active LOW) Side A Latch Outputs 00b-03b Side B Latch Outputs Ao, A1 Da, Db E 4-327 Db Ao 54174LS (U.L.) HIGH/LOW 0.5/0.25 0.5/0.25 1.0/0.5 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) 256 TRUTH TABLE INPUTS OUTPUTS MODE CL E Ao A1 00 01 02 03 L H X X L L L L Clear L L L L L L L L L H L H L L H H D L L L L D L L L L D L L L l D Demultiplex H H X X 01-1 01-1 01-1 01-1 Memory H H H H L L L L L H L H L L H H D 01-1 01-1 01-1 01-1 01-1 01-1 D Addressable Latch 1-1 ~ 01-1 D 01-1 01-1 01-1 01-1 D 01-1 Bit time before address change or rising edge of E H ~ HIGH Voltage Level L ~ LOW Voltage Level X ~ Immaterial MODE SELECTION E CL L H L H H H L L MODE Addressable Latch Memory Active HIGH 4-Channel Demultiplexers Clear LOGIC DIAGRAM 4-328 256 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174LS PARAMETER Min lee UNITS CONDITIONS Max Power Supply Current 25 mA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V. TA = +25 0 C (See Section 3 for waveforms an d load configurations) 54174LS SYMBOL PARAMETER CL = 15 pF Min UNITS CONDITIONS Max tPLH tPHL E to Propagation Delay an 27 24 ns Figs. 3-1. 3-9 tPLH tPHL Propagation Delay Dn to an 30 20 ns Figs. 3-1. 3-5 tPLH tpHL Propagation Delay An to an 30 20 ns Figs. 3-1. 3-20 tPHL cL to an 18 ns Figs. 3-1. 3-16 Propagation Delay AC OPERATING REQUIREMENTS: Vee = +5.0 V. TA = +25 0 C SYMBOL 54174LS PARAMETER Min UNITS CONDITIONS Max ts (H) Setup Time HIGH Dn to E 20 ns Fig. 3-13 th (H) Hold Time HIGH Dn to E 0 ns Fig. 3-13 ts (U Setup Time LOW Dn lo E 15 ns Fig. 3-13 th (U Hold Time LOW Dn to E 0 ns Fig. 3-13 ts (H) ts (U Setup Time HIGH or LOW. An to E 0 ns Fig. 3-21 tw (U E Pulse Width LOW 17 ns Fig. 3-21 4-329 • 257 CONNECTION DIAGRAM PINOUT A 54S/74S257 54LS/74LS257 sIT QUAD 2-INPUT MULTIPLEXER la·1I :mOE (With 3-State Outputs) ha[! TIl lac z.1I TIll" DESCRIPTION - The '257 is a quad 2-input multiplexer with 3-state outputs. Four bits of data from two sources can be selected using a Common Data Select input. The four outputs present the selected data in true (non-inverted) form. The outputs may be switc~ to a high impedance state with a HIGH on the common Output Enable (OE) input, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed. - :ill Vee lObI:! TIlZ, hb[! :TIlICd Zb[! ~I'd GND[! ~Zd LOGIC SYMBOL • • • • SCHOTTKY PROCESS FOR HIGH SPEED MULTIPLEXER EXPANSION BY TYING OUTPUTS TOGETHER NON-INVERTING 3-STATE OUTPUTS INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINAT10N EFFECTS ! iii ri Y'f Y OE lOa 11a lOb 11b IOc 11c IOd hd '-$ ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74S257PC, 74LS257PC Ceramic DIP (0) A 74S257DC, 74LS257DC 54S257DM, 54LS257DM 68 A 74S257FC, 74LS257FC 54S257FM, 54LS257FM 4L Flatpak (F) Za Zb Z, Zd ! ! ,l ! 98 Vee = Pin 16 Gnd = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES S OE lOa-lad ha-hd Za-Zd DESCRIPTION Common Data Select Input 3-State Output Enable Input (Active LOW) Data Inputs from Source 0 Data Inputs from Source 1 Multiplexer Outputs 4-330 54/74 (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 2.5/2.5 1.25/1.25 1.0/0.5 0.5/0.25 1.25/1.25 1.25/1.25 162/12.5 (50l 0.5/0.25 0.5/0.25 65/5.0 (25)/(2.5) 257 FUNCTIONAL DESCRIPTION - This device is a quad 2-input mulitplexer with 3-state outputs. It selects four bits of data from two sources under control of a Common Data Select input. When the Select input is LOW, the lox inputs are selected and when Select is HIGH, the hx inputs are selected. The data on the selected inputs appears at the outputs in true (non-inverted) form. The device is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below: Za = OE • (ha • S Ze = OE • (he • S + loa. S) + 10e • S) Zb = OE • (hb • S Zd = OE • (hd • S + lOb. S) + 10d • S) When the Output Enable input (OE) is HIGH, the outputs are forced to a high impedance OFF state. If the outputs are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so there is no overlap. TRUTH TABLE DATA INPUTS OUTPUT ENABLE SELECT INPUT OE S 10 h Z H L L L L X H H L L X X X L H X L H X X (Z) H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial (l)= High Impedance LOGIC DIAGRAM 4-331 OUTPUTS L H L H 257 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RAP':'GE (unless otherwise specified) SYMBOL 54/74S PARAMETER Min Icc Power Supply Current AC CHARACTERISTICS: Vee Max Min 68 10 Outputs LOW 93 16 Outputs OFF 99 19 = +5.0 V, TA PARAMETER UNITS CONDITIONS Max Outputs HIGH mA Vee = Max; S, hx = 4.5 V; OE, lox = Gnd Vee = Max; hx = 4.5 V; OE lox, S = Gnd Vee = Max; S, lox = Gnd OE, hx = 4.5 V = +25°C (See Section 3 for waveforms and load 54/74S SYMBOL 54174LS CL RL = 15 pF = 2800 Min Max configurations) 54174LS CL = 15 pF Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay In to Zn 7.5 6.5 18 18 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay S to Zn 15 15 21 21 ns Figs. 3-1, 3-20 tPZH tPZL Output Enable Time 19.5 21 30 30 ns Figs. 3-3, 3-11, 3-12 RL = 2 kO ('LS257) tPHZ tPLZ Output Disable Time 8.5 14 30 25 ns Figs. 3-3, 3-11, 3-12 RL = 2 kO, CL = 5 pF ( 'LS257) 4-332 257A CONNECTION DIAGRAM PINOUT A 54LS/74LS257 A QUAD 2-INPUT MULTIPLEXER sIT (With .3-State Outputs) II I" IT Z, [I lOb [I :mild ]]Zd Yiii i 'j Y'f 7 OE lOa ha lOb I1b loc he IOd hd MI.L,.lI;.Aft.jiGRADE ,-s PKG Plastic DIP (P) A Ceramic DIP (0) A 74LS257ADC 54LS257ADM 68 Flatpak (F) A 74LS257AFC 54LS257AFM 4L OUT LOGIC SYMBOL ;i,">' \le2'";+5.0 V ±10%, Vee = +5.0 V ±5%, TA = 0° C to +70° C ,jY'i' ',r":'I';'iiii':55° C to +125° C I";' <:1;.',::":;; 74LS257APC PKGS ]]z, J2] IOd GNO[! DESCRIPTION - The '257 A is the same as the '257, except that the output drive capability is increased as indicated in the tables below. The ac test limits are the same as the '257 but with the test load changed to 667 nand 45 pF, except for the Output Disable Time tests, whose load is 667 nand 5 For all other information please refer to the '257 data sheet. ORDERING CODE: See Section 9 loc II IT Zb COMMERCIAL GRADE ~vcc tm oe ;EJ mile lOa hb PIN - TYPE Z, Zb Z, Zd ! ! ,t ! 98 Vee = Pin 16 Gnd = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Zn 54174LS (U.L.) HIGH/LOW DESCRIPTION 65/15 (25)/(7.5) 3-State Outputs DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174LS PARAMETER Min II XM ' XC XC VOL Output LOW Voltage los Output Short Circuit Current UNITS 0.4 0.5 -30 4-333 CONDITIONS Max -130 V mA IOL=12mA 10L - 24 mA Vee = Max Iv -M' I ee - In 258 CONNECTION DIAGRAM PINOUT A 548/748258 54L8/74L8258 - sIT QUAD 2-INPUT MULTIPLEXER IDa (With 3-State Outputs) 11 l1alI ~Ioc Za[! EJl1c IT ~lc I1bl1 ~IOd lb[I ~11d I]: ~ld lOb DESCRIPTION - The '258 is a quad 2-input multiplexer with 3-state outputs. Four bits of data from two sources can be selected using a common data select input. The four outputs present the selected data in the complement (inverted) form. The outputs may be switched to a high impedance state with a HIGH on the common Output Enable(OE) Input, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed. :ill Vee mOE GNO LOGIC SYMBOL • SCHOTTKY PROCESS FOR HIGH SPEED • MULTIPLEXER EXPANSION BY TYING OUTPUTS TOGETHER • INVERTING 3-STATE OUTPUTS Yiii i lj Y111 11 OE'IOa ha lOb hb IOc 11C IOd hd 1- s ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74S258PC, 74LS258PC Ceramic DIP(D) A 74S258DC, 74LS258DC 54S258DM, 54LS258DM 68 Flatpak (F) A 74S258FC, 74LS258FC 54S258FM, 54LS258FM 4L 98 Z, Zb Z, Zd r r! ! Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. defintions PIN NAMES -SOE lOa -lad l1a -11d Za-Zd DESCRIPTION Common Data Select Input 3-State Output Enable Input (Active LOW) Data Inputs from Source 0 Data Inputs from Source 1 Inverting Data Outputs 4-334 54174S (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW 2.5/2.5 1.25/1.25 1.25/1.25 1.25/1.25 162/12.5 (50l 1.0/0.5 0.5/0.25 0.5/0.25 0.5/0.25 65/15 (25)/(7.5) 258 FUNCTIONAL DESCRIPTION - This device is a quad 2-input multiplexer with 3-state outputs. It selects four bits of data from two sources under control of a common Select input (S). When the Select input is LOW, the lox inputs are selected and when Select is HIGH, the hx inputsareselected. The data on the selected inputs appears at the outputs in inverted form. The '258 is the logic implementation of a 4-pole, 2-position switch where the position of the switch is determined by the logic levels supplied to the Select input. The logic equations for the outputs are shown below: Za Ze = OE • = OE • (ha • S + loa. 5) (he. S + 10e • S) Zb = OE • Zd = OE • (hb • S + lOb. S) (hd • S + 10d • S) When the Output Enable input(OE) is HIGH, the outputs are forced to a high impedance OFF state. Ifthe outputs of the 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3state devices whose outputs are tied together are designed so there is no overlap. TRUTH TABLE OUTPUT ENABLE H= L= X= Z= SELECT INPUT DATA INPUTS OUTPUTS OE S 10 h Z H L L L L X X X X X L H X X Z H L H L H H L L L H HIGH Voltage Level LOW Voltage Level Immaterial High Impedance LOGIC DIAGRAM 4-335 258 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL los lee PARAMETER Output Short Circuit Current Power Supply Current 54/74S 54/74LS Min Max Min Max -40 -100 -20 -100 Outputs HIGH 56 7.0 Outputs LOW 81 14 Outputs OFF 87 19 UNITS CONDITIONS mA Vee = Max mA Vee = Max; S, hx = 4.5 V OE lox = Gnd Vee - Max; hx - 4.5 V OE, lox, S = Gnd Vee = Max; S, lox = Gnd OE = 11x = 4.5 V AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74S SYMBOL PARAMETER 54/74LS CL = 15 pF CL= 15 pF RL = 280 n Min Max Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay In to Zn 6.0 6.0 18 18 ns Figs. 3-1, 3-4 tPLH tPHL Propagation Delay S toZn 12 12 21 21 ns Figs. 3-1, 3-4 tPZH tPZL Output Enable Time 19.5 21 30 30 ns Figs. 3-3, 3-11, 3-12 RL = 2 kn ('LS258) tPHZ tPLZ Output Disable Time 8.5 14 30 25 ns Figs. 3-3, 3-11, 3-12 RL = 2 kn, CL = 5 pF ('LS258) 4-336 258A CONNECTION DIAGRAM PINOUT A 54LS/74LS258A (With 3-State Outputs) PIN mOE haII :EJ lac Za[I ~hc 10b[[ rm hb[[ tTIJ lOd PKGS OUT MILly"Wti'GRADE .... .... .'.' ,;.~ ~.... '~ ."'ce:;~\+5.0 V ±10%, ,:"}:A,'"li,;:::55° C to +125° C Vee = +5.0 V ±5%, T A = 0° C to +70° C ":.!.'\; zc Zbe!: ~11d GNO[! PJZd LOGIC SYMBOL ! iii i Tln1I, ,', "i.'::;:,": COMMERCIAL GRADE 1!l Vee lOa [I DESCRIPTION - The '258A is the same as the '258, except that the output drive capability is increased as indicated in the tables below. The ac test limits are the same as the '258 but with the test load changed to 667 nand 45 pF, except for the Output Disable Time tests, whose load is 667 nand 5 pF. For all other information please refer to the '258 data sheet. ORDERING CODE: See Section 9 - sIT QUAD 2-INPUT MULTIPLEXER OE lOa ha lOb 11b loc be IOd I1d PKG 1-5 TYPE Za Plastic DIP (P) A 74LS258APC Ceramic DIP (0) A 74LS258ADC 54LS258ADM 68 Flatpak (F) A 74LS258AFC 54LS258AFM 4L Zb r r ,<":,;,, 98 Zc Zd X ! Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Zn 54/74LS (U.L.) HIGH/LOW DESCRIPTION Inverting 3-State Outputs 65/15 (25)/(7.5) DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174LS PARAMETER Min II XM ' XC XC VOL Output LOW Voltage los Output Short Circuit Current 0.4 0.5 -30 4-337 CONDITIONS UNITS Max -130 V mA = 12 mA I V M' = 24 mA I ee = In Vee = Max 10L IOL 259 CONNECTION DIAGRAM PINOUT A 54LS/74LS259 a-BIT ADDRESSABLE LATCH DESCRIPTION - The '259 is a high speed 8-bit addressable latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and also a 1-of-8 decoder and demultiplexer with active HIGH outputs. The device also incorporates an active LOW common Clear for resetting all latches, as well as, an active LOW Enable. It is functionally identical to the 9334 and 93L34 8-bit addressable latch. • • • • • • • Ao[! SERIAL-TO-PARALLEL CONVERSION EIGHT BITS OF STORAGE WITH OUTPUT OF EACH BIT AVAILABLE RANDOM (ADDRESSABLE) DATA ENTRY ACTIVE HIGH DEMUL TIPLEXING OR DECODING CAPABILITY EASILY EXPANDABLE COMMON CLEAR FULLY TTL AND CMOS COMPATIBLE A1 OUT rm o ~07 till IT 02!! 03 PKGS ~E Ad:! 01 06 till 05 :II 04 II GNO[I COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74LS259PC Ceramic DIP (D) A 74LS259DC 54LS259DM 68 Flatpak (F) A 74LS259FC 54LS259FM 4L 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions Ao-A2 D E cL 00-07 54/74LS (U.L.) HIGH/LOW DESCRIPTION PIN NAMES Address Inputs Data Input Enable Input (Active LOW) Conditional Clear Input (Active LOW) Latch Outputs 0.5/0.25 0.5/0.25 1.0/0.5 0.5/0.25 10/5.0 (2.5) LOGIC SYMBOL 14 13 AD 2 A1 3 A3 CL 00 Q1 02 03 04 05 06 07 15 4 5 6 7 9 4-338 10 11 12 Vcc = Pin 16 GND = Pin 8 ~vcc ~Ci. [I 001} ORDERING CODE: See Section 9 PIN - 259 FUNCTIONAL DESCRIPTION - The '259 has four modes of operation as shown in the Mode Selection Table. In the addressable latch mode, data on the Data line (0) is written into the addressed latch. The addressed latch will follow the data input with all non-addressed latches remaining in their previous states. in the memory mode, all latches remain in their previous state and are unaffected by the Data or Address inputs. In the one-of-eight decoding or demultiplexing mode, the addressed output will follow the state.of the D input with all other outputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs. When operating the '259 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode. The Truth Table below summarizes the operations of the '259. MODE SELECT TABLE E CL L H L H H H L L MODE Addressable Latch Memory Active HIGH 8-Channel Demultiplexer Clear TRUTH TABLE OUTPUTS INPUTS CL E D Ao A1 A2 00 01 02 03 04 05 Os 07 L L L L H L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L H MODE Clear Demultiplex L L L L L H L L L L X L H L H X L L H H X L L L L X L L L L L L H L L L L H H H H L L H H X X X X Ot-1 01-1 01-1 01-1 Ot-1 01-1 01-1 01-1 Memory H H H H I L L L I H L H L L H H L L L L L L L L L H Ot-1 Ot-1 Ot-1 01-1 L H Ot-1 01-1 01-1 01-1 Ot-1 01-1 01-1 01-1 01-1 01-1 01-1 Ot-1 Ot-1 Ot-1 01-1 01-1 01-1 01-1 01-1 Ot-1 01-1 01-1 01-1 Ot-1 Addressable Latch H H L L L H H H H H H H 01-1 Ot-1 01-1 Ot-1 Ot-1 01-1 Ot-1 Ot-1 Ot-1 01-1 01-1 01-1 01-1 01-1 L H Q'-1 = Previous Output State H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance 4-339 259 LOGIC DIAGRAM E D <~ A, Ao '7 ~7 '7 - -, U -CL A2 r- ~7 7 '7 'f ~ ~ ~ ~ ~ ~J5~ ~ DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74LS PARAMETER Min Icc Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, UNITS 36 TA CONDITIONS Max mA Vee = +25°C (See Section 3 for waveforms and = Max load configurations) 54174LS SYMBOL PARAMETER CL = 15 pF Min UNITS CONDITIONS Max tPLH tpHL Propagation Delay, E to an 27 24 ns Figs. 3-1, 3-9 tpLH tpHL Propagation Delay, D to an 30 20 ns Figs. 3-1, 3-5 tpLH tPHL Propagation Delay, An to an 30 20 ns Figs. 3-1,3-20 tpHL Propagation Delay, CL to an 18 ns Figs. 3-1, 3-16 AC OPERATING REQUIREMENTS: Vee SYMBOL = +5.0 V, TA = +25°C 54174LS PARAMETER Min ts (H) Setup Time HIGH, D to E UNITS 20 ns th (H) Hold Time HIGH, D to E 0 ns ts(U Setup Time LOW, D to E 15 ns th(U Hold Time LOW, D to E 0 ns ts Setup Time HIGH or LOW, An to E tw (U E Pulse Width LOW 0 17 4-340 CONDITIONS Max ns Fig. 3-13 Fig. 3-21 260 260 CONNECTION DIAGRAM PINOUT A 54S/74S260 54LS/74LS260 DUAL 5-INPUT NOR GATE PIN PKGS OUT - - 11 ORDERING CODE: See Section 9 COMMERCIAL GRADE VCC = +5.0 V ±5%, TA = O°C to +70°C MILITARY GRADE VCC = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP (P) A 74S2S0PC, 74LS2S0PC Ceramic DIP (D) A 74S2S0DC, 74LS2S0DC 54S2S0DM, 54LS2S0DM SA Flatpak (F) A 74S2S0FC, 74LS2S0FC 54S2S0FM, 54LS2S0FM 31 9A IT II II II ~VDD ~ ~ ~ ~ ~ ~ ~ 12 ---FD- U GNOII INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 54174S (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 1.25/1.25 25/12.5 0.5/0.25 10/5.0 (2.5) DC AND AC CHARACTERISTICS: See Section 3' SYMBOL 54174S PARAMETER 54/74LS UNITS CONDITIONS Min Max Min Max ICCH Power Supply Current ICCL tPLH tPHL ·DC limits apply Propagation Delay over operating temperature range; AC 29 4.0 45 5.5 5.5 S.O 10 12 limits apply at TA mA VIN = Open ns = +25°C and Vee = +5.0 V. 4-341 VIN = Gnd Figs. 3-1, 3-4 Vcc=Max 266 CONNECTION DIAGRAM PINOUT A 54LS/74LS266 QUAD 2-INPUT EXCLUSIVE-NOR GATE IT (With Open-Collector Outputs) [! [l 11 IT IT GNOII -- ~vee ~~ till ~ ~ =lli~ ~ ~ ~ ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE = +5.0 V ±5%, = O°C to +70°C Vee TA MILITARY GRADE = +5.0 V ±10%, = -55°C to +125°C Vee TA TYPE Plastic DIP(P) A 74LS266PC Ceramic DIP (0) A 74LS266DC 54LS266DM 6A Flatpak (F) A 74LS266FC 54LS266FM 31 9A INPUTS Inputs Outputs OUTPUT A B Z L L H H L H L H H L L H H = HIGH Voltage Level L = LOW Voltage Level INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS TRUTH TABLE PKG 54/74LS (U.L.) HIGH/LOW 1.0/0.375 OC··/5.0 (2.5) DC AND AC CHARACTERISTICS: See Section 3' SYMBOL 54/74LS PARAMETER Min UNITS CONDITIONS Max = Max Power Supply Current 13 mA Vee IPLH IPHL Propagation Delay 23 23 ns Other Input LOW Figs. 3-2, 3-5 IPLH IPHL Propagation Delay 23 23 ns Other Input HIGH Figs. 3-2, 3-5 Icc "DC limits apply over operating temperature range; AC limits apply at TA = +25°C and Vee "OC- Open Collector 4-342 = +5.0 V. 273 CONNECTION DIAGRAM PINOUT A 54LS/74LS273 8-BIT REGISTER (With Clear) DESCRIPTION - The '273 is a high speed 8-bit register, consisting of eight O-type flip-flops with a common Clock and an asynchronous active LOW Master Reset. This device is supplied in a 20-pin package featuring 0.3 inch row spacing. • • • • EDGE-TRIGGERED 8-BIT HIGH SPEED REGISTER PARALLEl IN AND OUT COMMON CLOCK AND MASTER RESET • LOGIC SYMBOL INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES CP 00-07 MR 00-07 54174LS (U.L.) HIGH/LOW DESCRIPTION Clock Pulse Input (Active Rising Edge) Data Inputs Asynchronous Master Reset Input (Active LOW) Flip-flop Outputs 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) LOGIC DIAGRAM Do 0, D, Q, Q, Ds D3 D. D, ~~--~~-----'-r----~~----~+-----~r-----~----~~----~ Q3 4-343 Q4 Qs Q, 273 FUNCTIONAL DESCRIPTION - The '273 is an 8-bit parallel register with a common Clock and common Master Reset. When the MR input is LOW, the a outputs are LOW, independent of the other inputs. Information meeting the setup and hold time requirements of the D inputs is transferred to the a outputs on the LOWto-HIGH transition of the clock input. TRUTH TABLE INPUTS OUTPUTS MR CP Dn an L H H X L H L J ...r X H L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specifed) SYMBOL 54174LS PARAMETER Min lee UNITS CONDITIONS Max Power Supply Current 27 mA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25° C (See Section 3 for waveforms and load configurations) 54174LS SYMBOL PARAMETER CL = 15 pF Min fmax Maximum Clock Frequency tpLH tPHL Propagation Delay CP to an tPHL Propagation Delay MR to an UNITS CONDITIONS Max 30 MHz Figs. 3-1, 3-8 24 24 ns Figs. 3-1, 3-8 27 ns Figs. 3-1, 3-16 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL 54174LS PARAMETER Min ts (H) UNITS CONDITIONS Max ts (U Setup Time HIGH or LOW Dn to CP 15 15 ns th (H) th (W Hold Time HIGH or LOW Dn to CP 5.0 5.0 ns tw (H) tw (U CP Pulse Width HIGH or LOW 20 20 ns Fig. 3-8 tw (U MR Pulse Width LOW 20 ns Fig. 3-16 tree Recovery Time MR to CP 15 ns Fig. 3-16 4-344 Fig. 3-6 279 CONNECTION DIAGRAM PINOUT A 54/74279 54LS/74LS279 AD: QUAD SET-RESET LATCH S,1l S2 [! a[! ~ [! IT GND\! ~~ ~~ ~vcc till tEl tm tm tm S ~ ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE TRUTH TABLE INPUTS Plastic DIP (P) A Ceramic DIP (D) A 74279DC, 74LS279DC 54279DM, 54LS279DM 68 Flatpak (F) A 74279FC, 74LS279FC 54279FM, 54LS279FM 4L 98 74279PC, 74LS279PC 54174LS (U.L.) HIGH/LOW 54174 (U.L.) HIGH/LOW 0.5/0.25 10/5,0 (2.5) 1.0/1.0 20/10 Inputs Outputs S2 R Q L L X H H L X L H H L H H L H h H H L No Change H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial h = The output is HIGH as long as s, or S2 is LOW. If all inputs go HIGH simultaneously, the output state is indeterminate; otherwise, it follows the Truth Table. INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS OUTPUT S1 DC AND AC CHARACTERISTICS: See Section 3' PARAMETER SYMBOL 54/74 54/74LS UNITS CONDITIONS Min Max Min Max R= lee Power Supply Current 30 7.0 mA Vee = Max, tPLH tPHL Propagation Delay S"to Q 22 15 22 15 ns Figs. 3-1,3-10 tpHL R to Q 27 27 ns Figs. 3-1, 3-10 Propagation Delay 'De limits apply over operating temperature range; Ae limits apply at TA = +25°e and Vee = +5.0 V. 4-345 Gnd • 280 CONNECTION DIAGRAM PINOUT A 54S/74S280 9-BIT PARITY GENERATOR/CHECKER DESCRIPTION - The '280 is a high speed parity generator/checker that accepts nine bits of input data and detects whether an even or an odd number or these inputs are HIGH. If an even number of inputs are HIGH, the Sum Even output is HIGH. If an odd number are HIGH, the Sum Even output is LOW. The Sum Odd output is the complement of the Sum Even outRMl LOGIC SYMBOL 8 9 10 11 12 13 1 ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Plastic DIP (P) A 74S280PC Ceramic DIP (0) A 74S280DC 54S280DM 6A Flatpak (F) A 74S280FC 54S280FM 31 9A 6 5 Vee = Pin 14 GND = Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions 10-18 ~o ~E 54/74S (U.L.) HIGH/LOW DESCRIPTION PIN NAMES Data Inputs Odd Parity Output Even Parity Output 1.25.1.25 25/12.5 25/12.5 TRUTH TABLE NUMBER OF INPUTS 10-18 THAT ARE HIGH OUTPUTS ~ EVEN H L 0,2,4,6,8, 1,3,5,7,9 H = HIGH Voltage Level L = LOW Voltage Level 4-346 ~ ODD L H 2 4 280 LOGIC DIAGRAM I, I, ~,. ~7 ~,. Y . ,. ~ I, I, V T ~ I, I, b ";7 V ";7 n ";7 ~7 ~7 ~7 VI V I.. ,. ~,. ~7 ";,. ~ r fir T ~ r Ll) T 10 " ";,. Y T ~ fir } ~o " DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74S PARAMETER Min lee Power Supply Current UNITS CONDITIONS Max XM XC 99 105 mA XM 94 mA Vee = Max, All Inputs = Vee - Max, All Inputs = TA = 25°C Gnd TA - 125°C Gnd AC CHARACTERISTICS: Vee = +5.0 V, TA = +25° C (See Section 3 for waveforms and load configurations) 54/47S SYMBOL PARAMETER CL = 15 pF RL = 280 n Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay In to 2E 21 18 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay In to 20 21 18 ns Figs. 3-1, 3-20 4-347 283 CONNECTION DIAGRAM PINOUT A 54/74283 54LS/74LS283 4-BIT BINARY FULL ADDER (With Fast Carry) S1[1: DESCRIPTION - The '283 high speed 4-bit binary full adders with internal carry lookahead accept two 4-bit binary words (Ao - A3, 80 - 83) and a Carry input (Co)' They generate the binary Sum outputs (So - S3) and the Carry output (C4) from the most significant bit. They operate with either active HIGH or active LOW operands (positive or negative logic). ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C - :ill Vee B1[I :ill B2 A1[I TIJ A2 IT J1] 52 Ao[I :ill A3 So BalI J2] B3 Co [I J]] 53 GNO[I }]C4 PKG TYPE Plastic DIP (P) A 74283PC, 74LS283PC Ceramic DIP (D) A 74283DC, 74LS283DC 54283DM, 54LS283DM 68 Flatpak (F) A 74283FC, 74LS283FC 54283FM, 54LS283FM 4L 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 54174 (U.L.) DESCRIPTION Ao-A3 80-83 Co 80-S3 A Operand Inputs 8 Operand Inputs Carry Input Sum Outputs C4 Carry Output HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 20/10 10/5.0 LOGIC SYMBOL iii i 1j 1j 1j 1f Ao Bo A1 B1 A2 B2 A3 B3 C4 - 9 7 - Co So 5, ! ! 52 53 )3 )0 4-348 Vcc = Pin 16 GND = Pin 8 54174LS (U.L.) HIGH/LOW 1.0/0.5 1.010.5 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) 283 FUNCTIONAL DESCRIPTION - The '283 adds two 4-bit binary words (A plus 8) plus the incoming carry Co. The binary sum appears on the 8um (80 - 83) and outgoing carry (C4) outputs. The binary weight of the various inputs and outputs is indicated by the subscript numbers, representing powers of two. 2° (Ao + 80 + Co) + 21 (A1 + 81) + 22 (A2 + 82) + 23 (A3 + 83) = 80 + 281 + 482 + 883 + 16C4 Where (+) = plus Interchanging inputs of equal weight does not affect the operation. Thus Co, Ao, 80 can be arbitrarily assigned to pins 5, 6 and 7. Due to the symmetry of the binary add function, the '283 can be used either with all inputs and outputs active HIGH (positive logic) or with all inputs and outputs active LOW (negative logic). Note that if Co is not used it must be tied LOW for active HIGH logic or tied HIGH for active LOW logic. Example: Co Ao A1 A2 A3 80 81 82 83 So 81 82 83 C4 Logic Levels L L H L H H L L H H H L L H Active HIGH Active LOW 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 0 1 0 1 1 0 Active HIGH: 0 + 10 + 9 = 3 + 16 Active LOW: 1 + 5 +6 = 12 +0 Due to pin limitations, the intermediate carries of the '283 are not brought out for use as inputs or outputs. However, other means can be used to effectively insert a carry into, or bring a carry out from, an intermediate stage. Figure a shows a way of making a 3-bit adder. Tying the operand inputs of the fourth adder (A3, 83) LOW makes 83 dependent only on, and equal to, the carry from the third adder. Using somewhat the same principle, Figure b shows a way of dividing the '283 into a 2-bit and a 1-bit adder. The third stage adder (A2, 82,82) is used merely as a means of getting a carry (C10) signal into the fourth stage (via A2 and 82) and bringing out the carry from the second stage on 82. Note that as long as A2 and 82 are the same, whether HIGH or LOW, they do not influence 82. 8imilarly, when A2 and 82 are the same the carry into the third stage does not influence the carry out of the third stage. Figure c shows a method of implementing a 5-input encoder, where the inputs are equally weighted. The outputs 80, 81 and 82 present a binary number equal to the number of inputs 11 -15 that are true. Figure d shows one method of implementing a5-input majority gate. When three or more of the inputs 11 -15 are true, the output Ms is true. ClO L Co Co Fig. a 3-Blt Adder Co Fig. b 2-Blt and 1-Bit Adders 4-349 283 13 Co Co M5 Fig. c 5-lnput Encoder Fig. d 5-lnput Majority Gate LOGIC DIAGRAM 4-350 283 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74 PARAMETER 54174LS Min Max Min Max UNITS CONDITIONS los Output Short Circuit Current at Sn XM XC -20 -18 -55 -55 -20 -20 -100 -100 rnA Vee = Max los Output Short Circuit Current at C4 XM XC -20 -18 -70 -70 -20 -20 -100 -100 rnA Vee = Max Power Supply Current XM XC Icc 99 110 XM, XC AC CHARACTERISTICS: Vee = 5.0 V, TA = 25°C (See Section 54/74 SYMBOL PARAMETER Max rnA 34 rnA Vee = Max, Inputs = Gnd (,LS283) Inputs = 4.5 V ('283) Vee - Max Inputs = 4.5 V (,LS283) 3 for waveforms and load configurations) 54/74LS CL = 15 pF CL RL = 400 0 Min 39 39 = 15 pF Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Co to Sn 21 21 24 24 ns Figs. 3-1, 3-20 tPLH tpHL Propagation Delay An or Bn to Sn 24 24 24 24 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay Co to C4 14 16 17 17 ns Figs. 3-1, 3-5 RL = 780 0 ('283) tPLH tPHL Propagation Delay An or Bn to C4 14 16 17 17 ns Figs. 3-1, 3-5 RL = 7800 ('283) 4-351 • 289 CONNECTION DIAGRAM PINOUTA 54S/74S289 54LS/74LS289 64-BIT RANDOM ACCESS MEMORY (With Open-Collector Outputs) DESCRIPTION - The '289 is a high speed 64-bit RAM organized as a 16word by 4-bit array. Address inputs are buffered to minimize loading, and addresses are fully decoded on-chip. Outputs are open-collector type and are in the off (HIGH) state whenever the Chip Select (CS) input is HIGH.The outputs are active only in the Read mode; output data is the complem of the stored data. LOGIC SYMBOL • • • • OPEN-COLLECTOR OUTPUTS FOR WIRED-AND A BUFFERED INPUTS MINIMIZE LOADING ADDRESS DECODING ON-CHIP DIODE CLAMPED INPUTS MINIMIZE RIN 2 ORDERING CODE: See Section 9 PIN PKGS OUT 15 COMMERCIAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vcc = +5.0 V ±10%, TA = -55°C to +125°C PKG 14 TYPE 13 Plastic DIP (P) A 74S289PC, 74LS289PC Ceramic DIP(D) A 74S289DC, 74LS289DC 54S289DM, 54LS289DM 68 Flatpak (F) A 74S289FC, 74LS289FC 54S289FM, 54LS289FM 4L 98 4 6 10 12 3 5 7 Ao A, A2 A3 9 11 Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-A3 CS WE D1-D4 61-04 DESCRIPTION Address Inputs Chip Select Input (Active LOW) Write Enable Input (Active LOW) Data Inputs Inverted Data Outputs 54/74S (U.L.) HIGH/LOW 54/74LS (U.L.) HIGH/LOW 0.63/0.16 0.63/0.16 0.63/0.16 0.63/0.16 OC'/10 0.5/0.013 0.5/0.013 0.5/0.013 0.5/0.013 OC'/10 (5.0) ·oc - Open Collector 4-352 289 FUNCTION TABLE INPUTS CS WE L L H L H X OPERATION CONDITION OF OUTPUTS Write Read Inhibit Off (HIGH) Complement of Stored Data Off (HIGH) H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial • LOGIC DIAGRAM r'~- __ -WE "-...Jc_.....+-CS Ao DECODER DRIVERS 16-WORD x 4-BIT MEMORY CELL ARRAY ADDRESS DECODER A3 4-353 289 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54174S PARAMETER SYMBOL Min XM XC Max 54174LS Min UNITS CONDITIONS Vee = Min IOL = 16 mA ('S289) IOL = 8.0 mA (54LS289) IOL = 16 mA (74LS289) Max 0.5 0.45 0.4 0.5 V VOL Output LOW Voltage IOH Output HIGH Current 40 100 20 100 p.A VOH = 2.4 V VOH = 5.5 V lee Power Supply Current 105 40 mA Vee = Max IV I ee - M' In AC CHARACTERISTICS OVER RECOMMENDED Vee AND TA RANGE (unless otherwise specified) 54/74S PARAMETER SYMBOL 54174LS CL = 30 pF CL = 15 pF RL = * RL = 2 kn Min Max Min UNITS CONDITIONS Max tPLH tPHL Access Time, HIGH or LOW, An to On XM XC 50 35 37** 37** ns tPHL Access Time CS to On XM XC 25 17 10** 10** ns tPLH Disable Time CS to On XM XC 20 17 tPHL Recovery Ti me WE to On XM XC 40 35 tPLH Disable Time WE to 'On XM XC 30 25 Figs. 3-2, 3-20 Figs. 3-2, 3-5 ns 30** 30** ns Figs. 3-2, 3-4 ns AC OPERATING REQUIREMENTS OVER RECOMMENDED Vee AND TA RANGE (unless otherwise specified) PARAMETER SYMBOL 54/74S Min Max 54174LS Min UNITS CONDITIONS Max ts (H) ts (U Setup Time, HIGH or LOW An to WE 0 0 10** 10** ns th (H) th (U Hold Time, HIGH or LOW An to WE 0 0 0** 0** ns ts (H) ts (U Setup Time, HIGH or LOW Dn to WE 20 20 25** 25** ns th (H) th (U Hold Time HIGH or LOW Dn to WE 0 0 0* 0* ns ts (U Setup Time LOW CS to WE 0 ns Fig. 3-14 th (U Hold Time LOW CS to WE 0 ns Fig. 3-13 tw (U WE Pulse Width LOW ns Fig. 3-14 °RL = 300 0 to Vee ""Typical Value and SOD 0 to 20 25** Gnd. 4-354 Fig. 3-21 Fig. 3-13 290 CONNECTION DIAGRAM PINOUT A 54/74290 54LS/74LS290 BCD DECADE COUNTER DESCRIPTION - The '290 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops connected as a divide-by-five. HIGH signals on the Master Reset (MAl inputs override the clocks and force all outputs to the LOW state. HIGH signals on the Master Set (MS) inputs override the clocks and MR and force the outputs to the BCD nine state. The '290 is the same circuit as the '90 except that it has corner power pins and is therefore recommended for new designs. For detail specifications, truth tables and functional description, please refer to the '90 data sheet. PKGS Plastic DIP(P) OUT A 1] Vee Ncii TIl MR MS[I TI]MR Qd:! I!lCP1 Q11I TIl CPo NC[I }JQo GNOII }]Q3 • LOGIC SYMBOL ~ MS ORDERING CODE: See Section 9 PIN - MSIT 10--0 cPo COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C 74290PC, 74LS290PC PKG TYPE 9A 11--0 CP1 MR ~ 12 13 Ceramic DIP (D) A 74290DC, 74LS290DC 54290DM, 54LS290DM 6A Flatpak (F) A 74290FC, 74LS290FC 54290FM, 54LS290FM 31 Qo Q1 Q2 Q3 9 5 4 8 Vee = Pin 14 GND = Pin 7 NC = Pin 2,6 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 54/74 (U.L.) HIGH/LOW DESCRIPTION 00 +2 Section Clock Input (Active Falling Edge) +5 Section Clock Input (Active Falling Edge) Asynchronous Master Reset Inputs (Active HIGH) Asynchronous Master Set (Set to 9) Inputs (Active HIGH) +2 Flip-flop Output" Q1-03 +5 Flip-flop Outputs CPo CP1 MR1, MA2 MS1, MS2 ·The Qo 2.0/2.0 1.0/1.5 3.0/3.0 2.0/2.0 1.0/1.0 0.5/0.25 1.0/1.0 0.5/0.25 20/10 10/5.0 (2.5) 10/5.0 (2.5) 20/10 output is guaranteed to drive the full rated fan-out plus the CP, input. 4-355 54174LS (U.L.) HIGH/LOW 293 CONNECTION DIAGRAM PINOUT A 54/74293 54LS/74LS293 3 ~ NCO:: MODULO-16 BINARY COUNTER DESCRIPTION - The '293 is a 4-stage ripple counter containing a high speed flip-flop acting as a divide-by-two and three flip-flops acting as a divide-by-eight. HIGH signals on the Master Reset (MAl inputs override the clocks and force all outputs to the LOW state. The '293 is the same circuit as the '93 except that it has corner power pins and is therefore recommended for new designs. For detail specifications, truth tables and functional description, please refer to the '93 data sheet. NclI TIl MR2 NC[I :g) MR1 odI 0, IT TIlCP1 NCIT }]Oo GNo[2 ]]03 ~CPo LOGIC SYMBOL 10 ---0 cPo 11 ---0 CP, MR ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to -I-70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP (P) A 74293PC, 74LS293PC Ceramic DIP (0) A 74293DC, 74LS293DC 54293DM, 54LS293DM 6A Flatpak (F) A 74293FC, 74LS293FC 54293FM, 54LS293FM 31 9A ~ 00 0, 02 03 9 5 4 8 Vcc = Pin 14 GND = Pin 7 NC = Pins 1, 2, 3. 6 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 54174 (U.L.) HIGH/LOW DESCRIPTION 00 +2 Section Clock Input (Active Falling Edge) +8 Section Clock Input (Active Falling Edge) Asynchronous Master Reset Inputs (Active HIGH) +2 Flip-flop Output' 01-03 +8 Flip-flop Outputs CPo CP1 MR1, MR2 'The 00 output is guaranteed to drive the full rated fan-out plus the CP1 input. 4-356 54174LS (U.L.) HIGH/LOW 2.0/2.0 1.0/1.5 2.0/2.0 1.0/1.0 1.0/1.0 0.5/0.25 20/10 10/5.0 (2.5) 10/5.0 (2.5) 20/10 Vee 295A CONNECTION DIAGRAM PINOUT A 54LS/74LS295A 4-BIT SHIFT REGISTER Os (With 3-State Outputs) 0:: :ill Vee ~ PorI P,[I 1iI0o 1iI0, TIl 02 P21I DESCRIPTION - The '295A is a 4-bit shift register with serial and parallel synchronous operating modes, and independent 3-state output buffers. The Parallel Enable input (PEl controls the shift-right or parallel load operation. All data transfers and shifting occur synchronous with the HIGH-to-LOW clock transition. p,[I :mo, PEII I1Cl' GNOIT IlOE The 3-state output buffers are controlled by an active HIGH Output Enable input (OEl. Disabling the output buffers does not affect the shifti ng or loadi ng of input data, but it does inhibit serial expansion. The device is fabricated with the Schottky barrier diode process for high speed. LOGIC SYMBOL • • • • FULLY SYNCHRONOUS SERIAL OR PARALLEL DATA TRANSFERS NEGATIVE EDGE-TRIGGERED CLOCK INPUT PARALLEL ENABLE MODE CONTROL INPUT 3-STATE BUSSABLE OUTPUT BUFFERS 1- PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG A 74LS295APC Ceramic DIP (0) A 74LS295ADC 54LS295ADM 6A A 74LS295AFC 54LS295AFM 31 (F) 8 - OE 00 TYPE Plastic DIP(P) Flatpak p, P2 P3 Ds 9-- -----------------------~~----------~~---------+~--------~ 03 00 4-3.58 295A DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL los Icc 54/74LS PARAMETER Output Short Circuit Curent Power Supply Current UNITS Min Max -20 -100 Outputs ON Outputs OFF 23 25 CONDITIONS mA Vee = Max mA Vee = Max. Pn = Gnd PE. Ds. OE = 4.5 V CP=L Vee = Max. PE. Ds - 4.5 V Pn• OE. CP = Gnd AC CHARACTERISTICS: Vee = +5.0 V. TA = +25° C (See Section 3 for waveforms and load configurations) 54/74LS SYMBOL PARAMETER CL = 15 pF Min f max Maximum Shift Frequency tPLH tPHL Propagation Delay CP to On tPZH tPZL tPHZ tPLz UNITS CONDITIONS Max 30 MHz Figs. 3-1. 3-9 30 26 ns Figs. 3-1. 3-9 Output Enable Time 18 20 ns Figs. 3-3. 3-11.3-12 RL = 2 kO. Output Disable Time 24 20 ns Figs. 3-3. 3-11.3-12 RL = 2 kO. CL = 5 pF AC OPERATING REQUIREMENTS: Vee = +5.0 V. TA = +25°C SYMBOL 54/74LS PARAMETER Min UNITS ts (H) ts (U Setup Time HIGH or LOW Ds. Pn to CP 20 20 ns th (H) th (U Hold Time HIGH or LOW Ds. Pn to CP 10 10 ns ts (H) ts(U Setup Time HIGH or LOW PE to CP 20 20 ns th (H) th (U Hold Time HIGH or LOW PE to CP 0 0 ns tw (U CP Pulse Width LOW 20 ns 4-359 CONDITIONS Max Fig. 3-7 Fig. 3-7 Fig. 3-9 298 CONNECTION DIAGRAM PINOUT A 54/74298 54LS/74LS298 - hbIT QUAD 2-PORT REGISTER EJvcc 1iI a. haii (Multiplexer with Storage) IDa [1 Elab 8: lilac hcIT TIl ad hd[! TIlC"P lOb 10d IT ~s GNO[! DESCRIPTION - The '298 is a quad 2-port register. it is the logical equivalent of a quad 2-input multiplexer followed by a quad 4-bit edge-triggered register. A Common Select input selects between two 4-bit input ports (data sources!. The selected data is transferred to the output register synchronous with the HIGH-to-LOW transition of the Clock input. LOGIC SYMBOL • SELECT FROM TWO DATA SOURCES • FULLY EDGE·TRIGGERED OPERATION • TYPICAL POWER DISSIPATION OF 65 mW ('LS298) iiiliifi 10. h. lOb hb loc hc 10d hd ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C s 11--0 cp TYPE A 74298PC, 74LS298PC Ceramic DIP (0) A 74298DC, 74LS298DC 54298DM, 54LS298DM 68 A 74298FC, 74LS298FC 54298FM, 54LS298FM 4L (F) 10- PKG Plastic DIP(P) Flatpak }:lloc ac ad a. ab )5 L )3 1~ 98 Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN·OUT: See Section 3 for U.L. definitions PIN NAMES S CP loa-Iod ha-hd Oa-Qd DESCRIPTION 54174 (U.L.) HIGH/LOW 54174LS (U.L.) HIGH/LOW Common Select Input Clock Pulse Input (Active Falling Edge) Source 0 Data Inputs Source 1 Data Inputs Flip-flop Outputs 1.0/1.0 1.0/1.0 1.0/1.0 1.011.0 20/10 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) 4-360 298 FUNCTIONAL DESCRIPTION - This device is a high speed quad 2-port register. It selects four bits of data from two sources (ports) under the control of a Common Select input (Sl. The selected data is transferred tothe 4-bit output register synchronous with the HIGH-to-LOW transition of the Clock input (CPl. The 4-bit output register is fully edge-triggered. The Data inputs (lnx) and Select input (S) need be stable only one setup time prior to the HIGH-to-LOW transition of the clock for predicatable operation. TRUTH TABLE INPUTS OUTPUT S lox I1x Ox I I h h I h X X X X I h L H L H I = LOW Voltage Level one setup tIme prtor to the HIGH-to-LOW clock transition. h = HIGH Voltage Level one setup time priortothe HIGH-to-LOW clock transition. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM 4-361 298 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74 PARAMETER Min Icc = +5.0 V, PARAMETER = 15 pF = 400 n CL RL Min tPLH tpHL SYMBOL Max Propagation Delay CP to an AC OPERATING REQUIREMENTS: Vee mA IOn, I1n, S = Gnd CP = """L, Vee = Max = +5.0 V, TA = 15 pF CL Min UNITS CONDITIONS Max 25 25 ns Figs. 3-1, 3-9 = +25°C 54174 Min load configurations) 54174LS 27 32 PARAMETER CONDITIONS = +25°C (See Section 3 for waveforms and 54/74 SYMBOL 21 65 TA UNITS Max Power Supply Current AC CHARACTERISTICS: Vee 54/74LS Max 54/74LS Min UNITS ts (H) ts(U Setup Time HIGH or LOW S to CP 25 25 25 25 ns th (H) th (U Hold Time HIGH or LOW S to CP 0 0 0 0 ns ts (H) ts (U Setup Time HIGH or LOW lox or 11x to CP 15 15 15 15 ns lh (H) th (U Hold Time HIGH or LOW lox or I1x to CP 5.0 5.0 5.0 5.0 ns tw (H) tw (U CP Pulse Width HIGH or LOW 20 20 20 20 ns 4-362 CONDITIONS Max Fig. 3-7 Fig. 3-9 299 CONNECTION DIAGRAM PINOUT A 54LS/74LS299 8-INPUT UNIVERSAL SHIFT/STORAGE REGISTER (With Common Parallel I/O Pins) DESCRIPTION - The '299 is an 8-bit universal shift/storage register with 3state outputs. Four modes of operation are possible: hold (store), shift left, shift right and load data. The parallel load inputs and flip-flop outputs are multiplexed to reduce the total number of package pins. Separate outputs are provided for flip-flops 00 and 07 to allow easy cascading. A separate active LOW Master Reset is used to reset the register. • • COMMON I/O FOR REDUCED PIN COUNT • FOUR OPERATION MODES: SHIFT LEFT, SHIFT RIGHT, LOAD AND STORE • SEPARATE SHIFT RIGHT SERIAL INPUT AND SHIFT LEFT SERI~L INPUT FOR EASY C A S C A D I N G ' \ " ' } , • 3-STATE OUTPUTS FOR BUS ORIENTED APPLICATION ORDERING CODE: See Section 9 PKGS PIN PKG OUT TYPE Plastic DIP(P) A 74LS299PC Ceramic DIP (0) A 74LS299DC 54LS299DM 4E Flatpak (F) A 74LS299FC 54LS299FM 4F 9Z INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES CP Dso DS7 So, S1 MR OE1, OE2 1/00-1/07 00,07 Clock Pulse Input (Active Rising Edge) Serial Data Input for Right Shift Serial Data Input for Left Shift Mode Select Inputs Asynchronous Master Reset Input (Active LOW) 3-State Output Enable Inputs (Active LOW> Parallel Data Inputs or 3-State Parallel Outputs Serial Outputs 4-363 54/74LS (U.L.) HIGH/LOW 0.5/0.25 0.5/0.25 0.5/0.25 1.0/0.50 0.5/0.25 0.5/0.25 0.5/0.25 65/15 (25)/(7.5) 10/5.0 (2.5) 299 LOGIC SYMBOL 18 11 19 17 12 2 3 Vcc = Pin 20 GND = Pin 10 7 9 U 6 ~ 5 ~ 4 a FUNCTIONAL DESCRIPTION - The '299 contains eight edge-triggered O-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by the So and S1, as shown in the Mode Select Table. All flip-flop outputs are brought out through 3-state buffers to separate I/O pins that also serve as data inputs in the parallel load mode. 00 and 07 are also brought out on other pins for expansion in serial shifting of longer words. A LOW signal on MR overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed. A HIGH signal on either OEl or 0El! disables the 3-state buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-state buffers are also disabled by HIGH signals on both So and Sl in preparation for a parallel load operation. MODE SELECT TABLE INPUTS MR Sl So L H H H H X H L H L X H H L L RESPONSE CP X ..r ...r ...r X Asynchronous Reset; 00-07 = LOW Parallel Load; I/On-+On Shift Right; 050-+00, 00-+01, et<; . Shift Left; 057-.a7, 07-.a6, etc . Hold LOGIC DIAGRAM 4-364 H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 299 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174LS PARAMETER Min lee UNITS CONDITIONS mA Vee = Max, OE = 4.5 V Max Power Supply Current 65 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174LS SYMBOL PARAMETER CL = 15 pF MIN UNITS CONDITIONS Max f max Maximum Input Frequency tPLH tPHL Propagation Delay CP to 00 or Q7 23 25 ns tPLH tPHL Propagation Delay CP to liOn 25 29 ns tpHL Propagation Delay MR to Qo or Q7 30 ns tpHL Propagation Delay MR to liOn 33 ns tPZH tpZL Output Enable Time 18 23 ns Figs. 3-3. 3-11. 3-12 RL=2kO tPHZ tPLZ Output Disable Time 15 15 ns Figs. 3-3. 3-11. 3-12 RL = 2 kO. CL = 5 pF 35 MHz Figs. 3-1, 3-8 Figs. 3-1. 3-8 Figs. 3-1. 3-16 AC OPERATING REQUIREMENTS: Vee = +5.0 V. TA = +25°C SYMBOL 54174LS PARAMETER Min UNITS CONDITIONS Max Is (H) ts (U Setup Time HIGH or LOW So or S1 to CP 24 24 ns th (Hl th (U Hold Time HIGH or LOW So or S1 to CP 0 0 ns ts (H) ts (U Setup Time HIGH or LOW liOn. Dso. DS7 to CP 10 10 ns th (H) th (U Hold Time HIGH or LOW liOn. Dso. DS7 to CP 0 0 ns tw (H) tw (U CP Pulse Width HIGH or LOW 15 15 ns Fig. 3-8 tw (U MR Pulse Width LOW 15 ns Fig. 3-16 tree Recovery Ti me MR to CP 10 ns Fig. 3-16 4-365 Fig. 3-6 322 CONNECTION DIAGRAM PINOUT A 54LS/74LS322 8-BIT SERIAL/PARALLEL REGISTER (With Sign Extend) DESCRIPTION - The '322 is an 8-bit shift register with provision for either serial or parallel loading and with 3-state parallel outputs plusa bi-state serial output. Parallel data inputs and parallel outputs are multiplexed to minimize pin count. State changes are initiated by the rising edge of the clock. Four synchronous modes of operation are possible: hold (store), shift right with serial entry, shift right with sign extend and parallel load. An asynchronous Master Reset (MR) input overrides clocked operation and clears the register. The '322 is specifically designed for operation with the '384 Multiplier and provides the sign extend function required for the '384. ReO:: PIN PKGS OUT COMMERCIAL GRADE MILITARY GR~.D€: Vee = +5.0 V ±5%, TA = O°C to +70°C Vee • ~l§'i;. TA = -55 0 25°C Plastic OIP(P) A 74LS322PC Ceramic OIP(Q) A 74LS3220C Flatpak (F) A 74LS322FC r;',"" it ", PKG t12Js ~SE IT :mOl 1/0, I/os!! ~1/06 1/03!! :m1/04 IT ~1/02 0El! TIl 1/00 MR[! Elao GNO§ TI]cp TYPE ··ii . }::"');" 9Z S3220M 4E 54LS322FM 4F i, INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES RE sip SE S 00,01 CP MR OE 00 1/00-1/07 DESCRIPTION Register Enable Input (Active LOW) Serial (HIGH) or Parallel (LOW) Mode Control Input Sign Extend Input (Active LOW) Serial Data Select Input Serial Data Inputs Clock Pulse Input (Active Rising Edge) Asynchronous Master Reset Input (Active LOW) 3-State Output Enable Input (Active LOW) Bi-State Serial Output Multiplexed Parallel Inputs or 3-State Parallel Outputs 4-366 ~vcc Do 11: 1/0, ORDERING CODE: See Section 9 - SIP I} 54174LS (U.L.) HIGH/LOW 0.5/0.23 0.5/0.23 1.5/0.68 1.0/0.45 0.5/0.23 0.5/0.23 0.5/0.23 0.5/0.23 11/5.0 (2.5) 0.5/0.23 65/5.0 (25)/(2.5) 322 FUNCTIONAL DESCRIPTION - The '322 contains eight O-type edge triggered flip-flops and the interstage gating required to perform right shift and the intrastage gating necessary for hold and synchronous parallel load operations. A LOW signal on RE enables shifting or parallel loading, while a HIGH signal enables the hold mode. A HIGH signal on SIP enables shift right, while a LOW signal disables the 3-state output buffers and enables parallel loading. In the shift right mode a HIGH signal on SEenables serial entry from either Do or 01, as determined by the S input. A LOW signal on SE enables shift right but 07 reloads its contents, thus performing the sign extend function required forthe '384 Twos Complement Multiplier. A HIGH signal on OE disablesthe3state output buffers, regardless of the other control inputs. In this condition the shifting and loading operations can still be performed. LOGIC SYMBOL 19 3 17 S Do 0, RE 2 sip 18 SE 11 cp .....~..;.,~..,;.;....;,;..;....T'""""T'.;....~+~;.;...T-...... 9 4 16 5 15 6 14 7 13 vcc = Pin 20 GND = Pin 10 12 LOGIC DIAGRAM RE·~~~----------~------1-------~------~------~--------~------~------' SIP S'---r-1I+1"- Do-----r- MR~~----_+~-----+~----~+-~--+-~+---~_r~--~_+_r---+~_+--~--~--~ OE---------+~=t~-r_i----r-t-r---~~t---II_ri_--~_t_r--~~_t--~--ri--__, 1/07 1/0, 1/0, 1/0. 4-367 1/03 1/0, 1/00 322 MODE TABLE INPUTS MODE OUTPUTS MR RE sip SE S OE" CP 1/07 II0s 1/05 1/04 I/0a 1/02 1/01 1/00 Co Clear L L X X X X X X X X L H X X L Z L Z L Z L Z L Z L Z L Z L Z L L Parallel Load H L L X X X S 17 Is 15 14 la ,12 h 10 10 Shift Right H H L L H H H H L H L L S S Do Dl 07 07 Os Os 05 05 04 04 Oa Oa 02 02 01 01 01 01 Sign Extend H L H L X L r 07 07 Os 05 04 Oa 02 01 01 Hold H H X X X L S NC NC NC NC NC NC NC NC NC 'When the OE input is HIGH. all lIOn terminals are at the high-impedance state; sequential operation or clearing of the register is not affected. 1. 17 -10 = The level of the steady-state input at the respective 1/0 terminal is loaded into the flip-flop while the flip-flop outputs (except 00) are isolated from the 110 terminal. 2. Do. 0, = The level of the steady-state inputs to the serial multiplexer input. 3. 07-00 = The level of the respective On flip-flop prior to the last Clock LOW-to-HIGH transition. H = HIGH Voltage Level L = LOW Voltage Level NC = No Change Z = High-Impedance Output State DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 54/74LS PARAMETER SYMBOL Min Icc UNITS CONDITIONS Max Power Supply Current 60 mA Vce = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174LS PARAMETER SYMBOL CL = 15 pF Min fmax Maximum Clock Frequency UNITS CONDITIONS Max 35 MHz Figs. 3-1, 3~,8 tPLH tPHL Propagation Delay CP to liOn 23 25 tPLH tPHL Propagation Delay CP to Co 29 tPHL Propagation Delay MR to liOn 33 ns tPHL Propagation Delay MR to Co 30 ns tPZH tPZL Output Enable Time OE to liOn 18 23 ns Figs. 3-3, 3-11, 3-12 RL=2kO tpHZ tPLZ DE to Output Disable Time liOn 15 15 ns Figs, 3-3, 3-11, 3-12 RL = 2 kO, CL = 5 pF tpZH tPZL 0l!!put Enable Time SIP to liOn 25 30 ns Figs. 3-3, 3-11, 3-12 RL=2kO tPHZ tPLZ Output Disable Time SIP to liOn 23 23 ns Figs. 3-3, 3-11, 3-12 RL = 2 kO, CL = 5 pF 25 4-368 ns ns Figs. 3-1, 3-16 322 AC OPERATING REQUIREMENTS: Vee = +5.0 V, = +25 TA Min ts (H) ts(Ll Setup Time HIGH or LOW RE to CP th (H) th (Ll C 54174LS PARAMETER SYMBOL 0 UNITS 24 24 ns Hold Time HIGH or LOW RE to CP 0 0 ns ts (H) ts(Ll Setup Time HIGH or LOW Do, 01 or liOn to CP 10 10 ns th (H) th (Ll Hold Time HIGH or LOW Do, 01 or liOn to CP 0 0 ns ts (H) ts (Ll Setup Time HIGH or LOW SE to CP 15 15 ns th (H) th(Ll Hold Time HIGH or LOW SE to CP 0 0 ns ts (H) ts (Ll sip to Setup Time HIGH or LOW CP 24 24 ns ts (Ll Setup Time HIGH or LOW S to CP 15 15 ns th (H) th (Ll Hold Time HIGH or LOW S or sip to CP 0 0 ns tw (H) CP Pulse Width HIGH 15 ns tw (Ll M R Pulse Width LOW 15 ns tree Recovery Time MR to CP 15 ns ts (H) 4-369 CONDITIONS Max Fig. 3-6 I Fig. 3-8 Fig. 3-16 323 CONNECTION DIAGRAM PINOUT A 54LS/74LS323 a-BIT UNIVERSAL SHIFT/STORAGE REGISTER (With Synchronous Reset and Common I/O Pins) DESCRIPTION - The '323 is an 8-bit universal shift/storage register with 3state outputs. Its function is similar to the '299 with the exception of Synchronous Reset. Parallel load inputs and flip-flop outputs are multiplexed to minimize pin count. Separate inputs and outputs are provided for flip-flops Co and Q7 to allow easy cascading. Four operation modes are possible: hold (store), shift left, shift right, and parallel load. All modes are activated on the LOW-to-HIGH transition of the Clock. • COMMON I/O FOR REDUCED PIN COUNT • FOUR OPERATION MODES: SHIFT LEFT, SHIFT RIGHT, PARALLEL LOAD AND STORE ..: • SEPARATE CONTINUOUS INPUTS AND OUTPUTS FROM a.G~Nb Q7 ALLOW EASY CASCADING ....•.•........... • FULLY SYNCHRONOUS RESET ..: ... • 3-STATE OUTPUTS FOR BUS ORIENTED APPLI~A1:IONS ORDERING CODE: See Section 9 PKGS COMMERCIAL GIit'Aibt'·· MILITARY GRADE PIN r-----------~~~--------------~ PKG Vee = +5.0 V ±10%, OUT Vee = +5.0 V ±5%, TYPE TA = O°C to +70°C TA = -55°C to +125°C Plastic DIP(P) A 74LS323PC Ceramic DIP (D) A 74LS323DC 54LS323DM 4E Flapak (F) A 74LS323FC 54LS323FM 4F 9Z INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES CP Dso DS7 So, S, SR OE" OE2 1/00-1/07 Qo, Q7 Clock Pulse Input (Active RiSing Edge) Serial Data Input for Right Shift Serial Data Input for Left Shift Mode Select Inputs Synchronous Reset Input (Active LOW) 3-State Output Enable Inputs (Active LOW) Parallel Data Inputs or 3-State Parallel Outputs Serial Outputs 4-370 54174LS (U.L.) HIGHILOW 0.5/0.25 0.5/0.25 0.5/0.25 1.0/0.50 0.5/0.25 0.5/0.25 1.0/0.50 65/15 (25)/(7.5) 10/5.0 (2.5) 323 FUNCTIONAL DESCRIPTION - The '323 contains eight edge-triggered O-type flip-flops and the interstage logic necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operation is determined by So and Sl as shown in the Mode SelectTable. All flip-flop outputs are brought out through 3-state buffers to separate 1/0 pins that also serve as data inputs in the parallel load mode. 00 and 07 are also brought out on other pins for expansion in serial shifting of longer words. A LOWsignal on SR overrides the Select inputs and allows the flip-flops tobe reset by the next rising edge of CPo All other state changes are also initiated by the LOW-to-HIGH CP transition. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative tothe rising edge of CP, are observed. A HIGH signal on either OEl or OE2 disables the 3-state buffers and puts the 1/0 pins in the high impedance state. In this condition the shift, load, hold and reset operations can still occur. The 3-state buffers are also disabled by HIGH signals on both So and Sl in preparation for a parallel load operation. MODE SELECT TABLE INPUTS SR Sl So L H H H H X H L H H X H H L H RESPONSE CP ..J S S S X Synchronous Reset; 00 - 07 = LOW Parallel Load; I/On - On Shift Right; 050 -00, 00 - 01, etc. Shift Left; 057-07, 07-Qs, etc. Hold H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM So OE1======?cr~====--~====r-~====r-~====r-~====t-~====t-~====~ OE2 1/00 1/02 1/03 4-371 1/05 1/06 ~--~ 1/07 I 323 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74LS PARAMETER Min lee UNITS CONDITIONS Max 60 Power Supply Current rnA Vee = Max, Outputs Disabled AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54/74LS - ;. PARAMETER Cl = 15 pF Min UNITS CONDITIONS Max 35 MHz Figs. 3-1, 3-8 fmax Maximum Input Frequency tPLH tPHL Propagation Delay CP to 00 or 07 23 25 ns tPLH tPHL Propagation Delay CP to liOn 25 29 ns tPZH tPZL Output Enable Time 18 23 ns Figs. 3-3, 3-11, 3-12 RL = 2 kO tPHZ tPLZ Output Disable Time 15 15 ns Figs. 3-3, 3-11, 3-12 RL = 2 kO, CL = 5 pF Figs. 3-1, 3-8 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL 54/74LS PARAMETER Min UNITS ts (H) ts (U Setup Time HIGH or LOW So or S1 to CP th (H) th (U Hold Time HIGH or LOW So or S1 to CP 0 ts (H) ts (U Setup Time HIGFr'il6t LOW liOn, Dso, DS7 to CP 10 10 ns th (H) th (U Hold Time HIGH or LOW liOn, Dso, DS7 to CP 0 0 ns ts (H) ts(U Setup Time HIGH or LOW SR to CP 15 15 ns th (H) th (U Hold Time HIGH or LOW SR to CP 0 tw (H) tw(U CP Pulse Width HIGH or LOW 24 24 0 0 15 15 :, ",I ...., ". -., 4-372 CONDITIONS Max ns Fig. 3-6 ns Fig. 3-6 Fig. 3-6 ns ns Fig. 3-8 347 CONNECTION DIAGRAM PINOUT A 54LS/74LS347 BCD TO 7-SEGMENT DECODER/DRIVER - Ao[1 ~vcc A,[l ~, Li[! ~li ~a ~ii ~c ~ii BI/RBO!:! RBi [}: A2[! A31I ~e GND[! LOGIC SYMBOL DESCRIPTION - The '347 is the same as the '47 except that the Output OFF Voltage, VOH, is specified as 7.0 V rather than 15 V, with the same IOH limit of 250 p,A. For all other information please refer to the '47 data sheet. 7 1 2 6 11 I A,I A2I A3I RBI LT Ao ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG a bed e I 13 12 11 10 9 15 14 4 A 74LS347PC Ceramic DIP (0) A 74LS347DC 54LS347DM 7B A 74LS347FC 54LS347FM 4L 9B Vee = Pin 16 GND = Pin 8 :,~;:,.' (F) BII RBO YYYYYYy y TYPE Plastic DIP (P) Flatpak 9 " INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao~A3 RBT LT BIIRBO 8-9 DESCRIPTION BCD Inputs Ripple Blanking Input (Active LOW) Lamp Test Input (Active LOW) Blanking Input (Active LOW) or Ripple Blanking Output (Active LOW) 54/74LS HIGH/LOW 0.5/0.25 0.5/0.25 0.5/0.25 -10.75 1.25/2.0 (1.0) OC*/15 (7.5) Segment Outputs (Active LOW) 'OC-Open Collector 4-373 352 CONNECTION DIAGRAM PINOUT A 54LS/74LS352 DUAL 4-INPUT MULTIPLEXER DESCRIPTION - The '352 is a very high speed dual 4-input multiplexer with Common Select inputs and individual Enable inputs for each section. It can select two bits of data from four sources. The two buffered outputs present data in the inverted (complementary) form. The '352 is the functional equivalent of the '153 except with inverted outputs. - 12,[I ~vcc ~Eb ~so ~13b I"II t1lll2b 10, [I ~l1b z,[I ~IOb GNO[I ~Zb E,Ci: s,[I 13,II • • • • INVERTED VERSION OF THE '153 SEPARATE ENABLES FOR EACH MULTIPLEXER INPUT CLAMP DIODE LIMIT HIGH SPEED TERMINATION EFFECTS FULLY TTL AND CMOS COMPATIBLE ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74LS352PC Ceramic DIP (0) A 74LS352DC 54LS352DM 68 Flatpak (F) A 74LS352FC 54LS352FM 4L 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES lOa -13a lOb -l3b So, Sl Ea Et, la, Zb 54174LS (U.L.) HIGH/LOW DESCRIPTION Side A Data Inputs Side 8 Data Inputs Common Select Inputs Side A Enable Input (Active LOW) Side 8 Enable Input (Active LOW) Multiplexer Outputs (inverted) 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) 1iii i r1f 11 T1 LOGIC SYMBOL 14- So 2- S, Ea lOa ha 12a l3a lOb hb 12b I3b Eb Za Zb I I 9 7 4-374 Vee = Pin 16 GND = Pin 8 352 FUNCTIONAL DESCRIPTION - The '352 is a dual 4-input multiplexer. It selects two bits of data from up to four sources under the control of the common Select inputs (So, S,). The two 4-input multiplexer circuits have individual active LOW Enables (Ea, Eb) which can be used to strobe the outputs independently. When the Enables (Ea, ~) are HIGH, the corresponding outputs (2a, 2b) are forced HIGH. The logic equations for the outputs are shown below. Za = fa • (loa • S, • So + ha • S, • So + 12a • S, • So + 13a • S, • So) Zb = Eb • (lOb • S, • So + hb • S, • So + 12b • S, • So + I3b • S, • SO) The '352 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application isa function generator. The '352 can generate two functions of three variables. This is useful for implementing highly irregular random logic. • TRUTH TABLE SELECT INPUTS INPUTS (a or b) OUTPUT So S, E 10 I, 12 13 Z X L L H X L L L H L L L X L H X X X X L X X X X X X X X H H L H H L L H H L H H H H L L L L L X X X X X H X X X X X L H X X X X X L H L H L H L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 4-375 352 LOGIC DIAGRAM Ea l1a lOa 12a S, ba So lab I2b I1b bb Eb b ~ - ~ 1 I II r I ll) ( '7 I ~ I T Zb Za DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74LS PARAMETER Min lee UNITS CONDITIONS Max Power Supply Current 10 rnA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C 54174LS SYMBOL PARAMETER CL = 15 pF Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Sn to Zn 22 38 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay En to Zn 15 20 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay In to Zn 12 12 ns Figs. 3-1, 3-4 4-376 353 CONNECTION DIAGRAM PINOUT A 54LS/74LS353 DUAL 4-INPUT MULTIPLEXER (With 3-State Outputs) DESCRIPTION - The '353 is a dual 4-input multiplexer with 3-state outputs. It can select two bits of data from four sources using common select inputs. The outputs may be individually switched to a high impedance state with a HIGH on the respective Output (OE) inputs, allowing the outputs to interface directly with bus oriented systems. It is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all Fairchild TTL families. • INVERTED VERSION OF 'LS253 • SCHOTTKY PROCESS FOR HIGH SPEED • MULTIFUNCTION CAPABILITY ~ CEa!! \ l3a II i2a :EJso [I TIl l3b ha [I IDa [I ~12b Za[I 1:!2110b GNOII ~Zb ~hb ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74LS353PC Ceramic DIP(o) A 74LS353DC 54LS353DM 68 Flatpak (F) A 74LS353FC 54LS353FM 4L 98 INPUT LOADIIIIG/FAN-OUT: See Section 3 for U.L. definitions lOa -ba lOb -13b So, S1 OEa OEb la, Zb 54n4LS (U.L.) HIGH/LOW DESCRIPTION PIN NAMES 0.5/0.25 0.5./0.25 0.5/0.25 0.5/0.25 0.5/0.25 65/15 (25)/(7.5) Side A Data Inputs Side 8 Data Inputs Common Select Inputs Side A Output Enable Input (Active LOW) Side 8 Output Enable Input (Active LOW) 3-State Outputs (inverted) 1iii i Y T! LOGIC SYMBOL 1f1j OEa IDa ha 12a 13a lOb hb 12b lab OEb 14- So 2- S1 Za Zb ! I 9 4-377 ~vcc :ill OEb s,[t VCC = Pin 16 GND = Pin 8 ,,"; 353 FUNCTIONAL DESCRIPTION - The '353 contains two identical 4-input multiplexers with 3-state outputs. They select two bits from four sources selected by common Select inputs (So, S1), The 4-input multiplexers have individual Output Enable (OEa, OEb) inputs which when HIGH, force the outputs to a high impedance (high Z) state. The logic equations for the outputs are shown below: Za = OEa • (loa • S1 • So Zb = OEb • (lab • S1 • So + l1a + I1b • S1 • So • S1 • So + 12a • + 12b • S1 • So S1 • So + l3a • + I3b • S1 • So) S1 • So) Iftheoutputs of 3-state devices are tied together, all but one device must be in the high impedance state to avoid high currents that would exceed the maximum ratings. Designers should ensure that Output Enable signals to 3-state devices whose outputs are tied together are designed so that there is no overlap. TRUTH TABLE SELECT DATA INPUTS INPUTS OUTPUT OUTPUT ENABLE So S1 10 11 12 13 OE Z X L L X L L L X L H X X X X L X X X X X X X X H L L L (Z) H L L L H H X X X X X H X X X X X L H X X X X X L H L L L L L L H L H H H H H H L H H L Address inputs So and S, are common to both sections. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial (Z) = High Impedance LOGIC DIAGRAM OEb ha ba tab Za 4-378 lOa 353 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74LS PARAMETER Min Outputs HIGH lee Power Supply Current UNITS CONDITIONS Max 12 mA Outputs OFF Vee = Max In. Sn. OEn = Gnd Vee = Max. OEn = 4.5 V In. Sn = Gnd 14 AC CHARACTERISTICS: Vee = +5.0 V. TA = +25 0 C (See Section 3 for waveforms and load configurations) 54/74LS SYMBOL PARAMETER UNITS CL =45 pF Min CONDITIONS Max tPLH tPHL Propagation Delay Sn to In 24 32 ns Figs. 3-1. 3-20 tPLH tPHL Propagation Delay In to In 15 15 ns Figs. 3-1. 3-4 tPZH tPZL Output Enable Time 18 18 ns Figs. 3-3. 3-11. 3-12 RL = 667!l tPHZ tPLZ Output Disable Time 18 18 ns Figs. 3-3. 3-11. 3-12 RL = 667!l. CL = 5 pF 4-379 • 365A CONNECTION DIAGRAM PINOUT A 54LS/74LS365A - ~vcc ~E2 ::::J--1fL II ~ Ed"1 HEX 3-STATE BUFFER ~ [I (With Common 2-lnput NOR Enable) J--4::: ~ rm [f J--~ ~ II 11 4::: ~~ II GNO[I ORDERING CODE: See Section 9 PIN PKGS Plastic DIP(P) OUT A Ceramic DIP(D) A Flatpak (F) A COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C TYPE 74LS365APC 74LS365ADC 74LS365AFC 98 54LS365ADM 68 54LS365AFM 4L Inputs Outputs INPUTS OUTPUTS E1 E2 D L L H L L L H L H X X H X X Z Z H ~ HIGH Voltage Level L ~ LOW Voltage Level X ~ Immaterial Z ~ High Impedance INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS TRUTH TABLE PKG 54/74LS (U.L.) HIGH/LOW 0.5/0.25 25/15 (7.5) DC AND AC CHARACTERISTICS: See Section 3' SYMBOL 54174LS PARAMETER Min UNITS CONDITIONS Max lee Power Supply Current 24 mA tPLH tPHL Propagation Delay Data to Output 16 22 ns Figs. 3-1, 3-4 CL = 50 pF tPZH tPZL Output Enable Time 24 30 ns Figs. 3-3, 3-11, 3-12 RL = 667 n, CL = 50 pF tPLZ tPHZ Output Disable Time 20 25 ns Figs. 3-3,3-11,3-12 RL = 667 n, CL = 5 pF ·De limits apply over operating temperature range; Ae limits apply at TA ~ +25°e and Vee 4-380 ~ +5.0 V. Vee = Max, VIN =OV, VE"=4.5 V 366A CONNECTION DIAGRAM PINOUT A 54LS/74LS366A - :ill [! ~f5l- TIl. IT El[i" HEX 3-STATE INVERTER BUFFER Vee TIjE2 (With Common 2-lnput NOR Enable) ~r--t::: :illTIl :ill ~r-c IT [I [I [! ~ ~ :II GNO[I ORDERING CODE: See Section 9 PIN PKGS OUT Plastic DIP(P) A COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C TRUTH TABLE PKG TYPE INPUTS 98 74LS366APC Ceramic DIP (D) A 74LS366ADC 54LS366ADM 68 Flatpak (F) A 74LS366AFC 54LS366AFM 4L OUTPUT E1 E2 D L L H L L L H H L X X H X X Z Z INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions H = HIGH Voltage level l = lOW Voltage level X = Immaterial Z = High Impedance 54174LS (U.L.) HIGH/LOW PINS 0.5/0.25 25/15 (7.5) Inputs Outputs DC AND AC CHARACTERISTICS: See Section 3' SYMBOL 54174LS PARAMETER Min UNITS CONDITIONS Max Power Supply Current 21 mA Vee = Max, VIN =0 V, VE =4.5 V tPLH tPHL Propagation Delay 12 22 ns Figs. 3-1, 3-5 CL = 50 pF tPZH tPZL Output Enable Time 24 30 ns Figs. 3-3, 3-11, 3-12 RL = 667 n, CL = 50 pF tPLZ tPHZ Output Disable Time 20 25 ns Figs. 3-3, 3-11, 3-12 RL = 667 n, CL = 5 pF lee 'De limits apply over operating temperature range; AC limits apply at TA = +25°C and 4-381 Vee = +5.0 V. 367A CONNECTION DIAGRAM PINOUT A 54LS/74LS367 A ::ill Vee Err - HEX 3-STATE BUFFER II y~;-- ~E 11: :ill [I :ill (With Separate 2-Bit and 4-Bit Sections) [I [! yK= TIl :::::y-LL TIl -L TIl~ IT GNO\I ORDERING CODE: See Section 9 PIN PKGS Plastic DIP(P) OUT A COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10% TA = -55°C to +125°C 74LS367APC TYPE 98 Ceramic DIP (D) A 74LS367ADC 54LS367ADM 68 Flatpak (F) A 74LS367AFC 54LS367AFM 4L Inputs Outputs INPUTS E D L L H L H X OUTPUT L H Z H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS TRUTH TABLE PKG 54174LS (U.L.) HIGH/LOW 0.5/0.25 25/15 (7.5) DC AND AC CHARACTERISTICS: See Section 3" SYMBOL 54174LS PARAMETER Min UNITS CONDITIONS Max Power Supply Current 24 mA Vee = Max, VIN =OV, Ve =4.5 V tPLH tPHL Propagation Delay 16 22 ns Figs. 3-1, 3-4 CL = 50 pF tPZH tPZL Output Enable Time 24 30 ns Figs. 3-3, 3-11, 3-12 RL = 667 n, CL = 50 pF tPLZ tPHZ Output Disable Time 20 25 ns Fi gs. 3-3, 3-11, 3-12 RL = 667 n, CL = 5 pF lee 'De limits apply over operating temperature range; Ae limits apply at TA = +25'e and Vee = +5.0 V. 4-382 368A CONNECTION DIAGRAM PINOUT A 54LS/74LS368A - e['1 ~vcc II y~ ~r-- t1§Je HEX 3-INPUT INVERTER BUFFER (With Separate 2-Bit and 4-Bit Sections) ~ [I yrL ElTIl II [I [! y'-L :TIl -----L !ill~ II GNOII ORDERING CODE: See Section 9 PIN PKGS Plastic DIP(P) Ceramic DIP(D) Flatpak (F) OUT A COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C 74LS368APC TYPE 98 A 74LS368ADC 54LS368ADM 68 A 74LS368AFC 54LS368AFM 4L Inputs Outputs INPUTS E D L L H L H X OUTPUT H L Z H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS TRUTH TABLE PKG 54/74LS (U.L.) HIGH/LOW 0.5/0.25 25115 (7.5) DC AND AC CHARACTERISTICS: See Section 3' SYMBOL 54174LS PARAMETER Min UNITS CONDITIONS Max Power Supply Current 21 mA Vee = Max, VIN =OV, VE=4.5 V tPLH tPHL Propagation Delay 12 22 ns Figs. 3-1, 3-5 CL = 50 pF tPZH tPZL Output Enable Time 24 30 ns Fi 9s. 3-3, 3-11, 3-12 RL = 667 n, CL = 50 pF tPLZ tPHZ Output Disable Time 20 25 ns Figs. 3-3,3-11,3-12 RL = 667 n, CL = 5 pF lee 'oe limits apply over operating temperature range; AC limits apply at TA = +25°C and Vee = +5.0 V. 4-383 • 373 CONNECTION DIAGRAM PINOUT A 54LS/74LS373 OCTAL TRANSPARENT LATCH <>Ell 00 (With 3-State Outputs) - II DolI rm Oe 01E 01[[ ~oe Od!: iEJOS odI ~OS 03!! !mO. 031! !rn O' GNO@ DESCRIPTION - The '373 consists of eight latches with 3-state outputs for bus organized system applications. The flip-flops appear transparent to the data when Latch Enable (LEI is HIGH. When LE is .LOW, the data that meets the setup times is latched. Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH the bus output is in the high impedance state. OUT LOGIC SYMBOL DO 01 02 03 D. Os 06 07 LE 111-c OE ORDERING CODE: See Section 9 PKGS ITIJLE i i r i 1j 1j Y1j • EIGHT LATCHES IN A SINGLE PACKAGE • 3-STATE OUTPUTS FOR BUS INTERFACING PIN COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to+125°C 00 01 02 03 O. Os 06 07 PKG TYPE Plastic DIP{P) A 74LS373PC Ceramic DIPlD) A 74LS373DC 54LS373DM 4E Flatpak (F) A 74LS373FC 54LS373FM 4F ! ! ! ! 1l1~ 1~ 1~ 9Z Vcc = Pin 20. GND = Pin 10. INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Do.-07 LE OE 00-07 ~vcc ~07 ~07 DESCRIPTION Data Inputs Latch Enable Input (Active HIGH) Output Enable Input (Active LOW) 3-State Latch Outputs 4-384 54/74LS (U.L.) HIGH/LOW 0.5/0.25 0.5/0.25 0.5/0.25 65/15 (25)/(7.5) 373 FUNCTIONAL DESCRIPTION - The '373 contains eight O-type latches with 3-state output buffers. When the Latch Enable (LE) input is HIGH, data on the On inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its 0 input changes. When LE is LOW the latches store the information that was present on the 0 inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state buffers are controlled by the Output Enable (OE) input. When OE is LOW, the buffers are in the bi-state mode. When OE is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches. LOGIC DIAGRAM Do 05 06 LE--I~~~--;---~--~--~--+---L---t---.---t-~~--t-~~-1r-~ OE 00 03 4-385 05 06 • 373 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54/74LS PARAMETER Min lee UNITS CONDITIONS mA Vee = Max, OE = 4.5 V On, LE = Gnd Max Power Supply lOut uts OFF p Current 40 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25·C (See Section 3 for waveforms and load configurations) 54/74LS SYMBOL PARAMETER CL = 50 pF Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay On to On 18 20 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay LE to On 30 30 ns Figs. 3-1, 3-8 tPZH tPZL Output Enable Time 28 36 ns Figs. 3-3, 3-11,3-12 RL = 6670 tpHZ tPLZ Output Disable Time 20 25 ns Figs. 3-3, 3-11, 3-12 RL = 6670, CL = 5.0 pF UNITS CONDITIONS AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25·C SYMBOL 54174LS PARAMETER Min Max ts (H) ts(U Setup Time HIGH or LOW On to LE 0 0 ns th (H) th (U Hold Time HIGH or LOW On to LE 10 10 ns LE Pulse Width HIGH or LOW 15 15 ns tw (H) tw(U 4-386 Fig. 3-14 Fig. 3-8 374 CONNECTION DIAGRAM PINOUT A 54LS/7 4LS37 4 OCTAL D-TYPE FLIP-FLOP (With 3-State Outputs) DESCRIPTION - The '374 is a high speed, low power octal Ootype flip-flop featuring separate Ootype inputs for each flip-flop and 3-state outputs for bus oriented applications. A buffered Clock (CP) and Output Enable (OE) is common to all flip-flops. The '374 is manufactured using advanced low power Schottky technology and is compatible with all Fairchild TTL families. • EDGE-TRIGGERED D-TYPE INPUTS • BUFFERED POSITIVE EDGE-TRIGGERED CLOCK • 3-STATE OUTPUTS FOR BUS ORIENTED APPLICATIONS LOGIC SYMBOL ORDERING CODE: See Section 9 COMMERCIAL GRADE PIN PKGS = +5.0 V ±5%, = O°C to +70°C Vee OUT TA Plastic OIP(P) A 74LS374PC Ceramic OIP(D) A 74LS3740C MILITARY GRADE = +5.0 V ±10%, = -55°C to +125°C Vee TA 3 TYPE 7 8 13 14 17 18 5 6 9 12 15 16 19 cp 11 OE 9Z 54LS3740M 4 PKG 4E 2 Vcc = Pin 20 Flatpak (F) A 74LS374FC 54LS374FM GND = Pin 10 4F INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions 54174LS (U.L.) HIGH/LOW DESCRIPTION PIN NAMES 0.5/0.25 0.5/0.25 0.5/0.25 65/15 (25)/(7.5) Oata Inputs Clock Pulse Input (Active Rising Edge) 3-State Output Enable Input (Active LOW) 3-State Outputs 00-D7 CP OE 00-07 LOGIC DIAGRAM Do 05 06 cP-;I~~--4r-+-----4r-+-----4r-+-----4~+-----4r-r----~--+-----~-r-----. 00 0, 03 4-387 05 06 07 374 FUNCTIONAL DESCRIPTION - The '374 consists of eight edge-triggered flip-flops with individual D-type inputs and 3-state true outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet .the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (OE) LOW, the contents of the eight flip-flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedence state. Operation of the OE input does not affect the state of the flip-flops. TRUTH TABLE INPUTS OUTPUTS Dn CP H L X J J X OE On L L H H L Z H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = High Impedance DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174LS PARAMETER Min Icc UNITS CONDITIONS Max Power Supply Current, Outputs OFF 45 mA Vee = Max, Dn = Gnd OE = 4.5 V AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174LS SYMBOL PARAMETER CL = 45 pF Min UNITS CONDITIONS Max f max Maximum Clock Frequency MHz Figs. 3-1, 3-8 tpLH tPHL Propagation Delay CP to On 28 28 ns Figs. 3-1, 3-8 tPZH tPZL Output Enable Time 28 28 ns Figs. 3-3, 3-11, 3-12 RL = 667 0. tPHZ tPLZ Output Disable Time 20 25 ns Figs. 3-3, 3-11, 3-12 RL = 667 0., CL.= 5 pF 35 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL 54174LS PARAMETER Min UNITS ts (H) ts (U Setup Time HIGH or LOW Dn to CP 20 20 ns th (H) th (U Hold Time HIGH or LOW Dn to CP 0 0 ns tw (H) tw (U CP Pulse Width HIGH or LOW 15 15 ns 4-388 CONDITIONS Max Fig. 3-6 Fig. 3-8 375 CONNECTION DIAGRAM PINOUT A 54LS/74LS375 4-BIT LATCH - IT Ch II 0, IT 0, DESCRIPTION - The '375 is a 4-bit D-type latch for use as temporary storage for binary information between processing units and input/output or indicator units. When its Enable (E) input is HIGH, a latch is transparent, i.e., the 0 output will follow the D input each time it changes. When E is LOW a latch stores the last valid data present on the D input preceding the HIGH-to-LOW transition of E. The '375 is functionally identical to the '75 except for the corner power pins. ~vcc ~D4 ~a4 E1,2 [I ~a4 02 IT ~E3,4 Q2 [! ~03 02 IT ~Q3 GNOI! ~03 LOGIC SYMBOL 1 7 15 9 I I I I 01 ORDERING CODE: See Section 9 PIN PKGS OUT 02 03 COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 74LS375PC Ceramic DIP (D) A 74LS375DC 54LS375DM 68 Flatpak (F) A 74LS375FC 54LS375FM 4L 98 1 2 - E3,4 0, 02 03 DESCRIPTION 01-04 Data Inputs Latches 1, 2 Enable Input Latches 3, 4 Enable Input Latch Outputs 01-04 Complementary Latch Outputs D1-D4 E1,2 E3,4 Vcc = Pin 16 GND = Pin 8 54174LS (U.L.) HIGH/LOW 0.5/0.25 2.0/1.0 2.0/1.0 10/5.0 (2.5) 10/5.0 (2.5) 4-389 04 ! 1! LLt I II INPUT LOADING/FAN-OUT: See Section 3 for U.L.definitions PIN NAMES 04 4 - E1,2 375 LOGIC DIAGRAM (1/4 of diagram shown) DATA ENABLE TRUTH TABLE (Each Latch) I ~: f t>o tn tn + 1 D H L 0 H L tn = Bit time before Enable negative going transition. tn + 1 = Bit time after Enable negative gOing transition. H = HIGH Voltage Level L = LOW Voltage Level TO OTHER LATCH DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174LS PARAMETER Min lee UNITS 12 Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, TA CONDITIONS Max = +25°C (See Section mA Vee = Max 3 for waveforms and load configurations) 54/74LS SYMBOL PARAMETER CL = 15 pF Min UNITS CONDITIONS Max tPLH tpHL Propagation Delay Dn to On 27 17 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay Dn to an 20 15 ns Figs. 3-1, 3-4 tPLH tpHL Propagation Delay En to On 27 25 ns tPLH tPHL Propagation Delay En to On 30 15 ns AC OPERATING REQUIREMENTS: Vee SYMBOL = +5.0 V, TA Figs. 3-1, 3-8 = +25°C 54/74LS PARAMETER Min UNITS CONDITIONS Max ts (H) ts(U Setup Time HIGH or LOW Dn to En 20 th (H) th (U Hold Time HIGH or LOW Dn to En 0 ns tw (H) En Pulse Width HIGH 20 ns ns Fig. 3-14 4-390 Fig. 3-8 377 CONNECTION DIAGRAM PINOUT A 54LS/74LS377 OCTAL D FLIP-FLOP E[I (With Common Enable and Clock) Oou - ~vcc }!IOl 00[[ :mOl IT 0, II ad:! liIOe :mo, odI :E]os D3[! :ll)O4 0, mas od]: j]]04 GNOffi TIlcp DESCRIPTION - The '377 isan 8-bit register built using advanced low power Schottky technology. This register consists of eight O-type flip-flops with a buffered common clock and a buffered common input enable. The device is packaged in the space-saving (0.3 inch row spacing) 20-pin package . LOGIC SYMBOL • a-BIT HIGH SPEED PARALLEL REGISTERS • POSITIVE EDGE-TRIGGERED D-TYPE FLIP-FLOPS • FULLY BUFFERED COMMON CLOCK AND ENABLE INPUTS 1i i r i 7'j ri E Do 01 02 03 04 05 06 07 "- cp ORDERING CODE: See Section 9 00 Q1 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vcc = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic OIP(P) A 74LS377PC Ceramic OIP(D) A 74LS3770C 54LS377DM 4E Flatpak (F) A 74LS377FC 54LS377FM 4F 9Z Q2 03 Q4 as E 00-07 CP 00-07 DESCRIPTION Enable Input (Active LOW) Oata Inputs Clock Pulse Input (Active Rising Edge) Flip-flop Outputs 4-391 07 ! ! ! ! }2 ,t ,t ,l Vcc = Pin 20 GND = Pin 10 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 06 54174LS (U.L.) HIGH/LOW 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) • 377 FUNCTIONAL DESCRIPTION - The '377 consists of eight edge-triggered D flip-flops with individual D inputs and 0 outputs. The Clock (CP) and Enable input (8 are common to all flip-flops. When E is LOW, new data is entered into the register on the next LOW-to-HIGH transition of CPo When E is HIGH, the register will retain the present data independent of the CPo TRUTH TABLE INPUTS E H L L OUTPUT CP Dn X X H J -I L On No change H L H ~ HIGH Voltage Level L. ~ LOW Voltage Level X = Immaterial LOGIC DIAGRAM 4-392 377 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174LS PARAMETER Min lee Power Supply Current AC CHARACTERISTICS: Vee = +5.0 UNITS 28 V, TA CONDITIONS Max = +25°C (See mA Vee = Max Section 3 for waveforms and load configurations) 54174LS SYMBOL PARAMETER CL = 15 pF Min f max Maximum Clock Frequency tpLH tpHL Propagation Delay CP to an AC OPERATING REQUIREMENTS: Vee SYMBOL 25 25 V, TA MHz Figs. 3-1, 3-8 ns Figs. 3-1, 3-8 = +25°C 54174LS PARAMETER CONDITIONS Max 30 = +5.0 UNITS Min UNITS ts (H) ts (U Setup Time HIGH or LOW Dn to CP 10 10 ns th (H) th (U Hold Time HIGH or LOW Dn to CP 5.0 5.0 ns ts (H) ts (U Setup Time HIGH or LOW Eto CP 10 20 ns th (H) th (U Hold Time HIGH or LOW Eto CP 5.0 5.0 ns tw (H) tw (U CP Pulse Width HIGH or LOW 20 20 ns 4-393 CONDITIONS Max Fig. 3-6 Fig. 3-8 378 CONNECTION DIAGRAM PINOUT A 54LS/74LS378 PARALLEL 0 REGISTER - 0011 ~vcc ~Os Dol! iEJOS 01!:! ~04 ElI (With Enable) odI ~04 ~03 ~03 [! ~cp all! 0211 GNO DESCRIPTION - The '378 is a 6-bit register with a buffered common enable. This device is similar to the '174, but with common Enable rather than common Master Reset. LOGIC SYMBOL • • • • • 6-BIT HIGH SPEED PARALLEL REGISTER POSITIVE EDGE-TRIGGERED D-TYPE INPUTS FULLY BUFFERED COMMON CLOCK AND ENABLE INPUTS INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS FULL TTL AND CMOS COMPATIBLE liiiYYY E Do 0 1 O2 0 3 0 4 05 9- ORDERING CODE: See Section 9 PIN PKGS OUT cp 0 0 0 1 O2 0 3 0 4 aS COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic OIP(P) A 74LS378PC Ceramic DIP (0) A 74LS3780C 54LS3780M 68 Flatpak (F) A 74LS378FC 54LS378FM 4L 1!!)o}2}S 98 Vee = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L definitions PIN NAMES E 00-05 CP 00-05 DESCRIPTION Enable Input (Active LOW) Data Inputs Clock Pulse Input (Active Rising Edge) Flip-flop Outputs 4-394 54174LS (U.L.) HIGH/LOW 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) 378 FUNCTIONAL DESCRIPTION - The '378 consists of eight edge-triggered O-type flip-flops with individual 0 inputs and outputs. The Clock (CP) and Enable (Ei inputs are common to all flip-flops. a When the E input is LOW, new data is entered into the register on the LOW-to-HIGH transition of the CP input. When the E input is HIGH the register will retain the present data independent of the CP input. TRUTH TABLE OUTPUT INPUTS E CP On H ~ L ~ L --F On No change H L X H L • H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM O2 0, cp 03 ~ cp 0 r-E cp 0 r-E Q cp 0 r-E Q cp 0 E Q 4> Q, 4-395 cp 0 r-E Q cp 0 r-E Q Q 378 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174LS PARAMETER Min lee UNITS Power Supply Current AC CHARACTERISTICS: Vee = 22 +5.0 V, TA = CONDITIONS Max mA Vee = Max, Dn CP = S = E = Gnd +25°C (See Section 3 for waveforms and load configurations) 54174LS SYMBOL Ct. = 15 pF PARAMETER Min fmax Maximum Clock Frequency tPLH tPHL Propagation Delay CP to On AC OPERATING REQUIREMENTS: Vee SYMBOL 30 27 27 = +5.0 V, TA = CONDITIONS Min MHz Figs. 3-1, 3-8 ns Figs. 3-1, 3-8 +25°C 54174LS PARAMETER UNITS Max UNITS CONDITIONS Max ts (H) Setup Time HIGH, Dn to CP 20 ns Fig. 3-6 th (H) Hold Time HIGH, Dn to CP 5.0 ns Fig. 3-6 ts (U Setup Time LOW, Dn to CP 20 ns Fig. 3-6 th (U Hold Time LOW, Dn to CP 5.0 ns Fig. 3-6 ts (H) Setup Time HIGH, E to CP 30 ns Fig. 3-6 th (H) Hold Time HIGH, E to CP 5.0 ns Fig. 3-6 ts (U Setup Time LOW, E to CP 30 ns Fig. 3-6 th (U Hold Time LOW, E to CP 5.0 ns Fig. 3-6 tw (H) CP Pulse Width HIGH 20 ns Fig. 3-8 4-396 379 CONNECTION DIAGRAM PINOUT A 54LS/74LS379 (With Enable) tEJ03 008: D'~ EJD2 Q,[! TIle2 a, E?: ~02 GND!! ~cp LOGIC SYMBOL EDGE-TRIGGERED D-TYPE INPUTS BUFFERED POSITIVE EDGE-TRIGGERED CLOCK BUFFERED COMMON ENABLE INPUT TRUE AND COMPLEMENT OUTPUTS OUT 12 0, Do O2 MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic OIP(P) A 74LS379PC Ceramic DIP (0) A 74LS3790C 54LS3790M 68 Flatpak (Fl A 74LS379FC 54LS379FM 4L A, 00 02 3 2 6 7 11 10 14 15 98 DESCRIPTION 00-03 CP 00-03 Enable Input (Active LOW) Data Inputs Clock Pulse Input (Active Rising Edge) Flip-flop Outputs 00-03 Complement Outputs 4-397 03 YI YI YI YI Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions E 03 9 - cp COMMERCIAL GRADE PIN NAMES 13 .l I I I I ORDERING CODE: See Section 9 PIN 5 4 1 E PKGS ~vcc ~C3 ~D3 DESCRIPTION - The '379 is a 4-bit register with buffered common Enable. This device is similar to the '175 but features the common Enable rather than common Master Reset. • • • • --. EO:: oolI colI QUAD PARALLEL REGISTER 54/74LS (U.L.) HIGH/LOW 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) • 379 FUNCTIONAL DESCRIPTION - The '379 consists of four edge-triggered D-type flip-flops with individual D inputs and 0 and Q outputs. The Clock (CP) and Enable 00 0 1 2 3 4 5 6 7 8 9 +5 TRUTH TABLE (Input on CP1) OUTPUTS COUNT 03 02 01 00 L L L L L L L L L H L L H H L L H L H L L L L H H H H H L L L H H L L H L H L H COUNT 0 1 2 3 4 OUTPUTS 03 02 01 L L L L H L L H H L L H L H L H = HIGH Voltage Level L = LOW Voltage Level H = HIGH Voltage Level L = LOW Voltage Level STATE DIAGRAM 4-406 J a 9 >-- BCD TRUTH TABLE (Input on CPo; 00 to CP1) CP -0 CD ~ MR J ;0 Co 390 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 54174LS PARAMETER Min hH Input HIGH Current, CPa, CP1 lee Power Supply Current I I UNITS CONDITIONS 0.1 mA Vee = Max, VIN = 5.5 V 30 mA Vee = Max Max '390 '393 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 54174LS SYMBOL PARAMETER CL = 15 pF Min UNITS CONDITIONS Max f max Maximum Count Frequency CPo ('390) or CP ('393) 40 fmax CP1 Maximum Count Frequency 20 tpLH tPHL Propagation Delay CPa ('390) or CP ('393) to 00 15 15 ns tPLH tPHL Propagation Delay CP1 ('390) to 01 21 21 ns tPLH tPHL Propagation Delay CP1 ('390) to 02 30 30 ns tPLH tPHL Propagation Delay CP1 ('390) to 03 21 21 ns tpLH tPHL Propagation Delay CP ('393) to 01 30 30 ns tPLH tPHL Propagation Delay CP ('393) to 02 40 40 ns tPLH tPHL Propagation Delay CP ('393) to 03 54 54 ns Figs. 3-1, 3-9 tPHL Propagation Delay MR to On 35 ns Figs. 3-1, 3-17 MHz Figs. 3-1, 3-9 MHz Figs. 3-1, 3-9 Figs. 3-1, 3-9 Figs. 3-1, 3-9 Figs. 3-1, 3-9 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL 54174LS PARAMETER Min UNITS CONDITIONS Max tw (U CP or CPa Pulse Width LOW 12 ns Fig. 3-9 tw (U CP1 Pulse Width LOW 25 ns Fig. 3-9 tw (H) MR Pulse Width HIGH 20 ns Fig. 3-17 tree Recovery Ti me MR to CP 15 ns Fig. 3-17 4-407 • 393 CONNECTION DIAGRAM PINOUT A 54LS/74LS393 DUAL MODULO-16 COUNTER cpO:: ~ MR[I Qo[I Q1[I DESCRIPTION - The '393 contains a pair of high speed 4-stage ripple counters. Each half of the '393 operates as a modul0-16 binary divider, with the last three stages triggered in a ripple fashion. The flip-flops are triggered by a HIGH-to-LOW transition of their CP inputs. Each half of each circuit type has a Master Reset input which responds to a HIGH signal by forcing all four outputs to the LOW state. For detail specifications, please refer to the '390 data sheet. QdI ~Q1 Q3[I :2J Q2 GNOIT }]Q3 LOGIC SYMBOL (each half) 1,13 - and buffered common Output Enable (OEl inputs. 05 IT mos 06 [! lllo6 od:! GNoffi :m07 TIl LE This device is functionally indentical to the 'LS573, but has inverted outputs. For truth tables, discussion of operations and ac and dc specifications, please refer to the 'LS373 data sheet, but note that the data to output delays are 5.0 ns longer for the 'LS563 than for the 'LS373. • INPUTS AND OUTPUTS ON OPPOSITE SIDES OF PACKAGE ALLOWING EASY INTERFACE WITH MICROPROCESSORS • USEFUL AS INPUT OR OUTPUT PORT FOR MICROPROCESSORS • FUNCTIONALLY IDENTICAL TO 'LS573 • INPUT CLAMP DIODES LIMIT HIGH SPEED TERMINATION EFFECTS • FULLY TTL AND CMOS COMPATIBLE ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE Vee = +5.0 V ±5%, TA MILITARY GRADE Vee = O°C to +70°C TA = +5.0 V ±10%, = -55°C to +125°C PKG TYPE Plastic DIP(P) A Ceramic DIP (D) A 74LS563DC 54LS563DM 4E Flatpak (F) A 74LS563FC 54LS563FM 4F 74 LS563PC LOGIC SYMBOL 111-<: iiiii,ii DO 0, 02 03 D. 05 06 07 LE OE 00 0, 02 03 O. 05 06 07 1!!!!!!!! 9Z Vcc = Pin 20 GND = Pin 10 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Do-07 LE OE 00-07 DESCRIPTION Data Inputs Latch Enable Input (Active HIGH) 3-State Output Enable Input (Active LOW) 3-State Latch Outputs 54n4LS (U.L.) HIGH/LOW 0.5/0.25 0.5/0.25 0.5/0.25 65/15 (25)/(7.5) 4-429 ~vcc Do • 564 CONNECTION DIAGRAM PINOUT A 54LS/74LS564 OCTAL O-TYPE FLIP-FLOP (With 3-State Outputs) - OElI Doll: ~O' D,I:! DESCRIPTION - The '564 is a high speed low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable (OEL The information presented to the 0 inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition. This device is functionally identical to the 'LS574, but has inverted outputs. For complete discussions of operations, truth tables, ac and dc electrical specifications, refer to the 'LS374 data sheet. D2[i ~O2 D31]: rm D7[! GNDffi Iillcp DslI D6!! OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plasti.c DIP (P) A 74LS564PC Ceramic DIP (0) A 74LS5640C 54LS5640M 4E A 74LS564FC 54LS564FM 4F Flatpak (F) LOGIC SYMBOL iiiiifii Do D, D2 D3 D4 Ds D6 D7 ORDERING CODE: See Section 9 PKGS 11- cp 1- [I alI ]]I K2 ]]cp 1]0 GNOII ORDERING CODE: See Section 9 PKGS ~ COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +75°C Vee = +5.0 V ±10%, TA = -55°C to +125°C A 9000DC 9000DM B 9001 DC 9001DM C 9020DC 9020DM D 9022DC 9022DM A 9000FC 9000FM B 9001FC 9001FM • PKG TYPE J=AoBoCoO K=AoBoCoO 6A 6B 31 Flatpak (F) C 9020FC 9020FM D 9022FC 9022FM PINOUT B JKIT So [I PINOUT C - CD IT Cpj} till CD cPj} 1i]Co lil J3 J[l :E]JK J[l ElJK TIl K3 Kd3: Kl []: TIlJ EJK2 K[i TIlJ SO []: EJVec TIl CD J'd} ]]Ii<2 a[! ]]cp ~a GNOII - PINOUT D ~vee ~ Kd1 Jl\1 4L CD IT :ill Vee a[! :TIl Kl a[! lili< :TIl SO alI ]]10 alI :§]a GNO!! J]a GNO!! J]a J=Ao§oCoO K=AoBoCoO 5-3 9XXX Series INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES JK Input Data Inputs Clock Pulse Input Direct Clear Input Direct Set Input Outputs JK I n. Kn, .Tn. Rn CP CO So Q,c:i 9000 (U.L.) HIGH/LOW 9001 (U.L.) HIGH/LOW 9020 (U.L.) HIGH/LOW 9022 (U.L.) HIGH/LOW 3.0/2.0 1.5/1.0 1.5/1.0 4.0/2.7 4.0/2.7 30/8.8 (7.8) 3.0/2.0 1.5/1.0 1.5/1.0 4.0/2.7 4.0/2.7 30/8.8 (7.8) 6.0/4.0 1.5/1.0 3.0/2.0 4.0/2.7 6.0/4.0 1.5/1.0 3.0/2.0 4.0/2.7 4.0/2.7 30/8.8 (7.8) 30/8.8 (7.8) LOGIC SYMBOLS 9020 9000 14 JK 2 4 5 6 12 10 3 9 1 3-~"""" 8 10 5 9 4 11 13 2-+----~-~ Vee = Pin 14 GNO = Pin 7 Vee = Pin 16 GND = Pin 8 9001 9022 2 4 5 10 6 12--......--" 9-+--1 1 3 10 11 8 2--+---"""'---' 13 Vee = Pin 14 GND = Pin 7 Vee = Pin 16 GND = Pin 8 ASYNCHRONOUS OPERATION Co L L H L H L H H SYNCHRONOUS OPERATION OUTPUTS INPUTS So Q 9 4i1-"'L.;,e...J BEFORE CLOCK AFTER CLOCK OUTPUTS INPUTS OUTPUTS Q H H H L H L SYNCHRONOUS INPUTS CONTROL H = HIGH Voltage Level L = LOW Voltage Level L' Q Q J K Q Q L L H H H H L L L* H* X X X X L* H* L H H L H L L H = Input does not go HIGH at any time while the clock is LOW. H" = Input is HIGH at some time while the clock is LOW. X = Immaterial 5-4 9XXX Series FUNCTIONAL DESCRIPTION - The TTL 9000 series has four flip-flops to satisfy the storage req uirements of a logic system. All are master/slave JK designs and have the same high speed and high noise immunity as the rest of the 9000 series. As with the gates, all inputs have diode clamps to reduce ringing caused by long lines and impedance mismatches. The J K type flip~flop was chosen for all flip-flop elements in this family because of its inherent logic power. The input function required to produce a given sequence of states for a JK flip-flop will, in general, contain more "don't care" conditions than the corresponding function for an RS flip-flop. These additional "don't care" conditions will, in most cases, reduce the amount of gating elements required to implement the input function. The master/slave design offers the advantage of a dc threshold on the clock input initiating the transition of the outputs, so that careful control of clock pulse rise and fall times is not required. Data is accepted by the master while the clock is in the LOW state. Refer to the truth tables fordefinition of HIGH and LOW data. Transfer from the master to the slave occurs on the LOW-to-HI GH transition of the clock. When the clock is HIGH, the J and K inputs are inhibited. A joint (J K) input is provided for all flip-flops in this family. The common input removes the necessity of gating the clock signal with an external gate in many applications. This not only reduces package count, but also reduces the possibility of clock skew problems, since with internal gating provided, all flip-flops may be driven from a common clock line. Several TTL drivers may be used in parallel to drive this common clock line if the load exceeds the fan-out capability of the 9009 buffer. The asynchronous inputs provide ability to control the state of the flip-flop independent of static conditions of the clock and synchronous inputs. Both asynchronous set and clear are provided on all flip-flops except the 9020, which because of a logic trade-off has only clear inputs. The set or clear pin being LOW absolutely guarantees that one output will be HIGH, but if opposing data is present at the synchronous inputs and theflipflop is clocked, the LOW output may momentarily spike HIGH synchronous with a positive transition of the clock. If the LOW output of the flip-flop is connected to other flip-flop inputs clocked from the same line, the spike will be masked by the clock. If the clock is suspended during the time when the asynchronous inputs are activated, no spike will occur. When the spikes can cause problems, a simple solution is to common thejointJ K inputs with the synchronous set or reset signal. Synchronous Operation - The truth table defines the next state of the flip-flop after a LOW-to-HIGH transition of the clock pulse. The next state is a function of the present state and the J and K inputs as shown in the table. The J and K inputs in the table refer tothe basic flip-flopJ and K inputs as indicated on the logic symbols. These internal inputs are for every flip-flop the result of a logic operation on the external J and K inputs. This operation is represented symbolically by AND gates in the logic symbol for each flip-flop. Logic symbols are in accordance with MIL Standard 8068. The L * symbol in the J and K input column is defined as meaning that Input does not go HIGH atany time while the clock Is LOW. The H* symbol in the J or K input column is defined as meaning that the Input is HIGH at some time while the clock is LOW. The X symbol indicates that the condition of that input has no effect on the next state of the flip-flop. The Hand L symbols refer to steady state HIGH and LOW voltage levels, respectively. Unused Inputs - The 9001. 9020 and 9022 all have active level LOW synchronous inputs. When not in use they must be grounded. All other unused inputs, including asynchronous, should be tied HIGH for maximum operating speed. 5-5 • 9XXX Series DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: Vee SYMBOL DOC PARAMETER Min 25°C Max Min 75°C Max Min = +5.0 UNITS V ±5% CONDITIONS Max V Guaranteed Input HIGH Threshold 0.85 V Guaranteed Input LOW Threshold 0.45 0.45 V Vee = 4.75 V, IOL = 14.1 mA Vee - 5.25 V, IOL = 16 mA -1.60 -1.60 -1.60 -3.20 -3.20 -3.20 -6.40 -4.32 -6.40 -4.32 -6.40 -4.32 -1.41 -1.41 -1.41 -2.82 -2.82 -2.82 -5.64 -3.78 -5.64 -3.78 -5.64 -3.78 28 33 30 28 33 30 28 33 30 1.9 VIH Input HIGH Voltage VIL Input LOW Voltage 0.85 0.85 VOL Output LOW Voltage 0.45 ilL Input LOW Current All J, K Inputs CP Inputs 9000, 9001 JK Inputs 9000, 9001 CP Inputs 9020, 9022 JK inputs 9020, 9022 So, Co (all Flip-flops) Input LOW Current All J, K Inputs CP Inputs 9000, 9001 JK Inputs 9000, 9001 CP Inputs 9020, 9022 :;!.K I!!puts 9020, 9022 So, Co (all Flip-flops) 1.8 1.6 mA Vee = 5.25 V VIN = 0.45 V 5.25 V on Other Inputs Vee = 4.75 V VIN = 0.45 V 5.25 V on Other Inputs mA Power Supply Current lee 9000 9001 9020, 9022 each Flip-flop DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: Vee SYMBOL PARAMETER -55°C Min Max 2.0 25°C Min Max VIH Input HIGH Voltage VIL Input LOW Voltage 0.8 0.9 VOL Output LOW Voltage 0.4 0.4 1.7 5-6 = +5.0 125°C Min So at Gnd So at Gnd C01, C02 at Gnd mA V ±10% UNITS CONDITIONS Max V Guaranteed Input HIGH Threshold 0.8 V Guaranteed Input LOW Threshold 0.4 V Vee = 4.5 V, IOL = 12.4 mA Vee - 5.5 V, IOL = 16 mA 1.4 9XXX Series DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: (Cont'd) -55°C PARAMETER SYMBOL Min IlL Icc Input LOW Current All J, K Inputs CP Inputs 9000, 9001 JK Inputs 9000, 9001 CP Inputs 9020, 9022 JK Inputs 9020, 9022 So, CD (all Flip-flops) Input LOW Current All J, K Inputs CP Inputs 9000, 9001 JK Inputs 9000, 9001 CP Inputs 9020, 9022 JK Inputs 9020, 9022 So, CD (all Flip-flops) Power Supply Current 9000 9001 9020, 9022 each Flip-flop 25°C Max Min Max -1.60 -3.20 -3.20 -3.20 -6.40 -4.32 -6.40 -4.32 -6.40 -4.32 -1.24 -1.24 -1.24 -2.48 -2.48 -2.48 -4.96 -3.35 -4.96 -3.75 -4.96 -3.35 24 28 27 24 28 27 24 28 27 tPHL tsetup 20 20 30 35 9000XM 9000XC 9001XM, 9020XM, 9022XM 9001XC, 9020XC, 9022XC J or K Data Entry J, K or JK trelease I 9000 only 19001,9020,9022 J or K Data Entry 9000 only Pulse Widths Clock So or Co Toggle Frequency 9001,9020, 9022 Vee = 5.5 V V,N = 4.5 V 5.5 V on Other Inputs rnA Vee = 4.5 V V,N = 0.4 V 5.5 V on Other Inputs rnA So at Gnd So at Gnd COl, C02, at Gnd rnA UNITS CONDITIONS Max Clock to Output So or Co to Output Clock to Output So or Co to Output J, K or JK CONDITIONS = 15 pF of all flip-flops unless otherwise noted) LIMITS PARAMETER UNITS Max -1.60 Min tPLH Min -1.60 SWITCHING CHARACTERISTICS (TA = 25°C, Vee = 5.0 V, CL = Cl SYMBOL 125°C 30 35 10 15 17 10 1.0 4.0 ns Figs. a, b, c ns ns Figs. a, c ns Figs. a, b, c ns Figs. a, c ns Figs. a, b, ns Figs. a, ns Figs. a, b, Positive Negative Positive Negative Negative 20· 25· 8.0· 10· 25· 9000 only 9001,9020, 9022 20· MHz Figs. a, 50· MHz Figs. a, b, "Typical Value 5-7 C C C C C • 9XXX Series SWITCHING TEST NOTES tPLH and \PHL 1. VJK should be kept at the HIGH level when performing tPLH/tPHL test. 2. Drive the clock pulse input with a suitable pulse source. tPLH and tpHL delays are as defined in the waveforms. RECOMMENDED INPUT PULSE SOURCES ADJUSTABLE DELAY NETWORK PULSE GENERATOR FREQUENCY" 2 MHz DUTY CYCLE"" 50% -1 no I I VJK L GND TO INHIBIT FOR tPLH/tPHL I ADJUSTABLE DELAY NETWORK TTL I Vep I DTL9932 gates with adjustable capacitors connected from extender inputs to ground make suitable delay elements. tsetup 1. tsetup is defined as the minimum time required for a HIGH to be present at a synchronous logic input at any time during the LOW state of the clock in order for the flip-flop to respond to the data. 2. The test for tsetup is performed by adjusting the timing relationship between the Vcp and VJK inputs to the tsetup minimum value. A device that passes the test will have the output waveform shown. The output of a device that does not pass the tsetup test will remain at a static logic level (no switching will occur). trelease 1. trelease is defined as the maximum time allowed for a HIGH to be present at a synchronous logic input at any time during the LOW state of the clock and not be recognized. 2. The test for trelease is performed by adjusting the timing relationship between Vcp and VJK to the trelease maximum value. The outputs of devices that pass will remain at static logic levels. In order to check both J and K sides of the flip-flop it is necessary to perform the test with the flip-flop in each of its two possible states, i.e., set and clear. This can be accomplished by making use of the appropriate direct inputs to establish the state before a test. The outputs of devices that do not pass the trelease test will exhibit pulses instead of static levels. 5-8 9XXX Series SWITCHING TEST CIRCUITS 9020/9022 9000/9001 Vee Vee VJK ---+---1 Vep-...----+------I VJK_-~~===:t~--~+==J Vep~r_----r----r-_, '---+----+-------1r- VOUT I-___ _.--t_ VOUT CL CL Fig. a • Fig. b Vee = Pin 5.0 V R = 2.0 kfl CI = CL = 15 pF including probe and jig capacitance WAVEFORM > 3.0 V 1.5 V < 0.4 V > 3.0 V 1.5 V < 0.4 V l"I_~ < 0.4 V I I \ f,"" > 3.0 V 1.5 V ISETUP OR IRELEASE \ /0o' { Lt, ~L'PLH Fig. c 5-9 9XXX Series CONNECTION DIAGRAMS PINOUT A 9002 • 9003 • 9004 9007 • 9012 9016 • 9017 NAND GATES/HEX INVERTERS DESCRIPTION - The 9002, 9003, 9004, 9007, and 9012 are active LOW level output AND gates commonly know as NAND gates. The 9016 and 9017 are hex inverters with input and output characteristics identical to a NAND gate. ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +75°C Vee = +5.0 V ±10%, TA = -55°C to +125°C A 9002DC, 9012DC 9002DM,9012DM Ceramic B 9003DC 9003DM DIP C 9004DC 9004DM D 9007DC 9007DM E 9016DC, 9017DC 9016DM,9017DM A 9002FC, 9012FC 9002FM,9012FM B 9003FC 9003FM (D) Flatpak (F) PKG TYPE PINOUT B 6A C 9004FC 9004FM D 9007FC 9007FM E 9016FC,9017FC 9016FM,9017FM 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions 9XXX (U.L.) HIGH/LOW PINS Inputs Outputs 1.5/1.0 30*/8.8 '9012 and 9017 have open-collector outputs PINOUT C IT I II r-NCIT IT GNoE r-- r-- rD fL L - PINOUT E ~vcc IT ~ ~ II IT - :ill :ill IT -----, 3] fill NC ~ IT f----, IT - PINOUT D ~ ~ ~ NCIT NC[I GNO[I ~ 5-10 ~vcc r ~ ~NC ~ 9XXX Series DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: Vee SYMBOL O°C PARAMETER 25°C 75°C = +5.0 V ±5% UNITS CONDITIONS Min Max Min Max Min Max 1.9 VIH Input HIGH Voltage VIL Input LOW Voltage VOH Output HIGH Voltage (except 9012, 9017) 1.8 0.85 2.4 0.85 2.4 0.45 VOL Input HIGH Current 0.45 60 60 IOH Output HIGH Current 9012,9017 lee Power Supply Current, each gate tPLH Propagation Delay Input to Output Propagation Delay Input to Output I I ON OFF 6.1 1.7 3.0 9012,9017 9012, 9017 5-11 V Guaranteed Input LOW Threshold V Vee = 4.75 V, IOH = -1.2 rnA, Inputs at VIL V Vee = 5.25 V, IOL = 16 rnA, VIN = 5.25 V Vee = 4.75 V, IOL = 14.1 rnA, Inputs at VIH JJ.A Vee = 5.25 V, VIN = 4.5 V Gnd on Other Inputs rnA Vee = 5.25 V VIN = 0.45 V, 5.25 V on Other Inputs Vee - 4.75 V VIN = 0.45 V, 5.25 V on Other Inputs Vee = 4.75 V, VIN = VIL, VOUT = 5.5 V -1.41 -1.41 250 250 JJ.A 6.1 1.7 6.1 1.7 rnA 13 3.0 45 3.0 15 3.0 Guaranteed Input HIGH Threshold -1 ..6 Input LOW Current -1.41 tPHL 0.45 -1.6 V 0.45 Output LOW Voltage -1.6 IlL 0.85 2.4 0.45 0.45 hH 1.6 15 ns ns = Open = Gnd CL = 15 pF, RL = 4.0 kn CL = 15 pF, VIN VIN Fig. 3-4 Fig. 3-4 CL = 15 pF, Fig. 3-4 RL - 400 n CL = 15 pF, Fig. 3-4 • 9XXX Series = +5.0 V ±10% DC AND AC CHARACTERISITICS OVER MILITARY TEMPERATURE RANGE: Vee -55°C PARAMETER SYMBOL 25°C 125°C UNITS CONDITIONS Min Max Min Max Min Max VIH . Input HIGH Voltage VIL Input LOW Voltage VOH Output HIGH Voltage (except 9012, 9017) 2.0 1.7 0.8 2.4 0.9 2.4 0.4 VOL ilL 2.4 0.4 0.4 60 60 -1.6 -1.6 -1.6 -1.24 -1.24 -1.24 250 5.5 1.6 Input HIGH Current Icc Power Supply Current, each gate tPLH Propagation Delay Input to Output 9012,9017 Propagation Delay Input to Output 9012,9017 I I ON OFF 5.5 1.6 3.0 WORST CASE TURN OFF DELAY VERSUS AMBIENT TEMPERATURE 3.0 45 3.0 12 3.0 15 0 0 - ......r-- V Vee = 5.5 V, IOL = 17.6 mA, VIN = 5.5 V Vee = 4.5 V, IOL = 13.6 mA, Inputs at VIH Vee = 5.5 V, VIN = 4.5 V Gnd on Other Inputs mA Vee = 5.5 V VIN = 0.4 V 5.5 V on Other Inputs Vee = 4.5 V VIN = 0.4 V 5.5 V on Other Inputs 250 J1.A Vee = 4.5, VIN Vour = 5.5 V 5.5 1.6 mA ."'- 30 I 1-'" Vee = 4.5 V, IOH = -1.32 mA, Inputs at VIL ns 36 ..... .d"" I V ns Vee =5.DV 5 Guaranteed Input LOW Threshold 10 SEE FIG. 12 or- t--JAX AT CL '" 150~ ... V / " 24 18 ./ 12 MAXATCL-15pF I I I I J "" yell 15 SEE FIG. 12 "1'-- I I J I'--.,. t--, VCC"s.OV -- MAX AT 150 pF ~A~rpF- - I I $.0 _jlN = Open = Gnd CL = 15 pF, RL = 4.0 kO CL = 15 pF, CL = 15 pF, RL = 400 0 CL = 15 pF, MIN AT 15 pF jF_ o 0 55 -55 25 25 T A - AMBIENT TEMPERATURE - QC lA-AMBIENT TEMPERATURE_oC 5-12 = VIL VIN VIN WORST CASE TURN ON DELAY VERSUS AMBIENT TEMPERATURE 0 5 Guaranteed Input HIGH Threshold J1.A Input LOW Current Output HIGH Current 9012, 9017 V 0.4 Output LOW Voltage IOH tPHL 0.8 0.4 0.4 hH 1.4 - Fig. 3-4 Fig. 3-4 Fig. 3-4 Fig. 3-4 9XXX Series CONNECTION DIAGRAMS PINOUT A 9005 • 9008 9006 EXTENDABLE AND-OR-INVERT GATES EXTENDER (9006) "Four extenders (9006) may be tied tothese terminals Vee = Pin 14 GND = Pin 7 PINOUT B DESCRIPTION: - The 9005 and 9008 are AN D-OR-INVERT gates which may be OR extended with the use of the 9006. ORDERING CODE: See Section 9 PIN PKGS Ceramic DIP (0) Flatpak (F) OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +75°C Vee = +5.0 V ±10%, TA = -55°C to +125°C A 9005DC 9005DM B 90·06DC 9006DM C 9008DC 9008DM A 9005FC 9005FM B 9006FC 9006FM C 9008FC 9008FM PKG TYPE 6A Vee = Pin 14 GND = Pin 7 PINOUT C 31 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Non-extendable Gate Inputs Extendable Gate Inputs All Inputs Outputs 9005 (U.L.) HIGH/LOW 9006 (U.L.) HIGH/LOW 9008 (U.L.) HIGH/LOW 2.25/1.5 2.25/1.5 30/8.8 (33)/(8.5) "Four extender (9006) may be tied to these terminals 1.5/1.0 2.25/1.5 30/8.8 (33)/(8.5) "Outputs on 9006 have open-emitter and collector 5-13 Vee = Pin 14 GND = Pin 7 9XXX Series DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: Vee = +5.0 V ±5% SYMBOL PARAMETER O°C 25°C 75°C UNITS CONDITIONS Min Max Min Max Min Max VIH Input HIGH Voltage VIL Input LOW Voltage VOL ilL lee ~Iee 1.9 1.8 1.6 V Guaranteed Input HIGH Threshold Voltage Guaranteed Input LOW Threshold Voltage 0.85 0.85 0.85 V 0.45 0.45 0.45 V 0.45 0.45 0.45 V -1.6 -1.41 -2.4 -2.12 -1.6 -1.41 -2.4 -2.12 -1.6 -1.41 -2.4 -2.12 7.7 13.6 17.7 7.7 13.6 17.7 7.7 13.6 17.7 rnA All Inputs Open 3.4 5.1 10.2 3.4 5.1 10.2 3.4 5.1 10.2 rnA All Inputs Except Extender Inputs Gnd Extra Current Drain when one 9006 Extender is attached to a 9005 Gate ON 2.05 2.05 2.05 rnA All Inputs HIGH Extra Current Drain when one 9006 Extender is attached to a 9005 gate OFF 2.54 2.54 2.54 rnA All Inputs Gnd Output LOW Voltage Input LOW Current 9005 Non-Extendable Gate Input LOW Current Extendable Gates and Extender Power Supply Current, ON 9005 Non-Extendable Gate 9005 Extendable Gate 9008 Power Supply Current, OFF 9005 Non-Extendable Gate 9005 Extendable Gate 9008 rnA rnA Vee = 5.25 V, IOL = 16 rnA, Vee - 4.75 V, IOL = 14.1 rnA Vee Vee Vee Vee = = = = Max VIN = .45 V 5.25 V on Min Other Max Inputs Min DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: Vee = +5.0 V ±10% SYMBOL PARAMETER -55°C 25°C 125°C UNITS CONDITIONS Min Max Min Max Min Max VIH Input HIGH Voltage VIL Input LOW Voltage VOL IiL 2.0 1.7 0.8 1.4 V Guaranteed Input HIGH Threshold Voltage Guaranteed Input LOW Threshold Voltage 0.9 0.8 V 0.4 0.4 0.4 V 0.4 0.4 0.4 V -1.6 -1.24 -2.4 -1.86 -1.6 -1.24 -2.4 -1.86 -1.6 -1.24 -2.4 -1.86 Output LOW Voltage Input LOW Current 9005 Non-extendable Gate Input LOW Current Extendable Gate and Extender rnA rnA Vee = 5.5 V, IOL = 17.6 rnA Vee - 4.5 V, IOL = 13.6 rnA Vee Vee Vee Vee = = - NOTE: Output characteristics above apply to a 9005 (both gates) or a 9008. Input characteristics above apply to a 9005 (both gates) or a 9008 using either the internal gates or an external 9006 extender. 5-14 Max Min Max Min VIN =.4 V 5.5 V on Other Inputs 9XXX Series DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: Vee -55°C PARAMETER SYMBOL 25°C 125°C = +5.0 UNITS V ±10% (Cont'd) CONDITIONS Min Max Min Max Min Max Icc t.1lee Power Supply Current, ON 9005 Non-extendable Gate 9005 Extendable Gate 9008 6.5 11.3 12.5 6.5 11.3 12.5 6.5 11.3 12.5 mA All Inputs Open Power Supply Current, OFF 9005 Non-extendable Gate 9005 Extendable Gate 9008 3.1 4.7 9.4 3.1 4.7 9.4 3.1 4.7 9.4 mA All Inputs Except Extender Inputs Gnd Extra Current Drain from one 9006 Extender Gate ON 1.61 1.61 1.61 mA All Inputs HIGH Extra Current Drain from one 9006 Extender Gate 0 FF 2.35 2.35 2.35 mA All Inputs Gnd 9006 Attached to a 9005 NOTE: Output characteristics apply to a 9005 (both gates} or a 9008. Input characteristics apply to a 9005 (both gates} or a 9008 using either the internal gates or an external 9006 extender. = 25°C) SWITCHING CHARACTERISTICS (TA LIMITS SYMBOL UNITS TEST CONDITIONS Min Max tPLH tPHL 3.0 3.0 12 14 ns Vee = 5.0 V, CL = 15 pF 9005 Non-extendable Gate Only, See Figure a tPLH tpHL 3.0 3.0 15 12 ns Vee = 5.0 V, CL = 15 pF, CN = 5.0 pF 9005 Extendable Gate and 9008, See Figure b ~tPLH -2.0 4.0 ~tPHL -2.0 4.0 9006 Only ns The 9006 is tested by measuring its propagation time through the 9005. The delay readings shall not exceed the 9005 readings by the specified amount. See Figure c SWITCHING CHARACTERISTICS TEST CIRCUITS VIN Vec «h ~ 2.0 kn -. tJ--l:==J- "" 9009 JL ~ d)-1 - ' -- 1~1.0MHz AMP ~ 4.0 V WIDTH ~ 200 ns t,=tf~10ns CL = 15 PFi.l ~ 9005 CL -= -= = 15 VOUT PF:1r -= -= Note: Capacitance includes probe and jig capacitance Fig. a 9005 Non-Extendable Gate 5-15 • 9XXX Series SWITCHING CHARACTERISTICS (Cont'd) TEST CIRCUITS Vee VIN VOUl SL f -1.0 MHz AMP - 4.0 V INPUT WIDTH - 200 no Ir = If ~ 10 ns CN = 5.0 pF CL = 15 pF Note: Capacitance includes probe and jig capacitance Fig. b 9005 or 9008 Extendable Gate Vee 2.0kll 9009 Note: Capacitance includes probe and jig capacitance Fig. c 9006 Extender NOTES: With switch in postion (1) measure delay of 9005. With switch in position (2) measure delay (9005) + ' Capacitances include probe and jig capacitances. Fig. d Switching Waveform 5-16 9XXX Series CONNECTION DIAGRAM PINOUT A 9009 NAND BUFFER ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V, ±5%, TA = O°C to +75°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG IT r----- TYPE II t--- A 9009DC 9009DM 6A Flatpak (F) A 9009FC 9009FM 31 - NC[I Ceramic DIP (D) ~vcc IT r----1 IT 11 GNOIT ~~ ~ ~ iTIl NC ~ ~ ~ INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 9XXX (U.L.) Vcc = Pin 14 GND = Pin 7 HIGH/LOW 3.0/2.0 90/26 (99)/(25.5) DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: Vee SYMBOL O°C PARAMETER 25°C 75°C UNITS = +5.0 V ±5% CONDITIONS Min Max Min Max Min Max VIH Input HIGH Voltage Vil Input LOW Voltage VOL Output LOW Voltage hH Input HIGH Current III 1.9 1.8 0.85 1.6 0.85 0.45 0.85 Power Supply Current (each gate) tPlH tPHl Propagation Delay I ON IOFF Guaranteed Input HIGH Threshold V Guaranteed Input LOW Threshold Vee = 5.25 V, IOl = 48 rnA, VIN = 5.25 V Vee = 4.75 V, IOl = 42.3 rnA, Inputs at VIH 0.45 0.45 V 120 120 IJ.A Vee = 5.25 V, VIN = 4.5 V Gnd on Other Inputs -3.2 -3.2 -3.2 rnA -2.82 -2.82 -2.82 Vee = 5.25 V, VIN = .45 V 5.25 V on Other Inputs Vee - 4.75 V, VIN -.45 V 5.25 V on Other Inputs 14.6 3.4 14.6 3.4 14.6 3.4 rnA VIN = Open VIN - Gnd ns Figs. 3-1, 3-4 Cl = 15 pF Input LOW Current leeH leel V 3.0 2.0 5-17 17 13 9XXX Series DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: Vee = +5.0 V ±10% SYMBOL -55°C PARAMETER 25°C' 125°C UNITS CONDITIONS Min Max Min Max Min Max VIH Input HIGH Voltage Vil Input LOW Voltage VOL Output LOW Voltage hH Input HIGH Current ill Input LOW Current 1.7 2.0 0.8 0.9 0.4 -3.2 leeH leel Power Supply Current (each gate) tPlH tPHl Propagation Delay I ON I OFF 1.4 0.8 V Guaranteed Input LOW Threshold Vee = 5.5 V, IOl = 52.8 rnA VIN = 5.5 V Vee - 4.5 V, IOl = 40.8 rnA, Inputs at VIH 0.4 V 120 120 /loA Vee = 5.5 V, VIN = 4.5 V Gnd on Other Inputs -3.2 -3.2 rnA Vee = 5.5 V VIN = 0.4 V 5.5 V on Other Inputs Vee = 4.5 V VIN = 0.4 V 5.5 V on Other Inputs rnA VIN = Open VIN - Gnd ns Figs. 3-1, 3-4 Cl = 15 pF -2.48 -2.48 12.9 3.2 12.9 3.2 12.9 3.2 5-18 Guaranteed Input HIGH Threshold 0.4 -2.48 4.0 3.0 V 15 10 9XXX Series CONNECTION DIAGRAM PINOUT A 9014 QUAD EXCLUSIVE-OR GATE 0: DESCRIPTION - The 9014 consists of four Exclusive-OR gates, useful in a large number of code conversion, parity generation/checking, and com parison applications. The Exclusive-OR gate produces an output when the inputs are complementary. Two gates have an additional inverted output which provides directly a compare capability. The Boolean expressions for the gates are: Z = AS + AB; Z = AB + AB. PKGS OUT ~-f( El mvcc :ill rG( TIJ :ill ...... ]] A[I elI JJD z[! zIT -«:JGNO[! ORDERING CODE: See Section 9 PIN II II COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +75°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG A 9014DC 9014DM 6B Flatpak (F) A 9014FC 9014FM 4L ~ vcc = Pin 16 GND = Pin 8 TYPE Ceramic DIP (0) :TIl TRUTH TABLE INPUTS OUTPUTS INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions 9XXX Series HIGH/LOW PINS Inputs Outputs Pins 3, 7, 9, 13 Pins 6, 10 2.25/1.5 A B Z Z L L H H L H L H L H H L H L L H H = HIGH Voltage Level L = LOW Voltage Level 30/8.8 (33)/(8.5) 28.5/7.9 (30)/(7.75) DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: Vee = +5.0 V ±5% SYMBOL PARAMETER GOC 25°C 75°C UNITS CONDITIONS Min Max Min Max Min Max VIH Input HIGH Voltage VIL Input LOW Voltage VOL Output LOW Voltage 1.9 1.8 0.85 0.45 5-19 1.6 0.85 0.45 0.85 0.45 V Guaranteed Input HIGH Threshold V Guaranteed Input LOW Threshold V Vee = 5.25 V, IOL = 16 mA IOL = 14.4 mA (Pins 6 & 10) Inputs = 5.25 V or 0 V per Truth Table • 9XXX Series DC AND AC CHARACTERISTICS OVER COMMERCiAL TEMPERATURE RANGE: Vee SYMBOL O°C PARAMETER 25°C 75°C = +5.0 V ±5% UNITS CONDITIONS V Vee = 4.75 V, IOL = 14.1 rnA IOL = 12.7 rnA (Pins 6 & 10) Inputs = 5.25 V or 0 V per Truth Table Min Max Min Max Min Max VOL ilL Icc Output LOW Voltage tPHH 2 tpLL 2 tPLH 2 tPHL 2 0.45 0.45 -2.4 -2.4 -2.4 -2.1 -2.1 -2.1 Input LOW Current Power Supply Current, each gate Power Supply Current Per Inverter tPLH 1 tpHL 1 tPHH 1 tPLL 1 0.45 rnA ON OFF ON OFF 4.5 4.5 4.5 8.7 7.6 6.1 1.7 8.7 7.6 6.1 1.7 8.7 7.6 6.1 1.7 rnA rnA rnA One Input = 5.5 V, One Input = Gnd Inputs - Gnd Inputs = 5.5 V Input Node HIGH Input Node LOW Switching Tests 3.0 3.0 6.0 6.0 13 15 28 28 ns CL = 15 pF, VINl Fig. a, Fig. b = 5.0 V Switching Tests 7.0 7.0 10 10 17 19 32 32 ns CL = 15 pF, VINl Fig. a, Fig. c =0 V DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: Vee SYMBOL Vee = 5.25 V, VIN = .45 V Other Inputs = 5.25 V Vee - 4.75 V, VIN -.45 V Other Inputs = 5.25 V PARAMETER -55°C 25°C 125°C = +5.0 V ±10% UNITS CONDITIONS Min Max Min Max Min Max VIH Input HIGH Voltage VIL Input LOW Voltage 2.0 1.7 0.8 0.4 VOL 1.4 0.9 0.4 0.8 5-20 0.4 Guaranteed Input HIGH Threshold V Guaranteed Input LOW Threshold V Vee = 5.5 V, IOL = 17.6 rnA IOL = 16 rnA (Pins 6 & 10) Inputs = 5.5 V or 0 V per Truth Table Vee - 4.5 V, IOL = 13.6 rnA IOL = 12.4 rnA (Pins 6 & 10) Inputs = 5.5 V or 0 V per Truth Table 0.4 Output LOW Voltage 0.4 V 0.4 9XXX Series DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: Vee -55°C PARAMETER SYMBOL 25°C 125°C = +5.0 V ±10% UNITS CONDITIONS Min Max Min Max Min Max -2.4 -2.4 IlL rnA -1.86 -1.86 -1.86 4.2 4.2 4.2 8.1 7.2 5.5 1.6 8.1 7.2 5.5 1.6 8.1 7.2 5.5 1.6 ON Power Supply Current, each gate lee Vee = 5.5 V, VIN = 0.4 V Other Inputs = 5.5 V Vee = 4.5 V, VIN = 0.4 V Other Inputs = 5.5 V -2.4 Input LOW Current OFF Power Supply Current Per Inverter ON OFF One Input = 5.5 V One Input = Gnd Inputs Gnd Inputs = 5.5 V Input Node HIGH Input Node LOW rnA rnA rnA tPLH 1 tpHL 1 tPHH 1 tPLL 1 Switching Tests 3.0 3.0 6.0 6.0 10 12 22 22 ns CL = 15 pF, VIN1 Fig. a, Fig. b = 5.0 V tPHH 2 tPLL 2 tPLH 2 tPHL 2 Switching Tests 7.0 7.0 10 10 14 16 26 26 ns CL = 15 pF, VIN1 Fig. a, Fig. C =0 SWITCHING TEST CIRCUIT Vee 2k YOUT! ~~2 O-~ YIN! ...c-<> 1/49002 SL a-::f"""--J' '~1 AMP. ~4.0Y PULSE WIDTH ---f\)' ..... VIN2 I lo:u:T.' ...... I -- -- --- MHz t, =t, S 10 ns 1-----""1 ±'' ' = 200 ± 20 ns = I Cl * Cl*I "::'~ includes probe and jig capacity *CL Fig. a WAVEFORMS , " =1-~_,=~--m}=-:,::'" YIN' - . : : . i - - - - - - - - - - - \ - - - - - - 1 . 5 Y ~ -I --------'o~'nn~J":":- nnnt" YOUT! -IPHl! =~\. -IPlH! '""" ----- -----------1- ------..., ----1.5Y 'o~, mn\:"~'mnnF",~, 1.5Y Fig. c Fig. b 5-21 V • 9XXX Series CONNECTION DIAGRAM PINOUT A 9015 QUAD NOR GATE DESCRIPTION - The 9015 consists of three 2-input and one 4-input NOR gates. The NOR gate produces a LOW output if any of the inputs are HIGH. PKG IT II II TYPE [I II II ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +75°C Vee = +5.0 V ±10%, TA = -55°C to +125°C Ceramic DIP (0) A 9015DC 9015DM 68 Flatpak (F) A 9015FC 9015FM 4L IT GND II - :!!I Vee ~Jt :m m :ill ~~ TIl TIl ~ ]] INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 9XXX (U.L.) HIGH/LOW 1.5/1.0 30/8.8 (33)/(8.5) DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: Vee SYMBOL PARAMETER O°C 25°C 75°C UNITS = +5.0 V ±5% CONDITIONS Min Max Min Max Min Max VIH Input HIGH Voltage VIL Input LOW Voltage VOH Output HIGH Voltage VOL 1.9 1.8 0.85 2.4 1.6 0.85 2.4 0.85 2.4 0.45 0.45 0.45 0.45 0.45 0.45 Output LOW Voltage 5-22 V Guaranteed Input HIGH Threshold V Guaranteed Input LOW Threshold V Vee = 4.75 V, IOH = -1.2 rnA, Inputs = VIL V Vee = 5.25 V, IOL = 16 rnA, Inputs = 5.25 V Vee - 4.75 V, IOL = 14.1 rnA, Inputs = VIH 9XXX Series DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE (Cont'd) SYBMOL O°C PARAMETER 25°C 75°C UNITS CONDITIONS Min Max Min Max Min Max hL Power Supply Current, each gate OFF tPLH tPHL -1.6 -1.6 rnA -1.41 -1.41 -1.41 rnA 6.55 6.55 6.55 8.75 8.75 8.75 3.38 3.38 3.38 6.77 6.77 6.77 Input LOW Current ON Icc -1.6 3.0 3.0 Propagation Delay 13 15 rnA rnA ns Vee = 5.25 V, VIN =.45 V 5.25 V on Other Inputs Vee - 4.75 V, VIN - .45 V 5.25 V on Other Inputs Inputs HIGH Inputs HIGH (4-lnput Gate Only) Inputs LOW Inputs LOW (4-lnput Gate Only) CL = 15 pF Fig. 3-4 DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: Vee = +5.0 V ±10% SYMBOL -55° PARAMETER 25°C 125°C UNITS CONDITIONS Min Max Min Max Min Max VIH Input HIGH Voltage VIL Input LOW Voltage VOH Output HIGH Voltage 2.0 1.7 0.8 2.4 0.9 2.4 0.4 VOL hL 2.4 0.4 V Guaranteed Input HIGH Threshold V Guaranteed Input LOW Threshold V Vee = 4.5 V, IOH = -1.32 rnA, Inputs = VIL V Vee = 5.5 V, Inputs = 5.5 V, IOL = 17.6 rnA Vee - 4.5 V, VIN ;= VIH, IOL = 13.6 rnA 0.4 0.4 0.4 0.4 -1.6 -1.6 -1.6 rnA -1.24 -1.24 -1.24 rnA 6.07 6.07 6.07 Input LOW Current Power Supply Current, each gate OFF tPLH tPHL 0.8 Output LOW Voltage ON Icc 1.4 8.14 8.14 8.14 3.2 3.2 3.2 6.4 6.4 6.4 3.0 3.0 Propagation Delay 5-23 10 12 rnA rnA ns Vee = 5.5 V, VIN = 0.4 V 5.5 V on Other Inputs' Vee - 4.5 V VIN - 0.4 V 5.5 V on Other Inputs Inputs HIGH Inputs HIGH (4-lnput Gate Only) Inputs LOW Inputs LOW (4-lnput Gate Only) CL = 15 pF Fig. 3-4 9XXX Series CONNECTION DIAGRAM PINOUT A 9024 DUAL JK (OR D) FLIP-FLOP - ~OlIT i1!l illi~o Kl[! :EJ J Eli CP1[! 11 :fficp Ql[! TIl So 501 DESCRIPTION - The 9024 consists of two high speed, clocked JK flipflops. The Ciocking operation is independent of rise and fall times of the clock waveform. The JK design allows operation as a D flip-flop by simply connecting the J and K pins together. I! ~Q GNDI! ]]0 "01 ORDERING CODE: See Section 9 PIN PKGS OUT LOGIC SYMBOL COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +75°C Vee = +5.0 V ±10%, TA = -55°C to +125°C 5 PKG TYPE Ceramic DIP (D) A 9024DC 9024DM 68 Flatpak (F) A 9024FC 9024FM 4L b SOl 2 - Jl Ql Kl COl INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions SYNCHRONOUS ENTRY J-K MODE OPERATION INPUTS @ tn OUTPUTS @ tn + 1 J K Q L L H H H L H L No Change L H H L Toggles Q Q r--10 1 2 - CP 1.5/1.0 3.0/2.0 6.0/3.0 30/8.8 (7.8) Clock, So Inputs Co Input Outputs b So 14- J 9XXX (U.L.) HIGH/LOW ~7 9 1 11 J, K Inputs Ql r - - 6 4 - CPl 3~ PINS Vee Jl[! 13~K Co 9 15 SYNCHRONOUS ENTRY D MODE OPERATION INPUTS @ tn OUTPUTS @ tn + 1 D Q Q L H L H H L H = HIGH Voltage Level L = LOW Voltage Level tn, tn+1 = time before and after rising edge of CPo 5-24 QP-9 Vcc = Pin 16 GND = Pin 8 ASYNCHRONOUS ENTRY INDEPENDENT OF CLOCK & SYNCHRONOUS INPUTS INPUTS OUTPUTS So CD Q Q 5(11) 1(15) 6(10) 7(9) L L H H L H L H H H H L L H No Change 9XXX Series DC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: Vee SYMBOL PARAMETER GOC 25°C 75°C = +5.0 V ±5% UNITS CONDITIONS Min Max Min Max Min Max VIH Input HIGH Voltage VIL Input LOW Voltage VOL Output LOW Voltage 1.9 1.8 0.85 0.45 1.6 0.85 0.85 0.45 0.45 SO 120 240 SO 120 240 -1.6 -3.2 -4.8 -1.41 -2.82 -4.23 -1.6 -3.2 -4.8 -1.41 -2.82 -4.23 V Guaranteed Input HIGH Threshold V Guaranteed Input LOW Threshold V Vee = 4.75 V, 10L = 14.1 rnA Vee = 5.25 V, 10L = 1S rnA Input HIGH Current hH J, K Clock Input, CD So p.A Vee = 5.25 V, VIN =4.5 V Gnd on Other Inputs rnA Vee = 5.25 V, VIN =.45 V 4.5 V on Other Inputs rnA Vee = 4.75 V, VIN = .45 V 4.5 V on Other Inputs rnA Vee = 5.25 V, VOUT = 0 V rnA Per Flip-Flop in Worst Logic State Input LOW Current J,K hL Clock Input, CD' So J, K Clock Input, CD' So los Output Short Circuit Current lee Power Supply Current -1.S -3.2 -4.8 -1.41 -2.82 -4.23 -30 -100 -30 -100 -30 -100 14 'Denotes maximum current under normal operation. These currents may Increase up to 4 IlL if J. 5-25 K = HIGH and So = LOW. • 9XXX Series DC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: Vee -55°C PARAMETER SYMBOL 25°C = +5.0 ±10% 125°C UNITS CONDITIONS Min Max Min Max Min Max V Guaranteed Input HIGH Threshold 0.8 V Guaranteed Input LOW Threshold 0.4 0.4 V Vee = 4.5 V, 10L = 12.4 mA Vee - 5.5 V, 10L = 16 mA 60 120 240 120 240 -1.6 -3.2 -4.8 -1.24 -2.48 -3.72 -1.6 "3.2 -4.8 -1.24 -2.48 -3.72 1.7 2.0 1.4 VIH Input HIGH Voltage VIL Input LOW Voltage 0.8 0.9 Output LOW Voltage 0.4 VOL Input HIGH Current hH J,K Clock Input, So CD 60 J.lA Vee = 5.5 V, VIN = 4.5 V· Gnd on Other Inputs mA Vee = 5.5 V, VIN = 0.4 V 4.5 V on Other Inputs mA Vee = 4.5 V, VIN = 0.4 V 4.5 V on Other Inputs mA Vee = 5.5 V, VOUT = 0 V mA Per Flip-Flop in Worst Logic State Input LOW Current J,K ilL -1.6 -3.2 -4.8 -1.24 -2.48 -3.72 Clock Input, So CD (Note 4) J, K Clock Input, So ~o· los Output Short Circuit Current Icc Power Supply Current -30 -100 -30 -100 -30 14 "Denotes maximum current under normal operation. These currents may increase up to SWITCHING CHARACTERISTICS: TA SYMBOL -100 = 25°C, Vee 9XXX Min Propagation Delay CP to Q or Q th (H) th (U J, Kto CP ts (H) ts(U Setup Time HIGH or LOW J, "Kto CP tPLH Hold Time HIGH or LOW if J, K= HIGH and So = LOW. = +5.0 V, CL = 15 pF PARAMETER tPLH tpHL 4 hL UNITS TEST CONDITIONS Max 20 33 0 ns Figs. 3-1, 3-8 ns Figs. 3-1, 3-6 20 1.0 ns Propagation Delay SD to Q, CD to C 12 ns tPHL Propagation Delay So to C, CD to Q 25 fmax Maximum Toggle Frequency Figs. 3-1, 3-16 25 ns MHz 5-26 Figs. 3-1, 3-8 00 CONNECTION DIAGRAM PINOUT A 9300 93HOO 93LOO 93500 - MRII ~vcc rm J[I PorI 4-BIT UNIVERSAL SHIFT REGISTER DESCRIPTION - The '00 is a 4-bit universal shift register. As a high speed multifunctional sequential logic block, it is useful in a wide variety of register and counter applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial, and parallel-parallel data register transfers. oo ~01 ~02 i[I P1[I 1m 03 P2[! ~Q3 P3[I rm cp ~PE GNO[[ LOGIC SYMBOL • ASYNCHRONOUS MASTER RESET • J, K INPUTS TO FIRST STAGE 1iii r ORDERING CODE: See Section 9 PE Po P1 P2 P3 2- PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP (P) A 9300PC, 93HOOPC 93LOOPC, 93S00PC Ceramic DIP (0) A 9300DC, 93HOODC 93LOODC, 93S00DC 9300DM, 93HOODM 93LOODM, 93S00DM 68 Flatpak (F) A 9300FC, 93HOOFC 93LOOFC, 93S00FC 9300FM, 93HOOFM 93LOOFM, 93S00FM 4L 98 J cp . 103---(1 K 03 MR 0001 P--11 0203 ! 1~ 1~ )3 )2 Vcc = Pin 16 = Pin 8 GND INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES PE PO-P3 J K CP -MR 00-03 ci3 93XX (U.l.) HIGH/LOW 93H (U.l.) HIGH/LOW 93l (U.l.) HIGH/LOW 93S (U.L.) HIGH/LOW Parallel Enable Input (Active LOW) Parallel Inputs First Stage J Input (Active HIGH) First Stage K Input (Active LOW) Clock Pulse Input (Active Rising Edge) Master Reset Input Parallel Outputs 2.3/2.3 1.0/1.0 1.15/0.575 1.25/1.25 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 0.5/0.25 0.5/0.25 1.011.0 1.0/1.0 1.0/1.0 1.0/1.0 0.5/0.25 1.0/1.0 2.0/2.0 2.0/2.0 1.0/0.5 2.5/2.5 1.0/1.0 12/6.0 1.0/1.0 16/8.0 1.25/1.25 25/12.5 Complementary Last Stage Output 16/8.0 20/10 0.5/0.25 10/5.0 (3.0) 10/5.0 (3.0) DESCRIPTION 6-3 25/12.5 I 00 LOGIC DIAGRAMS '00, 'HOO, 'LOO c.--~-C)o--~------~------~----~--------'-----+-----+-------~r---~~----~------~ 03 K-I--I--r"_ MR-------------------+-----+----------------+---4---------------~~--+_---------------J 00 '500 PE J Po ., " 6-4 P3 c. MR 00 FUNCTIONAL DESCRIPTION - The Logic Diagrams and Truth Table indicate the functional characteristics of the '00 4-bit shift register. The device is useful in a wide variety of shifting, counting and storage applications. It performs serial, parallel, serial-to-parallel, or parallel-to-serial data transfers. The '00 has two primary modes of operation, shift right (00..-01)and parallel load, which are controlled by the state of the Parallel Enable (PE) input. When the PE input is HIGH, serial data enters the first flip-flop 00 via the J and K inputs and is shifted one bit in the direction 00"-01"-02 "03 following each LOW-to-HIGH clock transition. The JK inputs provide the flexibility of the JK type input for special applications, and the simple Dtype input for general applications by tying the two pins together. When the PE input is LOW, the '00 appears as four common clocked D flip-flops. The data on the parallel inputs Po - P3 is transferred to the respective 0003 outputs following the LOW-to-HIGH clock transition. Shift left operation (03. .02) can be achieved bytying the On outputs to the Pn-1 inputs and holding the PE input LOW. All serial and parallel data transfers are synch ronous, occuring after each LOW-to-H I GH clock transition. Since the '00 utilizes edge triggering, there is no restriction on the activity of the J, Pn and PE inputs for logic operation - except for the setup and release time requirements. A LOW on the asynchronous Master Reset (MR) input sets all 0 outputs LOW, independent of any other input condition. K. • TRUTH TABLE OPERATING MODE INPUTS (MR = H) OUTPUTS @ tn + 1 PE J K Po P1 P2 P3 00 01 H H H H L L H H L H L H X X X X X X X X X X X X X X X X L 00 PARALLEL L ENTRY MODE L X X X X L H L H L H L H SHIFT MODE .. ·tn + 1 = Indicates state after next LOW-to-HIGH clOCk transition. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 6-5 02 00 01 00 01 03 03 H Qo 01 Qo 01 02 02 02 02 02 ~ 02 02 L H L H L H 00 L H H L 00 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER los Output Short Circuit Current lee Power SUPPIY~ Current XM 93XX 93H 93l Min Max Min Max -20 -80 -30 -100 Min 112 102 92 86 93S Max UNITS CONDITIONS Max Min 23 120 mA Vee = Max, Vour = 0 V mA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25° C )See Section 3 for waveforms and load configurations) 93XX SYMBOL PARAMETER 93H 93l 93S CL = 15 pF CL = 15 pF CL = 15 pF CL = 15 pF Min Max Min Max Min Max f max Maximum Shift Frequency tPLH tPHL Propagation Delay CP to On 22 26 16 21 35 51 tPHL Propagation Delay MR to On 40 28 60 30 45 10 Min UNITS CONDITIONS Max 70 MHz Figs. 3-1, 3-8 8.5 12 ns Figs. 3-1, 3-8 23 ns Figs. 3-1, 3-17 UNITS CONDITIONS AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL PARAMETER 93XX Min Max 93H Min Max 93l Min Max 93S Min Max Setup Time..tIlGH or LOW, J, K and Po- P3 to CP 20 20 th (H) th (U Hold Time HIGH or LOW, J, K and Po- P3 to CP 0 0 0 0 0 0 0 0 ns ts (H) ts (U Setup Ti~HIGH or LOW, PE to CP 39 39 15 15 68 68 8.0 8.0 ns th (H) th (U Hold Time HIGH or LOW, PE to CP -10 -10 0 0 -20 -20 0 0 ns tw (H) tw (U CP Pulse Width HIGH or LOW 17 17 12 12 38 38 7.0 7.0 ns tw (U MR Pulse Width LOW 25 19 53 12 ns tree Recovery Ti me MR to CP 25 7.0 70 5.0 ns ts (H) ts (U 12 12 60 60 6.0 6.0 ns Fig. 3-6 Fig. 3-6 Fig. 3-8 Fig. 3-16 6-6 01 CONNECTION DIAGRAM PINOUT A 9301 93L01 1-0F-10 DECODER - Ad:! ~vcc ~AO As@: 05 [! Os G: rm 08 [! till 0, till 02 IT ~03 GNOI! 1]0. Od:~ 09 DESCRIPTION - The '01 multipurpose decoders are designed to accept four inputs and provide ten mutually exclusive outputs. • • • • MULTIFUNCTION CAPABILITY MUTUALLY EXCLUSIVE OUTPUTS DEMUL TIPLEXING CAPABILITY TYPICAL POWER DISSIPATION OF 145 mW for '01, 45mW for'L01 A1 ~OO • LOGIC SYMBOL Y Ao y A1 2 1 A2 I A3 ORDERING CODE: See section 9 00 01 02 03 O. 05 Os 0; 08 o. PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 9301 PC, 93L01 PC Ceramic DIP (0) A 9301 DC, 93L01 DC 9301DM, 93L01 OM 68 Flatpak (F) A 9301 FC, 93L01 FC 9301 FM, 93L01 FM 4L 98 !X~!!r!!r1 Vee = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES AcJ-A3 Bo-Os DESCRIPTION Address Inputs Decoder Outputs (Active LOW) 6-7 93XX (U.L.) HIGH/LOW 93L (U.L.) HIGH/LOW 1.0/1.0 20/10 0.5/0.25 10/5.0 (3.0> 01 FUNCTIONAL DESCRIPTION - The '01 decoder accepts four active HIGH BCD inputs and provides ten mutually exclusive active LOW outputs, as shown by logic symbol or diagram. The active LOW outputs facilitate addressing other MSI units with active LOW input.enables. The logic design of the '01 ensures that all outputs are HIGH when binary codes greater than nine are applied to the inputs. The most significant input A3 produces a useful inhibit function when the '01 is used as a 1-of-8 decoder. TRUTH TABLE INPUTS OUTPUTS Ao A1 A2. A3 00 01 02 03 04 Os Os 07 08 Qg L H L H L L H H L L L L L L L L L H H H H L H H H H L H H H H L H H H H H H H H H H H H H H H H H H H H H, H H H L H L H L L H H H H H H L L L L H H H H H H H H H H H H H H H H L H H H H L H H H H L H H H H L H H H H H H H H L H L H L L H H L L L L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L H H H H L H H L H L H L L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H = HIGH Voltage Level L = LOW Voltage Level LOGIC DIAGRAM Ao t y I I lt9 00 01 6-8 01 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93XX PARAMETER Min Icc SYMBOL = +5.0 V, TA 93XX PARAMETER = 15 pF Min Propagation Delay An to On UNITS CONDITIONS Max 13 rnA Vee = +25°C (See Section 3 for waveforms and CL tPLH jpHL Min 44 Power Supply Current AC CHARACTERISTICS: Vee Max 93l Max 35 30 93l UNITS = Max load configurations) CONDITIONS CL = 15 pF Min Max 36 36 ns Figs. 3-1, 3-20 • 6-9 02 CONNECTION DIAGRAM PINOUT A 9302 1-0F-10 DECODER (With Open-Collector Outputs) - AdI ""II lilAc [1 :mAl 05 as I! ad} TIl 00 • OUTPUTS HAVE WIRED-OR CAPABILITY • PROVIDES CAPABILITY TO GENERATE AND SUM MINTERMS OF 3 OR 4 VARIABLES • ACTIVE LOW OUTPUTS ARE USEFUL FOR DRIVING LOW VOLTAGE LAMPS AND RELAYS • MULTIFUNCTION CAPABILITY • MUTUALLY EXCLUSIVE OUTPUTS • DEMULTIPLEXING CAPABILITY • TYPICAL POWER DISSIPATION OF 145 mW ma, IT TIl 02 0912 ~03 GNO!I ]]04 08 DESCRIPTION - The '02 is a multipurpose decoder designed to accept four inputs and provide ten mutually exclusive outputs. The open-collector outputs provide wired-OR capability which can be used for numerous summing, decoding and demultiplexing operations. :ill Vee LOGIC SYMBOL 15 14 I I AD Al i 1 A2 A3 ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 9302PC Ceramic DIP (0) A 9302DC 9302DM 66 Flatpak (F) A 9302FC 9302FM 4L 96 00 0, 02 03 04 05 Os 0, 08 09 YYYYYYYy Yy 13 12 11 10 9 3 4 5 Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-A3 Co-Os 'oe - DESCRIPTION Address Inputs Decoder Outputs (Active LOW) 93XX (U.L.) HIGH/LOW 1.0/1.0 OC*/10 Open Collector 6-10 6 7 02 FUNCTIONAL DESCRIPTION - The '02 decoder accepts four active HIGH BCD inputs and provides ten mutually exclusive active LOW outputs, as shown by the logic symbol. The open-collector outputs provide easy summing of input terms. The '02 provides the capability in one package to generate and sum any or all of the minterms of three variables, or the first 10-or-16 minterms of four variables. The logic design of the '02 ensures that all outputs are HI GH when binary codes greater than nine are applied to the inputs. The most significant input (Al) produces a useful inhibit function when the '02 is used as a 1-of-8 decoder. TRUTH TABLE INPUTS OUTPUTS Ao A1 A2 A3 00 01 02 03 04 05 06 07 08 09 L H L H L L H H L L L L L L L L L H H H H L H H H H L H H H H L H H H H H H H H H H H H H H H H H H H H H H H H L H L H L L H H H H H H L L L L H H H H H H H H H H H H H H H H L H H H H L H H H H L H H H H L H H H H H H H H L H L H L L H H L L L L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L H H H H L H H L H L H L L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H = HIGH Voltage Level L = LOW Voltage Level LOGIC DIAGRAM 6-11 02 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93XX PARAMETER Min leEx Output HIGH Leakage Current lee Power Supply Current UNITS CONDITIONS 250 p.A Vee = Min, VeEx = 5.5 V VIN = VIH or VIL per Truth Table 44 mA Vee = Max Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 93XX SYMBOL PARAMETER CL = 15 pF RL = 400 n Min tPLH tPHL Propagation Delay An to On CONDITIONS Max 35 30 6-12 UNITS ns Figs. 3-2, 3-20 04 CONNECTION DIAGRAM PINOUT A 9304 BrI ~Al !:mBl 'ColI ~CI iII ~co ~s sIT PKGS OUT Vee = +5.0 V ±5%, TA = O°C to +70°C MILITARY GRADE Vee = +5.0 V ±10 %, TA = -55°C to +125°C ~so GNOII LOGIC SYMBOL i i1 ORDERING CODE: See Section 9 COMMERCIAL GRADE ~B2 cii MULTIFUNCTION CAPABILITY 8.0 ns CARRY PROPAGATION DELAY COMPLEMENTARY INPUTS AND OUTPUTS AVAILABLE TYPICAL POWER DISSIPATION OF 150 mW PIN ~vcc AlI DESCRIPTION - The '04 consists of two independent, binary full adders. The adders are useful in a wide variety of applications including multiple bit parallei add/serial carry addition, parity generation and checking, code conversion and majority gating. • • • • - A20:: DUAL FULL ADDER C B A I8~ 2 1 2 1 B A C PKG FULL ADDER 1 TYPE Plastic DIP(P) A 9304PC Ceramic DIP (D) A 9304DC 9404DM 6B Flatpak (F) A 9304FC 9304FM 4L 9B s s !! Co r FULL ADDER 2 S }o !L Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Full Adder 1 A, B C, S S Co Full Adder 2 A1, B1 A2,B2 C, S S Co DESCRIPTION 93XX (U.L.) HIGH/LOW Operand Inputs Carry Input Sum Output Complementary Sum Output Carry Output (Active LOW) 4.0/4.0 4.0/4.0 20/10 20/10 OR Operand Inputs (Active HIGH) OR Operand Inputs (Active LOW) Carry Input (Active LOW) Sum Output Complementary Sum Output Carry Output (Active HIGH) 1.0/1.0 4.0/4.0 4.0/4.0 20/10 20/10 1417.0 1417.0 .. 6-13 Co S • 04 FUNCTIONAL DESCRIPTION - The '04 logic block consists of two separate high speed carry dependent sum full adders. This design allows a minimum carry propagation time when the adders are used in ripple carry applications. The adders are identical except that adder 2 has provision for either active HIGH or active LOW inputs at the A and B terminals. The adders produce a LOW carry and both LOW and HIGH sum with active HIGH inputs, a HIGH carry and both HIGH and LOW sum when active LOW inputs are used. This principle of duality is shown in the diagram below, where the adders are drawn as functional blocks. TRUTH TABLES ADDER 1 INPUTS ADDER 2 OUTPUTS INPUTS OUTPUTS CI B A Co S S CI B1 A1 B2 A2 Co S S L L L L L L H H L H L H H H H L H L L H L H H L L L L L L L L L L L L L L L H H L H L H H H H L H L L H L H H L H H H H L L H H L H L H H L L L L H H L H L L H L L L L L L L L H H H H L L H H L H L H H H H H H H L L L L H H L L L L H H H H L L L L L L H H L H L H H H H H H L H L L H L H L L L L H H H H H H H H L L H H L H L H H H H H H H H H L L L L H H H H L L L L L L L L L L H H L H L H H L L L L H H L H L L H H H H H L L L L H H H H L L H H L H L H H H L L L L H H H H L L H H H H H H H H L L L L L L H H L H L H H L H L L H L H H L H L H H H H H H H H H H H H L L H H L H L H H H H H L L L L H H H H H = HIGH Voltage Level L = LOW Voltage Level ACTIVE LOW ACTIVE HIGH 6-14 04 LOGIC DIAGRAM ADDER 1 ~ A B CI o--s - 5 CO ADDER 2 A1 }- to. .... -- A2 B1-t> 82 0-5 '---' H CI - -- - --i..-. s Co DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93XX PARAMETER Ise Output Short Circuit Current lee Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, TA UNITS CONDITIONS Min Max -20 -70 mA Vee = Max, VOUT = 0 V 55 mA Vee =Max, Pins 13 & 14=0 V = +25°C (See Section 3 for waveforms and load configurations) 93XX SYMBOL PARAMETER CL = 15 pF Min UNITS CONDITIONS Max tPLH tpHL Propagation Delay An to S 36 35 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay CI to Co 13 13 ns Figs. 3-1, 3-4 6-15 • 05 CONNECTION DIAGRAM PINOUT A 9305 VARIABLE MODULUS COUNTER DESCRIPTION - The 'OS is a monolithic, high speed, variable modulus counter circuit. It is a semisynchronous counter which can be programmed without extra logic to provide division or counting by either 2 and 4, S, 6, 7, 8 or 10, 12, 14, 16. A binary count sequence can be obtained for all of the preceding counter modulos as well as SO% duty cycle output for dividers of 8,10, 12, 14, 16. The device also features asynchronous overriding Master Reset and Set inputs and the negation output of the final flip-flop output which allows the cascading of stages. • VARIOUS BINARY COUNTING MODES MODULO 2 AND MODULO 5, 6, 7, 8 MODULO 10 (8421 BCD) 12, 14, 16 • VARIOUS DIVISION MODES WITH 50% DUTY CYCLE OUTPUT MODULO 8,10,12,14,16 • LOGIC SELECTION OF COUNTING MODE • ASYNCHRONOUS MASTER RESET ANS SET INPUTS • MULTISTAGE COUNTING OPERATION PKGS OUT C3[I TIJMR IT ~oo SlIT :!!lOa 03 [I 0, [I TIl CPa So :IjOl }]CPl GNOIT LOGIC SYMBOL 1 3 4 b I S,I MS So ORDERING CODE: See Section 9 PIN :!il Vee ~ MSU 1 0 - CPo COMMERCIAL GRADE MILITARY GRADE Vee = +S.O V ±S%, TA = O°C to +70°C Vee = +S.O V ±10%, TA = -SsoC to +12SoC 03 PKG TYPE Plastic DIP(P) A 930SPC Ceramic DIP (D) A 930SDC 930SDM 6A Flatpak (F) A 930SFC 930SFM 38 8 - CP, MR 00 00 Q1 Q2 Q3 ! L'2 ! ! ! 9A vce = Pin 14 GND = Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES So, Sl CPo CP1 MS MR 00 00 01-03 03 DESCRIPTION Select Inputs First Stage Clock Pulse Input (Active Rising Edge) Three Stage Clock Pulse Input (Active Rising Edge) Master Set Input (Active LOW) Master Reset Input (Active LOW) First Stage Output Complementary First Stage Output Three Stage Counter Outputs Complementary Last Stage Output 6-16 93XX (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 16/8.0 16/8.0 16/8.0 20/10 0--2 05 FUNCTIONAL DESCRIPTION - The '05 consists of four master/slave flip-flops which are separated into two functional units - a single toggle stage and a three stage synchronous counter. All four fli p-fli ps change state on the LOW-to-HIGH transition of the clock. The three stage counter can be programmed with external connections to provide moduli of either 5, 6, 7 or 8. This basic configuration allows synchronous binary counting by the last three stages and independent modulo 2 operation with the first single stage. A four stage binary counter with a modulo of 10,12, 14 or 16 is obtained by applying the incoming clock to the single toggle stage and feeding its negation output to the clock input of the three stage counter. A 4-stage divider with 50% duty cycle outpu.!..is produced by feeding the incoming clock to the three stage counter and clocking the single stage with the 03 output. In either the binary or 50%division mode the modulo(10, 12, 14, 16) is determined by the external programming connections for the three stage counter. These 4-stage counters or dividers are not fully synchronous (semisynchronous) but have only one flip-flop ripple delay in either configuration. Counter moduli other than 10, 12, 14, 16 can be formed with a few extra gates. Several '05 variable modulus counters programmed in any modulo can be connected together without extra logic to form asynchronous (ripple) type multistage counters. This is done by connecting the 03 output of the less significant counter to the clock input of the following counter. The Master Set and Reset will asynchronously set or reset all four stages when activated. The active LOW Reset input when LOW will clear the counter, overriding the clock and forcing the outputs 00 - 03 LOW and outputs Qo, Q3 HIGH. The active LOW Set input when LOW will preset the counter, overriding the clock and forcing the outputs 00 - 03 HIGH and outputs Qo, 03 LOW. The master set provides a synchronous clear, since the first clock pulse following the asynchronous master set will reset all stages. This action is independent of the molulo programmed. LOGIC DIAGRAM So-----..... s, ~-~---~---~~--~-------r_--_, SD cPo CD 0 OP+---0, 00 00 6-17 05 COUNTING MODE The following are rules specifying the external connections required for various counter and divider modulos. ASYNCHRONOUS MODE INPUTS OUTPUTS MSMR Co Co 01 L H H L H H H L H H L L COUNT' 02 03 03 H L H L L H -As determined by programming connections. H = HIGH Voltage Level L = LOW Voltage Level PROGRAMMING CONNECTIONS FOR LAST THREE STAGES So Sl MODULO NCNC 01 NC NCOl 5 6 6 02 NC NC02 0102 0201 7 7 CONNECTIONS FOR MODULO 10,12,14,16 BINARY COUNTERS AND 50% DUTY CYCLE DIVIDERS For~inary Counting 00 connected to CPl Incoming clock to CPo For 50% Duty Cycle Output '03 connected to CPo Incoming Clock to CPl 8 8 NC = Not Connected ALTERNATE PROGRAMMING CONNECTIONS FOR LAST THREE STAGES·· MODULO INPUTS OUTPUT So Sl 5 6 7 8 8 Oa 03 Oa 01 01 02 02 01 02 02 01 01 02 02 01 AVAILABLE OUTPUT FAN-OUT 14/8.0 1417.0 1417.0 1517.0 1517.0 --The alternate programming connections program the counter and conveniently terminate unused select inputs (NC). Since these inputs form the inputs to a single NAND gate (See logic diagram), their connection to the counter outputs for the various count modulos provides the indicated output drive. 6-18 05 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 93XX PARAMETER SYMBOL Ise Output Short Circuit Current lee Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, TA UNITS CONDITIONS Min Max -20 -70 mA Vee = Max, VOUT = 0 V 66 mA Vee = +25°C (See = Max Section 3 for waveforms and load configurations) 93XX PARAMETER SYMBOL CL = 15 pF Min UNITS CONDITIONS Max f max Maximum Count Frequency tpLH tPHL Propagation Delay CPo to Cb (Modulo 16 Connection) 38 48 ns tPLH tPHL Propagation Delay CPo to 00 21 30 ns Modulo-16 Figs. 3-1, 3-8 tPLH tPHL Propagation Delay CP1 to cb or 03 23 30 ns Modulo-8 Figs. 3-1, 3-8 tPLH Propagation Delay MS to Q1 26 ns Modulo-8 Figs. 3-1, 3-16 tPHL Propagation Delay MR to Q1 35 ns Modulo-8 Figs. 3-1, 3-16 AC OPERATING REQUIREMENTS: Vee 23 = +5.0 V, Modulo 16 (So to Q1, S1 to Q2,QotoCP1,lnputtoCPo) Figs. 3-1, 3-8 TA = +25°C 93XX PARAMETER SYMBOL MHz Min UNITS CONDITIONS Max 22 ns Fig. 3-8 24 ns Fig. 3-16 Recovery Time MS to CP1 25 ns Fig. 3-16 Recovery Time MR to CP1 30 ns Fig. 3-16 tw CPo Pulse Width tw MR or tree tree MS Pulse Width 6-19 07 CONNECTION DIAGRAM PINOUT A 9307 - A,[I 7-SEGMENT DECODER llivcc A~II ll)f J:TII Elg 1fiO[! m- RBi~ E]b Aaii TIle AolI ~d GND!! }]e DESCRIPTION - The '07 7-segment decoder Is designed to accept four inputs in 8421 BCD code and provide the appropriate outputs to drive a 7-segment numerical display. The decoder can be used with 7-segment incandescent lamp, neon,electro-Iuminescent, or CRT numeric displays. LOGIC SYMBOL • AUTOMATIC RIPPLE BLANKING FOR SUPPRESSION OF LEADING-EDGE ZEROES • LAMP INTENSITY MODULATION CAPABILITY • LAMP TEST FACILITY • BLANKING INPUT • ACTIVE HIGH OUTPUTS 7 1 6 2 3 5 I A,I A2I AaI ! ! Ao LT RBI ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C a PKG TYPE bed A 9307PC Ceramic DIP (D) A 9307DC 9307DM 6B Flatpak (F) A 9307FC 9307FM 4L 9B f 9 = Pin 16 = Pin 8 GND INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-Aa RBT IT RBO a-g DESCRIPTION BCD Inputs Ripple Blanking Input (Active LOW) Lamp Test Input (Active LOW) Ripple Blanking Output (Active LOW) Segment Outputs (Active HIGH) 6-20 RBO IIIIIII Y 13 12 11 10 9 15 14 Vcc Plastic DIP(P) e 93XX (U.L.) HIGH/LOW 0.25/1.0 0.25/0.5 1.25/4.0 1.75/1.5 0/6.25 4 07 FUNCTIONAL DESCRIPTION - The '07 7-segment decoder accepts a 4-bit BCD 8421 code input and produces the appropriate outputs for selection of segments in a 7-segment matrix display used for representing the decimal numbers 0-9. The seven outputs (a, b, c, d, e, f, g) of the decoder select the corresponding segments in the matrix shown in Figure a. The numeric designations chosen to represent the decimal numbers are shown in Figure b, together with the resulting displays for input code configurations in excess of binary nine. The decoder has active HIGH outputs so that a buffer transistor may be used directly to provide the high currents required for incandescent displays. If additional base drive current is required external resistors may be added from the supply voltage to the seven segment outputs of the decoders. If additional base drive current is required external resistors may be added from the supply voltage to the seven segment outputs of the decoders. The value of this resistor is constrained by the 10 mA current sinking capability of the output transistors of the circuit. The device has provision for automatic blanking of the leading and/or trailing-edge zeroes in a multi digit decimal number, resulting in an easily readable decimal display conforming to normal writing practice. In an eight digit mixed integer fraction decimal representation, using the automatic blanking capability, 0060.0300 would be displayed as 60.03. Leading-edge zero suppression is obtained by connecting the Ripple Blanking Output (RBO) of a decoder to the Ripple Blanking Input (RBU of the next lower stage device. The most significant decoder stage should have the RBI input grounded; and, since suppression of the least significant integer zero in a number is not usually desired, the RBI inputof this decoder stage should be left open. Asimilar procedure for the fractional part of a display will provide automatic suppression of trailing-edge zeroes . The decoder has an active LOW input Lamp Test which overrides all other input combinations and enables a check to be made on 'possible display malfunctions. The RBO terminal of the decoder can be OR-tied with a modulating signal viaan isolating buffer to achieve pulse duration intensity modulation. Asuitablesignal can be generated for this purpose by forming a variable frequency multivibrator with a cross coupled pair of TTL gates. LOGIC DIAGRAM [f A3 1 I RBO I I I Ll c d 6-21 9 • 07 TRUTH TABLE INPUTS OUTPUTS LT RBI Ao A1 A2 A3 a b c d e f 9 RBO L H H H X L H X X L L H X L L L X L L L X L L L H L H L H L H H H L H H H L H L H L H L H L H L H L L L H L H H 0 0 1 H H H H X X X X L H L H H H L L L L H H L L L L H H L H H H H L L H H H H H L H H L L L L L L H H H H H H H H H 2 3 4 5 H H H H H X X X X X L H L H L H H L L H H H L L L L L H H H H H H H L L H H H L H H H H L H L H H H H L H L H H L H H L H L H H H H H H H H 10 H H H H H L L H L L L H L L L L H H L L H L H H L L L L H L L H H H L H H H H L H H H H H 11 12 13 14 15 H H H H H X X X X X H L H L H H L L H H L H H H H 6 7 8 9 H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial a fLJb el Ie -d- Fig. a Segment Designation 0 I-I I- I 1 2 3 4 5 6 7 8 9 -, 10 I -I -I I I I- I- -I I-I I-I , I-I I 1-I -I I-I I 1Fig. b Numerical Designations 6-22 11 - 12 13 14 I I I- I , -I 1 - - 15 07 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93XX PARAMETER Min VOH VOL Output HIGH Voltage Output LOW Voltage at a-g at ABO XM XC at a-g ~ XC at ABO ~ XC at a-g ~ XC at ABO UNITS 4.3 V 3.0 2.7 V 0.4 0.45 0.4 0.45 0.4 0.45 0.4 0.45 XM XC V V = 10 mA V 10L = 2.4 mA los Output Short Circuit Current at a - g ~ XC -3.7 -4.0 mA lee Power Supply Current ~ XC 73 82 mA TA = Max Vee ~ XC = +5.0 V, 10L = 12.5 mA 10L = 11.5 mA ee 10L - 3.1 mA 10L - 2.75 mA 10L Available Output Current at a - g -1.0 -1.1 Vee = Min 10H = 0 mA Vee = Min 10H = -70 p.A V IA AC CHARACTERISTICS: Vee CONDITIONS Max mA = 0.85 V Vee = Min = 0.75 V TA = Max Vee = Max, TA = +25°C VOUT = 0 V VOUT VOUT Vee = +25°C (See Section 3 for waveforms and = Max load configurations) 93XX SYMBOL PARAMETER CL = 30 pF Min tPLH tpHL Propagation Delay Ao-A3 or ABI to a-g or 6-23 CONDITIONS Max 750 750 ABO UNITS ns = Min Fig. 3-20 • 08 CONNECTION DIAGRAM PINOUT A 9308 93108 DUAL 4-BIT LATCH DESCRIPTION ~ The '08 is a dual 4-bit D-type latch designed for general purpose storage applications in digital systems. Each latch contains both an active LOW Master Reset input an active LOW Enable inputs. The 54174116 is a pin for pin equivalent of the 9308. ORDERING CODE: See Section 9 PKGS COMMERCIAL GRADE MILITARY GRADE PIN ~----------------~----------------~PKG Vee = +5.0 V ±5%, Vee = +5.0 V ±10%, TYPE OUT TA = -55°C to +125°C TA = O°C to +70°C Plastic DIP (P) A 9308PC, 93L08PC Ceramic DIP(D) A 9308DC, 93L08DC 9308DM, 93L08DM 6N Flatpak (F) A 9308FC, 93L08FC 9308FM, 93L08FM 4M 9N INPUT lOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION Doa- D3a} Parallel Latch Inputs DOb-D3b Eoa, E1a, EOb, E1b AND Enable Inputs (Active LOW) Master Reset Inputs (Active LOW) MRa, MRb QOa-Q3a} Parallel Latch Outputs QOb-Q3b 93XX (U.l.) HIGH/LOW 93l (U.L.) HIGH/LOW 1.5/1.5 0.75/0.375 1.0/1.0 1.0/1.0 0.5/0.25 0.5/0.25 20/10 10/5.0 (3.0) lOGIC SYMBOL 2 3 Eo 4 6 8 10 14 15 16 18 20 22 E1 E Do 0, 02 03 E 4-BIT LATCH 1 4-BIT LATCH 2 MR 00 0, 02 03 1 5 7 9 Do 0, 02 03 MR 00 0, 02 03 11 13 17 19 21 23 6-24 Vcc = Pin 24 GND = Pin 12 08 FUNCTIONAL DESCRIPTION - Data can be entered into the latch when both of the enable inputs are LOW. As long as this logic condition exists, the output of the latch will follow the input. If either of the enable inputs goes HIGH, the data present in the latch at that time is held in the latch and is no longer affected by data input. The master reset overrides all other input conditions and forces the outputs of all the latches LOWwhen a LOW signal is applied to the Master Reset input. TRUTH TABLE MR Eo E1 D On H H H L L L L L H L H X L H On-1 OPERATION Data Entry Data Entry Hold H H L H H X L H X X X X On-1 On-1 L Hold Hold Reset an ~ 1 = Previous Output State = Present Output State H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Qn LOGIC DIAGRAM 6-25 • 08 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93)(X PARAMETER Min lee Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, Max 93l Min 100 TA 29 PARAMETER CONDITIONS mA Vee = Max = +25°C (See Section 3 for waveforms and load configurations) 93XX SYMBOL UNITS Max CL RL = 15 pF = 400 n Min Max 93l = 15 pF CL Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay En to an 30 22 45 38 ns Figs. 3-1, 3-8 tPLH tPHL Propagation Delay Dn to an 15 18 27 29 ns Figs. 3-1, 3-5 tPHL Propagation Delay MR to an 22 30 ns Figs. 3-1, 3-16 AC OPERATING REQUIREMENTS: Vee SYMBOL PARAMETER = +5.0 V, TA = +25°C 93XX Min ts (H) Setup Time HIGH, Dn to En th (H) Hold Time HIGH, Dn to En Max 93l Mil) UNITS CONDITIONS Max 10 8.0 ns -2.0 0 ns Fig. 3-13 ts (Ll Setup Time LOW, Dn to En 12 18 ns th (Ll Hold Time LOW, On to En 8.0 4.0 ns tw (Ll En Pulse Width LOW 18 30 ns Fig. 3-21 tw (Ll MR Pulse Width lOW 18 32 ns Fig. 3-16 tree Recovery Time, MR to En 8.0 10 ns Fig. 3-16 6-26 Fig. 3-13 09 CONNECTION DIAGRAM PINOUT A 9309 93L09 zblI DUAL 4-INPUT MULTIPLEXER Zbl! DESCRIPTION - The '09 monolithic dual 4-input digital multiplexers consist of two multiplexing circuits with common input select logic. Each circuit contains four inputs and fully buffered complementary outputs. In addition to multiplexer operation, the '09 can generate any two function of three variabies. Active pullups in the outputs ensure high drive and high speed performance. 8ecause or its high speed performance and on-chip select decoding, the '09 may be cascaded to multiple levels so that any number of lines can be multiplexed onto a single output bus. - 5.[! 11!1 Vee ~Za ~z. lObI:! I1!J So hb[! ~Ioa 12b[! 1lil11a 13bII 1m 12a GND[! ~13a LOGIC SYMBOL • MULTIFUNCTION CAPABILITY • ON-CHIP SELECT LOGIC DECODING • FULLY BUFFERED COMPLEMENTARY OUTPUTS YYTiiil1 ORDERING CODE: See Section 9 loa ha 128 ba lOb hb 12b lab 1 3 - SO PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 9309PC, 93L09PC Ceramic DIP (D) A 9309DC, 93L09DC 9309DM, 93L09DM 68 Flatpak (F) A 9309FC, 93L09FC 9309FM, 93L09FM 4L 98 3- 5, Za Za ! 1~ Zb r Zb ! vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions 93XX (U.L) HIGH/LOW 93L (U.L.) HIGH/LOW Za Common Select Inputs Multiplexer A Inputs Multiplexer A Output 1.0/1.0 1.0/1.0 20/10 Za Complementary Multiplexer A Output 18/9.0 IOb-13b Zb Multiplexer 8 Inputs Multiplexer 8 Output 1.0/1.0 20/10 Zb Complementary Multiplexer 8 Output 18/9.0 0.5/0.25 0.5/0.25 10/5.0 (3.0) 10/5.0 (3.0) 0.5/0.25 10/5.0 (3.0) 10/5.0 (3.0) PIN NAMES So, Sl IOa-138 DESCRIPTION 6-27 09 FUNCTIONAL DESCRIPTION - The '09 dual4-input multiplexers are able to select two bits of either HIGH or LOW data or control from up to four sources, in one package. The '09 is the logical implementation of two-pole, four-position switch, with the position of the switch being set by the logic levels supplied to the two select inputs. Both assertion and negation outputs are provided for both multiplexers. The logic equations for the outputs are shown below: Za = lOa • Zb = lab • 81 • So + l1a • 81 .- So + 12a • Sl • So + l3a • Sl • So 81 • SO + 11 b • 81 • So + 12b • Sl • So + 13b • Sl • So The '09 is frequently used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the select inputs. A less obvious application is as a function generator. The '09 can generate two functions of three variables. This is useful for implementing random gating functions. TRUTH TABLE SELECT INPUTS INPUTS (a or b) OUTPUTS (a or b) So Sl 10 11 12 13 Z Z L L H H L L L L L H X X X X L H X X X X X X X X L H L H H L H L L L H H H H H H X X X X X X X X L H X X X X L H L H L H H L H L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 6-28 09 LOGIC DIAGRAM IDa So S1 ..... ..... 1 ...... 1 ..... ...... -..... ...... -..... 12a ha 13a T (' lOb hb 12b 13b I 1 1 TI T ~lL J ~ 1 Ill) ~ Ill) I III ) T ~ ~ Y 'T Za Za Zb Zb DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) PARAMETER SYMBOL 93XX Min los Output Short Circuit Current lee Power Supply Current Max 93L Min UNITS CONDITIONS -40 mA Vee = Max, VOUT = 0 V 11.5 mA Vee = Max Max -10 44 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load definitions) PARAMETER SYMBOL 93XX 93L CL = 15pF CL = 15pF Min Min Max UNITS CONDITIONS Max tPLH tPHL Propagation Delay So to Za 29 27 70 60 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay So to 21 21 55 50 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay lOa to Za 12 13 40 60 ns Figs. 3-1, 3-4 tPLH tPHL Propagation Delay lOa to Za 20 21 70 65 ns Figs. 3-1, 3-5 Za 6-29 10 • 16 CONNECTION DIAGRAM PINOUT A 9310 93L10 93S10 • 9316 • 93L16 • 93S16 BCD DECADE COUNTER/ 4-BIT BINARY COUNTER SYNCHRONOUS COUNTING AND PARALLEL ENTRY DECODED TERMINAL COUNT BUILT-IN CARRY CIRCUITRY EASY INTERFACING WITH DTL, LPDTL, AND TTL FAMILIES PKGS OUT Plastic DIP(P) Ceramic DIP (0) Flatpak (F) COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C A 9310PC, 9316PC 93l10PC, 93l16PC 93S10PC, 93S16PC A 9310DC, 9316DC 93l10DC, 93l16DC 93S10DC, 93S16DC 9310DM, 9316DM 93l10DM, 93l16DM 93S10DM, 93S16DM A 9310FC, 9316FC 93L10FC, 93l16FC 93S10FC, 93S16FC 9310FM, 9316FM 93l10FM,93l16FM 93S10FM, 93S16FM Vee IlliTC Pol! 1EJ00 P1[i tm 01 ~02 tTIl 03 P31:! CEPIT ~CET GNO[! t!l'PE LOGIC SYMBOL ORDERING CODE: See Section 9 PIN tI!l pdl DESCRIPTION - The '10 is a high speed synchronous BCD decade counter and the '16 is a high speed synchronous 4-bit binary counter. They are synchronously presetable, multifunctional MSI building blocks useful in a large number of counting, digital integration and conversion applications. Several states of synchronous operation are obtainable with no external gating packages required through an internal carry lookahead counting technique. • • • • - MR[I CP 11: PKG TYPE 9B 1iii i PE Po P, P2 P3 7 - CEP 1 0 - CET TC - 1 5 2 - CP MR 00 0, 02 03 YI I r T 1 14 13 12 11 6B vce = Pin 16 = Pin 8 GND 4l INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 93XX (U.L.) HIGH/lOW DESCRIPTION 00-03 Count Enable Parallel Input Count Enable Trickle Input Clock Pulse Input (Active Rising Edge) Asynchronous Master Reset Input (Active lOW) Parallel Data Inputs Parallel Enable Input (Active lOW) Flip-flop Outputs TC Terminal Count Output CEP CET CP MR Po-Ps PE 93L (U.L.) HIGH/lOW 93S (U.L.) HIGH/lOW 1.0/1.0 2.0/2.0 2.0/2.0 1.0/1.0 0.5/0.25 1.0/0.5 r.0/0.5 0.5/0.25 2.5/2.5 3.1/3.1 3.1/3.1 1.25/1.25 0.67/0.67 2.0/2.0 16/8.0 0.33/0.17 1.0/0.5 10/5.0 (3.0> 10/5.0 (3.0> 1.25/1.25 2.5/2.5 20/10 20/10 6-30 25/12.5 10 • 16 LOGIC DIAGRAMS '10, 'L10 ., '0 " _to. - .... ~~ ~~ ~:" ~~ ~~ n ~:" ~D L... 4 .....q::: C~ C A So FZf:" l! ~ ' Co CII- ,..r- r CE. ~ CET C. }- ......... to. -:::.... - 0, TC 00 '16,'L16 ~ ......... '0 " " C. ] ~] So CII- So C. ~::: ~t' ~~; Lt ~~ ~~ ~~ " ~Rc: c.r- r - r ca. to. .... CET CP to. ;:. -.... 00 0, 6-31 0, ~ 0, • 10 -16 LOGIC DIAGRAMS 'S16 _.... CEP CET Po p, p, I I tJ tJ tJ r -'" -..... P, ~~ ..... I- ~, ...'" CP H' CoCP MR LJ ........... ~~ l1c~ ~ 1 o 1 I 1 ~ - 1 0 I I I ----.J TC 0 H LJ 1, J, j, do o 4t- 'S10 -'" ..... - _... CEP CET Po p, P, I I I tJ tJ ~~ ..... ~, CP tJ .... .... l' CoCP -'"... o ~ I I ~~ ~ 1 0 H LJ ~ o I 6-32 ~ TC ~ I r- ~ I 1 ~ o I I 10 • 16 FUNCTIONAL DESCRIPTION - The '10 counts modul0-10 in the BCD (8421) sequence. From state9(HLLH) it increments to state 0 (LLLU. The '16 counts modul0-16 in binary sequence. From state 15(HHHH) it increments to state 0 (LLLU. The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset, parallel load, count-up and hOld. Four control inputs - Master Reset (MR) Parallel Enable (PE), Count Enable Parallel (CEP) and Count Enable Trickle (CEn -determine the mode of operation, as shown in the Mode Select Table. A LOW signal on MR overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on PE overrides counting and allows information on the Parallel Data (Pn) inputs to be loaded into the flip-flops on the next rising edge of CPo With PE and MR HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting. The TTL and LP-TTL versions ('10, '16, 'L 10 and 'L 16 as opposed to the 'S10 and 'S16) contain masterslave flipflops which are "next-state catching" because of the JK feedback. This means that when CP is· LOW, information that would change the state of a flip-flop, whether from the counting logic orthe parallel entry logic if either mode is momentarily enabled, enters the master and is locked in. Thus to avoid inadvertently changing the state of a master latch, and the subsequent transfer of the erroneous information to the slave when the clock rises, it is necessary to insure that neither the counting mode, nor the parallel entry mode is momentarily enabled while CP is LOW. The S-TTL versions('S10and 'S16) use D-type edge-triggered flip-flops and changing the PE, CEP and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP, are observed. The Terminal Count (TC) output is HIGH when CET Is HIGH and the counter is in its maximlJm count state (9 for the decade counters, 15 for the binary counters-fully decoded in both types). To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. These two schemes are shown in Figures a and b. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous resetforflip-flops, counters or registers. If a decade counter is preset to an illegal state, or assumes an illegal state when power is applied, it will return to the normal sequence within two counts, as shown in the state diagrams. Multistage Counting - The '10/,16 counters may be cascaded to provide multistage synchronous counting. Two methods commonly used to cascade these counters are shown in Figures a and b. In multistage counting, all less significant stages must be at their terminal count before the next more significant counter is enabled. The '10/,16 internally decodes the terminal count condition and "AN Os" it with the CET input to generate the terminal count (TC) output. This arrangement allows one to perform series enabling by connecting the TC output (enable signal) to the CET input of the following stage, Figure a. The setup requires very few interconnections, but has the following drawback: since it takes time for the enable to ripple through the counter stages, there is a reduction in maximum counting speed. To increase the counting rate, it is necessary to decrease the propagation delay of the TC signal, which is done in the second method. The scheme illustrated in Figure b permits multistage counting, limited by the fan-out oftheterminal count. The CEP input of the '10/'16 is internally "ANDed" with the CET input and as a result, both must be HIGH for the counter to be enabled. The CET inputs are connected as before except for the second stage. There the CET input is left floating and is therefore HIGH. Also, all CEP inputs are connected to the terminal output of the first stage. The advantage of this method is best seen by assuming all stages except the second and last are in their terminal condition. As the second stage advances to its terminal count, an enable is allowed to trickle down to the last counter stage, but has the full cycle time of the first counter to reach it. Then as the TC of the first stage goes active (HIGH), all CEP inputs are activated, allowing all stages to count on the next clock. 6-33 I 10 • 16 MODE SELECT TABLE INPUTS MR PE L H H H H X L H H H RESPONSE CEP CET CP X X L X H X X X X ..r L H ..r X X Clear; All Outputs LOW Parallel Load; Pn - - an Hold Hold; TC = LOW Count Up H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC EQUATIONS Count Enable = MR • PE • CEP • CET Terminal Count = CET • 00 • 01 • 02 • 03 Terminal Count = CET • 00 • 01 • 02 • 03 ('16) ('10) STATE DIAGRAMS 'S10 '16, 'S16, 'L 16 '10, 'L 10 NOTE: The '20 can be preset to any state, but will not count beyond 9. If presetto state 10,11,12,13,14 or 15, it will return to its normal sequence within two clock pulses. eET 9310. 9316 TC eey 9310 • 9316 TC eEY 9310 • 9316 TC eET 9310 ·9316 TC eEY 9310.9316 TC TO MORE SIGNIFICANT STAGES CLOCK--~--------------~------------~__-------------+--------------~---------------- Fig. a Synchronous Multistage Counting Scheme (Slow) eET 9310 • 9316 TC eey 9310 • 9316 TC eET 9310 • 9316 TC eET 9310 • 9316 TC CLOCK--~--------------~------------~---------------+--------------~-------------- Fig. b Synchronous Multistage Counting Scheme (Fast) 6-34 TO MORE SIGNIFICANT STAGES eEY 9310 • 9316 TC __ 10 • 16 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93XX PARAMETER los Output Short Circuit Current Icc Power Supply Current AC CHARACTERISTICS: Vcc 93l UNITS Max Min Max Min Max -20 -80 -2.5 -25 -40 -100 rnA 127 rnA 92 27.5 = +5.0 V, TA = +25°C (See Section 3 for waveforms and 93XX SYMBOL 93S Min PARAMETER CL = 15 pF Min Max CL = 15 pF Min Max load configurations) 93S CL = 15 pF Min UNITS CONDITIONS Max fmax tPLH tPHL Propagation Delay CPto Q 20 23 32 39 9.0 13 ns tPLH tPHL Propagation Delay CP to TC 35 22 66 30 18 12 ns tPLH tPHL Propagation Delay CET to TC 19 19 35 30 10 10 ns Figs. 3-1, tPHL Propagation Delay MR to Q 45 62 20 ns Figs. 3-1, 3-16 UNITS CONDITIONS SYMBOL PARAMETER = +5.0 V, 13 = Max VCC = Max, MR = Gnd VCC Maximum Count Frequency AC OPERATING REQUIREMENTS: Vcc 30 93l CONDITIONS MHz 93XX Max 93l Min Max 93S Min Setup Time HIGH or lOW Pn to CP 30 30 75 75 8.0 5.0 ns til (H) tIl(Ll Hold Time HIGI'I or lOW Pn to CP 0 0 10 10 0 0 ns ts (H) ts(Ll Setup Time HIGH or lOW PE to CP Note 2 30 Note 2 53 10 5.0 ns th (H) th (Ll Hold Time HiGH or lOW PE to CP -7.0 Note 2 7.0 Note 2 0 0 ns ts (H) ts(Ll Setup Time HIGH or lOW CEP or CET to CP 22 Note 1 1 9.0 7.5 ns til (H) Hold Time HIGH or lOW CEP or CET to CP Note 1 0 Note 1 10 0 0 ns tw (H) tw (Ll 3~5 Max ts (H) ts(Ll tIl(Ll Figs. 3-1,3-8 = +25°C TA Min 70 26 ~Note Fig. 3-6 Fig. 3-6 Fig. 3-6 CP Pulse Width 17 17 25 25 6.5 7.0 ns Fig. 3-8 tw (Ll MR Pulse Width lOW 30 65 14 ns Fig. 3-16 trec Recovery Ti me MR to CP 15 55 5.5 ns Fig. 3-16 NOTES: The Setup Time "Is IL)"and Hold Time "It. IH)" between the Count EnablelCEP and CEn and the Clock ICPt indicate that the HIGH-to-LOWtransltlon of the CEP and CET must occur only while the Clock is HIGH for conventional operation. 12) The Setup Time "Is IH)" and Hold Time "It. IU" between the Parallel Enable I~ and Clock ICP) Indicate that the LOW-te-HIGH transition of the PE must occur only while the Clock Is HIGH for conventional operation. 11) 6-35 • 11 CONNECTION DIAGRAM PINOUT A 9311 93L11 1-0F-16 DECODER/DEMUL TIPLEXER 00 II liI Ao odI odI B]A1 II os!!: 06 IT 0, II 08 I! im A3 I!!l 014 09~ ~Eh3 PKG 010 IIi TYPE GND~ iEl 012 MUTUALLY EXCLUSIVE OUTPUTS HIGH CAPACITIVE DRIVE CAPABILITY DEMULTIPLEXING CAPABILITY TYPICAL POWER DISSIPATION OF 175 mW FOR '11, 58 mW FOR 'L11 2-INPUT ENABLE GATE ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C ~vcc 01 [I DESCRIPTION - The '11 is a multipurpose decoder designed to accept four inputs and provide 16 mutually exclusive outputs. The 9311 is a faster replacement for the 74154. • • • • • '- Plastic DIP (P) A 9311PC, 93L11PC Ceramic DIP (0) A 9311 DC, 93L 11 DC 9311DM,93L11DM 6N Flatpak (F) A 9311 FC, 93L11 FC 9311FM,93L11FM 4M ]1]A2 04 ~E1 ~EO ~01S ~011 9N INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-A3 Eo, E1 00-015 DESCRIPTION Address Inputs AND Enable Inputs (Active LOW) Decoder Outputs (Active LOW) 93XX (U.L.) HIGH/LOW 93L (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 20/10 0.5/0.25 0.5/0.25 10/5.0 (3.0) LOGIC SYMBOL -11- 23 22 21 20 E Ao A1 A2 A3 Eo E1 {) 00 0, 0203 04 Os 06 0,08090100110,20,3 0'40,S !!!!1!!!!!l1!!!! 6-36 Vee = Pin 24 GND = Pin 12 11 FUNCTIONAL DESCRIPTION - The '11 decoder accepts four inputs and provides 16 mutually exclusive active LOW outputs, as shown by the logic symbol. The active LOW outputs facilitate addressing other MSI units with active LOW enable. The '11 can demultiplex data by routing it from one input to one of 16 possible decoder outputs. The desired output is addressed and the data is applied to one of the enable inputs. Providing that the other enable is LOW, the addressed output will follow the state of the applied data. TRUTH TABLE INPUTS OUTPUTS Eo E1 Ao A1 A2 A3 00 01 H H L L H L H L X X X L X X X L X X X L X X X L H H H L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L L L L L L L L L L H L H L H L H H L L L L L H H L L L L L H H H H H L H H H H H L H H H H H L H H H H H L H H H H H L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L L L L L L L L L L L H L H L H H L L H H H L L L L L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L H H H H H L H H H H H L H H H H H L H H H H H L H H H H H H H H H H H H H H H H H H H H H H H H H L L L L L L L L L L H L H L H H L L H H L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L H H H H H L H H H H H L H H H H H L H H H H H L 02 03 04 05 06 07 08 09 010 011 012 013 014 015 H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM 6-37 I 11 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93XX PARAMETER los Output Short Circuit Current Ice Power Supply Current AC CHARACTERISTICS: Vee XM XC = +5.0 V, 93L Max Min Max -20 -20 -55 -57 -2.5 -2.5 -25 -25 XM 49 16.5 XC 56 16.5 TA = +25°C (See Section 93XX SYMBOL PARAMETER UNITS Min CL RL = 15 pF = 400 n Min Max CONDITIONS mA Vee = Max, mA Vee = Max VOUT 3 for waveforms and load configurations) 93L CL = 15 pF Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay An to On 31 28 75 85 ns Figs. 3-1,3-20 tPLH tPHL Propagation Delay En to On 23 24 60 65 ns Figs. 3-1, 3-5 6-38 =0 V 12 CONNECTION DIAGRAM PINOUT A 9312 93L12 93S12 10 - IT j!) Vee 12[2 llIz lllz b[! ElS2 I,[I a-INPUT MULTIPLEXER DESCRIPTION - The '12 is a monolithic, high speed, a-input digital multiplexer circuit. It provides, in one package, the ability to select one bit of data from up to eight sources. The '12 can be used as a universal function generator to generate any logic function of four variables. 80th assertion and negation outputs are provided. • MULTIFUNCTION CAPABILITY • ON-CHIP SELECT LOGIC DECODING • FULLY BUFFERED COMPLEMENTARY OUTPUTS 14 II ms, 15 II :ill So 16rI mE GND[! 1]17 LOGIC SYMBOL 1ii iii iii E 10 11 12 13 14 Is 16 17 1 1 - SO ORDERING CODE: See Section 9 PIN PKGS OUT 1 2 - S, 1 3 - S, COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 9312PC, 93L 12PC 93S12PC Ceramic DIP (0) A 9312DC, 93L 12DC 93S12DC 9312DM,93L12DM 93S12DM 68 Flatpak (F) A 9312FC, 93L12FC 93S12FC 9312FM, 93L 12FM 93S12FM 4L z z ! 1~ 98 vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION Z Select Inputs Enable Input (Active LOW) Multiplexer Inputs Multiplexer Output Z Complementary Multiplexer Output So-S2 E 10-17 6-39 93XX (U.L.) HIGH/LOW 93S (U.L.) HIGH/LOW 93L (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 20/10 1.25/1.25 1.25/1.25 1.25/1.25 25/12.5 20/10 25/12.5 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (3.0) 10/5.0 (3.0) 12 FUNCTIONAL DESCRIPTION - The '12 is a logical implementation of a single pole, eight position switch with the switch position controlled by the state ofthree 5elect inputs, So, 51,52. Both assertion and negation outputs are provided. The Enable input (E) is active LOW. When it is not activated the negation output is HIGH and the assertion output is LOW, regardless of all other inputs. The logic function provided at the output is; Z = E • (10 • 80 • 81 • 82 • 50 • 81 • 82 + 12 • So • 51 • 82 + 13 • So • 51 • 82 • 50 • 81 • 52 + 16. So • 51 • 52 + 17 • So • 51 • 52). +h + 14 • 80 • 81 • 52 + Is The '12 provides the ability, in one package, to select from eight sources of data or control information. By proper manipulation of the inputs, the '12 can provide any logic function of four variables and its negation. Thus any number of random logic elements used to generate unusual truth tables can be replaced by one '12. TRUTH TABLE INPUT5 OUTPUT5 13 14 Is 16 17 Z Z L X X X X X X X X X X X X X X X X X X X X X X X X H H L H L L H L H X X X X L H X X X X X X X X X X X X X X X X X X L H L H H L H L H X X L H X X X X X X X X L X X X X L H L H H L H L H X X X X X L H X X X X X L H L H L H L H L H L H E 52 51 So 10 h 12 H L L L X X X X L L L L L L L L H L H X X X X L L L L L L L L L H H H H L L H X X X X L L L L L H H H H L L L H L L H X X X X X X X X X X L L L L L H H H H H L H H H H H L L H H X X X X X X X X X X X X X X X X X X X X X X X X X L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 6-40 X X X X X X 12 lOGIC DIAGRAM I, 10 S2 S1 So E ..... .... ..... .... .... ---... .... Is 12 I. 15 16 17 ---... L I I ...... ..... -yo" ---... ...... II I "j I ~ I 'l Jf ~ z ~ I j y • z DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93XX PARAMETER Min lee = +5.0 V, Min Max TA = +25°C (See PA~AMETER CL Max UNITS CONDITIONS Max 13.3 mA Vee = Max Section 3 for waveforms and load configurations) = 15 pF Min Min 62 93XX SYMBOL 93l Max 44 Power Supply Current AC CHARACTERISTICS: Vee 93S 93S CL 93l = 15 Min pF CL Max = 15 Min pF UNITS CONDITIONS Max tPLH tPHL Propagation Delay So to Z 34 34 17 18 60 75 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay So to Z 24 26 16 15 45 65 ns Figs. 3-1, 3-4 tPLH tPHL Propagation Delay Eto Z 30 30 13 16 50 70 ns Figs. 3-1, 3-4 tPLH tPHL Propagation Delay Eto Z 20 23 14 11 35 60 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay In to Z 24 24 12 12 60 55 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay In to Z 14 16 8.0 9.0 45 45 ns Figs. 3-1, 3-4 6-41 13 CONNECTION DIAGRAM PINOUT A - loD: 9313 !!I Vee h(I 8-INPUT MULTIPLEXER (With Open-Collector Output) fillz [I J!]z 13[i lil S, 12 mSl 14[[ DESCRIPTION - The '13 is an 8-input multiplexer with open-collector output. It has the same pinning and logic configuration as the '12, but with an open-collector Z output which allows for easy expansion of input terms. The device can select one bit of data from up to eight sources. The '13 has an active LOW enable and internal select decoding. III So 15[ 16 [I mE: }]17 GNOII • PIN FOR PIN REPLACEMENT FOR THE SIGNETICS 8231 • SAME PINNING AND LOGIC CONFIGURATION AS THE 9312 BUT WITH OPEN-COLLECTOR OUTPUT • OPEN-COLLECTOR OUTPUT Z FOR EASY EXPANSION OF INPUT TERMS (WIRED-OR APPLICATIONS) • MULTIFUNCTION CAPABILITY • ON-CHIP SELECT LOGIC DECODING • FULLY BUFFERED Z OUTPUT LOGIC SYMBOL 11iiiiifi E 10 11 12 b 14 15 1 1 - SO 12-S, ORDERING CODE: See Section 9 13- PIN PKGS OUT COMMERCIAL GRADE Vee TA = +5.0 V ±5%, MILITARY GRADE Vee = O°C to +70°C TA = +5.0 = -55°C V ±10%, to +125°C PKG TYPE Plastic DIP (P) A 9313PC Ceramic DIP (0) A 9313DC 9313DM 68 Flatpak (F) A 9313FC 9313FM 4L 98 s, z z ! II Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES So-S2 E 10-17 Z Z· Select Inputs Enable Input (Active LOW) Multiplexer Inputs Multiplexer Output Complementary Multiplexer Output 'An external pull-up resistor is needed to provide "OC-Open Collector HIGH 93XX (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 20/10 OC"/10 level drive capability. This output will sink a maximum of 16 mA at VOUT = 0.4 V. 6-42 16 17 13 FUNCTIONAL DESCRIPTION - The '13 is a logical implementation of asingle pole, eight-position switch with the switch position controlled by the state of three Select inputs, So, S1, S2. An open-collector output Z is provided for easy expansion of input terms. Also a fully buffered Z output is available. The Enable Input @is active LOW. When it is not activated the negation output is HI GH and the assertion output is LOW regardless of all other inputs. The logic function provided at the output is: Z = E • (10 • So • S1 • S2 + 11 • So • 81 • 82 + 12 • So • S1 • 82 + 13 • So • S1 • 82 • So • 81 • S2 + 16 • So • S1 • S2 + 17 • So • S1 • S2) + 14 • So • 81 • S2 + Is The '13 provides the ability, in one package, to select from eight source~ of data or control information. By proper manipulation of the inputs, the '13 can provide any logic functio_ns of four variables and its negation. TRUTH TABLE INPUTS OUTPUTS E S2 S1 So Z Z H L L L X L L L X L L H X L H L H 10 11 12 L 10 11 12 L L L L L L H L L H L 13 14 H 15 H H L 16 17 13 14 Is 16 17 H H H H H H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM 14 10 15 16 17 S2~o-~~--a~~----+------4------~------~-----4~----~~----~~---4~ so---i.~~~--~~I;~----~r---~~~---HH-----+H~---4++-----H.t----+Hr---~~ z 6-43 13 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 93XX PARAMETER SYMBOL Min 10H Output HIGH Current, Z los Output Short Circuit Current, Z lee Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, TA 0 CONDITIONS 150 JJ.A Vee = 4.5 V, Your = 4.5 V, VIN = 0.6 V on Data Input, VIN (E & Sn Inputs) = VIL or VIH per Truth Table -70 mA Vee 47 mA Vee -20 = +25 UNITS Max = Max, Your = 0 V = Max, 10 -17 = Gnd C (See Section 3 for waveforms and load configurations) 93XX SYMBOL PARAMETER CL = 15 Min pF UNITS CONDITIONS Max 34 34 ns Figs. 3-1, 3-20 So to Z 29 28 ns Figs. 3-2, 3-20 RL = 400 n tPLH tPHL Propagation Delay 10 to Z 30 30 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay 10 to Z 26 24 ns Figs. 3-2, 3-4 RL = 400 n tPLH tPHL Propagation Delay E to Z 34 36 ns Figs. 3-1, 3-4 tPLH tpHL Propagation Delay Eto Z 27 29 ns Figs. 3-2, 3-5 RL = 400 n Propagation Delay tPLH tPHL So to Z tPLH tPHL Propagation Delay 6-44 14 CONNECTION DIAGRAM PINOUT A 9314 93L14 - EU QUAD LATCH ~vcc solI fIDQO DolI ~S1 0, [I ~Q1 ~Q2 S2[I till 83 I! 03 IT 02 ~Q3 ~Mii GND[I DESCRIPTION - The '14 is a multifunctional4-bit latch designed for general purpose storage applications in high speed digital systems. All outputs have active pull-up circuitry to provide high capacitance drive and to provide low impedance in both logic states for good noise immunity. • CAN BE USED AS SINGLE INPUT D LATCHES OR SET/RESET LATCHES • ACTIVE LOW ENABLE GATE INPUT • OVERRIDING MASTER RESET LOGIC SYMBOL 1 3 2 4 14 6 5 7 11 ~I~I~I~I~ E Do So 0, S, 02 S2 03 S3 ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C Qo Q1 Q2 Q3 PKG MR TYPE I I I I I 9 Plastic DIP(P) A 9314PC, 93L 14PC Ceramic DIP (D) A 9314DC, 93L14DC 9314DM, 93L 14DM 68 Flatpak (F) A 9314FC, 93L14FC 9314FM, 93L 14FM 4L 15 13 12 10 98 vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES E Do-D3 SO-53 MR 00-03 DESCRIPTION Enable Input (Active LOW) Data Inputs Set Inputs (Active LOW) Master Reset Input (Active LOW) Latch Outputs 6-45 93XX (U.L.) HIGH/LOW 93L (U.L.) HIGH/LOW 1.0/1.0 1.5/1.5 1.0/1.0 1.0/1.0 20/10 0.5/0.25 0.75/0.375 0.5/0.25 0.5/0.25 10/5.0 (3.0) 14 FUNCTIONAL DESCRIPTION - The '14 consists of four latches with a common active LOW Enable input and active LOW Master Reset input. When the Enable goes HIGH, data present in the latches is stored and the state of the latch is no longer affected by the Sn and Dn inputs. The Master Reset when activated overrides all other input conditions forcing all latch outputs LOW. Each of the four latches can be operated in one of two modes: D-TYPE LATCH- For D-type operation the S input of a latch is held LOW. While the common Enable is active the latch output follows the D input. Information present at the latch output is stored in the latch when the Enable goes HIGH. SET/RESET LATCH - During set/reset operation when the common Enable is LOW a latch is reset by a LOW on the D, input, and can be set by a LOW on the S input if the D input is HI GH. It both Sand D inputs are LOW, the D input will dominate and the latch will be reset. When the Enable goes HIGH, the latch remains in the last state prior to disablement. The two modes of latch operation are shown in the Truth Table. TRUTH TABLE OPERATION MR E D S On H H H L L H L H X L L X D MODE L H On-1 H H H H H L L L L H L H L H X L L H H X R/S MODE L H L On-1 On-1 L X X X L RESET H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial On-1 = Previous Output State an = Present Output State LOGIC DIAGRAM 6-46 14 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER 93XX Min lee Power Supply Current Max 93l Min 55 UNITS CONDITIONS Max 16.5 mA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 93XX PARAMETER SYMBOL 93l CL = 15 pF CL = 15 pF Min Max Min UNITS CONDITIONS Max tPLH tPHL E to Propagation Delay an 24 24 45 36 ns Figs. 3-1, 3-9 tPLH tpHL Propagation Delay On to an 12 24 30 30 ns Figs. 3-1, 3-5 tPLH Propagation Delay MR to an 18 30 ns Figs. 3-1, 3-16 tpHL Propagation Delay Sn to an 24 33 ns Figs. 3-1, 3-16 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL PARAMETER 93XX Min Max 93l Min UNITS ts (H) ts (U Setup Time HIGH or lOW On to E 5.0 18 10 20 ns th (H) th (U Hold Time HIGH or LOW On to E 0 5.0 0 10 ns ts (H) CONDITIONS Max Fig. 3-13 Setup Time HIGH, On to Sn 8.0 15 ns th (U Hold Time LOW, On to Sn 8.0 5.0 ns tw (U E Pulse Width LOW 18 30 ns Fig. 3-9 tw (U MR Pulse Width LOW 18 25 ns Fig. 3-16 tree Recovery Time, MR to E 0 5.0 ns Fig. 3-16 6-47 Fig. 3-13 15 CONNECTION DIAGRAM PINOUT A 9315 1-0F-10 DECODER DESCRIPTION-The '15 accepts 1248 binary coded decimal inputs and provides ten mutually exclusive outputs to directly control the ionizing potentials of many gas filled cold cathode indicator tubes. The '15 is a pin-for-pin equivalent to the 7441 and is similar in operation to the C/lL996D but can be driven from any TTL or DTL product. • • • • • OB!:! :ill 0, Ao!2 :Ii] 05 A3~ TIl 04 Vee II ~GND A1[I 32106 A2[I ~()y odI ~O3 ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0. V ±5%, TA = DOC to +7D o C Vee = +5.0. V ±1D%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 9315PC Ceramic DIP (D) A 9315DC 9315DM 68 Flatpak (F) A 9315FC 9315FM 4L 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-A3 00-09 ·oc - 93XX (U.L.) HIGH/LOW DESCRIPTION Address (Data) Inputs Decoder Outputs (Active LOW) 0..13/0..94 OC*/7.0mA Open Collector LOGIC SYMBOL I i Ao Ai r A2 1 A3 00 0, 02 03 04 05 06 07 08 09 !l!!X!~!!! 6-48 :i] 00 II 09 STABLE HIGH VOLTAGE OUTPUT CHARACTERISTICS DIRECT DISPLAY DRIVE CAPABILITY BCD ACTIVE HIGH INPUTS BLANKING TEST MODE -55°C to +125°C TEMPERATURE CAPABILITY ~ Vee = Pin 5 GND = Pin 12 15 FUNCTIONAL DESCRIPTION - The 1-of-10 decoder/driver accepts BCD inputs from all TTL circuits and produces the correct output selection to directly drive gas filled cold cathode indicator tubes. The outputs are selected as shown in the Truth Table. It is capable of driving all known available cold cathode indicator tubes having 7.0 rnA or less cathode current. Unused input codes 12 and 13 cause all the outputs to remain HIGH; no cathode will be selected. This results in the indicator tube being blanked. Using this feature for blanking may cause a slight glow to appear in the tube. TRUTH TABLE INPUTS OUTPUTS Ao A1 A2 As 50 01 02 03 04 Os 06 07 06 09 0 1 2 3 L H L H L L H r-i L L L L L L L L L H H H H L H H H H L H H H H L H H H H H H H H H H H H H H H H H H H H H H H H 4 5 7 L H L H L L H H H H H H L L L L H H H H H H H H H H H H H H H H L H H H H L H H H H L H H H H L H H H H H H H H 8 9 10 11 L H L H L L H H L L L L H H H H H H H H H H H H H H L H H H H L H H H H H H H H H H H H H H H H L H L H H L H L 12 13 14 15 L H L H L L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L H H H H L H H H H H H H H 6 H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM Ao ~ I~ Ii I 08 J I 06 J ~ Os 6-49 (J () I ) 00 15 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93XX PARAMETER Min VOH Output HIGH Voltage UNITS CONDITIONS V Vee = Max, Force 2.0 rnA into HIGH Output V Vee = Min, IOL = 7.0 rnA Inputs at Threshold Voltages, (VIL or VIH) as per Truth Table V Guaranteed Input HIGH Threshold Voltage V Guaranteed Input LOW Threshold Voltage Max 70 VOL Output LOW Voltage XM XC VIH Input HIGH Voltage XM XC VIL Input LOW Voltage XM XC 1.1 0.85 IOH Output HIGH Current XM XC 20 40 p.A Vee = Max, VOUT = 55 V Inputs at Threshold Voltages, (VIL = Gnd, VIH = 4.5 V), as per Truth Table hH Input HIGH Current XM XC 2.0 5.0 p.A Vee = Max, VIN = 4.5 V Other Inputs Open hL Input LOW Current -1.5 rnA Vee = Max, VIN = 0.4 V Other Inputs Open Icc Power Supply Current 29 31 rnA Vee = 5.0 V, No Connection to Input or Output Pins I 2.5 3.0 1.9 2.0 XM XC 6-50 17 CONNECTION DIAGRAM PINOUT A 93178 9317C - A'[I t!!Jvcc nlr EJii TIl· :ffili A2[! 7-SEGMENT DECODER/DRIVER L'i'[I RBci[i RBf[[ DESCRIPTION - The '17 is a seven segment decoder/driver designed to accept four inputs in 8421 BCD code and provide the appropriate outputs to drive a 7-segment numerical display. The decoder can be used to directly drive 7-segment incandescent lamp displays and light emitting diode indicators (or indirectly drive neon, electro-luminescent, numeric displays>. The '17 is available in two output current and latch voltage versions, the '17B and C. • AUTOMATIC RIPPLE BLANKING FOR SUPPRESSION OF LEADING AND/OR TRAILING-EDGE ZEROES • LAMP INTENSITY MODULATION CAPABILITY • LAMP TEST FACILITY/BLANKING INPUT • CODES IN EXCESS OF BINARY 9 DISABLE OUTPUTS PKGS OUT MILIT ARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C A 9317PC Ceramic DIP (D) A 9317DC Flatpak (F) A 9317FC GNOII ~i 7 1 I I Ao Al COMMERCIAL GRADE Plastic DIP (P) TIll! :!!Iii LOGIC SYMBOL ORDERING CODE: See Section 9 PIN Ao[f A3[! i i 11 A2 A3 LT RBI PKG TYPE a bed e f 9 RBO 9B XXX!!!!! 9317DM 7B Vee = Pin 16 GND = Pin 8 9317FM 4L INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION 93XX (U.L.) HIGH/LOW Address Inputs Lamp Test Input (Active LOW) Ripple Blanking Input (Active LOW) Ripple Blanking Output (Active LOW> Outputs 1.0/1.0 5.0/4.0 1.0/0.5 1.5/1.5 See Options PIN NAMES Ao-A3 LT RBi RBO a-g OPTIONS PARAMETER Latch Voltage Output Current (Pins 9 through 15) 6-51 9317B 9317C 20 V 40 mA 30 V 20 mA • 17 LOGIC DIAGRAM iIIi [f '(7 A, Ao A1 A2 t) Ij t) r- ~ f , ",7 f0- f- ~ TRUTH TABLE INPUTS OUTPUTS A2. A3 a E C d e T 9 RBO DECIMAL OR FUNCTION X L L L X L L L X L L L L H L H L H L H L H L H L H L H L H L L L H L L L H H H H L H H 0 0 1 L H L H H H L L L L H H L L L L L L H L L L L H H L L L L L H L L H H H H H L L L L L L H H H H 2 3 4 5 X X X X X L H L H L H H L L H H H L L L L L H H H H L L L H H L L L H L L L L H L H L H H L H L H H L H L L H L H L L H H H H H L 10 X X X X X H L H L H H L L H H L H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H L L L L L 11 12 13 14 15 LT RBI L H H H X L H X X L L H H H H H X X X X H H H H H H H H H H Ao A1 H = HIGH Voltage Level L = LOW Voltage Level x = Immaterial 6-52 6 7 8 9 17 FUNCTIONAL DESCRIPTION - The '17 7-segment decoder/driver accepts a 4-bit BCD 8421 code input and produces the appropriate outputs for selection of segments in a seven segment matrix display used for representing the decimal numbers 0 - 9. The seven outputs (8 - Ql of the decoder select the corresponding segments in the matrix shown in Figure B. The numeric designations chosen to represent the decimal numbers are shown in Figure c. Code configurations in excess of binary nine disable the outputs. The decoder has active LOW outputs so that it may be used directly to drive incandescent displays or light emitting diode indicators. The device has provision for automatic blanking of the leading and/or trailing-edge zeroes in a multidigit decimal number, resulting in an easily readable decimal display conforming to normal writing practice. I n an eight digit mixed integer fraction decimal representation, using the automatic blanking capability, 0060.0300 would be displayed as 60.03. Leading-edge zero suppression is obtained by connecting the Ripple Blanking Output(RBO) of a decodertothe Ripple Blanking Input(RBi) ofthe next lower stage device. The most significant decoder stage should have the RBT input grounded; and, since suppression of the least . significant integer zero in a number is not usually desired, the RBI input of this decoder stage should be left open. A similar precedure for the fractional part of a display will provide automatic suppression oftrailing-edge zeroes. The decoder has an active LOW input Lamp Test which overrides all other input combinations and allows checking on possible display malfunctions. The RBO terminal of the decoder can be OR-tied with a modulating signal via an isolating buffer to achieve pulse duration intensity modulation. A suitable signal can be generated for this purpose by forming a variable frequency multivibrator with a cross coupled pair of TTL gates. Forcing the RBO LOW will blank the display, regardless of the CT or An inputs. X, X2 X4 Xa I I I I I I I I I I I I LAMP TEST I I I I ! ! ~~:~~E a BLANKING Ao A, A2 A3 LT RBI RBO a b c Fig. a Segment Designation RIPPLE BLANJG OUTPUT .~~ DISPLAY SEGMENT" 7 del 9 111111 I I I I I I I I I I I I I I I I I I TO REMAINING DISPLAY SEGMENTS v+ Fig. b Seven segment Decoder Driving Incandescent Lamp Display o I-II I_II 1 2 3 -I 1Fig. c 4 5 I I 1- 6 7 -I -I -I Numerical DeSignations 6-53 8 I 9 17 DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: Vee = +5.0 V ±5% SYMBOL O°C PARAMETER Min VOH Output HIGH Voltage on Rm50nly 25°C Max 3.0 Min 3.0 0.45 VOL VOL Max 75°C Min 3.0 0.45 0.45 0.45 0.45 93178 0.9 0.9 0.9 9317C 0.45 0.45 0.45 Output LOW Voltage Output Latch Voltage VIH Input HIGH Voltage VIL Input LOW Voltage 93178 9317C CONDITIONS V Vee = 4.75 V IOH = -70 p.A Pin 5 = VIH Pins 1,2,6,7=OV V Vee = 5.25 V IOL = 2.75 rnA Inputs at VIH or VOL per Truth Table Vee - 4.75 V IOL = 2.4 rnA Inputs at VIH or VIL per Truth Table V Vee = 4.75 IOL =40 rnA Pin 3 = 0 V Vee = 4.75 V IOL = 20 rnA Pin 3 = 0 V 0.45 Output LOW Voltage on ABO Only VLATeH UNITS Max 20 30 20 30 20 30 V IOL = 10 rnA Inputs = Open 2.0 2.0 2.0 V Guaranteed Input HIGH Threshold V Guaranteed Input LOW Threshold 0.85 0.85 IOH Output HIGH Current 200 tPLH tPHL Propagation Delay 500 500 6-54 0.85 250 p.A Vee = 5.25 V VeEx = 30 V ('17C) 20 V ('178) Inputs at VIH or VIL per Truth Table ns Fig. 3-20 17 DC AND AC CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE: Vee SYMBOL -55°C PARAMETER Min VOH Output HIGH Voltage on RBO Only Max 3.0 25°C Min 3.0 0.4 VOL VOL Max 125°C Min 0.4 0.4 0.4 9317B 0.8 0.8 0.8 9317C 0.4 0.4 0.4 Output LOW Voltage Output Latch Voltage VIH Input HIGH Voltage VIL Input LOW Voltage 9317B 9317C CONDITIONS V Vee = 4.5 V IOH = -70 p.A Pin 5 = VIH Pins 1,2,6,7 = 0 V V Vee = 5.5 V IOL = 3.1 rnA Inputs at VIH or VIL per Truth Table Vee - 4.5 V IOL = 2.4 rnA Inputs at VIH or VIL per Truth Table V Vee = 4.5 V IOL = 40 rnA Pin 3 = 0 V Vee - 4.5 V IOL = 20 rnA Pin 3 = 0 V 0.4 Output LOW Voltage on RBO Only VLATeH UNITS Max 3.0 0.4 = +5.0 V ±10% 20 30 20 30 20 30 V lOUT = 10 rnA Inputs = Open 2.1 1.9 1.7 V Guaranteed Input HIGH Threshold V Guaranteed Input LOW Threshold 1.4 1.1 IOH Output HIGH Current 200 tPLH tPHL Propagation Delay 500 500 6-55 0.8 250 p.A Vee = 5.5 V VeEx = 30 V (,17C) 20 V (,17B) Inputs at VIH or VIL per Truth Table ns Fig. 3-20 18 CONNECTION DIAGRAM PINOUT A 9318 93L18 14 a-INPUT PRIORITY ENCODER • MULTIFUNCTION CAPABILITY CODE CONVERSIONS MULTI-CHANNEL DI A CONVERTER DECIMAL TO BCD CONVERTER • CASCADING FOR PRIORITY ENCODING OF N BITS • INPUT ENABLE CAPABILITY • PRIORITY ENCODING-AUTOMATIC SELECTION OF HIGHEST PRIORITY INPUT LINE • OUTPUT ENABLE -ACTIVE LOW WHEN ALL INPUTS HIGH • GROUP SIGNAL OUTPUT-ACTIVE WHEN ANY INPUT IS LOW OUT IlliEO 16 IT ~GS 178: E]13 . EIII ::m 12 A2[I 2]., A1[I :ill 10 }JAo GNOII LOGIC SYMBOL ~ XYIlllLl 10 ., 12 13 14 15 16 17 EI ORDERING CODE: See Section 9 PKGS ~vcc 15 IT: DESCRIPTION - The '18 multipurpose encoders are designed to accept eight inputs and produce a binary weighted code of the highest order input. PIN - IT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic OIP(P) A 9318PC, 93L 18PC Ceramic OIP(o) A 93180C, 93L180C 93180M, 93L 180M 68 Flatpak (F) A 9318FC, 93L18FC 9318FM, 93L 18FM 4L 98 Ao A1 ! ! I EO 7 A2 r! Vcc = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT:See Section 3 for U.L. definitions PIN NAMES To T1- T7 DESCRIPTION 93XX (U.L.) HIGH/LOW 93L (U.L.) HIGH/LOW 1.0/1.0 2.0/2.0 2.0/2.0 20/10 0.5/0.25 1.0/0.5 1.0/0.5 10/5.0 (3.0) 10/5.0 (3.0) 10/5.0 (3.0) EO Priority Input (Active LOW) Priority Inputs (Active LOW) Enable Input (Active LOW) Enable Output (Active LOW) GS Group Select Output (Active LOW) 20/10 Ao-~ Address Outputs (Active LOW) 20/10 Ef 6-56 GS 18 FUNCTIONAL DESCRIPTION - The '18 8-input priority encoder accepts data from eight active LOW inputs and provides a binary representation on the three active LOW outputs. A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line 7 having the highest priority. A HIGH on the Enable Input (Eh will force all outputs tothe inactive (HIGH) state and allow new data to settle without producing erroneous information at the outputs. A Group Signal output (GS) and Enable Output (EO) are provided with the three data outputs. The GS is active LOW when any input is LOW; this indicates when any input is active. The EO is active LOW when all inputs are HIGH. Using the output enable along with the input enable allows priorityencoding of N input signals. Both EO and GS are in the inactive HIGH state when the input enable is HIGH. LOGIC DIAGRAM 10 i, i4 is is 7 7 T -- J ~'-! J T r ~ A2 y \-; ~ r-~ I..T"' A, 6-57 ,,-I ,~ Ao I.... c GS -EO 18 TRUTH TABLE OUTPUTS INPUTS EI To 11 T2 T3 14 Ts T6 17 GS Ao A1 A2 EO H L L L L X H X X X X H X X X X H X X X X H X X X X H X X X X H X X L X H X L H X H L H H H H L L L H H L H L H H L L H H H L L L H L H H H L L L L L X X X X L X X X L H X X L H H X L H H H L H H H H H H H H H H H H H H H H H L L L L L H L H L H H L L H H L H H H H H H H H H H H H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 93XX PARAMETER SYMBOL Min Input HIGH"Current IiH 10-i7,Ei los Output Short Circuit Current lee "Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, -20 93l Max Min mA Vee = Max, VIN = 5.5 V -70 mA Vee mA Vee 22 = +25°C (See Section 3 for waveforms and 93XX PARAMETER SYMBOL CONDITIONS 1.0 77 TA UNITS Max CL = 15 pF Min Max = Max, = Max VOUT load configurations) 93l CL = 15 pF Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Tn to EO 10 18 18 50 ns Figs. 3-1, 3-4 tPLH tPHL Ef to Propagation Delay GS 14 16 20 28 ns Figs. 3-1, 3-5 tPLH tPHL t!opagation Delay EI to EO 14 22 20 36 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay ET to An 17 17 33 26 ns Figs. 3-1, 3-5 tPLH tPHL Tn Propagation Delay to GS 14 16 60 26 ns Figs. 3-1, 3-5 tPLH tPHL Tn Propagation Delay to An 21 21 36 36 ns Figs. 3-1, 3-20 6-58 =0 V / 19 .20 CONNECTION DIAGRAM PINOUT A 9319 • 9320 DECADE SEQUENCERS DESCRIPTION - The '19 and '20 are high speed counters with ten decoded active LOW outputs. The '19 has standard TTL totem pole outputs, and the '20 has resistor pull-up outputs for wired-AND applications. The devices provide a 1-of-1 0 sequential output pattern by the application of ten pulses to the Clock input. Shorter sequenc·es can be obtained by using external feedback, either hard-wired or programmable via multiplexing. • • • • • • cpIT COMBINATION DECADE COUNTER AND 1-0F-10 DECODER GLiTCHLESS, SEQUENTIAL 1-0F-10 OUTPUT PATTERN IDEAL FOR MULTIPHASE CLOCK GENERATION ANY SEQUENCE BETWEEN TWO AND TEN OBTAINABLE HIGH SPEED CLOCK INPUTS-TYPICALLY 50 MHz WIRED-AND CAPABILITY (9320 ONLY) - ~vcc CEil fill iRIT ~o, MRIT 09[[ ~02 ~"O3 OB[! ~04 ~O5 ~"O6 07 [I GNO[! ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP (P) A 9319PC, 9320PC Ceramic DIPm) A 9319DC, 9320DC 9319DM,9320DM 68 Flatpak (F) A 9319FC, 9320FC 9319FM, 9320FM 4L 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES CP CE SR MR Co-Os DESCRIPTION 9319 (U.L.) HIGH/LOW 9320 (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 1.0/1.0 20/10 3.0/10 Clock Pulse Input (Active Rising Edge) Clock Enable Input Synchronous Reset Input (Active LOW) Asynchronous Master Reset Input (Active LOW) Decoded Outputs (Active LOW) 1 1 LOGIC SYMBOL SR MR 1 - CP 2 - CE 00 0, 02 03 O. 05 06 07 OB 09 1XXXX!!lrr 6-59 Vcc = Pin 16 GND = Pin 8 00 • 19 .20 LOGIC DIAGRAM iii-~II"""'----' CP==DO-~~----------4-'---------~-'----------~~---------4-' CE iiii i5 E BB A Ii C Eii: BC Ai co ~~ 0, 00 E E o 0 DE AE Ii B ic CD DE O. Os 06 0, 06 O. ~~~ ~~~ (] i 02 C C 03 TRUTH TABLE OPERATING MODE INPUTS MR SR Initialize, Asynchronous Reset L L-H X X Synchronous Reset H L Hold H Sequence/Count H H H ··· · H H H H OUTPUTS CE CP 00 01 02 X (quiescent) H L H H H H H ..r L H H X L X H H H H H H ..r ..r ..r ·· ·· H H H H ··· · H H H H X ·· ·· ..r ..r S I · · · · 07 Os Os H H H H H H H H H (No Change) L H H ·· ·· H H H L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 6-60 H L H ·· ·· H H H H H H L ·· ·· H H H H ·· ·· ·· ·· · · · ·· · · ·· ·· ·· ·· ·· ·· ·· · · · ·· ·· ·· ·· H H H H H H H H H L H H H H L H H H H L H 19 • 20 FUNCTIONAL DESCRIPTION - The '19 and '20 are decade shift counters with active LOW 1-of-10 decoded outputs. The decoded shift counter technique provides ten mutually exclusive, glitchless outputs. The edgetriggered counter is advanced on each LOW-to-HIGH transition of the Clock input (CPl. When the Clock Enable (CEl, Synchronous Reset (SR), Master Reset (MR) are HIGH, the device is sequenced via the Clock thru output states 00 - '09, successively. The active HIGH Count Enable (CEl input is gated with the Clock and can be interchanged with Clock for layout convenience. A LOW on the CE input inhibits the Clock and stops the counter. By returning one of the outputs to the CE input, the device will sequence upto that output state and stop until reset with the Master Reset. Because the CE input is gated with the CP input, it oannot be changed from LOW to HIGH while the CP is HIGH. The active LOW Synchronous Reset (SR) is used to reset the counter to zero (returni ng the output to the 00 state) in response to the LOW-to-HIGH transitton of the Clock. Any sequence between "two" and "ten" can be obtained by connecting the last desired 'output to the SR input. This method of truncating the sequence produces a series of pulses of equal duration as long as the clock frequency remains constant. A LOW on the Master Reset (MR) overrides all other input conditions and resets the counter to zero. As long as the MR is LOW, all of the outputs are HIGH. When the MR goes from LOW to HIGH, the zero output (00) goes LOW. This MR gating with the 00 output insures complete system resetting or initialization before the first output In the sequencer is activated. For low frequency applications (below 1.0 MHz) the MR can be used in lieu of the SR for truncating the count sequence. If the input CP rise time is very slow (over 100 ns), the MR input should be used to reset the counter to avoid mis-triggering. This is accomplished by returning the next higher output to the MR pin. After the desired sequence is completed, the next clock pulse will reset the counter and enable the first output within 50 ns. The outputs of the '19 are standard TTL totem pole type which can drive up to ten standard TTL unit loads. The outputs of the '20 are DTL resistor pull-up type for applications requiring wired-AND connections. The on-chip pull-up resistors, (about 3 kOl of the '20 eliminate the need for external resistors normally required by opencollector outputs. Up to eight '20 outputs can be tied together with enough sink current capability left to drive one standard TTL input or five 93L or 54LS174LS inputs. The '19 and '20 will normally require initialization after power is first applied. A LOW pulse on the Master Reset (or a LOW on the Synchronous Reset in conjunction with a clock pulse) will reset the 5-bit register and activate output 00. If initialization is not possible or not required, an error correction circuit is provided to detect some of the 22 unused states and return the counter to the proper sequence within ten clock cycles. 6-61 19 • 20 ENABLE ENABLE (HIGH) - 6 6 MR SR b (HIGH) b SR MR - CP 00 01 02 03 04 Os 06 07 Os 09 CP yrl¥:n 00 01 02 03 04 Os 06 07 Os 09 Y y Y YY Y Y _>3 Y >2 >1 >1 LJ >2 LJ LJ LJ Fig. a Three-Phase Generator Operating at One-Third the Clock Frequency Fig. b Three-Phase Generator Operating at One-Sixth the Clock Frequency ENABLE (HIGH) CLOCK 6 6 MR SR SR '-- CP - CP #1 #2 00 01 02 03 04 Os 06 07 06 09 00 01 02 03 04 Os 06 07 06 09 CE t----I r j po-~ o 1 2 3 4 5 6 7 I 8 9 -10 11 12 13 14 15 16 17 18 Fig. c Expansion for longer sequences. The first sequencer locks up after 09 goes LOW because of the feedback to CEo Simultaneously, SR of the second sequencer Is released and It starts counting on the next clock. When 09 of the second sequencer goes LOW, the feedback to MR causes (jg of the first sequencer to go HIGH, which then makes SR of the second sequencer go HIGH. On the next clock the second sequencer goes to the 00 state, releasing MR of the first sequencer, making Its 00 go LOW. On the next clock the first sequencer starts Its counting sequence again. 6-62 19. 20 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 9319 PARAMETER SYMBOL Min VOH Output HIGH Voltage los Output Short Circuit Current lee Power Supply Current Max 9320 Min UNITS 2.4 -1.3 CONDITIONS Max V 10H = -120 p.A -3.7 rnA Vee = Max, VOUT = 0 V 60 rnA Vee = Max 60 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 9319 PARAMETER SYMBOL 9320 CL = 15 pF CL = 15 pF RL=400n Min Max fmax Maximum Count Frequency 35 tPLH tpHL Propagation Delay CP to On 40 30 tPLH tPHL PropaQ.!tion Delay MR to On 50 33 Min UNITS CONDITIONS Max MHz Figs. 3-1, 3-8 40 30 ns Figs. 3-1, 3-8 50 33 ns Figs. 3-1, 3-16 35 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C PARAMETER SYMBOL 9319 Min Max 9320 Min UNITS CONDITIONS Max ts (H) ts(U Setup Time HIGH or LOW SR to CP 10 10 10 10 ns th (H) th (U Hold Time HIGH or LOW SR to CP 5.0 5.0 5.0 5.0 ns Fig. 3-6 tw CP Pulse Width 15 15 ns Fig. 3-16 tw(U MR or SR Pulse Width LOW 9.0 9.0 ns Fig. 3-16 tree Recovery Ti me MR to CP 35 35 ns Fig. 3-16 , 21 CONNECTION DIAGRAM PINOUT A 9321 93L21 eaIT DUAL 1-0F-4 DECODER Ao.[! - ~vcc ~eb ~Aob A1a!! o~. [! 01a ~A1b ~OOb ~01b ~02b ~03b I! 02.[! 03. IT GND!! DESCRIPTION - The '21 consists of two independent mUltipurpose decoders, each designed to accept two inputs and provide four mutually exclusive outputs. In addition an active LOW enable input, which gives demultiplexing capability, is provided for each decoder. • • • • MULTIFUNCTION CAPABILITY MUTUALLY EXCLUSIVE OUTPUTS DEMUL TIPLEXING CAPABILITY ACTIVE LOW ENABLE FOR EACH DECODER LOGIC SYMBOL 1i i I T1i DECDDER a DECOOER b 00010203 00 01 02 03 E Ao Al ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 9321 PC, 93L21PC Ceramic DIP (0) A 9321 DC, 93L21DC 9321 OM, 93L21DM 68 Flatpak (F) A 9321 FC, 93L21 FC 9321 FM, 93L21 FM 4L 98 E Ao Al r! ! r XX!! Vee = Pin 16 Gnd = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION Ea, Enable Inputs (Active LOW) Eb Aoa, A1a, AOb, A1b Address Inputs Ooa-03a} Decoder Outputs (Active LOW) OOb-03b 93XX (U.L.) HIGH/LOW 93L (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 0.5/0.25 0.5/0.25 20/10 6-64 10/5.0 (3.0) 21 FUNCTIONAL DESCRIPTION - The '21 consists of two separate decoders each designed to accept two binary weighted inputs and provide four mutually exclusive active LOW outputs as shown in the logic symbol. Each decoder can be used as a 4-output demultiplexer by using the enable as a data input. TRUTH TABLE (EACH DECODER) INPUTS OUTPUTS E Ao A1 00 01 02 03 L L L L H L H L H X L L H H X L H H H H H L H H H H H L H H H H H L H H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial LOGIC DIAGRAM 000 00. Ao. 01a Ao. Olb A" 02a A,. 02. 03a C3b E. E. DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93XX PARAMETER Min lee Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, Max 50 TA PARAMETER UNITS CONDITIONS Max 13.2 rnA Vee = Max = +25°C (See Section 3 for waveforms and 93XX SYMBOL 93L Min 93L CL = 15 pF CL = 15 pF Min Max load configurations) Min UNITS CONDITIONS Max tPLH tPHL Propaa,ation Delay An to On 20 21 50 65 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay E'to On 14 18 40 52 ns Figs. 3-1, 3-5 6-65 22 CONNECTION DIAGRAM PINOUT A 9322 93L22 QUAD 2-INPUT MULTIPLEXER sIT DESCRIPTION - The '22 quad 2-input digital multiplexers consist of four multiplexing circuits with common select and enable logic; each circuit contains two inputs and one output. • MULTIFUNCTION CAPABILITY • ON-CHIP SELECT LOGIC DECODING • FULLY BUFFERED OUTPUTS - 1iI Vee 10·tI illl E h.11: Imloe Za[! IEl he lab 11 hb I! ~Ze rrn ~hd ~Zd zblI GND[! ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V, ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 9322PC, 93L22PC Ceramic DIP .~~----~--+---~~-+----~--+---~r-I E--~~----------~~~t+----~H---~~--~NHr-~rr----~H--, 6-67 lOa 22 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER los Output Short Circuit Current lee Power Supply Current AG CHARACTERISTICS: Vee 93XX Min Max -20 -70 93l Min mA 47 13.2 CONDITIONS mA = Max, Vee = Max Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and 93XX SYMBOL UNITS Max PARAMETER Max load configurations) = 15 pF Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay S to Zn 23 27 36 49 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay 10 or i1 to Zn 14 14 22 30 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay Eto Zn 20 21 27 27 ns Figs. 3-1, 3-4 6-6~ =0V 93l CL = 15 pF CL RL = 400 n Min VOUT 24 CONNECTION DIAGRAM PINOUT A 9324 93L24 5-BIT COMPARATOR DESCRIPTION - The '24 expandable .comparators provide comparison between two S-bit words and give three outputs - "less than", "greater than" and "equal to". A HIGH on the active LOW Enable Input forces all three outputs LOW. • THREE SEPARATE OUTPUTS-A< B, A > B, A = B • EASILY EXPANDABLE • ACTIVE LOW ENABLE INPUT EO: SA >B Bo[I SA~B B,[~ tmAo B'[1 tmA1 B.er: PIN PKGS OUT GNO[! COMMERCIAL GRADE MILITARY GRADE Vee = +S.O V ±S%, TA = O°C to +70°C Vee = +S.O V ±10%, TA = -SsoC to +12SoC ~vcc A 8 A Greater than 8 Output (Active HIGH) 20/10 A=8 A Equal to 8 Output (Active HIGH) 20/10 Ao-A4 6-69 24 FUNCTIONAL DESCRIPTION - The '24 5-bit comparators use combinational circuitry to directly generate "A greater than Bn and "A less than Bn outputs. As evident from the logic diagram, these outputs are generated in only three gate delays. The "A equals Bn output is generated in one additional gate delay by decoding the "A neither less than nor greater than Bn condition with a NOR gate. All three outputs are activated by the active LOW Enable Input @. Tying the A > B output from one device into an A input on another device and the A < B output into the corresponding B input permits easy expansion. The AI, and B4 inputs are the most significant inputs and Afj, So the least significant. Thus if A4 isHIGH and B4 is LOW, the A > B output will be HIGH regardless of all other inputs except E. LOGIC SYMBOL 1 -- B A=B L L L H L L H L L H L L X X Word A = Word B Word A > Word B Word B > Word A H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 6-70 24 lOGIC DIAGRAM A. - n '7 JD B. ~ r) L- ~:n - r- AD E '7 r" A1 A2 A3 07 FD7 ~D A B tPLH tPHL A2 to A < B tPLH tPHL A2 to A = B A=B Propagation Delay Propagation Delay Propagation Delay Max mA Vee = Max 3 for waveforms and load configurations) 93l 93XX SYMBOL CONDITIONS Max 81 V, TA UNITS CL = 15 pF Min UNITS CONDITIONS Max 14 14 32 35 ns Figs. 3-1, 3-4 25 22 54 75 ns Figs. 3-1, 3-5 26 21 70 77 ns Figs. 3-1, 3-4 30 32 100 102 ns Figs. 3-1, 3-20 6-71 • 28 CONNECTION DIAGRAM PINOUT A 9328 93L28 DUAL 8-BIT SHIFT REGISTER DESCRIPTION - The '28 is a high speed serial storage element providing 16 bits of storage in the form of two 8-bit registers. The multifunctional capability of this device is provided by several features: 1) additional gating is provided at the input to both shift registers so that the input is easily multiplexed between two sources; 2) the clock of each register may be provided separately or together; 3) both the true and complementary outputs are provided from each 8-bit register, and both registers may be master cleared from a common input. MR[I ad}: 07 II N • 2-INPUT MULTIPLEXER PROVIDED AT DATA INPUT OF EACH REGISTER • GATED CLOCK INPUT CIRCUITRY • BOTH TRUE AND COMPLEMENTARY OUTPUTS PROVIDED FROM lAST BIT OF EACH REGISTER • ASYNCHRONOUS MASTER RESET COMMON TO BOTH REGISTERS a: ...'" In srI - ~vcc ~Q7 ~07 m c; D,[I '"a: DolI ~DO cPU: ~cP GND[I ~~P 9 COM ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 9328PC, 93L28PC Ceramic DIP (0) A 9328DC, 93L28DC 9328DM, 93L28DM 68 Flatpak (F) A 9328FC, 93L28FC 9328FM, 93L28FM 4L 98 INPUT lOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Q7 Data Select Input Data Inputs Clock Pulse Input (Active HIGH) Common (Pin 9) Separate (Pins 7 and 10) Master Reset Input (Active LOW) Last Stage Output 07 Complementary Output S 00,01 CP -MR 93XX (U.l.) HIGH/LOW DESCRIPTION 6-72 93l (U.l.) HIGH/LOW 2.0/2.0 1.0/1.0 1.0/0.5 0.5/0.25 3.0/3.0 1.5/1.5 1.0/1.0 20/10 1.5/0.75 0.75/0.375 0.5/0.25 10/5.0 (3.0) 10/5.0 (3.0) 20/10 :» ~s iiiCl .... ~D' :»m - 28 FUNCTIONAL DESCRIPTION - The two 8-bit shift registers have a common clock input (pin 9) and separate clock inputs (pins 10 and 7l. The clocking of each register is controlled by the OR function of the separate and the common clock input. Each register is composed of eight clocked RS master/slave flip-flops and a number of gates. The clock OR gate drives the eight clock inputs of the flip-flops in parallel. When the two clock inputs (the separate and the common) to the OR gate are LOW, the slave latches are steady, but data can enter the master latches via the Rand S input. During the first LOW-to-HIGH transition of either, or both simultaneously, of the two clock inputs, the data inputs (R and S) are inhibited so that a later change in input data will not affect the master; then the now trapped information in the master is transferred to the slave. When the transfer is complete, both the master and the slave are steady as long as either or both clock inputs remain HIGH. During the HIGH-to-LOW transition of the last remaining HIGH clock input, the transfer path from master to slave is inhibited first, leaving the slave steady in its present state. The data inputs (R and S) are enabled sothat new data can enter th~ master. Either of the clock inputs can be used as clock inhibit inputs by applying a logic HIGH signal. Each 8-bit shift register has a 2-input multiplexer in front of the serial data input. The two data inputs Do and Dl are controlled by the data select input (S) following the Boolean expression: Serial data in: SD = SDo + SDl An asynchronous master reset is provided which, when activated by a LOW logic level, will clear al116 stages independently of any other input signal. LOGIC SYMBOL 13 10-----\ 9--HL~ 11 12 Do 0, cp SHIFT SELECT TABLE 07 14 07 15 INPUTS MR 4 6 5 3 07 2 Do Dl L L H H L H X X X X L H Q7 (t n + 8) L H L H H ~ HIGH Vollage Level L ~ LOW Vollage Level X "'" Immaterial n + 8 ~ Indicales slale after eighl clock pulse 0, 07 S OUTPUT MR Vce = Pin 16 = Pin 8 GND LOGIC DIAGRAM Do S MR-------~~--4-----4---~---~---4-----~--~~-----4--------J 6-73 28 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER 93XX Min lee Power Supply Current Max 93l Min UNITS 25.3 77 CONDITIONS Max rnA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 93XX SYMBOL PARAMETER 93l CL = 15 pF CL = 15 pF RL = 400 n Min Max 'f max Maximum Shift Right Frequency 20 tpLH tpHL Propagation Delay CP to 07 or elY 20 35 tpHL Propagation Delay MR to 07 50 Min UNITS CONDITIONS Max 5.0 MHz Figs. 3-1, 3-8 45 80 ns Figs. 3-1, 3-8 110 ns Figs. 3-1, 3-16 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C SYMBOL PARAMETER 93XX Min Max 93l Min UNITS ts (H) ts (U Setup Time HIGH or LOW Dn to CP 20 20 30 30 ns th (H) th (U Hold Time HIGH or LOW Dn to CP 0 0 0 0 ns tw (H) tw (U Clock Pulse Width HIGH or LOW 25 25 55 55 ns tw (U MR Pulse Width with CP HIGH 30 60 ns tw (U MR Pulse Width with CP LOW 40 70 ns tree Recovery Time MR to CP 33 Fig. 3-6 ns 6-74 CONDITIONS Max Fig. 3-8 Fig. 3-16 Fig. 3-16 34 CONNECTION DIAGRAMS PINOUT A 9334 93L34 - AoU 8-BIT ADDRESSABLE LATCH ~VC;( ~ct All2 ~E ~D ~O7 A2[I ooG 0,1} S06 02[! DESCRIPTION - The '34 is an 8-bit addressable latch designed for general purpose storage applications in digital systems. It is a multifunctional device capable of storing single line data in eight addressable latches, and being a one-of-eight decoder and demultiplexer with active level HIGH outputs. The device also incorporates an active LOW common clear for resetting all latches, as well as, an active LOW enable. • • • • • • SERIAL TO PARALLEL CAPABILITY EIGHT BITS OF STORAGE WITH OUTPUT OF EACH BIT AVAILABLE RANDOM (ADDRESSABLE) DATA ENTRY ACTIVE HIGH DEMUL TIPLEXING OR DECODING CAPABILITY EASILY EXPANDABLE COMMON CONDITIONAL CLEAR 03[! ~O5 GNOI:! . ~O4 LOGIC SYMBOL I r 1r 0 E 1 - AG ORDERING CODE: See Section 9 2 - A, PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C Plastic DIP(P) A 9334PC, 93L34PC Ceramic DIP (0) A 9334DC, 93L34DC Flatpak (F) A 9334FC, 93L34FC PKG TYPE 3 - A2 CL 00 0, 02 03 04 as 06 07 Y I I I I IT TT 15 4 5 6 7 9 10 11 12 98 9334DM, 93L34DM 9334FM, 93L34FM 68 4L Vee = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-A3 D E CL 00-07 DESCRIPTION Address Inputs Data Input Enable Input (Active LOW) Clear Input (Active LOW) Parallel Latch Outputs 6-75 93XX (U.L.) HIGH/LOW 93L (U.L.) HIGH/LOW 1.0/1.0 1.0/1.0 1.5/1.5 1.0/1.0 18/6.0 0.5/0.25 0.5/0.25 0.75/0.38 0.5/0.25 10/5.0 (3.0) 34 FUNCTIONAL DESCRIPTION - The '34 has four modes of operation which are shown in the Mode Select Table. I n the addressable latch mode, data on the data line( D) is written into the addressed latch. The addressed latch will follow the Data input with all non-addressed latches remaining in their previous states. In the memory mode, all latches remain in their previous state and are unaffected by the data or address inputs. To eliminate the possibility of entering erroneous data into the latches, the Enable should be held HIGH while the Address lines are changing. In the 1-of-8 decoding or demultiplexing mode, the addressed output will foil ow the state of the D input with all other outputs in the LOW state. In the clear mode all outputs are LOW and unaffected by the address and data inputs. When operating the '34 as an addressable latch, changing more than one bit of the address could impose a transient wrong address. Therefore, this should only be done while in the memory mode. MODE SELECT TABLE E CL L H L H H H L L MODE Addressable Latch Memory Active HIGH 8-Channel Demultiplexer Clear TRUTH TABLE OUTPUTS INPUTS MODE CL E Ao A1 A2 00 01 02 03 04 Os 06 07 L L L L H L L L X L H L X L L H X L L L L D L L L L D L L L L D L L L L L L L L L L L L L L L L L L L L L L H H H L L L L L L L D H H X X X Ot-1 Ot-1 Ot-1 Ot-1 Ot-l Ot-l Ot-l Ot-1 Memory H H H L L L L H L L L H L L L D Ot-l Ot-l Ot-1 Ot-l Ot-l Addressable Latch H L H H H Clear Demultiplex ·· ·· ·· ·· ·· ·· .. ·· ·· .. ·· ·· ·· Ot-l D Ot-l Ot-l Ot-l D Ot-l Ot-l Ot-l Ot-1 Ot-l = LOW Voltage Level Ot-l Ot-l Ot-l Ot-l Ot-l Ot-l Ot-l Ot-l Ot-l Ot-l Ot-l Ot-l = Immaterial Ot-l · · · · · ·· .. ·· ·· .. ·· · · · · · · · · · 01-1 H = HIGH Voltage Level L x 0,-1 D = Previous LOGIC DIAGRAM E 0 Ci. Ao 1 Qs Qo 6-76 Q6 Output State 34 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 93XX PARAMETER SYMBOL Min lee Power Supply Current AC CHARACTERISTICS: Vee I I = +5.0 V, XM XC TA Max 93l Min 86 86 21 26 = +25°C (See Section 93XX PARAMETER SYMBOL = 15 pF CL Min CONDITIONS rnA Vee = Max 3 for waveforms and load configurations) 93l CL = 15 pF Min UNITS CONDITIONS Max tPLH tpHL E to On 23 24 45 42 ns Figs. 3-1, 3-9 tPLH tpHL Propagation Delay D to On 28 24 65 45 ns Figs. 3-1, 3-5 tPLH tpHL Propagation Delay An to On 35 35 66 66 ns Figs. 3-1, 3-20 40 55 ns Figs. 3-1, 3-10 tPHL Propagation Delay Max UNITS Max Propagation Delay CL to On AC OPERATING REQUIREMENTS: Vee SYMBOL PARAMETER = +5.0 V, TA 93XX Min E D to E ts (H) Setup Time HIGH, D to th (H) Hold Time HIGH, ts (U = +25°C Max 93l Min UNITS 20 45 ns 0 -5.0 ns Setup Time LOW, D to E 17 45 ns th (U Hold Time LOW, D to E 0 -7.0 ns ts (H) ts(U Setup Time HIGH or LOW An to E 5.0 5.0 10 10 ns tw (U E Pulse Width LOW 17 26 ns tw (U CL Pulse Width LOW 35 ns 6-77 CONDITIONS Max Fig. 3-13 Fig. 3-21 Fig. 3-17 38 CONNECTION DIAGRAM PINOUT A 9338 93138 a-BIT MULTIPLE PORT REGISTER DESCRIPTION - The '38 is an 8-bit multiple port register designed for high speed random access memory applications where the ability to simultaneously read and write is desirable. A common use would be as a register bank in a three address computer. Data can be written into anyone of the eight bits and read from any two of the eight bits simultaneously. The circuit uses TTL technology and is compatible with all TTL families. • MASTER/SLAVE OPERATION PERMITTING SIMULTANEOUS WRITE/READ WITHOUT RACE PROBLEMS • SIMULTANEOUSLY READ TWO BITS AND WRITE ONE BIT IN ANY ONE OF EIGHT BIT POSITIONS • READILY EXPANDABLE TO ALLOW FOR LARGER WORD SIZES ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP (Pl A 9338PC, 93L38PC Ceramic DIP (0) A 9338DC, 93L38DC 9338DM, 93L38DM 78 Flatpak (f) A 9338FC, 93L38FC 9338FM, 93L38FM 4L 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES />(J-A2 DESCRIPTION CP SLE ZB Write Address Inputs Data Input 8 Read Address Inputs C Read Address Inputs Clock Pulse Input (Active Rising Edge) Slave Enable Input (Active LOW) 8 Output Zc C Output DA Bo-8:2 Q)-c:! 93XX (U.L.) HIGH/LOW 93L (U.L.) HIGH/LOW 0.67/0.68 0.6710.68 0.67/0.68 0.6710.68 0.67/0.68 0.67/0.68 20/10 0.33/0.17 0.33/0.17 0.33/0.17 0.33/0.17 0.33/0.17 0.33/0.17 10/5.0 (3.0) 10/5.0 (3.0) 20/10 6-78 38 LOGIC SYMBOL 15 14 13 1 12 11 2 3 9 7 6 Ao A1 A2 Bo B1 B2 Co C, C2 CP DA 10 --0 SLE 4 Vee = Pin 16 GND = Pin 8 LOGIC DIAGRAM A2-{>~;=~~~iilliii~i~i~i~i1f=-=--=:?~ 'o-'1~---- Ao-{>·_------ -~J----SLE Co~~~---~ C, C2 -{>.<>-T--------I ---1i>c>--f--------l Zc ZB 6-79 • 38 FUNCTIONAL DESCRIPTION - The '38 8-bit multiple port register can be considered a 1-bit slice of eight high speed working registers. Data can be written into anyone and read from any two of the eight locations simultaneously. Master/slave operation eliminates all race problems associated with simultaneous read/write activity from the same location. When the clock input (CP) is LOW data applied to the data input line(OA) enters the selected master. This selection is accomplished by coding the three write input select lines (Ao - A2) appropriately. Data is stored synchronously with the rising edge of the clock pulse. The information for each of the two slaved (output) latches is selected by two sets of read address inputs (60 -82 and Co - C2). The information enters the slave while the clock is HIGH and is stored while the clock is LOW. If Slave Enable is LOW (SLE), the slave latches are continuously enabled. The signals are available on the output pins (ZB and Zc). The input bit selection and the two output bit selections can be accomplished independently or simultaneously. The data flows into the device, is demultiplexed according to the state of the write address Ii nes and is clocked into the selected latch. The eight latches function as masters and store the input data. The two output latches are slaves and hold the data during the read operation. The state of each slave is determined by the state of the master selected by its associated set of read address inputs. The method of parallel expansion is shown in Figure a. One '38 is needed for each bit of the required word length. The read and write input lines should be connected in common on all of the devices. This register configuration provides two words of n-bits each at one time, where n devices are connected in parallel. CLOCK INPUT { A SELECT b '-- Ao - Da '-- Ao A A1 - 9338 8-BIT B1 MULTIPLE PORT B2 REGISTER B A1 9338 a-BIT B1 MULTIPLE PORT B2 REGISTER Bo Bo Co Co c, , . - - C, r - C2 CP SLE Da A2 A2 - b CP SLE ZB r - C2 Ze ZB Ze B OUTPUT { SELECT C OUTPUT { SELECT I I Ca Cb C WORD B WORD Fig. a Parallel Expansion 6-80 • •• 38 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL PARAMETER los Output Short Circuit Current lee Power Supply Current 93XX 93l UNITS CONDITIONS Min Max Min Max -10 -70 -2.5 -25 mA Vee = Max 33 mA Vee = Max 135 AC CHARACTERISTICS: Vee = +5.0 V. TA = +25°C (See Section 3 for waveforms and load configurations) 93XX SYMBOL PARAMETER 93l CL = 15 pF CL = 15 pF Min UNITS CONDITIONS Min Max tPLH tPHL Propagation Delay Bn or Cn to Zn 13 18 40 35 Max 68 95 ns Figs.3-1. 3-20 .tPLH tPHL Propagation Delay DA to Zn 25 25 45 50 70 92 ns Figs. 3-1.3-5 tPLH tPHL Propagation Delay CP to Zn 18 13 35 30 65 57 ns Figs. 3-1.3-8 AC OPERATING REQUIREMENTS: Vee = +5.0 V. TA = +25°C SYMBOL PARAMETER 93XX Min ts (H) ts(U Setup Time HIGH or lOW DA to CP th (H) th (U Hold Time HIGH or lOW DA to CP ts (H) ts(U Max 93l Min UNITS 20 12 30 22 ns 0 -8.0 0 -4.0 ns Setup Time HIGH or lOW An to CP 10 10 0 0 ns th (H) th (U Hold Time HIGH or LOW An to CP 0 0 0 0 ns tw (H) tw (U CP Pulse Width HIGH or LOW 23 13 40 30 ns 6-81 CONDITIONS Max Fig. 3-6 Fig. 3-21 Fig. 3-8 • 40 CONNECTION DIAGRAM PINOUT A 9340 4-BIT ARITHMETIC LOGIC UNIT (With Carry Lookaheadl DESCRIPTION - The '40 is a high speed arithmetic logic unit with full onchip carry lookahead circuitry. It can perform the arithmetic operations add or subtractin parallel, or any of six logic functions on two 4-bit binary words. The internal carry lookahead provides either a ripple carry output or carry lookahead outputs. An internal carry input network accepts carry lookahead outputs from up to three other packages producing a 16-bit full carry lookahead ALU without additional gates. Ripple carries can be used between additional blocks of 12 bits to further expand the word length. • MULTIFUNCTION CAPABILITY TWO ARITHMETIC OPERATIONS-ADD, SUBTRACT SIX LOGIC FUNCTIONS - A EX OR B, A AND B, PLUS FOUR OTHERS • ADD TWO 4-BIT WORDS IN 23 ns TYPICAL • SUBTRACT TWO 4-BIT WORDS IN 28 ns • LOOKAHEAD CARRY INPUT AND OUTPUT NETWORKS ON-CHIP • EASILY EXPANDABLE TO LONGER WORD LENGTHS • TYPICAL POWER DISSIPATION OF 425 mW ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE Vee = +5.0 MILITARY GRADE PKG Vee = +5.0 V ±10%, V ±5%, TA = O°C to +70°C TYPE TA = -55°C to +125°C Plastic DIP(P) A 9340PC Ceramic DIP (D) A 9340DC 9340DM 6N Flatpak (F) A 9340FC 9340FM 4M 9N LOGIC SYMBOL II 11 11 11 AO Bo A1 81 A2 82 A3 83 1 COE 14--0 CG, 13--0 CP, CO/CG 0---22 16--0 CG2 15--0 CP2 CP p-23 17--0 CG3 2 - So 3-51 Fo Y 18 F1 Y 19 F2 Y 20 6-82 F3 y 21 Vce = Pin 24 GND = Pin 12 40 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES AfJ-A3} DESCRIPTION 93XX (U.L.) HIGH/LOW 80-B3 Operand Inputs (Active LOW) 3.0/3.0 SO, Sl CG1 Mode Select Inputs Carry Generate Input from immediately preceeding stage (Active LOW) Carry Propagate Input from immediately preceeding stage (Active LOW) Carry Generate Input from second preceeding stage (Active LOW> Carry Propagate Input from second preceeding stage (Active LOW) Carry Generate Input. from third preceeding stage (Active LOW) Carry Out Enable Input Function Outputs (Active LOW) Carry Out/Carry Generate Output (Active LOW) Carry Propagate Output (Active LOW> 1.0/1.0 3.0/3.0 CP1 CG2 1.0/1.0 2.0/2.0 1.0/1.0 1.0/1.0 1.5/1.5 20110 20/10 20/10 • LOGIC DIAGRAM CGl CPl CO/CG CG, CP2 CG3 Cii So Sl---{> 6-83 40 FUNCTIONAL DESCRIPTION - The '40 accepts two 4-bit words, AD, A" A2, As and 80, 8" 82, lb, and produces a 4-bit output, Fe, F" F2, Fa. The output function is determined by the states on the control lines So and S,. The inputs and outputs of the '40 may be considered to be active LOWor active HIGH. Logic equivalents for four representations of the '40 are shown in Figure a, b, c, and d. The add and subtract operations are performed on the entire word, with carries or borrows propagated between bits of different weight. The arithmetic may be performed in 1's complement, 2's complement, or signmagnitude notation. In the logic modes, carries are inhibited and the device acts like four gates as shown. To achieve high speed operation, the '40 is designed to be used in a carry lookahead system. Full carry lookahead is used inside the device to propagate carries between bits. Carry lookahead fu nctions over the 4-bit block are available as outputs. These outputs are labeled CO/CG (Carry Out/Carry Generate) and CP (Carry Propagate) on the logic symbol. The carry in to the device is formed from a set of Carry Generate and Carry Propagate inputs (equation 1) so that three '40's can be interconnected without any additional gates to form a 12-bit full carry lookahead ALU with a carry in. The pin labeled COE (Carry Out Enable) controls the CO/CG output according to equation 2. When COE is HIGH, CO/CG becomes a Carry Out which can be used to ripple carries between blocks of 12 bits. The CG, input can be used for a ripple carry input, since this signal is sufficient to produce a carry in. EQUATION: (1) (CG,) + (CP,) (CG2) + (CP,) (CF':!) (CG3) (2) CO/CG = (CG) + (CP) (Cin) (COE) = Cin (internal) FUNCTION TABLES FOR LOGIC EQUIVALENTS OF THE '40 Note that when the input operands are defined as active HIGH, the carry lookahead inputs and outputs are not formally carry generate and carry propagate. Consequently, these pins have been relabled CX and CY in the active HIGH cases. However, the signals are connected in the same manner as CG and CPo ACTIVE LOW OPERANDS l! 11 11 11 Au Bo 14~ CG, 13~ cp, Al 8, Ao B2 Ao B3 1 OPERATION So S, L L A SUBTRACT B H L AADDB L H A EX OR B H H AAND B COE CO/CG 0-22 16-0 CG2 15~ CONTROL INPUTS CP2 CP 0-23 17--C CG3 2 - So 3 - 5, Fo F, F2 F3 ! ! ! ! Vee = Pin 24 GND = Pin 12 EQUIVALENT LOGIC ~ ~ 6-84 ADD ~ ~ 1: o----t 1: H = HIGH Voltage Level L = LOW Voltage Level Fig. a SUB ca 40 FUNCTION TABLES FOR LOGIC EQUIVALENTS OF THE '40 (Cont'ql ACTIVE HIGH OPERANDS 7 11 6 10 5 9 4 CONTROL INPUTS 8 OPERATION So S1 L L A SUBTRACT B H L AADD B L H A EQUIV B H H AOR B 14 13 CY, 16 CX2 15 CY2 17 CX, CX 22 CY 23 So 5, 18 19 20 21 Vee = Pin 24 GND = Pin 12 EQUIVALENT LOGIC =t 8~ HSUB ADD I: I: )[)o D 'I 'I Fig. b ACTIVE LOW OPERANDS WITH INVERTED B 7 11 6 10 5 9 4 CONTROL INPUTS 8 14--0 CG, 13 16 CG/CO 22 CP 23 S1 L L AADD B H L A SUBTRACT B L H A EQUIV B H H AANDB 15 17 OPERATION So So S, Fo F, 18 19 y Y 21 20 Vee = Pin 24 GND = Pin 12 14 CX, 13 CY, 16 CX2 15 CY2 17 CX, 6 10 5 9 4 CONTROL INPUTS 8 CX 22 CY 23 OPERATION So S1 L L AADD B H L A SUBTRACT B L H A EX OR B H H AORB So 18 19 20 Vee = Pin 24 GND = Pin 12 =t E+=t E+ADD SUB ~I: '10-1: 00--40)Do Fig. c ACTIVE HIGH OPERANDS WITH INVERTED B 7 11 EQUIVALENT LOGIC 21 Fig. d 6-85 EQUIVALENT LOGIC =t 8=t EtADD SUB ~I: ~I: lD D 'I 'I 40 DC CHARCTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise speci.fied) SYMBOL 93XX PARAMETER Min lee Power Supply Current CONDITIONS UNITS Max ~ 135 146 XC rnA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 93XX SYMBOL PARAMETER CL = 15 pF Min UNITS CONDITIONS Max So, CG1, CP, 81, 8:!=4.5V tpLH tPHL Propagation Delay Add Mode, So to F3 30 30 ns 51, Ao -AJ, ih = Gnd Figs. 3-1, 3-5 tPLH tPHL Propagation Delay for Subtract Mode, So to F3 37 32 ns CG1, CP1, 83 = 4.5 V; So, 51, Ao - As, 81,82 = Gnd Figs. 3-1', 3-4 tPLH tPHL Propagation_Dela~ Add Mode, 80 to CO/CG 20 20 ns So, CG1, CP1, 81 - 83 = 4.5 V; 51, COE, Ao - A1 = Gnd Figs. 3-1, 3-5 tPLH tPHL Propagation Del!y for_ _ _ Subtract Mode, 80 to CO/CG 25 22 ns CG1, CP = 4.5 V; So, 51, COE, Ao - As, 81 - 83 = Gnd Figs. 3-1, 3-4 tPLH tPHL Propagation Delay fQ_r_ _ Either Mode, CG3 to CO/CG 19 19 ns Ao - As = 4.5 V; 51, Bo - I3a CP1, CP2 = Gnd ns So, CG1, CG2, 83, As = 4.5 V; 51, Bo - B2, CP1, CP2 = Gnd Figs. 3-1, 3-5 So, CG1, CG2, COE, Figs. 3-1, 3-5 tPLH tPHL 31 29 Propagation Delay fo!.. Either Mode, CG3 to F3 6-86 Ao - 41 CONNECTION DIAGRAM PINOUT A 9341 93L41 93S41 4-BIT ARITHMETIC LOGIC UNIT DESCRIPTION-The '41 4-bit arithmetic logic units can perform all the possible 16 logic operations on two variables and a variety of arithmetic operations; the Add and Subtract modes are the most important. The '41 is a pin replacement for the 54174181 . • PROVIDE 16 OPERATIONS ADD,SUBTRACT,COMPARE,DOUBLE TWELVE OTHER ARITHMETIC OPERATIONS • PROVIDE ALL 16 LOGIC OPERATIONS OF TWO VARIABLES EXCLUSIVE-OR, COMPARE, AND NAND, OR, NOR, PLUS TEN OTHER LOGIC OPERATIONS ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vcc = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic OIP(P) A 9341 PC, 93L41PC 93S41PC Ceramic DIP (D) A 9341 ~C, 93L41DC 93S41DC 9341DM, 93L41 OM 93S41OM 6N Flatpak (F) A 9341 FC, 93L41 FC 93S41FC 9341 FM, 93L41 FM 93S41FM 4M 9N INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION 93XX (U.L.) HIGH/LOW 93L (U.L.) HIGH/LOW 93S (U.L.) HIGH/LOW 3.0/3.0 4.0/4.0 1.0/1.0 5.0/5.0 20/10 1.5/0.75 2.0/1.0 0.5/0.25 2.5/1.25 10/5.0 (3.m OC*/5.0 (3.m 10/5.0 (3.m 10/5.0 (3.m 10/5.0 (3.m 3.75/3.75 5.0/5.0 1.25/1.25 7.517.5 25/12.5 Ao-Aa,80-B3 SO-S3 M Cn Fo-F3 Operand Inputs (Active LOW) Function Select Inputs Mode Control Input Carry Input Funct10n Outputs (Active LOW) A=B Comparator Output G Carry Generator Output (Active LOW) 20/10 p Carry Propagate Output (Active LOW) 20/10 Carry Output 20/10 Cn +4 OC*/10 'OC-Open Collector 6-87 OC*/12.5 25/12.5 25/12.5 25/12.5 41 FUNCTIONAL DESCRIPTION - The '41 Is a4-bit high speed parallel arithmetic logic unit (ALU>. Controlled by the four Function Select inputs (So- S3) and the Mode Control input (M), it can perform all the 16 possible operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table below lists these operations. When the Mode Control input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4-bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the Cn + 4 output, or for carry lookahead betweeen packages using the signals P (Carry Propagate) and G(Carry Generate>. P and G are not affected by carry in. When speed requirements are not stringent, the '41 can be used in a simple ripple carry mode by connecting the Carry output (C n + 4) signal to the Carry input (C n) of the next unit. For super high speed operation the Schottky '41 should be used in conjunction with the '42 carry lookahead circuit. The A = B output from the '41 goes HIGH when all four Fn outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the subtract mode. The A = B output is open-collector and can be wired-AND with the other A= B outputs to give a comparison for more than four bits. TheA= B signal can also be used with the Cn + 4 signal to indicate A > B and A < B. The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1 s complement), a carry out means borrow; thus a carry is generated when there is no underflow and no carry is generated when there is underflow. As indicated the '41 can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labled inside the logic symbol. FUNCTION TABLE MODE SELECT INPUTS ACTIVE LOW INPUTS & OUTPUTS LOGIC ACTIVE HIGH INPUTS & OUTPUTS S3 S2 S1 So (M=H) (M = U (Cn = U LOGIC (M=H) L L L L L L L L L L H H L H L H A AB A+S Logic 1 A minus 1 AB minus 1 AS minus 1 minus 1 A A A+S A+B AB A+S Logic 0 minus 1 L L L L H H H H L L H H L H L H A+S S A€I)S A+B A plus (A + AB plus (A + S) A minus B minus 1 A+S H H H H L L L L L L H H L H L H AB A€I)B B A+B A plus (A + B) A plus B AS plus (A + B) A+B H H H H H H H H L L H H L H L H Logic 0 A plus A" AS AB plus A AB AS minus A A A ARITHMETIC"" s"l "Each bit is shifted to the next more significant position "Arithmetic operations expressed in 28 complement notation H = HIGH Voltage Level L = LOW Voltage Level 6-88 AB ARITHMETIC"" (M = U (C n = H) A€I)B AS A plus AS (A + B) plus AS A minus B minus 1 AS minus 1 A+B A €I) B B AB A plus AB A plus B (A + S) plus AB AB minus 1 Logic 1 A+S A+B A A plus A" (A + B) plus A (A + S) plus A A minus 1 B 41 LOGIC SYMBOLS ACTIVE LOW OPERANDS 2 7 Cn 8 M 6 So 5 S, 4 S2 3 S3 ACTIVE HIGH OPERANDS 2 1 23 22 21 20 19 18 Cn + 4 1 2322 21 20 19 18 7 16 16 8 M A =8 14 6 So G 17 5 SI 17 P 15 3 S3 15 14 Fl 9 10 11 9 13 10 11 13 LOGIC DIAGRAM en M Ao 80 ii, ii3 6-89 41 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93XX PARAMETER Min lee Power 5upply Current XM XC lee Power 5upply Current XM XC lee Power 5upply Current Max 93l Min 93S Max Min UNITS CONDITIONS Max 127 140 125 140 mA Vee = Max Cn,Bo-Ba=Gnd All Other Inputs = 4.5 V 135 150 135 150 mA Vee = Max M, So-53=4.5V All Other Inputs = Gnd mA Vee = Max 36 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (5ee 5ection 3 for waveforms and load configurations) 93XX SYMBOL PARAMETER 93l 93S CL = 15 pF CL = 15 pF CL = 15 pF RL=400n RL = 280 n Min Max Min Max Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Cn tOCn +4 16 17 51 22 12 12 ns M= Gnd Figs. 3-1, 3-4 Tables I & II tPLH tPHL Propagation Delay Cn to F 17 17 37 42 12 12 ns M =Gnd Figs. 3-1, 3-4 Table I tPLH tPHL Propagation Delay AnorentoG· 19 12 51 26 14 14 ns M, 51, 52 = Gnd 50,53 = 4.5 V Figs. 3-1, 3-5 Table I tPLH tPHL Propagation Delay An or en to G 22 17 50 43 15 15 ns M, So, 53 = Gnd 51,52 = 4.5 V Figs. 3-1,3-4, 3-5 Table II tpLH tPHL Propagation Delay AnOrBntoP 19 15 50 46 14 14 ns M, 51, 52, = Gnd So, 53, = 4.5 V Figs. 3-1, 3-5 Table I tPLH tPHL Propagation Delay An or en to j5 21 21 38 63 15 15 ns M, So, 53 = Gnd 51,52 = 4.5 V Figs. 3-1,3-4,3-5 Table II tPLH tPHL Propagation Delay A or Bi to Fi 26 26 36 20 20 ns M, 51, 53 = Gnd So, 53 = 4.5 V Figs. 3-1, 3-5 Table I 6-90 65 41 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (Cont'd) 93XX PARAMETER SYMBOL 93l 93S CL = 15 pF CL = 15 pF CL = 15 pF UNITS RL=4000 RL = 280 0 Min Max Min Max Min Max ns M, So, 83 = Gnd 81,82 = 4.5 V Figs. 3-1,3-4,3-5 Table II ns M, 81, 82 = Gnd 80,83 = 4.5 V Figs. 3-1, 3-5 Table I 25 25 ns M, So, 83 = Gnd 81,82 = 4.5 V Figs. 3-1,3-4,3-5 Table II 51 49 20 20 ns M = 4.5 V Figs. 3-1, 3-5 Table III 21 30 46 60 18.5 18.5 ns M, 81, 82 = Gnd 80,83 = 4.5 V Figs. 3-1, 3-4 Table I 25 30 60 58 23 23 ns M, So, 83 = Gnd 81,82 = 4.5 V Figs. 3-1,3-4,3-5 Table II ns M, So, 83 = Gnd 81,82 = 4.5 V RL = 4000 to 5.0 V; Figs. 3-1, 3-4, 3-5; Table II tPLH tPHL Propagation Delay Ai or Bi to Fi 26 32 39 49 21 21 tPLH tPHL Propagation Delay Ai or Bi to Fi + 1 29 25 56 62 24 24 tPLH tpHL Propagation Delay Ai or Bi to Fi + 1 29 30 68 71 tPLH tPHL Propagation Delay An or ~n to F 24 24 tPLH tPHL Propagation Delay An or Bn to Cn + 1 tPLH tPHL Propagation Delay An or Bn to Cn + 1 tPLH tPHL Propagation Delay or Bn to A = B An CONDITIONS 40 68 42 72 6-91 23 23 • 41 FUNCTION INPUTS: SUM MODE TEST TABLE I SYMBOL INPUT UNDER TEST OTHER INPUT So = 53 = 4.5 V. 51 = 52 = M = 0 V OTHER DATA INPUTS SAME BIT OUTPUT UNDER TEST APPLY 4.5 V APPLY GND APPLY 4.5 V APPLY GND Ai Bi None Remaining Aand B en Fi Bi Ai None en Fi Ai Bi None en Remaining A and B Fi + 1 tPLH tPHL Bi Ai None en Remaining Aand B Fi + 1 tPLH A B None None Remaining A and B. en p B A None None Remaining A and B. en p A None B Remaining B Remaining A. en G B None A Remaining Remaining B A. en G tPLH tPHL A None B Remaining B Remaining A. en en + 4 tPLH B None A Remaining B Remaining A. en en + 4 en None None All All A B Any F or en + 4 tPLH tPHL tpLH tPHL tPLH tPHL tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPHL tPLH tPHL 6-92 R~maini!!g A and B 41 DIFF MODE TEST TABLE II SYMBOL INPUT UNDER TEST FUNCTION INPUTS: 81 = 52 = 4.5 V. 80 = 53 = M = 0 V OTHER INPUT OTHER DATA INPUTS SAME BIT OUTPUT UNDER TEST APPLY 4.5 V APPLY GND APPLY 4.5 V APPLY GND A None B Remaining Remaining A B. Cn B A None Remaining Remaining A B. Cn Ai None Bi Remaining Remaining B. Cn A BI Ai None Remaining Rem~ning B. Cn A Fi + 1 A None B None Remaining A and B. Cn p B A None None A- and B. Cn A B None None A and B. Cn B None A None tPLH tPHL A None B Remaining Remaining A- B.Cn tPLH B A None Remaining Remaining A B.Cn A B None None A- and B. Cn B None A None A and B. Cn Cn + 4 Cn None None None Cn + 4 tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPLH tPHL tPHL tPLH tPHL tPLH tPHL tPLH tPHL SYMBOL tPLH tPHL tPLH tPHL Remaining Remaining A and B. Cn Remaining Remaining B I=i FI+1 j5 G G A=B A=B Cn + 4 FUNCTION INPUTS: 81 = 82 = M = 4.5 V. 80 = 53 = 0 V LOGIC MODE TEST TABLE III INPUT UNDER TEST All Aand Remaining FI OTHER INPUT OTHER DATA INPUTS SAME BIT APPLY 4.5 V APPLY GND APPLY 4.5 V A B None None A and 9. B A None None Aand B. Cn 6-93 APPLY GND Remaining Cn Remaining OUTPUT UNDER TEST AnyF AnyF 42 CONNECTION DIAGRAM PINOUT A ·9342 93942 CARRY LOOKAHEAD GENERATOR DESCRIPTION - The '42 is a high speed lookahead carry generator. It is generally used with the 9341 (54174181) 4-bit arithmetic logic unit to provide high speed lookahead over word lengths of more than four bits. The lookahead carry generator is fully compatible with all members of the TTL family. • PROVIDES LOOKAHEAD CARRIES ACROSS A GROUP OF FOUR ALU'S • MULTI-LEVEL LOOKAHEAD FOR HIGH SPEED ARITHMETIC OPERATION OVER LONG WORD LENGTHS PKGS OUT COMMERCIAL GRADE Vee TA = +5.0 V ±5%, = O°C Vee to +70°C TA TIlG2 11 TIl C n Po G3[I E]Cn., P3[I !TI Cn.y :m G :II Cn., TYPE = -55°C to +125°C A 9342PC, 93S42PC Ceramic DIP (D) A 9342DC, 93S42DC 9342DM, 93S42DM 78 A 9342FC, 93S42FC 9342FM, 93S42FM 4L (F) Go[! PKG = +5.0 V ±10%, Plastic DIP(P) Flatpak mP2 GNO[! MILITARY GRADE :ill Vee 1'1 II pIT ORDERING CODE: See Section 9 PIN - G1[I 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Cn Go, G2 G1 G3 Po, P1 P2 P3 Cn+x-Cn + z G P DESCRIPTION Carry Carry Carry Carry Carry Carry Carry Carry Carry Carry 93XX (U.L.) HIGH/LOW 93S (U.L.) HIGH/LOW 1.0/1.0 7.017.0 8.0/8.0 4.0/4.0 4.0/4.0 3.0/3.0 2.0/2.0 20/10 20/10 20/10 1.25/1.25 8.75/8.75 10/10 5.0/5.0 5.0/5.0 3.75/3.75 2.5/2.5 25/12.5 25/12.5 25/12.5 Input Generate Inputs (Active LOW) Generate Input (Active LOW> Generate Input (Active LOW) Propagate Inputs (Active LOW) Propagate Input (Active LOW) Propagate Input (Active LOW) Outputs Generate Output (Active LOW) Propagate Output (Active LOW> 4 LOGIC SYMBOL 3 2 1 15 14 6 5 bbbbbbbb Po Go p, G, P2 G2 P3 G3 G 0--10 13- Cn PO-- 7 C n+ x ,12 C n +y ,11 6-94 C n+z 1 Vce = Pin 16 = Pin 8 GND 42 FUNCTIONAL DESCRIPTION - The '42 lookahead carry generator accepts up to four pairs of active LOW Carry Propagate (Po - P:3) and Carry Generate (Go - (3) signals and an active HIGH Carry input (Cn) and provides anticipated active HIGH carries (Cn + x, Cn + y, Cn +z) across four groups of binary adders. The '42also has active LOW Carry Propagate (P) and Carry Generate (G) outputs which may be used for further levels of lookahead. The logic equations provided at the outputs are: Cn +x = Go + PeCn Cn+y=G1 + P1GO + P1POCn Cn +z = G2 + P2G1 + P2P1 Go + P2P1 PoCn G =G3 + P3G2 + P3P2G1 + P3P2P1GO P -P3P2P1PO Also, the '42 can be used with binary ALU's in an active LOW or active HIGH input operand mode. The connections (Figure a) to and from the ALU to the lookahead carry generator are identical in both cases. Carries are rippled between lookahead blocks. The critical speed path follows the circled numbers. There are several possible arrangements for the carry interconnects, but all achieve about the same speed. A 28-bit ALU is formed by dropping the last 93S41. TRUTH TABLE OUTPUTS INPUTS ~1 Cn ~o Po X L X H H H L X H X X L X X L X X H X H H X L X X H X X X L H H H L X X H X X X L L X X X L X X X H X X H H X X L X X X H X X X X L X H H H X L X X X H X X X X L L H H H H L X X X H X X X X L L L X X H H X X L X X X H X X X X L X H H H X L X X X H X X X X L L X X X H X X X L P1 G2 P2 ~3 15"3 Cn+x Cn+y Cn+z G P • L L H H H X X X L X H X X L L L L H H H L L L L H H H H H H H H L X X X H X X X X L L L X X X H L X X H X L H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 6-95 H H H H L L L L H H H H L 42 CIN'~_ _ _ _ _ _ _ _ _--j Fig. a 32-Blt ALU with Ripple Carry Between 16-Blt Lookahead ALUs LOGIC DIAGRAM Cn Go Po Cn+x G, p, C n+ y Cn+z 6-96 p 42 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 93XX PARAMETER SYMBOL los Output Short Circuit Current ICCH Power Supply Current (All Outputs HIGH) ICCL Power Supply Current (All Outputs LOW) 93S UNITS Min Max Min Max -40 -100 -40 -100 ~ XC 35 39 ~ XC 65 72 CONDITIONS = Max mA VCC 45 mA Vcc = Max; Pa, G3 = 4.5 V All Other Inputs = Gnd 80 mA Vcc = Max Go, Gl, G2 = 4.5 V All Other Inputs = Gnd AC CHARACTERISTICS: Vcc = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 93XX PARAMETER SYMBOL 93S CL = 15 pF CL = 15 pF RL=400n Min Max Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay Cn to Cn + x, Cn + y, Cn + z 16 19 10 11.5 ns Figs. 3-1, 3-5 Po, Pl, P:1 = Gnd GJ, Gl, <32 = 4.5 V tPLH tPHL Propagation Delay Po, p;, or P2 to + x, Cn + y, Cn + z 13 14 7.0 7.0 ns Figs. 3-1, 3-4 Px = Gnd (if not under test) Cn, Go, Gl, G2 = 4.5 V tPLH tPHL Propagation Delay Go, Gl, or G2 to + x, Cn + y, Cn + z 13 14 7.0 7.0 ns Figs. 3-1, 3-4 Gx = 4.5 V (if not under test) Cn, Po, Pl, 'P:! = Gnd tPLH tPHL Propagation Delay Pl, Pi or P3 to G 16 19 7.5 10.5 ns Figs. 3-1, 3-5 Px = Gnd (if not under test) Gn, Cn = 4.5 V tpLH tPHL ~ropa[ation Delay Gn to G 16 19 7.5 10.5 ns 3-1, 3-5 Gx = 4.5 V (if not under test) 'P1 , 'P:!, P3 = Gnd tPLH tpHL Propagation Delay Pn to P 16 19 6.5 10 ns Figs. 3-1, 3-5 fix = Gnd (if not under test) en en 6-97 ~gs. 43 CONNECTION DIAGRAM PINOUT A 93S43 - ""II 4-BIT BY 2-BIT TWOS COMPLEMENT MULTIPLIER IEJvcc l§]V-l Col! DESCRIPTION - The '43 is a high speed twos complement multiplier. The device is a 4-bit by 2-bit building block that can be connected in an iterative array to perform multiplication of two binary numbers of variable lengths. The device can generate the twos complement product, without correction, of two binary numbers presented in twos complement notation. "'Ii x. I! ~vo x,[! xo[! ~P X-l[! j!]Kl Sol! l!!]K2 S1l! S,,!! ~Ka ~Yl j!]Ko ~S5 rnS4 113ffi m GNDffi • VERY HIGH SPEED MULTIPLICATION-TWO 12-BIT NUMBERS IN 125 ns (TYP) • PROVIDES TWOS COMPLEMENT PRODUCT WITHOUT CORRECTION • EXPANDS TO ANY SIZE ARRAY WITHOUT ADDITIONAL COMPONENTS • ACCEPTS ACTIVE HIGH OR ACTIVE LOW OPERANDS • EASILY CORRECTABLE FOR UNSIGNED, SIGN-MAGNITUDE OR ONES COMPLEMENT MULTIPLICATION C n+4 LOGIC SYMBOL r r iii i l'i 'i Y 1-, Xo ORDERING CODE: See Section 9 PIN PKGS OUT 23- COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C 22- PKG TYPE Plastic DIP (P) A 93S43PC Ceramic DIP (0) A 93S43DC 93S43DM 6N Flatpak (F) A 93S43FC 93S43FM 4M 9N 2'2- v_, vo x, X2 X3 X4 Ito kl k2 k3 V, Cn +4 CO 20-< P So S, 5, ! ! ,t 5, S. ,I, ,~ ,I. Vcc = Pin 24 GND = Pin 12 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES X-1, )(3, X4 xo, Xl, X2 Yo y-l, Yl ko-k3 Cn j5 So-S5 Cn + 4 DESCRIPTION Multiplicand Inputs Multiplicand Inputs Multiplier Input Multiplier Inputs Constant Inputs Carry Input Polarity Control Input (Active LOW for HIGH Operands) Product Outputs Carry Output 6-98 5, 93S (U.L.) HIGH/LOW 1.0/1.0 2.0/2.0 2.0/2.0 1.0/1.0 2.0/2.0 1.0/1.0 3.0/3.0 25/12.5 25/12.5 r---'3 43 FUNCTIONAL DESCRIPTION - The '43 is a super fast hardware multiplier employing 8chottky technology and twos complement arithmetic. It multiplies a multiplicand of four bits by a multiplier of two bits and forms a basic iterative logic cell. It can also multiply in active HIGH (positive logic) or active LOW (negative logic) representations by reinterpreting the active levels of the inputs, outputs and the Polarity Control (Pl. The binary number with 1 as the most significant bit is treated as a negative number represented in twos complement form. These '43 iterative logic cells can be connected to implement multiplication of an X-bit number by a V-bit number. This application requires X • V + 4 • 2 packages and the resulting product has X + V bits. At the beginning of the array, a constant can be presented atthe K inputs that will be added tothe least significant part of the product. The packages can be connected in parallel, triangular or split-array scheme depending on the speed requirement. The '41 ALU can be used with these multipliers in the split-array scheme to obtain high speed multiplication. TABLE I SWITCHING TEST CONDITIONS INPUT INPUT8 AT 0 V (Remaining Inputs at 4.5 V) OUTPUT8 Cn Cn ko kl k2 k3 k3 Cn + 4,80-83,84,85 Cn + 4,81 -83,84,85 Cn + 4, 82, 83, 84, 85 83 84,85 X-l xo Xl X2 X3, X4 X3,X4 X3, X4 C n + 4, Cn + 4, Cn + 4, Cn + 4, 83 84,85 84,85 y-l yo Yl Cn Cn Cn + + + + P, y-l, Yl, All x 4, So-83, 84, 85 P, y-l, Yl, All X P, Y-l, Yl, All X P. y-l, Yl, All X P, y-l, Yl, All X J5; Y-l, Yl, All x, Cn I P, Yl, All k So-83, 84, 85 So-83, 84, 85 81-83, 84, 85 82, 83, 84, 85 P. y-l, Yl, All P. Y-l, Yl, All J5; y-l, Yl, k k All k All k All k, Cn k, Cn P. y-l, Yl, P. y-l, Yl, P. Y-l, All P. Xl, X2, X3, P. Xl, X2, X3, X4, All k X4, All k xo, Xl, X2, X3, X4, All k 4, So-83, 84, 85 4,80-83,84,85 4, So-83, 84, 85 LOGIC DIAGRAM y-, x-'-------r-----,,=tl=~==~tf:==~+*====~~------_,. Yo,--l>~-H S3 So 6-99 C n +4 S5 43 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93S PARAMETER Min Icc 149 Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, TA = +25 UNITS 0 CONDITIONS Max rnA Vee = Max C (See Section 3 for waveforms and load configurations) 93S SYMBOL PARAMETER CL = 15 pF Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay C n toCn +4 9.0 9.0 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay Cn to SO-S3 13 11 ns Figs. 3-1, 3-4 tPLH tPHL Propagation Delay C n to S4, S5 16 15 ns Figs. 3-1, 3'4 tPLH tPHL Propagation Delay kn to C n + 4 12 13 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay kn to SO-S3 14 12 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay kn to 84, S5 19 ns Figs. 3-1, 3-4 tPLH tPHL Propagation Delay Xn to Cn + 4 15 24 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay Xn to 8o-S3 25 25 ns Figs. 3-1, 3-4 tPLH tPHL Propagation Delay Xn to S4, S5 30 21 ns Figs. 3-1, 3-4 tPLH tPHL Propagation Delay Yn to Cn + 4 25 27 ns Figs. 3-1, 3-5 tPLH tPHL Propagation Delay Yn to 8o-S3 28 27 ns Figs. 3-1, 3-4 tPLH tPHL Propagation Delay Yn to S4, S5 32 30 ns Figs. 3-1, 3-4 17 6-100 44 CONNECTION DIAGRAM PINOUT A 9344 - NcE BINARY (4-BIT BY 2-BIT) FULL MULTIPLIER ~vcc NC[! :rnX3 :§IlG ViI:! Ex. Yo I! Ss[! s.[f !!IMi !!IMii NciI ~Xo miG 53!! 52!! ~K2 frnKi Si§ DESCRIPTION - The '44 is a 4-bit by 2-bit full multiplier building block. It multiplies two binary numbers and Simultaneously adds two other binary numbers to the product. '44 devices can be interconnected to form a high speed multiplier array of any size. The device is constructed with TTL compatible inputs and outputs. Inputs are buffered to reduce loading. rm im NC soli] Kii GNO§ LOGIC SYMBOL • PERFORMS DIRECT MULTIPLICATION • EXPANDS TO ANY SIZE ARRAY WITHOUT ADDITIONAL COMPONENTS • MULTIPLIES AND ADDS SIMULTANEOUSLY !!llr!XI Ml Mo v, Yo X3 x, x, Xo 14--0 Ko ORDERING CODE: See Section 9 15--0 KI PIN PKGS OUT COMMERCIAL GRADE MILIT ARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG 16--0 K, 17--0 K3 TYPE Plastic OIP(P) A 9344PC Ceramic OIP(O) A 93440C 93440M 6N Flatpak (F) A 9344FC 9344FM 4M 9N 50 SI 5, ~ X! 53 DESCRIPTION Vec = Pin 24 GND = Pin 12 Xo-Xs Multiplicand Inputs (Active LOW) Multiplier Inputs (Active LOW) Yo,Yl Ml ~o, M.!!. Kl-K3 SO-S5 } Additive Carry Inputs (Active LOW) Outputs 6-101 '\ 55 ! r! INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 5, 93XX (U.L.) HIGH/LOW 0.66/0.66 0.66/0.66 1.0/1.0 4.0/4.0 2.0/2.0 20/10 44 FUNCTIONAL DESCRIPTION - The '44 is a binary full multiplier for 4-bit by 2-bit words. It is easily expandable in an array to form a high speed parallel multiplier of any length. The functional equation is illustrated below: S (6-bits) = X(4-bits) ti mes '1(2-bits) plus M(2-bits) plus K(4-bits) Functionally the '44 multiplies a 4-bit word (Xo-)(3) by a two bit word ('10-'11), generating eight partial products. Two other words, Ko - K3 and Mo - M1, are added to these partial products through a lookahead carry adder, generating a 6-bit product/sum. The function can be described by the following equation (note that "+" means arithmetic addition): All inputs and outputs are active LOW; Xand Yinputs are buffered to present only one TTL unit load. The device operates only on positive numbers. If two's complement multiplication is required, then the numbers must be changed to sign magnitude before multiplication, or else the product must be corrected following multiplication of the two's complement numbers. The correction algorithm depends on whether X or '1 or both are negative. If X is negative: Subtract V from most significant half of product. If V is negative: Subtract X from most significant half of product. If both X and Vare negative: Add X plus V to most significant half of product. The result will be the correct two's complement product. WEIGHTING FACTORS OF THE BASIC MULTIPLIER MULTIPLICATION TIME W W+1 NUMBER OF BITS PACKAGES TIME (ns) 8x8 8 150 W_ Ko ~ 12 x 12 18 260 W+1- K1 W+2_ K2 16 x 16 32 350 W+3_ K3 24 x 24 72 550 l ssr--W+5 S.,..-.W+4 Xn Ym S3r-- W + 3 So Sl S2r--W+2 ! wL This block represents the basic 4-bit by 2-bit multiplier, and indicates the weighting factors (power of two) attached to each of the inputs and outputs. 6-102 44 TYPICAL MULTIPLICATION ARRAYS The '44 can be assembled in an iterative structure to perform multi-bit multiplication. The blocks are interconnected so that partial product sums generated in a particular '44 are applied, if necessary, to equal weight carry inputs (Ko - K3 or Mo, M1) of succeeding stages. In the active iteritive multiplication arrays shown, weighting factors of the carry and sums between '44's are indicated (Le., 0 = 20 , 1 = 21 , 2 = 22 , etcJ. Labels inside the blocks identify bits multipled in that block. For instance 0 -0 refers to multiplicand bits Bo.1 ,2,3 and multiplier bits Ao.1, while 4 - 2 would represent multiplicant bits 84,5,6,7 and multiplier bits A2,3. a-BIT BY 5-BIT MULTIPLICATION ARRAY INPUTS .0 83 85 84 .7 86 r-------~~~~---------+~~----------~~~----------~----------------------Ao 10 12 1<, 5, K, 9344 S. 9344 9344 9344 K, 0-1 8, 0-3 4-1 4-3 11 I 10 8, Ko Po P, P, P7 P, PRODUCT a-BIT BY a-BIT MU(TIPLICATION ARRAY MULTIPLIER INPUT MULTIPLICAND INPUT Ao.l.2.3.4.5.6.7 80.1.2.3.4.5.6.7 9344 0-0 9344 0-2 9344 9344 0-4 0-6 9344 4-4 p, LSB PRODUCT 6-103 9344 4-6 Po PtO P11 MS. ~ ~ 16-BIT BY 16-BIT MULTIPLICATION ARRAY INPUTS B KEY X = 4 BIT MULTIPLICAND, INPUT B Y = 2 BIT MULTIPLIER, INPUT A ALL INPUTS ACTIVE LOW A K2 54 9344 X=Y j(, 53 Ko ~ULTIPLIER INPUT Ao-15 tl l > " I I --- > 80,1.2.3 --- 80.1,2.3 0-12 MULl I 0-14 r-- o.j>. --- o ~ tfu 0-8 0-10 4-8 4-10 4-12 4-14 4-4 4-6 8-4 8-8 8-6 8-10 - ) --- ii, ,) ~l 1 ~ 52 So < -- 1Jtt 0-8 0-4 8-12 8-14 r-- 1Ttt 0-0 Po 0-2 p, P2 P3 4-2 4-0 P4 P5 Po 8-0 p, P8 P9 12-2 8-2 12-0 P10 P" P12 P13 P14 P15 12-4 P16 P17 12-6 P18 P19 12-8 P20 P21 12-10 P22 P23 12-12 P24 P25 12-14 P26 ~ P27 P2Si'29P30P3, PRODUCT NOTE: Each block represents one 9344. Labels inside the blocks identify bits multiplied in that block. The first number is the 4-bit B input, and the second number is the 2-bit A input. For instance, 12-0 refers to multiplicand bits B12,13,14,15 and multiplier bits Ao,l. 44 LOGIC DIAGRAM Ko Jlo YO-{~----------~~--~--------~--4r--~---r~--------4r--' Y1~>r~--~----~~--~~------~--~~-+~~-+--~ ~~>r~--~----~~--~~------H---~~-+ff-~-+---n----~, X1-{~~--+-----~~--+-4-------~--~~-+~~~-, ~~:~~--r------;~--r-~------~~ X3~)o--M-...,.,-------tHIt----h • DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 93XX PARAMETER SYMBOL Min lee CONDITIONS UNITS Max 150 Power Supply Current rnA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 93XX PARAMETER SYMBOL = 15 pF RL = 400 n. CL Min Propagation Delay 22 Ko to 55 39 6-105 CONDITIONS Max 51 52 Propagation Delay to 83 Ml UNITS ns Figs. 3-1, 3-4 ns Figs. 3-1, 3-5 46 CONNECTION DIAGRAM PINOUT A 93S46 HIGH SPEED 6-BIT IDENTITY COMPARATOR DESCRIPTION - The '46 is a very high speed 6-bit identity comparator. The device compares two words of up to six bits and indicates identity in less than 12 ns. It is easily expandable to any word length by using either serial or paralIel expansion techniques. When the Enable input (E> is LOW, it forces the output LOW. • COMPARES TWO 6-BIT WORDS IN 12 ns • EASILY EXPANDABLE TO ANY WORD SIZE • ACTIVE HIGH ENABLE FOR FAST RIPPLE EXPANSION ORDERING CODE: See Section 9 PIN PKGS OUT AoIT - mBs All! ElAs B1E liIB4 A21! :rn A4 B2[! TIlB3 Ell :rn A3 ]]A=B GND[! COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 93S46PC Ceramic DIP(D) A 93S46DC 93S46DM 68 Flatpak (F) A 93S46FC 93S46FM 4L 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions DESCRIPTION PIN NAMES Ao-As 80-85 E A=8 LOGIC SYMBOL 1 iii i i 1j Y1j YY1j Ao Bo Al Bl A2 B2 A3 B3 A4 B4 As Bs 7- 93S (U.L.) HIGH/LOW 1.25/1.25 1.25/1.25 1.25/1.25 25/12.5 Word A Inputs Word 8 Inputs Enable Input (Active HIGH) A Equal to 8 Output E A=B ! Vee = Pin 16 GND = Pin 8 6-106 I!!l Vee BalI 46 FUNCTIONAL DESCRIPTION - The '46 is a very high speed 6-bit identity comparator. The A = B output is HIGH when the Enable (E> is HIGH and the two 6-bit words are equal. Equality is determined by Exclusive-NOR circuits which individually compare the equivalent bits from each word. When any two of the equivalent bits from each word have different logic levels, the A = B output is LOW. An active HI GH Enable (E) provides a means of fast ripple expansion. By connecting the A = B output of the first stage of the comparator to the enable of the next stage, the comparator can be expanded in 6-bit increments at an additional 4.5 ns per stage. An even faster expansion technique is achieved by connecting the A = B outputs to a Schottky NAND gate. This method compares two words of up to 78 bits each in 15 ns (typical) using the '133 13-input Schottky NAND gate. TRUTH TABLE INPUTS E An, Bn L L H H An An An An = i' i' = OUTPUT A=B Bn Bn Bn Bn L L L H • H = HIGH Voltage Level L = LOW Voltage Level RIPPLE EXPANSION AoBo •••••• ·.····AsBs E E 93S46 As Be • • • • • • • • • • • • Al1Bl1 93S46 E A=B A=B A12 B12 • • • • • • • • • • • • A17 817 E 93S46 A=B L - - _ ( A = Ble E NOTE: This simple method of expansion adds 4.5 ns for each additional '46 used. PARALLEL EXPANSION AeBo •••••••••••• AsBs As B6 • • • • • • • • • • • • All Bl1 A12812 • • • • • • • • • • • • A17 B17 93846 93S46 93S46 A=B A=B A=B SCHOTTKY NAND GATE NOTE: This method of expansion adds one gate delay ("'3 ns) to the '46, independent of the word length that is compared. 6-107 46 LOGIC DIAGRAM Ao Bo AI BI A2 B2 A3 B3 A4 B4 As Bs J..l J.1 J..L J.1 J..L il I E ~ I II Y M A=B DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93S PARAMETER Min Icc UNITS CONDITIONS Max Power Supply Current 70 mA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 93S SYMBOL PARAMETER Propagation Delay CL = 15 pF Min Max UNITS CONDITIONS E = 4.5 V, Other Inputs = 4.5 V, Test each input tPLH tPHL An or Bn to A = B 3.0 3.0 17 17 ns tPLH tPHL Propagation Delay An or Bn to A = B 3.0 3.0 14 15 ns tPLH tpHL Propagation Delay E to A = B 2.0 2.0 10 10 ns 6-108 individually, Figs. 3-1,3-5 E = 4.5 V, Other Inputs = Gnd, Test each input individually, Figs. 3-1, 3-4 An = Bn Figs. 3-1, 3-5 47 CONNECTION DIAGRAM PINOUT A 93847 HIGH SPEED 6-BIT IDENTITY COMPARATOR DESCRIPTION - The '47 is a very high speed 6-bit identity comparator. The device features an open-collector output for wired-OR expansion and active LOW Enable. The '47 is fabricated with the Schottky barrier diode process for high speed, and is completely compatible with all TTL families. This device is recommended for applications where wired-OR expansion is desired and the speed of an active pull-up is not required. The '47 is a pin-for-pin replacement for the DM7160/8160. • SCHOTTKY PROCESS FOR HIGH SPEED • COMPARE TWO 6-BIT WORDS IN 15 ns • OPEN-COLLECTOR OUTPUT FOR WIRED-OR EXPANSION PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vcc = +5.0 V ±5%, TA = O°C to +70°C Vcc = +5.0 V ±10%, TA = -55°C to +125°C 93S47PC Ceramic DIP (D) A 93S47DC 93S47DM 68 A 93S47FC 93S47FM 4L (F) !mBs A1[! ~AS B,[~ ~B4 A2[! fmA4 B2[! ~B3 elI ~A3 f!1A=B TYPE A 98 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-As 80-85 E A=8 93S (U.L.) HIGH/LOW DESCRIPTION Word A Inputs Word 8 Inputs Enable Input (Active LOW) A Equal to 8 Output 1.25/1.25 1.25/1.25 1.25/1.25 OC*/12.5 'OC-Open Collector LOGIC SYMBOL 1 iii ii YJTT 1j 1j Ao Bo A1 B1 A2 B2 A3 B3 A4 B4 A5 B5 7-0 E A=B ! 6-109 ~vcc BolI PKG Plastic DIP (P) Flatp~k -' GNO[! ORDERING CODE: See Section 9 PIN AolI VCC = Pin 16 GND = Pin 8 47 FUNCTIONAL DESCRIPTION - The '47 is a very high speed 6-bit identity comparator. When enabled (E input LOW), the A = B output is HIGH ifthetwo 6-bit words are equal. When disabled (j~ input HI GH), the A = B output is forced HIGH. Equality is determined by Exclusive-NOR circuits which individually compare the equivalent bits from each word. Since the A = B output state is determined by the equality of each pair of inputs, the equivalent An and Bn pins can be interchanged to facilitate board layout or wiring. The active LOW Enable @ can be used as a high speed strobe. When the Enable is HIGH, the A = B output is forced HIGH. This allows devices tied to a common wired-OR (actually wired-AND) node tobestrobed individually or in groups. Only the enabled devices will determine the state of the output node. (A = B) = E+ (Ao ED Bo) • (Al ED Bl) • (A2 ED B2) • (A3 ED B3) • (A4 ED B4) • (As ED B5) LOGIC DIAGRAM Ao Bo A1 B1 A2 B2 A3 B3 A4 B4 E As Bs ~ JJ. JJ. J.1 il JJ. J.1 I TRUTH TABLE INPUTS I II ~( ) E An, Bn L L H H An An An An = "# "# = OUTPUT A=B H L H H Bn Bn Bn Bn H = HIGH Voltage Level L = LOW Voltage Level A=B DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93S PARAMETER Min lee 65 Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, CONDITIONS UNITS Max rnA Vee = Max TA = +25°C (See Section 3 for waveforms and load configurations) 93S SYMBOL PARAMETER CL = 15 pF RL = 280 n Min Max UNITS CONDITIONS E = Gnd, Other Inputs input individually, Figs. 3-2, 3-5 tPLH tPHL Propagation Delay An or Bn to A = B 5.0 5.0 17 17 ns = 4.5 V, Test each tPLH tPHL Propagation Delay An or Bn to A = B 4.0 4.0 14 15 ns E = Gnd, Other Inputs = Gnd, Test each input tPLH tPHL Propagation Delay 'EtoA=B 3.0 3.0 10 10 ns 6-110 individually, Figs. 3-2, 3-4 An"# Bn Figs. 3-2, 3-5 48 CONNECTION DIAGRAM PINOUT A 9348 12-INPUT PARITY CHECKER/GENERATOR DESCRIPTION - The '48 is a 12-input parity checker/generator generating odd and even parity outputs. It can be used in high speed error detection applications. 15IT Ie • • • • BOTH ODD AND EVEN PARITY OUTPUTS PROVIDED GENERATES A PARITY BIT FOR UP TO 12 BITS CHECKS FOR PARITY ON UP TO 12 BITS EASILY EXPANDABLE PKGS OUT II COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG IT ~13 ~12 19 II ~11 110 II 111 IT ~IO ~PE GND!:! ~po TYPE Plastic DIP (P) A 9348PC Ceramic DIP (D) A 9348DC 9348DM 68 Flatpak (F) A 9348FC 9348FM 4L 98 INPUT LOADING/FAN-OUT 10-111 PO PE 93XX (U.L) HIGH/LOW DESCRIPTION PIN NAMES Parity Inputs Odd Parity Output Even Parity Output 2.0/2.0 20/10 20/10 LOGIC SYMBOL 1f 10 YTYY1 iii 11 12 iii Is 14 15 16 17 18 19 110 111 po PE ! }o Vcc = Pin 16 GND = Pin 8 6-111 ~vcc ~14 18 1,[1: ORDERING CODE: See Section 9 PIN - • 48 FUNCTIONAL DESCRIPTION - The '48 is a 12-input parity generator. It provides odd and even parity for upto 12 data bits. The Even Parity output (PE) will be HIGH if an even number of logic ones are present on the inputs. The Odd Parity output (PO) will be HIGH if an odd number of logic ones are present on the inputs. The logic equations for the outputs are shown below. PO = 10 EEl 11 EEl 12 EEl 13 EEl 14 EEl 15 EEl 16 EEl 17 EB 18 EB 19 EEl 110 EB 111 PE = 10 EB 11 EB 12 EB 13 EEl 14 EEl 15 EB 16 EB 17 EEl 18 ffi 19 EEl 11 0 ffi 111 NOTE: Less through delay is encounted from the 10,11,12, and 13 inputs than 14 thru 111 inputs. Therefore, if some signals are slower than others, the slower signals should be applied to these four inputs for maximum speed. TRUTH TABLE LOGIC DIAGRAM INPUTS OUTPUTS 10-111 PO PE All Twelve Any One Any Two Any Three Inputs LOW Input HIGH Inputs HIGH Inputs HIGH L H L H H L H L Any Any Any Any Four Five Six Seven Inputs Inputs Inputs Inputs HIGH HIGH HIGH HIGH L H L H H L H L Any Any Any Any Any Eight Nine Ten Eleven Twelve Inputs Inputs Inputs Inputs Inputs HIGH HIGH HIGH HIGH HIGH L H L H L H L H L H H = HIGH Voltage Level L = LOW Voltage Level 6-112 48 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93XX PARAMETER Min Icc UNITS CONDITIONS Max Power Supply Current 82 mA Vee = Max AC CHARACTERISTICS: Vee = +5.0 V, TA = +25 0 C (See Section 3 for waveforms and load configuration) 93XX SYMBOL PARAMETER CL = 15 pF RL = 400 0. Min UNITS CONDITIONS 12, 13, 17, Is = Gnd; Other Inputs (exc. 14) HIGH Max tPLH tPHL Propagation Delay 14 to PO 46 42 ns tPLH tPHL Propagation Delay 14 to PE 51 48 ns 12, 13, 17, Is = Gnd; Other Inputs (exc. 14) HIGH Figs. 3-1, 3-5 tPLH Propagation Delay 13 to PO 27 ns 17 = HIGH; Other Inputs (exc. 13) = Gnd Figs. 3-1, 3-4 tPHL Propagation Delay 14 to PO 25 ns All Inputs (exc. 14) = Gnd Figs. 3-1, 3-5 6-113 Figs. 3-1, 3-4 • 62 CONNECTION DIAGRAM PINOUT A 93862 9-INPUT PARITY CHECKER/GENERATOR - II "II 10 EJvcc :m 1211 Ell6 13[! ;ml' IT f!m I. 18 ~PE POl:! DESCRIPTION - The '62 is a very high speed 9-input parity checker/generator for use in error detection and error correction applications. The '62 provides odd and even parity for up to nine data bits. The even parity output (PEl is HIGH if an even number of inputs are HIGH and E is LOW. The odd parity output (PO) will be HIGH if an odd number of inputs are HIGH and ~ is LOW. A HIGH level on the Enable (8 input forces both outputs LOW. 17 ~E GNO[! LOGIC SYMBOL • • • • • • INPUT-TO-OUTPUT DELAY 16 ns OUTPUT ENABLE TERMINAL BOTH ODD AND EVEN PARITY OUTPUTS PROVIDED GENERATES A PARITY BIT FOR UP TO NINE BITS CHECKS FOR PARITY ON UP TO NINE BITS EASILY EXPANDABLE 1i i 10 " ORDERING CODE: See Section 9 12 PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 93S62PC Ceramic DIP(O) A 93S62DC 93S62DM 6A Flatpak (F) A 93S62FC 93S62FM 31 13 14 I, 16 93862 8 -- ~ J 0-- 1-0F-1S DECODER A3 --I>- --I LATCH ~ LATCH f--L LATCH .A> CD CD + t J1 BLANKING RIPPLE CIRCUIT 6-124 a 0-- jj ~ SEGMENT ENCODER ~ OUTPUT DEVICES p- c p- ii p- p- T p- 9 70 TRUTH TABLE OUTPUTS INPUTS BINARY STATE LE - b c H L H H L L H L L A2 A1 Ao X X X X • X L L L L L L L L L L L H . STABLE H H L L H H .. RBO DISPLAY H L H H H H H L H H L H H H H H L L L L L L H H H H L H L H H L H L H L L H L L L L H L L L H H H H H L H L H H L L L L H L L L L L L L H L L L H L L L H H H H H cI H H H H H L" BLANK H L L L 2 3 4 5 L L L L X X X X L L L L L L H H H H L L L H L H L L H L L L L H H L L L L L H L 6 9 10 L L L L L X X X X X L L H H H H H L L L H H L L H L H L H L L L L L L H L L L L L L L L L 11 12 13 14 15 L L L L L X X X X X H H H H H L H H H H H L L H H H L H L H H L H L L H H L H H X X X X X X X H H L H -e T -9 d 0 0 1 7 8 'The -a RBI Aa STABLE BLANK n u I I ::l L 3 Y cJ c ,u I 8 0 I 0 "L u r L d E RBi will blank the display only il binary zero is stored in the latches. "i'iEiO used as an input overrides all other input conditions. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial NUMERICAL DESIGNATION o 2 4 3 I-I I I I 11- 5 '-II_II I 6 I 1_11_1 7 8 9 10 -I I , , I , I 11 12 13 1_ 1- _I I 15 14 I 11_11111_11_1_11_1 6-125 70 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYBMOL 93XX PARAMETER Min VOH Output HIGH Voltage RBO VOL Output LOW Voltage RBO a-g IOH Output HIGH Current, 8"- g lee Power Supply Current UNITS 2.4 V Vee 0.4 0.4 V IOL IOL 250 /J. A 105 mA 94 AC CHARACTERISTICS: Vee = +5.0 V, TA CONDITIONS Max = +25°C (See = Min, IOH -80/J.A = 3.2 mA I = 25 mA I V - M· ee In = Max, Vour = 5.5 V A1, A2, A3, LE = Gnd Vee = Max, Outputs Open Ao, A1, A2, IT= Gnd Vee = Max, Outputs Open Vee Section 3 for waveforms and load configurations) 93XX SYMBOL CL = 15 pF RL = 500 n PARAMETER Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay An to 8"-9 75 50 ns Figs. 3-1, 3-20 tPLH tPHL Propagation Delay LE to 8"-9" 90 70 ns Figs. 3-1, 3-9 AC OPERATING REQUIREMENTS: Vee SYMBOL = +5.0 V, TA = +25°C 93XX PARAMETER Min UNITS CONDITIONS Max ts (H) ts (U Setup Time HIGH or LOW An to LE 30 20 ns th (H) th (U Hold Time HIGH or LOW An to LE 0 0 ns tw (U LE Pulse Width LOW 45 ns Fig. 3-13 Fig. 3-9 \ I 6:-126 72 CONNECTION DIAGRAM PINOUT A 93H72 HIGH SPEED 4-BIT SHIFT REGISTER - MIi[I (With Enable) ~vcc ~QO D[! Ern: ~Q' ~Q' PoI:! ~Q3 ~Q3 P.[~ DESCRIPTION - The '72 high speed 4-bit shift register is a multifunctional sequential logic block which is useful in a wide variety of register applications. It may be used in serial-serial, shift left, shift right, serial-parallel, parallel-serial and parallel-parallel data transfers. The '72 has three synchronous modes of operation: shift, parallel load and hold (do nothing). The hold capability permits information storage in the register independent of the clock. P21! P31! ~cp GND!! PJPE LOGIC SYMBOL 60 MHz TYPICAL SHIFT FREQUENCY SYNCHRONOUS PARALLEL DATA ENTRY DATA HOLD (DO NOTHING) INDEPENDENT OF CLOCK FULLY SYNCHRONOUS, EDGE-TRIGGERED ASYNCHRONOUS MASTER RESET • • • • • 1iii I E Po p, 9-- and Enable@ as shown in Table 1. The active LOW Enable when HIGH, places the register in the hold mode with the register flip-flops retaining their information. When the Enable is activated (LOW) the Parallel Enable(PE) determines whether the register operates in a shift or parallel data entry mode. When the Enable is LOW and the Parallel Enable input is LOWthe parallel inputs are selected and will determine the next condition of the register synchronously with the clock as shown in Table II. In this mode the element appears as four common clocked D flip-flops. With E LOW and the PE input HIGH the device acts as a 4-bit shift register with serial data entry through the D input shown in Table III. In both cases the next state of the flip-flops occurs after the LOW-to-HIGH transition of the clock input. The asynchronous active LOW Master Reset overrides all inputs and clears the register forcing outputs 00 -03 LOW and 03 HIGH. To provide for left shift operation, P3 is used as the serial data input and 00 is theserial data output. The other outputs are tied back tothe previous parallel inputs, with 03 tied to P2, 02 tiedto P1 and 01 tied to Po. LOGIC DIAGRAM i Pi Po P3 03 cp--------------~--~--1_--------~--~--+_---------+--~--+_--------~ MR------------------~--1_------------~--+_------------~--+_----------~ 03 00 TABLE I. MODE SELECT TABLE MODE Synchronous Parallel Load Serial Shift Hold Hold Asynchronous Reset MR E PE H H H H L L H H L H L H Parallel Data Entry X X X X X X X X X X X X L X X All Outputs Set LOW (03 = HIGH) IPO H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 6-128 P1 P2 P3 D X Serial Data Entry X X 72 TABLE II. PARALLEL DATA ENTRY TABLE III. SERIAL DATA ENTRY PO-P3 INPUT @ tn a @ tn + 1 DINPUT @ tn @ tn + 1 L H L H L H L H 00 tn = Present State tn + 1 = State after next clock H = HIGH Voltage Level L = LOW Voltage Level DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL los lee 93H PARAMETER Output Short Circuit Current Power Supply Current AC CHARACTERISTICS: Vee = +5.0 V, CONDITIONS Max -30 -100 rnA Vee = Max, 120 135 rnA Vee = Max XM XC TA UNITS Min = +25°C (See Section 3 for waveforms and VOUT =0 V load configurations) 93H SYMBOL CL PARAMETER = 15 pF Min fmax Maximum Shift Frequency tPLH tPHL Propagation Delay CP to an tpHL Propagation Delay MR to an AC OPERATING REQUIREMENTS: Vee SYMBOL CONDITIONS Max MHz Figs. 3-1, 3-8 16 21 ns Figs. 3-1, 3-8 26 ns Figs. 3-1, 3-16 45 = +5.0 V, UNITS = +25°C TA 93H PARAMETER Min ts (H) ts(U Setup Time HIGH or LOW D or Pn to CP 7.0 ts (H) ts (U Setup Time HIGH or LOW E to CP 17 ts (H) Is (U Setup Time HIGH or LOW PE to CP 19 th (H) th (U Hold Time HIGH or LOW D, Pn, E or PE to CP 0 tw (U MR Pulse Width LOW trec MR Recovery Time 19 7.0 6-129 UNITS CONDITIONS Max ns Fig. 3-6 ns Fig. 3-6 ns Fig. 3-16 I 74 CONNECTION DIAGRAM PINOUT A 9374 7-SEGMENT DECODER/DRIVER/LATCH (With Constant Current Sink Outputs) DESCRIPTION - The '74 is a 7-segment decoder driver incorporating input latches and output circuits to directly drive common anode LED displays. • HIGH SPEED INPUT LATCHES FOR DATA STORAGE • 15 rnA CONSTANT CURRENT SINK CAPABILITY TO DIRECTLY DRIVE COMMON ANODE LED DISPLAYS • INCREASES INCANDESCENT DISPLAY LIFE • ACTIVE LOW LATCH ENABLE FOR EASY INTERFACE WITH MSI CIRCUITS • DATA INPUT LOADING ESSENTIALLY ZERO WHEN LATCH DISABLED • AUTOMATIC RIPPLE BLANKING FOR SUPPRESSION OF LEADING AND/OR TRAILING-EDGE ZEROES ORDERING CODE: See Section 9 = +5.0 V ±5%. TA = O°C to +70°C Vee OUT 7 1 2 PKG 6 3 5 I I I I bb Ao A, A2 RBO a b c COMMERCIAL GRADE PIN PKGS LOGIC SYMBOL A3 LE RBI del 11111111 TYPE 4 13 12 11 10 9 15 14 Vcc = Pin 16 GND= Pin 8 Plastic DIP(P) A 9374PC 9B Ceramic DIP(D) A 9374DC 6B INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 8-g DESCRIPTION Address (Data) Inputs Latch Enable Input (Active LOW) Ripple Blanking Input (Active LOW) Ripple Blanking as Output (Active LOW> as Input (Active LOW> Constant Current Outputs (Active LOW) 'OC-Open Collector "Except Loading is 10 I'A @ 0.4 V when i:E is HIGH. 6-130 9 93XX (U.L.) HIGH/LOW 1.0/0.25** 0.5/0.25 0.5/0.25 1.0/0.5 -/0.75 OC*/15rnA 74 FUNCTIONAL DESCRIPTION-The '74 is a 7-segment deconder/driver with latches on the address inputs and active LOW constant curr~nt outputs to drive LEOs directly. This device accepts a 4-bit binary code and produces output drive to the appropriate segments of the 7-segment display. It has a decode format which produces numeric codes "0" through "9" and .other codes. Latches on the four data inputs are controlled by an active LOW Latch Enable, IT. When LEis LOW, the state of the outputs is determined by the input data. When LE goes HIGH, the last data present at the inputs is stored in the latches and the outputs remain stable. The LE pulse width necessary to accept and store data is typically 50 ns, which allows data to be strobed into the '74 at normal TTL speeds. This feature means that data can be routed directly from high speed counters and frequency dividers into the display without slowing down the system clock or providing intermediate data storage. The latch/decoder combination is a Simple system which drives LED displays with multiplexed data inputs from MaS time clocks, DVMs, calculator chips, etc. Data inputs are multiplexed while the displays are in static mode. This lowers component and insertion costs, since several circuits- seven resistors per display, strobe drivers, a separate display voltage source, and clock failure detect circuits-traditionally found in multiplexed display systems are eliminated. It also allows low strobing rates to be used without display flicker. Another '74 feature is the reduced loading on the data inputs when the Latch Enable is HIGH (only 10 p.A typ). This allows many '74s to be driven from a MOSdevice in multiplex mode without the need for drivers on the data lines. The '74 also provides automatic blanking of the leading and/or trailing-edge zeroes in a multidigit decimal number, resulting in an easily readable decimal display conforming to normal writing practice. In an a-digit mixed integer fraction decimal representation, using the automatic blanking capability 0060.0300 would be displayed as 60.03. Leading-edge zero suppression is obtained by connecting the Ripple Blanking Output (RBO) of a decoder to the Ripple Blanking Input (RBI> of the next lower stage device. The most significant decOder stage should have the RBI input grounded; and since suppression ofthe least significant integer zero in a number is not usually desired, the RBI input of this decoder stage should be left open. A similar precedure for the fractional part of a display will provide automatic suppression of trailing-edge zeros. The RBO terminal of the decoder can be OR-tied with a modulating Signal via an isolating buffer to achieve duration intenSity modulation. A suitable signal can be generated for this purpose by forming a variable frequency multivibrator with a cross coupled pair of TTL or DTL gates. LOGIC DIAGRAM I-----------------~ I Ao I I I I I I I I ~ J J ~~ I ..... I I I I I IL ________ _ _ _ _1_ _ _ _ _ _ _ _ JI LE .to... - LATCH 1-0F-16 DECODER .-1 LATCH t> --I LATCH lD hi LATCH P ...... ~ ~ 1 J B~~:~~G L I -I 6-131 CIRCUIT I SEGMENT ENCODER ~ .:y CONSTANT CURRENT OUTPUT DEVICE ppppp-p-p-- I 74 TRUTH TABLE OUTPUTS INPUTS BINARY STATE LE - b -c H L H H L L H L L RBI A3 A2 Al Ao a X X X X • L L L L L L L L H -e T STABLE H H L L H H d -9 RBO H L H H H H H L H H . DISPLAY 0 0 1 H L L L * L H X L L L 2 3 4 5 L L L L X X X X L L L L L L H H H H L L L H L H L L H L L L L H H L L L L L H L L H H H H H L L L L L L H H H H X X X X X L L H H H H H L L L H H L L H L H L H L L L L L H H L L L H L L L L H L H L L H L H L H H L H L L H L H L L L H H H H H ,5 10 L L L L L 11 12 13 14 15 L L L L L X X X X X H H H H H L H H H H H L L H H H L H L H L H H L H H L H L H H L H H H L H L H H L L L L H L L L L H L L H L H H H H H H E H BLANK X X X X X X X H H H H H H H L** BLANK 6 7 8 9 'The STABLE BLANK n u I I 2 :3 Lj 5 I 8 9 - I L 0 I mii will blank the display only If a binary zero is stored in the latches. "FmC> used as an input overrrides all other input conditions. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial NUMERICAL DESIGNATIONS o I-I 1 1 2 3 4 5 6 7 8 _1-11_11 I I I 1 _11_1 9 10 11 1 1- 6-132 12 III 13 14 I-I -11_1- 15 74 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 93XX PARAMETER SYMBOL Min OFF ON Your Output Voltage, Applied IOL Output LOW Current, a- 9 IOH Output HIGH Current 8"-g Icc Power Supply Current UNITS CONDITIONS Max 10 (Fig. a) Separate LED Supply V 18 mA Vee = 5.0 V, VOL = 3.0 V TA = 25°C 250 IJ.A Vee = Max, Your = 5.5 V 50 mA Vee = Max, VIN = Gnd Your = 3.0 V 12 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 93XX CL = 15 pF RL=1kO PARAMETER SYMBOL Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay An to 8-g 140 140 ns Figs. 3-2, 3-20 tPLH tPHL Propagation Delay LEto 8"-g 140 140 ns Figs. 3-2, 3-9 AC OPERATING REQUIREMENTS: Vee = +5.0 V, TA = +25°C 93XX PARAMETER SYMBOL Min UNITS ts (H) ts (U Setup Time HIGH or LOW An to LE 75 30 ns th (H) th (U Hold Time HIGH or LOW An to LE 0 0 ns 85 ns tw (U .. LE Pulse Width LOW ~ i 12 ~ . 11 i 10 ~ 9 ~ 8 a: I .~ Ii a: ! I I I I . ..~ ~ 7 > I 0 ~N U I I j:' z ; ~ o~:~ "Q~ 5 15 TAo ""H"C 21 2. Vee 21 = 5.25 Y t-- ryee ~ 5.~ ~ \ .-.. -' Vee =4.75 V 1. ' '15 12 ~~f- "I 1 .. Fig. 3-9 "~ .- o(,~ 3 2 I Fig. 3-13 C 3D I PEAK OUTPUT "ON" VOLTAGE ~ ~ I PEAK OUTPUT "OFF" YOLTAGE e" 8 "!!! • tcw • cl I CONDITIONS Max 9 0 8 ~ 3 0 0 2535'155857585 TA-AMBIENT TEMPERATURE_oC 1 2 YOUT - Fig. a Output Voltage Safe Operating Area Fig. b 6-133 3 • 5 8 7 • • 10 OUTPUT VOLTAGE - VOLTS Typical Constant Segment Current Versus Output Voltage I 74 APPLICATIONS -It is possible with common anode 7-segment LED displays and constant current sink decoder drivers to save substantial amounts of power by carefully choosing operating points on display supply voltage. First, examine the power used in the normal display driving method where the display and decoder driver are both operated from a +5.0 V regulated supply (Vee = Vs>' vs I COMMON ANODE LED 0=0 FLr 0::0 vcc CURRENT 111111 AoA,A2A3LTRBI '--RBO. bed e I 9 h IF T Fig. c Y II Separate Supply for LED Displays The power dissipated by the LED and the driver outputs is (Vee x Iseg x n Segments>. The total power dissipated with a 15 mA LED displaying an eight (8) would be: PTOT=5.0 V x 15 mA x 7 =525 mW Of this 525 mW, the power actually required todrive the LED is dependent on the VF drop of each segment. Most GaAsP LEOs exhibit either a 1.7 V or a 3.4 V forward voltage drop. Therefore, the required total power for seven segments would be: P(1.7)=1.7 V x 15 mA x 7 =178.5 mW P(3.4) =3.4 V x 15 mA x 7 =357 mW The remaining power is dissipated by the driver outputs which are maintaining the 15 mA constant current required by the LEOs. Most of this power is wasted, since the driver can maintain approximately 15 mA with as little as 0.5 V across the output device. By using a separate power source (Vs, Figure c) for the LEOs, which is set to the LED VF plus the offset voltage of the driver, as much as 280 mW can be saved per digit. i.e., Vs=VF (Max) + Vollset =2.0 V + 0.5 V =2.5 V PT = 2.5 V x 14 mA (from Figure b) x 7 =245 mW These figures show that using a separate supply to drive the LEOs can offer significant display power savings. In battery powered equipment, two rechargeable nickle-cadmium cells in series would be sufficient to drive the display, while four such cells would be needed to operate the logic units. 6-134 74 APPLICATIONS (Cont'd) - Another method to save power is to apply intensity modulation to the displays (Figure d). It is well known that LED displays are more efficient when operated in pulse mode. There are two reasons: one, the quantum efficiency of the LED material is better; secondly the eye tends to peak detect. Typically a 20% off duty cycle to displays (GaAsP) will produce the same brightness as operating under dc conditions. ALL INVERTERS ARE DTL 9936 OR OPEN COLLECTOR TTL 7405 LEAST SIGNIFICANT DECADE MOST SIGNIFICANT DECADE D1D2 D.DB INVERTER CAN BE IMPLEMENTED WITH ONE TRANSISTOR AND A RESISTOR FOR EACH DECADE I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I ,'---------------------~~---------------------------'~ TO 7-SEGMENT DISPLAYS Fig. d Intensity Control by RBO Pulse Duty Cycle Low Power, Low cost Display Power Sources-In small line operated systems using TTL/MSI and LED or incandescent displays, a significant portion of the total dc power is consumed to drive the displays. Since it is irrelevant whether displays are driven from unfiltered dc or pulsed dc (at fast rates), a dual power system can be used that makes better utilization of transformer rms ratings. The system utilizes a full wave rectified but u nsmoothed dc voltage to provide the displays with 120 Hz pulsed power while the rest of the system is driven by a conventional dc power circuit. The frequency of 120 Hz is high enough to avoid display flicker problems. The main advantages of this system are: • Reduced transformer rating • Much smaller smoothing capacitor • Increased LED light output due to pulsed operation With the standard capacitor filter circuit, the rms current (full wave) loading of the tranformer is approximately twice the dc output. Most commercial transformer manufacturers rate tranformers with capacitive input filters as follows: Full Wave Bridge Rectifier Circuit Transformer rms current = 1.8 x dc current required Full Wave Center Tapped Rectifier Circuit Transformer rms current = 1.2 x dc current required Therefore, the removal of a large portion of the filtered de current requirement (display power) substantially reduces the transformer loading. 6-135 74 APPLICATIONS (Cont'd) - There are two basic approaches. First (Figure e) is the direct full wave rectified unregulated supply to power the displays. The '74 decoder driver constant current feature maintains the specified segment current after the LED diode drop and 0.5 V saturation voltage has been reached ("2.2 VI. Care must be. exercised not to exceed the '74 power ratings and the maximum voltage that the decoder driver sees in both the "on" and "off" modes. The second approach (Figure f) usesa 3-terminal voltage regulator such as the 7805 to provide dc pulsed power to the display with the peak dc voltage limited to +5.0 V. This approach allows easier system thermal management by heat sinking the regulator rather than the display or display drivers. When this power source is used with an intensity modulation scheme or with a multiplexed display system, the freq uencies must be chosen such that they do not beat with the 120 Hz full wave rectified power frequency. t 1~11 6:1 7.5 V rma LARGE SMOOTHING CAPACITOR Fig. e DATA DATA Direct Unregulated Display Supply til ~ 1~11 6:( til o a: 1&1 J: I- o oI- Fig. f Pulsed Regulated Display Supply 6-136 74 PARALLEL DATA SUPPLY SYSTEM WITH RIPPLE BLANKING SYSTEM CLOCK 4.,,"" I 4.,,"" I DECADE OR BINARY COUNTER II 4-BIT TTL DECADE OR BINARY COUNTER DECADE OR BINARY COUNTER STROBE INPUT ,r- .rAo A1 A2 A3LERBl 9374 9374 RBO. b c d e l 9 W 'i' VLED OR Vc c RBO. b c d e I 9 I l""""'P I Ao A1 A2 A3LERBl 9374 Yo,"" f-----5'" ," ·,· DIGITS 0::0 0::0 Oc==JO Oc==JO I I 0::0 Oc==JO MOST SIGNIFICANT DIGIT LEAST SIGNIFICANT DIGIT 6-137 • 86 CONNECTION DIAGRAMS PINOUT A 9386 - AoO:: 4-BIT QUAD EXCLUSIVE-NOR BoII lilA3 (With Open-Collector Outputs) 00 II :mB3 01!:! TIl 03 B1IT ~02 A11I ]]B2 GND[I }]A2 DESCRIPTION - The '86 consists of four independent Exclusive-NOR gates with open-collector outputs. Single 1-bit comparisons may be made with each gate, or multiple bit comparisons may be made by connecting the outputs of the four gates together. Typical power dissipation is 170 mW. The 9386 is equivalent to the 8242. PINOUT B - 030: TRUTH TABLE INPUTS OUTPUT An Bn On L H L H L L H H H L L H PIN OUT :mB2 A3II :mA2 H = HIGH Voltage Level L = LOW Voltage Level LOGIC SYMBOL (DIP only) Vcc = +5.0 V ±10%, TA = -55°C to +125°C Ceramic DIP (0) A 9386DC Flatpak (F) ~B1 ~01 BoIT 00[2 Vcc = +5.0 V ±5%, TA = O°C to +70°C 9386PC ~A1 AoIT MILITARY GRADE A TIl GND Vee!:! COMMERCIAL GRADE Plastic DIP(P) TIl 02 B31I ORDERING CODE: See Section 9 PKGS ~Vee PKG TYPE 9A 9386DM 6A iiiiilJJ Ao Bo A1 B1 A2 B2 A3 B3 00 0, 02 ! ! L = Vcc B 9386FC 9386FM 31 Pin 14 GND = Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao, A1, A2, A3, Be B1 B2 B3 00-03 DESCRIPTION Gate Gate Gate Gate Gate 0 Inputs 1 Inputs 2 Inputs 3 Inputs Outputs 93XX (U.L.) HIGH/LOW 2.0/2.0 2.0/2.0 2.0/2.0 2.0/2.0 OC*/15 'oc- Open Collector 6-138 03 )1 86 LOGIC DIAGRAM B, Bo Ao B3 A3 00 03 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 93XX PARAMETER Min A Input B Input UNITS CONDITIONS Max 5.5 5.5 liN (A) = 10 rnA, VIN (B) =OV liN (B) = 10 rnA, VIN (A) =OV BV; Input Latch Voltage IOH Output HIGH Current 150 p.A Vee = Min, VIN = VIH VOUT = 4.5 V lee Power Supply Current 47.5 rnA Vee = 5.25 V VIN (A), VIN (B) = 0.4 V V AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 93XX SYMBOL PARAMETER CL = 30 pF RL = 530 n Min Propagation Delay An, Bn to 00-03 CONDITIONS Max 25 25 6-139 UNITS ns Figs. 3-2, 3-20 I 9600 CONNECTION DIAGRAM PINOUT A 9600 RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR DESCRIPTION - The 9600 monostable, retriggerable, resettable multivibrator provides an output pulse whose duration and accuracy is a function of external timing components. The 9600 has excellent immunityto noiseon the Vee and ground lines. It uses TTL technology for high speed and high fan-out capability and is compatible with all members of the Fairchild TTL family. • • • • 74 ns TO 00 OUTPUT PULSE WIDTH RANGE RETRIGGERABLE 0% to 100% DUTY CYCLE RESETTABLE LEADING OR TRAILING-EDGE TRIGGERING LOGIC SYMBOL Vee ORDERING CODE: See Section 9 PIN PKGS OUT ~ Cx COMMERCIAL GRADE ____________ ~---- Vee = +5.0 V ±5%, TA = O°C to +75°C ~ MILITARY GRADE ______________ ~ Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A Ceramic DIP(Q) A 9600DC 9600DM 6A Flatpak (F) A 9600FC 9600FM 31 9600PC --If- 11 Q 9A Co ~ Vcc = 14 GND= 7 910 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES DESCRIPTION 96XX (U.L.) HIGH/LOW C01-C02 Q Trigger Inputs (Active Falling Edge) Trigger Inputs (Active Rising Edge) Clear Inputs (Active LOW) Pulse Output 1.5/1.0 1.5/1.0 1.5/1.0 2417.06 a Complementary Pulse Output (6.2) 2417.06 (6.2) 10,11 12-14 LOGIC DIAGRAM 1 2 3--':=---1 4-----+-' 5-----1 910 7-3 Rx 13 9600 FUNCTIONAL DESCRIPTION - The 9600 monostable multivibrator has five inputs, three active HIGH and two active LOW. This allows leading-edge or trailing-edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An input cycle time shorter than the output cycle time will retrigger the 9600 and result in a continuous true output (see Rule 8), Retriggering may be inhibited by tying the negation (()) output to an active LOW input. The output pulse may be terminated at any time by connecting either or both reset pins to a LOW logic level pin. Active pullups are provided on the outputs for good drive capability into capacitive loads. Operating Notes 1. An external resistor (Ax) and an external capacitor (Cx) are required as shown in the logic diagram. The value of Rx may vary from 5.0 kO to 50 kO for 0° C to +75 0 C operation and from 5.0 kO to 25 kO for -55 0 C to+125° C operation. Cx may vary from 0 to any necessary value available. 2. The following are recommended fixed values of Rx: Rx = 30 kO for 0° C to +75° C operation, Rx = 10 kO for -55° C to +125° C operation. 3. The output pulse width (t) is defined as follows: t = 0.32 RxCx [1 + 0.7/Rx[ Where Rx is in kO, Cx is in pF, t is in ns; for Cx < 103 pF. (see Figure a) The value of Cx may vary from 0 to any value necessary and obtainable. If however, Cx has leakage currents approaching 3.0 p,A or if stray capacitance from either pin 11 or pin 13 to ground exceeds 50 pF, the timing equation may not represent the pulse width obtained. 4. If electrolytic type capacitors are to be used, the following three configurations are recommended. A. Use with low leakage electrolytic capacitors (see Figure bl. The normal RC configuration can be used predictably only if the forward capacitor leakage at5.0 V is less than 3.0 p,A, and the inverse capacitor leakage at 1.0 V is less than 5.0 p,A overtheoperational temperature range and Rule 3 above is satisfied. B. Use with high inverse leakage current electrolytic capacitors. (Figure c; this configuration is not recommended with retriggerable operationJ The diode in this configuration prevents high inverse leakage currents through the capacitor by preventing an inverse voltage across the capacitor. t = 0.3 RCx C. Use to obtain extended pulse widths. (Figure d; this configuration is not recommended with retriggerable operationJ This configuration obtains extended pulse widths because of the larger timing resistor allowed by Beta multiplication. Electrolytics with high inverse leakage currents can be used. 01 is an npn silicon transistor such as 2N5961 or 2N5962, with hFE, Rand Rx related as in the inequality below. R < Rx (0.7) (hFE 01) or < 2.5 MO, whichever is less Rx (Min) < Ry < Rx (Max) Ry' of 5.0 kO to 10 kO is recommended t = 0.3 RCx 5. This circuit is recommended to obtain variable pulse width by remote trimming (Figure e). 6. Under any operating condition, Cx and Rx (min) must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pickup. 7. Input Trigger Pulse Rules (see Triggering Truth Table Figures f and gl. t1, t:3 = Min. positive input pulse width> 40 ns. t2, 14 = Min. negative input pulse width> 40 ns. 8. The retrigger pulse width is equal to the pulse width t plus a delay time (see Figure hl. For pulse widths greater than 500 ns, tw can be approximated as t. tw = t + tPLH = 0.32 RxCx (1 + 0.7/Rx) + tPLH 9. Two overriding active LOW resets are provided (see Figure il. A LOW to either or both resets can terminate any timing cycle and/or inhibit any new cycle until both reset inputs are restored to a HIGH. Trigger inputs will not produce spikes in the output when either or both resets are held LOW. 10. Use of a 0.01 p,F to 0.1 p,F bypass capacitor located close to the 9600 is recommended. 7-4 9600 OUTPUT PULSE WIDTH VERSUS TIMING RESISTANCE AND CAPACITANCE FOR Cx < 103 pF For Cx 2 103 pF, t = 0.32 RxCx (1 + 0.7/Rx) TRIGGERING TRUTH TABLE" INPUT PINS RESPONSE 1 2 3 4 5 9 10 X X L X X X L X X X X X X L X X X X X No Trigger No Trigger No Trigger H H X X H H X L H H X X H H X X H H X X H Trigger No Trigger No Trigger Trigger 10 \... \... , 10 \... H X L J J ....r l ;. ~~ II ~. v-- .. , ,0 ~-I-/ 10 f.)'l:) \' Rx -= 20 kn ....''- ~">' ~ , v a a 'Pins 1 &2 are logically interchangeable, as are pins 3, 4, 5, and also 9 & 10. H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial a a 1 2 4 6 10 ex - 102 10' TIMING CAPACITANCE - pF Fig. a Rx VCC~PIN13 CX + e-PINll Fig. b R < 0,6 Rx (MAX) Ry vcc~ FD777 VCC~PIN13 Rx.> Rx (MIN) PIN13~---b 0, J.. 'T R Cx Cx PIN 13 PIN 11 + t::.-- PIN 11 Vee It.. AS CLOSE AS ---1 R,< Rx (MAX) ·Rx POSSIBLE TO DEVICE --- + f::- PIN 11 Fig. d Fig. c Fig. f Fig. g Fig. e Input on Pin 1 or 2 Input on Pin 3, 4 or 5 7-5 Remote Trimming 9600 INPUT Q OUTPUT INPUT I-Iw--I ---.J L ---------', RESET NOTE: Retriggering will not occur if the retrigger pulse comes within ~ 0.3 Cx ns after the initial trigger pulse (i.e., during the discharge cycle time>. Q OUTPUT Q OUTPUT Fig. h Fig. I INPUT PULSE I ~ 100 kHz AMP ~ 3.0 V WIDTH ~ 40 ns tr = tf -:; 10 ns Va ""r'-i.: T Va-NOTE: Capacitance includes Jig and Probe 1 \ V •• Flg.j NORMALIZED OUTPUT PULSE WIDTH VERSUS AMBIENT TEMPERATURE 1.1 0 1.05 I NORMALIZED OUTPUT PULSE WIDTH VERSUS SUPPLY VOLTAGE 1.10 I Vee = 5.0 V _ Rx "" 10 kU ex'" 103 pF _ , 140 f- T; = 251.e Rx = 10kn Cx=103 pF f- /' 1.05 ./ ........ " 1.00 t'---. ........ r-- "-- I-- 1.00 75 T A - AMBIENT TEMPERATURE _oC Fig. k 120 - = = == 0 CL = 15 iF V r--- ./ so 0.90 25 ex 100 V 0.9 5 -25 vc~ 5.~ V Rx 5 k!l ./V 0.95 0.90 -75 MINIMUM OUTPUT PULSE WIDTH VERSUS AMBIENT TEMPERATURE 125 4.0 4.5 5.0 5.5 Vee-SUPPLY VOLTAGE-V Fig. I 7-6 6.0 60 -75 - COMPLEMENTARY OUTPUT- .Y "'-25 25 V I'C'. 1/ ./ V TRUE._ °IUTPr 75 TA-AMBIENT TEMPERATURE-OC Fig. m / 125 9600 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 96XX PARAMETER SYMBOL Min CONDITIONS UNITS Max VOL Output LOW Voltage ~ 0.4 0.45 V IOL = 9.92 mA*1 V - M· 10L - 11.3 mA CC In VOL Output LOW Voltage ~ 0.4 0.45 V 10L VIH Input HIGH Voltage ~ V TA = Max VIL Input LOW Voltage ~ XC 0.9 0.85 V TA = 25°C ilL Input LOW Current ~ XC -1.6 -1.6 mA VIN VIN = 0.4 V J = 0.45 V I Vee = Max los Output Short Circuit Current Xc" XM -25 -35 mA Vee = Max, VOUT TA = 25°C Ipo Quiescent Power Supply Drain Xc" XM 24 26 mA Vee = 5.0 V, Pins 1, 2 = Gnd AC CHARACTERISTICS: Vee XC XC XC = +5.0 V, TA 1.5 1.65 = +25° C (See I = 12.8 mA, Vee = Max = 1.0 V* Section 3 for waveforms and load configurations) 96XX PARAMETER SYMBOL CL = 15 pF Min UNITS CONDITIONS Max tPLH Tn to Q ~ xc 45 56 ns tPHL Propagation Delay T;, to Q ~ XC 40 47 ns tw (Min) Minimum Q Pulse Width ~ 100 120 ns Rx tw (Min) Minimum 9" Pulse Width ~ 112 130 ns Fig. 3-1, Fig. j tw Pulse Width 3.76 3.76 Ils Rx = 10 kn, Cx Fig. 3-1, Fig. j Propagation Delay XC XC AC OPERATING REQUIREMENTS: Vee SYMBOL ~ XC 3.2 3.08 = +5.0 V, TA 96XX Min Maximum Allowable Wiring Capacitance (Pin 13) Rx (Max) M· · t or aXlmum T". Imlng R eSls "Ground Pin 11 for VOL Pin 6 or VOH Pin 8 or los ~ XC =0 pF = 5.0 n, =0 pF Cx = 1000 pF = +25°C PARAMETER CSTRAY Rx = 5.0 n, Cx Figs. 3-1, Fig. j UNITS CONDITIONS Max 5.0 5.0 50 pF Pin 13 to Gnd 25 50 kn Over Operating Temperature Range Pin 8. open Pin 11 for VOL Pin 8 or VOH Pin 6 or 7-7 los Pin 6. 9601 CONNECTION DIAGRAM PINOUT A 9601 RETRIGGERABLE MONOSTABLE MULTIVIBRATOR 10 - 0: ~vcc I, [] . ImRX ., [1 IlliNC .,11 ITIJcx ~NC ~NC ~Q NCrr DESCRIPTION - The 9601 is a retriggerable one-shot with versatile trigger gating, rapid recovery, internally compensated reference levels, and high speed capability. It is well suited for a broad variety of applications, including pulse delay generators, square wave generators, long delay timers, pulse absence detectors, and clock pulse generators. a[! GNOIT • RETRIGGERABLE, 0% TO 100% DUTY CYCLE • DC LEVEL TRIGGERING, INSENSITIVE TO TRANSITION TIMES • COMPLEMENTARY INPUTS, FOR LEADING OR TRAILING-EDGE TRIGGERING • COMPLEMENTARY OUTPUTS, WITH ACTIVE PULL-UPS FOR DRIVING LOAD CAPAC IT ANCE. • PULSE WIDTH COMPENSATION FOR Vee AND TEMPERATURE VARIATIONS • 50 ns TO co OUTPUT PULSE WIDTH RANGE • OPTIONAL RETRIGGER LOCK-OUT CAPABILITY LOGIC SYMBOL CX lt ORDERING CODE: See Section 9 PIN PKGS OUT 11 COMMERCIAL GRADE MILIT ARY GRADE Vee = +5.0 V ±5%, TA = O°C to +75°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Rx 'f,3 ~~ 3., L.....J 1 _ A 9601 PC Ceramic DIP (0) A 9601DC 9601DM 6A Flatpak (F) A 9601FC 9601FM 31 9A Vcc = Pin 14 GND = Pin 7 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES To, T1 DESCRIPTION Q Trigger Input (Active Falling Edge) Trigger Input (Active Rising Edge) Positive Pulse Output Q Complementary Pulse Output 12, 13 96XX (U.L.) HIGH/LOW 1.5/1.0 1.5/1.0 24/8.0 (18)/(6.25) 24/8.0 (18)/(6.25) 7-8 Q :"--8 2 • 4 ., Plastic DIP (P) Vee 14 0--8 9601 FUNCTIONAL BLOCK DIAGRAM Ct Rt .......t-JI,IVV- +5 V r----Q 10----... 11-___~ 12 b DIFFERENTIATOR .,L r-'\.U =====::::t_J L...y' Io-.....~ . . . --_..1 SCHMITT TRIGGER TRIGGERING TRUTH TABLE Pin 1 Pin 2 Pin 3 Pin 4 H L L H 'X X \.. H H L '\.. RESPONSE ..r J J X H L No Trigger Triggers No Trigger H L X H X X Triggers No Trigger No Trigger H = HIGH Vollage Level L = LOW Voltage Level X = Immaterial OUTPUT tw vs Rx AND Cx .. c I J: l- e i III III ...J :;) '" '"~ I- :;) o I ~ 10 4 8 6 Vee = 5.0 V TA =+25°C 4 2 I 103 8 6 41-- I-- 2 10 2 8 ~'I- II / II ~ V . SO \<\\ V 1\'1- "" 0\<\\ 3'1-""3",, '1-0 \l\\~\"\y 1--1-- V V ~ VII ~"f. ","i ~"f. ~ V -:? V 6 4 2 0 1.0 4 68 10 2 4 6 8102 2 4 6 8103 NOTE: Cx-TIMING CAPACITANCE-pF Capacitance includes Jig and Probe Fig. a Fig. b 7-9 9601 FUNCTIONAL DESCRIPTION - The 9601 monostable multivibrator has four inputs, two active HIGH and two active LOW. This allows a choice of leading-edge or trailing-edge triggering. The TTL inputs make triggering independent of input transition times. When input conditions for triggering are met, a new cycle starts and the external capacitor is rapidly discharged and then allowed to charge. An in put cycle ti me shorter than the output cycle time will retrigger the 9601 and result in a continuous true output. Retriggering may be inhibited by tying the negation (Q) output to an active LOW input. Active pullups are provided on the outputs for good drive capability into capacitive loads. Operation Notes 1. TRIGGERING - The 9601 has four dc coupled triggering inputs; pins 1 and 2 respond to falling edge signals, while pins 3 and 4 respond to rising edge Signals. Triggering occurs as the input signal passes through the threshold region. Triggering logic is outlined in the Table. Input signals can be interchanged between pins 1 and 2, since they are logically identical; the same relationship holds for pins 3 and 4. 2. RETRIGGERING -In a normal cycle, triggering initiates a rapid discharge of the external timing capacitor, followed by a ramp voltage run-up at pin 13. The delay will time out when the ramp voltage reaches the upper trigger point of the Schmitt circuit, causing the outputs to revert to the quiescent state. If another trigger occurs before the ramp voltage reaches the Schmitt threshold, the capacitor will be discharged and the ramp will start again without having disturbed the outputs. The delay period can therefore be extended for an arbitrary length of time by insuring that the interval between triggers is less than the delay time, as determined by the external capacitor and resistor. 3. NON-RETRIGGERABLE OPERATION - Retriggering can be inhibited logically, by connecting pin 6 back to pin 3 or 4, or by connecting pin 8 back to both pins 1 and 2. 4. OUTPUT PULSE WIDTH -An external resistor Rx and an external capacitor Cx are required, as shown in the functional block diagram; to minimize stray capacitance and noise pickup, Rx and Cx should be located as close as possible to the circuit. In applications which require remote trimming of the pulse width, as with a variable resistor, Rx should consist of a fixed resistor in series with the variable resistor; the fixed resistor should be located as close as possible to the circuit. The output pulse width tw is defined as follows, where Rx is in k!1, Cx is in pF and tw is in ns. tw = 0.32 RxCx (1 + 0.7/Rx) (for Cx > 103 pF; see also Figure aJ The values of Rx may vary from 5.0 k!1 to 50 k!1 for 0° to +75°C operation, and 5.0 k!1 to 25 k!1 for -55° to +125°C operation. Cx may vary from 0 to any value. 5. SETUP AND RELEASE TIMES h, 14 = Setup time> 40 ns Input to Pin 1 (2) Pins 2 (1),3 and 4 = 1 12.13 = Release time> 40 ns Input to Pin 3 (4) Pin 4 (3) = 1 Pins 1 or 2 = 0 6. CAPACITOR LEAKAGE-Recommendations on electrolytic capacitors and larger values of Rx are discussed in the 9600 data sheet. 7-10 9601 TYPICAL CHARACTERISTICS Tn ~ ~ .... e ... ... CJ l: l- e « I- ... ~ .... ::l Go I::l Go 40 I::l ~ --- - * -'(~ ... e N :::; 00( IPHL COMPLEMENTARY- 20 1.0 0 \IE. 0\1 -25 o 25 .90 125 75 -75 TA - AMBIENT TEMPERATURE - 'C OUTPUT tw VI Vee TA = 25'C Rx = 10 kll Cx = 103 pF ... ~ ........ Go I::l 1.00 o ...e N ./ 0.95 i-""" V Vee = 5.0 V Rx = 10 kll Cx = 103 pF TA=25'C ",.... f-""" 1.2 I- ~ - l- S V' 1.0 ...e N :::; 00( ~ o 0.8 Z I ..! 0.90 4.0 4.5 5.0 6.0 5.5 0.6 20 Vee-SUPPLY VOLTAGE - V 40 . I l- 16 ... UJ Go /' 12 I::l Go I::l 0 I ..! 8.0 4.0 10 e i V ./ i .... / /' V 70 R'IOI.l~~ ... tAEN"~ COtAP\.E~i"'" UJ .... I" ::l I Go I::l / 50 I Go I::l o z i TRUE OUTPUT 30 I z ~ J V 20 Vee = 5.0 V Rx = 5.0 kll Cx = 0 l: e ::l 90 "I Vee =5.0V Cx=103 pF "- % OUTPUT tw vs T A OUTPUT tw VI Rx .. 100 80 60 OPERATING DUTY CYCLE - 20 l- 125 Go z l: " ::l ...... o I ..! 75 TA-AMBIENT TEMPERATURE - 'C i 1.05 I::l IX '~ 25 ie!= Go :I! o -25 1.4 ::l 00( r-..... OUTPUT tw vs DUTY CYCLE 1.10 :::; ......., I ..! o -75 i III.... "'" z I ~ Vee =5.0V Rx = 10kll Cx = 103 pF .95 :I! 0 IX O~TPUI o 2; 1.05 UJ ...> ...zCJ " i 60 IX CJ , 1.1 Vee = 5.0 V CL = 15 pF ...I :I! i= OUTPUT tw VI T A DELAY TIME VI TA 80 30 40 10 -75 50 -25 25 75 TA - AMBIENT TEMPERATURE _ 'C Rx - EXTERNAL TIMING RESISTOR - kll 7-11 125 9601 DC AND AC CHARACTERISTICS OVER COMMERCIAL TEMPERATURE RANGE: Vee = +5.0 V except as noted. O°C PARAMETER SYMBOL Min +25°C Max Min Max +75°C Min UNITS CONDITIONSl V Vee = 4.75 V 10H = -0.96 mA V Vee = 4.75 V 10L = 12.8 mA Max VOH Output HIGH Voltage 2 VOL Output LOW Voltage 2 VIH Input HIGH Voltage 3 VIL Input LOW Voltage 3 0.85 0.85 0.85 V hL Input LOW Current -1.6 -1.6 ~1.6 mA Vee = 5.25 V VIN = 0.45 V hH Input HIGH Current 60 60 IlA Vee = 5.25 V VIN = 4.5 V los Output Short Circuit Current2 mA VOUT Icc Power Supply Current tPLH Propagation Delay Tn to 40 ns Rx = 5.0 kO CL = 15 pF Cx = 0, Fig. b tPHL Propagation Delay Tn to Q 40 ns Rx = 5.0 kO CL = 15 pF Cx = 0, Fig. b tw (min) Minimum True Output Pulse Width 65 ns Rx = 5.0 kO CL = 15 pF Cx = 0, Fig. b tw Pulse Width 3.76 IlS Rx=10kO Cx = 1000 pF Fig. b CSTRAY Maximum Allowable Wiring Cap. (Pin 13) 50 pF Pin 13 to Gnd Rx Timing Resistor 50 kO 2.4 2.4 0.45 1.9 0.45 1.8 -10 25 3.08 50 50 0.45 1.6 25 50 5.0 V -40 25 a 5.0 2.4 50 5.0 (1) Unless otherwise noted. 10 kU resistor placed between Pin 13 and Vee. for all tests. !Axl (21 Ground Pin 11 for VOL Pin 6 or VOH Pin 8 or los Pin 8. Open Pin 11 for VOL Pin 8 or VOH Pin 6 or los Pin 6. (31 Pulse Test to determine VIH and VIL (Min tw 40 nsl. 7-12 mA =0 V Vee = 5.25 V Gnd Pins 1, 2 9601 DC AND AC CHARACTERISITCS OVER MILITARY TEMPERATURE RANGE: Vee = +5.0 V except as noted SYMBOL PARAMETER -55°C Min +25°C Max 2.4 Min Max 2.4 +125°C Min UNITS CONDITIONSI V Vee = 4.5 V 10H = -0.72 mA V Vee = 4.5 V 10L = 10 mA Max 2.4 VOH Output HIGH Voltage 2 VOL Output LOW Voltage 2 VIH Input HIGH Voltage3 VIL Input LOW Voltage 3 0.85 0.9 0.85 V IlL Input LOW Current -1.6 -1.6 -1.6 mA Vee = 5.5 V VIN = 0.4 V hH Input HIGH Current 60 60 /1 A Vee = 5.5 V VIN ~ 4.5 V los Output Short Circuit Current mA VOUT = 0 V Icc Power Supply Current mA Vee = 5.5 V Gnd Pins 1, 2 tPLH Propagation Delay Tn to Q 40 ns Rx = 5.0 kO CL = 15 pF Cx = 0, Fig. b tPHL Propagation Delay Tn to Q 40 ns Rx = 5.0 kO CL = 15 pF Cx = 0, Fig. b. tw (min) Minimum True Output Pulse Width 65 ns Rx = 5.0 kO CL = 15 pF Cx = 0, Fig. b tw Pulse Width 3.76 /1s Rx = 10 kO Cx = 1000 pF Fig. b CSTRAY Maximum Allowable Wiring Cap. (Pin 13) 50 pF Pin 13 to Gnd Rx Timing Resistor 25 kO 0.4 2.0 0.4 1.7 -10 25 50 25 1.5 25 50 5.0 V -40 25 3.08 5.0 0.4 25 5.0 III Unless otherwise noted, 10 kll resistor placed between Pin 13 and Vee. for all tests. IRxl 121 Ground Pin 11 for VOL Pin 6 or VOH Pin 8 or los Pin 8. Open Pin 11 for VOL Pin 8 or VOH Pin 6 or los Pin 6 ' 131 Pulse Test to determine V,H and V,L IMin tw 40 nsl, 7-13 9602 • L02 CONNECTION DIAGRAM PINOUT A 9602 96L02 DESCRIPTION - The 9602 is a dual TTL monostable multivibrator with trigger mode selection, reset capability, rapid recovery, internally compensated reference levels and high speed capability. Output pulse duration and accuracy depend on external timing components, and are therefore under user control for each application. It is well suited for a broad variety of applications, including pulse delay generators, square wave generators, long delay ti mers, pulse absence detectors, frequency detectors, clock pulse generators and fixed-frequency dividers. Each input is provided with a clamp diode to limit undershoot and minimize ringing induced by fast fall times acting on system wiring impedances. • • • • • • • • - CX1[I DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR RETRIGGERABLE, 0% TO 100% DUTY CYCLE DC LEVEL TRIGGERING, INSENSITIVE TO TRANSITION TIMES LEADING OR TRAILING-EDGE TRIGGERING COMPLEMENTARY OUTPUTS WITH ACTIVE PULL-UPS PULSE WIDTH COMPENSATION FOR ilVee AND ilTA 50 ns TO 00 OUTPUT PULSE WIDTH RANGE OPTIONAL RETRIGGER LOCK-OUT CAPABILITY RESETTABLE, FOR INTERRUPT OPERATIONS ~vcc Rx,ll ~CX2 COl [! hI! IB1 RX2 I!!l CO2 To I! Imll a,l! TIlTo 0, IT ~a2 GNO[! r!l02 LOGIC SYMBOL Cx (15) l~i T2 Rx Vee 18 (14) 0-8(10) ORDERING CODE: See Section 9 PIN PKGS OUT (12)~=D (11) 5 COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +70°C Vee = +5.0 V ±10%, TA = -55°C to +125°C T PKG Q C>--7(9) cO TYPE (113 Plastic DIP(P) A 9602PC, 96L02PC Ceramic DIP (D) A 9602DC, 96L02DC 9602DM, 96L02DM 68 Flatpak (F) A 9602FC, 96L02FC 9602FM, 96L02FM 4L 98 Vec = Pin 16 GNO = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES To DESCRIPTION Q Trigger Input (Active Falling Edge) Trigger Input (Active Rising Edge) Direct Clear Input (Active LOW) Positive Pulse Output Q Complementary Pulse Output h Co 7-14 96XX (U.L.) HIGH/LOW 96L (U.L.) HIGH/LOW 1.5/1.0 1.5/1.0 1.5/1.0 2417.0 (6.2) 2417.0 (6.2) 0.5/0.25 0.5/0.25 0.5/0.25 9.0/3.0 9.0/3.0 9602 • L02 FUNCTIONAL BLOCK DIAGRAM .......o--*--I>.::...Q 7 (') r:jC>---i~)o-Lt>:Q!!...6 (10) 3(13) GND 8 OPERATION NOTES 1. TRIGGERING-can be accomplished by a positive-going transition on pin 4 (121 or a negative-going transition on pin 5 (11), Triggering begins as a signal crosses the input VIL:VIH threshold region; this activates an internal latch whose unbalanced cross-coupling causes it to assume a preferred state. As the latch output goes LOW it disables the gates leading to the Q output and, through an inverter, turns on the capacitor discharge transistor. The inverted signal is also fed back to the latch input to change its state and effectively end the triggering action; thus the latch and its associated feed-back perform the function of a differentiator. The emitters of the latch transistors return to ground through an enabling transistor which must be turned off between successive triggers in order for the latch to proceed through the proper sequence when triggering is desired. Pin 5 (11) must be HIGH in order to trigger at pin 4 (12); conversely, pin 4 (12) must be LOW in order to trigger at pin 5 (11). 2. RETRIGGERING -In a normal cycle, triggering initiates a rapid discharge of the external timing capacitor, followed by a ramp voltage run-up at pin 2 (14). The delay will time out when the ramp voltage reaches the upper trigger point of a Schmitt circuit, causing the outputs to revert to the quiescent state. If another trigger occurs before the ramp voltage reaches the Schmitt threshold, the capacitor will be discharged and the ramp will start again without having disturbed the output. The delay period can therefore be extended for an arbitrary length of time by insuring that the interval between triggers is less than the delay time, as determined by the external capacitor and resistor. 3. NON-RETRIGGERABLE OPERATION-Retriggering can be inhibited logically, by connecting pin 6 (10) back to pin 4 (12) or byconnecting pin 7 (9) back to pin 5 (11), Either hook-up has the effect of keeping the latch-enabling transistor turned on during the delay period, which prevents the input latch from cycling as discussed above in the section on triggering. 4. OUTPUT PULSE WIDTH -An external resistor Rx and an external capacitor Cx are required, as shown in the functional block diagram. To minimize stray capacitance and noise pickup, Rx and Cx should be located as close as possible to the circuit. In applications which require remote trimming of the pulse width, as with a variable resistor, Rx should consist of a fixed resistor in series with the variable resistor; the fixed resistor should be located as close as possible to the circuit. The output pulse width tw is defined as follows, where Rx is in k!l, Cx is in pF and tw is in ns. tw = 0.31 RxCx (1 + 1/Rx) for Cx ~ 103 pF 5 k!l:::; Rx:::; 50 k!l for O°C to +75°C 5 k!l :::; Rx :::; 25 k!l for -55° C to +125° C (96L02) tw = 0.33 RxCx (1 + 3/Rx) for Cx ~ 103 pF 16 k!l:::; Rx:::; 220 k!l for O°C to +75°C 20 k!l:::; Rx:::; 100 k!l for -55°C to +125°C Cx may vary from 0 to any value. For pulse widths with Cx less than 103 pF see Figures a and b. (9602) 7-15 9602 • L02 OPERATION NOTES (Cont'd) 5. SETUP AND RELEASE TIMES- The setup times listed below are necessary to allow the latch-enabling transistor to turn off and the node voltages within the input latch to stabilize, thus insuring proper cycling of the latch when the next trigger occurs. The indicated release times (equivalent to trigger duration) allow time for the input latch to cycle and its signal to propagate. Input to Pin 5 (11) Pin 4 (12) = L Pin 3 (13) = H Input to Pin 4 (12) Pins 5 (11) and 3 (13) = H 12. ta = RELEASE TIME> 40 ns ('02) 1,.14 = SETUP TIME> 40 ns ('02) > 60 ns (,L02) >60 ns (,L02) Co, pin 3 (13), will terminate an output pulse, causing Q to go LOW andQ to go HIGH. As long as CD is held LOW, a delay period cannot be initiated nor will attempted triggering cause spikes at the outputs. A reset pulse duration, in the LOW state, of 25 ns is sufficient to insure resetting. If the reset input goes LOW at the same ti me that a trigger transition occurs, the reset will dominate and the outputs will not respond to the trigger. If the reset input goes HIGH coincident with a trigger transition, the circuit will respond to the trigger. 6. RESET OPERATION- A LOWsignal on 7. CAPACITOR LEAKAGE- For recommendations on electrolytic capacitors and larger values of Rx, please see the 9600 data sheet. 9602 PULSE WIDTH vs Rx AND Cx 96L02 PULSE WIDTH vs Rx AND Cx 102 10 4 8 8 6 • '! [ w 8 I--Rx .. 41-- Rx = 120 kn ' \ ~ 8 I 4 200 kn :c c / - 1.0 ...... w / II) '/ / . 4 6810 2 / 6 8102 2 .. 2 .... &~ r-< ,...- 4 ~K 10 2 0 8 6 I 4 2 68103 Cx-TIMINGCAPACITANCE-pF Fig. ~ 8 6 4 .! jX = jO i!i 4 /' l/:V 10 3 ...l ... ...::I Vl/ 4 2 ::I Rx =80kn ['-- Rx = 39 kn ./~ I--" 2 iii ::I ,-V O. 1 y " ; ' /1-" , ~ 1.0 o .! . I ./ "/1/ iii 1~ !l :!! / 10 1.0 2 4 6810 2 4 /. v/ V Rx = 50 kll Rx=30kll Rx=20kll Rx = 10 kll I Rx 15 kll I 68102 2 4 Cx-TIMING CAPACITANCE-pF a Fig. b 7-16 68103 9602 • L02 TYPICAL CHARACTERISTICS 9602 tw VI Vee 96L02 tw VI Vee 1.10 "... .,"' 1.05 ...::> ...::> 1.00 j!; Q i . . ..J r- ::> 0 L" « a:: 0 z V 1.1 r- ~ 1.0 ... Q ~ T~ = 251,C Rx Cx ~ ~ I--- 0.9 :I a:: o z I 0.90 4.0 4.5 5.0 5.5 8.0 O. 8 4.0 4.5 9602 TA tw(min) VI 96L02 . 140 c Q i .,"' ::> .... .... ..J 0 z i "... Q i I E J 125 .... .... - ::> / ./ COMPLEMENTAY OUTPUT -r I"'--- TRUj OUlpUT -25 -- V 0 z :iii f-'""" ..... .... ..J 75 E 50 -75 125 -25 ::> ::> ::> 0 1.0 "' I'.... ... N ::i « :I a:: veJ = 5.01V Rx = 39 k!! Cx = 1000 pF j!; Q i ... !l .... 1.01 " -- - ~ ...::> o ""- 1.00 ~ ............. Q I!;I - " ..,- ~ :I 0.99 .95 a:: o z I 0 z I .J 125 96L02 tw VI T A ::> Q 75 1.02 ve~ = 5.0 V ....... 25 TA - AMBIENT TEMPERATURE - 'C Rx = 10k!! Cx = 103 pF 1.05 "- J 1 b i -!!!.U.!.2!!te.!!r. I 9602 tw VI TA 1.1 % ~ Vee = 5.0 V -Rx =20kll Cx =0 ::> 75 25 ::> 100 TA - AMBIENT TEMPERATURE - ' C .,"' TA COMPLEMENTAR#- II) 70 80 -75 tw(min) VS 150 "'..J 90 80 8.0 I Vee ~ 5.0 V 120 ;-- Rx ~ 5 kll Cx =0 CL = 15 pF 110 ::> 100 ::> 5.5 c I 130 "... 5.0 Vee - SUPPLY VOLTAGE - V vee-SUPPLY VOLTAGE-V . I 39 kll 1000 pF --- ~ ~ N I .J ..J o V" V I- .,... ::> ...::> . . /' /' "'N :I 0.95 i ./ Q ::i 1.2 Q TAl ~ 25}C Rx ~ 10 kll Cx ~ 103 pF .90 -75 .J -25 0 25 75 125 0.98 ·75 -50 -25 25 50 75 100 TA-AMBIENTTEMPERATURE-'C TA-AMBIENT TEMPERATURE-'-'C 7-17 125 9602 • L02 DC AND AC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 96XX PARAMETER SYMBOL Min VOH VOL UNITS 12.4 Output HIGH Voltage V XM 0.4 V XC 0.45 V - Output LOW Voltage ~ XC CONDITIONS Max Vee = 4.5 VIOL = 9.92 mA Vee = 5.5 V, 10L = 12.8 mA Vee =4.75 V, 10L -11.3mA Vee = 5.25 V, 10L = 12.8 mA V Guaranteed Input HIGH Threshold 0.85 V Guaranteed Input LOW Threshold -1.6 mA Vee = Max, VIN = VOL -1.24 -1.14 mA Vee = Min, VIN = VOL 60 IlA Vee = Max, VIN = 4.5 V ~ XC -25 -35 mA Vee = Max, VOUT = 1.0 V Power Supply Current ~ XC 45 52 mA Vee = 5.0 V tPLH £,ropagation Delay 10 to Q ~ XC 35 40 ns Rx = 5 k!I, Cx = 0 CL = 15 pF, Fig. c tPHL Propagation Delay To to Q ~ xc 43 48 ns Rx = 5 k.o., Cx = 0 CL = 15 pF, Fig. c ~ tw (min) Minimum Output Pulse Width 90 100 100 110 ns Rx = 5 k.o., Cx = 0 CL = 15 pF, Fig. c 3.76 IlS Rx = 10 k.o. Cx = 1000 pF, Fig. c 50 pF 25 50 k.o. VIH Input HIGH Voltage VIL Input LOW Voltage hL Input LOW Current hL Input LOW Current hH Input HIGH Current los Output Short Circuit Current lee 2.0 1.9 Vee = Min, 10H = -9.6 mA ~ XC at Q at XC Q~ XC 3.08 tw Output Pulse Width CSTRAY Maximum Stray Capacitance from Pin 2 (14) to Gnd Rx Timing Resistor Range ~ XC 5.0 5.0 7-18 9602 • L02 DC AND AC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) 96L PARAMETER SYMBOL Min VOH Output HIGH Voltage VOL Output LOW Voltage VIH Input HIGH Voltage VIL Input LOW Voltage hH Input HIGH Current UNITS 2.4 V Vee = Min, 10H = -0.36 mA V Vee = Min, 10L = 4.8 mA V Guaranteed Input HIGH Threshold 0.7 V Guaranteed Input LOW Threshold 20 1.0 mA VIN = 2.4 V VIN = 5.5 V -0.4 mA Vee = Max, VIN = 0.3 V -13 mA Vee = Max, VOUT = 1.0 V 16 mA Vee = Max ns Vee = 5.0 V, Rx = 20 kO Cx = 0, CL = 15 pF TA=2SoC ns Vee = 5.0 V, Rx = 20 kO Cx = 0, CL = 15 pF TA = 25°C ns Vee = 5.0 V, Rx = 20 kO Cx = 0, CL = 15 pF TA = 25°C 15.2 J1.S Vee = 5.0 V, Rx = 39 kO Cx = 1000 pF, TA = 25°C Rx = 39 kO, Cx = 1000 pF 0.3 2.0 J1.A hL Input LOW Current los Output Short Circuit Current Icc Power Supply Current tPLH Propagation Delay To to XM xc 75 80 tPHL To Propagation Delay to Q XM XC 62 65 tw (min) Minimum Output Pulse Width at tw Output Pulse Width At Change in Pulse Width Over Temperature XC 1.6 % Rx Timing Resistor Range XM XC 100 220 kO a -2.0 110' a a CONDITIONS Max 12.4 'Typical Value r,100n'j INPUT PULSE 1.SV v" Va t~I I Vo f '" 25 kHz Amp'" 3.0 V Width", 100 ns tr '" tf ::; 10 ns ~ "-~ I. { F ~,-~ Fig. c 7-19 Vee = Max 96802 • 96L802 CONNECTION DIAGRAM PINOUT A 96802 96L802 eXl DUAL RETRIGGERABLE RESETTABLE MONOSTABLE MULTIVIBRATOR DESCRIPTION - The 96S02 and 96LS02 are dual retriggerable and resettable monostable multivibrators. These one-shots provide exceptionally wide delay range, pulse width stability, predictable accuracy and immunity to noise. The pulse width is set by an external resistor and capacitor. Resistor values up to 1.0 MO for the 96LS02 and 2.0 MO for the 96S02 reduce required capacitor values. Hysteresis is provided on both trigger inputs of the 96LS02 and on the positive trigger input of the 96S02 for increased noise immunity. IT ~ j!Jvcc Rx,!! mCX2 CD,I:[ :mRX2 h[i :meD2 10 IT :mh o,lI th II ~IO ~O2 GNOI! ~Q2 • REQUIRED TIMING CAPACITANCE REDUCED BY FACTORS OF 10 TO 100 OVER CONVENTIONAL DESIGNS • BROAD TIMING RESISTOR RANGE-1.0 kO to 2.0 MO • OUTPUT PULSE WIDTH IS VARIABLE OVER A 2000:1 RANGE BY RESISTOR CONTROL • PROPAGATION DELAY OF 35 ns 96LS02, 12 ns 96S02 • 0.3 V HYSTERESIS ON TRIGGER INPUTS • OUTPUT PULSE WIDTH INDEPENDENT OF DUTY CYCLE • 35 ns TO co OUTPUT PULSE WIDTH RANGE LOGIC SYMBOL Cx (15) l r Rx T2 (14) 0-6(10) ORDERING CODE: See Section 9 PIN PKGS OUT (12)~=D COMMERCIAL GRADE MILITARY GRADE Vee"" +5.0 V ±5%, TA"" O°C to +70°C Vee"" +5.0 V ±10%, TA "" -55°C to +125°C PKG (11) 5 TYPE Plastic DIP (P) A 96S02PC, 96LS02PC Ceramic DIP (D) A 96S02DC, 96LS02DC 96S02DM, 96LS02DM 68 Flatpak (F) A 96S02FC, 96LS02FC 96S02FM, 96LS02FM 4L 98 T o C>---7 (9) CD (lX3 Vee = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES 96S (U.L.) HIGH/LOW DESCRIPTION Q Trigger Input (Active Falling Edge) Schmitt Trigger Input (Active Falling Edge) Schmitt Trigger Input (Active Rising Edge) Direct Clear Input .(Active LOW) True Pulse Output Q Complementary Pulse Output 10 10 h CD Vee 16 0.5/0.625 0.5/0.625 0.5/0.625 25/12.5 25/12.5 7-20 96LS (U.L.) HIGH/LOW 0.5/0.25 0.5/0.25 0.5/0.25 10/5.0 (2.5) 10/5.0 (2.5) 96S02 • 96LS02 LOGIC DIAGRAM r- !a?..6 (10) POSITIVE TRIGGER FUNCTIONAL DESCRIPTION - The 96802 and 96L802 dual retriggerable resettable monostable multivibrators have two dc coupled trigger inputs perfunction, one active LOW (To) and one active HIGH (Ill. The 11 input of both circuit types and the To input of the 96L802 utilize an internal 8chmitt trigger with hysteresis of 0.3 V to provide increased noise immunity. The use of active HIGH and LOW inputs allows either rising or falling edge triggering and optional non-retriggerable operation. The inputs are dc coupled making triggering independent of input transition times. When input conditions for triggering are met the Q output goes HIGH and the external capacitor is rapidly discharged and then allowed to recharge. An input trigger which occurs during the timing cycle will retrigger the circuit and result in Q remaining HIGH. The output pulse may be terminated (Q to the LOW state) at any time by setting the Direct Clear input LOW. Retriggering may be inhibited by tying the'a output to To or the Q output to 11. Differential sensing techniques are used to obtain excellent stability over temperature and power supply variations and a feedback Darlington capacitor discharge circuit mini mizes pulse width variation from unit to unit. 8chottky TTL output stages provide high switching speeds and output compatibility with all TTL logic families. Operation Notes TIMING 1. An external resistor (Ax) and an external capacitor (Cx) are required as shown in the Logic Diagram. The value of Rx may vary from 1.0 kn to 1.0 Mn (96L802) or 2.0 Mn (96802). 2. The value of Cx may vary from 0 to any necessary value available. If, however, the capacitor has significant leakage relative to Vee/Rx the timing equations may not represent the pulse width obtained. 3. Polarized capacitors may be used directly. The (+) terminal of a polarized capacitor is connected to pin 1 (15), the (-) terminal to pin 2 (14) and Rx. Pin 1 (15) will remain positive with respect to pin 2 (14) during the timing cycle. In the 96802, however, during quiescent (non-triggered) conditions, pin 1 (15) may go negative with respect to pin 2 (14) depending on values of Rx and Vee. For values of Rx 210 kn the maximum amount of capacitor reverse polarity, pin 1 (15) negative with respect to pin 2 (14) is 500 mV. Most tantalum electrolytic capacitors are rated for safe reverse bias operation up to 5% of their working forward voltage rating; therefore, capacitors having a rating of 10 WVdc or higher should be used with the 96802 when Rx 210 kn. 4. The output pulse width tw for Rx 2 10 kn and Cx 2 1000 pF is determined as follows: (96802) tw = 0.55 RxCx (96L802) tw = 0.43 RxCx Where Rx is in kO, Cx is in pF, t is in ns or Rx is in kO, Cx is in IlF, t is in ms. 5. The output pulse width for Rx < 10 kO or Cx < 1000 pF should be determined from pulse width versus Cx or Rx graphs. 6. To obtain variable pulse width by remote trimming, the following circuit is recommended: 1.0 kll PIN2(14)~ PIN 1 (15) o-J ___ -----b ' - - AS CLOSE AS POSSIBLE Rx -1.5 kll TO DEVICE Vee 0 - - - - - 7-21 - - - - - 96802 • 96L802 Operation Notes (Cont'd) 7. Under any operating condition, Cx and Rx (Min) must be kept as close to the circuit as possible to minimize stray capacitance and reduce noise pickup. 8. Vee and ground wiring should conform to good high frequency standards so that switching transients on Vee and ground leads do not cause interaction between one shots. Use of a 0.01 f.LF to 0.1 f.LF bypasscapacitor between Vee and ground located near the circuit is recommended. TRIGGERING 1. The minimum negative pulse width into To is 8.0 ns; the minimum positive pulse width into 11 is 12 ns. 2. Input signals to the 96502 exhibiting slow or noisy transitions should use the positive trigger input 11 which contains a Schmitt trigger. Input signals to the 96LS02 exhibiting slow or noisy transitions can use either trigger as both are Schmitt triggers. 3. When non-retriggerable operation is required, i.e., when input triggers are to be ignored during quasi-stable state, input latching is used to inhibit retriggering. Q ......- .....-OUTPUT Lr---V" r"l.. INPUT INPUT-~ Q Q ......---OUTPUT - ~ QP-- 0-- Co r"l.. CD r r NEGATIVE EDGE TRIGGER POSITIVE EDGE TRIGGER 4. An overriding active LOW level direct clear is provided on each multivibrator. By applying a LOW to the clear, any timing cycle can be terminated or any new cycle inhibited until the LOW reset input is removed. Trigger inputs will not produce spikes in the output when the reset is held LOW. A LOW-to-HIGH transition on Co will not trigger the 96502 or 96LS02. If the Co input goes HIGH coincident with a trIgger transition, the circuit will respond to the trigger. TRIGGERING TRUTH TABLE PIN NO'S. 5(11) 4(12) 3(13) H-L L H L....H H H X L X OPERATION Trigger Trigger Reset H = HIGH Voltage Level'" VIH L = LOW Voltage Level :5 VIL X = Immaterial (either H or L) H~L = HIGH to LOW Voltage Level transition L~H = LOW to HIGH Voltage Level transition 7-22 96502 • 96L502 TYPICAL CHARACTERISTICS 96S02 h DELAY TIME vs TA OUTPUT tw vs Rx and ex 17 . c .,I I:::l I-- ~ee_~ 5.0 V C,-15 P 15 0 0 I.:;;; > c( j -~ COMPLEMENT OUTPUT ( 0 ) - tPHL a.. I:::l J .1 16 14 - 13 ..J w e 12 I 0 ~ 1.~ .'::-0-!!--'--!'-'-!'S~.~1:-0-!:,--'--!-,.LS~.l~O""--:!-,...J....'!-'-!SUJ.LJ,!103 11 1ooL----'---2~5----'---5.L0----..L..--~75 Iw - OUTPUT PULSE WIDTH -~. TA -AMBIENT TEMPERATURE _oC To DELAY TIME vs TA OUTPUT tw vs T A 15r---~----~--~----~---'----, 14 Vee CL ~ 5.0 V_-+_ _+-_~ 15 pF ~ 42,..---,----r---,----,---,----, __-I 8.0 0~---'-----'2~5'----'----5~0,---..L..---7-!5 28~0----~--~2~5-----'---~5~0,----'---~75TA-AMBIENT TEMPERATURE-oC TA - AMBIENT TEMPERATURE _ °C NORMALIZED Mw vs TA ~ +1.0,..--..----y--;---,--,--, z o +0.8~-+--t---+~ ii +0.6 f---"'-.I---t---+- ~ I l: l- e +0.4 ~-+-"""k:::- iw l- e ~ :::l a.. i .,w a.. -0.2 N :; c( ::E II: 0 z -0.4 4 -0.6 E ~I= -0.8 a.. 2 ~ I -1.0 ~ •, ,3 o~ 10, .,> • SF :::l 0 +25 +50 0 1 1.0 +75 .k.lI· 103 I- ..J ew PULSE WIDTH vs RxCx , ,S ,3 10 c( ; V IPLH TRUE OUTPUT (0) .. 2 3 4 "'" 6 810 2 3 4 6 8102 2 TIMING CAPACITOR Cx - pF TA - AMBIENT TEMPERATURE _ °C 7-23 3 4 6 8103 • 96802 • 96L802 TYPICAL CHARACTERISTICS 96LS02 h DELAY TIME OUTPUT tw VI Rx and Cx 103 8 6 4 ~ I 2 !c L~ i= ........ ..... r-- 28 -55 -35 -15 :! 100 pF- III IPHL - COMPLEMENT OUTPUT (0) z o ~ ~~c~~1~.~~ - ...~ 30 ! 85 105 125 145 OUTPUT tw VI T A ~ 36 III Q 65 I ,.s1 S r-.... ......... 45 c I-- I-- IPLH - TRUE OUTPUT (0) 25 10 0 % 1/ L,....-~ +5 (~) F-- TA-AMBIENT TEMPERATURE-·C Iw-OUTPUT PULSE WIDTH (pi) 8 i,....- " ~ S. 2 i'.. 15 pF ~ 44 I-- I-- IPLH - TRUE OUTPUT (0) f-- f-- 5 I\, ...~
10 kO Vee = 4.75 V Rx > 1.0 ~O to 5.25 V 2.0 0.5 0.5 -0.85 -0.5 -0.4 3.0 3.0 3.0 CONDITIONS V 2.0 XM UNITS Max 0 0 0 20 20 IJ.A 0.1 0.1 rnA -1.0 -0.4 rnA -40 -100 -20 -100 rnA 75 36 rnA = Min, VIN = VIH or VIL = 2.7 V = = 5.5 V ('S02) Vee Max = 10 V (,LS02) VIN = 0.4 V, Vee = Max Vee = Max, VOUT = 0 V VIN = Open, Vee = Max VIN VIN VIN r,'~.=j INPUT PULSE ~., -''"~ l I f'" 100 kHz Amp "'3.0 V Width'" 100 ns tr = tf:5 5 ns ~ ~~---1 ~\ .~~ Fig. a 7-25 F I 96S02 • 96LS02 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 96S PARAMETER SYMBOL Min Propagation Delay tPLH To to Q tPHL To to Q 96LS CL = 15 pF CL = 15 pF Propagation Delay Max Min UNITS CONDITIONS Max 15 55 ns 19 50 ns tPLH Propagation Delay 11 to Q 19 60 ns tPHL Propagation Delay 11 to Q 20 55 ns tPHL Propagation Delay Co to Q 20 30 ns tPLH Propagation Delay CD to Q 14 35 ns tw (U To Pulse Width LOW 8.0 15 tw (H) 11 Pulse Width HIGH 12 30 ns tw (U CD Pulse Width LOW 7.0 22 ns tw (H) Minimum Q Pulse Width HIGH 30 45 25 55 ns Rx = 1.0 k!1, Cx = 10 pF including jig and stray tw Q Pulse Width 5.2 5.8 4.1 4.5 }ls Rx = 10 k!1, Cx = 1000 pF Rx Timing Resistor Range" 1.0 2000 1.0 1000 k!1 TA = -55°C to +125°C, Vee = 4.5 V to 5.5 V t Change in Q Pulse Width over Temperature 1.0 3.0 1.0 % Rx = 10 k!1, Cx = 1000 pF 1.0 0.8 % TA = 25°C, Vee = 4.75 V to 5.25 V, Rx = 10 k!1, Cx = 1000 pF TA = 25°C, Vee = 4.5 V to 5.5 V, Rx = 10 k!1, Cx = 1000 pF t ~ XC ns Change in Q Pulse Width over Vee Range 1.5 •Applies only over commercial Vee and TA range for 96S02. 7-26 Fig. a 96LS32 CONNECTION DIAGRAM PINOUT A 96LS32 ADDRESS MULTIPLEXER/REFRESH COUNTER (For 4K Dynamic RAMs) DESCRIPTION - The 96LS32 is an address multiplexer and refresh counter for multiplexed address dynamic RAMs requiring refresh of up to six input addresses (or 4K bits for 64 x 64 organization). It multiplexes 12 bits of system applied address to six output address pins. The device also contains a 6-bit refresh counter which is externally clocked so that either distributed or burst refresh may be used. The high performance of the 96LS32 makes it especially suitable for use with high speed n-channel RAMs like the M4027. The 96LS32 operates from a single +5.0 V power supply and is specified for operation over a O°C to +75°C ambient temperature range. • • • • • • SIMPLIFIES SYSTEM DESIGN REDUCES PACKAGE COUNT DRIVES HIGH CAPACITANCE LOADS USE FOR DISTRIBUTED OR BURST REFRESH STANDARD 24-PIN DUAL IN-LINE PACKAGE LOW POWER SCHOTTKY DESIGN MINIMIZES" ~... t ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL G = +5.0 V ±5%, TA = O°C to +70°C Vee PKG Vee TA = +5.0 V ±10%, = -55°C to +125°C TYPE Plastic DIP(P) A 96LS32PC Ceramic DIP (D) A 96LS32DC 96LS32DM 6N Flatpak (F) A 96LS32FC 96LS32FM 4M 9N INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES Ao-As As-Al1 CP RE RS ZD 00-05 DESCRIPTION Row Address Inputs Column Address Inputs Clock Pulse Input (Active Falling Edge) Refresh Enable Input (Active HIGH) Row Select Input (Active HIGH) Refresh Counter Zero Detect Output (Active LOW> Address Outputs 7-27 96XX (U.L.) HIGH/LOW 0.5/0.13 0.5/0.13 0.5/0.13 0.5/0.13 0.5/0.13 25/3.1 25/3.1 96LS32 LOGIC DIAGRAM 05 12 TOTAL ,I , , , 6 TOTAL' I , , , , A81t=f====$~====r::) 00 6 TOTAL RS 6 TOTAL RE------------~~ ~64 CP--------------------~ LOGIC SYMBOL 7 23 8 3 4 5 6 18 17 20 19 22 21 RS RE ZD cp 9 11 10 16 Vce = Pin 24 GND = Pin 12 7-28 15 14 13 96LS32 FUNCTIONAL DESCRIPTION - The 96LS32 address multiplexer/refresh counter performs the following functions: 1. Row, Column and Refresh Address multiplexing 2. Address counting for burst or distributed refresh These functions are controlled by two signals, Refresh Enable and Row Select, both of which are active HIGH TTL inputs. the Function Table shows the levels required to multiplex to the output: 1. Refresh address (from internal counter) 2. Row addresses (Ao through A5) 3. Column addresses (As through A11) BURST REFRESH MODE-When refresh is requested the Refresh Enable input is HIGH. This input is ANDed with the six outputs of the internal 6-bit counter. At each CP pulse the counter increments by one, sequencing the outputs (Do - 05) through all 64 row addresses. When the counter sequences to all zeroes, the Zero Detect output goes LOW signaling the end of the refresh sequence. Due to counter decoding spikes, the Zero Detect output is valid only after tcz following the LOW going edge of CPo DISTRIBUTED REFRESH MODE-In the distributed refresh mode, one row is selected for refresh each (trefresh/n) ti me where n = number of rows in the device and refresh is the specified refresh rate for the device. For the M4027, trefresh = 2.0 ms and n = 64, therefore one row is refreshed each 31 /-Is. Following the refresh cycle at row n, the CP input is pulsed, advancing the refresh address by one row so that the next refresh cycle will be performed on row n + 1. The CP input may be pulsed following each refresh cycle or within the refresh cycle after the specified memory device address hold time. ROW AND COLUMN ADDRESS-All twelve system address lines are applied to the inputs of the 96LS32. When Refresh Enable is LOW and Row Select is HI GH, the input addresses Ao - A5 are gated to the outputs and applied to the driven memories. Conversely, when Row Select is LOW (with Refresh Enable still LOW), input addresses As-An are gated to the outputs and applied to the driven memories. When memory devices are driven directly by the 96LS32, the address applied to the memory devices is the inverse of the address at the inputs due to the inverted outputs of the 96LS32. This should be remembered when checking out the memory system. FUNCTION TABLE Refresh Enable Row Select H L L X H L Outputs Refresh Address (from internal counter) Row Address (complement of Ao - A5) Column Address (complement of As-A11) H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 7-29 96LS42 CONNECTION DIAGRAM PINOUT A 96LS42 ADDRESS MULTIPLEXER/REFRESH COUNTER (For 16K Dynamic RAMs) DESCRIPTION - The 96LS42 is an address multiplexer and refresh counter for multiplexed address dynamic RAMs requiring refresh of 64 or 128 cycles. It multiplexes 14 bits of system supplied address to seven output address pins. The device also contains a 7-bit refresh counter which is externally controlled so that either distributed or burst refresh may be used. The high performance of the 96LS42 makes it especially suitable for use with high speed n-channel RAMs like the F16K. The 96LS42 is manufactured using Fairchild's advanced low power Schottky process. • • • • • • SIMPLIFIES SYSTEM DESIGN REDUCES PACKAGE COUNT DRIVES HiGH CAPACITIVE LOADS EITHER BURST OR DISTRIBUTED REFRESH LOW POWER SCHOTTKY DESIGN STANDARD 28-PIN PACKAGE ORDERING CODE: See Section 9 PIN PKGS COMMERCIAL G PKG Vee = +5.0 V ±10%, TA = -55°C to +125°C OUT Plastic DIP(P) A 96LS42PC Ceramic DIP (D) A 96LS42DC TYPE 9Y 96LS42DM 8E INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES AIJ-At; A7-A13 CP RE RS Z5 Oo-Oe DESCRIPTION Row Address Inputs Column Address Inputs Clock Pulse Input (Active Falling Edge) Refresh Enable Input Row Select Input Refresh Counter Zero Detect Output (Active LOW> Multiplexer Outputs (Active LOW> 7-30 96XX (U.L.) HIGH/LOW 0.5/0.13 0.5/0.13 0.5/0.13 0.5/0.13 0.5/0.13 25/3.1 25/3.1 96LS42 LOGIC SYMBOL 9 10 5 6 7 8 21 20 23 22 25 24 27 26 3 2 ZD RE 15 CP 11 13 12 18 17 16 19 Vee = Pin 28 GND = Pin 14 LOGIC DIAGRAM A13 A6 06 I I I TO~ALI I Td:AL I I I I I I I I A7 I /4() 00 RS 7 TOTAL ----- 7 TOTAL ZD RE 7-BIT COUNTER CP--------------------~ 7-31 96LS42 FUNCTIONAL DESCRIPTION - The 96LS42 address multiplexer/refresh counter performs the following functions: 1. Row, Column and Refresh Address multiplexing 2. Address counting for burst or distributed refresh These functions are controlled by two signals, Refresh Enable and Row Select, both of which are active HIGH TTL inputs. The Function Table shows the levels required to multiplex to the output: 1. Refresh addresses (from internal counter) 2. Row addresses (Ao through As) 3. Column addresses (A7 through A13) Burst Refresh Mode-When refresh is requested the Refresh Enable input is HIGH. This input is AND-ed with the seven outputs of the internal 7-bit counter. At each CP pulse the counter increments by one, sequencing the outputs ((50- (6) through all 128 row addresses. When the counter sequences to all zeroes, the Zero Detect output goes LOW signaling the end of the refresh sequence. Due to counter decoding spikes, the Zero Detect output is valid only after tcz following the LOW going edge of CPo Distributed Refresh Mode -In the distributed refresh mode, one row is selected for refresh each (trefresh/n) time where n = number of rows in the device and refresh is the specified refresh rate for the device. For the F16 k, Refresh =2.0 ms and n = 128, therefore one row is refreshed each 62 j.lS. Following the refresh cycle at row n, the CP input is pulsed, advancing the refresh address by one row so thatthe next refresh cycle will be performed on row n + 1. The CP input may be pulsed following each refresh cycleor within the refresh cycle after the specified memory device address hold time. Rowand Column Address-All 14 system address lines are applied to the inputs of the 96LS42. When Refresh Enable is LOW and Row Select is HIGH, the input Addresses Ao - As are gated to the outputs and applied tothe driven memories. Conversely, when Row Select is LOW (with Refresh Enable still LOWl.lnputaddresses A7A13 are gated to the outputs and applied to the driven memories. When memory devices are driven directly by the 96LS42, the address applied to the memory devices is the inverse of the address at the inputs due to the inverted outputs of the 96LS42. This should be remembered when checking out the memory system. FUNCTION TABLE Refresh Enable Row Select H L L X H L Outputs Refresh Address (from internal counter) Row Address (complement of Ao - As) Column Address (complement of A7 - A13) H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial 7-32 96101 CONNECTION DIAGRAM PINOUT A 96101 QUAD 2-INPUT POSITIVE NAND BUFFER (With Open-Collector Output) DESCRIPTION - The 96101 is similar to the 5417439, except that the outputs are specified at three levels of IOL; in the HIGH state the IOH current is specified at two levels of VOH. During switching transitions, output current change rate is typically 4.0 mAins. ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +75°C Vee = +5.0 V ±10%, TA = -55°C to +125°C Plastic DIP(P) A 96101PC Ceramic DIP (0) A 96101DC PKG TYPE IT II IT IT IT IT GNOIT :ill Vee ~-g[ ill:ill ~G:[ ~ ~ ~ ~ 9A 96101DM 6A • INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS Inputs Outputs 96XX (U.L.) HIGH/LOW 1.0/1.0 OC"/30 DC AND AC CHARACTERISTICS: See Section 3' SYMBOL 96XX PARAMETER Min UNITS CONDITIONS Max 2.0 VIH Input HIGH Voltage V VIL Input LOW Voltage 0.8 V VOL Output LOW Voltage 0.4 0.5 0.6 V IOL = 48 mA IOL = 60 mA IOL - 80 mA Vee = Min VIN = VIH IOH Output HIGH Current 25 50 p.A VOH = 3.5 V VOH = 5.5 V Vee = Min VIN = VIL hH Input HIGH Current 40 1.0 p.A mA VIN = 2.4 V VIN = 5.5 V Vee = Max IlL Input LOW Current -1.6 mA VIN = 0.4 V, Vee = Max leeH leel Power Supply Current 8.5 54 mA VIN = Gnd VIN = Open tPLH tPHL Propagation Delay Input to Output 22 25 ns CL = 45 pF, RL = 120 Figs. 3-2, 3-4 "DC limits apply over operating temperature range; AC limils apply al TA = +25'C and 7-33 Vee = +5.0 V. "OC-Open Colleclor Vee = Max n 96103 CONNECTION DIAGRAM PINOUT A 96103 QUAD BUS TRANSCEIVER (With Common Enable) DESCRIPTION - Each transceiver contains an open-collector buffer whose output is common to an inverting gate input. When both Enable inputs(i~1 and E2) are LOW, the buffer is enabled, with its output state determined by its Data (0) input. When either Enable input is HIGH, the buffer is disabled (output OFFJ and the bus signal is determined by other circuits connected to the bus. The receiver gate has greater input noise immunity than standard TTL, while its output signal levels are standard TTL. In the power-down condition, the B terminal leakage is limited to 100 MA. orr ~-+Q :lilB :m o BIT 0[1 BI} orr o[! E1LZ. ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%, TA = O°C to +75°C Vee = +5.0 V ±10%, TA = -55°C to +125°C mvcc ~.~ p-Y>- GNOI1 PKG TYPE Plastic DIP(P) A 96103PC Ceramic DIP (0) A 96103DC 96103DM 6B Flatpak (F) A 96103FC 96103FM 4L 9B Vce = Pin 16 GND = Pin 8 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PIN NAMES D E1, B E:1 0 DESCRIPTION Data Input Enable Inputs (Active LOW) Bus Terminal, as Input as Output Receiver Output 96XX (U.L.) HIGH/LOW 1.0/1.0 1.011.0 2.5/0.05 OC'/70mA 50/12.5 ·OC - Open Collector 7-34 EJo TIlB TIl 0 ~o ]]E2 96103 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 96XX PARAMETER Min VOL Output LOW Voltage at B VIL Input LOW Voltage at D or E VIHR Receiver HIGH Threshold Voltage VILR Receiver LOW Threshold Voltage XC r-xM ~ XM ~ XM UNITS CONDITIONS 0.7 V 10L = 70 rnA, VIH = 2.0 V Vee = Min 0.8 0.7 V Max 1.53 1.49 1.7 1.84 ~ XM 1.3 1.21 1.47 1.56 ~ XM V Vee = Min V Vee = Max V Vee = Min V Vee = Max 10H Bus Output HIGH Current 100 p.A Vee = 0 V to Max VOH = 4.0 V, Vo = VIL ilL Input LOW Current at B -85 p.A VOUT = 0 V, Vee = Max Vo = VIL los Output Short Circuit Current at 0 -55 rnA Vee = Max, VOUT = 0 V lee Power Supply Current 90 rnA D input = 4.5 V Vee = Max -18 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 96XX SYMBOL PARAMETER CL = 15 pF Min UNITS CONDITIONS Max tPLH tPHL Propagation Delay E1 or E'2 to B 30 23 ns tPLH tPHL Propagation Delay D to B 25 15 ns tPLH tPHL Propagation Delay B to 0 10 10 30 30 ns RL = 390 n to Vee 1.6 kn to Gnd, Fig. 3-4 tPLH tPHL Propagation Delay B to 0 10 10 35 35 ns RL= 390 n to Vee 1.6 kn to Gnd CL = 50 pF, Fig. 3-4 7-35 RL = 91 n to Vee, 200 n to Gnd Figs. 3-4, 3-5 96106 CONNECTION DIAGRAM PINOUT A 96106 QUAD 2-INPUT NOR RECEIVER DESCRIPTION - The 96106 inputs are designed to provide higher noise immunity than standard TTL inputs and also present less loading to the signal source. Also, in the power down condition, input leakage is 80 JJ.A or less, making the 96106 well suited for data bus applications. Output signal levels are standard TTL. ORDERING CODE: See Section 9 PIN PKGS OUT COMMERCIAL GRADE MILITARY GRADE Vee = +5.0 V ±5%; TA = DOC to +75°C Vee = +5.0 V ±10%, TA = -55°C to +125°C PKG TYPE Plastic DIP(P) A 96106PC Ceramic DIP (0) A 96106DC 96106DM 6A A 96106FC 96106FM 31 9A GNOIT ,..--- EJco Boll TIl Do AoIT A,[I A2[I B,[I Bdz Flatpak (F) Inputs Outputs t1:9 321 C2 lI c, ~vcc Vee = Pin 8 GND = Pin 1 INPUT LOADING/FAN-OUT: See Section 3 for U.L. definitions PINS ~~ m02 :m o, 96XX (U.L.) HIGH/LOW 2.0/0.006 50/12.5 DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) SYMBOL 96XX PARAMETER Min VIH Input HIGH Voltage ~ XM XC xM Vil Input LOW Voltage 1.53 1.49 1.70 1.84 Input HIGH Current III Input LOW Current los leeH leel Output Short Circuit Current CONDITIONS V Vee = Min V Vee = Max V Vee = Min V Vee = Max 80 JJ.A Vee -10 JJ.A -55 rnA 40 20 rnA 1.30 1.21 1.47 1.56 ~ XM --$XM hH UNITS Max -18 Power Supply Current 7-36 = 0 V to Max, VIN = 4.0 V Vee = Max, VIN = 0 V Vee = Max, VOUT = 0 V VIN = 4.5 V Vee = Max· VIN = 0 V 96106 AC CHARACTERISTICS: Vee = +5.0 V, TA = +25°C (See Section 3 for waveforms and load configurations) 96XX SYMBOL PARAMETER CL = 15 pF Min Max UNITS CONDITIONS tPLH tPHL Propagation Delay 10 10 30 30 ns RL = 390 0 to Vee, 1.6 kO to Gnd, Fig. 3-4 tpLH tPHL Propagation Delay 10 10 35 35 ns RL = 390 0 to Vee 1.6 kO to Gnd CL = 50 pF, Fig. 3-4 7-37 I , . Section 8 OTHER DIGITAL PRODUCTS RTL MICROLOGIC AND CTL COUNTING MICROLOGIC ELEMENTS DEVICE NO. DESCRIPTION LOGIC/ CONN. DIAGRAM PKG TYPE DEVICE NO. DESCRIPTION LOGIC/ CONN. DIAGRAM PKG TYPE 900 8uffer F8 3F,S8 913 o Flip-Flip FS 3F,S8 901 Counter Adapter F18 3F,S8 914 DuaI2-NOR F13 3F, S8 902 Flip-Flop F19 3F,S8 915 DuaI3-NOR F14 3F,SF 903 3-lnput NOR F9 3F,S8 921 Dual 2-Expander F7 3F, S8 904 Half Adder F10 3F,S8 923 JK Flip-Flop F1S S8 905 Half Shift F11 3F,S8 926 JK Flip-Flop F1S 3F,SF 906 Half Shift F20 3F,S8 927 Quad Inverter F17 3F,SF 907 4-lnput NOR F12 3F,S8 958 Decade Counter F21 S8, SA 908 Adder F1 3F,S8 959 4-8it Latch F22 S8 909 8uffer F2 3F,S8 960 8CD Decoder/Dvr F23 S8 910 DuaI2-NOR F3 3F,S8 974 JK Flip-Flop F1S S8 911 4-lnput NOR F4 3F,S8 989 8inary Counter F21 S8,SA 912 Half Adder FS 3F,S8 DTL MICROLOGIC 930 LOGIC/CONN. DIAGRAM DESCRIPTION DEVICE NO. Dual 4-lnput Extendable NAND Gate G1 PKG TYPE 31, SF, 6A, 9A 932 Dual 4-lnput Extendable NAND 8uffer Gate G1 31, SF; SA, 9A 933 Extender G9 SF,9A 935 Extendable Hex Inverter G12 31, SA, 9A 936 Hex Inverter G12 31, SA, 9A 937 Hex Inverter G12 31, SA, 9A 941 Monostable Multivibrator G17 31, SA 944 Dual 4-lnput Extendable NAND 8uffer Gate (Open-Collector) G1 31, SF, SA, 9A 945 RS Flip-Flop G18 31, SF, SA, 9A 946 Quad 2-lnput NAND Gate G10 31, SF, SA, 9A 948 RS Flip-Flop G18 31, SF, SA, 9A 8-3 OTHER DIGITAL PRODUCTS DTL MICROLOGIC (Cont'd) LOGIC/CONN. DIAGRAM DESCRIPTION DEVICE NO. PKG TYPE 949 Quad 2-lnput NAND Gate G10 31, 5F, 6A, 9A 950 A-C Coupled RS Flip-Flop G19 31, 5F, 6A, 9A 951 Monostable Multivibrator G17 31, 5F, 6A, 9A 961 Dual 4-lnput Extendable NAND Gate G1 31, 5F, 6A, 9A 962 Triple 3-lnput NAND Gate G11 31, 5F, 6A, 9A 963 Triple 3-lnput NAND Gate G11 31, 5F, 6A, 9A 1800 Dual 5-lnput NAND Gate G1 9A 1801 Dual 5-lnput NAND Gate G1 9A 1802 Single 8-lnput NAND Gate G2 9A 1803 Single 8-lnput NAND Gate G2 9A 1804 Single 10-lnput NAND Gate G3 9A 1805 Single 10-lnput NAND Gate G3 9A 1806 Quad 2-lnput AND Gate G4 9A 1807 Quad 2-lnput AND Gate G4 9A 1808 Quad 2-lnput OR Gate G5 9A 1809 Quad G5 9A 1810 Quad 2-lnput NOR Gate G6 9A 1811 Quad 2-lnput NOR Gate G6 9A 1812 Quad 2-lnput Exclusive-OR Gate G7 9A 1813 Quad Latch G13 9B 1814 Quad Latch G14 9A 9093 Dual JK Flip-Flop G15 31, 6A, 9A 9094 Dual JK Flip-Flop G15 31, 6A, 9A 9097 Dual J K Flip-Flop G16 31, 6A, 9A 9099 Dual JK Flip-Flop G16 31, 6A, 9A 9109 High Voltage Hex Inverter G12 6A 9110 High Voltage Hex Inverter G12 6A 9111 RS Flip-Flop G20 31,6A 9112 High Voltage Hex Inverter G12 6A 9135 Hex I nverter (Open-Collector) G12 31, 6A, 9A 9157 Quad 2-lnput Buffered NAND Gate G8 31, 6A, 9A 9158 Quad 2-lnput Power NAND Gate G8 6A,9A 2~lnput OR Gate 8-4 OTHER DIGITAL PRODUCTS F2 909 F1 908 F4 911 F5 912 ,,~, 'e· '@' 'e· :~. F6 913 F7 921 F8 900 F9 903 F10 904 ,~, ,~, ~ ,;C\. ,~. 4 GND ~ 4 GND 4 GND 3~S F12 907 F13 914 4 GND "~' g 4 GND 4 GND 10 Vee 10 Vee 4 GND F18 901 8 2 8 7 3 7 4 4 GND ~ 4 GND F14 915 4 4 GND F17 927 6 SGND ~ F15 923,974 ,6, ,~. :~: ~ ~ @. ~ 4 4 GND 4 GND 10 Vee F16 926 2 4 GND ~ F11 905 3 F3 910 ,@. 8 Vee 3 4 GND F20 906 F19 902 6 SGND F21 958,989 F22 959 Za Z4 +Vee Z, RESET Z, COUNT GND 8-5 S 6 S GND F23 960 OTHER DIGITAL PRODUCTS G1 930, 932 944, 961 1800, 1801 G2 1802, 1803 G3 1804, 1805 G4 1806, 1807 Vee = Pin 14 GND = Pin 7 Vee = Pin 14 GND = Pin 7 Vee = Pin 14 GND = Pin 7 Vee = Pin 14 GND = Pin 7 G5 1808, 1809 G6 1810,1811 G7 1812 G8 9157,9158 Vee = Pin 14 GND = Pin 7 Vee = Pin 14 GND = Pin 7 Vee = Pin 14 GND = Pin 7 G9 933 G10 946,949 No connection required to Vee (Pin 14). Vee = Pin 14 GND = Pin 7 Vee = Pin 14 GND = Pin 7 8-6 Vee = Pin 14 GND = Pin 7 OTHER DIGITAL PRODUCTS G11 962, 963 G12 9109,9110,9112 9135, 935, 936 937 Vee = Pin 14 GND = Pin 7 Vee = Pin 14 GND = Pin 7 Vee = Pin 16 GND = Pin 8 G15 9093,9094 G16 9097, 9099 G17 941,951 Vee = Pin 14 GND = Pin 7 Vee = Pin 14 GND = Pin 7 Vee = Pin 14 GND = Pin 7 G19 950 G20 9111 "These inputs are capacitively coupled. Vcc = Pin 14 GND = Pin 7 Vee = Pin 14 GND=Pin7 G13 1813 8-7 G14 1814 Vee = Pin 14 GND = Pin 7 G18 945,948 Vce = Pin 14 GND = Pin 7 Section 9 ORDERING INFORMATION AND PACKAGE OUTLINES Specific ordering codes, as well as the temperature ranges and package types available, are listed on the first page of each data sheet in Section 4 through Seetion 7. The product indices and selection guides given in Section 1 list only the "basic" device numbers. This basic number is used toform part of asimplified purchasing code where the package style and temperature range are defined as follows: xxxx D C I 1-.-_ _ _ _ _ Temperature Range Code L-________ Package Code Device ' - - - - - - - - - - - - Number (basic) TEMPERATURE RANGE - Two basic temperature grades are in common use: C = Commercial 0° C to +70° C/7So C • M = Military -55°C to +12S oC PACKAGE CODE - One letter represents the basic package style. Different package outlines exist withi n each package style to accommodate varying die sizes and number of pins, as indicated below: D - Ceramic/Hermetic Dual In-Ii ne 4E,6A,68,6N,78,8E F - Flatpak 3F, 31, 4F, 4L, 4M H-Metal Can S8,SF P- Plastic Dual In-line 9A, 98, 9N, 9Y, 9Z PACKAGE OUTLINES - The package outlines indicated by the codes above are shown in the detailed outline drawings in this section. 9-3 FAIRCHILD PACKAGE OUTLINES JEDEC TO-91 OUTLINE 3F .370 19.391 .250 16.351 ·t I I -1"'---'" *- .0061.152) .0041.0921 foool.------>.-+I~ :~~~ :~:~~: I L.035 1.8891 TYP. I I f I .26016.60) NOTES: Leads are tin plated 42 alloy Hermetically sealed alumina package Cavity size is .130 (3.30) diameter Package weight is 0.26 grams r--- .240 (6.10)----' .08510.2161 .07510.1911 JEDEC TO-86 OUTLINE • 1.-' 1 14 j - ~ r- .019 (0483) .015 (0.3811 TYP. 7 . 010 (1270) TYP. 8 , h~ .370 (9398) .250 (6350) .006 (0.152) .004 (0.102) I r .260 (6. 6041 .240 (6 .096) J I I .370 (9.398) .250 (6350) 31 NOTES: Leads are tin-plated 42 alloy Hermetically sealed alumina package Lead 1 orientation may be either tab or dot Cavity size is .130 (3.30) Package weight is 0.26 gram ~t~~~:§§~~~:~~~t I .260 (6604) I r--.240 (6096) ----j .025 (0.635) TYP. .065 (1651) .050 (1270) 20-PIN CERDIP r----. 975 124.771--1 4E 11\1\[·960124.381,1\1\(1 1 =1~1 ~:::::::~.r.~~~~~' L .06511.651 II .04511141-- V I- • -I 21915561 :17014:321 :~~~ :g~~: .31017.871_r--------i .29017.371 IIlTII r~~ h ~ Ih~.t,:?,~~",' -An~\ I I .16514.191 I .10012.541--1 MIN. , .11012.791 .03710.941 .04511.141 .090 12.291 :ll27i5:691 .015 10.381 TYP. TYP. ----1 •. 37519.521. NOM . NOTES: Pins are tin-plated kovar or nickel alloy 42 Pins are intended for insertion in hole rows on .300" 17.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .03010.76) inch diameter pins Hermetically sealed alumina packagelblackl Cavity size is .140 x .25013.56 x 6.351 'The .037-.027 di mension does not apply to the corner pins Package weight is 2.4 grams All dimensions in inches (bold) and millimeters (parentheses) 9-4 FAIRCHILD PACKAGE OUTLINES 20-PIN CERPAK j • .050 11.271 ~ 5 .01910.48) .01610.381 TYP. t .04511.14) .02510.641 .30017.621 ~~1·___~.2~50~1~6.3~5~1 ~·[1I ================~~~~~~~::JI~ __ L-.400110.16)~ L.00610.151 .00410.101 .085f2.161 .06011.521 .37519.52) SaUARE 4F NOTES: Leads are tin plated nickel alloy Base is AL203 Cavity size 200 x 200 Package weight ~ 0.8 grams 16-PIN BeO CERPAK 1. 24-PIN CERPAK .050 (1.270) TYP 16 L_ T- j i-l .050 (1.270) TYP. .409 (1 0 ..389) .371 (9.423) .019 .015 (0.483) (0.381) T~ h. 350 I ~O~ :~~~g: .006 (0.152) .004(0102) 8 9 I (8.890) (6. TY 350p) . I ! .283 (7.188) I --.247 (6.274)1 8 9 10 11 12 .019 (.483) .015 (.381) TYP .350 ~~===9,-________~=====~ ~ .L ~2~ TYP. 1 • 2 3 4 5 6 7 .00 7 6 5 (1.905) . 0 (1.524) ~.350 (8.890)~ .250 6.350) 24 23 22 21 20 19 18 17 16 15 14 13 §l = = = = .62 o (15.748) MA X ~.350 (889~(~ .250 6.350 .090 (2.286) .065 (1.651) t I ' .024 (0.610) TYP. .006 (.152) .004 (.102) I .395 (10033) 1--.365 (9.271) I -----I 4L 4M NOTES: Pins are alloy 42 Package weight is 0.4 gram Hermetically sealed beryllia package NOTES: Pins are tin plated nickel alloy Base is AI203 or BeO Cavity size is 200 x 200 Package weight is 0.8 grams All dimensions in inches (bold) and millimeters (parentheses) 9-5 • FAIRCHILD PACKAGE OUTLINES JEDEC TO-l00 OUTLINE JEDEC TO-99 OUTLINE I-- .335D\~509)-! .370 (9.398) I I r 335 (8 509) 305D\~747) -II , .040 (10161 MAX. ,185 (4.699) 165(4.191) _-----r- - - 80~~.~483) ~~ ~ ~~04~~X016) .260 (6.60) .240 (6.10) 1___ _--'Y--",_ _----. -._ t 10 LEADS -'1'----+_ SEATING:-:r~-PLANE I 335 (8.509) '305(7747)~ t .335.(8.. 509) - 040(1016)Q' MAX I t F··4. .370 (9.398) I rn~~~~ru~ .019 (0.482) .016 (0.406) DIA. .500 (12.70) .040 (1.016) MAX. ____ .500 (12.70) MIN. --L .230 (5.842) - t " - - - I T.P. MIN. .016(0.406)-DIA. SEATING PLANE -r-----I-- '. .115 (2.921) T.P. GLASS L..--------i .200 (5.080) T.P. I _____ 1 1_ ~ .100 (2.540) T.P. 36° T.P. INSULATING STANDOFF SHAPE MAY VARY .045(1.143) .029(0.737) .034 (0.864) .028 (0.711) 10 W~ \"" V "-' .034 (0864)~ .028 (0.711) _ 8 INSULATING STANDOFF SHAPE MAY VARY .045(1.143) - .029 (0737) 58 5F NOTES: Leads are gold-plated kovar Seven leads thru leads No.4 connected to case 15 mil kovar header Package weight is 1.22 grams NOTES: Leads are gold-plated kovar Nine leads through, lead 5 connected to case 15 mil kovar header Package weight is 1.32 14-PIN HERMETIC DUAL IN-LINE (JEDEC TO-116 OUTLINE) ill r - - . 7 8 5 (19 9 3 9 ) - - - - 1 6A I A A NOTES: Pins are intended for insertion in hole rows on .300" (7.6201 centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020" 10.508) diameter pin Pi ns are alloy 42 Package weight is 2.0 grams ,-750(1905) I A A I ::EJ : : : : : : : .065 (1 651)J .045 (1 143) t-~"~b~'" L rr~~ t .200 (5.08) b==j::::::;==.=:r=;::::::r==;:::::::;=='=r=l~=.=tl MAX. SEATING ~ L PLANE ---~6~ .10012540) .110 .090 (2.794) (2.286) TYP. I , I I-- ,037 .027 (.940) (686) STANDOFF WIDTH All dimensions in inches (bold) and millimeters (parentheses) 9-6 FAIRCHILD PACKAGE OUTLINES 16-PIN DUAL IN-LINE r - - - - . 7 8 5 (19.939)-------/ 755 ! \ 11. (19.177)!\ !\ I[\, f !"II 8 (6.883) .271 (6.223) .245 .025 (.635) R NOM. ~~9~_r~~T<~rT._.rr 68 NOTES: Pins are tin-plated 42 alloy Pins are intended for insertion in hole rows on .300" (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020 (0.51) inch diameter pin Hermetically sealed alumina package Cavity size is .110 x .140 (2.79 x 3.56) Package weight is 2.0 grams 'The .037-.027 dimension does not apply to the corner pins .110 (2.794) .090 (2.286) TYP 24-PIN DUAL IN-LINE r---- I • 1.290 (32.7661----1 11\1\1\11.235 (31.369) ~I\I\I\ I 1211109 8 7 6"5 4 3 2 1 .03010.7621 R .020 (0.508) .570 (14.478) .515113.081) L~~~ 6N .19014.8261 .140 (3.556) NOTES: Pins are tin-plated 42 alloy Package material is alumina Pins are intended for insertion in hole rows on .600 (15.24) centers They are purposely shipped with "positive" misalignment to facilitate insertion Cavity size is .230 x .230 (5.84 x 5.84) Package weight is 6.5 grams .063 (1.544) i MmW'~"'" 1= ~J II ---t !~~~'~G i i .200 (5080) .100 (2.5401--1 t-.11012.7941 .090 12.286) TYP. II .037 10.9401 .02010.508) .027 1O.686dl--.016 10.4061 STANDOFF WIDTH All dimensions in inches (bold) and millimeters (parentheses) 9-7 FAIRCHILD PACKAGE OUTLINES 16-PIN DUAL IN-LINE r---.785119.939)~ lr-. (\ ('.755 119177)1\ ( \ III : ::~I: ::::::J':~~'"'' 78 J I I .06511.651) --I 1+.04511.143) NOTES: Pins are tin-plated 42 alloy Pins are intended for insertion in hole rows on .300" 17.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020 10.51) inch diameter pin Hermetically sealed alumina package Cavity size is .130 x .230 'The .037-.027 10.94-0.69) dimension does not apply to the corner pins Package weight is 2.2 grams .31017.874) .290 17.366) ,,,,,r.;;~oo,,.,.., MIN. t .17014.318) .. 165 12.959) .100 12.540) I ' I, I i, I , , JL ~ .11 a 12. 794) .09012.286) TYP. ,~SEATING I t PLANE .011 10.279) ,.0 09 10.228) .04511.143) -.01510.381) 10.508) 1--.375 19.525)--1 .03710.939)' .016 10.406) NOM. .027 10.685) STANDOFF WIDTH ~ ~.020 28-PIN DUAL IN-LINE SIDE-BRAZED BE r - - , . 4 7 0 137.34)----1 Ij~l\i\ 1\/\,1.450136.83) 1\ 1\ 1\ 1\ 1\ I T14 1 NOTES: Pins are tin-plated alloy 42 Package material is alumina Pins are intended for insertion in hole rows on .600 115.24) centers They are purposely shipped with "positive" misalignment to facilitate insertion Cavity size is .240 16.095) x .240 16.096) Package weight is 7.5 grams .03010.76) .020 (0.51) RADIUS .570 (14.48) '51513.08)~~~~-n~~rT~~~~~~~~ ~.600 (15.24)--1 .190 (4.83) ·~ ______________________________~.063(1.60) r, NOM II ~r .02510.64) 1:::i-=;::r=;::r=w""l'l....F>=;=;::r=;:r=;:;="\~>?"'I>?-I'i""\t:I~ SEATING .200 (5.08) :100 (2.54) t PLANE I .011 10.28) .00910.23) (9.05) I I~ .750MAX --I ~ .110 (2.79) .090 (2.27) All dimensions in inches Ibold) and millimeters Iparentheses) 9-8 FAIRCHILD PACKAGE OUTLINES 14-PIN ·PLASTIC DUAL IN-LINE (JEDEC TO-116 OUTLINE) 9A .025 (0.641 '02010.51~ ~ 1-- -----~ :~!~ :~~~~:~ 7 10 0 .260 16.601 .240 (6.101 L ~ 30 0 .012 (0.301 .008 (0.201 R·045 (1.141** .. 035 (0.891 .110 (2.801 .09012.291 .05011.271 .04011.021 .085 (2.161 .075 (1.901 h .06511.65) .04511141 .310 (7 871 Package weight ~ .290 17 371 ~ SEATING l t PLANE II .15013811_~ I .10012541 I .110 (2801 -r---l .090 12.29) NOM. ~ ~ I II -----" r - I~ .020 (0 511 ~ .016 (0 411 0.9 grams 010 (o25) .011 (0281 .009 (0 231 ~ .37519521 NOM. STANDOFF .037 (0.941 WIDTH .027 (0.69) TYP. IS .020 (0 511 ~T.:'~''''''"Pf~~~ =-f. MAX. NOTES: Pins are tin plated kovar 'Package material varies depending on the product line Pins are intended for insertion in hole rows on .300" 17.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020 10.508) inch diameter pi n "Notch or ejector hole varies depending on the product line 16-PIN PLASTIC· DUAL IN-LINE .025 10.635) .020 1 0 ' 5 0 8 ) m .770 119.561 ~ . .740 118.801 - - - 1 ..--'l 1 30' .012 10.3051 rr-'- 1 :~r~:I~: ~ ~ ::]:i~:::'~i~Oi;ii!: .06511.6511 I .045 (1.143)-1 I I- I --1 I- 111.02510.635) ~rnnmw~ NOM. ~ .200 15 080) (0381) 015 MAX NOM. ~~:~~g _,_ I I ~III- .150(1810)i i 110 100 12 540)[090 12.794) 12.286) -+- *o;~ --1 r 027 10.940) 10.686) II '300 17 620) .290(7366) -=[ 020(0508) .016 10 406) I r- .375 NOM. (9525) STANOOFF WIDTH 98 NOTES: Pins are tin-plated kovar or alloy 42 nickel Pins are intended for insertion in hole rows on .300" (7.62) centers .020 (0.508) .01010.254) They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .0210 (0.51) centers diameter pin .011 Package weight is 0.9 gram .009 'Package material varies depending on the product line I 10.279) (0.229) '''The .037-.027 (0.94-9.69) dimension does not apply to the corner pins '''Notch or ejector hole varies depending on the product line --I All dimensions in inches Ibold) and millimeters Iparentheses) 9-9 FAIRCHILD PACKAGE OUTLINES 24-PIN PLASTIC DUAL IN-LINE r_____ r- I ( 1-260 (32_004)~ 1.240 (31 A96) .045 (U43) R .035 (889) .560 (14_224) .540(13-716) 1_ -~::rr==rr=n::::rr=n=r~~ .065 (1-651) .045IU43) -l .090 (2_286) .065 (1651) .165 (4_191) 9N 145t""'~ O~:,OO" ~ SEATING !' I +-- : .135 (3A291 I .115(2_921)--1 (27941 I: ! .037(9401 ~.090 -I r-.027 (686) " (2_2861 STANDOFF WIDTH I .110 .J NOTES: Pins are tin-plated kovar Package material is plastic Pins are intended for insertion in hole rows on .600 (15.24) centers They are purposely shipped with "positive" misalignment to facilitate insertion PLANE .Ie. .020(508) .016 (A06) 28-PIN PLASTIC DUAL IN-LINE -I ~1~5~~~~~~~=;;=~~=r~~~~~28~---'l"· L 9Y 14 NOTES: Pins are tin-plated kovar, alloy 42 or copper Package material is plastic Pins are intended for insertion in hole rows on .600 (15.24) centers They are purposely shipped with "positive" misalignment to facilitate insertion Assembled package weight is 4.8 grams .555114_101 .075 11.911 TYP. .011 10_281 ~ .00910_231 r--- .100 I 12541 TYP. .625115_881 NOM. All dimensions in inches (bold) and millimeters (parentheses) 9-10 I --j FAIRCHILD PACKAGE OUTLINES 20-PIN PLASTIC DUAL IN-LINE .310 (787)l .290 (7 37) .185 (470) NOM. .015(038) NOM. r=~.-l r= . ~ I t .125 (3 18) MIN. • -, I .110 (2.79) TYP. .090 (2.29) SEATING PLANE .02510.64) MAX. _ -----.l ffS\~.0~1 -----='r ~ I ....065(165) TYP.... • I 10.281 .009 10.231 .37019.401 NOM . .03210.81) TYP. 9Z NOTES: Pins are tin plated alloy 42 or copper (olin 195) Package material varies depending on the product line Pins are intended for insertion in hole rows on .300" (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board drilling dimensions should equal your practice for .020" (0.51) diameter pin Package weight is a little over 1.0 gram All dimensions in inches (bold) and millimeters (parentheses) 9-11 I FAIRCHILD FIELD SALES OFFICES, REPRESENTATIVES AND DISTRIBUTORS FAIRCHILD SEMICONDUCTOR FRANCHISED DISTRIBUTORS UNITED STATES AND CANADA ALABAMA HALLMARK ELECTRONICS 4739 Commercial Orive Huntsville, Alabama 35805 Tel: 205-837-8700 TWX: 810-726-2187 HAMIL TON/AVNET ELECTRONICS 4692 Commercial Drive Huntsville, Alabama 35805 Tel: 205-837-7210 Telex: None - use HAMAVLECB DAL 73-0511 (Regional Hq. in Dallas, Texas) HAMIL TON/AVNET ELECTRONICS 5921 N. Broadway Denver, Colorado 80216 Tel: 303-534-1212 TWX: 910-931-0510 CONNECTICUT CRAMER ELECTRONICS 35 Dodge Avenue Wharton Brook Industrial Center North Haven, Connecticut 06473 Tel: 203·239-5641 ARIZONA HAMIL TON/AVNET ELECTRONICS 2615 S. 21s1 Street Phoenix, Arizona 85034 Tel: 602-275-7851 TWX: 910-951-1535 HAMIL TON/AVNET ELECTRONICS 643 Danbury Road Georgetown, Connecticut 06829 Tel: 203-762-0361 TWX: None - use 710-897-1405 (Regional Hq. in Mt. Laurel, N.JJ KIERULFF ELECTRONICS 4134 East Wood Street Phoenix, Arizona 85040 Tel: 602-243-4101 HARVEY ELECTRONICS 112 Main Street Norwalk, Connecticut 06851 LIBERTY ELECTRONICS 6155 North 24th Ave. Phoenix, Arizona 85021 Tel: 602-249-2232 TWX: 910-951-4282 Tel: 203-853-1515 SCHWEBER ELECTRONICS Finance Drive Commerce Industrial Park Danbury, Connecticut 06810 Tel: 203-792-3500 HAMILTON/AVNET ELECTRONICS 3901 N. 25th Avenue Schiller Park, Hlinois 60176 Tel: 312-678-6310 TWX; 910-227-0060 KIERULFF ELECTRONICS 85 Gordon Street Elk Grove village, Illinois S0007 Tel: 312-640-0200 TWX: 910-227-3166 SCHWEBEA ELECTRONICS, INC. 1275 Summel Avenue Elk Grove Village, Illinois 60007 Tel: 312-593-2740 TWX: 910-222-3453 SEMICONDUCTOR SPECIALISTS, INC. (mailing address) O'Hare International Airport P.O. Box 66125 Chicago, Illinois 60666 (shipping address) 195 Spangler Avenue Elmhurst Industrial Park Elmhurst, Illinois 60126 Tel: 312·279-1000 TWX: 910-254-0169 INDIANA GRAHAM ELECTRONICS SUPPLY, INC. 133 S. Pennsylvania St. Indianapolis, Indiana 46204 Tel: 317-634-8486 TWX: 810-341-3481 CALIFORNIA AVNET ELECTRONICS 350 McCormick Avenue Costa Mesa, California 92626 Tel: 714-754-6111 (Orange County) 213-558-2345 (Los Angeles) TWX: 910-595·1928 FLORIDA ARROW ELECTRONICS 1001 Northwest 62nd Street Suite 402 Ft. Lauderdale, Florida 33309 Tel: 305-776·7790 BELL INDUSTRIES Electronic Distributor Division 1161 N. Fair Oaks Avenue Sunnyvale, California 94086 Tel: 408-734~8570 TWX: 910-339-9378 ARROW ELECTRONICS 115 Palm Bay Road N.W. Suite 10 Bldg. #200 Palm Bay, Florida 32905 Tel: 305-725-1408 ELMAR ELECTRONICS 2288 Charleston Rd. Mountain View, California 94042 Tel: 415-961-3611 TWX: 910-379-6437 CRAMER ELECTRONICS 345 North Graham Avenue Orlando, Florida 32814 Tel: 305-894·1511 HAMILTON ELECTRO SALES 10912 W. Washington Blvd. Culver City, California 90230 Tel: 213-558-2121 TWX: 910-340-6364 HALLMARK ELECTRONICS 1302 W. McNab Road Ft. Lauderdale, Florida 33309 Tel: 305-971-9280 TWX: 510-956-3092 4613 Fairfield Metairie. Louisiana 70002 Tel: 504-887-7610 Telex: STERLE LEC MRIE 58-328 HAMIL TON/AVNET ELECTRONICS 575 E. Middlefield Road Mountain View, California 94040 Tel: 415-961-7000 TWX: 910-379-6486 HALLMARK ELECTRONICS 7233 Lake Ellenor Drive Orlando, Florida 32809 Tel: 305-855-4020 -r:WX: 810-85G-0183 MARYLAND HAMIL TON/AVNET ELECTRONICS 6917 Complex Drive San Diego, California 92123 Tel: 714-279-2421 Telex: HAMAVELEC SDG 69-5415 INTERMARK ELECTRONICS INC. 4040 Sorrento Valley Blvd. San Diego, California 92121 Tel: 714-279-5200 INTER MARK ELECTRONIC INC. 1802 East Carnegie Avenue Santa Ana, California 92705 Tel: 714-540-1322 UBERTY ELECTRONICS 124 Maryland Street EI Segundo, California 90245 Tel: 213-322-8100 TWX: 910-348-7111 LIBERTY ELECTRONICS/SAN DIEGO 8248 Mercury Court San Diego, California 92111 Tel: 714-565-9171 TWX: 910-335-1590 HAMILTON/AVNET ELECTRONICS 6800 N.W. 20th Avenue FI. Lauderdale, Florida 33309 Tel: 305-971-2900 TWX: 510-954-9808 HAMILTON/AVNET ELECTRONICS 3197 Tech Drive, North SI. Petersburg, Florida 33702 SCHWEBER ELECTRONICS 2830 North 28th Terrace Hollywood, Florida 33020 Tel: 305-927-0511 TWX: 510-954-0304 GEORGIA ARROW ELECTRONICS 3406 Oak Cliff Road Doraville, Georgia 30340 Tel: 404-455-4054 HAMIL TON/AVNET ELECTRONICS 6700 Interstate 85 Access Road, Suite IE Norcross, Georgia 30071 Tel: 404-448-0800 Telex: None-use HAMAVL'ECB DAL 73-0511 (Regional Hq. in Dallas, Texas) COLORADO CENTURY ELECTRONICS 8155 West 48th Avenue Wheat ridge, Colorado 80033 Tel: 303-424-1985 TWX: 910-938-0393 6447 Atlantic Blvd. Norcross, Georgia 30071 Tel: 404·449-9400 CRAMER ELECTRONICS ILLINOIS 5465 East EvallS Place at Hudson Denver, Colorado 80222 Tel: 303-758-2100 ELMAR ELECTRONICS 6777. E. 50th Avenue Commerce City, Colorado 80022 Tel: 303-287-9611 TWX: 910-936-0770 LYKES ELECTRONICS CORP. HALLMARK ELECTRONICS INC. 180 Crossen Avenue Elk Grove Village, Illinois 60007 Tel: :\,2-437-8800 10-3 KANSAS HALLMARK ELECTRONICS, INC. 11870 W. 91 st Street Shawnee Mission, Kansas 66214 Tel: 913-888-4746 HAMIL TON/AVNET ELECTRONICS 9219 Guivira Road Overland Park, Kansas 66215 Tel: 9'3~888-8900 Telex: None-use HAMAVLECB OAL 73-0511 {Regional Hq. in Dallas, Texas) LOUISIANA STERLING ELECTRONICS CORP. HALLMARK ELECTRONICS. INC. 6655 Amberton Drive Baltimore, Maryland 21227 Tel: 301-796-9300 HAMIL TON/AVNET ELECTRONICS (mailing addresS) Friendship International Airport P.O. Box 8647 Baltimore, Maryland 21240 (shipping address) 7235 Standard Drive Hanover. Maryland 21076 Tel: 301-796-5000 TWX: 710-862-1861 Telex: HAMAVLECA HNVE 87-968 • PIONEER WASHINGTON ELECTRONICS. INC. 9100 Gaither Road Gaithersburg. Maryland 20760 Tel: 301-948-0710 TWX: 710-82a..9784 SCHWEBER ELECTRONICS 9218 Gaither Road Gaithersburg, Maryland 20760 Tel: 301-840-5900 TWX: 710-828-0536 MASSACHUSETTS CRAMER ELECTRONICS 85 Wells Avenue Newton Centre. Massachusetts 02159 Tel: 617-964-4000 GERBER ELECTRONICS 852 Providence Highway U.S. Route 1 Dedham. Massachusetts 02026 Tel: 617-329--2400 HAMILTON/AVNET ELECTRONICS 100 E. Commerce Way Woburn. Massachusetts 01801 Tel: 617-933-8000 TWX: 710-332-1201 FAIRCHILD SEMICONDUCTOR FRANCHISED DISTRIBUTORS UNITED STATES AND CANADA HARVEY ELECTRONICS 44 Hartwell Avenue Lexington, Massachusetts 02173 Tel: 617~861-9200 TWX; 710-326-6617 SCHWEBER ELECTqONICS' 213 Third Avenue Waltham, Massachusetts 02154 Tel: 617-890-8484 MICHIGAN HAMIL TON/AVNET ELECTRONICS 32487 Schoolcraft Livonia. Michigan 48150 Tel: 313-522-4700 TWX: 810-242-8775 PIONEER/OETROIT 13485 Stamford Livonia, Michigan 48150 Tel: 313-525-1800 R-M ELECTRONICS 4310 Roger B. Chaffee Wyoming, Michigan 49508 Tel: 616-531-9300 SCHWEBER ELECTRONICS 33540 Schoolcraft Livonia, MichIgan 48150 Tel: 313-525:'8100 SHERIOAN SALES CO. 24543 Indoplex Drive Farmington, MIchigan 48024 Tel: 313-477-3800 MINNESOTA HAMILTON/AVNET ELECTRONICS 7449 Cahill Road Edina, Minnesota 55435 Tel: 612-941-3801 TWX: None - use 910-227-0060 (Regional Hq. in Chicago. 111.1 SCHWEBER ELECTRONICS 7402 Washington A.venue S. Eden Prairie, Minnesota 55344 Tel: 612-941-5280 SEMICONDUCTOR SPECIALISTS. INC. 8030 Cedar Avenue S. Minneapolis, Minnesota 55420 Tel: 612-884-8841 TWX: 910-576-2812 HAMILTON/AVNET ELECTRONICS 2450 Byalor Drive S.E. Albuquerque, New Mexico 87119 Tel: 505-765-1500 TWX: None - use 910-379-6488 (Regional Hq. in Mt. View, Ca. I NEW YORK ARROW ELECTRONICS 900 Broadhollow Road Farmingdale, New York 11735 Tel: 516-694-6800 CRAMER ELECTRONICS 129 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-5682 CRAMER ELECTRONICS 6716 Joy Road e. Syracuse, New York 13057 Tel: 315-437-6671 COMPONENTS PLUS. INC. 40 Osar Avenue Hauppauge, L.I.. New York 11787 Tel: 516-231-9200 TWX: 510-227-9869 PIONEER/DAYTON 1900 Troy Street Dayton, Ohio 45404 Tel: 513-236-9900 TWX: 810-459-1622 SCHWEBER ELECTRONICS 23880 Commerce Park Road Beachwood. Ohio 44122 Tel: 216-464-2970 TWX: 810-427-9441 SHERIDAN/CLEVELAND Unit 28 Versaplex Bldg. 701 Beta Drive Cleveland, Ohio 44143 Tel: 216-461·3300 TWX: 810-427-2957 SHERIDAN SALES CO. (mailing address) P.O. Box 37826 Cincinnati, Ohio 45222 (shipping address) 10 Knollcrest Drive Reading, Ohio 45237 Tel: 513-761-5432 TWX: 810-461-2670 HAMILTON/AVNET ELECTRONICS 6500 Joy Road E. Syracuse, New York 13057 Tel: 315-437-2642 TWX: 710-541-0959 SHERIDAN SALES COMPANY 2501 Neff Road Dayton. Ohio 45414 Tel: 513-223-3332 TWX: 810-459-1732 HAMILTQN/AVNET ELECTRONICS 70 State Street Westbury. LI., New York 11590 Tel: 518-333-5800 TWX: 510-222-8237 ROCHESTER RADIO SUPPLY CO .. INC. 140 W. Main Street (P.O. Box 1971) Rochester. New York 14603 Tel: 716-454-7800 SCHWEBER ELECTRONICS Jericho TurnpIke Westbury, LI .. .New York 11590 Tel: 516-334-7474 TWX: 510-222-3680 JACO ELECTRONICS. INC. 145 Oser Avenue Hauppauge. L.I.. New York 11787 Tel: 516-273-1234 TWX: 510-227-8232 HAMILTON/AVNET ELECTRONICS 396 Brookes Lane Hazelwood, Missouri 63042 Tel: 314-731-1144 TWX: 910-762-0606 SUMMIT DISTRIBUTORS. INC. 916 Main Street Buffalo, New York 14202 Tel: 716-884-3450 TWX: 710-522-1892 NEW JERSEY HAMILTON/AVNET ELECTRONICS 218 Little Falls Road Cedar Grove, New Jersey 07009 Tel: 201-239-0800 TWX: 710-994-5787 NORTH CAROLINA CRAMER ELECTRONICS 938 Burke Street Winston Salem. North Carolina 27102 Tel: 919-725-8711 HAMILTON/AVNET ELECTRONICS 113 Gaither Drive East Gate Industrial Park Mt. Laurel. N.J. 08057 Tel: 609-234-2133 TWX: 710-897-1405 HAMILTON/AVNET 2803 Industrial Drive Raleigh, North Carolina 27609 Tel: 919-829-8030 HALLMARK ELECTRONICS 1208 Front Street. Bldg. K Raleigh. North Carolina 27609 Tel: 919-823-4485 TWX: 510-928-1831 STERLING ELECTRONICS 774 Pfeiffer Blvd. Perth Amboy, N.J. 08861 Tel: 201-442-8000 Telex: 138-679 RESCO Highway 70 West Rural Route 8, P.O. Box 11~B Raleigh. North Carolina 27612 Tel: 919-781-5700 WILSHIRE ELECTRONICS 102 Gaither Drive Mt. Laurel, N.J. 08057 Tel: 215-827~1920 PIONEER/CAROLINA ELECTRONICS 103 Indultrial Drive Greensboro. North Carolina 27406 Tol: 919-273-4441 WILSHIRE ELECTRONICS 1111 Paulison Avenue Clifton, N.J. 07011 Tel: 201-365-!tlOO TWX: 711l-!189-7052 OHIO. , HAMILTONlAVNET ELECTRONICS 761 Beta Drive, Suite E Cleveland. Ohio 44143 Tel: 216-481-1400 TWX: None-use 910-227..()()60 (Regional Hq. In Chicago. IIl.l NEW MEXICO CENTURY ELECTRONICS 11728 Linn Avenue Albuquerque, New Mexico 87123 Tel: 505-292-2700 TWX: 910-989-0625 PIONEER/CLEVELAND 4800 E. 131st Street Cleveland, Ohio 44105 Tel: 216-587-3600 HAMILTON/AVNET ELECTRONICS 167 Clay Road Rochester, New York 14623 Tel: 716-442-7820 TWX: None - use 710-332-1201 (Regional Hq. in Burlington. Ma.) MISSOURI HALLMARK ELECTRONICS. INC. 13789 Rider Trail Earth City. Missouri 63045 Tel: 314-291-5350 SCHWEBER ELECTRONICS 43 Belmont Drive Somerset. N.J. 08873 Tel: 201-469-6008 TWX: 710-480-4733 HAMILTON/AVNET ELECTRONICS 118 West park Road Dayton, Ohio 45459 Tel: 513-433-0610 TWX: 810-450-2531 OKLAHOMA HALLMARK ELECTRONICS 4846 S. 83rd East Avenue Tulsa, Oklahoma 74145 Tel: 918-835-8458 TWX: 910-845-2290 RADIO INC. INOUSTRIAL ELECTRONICS 1000 S. Main Tulsa, Oklahoma 74119 Tel: 918-587-9123 PENNSYLVANIA HALLMARK ELECTRONICS. INC. 458 Pike Road Huntingdon Valley, Pennsylvania 19006 Tel: 215-355-7300 TWX: 510-667-1727 PIONEER/DELEWARE VALLEY ELECTRONICS 141 Gibraltar Road Horsham. Pennsylvania 19044 Tel: 215-674-4000 TWX: 510~665-6778 PIONEER ELECTRONICS. INC. 560 Alpha Drive Pittsburgh. Pennsylvania 15238 Tel: 412-782-2300 TWX: 710-795'3122 SCHWEBER ELECTRONICS 101 Rock Road Horsham, Pennsylvania 19044 Tel: 215-441-0600 SHERIDAN SALES COMPANY 4297 Greensburgh Pike Suite 3114 Pittsburgh, Pennsylvania 15221 Tel: 412-351-4000 . SOUTH CAROLINA DIXIE ELECTRONICS. INC. P.O. Box 408 {Zip Code 292021 1900 Barnwell Street COlumbia, South Carolina 29201 Tel: 803-779-5332 TEXAS ALLlEO ELECTRONICS 401 E. 8th Street Fort Worth. Texas 78102 Tel: 817-336-5401 CRAMER ELECTRONICS 13740 Midway Road, Suite 700 Dallal. Texas 75240 Tel: 214,881-9300 HALLMARK ELECTRONICS CORP. 10109 McKaiia Place Suite F AUltin. Texas 78758 Tel: 512-837-2814 HALLMARK ELECTRONICS 8333 Foreet Lane 10-4 DaDal. Texa 75231 Tel: 214-234-7300 FAIRCHILD SEMICONDUCTOR FRANCHISED DISTRIBUTORS UNITED STATES AND CANADA HALLMARK ELECTRONICS, INC. 8000 Westglen Houston, Texas 77063 Tel: 713-781-6100 CAM GARO SUPPLY LTD. Rookwood Avenue Fredericton, New Brunswick, E3B 4Y9, Canada HAMIL TON/AVNET ELECTRONICS 4445 Sigma Road Dallas, Texas 75240 Tel: 214-661-8661 Telex: HAMAVLECB OAL 73-0511 CAM GARD SUPPLY LTD. 15 Mount Royal Blvd. Moncton, New Brunswick, E1C BNS, Canada Tel: 506-855-2200 HAMIL TON/AVNET ELECTRONICS 3939 Ann Arbor Houston, Texas 77042 Tel: 713-780-1771 Telex: HAMAVLECB HOU 76-2589 SCHWEBER ELECTRONICS, INC. 14177 Proton Road Dallas, Texas 75240 Tel: 214-661-5010 TWX: 910-860-5493 SCHWEBEA ELECTRONICS, INC. 7420 Harwin Drive Houston, Texas 77036 Tel: 713-784-3600 TWX: 910-881-1109 STERLING ELECTRONICS 4201 Southwest Freeway Houston, Texas 77027 Tel: 713-627-9800 TWX: 901-881-5042 Telex: STELECO HOUA 77-5299 UTAH CENTURY ELECTRONICS 2258 S. 2700 West Salt Lake City, Utah 84119 Tel: 801-972-6969 TWX: 910-925-5686 HAMILTON/AVNET ELECTRONICS 1585 W. 2100 South Salt Lake City, Utah 84119 Tel: 801-972-2800 TWX: None - use 910-379-6486 (Regional Hq. in Mt. View. CaJ WASHINGTON HAMIL TON/AVNET ELECTRONICS 13407 Northrup Way Bellevue, Washington 98005 Tel: 206-746-8750 TWX: 910-443-2449 LIBERTY ELECTRONICS 1750 132nd Avenue N.E. Bellevue, Washington 98005 Tel: 206-453-8300 TWX: 910-444-1379 RADAR ELECTRONIC CO., INC. 168 Western Avenue W. Seattle, Washington 98119 Tel: 206-282-2511 TWX: 910-444-2052 WISCONSIN HAMILTON/AVNET ELECTRONICS 2975 Moorland Road New Berlin, Wisconsin 5315. Tel: 414-784-4510 MARSH ELECTRONICS, INC. 1563 S. 100 Street Milwaukee. Wisconsin 53214 Tel: 414-475-6000 CANADA CAM GARD SUPPLY LTD. 640 42nd Avenue S.E. Calgary, Alberta. T2G 1Y6, Canada Tel: 403-287-0520 Telex: 03-822811 CAM GARD SUPPLY LTD. 10505 ll1th Street Edmonton, Alberta T5H 3E8, Canada Tel: 403-426-1805 Telex: 03-72960 CAM GARo SUPPLY LTD. 4910 52nd Street Red Deer. Alberta, T 4N 2C8, Canada Tel: 403-346-2088 Tel: 506-455-8891 CAM GARD SUPPLY LTD. 3065 Robie Street Halifax, Nova Scotia, B3K 4P6, Canada Tel: 902-454-8581 Telex: 01-921528 CAM GARD SUPPLY LTD. 1303 Scarth Street Regina, Saskatchewan, S4R 2E7, Canada Tel: 306-525-1317 Telex: 07-12667' CAM GARD SUPPLY LTD. 1501 Ontario Avenue Saskatoon. Saskatchewan, S7K 1S7, Canada Tel: 306-652-6424 Telex: 07-42825 ELECTRO SONIC INDUSTRIAL SALES !TORONTO) LTD. 1100 Gordon Baker Rd. Willowdale, Ontario, M2H 3B3, Canada Tel: 416-494-1666 Telex: ESSCO TOR 06-22030 FUTURE ELECTRONICS CORPORATION 130 Albert Street Ottawa, Ontario, K1 P 5G4, Canada Tel: 613-232-7757 FUTURE ELECTRONICS CORPORATION 44 Fasket Drive, Unit 24 Rexdale, Ontario, M9W 1K5, Canada Tel: 416-677-7820 FUTURE ELECTRONICS CORPORATION 5647 Ferrier Street Montreal, Quebec, H4P 2K5, Canada Tel: 514-735-5775 HAMILTON/AVNET INTERNATIONAL (CANADA) LTD. 6291 Dorman Rd .• Unit 16 Mississauga, Ontario, L4V 1H2, Canada Tel: 416-677-7432 TWX: 610-492-8867 HAMILTON/AVNET INTERNATIONAL (CANADA) LTD. 1735 Courtwood Crescent Ottawa, Ontario. K1Z 5L9, Canada Tel: 613-226-1700 HAMILTON/AVNET INTERNATIONAL (CANADA) LTD, 2670 Paulus Street St. Laurent, Quebec, H4S 1G2, Canada Tel: 514-331-6443 TWX: 610-421-3731 RAE. INDUSTRIAL ELECTRONICS, LTD. 1629 Main Street Vancouver, British Columbia, V6A 2W5, Canada Tel: 604-687-2621 TWX: 610-929-3065 Telex: RAE-VCR 04-54550 SEMAD ELECTRONICS LTD. 625 Marshall Ave., Suite 2 Dorval, Quebec, H9P 1E1, Canada Tel: 514-636-4614 TWX: 610-422-3048 SEMAD ELECTRONICS LTD. 105 Brisbane Road Downsview. Ontario M3J 2K6, Canada Tel: 416-635-9880 TWX: 610-492-2510 SEMAD ELECTRONICS LTD. 1485 laperriere Avenue Ottawa, Ontario, K1Z 758, Canada Tel: 613-722-6571 TWX: 610-562-8966 CAM GARD SUPPLY lTD. 825 Notre Dame Drive Kamloops, British Columbia, V2C 5N8. Canada Tel: 604-372-3338 CAM GARo SUPPLY L TO, 1777 Ellice Avenue Winnepeg. Manitoba. R3H OW5. Canada Tel: 204-786-8401 Telex: 07-57622 10-5 • FAIRCHILD SEMICONDUCTOR SALES REPRESENTATIVES UNITED STATES AND CANADA "'L"'."'M'" CARTWRIGHT & BEAN. INC. 2400 Bob Wallace Ave., Suite 201 Huntsville, Alabama 35805 Tel: 205-533--3509 C ...LIFORNI ... CEL TEC COMPANY 18009 Sky Park Circle Suite B Irvine, Calilornla 92715 Tel: 7'4-557-502' TWX: 9'0-595-25'2 CEL TC COMPANY 7867 Convoy Court, Suite 312 San Diego, California 92111 Tel: 714-279-796' TWX: 9'0-335-'5'2 MAGNA SALES. INC. 3333 Bowers Avenue Suite 295 Santa Clara, California 95051 Tel: 408-985-'750 TWX: 9'0-336-024' COLOR ... DO SIMPSON ASSOCIATES. INC. 2552 Ridge Road littleton, Colorado 80120 Tel: 303-794-836' TWX: 9'0-935-0719 CONNI!CTICUT PHOENIX SALES COMPANY 3.89 Main Street Ridgefield, Connecticut 06877 Tol: 203-438-9844 TWX: 7'0-467-0662 MINNESOT... PSI COMPANY 720 W. 94tt!. Street Minneapolis, Minnesota 55420 Tel: 6'2-884-'777 TWX: 9'0-576-3483 CARTWRIGHT & BEAN. INC MISSISSIPPI CARTWRIGHT & BEAN. INC. TEX...S TECHNICAL MARKETING 3320 Wiley Post Road eharrollton. Texas 75220 Tel: 214-387-3601 TWX: 910-860-5158 P.O. Box 16728 5150 Keele Street JaCkson. Mississippi 39206 Tel: 60'-98'-'368 MISSOURI B.C. ELECTRONIC SALES. INC. 300 Brookes Drive, Suite 206 Hazelwood. Missouri 63042 Tel: 3'4-731-1255 TWX: 9'0-762-0600 NEW JERSEY LORAC SALES, INC. 580 Valley Road Wayne, New Jersey 07470 Tel: 20'-698-8875 TWX: 7'0-966-5846 NEW YORK LORAC SALES. INC. 550 Old Country Road, Room 410 Hicksville, New York 11801 Tel: 516-681-8746 TWX: 510-224-6480 TRI'TECH ELECTRONICS. INC. 3215 E. Main Street Endwell, New York 13760 Tel: 607-754-'094 TWX: 5'0-252-089' FLORIO... LECTROMECH. INC. 303 Whooping loop Altamonte Springs. Florida 32701 Tel: 305-831-1577 TWX: 810-853-0262 TRI-TECH ELECTRONICS. INC. 590 Perinton Hills Office Park Fairport, New York 14450 Tel: 716-223-5720 LECTROMECH. INC. 1350 S. Powerline Road, Suite 104 Pompano Beach, Florida 33060 Tel: 305-974-6780 TWX: 5'0-954-9793 TRI-TECH ELECTRONICS. INC. 6836 E. Genesee Street Fayetteville. New York 13066 Tel: 3'5-446-288' TWX: 7'0-541-0604 LECTROMECH. INC. 2260 U.S. Highway 19 North Suite 119 Bldg. l Clearwater. Florida 33515 Tel: 813-7~541 TRI-TECH ELECTRONICS. INC. 19 Davis Avenue Poughkeepsie. New York 12603 Tel: 914-473-3880 GEORGI... CARTWRIGHT & BEAN. INC. P.O. Box 52846 (Zip Code 303551 90 W. Wleuca Square, Suite 155 Atlanta, Georgia 30342 Tel: 404-255-5262 TWX: 8'0-75'-3220 ILLINOIS MICRO SALES. INC. 2258-8 landmelr Road Elk Grove Village, illinois 60007 Tel: 3'2-956-'000 TWX: 9'0-222-'833 INOIAN... LESLIE M. DEVOE COMPANY 4215 E. 82nd Street Suite 0 Indianapolis, Indiana 46250 Tel: 317-842-3245 TWX: 810-260-1435 K...N....S B.C. ELECTRONIC SALES. INC. P.O. Box '2485. Zip 882'2 8190 Nieman Road Shawnee Mission, Kansas 66214 Tel: 9'3-888-6680 TWX: 9'0-749-64'4 B.C. ELECTRONIC SALES NORTH CAR OLIN... CARTWRIGHT & BEAN. INC. 1165 Commercial Ave. Charlotte, North Carolina 28205 Tel: 704-377-5873 CARTWRIGHT & BEAN. INC. P.O. Box 18465 3948 Browning Place Raleigh, North Carolina 27609 Tel: 9'9-78'-6580 OHIO THE LYONS CORPORATION 4812 Frederick Road, Suite 101 Dayton, Ohio 45414 Tel: 513-278-0714 THE LYONS CORPORATION 8151 Wilson Mills Road, Suite 101 Highland Heights, Ohio 44143 Tel: 216-461-8288 OKLAHOM... TECHNICAL MARKETING 9717 E. 42nd Street, Suite 221 Tulsa, Oklahoma 74101 Tel: 9'6-622-5984 6406 E. Kellogg Suite 14 Wichita, Kansas 87207 Tel: 3'8-884-005' M ...RYL...ND DELTA III ASSOCIATES 1000 Century Plaza Suite 225 Columbia, Maryland 21044 Tol: 30'-730-'5'0 TWX: 7'0-826-9654 MAS....CHUSITTS SPECTRUM ASSOCIATES. INC. 888 Worcester Street Wellesley. U_achusetls 02181 Tel: 8'7-237-2796 TWX: 7'0-346-0424 MICHIG...N RATHSBURG ASSOCIATES 18821 E. Warren Avenue Detroit, Michigan 48224 Tel: 313-882-'7'7 Telox: 23-5229 OREGON aUADRA CORPORATION '9'45 S.W. Murphy Ct. Aloha, Oregon 97005 Tel: 503-225-0350 TWX: 9'0-449-2592 PENNSYLV... NI'" BGR ASSOCIATES 2500 Office Center 2500 Maryland Road Willow Grove, Pennsylvania 19090 Tel: 215-657-3301 TlNNEIIEI CARTWRIGHT & BEAN. INC. P.O. 80x 4760 580 S. Cooper Street Memphis, Tennessee 38104 Tel: 90' -276-4442 10-6 8705 Unicorn Drive Suite 8120 Knoxville, Tennessee 37919 Tel: 615-693-7450 TECHNICAL MARKETING 6430 Hillcroft. Suite 104 Houston, Texas 77036 Tel: 713-777-9228 UT... H SIMPSON ASSOCIATES, INC. P.O. Box 151430 Salt lake City, Utah 84115 Tel: 801-571-7877 W...SHINGTON aUADRA CORPORATION 14825 N.E. 40th Street Suite 340 Redmond, Washington 98052 Tel: 206-883-3550 TWX: 9'0-449-2592 WISCONSIN LARSEN ASSOCIATES 10855 West Potter Road Wauwatosa, Wisconsin 53226 Tel: 4'4-258-0529 TWX: 9'0-262-3'60 C ...NAO... R.N. LONGMAN SALES. INC. IL.S.I.I 1715 Neyeralde Drive SUite 1 Mississauga, Ontario, l5T 1C5 Canada Tel: 4'6-625-6710 TWX: 6'0-492-9976 R.N. LONGMAN SALES, INC. IL.S.U 16891 Hymus Blvd. Kirkland, Quebec H9H 314 Canada Tel: 514-694-3911 TWX: 6' 0-422-3028 FAIRCHILD SEMICONDUCTOR SALES OFFICES UNITED STATES AND CANADA ALABAMA Huntsville Office Executive Plaza Suite 107 4717 University Orive, N,W. Huntsville. Alabama 35805 Tel: 205-837-8906 ARIZONA Phoenix Office 4414 N. 19th Avenue 85015 Suite G Tel: 602-264-4948 TWX: 910-951-1544 CALIFORNIA Los Angeles Office" Crocker Bank Bldg. 15760 Ventura Blvd. Suite 1027 Encino 91436 Tel: 213-990-9800 TWX: 910-495-1776 Santa Ana Office" 2101 E. 4th Street 92705 Bldg. B. Suite 185 Tel: 714-558-1881 TWX: 910-595-1109 Santa Clara Office" 3333 Bowers Avenue Suite 299 Santa Clara, 95051 INDIANA Ft. Wayne Office 2118 Inwood Drive 46805 Suite 111 Tel: 219-483-6453 TWX: 810-332-1507 NEW MEXICO Alburquerque Office 2403 San Mateo N.E. 87110 Plaza 13 Tel: 505-265-5601 TWX: 910-379-6435 India~apolis Office Room 205 7202 N. Shadel and 46250 Tel: 317-849-5412 TWX: 810-260-1793 NEW YORK Melville Office 275 Broadhollow Road 11746 Tel: 516-293-2900 TWX: 510-224-6480 KANSAS Kansas City Office Corporate Woods 10875 Grandview, Suite 2255 Overland Park 66210 Tel: 913-649-3974 Poughkeepsie Office 19 Davis Avenue 12803 Tel: 914-473-5730 TWX: 510-248-0030 MARYLAND Columbia Office· 1000 Century Plaza Suite 225 Columbia, Maryland 21044 Tel: 301-730-1510 TWX: 710-826-9654 MASSACHUSETTS Boston Office888 Worcester Street Wellesley Hills 02181 Tel: 617-237-3400 TWX: 710-348-0424 Tel: 408-987-9530 TWX: 910-338-0241 FLORIOA Flo Lauderdale Office Executive Plaza Suite 300-8 1001 Northwest 62nd Street Ft. Lauderdale, Florida 33309 Tel: 305-771-0320 TWX: 510-955-4098 Orlando Office· Crane's Roost Office Park 303 Whooping Loop Altamonte Springs 32701 Tel: 305-834-7000 TWX: 810-850-0152 ILLINOIS Chicago Office The Tower - Suite 610 ROlling Meadows 60008 Tel: 312-640-1000 MICHIGAN Detroit OfficeJohnston Building, Suite 24 20793 Farmington Road Farmington Hills 48024 Tel: 313-478-7400 TWX: 810-242-2973 Fairport Office 260 Perinton Hills Office Park Fairport 14450 Tel: 716-223-7700 OHIO Dayton Office 4812 Frederick Road 45414 Suite 105 Tel: 513-278-8278 TWX: 810-459-1803 PENNSYLVANIA Philadelphia Office 2500 Office Center 2500 Maryland Road Willow Grove, Pennsylvania 19090 Tel: 215-657-2711 TEXAS Dallas Office 13771 N. Central Expressway 75231 Suite 809 Tel: 214-234-3391 TWX: 910-867-4757 MINNESOTA Minneapolis Office· 7600 Parklawn Avenue Room 251 Edina 55435 Tel: 612-835-3322 TWX: 910-576-2944 Houston Office 6430 Hillcroft 77081 Suite 102 Tel: 713-771-3547 TWX: 910-881-8278 NEW JERSEY Wayne Office580 Valley Road 07490 Suite 1 Tel: 201-898-7070 TWX: 710-988-5846 CANADA Toronto Regional Office Fairchild Semiconductor 1590 Matheson Blvd., Unit 28 Mississauga, Ontario L4W 1J1, Canada Tel: 416-625-7070 TWX: 610-492-4311 • ·Field Application Engineer 10-7 FAIRCHILD SEMICONDUCTOR INTERNATIONAL SALES OFFICES AUSTRALIA Fairchild Australia Ply ltd. 72 Whiting Street Artarmon 2064 New South Wales Australia Tel: Sydney (02)-436-2733 (mailing address) P.O. Box 450 North Sydney 2060 New South Wales Australia AUSTRIA AND EASTERN EUROPE Fairchild Electronics A-l0l0 Wien $chwedenplatz 2 Tel: 0222 635821 Telex: 75096 BRAZIL Fairchild $emicondutores Uda Caixa Postal 30407 Rue Alagoss, 663 01242 Sao Paulo, Brazil Tel: 66-9092 Telex: 011-23831 Cable: FAIRLEC FRANCE Fairchild Camera & Instrument S.A. 121, Avenue d'italie 75013 Paris, France Tel: 331-584-55 66 Telex: 0042 200614 or 260937 GERMANY Fairchild Camera and Instrument !Deutschland) Oaimlerstr 15 8046 Garching Hochbruck Munich, Germany Tel: (089) 320031 Telex: 524831 fair d Fairchild Camera and Instrument
Source Exif Data:File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37 Create Date : 2013:08:08 15:27:04-08:00 Modify Date : 2013:08:08 23:24:07-07:00 Metadata Date : 2013:08:08 23:24:07-07:00 Producer : Adobe Acrobat 9.55 Paper Capture Plug-in Format : application/pdf Document ID : uuid:1c89b008-6700-4c40-8dba-be9e35e7e746 Instance ID : uuid:6fcb622e-e9ae-6c4b-b7d2-65f70746814a Page Layout : SinglePage Page Mode : UseNone Page Count : 752EXIF Metadata provided by EXIF.tools