1978_Motorola_Power_Device_Data 1978 Motorola Power Device Data

User Manual: 1978_Motorola_Power_Device_Data

Open the PDF directly: View PDF PDF.
Page Count: 1022

Download1978_Motorola_Power_Device_Data 1978 Motorola Power Device Data
Open PDF In BrowserView PDF
DEVICE

DATA

"

I

~

.

Pioneer

.~ PIONEER-STANDARD ElECTRONICS, INC.
6408 CASTL.EPLACE DR/INDIANAPOLIS, IN 46250 (317) 849·7300
TOLL FREE • IN 1·800·382-5503 •
KY 1·800-428·9128

POWER
TRANSISTORS
& THYRISTORS
.II~~

__.

~

Alphanumeric Index
Power Transistor Selector Guide
Power Transistor Cross Reference

..
II
II

Power Transistor Data Sheets

II

Thyristor Selector Guide

II

Thyristor Cross Reference

II

Thyristor Data Sheets
Leadforms, Hardware,
and Mounting Techniques

II
II

Rectifier and Zener Diode
Selector Guide

II

Supplementary Literature

Em

.-'

MOTOROLA
POWER DEVICE DATA
Prepared by
Technical Information Center

This book presents technical data for Motorola's broad line of silicon power
transistors, thyristors, and triggers. Complete specifications for: preferred
devices are provided in the form of data sheets. In addition, selection guides
provide a quick comparison of characteristics to simplify the task of choosing
the best device for a circuit.

The information in this book has been carefully checked and is believed to
be reliable; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of semiconductor
devices any license under the patent rights of any manufacturer.

First Edition

©MOTOROLA INC., 1978
Printed in U.S.A.

"All Rights Reserved"

MOTOROLA
POWER DEVIC---IN BRIEF
SILICON POWER TRANSISTORS
Wide Range of Transistor
Specifications
• Routinely Used Processes and ,
Their Specific Attributes

Motorola offers more than 600 stan, dard (off the shelf) power transistors to
cover the widest range of applications at
the lowest cost.
Current Range - 0.5 to 70 Amperes
Voltage Range - 25 to 1500 Volts
Power Dissipation Range - 1 to 300
Watts

Process

Feature

Planar

Good frequency response (fT
Double and ,25 MHz) combined with BVCEO
Triple
of 200 V, which can be extended
Diffuaed
to 450 V by use of a "field
plate" diffusion. Available in
both NPN and PNP types, for
fast switches or high-frequency
amplifiers where de SOA is of
little concern.,
Mesa
A high-voltage process capable
Doubteand of attaining 2000 V breakdowns,
Triple
wifh low to medium gain, medium speed and ruggedness, at
Diffused
low cost. NPN process only.
Used in auto ignition, Switch·
mode regulators and TV hori·
zontal outputs:
.
A ~redjctable epitaxial base
EplBase
grown on thick collector silicon
produces a workhorse transistor with 4.10 MHz fT, 40-150 V
BVCEO, and 70 A current capability in bott.l.PNP and NPN. Applications ,~or the economical
standards include audio
amplifiers. inductive power
switches'" and low-frequency
voltage' regulators and

Darlingtons, Too
Darlington transistors represent the
integrated circuits of the power field. Consisting of two transistors, two resistors,
and (up to) two diodes, they achieve gain
figures up to 20,000 in a single package.
Rapid line expansion, and the resulting
widespread implemer;ltation make
Motorola Darlingtons highly cost effective
in a fast-growing number of applications.

Complete Selection of
Popular Packages
In metal and plastic, Motorola offers a
wide range of packages to match thermal, electrical and cost requirements ..

Chips, Chips, Chips!
Designing a hybrid? Motorola's wide
range of power transistors is available ...
UNENCAPSULATED: Check with your
Motorola sales representative for price
and delivery quotations.

convert~rs.

PowerBas8

Specials Unlimited
Need a unique transistor with specifications not available off-the-shelf?
, Chances are Motorola can produce it
quickly and inexpensively. Routine use of
four major power processes·. and more
than two decades of experience in the
pioneering of new structures and
geometries provide the insight and
capability to meet any required specification within the limits of state-of-the-art
technology.
ii

Using a thick, epitaxial base
region. ·wi.th mask-oriented
voltage profile control. PowerBase combines the advantages
of EptBase with the superior
SQA characteristics of thasingle-diffused ··process.
Moreover, itextE!nds these SOA
characteristics to PNP devices
as well as to the NPN structures
obtainable withsingle-diffused
technology.

THYRISTORS
Just the Package You've
Been Looking For!

Characteristics and
Ratings for Your Triggered
Power Switching
Applications

More than 20 packages, both metal
and plastic, with a variety of plastic
package leadform options. Such variety
allows flexibility of mounting in sockets,
printed circuit boards, and on heat sinks,
for higher diSSipation applications. High
power metal thyristors are available in
press-fit, stud, isolated stud or isolated
flange, for ease of mounting.

The wide variety of Thyristor· and
Trigger devices offered by Motorola is intended to serve a diversified market, in
which each application demands particular voltage, current, trigger and package
characteristics. Thyristors are divided
into these classes:

Radar Pulse Modulators
Handle 1000 Amperes Peak

Silicon Controlled Rectifiers (SCRs)-

A line of high speed, high pulse current
SCRs can provide the massive, short
duration pulses, with minimum variations
in rise time, needed by today's radar
systems. JAN speCification is available
for military applications.

.For dc and half-wave ac applications
Current. Range - 0.5 to 50 Amperes,
rms (Radar pulse
modulators to 1000
Amperes, peak)
Voltage Range - 25 to 800 Volts

Triac$ -

For; full-wave ac applications
Current Rarlge - 0.8 to 40 Amperes
,
rms
Voltage Range - 25 to 800 Volts

Experience, Flexibility and
Mass-Production Expertise
Recognizing that Thyristor users often
have technical requirements that no
available standard type can meet,
Motorola's engineers can quickly
evaluate new applications and produce
specially specified Thyristors with the
confidenc~ of having done it, in volume,
many times before.

-And lr,riggers
To mee~ the wide variety of input requiremer,lts, the following Trigger Devices
are supplied by Motorola:
Unijuliction Transistors (UJT) - For
.unidirectional, fixed threshold SCR
triggering.

Ruggedness and Reliability
Motorola Thyristors are designed into
thousands of high-stress power switching
applications worldwide ... and have proven themselves in the real world.
For example, the Plastic Thyristor
Reliability Guide shows samples with no
failure after. 1000 hours of High
Temperature Reverse Blocking, 10,000
Power Cycles, 50 cycles of Method 1051
Temperature Cycle, 4000 hours of High
Temperature Storage, and much more.
Motorola Thyristors can take it!

Programmable Unijunction Transistors

(PUn

~

For externally preset SCR

, ,triggering.

Bilateral Triggers (DIAC) - For bidirectional Triac Triggering

Silicon Bilateral Switches (SBS) - For
bidirectional, externally synchronized
triggering.
Optically Coupled Triac Drivers - For
driving isolated loads from sensitive
logic sources.
iii

Designers', EpiBase, PowerBase, Switch mode, and Thermopad are trademarks of Motorola.

iv

Alphanumeric Index

1·1

D

•

1-2

a

Alphanumeric Index
Device

Page

Device

Page

Device

Page

1N5758
1N5758A
1N5759
1N5759A
1N5760
1N5760A
1N5761
1N5761A
1N5762
1N5762A

7-2
7-2
7-2
7-2
7-2
7-2
7-2
7-2
7-2
7-2

2N2328
2N2329
2N2573
2N2574
2N2575
2N2576
2N2577
2N2578
2N2579
2N2646

7-14
7-14
7-16
7-16
7-16
7-16
7-16
7-16
7-16
7-19

2N3713
2N3714
2N3715
2N3715JAN
2N3715JTX
2N3715JTXV
2N3716
2N3716JAN
2N3716JTX
2N3716JTXV

4-33
4-33
4-33
2-15
2-15
2-15
4-33
2-15
2-15
2-15

2N681
2N682
2N683
2N684
2N685
2N686
2N687
2N688
2N689
2N690

7-4
7-4
7-4
7-4
7-4
7-4
7-4
7-4
7-4
7-4

2N2647
2N3019
2N3019JAN
2N3019JTX
2N3020
2N3054
2N3054A
2N3055
2N3055A
2N3110

7-19
2-5
2-15
2-15
2-5
4-2
4-2
4-6
4-10
2-5

2N3719
2N3720
2N3734
2N3735
2N3735JAN
2N3735JTX
2N3735JTXV
2N3738
2N3739
2N3739JAN

4-39
4-39
2-5
2-5
2-15
2-15
2-15
4-44
4-44
2-15

2N691
2N692
2N1595
2N1596
2N1597
2N1598
2N1599
2N1842
2N1842A
2N1843

7-4
7-4
7-8
7-8
7-8
7-8
7-8
7-10
7-12
7-10

2N3244
2N3245
2N3439
2N3440
2N3441
2N3442
2N3445
2N3446
2N3447
2N3448

2-5
2-5
2-5
2-5
4-14
4-16
4-20
4-20
4-20
4-20

2N3739JTX
2N3740
2N3740A
2N3740JAN
2N3740JTX
2N3740JTXV
2N3741
2N3741A
2N3741JAN
2N3741JTX

2-15
4-50
4-50
2-15
2-15
2-15
4-50
4-50
2-15
2-15

2N1843A
2N1844
2N1844A
2N1845
2N1845A
2N1846
2N1846A
2N1847
2N1847A
2N1848

7-12
7-10
7-12
7-10
7-12
7-10
7-12
7-10
7-12
7-10

2N3467
2N3467JAN
2N3467JTX
2N3467JTXV
2N3468
2N3468JAN
2N3468JTX
2N3468JTXV
2N3506JAN
2N3506JTX

2-5
2-15
2-15
2-15
2-5
2-15
2-15
2-15
2-15
2-15

2N3741JTXV
2N3762
2N3762JAN
2N3762JTX
2N3762JTXV
2N3763
2N3763JAN
2N3763JTX
2N3763JTXV
2N3766

2-15
2-5
2-15
2-15
2-15
2-5
2-15
2-15
2-15
4-55

2N1848A
2N1849
2N1849A
2N1850
. 2N1850A
2N2322
2N2324
2N2325
2N2326
2N2327

7-12
7-10
7-12
7-10
7-12
7-14
7-14
7-14
7-14
7-14

2N3506JTXV
2N3507JAN
2N3507JTX
2N3507JTXV
2N3583
2N3584
2N3585
2N3668
2N3669
2N3670

2-15
2-15
2-15
2-15
4-26
4-26
4-26
7-21
7-21
7-21

2N3766JAN
2N3766JTX
2N3766JTXV
2N3767
2N37:71
2N3772
2N3773
2N3776JAN
2N3776JTX
2N3776JTXV

2-15
2-15
2-15
4-55
4-60
4-60
4-65
2-15
2-15
2-15

1-3

ft1tJ'IIGIIUIIIC"" IIIUCA \\JUlllil IUCUJ

•

Device

Page

Page

Device

Device

Page

2N3789
2N3790
2N3791
2N3791JAN
2N3791JTX
2N3791JTXV
2N3792
2N3792JAN
2N3792JTX
2N3792JTXV

4-70
4-70
4-70
2-15
2-15
2-15
4-70
2-15
2-15
2-15

2N4215
2N4216
2N4231A
2N4232A
2N4233A
2N4234
2N4235
2N4236
2N4237
2N4238

7-40
7-40
4-80
4-80
4-80
2-5
2-5
2-5
2-5
2-5

2N4949JTX
2N5038
2N5039
2N5050
2N5051
2N5052
2N5060
2N5061
2N5062
2N5063

'2N3867
2N3867JAN
2N3867JTX
2N3867JTXV
2N3868
2N3868JAN
2N3868JTX
2N3868JTXV'
2N3870
2N3871

4-39
2-15
2-15
2-15
4-39
2-15
2-15
2-15
7-24
7-24

2N4239
2N4240
2N4347
2N4398
2N4399
2N4399JAN
2N4399JTX
2N4399JTX
2N4441
2N4442

2-5
4-26
4-16
4-85
4-85
2-16
2-16
2-16
7-42
7-42

2N5064
2N5067
2N5068
2N5069
2N5164
2N5165
2N5166
2N5167
2N5168
2N5169

7"56
2-16
2-16
2-16
7-60
7-60
7-60
7-60
7-60
7-60

2N3872
2N3873
2N3896
2N2397
2N3898
2N3899
2N3902
2N3980
2N4103
2N4167

7-24
7-24
7-24
7-24
7-24
7-24
4-76
7-28
7-21
7-30

2N4443
2N4444
2N4851
2N4852
2N4853
2N4870
2N4871
2N4877
2N4898
2N4899

7-42
7-42
7-46
7-46
7-46
7-50
7-50
4-90
4-92
4-92

2N5170
2N5171
2N5190
2N5191
2N5192
2N5193
2N5194
2,N5195
2N5241
2N5301

7-60
7-60
4-112
4-112
4-112
4-116
4-116
4-116
2-16
4-120

2N4168
2N4169
2N4170
2N4171
2N4172
2N4173
2N4174
2N4183
2N4184
2N4185

7-30
7-30
7-30
7-30
7-30
7-30
7-30
7-30
7-30
7-30

2N4900
2N4901
2N4902
2N490.3
2N4904
2N4905
2N4906
2N4912
2N4913
2N4914

4-92
2-16
2-16
2-16
2-16
2-16
2-16
4-96
2-16
2-16

2N5302
2N5302JAN ,
2N5302JTX
2N5303
2N5303JAN
2N5303JTX '
2N5336
2N5337
2N5338
2N5339

4-120
2-16
2-16
4-120
2-15
2-15
.4-124
4-124
4-124
4-124

2N4186
2N4187
2N4188
2N4189
2N4190
2N4199
2N4199JAN
2N4200
2N4200JAN
2N4201

7-30
7-30
7-30
7-30
7-30
7-34
5-9
7-34
5-9
7-34

2N4915
2N4918
2N4919
2N4920
2N4921
2N4922
2N4923
2N4929
2N4930
2N4930JAN

2N5344
2N5345
2N5346
2N5347
2N5348
2N5349
2N5415
2N5416
2N5427
2N5428

4-128
4-128
4-132
4-132
4-132
4-132
2-5
2-5
4-136
4-136

2N4201JAN
2N4202
2N4202JAN
2N4203
2N4203JAN
2N4204
2N4204JAN
2N4212
2N4213
2N4214

5-9
7-34
5-9
7-34
5-9
7-34
5-9
7-40
7-40
7-40

2N4930JTX
2N4931
2N4931JAN
2N4931JTX
2N4931JTXV
2N4948
2N4948JAN
2N4948JTX
2N4949
2N4949JAN

2N5429
2N5430
2N5431
2N5441
2N5442
2N5443
2N5444
2N5445
2N5446
2N5567

4-136
4-136
7-64
7-66
7-66
7-66
7-66
7-66
7-66
. - 7-70

1-4

2-16
4-100
4-100
4-100
4-104
4-104
4-104
2-5
2-5
2-15
2-15
2-5
2-152-15
2-15
7-54
5-14
5-14
7-54
5-14

5-14
4-108
4-108
4-110
4-110
4-110
7-56
7-56
7-56
7-56

Alphanumeric Index (Continued)
Page

Page

Device

Page

Device

2N5568
2N5569
2N5570
2N5571
2N5572
2N5573
2N5574
2N5629
2N5630
2N5631

7-70
7-70
7-70
7-74
7-74
7-74
7-74
4-140
4-140
4-140

2N5977
2N5978
2N5979
2N5986
2N5987
2N5988
2N5989
2N5990
2N5991
2N6027

4-186
4-186
4-186
4-190
4-190
4-190
4-190
4-190
4-190
7-78

2N60718
2N6072
2N6072A
2N60728
2N5CJ73
2N6073A
2N60738
2N6074
2N6074A
2N60748

2N5632
2N5633
2N5634
2N5655
2N5656
2N5657
2N5679
2N5680
2N5681
2N5682

4-146
4-146
4-146
4-152
4-152
4-152
2-5
2-5
2-5
2-5

2N6028
2N6029
2N6030
2N6031
2N6034
2N6035
2N6036
2N6037
2N6038
2N6039

7-78
4-140
4-140
4-140
4-195
4-195
4-195
4-195
4-195
4-195

2N6075
2N6075A
2N6075B
2N6077
2N6078
2N6107
2N6109
2N6111
2N6116
2N6116JAN

7-82
7-82
7-82
4-219
4-219
4-221
4-221
4-221
7-86
5-14

2N5683
2N5683JAN
2N5683JTX
2N5683JTXV
2N5684
2N5684JAN
2N5684JTX
2N5684JTXV
2N5685
2N5685JAN

4-156
2-16
2-16
2-16
4-156
2-16
2-16
2-16
4-156
2-15

2N6040
2N6041
2N6042
2N6043
2N6044
2N6045
2N6049
2N6050
2N6051
2N6051JAN

4-200
4-200
4-200
4-200
4-200
4-200
4-205
4-209
4-209
2-15

2N6116JTX
2N6117
2N6117JAN
2N6117JTX
2N6118
2N6118JAN
2N6118JTX
2N6121
2N6122
2N6123

5-14
7-86
5-14
5-14
7-86
5-14
5-14
4-225
4-225
4-225

2N5685JTX
2N5685JTXV
2N5686
2N5686JAN
2N6586JTX
2N5686JTXV
2N5745
2N5745JAN
2N5745JTX
2N5745JTXV

2-15
2-15
4-156
2-16
2-16
2-16
4-85
2-16
2-16
2-16

2N6051JTX
2N6051JTXV
2N6052
2N6052JAN
2N6052JTX
2N6052JTXV
2N6053
2N6054
2N6055
2N6056

2-15
2-15
4-209
2-15
2-15
2-15
4-214
4-214
4-214
4-214

2N6124
2N6125
2N6126
2N6145
2N6146
2N6147
2N6151
2N6152
2N6153
2N6154

4-225
4-225
4-225
7-74
7-74
7-74
7-90
7-90
7-90
7-90

2N5758
2N5759
2N5760
2N5859
2N5861
2N5875
2N5876
2N5877
2N5878
2N5879

4-161
4-161
4-161
2-5
2-5
4-167
4-167
4-167
4-167
4-172

2N6057
2N6058
2N6058JAN
2N6058JTX
2N6058JTXV
2N6059
2N6059JAN
2N6059JTX
2N6059JTXV
2N6068

4-209
4-209
2-15
2-15
2-15
4-209
2-15
2-15
2-15
7-82

2N6155
2N6156
2N6157
2N6158
2N6159
2N6160
2N6161
2N6162
2N6163
2N6164

7-90
7-90
7-94
7-94
7-94
7-94
7-94
7-94
7-94
7-94

2N5880
2N5881
2N5882
2N5883
2N5884
2N5885
2N5886
2N5974
2N5975
2N5976

. 4-172
4-172
4-172
4-177
4-177
4-177
4-177
. 4-182
4-182
4-182

7-82
7-82
7-82
7-82
7-82
7-82
7-82
7-82
7-82
7-82

2N6165
2N6167
2N6168
2N6169
2N6170
2N6171
2N6172
2N6173
2N6174
2N6186

7-94
7-98
7-98
7-98
7-98
7-24
7-24
7-24
7-24
4-229

2N6068A
2N60688
2N6069
2N6069A
2N60698
2N6070
2N6070A
2N60708
2N6071
2N6071A

1-5

Device

7-82
7-82
7-82
7-82
7-82
7-82
7-82
7-82
7-82
7-82

•

Alphanumeric Index (Continued)

•

Device

Page

Page

Device

2N6187
2N6188
2N6189
2N6190
2N6191
2N6192
2N6193
2N6211
2N6212
2N6213

4-229 '
4-229
4-229
4-233
4-233
4-233
4-233
4-237
4-237
4-237

2N6294
2N6295
2N6296
2N6297
2N6298
2N6299
2N6300
2N6301
2N6303
2N6306

4-258
4-258
4-258
4-258
4-214
4-214
4-214
4-214
4-39
4-263

2N6226
2N6227
2N6228
2N6229
2N6230
2N6231
2N6233
2N6234
2N6235.
2N6236

4-161 '
4-161
4-161
4-146
4-146
4-146
4-241
4-241
4-241
7-102

2N6307
2N6308
2N6312
2N6313
2N6314
2N6315
2N6316
2N6317
2N6318
2N6338

4-263
4-263,
4-80 '
4-80
4-80
4-267
4-267
4-267
4-267
4-273

2N6338JAN
2N6338JTX
2N6338JTXV
2N6339
2N6340
2N6341
2N6341JAN
2N6341JTX
2N6341JTXV
2N6342

2-15
2-15
2-15
4-273
4-273
4-273 .
2-15
2-15
2-15

2N6342A
2N6343
2N6343A
2N6344
2N6344A
2N6345
2N6345A
2N6346
2N6346A
2N6347

7-108
7-104
7-"108
7-104
7-108,
7-104
7-108
7-104
7-108
7-104

2N6489
2N6490
2N6491
2N6495
2N6497
2N6498
2N6499
2N6504
2N6505
2N6506

2N6347A
2N6348
2N6348A
2N6349
2N6349A
·2N6377
2N6378
2N6378JAN
2N6378JTX
2N6378JTXV

7-108
7-104
7-108
7-104
7-108
4-277
4-277
2-16
2-16
2-16

2N6507
2N6508
2N6509
2N6542
2N6543
2N6544
2N6545
2N6546
2N6546JAN
2N6546JTX

2N6379
2N6379JAN
2N6379JTX
2N6379JTXV
2N6383
2N6384
2N6385
2N6386
2N6387
2N6388

4-277
2-16
2-16
2-16
4-281
4-281
4-281
4-285
4-285
4-285

2N6546JTXV
2N6547
2N6547JAN
2N6547JTX
2N6547JTXV
2N6548
2N6549
2N6551
'2N6552
2N6553

7-102
, 7-102
7-102
7-102
7-102
4-245
4-245
4-245
4-60
4-249

2N6237
2N6238
2N6239
2N6240
, 2N6241
2N6249
2N6250
2N6251
2N6257
2N6274
2N6274JAN
2N6274JTX
2N6274JTXV
2N6275
2N6276
2N6277
2N6277JAN
2N6277JTX
2N6277JTXV
2N52824

,

2-16
2-16
2-16
4-249
4-249
4-249
2-16
2-16
2-16
4-253

2N6283
2N6283JAf\J
2N6283JTX
2N6283JTXV
2N6284
2N6284JAN
2N6284JTX
2N6284JTXV
2N6285
2N6286

4-253
2-15
2-15
2-15
4-253
2-15
2-15
2-15
4-253
4-253

2N6286JAN
2N6286JTX
2N6286JTXV
2N6287
2N6287JAN
2N6287JTX
2N6287JTXV
2N6288
2N6290
2N6292

2-15
' 2-15
2-15
4-253
2-15
2-15
2-15
4-221
4-221
4-221

-

1-6

7~104

Page

Device
2N6394
- 2N6395
2N6396
2N6397
2N6398
2N6399
2N6400
2N6401
2N6402
2N6403

7-112
7-112
7-112
7-112

2N6404
2N6405
2N6420
2N6421
2N6422
2N6423
2N6424
2N'6425
2N6436
2N6437

7-116
7-116
4-26
4-26
4-26
4-26
4-44
4-44
4-289
4-289

7~112

7-112
7-116
7-116
7-116
7-116

2N6437JAN
2N6437JTX
2N6437JTXV
2N6438
2N6438JAN
2N6438JTX
2N6438JTXV
2N6486
2N6487
' 2N6488

2-15
2-15
2-15
4-289
2-15
2~15

2-15
4-293
4-293
4-293
' 4-293~
4-293
4-293 '
4-298,
4-'302,
4-302
4-302
7-120
7-120 '
7--120
7-120
7~120

7-120
4-"306
4-306
4-314
4-314
~322

2-15
2-15

'-,

2-15
4-322
2-15
2-15
2-15
. 4-330
4-330
4-334
4-334
4-334

Alphanumeric Index (Continued)
Device

Page

Device

Page

2N6554
2N6555
2N6556
2N6557
2N6558
2N6559
2N6569
2N6576
2N6577
2N6578

4-338
4-338
4-338
4-342
4-342
4-342
4-346
4-350
4-350
4-350

040P1
040P3
040P5
04101
04102
04104
04105
04107
04108
041010

4-394
4-394
4-394
4-378
4-378
4-378
4-378
4-378
4-378
4-378

MCR729
MCR1718
MCR1906
MCR3818
MCR3835
MCR3918
MCR3935
MOS20
MOS21
MOS23

7-170
7-172
7-174
7-176
7-180
7-176
7-180
4-398
4-398
2-9

2N6591
2N6592
2N6593
2N6594
2N6609
2N6648
2N6649
2N6650
BU108
BU204

4-354
4-354
4-354
4-358
4-65
4-281
4-281
4-281
2-16
4-362

041011
041013
041014
041E1
041E5
041E7
041K1
041K2
041K3
041K4

4-378
4-378
4-378
4-382
4-382
4-382
4-386
4-386
4-386
4-386

MOS24
MOS25
MOS26
MOS27
MOS60
MOS73
MOS74
MOS75
MOS76
MOS77

2-9
2-9
4-402
4-402
4-404
2-9
2-9
2-9
4-402
4-402

BU205
BU207
BU208
C35
C106
C122
C228
C228( )3
C229
C230

4-362
4-368
4-368
7-124
7-126
7-128
7-130
7-130
7-130
7-132

MAC15
MAC15A
MAC20
MAC20A
MAC25
MAC25A
MAC35
MAC36
MAC37
MAC38

7-134
7-134
7-138
7-138
7-138
7-138
7-140
7-140
7-144
7-144

MOS1678
MJ205
MJ410
MJ411
MJ413
MJ423
MJ431
MJ802
MJ804
MJ900

4-406
2-16
4-408
4-408
4-410
4-410
4-410
4-412
2-16
4-414

C230( )3
C231
C231( )3
C232
C233
040C1
040C2
040C4
040C5
04001

7-132
7-132
7-132
7-132
7-132
4-374
-4-374
4-374
4-374
4-378

MAC50
MAC50A
MAC92
MAC220
MAC221
MAC40688
MAC40689
MAC40690
MBS4991
MBS4992

7,-138
7-138
7-148
7-104
7-104
7-66
7-66
7-66
7-152
7-152

MJ901
MJ1000
MJ1001
MJ1800
MJ2252
MJ2500
MJ2501
MJ2955
MJ2955A
MJ3000

4-414
4-414
4-414
2-16
2-16
4-416
4-416
4-6
4-10
4-416

04002
04004
04005
, 04007
04008
040010
040011
040013
040014
040E1

4-378
4-378
4-378
4-378
4-378
4-378
4-378
4-378
4-378
4'-382

MCR63
MCR64
MCR65
MCR100
MCR101
MCR102
MCR103
MCR104
MCR106
MCR115

7-156
7-156
7-156
7-158
7-160
7-160
7-160
7-160
7-162
7-164

MJ3001
MJ3029
MJ3030
MJ3040
MJ3041
MJ3042
MJ3771
MJ3772
MJ3773
MJ4030

4-416
4-418
4-418
4-420
4-420
4-420
2-16
2-16
2-16
4-422 '

040E5
040E7
040K1
- 040K2
040K3
040K4
040N1
040N2
040N3
040N4

4-382
4-382
4-386
4-386
4-386
4-386
4-390
4-390
, 4-390
- 4-390

7-164
7-166
7-166
7-166
7-166
7-166
7-166
7-112
7-116
7-16

MJ4031MJ4032
MJ4033
MJ4034
MJ4035
MJ4502
MJ4645
MJ4646
MJ4647
MJ6700

4-422
4-422
4-422
4-422
4-422
4-424
4-426
4-426
4-426
4-428

,

.

MCR120
MCR201
MCR202
MCR203
MCR204
-MCR205
MCR206
MCR220
MCR221
MCR649AP

1-7

Device

Page

Alphanumeric Index (Continued)

•

Device

Page

Device

Page

Device

Page

MJ7160
MJ7161
MJ8100
MJ9000
MJ10000
MJ10001
MJ10002
MJ10003
MJ10004
MJ10005

2-16
2-16
4-430
2-17
4-432
4-432
4-438
4-438
4-444
4-444

MJ15014
MJ15015
MJ15016
MJ15022
MJ15024
MJE31
MJE31A
MJE31B
MJE31C
MJE32

2-6
4-10
4-10
4-527
4-527
2-17
2-17
2-17
2-17
2-17

MJE710
MJE711
MJE712
MJE720
MJE721
MJE722
MJE800
MJE801
MJE802
MJE803

2-17
2-17
2-17
2-17
2-17
2-17
4-561
4-561
4-561
4-561

MJ10006
MJ10007
MJ10008
MJ10009
MJ10011
MJ10012
MJ10013
MJ10014
MJ10015
MJ10016

4-450
4-450
4-456
4-456
4-462
4-464
4-468
4-468
4-474
4-474

MJE32A
MJE32B
MJE32C
MJE5H
MJE52T
MJE53T
MJE105
MJE170
MJE171
MJE172

2-17
2-17
2-17
4-530
4-530
4-530
4-533
4-535
4-535
4-535

MJE1090
MJE1091
MJE1092
MJE1093
MJE1100
MJE1101
MJE1102
MJE1103
MJE1290
MJE1291

2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
4-563
4-563

MJ11011,
MJ11012
MJ11013
MJ11014
MJ11015
MJ11016
MJ11017
MJ11018
MJ11019
MJ11020

4-479
4-479
4-479
4-479
4-479
4-479
2-2
2-2
2-2
2-2

MJE180
MJE181
MJE182
MJE200
MJE205
MJE210
MJE220
MJE221
MJE222
MJE223

4-535
4-535
4-535
4-543
4-539
2-17
2-17
2-17
2-17

MJE1660
MJE1661
MJE1909
MJE2360T
MJE236H
MJE2801
MJE280H
MJE2901
MJE290H
MJE2955

4-563
4-563
4-565
4-567
4-567
4-569
4-569
4-569
4-569
4-571

MJ11021
MJ11022
MJ11028
MJ11029
MJ11030
MJ11031
MJ11032
MJ11033
MJ12002
MJ12004

2-3
2-3
4-481
4-481
4-481
4-481
4-481
4-481
4-483
4-489

MJE224
MJE225
MJE230
MJE231
MJE232
MJE233
MJE234
MJE235
MJE240
' MJE241

2-17
2-17
2-17
2-17
2-17
2-17
2-17
2-17
4-545
4-545

MJE2955T
MJE3055
MJE3055T
MJE3300
MJE3301
MJE3302
MJE3310
MJE3311
MJE3312
MJE3439

MJ12005
MJ13014
MJ13015
MJ13330
MJ13331
MJ13332
MJ13333
MJ13334
MJ13335
MJ14000

4-495
4-497
4-497
4-503
4-503
4-509
4-509
4-509
4-509
4-515

MJE242
MJE243
MJE244
MJE250
MJE251
MJE252
MJE253
MJE254
MJE340
MJE341

4-545
4-545
4-545
4-545
4-545
4-545
4-545
4-549
4-551

MJE3440
MJE6040
MJE6041
MJE6042
MJE6043
MJE6044
MJE6045
MJE13002
MJE13003
MJE13004

MJ14001
MJ14002
MJ14003
MJ15001
MJ15002
MJ15003
MJ15004
MJ15011
MJ15012
MJ15013

4-515
4-515
4-515
4-517
4-517
4-521
4-521
4-525
4-525
2-6

MJE344
MJE350
MJE370
MJE371
MJE520
MJE521
MJE700
MJE701
MJE702
MJE703

4-551
4-553
4-555
4-557
4-559
2-17
4-561
4-561
4-561
4-561

MJE13005
MJE13006
MJE13007
MJE13008
MJE13009
MJE15028
MJE15029
MJE15030
MJE15031
MM3007

4~539

4~545

1-8

!

4-571
4-571
4-571
4-573
4-573
4-573
4-573
4-573
4-573
4-575
4-575
' 4-200
4-200
4-200
4-200
4-200
4-200
4-577
4'-577
4-585
4-585
4-593
4-593
4-601
4-601
4-609
4-609 '
4-609
4-609
2-5

Alphanumeric Index (Continued)
Page

Device
MM4030
MM4031
MM4032
MM4033
MM4036
MM5007
MOC3010
MOC3011
MPS-U01
MPS-U01A

Page

Device

Device

. Page

2-5
2-5
2-5
2-5
_2-5
2-5
7-182
7-182
4-611
4-611

SC250( )3
SC251
SC260
SC260( )3
SC261
SE9300
SE9301
SE9302
SC9400
SC9401

7-210
7-210
7-212
7-212
7-212
2-17
2-17
2-17
2-17
2-17

TIP42
TlP42A
TlP42B
TlP42C
TlP47
TIP48
TIP49
TlP50
TIP100
TIP101

4-655
4-655
4-655
4-655
4-659
4-659
4-659
4-659
4-663
4-663

4-613
4-615
4-615
4-619
4-619
4-621
4-623
4-627
4-631
4-635

SC9402
T2300P
T2301P
T2302P
T2500
T2800
T2801
T2802
T4100
T4101

2-17
7-214
7-214
7-214
7-216
7-218
7-220
7-218
7-74
7-70

TlP102
TIP105
TIP106
TIP107
TIP110
TIP111
TIP112
TIP115
TlP116
TIP117

4-663
4-663
4-663
4-663
4-668
4-668
4-668
4-668
4-668
4-668

4-635
4-637
4-639
4-639
4-641
4-643
4-645
1<-186
7-186
7-186

T4110
T4111
T4120
T4121·
T6400
T6401
T6410
T6411
T6420
T6421

7-74
7-70
7-222
7-70
7-224
7-226
7-224
7-226
7-224
7-226

TlP120
TIP121
TIP122
TIP125
TIP126
TlP127

4-673
4-673
4-673
4-673
4-673
4-673

MPU6027
MPU6028
MU10
MU20
. MU2646
MU4891
MU4892
MU4893
. MU4894
S2800

7-190
7-190
7-194
7-194
7-196
7-198
7-198
7-198
7-198
7-200

TlP29
TIP29A
TlP29B
TIP29C
TIP30
TIP30A
TlP30B
TIP30C
TIP31
TIP31A

4-649
4-649
4-649

S6200
S6210
S6220·
SC136
SC141
'SC146
SC245
SC245( )3
SC246
SC250

7-202
7-202
7-202
7-204
7-206
7-206
7-208
i.
.,
... 7-208
7-208
. 7-210

TIP318
TlP31C
TIP32
TIP32A
TlP328
TIP32C
TlP41
TIP41A
TlP41B
TlP41C

4-651
4-651
4-651
4-651
4-651
4-651
4-655
4-655
4-655
4-655

MPS-U02
MPS-U03
MPS-U04
. MPS-U05
MPS-U06
MPS-U07
MPS-U10
MPS-U31
MPS-U45
MPS-U51
MPS-U51A
MPS-U52
MPS-U55
MPS-U56
MPS-U57
MPS-U60
MPS-U95
MPU131
MPU132
MPU133

4~649

4-649
4-649
4-649
4-649
4-651
4-651

.,
~1

It,!:

"

:

.

,

. 1-9

•

•

i'

/

1-10

/

power Transistor selector Guide

II

•

2-2

Motorola Standard Silicon Power Transistors
Arranged by Package
TO-3

~~
Min

CASE 197-01 - 60-mil pins

2.5

1300'
1500'

3

250
275
350

ts
Device Typo

325

2N3902

120
200
250
300

2N4347
MJ410
MJ3029
MJ411
2N6542
MJ3030
2N6543
BU207
8U208
MJ12004

100
120
140
250

2N575B
2N5759
2N5760
MJ15011

7

300
350

7.5
8

1.11

2

8/40
10/50
10/50
30/90
15/60
30/90

3

0.1 typ

I

2.8

100

25/100

3

5
5

60

MJ1000
2N6055
MJ1001
2N6056
2N6306
2N6307
2N6544
2N6308
2N6545
MJ100ll
MJ12005

lk min
750/18k
lk min
750/18k

3
4
3
4
3

100
120
140
150
200

15175
15175
7/35

12160
7/35
20 min
5 min

2N3790
2N3792
2N5876
MJ2501
2N6229
2N6230
2N6231
MJ11017
MJll019

36
36
75

1.2 !yp

40/120
40/120

80

4 tvP
4 !yp
4 typ

1

2N3447
2N3448

2N3789
2N3791
2N5875
MJ2500

2
2
2

100

60
BO

2N6383
2N3713
2N3715
2N5877
MJ3000
2N6384
2N3714
2N3716
2N5878
MJ3001
2N6385
2N5632
2N5633
2N5634
2N3442
MJ11018
MJll020

0.75 typ
0.75 typ
1

lk120k
15 min
30 min
20/100
lk min
lk120k
15 min
30 min
20/100
lk min
lk/20k
25/100
20/80
15/60
20170
100 min
100 min

@25°C \

5
5
5

2.5
2.5

40
60

Min

3
3

250 min
250 min

350
400
1400'
1500'

Amp

@ IC

3

MJ3041
MJ3042

80

J.l.s

Max

0.4 typ
0.4 typ
0.4 typ

"32

MJ900
2N6053
MJ901
2N6054

Watts

J.l.S

1 typ
1 typ
1 typ

2

7/35
3.75 min
7/35
2.25 min
2.25 min
2.5 min
/tll

Po (Case)

'T
MHz

2
2
1
0.4
1
3
3
3
4.5
4.5
4.5

30/90

.

Max

2

30 min

2N6226
2N6
B

3

6

~

~

30

10

,3Q

JD

~

TO-59

Min

NPN

7

80
100

2N5347
2N5349

10

60
80
100

~

,~~
••

STYLE
PIN 1:
1. EMITTER
2. BASE'
Stud mounted devices; power dissipa·
3. COLLECTOR
tion 60 watts at 25°C case.

Cevice Type

Max

10

.30

CASE 160·03

."Q

leeont VeEO(sus)
'Amps
Volts

_5_

;tUl

PNP

MJ6700
2N6187
2N6189

hFE @ Ie
MiniMax Amp

60/240
60/240
25/180
601240
60/240

2-6

Resistive Switching·
ts
~
p.s
p.s @ Ie
Max
Max
Amp

't '

fT
MHz

Pc (Case)

Min

@25°e

Watts

2
2

2
2

0.2
0.2

2
.2

30
30

60
60

2
2
2

1
2
2

0.15
0.2
0.2

2
2
2

30
30
30

60
60
60

3

TO-66

~~~
¥,,<"
ICCont VCEO(sus
Volts
Amps
Max

Min

1

40
60
80
175
225
250
300

2

120
150
200
225
250
300

CASE 80·02
For single side mounting; power dissi·
pation of 20 to 90 watts at 25 0 C case.

Device Type
NPN

PNP

2N4912
2N3583
2N3738
2N3739
2N5050
2N5051
2N5052
2N3584
2N3585

350
3

140

4

60

2N6211
2N6421
2N6212
2N6422
2N6213

2N3441
2N3054,A
2N3766
2N6294

80
2N3767
2N6295
5

2N4898
2N4899
2N4900
2N6420
2N6424
2N5344
2N6425
2N5345

2N3740
2N6049
2N6296
2N3741
2N6297

40
60
80
225
275
325

2N4231A
2N4232A
2N4233A
2N6233
2N6234
2N6235

2N6312
2N6313
2N6314

60
80

2N6315
2N6428
2N6316
2N5430
M.16014
2N6078
2N6077

2N6317'

7

100
150
250
275
8

60
80

2N6300
2N6301

10

80

2N6495

~

3_~
2
'.. 1

2N6318

hFE @ IC
MiniMax Amp
20/100
20/100
401200
401200

251-100
401200

25/100
25/100
25/100
25/100
10/100
25/100
10/100
25/100
10/100

0.75
0.75
0.75
1
1
1
1
1

25/100
30/100
25/100
40/160
750/1Bk

0.25
0.5'
0.5
2

~~/l00

0~25

2N6298
2N6299

20/100
40 min

12170
12170
750/1Bk
750/18k
10/60

Max

0.6 tvo 0.3 tvo
0.6 typ 0.3 typ
0.6 typ_ 0.3 typ
2 typ 0.23 typ
3 tyO
0.3 typ
0.6
0.1
3 typ
0.3 typ
0.6
0.1
3.5
3.5
3.5
2.5
4
2.5
4
2.5

1.2
1.2
1.2
0.6
3
0.6
3
0.6

0.5
2
1.5
1.5
1.5
1
1
1

0.5 typ 0.21yp
0.51YO 0.21Yp
0.5typ_ 0.2 !yp
3.5
0.5
3.5
0.5
3.5
0.5

Amp

Min

@25 D C

0.5
0.5
0.5
0.5
0.1
0.5
0.1
0.5

3
3
3
10
10
60
10
60

25
25
25
35
20
40
20
40

0.75
0.75
0.75
1
1
1
1
1

10
10
10
20
10
20
10
20

40
40
40
35
35
35
35
35

0.2

25

4
3
10
4#
4
10
4

25
75
20
50
25
20
50

1.5
1.5
1.5
1
1
1

4
4
4
20
20
20

75
75
75
50
50
50
90
40
90
40
50
45
45

0.27 typ 0.25
0.3 typ 0.5
0.09 typ 0.5
0.7 !yp
2
0.27 typ 0.25
0.09 typ 0.5
0.71yp
2

1
2
1
2

O.B
0.2
O.B
0.2

2.5
2
2.5
2

2.B
2.B

0.3
0.3

1.2
1.2

4
30
4
30
10
1
1

4
4

1.51vo
1.51yp

1.51vo
1.5 typ

4
4

4#
4#

75
75

10

25

70

0.151yp 0.051yp

STYLE 1
(Case 77 on "[abies) :
PIN 1. EMITTER
2. COLLECTOR
For lead mounted applications or use
3. BASE
with heat sinks; power dissipation of
15 to 40 watts at 25 0 C case.

Max

Min

0.3

250
350

MJE3440
MJE3439

40/160
40/160

0.5

150
200

MJE341
MJE344

251200
30/300

PNP

hFE
MiniMax

Resistive Switching
tf
ts
I'S
I'S @ Ie

STYLE 3
(Case 77R on Tables)
PIN 1. BASE
2. COLLECTOR
3. EMITTER

fT
MHz

Po (Case)

Min

@25 D e

0.02
0.02

15
15

15
15

0.05
0.05

15
15

@ Ie
Amp

2-7

Watts

2.5
2
2.5
2
1
1.2
1.2

10

Max

Max

0

Po (Case)

TO-126

Device Type

2

'0

fT
MHz

CASE 77'03
PLASTIC

V~EO(SUS)
NPN

Max

1.3 typ
1 typ
0.9 typ
0.9 typ_
1.3 typ
0.9 typ
0.9 typ

25 100

25/125
25/125
25/125
20/100
60/240
601240

. MJ16013

Resistive Switching
tf
ts
I's @ IC
I'S

'0.5

40/160
750/18k
25/100
25/100

ICeont
Amps

Volts

0.5
0.5
0.5
0.5
0.1
0.5
0.1
0.5

20/100

(D

STYLE 1:
.
PIN 1. BASE
0
2. EMITTER
CASE. COL'LECTOR

Amp

Watts

20.B
20.B
,continued)

•

TO-126

(conti nuedl

ICCont Iv.
Amps
Volts
Max
0.5
(cont'd)

•

1.5
3

4

PNP

Min

NPN

250
300

2N5655

350
1

Device Type

40
61l
80
300
400
30
, 40
60
80

~~:::~

•

2N4918
2N49'19
2N4920

MJE13002.
MJE13003.

MJE520
MJE'180
MJE'IS'
MJE182
2N5190
MJE521
2N6037

60
'

80

:~~~6~~
5

25

!

2N6036
MJE253

MJE200

MJE210

20
2f l!

Watts

0.24 tyO

0.1

10

~g~~~g

3.5 tyO
3.5 typ

0.24 tyO
U.£4 typ

0.1
U.l

10
lU

0.5
I.b
U.S

0.6 tyO
1.1i tyO
U.6 'yp

0.3 typ
.J ,y~
0.3 typ

0.5
'.b
0.5,

3
J
3

30
JL
3U

1
1

4
4

0.7
0.7

1
1

5
5

.40
40

1.6 typ
U.1i typ
0.1i typ

2 typ
U,12 typ
U.12 typ

U,
U.l

5C
OU

25
12.5
12.0
12,b

0.4 typ

0.4typ

1.5

1.7 typ

1.2 typ

2

20/100
£()I"UU

20/10U
5/25
5125

i~/~6"o

MJE243

@25°C

3.5 tyO

~~~~~JO.

'Y'.J!,3~.'2.

Min

0.1

50/250

~~:;:~'. ~:;:~'.
~:g~~
~~:~~~

Po (Case)

°6°15
U.l

MJE370
MJE' 7~
MJE' 7'
MJE172

MJE371
2N6034

fT
MHz

301250
3U/l5U

2N5657

40

100

MJE350

@ IC
hFE
MiniMax Amp

Resistive
tf
ts
JiS
Jis @ IC
Max
Max
Amp

25 min

50125e
5U/25U

40 min

750/18k

;~/~~

750 min

750/18k
lk min

750/1 Elk_
40/120
45/180

J
U.
0.1
1
1.5
1
2
1
1.5
1.5
2
1

0.4 typ

0.4 typ

1.5

1.7 tyO

1.2 tyO

2

bO

20
2
25

2~#

o

lU

15
40
40
40

!~

1#
25
2011

40
40
15

0.2

i

0.4typ 0.4 typ
1:7 tyO 1.2 tyO
0.7 typ 0.08 typ

1.5
2
0.2

25
40

40
15

2

0.13 typ 0.035 tyli

2

65

15

-Case 77R (Style 3)

TO-127
CASE 90·05
PLASTIC

"

3

IcCont vCEO(sus)
Amps
Volts

Device Type

hFE @ IC
MiniMax Amp

Max

Min

NPN

PNP

5

40
50
60
80

2N5977
MJE205
2N5978
2N5979

2N5974
MJE105
2N5975
2N5976

20/120
25/100
25/100
20/120

2.5
2
2.5
2.5

60
80
100

MJE6043
MJE6044
MJE6045

MJE6040
MJE6041
MJE6042

lk120k
lk/20k
lk120k

4
4
4

20/70
20/120
20/120
20/120
20/100
20/100

4

8

STYLE'2:
PIN 1. EMITTER
2 .. COLLECTOR
3. BASE

For lead mounted applications or use
with heat sinks; power dissipation
of 40 to 100 watts at 25°C case.

10

60

MJE3055

MJE2955

12

40
60
80

2N5989
2N5990
2N5991

2N5986
2N5987
2N5988

15

40
60

MJE1660
MJE1661

MJE1290
MJE1291

2-8

6
6
6
5
5

Resistive Switching
tf
ts
Jis @ IC
Jis
Amp
Max
Max

iT
MHz

Po (Case)

Min

@25°C

Watts

0.45typ 0.18 typ

2~_

2

0.45typ 0.18 typ
0.45typ 0.18 typ

2.5
2.5

2

75
65
75
75

4#
4#
4#

75
75
75

1.5 typ
1.5 typ
1.5 typ

1.5 typ
1.5 typ
1.5 typ

0.5 typ
0.5 typ
0.5 typ

0.25 typ
0.25 typ
0.25 \yp

4
4
4 ,"

6
6
6

2

2

90

2
2
2

100
100
100

3
3

90
90

$3

1_-<-::

~

2 .:c .. :_..
3'-/

ICCont VCEO(sus)
Amps
Volts
Max

Min

0.5

65
300

Devica Type
NPN

PNP

MPS-U31
MPS-U10

MPS-U60
MPS-U52

O.S

40

MPS-U02

1

120
1S0

MPS-U03
MPS-U04

2

30
40

MPS-U01
MPS-U01A
MPS-U45
MPS-U05
MPS-U06
MPS-U07

60
SO
100

"~
ICCont VCEO(sus)
Amps
Volts
Max

Min

0.1

250

MPS-U51
MPS-U51A
MPS-U95
MPS-U55
MPS-U56
MPS-U57

10min
30min

Po (Case)

Min

@25°C

0.1
0.030

60

10
10

30 min

0.5

150

10

0.010
0.010

100
100

10
10

50min
50 min
4k min
60 min
60 min
30 min

1
1
1
0.25
0.25
0.25

50
50
100
50
50
50

10
10
10
10
10
10

.h FE

@ Ie
MiniMax Amp
0.02
0.02
0.02
0.02

10k/60k
40k min
10k/60k
40k min
40 min
401200
40 min
301200
40 min

300

D40C1
D40C2
D40C4
D40C5
D40P1
2N6591
D40P3
2N6592
D40P5
2N6557
MDS20
2N6593
2N655S

350

MDS21
2N6559

0.2
0.2
0.2
0.2
0.08
.1
0.08
0.1
O.OS
0.03
0.03
0.1
0.03
0.03
0.03
0.03

40
120
150
1S0
200
225
250

STYLE 1:
PIN.!.
2.
3.
4.

CASE 306
For lead or chassis mounted applications or use with heat sink; power dissipation of 2 to 10 watts.

PNP

40/180
401250
301200

40/180
MDS60

Watts

40min
40 min

30/90
60/1 SO
30/90
60/180

30

Resistive Switching
ts
~
p.s @ IC
p.s
Amp
Max
Max

TO-202

Device Tvpe
NPN

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

fT
MHz

hFE @ IC
MiniMax Amp

D40N1
D40N2
D40N3
D40N4

300
0.5

CASE 152
For lead or chassis mounted application or use with heat sink; power dissipation of 1 to 10 watts.

30 mIn
401250

40/180

Resistive Switchinn
tf
ts
p.s
p.s @ Ie
Max

Max

0.35 typ 0.8 typ
0.35 typ 0.8 ty~
0.35 typ 0.8 typ
0.35 typ 0.8 typ
2.5

Amp

1
1
1
1
0.08

2.5

0.08

2.5

0.08

EMITTER
BASE
COLLECTOR
COLLECTOR

fT
MHz

Po (Casel

Min

@25°C

50
50
50
50

6.25
6.25
6.25
6.25

100
100
100
100
50
35
50
35
5
45
60
35
45
45
60
45

6.25
6.25
6.25
6.25
6.25
10
6.25
10
6.25
10
10
10
10
10
10
10

Watts

(continued)

2-9

•

TO-202 (continued)

ICCont VCEO(SUS)
Amps
Volts

)

Device Type

Max

Min

NPN

PNP

1

30

04001
04002
04004
04005
2N6551
04007
0400B
040010
040011
040013
040014
2N6552
12N6553

04101
04102
04104
04105
2N6554
04107
0410B
041010
041011
041013
041014
2N6555
2N6556

040El
040Kl
040K3
2N654B
2N6549
040K2
040K4
040E5
ID40E7

041El
041Kl
041K3

•

45
60
75

BO
100
2

30
40
50
60
BO

3

40
60
65"
80
100

MOS26t
MOS23
MDS27t
MOS167B
MOS24
MOS25

041K2
041K4
041E5
041E7
MOS76t
MOS73
MOS77t
MOS74
MOS75

@IC
hFE
MiniMax Amp

25 min
25 min

1
1
1
1
0.5
1
1
1
1
0.1
0.1
0.5
0.5

10min
lk min
lk min
5k min
3k min
lk min
lk min
10 min
10min

1
1.5
1.0
1
1
1.5
1.0
1
1

10min
20 min
10 min
10 min
25 min
10min
10min
10 min
10 min

. 50/150
50/150

ts
p.s

Resistive Switching
tf
p.s @IC

Max

Max

'T
MHz

Po (Case)

Amp

Min

@25°C

200 typ
200 !yp
200 typ
200 typ
75
200 typ
200 typ
200 typ
200 typ
200 typ
200 tvo
75
75

10
10
10
10
10
10
10
10
10
10
10
10
10

230 typ
100
100
100
100
100
100
230 typ
220 typ

8
10
10
10
10
10
10
8
8

0.2
·0.2
0.2
0.2

typ
typ
typ
tvo

0.05
0.05
0.05
0.05

typ
tvp
typ
tvo

1
'1
1
1

0.2
0.2
0.2
0.2
0.2
0.2

typ
typ
typ
typ
typ
tvo

0.05
0.05
0.05
0.05
0.05
0.05

typ
typ
typ
typ
typ
tvo

1
1
1
1
1
1

0.4 typ

0.17 typ

1

0.4 typ
0.4 typ

0.17 typ
0.17 typ

1
1

Watts

30 min
501250
30 min
10 min
501250

1.0
50
10
0.1
10
50
1.0
50
10
10
1.5
100
10
0.1
50
50/250
0.1
10
50
t Pin out is: Pinl-Base. Pin2-Collector. Pin3-Emitter. Pin4-Collector

TO-220
CASE 221A-02
PLASTIC •

4

,

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

For lead mounted applications or use
with heat sinks; power dissipation
of 40 to 100 watts at 25°C case.

2
3

,

Resistive Switching

ICCont VCEO(sus)
Amps
Volts
Max
0.5

Min
350

Device Type
NPN

PNP

MJE2360T
MJE2361T

15 min

1

40
60
80
100
250
300
350
400

TIP29
TIP29A
TIP29B
TIP29C
TIP47
TIP4B
TIP49
TIP50

TIP30
TIP30A
TIP30B
TIP30C

2

60
80
100

TIPll0
TIPlll
TIP112

TIPl15·
TIPl16
TIP117

40
60
75
80
100

TIP31
TIP31A
MJE1909
TIP31B
TIP31C

TIP32
TIP32A

3

hFE @ IC
MiniMax Amp

40 min
15175
15175
15175
15175
30/150
30/150
30/150
30/150

t,
p.s

Max

Max

@ IC

Amp

0.1
0.1
1
1
1
1
0.3
0.3
0.3
0.3

500 min
min
5
500 min

2
2
2

25 min
25 min

1
1
0.5
1
1

20/150
TIP32B
TIP32C

ts
p.s

25 min
25 min

0.3 typ
0.3 ty~
0.6J~ 0.3 tl'P
0.6 !yp 0.3 tvP
0.18M>.
2 tvo
2 tvp 0.18 !yp
2 tyO 0.18 tvp
2 typ 0.18 !yp
0.6 tvP
0.6 typ

1.7ty~

1
1
1
1
0.3
0.3
0.3
0.3

"T
MHz

Po (Case)

Min

@25°C

10 tvp
10 typ

30
30

3
3
3
3
10
10
10
·10

Watts

!

30
30
30
30
40
40
40
40

1.7 tvo
1.7 tvp

1.3 tvp·
1.3 tvo
1.3 typ

2
2
2

25#
25#
25#

50
50
50

0.6 typ
0.6 tvp

0.3 tvp
0.3 typ

1
1

0.6 typ
0.6 !yp

0.3 typ
0.3 !yp

1
1

3
3
100
3
3

40
40
10
40
40

# I hie I @ 1 MHz
(continued)

2-10

TO-220 (continued)
ICCont VCEOlsus)
Amps
Volts

Device Type

Max
4

Min
46
60
BO
300
400

NPN
2N6121
2N6122
2N6123
MJE13004
MJE13005

PNP
2N6124
2N6126
2N6126

5

60
BC
100
250

TIP120

TIP126

300
350

III""

1I""b

TIP122
MJE5H
2N6497
MJE52T
2N649B
MJE53T
2N6499

TIP127

5 min

10175
5 min

40
60
80
100

TIP41
TIP41A
TIP41B
TIP41C

TIP42
TIP42A
TIP42B
TIP42C

7

30
50
70

2N6288
2N6290
2N6292

2N6111
2N6109
2N6107

8

40
60
80
100
120
150
300
400

10

60

80

12

300
400

15

40
60
BO

MJE280H
MJE3055T
2N6387
2N63B8
D44Hl0
D44Hll

10175
15175
15175
15/75
15175
30/150
30/150
30/150

MJE15029
MJE15031

lk120k
lk/l0k
lk120k
lk/l0k
lk120k
lk/l0k
lk/20k
40 min
40 min

MJE290H
MJE2955T

6/30
6/30
25/100
20/70

D45Hl0
D45Hll

lk/20k
lk120k
20 min
40 min

2N64B9
O!Nti4110
2N6491

6/30
6/30
20/150
20/150
20/150

2N6040
TIP105
2N6041
TIP106

~~~~;"

MJE13008
MJE13009
2N64B6
"Nti4ts,
2N648B

lk min
lk min
lk min
5 min

10/75

6

2N6386
2N6043
TIP100
2N6044
TIP10l
I,,:N6045
TIP102
MJE1502B
MJE15030
MJE13006
MJE13007

@ IC
hFE
MinIMax Amp
25/100
1.5
25/100
1.5
20/BO
1.5
6/30
3
6/30
3

2-11

3
;j

3
5
2.5
5
2.5
5
2.5
3
3
3
3
3
2.5
3
3
4
3
4·
3
3
3
3
3
5
5

ts
I-'s

Resistive Switching
tf
I-'s @ IC

fT
MHz

Po ICase)
Wetts

Max
0.4 typ
0.4 typ
0.4 typ
3
3

Max
0.3 typ
0.3 typ
0.3 typ
0.7
0.7

Amp
1.5
1.5
1:5
3
3

Min
2.5
2.5
2.5
4
4

@26°C
40
40
40
60
60

1.5 typ
1.5 typ
1.5 typ
2 typO
1.B
2 typ"
1.B
2 typO
I.B

1.5 typ
1.5 typ
1.5 typ

3
;j

4
2.5
2.5
2.5
2.5
2.5
2.5

4#
4#
4#
2.5
5
2.5
5
2.5
5

65
65
75
BO
BO
BO
BO
BO
80

typ
typ
typ
typ

3
3
3
3

3
3
3
3

65
65
65
65

0.15 typ
0.15 typ
0.15 typ

3
3
3

4
4
4

40
40
40

20#
4#
4#
4#
4#
4#
4#
30
30
4
4

65
75
80
75
80
75
80
50
50
80
80

20#
20#
50 typ
50 typ

75
75
65
65
50
50

0.4
0.4
0.4
0.4

typ
typ
typ
typ

0.4 typ
0.4 typ
0.4 typ
1.5 typ
1.5 typ
1.5 typ
1.5 typ
1.5 typ
1.5!yp
3
3

O.B
O.B
0.8
0.15
0.15
0.15
0.15

1.5
1.5
1.5
1.5
1.5
1.5

!yp
typ
typ
!yp
typ
typ

0.7
0.7

3
3
3
3
3
3
5
5

3
4
5
5
4
4
B
8

3
3

0.7
0.7

8
8

4
4

100
100

5
5
5

0.6 typ
0.6 typ
0.6 typ

0.3 typo
0.3 typ
0.3 !YP

5
5
5

5
5
5

75
5
75

Motorola Power Darlingtons
Power Darlingtons provide' high gain, high input impedance and reduced component count, with subsequent space savings. Devices are listed in ascending order of maximum continuous collector current, IC
Cont,and open base sustaining-voltage, VCEO (sus),
Complementary types are grouped together.

•

ICCont
Amps
Max
0.5

2

VCEO(sus)
' Volts
Min
30

Device Type
PNP
NPN
D40CI
D40C2

hFE
MiniMax
IOk/60k
40k min

4u

~:~~;

~~~~~~

~:~

30

D40KI
D40K3
2N6548
2N6549'
MPS-U45
D40K2
D40K4
TlPllO
TIPlll
TlP1l2
MJE3300
2N6037
MJE3301
MJE800
2N6038
2N6294
MJE3302
2N6039
2N6295
TlP120
TlP121
TIP122
MJ3041
MJ3042
2N6386 '
MJluuu
TlPlOO
2N6043
2N6300
2N6055
MJE6043
MJlOOI
TIPIOI
2N6044
2N6301
2N6056
MJE6044
MJE6045
TlPl02
2N6045
MJlOOll
2N6383
MJ3000
2N6387
2N6384
MJ3001
2N6388
2N6385
MJl1018
MJll020
MJll022

Ik min
lk min
5k min
3k min
4k min
Ik min
Ik min
Ik min
lk min
Ik min
Ik min
750/lk
Ik min
750 min
7501l8k
7501l8k
Ik min

1.5
1.0
I
I
. I
1.5
1.0
I
I
I
I
2
I
1.5
2
2
I
2
2
3
3
3
2.S
2.5
3
3
3
4
4
4
4
3
3
4
4
4
4
4
3
4
4
5
5
5
5
5
5
5
10
10
10

40
50

. 4

60
80
100
40
60

80
S
7
8

60
80
100
300
350
40
60

80

100

10

1400'
40
60
80
150
200
250
'VCEX

D41Kl
D41K3
MPS-U95
D41K2
D41K4
TIP 115
TlP1l6
TlPll7
MJE3310
2N6034
MJE3311
MJE700
2N6035
2N6296
Mmat2
2N6036
2N6297
TIP125
TlP126
TlP127

MJ90u
TlPlOS
2N6040
2N6298
2N6053
MJE6040
MJ901
TlPl06
2N6041
2N6299
2N6054
MJE6041
MJE6042
TlPl07
2N6042
MJ2500
MJ2501
MJl1017
MJl1019
MJll021

750/18k

7501l8k
Ik min
lk min
lk min
250 min
250 min
lk120k
lk min
lk120k
Ik/IOk
750/18k
750/18k
Ik120k
Ik.mln
Ik120k
lk/IOk
7501l8k
750/18k
Ik120k
Ik120k
Ik120k
Ik/iOk
20 min
Ik/20k
Ik min
Ik120k
Ik120k
Ik min
Ik120k
Ik120k
100 min
100 min
100 min

@

IC
Amp
0.2
0.2

ts

Resistive Switching
tf

p.s

p.s_

Max
0.35 typ
0.35 typ
0.3~ typ
0,35 typ

Max
0.8 typ
0.8 typ
0.8 typ
0.8 typ

@

IC
Amp
I
I
I
I

2 tVD
2 typ
2 typ

I tVD
I typ
Ilyp

I

1.7 typ

1.'2 typ

2

1.7 typ
0.91vD

1.21yp
0.7 tVD

2
2

1.7 typ
0.9 typ
1.5 tyO
1.5 tVD
1.5 typ

1.2 typ
0.7 typ
1.5 tyO
1.51vD
1.5 typ

2
2
3
3
3

1.51yp
1.5 typ
1.51yp
1.5 typ
1.5 typ_

1.5 typ
1.5 typ
1.5 typ
1.5 typ
1.51yp

3
3
4
4
4

1.5 typ
1.5 typ
1.5 typ
1.5 typ
1.5 typ
1.5 typ
1.5 typ
1.5 tVD

1.51yp
1.5 typ
1.5 typ
1.5 typ
1.5 tyo
I.~ Iyp
1.5 typ
1.5 tyO
I

3
3
4
4
4
4
3
3
4

I

Po (Case)
I MHz ' Watts
Min
@ 25°C
75 typ
10
75 typ
6.25
75 typ
10
75 typ
6.25
75 typ
10
751vD
10
100
10
lOa
10
lOa
10
75 typ
10
75 typ
10
25
50
25
50
25
50
20
15
25
40
20
15
I
40
25
40
4
50
20
15
.25
40
4
50
4
65
4
65
65
.4
100
100
20
65
90
4
80
75
4
4
75
4
100
; 75
2
:,90
:, 80
4
: 75
4
4'
:.75
4 , .. 100
75
2
- . 75
2
4
80
75 -"
4
80
20,
100
150
20
65
2a
lOa
150 '
20, .
65 '
20'
100
200
200
200

I hie I
@

"

Case
JEDEC/MOT
TO·202/306
TO·2021306
TO·202/306

~~:~~~~~~~

/152
TO-202l306
TO·2201221A
TO·2201221A
TO-2201221A
TO·126177R
TO·l26/77
TO·126177R
TO· I26177
TO· I26177
TO·66/80
TO·126/77R
TO· I26177
TO·66/80
TO·2201221A
TO·2201221A
TO·220/221A
TO·3/ll
TO-3/ll
TO·2201221A
TO·3/11
TO·2201221A
TO·2201221A
TO·66/80
TO-31l1
TO· 127190
TO·3/11,
TO-2201221A
TO·2201221A
TO·66/80
: TO-3/11
TO· 127190
TO· 127190
TO-220/22IA
TO-220/22IA
,TO·31ll
TO·3/11
TO-3/11
TO·220122IA
TO·3111
TO·3/11
TO-220122IA
TO·3111
·3/11
TO·3/ll
TO·31ll
(continued)

2-12

Motorola Power Darlingtons (continued)

ICCont
Amps
Max
10
(cont'd)

12

15

16

20

30

50

VCEO('sus)
Device Type
Volts
Min
NPN
PNP
350
MJlOO02
MJlOO06
400
MJlOO03
MJlOO07
MJIOOl2
2N6057
2N6050
60
80
2N6058
2N6051
100
2N6059
2N6052
60
2N6576
90
2N6577
120
2N6578
550
I MJlOOl3
600
MJlOO14
60
MJ4033
MJ4030
80
MJ4034
MJ4031
100
MJ4035
MJ4032
2N6282
2N6285
60
80
2N6283
2N6286
100
2N6284
2N6287
350
MJlOOOO
MJlOO04
MJlOOOI
400
MJlOO05
MJlOO08
450
500
MJlOO09
MJllOl2
MJllOll
60
90
MJl1014
MJl1013
MJl1015
120
MJllOl6
MJll028
MJll029
60
90
MJll030
MJll031
LMJllu,2
MJll033
120
I MJ 10015
400
500
MJlOO16

Resistive Switching
tf
ts
I hfe , Po (Case)
Watts
IlS
(aJ IC
Il S
(q' I MHz
@ 25°C
Amp
Max
Max
Min
2.5
10
150
I
5
1.5
0.5
5
10
ISO
2.5
10
I
5
ISO
1.5
0.5
5
10
ISO
IS
IS
6
175
1.6 tyO
1.5 tyO
4
6
ISO
1.5 typ
1.6 t
6
4
150
4
1.6 typ
1.5 typ
6
ISO
2
7
10
101200
120
2
7
10
101200
120
101200
2
7
10
120
2.5
O.B
10
175
O.B
175
2.5
10
150
ISO
150
2.5 typ
2.5 typ
4
160
10
2.5 tyO
2.5 tyO
10
4
160
2.5 tyO
2.5 tyO
4
160
10
10
175
3
I.B
10
1.5
0.5
10
175
10
175
3
I.B
10
1.5
0.5
10
175
0,6
8
175
2
10
2
0.6
10
B
175
4
200
4
200
4
200
300
300
300
0.5
250
2.5
20
10
10
2.5
0.5
20
250

@ IC
hFE
Min/Max Amp
30/300
5
30/300
5
30/300
5
30/300
5
100/2k
6
750/18k
6
750/18k
6
750/18k
6
2k120k
4
2k120k
4
2k120k
4
101250
10
101250
10
Ik min
10
Ik min
10
Ik min
10
750/18k
10
750118k
10
750/18k
10
40/400
10
40/400
10
40/400
10
40/400
10
301300
10
10
30/300
Ik min
20
Ik min
20
Ik min
20
400 min
50
400 min
50
50
400 min
40
10 min
10 min
40

Case
JEDEC/MOT
TO·31ll
TO-3/ll
TO·31ll
TO-3/ll
TO·31ll
TO-3/ll
TO-31ll
TO-31ll
TO·3111
TO-31ll
TO·3/ll
TO-3/ll
TO-3/ll
TO·3111
TO·3111
TO-3/11
TO-31ll
TO-3/11
TO-31ll
TO-31ll
TO-31ll
TO-31ll
TO-31ll
TO- /11
TO-3/11
TO-3/ll
TO-3/ll .
TO-3/ll
TO·3 Mod/197
TO-3 Mod/197
TO-3 Modll97
TO-3 Modl197
TO-3 Modll97

II

\

Power Switching Transistors
BVCEO <200 v
. (See next page for 200 Volts and greater.)

ICCont
Amps
Max
1

VCEO(SUS)
Volts
Min
40
50

1.5

2

3

65
40
50
60
75
40
60
120
150
40

Device Type
NPN
PNP
2N3244
2N3467
2N3245
2N3468
MM4036
...
2N3762
2N3734
2N3763 .
2N3735
2N5859
2N5861
2N5050
2N5051
2N3719
2N3867
2N3720

60
2N3506

2N3868
2N6303

80
2N3507

hFE @ IC
Min/Max Amp
50/150
0.5
401120
0.5
0.5
30/90
40/120
0.5
20/40
0.5
I
301120
301120
I
20/80
I
I
20/BO
30/120
0.5
25/100
0.5
25/100
0.75
251100
0.75
25/180
2
40/200
2
25/180
2
401200
1.5
30/150
2
2
~01l50
301150
1.5

Resistive Switching
tf
ts
Il S
Il S @ IC
Amp
Max
Max
0.14
0.045
0.5
0.06
0.03
0.5
0,045
0.12
0.5
0.06
0.03
0.5
0.175'
0.15
0.035
0.08
I
0.03
0.03
I
0.08
0.035
I
0.03
0.03
I
0.035
0.035
0.1
0.035
0.035
0.1
3.5
1.2
0.75
3.5
1.2
0.75
004'
I
0.4"
I
004"
I
0.055
0.035
15
0.4'
I
0.4'
1
0.055
0.035
1.5

fT
MHz
Min
175
, 175
ISO
175
60

180
250
150
250
250
200
10
10
60
60
66'
60
60
60
60

Po (Case)
Watts
@WC
5
5
5
5
7
4
4
4
4
5
5
40
40
6
6
6
5
6
6
5

Case
JEDEC/MOT

TO-39179
TO-39179
TO-39179
TO-39179
TO·39179
TO-39179
TO-39179
TO-39179
TO-39179
TO·39179
TO·39179
TO·66IBO
TO·66/80
TO-5/31
TO-5/31
TO-5131
TO-39/79
TO-5/31
TO-5/31
TO-39179
(continued)

2-13

Power Switching Transistors (continued)
leeont
Amps
Max
4
5

•

7

VeEO(sus)
Volts
Min
60
60
80
100
60
80
100

7,5
10

15
20

25

60
80
60
80
60
80
75
80
90
60
80
100
120

30
50

140
150
40
60
80
100
120
140
150

Device Type
NPN
PNP
2N4877
MJ8100
2N53;
2N6191
2N5339
2N6193
2N6315 . 2N6317
2N5428
2N5347
2N6187
2N6316
2N6318
2N5430
2N5349
2N6189
2N3447
2N3448
MJ6700
2N5877
2N5875
2N5878
2N5876
2N5881
2N5879
2N5882
2N5880
2N5039
2N5303
2N5745
2N5038
2N5885
2N5883
2N5886
2N5884
2N6436
2N6338
2N6437
2N6339
. 2N6438
2N6340
2N6341
2N5301
2N4398
2N5302
2N4399
2N6377
2N6274
2N6378
2N6275
2N6379
2N6276
2N6277

hfE
MiniMax
201100
25/180
6U/24
601240
20/100
601240
601240
20/100
601240
601240
40/120
40/120
25/180
20/100
201100
201100
20/100
20/100
15/60
201100
20/100
20/100
20/80
30/120
20/80
30/120
20/80
30/120
30/120
15/60
15/60
301120
30/120
30/120
30/120
30/120

@'

IC
Amp
4
2
2
2
2,5
2
2
2,5
2
·2
5
5
2
4
4
6
6
10
10
12
10
10
10
10
10
10
10
10
10
15
15
20
20
20
20
20

Resistive SWitching
tf
ts
J.ls (a Ie
J.lS
Amp
Max
Max
1.5
0.5
4
0,15
1
2
.2
2
2
2
0.2
2
0,8
1
2.5
0.2
2
2
2
0.2
2
0.8
2.5
1
0,2
2
2
2
0.2
2
0,35
2
5
2
0.35
5
0.15
2
I
0,8
I
4
0.8
I
4
I
0.8
6
0,8
I
6
0.5
1.5
10
2
1
10
1.5
0.5
12
I
0.8
10
I
0.8
10
0.25
I
10
I
0.25
10
0,25
I
10
I
0.25
10
0,25
I
10
1
0.25
10
0,25
I
10
2
1
10
2
1
10
0,8
0,8
0.25
20
0,8
0.25
20
0,8
0.25
20
0,8
0.25
20

. fT
MHz
Min
30
30
30
30
4
30
30
4
30
30
10
10
30
4
4
4
4
60
2
60
4
4,
40
40
40
40
40
40
40
2
2

Po (Case)
Watts
@ 25"C
10
10
10
10
90
. 60
60
90
60
60
115
115
60
150
15
160
160
140
200
140
200
200
200
200
200
200
200
200
200
200
200

30
30
30
30

Case
JEDECI MOT

TO·39179
TO·39179
TO·39179
TO·39179
10·66/80
TO·66/80
10·591160
TO·66/80
10·66/80
TO·59/160
TO·3/11
TO·31l1
TO·59/160
10·3/11
TO·3111
10·3/11
TO·31l1
TO· 3111
TO·3/11
TO·31l1
10·31ll
TO·31l1
TO·31l1
TO·31l1
TO·3/11
TO·31ll
TO· 311 I
TO·3/11
TO·3/11
TO·31ll
TO·3111
TO·3 Mod/197
250
TO·3 Modll97
250 .• , TO·3 Mod/197
250
TO·3 Mod/197
250·,-- TO·3 Mod/197

Motorola SWITCHMODE Power Transistors
BVCEO >200

v

SWITCHMODE power transistors are useful for "off line" converters, switching regulators, deflection circuits,
solenoid drivers, and'motor control. SWITCHMODE devices, both regular transistor structur~s and Darlingtons
with and without "speed·up" diodes, are completely characterized in a Designers Data Sheet !o.rmat. This format
includes switching information at 250 C and lOOoC for both resistive and inductive loads, as. well as clamped in·
ductive reverse·bias SOA.
Other power switching devices with BVCEO :>200 V, but without the SWITCHMODE ,label or Designers Data
Sheet, are included in this table.
Devices are listed in descending order of VCEO (sus). IC Cont, and VCEX'

Case

Designers Data Sheet characterization

"Darlington

2-14

""Darlington with speed,~pdlode

(continued)

Motorola Switchmode Power Transistors (continued)
VCEO (sus)
Volts
Min

IC Cont
Amps
Max

VCEX
Volts
Min

Device Type
NPN unless
otherwise noted

hFE @ IC
Amp
Min/Max

550
500

IS
50
20

MJlOOI3##
MJlOOI6##
MJlOO09##
MJl3335
MJIOO08##
MJ13334
MJlOOI5##
MJIOOOI#
MJlOO05##
MJl3333
2N6547
MJ EI3009
MJ10012#
MJlOO03#
MHOO07##
MJl3015
2N6545
MJEl3007
2N6543
MJEI3005
MJEl3003
MJ4647 - PNP
MJlOOOO#
MJlOO04##
MJl3332
2N6251
MJIOO02#
MJIOO06##
MJl3014
2N6308
2N6499
2N5840
2N6213·PNP
MJ3030
2N6235
2N6546
MJEl3008
2N6544
2N6307
MJEl3006
2N6542
2N6498
MJEI3004
2N3585
2N6422·PNP
2N6212·PNP
MJEl3002
2N5345· PNP
MJ4646 - PNP
2N6250
2N6077
2N6234
2N5839
MJl3331
2N6306
2N6078
MJ3029
2N6497
2N5838
2N3584
2N6421·PNP
2N5344·PNP
2N6211
MJl3330
2N6249
2N5052
MJ4645·PNP

101250
10 min
30/300
10/60
30/300
10/60
10 min
40/400
40/400
10/60
6/30
6/30
10012k
30/300
30/300
8/20
7/35
6/30
7/35
6/30
5/25
20 min
40/400
40/400
10/60
6/50
30/300
30/300
8120
12160
10175
10/50
10/100
3.75 min
25/125
6/30
6/30
7/35
15175
6/30
7/35
10175
6/30
25/100
251100
10/100
5/25
25/100
20 min
8/50
12170
251125
10/50
B/40
15175
12170
30 min
10175
10/50
251100
251100
25/100
10/100
BI40
10/50
251100
20 min

450

20

400

50
20

650
750
750
600
650
550
650
500

15
12
10
10

850
700
550
-500

10
8

450
850
700
850
700
700
400
450

350

5
4
1.5
0.5
20
15

375
450

10

325
300

10
8
5
3
2
5
15 .. 12
8 .. 5
4
2

...

400
700
450
375
400
700
350
650
600
650
600
650
400
600
500

350
600
300
300
275
300
300
275
300
250
350
500
275
500
350'
3
275
2
375
375 .
I
250
225
275
2
200
20
300
15
225
2
200
0.5
200
DeSigners Data Sheet charactematlOn
#Darllngton
##Darllngton with speed-up diode
1.5
I
0.5
15
7
5
3
20
8
7
!>

ts

10
40
10
5
10
5
40
10
10
5
10
8
6
5
5
5
5
5
3
3
I
0.5
10
10
5
10
5
5
5
3
2.5
2
I
3
I
10
B
5
3
5
3
2.5
3
I
I
I
I
0.5
0.5
10
1.2
I
2
10
3
1.2
0.4
2.5
2
I
I
0.5
I
10
10
0.75
0.5

2-1/5

Resistive Switchi~
tF

JlS

JlS

Max

Max

2.5
2.5
2
4
2
4
2.5
3
1.5
4
4
3
6
2.5
1.1
2
4
3
4
3
4 ,
0.72'
3
1.5
4
3.5
2.5
1.5
2
1.6
1.8
3
2_5

0.8
1.0
0.6
0.7
0.6
0.7
1.0
I.S
0.5
0.7
0.7
0.7
15
I
0.25
0.5
I
07
0.8
0.7
0.7

3.5
4
3
4
1.6
3
4
IB
3
4
4
2.5
4
0.6
0.72'
35
2.B
3.5
3.75
3.5
1.6
2.B
I.B
3
4
4
0.6
2.5
3.5
3.5
35
0.72'

18
0.5
0.7
I
I
0.5
0.5
0.4
0.8
1.5
0.6
I
0.5
0.7
0.7
I
0.4
0.7
O.B
O.B
0.7
3
3
0.6
07
0.1
I
0.3
0.5
1.5
0.7
0.4
0.3
I
O.B
1.5
3
3
0.1
0.6
07
I
12

@

IC
Amp
10
20
10
10
10
10
20
10
·10
10
10
8
15
5
5
5
5
5
3
3
I
0.05
10
10

'T
MHz
Min

8"
S'·

10"
10"
6 to 24
4"
6
10*'
10"
6
4
6
4
5
40
10*'
10"

10

10
5
5
5
5
2.5
2
I
3

2.5
10"
10"

I

20
6 to 24
4"
6
5
4
6
5
4
10
10
4
5
60
40
2.5
7
20
5
5/40
5
7

10
B
5
3
5
3
2.5
3
I
I
I
I
0.5
0.05
10
1.2
I
2
10
3
1.2
3
25
3
I
I
0.5
I
10
10
0.75
0.05

5
5
5
4

5
5
10
10
60
20
5/40
25
10
40

Case
JEDEC/MOT
TO-3/ll
TO-3 Mod/l97
TO-3/ll
TO-3/11
TO-3111
TO-3/11
TO-3 Mod/197
TO-3/ll
TO-3/ll
TO-3/ll
TO-31ll
TO-220/221A
TO-3/ll
TO-31l1
TO-3/11
TO-31ll
TO-3/ll
TO-220/221A
TO-31ll
TO-220/221A
TO·126/77R
TO-39179
TO-3Ill
TO-3/11
TO-3111
TO-3/ll
TO-3/ll
TO-31ll
TO-3/ll
TO-3/11
TO-2201221A
TO-3/11
TO-66/80
TO-3/11
TO-66/80
TO-3/ll
TO-2201221A
TO-3/11
TO-3/ll
TO-2201221A
TO-31ll
TO-220/221A
TO-2201221A
TO-66/BO
TO-66/BO
TO-66/BO
TO-126/77R
TO-66/BO
TO-39179
TO-3/ll
TO-66/BO
TO-66/BO
TO-3/11
TO-31ll
TO-31ll
TO-66/BO
TO-31ll
TO-220/221A
TO-3/11
TO-66/BO
TO-66/BO
TO-66/BO
TO-66/BO
TO-31ll
TO-31ll
TO-66/BO
TO-39179

•

Military Specified Power Transistors
Oevices listed are active, per QPL-19500 (Qualified Product List) as of June I, 1978,
with the exception of those devices marked *** which should be active by September,
1978. Check your local Motorola sales office or franchised distributor for current qualification status and availability of these devices or additions.

•

ICCont VCEO(sus)
Amps
Volts
Max
Min
O.S
200

Device lype
NPN I #

2S0
I

40
SO
80
300

1.5

2N3019J.1391
IX
2N3739J.l402A
IX

40

2N3762J.l396
IX lXV
2N3763J.l396
IX lXV

60
7S
3

40
60

4

PNP I #
2N4930J.l397
lX,TXV
2N4931J.l397
lX.lXV
2N3467J.l348
IX lXV
2N3468J.l348
lX.TXV

2N373SJ.l39S
lX,TXV
2N3506J.l349
lXTXV
2N3507J.1349
lX.lXV

60

10

60
80

12

80
100

IS

300
400

20

80

2N6283J/S04

100
25

100

IX lXV
2N6284J.l504
lX.lXV·"
2N6338J/S09
IX lXV'"

ISO
# MI~S-19500 Detailed
Spec. shown by
Device Type

2N634IJ.lS09
TX. TXV'"

20

5

TO·39179

401120

0.5

0.06

0.03

0.5

175

5

TO·39179

40/120

0.5

0.06

0.03

50 min

0.5

0.5

175

5

TO·39179

100

5

TO·39179

401200

OJ

3 typ

0.3 typ

OJ

10

20

TO·66/S0

301120

1

O.OS

0.035

1

ISO

4

TO-39179

1

O.OS

0.035

1

150

4

TO·39179

1

0.03

0.03

1

250

4

TO·39179

2N3867J.l350A
TX lXV
2N3868J.l350A
lX,TXV

401200

2

OA-

1

60

6

TO·5/31-·

301150

2

OA-

1

60·

6

TO·5/31··

2N3740J.l441A
TX,TXV

30/100

0.25

1.3 typ 0.27 typ

0.25

4

25 .

TO·66/S0

40/160

0.5

0.9 typ 0.09 typ

0.5

10

20

TO·66/S0

30/100

0.25

1.3 typ 0.27 typ 0.25

4

25

TO·66/S0

40/160

0.5

0.9 typ 0.09 typ

0.5

10

20

TO·66/S0

30 min

3

0.3 typ

0.4 typ

5

4

150

TO·3111

30 min

3

0.3 typ

0.4 typ

5

4

150

TO·3111

750/1Sk

6

1.6 typ

1.5 typ

6

4##'"

150

TO·3111

750/1Sk

6

1.6 typ

1.5 typ

6

4##'.

150

TO·3111

6/30

10

4

0.7

10

6·24

175'

TO·3111

6/30

10

4

0.7

10

.6·24

175

.TO·3/11

15/60

10

2

1

10

2

200

TO·3 Mod/12

750llSk

10

2.5 typ

2.5 typ

10

4##

160

TO·3

750/1Sk

10

2.5 typ

2.5 typ

10

4##

160

TO·3 Mod/12

30/120

10

1

0.25

10

40

200

TO·3 Modll2

20/S0

10

1

0.25

10

40

200

TO·3 Modll2

20/80

10

1

0.25

10

40

200

TO.. 3 Mod/12

30/120

10

1

0.25

10

40

200

TO·3 Modll2

2N3791J.l3798
IX TXV
2N3792J.l3798
lX,TXV
2N605IJ.lSOl
IX lXV
2N6052J.lSOI
lX.lXV·"

2NS74SJ.l433
TX lXV
2N6286J/SOS
IX lXV
2N6287J.lSOS
lX.lXV·"
2N6437J.lS08
TX lXV'"
2N6438J.lS08
TX TXV'"

120

0.03

PD(Case
Watts
Case
@ WC JEDEC/MOI
10·39179
5

20/S0

2N374IJ.l441A
TX TXV
2N3776J/518
lX.lXV·"
2N3715J.l4088
IX lXV
2N3716J.l4088
lX,TXV
2N60S8J.lS02
IX lXV
2N60S9J.lS02
lX.lXV
2N6S46J.l525
IX lXV'"
2N6S47J.lS25
lX.lXV·"
2NS303J.l456A
IX

20 min

fl
MHz
Min
20

20/S0

2N3766J.1S18
IX lXV'"
80

hFE @ IC
Amp
MiniMax
0.05
20 min

Resistive Switching
tf
ts
).IS
).IS @ Ie
Amp
Max
Max

.,

•• 2N3506 and 2N3507 are TO·39

2-16

.-. Should be active by September 1978.

Military Specified Power Transistors (continued)

Device Type

Max

Min

30

60

2N5302J,I456A
TX

50

60

2N5685J.l464
TX TXV
2N5686J.l464'
TX.TXV
2N6274J,I514
TX TXV'"

80
100

Resistive Switching
Is
If
p.s
p.s @ IC
Amp
Max
Max

-

ICCont VCEO(sus)
Amps
Volts

NPN I #

120

PNP I #
2N4399J,I433
TX,TXV
2N5683J,/466
TX TXV
2N5684J,I466
TX TXV
2N6378J,I515
TX TXV'"
2N6379J/515
TX, TXV'"

2N6277J,I514
TX, TXV'"
# Mil S19500 Detailed
Spec. shown by
Device Type
150

hFE @ .I C
Amp
MiniMax
15/60
15

fT
MHz
Min

PD(Case
Watts
Case
@ 25°C JEDEC/MOT

2

1

10

2

200

TO·3 Madll2

25

0.5 typ

0.3 typ

25

2

300

TO·3Mad1l97

15/60

25

0.5 typ

OJ typ

25

2

300

0·3 Modll97

30/120

20

0.8

0.25

20

30

250

0·3 Modll97

30/120

20

0.8

0.25

20

30

250

0·3 Mod/197

301120

20

0.8

0.25

20

30

250

0·3 Modll97

15/60

.,*<, Should be active by September 1978.

Secondary Motorola Power Transistors
(These are available from Motorola but may not be performance/cost effective for new designs)

Device Type
2N3445
2N3446
2N3740A
2N3741A
2N4240
2N4901
2N4902
2N4903
2N4904

Polarity
NPN
NPN
PNP
PNP
NPN
PNP
PNP
PNP
PNP

2N4905
2N4906
2N4913
2N4914
2N4915
2N5067
2N5068
2N5069
2N5241

PNP
PNP
NPN
NPN
NPN
NPN
NPN
NPN
NPN

2N5336
2N5338
2N5346
2N5348
2N5427
2N5429
2N6186
2N6188
2N6190
2N6192
2N6423
BU108
MJ205
MJ804
MJ1800
MJ2252
MJ3040
MJ3771
MJ3772
MJ3773
MJ7160
MJ7161

NPN
NPN
NPN
NPN
NPN
NPN
PNP
PNP
PNP
PNP
PNP
NPN
NPN
NPN
NPN
NPN I
NPN .
NPN ,
NPN
NPN
NPN
NPN

VCEO(sus)
Volts
60
80
60
80
300
40
60
80
40
60
80
40
60
80
40
60,'
80
325
80
100
80
100
80
100
80
100
80
100
300
1500'
1400'
1400'
250
300
300
40
60
1140
'350
400

IC
Amps
Max
7.5
7.5

4
4
2
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
7
7
7
7
10
10
5
5
2
5
2.5
5
5
0.5
7
30
20
16
8

8

hFE
MiniMax
20/60
20/60
30/100
30/100
30/150
20/80
20/80
20/80
251100
251100
25/100
251100
25/100
25/100
20/80
20/80
20/80
15/35
301120
301120
30/120
301120
30/120
301120
301120
301120
30/120
30/120
30/150
2.25 min
2 min
2.2 min
401120
25/200
100 min
15/60
15/60
15/60
251125
25/125

IC
@Amp
3
3
0.25
0.25
1
1
1
1
2.5
2.5
2.5
2.5
2.5
2.5
1
1
1
2.5
2
2
2
2
2
2
2
2
2
2
0.75
4.5
2.5
3.5
0.4
0.05
2.5
15
10
8
3
3

Suggested Replacement for New Designs

IT
MHz
Min
10
10
4
4
30
4
4
4
4
4
4
4
4
4
4
4
4
2.5
30
30
30
30
30
30
30
30
30
30
15

2
2
1
30
30

Case
TO·3
TO-3
TO·66
TO·66
TO·66
TO·3
TO·3
TO·3
TO·3
TO·3
TO·3
TO·3
TO·3
TO·3
TO·3
TO-3
TO·3
TO·3
TO-39
TO·39
TO·59
TO·59
TO·_66
TO·66
TO·59
TO·59
TO·39
TO·39
TO·3
TO·3
TO·3
TO·3
TO·3
TO·39
TO·3
TO·3
TO·3
TO·3
TO·3
TO·3

Device
2N3447
2N3448
2N3740
2N3741
2N3585
2N6312
2N6313
2N6314
2N6317
2N6317
2N6318
2N6315
2N6315
2N6316
2N4231A
2N4232A
2N4233A
2N3902
2N5337
2N5339
2N5347
2N5349
2N5428
2N5430
2N6187
2N6189
2N6191
2N6193
2'N6422
BU208
BU205
MJ12004
MJ3029
2N3739
MJ3041
2N3771
2N3772
2N3773
2N6544
2N6545

Metal
Case
TO·3
TO·3
TO·66
TO·66
TO·66
TO·66
TO-66
TO:66
TO·66
TO·66
TO·66
TO·66
TO-66
TO·66
TO·66
TO·66
TO·66
TO·3
TO·39
TO·39
TO·59
TO·59
TO·3
TO·3
TO·59
TO-59
TO-39
TO·39
TO·3
TO·3
TO-3
TO-3
TO·3
TO·39
TO·3
TO-3
TO·3
TO·3
TO·3
TO·3

Device

Plastic
Case

TIP30A
T1P30B

TO·220
TO·220

TIP32
TIP32A
TIP32B
2N6109
2N6107
TIP42B
2N6290
2N6292
TIP41B
TIP31
T1P31A
T1P31B
MJE13004

TO-220
TO·220
TO-220
TO·220
TO·220
TO·220
TO·220
TO-220
TO-220
TO-220
TO·220
TO·220
TO·220

MJE340

TO·126

MJE13006
MJE13007

TO·220
TO·220

(continued)

2-17

•

Secondary Motorola Power Transistors (continued)

Device Type

•

Polarity

IC
Amps

hFE

Max

MiniMax

700'
40
60
80
100
40
60
80
100

10
3
-3
3
3
3
3
3
3

3.75 mm
25 min
25 mm
25 min
25 mm
25 min
25 min
25 min
25 min

4
4
4
4
4
4
4
4
4
'4

401200
40/150
25 mm

VCEO(sus)
Volts

MJ9000
MJE31
MJE31A
MJE31B
MJE31C
MJE32
MJE32A
MJE32B
MJE32C
MJE220
MJE221
MJE222
MJE223
MJE224
MJE225
MJE230
MJE231
MJE232
MJE233
MJE234
MJE235
MJE240
MJE241
MJE242
MJE244
MJE250
MJE251
MJE252
MJE254
MJE371
MJE521
MJE701
MJE702
MJE703
MJE710
MJE711
MJE712
MJE720
MJE721

NPN
NPN
NPN
NPN
NPN
PNP
PNP
PNP
PNP
NPN
NPN
NPN
NPN
NPN
NPN
PNP
PNP
PNP
PNP
PNP
PNP
NPN
NPN
NPN
NPN
PNP
PNP
PNP
PNP
PNP
NPN
NPN
NPN
NPN
NPN
NPN
NPN
NPN
NPN

60
60
60
80
80
80
60
60
60
80
80
80
80
80
80
100
80
80
80
100
40
40
60
80
.80
40
60
80
40
60

MJE722
MJE801
MJE802
MJE803
MJEl090
MJEl091
MJEl092
MJEl093
MJEllOO
MJEllOI

NPN
NPN
NPN
NPN
PNP
PNP
PNP
PNP
NPN
NPN

80
60
80
80
60
·60
80
80
60
60

MJEll02
MJEll03
MJE2801
MJE2901
SE9300
SE9301
SE9302
SE9400
SE9401
SE9402

NPN
NPN
NPN
PNP
NPN
NPN
NPN
PNP
PNP
PNP

80
80
60
60
60
80
100
60
80
100

4
4
4
4
4
4
4
4
I
4
4
4
4
4
4
1.5
1.5
1.5
1.5
1.5
1.5
4
4
4
5
5
5
5

401200
40/150
25 mm

401200
40/150
25 min

401200
40/150
25 min

401200
40/120
25 min
25 min

40/200
40/120
25 min
25 min
40 min
40 min
750 min
750 min
750 min
20 min
20 min
20 min
20 min
20 min

5

20 mm
750 min
750 min
750 min
750 min
750 min
750 min
750 min
750 min
750 min

0.5
2
1.5
2
3
4
3
4
3
4

5
5
10
10
10
10
10
10
\0
\0

750 mm
750 mm
25/100
25/100
100 mm
100 mm
100 mm
100 min
100 mm
100 mm

3
4
3
3
7.5
7.5
7.5
7.5
7.5
7.5

5

Min

6
I
I
1
I
1
I
I
I
0.2
0_2
0_2
0_2
0_2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2

I
I
2
1.5
2
0.5
0.5
0.5
0.5
0.5

Suggested Replacement for New Designs

fT
MHz

IC
@Amp

3
3
3
3
3
3
3
3
50
50
50
50
50
50
50
50
50
50
50
50
40
40
40
40
40
40
40
40

1#
1#
1#

-

2-18

1#
1#
1#
1#
1#
1#
1#
1#
1#
1#
1#
1#
1#
1#
1#
1#
1#

Case

Device

TO-3
TO-126R
TO-126R
TO-126R
TO-126R
TO:126R
TO-126R
TO-126R
TO-126R
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-l26
TO-126
TO-l26
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
'TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126

MJ3030

TO-126
TO-126
TO-126
TO-126
TO-127
TO-127
TO-127
TO-127
TO-127
TO-127
TO-127
TO-127
TO-127
TO-127
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220

Metal
Case

Plastic
Case

TO-3

2N4912

TO-66
TO-66
TO-66
TO-66
TO-66
TO-66

2N6298
2N6298
2N6299
2N6299
2N6300
2N6300

TO-66
TO-66
TO-66
TO-66
TO-66
TO-66

2N6301
2N6301
2N3055
MJ2955

TO-66
TO-66
TO-3
TO-3

2N4898
2N4899
2N4900
2N3054
2N3054

Device
TlP31
TIP31A
TIP31B
TIP31C
TIP32
TlP32A
TlP328 TlP32C

TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220
TO-220

MJEl81
MJEl81
MJE181
MJEl82
MJEl82
MJE182
MJEl7l
MJE171
MJE171
MJE172
MJE172
MJEl72
MJEl82
MJEl82
MJEl82
MJE243
MJE172
MJE172
MJEl72
MJE253

TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-l26
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-126
TO-127
TO-127
TO-127
TO-127
TO-127
TO-127
TO-127
TO-I27
. TO-127
TO-127
TO-220
TO-220
TO-220
TO-220
TO-220
to-220

2N5193
2N5190
2N6035
2N6036
2N6036
2N4918
2N4919
2N4920
2N4921
2N4922
2N4923
2N6038
2N6039
2N6039
MJE6040
MJE6040
MJE6041
MJE6041
MJE6043
MJE6043
MJE6044
MJE6044
MJE3055
MJE2955
2N6043
2N6044
2N6045
2N6040
2N6041
2N6042

power Transistor Cross Reference

3-1

•

3-2

POWER TRANSISTOR
CROSS REFERENCE
Devices are not shown in the following list if the Motorola number is identical. Refer to Chapter 1,
the Alphanumeric Index, for the location of specifications.

PART NO.

2N1483
2N1484
2N1485
2N1486
2N1487
2N1488
2N1489
2N1490
2N2987
2N2988
2N2989
2N2990
2N3016
2N3021
2N3022
2N3023
2N3024
2N3025
2N3026
2N3055H
2N3055SD
2N3055UB
2N3076
2N3079
2N3080
2N3171
2N3172
2N3173
2N3174
2N3183
2N3184
2N3185
2N3186
2N3195
2N3196
2N3197
2N3202
2N3198
2N3203
2N3204
2N3232
2N3233
2N3234
2N3235
2N3236
2N3237
2N3238
2N3239
2N3240
2N3418
2N3419
2N3420
2N3421
2N3660
2N3661
2N3667
2N3788

MOTOROLA
DIRECT
REPLACEMENT

MOTOROLA
SIMILAR
REPLACEMENT

TIP41
TIP41A
TIP41
TlP41A
. 2N5877
2N5878
2N5877
2N5878
2N5681
2N5681
2N5681
2N5681
2N5337
2N3789
2N3789
2N3789
2N3791
2N3791
2N3791
2N3055A
2N3055A
2N3055A
2N6249
2N5838
2N6542
2N3789
2N3789
2N3790
2N6226
2N3789
2N3789
2N3790
2N6226
2N3789
2N3789
2N3790
2N3719
2N6226
2N3720
2N6303
2N5877
2N5632
2N5760
2N3055
2N5632
2N5302
2N5882
2N5882
2N5882
2N4877
2N5336
2N4877
2N5336
2N4234
2N4235
2N5881
MJ3030

PART NO.

2N3863
2N3864
2N3865
2N3878
2N3879
2N3996
2N3997
2N4OOO
2N4001
2N4002
2N4OO3
2N4063
2N4064
2N4070
2N4071
2N4111
2N4113
2N4115
2N4116
2N4231
2N4232
2N4233
2N4296
2N4297
2N4298
2N4299
2N4300
2N4301
2N4305
2N4307
2N4309
2N4311
2N4314
2N4347
2N4348
2N4387
2N4388
2N4907
2N4908
2N4909
2N4910
2N4911
2N4998
2N4999
2N5000
2N5001
2N5002
2N5003
2N5004
2N5005
2N5034
2N5035
2N5036
2N5037
2N5038
2N5039
2N5083

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

2N3715
2N5632
2N5634
2N5427
2N5429
2N5347
2N5347
2N5336
2N5339
2N6274
2N6274
MJE3439
MJE3440
2N6306
2N6306
2N3715
2N3716
2N5347
2N5347
2N4231A
2N4232A
2N4233A
2N3738
2N3738
2N6235
2N6235
2N5336
2N5337
2N5337
2N5337
2N5339
2N5337
2N3868
2N5759
2N5630
2N4898
2N4898
2N3791
2N3791
2N3792
2N3054
2N3054
2N5347
2N6187
2N5347
2N6187
2N5347
2N6187
2N5347
2N6187
2N3055
2N3055
2N3055
2N3055
2N6338
2N6338
2N5347

3-3

PART NO.

2N5084
2N5085
2N5147
2N5148
2N5149
2N5150
2N5151
2N5152
2N5153
2N5154
2N5157
2N5202
2N5239
2N5240
2N5264
2N5284
2N5285
2N5286
2N5287
2N5293
2N5294
2N5295
2N5296
2N5297
2N5298
2N5326
2N5333
2N5334
2N5335
2N5384
2N5404
2N5405
2N5406
2N5407
2N5408
2N5409
2N5410
2N5411
2N5466
2N5467
2N5477
2N5478
2N5479
2N5480
2N5490
2N5491
2N5492
2N5493
2N5494
2N5495
2N5496
2N5497
2N5508
2N5539
2N5559
2N5575
2N5578

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

2N5347
2N5347
2N6190
2N5336
2N6190
2N5336
2N6190
2N5336
2N6191
2N5337
2N6545
2N5427
2N6306
2N6544
2N6249
2N5346
2N5347
2N6188
2N6189
2N6123
2N6123
2N6121
2N6121
2N6122
2N6122
2N5347
2N6303
2N4877
2N5336
2N6187
2N6190
2N6192
2N6191
2N6193
2N6187
2N6188
2N6187
2N6189
2N6545
2N6545
2N5347
2N5347
2N5349
2N5349
2N6290
2N6290
2N6292
2N6292
2N6290
2N6290
2N6292
2N6292
2N5428
2N6379
2N5633
2N5685
2N5685

•

POWER TRANSISTOR CROSS REFERENCE (continued)

PART NO.

2N5598
2N5600
2N5602
2N5604
2N5606
2N5610
2N5612
2N5614
2N5616
2N5618
2N5651
2N5660
2N5664
2N5665
2N5671
2N5672
2N5678
2N5729
2N5730
2N5733
2N5734
2N5737
2N5738
2N5739
2N5740
2N5741
2N5742
2N5743
2N5744
2N5804
2N5805
2N5867
2N5868
2N5869
2N5870
2N5871
2N5872
2N5873
2N5874
2N5929
2N5930
2N5931
2N5932
2N5933
2N5935
2N5936
2N5937
2N5954
2N5955
2N5956
2N5970
2N5971
2N5972
2N5980
2N5981
2N5982
2N5983
2N5984
2N5985
2N6021
2N6022
. 2N6023
2N6024
2N6025
2N6026
2N6032
2N6033

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

2N5428
2N5427
2N5428
2N5429
2N5428
2N5428
2N5430
2N3448
2N3448
2N3448
2N6235
2N6233
2N6233
2N6235
2N6338
2N6339
2N6381
2N5336
2N5347
2N6274
2N6338
2N5878
2N6229
2N5878
2N6229
2N5883
2N6029
2N5883
MJ4502
2N6306
2N6542
2N3789
2N3790
2N3713
2N3714
2N3789
2N3790
2N3713
2N3714
2N6338
2N6338
2N6341
2N6338
2N6338
2N6341
2N6338
2N6341
2N6318
2N6317
2N6317
2N5882
2N5882
MJ15003
2N6489
MJE2955
2N6491
MJE3055
MJE3055
2N6488
2N6126
2N6126
2N6124
2N6124
2N6125
2N6125
2N6275
2N6277

PART NO.

2N6079
2N6098
2N6099
2N6100
2N6101
2N6102
2N6103
2N6106
2N6108
2N6110
2N6129
2N6130
2N6131
2N6132
2N6133
2N6134
2N6175
2N6176
2N6177
2N6178
2N6179
2N6180
2N6181
2N6242
2N6243
2N6244
2N6245
2N6246
2N6247
2N6253
2N6253
2N6254
2N6258
2N6259
2N6260
2N6261
2N6262
2N6263
2N6264
2N6270
2N6271
2N6278
2N6279
2N6280
2N6281
2N6289
2N6291
2N6293
2N6302
2N6326
2N6327
2N6328
2N6329
2N6330
2N6331
2N6355
2N6356
2N6357
2N6358
2N6359
2N6360
2N6371
2N6372
2N6373
2N6374
2N6380
2N6381

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

2N6235
2N6487
2N6487
2N6488
2N6488
2N6486
2N6486
2N6107
2N6109
2N6111
2N6290
2N6292
TlP318
2N6109
2N6107
TIP328
2N5656
2N5656
2N5657
MJE182
MJE181
MJE172
MJE171
MJ13015
MJ13334
MJ13333
MJ13334
2N5879
2N5880
2N5877
2N3055H
2N5878
2N5686
2N5631
2N4231A
2N4233A
2N5760
2N5050
2N5051
2N6338
2N6338
2N6274
2N6275
2N6276
2N6277
2N6288
2N6290
2N6292
2N5630
2N5302
2N5886
2N6338
2N4399
2N5884
2N6436
2N6057
2N6057
2N6058
2N6058
2N5885
2N5629
2N6569
2N6316
2N6315
2N6315
2N6377
2N6378

DEVICES NOT SHOWN IF MOTOROLA NUMBER IS IDENTICAL.
REFER TO CHAPTER'

3-4

PART NO.

2N6382
2N6406
2N6407
2N6408
2N6409
2N6410
2N6411
2N6412
2N6413
2N6414
2N6415
2N6416
2N6417
2N6418
2N6419
2N6465
2N6467
2N6468
2N6469
2N6470
2N6471
2N6472
2N6473
2N6475
2N6492
2N6493
2N6494
2N6496
2N6500
2N6510
2N6511
2N6512
2N6513
2N6514
2N6530
2N6531
2N6532
2N6534
2N6535
2N6536
2N6537
2N6573
2N6574
2N6575
2N6579
2N6580
2N6581
2N6582
2N6583
2N6584
2N6648
2N6649
2N6650
2N6653
2N6654
2N6655
2N6671
2N6672
2N6673
2N6674
2N6675
2N6676
2N6677
2N6678
2SC1306
2SC1678
2SC1816

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

2N6379
MJE171
MJE172
. MJE181
MJE182
MJE200
MJE210
MJE180 .
MJE181
MJE170
MJE171
MJE241
MJE243
MJE251
MJE253
TIP41C
.2N6420
2N6420
2N5879
2N5881
2N5881
2N5882
TlP31C
TIP32C
2N6055
2N6056
2N6056
2N6339
2N5429
2N6306
2N6306
2N6544
2N6545
2N6544
TIP10l
TIP102
TIP103
2N6577
2N6578
2N6578
2N6578
2N6546
2N6546
2N6547
MJ13014
MJ13015
MJ13334
2N6308
2N6545
MJ13334
MJ2500
MJ2500
MJ2501
MJ13332
MJ13332
MJ13333
2N6544
2N6545
2N6545
MJ13014
MJ13015
MJ13332
MJ13332
MJ13333
MJE1909
MJE1909
MJE1909

POWER TRANSISTOR CROSS REFERENCE (continued)

PART NO.

2SC1909
2SC2078
2SC2092
2SC2166
BU105
BU126
BUX80
BUX81
BUX82
BUX83
BUX84
BUX85
BUX86
BUX87
D40D3
D42C1
D42C2
D42C3
D42C4
D42C5
D42C6
D42C7
D42C8
D42C9
D43C1
D43C2
D43C3
D43C4
D43C5
D43C6
D43C7
D43C8
D43C9
D44C1
D44C2
D44C3
D44C4
D44C5
D44C6
D44C7
D44C8
D44C9
D44C10
D44C11
D44C12
D44E1
D44E2·
D44E3
D44H1
D44H2
D44H4
D44H5
D44H7
D44H8
D44R1
D44R2
D44R3
D44R4
D44R5
D44R6
D45C1
D45C2
D45C3
D45C4
D45C5
D45C6
D45C7

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

MJE1909
MJE1909
MJE1909
MJE1909
BU205
MJ3030
2N6547
MJ13335
2N6545
2N6545
MJE13005
MJE13005
MJE13003
MJE13003
D40D2
MDS26
MDS26
MDS26
MDS27
MDS27
MDS27
MDS27
MDS27
MDS27
MDS76
MDS76
MDS76
MDS77
MDS77
MDS77
MDS77
MDS77
MDS77
MJE180
MJE180
MJE180
MJE181
MJE181
MJE181
MJE181
MJE181
MJE181
MJE182
MJE182
MJE182
2N6386
2N6387
2N6388
D44H10
D44H11
D44H10
D44H11
D44H10
D44H11
2N3584
2N3584
2N3585
2N3585
2N3584
2N3585
MJE170
MJE170
MJE170
MJE171
MJE171
MJE171
MJE171

PART NO.

D45C8
D45C9
D45C10
D45C11
D45C12
D45E1
D45E2
D45E3
D45H1
D45H2
D45H4
D45H5
D45H7
D45H8
D45H9
D45H12
D56W1
D56W2
D56W3
D56W4
DTS310
DTS311
DTS401
DTS402
DTS403
DTS409
DTS410
DTS411
DTS413
DTS423
DTS424
DTS425
DTS430
DTS431
DTS515
DTS516
DTS517
DTS518
DTS519
DTS660
DTS663
DTS665
DTS701
DTS702
DTS712
DTS714
DTS801
DTS802
DTS804
DTS812
DTS814
DTS1010
DTS1020
DTS4010
DTS4025
DTS4026
DTS4039
DTS4040
DTS4041
DTS4045
DTS4059
DTS4060
DTS4061
DTS4065
DTS4066
DTS4067
DTS4074

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

MJE171
. MJE171
MJE172
MJE172
MJE172
TIP125
TIP125
TIP126
D45H10
D45H11
D45H10
D45H11
D45H10
D45H11
D45H11
D45H11
BU208
BU208
BU207
BU207
2N6306
2N6306
2N3902
2N3902
2N6308
2N6308
MJ410
MJ411
MJ413
MJ423
2N6308 .
2N6545
2N6307
MJ431
2N6306
2N6306
2N6306
2N6307
2N6308
2N6233
2N6235
2N6235
BU204
BU205
BU207
BU208
BU205
BU207
BU208
BU207
BU208
2N6056
MJ3001
MJ3041
MJ3041
MJ10012
MJ10000
MJ10000
MJ10000
MJ10000
MJ10000
MJ10001
MJ10000
MJ10001
MJ10000
MJ10000
MJ10004

PART NO.

DTS4075
FT47
FT48
FT49
FT50
FT317
FT317A
FT317B
FT359
FT401
FT402
FT410
FT411
FT413
FT417
FT417A
FT417B
FT423
FT423
FT430
FT431
FT2955
FT3055
GE5060
GE5061
GE5062
GE6060
GE6061
GE6062
IR401
IR402
IR403
IR409
IR410
IR411
IR413
IR423
IR424
IR425
IR430
IR431
IR515
IR516
IR517
.IR518
IR519
IR640
IR641
IR642
IR645
IR646
IR647
IR660
IR663
IR665
IR701
IR801
IR802
IR900
IR901
IR1000
IR1001
IR1010
IR1020
IR2500
IR2501
IR3000

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

MJ10004
TIP47
TIP48
TIP49
TIP50
MJE15028
MJE15028
MJE15030
MJ10012
MJ411
MJ413
MJ410
MJ41f
MJ413
MJE15029
MJE15029
MJE15031
MJ423
MJ423

•

2N6307
MJ431
MJE2955T
MJE3055T
MJ10000
MJ10000
MJ10001
MJ10004
MJ10004
MJ10005
2N3902
2N3902
2N6308
2N6308
MJ410
MJ411
MJ413
MJ423
2N6308 .
2N6545
2N6307
MJ431
2N6250
2N6250
2N6251
2N6546
2N6547
MJ3000
MJ3001
2N6578
MJ2500
MJ2501
2N6052
MJ410
MJ423
2N5157
BU204
BU205
MJ802
MJ900
MJ901
MJ1000
MJ1001
2N6056
MJ3001
MJ2500
MJ2501
MJ3000

DEVICES NOT SHOWN IF MOTOROLA NUMBER IS IDENTICAL.
REFER TO CHAPTER 1
I"~

3-5

POWER TRANSISTOR CROSS REFERENCE (continued)

PART NO.

•

IR3001
IR3771
IR3772 .
IR3773
IR4039
IR4040
IR4041
IR4045
IR4050
IR4055
IR4059
IR4060
IR4061
IR4065
IR4502
IR5000
IR5001
IR5002
IR5060
IR5061
IR5062
IR5252
IR5261
IR6000
IR6001
IR6002
IR6060
IR6061
IR6062
1R6251
IR6252
IR6302
KDT4l0
KDT4ll
KDT4l3
KDT423
KDT430
KDT431
KDT5l5
KDT5l6
KDT5l7
KDT5l8
KDT5l9
KP3946
KP3948
MJ105
MJ400
MJ420
MJ421
MJ424
MJ425
MJ430
MJ440
MJ450
MJ480
MJ481
MJ490
MJ491
MJ701
MJ702
MJ704
MJ721
MJ723
MJ920
MJ921
MJ1200
MJ120l

MOTOROLA
MOTOROLA
OIRECT
SIMILAR
REPLACEMENT REPLACEMENT

MJ3001
MJ3771
MJ3772
MJ3773
MJ10000
MJ10000
MJ10000
MJiOOOO
MJ10000
MJ10000
MJ100QO
MJ1000l
MJ10000
MJ1000l
MJ4502
MJ10000
MJ10000
MJ1000l
MJ10000
MJ10000
MJ1000l
MJ10003
MJ10002
MJ10004
MJ10004
MJ10005
MJ10004
MJ10004
MJ10005
MJ10006
MJ10007
2N5630
MJ4l0
. MJ4ll
MJ4l3
MJ423
2N6307
MJ431
2N6306
2N6306
2N6306
2N6307
2N6308
2N6274
2N6274
MJ205
2N3739
MM420
MM421
2N6308
2N6545
2N4234
2N4237
2N4398
2N37l3
2N37l3
2N3789
2N3789
MJ12002
MJ12002
MJ12002
MJ12002
MJ12002
(2)2N6298
(2)2N6299
(2)2N6300
(2)2N630l

PART NO.

MJ2249
MJ2250
MJ2251
MJ2252
MJ2253
MJ2254
MJ2267
MJ2268
MJ2801
MJ2802
MJ2840
MJ2841
MJ2901
MJ2940
MJ2941
MJ3010
MJ30ll
MJ3012
MJ3026
MJ3027
MJ3028
MJ3055
MJ3l0l
MJ3201
MJ3202
MJ3260
MJ3430
MJ3480
MJ3520
MJ3521
MJ3583
MJ3584
MJ3585
MJ3701
MJ3702
MJ3703
MJ3704
MJ3738
MJ3739
MJ3760
MJ3761
MJ3801
MJ3802
MJ4000
MJ4001
MJ4010
MJ40ll
MJ4200
MJ4201
MJ4210
MJ42ll
MJ4240
MJ4648
MJ5038
MJ5039
MJ5415
MJ5416
MJ6257
MJ6302
MJ6701
MJ7000
MJ7260
MJ7261
MJ8020
MJ8l0l
MJ130l0
MJE29

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

2N3766
2N3767
2N3738
2N3739
2N3740
2N374l
2N6594
MJ2955
2N6569
2N588l
2N5877
2N5878
2N6594
2N5875
2N5876
2N6542
2N6542
2N6542
MJ3029
MJ3029
MJ3029
2N3055
2N3766
2N3738
2N3739
2N5838
2N6307
BU208
MJ3000
MJ3001
2N6420
2N642l
2N6422
2N4898
2N4898
2N4899
2N4900
2N6424
2N6425
MJ3030
MJ9000
MJ3001
MJ3001
2N6055
2N6056
2N8053
2N6054
(2)2N6294
(2)2N6295
(2)2N6296
(2)2N6297
2N6423
MJ4647
2N5Q38
2N5039
MM5415
MM5416
2N6257
2N5630
2N6l86
2N6338
2N6546
2N6547
MJ12004
2N6l90
2N6547
TIP29

DEVICES NOT SHOWN IF MOTOROLA NUMBER IS IDENTICAL.
REFER TO CHAPTER 1.

3-6

PART NO.

MJE29A
MJE29B
MJE29C
MJE30
MJE30A
MJE30B.
MJE30C
MJE33
MJE33A
MJE33B
MJE33C
MJE34
MJE34A
MJE348
MJE34C
MJE4l
MJE41A
MJE41B
MJE41C
MJE42
MJE42A
MJE42B
MJE42C
MJE47
MJE48
MJE49
MJE5l
MJE52
MJE53
MJE10l
MJE102
MJE103
MJE104
MJE105K
MJE201
MJE202
MJE203
MJE204
MJE205K
MJE340K
MJE341K
MJE344K
MJE345
MJE370K
MJE371K
MJE482
MJE483
MJE484
MJE492
MJE493
MJE494
MJE520K
MJE521K
MJE2Ol0
MJE20ll
MJE2020
MJE2021
MJE2050
MJE2055
MJE2090
MJE209l
MJE2092
MJE2093
MJE2l00
MJE2l0l
MJE2l02
MJE2l03

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

TIP29A
TIP29B
TIP29C
TIP30
TIP30A
TIP30B
TIP30C
TIP4l
TIP41A
TIP41B
TIP41C
TIP42
.TIP42A
TIP428
TIP42C
TIP4l
TIP41A
Tlp41B
TIP41C
TIP42
TIP42A
TIP428
TIP42C
TIP47
TIP48
TIP49
MJE51T
MJE52T
MJE53T
2N5974
2N5975
2N5976
2N5976
TIP42A
2N5977
2N5978
2N5978
2N5979
TIP41A
TIP48
TIP47
TIP47
MJE3439
TIP32
TIP32
2N5l90
2N5l9l
2N5l92
2N5l93
2N5l94
2N5l95
TIP3l
TIP3l
TIP42
TIP42A
TIP4l
TlP41A
MJE200
MJE3055
TIP125
TlP125
TIP126
TIP126
·TIP120
TIP120
TIP12l
TIP12l

POWER TRANSISTOR CROSS REFERENCE (continued)

PART NO.

MJE2150
MJE2160
MJE2360
MJE2361
MJE2370
MJE2371
MJE2480
MJE2481
MJE2482
MJE2483
MJE2490
MJE2491
MJE2520
MJE?801K
MJE2901K
MJE2955K
MJE3055K
MJE3370
MJE3371
MJE3520·
MJE3521
MJE3738
MJE3739
MJE4918
MJE4919
MJE4920
MJE4921
MJE4922
MJE4923
MJE5190
MJE5191
MJE5192
MJE5193
MJE5194
MJE5195
.. MJE5655
MJE5656
MJE5657
MJE5960
MJE5974
MJE5975
MJE5976
MJE5977
MJE5978
MJE5979
MJE5981
MJE5982
MJE5983
MJE5984
MJE5985
MPC900

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

MJE210
TIP48
MJE2360T
MJE236n
TIP32
TIP32A
TIP31
TIP31A
TIP41
TlP41A
TIP32
TIP32A
TlP31
MJE280n
MJE290n
MJE2955T
MJE3055T
MJE370
2N5193
MJE520
2N5190
TIP47
TIP48
TIP30
TIP30A
TIP30B
TlP29
TIP29A
TIP29B
2N6121
2N6122
2N6123
2N6124
2N6125
2N6126
TIP47
TIP48
TIP49
2N6489
TIP42
TIP42A
TIP42B
TIP41
TIP41A
TIP41B
2N6490
2N6491
2N6486
2N6487
2N6488
MC1563 AND
2N6050
MC1726 AND
2N6077

MPC1000
MPSUll
MPSU12
MPSU47
NSD102
NSD103
NSD104
NSD105
NSD106
NSD123
NSD127
NSD128
NSD129
NSD130

MPSU10
MPSU45
MPSU31
MDS23
MDS23
2N6552
2N6552
2N6553
2N6591
2N6591
2N6592
2N6593
2N6557

PART NO.

NSD132
NSD133
NSD134
NSD135
NSD151
NSD152
NSD202
NSD203
NSD204
NSD205
NSD206
NSD457
NSD458
NSD459
NSP41
NSP41A
NSP41B
NSP41C
NSP42
NSP42A
NSP42B
NSP42C
NSP105
NSP205
NSP370
NSP371
NSP520
. NSP521
NSP575
NSP576
NSP577
NSP578
NSP579
NSP580
NSP581
NSP582
NSP585
NSP586
NSP587
NSP588
NSP589
NSP590
NSP595
NSP596
NSP597
NSP598
NSP599
NSP600
NSP695
NSP695A
NSP696
NSP696A
NSP697
NSP697A
NSP698
NSP698A
NSP699
NSP699A
NSP700
NSP700A
NSP701
NSP702
NSP2010
NSP2011
NSP2021
NSP2090
NSP2091

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

2N6557
2N6558
2N6558
2N6559
2N6549
2N6548
MDS73
MDS73
2N6555
2N6555
2N6556
2N6591
2N6593
2N6558
TIP41
TIP41A
TIP41B
TIP41C
TIP42
TIP42A
TIP42B
TIP42C
TIP42A
TIP41A
TIP32
TlP32
TIP31
TIP31
TIP29A
TIP30A
TIP29A
TIP30A
TIP29B
TIP30B
TIP29C
TIP30C
TIP29A
TIP30A
TIP29A
TIP30A
TIP29B
TIP30B
TlP31A
TIP32A
TlP31A
TIP32A
TIP318
TlP32B
TIP120
TlPl00
TIP125
TIP105
TlP120
TIP100
TIP125
TIP105
TIP121
TIP10l
TlP126
TIP106
TIP122
TIP127
TIP42
TIP42A
TIP41A
TIP125
TIP125

DEVICES NOT SHOWN IF MOTOROLA NUMBER IS IDENTICAL.
REFER TO CHAPTER 1

3-7

PART NO.

NSP2092
NSP2093
NSP2100
NSP2101
NSP2102
NSP2103
NSP2370
NSP2480
NSP2481
NSP2490
NSP2491
NSP2520
NSP2955
NSP3054
NSP3055
NSP4918
NSP4919
NSP4920
NSP4921
NSP4922
NSP4923
NSP5190
NSP5191
NSP5192
NSP5193
NSP5194
NSP5195
NSP5974
NSP5975
NSP5976
NSP5977
NSP5978
NSP5979
NSP5980
NSP5981
NSP5982
NSP5983
NSP5984
NSP5985
PM26K380
PM27K380
PMD10K-40
PMD10K-60
PMD10K-80
PMD10K-l00
PMDllK-40
PMDllK-60
PMDllK-80
PMDllK-l00
PMD12K-40
PMD12K-60
PMD12K-80
PMD12K-l00
PMD13K-40
PMD13K-60
PMD13K-80
PMD13K-l00
PMD16K-4O
PMD16K-60
PMD16K-80
PMD16K-l00
PMD17K-4O
PMD17K-60
PMD17K-80
PMD17K-l00
PMD20K-120
PMD25K-120

MOTOROLA
DIRECT
REPLACEMENT

MOTOROLA
SIMILAR
REPLACEMENT

TIP126
TIP126
TIP120
TIP120
TIP121
TIP121
TIP32
TIP31
TlP31A
TlP32
TlP32A
TIP31
MJE2955T
TIP31A
MJE3055T
TlP30
TlP30A
TIP30B
TIP29
TIP29A
TIP29B
2N6121
2N6122
2N6123
2N6124
2N6125
2N6126
TlP42
TIP42A
TIP42B
TIP41
TlP41A
TlP41B
2N64S9
2N6490
2N6491
2N6486
2N6487
2N6488

•
MJ13015
2N6543

2N6057
2N6057
2N6058
2N6059
2N6050
2N6050
2N6051
2N6052
MJ1000
MJ1000
MJ100l
2N6059
MJ900
MJ900
MJ901
2N6052
2N6282
2N6282
2N6283
2N6284
2N6285
2N6285
2N6286
2N6287
2N6578
2N6578

POWER TRANSISTOR CROSS REFERENCE (continued)

PART NO.

•

PM01600K
PM01601K
PM01602K
PM01603K
PM01700K
PM01701K
PM01702K
PM01703K
RCA1B01
RCA1C03
RCA1C04
RCA1C05
RCA1C06
RCA1C07
RCA1C08
RCA1C09
RCA1C10
RCA1C11
RCA1C14
RCA29
RCA29A
RCA29B
RCA29C
RCA30
RCA30A
RCA30B
RCA30C
RCA31
RCA31A
RCA31B
RCA31C
RCA32
RCA32A
RCA32B
RCA32C
RCA41
RCA41A
RCA41B
RCA41C
RCA42
RCA42A
- RCA42B
RCA42C
RCA120
RCA121
RCA122
RCA125
RCA126
RCA410
RCA411
RCA413
RCA423
RCA431
RCA1000
RCA1001
RCA3054
RCA3055
RCA8203
RCA8203A
RCA8203B
RCA8350
RCA8350A
RCA6350B
RCA8766
RCA8766A
RCA8766B
RCA8766C

MOTOROLA
MOTOROLA
SIMILAR
DIRECT
REPLACEMENT REPLACEMENT

2N6282
2N6282
2N6283
2N6284
2N6285
2N6285
2N6286
2N6287
2N5878
TIP31C
TIP32C
2N6315
2N6317
2N6488
2N6491
2N6488
TIP41
TIP42
2N6315
TIP29
TIP29A
TIP29B
TIP29C
TIP30
TIPaOA
TIP30B
TIP30C
TIP31
TIP31A
TlP31B
TIP31C
TlP32
TIP32A
TIP32B
TIP32C
TIP41
TIP41A
TIP41B
TIP41C
TIP42
TIP42A
TIP42B
1;IP42C
TlP120
TIP121
TIP122
TIP125
TIP126
MJ410
MJ411
MJ413
MJ423
MJ431
MJ1000
MJ1001
TIP31A
MJE3055
TIP125
TIP126
TIP127
2N6050
2N6050
2N6051
MJ10002
MJ10002
MJ10003
MJ10003

PART NO.

RCA87660
RCA8766E
RCA8767
RCA8767A
RCA8767B
RCA9113
RCA9113A \
RCA9113B
RCP111A
RCP111B
RCP111C
RCP1110
RCP113A
RCP113B
RCP113C
RCP1130
RCP115
RCP115B
RCP117
RCP117B
RCP700A
RCP700B
RCP700C
RCP7000
RCP701A
RCP701B
RCP701C
RCP701D
RCP702A
RCP702B
RCP702C
RCP7020
RCP703A
RCP703B
RCP703C
RCP7030
RCP704
RCP704B
RCP705
RCP705B
RCP706
RCP706B
RCP707
RCP707B
RCS29
RC529A
RCS29B
RCS30
RCS30A
RCS30B
RCS30C
RCS31
RCS31A
RCS31B
RCS32
RCS32A
RCS32B
RCS32C
RCS242
RCS258
RC5258
RCS559
RC5560
RCS564
RCS579
RC5579
50M6000

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

MJ10003
MJ10003
. 2N6546
2N6547
2N6547
2N6546
2N6547
2N6547
2N6557
2N6557
2N6558
2N6559
2N6557
2N6557
2N6558
2N6559
2N6591
2N6557
2N6591
2N6557
2N6554
2N6554
2N6555
2N6556
2N6551
2N6551
2N6552
2N6553
2N6554
2N6554
2N6555
2N6556
2N6551
2N6551
2N6552
2N6553
2N6554
2N6554
2N6551
2N6551
2N6554
2N6554
2N6551
2N6551
2N4231A
2N4232A
2N4233A
2N6312
2N6313
2N6314
2N6420
2N4231A
2N4232A
2N4233A
2N6312
2N6313
2N6314
2N6421
2N3055H
2N3772
2N5885
2N6211
2N6211
2N6249
2N6306
2N6306
MJ10012

DEVICES NOT SHOWN IF MOTOROLA NUMBER IS IDENTICAL.
REFER TO CHAPTER 1

3-8

PART NO.

SOM6001
SOM6002
SOM6003
SOM20301
SOM20302
SOM20303
SOM20304
SOM20311
SOM20312
SOM20313
SOM20314
SOM20321
SOM20322
SOM20323
SOM20324
SOM21301
SOM21302
SOM21303
SOM21304
SOM21311
SOM21312
SOM21313
SOM21314
SON1010
SON1020
SON4040
SON4045
SDN6000
SDN6001
SON6002
SDN6060
SON6061
SON6062
SON6251
SON6252
SON6253
SOT7A01
SOT7A02
SOT7A03
SOT7A07
SOT7A08
SOT7A09
SOT401
SOT402
SOT410
SOT411
SOT413
SOT423
SOT424
SOT425
SOT430
SOT431
SOT520
SOT521
SOT522
SOT525
SOT526
50T527
SOT530
SOT531
SOT532
SOT535
50T536
50T537
50T540
SOT541
SOT542

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

MJ10012
MJ10012
MJ10012
MJ4033
MJ4033
MJ4034
MJ4035
MJ4033
MJ4033
MJ4034
MJ4035
MJ4033
MJ4033
MJ4034
MJ4035
MJ4030
MJ4030
MJ4031
MJ4032
MJ4030
MJ4030
MJ4031
MJ4032
2N6056
MJ3001
MJ 10000
MJ10000
MJ10000
MJ10000
MJ10001
MJ10000
MJ10000
MJ10000
MJ10002
MJ10002
MJ10003
2N5428
2N5428
2N5428
2N5427
2N5427
2N5427
2N6543
2N6543
MJ410
MJ411
MJ413
MJ423
2N6308
2N6545
2N6307
MJ431
2N6306
2N6306
2N6306
2N6306
2N6306
2N6306
2N6306
2N6306
2N6306
2N6306
2N6307
2N6307
2N6307
2N6307
2N6307

POWER TRANSISTOR CROSS REFERENCE (continued)

PART NO.

80T545
80T546
80T547
80T550 .
80T551
80T552
80T1050
80T1051
80T1052
80T1053
80T1054
80T1055
80T1056
80T1057
80T1058
80T1059
80T1060
80T1061
80T1062
80T1063
80T1064
80T1301
80T1302
80T1303
80T1304
80T3125
80T3126
80T3321
80T3322
8013323
80T3324
80T3325
80T3326
80T3327
8013328
8013401
80T3402
80T3403
80T3404
80T3405
80T3406
80T3407
80T3408
80T3421
8013422
80T3423
80T3424
80T3425
80T3426
80T3427
80T3428
80T3501
80T3502
80T3503
80T3504
80T3505
80T3506
80T3507
80T3508
80T3775
80T3776
80T3777
80T3778
80T4451
80T4452
80T4453
80T4454

MOTOROLA
DIRECT
REPLACEMENT

MOTOROLA
SIMILAR
REPLACEMENT

2N6308
2N6308
2N6308
2N6308
2N6308
2N6308
2N5838
2N5840
2N6543
2N6543
2N6543
2N5838
2N3902
2N6545
2N6545
2N6545
2N5838
2N3902
2N6545
2N6545
2N6545
2N6235
2N6235
2N6235
2N6235
MJ6701
MJ6701
MJ8100
MJ8100
2N6190
2N6192
MJ8100
MJ8100
2N6190
2N6192
2N5347
2N5347
2N5347
2N5349
2N5347
2N5347
2N5347
2N5349
2N4877
2N4877
2N5336
2N5338
2N4877
2N4877
2N5336
2N5338
2N3719
2N3720
2N6303
2N6192
2N3867
2N3868
2N6303
2N6193
2N6867
2N3868
2N6303
2N3867
2N4877
2N5336
2N4877
2N5336

PART NO.

80T4455
80T4456
80T4483
80T4901
80T4902
80T4903
80T4904
80T4905
80T5101
80T5102
80T5103
80T5111
80T5112
80T5113
80T5501
80T5502
80T5503
80T5504
80T5506
80T5507
80T5508
80T5509
80T5511
80T55.12
80T5513
80T5514
80T5901
80T5902
80T5903
80T5904
80T5905
80T5906
80T5907
80T5908
80T5909
80T5910
80T5911
80T5912
80T5913
80T5914
80T5951
80T5952
80T5953
80T5954
80T5955
80T5956
80T6308
80T6309
80T6310
80T6311
80T6312
80T6313
80T6314
80T6315
80T6316
80T6408
80T6409
80T6410
80T6411
80T6412
80T6413
80T6414
80T6415
80T6416
80T6901
80T6902
80T6903

MOTOROLA
DIRECT
REPLACEMENT

MOTOROLA
SIMILAR
REPLACEMENT

2N5337
2N5337
2N4877
2N3583
2N6233
2N6234
2N3585
2N3585
TIP41A
TIP41A
TIP41A
TlP42A
TIP42A
TIP42A
2N5537
2N5537
2N5537
2N5539
2N4877
2N4877
2N5336
2N5338
2N5337
2N5337
2N5337
2N5339
2N3766
2N3766
2N3767
2N5050
2N5050
2N3766
2N3766
2N3767
2N5050
2N5050
2N5427
2N5427
2N5427
2N5429
2N5051
2N3583
2N5052
2N5051
2N3583
2N5052
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5347
2N5050
2N5051
2N5052

DEVICES NOT SHOWN IF MOTOROLA NUMBER IS IDENTICAL.
REFER TO CHAPTER 1

3-9

PART NO.

80T6904
80T7201
80T7202
80T7203
80T7204
80T7205
80T7206
80T7207
80T7208
80T7209
80T7603
80T7604
80T7605
80T7609
80T7610
80T7611
80T7612
80T7731
80T7732
80T7733
80T7734
80T7735
80T7736
80T9201
80T9202
80T9203
80T9204
80T9205
80T9206
80T9207
80T9208
80T9209
80T9210
80T9301
80T9302
80T9303
80T9304
80T9305
80T9306
80T9307
80T9308
80T9309
80T9701
80T9702
80T9703
80T9704
80T9705
80T9706
80T9707
80T12301
80T12301
80T12302
80T12302
80T12303
80T12303
80T12305
80T12306
80T12307
80T13301
80T13302
80T13303
80T13304
80T13305
80T801
80T802
80T803
80T805

MOTOROLA
DIRECT
REPLACEMENT

MOTOROLA
SIMILAR
REPLACEMENT

2N5052
2N6306
2N6306
2N6306
2N6307
2N6308
2N6341
2N6306
2N6306
2N6307
2N6338
2N6339
2N6341
2N6338
2N6339
2N6341
2N6249
2N5881
2N5881
2N5882
2N5629
2N5630
2N5631
2N6569
2N5878
2N5632
2N5633
2N6569
2N3055
2N5878
2N5632
2N5633
2N6569
2N5067
2N5068
2N5069
2N5067
2N5068
2N5069
2N3713
2N3715
2N3716
2N5303
2N5629
2N5630
2N5882
2N5629
2N5330
2N3055
MJ5039
2N5039
MJ7260

•

2N5347
MJ7260
2N5347
2N5347
2N5347
2N5347
2N6546
2N6547
2N6547.
MJ13334
MJ13335
2N5346
2N5346
2N5348
2N5346

POWER TRANSISTOR CROSS REFERENCE (continued)

PART NO.

•

SOTB06
SOTB07
SE9303
SE9304
SE9305
SE9306
SE9307
SE9308
SE9331
SE9403
SE9404
SE9405
SE9406
SE9407
SE9408

SV7056
SVT200-10
SVT250-5
SVT250-10
SVT300-5

SVT300-10
SVT350-3
SVT350-5
SVT400-3
SVT400-5

SVT450-3
SVT450-5
SVT6000
SVT6001
SVT6002
SVT6060
SVT6061
SVT6062
SVT6251
SVT6252

SVT6253
T1P33
TIP33A
TIP33B
TIP33C
TIP34
TIP34A
TIP34B
TIP34C
TIP35
TIP35A
TIP35B
TIP35C
TIP36
TIP36A
TIP36B
TIP36C
TIP51
TIP52
TIP53
TIP54
TIP55A
TIP56A
TIP57A
TIP58A
TIP61
TIP61A
TIP61B
TIP61C
TIP62
TIP62A
TIP62B

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

2N5346
2N5346
MJ3000
MJ3001
2N6059
MJ4033
MJ4034
MJ4035
2N3739
MJ2500
MJ2501
2N6052
MJ4030
MJ4031
MJ4032
2N6558
2N6306
2N5838
2N6306
2N6542
2N6307
2N6545
2N5840
2N5157
2N6543
2N6545
2N6543
MJ10004
MJ10004
MJ10005
MJ10004
MJ10004
MJ10005
MJ10006
MJ10006
MJ10007
TIP41
TIP41A
TIP41B
TIP41C
TIP42
TIP42A
TIP42B
TIP42C
2N5301
2N5885
2N5886
MJ802
2N4398
2f.15883
2N5884
MJ4502
2N6306
2N6307
2N6308
2N6545
2N6546
2N6307
2N6308
2N6544
TIP29
TIP29A
TIP29B
TIP29C
TIP30
TIP30A
TIP30B

PART NO.

T1P62C
TIP69
TIP70
TIP71
TIP72
TIP75
TIP140
TIP141
TIP142
TIP145'
T1P146
TIP147
TIP150
TIP151
TIP152
TIP160
TIP161
TIP162
TIP303
TIP304
TIP305
TIP306
TIP309
TIP310
TIP501
TIP502
TIP503
TIP504
T1P515
TIP516
TIP530
TIP531
TIP532
TIP535
TIP536
TIP537
TIP538
TIP539
TIP540
TIP544
TIP545
TIP546
TIP550
TIP551
TIP552
TIP553
TIP554
TIP555
TIP556
TIP558
TIP559
TIP560
TIP561
TIP562
TIP563
TIP620
TIP621
TIP622
TIP625
TIP626
TIP627
TIP640
TIP641
TIP642
TIP645
TIP646
TIP647

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

TIP30C
BU205
BU205
BU205
BU205
MJE13005
2N6057
2N6058
2N6059
2N6050
2N6051
2N6052
MJE13006
MJE13007
MJE13007
MJ10002
MJ10002
MJ10012
2N6544
2N6544
2N6545
2N6545
BU208
BU208
2N4877
2N4877
2N5050
2N5051
2N6339
2N6341
2N6235
2N6546
2N6547
2N6544
2N6544
2N6545
2N6249
2N6546
2N6547
2N6226
2N6227
2N6228
BU205
BU205
BU207
BU208
2N6306
2N6307
2N6545
2N6544
2N6544
2N6545
2N6545
2N6546
2N6547
2N6055
2N6056
2N6578
2N6053
2N6054
2N6052
MJ3000
MJ3001
2N6578
MJ2500
MJ2501
2N6052

DEVICES NOT SHOWN IF MOTOROLA NUMBER IS IDENTICAL.
REFER TO CHAPTER 1,

3-10

PART NO.

TIP660
TIP661
TIP662
TIP2955
TIP3055
UMT1008
UMT1009
UMT1203
UMT1204
WT5100
WT5200
40250
40251
40310
40312
40313
40316
40318
40322
40324
40325
40328
40363
40364
40513
40514
40542
40543
40613
40618
40621
40622
40624
40627
40629
40630
40631
40632
40636
40829
40830
40831
40850
40852
40853
40854
40871
40872
40873
40874
40875
40876
40885
40886
40887
41500
41501
41504
41505
41506
43104

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

MJ10002
MJ10002
MJ10012
MJE2955
MJE3055
MJ13014
MJ13015
MJE13004
MJE13005
MJ13015
2N6547
2N4231A
2N6569
2N4231A
2N4232A
2N4240
2N4231A
2N4240
2N4240
2N4231A
2N6569
2N4240
2N5877
2N4233A
2N5984
2N5984
2N5978
2N5978
TIP31
TIP31
TIP31
TIP31
TIP41A
TIP41A
TIP31
TIP31
TIP31A
TIP41A
2N5878
2N6316
'2N6315
2N6315
2N4240
2N6543
2N6546
2N6546
TIP41C
TIP42C
TIP41B
TIP41B
T1P41C
TIP41A·
I

2N5655
2N5656
2N5657

TIP29
TIP30
TIP31
2N5655
2N6543
2N5631

,\." power TransiStor Data Sheets
, ::"
."

.'.

,lll

4-1

II

2N3054
2N3054A

(SILICON)

4 AMPERE

MEDIUM-POWER NPN SILICON TRANSISTORS

POWER TRANSISTORS
NPN SILICON
55 VOLTS
25 WATTS - 2N3054
75 WATTS - 2N3054A

· .. designed for general purpose switching and amplifier applications.

•

• Excellent Safe Operating Area
• DC Current Gain Specified to 3.0 Amperes
• Complement to PNP Type 2N6049 or 2N4912

*MAXIMUM RATINGS
Symbol

Rating

I 2N3054

2N3054A

Unit

Collector-Emitter Voltage

VeEO

55

Vdc

Collector-Emitter Voltage
(RSE = 100 nl
Collector-Base Voltage

VeER

60

Vdc

Ves.

90

Vdc

VES

7.0

Vdc

4.0

Adc

Emitter-Base Voltage
Collector Current - Continuous

Ie

Peak

10"

Base Current

= 25°C

Po

Operating and Storage Junction,
Temperature Range

Adc

2.0

18

Total Device Dissipation @TC
Derate above 2SoC

75
0.43

J

25
0.143

Watts

Wloe

-65 to +200

TJ, T stg

°e

STYLE 1:
PIN 1. 8ASE
2. EMITTER
CASE: COLLECTOR

I

AU --.

iX =---~-~~-

Tj--

----+---+

E

SEATING PLANE

*Indicates JEDEC Registered Data
**Addition to JEDEC Registered Data

---F--

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to

Ca5~

S

FIGURE 1 - POWER-TEMPERATURE DERATING

0

I-0

I"'--..

I"'"

0
0

I"""

0
0
0
0

---

-

"

2NJ054A

'...."

"~

r-- ~3054

0
20

40

60

80

100

120

~

t-- r-- ~

140

160

180

200

MILLIMETERS
DIM MIN MAX
8 11.94 12.70
C
6.35 8.64
D
0.71 0.86
E
1.27 1.91
F 24.33 24.43
G
4.83 5.33
2.67
H
2.41
14.48 14.99
J
K
9.14
P
1.27
Q
3.61
3.86
S
8.89
T
3.68
15.75
U

-

INCHES
MIN MAX
0.470 0.500
0.250 0.340
0.028 0.034
0.050 0.075
0.958 0.962
0.190 0.210
0.095 0.105
0.570 0.590
0.360
0.050
0.142 0.152
0.350
0.145
0.620

-

All JEDEC Dimensions and and Notes Apply.
CASE 80-02
TO-66

TC. CASE TEMPERATURE IDC)

4-2
/

2N3054,A

ELECTRICAL CHARACTERISTICS (TC

= 25 0

unless otherwise noted)
'Symbol

Characteristic

Min

Max

55

-

60

-

-

500

Unit

*OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lC = 100 mAde, IS = 0)

VCEO(sus)

Collector-Emitter Sustaining Voltage (1)
(lC = 100 mAde, RSE = 100 n)

VCER(sus)

Collector Cutoff Current
(VCE = 30 Vde, IS = 0)

ICEO

Collector Cutoff Current
(VCE = 90 Vde, VSE(off) = 1,5 Vde)
(VCE = 90 Vde, VSE(off) = 1.5 Vde, TC = 1500 C)

ICEX

Emitter Cutoff Current
(VSE = 7,0 Vde, IC = 0)

IESO

Vde
Vde
"A de
mAde

1.0
6.0

-

mAde

1.0

II

*ON CHARACTERISTICS (1)
DC Current Gain
(lC = a,s Adc, VCE = 4.0 Vde)
(lc = 3,0 Adc, VCE = 4.0 Vde)

-

hFE

150

25
5.0

Collector-Emitter Saturation Voltage
(lc = 500 mAde, IS = 50 mAde)
(lc =3.0 Ade, IS = 1.0 Ade)

VCE(sat)

Sase-Emitter On Voltage
(lc = 500 mAde, VCE = 4.0 Vde)

VSE(on)

-

Vde

-

1.0
6.0
Vde

1.7

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 200 mAde, VCE = 10 Vde)
·Small-Signal Current Gain
(lC = 100 mAde, VCE = 4.0 Vde, I = 1.0 kHz)

MHz

IT

I

3.0

-

25

180

30

-

-

hie

·Common-Emitter Cutoff Frequency
(lC = 100 mAde, VCE = 4.0 Vde)

kHz

Ihle

·Indicates JEDEC Registered Data
(1) Pulse test: Pulse Width ~300 ",.S. Duty Cycle ~2.0%

FIGURE 2 - SWITCHING TIME EQUIVALENT TEST CIRCUIT

FIGURE 3 - TURN-ON TIME

3.0
APPROXflcTURN.ON
PULSE

Yin

.-

II

I II
IJ!I~ ~ \0

2.0

+11 V I
11

TJ =2SoC

1.0

S
VBE(off)

]

:

APPROX
+11 V

"

-4,0 V
11 <15ns
100 < 12 < SOD".
13< 15ns

13

0.5

~ 0.3

>=

.>

0.2
O. 1

APPROX 9.0 V

0.05

I---

--

f- 1,@VCC"'0Vd,

r-

DUTY CYCLE ~ 2.0%
12
TURN·OFF PULSE

1,@VCC-30Vd,

0.03
0.04 0.06

0.1

Id@lVBEloff)

0.2

0.4

=a

0.6

1.0

IC, COLLECTOR CURRENT lAMP)

4-3

2.0

4,0

2N3054,A

FIGURE 4 - THERMAL RESPONSE
1.0
~
O. 71--0-0.5
O. 5
z
~w
O. 3t--O!2
,..<.:1
~~ D.2

iii

0~1

t;~

~f3

I--- ..-:::::;; ;:;:;:

~~ o. It==0.05
fd ~ 0.07F=--O.2
!:::!ffi 0.05

.... I".

.
~~O.o3 i-"""

a:

~

Plpk)

0.01

........ I I

~rrmrE

0.0 2

•

OJCII) = 'It) OJC
o CURVES APPLY FOR POWER
PU LSE TRAIN SHOWN
READ TIME AT 11

0.0 1
0.01

. 0.02 0.03

0.05

0.1

TJlpkl - TC" Plpk) 0JCII)

lilll

I

0.2

0.3

1.0

0.5

2.0 3.0
5.0
10
I, TIME o,PULSE WIDTH Imsl

20

fJUl
-tf-j
t2

30

50

Jlll100

DUTY
CYCLE,
0 =11/12

200 300

500

1000

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
10

5.0!,1S~ ~1.0ms~.5,i.

7.0
ii: 5.0

2N3054A

~

0
3.01--- f- f-- TJ - 200 C
'" 2.0
1:)
a: 1.0
~

8j
E

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the tran-

"\

.....

'"

~

,

2N3054

sistor that must be observed for rei iable operation; i.e., the transistor

1\ \

I· ....

must not be subiected to greater dissipation than the 'curves indicate.
The data of Figure 5 il baled on T J(pk) lIZ 200°C; TC II variable
depending on conditions. Second breakdown pulse limits are valid
for duty cvcle. to 10% provided T J(pk) < 200°C. T J(pk) may be
calculated from the data in Figure 4. At high case temperaturel,
thermal limitations will reduce the power that can be handled to
values less than the limitations Imposed by second breakdown.

0.7

Curves ApplV Below Rated VCEO

0.5

d~""i:

0.3 I-

SECOND BREAKDOWN LIMITED
I- - - -'- - BONDING WIRE LIMITED
0.2 I- - __ - _ THERMAL L1MITATION@ TC = 250C

O. 1

2.0

I

I I

3.0

5.0

I II
7.0

I

10

I
20

I
30

40 50 60

VCE, COLLECTOR·EMITTER VOLTAGE IVOLTSI

FIGURE 6

~

TURN-OFF TIME

3. 0
2.0

FIGURE 7 - CAPACITANCE
300

1"-

Is

1.0

IIBI'IB2
Iclla -10
TJ-250C

200

...

@VCC=30Vdc

]

,.w
;::

.

O. sF"-

"-

O.3

\

o.2

<.:I
Z

r-.

;:!:

100

.~

0

c::;

if@VCC= 10 Vdc

O. 1

-

f"-I'

1-1"-

W

tl

TJ = 2501:

Cib

'"

0

Cob

0.0 5
0.0 3
0.04

0.06

0.1

0.2

0.4

0.6

1.0

2.0

30
0.1

4.0

0.2 0.3

0.5

1.0

2.0 3.0 5.0

10

20

VR, REVERSE VOLTAGE (VOLTS)

IC, COLLECTOR CURRENT IAMPI

4-4

50

100

2N30S4,A

FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE B - DC CURRENT GAIN
_ 1.0

300

10

0:
0:

SO

0

30

~o
ffi

I--r-2SoC

:::>
..,..,

ul

~

...-

::+i-

V
0.01

0.02

0.04

...0.4

1.0

2.0

0.6

~

\
[\..

0.4

o

iiij

~

0.2

..,o

i'.

0.2

\

- -r-

\.

ul

!;; 0
1.0

4.0

2.0

5.0

,...s

'APPLIES FOR IC/IB:5 hFE/2

+1.5

~

25'CID

+0.5

~
:::>

-0.5

!;( -1.0
0:

w

~

w

I IIII
IIIII

1.0

mG.°R~

-1.5

'; -2.0
q:, -2.5
0.004

O.B

0.0 I

0.02

0.04

VBE(satll@IC/IB= 10

c;
0

~250C- rII!i V
IJ.U.V

~
w

'"
c;

0.2

1.0

0.4

2.0

V

<[

0

0.4

:>

./

0.2

4.0

0.01

0.02

...ffi

10

e'"
x

f--VCE =30 V

......

w

4.0

~

./

:1i0:

0:
0:

-VCE=30Vdc

IC· 10 ICES-

......

.., 106

:::>

......

...... ......
......

iiijl0- I~ =REVERSE

==

-0.4

-0.1

+0.1

+0.2

-

......
...... ......

.......

......

......

ICES

-0.2

"'<

=:TYPICAL ICES
-VALUES OBTAINED
=~ROM FIGURE 12

~250C

-0.3

IC·2ICES

IC~ICES

FORWARO= ~

..,o

./
~

lOS

:;; 100 1== =IOO'C
o

10-3

2.0

'" 107

r--TJ =150'C
If--'
'J'

.!:!1O-2

1.0

0.4

FIGURE 13 - EFFECTS OF BASE-EMITTER RESISTANCE

FIGURE 12 - COLLECTOR CUT·OFF REGION

.3

0.2

IC. COLLECTOR CURRENT (AMP)

103

<[

0.1

0.04

~

.-

VCE!sat)@ ICIIB = 10
0
0.004

IC. COLLECTOR CURRENT (AMP)

_ 102

'"

.-

0.6

III!

0.1

l-

>

-55 t, 150'C

IIII

TJ = 25'C

Oi

Ilso'~ IIIII /'

8

III
500 1000

200

FIGURE 11 - "ON" VOLTAGES

'9VC FO R VCE("t)

~
~ +1.0

100

lB. BASE CURRENT (mA)

FIGURE 10 - TEMPERATURE COEFFICIENTS
+2.5

TJ" 2S'C
50

20

1.0

IC. COLLECTOR CURRENT (AMP)

~ +2.0

3.0A

1.0 A

0:

I'
0.1

I

500mA

::

I""'..

20
10
0.004

"',..[\
........... "'

III

IC = 100.mA

>
;;; O.B

r--

~ 100

'"ffi

I

S
o

VCE = 4.0 Vdc-

TJ=ISO'C
200

+0.3

+0.4

102

+0.5 +0.6

o

20

40

60

BO

100

120

140

TJ.JUNCTION TEMPERATURE (OC)

VBE. BASE·EMITIER VOLTAGE (VOLTS)

4-5

160

160

200

•

PNP
MJ2955

NPN
2N3055

15 AMPERE
POWER TRANSISTORS

COMPLEMENTARY SILICON POWER TRANSISTORS

COMPL.EMENTARY SILICON

· .. designed for general-purpose switching and amplifier applications.

•

•

DC Current Gain - hFE = 20-70

•

Collector-Emitter Saturation Vaitage VCE(sat) = 1.1 Vdc (Max) @ IC = 4 Adc

•

Excellent Safe Operating Area

@

60 VOLTS

IC = 4 Adc

.115 WATTS

MAXIMUM RATINGS
Symbol

Value

Collector-Emitter Voltage

VCEO

60

Vdc

Collector-Emitter Voltage

VCER

70

Vdc

Collector-Base Voltage

VCB

100

Vdc

Emitter-Base Voltage

VEB

7

Vdc

Collector Current - Continuous

IC

15

Adc

Base Current

18

7

Adc

Total Power Dissipation@ TC = 2SoC

Po

Rating

Derate above 2SoC

TJ. T stg

OperatIng and Storage Junction

Unit

liS
0.657

W/oC

-65 to +200

DC

Temperature Range

Watts

Lr~
r~-K
E

SEATlN(-~

t.

PLANE

THERMAL CHARACTERISTIcS
Characteristic
Thermal Resistance, Junction to Case

NOTE:
1. DIM "0" IS DIA.

FIGURE 1 - POWER DERATING

STYLE 1:
PIN 1. BASE

2. EMITTER
CASE: COLLECTOR

160
140

S
~

z
0
;::

::

[i
0

'"

~

~

DIM

120
~

100

I'...
~

80
6~

A
8
C
0

~

E

...........

40

F

t......

G

o

o

H

...... r--....

20

J

~.
25

50

75

100

150

m

200

TC. CASE TEMPERATURE (DCI

K
0

R

MILLIMETERS
MIN MAX

-

39.37
1.550
21.08
0.830
7.62 0.250 0.300
1.09 0.039 0.043
3.43
- 0.135
29.90 30.40 1.177 1.197
10.67
11.18 0.420 0.440
5.33
5.59 0.210 0.220
16.64 17.15 0.655 0.675
11.18 12.19 0.440 0.480
3.84
4.09 0.151 0.161
1.050
- 26.67
Collector connected to case,
CASE 11·01
6.35
0.99

(TO·3)

4-6

INCHES
MIN
MAX

2N3055 NPN/MJ2955 PNP

ELECTRICAL CHARACTERISTICS

I

IT

c•

25 0 C unl ... oth ..

w". noted)
Symbol

Min

Max

Unit

Collector-Emitter Sustaining Voltage (1)
(lC = 200 mAde, IB = 01

VCEO(,u,1

60

-

Vde

Collector-Emitter Sustaining Voltage (1)

VCER(,u,)

70

-

Vde

Collector Cutoff Current
(VCE = 30 Vde, IB = 0)

ICEO

-

0.7

Collector Cutoff Current

ICEX

-

1.0
5.0

Characteristic

·OFF CHARACTERISTICS

(lC

= 200 mAde, RBE = 100 Ohm,)

(VCE
(VCE

= 100 Vdc, VBE(off) = 1.5 Vde)
= 100 Vde, VBE(off) = 1.5 Vde, TC = 150°C)

Em itter Cutoff Current
(VBE = 7.0 Vde,lc = 0)

,

lEBO

' mAde

mAde

-

5.0

rnA.de

·ON CHARACTERISTICS (1)
DC Current Gain
(lC = 4.0 Ade, VCE = 4.0 Vde)
(lC = 10 Ade, VCE = 4.0 Vde)

-

hFE

Collector-Emitter Saturation Voltage

20
5.0

70

-

1.1

-

1.5

2.5

-

15

120

10

-

Vde

VCE(,.t)

(lC = 4.0 Ade, IB = 400 mAde)
(lC = 10 Ade, IB = 3.3 Ade)

3.0

Base-Emitter On Voltage
(lC = 4.0 Ade, VCE = 4.0 Vde)

VBE(on)

Vde

SECOND BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased
(VeE = 40 Vdc. t = 1.0 s; Nonrepetitive)

DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product
(lC = 0.5 Ade, VCE = 10 Vde, I = 1.0 MHz)

IT

·Small-Signal Current Gain
(lC = 1.0 Ade, VCE = 4.0 Vde, 1= 1.0 kHz)

hie

·Small-Signal Current Gain Cutoff Frequency

Ihle

MHz

kHz

(VCE = 4.0 Vde, IC = 1.0 Ade, I = 1.0 kHz)
* Indicates Within JEDEC Registration. (2N3055)
(1) Pul,e Test: Pulse Width.; 3001'5, Dutv Cvele .; 2.0%.

FIGURE 2 -

ACTIVE REGION SAFE OPERATING AREA

2N3055, MJ2955

-

20
10
ii:

,,~ OOlls~50JlS\50IJS

-

~

§
0:

" ........ l"

::>

depending on power level. Second breakdown pulse limits are
valid for duty cycles to 10% but must be derated for temperature

" .......

0:
C

~

Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indiCate.
The data of Figure 2 is based on TC = 25°C; TJ(pk) is variable

...... "-

1'-

"

8
E

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.

dc= ==1ms

according to Figure 1.
0.6

0.4

=
- r- - - - ~_

t-- r-

i

== ~

- -

Bonding Wire limit
.
Thermally limited @TC '" 25 0 C(Single Pulse) -

I I

Second B'j'kdOWn ~imit

I

I-I -I--

10
20
49
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

60

4-7

•

2N3055 NPN/MJ2955 PNP

NPN

PNP

2N3055

·MJ2955
FIGURE 3 - DC CURRENT GAIN

500

'20

VCE-4.0V

300 t - - TJ" 150 GC

...'"

100

70 ~
0

~

"'~
~

30

;

20

•

c

r-...

z

;;:

I II

Tp 150GC

VCp4.0 V

I-- f-- 55GC

~ 50

.......

........

~

"

10
1.0
5.0
0.1

0

'"~

-55GC

t-

f..- 1-2;'c

100

25GC

......

11

i---

200
z

;;:

O-H-l

~

30

~

20

r"t-...

f'...

f'

10

0.2

0.5 0.1

0.3

1.0

2.0

3.0

5.0

1.0

0.2

01

10

0.3

0.5 0.1

IC. COLLECTOR CURRENT (AMP)

2.0

1.0

3.0

5.0 1.0 10

IC. COLLECTOR CURRENT (AMPI

FIGURE 4 - COLLECTOR SATURATION REGION
~ 2.0

T~" J5 G6

1.11

I,ll

o

~

"' 1. 6

'"
~
o

4.0 A

IC"I.0 A

~

~
u.I

2.0

I. 2

::::
~
ti:

0.8

~

g
_

_ 0.4

~

~

>

0
5.0

10

50

20

100

200

500

1000

2000

5000

--

\

8

'-

>

\

o

"-

1\

0.4

8

2
1.

~ O.a

\

Tp 25GC

S.OA

1.6

,.
g

1

o

4.0 A

'"~

S.OA

o

ffi

rTlT

II
IC "1.0 A

0
5.0

10

50

20

'B. BASE CURRENT (mA)

100

200

'500

1000

2000

5000

'a. aASE CURRENT (mA)

FIGURE 5 - "ON" VOLTAGES

---- -

1.4
1.2

2.0

TJ" 25GC

TJ-25GC

-

S 1.0
"'
'"~

0.6
o
I-- I >
>' 0.4
0.2

i I

/

~ 1. 2

"'

'"
~

VBi @VfE 4'j

L j
I I

-

~

.........

VSE{sa,) fiillCfls - 10

~ 0.8

1.6

V

VaE(sa') @ lelia" 10
c--

~

II

I_III

VBE @ VCF~ ,4 ~ V,

0.8

-I

>

,:

II
II

i..-i-""

VCElsat) fiilICflB' 10

V

0.2

0.3

0.5 0.1

1.0

2.0

3.0

~

II

0.4

-

5.0 1.0

0.1

10

IC. COLLECTOR CURRENT (AMPERES)

V
~

VCE(sa,) fiillCflS " 10
~

o
0.1

11

V

0.2

0.3

0.5

1.0

2.0

3.0

IC. COLLECTOR CURRENT (AMP)

4-8

5.0

10

2N3055 NPN/MJ2955 PNP

FIGURE 6 - COLLECTOR CUTOFF REGION·
NPN -2N3055

PNP -MJ2955

1000

10.00 0
VCE"JOV

VCE-JOV
1000

0

...z

I!iOaC

TJ

0

100

~

1

'"u=>
r-- loone

...c
u
w

I F REVERSE= i=' F'FORWARO
00 It=:

-

TJ" ISOaC

-

lOone

10

~

8

E=c 25• C

1-

000 1
·02

-01

-0 J

-01

-01

-04

REVERSE_ -..= I==fORWARO

-r 25• C

00 1
-02

-05

./

10

-0'

-0 J

-02

-01

-01

VBE. BASE EMITTER VOLTAGE IVOL TSI

-05

VBE. BASE EMITTER VOLTAGE IVOL TSI

FIGURE 7 - SWITCHING TIMES TEST CIRCUIT

FIGURE 8 - TURN-ON TIME
10

VCC

+30V

--

05

- ,.

~
RC

'~

02
SCOPE

RS

."-.

1~2N~55 '- i:'-

w

"

;::

I,

-

-

MJ2955
I

2N)~55

Id

005

51

VCC"JOV
ICIIB - 10
VSEI.II}" J'!,v.
-TJ"2.l.·C

MJ2955

Ir.II~10ns

OUTY CYCLE" 10%
·4 V
RB and Re VARIEO TO OSTAIN OESIREO CURRENT LEVElS

0.02

e.

00 1
0.1

01 MUST SE fAST RECOVERY TYPE.
M8D5300 USED ABOVE'S - 100 rnA
MSOG100 USEO BELOW IS "100 mA

For PNP Test Circuit,
Reverse All Polarities.

0.2

03

FIGURE 9 - TURN·OFF TIME

10

f--""-"2.0 ~

j

:E
;::

-

~

~-

- - ~::: r~-

I-

1.0

--

500

0-

-I

-

....

MJ2955

0.2

03

0.5

1.0

10

50

~ f.,j.

TJ" 25·C

~

Cib

"",
....

2N3055?

~

C,b

"

C.b

'-..,
200

'-,

C.b

MJ2955
"

- ~"

u'

I

...

100

.''MJ2955

O. 1

300

--

§
~

2NJ055

"

O. 2

30

z

.. ts.....

-

20

~

w
u

2~055

~-

U

0.5

0.1

VCC-JOV
ICIIB - 10
IBI =IB2
TJ =25·C

-

10

FIGURtE 10 - CAPACITANCE
700

f--.

50

05

IC. COLLECTOR CURRENT (AMP)

2.0

3.0

70 01
5.0

03

0.5

10

10
VR. REVERSE VOLTAGE IVOLTS}

IC. COLLECTOR CURRENT (AMP)

4-9

30

50

100

•

NPN
2N3055A . MJl5015
PNP
MJ2955A . MJl5016

COMPLEMENTARY SILICON
HIGH-POWER TRANSISTORS

15 AMPERE

· .. PowerBase complementary transistors designed for high power
audio, stepping motor and other linear applications. These devices
can also be used in power switching circuits such as relay or solenoid
drivers, dc·to·dc converters, inverters, or for inductive loads requiring
higher safe operating area than the 2N3055 and MJ2955.

•

• Current·Gain - Bandwidtti·Product
fT = 0.8 MHz (MinI - NPN
= 2.2 MHz (MinI - PNP

@

COMPLEMENTARY SILICON
POWER TRANSISTORS
50, 120 VOLTS
115,IBOWATTS

IC = 1 Adc

• Safe Operating Area - 'Rated to 60 V and
120 V, Respectively

*MAXIMUM RATINGS
Symbol

2N3055A
MJ2955A

MJ15015
MJ15016

Unit

Coliector·Emitter Voltage

VCEO

60

120

Vdc

Coliector·Base Voltage

VCBO

100

200

Vdc

Collector·Emitter Voltage Base

VCEV

100

200

Vdc

Rating

Reversed Biased
Emitter·Base Voltage
Collector Current - Continuous

VEBO
IC

7.0

Vdc

15

Adc

IB

7.0

Base Current
Total Device Dissipation@Tc

=.

25°C

PD

Derate above 25°C
Operating and Storage Junction

Adc

115
0.65

180
1.03

Watts

W/oC
DC

-65 to +200

TJ, Tstg

Lr~
r~K
ESEATlN/~
PLANE

I

Temperature Range

THERMAL CHARACT,ERISTICS

I

Characteristi'c

Svmbol

Thermal Resistance, Junction to Case

I

Max

I

I

Max

1.52

8JC

0.98

.

• Indicates JEDEC Registered Data (2N3055AI
,
FIGURE 1 - POWER DERATING

STYLE 1:
PiN 1. BASE
.2. EMITTER
CASE: COLLECTOR

, 200

~
z
;::

0

go
~0
ffi
~

150

---- "~

100

,

:;:

"-

I

5

,p
25

MJ15015
MJ15016

,""- ""-

2N3055A ......
MJ2955A

50

0
0

MILLIMETERS
DIM MIN MAX

............. r-....

w

...co
ffi
>
...

"-

Unit

°C/W

.............. ~

75
50
100
125
TC. CASE TEMPERATURE (OCI

......

150

~

175

200

4-10

INCHES
MIN MAX

-

--

-

-

39.37
A
1.550
21.0B
0.830
B
C 6.35
7.62 O. 50 0.300
1.09 0.039 0.043
D 0.99
E
3.43
0.135
F 129.90
30.40 1.177 1.197
G 11~.67
11.18 0.420 0.440
H 5.33
5.59 0.210 0.2 0
J 16.64 17.15 0.655 0.675
K I1.1B 12.19 0.440 0.480
n 3.84 4.09 0.151 0.161
R
26.67
1.1150
Collector connected to till.
CASE 11-111
(TO·3)

NPN 2N3055A, MJ15015
PNP MJ2955A, MJ15016

ELECTRICAL CHARACTERISTICS (TC =25°C unle" otherwi,e noted}.

I

Characteristic

Svmbol

Min

Max

Unit

60

-

Vde

OFF CHARACTERISTICS (11

·Collector-Emitter Sustaining Voltage
(lc

a

200 mAde, IB

=0)

2N3055A, MJ2955A
MJ15015, MJ15016

Collector Cutoff Current
(VCE
(VCE

= 30 Vde, VBE(offl =0 Vdel
= 60 Vde, VBE(off) =0 Vdel

·Collector Cutoff Current
(VCEV

=Raled Value, VBE(ofll = 1.5 Vdel

Collector Cutoff Current
(VCEV = Raled Value, VBE(offl
TC = 1500CI

= 1.5 Vde,

• Emitter Cutoff Current
(VEB = 7 Vde,lc =0)

VCEO(,usl

120
ICED

2N3055A, MJ2955A
III1J15015, MJ15016
2N3055A, MJ2955A
MJ15015, MJ15016

ICE V

2N3055A, MJ2955A
MJ15015, MJ15016

ICEV

2N3055A, MJ2955A
MJ15015, MJ15016

lEBO

-

mAde

-

0.7
0.1

-

5.0
1.0

mAde

30
6.0

mAde

-

-

5.0
0.2

mAde

'SECOND BR&AKDOWN

Second Breakdown Collector Current with Base Forward Biased
(t

=0.5, non·repetitive)

2N3055A, MJ2955A
MJ15015, MJ15016

(VCE = 60 Vdel
'ON CHARACTERISTICS (1)

DC Current Gain

10
20
5.0

Collector-Emitter Saturation Voltage

VCE(,at)

(lC = 4.0 Ade, IB =400 mAde)
(lC = 10 Ade,IB = 3.3 Ade)
(lC = 15 Ade,IB = 7.0 Ade)

Base-Emitter On Voltage
(lC

-

hFE

(lC =4.0 Ade, VCE = 2.0 Vde)
(lc = 4.0 Ade, VCE = 4.0 Vdel
(lC = 10 Ade, VCE = 4.0 Vdel

70
70

-

Vde

-

1.1
3.0
5.0

VBE(on)

0.7

1.8

Vde

fT

OB

6.0
18

MHz

2.2
Cob

60

600

pF

td

-

0.5

/JS

4.0

/J'

=4.0 Ade, VCE = 4.0 Vdc)

'DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 Ade, VCE = 4.0 Vde, f

= 1'.0 MHz)

2N3055A, MJ15015
MJ2955A, MJ15016

Output Capacitance
(VCB

= 10 Yde, IE =0, f = 1.0 MHz)

'SWITCHING CHARACTERISTICS (2N3055A only)
RESISTIVE LOAD

Delay Time
Rise Time

Storage Time
Fall Time

(V CC = 30 Vde, IC = 4.0 Ade,
IBl = IB2 = 0.4 Ade,
tp = 25 /JS DUlY Cycle .. 2%)

tr
I,

tf

(1) Pulse Test: Pulse Width = 300 1", Duty Cycle .. 2%.
"Indicate, JEDEC Registered Dala (2N3055A)

4-11

-

3.0

I'S

6.0

1"

NPN 2N3055A, MJ15015
PNP MJ2955A, MJ15016

FIGURE 3 - COLLECTOR SATURATION REGION

FIGURE 2 - DC CURRENT GAIN

-

200

-

- r-.

100
70
z
:;;: 50
~

'"
a'"
'"c

•

~

30

25°

«

..........

!:;
>

~

~

1,\

VCE'4.0V
10

0.8

\

8

0.4

~

>
0.3

10

0.5 0.7
IC. COLLECTOR CURRENT (AMP!

15

~

"

I-- TC = 25°C

~

0.2

-

=>

g

5.0

./"

~

w
to

_......

vc~(..ti@ I~II~ 2,~
I
0.3

0.5

I

I
1

z

.'"~"

~

V

:;;:

-l-

MJ2955A

t

'5

°1&

--

2N3055A
MJ15015

1.0

I
5

10

20

'"
.i-

0.1

0.2
0.3
0.5
IC. COLLECTOR CURRENT (AMPSI

l-

1.0

2.0

FIGURE 7 - TURN-ON TIME

FIGURE 6 - SWITCHING TIMES TEST CIRCUIT
(Cin:uit shown is for NPNI
0
7=VCC=30V
5 ICIIS' 10
)J' 250 C

Vee

=

+30 V

3
Scope

]
w

'"
;::

~.

10 ns
Outy Cycle = 1.0%

O.S

=>

IC. COLLECTOR CURRENT (AMP!

t r • tf <;

0.2

~

~ 2.0

V

VSE(on!IilVCE-4V ; '

0.7

0.1

10

If

VSE(satl@IClis' 10

0.05

0.02

t;

~

0.5

-

FIGURE 5 - CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 4 - "ON" VOLTAGES

,;

"

0
0.00, 0.01

--

IS. 8ASE CURRENT (AMP)

3.5

1.5

"-

\.

j

0.2

o

1.2

~

8A

4A

0:

7

2

'">

'c' 1 A

'" 1.&

"\.

~

TJ' 25°C

c

.......

20

2.5
S
c

TTT

..'"

~ 2.4

~Soc

to

....

g 2.8
TJ -150°C

2

!.-

1
O.7
O.5

0.3
O.2r-

-- -

;;7

Id

-5 V

O. 1
0.2

4-12

0.3

0.5 0.7
'C.,cOLLECTOR CURRENT (AMP)

7· 10

15

NPN 2N3055A, MJ15015
PNP MJ2955A, MJ15016

FIGURE 9 - CAPACITANCES

FIGURE 8 - TURN·OFF TIMES

400

10

t;::.

200

'.

J...

.:

D. 7=VCC=30
D. S -Iclla = 10
-lal =la2
D. 3 - Tf 2SDIC
D.2
D. 1
0.2 0.3

Cib

f-.

......

:::.. ~

lf

1;:: D.

:E

TJ = 25 0 C
f- 2N3055A
MJI5015

Ill!

t- "t-.... t'-

,/

II

1111

i'. ,t' ~t-.

MJ2955A
MJ15016

100

0

"10

O.S 0.7
IC. COLLECTOR CURRENT (AMPS)

NPN
FIGURE 10 - 2N3055A. MJ15015

Cob

0
20

IS

2.0

1.0

5.0

10

20

50

100

SOO

200

1000

VR. REVERSE VOLTAGE (VOLTSI

COLLECTOR CUT·OFF REGION

PNP
FIGURE 11 - MJ2955A, MJ15016

10.000
VCE = 30 V

.
,..""

1
zw

u

.."j""

1000

..

i

100
- TJ •

150DC

r-

l00DC

=

10

0

0.1

I-

-

~

FORWARO

REVERSE

1.0

==

lOOne

8 0.1 = REVERSE","" """'F'-FORWARO

IC = ICES

0

~

~

./

1.0

u

0

B

0.01

r- ----t- 2S C
0.01

- IC = ICES

=1= 25 DC

D

+0.1

-til.2

-0.1

-0.2

·0.3

-0.4

0.001
·0.2

·0.5

+0.1

-0.1

i1!
:E

.

--

.... !'

10

f-o--

"

~

1--",

r-,

5

......

iii

ll:
B

1',

""0

~

----Bonding Wire limit

p

-- -

....

-til.4

+0.5

' ' ..
'.
"

....

'" 2.0

de

~

1-

8

W

1.0ms

i": "'-

'-

ttJ

--

Bonding Wire limit
Thermal limit fill TC = 250 C (Single Pulse)
- - - 1 - - Second Breakdown limit

100....

EO. 5 =

I

I

...

o

100m'

0.1 ms·

"

'"
~

B

1 I I
M

::"

.. S. 0

lm,-

- - Thorm.1 Limilli> TC = 2S oC (Sinili Puli)
Second Breakduwn limit
10

.....

0

5
lOOp'

...

0

u

0:

~,

.... I....

........

0

. - 3~!,
.1

~,

-til.3

FIGURE 13 - FORWARD BIAS SAFE OPERATING AREA
MJ15015, MJ15016

FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA
2N3055A, MJ2955A

20

-til.2

VaE. BASE·EMITTER VOLTAGE (VOLTS)

VSE. BASE·EMITTER VOLTAGE (VOLTS)

0.2
15

100

20

30

60

de_

100120

VCE. COLLECTOR·EMITTERVOLTAGE (VOLTS)

VCE. COLLECTOR·EMITTERVOLTAGE (VOLTS)
Ther. are t'NO limitations on the power handling ability of. transistor:

_age junction temperature and second brea_. Sale Operating ara.

e"MII indicate le,VCE limits of the transistor that mull be _MId for
reliable operation; i .•.• the tranllistor must not be subjected to grelter

dissipation than the curvas indicate.
The dot. 01 Figures 12 .nd 13 i8 b..... on Te = 25"C; TJII*I is ••riabla
depending on power level. Second breakdown pulse limits are valid for duty
cycles to 10% but must be derated for temperature according to Figura 1.

4-13

•

2N3441

3 AMPERES

•

NPN SILICON POWER TRANSISTOR

NPN SILICON
POWER TRANSISTOR

· .. 2N3441 transistor is designed for use in general·purpose switching
and linear amplifier applications requiring high breakdown voltages.
It is characterized for use as:

140 VOLTS
25 WATTS

•

Driver for High Power Outputs

• Series and Shu!]t Regulators
• Audio and Servo Amplifiers
• Solenoid and Relay Drivers
• Power Switching Circuits

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

140

Vdc

Collector-Base Voltage

VCBO

160

Vdc

Emitter-Base Voltage

VEBO

7

Vdc

IC

3

Adc

Base Current - Continuous

IB

Total Power Dissipation @TC - 25°C
Derate above 2SoC

Po

2
25
0.142

Watts
W/oC

TJ. T,t9

-65 to +200

°c

Collector Current

Continuous

Operating and Storage Junction
Temperature Range

---F--

Adc

THERMAL CHARACTERISTICS·
Characteristic

Thermal Resistance. Junction to Case

I

Symbol
ROJC

I

Max
7

I

Unit

°C/W

STYLE I:
PIN 1. BASE
2.EMIITER
CASE: COLLECTOR
MILLIMETERS
DIM MIN MAX
B 11.94 12.70
C
6.35 8.64
0
0.11 0.86
1.27 1.91
E
F 24.33 24.43
G 4.83 5.33
H 2.41 2.67
J 14.48 14.99
K
9.14
P
1.27
n 3.61 3.86
S
8.89
T
3.68
U
15.15

INCHES
MIN
MAX
0.470 0.500
0.250 0.340
0.028 0.034
0.050 0.075
0.958 0.962
0.190 0.210
0.095 0.105
0.570 0.590
0.360
0.050
0.142 0.152
0.350
0.145
0.620

-

All JEDEC Dimensions and and Notes Apply.
CASEIO.Q2
TO·66

4-14

2N3441

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted I
Characteristic

Symbol

Min

VCEO(susl

140

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)

(lC

= 100 mAde. 18 = 01

Collector Cutoff Current

IVCE

mA
mA

ICEX

= 140 Vde. V8Eloffi = 1.5 VI
= 140 Vde. V8Eloffi = 1.5 V @ 1500 CI

-

Emitter Cutoff Current

IVSE

100

ICEO

= 140 Ade. 18 =01

Collector, Cutoff Current

IVCE
IVCE

Vde

5.0
6.0
1.0

lEBO

mA

= 7.0 Vde.lc =01

ON CHARACTERISTICS
DC Current Gain (1

-

hFE

J

IIC =0.5 Ade. VCE = 4.0 VI
IIc = 2.7 Ade. VCE = 4.0 VI
Collector-Emitter Saturation Voltage (1)

IIC = 2.7 Ade. 18 = 0.9 Adel
Base-Emitter On Voltage (1)
(lC = 2.7 Ade. 18 = 4.0 Vdel

25
5.0

100

VCEls"tl

-

6.0

Vde

VBElonl

-

6.0

Vde

hfe

15

75

--

Ihfe l

5.0

-

DYNAMIC CHARACTERISTICS
Current Gain
. Small-Signal
IIC = 0.5 Ade. VCE = 4.0 Vde. f test = 1 kHzl

Small·Signal Current Gam
(lC

=0.5 Ade. VCE = 4.0 Vde.

f test

=0.4 MHzl

FIGURE 1 - ACTIVE·REGION SAF.E OPERATING AREA

10

a le max (PulsedJ-

4.
0: 3 0

...z"

:;

~

J.r

$a'~"Il2?."J'
'12 '$;= t!1"~d- $Qj:
C?-?].,
"'.r "-'.I'

lemaK (Continuous)

~,

=
"= 1. 0
=
~ O. 5
o

u

4,r

'~Q~~;"=

..... •

't- ... i" I"
:0...
~
...... -'f.:-

Second BreakdDwn Limit

r-

Thermal Limit@Tc = 25 0 C -

I
0.1 2.0

3.0

I I I I III
5.0 1.0

10

I

There are two limitations on the power-handling ability

of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC-VCE limits of the
transistor that must be observed for reliable operation, i.e.,
the transistor must not be subjected to greater dissipation
than the curves indicate.
"(he data of Figure 1 IS based on T J(pk) = 2000 e; T e is
variable depending on conditions. At high case temperatures,
thermal limitations will reduce the power that can be handled
to values less than the limitations imposed by second breakdown.

.

--_o-

f--

2 0.2 t-- Bonding Wire Limit

..-...

~

- -

<

I
20

30

50

10

100

140 200

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS}

4-15

•

2N3442
2N4347

5.0 AND 10 AMPERE

POWER TRANSISTORS
NPN SILICON

HIGH-POWER INDUSTRIAL TRANSISTORS

•

120, 140 VOLTS
100, 117 WATTS

NPN silicon power transistors designed for applications in
industrial and commercial equipment including high fidelity audio
amplifiers, series and shunt regulators and power switches .
•

Low Collector· Emitter Saturation Voltage -.
VCE(sat) = 1.0 Vdc (Max) @ IC = 2.0 Adc - 2N4347

•

Collector· Emitter Sustaining Voltage VCEO(sus) = 120 Vdc (Min) - 2N4347
140 Vdc (Min) - 2N3442

•

Excellent Second·Breakdown Capability

C(~~~.
~

'MAXIMUM RATINGS

Ln='::J~
r~K
SEATIN(-~ !
E

Rating
Collector-Emitter Voltage

Collector-Base Voltage

Emltter·Base Voltage
Collector Current - Continuous

Svmbol

2N4347

2N3442

Unit

\lCEQ
VCB

120

140

Vdc

160

Vdc

140

IC

5.0
10

10
15"

Adc

'B

3.0
8.0

7.0

Adc

PD

100
0.57

117
0.67

Peak
Base Current - Continuous
Peak

Total Power DIssipation @ T C = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

Vdc

7.0

VEB

-

-65 to +200

TJ, Tst9

PLANE

Watts
W/oC
STYLE 1:
PIN 1. BASE

°c

2. EMITTER
CASE: COLLECTOR

DIM
A
B

THERMAL CHARACTERISTICS

C
0

Characteristic
Thermal Resistance, Junction to Case

Symbol

2N4347

ROJC

1.75

2N3442
1.5

Unit

E

°C/W

F
G

H
J
K

·'ndicates JEDEC Registered Data.
uThrs data guranteed In addition to JEDEC registered data.

n
R

MILLIMETERS
MIN MAX

39.37
21.08
1.62 0.250
1.09 0.039
3.43
29.90 30.40 1.177
10.67 11.18 0.420
5.33
5.59 0.210
16.64 17.15 0.655
II.1B 12.19 0.440
3.84
4.09 0.151
26.67
Collector connected to case
CASE 11·01

-

-

6.35
0.99

(TO·l)

4-16

INCHES
MIN
MAX

1.550
0.830
0.300
0.043
0135
1.197
0.440
0.220
0.675
0.4BO
0.161
1.050

2N3442, 2N4347

ELECTRICAL CHARACTERISTICS (TC

=25°C unless otherwise noted)
Symbol

Characteristic

Min

Max

120
140

-

-

200
200

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

(lC

2N4347
2N3442

Collector Cutoff Current

(VCE
(VCE

2N4327
2N3422

-

= 125 Vde, VeE(offl = 1.5 Vde!
= 140 Vde, VeE(off! = 1.5 Vde!
= 120 Vde, VeE(ofl) = 1.5 Vde, TC = 150°C!
= 140 Vde, VeE(ofl) = 1.5 Vde, TC = 150°C!
= 7.0 Vde,

IC

mAde

ICEX

-

2N4347
2N3442
2N4347
2N3442

Emitter Cutoff Current

(VeE

mAde

ICED

= 100 Vde, Ie =0
= 140 Vde,le =0)

Col tector Cutoff Current

(VCE
(VCE
(VCE
(VCE

Vde

VCEO(sus)

=200 mAde, Ie =0)

-

2.0
5.0
10
30

-

5.0

15
10
20
7.5

60

-

1.0
2.0
5.0

mAde

IEeO

=0)

2N4347,2N3442

ON CHARACTERISTICS (I)

DC Current Gain
(lC
(lC
(lC
(lC

2N4347
2N4347
2N3442
2N3442

Collector-Emitter Saturation Voltage

(lC
(lC
(lc

70

Vde

VCE(sat!

=2.0 Ade, Ie =200 mAde!
= 5.0 Ade. Ie =0.63 Ade!
= 10 Ade, Ie =2.0 Ade!

2N4347
2N4347
2N3442.

Base-Emitter On Voltage

(lC
(lC
(lC

-

hFE

=2.0 Ade, VCE = 4.0 Vde!
=5.0 Ade, VCE = 4.0 Vde!
=3.0 Ade, VCE =4.0 Vde)
= 10 Ade, VCE =4.0 Vde)

-

-

Vde

VeE(on!

=2.0 Ade; VCE = 4.0 Vde!
=5.0 Ade, VCE = 4.0 Vde!
= 10 Ade, VCE =4.0 Vde)

-

2N4347
2N4347
2N3442

2.0
3.0
5.7

-

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product 12)

(lC
(lC

2N4347
2N3442

Small-Signal Current Gain

(lC
(lC

kHz

fT

=0.5 Ade, VCE =4.0 Vde, fteS! = 50 kHz!
=2.0 Ade, VCE =4.0 Vde, fteS! = 40 kHz!

200
80

-

40
12

-

=0.5 Ade, VCE = 4.0 Vde, f = 1.0 kHz!
=2.0 Ade, VCE = 4.0 Vde, f = 1.0 kHz!

2N4347
2N3442

• Indicates JEDEC Registered Data
NOTES: 1. Pulse Test: Pulse Width
2. fT = Ihfel • f test

= 300 ~s,

Duty Cycle .. 2.0%.

FIGURE 1 - POWER DERATING

§

10

1""-

N

:::;

":5'" 0.8

"" "'" "'-

'"
z

o

E0.6
iii
c

a:: 0.4

~

~

~

"
~
~

0.2

I--- _
0

o

2~

..

"'"

"'" ""-

- - I---

~o

7~
100
12~
Te. CASE TEMPERATURE IOC)

4-17

-

hf~

I~O

"17~

"

200

72

•

2N3442, 2N4347

ACTIVE REGION SAFE OPERATING AREA INFORMATION

FIGURE 2 - 2N3442

20
10
70
50

0:

"'...."
;0
~

•

"

'"

20

"'

~

50/.1$
de

30

"'
B

TJ ~ 200°C

10

8.

10 ~s
730.,

,~

"

-

f=

07

f::
I-

:3 05

r-

03
02
, 2,0

I
30

\;~.,
l.Om$-

\.

100 ms

-

-

I I I I I II

CURRENT LIMIT
THERMAL LlMIT@ TC ~ 25°
SINGLE PULSE
SEfONi

BRE~KO~W~ L:M~TI

-

r-There are two limitations on the power-handling ability

L

50 ) 0 10
20
30
50 70 100
VCE. COLLECTOR,EMITTERVOLTAGE (VOLTSI

of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate Ie-VeE limits of the
transistor that must be observed for reliable operation, i.e.,
the transistor must not be ,subjected to greater dissipation
than the curves indicate.
The data of Figures 2 and 3 is based on TJ(pk);;:: 200°C; TC
is variable depending on conditions. At high case temperatures,
thermal limitations will reduce the power that can be handled
to values less than the limitations Imposed by second breakdown.

200

FIGURE 3 - 2N4347

0
0
0

JOps
50ps
100p.s

1~llom'

de

1\

100 ms

TJ~2000C

7
5

- - -

CURRENT LIMIT
- - - - - -- THERMALlIMIT@TC·25OC
. SINGLE PULSE
SECOND BREAKDOWN LIMIT I

-

3
2
2,0

3,0

I

1L

Ll J10I

0, 1

i-

r--

5,0 7,0

50 70 100
20
30
VCE. COLLECTOR,EMITTER VOLTAGE (VOLTS)

200

FIGURE 4 - DC CURRENT GAIN

400

r--

T~~i500C

--r--.:

200

FIGURE 5 - COLLECTOR-SATURATION REGION

1.4

~

VCE· 4,0 V

0

~
....

z

;;: 100

2Ke

....
'"

'"
=>
..,..,

40

'"

......

~

'-'i'.

~ 20
.l!-

r--- 2.0A

~

'"
0

r-..

10

0,3

B.OA

r---

0.6

'-

0.4

"

TJ·2SoC

8
0,2

-

1.0

~ 0.2

6.0
4,0
0,1

4,OA

'"<
!:;
0
> 0,8

-55°C

~ 60

l

1.2 f- IC·1.0A

0,5 0.7 1.0
2.0 3.0
IC. COLLECTOR CURRENT IAMPI

5.0

~
>

7.0 10

4-18

0
2.0

5.0

10

, 20
50
100
200
lB. BASE CURRENT ImA)

SOO

1.0k

2.0k

2N3442, 2N4347

FIGURE 7 - COLLECTOR CUTOFF REGION

FIGURE 6 - "ON" VOLTAGE
8

2. 41---

-

TJ = 25°C

~10k

2. 0

§
'"'"

~

~1 6
w

~ 1. 2

~
c

>. O. 8

I-- VB Ehal, @ IC/IB = 5.0

:>

o. 4

)- VBE(on,@VCE = 4.0 V
I
)- VCE(.",

01

0.2

I
03

I

I

IC/lB=I~p

I

a 100

,

I--:::

<.J

~

50

10

~~1000C

10

f"ii" RE'

1_-+_

II

i

0.5 07 1.0
20
30
IC. COLtECTOR CURRENT (AMP)

_

50

k::

FT '150oC

I

Y

10
-02

10

'ORWARD

ERSE
DC

-01

tal
.02
+03
VBE. BASE EMITTER VOLTAGE (VOLTS)

FIGURE 8 - CAPACITANCE
1000
700

~ 500
w

u

z

;: 300
;:;

It
~ 200
u

-

TJ = 25°C

--

100
0.1

Cob

..............

.......

,"
Cob

0.2

0.5
1.0
2.0
50
10
VR. REVERSE VOLTAGE (VOLTS)

4-19

""
20

50

100

+04

'05

•

2N3445
thru
2N3448
HIGH-SPEED SILICON ANNULAR*
NPN POWER TRANSISTORS

7.5 AMPERE

· .. for switching and amplifier applications

POWER TRANSISTORS
SILICON NPN

FEATURES
Fast S,:"itching: Total Switching Time =1.21ls (Typ) @ 5.0 A
High Gain: HFE = 40 to 120 @ 5.0 Amps (2N3447-48)
Guaranteed DC Safe Area: 1.5 Amps (Min) @ VCE = 40 Vdc
Low VCE(sat): 1.0 Volt (Typl. 1.5 Volts (Max) @ 5.0 Amps
Excellent Beta Linearity

•
•
•
•
•

60-80 VOLTS
115 WATTS

APPLICATIONS

•

•

Specified safe area of this series allows reliable design for inverters,
converters, hammer, and servo drivers.

• Fast response makes it ideal for series regulators; high switching
speeds enhance its use in switching regulators.
• Wide bandwidth and flat beta hold-up result in exceptional ampli·
fier characteristics.

MAXIMUM RATING
Rating

Symbol

2N3445
2N3447

2N3446
2N3448

Unit

80

Vdc

VCEO

60

Collector-Base Voltage

VC8

80

100

Vdc

Emitter-Base Voltage

VEB
IC

6.0

10

Vdc

Collector-Emitter Voltage

Adc
Adc

Base Current - Continuous

IB

7.5
4.0

Total Device Dissipation

Po

Figur. 1. 2 Figur. 1.3

Watts

Operating Junction Temperature

TJ

-65 to +200

DC

Collector Current-Continuous

Range

FIGURE 1 - POWER DERATING CURVE

[n[,,'i~111+tD
o

25

50

75
100
125
T., CASE TEMPERATURE (OC)

150

175

200

STYLE 1:
PIN 1. BASE
2. EMITIER

CASE: COLLECTOR
MILLIMETERS
DIM MIN MAX

A
B
C
D
E
F

G
H
~

These tran,lltor. are allo subject to I8fe area curves 8. Indicated by Flgur.2,

K
D

3. Both limits are applicable end mUlt be observed.

R

• Annular SemicondUctor. Patented bV Motorola Ine.

NOTE:
1. OIM "Q"IS DlA:

INCHES
MIN
MAX

-

-

39.37
1.550
21.08
- 0.830
7.62 0.250 0.300
1.09 0.039 0.043
- 3.43 - 0.135
30.40
1.177 1.197
ZS.90
10.67 11.18 0.420 0.440
5.33
5.59 0.210 0.220
16.64 17.15 0.655 0.675
11.18 12.19 0.440 0.480
3.84
4.09 0.151 0.161
26.67
1.050
Collector connected to case•
6.35
0.99

CASE 11'()1

(TO-3)

4-20

2N3445 th ru 2N3448

ELECTRICAL CHARACTERISTICS

(TC = 25°C unle•• otherwl.e noted)

Characteristic
Emitter-Base Cutoff Current
(VES = 6 Vde)
(VES = 10 Vde)
Collector-Emitter Cutoff Current
(VCE = 60 Vde, VSE = -1 Vde)
(VCE = 60 Vde, VSE = -1 Vde, TC = 150°C)
(VCE = 80 Vde, VSE = -1 Vde)
(VCE = 80 Vde, VSE = -1 Vde, TC = 150°C)
Collector-Emitter Cutoff Current
(VCE = 40 Vde, IS = 0)
(VCE = 60 Vde, IS = 0)
Collector-Base Breakdown Voltage
(lC = 1 mAde, IE = 0)
Collector-Emitter Sustaining Voltage
(lC = 100 mAde, 16 = 0)
DC Current Gain
(lc = 0.5 Ade, VCE

2N3445,2N3447
2N3446, 2N3448
ICEX
2N3445,2N3447
2N3445,2N3447
2N3446, 2N3448
2N3446, 2N3448

-

-

0.25
0.25

-

-

0.1
1.0
0.1
1.0

-

-

-

-

-

80
100

-

60
80

-

-

-

20
40
20
40

45
85
40
75

-

60
120

-

0.6
0.8

1.5
1.5

-

1.0
1.0

1.5
1.5

-

1.0
1.0

1.5
1.4

mAde

ICEO

-

-

2N3445,2N3447
2N3446, 2N3448

-

VCEO(.u.)

hFE

2N3445, 2N3446
2N3447,2N3348

1.0
1.0
Vde

SVCSO

Collector-Emitter Saturation Voltage
(lc = 3 Ade, 16 = 0.3 Ade)
(lC = 5 Ade, 16 = 0.5 Ade)

-

-

-

Vde

V6E(sad

V8E
2N3445, 2N3446
2N344 7, 2N3448

Vde

hfe
2N3445, 2N3446
2N3447, 2N3448
All Types

Common Base Output Capacitance
(VCS = 10 Vdc, f = 0.1 MHz)

-

-

20
40
1.0

1.6

-

-

260

400

-

0.15
0.9
0.15

0.35
2.0
0.35

-

100
200
pf

Cob
All Type.

Switching Times
(VCC = 25 Vde, RL = 5 ohms, IC = 5 A,lSl
Oelav Time plus Ri.e Time
Storage Time
Fall Time

-

Vde

2N3445, 2N3446
2N3447,2N3338

= 10 Vde, IC = 0.5 Ade, f = 10 MHz)

Vde

-

VCE(sad

Base-Emitter Saturation Voltage
(lC = 3 Ade, 16 = 0.3 Adc)
(lC = 5 Ade, IS = 0.5 Ade)
Sose-Emltter Voltage
(lC = 3 Ade, VCE = 5 Vde)
(lC = 5 Ade, VCE = 5 Vde)
Small Signal Current Gain
(VCE = 10 Vde, IC = 0.5 Ade, f = 1 KHz)

Unit

mAde

-

2N3445,2N3447
2N3446, 2N3448

= 5 Vde)

Max

-

-

2N3445, 2N3447
2N3446, 2N3448

= 3 Ade, VCE = 5 Vde)
= 5 Ade, VCE = 5 Vde)

(VCE

Typ

mAde

IESO

2N3445, 2N3446
2N3447, 2N3448
2N3445, 2N3446
2N3447,2N3448

(lC
(lC

Min

Symbol

= IS2 =0.5 A)
ld+tr
t.
tf

'"

SAFE OPERATING AREAS
F1GURE 2 - 2N3445, 2N3447

10
7.0
5.0

""- ""..JI

3.0
2.0

DC

........

Smsec-

1.0
0.7
0.5

~

FIGURE 3 - 2N3446, 2N3448

,.,
\

-

'"

......

rOC ......
!; "nsec)!..

"- .---- " .\
~

Imsec

Imsec
O.Smsec

-"2S0PSec~

0.3
0.2

.

0.1
T,-,17SoC
Eo
0.07
- - - TJ .2S oC
0.05
0.01 fL.._..&.._....I___.&.._...I._ _"-_..l1

o

10

20

30

::

;~2SI;.:cI'

T, -175°C
- - - TJ 25°C

1

(

40
50
60
o 10 20 30
Veo , COLLECTOR-EMITTER VOLTAGE (VOLTS)

4-21

40

50

60

70

80

The Safe Operating Area
Curves indicate IC - VCE
limits below which the de- '
vice will not go into secondary breakdown. Collector
load lines for specific circuits must fall within the
applicable Safe Area to
avoid causing a collectoremitter short. (Duty cycle
of the excursions make no
signifiCant change in these
safe areas.) To insure operation below the maximum
TJ, the power-temperature
derating curve must be observed for both steady state
and pulse power conditions.

•

2N3445

t~ru

2N3448

FIGURE 6 - BASE-EMITTER SATURATION
VOLTAGE VARIATIONS

FIGURE 4 - BASE CURRENT-VOLTAGE VARIATIONS
300
200

I

100
:< 70
oS 50

~=>
-

1= ~~h6It'
JI I 1'1111

le=3A

I~~IA
r-I.IIJ
Ic= 0.3A

-

.-

~

'":::>

!,Ill \~ I~ SA- f--

.

0.6

~

ffi

:=

0.4

:;;
~
~

I

3

•

0

/ _40°C

+ 175 0 C / +25°C /

0.8

z

I

10
7
5'

'"

1.0

'"'"«

I

20

u

2-

:>

/

/

30

'"~

0

!:i
0

I-

~

!:i

'l

/

Va = 5V

u; 1.2

//

./

>.

'"

I I

2

II L

I

0

-J

0.6
0.8
0.4
V", BASE-EMITTER VOLTAGE (VOLTS)

0.2

. 0.2

~

."

1.0

10

1.2

20

50

lOa

200

500 1000

I" BASE CURRENT (mA)

FIGURE 5 - COLLECTOR CURRENT-VOLTAGE VARIATIONS

~

10
7.0 f=:V e,
5.0

ie

:s

:;;

3.0

i

I-

2:0

:=

=>
oe

1.0

~

0.7
0.5

u

0

u

5V

/

./

/ ..

LI

. +175 C / +25°C

I

'0

0.2

0

I-

fil

' 1.0
M
0.6
0.8
VIE, BASE-EMITTER VOLTAGE (VOLTS)

VCEO

g
..E

2.0

u

1---t-t'+t+1+H---+-+-H-ttttt-++++tHtl
10

!:i

I

I

..

/

.'

I

20

50

lOa

I,. BASE CURRENT (mA)

0

200

500 1000

IT JI =lll'z'516~

2-

'"
«
'"

1.0

!:i
0
:>

175°C -

f-::-

100°C..., ~25~C

;

I

z0

0.8

~

0.6

.~:=

0.4

'"

0.2

S·
'":::>

le=3A-

le- IA

ffi

./

1.0
0.5

0.2

= 0.3 A-H++1H+--+--+-++t+++t--+-t-I-t1fttH

1.4

1.2

20V

10
5.0

1---+-++I-t+H+--+-+-l-+++++t--+-++I-t+tH

Ie

A
-J

50
20

0.4

~

I-

~

~-

0.8

u; 1.2

=Ve,

=>
u
oe

0.6

'"

1000
500
200
:<
.5 lOa

~

~

I

0.1

II
-r-!.IJ W"i:::;=I'=~le..f=.f3A+tHi'I"""=;-+t+HttI

I T~ ~ 25 61:1)
IIII
I--+-H'H'H-'tiII'-tt-'-t-+++ti Ie = SA ~F+-I:::I+If+l

!
~

I
I

I

0.2

II

-40°C

0

.2 0.3

/

/

1.2
1.0

2-

1/

REVE.RS~~ ~~ORWARD

0.2
I I
I y0.1
-0:6...,.0.5-0.4 '-0.3 "-0.2 -0.1 O' 0.1 0.2 '0.3 0~4' 0.5 0.6'
V", BASE-EMITTER VOLTAGE (VOLTS)

-,- Ie =

0.311

c

1

-J

50 '100
I" BASE CURRENT (mA)

200

500 1000

2N3445 thru 2N3448

FIGURE 7 - COLLECTOR-EMITTER SATURATION VOLTAGE VARIATIONS

~
g
'"
'"

""

1.4

II
Ileld~A

!:;
0

>

z
0

1.0

'"=>

0.8

;:;
~

I

,

I'" I--

......

¥

~

f:i

I

III

1.2

I
I I

\
\

~r'le ~ ~A

\

\
\

,

I
I

\

,
le=3A

1

0.6

A

AS.,_

:E
~

....

0.4

0

0.2

0

~

'-'

:;

J

II

TJ = -40°C

~

is

1.0

.~

~

,

~

,

I,

g 1.4

I

0

~

'"
'"~
>

z

0

1.0

~

=>
!C 0.8

'"
'"

i::

ii

0.6

"I

0
'"
....

~

0.4

'-' 0.2

1

oJ

I

I~A

1.2

0

I
.1.

,

,,

"

""

---

........

\

.......

...

TJ = 175°C
----2N3445,2N3446
---2N3447,2Nj448

~

70

200

100

,,~

300

,
,

\

- :----- -- - '-

I

1000

i:"'" le=3A

\..

i"-

50
70
30
20
I" BASE CURRENT (rnA) .

4-23

)

700

i"',

-~.

10

500

"

'" "

...

...... .....

-

'\

,

"

.~

.... "- .....
-F

I""......

\.

\

r-.,

'" -

...

'\.

1000

Ie = SA

~

I',

~.

-"'1\
\

!

700

I II
\.

\.

r--

I

~

.....

500

\. (\,

\

I
\

i-'"

~~

\.

20
30
50
I" BASE CURRENT (rnA)

II: = IA

\1\

\

\

-----

II

I

le= 3A

y

V
\

'. ,

300

\-.

'~

-

200

\

\

,

100

\

\

\

10

70

Ie = 5A

a--

!"-.,

--

:::'1::::,

1

"

~

TJ = 25°C
\
-2N3445,2N3446
---2N3447,2N3448

- -

le;:_:A,

\

\

I

0.6

0.2

,

~

I

:E

o

r-_

\
- .\

I

le=~A

......

30
20
50
I" BASE CURRENT (rnA)

I'

0.8

o~ 0.4

'-'

['....

I I

~

§!

~
=>

....

!

"- !"'....

"

\..

10

1.2

UJ

,

1\

\

0

g

\t-

\..

1\

-2N3445,2N3446
---2N3447,2N3448

~ 1.4

1\
\\
'.\
',\

\
\

\

I--r- ___

100

200

300

500

700

1000

•

2N3445 thru 2N3448

FIGURE 8 - COLLECTOR CURRENT versus BASE CURRENT

10

10

-=

5.0

I
~

'"
0

~
8

.,g

a

2N3446

5.0

- IVeE 5 V

~ 2.0

:s
'"

17N1441;

1.0

/
:5°C

0.1

I

2.0

...

1.0

~
'"""'"
0
'"

0.5
0:2

~

:s
'"

f-+ ;5'

/

~
8

' -4Jol

r=

2N3447,2N3448
5V

I - VeE

A-"?

+25°C

0.5

/

0.2
+ 175°C

-40°C

/

0.1

.,g

0.05

0.05

1/

0.02

0.02
0.01

0.01
0.1 .0.2

0.5 1.0 2.0 5.0 10 20
50 lOa 200
I•• BASE CURRENT (mAl

I
0.1 0.2

500 1000

0.5 1.0 2.0

5.0 10 20
50 100 200 500 1000
I•• BASE CU RRENT (rnA)

FIGURE 9 - CURRENT GAIN VARIATIONS

50

40
z:
-

u

10

700

C,b

500

r...

0

u

20

floill'

20V

VCEO

.5
200

1.5

"-

FIGURE 13 - COLLECTOR·EMITTER LEAKAGE CURRENT
varsus BASE·EMITTER RESISTANCE
WOO

....

\

1.0

0.1

..

I

In( 1- 0.91 P,/Ilo
J J)

\
\

",.

o

15

=

Ilo
0.91l,

w

"

20

500

2.0

...
;::
""

\.

30

\
\

~

>

~

= 25°C
= TARIl,--

t;'"

0

~

R

1 __

\

0

...~

900 n

_ 1.7

:--

50

!....
z:
r;;z:
...u
;::
""
z:

+30V

AT POINT A

4

z:

X

I- I" -

~

OV

5

300

i"'-...

200
TJ

=

!OOOe

100
10

100

1000

io,ooo

100,000

R", EXTERNAL BASE·EMITTER RESISTANCE (OHMS)

4-2.5

0.1

0.2

0.5

5.0 10
1.0
2.0
JUNCTION VOLTAGE (VOLTS)

20

50

100

2N3583 thru 2N3585, 2N4240
2N6420 thru2N6423 PNP

NPN

1.0 AND 2.0 AMPERE
COMPLEMENTARY MEDIUM-POWER HIGH VOLTAGE
POWER TRANSISTORS

•

POWER TRANSISTORS
COMPLEM ENTARY SI LICON
25D-5oo VOLTS
35 WATTS

· .. designed for high·speed switching and linear amplifier applica·
tions for high·voltage operational amplifiers, switching regulators,
converters, inverters, deflection stages and high fidelity amplifiers.

•

Collector· Emitter Sustaining Voltage VCEO(sus) = 175 to 300 Vdc @l IC = 200 mAdc

•

Second Breakdown Collector Current Islb = 350 mAdc@l VCE = 100 Vdc - NPN
= 150 mAdc @l VCE = 100 Vdc - PNP

•

Usable DC Current Gain to 2.0 Adc

Symbol

Rating
Collector-Emitter Voltage

VCEO

COllector-Base Voltage

Vce

Emitter-Base Voltage

VEe

Collector Current

Continuous

IC

Peak (11
Base Current

Ie

Total Power Dissipation

Po

@TC= 25 DC,
Derate above 25°C
Operating and Storage Junetion Temperature Range

1=:'=

p

it-- -------

*MAXIMUM RATINGS

TJ,Tstg

2N3583 2N3584 2N3585 2N4240
2N6420 2N6421 2N6422 2N6423
175

.

250

1.0
5.0

.
...
.

250

300

300

Vdc

375

500

500

Vdc

6.0

..

...

2.0
5.0

Vdc
Adc
Adc

1.0

...

35
0.2

..

-65 to +200

Watts

Characteristic

°C'

I

Symbol

I

Max

I

Unit

I

R8JC

I

5.0

I

°CIW

-Indicates JEDEC Registered Data

(11 Pulse Test: Pulse Width = 5.0 ms, Duty Cycle .. 10%.

E

I SEATING PLANE
ST~I~ErBASE '

--,
K

0

I

--- F--

2. EMITTER
CASE: COLLECTOR

a
L-K:)---1t_~ct

H

W/DC

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case

t t

Unit

C

s
MILLIMETERS
DIM MIN MAX
B 11.94 12,10
6,35 8.64
C
D
0.11 0,86
1.21 1.91
E
F 24.33 24,43
4,83 5,33
G
2,61
H 2,41
J 14,48 14.99
K 9.14
p
1.21
Q
3,61
3.86
S
8.89
3.68
T
U
- 15.15

-

INCHES
MIN MAX
0,410 0.500
0,250 0,340
0,028 0,034
0.050 0,015
0,95B 0,962
0,190 0,210
0,095 0.105
0.510 0.590
0.360
0.050
0.142 0.152
0.350
0.145
0.620

-

All JEDEC Dimensions and and Notes Apply.

CASE 8Q'()2
TO·66

4-26

2N3583 thru 2N3585. 2N4240 - NPN
2N6420 thru 2N6423 - PNP

ELECTRICAL CHARACTERISTICS ITe

= 25 0 e

unless otherwISe noted.1

Characteristic

'OFF CHARACTERISTICS 111
COllector-Emitter Sustaining Voltage

IIC = 200 mAde. IS = 01 NPN
lie = 50 mAde, IS = 01 PNP

2N3583
2N3584
2N3585
2N4240

2N6420 VCEOlsu,1
2N6421
2N6422
2N6423

Collector Cutoff Current

IVCE = 150 Vde, 'S = 01

IVCE = 225 Vde, VSEloffl = 1.5 Vde, TC = 1500 CI
IVCE = 300 Vde, VSEloffl = 1.5 Vde, TC = 1500 CI

2N3583
2N3584
2N3585
2N4240

--

-

175
250
300
300

-

-

'CEX

2N3583
2N3584
2N3585
2N4240
2N3583
2N3584
2N3585
2N4240

2N6420
2N6421
2N6422
2N6423
2N6420
2N6421
2N6422
2N6423

10
5.0
5.0
5.0

-

2N6420
2N6421
2N6422
2N6423

All

All

-

-

-

10
5.0
5.0
5.0

mAde

-

-

-

1.0
1.0
1.0
.2.0
3.0
3.0
3.0
5.0

-

-

1.0
1.0
1.0
2.0
3.0
3.0
3.0
5.0
mAde

'ESO
2N3583
2N3584
2N3585
2N4240

Vde

mAde

-

2N6420
2N6421
2N6422
2N6423

Emitter Cutoff Current

IVSE = 6.0 Vde, IC = 01

-

ICEO

Collector Cu toft Cu rrent

IVeE = 225 Vde, VSEloffl = 1.5 Vdel
IVCE = 340 Vde, VSEloff! = 1.5 Vdel
IVeE = 450 Vde, VSEloffl = 1.5 Vdel

175
250
300
300

-

-

-

5.0
0.5
0.5
0.5

-

-

5.0
0.5
0.5
0.5

40

-

40

-

-

ON CHARACTERISTICS III
DC Current Gain

'IIC = 0.5 Ade, VCE = 10 Vdel
'IIC = 0.75 Ade, VeE = 2.0 Vdel
IIC = 0.75 Ade, VCE = 10 Vdel
'IIC = 1.0 Ade, VCE = 2.0 Vdel
IIC = 1.0 Ade; VCE

= 10 Vdel

2N3583
2N4240
2N4240
2N3584
2N3585
2N3583'
2N3584
2N3585

2N6420
2N6423
2N6423
2N6421
2N6422
2N6420
2N6421
2N6422

2N4240
2N3583
2N3584
2N3585

2N6423
2N6420
2N6421
2N6422

2N4240
2N3584
2N3585

2N6423
2N6421
2N6422

All

All

*Collector-Emitter Saturation Voltage

IIC = 0.75 Ade, IS = 75 mAdel
IIc = 1.0 Ade, la = 125 mAdel

= 0.75 Ade, IS = 75 mAdel
= 1.0 Ade, la = 100 mAdel

Base-Emitter On Voltage
lie = 1.0 Ade, VeE = 10 Vdel

40
10
30
8.0
8.0

200
100
150
80
80

40
10
30
8.0
8.0
10
25
25

200
100
150
80
80

-

10

100
100

25
25

100
100

-

1.0
5.0
0.75
0.75

-

1.0
5.0
0.75
0.75

-

-

1.8
1.4
1.4

-

1.8
1.4
1.4

-

1.4

-

1.4

Vde

VCElsatl

*8ase-Emltter Saturation Voltage

lie
IIc

-

hFE

IIC = 0.1 Ade, VCE = 10 Vdcl

-

Vde

VaElsati

*Jndicates JEDEC Registered Data.
111 Pulse Test: Pulse Width = 300 "s, Duty Cycle <: 2%.

4-27

-

VaElonl

Vde

•

2N3583 thru 2N3585. 2N4240 - NPN
2N6420 thru 2N6423 - PNP

ELECTRICAL CHARACTERISTICS ITe = 25 0 e unless otherwISe noted.)
Characteristic
DYNAMIC CHARACTERISTICS

·Current Gain - Bandwidth Product! 1J
lie = 200 mAde, VCE = 10 Vde, fteS! = 5.0 MHzl

MHz

IT
2N3583
2N3584
2N3585
2N4240

2N6420
2N6421
2N6422
2N6423

Output Capacitance

10

-

10

-

15

-

15

pF

eob

IVes = 10 Vde, 'E = 0, f = 1.0 MHzl

All

·Small·Signal Current Gain
lie = 100 mAde, VeE = 30 Vde, I = 1.0 kHzl

-

120

-

120

25

350

25

350

-

3.0

.-

3.0

-

0.5

-

0.5

-

4.0

-

4.0

-

6.0

-

6.0

-

3.0

-

3.0

-

3.0

-

3.0

-

hie
2N3583

2N6420

2N3584
2N3585
2N4240

2N6421
2N6422
2N6423

2N3584
2N3585
2N4240

2N6421
2N6422
2N6423

2N3584
2N3585
2N4240

2N6421
2N6422
2N6423

'SWITCHING CHARACTERISTICS

•

Rise Time

{Vee = 200 Vde, IC = 1.0 Ade, RL = 200 Ohms,
181 = 100 mAdel
{Vee = 200 Vde, Ie = 0.75 Ade, R L = 267 Ohms,
181 = 75 mAdel

'r

Storage Time

ps

ts

{Vee = 200 Vde, Ie = 1.0 Ade,
181 = 182 = 100 mAdel
IVec = 200 Vde, Ie = 0.75 Ade,
181 = 182 = 75 mAdel
Fall Time
{Vce = 200 Vdc, Ie = 1.0 Ade,
lSI = IS2 = 100 mAdel
{Vee = 200 Vdc, Ie = 0.75 Ade,
181 = IS2 = 75 mAdel

ps

tf

Second Breakdown Collector Current

{VeE = 100 Vdel
* Indicates JEDEC Registered Data

{IIIT= Ihfel- f test .

FIGURE 1 - SWITCHING TIME TEST CIRCUIT
VCC

RB

51

01

fr,lf"'; 10 n5

DUTY CYCLE = 1.0%
-4V
RS and RC VARIED TO OBTAIN DESIREO CURRENT LEVELS
01 MUST SE FAST RECOVERY TYPE, ego
MBD530~ USED ABOVE IB • 100 rnA
MSD6100 USED BelOW 'S. 100 rnA
FOR Id and Ir, OilS DISCONNECTED AND V2 = O.
FOR PNP TEST CIRCUIT, REVERSE DIODE AND VOLTAGE POLARITIES

·4-28

\

ps

2N3583 thru 2N3585 • 2N4240 - NPN
2N6420 thru 2N6423 - PNP

NPN
2N3583 thru 2N3585,2N4240

PNP
2N6420 thru 2N6423
FIGURE 2 - TURN-QN TIME

1.0
O. J

VCC' 200 V
ICI1B' 5.0
ICI1B - 10
Tp250C

o. 5~"

0.3
0.2

I.......

L......

r..

r-

~
w
o. 1

r-......

[;"

.....

0

-' 0.05I=VBE(Offl

.....

0.03

50

70

100

200

300

---- -

500 700

1.0 k

t'......
.......

50

30

IC. COLLECTOR CURRENT (mAl

10
7.0
5.0

2.0

~
~

Is

.......

I-...

1.0

.....

1i
~

""

-

0.3

i-

0.2

O. 2
O. 1
20

'"
t;

::.
c

50

FIGURE 4 0

70

100

200

20

2.0k

500 100 1.0 k

300

30

50

--

c

g:
i=
c

/
0

~

~

~ 20

JO

-

,"" ...

::.
<.>

r:

-

...<3~ 200

\.

"'~"' 100
...; 10

1\
PNP

30

50

70

100

500 JOO 1.0 k

2.0 k

200

300

CAPACITANCE

t-

500

Cob

0.5
VR.

.4-29

25°C

NPN

:1--rNr
2
0.1
0.2

IC. COLLECTOR CURRENT (mAl

l=

-

5Of-.

f - NPN
20

300

-

1000
100
i 500
0 __
~ 30

"'\.

:;.--

II
7.0
5.0 1.0 10

200

2000

.......

z

10

..... ,

I,

~

100

FIGURE 5 -

,

I

i'""...

.....

IC. COLLECTOR CURRENT (mAl

CURRENT·GAIN - BANDWIDTH PRODUCT

VCE,10V
TJ , 25°C

0

VCC - 200 V
ICI1B-5.ii::::
ICIIB' 10 -:-:
TJ - 25°C

'0.1
30

IC. COLLECTOR CURRENT (mAl

~

r--~

r2.0k

200 300
500 700 1.0 k
IC. COLLECTOR CURRENT (mAl

"

"" 0.5
~

t::,...."

100

Is

1.0

~ 0.1

;:: D. 1
O.5

O. 3

-.;;;;

JO

2.0

K. . .

17

........

~

FIGURE 3 - TURN-OFF TIME
10
VCC-200V
1.0
lellB = 5.0
5.0
Ic/lB = 10
Tr 25°C
3.0

-

3.0

.......

II

0.0 1
20

2.0 k

.........

t'-

I ....

D, 1

;::: 0.07
-' 0.051--- Id@
f-0.031--- VBrOT iOI
0.02

r--.

0.02
30

~

VCC' 200 V
ICI1B' 5.0
ICI1B'lo
TJ' 25°C

.........

]

;I

! 0.0 7~ld@

I,

o. 3
o. 2 '

/

Ill'"

0.0 1
20

1. O~
O. 7
O. 5

== =

1.0

2.0

REVE~SE

5.0

10

VOLTAGE (VOLTSI

20

50

!OO

2N3583 thru 2N3585. 2N4240 - NPN
2N6420 thru 2N6423 - PNP

FIGURE 6 - THERMAL RESPONSE
w
'-'

1.0

z

O. 7~D-0.5

~
iii
a:
~

~r::::

0.2

~ _ 0.2
C
w
:rw

0.0

7t=:

~ ~~.O5
~

0.0 3

i

0.0

>

r-

L

0.05

11

.....

0.02

~
2~ I-ii.iii'
.A"/

X

0.0 11-""
0.01

.

0 CURVES APPLY FOR POWER' PULSE TRAIN SHOWN

=

=
:

REAO TIME AT tl
TJlpk).= TC = Plpk) ROJCIII

t2

DUTY CYCLE, 0 = tl1t2

I 111111

SINGLE PULSE

0.02

ROJC(t)·r(t)
ROJC
ROJC 5.00CIW

P(pk)

/ V

0.1

~ ~ O. 1

~~

-e J

i--" ~

t-~

II

'fLIl

O. 5
0.3

0.05

0.1

1.0

0.5

0.2

2.0

5.0

I I

10

20

50

200

100

500

1000

t,TIMElmsi

ACTIVE-REGION SAFE OPERATING AREA
FIGURE 7 - 2N3583 thru 2N3585.
10

-

5.0
;;::

!

2. 0

ffi

1.0

J ...
1'.,. .... b-"

1.0ms

5.0 ms
13
- BONDING WIRE LIMIT
a:
THERMAL LIMIT ISINGLE PULSE)
2 SECOND bREAKDOWN LIMIT
APPLY BELOW
I~F= CURVES
RATED VCEO
80.05-'1=

~

}001"=
OOps

I........
r ..

:.

!J
0.02
0.0 1
3.0

II I
20

30

de

70

2N6420 LIMIT

1.0

::=t=!=I= Tc = 250C
O.S

~

"

~

,

!J

0.02

100

500ps

"\.

~ ~: §

I

50

~ 2.0

r
1.0';;;"::.....

5.0 ms
de
_ 80NOING WIRE LlMITr---fa:
2 - - - THERMAL LIMIT ISINGLE PULSE)
- - - SECOND BREAKDOWN LIMIT
': CURVES APPLY BELOW
1=
RATED VCEO
C
'-' 0.05 =

I II II

5.0 7.0 .10

.....

;;::

a~

2N3583
2N3584
2N3585&2N4240

l00~

5.0

!z

:==+=t=+ TC = 250C

~ '0.5

10

100PS_~

.......

2N3583 LIMIT

FIGURE 8 - 2N6420 thru 2N6423

2~4240

200 300

0.0 1
3.0

7.0

10

2N6420
2N6421

'"

~Nr4rw

II I
5.0

r'\.'\

20

3D

50

70

100

200

300

VCE. COLLECTOR·EMlnER VOLTAGE IVOLTS)

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 9 - POWER DERATING
100

la:

~

~

r---

60

to

Z

i

w
C
a:

~

SECJNOL
BREAKOOWN DERATING

-"""'-

" 1""'-

0

...........

"

~

TH~~~:~NG

40

......t---

.....

T Jlpk) may be calculated from the data in Figure 6. At high.

........
20

o
Q

20

40

60

80

100

120

TC. CASE TEMPERATURE 10C)

140

There are two limitations on the pOW'er handling ability of 8
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate IC·VCE limits of the transistor
that must be observed for rei iable operation; i.B .• the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figures 7 and 8 is based on T C = 25°C; T J(pk)
is variable depending on power level. Second breakdown pulse
limits are valid for duty cycles to 10% but must be derated for
temperature according to Figure 9.

160

"'"

""

180

200

case temperatures, thermal limitations will reduce the power that
can be handled to values less than the limitations imposed by
second breakdovvn. Second breakdown limitations do not derate
the same as thermal limitations. AIICMlable current at the voltages
shown on Figures 7 and 8 may be found at any case temperature
by using the appropriate curve on Figure 9.
'

2N3583 thru 2N3585. 2N4240 - NPN
2N6420 thru 2N6423 - PNP

PNP
2N6420 thru 2N6423

NPN
2N3583 thru 2N3585,2N4240
FIGURE 10 - DC CURRENT GAIN

300

I.•1.
TJ'150:C

200

300• _ _TJ
100

-VCE~20V

-VCE' 10 V

150°C

~

--VCE'2.0V
- VCE ~ IOV

25°C

I::...

.~

~ 70

~
~

a'"

25:C

!=

z 100

50 ' - -55 C
30

,

~

10

"

7.0
5.0
3.0
20

30

1.0
O. S

55°C

30

, .'.

r"

10

.\

c

~

~

~ .~

10
7,0
5.0
3.0
10

1.0 k

50

30

100 300
500 700 1.0 k
70 100
IC, COLLECTOR CURRENT {mAl

FIGURE 11 - COLLECTOR SATURATION REGION
1.0

T~}l~JJ

1.0 k

~)15O~

~

~

~
W

O.S

to

""

o

""C;

\

0, 6

0

0.4

1\

1

15omA\

"'i-IJ.ll

8

tl

-r,loori

0

>

1.0

5,0

2.0

IlII10

--

10

0.6

1000 rnA

::i
>>-

' \ 750
rnA
500 mA

\

o

g_ o.

>

1000 rnA

::
~

I

1\

\

C;

ffi

70 100
100 300
500 700 1.0 k
IC, COLLECTOR CURRENT {rnA}

\

o

~
w
to

50

-

*a'"

~

~

c
W
~1O

g

100
I-70
~
>- 50
z

~

~

50

100

\

0.4

'"
~
8

0,1

tl

0

\

0

r--.. .... tt- f100

>

500 1000

750 mA
500 rnA

1.0

1.0

0.8

VSE(sal} @ICI1S = 5.0

~o o. 6
~

FIGURE 12 - "ON" VOLTAGES
1.0
TJ = 25°C

/. V

0.8

I-- ~ i-'-"I--"
i--- I-"

I

VSE @VCE = 2.0 V

W

to

ICI18

~ 0.4

o

0, 1

i--- ,...-

VCE{,,'}

II I
III

V

>
>'

5.0

r-....

I10

10

30

50

70 100

200

100.

100

500

....

=

10

I

VSE{sat}@ICl1s = 5.0

P
~ ::::::-i--""

~

>-

;5 O. 6

j

VSE@ VCE = 1.0 V

~

'-5y=- ~

W

to

~ 0.4

1CI18 = 10

o

>

~iO-

>'

5.0

o.1
I--"

'-VCE{sat}
0
20

50

18, SASE CURRENT {rnA}

11 1
II I

TJ ~ 25°C

"'

'fII,lOo jA ....... f,
0.5

IS, SASE CURRENT {mAl

1.0

1\
r--- 1=:1-

150 mA

300

500 100 1.0 k

o

2.0 k

10

IC. COLLECTOR CURRENT {rnA}

30

50

70

100

100

300

4-31

II

500 700 1.0 k

IC. COLLECTOR CURRENT {rnA}

NOTE: DC CURRENT LIMIT FOR 2N3583, 2N6420 101.0 Amp.

A

"I'F2.0

P'
2.0 k

2N3583 thru 2N3585 • 2N4240 - NPN
2N6420 thru 2N6423 - PNP

NPN

PNP

2N3583 thru 2N3585,2N4240

2N6420 thru 2N6423

FIGURE 13 - TEMPERATURE COEFFICIENTS
+1.5

~
3>

.§. +1.5
~
+1.0

--r

*()VC for VCE(sat)

S
....

~ -1. 0

•

~ +1 .5
~ +t. 0
~ +0 S

./

~ -1.5

Ovs for VSE

~---r30

c:::. -2.

20

50

70

-

V

~

1S0CtoISO~

'~

t::::

....

100

100

300

i

ISSo~ to l1S Ct

-0. S

25 0 C to 17S ce

~ -1. 0

T

~ -1. S OVS for VSE

~src tol150f
1.0 k

......

:r

-

-Isso~ to lsolC

~-2. 0
SOD 700 1.0 k

;::;:;;

25 0 C to 17S oe

*OVC for VeEfsat)

S

-SrCtor'"i

~ -0.S

';;-2.

V

25" '\.

lms

500 1" 250llS -

...--\

""\.

L

\/",50p.'

.\

!

250p.'

\\ \

0 \ :\\

0.7

"-

8 0.5

"\.

"\I\' \

..Q

'\.\\l

0.3

~

0.2

0.1

.!

~501'S -

o

10

20

3D

40

50

60

70

10

20

30

40

50

60

70

80

90

VeE, COLLECTOR·EMITTER VOLTAGE (VOLTsI

The Safe Operating Area Curves indicate I,. - V r>: limits
below which the device will not go into secondary breakdown. Collector load lines for specific circuits must fall
within the applicable Safe Area to avoid causing a .collectoremitter short. (Duty cycle of the excursions make no signifi-

cant change in these safe areas.) To insure operalion below
the maximum T... the power-temperature derating curve
must be observed for. both steady slate and pulse . power
conditions.

2N 3719, 2N3720(SILICON)
2N 3867, 2N3868
2N6303
SILICON PNP POWER TRANSISTORS
· .. designed for high·speed, medium-current switching and high·
frequency amplifier applications.
•

3 AMPERE
POWER TRANSISTORS
PNP SILICON

Collector·Emitter Sustaining Voltage VCEO(susl = 40 Vdc (Min) - 2N3719,2N3867
=60 Vdc (Min) - 2N3720,2N3868
= 80 Vdc (Min) - 2N6303

40,60,80 VOLTS
6 WATTS

•

DC Current Gain hFE =25-180@IC=1.0Adc -2N3719,2N3720
= 40-200 @ IC = 1.5 Adc - 2N3867
= 30-150 @ IC = 1.5 Adc - 2N3868,2N6303

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.75 Vdc@ IC = 1.0 Adc - 2N3719,2N3720
= 0.75 Vdc@ IC = 1.5 Adc - 2N3867,2N3868,
2N6303

•

High Current-Gain - 8andwidth Product fT = 90 MHz (Typ)

•

2N3867 JAN and 2N3868 JAN also Available

•

'MAXIMUM RATINGS
Symbol

Rating
Collector-Emitter Voltage

VCEO

Collector-Base Voltage

VC8

Emltter·Base Voltage

VE8
IC

Continuous
Peak

Collector Current

Base Current

IS

Total Device DiSsipation @TC - 25 C
Derate above 2SoC

Po

Total DeVIce Dissipation @ TA

Po

=>

25 C

2N3719
2N3B67
40
40

Derate above 2SoC

2N3720
2N3868
60
60
4.0
3.0
10
0.5
6.0
34.3
1.0
5.71

2N6303
80
80

Unit
Vde
Vde
Vde
Adc
Ade

Watts.
mW/oC
Watt

mW/oC

Operating and Storage Junction

Temperature Range

TJ.Tstg

- - 6 5 1 0 +200 - - -

THERMAL CHARACTERISTICS
Max

Characteristic
Thermal Resistance, Junction to Case

·c

STYLE 1:
PIN I. EMITIER
2.8.ASE
3. COLLECTOR

29
175

Thermal Resistance, Junction to Ambient

4'ndlcates JEOeC Registered Data

FIGURE 1 - POWER DERATING

8. 0
7. 0

Is.

0

~ 5.0

~~
C

'~

""" """" '"

4. 0

ffi

3. 0

~
£

2.0

"- r-....

I.0

o
o

25

50

75

100

125

'"

150

~200

175

All JEDEC dimensions and notlS Ipply.
CASE31.1J3
T0-5

TC, CASE TEMPERATURE (DC)

. 4-39

2N3719,2N3720,2N3867,2N3868,2N6303

*ELECTRICAL CHARACTERISTICS (TC = 250 C unless otherwise noted)

I

I

Cha_istic

Symbol

I

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Susteining Voltege (1)
'IIC = 20 mAde, IS = 0)

VCEO(sus)
2N3867
2N3868
2N6303

Collector-Sase Sreakdown Voltage
(lC = 100 ",Ade, IE = 0)

•

40
60
80

-

4.0

-

-

1.0

-

150

2N3867
2N3868, 2N6303

50
35

-

2N3867
2N3868,2N6303

40
30

200
150

=3.0 Vde)

2N3867
2N3868,2N6303

25
20

-

=3.0 Ade, VCE = 5.0 Vde)

2N3867
2N3868, 2N6303

20

-

-

0.5
0.75
1.3

Collector Cutoff Current
(VCE = Rated VCS, VSE(off)

ICEX

Collector Cutoff Current
(VCS = Ratad VCS, IE

= 2.0 Vde)

-

Vde
",Ade
",Ade

(1)

hFE

= 1.0 Vde)

=1.5 Ade, VCE = 2.0 Vde)

(lc =2.5 Ade, VCE

ICSO

=0, TC = 1500 C)

ON CHARACTERISTICS
DC Current Gain
(lC =500 mAde, VCE

(lC

-

-

40
60
80
SVESO

Vde

Vde

SVCSO
2N3867
2N3868
2N6303

Emittar-Sase Sreakdown Voltage
liE = loo",Ade, IC = 0)

(lC

-

Collector-Emitter Saturation Voltage
(lC =500 mAde, IS = 50 mAde)
IIC = 1.5 Ade, IS = 150 mAde)
IIC = 2.5 Ade, IS = 250 mAde)

VCE(satl

Sase-Emitter Saturation Voltage
(lC =500 mAde, IS = 50 mAde)
(lC =1.5Ade, IS = 150 mAde)
(lC =2.5 Ade, IS = 250 mAde)

VSE(satl

-

Vde

-

Vde

-

-

1.0
1.4
2.0

60

-

-

120

-

1000

-

35

ns

tr

65

ns

ts

-

325

ns

75

ns

0.9

DYNAMIC CHARACTERISTICS
Current-Gain - Sandwidth Product (2)
(lC = 100 mAde, VCE '= 5.0 Vde, f test = 20 MHz)
Output Capacitance
(VCS = 10 Vde, IE
Input Capacitanea
(VES =3.0 Vde, IC

= 0, f = 0.1

MHz

fT
Cob

MHz)
Cib

=0, f = 0.1 MHz)

pF
pF

SWITCHING CHARACTERISTICS
OelayTime
Rise Time
Storage Time
Fall Time

(Vce = 3D Vde, VSE(off) = 0,
IC = 1.5 Ade~ lSI = 150 mAde)

ld

(VCC = 30 Vde, IC = 1.5 Ade,
lSI = IS2 = 150 mAde)

tf

-Indicates JEDEC Registered Data

(11 Pulse Test: Pulse Width'" 300 ",s, Duty Cycle'" 2.0%.
121 fT - I hf.l- ftest·

4-40

2N3719,2N3720,2N3867,2N3868,2N6303

*ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)

I

Characteristic

Symbol

Min

Max

40
60

-

-

"Ade

--

10
10
1.0
1.0

mAde

-

10
10

-

1.0

20
25
15

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lC = 20 mAde, IB = 0)
Collector Cutoff Current
(VCE = 40 Vde, VBE(off) = 2.0 Vde)
(VCE = 60 Vde, VBE(off) = 2.0 Vde)

-

ICEX
2N3719
2N3720

(VCE =40Vde, VBE(off) = 2.0Vde, TC= 150o C)
. (VCE = 60Vde, VBE(off) = 2.0Vde, TC = 150o C)

-

2N3719
2N3720

Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
(VCB = 60 Vde, IE = 0)

"Ade

ICBO
2N3719
2N3720

Emitter Cutoff Current
(V BE = 4.0 Vde, IC = 0)

ON CHARACTERISTICS

Vde

VCEO(sus)
2N3719
2N3720

mAde

lEBO

•

(1)

DC Current Gain
(lC = 500 mAde,VCE = 1.5 Vde)
(lc = 1.0 Ade, VCE = 1.5 Vde)
(lc = 1.0 Ade, VCE = 1.5 Vde, TC = -40o C)

-

hFE

Collector-Emitter Saturation Voltage

180

Vde

VCE(sa!)

(lc = 1.0 Ade, IB = 100 mAde, TC = -40o C to +1000 C)
(lC = 3.0 Ade, IB = 300 mAde, TC = -40o C to +100oC)
Ba .... Emitter SaWration Voltage
(lC = 1.0 Ade, IB = 100 mAde, TC = -40o C to +1000 C)
(lC = 3.0 Ade, IB = 300 mAde, TC = -40C;>C to +1000 C)

-

-

0.75
1.5

-

1.5
2.3

Vde

VBE(sa!)

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product (2)
(lC = 500 mAde, VCE = 10 Vde, f test = 30 MHz)

fT

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 0.1 MHz)

Cob

Input Capacitance
(VEB = 0.5 Vde, IC = 0, f = 0.1 MHz)

Cib

MHz

-

60

pF

-

120

-

1000

-

100

-

400

pF

SWITCHING CHARACTERISTICS
Turn-On Time
(VCC= 12Vde, VBE(off) = 0, le= 1.0 Ade, IBl =0.1 Ade)

ton

Tum-Off Time
(VCC= 12Vde, IC= 1.0 Ade, IBl = IB2= 100 mAde)

toff

ns
ns

-Indicates JEDEC Registered Data
(1) Pulse Test: Pulse Width ~ 300 ,",5, Duty CVcle = 2.0%.

(2) fT = Ihfe I- f test -

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - TURN-ON TIME
1000

Vee

700

t,@Vee=30V

500

le/la=I~=

TJ - 25 0 e
300
~ 200

...
!

1,. If" IOns
DUTY CYCLE' 1.0%

-=

-=
Vaa

NOTE:
For information on Figures 3 and 6, RB and, He were
varied to obtain desired tast conditions.
for 1:d and tr specifications, remove diode and

Vee
Re
. Ra
VI
V2
Vaa

2N3719
2N3720
-12V
J2n
loon
'B.OV
-11 V
~3.0V

2N3867
2N3B6B
ZN63D3
-lOV
19n
loon
13.GV
-IS,4V

100
70
50

.......

t-..::
f--+-

0
0
I0

0.03

==-3.0 V

""

td@VaElolff=4.0

r-..... ......

1111

lIT!
0.05 0.07 0.1

0.2

0.3

0.5 0.7

Ie, COLLECTOR CURRENT (AMPf

.tVI=D.

4-41

1.0

2.0

3.0

2N3719,2N3720,2N3867,?N3868,2N6303

FIGURE 4 - THERMAL RESISTANCE
1.o·

O. 71- 0 =0.5
O. 5

... 8

- --

: ~ 0.3 ,--h.2
ffi ~ o.2

~~

~ ~ O. 1

~ ~

1-- ::;:::::

.....

0.07

-=-

~

-

-

==

....L

0.01
SINGLE PULSE

0.03
0.02

0.3

0.5

0.7

--

-12

_

-

DUTY CYCLE. 0 = 11112

I III

0.0 1 '
0.2

•

-

P{pkl

g ~ 0.05
?rn

--

.-&-1,,1-=

;;,.

0.1
0.05

>-0

=

OJC{I) = r{t) OJC
OJC = 290 CIW Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT"
TJ{pkl- TC = P{pkl OJCltl

1.0

2.0

3.0

5.0

7.0

20

10
I.

30

50

70

100

200

300

500 700 1000

2000

TIME {m,1

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
0

5;Ofd

5.0
£

~
!Z
w

~

"'"'d.~
f~ ...

2.0

50",

~oo",

5.0m.

"\.

1.0
O. 5

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate IC -' VCE limits of the
transistor that must be observed for reliable operation; i.e .• the
transistor must not be subjected to greater dissipation than the
curves indicate.

"

... ...

=>

TJ -200oC
O.2 - - - - - BONDING WIRE liMITED
------THERMALLY LIMITED IiHC· 25°C
o. 1 E
(SINGLE PULSE)
SECONO BREAKOOWN liMITED
8 0.05
CURVES APPLY BELOW
oS
2N3719.2N3B62
RATED VCED
- 0.02
2N3720.2N3B68
-12N6lO3
0.0 1
1.0
2.0 3.0
5.0 7.0 10
20
30

'"
~

The data of Figure 5 is based on T J(pk) - 2000 C; T C is
variable depending on conditions. Second breakdown pulse
limits are valid for dutY cycles to 10% provided T J(pk)": 200u C.
T J(pk) may be calculated from the data in Figure 4. At high case
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown.

~

50

70

100

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 6 - TURN·OFF TIME

FIGURE 7 - CAPACITANCE
1000

1000
700
500

300

700
500

ICIIB" 10
IBI - IB2
TJ' 250 C

.....

...

300

...'"
..'"

200

TJ - 25°C

--I"-

~

200

..... ~~

]
~100

..

P

w

z

f

lsi=:: t::=

70
50

~

oS

30
20
10
0.03

U

t,.VCC'lOV

0.05 0.07 0.1

0.2

D.3

"

0.5 0.7

II1.0

.

100
70
50

Cob

30

r2.0

Cib

20
10
0.1

3.0

IC. COLLECTOR CURRENT (AMP)

0.2

0.5

1.0

2.0

5.0

10

20

VR. REVERSE VOLTAGE (VOLTS)

4-42

50

100

2N3719,2N3720,2N3867,2N3868,2N6303

FIGURE 8 - DC CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION

~ 2.0

100
70

z

;;:

....
'"z

~
II:
=>
'-' 3D
'-'
c

~

...

TJ = +15OOC

50

20

-

...... f.--- r-

I

~
-Ii::

:...-I -

t- _155

.-

.~--

Jc

-

... ... ,......

~~

---"'"

~

~ 0.8
o

0.05 0.07 0.1

0.2

0.3

r5

0.5 0.7

\IC=0.5A

0.4

ul

~ 0
2.0

3.0

......

f'...

r-

10

I

20

TJ = ~5~CI

~ 1.0

o

~

w

'"
~
o

+2. 5
G

3;
1/

II
II

-

~

>

.....-:

ffi

0.05 0.07 0.1

0.2

0.3

/
./

I.!olc for lCElsatl

0

u

./

~ -0. 5

~

,./

-I. 0
~

OVB for VBE

~ -1. 5

",

....

::> -2. 0

'"

0.5 0.7

1.0

2.0

3.0

-2. 5
0.03

"

0.05 0.07 0.1

, IC. COLLECTOR CURRENT lAMP)

0.2

0.3

0.5 0.7

2.0

3.0

FfGURE 13 - BASE CUT-OFF REGION

==

/
",

=TJ 150°C

;;:

V

100°C

.3-

\

5 100

./

VCE =30V-

........

10 1

TJ - 150°C

1.0

IC. COLLECTOR CURRENT lAMP)

FIGURE 12 - COLLECTOR CUT·OFF REGION

f-VCE" 3D V

500 700 1000

w

./

-

+1. 0

o

./

0.03

300

.J.
I-II 'I'

$ +0. 5

/

VCE(sat)@IC/IB=10

200

'lc/IB--hFEI2

....
G

VBE@VCE = 2.0 V

"> 0.4

o

100

I II

+2. 0

E

I

O. 2

70

;- +1. 5r- T = -550C to +1500C

V V

O.8 - VBIE(sat)@ Ic/lB = 10

0.6

50

FIGURE 11 - TEMPERATURE COEFFICIENTS

II

-

r--

lB. BASE CURRENT (mA)

FIGURE 10 - "ON" VOLTAGES

1.2

2.5 A

~A

II
30

IC. COLLECTOR CURRENT (AMP)

1.4

I\,

LOA

N

'-'

1.0

\

\

t;

-

i\
\

\

iii

~

---'--L

1.2

::

\

TJ·25bC

1\

o

~

F'"

10
0.03

~
ffi

'-

~

- - - VCE = 2.0 V
VCe=5.oV

\

~
~ 1.6

-

:::"f-

II

\

o

......

......

\

II:

a:

r-l000C

::::I

'-'

L

~lo­ 1

;a

~

/

I-cREVERSE
10- 2

+0.1

f::REVERSE

V

,--25°C
-0.1

-0.2

25°C
10- 2

FORWARD

-0.3

-0.4

VBE. BASE·EMITTER VOLTAGE (VOLTS)

10- 3
+0.1

FORWARD
-0.1

-0.2

VBE. BASE·EMITTERVOLTAGE (VOLTS)

4-43

-0.3

-0.4

•

2N3738, 2N3739 NPN (SILICON)
2N6424, 2N6425 PNP

HIGH VOLTAGE COMPLEMENTARY SILICON
POWER TRANSISTORS

1.0 AMPERE

POWER TRANSISTORS
, COMPLEMENTARY SILICON

· .. designed for high·speed switching, linear amplifier applications,
high·voltage operational amplifiers,switching regulators, converters,
inverters, deflection stages and high fidelity amplifiers.

225, 300 VOLTS
20 WATTS

• Coliector·Emitter Sustaining Voltage VCEO(sus) = 225 Vdc @ IC = 5.0 mAdc (2N3738, 2N6424)
=300 Vdc @ IC = 5.0 mAdc (2N3739, 2N6425)
• DC Current Gain hFE = 40·200@ IC = 100 mAdc

•

• Current·Gain - Bandwidth Product fT = 10 MHz (Min) @ IC = 100 mAde
•

~jCi)
D,

ISlb Rated to 2.0 Amperes

~

*MAXIMUM RATINGS
Rating

Svmbol

Collector-Emitter Voltage

2N3738 2N3739
2N6424 2N6425

Unit
Vde

VCEO

225

300

Collector-Base Voltage

Vce

250

325

Emitter·Base Voltage

VEe

6,0

Vdc

Collector Current - Continuous
-Peak

Ie

1.0
2.0

Adc

Base Current - Continuous

Ie

0.50
1.0

Adc

Po

20
0.133

Watts
W/oC

TJ.Tstg

-65 to+200

- Peak
Tatm Device Dissipation @ TC

= 2SoC

Derate above 25°C
Operating and Storage Junction

Vdc

- - u --,

1- -~­

p

it+- ---------

If

E
SEATING PLANE

DC

---F--

Tempera,ture Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
"I ndieates JED EC Registered Data
FIGURE 1 - POWER DERATING

100

""-

~ 80

B

"

0

60

to
Z

~
~

!;i

"'" "f',.

w 40

'"
0

'";0:w

~ 20

o
o

"
25

MILLIMETERS
MIN MAX
11,94 12.70
C
6,35 8,64
D 0.71 0,86
E
1.27 1.91
F 24,33 24.43
G 4.83 5.33
H 2,41 2.67
J 14.48 14.99
K
9.14
P
1.27
Q
3,61
3,86
8,B9
S
3,68
T
U
- 15.75

DIM

r--..

...'"
'"~

I

.

STYLE 1:
PIN 1. BASE
2.EMITIER
CASE: COLLECTOR

60

75

100

125

TC, CASE TEMPERATURE (DC)

150

175

"

200

4-44

S

INCHES
MIN MAX
0,470 0.500
0.250 0.340
0.028 0,034
0,050 0.075
0.958 0.962
0.190 0.210
0.095 0.105
0.570 0,590
0.360
0.050
0.142 .15
0.350
- 0,145
0,620

-

AIlJEDEC Dimension. and and Notes Apply.
CASEBO-02
TO·66

2N3738, 2N3739 NPN/2N6424,2N6425 PNP

I

(TC ~ 1!5o C,ullle .. otherwise noted.)

ELECTRICAL CHARACTERISTICS

I

Characteristic

Symbol

Min

Max

225
300

-

-

0.25
0.25

-

0.1
0.1

-

0.5
0.5
1.0
1.0

-

0.1

30
40
25

200

-

2.5

-

1.0

10

-

-

20

35

-

Unit

"OFF CHARACTERISTICS
Coliector·Emitter Sustaining Voltage (1)
IIc = 5.0 mAde, IB =0)

VCEO(sus)
2N3738, 2N6424
2N3739, 2N6425

Collector· Emitter Cutoff Current
(VCE = 125 Vde, IB =0)
(VCE = 200 Vdc, IB =0)

mAde

ICEO
2N3738, 2N6424
2N3739, 2N6425

Coliector·Base Cutoff Current
(VCB =250 Vde, IE = 0)
(VCB =325 Vde, IE =0)

ICBO

2N3738, 2N6424
2N3739, 2N6425

Collector Cutoff Current
(VCE = 250 Vde, VEB(off) = 1.5 Vde)
(VCE =300 Vde, VEB(offl = 1.5.Vdc)
(VCE = 125 Vde, VEB(off) =1.5 Vde, TC =100o C)
(VCE = 200Vde, VEB(off) = 1.5 Vde, TC =lOOOC)

-

2N6424
2N6425
2N6424
2N6425

-

-

Emitter·Base Cutoff Current
(VEB =6.0 Vde)

mAde

mAde

ICEV
2N3738,
2N3739,
2N3738,
2N3739,

Vdc

mAde

lEBO

'ON CHARACTERISTICS
DC Current Gain (1)
(lC = 50 mAde, VCE = 10 Vde)
(lC = 100 mAde, VCE = 10 Vdc)
(lC =250 mAde, VCE = 10 Vde)

-

hFE

Coliector·Emitter Saturation Voltage (1)
(lC =250 mAde, IB =25 mAde)

VCE(satl

Base· Emitter ''ON'' Voltage (1)
(lC = 100 mAde, VCE = 10 Ydc)

VBE(on)

Vdc
Vdc

SMALL SIGNAL CHARACTERISTICS
Current·Gain - Bandwidth Product (21
(lC = 100 mAde, VCE = 10 Vde, I = 10 MHzI
'Output Capacitance
(VCS = 100 Vde, IE = 0, I

pF

Cob

= 100 kHz)

·Small·Signal Current Gain
(lC = 100 mAde, VCE = 20 Vdc, f

MHz

'T

-

hIe

= 1.0 kHz)

"Indicates JEDEC Registered Data
(1) Pulse Test: Pulse Width ":300 "S, DutY Cycle ":2%.
(2) 'T = I hIe I- Irequeney

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT
VCC
+150 V

01 Must Be Fast Recovery Type, e.g.
MBD5300 Used AbovelB = 100 rnA
MSD610Q Used Below I B = 100 rnA

j25"'r-

V,
V2

RC

"1-+-J
9.0V

tr,tt

Scope

RB .

01

51

:S;10n.

Duty Cycle'" 1.0%

-4.0 V

RS and RC Varied to Obtain Desired Current
For

L~els

tel and trl 01 is disconnected and V2 "'" 0

For PNP test circuit, reverse diode and voltage polarities.

4-45

•

2N3738, 2N3739 NPN/2N642,4. 2N6425,PNP

PNP
2N6424.2N6425

NPN
2N3738. 2N3739
FIGURE 3 - TURN-ON TIME

1.0

1. 0

O. 7~
0.5

f:;2'@ VCC = 150 V

O. 1
j::
_- 0.0
7
0.05

w

~

I-

.....

-

r-...

O. 1

Id @VBE(olf) - 0 V
["-.,

0.03

r---....
30

:-:-...

O. 2

0.05

0.02
20

ICIIB = 10
TJ 25 0 C

150 V

.: 0.07

til@VSE(olf)=OV

0.03

•

~

.,.,.

r-.

== """

0.0 1
10

t,@VCC

O. 3

'I'-..

~ 0.2
w

O.7
O. 5

.....

O. 3 ..........

:IE

ICIIS = 10
TJ= 25 0 C

.........

0.02

200 300
50 70 100
IC. COLLECTOR CURRENT (mA)

0.0 1

500 700 1000

10

20

30

50

100

70

200

500 700 1000

300

IC. COLLECTOR CURRENT (mAl

FIGURE 4 - TURN-OFF TIME
0

10

7.O~ls
5. 0

ICIIB 10
IBI -IB2
TJ=25 0 C

r-

3. 0
w

:IE

j:: '1.

.:

5. 0

3. 0

I"'--

~ 2. 0

......

2. o

~

"

0f"....'I@VCC=150V

O.7
O. 5

w

1. 0

'~.

o. 7

"

.....

o. 3

O. 2

O. 2

O. 1
10

O. 1
10

50· 70

100

200

300

500 700 1000

20

FIGURE 5 - CURRENT·GAIN - BANDWIDTH PRODUCT

50

:r

I-

'"3:

.
'"z
c[

I

z

~

0

--

i,...o-

0
2. 20

I

300
200

I-

-t-

~ 10Ot'::---

...zw
;::
;:;

:-......
2N3738. 2N3739~ ,

10

7. 0

70

100

200

300

500 700 1000

FIGURE 6 - CAPACITANCE

2N6424.2N6425

0_

~ 5. O~
r--a:
§ 3.0

...J:'

I

100

g:

50

500

~

70

30

IC, COLLECTOR CURRENT (mAl

~ 200

~

~

.......

IC. COLLECTOR CURRENT (mA)

g

["-.,

5

......

30

r--.

l'.. II@ VCC ~ 150 V

o. 3

20

ICIIB -10
IBI -IB2
TJ ~ 25 0 C

7. o~ I;;;.IS

I

I

30

40

..~

,

VCE = 10V
Tr25 0 C

60

80 100

200

300

0
50

IC. COLLECTOR CURRENT (mAl

Cob

....

0

7.0
5.0
0.1

400

r-

0

10

"'

-- -

Cib

......

- - - - 2N3738. 2N3739
- - 2N6424. 2N6425

0.2 0.3 0.5 0.7 1.0

2.0 3.0 5.07.0 10

::::
20 30

VR. REVERSE VOLTAGE (VOLTS)

4046

50 70 100

2N3738, 2N3739 NPN/2N6424, 2N6425 PNP

FIGURE 7 - THERMAL RESPONSE
1. 0

O.

~

7f--D' O.S

o. S

2

NO.3
... :::;
z":

~~ O.
zo

E5
a:

0.7
0.5

~
_

8

~

"

50t~·

200~~ ........

OOp,

....

1.0

de

TC = 25"C

'\. ~

I

- - - - BONDING WIRE LIMITED
----THERMALLy LIMITED
0.1
(SINGLE PULSE)
0.07f=: ---SECOND BREAKDOWN LIMITED
0.05
CURVES APPLY BELOW RATED VCEO

!==

0.02
3.0

II II
5.0

7.0

10

I
20

.... ....

"

50

70

100

200

200

0.2

g o.
E

1

\

1'

TC' 25"C

lO.

-\\ \ \

1.0 m•

=

IIII

O.S

0.7

10

20

30

50

II

70

~\. ~

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i.e .• the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figures 8 and 9 is based on TC = 2So C; TJ(pk) is

variable depending on power level. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ(pk) .;;; 17So C. T J(pk)
may be calculated from the data in Figure 7. At high case temp-

eratures. thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by second
breakdown. Second breakdown limitations do not derate the same
as thermal limitations. Allowable current at the voltages shown
on Figures Band 9 may be found at any case temperature by
using the appropriate curve on Figure 1.

4-47 .

\\

de

~

~
100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

\50p._

\ ~100p.

....

----BONOINGWIRELIMITED tJj5.0m,
==----THERMALLy LIMITED
(SINGLE PULSE)
0.07
0.0 5 =----SECONO BREAKDOWN LIMITED
CURVES APPLY BELOW RATED VCEO
0.03
0.02
0.3

300

...
...

5001'S

o

8

II I
30

O. S
O. 3

~

.'\

R\ \.\

1=

0.03

>a:
=>

~

."-

-

'.

~ o. 7

1.0ms-

0.3

~ 0.2

a:
o

t~

r.>

2. 0

200

300

•

2N3738, 2N3739 NPN/2N6424,2N6425 PNP

I

NPN
2N3738. 2N3739
FIGUR~

300

70 =

'"
~

•

30

a

20 I--

<.>

c

~

10

TJ = 150'C

""-"

-

-5~'C

z 10 0
~ 70 - -55'C
~ ,5 0
I'

'"
13

'-r~

7.0
5.0
20

30

50

70

100

<.>

c
W

0- 'r~
300

'I.

I"- ~
\.
.......

0

""

Jtl 0
7. 0 _
5.0 - '

200

......

......

0

VCE = 2.0 V
IVCP 10V

-

3.0
10

.....

.......
25'C

=25'C

50

w

300
200

---'-VCE=10V

r-

-+--..

100

1&- DC CURRENT GAIN

~JcEI=J.ol

200 -T) 15J.C

z
;;:
....
z

PNP
2N6424. 2N6425

30
10

500 700 1000

20

30

IC. COLLECTOR CURRENT (rnA)

50

70

200

100

300

500 700 1000

IC. COLLECTOR CURRENT (rnA)

FIGURE 11 - COLLECTOR SATURATION REGION

-

1.0

~

II II

c

~
~

I II
I II

~+- IG= 1OmA

o. S

20 rnA

~

100 rnA

50mA

;;;

irl

g O. 2

"'

<.>

~

>

-.

0
0.1

0.2

.......

- 50

T
0.5

1.0

2.0

5.0

10

20

i50~A

~-4++~HH~-~~\+++H~-4~~-HH+H

;::

0.61+-4++~HH*--1--H\r!++H~-\l-~-HH+H

~

~

\
0.4

,

\

~

irl·
\
\ +++-ld1It1---I-''i,+f+t-H1
\
~ 0.21----'l"-dr--+Nd+++-4.......

!

~

~

~

~

I

\

rnA

to

~

\

'"

\ II

~ S IC=1~26mIA ~6ImA-'-~106~~
~O,'

250mA

.,

o. 4

~

III

I I

o. 6

~

I I

~

c

~

1.0rr-......,.r-T-,-,rTr"TTT"--nrrrrTTl.,-r-.....,....,-,.,...,...,n-m
TJ = 25'C

TJ = 25'C

1±
I100

>~

--

07-~~~~~~~~~~~~~~~~
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
100

IS. BASE CURRENT (rnA)

lB. BASE CURRENT (rnA)

FIGURE 12 - "ON" VOLTAGE

1.0

10

TJ = 25'C

TJ = 25'C

O.S

I-::::: t:...

VBE(sat)@IC/IS = 10

~

'"~w

0.6

'"
«
!:i

~BE@VcpllOJ

'0.4

'"
>
>'

leliB ='10

0.2

JJH-::

r-- VCE(sat)
,

o10

20

I
30

50

70

II

100

V
~

-

',-

VSEI'at) @ICIIB = 10

~

!:i

'"~
w
'"
«
!:i
'">

I I
/ I

I

300

0.6 -VBE @VCE = 10 V

..- ~
J.-- ..I

0.4

I

>'

1/

..."r

200

-

O.S

0.2

o

ICIIB~

VCE(sat)
500 700 1000

IC. COLLECTOR CURRENT (rnA)

o
10

J

1/

..... ......5.0

I
20

30

50

70

100

200

300

IC. COLLECTOR CURRENT (rnA)

~48'

I

500 700 1000

2N3738, 2N3739 NPN/2N6424,2N6425 PNP

NPN

PNP

2N3738, 2N3739

2N6424, 2N6425
FIGURE 13 - TEMPERATURE COEFFICIENTS
+1.6

+1.6

~

'APPLIES FOR Ic/la" hFE/3

u

'APPLIES FOR Ic/la" hFEl3
+1. 2

~ +1.2

.§. +0.a

:;; +0.8
>~ +0.4

~

+D.4

H:w

8

U

L-

'eVC FO R VCElsa!)

U

8

-0.4

-1.2

6 f- eVB FOR VBE

-2:4
10

20

50

30

70

200

100

300

~

-1. 61-- Ova FOR VaE

i

-2.0

>-

-2.4
10

500 700 1000

20

3D

0
'">-

~

8

TJ = 150 0 C

1
>-

103

-

~

r-- 1000C

::>
'"
u
'"0

102

10 1

~

200

100

300

500 700 1000

r--- -25 0 C

-0.3

~

VCE=200V=

f!==F REVERSE
100
-0.4

/

/

-

::>
u

70

FIGURE 14 - COLlECTOR CUTOFF REGION
105

104

~
~

50

_....

IC. COLLECTOR CURRENT ImA)

IC. COLLECTOR CURRENT ImA)

!>-

-

~
ffi
-1.2

~

'-: -2 0

.?

~ -O.B

- -

S

~ -t

-0.4

w

w

a:: -D.a

w

-~

'OVC FOR VCElsat)

~

-0.2

+0.1

+0.2

+0.3

f--- TJ ISOOC

10 3

I--- -100OC

10 2
10 1

8

VCE

~ 100

I--- _2SoC
-REVERSE
1 I--

FORWARD
-0.1

104

+0.4

+0.5

10+0.4

+0.6

+0.3

FORWARD
+0.1

+0.2

-0.1

-0.2

-0.3

FIGURE 15 - BASE CUTOFF REGION
104
VCE = 200 V::::::

====

TJ = 150 0 C

-0.4

-O.S

-0.6

VBE. BASE·EMITTER VOLTAGE IVOLTS)

VBE. BASE·EMITTER VOLTAGE IVOLTS)

-

200V-

10 3

3

I - - TJ

VCE 200 V l - ISOoC

I--- 1--1OJOC

1::::= C::: 1000 C
2

"'

1

10

It--

100

i--25 0 C

IE
FORWARD

1"'== REVERSE

-0.4

-D.3

-0.2

-0.1

+0.1

+D.2

+0.3

+0.4

+D.5

"f--- I--- 2S oC

10- 1
+0.4

+D.6

·VBE. BASE·EMITTER VOLTAGE IVOl.,TS)

FOR~ARD

REVErSE
100

+0.3

+0.2

+0.1

-0.1

-0.2

'"

-0.3

-0.4

VBE. BASE·EMITTER VOLTAGE IVOLTS)

4-49

-0.5

-0.6

•

21 3740,A
21 3741,A

POWER TRANSISTORS
MEDIUM-POWER PNP TRANSISTORS

PNPSILICON

60-80VDLTS
25 WATTS

• .• ideal for use as drivers, switches and medium·power amplifier
applications. These devices feature:

•

•

Low Saturation Voltage - 0.6 VCE(sat) @ IC = 1.0 Amp

•

High Gain Characteristics - hFE@ IC = 250 mA: 30-100

•

Excelle~t Safe Area Limits (See Figure 2)

•

Low Collector Cutoff Current 100 nA (Max) 2N3740A, 2N3741A

•

Complementary to NPN 2N3766 (2N3740) and 2N3767 (2N3741)

-,-u--'
*MAXIMUM RATINGS
Symbol-

Rating

2N3740
2N3740A

P

2N3741
2N3741A

Unit

VCEO

60

80

Vdc

Emitter-Base Voltage

VEB

7.0

7.0

Vdc

Collector· Base Voltage

VCB

60

80

Vdc

Collector-Emitter Voltage

IC

4.0
10

ease Current

IB

2.0

Adc

Total Device Dissipation @TC = 25°C
Derate above 2SoC

Po

25
0.143

Watts
W/oC

TJ.Tstg

-65 to +200

°c

Collector Current - Continuous

- Peak (Note 1J

Operating and Storage Junction

Adc

-8--

C

4t t ,~~===!!::::::::J___+
E

SEATING PLANE

--F--

Temperature Range
Note 1: See Figure 2

FIGURE 1 - POWER·TEMPERATURE DERATING CURVE

25

~ r-..

S
!

20

"-...

~ 15
~

iii
'"~

'Cii 10

~

~

e 5.0

~

..........

"
0

25

s

..........,

z

0

STYLE 1:
PIN L BASE
2. EMITTER
CASE: COLLECTOR

I

50

75

,100

125

150

TC' TEMPERATURE (DCI

~200

175

All JEOEC Oi_n. and Ind N_ Apply.

Safa Are. Curves are Indicated by Flgur. 2.
Both limits are applicable and must be observed.

CASE 80-02
(T0-66)

-Indicates JEDEC Aa,lstered Oata.

4-50

2N3740,A,2N3741,A
*ELECTRICAL CHARACTERISTICS (Te = 25 0 e unless otherwise noted)
Characteristic

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 100 mAde,lB = a)

-

-E 0.03

0.02 ,.... .....

om

0.01

DUJYtYCLE,

0.05

0.1

0.2

0.3

0.5

1.0

TJlplJ

Te

Pl plI9JeIV

D~t,/t2

I II I
0.02 0.03

D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME All,

IIIIII

2.0 3.0
5.0
I,TlME Imsl

4--52

10

IIIIII
20

30

50

100

200

300

500

1000

2N3740,A,2N374',A

FIGURE 8 - CURRENT GAIN

200

~J'" ~17ioc

-t:-t10 0

~+I000C

0
WC

0

......
--~

-I--

r--

0

ts ~

r--

0

10

10

30

20

•

50

1.0 V

VeE

- - -- -

+25°C

100
Ie. COLLECTOR CURRENT (mAl

300

200

--

:;:-

I"" ~

--r--.j;::

500

1000

SATURATION REGION CHARACTERISTICS
FIGURE 9 - COLLECTOR SATURATION REGION

2. 0

~
~

I

1.8

4
1.
1.2

~

1.0

!is

0.8

1!l

TJ ~ +25°C

1.6

;

O.6

~

o. 4

\

,

\

·0.2

\

\.

\

"-

0
1.0

3.0

2.0

1000mA

500mA

250mA

Ie ~ 100mA

5.0

7.0

10

20

30

50

70

100

200

I., BASE CURRENT (mAl

FIGURE 10 - "ON" VOLTAGES

1.0

TJ

~

V"I .. tl @ lell. ~ 10

o. 8

FIGURE 11 - TEMPERATURE COEFFICIENTS

+1 .0

Ulil

+25°C

.... ~ I-+-

r- j:::!--

.51-

+ IOO°C to +l75°C

I

.1

flrforvlE~

+25°C to + 100"

I-- r--

.5

.4
0

t::::=

55"C to +25"C

0

V.,@VeE' 2.0V
6

I

To compute saturation voltages:
V_I~.tl'@ operating TJ -'-- V_l llt l@+25°C+ (111_ (operatmg TJ -25°Cl
Use appropriate 8y for voltage of interest.
r-Use appropriate curve for temperature range of mterest.

I

I

IWCt!+175

fltforVBE

.2

I I
0.02 0.03

1111.1.

0.05 007 0.1

0.2

0.3

0.5.0.7

T_ r-

5

_I-'"

VeElsat}@le/IB-'" 10

0
0.01

.I

1.0

Ie. COLLECTOR CURRENT (AMPI·

-2.

0/1'1
100

200

300

400

500

600

700

Ie. COLLECTOR CURRENT (mAl

4-53

800

900

1000

•

2N3740, A, 2N3741,A

FIGURE 13 - CAPACITANCE

FIGU,RE 12 - TURN-ON TIME

3.0

~e~60V

2.0

~
1.0
-

I I I I I I

___

~

..

L

O. 5

t'--I'-r-.
C.,
..........

I

~c

, '"
:. o.3

200

....

O.1

~
w

I

TJ ~ +25'C
TJ ~ +150'C

~~
24V

Vee

300

r-.."

"~ ~

60V. Vol.

2.0V

.....::0

O. 2~t"

'\

i' . . . 1',

"

0

O. I

0.01

24V. V.,

-Vee

0

.....

........ ......

0.05
10

20

30

200 300
50 10 100
Ie. COLLECTOR CURRENT ImAl

30

500 100 1000

0.1

0.2

0.5

~

"

I'

"-

1.0
2.0
5.0
VR• REVERSE VOLTAGE IVOLTSI

10

5. 0

1.0

.I

........

5.0
4.0 ~

~,

I I I TJ ~ 125~cl
- - - TJ ~ +150'C

'\

r-- l -

2.0

-~

t-..

-t'--

~

TJ ~ +25·C
- - - TJ -+150'C

\,
~, 1\\
2.0
\r-,

.

............

1\'

~ :; i"::t< 71,e/l.~20
~::tI
Icll.~I~£ :>.::

~l<

0

, t\:,\

le/l.~~ \"

'"

1
O. 5
O.5

0.3

20

30

50 10 100
200 300
Ie. COLLECTOR CURRENT (mAl

500 100 1000

4-54

...

~

"

'"

O.3

O.2
10

\

'. ...

.......

.......

...... t-r-

"

0.2

O. I
10

II

--

1\lcll.~20

3.0

ro;;;;f=::;

50

20

FIGURE 15 - FALL TIME

FIGURE 14 - STORAGE TIME

10

3.0

I"

C;,

20

30

.....

50 10 100
200
Ie. COllECTOR CURRENT (mAl

-;....~.

...
300

500 100 1000

2N3766 (SILICON)
2N3767

MEDIUM-POWER NPN SILICON TRANSISTORS
... for use in driver circuits, switching,
and medium-power-amplifiers applications. These high performance devices
feature:
•
•
•
•

=

4 AMPERE
POWER TRANSISTORS
NPN SILICON
60-80 VOLTS
20 WATTS

Low Saturation Voltage - 1.0 VeEI"'1 @ Ie
500 mA
High Gain Characteristics - hOE
40-160 @ Ie
500 mA
Packaged in the Compact, High-Efficiency TO-66 Case
Complementary to PNP 2N3740 (2N3766) and 2N3741
(2N3767)

=

=

•

MAXIMUM RATINGS

Rating

2N3766 2N3767

Svmbol

Collector-Emitter Voltage

V eEO

60

BO

Collector-Base Voltage

V eB

BO

100

Emitter-Base Voltage

V EB

Unit
Vde
Vde

6.0

Vde
Ade

Collector CUrrent

Ie

4.0

Base Current

IB

2.0

PD

20
0.133

watts
wiDe

TJ,Tstg

-65 to +200

°e

Total Device Dissipation@ TC
Derate above 25°C

= 2SDe

Operatlng and Storage Junction
Temperature Range

Ade

THERMAL CHARACTERISTICS

Characteristic

Max

Thermal Resistance, Junction to Case

7.5

STYLE I:
PIN I. BASE
2.EMITIER
Q

I
FIGURE 1 - POWER·TEMPERATURE DERATING CURVE

20
0;

~
z:

16

~

12

is

8.0

sa
~

IS

~

.e

-...........

H

-

--....

S

.............
........

...............

-...........

............

.............

4.0

r........
.............
25

SO

75

100

ISO

125

Te. CASE TEMPERATURE lOCI
Safe Area Curves are indicated by Fiaure 2. Both limits are applicable and must be observed.

175

MILLIMETERS
DIM MIN MAX
B 11.94
6.35
C
D
0.71
E
1.27
F 24.33
G 4.83
H 2.41
J
14.48 14.99
K
9.14
P
1.27
Q
3.61
3.86
S
B.B9
T
3.68
U
15.75

-

INCHES
MIN MAX
0.470 0.500
0.250 0.340
0.028 0.034
0.050 0.075
0.958 0.962
0.190 0.210
0.095 0.105
0.570 0.590
0.360
0.050
0.142 0.152
0.350
0.145
0.620

All JEDEC Dimensions and and Notes Apply.

CASEBO.()2
TO·66

4-55

2N3766, 2N3767

ELECTRICAL CHARACTERISTICS

(Te

= 2S·C unless otherwise noted)

Characteristic

Symbol

OFF CHARACTERISTICS
Collector-Emitter Voltage W

tIc·

Emitter-Base Cutoff Current
4, 6

(VeE c 80 Vdc, VBE '" 1.5 Vdc)
(VCE '" 100 Vdc, VaE'" 1.5 Vdc)

2N3766
2N3767

(VeE:::: 50 Vdc, VaE '" 1.5 Vdc, TC = I50oC)
(VeE"" 70 Vdc, VaE '" 1.5 Vdc, TC "" I50oC)

2N3766
2N3767

•

mAde

(VeE'" 60 Vdc, IB = 0)

2N3766

(VeE'" 80 Vdc, IB '" 0)

2N3767

0.1
0.1
1.0
mAde

ICED

0.7
0.7
mAde

leBO

2N3766

100 Vdc. IE:: 0)

mAde

'1.0

Collector-Base Cutoff Current
(VCB - 80 Vde, IE - 0)

0.75

IeEX

Collector-Emitter Cutoff Current

=

60
80

lEBO

(V EB - 6.0Vde)

Collector Cutofi Current

(VCB

Vde

BVCEO

2N3766
2N3767

100 mAde, IB - 0)

0.1
0.1

2N3767

ON CHARACTERISTICS
DC Current Gain
(Ie'" 50 mAde, VeE ~ 5.0 '(de)

(Ie

hFE

30

= 500 mAde, VeE = 5.0 Vdc)

40

(Ie = 1.0 Ade, VCE = 10 Vdc)

Collector-Emitter Sd.turation Voltage

tIc = 1.0 Ade,
(Ie

=

IB

B,9

=O. lAde)

Vde

VCE(sp.t)

2.5

500 mAde, IS =- 50 mAde)

Base-Em~tter

160

20

1.0

Voltage

3,5,9

Vde

VBE

(Ie = 1.0- Ade, VCE = 10 Vdc)

1.5

TRANSIENT CHARACTERISTICS
Current-Gain - Bandwidth Product
(Ie a 500 mAdc, VeE'" 10 Vdc, f '" 10 MHz)

MHz

IT'

Common-Base Output Capacitance
(VCB - 10 Vde, Ie = 0 Ade, I = 100 kIIz)

13

10
pF

Cob

50

"'.

Small-Signal Current Gain
(Ie;; 100 mAdc, VeE'" 10 Vdc, f '" 1. 0 kHz)

40

IU Pulse Test: Pulse Width .5300ps, Duty Cycle .52.0%.

FIGURE 2 - ACTIVE REGION SAFE AREAS

4.0

r\.

"" "'"

2.0
0::

'"

'"

i
~

r=

1.0

"
.........

"

0.6

"

1
2N3 7;;--'
AND
2N3767

"

.............
I

de

1il

50rn' ......

SOp.:;
"'-. ~ 500 p.:;

">-

1.0rn,

I'-...
........

0.4

"'{..,

......

T-==

2N3767
ONLY _

......

,....,

r--..
..............

~
..Y 0.2

'-.

r---...

-

..........

0:1
0.06
0.04

10

20

30

40

50

60

Ve " COLLECTOR EMITTER VOLTAGE (VOLTSI

4-56

70

80

The Safe Operating Area Curves indicate
Ic·VcE limits below which the device will not
go into secondary breakdown. Collector
load lines for specific circuits must fall
within the applicable Safe Area to avoid
causing a collector·emitter short. (Case
temperature and duty cycle of the excur·
sions make no significant change in these
safe areas.) The load line may exceed the
BVeEovoltage limit only if the collector cur·
rent has been reduced to 20 rnA or less be·
fore or at the BVeES limit; then and. only then
may the load line be extended to the abso·
lute maximum voltage rating of BVeBo. To
insure operation below the maximum TJ.
the power·temperature derating curve must
be observed for both steady state and pulse
power conditions.

2N3766, 2N3767

CUT-OFF CHARACTERISTICS

LARGE SIGNAL CHARACTERISTICS

FIGURE 4 - TRANSCONDUCTANCE

FIGURE 3 - TRANSCONDUCTANCE

\000
700

10

l - t-

/

Vc.~Sv

~

I

100

;
..!i

II
T)

+IO~·C

I--

/
-

TJ I

;

r--

~

+2~.C

/
0.10

I-10-

t= TJ

I~t---

-

-

10

0.6

0.4

1.0

0.8

1.2

0.6

0.4

VIE. BASE·EMITTER VOLTAGE (VOLTSI

'/
,II
Vc.=SV

/

10

'

2.0

~

i

~

0.2

0.2

0.4

0.6

Il

VeE

40V

J

I

I

1/

TJ ~ +17s1c I
1.0

TJ ~ +175"C

I

I

I I
I

;

~

I

I I . : j-...

1.0

~

ts

I I

TJ = +IOO·C

!--

./

I

....... {

I I
-

'"

V
./

I

FIGURE 6 - EFFECT OF BASE-EMITTER RESISTANCE

I VI

/

LL.l

10

7.0
5.0

!!S

•

'7

~

VIE. BASE·EMITTER VOLTAGE IVOLTS)

FIGURE 5 - INPUT ADMITTANCE

30

FORWARD BIAS

REVERSE BIAS

I

0.001
0.2

3.0

/

0.01

TJ ~ -SS·C -

20

~

+IOO·C

..!i

.30

-

7

../

8

50

20

/ II

1/

TJ ~ +175·C

~

II II

'"

70

Ve.~40V

1.0

II

TJ ~ +I7S·C -

7

II

I-- I--

1/1 I

300
200

I

/

500

0.10

T
TJ ~ +IOO·C

I

8
..!i

0.7

I - TJ

0.5 I -

+2S·C

......

0.3

I-

I

I ..,.. ~

TJ ~ -SS·C

0.01

I

0.2

I

II

0.1
0.2

II TJ7+2rCI I

II II

0.6
0.4
0.8
V... BASE·EMITTER VOLTAGE (VOLTS)

0.001
1.0

1.2

4-57

102

10>
104
lOS
R... BASE·EMITTER RESISTANCE (OHMS)

~
11J6

2N3766, 2N3767

FIGURE 7 - CURRENT GAIN

300

I
I
TJ -+l7S"C

200

---;;;;,;

+IOO"C

TJ

100

~
ffi
ll!
'"<.>

-

I
I
--VeE-5V
I--

- :::::;

r

:::~
~
~

50

i

2V

VCE

+2S"C

TJ

J-rJ-rJ-r-

"\

SS"C

TJ
30

...... 1'''"

'-

-1OIii

1"\

"\

20

\

1\

\

10
10

20

50

30

100

70

500

300

200

700

1000

Ie. COllECTOR CURRENT (mAl

a

FIGURE 8 - COLLECTOR SATURATION REGION

2.0

'I"'"

~

g

~

Ie

1.5

lOOmA

Ie

'-

500mA

le-iA

.........

§!

ffi

!::

ill

1.0

.

0.5

'\.

~
:::I

8

I........

"

.....

:::.....

-

:--

~

r0.7

0.5

2.0

1.0

7.0

5.0

3.0

30

20

10

+2S"C

TJ

50

100

70

I,. BASE CURRENT (mAl

FIGURE 10 - TEMPERATURE COEFFICIENTS'

FIGURE 9 - "ON" VOLTAGES

1.2

B.O

I I I I
' - TJ - +2S"C

6.0

1.0

~

g
'"
~
~

0,8 I---

--

-

VIEI ...)@le/I.- 10
I I

V.,@VCE
II

0.6

§!

,.,..
P
~

0.4

VC'(gl) @(ell, - 10
II

0.2

I

I

II

II

V

20

30

50

100

-4.0
300

500

~

rr-

TJ - -SS"C 10 +2S"C t-

I I I I I I

""

I I
100

200

300

400

500

600

700

Ie. COLLECTOR CURRENT (mAl

4-58

,/

TJ - +2S"Clo +17S"C

....
o

1000

Ie. COlLECTOR CURRENT (mAl

1..1
~

SS"C 10 +2S"C

TJ
I

/Iv,forV••

-0.2

J...t"
200

I I
I

I..J...-

II
J

~~

eve fo, VCOlgI)
I""' T
I-

II

I
10

TJ -+2S"Clo+IWC

2.0

~8

II

I I
I I

4.0

~

2V
I

To c,""pute saiu~'\ion vollage.
~.,) @ope,alm,TJ -V.(gl)
+25"C + 1Iv. (ope,alingTJ - 2S"CI
Use approp,iale IIv fo, vollage of inle,e.1. !." I,
Uj" a~p,of'iie c"ve fdr lem)":u,e!,,nre 0: inli'"it.

800

900 1000

2N3766>, 2N3767
TRANSIENT CHARACTERISTICS
(TJ

= 25·C)
FIGURE 12 - TURN·OFF TIME

FIGURE 11 - TURN·ON TIME

I I I I

5000

1000

'"

Ic/l.~

',",-

.~

500

300

~

~

2000

Mt
"\.

100

1000

\.

,,~

r'\

I>

Id

.........

I--""

'I'-.

to
I
1',-1,- \01,

1\
"'-

,

,",-

I\.Vee ~ 80 V!TYPE 2N3767 ONLYJ

~

"

;:::

\

300

"\.

50

i\.

r"-

200

"r"-.

20

"

"

1\

IIII
If

IQ

"-I"-r-.,

100

r-.,
50

10
20

10

30

50

200

100

300

500

1000

20

10

30

50

100

200

300

Ie. COLLfCTOR CURRENT (mAl

Ie. COLLECTOR CURRENT (rnA)

FIGURE 14 - EQUIVALENT CIRCUIT FOR
MEil.SURING DELAY AND RISE TIME

FIGURE 13 - CAPACITANCE

300

200

"

Vcc=30V

30

"

III
"\.

500

'-

"-

"

;:::

I'

TYPE 2N3767

I.

.:\.

~30V. Vo," ~OV

-- Vee = 80 V. Vo• = 2 V

i:\

"\.

200

~

- Vee

"

10

181 -I!~

3000

P.YI.>2t,
RISE TIME"" 0.1 t"
DUTY CYCLE - 2%

Vee

..... r-.

.IPPROX'J111V,.

C"

-

':-...,

V,. _____ --0

"

r-

VOl

·VO• = BASE-EMmER "OFr' BIAS VOLTAGE

.'"

70

FIGURE 15 - EQUIVALENT CIRCUIT FOR
MEASURING STORAGE AND FALL TIMES

1\

50

C••

V,.

r'\
30
0.1

0.2

0.5

1.0

2.0

R.

5.0

10

20

50

100

REVERSE BIAS !VOLTS)

100 < I,

< 500 ~
1,< lsn.

DUTY CYCLE - 2%

4-59

500

1000

2N3771 2N3772
2N6257
HIGH POWER NPN SILICON POWER TRANSISTORS

20 and 30 AMPERE

... designed for linear amplifiers, series pass regulators, and inductive
switching applications.

POWER TRANSISTORS
NPN SILICON
40 and 60 VOLTS
150 WATTS

a Forward Biased Second Breakdown Current Capability
ISlb = 3.75 Adc@VCE = 40 Vdc - 2N3771
= 2.5 Adc@VCE = 60 Vdc - 2N3772
= 3.75 Adc@ VCE = 40 Vdc - 2N6257

•

*MAXIMUM RATINGS
Symbol

2N3771

2N3772

2N6257

Unit

Voltage

VCEO

40

60

40

Vdc

Collector-Emitter Voltage

VCEX

50

SO

50

Vdc

Collector·Base Voltage

VCS

50

100

50

Vdc

Emitter-Base Voltage

VEB

5.0

7.0

5.0

Vdc

IC

15
30

10
30

20
30

Adc

IS

7.5
15

5.0
15

5.0
15

Adc

Rating
Coliector~Emitter

Collector Current - Continuous
Peak
Base Current - Continuous
Peak

Total Device Dissipation @TC
Derate above 2SoC

= 2SoC

Operating and Storage Junction

Po

150
0.S55

Watts
W/oC

TJ, Tstg

-65 to +200

°c

Lr~
r~.
Es~1
PLANE

Temperature Range

THERMAL CHARACTERISTICS
2N3771, 2N3772, 2N6257

Characteristic
Thermal Resistance. Junction to Case

1.17

·In?icates JEDEC Registered Data
STYLE 1:

PIN 1. BASE
2.EMITIER
CASE: COLLECTOR

MILLIMETERS
DIM MIN MAX

FIGURE 1 - POWER aERATING

A

200

B
C

11 5
150
125

0
E
F 2990
G 10.7
H 5.33
J 16.64
11.18
Q
3.84
R
-

...........
...........

100

.......

5

"
-

0

t-....

'-..

5

o
o

25

50

75

100

125

635
0.99

150

0.250
~039

-

3040

1.117

II.IB
5.59
17.15
12.19
4.09
26.67

0.420
0.210
0.655
0.440
0.151

-

Collector connected to cast.
CASE 11·01

f'....

175

39.37
21.08
7.62
1.09
3.43

INCHES
MIN MAX

200

TC. CASE TEMPERATURE (DC)

4-60

1.550
0.B3D
0.300
0.043
0.135
1.191
0.440
0.220
0.675
0.480
0.161
1.050

2N3771,2N3772,2N6257

ELECTRICAL CHARACTERISTICS (TC ~ 25°C unless otherwise noted)

I

Symbol

Min

Max

Unit

2N3771
2N3772
2N6257

VCEO(sus)

40
60
40

-

Vde

2N3771
2N3772
2N6257

VCEX(sus)

50
BO
50

2N3771
2N3772
2N6257

VCER(susl

45
70
45

Characteristic

OFF CHARACTERISTICS
·Collector-Emitter Sustaining Voltage 11)

(lC

= 0.2 Ade. IB = 0)

Collector-Emitter Sustaining Voltage

(lC

= 0.2 Ade. VEB(off) = 1.5 Vdc. RBE = 100 Ohmsl

Collector-Emitter Sustaining Voltage

(lC

= 0.2 Adc, RBE = 100 Ohms)

·Collector Cutoff Current
(VCE = 30 Vdc, IB = 0)
(VCE =.50 Vdc, IB = 0)
(VCE = 25 Vde, IB = 0)
·Collector Cutoff Current
(VCE = 50 Vdc, VES(olf) = 1.5 Vdc)
(VCE = 100 Vde, VES(oll) = 1.5 Vde)
(VCE = 45 Vde, VEB(off) = 1.5 Vdc)
(VCE = 30 Vde, VES(off)

= 1.5 Vde, TC = 150°C)

(VCE = 45 Vde, VES(off) = 1.5 Vdc, TC = 150°C)

ICEO

Vdc

-

Vdc

-

mAde

-

10
10
10

-

2.0
5.0
4.0

-

2.0
4.0
5.0

-

5.0
10
5.0

2N3771
2N3772
2N6257

15
15
5.0

60
60

2N3771
2N3772
2N6257

5.0
5.0
5.0

2N3771
2N3772
2N6527

-

mAde

ICEV
2N3771
2N3772
2N6257
2N3771
2N3772
2N6527

• Collector Cutoff Current

10
10
20
mAde

ICBO

(VCS = 50 Vdc, IE = 0)
(VCB = 100 Vde, IE

-

2N3771
2N6257
2N3772

= 0)

.. Emitter Cutoff Current

mAdc

lEBO

(VSE = 5.0 Vdc, IC = 0)

2N3771
2N6257
2N3772

(VBE = 7.0 Vdc, IC = 0)
·ON CHARACTERISTICS
DC Current Gain (1)
(lC = 15 Adc,. VCE = 4.0 Vde)
(lC = 10 Adc, VCE = 4.0 Vdc)
(lc = B.O Adc, VCE = 4.0 Vdcl

-

hFE

(lc = 30 Adc, V CE = 4.0 Vdc)
(lc - 20 Adc, VCE = 4.0 Vdc)
Collector-Emitter Saturation Voltage

VCE(sat)

(lC = 15 Adc, IS = 1.5 Adc)
(lC = 10 Adc, IS = 1.0 Adc)
(lC = 8.0 Adc, IS = 0.8 Adc)

2N3771
2N3772
2N6257

(lC = 30 Adc, IS = 6.0 Adc)
(lC = 20 Adc, IS = 4.0 Adc)

2N3771
2N3772
2N6257

Base-Emitter On Voltage

-

Vdc
2.0
1.4
1.5

-

4.0
4.0
4.0

-

2.7
2.2
2.2

IT

0.2

-

MHz

hIe

40

-

-

Vdc

VSE(on)

(lC = 15 Adc, VCE = 4.0 Vdc)
(lc = 10 Adc, VCE = 4.0 Vdc)
(lc = 8.0 Adc, VCE = 4.0 Vdc)

2N3771
2N3772
2N6257

·DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 1.0 Adc, VCE = 4.0 Vdc, I test

= 50 kHz)

Small:Signal Current Gain
(lC = 1.0 Adc, VCE = 4.0 Vde, f = 1.0 kHz)

SECOND SREAKDOWN
Second Breakdown Energy with Base Forward Biased,
t = 1.0 s (non-repetitive)

(VCE = 40 Vdc)
(V CE

= 60 Vdc)

Adc

ISlb
2N3771
2N6257
2N3772

-Indicates JEDEC Registered Data
(1) Pulse Test: 300 "s, Rep. Rate 60 cps.

4-61

3.75
3.75
2.5

-

2N3771, 2N3772" 2N6257

FIGURE 2 - THERMAL RESPONSE - 2N3771 , 2N3772:2N6257
0

:r3
Z

-

I - 0=0.5
O.Z

r-

--::::::-

I - -9.1
.1f-- f- _0.05
7~ ~ _O.OZ

~~

...."""

I&ii'

-

Inn

pr

l1t=:z __

5_
0.01
rllNGLEI PU~SE

3 ......
Z

"

II

0.0 1
O.OZ

•

0.05

,

1

III

I

0.1

OZ

-

OUTY CYCLE, 0 -11/IZ

E;;;F'"

BJCIII = ,hlBJC
BJC = 0.S75'CIW Max II
I
oCURVES APPLY FOR POWE~=
PULSE TRAIN SHOWN
I
- REAO TIME AT 11
- - TJlpkl- TC = PlpkIBJCIII- -

1.0

0.5

Z.O

5.0

11111

10

ZO

50

zoo

100

1000

500

ZooO

I. TIME Im.l

FIGURE 3 - ACTIVE·REGION SAFE OPERATING AREA - 2N3771 , 2N3772, 2N6267
40

LI

30

~

$

I I
2N317Z, ZN6Z571dcl

20

~

.'"

7.0

~

S.O

I

:; 10
~

III

8
!J

,, , "
,

I I

jl

Zt 37

I

I

I
i'~~ 4~i

-'-

dc'

I

~~,
~.

'

Te' 25'e
SON DING WIRE LIMITED
- - - - - THERMALLY LIMITED
(SINGLE PULSE)
SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW RATED VCED

I

I I

2.0
1.0

1.0m•

sistor that must be observed for reliable operation; i.e., the tran·
sistor must not be subjected to greater dissipation than the curves
indicate.

~O~i

- -

3.0

1

There are two limitations on the power handling abilitv of a
transistor: 8versQe junction temperature and second breakdown.
Safe operotillg area curves indicate Ie - VeE limits of the tran·

"

Figure 3i. based upon JEOEC registered Data. Second breakdown pulse limits are valid for duty cycles to 10% provided
TJ(pk)
2000C. TJ(~k) may be calculated from the data of

100m.

<

!"I\

Figure 2. Using data of Figure 2 and the pulse power limits of

,1\

IZN3771,2N625~+=
1- 1 2N3772
i-~
5.0 7.0 10
20
30
50 70 100

PULSECURVESAPPLY II
FOR ALL DEVICES
2.0

3.0

Figure 3, T J( pk) will be found to be less than T J( max) for pulse
widths of 1 ms and less. When using Motorola transistors, it is

permissible to increase the pulse power limits until limited by
TJ(max)'

VCE, COLLECTOR·EMIITER VOLTAGE (VOLTS)

FIGURE 4 - SWITCHING T,IME TEST CIRCUIT

FIGURE 5 - TURN,ON TIME

VCC
+30 V

10
5.0

A

~~

r-I-

VCc=30V
lellB = 10

TrZ5 0 e

vBElolf) = 5.0 V

Z.O

+~] --1--,

RB

SCOPE

:g
w

'"

;::

-9.0 V

51
t,.tf~10ns

-4 V
DUTY CYCLE = 1.0%
RB AND RC ARE VARIEO TO. OBTAIN OESIRED.CURRENT LEVELS

01 MUST BE FAST RECOVERY TYPE. '9:
MB05300 USEO ABOVE IS ~lilO mA
MS06100 USEO BELOW IB ~100 mA

1.0

o. 5
I,

2 .....

o.
o. I

Id=

0.05
0.0 2
0.0 I
0.3

0.5 0.7 1.0

Z.O

3,0

5.0 7.0

IC. COLLECTOR CURRENT lAMP)

4-62

10

F

~

20

30

2N3771,2N3772,2N6257

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN·OFF TIME
100

100 0

50

Vcc- 3OV

20

ICIIB ~ 10
IBI ~ IB2
TJ ~ 25'C

l

C'b

~1000--

10

w

'-'

Jw

5.0

-'

2.0

,.;::

TJ ~ 15 0 C

"-

1.0
0.5

z

r-

Is

--

0.2
0.1
0.3

If

u

-+-

"

0.5

1.0

2.0

....

5'" 500

I--.

f;;;:

Cob

~ 700
U

3.0

300

1"'-.
5.0

7.0

10

10

100

30

01

01

D.'

IC. COLLECTOR CURRENT (AMP)

FIGURE B - DC CURRENT GAIN
TJ ~ 15O'C
25'C ......

;;:
'" 100
ffi 70
~ 50

i'l
'-'

'"

-55'C

.......

.....

'"~
w
'"

1.6

'"~

1.2

,:-...;

~

t-....

3.0

IC~1.0A

II

100

TJ ~ 15'C

lOA

5.0 A

lOA

5.0

7.0

10

10

I'

0.8

~_

30

\
0
0.01

IC. COLLECTOR CURRENT (AMP)

"

0.4

8
>

1.0

50

'"
~

0.7 1.0

II III

~

"'-

10

0.5

"

~

~ 20

7.0
5. 0
0.3

10

'"

........

3D

2.0

~

VCE=4.0V

r-J.

z

10

FIGURE 9 - COLLECTOR SATURATION REGION

en

200

50

1.0

VR. REVERSE VOL TAGE (VOLTS)

500

I300

1.0

0.01

0.05

0.1

0.2

0.5

1.0

IC. COLLECTOR CURRENT (AMP)

4-63

2.0

5.0

10

•

2N3771,2N3772,2N6257

FIGURE 10 - "ON" VOLTAGES _
2.0

1.6

~0

I

;:;

TJ = 2S'C

iV
VBE( ..,)@llefIB = 10 .

>
:>

VBE@VCE"4.0V

o

•

0.3

~

O.S 0.7

1.0

7.0

~

-1.0

I-

-2.0

ill

10

t- 'eVC far VCE(sat1

w

20

-3.0
0.3

30

-

LUl

eVB lar VSE

I III
O.S 0.7

1.0

2.0

FIGURE 12 - COLLECTOR CUTOFF REGION
10 3
FVCE=30V
102~ ~TJ =+ISO'C

1 +100'C: 1t+2S'C::;:
~

.5

1
0
REVERSE

FORWARD

~ 10- 2
10- 3
-0.4

-0.3

-0.2

-0.1

to.l

+0.2

+0.3

+0.4

VSE. BASE·EMITTER VOLTAGE (VOLTS)

4-64

+O.S

+0.6

L

250C to 1500C

r-

3.0

.1~

ill

L
b--':

-SS'C to 2S'C

I 11111
S.O 7.0

IC. COLLECTOR CURRENT(AMP)

1~

ILL

f' L

V

JII

IC. COLLECTOR CURRENT (AMP)

::(

L

~...!--±:1

'"=>

i
S.O

B

-SS'C to 2S'C

I-

V
3.0

2S'C to IS0'C

+2.0

:3

V

2.0

/

L

..lilll

$ +1.0
V

V~E(~J JIW = 10

'APPLIES FOR Ic/IB" hFEIZ

13

~

'" O.S
<

r-

.s

AIV'

~
w

0.4

3; . +3.0

A

1.2

S
0

FIGURE 11 - TEMPERATURE COEFFICIENTS
+4.0

10

20

3D

NPN

PNP

2N3173 2N6609

16 AMPERE
COMPLEMENTARY
POWER TRANSISTORS

COMPLEMENTARY SILICON POWER TRANSISTORS

The 2N3773 and 2N6609 are PowerBase power transistors designed for high power audio, disk head positioners and other linear
applications. These devices can also be used in power switching circuits such as relay or solenoid drivers, dc to dc converters or inverters.

III

140 VOLTS
150 WATTS

•

High Safe Operating Area (100% Tested)
150W@100V

CI

Completely Characterized for Linear Operation

III

High DC Current Gain and Low Saturation Voltage
hfe ; 15 (Min) @ 8 A, 4 V
VCE(sat); 1.4 V (Max) @ IC; 8 A, 'B; 0.8 A

III

For Low Distortion Complementary Designs

lr~
r~K
ESEATIN!~
PLANE

• MAXIMUM RATINGS
Rating

Collector Emitter Voltago
Collector· Emitter Voltago
Coliector·Base Voltage
Emitter·Base Voltage
Collector Current - Continuous
- Peak 111
Base Current - Continuous

- Peak III
Total Power Dissipation@ TC

= 25 0 C

Svmbol

Value

Unit

VCEO
VCEX
VCBO
VE80
IC

140
160

Vdc
Vdc
Vdc
Vdc
Adc

18

4

160
7
16
30
15
150
0.855
-65 to +200

Po

Derate above 25°C
Operating and Storage Junction

TJ, Tstg

Waus
W/oC

DC

Temperature Range

OIM
A
B

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

STYLE I:
PIN I. BASE
2. EMITTER
CASE: COLLECTOR

Aqc

I

SVmbol
R9JC

I

Max

Unit

1.17

°C/W

C
D

E
F
G

-Indicates JEDEC Registered Data
(11 Pulse Test: Pulse Width

H
J

= oms, Duty Cycl... l0%.

K
Q

R

PowerBase IS a trademark of Motorola.

4-65

MILLIMETERS
MIN MAX

-

INCHES
MAK
MIN

39.37
21.0B
7.62 0.250
1.09 0.039
- 3.43 29.90 30.40 1.177
10.67 11.18 0.420
5.33
5.59 0.210
16.64 17.15 0.655
11.18 12.19 0.440
3.84
4.09 0.151
26.67
Collector connected to case.
CASE 11·01
(TO·31
6.35
0.99

-

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

I

2N3773 NPN/2N6609 PNP

ELECTRICAL CHARACTERISTICS (TC = 25 0 C unle•• otherwise noted.)

Charactaristlc
OFF CHARACTERISTICS (1)
"Collector-Emitter Sreakdown Voltage
IIc = 0.2 Ade, IS = 0)

I

*ColiectoraEmitter Sustaining Voltage
IIc =0.1 Ade, VSE(off) = 1.5 Vde, RSE = 100 Ohms)
Collector·Ernitter Sustaining Voltage

Symbol

Min

Max

Unit

VCEO(sus)

140

-

Vde

VCEX(.us)

160

-

Vde

VCER(sus)

150

-

Vde

-

10

-

2
10

IIc = 0.2 Ade, RSE = 100 Ohm.)
·Collector Cutoff Current

•

ICEO

(VCE = 120 Vde, la = 0)
·Collector Cutoff Current

ICEX

(VCE = 140 Vde, VSE(off) = 1.5 Vde
(VCE = 140 Vde, VSE(oll) = 1.5 Vde, TC = 150o C)
Collector Cutoff Current

mAde
mAde

ICSO

-

2

mAde

lEBO

-

5

mAde

(Vca = 140 Vde, IE = 0)
*Emitter Cutoff Current

(VSE = 7 Vde, IC = 0)
ON CHARACTERISTICS (1)
DC Current Gain

-

hFE

"IIC = S Ade, VCE = 4 Vde)
IIc = 16 Ade, VCE = 4 Vde)
Collector·Emitter Saturation Voltage

15
5

60

-

Vde

Vde

VCE(sat)

"IIC = S Adc, IS =SOO mAde)
IIc = 16 Adc, IS = 3.2 Adc)

VSE(on)

-

1.4
4
2.2

Ihle l

4

-

-

hIe

40

-

-

-

·Base-Emitter On Voltage
IIc =S Ade, VCE = 4 Vdc)

DYNAMIC CHARACTERISTICS
Magnitude of Common·Emitter
Small-Signal, Short-Circuit, Forward Current Transfer Ratio

IIC = 1 A, I = 50 kHz)
·Small-Signal Current Gain

IIc = 1 Adc, VCE = 4 Vdc, I = 1 kHz)
SECOND BREAKDOWN CHARACTERISTICS
Second Sreakdown ColiectO<' Current with Base Forward Biased
t = 1 • (non·repetitive), VCE = 100 V, S"" Figure 12
(1) Pulse Test: Pul.e Width = 300 "', Dutv Cycle" 2%.

"'ndieates JEDEC Registered Data

4-66

2N3773 NPN/2N6609 PNP

NPN

PNP

FIGURE 1 - DC CURRENT GAIN
300

z

:;;: 100

'"....
ffi
a:

a:
~

"'c
~

70
50

FIGURE 2 - DC CURRENT GAIN

I

150°C
200
25°C -to-

30 0

I
1====-55 0 C

150°C

200

r--: ::: ..........

1--1

-25°C

........... ........

0
-55°C

30

VCE = 4 V.

~

20

::--..

VCE = 4 V

10

10
7.0
5.0
0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

10

7.0
5.0
0.2

20

IC. COLLECTOR CURRENT lAMPS)

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

10

20

IC. COLLECTOR CURRENT lAMPS)

FIGURE 4 - COLLECTOR SATURATION REGION

FIGURE 3 - COLLECTOR SATURATION REGION

~ 2. 0
c

J III

I III

~

~

0

1.6

. IC = 4A

IC =4A

~
1.2

~
c

~

~

~

>

I\,

IC =SA

1=
iii

\

o. S
o.4

r- TC = 25°C

o ) '1

IC = 16 A

r-...

-

r-

1'_

-

r--.

0.2

\
\

8

IC = BA

0.3

0.5 0.7

2.0

1.0

TC = 25°C
0
0.05 0.07 0.1

3.0

0.2

FIGURE 5 - "ON" VOLTAGE

II

2.0

/J 1/

g

1.6

J

'"~w

Ic/lS = 10

1.2

~
c 0.8
>

VBEI"t)

>'

-~

25°C
~

150°C

a

0.2

0.3

t;::,

II

V

.'"

1.2

'">

O.B

~

VCEI,,')

'/

0.5 0.7

·1.0

2.0

~
3.0

0.3

0.5 0.7

2.0

1.0

3.0

5.0

>'
0.4

25°C

I I10

5.0 7.0

20

____ I-'"

-

25·C

--

150·C

0.2

IC. COLLECTOR CURRENT lAMPS)

0.3

-

/

..-

0.5 0.7

1.0

2.0

~
150·C

..k1-

I-::::: ;:;-rl
3.0

111-f--

VCEI..t)
5.0 7.0

IC. COLLECTOR CURRENT lAMPS)

4-67

J I'
I
I
I ,I

Ic/lB = 10

VBElsatl

150°C

0.4 I--

"

FIGURE 6 - "ON" VOLTAGE

~c

..'"

........

lB. BASE CURRENT lAMPS)

2.0
1.6

i""-

I.....

-

4

~

I) I
0.05 0.07 0.1

2

lB. BASE CURRENT lAMPS)

~
w

Ilc~II~~

\

c

ffi

Jill
I I'r-..

111

6

5

II

10

20

•

2N3773 NPN/2N6609 PNP

FIGURE 7 - TURN·ON SWITCHING
TIMES - 2N3773. 2N6609
2.0 1_
f=::.,

•

j

w

'"

;::

1.0
O.7
O. Sf-rO. 3 r -

FIGURE 8 - TURN·OFF SWITCHING
TIMES - 2N3773. 2N6609

~~~~~~

5.

°E~2~~?73

3.

of-- '-I ,

--

2N6609

2.Or--~

-

1C-250C
IC/18 - 10
VCE' 30 V

-

O. 2

'.1n!

TC=250C

r-- -IC/18 = 10

- - -- - 'r-

181'182
t=:.::: == VCE
= 30 V

1. o

.j o. 7f:=
~ o.5

=

If

;::

O. 3

J

o. 1
0.07
0.05

o.2

-- - -

0.02 0.2 0.3

0.5 0.7

1.0

2.0

3.0

o. 1
0.07
0.05
0.2

~~

5.0 7.0

10

20

0.3

i='

~

-t

2000

TC' 25°C

7.0
_ 6.0

1--

-- "- -~

I-

"

20

--r-- - t:--Cob

0

.

1""

2.0

10

k:.Cib

0
0

..':" 4.0
3.0

5.0 7.0

F-~~~~~~:
~b

5. 0

3.0

FIGURE 10 - CAPACITANCES - 2N3773. 2N6609

or:F-,2N3773
6609
9.
0--

2.0

IC. COLLECTOR CURRENT (AMPS)

FIGURE 9 - CURRENT·GAIN - BANDWIDTH
PRODUCT - 2N3773. 2N6609

~

--

0.5 0.7 1.0

IC. COLLECTOR CURRENT lAMPS)

:i!

........

Id

0.03

8. 0

-- r;;-r--.
-- r-F--

1.0

0
TC = 25°C
100

0
0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0

1.0

2.0

3.0

5.0 7.0

IC. COLLECTOR CURRENT lAMPS)

10

20

3

50

70 100

VR. REVERSE VOLTAGE (VOLTS)

FIGURE 11 - THERMAL RESPONSE - 2N3773. 2N6609
1.0

.... O. 7e-- ,.'" o. 5
iL
~ffi O. 3

>-N

~~ O.2
r-~
i;i~
:i~ o. 1
cc ~~o.o7pi2 ~
ti ~O.O5
~

-E

0Jcll) = rll) OJC

0.2

-::;; iiIII
----

-

0.1
.05
.02

0JC = 1. 17 0CIW M" .~~ ~ .~_
- 0 CURVES APPLY FOR POWER_

-Inn

PULSE TRAIN SHOWN

; - f--READ TIME AT It

DUTY CYCLE. D= 11/12

I--;::: :;;::;;;0

I--

- -

- TJlpk) - TC' Plpk) OJC(I)I

-

Pi'

0.01

tao.o3 ......
i--""

:!icc
...:

0=0.5

11t=;2-1

fliNG LEI PUrSE

0.0 2

0.0 1
0.02

II
0.05

0.1

III
0.2

0.5

1.0

2.0

5.0
I. TIME 1m.)

4-68

10

1111
20

50

100

200

500

1000

2000

2.N3773 NPN/2N6609 PNP

FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA

30
20

1"...
~~

......

10

a:-

::;;
~
I-

z
a:
a:
=>
t.)
LLI

a:

0
It.)

LLI

--'

5.0
3.0
2.0

t.)

c.:;
-

......

100/1s=
200/1s=
..... 1.0 ms_
_11JO ms
!\."\.

I'

I\..~

1.0

500 ms

0.5

BONDING WIRE LIMIT
. THERMAL LIMIT
@TCASE = 25 0 C, SINGLE PULSE
SECOND BREAKDOWN LIMIT

0.3
0.2
0.1
0.05
0.03

10/1s~

40/1s_

de

--'
0

.......

... .... ....
......
..... .....

5.0

3.0

7.0

10

20

30

50

70

100

200

300

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

There are two limitations on the powerhandling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate,

Ie - vCE

limits of the tran·

sistor that must be observed for reliable operation: I.e., the transistor must not be subjected to greater dissipation than the curves
indicate.

The data of Figure 12 is based on TJ(pk) =200 o C;TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pkl < 200°C. At high case
temperatures, thermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown.

FIGURE 13 - POWER DERATING
100

~ 80

'"
'"
t
:t
'"
z

~

I'

,

"- i'..

60

THERMAL ~
DERATING
40

",

'"c:

"-

""-

~ 20
~

40

120

80

Te. CASE TEMPERATURE (OCI

4-69

160

""-

"

200

•

2N3789 thru 2N3792

II

SILICON PNP POWER TRANSISTORS

10 AMPERE

· .. designed for -medium-speed switching and amplifier applications.
These devices feature:

POWER TRANSISTORS
PNPSILICON
60-80 VOLTS
150 WATTS

•

Total Switching Time @ 3 A"" 1 lis (typ)

•

Two Gain Ranges:
hFE (min) = 15 and 30 @ 3 A (2N3789, 2N3790)
25 and 50 @ 1 A (2N3791, 2N3792)

•

Low VCE(sat) = 0.5 V (typ) @ IC = 4.0 A, 16 = 0.4 A

•

Excellent Safe Area Limits

• Complementary NPN types available - 2N3713 thru 2N3716

Characteristic

Collector-Base Voltage
Collector-Emitter Voltage

Emitter-Base Voltage
Collector Current (Continuous)

Svmbol

2N3789
2N3791

2N3790
2N3792

Unit

VCS

60

80

Volts
Volts

VCEO

60

80

VES

7.0

7.0

Volts

IC

10

10

Amps

Base Current (Continuous)

IS

4.0

4.0

Amps

Power Dissipation

Po

150

150

Watts

Thermal Resitance

9JC

1.17

1.17

°C/W

L-________________ • __________

Lr~
r~K
E

Junction Operating and

Storage Temperature Range

-65 to +200

TJ, T stg

FIGURE 1 -

POWER-TEMPER~TURE

SEATlN/~.
PLANE
STYLE 1:
PIN 1. BASE
2. EMIITER
CASE: COLLECTOR

°c

!

DERATING CURVE

160

i!!

~
z
0

~

~

~
~

140

-..........

120

...........

100

..............

80

DIM

..............

60

B

..............

20

"""-..
25

50

75

100

125

150

175

200

Te. CASE TEMPERATURE I'CI

Safe Area Limits are indicated by Figures 15, 16. Both limits are applicable and
must ~e observed.

4-70

INCHES
MIN
MAX

39.37
21.08
7.62 0.250
1.09 0.039
3.43
29.90 30.40 1.177
10.67
11.18 0.420
5.33
5.59 0.210
16.64 17.15 0.655
11.18 12.19 0.440
Q
3.84
4.09 0.151
R
26.67
Collector connected to case.
CASE 11·01
(TO·3)

A

............

40

MILLIMETERS
MIN MAX

C
D
E
F
G
H
J
K

-

6.35
0.99

-

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

~

MAXIMUM RATINGS

2N3789 thru 2N3792

ELECTRICAL CHARACTERISTICS

(Tc

=2S"C unle.. otherwise noted)

Characteristic
2N3789, 2N3791
2N3790, 2N3792

Collector-Emitter Cutoff Current
'(VCE : 60 Vde, VBE : -I. 5 Vde)

2N3789, 2N3791

(VCE : 80 Vde, VBE : -I. 5 Vdc)
(VCE : I'll Vde, VBE : -I. 5 Vdc, TC : 150'C)

2N3790, 2N3792

(VCE : 80 Vde, VBE : -I 5 Vde, TC: 150'C)

ZN3790, 2N3792
All Types

DC Current G'lin*
(IC: 1 Adc, VCE : 2 Vde)

2N3789, 2N3790
2N3791, 2N3792

(IC: 3 Ade, VCE : 2 Vdc)

16

-

I CEX

lEBO
hFE

2N3789, 2N3790

-

=O. 5 Ade)

VCE(sat)

-

2N3791, 2N3792

Base-Emitter Saturation Voltage'"
(IC = 4 Ade, 16 : O. 4 Ade)

2N3789, 2N3790

(IC : 5 Ade, IB : 0.5 Ade)

VBE(sat)-

2N3791, 2N3792

Current Gain
Bandwidth Product
(VCE : 10 Vde, IC = O. 5 Ade, r = I me)

All Type,

60
80

-

2N3789, 2N3790
2N3791, 2N3792

Collector-Emitter Saturation Voltage·
(IC = 4 Ade, IB = 0.4 Ade)

=5 Ade,

VCEO(sus)

2N3789, 2N3791

Emitter-Base Cutoff Current
(V EB : 7 Vde)

(IC

Min

Symbol

Collector-Emitter ~stainillg Voltage'"
(IC : 200 mAde, IB : 0)

IT

Max

-

mAde

I
I
5
5
mAde

5

25
50

90
150

15
30

--

-

1.0

4

--

r\'\.

1.0
Vde
2.0
1.5

-

O. 7

FIGURE 2 - TYPICAL SWITCHING TIMES AND TEST CIRCUIT
VALUES SHOWN FOR
Ie ~ SA, I" ~ -I,,·~ 0.5 A
f - ISOeps, DUTY CYCLE - 2%

............

'I'-"',

I"-30V

~,

"-f',
'I'0.3

0.2
0.1

I

0.2

~

""i:-

if ;~1~13~~e/l1
Te
~

25'C

I

0.3

61!

"I'!:

0.5

0.7

1.0

4W

"\

\.

.-'I

~-

2.0

3.0

5.0

Ie. COllECTOR CURRENT lAMPS)

4-71

-

Vde

·Sweep Test: 1/2 sine wave cycle @ 60 cps.

1.0

Unit
Vde

me

•

2N3789 thru 2N3792

LARGE SIGNAL CHARACTERISTICS - TYPE 2N3789, 2N3790
(PULSE TEST: pulse width ~ 200 lIsee, duty cycle ~ 1%)
FIGURE 3 - TRANSCONDUCTANCE

FIGURE 5 - eURRENT GAIN

10

,

7.0
5.0
3.0

I(

~ 2.0

•

~

I
.E

5.0 H-Hft-++-t-t+t-t+tt-++-I-+I+Hft-t-+~H-t++-t+tt-+-l

"/
Y

3.0 1-ttttt-++-++I-ttttt-++-++H+ttiI.&Y++-t-Hfftttt-+-l
VCE.=2V

Ii'

,. 2.0 H+Ht--t-H-t-H+Ht--t-H-t:.I"J'I-Itt-+-IH-HH+Ht--H

J

~

a

k'"

/.

'"

I

1/

1.0

07

--

I

0.5

-'I

0.3

r-

-'

0.2

o. I
o

I

_
8

~

H+Ht--t-H-t-~~-t-H-t-H+Ht-+-IH-HH+Itt--H

=

+25'C

TJI~ +:75'CI

0.8
1.2
2.0
1.6
V". BASE·EMITTER VOLTAGE IVOLTSI

0.4

0.7

.9 0.5 H+Ht-+-H-t-te.I'I+-+-H-t-H+Ht-+-IH-HH+Itt--H

TJ ~ -40'C
TJ

~
I.O~!~ltmm~~im!~i~~m~~

2.4

2.8
I" BASE CURRENT ImAI

FIGURE 4 - INPUT ADMITTANCE

1000
700
500

~
~

v

h

200

~

{3oISh,,@2V
FROM FIGURE 11
{3, IS FORCED GAIN
lIell,l
TJ ~ +25'C

L
Ve .-2V

300

15

FIGURE 6 - SATURATION REGION

1.0

0.8

'{/

J. V

100
70

"-

50
30

\.. r--

/

20

~

10

"' r--

7.0
5.0

...

3.0
2.0
1.0

I<-

o

I
0.4

'-

o.2
TJ =-40 DC
I

roo--

I

le~5A

I

le- 3A

le~ IA

TJ ~ +25'C

T1- +t5'~
2.0
0.8
1.2
1.6
VIE, BASE·EMITTER VOLTAGE IVOLTSI

0

2.4

2.8
OVERDRIVE FACTOR l{3ol {3,J

NOTE 1. Dashed line indicates metered base

c~rrent

4-72

minus

ICBO

of the tra'lsistor at 17S-C.

2N3789 thru 2N3792

LARGE SIGNAL CHARACTERISTICS - TYPE 2N3791, 2N3792
(PULSE TEST: pulse width"" 200 p.s8C, duty cvcle "" 1%)
FIGURE 7 - TRANSCONDUCTANCE

FIGURE 9 - CURRENT GAIN

0

0

7.0

0

I#'

5.0

~/

3. 0

I(

;;;

~ 2.0

15g;
a 1.0
~~ o. 7
8.9 o. 5
o.3

o.2

VeE 2V
SEE NOTEl

5.0

V-

3.0
VeE~2V

;;;

~ 2.0

iI

15g;
a

I/il

~

~

~ o. 7

II

8.J) o. 5

'-:- TJ ~ -40'C

~

i--t- TJ ~ +25'C
3

r-t- TJI~ +:75'CI

f-

~
it

O. 2

i'-TJ

o

0.4

0.8
1.2
2.0
1.6
VIE. BASE·EMITTER VOLTAGE (VOLTSI

2.4

o.I

2.8

0.1 0.2

FIGURE 8 -INPUT ADMITTANCE

1=

V

200

V V

70
30

5.0 10 20
50 100 200
I,. BASE CURRENT ImlJ

TJ

6

4

/

7.0
5.0

I

3.0

II

2.0

II

I.0

o

11-1
0.4

I'--

le~SA

~

1\

IfA

10

TJ

-tt 't

"1"-

le~13A
I

t---

\.. I--

le- IA

o.2

40'C

!

t- r-TJ~ +2S'C
5

2.0
1.2
1.6
0.8
VIE. 8ASE.fMmER VOLTAGE !VOLTSl

500 1000

Po IS h.,@2V
FROM FIGURE 12
p. IS FORCEO GAIN

l\.....

V", \..(

50

20

1.0 2.0

o. 8

1/ V

100

~

0.5

2L

VeE

300

B

+17S'C

..lliWJ..l i

I.0

700
500

l

-40'C

FIGURE 10 - SATURATION REGION

1000

i

~

t-TJ~ +25'C

;=TJ

o. I

•

~

1.0

0
2.4

2.8
OVERDRIVE FACTOR (Poi Prl

NOTE 1. Dashed line indicates metered base current minus IclO of the transistor at 17S-C.

4-73

IIell,l·
+25'C

~

2N3789 thru 2N3792

FIGURE 11 - CURRENT GAIN VARIATIONS

200

2'113789. 2N3790

VeE = 2V

TJ

-

+25'C

~--40'C

1

FE

'a+ICBO

t"'-

r--.

::--...

t'

~ t--..

i"": ~

30

""'" ~ ~

0

•

I,c 1,1.J

hi

100 ~ T; +175'C

10
0.01

0.03

0.02

0.05

0.07

0.1

0.2

0.5

03

0.7

'c. COLLECTOR CURRENT lAMPS'

1.0

2.0

TJ~

~

3.0

5.0

V'c.-- 2~

II

+25'C

~ ....
7.0

10

FIGURE 12 - CURRENT GAIN VARIATIONS
500

300

TJ

200

~

!

o.

+175'C
+25'C

TJ

z

~

----

_2N3791.2N3792

TJ .. -40'C

100

to~

r-- r-

r--.
r- -

h

le-Iclo

FE=

Is+l cllo

I I

... ::0-

TJ . +25°C

70

..... .......

f:5 50

TJ = +175°C

~

1

~~-

~~

0

..... ;;;:;;i:;:-.

0

I"'~

I0
0.01

0.02

003

0.05

0.07

0.1

0.3

0.2

0.5

'c. COLLECTOR CURRENT lAMPS)

-

=i

3.0

5.0.

7.0

10

+5.0.--..--,---.--,---,--,--..,---,--.----.

ALL TYPES
T
J

II

~ +25'C I I

+4.0

VCE~2V

6

1/

.- ,,-

8 - _.VIE'''''
-

VIE

0.3

10

-.......,.

' - - _,VeE(.atl

0.2

~~

(J.

O. 4
0
0.1

2.0

) "
{J. ~ 'cll, (FORCEO GA'N)

-

-

1.0

FIGURE 14 - TEMPERATURE COEFFICIENTS

FIGURE 13 - SATURATION VOLTAGES

2. 4

0.7

0.5 0.7

\.0

2.0

3.0

II

~
{J.~IO

I-"
S.O 7.0

10

-3.0!:-0--f::---:1:---:f~-f:,--*--f::--:;!-::---:f8.""0--:9!-:.0'--~IO

'c. COLLECTOR CURRENT lAMPS!

'c. COLLECTOR CURRENT lAMPS)

4-74

2N3789 thru 2N3792

SAFE OPERATING AREAS

FIGURE 15 - 2N3789. 2N3791

FIGURE 16 - 2N3790. 2N3792

_.

~

-~f--

-

"",,-,::'

50~

11m, ~\ \ \

1

L;§g:~~i§!~.~~\\~\\~~
~

~--~----~~-+----+----+~~~44----~

.}) 0.5

f----+----t-~__+----+_--_j--_\\\tt_--__j

-==--

'\.

\ \'

'\. \. \\'

OJ t - - - t - - _ j - - - j - - - / - - - t - - 1 I 1 \ t - - - - j

-

02~--~--_+--~r_--+_---r--_t--~

- - .----+---.f-----'l----j

I

01~--L-~--~-~--~--L-~

o

10

20

30

40

50

20

10

70

60

30

50

40

60 .

70.

80

90

VeE, COLLECTOR·EMITTER VOLTAGE (VOlTS)

The Safe Operating Area Curves indicate Ie - VeE limits
below which the device will not go into secondary breakdown.
Collector load lines for specific circuits must fall within the ap·
plicable Safe Area to avoid causing a collector·emitter short,

(Duty cycle of the eXGursions make no significant change in
these safe areas.) To insure operation below the maximum T"
the power·temperature derating curve must be observed for
both steady state and pulse power conditions.

FIGURE 18 - COLLECTOR CUT·OFF CURRENT versus
BASE·EMITTER RESISTANCE

FIGURE 17 - CUT'()FF REGION TRANSCONDUCTANCE

10 0

20

5.0

10

2.0

1

1.0

~

o. 5

15

~

VeE - VCEO

2.0
1.0

0.0 1

+0.6

TJ

•

,!"175~cj

0.5

I

II

.,/

TJ~+IWC

0.2
0.1

0.05
0.02

"...-

5.0

20V

2

_ o. I

-20

TJ ~ :rlOO~.~J

0.05

TJ - +IOO'C

I-'
REVERSE

+0.4

0.02

FORWARD

-0.2
+0.2
V", BASE·EMITIER VOLTAGE !VOLTS)

-0.4

4-75

0.01

10
)K
IK
R", EXTERNAL BASE·EMITTER RESISTANCE IOHMS)

II

•

2N390'2 NPN (SILICON)

3.5 AMPERE
POWER TRANSISTORS
NPN SILICON

HIGH VOLTAGE NPN SILICON TRANSISTORS

400 VOLTS

.. designed for use in high-voltage inverters. converters. switching'
·regulators and line operated amplifiers.

100WATl'S

• High Collector-Emitter Voltage - VCEX = 700 Vdc
• Excellent DC Current Gain hFE = 10 (Min) @ IC = 2_5 Adc
• Low.Coliector-Emitter Saturation Voltage VCE(sat) = 0.8 Vdc (Max).@ IC = 1.0 Adc

•

*MAXIMUM RATINGS
Rating

Symbol

2N3902

Unit

Collector-Emitter Voltage

VCEO

400

Vdc

Collector-Emitter Voltage

VCEX

700

Vdc

VEB

5.0

Vdc

IC

3.5

Adc

Emitter-Base Voltage
Collector Current - Continuous

Base Current

Ie

2.0

Adc

Total Device Dissipation @ T C ::; 75°C
Derate above 75°C

Po

100
1.33

Watts

Operating Junction Temperature Range

TJ

-65 to +150

°c

Tstg

-65 to +200

°c

Storage Temperature Range

STYLE 1;
PIN 1. BASE
2. EMITIER
CASE; COLLECTOR

W/oc

THERMAL CHARACTERISTICS
Characteristic

Symbol

I

Max

Unit

Thermal Resistance, Junction to Case

8JC

I

0.75

°CIW

·1 ndicates JE OEC Registered Data

100

~
....

80

2:

SO

~
0

FIGURE I-POWER DERATING

.......

""

~

iii
C
'"~

MILLIMETERS
DIM MIN MAX

""-......

""- '"

40

~ 20

~

A
B
C
D
E
F

......

o
SO

80

100

120

TC. CASE TEMPERATURE (OC)

G
H

140

J

""

K
Q

ISO

4-76

R

INCHES
MIN
MAX

-

-

-

-

39.31.
1.550
21.08
0.830
7.S2 0.250 0.300
1.09 0.039 0.043
0.135
3.43
29.90 30.40 1.177 1.197
10.S7
11.18 0.420 0.440
5.33
5.59 0.210 0.220
IS.64 17.15 0.S55 0.S75
11.18 12.19 0.440 0.480
4.09 0.151 0.161
3.84
26.67
1.050
Collector connected 1D case,
S.35
0.99

CASE 11-01
TO-3

2N3902

*ELECTRICAL CHARACTERISTICS

(TC ~ 25°C unle .. otherwise noted)

Characteristic

Symbol

Min

Max

325

-

0.25

-

-

2.5
0.5

-

5.0

30
10

90

-

0.8
2.5

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage
(lC ~ 100 mAde, IS ~ 0) (See Figure 12)

Vdc

VCEO(sus)

Collector Cutoff Current
(VCE ~ 400 Vde, IS ~ 0)

ICED

Collector Cutoff Current
(VCE ~ 700 Vde, VES(off) ~ 1.5 Vde)
(VCE = 400 Vde, VES(off) ~ 1.5 Vde, TC ~ 125°C)
Emitter Cutoff Current
(VSE = 5.0 Vde, IC = 0)

ICEX

mAde
mAde

mAde

IESO

ON CHARACTERISTICS (1)

DC Current Gain
(lC ~ 1.0 Ade, VCE
(lC ~ 2.5 Ade, VCE

-

hFE

= 5.0 Vde)
= 5.0 Vde)

Collector-Emitter Saturation Voltage

-

-

Base-Emitter Saturation Voltage
(lC ~ 1.0Ade,la - 0.1 Ade)
(lC 2.5 Ade, la 0.5 Ade)

•

Vde .

VCE(satl

(lC = 1.0 Ade,la ~ 0.1 Ade)
(lC = 2.5 Ade, la • 0.5 Ade)

Vde

VaE(satl

-

1.5
2.0

-

DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
(lC = 0.2 Ade, VCE = 10 Vde)

*Indicates JEDEC Registered Data
(1) Pulse Test: Pulse Width,;; 300 p.s, Duty Cycle';; 2.0%.

FIGURE 3 - TURN-ON TIME

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT
2. 0

1. 0

o.7

~

O. 5

'"...:

o. 3

;::
R1 50

R.

"

2

I I II

O. I

II II

0.1

['0..

I'..

............
0.2

0.3

0.5

r--

1.0

Ie, COLLECTOR CURRENT lAMP)

4-77

-

""

0.05
5.0% DUlY Cycle
tr'" lOOns

-

/

o.

v•• •

leila =10
TJ = 250 e

I

I-Itd 1@IVfBIOff) • 5.0 Vdc

RL
125

12
6.0V

~r @ ~cci =125 JdC
",

2.0

3.0

5.0

2N3902

FIGURE 4 - THERMAL RESPONSE
1.0

....

~

0.7

~

0.5

«
~

w

0.3

> z

0.2

w'"'

...~~
'"
~ ~

\.
H:

0.1
ffi ~ 0.01
~ ~ 0.05

«w

~~

iiIII

'\.

'\.

0.03

z

'\..

0.01
0.01
0.01 0.03

0.05

0.1

oJC{tl = rltl 0 JC

0=0.5
0.1
0.1
0.05
0.01
0.Q1
SINGLE PULSE

0.1

0.3

o

powtR= pr-nJL

OJC = 0.75 0 CIW Max
CURVES APPLY FOR
PULSE TRAIN SHOWN
REAO TIME AT tl
TJ{pkl- TC = PlpklOJCltl
I I I I I I IIII
1.0

0.5

I

I

1.0

3.0

1::::_
-

-

=

I

10

OUTY CYCLE. 0 = I1/tl

I

1.11
5.0

~'~j

-

10

30

100

50

100

300

500

1000

2000

t. TIME lensl

FIGURE 5 -ACTlVE·REGION SAFE-OPERATING AREA

0
5.0

-~...._

r- TJ = 1500 C

-

2_0

-

...
~

- - - Second Jreakdown Limit:
~ 1.0 __
- - Bonding Wire limit
5
______
Thermal Limit@Tc=75 0 C
~ O.

'"o
~
_

o

Curves Apply Selow Rated SVCEO
2
O.
O. I

"-

1'\.1.0 ms \.~ms

There are two limitations on the power handling ability of a
transistor: junction temperature and secondary breakdown. Safe
operating area curves indicate Ie-VeE rimits of the transistor that
must be observed 'for reliable operation; i.e., the transistor must not
be subjected to greater dissipation than the curves indicate.

t-

~~ms

",.

The data of FigureS is based on TJ{pk) = 1S00C; TC is variable

de'\.

"-

depending on conditions. Pulse curves are valid for duty cycles of

10% providad TJ(pk)S: 150°C. At high case temperatures. thermal
limitations will reduce the power that can be handled to values
less than the' limitations imposed by secondary breakdown.

~b.o5
0.02
0.0 1
5.0

20

10

50

500

200

100

VCE. COLLECTOR-EMITIER VOLTAGE (VOLTS)

FIGURE 6 - TURN-OFF TIME
5.0

TJ = 250 C

FIGURE 7 - CAPACITANCE

Ic/lBI = 10
Iclis = 2.0

--

2.0

300 0

- -

---

'i
;;; 0.5

'"-=

'"

........
0_2

·tf@VCC=125~

1000

!' 50 0
'"'z
;!: 30 0
U

~ 200

:-- ....
""

r--

0.2

0.5

\

I----:Ob

0
30

0.1

1.0

2.0

iJ =12~O~

:--I- Clb



~

-55°C

1.2

O.S

0.2

0.1

0.3

1.0

0.5

2.0

3.0

0.4

VICE(~t)

0.2

0.1

2001--

j

10

89

5.0

13

5.0

•

>

t-125~C

..§. +1. 5
~
~ +1.0
<:;

H:

,5O~ 1=1000C

20

3.0

~ +2.0
1,/

10 0

'"c

2.0

+2. 5

500~TJ=1500C

a

i If/lS ~ 5
I

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 10 -COLLECTOR CUT-OFF REGION
100 0

15
:;g

1.0

0.5

./

V

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

!....

0.3

II

J

b?-- ~

0.05

5.0

rLI-- v

J

o

5.0
0.05

J

1---......

VSE(sat) @lc/IS= 10

:>

Tr 1500C~ ~

7.0

.!VCE(1..t@IC/IS=
L
10
1'-..1

w

'I

......

V V

10

~

c

2r C

I....--"'"

I--

'"
'"c

~

"'

I...- I-

30

1.6

........ IS: VCE = 5.0 Vdc

1

z

:::>

TJ = 25°C

I'..

:;;:

'"
....
15
:;g

II

TJ=1500C

70

1.0
-0.4

IllUJ..- V

'"'"w

II

Ov FOR VCE(sat;
APPLIES FOR IclIs'i!

.-

;!: 100

......

r-...

0.2

0.3

0.5 0.7

1.0

<:;

"-,

~"!! ~F~

-~2N4J31Althru
2N4233A (NPN)
2N6312 thru 2N63141PNP)

1\
2.0

3.0

.......... Ci~ (A(L( i~pl~~)
'::'Cob-..... ~,

-I~

'-'
z

tf@>VCC= 10 V

II IIII

i"-

-r-

......

w

ts-

tf@VCC=30V

--

200

T~ = ~5ob

II 1111

""'-

5,0

IC, COLLECTOR CURRENT (AMPERES)

;t
;3 70

........

.......
50

30
0.1

_

- --2N4231A thr. 2N4233A (NPN)

.

itr YTi milL
th

I IIIi2
0.2

0.5

1.0

l

2.0

5.0

10

VR, REVERSE VOLTAGE (VOLTS)

4-82

r-.

20

50

100

2N4231A thru 2N4233A NPN, 2N6312 thru 2N6314 PNP

I

NPN
2N4231A thru 2N4233A

PNP
2N6312 thru 2N6314

FIGURE 8 - DC CURRENT GAIN
300

300
II
'I

200

I

I

I--l
TJ = +1150",

.........

~ 100

~

~2So~

50

u

I

u

~ 100

.....

I""-..

~ 30

........

20

10
0.05 0.07 0.1

,,,

-

wi

c

0.2

0.3

It--

z

-

'"
....

~ 70

,

0.5 0.7

....
~

'"
~

~
~

2.0

,

3.0

30

~

20

'\:

.....

......

t-

·WC

c

,

1.0

+2S;C

70
50

u

'"

~~E' = 2.0 ~

I
TJ = +IS0 DC

200

VCE =2.0 V

10
0.05 0.07 0.1

5.0

IC. CO.LLECTOR CURRENT IAMPERES)

0.2

0.3

0.5 0.7

'""'

1.0

~

~

I'~

"~

2.0

3.0

5.0

IC. COLLECTOR CORRECT IAMPERES)

FIGURE 9 - COLLECTOR SATURATION REGION

en
c:;

1.0

c

>

~O. 8

II

II

IC = 100 mA

I

500 mA

~

I

LOA

~

3.0 A

w

'"
<[

'"

c

o

c:;

ffi O. 6

ffi
:::;;;

....

!::

~

I\..

O. 4

\

~

~
~

-I-

8

1.0

2.0

5.0

10

20

8

TJ=2SDC

III
500 1000

0
50

100

200

IC = 100 mA

500 mA

\

1'-....

.U
II

11
II

LOA

3.0A

O. 6

~ 0.4
o

,

c'"

B
j 0.2

11
II

o. 8

<[

c:;

>

1.0

c:;

c

~

>

o. 2
0

1.0

l""5.0

2.0

10

1\

20

TJ = 2S DC

50

II

100

200

500

1000

IS. SASE CURRENT ImA)

lB. SASE CURRENT ImA)

FIGURE 10 - "ON" VOL TAGES
1.4

1.4
TJ

1.2

;;;

i

2S"I C

+--

1.0

c:;

~ 0.8

VBE lsal)

@

~

Iclis - 10

....... !::/"

o. 6

>-

~

c:;

~

o. 4

o. 2

....,

VCEI"I)@ Iclis = 10

o. B

~y

0.

I

1. 0

I
VSE lsall @Iclis = 10

w

~

r0-

o

~.

V

o. 4
",

O. 2

.........

VCElsal)@ Ic/lS - 10

o
0.05 0.07 0.1

0.2

I
0.3

0.5 0.7

1.0

12::

VSE @VCE = 2.0 V

'"~ o. 6

,...., k"

o

>

:..-

VSE at VCE = 2.0 ~

w

'"~

I
TJ'=2h

1. 2

2.0

3.0

0
0.05 0.07 0.1

5.0

IC. COLLECTOR CURRENT IAMPERES)

0.2

0.3

0.5

0.7

1.0

IC. COLLECTOR CURRENT lAMPE RES)

4-83

2.0

3.0

5.0

2N4231A thru 2N4233A NPN, 2N6312 thru 2N6314 PNP

I

NPN
2N4231A thru 2N4233A

,FIGURE 11- TEMPERATURE COEFFICIENT/i
+2.5
'Applies for ICilS" hFE/4

+2.5

~+2.0

'AP!IiBS lor ICilis .. lhFJ/4

'1 I I"

">

.s +1.5

V

~

ffi +1.0
U

~ +0.5

:!::

u

0

'eVC for VCE(sat)

~ ·0.5

S ·1.0

e

(i

-1.

5
:: ·2.0

""

~

+0.5

-

'OVC for VCE(sat)

~ ·0.5

~
~
w

....

~~

3.0

-I-'
/,/'
. /V

·1.0

eVS for VBE

·1.5

-2.0

II

·2.5
0.05 0.01 0.1

5.0

/

·55°C to +150°C

w

,,;'

0.2 0.3
0.5 0.1 1.0
2.0
IC. COLLECTOR CURRENT (AMPERESI

0.2 0.3
0.5 0.1 1.0
2.0
IC. COLLECTOR CURRENT (AMPERES)

3.0

5.0

FIGURE 12 - COLLECTOR CUT·OFF REGION
103
I - - I- VCE = 30 Vdc

1.

-'-TJ -150 0 C
,I'

+1.0

u

f-7

I I

-VCE-30V

ffi
e

·55°C to +150°C

IIII

+1.5

~

1 V

1-.....

oS

w

'- r- 1.55°C to +25°C

I II
I II

P
"> +20.

V

./

I I

f IJ
tl'I SE

·2.5
0.05 0.01 0.1

•

...--

II

=>

~
w

+1~ooh
r'i

+25°C!.

j"

PNP
2N6312 thru 2N6314

!
...

./

10

ffi

2
! -I-TJ = 1500 C

10 1

a:
a:

=>

u

a: 10 01--

~ =1000 C

I--l00 0 C

e

t;

~ ""REVERSE

w

j 10- 1~ FREVERSE
e

FORWARO= ~

FORWARO=

u

-'0- 2 f,-".-- ,--25 0 C

~ =250 C
10'3
-0.4

IC'lfES

IC 'ICES
-0.3

-0.2

-0.1

+0.1

+0.2

+0.3

+0.4

10-3
+0.4

+0.5 +0.6

+0.3

'"e

"-

w

il

~
is
a:
a:

.........

-VCE=30Vdc

.........

IC~ICES ,,;'

~

104

::i

TYPICAL ICES
-VALUES OBTAINEO
103 =~ROM FIGURE 12

~.

~

r-.....

.........

105

~

==

........

,

/

X

IC' 2 ICES

l:l

~
ilia:

r--

20

40

60

120

140

-0.5 -0.6

IC-2ICES

"-

.........

10 5=VCE=30V

==
-

I'..

100

-0.4

__ IC = 10 ICES
I

~.......

"- "-

.........

80

-0.3

IC ~ ICES

~

~,

160

180

-

~ 103

z
a:
w
~
w

.........

0

-0.2

.........

::i
...

~ 102

·0.1

+0.1

FIGURE 13 - EFFECTS OF BASE·EMITTER RESfSTANCE
gJ 101
:z:
ew
"IC' 10 ICES.........
.........
il 106

.........

106

+0.2

VBE. BASE·EMITTERVOLTAGE (VOLTS)

VSE. BASE·EMITTER VOLTAGE (VOLTS)

'" 101
:z:

=

/

<.l

200

a:

"-

"- .........

TYPICAL ICES
VALUES OBTAINEO
FROM FIGURE 12

........

4-84

................
I"-

102

o

20

40

60

80

100

120

f40

TJ. JUNCTION TEMPERATURE (DC)

TJ. JUNCTION TEMPERATURE (DC)

.........

160

ISO

200

2N4398
·2N4399
2N5745

PNP SILICON HIGH-POWER TRANSISTORS
20,30 AMPERE
POWER TRANSISTORS

· .. designed for use in power amplifier and switching circuits.

PNP SILICON
•

40-60-180 VOLTS
200 WATTS

Low Collector·Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 15 Adc (2N4398, 2N4399)

•

DC Current Gain Specified - 1.0 to 30 Adc

•

Complements to NPN 2N5301, 2N5302, 2N5303

•

*MAXIMUM RATINGS
Svmbol

2N4398

2N4399

2N5745

Unit

VCEO

40

60

80

Vdc

Collector-Base Voltage

VCS

40

60

80

Vdc

Emitter-Base Voltage

VI'S

20
50

Adc

Ratin.
Collector-Emitter Voltage

Collector Current - Continuous
Continuous

30
50

30
50

IC

Peak

Base Current

IS

7.5
15

Po

5.0
28.6

mW/oC

200
1.15

W/oC

Peak
Total Dovice Dissipation @TA =25 0 C f t
Derate above 2SoC
Total Device Dissipation @TC
Derate above 2SoC

= 2SoC

Vdc

5.0

Po

Adc

Watts
Watts

TJ,Tstg -:...-- -65 to + 2 0 0 -

Operating and Storage Junction
Temperature Range

°c

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

9JC

0.875

°CIW

Thermal Resistance,Junction to Ambient

9JA

35

°C/W

Characteristic

-Indicates JEOEC Registered Dala
• -Molorola guarantees this data in addition to JEDEC Registered Data.

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
TA
10
9.0

g8.0
'"

il;. 7.0
z
0
6.0

>=

;t

iii

TC
200
180

160

""-

140
120

5.0

100

l!!'"

is 4.0

80

3.0

60

~

2.0

40

1.0

20

0

i"'-..
DIM

""'" i'.. "'-

A

TC

............

TA" I'---..

~

o

o

50

-

"' "-

75
100
125
T. TEMPERATURE IOC)

......... ...........
150

-

B
C 6.35
D 0.99
E
F 29.90

~
25

MILLIMETERS
MIN MAX

175

200

G 10.67
H 5.33
J 16.64
K 11.18
n 3.84
R

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67

INCHES
MAX
MIN

-

-

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

CASE 11-01
ITO·3)

Safe Area CurVBS are indicated by Figure 13. All
limits are applicable and must be observed.
CoPVroghl (!;l Motorola Inc . Sl!mlcQnd"~IOr PrOducts CIvIlIan, July 1910

4-85

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

2N4398, 2N4399, 2N5745
ELECTRICAL CHARACTERISTICS (Tc

=

25°C unless otherwise noted)

OFF CHARACTERISTICS

Coliector·Emltter Sustaining Voltagell)
ile '" 200 mAde, IS '" 0)

2N4398
2N4399
2N5745

Collector Cutoff Current
(VeE" 40 Vdc.IS = 0)

2N4398

(VeE'" 60 Vdc, IS = 0)
IV!":,: = 80 Vdc, I = 01

2N5745.

2N4399

Collector Cutoff Current
(VeE" 40 Vdc, VSEloffl = 1 5 Vdcl -.,
(VeE'" 60 Vdc, VSEloffl '" 1.5 Vdcl
(VeE = 80 Vdc, VSEloffl = 1.5 Vdcl

2N4398
2N4399

2N5745

(VeE = 30 Vdc, VSEloffl - 1 5 Vdc, TC = 1S00CI
(VeE = 80 Vdc, VSE(offl = 1 5 Vdc, TC = 1S00 C)

2N4398. 2N4399

2N5745

Collector Cutoff Current
(Ves = 40 Vdc, Ie .. 0)

2N439B

(Vea

OJ

2N4399

(Vee" 80 Vdc, Ie = 0)

2N5745

=

60 Vdc, Ie

=

Emitter Cutoff Current
(VES .. 5 0 Vdc, Ie = 01
ON CHARACTERISTICS

DC Current Galn(11
IIC" 1.0 Adc, VCE = 2.0 Vdcl

•

All Types

IIC = 10 Adc, VCE" 2 0 Vdcl
(lc", 15 Adc. VCE = 20 Vdel

2N4398, 2N4399

{lc '" 20 Adc, VCE = 2 0 Vdel
IIc = 30 Adc, VCE = 4 0 Vdel

2N4398, 2N4399

2N5745
2N5745

Collector·Emltter SaturatIon Voltagell}
flc'" lDAde.ls = 1 o Adel

2N4398, 2N4399
2N5745

IIC'" 15Adc,IS = 15Adcl

2N4398, 2N4399
2N5745

IIC = 2DAdc,Ia = 20Adel
(lc" 20Adc,IS =40Adel
tic" 30 Ade,ls = 6 0 Adel

2N4398, 2N4399
2N5745
2N4398, 2N4399

Sase-EmItter SaturatIon Voltage(11
HC = 10Ade,IS = 1 DAde'··

2N4398, 2N4399
2N5745

HC= 15Ade,Ia = 15Adcl

2N439B, 2N4399
2N5745

IIC = 20Ade,Ia = 2.0 Ade'·"
IIc" 20 Ade, IS = 4.0 Adel

2N4398, 2N4399
2N5745

Base-Emllter On Voltage! 11
(Ie = 10 Adc, VeE" 2.0 Vdcl
lie" 15 Adc, VeE = 2

2N5745

b vdcl

2N4398, 2N4399

lie = 20 Adc, VeE = 4.0 Vdcl
IIc .. 30 Adc, VCE

;=

2N5i45

4.0 Vdcl

2N4398, 2N4399

DYNAMIC CHARACTERISTICS

Current·Galn-Bandwidth Produet(21
flC" 1.0 Ade, VCE = 10 Vde, f = 1.0 MHz)

.0

2N4398, 2N4399
2N5145

2.0

Small·Signal Current Gain
(lC" 1.0 Ade, VCE = 10 Vdc, f = 1.0 kHlI

40

hI,

..
..
..

SWITCHING CHARACTERISTICS (s. Figures 2 and 3)

Rise;rime
Storage TIme

2N4398, 2N4399
2N5145

(VCC" 30 Vde,
IC" 10 Ade,
IS1- IS2=1.0Adcl

Fall Time

0.'

1.0

.

2N4398, 2N4399
2N5145
2N439B, 2N4399
2N5745

I.

2.0
0.6
1.0

'I

-Indicates JEDEC Registered Data_
(1)Pulse Test: Pulse Width ~300 ,",s, Duty Cycle ~2.0%.
"Motorola Guarantees this Data in Addition to JEDEC Registered Data. f2)fT is defined as the frequency at which Ihfel extrapolates to unity,

SWITCHING TIME EQUIVALENT TEST CIRCUITS
FIGURE 2 - TURN·ON TIME

Vee

;=G:
~ ",-I

20 ns

0-

I
-I

I

FIGURE 3 - TURN-OFF TIME

-30V
3.0

10

10

-30 V

RL

3.0

TO SCOPE
tr~

R,

R.
I

-II.OV

'[-7~20ns
1-10 to 1001"

-:

I

,-10 to 100 1"

Vee

-,

DUTY CYCLE" 2.0 %

DUTY CYCLE

~

2.0 %

fOR CURVES OF FIGURES 5 & 6. R•. RL. & Vee ARE VARIED.
INPUT LEVELS ARE APPROXIMATELY AS SHOWN.

4-86

V"

20ns

2N4398,2N4399,2N5745

TYPICAL TRANSIENT CHARACTERISTICS

TYPICAL "OFF" REGION CHARACTERISTICS

FIGURE 4 - CAPACITANCES

TJ

5.0
3.0

~

~

~
<5

FIGURE 7 - TRANSCONDUCTANCE

10

10
70

- -

2.0

50 ~ ~
30

C,b

C.b

0.5

~

-0

N

Thermal "Resistance, Junction to Case

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

10

g

'" ""

8.0

~
z

~ 6.0

l1i
c
a:

4.0

~

2.0

i

0

20

40

A
B
C

"'"

o

~

E

"-

F
G
H

J

",,-

K
L
M

'""-

60
80
100
120 140 160 180
200
TC. CASE TEMPERATURE (DC)
Safe Area Curves ara Indicatad by Figura 2. All limits Ira applicable and must be ob.rvld.

4-90

P
Q

R

8.89
8.00
6.10
0.406
0.229
0.406
4.83
0.711
0.737
12.70
6.35
450 NOM

1.27
900 NOM
2.54

All JEDEC dimensions and notes apply.
CASE 79-02
TO-39

2N4877

*ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)

,I

Chart)Cteristic

Svmbol

Min

Max

60

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)

(lC

VCEO(sus)

= 200 mAdc, IB = 0)

Collector Cutoff Current
(VCE = 70 Vdc, VEB(ofl)
(VCE = 70 Vdc, VEB(off)

Vdc

'CEX

= 1.5 Vdc)
= 1.5 Vdc, TC = l00o C)

Collector Cutoff Current
(VCB = 70 Vdc, IE = 0)

ICBO

Emitter Cutoff Current
(VBE = 5.0 Vdc, IC = 0)

lEBO

-

100

/JAdc

1.0

mAdc
/JAdc

-

100

-

100

/JAde

ON CHARACTERISTICS(l)
DC Current Gain
(lC = 1.0 Adc, VCE
. (lc = 4.0 Adc, VCE

Collector-Emitter Saturation Voltage

(lC

= 4.0 Adc,

IB

-

hFE

= 0.4 Adc)

Base-Emitter Saturation Voltage
(lC = 4.0 Adc, IB = 0.4 Adc)

-

30
20

100

VCE(satl

-

1.0

Vdc

VBE(satl

-

1.8

Vdc

-

100

ns

= 2.0 Vdc)
= 2.0 Vdc)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(lc
(lc

= 0.25 Adc, VCE = 10 Vdc, f = 1.0 MHz)
= 0.25 Adc, VCE = 10 Vdc, f = 10 MHz)"

SWITCHING CHARACTERISTICS
Rise Time

(VCC

Storage Time
Fall Time

=25 Vdc,

= 4.0 Adc,

IC

IBl

= 0.4 Adc)

tr

I (VCC =25 Vdc, IC = 4.0 Adc,
I IBI = IB2 = 0.4 Adc)

ts

-

1.5

/JS

tf

-

500

ns

-Indicates JEDEC Registered batao
··Motorola guarantees this value in addition to JEDEC Registered Data.
Note1: Pulse Test: Pulse Width '5. 300 liS, Dutv Cycle~ 2.0%.

FIGURE 3 - SWITCHING TIME TEST CIRCUIT

FIGURE 2 - ACTlVE·REGION SAFE OPERATING AREA
10

.

5.0

ie

'"

::;

c'"

l-

ffi to

~O,..

r0-

2.0

.o"m.....

~ 0.5

:::>

'"'cc
'"'j

0
I-

0.02
0.01

=----Pulse 0tjCYl",J rr

1.0

2.0

+25 V

.,

0.2 -TJ= 2000 C

0.1 ~.
;;;;;;;;;- - 0
'"' 0.05
~

OUTYCYCLE .. 2.0%

.Oms

Secondary Breakdown Limited
Bonding Wire limited
Thermal Limitations, TC = 25 0 C
1

3.0

5.0

10

20

,

tOW

Vin

20

30

50

100

o---JVo>/Vo--.--t-i
lN914

VCE, COLLECTOR-EMITTER VOL TAGE (VOLTS)

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating erea curves indicate IC-VCE limits of the transistor
that must be obseNed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate,
The data of Figure 2 is based on T J(pk) = 200o C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk)'S 200oC. At high case tem·
peratures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed bV second break'
down.

-'1.0 V

4-91

2N4898 thru 2N4900

MEDIUM-POWER PNP SILICON TRANSISTORS

4 AMPERE

· .. designed for driver circuits, switching, and amplifier applications.
These high·performance devices feature:

GENERAL PURPOSE
POWER TRANSISTORS

•

Low Saturation Voltage - VCE(sat) = 0.6 V max

•

Excellent Safe Operating Area

• Gain Specified to IC

40-BOVOLTS
25 WATTS

IC = 1.0 Amp

@

= 1.0 Ampere

• 2N4900 Complementary to NPN 2N4912

MAXIMUM RATINGS
Symbol

Rating
Collector·Emitter Voltage

VCEO
VCB
VEB
IC'

Colleetor-8ase Voltage
Emitter-Base Voltage
Collector Current

Continuous·

Base Current

....
...
..

IB

Total Device Dissipation T C

= 2SoC

Po

Derate above 250 C
Operating & Storage Junction

2N4898 2N4899 2N4900
40
60
80
40
60
80
5.0
1.0
4.0
III
1.0

T J, Tstg

......
....

25

_0.143_
_
-65 to +200 _

Unit

Vdc
Vde
Vde
Ade
--U--

Adc
Watts

wl"c
°c

Temperature Range

4-P

-B

c

1.------Jl---+

1

'I

E
SEATING PLANE.

THERMAL CHARACTERISTICS

STYLE 1:
PIN I. BASE
.2. EMITTER
CASE: COLLECTOR

Max

Characteristic

7.0

Thermal Reistance, Junction to Case

*The 1.0 Amp maximum Ie value is based upon JEOEC curren~ gain requirements.

---F--J-

The 4.0 Amp maximum value is based upon actual current-handllng capability of the device

(see Figure 5).
FIGURE 1 - POWER·TEMPERATURE DERATING CURVE

2,

Vi

20

Q

15

~z
~

"""'-

~

""-

""

~

<3

f--.
15 10 r---

"

~
........

~

'"

ci
<>.

o

o

20

40

60

80

100

120

140

Te. CASE TEMPERATURE 1°C)

..........

160

""

180

200

Safe Area Curves are indicated by Figure 5. All limits are applicable and must be observed.

4-92

MILLIMETERS
DIM MIN MAX
B 11.94 12.70
C
6.35 8.64
D 0.11 0.86
1.21 1.91
E
F 24.33 24.43
G 4.83 5.33
H
2.41 2.61
J 14.48 14.99
K 9.14
P
1.21
0.050
Q
3.61
3.86 0.142 0.152
S
0.350
B.89
T
0.145
3.68
U
15.15
0.620
All JEDEC Oimensionsand and Notes Apply.

CASEBO-02

TO"

2N4898 thru 2N4900
ELECTRICAL CHARACTERISTICS

(Te ~ 25'C ""m olh"wo>e ODted)

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage'
2N4898
(IC ~ O. 1 Ade, IB ~ 0)
2N4899
2N4900
Collector Cutoff Current
(V CE ~ 20 Vdc, IB ~ 0)

-

BVCEO(sus)

,

1CEO

(V CE

~

30 Vde, IB

~

0)

2N4B99

-

(V CE

~

40 Vde, IB

~

0)

2N4900

-

2N4898

Collector Cutoff Current
(V CE ~ Rated VCEO' VBE(off) ~ 1. 5 Vde)

I CEX

12

Z

mAde
0.5
0.5
0.5

mAde
0.1
1.0

-

ICBO

-

0.1

-

lEBO

-

1.0

8

hFE

40

-

0)

Emitter Cutoff Current
(V BE ~ 5.0 Vde, IC ~ 0)

-

-

(V CE ~ Rated VCEO' VBE(o!!) ~ 1. 5 Vde, T C ~ 150' C)
Collector Cutoff Current
(V CB ~ Rated VCB' IE

Vde

-

40
60
80

mAde
mAde

ON CHARACTERISTICS
DC Current Gain*
(IC ~ 50 mAde, VCE

~

1. a Vde)

,

(IC

~

500 mAdc, VCE ~ 1. a Vde)

20

100

(IC

~

1. a Ade, VCE

10

-

-

0.6

-

1.3

-

1.3

3.0

-

-

100

25

-

~

1. 0 Vde)

,

Collector-Emitter Saturation Voltage'
(IC ~ 1. 0 Ade, IB = 0, 1 Ade)

9
11
13

Base-Emitter Saturation Voltage*
(IC ~ 1. a Ade, IB = O. 1 Ade)

11
13

VBE(sat)

Base-Emitter On Voltage*
(IC = 1. a Adc, VCE = 1. 0 Vdc)

11
13

V
*
BE(on)

VCE(sat)

-

Vde

,

Vde
Vde

SMALL SIGNAL CHARACTERISTICS

-

IT.

Output Capacitance
(V CB = 10 Vdc, ~ = 0, I = 100 kHz)

-

Cob

Small-Signal Current Gain
(IC = 250 mAde, VCE = 10 Vdc, I = 1. Jl kHz)

-

hIe

Current-Gain-Bandwidth Product
(IC - 250 mAde, VCE ~ 10 Vde, f

* Pulse Test: PW

=300 /lS,

~

1. 0 MHz)

Duty Cycle

pF

FIGURE 3 - TURN-ON TIME

5.0
Vee ( r - - ' W ' I r - - - - ,

3.0
2.0

lell,

~
~

"'"
Ii"'-- I'-

r-... .......

1.0 Vee

';, (r--'VI/I,--_-I

S. 0.7

30V
V- Vee
I"":: 'el', = 20

t,

0.3

~

I

I
I I
v· - ~ - - -1In
I
I

+-

I
APPROX I
-11 V

;:::

APPROX 9.0 V

t,
Vee

I

_

I
I

t,l--

~

0.2

+ 4.0 V

Ve~

It < 15ns
100 < t, < 500 fLS
t, < 15 ns

Vee

,..,.

'DUTY CYCLE::: 2.0%

4-93

60V,

;tv-

O. 1
0.0 7 VBE{olfl 0
0.05
20
10

TURN·OFF PULSE

-

-

-

10, UNLESS NOTED
TJ = +25'C
TJ = +150'C

bol.

30V

~ 0.5
_

-

=2,0%

FIGURE 2 - SWITCHING TIME EQUIVALENT CIRCUIT

TURN·ON PULSE

MHz

VBE{offj

60Y

2.0V

I'30

50 70 100
200 300
Ie, COLLECTOR CURRENT (rnA)

500 7001000

2N4898 thru 2N4900

FIGURE 4 - THERMAL RESPONSE
~ 1.0

~ 0.7
~

D 0.5

--

0.5

~ 0.3

D 0.2

t;;

D 0.1 l-

0.2

~

~ O. I

D 0.05

ffi 0.07
~ 005

D 0.01

J-I-

/.

I-

~ 0.03

~ 0.02
I-""
~
0.01
0.0\

....-

.IIIBJC

I.O°C/W Max

BJC

BJC 5.8°C/WTyp

oCURVES APPLY FOR POWER

1fLIL
~--l

SINGLE PULSE

ffi'

-

BJelll~'

PULSE TRAIN SHOWN
READ TIME At 11
TJfp~l

Tc

PI,lIBJell)

111111

I I I

DUTY CYCLE. D-~ tllt,

II I
0.02 0.03

0.05

0.1

0.2

0.3

1.0

0.5

11111

2.0 3.0
50
t. TIME (msl

10

20

30

50

200

100

300

500

1000

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA

0::

0
I. 0
5. 0

The safe operatmg area curves indicate Ie-VeE
limits of the transistor which must be observed for
relr~ble operation. Collector load lines for speCific
CirCUits must fall below the limits mdlc~ted by the
applicable curve.
The data of Figure 5 IS based upon TJ(p~1
200°C; Tc IS variable dependmg upon conditions.
Pulse curves are valid for duty cycles to 10 % pro·
vlded TJlp\j '5: 200DC. TJlp\} may be calculated
from the data In Figure 4 . At high case tempera·
tures, thermal limitations Will reduce the power
which cah be handled to values less than the Imlita·
tlons Imposed by secondary breakdown.

100/"
1.0ms

'"

::; 3. 0
~

~
~

~

5.0ms

2.0

"
de "-

I. 0

0.7

8 0.5
S!

=

1"'-

1'\

"-

TJ 200°C
r= r- SECONDARY
BREAKDOWN LIMITATION

~

L

THERMAL LIMITATION ~.U. 1 'cHASE-EMITTER DISSIPATION IS _
LIMIT fOR,
0.2 f--- SIGNIFICANT ABOVE Ie = ~.~ 2N489~+2N4899
f--- PULSE DUTY CYCLE ']10%
I II I ~I
U
2N4900
O. 1
20
30
2.0
3.0
5.0
7.0
10
1.0
VeE. COLLECTOR·EMITTER VOLTAGE .IVOLTS}
0.3

f:=

50

70 100

FIGURE 7 - FALL TIME

FIGURE 6 - STORAGE TIME

5.0

2.0

lel l,

~

3.0

f--- -

....
~

le/l,=10

1.0
~ 0.7
~ 0.5
~

TJ
TJ
I"

+25° CL
+l50°C

-...;J. ....

3.0

I"

le/l,

20

30

I,

::i
~

~

300

500 700 1000

4-94

TJ ~ +25°C
TJ ~ +l50°C
Vee=30V

le/l;-IO"

~ 1.0

IH

200
50 70 100
Ie. COLLECTOR CURRENT (mA)

--

111 = 18'2

.....

-

~ 0.5

1,'

20

2.0

:; o. 7

0.3
0.2

O. 1
0.07
0.05
10

-

1"'::::::

~
;=

!ji

20 -

5.0

o. 3

o. 2
O. 1
0.07
0.0 5
\0

20

30

50 70 100
200
(c. COLLECTOR CURRENT (mA)

-

300

500 700 1000

2N4898 thru 2N4900

FIGURE 8 - CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION

1000
700
500

1. 0

VeE
~ 300

\,+li5~C

~ 200

I--'

B 100

~

8

III

le~O.IA

0.25 A

\.

2

10

LOA

4

20
10
2.0 3.0 5.0

I I
I I

O.SA

6

30

20 30 50
100 200 300 500
Ie, COLLECTOR CURRENT (mAl

"-

""

0
0.2

1000 2000

0.5

1.0

2.0

5.0
10
20
I" BASE CURRENT (mAl

50

100

200

FIGURE 11 - "ON" VOLTAGE

FIGURE 10 - EFFECTS OF BASE·EMITTER RESISTANCE

10'

5
Ie=- 2xlcES

7

'"

.........

-"

"

•

Ve,~30V

.......

Ie

le!leES
ICES VALUES

;2 4
ffi 10

lOx ICES

:"- "'<

5

"
"

OBTAINED FROM
FIGURE 12

13

J 10

III

[l'J

.......

55"C

TJ

LUI

I III
TJ ~ 2S"C

........

TJ~+25"C

70
50

1.0V ~

I. 2

17

.......

40

""

........

.........

"

80
120
TJ, JUNCTION TEMPERATURE ("CI

6

"

.........

"

10

Vr'I'j'J@le/ J,

.......

160

"
........

V,,@Ve,~2.tiV

V
VCEIIIOtj@lc/l s

0
2.0 3.0 5.0

200

10

2000

"APPLIES FOR lell,-.

-

I-

ICIIB =10

I. 0
~ O. 7
to
~ O. 5
o

ts'= ts

t; Q. 3
~

3.0
2.0

....

1"':::::

::e

FIGURE 7,- FALL TIME
5.0

TJ= 25°C .L
TJ= 150° C
ISI-IS2

~ 1.0
~ O. 7

1/811

;

O. 5

~

0.3

::

O.2

o. I

o. I
O.U 7

30

50

70 100

200

300

SOD 7001000

L,

IC/IB" 20

--

11.:-

ICII~' 10'

TJ =25°C
'TJ =150°C
VCC·30V IS1'IS2

-

-"

0.2

0.0 7
0.0 5
10

20

"""

0.05
10

20

30

50

70

100

200

IC. COLLECTOR CURRENT (mAl

IC. COLLECTOR CURRENT (mAl

4-102

300

500 700 1000

2N4918 thru 2N4920

TYPICAL DC CHARACTERISTICS
FIGURE 8 - CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION

§

1000
700
500

VCE -1.0V_

'"~

~ 30 0

'"....
IEa:

TJ-15~C

20 0

,...

~ 100
u
70
Q
~

I'

II

-55 0C

o. 6

ald:

O. 4

o
....
~

0

~
u

"-

20

.,"

10
20 30

50

100

200 300 500

~

>

1000 2000

a

0.2 0.3 0.5

LOA

"

....

1.0

2.0 3.0

5.0

10

20 30

50

100

200

lB. BASE CURRENT ImAI

FIGURE 11 - "ON" VOLTAGE

10B

1.5

........

10 7

6

........
........

Ic

.......

VCE =30 V

=10 ICES

IC =2x ICES

iCES VA~UES I
OBTAINED FROM
FiGURE 13

r-..

'"; O. 6
o

>

II
II

I'..
a

150

120

2.0 3.0 5.0

10

FIGURE 12 - COLLECTOR CUTOFF REGION
1/

/

L

~

II

+1. 0

I

U +0.5

2

103 1+=

u
~ -0.5
::>
~ -1.

/

a

VCe=30V

a:
~ -l.5
w

• '".... -2.a

250C
REVERSE=IiO -='FORWARO
+0.1
-0.1

TJ = -55 0CTO +100 0C

Q

IC =ICES
104

"eve FOR VCE("II

~

1000C

+0.3

+0.4

2
1

+0.5

VSE. SASE·EMITTER VOLTAGE (VOLTSI

-2.5
2.0 3.0 5.0

.....

eVB FOR VBE

4

+0.2

I I I II

TJ = 1000C 10 1500C

w

a:

~-'10-2

1000 2000

1 Jill

II

~ +1. 5

./

i3

a: 10- I

200 300 500

"APPLIES FOR Ic/IS ~ iVIEI.

r-..

4-105

11O~ UN~ESSI NJTiD
TJ =25'C

,11 TJ = 150'C

I,

30 V

Vee I' 30"V
0.07 VlElo"' 0
0.0 5
20 30
10
O. I

-'Iell;
60 V

~ I'--~+

~

~ 0.5 Vee

h:5 15 ns
100 < I, ,,; 500 p.s
1,:5 15 ns

+UV

Vee -30V
lell, 20

2.0
HB
w

APPROX

3.0

II'

60V.
2.0 V

r-.
50 70 100
200 300
Ie, COLLECTOR CURRENT (mAl

500 700 1000

•

2N4921 thru 2N4923

FIGURE 4 - THERMAL RESPONSE
1.0

0.7 t-- I- D=0.5
0.5
... Ei
~~ 0.3
0.2

_....

0::;

~~ 0.2

0.1
0.05

.... 0:

.... 0

~~ 0.1

t-""

"'w
:i
~ 0.07

:= ~ 0.05

:g~ 0.03
0.02

--

0.01
0.01

•

IfLJ1

0.01

0.05

0.1

0.2

0.3

0.5

,

5.0

1.0ms- f-",100.,

',5.0m" ...

TJ = 150°C

2.0

0:

a::

e

~
o

I

2.0 3.0
5.0
t TIME (ms)

de \..

1.0
O. 7

\.
\

~ D.
3
O.

30

I II
50

I
200 300

100

500

1000

The data of Figure 5 is based on T J(pk) = 150oC;
TC is variable depending on conditions. Second breakdown
pulse limits are valid for duty cycles to 10% provided
TJ(pk)S 150o C. At high case temperatures. thermallimitations will reduce the power that can be handled to values less
than the limitations imposed' by second breakdown.

SECOND BREAKDOWN
LIMITED
- - - BONDING WIRE LIMITED
O.5 - - - - - --THERMALLY LIMITED@TC=250C

-

I I
20

10

There are two limitations on the power handling ability of
a transistor: average junction temperature and second break·
down. Safe operating area curves indicate Ie - VCE operation
i.e., the transistor must not be subjected to greater dissipation
than the curves indicate.

["'.

:S 3.0
!;;;
=>
U

1.0

ACTIVE - REGION SAFE OPERATING AREA

10
7.0

~

T'I"I -Tc=PI"19JcIV

D~rrmlE. D=I,/I,

IIIII
0.02 0.03

DCURVES APPLY FOR POWER .
PULSE TRAIN SHOWN
R£AD TIME All,

I=±\;~

SINGlE PULSE

FIGURE 5 -

1-

9,c!V rlV9JC
9JC = 4.16°C/W Max

PULSE CURVES APPLY BELOW

O.: f = r r V T
2.0 3.0
1.0

II

I II
5.0 7.0

10

20

3D

50

70 100

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 6 - STORAGE TIME
5.0

I
;.;

=1=". _10

2.0

-

0.7

=

3.0

I.'

Icll.=20

FIGURE 7 - FALL TIME

5.0

-

3.0
Icll.=2O
.:..~

.....

:; 1.0

0.5

!ill
~

0.3

.oj

0:2

~

r-=r:::r !,

= 25°C
~TJ=ISOOC
0.1
I.. -I..
I.=t,-Itt.
0.07
0.05
so 70 100
200 300
20
30
10
Ie. COllECTOR CURRENT (mAl

......

2.0
~

...

20

~ .......

-

10

0.3
0.2

500 700 1000

~

0.7
0.5 ~Icli.

Icll.
~...,r~

0.1
0.0 7
0.05
10

TJ = 25°C
- - - TJ = lSOoC
Vcc==30V
1.. =1 ..

20

30

so

70 100

200

Ie. COllECTOR CURRENT (mAl

4-106

300

500 700 1000

2N4921 thru 2N4923

FIGURJ' B' - CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION

1000
700
500

rr-r-T"TIITT
11m11""""-'---'-''''-'-'
II-r-rrr.--,--,
III ~-'-'-'--'-I""
I IIIII
III O.SA
II
0.8 H-t-,-I--I--I+l*-++H-I+f+1H+1f-H+~-+-j~l+----H
1.0

~
~

1.0V

VCE

~ 30 0
~ 20 0

Ic~O.lA

""
~

0.2SA

~

2l

25°C

1

'*

0.4 H-+-H-t+l-HI--++++-\l-f+1H+1+-H+H~~I+---H

~

SSOC

0

0.6 H-+-H-t+l+l--++mH-f+1H+1I-H+H-+---j-jW-l-l-I----H

§;

r-..

TJ -150°C

100
g 70
0
<.>

~ 0.2I:tH-nlttt\~-ttt--r~itt___j~#;;:j:;:!±t±J:j-H

0

u
>.

II

I0
2.0 3.0 5.0

10

20 30

SO

100

200 300 SOD

O~~~llW~~~~Lll~~~~~~~~

1000 2000

0.2 0.3 0.5

1.0

2.0 3.0 S.O
10
20 30
I,. BASE CURRENT ImA)

Ie. COLLECTOR CURRENT ImA)

FIGURE 10 - EFFECTS OF BASE-EMITTER RESISTANCE

I""
~

~

100

200

1.5
30V-

VCE

" " Ic ~ 10 XICES

I
1.2

7

10

Ic - 2 "CE;-'

~ 10•

....

~

le=lcEs

........

'"

~ 10 5

~

VALUES
t - rim
r- OBTAINED FROM

104 I

f"'....

~

r.....
I'-..

30

V" 1,,'1 @Iclla

~

r.....

r-......

.......

.......

I""....

r-......
60
90
TJ• JUNCTION TEMPERATURE 1°C)

o

2.0 3.0 5.0

10

20 30

50

i+

100°b25°C
1

I III

TJ = 100·C t. 150"C

O'5

·8vc FOR YCEI,.tJ

SsoC TO + 100°C

8
§~O. S

~IC=IJES

~

~-1.0
.L

REVfRSE
-0.1

VCE

~-1.5

30V_ f - 8
4

~ORWPfD

+0.1
+0.2
+0.3
V". BASE-EMmER VOLTAGE !VOLTS)

1000 2000

I I II

§+1.0

1

200 300 500

"APPLIES FOR Icll,";h,,12

<3+ 2.0

ISO°C

~+l. S

•

100

FIGURE 13 - TEMPERATURE COEFFICIENTS

+2. 5
TJ

L

Ic. COLLECTOR CURRENT ImA)

2

10~0.Z

II
VCE 1,,'1 @ IclI, ~ 10

ISO

120

2.0V

0.3

FIGURE 12 - COLLECTOR CUTOFF REGION

2~

10

V,,@VCE

104
I

A

§; 0.6

'=.FIGURE 12

o

/,

0.9

""
~

~

.......

Ti~2S0C

~

~

I
10I

SO

FIGURE 11 - "ON" VOLTAGE

10'

iii

~

i.OA

~

2

+0.4

I
+0.5

Ov. FOR V"

-2.0
S
-2. 2.0 3.0 5.0

4- 107,

10

I

-

20 30 50
100 200 300 500
Ic. COLLECTOR CURRENT ImA)

/

/

1000

2000

•

2N5038
2N5039

20 AMPERE

NPN SILICON TRANSISTORS
· .. fast switching speeds and high current capacity ideally suit these
parts for use in switching regulators, inverters, wide·band amplifiers
and power oscillators in industrial and commercial applications.
•

•

120 and 150 VOLTS
140 WATTS

High Speed - tf = 0.5 J.Ls (Max)

• High Current - IC(max)
•

NPN SILICON
POWER TRANSISTORS

=30 Amps

Low Saturation -"VCE(sat) = 2.5 V (Max)

@

IC = 20 Amps

*MAXIMUM RATINGS
Rating
Collector-Base Voltage
Collector-Emitter Voltage

Symbol

Emitter-Base Voltage

VEBO
IC
ICM
IB
Po

Collector Current - Continuous

Peak III
Base Current - Continuous
Total Device Dissipation @ T C = 25°C
Derate above 25DC
Operating and Storage Junction
Temperature Range

2N50381 2N5039
150 I
120
150 1
120

VCBO
VCEV

7

20
30
5
140
08
-65 to +200

TJ. Tst9

Unit

Vdc
Vdc
Vdc
Adc
Adc
Watts
WloC
DC

lr~
,~.
E.s~i

THERMAL CHARACTERISTICS

PLANE

Characteristic
Thermal Resistance, Junction to Case
-Indicates JEDEC Registered Data.
111 Pulse Test: Pulse Width": 10 ms, Duty Cycle": 50%.
FIGURE 1 - SWITCHING TIME TEST CIRCUIT

STYLE I:
PIN 1. BASE

Vee

2.EMITIER

+30 V

MILLIM ERS
DIM MIN MAX

Re
2.5

I

Ion

CASE: COLLECTOR

Pw= 20".

Duty Cycle = 1"

A
B

C
D
E

lN4933

2N5038

= 12 Amps

IBI - IB2 ~ 1.2 Amps

-5 V

2N5039
Ie· 10 Amps
IBI - IB2 = 1.0 Amps

-

29.90
G 10.67
H
J I
K 11.18
Q
3.84

F

Ie

-

&.35
0.99

R

-

39.37
21.08
7.&2
1.09
3.43
30.40
11.18
5.59
1 .15
12.19
4.Q9

2B.B7
Coillcto, ..._

INCHES
MIN MAX

0.250
0.039

-

1.177
0.42D
210
O. 5
0.440
0.151

-

to ....

CASE 11.01
(T0.31

4-108

'1.550
0.830
0.3OD
0.043
0.\35
1.197
0.440
0.220
0.675
0.480
0.161
1.D50

2N5038,2N5039

*ELECTRICAL CHARAC"fERISTICS (TC ~ 2So C unless otherwise noted).
SVmbol

Characteristic

Min

Max

90
7S

-

-

SO
50
10
10

-

-

5
15
50

20
20

100
100

VCE(sat)

-

2.5

Vde

VSE(sat)

-

3.3

Vde.

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage (1)
(lC = 200 mAde, IB =0)

VCEO(sus)
2NS038
2NS039

Collector Cutoff Current
(VCE = 140 Vde, VBE(off) = I.S V)
(VCE = 110 Vde, VBE(off) = 1.5 V)
(VCE = 100 Vde, VBE(off) = 1.5 Vde, TC = 150°C)
(VCE = S5 Vde, VBE(off) = I.S Vde, TC = IS0oC)

Emitter Cutoff Current
(VEB = 5 Vde, IC =0)

(VES

ICEX
2N5038
21'15039
2N5038
2N5039
lEBO

= 7 Vile, IC =0)

mAde

-

2N5038
2N5039
Both

Vde

mAde

ON CHARACTERISTICS (1)

DC Current Gain
(lC
(lC

2N5038
2N5039

Collector-Emitter Saturation Voltage

(lC

=20 Ade, IB = 5 Ade)

Base-Emitter Saturation. Voltage

(lC

-

hFE

= 12 Ade, VCE = 5 Vde)
= 10 Ade, VCE =5 Vde)

=20 Ade, IB =S Ade)

DYNAMIC CHARACTERISTICS
Magnitude of Common-Emitter Small-Signal Short-Circuit
Forward Current Transfer Ratio
(lC = 2 Ade, VCE = 10 Vde, f = 5 MHz)

SWITCHING CHARACTERISTICS
RESISTIVE LOAD
Rise Time

Storage Time

I (VCC = 30 Vde)
(lC = 12 Ade, lSI

I

(lC = 10 Ade, IBI
I
*Indicates JEDEC Registered Data.
Fall Time

= IB2 = 1.2 Ade)
= IB2 = 1 Ade)

I
2N503S1

tr

I

ts

I

2N5039I

tf

I

-

-

-

I

0.5

I

,.s

I

I.S

,.5

I

0.5

~
~

,.5

(1) Pulse Test: Pulse Width .. 300,.5, Duty Cycle .. 2%.
FIGURE 2 - FORWARD BIAS SAFE OPERATING AREA

.

10: _

_

Ie
~
l-

i

:::>

'"'
'"

0

~

:rt"lt.~d'~.I

2~+=~~~~~=+~~1'~~~

'~~~~-~~B~Dn~d~in~g~W:jre~L~im~i~t::~~~~~~~~~~~

t= - - - - Thermal limit
'"'2 o.5 rSecond Breakdown Limit
02
=¥
•
TC· 25DC +::J:::J:1m=+=+==+2N5039
+
2N5031i=j=
0.1
"
I
0

There are two limitations on the power handling ability of
a transistor: average junction temperature and second breakdown .
Safe operating area curves indicate Ie - VeE limits of the transis·
tor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves
indicate.
Second breakdown pulse limits are valid for duty cycles to
10%. At high case temperatures, thermal limitations may reduce
the power that can be handled to values less than the limitations
imposed by second breakdown.

23
10
20305070100
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

4-109

•

2N5050 (SILICON)
2N5051
2N5052
MEDIUM-POWER NPN SILICON TRANSISTORS
2 AMPERE
POWER TRANSISTORS
NPN SILICON

· . . designed for untuned amplifier and switching applications.

125-200 VOLTS
40 WATTS

• High Voltage Ratings -'
VCEO = 125, 150 and 200 Vdc
•

•

Low Collector-Emitter Saturation Voltage VCE(sat) -= 1.0 Vdc (Max) @ IC = 0.75 Adc

• Packaged in the Compact, High Efficiency TO-66 Case

*MAXIMUM RATINGS
2N5051 '2N5052

Unit

Symbol

2N5050

VCEO

125

150

200

Vde

Collector-Base Voltage

VCB

125

150

200

Vde

Emitter-Base V oltoge

VER

6.0

Vde

I"
IR

2.0

Ade
Ade
Watts

Rating
Collector-Emitter Voltage

Collector Current - Continuous
Total.Deviee Dissipation @TC=25O C
Derate above 250 C

Po

1.0
40
0.266

ODeratina Junction Temoerature Range

TJ

-65 to +175

DC

T stg

-65 to +200

.oc

Base Current

Storage Temperature Range

W/oc

*THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
• Indicates JEOEC Registered Data.

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA
10
1.Oms

5.0

f

"5....

100J.ls

'-.

2.0

-

I
I
R

5.0ms

z

1.0

'"'"=>
u

0.5

w

=TJ"175 oC

de

~ 0.2 ~'---Secondary Breakdown Umited:+=~~t=~k=t=+=

t;

8j

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

:-- - -

~- -

0.1 ~
0.05

u 0.02

-.. -

BondingWire Limited

I'

250'~E~II~11

Thermal
Limitations
=
Applicable
For RatedTe
BVCEO

~~~~~~±~~~~~~~±~~~~~f~3E :~~~~:

~
2N5052
0.01 I-..L....J....JL....L..u..I-...J.-'-'-'-...J....J....J....J...J...L.L.....L...L-....L...J..J
3.0
5.0
10
20
30
50
100
200 300

MILLIMETERS
DIM MIN MAX
8 11.94 12.70
6.35 8.64
0
0.71 0.86
E
1.27 1.91
F 24.33 24.43
G 4.83
5.33
H
2.41
2.67
J 14.48 14.99
K 9.14
p
1.27
Q
3.61
3.86
S
8.89
T
3.66
U
- 15.75

-

VCE. COLLECTOR·EM1TTERVOLTAGE (VOLTS)

The Safe Operating Area Curves indicate IC-VCE limits below

which the device will not enter secondary breakdown. Collector

load lines for specific circuits must fall within the applicable Safe
Area to avoid.causing a catastrophic failure. To insure operation
below the maximum T J. power-temperature derating must be observed for both steady stote and pulse power conditions.

4-110

-

INCHES

MIN
D.470
0.20
0.028
0.050
0.958
0.190
0.095
0.570
0.3&0

MAX
0.500
0.340
0.034
0.075
0.962
0.210
D.l05
0.590

-

- 0.050
0.142 0.152
0.350
0.145
0.620

-

AJI JEDEC Dimensions and end NotlS Apply.
CASESO.()2

TO-&6

2N5050,2N505',2N5052

ELECTRICAL CHARACTERISTICS (TC; 25°C unless otherwise noted)

I

I

Characteristic

Svmbol

Min

Max

125
150
200

-

-

0_1

-

0_5

-

5.0

-

0_1

25

100

25

-

Unit

"OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (Note 1)
(lC = 200 mAde, IB = 0)

Collector-Emitter Cutoff Current
(VCE = 62_5 Vde, IB = 0)
(VCE

2N5051
2N5052

Collector-Emitter Cutoff Current
(VCE = Rated VCEO, VEB(off)

= Rated

(VCE

mAde

ICEO
2N5050

= 75 Vde, IB = 0)
= 100 Yde, IB = 0)

(VCE

Vde

VCEO(sus)
2N5050
2N5051
2N5052

0_1
0_1
mAde

ICEX

= 1.5 Vde)

VCEO, VEB(offl = 1.5 Vde, TC

= 1500 C)

Emitter-Base Cutoff Current
(VBE = 6_0 Vde, IC = 0)

lEBO

mAde

•

"ON CHARACTERISTICS
OC Current Gain (Note 1)
(lC = 0.75 Ade, VCE = 5.0 Vde)
(lC
(lc

= 1.0 Ade,
= 2.0 Ade,

VCE
VCE

= 5_0 Vdc)
= 5_0 Vdel

5.0

Collector-Emitter Saturation Voltage (Note 1)
(lC = 0.75 Ade, IB = 0.1 Adel
(lC

= 2.0 Adc,

IB

-

hFE

Vde

VCE(satl
5.0

VBE(onl

-

1.2

Vde

fT

10

-

MHz

hfe

25

-

-

Cob

-

250

pF

tr

-

300

ns

Is

-

3_5

tf

-

1.2

= 0.4 Adel

Base-Emitter On Voltage (Note 11
(lC = 0.75 Ade, VCE = 5.0 Vdel

1.0

"DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lc = 250 mAde, VCE = 10 Vde, f

= 5_0 MHz)

Small-Signal Current Gain
(lC = 250 mAde, VCE = 10 Vde, f

= 1.0 kHz)

Common Base Output Capacitance
(VCB = 10 Vde, IE ~ 0, f - 100 kHzl
'SWITCHING CHARACTERISTICS
Rise Time

(VCC = 120 Vde, IC = 750 mAde,
RL = 150 Ohms,

Storage Time

IBl = IB~'= 100 mAdel

.

Fall Time

Indicates JEOEC Registered Data.

Note 1: Pulse Test: Pulse Width

~ 3001'5,

Duty Cycle

""

ILS

~2.0%.

FIGURE 2 - THERMAL RESPONSE
1.0
~

wz

D= 0.6
0.5

~ ~ 0.3
~~
LL w 0.2

'bJ

... 0:

~ ~ 0.1

0.06

oo(:r

0.02

:::;w

:Et-

a: t- 0.0 6
cz
ZW

3~

:E ~ 0.0
e: 0.02~

.....

0.02

~

1----

OJC(tI = '1tlOJC
OJC = 3.76oC/W Max

I I I II II

-I

11112

firmr
0.1

D CURVES APPLY FOR POWER
~ === PULSE
TRAIN SHOWN

=-=
-

DUTY CYCLE, 0 = 11/12 -

p.ql,

0.06

"""

P(P%tfL

...,.-

....... ~

V

0.0 1
0.01

-

-

0.1

w--'

coo(

.....
:;;;"

0.2

0.6

1.0

2.0

I,TIME(ms)

4-111

II III

6.0

10

r--

r--

READ TIME AT 11

TJ\Pkll-IT~ ~ ~(rkIOJC(1

lJ III

20

60

100

200

600

1000

2N5190 thru 2N5192

(SrLlCON)

SILICON NPN POWER TRANSISTORS
... for use in power amplifier and switchi~g circuits, - excellent safe
area limits. Complement to PNP 2N5193, 2N5194, 2N5195

4AMPERE
POWER TRANSISTORS
SILICON NPN
40-80 VOLTS
40 WATTS

"MAXIMUM RATINGS
Rating

•

Symbol

ZN5190 iZN5191izN519Z

I

Base Current

'B

60
60
50
4.0
1.0

Total Power Dissipation@Tc"'2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range

Po

40

Collector.Emltter Voltage
Collector-Base Voltage
Emltter·Base Voltage
Collector Current

40
40

VCEO

VeB
VeB
'e

I

80
80

Unit
Vdc
Vdc
Vdc
Adc
Adc

Watts
mW/oC

320
TJ,T stg - - - 6 5 to +150

°e

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

*ELECTRICAl CHARACTERISTICS(TC

I

=

2SoC unless otherwise notedl

I

Characteristic

Symbol

I

Mon

M••

Unit

OFF CHARACTERISTICS

Collector·Eminer Sustaining Voltage (1)

(IC=O.1Adc,IS"'OI

Collector Cutoff Current
(VeE = 40 Vdc, 10 =0)
(VCE =
Vdc, 18 =0)
(VCE = 80 Vdc, 18 =0)
Collector Cutoff Current
(VCE =4'0 Vdc, VEB(off) "loS Vdcl
(VCE=SOVde, VEB(offl= l.S Vdc)
(VCE -80 Vdc, VEB{off) = I.S Vdcl
(VCE "40 Vdc, VEBloffl '" 1.5 Vdc,
TC=12SoC)
lVCE" SO Vde, VE810ffl =1.S Vdc,
TC",2SOC)
lVCE =80 Vdc, VEBloffJ = 1.5 Vde,
TC= 12St>CI
Collector Cutoff Current
lVCB =40 Vdc,le -01
(Vca =60 Vdc,1E =01
(Vca =80 Vdc,le =01
Emitter Cutoff Current
IVBe =S.O Vdc, IC =01

so

Vdc

VCEO(sus)

40
60
80

2N5190
2N5191
2N5192

mAde

ICED

1.0
1.0
1.0

2N5190
2N5191
2N5192

2NS192
2N5190·

0.1
0.1
0.1
2.0

2NS191

2.0

mAdc

ICBO

0.1
0.1
0.1

2N5190
2NS191
2NS192

1.0

(lC = 4.0 Adc. VCE '" 2.0 Vdcl

"Fe

2NS190
2N5191
2NS192

25
25
20
10
10
7.0

2N5190
2NS191
2NS192

Collector-EmItter Saturation Voltage(11
(Ie;; I.S Adc,la =0.15 Adcl
(lc "4.0 Adc, 18 -1.0Adc)

VCE(satl

Base-E mitter 0 n Voltage (1)
. (lC-l.S Adc. Vce ""2.0 Vdc)

VBElonl

100
100
80

Vdc

0.6
1.4
Vdc

1.2

DYNAMIC CHARACTERISTICS
Current·Gain-Bandwidth Product
lie-La Adc, Vce = 10 Vdc. f-1.0 MHz)

F

+:: '
~D
1:

~H

1£--11

E:::IT=1-r
M-Ji..

~r
K

L--lLJ
STYLE I
PIN I. EMITTER
2. COLLECTOR
3. BASE

mAde

lEBO

ON CHARACTERISTICS
DC Current Galnlll
(I C -1.S Adc, VeE = 2.0 V:dcl

t

,,-,~ ---1

2.0

2N5192

ur:l/

~

mAdc

ICEX
2NS190
2N5191

=1

iT

MHz

2.0

(1)Pul .. Ten: Pul .. Width <300 "', Duty CY~I.<2.0%.
-lndicetesJEDEC Regiltered Date

4-112

MILLIMETERS
DIM MIN MAX
A 10.80 11.05
B
7.49
7.75
2.41
2.67
C
0
0.51
0.66
2.92
3.18
F
2.31
2.46
G
2.41
H
1.27
J
0.64
0.38
K 15.11 16.64
30 TYP
M
n 3.76 4.01
R
1.14
1.40
0.89
S
0.64
3.94
U
3.68
V
1.02

INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.125
0.091 0.097
0.050 0.095
0.015 0.025
0.595 0.655
30 TYP
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155
0.040

CASE 77-04
T()'I26

2N5190 thru 2N5192

FIGURE 1 - DC CURRENT GAIN
10

ffi
N

::;

TJ c 1500C

7.0
5.0

-- -

~ 3.0
a:

'" 2.0

~

~ 1.0

ffi
a..,

I

--

z

-L

- r-- '--

r-I-

- -

r-

h

\

==

'VCE = 2.0 V
VCE -10 V

-

f"o

~

r-~

~,

0.7

a: 0.5
a:

-25°C

-55°C

-.......;:

0.3

c

~ 0.2

0.1
0.D04

0.007

0.01

0.02

0.03

0.1
0.2
0.3
IC. COLLECTOR CURRENT lAMP)

0.05

0.5

2.0

1.0

3.0

4.0

FIGURE 2 - COLLECTOR SATURATION REGION
~ 2.0

'"

~

1.6

1\

1\

~

'">

TJ = 25°C
IC= lOrnA

100 rnA

1.0 A

3.0 A

1.2

\

~

~
'"
a:

~_

0.8

\
\

1

\

\

0.4

..,'"

..,w

>

0.05 0.07

0.1

0.2

0.3

0.5

0.7

1.0

2.0

5.0 7.0 10
3.0
lB. BASE CURRENT ImA)

FIGURE 3 - "ON" VOLTAGES

20

30

50

70

100

200

5

.s +1.5

1.2

~

'"~
c

,/

~ +1.0

It

w

i

VBElsatlli' IcllB 110

0.8

>

0.005

<3

~ +U.S

'"

",

~

VBE II!> VCE" 2.0 V

IJ~EI.lI)1I!> IcllB = 10
0.01

~
::!
1li

i

"..""

0.02 0.03 0.05
0.1
0.2 0.3 0.5 1.0
IC. COLLECTOR CURRENT (AMP)

'BV for VCElsaO

k'"

..,'"
w

II

0.4

500

l~ppLJsIF&~ IICIIBI" ~FU
TJ = -1i50C to +1500C IL

~ +2.0

TJ = 25°C

~

~

300

FIGURE 4 - TEMPERATURE COEFFICIENTS
+2.5

2.0
1.6

r--f--

r--.....

"

I'..

2.0 3.04.0

4-113

-0.5
-1.0
-1.5

-2.0
-2.5
0.005

'1

Trlw

1
0.01

~

.-

II I

0.02 0.03 0.05 0.1
0.2 0.3 0.5 1.0
IC. COLLECTOR CURRENT lAMP)

2.0 3.04.0

2N5190 thru. 2N5192

FIGURE 5 - COLLECTOR CUT-OFF REGION

FIGURE 6 - EFFECTS OF BASE·EMITTER RESISTANCE

~ 107
:c
g

103
/

r--VCE~30V

2

w

f--TJ = 1500C
If--

~
ili
/

FORWARb=

•

+0.1

1:i

+0.2

+0.3

+0.4

~

+0.5 +0.6

40

20

t2 f-TURN.OFF PULSE

"':::: r-.',
,

oS

;!: 100
U

~

-4.0 V
RSand RC va,ied
to obtain desinld
cu,rent levels
OUTY CYCLE ~ 2.0%
APPROX -9.0 V

Ceb
I

70

50
Cob
30
0.1

0.2 0.3

0.7
0.5

j

1~IIBI_Ih:: ::::::

II
I"-

0.3

~ 0.2

TJ = 250C

1,@VCC=30V

=

.,..,....

j

1,@VCC=10V

w

::E

;=

0.1

1

10

20 3040

H4.

1.0

IJ

0.3

::t-

II@VCC=30V

:;

r-

IS1=IB;t
ICIIS = 10
1s'=ts-I/Blt=
TJ= 250C ::: ~

::::::

.

.11
II@VCC=10V

.........

0.2
0.1

Id@VESlolI) = 2.0 V

0.07
0.05
0.03
0.02
0.05 0.07

2.0

0.7
0.5

;=

-'

0.5
2.0 3.0 5.0
1.0
VR. REVERSE VOLTAGE (VOLTSI

FIGURE 10 - TURN-OFF TIME

FIGURE 9 - TURN·ON TIME

2.0
1.0

160

T)+2150~ I-

"-

Cid« Ceb

I

140

I-

..,zw

RB

I

---I

60
100
120
80
TJ. JUNCTION TEMPERATURE (OCI

200

o-.......""'-...,---i

I

1- __

........

FIGURE B - CAPACITANCE

RC

1 11 <7.0ns
I 100<12<500",
1_ 1. _ 13<15 ns
I I

I

Vin -

.....

102

300

TURN·ON PULSE
APPRO
+11 VA X VCC

1
I

......

.........

(TYPICAL ICES VALUES
OBTAINEO FROM FIGURE 5)

FIGURE 7 - SWITCHING TIME EaUIVALENT CIRCUIT

+11 V

.........
........

~ 103

VBE. BASE·EMITTER VOLTAGE (VOLTS)

I

r--...

......

a:

Vin 0 t- - - - Yin
VEB(olf)
I
-ll--Il
APPROX
--1 13}--

I

IC=2xICES

~

-0.1

VCE = 30V
IcolOx ICES

........

I-

ICES
-0.2

r- -

~

21== =250C

r--...

104

~
W

f==:::!!

........

~

~

1~ =REVERSE

-0.3

.........

IC~ICES

a: 105

1===== =100oC

10- 3
-0.4

.......

~ 106

0.07
0.05

1"10.1

0.2 0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

2.0

3.0 4.0

4-114

0.03
0.02
0.05 0.D7

0.1

0.2 0.3
0.5 0.1 1.0
IC. COLLECTOR CURRENHAMPI

2.0

3.0 4.0

2N5190 thru 2N5192

FIGURE 11 RATING AND THERMAL DATA
ACTIVE-REGION SAFE OPERATING AREA
10
There are two limitations on the power handling ability of a

§"
~

TJ = 150°C

§ 2.0
'"
a
'"

1.0

~

0.5

o

o

.,

I ...... ,
Secondary brea~down limit \

"

1'.

- -

5.0

2.0

10

1\

The data of Figure 11 is based on TJ(pk) = 1500 C; TC is
2N5190 -

O. 1
1.0

that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves mdicate.

de

t---Curves.pply below rated VCEO

0.2

Safe operating area curves indicate Ie . VeE limits of the transistor

I"

1\

Thermal limit atTe '" 250 C
Bonding wire limit

'-'

~

transistor; average junction temperature and second breakdown.

5_0 m"'" 1-1.0m."I lOOps

5_ 0

I"

i+

2N5191
2N5192
20

variable depending on conditions. Second breakdown pulse limits

r\
100

50

are valid for duty cycles to 10% provided TJlpk) ~ 1500 C. At high
case temperatures, thermal limitations will reduce the power that
can be handled to values less than the limitations imposed by second
breakdown.

VeE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

FIGURE 12 - THERMAL RESPONSE
1.0

ffi
N

.... ::;

0.7 =0=0.5
O•5

ffi ~ 0.3

;;;'"

~~ 0.2

==

",-

-

~~

O. 1~

.... w

~ ~ 0.07

tt: ~O.05
~~

==
-::::.-

"'~ 0.03 ~O.02

....

0.0 I
0.01

1
=0 2

-

-0.1

oJClm.xl ~ 3.120 CIW - 2N5190·92
OJClm.xl ~ 2.0BoCIW MJE5190·92

-P
:::;;-

-: ,.".

0.05
0.02

"\1
-Singl. Pulse

0.01

II

I
0.02 0.03

0.05

0.1

0.2

0.3

0.5

1.0

2.0 3.0
5.0
10
t. TIME OR PULSE WIDTH 1m.)

20

50

100

200

500

1000

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

~~:~

A tram of periodical power pulses can be represented by the model
shown in Figure A. Using the model and the device thermal response, the normalized effective transient thermal' resistance of
Figure 12 was calculated for various dutY cycles.

n' n"

----""'1
---!

tl

1

1 '-----

I----

:

I
I
1---111 -------l

DUTY CYCLE 0 =11'"

To find 6JC(d. multiply tho value Qbtainod from Figure 12 by
the stoady state value 6 JC'
Example: \
The 2N5190 is dissipating 50 watts under the following conditions: tl = 0.1 ms. tp = 0.5 ms. (0 = 0.2),
Using Figure 12. at a pulse width of 0_1 ms and 0 = 0_2. tho
reading of rhl. OJ is 0.27.
The peak rise in junction temperature is therefore:

tl

ij;

"T

PEAK PULSE POWER = Pp

4-115

= rid

X Pp X 9JC

= 0.27

X 50 X3.12

= 42.20C

2N5193 thru 2N5195 (SILICON)

SILICON PNP POWER TRANSISTORS

4AMPERE
POWER TRANSISTORS
SILICON PNP

... for use in power amplifier and switching circuits, - excellent safe
area limits. Complement to NPN 2N5190, 2N5191, 2N5192

40-S0VOLTS
40 WATTS

'MAXIMUM RATINGS
Rating

•

Symbol 2NS193

Collector-Emitter Voltage

VCEO

COllector-Base Voltage

VCB

Emitter-Base Voltage

VEB

I 2NS194 I 2NS19S
I
I

40

60

I
I

80

..
.

Vdc
Vdc

Collector Current

IC

40
60
-S.O
.....---4.0

Base C:Jrrent

IB

_+______1.0 - - - - . . .

Adc

Total Power Dissipation@Tc - 25°C
Derate above 2SoC

Po

40
•
-320_

Watts
mW/oC

TJ, T stg

____ -65 to +150 _______

°CIW

Operating and Storage Junction

80

Unit

Vdc
Adc

I·~I

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
-ELECTRICAL CHARACTERISTICS ITC '" 25°C unlessotherwt5e noted'

I

a..rKteristic

I

Symbol

Min

Mu

Unit

OFF CHARACTERISTICS

K

Collector-Emitter Su...inlng Voltaga 111

lie'"' 0.1 Ade,la" 0)

Collector Cutoff Cumnt
(VeE· 40 Vdc.IB c 0)
(VeE· so Vdc, 18 • 01
(VeE'" BO Vdc, Ie· 0)

Vd,

VCEO(susl

2N5193
2N5194
2N5195

40
GO
80
mAde

ICEO

1.0
1.0
1.0

2N5193
2N5194
2N6195

Collector Cutoff Current
(VCE - 40 Vdc, VeEloffl - 1.S Vdd 2N5193
(VCE - 60 Vde. VeEloffl - 1.S Vdd 2N5194
IVCE -80Vdc. VBEloffl-1.SVdcJ 2N5195
(VCE -40Vde. VaEloffl- 1.5Vdc. 2N5193
TC·,25oCI
(VCE· 60 Vdc. VSEloffl- 1.6Vdc. 2N5194
TC • 1250 CI
tVce· 80 Vdc, VBE(off)- f.5Vdc, 2NS195
TC - 1250 CI

ICEX

CoII1C1Of Cutoff CUffent
tVea - 40 Vdc.le· 01
(Vce· 60 Vdc.le - 0)
IVca - 80 Vdc, Ie - 0)

'CBO

2NS193
2N5194
2NS196

~ml".r

Cutoff Current
IVae - 6.0 Vdc, IC • 01

mAde

0.1
0.1
0.1
2.0
2.0

mAd,
0.1
0.1
0.1
mAd,

'eBO

1.0

ON CHARACTERISTICS
DC CulTllnt Glln UI
UC·,.5Adc, Vce· 2.0Vdcl

(lC - 4.0 Adc, VCE - 2.0 VcIc)

2N5193

-Fe

2.

2N6194

25

2N6196
2N5193

20

2N6194
2NalS5
Colltctor-EmltttrSltumlon Vol_ 111

VCEI..d

lie· 1.SAde.la· 0.f6Ack)
Clc -4.0Adc.IB -1.0Ade)
a--e.mltter On Val", t u
IIC· 1.5_, VCE· 2.0Vdol

VeEtonl

100
100
BO

10
10
7.0

---

-

0.6
14:'

-

OYNAMIC CHARACTERISTICS

t.2

-

MILLIMETERS
OIM MIN MAX
A 10.80 11.05
7.49
7.75
2.41
2.67
0.51
0.66
2.92
3.18
G
2.31
2.46
1.27
2.41
H
J
0.38
0.64
K 15.11 16.64

Vdo

M

Vdo

R
S

n
U

v

3.76
1.14
0.64
3.68
1.02

3D TYP
4.01
1.40
0.89
3.94

INCHES

MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.125
0.091 0.097
0.050 0.095
0.015 0.025
0.595 0.655
3D TYP
0.148 0.156
0.045 0.055

o.

0.145
0.040

CASE 77.04
T()'126

CulTllnt-G_n-Blndwldth Product
Cle - '.OAde, VCe.- 10Vdc, f - 1.0MHII
·lndat...IEDEC R..I..,. D_
(1) PuIM Teet: P"I.. WIdthS:aGO A

STYLE 1
PIN 1. EMITIER
2. COLLECTOR
3. BASE

2.0

Duty cyc....ca.CHL

4-116

3
0.155

2N5193 thru 2N5195

FIGURE 1 - DC CURRENT GAIN
10
B 7.0
~ 5.0
:::;
~ 3.0

=

~ 2.0

---

a:

z

~

1.0

5 0.7

TJ·150 0 C
1-.-_

r

-

VCE = 2.0 V
VCE= 10V-

~

'-

'- '- - l"- t-

V

V
250 C

-

~

~ ~~ l_......

-550 C

~ 0.5

-""'"

1:l

... 0.3
c

i

--

0.2

0.1
0.004

0.007

0.01

0.02

0.03

0.05

0.2
0.1
IC. COLLECTOR CURRENT (AMP)

0.3

2.0

1.0

0.5

3.0

4.0

FIGURE 2 - COLLECTOR SATURATION REGION
~ 2.0
o



= 250 C

II 1111111

+2.0

I I II

·APPLIES FOR IcllB c;hFEI2
TJ' -650 C10 +1500 C

.s +1.5
[!!

~

0

/.

1.2

w

;'"

O.S

VBE(sal) IiIIC/lB' 10

>
0.4

0.005 0.01

~

·8VC lor VCE(sat)

w

g;

-0.5

~

f

~~~(satlIl!lIC/18' 10
1.0 .

8Vafor VBE _

1li-1.5

~

""

--

S-1.0

III

0.02 0.03 0.05 0.1
0.2 0.3 0.5
IC. COLLECTOR CURRENT (AMP)

+0.5

w

...o

VaEiii VCE • 2.0 V

0

+1.0

tE

;;

i':



~

........

... 106

10 1

a:
a:

107

-0.2

-0.3

-0.4

~

~

-0.5 -0.6

102

VBE. BASE·EMITTERVOLTAGE IVOLTSI

100
120
60
BO
TJ. JUNCTION TEMPERATURE lOCI

FIGURE 7 - SWITCHING TIME EQUIVALENT CIRCUIT

FIGURE 8 - CAPACITANCE

a:

TURN·ON PULSE

20

40

140

160

VCC

VBEIOfllt}
Vin

0

---

I
APPROX-ll V I

Vin

--II11
I
-1

Yin

12

I

I

I1

I 100~+=~~~t++t~=+=+~~~=++C.+b+t~·=+'~=+~~

+4.0 V

1-+--H+++++r++--+-++H-++r++I-+-+-tC.b
701-+--H+++++r++--+-++H-+++++I-+-+-t+4

I
131TURN·OFF PULSE

11 <7.0 ns
100<12<600,..
13< l~ns
DUTY CYCLE'" 2.0%

~

!~0r-+-+1-r~++++~~-+~~~~++r-+-~-r~
~
.......
\

I I

APPROX
-11 V

~

APPROX
+9.0 V Cid «Cab

I-

--1----+

3001o.:::1-t--HH-+-l+f-m......b.......
+-t-+-+-++++++--l-+++-i

SCOPE

RS

o---'\M-..--I

RS ANO RC VARIEO
TO OBTAIN OESIREO
CURRENT LEI(ELS

50~~~~~~~~~~~~~~~~L-"
0.1

0.2 0.3

FIGURE 9 - TURN·ON TIME

2.0

1~=

IICilBI.
f=
TJ'250 C= ~

1.0

0.7
0.5

!l!

0.2

., 0.1 ....

;::

ttIilVCC" 10

0.07
0.05
td iii VBE(ofl} = 2.0 V
0.03
0.02
0.05 0.07 0.1
0.2

!l!
;::

r--..

""t--..

V-

-

0.3

ICilB"10
II "1s-1181(=
TJ"25oC ~

0.7
0.5

........

:) 0.3
f',I.

IB1"IB~t

Ii

1.0

,....... tt@VCC"30V

........

20 3D 40

FIGURE 10 - TURN-OFF TIME

2.0

:) 0.3

0.5
1.0
2.0 3.0 5.0
10
YR. REVERSE VOLTAGE IVOLTSI

......

t,tlIVCC" 30 V

0.2

-

.....,

r-

t,IIPVCC=10V

o.1
0.07
0.0 5

0.5 0.7

1.0

2.0

0.03
0.0 2
0.05 0.07 0.1

3.04.0

0.2

0.3

0.5 0.7

1.0

Ie. COLLECTOR CURR~NT (AMP)

IC. COLLECTOR CURRENT (AMP)

4-118

2.0

3.04.0

2N5193 thru 2N5195

FIGURE 11
RATING AND THERMAL DATA
ACTIVE-REGION SAFE OPERATING AREA
10

,

'"

5.
TJ

E 2.0

I

=150'C

'"=>'"

~ 1.0
o

~

0.5

o

<.>

--

'.

t\.

\

The data of Figure 11 is based on T Jlpk) =.lS00C. T C is variable

CUNIS applv below rared VCEO

I II

0.2
O. 1
1.0

"-

..........

Secondary breaJdawn limit \
Thermallimil@Tc=25'C
Bonding wire limit
de

-

-

Note 1:
There are two limitations on the power handling ability of a
transistor; average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.

LOrn,,", 100",

5.0m$'-;;:

0:: 5.0

I II

5.0

2.0

depending on conditions. Second breakdown pulse limits are valid

\.
2N5193 -

-'

for duty cycles to 10% provided T Jlpk) .. lS00 C. At high..,a,e
temperatures, tl:!ermal limitations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown.

r"\

2N5194
2N5i95

10

50

20

100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 12 - THERMAL RESPONSE
1.0

ffi
N

0.7 ~O'0.5

O•5

0-::;
ffi~ 0.3

1

~~

r--- 1-0.1

0.1

l::::::=: '=:0.05

~ ~ 0.07

0.02'

~ ~

0.05

w-,

?~ 0.03

_l"""

~ 1=0 2

.. <=
~~ 0.2
",o-W

r==
~

0.01
0.01

=3.12'CIW

100

200

"\I

r--- rO.Ol
'"
~O.02

r-

0JC(max)

I-::: ~

I-Singl,Pulso

I

II

0.02 0.03

0.05

0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

10

20

30

50

300

500

1000

I, TIME OR PULSE WIOTH 1m,)

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

~~:~

n' n"

-----II

--I

11

I

I

I--

:

A train of periodical power pulses can be represented by the model
shown in Figure A. Using the model and the device thermal response, the normal ized effective transient thermal resistance of
Figure 12 was calculated for various duty cvcles.

L -_ __

I
I
t--lIf---l

11

DUTY CYCLE D • 11'"

tp

PEAK PULSE POWER' Pp

To find 8JCltI, multiply the value obtained from Figure 12 by
the steady state value 8 JC.
Example:
The 2N5193 is dissipating SO watts under the following conditions: tl = 0.1 ms, tp = 0.5 ms. 10 = 0.21.
Using Figure 12, at a pulse width of 0.1 ms and 0 = 0.2, tha
reading of rltl, 0) is 0.27.
The peak rise in junction temperature is therefore:
"T=r(tI XPpX8JC=0.27 X 50X3.12 = 42.20C

4-119

•

2N5301
2N5302
2N5303

HIGH-POWER NPN SILICON TRANSISTORS
20 AND 30 AMPERE
POWER TRANSISTORS

· .. for use in power amplifier and switching. circuits appl ications.

NPN SILICON

•

•

High Collector·Emitter Sustaining Voltage BVCEO(sus) =80 Vdc (Min) @ IC = 200 mAdc (2N5303)

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.75 Vdc (Max) @ IC = 10 Adc (2N5301, 2N5302)
1.0 Vdc (Max)"@ IC = 10 Adc (2N5303)

•

Excellent Safe Operating Area 200 Watt dc Power Rating to 30 Vdc (2N5303)

•

Complements to PNP 2N4398, 2N4399 and 2N5745

40-60-80 VOLTS
200 WATTS

-MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-aa.. Voltage

Collector Current - Continuous
aaseCurrent
Total Device Dissipation lSI TC D 250 C
Derate above 250 C

Symbol

2N5301

2N5302

2N5303

Unit

VCEO

40

60

aD

Vde

Vca

40

60

80

Vde

IC
la

30

30

20

Ade

Po

Operating and Storage Junction

-7.5-

Ade

-200----:-1.14-

Watts

-65 to +200-

-

TJ,Tstu

W/oC

°c

Temparatura Range

THERMAL CHARACTERISTICS
Charactaristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

8,,.,

0.a75

°CIW

ea.. to Ambient

8CA

34

°CIW

Tharmal Resistance,

lr~
r~K
ESEATIN/~
PLANE

i

·lndlc8tesJEDEC Raglnered oete.

FIGURE 1 - POWER TEMPERATURE DERATING CURVE
STYLE I:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR
MILLIMETERS
DIM MIN MAX

TA TC
8.0 200

i

"'i"

B.O 160

~ti i'..

~

~
~

J

......

4.0 100

A
B
C
D

TA

..... I'-~

is

'"
~

~ 2.050

~I'-

...... ~

E
F

~

G

I'-~

o0
~

~

~

00

~

rn

~

~~

~

~"

~

~

TEMPERATURE I'CI

H
J
K
Q

R

NOTE:
1. DIM "Q" IS DIA.
INCHES
MIN MAX

-

39.37
21.0B
7.62 0.250
1.09 0.039
3.43
29.90 30.40 1.177
10.67
11.18 0.420
5.33
5.59 0.210
16.84 17.15 0.655
11.18 12.19 0.440
4.09 0.151
3.84
- 26.67
Collector connected to case.
6.35
0.99

CASE 11-01

(TO-3)

~120

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

ELECTRICAL CHARACTERISTICS (TC = 250 unless otherwise noted)
Min

Symbol

·OFF CHARACTERISTICS
Collector-Emlner SUltelnlng Voltage (Note 11
(Ie" 200 mAde. 18" 01

,

VeeOllU.)
2N630t
2N5302
2N6303

Collector Cutoff Current
(VCE - 40 Vde. IS - 01
(VCE - 60 Vde. IS - 01
(VCE - 60 Vde. IS - 01

2N6303
ICEX
2N6302
2N6303

Collector Cutoff Current
IVCE - 40 Vd •• VESlalf) - 1.5 Vd •• TC - lso"CI
(VeE" 60 Vdc, VeSfoff)" 1.5 Vdc. TC" lSOOC)

2N6301

IVCE' 60 Vd •• VESlalfl,- 1.5 Vde. TC' lso"CI

2N5303

Collector Cutoff Current
IVCS - 40 Vd•• IE - 0)

ICEX
2N5302

6.0
mAde

-

1.0
1.0
1.0

-

10

mAd.
10

ieBO

2N5302
2N5303

Emitter Cutoff Current
IVse .. 5.0 Vdc. Ie .. 0)

10
mAde

-

2N5301

IVCS - 60 Vde. IE - 01
(Vea '" 80 Vdc. Ie .. 0)

mAde
6.0
6.0

-

2N5301

IVCE - 60 Vd •• VESlalll • 1.5 Vd.1

-

-

2N6301
2N5302

1.0
1.0
1.0
5.0

IESO

ON CHARACTERISTICS
U":'. ,",urrant ~aln _'Note H
·IIC-I.OAde. VCE' 2.0Vde)

"FE

ALL TYPES
2N5303

'lIc - 10 Ade. VCE - 2.0 Vdel

-lie" 15 Adc. VeE" 2.0 Vdc'
IIc • 20 Ade. VCE - 4.0 Yd.1
(Ie" 30 Adc, VeE" 4.0 Vdcl
·Collector-Emitter Saturation Volc.gt INot8')
(Ie" 1DAde. Is" I.DAde)

40

-

IS
15

60
60

2N5301.2N5302
2N5303

5.0

2N6301.2N5302

5.0
VCEI...,

IIc - 20 Ade. IS - 4.0 Adel

2N5301.2N5302
2N5303
2N5303
2N5301.2N5302
2N6303

IIc - 30 Ade.IS - 6.0 Adel

2N5301.2N63D2

(Ie" ,0 Adc. IS .. 1.0 Adcl
IIc' 15 Ade. IS - 1.5 Adel
IIc· 20 Ade. IS • 2.0 Ade)

-Basa-Emitter Saturatton Voltage (Note')
(Ie "'DAde. IS "" I.DAde)

-

(Ie" 15 Adc. 18 .. 1.5 Adc)

(Ie" 20 Adc. 's .. 2.0 AdcJ
IIc - 20Adc.IS - 4.0Ade)
B.... Emitter On Voltaga (Note 1»
IIc - 10 Ade. VCE - 2.0 Vdel

Vde

-

0.75
1.0
1.6
2.0

-

2.0
3.0

ALL TYPES
2N5301.2N63D2
2N6303

-

1.7

-

1.8
2.0

2N5301.2N63D2
2N5303

-

2.5

-

2.5

VSElon)

Vde

2N5303

-

1.5
1.7

IIc - 20 Adc. Vee - 4.0 Vdel

2N5301.2N63D2
2N5303

IIc - 30 Ade. VCE - 4.0 Vde)

2N6301.2N63D2

-

3.0

IIc - 15 Ade. VCE - 2.0 Vde)

mAde

Vd.

VBElsati

IIc -15Ade.la· 1.5Adel

Unit

Vde

-

40
60
60
leeo

Collector Cutoff Current
IVCE - 40 Vd •• VESlalfl - 1.5 Vd.)
(VeE" 60 Vdc. VESlaff) .. 1.5 Vdcl

MIl.

-DYNAMIC CHARACTERISTICS
Current-G.in B.ndwidth Product
IIc-I.OAde. VeE -IOVde.f-I.OMHzl

2.5

2.0

Smell-5ignel Curr.nt Gain
(Ie - 1.0 Adc, Vee - 10 Vdc, f - 1.0 kHz)

MHz

40

·SWITCHING CHARACTERISTICS
(VCC - 30 Vdc. IC - 10 Adc, IS1 - IS2 - 1.0 Adcl

·Indle. . JEDEC Regl'hlred D8U.
Note1: Pul.. T.s1: Pul. Wldth~300,... Duty Cycl.:!:2.Q%.

SWITCHING TIME EQUIVALENT TEST CIRCUITS
FIGURE 2 - TURN-ON TIME

VCC

INPUT PULSE
tr<20ns
PW-l0t.lOO,..
DUTY CYCLE - 2.1l'lI

+11 V

-~_--OO-_-J\lI",o

-2.0V

f--~-1.

FIGURE 3 - TURN-OFF TIME

+30 V

' ' rJr

3.0

-l""'''-SC'''D~~

+'

__

VCC

INPUT PULSE
1,<20 ..
PW= lOt. 100,..
DUTY CYCLE' 2.0%

+30V
3.0

TO
SCOPE
tr<20ns

10

0------- -

t,<20 ..

-9.0 V - - - - - 0: COLLECTOR·BASE DIODE
OF 2N3252.

':'

VSS - -4.0 V

4-121

2N5301,2N5302,2N5303

-

FIGURE 4 - THERMAL RESPONSE
1.0
0.7

ffi

~

0.5

:=O'uw

'I.

0.3

> z

0.2

~ ~

0.1

E~
... w

"
i-1::!I

I-'C'

I!!ii

~~O~O.

19;~('1 or

9JC'
, M,x: f~
'0 CURVES APPLY FOR POWER
~
PULSE TRAIN SHOWN
IREAD TIME AT II

~ ~ 0.07

•

~ ~ 0.05

'I. 1'1.

cO'

~~
z

:~.,

0.03
0.02

TJ(pt) - TC' P(pk) 'JCII)
111""111

ISINGLE

0.01
0.02 0.03

0.05

0.1

0.2

0.3

I

II I IIIIII

1.0

0.5

2.0

3.0

5.0

~
Iffi

ZO

- -

1--1-

r....

'"
B
c

~ 0.5

:::

a
u

2.0

3.0

5.0

10

ZO

100
30

50

100

0.5

1.0

TJ"Z5DC

lo/'rT 'O

1.0
0.7
0.5

3.0

5.0 7.0

I'"

.-

r-

1\

-

~

1.0
]

0.7

..

0.3

K

; 0.5
;::

"OVCC"30V

"OVce"IOV

"OVCC"IOV
'dOVOa"Z.OV

0.07
O. I
0.1

O.Z 0.3

0.5

1.0

Z.o 3.0 5.0

10

ZO

30

50

FIGURE 8 - TURN-OFF TIME

O.Z

0.05
0.00 0.05

2.0

VR. REVERSE VOLTAGE (VOLTS)

3.0

2.0

0.1

..... ;.,.Cob - -

300

3.0

0.3

- -

Cib

"-

FIGURE 7 - TURN-ON TIME

.

2000

200

ZN5301
ZN53D2
2N5303

5.0

0'

1000

25~C

TJ"

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

,.;::

500

FIGURE 6 - CAPACITANCE .......s VOLTAGE

z
~
U 500

1C-250 C

0.1

]

300

(ms)

Pul. Duty Cyel. <;10%

O.Z
1.0

200

~ 1000
de

§--- Thermal Limitations

100

...

'" 2.0 f=:±= ~:::,o~~"'kdown Limited
E
r- _. - Bonding Wire Limited
:: 1.0

r

CYCLE. 0 -'I/,Z

50

2000

....

2N5303 ....
10
~ ·2N5301. 5302
5.0

30

3000

100 ..
1.0 ms
5.0ms

50
ii:

~UTY

I
ZO

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
100

~:j

l-

I

10

~ TIME

pffin

~-

10

0.03 0.05

20 30

0.1

II

0.3 0.5

IIIII~
TJ-Z C _
I'BI-'B2
'c/la-IO
",· .. trllBq

VCC "30V

l"1.0

3.0 &.0

Ie. COLLECTOR CURRENT (AMPI

IC. COLLECTOR CURRENT (AMP)

4-122

I,

10

30

2N5301,2N5302,2N5303

FIGURE 10 - COLLECTOR SATURATION REGION

FIGURE 9 - DC CURRENT GAIN
300

T .~;r.r
J I'

200

z

co

I-

~

t::::.:::

100

;(

70

'"

~

..::::::

2SoC

-

50

........

30

~~

w

co

«

K~
1.0

3.0 5.0

10

T

II

n

IC= 2.0 A

~

''""
~
8

\

~

I\..

0.4

0.01

0.02

0.05

Vce- 30 V - f----'

2.0
1.0

IC"2xICES= ~
IC'10xICES f----'

1.6

VOE(~t) @lc/lo=

160

ISO

0.2
0
0.03 0.05

200

3;

0.1

0.3 0.5
1.0
3.0 5.0
IC. COLLECTOR CURRENT (AMP)

II III
1111
rJ = -SSoc to + 17SoC

+2.0

E

;; +1.5

10-1

l000 C

~

250 c

IC'ICES

=R__

-0.3

-0.2

ForMnl

-0.1

0.1

0.2

0.3

"Appli" for IC/IS < hFEl2

ffiU
it
w
'"uw

.fb.S

iii
I-

-1.5

I I'IYS for YSElsat)

~

-2.0
-2.5
0.03 0.05

illl

+1.0

0.4

0.5

10

30

0.6

4-123

If
/

"BVC for YCElsat)

0.1

T
0.3 0.5

1/

1.0

3.0 5.0

IC. COLLECTOR CURRENT (AMP)

YSE. BASE·EMITTER YOLTAGE (YOLTS)

-

V

~ -O.S
t(
~ -1.0

10-2
10-3
-0.4

/

VCE~tl~01ISI.ll~

G +2.5

== F

J

FIGURE 14 - TEMPERATURE COE'FFICIENTS

FIGURE 13 - COLLECTOR CUT-OFF REGION

7'

1/

10

VSE(o.) @I VCE " 2.0v

0.4

140

-;

/

co 1.0
«
!:; O.S
'">
;> 0.6

103

100

10

I

,

w

120

5.0

w~~SOC

TJ.JUNCTION TEMPERATURE (OC)

101

2.0

'"~

102
100

1.0

S 1.41.2

Typical ICES Values Obtained
From Figura 12

SO

0.5

0.2

FIGURE 12 - "ON" VOLTAGES

'" "

60

0.1

10. OASE CURRENT (AMP)

f-- i-lc"'ICES

40

1

>

30

6

20

20A

IDA

O.S

FIGURE 11 - EFFECTS OF BASE·EMITTER RESISTANCE

O'

S.OA

T)= JsJcl

~

10 S

~

lITH

lI-

IC. COLLECTOR CURRENT (AMP)

7

II
II

11111

'"w

.,

.~~

0.3 0.5

1.6

!:;
'" 1.2
>

-SsoC

U.l

~

il

20
10
0.03 0.05

I

'"

VCE"2.0V-

r-

I-_c:.lo-

G
u

-

I

S 2.0

~LI_ VCP 10 V I

~

10

30

2N5336
thru
2N5339
MEDIUM·POWER NPN SILICON TRANSISTORS

5 AMPERE

· .. designed for switching and wide band amplifier applications.

POWER TRANSISTORS
NPN SILICON

Low Coliector·Emitter Saturation Voltage VCE(sat) = 1.2 Vdc (Max) @ IC =5.0 Amp
• DC Current Gain Specified to 5 Amperes
• Excellent Safe Operating Area
• Packaged in the Compact TO·39 Case for Critical Space-Limited
Appl ications

•

80-100 VOLTS
6 WATTS

• Complement to 2N6190 thru 2N6193

•

MAXIMUM RATINGS
2N5336 2N5338
2N5337 2N5339
aD
100
VCEO
aD
100
Vca
6.0
VES
5.0
IC
1.0
IS
6.0
Po
34.3
-66 to +200
TJ. Tstg
Symbol

Rating

Collector-Emitter Voltage
Coliector·Sase Voltage
Emitter-Sa.e Voltage
Collector Currant - Continuous
Base Currant
Total Device Dissipation (§I TC ~'260C
Derate above 250 C
Operating and Storage Junction

Unit
Vdc
Vdc
Vdc
Adc
Adc
Watts
mWfOC
DC

Temperature Ranll".

THER",AL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case

a~

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
6.0

r'
z

"~

ill

~

.........

~

O

4.0

3.0

.,C

~ 2.0
~

'""'- '~
~

e 1.0
o

o

20

40

60

80
100
120
TC. CASE TEMPERATURE (OCI

140

MILLIMETERS
INCHES
MIN MAX
MIN MAX
8.89 9.40
0.350 0.370
8.00 . 8.51
0.315 0.335
6.10 6.60
0.240 0.260
0.406 0.533 0.016 0.021
0.229 3.18
0.009 0.125
F
0.406 0.483 0.016 0.019
G
4.B3 5.33
0.190 0.210
0.711 0.B64 0.028 0.034
H
J
0.737 1.02
0.029 0.040
K 12.70
0.500
L
6.35
0.250
M
45" NDM
450 NOM
1.27
P
0.050
n
900 NOM
900 NOM
R
2.54
0.100

DIM
A
B
C
D
E

i'-..

.......

160

"-

180

200

-

-

-

-

-

Safa Area Curves ara Indicated bV Figura 5. All limits ere applicable and must be observed.

All JEDEC dimension,.nd notelapply.

CASE 79-02
(T0-39)

4-124

2N5336 thru 2N5339

ELECTRICAL CHARACTERISTICS (TC = 25°C, unless otherwise noted)

I

I

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

.

IIc = 50 mAde, 18 = D)

Fig. No.

Symbol

-

8VCEO(sus)

2N5336, 2N5337
2N5338,2N5339

12

ICEX

2N5336, 2N5337
2N5338, 2N5339
2N5336,2N5337
2N5338, 2N5339

-

IC80

2N5336,
2N5337,
2N5336,
2N5337,
2N5336,
2N5337,

IIc = 2.0 Adc, VCE = 2.0 Vdc)
IIc: 5.0 Adc, VCE = 2.0 Vdc)
Collector-Emitter Saturation Voltage

.

.

VCE(sat) *

11,13

V8E(sat)

Vde

-

/.lAde
100
100

-

10
10
1.0

-

1.0

/.lAde

mAde

/.lAde

-

10
10

-

100

30
60
30
60
20
40

-

hFE *

2N5338
2N5339
2N5338
2N5339
2N5338
2N5339
9,11,13

-

Unit

/.lAde

lEBO

8

IIc = 500 mAde, VCE = 2.0 Vdc)

Mex

-

-

2N5336, 2N5337
2N5338, 2N5339

ON CHARACTERISTICS
DC Current Gain *

Base-Emitter Saturation Voltage
IIc = 2.0 Ade, IB = 0.2 Adc)
lie = 5.0 Adc, Is = 0.5 Adc)

ICED

2N5336, 2N5337
2N5338, 2N5339

Collector Cutoff Current
(VC8 = 80 Vde, IE = D)
(VC8 = 100 Vde, IE = D)
Emitter Cutoff Current
(V8E = 6.0 Vde, IC = D)

IIc = 2.0 Adc, IB = 0.2 Adc)
IIc = 5.0 Adc, 18 = 0.5 Adc)

80
100

-

Collector Cutoff Current
(VCE = 75 Vde, 18 = D)
(VCE = 90 Vde, 18 = D)
Collector Cutoff Current
(VCE = 75 Vde, VE8(off) = 1.5 Vde)
(VCE = 90 Vde, VEB(off) = t.5 Vde)
(VCE = 75 Vde, VEB(off) = 1.5 Vde,
TC = 150°C)
(VCE = 90 Vde, VEB(off) = 1.5 Vde,
TC= 1500 C)
-

.

Min

-

-

120
240

-

Vdc

.

-

-

0.7
1.2

-

1.2
1.8

30

-

-

250

-

1,000

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
lie = 0.5 Adc, VeE = 10 Vdc, f = 10 MHz)
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 100 kHz)
Input Capacitance

-

fT

7

Cob

7

MHz
pF
pF

Cib

(VBE = 2.0 Vdc, IC = 0, f': tOO kHz)

SWITCHING CHARACTERISTICS
Delay Time

(Vee = 40 Vdc, VEB(off) = 3.0 Vdc,
IIC = 2.0 Ade,lBt = 0.2 Adc)

2,3

Rise Time

Storage Time

(VCC = 40 Vdc, IC = 2.0 Adc,

2,6

Fall Time

IBt = IB2 = 0.2 Ade)

*Pulse Test:

-

-

100
100

ns

tr

Is

-

2.0

J.IS

200

ns

Id

tf

ns

Pulse W,dth" 300 /.IS, Duty Cycle" 2.0%.
FIGURE 3 - TURN'()N TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
-11.6 V

'62

10

Vee
+40 V

5.0
2.0

20

1.0

~

,.;:

w

lN914

"

i I'

"' ,..,.

0.5
tr@VCC=20V
0.1

::::::::

0.01
0.01

4-125

,..,.

'" ....

td@ VE8(off) - 4.0 V

--.....

0.02

-3.3 V

TJ = 25 0 e

td@VE8(off) = 6.0 V

0.2

0.05

le/18= 10

tl~ Vee 80

0.02

0.05

0.1
0.2
0.5
1.0
2.0
Ie, eOLLECTOR CURRENT (AMPS)

5.0

10

2N5336 thru 2N5339

FIGURE 4 - THERMAL RESPONSE
1.0

ffi

0.7

en

0,5

a: w
.....
...,
wz

0.3

z
<

~

0-0.5

g 0.2

~ ~

0.1
w~
0« 0.07
~ ~ 0.05

-

<"
~."'" 0.03
0.02

Z

~

0.01
0.01

•

I-

0.02

-- "-

w,",

o

-

0.1
0.05

w~

'JLfl
t-J

~

SINGLE
PULSE lk)

0.D1
SINGLE PULSE

'J

0.02 0.03

+=

OJC(t) - ,(I) OJC •
OJC - 29.2 o CIW Max

>--

0.2

0.2

TJ(pk) - TC = P(pk) OJC(I)

DUTY CYCLE. D = '1/'2

IIIII

I

0.05 0.07 0.1

D CURVES APPLY FOR POW ER
PULSE TRAIN SHOWN
READ TIME AT'I

.

0.3

0.5 0.7 1.0

2.0

3.0

5.0 7.0 10

20

I

III

3D

50

I III 111

70 100

200 300

500 700 1000

'. TIME OR PULSE WIDTH (m,)

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
10
5.0

~
:! 2.0

"
....
a'toi
to

13
to
0

~

There are two limitations on the power han·
dling abilityof a transistor: junction temperature
and secondary breakdown. Safe operating area

100~,

1.0ms

curves indicate IC-VCE limits of

......

1.0 ETJ - 200 0 C
5.0ms

0.5

0.1

0

..., 0.05

f~ ~

~-

_ _ _ _
- - - -

Secondary Breakdown Limited
Bonding Wire Limited
Thennal Limitations Te - 25°&
Pulse Duty Cycle ~ 10%
. Applicable for Rated BVCEO

!2

0.02

2NS336.37
2NS338.39
2.0 3.0
5.0 7.0 10
20
3D
50 70 100
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

0.01
1.0

down.

FIGURE 6 - TURN-oFF TIME
10
7.0
5.0
3.0
2.0

j
W

";:::

-'

1.0
0.7
0.5
0.3
0.2
0.1
0.D7
0.05
0.03
0.02

FIGURE 7 - CAPACITANCE versus VOLTAGE
1000

-

"

~

.,@VCC BOV

r-- -,,@VCC-20V

0.01
0.01

-

IBI = 182
700

IcllB = 10

SOD

TJ=2S oC
W
...,

300

z
g.200
~

r-...

-

r--.

Cib

r--.

:'i
70

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

IC. COLLECTOR CURRENT lAMPS)

50
1.0

-

f- TJ= ~solC

-

...... 1--.

100

0.02

transistor

The data of Figure 5 is based on TJ(pk) =
'20o"C; T C is variable depending on cond)tlons.
Pulse curves are valid for duty cycles of 10% providedTJ(pk) ':20o"C. TJ(pk) maybecelculated
from the data in Figure 4. At high case tem,
peratures, thermal limitations will reduce the
power that can be handled to vilues Ie.. than
the limitations imposed by secondary break-

de

0.2

t~e

that must be observed for reliable operation;
i.e., the transistor must not be subjected to
greater dissipation than the 'curves indicate.

2.0

3.0

5.0 7.0

10

Cob

20

3D

VR. REVERSE VDLTAGE (VOLTS) .

4-126

50 70 100

2N5336 thru 2N5339

FIGURE 8 - DC CURRENT GAIN

c

~

-

C-.

z 300
<1
100

u
u

~

VCE 1.0 V
VCE-IOV

'"
....

~=>

FIGURE 9 - COLLECTOR SATURATION REGION

_.

1000
700
500

TJ

~

~

100
70
50

F=

15°C

f-

-55°C

0

I.S

w

1.6

~

...

-

175°C

2.0

'"
«

1111

II

IIII

II

IC = 100 mA

1.0 A

III

!:; 1.4
> 1.1

l"l

-

'"w....
....

1.0

al

"'

O.S

.-

3.0 A

\

0

TJ=25 0C'--

0

~
8

30
10

0.6
0.4

~ 0.2

>

10
0.0010.01

TnI

TIT

0.010.03 0.05

0.1

0.1 0.3 0.5

1.0

1.0 3.0 5.07.0

0
0.5

~

1':
1.0

2.0 3.0

5.0

10

20 30

50

100

200 300 500

Is. SASE CURRENT (mA)

IC. COLLECTOR CURRENT (AMPS)

FIGURE 10 - EFFECTS OF BASE-EMITTER
FIGURE 11 - ON VOLTAGES

RESISTANCE
IDS

1.0

-

O.S -

IC - 10 X ICES
6
5

=

......

........

IC-1X ICES

==
101

o

........

......

IC -ICES

-

_

0.7

!So

0.6

~
w

O. 5 -

'"

4

~

0.4

>

0.3

o

......

(Typical ICES Values
r-0btained From Fig. 12)

I 1111111

0.9

VCE-30V-

r-....

VaE(sal)@ Ic/la = 10

lJ-+-tl:l:!:tt:

Ja~ @I )C~ ~ 12~L

TJ = 15 0C
I

O.1

O. 1 -

o
20

40

60

SO

100

120

140

160

ISO

100

0.01

0.02

0.05

0.1

+li.0

/

'"'"=>
u
'"0

~
8

10-5

VCE -30 V

G

-

3>

<4.0

-

~

+3.0

-

....
ffi

t-TJ = 1750C

IC/la~~olllll

!\l

TJ = -!i5 0

+2.0

;;;
~ +1.0

:-

10-6

t--- 1000C

10-9
-0.4

-0.1

g;
IC = ICES
I

:

i....

FORWARO

i

0.2

0.4

1.0 3.0

5.0

10

0.6

O.S

. 1.0

VSE. BASE·EMITTER VOLTAGE (VOLTS)

2.0 . 3.0 5.0

Ilf

I
l
_U_

UOc
III
I
II.il

I
I

I ~~IB 10: V~EI(!I) I

w

!2 10-8 ~ REV~RSE
~250C

1.0

118~C fO~ VF~~I~

o

u

10-7

0.5

FIGURE 13 - TEMPERATURE COEFFICIENTS

FIGURE 12 - COLLECTOR CUT-OFF REGION!

~ 10-4

0.2

IC. COLLECTOR CURRENT (AMPS)

10-3

ill

i-'

VCE( ..!) @ ICIIS = 10

TJ. JUNCTION TEMPERATURE (OC)

'"....5

.;::::;

-1.0

:,..-

-2.0

-3.0
-4.0
-5.0
0.01

0.02 0.03 0.05

0.1

0.2 0.3 0.5

1.0

IC. COLLECTOR CURRENT (AMPSI

4-127

2N 5344
2N5345

(SILICON)

HIGH VOLTAGE POWER PNP SILICON TRANSISTORS
1 AMPERE
HIGH-VOLTAGE

designed for high-voltage switching and amplifier applications,
• High Voltage Ratings - VCEO = 250 and 300 Vdc
• Fast Switching Times - Typically Less Than,550 ns
Total @ VCC = 100 Vdc

•

PNP
POWER TRANSISTORS
250-300 VOLTS
40 WATTS

• High Current-Gain-Bandwidth Product fT = 60 MHz (Min) @ IC = 100 mAdc
• Packaged in the Compact, High-Efficiency TO-66 Case
MAXIMUM RATINGS

Rating

Symbol

Collector-Emitter Voltage

2N5344 2N5345

Unit

VCEO

250

300

Collector-Base Voltage

VCB

250

300

Emitter-Base Voltage

VEB

5,0

Vdc

Collector Current - Continuous

IC

LO

Adc

Base Current - Continuous

IB

0,5

Adc

Total Device Dissipation @TC = 25' C
Derate above 251;1C

PD

40

Watts

228

mW;oC

-65 to +200

'c

Operating and storage Junction
Temperature Range

TJ , T stg

Vdc
Vdc

-. u-'

P

c

1- 8 - -

4-------------~~--+
Tf- -

-,
K

E
SEATING PLANE

THERMAL CHARACTERISTICS

Characteristic

Max

Thermal ReSistance, Junction to Case

I

STYLE 1:
PIN 1. BASE
2. EMITTER
--F-CASE: COLLECTOR

4.38

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
50
45
in

40

..........

l-

~. 35
~
~ 30

i-...

........

........

;::

:: 25

ili
c

........

...........

" r--.....

20

ffi
~ 15
~ 10

r--......

"'-

5.0
0
0

20

40

60

80

100

120

140

"'- ~
160

TC. CASE TEMPERATURE IOC)

180

200

MILLIMETERS
DIM MIN MAX
B 11.94 12.70
C
6.35 8.64
D 0.71 0.86
E
1.27 1.91
F 24.33 24.43
G
4.83
5.33
H 2.41
2.67
J 14.48 14.99
K 9.14
P
L27
n 3.61 3.86
S
8.89
T
- 3.68
U
- 15.75

INCHES
MIN MAX
0.470 0.500
0.250 0.340
0.02B 0.034
0.050 0.075
0.95g 0.962
0.190 0.210
0.095 0.105
0.570 0.590
0.360
- 0.050
0.142 0.152
0.350
- 0.145
0.620

-

All JEOEC Dimensions and a,nd Notes Apply.

Safe Area Curves Are Indicated By Figure 5.

CASE 80-02
TO·66

All Limits Are APp'lIcable And Must Be Observed

4-128

2N5344, 2N5345

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(IC ~ 10 mAdc, IB ~ 0)

5

(11

VCEO(sus)

2N5344
2N5345

Collector Cutoff Current
(V CE ~ 225 Vdc, V BE (off) ~ 1. 5 Vde)

2N5344

10, 12

(V CE ~ 270 V<\e, V BE (offi ~ 1. 5 Vde)

2N5345

250
300

-

-

100

ICEX

(V CE ~ 225 Vdc, V BE( ff) ~ 1. 5 Vde, T C ~ 150·C)

o
2N5344
(VCE ~ 270 Vdc, VBE ( ff) ~ 1. 5 Vde, TC ~ 150·C)
o
2N5345

Collector Cutoff Current
(VCB ~ Rated V CB ' IE ~ 0)

-

ICBO

-

lEBO

/lAdc
100
1.0

mAdc

1.0
mAdc

-

0.1

-

0.1

25

100

7.0

-

,

Emitter Cutoff Current
(VBE ~ 5.0 Vdc, IC ~ 0)

Vdc

•

mAde

ON CHARACTERISTICS
8

DC Current Gain 111
(IC ~ 500 mAdc, V CE ~ 5.0 Vdc)
(IC ~ 1. 0 Adc, V CE ~ 5.0 Vdc)

9, 11, 13

Collector-Emitter Saturation Voltage
(IC ~ 1. 0 Adc, IB ~ O. 2 Adc)

Vdc

VCE(sat)

-

3.0

VBE(sat)

-

1.5

60

200

11, 13

Base-Emitter Saturation Voltage
(IC ~ 1.0 Adc, IB ~ 0.2 Adc)

-

hFE

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC ~ 100 mAdc, V CE ~ 20 Vdc, f
Output Capacitance
(V CB ~ 10 Vdc, ~

~

~

10 MHz)

MHz

-

fT

7

Cob

-

td

-

100

ns

-

100

ns

600

ns

100

ns

0)

pF

SWITCHING CHARACTERISTICS
Delay Time

(V CC ~ 100 Vdc, VBE(off) ~ O. 85 Vdc,

2,3

Rise Time

IC ~ 500 mAde, IB1 ~ 50 mAdc)

2,3

tr

2,6

ts

2,6

tf

Storage Time (VCC
Fall Time
(I)

~

100 Vdc, IC

~

500 mAdc,

IBI ~ IB2 ~ 50 mAdc)

Pulse Test: Pulse Width", 3.00 /la, Duty Cycle", 2.0%.

FIGURE 2 -

I

SW'~ ';HING

VBB
+18.2 V

10V

1

~ __ -20V

5.0 I'F

INPUTPULSE

tr, tf:s:5.0ns
PU LSE WIDTH = 1.0 1"
DUTY CYCLE = 2.0%

TIME TEST CIRCUIT

200

FIGURE 3 - TURN-ON TIME
1000
700

VCC
-100 V
200

300
200

SCOPE

ICIIB = 10
TJ 25 DC

500

~
w

'"

;:

........

t,@VCC=100V

......

100

~

r- t:--......

t,@VCC-30V

~

70
50

70
td@VOB=0.B5V

30
20

II

10
0.05 0.07

0.1

0.2

0.3

IC. COLLECTOR CURRENT (AMP)

4-129

0.5

0.7

1.0

2N5344, 2N5345
FIGURE 4 - THERMAL RESPONSE

8JC(I) = r!l) 8JC
8JC = 4.3BoCIW Max

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT II
TJ(pk) - TC = P(pk) BJC(I)

•

0.01

0.02 0.03

0.05

0.1

0.2

0.3

0.5

2.0

1.0

I.

3.0

5.0

10

20

3D

50

100

200 300

500

1000

TIME (m,)

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
1.0
0.7
0.5
Q,

:;;

5
f-

~

'":::>
'"
'"

"

0.3

\

"

0.2

"-

0.1

'\.

0

~ 0.07

There are two limitations on the power handling ability of a

100llS

transistor:

\
5.om~·Oms\

:j 0.05

"

sistor that must be observed for reliable operation; i.e., the tran·

sistor must not be subjected to greater dissipation than the curves
indicate.
The data of Figure 5 is based on TJ(pk) = 200 o C; T C is variable depending on conditions. Pulse curves are valid for duty
cycles of 10% provided TJ(pk) ,; 2000 C. TJ(pk) may be calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by secondary breakdown.

'\.

0.03 I-- TJ = 200°C
-SECONOARY BREAKOOWN LIMITATION
0.02 f-- PULSE OUTY CYCLE ";10%
2N5344 ~
~urves apply below
2N5345, rated VCEO.'
0.01
20
70
3D
40 50
100
200

H

"-

'\ :\

II

junction temperature and secondary breakdown.

Safe operating area curves indicate IC-VCE limits of the tran-

de

2
~

\

\

1\

I"
~

300

400

VCE. COLLECTOR-EMITTER VOLTAGE (VOLTS)

FIGURE 6 - TURN·OFF TIME

FIGURE 7 - CAPACITANCES

1000

1000

700

300
200

r-

-.;:;:
.......

...... r---

......

]:

--

70

--

500

r-...

Cib

300

t--.

TJ = 25°C
~

I'--.

"r---.....

w

:;; 100

;::

TJ = 25°C

I~

500

200

r-

~~

,--!!@VCC= 100 V

I"-t--.

Cob

If@VCC=30V

50

,

3D
20

3D
IBI = IB2
Ic/lB = 10
1,=1,-1/8 If

20

10

10
0.05 0.07

0.1

0.2

0.3

0.5

0.7

1.0

Ie. COLLECTOR CURRENT (AMP)

0.1

0.2 0.3 0.5

1.0

2.0 3.0

5.0

10

VR• REVERSE VOLTAGE (VOLTS)

4-130

20 30

50

100

2N5344, 2N5345

TYPICAL DC CHARACTERISTICS
FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 8 - DC CURRENT GAIN
300

1.0

i- TJ = 175°C

-

200

z

100 r--

«

....'"z

l:!
a:

......c
:>

~

w

0.8

;'"
0

>

a:
w

30

O.B

t::

20

----

10

VCP 10 V
VCE = 1.0 V

1\

IC= lOrnA

~

0.4

~...

0.2

\

0

0

\

>

r--.

2.0 3.0 5.0

10

20 30

50

100

o

200 300 500 1000

0.1

0.2 0.3 0.5

1.0

108

~

a:
a:

,.~

~

"' "'

V~E-30~

....... r-...... ......

106

=

I--

w

......

"'
"'

~

"'

,.......

VSE@VCE

0.2

-

I

/

t:i +2.0

~

,g +1.5
I

~

f5

/

ffi
a:
a:

~

j

0

10-7

...c

=
r-,

REVERSE

~ 10-B
10-9

VCE=30V

== 1= 100 t _ ::;:: ICFS

=

I

VCE(sat)@ IcllB = 10

2.0 3.0 5.0

0.2

= -,
=FORWARO,/
0.2

50

200300 500 1000

+1.0

r- 1T~ 2-5150IClt~ W50d
I j 11111111

<:;
~ +0.5

1111 1111
'eVC for VCElsat)

2
w

~ -1.0

0.3

100

'APPLIES FOR Ic/IS:ohFE/2

~

-1.5

i

-2.0

0.4

0.5

O.B

0.7

VBE. SASE·EMITTER VOLTAGE (VOLTS)

-

eVB for VSElsa.)

II II

-2.5
0.1

20 30

:;:

1-

0.1

10

§ -0.5

f-+ 25°C
0.3

1.0 ~

FIGURE 13 - TEMPERATURE COEFFICIENTS
+2.5

_ 10-4

aa: 10-6

t-:

IC. COLLECTOR CURRENT (rnA)

FIGURE 12 - COLLECTOR CUT-OFF REGION

~

t:;:::::--

I I Ic/lS - 5.0. -r
1.0

10-3

;: 10-5

io"

I--IV~E~sat) @, Iclis = 5.0 to 10

TJ. JUNCTION TEMPERATURE (OC)

TJ = 175°C

"ON" VOLTAGES

1111111

"'

_

100

Z

102

~

50

1"

w

III

20 30

~I 0.4

.......

IC = ICES .......

10

TJrn

O.B

~

105

~ 104
.....
«
z
ffi 103

-

~

~

IC = 10 ICES

:l:

a:

O.B

r--

o

IC = 2.0 ICES

5.0

1 ~ , .'-

0::

107

2.0 3.0

FIGURE 11 -

FIGURE 10 ..... EFFECTS OF BASE-EMITTER RESISTANCE

e

1.0

IS. BASE CURRENT (rnA)

IC. COLLECTOR CURRENT (rnA)

~

500mA

1\.

'-'

3.0
- 1.0

~

1\

150 rnA

w

5.0

i

1\

TJ = 25°C

0

r-- _ -55°C

50

1111

~
~

25°C

1.0

2.0 3.0 5.0

1111
10

20 30

50

100

IC. COLLECTOR CURRENT (rnA)

4-131

200 300 500 1000

•

2N5346
thru
2N5349
7 AMPERE

MEDIUM·POWER NPN SILICON TRANSISTORS
POWER TRANSISTORS
NPN SILICON

· .. designed for switching andwide·band amplifier applications.

= 1.2 Vdc

• Low Coliector·Emitter Saturation Voltage - VCE(sat)
(Max) @ IC = 7.0 Adc

• DC Current Gain Specified to 5 Amperes
• Excellent Safe Operating Area
• Packaged in the Compact, High Dissipation TO·59 Case

80-100 VOLTS
60 WATTS

• Isolated Collector Configuration
• Complementary to 2N6186 thru 2N6189

•

"MAXIMUM RATINGS
Symbol

2N5346
2N5347

2N534B
2N5349

VCEO

BO

100

Vdc

Coliector·Base Voltage

VCB

BO

100

Vdc

Emitter·Base Voltage

VEB
IC

6.0

Vdc

7.0

Adc

Base Current

IB

1.0

Adc

Total Devies Dissipatlon@TC= 2SoC
Derate above 250 C

Po

60

TJ, Tstg

343
-65 to +200

Watts
mWtDC

Svmbol

Max

BJC

2.91

Rating
Collector· Emitter Voltage

Collector Current - Continuous

Operating and Storage Junction

Unit

STYlE 1:
PIN 1. EMITTER
2.8ASE

3. COLLECTOR

°c

Temperature Range

THERMAL CHARACTERISTICS

I

Characteristic

Thermal Resistance, Junction to Case

I

I

Unit
°CIW

*lndlcatBl JEOEC Registered Data.

DIM

FIGURE 1 - POWER·TEMPERATURE DERATING CURVE
60

i'!

~z

"" "-

50,
40

i'--.
.............

0

;::

::
~

30

'"

20

~

10

~

0

r--... .......

~
-.............. t-.....

0

20

40

60

BO·

lDO

120

140

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

8
C

""

160

TC. CASE TEMPERATURE ,oCI
SIt. A,.. Curves art indlclitld by F..... S. Allllm!ts.,.IPPI . . . . .nd must be ot.rved.

4-132

'"

180

10.77 11.10 0.424 0.437
8.13 11.89 0.320 0.468
E
2.29 3.81 0.090 0.150
G
4.70 5.46 0.185 0.215
H
1.98
0.078
J 10.16 11.56 0.400 0.455
K 14.48 19.38 0.570 0.7G3
2.29 2.79 0.090 0.110
L
6.35
N
0.250
P
4.14 4.80 0.163 0.189
Q
1.02 1.65 0.040 0.065
R
8.08 9.65 0.318 0.380
4.212 4.310 0.1658 0.1697
S
9.65 11.10 0.380 0.437
T
All JEDEC dimenSions and notes apply
Collector isolated from CIII.

200

CASE 160-03
TO·59

2N5346 thru 2N5349

-ELECTRICAL CHARACTERISTICS (Tc = 25°C, unless otherwise noted)

I

I

Characteristic

Fig. No.

Symbol

-

VCEO(sus)

Min

Max

80
100

-

-

100
100

-

10
10

Unit

OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage (1)

(lC = 50 mAde, IB = 0)

-

Collector Cutoff Current
(VCE = 75 Vde. IB = 0)
(VCE = 90 Vdc, IB = 0)
= 75 Vde,
= 90 Vde,
= 75 Vde,
= 150°C)
= 90 Vdc,
= 150°C)

"Ade

-

12

"Ade

ICEX

2N5346,2N5347
2N5348. 2N5349

VEB(off) = 1.5 Vdc)
VEB(oll) = 1.5 Vdc)
VEBloff) = 1.5 Vde,

-

ICED

2N5346,2N5347
2N5348. 2N5349

Collector Cutoff Current

(VCE
(VCE
(VCE
TC
(VCE
TC

Vdc

2N5346,2N5347
2N5348, 2N5349

2N5346,2N5347
VEB(ofl) = 1.5 Vdc,
2N5348,2N5349

Collector Cutoff Current
NC8 = Rated VCB, IE = 0)
Emitter Cutoff Current
(VEB = 6.0 Vdc,IC = 0)

.ICBO

-

1.0

-

1.0

-

10

-

100

mAdc

•

"Ade
"Ade

lEaD

ON CHARACTERISTICS (1)
8

DC Current Gain
(lC = 500 mAde, VCE = 2.0 Vde)
(lC = 2.0 Ade, VCE

= 2.0 Vde)

(lC = 5.0 Adc, V CE

= 2.0 Vdc)

hFE

2N5346, 2N5348
2N5347.2N5349
2N5346, 2N5348
2N5347,2N5349
2N5346,2N5348
2N534 7. 2N5349

Collector·Emitter Saturation Voltage
(lc = 2.0 Adc, IB = 0.2 Ade)
(lC = 7.0 Adc, IB = 0.7 Ade)
Base-Emitter Saturation Voltage
(lC = 2.0 Ade, la = 0'.2 Adc)
(lC = 7.0 Adc, IB = 0.7 Adc)

9,11,13

VCE(sat)

-

120
240

-

Vdc

-

0.7
1.2

-

11,13

-

-

30
60
30
60
20
40

Vde

VBEIsad

-

-

1.2
2.0

30

-

-

250

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(lC = 500 mAde, VeE = 10 Vde, 1= 10 MHz)

Output Capacitance
(VCB - 10 Vdc,IE = 0, f = 100 kHz)
Input Capacitance
(VaE = 2.0 Vdc, IC = 0, f = tOO kHz)

-

IT

7

Cob

7

MHz
pF

Cib

SWITCHING CHARACTERISTICS
Delay Time
Rise Time
Storage Time
Fa" Time

=3.0 Vdc,
= 2.0 Adc, lal = 200 mAdc)
(VCC =40 Vdc, IC = 2.0 Adc,
lal = la2 = 200 mAde)
(VCC = 40 Vde, VEB(off)

2,3

Id

(lC

tr
2,6

pF

-

1,000
100

-

ts

ns

100

ns

2.0

/IS
ns

200

tf

"IndIcates JEDEC RegIStered Data. 11) Pulse Test: Pulse WIdth .. 300 /IS, Duty Cycle" 2.0%.
FIGURE 3 - TURN'()N TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

rL+
l-IO~$-l
INPUT PULSE
tr.lf c:l0 ns
D.C. = 1.0%

,".6 V

10

Vee
+40 V

5.0

37V

2.0

25 ~F

T

:i
w

82

0.5
1,@lVce=20V

::E

;:: 0.2
0.1

lN914

·2.3 V

0.05
0.02

-=

==

0.0 1
0.01

4-133

IcJI8 =10
TJ"250 C

Id @I VEBloH) • 6.0 V

"OIl

1.0

20

62

OV

tl~veei80~

........

,

........
f""IIo

Id@VEBloH) = 4.0 V

0.02

........
0.05

O.~
1.0
2.0
0.1
0.2
IC. COLLECTOR CURRENT lAMPS)

5.0

10

2N5346 thru 2N5349

FIGURE 4 - THERMAL RESPONSE

0

~-D'0.5
3

-0.2

2
-0.1

~ruL

'=0.05

1...

1

5- 0.02

t~
12

i>c

I- ~0.01

2~ SINGLE PULSE
I II I

0.0 I
0.01

•

.

0.02 0.03

SINGLE
PULSE

DUTY CYCLE. 0 =II1t2

0.05

0.1

III
0.2

0.3

0.5

1.0

2.0 .3.0
5.0
I. TIME (ms)

10

20

30

50

9JC(t) • r(tl9JC
9JC = 2.BI·CIW Max
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATII
TJ(pk) - TC =P(pk) 9JC(tI

1 11

100

200 300

500

1000

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA

'O!~~1i1i~~iii!~~~'~Ii.~!~iI!i'iOOi~i'lil

~

a

2~·

0:

=

8

~

area curves indicate Ie -

1.0ms
5.0n

,0
.5

;-~

~"l.

There are two limitations on the power handling ability of a transistor: junction temper.
ture and secondary breakdown. Safe operating

• I-- -

- -

TJo200oc
SECONDARY BREAKDOWN LlMITEO+...,l'..!:'-Io."..Ht
_ _ de

- BONDING WIRE LIMITED

. I § - - - - - THERMALLYL1MITED
0.05
CURVES APPLY BELOW
0.02
RATED VCED

:5;s~~~~~~~~~L~~._

~~~~$II

t-

-r

VCE. COLLECTOR·EMITTER'VOLTAGE (VOLTS)

FIGURE 6 - TURN-OFF TIME'

FIGURE 7 - CAPACITANCE versus VOLTAGE

1u

1000

1.0

5.0
3.0
2.0

I,

I-

1.0

1 ~:s

1

II.VCC-BOV

o.3
.,., o.21-~

O. 1
0.01
0.05
0.03
0.02
0.01
0.01

VeE limits of the

transistor that must be observed for reliable
operation; i.e .• the transistor must not be subjected to greater dissipation than the curves
indicate.
The data of Figure 5 is based or, T Jlpk) =
200°C; TC is variable depending on conditions.
Pulse curves are valid for duty cycles of 10%
provided TJ(pk)<2OOoC. TJ(pk) may be calculated from th, data in Figure 4. At high ca..
temperatures. thermal limitations will reduce
the power that can be handled to values less
than the limitations imposed by secondary.
breakdown.

r-I,.VCc-20V

-

IBI = IB2
Ic/IB-IO
TJ-250 C

-

700

... 500

.e

~300

i

...

~

200

-

r-

TJ-*
Cib

r-

.........

100

r--

0
G.02

0.05

0.1

0.2

I.G
2.0
IC. COLLECTOR CURRENT (AMPS)
0.5

5.0

50
1.0

10

Cob
2.0

J.o

5.0 7.0

10

2G

3D

VR. REVERSE VOLTAGE (VOLTS)

4-134

50 70 100

2N5346 thru 2N5349

FIGURE 8 - DC CURRENT GAIN
1000
700
SOD

-

z 300

;;:

'"

200

r

100

~ I=- "'fsrc
r-

I-

~
'"
B
c'"

;

70
50

..

-

TJ -175°C

FIGURE 9 - COLLECTOR SATURATION REGION

~

VCE - 2.0 V
-VCE 10V

Q

~

w

'"

III
III

I.S
1.6

IC'100mA

'"

'"w

II-

1.0

'"'"

0.6

~

~8

30
20
0.020.03 0.05

0.1

0.2 0.3 O.S

1.0

2.0 3.0 5.0 7.0

1111
1111

III
III

1.0A

3.0 A
TJ'250C-

1\

O.S

0.4

~ 0.2

>

10
0.0070.01

I
I

!:; 1.4
Q
> 1.2

_55°C

"'-

2.0

0
0.5

-

i'
1.0

2.0 3.0

5.0

10

IC. COLLECTOR CURRENT lAMPS)

0.9

VCE'30 V -

O.S

IC'10 X ICES
6

r-....

==

o

0.7

~
o

0.6

~

20

40

60

......

O.5 -

~

0.4

......

Ja~ ~ vlc~ ~ 1z'.Jv

TJ-250C

O. 2
VCE(..,)@IC/la· 10

120

140

160

ISO

200

0.01

0.02 0.03 0.05

TJ.JUNCTION TEMPERATURE IDC)

0.1

'"

I-"
0.2 0.3 0.5

1.0

2.0 3.0 5.0

10

IC. COLLECTOR CURRENT (AMPS)

FIGURE 12 - COLLECTOR CUT-OFF REGION

FIGURE 13 - TEMPERATURE COEFFICIENTS

10-3

t5.0
VCE -3D V

'"

~ +4.0

-

~ +3.0 Iffi +2.0

TJ -175DC

I 1111111

100°C

8
w
g;

I

~REV~RSE

~

FORWARD

l-

i

t=:t: 25°C
-0.2

illl I
I kUa

-1.0

nI'

III

fO~ V~~~t)

'"

S
-2.0
ll!

IC' ICE

-0.4

II

i )8~C fO~ V~E(m )

$ +1.0

-

I

.J.

Ic /l a· l o'.!.ll .
I
TJ' -55°C to +1750C

<:;

10-9

~

II I 111111

.lJ.-.I..l-H±!:

0.3

O.1 100

200 300 500

I""

o
SO

100

II II IIII

- V~~I!tl ~ II~/~~ ~11O

~

'">

IC'ICES

102

_

IC-2 X ICES

ITypicallCES Values
Obtained From Fig, 12~

50

FIGURE 11 - "ON" VOLTAGES
1.0

IDS

-

20 30

la. BASE CURRENT (rnA)

FIGURE 10 - EFFECTS OF BASE EMITTER
RESISTANCE

=

.......

-3.0

-4.0

-5.0
0.2

0.4

0.6

0.8

0.01

1.0

VaE. BASE·EMITTERVOLTAGE IVOLTS)

0.020.03 0.05

0.1

0.2 0.3 0.5

1.0

IC. COLLECTOR CURRENT (AMPS)

4-135

2.0 3.0 5.0

10

•

2N5427
thru
2N5430
7 AMPERE

MEDIUM·POWER NPN SILICON TRANSISTORS

POWER TRANSISTORS
NPN SILICON
· .. designed for switching and wide· band amplifier applications.
Low Coliector·Emitter Saturation Voltage VCE(sat) =1.2 Vdc (Max) @ IC =7.0 Adc
• DC Current Gain Specified to 7 Amperes
• Excellent Safe Operating Area
• Packaged in the Compact TO·66 Case

•

•

80-100 VOLTS
40 WATTS

*MAXIMUM RATINGS
Rating

2N5427
2N5428
80
BO

Symbol

Collector-Emitter Voltage,

VCEO
VCB
VEB
IC

Coliector·Base Voltage
I:mitter·S ..e Voltage
Collector Current Continuous
B..e Current
Total Device Dissipatlon@Tc= 25u C
Derate above 25°C
Operating and Storage Junction
Temperature Range

2N5429
2N5430
100
100

Unit
Vdc
Vdc
Vdc
Adc
Adc
Watts
mWfOC
°c

6.0
7.0
1.0
40
228
-65 to +200

'B
PD
TJ. Tstg

THERMAL CHARACTERISTICS
Characteristic

Symbol

Thermal Resistance, Junction to Case

8JC

I
I

I

Max
4.37

---F--

Unit
10C/W

• Indicates JEDEC Registered Data

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE

STYLE 1:
5
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

0

0

........

r-.....

B
C

...... .........
........

0

..........
0

0
20

40

MILLIMETERS
MIN MAX
11.94 12.70
6.35 8.64
0
0.11 0.B6
E
1.21 1.91
F 24.33 24.43
G 4.B3 5.33
2.41 2.61
H
J 14.48 14.99
K 9.14
P
1.21
D 3.61
3.88
S
8.89
T
3.88
U
16.75

DIM

..........

60

80

100

120

r--....
140

r.........
160

TC. CASE TEMPERATURE caC)

r--.........

180

200

-

INCHES
MIN MAX
0.410 0.500
0.250 0.34D
0.028 0.034
0.050 0.015
0.958 0.962
0.190 0.210
0.095 0.105
0.510 0.590
0.360
0.060
0.1
0.1 2
0.350
0.145

-

All JEOEC 01.......... Ind Nalll~.
CASE IICJ.02
T0-66

4-136

2N5427 thru 2N5430

*ELECTRICAL CHARACTERISTICS ITC = 25 0 C, unless otherwise notedl

I

I

Characteristic

Fig. No.

Symbol

-

BVCEO(susl·

Min

Max

Unit

OFF CHARACTERISTICS
Colleetor·Emitter Sustaining Voltage (11
(lC = 50 mAde, IB = 01

2N5427, 2N5428
2N5429, 2N5430

80
100

Collector Cutoff Current

(VCE
(VCE

= 75 Vde, lB' = 01
=90 Vde, IB = 01
VEB(offl
VE8(offl
VEB(offl
VEB(offl

= 1.5 Vdel
= 1.5 Vdel
= 1.5 Vde,

ICE a

12

ICEX

(VCB

I'Ade
100
100

2N5427,2N5428
2N5429, 2N5430

-

10
10

2N5427, 2N5428

-

1.0

-

1.0

-

10

-

100

30
60
30
60
20
40

120
240

-

0.7
1.2

-

1.2
2.0

30

-

-

250

I'Ade

= 1.5 Vde,
2N5429, 2N5430

Collector Cutoff Current

-

Emitter Cutoff Current
(VBE = 6.0 Vde, IC = 01

mAde

•

I'Ade

ICBO

= Rated VCB, IE = 01

Vde

-

-

2N5427,2N5428
2N5429,2N543Q

Collector Cutoff Current

(VCE = 75 Vde,
(VCE = 90 Vde,
(VCE = 75 Vde,
TC = 1500 CI
(VCE = 90 Vde,
TC = 1500 CI

-

-

I'Ade

lEBO

ON CHARACTERISTICS (1)
8

DC Current Gain

(lC

= 500 mAde, VCE = 2.0 Vdel

(lC

= 2.0 Ade, VCE = 2.0 Vdel

IIC = 5.0 Ade, VCE

-

hFE·

2N5427, 2N5429
2N5428,2N5430
2N5427, 2N5429
2N5428, 2N5430
2N5427, 2N5429
2N5428,2N5430

= 2.0 Vdel

Coliector·Emitter Saturation Voltage
(lC = 2.0 Ade, IB = 0.2 Adel
(lC = 7.0 Ade, IB = 0.7 Adel

9,11,13

(lC = 2.0 Ade, IB = 0.2 Adel
(lC = 7.0 Ade, IB = 0.7 Adcl

-

Vde

VCE(satl·

11,13

Base-Emitter Saturation Voltage

-

Vde

VBE(sat)·

"

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 500 mAde, VCE = 10 Vde, I

= 10 MHzl

Output Capacitance

(VCB

IT

7

Cob

= 10 Vde,IE = 0, I = HID kHzl

Input Capacitance

(VBE

7

pF
pF

Cib

= 2.0 Vde, IC =0, I = 100 kHzl

MHz

-

1,000 .

SWITCHING CHARACTERISTICS
Delav Time
Rise Time

Storage Time

Fall Time

(VCC =40 Vdc, VE8(offl = 3.0 Vde,
(lC =2.0 Ade, IBl = 200 mAdel
(VCC = 40 Vde, IC =2.0 Ade,
IBl = IB2 = 200 mAdel

2,3

-

td
tr
t,
-tf

2,6

-

-

100
100
2.0
200

ns
ns
I'S
ns

"Ind,eates JEDEC RegIStered Data. (1 )Pulse Test: Pulse Width '" 3001'5, Duty Cycle'" 2.0%.
FIGURE 3 - TURN'()N TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
-11.6 V

Ii--- +31V
~
Lov
!-101lS-!
INPUTPUlSE
tr.

t,

~10ns

D.C." 1.0%

62

10

VCC
+40 V

5.0

1.0
251'F

T

82

tr~Vcei80lv

2.0 ""Iloo..

20
]

0.5

'"~

0.2

w

I....

tr@VCC=20V
0.1

lN914

le/ls'10
TJ=250e

td@VEB(oHI"6.0V

"

,..."

0.05
td Gil VEBloH) • 4.0 V

0.02

-3.3 V

0.0 1
0.01

4-137

0.02

0.05

0.2
0.5. 1.0
2.0
0.1
IC, COllECTOR CURRENT (AMPSI

5.0

10

2N5427 thru 2N5430

FIGURE 4 - THERMAL RESPONSE

.~
0;

z

=
""

U.I

.... u

1.0
0.7
0.5

O' 0.5

o. 3

0.2

wz

~~

w

u

:5

There are two limitations on the power han-

"

5.0 ms

dling abilityof a transistor: junctiontemperature

t:--

t-~

" f - t"i~

1.
f= TJ - 200 0 C
O. 5
Secondary Breakdown Limited
~ - - - - -Bonding Wire limited
/-o.2 - - - - Thermal Limitations
TC = 250 C
'Pulse Duty Cycle::::: 10%
1
Applicable For Rated BVCEO

f=

po.

~_ 0.0o.

and secondary breakdown. Safe operating area
curves Indicate IC-VCE limits of the transistor
thet must be observed for reliable operation;
i.e., the transistor must not be subjected to
greater dissipation than the curves indlcat•.
The data of Figure 5 is based on TJ(pk) =
2000C; TC is variable depending on conditions.
Pulse curvesar. valid for duty cvclesof 10% providedTJ(pk) ,; 2000C. TJ(pk) may be calculated
from the data in Figure 4. At high case temperatures, thermal limitations will reduce the
power that can b. handled to values I.ss than
the limitations imposed bV secondary break·
down.

lOOps

tOms

"i"
de

5
2N5427.28
2N5429.30

0.02
0.0 1
1.0

2.0

3.0

5.0 7.0

20

10

30

50

70 100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI

FIGURE 6 - TURN.oFF TIME
10
7.0
5.0
3.0
2. 0

lSI =IS2
IclIs= 10
TJ =250 C

I,

t-

~
j::

.:

~:75
o.3

D.2

O. 1
0.07
0.05
0.03
0.02

700
~
oS

......

1.0

j

FIGURE 7 - CAPACITANCE versus VOLTAGE
1000

TJ=250 CCib

w

~ 3110

tf PVCC=80V

~

~

r-- I-tffl!l VCC= 20 V

~

200

I'"

oS

i""- ...... 1'--0

100
0

0.0 1
0.01

~

5110

0.02

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

IC, COLLECTOR CURRENT (AMPS)

50
1.0

Cpb
2.0

3.0

5.0 7.0

10

20

30

VR, REVERSE VOLTAGE (VOLTS)

4-138

50 10 100

2N5427 thru 2N5430

FIGURE 8 - DC CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION

g 2.0
o



0
0.5

1.0

2.0 3.0

5.0

FIGURE 10 - EFFECTS OF BASE-EMITTER
RESISTANCE
O. 9

0.8 I-

IC -10 X ICES
_

-- - -

.......

~
o

-



0.3

o

---

(Typical ICES Values
Obtained From Fig. 121

::::::::::

I

I

40

6IJ

80

100

v' E'( I )~ ',',) I ~IIO
B Ii'

Ii

I I ~ II

120

140

I6IJ

180

200

0.01

TJ = 25°C

IC
VCE("')@iB=IO
0.02

0.05

~

VCe-30V -

~
Iffi

10-4
TJ-1750C

~ 10-5

t4.0
+3.0 ' +2.0

I IIIIIII

Ic/lB'I~III

$ +1.0

~

'w"'
g;

1000C

ut",1

~

!} 1~ [:!::.. REVERSE
I~

-0.4

~
~

FORWARO

l-

i

25°C

-0.2

0.2

0.4

0.5

1.0

2.0 3.0 5.0

10

0.6
VBE. BASE·EMITTER VOLTAGE (VOLTS)

0.8

/

0,

I

'~8 f;Vit~,) J

-1.0

I-"

-2.0

.-

-3.0
-4.0

-5.0
0.01

1.0

I

.1.1

I~JlflJ
I ~C
F~(f~

o

:;;,~

r-

0.2

TJ = -550C '0 +1750C
'IlL I I

U

'"=>
j
8

0.1

FIGURE 13 - TEMPERATURE COEFFICIENTS

+5.0

S

I-"

..-

IC. COLLECTOR CURRENT (AMPS)

FIGURE 12 - COLLECTOR CUT'()FF REGION

I-

~

l.J-.!.+±:I:I:!
J8~ ~ v'c~ U~.~ V

TJ. JUNCTION TEMPERATURE (OC)

~

200 300 500

111111

o
20

100

O.2
O. I I -

102

o

50

I.0

VCE -30N-

......

20 30

FIGURE 11 - "ON" VOLTAGES

._.

......

10

lB. BASE CURRENT (rnA)

IC. COLLECTOR CURRENT (AMPS)

108

.......

r-

......

0.02 0.03 0.05

~.I

0.2 0.3 0.5

1.0

IC. COLLECTOR CURRENT (AMPS)

4-139

2.0 3.0 5.0

10

•

2N5629,2N5630,,2N5631
2N6029,2N6030 J 2N6031

NPN
PNP

HIGH·VOLTAGE - HIGH POWER TRANSISTORS
16 AMPERE
· •. designed for use in high power audio amplifier applications and
high voltage switching regulator circuits.
•

•

•

POWER TRANSISTORS
COMPLEMENTARY SILICON

High Coliector·Emitter Sustaining Voltage VCEO(sus) = 100 Vdc - 2N5629. 2N6029
= 120 Vdc - 2N5630. 2N6030
= 140 Vdc - 2N5631. 2N6031

100-120-140 VOLTS
200 WATTS

High DC Current Gain - @ IC = 8.0 Adc
hFE - 25 (Min) - 2N5629 2N6029
= 20 (Min) - 2N5630. 2N6030
= 15 (Min) - 2N5631. 2N6031

-

•

Low Collector·Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 10 Adc

~

-MAXIMUM RATINGS

Rating

Symbol

Collector-E mltter Voltage
Collector-Base Voltage
Emitter-Base Voltage

2N5629 2N5630
2N6029 2N6030

2N5631
2N6031

Unit

VCEO

100

120

140

Vdc

VCB

100

120

140

Vdc

VEB

-7.0_

Vdc

IC

-16-20-

Adc

Base Current _. Continuous

18

-5.0-

Adc

Total Device Dissipation @ T C - 2SoC

Po

-200-

_1.14_

Watts
W/oC

·6510 +200

°c

Collector Current - Continuous
Peak

Derate above 25°C
Operating and Storage Junction
Temperature Range

T J. TSI9

lr~

~"
j

E SEATING
PLANE

I--F-

t--J-

,

-THERMAL CHARACTERISTICS

Characteristic

Symbol

Ma.

Unit

"JC

0.875

°C/W

Thermal Resistance. Junction to Case

OIA~

V

."

Z

~.- ~
10

-Indicates JE DEC Registered Data.

~

f

L

~

1L'

11

~1

FIGURE 1 - POWER DERATING
200

e

!z

........ i'..

150

"I'-..

0

;::

::
ill

STYLE I:
PIN 1. BASE
2•. EMITTER
CASE: COLLECTOR

"-

100

DIM

'r---...

A
B
C
0
E

~

C

'"
~

~

f 5D
~

F

""- ~

0
0

20

40

100 120
60
80
TC. TEMPERATURE (OCI

140

160

180 200

Safe Area Curves ara indicated bV Figure 5 All Limits are applicable and must be observed.

4-140

MILLIMETERS
MIN MAX

-

-

6.35
0.99

29.90
G 10.67
H 5.33
j
16.84
K 11.18
Q
3.84
R

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67

NOTE:
1. DIM "n"ls OIA.
INCHES
MIN
MAX

-

O. 0
0.039

-

1.177
0.420
0.210
0.655
0.440
0.151

-

Collector connected to CIIII.
CASE 11-01
(TO-31

1.550
0.830
0.300
0.043
0.135
1.197
o.~_

0.220
0.675
0.480
0.161
1.050

2N5629, 2N5630, 2N5631 NPN
2N6029, 2N6030, 2N6031 PNP
-ELECTRICAL CHARACTERISTICS

(Te = 25 0 e unless otherwise noted)

Characteristic

Symbol

Min

Max

100
120
140

-

-

'1.0
1.0
1.0

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)

VCEOlsus)

2N5629.2N6029
2N5630, 2N6030
2N5631, 2N6031

IIc = 200 mAde. 16 = 0)

Collector-Emitter Cutoff Current

mAde

ICED

2N5629, 2N6029
2N5630,2N6030
2N5631,2N6031

IVCE = 50 Vde, IB = 0)
IVCE = 60 Vde,IB = 0)
IVCE = 70 Vde,IB = 0)

-

Collector-Emitter Cutoff Current

ICEX

ICBO

-

lEBO

IVCE = Rated VCB, VEBloll) = 1.5 Vdc)
IVCE = Rated VCB. VEBlolt) = 1.5 Vdc, Tc = 150°C)
Collector-Base Cutoff Current

IVCB = Rated VCB, IE = 0)
Emitter-Base Cutoff Current

Vde

IVBE = 7.0 Vdc, IC = 0)

mAde

1.0
5.0
1.0

mAde

-

1.0

mAde

25
20
15
4.0

100
80
60

•

ON CHARACTERISTICS 11)
DC Current Gain

IIC = 8.0 Adc, VCE

IIc = 16 Ade, VCE = 2.0 Vdc)
Collector-Emitter Saturation Voltage
IIc = 10 Adc, IB = 1.0 Adc)

IIc = 16 Adc, IB

-

hFE

2N5629,2N6029
2N5630,2N6030
2N5631, 2N6031
All Types

= 2.0 Vdc)

VCEI.at)

VBElsa')

-

VSElon)

'T

All Types

= 4.0 Ade)

Base-Emitter Saturation Voltage

IIc = 10 Adc, IB = 1.0 Adc)
Base-Emitter On Voltage
IIC = 8.0 Adc, VCE = 2.0 Vde)

-

Vdc
1.0
2.0
1.S

Vdc

-

1.5

Vde

1.0

-

MHz

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
IIC = 1.0 Adc, VCE = 20 Vde, I test = 0.5 MHz)

Output Capacitance
IVCB = 10 Vdc, IE

=0, 1= 0.1

2N5629, 30, 31
2N6029, 30, 31

MHz)

Small-Signal Current Gain
IIC = 4.0 Adc, VCE = 10 Vdc, I = 1.0 kHz)

Cob

-

hIe

15

500
1000

pF

-

-

r

Indicates JEDEC Registered Data.
(1) Pulse Test: Pulse Width :S;;;;300 ,",S, Dutv Cycle ~2.0%.
(2) fT = Ihf.1 • f te • t

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - TURN-ON TIME
3.0

VCC
+30 V

I I

2.0

TJ·250C
ICIIB ·10
VCE· 30 V

I

1.0
SCOPE

RB

O. 1
-; O.5

.=.
~

51

I,

o.3

tr. t,::::10 ns

r-

Id --0.1

--

•

ill
0.05

0.1

~t2--1

,
0.2

I-

1.0

0.5

2.0

,

"'

5.0

10

I, TIME 1m,}

o CURVES APPLY FOR POWE~_
PULSE TRAIN SHOWN
READ TIME AT II
-~
f-TJlpk}- TC - Plpk} ~JCltI- I-

SINGLE
PULSE

11+---1

0.01
~IINGLE{UISE

0.0 1
0.02

t-

CYCLE. 0 -11112

p~nn

0.02

......-

2

~UTY

I- ~ :::::;::;

_d.os
;;;::;;;; F

5

~JC-OB75'C'WMaxlll~_

~Iiiii'

0.2

.1

-QJCII}- rldQJC

" "'11
50

20

100

200

500

1000

2000

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA

0

i

- -

-

l
,I

0

~

"'\I.
5,0';''}

1"'-1 r
l.O~Sm
I II

,,-50

0.5 ms

There are two limitations on the power handling ability of a

P'

d,

'" 7.0

transistor: average junction temperature, and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor

0
5.
TJ-200'C
""'"
3. oI----SECONO BREAKOOWN L1M,ITE~~~
01----OONOINGWIRE
LIMITED
~ 2.
I-- - - - -THERMALl Y LlMITEO@TC- 25'C

that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on T J(pk) = 200°C; T C is variable
depending on conditions. Second breakdown pulse limits are valid

_

'"o

~EO.::

, ! , , "'

1

oI==I=CURVES APPLY SELOW
71--15

I II
3.0

I .',

for duty cycles to 10% provided TJ(pk)';; 200°C. TJlpk) may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

RATED VCEO

o. 3
O. 2
2.0

i

2NSS29,2NS029
2N5S30,2NS030
2NSS31,2NSOll

~

5.0 7.0 10
20
30
SO 70 100
VeE, COLLECTOR·EMITTER VOLTAGE IVOLTS}

200

NPN
2N5629. 2N5630. 2N5631

PNP
2N6029. 2N6030. 2N6031

I
FIGURE 6 - TURN·OFF TIME

5.

Or-I-.

~

3,0

+-+--

...... Is

'" 1'"

0

4.0

TJ-25'C
ICIIS-IO' 101 -IS2
VCE-30V-

-..

3.0

2.0

.III
L
Tj"2SoC _
t.....

1.1-

i'..

:!
~

;::

V

r"-",

1.0

......

0,S

1'-

1.0
0,7

O. S
0.2

r0.3

o.4

If

....... t--

O. 3
0.5

0.7 1.0
2.0 3.0
5.0
IC, COLLECTOR CURRENT lAMP)

7,0

10

0, 2
0.2

20

4-142

0.3

101 -IS2
Ic/IO-1O V E-30V-

tf

5,0 7,0
0.5 0.7 1,0'
2.0 3.0
IC, COLLECTOR CURRENT lAMP)

V
10

20

2N5629, 2N5630, 2N5631 NPN
2N6029,2N6030,2N6031 PNP

NPN

PNP

I

2N5629, 2N5630, 2N5631

2N6029, 2N6030, 2N6031

FIGURE 7 - CAPACITANCE

11111

1000
70

2000 r-r-r-T.,..,..,-rr------r---r-r-~~rT"1""IITTTT"~

t 1~1215~~

......

Or-

TJ ~ 25°C

r-..... 1
r----..: ~b

0

f"--r-.

~ 100 0
w

"z

70 0

'"

I

>U

0

::
!'....

0

;") 50 0

u

Cob

r-..,

,

....... Cob

300
10 0
0.2

0.5

1.0

2.0
5.0
10
20
VR. REVERSE VOLTAGE (VOL TS)

50

100

Ir

I

200
0.2

200

"'1-.1

1

0.5

1.0

2.0
5.0
10
20
VR. REVERSE VOLTAGE (VOLTS)

100

50

200

FIGURE 8 - DC CURRENT GAIN

500
300
200

500

I-- TJ ~ 150°C

-

:-- t- ~I·

I--

I- ~

VCE~2.0V

I-

30

- - - - VCE ~ 10 V I--

20 0
;;0

"c
~

20

"

~ ~-

"

B5

"'~

30

~

);:0.

30

~
~

0

~

10
7.0
5.0
0.2

-

~ Hl 0i==-55 0 C
~ 70
0

"'

a'"'"

-

I=~OC

z

f-_ r:;~,

~ 100 ~-55°C
....z 70 I-- I-w
50

VCE ~ 2.0 V- I-- VCE ~ 10 V - I-

ot--TJ=+150
_ oC

"

0

0.3

0.5

0.7 1.0
2.0 3.0
5.0
IC. COLLECTOR CURRENT (AMP)

10

7.0
5.0
0.2

20

0.3

20 3.0
5.0 7.0
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

10

20

FIGURE 9 - COLLECTOR SATURATION REGION

0;

20

~

~

~

~
ffi

1.6

I
I

III
III

Icl.lt

t--

8 101

.0

II
II
It

TJ ~ 25°C
1. 6

.

1.2

~ o.8

o.8

8~ 0.4
~

>

l'-

.4

~

\

TJ ~ 25 0 C

116~

I.....

t-

I'
I\..

I"0
0.05 0.07

0
0.05 0.07 0.1

\

1\

1\

::

1\

~.o 1

I'

1. 2

,.

II III
,d ~)4.h)A

0.2

0.3
0.5 0.7 1.0
18. 8ASE CURRENT lAMP)

2.0

3.0

5.0

4-143

0.1

0.2

0.3
0.5 0.7 1.0
lB. BASE CURRENT lAMP)

2.0

3.0

5.0

•

2N5629,2N5630,2N5631 NPN
2N6029, 2N6030, 2N6031 PNP

I

NP,,",
2N5629,2N5630,2N5631

PNP
2N6029, 2N6030, 2N6031

FIGURE 10 - ON VOLTAGES

2. 0

2.0

HJjo~

II

6

~oo~
~

/

1.2

~
2:

O.S

'"
~

I-

c5

J.

1.2

O. 4

00

./

~BE i VfE I· t~ ~ I

:>

•

1;:::=:::-

VIBEI"')@ ICIIB· 10

>

>
>'

VBEI",)@ICIIB·IO

OB

O. 4

0.3

0.2

20

2.0 3.0
5.0 7.0 10
0.5 0.7 1.0
IC. COLLECTOR CURRENT lAMP)

-

~IVCUtlIJI~t 10

o

0.2

/

VBE@VCE-2.0V

JCEIL) llUB 1.11&

o

://
I
/

-

w

w

'"'"

t.!50~

I. 6

0.3

i-'

0.5 0.7 1.0
2.0 3.0
5.0 7.0
IC. COLLECTOR CURRENT lAMP)

10

20

FIGURE 11 - TEMPERATURE COEFFICIENTS

I[ +4.0 rt---'A"'P-PI-iesrf'orrIC"','IB,

0.1

'"'
'"'"'

I

0.3

~

........

I

0.2

25'C

VCE· 2.0 V

......

to

'"

10

t::::Tj.l~'C

;;:

-55'C

0

II

=

z

25°C
100

20 0

I

200

i1'l
~

Tj·15O'C

~

100

8or- r-

-550 C

0

........

40

......
~

0
0.5

1.0

2.0

3.0

5.0

20
0.1

10

lC. COLLECTOR CURRENT (AMP)

f',
0.2

0.3

0.5

1.0

2.0

3.0

IC. COLLECTOR CURRENT (AMP)

4-149

5.0

10

2N5632,2N5633,2N5634
2N6229,2N6230,2N6231

NPN
PNP

NPN
2N5632,2N5633,2N5634

PNP
2N6229,2N6230,2N6231

I

FIGURE 9 - COLLECTOR SATURATION REGION

i
~

2.0 f-

Ilc~U~1-

_
~.

1.61-+H+l-l+H---Ht--I+l-l+H--+-t-t--I+lff+H----l

~
ffi

o

1.21-+H+l-l+H---HIt--t+lH+H---t-t-t--I+lH+H----l

~
11:
.c
o.al-++l+1...wft--HH+lrttft-++--H+I-l'I:ft--l
8

\

0.4

2.0A

~

1. 2

.c

0.8

_

0.4

~

r--

t-tttttttt--:t-tyHittt--'F:;;j;:t:t:ttI:lJi

lOA

5.0 A

,

::

\

-

,

~

8

O.~~~~~~~~~~~
2.0
5.0
10
20
50
100 200
500 1000 2000

II

1

II

I - 0.5 A

~ .1. 6

~

~

ITJ-250C

o

o

~

2.0

~

112.JAI

~

r-

0
2.0

.>

5.0

10

20

la. aASE CURRENT (rnA)

50

100

500

200

1000 2000

la. aASE CURRENT (rnA)

FIGURE 10 - "ON" VOLTAGES
1.4

1.4

I

1.H-- I- TJ - 250C

~

2

V

1.0

VaE(",)@' lelia - 10

o. a

o

>~

>

_

.......

~
w

~

VfE(j'),@ 1'~"la,-1O

O.2

VBE(sa!)@lclla- 10

o.a

~I""'"

VBE@VCE - 2.0 V

J.l ..1

:> 0.4

V

l - I--'"

VCE(,,!)@ICIIB - ~

O.2

II
0.2

0.3

0.5

1.0

2.0

3.0

5.0

10

L.

0.6

~

L I III

o.4

1.0

~
o

v~Ulv

o.G

0
0.1

I--'"

..J:.-H-t:I:I:.

w

'"~

t-- TJ - 250C
I

1.2

0.2

0.1

0.3

lC. COLLECTOR CURRENT (AMP)

0.5

~

I""'"

I

J.l

2.0

1.0

3.0

5.0

10

IC. COLLECTOR CURRENT (AMP)

FIGURE 11 - TEMPERATURE COEFFICIENTS
2.5

~

2.0

.§

1.5

>

~

ffi

"A~plie~fo~ "lis. ~h~EI2

Iii

1.0

0.5

-0.5

~

}V~ J.! VBE

-1.0

+'250 Cto

~

-1.5

-2.0
, -2.5
0.1

i j'

~

i:5

...... ~

IIII

w

i

>

<3

~

-550C to +250C

~t5~OC

0.5

1.0

2.0

3.0

5.0

o. 5

~
"eVC for VCE(,,')

~-l.0

V
~~ -I--"

+~50b ,~ +15~od

1\

8
w
g; -0.5 - I-Ufo~VaE

-550C 10 +25 0C
TJ-+25 0CI0 150 0C

=_i"'"

~-1. 5

....

~ -2. 5
0.1

10

IC. COLLECTOR CURRENT (AMP)

11 "..
~1
1_55!C 10 +250C

1 lll..ll

>-2. 0

I
0.3

TJ -

1. 0

0

i 550?'o,+2,5O f
0.2

'APPLIES FOR
2.0 ICII~ < hFEI2

E 1. 5

TJ = +250 Cto +TSOnC

8
~

~

.~JJ for V~E( ..lt)

<3

ffi

2. 5

II

II
0.2

0.3

0.5

1.0

2.0

3.0

IC. COLLECTOR CURRENT (AMP)

4-150

5.0

10

2N5632,2N5633,2N5634 NPN
2N6229,2N6230,2N6231 PNP
NPN
2N5632.2N5633.2N5634

PNP
2N6229. 2N6230. 2N6231

FIGURE 12. - COLLECTOR CUTOFF REGION
104

1000
r-VCE 'SOV

10 3

~

....

102

11-- TJ -ISO'C
10

100'e- -I2S'C-

r--

~

~

~

10

100
10. 1 f--

10- 2
-0.4

G

:5

~8

0

8

100

....

!
'"

~
.3,

REVERSE

-0.2

-0.1

+0.1

+0.2

+0.3

+[J.4

=TJ' 150'C

-

-lOo'e

Ie • ICES

o. 1
Vee-SOV-

FORWARD

25"C

0.0 I

=:REVERSE
0.00 1~
'0.4 +0.3 +0.2 +0.1

IC ·ICES

-0.3

1.0

=

+0.5

iO.6

VBE. BASE·EMITTER VOLTAGE IVOLTS)'

FDRWARDF
-0.1

-0.2

-0.3

-0.4

-0.5 -0.6

VBE. BASE·EMITTER VOLTAGE IVOLTS)

FIGURE 13 - EFFECTS OF BASE-EMITTER RESISTANCE
10 7

106

'"
~

VCP50V

""

r-.... ,......

:iii)

w::
"''''

~~
-,0

.......

~

~

'"

" "'-

.....

......

I,

S.leES

105

«z
z« 104

....ffi~
x'"
w'"

-

.......

Ie 'ICES
103 (TYPICAL:ICES:VALUES
OBTAINfD FrOM IFIG~RE
40

60

.....

.......

2.ICES

I"-.

.......

..........

-

y)
80

==
100

120

140

10 2
20

160

TJ.JUNeTiON TEMPERATURE 10C)

.......

.......

~lOlfES

IC~~

(TYPICAL ICES VALUES
OBTAmED FROM
FIGURE 12)

_

IC~ICES~
40

60

80

100

120

TJ. JUNCTION TEMPERATURE lOCI

4-151

-,.....

-......

140

160

•

2N,56'S'S, ,2N5656, 2N5657

(SILICON)

PLASTIC NPN SILICON HIGH-VOLTAGE
POWER TRANSISTOR

0.5 AMPERE

, , . designed for use in line·operated equipment such as audio output
amplifiers; low·current, high-voltage converters; and AC line relays

POWER TRANSISTORS
NPN SILICON

• Excellent DC Current Gain - hFE = 30-250 @ IC = 100 mAdc
• Current-Gain - Bandwidth Product 1,- = 10 MHz (Min) @ IC = 50 mAdc

250-300-350 VOLTS
20 WATTS

• Packaged in Thermopad Case for Low Cost

•

*MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

2N5655 2N5656
250

VCEO

Coliector·Base Voltage

VCB

Emitter-Base Voltage
Collector Current - Continuous

VEB
IC

Peak

Base Current

IB

'Total Power Dissipation@Tc=250 C
Derate above 250 C

Po

Operating and Storage Junction
Temperature Range

12N5657

Unit

350

Vdc

275
375
325
_6.0 ___

Vdc

-0.5'-----'.0 _
_
0,25 _ _ _

Adc

20

Watts
wf'c

300

OJli
-65 to +150

TJ, T stg

Vdc

Adc

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

6.25

·'ndicatesJEDEC Registered Data

~H

K

I--D

L--lLJ

FIGURE 1 - POWER DERATING
40

~

t-

~

S

G1J

30

z
0

~

ill

20

c

~rl-t
M~

. . . r-r-- r-....

0:

~

0

10

,po
0
2Ii

-

r-.....

"-

75

IG

r-..... ......

1l1li

1~

llG

TC. CASE TEMPERATURE C·CI
FIGURE 2 - SUSTAINING VOLTAGE TEST CIRCUIT
10m'

;dIT

J
y

UV

,~

..

y

-

... '1'
"

MILLIMETERS
INCHES
DIM MIN MAX
MIN MAX
A 10.80 11.05 0.42
0.435
B 7.49 7.75
I 0.305
2.41 ,2.67
C
I 0,105
0,66
D
0.51
I 0.026
F
2.92
3,lB
I 0.125
2,46
G
2.31
1 0.097
2,41
H
1.27
1 0.095
0.64
J
0.38
I 0,025
K 15.11 16.64
~
M
3 TYP
n 3.76 4.01
1 0. 158
1,14
1,40
R
1 0.055
S
0.64
0.89
1 0.035
U
3.68 3.94
I 0.~5
V
1.02
'---

rh.-

,x

TDSCOPE

STYLE 1
PIN 1. EMITTER
2. COLLECTO R
3. BASE

.

IOVT

CAsen.o4
TO-12S

Y
u

Sat. Area Limits .... Indlcat.d by FI ....... 30nd 4. Both limits.,. oppll_l••nd muot be Db..". .

4-152

2N5655,2N5656,2N5657
"ELECTRICAL CHARACTERISTICS (TC

= 25°C unless otherwise noted)

Characteristic

Symbol

Min

Max

250
300
350

-

250
300
350

-

-

0.1

-

0,1

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage
lie = 100 mAde (inductive), L ::: 50 mHI

Vde

VCEOlsusl
2N5655
2N5656
2N5657

Collector-Emitter Breakdown Voltage

Vde

BVCEO

(lC' 1.0 mAde, la • 0)

2N5655
2N5656
2N5657

Collector Cutoff Current

ICED

IVCE' 150 Vde, IB • 0)

2N5655

IVCE' 200 Vde, IB • 0)

2N5656

IVCE' 250 Vde, IB • 0)

2N5657

Collector Cutoff Current

ICEX

mAde

0.1

mAde

IVCE' 250 Vde, VEBloll) • 1,5 Vde)

2N5655

-

0.1

IVCE • 300 Vde, VEBloff) • 1.5 Vde)

2N5656

-

0.1
0.1

IVCE • 350 Vde, VEBloffi' 1.5 Vde)

2N5657

IVCE' 150 Vde, VEBloffl' 1.5 Vde, TC '100"CI
IVCE • 200 Vde, VEBloll1 • 1.5 Vde, TC ·100 o CI

2N5655
2N5656

-

IVCE' 250 Vde, VEBloff) • 1.5 Vde, TC' l00 0 CI

2N5657

-

1.0

-

10
10

Collector Cutoff Current

ICBO

IVCB • 275 Vde, IE • 01

2N5655

IVCB = 325 Vde, IE = 01

2N5656

-

IVCB' 375 Vde, IE • 01

2N5657

-

Emitter Cutoff Current

1.0
1.0

j.lAdc

10
10

lEBO

IVEB = 6.0 Vde, IC • 01

"Adc

ON CHARACTERISTICS

DC Current Gain (1)
(lC = 50 mAde, VCE • 10 Vde)

hFE

lie'" 100 mAde, VeE = 10 Vdc)

25
30

(lc' 250 mAde, VCE • 10 Vdel

15

(lc • 500 mAde, VCE • 10 Vdel

250

5.0

Collector·E rnltter Saturation Voltage (11
'fie = 100 mAde, IS '" 10 mAde)

Vde

VCElsat)
1.0

lie'" 250 mAde, '8'" 25 mAdel.

2,5
10

(Ie:: 500 mAde, 'S "" 100 mAdel .

Base-Emitter Voltage (11
(lC' 100 mAde, VCE • 10 Vdel

1.0

VBE

Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(Ie'" 50 mAde, VeE = 10 Vdc, f '" 10 MHz)

IT

Output Capacitance

10

MHz
25

Cob

pF

IVCB' 10 Vde, IE • 0, I ' 100 kHz)
Small-Signal Current Gain

hi.

20

IIC' 100 mAde, VCE • 10 Vde, I ' 1.0 kHzl
-IndIcates JEDEC RegIstered Data for 2N5655 Se,.es
(1) Pulse Test: Pulse WIdth'S 300 j.lS, Duty Cycle~ 2.0%.
(2) fT is defined as the frequency at which /hfel extrapolates to unIty.

FIGURE 3 - ACTIVE·REGION SAFE OPERATING AREA
1.0

10 •• -

~ 0, 5

...

s

ffi

o. 2>--

a

o. 1

0:
0:

0:

o

t;

3 0.05 _
8
... - 0,02

-

"\.

fl

Second Breakdown limit
- - Thermal limit @TC ::: 250 C
- Bonding Wire limit
CUi aPjlY bjl"j

30

40

60

'\.

"\

'\.
-

II
100

1.0ms

r-r-

2N5655
2N5656
2N5657

Th.f. are two limitations on the power handling ability of •
transistor: av.rag. junction t.mperatur. and second b.-eakdown.
Safe op.rating area curves indicate Ie - VCE limits of the transistor
that must be observed for rellableop.ration; i. •.• the transiltor must
not be subjected to groator dissipation than the curves indicate.

The data of Figure 3 is based on T J(pk) = 150°C; T C is

'\

variable depending on conditions. Second breakdown pulse limits
are valid for duty cycles to 10% provided T J(pk)S150 0 C. At high
case temperatures. thermal limitations will reduce the power that
can be handled to values 1011 then the limitations imposed by second
bre.kdown.

~de

'j"j iCEO

0,0 I

20

"\. 500 ••

'\

TJ 'ISOoC

t--

~
1,\
200

300

400

600

VCE, COLLECTOR EMITTER VOLTAGE (VOLTS)

4-153

2N5655, 2N6656, 2N5657

CUT-OFF CHARACTERISTICS

LARGE SIGNAL CHARACTERISTICS
FIGURE 4 - TRANSCONDUCTANCE
500

I

200

/

/ /

/

I .I

I

II

I

TJ=+1500c_1
100

l-

iii
rr:

+IOOoC_

I

rr:

'"'rr:

•

t;

r---

20

j
10

5.0

~

I

I

1.0

o

I

~
::B

I
I

7

I

I

-55°C 0.001
!

I

i/

II

/

0.4

0.8

0.6

0.0001
'-0.&

1.0

-

REVERSE BIAS ..

- 0.4

- 0.2

2.0
TJ = +1500e

r-..

I

1.0

1

I

I

I

I

/ / I II

1.0

+0.6

+0.8

I

+100·e

I

-

I
I

<
.5
w

:::>

I

+IOOoC

'"'0
0:

I

:I

0.1

z

::;

I

I

'--/....

t;

......

II

w

I

/ 7 -....~ If-. -

0.1

TJ' +1500e

II

I

I

>---+250e

-

VCE"2~OV

/

I

II

-tf-.)
0.2

+0.4

FIGURE 7 - EFFECT OF BASE-EMITTER RESISTANCE

I-

0.5

:::>

~

+0.2

10

I

'"
~

I-- FORWARD BIAS t--

VBE. BASE·EMITTER VOLTAGE (VOLTSI

5.0

'"'

.....,

+250C

FIGURE 6 -INPUT ADMITTANCE

w
II:
rr:

I

I

0.0 1

10

z

J

I

VBE. BASE·EMITTER VOLTAGE (VOLTSI

I-

II

+IDOoC

~

I

0.2

./

/

rr:
rr:

I

I

II

II

:::>

I

I

f-- TJ=+1500e

O. 1

I
2.0

-

V

I

'"'rr:.

I

I

0

'"'~

I-

1

7

+25 0C

VCE =200V

.s<

I

I

-./..

1.0

I

so

:::>
0

I

/ 1/

1/

I - - r-VCE-l0V

1

FIGI:IRE 5- TRANSCONDUCTANCE,
10

0.01

0

'"'~

-55°C

+25oC
0.05

0.001

I

I

0.02
0.01

I
o

I
0.2

I

I

I
0.4

I

I

I
0.&

0.0001
0.8

1.0

10

102

104
RilE. BASE·EMITTER RESISTANCE (OHMS)

VBE. BASE·EMITTERVOLTAGE (VOLTSI

4-154

2N5655,2N5656,2N5657

FIGURE 8 - CURRENT GAIN
300
200
1

z

;;:

'"
....

~
'":::>
'"c
'"

;

+IOOoC

10
50

~

~

-

- - : ; 50C

I

.J-- I-

~I""'"

-

.......

;--....

J
20 1--_ -55°C
~

-

-I-- -t-

2.0

.......

\

\ .......

I,\~

\

1\
5.0

3.0

1.0

20

ID

50

30

100

10

•

~~ ~

10
1.0

~

-

-~- I~ ~

f--t-""

30

-

- vCE= 2.GV

........

..1---

100

-- VCE= 10V

...:.. ._- --- ,

TJ=}1500~

200

500

300

IC. COLLECTOR CURRENT (mA)

FIGURE 91- "ON" VOLTAGES
1.0

II II

Iva~( I) ~ I~A

0.8

~
w

I

1= 10

ill-A:::::

~

c

VaE@VCE= 10 V

0.8

-

1

"~

/

-

-

0.2

V

-

VCE("tl Ic/la = 10

V

I-f-

10

U
~

50

u'

30

III

r-

10

20

.......

100

200

300

500

0.1

0.2

0.5

IC. COLLECTOR CURRENT (mA)

2.0

:g
:&

-"

5.0

10

50

20

100

10

,
-

1,-

'--I:

....

i"-<~ Id

Iclia =10

Icl1a= 10
=1=
__ VCC = 300 V. VaElolf) = 2.0 V
12N5856. 2N5651. only,
-VCC· 100 V. VaElolf)' 0 V

5.0

2.0

..

0.2

w

:&

-"

~
~

0.01
2.0

5.0

10

20

50

100

1"-

1\

200

0.5

If

N. VCC= 100V

-

0.02

~,

1.0

;:

0.1
0.05

Is -

r-..

:g

0.5

1.0

,

1=

w

;:

2.0

FIGURE 12 - TURN'()FF TIME

FIGURE 11 - TURN'()N TIME

1.0

1.0

VR. REVERSE VOLTAGE IVOLTS)

10
5.0

......

10

50

30

Cob

20

I I I

o

-

;3

TJ = +25 0C

Ic/la' 5.0

........ r-.-

w

./

j...-

TJ = +25 0C

100

'"z

....<

/

0.4

~'bl

200

/--1

/

'"

<
!:;
c
>
>"

FIGURE 10 - CAPACITANCE
300

VCC'300vl1~

0.2

(TYPl2N5656. 2N56~7. only)

0.1
500

1.0

2.0

5.0

10

20

50

IC. COLLECTOR CURRENT (mAl

IC. COLLECTOR CURRENTlmA)

4-155

_

I:>
_

II.

100

200

500

2N5683, 2N5684 PNP (SILICON)
2N5685, 2N5686 NPN

50 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS

HIGH-CURRENT COMPLEMENTARY
SILICON POWER TRANSISTORS
· .. designed for use in high·power amplifier and switching circuit
applications.

60-80 VOLTS
300 WATTS

• High Current Capability - IC Continuous ~ 50 Amperes.
• DC Current Gain hFE~ 15-60@IC~25Adc

• Low Coliector·Emitter Saturation Voltage VCE(sat) ~ 1.0 Vdc (Max) @ IC ~ 25 Adc

*MAXIMUM RATINGS
Svmbol

2N5683
2N5685

2N5684
2N5686

Unit

Collector-Emitter Voltage

VeEO

60

80

V.de

Collector·aase Voltage

Vea

60

80

Rating

Emitter-Base Voltage

Vdc

VEa

5.0

Vde

Collector Current - Continuous

Ie

50

Adc

Base Current

la

15

Adc

Po

300
1.715

Watts

wloe

TJ.Tstg

-65 to +200

°e

Total Device Dissipation@Te

= 250C

Derate above 25°C
Operating and Storage Junction

Temperature Range

*THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case
Q

-Indicates JEOeC Registered Dat8.

FIGURE 1 - POWER DERATING
300

;;; 250

S
~

"-"-

STYLE 1:
PIN 1. BASE
2. EMITIER

CASE. COLLECTOR

I'-,

200

c

;:
~ 150

""'" "-

iii
is

ffi

~

100

'~

"- "-

~ 50

20

40

60' 80

100

120

140

160

INCHES
MIlliMETERS
DIM MIN MAX
MIN MAX
A 38.35 39.31 1.510 1.550
19.30 21.08 0.160 0.830
8
6.35
1.62 0.250 0.300
0
1.45 1.60 0.051 0.063
0.135
3.43
E
.1 1
F
29.90 30.40 1.111
G· 10.61 11.18 '0.420 0.440
5.21
5.1
0.205 0.225
H
O. 5
J
16.64 11.15 0.
K 11.18 12.19 0.440 0.480
3.84 4.09 0.151 0.161
II
R 24.89 26.61 0.980 1.050

-

'I'-.
180

200

TEMPERATURE (DC)
Safe Area Curves are ind iested by F igurs 6. A II limits are applicable end must be observed.

4-156

-

CASE 197-01
TO·3 Except Pin Diameter

2N5683, 2N5684 PNP, 2N5685, 2N5686 NPN

-ELECTRICAL CHARACTERISTICS (TC ~ 25°C unless otherwise noted)
Characteristic

Svmbol

Min

Mall

60
80

-

-

1.0
1.0

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage (Note 1)

Vdc

VCEOlsusl

2N 5683, 2N 5685
2N5684,2N5686

(lC = 0.2 Adc, 18 = 01

Collector Cutoff Current

-

mAde

ICEO
2N 5683, 2N 5685
2N5684,2N5686

(VCE = 30 Vdc, IB = 01
(VCE = 40 Vdc, 18 = 01

-

Collector Cutoff Current

Collector Cutoff Current
IVCB = 60 Vdc, IE = 0)
IVCB = 80 Vdc, IE = 0)

mAde

ICEX

IVCE = 60 Vdc, VEB(o!ll = 1.5 Vdcl
IVCE = 80 Vdc, VEB(o!ll = 1.5 Vdcl
1Vee = 60 Vdc, VEB(o!ll = 1.5 Vdc, TC = 1500 CI
1VeE = 80 Vdc, VEBlo!ll = 1.5 Vdc, TC = 1500 C)

2N5683,2N56B5
2N5684,2N5686
2N5683,2N5685
2N5684,2N5686

-

2.0
2.0
10
10

-

2.0
2.0

-

mAde

ICBO
2N5683,2N5685
2N5684,2N5686

Emitter Cutoff Current
IVBE = 5.0 Vdc, IC = 0)

lEBO

5.0

mAde

ON CHARACTERISTICS
DC Current Gain (Note 1)
(lc = 25 Adc, VCE = 2.0 Vdc)
(lc = 50 Adc, VeE = 5.0 Vdc)

Collector·Emitter Saturation Voltage (Note 1)
(lC
(lC

-

hFE
15
5.0

60

-

1.0
5.0

VBEI..tl

-

2.0

Vde

VBE(on)

-

2.0

Vdc

IT

2.0

-

MHz

Cob

-

2000
1200

pF

hie

15

-

VCElsat)

=25 Adc, IB =2.5 Adc)
=50 Adc,IB =10 Ade)

Base-Emitter Saturation Voltage (Note 1)
(lc = 25 Ade, IB • 2.5 Adc)
Base·Emitte, On Voltage (Note 1)
(lC = 25 Ade, VCE = 2.0 Vdc)

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(Ie = 5.0 Ade, Vce = 10 Vdc, I = 1.0 MHz)

Output Capacitance

2N5683, 2N56B4
2N5685, 2N5686

(VeB = 10 Vdc, Ie = 0, I = 0.1 MHz)

Small-5ignal Current Gain
(lC = 10 Ade, VCE = 5.0 Vde, I

= 1.0 kHz)

-Indicates JeOEC Registered Data
Note1: Pulse Test: Pulse Width S 300 ~'. Duty Cycle S 2.0%.

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
-30 V

+Z5
o 'LJ
tr<_:
ZOns

I-

,

•

FIGURE 3 - TURN'()N TIME
1.Q

TO SCOPE

o.7

" .. 20n.

R8

,
>--10t.100,...
DUTY CYCLE ~ 2.0%

!
V.CC -30 V

~

~.
0 - - £ +10 V>-oIW,-+-+oC
-12 V I _~
20 ns
-,
,-10tD 100,...
DUTY CYCLE .. 2.0%

-

O.3

-I

"We
:-1, ..

r-::

O.5

-12 V

O.Z

[

o. 1

ill

0.0 1
0.5 0.1

FOR CURVES OF FIGURES3&6, Rsa RLARE VARIED.
INPUT LEVELS ARE APPROXIMATELY AS SHOWN.
FOR NPN CIRCUITS, REVERSE ALL POLARITIES.

C--

r-

--- --

2N5683, 2N5684 (PNP)
2N5685, 2N5686 (NPN)

-....

TJ=2SOC
Ielis = 10
VCc-30V

0.02

Vss

" ~

0.0 7
0.05
0.0 3

RS

....

1.0

~
2.0

3.0

5.0 7.0

10

Ic, COLLECTOR CURRENT (AMP)

4-157

["

20

30

50

2N5683, 2N5684 PNP, 2N5685, 2N5686 NPN

FIGURE 4 - THERMAL RESPONSE
0

\-- - 0

5
3

0.2

~ iiii= P'"

--::::.- -

2
0.1

:;;;:1'

=

1=0.05
1=
7~ =-- f-0.0 2
5

- -•

0.5

.,...

\
~

rnn
DUTY CYCLE. D -11/12

II

0.1

-

11~2~

II
0.05

r-

pr

0.01
jllNGLEIPU~SE

0.0 1
0.02

OJCIt) = r~I!.OJC
OJC = 0.584oCIW Max _I ~
.~_
o CURVES A~PL Y FOR POWE~_
PULSE TRAIN SHOWN
- rr- r- READ TIME AT 11
r- TJ(pk)- TC = P(pk) 0JCII)-

0.2

0.5

1.0

2.0

5.0
I.TIME(ms)

II II
20

10

100

200

1000

500

2000

FIGURE 5 -ACTIVE·REGION SAFE OPERATING AREA
10 0
5001'S 10OIlS
0
;;;

...'"5
ffi
ec
8

...........

0

de

0

r-...

5.0 ~;--,

1' ....

\

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limitsof the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.

1.0 ,"so

5. 0

TJ -200°C,
0-._ _ _ SECOND BREAKDOWN LIMITED
2.
- - - BONDING WIRE LIMITED
\ \
_ 1.
0 E - - - - THERMALLYLIMITEO@TC=250 C
o
(SINGLE PULSE)
~ O.51=
CURVES APPLY BELOW
RATED VCEO
2N5683. 2N5685
0, 2
2N5684. 2N5686
O. 1
2,0 3,0
50 70
1.0
5.0 1.0 10
20
30
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

The data of Figure 5 is based on T J(pk) = 2000 C; T C is variable

ec

~

depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk)";;20aoC. T J(pk) may be

F

II II

calculated from the data in Figure 4. At high case temperatures.
thermal limitations will reduce the power that can be handled to
values less th~n the limitations imposed by second breakdown.

I

100

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN-OFF TIME
4.0
- - 2N5683. 2N5684 (PNP)
- - - 2N5685. 2N5686 (NPN)

3.0

I

2.0

I---::~~
Is

!
~

_

I T/.250 ci __
181=182 _ _
16"8= 10
CE =30V--

Ir=:."

30001--u..

~

...z

~~

1.0

5000

w

..
.........
~

200

T~=12M

I"o~

..........

'

01' .....

i3

0.8
0.6
If
0.4

"' .....

O. 3

O. 2
0.5 0.1

1.0

.......

..... ~ 1--

-,

- .•."

5.0 7.0 10
2.0· 3.0
IC, COLLECTOR CURRENT (AMP)

20

30

."

.... 1000

.....

.....

"

........

100 1 - - - 2N5683, 2N5684 (PNP)
o1 - -1- , fNf'~5i 5686 (~PN)
50
0.1
0.2
0.5
1.0
2.0

~.~b
C'b

Nb

......

rr

'C:"
50

5.0

10

VR. REVERSE VOLTAGE (VOLTS)

4-158

C~b

r-'

20

50

100

2N5683, 2N5684 PNP, 2N5685, 2N5686 NPN

PNP
2N5683. 2N5684

NPN
2N5685. 2N5686

I

FIGURE 8 - DC CURRENT GAIN

500

TJ = +150·C

300
200

r+++:-+25·C

z

~

>-

ffi

IX:

a:

:0

100
70
50

'"
'"
Cl

30

~

20
10
7.0
5.0
0.5

~

~
w

a:

- - -r--

r-..

~

g'"

ul

~

~

2.0

1.0

2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (AMP)

\

IC= IDA

\25 A

TJ =

J

\
\

0.6

\

0.4

Cl

~51CI

!3

2:w

'"':;""
~
~

r-

:ii

w
a:
o

-

r-f-.

I--

0.2

20

0.5
1.0
2.0
lB. 6ASE CURRENT (AMP)

3.0

5.0

.

."

........ .... ~ ~

2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (AMP)

1.0

........

.... ;

20

30

50

T~=12M

~5A- t-- 40~

--

1.2

\

\
\

0.6

~...

0.4

0
0.1

10

I

"II

i'"

I

~ IDA
1.6 r-IC

'"ul
>'"

o

0
0.1

~

0.5 0.7

o

'"w
;;

-

-55·C

0

\40A

\

1.2

t;

..... t::

30

7.0
5.0

50

30

- - VCE=2.0V_ - - - VCE=IOV

FIGURE 9 - COLLECTOR SATURATION REGION
_ 2.0

I
I

1.6

20

....

--

-....;;

+ 25·C

10 0
ffi 0
a:
~ 50

~l'"

0.7

~-

20 0

'">f",; ~

Cl

j

z

Tr+150·C

;;:

.;:
>'

/
VBE @VCE = 2.0 V
III
I I
VCE( ..,) @Iclla = 10

Vr~(~'" @lc:La ~

0.4
)C!(U)@IJIB='IO

20

30

5D

4-159

.....

V-

o
0.5 0.7

1.0

':/

~

//

lL
I

_f-'

/

VBE@VCE=2.0V

./

2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (AMP)

1.

V

':;

I

r'

~ ~5.C

0;

/, V I
II

1.5

w

'"""':;

;J

IJ

V

2.0 3.0
5.0
10
IC. COLLECTOR CURRENT (AMP)

V
20

30

50

•

2N5683, 2N5684 PNP, 2N5685, 2N5686 NPN

)

I

PNP
2N5683.2N5684
+9.0

I ~:~
'"

!2
w
r;3

~

8.
~
:::>

~

•

FIGURE 11 - TEMPERATURE COEFFICIENTS
+4.5
II
,:"MIIES FO~ IJIB < hlFeIi

LJJL

V

II
I
+Z50C10 +1500C

.

II .

.§ +30
~

f5

"'V I
./
l/
Y
fA'

,-

-

I
"eVC FOR VCE(sal)

-1.0
~ -2.0 HJ
~ -3.0 -IOVB FOR VBE
1111
I
-4.0
-5.0
0.5 0.7 1.0
2.0

i

II II

......

/' V

......

5.0 7.0

10

20

30

8

+1.0

~
:::>

+0.5 -'OVC FOR Vee(.. I)
0

1111

... -1.5
olv~ ~ciR
-2.0
1111
-2.5
0.5 0.7 1.0

i

50

VB~

-VCe=30V
103
10Z TJ ~

0

101 = 100Ac

......

150~C

L

""""
:::>
u

=
0

w

0

u

l...
z
w

;'

w

-I'"'"

V

V

,.....

V

""-

"""

-5150C101+Z5~C

2.0
3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (AMP)

ZO

30

50

FIGURE 12 - COLLECTOR CUTOFF REGION
104
-VCE =30 V

104

"""":::>
u
""t;

..../

./

~250C Id +1150~d

I

IC. CbLLECTOR CURRENT (AMPI

l...
z

/

b

+J50 0

(f" °
i\.
V
-550Clo+~M
'iiTi i\
l.J..!-' '\. """
L..- r-

Uti

~ -1.0

I
3.0

+1.5

~ -0.5

'.~50C;IO +15rO~t-

I
I
I

lz~Jc I

~

~

-550C10 +Z50C-

I

.

+2.5

G +2.0

-550C10 +Z5 0C

0

III
III
III

~ ~:~

J

U

- "APPLIES FO R Ic/lB < hFE/2

+5.0
+4.0
+3.0
+2.0
+1.0

NPN
• 2N5685.2N5686

IC=ICES
100

...w

10 3
L

10Z Tr 1500c
10 1=== 1000C

u

I-

IC = ICES

:::l 100

;'

0

u

!:!

!:!

10-1 = =Z5 C
-·.REVERSE

100Z
+O.Z

+0.1

FORWARO
0
-ll.1
-ll.Z
-ll.3
VBE. BASE·EMITTER VOLTAGE (VOLTS)

,===

10-

IO-Z

-ll.5

-ll.4

25 0C

-REVERSE

-ll.Z

-ll.1

0

+0: 1

FORWARO
+O.Z
+0.3

+0.4

+0.5

VBE. BASE·EMITTER VOLTAGE (VOLTS)

FIGURE 13 - EFFECT OF EXTERNAL BASE·EMITTER RESISTANCE

~
:r

e

~
z

10 5

""

=
w
:::iii

104

w

103

::l

(TYPICALICES VALUES
10Z OBTAINED FROM FIGURE 12)

i~1i

10
ul

""'"

- (TYPICAL ICES VALUES
=OBTAINED FROM FIGURE lZ)
ZO

40

60
80
100 lZ0
140
TJ. JUNCTION TEMPERATU RE (DC)

2.0

5.u·

w

~

10Z0

=lc/ICES"1.

""
160

180

ZOO

4-160

10

o

20

40

60
80
100 lZ0 140
160
TJ. JUNCTIO NTEMPERATU RE (DC)

180

ZOO

2N5758, 2N5759, 2N5760 NPN
2N6226, 2N6227, 2N6228 PNP

HIGH-VOLTAGE HIGH-POWER
SI LICON TRANSISTORS

6 AMPERE
POWER TRANSISTORS
COMPLEMENTARY SILICON

.... designed for use in high power audio amplifier applications and
high voltage switching regulator circuits.
•

High Coliector·Emitter Sustaining Voltage VCEO(sus) ; 100 Vdc (Min) - 2N5758, 2N6226
; 120 Vdc (Min) - 2N5759, 2N6227
; 140 Vdc (Min) - 2N5760, 2N6228

•

DC Current Gain @ IC ; 3.0 Adc hFE; 25 (Min) - 2N5758, 2N6226
; 20 (Min) - 2N5759, 2N6227
; 15 (Min) - 2N5760, 2N6228

•

Low Collector·Emitter Saturation Voltage VCE(sat) ; 1.0 Vdc (Max) @ IC; 3.0 Adc

100·12()'140 VOLTS
150 WATTS

••

'MAXIMUM RATINGS
Symbol

Rating
Collector-Emmer Voltage

VCEO
VCB
VEB
IC

COllector-Base Voltage

Emltter·Base Voltage'
Collector Current· Contmuous

Peak
Base Current

2N5758
2N6226

2N5759
2N6227

2N5760
2N6228

100

120
120

140
140

100

7.0-

-

6.0---10
4.0_

18

Total DevlceOLSSLpatlon@Tc
Derate above 25°C

Po

150_
_0.857_
TJ. T stg _ _ -65 to +200 _

25°C

Operatmg and Storage Junction,

Temperature Range

Unit

Vdc
Vdc
Vdc
A"dc
Adc
Watts

Characteristic

ESEATlN(~
PLANE

I

W/oC

°c

THERMAL CHARACTERISTICS
Symbol

I

Max

Unit

°JC

I

1.17

°C/W

Thermal Resistance, Junction to Case

Lr~
r~K
STYLE 1,
PIN 1. BASE
2. EMITTER
CASE' COLLECTOR
NOTE,
1. O1M '·0·' IS OIA.

-Indicates JEDEC RegIstered Data

FIGURE 1 - POWER DERATING
160

E!

r-- J".,.
140

~ 120

"'-

" "'"

2:
z

0

~

Bi
<5
~

3:

Ii:
~

100
80
60
40

DIM

"'" ~

20

A
B

~

0
0

25

50

75

100

125

150

~

m

200

TC. CASE TEMPERATURE lOCI

MILLIMETERS
MIN MAX

-

-

C 6.35
D 0.99
E
F 29.90
G 10.67
H
5.33
J 16.64
K 11.18
Q
3.84
R
-

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67

INCHES
MIN
MAX

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

-

ColieClorconnec1ed to case:CASE 11·01
TO-3

Safe area limits are indicated by Figure 5.
Both limits are applicable and must be observed.

4-161

1.550
0,830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

2N5758,2N5759,2N5760 NPN
2N6226,2N6227,2N6228 PNP

·ELECTRICAL CHARACTERISTICS (TC

I

= 2SoC unless otherwise noted)

I

Characteristic

Symbol

Min

Max

100
120
140

-

-

1.0
1.0
1.0

-

1.0
5.0

-

1.0

-

1.0

25
20
15
5.0

100
80
60

-

-

1.0
2.0

-

1.5

Unit

OFF CHARACTERISTICS
Collector-Emitter SustaIning Voltage (11

(lc

2N5758.2N6226
2N5759.2N6227
2N5760.2N6228

= 200 mAde. 18 = 0

VCEO(susl

'IVCE
IVCE
IVCE

= Rated
= Rated

•

= Rated

VCS. 'E

mAde

'CEX

Vca. VaElo!!1
Vca. VaElo"l

= 1.5 Vdcl
= 1.5 Vde •.Tc = 1500 CI

mAde

Icao

Collector Cutoff Current

IVca

mAde

2N5758. 2N6226
2N5759. 2N6227
2N5760.2N6228

= 50 Vde. la = 01
= 60 Vde.la = 01
= 70 Vde. la = 01

Collector Cutoff Current

IVCE
IVCE

-

ICEO

Collector Cutoff Current

= 01

Emitter Cutoff Current
IVSE = 7.0 Vde. IC = 01

Vde

mAde

'ESO

ON CHARACTERISTICS 111

= 2.0 Vdel

IIC = 6.0 Ade. VCE

= 2.0 Vde)

2N5758. 2N6226
2N5759.2N6227
2N5760. 2N622B
All Types

= 1.2 Adel

Base-Emitter On Voltage
IIc = 3.0 Ade. VeE = 2.0 Vdel

-

Vde

VCElsa.)

Collector-Emitter Saturation Voltage
IIc = 3.0 Ade. la = 0.3 Ade)

Ilc = 6.0 Ade. la

-

hFE

DC Current Gain
IIc = 3.0 Ade. VCE

Vde

VaElonl

DYNAMIC CHARACTERISTICS
MHz

Current-Gam - Bandwidth Product

1.0

(Ie :: 0.5 Adc, VeE:: 20 Vdc, f test:: 0.5 MHz)
Output Capacitance

IVce

= 10 Vde.

'E

=O.! =0,1

pF

Cob

300

MHzl

Small-Signal Current Gain
(lC = 2,0 Ade. VCE = 10 Vde.! = 1.0 kHzl

hie
15

·Indlcates JEDEC Registered Data
(1) Pulse Test: Pulse Width ~ 300 ~s. Dutv Cvcle ::;;; 2 0%
(2) fT "" I hfe I • f test

FIGURE 2 - SWITCHING TIME TEST
CIRCUIT
VCC
+30 V

SCOPE

RS

51

01

tr.tf~IOns

-4,0 V
DUTY CYCLE = 1.0%
RS and RC VARIED TO OBYAIN DESIRED CURRENT lEVELS
01 MUST BE FAST RECOVERY TYPE, .g'
MSDS300 USED ABOVE IS ~100 rnA
MSD6100 USED BELOW IS ='100 rnA

-For PNP test circuit, rev_ .... all polarities and 01.

4-162

2N5758,2N5759,2N5760 NPN
2N6226,2N6227,2N6228 PNP
NPN
2N5758. 2N5759. 2N5760

I

~N6226.

PNP
2N6227. 2N6228

FIGURE 3 - TURN·ON TIME
1.0

--,

0.7
5

~c9fB=}~oV
H+t-t-''''''.r-+-+-+++-I+++-- VaE(,ff) = 5.0 V
O. 2Ht+t---f-"'>k--l---jH4-H+t- TJ = 25'C

,

0.3 Hf't..c-+-+-+-+++-I+++--

];
w

";::

............

~

rrr-

0.21-++++--I-I+-_P--l:-+-H+I+_+-+_+-+-H

~ O'I~mffliiJI
0.05Sl!l=

'r-.
O.I~§1IEldmm

0021-+++t--+--j-~-~-++r+~-++-t-+~

0.07~

0.Q1 Ll..Ll.l.--L--l_....L--:!-,-L+'.Ll.l.;'::,---'-+.--'---!::--'-::'
O.OS
0.1
0.2
04 0.6
1.0
2.0
4.0 G.O

o og 0'::SLl..lO
f:-1 -1-":0::-2-1-":0.':4...l..:0:l:.S,.J-Ll:-1.'::-0--'--::2'::.0--'--'4"'0:--'--='S·0
IC. CO LLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT lAMP)

FIGURE 4 - THERMAL RESPONSE
1.0
_ O.

~~0=05

--

~ O.

.... ::0
ffi ~ 0.3

;;;'"
z 00.2


1.2

o

ffi

I

il

IC • 1.0 A

I
1.6 -~~.-j-+++lH+li+-I_-1_-H~+++~+'
I

2.0

~

S.OA

3.0 A

1.8 ---

0

~
w

'"«

-

1.4

~

Tp2SoC

0

""w

. _ . - --I-

~

~

O.B

~ 0.8-

_

8

~
>

0.6
0.4

o. 2

--

~

0
0.02

0.Q1

\

0.03

0.05

0.2

0.1

1.0 - -

:=

~~'"-H-+++l

2.5 A

'-.

1.0

o

IC· 1.0 A

> 1.2

~

g

1-+--f-+-H-l+-+-+-1j-1_. _+1-1_+-T+J _'j-25+0+C+l

If-I- .
--- -

-- --- -- -

06 - - - 1-- -

- .. _··1--t--I-t-+++11

-

~ 04-:~ - ~ 0.2 --,-1'-..-''4''''"+-++1+++--+-+-- j--+-++-H1H

0.3

0.5

~

10

O~~~~~~~~~~~~~c-~~-L~~LUU
0.01

002 0.03

'B. eASE CURRENT (AMP)

O.OS

0.1

0.2

0.3

0.5

1.0

'B. BASE CURRENT (AMP)

FIGURE 10 - "ON" VOLTAGES
1.4

_. -'-,---

,-

~TJ.250C

1.2

'~"

~
w

'"~

«

(--

.-- v'sE(~'tl@ Iclle·

~ ,..-:

----

08

10~-

~~EI.1210V-

0.6

0

0.4

I
0
0.06

0.1

0.2

0.4

I I I

Ii

0.6

II
1.0

/""

/'/

J = 25°C

/
/

V':

~ 1.0
o

--

VBE(",)@IClle - 10

Z. 0.8

'"«

~ 0.,6

/

VBE@JCE 2.0 V

>

::> 0.4

./

2.0

/

....I-f::l

w

-I-

-

i II II
VCE(",)@ ICIIB· 10

0.2

1.2

--

>
>~

1.4

V

? rL

-- -

.-

1.0

. '-IJ

I
VCE(",)@IClle= 10

0.2

l-

o
4.0

6.0

0.06

0.1

I
0.4

0.2

IC. COLLECTOR CURRENT (AMP)

0.6

1.0

--

2.0

4.0

6.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 11 - TEMPERATURE COEFFICIENTS
+2.5
u

:>

+2.0

~

+lo 5

ffi

+1. 0

II

-

.. Applies for lells < hFEI2

TJ = 25°C to 1500e~
'55°C to 25°C"

U

~

+0 5

8
w

~

~

(JV for VBE

.~

-1.0

~

-I.S

i

-2.0

~L

TJ =25°C 10 150°C
-55°C to 250C

-0. 5

~

u

a.>

:>

"Applies For IC/18< hFE/4

-f2. 0

I II

..§. +1 5
~
.

",/

ffi

U

'OVC

+1.0

2SoC '\'fOo~

~ +0. 5

>--"1: .J..--

t':> ......

""

~ -0. S
~
~ -1.0

r-'" ~ _I-'"

~ -1.5

0.4

0.6

1.0

2.0

4.0

-2.S
0.06.

6.0

>::::: --1' ....
-t-I±-:"'r - 55 C~o 1251C
1
II

I
I

°lvB!rveE

0.1

0.2

0.4

0.6

1.0

IC. COLLECTOR CURRENT (AMP)

Ie. COLLECTOR CURRENT (AMP)

4-165

./

2tl!. to Isio c

-

i- 2.0
0.2

I

-55 DC to 25 0 C

w

>-

0.1

for VCE(",)

8

-2. 5

0.06

i2. 5

IIII
.J ~t \or vclr",i-

2.0

4.0

6.0

•

2N5758, 2N5759, 2N5760· NPN
2N6226,2N6227,2N6228 PNP
NPN

PNP
2N6226.2N6227.2N6228

I

2N5758. 2N5759. 2N5760

FIGURE 12 - COLLECTOR CUT·OFF REGION
10 4

.103

r--

VCE-50V

-

_.

TJ -150°C

~

I

-- f-/IOOOC

25 0 C-

I

-=

IC·ICES

II- f-REVERSE
1--

10-3
·0.4

•

FORWARD

REVERSE

-0.3

-11.2

-0.1

+0.1

+0.2

+0.3

+0.4

+0.5

10-2
+04

+0.6

+0.2

+03

VBE. BASE·EMITTER VOLTAGE (VOLTS)

FORWARO-

+0.1

-0.1

-0.2

-0.3

-0.4

-

-

-0.5

-06

VBE. BASE·EMITTERVOLTAGE (VOLTS)

FIGURE 13 - EFFECTS OF BASE-EMITTER RESISTANCE
J
VCE - 50 V

""-

IC = 10 ICES

""-

""<

6

.......

IC=2ICES

5

.......

4

.......

'"

IC

~ (ii 10 5

10 X ICES

U:J~

~;;;
"'u

;£, ~ 104

r-..

\ICEf ....

~~

40

60

80

100

1:;'"

i'-..

~

"'"

(TYPICAL ICES VALUES
OBTAINED FROM
FIGURE 12)

102
20

~
,

, ~ffi

3

~

I-- f-:I-- I -

120

IC

ICES

103 ~ (TYPICAL ICES VALUES
~ OBTAINED FROM
FIGURE 12)

c:=

140

10 2
20

160

TJ.JUNCTION TEMPERATURE (OC)

40

60

80

100

TJ.JUNCTION TEMPERATURE (OC)

4-166~

120

140

160

2N5875, 2N5876 PN P(SILICON)
2N5877, 2N5878 NPN
COMPLEMENTARY SILICON
HIGH-POWER TRANSISTORS

10 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS

· .. designed for general·purpose power amplifier and switching applications.
•

low Collector· Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC 005.0 Adc

•

low Leakage Current ICEX = 0.5 mAdc (Max)

•

@

60·80 VOLTS
150 WATTS

Rated Voltage

Excellent DC Current Gain hFE = 20 (Min) @ IC = 4.0 Adc

•

• High Current Gain - Bandwidth Product fT = 4.0 MH2 (Min) @ IC = 0.5 A

*MAXIMUM RATINGS
Rating

Svmbol

2NS875
2NS877

2N5876
2N5B78

Unit

VeEO

60

80

Vdc

Collector-Base Voltage

VeB

60

80

Vdc

Emitter-Base Voltage

VEB

S.O

Vdc

Ie

10

Adc

Base Current

IB

4.0

Adc

Total Device Dissipation@TC=2SoC

Po

150
0.857

Watts
w/oe

TJ, T,tg

-65 to +200

°e

Collector-Emitter Voltage

Collector Current - Continuous

20

Peak

Derate above 250 e
Operating and Storage Junction

!f"~'
711

Temperature Range

THERMAL CHARACTERISTICS

~

Max

Characteristic

1.17

Thermal Resistance, Junction to Case

SEATING/
PLANE

K

~

I

~VlE 1:
PIN I BASE
-F-

-J-

I~/-" '"
b < ~t-~~

FIGURE 1 - POWER DERATING
160

i

140
120

~

100

~

80

;::

iii
~

3l
~

~

r--- i'..

",

..........

"-

60

,

.....

40
20

o

o

25

50

a

'

"
75

100

125

TC, CASE TEMPERATURE IOC)

2. EMITTER
CASE: COLLECTOR

CASE 11·01

'" "'"

150

175

200.

4-167

T0·3

...............

/

MILLIMETERS
DIM MIN
MAX
A
B
C 6.35
D 0.99
E
F 29.90

-

10.67
H 5.33
J 16.64
K 11.18
Q
3.84

G

R

NOTE.
I. DIM '"a'" IS OIA.

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67

Ii1
~

INCHES
MAX
MIN

0.250
0.039

-

1.177
0.420
0.210
0.655
0.440
0.151

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

Collector connected to case.

2N5875, 2N5876 PNP, 2N5877, 2N5878 NPN
·ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)

I

Symbol

Characteristic

Min

Max

60
80

-

-

-

1.0
1.0

-

0.5
0.5
5.0
5.0

-

0.5
0.5

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage (1)
(lc = 200 mAde, ia = 0)
Collector Cutoff Current
(VCE = 30 Vde, 18 = 0)
(VCE = 40 Vde, IB = 0)
= 60
= 80
= 60
= 80

Vde,
Vde,
Vde,
Vde,

mAde

iCEO
2N5815, 2N5811
2N5816, 2N5818

Collector Cutoff Current
(VCE
(VCE
(VCE
(VCE

Vde

VCEO(sus)
2N5815, 2N5811
2N5816, 2N5818

mAde

ICEX

VaE(off)
VaE(off)
V8E(off)
VBEloff)

=
=
=
=

1.5
1.5
1.5
1.5

2N5815, 2N5811
Vde)
Vde)
2N5876,2N5818
Vde, TC = 150°C) 2N5815, 2N5811
Vdc, T C = 150°C) 2N5816, 2N5818

-

Collector Cutoff Current

mAde

ICBO

(VC8 = 60 Vdc, IE : 0)
(VCB = 80 Vdc, IE = 0)

2N5815, 2N5811
2N5816, 2N5818

-

Emitter Cutoff Current

lEBO

(VEB = 5.0 Vdc; IE : 0)

•

-

1.0

35
20
4.0

100

mAde

ON CHAR,ACTERISTICS
DC Current Gain
(lC: 1.0Ade,
(lc: 4.0 Ade,
(lC = 10 Ade,

(11

-

hFE

VCE = 4.0 Vdc)
VCE = 4.0Vde)
VCE : 4.0 Vdc)

Collector·Emitter Saturation Voltage (1)

Vdc

veE (sat)

(lc = 5.0 Adc, IB = 0.5 Adc)
(lc: 10 Adc, IB = 2.5 Ade)

Base-Emitter Saturation Voltage (1)

VBE"at)

-

VBE(on)

1.0
3.0
2.S

Vdc

-

1.5

Vdc

IT

4.0

-

MHz

Cob

-

(lC: 10 Ade, I B, = 2.S Adc)
Base·Emitter On Voltage (1)
(lC: 4.0 Adc, VCE = 4.0 Vdc)
DYNAMIC CHARACTERISTICS

Current-Gain -:.- Bandwidth Product (2)
(IC = O.S Adc, VCE : 10 Vdc, f test = 1.0 MHz)

Output Capacitance
(VCB: 10 Vdc,IE = 0, 1= 1.0 MHz)

-

2NS815, 2NS816
2NS811, 2N5818

Small-Signal Current Gain

pF

-

SOO
300

20

-

-

t,

0.7

/loS

ts

1.0

/loS

0.8

/loS

hIe

(lC: 1.0 Adc, VCE : 4.0 Vde, f = 1.0 kHz)
SWITCHING CHARACTERISTICS
Rise Time

Storage Time
Fall Time

(VCC = 30 Vde, IC" 4.0 Adc, I Bl
See Figure 2)

= I B2 :

0.4 Adc,

"Indicates JEDEC Registered Data.
e1) Pulse Test: Pulse Width ~ 300 JJ.s, Duty Cycle S. 2.0%.
(2) IT = Ih,.I- 'test

FIGURE 3 - TURN'()N TIME

FIGURE 2 -SWITCHING TIME TEST CIRCUIT
VCC
-3~ V

1.0

7.5Sl

:~OV~=CJ

RB

O1 25,.,1

RC

0,3
SCOPE

25Sl

_l1V __

VCC = 3D V
lellB = 10
TJ=250 C

0.7

-

0.5

51

'::-...

0.2

:;
~

,,~

~

I,

-

~

I"-

0.1

S 0.07

lei @VBE(off) = 5.0 V

0.05

tr. tf:s:10 ns
DUTY CYCLE = 1.0%

For NPN test circuit,
reverse all polarities.

+4.0 V
FOR CURVES OF FIGURES 3and 6,
RB and RC ARE VARIED TO OBTAIN
DESIRED CURRENT LEVELS
01 MUST BE FAST RECOVERY TYPE, e.g.
MBD5300 USED ABOVE IB ~ 100 mA
MSD6100 USED BELOW 'B ~ 100 mA

0.03
0.02
0.01
0.1

n

2N5875, 2N5876 (PNP)
2j 5
jNtN)

-'-I--'1 2N5
0.2

0,3

ri

0.5 0.1

1.0

2.0

3.0

IC, COLLECTOR CURREi'I"i IAMPERES)

4-168

5.0

7.0

10

2N5875, 2N5876 PNP, 2N5877, 2N5878 NPN

FIGURE 4 - THERMAl, RESPONSE
1.0
~
~_
wO

o. 7;::0
o.5

0.5

-

;;..

",w

:: ~ o.3 =

0.2

"''''

0.1

w:E

<;;0:

O. 2

",0

"''''

-

r-

f-- r-,...

~: o. 1=0.05
~ ~ 0.0 7 :::::::0.02
~ ~ 0.0 5

-

'"
tt; ~O.03

:....I< 0.01

...

'2

ErUl
tt--J

P(pk)

-

0.02

,

DUTY CYCLE. 0 = l1/t2

SING LE PU LSE

III

0.0 1

om

0.02 0.03

0.05

0.1

0.2

0.3

0.5

2.0

1.0

3.0

5.0

I

" II10

20

30

8JC(t) = ,It) 8JC
8JC = 1.17 °CIW Max
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME At tl
TJ(pk) - TC = P(pk) 8JCIt)

50

100

200

300

500

1000

t, TIME (m,)

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA

....., ......,

20
;

10

:E

7.0
5.0

S

~

'"

I I "

r- C-TJ - 200°C

5~ 3.0

...........

1"--

0.1

1,

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the tran
sistor that must be observed for reliable operation, i.e., the
transistor must not be subjected to greater dissipation than the
curves indicate.
The data of Figure 5is based on T J(pk) = 200°C; TC is variable
depending on conditions. Second breakdown pulse limits are
valid for dutV cvcles to 10% provided T J(pk)
200°C. T J(pk)
maV be calculated from the data in Figure 4. At high case
temperatures, thermal Iimitations will reduce the power that can
be handled to values less than the limitations imposed bV second
breakdown.
.

1.Oms

a

de

.....,

0.5 ms

5.0 ms,\

2.0

0:

o

SECOND BREAKDOWN L1MITEO
BONOING WIRE LIMITED
THERMAL LIMITATION @lTC 25°C
(SINGLE PULSE)

-

...
~ 1.0
0.7
8 0.5

!\

0.3 ,-CurvesApply Below Rated VCEO- 2N5B75. 2N5B77- :2NrB7~, 2N5BlB
0.2
5.0
7.0
50
10
20
30
VC~, COLLECTOR·EMITIER VOLTAGE (VOLTS)

1\

70

<

100

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN-OFF TIME
10

700

7.0
5.0
3.0

- --

t-

2.0

t-~

]
w

:E

>=

VCC = 30 V
IC/IB = 10
IBI = IB2
TJ = 25°C

I-

1.0

300

U

200

~

-

-=== ~:~:;;: ~:::;: I~~~))

0.1
0.1

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0

100

7.0

10

IC, COLLECTOR CURRENT (AMPERES)

Cib

r-::::

...... .....

~
<.i

.....

-

0.3
0.2

..,zw
;t

tl

.. -...;:: ~ r--..

~

,t!.,

0.7
0.5

I
TJ = 250 C

500

~

I>..
.........

Cob,~

- - - 2NS875,2NJ61p)
- - - 2NSB77,2NS878 (NPN)

-- -- "-

70

0.5

1.0

2.0

3.0

5.0

10

VR, REVERSE VOLTAGE (VOLTS)

4-169

r-....

20

30

so

•

2N5875, 2N5876 PNP, 2N5877, 2N5878 NPN

NPN DEVICES
2N5811 and 2N5818

, PNP DEVICES
2N5815 and 2N5816

200

z

100

~

70

0-

z

::l. 50
II:

::J

g'"

30

.c

20

...w

-

FIGURE 8 - DC CURRENT GAIN

- - -l- I"--

T~ =' llo~cl

1000

I

r- lli

500

. VCe=4.0V

«
to 200

25DC

0-

·-55DC

.......

•

0.2

0.3

'."'-

'" ""

I'-...

0.5 0.7

1.0

2.0

r-- I -

-"
......

25°C

ffi

....... !',.

G;1O0

...
::J

~

I"
10
0.1

VCe=4.0V

TJ = 150DC

z

3.0

-55DC

........

......

,.....

20
10
0.1

5.0 7.0 10

2.0 3.0
0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMPERES)

0.2

IC. COLLECTOR CURRENT (AMPERES)

5.0 7.0

10

FIGURE 9 - COLLECTOR SATURATION
REGION

~ 2.0

o
?

w

~

II II

II
le= LOA

4.0 A

TJ = 25°C

1.6

~
ffi

III

ill
IC= LOA

> 1.2

II:

-

~

~ 0.8

\

II:

t

II
8.0A

4.0 A

10

50

100

\

ii

1\

~ 0.8

t;

t-I-

~

c5
'"ul

...
>
20

1.2

t:

0
5.0

1\

o

\
\

0.4

TJ=2~DC

II

'111

o

o

~
o
'"ul
!t

E2.0 ill
o
2:
::: 1.6

8.0 A

200

1000

500

2000

0.4

0

5000

5.0

10

50
100 200
500
lB. 8ASE CURRENT (mA)

20

lB. BASE CURRENT (mA)

1000

2000

5000

FIGURE 10 - "ON" VOLTAGES
2.0

1.4

TJ " 25°C

TJ = 25°C

1.2

I
I
I

1.6

u;

!:i
0

?

w

'"~
0

~

1.2

r-- I-

VBE(sat) "lellB = 10

V~E~ve~=~.Jvl

0.8

;'"

~

~ f-"""

~

/

,;

V
VCE(III) "lcllB = 10

....-

o
0.1

0.2

0.3

0.5 8.7

1.11

3.0

o.6

§!
>- 0.4

..... 1-2.8

....... :,....--

VBE(sat) "lclI8 = 10

~ 0.8
w

>

0.4

~ 1.0

r-- l -

i 4'j 'I

I I I II
I I I II

0.2

5.D 7.0 10

VB~ "VfE

.......

VCE(..t) .IC/IB "10
0.1

0.2

0.3

0.5 0.7

I-1.0

Z.O

3.0

IC. COLLECTOR CURRENT (AMPERES)

IC. COLLECTOR CURRENT (AMPERES)

4-170

5.0 7.0

10

2N5875, 2N5876 PNP, 2N5877, 2N5878 NPN

PNPDEVICES
2N5875 and 2N5876

NPN DEVICES
2N5877 and 2N5878

FIGURE 11 - TEMPERATURE COEFFICIENTS
+2.5

+2.5
'APPLIES FOR IcilB< hFE/4

~+2.0

:;;

oS +1.5
~

--

'OVC fDr VCE(sat)

+0.5

w
c

j... V
..l-

-55DC t~ 25DC

u

I

w

~

-0.5

....

.,

t-"

-2.5

0.1

0.3

0.5

1.0

~

2.0

3.0

5.0

1

-1.0

10

;.V

.l

... :::::: 1-:1-"'""
-55DC tD +25DC

~
~ -1.5 -OVBfDrVBE

~

_

-55 tD 25DC
+25 DCtD +150DC

::>

...

....- _i"'" ....

Jill

1"'-,...

~ -0.5

V

25 DC tD 150DC

'OVC fDr VCE( ..t)

8

V

I I
0.2

~

-55DC tD 25DC
I I I II

~ po

OVB IDrVBE

~-2.0

1/

+1.0

~ +0.5

/'

h /

,;

+1.5

~

~

I I

25DCtD 150DC

~ -1.0
w
~-1.5
w

.s

I- ~V

25 DCtD 1500C

~ +1.0
w

;:;

'APPLIES FOR IC/IB < hJ.E/4

~ ·+2.0

-I

-2.0

'"

-2.5
0.1

0.2

0.3

2.0

1.0

0.5

I

1

l.O

5.0

11

U

10

IC. COLLECTOR CURRENT (AMPERES)

IC. COLLECTOR CURRENT IAMPERES)

II

FIGURE 12 - COLLECTOR CUT-OFF REGION
10.000

1000
VCE'JOV

1,/

-VCE - lO V

1000

....
ffi

~ 100

....
z

100

0::
0::

~

- Tp 150DC

::>
u

10

0::

~'"

-

::>
u

~ 1.0

r-looDC

1.0

u

~

0.1

' - ~ REVERSE

L

g

IC -ICES

~
u

t====

o.1 =

FORWARD
0.0 1 =

25DC

100De
IC 'ICES
FORWARD

REVERSE

= 25DC

./

0.01

+0.2

TJ'150 DC

10

0::

-0.1

+0.1

-0.2

-0.3

-0.4

-0.5

0.00 1
-0.2

-0.1

+0.1

+0.2

+O.l

+0.4

+0.5

VBE. BASE·EMITTER VOLTAGE (VOLTS)

VBE. BASE·EMITTER VOLTAGE (VOLTS)

.. '1

FIGURE 13 - EFFECTS OF EXTERNAL BASE-EMITTER RESISTANCE

VCe-lOV
0::

~

;e-

IC'10xICES

I • 10 x ICES

106

:z~'" -r- IC=2xICES
.,
~ ;-105
.... u

====

IC·2 x ICES


0.2

0.1

0.3

0.5

0.7

1.0

2.0

3.0

1.6

0.4

1\

0
0.03

0.05 0.07 0.1

IJI

I

...
!:;

'"
>
>-

,1.'/

1.2

IVjE1(ri@

o.B

I~ ~

~~

IIJI!

1

HVCf(~tJ @Iclls:..!3.0

0.5 0.7

1.0

2.0

0.7 1.0

2.0

3.0

I
~

~

7

1. 2

w
to

~

>
>-

iI'

I"'"

10

20

IC. COLLECTOR CURRENT(AMP)

0
0.2

::;>

/

0.3

~ I~/!S '= 110

0.5 0.7

1.0

I.-I-

2.0

3.0

5.0 0.7

IC. COLLECTOR CURRENT (AMP)

4-175

~

~SE ~ VfE ~ ~'Ol ~

I- JcE{ltJ
5.0 7.0

~

O.Sf- VISE("') @IC/lS= 10

O.4

V
3.0

0.5

in
!:;

I
II

_'.I.

o.4

0.3

TJ = 25°C

1.6

C

-rBIEirtE-Y V

0
0.2

,

I

in
!:;

~

0.2

lB. SASE CURRENT (mAde)

TF 25°C

to

-

1\

i\

FIGURE 10 - "ON" VOLTAGES
2.0

w

TJ = 25°C

~

lB. BASE CURRENT (AMP)

2.0

20

!

8
0.05 0.07

12 A

6.0 A

'"

ul

>'"

IC = 3.0 A
1.6

~
'">
~

r-

\

'"t.
j

'"2:

""

10

\I

III

~

12A

6.0A

IC = 3.0A

~

~

r--t--.

0

IC. COLLECTOR CURRENT (AMP)

. in 2.0
!:;

...........

0

~

0

0.5 0.7

I

~ 200

0

0.3

~'500C

to

~ 50

0
0.2

VCE 4.0V- f-

z

;r 30 0

TJ = 150°C

I-

:ii

a'"

1=

1000
70o~_
500

10

20

•

2N5879, 2N5880 PNP, 2N5881, 2N5882 NPN

PNP
2N5879. 2N5880

NPN
2N5881.2N5882
FIGURE 11 - TEMPERATURE COEFFICIENTS

+2.5

~

+2.0

....
ffi

+1.0

25 DC ID +15ODC

>
~ +1. S

-SSDC ID +25 DC

w
w
~ -0. 5

25 DC ID +15O DC
-55 DC ID +2SD~,

....

•

-1. 0

~

-1.S

....

~ .....

....

OrB fDr VBE

2SIDC ~D ~'So~C
-S5DC ID +15ODh

~. +1.0

~fo'

U

~

V

t{).5

/

w

:: -1.0

....55

-Ui

~ -2.0

0.3

O.S 0.7

1.0

2.0

3.0

S.O 7.0

-2.S
0.2

20

10

0.3

O.S 0.7

IC. COLLECTOR CURRENT (AMP)

/
b

1.0

/

:->

I--" .....>

r--

OVB fDr VBE

I

7

25 DC tD +1S0DC
-55 DC tD +25Df'

'"

~ ~.S

?
.> .....

/

-

'OVC fDr VCE(sal)

8

-2. S

0.2

"ApplieslDr Ic/lB"hF~/5

+2.0

;;; +1.5

:> -2 .0

'"

+2.5

E

"OVC fDr VCE(sal)

8

ff]

G

3;

!;'

.;'

U

E:. +0.5

I
/

"Applies fDr ICIIB" hFEIS

,

2.0

3.0

5.0 7.0

10

20

IC. COLLECTOR CURRENT (AMP)

FIGURE 12 - COLLECTOR CUTOFF REGION
103

,

/
;;: 102 1== TJ = 150 DC
oS

....
z
~

10 I

'"
'"~

10 0

j
- lOoDC

:::>

25 DC

g

TJ =150 DC ::;; .£- f--IOoDC,

~

10 1

a'"

100

'"

.

25DC

..?

o

~

IC = ICES

810-I

30 V-

VCE

<.3

- 10-2
10~

31 '

+0.4

lO-

12: REVERSE ~

S

=

FORWARD

~ 10-2

EREVERSE
+0.3

+0.2

VCE - 30

FORWAROp
-0.1

+0.1

-0.2

-0.3

-0.4

-0.5 -0.6

V::::::

IC -ICES

10-3

-0.2

-0.1

+0.1

+0.2

+0.4

+0.3

+0.5

VBE. BASE-EMITTER VOLTAGE (VOLTS)

VBE. BASE·EMITTERVOLTAGE (VOLTS)

FIGURE 13 - EFFECTS OF EXTERNAL BASE-EMITTER RESISTANCE

'\.

"-

"

VCE - 30Vd,

"
i"--

""-

:--..
:-....

"

40

60

80

" " r--...
........

VCE = 30 Vd,
IC = 51CES

........

"-

".......

~lolfES

.......

........

IC'~
IC~ICE~
100

""
5

31=FOR TYPICAL ICES VALUES
~, ~EE FIGUR,E 12., I
10 2
20

=

120

140

160

r-...

IC-2ICES I-- -

I-- -

.......

"

4-176

"-

......

IC ~ ICES
1= FOR TYPICAL ICES VALUES
1='1
~EE F1IGU,E 12'1 1

102
20

40

60

80

100

120

TJ. JUNCTION TEMPERATURE (DC)

TJ. JUNCTION TEMPERATURE (DC)

.... :-....

140

160

2N5883, 2N5884 PNP (SILICON)
2N5885,2N5886NPN
COMPLEMENTARY SILICON
HIGH-POWER TRANSISTORS

25 AMPERE

· . . designed for general-purpose power amplifier and switching
applications.

COMPLEMENTARY SILICON
POWER TRANSISTORS

o Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc, (max) at IC = 15 Adc
•

Low Leakage Current
ICEX = 1.0 mAdc (max) at Rated Voltage

•

Excellent DC Current Gain hFE = 20 (min) at IC = 10 Adc

•

High Current Gain Bandwidth Product fT = 4.0 MHz (min) at IC = 1.0 Adc

60-80 VOLTS
200 WATTS

•

*MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

Symbol

2N5883
2N58B5

2N5884
2N5BB6

Unit

VeEO

60

BO

Vdc

Collector· Base Voltage

VeB

60

80

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Ie

25
50

Adc

Collector Current - Continuous
Peak

Base Current

IB

7.5

Adc

Total Device Dissipation@TC-2S!='C

Po

200
1.15

Watts

wloe

TJ.Tst9

-65 to +200

°e

Derate above 2SoC
Operating and Storage Junction

.L~'~'
fe"

Temperature Range

THERMAL CHARACTERISTICS.

K

SEATING
0
I
PLANE
STYLE 1:
PIN
1.
BASE
(--F2. EMITTER
CASE: COLLE CTOR

Characteristic

Thermal Resistance, Junction to Case

r---J-

v~

Q

l~:t

FIGURE 1 - POWER DERATING
200
in
....
....
~

z

0

>=
~

175

150
125

~

100

a:

75

~

50

C

!;:
~

'" "'-

~

A

B

"-

C
D

"-

""
25

50

75

100

125

TC. CASE TEMPERATURE (DCI

150

"'"

'"

175

200

4-177

-

-

6.35
0.99

E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.84
R -

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
28.67

INCHES
MIN
MAX

0.250
0.039
1.177
0.420
0.210
0.655
0.440
0.151

-

NOTE:
ColI.ctor conn.ct.d to c....
1. OIM ""Q""IS OIA.
CASE 11-01
TO-3

1

luI

~o/
MILLIMETERS
DIM MIN
MAX

25

o
o

t

.~

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

2N5883, 2N5884 PNP, 2N5885, 2N5886 NPN .
-ELECTRICAL CHARACTERISTICS (TC = 2SoC unless otherwise noted)
Symbol

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
IIC = 200 mAde, IS • 01

-

-

2.0

2N5883, 2N5885

-

1.0

2N5884, 2N5886

-.
-

1.0

..
--

1.0

-

1.0

35

-

20
4.0

100

-

1.0

-

4.0

ICEO
2N5883, 2N5885

IVCE = 40 Vde,la = 01

2N5884, 2N5886

Collector Cutoff Current
IVC.E = 60 Vde, VBElofll

IVCE
IVCE
IVCE

= 1.5 Vdcl
= 1.5 Vde)

= 80 Vdc, VaElofll
= 60 Vde, VBElofll • 1.5 Vdc, TC = 1500 CI
=80 Vde, VSEloff) .. 1.5 Vde, TC = 150°C)

2N5883, 2N5885
2N5884, 2N5886

= 60 Vde, IE =0)
IVca = 80 Vdc, IE = 0)

2N5883, 2N5885
2N5884, 2N5886

Emitter Cutoff Current

•

IESO

= 5.0 Vde, IC = 0

mAde

2.0

10
10
mAde

le80

!Vca

.

mAde

ICEX

Collector Cutoff Current

(VES

Vdc

-

60

SO

= 01

Unit

MIX

VCEOlsusl
2N5883, 2N5885
2N5884, 2N5886

Collector Cutoff Current
IVCE • 30 Vdc,IB

Min

1.0
mAde

ON CHARACTERISTICS
DC Current Gam (1)

= 3.0 Ade,

-

hFE

=4.0 Vde)
(lc = 10 Ade, VCE =4.0 Vdc)
IIc =25 Ado, VCE = 4.0 Vdc)
IIC

VCE

Collector-Emitter Saturation Voltage t u

= 15 Adc, la = 1.5 Adc)
IIC =25 Ade, la = 6.25 Adcl

Vde

lie

Base-Emitter Saturation Voltagfl (11
IIC = 25 Ade,la = 6.25 Adc)

VBElsa.)

Base-Emitter On Voltage (11

VBElon)

fT

(lc

-

VCE(sa.)

= 10 Adc, VCE =4.0 Vdel

2.5

Vdc

-

1.5

Vdc

4.0

-

MHz

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
lie = 1.0 Ado, VCE = 10 Vdc, f test

= 1.0 MHz)

Output Capacitance
IVea = 10 Vdc, IE

1000
500

2N5883, 2N5884
2N5885, 21115886

Small-Signal Current Gain
IIC

pF

Cob

=0, f = 1.0 MHz)

-

20

hfe

=3.0 Adc, VCE =4.0 Vde, f test ·1.0 kHz)

-

SWITCHING CHARACTERISTICS
Rise Time

(Vec = 30 Vdc, Ie' 10 Ade,

Storage Time

lSI = la2 ~ 1.0 Adel

Fall Time
-Indicates JEDEC Registered Data.
(1) Pulse Test: Pulse Width-C;: 300 ",5, Duty

Cycle~

"

0.7

's

1.0

tf

0.8

2.0%.

FIGURE 2 - SWITCHING TIME EQUIVALENT TEST CIRCUITS
TURN-ON TIME

-30V

FIGURE 3 - TURN·ON TIME
2.0

3.0
+25_ _ _

10

'LJ

o

tr<: :
20ns·

I"

:

RB
100~,

cF

__ ~ ;-trc.;20ns
--,
,- 10 10 100~,
DUTY CYCLE", 2.0%

.....

~ 0.2

TURN-OFF TIME

,,

0.3

VCC -30 V

RB

--..

./

t,

2N5B83, 2N5884 (PNPI
2N5885, 2N~8B6INPNI

0,1
Id-

0.0 7
0.05

TO SCOPE
.r<:20 ns

0.03

-11.0 V :

0.02
0.3

VBB

FOR CURVES OF FIGURES 3,. 6, RS,. RL ARE VARIED.
INPUT LEVELS ARE APPROXIMATELY AS SHOWN.
FOR NPN, REVERSE ALL POLARITIES

"."'"

~.

3.0
10

J.

Ic/lS = 10
VCC = 3D V
VBElolf) =2 V

0.7
0.5

~

-

TJ = 25°C

1.0

-11.0 V

-I
'-101o
DUTY CYCLE", 2.0%

O·

TO SCOPE
tr~20 ns

0.5 OJ

1.0

2.0

3.0

5.0 7.0

IC, COLLECTOR CURRENt (AMPERES)

4-178

10

20

30

2N5883, 2N5884 PNP, 2N5885, 2N5886 NPN

FIGURE 4 - THERMAL RESPONSE

1.0

.. o.S f-- iL
we
....

0= O.S

"t-N
w

0.2

W:E

0.1

~~ O. 2

inee

~~
eet-

a.1

w

P

w'-'

~~o.o S
'-'''' .......

~f3
~ee

w

"'2:

0.0 2

F

--

DUTY CYCLE. 0 = I11t2

-::::::: ::::;

.0"
0.02

Ptnfi

I1-r=;2~

0.01
f'iNG LEI PUt SE

V

.,
0.0 1
0.02

-

OJc(t) - r(t) 8JC
8JC = O.875oC/W Max _III
o CURVES APPLY FOR POWER:
PULSE TRAIN SHOWN
- I----,
I- READ TIME AT 11
r- - TJ(pk) - TC = P(pk) 8JCh)-I -

Tl
O.OS

III

0.1

0.2

O.S

1.0

2.0

S.O

IIIIII

10

20

50

100

sao

200

1000

2000

t.TIME(ms)

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA

10a

a
0

-- --- - -

SOOI'S'=

...

a

~.lms
SiS ...

.~

...

...

There are two limitations on the power handling ability of a

transistor:

~

average junction temperature and second. breakdown .

Safe operating area curves indicate IC~VCE limits of the transistor

0

that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.

TJ = 2000 C
Of-- --SECOND BREAKDOWN LIMITED
- - - BONDING WIRE LIMITED
----THERMAL LlMITATION@TC-2SoC
SINGLE PULSE
Curm Apply Bolow Rated VCEo
f--

The data of Figure 5 is based on T Jlpk) = 200°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJlpk) ..;; 200 o C. T Jlpk) may be
calculated from the data in Figure 4. At high case temperatures.
thermal limitations will reduce the power that can be handled to
values less than the limitations im'posed by second breakdown.

de

DE
5~

0.2

O. 1
1.0

TIlT
2.0. 3.0

10

5.0 7.0

2NS883,2N588S ."
2NS884, 2N5886

t-

20

50

30

70

100

VCE, COLLECToR·EMITTER VOLTAGE (VOLTS)

FIGURE 6 - TURN-OFF

0
7.0

S.O

t=:

-

3_0

"--I

2.0
~

T~ME

FIGURE 7 - CAPACITANCE

=

2NS883, 2NS884 (PNPI
2NS88S, 2NS886 INPNI

ts
1.0

-.
~

~_ 0.7
O.S

ts

TJ=2SoC
VCC=30V=
'cilB=10 IB1=182 -

w

1000

tf

01

~~

.....

....!!.

..

700

--

It
./

"\.

'-'
U

...
\.

0.1
O.S 0.7

1.0

2.0

3.0

S.O

7.0

10

20

.......

SOD

300

30

i'-.. .

Cib

"

<3

0.3

0.3

r.l

;:

.........Cob
~

.e-

0.1

0.2

+J! 21s cI

.1

~

....

J

I

' ...

200 0

.......

,

300 0

-

O.S

~

~i~

i'~

NI

t

2NS883, 2NS884 JNt
2NS88S, 2NS886 INPN)
1.0

2.0

5.0

I......

" I",.,..Cob

"
. 10

VR, REVERSE VOLTAGE IVoLTS)

IC, COLLECTOR CURRENT IAMPERES)

4-179

20

"
SO

100

2N5883, 2N5884 PNP, 2N5885, 2N5886 NPN

PNPDEVICES
2N5883 ahd 2N5884

NPN DEVICES
2N5885 and 2N5886
FIGURE 8 - DC CURRENT GAIN

1000
700
50Of- TJ'1500C

z 300
;;:
'"
....

2~

20 0

::>

~

70
0

~

ffi

..,..,
C>

ul

r

10
0.3

VCP 4.0 V

'" 200

0

•

30

.;;:

r- ".........:: ~

~ 100

C>

z

i:""---

f--ssoC

15

1000
700
SO0

i==

VCE =4.0 V

0.3

O.S 0.7

2.0

1.0

IC. COLLECTOR CURRENT (AMPERES)

3.0

""~

5.0 7.0

r--..20

10

30

IC. COLLECTOR CURRENT (AMPERES)

FIGURE 9 - COLLECTOR SATURATION REGION
-

~

'"
w

~

'"

2.0

I I

1.61-

III

I

1~!oA- I\o~

ICI'2'u

lii

TJ = 25 0 C

'"~
w
'"
«
!:;
'">
'"w

20A

~

'">ox:

1.2

"-

~
~ o.8
ox:

~

1.6

II

1111

II
ICc 2.OA

:E
w

~

8

..,

ul
:>

I'.
0.02

O.OS

0.1

0.2

0.5

1.0

20A

1.2

~

0.8

....
'"

0
0.01

TJ = 25°C

lOA

S.OA

1=

'"

'"t:;
j O.4
..,'" .
ul

2.0

!:;

2.0

5.0

10

I'

1\

0.4

1\
o

0.01

0.02

0.05

lB. BASE CURRENT (AMPERES)

0.1

0.5

0.2

1.0

2.0

5.0

10

IC. COLLECTOR CURRENT (AMPERES)

FIGURE 10 - "ON'; VOLTAGES
2.0

2.0

,

I

TJ = 2S oC
1.6

~'"
~

V.
.......

D.8

'">,,:
0.4

o

0.3

V~E~VfE)=14IVI
VJE(!tI

~

!c\li

0.5 0.7

~
'"
:>

i'"
3.0

5.0 7.0

10

20

~ IV

1.2

0.8

~

30

IC. COLLECTOR CURRENT (AMPERES)

I

~~

VtE(sat) @lc/18 = 10

V

VBE@VCE=4V

>. O.4

I-'
2.0

L~
~Ir

w

,/

lID

1.0

~
'"
~

II

L..- i-:::~

VBE(sat) @IC/IB = 10

1
TJ = 2SOC

1.6

h

1.2

w

'"~.

~

0
0.3

V

V~E(~ti JIl/IBI = 10
0.5 0.7

1.0

.2.0

3.0

S.O

7.0

10

IC. COLLECTOR CURRENT (AMPERES)

4-180

20

30

2N5883, 2N5884 PNP, 2N5885, 2N5886 NPN

PNP DEVICES
2N5883 and 2N5884

NPN DEVICES
2N5885 and 2N5886
FIGURE 11 - TEMPERATURE COEFFICIENTS

+4.0

II

'-'

t- "Applies for IC/IB < hFE/2

Q

> +3.0

.s

~ +2.0

ffi

~

+1.0

~
w

I
IIIII
I IIII

0:

...
~
...ai

+3.0

I

~
z

+2.0

~

+1.0

:::>

-1.0

./

i,...-

-3.0
0.3

1.0

2.0

3.0

e

S.O 7.0

./

V.

i-"" /

..J....+1"

-"OVC for VCE("t)

/

w

0:

~

:::>

II
II

I IIII
O.S 0.7

II

-550C to +250C

'-'

jstc to t2SOlC -

~.

I
I

+2S oC to +IS00C ./

'-'

..i-

/
VV

+isoc lo +\sJoc

8VB for VBE

-2.0

.§

I
~

III I
III I
III I

"Applies for ICIIB < hFE/2

t-

3;

..vr:

f- "OVC for VCE(sa!)

u

+2S oC to +IS0 0C} ' - - -

-SSoC to +2SoC

U

+4.0

/

I I
I I

10

20

~

-1. 0

ai
t-

-2.0

i
30

--

J I L
8VB for VBE

-3.0
0.3

../

+2S0Ctot~

III
O.S 0.7

2.0

1.0

V
_r'

III
JSo,C jO iiSiC

3.0

S.O 7.0

20

10

30

Ie. COLLECTOR CURRENT (AMPERES)

IC. COLLECTOR CURRENT (AMPERES)

FIGURE 12 - COLLECTOR CUT·OFF REGION

r---- VCE

...~
ffi

:;:

B
0:

e

30 V

10 2
10 1

I==VCE 30V

Y

/

TJ +IS00C
/

:\OOOC

~

+2S 0C'=====

/

=TJ +IS0 0C

I

/

+1000C:: !i+2S0C= =====

1

/

/

10 0

:;;:::::::

~_

10- I-=---

E

10- 2

REVERSE

d==

FORWARD

e
'-'

IC=ICES

10- 3

+0.4

+0.3

+0.2

+0.1

-0.1

-0.2

L

REVERSE

IC iCES

10- 3

-0.3

-0.4

-O.S

+0.6

FORWARO

-0.4

-0.3

-0.2

-0.1

+0.1

+0.2

+0.3

+0.4

+O.S

+0.0

VBE. BASE·EMITTER VOLTAGE (VOLTS)

VBE. BASE·EMITTER VOLTAGE (VOLTS)

FIGURE 13 - EFFECTS OF EXTERNAL BASE·EMITTER RESISTANCE
10 8

,""

7

VCE 30V-

VCE-30V-

""

IC = 10 X ICES

V

""

IC - 10 X ICES

IC 2 x ICES

=

TvpicailCES values obtained
from Figure 12.=

......

IC~ICES'

"\..

cJs

Typicall
==
values obtained IC=2xICES - t- from Figure 12.:

""\..

"\..

f== =IC ~ ICES

10 2

10 2

o

"\..

20

40

60

80

100

120

140

160

180

200

TJ. JUNCTION TEMPERATURE (OC)

o

20

40

60

80

100

120

140

TJ. JUNCTION TEMPERATURE (OC)

4-181

160

lBO

200

2N5974,2N5975,2N5976 (SILICON)

PNP SILICON PLASTIC POWER TRANSISTORS

5 AMPERE
POWER TRANSISTORS

designed for use in general purpose amplifier and switching
applications.

PNP SILICON
41>-61>-80 va L TS
75 WATTS

.. DC Current Gain Specified to 5 Amperes
hFE=20·120@IC=2.5Adc
= 7.0 (Min) @ IC = 5.0 AdG
•

•

Coliector·Emitter Sustaining Voltage VCEO(sus) = 40 Vdc (Min) - 2N5974
= 60 Vdc (Min) - 2N5975
= 80 Vdc (Min) - 2N5976

o High Current Gain - Bandwidth Product fT = 2.0 MHz (Min) @ IC = 500 mAdc
• Complements to NPN Transistors 2N5977. 2N5978. 2N,5979

'MAXIMUM RATINGS
Symbol

2N5974

2N5975

2N5976

Unit

VeEO

40

60

SO

Vdc

Collector-Base Voltage

Ves

60

SO

100

Vdc

Emitter-Base Voltage

VES

5.0

Vdc

Ie

5.0
10

Adc

Base Current

IS

2.0

Total Power DiSSipation

PD

Rating
Collector-Emitter Voltage

Collector Current - Continuous
Peak

Adc
STYlE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE

Watts

@Te= 25 0 e
Derate above 25°C

75
0.60

-

Operating and Storage JunctIOn TJ,Tstg.

Temperature Range

-65 to +150

wloe

-

°e

NOTES:
1. DIM "0" UNCONTROLLED IN ZONE "H"
2. DIM "F" DIA THRU
3. HEAT SINK CONTACT AREA (BOTTOM)
4. LEADS WITHIN 0.005" RAD OF TRUE
POSITION (TP) AT MAXIMUM MATERIAL
CONDITION.

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
"Indicates JEOEC Registered Data for 2N5974 Series.

FIGURE 1 - POWER DERATING
0

-

D1M

l"-.

0--'

~----

~

"-

._-- - ' -

0
_.

.-

~

r--- --_.

..

-

10

40

60

0
F
G
H
J
K

-_.- 1 - -

~

0-'

o
o

A
B
C

.-

i'-..

M

n

"'- ",,80

100

120

140

R
U
V
160

MILLIMETERS
MAX
MIN

INCHES.
MIN MAX

16.13 16.38
12.57 12.83
3.43
3.18
1.09
1.24
3.51
3.16
4.22 8SC
2.67
2.92
0.813 0.864
15.11 16.38
go TYP
4.70 4.95
1.91
2.16
6.48
6.22
2.03

0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
0.166 BSC
0.105 0.115
0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0.075 0.085
0.245 0.255
0.080

CASE 90·05
TQ·127

TC, CASE TEMPERATURE I'C)

4-182

2N5974,2N5975,2N5976
*ELECTRICAL CHARACTERISTICS ITc = 250 C unless otherwise noted)
Characteristic

Svmbol

Min

Max

40
60
80

-

-

1.0
1.0
1.0

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lC = 100 mAde, IS = 0)

Vde

VCEO(sus)
2N5974
2N5975
2N5976

Collector Cutoff Current
(VCE = 20 Vde, 18 = 0)
(VCE = 30 Vde, IS = 0)
(VCE = 40 Vde, IS = 0)

mAde

ICEO
2N5974
2N5975
2N5976

-

Collector Cutoff Current

ICEX

(VCE = 60 Vde, VE8(off)~' 1.5 Vde)
(VCE = 80 Vde, VEB(o!f) = 1.5 Vde)
(VCE = 100 Vde, VEB(off) = 1.5 Vde)
(VCE = 40 Vde, VEB(o!f) = 1.5 Vde,
TC = 125°C)
(VCE = 60 Vde, VEB(olf) = 1.5 Vde,
TC=1250C)

2N5974
2N5975
2N5976
2N5974

--

-

100
100
100
1.0

2N5975

-

1.0

(VCE = 80 Vde, VEB(off) = 1.5 Vde,
TC = 1250 CI

2N5976

-

1.0

-

1.0

40
20
7.0

120

-

0.6
1.7

-

2.5

,-

1.4

2.0

--

-

300

20

-

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 01

~Ade

mAde

mAde

lEBO

ON CHARACTERISTICS
DC Current Gain
(lC = 0.5 Ade, VCE = 2.0 Vde)
(lc = 2.5 Ade, VCE = 2.0 Vdel
(lc = 5.0 Ade, VCE = 2.0 Vdel

-

hFE

Collector-Emitter Saturation Voltage
(lC = 2.5 Ade, IB = 250 mAde
(lC = 5.0 Ade, IB = 750 mAde

VCE(s.t)

Base-Emitter Saturation Voltage
(lC = 5.0 Ade, IB = 750 mAde)

VBE(satl

Base-Emitter On Voltage
(lC = 2.5 Ade, VCE = 2.0 Vde)

VBE(on)

-

Vde

Vde
Vde

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product (2)
(IC = 500 mAde, VCE = 10 Vde, f test = 1.0 MHzl

Output Capacitance
(VCB

= 10 Vde,

MHz

fT

pF

Cob

IE = 0,.1

= 0.1 MHz)

Small-Signal Current Gain
(lc = 0.5 Ade, VCE = 4.0 Vde, f = 1.0 kHz)

-

hfe

·Indlcates JEDEC Registered Data
(1) Pulse Test: Pulse WidthS-300 J,l.s. Duty Cycle$2.0%.

12) fT =

I hie I- f test
FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN-ON TIME

Vee

20

vcTd =~~~c r-

-30V

1.0
o.7
o. 5

SCOPE

Ra

IcllB

--

~ o. 3
w

'"

;=

51
Ir. tf!::10ns

+-40

OUTV CYCLE • 1 0"
RS and

Re VARIED TO OBTAIN

o.2

.......

v

DESIRED CURRENT LEVELS

0, MUST BE FAST RECOVERY TYPE, eg
MBOS30D USED ABOVE 18~ 100 rnA
MSD6100 USED BELOW 18 ..:::100 mA

--,-

I
~

5.0 V

11111

I

ld@ VBE(off)

0.07
0.05
0.0 3
0.02
0.05

--

r- r-i-

"-

O. 1

0.1

0.2

0.3

0.5

1.0

lC, COLLECTOR CURRENT (AMP)

4-183

t=

10

2.0

3.0

5.0

2N5974,2N5975,2N5976

FIGURE 4 - THERMAL RESPONSE

Inn

1.0

ffi

0.7 f:=D 0.5
N,O.5
1-::;
ffi ~ 0.3
pl2

in'"

1==

"';;:;

t----- t- O.l

~ ~ 0.2

1-""

~ ~ O. 11::::=
~ ~ 0.0 71==

•

Plpk)

---

'0.05

1

::--

I--: r,...-~

.

tl~

0.02

:±: ~ 0.05
w-'

OJClmax) - 1.67'CIW
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJ(pk)

TC

Plpk) OJC(I)

DUTY CYCLE, D -11/12

:g ~ 0.0 3 t----- rO.Ol

t-Single Pulse

~ 0.02

I-

1

0.0 1
0.01

I

0.02 0.03

0.05

11111 1 111 111 1111
0.1

0.2

0.3

0.5

1.0

2.0

3.0

10

5.0

20

30

50·

I I II 11llll

100

200

300

500

1000

I. TIME OR PULSE WIDTH 1m,)

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
0

--

0

--

01- TJ - 150'C
0

'"o

0

-- ---

~ . O. 5t--I[3
~

0.5 ms

'\,dc

SECOND BREAKDOWN LIMITED
BONDING WIRE LIMITED
THERMAL LIMITATION @TC- 250 C\ \

0,

\

1.Oms

depending on conditions. Second breakdown pulse limits are valid

for dUly cycles 1010% provided TJlpk);> ISo"C. TJ(pk) may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

5.0ms

2N5914
2N5915
2N5916

o1
1.0

10

20

average junction temperature and second breakdown.

Safe operating area curves indicate IC·VCE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
Thedala of Figure S is based on TJlpkl = IS00 C; TC is variable

Curves Apply Below Rated VCEO

O. 3
O. 2

5.0

There are two limitations on the power handling ability of a

transistor:

30

50

10

100

VCE. COLLECTOR EMITTER VOLTAGE (VOLTSI

FIGURE 6 - TURN·OFF TIME

5. 0

TJ-25'C t VCC - 30 Y-t ICII6 -10
161- 162-t -

3.O

2. 0

~
w

'"~~

O. 3

TJ-25'C.
300

-~

1.O
O. 1
O. 5

FIGURE 7 - CAPACITANCE
500

~ 200
z

~

t3
II

O. 2

It

"" r--

r--!-

~

I-r---

. . . r---"

Cib

~

U 100

O. 1
0.0 1
0.0 5
0.05

r---

r---

r-- ......

10

0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

IC, COLLECTOR CURRENT lAMP)

50
0.5

1.0

2.0

3.0

5.0

10

VR, REVERSE VOLTAGE IVOLTS)

4-184

20

30

.50

2N5974,2N5975,2N5976

FIGURE 8 - DC CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION

500
VCE" 2.0 V
300
200

'"'"~

-r-

ffi

;

20

r---.

g
tl

>
0.2

0.5

0.3

2.0

1.0

3.0

o.S

Q

10

0.1

1.2

alc:i:

~

""- r-...I'

§

5.0
0.05

2.5A

~

50
30

I--

-

-

0.4
0

10

5.0

20

50

30

+2.5

TJ = 25 0 e

3:G +2.0

'.

500

1000

'AP;hes

lor IIC/IIB "~FEI/41

..§. +1.5

1. 6

/

!2

'"

~.

G+1.0

~V
L,..,::::::V

Q

2:- 1. 2
w

'"

~

>

300

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 10 - "ON" VOLTAGES

2.0

'"

200

100

lB. BASE CURRENT (mA)

IC. COLLECTOR CURRENT (AMP)

Q

TJ = 25°C

5.0 A

IC = 1.0 A

Q

-55 0 C

I

II

1.6

w

'" 100

Q

2:-

25 0 C

u

II

Q

ITJ = 150 0 e

z
;C

~
i3

in 2.0
~

t--

O. B

'"~

/

0.1

0.2

0.3

i

I-

o
0.05

a:i
>-

V-

t-- vcL.,!@!c/i B = \0
0.5

1.0

2.0

3.0

j5tC to i250lC
-0.5

'"~ -1.0

V
5.0

<250C to
OVB for VBE

-1.5

-2.0
-2.5
0.05

0.1

0.2

.......V

~ I--'

·Ove for VCE(sat)

'"w

VBE @VCE 4.0 V
0.4

+0.5

o

~ IP

VBE( .. ,)@IC/IB= 10

:>

~

+25 0C to +150 oC V

03

0.5

+115~OC

V

tTr-

-

X

I--'

%

i r-

25 C

2.0

1.0

3.0

5.0

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

FIGURE 12 - COLLECTOR CUT-OFF REGION

FIGURE 13 - EFFECTS OF BASE-EMITTER RESISTANCE

10 3

10 M

VCE = 30 V

A

TJ=150oC

IC

10XICES_t

_VCE

30 V

IC = 2 X ICES
100°C

1

" ......

/ 25°C

IC = ICES

"-

,.-

""- ..........

Ie = ICES

1

F!== REVERSE

FORWARO=

'-..

=

10-3

+0.3

""-

(Typical ICES Values
Obtained From Figure 121

+0.2

+0.1

-0.1

-0.2

-0.3

-11.4

-0.5

-11.6

0.1 k
20

-0.7

VBE. BASE-EMITTER VOLTAGE (VOLTS)

40

60

80

100

120

TJ. JUNCTION TEMPERATURE (OC)

4-185

140

160

2N5977,2N5978,2N5979 (SILICON)

NPN SILICON PLASTIC POWER TRANSISTORS

5 AMPERE
POWER TRANSISTORS

designed for use in general purpose amplifier and switching
applications.

NPN SILICON
.. DC Current Gain Specified to 5 Amperes
hFE = 20·120@ IC = 2.5 Adc
= 7.0 (Min) @ IC " 5.0 Adc

40·60-80 VOLTS
75 WATTS

o Coliector·Emitter Sustaining Voltage VCEO(sus) = 40 Vdc (Min) - 2N5977
= 60 Vdc (Min) - 2N5978
= 80 Vdc (Min) - 2N5979
.. High Current Gain - Bandwidth Product
fT = 2.0 MHz (Min) @ IC = 500 mAdc
.. Complement to PNP Transistors 2N5974,2N5975,2N5976

*MAXIMUM RATINGS
2N5977

2N5918

2N5919

VeEO

40

60

80

Vdc

Collector-Base Voltage

Vee

60

80

100

Vdc

Emitter-BaS(: Voltage

VES

5.0

Vdc

Ie

5.0
10

Adc

Base Current

IS

2.0

Total Power Dissipation
@Te = 25 0 e
Derate above 25°C

Po

Rating

Symbol

COllector-Emitter Voltage

Collector Current - Continuous
Peak

Operating

Unit

Adc

Watts
75
0.60

-

and Storage Junction TJ,Tstg

Tem'perature Range

STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. BASE

wloe

-65 to +150

---

°e

NOTES:
1. DIM "0" ~NCONTROLLEO IN ZONE "H"
2. DIM ·'F" OIA THRU
3. HEAT SINK CONTACT AREA (BOTTOM)
4. LEAOS WITHIN 0005" RAO OF TRUE
POSITION (TP) AT MAXIMUM MATERIAL
CONOITION.

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
-Indicates JEDEC Registered Data

FIGURE 1 - POWER DERATING
DIM

80

t--

t'--"

o
o

20

A

",,--

40

8
C

""

60

0
F

'"
80

G
H

'"'" '"
100

120

J
K
M
Q

R
U
V

~

140

160

MILLIMETERS
MAX
MIN

INCHES
MIN
MAX

16.13 16.38
12.57 12.83
3.1B
3.43
1.24
1.09
3.51
3.76
4.22
2.92
2.67
0.813 0.864
15.11 16.38
gOTYP
4.70 4.95
1.91
2.16
6.48
6.22
2.03

0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
0.166 SSC
0.105 0.115
0.032 0.034
0.595 0.645
go TYP
0.IB5 0.195
0.D75 0.085
0.245 0.255
0.080

sse

eASE 90·05
TO-127

TC. CASE TEMPERATURE IOC)

4-186

2N5977, .2N5978, 2N5979

*ELECTRICAL CHARACTERISTICS (TC" 25°C unlo .. othorwise notedl
Chorootoristic

Symbol

Min

Mo.

40
60
80

-

-

1.0
1.0
1.0

Unit

OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage (1)

(lC" 100 mAde, IB

= 01

Collector Cutoff Current

'(VCE
(VCE
IVCE

Vde

VCEO(susl
2N5977
2N5978
2N5979

mAde

ICEO

= 20 Vde,IB" 01
= 30 Vde, IS" 01
= 40 Vde,IB = 01

2N5977
2N5978
2N5979

-

-

Collector Cutoff Current

ICEX

IVCE = 60 Vde, VESloll1 = 1.5 Vdcl
IVCE = 80 Vde, VEBloifi = 1.5 Vdel
IVCE = 100 Vde, VEB(olfi = 1.5 Vdel
IVCE = 40 Vde, VEBloffi = 1.5 Vde,
TC" 125 0 CI
IVCE = 60 Vde, VEB(offi " 1.5 Vde,
TC" 1250 CI
IVCE " 80 Vde, VEBloffi " 1.5 Vdc,
TC" 1250 CI

-

2N5977
2N5978
2N5979
2N5977

-

100
100
100
1.0

2N5978

-

1.0

2N5979

-

1.0

-

1.0

40
20
7.0

-

-

Emitter Cutoff Current

,.,.Adc

mAde

mAde

lEBO

IVBE " 5.0 Vde, IC " 01

ON CHARACTERISTICS
DC Current Gain

-

hFE

(lC "0.5 Ade, VCE " 2.0 Vdel
(lC" 2.5 Ade, VCE " 2.0 Vdcl
(lC" 5.0 Adc, VCE " 2.0 Vdel
Collector-Emitter Saturation Voltage

Base-Emitter Saturation Voltago

(lc

VBElsat)

= 5.0 Ade, IB = 750 mAdel

Base-Emitter On Voltage
IIC" 2.5 Adc, VCE " 2.0 Vdcl

Vde

VCEls.tl

(lC" 2.5 Ade, IB = 250 mAde I
(lC" 5.0 Adc, IB "750 mAdel

120

-

0.6

-

2.5

-

1.4

2.0

-

-

200

20

-

1.7

Vde
Vde

VBElonl

DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product (2)

(lC" 500 mAde, VCE " 10 Vde, I test

MHz

IT

= 1.0 MHzl

Output Capacitance

pF

Cob

(VCB" 10 Vdc,IE" 0, I" 0.1 MHzl
SmaU-5ignal Current Gain

(lC "0.5 Ade, VCE " 4.0 Vdc, I

-

hie

= 1.0 kHzl

·Indlcates JEDEC Reglstored Data
(1) Pulso Test: Pul50 Width:s'300 Ils, Duty CycleS2.0%.
(2) fT

I

I

= hfe 0 f test

FIGURE 2 - SWITCHING TIME TE'ST CIRCUIT

FIGURE 3 - TURN-ON TIME
2.0

VCC
+30 V

T}=250~

1. O

- t-

Yc9fB-_3~OV= F

=

0.1
0.5
SCOPE

RB

:g

0.3

~

0.2

;::
51

tr. tl:::=:10 0$
DUTY CYCLE ~ 1.0%

........

.......

. . . S'

_

O. 1

r--

r-

..............
td@ VBElom

~

0.D7
0.05

-4 V

RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

5.0 V

t::"

r-

0.03

01 MUST BE FAST RECOVERY TYPE, ego
MBD5300 USED ABOVE IB ~100 mA
'MSD6100 USED BELOW IB ~100 mA

0.02
0.05

0.1

0.2

0.3

0.5

1.0

IC, COLLECTOR CURRENT IAM'PI

4-187

2.0

3.0

5.0

2N5977,2N5978,2N5979

FIGURE 4 - THERMAL RESPONSE

_

1.0
0.1

~

0.5

.... :;

:==0=0.5

ffi ~

O. 3c::=

:i ~

0.2



~ 1.0

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.

.....

3,0 I--- TJ = 150°C

SECOND BREAKOOWN LIMITED

0.5 ms

~ de

I'\.

-::.::- ~~~~~NAGL~\~~T~~IIJ~~TC = 250C\ \

\

1.0 ms

Thedalaof Figure 5 is based on TJ(pk}

c

=
~ 0.5
8

~

I--- I-

for duty cycles to 10% provided T J(pk}";; 150°C. T J(pk} may be

\\.

03

0.2
O. I

5.0

= 150°C; TC is variable

depending on conditions. Second breakdown pulse limits are valid
Curves Apply Below Rated VCEO

7.0

10

2N5911
2N5918
2N5979
20

calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be' handled to
values less than the limitations imposed by second breakdown.

5.0ms

T
30

70

50

100

VCE. COLLECTOR EMITTER VOLTAGE iliDLTS)

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN·OFF TIME

30 0

5. 0

2.O
Is

1.0

tVce =30 V
leliB =10 }-}-IBI =IB2

~

.

J

r....... ,....

o.2

l"'"'- t--

«
....

10 0

~

0

~

;:;

........

o. 3

T)25 C - 1--"-

200

oS

'"'-'z

], o.7
:E o. 5
;:::

I I

TJ~250e

3. 0

. Ii'

-

~

'-'

1,..-

u

t-

O

o. 1
0.0 7
0.05

0.05

t-

3O

0.1

0.5
1.0
0.2 0.3
IC. COLLECTOR CURRENT (AMP)

2.0

3.0

5.0

0.5

1.0

2.0

3.0

5.0

10

VR. REVERSE VOLTAGE (VOLTS)

4-188

20

30

50

2N5977,2N5978,2N5979

FIGURE 8 - DC CURRENT GAIN

-

500
300
TJ = 150'C

100

1

z

~
....

as

~

70
50

'-'

30

B
co

I

100

In

.,

1. S

>

a:

1.1

a,

~

O. 8

~8

o. 4

w

IC = LOA

'"e~

~

r-- I--

~

.......

~

>
1.0

3.0

5.0

u

3;
. tu
U

1.1

--=

VBE("'t)@IC/IB-l0

O.B

JBE
0.4

i i
~ t
VfE

vlE(lu

o
0.05

0.1

0.1

IJ/IB

10

0.3

0.5

~ F""

-

4.01V

1.0

~

~

w

'"
>
>'

.

+2. 0

w

=VCE=30V
101

1---.....

~

-1.0

i

3.0

....

~ 10 I

0:

10 0

~j

10- I

e
'-'

:?

5.0

+150clt!~

-1.5

0VB FOR VBE

-2.0
-2.5
0.05

J

I II
0.1

0.2

0.3

.......

"-

0.5

2.0

1.0

3.0

5.0

=

r J T

IC = 10 x ICES

K

IC

=

2 x ICES

I-- I -

k

IC = ICES

k

IC=ICES

F;;;::

r--..
FORWARO

-D. 1
+0.1 +0.1. +0.3 +0.4 +0.5
VBE. BASE·EMITTER VAOLTAGE (VOLTS)

--

FIGURE 13 - EFFECTS OF BASE-EMITTER RESISTANCE
10 M
VCE = 30 V=

15°C

-0.2

V

-

-550C to +25 0 C

10UoC

10-2~REVERSE

/

IC. COLLECTOR CURRENT (AMP)

/.

10-3
-0.3

n :.J.--t

'OVC FOR VCE(sat)

·55 0 C to +25 0 C

~

~
1ll
....

/

1.0

7

TJ=150'C

a:

1000

"/

+25 0 C to +150OC

+0. 5

-0. 5

FIGURE 12 - COLLECTOR CUT'()FF REGION

e

500

+1.0

8

10 3

B

300

·~WES FolR IC~IB ~ hlFE/l

IC. COLLECTOR CURRENT (AMP)

j

100
100
50
lB. BASE CURRENT (rnA)

.§ +1. 5
'"z

Cl

'"

30

FIGURE 11 - TEMPERATURE COEFFICIENTS

+J= 15,h

~

10

+1. 5

1.S

2:

5.0A

\ ...

0
10

FIGURE 10 - "ON" VOLTAGES
1.0

"'co~

1.5A

e

10

0.1 0.3
0.5
1.0
IC. COLLECTOR CURRENT (AMP)

T1J5rJ

~

.......

0.1

-If

e

2:

-55'C

7.0
5.0
0.05

II

~

VCE = 1.0 V c---

15'C

~ 20

FIGURE 9 - COLLECTOR SATURATION REGION
1. 0

k

+O.S

+0.7

4-189

i== lTypicallCES V.lues •
!::: •obtaIned from ~igure .11)

0.1 k
20

40

.....

so
80
100
120
TJ. JUNCTION TEMPERATURE (OC)

....
140

lS0

2N5986,2N5987,2N5988 PNP
-2N5989,2N5990,2N5991 NPN

(SILICON)

12 AMPERE

HIGH POWER PLASTIC
COMPLEMENTARY SILICON POWER TRANSISTORS

POWER TRANSISTORS
COMPLEMENTARY SILICON

· .. designed for use in general·purpose amplifier and switching circuits.

40,60, 80 VOLTS
100 WATTS

o Coliector·Base Voltage - VCBO = 60 Vdc - 2N5986. 2N5989
= 80 Vdc - 2N5987. 2N5990
= 100 Vdc - 2N5988. 2N5991

•

• Collector·Emitter Voltage - VCEO

= 40 Vdc - 2N5986. 2N5989
=

60 Vdc - 2N5987. 2N5990

= 80 Vdc - 2N5988. 2N5991
• DC Current Gain hFE = 20·120@ IC = 6.0 Adc
= 7.0 (Min) @ IC· = 12 Adc
o Collector· Emitter Saturation Voltage -;VCE(sat) = 0.7 Vdc (Max) @ IC = 6.0 Adc

"MAXIMUM RATINGS
Rating

Collector-Base Voltage
Collector-Emitter Voltage

Emltter·Base Voltage

Symbol

2N5986
2N5989

2N5987
lN5990

2N5988
2N5991

Unit

Ves

60

80

100

Vdc

VCEO

40

60

80

Vdc

VEB

Collector Current - Contmuous

- 'e

Peak

Base Current
Total Power DissipatIon
Derate above 2SoC

@

TC

:=

2SoC

Operating and Storage Junc110n

5.0

Vdc

12
20

Adc

IS

4.0

Adc

Po

100
O.S

Watts
w/oe

TJ. T stg

-65 to +150

°e

STYLE 2:
PIN 1. EMITTER
2. COLLECTOR
3. 8ASE

Temperature Range

NOTES:
1. DIM ·'0" UNCONTROLLEO IN ZONE "H"
2. DIM "F" OIA THRU
3. HEAT SINK CONTACT AREA (BOTTOM)
4. LEAOS WITHIN 0.005" RAG OF TRUE
POSITION (TP) AT MAXIMUM MATERIAL
CONOITION.

THERMAL CHARACTERISTICS
Charactoristic
Ther';nal Resistance. Junction to Case
-Indicates JE DEC Registered Data

FIGURE 1 - POWER DERATING

DIM
100

'"

0

A
B
C

i'..

"-

0

D

F

"-

G

"-

0

H
J

K

"-

M
Q

0

""-

0
10

60

80

100

Te. CASE TEMPERATURE lOCI

120

"

140

R
U
V

MILLIMETERS
MAX
MIN

INCHES
MIN
MAX

16.13 16.38 0.635 0.645
12.57 12.83 0.495 0.505
3.18
3.43
0.125 0.135
1.09
1.24
0.043 0.049
3.51
3.76
0.138 0.148
4.22 BSC
0.166 BSC
2.61
2.92
0.105 0.115
0.813 0.864 0.032 0.034
15.11 16.38
0.595 0.645
90 TYP
90 TYP
4.70
4.95
0.185 0.195
1.91
2.16
0.015 0.085
6.22
6.48
0.245 0.255
2.03
0.080

160

4-190

CASE 90·05
TO·127

2N5986, 2N5987, 2N5988 PNP /21\15989, 2N5990, 2N5991 NPN

*ElECTRICAl CHARACTERISTICS (TC: 2SoC unlessolherwise nOledl
Charcctoristic

Symbol

Min

Max

40

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

Vde

aVCEO(susl

(lc : 0.2 Ade, la : 01

2NS986, 2N5989
2N 5987, 2N 5990
2N5988, 2N5991

Collector Cutoff Current
(VCE : 20 Vde, 'a: 01
(VCE : 30 Vde, Ie : 01
(VCE : 40 Vde, la: 0)

60
80

mAde

ICED

-

2N5986,2N5989
2N5987,2N5990
2N5988,2N5991

-

Collector Cutoff Current
(VCE = 60 Vde, VaE(off) : 1.5 Vdel
(VCE : 80 Vde, VSE (offl = 1.5 Vdel
(VCE: 100 Vde, VSE(off) : 1.5 Vdel
(VCE: 40 Vde, VSE(off) = 1.5 Vde, TC: 125°C)
(VCE : 60 Vdc, VSE(off) = 1.5 Vde, TC: 12SoCI
(VCE : 80 Vdc, VSE(off) : 1.5 Vde, TC: 125°C)

2.0
2.0
2.0
/lAde

'CEX

-

2N5986,2N5989
2N59S7,2N5990
2N5988,2N5991
2N5986, 2N5989
2N5987,2N5990
2NS988, 2N 5991 •

-

200
200
200
2.0
2.0
2.0

-

1.0

40
20
7.0

120

-

0.7
1.7

-

-

Emitter Cutoff Current

~mAdc

mAde

'EaD

(VSE : 5.0 Vde, IC = 01

ON CHARACTERISTICS
DC Current Gain

-

hFE

(lC: 1.5 Ade, VCE = 2.0 Vde)
(lc : 6.0 Ade, VCE : 2.0 Vdcl
(lc: 12 Ado, VCE : 2.0 Vde)

COllector·Emitter Saturation Voltage

Vdc

VCE(sa,)

(lC: 6.0 Ade, IS: 0.6 Ade)
(lC: 12 Ado, la: 1.8 Adel

Base-Emitter Saturation Voltage

,.
Vdc

VaE(sa!)

(lc = 12 Adc, IS ~ 1.8 Adcf

Base-Emitter On Voltage

-

2.5

-

1.4

2.0

-

-

500
300

20

-

Vde

VaE(onl

(lC : 6.0 Adc, VCE : 2.0 Vdel

DYNAMIC CHARACTERISTICS
Current-Gain - BandWIdth Product
(lC: 0.5 Ade, VCE: 10 Vde, f tcst : 1.0 MHzl
Output Capacitance
(VCS: 10 Vdc, 'E: 0, f: 1.0 MHzl

pF

Cob
2N5986 thru 2N5988
2N5989 thru 2N5991

Small-Signal Current Gain
(lC : 2.0 Ade, VCE : 4.0 Vde, f

MHz

fT

-

hfe

= 1.0 kHz)

-Indicates JEOEC Registered Datil.
(1) fT:::; Ihfel· f test

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - TURN·ON TIME
2.0

VCC
+30 V

vUJJJ

1.0

IC=101~=

TJ· 25"C-

0.5

SCOPE

~
w

:;

;::

0.2

:-...

~

t r.lf-:;:10ns
DUTY CYCLE' 1.0%
RS and

0.1

Re VA.RIED TO OBTAIN DESIRED CURRENT lEVelS

I,

--

Id@l VBE(off) ~ 5.0 V

2N598612N5988
5

'--T-11 2i j8f'fj5991
0.02
0.2

For PNP test circuit reverse diode and voltage polarities.

0.5

1.0

-~
2.0

...
5.0

Ie, COLLECTOR CURRENT (AMP)

4-191

=

~~

...... ::-::::;:-

0.05

0, MUST BE FAST ReCOVERY TVPE,eg
MBD5300 USED ABOVE '0 ..,..100 rnA
MSDlil00 USEO BELOW IS """100 mA

=
-

10

20

2N5986, 2N5987, 2N5988 PNP / 2N5989, 2N5990, 2N5991 NPN

FIGURE 4 - THERMAL RESPONSE

w

'"
~
t;;

ffi

~c
~~

1.0
o.7
o.5

0=0.5

0.3
O.2

0.2

--

0.1

~;;(

O. 1
0.05
~ 0.07
>~ 0.05 0.02.......

t-

wO

•

i
w

-

? 'J-."

0.03
0.02

,.............

0.0 1
0.01

"'-

0.02

-

-,............. --=

t:::; ~
I-'"

::;;.

.01
I I

rriWii
0.05

0.1

0.2

0.5

2.0

1.0

fnn
~I~
5.0

OJC!t) = r(l) OJC
OJC = 1.250C/I'I Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME ATIJ
TJ(pk) - TC = P(pk) OJC!t)

DUTY CYCLE. O· 11/12
IIII
I
I I I IIIII
20
50
100
10

I

I
200

I I I I
500
1000

I.TIME(ms)

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA

li:

o-----I-f--

~

~

~~

~

~

~

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.

d;~I\~'O ms

5.0

Safe operating area curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.

\
2.0

TJ"'150DC

\

[\\

Curv.. Apply Belo;" Rated CEO
\ \
'
'SECOND BREAKDOWN LIMITED
- BONOING WIRE LIMITED
.
~ 0.5 -- - - - - - THERMAL L1MITATlON@TC=250C

= 1.0 - 8

5.0ms

1\

The data of Figure 5 is based on T J(pk) = 150°C; T C is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles 10 10% provided T J(pk) .;; 150°C T J(pk) may be
calculated from the data in Figure 4. At high case temperatures,

1\

1---t--Ir-+-+-H+~~~mJ~m~ -\.

0.2~=~t=11j~p
IJjltt~2N~59~88~.2~N~59~9~1!!~ew
1.0

2.0

5.0

10

20

50

thermal limitations will reduce the power that can-be handled to
values less than the limitations imposed by second breakdown.

100

VCE. COLLECTOR·EMITIER VOLTAGE (VOLTSI

FIGURE 6 - TURN·OFF TIME

FIGURE 7 - CAPACITANCE

5.0

1000

2.0 ~

-

--

~~

1.0

:!
w

VCC-lOV 181=IB2 IC = 10 18
r-TJ = 25°C
"~

z
;:'"

-!!..

'".,

0.1

300
L;

..
'"

--

--

0.2

500

w

0.5

;::

TJ = 250C-

700

.; 200

1.0

2.0

-- .....::
"-

....

~

r--,

Cib

t--~

i"i

- - - - 2N5986/2N5988

2N598612N5988

0.5

...

~

1= -----2N598912N5991

0.05
0.2

..:::.......

5.0

10

20

IC. COLLECTOR CURRENT (AMP)

4-192

100
0.5

1~11-2N59rNr
1.0

2.0
5.0
10
VR. REVERSE VOLTAGE (VOLTS)

...........
Cob

........

~ i'-..
.....
20

.~

50

2N5986, 2N5987, 2N5988 PNP / 2N5989, 2N5990, 2N5991 NPN

NPN
2N5989 thru 2N5991

PNP
2N5986 thru 2N5988
FIGURE 8 - DC CURRENT GAIN

300

1000
II

200
z 150

t-

;;:

"

iii

~ 70

z

::l

I

- ... '"

I
0.3

0.5

2.0

1.0

'"'~

50

-55°C

0

3.0

5.0

r-..

10

20

10

!:lc

2

w

'"~

2.0

0.5

0.2

6.0A

12 A

2

w

'"
«
~
'"
~

-

1.2

~

:ii

~

0
30

~_

-

~-

W

'"'

1.6

100

200

300

500

0.8

\

'\

~

0
30

2000 3000

50

-f-

\

0.4

8

1000

TJ = 25°C

1.2

>

50

12A

6.0 A

c

8
>

1T

1

IC = 3.0 A

:ii

"! 0.8

0.4

20

10

~

'"
12

'"'j

"'

!:lc

TJ=250C

c

~

5.0

IC. COLLECTOR CURRENT (AMPI

,

III

1.6

2.0

1.0

FIGURE 9 - COLLECTOR SATURATION REGION
_ 2.0

IC =3.0 A

~

I'r-.

0

IC. COLLECTOR CURRENT (AMPI

_

I'--

'"

~

20

2:t'

100

::>

....... ;::..

-55°C
30

IZ

......

VCE=2.OV

I

200

'"

-f-.

T~ ~ 1500h

30 0

;;:

~50C

'"'
c 50

15
0.2

500

VCE = 2.0 V

'l...

13

~

I I

II

TJ=+1500C

r-

~ 100

I

70

100

200

300

500

2000 3000

1000

lB. BASE CURRENT (mAl

lB. BASE CURRENT (mAl

FIGURE 10 '- "ON" VOLTAGES

2.0

2.0

TJ= 25°C
TJ = 25°C

s

I..

1.6

~V'

w

g

s

I;

o
21.2

'"~

1.6

VBE(satJ@IC/IB= 10
0.8

~

i..-

o

II

w

'"~

«

=!=FI---

,;

c

o

0.2

0.3

0.5

i"ir

..--

0.4

I IIJ I

V

2.0 3.0
5.0
1.0
IC. COLLECTOR CURRENT (AMP)

I:;:::~

I
VBE!on) @~CE = 2;0 VI

>

I IJc~lsat) @IC/IB = 10

I I

V8E!sat)@ICII8= 10 i--

0.8

,;

VBE(onl@VCE" 2.0 V
0.4

~

1.2

2

~ I )1

10-

-10

1IIIICf(satJi~
10

20

0
0.2

0.3

0.5

1.0

2.0

3.0

5.0

IC. COLLECTOR CURRENT (AMP)

4-193

10

20

2N5~86,

2N5987, 2N5988 PNP/2N5989, 2N5990, 2N5991 NPN

PNP

NPN

2N5986 thru 2N5988

2N5989 thru 2N5991

I
FIGURE 11 - TEMPERATURE COEFFICIENTS

2.0
1.6
1.2
I-

:Ii
u

~

O.B
0.4

o

r-

I
I I I I I '~.
"Applied lor ICIIB <;; ~
5

I
"OVelfor JcEI(..!)

-

w

•

-0.4

ffi

-0.8

~l -

-1.2

~

i

-1.6

~
I I I

250C to 150 0C

......
i.::=~

~

OVB for VBE

8

I{/

V

!S

V

'"":55~:~

'-'

'":::>

I
25 0C to 1500C

V. .

0.3

0.5 0.7

1.0

+ '1i

1.0 1-+--1-+-++.1 1t-l+ --t--!b:l-:-l=;I;;--t-+:7ftt--+-J
1 1 11
-~5 to +1500 C
j,
0.5

"OV~ f~~ V'C~(~t) l--+--+--H1-t-:~L"Pf.d+I~Vf-t--l

~~~FH##t+I-!~~
~ -0.5 HH----1--l-t-H-tt_+_25t-0_Ct-t0-t'5_0-j°~H"""-t:¥t-ttV"T"+--j

-55 0C to 250C

!!'_~

-1.0 I--jI-+---1H-+++++_+_-t=5:..5f=t0-t~5:.....
o-,,!C,i7'i
..... Q--t.I'ft-+-l
OVB for VBE
.....

~:> f-blJ:l:~~'~'~~;~~-::~~i~:+~~~~~+==~~
-1.5
-2.0

:t

-2.0
0.2

I

2.5
II . I I II I.ll
2.0 -"ApPIo"forIC/lB<;;~-I--+-H-HH--t-I-H,-r
,-t--i
1.5
' ) ""
25 to 1500C
1/

G
~
.§

2.0

3.0

5.0

7.0

20

10

... - 2.5 L..l-*"-J......,L,-LI.,.,iJ..'-:':----'--::-'::-'--::'::---''-:'::--'-=':::L..L:'::----''--:!
0.2
0.3
0.5 0.7 1.0
2.0
3.0
5.0 7.0 10
20
IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

FIGURE 12 - COLLECTOR CUTOFF REGION
103

:;:

10 2

.:;

~
'"'"
=>
'-'
'"
0

103
VCE' 30 V

r-- VCE' 30 V
:;:

---:; io"-100oC --, "--250C

t::::-TJ"50 0C
10 1

102

.:;
I-

,

:Ii
a:

'"::>

100

'-'
a:

'-'

~
S

<} 10- 1

<} 10-2

IC -ICES
10- 1

10- 3 1
+11.4

+11.2

lO-

Ic -ICES

'~ REVERSE ~ =t::FORWARO
lor

FOR~ARO

REVjRSE

+11.3

25°C

100

0

I-

~<=>

TJ' 150 0C ~ ~ -100oC

10 1

+11.1

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

10- 3
-0.2

-0.1

VBE. BASE·EMITTER VOLTAGE (VOLTS'

+0.1

+0.2

+0.3

+0.4

+0.5

VBE. BASE·EMITTER VOLTAGE (VOLTS'

FIGURE 13 - EFFECTS OF EXTERNAL BASE·EMITTER RESISTANCE
10 7

.'\.

'"

......

"

VCE' 30 V-

r.....

......

.......

"-

r-....
lC ~ ICES

lC' 10ICES_

BO

..........
........

r-...

-

VCE' 30 V'C'5ICES'

..........

........

.......

,

p....; -IC' 2 IcES' 120

140

.......

f-,

160

TJ. JUNCTION TEMPERATURE (DC'

~EE F,'GU,E 12.,

40

60

........

........

,

80

100

120

TJ. JUNCTION TEMPERATURE (DC'

4-194

........

I-I--

IC ~ 'CES

F= FOR TYPICAL ICES VALUES
10 2
20

-

.... 'C·2ICES

........
.........

.........

.........
100

.....,.

........

FOR TYPICAL ICES VALUES
, SEF FI~URE1'2. L
60

-

.......

.......

.......

40

-

140

160

2N6034? 2N6035, 2N6036 PNP
2N60l1? 2~60389 2N6039 NPN

(SILICON)

PLASTIC DARLINGTON COMPLEMENTARY
SILICON POWER TRANSISTORS

DARLINGTON
4-AMPERE

... designed for general·purpose amplifier and low·speed switching
applications.
.. High DC Current Gain hFE = 2000 (Typ) @ IC

COMPLEMENTARY SILICON
POWER TRANSISTORS

= 2.0 Adc

40, 60, 80 VOLTS
40WATTS '

.. Coliector·Emitter Sustaining Voltage - @ 100 mAdc
VCEO(sus) = 40 Vdc (Min) - 2N6034, 2N6037
= 60 Vdc (Min) - 2N6035, 2N6038
= 80 Vdc (Min) - 2N6036, 2N6039
o Forward Biased Second Breakdown Current Capability
IS/b = 1.5 Adc @ 25 Vdc
o Monolithic Construction with Built·ln Base·Emitter
Resistors to Limit Leakage Multiplication
o Space·Saving High Performance·to·Cost Ratio
TO·126 Plastic Package
"MAXIMUM RATINGS
Rating

Symbol

COllector-Emitter Voltage

VCEO

Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB

Collector Current

Continuous
Peak

2N6034 2N6035 2N6036
2N6037 2N6038 2N6039
40
60
80
40
80
60
5.u_

.

4.08.0-

IC

Base Current

.

10040
PD
-0.321.5PD
-0.012-65'0+150TJ,T st9
IB

Total Power DisSipation @TC - 2SoC

Derate above 25°C
Total Power DISSipation @ T A == 2SoC

Derate above 25°C
Operating and Storage Junction

Temperature Range

Thermal Resistance, Junction to Ambient

-"" l~

i;.

"-

z

0

>=
it
~ 2.0

-

20

C

...;:'"
~

~

to
o

..............

10

0

o

20

~+··r;tF

~~t
:: + ;:
II

mAde

Watts

~~
~H

wf'c
Watts

wf'c

°c

II

~lJ.l

40

t

00

"

........

DIM
A
B
C
D
F
G
H

TC

'"

~

~

J

"'-" "'-r-::

10~

~

~'f
K

L-lLJ
STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3 BASE

NOTES
I. MT ~ MAIN TERMINAL
2. LEADS. TRUE POSITIONED
WITHIN 0.25 mm 10.010) DlA.
TO DIM. ··A·· & ··B·· AT
MAXIMUM MATERIAL
CONDITION.

FIGURE 1 - POWER DERATING

!;{ 3.0 30

Vde
Ade

E3_
1
M--il-

*Indicates JEDEC Registered Data.

~

Vde

;-G

Characteristic
Thermal Resistance, Junction to Case

4.0 40

Vde

~D

THERMAL CHARACTERISTICS

TA TC

Unit

IW

K
M

n

R
S
U

~

140

160

V

MILLIMETERS
MIN
MAX

10 80
7.49
2.41
051
2.92
2.31
1.27
0.38
15.11

11.05
7.75
2.67
0.66
318
2.46
2.41
0.64
16.64

30 TYP
401
140
0.64
0.89
3.94
3.68
1.02
3.76
1.14

INCHES
MIN
MAX

0.425 0.435
0.295 0.305
0095 0.105
0.020 0.026
0.115 0125
0.091 0.097
0.050 0.095
0.015 0025
0.595 0.655
30 TYP'
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155
0.040

CASE 77·04
TO·126

T, TEMPERATURE (DC)

4-195

2N6034, 2N6035, 2N6036 PNP
2N6037, 2N6038, 2N6039 NPN

'ELECTRICAL CHARACTERISTICS IT C: 25°C unloss o,he,wose no,ed)

I

Min

Max

40
60
SO

-

-

-

100
100
100

2N6034, 2N6037
2N6035, 2N6038
2N6036, 2N6039

-

100
100
100

2N6034, 2N6037

-

500

2N6035, 2N603S

-

500

2N6036, 2N6039

-

500

-

-

-

0.5
0.5
0.5

-

2.0

500
750
100

15,000

Characteristic

Symbol

Unit

OFF CHARACTERISTICS
Collector·Emltter Sustaining Vortage

IIC

= 100 mAde,

IS

= 0)

Collector-Cutoff Current

(VCE = 40 Vde, IS = a)
(VCE = 60 Vde, Is = a)
(VCE = SO Vde, IS = a)

•

2N6034,2N6037
2N6035, 2N603S
2N6036, 2N6039
ICEX

Collector Cutoff Current

2N6034, 2N6037
2N6035, 2N6038
2N6036, 2N6039

Emitter Cutoff Current

IESO

(VSE = 5.0 Vdc, IC = 0)
ON CHARACTERISTICS
DC Current Gain

~A

mAde

hFE

(lC = 0.5 Ade, VCE = 3.0 Vde)
(lC = 2.0 Ade, VCE = 3.0 Vde)
(lC = 4.0 Ade, VCE = 3.0 Vde)
COllector-Emitter Saturation Voltage

i

mAde

-

-

Vde

VCE(sa')

-

(lC = 2.0 Ade, IS = 8.0 mAde)
(lC = 4.0 Ade, IS = 40 mAde)
Base-Emitter Saturation Voltage

= 4.0 Ade,IS

~A

ICSO

(VCS = 40 Vde,IE = 0)
(VCS = 60 Vde, IE = a)
(VCS = 80 Vde,IE = 0)

(lC

-

ICED

Collector Cutoff Current

(VCE = 40 Vde, VSE(oll) = 1.5 Vde)
(VCE = 60 Vde, VSElolf) = 1.5 Vde)
(VCE = SO Vde, VSE(off) = 1.5 Vde)
(VCE = 40 Vde, VSE(off) = 1.5 Vde
TC = 125°C)
(VCE = 60 Vde, VSE(off) = 1.5 Vdc
TC = 125°C)
(VCE = SO Vde, VSE(off) = 1.5 Vdc
TC = 125°C)

Vde

VCEOlsus)
2N6034, 2N6037
2N6035, 2N603S
2N6036,2N6039

-

2.0
3.0

VBElsatl

-

4.0

Vde

VBElon)

-

2.S

Vde

= 40 mAdcl

Base-Emitter On Voltage
(lC = 2.0 Ade, VCE = 3.0 Vdcl
DYNAMIC CHARACTERISTICS
Small-Signal Current-Gain
lic = 0.75 Ade, VCE = 10 Vde, f = 1.0 MHz)

Ihlel

Output Capacitance

1.0

.

-

-

pF

Cob

-

(VCS = 10 Vde,lE =0, I = 0,1 MHz) 2N6034, 2N6035, 2N6036
2N6037, 2N603S, 2N6039

200
100

-

* Indicates JEOEC Registered Data.

FIGURE 3 - SWITCHING TIMES

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT
4.

Vee
-3UV

RB & Re VARIED TO OBTAIN DESIRED CURRENT LEVElS
01. MUST BE FAST RECOVERY TYPES. e.g ..
MBD5300 USED ABOVE IB "'" 100 mA
MS06100 USED BElOW 18 "'" 100 rnA

Re

v,

'~f;O~--I'

I

tr.tf< IOns
~UTY

CYCLE

=

1.0%

~ 1.0

>= O.S

,C><.

O. 6
2•• _

for tdend t •• 01 IS disconnected
end V2 '" D, liB and Re afe vafllNf
to obtain desired test currents.

0.4

For NPNtesl:circuit,reversediode.
palaritiesand input pulses

O.2

tl~

~.;;:>

~

/< ~ l'... ..... 1---"1--

~

~

Vee =30V
=250 ...c. I lSI = IS2
TJ =25·C

Iclls

"- '\

2.0

SCOPE

V2

~D: __________
'PP'"'--J----1-

\',

?

0.04

V
.........
---PNP
---NPN
0.1
0.06

.....

-

..........
0.2

~tl

t,

...

r-... ~ ....
0.4

0.6

"

-

7'

r@~7)=011.0

IC, COLLECTOR CURRENT (AMP)

4-196

.......

~

...

-,

c::::: 1-_ t_

2.0

4.0

2N6034, 2N6035, 2N6036 PNP
2N6037, 2N6038, 2N6039 NPN

FIGURE 4 - THERMAL RESPONSE
1.0

~

'"

~ 1.Ok

~

V

V

j5 0 C

6.0k

-,..-

-....

V

r\~

z

~

....

\\

~ 1.Ok 1/

:5

800

~ 600

I\,

i/

400
300
0.04

0.06

0.1

/

400
0.2
0.4
0.6
1.0
IC. COLLECTOR CURRENT lAMP)

300
0.04

4.0

.2.0

//

-55 0 C

W

60 0

~

.25 0 C . /

YT

'"
'"

~ 800
-

.......

;"

2.0k

ffi

1\ ~

"~
"~~

/

3.0k

VCP 3.0 V

i'...

./

4.0 k

............

~

,/

TJ = 125°C

VCE = 3.0 V-

0.06

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT lAMP)

0.1

4.0

2.0

FIGURE 9 - COLLECTOR SATURATION REGION

en
:;

3. 4

o

~ 3.0

'"
«

~ 2. 6

o

I
I
I

I
II
II

IC
0.5A

1.0A

~ 3.4

II
II
II
2.0A

TJ = 25°C

o

2. 3.0
w

II
II
II

IC 0.5 A

'"

4.0A

1.0A

~ 2.6

I
I I
I I
2.0A

TJ = 25°C

4.0 A

o

>

>

~ 2.2

ffi 2.2

....

~

;E

~

~ 1. 8

Ii
o

o

....

~ 1.4

1.8

~

1.4

8

1.0

...J

o
~ 1.0

r--\--

,

..........

W

<.>

> 0.6
0.1

<.>

0.2

0.5

1.0' 2.0

5.0

10

20

50

100

> 0.6
0.1

0.2

0.5

1.0

lB. BASE CURRENT ImA)

2.0
5.0
10
lB. BASE CURRENT ImA)

50

20

100

FIGURE 10 - "ON" VOLTAGES

2. 2

2.2

L II

L

/"

TJ = 25°C
1.8

~
o

I "

VBElsa!) @ lellB

2. 1.4

~

I-

I "~IICIIB - 250

41- VB Elsa:)

./

....- "

VCElsa~) @ Ichs =1 250

V

0

I II
-vJEi..:)

o. 6
O. 2
0.04

I "

TJ = 25°C
1.8

I-"'"

VSE @VCE 3.0 V

I

1.0

>'

250

I

w

'"
~

....... V V

"

,..-

I.-

VBE@VCE=3.0V

<

I

~IIC/IB ! 25J

V

/

i/

f--'

O.6

0.06

0.1

0.2
0.4 0.6
1.0
IC. COLLECTOR CURRENT lAMP)

2.0

O.2
0.04 0.06

4.0

4-198

0.1

0.4 0.6
1.0
0.2
IC. COLLECTOR CURRENT lAMP)

2.0

4.0

2N6034, 2N6035, 2N6036 PNP
2N6037, 2N6038, 2N6039 NPN

NPN

PNP

2N6D37,2N6038,2N6039

2N6D34,2N6D35,2N6036

FIGURE 11 -- TEMPERATURE COEFFICIENCTS

+0.8

u

~:E~ ~6R-;I;;-~'~;E/3

I-

~

t

r-0.8 r-

U

~
8

--

~

3;
.§

---

!

-1.6

~

c - - f--- 1--I--

·OVC for VCE(lat)

- ._- ---

-550C to 25°C

~ -2.4
:::>

rrftol50ob

I--

I-

«

~

-4. o -OV8 for VBE

LlJ

0.06

0.1

riOT

1025O~

IIII

ffi -0.81-u
§ -1.61--

~
7

~~

~

.-

/

~

-4. 0

I

III I
O.OS

0.1

/

"" V
1°,1~ .-V

-550C to 250C

I
II I

I

I II

t

2,5 01C

-550C to 25°C

I

-4. 8
0.04

~

~

J..H1l

OVC for VBE

~

/

2150lC 1011~~

-, r I

~ -3. 2

4.0

17

I-

I-H~

~

2.0

--

I

:::>

l - i--

-I-~

--

+--- -

-2.4 f--- ·OVC for VCE(sat!

I--

8

I

0.4 O.S
1.0
0.2
Ic, COLLECTOR CURRENT (AMP)

--

0

on

...H"J..l...-'

~
-4. 8
0.04

P

·APPLIED FOR IC/IB < hFE/3

U
>
.§

!?.

IJ....-"""I~

~ -3. 2
I-

+0. 8

I r---j
I
/
/

1II1
1III

IIIII
0.4 O.S
0.2
1.0
Ic, COLLECTOR CURRENT (AMP)

2.0

4.0

FfGURE 12 - COLLECTOR CUT-OFF REGION

10 5

105

4 F!==REVERSE= ~FORWARD

«

10

~

10 3 = VCE"30V

.:;

./'

«.:;
I-

~co

co

G
co

o

§
_

G

10 2

co
0

10 I

8
~ 10 0

~
8

--TJ 150°C

-

100°C

-

25°C

10- I
+O.S

,/

~

10 4
10 3

102

=REVERSE= =FORWARO

/

F

=VCE"30V

I- TJ

-

150°C

10 1

f----- 100 0e
10 0

F=

25°C

10- 1

'0.4

0.2

-0.2

-0.4

-O.S

-O.B

-1.0

-1.2

-1. 4

-0.6

-0.4

-0.2

+0.2

+0.4

+O.S

+0.8

+1.0

V8E, BASE EMITTER VOLTAGE (VOLTS)

VBE, BASE·EMITTER VOLTAGE (VOLTS)

FIGURE 13 - OARLINGTON SCHEMATIC

PNP
2NS034
2NS035
2NS036
Base

Collector

NPN
2NS037
2NS038
2NS039

---,
.-------+-.., ,

r-----I
I
I

Collector

---,
. - - -........~

I

I
I

I
I
I

I

I

I

I

I

I
I

Base

I

I
I
I
I
1L....w-.
.......
L ___
_-'VV'V--4-....J
_ _ _ _ _ .JI

I'-'w-.
.......
L ___
_-'VV'V-+-'
_ _ _ _ _ .JI

Emitter

Emlt:er

4-199

+1.2

+1.4

•

2N6040 thru 2N6042 PNP (SILICON)
2N6043 thru 2N6045 NPN
MJE6040 thru MJE6042 PNP
MJE6043 thru MJE6045 NPN
PLASTIC MEDIUM-POWER
COMPLEMENTARY SILICON TRANSISTORS

DARLINGTON
8AMPERE

_ .. designed for general· purpose amplifier and low·speed switching
applications.
• High DC Current Gain hFE = 2500 (Typ) @ IC = 4.0 Adc

•

COMPLEMENTARY SILICON
POWER TRANSISTORS
60-80-100 va L TS
75 WATTS

•

Coliector·Emitter Sustaining Voltage - @ 100 mAdc
VCEO(sus) = 60 Vdc (Min) - 2N6040. 2N6043
= 80 Vdc (Min) - 2N6041. 2N6044
= 100 Vdc (Min) - 2N6042. 2N6045

•

Low Collector-Emitter Saturation Voltage - III
VCE(sat) = 2.0 Vdc (Max) @ IC = 4.0 Adc - 2N6040,41.2N6043,44
= 2.0 Vdc (Max) @ IC = 3.0 Adc - 2N6042. 2N6045

•

(1)

2N6040
thru

2N6045

Monolithic Construction with Built-In Base-Emitter
Shunt Resistors
(1) Applies to corresponding in-house part

n~mbers

also.

"MAXIMUM RATINGS
2N6040
2N6043
MJE6040
Symbol MJE6043

Rating

Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current

Continuous
Peak

Base Current

2N6042
2N6045
MJE6042
MJE6045

Unit

80
80

100
100

Vdc
Vdc

60

VeEO
VeB
VEB
Ie

Collector-Base Voltage

2N6041
2N6044
MJE6041
MJE6044

...

60

5.0
8.0
16
-120

.
..

lB

..
..•
•

Total Power Dissipation @TC
Derate above 2SoC

25 0 e

Po

75
-0.60

Total Power Dissipation
Derate above 2SoC

25 0 e

Po

2.2
_0.0175_

@

TA

Operating and Storage Junction,
Temperature Range

.

•

-

TJ. TS19

-65to+150_

Vdc
Adc

STVLE1

PINI
2
l

BASE
COLLECTOR
EMITTER

4

COLLECTOR

mAde

Watts
w/oe

NOTE

1 DIM l&HAPPLlES
TO ALL LEADS

Watts

w/oe

°c

CASE 221A-4)Z
TD-220A8

THERMAL CHARACTERISTICS

MJE6040

Characteristic

\~-

thru

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
*Indicates JEDEC Registered Data

FIGURE 1 - POWER DERATING
TA Te
4.0 80

NOTES
1 mM"O"UJilCONTROLLEOINZOJilE"H"
2 OIM"F"OIATHRU
l HEATSINICCONTACTAIIEA!80rrOMI
4 LEAOSWlTHIJilOD05"IIAOOFTRUE
POSlTlONITPI AT MAXIMU".MATEIiIAL
CONDITION

""-

0

"
0

'IN1EMITTEIi
STYLE 2 2COLLECTOII
38ASE

TC

""-

~
TA .........

0

0
20

40

60

""

........

80

"'"

~~~~~~~~

'-..... ~

100

~~

120

140

160

T. TEMPERATURE I'CI

4-200

CASE ....

2N6040 thru 2N6042 PNP
2N6043 thru 2N6045 NPN
MJE6040 thru MJE6042 PNP
MJE6043 thru MJE6045 NPN

-ELECTRICAL CHARACTERISTICS ITC

I

= 2S DC unless Dtherwl~ notedl

Mon

Symbol

CharactellstlC

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
lie'" 100 mAde, IB '" 0)

Collector Cutoff Current
(VeE" 60 Vdc, IS .. 01
(VeE" BO Vdc, IS .. 01
(VeE" 100 Vdc, Ie .. 0)

VO<

VCEOlsusl

2N6D40, 2N6043, MJE6040. MJE6043
2NG041. 2N6044, MJE6041. MJE6044
2N6042, 2N6045, MJE6042, MJE6045

60
80
100

ICED

20
20
20

2N6D40, 2N6043, MJE6040. MJE6043
2N6041, 2N6044, MJE6041, MJE6044
2N6042, 2N6045. MJE6042, MJE6045

Collector Cutoff Current
(VeE = 60 Vdc, VBE(offl '" 1.5 Vdc)
(VeE = so Vdc, VSEtoffl = 1.5 Vdc)
(VeE'" 100 Vdc, vSEloffl'" 1.5 Vdcl
(VeE = 60 Vdc, VBE(off! = 1.5 Vdc,
Tc" 1SOoC)
(VeE = 80 Vdc, VaE (off) " 1.5 Vdc,
TC -l50oCI
(VCE = 100 Vdc, VSEloff)" 1.5 Vde,
Tr.:" ,50oel
Collector Cutoff Current
(Vca '" 60 Vdc. IE = 01
(VCS" 80 Vdc, IE '" 01
(Vca = 100 Vde, IE '" 01

ICEX
2N6040, 2N6043, MJE6040, MJE6043
'2N6041. 2N6044, MJE6041, MJE6044
2N6042. 2N6045, MJE6042. MJE6045

20
20
20

2N6040, 2N6043, MJE6040, MJE6043

200

2N6041, 2N6044. MJE6041. MJE6044

200

•

200

2N6042. 2N6045. MJE6042, MJE6045

_A

ICSO

2~6040, 2N6043, MJE6040, MJE6043
2N6041, 2N6044. MJE6041, MJE6044
2N6042. 2N6045, MJE6042. MJE6045

Emitter Cutoff Current
(VSE = 5 a Vdc, IC = 01

20
20
20
mAde

lEBO
20

ON CHARACTERISTICS
DC Current Gam
(lC = 4.0 Adc, VCE" 4.0 Vdc) 2N6040,41. 2N6043,44. MJE6040,41. MJE6043,44
tiC = 3 a Ade, VCE '" 4.0 Vdc) 2N6042. 2N6045, MJE6042. MJE6045
(Il' = 8 0 Ade. Vl'r:. ,. 4.0 Vdc) All Tvoes

10,000
10,000

1000
1000
100

Collector-Emitter Saturation Voltage
(Ie = 4.0 Adc. IS = 16 mAdel 2N6040,41.2N6043,44.MJE6040,41,MJE6043.44_
(lc = 3 0 Adc. la '" 12 mAde) 2N6042,2N6045.MJE6042,MJE6045
IIC = 80 Adc. IB" 80 mAdel All Types

VCE(5at!

Base-Emitter Saturation Voltage
(Ie = 80 Ade, 18 = 80 mAde)

VaElsat}

Base-Emitter On Voltage
lie = 4.0 Adc, VCE = 4.0 Vdc)

VSE(onl

Vo<
2.0
2.0

4.0
Vd,
4.5
VO<
2.8

DYNAMIC CHARACTERISTICS
SmaUoSignalCurrentGain
(lc = 3.0 Ade, VeE = 4.0 Vdc. f = 1.0 MHz)
Output Capacitance
{VCS = 10 Vdc, IE "0, f '" 0.1 MHz}

4.0

pF
2N6040/2N6042, MJE6040/MJE6042
2N6043I2N6045, MJE6043/MJE6045

300
200

h,.

. Small'SIgnal Current Gam
(IC = 3.0 Adc, VeE = 4.0 Vdc, f = 1.0 kHz)

300

·Indlcates JEDEC Registered Data

FIGURE 3 - SWITCHING TIMES

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

5. 0

3.

Vee
-30V

H6 & Ae VARIED TO OBTAIN DESIRED CURRENT lEVELS
01, MUST BE FAST RECOVERY TYPES, e.g.,
MBD5300 USED ABOVE 18 '" 100 rnA
MSD6100 USED aElOWIS '" 100 rnA
~

O~

2.0t'

Re
TUT

0

SCOPE

''''"'--J-----1- ~
v,

'~~;O~_:I

I

t r.tf.r;;;;10ns
DUTY CYCLE,: 1 0%

51

p.--

,r--...

I-

'I

7

r------~

+8.0V _ _ _ _ _ _ _ _ _ _
O

f--

'.1 .....

o.

I:

5
3

--

_

t-.

O.If- Vce = 30 V
t-ICIlB = 250

_:..J

o. 1I=W==2~%~-

fortd and tr,D, is disconnected
and V2"0
For NPN test Circuit reverse all polartties and 01.

F
0.07
0.05
0.1

'd@VBE(oill =0

If·

'-

-

?->

PNP
NPN

0.2

0.3

0.5 0.7

1.0

2.0

3.0

IC, COLLECTOR CURRENT (AMP)

4-201

-,

ts.o

7.0

10

2N6040 thru 2N6042 PNP
2N6043 thru 2N6045 NPN
MJE6040 thru MJE6042 PNP
MJE6043 thru MJE6045 NPN

FIGURE 4 - THERMAL RESPONSE

-

1.0

C

o. 7~D

~

0.5

.... ::;

0.2

.... w

f-- 1- 0.1

t; ~

O. 11=== 1=0.05
0.07
1=0.02

",-

~~

tt: ~ 0.05 1==
r:::;..

w'"

•

-

I--

0;'"

~~

,

-1

II

I

0.0 I
0.01

D CURVES APPLY FOR POWER
PULSE TRA'N SHOWN
READ TIME AT IJ
TJlpk) - TC = Plpk) 0JCI.)

DUTY CYCLE, 0 = 1J/'2

t-Single Pulse

.~ 0.02

....

t::='

I--:: j;.-

0JCI') = rl') 0JC
0JC = 1 67 0 C/W .

.t~

-"

""" 0.03 f-- t-O.DI

'"

-

't~,ti=t·

~~ O. 31-- ~0.2

:i ~

'.H"l-fl'

- :pr-JU1
..L

0.5

0.02 0.03

0.05

II
0.1

0.2

0.3

0.5

1.0

2.0

3.0

I 111111
5.0

I

10

I I
20

30

50

100

200

300

500

1000

" TIME OR PULSE WIDTH 1m,)

FIGURE 5 - ACTIVE·REGION SAFE OPERATING'AREA

-- -- t- -_ H-i-t - - -

20

10
0-

'.:.r=

5.0

""
....

:!

--

ffi

2.0

13

1.0

'"0
~

0.5

.~

-r~
"500", .

:~

"~'

-' -

p.Oms

'

~

'1.0 ms

t-,

. ....

Safe operating area curves indicate Ie - VeE limits of the tran-

'd ......

-

II

"-

f-~

SIstor that must be observed for reliable operation; I.e., the transistor

must not be subjected to greater dissipation than the curves Indicate.

======:TJ - 150 0 C

j , 0.2

8
!2

O. I
0.05

There are two limitatIOns an the power handling ability of a
transistor: average junction temp.erature and second breakdown .

The data of Figure 5 is based on TJ(pk) = 150°C; T C is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycle, to 10% provrded TJlpkl < 150°C. TJI~k) may be
calculated from the data In Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations Imposed bV second breakdown.

~~ONDINGWIRE LIMIT 0
=THERMALLY LlMITED@lC-2SoC.
_
ISINGLE PULSE)
---SECOND BREAKDOWN LIMITED
.
===:==CURVES APPLY BELOW RATED VCEO=
iN6040. 2N6043. MJE6040, MJE6043 ~'
2N6041, 2N6044, MJE6041, MJE6044 ....
2N6042, 2N6045, MJE6042, MJE6045

T

, 0.02
1.0

2.0

3.0

5.0

7.0

20

10

30

50

70

100

VCE, CDLLECTOR·EMITTER VOL TAGE IVOLTS)

FIGURE 7 - CAPACITANCE

FIGURE 6 - SMALL·SIGNAL CURRENT GAIN
10,000
5000

-

;;!; 3000

;; 200 0

....

~

""
,;,
E

t-

~

10 0

50
30
20
I0
1.0

'

PNP

5.0

'-

t-...

r-

Ti

"'"
Cob

.125Io~

t>....

Ci\

0

-

0

1 L I LN~N
2.0

i-

:-

O

VCE =4.0 Vdc
IC =3.0 Adc

-

200

TC ~ 250 C

50 0
300
~ 200

"<

~

f--.-

100O

. 13

~

30 0

-

-

I10

20

50

100

200

500

30
0.1

1000

f, FREQUENCY 1kHz)

PNP
_ _ -NPN
0.2

0.5

1.0

2.0

5.0

10

VR, REVERSE VOLTAGE IVOLTSI

4-202

20

50

100

2N6040 thru 2N6042 PNP
2N6043 thru 2N6045 NPN
MJE6040 thru MJE6042 PNP
MJE6043 thru MJE6045 NPN

~

PNP
2N6040, 2N6041 , 2N6042
MJE6040, MJE6041, MJE6042

NPN
2N6043, 2N6044, 2N6045
MJE6043, MJE6044, MJE6045

FIGURE 8 - DC CURRENT GAIN

10.000
10,000

---

7000
z 5000

;r

TJo 150°C.........

-

~ 3000

V

.,.-Y

'"~

700
500 f==-55O~

-

20.000

-1

'10.000

--

_.:s .---: ~

- --

~

V
~ 2000 . / 25°C
f--:::>
~ 1000

-

.

:

-V~E UO~

--"

~:s

TJo 150°C.........
3000

~ 2000

~

g

w

V

0.3

0 5 0.7

1.0

1.0

30

5.0

r\'

..........
25°C/"

~

~-550C

. .y

...,

300
200

V

~

V

Y

1000

~

500

0.2

4.0 V

z

V

300
100
0.1

0

;r 5000

'"
ffi

~ t'\

-=-:': ""-'"

II
VCE

7.0 10

o2

0.1

0.3

0 5 0.7

1.0

2.0

30

5.0

7.0

10

Ie. COLLECTOR CURRENT (AMP)

IC, COLLECTOR CURRENT (AMP)

FIGURE 9 - COLLECTOR SATURATION REGION
Vi 3.0
~

I III
I III

'"
2:

~ 2.6

;

'"

ffi
t:

IC

1.0 A

0

I
I
4.0 A

~

'"ffi

1\

\

2.2

lI-

ci: 1.8

t--

'"

~

"-

1.4

W

r-..

'-'.
1.0

1.0

>

1.0

2.0

3.0

5.0

7.0

10

20

03

30

0.5

0.7

1.0

lB. BASE CURRENT (mA)

TJ

150C

0

7.0

10

20

30

J

V

w

/"
1.5

?

V

VI

20

~V

w

'"""
~

. # .".

VBE@VCE - 4.0 V

I

~

V

/
1.0

1.0

5.0

1. 5

~

:>

3.0

TJ 15 0lc

2. 5

;'"~

2.0

lB. BASE CURRENT (mA)

FIGURE 10 - "ON" VOLTAGES
3.0

3.0

'"2:

\

\

~

B

0.5 07

6.0A

~ 2.6

1\

0.3

TJ o 250C
4.0 A

Ico2.0A

""~

"
1.4

III

'"
2:

\

'"
g
>

c;; 3.0
~

150C

\

ri:: 1.8

~

0

6.0 A

2.2

8

TJ

k::::: ~

Bo 250
15 VBE(jat)@IC/I

>

I

:>

tVBE(sat) @IC/IB o 150

TI

/"
t-

I 1

VBE@VCE-4.0V

./'

1.0
VCE(sat)@ ICIIB

VCE(sat) @ICII B 150

0

V

'/

_f-""

150

0

0.5
0.1

0.2

0.3

0.5 0.7

1.0

1.0

3.0

5.0

7.0

05
0.1

10

IC, COLLECTOR CURRENT (AMP)

0.2

0.3

0.5

0.7

1.0

1.0

IC. COLLECTOR CURRENT (AMP)

4-203

3.0

5.0

7.0

10

•

2N6040 thru 2N6042 PNP
2N6043 thru 2N6045 NPN
MJE6040 thru MJE6042 PNP
MJE6043 thru·MJE6045 NPN

I

PNP
NPN
2N6040. 2N6041. 2N6042
2N6043. 2N6044. 2N6045
MJE6040. MJE6041 •. MJE6042
MJE6043. MJE6044. MJE6045
FIGURE 11 -TEMPERATURE COEFFICIENTS
r--r-'--'--r-r-'--rTTr--'--'---~-'--'-rTTT1

+S.o

G

cz..
~

+4.0 I--+~c---+-+-++++++--+-+-+--+--+-++++l

+40
.

;;; +3.0 I--+-;---t---t-++++++--+-+-+--+-+-H'++l
>ill +2.01--+--1'--t---+-++Htt--++-+-+-hHIl-H
<3
+1.0
w

.§ +3.0
>z

8

8.
w

H:
w

g;

•

+5,0

~
:;

i

1-_+-+_+--+-+-I-+++~2S_0C~t_o_1SrO_OC~'/~--+~++1H

•
-1.0 ovctiCE( ..

__/'

I

-SSoC to 2SoC,/

~

to-

w +2.0

~ +1.0

....~

0.3

O.S

1.0

2.0

~.O

3.0

0

•

'OVC for VCE( .. t)

7.0

2 0Ct0150y i-""

-3.0

11

~
/

V

/

V

-S50C to 250C

..I--

-H:t

OVB for VBE

II II

-5.0
0.1

10

k;::: V

;::::::::r

L

~ -4.0

L--l.-::':--:!-:,--J.--:-:-'-J....l..1:':,--...L-:!-::---:~...L:-'::---'-:'::-'-':'.
0.2

-S50C to 2S oC

~ -2.0

-'

I II

'" -S.O
0.1

2SoC to IS00C

i3

~ -1.0
~

9VBI~rVBE- '2~OCto~~
--~
~
L
-55°C to 25°C

lEw -3.0

:> -4.0

'1

I

I

-2.0

./'

'ICIIB '" hFEI3

0.2

0.3

IC, COLLECTOR CURRENT (AMP)

0.5 0.7

I

1.0

2.0

3.0

5.0

7.0

10

IC, COLLECTOR CURRENT (AMP)

FIGURE 12 - COLLECTOR CUT·OFF REGION
10 S

105

i=-REVERSE~ I!=FORWARO
~

....

I
_TJ =IS00C
I - - - 100°C

==

~

'"0

102
10 1

~

100

25°C

+0.4

I-VCE-30V

/

~
8

f- TJ = IS00C

t-- 100°C
t--

10- 1
-O.S

10- 1

+o.s

REVERSE==O;: I=FORWARO

/
10 3

a

1
0

F

.:;

../
30 V

31==== VCE

104

+0.2

-0.2

-0.4

-O.S

-O.B

-1.0

-1.2

-1. 4

25°C

-04

-0.2

to.2

+0.4

+0.6

+0.8

+1.0

VBE, BASE EMITTER VOLTAGE (VOLTS)

VBE, BASE·EMITTER VOLTAGE (VOLTS)

FIGURE 13 - DARLINGTON SCHEMATIC

PNP
2NS040, MJES040
2NS041,MJES041 r - 2NS042, MJES042 I
I

BASE

COLLECTOR

NPN
2N6043, MJE6043
2N6044, MJE6044 r - 2N6045, MJE6045 I

---,
,------1... I

- - -

I
I
I
I
I
I

I

I

I ______ _
L

BASE

COLLECTOR
- - -

-

- - -,
I

.------1...

I
I

I
I
I
I
I
I
I

I

__ .1

__ .1

EMITTER

EMITTER

4-204

+1.2

+1.4

2N604!JJ (SILICON)

MEDIUM-POWER PNP SILICON TRANSISTOR

4AMPERE

... designed for general·purpose switching and amplifier applications

POWER TRANSISTOR
PNP SILICON

o Excellent Safe Operating Area

55 VOLTS
75 WATTS

o DC Current Gain Specified to 4.0 Amperes
<)

Complement to NPN Type 2N3054A

'MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Emitter Voltage

IRBE

0

Symbol

Value

Unit

VCEO

55

Vdc

VCER

60

Vdc

100 HI

COllector-Base Voltage

VCB

90

Vdc

Emitter-Base Voltage

VEB

7.0

Vdc

IC

4.0

Adc

Collector Current - Continuous

10

Peak

Base Current

Total Device DisslpatlOn@Tc

=:

25°C

IB

2.0

Adc

Po

75

Watts

Derate above 25°

W/oC

0.43

Operatmg and Storage Junction.

TJ. Tstg

-65

to

+-200

1--- U-;

°C

Temperature Range

p

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance.

Symbol

Max

Unit

°JC

2.33

°C/W

Junction to Case

II

t-- I"--.

L~~I
.J.1.J'i

0

I

"""

0
0

........

.....

0

.......

........

0

20

40

~

~

~

~

~

I~

_!LT

Y
S

INCHES
MILLIMETERS
DIM MIN MAX MIN MAX
8 11.94 12.70 0.410 0.500
C
6.35 8.64 0.250 0.340
0
0.11 0.B6 0.028 0.034
E
1.21 1.91 0.050 0.075
F 24.33 24.43
0.95B 0.962 .
G 4.B3 5.33 0.190 0.210
H
2.41
2.61 0.095 0.105
J
14.4B 14.99 0.510 0.590
K
9.14
0.360
P
1.21
0.050
n 3.61 3B6 0.142 0.152
S
B.B9
0.350
3.6B
T
0.145
U
15.15
0.620
All JEDEC Dirnensionsand and Nates Apply.

-

""-.,

0
0

..............

10

\

f".,

~

~

200

TC. CASE TEMPERATURE lOCI

CASE 80·02
TO·66

4-205

K
I

COLLEC~OR v:~r----_-r
H

0

-I

E
_
D
SEATING PLANE
_
STYLE l'
----F-PIN 1 BASE
-J2. EMITTER
CASE

FIGURE 1 - POWER-TEMPERATURE DERATING

0

J'F~-T-H

jL~

-Indicates JEDEC Registered Delta

I

R

I

~I

2N6049

*ElECTRICAl CHARACTERISTICS (TC

= 250 C unless otherwise noted)
Unit

Max

Min

Symbol

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(Ie = 100 mAde, IR - 0)

VCEO(sus)

Collector-Emitter Sustaining Voltage (1)
(lC = 100 mAde, RBE = 100 n

VCER(sus)

Vde

55

Vde

-

60

Collector Cuttoff Current

#lAde

ICEO

(VCE = 30 Vde, IR = 0)
Collector Cutoff Current
(VCE = 90 Vde, VBE (off) = 1.5 Vde)
(VCE = 90 Vde, VBE(off) = 1.5 Vde,
TC - 1500 C)

ICEX

Emitter Cutoff Current

lEBO

-

500

-

1.0
6.0

-

1.0

.25
6.0

100

mAde

mAde

(VBE =.7.0 Vde, IC = 0)
ON CHARACTERISTICS (1)

-

DC Current Gain
(lC = 500 mAde, VCE = 4.0 Vde)
(lC =3.0 Ade, VCE = 4.0 Vde)

hFE

Collector-Emitter Saturation Voltage

VCE(sati

Base-Emitter On Voltage
(lC = 500 mAde, VCE = 4.0 Vdel

Vde

-

(IC = 500 mAde, IB = 50 mAde)
(lC = 4.0 Ade, IB = 800 mAde)

-

0_5
2.0.

-

1.0

Vde

VBE(on)

DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product

MHz

fT

(lC = 200 mAde, VCE = 10 Vde)

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 0.1 MHz)

3.0

-

-

200

25

180

pF

Cob

Small-Signal Current Gain
(lC = 100 mAde, VCE = 4.0 Vde, f = 1.0 kHzl

hfe

·Indicates JEDEC Registered Data
(1) Pulse test: .PulseWidth:5300J,ls, DutyCycleS2.0%

FIGURE 3 - TURN-ON TIME

FIGURE 2 - SWITCHING TIME EQUIVALENT TEST CIRCUIT

2.0
TURN-ON PULSE

1. 0

V:"loffI

"

I II

Vee o-----'l/W------.

-- -

-

-

U O

0.5

..-I

. APPROX I
-11 V I

~ 0.3

--..I~t,

_

I,

:ll

0.2

;::

APPROX 9.0 V

_

~

•

'<

IcllB = 10
TJ = 250 C

~ S~ @Vee = 30 Vdc
p

I.I

tr@VCC~~OVd

~

III

:--..

td @VBE(off) = 0

O. 1

:

:

v· -I- - - -1'"

I
I

APPROX I
- 11 V

I

I

+I
I

I

t.--

..... t,
TURN-OFF PULSE

+4.0 V
0.0 5

I, < 15n.
100<1,<500,....
t, < 15 ns
DUTY CYCLE::::: 2.0%

t--

0.03

0.02
0.04

0.06

0.1

0.2

0.4

0.6

1.0

IC, COLLECTOR CURRENT (AMP)

4-206

2.0

4.0

2N6049

FIGURE 4 - THERMAL RESPONSE
1.0
~

0.7 f---D .0.5
O. 5

en
z

~ UJ 0.3

0 12

t-'-'

~:i 0.2

r------;;t;-

0«0.07
w:O;;
!:::! ffi 0.05

0.02

~~

~~
~~
tb ~ o. 11===0.05._

~ ~ 003
.
V

<=

~

0.01

P(pk!
OJclt! • 

"'

•

I,\~

1\
0.02

0.04

0.1

0.2

1.0

0.4

o. 6
0.4

2.0

~

_
o

'-'
ul
'-'

>

4.0

O. 2

\
0
1.0

r---

2.0

5.0

10

~+l. 0

~+O. 5

'"8

:;,

r--

t-- • Bv for VCE!$oIItj

TJ =

~

I-'

VBElsati

UJ

o

I-"

@ ICIIB

r--

o. 6

=

Ii!-- r-

>- O.4

O,lorV"

~-2 .0
-2. 5

I-

O. 2

II
0.01

0.020.03 0.05

0.1

0.2 0.3

0.5

1.0

0
0.004

2.0 3.0 5.0

0.D1

0.02

0.1

0.04

0.2

0.4

1.0

~
2.0

4.0

IC. COLLECTOR CURRENT lAMP)

FIGURE 12 - COLLECTOR CUT·OFF REGION

FIGURE 13 - EFFECTS OF BASE·EMITTER RESISTANCE

10 3

10 7

l - t- Vee: 30 Vdc

......

L

/

2

........

6

I--- I-TJ = 1500e

....

.........

:::>

'-'

a: 100

VCE 30Vdc-

"

__ IC = 10 ICES

....

IC = 21CES
I

~

10 1

a:

5

f-

I - f--l000e

...... D<-:"

......

o

S

I--'""'"

VCEI .. t)@ ICIIB = 10

Ie. COLLECTOR CURRENT (AMP)

tiij lO-

V

>

0

~-1. 5

ffi
a:

1000

LV

-

1.0

> o. 8
~

~-o. 5

~ 10

500

2~OC

o

~

0.005

200

1.2

0

i-I.

1. 4

-55 to +150 0C

'E

!Z

100

FIGURE 11 - "ON" VOLTAGES.

'APPLIES FOR lell.$h FE /5

t+1. 5

50

20

lB. BASE CURRENT (rnA)

FIGURE 10 - TEMPERATURE COEFFICIENT

+2. 0

l1

'-..,

IC. COLLECTOR CURRENT lAMP)

+2. 5

3.0 A

o

"l"\'

20

0.01

LOA

~

~

"-

.'\.

10
0.004

500 rnA

IC= 100 rnA

I

J

~

-55°C
./

c

0.8

to
-~

f::=

0.2

-t;;..... --

~~ 0.2
-

"-

r---'-

~

30
1.0

=

...'-'~

2.0

oS

2N6050/2N6052
2N605712N6059

=

200

F--- .:..-

10

20

50

70

100

200

Cib

-

500

1000

f, FREQUENCY (kHz)

50
0.1

..........

r--..

""

100

- -,

0.2

I

I II 1~~6057/2~60~9
0.5

1.0

2.0

5.0

10

VR, REVERSE VOLTAGE (VOLTS)

4-211

:-.....

C~( i'

2N6050/2N6052

-II

5.0

lt>....

0;

".
50 I---

-

30 0

~

,

I
TJ=25 0 C

20

50

100

•

2N6050 thru 2N6052 PNP/2N6057 thru 2N6059 NPN

PNP
2N6050,2N6051,2N6052

NPN
2N6057,2N6058,2N6059
FIGURE 10 - DC CURRENT GAIN

20,000

I I

III

1 1

10,ODD

40,000

I

VCE = 3.0 V

VCE = 3.0 V

TJ = 150DC..........

20,000

"'1\

TJ = 150DC

z

;;:
,/

-

d:;...,/1
1000
-25 C

:5

S,OOO

~

4,000

..,..,:::>
c

0.3

0.5

1.0

2.0

3.0

5.0

10

25 DC

V

2,000

~.

500

•

0-

ill

.....

-55DC

300
200
0.2

./

10,000

to

,/

1.000

-55°C

SOD
400
0.2

20

0.5

0.3

1.0

IC, COLLECTOR CU,RRENT (AMP),

2.0

3.0

5.0

20

10

IC. COLLECTOR CURRENT (AMP)

FIGURE 11 - COLLECTOR SATURATION REGION
_

~
~
w

to

3.0

JU

2.S

~

~
c

~
w

9.0A

S.OA

IC=3.0A

-

III
III

TJ = 25 DC

1\12A

f'.r-.,

C

>

~

2.2

\

1Jj

~

>

.....

II

S.O A

9.0 A

12 A

\
-I-

1Jj

ti: 1.B

'"
g
-

~

>
2.0

I

:::

8
1.0

TJ=25 DC

~ 2.2

1.4

1.0
0.5

2.6

l

IC = 3.0 A

~
'"

,

'" 1.8

~8

to

3.0

3.0

5.0

10

20

3D

50

"-

1.4
1.0
0.5

1.0

2.0

3.0

5.0

20

10

30

50

IB, BASE CURRENT (mAl

lB. BASE CURRENT (mA)

FIGURE 12 - "ON" VOLTAGES
3.0

3.0
TJ = 25 DC

V

2.5

~

'"

~
w

'">

1.5

1.0

0.5
0.2

~

II

VBF@IV~EIr·n

§;
>'

i-"

. VCE(sa,)@ICIIB=250
0.5

1.0

1.5

VBE(sa"I@llelIB = 250

3.0

5.0

10

20

IC, COLLECTOR CURRENT (AMP)

0.2

//

I JL- ~-

1 VCE( ..,) @ICII"S - 250

o. 5
2.0

~~

VSE@VCp3.0V

1.0

II Jl.- i-0.3

~

w

to

",

r- VBE(..!) @ICIIB = 250

,/

~ 2.0

II'
r-

:>

1/

I

2.5

~

2.0

to

~

I

TJ = 25 DC

0.3

0.5

1.0

2.0

3.0

IC, COLLECTOR CURRENT (AMP)

4-212

5.0

10

20

2N6050 thru 2N6052 PNP/2N6057 thru 2N6059 NPN

NPN
2N6057.2N6058.2N6059

PNP
2N6050.2N6051.2N6052

FIGURE 13 - TEMPERATURE COEFFICIENTS

+S.O
+4. 0

;;; +3.0
+2.0

ttw

+1.0

<3

'OVC FOR VCE( ..t)
+2S oCto +ISOoC
-5SoC to +2S oC

o

u

~ -1.0
~

~

.J---t-"

~ -2.0

~ -3.0 OVB FOR VBE

+±:t:::::+- f-

~ -4.0

-S.O
0.2

I II
0.3

O.S

;;; +3.0
tz
~ +2.0

w

~ -1.0
~

':;P

F5t-

i

I II
3.0

S.O

10

20

-3.0

+~S~~ ~o +ISJOC

OVB FOR VBE

-4.0
-s.o
0.2

Ij

L..-~

/

V [..-1--SSoC to +2SoC

nTI
0.3

I

I.>

I

~ -2.0

,,~SSOC to +2SoC

2.0

+2SoCto +ISOoC .....
-SS~C to +2S 0C"

8

i-'

I

1.0

I
+ovJ FO~ VCE(..t) -

~ +1.0

-I:>

....

+2S0r. to +ISOoC_ 1> .....

t-

"APPLIES FOR ICIIB __.

I
J

I

I
I

I
I

1

I

I

I

I

I

I

Base

I
1
J
I
I
I
IL .....
VVI.--+"'V'ofV-+....J
__
_ _ _ _ _ _ _ ...JI

1L ......
~_"VV\r--+-..J
__
_ _ _ _ _ _ _ ...JI
Emitter

Emitter

4-213

•

2N6053,2N60~4,2N6298,2N6299PNP

(SILICON)

2N6055,2N6056,2N6300,2N6301NPN
DARLINGTON COMPLEMENTARY
SILICON POWER TRANSISTORS

DARLINGTON
8AMPERE

... designed for general·purpose amplifier and low frequency switching
applications.
• High DC Current Gain hFE = 3000 (Typ) @ IC = 4.0 Adc
• Collector· Emitter Sustaining Voltage -@ 100 rnA
VCEO(sus) = 60 Vdc (Min) - 2N6053, 2N6055, 2N6298, 2N6300
= 80 Vdc (Min) - 2N6054, 2N6056, 2N6299, 2N6301
• Low Collector· Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (Max) @ IC = 4.0 Adc
= 3.0 Vdc (Max) @ IC = 8.0 Adc
• Monolithic Construction with Built·ln Base·Emitter
Shu nt Resistors

•

COMPLEMENTARY SILICON
POWER TRANSISTORS
60·80 VOLTS
75,100 WATTS

2N6053
2N6054

2N6055
2N6056

ES~~

*MAXIMUM RATINGS

PLANE

Rating _

Collector·Emitter Voltage

-

Collector-Base Voltage

Symbol

2N6054
2N6056
2N6299
2N6301

VCEO

60

80

Vdc

Vce

60

80

Vdc

,

Base Current

Unit

5.0

Vdc

IC

8.0
16

Adc

120

mAde

\

Total Device Dissipation @TC = 25°C

2 EMITTER
CASE COLLECTOR

VEe

Ie

2N6298
2N6299
2N6300
2N6301

100
0.571

75
0.428

Derate above 2SoC

-65 to +200

TJ,T stg

NOTE
1 OIM"Q"ISOtA

DO'

.,.

MILLIMETERS
MAX

INCH~S

"IN

MAX

, - 2'" -•, " J4," - • .D4,
'90
",
.'"
", ""
", ,.64
II. '15 .... ....
• ,,&1 -

...".

~37

A

2N6053
2N6054
2N6055
2N6056
Po

Operating and Storage Junction Temperature

STYLE 1
PINl BASE

2N6053
2N6055
2N6298
2N6300

Emitter-Base Voltage
Collector Current - Continuous
Peak

Range

j-~~
r~-,
1550

0830

16

• 99

0039

0135
1191

... ...
1111

F

J

0210

0220
0&15

0151

0161
1050

1219

Watts

R

38'

CoIIItIDrconnl'tledlO, ..
CASE 1101
{TO·3!

WloC
°c

~

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

2N6Z98
2NGZ99
2NG300
2NG301

Symbol

2N6053
2N6054
2N6055
2N6056

2N6298
2N6299
2N6300
2N6301

Unit

ROJC

1.75

2.33

°CIW

·'ndicates JEOEC Registered Data.

FIGURE 1 - POWER DERATING
100

I"
r-- f'.,.

......

"-

"

• IM

1194 12.79

-""b,"

• .86

"

50

75

100

125

Te. TEMPERATURE ~.C)

150

'27

002.
0050 0015

24'

.. 90
0095 01
0510

"62

14

... ..""

Z.81

, "41
'" ""
J.

~

0

0410

U,, "58
..
, ."
"
"

F
G

......... .........

0

25

INCHES

MILUM

l'--..

2N6298 thru 2N6301.........

\

...• .... .,. .....
. ..11 .. ..34•

~ 2N6053 thru 2N6056

OJ.,

'27

'"

175

200

4-214

.89

-

'68 -15'

.50

.,,'
0145

AlIJEOECDIIII'fISI\)lIIlIIIIandMol.AppL~

CASEBO-02

TO·66

2N6053, 2N6054, 2N6298, 2N6299 PNP,
2N6055, 2N6056, 2N6300, 2N6301 NPN

*ElECTR ICAl CHARACTER ISTICS (T C = 250 C unless otherwise noted)

I

Symbol

Characteristic

Unit

Min

Maic

60

-

SO

-

-

0.5
0.5

-

0.5
5.0

-

2.0

750
100

lBOOO

-

2.0
3.0

-

4.0

-

2.S

OFF CHARACTERISTICS
Coliector·Emitter Sustaining Voltage (1 I
(lC = 100 mAde, IB = 0)
Coliector Cutoll Current
(VCE = 30 Vde, IB = 0)
(VCE = 40 Vdc, IS = 0)

= Rated

mAde

ICED
2N6053, 2N6055, 2N629S, 2N6300
2NS054,2NS05S,2NS299,2N6301

-

Collector Cutoll Current
(VCE = Rated VCB, VBE(off)
(VCE

Vdc

VCEO(sus)
2NS053, 2NS055, 2NS29B, 2NS3oo
2NS054, 2N6056, 2NS299, 2N6301

mAde

ICEX

= 1.5 Vdd
VCB, VBE(off) = 1.5 Vde, TC =

150°C

•

mAde

lEBO

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 0)

,

ON CHARACTER ISTICS (1)

-

hFE

DC Current Gain
(lC = 4.0 Ade, VCE = 3.0 Vde)
(lC = 8.0 Ade, VCE = 3.0 Vdcl

Collector·Emitter Saturation Voltage
(lC = 4.0 Ade, IB = 16 mAdcl
(lC = S.O Ado, IB = BO mAde)

VCE(sat)

Base·Emitter Saturation Voltage

VBE(satl

(lC = B.O Ade, IB = BO mAde)
Base·E mitter 0 n Voltage
(lC = 4.0 Ade; VCE = 3.0 Vde)

Vde

Vde

Vde

VBE(on)

DYNAMIC CHARACTERISTICS
Magnitude of Common Emitter Small-Signal Short Circuit Current Transfer Ratio
(lC

= 3.0 Ade,

VCE

Output Capacitance
(VCB

-

ihlei

= 3.0 Vde, I = 1.0 MHz)
MHz)

2N6053, 2N6054, 2NS29B, 2N6299
2N6055, 2N6056, 2NS300, 2N6301

Small-5ignal Current Gain
(lC = 3.0 Ade, VCE = 3.0 Vde, 1= 1.0 kHz).

-

-

300
200

300

-

pF

Cob

= 10 Vde, IE =0, I = 0.1

4.0

-

hIe

·'ndicat85JEDEC Registered Data.
(1) Pulse Test: Pulse Width

= 300 Ils,

Duty Cycle

= 2.0 %.

FIGURE 3 - SWITCHING TIMES

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT
5.0

Vee

·30V
RS & Re VARIED TO OBTAIN DESlnED CURRENT lEVELS
01. MUST BE FAST RECOVERY TYPES. e.g.,
MBD5300 USED .ABOVE IS "" 100 rnA
MSD6100 USED BELOW 18 ~ 100 rnA

3.0
2.0

Re
SCOPE

1.0
o.7
w
::;; O.5

:::-..

.-

Ii.....
b.. .J--"

......

,

r--

P"" r--

........

,.... 1-

If

r--..

3
;::

0.3

.........

-

- .If,

---r-02 -Vee = 30 V

-lcJlB = 250
IBI=I~2
I @V
d
BE(off)--0 ~
O. I =TJ=25 C
2N60&3, 2N6054, 2N6298, 2N6299(PNP)
0.07
5
2N6055, 2N6056, 2N6300, 2N6301 (NPN)
0.0
2.0 3.0
0.5 0.7 1.0
02 0.3
0.1

fortdandtr. DJ isdistonnetted
andV2=O

For NPN test circuit reverse diode, polarities and input pulses.

IC, COLLECTOR CURRENT (AMP)

4-215

5.0 7.0

10

2N6053, 2N6054, 2N6298, 2N6299 PNP,
2N6055, 2N6056, 2N6300, 2N6301 NPN

FIGURE 4 - THERMAL RESPONSE
I

7:== 0=0.5
5

-

3r-- r - 10.2
2
r - - r-O.I
I~

~O.05

7
5-0.02

-

-

rnn

~

k-: p

-t~

..... SINGLE PULSE

~

0.0 I
0.1

DUTY CYCLE. 0 = ll/t2

~ ~

0.01

..llli
0.5

0.3

0.2

R8JC It) = rlt) R8JC
R
= 1.750CIW - 2N605312N6056
8JC 2.330CIW _ 2N629B/2N6301
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READTIMEATq
TJ(pk) - TC = P(pk) 0Jc(t)

P!

K

0.02 ?

•

J......:::; ~

0.7

2.0

1.0

3.0

5.0

7.0

I I I

I I

10

20

70

5

30

100

200

300

500

700 100

t, TIME (m.)

ACTIVE-REGION SAFE OPERATING AREA
FIGURE 5 - 2N6053 thru 2N6056

~

FIGURE 6 - 2N6298 thru 2N6301

:eE3meE!mm
t-:. -1...:.1.- t-r
-

-

-t-

O.lm.

ffi
~o:eiIB~R
~
~
1.~';'
~

5.0 m.

5.0

TJ = 200 0C

1

'" 2.0

~_"'!~ 0.51.0 f=t==
~ - - -- -

8
9

~.~ m.

0

~

::;

~

d

,.I.

I

3.0

L~M:I~T~~'I'II
I

8
EO. 2

SECOND
BONDINGBREAKDOWN
WIRE LIMIT
THERMALLY LIMITED
@TC=25 0C (SINGLE PULSE)

5.0 7D

10

5.01==

'"o 0
~_ o.1.
5

~~§~~~~~~~~~2~N~60~5~4~'2~N~60~5~6~~~~'
2.0

ol;;:; :::;~

20

30

50

70

1=

that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figures 5 and 6 is based on TJ(pk) = 200°C; TC is

de
SECOND BREAKDOWN LIMIT
BONOING WIRE LIMIT
THERMALLY LIMITED
@TC=250C(SINGLEPULSE)

2N6299,2N6301

0.0 5
1.0

2.0

3.0

100 0

a

500
:;t 300
~ 20 0

~

~
j

0
0
~0
I0
1.0

20

F t:..

r-

100

200

IOU

t-

3O
0.1

I, FREQUENCY (kHz)

'" >Cob

-

0.2

-

2N60~4'

2N6053,
2N6298, 2N6299(PNP)
2N6055, 2N6056, 2N6300, 2N6301 (NPN)
0.5
1.0
2.0
5.0
10
20
VR, REVERSE VOLTAGE (VOLTS)

4-216

~

I''':

0

500 1000

--

t-...

Cib

0

50

70

t---

0

2N6053, 2N6054, 2N6298, 2N6299 (PNP)

.10

50

30

T~ ='25~d

200

~ .1 jl~,2N6~6-jN~3~Oi~~~~01INP7)
5.0

20

FIGURE 8 - CAPACITANCE

VCE = 3.0 Vde
IC = 3.0Ade

2.0

10

300

TC = 250C

100

5.0 7.0

variable depending on conditions. Second breakdown guise limits
are valid for duty cycles to 10% provided TJ(pk)!S 200 0 C. TJ(pk)
may be calculated from the'data in Figure 4. At high case temperatures, thermal limitations will reduce the power that can be handled
to values less than the limitations imposed by second breakdown.

_.

--

~

\

1,\

2N6298, 2N630D-t-~

FIGURE 7 - SMALL·SIGN:4L CURRENT GAIN

...

O. ms

......

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

There are two limitations on the power handling ability of a

500 0
;;: 300 0
;; 2000

5.0ms

.1

100

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - v CE limits of the transistor

-

t- l-t;.' ~ .... j - 1'10;1 m.

TJ 2000C

-

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

10,000

-1=

B 2.0

\1\

0.21-+--I--+--+-t-+-1t-1HIIt-12-iN6-05+3,-2N-60t-55-t--L-fl~+'l-tt1
0.1
O.05.~
1.0

0

50

100

2N6053, 2N6054, 2N6298, 2N6299 PNP,
2N6055, 2N6056, 2N6300, 2N6301 NPN

NPN

PNP

I

2N6053. 2N6054. 2N6298. 2N6299

2N6055. 2N6056.2N6300. 2N6301

FIGURE 9 - DC CURRENT GAIN

20,000

20,000

V~E ~ 310 ~

7000

~ 5000

z 5000

;;:

TJ = 1500 C.........

........ ...-

~ 3000

~ 200 0

'"
1:l

I
VCE = 3.0 V

10,000

10,000

V ....

----

.......

25·C

-

.A'"

'"ffi

'-~

~

~Y"

30
20

u

w

0

500
300
200

0.2

0.5

0.3

0.7

1.0

2.0

3.0

l'\:'

l../

7Z f=-55 C

~
~

.v

0.1

~

25 0 C. /

1000

c

f-'"

.Y
:,;"

1:l

~

100 0
c
~ 700
- 500=,-55.C

u

TJ 150 0 C.........

3000
2000

5.0 7.0 10

/"
0.1

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0

7.0

10

IC, COLLECTOR CURRENT lAMP)

IC, COLLECTOR CURRENT lAMP)

FIGURE 10 - COLLECTOR SATURATION REGION
G 3.0

I III

~
c

~
~

~
ffi

IIC = 2.0
"IA

2.6

II

~

~

>

2.6

\

ffi
00-

~

'"

~

8

1.0

2.0

t--

3.0

5.0

7.0

10

20

30

"-

1.4

W

u

1.0

\

1.8

0
0-

1.4

0.5 0.7

\
\

0

'-

0.3

> 1.0
0.3

....
0.5

0.7

1.0

IB, BAS~ CURRENT ImA)

3.0

TJ = 25·C

1/

2:. 2. 0
w

1. 5

...,.,.

VBE)@VCE = 3.0 V

:>
1.0

G
~

0.5
0.1

./

0

~
w

II

I I I

""

""~

0

>
>-

0.3

1.5 r- VSE@VCE=3.0V
VSElsat)@ICIIS- 250
VCElsat)@IC/IS = 250

0.5 0.7, 1.0

2.0

3.0

5.0 7.0

0.5
0.1

10

0.2

0.3

-

....- f-'"

1.0

VCElsatl@IC/IS-250
0.2

10

~

V

2.0

'"

........ V

VSElsat) @IC/IB=250

-i

7.0

5.0

20

30

2.5

V

o

o

3.0

FIGURE 11 - "ON" VOLTAGES
3.0
TJ = 25·C

5
>

2.0

IB, BASE CURRENT ImA)

2. 5

'"~

6.0 A

> 2.2

\

_ 1.8
o

8~

""'"

TJ=·25·C
4.0 A

~

1\

\

I II
IC=2.0A

w

6.0A

2.2

~

~

0

"

4.0A

o

~

G 3.0

TJ = 25·C

0.5 0.7

1.0

.........

2.0

3.0

IC, COLLECTOR CURRENT lAMP)

IC, COLLECTOR CURRENT lAMP)

4-217

...-

?1/
,/

5.0 7.0

10

2N6053, 2N6054, 2N6298, 2N6299 PNP,
2N6055, 2N6056, 2N6300, 2N6301 NPN

I

PNP
2N6053,2N6054,2N6298.2N6299

NPN
2N6055,2N6056,2N6300,2N6301

FIGURE 12 - TEMPERATURE COEFFICIENTS

+5.0
i3

sa..

+5.0

+4.0

~

'leilB < hFE/3

'E
;; +3.0

>

II

I-

al

+2.0

~ +1.0

250C to +1500C

----

8

~

-1.0 'ove {or 'ICEI ..tl

•

-5.0
0.1

0.2

11

0.3

0.5

+2.0

2.0

25°C to 150°C

II"

<.>
w

'"=>
~

3.0

5.0

OVC for VCE .. t)

-1.0

~

~ -2 .0

7.0

-4.0

10

V

V

V

0.1

0.2

I II1.0

0.3

IC. COLLECTOR CURRENT lAMP)

O.S 0.7

V

-5S oC to 25°C

.J..-

f.-I-I:t:

OVB for VBE

l-

i

~V

2SoC to IS0¥ .....

~ -3.0

17

:::::~

-SSoC to 2S oe

o

...tf--r-

-5.0

1.0

'IC/IB < hFE/3

~ +1.0

7
.1.1 -"
-550CtO+25~ ............. ......
-3.0 OVB for VBE-250C to +~ I-- 55°C to 250C

-2.0

~
I:> -4.0

'"

~
<.>

./

..... /

w

g;

!;;;

/

U

+4. 0

.§ +3.0

2.0

I

3.0

5.0 7.0

10

+1.2

+1.4

IC. COLLECTOR CURRENT (AMP)

FIGURE 13 - COLLECTOR CUT-OFF REGION

105

lOS

4I==:REVERSE~ :!::::.FORWARD

~REVERSE.:=:;:;o; I=FORWARO

<" 10
.:;

~
'"'"
13

1031== VCE

30 V

=VCE=30V
I

/

2
'"
o 10

....
~
8

/

...... TJ = 150°C

f-TJ 1500 C
10 I

r--

100°C

r---:---

25 0 C

~ 100

10- I
+0.6

+0.4

./

+0.2

-0.2

/

r--- 100 C
r--- 25°C
0

-0.4

-0.6

-0.8

-1.0

-1.2

-1. 4

10- 1
-0.6

-0.4

-0.2

+0.2

+0.4

+0.6

+0.8

+1.0

VBE. BASE EMITTER VOLTAGE (VOLTS)

VBE. BASE·EMITTER VOLTAGE IVOLTS)

FIGURE 14 - DARLINGTON SCHEMATIC

Collector

PNP
2N6053
2N6054
2N6298
2N6299

--,

,-----+-,

Base

I

IL _ _ _ _ _ _ _

Collector

NPN
2N6055
2N6056
2N6300
2N6301

I

I
I
I
I
I

--,

,-----+...,
)

I

I

Base
I

I
I

I

I
I
I
I

I
I
1......,""'
.......
L
___
_'VYIr--+-....
_ _ _ _ _ ..JI

__ ..J

Emitter

Emittet

4-218

2N6077
2N6078
HIGH VOLTAGE NPN SILICON TRANSISTORS

7 AMPERES

. the 2N6077 and 2N6078 transistors ~re designed for high·
voltage. high-speed switching applications. They are characterized
for operating directly off the rectified 110 Volt power lines in
circuits such as:

NPN SILICON
POWER TRANSISTORS
275-300 VOLTS
45 WATTS

• Switching Regulators
• Solenoid and Relay Drivers
•

Motor Controls

•

Inverters

•
*MAXIMUM RATINGS

I

Symbol

2N6077

2N6078

Unit

Collector-Emitter Voltage

VCEX

300

275

Vdc

Collector-Base Voltage

VCBO

300

275

Vdc

Rating

Emitter-Base Voltage
Collector Current - Continuous

-Peak
Base Current -:- Continuous
Total Power Dissipation

@TC;250C
Derate above 25°C
Operating and Storage Junction

VEBO

6

Vdc

IC
ICM

7

Adc

10

IB

4

Adc

45
0.257
-65 to +200

Watts
wf'C
°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Thermal Aesistance, Junction to Case
Maximum Lead Temperature for Soldering

'i
E

_

D

-,K
i

SEATING PLANE
---F--

-J-

Po

TJ. Tstg

'~'

4- ------- -1

Symbol

Max

Unit

ROJC

3.9

°CIW

TL

275

°c

Purposes: 1/8" from Case for 5 Seconds
·'ndicates JEDEC Registered Data

IQ')<;0 ~ ~ I
~\
I

5tT

H ""

t

~

-I

G

STYLE I:
PIN I. BASE
2. EMITTER
CASE. COLLECTOR

MILLIMETERS
DIM MIN
MAX
6 11.94 12.70
6.35
8.64
C
0
0.71
0.B6
1.27
E
1.91
F 24.33 24.43
G
4.63
5.33
H
2.41
2.67
J
1446 1499
K
9.14
P
1.27
n 3.61 3.B6
S
B.B9
T
3.66
U
15.75

.-

INCHES
MIN
MAX
0.470 0.500
0.250 0.340
0.026 0.034
0.050 0.D75
0.956 0.962
0.190 0.210
0.095 0.105
0570 0.590
0.360
- 0.050
0.142 0.152
- 0.350
0.145
- 0.620

All JEDEC Dimensions and and Notes Apply.
CASE BO·02

TO·66

4-219

2N6077, 2N6078

*ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted.)

I

I

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (Table 1)
(lC = 200 mA, IB = 0)

VCEO(sus)
2NS077
2NS078

Emitter Cutoff Current
(VBE a S Vdc, IC =0)
Collector Cutoff Current
(VCEV = 250 Vde, VBE(off) = 1.5 Vdc)

lEBO
ICEV

I

(VCEV

= 250 Vdc, VBE(off) = 1.5 Vdc, TC = 1250 C)

Collector Cutoff Current
(VCE = 250 Vde, VBEloffl

•

275
250

2NS077
2NS078
2NS077
2NS078
ICEO

= 1.5 Vdc)

2NS077

-

-

1.0

-

5.0
0.05
8.0
0.2

-

2.0

12

70

mA

hFE

IIc = 1.2 Adc, VCE = 1 Vdc)
Collector~Emitter Saturation Voltage
IIc = 1.2 Ade, IB = 0.2 Ade)

VCE(sad

(lC = 3 Ade, IB = O.S Adc)
IIc=5Ade,IB a l Ade)
Base-Emitter Saturation Voltage
IIC a 1.2 Ade, IB = 0.2 Adc)

1.0
3.0

-

1.S

-

1.9
2.0

Is

-

tf

-

0.75
5.0
0.75

VBElsetl
2NS077
2NS078
2NS077
2N6078

IIc = 3 Ade, IB = 0.6 Ade)
. IIc = 5 Adc, IB = 1 Ade)

Vdc

-

2NS077
2NS078
2NS077
2NS078

mAde
mAde

ON CHARACTERISTICS
DC Current Gain

Vdc

0.5

Vde

-

DYNAMIC CHARACTERISTICS
Current·Gain - Bandwidth Product
IIC = 200 mAde, VCE =10 Vdc, f te•t

=1.0 MHz)

SWITCHING CHARACTERISTICS
Resi.tive Load (Table 1)
Rise Time
Storage Time
Fell Time

I

I

I

(VCC - 250 Vde, IC = 1.2 Adc,
IBI = 192 = 200 mAde = 100 1lS,
puty Cycle .. 2.0%)

t,

".
".
".

* Indicates JEDEC Registered Data

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA
10
ii:

'"

1
5
3

SO",

100.,
.. 200.,

:!
I-

1,\

I

~a: o.1

B o. 5
a:

O. 3

. -

BREAKDOWN LIMITED
~ 0.2 SECOND
BONDING WIRE LIMITED
_ O.

I THERMALLY lIMITEO@TC=250 C----

8r.i 0.00.015
- 0.03
0.02
0.0 I

I

ti

The,e a,e two limitation. on the powar handling ability of a
transistor: average junction temperature and second breakdown.
Safe Operating area curve. indicate IC-VCE limits of the t,ansls.tor
that must be observed for reliable oPeration; i.e., the transistor
must not be subjected to greater dissipation than the curves

300",
1m,

.'\.

indicate.
The data of Figures 12 and 131. based on TC-250 C;TJ(pk)
is va,iable depending· on power level. Saeond breakdown pulse
limits are valid for duty cycles to 10% but must be derated for

I'\. lol~,

100m,
2N6078
d~t
2N6017
5 7 10
20 30 5010 100 200300 5001001000
VCE, COLLECTOR·EMITTER VOLTAGE IVOLTSI

temperature'according to Figure 1.

fjl

4-220

PNP

NPN

2N6107 2N6288
2N6109 2N6290
2N6111 2N6292
COMPLEMENTARY SILICON PLASTIC
POWER TRANSISTORS

7 AMPERE
POWER TRANSISTORS
COMPLEMENTARY SILICON

designed for use in general-purpose amplifier and switching
applications.
• DC Current Gain Specified to 7.0 Amperes
hFE = 30-150@
= 3.0 Adc - 2N6111, 2N6288
= 2.3 (Min) @ 'C = 7.0 Adc - All Devices

'c

•

Collector-Emitter Sustaining Voltage VCEO(sus) = 30 Vdc (Min) - 2N6111, 2N6288
= 50 Vdc (Min) - 2N6109, 2N6290
= 70 Vdc (Min) - 2N6107, 2N6292

•

High Current Gain - Bandwidth Product
fT ~ 4.0 MHz (Min) @ 'C = 500 mAdc - 2N6288, 90, 92
= 10 MHz (Min) @ 'C" 500 mAdc - 2N6107, 09,11

•

TO'220AB Compact Package

•

TO-66 Leadform Also Available

30-50-70 VOLTS
40 WATTS

•

-MAXIMUM RATINGS
Rating
Coliector~Emitter

Symbol

Voltage

2N6111
2N62BB

2N6109
2N6290

2N6107
2N6292

30
40

70
80

•
•

50
60
5.0
7.0
10
3.0

."

40
0.32

VCEO

Collector-Base Voltage

VCB

Emitter-Base Voltage
Collector Current Continuous
Peak

VEB

..

IC

Base Current

IB

Total Power Dissipation
@TC=2SoC
Derate above 25°C
Operating and Storage Junction
Temperature Range

Po

.
..

Characteristic
Thermal Resistance, Junction to Case

~

"""-

30

z

0

;:
~

iii

"-

"-

'""'s:

li! 10

~

o

40

W/oC

°c

I

o

iJI
,J

SECT A·A

2. COLLECTOR
3. EMITTER
4. COLLECTOR

60

MILLIMETERS
DIM MIN MAX
A 15.11 15.75
9.65 10.29
B
4.06
C
4.82
0.64
D
0.89
3.73
_~61
~
G
2.41
2.67
H
2.79
3.30
J
0.36
0.56
K 12.70 14.27
L
1.14
1.27
N
4.83
5.33
n 2.54 3.04
R
2.79
2.04
S
1.14 1.39
T
5.97
6.48
U
0.76
127
1.14
V

"r---.

<5

20

Adc
Watts

--l1--J

20

o

Adc

---l I!-- R

FIGURE 1 - POWER DERATING

~

Vdc

STYlE I:
PIN 1. BASE

"Indicates JEDEC Registered Data

I-

Vdc

..

THERMAL CHARACTERISTICS

40

Vdc

_ - 6 5 to + 1 5 0 -

TJ. Tstg

Unit

80

100

""'"
120

I
'}...
140

INCHES
MIN MAX
0.595 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.095 0.105
0.110 0.130
0.014 0.022
0.500 0.562
0.045 0.050
0.190 0.210
0.100 0.120
0.080 0.110
0.045 0.055
0.235 0.255
0.030 0.050
0.045

160
CASE 221A-02

TC. CASE TEMPERATURE ('C)

TO-220AB

4-221

2N6107, 2N6109, 2N6111 PNP, 2N6288, 2N6290, 2N6292 NPN

•

-ELECTRICAL CHARACTERISTICS ITC· 25°C unle.. otherwise notedl
Ch....teriltic
I Symbol
OFFi:HARACTERISTICS
Collector·Emltter Sustaining Voltage III
VCEO(susl
2N6111, 2N6288
(lC ~ 100 mAde, 18 ~ 01
2N6109,2N6290
2N61 07, 2N6292
Collector Cutoff Current
ICEO
2N6111,2N6288
(VCE ·20 Vde, 18 e 01
2N6109,2N6290
(VCE • 40 Vde, 18 ~ 01
(VCE ~ 60 Vde, 18 = 01
2N6107,2N6292
Collector Cutoff Current
ICEX
2N6111,2N6288
IVCE = 40 Vde, VE8(011) = 1.5 Vdc)
2N6109,2N6290
IVCE = 60 Vde, VE810ffl =1.5 Vdel
2N6107,2N6292
IVCE e 80 Vde, VEB(offl = 1.5 Vdel
(VCE = 30 Vde, VEB(off!= 1.5 Vdc, TC = 1500 C12N611" 2N6288
(VCE = 50 Vde, VEB(offl = 1.5 Vdc, TC = 150 0C12N6109, 2N6290
(VCE = 70 Vdc, VE8 (0111 = 1.5 Vde, TC ~ 150°C) 2N6107, 2N6292
Emitter Cutoff Current

(VBE = 5.0 Vde, IC =01
ON CHARACTERISTICS (I)
DC Current Gain
lic = 2.0 Ade, VCE = 4.0 Vdcl
lic = 2.5 Adc, VeE = 4.0 Vdel
lic = 3.0 Ade, VCE = 4.0 Vdel
lic = 7.0 Ade, VCE = 4.0 Vdcl
Collector-Emitter Saturation Voltage
lic = 7.0 Ade, IB = 3.0 Adcl
Base·Emitter On Voltage
lic = 7.0 Adc, VCE = 4.0 Vdel
DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product (2)
lic = 500 mAde, VCE = 4.0 Vde, 'test = 1.0 MHzl
2N6288, 90, 92
2N6107, 09, II
Output Capacitance
IVCB = 10 Vde,IE = 0, I = 1.0 MH~I
Small·Signal Current Gain
lic = 0.5 Ade, VCE = 4.0 Vde, f = 50 kHz)

Min

M.x

30
50
70

-

-

1.0
1.0
1'.0

-

100
100
100
2.0
2.0
2.q
1.0

Unit
Vde

mAde

/tAde

-

lEBO

mAde

mAde

-

hFE
30
30
30
2.3

ISO
150
ISO

VCElsatl

-

3.5

Vde

VBElonl

-

3.0

Vde

2N6107,2N6292
2N6109,2N6290
2N611', 2N6288
All Devices

-

MHz

IT
4.0
10

-

Cob

-

250

pF

hie

20

-

-

"IndIcates JEDEC Registered Data.
111Puise Test: Pulse Width C;; 300 /t., Duty Cycle C;; 2.0%.
12)IT = I hie I • Itest

FIGURE 3 - TURN-ON TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
2.0
VCC
+30 V

0.7
0.5

RC
RB

TJ = 25°C
VCC=30V
lellB -10

1.0

SCOPE

:g

0.3

w

0.2

'";:::

-'

51

tr. tf:;:,10 ns
OUTY CYCLE = 1.0%

-4V
RBand Re VARIED TO OBTAIN DESIRED CURRENT LEVELS

0.1

4-222

"

....... ........

i'-

0.07
0.05

-

t,

..- i-'

td@. BElo"'''' 5.0 V

0.03
0.02
0.07

01 MUST BE FAST RECOVERY TYPE, ego
MBD5300 USED ABOVE IB ~IOO mA
MSD6100 USED BELOW IB "100 mA

"-

0.1

0.2

0.3
0.5
1.0
2.0
Ie, COLLECTOR CURRENT lAMP)

3.0

5.0 7.0

2N6107, 2N6109, 2N6111 PNP, 2N6288, 2N6290, 2N6292 NPN

FIGURE 4 - THERMAL RESPONSE

7

..

t-

000;

5

i-'-t-'-

"

3

w
u

,

2

v;

,

~

::!

I:

01

z

-

++

0'

0
00 71-- 005
5
00 I-001
00 3

~ 00 1~
v;
00'.....;-:SING\E .iUlSj t--

I

J..--1:::j;;

t,

DUTY CYCLE, 0 ""!J '12

. 11'111

20

READ TIME AT"
TJlpkl . TC' Plpkl ZOJCI,I

50

' I 111111

I I
10

10

50

100

1.1 .1 1..LU1
1.0 k

500

200

TIME (ms}

FIGURE 5 - ACTiVE-REGION SAFE OPERATING AREA
10

7. 0
-

~

5.0

TJ = 15O'C

~

>- 3.0

~

0
'"
c 1.

~

8~

f--

7
5

::

....

I\,

........

1\1.u'

10
VCE.

-0.5 ms

t'\

20

30

CDllECTOR.E~ITIER

The data of Figure 5 is based on TJ(pk! = 1500 C; TC is variable
depending on conditions. Second breakdown pulse lim1ts are valid
for duty eyeleSlo 10% provided TJ{pk! ~ 1500 C. T J{pk! may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to

t-- dc

2N61". 2N~2882N6109. 2NS29o
2N6t·2Nj292
7.0

There are two limitations on the power handling ability of a
transistor: average junction temperature and ~econd breakdown.
Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.

i\

{SINGl~ PUlS~1

0.3

D. 1
5.0

5.0 ms

SECOND BREAKDOWN
LIMITED
BONDING WIRE LIMITED
THERMAL LIMITATION
AT TC = 2S'C

2.0

i3

...

50

values iess than the limitations imposed by second breakdown

100

70

VOLTAGE {VOLTS!

FIGURE 6 - TURN-OFF TIME

, FIGURE 7 - CAPACITANCE
30 0

5.0

3.0

TJ = 25·C
VCC = 30 V
lells = 10
lSI = IS2

2.0

~

ts

1.0
O. 7
~ 0.5

u

z

«

>-

;::

0.2

r- r-

w

j

0.3

I I

TJ~25JC- t-t-

20 0

10 0

j{..

<>

"'- ....

~

«

i'

tf

u

>'

200
100
50
la. aASE CURRENT ImA)

30

.§. +1.5
z
G

~

w

~
c

20

FIGURE 11 - TEMPERATURE COEFFICIENTS
+2.5

1.6
~

5.0 A

1.2

25°C

13

c

2.5 A

100

~ 70
'" 50

;

TjJslJ

II

·1.6

16 - 101•

......

I'.

100°C

IC~S
IC-2.ICES

f-

-

25°C

r......

IC -ICES
1

2
10-3

IC -ICES

=

~.3

REVERSE

~.2

E ITypicallCES Values

FORWARD

-0.1
0
+0.1 +0.2 +0.3 +0.4 +0.5
VBE. BASE·EMITTER VOLTAGE IVOLTS)

~

+0.6

0.1 k
20

+0.7

4-224

I
I obtaIned from ~igure ,12)
40

"

""'"

60
80
100
120
TJ.JUNCTION TEMPERATURE 10C)

-....
140

160

NPN
PNP
2N6121 2N6124
2N6122 2N6125
2N6123 2N6126

COMPLEMENTARY SILICON PLASTIC
POWER TRANSISTORS
4 AMPERE

... designed for use in power amplifier and switching circuits, packaged in the compact TO·220AB outline. TO·66 leadform also
available.
"MAXIMUM RATINGS
RatlOg

Symbol

2N6121
2N6124

veE a

45
45

Collector-Emitter Voltage
Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB

Collector Current

'e

Base Current

'B
Po

Totsl Power Dlsslpatlon@Tc"'2SoC

I
I

2N6122
2N6125

60
60
5.0
4.0
1.0

45-80 va LTS .
40 WATTS

I

2N6123

I

80
80

2N6126

Unit

Vd,

•

Vd,
Vd,
Ad,
Ad,

40

Watts
mW/oC

320

Derate above 25°C

TJ, T stg ~ . .65to+150

Operating and Storage Junction
Temperature Range

POWER TRANSISTORS
COMPLEMENTARY SILICON

°c

THERMAL CHARACTERISTICS
Max

Characteristic

3.12

Thermal ReSistance, Junction to Case

*ELECTRICAL CHARACTERISTICS ITc

=

2SoC unless otherwise noted)

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (11
(Ie :0.1 Adc, 18'" 01

Collector Cutoff Current
(VCE = 45 Vde, IB = 0)
(VCE = 60 Vdc, IB ~ 0)
(VCE '" 80 Vde, IB = O~
Collector Cutoff Current
(VCE = 45 Vde, VEBloff)" 1.5
(VCE = 60 Vde, VEBloff) = 1.5
(VCE = 80 Vde, VEB(off) = 1.5
(VCE '" 45 Vde, VEBCoffl = 1.5
TC = 1250 C)
(VCE '" 60 Vdc, VEBfoff) ~ 1.5
TC = 125 0 C)
IVeE "" 80 Vdc, VEB(off) = 1.5
TC = 12S0C)

60

80
mAdc

1.0
1.0
1.0

2N6121,2N6124

2N6122.2N6125
2N6123,2N6126

~~
-t

c

I-~
I

A

+

lu

Vde)
Vde)
Vdd
Vdc,

2N6121,2N6124
2N6122,2N6125
2N6123,2N6126

2N6121.2N6124

0.1
0.1
0.1
2.0

Vdc,

2N6122,2N6125

2.0

Vde,

2N6123,2N6126

2.0

'[
U W
1-

K

jSECTA-A

0.1
0.1
0.1
1.0

Emitter Cutoff Current
(VSE = 5.0 Vdc, IC = 0)

leBO

mAde

DC Current Gain (1)
(lc = 1.5 Ade, VCE'" 2.0 Vde)

hFE

25
25
20
10
10
7.0

2N6126,2N6124

2N6122.2N6125
2N6123,2N6126
2.0 Vde)

2N6121,2N6124
2N6122.2N6t25
2N6123.2N6126

Collector-Emitter Saturation Voltage (1)
(lC'" 1.5 Ade. 18 = 0.15 Adc)
lie'" 4.0 Ade, IS = 1.0 Ade)
Sase-Emitter On Voltage (1)
(lC '" 1.5 Adc, VCE '" 2.0 Vde)

100
100
80

Vd,

VCElsatl

0.6
1.4
1.2

VSElon)

Vd,

DYNAMIC CHARACTERISTICS
Small-5ignal Current Gain
(lc = 0.1 Adc. VCE" 2.0 Vdc, f - 1.0 kHz)

hI.

25

Current-Gain·Bandwidth Product
(lC'" 1.0 Adc, VCE" 4.0 Vdc, f '" 1.0 MHz)

for

2.5

MHz

tL

•

H

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR
MILLIMETERS
DIM MIN MAX
A 15.11 15.75
9.65 10.29
8
C 4.06
4.82
0.64 0.89
0
F
3.61
3.73
G
2.41
2.67
H
2.79
3.30
0.36 0.56
K 12.70 1427
L
1.14
1.27
N
4.83
5.33
n 2.54 3.04
R
2.79
2.04
S
1.14
1.39
T
5.97
6.48
U
0.76
1.27
1.14
V

J

INCHES
MIN MAX
0.595 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.095 0.105
0.110 0.130
0.014 0.022
0.500 0.562
0.045 0.050
0.190 0.210
0.100 0.120
0.080 0.110
0.045 0.055
0.235 0.255
0.030 0.050
0.045

CASE 221A.Q2
T()'220AB

(llPulse Test: Pulse Width ~30a J.ls, Duty Cvcle ~2.0"'.
-Indicilltes JEDEC Registered Data.

4-225

~

l

Dd~tG

i.-J

mAdc

ICBO

1";\r,"'

'1+1'

-jeR

2N6121,2N6124
2N6122,2N6125
2N6123.2N6126

4

-

'}

mAde

ICEX

ON CHARACTER ISTICS

C

lr

45

ICEO

Collector Cutoff Current
(VCB '" 45 Vdc, IE = 0)
{Vce = 60 Vde, IE z. 01
(Vce = 80 Vde, IE = 0)

(lc .. 4.0 Ade, VCE

f

Vd,

VCEO(sus)

2N6121.2N6124
2N6122.2N6125
2N6123,2N6126

2N6121,2N6122,2N6123,NPN,
2N6124,2N6125,2N6126,PNP

FIGURE 1 - DC CURRENT GAIN

10
TJ -1500 C

ffi ,~::
N

::;

-I-

~ 3.0
2.0

o

I

;;
z
~ 1.0

--1

~
=

a

•

u

-

0.1
0.5

-

--

--

....
1-

-

VCE-2.0V
VCE' 10 V

===

......

---

I""'"

~

r-

--550 C

= 250 C

........

0.3

o
~ 0.2

0,1
0.004

0.007

0.01

0.02

0.03

0.1

0.05

0.2

0,5

0.3

1.0

2.0

3.0

4.0

IC. COLLECTOR CURRENT IAMPI

FIGURE 2 - COLLECTOR SATURATION REGION

_

2,0

~o

~

1.6

\

TJ = 250 C

~o

IC' 10mA

100mA

1.0A

3.0 A

> 1.2

~
~

~

0.8

\

~j

\
\

1\

\

o

\

0.4

"-

o

u
ul

I-

........

§; 0
0.05 0.07

0.1

0.7

0.3

0.5

0.7

1.0

2.0

3.0
5.0 7.0 10
lB. BASE CURRENT (mAl

s
o

I

~

70

100

200

300

500

!~ppLJsIFbIJ IIGIlBI .. ~F~/~

G

~ +2.0

TJ= -650 C10 +1500 C

.§ +1.5

L

~

~ +1.0

1.2

~
w

~

50

+2.5

TJ·250 C

1.6

3D

FIGURE 4 - TEMPERATURE COEFFICIENTS

FIGURE 3 - "ON" VOLTAGES

2.0

20

I

1

VBElsat)@ IcllB 110

0.8

o

>

~

<3
~ +0.5

8
w
g;

VBE@VCE=2.oV

IJ CE (",,)@ICIIB=10
0.01

~

",,""

0.020.030.05
0.1
0.2 0.3 0.5 1.0
Ie. COLLECTOR CURRENT (AMP)

'8V for VCE(sat)

~

-,TI'IW

-t 5

l-

i

2.0 3.04.0

4-226

,/

-0.5

~1-1.0

III

0.4

0.005

..-

1/

-2.0
-2.5
0.005

0.01

I " '"

,/

0.02 0.03 0.05 0.1
0.2 0.3 0.5
1.0
Ie. COLLECTOR CURRENT (AMP)

2.0 3.04.0

2N6121,2N6122,2N612~NPN,

2N6124,2N6125,2N6126,PNP

FIGURE 5 - COLLECTOR CUT-OFF REGION

FIGURE 6 - EFFECTS OF BASE-EMITTER RESISTANCE

la3

~ 10 7

:z:

2

ew

-TJ-15a'C
1-'

~

-VCE-3av

.......
106

u

!

1 = =REVERSE

=

FORWARO=

=

104

-a.l

-a.2

+0.'

VCE - 30 V

.......
?

- -

IC=lOxICES

........

.......

~

......

.......

IC = 2 x ICES

I'-..

......

(TYPICAL ICES VALUES
OBTAINED FROM FIGURE 5)

~
I-

ICES
-a.3

?

;}. 103

=25'C

la-3
-a.4

~
W

..........

Ic~ICES

105

~

:::::::::: ::=laa'c

........

.......

~ 102

+0.2

+0.3

+0.4

+a.5

'a.6

~

40

20

60

BO

100

120

140

160

TJ. JUNCTION TEMPERATURE I'C)

VBE. BASE·EMITTERVOLTAGE IVOLTSI

FIGURE 8 - CAPACITANCE

FIGURE 7 - SWITCHING TIME EQUIVALENT CIRCUIT

300 ......""
....
'r---.,-,-.,.,"TTTT'"--.".---"TTTrT---,Ir""J."I.--,----,
I-H-F'N..t:l-++++--t-+t-+-+-+-+++++ TJ= +25'C -

TURN·ON PULSE
A
+11 P
V P R O A X Vec

RC

I

Vm 0 t- -

-

-

Vm D--'lM-""'I"--t

VEBI'ttI---l1--11
APPROX

RB

---1131--

I

+11 V

,

Cjd «Cob
t1 ,.;;;7.0 ns

:
: : lOa<12<5aa",
Vin-i- - -1- T - 13<15 ns

I

I

--1

12 J-TURN.OFF PULSE

-4.av
Ccb

DUTY CYCLE ~ 2.a%
APPROX -9.a V

0.2 0.3

Ae AND Re VARIED TO OBTAIN DESIRED CURRENT LEVELS

FIGURE 9 - TURN-ON TIME

2.0

1~= f=

II

IICIIBI=
TJ = 25'C

I,@VCC 3a V

I.a

F

0.7
0.5

a.5
~ a.3

~ 0.2

n-

~ 0.3

1,@Vcc-lav

w

-+-!-

II

!i-

If@VCC=30V

~;

IB1=IB~t r-

IcllB = 10
1s'=ls 1/811= i=
TJ = 25'C
i=

i=

_II
If@VCC= 10 V

.......

'" 0.2
;::

;::

a. 1

O. 1
Id@VEBI,If) 2.a V

a.a 7
a.a 5
a.a3
0.02
0.05 a.37

20 3040

FIGURE 10 - TURN-OFF TIME

2.a

I.a
a. 7 ~

10

1.0
2.0 3.a 5.0
0.5
VR. REVERSE VOLTAGE IVOLTS)

0.07
0.05

~

a.l

0.5 0.7 1.0
a.2
a.3
IC. COLLECTOR CURRENT lAMP)

2.0

0.03
0.02
0.05 0.07

3.0 4.0

0.5 0.7 1.0
0.2 0.3
IC. COLLECTOR CURRENT lAMP)

0.1

4-227

-

2.0

3.0 4.0

•

2N6121,2N6122,2N6123,NPN,
2N6124, 2N6125, 2N6126, PNP

RATING AND THERMAL DATA

FIGURE 11 - ACTIVE REGION SAFE OPERATING AREA
10
100IJs

0: 5. 0

"!!....

i

I
'"

2.0

I

1.0

- -

0

~

~

O. 5

s

•

~

"' ",

TJ,150oC

-

Secondary breakdown Ilmtt
Thermal hmlt at TC '" 25°C
Bondmg Wire limit

5m,

l\

There are two limitations on the power handling ability of a
transistor: peak junction -temperature and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor

I'\.

,\

1\1 m,

that must be observed for reliable operation; Le., the transistor
must not be subjected to greater dissipation than the curves indicate.

1\

Thedal. of Figure 11 is based on TJlpkl = 1500 C; TC iovariable
depending on conditions. Second breakdown pulse limits are valid

for dulV cvcles 10 10% provided TJlpkl';; 1500 C. T Jlpkl mav be
calculated from the data in Figure 12. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations im~osed by second breakdown.

Curves apply below rated VCEO

I I I I 112N6121. 2N6124- f12N6122.2N6125 -\'\

I

O. 2

Jt

I

O. I
1.0

2N6123.2N6126
10
20

5.0

2.0

50

100

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

N1.°m_ _BfH.
FIGURE 12 - THERMAL RESPONSE

~

~

0.7
0.5 0 "0.5

~

0.3

::::i

0.2

~ 0'21111111-1=-""1
~
':i.

0.1

~~

0.1

0.07 --- 0.05
:E 0.05
~
0.02.....
0.03
0.02 --" 0.01
,

ffi
~

d::: -

I
-l

-j 11112
~

ZoJCIII ' ,III ROJC
ROJC " 3.12"C/w Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
REAO TIME AT 11
TJlpkl - TC " P(pkl ZOJCIII

DUTY CYCLE. 0 "11/12

SI~G~E r~Lr~

"'I

nn

l
PtlPk

1 ......
I I I II
I I
I I I I I I II
I I
I I I I II
... 0.0 O~.O"'I:...1...,0=".0::2--''-'-:-0.':-:05:'-..l...LL0:'..I:--'---,0'=.2-''---'--:0:':.5-'--LLUI':'0-L-,2:':.0:--'--:..L:"1.0:-'-.J...L:'.1'=0-"---:20:-...L..-L-'5'=0'w..J..JI:-!:0:-0--'--:"20~0-L--'-:5~00:-'--LLI'-'..0 k
I. TIME (m.1

DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA

~~:~

A train of periodical power pulses can be represented by the model

shown in Figure A. Using the model and the device thermal response, the normalized effective 'transient thermal resistance of
Figure 12 was calculated for various duty cycles.

n"n'

-----II

---l

11

I

I

~

:

I
I
I---l/f~

To find 9JCld. mulliply the value oblained from Figure 12 bV
the sleady slale value 9 JC.

Example:
The 2N6121 i. dissipetlng 50 watls under Ihe following conditions: tl = 0.1 mo. tp =0.5 mI. 10 =0.21.
Using Figure 12. al a pulse width of 0.1 ms and 0 = 0.2. Ihe
reading of rIll. 01 is 0.27.
The peak rise in junction temperature is therefore:
..T =rId X Pp X 9JC = 0.27 X 50 X 3.12 =42.20C

'----11

DUTY CYCLE 0 "Il·f"ij;
PEAK PULSE POWER' Pp

4-228

2N6186
thru

2N6189
10 AMPERE

MEDIUM-POWER PNP SILICON TRANSISTORS

POWER TRANSISTORS
PNP SILICON

· .. designed for switching and wide-band amplifier applications.
•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.2 Vdc (Max) @ IC = lOAdc

•

DC Current Gain Specified to 5 Amperes

•

Excellent Safe Operating Area

•

Packaged in the Compact, High Dissipation TO-59 Case

SO-l00 VOLTS
60 WATTS

•

Isolated Collector Configuration

•

Complement to NPN 2N5346 thru 2N5349

•

*MAXIMUM RATINGS
Symbol

Rating
Collector-Emitter Voltage

VCEO
VCS
VEB
IC

Collector· Base Voltage
Emitter-Base Voltage

2N6186
2N6187
80
80

2N6188
2N6189
100
100

Base Current

18

Total Device Dissipation @TC- 25°C
Oerate above 25°C

Po

6.0
10'
2.0
60

TJ, Tstg

-65 to +200

I Symbol I
I 8JC I

Max
2.91

Collector Current - ContinUOUS

Unit

Vdc
Vdc
Vdc
Adc
Adc
Watts
mW/oC
°c

343

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

I
I

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

Unit
°cm

*Indicatal JEDEC Registered Data.

FIGURE 1 - POWER·TEMPERATURE DERATING CURVE

60

"

c;; 50

S
~
z

40

...~

30

r--....

0

<.;
en

i5
a:
w
3:

20

a..

10

...ci

10·32 UN F·2A
COATEO

" " '"

"""- ~
20

40

60

80

100

120

0.424
0.320
0.090

G

0.185

H

"~

0

B
C
E

140

160

~ :~:!:

-t;;~,.::~~~H~f-l

~

2.29

-I-"0",.O",90'-irr.1H

P

4.14
1.02
8.08
4.212
.5

Q

"~
180

200

R
S

T

All JEDEC dimensions and notes apply

Collector isolated from CISI.

TC, CASE TEMPERATURE (DC)

CASE 18Q.03
TO-59

4-229

2N6186 thru 2N6189

*ELECTRICAL CHARACTERISTICS ITC = 25 0 C, unless otherwise noted)

I

I

Fig. No.

Symbol

-

VCEOlsus)

Min

Max

80
100

-

-

100
100

2NS186,87
2N618B,89

-

10
10

2N618S,87

-

1.0

-

1.0

-

10

-

100

30
SO
30
60
20
40

120
'240

-

0.7
'1.2

-

1.2
2.0

30

-

-

300

-

1250

Characteristic

Unit

OFF CHARACTERISTICS
CoUeetor·Emitter SUstaining Voltage 11)
(lC = 50 mAde, IB = 0)

..

Collector Cutoff Current
IVCE,: 75 Vde. IB : 0)
IVCE : 90 Vde, IB : 0)
Collector Cutoff Current
IVCE : 75 Vde, VEBloff) = 1.5
IVCE: 90 Vde, VEBloff): 1.5
IVCE: 75 Vde, VEBlolt): 1.5
TC: 1500 C)
IVCE ,= 90 Vde, VBEloff) = 1.5
TC: 150o C)

Vde

2N6186,87
'2N618,8, B9

-

"Ade

ICED

2N6186,87
2N6188,89
12
Vde)
Vde)
Vde,

"Ade

ICEX

2NS188,89

Collector Cutoff Current

/tAde

ICS9

IVes : Rated VCS, IE : 0)

-

Emitter Cutoff Current

"Ade

IESO

=S.O Vde, Ie =0)

IVSE

mAde

Vde,

ON CHARACTERISTICS (1)
DC Current Gain
(lC = 0.5 Ade, VCE

B

= 2.0 Vde)

(Ie: 2.0 Ade, VeE: 2.0 Vde)
(lC

-

hFE

2NS18S,BB
2N6187,89
2NS1B6, BB
2NS187,89
2N618S,88
2N6187,89

= 5.0 Ade, VCE = 2.0 Vde)

Collector-Emitter ~a~uration Voltage

9,10,11

(lC = 2.0 Ade, IS = 0.2 Ade)
(lC: 7.0 Ade, IS : 0.7 Ade)
Base·Emltter Saturation Voltage
(lC = 2.0 Ade, IS : 0.2 Adc)
(lC = 10 Ade, IS = 1.0 Ade)'

Vde

VCElsat)

10;11

Vde

VeEls.t)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (2)
(lC = 500 mAde, VCE = 10 Vdc, 'Test = 10 MHz)

-

Output Capacitance
IVes: 10 Vdc, IE • 0,': 100 kHz)

7

Input Capacitance

7

IVSE = 2.0 Vde, Ie

=0, f ·

MHz

fT

pF

Cob

pF

Cib

100 kHz)

SWITCHING CHARACTERISTICS
Del.ay Time

Rise Time

Storage Time
Fall Time

IVee' 40 Vdc, VESloff) • 3.0 Vde,
(lC = 2.0 Adc, lSI = 200 mAde!
IVec - 40 Vde, IC = 2.0 Ade,
lSI = IS2 = 200 mAde!

2.3

td
tr
ts
If

2.S

100
100
2.0
200

~

-

ns
n.

"Sns

*Indlcates JEDEC Registered Data.
Il) Pulse Test: Pulse Width'" 300 "s, DUlY Cycle.'" 2.0%.
121fT = Ihfe l• fTest
FIGURE 2 -SWITCHING TIME TEST CIRCUIT'

FIGURE 3 - TURN·ON TIME
2000

+11.6 V

VCC

~~:7V
10~ I
I

INPUT
PULSE

....

'"oSw
:E

•

fr. tfC;: IOn5
D.C.' 1.0%

20

25.F

T

;::

02

TJ - 25°C

t,@VCC-OOV

500

62

Icllo ~ I~

I II

1000

-40 V

......

200
100

r-...

r-....

.......

t,@VCC'20V

,, <

O. 2

z

t;~

0' O.~

-I

~

0.1

D, I

;;..r

cr 0.07
W:E
~ ~ 0.0 ~

0.02

Z

~

-'e
0.0 I
0.01

>,.....

.I

-

.~---

""",

~ .... 0.03
o

~ SINGLE
PULSE Plpk}

0.p2

CI

=t

OOI-t,

I-"

-J-----+SINGLt PULSE

-

-t-t

O.O~

0.1

0.2

11111

i
O.~

0.3

1:1~.

i

0JC(t} , rl'} OJC
OJC' 2.910 cm Max

D CURVES APPLY FOR POWER
PULSE TRAIN SHowr~
READ TIME AT'I
TJlpk} - TC' Plpk} OJCI'}

-'2--1
DUTY CYCLE. D"1/'2

II- I I i
0.02 0.03

+-

f-

'nJl'

~

O.O~

w~

,~,

-

.....-'

0.2

W 0

::t

,--

I-

1.0

2.0

3.0

5.0

II

II

10

20

30

~O

1111 III
100

200 300

~OO

1000

t. TIME OR PULSE WIOTH 1m,}

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
20

l'

10

a:-

~

T

i

de " " " ' -

.

1.0

/.100",1

. I·~'o
m'~
1",
I ' l".

~

There are two limitations on the power handling -ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the
transistor must not be subjected to greater dissipation than the
curves indicate.
The data of Figure 5 is based on TJlpk} = 200°C; TC is
variable depending on conditions. Second breakdown pulse limits
are valid 19r duty cycles to 10% provided TJlpk}
2000 C .
TJ(pkJ may be calculated from the data in Figure 4. At high
case temperatures. thermal limitations will reduce the power that
can be handled to values less than the limitations imposed by
second breakdown.

~.

" 'Ii

Tp 2000C
SECOND BREAKDOWN LIMITED
'"
- - - BONDING WIRE LIMITED
o 0.5 - - - - - THERMALLY lIMITEO@TC - 2~oC
" ~
0.2
~ULSE D,UT,Y C~CLIE';;; 10:~
I
,~
_ O. I
RATED VCEO.
.I
"""'"
~ 0.05
t2N6186.87
2N6188.89
,
0.02
2.0 3.0
5.0
10
20
30
~O
1.0
VCE. CoLLECTOR·EMITTER VOLTAGE IVOLTS}

13

I:

~1.~:.'~

5.0

~ 2.0
_

'\,

r

t~'"

";f'

<

100

FIGURE 7 - CAPACITANCE versus VOLTAGE

FIGURE 6 - TURN-OFF TIME
2000

r-TTIT

t

1000 -

IBl"82
Icll8' 10
TJ' 2SOC

2000

1

1000
500

!w

'">=.:

....... .......

200

.e

No.
~20V

r-...

....... r--100

tfl.'VCC'80V

W

......

TJ'

z

Cib

700

""

I-

500

U

::«

t-....

u
u'

r-

r--.

300
200

0.2

0.3

0.5
1.0
2.0 3,0
IC. COLLECTOR CURRENT lAMP}

5.0

2~oC

u

50

20
0.1

II

r-. .......

10 •

4-231

r-..
i'- t-Jb

100
1.0

2.0

3.0

5.0
10
20 30
VR. REVERSE VOLTAGE IVOLTS)

~O

100

•

2N6186 thru 2N6189

FIGURE
200

z 100

DC CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION
I.0

-

TJ'~C

in

- - - VCE' 2.0 V
- - - VCE'10V

.:::::::. t:--

~
~

~

a:

a

'"c
~

•

3

::
8 o.
O.S
1.0
2.0 3.0
IC. COLLECTOR CURRENT IAMPI

10

S.O

\

I

0

>

2.0

S.O

FIGURE 10 - "ON" VOLTAGES
1.4

f-TJ I•

:; 2.0

ffi

1.0

r'

VSElonl1i' VCE' 2.ti v

:;

I.S

1000 2000

J.

10~'C .TO HS'C
2S'C TO 100'C /1.....1":

I 11

S

-sS'C TO 2S'C

w

g; -0.5

--

I-

o

'"

> 0.4

~ -1.0

0.2
VCElsatl@ Iclis' 10

o
0.1

SOD

8VC FOR VCElsa,)

<3

~

O.S VSElsa'l1i' lellS' 10

.s
I!?

b:::;"'-

~ 0.6

SO
100
200
20
lB. SASE CURRENT {mAl

FIGURE 11 - TEMPERATURE COEFFICIENTS

2~'C

1.0

~,

10

-

-

.., 2.S

1.2

~o

-

2

~

0.3

\..

~ 0.4

'"
~

0.2

S.O A

\

~ O.S

20

10
0.1

2.0 A

O.SA

a:

I'-..

3D

TJ= 2S bj;

$! o.6

r--.l"-

-S~'C

50

II
II

11C' 0.2A

o. 8
o.7

:;

70

I-

III

o.9

!:;
o

2S'C

;;:

'"

8-

0.2

0.3

1.0

O.S

v

--

~

-1.5 f - - 8VB FOR V8E

I-

~ -2.0

-2.5

2.0

3.0

S.O

10

~ Ft-tSiOlrt
0.2

0.1

0.3

O.S

2.0

1.0

3.0

S.O

10

IC. COLLECTOR CURRENT lAMP)

IC. COLLECTOR CURRENT IAMPI

FIGURE 13 - EFFECTS OF BASE-EMITTER
RESISTANCE

FIGURE 12 - COLLECTOR CUT-OFF REGION
10- 4
S

J

/

TJ =17S'C

107

I

IC' 10 X ICES

"
-100'C

./

=

IDS

VCE-30V -

IC=2 X ICES

. IC' IC S
IC'ICES
-REVERSE
==!='2S'C
10-9
0.3

0.2

0.1

FORWARO

0.1

0.2

0.3

0.4

3

r--

(Typical ICES V.lues
10 ~FObtained From Fig. 12)
O.S

0.6

0.7

VSE. SASE·EMITTER VOLTAGE IVOLTSI

102

o

w

~

50

~

~

m

~

TJ.JUNCTION TEMPERATURE (OCI

4-232

~

w m

2N6190
thru

2N6193

5 AMPERE
POWER TRANSISTORS

MEDIUM-POWER PNP SILICON TRANSISTORS
· .. designed for switching and wide band amplifier applications.
Low Collector-Emitter Saturation Voltage -.
VCE(sat) = 1.2 Vdc (Max) @ IC = 5.0 Amp

PNPSILICON

•

DC Current Gain Specified to 5 Amperes

•
•

Excellent Safe Operating Area
Packaged in the Compact TO-39 Case for Critical Space Limited
Applications
.

80·100 VOLTS
10 WATTS

•

•

• Complement to NPN 2N5336 thru 2N5339
"MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

Symbol

2NS190
2NS191

2NS192
2NS193

Unit

VeEO

ao

100

Vdc

Collector-Base Voltage

Vea

ao

100

Vdc

Emitter-Base Voltage

VEe

6.0

Vdc

Ie

5.0

Adc

Base Current

Ie

1.0

Adc

Total Device Dissipation@Tc=2SoC

Po

10

Watts

57.1

mw/oe

TJ. Tstg

-65 to +200

°e

Collector Current - Continuous

Derate above 2SoC

Operating and .Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Max

Thermal Resistance. Junction to Case

17.5

·Indlcates JEOEC Registered Data.

FIGURE 1 - POWER-TEMPERATURE DERATING

10

"" "" ""-

STYlE I:
PIN 1 EMITTER
2. SASE

3 COllECTOR

'" '"

MILLIMETERS

DIM
A
8

~

C

o
E
F
G

.......

"
40

80

120

160

"" ""'-

200

H
J
K
L

M
P
Q

R

MIN MAX
889 9.40
800 8.51
610 660
0.406 0533
0.229 3.18
0.406 0.48
4.83 5.33
0.711 0864
0.7311.02
1270
635
450 NOM
1.21
900 NOM
2.54

INCHES

MIN

MAX
0.310
0.335
0.260
0.021
0.125
0.019
0.210
0.034
0040

All JEDEC dlmlnsionund natHlpply.

TC. CASE TEMPERATURE (OC)

CASE 79·02

Safe Area Curves are indicated by Figure 5. All limits are applicable and must be observed.

4-233

10-39

2N6190 thru 2N6193

• ELECTRICAL CHARACTER ISTICS

I

ITC' 2S0 C unle.. oth8...,.. noted 1
Fig. No.

Characteristic

Unit

Me.

OFF CHARACTERISTICS
CollectOf·Emitter Sustaining Voltage t 1)
(Ie .. 50 mAde, 'S • 01

Vdc
2N6190,2NG191
2N6192.2N6193

Collector Cutoff Current

".Adc

2N6190. 2NG191
2N6192.2N6193

(VeE" 75 VdC.la" 01
(VeE" 90 Vdc. Ie = 01

Collector Cutoff Current
(VeE";' 75 Vdc, VSEloffl ". 1.5 Vdcl
. (VeE "90Vdc. VSEloff) '" 1.5Vdcl
tVeE = 75 Vdc, VaEfoff) '" 1.5 Vdc.

•

100
100
12

/JAde

2N6190,2NG191

2N6192, 2N6193
2N6190.2NG191

10
10
1.0

2N6192.2N6193

1.0

2N6190.2N6191

10
10

TC "'50oCI
tVee = 90 Vdc. VSEloffl .. 1.5 Vdc.

mAde

TC = lsaGCI
Collector Cutoff Current
(Ves II 80 Vdc, Ie .. 01
(VCS'" 100 Vdc. Ie = 0)

".Adc

2N6192.2N6193

Emitter Cutoff Current
tVSE" 6.0 Vdc.IC = 01

p.Adc

100

ON CHARACTERISTICS (11

DC Current G.in
lie" 500 mAde, VeE = 2.0 Vdel

2N6'90.2N6192
2NG'91,2NG193
2N6190,2N6'92
2N61Q1,2N6193
2N619D,2N6192
2N6191,2NS193

lie" 2.0 Ade, VeE;; 2.0 Vdel
(Ie ;;

5.0 Ade, VeE;; 2.0 Vdcl

120
240

Coliector·Emitter Saturation Voltage

Vdc

lie'" 2.0Adc,IB = 0.2 Adel
(Ie" 5.0Adc.IB =0.5Adcl

0.7

1.2

Ba.-Emitter Saturation Voltage
lie'" 2.0 Adc, '8 - 0.2 Adcl

Vdc

1.2
1.8

lie;; 5.0 Adc. IB '" 0.5 Adcl

DYNAMIC CHARACTERISTICS
Current·Gain·Bandwidth PrOduct 121
lie'" 0.5 Adc, VeE;; 10 Vdc. fTest" 10 MHz)

MH,

Output Capacitance
IVeB" 10 Vdc. IE - D, f ... 100 kHz!

300

Input Capacit.,ce
IVBe .. 2.0 Vdc, Ie - D, f - 100 kHz)

1250

SWITCHING CHARACTERlsncs

Delay Time
Rise Tim.

(Vee" 40 Vdc. VSE(off) ,.. 3.0 Vdc.
Ie - 2.0 Adc. IS1 .. 0.2 Adcl

Storage Time
Fell Time

Nee" 40 Vdc. Ie
IS.

100

2.0 Adc.
102 - 0.2 Adcl

s

-Indicetes JEDEC Regittered Oet•.
11. Put .. T.n: Put.. Width :£300
(2) fT = I hf.1 • tTest

"'t. DUIV

2.0

-"""'"

Cvct.~2.0"

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN ON TIME
2000

+11.6 V

VCC
-40V

PULSE

I

IlL II

Ir. tf< 10ns
D.C.-tO%

1--

r

ICIIB"0
TJ =Z5'C

t r @lVCC a 10V

0
62

1,@VCC=20V

20

3JV

•

JJ

l'

1000

~OV
;0",
INPUT

n,
"'

~

~

0

i'

82
100
0

lN91'

20
+2.3 V

...........
........!'-

lil!ll'lflj 3·7
II II

0.05

0.1

0.2

0.3

0.5

1.0

IC. COLLECTOR CURRENT IAMPI

4-234

2.0

3.0

5.0

2N6190 thru 2N6193

FIGURE 4 - THERMAL RESPONSE
1.0
>z
w

0.7

'"

UJ

>

c:(

a:

wz

0.2

~~
~

0.1

0, I

c <" 0.01
w,"

ffi

0.05

"''''

0.03

~

~

I-

:;;;;..

I--~

SINGLE'rLJl
PULSE Plpkl

1-

0.02

w~

~

8JC

~

0.05

-

0.02

SINGLE PULSE

0.02 0.03

0.05

0.1

0.2

=:

11.5 0 elW Max

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJ{pki - TC· P{pkl 0JcCtI

DUTY CYCLE, 0·'1/'2

I

0.01

.

tJ

0.01

-= om

t

8JC{II· r{II 8JC

I---

0.2

O. 3

I-u

tt

0·0.5

0.5

iii

0.5

1.0

2.0

5.0

3.0

I I I I I II

III

IIIII
0.3

20

10

30

50

100

500

200 30a

1000

I, TIME DR PULSE WIDTH {m,I

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
0

100 s
1.0ms

5.0
~

'"

!5

~_

1l
~

~

o. 5

o. 2
o. 1

...

J...>-f..

2. 01--- I- del
I. 0

5.0 m;"

~I""

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the tran·
sistor that must be observed for reliable oueration; i.e., the

....
i"-

TJ - 2000e

transistOT must not be subjected 'to greater dissipation than the

SECOND BREAKDOWN LIMITED
BONDING WIRE LIMITED
_ _ _ _ THERMALLY L1MITEO@TC'250 C
PULSE DUTY CYCLE.. IO%

-

8 0.05

curves indicate.

CURVES APPLY

I

0.0 1

1.0

2.0

BE;~

are valid for duty cycles to 10% provided TJ(pkl
200"C.
T J(pkl niay be calculated from the data in Figure 4, At high
case temperatures. thermal limitations will reduce the power that
can be handled to values less than the limitaitons imposed by

<

2N6192,2N6193
20

10

5.0

3.0

variable depending on conditions. Second breakdown pulse limits

::~~~,:NC:,~,

-I

0.02

The data of Figure 5 is based on TJ{pk) = 200"C; TC is

i'

second breakdown.

100

50

3D

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS!

FIGURE 7 - CAPACITANCE versus VOLTAGE

FIGURE 6 - TURN-ClFF TIME
2000
1000

i'"

2000

181 = 182
IC 18 ·,0

r-

TJ'25DC=~
~

I,

500

........

.....

0

I

20V

r-.

r!t@VCC ·80V

1'1'
0

1000

T =

Jib

;t--.

3D0

200

I'-

0

t2O
0.05

0.1

0.2

0.3

0.5

1.0

2.0

3.0

100
1.0

5.0

2.0

3.0

5.0

10

20

~
30

VR, REVERSE VOLTAGE {VOLTS!

IC, COLLECTOR CURRENT {AMPI

4-235

zJoc

700

500

!-....

I"- r-...

50

100

..

2N6190 thru 2N6193

FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 8 - DC CURRENT GAIN

200

.0

z

~
ffi
::::>
'-'
'-'
c

~

•

~~

·!S.CI

100

I"0

~
a:

r--..

-SS·C

0.1

0.2

0.3

1.0

2.0

3.0

\

\.

O. 3

8

'0 •1

o. 2

,\

t-...

I---

o
5.0

5.0

2.0

10

2.5

..e
2.0
>
.§ 1.5

.

--:::--

VaEI..')@ ICl1g • 10

0.6

VBEI.n) @VCE • 2.0 V

ffi

k:::::~

1.0

U

.-::::~

2S·C TO 100DC

$ 0.5
8

w

'"

1000

e0cI
100·C TO I15.C .....

e!

1.0
0

1000

II II
Flo~IVCEI~!)

<.>

TJ' 2S·C
1.2

0.8

500

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 10 -ON VOLTAGES
1.4

2:

-

-

20
50
100
200
lB. BASE CURRENT ImA)

IC. COLLECTOR CURRENT lAMP)

~

5.0 A

\

O.6

o

~

II

0.5

TJ' 2S·C

~ o.4

VCE' 2.0 V _
VCE' 10 v.

0

2.0 A

O.SA

~ O. 5

t-r-. r-...

30

10
0.05

IC' 0.2A

'" O.7

~

70

I

II
II

I1111

~
o.9
o
~ o. 8

~~7S.C

~

w

> 0.4

....

~ -1.0

--

0.2

o

-SS.C TO 1SoC

g; -0.5
!;;:

0

VCEI,,!) @Ic/la' 10

0.05

0.1

0.2

1.0

0.5

0.3

2.0

V
3.0

!

-1. 5

i

-2.0

>-

5.0

eVB FOR VBE

-2.5
0.05

-S~Tr

I II

0.2

0.1

IC. COLLECTOR CURRENT lAMP)

~ 10- 5

0.5

1.0

2.0

3.0

5.0

FIGURE 13 - EFFECTS OF BASE·EMITTER RESISTANCE

I

'/

TJ =17S·C V

0.3

IC. COLLECTOR CURRENT lAMP)

FIGURE 12 - COLLECTOR CUT'()FF REGION

0:

-'-

VCe= 30 V -

I

107
IC' 10 X ICES

ffi

/

: 10-6

i'l

r--l00·C

a:
o

~

./

10-7

105

VCE'30V -

=

IC =2 X ICES

IC 'IC S

o

IC -ICES

I

'-'
8 _REVERSE
~10-

FORWARO

3 f-10

t==

i==+= 2S·C

10-9
0.3

0.2

0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

VBE. BASE·EMITTERVOLTAGE IVOLTS)

102

o

20

ITypicallCES V.lues
Obtained From Fig. 12)

40

60

80

100

120

140

TJ. JUNCTION TEMPERATURE IOC)

4-236

160

180

200

2N6211

2N6212
2N6213

2 AMPERE
'POWER TRANSISTORS

MEDIUM-POWER HIGH-VOLTAGE
PNP POWER TRANSISTORS

PNPSILICON

· .. designed for high-speed switching and linear amplifier applications
for high-voltage operational amplifiers, switching regulators, converters, inverters, deflection stages and high fidelity amplifiers.

225-350 VOLTS
35 WATTS

o Collector-Emitter Sustaining Voltage VCEO(sus) = 225 to 350 Vdc @ IC = 200 mAdc
• Second Breakdown Collector Current IsIb = 875 mAdc@VCE = 40 Vdc
o tf = 0.61ls Resistive Fall Time
• Usable DC Current Gain to 2.0 Adc

*MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current Continuous
Peak
Base Current
Total Power Dissipation @ T C = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

Symbol
VCEO

2N6211 i2N6212i2N6213
300
225
350

Unit

350

Vdc

I
I

.
...
.

275

VCB
VEB
IC
IB
Po

I
I

400

6
2

5
1
35
0.2

..
...

-65 to +200

TJ. Tstg

Vdc
Vdc
Adc
Adc
Watts

W/oC

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

Symbol
6JC

Indicates JEDEC Registered Data.

I
1

I

Max
5.0

J

FIGURE 1 - FORWARD BIAS SAFE OPERATING AREA
10
5.0
~ 2.0

ffi

lOms

1.0

~ 0.5

"-

de

i:l

~ 0.2

-

1'.

"-

Banding Wile Limit
"o. 1 _ _ _ _ Thermal Limit
(SinglaPulsa)
0.05 _ _ _ _ Second Breakdown Limit
i!
2N6211
0.02
2N6212
2N6213
0.0 I
20
50
100
10

~
a

.'

J.Op

200",
..,..1 ... ,

~

Unit
°C/W

INCHES
MILLIMETERS
DIM MIN MAX MIN MAX
B 11.94 12.70 0.470 0.500
C
6.35 8.64 0.250 0.340
0
0.71 0.86 0.02B 0.0 4
E
1.27
1.91
0.050 0.075
F 24.33 '4.43
0.958 0.962
G 4.83 5.33 0.190 0.210
2.67 0.095 0.105
H 2.41
J 14.4B 14.99 0.570 0.590
K 9.14
0.360
P
1.27
0.050
Q
3.86 0.142 0.152
3.61
S
8.89
0.350
T
3.68
0.145
15.75
U
0.620
All JEDEC Dimensions and and Notes Apply.
CASEao.o2
TO·66

"-

"

200

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

500

1000

There are two limitations on the powerhandling ability of
a transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le-VCE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on TJ(pk) R 200; TC is variable
depending on conditions. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by second breakdown. (See
Figure B).

4-237

2N6211, 2N6212, 2N62,13

ELECTRICAL ,CHARACTERISTICS ITC a 250 C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
·Collector-Emitter Sustaining Voltage 11)
IIc = 200 mAde, IS = 0)

Symbol
VCEOlsus)

2N6211
2N6212
2N6213

.'

·Collector-Emitter Sustaining Voltage
IIc ~200 mA, VSE = -1.5 V, L = 10 mH)

Max

Min

-

Vdc

-

-

VCERlsus)
2N6211
2N6212
2N6213

-Emitter-Base Breakdown Voltage (1)
liE = 0.5 mAde, IC =0)

Vdc

-

275
350
400

2N6211
2N6212
2N6213

Unit

-

225
300
350

VCEXlsus)

·Collector-Emitter Sustaining Voltage 11 )
IIc = 200 mA, IS = 0, RSE = 50 n

•

I

250
325
375

Vde

-

Vde

VESO

2N6212/13
2N6211

liE =1.0 mAde, IC =0)
·Collector Cutoff Current
IVCE a 250 Yde, VaEloff)

,ICEV

= 1.5 Vde, TC = 25°C)
ITC = 100°C)
IVCE = 315 Vde, VaEloff) = 1.5 Vde, TC = 25°C)
ITC = loooC)
IVCE a 360 Vde, VSEloff) = 1.5 Vde,Tc = 25°C)
ITC = 100°C)

Coli actor Cutoff Current
IVCE =150 Vde, IS = 0)
. -Emitter Cutoff Current
!VEa ~ 6.0 Vde, IC = 0)

-

6.0
6.0

mAde

-

-

0.5
5.0
0.5
5.0
0.5
5.0

-

5.0

-

1.0
0.5
0.5

--

-All Types

ICED
lEaD

2N6211
2N6212
2N6213

mAde
mAde

-

'-

'ON CHARACTERISTICS 11)

DC Current Gain
IIi:: = 1.0 Ade, VCE = 2.a Vde)
, IIc ~ 1.0 Ade, VCE = 3.2 Vde)
IIc = 1.0 Ade, VCE = 4.0 Vde)
Collector-Emitter Saturation Voltage
IIc = 1.0 Ade, IS = 125 mAde)

-

hFE
2N6211
2N6212
2N6213
VCElsatl
2N6211
2N6212
2N6213
AU Types

Base-Emitter Saturation Voltage
IIc = 1.0 Ade, I a = 125 mAde)

VaEI.atl

10
10
10

100
100
100

-

1.4
1.6
2.0
1.4

Vde

-

Vd.

DYNAMIC CHARACTERISTICS
·Current Gain-Bandwidth Product (2)
IIc = 200 mAde, VCE a 10 Vde, f test = 5.0 MHz)
Output Capacitance IVca
'SECOND SREAKDOWN

= 10 Vde, IE = 0, f -

1.0 MHz) ,

·Second Breakdown Collector Current with Base Forward Biased
t = 1.0 sinon-repetitive) !VCE = 40 Vde)
'SWITCHING CHARACTERISTICS
IV CC
lal

=200 Vd~,

IC = 1.0 Ade,

=la2 =0.125 Ade)

·Indicates JEDEC Registered Data ..
11) P'ulse Test: Pulse Width .. 300 loiS, Duty Cycle .. 2.0%
FIGURE 2 - SWITCHING TIME TEST CIRCUIT
Input: HeWlett-Packard

V BB

Model No. 214A.
or equivalent

= +6 V

ijr+-+::-~---,
':' 100lolF

Input from Pulse Generator

·Adjult RS for 182 and RC for

(Pulse Duration"" 20 ",I.
Rap. Rate = 200 'Hz)

Ie

"'181 and 182 measured with Tektronix Current
Probe P6019 and Type 134 Amplifier, or equivalent

,4-238

2N6211,2N6212,2N6213

FIGURE 3 - DC CURRENT GAIN
300

200

I...

TJ'ISO"C
2SoC

z

100

....

SO

a:
a:

30

~

..,a
c
~

5
~

~

;;: 70 I=-

CI

FIGURE 4 - COLLECTOR SATURATION REGION
--VCE"2.0V
- -VCE" 10V

J)2S~

1.0
0.8

"'
CI

--55"C

~

,

... ",

r-;:

20

~

I\:

~
a:

0.6

~

lllOOmA
750mA

!

0.4

"'

\

7.0
S.O

~..,

O.2

3.0
20

>

~

o

10

50

500 700 1.0 k
70 100
200 JOO
IC, COLLECTOR CURRENT (mAl

2.0k

ti~l

..,

2.0

1.0

""

i-

20
10
5.0
IB, BASE CURRENT (mA)

~

"'~

103

a:

8
!J

10

~

2

10 I~

100

c-

+0.2

REVERSE
2S"C
+0.1

FORWARD

VCE' 200 V-=-

f

j5S0Y10125 CI

-0.4

.{J.5

~

-1. 50V~

-0.5

-2. 0
-2.5
2.0

.-1-

250& 10 1750C

-1.0

ffi

.;

25 0C 10 i7££;

+0.5 .OVC to, VCE(IIt)

~

"'i

./
-0.1
-0.2
-0.3
VBE, BASE·EMITTER VOLTAGE (VOLTS)

.500

+1.5

8

I-- 100°C

c

..=
200

~ +1.0

/

::>

~

so

100

·APPLIES FOR (elIB" hFE/4

~ +2.0

/

!104
./

\
.....

FIGURE 6 - TEMPERATURE COEFFICIENTS
+2.5

TJ' ISOoC

11

IflllloojA

O.S

FIGURE 5 - COLLECTOR CUTOFF REGION

liP
./

...... II I

-

c

JO

SOOmA
2S0mA

I

JO

-IS50~ 10 ~~C

f-

so

I
200 300
500 700 1.0 k
70 100
IC,COLLECTOR CURRENTlmA)

2.0 k

FIGURE 8 - POWER DERATING

FIGURE 7 - BASE CUTOFF REGION
100

g

~

0

a:

~

"'"
""- r--..............

40

~

20

.........

o

o

VBE, BASE·EMITTER VOLTAGE (VOLTS)

20

40

60

80

100

120

TC, CASE TEMPERATURE 10C)

4-239

.....

THERMAL ......
DERATING """"

a:

+0.2

.... r-.-

r--...

z

.

.............

i'..

60

CI

~.

SECJNOL
BREAKDOWN DERATING

140

"' "

160

180

200

•

2N6211,2N6212,2N6213

FIGURE 9 - CURRENT-GAIN-BANDWIDTH PRODUCT

i:

70

VCE" 10V
TJ' 25 0 C

~

ti

[',

50

~

i=
CI

~

/

~ 20

..'"
ffi..
a

......

O. 3

/

30

O. 2 .....

I'

I'

1

;:.0.0 7
- 0.05 - Id@

I

-

10

5.0 7.0

200

50 ·70 100
20
30
lC. COLLECTOR CURRENT (mAl

10

300

500

30

~

1.0

!

.....

r-

D. 7
"" O. 5

IcIlB'10~

TJ' 250C-

-

o. 1

20

~ 300
:i! 200

1" ....

o. 2
SO

30

70

100

...

r-2.0k

T~' ~5bJ
Cib

r--

~. 70
30
20
0.1

2.1 k

500 700 1.0 k

:--..

~ 100

50

300

-

70 100
200 300
500 700 1.0 k
IC. COLLECTOR CURRENT (mAl

~

...

If

200

50

~ 500

Is

0.3

I'-

~.

1000
700

-i""-

.'

V

2000

VCC' 200 V
IcI1B-S.O-=

3.0

........

FIGURE 12 - CAPACITANCE

FIGURE 11 - TURN-OFF TIME
10
7.0
5.0

.......

II

0.0 1
20

1.0

2.0

i

0.03 - VBi'"T 0
1
0.02

.I

VCC' 200 V
fCIlB' 5.0
fCIIB·l0
TJ' 25 0 C

I....

:2 o. 1

Z

.f

,

o. 5

./

:::I
CI

•

FIGURE 10 - TURN-ON TIME
1. O~
I,
O. 7

Cob

.
0.2

0.5

fC. COLLECTOR CURRENT(mAI

1.0

2.0

VR. REVERSE

5.0

VOLTAG~

10

50

20

100

(VOLTSI

FIGURE 13 - THERMAL RESPONSE
w
u

z

1.0
0.7 ~0'0.5
0.5

~

0.3

:i

0.2

~
iii
ffic

~~
zC
~

/

0.1
0. 1

I

0.01
"'CI
: ~ 0.05

~

0.03

;:

0.02

~w

0.2

=
-

Inn

I::::;:!~
~

L

TJ

~

::: f:o.iii
.A'

~

::E=

.==

DUTY CYCLE. D "1"2

X

SINGLE PULSE
0.05
0.02

0 CURVES APPLY FOR POWER PULSETRAIN SHOWN
REAOIIMEAT"
TJ(pkl' TC,Plpkl RIIJCIII

11'2

./

RIIJC(II·,(IIRoJC

RIIJC" 5.0DC/W

P(pkl

0.05
0.02

0.0 1
0.01

....

I 111111
0.1

0.2

0.5

1.0

2.0
I. TIME (msl

4-240

5.0

10

I I
20

50

100

200

500

1000

2N6233 (SILICON)
2N6234
2N6235

5AMPERE
POWER TRANSISTORS

HIGH VOLTAGE NPN SI LICON TRANSISTORS
. useful for high·voltage medium power applications such as
switching regulators.

225.275.325 VOLTS
50 WATTS

•

High Coliector·Emitter Sustaining Voltage -VCEO(sus) = 225 Vdc -- 2N6233
275 Vdc -- 2N6234
325 Vdc -- 2N6235

•

DC Current Gain -- hFE =.25 to 125 -- IC = 1.0 Adc

8

Low Coliector·Emitter Saturation Voltage
VCE(sat) = 0.5 Vdc (Max) @ IC = 1.0 Adc

•

High Frequency Response -- fT = 20 MHz (Min)

,. Fast Switching Times
tr = 0.5 JJ.s (Max)
ts = 3.5 JJ.S (Max)
tf = 0.5 JJ.S (Max)

NPN SILICON

•

1.0 Adc --

@

*MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

VCEO

Collector-Base Voltage

Vce

Emitter-Base Voltage

VEe

Collector Current - Continuous

IC

2N6233 2N6234 2N6235

Unit

225

275

325

Vdc

250

300

350

Vdc

-

6.0-

Vdc

-5.0-

Adc

_10--_

Peak
Base Current

Ie

Total Device Dissipation @ TC

= 2SoC

Po

Derate above 25°C
Operating and Storage Junction
Temperature Range

_2.0_
---50-0.286
-65 to +200

TJ. Tstg

U

_

--F--I

W/oC

V,
r~ J\

f'...

1'-..
r-...

0

~

"'........ V

-

......
0

"'-.

0
40

R

MILLIMETERS
DIM MIN MAX
8 11.94 12.70
C
6.35 B.64
D
0.71 0.B6
1.91
E
1.27
F 24.33· 24.43
G 4.83 5.33
2.67
H 2.41
J 14.48 14.99
9.14
K
1.27
P
Q
3.61
3.86
S
8.89
3.68
T
15.75
U

"'" "'-. K

0

" ~T I II
S

FIGURE 1 -- POWER TEMPERATURE DERATING

0

K

I

Watts

-Indicates JEOEC Registered Data.

50

0

STYLE 1:
PIN 1. BASE
2. EMITTER
- J - 1 CASE: COLLECTOR

1

Thermal Resistance. Junction to Case

i

SEATING PLANE

I

Characteristic

--

L'~'
' _____ ~11-I
E

Adc

°c

THERMAL CHARACTERISTICS

f
r--AB

80

120

TC. CASE TEMPERATURE lOCI

160

"

INCHES
MIN MAX
0.470 0.500
0.250 0.340
0.028 0.034
0.050 0.D75
0.958 0.962
0.190 0.210
0.095 0.105
0.570 0.590
0.360
0.050
0.142 0.152
0.350
0.145
0.620

-

All JEOEC Dimensions and and Not~s Apply.

200

4-241

CASE 8O'()2
TO·66

2N6233,2N6234,2N6235

·ELECTRICAL CHARACTERISTICS (TC' 2SoC unle.. otherwise noted)
Symbol

Characteristic

Min

Max

226
275
326

-

-

1.0
1.0
1.0

-

1.0

Unit

OFF CHARACTERISTICS
Collector·Emitter Sustaininy Voltage (1)

VCEOlsusl
2N6233
2N6234
2N6235

(Ie:: 20mAdc.la "" 01

Collector Cutoff Current
(VCE" 225. Ie' 0)
(VCE • 275. Ie' 0)
(VCE • 325. Ie' 0)

mAde

ICED
2N6233
2N6234
2N6235

Collector Cutoff Current
(VeE'" 250 Vdc, VEBloff)
TC = 150°C)

'CEX
1.5 Vdc.

2N6233

(VeE'" 300 Vdc, VEB(offl = 1.5 Vdc,

2N6234

.=

TC::: 150°C)
{VCE • 350 Vdc. VEB{off} • 1.5 Vdc.
TC·1500C)

2N6235

Collector Cutoff Current
{VCB' 250 Vdc. 'E "01.
{VCB' 300 Vdc. 'E • 01

•

.ICBO

(Vea'" 350 Vdc. IE .. 01

mAde

1.0
1.0
mAde

-

2N6233
2N6234
2N623S

Emitter Cutoff Current
(VBE" 6.0 Vdc. IC • 0)

Vdc

'EBO

--

0.1
0.1
0.1

-

0.1

mAde

ON CHARACTERISTICS ,1)
DC Current Gain
(Ie = 0.1 Adc, VeE -= 5.0 Vdcl
(lc' 1.0 Ado. VCE • 5.0 Vdc)
(Ie'" 3.0 Adc, VeE = 5.0 Vdcl

Collector-Emitter Saturation Voltage
(Ie = 1.0Adc.IB "" 0.1 Adcl

lie'" 5.0 Adc, 18'" 1.0 Adcl
Base Emitter Saturation Voltage
(Ie = 1.0Ade,ls '" 0.1 Adc)

(Ie :.: 5.0 Adc. Ie :; 1.0 Adcl

Base-Emitter On Voltage
(Ie = 1.0 Adc. VeE = 5.0 Vdcl

DYNAMIC CHARACTERISTICS
Current-Gain Bandwidth Product (2)
{Ie == 0.25 Adc, Vee'" 10 Vdc. f test '" 10 MHzl

Output Capacitance
(Vee'" 10Vdc,IE

~o, f

""0.1 MHz)

SWITCHING CHARACTERISTICS
Rise Time
(Vee'" 200 Vdc, Ie "" 1.0 Adc, I B '" 0.1 Adci
Storage Time
(Vee == 200 Vdc, Ie .,. 1.0 Adc.ISl "" 102": 0 1 Adcl
Fall Time
(Vee"" 200 Vdc, Ie ~ 1.0 Adc,IS1;: IS2

==

0.1 Adcl

-Indicates JE DEC Registered Data.
111 Put" Tett: Pul. Width" 300 ./.IS, Duty Cycle ~ 20%.
(2)

fT=lhtejoftest

. FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN-ON TIME
3.0

VCC -200

VCC =200 VIC/le"lO , TJ=2SoC

2.0

r-

RC -200

1.0

SCOPE

Ir
~ 0.5

......

w

'" 0.3
;:
... 0.2
tr.lf '"

.........

lOns

DUTY CYCLE", 1.0%

0.1
·5.0 V

i/

Ii"-

~

r.......

Id@VeE(ofl)'=O

0.0 5

FOR INFORMATION ON FIGURES 3 and 6
RS AND RC ARE VARIED TO OBTAIN

0.03
0.05

DESIRED CURRENT lEVEl..!; 0, DIS·
CONNECTED AND V2 REDUCED TO 5
VOLTS FOR Id MEASUREMENT.

0.1

0.2

0.3

0.5

1.0

IC. COLLECTOR CURRENT (AMP)

4-242

2.0

3.0

5.0

2N6233,2N6234,2N6235

FIGURE 4 - THERMAL RESPONSE
1.0
~

0.7

Z

0.5

~

0.3

~

D- 0.5

-

....10 0.2

«w

::EN

~~ O. I

0.05

~ ~ 0.07
in

0.03

I-

0.02

0.1

~,?

-f-

f..-

....... ~

~

0.0 I
0.02 0.03

...M

~
~-l

D'JTYCIUE.D-tlttl

D CURVES APPLY FOR POWER
PULSE TRAIN SHOil
READ TIME AI II
I I I I
TJ(pk) - TC = P(pk) OJf(t),

-

SINGLE PULSE

I0~01

III

0.1

0.05

0.2

,_

aJC(I) = ,(I) OJC _
OJC - 3.5 0C/W Max

-::;;; """po

0.02

~::. 0.05

~

--

'.'.1'"

0.2

0.3

0.5

1.0

2.0

3.0

5.0

10

20

30

100

50

200

300

500

I

=

-:-

1000

2000

I, TIME (ms)

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA
10
100",

5.0

1.0 ms

~

="",..
~

a

20

=i= T~ =200 0C

1.0
0.5

_

de' ....

"-

.l

"-

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; Le., the transistor
must not be subjected to greater dissipation than the curves indi·
cate.

SECOND BREAKDOWN

a:

~

,

5.0 ms

I LIMITED
I
I III
LI-;1-..! BONDING WIRE

0.2
O. I

"-

""l I"-

I

LIMITED
THERMALLY L1MITED@TC=25 0C
8 5
~ 0.0
2N6233
2N6234
0.02 -Httt_curvesAPPlv Bel0"1
I
Rated VCEO
2Nf235
0.0

I III

5.0 7.0

10

20

30

50

70

100

The data of Figure 5 is based on TJ(pk) = 2000 C; TC is variable

depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) :::s;;; 200°C. T J(pk) may be
calculated from the data in Figure 4. At high ·case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

t"1

nn

200

300

500

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 6 - TURN·OFF TIME

FIGURE 7 - CAPACITANCES

1. 0

200 01--

5. 0

3. 0
2.0

]

Is.

......

~ 1.0
;:

-

VCC - 200 V
IclIB = 10
IBI = IB2
TJ = 25 0C

III

~

.e

Ul

2lU

-

Cjb

50 0

w

u

..........

z

t-""

~ 200

~

_ 10 0

O. 5

........

O. 3
0.2
O. I
0.05

r- -r--.,

1000

........ r-,..If

0

Cob

"I.

20
0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

0.2

IC, COLLECTOR CURRENT (AMP)

0.5

1.0

2.0

5.0

10

20

VR, REVERSE VOLTAGE (VOLTS)

4-243

50

100

20D

•

2N6233,2N6234,2N6~35

FIGURE 8 - DC CURRENT GAIN

400
200

TJ~

z

<
to
....
z
w
a:
a:

=>
...,
...,

100
70

W

\

!:lo

~

TJ = 25 0C

1.6

~

IC = 0.5 A

o

> 1.2

""l,

25°C

40

-

20
_r--~

10

-55°C

4.0
0.05 0.07 0.1

0.2

~

~,

- ...... ~ I''\, ,

7.0
0.3

0.5 0.7

~_

\

0.4

Q

,~

W

.~
2.0

3.0

5.0

0
5.0

\

"-

10

f'.

20

50

FIGURE 10 - "ON" VOLTAGES

I

_ 1.0

!:l
2.
w

/'

~

Y //

"
--, "'-"'"

~

I

>
,; O.4

25 0C to 150~

VCE(.. t)@IC Il B=5.0

0
0.05

0.1

0.2

0.3

0.5

--

1.0

5000

...,
Q

~

./

I

2.0

3.0

.,;

~vr FOR VBE
w
.... -2.0
-2.5
0.1
0.05

5.0

I

-5-:tOtJ- - -

. a.. -1.5

'"

I

250clol~ ;;t!-;;

-0.5

~ -1.0

/

/,.

-~ -7

'OVC FOR VCE(sa!)

:::>

o. 2

2000

+1.5

~ +0.5

VBE(sat)@ICIIB=5.0

Q

1000

"APPLIES FOR Icllo < hFE/4

'" +1.0
E

:;..-

:; O.6

500

C3 +2.0

3;

.?' / '

o.8

200

FIGURE 11 - TEMPERATURE COEFFICIENTS

+2.5
VBE@ VCE • 2.0 V
5.0 V

100

lB. OASE CURRENT (rnA)

I.4

TJ = 25°C

3.0 A

0.8

IC. COLLECTOR CURRENT (AMP)

I. 2

2.0 A

o

.~

1.0

I.U A

~

~

.c

•

J

2.0

w
to

Q

...

_ VCE 5.0 ~
VCE = 2.0 V

-

.........

FIGURE 9 - COLLECTOR SATURATION REGION

_

'I 'II

II II

IC. COLLECTOR CU RRENT (AMP)

0.2

0.5

0.3

1.0

2.0

3.0

5.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 13 - BASE CUT·OFF REGION

FIGURE 12 - COLLECTOR CUT.oFF REGION

102

104
TJ = 150°C
103

!....
z
w
a:
a:

102

....a:

101

~
....

100

:::>

TJ = I~OOC

10JOC
./

!....

./

550C:::;;;

=

z

w
a:
a:

250C~

:::>
...,

1000C
100

!

Q

!f!

Q

~

10 I

550C
10- I

10-1

250C

10-2 ~EVERSE
-0.1

-REVERSE

FORWARD
+0.1

+0.2

+0.3

+0.4

10- 2
-0.1

FORWARD
+0.1

+0.2

+0.3

VBE. BASE·EMITTERVDLTAGE (VOLTS)

VBE. BASE·EMITTER VOLTAGE (VOLTS)

4-244

+0.4

2N6249
2N6250
2N6251

HIGH VOLTAGE NPN SILICON POWER
TRANSISTORS

15 AMPERE
POWER TRANSISTORS

· .. designed for high voltage inverters, switching regulators and line
operated amplifier applications. Especially well suited for switching
power supply applications.
•
•
•
•

NPN SILICON
200, 275, 350 VOLTS
175 WATTS

High Voltage Breakdown Rating
Low Saturation Voltages
Fast Switching Capability
High ES/b Energy Handling Capability

•

MAXIMUM RATINGS
Symbol

2N6249

·Collector-Emitter Voltage

VCEOl,u,1

200

275

·Collector-Emitter Voltage

Rating

2N6250 2N6251

Unit

350

Vdc
Vdc
Vdc

VCERI,u,)

225

300

375

"'Collector-Base Voltage

VCB

300

375

450

Emltter·B~se

VEB

6.0-

Vdc

IC
ICM
IB
IBM
IE
IEM

15
30

Adc

10
20

Adc

Voltage

Collector Current

Continuous·"
Peak

Base Current

Continuous·
Peak

Emitter Current -- Continuous

Peak

..

25
50
175
1001.0-

Po

Total Power Dissipation@Tc=250C
@TC=1000C
Derate above 2SoC"
·Operating and Storage Junction

TJ,T stg

Adc
Watts

W/oC

°c

- - - -65 to + 2 0 0 -

Temperature Range

JF"~'
le~K
SE~TI~(~
PLANE

THERMAL CHARACTERISTICS
Charactoristic
Thermal Resistance, Junction to Case

Maximum Lead Temperature for

Symbol

Max

Unit

ROJC
TL

1.0
275

°CIW

°c

Soldering Purposes: 1/8" from Case

for 5 Seconds
• Indicates JEDEC Registered Data.

"·JEDEC Registered Value is 10 A, Motorola Guaranteed Value is 15 A.

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

FIGURE 1 - POWER DERATING
100

0

"

~

.......

"'" '" I"--..f'." ..........
'"
THERMAL
DERATING

0

SECONO BREAKOOWN
DERATlNG-

A
B

............

I'-

"""

......

"

0

o

o

40

DIM

120
80
TC. CASE TEMPERATURE 10C)

160

........

6.35
0.97

F
G
H

29.90
10.67
5.21
16.64
11.18
3.84

K
Q

'"

200

4-245

-

C
D
E

J

'"

MilLIMETERS
MIN
MAX

R

-

-

39.37
22.23
11.43
1.09
3.43
30.40
11.18
5.72
17.15
12.19
4.09
26.67

INCHES
MIN
MAX

0.250
0.03B
1.177
0.420
0.205
0.655
0.440
0.151

-

CASE 11·03
TO·3

1.550
0.875
0.450
0.043
0.135
1.197
0.440
0.225
0.675
0.480
0.161
1.050

I

2N6249,2N6250,2N6251

*ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted.I

I

I

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (Table 1)

Collector-Emitter Sustaining Voltage (Table 1)

•

200
275
350

-

225
300
375

-

Collector Cutoff Current

-

5.0
10

-

5.0
5.0
5.0

Vde

VCERlsusi
2N6249
2N6250
2N6251

IIc = 200 rnA,

Vde

VCEOlsusi
2N6249
2N6250
2N6251

IIC=200mA,IB =01

mAde

ICEV

IVCE = Rated VCER, VBEloffi = 1.5 Vdel
IVCE = Rated VCER, VBEloffi = 1.5 Vde, TC = 1250 CI
Collector Cutoff Current

mAde

ICEO
2N6249
2N6250
2N6251

IVCE = 150 Vde, IB = 01
IVCE = 225 Vde, IB = 01
IVCE = 300 Vde, IB = 01

-

Emitter Cutoff Current

1.0

mAde

5.B
0.3

-

Vde

2.5

-

10
B.O
6.0

50
50
50

-

1.5
1.5
1.5

lEBO

IVEB = 6.0 Vde, IC = 01
SECOND BREAKDOWN
Second Breakdown Collector Current with base forward
biased t = 1.05 (non-repetitive)'

IVCE = 30 VI
IVCE = 100 VI

Second Breakdown Energy yvith base reverse biased (Table 1)
IIc = 10 A, VBEloffi = 4.0 Vde, L = 50l'HI

ISlb
ESlb

mJ

ON CHARACTERISTICS III
DC Current Gain

-

hFE

IIc = 10 Ade, VCE = 3.0 Vdel

2N6249
2N6250
2N6251

Collector-Emitter Saturation Voltage

VCElsati

IIc = 10 Ade, IB = 1.0 Adel
IIc = 10 Ade, IB = 1.25 Ade
IIc = 10 Ade, IB = 1.67 Adel

2N6249
2N6250
2N6251

Base-Emitter Saturation Voltage
IIc = 10 Ade, IB = 1.0 Ade
IIc = 10 Ade, IB = 1.25 Adel
IIc = 10 Ade, Ie = 1.67 Adel

2N6249
2N6250
2N6251

Vde

-

VBElsati

Vde

-

2.5
2.5
2.5

-

2.0

I'S

3.5

I'S

1.0

I'S

-

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

IIc = 1.0Ade, VCE = 10 Vde, f test = 1.0 MHzI
SWITCHING CHARACTERISTICS
Resistive Load (Table 1 I
AiseTime
Storage Time

IVCC = 200 Vde, IC = 10 A, Duty
Cycle .. 2.0%, tp = 100 I'sl

tr

IIBI = IB2 = 1.0 Adel 2N6249
IIBI = IB2= 1.25 Adel 2N6250
IIBI = IB2 = 1.67 Adel 2N6251

ts

Fall Time

tf

• Indicates JEDEC Registered Data.
(1) Measured on a curve tracer (60 Hz full-wave rectified sine wave!.

4-246

-

2N6249,2N6250,2N6251

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE

VCEO(susl

+60 V

+6

o..s-L

,,0

-z
0

U

39

av

IB1'20A

:=E~

O~

'---r

~t

ESib

SWITCHING

p

50

~1

39

'"z
.... 2

RESISTIVE

VCER(sus)

+10 V

'i' "5 V

1

~~(,",

50

~'

1

o..IL 4V~

~

51

12

"F

-c:

-=

iC=10A

PW"" 100,/.15
t,lO.; 5 ns
tf ~ 50 n5
Duty Cycle":: 2%

....
'"
-'"
:>:>
u-'

LeOI! '" 42 mH
Reoll '" 0 7 .n, fa = 60 Hz
Vee'" 0 to sq V

!!: ..
u>

~cOlr '" 14 mH

lcolr : 50 J.lH Vee"" 115V

RCOII -' 0 05 n
Vee"'" 0 to 50 V
fa'" 60 Hz

Reoll - 0 2 u

INDUCTIVE TEST CIRCUIT

r

TUT

'"5....
U

a:

U

V:sLT

5....

2

=
NOTE

1 1

t 1 Adjusted to

TVCC
VCE

Ie ""

Obtam

ICHpy\

0.1

Set IC(pkl to Obt<1I1l

RESISTIVE TEST CI RCUIT

OUTPUT WAVEFORMS

1

I ,RColl
I
I
I :LCOII
I
L J

lN4937

1

Vee'" 200 V
RL = 20 Sl

I

I-,,~ tll--

n

t

t200 V

Ie
20

LeollOCpkl

DC
Current

11 "" - vee
1

Probe

0---<

TUT

3

24

.t

C

=

25

200 mA at VCEO(sus) Equal to Rated Value

-60 V

Adjust VC1amp Voltage for VCEO(sus) Rated Value.

FIGURE 2 - THERMAL RESPONSE

ZoJChl = rId ROJC
ROJC" l.ooC/W Max

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
REAO TIME ATIJ

TJI,k) - TC' PI,k) Z'JCII)

02

1.0

05

20

50

10

10

50

100

200

500

I. TIME (ms)
FIGURE 3 - ACTIVE·REGION SAFE
OPERATING AREA
30
20

.....

"
·\4.-H+ . . . · f""'\..1\1
de

I

\TC'25 0 C-'
TC' 100oC""'-

i

1' ...

1

1\.'\

I II

5
Te =25 0e Unless Noted
3 ___ BondmgWlre Limit
Thermal limit. Single Pulse
2
- - Second Breakdown limit

_.-

50

"'

20.~_

_""OOp.s
500.,

"

m' "'" :"'\.

"

-.....::.-.. r-..
~-.....::: ~ :--

,

1

2N6249
2N6250
2N6251

0.05
0.03
5.0

I--l

1.0
10 mspt:ms

,

0

o
o
o

,

N

7.0

10

20

30

50

70

100

200

300

500

VCE. COLLECTOR·EMITIER VOLTAGE (VOLTSI

4-247

There are two limitations on the power handlmg ability
of a transistor: average Junction temperature and second
breakdown Safe operatmg area curves Indicate Ie-VeE
limits of the transistor that must be observed for reliable
operation; I.e., the transistor must not be subjected to
greater diSSipation than the curves mdicate.
The data of Figure 3 IS based on Te = 25°C. TJfpk)
IS variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when Te ~ 250 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 3 may be found
at any case temperature by using the approprtate curve on
Figure 1.
TJ(pk) may be calculated from the data in Figure 2.
At high case temper3tures. thermal limitations will reduce
the power that can be handled to values less than the
limitations Imposed by second breakdown.

10k

•

2N6249,2N6250,2N6251

DC CHARACTERISTICS

FIGURE 4 - DC CURRENT GAIN

FIGURE 5 - COLLECTOR SATURATION REGION

S 2.0

100

z

0-

lD

2~OC

=>
'-'
'-'

20

'I

'"

~

~

•

~ 1.6

."

7.0
IIII
05 0.7 1.0

O.l

c

~ T. 2

;e

3.0

~_

7.0

~

"

>
20

10

0.4

-TJ' 15°C

~ 1.0

-

c

I I
VOE("I)@ ICIIO' 5.0

w

'"~

0.6 f:="VOElonl@ VCE' 3.0 V

c

>
>' 0.4

0.2

1.0

0.5

1.0

++

0.3

f1r IHo

"' 1.5

~
U

~
13

0.5 0.7

1.0

1.0

~ Ih~Ell

'"

-3.0

2.0

3.0

III
III

5.0 7.0

«

L

J-l-

-0.5

, 25.'C

~ -1.5 I-- OVO for VOE

20

/

-550C 10 250C

~ -1.0

10

~

Tr1

·OVC for VCE( .. I)

0.5

-

0-

5.0 7.0

J

2~OC!0 Ilooic

I

w

~

I I I_II I II
0.1 r--- VCEI"I)@ ICIIO' 5
0.3

,..

-

!

/'

.....- f..--

I I 111111

0.1

2.5
~ 2.0 I--

t.:I

.h

?! 0.8

\

FIGURE 7 - TEMPERATURE COEFFICIENTS

I I
I I

\

10. OASE CURRENT lAMP)

FIGURE 6 - "ON" VOLTAGE

1.1

I~A

\.

0
0.07 0.1

IC. COLLECTOR CURRENT (AMP)

1.4

10A- I--

\
\

O.B

13
5.0

i.OA-

c

1\,:,-

VCE'l.OV
I VC,E = 10lV
1.0

-

IC' 2.0A

~

1-

10

J

~

I.....

~

-55°C

5.0
0.1

t-...

..:.:::: ~~

I

c

i

~

..,...,.,

50

;(

~J.J50J

c

TJ'1500C

70

~ -2.0
-2.5
0.1

I
O.l

0.5 0.7

IC. COLLECTOR CURRENT lAMP)

I2.0

1.0

1.'150~C

U

..........

-550 C 10 250C

I III
3.0

5.0 J.O

10

20

IC. COLLECTOR CURRENT (AMP)

RESISTIVE SWITCHING PERFORMANCE
FIGURE 8 - TURN·ON TIME

3.0 k
2.0k

r-.

...

VCC= 200V

-

ICI+~ : ~5~t -

Ir

t'-...

1.0k

FIGURE 9 - TURN·OFF TIME

10k
J.Ok
S.Ok
l.O k

700
500

2.0 k

..

-

;:: 200
100
70
50
lO
0.02

........

~
;:;:; 1.0 k

:- 30 0

-'

VCC'200V
ICIIO - 5.0
101 ·102
TJ.250C

I,

Id@VOElolf)' 5.0 V

'";::

JOO
500

If

.......

lOO
200
0.5

0.1

0.2

0.5

1.0

2.0

5.0

10

100
0.02

20

IC. COLLECTOR CURRENT (AMP)

0.05

.0.1

0.2

r-..

V
0.5

1.0

2.0

IC. COLLECTOR CURRENT lAMP)

4-248

5.0

10

20

2N6274

(SILICON)

thru
2N6277
HIGH-POWER NPN SILICON TRANSISTORS
designed for use in industrial-military power amplifer and
switching circuit applications.
o High Collector Emitter Sustaining
VCEO(sus) = 100 Vdc (Min) = 120 Vdc (Min) = 140 Vdc (Min) = 150 Vdc (Min) -

50 AMPERE
POWER TRANSISTORS
NPN SILICON

Voltage 2N6274
2N6275
2N6276
2N6277

•

High DC Current Gain hFE = 30~120@ IC= 20Adc
= 10 (Min) @ IC = 50 Adc

•

Low Collector·Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 20 Adc

•

Fast Switching Times @ IC = 20 Adc
tr = 0.35 J,Ls (Max)
ts = 0.8 J,LS (Max
tf = 0.25 J,LS (Max)

•

Complement to 2N6377-79

100,120,140, 150 VOLTS
250 WATTS

'MAXIMUM RATINGS
Symbol 2N6274 2N6275 2N6276 2N6277

Rating

v
v

Coliector·Base Voltage
Collector-Emitter Voltage

Emitter·Base Voltage

140

160

180

Vdc

100

120

140

150

Vdc

6.0

Vdc

50 - - -......

Adc

V

Ie

Collector Current - Continuous

Unit

120

i

100

Peak
Base Current

IB

Total Device Dissipation @ TC =25°C
Derate above 25°C

Po

Operating and Storage Junction

TJ,Tstg

Adc

20

250 - - - 1.43
- - - - 6 5 to +200---

Temperature Ran e

THERMAL CHARACTERISTICS
Oaaracteristic

Thermal Resistance, Junction to Case
-Indicates JEDEC Registered Data.

FIGURE 1 - POWER DERATING
250

f"'...
I'-..

" "-

'- .......

"- i'..
o
o

25

50

75
100
125
150
TC,CASE TEMPERATURE lOCI

STYLE I:
PIN 1. BASE
2. EMITTER
CASE COLLECTOR
INCHES
MILLIMETERS
DIM MIN MAX
MIN
MAX
A 38.35 39.37 1.510 1.550
B
19.30 21.0d 0.760 0.830
C
7.62 0.250 0.300
S.35
0
1.45
I.BO 0.057 0.063
0.135
E
3.43
F
29.90 30.40 1.177 1.197
G 10.67 11.18 0.420 0.440
H
5.21
5.72 0.205 0.225
J
18.64 17.15 -0.S55 O. 5
K 11.1B 12.19 0.440 0.480
Q
3.84 4.09 0.151 O.ISI
R 24.89 28.67 0.980 1.050

-

.....
175

"-

200
CASE 19].1)1

4-249

2N6274 thru 2N6277
-ELECTRICAL CHARACTERISTICS (TC = 25°C unlesSOlherwise nOled)

I

Characteristic

I

SVmbol

Min

Max

100
120
140
150

-

-

50

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage t 1 )

Collector Cutoff Current

2N6274

(VCE = 60 Vde, IS = 0)

2N6275

(VCE = 70 Vde, IS = 0)

2N6276

(VCE = 75 Vde, IS = 0)

2N6277

Collector Cutoff Current

ICEX

IVCE = Raled VCS, VEBlofli
IVCE = Raled VCB, VESlofli

= 1,5 Vde)
= 1,5 Vde, TC = 150°C)

Emitter Cutoff Current

•

/lAde

ICEO

(VCE = 50 Vde, IS = 0)

IV BE = 6.0 Vde, IC

Vde

VCEOlsus)
2N6274
2N6275
2N6276
2N6277

(lc = 50 mAde, IS = 0)

50
50

50

--

10

/lAde

-

1.0

mAde

100

/lAde

IESO

= 0)

ON CHARACTERISTICS
DC Current Gain

'11
hFE

-

VCE = 4.0 Vde)

50

-

lic = 20 Ade, VCE = 4.0 Vdc)

30

120

= 4.0 VdC)

10

-

lic

= 1.0 Adc,

lic = 50 Adc, VCE

Collector-Emitter Saturation Voltage
(lC = 20 Adc, IS = 2.0 Adc)
lic

VCElsal)

= 50 Adc, IB = 10 Adc)

Base-Emitter Saturation Voltage
IIC = 20 Adc, IS = 2.0 Adc)

VSEls•• )

Vde
1.0
3.0
Vde
'3.5

VSElon)

-

1.8

Vde

fT

30

-

MHz

Cob

-

600

pF

t,

-

0.35

/lS

0.80

/lS

0.25

/lS

IIc = 50 Adc, IB = 10 Adc)

Base-Emitter On Voltage
IIc = 20 Adc, VCE = 4.0 Vdc)

-

1.8

OYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product (21

(lc

= 1.0 Ade, VCE

Output Capacitance
IVCB = 10 Vdc, IE

=

10 Vde, f tesl = 10 MHz)

=0, f = 0.1

MHzl

SWITCHING CHARACTERISTICS
Rise Time
IVCC

= 80 Vdc, IC

= 20 Adc, 181

= 2.0 Adc, VBElofli = 5.0 Vdc)

Storage Time
IVCC

ts

= 80 Vdc, IC = 20 Ade, ISl = IB2 = 2.0 Adc)

Fal/Time

IVCC

'f

= 80 Vdc, IC = 20 Adc, ISl = IB2 = 2.0 Adc)

-

Indicates JEOEC Registered Data.
0) Pulse Test: Pulse Width ~ 300 J,lS. Duty Cycle ~2.0%.
(2) fT .:. ~fe

I. f test FIGURE 3 - TURN-ON TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
2.0
VCC
+80 V

3OPS-H

+2:·~~Cl_

.18.5V

=r--c:

R8
10 Ohms

IC/l~ = 110 .=

1.0
0.7

RC
4.0 Ohms

TJ = 25 0 C=

0.5

"":;w

f/ td @VSEloff) = 5.0 V

..;; 0.3

~

0.2

i=
~.

lN3879

0.1

Ir,lf';; 10 ns
DUlY Cycle = 0.5%

F=

1,@VCC=80V

/

--..:::

.....

V

0.07
0.05

-4.0 V

0.03

Note: For information on Figures 3 and 6, R8 and RC were
varied to obtain desired test conditions.

0.02
0.5

4--250

0.7

1.0

5.0 7.0 10
2.0
3.0
IC, COLLECTOR CURRENT (AMP)

20

30

50

2N6274 thru 2N6277

FIGURE 4 - THERMAL RESPONSE
1.0
~
~

0.71--- I- D - 0.5

"'~~
t-N

O. 3

w'"

--:-

0.1

;;;",

~~

~~

0.2

~~ O. 2

a.1

r\11

-

o. 5

p

rnn
OUTY CYCLE, D 11/12

I- ~ E;;:~

0.05

"'~ ~o.o 7~ F- _0.02

pr

:>z

~~o.o 5
~'"
w
0.0 2

....-

~

II

0.0 1
0.02

0.05

II II

II

0.1

I-r-

11~2~

0.01
fliNG LEI PU~SE

u.. ~o.o 3~

OJC(I) =
OJC
8JC = 0.7 0 CIW Max I II
1_
o CURVES APPLY FOR POWE~_
PULSE TRAIN SHOWN
- ff- - REAO TIME AT 11
l - I-- TJ(pk)- TC = P(pk) 0JC(I)- I-

02

0.5

1.0

2.0

5.0
t,

10

20

50

100

200

500

1000

2000

TIME (ms)

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
10 0
0
~

l>:

0

:!

'"

0

~

5.0

lOs

TJ - 200 0 C

5.0 m..........

dc",

Second Breakdown limited
'" 2. 0
=>
'-' 1. 0 ---Bonding Wire limited
limited
'" 5 _ ........ Thermallv
@TC=25 0 C(SinglePulse)
O.

g
_ o.

_.

1.0;;;;

~

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater diSSipation than the curves indicate.

~~

The data of Figure 5 is based on T J(pk)

F==F

for duty cycles to. 10% provided T J(pk) .;; 200°C. T J(pk) may be

~

8 o. 1

calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed bV second breakdown.

2N6274.
2N6275
2N6276
2N6277

':>0.0 5
0.0 2
0.0 1
2.0

3.0

= 200°C; T C is variable

depending on conditions. ,Second breakdown pulse limits are valid

2~f:: Curves Apply Below Rated BVCEO

5.0 70 10
20
30
50 70 100
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

200

,
FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN-OFF TIME
10,00 0

5.0

3.0

700 0
500 0

IBI = IB2
ICIIB = 10
TJ = 25 0 C

-

1
_1"s

2.0

] 0.7
~ 0.5

~ 200 O~

0.3

~ 100 0

r--... .....

I'-

~

1/

'-'

/

'"

70 0
500

~

U 300

V

t-f-.

O. 1

Gib

w

II@VCC=80V

0.2

200

0.0 7
0.05
0.5

1

100
0.7

1.0

2.0

3.0

25 0 C

'-'
Z

;:::

.0

-

300 0

I--

1.0

TJ

5.0

7.0

10

. 20

30

50

0.1

IC, COLLECTOR CURRENT (AMP)

4-251

0.2

0.5

10
20
5.0
1.0
2.0
VR, REVERSE VOLTAGE (VOLTS)

50

100

•

2N6274 thru 2N6277

FIGURE 8 - DC CURRENT GAIN

1000
700
500
z

<

VCE-4.0V= ~ =
---VCE= 10V-

r- -

300

-

:::>
Q

~

0
50

3.6

~

3.2 I'- c12.01A

>

a:

1:-,

":'
a:

j

\: ~
1.0

2.S
2.4

2.0 3.0
5.0 7.0 10
IC. COLLECTOR eURRENT(AMP)

20

1.6

30

Q

50

~ 0.4
>'"
o

0.01

III

'"~

1. 2

.s

A

r-

~Bf\sal) @leliB = 10

o.S

II

.#

III

/

o

0.5

0.7

1.0

/

2.0 3.0
5.0 7.0 10
·Ie. COLLECTOR CURRENT lAMP)

0.05

....-,
6ER'j"e

r-

/
V ./

'OVC fo, VCElsa!)

~VB f~' VBIE

~
-2.0
0.5 .0.7

50

-

1.0

,/ ....

V

.....

~-

2.0 3.0
5.0 7.0 10
IC.COLLECTORCURRENT lAMP)

20

30

50

FIGURE 13 - BASE CUT-OFF REGION

TJ = 150 0C

/

Idooc

0

-

VCE=IOOV_

/

1

/

+0.1
+01
+0.3
VBE. BASE·EMITTER VOLTAGE (VOLTS)

h
/
/1 ~'

iii

25 0C

~R'Vers.

F0"j'd........
o

'(f
'j

I-

10-2
-0.1

10

J

~ +2.0

/

25 0C

I

::>

,oooe;

./

I

~

30

I

IC = ICES

I

+6.0

VCE = 100V-

/

5.0

2.0

Q

/

20

III

FIGURE 12 - COLLECTOR CUT-OFF REGION

TJ = 1500:'"

0.1
0.2
0.5
1.0
lB. BASE CURRENT lAMP)

'"
~ +4.0

","CElsa!)
. /~ IC/iB= 101-

I I

I'..
0.02

- - - - -550C10 +250C
- - - +250Clo+1500C

c:;

~

r- f--

VBE@VCE=4.0V
0.4

"

\

'Appliesfo, IC/IB < hFE/41
I i'l
I
1'1-

+10

E5 +8.0

/.

Q

>~

">
~

A

I. 6

>

~

1/

Q

w

+'2

I
1/

~ 2.0
~

1\

FIGURE 11 - TEMPERATURE COEFFICIENTS

TJ=250C

2.4

t--.....

1\

O.S

FIGURE 10 - "ON" VOLTAGES

2.S

~J l J5!J

III

m

lOA

~ 1.2

.~

30

10
0.5 0.7

loll

~. 2.0

:E

55 0C

20

•

Q

Q

TJ - +1500C
+250C

w
a:
a: 100

I I

~

'"~

-

~ 200

'"'"

FIGURE 9 - COLLECTOR SATURATION REGION

4.0

10-3
-0.1

+0.4

4-252

orward
o

+0.1
+0.2
+0.3
VSE. SASE·EMITTER VOLTAGE IVOLTS).

+0.4

2N6282 thru 2N6284 NPN (SILICON)
2N6285 thru 2N6287 PNP
DARLINGTON COMPLEMENTARY
SILICON POWER TRANSISTORS
. designed for general·purpose amplifier and low·frequency switching
applications.

DARLINGTON
20 AMPERE
COMPLEMENTARY SILICON
POWER TRANSISTORS
60,80, 100 VOLTS
160 WATTS

•

High DC Current Gain @ IC = 10 AdchFE = 2400 (Typ) - 2N6282, 2N6283, 2N6284
= 4000 (Typ) - 2N6285, 2N6286, 2N6287

•

Collector· Emitter Sustaining Voltage VCEO(sus) = 60 Vdc (Min) - 2N6282, 2N6285
= 80 Vdc (Min) - 2N6283, 2N6286
= 100 Vdc (Min) - 2N6284, 2N6287

•

Monolithic Construction with Built·ln Base·Emitter Shunt
Resistors

•

*MAXIMUM RATINGS
Rating

Symbol

2N6282
2N6285

2N6283
2N6286

2N6284
2N6287

Unit

VeEO

60

80

100

Vdc

Collector-Base Voltage

VeB

60

80

100

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

Ie

20
40

Adc

Collector-Emitter Voltage

Collector 'Current - Continuous
Peak
Base Current

IB

0.5

Adc

Total Device Dissipation@Tc=250C
Derate above 25°C

Po

160
0.915

Watts

wloe

TJ,Tstg

-65 to +200

°e

Operatmg and Storage Junction

Temperature Range

lr~
r~K
E

~AnN~

\

PLANE

*THERMAL CHARACTERISTICS
OIaracteristic
Thermal Resistance, Junction to Case
-Indicates JEDEC Registered Data.

FIGURE 1 -POWER DERATING
160

i"-.

140

~

z 100

c

iii
i5

""~
~

~

NOTE:
2. EMITTER
1. DIM "O"IS DIA.
CASE: COLLECTOR
MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX

"'- I'-..

;;;
~ 120

~

STYLE 1:
PIN 1. BASE

.""

A
B

.......

80
60
40

20

o

o

25

50

75

100

C

"

125

150

D
E
F

G
H
J

...............

K

175

K
Q

200

TC, CASE TEMPERATURE.(OCI

R

-

39.37
21.08
7.62 0.250
1.09 0.039
- 3.43
29.90 30.40 1.177
,10.67 11.18 0.420
5.33
5.59 0.210
16.64 11.15 0.655
11.18 12.19 0.440
3.B4
4.09 0.151
26.67
Collector connected to case.
CASE 11·01
6.35
0.99

-

(TO·31

4-253

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

2N6282, 2N6283, 2N6284 NPN,
2N6285, 2N6286, 2N6287 PNP

*ELECTRICAL CHARACTERISTICS

(TC = 25°C unless otherwise noted)

Characteristic

Symbol

Min

Max

60
80
100

-

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage
(lC

= 0.1

2N6282, 2N6285
2N6283,2N6286
2N6284,2N6287

Collector Cutoff Current

= 30 Vde,
(VCE = 40 Vde,
(VCE = 50 Vde,

= 0)
IB = 0)
IB = 0)

(VCE

-

1.0

2N6283, 2N6286

-

1.0

2N6284,2N6287

-

1.0

-

0.5

-

5.0

-

2.0

750

18,000

2N6282,2N6285
.

Collector Cutoff Current

= Rated VCB,
(VCE = Rated VCB,

•

= 5.0 Vde,

mAde

ICEX

VBE(off)
VBE(off)

= 1.5 Vde)
= 1.5 Vde, TC = 150o C)

Emitter Cutoff Current

(VBE

mAde

ICEO

IB

(VCE

Vde

VCEO(sus)

= 0)

Ade, IB

lEBO

mAde

= 0)

IC

ON CHARACTERISTICS 11)

DC Current Gain

Collector-Emitter Saturation Voltage

= 10 Ade,
IIc = 20 Ade,
(lC

-

hFE

= 10 Ade, VCE = 3.0 Vde)
(lC = 20 Ade, VCE = 3.0 Vde)
(IC

100

2.0

VSE(on)

-

2.8

Vdc

VSElsat)

-

4.0

Vde

Ihle I

4.0

-

MHz

-

400

300

-

Vde

VCE(sat)

= 40 mAde)
I B = 200 mAde)

IB

Base-Emitter On Voltage

3.0
I

IIc = 10 Ade, VCE = 3.0 Vde)
Base-Emitter Saturation Voltage
(lC

= 20 Ade,

IS

= 200 mAde)

DYNAMIC CHARACTERISTICS
MagOltude of Common Emitter Smail-Signal Short-Circuit

Forward Current Transfer Ratio

= 3.0 Vde, I

(lC = 10 Ade, VCE

=

1.0 MHz)

Output Capacitance
(VCB

= 10 Vde,

IE

MHz)

2N6282, 83, 84
2N6285, 86, 87

Small-Signal Current Gain

(Ie:: = 10

pf

Cob

= 0, I = 0.1

hIe

= 3.0 Vde, I

Ade, VCE

600

-

~ 1.0 kHz)

• Indicates JEDEC Registered Data.
(,) Pulse test: Pulse Width = 300 /Js, Duty Cycle

= 2%

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - SWITCHING TIMES
10
7.0
5.0

Vee
-30 V

RS & RC VARIED TO OBTAIN DESIRED CURRENT lEVELS
0,. MUST BE FAST RECOVERY TYPES, e 9

'e '"

V,

MB05300 USED ABOVE
100 mA
MSD6100 USED BELOW 'e'" 100 rnA

~~P~:--[J~~~-~__ ]~
VI
APPROX

-12 V

3.0

Re
SCOPE

:g

51

~

2.0

~IS

2N 6282/84 (N PN)
2N628S/87 (PNP)
I

Is.

~

1.0

- i.>Tt-

- I-

>~

...

~. 0.7
0.5

--II,s.,
Ir, tf 0;;" IOns
DUTY CYCLE" 1.0%

+40V

0.3 VCC =30 Vdc
0.2 IC/IB =250
IBl = IB2
TJ =2S oC
O. 1
0.2
0.5
0.3

lor td and tr. 0, Isdlsconnected
and V2 =0

For NPN test circuit reverse diode and voltage polarities.

4-254

t-.......
r- .......

ti~ I-t,

....

-

-

~

'-

-r-_
r--....td VBE(om =0 V~ I-@

0.7 1.0
2.0
3.0
5.0
IC, COLLECTOR CURRENTIAMP)

7.0

10

20

2N6282, 2N6283, 2N6284 NPN,
2N6285, 2N6286, 2N6287 PNP

FIGURE 4 - THERMAL RESPONSE
1.0
~

O. 7 =0 =0.5

~_ O. 5

--

wC

",w

:: ~ 0.3

==
-

0.2

:5 ~

0.2

:=:::

o. 1=.0.05

in'"
ZC

"",z

-

f-

0.1

f.-- r-",.

;0..

PmJl

~ ~ 0.01 ~0.D2

§ ~ 0.05
u.

ft

~

~ 0.03

0.02

-

f--

0.G1

ROJCIII = rlt) ROJC
ROJC = 1.09 0 C/w Max
o CURVES APPL Y FOR POWER
PULSE TRAIN SHO\~N I I
READ TIME Altl i

DUTY CYCLE, 0 = 11/12

r

SINGLE PULSE

III

0.01
0,01

=

~-J

...K

0.02 0.03

0.05

0.1

0.2

0.3

0.5

2.0

1.0

I
3.0

II

II
10

5.0

II TJlpkl - TC = Plpkl ROJCItII

II
20 30

50

100

200

300

500

1000

I, TIME Ims)

ACTIVE-REGION SAFE OPERATING AREA
FIGURE 5 - 2N6282, 2N6285

FIGURE 6 - 2N6283, 2N6286

5°S:mm~3:;Elffil
l=t:ttttm~~,x~'t¢Ul:tj
10 F
~~ 0.51.0ms
mS~""'~'~~IIOI'l~mmS

50~~~~~;:~~~~~
f=- 0.1 ms

f:=

50~~~~~!=mffil
I=-r-" 0.1 ms

201-_::tt'trn~~~~~;Ij
f0.5m;f~

20~~it~~~~~~~~
I-- - 0.5 ms

20

5.0

FIGURE 7 - 2N6284, 2N6287

10

~~

:>::'""r;;....

1.0ms

= 5.0 m:c
2·°t=l=t=tml1==+=t=tf¢:l'W

==

5.0=
10

5.0

5.0 ms
dc

2.0~+tml1==+~Al=tm

dc

2'°I=++t+l+I1==t=l=M:mI

1.0~!IB

1.0 _ _

mS~~~~~111

F1.05.0ms

1.0 _ _

0.5

0.58=8

0.5

J ''';':;:''i-',c'--+-HHlrI++H
0.21-+t-l..;'M

0.21-++1-'",J-;·',,"...',-c-+++++'i+H

0.21-++-l-+i'J,,·f20;.:o..:'c'-+++++tlIff

- '-SECONOBIlEAKOOWNtrr.tlTEO

. 2.0

5.0

10

20

50

=

- - SECOND 6RMKOOWN lIMITED

0.1 ::-:=~~:~~~~~::~T~~~~~TC'2!oDC ~
0.05 F==;:::t:t:~INGlE PULSE

0.1
0.05
100

:;:=-:

SINGLE PULSE

2.0

VCE, COLLECTOR·EMITTERVOLTAGE IVOLTS)

~~~~~~~~::~T~~I~~~TC ~ 25DC

5.0

10

20

50

100

100

VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe
operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation; I.e, the transistor must not
be subjected to greater dissipation than the curves indicate.
The data of Figures 5, 6 and 7 is based on T J(Ilk) = 2000 C; T C is variable depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T Jlpk) <200u C. T J(pk) may be calculated from the data in Figure 4. At high case temperatures, thermal
limitations will reduce the power that can be handled to values less than the limitations Imposed by second breakdown.
F,GURE 8 - SMALL-SIGNAL CURRENT GAIN

FIGURE 9 - CAPACITANCE

10,000

z
 ...

~\.
r---.... ....

200

......

. ....

-...... ~

1""'- .....
- - - 2N6282/841NPN)

2N6282/841NPN)
2N6285187 (PNP)
10

TJ = 25°C

-----

50

100

200

500

1000

f, FREQUENCY (kHz)

100
0.1

'-III ~~m5/81Ip~PI

0.2

0.5

1.0

2.0

5.0

10

VR, REVERSE VOLTAGE (VOLTS)

4-255

20

1
50

100

2N6282, 2N6283, 2N6284 NPN,
2N6285, 2N6286, 2N6287 PNP

I

·NPN
2N6282,2N6283,2N6284

pilip

2N6285,2N6286,2N6287

FIGURE 10 - DC CURRENT GAIN

20,000

-

30,00 0

t--V~E: ~.O~

20,000 VCEI: 3.dv

10,000

z

7000 ~TJ= 150°C
5000 t-

'"

3000 . /

;;:

'"a:~

10,000

;;: 7000

,

III.

2000

a:

f-25~

:::>

'-'
'-'

~

700 fZ"'-550C
500

L

•

300
200
0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

'"'"
ffi

5000

:::>

2000 /
-55°C

10

-

300 01-- 25°C

[/f'

~

"

1000

Q

TJ=150oC

z

'-'
'-'
c

~

1000
70 0
500

V

'\
300 ':--=,=,.---l-='::--'::-':-l--':-'::-.L-,:-'::--::!~.l....:-l;:--1::-1:-~~-L.--:?
0.2 0.3
0.5 0.7 1.0
2.0 3.0
5.0 7.0 10
20

20

IC, COLLECTOR CURRENT (AMP)

IC, COLLECTOR CURRENT (AMP)

FIGURE 11 - COLLECTOR SATURATION REGION

~

3.0

'"

~
w

'"

2.6

~

'"~

'"
~

,I

IC:5.0A

10 A

2.2

:::
Blci:

'"

~

;

2

'"

1.4

'-'

>

1. 0
0.5

\

10 A

:::

-r-

\
0.7

II

2.2

Blti::
'"

1.8

_

1.4

g

W

TJ: 25°C
15 A

IC:5.0A

~

\

1.8

II

2.6

w

15 A

'"

~-'

3.0

~

TJ: 25°C

1\

"-

r-

.....

2

W
'-'
> 1.0

2.0

1.0

3.0

5.0

7.0

10

50

3D

20

0.5

0.7

2.0

1.0

IS. SASE CURRENT (rnA)

3.0

5.0

7.0

10

3D

20

50

la. aASE CURRENT (rnA)

FIGURE 12 - "ON" VOLTAGES

3.0

/

TJ: 25°C
2.5

~

'"~w
'"...
~
'">

::>

3.0

I

2.0

1.5 VSE(sa!)@ Ic/lS = 250
II .J....!-H""
VSE@VCE: 3.0 V
1.0
0.5
0.2

0.3

0.5 0.7

~

/

~ 2.0

-"'"

'"
~
'"

/

>
>'

".

-- II I IIIII

VCE(sat)@ Iclla: 250_

1.0

/

w

--

II
II

J

2. 5

)

/

I(f
TJ:250C

2.0

3.0

5.0 7.0

10

1. 5 V~E(r!) @IC la - 50

1.0

I

20

0.5
0.2

~ f-I--'

VCE(sa!) @Ic/IS: 250

I II
0.3

0.5 0.7

1.0

2.0

3.0

4-256

II II

5.0 7.0

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTO RCU RRENT (AMP)

/

""

VSE@VCE: 3.0 V

r-

/

t::;::;:::::V

/

10

20

2N6282, 2N6283, 2N6284 NPN,
2N6285, 2N6286, 2N6287 PNP
PNP

I

NPN
2N6282. 2N6283. 2N6284

2N6285. 2N6286. 2N6287

FIGURE 13 - TEMPERATURE COEFFICIENTS

+5.0

~.§
~

+2.0

~

+1.0

a:
=>

-1.0

I-

<

~

/
/ /
/

-3.0

i

-4.0

v~

a:
=>

I-

<

~

-S.O
0.2

0.3

'"~

-SSoc to +2S oc

O.S 0.7

I II

1.0

2.0

3.0

I II

S.O

7.0

i

20

10

/

2S oC to Isooe
-SSoc to +2SoC

2w

2S oC to +ISOOC_~
OVS for VSE

il

'/

~

V

'OVC for VCE(sat)

-2.0

i:il-

+4.0
.§
+3.0
~
ffi +2.0
G
+1.0

/
V

2S oC to ISOoC

I II

3;

/

-SSoc to +2SoC

2w

'APPLIES FOR lells <: hFE/2S0

G

III
III

+3.0

ffi

c::;

+S.O
'APPLIES FOR Ic/lS <; hFE/2S0

+4.0

-l-

'OVe for VCE(sat)

-2.0

2S oC to +1S0 aC

-3.0

II

OVs lar VSE

-4.0
-S.O
0.2

-

L

2.0

1.0

,/

IY ......

~ --SSOCto+2S 0 C

I II

IL

O.S 0.7

0.3

.J.-.+-:

I--

/

~

...... 1-"

-1.0

3.0

5.0

7.0

20

10

Ie. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

FIGURE 14 - COLLECTOR CUTOFF REGION
10 3

/

41- VCE = 30 V

/

-

/

VCE - 30 V

/

L
t=TJ

ISOoC

I

3
I--TJ = ISOoC

01-- 100aC
f - - - I- lOOoC

I
100

~RfVER~

r---t- 2S ac

10- I
-0.6

FORW~RO

10-2

,....,

1;:;:r

FORWARD

RSE
2S a C

10-3

-0.4

-0.2

+0.2

+0.4

+0.6

+0.8

+1.0

+1.2

+1.4

+0.6

+0.4

+0.2

VSE. SASE·EMITTERVOLTAGE (VOLTS)

0

-0.2

-0.4

-0.6

FIGURE 15 - DARLINGTON SCHEMATIC

Collector
NPN
2N6282
2N6283
2N6284
Sase

PNP
2N628S
2N6286
2N6287

,------- ---,
:
.-----+-,:
I

I
I
I

I

I
I
I

-0.8

VSE. SASE·EMITTER VOLTAGE (VOLTS)

Base

Collector

,------I'

---,
I

I

I
I
I

I

I
I
I

I

I

I

I

I
1'-""""-"'>NIr-+-'
L _ _ _ _ _ _ _ _ _ --1I

I
IL "'--""""-"'>NIr-~~
_ _ _ _ _ _ _ _ _ --1I
Emitter

Emitter

4-257

-1.0

-1.2

-1.4

•

2N6294, 2N6295 NPN (SILICON)·
2N6296, 2N6297 PN P

DARLINGTON COMPLEMENTARY
SILICON POWER TRANSISTORS
... designed for general-purpose amplifier, low-frequency switching
and hammer driver applications.

•

4 AMPERES
DARLINGTON
COMPLEMENTARY SILICON
POWER TRANSISTORS
60,80 VOLTS
50 WATTS

• High DC Current Gain hFE = 3000 (Typ) @ IC = 2.0 Adc
• Low Coliector·Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (Max) @ IC = 2.0 Adc
• Collector-Emitter Sustaining Voltage
VCEO(sus) = 60 Vdc (Min) - 2N6294, 2N6296
= 80 Vdc (Min) .,.. 2N6295, 2N6297
• Monolithic Construction with Built-I n Base-Emitter
Shunt Resistors

*MAXIMUM RATINGS
Svmbol

2N6294
2N6296

2N6295
2N6297

Collector·Emitter Voltage

VCEO

60

80

Vde

Collector·Base Voltage

VCS

60

80

Vde

Emitter-Base Voltage

VES

5.0

Vde

IC

4.0
8.0

Ade

Base Current

IS

80

mAde

Total Device Dissipation@Tc= 2So C
Derate above 2SoC

Po

50
0.286

Watts
W/oC

-65 to +200

°c

Rating

Collector Current - Continuous
Peak

Operating and Storage Junction,
Temperature Range

T J. T stg.

Unit

I-- U

~;~8-t

~h ,~-~~-~~
If

0

-

K

I

-

STYLE I:
PIN I. BASE
---F-2. EMITTER
-JCASE: COLLECTOR

I
~~ti-'
~T I
Y
I
~

Characteristic

Thermal Resistance, Junction to Case

R

"Indicates JEDEC Registered Data

t

FIGURE 1 - POWER DERATING

0

-I

E
SEATING PLANE

THERMAL CHARACTERISTICS

0

--'

" """-

0

,""'-

1'-.
~

"

0

0
40

80
120
TC. CASE TEMPERATURE (OCI

~

S

~

0

~

160

"-

~
200

MILLIMETERS
INCHES
DIM MIN MAX MIN MAX
8 11.94 12.70 0.470 0.500
6.35 8.64 0.250 0.340
C
0
0.71
0.86 0.028 0.034
E
1.27
1.91 0.050 0.075
F 24.33 24.43
0.958 0.962
G 4.83 5.33 0.190 0.210
H 2.41
2.67 0.095 0.105
J
14.48 14.99 0.570 0.590
K
9.14
0.360
P
1.27
0.050
Q
3.61
3.86 0.142 0.152
S
8.B9
0.350
T
3.68
0.145
15.75
U
0.620
All JEDEC Dimensions and and Notes Apply.

-

-

CASESO·02
TO·66

4-258

2N6294, 2N6295 NPN/2N6296, 2N6297 PNP

*E LECTR ICA L CHARACTER ISTI CS (T C = 25°C unless otherwise notedl

I

I

Characteristic

Symbol

Min

Max

60
80

-

-

0,5
0,5

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

Vde

VCEO(susl

IIC = 50 mAde, IB = 0)

2N6294, 2N6296
2N6295, 2N6297

Collector Cutoff Current
(VCE = 30 Vde, IB = 0)
(VCE = 40 Vde, IB = 01

mAde

ICEO
2N6294,2N6296
2N6295, 2N6297

-

Collector Cutoff Current
(VCE = Rated VCB, VEB(off) = 1.5 Vde)
(VCE = Rated VCB, VBE(off) = 1.5 Vde)
(VCE = Rated VCB, VEB(off) = 1.5 Vde,
TC=1500C)

2N6294, 2N6295
2N6296,2N6297
2N6294,2N6295

-

0.5
0.5
5.0

= 1.5 Vde,

2N6296, 2N6297

-

5.0

-

2.0

750
100

18000

(VCE = Rated VCS, VBE(off)
TC = 150°C)

mAde

ICEX

-

Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 01

lEBO

mAde

ON CHARACTERISTICS
DC Current Gain
(IC = 2.0 Ade, VCE = 3.0 Vde)
(lc = 4.0 Ade, VCE = 3.0 Vdel

-

hFE

Collector-Emitter Saturation Voltage

Vde

VCE(sat)

(lC = 2.0 Ade, IS = 8.0 mAde)
(lC = 4.0 Ade, IS = 40 mAdcl

-

,

Base-Emitter Saturation Voltage

VSE(sat)

,

-

2.0
3.0

-

4.0

-

2.8

Vde

(lC = 4.0 Ade, IS = 40 mAde)
Sase-Emitter On Voltage
II C = 2_0 Ade, V CE = 3.0 Vdcl

Vde

VSE(on)

DYNAMIC CHARACTERISTICS
Magnitude of Common Emitter Small-Signal
Short-Circuit Forward Current Transfer Ratio
IIC = 1.5 Ade, VCE = 3.0 Vdc, f = 1.0 MHz)
Output Capacitance
(VCS = 10 Vde, IE = 0, f = 0.1 MHz)

-

Ihfel
4.0

-

-

120
200

300

-.

pF

Cob
I

2N6294,2N6295
2N6296, 2N6297

Small-Signal Current Gain
(lc = 1.5 Ade, VCE = 3_0 Vdc, f = 1.0 kHz)

hie

-

·'ndicates JEDEC Registored Data

FIGURE 2 - SWITCHING TIMES TEST
CIRCUIT

FIGURE 3 - SWITCHING TIMES
5.0

Vee
RB & RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

3. 0

-30 V

2.0

I'

VCC=30 V _
ICIIB = 250
IBI=IB2 TJ- 250 C-

I,

Re

I,

~

1.0

V2

':::~:--[J-~~~---__ 1~
V,

1i
~

~_ O. 3

51

-12 V

I I

25",

If

O. 2

.

approx __

O. 7
O.5

for td and Ir. 01

IS

I

...... , ::---

....."

.1= ___ 2NS294,2NS295INPNI
2NS29S,2NS297 IPNPI
0.0 7=
0.0 5
0.04 O.OS
0.1
0.2
0.4 O.S
1.0
IC, COLLECTOR CURRENT (AMP)

disconnetled

and V2" D

t r• t,.;;; 10ns
DUTY eYClE = 1.0%

For NPN test circuit, reverse all polarities.

4-259

---r- -

~EIOffll=O

2.0

4.0

2N6294, 2N6295 NPN/2N6296, 2N6297 PNP

FIGURE 4 - THERMAL RESPONSE
1.0
0.7 ~D=0.5

-'
~

a:_
~fa

>-N

0.5
0.3 I-- _0.2

-

OJWC
'j1flOJC
CI
:1:)

~~ O.2f--- _0.1

w,",

;;;a:

~~
a:-

O.1---

~~
...,'"

0.05 f---

.....c:: I:i"

I-~ 0.07

:f f3

0.0 3

~

0.0 2

t:;a:

•

I-- =~INGLE
PULSE

tl--J

0.05
0.02
0'.01

REAO TIME AT tl

12

IIIII
0.02

0.05

0.1

0.2

1.0

0.5

10

2.0
5.0
I, TIME (m~

.

TJ(pk) - TC = P(pkl ROJC(t)

DUTY CYCLE, 0 = 11/12

"t:C

0.0 1
0.01

ROJC(t) = ,It)
= 3.50
M.x
0 CURVES APPLY FOR POWER
'
PULSE TRAIN SHOWN

Ll JL
20

50

100

,

,

200

500

1000

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
10

- -

5.0
a;
'"' 2.0

-~.
de "\

~

t:
w

1.0

,

100 jJS

o IJl

:\~~
l'lS

that must be observed for reliable operation; i.e., the transistor

~ 0.5

TJ 20DoC
BONDING WIRE LIMITED
~ 0.2 r-----THE~ALLY LlMITED@TC=25 0C
\
(SIN LE PULSE)
,
O. 11==.
SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW
80.05
RATED BVCEO
~
2N6294,2N6296 l 0.02
2N6295, 2N6297 t0.0 1
1.0
2.0 3.0
5.0 7.0 10
20
30
50
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

1:l

There are two limitations on the power handling ability of a
transistor:' average junction temperature and second breakdown.
Safe operating area curves indicate I C - V CE limits of the transistor

m

must not be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on T J(pk) = 200; T C is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ(pk)';;; 200. TJlpk) may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

-

1---

~

I II

70

100

FIGURE 6 - SMALL-SIGNAL CURRENT GAIN

FIGURE 7 - CAPACITANCE

4000
2000
i!; 100 0
<[

'">ffi
a:
a:

1:l
j

300
...

TJ = ~50cl
VCE=3.0V
IC= 1.5 A

600
400

,

'"

0
40
4.0 6.0

200

"
z

~

g:
~

...,'

40 60 100 200 400 600 1000 2000
f, FREQUENCY (kHz)

"

70
50

f:'

20

100

i3

1----2N6294,2N6295 (NPN
2N6296,2N6297 (PNPI
10

---- -

...,w

,,

200
100

TJ= 250C

4000

4-260

......

r-.

- --2N6294, 2N6295 (NPN)

Cib

i2N,62iYtmt (PNP)

I

30
0.1

01

0.5

--

20
5.0
10
1.0
2.0
VR, REVERSE VOLTAGE (VOLTS)

Cob

III
50

100

2N6294, 2N6295 NPN/2N6296, 2N6297 PNP

PNP
2N6296. 2N6297

NPN
2N6294. 2N6295
FIGURE 8 - DC CURRENT GAIN

20.000

r-

VCE =13jo;v

~---

10.000
~


c.>

~

~="VCE= 3.0 V

0.1

2.0

0.2
0.4 0.6
1.0
Ie. COLLECTOR CURRENT lAMP)

4.0

FIGURE 9 - COLLECTOR SATURATION REGION
0;

3.0

I I III

~
o

C
~

le= 1.0 A 2.0 A

2.5

w

'"~

\
\

w

.
!::

2.5

TJ = 25 0 C

\ 3.0 A

\

o

~ 2.0

t:

\

":' 1.5

\.

...

cr
o

1\

I-

~
o

1.0

'-'
W

~

i\

2,OA

IC= 1.0 A

:E

~ 1. 5

o

~

C

1\

;; 2.0

I II I

o

3.0 A

~
o

o

~ 3.0

TJ = 25 0 C

'-.

1.0

"-

'-'

~

> 0,5
0.2

0.5

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5,0 7,0

10

20

0,3

0.5 0.7

lB. BASE CURRENT ImA)

2.0 3,0
5.0
1.0
lB. BASE CURRENT ImA)

7.0

10

20

FIGURE 10 - "ON" VOL TAGES

2.0
1.8

I I

-

TJ

,- r--V!'

II

,12~"C- 1-- r-'

2
w
'"~

~

1.6
1.4

VBElsatl@ ICIIB = 250
1.2

o

>
VBE @VCE = 3.0 V
,; 1.0

J1 tTl I

0,8

VICEllsa~) bll~/IB = 250

0.6
0.04 0.06

0.1

I.B

//

-

~

2,0

--

r-

1.6

.~

io'

o

/

C

V
V

0.2
0,4 0.6
1.0
Ie. COLLECTOR CURRENT lAMP)

/

~ /rI2(~C'

II III
r- ,II

-

III

.....

VBEI~t\ JIC~IB = 250
II III

0.8

V6EI~tl) JIC~IB = 250

0,6
"
0,04 0.06

4.0

4-261

III
0,1

V

-'

~ 1.2 VBE@VCE=3,oV
~
o
11111
~ 1.0

/

'/

2,0

r-,--" - )

III

w

V

=====

1.4

LI

,.."

V

/

1---, L

V

V

f---

I
0.2
0.4
0,6
1.0
Ie. COLLECTOR CURRENT lAMP)

2.0

4,0

•

2N6294, 2N6295 NPN/2N6296, 2N6297.PNP.

NPN
2N6294. 2N6295

PNP
2N6296. 2N6297

FIGURE 11 - TEMPERATURE COEFFICIENTS
+5.0

+5.0

I II

~+4.0
>
E+3.0
Iz

'Applies for ICIIB <; hFEI2

~

+1.0

0

J
./
2r1'l150~ V

~ -1.0

!;;:
~

~ -3.0

I-

i- 4.0

II

~ +2.0
<3
~ +1.0

/ '/
/" /
/ J

8

J 110.1

-55 0C to 250C

-5.0
0.04 0.06

0.2

0.4

J
0.6

1501Ctl~

0

w

~ -1.0

~ -2.0

II II

w

~

-3.0

i- 4.0
2.0

4.0

I-H-550e to 25 0C

--

I

25it~

0VB. for VBE

I-

1.0

-r

• OVC. for VCE(sat)

I-

15~W

0VB. for VBE

I

I-

V /
~
-55 0C to 25 0C ,.....
V

·O~C. for VCE(sat)

-2.0

'AppliesforlcllB <;hFEI2

>
E+3.0

~ +2.0

8w

II II

. ~ +4.0

II II . -55 0C to 15 0e

-5.0
0.04 0.06

0.1

IC. COLLECTOR CURRENT (AMP)

V
V

/ /
~

...- ,.,

V

0.2
0.4
0.6
1.0
IC. COLLECTOR CURRENT (AMP)

.-

2.0_

4.0

FIGURE 12 - COLLECTOR CUTOFF REGION

10 5
/

3 f-- VeE - 30 V

/

4t-- VeE 30 V
f--REVERSE_ _FORWARD

I - TJ

15U oC

/

I
25 0C

I

~TJ

150 0C

I

loooe

loooe

/

15 0C

____ rEVERSE~FORWARP

10-2
-0.6

-0.4

-0.2
0
+0.2 +0.4 +0.6 +O.B +1.0
VBE. BASE·EMITTER VOLTAGE (VOLTSI

+1.2

10- I
+0.6

+1.4

+0.4

+0.2
-0.2 -0.4 -0.6 -O.B -1.0
VBE. BASE·EMITTER VOLTAGE (VOLTS)

FIGURE 13 - OARLINGTON SCHEMATICS

Collettor

NPN
2N6294
2N6295

r------I
I

r-----~

02

-.

«

OJCIII- ,III 0JC
"~
OJC 1.4oC/W Max
o CURVES APPLY FOR POWER_
0

",w

>--'

z-~
wz

0.05

:::«
>->,-,'"
Wv;
tt'"

ISi:i'

"'"'"

0.07

",-

PULSE TRAIN SHOWN
READ TIME ATI)

Pii.: .,.. 0 0.5

TJI,kl- 'Tc

0

"
\.

0.03

~w

0.2
0.1
005
0.02

0.01

a 02 a 03

01

005

02

-

~~-J

SINGLE PULSE

-

PI,kl OJcll1

pFJUl =

am

0.02

0

-

-

0.3

05

2a

1.0

3a

5.0
t,

10

20

30

100

50

=
-

DUTY CYCLE. 0 = 1t/12
I
200 300
500
1000

-

2000

TIME !msl

FIGURE 4 - ACTIVE·REGION SAFE OPERATING AREA

-

a
a
~

5. 0

~

2. 0

~

1.0

~

o. 2

~

o.

a
j

....:::.

-

100!JS~
500",

1.Oms

.....

dc-' ,5.0m,

O. 5

There are two limitations on the power handling ability of a
tranSistor. average J unction temperature and second breakdown.
Safe operating area curves indicate le'VeE limits of the transistor

TJ ~ 200°C

-- -

0.0 ;~~

8

~ 0.0 2

that must be observed for reliable operation; i.e., the transistor

_ BONDING WIRE LIMITED
THERMALLY LIMITED @Tc - 25°C
lSI NG LE PULSEI
SECOND BREAKDOWN LIMITED

0.0 1

Curves Apply Below

0.00 5
0.00 2
5.0

Rated VCEO
7.0

20

10

30

50

70

2N6306
2N6307
2N630B
200
100

must not be subjected to greater diSSipation than the curves indicate.

"-

The data of Figure 4 is based on T J(pk) "" 200°C; T Cis vnriable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) ~200oC. T J(pk) may be
calculated from the data in Figure 3. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

300

500

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI

FIGURE 5 - SWITCHING TIMES TEST CIRCUIT

FIGURE 6 - TURN·ON AND TURN·OFF TIMES
5.0

VCC 125V
RC

2.0

41

+B 2 V

1.0

V~l:~5~'
-17 V

TJ = 25 0 C.·+
VCC~ 125 V
IC/IBI = 5.0

3.0

TO SCOPE

]

0.7

W

0.5

">=_.

51

1,

r-

0.3

~

....... 1,
~

0.2

....... r--....

V2

DUTY CYCLE 1%
10 os
01-IN3879
COLLECTDR·BASE JUNCTION

0.07
0.0 5
0.1

FOR DATA IN FIGURE 6.
RB & RC ARE VARIED TO OBTAIN
DESIRED TEST CONDITIONS. 01
OMITTED AND V2 REDUCED TO
5.0 V FOR td and 1, MEASUREMENTS

--'
tf

r::::::::

O. 1
t r. tf";;;

IC/IB2 - 2.0

Id @VBEloffl - 5.0 V
0.2

0.3

0.5 0.7

1.0

2.0

IC. COLLECTOR CURRENT IAMPI

4-265

3.0

5.0

7.0

10

•

2N6306,2N6307,2N6308

FIGURE 8 - COLLECTOR SATURATION REGION

FIGURE 7 - DC CURRENT GAIN
100

~

VCE - 5.0 V
70
50
z

::

30

~

r-

•

,....-

_V

10

>

\' \.

\

Ie = 2.0

3.0

'"
W

\
~\

~

2.0

\

0

~

0.3

0.5 0.7

1.0

2.0

5.0 7.0

3.0

10

1.0

\

\.

"'

>

0.05 0.07 0.1

~

0.2

0

......

0.5 0.7

0.3

1.0

2.0

r-

3.0

5.0

IS, SASE CUR RENT lAMP)

FIGURE 9 - "ON" VOLTAGES
TJ

,
-- -""\

\

IC, COLLECTOR CURRENT lAMP)

2. a

\,. 7.0A

\

~

0.2

\

\ 5.0A

1\

3

7.0
5.0
0.1

3.0 A

\

t-

'"
I-

TJ = 25°C

1\

'\

!=

\ "",

,....- I-

-55°C

\

'::;
c

l..-+-

20

'-'
'-'
c

~

~50C

4.0

'"«

\.

~

Iii

'":::>'"

~
w

\

1\

c

:---TJ '1500;"



1. 6

~c

~

Icils

~
ffi

~ 5.~

'"

;

-= ~ ::::--

VSEI",)

~ 0.8

/

>'
VSE @VCE = 5.0 V
0.4

I II

I
VCElsati
0.2

0.1

0.3

0.5

tHI
0.7 1.0

.....

~

2.0

V
+25 0 C to +150 0

~

+lo U

8
w
'"I-:::>

+0 5r---

~ -0.5

~,/
Ic/IS=5.0

IC/r,°ffHt
3.0

+1. 5

U

AI¢r;.'

IclIs'2.0 ~~ V

1. 2

+2. 0

I-

5.0 7.0

~

0.3

IC, COLLECTOR CURRENT lAMP)

2000

50 a I==TJ - 1500C

r-125~C
r-- r-'

~

10 a

'":::>
'-'
c'"

0
20

~

a

t;

c-'
~

1000
700

/

20 or--

-

~

5«

'--100°C

~u-

i - - ~750C

1.0
-0.4

-0.2

REVERSE

FORWARD

VeE = 200 Vdc+0.2

+2s;e

3.0

5.0 7.0

10

+0.4

TJ = 25°C

III
eib

500

......

200

...... Cob
100
70
50

5.0
2.0 - -25~e

2.0

III'

--

~
z 300

1

1

0.7 1.0

FIGURE 12 - CAPACITANCE

FIGURE 11 - COLLECTOR-CUTOFF REGION

I-

0.5

50e

Ie, COLLECTOR CURRENT IAMPI

100a

1

-rnn

i-1.5 -OIVSfrVSE
0.2

V

11

'ITle~/
-i '0

-1.0

I-

10

~+2~Oe
I

-2.0
0.1

~

..Y ,...../

'(!ve for VCElsat)

--

Y

V

.-:: f- -

-

::-...

30

2a
0.5

+0.6

1.0

2.0

5.0

10

20

50

VR, REVERSE VOLTAGE (VOLTS)

VSE, BASE EMITTER VOLTAGE (VOLTS)

4-266

100

200

500

NPN
2N6315 2N6316
PNP

2N6317 2N6318
COMPLEMENTARY SILICON
MEDIUM-POWER TRANSISTORS
7.0 AMPERE
designed for general-purpose power amplifier and switching
applications.

COMPLEMENTARY SILICON
POWER TRANSISTORS
60-80 VOLTS
90 WATTS

o Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 4.0 Adc
o Low Leakage Current - ICEX = 0.25 mAdc (Max)

•

.. Excellent DC Current Gain - hFE = 20 (Min) @ IC = 2.5 Adc
.. High Current Gain - Bandwidth Product fT = 4.0 MHz @ IC = 0.25 Adc

-MAXIMUM RATINGS
Rating

Svmbol

2N6315
2N6317

2N6316
2N6318

Collector-Emitter Voltage

VCEO

60

80

Vdc

Collector-Base Voltage

VCS

60

80

Vdc

Emitter-Base Voltage

VES

5.0

Vdc

IC

7.0
15

Adc

. IS
Po

2.0

Adc

Collector Current - Continuous

Peak
Base Current

Total Device Dissipation - T C = 250 C
Derate above 25 0 C
Operating and Storage Junction

TJ.Tstg

Unit

Watts

90
0.515

W/oC

-65 to +200

°c

I-U---'I

C

::J4~i
E

D

K

I

SEATING PLANE

---F--J-

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
-Indicates JEOEC registered data. Limits and conditions differ on some parameters and re-

registration reflecting these changes has been requested. All above values meet or exceed
present JEDEC registered data.

STYLE I:
PIN 1. BASE
2. EMITTER
CASE:COLLECTOR

FIGURE 1 - POWER DERATING
140

Ii!
....

B

«

~ 100

z

0

;:

80

Q

~

60

'"'"

40

.P

20

~

;0

MILLIMETERS
MIN MAX
11.94 12.10
C
6.35 B.64
0.11 0.86
D
1.27 1.91
E
24.33 24.43.
f
G 4.83 5.33
H 2.41
2.61
J 14.48 14.99
K 9.14
P
- 1.21
n 3.61 3.B6
S
8.89
3.68
T
U
- 15.75

DIM
120

r-- i'-..

~

.........

o
o

............

..............

~

..... 1"--..
25

50

100
150
15
125
TC. CASE TEMPE RATU RE (DC)

115

200

--

INCHES
MIN MAX
0.410 0.500
0.250 0.340
0.028 0.034
0.050 0.Q15
0.958 0.962
0.190 0.210
0.095 0.105
0.510 0.590
0.360
0.050
0.142 0.152
- 0.350
- 0.145
0.620

All JEDEC Dimensions a.nd and Notes Apply.
CASE 80-02

Safe Area L.imits are Indicated by Figure 13.

TO·66

4-267

NPN 2N6315, 2N6316
PNP 2N6317, 2N6318

*ELECTRICAL CHARACTERISTICS (TC = 250C unless otherwise noted)
Characteristic

Svmbol

Min

Max

60
80

-

Unit

OFF CHARACTERISTICS
Collector-E mitter Sustaining Voltage (1)

(lC =

100 mAde, IS = 0)

Collector Cutoff Current

ICEO

(VCE = 30 Vde, IS = 0)

•

2N6315,2N6317
2N6316,2N6318

(VCE = 40 Vdc, IS = 0)

Vde

VCEO(su,)
2N6315,2N6317
2N6316,2N6318

Collector Cutoff Current

ICEX

-

mAde

-

0.5

-

0.5
mAde

(VCE = 60 Vdc, VSE(ofl) ~ 1.5 Vdc)
(VCE = 80 Vdc, VSE(off) = 1.5 Vdc)

2N6315,2N6317
2N6316,2N6318

-

0.25

(VCE = 60 VdcVSE(off) =1.5 Vdc,TC =150oC)
(VCE = 80 Vdc,VSE(ofl) =1.5 Vdc,TC =150o C)

2N6315,2N6317
2N6316,2N6318

-

2.0

-

2.0

-

0.25

Collector Cutoff Current

mAde

ICSO

(VCS = 60 Vdc, IE = 0)

(Ves = SO Vdc,

0.25

2N6315,2N6317
2N6316,2N631S

IE = 0)

Emitter Cutoff Current
(VES = 5.0 Vdc, IC = 0)

IESO

-

0.25

-

1.0

35

-

mAdc-

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 0.5 Adc, VCE = 4.0 Vdc)

-

hFE

(lc = 2.5 Adc, VCE = 4.0 Vdc)

20

100

(lc = 7.0 Adc, VCE = 4.0 Vdc)

4.0

1.0
2.0

VSE(sat)

-

2.5

Vde

V6E(on)

-

1.5

Vde

fT

4.0

-

MHz

-

300
200

hfe

20

-

-

tr

-

0.7

1"

ts

1.0

I'S

tf

-

0.8

1"

Collector-Emitter Saturation Voltage (1)

Vdc

VCE(,at)

(lC = 4.0 Adc, IS = 0.4 Adc)
(lC = 7.0 Adc,IS = 1.75 Adc)
Base-Emitter Saturation Voltage (1)

(lC = 7.0 Adc, IS = 1.75 Adc)
8ase·Emitter On Voltage (1)
(lC = 2.5 Adc, VCE = 4.0 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product (2)

(lC = 0.25 Adc, VCE = 10 Vde, fte,t = 1.0 MHz)
Outplh Capacitance
(Vce = 10 Vde, IE

= 0, I

pF

Cob
= 1.0 MHz)

2N6317,2N6318
2N6315,2N6316

Small-Signal Current Gain

(lC = 0.5 Ade, VCE = 4.0 Vdc, I = 1.0 kHz)
SWITCHING CHARACTERISTICS
Rise Time

Storage Time
Fall Time

(VCC = 30 Vdc, IC = 2.5 Ade,
lSI = 162 = 0.25 Adcl

-Indicatas JEDEC Registered Data.
(1) Pulse Test: Pulse Width ~ 300 1'1. Duty Cycle ~ 2 0%.

(2) IT -Ihfe I Ute..

4-268

NPN 2N6315, 2N6316
PNP 2N6317, 2N6318

TVPICAL CHARACTERISTICS
FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN "ON" TIME

VCC
-30 V

2.0
TJ·250C
VCC ·30V
ICIIB .1'!.::::r:

1.0
12
+9.0JJ
0- - - - -11 V--

0.5

SCOPE

]
01

51

...... I-o..::,lr

0.3

'"

~ 0.2
~~

39

Izs;;l

O. I

tr.tf~10ns

-=

DUTY CYCLE ~ 1.0%

- -

RC

RB

~

r-....

Id @ VBElolI) ~ 5.0 V

0:-

~.OV

0.05
2N6317. 2N6318 IPNP)
0.03
AN63t5r 2Nr3161~PN)1
0.02
0.2 0.3
0.5 0.7
0.07 0.1

FOR CURVES OF FIGURES 3 AND 5. RB AND RC ARE VARIED
TO OBTAIN DESIRED CURRENT LEVELS.
01 MUST BE FAST RECOVERY TYPE ••.g.
MBD5300 USED ABOVE IB ~ 100 rnA
MS06100 USED BELOW IB ~100 rnA
FOR NPN TEST CIRCUIT. REVERSE ALL POLARITIES.

1.0

2.0

3.0

5.0 7.0

IC. COLLECTOR CURRENT IAMPERES)

FIGURE 4 - THERMAL RESPONSE
1.0

I-- D ·0.5

0.5
-'-

i ~ 0.3 I-- I- 0.2

-

~ ~ 0.2 F= r- 0.1
....

,..

....z o
'"

~ ~

o. 1~ F-

~~

0.5 ~

~~

0.05
0.01

'JlJL
' t---J

-

-

OJCltl • rill OJC

i

......

,I

°JC·I.94oCN/Max
0 CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
REAOTIMEATll

Plpkl

F"F-o ISINGLEPU LSE)
DUTY CYCLE. O· !J112

~~O.O 3

TJlpk)

TC· Plpk) OJCItI

0.02
0.0 1
0.01

0.02 0.03

0.2

0.05 0.07 0.1

0.3

0.5 0.7 1.0

2.0

3.0

Lilllll JJ1J .1
5.0 7.0 10

20

30

60 70 100

1LU 11 U
200 300

500 7001000

I.TIMElrns)

FIGURE 5 - TURN "OFF" TIME

FIGURE 6 - CAPACITANCE

5.0

50 0
TJ·250C
Vcc·30V
IcllO ·10
IBI" 182

3.0
I

2.0

i- 1"-'-= ~

1.0

]
~ 0,5

:. 0.3

If

O.2

-

I-

-

2N6317.2N6318 IPNPl
2N6315.2N6316 INPN)

o. 1
0.05
0.07

I""" ::::..

0.1

0.2

0.3

0.5 0.7

1.0

2.0

3.0

("'--...
'<:::

0

-

"- "'-

T~ .12~O~

~ r!;:::t300

~
"-

~

Cib

'"r--..

I .....

0

oE::~~:~:~: ~=:~:: :~~~))

5.0 7.0

IC. COLLECTOR CURRENT IAMPERES)

50
'0.1

~[

1111111
0.2

0.5

1.0

l"
2.0

50

10

VR. REVERSE VOLTAGE IVOLTS)

4-269

20

50

100

•

NPN 2N6315, 2N6316
PNP 2N6317, 2N6318

I

NPN
2N6315

aftc! 2N6316

PNP
2N6317 and 2N6318

FIGURE 7 - DC CURRENT GAIN
500

500
VCp4.0 V

300
TJ-1S00

z

~

•

z

;;: 100

~

-

0
0

-SSoC

~ 20

....z

2S oC

I-.

0
5.0
0.07 0.1

0.2

0.3

0.5 0.7

~

-..

3.0

2SoC
=-5SOC,

50

.........

30

~

""'t-2.0

1.0

~
'"'"
'"
'"

.'..

VCe= 4.0 V

TJ=l50oC

200

.

r-..

100

~
'"'"
1:l
'"'"

300

C--

200

~

........

20

r......'......

10
5.0
0.07 0.1

5.0 7.0

0.2

IC. COLLECTOR CURRENT (AMPERES)

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

IC. COLLECTOR CURRENT (AMPERES)

FIGURE 8 - COLLECTOR SATURATION REGION
;;; 2.0
~

II

.~

"

'"~

wI.6

'"~

IC=1.0A

'"~w

~

5.0 A

2.SA

1.2

iii 2.0
~

TJ=2SoC

'"~

~ O.8

~-' o.

~

.......

TJ=2 SoC

S.OA

1.2

0.8

~

_ 0.4

4

8

ul

w

~

1.6

I

2.SA

~

~
:;;

8

II
IC= 1.0 A

>'"

0
10

20

50

30

70

200

100

300

500 700 1000

0
10

20

30

50

70

100

200

300

500 700 1000

lB. aASE CURRENT (mA)

la. aASE CURRENT (mA)

FIGURE 9 - "ON" VOLTAGES
2.0

~

..

'"~w

2.0

TJ=2SoC

1.6

1.B

1.2

;;;
!:;'
~U

~ 0.8

~
_

'"
>
>'

VaE( ...) IIIC~B =10
VaE II VCE =

4.~ V

0.4
t l ( J IIllcnl =110
0
0.07 0.1

0.2

0.3

~

....

-

0.5 0.7 1.0

~

TJ -2S oC

~
~

~~

VaE(a.) 'Ic~a - 10

0,B

V~E~V~E"rOIV

0,4

f-2.0

3.0

5.0 7.0

IC. COLLECTOR CU'RRENT (AMPERES)

p-

I
J

.I

,,;

V

~

0
0.07 0.1

I

V~E+ fIclla ~ 1~
0.2

0.3

0,5 0.7

-

1.0

/
~
2.0

IC, COLLECTOR CURRENT (AMPERES)

4-270

1/

~

w

~

V

3.0

5.0 7.0

NPN 2N6315, 2N6316
PNP 2N6317, 2N6318

NPN

PNP

2N6315 and 2N6316

2N6317 and 2N6318

FIGURE 10 - TEMPERATURE COEFFICIENTS
+2.5

+2. 5

~ +2.0

~ +2.0

>

·Appliesfor tc/lB" hFE/4

~ +1.5

....
ffi

+1.0

*

U

+0.

/

~ -1.0

>-2. 0
-2. 5
0.07 0.1

ct:>

0.3

0.5 0.7

1.0

0

+r5~Cio~

~ -1.5

-evs fo,VSE

....

II Ii

:> -2. 0

I I

et:>

2.0

3.0

5.0 7.0

J

/'

-SSoC to +25 C V

~ -1.0

...... 1-

-55°C to +25 0 C
0.2

IY
--r I--"

w

b

11'11

< .1. 1.1 1
- ' eVC for VCE(sa')

§ -0.5

,,;

1111L......r

I

....

II
I
12~'C to ~IS~'C V

8

+25 0 C!j +150o
eVS fo, VOF.

~ -1. 5

+1.0

~ +0.5

t-

-55°C to +25 0 C

-no 5

~

....

~

U

II ....J.--1'

oy

w

....

V

+25 DC to TI50De

I

Il

+s

~+1.5

/

'.' ,

.'. '.



-2. 5
0.07

n

~'O+250C

I II I

II II

0.1

0.2

0.3

I

0.5 0.7 1.0

2.0

3.0

5.0 7.0

IC. COLLECTOR CURRENT (AMPERES)

IC. COLLECTOR CURRENT (AMPERES)

FIGURE 11 - COLLECTOR CUT·OFF REGION
103
VCE-30V

1.... 10
~

10

13
'"
o 10

TJ -IS0'C

2

1
ffi

1

'"
'"~

1000C

0

25'C.

8:::: 10-1

o

8
:2 10-2~REVERSE
-0.2

100

B

~1O-2

FORWARD

10-3

+p.l

-0.1

100'C

10 1

t;
~ 10- 1

IC - ICES

-0.3

102

+02

+0.3

+0.4

+0.5

IC -ICES

~REVERSE

10-3
+0.3

+0.6 +0.7

+02

FORWARD

-0.1

+0.1

-0.2

-0.3

-0.4

-0.5

-0.6 -0.7

VBE. BASE·EMITTER VOLTAGE (VOLTS)

VSE. BASE·EMITTER VOLTAGE (VOLTS)

FIGURE 12 - EFFECTS OF EXTERNAL BASE·EMITTER RESISTANCE
10M

IUM

;;;

'"'"o

.... .....

~I.OM

z

~

/
TO k

......
I'.

IC ~ ICES

IC=2xICES-

"'<

'"

0.1

4B

60

BO

'"

~
~

ICES

.....

140

160

180

2 x ICES

.....

,...>(

10 x ICES

10 k

""

~ t.O k

~

.........
120

~

......

.;>..

~

........

........

........
100

I-IC~

1:1

l--(TYPICAL ICES VALUES
kr-OBTAINEO FROM FIGURE 11)
20

z

;'!

......

......

1.0 k

:lJ

-

VCP30V==

.....

!!l 100 k

~



'"'a:0

t;

w
-'
-'

0

'"'!:2

...

...

~

z

. . t . .O.1 ms

...
...

I

0.3
0.2
5.0

7.0

2N6315.17
2N6316.18

1.0\';'.-

\.
\..

5.0ms

-.l,.

."\

20
' 10
30
50
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

There are two limitations on the power handling ability of ~
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limitsot the tran·
sistor that must be observed for reliable operation; i.e., the

=

'-

....

TJ = 200·
."'"
2.0
.
de '\
I-.---SECONO BREAKDOWN LIMITEO
- '-BONDING WIRE LIMITED
1.0 1=- ---THER(~fN~i-r~1tmN(iHC = 25 D C
0.7
Curves Apply Below Rated VCEO
0.5

0.5 ms:

70

100

The data of Figure 13 is based on TJ(pk)

=

200°C; TC is

variable depending on conditions. Second breakdown pulse limits

are valid for duty cycles to 10% provided TJ(pk) <200°C.
T J(pk) may be calculated from the data in Figure 4. At high
case temperatures, thermal limitations will reduce the power that
can be handled to values less than the limitations imposed by
second breakdown.

transistor must not be subjected to greater dissipation than the
curves indicate.

4-272

2N 6338 (SILICON)

thru
2N6341
HIGH-POWER NPN SILICON TRANSISTORS
25 AMPERE
POWER TRANSISTORS
NPN SILICON

designed for use in industrial-military power amplifier and
switching circuit applications.
•

•

High Collector-Emitter Sustaining
VCEO(sus) = 100 Vdc (Min) = 120 Vdc (Min) = 140 Vdc (Min) = 150 Vdc (Min) -

Voltage 2N6338
2N6339
2N6340
2N6341

100, 120. 140, 150 VOLTS
200 WATTS

High DC Current Gain hFE=30-120@IC=lOAdc
= 12 (Min) @ IC = 25 Adc

o Low Collector· Emitter Saturation VoltageVCE(sat) = 1.0 Vdc (Max) @ IC = 10 Adc
•

Fast Switching Times@ IC = 10 Adc
tr = 0.3)Ls (Max).
ts= 1.0)Ls (Max)
tf = 0.25)Ls (Max)
o Complement to 2N6436-38

'MAXIMUM RATINGS
Symbol

Rating
Collector-Base Voltage
Collector-EmItter Voltage

2N6338 2N6339 2N6340 2N6341

Unit

VCB

120

140

160

180

Vdc

VCEO

100

120

140

150

Vdc

VEB

6.0

Vdc

IC

25
50

Adc

Base Current

IB

10

Adc

Total Device DlssIPatlon@Tc=250C

Po

200
1.14

wloe

Emmer-Base Voltage
Continuous
Peak

Collector Current

Derate above 25°C
Operating and Storage Junction

Watts

- - - - 6 5 to +200---

TJ.T stg

°e

.L~"~'
~SEATiNG

K

I

0

PLANE

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
"Indicates JEDEC Registered Data.

FIGURE 1 - POWER DERATING
200

_175

i

150

-

"'-

~ 12 5

!;i

'"

DIM

~

B

.......

""

50
25

o
o

C
D
E
F
G
H
J
K

i'..

25

50

15

100

125

150

"'"

~200

175

TC. CAS!; TEMPERATURE (DC)

4-273

MILLIMETERS
MAX
MIN

INCHES
MAX
MIN

39.31
21.08
1.62 0.250
1.09 0.039
3.43
29.90
30.40 1.171
10.67
11.18 0.420
5.33
5.59 0.210
16.64 17.15 0.655
11.18 12.19 0.440
Q
3.84
4.09 0.151
26.67
R
Collector connected to case.

A

~

~ 100
C
~ 75

~

NOTE:
1. DIM "0" IS OIA.

-

6.35
0.99

-

CASE 11·01
(TO·3)

1.550
0.830
0.300
0.043
0.135
1.191
0.440
0.220
0.675
0.480
0.161
1.050

2N6338 thru 2N6341

*ELECTRICAl CHARACTERISTICS ITe'" 25°C

unlcu otherWise noted)

Min

Symbol

Max

Unit

OFF CHARACTERISTICS
Vd,

Coliector·Eminer Sustammg Voltage
2N6338
2N6339
2N6340 .
2N6341

(Ie" 50 mAde. Ie " OJ

Collector Cutoff Current
(VeE" 50 Vdc, Ie "" OJ

2N6338

IV CE -' 60 Vdc, I B "" OJ

2N6339

NeE" 10 Vdc, IS -' OJ

2N6340

75 Vdc, Ie ~ 0)

2N6341

!VeE

=

100
120
140
150
p.Adc

50
,0
50
50

Collpclor Cutoff Cum·nt

ICEX

(VeE" Rated VCEO. VEBloff) = 1.5 Vdcl
(VeE.:t Rat«! VCEO. VEBloffi '" 1.5 Vdc, TC '" 1S0oCl

•

Collector Cutoff Current
(VCS'= Rated Vee. Ie

,-

leBO

10
10

mAde

10

/JAde

100

j.lAdc

/.lAde

'" 01

Em'lter Cutoff Current
(Vse ,.. 60 Vdc, Ie '" 01

leaD

ON CHAHACTERISTICS (11

DC Current Gam

50
30
12

lie = 0.5 Adc, VeE" 2.0 Vdcl
lie" 10 Adc, VeE'" 2.0 Vdcl
(Ie'" 25 Adc, VeE ~ 2.(. !.Ide)

120
Vd,

Collec.tor·Em,tter Saturatton Voltdge
tic'" 10Adc,IB~ 1.0 Adc)
lie"" 25 Auc, 18 = 2.5 Adc)

1.•

Sase-Emitter Saturation Vohaq>.l
He = 10 Adc. IS" 1.0 Adcl

18

(Ie'" 25 Adc. IS" 2.5 Adc)

2.5

10
Vd,

Base·Emltter On Voltau~
(le-10Adc, VCE =2.0Vdc)

Vd,

18

VSElonl

DYNAMIC CHARACTERISTICS
Current-Gain 8,mdwldth Product 121
IIC - 1.0 Ade, VeE to Vde,llesl - 10 MHz)

40

;<

Outpul CapdCItiHiCC
(VCS -- 10 Vdc. IE" O. f

~

0 1 MHz)

SWITCHING CHARACTERISTICS

0.3
(VCC ~ 80 Vdc, IC = 10 Adc, ISl = 1.0 Adc, VSE(off) = 6 0 Vdc)

Storage Time
FaliTlmc
(Vec ~ 80 Vd<:, Ie = 10 Adc, 101
hulu:atesJEOEC Reglstorod Data
(11 Pulse Test

1.0

"

(Vec ~ 80 Vdc, Ie = 10 Adc, IS1 '" 182 = 1.0 Adc)

025
so

"'

182'" 1.0 Adc)

Pulse Width'; 300 jJ.s, Dutv Cvc.le "20%.

(2) IT ~ hfel.fte'iT

FIGURE 3 - TURN,ON TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
1000
700
500

Vee
T80 V

,300

RC
B.O Ohms

_-3--_

10~s ---j-J

':1_~D-_

SCOPE

~

-'

tr. tf <; 10 ns

1==

;;:::td @VSE off) = 6.0 V

t-200 b0......

~ 100

;::

-e.ov=r--[

r--.

Vce'BOV
~
lells: 10n:;;:
Tr250 e

..........

tr

/
........

l/-

r--...

70
50
30

Duty Cycle: 1.0%

20
-5.0 V
10
0.3

Note: For information On Figures 3l:lnd 6, RBand RC were
varied to obtain desired test c:onditions.

0.5 0.7

1.0

2.0

3.0

5.0 7.0

Ie. COLLECTOR CURRENT (AMP)

4-274

10

20

30

2N6338 thru 2N6341

FIGURE 4 - THERMAL RESPONSE
1.0

o. 7=0
o. 5

;t
~_
wC

"w

O. 3== 0.2

I- N

1-::;

~~ O. 2

0;'"

ZC

""Z
:=::

---

0.5

-

-

0.1

I-- -~

o. 1=.0.05

..--

pmn

;::::;-

~ ~ 0,0 7FO.02

~ ~ 0.05 I--

::t ~ 0.03 I.---' .....K
0.02

=

~J

V

~'"

~UTY

0.01

CYCLE. 0

r-- SINGLE PULSE

I II

0.01
0.01

-II

II II

0.02 0.03

0.05

0.1

0.2

0.3

0.5

2.0

1.0

3.0

50

10

=

OJC!t) =rlt! OJC'
; - OJC =0.075 0 CIW Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJlpkl - TC =Plpkl OJCII)

11/12

20

30

50

100

200

300

500

1000

I. TIME Imsl

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA
10 0
50

~

5

l-

~

'"=>
'"C'"'

~.

200.us

0
0
S. 0

I-There are two limitations on the power handling ability

1.Oms
de

5.0 ms

2. 0
1.0
O. 5
O.

~.

~ 0.0 5

0.02
0.0 1
2.0

3.0

5.0

7.0

10

20

50

30

a

The data of Figure 5 is based on T Jlpk) = 200°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T Jlpk) .;;. 200°C. T Jlpk) may be
calculated from the data In Figure 4. At high case temperatures,
thermal limitations Will reduce the power that can be handled to
values less than the limitations Imposed by second breakdown.

TJ 200 0 C
BONOING WIRE LIMITED
- - THERMALLYLIMITEO@TC-25 0 C
ISINGLE PULSE)
SECONO BREAKOOWNV~LlMITEO:2N6330
CURVES APPLY BELOW
2N6339
RATEO VCEO
~~~~:~

2~'

8 o. 1

of

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le,VeE limits of the transistor
that must be observed for reliable operation; I.e., the transistor
must not be subjected to greater diSSipation than the curves Indicate.

70

100

200

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI

FIGURE 6 - TURN-OFF TIME

FIGURE 7 - CAPACITANCE

5. D

500 0

3. D

Vec = 00 V_
IBI = IB2
IC/IO = 10
TJ =25 0 C

Is

2. 0

r-....

1.0
w

:100
Z

5""

0.5

;:, 0.3
0.2

r--

0.5 0.7

1.0

2.0

3.0

5.0

10

70 0

50 0

;;:

5

30 0

./

U

20 0

---

O. 1
0.0 7
0.0 5
0.3

r-...

!

0

"-

o:;;;;;.!!.

Cib

200 0

3 o. 1
:E

TJ = 25 0 C

300 0

r---

Cob

"'j--.

100

20

30

IC. COLLECTOR CURRENT lAMP)

70
50
0.1

0.2

0.5

1.0

2.0

5.0

10

20

VR. REVERSE VOLTAGE IVOLTS)

4-275

50

100

•

2N6338 thru 2N6341

FIGURE 9 - COLLECTOR SATURATION REGION

FIGURE 8 - DC CURRENT GAIN

200

g 2.0

TJ = +150 oC

z 10 0

?

to

...
z

70 '-- _-55 0 C

W
0::
0::

0

'"o

30

a
~

I I IIIII

•

1.4

~ 1.2

~,

1=

al

1.0

..-::: ;.....

VSEI"t)@ IcllB = 10

0.8

> o. 6

u:

tt
8

/

O. 2 -

r-

o

0.3

-

VCEI~t\ ~ IC/IJ = IJ

0.5 0.7

2.0

1.0

3.0

-

-f2.0

+25 0 C to +150oC

...
:::>


FORWARD

. +0.1

20

'" 10-2

...J

-0.1

10

~

o

'"~10-2 r--REVERSE

7.0

I"
I"

+250 C
/

o

5.0

+100 0C

...ffi w- I

.3.

w

§

3.0

FIGURE 13 - BASE CUT·OFF REGION

y
,/

--r--55J..-.l-C to +25 0C

2.0

IC. COLLECTOR CURRENT lAMP)

FIGURE 12 - COLLECTOR CUT·OFF REGION

TJ = +150oC

L

IA
0

1.0

IC. COLLECTOR CURRENT lAMP)

I--

1

/
/

J. I k"

I

i

30

V .-

-55 0 C to +25 0C

~

20

iA'

..-r

'OVC FOR VCEI"t)

I"

10

/ I
1/
/ I J
/
//

+3.0

11:

7.0

5.0

--r-y

... -1.0

5.0

2.0

r'APPLIES FOR ICIIS>hFE/2

~ +1.0 -

/

m@Vcrr

0.4

1.0

U

I

w

'"

0.5

_ +5.0

V

A

~ 1.2

0.2

FIGURE 11 - TEMPERATURE COEFFICIENTS

IIII

1.8

0.1

lB. BASE CURRENT lAMP)

FIGURE 10 - "ON" VOLTAGES

2.0

\.

,

\

8 2
W o.
>'" 0

\

1.0

III

1.8

o

1-1"- ~ L,

+25 0 C

+0.3

+0.4

+= F=- REVERSE
10-4
-0.16

+0.5

-O.OB

FORWARD
+O.OB

VBE. BASE·EMITTER VOLTAGE IVOL TS)

VBE. BASE·EMITTER VOLTAGE (VOLTS)

4-276

+0.16

+0.24

2N6371 (SILICON)

thru
2N6379

HIGH·POWER PNP SI LICON TRANSISTORS
. designed for use in industrial·military power amplifier and
switching circuit applications.
•

50 AMPERE
POWER TRANSISTORS
PNP SILICON

High Collector Emitter Sustaining Voltage VCEO (sus) = 80 Vdc (Min) - 2N6377
= 100 Vdc (Min) - 2N6378
= 120 Vdc (Min) - 2N6379

80,100,120 VOLTS
250 WATTS

• High DC Current Gain hFE = 30'120@IC= 20Adc
= 10 (Min) @ IC = 50 Adc
o Low Coliector·Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 20 Adc
• Fast Switching Times @ IC = 20 Adc
tr = 0.35 IlS (Max)
ts = 0.8 IlS (Max)
tf = 0.25 IlS (Max)

•

• Complement to 2N6274-77

• MAXIMUM RATINGS
Rating

Symbol

2N6377

2N6378

2N6379

Unit

Ves

100

120

140

Vdc

VeEO

80

100

120

COllector-Base Voltage

Collector-Emitter Voltage

Emi tter-Base Voltage
Collector Current

.

Continuous

Ie
IS

Total Device Dissipation @
Te= 250 e

Po

50
100

..

Peak
Base Current

20

.....

Derate above 25°C
Operating and Storage JunctiQn T J.T st9

.

Vdc

...

.

Adc

..

Adc

6.0

...

VES

...
..

250
1.43
-65 to +200

Temperature Range

THERMAL CHARACTERISTICS

Vdc

Watts

wIDe
De

~~"~'
'E

Characteristic .

K

SEATING
PLANE

Thermal Resistance, Junction to Case

t

0

STYLE 1:
PIN 1. BASE
F-2. EMITTER
JCASE. COLLECTOR

·'ndicates JEOeC Registered Data.

FIGURE 1 - POWER DERATING

250

~

~

200

't-..

"'" ~

!z

!;! 150

~
iii
C5
'"~

~
100

~
~ 50

o

o

25

50

75

100

DIM

" -"'-,.
125

A

~

150

B
C
D
E
F

.....
175

G

~

200

H

J
K
Q

R

TC. CASE TEMPERATURE (DCI

MILLIMETERS
MIN
MAX

38.35
19.30
6.35
1.45
29.90
10.67
5.21
16.64
11.18
3.84
24.89

39.37
21.08
7.62
1.60
3.43
30.40
11.18
5.72
17.15
12.19
4.09
26.67

INCHES
MIN
MAX

1.510
0.760
0.250
0.057
1.177
0.420
0.205
0.655
0.440
0.151
0.980

CASE 197·01

4-277

1.550
0.830
0.300
0.063
0.135
1.197
0.440
0.225
Ml.5
0.480
0.161
1.050

2N6377 thru 2N6379

ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted)

I

Characteristic

Svmbol

Min

Max

80
100
120

-

-

50
50
50

Unit

'OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage 11)
IIc = 50 mAde, IB = 0)

Vdc

VCEOlsus)
2N6380
2N6381
2N6382

Collector Cutoff Current
IVCE = 50 Vde, IB = 0)
IVCE = 60 Vde, IB = 0)
IVCE = 70 Vde, IB = 0)

/lAde

ICEO
2N6380
2N6381
2N6382

-

Collector Cutoff Current

ICEX

-

IVCE = 90% Rated VCB, VBEloll) = 1.5 Vde)
IVCE = 90% Rated VCB, VBEloff) = 1:5 Vde, TC = 150°C)

-

Emitter Cutoff Current

lEBO

10
1.0

/lAdc
mAde

.100

/lAde

IVEB = 6.0 Vde, IC = 01

'ON CHARACTERISTICS 11)

•

DC Current Gain
IIC = 1.0 Adc, VCE = 4.0 Vdc)
IIC = 20 Adc, VCE = 4.0 Vdc)
IIC = 50 Adc, VCE = 4.0 Vdc)

-

hFE

-

50
30
10

Collector-Emitter Saturation Voltege
IIC = 20 Adc, IB = 2.0 Adc)
IIC = 50 Adc, IB = 10 Adc)

VCElsat)

Base-Emitter Saturation Voltage

VBElsat!

120

-

-

1.2

-

3.0

-

1.8
3.5

30

-

-

7000

Vdc

Vdc

IIC = 20 Adc, IB = 2.0 Adcl
IIC = 50 Adc, IB = 10 Adc)

DYNAMIC CHARACTERISTICS
*Current-Gain - Bandwidth Product 12)

IT

MHz

IIc = 1.0 Adc, VCE = 10 Vdc, I tesl = 10 MHz)

I nput Capacitance

pF

Cib

(VEB = 2_0 Vdc,IC = 0, 1= 0.1 MHz)

*Output Capacitance

Cob

1500

pF

0.35

/lS

0.80

p.s

0.25

/lS

IVCB = 10 Vdc, IE = 0, 1= 0.1 MHz)

*SWITCHING CHARACTERISTICS IFlgure 2)
Rise Time

-

'r

Storage Time

(Vce = 80 Vdc, IC

= 20 Ade,

ts·

IIBI = IB2 = 2.0 Adc)
Fall Time

-

'I

'Indicates JEDEC Registered Data.
(1) Pulse Test: Pulse Width '" 300~s. Duty Cycle'" 2.0%.

= Ihfel o ftest

12) fT

FIGURE 3·- TURN ON TIME

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

2.0

+19~J

II

1.0
0.7
0.5

__ .c:

Scope

]
w

::E

;::

--

-21V-U
30,..-\---j
tr. tt,;;;;O ns
DUly Cycle = 0.5%

+4.0 V

,

~

.......-....

td @VSE loff) ~ 5.0 V

1.0

2.0

",-

1/

i'-

3.0

5.0 7.0

10

Ie, COLLECTOR CURRENT (AMP)

4-278

F=F

I........

0.3

0.03
0.02
0.5 0.7

Nole' For informatIOn on Figures 3 & 6, RB and RC
were vaned to obtain desired test conditions.

I

IC/IS - 10
TJ = 25 0 C

'r@VCC=80V

0.2
0.1
0.07
0.05

J

I

50

2N6377 thru 2N6379

FIGURE 4 - THERMAL RESPONSE
I .0

O.7r----

-'

'"
L

.5

C-

-

0=0.5

~ffi O. 3

t-N

0.2

;;;",

w'"

0.1

.~~ 0.1

.05

~~ O. 2

llT 1_
~UCL~~WA~~PS~YO~ONR POWER_

;;:;::1""

~

.......

OJCII) = r~i OJC
OJC=0.7oCIWMa.

:......: Iiiiii

"'~ ~O.O 7 P ~ 1-0.02
~~O.O5t.-u..

...

3 ......
ff3D.D
",
0.0 2

w

"'"

V

-

,..-- I- TJ(pk) - TC = P(pk) BJCh) -

r-

-

PtJ1Jl

....
......

0.01

I ~IINGLEI

II~

0.05

I

12--,

PU~SE

III

II

0.0 I
0.02

,..-- f- REAO TIME ATII

DUTY CYCLE, 0 = !J/12

:.- ~ 8:1'"

0.1

0.2

1.0

0.5

2.0

5.0
I,TIME(ms)

10

111111
20

50

100

200

1000

500

2000

FIGURE 5 - ACTIVE REGION SAFE OPERATING AREA

100
50

,.

There are two limitations on the power handling ability of a
transistor. average junction temperature and second breakdown.
Safe operating area curves indicate le'VeE limits of the transistor
that must be observed for reliable operation; I.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 5 IS based on T J(pk) = 200°C; T C is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) .;;; 200°C. T J(pk) may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be h,;mdled to
values less than the limitatIOns imposed by second breakdown.


<.>
<.>
0

~
~

0.8

ul

<.>

>

20

30

~II

<.>

o

0.02

0.05

IC. COLLECTOR CURRENT (AMP)

+3.0

II

G

2.4

TJ = 25 0 C

if>

~
~

1.6

~

.s

J

~

/.

1.2

0

V8IE( ..t)@IC/18 = 10

>
>' 0.8

VBE @VCE = 4.0

1.0

2.0

3.0

5.0 7.0

10

5.0

C3

$

1/

- - - -55 0 Cto +25 0 C
- - +2~OC ~o +115~OC

)

+1.0

. Ov! for IvctJt)

<.>
w

./

L.::::::

«

~

~ -1.0

i
20

30

50

-2.0
0.5

.

1/

V

~.

~

OVB for VBE

f-

Vi.- ii
I)

:::>
f-

1/

).

-'

0

1/

t..,.....-"
10

~~P~LIIJS FO~ IC/lIBJh~E/4

+2.0

0:

J

VCE(.,,)@IC/IB· 10
0.5 0.7

L~ V

./

0.4

o

~

2.0

ffi

)17
'/

0

w
to

0.2
0.5
1.0
0.1
lB. BASE CURRENT (AMP)

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE' 10 - "ON" VOLTAGES
2.8

2.0

['.....

111'-

IC = 2.0 A"

0.01

50

,

T
0.7

1.0

2.0

IC. COLLECTOR CURRENT (AMP)

3.0

5.0 7.0

10

20

50

30

IC. COLLECTOR CURRENT (AMP)

FIGURE 13 - BASE CUTOFF REGION

FIGURE 12 - COLLECTOR CUT·OFF REGION
100
50
_

200

1

ffi
0:

f-

z

a

lO

E: E

1000 C

0:

:::>
<.>

0:

..'"'"

10

~

w

o

~

-'
-'
<.>

=

20

~ 5.0

0:

VCe= 40 V

I-- TJ = IS0 0 C

2.0
1.0

,

2sbc

0.5

~

0.2
+0.1

-0.1
-0.2
-0.3
VBE. BASE·EMITTER VOLTAGE (VOLTS)

-0.4

-0.5

4-280

~}EV~RSE

0.1
+0.2

+0.1

_tORWARD
-0.2
-0.3
-0.1
VBE. BASE·EMITTER VOLTAGE (VOLTS)

-0.4

-0.5

NPN
PNP
2N6383 2N6648
2N6384 2N6649
2N6385 2N6650
15 AMPERE PEAK

COMPLEMENTARY SILICON POWER
DARLINGTON TRANSISTORS

COMPLEMENTARY
SILICON POWER
DARLINGTON TRANSISTORS

· .. monolithic complementary silicon Darlington transistors designed
for low and medium frequency power applications such as power
switching, audio amplifiers, hammer drivers, and shunt and series
regl :ators.

•

•

40-60-80 VOLTS
100 WATTS

High Gain Darlington Performance
True Complementary Specifications

•

*MAXIMUM RATINGS
Symbol

2N6383
2N6648

2N6384
2N6649

2N6385
2N6650

Unit

Collec[Qr·Emttter Voltage

VCEOlsus)

40

60

80

Vdc

Rating
Cullector·Emltter Voltage

VCEX

40

60

80

Vdc

Collector-Emitter Voltage

VCBO

40

60

80

Vdc

Emitter Base Voltage

VEBO

5.0

Vdc

Continuous

IC

10

Adc

Peak 111""

ICM

15

IB

0.25

Adc

100
0571

Watts
W/oC

- - 6 5 to +200 _ _

°c

Collector Current

Base Current

Continuous

Po

Total Power Dissipation
@ TC

= 25°C

121

Derate above 2SoC
Operating and Storage Junction

TJ. T stg

-

Lr~
r~K
ESEATtN!-~

I

PLANE

Temperature Range (21

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering

Symbol

Max

Unit

ROJC

1.75

°CIW

TL

235

°c

Purposes. 1/32" from Case for 5 Seconds
• Indicates JEDEC Registered Data.
UNot JEDEC Registered.
111 Pulse W,dth

= 50 ms,

STYLE I.
PIN 1 BASE
2_ EMITTER
CASE_ COllECTOR

Duty Cycle,;; 10%.

(2) Exceeds JEOEC Registration for 2N6648, 2N6649, 2N6650.
JEOEC 'Registration gives Po = 70 W, TJ = 150°C.
DtM

•
B
C

Collector

Co "ector

Base 0-....--1

MILLIMETERS
MIN MAX

635
099

INCHES
MIN
MAX

39_37·
2t 08
762 0.250
109 0039

D
E
3.43
3040
1.177
F 29.90
G 10.67
11.18 0_420
H
533
5.59
0.2tO
0_655
1115
J 16.64
0_440
K 11.18 1219
Q
4_09 0.151
38'
R
- 26_61
Collector connected to case
CASE 11-01
!TO-3}

Emitter

Emitter

4-281

1560
0830
0.300
0.043
0135
1197
0440

0220
0615
0.480
0161

1050

2N6383,2N6384,2N6385,NPN,2N6648,2N6649,2N6650,PNP

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwISe noted)
Characteristic

Symbol

Min

Max

40
60
BO

-

-

-

1.0

-

-

0.3
3.0

-

10

40
60
80

-

40
60
BO

-

Unit

OFF CHARACTERISTICS
"Collector-Emitter Sustaining Voltage 11)

2N63B3,2N664B
2N63B4,2N6649
2N63B5, 2N6650

Collector Cutoff Current

(VCE

=

Vde

VCEO(sus)

(lC = 200 mAde, IB = 0

mAde

ICEO

Rated Value)

·Collector Cutoff Current

mAde

ICEV

(VCE = Rated VCEO(sus) Value, VBE(off) = 1.5 Vdc-)
(VCE = Rated VCEO(sus) Value, VBE(off) = 1.5 Vde, TC = 15UOC)
'"Emitter Cutoff Current

lEBO

mAde

(VEB = 5.0 Vde, IC = 0)
Collector-Emitter Sustmnmg Voltage 11)

2N63B3,2N664B
2N63B4, 2N6649
2N63B5, 2N6650

Collector-Emitter Sustaining Voltage (1)

(VBE(off) = 1.5 V, IC = 200 rnA)

Vde

VCER(sus)

(RBE = 100 H. IC = 200 mAl

Vde

VCEV(sus)

I

. 2N63B3,2N664B
2N63B4,2N6649
2N63B5, 2N6650

-

ON CHARACTERISTICS (1)

.. DC Current Gam

-

hFE

(IC = 5.0 Ade, VCE = 3.0 Vde)
(IC = 10 Ade, VCE = 3.0 Vde)
"Collector-Emitter Saturation Voltage

1000
100

20,000

-

Vde

VCE(s.t)

(IC = 5.0 Ade, IB = 0.01 Adcl
(IC= lOAde,lB =0.1 Ade)
"Base-Emitter On Voltage

-

2.0
3.0

-

2.B
4.5

VF

-

4.0

Vde

Cob

-

200

pF

"fel

20

-

-

hfe

1000

-

-

Vde

VBE(on)

IIC = 5.0 Ade, VCE = 3.0 Vde)
IIc = 10 Ade, VCE = 3.0 Vde)
Diode Forward Voltage

(IF = 10Ade)
'DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 10 Vde, IE = 0, f test = 1.0 MHz)
ItMagnitude of Common-Emitter Small-5ignal Short-Circuit

Current Transfer RatiO
IIc = 1.0 Ade, VCE = 5.0 Vde, f = 1.0 MHz)
Common Emitter Smail-Signal Short-CircUit Forward
Current Transfer RatiO

IIC = 1.0 Ade, VCE = 5.0 Vde, f = 1.0 kHz)
SECOND BREAKOOWN

Second Breakdown Collector Current with Base-Forward Biased
Second Breakdown Energy with Base Reverse·Blased
(L = 12 mH, RBE = 100 ll, VBE(off) = 1.5 Vde, Ie = 4.5 Ade)
(1)

Pulse Test: Pulse Width

::=

300 IJ,S. Duty Cycle

~

2% .

• Indicates JEDEC Registered Data.

4-282

2N6383,2N6384,2N6385,NPN,2N6648,2N6649,2N6650,PNP

FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE 1 - DC CURRENT GAIN

10 K

- -

10 K

"-

1\

.1."L?5j;/

1\

1\
IC" I A\

-+150 oC .,

:./

/

JA

1\

r-....

i"--

,L(,

100
0.1

o
0.5
IC. COLLECTOR CURRENT lAMP)

FIGURE 3 - COLLECTOR·EMITTER SATURATION VOLTAGE

I
I

c

1.0

--VSE(sat)

c

~

1.5

--lcilaoIOO
---Icila'o 500

::

~
~

1.0

~

0.5

S
~

>

100

FIGURE 4 - BASE·EMITTER VOLTAGE

;::

'"~

50

10

la. aASE CURRENT ImA)

~ 1. 5
w

05

01

10

10 A

\5A

~

-JOIC

/

~

--

./'"

V~

I- ___ VBElon)

k!

I
I

V

-JOoC

I-

+15 0 C....

r=~50CV

+150oC

....-- l - f-""

-

;;:;p

I;:l

r-'rl

0
0.1

k-::"

0.5
IC. COLLECloR CURRENT lAMP)

0.1

10

0.5

1

10

IC. COLLECTOR CURRENT lAMP)

FIGURE 5 - SWITCHING TIME TEST CIRCUIT

(Shown fo,

FIGURE 6 - SWITCHING TIMES

NPN~

Vee

'=

10

20 Vdc

..

'I
~

AB = 200)( RL
IS1 = 182 "" le/500

r----

-r-. -., "

":'"

+VJU

"

"

-

V

'2

-v

0.1

10

1

f'" 200 Hz

IC. COLLECTOR CURRENT lAMP)

4-283

..... Id

2N6383,2N6384,2N6385,NPN,2N6648,2N6649,2N6650,PNP

FIGURE 7 - THERMAL RESPON!1E

o.1

~S

o. IF=:
o.5

0-0.5

-

!~ o.31--- ~IO.2
1-",
I-C

I--- f--

~

p[JUl

:.:::::::: ~

~~ O.2

0.1

§~ O. IF=-'= ~O.05

~~O.O1 =

.....,

";:'~O.03

2~

0.0

0.0 1
0.1

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT"
TJlpk) - TC - Plpk) 6JCI.)

t:J

:=~O.O51---0.02

':Vi

6JCh) - ,I') OJC
6JC -U50C/W

...... SINGLE PULSE

~UTY

CYCLE. 0 • '1/'2

0.01
0.2

I

I

0.3

0.5

0.1

1.0

2.0

3.0

5.0

LLlJ I I

1.0

10

20

I I I

30

50

10

100

200

300

SOD 100 1000

'. TIME Im~

for temperature.
TJ(pkl may be calculated from the data in Figure 7. At
high case temperatures, see Figure 9, thermal limitations will .
reduce the current that can be handled to values less than
the limitations imposed by second breakdown. Second breakdown limitations do derate the s'ame as thermal limitations.
Allowable current at the voltages shown on Figure 8 may be
found at any case temperature by derating linearly to 2OQoC.

There are two limitations on the power handling ability of

a transistor: av~rage junction temperature and second breakdown. Safe operating area curves indicate Ie-VeE limits of
the transistor that must be observed for reliable operation;
i.e., the transistor must not be subjected to greater dissipation
than the curves indicate.
The data of Figu,e 8 is based on TC = 2SoC; TJ(pk) is
variable depending on power level. Second breakdown pulse
limits are valid for duty cycles to 10% but must be derated

FORWARD BIASED SAFE OPERATING AREA
FIGURE 8 - TC ~ 2SoC
1.5

"

10

,

dc'

----- ~~~~~~G
-

0.2
0.15

- -

FIGURE 9 - TC

"'1\

'"

10",
SECOND BREAKDOWN
-50",
WIRE L1MITE0- 1 m'
THERMAL LIMITATION
5 ms
=50ms
AT TC - 25°C

10

-

' ... ,

....

ok ...

~

.5

-

AT TC· 100·C

0.2
0.15

80

>
2

~

1.5

~
w

C
C

S

~

./

.....V

I-:- ~
1~

~C

O. 5

f-0
0.1

1\

V
V

V"

V

V

+1 50 0 C

1

0.2

0.5

10

IF. DIODE FORWARD CURRENT lAMPS)

4--284

-Sori.s-2N6385.2N6650

~

-

10
20
50
VCE. COLLECTOR·TO·EMITTER VOLTAGE IVOLTS)

co

'"

\.

- BONDING WIRE L1MITED~
- - - - THERMAL LIMITATION
2N6384.2N6649

FIGURE 10 - CE DIODE CHARACTERISTICS

~

--

SECOND BREAKDOWN
2N6383. 2N6648
LIMITED

~

.5

C

-

,

... ... .'\.
lOllS -......
'1 m,

VCE. COLLECTOR·TO·EMITTER VOLTAGE IVOLTS)

C

\. \.

,

5ms·

50

3

, ...

50~s

-

20

w

= lOOoC

...

r.-"r\ \ \

2N6383.2N6648
2N6384. 2N6649
2N6~85. 2N665 O
1
10

,

15

\

c.-~
80

2N6386, 2N,6387 2N6,388

PLASTIC MEDIUM-POWER
SILICON TRANSISTORS

DARLINGTON

· .. designed for general·purpose amplifier and low-speed switching
applications.
•

BAND 10 AMPERE

High DC Current Gain hFE =2500 (Typ) @ IC =4,0 Adc
Coliector·Emitter Sustaining Voltage - @ 100 mAdc
VCEO(sus) = 40 Vdc (Min) - 2N6386
= 60 Vdc (Min) - 2N6387
= 80 Vdc (Min) - 2N6388
Low Coliector·Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (Max) @ IC = 3.0 Adc - 2N63B6
= 2.0 Vdc (Max)@ IC = 5.0 Adc - 2N6387, 2N638B

•

•

•

Monolithic Construction with Built·ln Base-Emitter
Shunt Resistors

•

TO·220AB Compact Package

•

TO·66 Leadform Also Available

NPN SILICON
POWER TRANSISTORS
40-60-80 VOLTS
65 WATTS

•

*MAXIMUM RATINGS
Symbol

2N63B6

2N63B7

2N63BB

Unit

VCEO

40

60

80

Vde

Collector-Base Voltage

VCS

40

60

80

Vde

Emitter-Base Voltage

VES

Rating
Collector-Emitter Voltage

Collector Current - Continuous

8.0
15

IC

Peak
Base Current

18

Total Power Dissipation @ T C = 250 C
Derate above 2SoC

Po

Total Power Dissipation
Derate above 2SoC

Po

@

·

T A - 25°C

Operating and Storage Junction,

TJ. Tstg

Temperature Range

·
,
.
·.
·

5.0
10
15

·.
.
·

10
15

250
65
0.52
2.0
0.016

Vdc
Ade
mAde

Watts
W/DC

Watts
W/DC

-4---65 to +150----"

°c

THt:RMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

ROJC

1.92

DCIW

Thermal Resistance, Junction to Ambient

ROJA

62.5

°CIW

Characteristics

FIGURE 1 - POWER DERATING

TA TC
4.0 80

~
!;( 3.0 60

""

z

0

~

~

l:l

2.0 40

...........

is

'"3:

~ 1.0

o
o

~C

~

0t--..

20

.P
20

40

~
'~

60
80
100
T,TEMPERATURE ('C)

"'-.......::::

120

~

140

BASE
COLLECTOR
EMITTER
COLLECTOR
MILLIMETERS
DIM MIN MAX
A 15.11 15.75
B
9.65 10.29
C
4.06
4.82
D
0.64
0.89
F
.3.61
3.)3
G
2.41
2.61
H
2.19
3.30
J
0.36
0.56
K 12.10 14.21
L
1.14
1.21
N
4.83
5.33
a 2.54 3.04
R
2.04
2.79
S
1.14
1.39
T
5.97
6.48
U
0.16
1.21
v 1.14

......

~

STYLE 1:
PIN 1.
2.
3.
4.

160

4-285

NOTE.
1. DIM. L & H APPLIES
TO ALL LEADS.

INCHES
MIN MAX
0.595 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.141
0.095 0.105
0.110 0.130
0.014 0.022
0.500 0.562
0.045 0.050
0.190 0.210
0.100 0.120
0.080 0.110
0.045 0.055
0.235 0.255
0.030 0.050
0.045

CASE 221A'()2
TO·220AB

2N6386 2N6387 2N6388 NPN

*ELECTRICAL CHARACTERISTICS (T C = 25°C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Max

40
60
80

-

Unit

OFF CHARACTERISTICS
Collector· Emitter Sustaining Voltage (1)
(lC = 200 mAde, IB = 0)

Collector Cutoff Current
(VCE = 40 Vde, la = 0)
(VCE = 60 Vde, la = 0)
(VCE - 80 Vde, la = 0)

•

Collector Cutoff Current
(VCE =40 Vde, VEa(off)
(VCE = 60 Vde, VEa(off)
(VCE = 80 Vde, VEa(off)
(VCE = 40 Vde, VE8(off)
(VCE = 60 Vde, VEa(off)
(VCE =.80 Vde, VEa(off)
Emitter Cutoff Current
(VaE = 5.0 Vde, IC = 0)

Vde

VCEO(sus)
2N6386
2N6387
2N6388
ICEO

-

mAde

-

2N6386
2N6387
2N6388

1.0
1.0
1.0

-

!lAde

ICEX

-

= 1.5 Vde)
2N6386
= 1.5 Vde)
2N6387
= 1.5 Vde)
2N6388
= 1.5 Vde, TC = 125°C) 2N6386
= 1.5 Vde, TC = 125°C) 2N6387
= 1.5 Vde, TC = 125°C) 2N6388

300
300
300
3.0
3.0
3.0

-

-

IEaO

mAde

mAde

5.0

ON CHARACTERISTICS C1I
DC Current Gain
(lC = 3.0 Ade, V CE = 3.0 Vde)
(lC = 5.0 Ade, VCE = 3.0 Vde)
(lC = 8.0 Ade, V CE = 3.0 Vde)
(lC = 10 Ade, VCE '" 3.0 Vde)
Collector~Emitter

1000
1000
100
100

Saturation Voltage

VCE(satl

= 3.0 Ade, la = 0.006 Ade)
= 5.0 Ade, la = 0.01 Ade)
= 8.0 Adc, la = 0.08 Ade)
= 10 Ade,IB = 0.1 Ade)

2N6386
2N6387, 2N6388
2N6386
2N6387, 2N6388

Base·Emitter On Voltage
(lC = 3.0 Ade, VCE = 3.0 Vde)
(lC = 5.0 Ade, VCE = 3.0 Vde)
(lC = 8.0 Ade, VCE = 3.0 Vde)
(lC = 10 Ade, VCE = 3.0 Vde)

2N6386
2N6387, 2N6388
2N6386
2N6387, 2N6388

(lC
(lc
(lC
(lC

-

hFE
2N6386
2N6387, 2N6388
2N6386
2N6387, 2N6388

20000
20000

-

Vde

-

2.0
2.0
3.0
3.0

-

VBE(on)

Vde

-

2.8
2.8
4.5
4.5

-

DYNAMIC CHARACTERISTICS

Small-Signal Current Gain
(lC = 1.0 Ade, VeE = 5.0 Vde, I test = 1.0 MHz)

(hfe(

20

Output Capacitance

Cob

-

200

pF

hie

1000

-

-

~

(VC8 = 10 Vde, IE = 0, f = 1.0 MHz)

Small..signal Current Gain
(lC = 1.0 Ade, VCE = 5.0 Vde, I = 1.0 kHz)
• Indicates JEDEC Registered Data
(1) Pulse Test: Pulse Width .. 300 !lS, Duty Cycle .. 2.0%.

FIGURE 3 - SWITCHING TIMES

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

7.0
5.0

Vee
+30 v

"
RO & He VARIED TO OBTAIN DESIRED CURRENT LEVELS
0,. MUST BE FAST ReCOVERY TYPES, I.g.,
MBD5300 USED ABOVE 18 "" 100 rnA
MSD610D USED BelOW IS" 100 mA

,

J.O

ts

RC

=

SCOPE

~1.0

b-.

tf

I""'"

... 0.7
~

t,

~.

O.J
0.2

forldlndlr.DI is disconnected
IndV2"'D

Vee=JOV
lells = 250
lSI = IS2
TJ=25 DC

0.1

0.07
0.1

4-286

0.2

rtd

------

r-

1.0
2.0
0.5
Ic. COLLECTOR CURRENT lAMPS)

1- ...
5.0

10

2N6386 2N6387 2N6388 NPN

FIGURE 4 - THERMAL RESPONSE

~

1.0

~ O. 1
0<0.5
~ o. 5
~

~

0, 3

z

o. 2

~ 0.01 - 0.05
0.05
- 002
I- 0.03
l-

ts
~

0.02f-'

lo.ot::::

~ 0.0 1"""" f-[

I-

0.01

-::;ii'

;;;;;..-

0.1

ffi
'"

-- '"

-

02

~
~ o. 1

Ptpk}

~~~ =

.,..,...
I

l-

0.05

0.1

IIIII

os

02

•0

2.0

SO

10

I

TJtpk}- TC

=Ptpk} ZOJCtt}

11/'2

DUTY CYCLE, 0

SI~G~E rlLr~ I

002

tSUL

ZeJCtt} < Ittl ROJC
ROJC < 1.92· C/W Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11

I
20

I I I IIIII
so
100

I

I

I

I I I II

200

500

l.ok

I. TIME (ms)

FIGURE 5 - ACTIVE·REGION SAFE OPERATING AREA

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves Indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 5 IS based on TJ(pkl = 150°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid

TJ = ISo·C .
---BONDING WIRE LIMITED

for duty cvcles.o 10% provIded TJ(pkl

~~~~illill

@TC =lo0.C
: 2N6386
---THERMALLY
LIMITED
--SECOND BREAKDOWN LIMITED: 2N6381
CURVES APPLY BELOW RATED VCEO- 2N6388

< 150°C.

TJ(pkl may be

calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown

0.03 ~--.1.--:':--'--:'::--'-=,=-'-'--':':--L.:'::-~---o~L:':...Ll,.u
1.0
2.0
4.0
6.0
10
20
40
60 80
VeE' COLLECTOR·EMITTER VOLTAGE IVOLTS}

FIGURE 6 - SMALL·SIGNAL CURRENT GAIN

FIGURE 7 - CAPACITANCE
300

10.000
z

;;;:

'"

3000
2000

~

1000

...a

so0

..
z

'"

..
~

..

ill
E

T~ =~5~J

SOD0
200

-

~
w
<>

z

TC - 2S·C

300
200

..

~ 100
U

VCe= 4.0 Vdc
IC =3.0 Adc

100

~

C.b
C,b

10

U

0

........

,....

......

0

0
0

10
1.0

2.0

5.0

10

20

50

100

200

SOD 1000

I, FREQUENCY (kH,)

30
0.1

0.2

0.5

1.0

2.0

5.0

10

VR, REVERSE VOLTAGE (VOLTS)

4-287

20

50

1110

•

2N6386 2N6387 2N6388 NPN

FIGURE 8 - DC CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION

20.000

~

~
w

3000

2000

%

500
300
200

~

2.S

\

:-.,:,

1

~

'"
~
8

\

1.8

0

;;Z
./
0.1

r:-yo

SS OC

I
0.2.

0.3

0.5 0.7

1.0

.2.0

3.0

5.0 7.0

> 1.0
0.3

10

"-

1.4

~

r-..
0.5

0.7

1.0

3.0

5.0

7.0

10

;;G +4.0
~ +3.0

2. 5

"lcilB" hFE/3

!;;

~

Q +2. 0

i

1./1
v.: V

~ 2.0
w

b::::: ~

VBE(jt)@ ICIIB ~ 250

L5

>
,,:

'"

;:) -1.0

~I-"'"

VCE(sa!)@ ICIIB ~ 250

I

O. 5
01

02

03

OS

07

2.0

10

-3.0

i

-4.0

>-

3.0

5.0

7.0

10

-5. 0
0.1

'-:::;:::::V

1

~ -2. 0

25

i':

-55°C to 25°C
"OVC for VCE(sat)

!;;:

........ V

VBE@VCE - 4 0 V
1.0

+1.

25 DC to lS00C

0

w

/

~

k-"

2S0Cto15~

0.2

0.3

II II

0.5 0.7

1.0

2.0

-550C to 250C'

3.0

IC. COLLECTO R CURRENT (AMP)

FIGURE 13 - DARLINGTON SCHEMATIC

FIGURE 12 - COLLECTOR CUT-OFF REGION
105
FREVERSE== r-FORWARO

COLLECTOR

~

~
13
'"
0

10 3

---,
,----.-,

r=VCe=30V

L
102

~

10 1

~

100

8

I
(
(
(

BASE

I- TJ ~ 150°C

I

I
I
I

I - - lOODe

I-10- 1
-0.6

__ ...J

25°C

EMITTER

-0.4 -0.2

+0.2

+0.4

+0.6

+0.8

+1.0

+1.2

+1.4

VBE. BASE EMITTER VOLTAGE (VOLTS)

4-288

1/
1/

V

;.-

-H-r

OVB for VBE

IC. COLLECTOR CURRENT (AMP)

104

30

+5. 0
TJLsob

 2.2
'"w
>>-

2S 0C /

~ 1000

I
4.0A

0

..........

I

13

III
IC~2.0A

~

....-

. Tr 150°C..........

~

II

VCE - 4.0V

'"..,

..,c

3D
1-

ul

~

20

-

_.

VCE = 4.0 V

0.5 0.1

"-"

~

2.0 3.0
5.0 1.0
1.0
IC. COLLECTOR CURRENT (AMP)

10

\

20

\

1.0

~ o.6

8

0.4

>

00.02 0.03

1.8

/ /

1.4

~ 1.2

'"
~

~ 0.6 I-VBE@lVCE= 2.J V

>'

'-I'"

f·,

0.4

0.2 f-JcEi..
00.3

t! ~ I~/!~

0.5 0.1

1.0

V

f

+250 to

§ +0.5
w
~

/

II
II

-0.5

~

~ -1.0
-1.5
...i -2.0

10
2.0 3.0
5.0 7.0 10
IC. COLLECTOR CURRENT (AMP)

20

I--

~

/

--/

j

V

./

-r

J..
t
I III

-55 0CTO +2ho

II

-2.5
0.3

30

.+25~CTm

OVB FOR VBE

r5

i'!}

-~0:;tT-

'OVe FOR VCE( .. t)

8

0.5 0.1

1.0

2.0

3.0

5.0 7.0

10

20

30

IC. COLLECTOR CURRENT (AMP)

FIGURE 13 - BASE CUT-OFF REGION

10 1

TJ'+150o

/

VCE=40V=
TJ = +150oC

Y
./

/

+1.0

FIGURE 12 - COLLECTOR CUT,OFF REGION

10 1

2.0

1.0

/

U

V
1/

I:::::

0.8

~

fii

iI/

-

VBE( .. U@lICilB= 10

0.5 0.7

'APPLIES FOR IcilB" hFEI2

~ +2.0
>
~ +1.5

/X

>

0.3

+2.5

VI

TJ = 250C

;;; 1.0

0.2

FIGURE 11 - TEMPERATURE COEFFICIENTS

1.6
U)

0.050.07 0.1

lB. BASE CURRENT (AMP)

FIGURE 10-"ON"VOLTAGE

2.0

""

I'

~ O. 2

30.

";'\.

'"
o O.B

""I"

20A

\

1.4

1li

'.\

TJ = 250C

\ lOA

~ 1.2

"
K' ,~.....

VCE = 2.0 V

III

10
0.3

•

- ::::f:::

I

l'

o

5.0 A

IC = 2.0A

~ 1.6

~

,

\

1.8

+1000C/

-+100 oC

/

1

,/
1

VCE 40 V I-+250C
~~EVERSE

./

-+250C
FORWARO

::oo::==F REVERSE

V
10- 3
+0.2

+0.1

0
-0.1
-0.2
-0.3
VBE. BASE·EMITTER VOLTAGE (VOLTS)

-0.4

-0.5

4-292

10-4
+0.16

FORWARO

\
+0.08

-0.08
-0.16
VBE. BASE·EMITTER VOLTAGE (VOLTS)

-0.24

2N6486 2N'6481 2N6488 NPN
2N,6489 2N6490 2N6491 PNP

COMPLEMENTARY SILICON PLASTIC
POWER TRANSISTORS

15 AMPERE

designed for use in general-purpose amplifier and switching
applications.
• DC Current Gain Specified to 15 Amperes
hFE = 20-150 @ IC = 5.0 Adc
= 5.0 (Min) @ IC = 15 Adc

COMPLEMENTARY SILICON
POWER TRANSISTORS
40-60-80 VOLTS
75 WATTS

e Collector-Emitter Sustaining Voltage VCEO (sus) = 40 Vdc (Min) - 2N6486. 2N6489
= 60 Vdc (Min) - 2N6487. 2N6490
= 80 Vdc (Min) - 2N6488. 2N6491
•

•

High Current Gain - Bandwidth Product
fT = 5.0 MHz (Min) @ IC = 1.0 Adc

e TO-220AB Compact Package
•

TO-66 Leadform Also Available

*MAXIMUM RATINGS
Svmbol

2N6486
2N6489

2N6487
2N6490

2N6488
2N6491

Unit

VCEO

40

60

80

Vdc

Collector-Base Voltage

VCS

50

70

90

Vdc

Emitter-Base Voltage

VES
IC

Rating
Collector-Emitter Voltage

Collector Current

Continuous

Base Current

.

PD

@TC=250C

Derate above 25°C
Total Power Dissipation

15

..
..

la

Total Power Dissipation

.
.

5.0

5.0

..

75
0.6

.

1.a
0.014

...
..

PD

@TA=250C

q

Derate above 25°C
Operating and Storage Junction
Temperature Range

_-6510+150_

TJ. T S1g

Vdc
Adc
Adc
Watts
W/oC
Watts

W/oC
°c

THERMAL CHARACTERISTICS
Svmbol

Max

Unit

Thermal Resistance. Junction to Case

ROJC

1.67

°C/W

Thermal Resistance. Junction to Ambient

ROJA

70

°C/W

Characteristic

*Indicates JEDEC Registered Data

TA

TC

4.0

80

i_
z

3.0

FIGURE 1 - POWER DERATING

I---

r-...

~

2.0

40

........ r-...

w
'"
s:

~

rP

1.0

A
B

_.-

"'"

o

~

TA

'"

r--.......

20

'"
............

40

60

80

r""

o

N
Q

R

I"'---. ~

100

C
F
G
H
J
K
L

TC

0
20

BASE
COLLECTOR
EMITTER
COLLECTOR
DIM

"I'-.

60

STYLE 1:
PIN 1.
2.
3.
4.

S
T

~~

120

140

U

160

TC. CASE TEMPERATURE (DC I

4-293

V

NOTE:
1. DIM. L& HAPPLIES
TO ALL LEADS.

MILLIMETERS
INCHES
MIN MAX
MIN MAX
15.11 15.15 0.595 0.620·
9.65 10.29 0.38lJ 0.405
4.06
4.82 0.160 0.190
0.64
0.89 0.025 0.035
3.61
3.13 0.142 0.147
2.41
2.67 0.095 0.105
2.79
3.30 0.110 0.130
0.36
0.56 0.014 0.022
12.70 14.27 0.500 0.562
1.14
1.27 0.045 0.050
4.83
5.33 0.190 0.210
2.54
3.04 0.100 0.120
2.04
2.79 0.080 0.110
1.14
1.39 0.045 0.055
5.97
6.48 0.235 0.255
0.16
1.27 0.030 0.050
1.14
0.045
CASE 221A-02
TO-220AS

2N6486 2N6487 2N6488 NPN
2N6489 2N6490 2N6491 PNP

*ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)

I

I

Characteristic

Svmbol

Min

Max

40
60
80

-

50
70
90

-

-

1.0
1.0
1.0

-

500
500
500
5.0
5.0
5.0

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)

(lC

2N6486. 2N6489
2N6487. 2N6490
2N6588.2N6491

Colleetor·Emitter Sustaining Voltage (1)
(lC = 200 mAde. VSE = 1.5 Vde)

•

Emitter Cutoff Current
(VBE = 5.0 Vde, IC

mAde

ICEO

= 20 Vde. IS =0)
=30 Vde. IS =01
= 40 Vde.IB =0)

Collector Cutoff Current
(VCE = 45 Vde. VES(off)
(VCE = 65 Vde. VEB(oll)
(VCE = B5 Vde. VEB(off)
(VCE = 40 Vde. VE8(off)
(VCE = 60 Vde. VEB(off)
(VCE = 80 Vde. VEB(off)

Vde

VCEX
2N6486. 2N6489
2N6487. 2N6490
2N6488.2N6491

Collector Cutoff Current

(VCE
(VCE
(VCE

Vde

VCEO(sus)

=200 mAde. IS =0)

2N6486.2N6489
2N6487. 2N6490
2N6488.2N6491

/lAde

ICEX

= 1.5 Vde)
2N6486. 2N6489
= 1 .5 Vde)
2N6487. 2N6490
= 1,.5 Vde)
2N6488. 2N6491
= 1.5 Vde. TC = 150°C) 2N6486. 2N6489
= 1.5 Vde, TC = 150oCI2N6487, 2N6490
= 1.5 Vde, TC = 150oCI2N6488, 2N6491

-

lEBO

=0)

mAde

1.0

mAde

ON CHARACTERISTICS
DC Current Gain

(lC
(lC

Collector-Emitter Saturation Voltage

20
5.0

150

-

1.3
3.5

-

-

1.3
3.5

Base-Emitter On Voltage

IT

5.0

-

MHz

hIe

25

-

-

Current Gain - Bandwidth Product (2)

= 1.0 Ade. VCE = 4.0 Vde, I test = 1.0 MHz)

Small-Signal Current Gain

(lC

Vde

Vde

VSE(on)

(lc = 5.0 Ade, VCE = 4.0 Vdel
(lC = 15 Ade. VCE = 4.0 Vdel
DYNAMIC CHARACTERISTICS
(lC

-

VCE(sat)

(lC ~ 5.0 Ade. IB =0.5 Adc)
(lC = 15 Ade, IB = 5.0 Ade)

,

-

hFE

= 5.0 Ade, VCE = 4.0 Vde)
= 15 Ade, VCE = 4.0 Vdc)

= 1.0 Ade.. VCE = 4.0 Vde, I = 1.0 kHz)

*Indlcates JEDEC Registered Data.
(1 )Pulse Test: Pulse Width .. 300 /lS, Duty Cycle .. 2.0%.
(2)IT = Ihlel Oltest.
'

FIGURE

2-

FIGURE 3 - TURN·ON TIME

SWITCHING ,TIME TEST CIRCUIT

vee
+30

100 0

v
500

125

,",5

+1:~J __ 1__ ,
-10

:.:--

Re

1

Scope

..--

Ir
j-.::

0

~

L

O~

v
51

01

0
NPN
--PNP
TC=25 0 C
OfVCC = 30 V
tIC/IB = 10
0
0,2
0,5

t r• tf E;; 10 ns

Duty Cycle: 1.0%

-4 V

RS and RC varied to obtain desired current levels.
170r PNP reverse all polarities.
01 must be fast: recovery type, e.g.;
MB05300 used ebove 18 ~ 100 mA
MSD6100 used below 18 ~ 100 mA

4-294

,...

Id@VBE loff) ~ 5,0 V

=

1-:,5,0
2,0
1.0
IC. COLLECTOR CURRENT IAMPI

10

20

2N6486 2N6487 2N6488 NPN
2N6489 2N6490 2N6491 PNP

FIGURE 4 - THERMAL RESPONSE

~::;

a

~

o. 5

..

7

o

D ~ 0.5

~ o. 3

z

r-

~ 00 7 -

0.05

~

001

~

5
00 0.03

>~ 001-'"
;;;

Plpkl

~~~

~ SljHnlLuL
,.....

001

1

005

001

TJ(pkl - TC ~ P(pkl ZOJC(II
~

OUTY CYCLE. 0

' 1111
01

01

05

10

10

Z,'JC(1I ~ r(11 ROJC
ROJC ~ I.S)' cm Max
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT"

tJUl

;...--

z
.......,
~ 00 I~
>-

I

~

:;;0-

~I"""

01

~ o. I

-

-::

01

1

~

t,

5.0

11111

I I

10

I I 111111
50

10

100

I I

I I J Hi

200

500

LOt

TIME ImsJ

FIGURE 5 - ACTlVE·REGION SAFE OPERATING AREA

a

c:
~

lOcip,-

.....

10

~ 5.0

"'~

TJ 1500 C
2.0 -SECONO BREAKDOWN LIMITED ....
-·-BONOING WIRE LIMITED
- - -THERMALLY LIMITED @TC -15'C
1.0 CURVES APPLY BELOW RATED VCEO

::

0.5

~

~

1.0 m~-

S

depending on conditions. Second breakdown pulse limits are valid

5.0m,=

for duty cycles to 10% provided T J!pkl .;;; 1500 C. T Jlpk) may be

lNS48S.1NS489
lN64B7.1NS490
2NS488. 2N6491

:} 02
O. l
1.0

There are two limitations on the power handling ability of a
transistor average junction temperature and second breakdown.
Safe operatmg an~a curves indicate le·VeE limits of the transistor
that must be observed for reliable operatton; I.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The datd of Figure 5 is based on T J(pk) =: 150°C; T C is variable

500p'=

calculated from the data In Figure 4 At high case temperatures.
thermal limItations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown

-de-

4.0
40
SO
10
10
VCE. COLLECTOR·EMITTER VOLTAGE (VOL TSI

80

FIGURE 6 - TURN·OFF TIME

FIGURE 7 - CAPACITANCES

500 0

1000

-

1000
~ 500

;::

~~

1

--NPN
200 I-- - - PNP
f- VCC'30V
ICI' S'10
lao
'SI-IS2
TJ' 250 C
SO

700

w
~ 300

~ '-:.: ;:-,..

-

>!:

Cob

.-:::::-::::::

,

~'

~

-

-

-

~ 200
IDa

F
f::

0.2

0.5

1.0
1.0
5.0
IC. COLLECTOR CURRENT (AMPI

-

I---.

~

~

Cob

- - NPN
PNP
Tr 250C

....

r--,
...... 1....

ro-

r-

-

70
10

10

4-295

50
0.5

1.0

5.0
2.0
10
VR. REVERSE VOLTAGE IVOLTSI

20

50

•

2N6486 2N6487 2N6488 NPN
2N6489 2N6490 2N6491 PNP
NPN
2N6486,2N6487,2N6488

200

I

FIGURE 8 - DC CURRENT GAIN

-

500

PNP
2N6489, 2N6490, 2N6491

500
TJ -150'C

~,

IT'- ['...

~ 100

'--

~ 50

•

;

:::::--.

25'C
-55'C

0

......

I"-.

'"''"=> ,
g

TJ-150'C

....

0'--

-55'C

<.:J

....

- l - t--

20 a

"r-.

20

."'~

VCE-2.0V
10
5.0
0.2

.....

0

~

VCE - 2.0 V

10
5. 0

2.0
5.0
1.0
IC. COLLECTOR CURRENT (AMP)

0.5

10

20

0.5

0.2

1.0

2.0

5.0

10

20

IC. COLLECTOR CURRENT (AMP)

FIGURE 9 - COLLECTOR SATURATION REGION
ti)

.:;

2.0

J

~ 1.B
UJ

~
'"ffi

\

w 1.6

1.4

'"

.8

0.4

1.4

:;

1\
\

'" 1.2
>
a:
w

Ic -1.0 A

::E
~ 0.8

0.6

TJ - 25'C

II
II

<.:J

1.2

'"~

IIiL

1.8

'"

~

1.6

~. 1.0

B.O A

4.0 A

~

1.0

~
a:

0.8

g
.'".

10

5.0

500
50
100
200
lB. BASE CURRENT (rnA)

20

1000

2000

\

"

0
5.0

5000

8.0 A

-

0.6
0.4

g

0

4.0 A

IC -LOA

8W 0.2

~ 0.2

>

2.0

~

TJ - 2;'C

10

500
50
100
200
lB. BASE CURRENT"lmAi

20

1000 2000

5000

FIGURE 10 - "ON" VOLTAGES
2.B

2.8
2.4

-

TJ - 25'C

~
'"
~

~ 2.0

'"
~

//
'/

~ 1.6

;'"
>

1.2
VBE(sat)-IC"B -10

>-

O.B
VBE@VCE-2.0V
0.4

o

-

0.2

-

VCE( ..t)@ICIIB-l0
0.5

LI

2.4

--

w

'">.

>.

/

h
//

TJ - 25'C

1
1
1

1.6

«

i--'

1.2

20

...-::P'

VBE(sat) @ICIIB - 10

=

VBE@VCE-2.0V

-

VCE(sat)@ICIIS -10.

0.2

0.5

1.0

.....2.0

i'
5.0

IC. COLLECTOR CURRENT (AMP)

4-296

/

O.B

o
10

/

~

I

0.4

...... f-'"

5.0
1.0
2.0
IC. COLLECTOR CURRENT (AMP)

1 1

---l

<.:J

:;

~

2.0

10

20

2N6486 2N6487· 2N6488 NPN
2N6489' 2N6490 2N6491 PNP

NPN
2N6486.2N6487.2N6488

PNP
2N6489. 2N6490. 2N6491

FIGURE 11 - TEMPERATURE COEFFICIENTS
U

l....
ffi

U

+4.5

'APPLIES

f--

FOIRII~/IB < hFE/4

'G +4 5

~ +3.5 t--

+3.5

I
'APPLIES FOR Ic/lB < hFE/4

....

~

+2.5

/,
I

it

S +1.5 r-w

~ +0.5

~

0

~

-0. 5

r-OVC FOR VCE('at)
250C TO 1500C

r-- r-

-55~C T9 25,OC, I I '
ili....
f-- 'VB FOR vBE
1
~-1.5 f-250no 1500C

U

S

/

IP"

250~TO ~O':;'

w

c:: +0. 5

::>

~
~ -0.5

./

2.0

-55°C TO 25°C

i-1. r5

5.0

10

0VB FOR VBE

V

L

I--"'i"

~I-'
-55°C TO 25°C

I I I I

-2.5
0.2

20

~

250~O~

i'B

I--'"

1.0

0.5

1/
1
L

~ +1. 5

-155 : CITIi1"C - f -

-2.5
0.2

/

I

'OVC FOR VCE\'at)

u:

/

-

I II

~ +2.5

2.0
5.0
1.0
IC, COLLECTOR CURRENT (AMP)

0.5

IC. COLLECTOR CURRENT (AMP)

10

20

-0.4

-0.5

FIGURE 12 - COLLECTOR CUTOFF REGION
1000

10.00 0

0

0

VCE-30V

I-~"-c

o

.

TJ' 150°C

0

I- TJ' 150°C
0

f=

IF
00 11==

100°C
REVERSE';;;;;;

'/

-IC-ICES
J.;;;;;;; jo=FORWARO

I-- t- 100°C

30V- I--

VCE

L

0

IC =ICES

~ o. 11-=

F= 25°C

REVERSE ... \- f=FORWARO

I-- ~250C
0.00 1
-0.2

0.0 1
-0.1

+0.1

+0.2

+0.3

+0.4

+0.5

VBE. BASE·EMITTER VOLTAGE (VOLTS)

+0.2

-0.1

+0.1

-0.2

-0.3

VBE. BASE·EMITTER VOLTAGE (VOLTS)

FIGURE 13 - EFFECTS OF BASE-EMITTER RESISTANCE

120

140

TJ, JUNCTION TEMPERATURE (OC)

TJ. JUNCTION TEMPERATURE (OC)

4-297

•

2N6495

NPN

NPN SILICON POWER SWITCHING TRANSISTOR
. Double Diffused epitaxial mesa technology combining high-speed
switching with rugged power handling capability.

10AMPERE
POWER TRANSISTOR

• High-Speed Switching Timeston = 350 ns (Max)
toft = 350 ns (Max)
•

•

NPN SILICON
80 VOLTS
70 WATTS

Low Collector-Emitter Saturation Voltage VCE(sat) = 0.75 Vdc (Max) @ IC = 5.0 Adc
= 1.5 Vdc (Max) @ IC = 10 Adc

• Current-Gain-Bandwidth Product fT = 15 MHz (Typ) @ IC = 5.0 Adc (See Figure 1)
• High Safe Operating Area - Full Power Rated to VCE = 20 Vdc
Designed for Use in:
• Switching Control Amplifiers
• Switching Regulators

• Converters
• Inverters
• Power Oscillators

*MAXIMUM RATINGS
Svmbol

Value

Unit

VCEO

80

Vdc

Collector·Base Voltage

VCS

150

Vdc

Emitter-Base Voltage

VES

6.0

Vdc

IC

10
20

Adc

IS

5.0

Adc

Rating
Collector-Emitter Voltage

Collector Current - Continuous

- Peak
Base Current

Total Device Dissipation @ T C =
Derate above 2SOC

25 0 C

. Operating and Storage Junction
T~mperatur8

Po

70
0.4

Watts
W,oC

TJ.Tstg

-65 to +200

°c

~AU-­

tL=--~~=
t I

--

E

SEATING PLANE

---F--

Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case

"Indicates JEDEC Registered Data.
CASE: COLLECTOR
MILLIMETERS
OIM MIN MAX
8 11.94 12.70
C
6.35 8.64
O.7t 0.86
D
E
1.27 1.91
F 24.33 24.43
G 4.83 5.33
H 2.41 2.67
J 14.48 14.99
K 9.14
1.27
P
Q
3.61
3.86
S
8.89
T
3.68
U
15.75

FIGURE 1 - CURRENT·GAIN-BANDWIDTH PRODUCT
:z:

50

~

t;
::0

g
g:

30

...... r-

:z:

b

~

~z

~
,.:.

20

to

.
ill

.. 7.0

i3

..,: 5.0
0.1

-

I'-...
.........

"

\

--

f-l0MH,
VCE-l0V
TJ - 25"C

-

All JEOEC Dimension. and and Notes Apply.

I I
0.2

INCHES
MIN MAX
0.470 0.500
0.250 0.340
0.028 0.034
0.050 0.075
D.958 0.962
0.190 0.210
0.095 0.105
0.570 0.590
0.360 0.050
0.142 .1 2
0.350
- 0.145
0.620

0.3
0.5 0.7 1.0
2.0 3.0
IC. COLLECTOR CURRENT lAMP)

5.0 7.0

4-298

10

CASESO-02
TO·68

2N6495

*E LECTRICAL CHARACTERISTICS (TC: 250 C unle •• otherwise noted.)

I

I

Characteristic

Max

Unit

80

-

Vde

100
5.0

/lAde
mAde

IESO

-

100

nAde

hFE

10

60

-

-

Symbol

Min

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

VCEO(sus)

(lC =.100 mAde. IS = 0)
Collector Cutoff Current
(VCE: 140 Vde. VSE(off) = 1.5 Vde)
(VCE: 70 Vde. VSE(off): 1.5 Vde. TC

ICEX

=2000C)

Emitter Cutoff Current
(VSE = 6.0 Vde. IC 0)

=

ON CHARACTERISTICS
DC Current Gain
(lC = 10 Ade. VCE = 3.0 Vde)

Vde

Collector-Emitter Saturation Voltage
(lC = 10 Ade. IS = 1.0 Ade)
(lC = 5.0 Ade. IS: 1.0 Ade)

VCE(sat)

-

1.5
0.75

Base-Emitter Saturation Voltage
(lC = 10 Ade. IS = 1.0 Adel

VSE(satl

-

2.2

Vde

Turn.()n Time
(VCC = 30 Vde. IC = 10 Ade. lSI = 1.0 Ade!

ton

-

350

ns

Turn.Qff Time
(VCC = 30 Vde. IC = 10 Ade.ISl = IS2 = 1.0 Ade!

toff

-

350

ns

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

(lC = 1.0 Ade. VCE

=10 Vde. f = 10 MHz!

SWITCHING CHARACTERISTICS

"Indicate. JEOEC Registered Dot•.

FIGUR E 2 - SWITCHING TIME TEST CIRCUIT

F IGUR E 3 - TURN-ON TIME

Vee

1000
700
500

+30 V
RC

300
SCOPE

RB

""'-

200

~

!100

!
",.11< IOn.
DUTY CYCLE = 1.0'lI

01

70
_' 50

lellB =10
TJ' 25°C

~"'VCC-30V

-

-

Id@VBE(ofl)"O

30
20

-3.0 V
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS
01 MUST BE FAST RECOVERY TYpe. 09:
MBD5300 USED ABDVE IB" 100 mA
MSDB100 USED BELOW IB" 100 mA
FOR", and .... OIlS DISCONNECTED AND V2. O.

10
0.01

4-299

"0.02

0.1

0,2

r-

0.5
1.0
2.0
0.05
IC. COLLECTOR CURRENT (AMP)

5.0

10

2N6495

Inn

FIGURE 4 - THERMAL RESPONSE
w

1.0

z

~
iii

0.7 1=0 = 0.5

i __

0.3
0.2

u

0.5

~

0.2

...... ~

w C
",w

~ ~ o. 1
~ ~ 0.01
~ ~ 0.05

t=
'" 0.03 r-~

......

---C'2J
DUTY CYCLE. D = ,,1'2

0.02

i

II IIIII

0.05

0.02

0.01

0 CURVES APPLY FOR POWER PULSE TRAIN SHOWN
READ TIME AT'1
TJlpk) = TC = Plpk) ROJCltI

=

0.05
0.02

ROJCIt) ",1') ROJC
ROJC" 2.S"CM

Plpk)

~
~ fQ.i;j'
A"
.... % SINGLE PULS<
0.0 1

>

•

L

,

./" /'

0.1

I-~

~~

0.1

1.0

0.5

0.2

2.0

5.0

I I

10

50

20

100

200

500

1000

'. TIME 1m,)

FIGURE 5 - ACTIVE·REGION SAFE·OPERATING AREA

..

tH·ll' ..... ....

20
10

~ 5.0

i

S.Dms
2.0

5

_ 0.2
o
~ D, 1 ==

"-

-

~
"''"

THERMAL ......
DERATING "

40

.......

C

"

20

.........

~

o
50
20
30
2.0 3.0
5.0 7.0 10
VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

70

I ...........

o

100

20

100

120

140

160

lBO

200

1000

leliB = 10
IBI = IB2
TJ = 250 C

200 0lc::..!,

"

BO

FIGURE 8 - CAPACITANCE

FIGURE 7 - TURN·OFF TIME

700

60

TJ(pk) may be calculated from the data in Figure 4. At high
case temperatures, thermal limitations ,will reduce the power that
can be handled to values less than the limitations imposed by
second breakdown. Second breakdown limitations do not derate
the samefas thermal limitations. Allowable current at the voltages
shown on Figure 5 may be found at any case temperature by
using the appropriate curve on Figure 6.

300 0

]: 500

40

Te. CASE TEMPERATURE IOC)

There are two limitations on the povver handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The da.a of Figure 5 is based on TC = 250 C; T Jlpk) is variable
depending on power level. Second breakdown pulse limits are
vali~ for duty cycles to 10% but must be derated for temperature
according to Figure 6.

100 0

r-...
.......

'";::z

0.05
0.0 2
1.0

..........
r........

60

";::

SECJNO
BREAKDOWN DERATING

:"-.

0

I-

L

.....r-..

...........

BO

""'"

de .......

TC - 2SoC
BONDING WIRE LIMIT
THERMAL LIMIT ISINGLE PULSE)
- - - - SECOND BREAK~OWN LIMIT
CURVES APPLY BELOW
RATED VeEO

-

~ t-....

lOOP"

."

" "I

~ 1.0

r'

soopl'-

1.0ms

l-

'"

FIGURE 6 - POWER OERATING
100

700

TJ=2S0C
Cib

500

'f@VCE-30V

~ 30 0

r-..

......

~. 20 0

l- tt...... r-.

100

100

0
0

30
0.01

70
Co;;'"

50
0.02

0.05

0.1

0.2

0.5
1.0
2.0
IC. COLLECTOR CURRENT lAMP)

5.0

10

4-300

0.1

0.2

0.5

1.0
2.0
5.0
10 ,20
VR. REVERSE VOLTAGE IVOLTS)

50

100

2N6495

F.lGURE 9 - DC CURRENT GAIN

FIGURE 10 - COLLECTOR SATURATION REGION

400

VCE' 3.0 V

-

200

...... 1'-

'"

2J,C

40

~
~

"'

-SS'C

~

r-..

0

4

~

0.2

0.3
O.S 0.7 1.0
2.0 3.0
IC. COLLECTOR CURRENT (AMP)

S.O 7.0

0
2.0

10

S.OA

I-

IDA

-

S.O

SOD

1.0 k

'\.

......
20
SO
100
200
lB. BASE CURRENT (rnA)

10

2.0 k

FIGURE 12 - TEMPERATURE COEFFICIENT

+2. S

TJ= 2S'C

~

"

"APPLIES FOR IcIIB" hFE14.0

+2.0

.E, +1.5

1.6

~

~

ffi

00

~

\

8 o. 2

FIGURE 11 "ON" VOLTAGE

2.0

IC = 0.2SA 1.0A.- 2.SA

TJ ·2S'C

II

o. B

>

20
0.1

Jl

III
III

1.0

'">

~

I
I

~ o.6

-

c
W
~

~

100

~ 60

I-

'"

lSJ,C

z

l-

II II
II II

w

;;:

i

':;

'" 1.2
2:

T~ =

-

1.4

en

+1.0

2S'C to lS0'C

G

1.2

~ +0.5

__ r--..... ~~

~

':;

-n

S

I-

VBE{satJICIIB = 10

~ O.B

"ave I" VCE(".)

....... r--

-SS'C to 2S'C

w

~ -0.5

,:

I-

i

~

!

0.2

a1

I----'

vcL.. IcllB 1= 10
0.1

2S,J to 11S0'C

~ -1.0

rVBf{'")I@ VCf =3 oVI
0.4

i 'l/

-1.5

OVB I" VBE

I-

V
i-'

-S50t to t50C

:> -2.0

~ -2.5

0.3

O.S 0.7

1.0

2.0

3.0

S.O 7.0

10

0.2

0.1

IC. COLLECTOR CURRENT (AMP)

FIGURE 13 - COLLECTOR CUTOFF REGION

0.3

2.0 3.0
O.S 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

S.O 7.0

10

FIGURE 14 - BASE CUTOFF REGION

==

VCE-BO V

4

TJ =lS0'C

VCE

=

BO V

100'C

2S'C
FORWARD

r=:
102
-0.4.

2

2S'C
-0.3

-0.2

+11.1 +11.2 +11.3 +11.4
-0.1
VBE. BASE·EMITTER VDLTAGE (VOLTS)

10 1
-O.S

+II.S +0.6

4-301

-0.4

-0.3 -0.2 -0.1
+0.1
+0.2 +11.3
VBE. BASE·EMITTER VOLTAGE (VOLTS)

+11.4 +II.s.

•

2N6497
2N6498
2N6499

5 AMPERE
POWER TRANSISTORS
NPNSILICON

HIGH VOLTAGE NPN SILICON POWER TRANSISTORS

250, 300, 350 VOLTS
BOWATTS

· .. designed for high voltage inverters, switching regulators and lineoperated amplifier applications. Especially well suited for switching
power supply applications .

•

•

High Collector-Emitter Sustaining
VCEO(sus) = 250 Vdc (Min) = 300 Vdc (Min) = 350 Vdc (Min) -

Voltage 2N6497
2N6498
2N6499

•

Excellent DC Current Gain hFE = 10 ~ 75@ IC = 2.5 Adc

•

Low Coliector-Emitter'Saturation Voltage
VCE(sat) = 1.0 Vdc (Max) - 2N6497
= 1.25 Vdc (Max) - 2N6498
= 1.5 Vdc (Max) - 2N6499

@

IC = 2.5 Adc-

I

*MAXIMUM RATINGS
Rating

Symbol 2N6497

COllector-Emitter Voltage

VCEO

Collector-Base Voltage

Vca

Emitter-Base Voltage

VEa

Collector Current - Continuous
- Peak

la

Total Power Dissipation@Tc= 25°C
Derate above 25°C

Po

Operating and Storage Junction

2N6499

300

350

Vdc

350

400

450

Vdc

----

-- ---

IC

Base Current

2N6498

250

6.0

Vdc

5.0
10

Adc

OIM
Adc

A
B

ao

Watts

C

_0.64

Temperature Range

W/oC

°c

Charactwistic

I

Symbol

I

Max

I

Unit

I

R8JC

I

1.56

I

°c/W

-Indicates JEDEC Registered Data.

o
F
G
H
J
K
L

THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Case

STYLE 1
PIN 1
2
3.
4.

2.0

_-65'0+150 ___

TJ,Tstg

Unit

N
Q

R
S
T
U
V

BASE
COLLECTOR
EMITTER
COLLECTOR

MILLIMETERS
MIN MAX
15.11
9.65
4.06
0.64
3.61
2.41
2.79
0.36
12.70
1.14
4.83
2.54
2.04
1.14
5.97
0.76
1.14

15.75
10.29
4.B2
0.B9
3.73
2.67
3.30
0.56
14.27
1.27
5.33
3.04
2.79
1.39
6.48
1.27

INCHES
MIN MAX
0.595
0.380
0.160
0.025
0.142
0.095
0.110
0.014
0.500
0.045
0.190
0.100
0.080
0.045
0.235
0.030
0045

CASE 221A-02

TO·220AB

4-302

0.620
0.405
0.190
0.035
0147
0.105
0.130
0.022
0.562
0.050
0.210
0.120
0.110
0.055
0.255
0.050

2N6497,2N6498,2N6499

I

"ELECTRICAL CHARACTERISTICS ITC = 250 C unless olherw,se nOled.!

I

Characteristic

Symbol

Min

Typ

Max

250
300
350

-

-

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1) .

Vde

VCEOlsus!

(lC = 25 mAde.IB = 0)

2N6497
2N6498
2N6499

Collector Cutoff Current

mAde

ICEX

IVCE = 350 Vde. VBElolf) = 1.5 Vde!
IVCE = 400 Vde. VBElolf) = 1.5 Vde)
IVCE = 450 Vde. VBEloff) = 1.5 Vdcl

2N6497
2N6498
2N6499

-

IVCE = 175 Vde. VBElolf) = 1.5 Vde. T C = 1000 C!
IVCE = 200 Vde. VBElolf) = 1.5 Vde. TC = 100o C)
IVCE = 225 Vde. VSEloff) = 1.5 Vde. TC = 100o C!

2N6497
2N6498
2N6499

-

Emitter Cutoff Current

-

-

1.0
1.0
1.0
10
10
10
1.0

IESO

•

mAde

IVSE = 6.0 Vde. IC = 0)
ON CHARACTERISTICS II)
DC Current Gain
(lC = 2.5 Ade. VCE = 10 Vde)
(lC = 5.0 Ade. VCE = 10 Vde)
Colle(;tor-Emitter Saturation Voltage
(lC = 2.5 Ade. IB = SOO mAde)

hFE

-

10
,3.0

75

-

-

-

-

-

-

1.0
1.25
1.5
5.0

-

-

-

-

1.5
2.5

Vde

VCElsal!
2N6497
2N6498
2N6499
All Devices

(lC = 5.0 Ade. IS = 2.0 Ade)

Base-Emitter Saturation Voltage
(lC = 2.5 Ade. IS = SOO mAde)
(lC = 5.0 Ade. IS = 2.0 Ade)

-\

Vde

VSElsal)

DYNAMIC CHARACTERISTICS

Current-Gain-Bandwidth Product
(lC = 2SO mAde. VCE = 10 Vde. I = 1.0 MHz)

IT

5.0

-

-

MHz

Output Capacitance
IVCB = 10 Vde.IE = O. I = 100 kHz)

Cob

-

-

150

pF

Rise Time
IVce = 125 Vde. Ie = 2.5 Ade. IBI = 0.5 Ade)

'r

-

0.4

0.8

In

Storage Time
IVec = 125 Vde.le = 2.5 Ade. VBE = 5.0 Vde. IBI = IB2 = 0.5 Ade)

Is

1.4

1.8

Fall Time
1Vee= 125Vde.le= 2.5Ade.IBl = IS2= 0.5 Ade)

'I

0.45

0.8

".
".

SWITCHING CHARACTERISTICS

"Indicates JEDEC Registered Data.
(1) Pulse Test: Pulse Widlh ':;300

"S. DUly Cycle ':;2.0%.
FIGURE 2 - TURN·ON TIME

FIGURE 1 - SWITCHING TIME TEST CIRCUIT
10

VCC
+125 V

o7

VCC' mv
ICIIB' 5.0
TJ' 25°C

0.5
0.3

-,; O. 2
-3

~
....

r...... ......

/'

I,

./

./'

........
01

-' 0.0 7
0.05

I,. tf!::10ns

0.03

DUTY CYCLE' 1.0%
- 5.0 V
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

Id@ VBEI.II) • 5.0 V

0.0 2

01 MUST BE fAST RECOVERY TYPE .•g
MBD5300 USED ABOVE IB ~IOO mA
MSD6100 USED BELOW IB ~IOO mA

0.0 I
0.05 0.07 0.1

4-303

III
0.2
0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT lAMP)

r--

--

2.0

3.0

5.0

2N6497,2N6498,2N6499

FIGURE 3 - THERMAL RESPONSE

~
1-'"
ffi~
;;;'"
~~

",-

I-"'

~~

1.0
O. 11=:0 =0.5
O.5

~Jlfl
'1

o.3~ =0~2
o. 2
I-- -0.1

tt~

"..

0.05

O. 1'==

~~o.o1 =

0.0

t:: ~o.o 5

-r~~~ 0.03 ~ 0.02

•

0.0 1
0.01

SINGLE
PULSE

RUC(mox) = I.S6"CIW
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ T1ME AT tl
TJ(pk)

TC = P(pk) R OJCltI

DUTY CYCLE. 0 "11/t2

rO.Ol

~SinglePuISI

I II

I
0.02 0.03

0.05

IIIII
0.1

0.2

0.3

0.5

1.0

2.0 3.0
5.0
10
t. T1ME DR PULSE WIDTH (ms)

I I II I IIIIII
20

30

SO

100

I I II IIIIII
200

300

500

1000

FIGURE 4 - ACTIVE·REGION SAFE OPERATING AREA
0
There are two limitations on the power handling ability of a

0
.0

,
dC~

.0
0

-

TC = 25°C

s,ur

_ Bonding Wire limit
5 - - - - Thermal limit (Smgle Pulse)
Sec:ond Breakdown Limit
2
CurvtSlpply below rated VCEO
1
5
0.02
5.0 1.0

~oms

transistor: average junction temperatura and second -breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater ,dissipation than the curves

ROO.,

indicate.

The data of Figure 4 i, based on TC = 2So C; TJ(pk) i,
variable depending on power level. Second breakdown pulse limits
are valid for duty cycle, to 10% provided TJ(pkl ';;ISo"C. TJ(pkl
may be calculated from the data in Figure 3. At high case temperatures. thermal limitations will reduce the power that can be
handled to values less than the limitations imposed by second
breakdown. Second breakdown limitations do not derate the same
as thermal limitations. Allowable current at the voltages shown
on Figure 4 may be found at any case temperature by using the
appropriate curve on Figure 6.

,,"

\,,\.

"

2N6491
2N6498
2N6499

~

10
20
30
SO 10 100
200 300
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

500

FIGURE 5 - TURN·OFF TIME
Vcc= 12SV
IC/IS" 5.0
TJ= 25°C

ts

.0

~

FIGURE 6 - POWER DERATING
100

0
.0
.0

~

0

0

""

~1 .0

50.1

'"" "-

............

........

.0

Thermal

o.5
o.3

o. 2

O. 1
0.05 0.01 O. 1

t,

0.2 0.3
0.5 0.1 1.0
IC. COLLECTOR CURRENT (AMP)

............
~

...........

Dlrltin~

:"-.

::::;;
l-

Second Breakdown Derlting

" "-

0

2.0

3.0

0

5.0

f"....

20

40

60
80
100
120
TC. CASE TEMPERATURE 10C)

I'
r--...

140

180

Circuit diagrams external to or containing Motorola products are Included as a means of Illustration only. Complete information
suffiCient for construction purposes may not be fully illustrated. Although the information herein has been carefully checked and is bel ieved
to be reliable. Motorola assumes no responSibility for Inaccuracies. Information herein does not convey to the purchaser any license under
the patent fights of Motorola or others.
~
The information contained herein IS for guidance only. with no warranty of any type, expressed or implied. Motorola reserves the right
to make any changes to the information and the product(s) to which the Information applies and to discontinue manufacture of the
product(s) at any time.
.

4-304

2N6497,2N6498,2N6499

FIGURE 7 - DC CURRENT GAIN

FIGURE 8 - COLLECTOR SATURATION REGION
_ 4.0

100
TJ 'ISoDC

:; 3.2

50

25 0C

z

'" J 0

~
~

_lJD~

0
2

c

~

- "\

~ 2.4

'\ '\

_r--

u

~ 16

10

........ 1--

~

0.2 0.3
05 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

20

30

001

50

002

0 05

FIGURE 9 - "ON" VOLTAGES

iii 1.0

I I I II
VBE(",) i!lICIlB' 5.0

!:;
c

-H"

~ 0.8

~
VBE@lVCPloV

0.6

-

,/

./

./

,/

0

;~.f'i" fDI'CII~ .. hFE/3

0

IIII J

'lf:-

'"

5.0

10

~

/ V

VCEhat)@lICIlB • 5.0

I-Ioe::::

o

0.05 0.07 0.1

0.1
o.J
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

2.0

3.0

-1. 0

'" -2.0

Y

~

'CIIB' 2.5

?

5.0

IIII
-3.0
0.05 0.07 0.1

-fsn'IISI C

I

V

VCE' 200 V

TplSoDC

~ 3D 0
~ 20 0

100DC

~
c:; 100

§

100

U

SO

0
0

Cib

--

TJ = 250C

~-

0

r--- r- Reverse

J.o

20

250 C

10-2
-0.4

2.0

V

FIGURE 12 - CAPACITANCE

ID J

':;10"'1

V

-

0.2 O.J
05 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

1000
700
500

;C
.3

"==

ISOCtoI5~

Bve for VB

FIGURE 11 - COLLECTOR CUTOFF REGION

101

V

- jS5DC to ~5tC

~

I-

0.2

'"

20

2SDr!D 1

·6VC for VCE(sa!l

>

~
8

10

J

0

:> 0.4

1D2

05

FIGURE 10 - TEMPERATURE COEFFICIENTS

V
TJ' 25DC

~

02

+4. 0

1.2

a

01

'B. BASE CUR RcNT (AMP)

1.4

0-

SoA

\

>

5.0
0.05 0.07 0.1

'"i5~

1\

~ 0.8

7.0

2O~\3OA\

Ie" 1.0 A

~

Tp 2SDC

1

~

:;;

I~

c

~

~'"

r--.~

I--

u-+r

;;:

II

\
\.
\
\

~>

VCE'loV-

70

Forward

-0.2
.0
+0.2
+0.4
VBE. BASE·EMITTER VOLTAGE (VOLTS)

10
0.4 0.6 1.0

+0.6

4-305

2.0

4.0 6.0 10
20
40 60
VR. REVERSE VOLTAGE (VOLTS)

100

200

400

..

2N6542
2N6543

Designers Data Sheet

•

5AMPERE
NPN SILICON
POWER TRANSISTORS

SWITCHMODE SERIES
NPN SILICON POWER TRANSISTORS

300 and 400 VOLTS
100 WATTS

The 2N6542 and 2N6543 transistors are designed for high-voltage,
high-speed, power switching in inductive circuits where fall time is
critical. They are particularly suited for 115 and 220 volt line operated switch-mode applications such as:

Designer's Data for
"Worst Case" Conditions
The Designers Data Sheet permits the design of most circuits
entirely from the information presented. Limit data - representing
device characteristics boundaries are given to facilitate "worst case"
design.

• Switching Regulators
• PWM Inverters and Motor Controls
• Solenoid and Relay Drivers
• Deflection Circuits
Specification Features High Temperature Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

'MAXIMUM RATINGS
Rating

COllector·Emitter Voltage
Collector-Emitter Voltage
COllector-Emitter Voltage
Emitter Base Voltage
Collector Current Continuous
- Peak (1)

VCEO(sus)

300

400

VCEX(sus)

350

450

Unit
Vdc
Vdc

VCEV

650

S50

Vdc

Svmbol

2N6542 2N6543

VEB
IC
ICM

9.0

Vdc

5.0
10

Adc

Base Current - Continuous
- Peak (1)

IS
IBM

5.0
10

Adc

Emitter Current - Continuous
- Peak (1)

IE
IEM

10
20

Adc

Total Power Dissipation @TC =·2SoC
@TC=10o"C
Derate above 25°C
Operating and Storage Junction

Po

100
57.2
0.57

Watts

TJ,Tstg

-65 to +200

PLANE

STYLE I:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

°c
DIM

THERMAL CHARACTERISTICS

Maximum Lead Temperature for Soldering
Purpo.es: liS" from Case for 5 Seconds

r.~"
SE~j

W/oC

Temperature Range

Characteristic
hermat Resistance, Junction tD Case

JF'.~~l:r

Symbol

Max

Unit

ReJC

1.75

°C/W

TL

275

°c

A
8
C
D
E
F
G
H

'1 ndicate. JEDEC Registered Data

J
K

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle .. 10%.

0
R

MilliMETERS
MIN
MAX

--

39.31
22.23
11.43
1.09
3.43
2UO 30.40
10.67 11.18
5.21
5.12
16.64 17.15
11.18 12.19
3.84 4.09
26.67
6.35
0.97

-

INCHES
MIN
MAX

-a-

0.250
0.038

-

1.177
0.420
0.205
0.655
0.4411
0.151

-

CASE 1t-03

TO-3

4-306

2N6542, 2N6543

"ELECTRICAL CHARACTERISTICS ITC " 25 0 C unless otherwISe noted.)

I

I

Characteristic

Symbol

Min

Max

300
400

-

-

350
450
200
300

-

Unit

OFF CHARACTERISTICS (1)
Coliector·Emitter Sustaining Voltage (Table 11

IIC" 100mA, IS" 0)

Vde

VCEOlsus)
2N6542
2N6543

COllector-Emitter Sustaining Voltage !Table 1, Figure 13)

Vde

VCEXlsus)

IIC = 2.6 A, Vel amp " Rated VCEX, TC = 100oC)

2N6542
2N6543

IIC = 5.0 Ade, Vel amp = Rated VCEO -100 V,
TC = 100oC)

2N6542
2N6543

Collector Cutoff Current

ICEV

Collector Cutoff Current

IVCE = Rated VCEV, RBE = 50

n, TC

= 100°C)

E!11itter Cutoff Current

IVES = 9.0 Vde, IC = 0)

mAde

-

IVCEV = Rated Value, VSEloffi = 1.5 Vde)
IVCEV = Rated Value, VSEloff) = 1.5 Vde, TC = 100°C
ICER

-

lEBO

0.5
3.0
3.0

mAde

-

1.0

mAde

12
7.0

60
35

-

-

1.0
5.0
2.0

-

1.4
1.4

IT

6.0

28

Cob

50

200

pF

Id

-

0.05

I"

0.7

"s

SECOND BREAKDOWN
Second Breakdown Collector Current with base forward biased
t = 1.0 s Inon·repetitive) IV CE = 100 Vde)

ON CHARACTERISTics (1)

DC Current Gain

-

hFE

IIc = 1.5 Ade, VCE = 2.0 Vde)
IIc= 3.0 Ade, VCE = 2.0Vde)
Collector-Emitter Saturation Voltage
IIc = 3.0 Ade, IS = 0.6 Ade)
IIC = 5.0 Ade, IB = 1.0 Ade)
IIC = 3.0 Ade, IB = 0.6 Ade, TC = 100oC)

VCElsat)

Base-Emitter Saturation Voltage

VSElsat)

Vde

Vde

II C = 3.0 Ade, IS = 0.6 Ade)
IIc=3.0Ade, Ie = 0.6 Ade. TC= 100°C
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

MHz

IIc = 200 mAde, VCE = 10 Vde, f test = 1.0 MHz)

Output Capacitance
IVCB = 10 Vde, IE = 0, f test = 1.0 MHz)
SWITCHING CHARACTERISTICS
Resistive Load ITable 11

Delay Time
IVCC = 250 Vde, IC = 3.0 A,
lSI = IS2=0.6A,tp =100"s,
Duty Cycle .. 2.0%)

Rise Time
Storage Time

tr
ts
t

Fall Time
Inductive Load, Clamped ITable I)

Storage Time

IIC - 3.0 Alpkl. Vel amp ~ Rated VCEX,

Fall Time

lSI = 0.6 A, VSEloff) = 5.0 Vde, i'C =

looD C) ~

4.0

"s

0.8

.,E'

ts

I

-

4.0

tf

~

-

0.8

I

i

"s
"s

Typical
Storage Time

Fall Time

IIC = 3.0 Alpkl. Vel amp = Rated VCEX,

I

ts

lSI = 0.6 A, VBEloff) ='5.0 Vde, TC = 25°C)

I

"'Indicates JEDEC Registered Data.
II) Pulse Test: Puis. Width = 300 "s, Duty Cycle'; 2%.

4-307

tf

1.1

I

0.12

"s

I

"s

•

2N6542, 2N6543

DC CHARACTERISTICS
FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE 1 - DC CURRENT GAIN
100

Ci)

o~

::;

0

•

\.

.....

..- ~50C

.........

-

~

-

~

\~

~

VCE - 2.0V
VCE" 10V l -

1.0
5.0
0.05 0.01 0.1

0.2

0.3

0.5

0.1

2.0

1.0

~
w

1.6

o
;

1.2

~
~
a,

0.8

'"~

......

,,;:::- ~

0

\

o

Tr 1500C

0

2.0

1'\-

~

3.0

0.3 A

1.5 A- -

\

1\

IC=0.05A

1

~_

0.4

8

~

>

"'-

5.0

2.0

5.0

10

20

1111

c:;;1.0
~

o

~

"'
~
~

o

>

>~

O. a

l.--':

VSE( .. ,)@ 'cils - 5.0

o. 6

~

~

7
iT

. r~Elo)n) @ VpE ~ 2.0 V

1/

O. 2

1.....::: r:::-

VCE( ..,)@ Ic/la = 5.0

0.05 0.07 0.1

0.2

0.3

0.5 0.1

j

1.0

2.0

~a:

i:l

,
-550Cto~

-1.6

f-ol-

fV,B FOR VBE

l-

3.0

5.0

Tr 150°C

---t"'
+25 C to +150oC I-0

i-I'

-j

I

-2.4
0.05 0.07 0.1

0.2

0,3

0.5 0.1

1.0

2.0

3.0

5.0

FIGURE 6 - CAPACITANCE

I

I

~ 30 0
z
;: 200

100 0C
o
t; 1011---= 150C

U

~

1

II

100 0

,

TJ = 25°C

Cib

10 0
~ 500

I

1/

a:

r-- r--..

c5

:!
8

100
,,; 10
0

/

':;100i==250C

....

Cob-

li=fREVfRSE

-41.4

I.t
~

IC. COLLECTOR CURRENT (AMP)

7

10 2F==h50C

10-

-I---

"'g; -o.S

i

/

I

8

II'

1/

1.0 k 2.0 k

~~Oc,o~ ~ f-

2000

10 3

500

1

FIGURE 5 - COLLECTOR CUTOFF REGION
VCE = 250 V

200

-55 0C '0 +250C'-f-

IC. COLLECTOR CURRENT (AMP)

104

"
II

II

,~JcIFloRvJE(sa!.

ffiU
$
~

~V

Ic/lS 2.0

o

'Applies!or ICIIB <;; hFE/2.0

~
'1
;;; +0.8

~

J

D.4

1.1111 I

100

F(GURE 4 - TEMPERATURE COEFFICIENTS

~p

1111

I--

50

IS. SASE CURRENT (rnA)

U +1,6

TJ = 25 0C

to

0

FIGURE 3 - "ON" VOLTAGE

1. 2

-

3.0A

o

'C. COLLECTOR CURRENT (AMP)

1.4

III"
TJ" 25 0C

-0.2

30

FORW~RO

+0.2

+0.4

20
0,5

+0.6

1.0

2.0

5,0

10

20

50

VR. REVERSE VOLTAGE (VOLTS)

VSE. SASE·EMITIER VOLTAGE (VOLTS)

4-308

100

200

500

2N6542, 2N6543

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE
VCEOlsus)

..z
... 9

+10V

O,lveCircuit
+4 V

~1

ZC

o.s-L

-z0

~2
PW Vaned to Attam

Leol ' '" 80 mH Vee" 10 V

Leoil" 180 J.lH
Reoll; 005 n

Vclamp (Unclampedl

Vee'" 20V

100

u

tr

ij

~...

~,

Input

See Above For
Detailed Conditions
2

ill,.;

IN4937

_

or

_-.t_

~b,AS",b
011!

I

I

I LeOl1

3- vee

"'-11V~

~ -=:sv

Ie =3A

PW", l00~s
t,..; 5 ns

Q32N5875
Q42N5877
Diodes 1N4933

tf": 50 ns
Dutv Cycle "- 2%

VCC- 25OV

veE X Value

AL - S3

'c

t1C1r
.- - - :; ;0 '
<'

J:

t

Uncl,mped

'-\.

1--'1--

VCE

n

01 .. lN5820 Of Equlv
AS = 200

RESISTIVE TEST CIRCUIT

OUTPUT WAVEFORMS

L J

EquIValent
V clamp

I

1

Q22N6406

tf Clamped

:;

1

Vc1amp '" Rated

INDUCTIVE TEST CIRCUIT

f!!

1

Q12N6408

f = 1 kHz

RCOII = 07 11

:'Ju-~

Va4.i2

I O.~."F

Dutv Cycle" 3%

IC=100mA

u5~
....
!: ..
u>

~~F
~

20

"

+Vin

a,

02

Set +Vjn to Obtain a Forced
hFE = 5 and Adiust PW to
Attain Specified Peak Ie.

u

.....

01

~~F

-4V

~'

20

lk

pwA

2011

::> ...
0.-

RESISTIVE
SWITCHING

VCEXlsur.) AND INDUCTIVE SWITCHING

"I--

VCE' O,

J'Clam

Time

p

~ '2 . . leoll !lepk'
"Vcc

t

J,

'-'2..l

tl Adjusted to
Obtain Ie

Leol' (leek'
12'"

Vcl amp

1
'~
RL

2

01

.=.Vcc

-5V

Test EqUIpment

Scope-Tektronlcs
475 or EqUivalent

DESIGNERS INFORMATION FOR APPLICATIONS
AND SWITCHMODE SPECIFICATIONS
occurs when the base to emitter junction is reverse
biased (VCEV), this is the . recommended and specified
use condition. Maximum ICEV at rated VCEV is specified
at a relatively low reverse bias (1.5 Volts) bath at 250 C
and lOOoC. Increasing the reverse .bias will give some
improvement in device blocking capability.
The sustaining or active region voltage requirements
in switching applications occur during turn-on and turnoff. If the load contains a significant capacitive component, high current and voltage can exist simultaneously
during turn-on and the pulsed forward bias SOA curves
(Figure 12) are the proper design limits.
For inductive loads, high voltage and current must be
sustained simultaneously during turn-off, in most cases,
with the base to emitter junction reverse biased. Under
these conditions the collecto", voltage must be held to a
safe level at or below a specific value of collector current.
This can be accomplished by several means such as active
clamping, RC snubbing, load line shaping, etc. The safe
level for these devices is specified as VCEX(sus) at a
given high collector current and represents a voltagecurrent condition that can be sustained during reverse
biased turn-off. This rating is verified under clamped
conditions so that the device is never subjected to an
avalanche made.
As shawn on the reverse bias SOA curve in Figure 13,
twa voltage levels are specified, one at the maximum
continuous current level and one near the recommended
operating level so that both normal and fault/transient-

INTRODUCTION
The primary considerations when selecting a power
transistor for switch-mode applications are voltage and
current ratings, switching speed, and energy handling
capability. In this section, these specifications will be
discussed and related to the circuit examples illustrated
in Table 2.(1)

VOLTAGE REQUIREMENTS
Both blocking voltage and sustaining voltage are important in switch-mode applications.
Circuits Band C in Table 2 illustrate applications
that require high blacking voltage capability. In both
circuits the switching transistor is subjected to voltages
substantially higher than Vce after the device is completely off (see load line diagrams at IC = Ileakage '" 0
in Table 2). The blacking capability at this point depends an the base to emitter conditions and the device
junction temperature. Since the highest device capability

(1) For detailed Information on specific switching applications,
see Motorola Application Notes AN-5SB, AN-719, AN·737,
AN-752, AN-767

4-309

2N6542, 2N6543

TABLE 2 - APPLICATIONS EXAMPLES OF SWITCHING CIRCUITS

CIRCUIT

LOAD LINE DIAGRAMS
10A

SERIES SWITCHING
REGULATOR

___ ,
\

~

~~

3

u

A

Vo

~

u

3Ar._"",,=,,

10A

---,,
,

tef
tl
V;~: E-------(L
6

"--::::CTi'--m-e-

3A

,
'1

I
I
I

5A
3Arl~-""'"

~

t

Ie

~I

B

Time

veE

veEO VeEX V E
Collector Voltage C V
RINGING CHOKE
INVERTER

l' ~~:l-"
--

li 5 A i - - - - - ,

~

•

Ie

Forward Bias SOA

"1/

Te = 100°C

c

TIME DIAGRAMS

Pulsed 10lls

Vce+ NIVOI

+ Leakage Spike

I.". .........

--t

Leakage Spike

e

/

Turn-On

V

-'.Vee

veEO VeEX

VeEV

I

•
1 ... __ -

"
'

I

Vee + N IVOI
PUSH.pULL
INVERTER/CONVERTER

10A

Ie

---,,

,,

c

3A,.

L,

:~.......

I

)

.......-:
toff

ton

I

5 A 1-----,

I
I

VCEV
Vec

Ie
~-

........
\

VCC
)

2Vee

10A

SOLENOID DRIVER

o

eEX

Solenoid

,,

3A

1
'I

I
5 Ai-----,
Turn-Off _
3A!-,-___

,

toff

veE

I

V~~l

I

I

• Turn·On

L - -I .. -IJ-+-+-;-t---I-*-+-IIr-+-o
veE V

4-310

r---

,ton

,.
LL___L

t

2N6542, 2N6543

cycle. Typically, forward biased secondary breakdown
(IS/b) is not a problem in switching applications because
of the relatively higher current capability in the forward
biased mode. The forward biased SOA curves provide
adequate information for these conditions.
Reverse biased secondary breakdown (ES/b) is quite
different and a more complex situation from both design
and specification standpoint. The' ES/b rating is intended
to define the amount of energy that the device can
absorb while it is in a reverse biased avalanche mode
(unclamped). The major problems in specifying ES/b are:

conditions can be taken into consideration. In the four
application examples (Table 2) load lines are shown in
relation to the pulsed forward and reverse biased SOA
curves. Note that th~ boundary along the IC = 0 axis
extends to VCEV.
'
In circuits A and D, inductive reactance is clamped by
the diodes shown. In circuits Band C the voltage is
clamped by the output reactifiers, however, the voltage
induced in the primary leakage inductance is not clamped
by these diodes and could be large enough to destroy the
device. A snu bber network or an additional clamp may
be required to limit the leakage spike to < VCEX(sus)
during turn·off and < V CEV after turn·off (i.e. @
IC';;; 'CEV)·
Load lines that fall within the pulsed forward biased
SOA curve during turn·on and within the reverse bias
SOA curve during turn·off are considered safe, with the
following assumptions:

(1)

(2)

(1) The device thermal limitations are not exceeded.
(2) The turn·on time or pulse width does not exceed
10 JlS (see standard pulsed forward SOA curves in
Figure 12),
(3) The base drive conditions are similar to those
specified on the data sheet (See Table 1), i.e.,
VBE(off)';;; 5 V.

Individual device capability can vary by more than
an order of magnitude within the same production
lot.
Energy handling capability is not constant within
the same device family when the test conditions
are changed.

(3)

ES/b testing is often destructive when a device
actually goes into secondary breakdown.

(4)

Some device families exhibit very limited capability
in the avalanche condition.

(5)

Depending on the device and test conditions, some
devices may not reach the avalanche condition
during the test.

For these reasons, the most reliable design approach
is to avoid this mode of operation by clamping or
snubbing the main inductive load component and minimizing leakage inductance whenever possible. The ES/b
specification does provide a boundary condition represented in Figure 7.

CURRENT REQUIREMENTS
An efficient switching transistor must operate at the
required current level with good fall time, high energy
handling capability and low saturation voltage. On this
data sheet, these parameters have been specified at 3
amperes which represents typical design conditions for
these devices. The current drive requirements are usually
dictated by the VCE(sat) specification because the maxi·
mum saturation voltage is specified at a forced gain
condition which must be duplicated or exceeded in the
application to control the saturation voltage.

FIGURE 7 - COLLECTOR CURRENT versus UNCLAMPED
LOAD INDUCTANCE

Ie

Ie

SWITCHING REQUIREMENTS
In many switching applications, a major portion of the
transistor power dissipation occurs during the fall time
(tf). For this reason considerable effort is usually devoted
to reducing the fall time. The recommended way to
accomplish this is to reverse bias the base·emitter junction
during turn.·off. The reverse biased switching character·
istics for inductive loads are discussed in Figure 8 and
Table 3 and resistive loads in Figures 9 and 10. Usually
the inductive load component will be the dominant
factor in switch-mode applications and the inductive
switching data will more closely represent the device
performance in actual application. The inductive switching characteristics are derived from the same circuit used
to specify the reverse biased SOA curves, (See Table 1)
providing correlation between test procedures and actual
use conditions.

Test

h-"7'7"T7...,...,....,..,7"'7.

L Test"" 40,uH = Leffective

Operation with an unclamped inductance is safe within
the shaded area provided the base drive conditions arc
similar to or less· severe than the specified conditions
shown in Table 1, i.e., VBE(off)';;;4V, RSE'" 50nand
LL(VCEX)
Leffective = VCEX -V CC
where LL

=Circuit Leakage Reactance

TEMPERATURE REQUIREMENTS
The important parameters on this data sheet have
been specified at a case temperature of 1000 C to represent a recommended worst case design cond iti on.

SECONDARY BREAKDOWN REQUIRMENTS
Secondary breakdown capability is important in
switching applications because of the turn-on and turnoff conditions that can exist during the switching

4-311

•

2N6542, 2N6543

FIGURE 8 - TURN-OFF WAVEFORM

VCla~p .......

r- CJLLECTO~

J

CURRENT

\

..... ~~.9IC

/\
-\'i-

-

•

Ivr

I \~OLLECTOR
VOLTAGE
\

7

0.1 Vclamp ......
~

\

f-II--

\

/

--

-

"

--

i-- 0•1IC

~21C

>--

°

TABLE 3-INDUCTIVE SWITCHING
PERFORMANCE
IC
(AI

TC
DC

1.0

25
100

3.0

25
100

5.0

25
100

t5
IlS

tv
1'5

0.70 0.22
1.20 0.37
1.10 0.09
1.60 0.42
1.10 0.16
1.70 0.45

tt

tv+1(+tt

tf
1'5
0.21
0.19
0.12
0.19

IlS

IlS

0.23
0.39

0.66
0.95

0.08
0.40

0.29
1.01

0.19
0.37

0.11
0.26

0.46
1.08

Note: All Data Recorded in the Inductive Switching
Circuit Shown in Table 1.

To facilitate volume production testing, maximum
inductive switching limits for these transistors are speci·
fied using conventional measurement techniques, e.g.
ts(maxl is measured from the point where IS1 has de·
creased 10% to the point where Ie has decreased 10%,
and tf(maxl is measured between the 90% and 10% points
on the Ie waveform. In most applications, a large per·
centage of the total device power dissipation occurs
during the fall time and tf is normally used as a figure
- of merit when choosing a device for a switch·mode
application. However, there are two portions of the
turn·off waveform that can add losses and in some Clises
these losses can become a significant portion of the
total device dissipation.
Figure 8 shows an enlarged portion of the inductive
switching waveform during turn·off. The interval labeled
tv is part of the storage time interval (tsl and is defined
as voltage switching time. During this interval the tran·
sistor collector to emitter voltage changes from a satura·
tion level to a level equal to or approaching the clamp
voltage while the collector current has only changed by
10%. Typical values for this time interval at various
current· levels are shown in Table" 3 at 250 e and 1000 e
case temperature.
The time interval labeled tt occurs after the fall time
and appears as a "tail" on the trailing edge of the
collector current waveform. It is measured, for this
discussion, from the 10% point to the 2% point; and
'during this interval the collector to emitter voltage is
equal to the clamp voltage. Typical values for these time
intervals are also shown in Table 3.
Since power dissipation occurs during the total time
period tv + tf + tt and each interval can be affected by
external conditions, some applications may require a
specific analysis in order to accurately predict total
device ~issipation.

RESISTIVE SWITCHING PERFORMANCE
FIGURE 10 - TURN-OFF TIME

FIGURE 9 - TURN·ON TIME
2.0 k
1.0 k

'" ~

700
50

°

;::

.;

100
70
50

30
20
0.01

IdIilVBE 01f)"5.0V

!2.0 k~
w

r7

'" r-....
r-...

~

1.0 k
.; 700
500

I"'-0.05

--

0.1

0.2

~

0.5

1.0

2.0

5.0

100
0.01

IC, COLLECTOR CURRENT (AMPI

0.02

0.05

0.1

0.2

Itl: ~~~C

r--,.

I-'"

0.5

1.0

IC, COLLECTOR CURRENT (mAl

4-312

VCC =250 V
IC/IB =5.0

.......

.....

300
200

........
0.02

Is

3.0 k

~

~ 200

7.0 k
5.0 k

=1=

"

!300

10 k

VCC"250V _
Ic/lB =5.0
TJ"250C

2.0

5.0

10

2N6542, 2N6543

FIGURE 11 - THERMAL RESPONSE
1.0
O. 7 f::O" 0.5



Z

--

30 I----

~

•

I

20

w

r-l

'"~
"ffi

1\

I
5OC

I--

W

u

"
~

"2:

r-TJ-150:;'"

\

[\.

-~ J...-f-"

1\ r--;"

5.0
0.1

>

~

0.5 0.7

1.0

2.0

5.0 7.0

3.0

10

0

\
1\

1\

0.005

0.01

0.02

1.4

-TJ=250C

if
-

"2.w O. 8 -

VBEI..tl @Icll~= 5.0

'"<

!:i

...- .-

t--t-

D. 6-VBE{on)@

I

0.2

ICIIB = 5.0
..;4'2.0

r:r'

1.0
0.5

1.0

2.0

-550C to 250C

3.0

-1.0
-1.5

i

5.0 7.0

10

--- -

25 0 C to 1500 C

~

>-

I

-0.5

I- 8VB for VBE

-2.0
2.5
0.1

0.2

0.3

IC. COLLECTOR CURRENT (AMP)

! 1,03
>z

r--:-

">-~

/

I

1000
700
~ 50 0

10-r
-0.4

-0.2

t-

5 20O

I

~

/

to.4

..... Cob

100

.; 70
0

VCP 250 Vdcto.2

10

Cib

~ 300

u

FORllfARO

II
5.0 7.0

TJ = 25°C

II

t-

<

I - - t---250C

I

3.0

w

/

./

REVERSE

~100

2.0

2000

10 11== f-=750C

:3

1.0

l

C to
1°
,51i.

FfGURE 6- CAPACITANCE

,,
", ,
,,

TJ = 150°C

~ 102 1== F=1250C
13
=
100°C

0.5 0.7

-'

l.-1'

IC. COLLECTOR CURRENT (AMP)

FIGURE 5 - COLLECTOR CUTOFF REGION

104

5.0

2toCtO:l~~

"8VC for VCElsatl

f5

~

I
0.5 0.7

0.3

1.5

w

,....

2.0

I
I

"Applies for IcIIB"; hFEI3

ffi

g;

I

1.0

2.0

:3

TT
0.1

2.5

ffi

i3

VCE~ 3.h.

o. 2-JCE{~t)
0

ell

./' . /

1·1

">>- O. 4

!

V

V

I I
I I

-

FIGURE 4- TEMPERATURE COEFFICIENTS

1. 2

~ 1. 0

r-- r-

~

0.05
0.1
0.2
0.5
lB. BASE CURRENT (AMP)

IC. COLLECTOR CURRENT lAMP)

FIGURE 3 - "ON" VOLTAGE

5.0A

\2-5

0, 8

~ o. 4

"u
0.3

\
1.0 A

IC=0.25A

"t;

7.0
0.2

\

1. 2

I:

a:~

10

TJ= 25°C
1.6

0
20
0.5

to.6

'"
1.0

2.0

5.0

10

20

50

YR. REVERSE VOLTAGE (VOLTS)

VBE. BASE EMITTER VOLTAGE (VOLTS)

4-316

100

200

500

2N6544, 2N6545

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE
vceOllusl

.
z

~E
zO

-15
u

RESISTIVE
SWITCHING

VCEXlsusl AND INDUCTIVE SWITCHING
D,ive Circuit
+4V

PW-db-

oJ"L

·--r

-4V

Set +Vin to Obtain 8 Forced
hFE '" 5 and Adjust PW to
Attain Specified Peak Ie.

PW Varied to Attam
'C"'100mA

Duty Cycle or;: 3"
f -1

L Col l=80mH VCC=10V

Rcoil" 0.7 n

kH~

'-If-~J\N

Leoll" 180 ""

.

__+O -5 V

Ie· SA

pw.., 1001'S
tre;; 5ns
t,< 50nl
Duty Cycle" 2%

012N6408 Q3 2N5875
022N6406 042N5871
Diodes 1N4933

Reoil .. 0.05 n

Vee" 250 V

Vclamp - Rated VCEX Value

RL -50 n
01 = 1N5820orEquIY.

Vee" lOV

Vclamp (Unclampedl

Rs" 12 n

INDUCTIVE TESTCIRCUlT

RESISTIVE TEST CIRCUIT

OUTPUT WAVEFORMS

t,C1amped

11 Adjusted to
Obtain Ie

'C

'~.TUT
"L

2

1
~

01

..:=.,.Vee

J,
..sV -=-

Vee
Telt EqUipment

Scope - Tektronix
475 or EquIValent

DESIGNERS INFORMATION FOR APPLICATIONS
" AND SWITCHMODE SPECIFICATIONS
occurs when the base to emitter junction is reverse
biased tv CEV), this is the recommended and specified
use condition. Maximum ICEV at rated VCEV is specified
at a relatively low reverse bias (1.5 Volts) both at 250 C
and lOOoC. Increasing the reverse bias will give some
improvement in device blocking capability.
The sustaining or active region voltage requirements
in switching applications occur during turn-on and turn·
off. If the load contains a significant capacitive com·
ponent, high current and voltage can exist simultaneously
during turn·on and the pulsed forward bias SOA curves
(Figure 12) are the proper design limits.
"
For inductive loads, high voltage and current must be
sustained simultaneously during turn-off, in most cases,
with the base to emitter junction reverse biased. Under
these conditions the collector voltage must be held to a
safe level at or below a specific value of collector current.
This can be accomplished by'several means such as active
clamping, RC snubbing, load line shaping, etc. The safe
level for these devices is specified as VCEX(sus) at a
given high collector current and represents a voltagecurrent condition that can be sustained during reverse
biased turn-off. This rating is verified under clamped
conditions so that the device is never subjected to an
avalanche mode .•
As shown On the reverse bias SOA curve in Figure 13,
two voltage levels are specified, one at the maximum
continuous current level and one near the recommended
operating level so that both normal and fault/transient

INTRODUCTION
The primary considerations when selecti ng a power
transistor for switch-mode applications are voltage and
current ratings, switching speed, and energy handling
capability. In this section, "these specifications will be
discussed and related to the circuit examples illustrated
in Table 2.(1)

VOLTAGE REQUIREMENTS
Both blocking voltage and sustaining voltage are im·
portant in switch-mode applications.
Circuits Band C in Table 2 illustrate applications
that require high blocking voltage capability. In both
circuits the switching transistor is subjected to voltages
substantially higher than VCC after the device is completely off (see load line diagrams at IC = Ileakage "" 0
in Table 2). The blocking capability at this point de·
pends on the base to emitter conditions and the device
junction temperature. Since the highest device capability

(1) For detailed Information on JPaclfic switching applications.
tea Motorola Application Noles AN-SSa, AN-719. AN-737.
AN-752. AN-767 and Enginaar)ng Bullatln EB-39.

4-317

•

2N6544, 2N6545

TABLE 2 - APPLICATIONS EXAMPLES OF SWITCHING CIRCUITS

CIR.CUIT

LOAD LINE DIAGRAMS
16A

SERIES SWITCHING
REGULATOR

---,

,

Te = 1000 e

c

TIME DIAGRAMS

Pulsed 10 IJS
Forward Bias SOA

'c

SA

l ~1::"k'Oif

")/

~
~

A

Vo

VCC

u
68Ai-----,

~ 5A

•

--

u

....-

,

~
\
. VeEO VeEX

VeEV

'e

Collector Voltage

16A

RINGING CHOKE
INVERTER

---,,
,

l. ,//

SA

,
'1
I
I

le 8A / - - - - ,

:-·"-'-°"--"'-----1

Vee + NIVOI
+ Leakage Spike

I
veEO VeEX

V

Leakage SpIke

V~~: eGE-------fl-.,Vee

VeEV

16A

I

-----,.

\

.,

I

I

I

I

,----- -----

Vee+ N IVOI
PUSH.pULL
INVERTER/CONVERTER

'off

/

I
B

I

Time

,Turn.On
•
- ....

t;

,,
)

c

I

veE

I

Ie 8A

~

veeQ

I

VCEV
2VCC

o

I

--~

VCC

Solenoid

Ie 8 A 1 - - - - - ,
Turn-Off

SAI!---I_ _

,,

,

SIA

: ----

L.

(----

,

I ton

....

veE

I
I
I

I.

A Turn-On
' - - - I ...

I

'e

16A

SOLENOID DRIVER

• Vee

-,.I+--+--,.t--l-+_'.--tVCEV

~318

toff

'''~--~.

2N6544,2N6545

cycle. Typically, forward biased secondary breakdown
(IS/b) is not a problem in switching applications because
of the relatively higher current capability in the forward
biased mode. The forward biased SOA curves provide
adequate information for these conditions.
Reverse biased secondary breakdown (ES/b) is quite
different and a more complex situation from both design
and specification standpoint. The ES/b rating is intended
to define the amount of energy that the device can
absorb while it is in a reverse biased avalanche mode
(unclamped). The major problems in specifying ES/b are:

conditions can be taken into consideration. In the four
application examples (Table 2) load lines are shown in
relation to the pulsed forward and reverse biased SOA
curves. Note that the boundary dlong the IC = 0 axis
extends to VCEV.
In circuits A and D, inductive reactance is clamped by
the diodes shown. In circuits Band C the voltage is
clamped by the output reactifiers, however, the v.oltage
induced in the primary leakage inductance is not clamped
by these diodes and could be large enough to destroy the
device. A snubber network or an additional clamp may
be required to limit the leakage spike to < VCEX(5US)
during turn·off and < VCEV after turn·off (i.e. @
IC';;; ICEV)·
Load lines that fall within the pulsed forward biased

(1)

(2)

SOA curve during turn-on and within the reverse bias

SOA curve during turn·off arc considered safe, with the
following assumptions:
(1) The device thermal limitations are not exceeded.
(2) The turn-on time or pulse width does not exceed
10 f,ls (see standard pulsed forward SOA curves in
Figure 12).
(3). The base driv'e conditions are similar to those
specified on the data sheet (See Table 11. i.e.,
VBE(off)';;; 5V.

SECONDARY BREAKDOWN REQUIRMENTS
Secondary breakdown capability is important in
switching applications because of the turn-on and turnoff conditions that can exist during the switching

(3)

ES/b testing is often destructive when a device
actually_goes into second~ry breakdown.

(4)

Some device families exhibit very limited capability
in the avalanche condition_

(5)

Depending on the device and test conditions, some
devices may not reach the avalanche condition
during the test.

For these reasons, the most reliable design approach
is to avoid this mode of operation by clamping or
snubbing the main inductive load component and minimizing leakage inductance whenever possible. The ES/b
specification does provide a boundary condition represented in Figure 7.

CURRENT REQUIREMENTS
An efficient switching transistor must operate at the
required current level with good fall time, high energy
handling capability and low saturation voltage. On this
data sheet, these parameters have been specified at 5
amperes which represents typical design conditions for
these devices. The current drive requirements are usually
dictated by the VCE(sat) specification because the maximum saturation voltage is specified at a forced gain
condition which must be duplicated or exceeded in the
application to control the saturation voltage.
SWITCHING REQUIREMENTS
In many switching applications, a major portion of the
transistor power dissipation occurs during the fall time
(tf). For this reason considerable effort is usually devoted
to reducing the fall time. The recommended way to
accomplish this is to reversa bias the base-emitter junction
during turn-off_ The reverse biased switching characteristics for inductive loads are discussed in Figure 8 and
Table 3 and resistive loads in Figures 9 and 10. Usually
the inductive load component will be the dominant
factor in switch-mode applications and the inductive
switching data will more closely represent the device
performance in actual application. The inductive switching characteristics are derived from the same circuit used
to specify the reverse biased SOA curves, (See Table 1)
providing correlation between test procedures and actual
use conditions.

Individual device capability can vary by more than
an order of magnitude within the same production
lot.
Energy handling capability is not constant within
the same device family when the test conditions
are changed.

FIGURE 7 - COLLECTOR CURRENT versus UNCLAMPEO
LOAO INDUCTANCE

'C

L Test ". 40 jJH = Leffectlve

Operation with an unclamped inductance is safe within
the shaded area provided the base drive conditions are
similar to or less severe than the specified conditions
shown in Table 1, i.e., VeE (off) .;;; 4 V, ReE" son and
LL(VCEX)
Leffective = VCEX-VCC
where LL = Circuit Leakage Reactance
TEMPERATURE REQUIREMENTS
The important parameters on th is data sheet have
been specified at a case temperature of 1000 C to represent a recommended worst case design condition ..

4-319

•

2N6544, 2N6545

To facilitate volume production testing, maximum
inductive switching limits for these transistors are speci·
fied using conventional measurement techniques, e.g.
ts(max) is measured from the point where IB1 has de·
creased 10% to the point where Ie has decreased 10%,
and tfl max) is measured between the 90% and 10% points
on the Ie waveform. In most applications, a large per·
centage of the total device power dissipation occurs
during the fall time and tf is normally used as a figure
of merit when choosing a device for a switch· mode
application. However, there are two portions of the
turn·off waveform that can add losses and in some cases
these losses can become a significant portion of the
total device dissipation.
Figure 8 shows an enlarged portion of the inductive
switching waveform during turn·off. The interval labeled
tv is part of the storage time interval (t s ) and is defined
as voltage switching time. During this interval the tran·
sistor collector to emitter voltage changes from a satura·
tion level to a level equal to or approaching the clamp
voltage while the collector current has only changed by
10%. Typical values for this time interval at various
current levels are shown in Table 3 at 2So e and lOOoecase temperature.
The time interval labeled tt occurs after the fall time
and appears as a "tail" on the trail ing edge of the
collector current waveform. It is measured, for this
discussion, from the 10% point to the 2% point; and
during this interval the collector to emitter voltage is
equal to the clamp voltage. Typical values for these time
intervals are also shown in Table 3.
Since power dissipation occurs during the total time
period tv + tf + tt and each interval can be affected by
external conditions, some applications may require a
specific analysis in order to accurately predict total
device dissipation.

FIGURE 8 - TURN-OFF WAVEFORM

r-

J

cJCURRENT
LLECTO ~

VCI'~P\

\

-... r~·9IC

•

/\
-\.,- -"--

f-

Ivf-

\

0.1 Vcl,mp

\

/

•. \-,COLLECTOR
VOLTAGE

V

r-...

0

"

--

t-

... O.IIC
~21C

r-0

TABLE 3-INOUCTIVE SWITCHING PERFORMANCE

IC

TC

"c

,ts..

tv

Amps

jIJ

jIJ

jIJ

jIJ

3.0

25
100

0.94
1.40

0.09
0.30

0.14
0.44

0.10
0.06

0.33
0.80

5.0

25
100

1.20
1.90

0.45
1.00

25
100

1.60
1.80

0.18
0.45
0.12
0.17

0.10
0.05

8.0

0.17
0.50
0.27
0.57

0:09
0.30

0.48
1.04

If

tt

tv+lf+tt

Note: All Data Recorded'in the Inductive Switching
Circuit Shown in Table 1:

RESISTIVE SWITCHING PERFORMANCE
FIGURE 9 - TURN·ON TIME

2.0 k
1.0 k
700
500

"'"' ~

VCC = 250V _
IC/ls = 5.0
TJ= 250 C.

==

"

~ 200

0
20
0.01

Id@lVSEoff)=5.0V

1/

r-.....

"' I'...

"'~ 1.0 k

........

~If

I\..

.; 700
500

..........
0.05 0.1
0.2
0.5
1.0
IC, COLLECTOR CURRENT lAMP)

r.,..-

......

300

0.02

1'1: ~~~c.

-.;;;;:

!2.0 k '

~

;::

100
0
0

VCC=250V
Iclla =5.0

"

.

3.0 k

]300
.;

FIGURE 10 - TURN·OFF TIME

10 k
7.0 k
5.0 k

""'"

200

I"--r-.
2.0

5.0

100
0.01 . 0.02

0.05

0.1

0.2

0.5

1.0

IC, COLLECT.OR CURRENt (mA)

4-320

2.0

5.0

10

2N6544, 2N6545

FIGURE 11 - THERMAL RESPONSE

10
0.7
0.5

=1=

ROJcl., ~ rl., ROJC
ROJC - 1.4 0CIW Max - t . D CURVES APPL Y FOR PDWERIPULSE TRAIN SHOWN
READ TIME AT 11
llTJlpkl-TC' ~Ipkl ROJCltI

t=

~

0.3

+-

~

0.2

t:;;

D ~ 0.5

o. I
;"""l

0.0 7
0.05

-'"

0.03
0.02
0.0 1
0.02 0.03

01

0.05

--fill
== t:::
~
l
-

D.2

0.1
0.05
0.02
001
SINGLE PULSE

.~

02

0.3

P kl

r--

~'~j

I-

=

~

DUTY CYCLE. D ~ 11/'2 -

I-

I I I IIIIIII

0.5

1.0

2.0

3.0

5.0

10

20

30

50

100

200

300

500

1000

2000

t. TIME Imsl

FIGURE 13 - REVERSE BIAS SAFE
OPERATING AREA

FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA

20
10
0: 5.0

1O.,-t'OO .,

,.

~

...

1.0
0.5

e
a:

1

0.2
0.1

I'S

de t-

2.0

ffi

a'"'"

10

1.0ms

0.5~1=;

~ 8.0
~

...

5.0ms

ffi

~

~I-

:::j 0.05:::::
c
-_

"'.0.02 _.
:: 0.01

a

Tc ~ 25 0 C
- BONDING WIRE LIMIT
THERMAL LIMIT
ISING LE PU LSEI
SECOND BREAKDOWN LIMIT

6.0

I
hRN tiFF LDlD L1rJ
BOUNOARY FOR 2N6545.
FOR 2N6544. VCEO AND
100 VOLTS, LESS.

VCEX~E

'"

~ 4.0

0.005 C'URVES APPLY BELOW RATED VCEO "H
0.002
5.0 7.0 10
20
30
50 70 100

1

8 I- VBE(oll) .;; 5.0 V
E 2.0 TC';; 1000C

2N6544
2N6545
200

300

500

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

VCEX(sus)

4.5A

c

o
o

VCEO(sus)
VCEXlsu,)
1

100
200
300
400
VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

500

FIGURE 14 - POWER DERATING

100

~

~

0

I--

THERMAL
DERATING

0

--

~

r-.,.

SECDND BR~AKDO~N_
t-DERATING

r----..

r--.....

t"-.
I',
'r-.,.

0

......

0

o

o

40

00

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 12 is based on TC = 250 C; TJ(pk)
is variable depending on power level. Second breakdown'
pulse limits are valid for duty cycles to 10% but must be
derated when TC;;' 250 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 12 may be found
at any case temperature by using the appropriate curve on
Figure 14.
TJ(pk) may tre calculated from the data in Figure 11.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown. Use of reverse
biased safe operating area data (Figure 13) is discussed in
the designe~'s appl ication section.

UO

--

f'....

'" "r-..I"
100

200

TC. CASE TEMPERATURE 10C)

4-321

2N6546
2N6547

Designers Data Sheet

•

15 AMPERE
NPN SILICON
POWER TRANSISTORS

SWITCHMODE SERIES
NPN SILICON POWER TRANSISTORS

300 and 400 VOLTS
175 WATTS

The 2N6546 and 2N6547 transistors are designed for high·voltage,
high·speed, power switching in inductive circuits where fali time is
critical. They are particularly suited for 115 and 220 volt line op·
erated switch·mode applications such as:

Designer's Data for
"Worst Case" Conditions
The Designers Data Sheet per·
mits the design of most circuits
entirely from the information pre·
sented. Limit data - representing
device characteristics boundaries are given to facil itate "worst case"
design.

• Switching Regulators
• PWM Inverters and Motor Controls
• Solenoid and Relay Drivers
• Deflection Circuits
Specification Features Hi~h Temperature Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

~

:
"MAXIMUM RATINGS
Symbol

2N6546

2N6547

COllector-Emitter Voltage

VCeO(susl

300

400

Unit
Vdc

Collector-Emitter Voltage

VCEX(susl

350

450

Vdc

Vcev

650

850

Rating

Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
- Peak (1)
Base Current - Continuous
-Peak (11

Vdc

-F-

VeB

9.0

Vdc

r--J-

IC
ICM

15
30
10
20

Adc

l0l'x/ ~

IB
IBM

Adc

Ie
IEM

25
50

Adc

Total Power Dissipation @TC = 250 C
@TC= 100°C

Po

175
100
1.0
-65 to +200

Watts

T J,T stg

1

DIM

Characteristic
Thermal Resistance, Junction to Case

Maximum Lead Temperature for Soldering
Purposes: 118" from Case for 5 Seconds

Symbol

Max

Unit

A8JC

1.0

°C/W

TL

275

°c

·'ndicates JEDEC Registered Data

•
B
C
D
E
F

G
H
J
K

0
R

=5 ms, Duty Cycle .. 10%.

'oW

~./

MILLIMETERS
MIN
MAX

-

6.35
0.97

-

29.90
10.67
5.21
16.64
11.18
3.84

-

39.37
22.23
11.43
1.09
3.43
30.40
11.18
5.72
17.15
12.19
4.119
26.67

INCHES
MIN MAX

-

0.250
0.038

-

1.177
0.420
0.2115
0.655
0.440
0.151

-

CASE 11·03
TO·3

4-322

G

STYLE 1:
PIN t. BASE
2.EMIITER
CASE, COLLECTOR

°c

THERMAL CHARACTERISTICS

1

t~~vQ

•

\

WloC

Temperature Range

(11 Pulse Test: Pulse Width

I

H

Emitter Current - Continuous
- Peak (1)

Derate above 2SoC
Operating and Storage Junction

JF"~'
[;\4;,]=,

t.550
0.875
0.450
0.043
0.135
1.197
0.440
0.225
0.675
0.480
0.161
1.050

I

R

2N6546, 2N6547

'ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwISe noted.!

I

Characteristic

Max

SymbOl

Unit

OFF CHARACTERISTICS (1)

Collector-Emitter Sustaining Voltage (Table 1)

VOC

VCEO(sus)
300
400

-

2N6546
2N6547

350
450

2N6546
2N6547

200
300

-

-

1.0
4,0

2N6546
2N6547

(lC=100mA,IB=0)

Collector-Emitter Sustaining Voltage ITable 1. Figure 13)

~(lC = 8.0 A, Vcl amp = Rated VCEX, TC = 100°C)
lic = 15 A, Vcl amp = Rated VCEO -100 V,
TC = 100°C)

Vdc

VCEXlsus)

Collector Cutoff Current

rfi»;lfc

CEV

IVCEV = Rated Value, VBE(oll) = 1.5 Vdc)
(VCEV = Rated Value, VBE(olf) = 1.5 Vdc, TC = 100°C)

Collector Cutoff Current
(VCE. = Rated VCEV, RBE = 50

5.0

mAOC

-

1.0

mAde

12
6.0

60
30

-

1.5
5.0
2.5

ICER

n, TC = 100°C)

Emitter Cutoff Current

lEBO

(VEB = 9.0 Vdc, IC = 0)
SECOND BREAKDOWN

Second Breakdown Collector Current with base forward biased
t = 1.0 s (non-repetitive) (VCE = 100 Vde)
ON CHARACTERISTICS (1)

DC Current Gain
lic
(lc

Collector-Emitter Saturation Voltage
lic = 10 Adc, IB = 2.0 Adc)
(lc = 15 Adc, IB = 3.0 Ade)
lic = 10 Adc, IB = 2.0 Ade, Tc = 100°C)

VCE(satl

Base-Emitter Saturation Voltage

VBE(sat)

lic
lic

= 10 Adc,

=

IB
10 Adc, IB

-

hFE

=5.0 Adc, VCE = 2.0 Vdc)
=10 Adc, VCE = 2.0 Vdc)

VOc

-

Vde

-

= 2.0 Ade)
= 2.0 Adc, TC = l000C

-

1.6
1.6

IT

6.0

~8

I,;ob

125

500

P

-

0.05

I'S

-

1.0

I'S

DYNAMIC CHARACTERISTICS

Current-Gain Bandwidth Product
(lc = 500 mAde, VCE = 10 Vde, ' test = 1.0 MHz)
uutput I,;apac'tanee
IVCB = 10 Vde, IE = 0, I test = 1.0 MHz)

MHz

SWITCHING CHARACTERISTICS

Resistive Load (Table
Delay Time

1)

= 250 V, IC = 10 A,

Id

IBI = 182 = 2.0 A, tp= 1001's,
Duty Cycle .. 2.0%)

ts

4.U

I'S

tf

0,7

I'S

(VCC

Rise Time
Storage Time

tr

Fall Time
Inductive Load, Clamped nable 11

Storage Time
Fall Time

I

Storage Time
Fall Time

I

(lC = 10 A(pk), Vcl amp = Rated VCEX, IBI =2.0 A.
VBE(off) = 5.0 Vde, TC - l00 0 C)

I

ts

I

I

tf

I

-

-

I
1

5.0
1.5

I'S

1

I'S

Typical
(lC = 10 A(pk), Vel amp = Rated VCEX, IBI =2.0 A,
VBEloff) = 5.0 Vdc, TC = 25°C)

2.0

ts

I

"Indicate. JEDEC Registered Data.
11) Puse Test: Pulse Width = 300 I'S, Duty Cycle = 2%.

4-323

tf

1

0.09

I'S

I

I'S

2N6546, 2N6547

DC CHARACTERISTICS
FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE', - DC CURRENT GAIN
~ 2.0

100

50

z

""j-...

:;;:

2~OC
I

to

•

~
8

30

20

c

w

~

t-....

"-'-

I

u

I"

'"~

r-..I'\

~

~

~
U:'

~

7.0
5.0
0.2

0.3

0.5

'I IIII
1.0

IC: 2.0A

1. 2

.tl

5.0

7.0

>

20

en

1.0

'l

I
I
I

-

.!VBEI"II@ IclIs: 5.0

w

==

VSElon)@VCE:2.0V

2: 0.8
to

'" 0.6
!:i
c

>

>~

0.4

0.2 -

!

.h

c

:;

.

~

-TJ:2S0 C

I
I

I

I I 11111

I

I '-1111_1

-

~w

i-"'"

100-

0
0.07 0.1

0.2

0.3

U

0.3

0.5

1.0

2.0

1.5

lJ-

-0.5

~

5.0 7.0

10

-1.5

103

'"
a

1== r=: TJ :ISO'C

102

12S'C
1000C

10 I

0.5 0.7

3000

fi"REVERSE
25'C
~
-0.2

10

20

/
0
0

I

./

/

1/

t---....

0

10-1
-0.4

5.0 7.0

Cib

I

1:=

3.0

TJ: 2S'C-

1"--

2000

75'C

10 0li==

2.0

1.0

FIGURE 6 - CAPACITANCE

c

~

I I II

II
0.3

IC. COLLECTOR CURRENT lAMP)

I

/

!

.~

-550C to 2SOC

-I--

5000

f== VCE: 250 V

'"

V

evs l.rVOE

-

-2.5
0.2

20

/

2SJCto~

'"

;;

7

[7

-55'C ,. 2S'C

FIGURE 5 - COLLECTOR CUTOFF REGION

~

5.0 7.0

2t C,' 't0oc

'evc '.rVCEI",)

IC. COLLE~TOR CURRENT lAMP)

104

3.0

ITT}

II

1.0

i-2.a

3.0

-

II r
111

.1 .1 I 1.1 III

- 'iPP"j' 'I' InB.; hFEI3

~ -1.0

~

I

0.2

2.0

w

'"
i=

.-!-

o

2.0

1.0

8

./

VCEI"I)@ ICIIS: 5

0.5 0.7

FIGURE 4 - TEMPERATURE COEFFICIENTS
2.5

$ 0.5

-I-

I

I-

IS. BASE CURRENTIAMP)

FIGURE 3 - "ON" VOL TAGE

1.2

I
- I~A ~

I\,

IC. COLLECTOR CURRENT lAMP)

1.4

II

\

\

_ O. 4

10

IDA-

5.0A-

g

.......

3.0

I--

D.8

c

VCP 2.0 V
I VC1E - 10iV
2.0

'"

1\"

1-

0

1.6

~

-SSoC

.ll"

I

'jJ:25'C

c
2:

TJ-ISOOC

70

fORWARD

+0.2

+0.4

100
70
50
0.5

+D.6

1.0

2.0

5.0

10

r--.t-20

Cob

50

100

VR. REVERSE VOLTAGE (VOLTS)

VSE. SASE.£MITTERVDLTAGE (VOLTS)

4--324

200

500

2N6546, 2N6547

TABLE 1 - TEST CONDITIONS FOR DVNAMIC PERFORMANCE
VCEOlsus)

RESISTIVE
SWITCHING

VCEXI'Sud AND INDUCTIVE SWITCHING
+V,t'i

Drive Circuit
>4V

"'Z

.. 0

~E

,,0

-z

8

~t

+Vin to ObtaIn a Forced
hFE '" 5 and Adjust PW to
Attain Specified Peak Ie.

PW VarIed to Analn
Ie" 100mA

5u....~
~~

01 2N6408
022N6400

t" 1 kHz

PW"" 1001&1

032N5875
04 2N5877

Sns
If" 50 nl
Duty Cycle';; 2%
tl"';;

Diodes 1N49l3

so ,LIH

LeOrl - 80 mH V'Cc" 10 V

Lc:oil '" 1

Rcoll ' 07 H
Vctamp !Unc1ampedl

Reoll '" 0.05 u

INDUCTIVE TEST CIRCUIT

~

DutY Cycle ... 3%

IC·10 A

~1r~~~--~-5V

Vec- 25DV

Vclamp '" Rated VCEX Value

RL" 26n
01"" 1N5820 or Equlv.
RO .. en

Vee =20V

OUTPUT WAVEFORMS

t,

Clamped

RESISTIVE TEST CIRCUIT
1, Adjusted to
Obtain Ie

5

'~eTUT
RL

1-

2

u

a:

U

E
..

~1

-=- Vee
-5V

-=

TeS1 Equlpmlfnt

Scopo - Tolctroni.ll'
4750' Equ,val"nl

DESIGNERS INFORMATION FOR APPLICATIONS
AND SWITCHMODE SPECIFICATIONS
occurs when the base to emitter junction is reverse
INTRODUCTION
biased (VeEV). this is the recommended and specified
use condition. Maximum ICEV at rated VeEV is specified
The primary considerations when selecting a power
at a relatively low reverse bias (1.5 Volts) both at 250 e
transistor for switch-mode applications are voltage and
and lOOoe. Increasing the reverse bias will give some
current ratings, switching speed, and energy handling
improvement in device blocking capability.
capability. In this section, these specifications will be
The sustaining or active region voltage requirements
discussed and related to the circuit examples illustrated
in switching applications occur during turn-on and turnin Table 2.(1)
off. If the load contains a significant capacitive component, high current and voltage can exist simultaneously
during turn-on and the pulsed forward bias ·SOA curves
VOLTAGE REOUIREMENTS
(Figure '12) are the proper design limits.
For inductive loads, high voltage and current must be
Both blocking voltage and sustaining voltage are imsustained simultaneously during turn-off, in most cases,
portant in switch-mode applications.
with the base to emitter junction rev~rse biased. Under
Circuits Band C in Table 2 illustrate applications
these conditions the collector voltage must be held to a
that require high blocking voltage capability. In both
safe level at or below a specific value of collector current.
circuits the switching transistor is subjected to voltages
This can be accomplished by several means such as active
substantially higher than Vce after the device is comclamping, RC snubbing, load line shaping, etc. The safe
pletely off (see load line diagrams at Ie = Ileakage "" 0
level for these devices is specified as VCEX(sus) at a
in Table 2). The blocking capability at this point de·
given high collector current and represents a voltagepends on the base to emitter conditions and the device
current condition ·that can be sustained during reverse
junction temperature. Since the highest device capability
biased turn-off. This rating is verified under clamped
conditions so that the device is never subjected to an
avalanche mode.
As shown on the reverse bias SOA curve in Figure 13,
two voltage levels are specified, one at the maximum
111 Far detailed information on .peclflc switching appllcetions,
continuous current level and one near the recommended
lee Motorola Application Note. AN-5SB, AN-719, AN-737,
operating level so that both normal and fault/transient
AN-752, AN-767

4-325

•

2N6546, 2N6547

CIRCUITS
TABLE 2 - APPLICATIONS EXAMPLES OF SWITCHING
.

CIRCUIT

LOAD LINE DIAGRAMS

SER IES SWITCHING
REGULATOR

-

-

-

,

o

Te=lOO e

" 1/
,

I

A

II

TIME DIAGRAMS

Pulsed 10 lotS
Forward Bias SOA

Reverse Bias SOA

:/
RINGING CHOKE
INVERTER

Ie

-- --.,

lOA

"
Vee

lh

'1

~/

I
I

B

toff.

r~~~

I

__ ,

leakage Spike

/

Vee + N (Vo)

Ie

30 A

ve~Evee

c

Q

I

Vee
•

<

I

~

30A

- ---..,
,,

....

I
D

lelSA

----

Ie
10 A

II

veEV

,.

.

,

I

!<.ot

2N6546,2N6547

cycle. Typically. forward biased secondary breakdown
(IS/b) is not a problem in switching applications because
o! the relatively higher current capability in the forward
biased mode. The forward biased SOA curves provide
adequate information for these conditiom.
Reverse biased secondary breakdown (ES/b) is quite
different and a more complex situation from both design
and specification standpoint. The ES/b rating is intended
to define the amount of energy that the device can
absorb while it is in a reverse biased avalanche mode
(unclamped). The major problems in specifying ES/b are:

conditions can be taken into consideration. In the four
application examples (Table 2) load lines are shown in
relation to the pulsed forward and reverse biased SOA
curves. Note that the boundary along the IC = 0 axis
extends to VCEV.
In circuits A and D. inductive reactance is clamped by
the diodes shown. In circuits Sand C the voltage is
clamped by the output reactifiers. however. the voltage
induced in the primary leakage inductance is not clamped
by these diodes and could be large enough to destroy the
device. A snubber network or an additional clamp may
be required to limit the leakage spike to < VCEX(sus)
during turn·off and < VCEV. after turn·off (Le. @
IC~ ICEV).
Load lines that fall within the pulsed forward biased
SOA curve during turn·on and within the reverse bias
SOA curve during turn·off are considered safe. with the
following assumptions:

(1)

(2)

(1) The device thermal limitations are not exceeded.
(2) The turn·on time or pulse width does not exceed
lOlls (see standard pulsed forward SOA curves in
Figure 12).
(3) The base drive conditions are similar to those
specified on the data sheet (See Table 11. i.e .•
VBE(off) ~ 5 V.

Individual device capability can vary by more than
an order of magnitude within the same production
lot.
Energy handling capability is not constant within
the same device family when the test conditions
are changed.

(3)

ES/b testing is often destructive when a device
actually goes into secondary breakdown.

(4)

Some device families exhibit very limited capability
in the avalanche condition.

(5)

Depending on the device and test conditions. some
devices may not reach the avalanche condition
during ~he test.

For these reasons. the most reliable design approach
is to avoid this mode of operation by clamping or
snubbing the main inductive load component and mini·
mizing leakage inductance whenever possible. The ES/b
specification does provide a boundary condition repre·
sented in Figure 7.

CURRENT REQUIREMENTS
An efficient switching transistor must operate at the
required current level with good fall time. high energy
handling capability and low saturation voltage. On this
data sheet. these parameters have been specified at 10
amperes which represents typical design conditions for
these devices. The current drive requirements are usually
dictated by the VCE (sat) specification because the maxi·
mum saturation voltage is specified at a forced gain
condition which must be duplicated or exceeded in the
application to control the saturation voltage.

FIGURE 7 - COLLECTOR CURRENT versus UNCLAMPED
LOAD INDUCTANCE

Ie
ES/b': 2.0 mJ

'eT est 1n77"7:T777"r.rlil

SWITCHING REQUIREMENTS
In many switching applications. a major portion of the
transistor power dissipation occurs during the fall time
(tt). For this reason considerable effort is usually devoted
to reducing the fall time. The recommended way to
accomplish this is to reverse bias the base·emitter junction
during turn·off. The reverse biased switching character·
istics tor inductive loads are discussed in Figure 8 and
Table 3 and resistive loads in Figures 9 and 10. Usually
the inductive load component will be the dominant
factor in swit~h·mode applications and the inductive
switching data will more closely represent the device
performance in actual application. The inductive switch·
ing characteristics are derived from the same circuit used
to specify the reverse biased SOA curves. (See Table 1)
providing correlation between test procedures and actual
use conditions.

L Test'" 40 #H

-=

Leftectlve (

Operation with an undamped inductance is safe within
the shaded area provided the base drive conditions are
similar to or less severe than the specified conditions
shown in Table 1. Le .. VSE(off)" 4 V. RSE;;' 50.lt and
LL(VCEX)
Lefteclive = VCEX-VCC
where LL = Circuit Leakage Reactance
TEMPERATURE REQUIREMENTS
The important parameters on this data sheet have
been specified at a case temperature of 1000C to repre·
sent a recommended worst case design condition.

SECONDARY BREAKDOWN REQUIRMENTS
Secondary breakdown capability is important in
switching applications because of the turn·on and turn·
off conditions that can exist during the switching

4-327

II

2N6546, 2N6547

To facilitate volume production testing. maximum
inductive switching limits for these transistors are speci·
fied using conventional measurement techniques. e.g.
tslmax) is measured from the point where IBl has de·
creased 10% to the point where Ie has decreased 10%.
and tflmax) is measured between the 90% and 10% points
on the Ie waveform. In most applications. a large per·
centage of the total device power dissipation occurs
. during the fall time and tf is normally used as a figure
of merit when choosing a device for a switch·mode
application. However. there are two portions of the
turn·off waveform that can add losses and in some cases
these losses can become a significant portion of the
total device dissipation.
Figure 8 shows an enlarged portion of the inductive
switching waveform during turn·off. The interval labeled
tv is part of the storage time interval Itsl and is defined
as voltage switching time. During this interval the tran·
sistor collector to emitter voltage changes from a satura·
tion level to a level equal to or approaching the clamp
voltage while the collector current has only changed by
10%. Typical values for this time interval at various
current levels are shown in Table 3 at 250 e and lOOoe
case temperature.
The time interval labeled tt occurs after the fall time
and appears as a "tail" on the trailing edge of the
collector current waveform. It is measured. for this
discu~sion. from the 10% point to the 2% point; and
during this interval the collector to emitter voltage is
equal to the clamp voltage. Typical values for these time
intervals are also shown in Table 3.
.
. Since power dissipation occurs during the total time
period tv + tf + tt and each interval can be affected by
external conditions. some applications may require a
specific analysis in order to accurately predict total
device dissipation.

FIGURE 8 - TURN-OFF WAVEFORM

I
Vcl.mp """'\

_I

,..... CJLLECTOb
CURRENI

\

-,..... ~~9IC

•

I ,COLLECTOR
VOLTAGE
\

.0

0.1 Vclamp

'

'.....

/\
r-\'!-

'vr

f/

/

VO.
"'
r-

IIC

~IC

-

1--

1--',-

\

I--

TABLE 3-INDUCTIVESWITCHING
PERFORMANCE
IC
Amps

TC
DC

3.0

25
100

to

"I
1.30

5.0

25
100

2.10
1.60
2.40

10

25
100

2.00
2.50

tv

t,

III

III

0.17
0.25
0.08
0.16
0.09
0.16

0.05
0.08
0.1)4
0.08
0.09
0.20

tt

tv+t,+tt

0.20
0.25
0.08
0.23
0.20
0.13

0.42
0.58
0.20
0.48
0.38
0.49

"I

"I

Note: All Data Recorded in the Inductive Switching
Circuit Shown in Table 1.

RESISTIVE SWITCHING PERFORMANCE
FIGURE 10 - TURN-OFF TIME

FIGURE 9 - TURN·ON TIME
3.0 k
2.0 k

Vec=250V
lellB = 5.0
TJ·250 C

tr

"

1.0 k
700
500

10 k
7.0 k
. 5.0 k

-

-

3.0 k '
2.0k

~

"

..;:100

:E

;: 200

I-

~.

3D
0.02

181.=182
TJ' 250 C

~
;;; 1.0 k

!w3DD
-10Of0
0

I~R~:~~gv

I,

Ii

., 500

tdl!l VBElolf) = 5.0V

" r-.

300

200

V

100

0.5

0.1

0.2

0.5

1.0

2.0

5.0

10

0.02

20

0.05

0.1

0.2

0.5

1.0

2.0

IC. COLLECTOR CURRENT lAMP)

IC. COLLECTOR CURRETN lAMP)

4-328

5.0

lP

20

2N6546, 2N6547

FIGURE 11 - THERMAL RESPONSE

~
:0

0
7
O. 5

""~
~

O. 3

~

O. 2

o • 0.5
02

r01

in
~

~

01
;i 0.0 7 - 005
~ 00 5 - 002
;: 00 3
00 2"";"

a

~
~ 00 1""'....
001

w-:::-

n

-

f-:

~

P(pkl

tSLrL
-r~~

V

TJlpkl - TC' Plpkl ZOJCIII

OUTY CYCLE, 0 • .,112

SliGiErW\

002

ZnJCIII' rltl ROJC
ROJC • 1.0 0 CIW Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
~EAO TIME AT.,

005

IIIII

01

05

02

20

1.0

I I

10

50

I I 1111'11

20

50

I I

100

I

I I III

200

500

10k

t. TIME (ms)

FIGURE 13 - REVERSE BIAS SAFE
OPERATING AREA

FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA
0
10 ns
0
0
!5 5. 0

100".

"...

~ 2. 0
1. 0

-

a'"

O. 5

g_ o.o.
o

2
1
80.05

F5

de
I

~

0.02
0,0 1 CURVES APPLY BELOW RATED VCEO
0.00 5
20
30
50 70
5.0 7.0 10

~~;X2~~5:~O~WL~rES~,

D:' 16

~

...
~

VCEX( ..

'-'

'"
~
8

~

m ~~~m~~ ~
200

100

;j-

..-

.1

T

8.0

VBE(olf)': 5 V
I - VeED(.u.)
4.0 r--TC" 1000e I
I
I
vejX(.u.)

o
o

300 400

I

lellBI .. 5,0
12

:>

TC," 250~
BONDING WIRE LIMIT
THERMAL LIMIT
(SI NG LE PU LSE)
SECOND BREAKDOWN LIMIT

-

~gn~~:m~~ i~~~47, I

1.0 ms

s..Oms

~

0

•

100

200

300

400

500

VCE.COLLECTOR.EMITTERVOLTAGE (VOLTS)

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 14 - POWER DERATING
100

~ I::---...

"""

0

............

"""

THERMAL
DERATING

0

.......

r--....

0

I'......

"'.

SECOND BREAKDOWN
DERATlNG-

r---..
r-.....
.............

t-....

"

0

o

o

40

80

120

Te, CASE TEMPERATURE (OCI,

160

........

"""

200

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be' subjected to
. greater dissipation than the curves indicate.
The data of Figure 12 is based on TC = 250 C; TJ(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;. 250 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 12 may be found
at any case temperature by using the appropriate curve on
Figure 14.
T J(pk) may be calculated from the data in Figure 11.
At high case temperatures, thermal Iimitations will reduce
the power that c§n be handled to values less than the'
limitations imposed by second breakdown. Use of reverse
biased safe operating area data (Figure 13) is discussed in
the designer's application section.
'

4-329

,I

2N6548
2N6549

DUOWATT

\

NPN SILICON DARLINGTON
AMPLIFIER TRANSISTORS

NPN SILICON
DARLINGTON AMPLIFIER
TRANSISTORS

· .. designed for amplifier and driver applications where high gain is
an 'essential requirement, low power lamp and relay drivers and
power drivers for high·current applications such as voltage regulators.

a

•

High DC Current Gain hFE = 25,000 (Min) @ IC = 200 mAde - 2N6548
= 15,000 (Min) @ IC = 500 mAde - 2N6548

•

Coliector·Emitter Breakdown Voltage BVCES = 40 Vdc (Min) @ IC = 100 /lAde

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 1.5 Vdc (Max) @ IC = 1.0 Ade

•

Duowatt Package 2 Watts Free Air Dissipation @ T A

= 250 C

I

Q

MAXIMUM RATINGS
Rating

Symbol
VCEO
VCES
VCBO
VEBO
IC
IB
Po

"Collector-Emitter Voltage
Collector-Emitter Voltage

·Collector-Base Voltage

• Emitter-Base Voltage
·Collector Current - Continuous

• Base Current - Continuous

-Total Power Dissipation @TA = 2SoC

Derate above 25°C
Total Power Dis,ipation@TC= 25°C
Derate above 2SoC

TJ,T,tg

Value
40
40
50
12
2.0
100
2.0
16
10
80
-55 to +150

-

260

Po

• Operating and Storage Junction
Temperature Range

·Solder Temperature, 1116" from Case for

Unit
Vdc
Vdc
Vdc
Vdc
Adc
mAde
Watts

mW/oC
Watts

mWI"C
°c
°c

10 Seconds

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient

Thermal Resistance. Junction to Case

I

Symbol.
R6JA
R6JC

I

MIX

I

62.5
12.5

I
I

-Indicates JEDEC Registered Data.
I

Unit
°CfW
°CfW

b'J

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
4 COLLECTOR

• ----r

K

of

-G

l

LrN-hl
'r----:r..J
R

rt=::::::J'=tJ

MILLIMETERS
DIM MIN MAX
A 21.84 22.35
9.91 10.41
B
4.19
4.44
C
0.61
0.11
D
3.68
3.94
F
2.61
G 2.41
1.10
1.9
0.48
0.66
J
K 12.10
1.1B
2.03
L
9.91 10.16
N
Q
3.56
3.81
2.41
2.61
R
T 13.21 13.91

INCHES
MIN MAX
0.B60 0.B80
0.390 0.410
0.165 o.m
0.024 0.028
0.145 0.155
0.095 0.105
0.061 0.011
0.019 0.026
0.500
0.010 O.OBO
0.90 0.400
0.140 0.150
0.095 .105
0.520 0.550

CASE 306-04
TO·202AC

4-330

-

2N6548,2N6549

• ELECTRICAL CHARACTERISTICS (T A = 250 C unless otherwISe noted.)

I

I

Symbol

Min

Collector-Emitter Breakdown Voltage(1)
(lC = 100 pAde, VBE = a)

BVCES

40

-

Vde

Collector-Base Breakdown Voltage
IIC = 100pAde,IE = a}

BVCBO

50

-

Vde

Emitter-Base Breakdown Voltage
(IE = 10 pAdc, IC a)

BVEBO

12

-

Vdc

Collector Cutoff Current
(VCB = 30 Vde, IE ~ 0)

ICBO

-

100

nAdc

Emitter Cutoff Current
IVEB = 10 Vde, IC a}

lEBO

-

100

nAdc

2N654B
2N6549

25,000
15,000

150,000
15(1,000

2N6548
2N6549

15,000
10,000

-

2N6548
2N6549

5,000
3,000

CIIa ract.ristic

Max

Unit

OFF CHARACTERISTICS

=

=

ON CHARACTERISTICS III
DC Current Gain
(lC = 200 mAde, VCE = 5.0 Vdc)

(lC
(lC

= 500 mAde,
= 1.0 Ade,

VCE = 5.0 Vde)

VCE

-

hFE

= 5.0 Vde)

Vde

Collector-Emitter Saturation Voltage
(lC = 1.0 Ade, IB = 2.0 mAde)
(lC = 2.0 Ade, IB = 4.0 mAde)

VCE(sat}

-

1.5
2.0

Base-Emitter Saturation Voltage
(lC = 1.0 Ade, I B = 2.0 mAde)

VBE(sat}

-

2.0

Vde

VBE(on}

-

2.0

Vdc

High Frequency Current Gain
(lC = 200 mAde, VCE = 5.0 Vde, f = 100 MHz)

Ihle l

1.0

-

-

Output Capacitance
IVCB" 10 Vde, IE = 0, I = 1.0 MHz}

Cob

-

7.0

pF

20,000
15,000

-

Base-Emitter On Voltage
l'k = 1.0 Ade, VCE = 5.0 Vde}

-

r

DYNAMIC CHARACTERISTICS

Small-Signal Current Gain
(lC = 50 mAde, VCE = 5.0 Vde, I = 1.0 kHz)

-

hie
2N654B
2N6549

• Indicates JEDEC Registered Data
11} Pulse Test: Pulse Width .. 300 ps, Duty Cycle .. 2.0%

TYPICAL CHARACTERISTICS
FIGURE 1 - ACTIVE·REGION SAFE·OPERATING AREA

There are two limitations on the power handling ability of a

transistor:

average junction temperature and second breakdown.

Safe operating area curves indicate le,VeE ,limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figur. 1 is based on T J(pk} = 1500 C; TC is variable
depending on conditions. Second breakdovvn pulse limits are valid
for duty cycles to 10% provided TJ(pk}';;;; 150°C. TJ(pk} may be
calculated from the data in Figure 6. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed bV second brea kdown.

4-331

•

2N6548, 2N6549

TYPICAL CHARACTERISTICS Iconlinuedl

FIGURE 2 - DC CURRENT GAIN
300 k

FIGURE 3 - "ON" VOLTAGES

I

200 k

2.0

VCE=5.0V

1.8

Ti· 2bot

-

./

25°C

.J..I...I+I"":~

~ 30 k

~

20 k

•

......

-55°C

c

~

VBElon11!> VC~ •

~'\.

7.0 k
5.0 k

VCElsa'II!>Ic/IB • 500

O.S

3.0 k
20

3D

50

70

100
200 300
500 7~0 1.0 k
IC. COLLECTOR CURRENT ImAi

0.6
20

2.0 k

TJ = 25°C

~

ii 2.0
;c

0-

ffi -0.10

500 mA

1.2

8~ Q.8

...

II II

1.0 2.0

5.0

25°C to 1250C.u,....-:: i--'"

~ -0.30 I-r5 -0.35

S

-55 0e to 25°C

I

IIIII
IIIII
500 700 1.0 k

L

i-O.40
-0.45
20

500 1.0 k 2.0 k 5.0 k

....t:::t:Rtf

ovt1'i f

0-

10 20
50 100 200
lB. BASE CURRENT I.AI

I--

IIIII

~ -0.25

Ic=50mA

~

~1250t

w

LOA

V

ILJ,.H::::::.-f'"

B -0.20

~

> 0.4
0.5

250C to 1250C

'OVC for VCEI"t)

U

ffi -0.15

2.0A
200 mA

~

II II
IIII

;;; -0,5

::;;;

2.0 k

IIIII

*Applies for Ic/le to; hFE/2

G

>

ffi 1.6

~

1I1111
50 70 100
200 300
500 700 1.0 k
IC: COLLECTOR CURRENT (mAl

3D

+0.5

c

--

"

"

FIGURE 5 - TEMPERATURE COEFFICIENT

FIGURE 4 - COLLECTOR SATURATION REGION
2.4

:;

5~0 V .

I

~

10 k

ii)

i.;o
i.;o

VBEIAlII!>Ic/IB • ~

ffi

"

I

TJ = 125°C

100 k
z
;;; 70 k
'"0- 50 k

II
50 70

3D

100
200 300
IC. COLLECTOR CURRENT (mAl

2.0k

FIGURE 6 - THERMAL RESPONSE
1.0
O.

-

7 0 = 0.5
0.5

~~

ffi::;j
~:i

0.3
0.2

-

- .!!+::: 0.05
0.1

~~

O. I
-

10

0

~

.......

0

i"""-

~ 3.0

~

~ F==i"'

r-

I"-.

~2. 0

"\

\

;;

0

0.05

--

~

C,b

0

2.0

5. 0

G

0.1

0.2

0.5

1.0

2.0

5.0

10

20

1.0
5.0

50

7.0

10

20

30

50

70

100

IC. COLLECTOR CURRENT {mAl

VR. REVERSE VOLTAGE {VOLTSI

4-333

200

300

500

•

216551
216552
216553

DUOWATT

NPN SILICON ANNULAR
AMPLIFIER TRANSISTORS

NPN SILICON
AMPLIFIER TRANSISTORS
... designed for general-purpose, medium-voltage, medium power
amplifier and driver applications; series, shunt and switching regulators, and low and high frequency inverters and converters .

•

High Collector-Emitter Breakdown VoltageBVCEO = 100 Vdc (Mini @ IC = 1.0 mAdc ~ 2N6553

•
•

Duowatt Package - 2 Watts Free Air Dissipation @ T A = 25 0 C
Complements to PNP 2N6554/5/6

MAXIMUM RATINGS
Rating
·Collector-Base Voltage

.. Emitter-Base Voltage
·Collector Current

Continuous

Peak (11

.. Base Current
-Total Power Dissipation @ TA

Derate above 2SoC
Total Power Dissipation
Derate above 2SoC

2N6551 I 2N65521 2N6553
60 I 80 I 100
60 I 80 I 100
,
5.0
,
1.0
2.0100
18
,
2.0
Po
16
10
Po
,
80
TJ,Tstg - - 5 5 to + 1 5 0 -

Symbol

·Collector-Emitter Voltage

@

= 2SoC

T C = 25°C

·Operating and Storage Junction

Temperature Range
·Solder Temperature, 1/16" from Case
for 10 Second.

VCEO
VC80
VE80
IC

-

,

260-

Unit
Vde
Vdc
Vde
Ade
mAde
Watts

mW/oC
Watts
mW/oC
°c
°c

THERMAL CHARACTERISTICS
Ch...ctwiltic
Thermal Resistance. Junction to Ambient

Thermal Resistance, Junction to Case

Symbol

MIIx

R8JA
R8JC

62.5
12.5

'Indicates JEDEC Registered D,ta.
(11 <10 ms, < SO% Duty Cycle

Unit
°CIW
°CIW

STYLE 1.
PIN I.
2.
3.
4

EMITTER
BASE
COLLECTOR
COLLECTOR

-MILLIMETERS
DIM MIN MAX
A 21.B4 22.35
B
9.91 10.41
C
4.39
4.65
o 0.58 0.74
F
3.56
4.06
G
2.41
2.67
H
1.70
1.96
J
0.48 0.66
K 12.19 12.95
L
1.65
2.03
N
9.91 10.16
o 3.56 3.81
R
1.07
1.75
7.87
9.14

INCHES
MIN MAX
0.860 O.BBO
0.390 0.410
0.173 0.183
0.023' 0.029
0.140 0.160
0.095 0.105
0.067 0.07.7
0.019 0.026
0.480 0.510'
0.065 0.080
0.390 0.400
0.140 0.150
0.04
0.069
0.310 0.360

CASE 306.04
TO-202AC

4-334

2N6551,2N6552,2N6553

• ELECTRICAL CHARACTERISTICS

I

(T A: 25 0 C unless otherwise noted.)

I

Charactoristie

Svmbol .

Min

Max

60
80
100

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

Vde

BVCEO

IIc =1.0mAde.IB - 01

2N6551
2N6552
2N6553

ColIl"'tor·Base Breakdown Voltage
(lC' 100jJAde. IE = 0)

-

BVCBO
60
80
100

2N6551
2N6552
2N6553

Emitter·Base Breakdown Voltage
(IE = 100 JJAde, IC • 0)
Collector Cutoff Current

-

5.0

BVEBO

Vde

Vde
nAdc

ICBO

(VCB • 40 Vde, IE • 0)
(VC8 • 60 Vde, IE • 0)
(VCB' 80 Vde, IE' 0)

-

2N6551
2N6552
2N6553

Emitter Cutoff Current

100
100
100
100

lEBO

nAdc

(VEB • 4.0 Vde, IC' 0)
ON CHARACTERISTICS (1)
DC Current Gain

IIc •
IIC'
IIC'
IIc •

hFE

10 mAde, VCE = 1.0 Vde)
SO mAde, VCE • 1.0 Vde)
250 mAde, V CE • 1.0 Vde)
SOD mAde, VCE • 1.0 Vde)

-

60
BO
60
25

Collector-Emitter Saturation Voltage

300

-

Vde

VCE(sat)

-

(lC' 250 mAde, lB' 10 mAde)
(lC' 1.0 Adc, IB • 100 mAde)

0.5
1.0

-

Base-Emitter On Voltage

VBE(on)

1.2

Vde

375

MHz

(lC • 250 mAde, VCE • S.O Vde)
DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

(lC

= 100 mAde, VCE •

75

IT

5.0 Vde, I • 20 MHz)

Collector-Base Capacitance

pF .

18

Ceb

(VCB' 20 Vde, IE • 0, f· 1.0 MHz)
• Indicates JEDEC Registered Data
(1) Pul~e Test: Pulse Width':; 300 JJS, Duty' Cycle':; 2.0%

TYPICAL CHARACTERISTICS

"" FIGURE 1 - CURRENT-GAIN - BANDWIDTH PRODUCT
" 300
~
VCE=5.0V
t
TJ = 25 0C
~ 200
Q

_I-'"

g:

"
I;

/'

z~ 100
~
I
Z

~~

.

..........

......

.......

FIGURE 2 - CAPACITANCES

200
TJ

100
10

{,50
g r--

.....

-

Cib

30

20

~_

0

U

0

'"'"

::J

J::-

10

1---

I-.

1.0
5.0

3.0

30
5.0

~ 2lo~

7.0

10

20

30

50

10

100

200

300

500

IC, COllECTOR CURRENT (rnA)

2.0

0.1

0.2

0.5

1.0

2.0

5.0

10

VR, REVERSE VOLTAGE (VOLTS)

4-335

20

~:
I I
50

100

2N6551,2N6552,2N6553

TYPICAL CHARACTERISTICS (continued)

FIGURE
400

z 200

'"
....
~

a

100
S0

o

60

u

II

~

FIGURE 4 - "ON" VOLTAGE
1.0

lln~ 12~OC

;;:

iii

3- DC CURRENT GAIN

.....

h

....

~-l50J

'"

l~ ......

1IIIITJ=25~cl

~
=t.t~L

0.8

!JJJLI@ 1!/la

~

~

0

0.6

~.

N

w

f--

'"
<[

':;
0.4
0
>

J~~= i.ov

.....

:>

0'"

0.2
VCE(sat!@lclla= 10

20
1.0

5.0

2.0

10
20
50
100
IC. COLLECTOR CURR.ENT (mAl

500

200

o

1.0

1.0 k

1.0

~

:~~iPlies fO; IcAs" hFE/2

'B~J M.'~CE(sati

0.8

~
o

500

1.0 k .

I I III
+25 0 C to +1250 C

J

-550C t. +250

> 0.6

!

0.4

\

o

...IS

o.2 ~·lorA(

~

8

ul

~

T 1 IT

5

ffi

~II

-55~t~J.b

I lR

1.0A

~~

~
0 IIITtt ~
0.05 0.1 0.2
0.5 1.0 2.0
5.0 10 20
IS. SASE CURRENT (mAl

BVS forVaE

IS·200.AlStep
TJ= 25 0C

~400

50 100 200

-2.5
1.0

500

-----

.L. ~ ~

<;0

II:

200

o

J. ~

~

V

U

TTm

1111
10
20
50
100 200
IC. COLLECTOR CURRENT (mAl

SOD

1.0 k

-VCE".50V

i

104

~

103 r==TJ= 150DC

a

-I"'""

II:

102

j

101

t

'"

"

~IDDOC

8

'~REVERSE

FORWARO=

!i!100

- 100

oIL

5.0

FIGURE B - COLLECTOR CUTOFF REGION

~

u

II
2.0

lOS

L& ~ I..,...- ~ .....

~

g; 300
::>

~

+25,C tr12~of

0

fl11

5DO

~

,

FIGURE 7 - COLLECTOR CHARACTERISTICS

!

-

10
20
50
100 200
IC. COLLECTOR CURRENT (mAl

1.0

T~ 12510J

!:lo

5.0

2.0

FIGURE 6 - TEMPERATURE COEFFICIENTS

FIGURE 5 - COLLECTOR SATURATION REGION
_

1-1--

~

~

~250C
IC' 2000A
2.0

4.0
6.0
S.O
10
12
VCE. COLlECTOR·EMITIERVOLTAGE (VOLTSI

10-1
-0.4

14

4-336

-0.2

+0.2
+0.4
VSE. SASE·EMITIER VOLTAGE (VOLTS)

+0.6

2N6551,2N6552,2N6553

TYPICAL CHARACTERISTICS (continuedl
FIGURE 9 - THERMAL RESPONSE
10
O. 7
5 0·0.5
O.

;(0

~~. 03

~~ 0.2

~g

0I
~~

...

!-

-

0.1

~~ 0.0 7

Single Pulse

A

0.02

-

i""

f::; I[Os

:=.~oo 5

~~ 0.03

'-"
1::;;;;;:

~

:Ef1Jl --

Smgle Pulse

-t~J

I
001

0.02

Duty Cycle, 0 = 1J/12

0.05

0.1

05

0.2

1.0

2.0

50

10

20
50
I,TlMElmsl

2,0 k

l',
,1.0m.

1.0 k

I-

0

0:

300
200

~

:::0

...

0:

~

8
~

100
70
0

...

"I

OOI-lS

TC =25°C

TA·25 0 C

del,

...

II

1\

de "

2 B551;
TJ=150oC
- BONDING WIRE LIMIT
THERMAL LlMIT,SINGLE PULSE
2N6552
0 - - - SECOND BREAKDOWN LIMIT
(Applies Below Rated VCEol
2N6553
20
2,0 3,0
5,0 7.0 10
20
30
50
1.0
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI

-

70

100

200

500

1.0k

100

FIGURE 11-POWER DERATING

1,0

t--.

"""r--..."- ------r-

§ O.B
0:

~ 0.6

Thermal Derating "

u..

co
z

~

!i

--

Second Breakdown Derating

r-..

i-

" ""-

ffi 0.4

c

i 0.2

.....

~

o
o

20

40

60

l.Ok

o CU RVES APPL V FOR POWER
PULSE TRAIN SHOWN
READ TIME AT II
TJlpkl -TC· Plpkl R"JCIII
5.0 k 10 k

20 k

50 k 100 k

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown, Safe operating 'area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; Le" the transistor must not be subjected to
greater dissipation than the curves indicate,
The data of Figure 10 is based on TC ~ 250 C; TJ(pkl
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC;;' 250 C, Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 10 may be found
at any case temperature by using the appropriate curve on
Figure 11.
T J(pkl may be calculated from the data in Figure 9.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.

FIGURE 10 - ACTIVE·REGION SAFE-OPERATING AREA

1 700
50

ZOJAIII • ,It! ROJA
ROJA • 62.50 CIW Max

Plpkl

0.02
0.01

i'"

0.01

ZOJCIII - ,III ROJC
ROJC:: 12.SoCJW Max

80

100

Te. CASE TEMPERATURE (OC)

4-337

120

""
140

160

•

2N6554
2N6555
2N6556

DUOWATT

PNP SILICON ANNULAR
AMPLIFIER TRANSISTORS

•

PNP SILICON
AMPLIFIER TRANSISTORS

... designed for general·purpose, medium-voltage, medium power
amplifier and driver applications; series, shunt and switching regulators, and low and high frequency inverters and converters .

•

High Collector-Emitter Breakdown Voltage BVCEO: 100 Vdc (Min) @ IC = 1.0 mAdc - 2N6556

•
•

Duowatt Package - 2 Watts Free Air Dissipation
Complements to NPN 2N6551/2/3

@

T A: 25 0 C

MAXIMUM RATINGS
Rating

·Coliector·Emitter Voltage
·Collector-Base Voltage
"Emitter-Base Voltage
·Collector Current

Continuous

Peak
·Base Current

"Total Power Dissipation
Derate above 2SoC

@

TA

= 25°C

Total Power Dissipation @ T C = 25°C
Derate above 2SoC
·Operating and Storage.Junction
Temperature Range

Symbol

Unit

VCEO
VCBO
VEBO
IC

Vdc
Vdc
Vdc
Adc

2N65541 2N6555J 2N6556
60 I 80 I 100
60 I
80 I 100
5.0
1.0
2.0100
IB
2.0
Po
16
10
Po
80
TJ,Tstg - 5 5 t o + 1 5 0 -

..

.
.

..

260-

·Solder Temperature. 1116" from Case

mAde
Watts

mW/oC
Watts

mW/oC
°c
°c

for 10 Seconds

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Ambient
Thermal Resistance. Junction to Case

Symbol

Max

R/IJA
ROJC

62.5
12.5

'Indicate. JEDEC Registered D.t•.

Unit
°CIW
°CIW

STYLE 1:
PIN 1. EMITIER
2. BASE.
3. COLLECTOR
4 COLLECTOR
MILLIMETERS
DIM MIN MAX
A 21.84 22,3S
9.91 10,41
B
4,44
4.19
C
0
0.61
0.11
3,94
F
3,68
2,67
G 2.41
1.70
1.96
H
0,66
J
0.48
K 12.10
2,03
1.18
L
9.91 10.16
N
Q
3.56
3.81
2,67
2.41
R
T 13.21 13.97

INCHES
,MIN MAX
0.860 0.880
0,390 0.410
0.16S 0.175
0.024 0.028
0.14S O.ISS
0.09S O.IOS
0,067 O.Oll
0.019 0.026

-I
0.070
0.390
0.140
0.09S
0.520

CASE 306-04
TO·202AC

4-338

2N6554,2N6555,2N6556

"ELECTRICAL CHARACTERISTICS (TA

I

= 25 0 C unless otherwise noted.)

I

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage
(lc

2N6554
2N6555
2N6556

Collector-Base Breakdown' Voltage
(lC

60
80
100

-

60
80.
100

-

Vde

BVCBO

= 100llAde, IE = 0)

2N6554
2N6555
2N6556

Emitter-Base Breakdown Voltage
(IE = 100 I'Ade, IC = 0)

BVEBO

Collector Cutoff Current
(VCB
(VCB
(VCB

Vde

BVCEO

= 1.0 mAde,lB = 0)

Vde

5.0

nAdc

ICBO

= 40 Vde, IE = 0)
=60 Vde, IE = 0)
= 80 Vde, IE = 0)

-

2N6554
2N6555
2N6556

Emitter Cutoff Current
(VEB = 4.0 Vde, IC = 0)

100
100
100
100

lEBO

nAde

ON CHARACTERISTICS (11
DC Current Gain
(lC = 10 mAde, VCE = 1.0 Vde)
(lC = 50 mAde, VCE = 1.0 Vde)
(lC = 250 mAde, V CE = 1.0 Vde)
(lC = 500 mAde, VCE = 1.0 Vde)

hFE

Collector-Emitter Saturation Voltage

VCE(satl

60
80
60
25

(lC = 250 mAde, Ie = 10 mAde)
(lC = 1,0 Ade, Ie = 100 mAde)

300

Vde

-

Base-Emitter On Voltage
(lC = 250 mAde, V CE = 5.0 Vde)

-

veE (on)

0.5
1.0
1.2

Vde

375

MHz

18

pF

DYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product

IT

75

(lC = 100 mAde, VCE = 5.0 Vde, 1= 20 MHz)

Collector-Base Capacitance

Ceb

(Vce = 20 Vde, IE = 0, 1= 1.0 MHz)

• Indicates JEDEC Registered Data.
(11 Pulse Test' Pulse Width'; 3001'5, Duty Cycle'; 2.0%.

TYPICAL CHARACTERISTICS
FIGURE 1 - ACTIVE-REGION SAFE'()PERATING AREA
5.0

2.0

"-

Ii:

~

1.0

ffi

O.5

~
~

de
TA=250C

~'" o. I

=

0.05

There are two limitations on the power handling ability of 8

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limi,ts of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.

.....j

""
,,~

The data 01 Figure 1 is based on T J(pk) ~ 1500 C; TC is variable

depending on conditions. Second breakdown pulse limits are valid

~TJ :1500CBONDING WIRE LIMIT
-

8

100J.ls

de
~1.0 ms
TC = 250C

rfI

D. 2

"-

-

-

0.01
0.005
1.0

lor duty cycles to 10% provided T J(pk) .;;; 1500 C. T J(pk) may be

THERMAL LlMIT,SINGLEPULSE, TC -250C

~ 0.02 - - - - SECOND BREAKOOWN LIMIT

I I

2.0

(Applies Below Rated vCEo·jf

J

3.0

20

5.0 1.0

10

calculated from the data in Figure 6. At high case temperatures.
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

2N6554- 2N6555
2N6556
30

50

10

100

VCE, COLLECTOR·EMIITER VOLTAGE IVOLTS)

4-339

•

2N6554,2N6555,2N6556

TYPICAL CHARACTER ISTICS (continued)
FIGURE 2 - DC CURRENT GAIN
300

--

200
z

:;:

'"t-

~

•

a

100

'"

Q

~

FIGURE 3 - "ON" VOLTAGE
1.0

TJ=1250C

0.8

.............
25lc

-

-55°C

0_
50

2: 0.6

2,0

10

20

50

100

200

c5
>

0.4

0.2

500 1000

5.0

2.0

~

Q

5
0:;

Ic=10mA SOmA

250mA 500 mA

III

25 DC to t25 0 C

-55 DC to 250C

II

-0,50

*

1.0 A

~

W_

-Apphesfor IC/IS "'hFEf 2

-0.75

-1.00

~ -1.2 5

'"

......

o
0,05 0.1

0.2

O.

,

OVB lor VeE

II

.~ -'2.00

I1.0 2.0

5.0

10

20

50 100 200

-2,25
1.0

500

12m,to~~

-1.50

~ -1.75

o. 2

8

ul

500 1.0 l

-0.25

~
~ o.4

>'"

200

·OVC for VCE(satJ

0

'ii

'"

~

10
20
50
100
IC, COLLECTO~ CURRENT (mAl

FIGURE 5 - TEMPERATURE COE'FFICIENT
.- +0.25

TJ = 25°C

~ O.8
~
g o.6

i-"

r-

VCE (satl@lc/le = 10

1."

FIGURE 4 - COLLECTOR'SATURATION REGION

~

r:--

,:

IC, COLLECTOR CURRENT (mAl

0

-

,....... ....

....

VBE(onl@VCE = 5.0

w

5,0

1111

'"j'!:

VCE= 1,0V
30
1,0

1111

II

VBE (sail@ Iclle-lO

~

. . . .J\

TJ = 25°C II

2.0

IB, eASE CURRENT (mAl

I5.0

iiYtiCto 25tc
10

50

20

100

200

500 1.0 k

IC, COLLECTOR CURRENT (mAl

FIGURE 6 - THERMAL RESPONSE
1.0
0.7

0.5

0=0.5

....

~o

~~ 0.3 I- 0,2

!~

0.2

ffi~

0.1

U;W

f::;;

,::::;

0.1
1[05

~~ 0.07

Ii""

b;;jiii

SlnglePulst

e:.~ 0.05

-I-

-

- - ZsJC(U = rltl ROJC
ROJC = 12.5 0C,w Max

EfLfl --

Single Pulse

0.02

-t~J

0.01

1"

I

0.01
0.01 0.02

ZOJA(tl = r(tl ROJA
ROJA =62.50c,w Max

P(pkl

-=0
0.02
't:'~ 0.03 ~

Duty Cvde, 0 = 11/t2
0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

20
t, TIME

50
(m~

4-340

100

200

500

1.0k

2.0k

oCURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT tl
TJ(pkl -TC =P(pkIROJC(t)
S.Ok 10k

20k

SOk lOOk

2N6554,2N6555,2N6556

TYPICAL CHARACTER ISTICS (continued I
FIGURE 7 - CAPACITANCE

FIGURE B - CURRENT -GAIN - BANDWIDTH PRODUCT

500

0

TJ = 25°C

300

I-

200

e

~

~ 100
~ 70
:1 50

'"

l-

30

f-.

~ 20

u·

Applies for Rated VCBO
10

7.0
0
5. 0.1

-

~

0.5

1.0

2.0 3.0 5.0

100

I"---

........ 1---

;;\
I

z

70

;;:

10

20

""

~ 50

r--

Cob

0.2

V

e

C,b

I-

~

VCE = 5.0 V
TJ = 25°C

~ 20 0

50

100

I
i-

30
5.0

7.0

10

20

30

50

70

100

IC. COLLECTOR CURRENT (mAl

VR. REVERSE VOLTAGE (VOLTSI

4-341

200

300

500

•

2N6557
2N6558
2N6559

NPN SILICON ANNULAR
HIGH VOLTAGE AMPLIFIER TRANSISTORS

DUOWATT
NPN SILICON
AMPLIFIER TRANSISTORS

· .. designed for high-voltage TV video and chroma output circuits,
high-voltage linear amplifiers, and high-voltage transistor regulators.

a

•

High Collector-Emitter Breakdown Voltage BVCEO = 350 Vdc (Min) @ IC = 1.0 mAdc - 2N6559

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.6 Vdc (Max) @ IC = 30 mAdc

•

Low Coliector·Base Capacitance Ccb = 3.0 pF (Max) @ VCB = 20 Vdc

•

Duowatt Pa~kage 2 Watts Free Air Dissipation @ T A = 25 0 C

MAXIMUM RATINGS
Rating

Symbol

·Coliector·Emitter Voltage

VCEO

·Collector-Base Voltage

Vr.RO

*Emitter-Base Voltage

VEBO

·Collector Current

Continuous

IC

Peak
*Base Current

IB

*Total Power Dissipation @ T A:::: 25°C

Po

Derate above 2SoC
Total Power Dissipation@Tc= 2SoC

Po

Derate above 2SoC

·Operating and Storage Junction
Temperature Range

·Solder Temperature, 1/16" from Case
for 10 Seconds

TJ,T stg

2N6557\ 2N655S\ 2N6559

250
250

.
.
·..
·.

\

\

·

300 \ 350
300 \ 350
6.00.5-.
0.72502.0161080-

_-55to+150~

.

260-

Unit

Vdc
Vdc
Vdc
Ad.c

mAde
Watts
mW/oC

Watts
mW/oC

°c
DIM

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to Case

STYLE I
PIN I EMITTER
2 BASE
3 COLLECTOR
4 COLLECTOR

°c

Symbol

Max

Unit

ROJA
. ROJC

62.5
12.5

°C/W
°C/W

A
8
C
D
F
G

H

.. Indicates JEOEC Registered Data.

J
K
L

N
Q

R
T

MILLIMETERS
MIN MAX
21.84 21.35
991 1041
4.19
4.44
D.61
0.71
3.6B
3.94
1.41
2.67
1.70
1.96
0.48
0.66
11.70
I.7B
203
9.91 10.16
3.56
3.81
241
2.67
13.21 13.97

INCHES
MIN MAX
0.860 0.8BO
0390 0410
0.165 0.175
0.024 0.028
0.145 0.155
0.095 0.105
0.067 0.077
0.019 0.026
0.500
0070 0.080
0.390 0.400 '
0.140 0.150
0.095 0.105
0.520 0.550

CASE 306-04 •
TO·202AC

4-342

2N6557,2N6558,2N6559

"ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)
[

I

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS

Collector·Emitter Breakdown Voltage
IIc = 1.0 mAde: Ie

2N6557
2N6558
2N6559

250
300
350

Coliector·BR~e

BrcukdC'wn Voltage
(lC" 100 I'Ade, I~ = 01

250
300
350

Collector Cutoff Current
(Vce = 150 Vde, IE = a)
(Vce = 200 Vde, IE = a)
(VCB = 250 Vde, IE = 0)

-

-

-

0,2
0.2
0.2

-

0.1

25
40

180

-

0.6
1.5

VSE(on)

.-

0.85

Vde

IT

45'

200

MHz

Ccb

-

3.0

pF

ICBO
2N6557
2N6558
2N6559

i::mltter Cutoff Current
(VBE = 5,0 Vde, IC = O)

-

6.0

BVEBO

= 100 I'Ade, IC = 01

-

V;;;--

BVCBO
2N6557
2N6558
2N6559

Emluer·Base Breakdown Voltage
(IE

Vae

8VCEO

= O}

lEBO

Vde
/lAde

,uAdc

ON CHARACTERISTlCS(1}

DC Current Gain

-

hFE

(lC = 1.0 mAde, VCE = 10 Vde)
IIc = 30 mAde, VCE = 10 Vdcl

Collector-Emitter Saturation Voltage

VCE(s.t}

IIc = 30 mAde, IB = 3,0 mAdel
(lc = 50 mAde, 18 = 5.0 mAde)

Base-Emitter On Voltage

Vde

(lC = 30 mAde, VCE = 10 Vdc)
DYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product
(lC· 10 mAde, VCE

= 20 Vde, I = 20 MHzl

Collector-Base Capacitance
(VC8 = 20 Vde, IE = 0, 1= 1,0 MHz)

* Indicates JEDEC Registered Data.

11l Pulse Test: Pulse Width

<:; 300 /lS, Duty Cycle -:. 2.0'•.

TYPICAL CHARACTERISTICS
FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA
1.0
0::

~ 0.2 a

de

>~ 0.1 0

,,100,..5

de
~TC=25'C

'"

TA = 25'C-

~ 0.0 5

'"GO!

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves Indicate Ie-VeE limits of the traOSlstor
that must be observed for reliable operation; i.e" the transistor

I.Oms

must not be subjected to greater dissipation than the curves indicate.

5.0 ms

0.02 1

:: 0:0

-

-

-

0.5 0

f-1-TJ.l~tIa! f--

,'he data of Figure 1 is based on TJ(Pk) = 150°C; TC ir.variable
depending on conditions. Second breakdown pulse limns are valid

....

::..-::=

lor duty cycles to 10% provided TJ(pk)';;; 150o C. TJ(pk) may be

1
BONUING WIRE LIMIT
80.005 - - - THERMAL LIMIT,SINGLEPULSE, TC = 25'C
- - - SECOND BREAKDOWN LIMIT
!:?

thermal limitations Will reduce the power that can be handled to

values less than the limitations imposed by second breakdown.

=±±±tt~N6557
2N655

0.00 2
0.00 1
1.0

calculated from the data in Figure 6. At high case temperatures;

2.0

S.O

10

20

VCE, COLLECTOR·EMITTER

50

2N6559--r
100
200

VOLTAG~

500 1.0k

(VOLTS)

4-343

2N6557,2N6558,2N6559

TYPICAL CHARACTERISTICS

(contin~ed)

FIGURE 2 - DC CURRENT GAIN

300
TJ

20 0

FIGURE 3 - "ON" VOLTAGES
4

~ 12~oCI

TP251dC

1. 2

.-.:"

100

..........

25°C

0

0
0

•

A

0

7.0
5. 0

6

VB

'\.~

4

1.0

2.0 3.0 5.0

10

20 30

50

100

IIIII

0
0.3

200 300

/

I

VCE" 10 V

~~~~~~at)

o. 2

0.5

:::::1

@ICIIB" 10

os,

IVCE" 10 V
VCE"2.0V

3. 0
0.3

.r~Wi")
ri1")@

~

I

0

B

'-

-55 uC

0

0.5

I
L
~5.0

ICIIB"!.

1.0

2.0 3.0 50

10

20 30

50

100

200300

IC. COLLECTOR CURRENT ImA)

IC. COLLECTOR CURRENT ImA)

FIGURE 5 - TEMPE·RATURE' COEFFICIENTS

FIGURE 4 - COLLECTOR SATURATION REGION

2. 0

3. 0

TJ" 25°C

I--*Appriesfor

u

~ 2. 0

le/'e :O;;;;hFE/2

i

6

l-

0

i::

u

25 0 C to 125°C

r--'OVC for VCElsal)

~

2

-55 DC to 250C
I
I
250C to lZ5 0C

8

~-1. 0

8

Ie =

o. 4

1.0mA 3.~,,:,A

30
rnA

lOrnA

I II mlJ. N.I

1t lIr
0.01 0.02 0.05 0.1

o

I

!;;:
SOmA

\l 'll

~-2. 0

100mA

ill
~-3.

lIN. I

r-:-- OVIB fo' JBE

-55°C to 25 0 C

0

I

I
I

20

30

i .

-1-m5.0 ffi
1.0 2.0
10 20

0.2
0.5
lB. BASE CURR€NT ImA)

50 100

-4.0
1.0

2.0

3.0

50 7.0

10

I

50

70 100

IC. COLLECTOR CURRENT ImA)

FIGURE 6 - THERMAL RESPONSE
1.0
0.7
0" 0.5
0.5

:i Ci
~~ 0.3
t;~

i;;~

f::: 0.05
0.1

0.03
0.02

-

-

Single Pulse

~ --ZOJAIII"'IIIROJA
ROJA " 62.50 CIW Max

P(pkl

"" .f"
0.02
0.01

0.01

0.02

o CURVES APPLY FO R POWER

-t~j

I

0.01

- - ZOJCIt) " 'II) ROJC
ROJC" 12.5 0 CIW Max

,

Single Pulse

:=_~ 0.05
"O:"~

"'"

1::;;;;
~

0.1

~~ 0.07

-=-0

I-

c- 0.2

~: 0.2

Duty Cycle. 0::: Itltz
0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

20
50
t. TJME (ms)

4-344

100

200

500

1.0k

2.0k

PULSE TRAIN SHOWN
READ TIME AT 11
TJ(pkl-TC" P(pkl ROJclt1
5.0 k 10 k

20 k

50 k 100 k

2N6557,2N6558,2N6559

TYPICAL CHARACTERISTICS Icontinuedl

FIGURE 8 - CURRENT·GAINBANDWIDTH PRODUCT

FIGURE 7 - CAPACITANCE
70
50
30

10 0
TJ

f-.

z

10

U

70

u·

3.0

;::

250C

1.0
0.7
0.5

-

0

~r-

0

§ 5.0
2.0

VCE' 20 V
Tr250C

0

tt:-

20
w
u

o

"

I"\.

[\

0

r- iPPl'jS 'II';"
1.0

2.0

5.0

~~BO
10

........
Ccb
20

50

'00

2UO

10
05

500

07

1.0

20

30

50

7.0

10

20

30

50

IC, CO llECTO R CU RR ENT ImAI

VR, REVERSE VOL TAGEWOl TSI

APPLICATIONS INFORMATION
The 2N6558 is primarily designed for use in the R. G, and B output
stages of color television receivers and with a high BVCEO. it can

supply the video amplitude requirements of any known system.
The low feedback capacitaflce provides good video bandwidth with
modest drive current requirements.

Typical drive is from an

emitter-follower with a 4.7 k emitter-resistor operated from a
20-Volt supply. It will, therefore, be operable directly from a
number of available chroma demodulators. The low output capac-

itance of this device adds little to the total load capacitance, altowing improved bandwidth for a given collector load resistor. Two
typical applications for the 2N6558 are shown in Figures 9 and 10.
Device dissipation will reach approximately 1.6 Watts under
worst-case signal conditions and some heat sinking is required at

ambient temperature above SOoC.
Used as a color difference output, where drive and bandwidth
requirements are less severe, the 2N6558 can be operated with
27 k ohm load resistors (worst-case dissipation would then be only
0.6 Watts). The device can, therefore, be operated as a colordifference output without any heat radiator in ambient temperature ..
to 150 -10.61 162.51 = 112,5 0 C,
In addition the safe operating area of the 2N6558 will fill the
requirements of the luminance output function with a total
equivalent load' of 5.0 kllohms. Worst;case dissipation can reach 3

Watts, this requires

a total ROJA of 1150-65)/3 = 2B.40C/W. To

achieve this a 2" x 3" aluminum plate will be required.

FIGURE 10 - 2N6558 AS RGB OUTPUT,MATRIXING COLOR
DIFFERENCE AND LUMINANCE INPUTS

FIGURE 9 - 2N6558 AS RGB OUTPUT WITH RGB INPUT

Mtlll!
CM~OiU"
O~"'OC'JL"'TCR

MC1lU
CkROMA
DEMODULATOR

4-345

•

2N6569

12 AMPERE

•

NPN SILICON POWER TRANSISTOR

POWER TRANSISTOR
NPN SILICON

The 2N6569 is a general· purpose, EPIBASE power transistor
designed for low voltage amplifier and power switching applications.

40 VOLTS
100 WATTS

• Low Cost
• Safe Operating Area - Full Power Rating to 40 V
• EPIBASE Performance in Gain and Speed
• Metal Can Reliability - TO·3 Package
• AII·Purpose Replacement for In'dustry Standard 2N3055

rFAa=iLc

*MAXIMUM RATINGS
Rating
Collector·Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
Collector Current

Continuous

Symbol
VCeO(sus)
VCBO
VeBO
iC·

- Peak
Base Current - Continuous
- Peak

IB

Emitter Current - Continuous

Ie

- Peak
Total POVYer Dissipation @ T C = 25°<;

Po

Derate above 2SoC
Operating and Storage Junction
Temperature Range

T J,Tstg

Valuo
40
45
5.0
12
24
5.0
10
17
34
100
0.572

Watts
W/oC

-65 to +200

OC

Unit
Vdc
Vdc
Vdc
Ado

Characteristic
Maximum Lead Temperature for Soldering

SEATING

Max

A8JC
TL

1.75
265

Purposes: IllS" from Case fo lOs.

F--

I

J -

Adc
STYLE 1:
PIN I. BASE

Unit
uCIW

°c

MILLIMETERS
MIN MAX

INCHES
MAX
MIN

39.37
1.550
A
0.830
21.08
B
7.62 0.250 0.300
C 6.35
1.09 0.039 0.043
D 0.99
3.43
0.135
E
30.40 1.177 1.197
F 29.90
11.18 0.420 0.440
G 10.67
5.59 0.210 0.220
H 5.33
J 16.64 17.15 0.655 0.615
12.19 0.440 0.480
K 11.18
3.84
4.09 0.151 0.161
0
26.67
1.050
R
Collector connected to case.
CASE 11·(11
(TO·3)

4-346

NOTE:
1. aiM "O"IS OIA.

2. EMITTER
CASE: COLLECTOR
DIM

Symbol

0 ___
__

c---

Ado

THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Case

L~:=kj--+K
Ie
~LANE
J.

2N6569

*ELECTRICAL CHARACTERISTICS (TC: 25°C unless otherwise noted.)

I

Characteristic

Symbol

Min

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC: 200 mAde, IB: 0)

VCEO(sus)

Collector Cutoff Current
(VCEV : 45 Vdc, VBE(off) : 1.5 Vde)
(VCEV: 45 Vde, VBE(om : 1.5 Vdc, TC: 100°C)

ICEV

Emitter Cutoff Current
(VEB: 5.0 Vde, IC = 0)

lEBO

40

-

-

1.0
10

-

5.0

15
5.0

200
100

Vdc

mAde

mAde

SECOND BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased
(VCE = 40 Vde, t = 1.05 (non·repetitive))

ON CHARACTERISTICS
DC Current Gain
(lC = 4.0 Ade.'VCE = 3.0 Vde)
(lC = 12 Ade, VCE : 4.0 Vde)
Collector-Emitter Saturation Voltage
(lC = 4.0 Adc, IB: 0.4 Ade)
(lC = 12 Ade, IB = 2.4 Ade)

VCE(sat)

Base-Emitter Saturation Voltage
(lC

= 4.0 Adc, IB :

-

hFE

Vde

-

1.5
4.0

VBE(sat)

.-

2.0

Vdc

fT

1.5

15

MHz

Cob

75

750

pF

0.4 Ade)

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
(lC = 1.0 Ade, VCE: 4.0 Vde, f te "

= 0.5 MHz)
Output Capacitance
(VCB = 10 Vde,IE: 0, f te ,,: 1.0 MHz)

SWITCHING CHARACTERISTICS
RESISTIVE LOAD
Delay Time

Rise Time
Storage Time

Fall Time

(VCC: 30 Vde, IC = 2.0 Ade, IBI : 0.2 Ade,
tp = 25 "s, Duty Cycle .. 1.0%)

tr

(Vec: 30 Vdc, IC - 2.0 Adc, I Bl - I B2 - 0.2 Ado,
tp = 25 "s, Duty Cycle .. 1.0%)

tf

td

-

ts

-

·Indicates JEDEC Registered Data.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

Vee

r-r251'.~+30:e

+1~ ~O__

Re,

Scope

-9.~-:O
tr,tf <:: 10 ns
Duty Cycle"" 1.0%

01
-4.0 V

-=

AS and RC Varied to Obtain Desired Current Levels

01 must be fast recovery type.

4-347

0.4

I'S

1.5

"s

5.0

"s

1.5

"s

•

2N6569

FIGURE 2 - THERMAL RESPONSE

ffi

1.0

N

~

~ 0.7 1=0=0.5

~ 0.5

o

~
w

0.3 1-0(2

~

1-0.1

~ 0.2

~ O. 1

p-

~ 0.03

•

°

--

i--::: ;;iii!'

,....

0.05

~

;;;:, 0.07 1-0.02
ffi 0.05

....
ffi

R6JC(') = rlU RUC
RUC = 1.750CM MIX
CURVES APPLY FOR POWER
PULSE tRAIN SHOWN
READ TIME AT '1
TJ(pk) - TC = P(pk) R6JC(t)

f&

p.. P:O.Ol

0.02 I-- ~Sing'ePu'se

DUTY CYCLE, D = '1112

iii

II

: 0.01
....
0.01

0.05

0.02

0.1

0.2

1.0

0.5

2.0
t, TIME

5.0

10

50

20

100

I I I II III
200

500

1000

(m~

FIGURE 3 - SAFE OPERATING AREA
30
20

....

r-'

!Ii$

....... j.,
...

1.0ms'

.... ,

.... r-' ._.
~ 10

'"~
'"
~
8

de

.... ,

5.0

3.0

r-

2.0
1. 5
4.0

=:..:-.:
I

,

Safe operating area curves indicate IC-VCE limits of the
transistor being observed for reliable opllration; i.e., the
transistor must not be subjected to greater dissipation than
the curves indicate. This transistor is thermally limited over
its entire operation area. Figure 4 m'ay be used to derate
the curves shown or an effective RIIJC(t) may be computed
from Figure 2 for pulsed operation.

.... ....

5.Dms

7,0

~

',a'.Sms

.... ,

...... ,

....

¥~~~~!I~iT:~~ted

I I I I I

......

"

I

II
5.0

7.0

10

20

30

50

70 80

vCE. COLLECTOR·EMITIER VOLTAGE (VOLTS)

FIGURE 4 - POWER DERATING
1.0

.........

"- ..........

0.8

'"t;

"- i'-...

0

;:::

0.6

to
Z

~

r--...

0.4

0

........
0.2

o
o

.........

w

~

w m

00
~
TC. TEMPERATURE (OC)

00

4-348

.........
~

~

~

2N6569

FIGURE 6 - COLLECTOR SATURATION REGION

FIGURE 5 - OC CURRENT GAIN
1000

en

~

500

z

;;:

.. 200

....

r- I-

25"C

t-- :-....

ili

~ 100

..,13
"

~

f:= :::::

~
ffi"

" "-

-55"C

III

IC= 1.0A

TJ =

II

2~"C

S.OA

4.0 A

r'i

1.2

l=

;;

~ 0.8

50

"G
j
8

r-....
20

0.4

l!l
>

10
0.1

0.2

O.l
0.5 0.7 1.0
2.0 l.O
IC. COLLECTOR CURRENT (AMPERES)

5.0 7.0

10

10

5.0

20

50
100 200
500
lB. SASE CURRENT (mA)

1000

2000

5000

FIGURE 8 - COLLECTOR CUT-OFF REGION

FIGURE 7 - "ON" VOLTAGES
1.4
1.2

fl

III
III

ITT

"

2
~ 1.6

VCE·4.0V

TJ • 150"C

2.0

103

TJ' 25"C

-

;;:

VCE-lOV-

102

-/-

TJ • 115"C

V

.3

~ 1.0

....

I

....--

VBE(sat)@ICIIB= 10

~ 0.8

~

-"

:.,.....-

13

w

"'"

~
!:; 0.6

">,,: 0.4 I-- -

~

VBj@VfEi4'i'l

I
I

0.2

8

II
II

--'"""'

VCE(sat)@le/IB= 10
0.1

0.2

O.l

0.5 0.7

~

V
1.0

2.0

l.O

5.0 7.0

100"C
101
10 0

10-1
10-2

==

IC-ICES

~ ~R ..e".

10-l
-0.4

10

25"C

F

-O.l

-0.2

Forward

-0.1

0.1

0.2

O.l· 0.4

VSE. SASE·EMITTER VOLTAGE (VOLTS)

IC. COLLECTOR CURRENT (AMPERES)

4-349

0.5

0.6

•

2N6576
2N6577
2N6578

15 AMPERE
POWER TRANSISTORS

NPN SILICON POWER DARLINGTON TRANSISTORS
General-purpose EpiBase power darl ington transistors, suitable
for linear and switching applications_

•

NPN SILICON
, DARLINGTON
60,90,120 VOLTS
120 WATTS

•

Replacement for 2N3055 and Driver

•

High Gain Darlington Performance

•

Built-In Diode Protection for Reverse Polarity Protection

.. Can Be Driven from Low-Level Logic
•

Popular Voltage Range

•

Operating Range - -65 to +200 0 C

'MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

VCeO(susl.

Collector-Base Voltage
Emitter-Base Voltage
Collector Current Continuous

VCS
VFR
IC

Peak

2N6576I 2N6577 2N6578
60
90
120
60
120
I 90
7.0'----15
30
0.25_0.50_

Unit

Adc

1

.·
··•

IS

Emitter Current - Continuous

Ie

15.25_30.5_

PD

120_0.685_
_-65to+200_

Total Power Dissipat10n
Derate above 2SoC

@

T C = 2SoC

Operating and Storage Junction
Temperature Range

TJ,Tstg

Vdc

...

Base Current - Continuous
- Peak
- Peak

Vdc

•

Vdc
Adc
Adc

Watts
WloC

°c

THERMAL CHARACTERISTICS
Charact.ristj~

Thermal ResIstance. Junction to Case
Maximum Lead Temperature for Soldering

Symbol

Max

Unit

ROJC

1.46
265

°C/W

TL

°c

Purposes: 1116" from Case for lOs.
"Indicates JEDEC Registered Data

DIM

A

B
C

D
E
F

G

,
H

DARLINGTON SCHEMATIC

K

n

Collector

R

MILLIMETERS
MIN
MAX

6.35
OS7

-

2UO
10.67
5.21
16.64
11.18
3.84

-

39.37
22.23
11.43
1.09
3.43

30.40
11.18
5.72
17.15
12.19
4.119

26.67

INCHES
MAX

MIN

-

~.25O

0.038

-

1.177
0.420
0.205
0.855
0.440
0.151

-

CASE 11-03
TO-3

Sase

Emitter

4-350

1.550
0.B75
0.450
0.043
0.135
1.197
D.44O
0.225
0.675
O.
0.161
1.050

2N6576,2N6577,2N6578

·ELECTRICAL CHARACTERISTICS ITc

I

= 25°C unless otherwise noted.)

Characteristic

I

Symbol

Min

Ma.

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltagel1)

(lc

~

200 mAde. 16

= Ol

Vde

VCEOlsus)
2N6576
2NS5'/7
2N6578

SO
90
170

1.0

-

-

Collector Cutoff Current
IVCE = Rated Value)

ICEO

-

Collector Cutoff Current

ICER

-

5.0

mAde

ICEV

-

5.0

mAde

ICBO

-

0.5

mAde

mAde

IVCER = Rated VCEOlsus) Value. RBE = 10 kU. TC = 150°C)
Collector Cutoff Current

VCEX = Rated VCEOlsus) Value. VBEloff) -. 1.5 Vdcl
Collector Cutoff Current

IVCB" Rated Value)
ON CHARACTERISTICS

DC Current Gam
IIc
IIc
lie
lie

hFE

= 15 Ade. VeE = 4.0 Vdcl
= 10 Ade. VCE = 3.0 Vdcl
= 4.0 Ade. VCE = 3.0 Vde)
= 0.4 Ade. VeE = 3.0 Vdel

Collector-Emitter Saturation Voltage
lie = 15 Ade. I B = 0.15 Adel
lie = 10 Ade.IB = 0.1 Ade)

VCElsat)

Base-EmItter SaturatIOn Voltage
lie = 15 Ade.IB = 0.15 Adel
lie = 10 Ade. IB = 0.1 Adcl

VBElsatl

-

100
500
2000
200

5.000
20.000

-

4.0
2.8

-

-

Vde

Vde

-

4.5
3.5

VF

-

4.5

IVce=30Vdc.IC= lOAdc.IBl =0.1 Ade.
tp = 300 ;as. Duty Cycle" 2.0%1

td

-

0.15

tr

-

1.0

'";as

IVCC - 30 Vde.lc = 10 Adc.IBl - IB2 - 0.1 Adc.
tp = 300 ;as. Duty Cycle" 2.0%1

ts

-

2.0

;as

7.0

;as

COllector-Emitter Diode Voltage Drop

Vdc

(lEe = 15 Ade)
DYNAMIC CHARACTERISTICS
Magnitude of Common-Emitter Small-Signal Short-Circuit Current Transfer Ratio

(Ie = 3.0 Adc. VCE = 3.0 Vdc. f = 1.0 MHzl
SWITCHING CHARACTERISTICS
RESISTIVE LOAD IFigur. 21
Delay Time

Rise Time
Storage Time
Fall Time

tf

• Indicates JEDEC Registered Data
11) Pulse test: Pulse W,dth" 300 ;as. Duty Cycle" 2.0%.

FIGURE 1 - RATED FORWARD BIASED
SAFE-OPERATING AREA

.
~

~

.-- 1-•

20
10

i

5.0

B
'"

2.0

'"~

1.0

++-

--

40

Il

~-~

"',

-dt~

a transistor: average Junction temperSilure and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves
indicate.

!
100",==

~""'"

---

1.0m{t~-=

200 e
" "_w_ TJ"
Bondrng Wire limit
E- - Thermal Limit, Smgle Pulse, TC '" 25 C-

The data of Figure 1 is based on TC =- 2SoC; T Jlpk) is variable

D

= 0.& - - Second Breakdown limit
8

--

O. I
5.0

10

depending on power level. Second breakdown pulse limits are

Jom,::;

D

!:.} O. 2

0.0&
2.0

There are two limitations on the power handling ability of

--

20

2NS&76
2N6&77
2N6&78

valid for duty cycles to 10%.

T Jlpk) may be calculated from the data in Figure S. At high
case temperatures thermal limitations will reduce the power that

r-

r--

40

can be handled to values less than the limitations imposed by
second breakdown.

~
60

100

150

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

4-351

2N6576,2N6577,2N6578

FIGURE 3 - COLLECTOR·SATURATION REGION'

FIGURE 2 - DC CURRENT GAIN

1

10 k

I

~125'C
2k

g

~

1\

y

./

1/

[\

r\
\

I

VCE • 3 Vdc

Y V
500 -c. -30'C
1k

lHT

\
1\

I

200

\

0.2

SA
1A

0.5
1.0
2.0
5.0
lC, COLLECTOR CURRENT IAMPSI

10

lTI

O. 5

15

11

0.0001

0.001

0.0003

0.02

0.05

0.1

II II

0

1 I

.1.

i!

- - VBElsal1 @ICIIB - 100

r- t- IC/IB' 100

w

«
'"

f-- I-- ___ VBEI,nl@VCE'3V,25'C

/
M

;;;

~

~

0

>

I-

~

1.5

o

+25 0 C

>' 1.5

0.5

-

II
0.2

/

2

I-JOOC

-

>

11/;50'C

>

~.

o

w

'"
;

-30'C

J

JJ,UoJ c
.
+2S C

i!

~

'"

w
l-

~

0.005 0.01

FIGURE 5 - BASE·EMITTER VOLTAGE

~

'"
~
8

0.002

IB' BASE CURRENT IAMPSI

FIGURE 4 - COllECTOR SATURATION VOLTAGE

0

lH'

ftitt

1\

1

•

1111
1I11

!\

+150OC

5k

l-

r-....

J...-

z

«
'"

5

~

F:::;::::

f-- f-"

-

-:::,...-

-

~

,.;

~~

0.5

0.5
IC, CO~ECTOR CURRENT IAMPSI

0.2

10 15

10

0.5

15

IC' COLLECTOR CURRENT lAMPS)

FIGURE 6 - THERMAL RESPONSE

o. 1
O. 7 = 0-0.5

-

o.5

3 - _1 0.2

I..--:::;: ."..

2

r - -0.1

---=-

p[Ilfl

"""

IE ~O.05
5t--0.02

0.0 1
0.1

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJlpkl - TC - Pipit) 9JCII)

t~

71---

0.0 2~

9JClt) - rll) 9JC
9JC -1.46

.....::::
" SINGLE PULSE

DUTY CYCLE, 0 • 11/12

0.01

I
0.2

0.3

1111

I
0.5

0.7

1.0

2.0

3.0

5.0

7.0

10
I, TIME(m~

4-352

I I

I

I I

20

30

50

70

100

200

300

500 700 1000

2N6576,2N6577,2N6578

FIGURE 8 - SWITCHING TIMES

.FIGURE 7 - SWITCHING TIMES TEST CIRCUIT
0

Vee

ICIIS" 100
VCE" 30 V

+30 V

If

RC Scope

r-t+1~ ~O __

:1
w

251JS

'"

;::

-9.~-~D

t r • tf ~ 10

1

I,:;;.

's~

O. 5

51

ns

01

I--

Duty Cycle"" 1.0%

O. 2
-4.0 V

t--.

'd

O. 1
1.5

RB and Rc Varied to Obtain Desired Current Levels

01 Must be Fast Recovery Type, eg:

10

15

Ie. COLLECTOR CURRENT (AMPS)

FIGURE 10 - CAPACITANCE

FIGURE 9 - COLLECTOR CUT·OFF REGION

104 F

REVERSE-'="' =FORWARO

l

§
'"a

'"o

~
8

~

103
102

~
w

F"'VCP30V

100

u

z

;0
U
;t

r- TJ - 151JOC

Cob-

;3

101
100

•

u'

TJ" 25~C

t-- 1000C
t-- 25 0C

10- 1
-0.6

·0.4

10

-0.2

+0.2

+0.4

+0.6

+O.S

+1.0

+1.2

+1.4

15

20

VSE. SASE EMITIER VOLTAGE (VOLTS)

100
30
50
70
VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

FIGURE 11 - COLLECTOR·EMITTER VOLTAGE
5.0

~

2:: 4. 0
w

~
!:;
o 3.0
>

./

o

-30oC

'"

~

2.0

w

1. 5

~
o

~ 1.0

t: 0.5

+25 D&
;/ +lsohc

.-

.-i. It,i'L£
0.2

0.3

-

-0;::;
I- ~ :....-

f-"'"

1- .....

0.5 0.7 1.0
Z.O
Ie. COLLECTOR CURRENT (AMPS)

4-353

5.0

10

15

'1

2N6591
216592
2N6593

NPN SILICON ANNULAR
HIGH VOLTAGE AMPLIFIER TRANSISTORS

DUOWATT
NPN SILICON
AMPLIFIER TRANSISTORS

___ designed for horizonta_1 drive applications, high-voltage linear
amplifiers, and high-voltage transistor regulators_

•

•

High Collector-Emitter Br~akdown Voltage BVCEO = 250 Vdc (Min) @ IC = 1.0 mAdc - 2N6593

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1_5 Vdc (Max) @ IC = 200 mAdc

•

Duowatt Package 2 Watts Free Air Dissipation @T A = 25 0 C

"

MAXIMUM RATINGS
Rating
·Collector-Emitter Voltage
·Collector·Base Voltage

Symbol

2N6591
150
150

VCEO
VCBO

• Emitter-Base Voltage
·Collector Current Continuous
Peak 111
eBase Current
*Total Power Dissipation @ TA = 25°C
Derate above 25°C

VEBO
IC

Total Power Dissipation@Tc=250C

Po

..

...

IB
Po

..
.

Derate above 2SoC
·Operating and Storage Junction
Temperature Range

_

TJ,T Slg

·Solder Temperature, 1/16" from Case
for 10 Seconds

I 2N65921 2N6593
I
I

200 I 250
200 I 250
5.00.51.0100-

2.01610BO-55.to + 1 5 0 260-

Unit

Vde
Vde
Vde
Ade
mAde
Watts
mW/oC
Watts
mW/oC

PIN

A

Symbol

I
I

R9JA
R9JC

I
I
I

Max
62.5
12.5

I
I

°C/W

I

°C/W

-Indicates JEDEC Registered Data.

11) Pulse Test: Pulse Width-< 1.0 ml, Duty Cycle < 50%.

Unit

•

MilLIMETERS
INCHES
MIN MAX
MIN MAX
21.84 22.35
9.91 10,41
0.410
4,39
4,65
0.183
C
0.58 0.74
.
0.029
D
4.06 0.140 0.160
3.56
F
2.41
2.67 0.095 0.105
G
1.70 1.96 0.067 0.077
H
J
0.48 0.66 0,019 0.026
K 12.19 12.95 0.480 0510
l
1.6S
2.03 0,065 0,080
9.91 10.16 0.390 0.400
N
Q
3.56
3.81 0.140 0.150
.0
1.75 10.04Z 0.069
R
7.87
9.14 0.310 0.360

DIM

Characteristic

I. EMITTER
1.8ASE

3. COLLECTOR
4. COllECTOR

vc

THERMAL CHARACTERISTICS
Thermal Resistance. Junction 10 Ambient
Thermal Resistance. Jun~tion to Case

STYLE 1:

°c

c+

CASE 318.(14
TO-202AC

4-354

2N6591,2N6592,2N6593

*ELECTR ICAL CHARACTER ISTICS (T A = 25°C unless otherwise noted.l
Characteristic

Svmbol

Max

Min

Unit

OFF CHARACTERISTICS
Collecto·r-Emitter Breakdown Voltage

IIc = 1.0mAde.IB = 01

Vde

BVCEO
2N6591
2N6592
2N6593

Collector-Base Breakdown Voltage
IIc = 100 pAde. Ie = 01

-

150
200
250

Vde

BVCBO
2N6591
2N6592
2N6593

-

150
200
250

Emitter-Base Breakdown Voltage

-

5.0

BVeBO

Vde

lie =.100I'Ade.lc = 01

Collector Cutoff Current
(Vce = 100 Vde. IE = 0)
(VCB = 150 Vde.le = 0)
(VCB = 200 Vde. Ie = 01
Emitter Cutoff Current
(VeB = 5.0 Vde. IC = 01

\

ICBO

-

0.2
02
02

2N6591
2N6592
2N6593

40
30
30

250
250
250

2N6591
2N6592
2N6593

40
40
30

200
200
200

2N6591
2N6592
2N6593
lEBO

j.J.Adc

01

}.lAde

ON CHARACTERISTlCS(lI
DC Current Gain

IIc

hFE

= 10 mAde. VCE

= 10 Vdel

(lC = 100 mAde. VCE = 10 Vdel

COllector· Emitter Saturation Voltage
IIc = 200 mAde. IS = 20 mAdel

VCE(,.tl

-

O.S

Vde

Base-Emitter On Voltage

VBE(onl

-

1.0

Vde

fT

35

300

MHz

Ceb

-

12

pF

IIc = 100 mAde. Vce = 10 Vdel

DYNAMIC CHARACTERISTICS

Current·Gain - Bandwidth Product
(IC

=

50 mAde. VCE = 20 Vde. f = 20 MHzl

Collector-Base Capacitance
(VCB = 10 Vde. Ie = O. f = 1.0 MHzl

.. Indicates JEDEC Registered Data.
(11 Pulse Te .. : Pulse W,dth .. 3001". Duty Cycle .. 2.0%.

TYPICAL CHARACTERISTICS
FIGURE 1 - CURRENT·GAIN - BANDWIDTH PRODUCT
:J:

FIGURE 2 - CAPACITANCE
100
.70
50

300

~

VCE' 20 V
TJ' 250 C

I-

~ 200

Q

~

:J:

l-

e

~ 100

-

~

30

..........

';. 20

...

t"-....

'"'
~

z

~

z

:.i

50

'"
13
.t:

30

10
7.0

.C.b

TJ' 25'C

- ..
- po.

5 5.0

70

~

,...

\

-

'"

10

20

30

50

Ccb

U 3.0

II

2.0

70

100

IC. COLLECTOR CURRENT (mAl

1.0
0.3 0.50.7 1.0

-

II
2.0 3.0 6.07.0 10

20 30

VR. REVERSE VOLTAGE (VOLTSI

4-355

-

60 70 100

200300

2N6591,2N6592,2N6593

TYPICAL CHARACTERISTICS (Continued'

FIGURE 3 - DC CURRENT GAIN

FIGURE 4 - "ON" VOLTAGE

SIlO

1.0
TJ' 250C

300

--

200

z

:;;:

....

-

•

ag

-

~
~

~ 20

1'-.' '

2.0

"'~

5.0
10
20
50
IC. COLLECTOR CURRENT (mA)

100

200

~o

2:

~

1/

o

0.5

500

1.0

i

~

04

g.

0.2

8
>

0.8

--

I"

0.2 0.3 0.5 0.7 1.0
2.0 3.0 5.07.0 10
lB. BASE CURRENT (mA)

:>

~

....

I-

:>

50 70 100

;(

.s....

TA' 25~C
.:_
I
PULSE WIDTH • 300",- f---IB~
DUTY CYCLE.;; 2.0%

160

........: ;...---:

B 120

h 'l

co
o

~

..,

-./

~

~

80

fL. V

o

!) 40

~

r

o
o

r--

1.0"'''

--;f."

-I

20

/
V

--- -

J-..H1:

/
V

V

-550C to +25 DC

0.5

1.0

2.0
5.0
10
20
IC. COLLECTOR CURRENT (mA)

50

100

200

FIGURE 8 - COLLECTOR CUTOFF REGION

,....-

VCE' 150V

-

TJ'150dC

-

I- 1000C

600 "A

I

400.A

I

20LA

2

I
10

oVB forVBE

-2.4
0.2

FIGURE 7 - COLLECTOR CHARACTERISTICS
200

+25 0 Cto +125 0 C

f-25 0 C to +1250 C

~ -1.6



\

"'~

I II IIII
1.0

VBE(on) @VCE • 10 V

«
~ O.4

~

~

--VCE"2.0V
VCE'lOV

0
7.0
5. 0
0.5

.

-I-H-ttll

O. 6

w

30

II III
J I II:

VBE(sa,) @ICIIB • 10

-

=-55 0C _

0
0

O. B

- -

250e

.. 100

~co

-

TJ -1500e

30

~

-

40

10-3
-0.4

50

VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS)

4-356

REVERSE

r-

FORWARD

250C
-0.2
+0.2
+0.4
VBE. BASE·EMITTER VOLTAGE (VOLTS)

+0.6

2N6591,2N6592,2N6593

TYPICAL CHARACTERISTICS (Continued)
FIGURE 9 - THERMAL RESPONSE
I.0
O.1
oo. 5

;{6

~~ 0.3
~§ 2

-

o.~

r- 0.2

0.1
'"
~~ O. I ~ Io.Os
"''''
~ i1 0.0 1

II""

....

~~ 0.0~

~~

-'~

-

::;!fji

Single Pulse

le;CItl" rltl ROJC
ROJe'" 12.5 0CIW Max

pEIUl

Smgle Pulse

0.02
0.03 A

-t~~j

0.01

0.02
0.0 1
001

1""

I
0.02

Duty Cycle, 0 = 1t/12
0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

~O

20

100

200

~OO

10k

1.0k

-

-

l'JA(rl " r(,1 ROJA

ROJA = 62 soeIW Max

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT II
TJ(pkl -TC" P(pkl ROJC(,I
~.O

k 10 k

20 k

50 k 100 k

t, TIME Ims)

FIGURE 10 - ACTIVE REGION SAFE'()PERATING AREA

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operatIon; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 10 is based on TC = 2So C; TJ(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;. 2So C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 10 may be found
at any case temperature by using the appropriate curve on
Figure 11.
T J(pk) may be calculated from the data in Figure 9.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.

-,
100

300

VCE. COllECTOR-EMmER VOL TAGE (VOL TSI

FIGURE 11 - POWER DERATING
1.0

~

""~~

~ 0.8

'"

.

'"to
u..

'"z:
~
ffi
c

Thermal--.

0.6

Derating

I
Derating

'"

r---

'"

0.4

'"~

~ 0.2

20

40

I

Second Bseakdown

............

!"'-

"- .........

"

60
80 100
120
TC. CASE TEMPERATURE (OCI

4-357

'" "
140

160

•

2N6594

12 AMPERE
POWER TRANSISTOR
PNPSILICON

PNP SILICON POWER TRANSISTOR

40 VOLTS
100 WATTS

The 2N6594 is a general·purpose. EPI·BASE'" power transistor
designed for low voltage amplifier and power switching applications.
It is a complement to the NPN 2N6569.

II

•

Safe Operating Area - Full Power Rating to 40 V

•

EPI·BASE Performance in Gain and Speed

•

Lower Voltage. Economical Complement to the 2N3055

Lr~
r~'K
ESEATlN/~

·MAXIMUM RATINGS
Rating
Collector~Emitter

Voltage

Collector-Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Svmbol

Value

Unit

VCEOlsusl
VCBO
VEBO
IC

40
45
5
12
24
5
10
17
34
100
0.572
-65 to +200

Vdc
Vdc
Vdc
Adc

- Peak

Sase Current - Continuous
- Peak

IB

Emitter Current - Continuous
- Peak

Ie

Total Povver Dissipation

@

T C -- 25°C

Po

Derate above 2SoC

Operating and Storage Junction
Temperature Rang~

TJ.Tstg

Maximum Lead Temperature for Soldering

Adc
Watts

W/oC
°c

STYLE I:
PIN I. BASE
2. EMITTER
CASE: COLLECTOR

DIM
Svmbol

Max

Unit

ROJC
TL

1.75

°CIW
°c

265

NOTE:
I. DIM "Q" IS CIA.

MILLIMETERS
MIN MAX

INCHES
MIN
MAX

-

39.37
A
1.550
B
21.08
- 0.830
C 6.35
7.62 0.250 0.300
0 0.99
1.09 0.039 0.043
E
3.43
0.135
30.40 1.177 1.197
F 29.90
G 10.67
11.18 0.420 0.440
H 5.33
5.59 0.210 0.220
J 16.64 17.15 0.655 0.675
K 11.18
12.19 0.440 0.480
n 3.84 4.09 0.151 0.161
R
26.67
'1.050
Collector connected to case.

-

Purposes: 1/16" from Case for 10 seconds

-

-

11-01
(TO·3)

CASE

4-358

I

Adc

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

PLANE

2N6594

*ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted.!

I

I

Charact.,istic

Symbul

Min

Max

40

-

Unit

OFF"CHARACTERISTICS
Colleclor-Emitter Sustaining Voltage (1}
(lC = 200 mAde,ls = 0)
Collector Cutoff Current
IVCEV = 45 Vde, VSElofO = 1.5 Vde)
IVCEV = 45 Vde, VSElofll = 1.5 Vde, TC = 100°C)

VCEOI,us)

_.

ICEV

Emitter Cutoff Current
IVEB = 5 Vd., IC = O}

Vde
mAde

-

1
10

IESO

-

5

mAde

ISlb

2&

-

Ade

15

200
100

SECOND SREAKDOWN
Second Breakdown Collector Current with Base Forward Bia'5ed
IVCE = 40 Vdc, 1=1 s Inon-repetitiveU
ON CHARACTERISTICS
DC Current Gain
(lc = 4 Adc, VCE = 3 Vdc}
(lc = 12 Ado, VCE = 4 Vdc)

-

hFE

5

Collector-Emitter Satuiatlon Voltage
IIc = 4 Ade, Ie = 0,4 Ad.)
IIc = 12 Ade, Ie = 2.4 Ade}

VCE(,al)

Base-Emitter Saluration Vol rage
IIc = 4 Ade, IS = 0.4 Ad.)

VeEI,.t)

Vde

-

1.5

4

2

Vde

DYNAMIC CHARACTERISTICS
fT

2.5

25

MHz

Cob

100

1000

pF

-

0.4

-

Current-Gain - Bandwidth Product
(lC = 1 Adc, VCE = 4 Vdc. lIen = 0.5 MHz}
Output Capoclt<:mce

IVcs = 10 Vdc, IE = O. f test

= 1

MHz}

SWITCHING CHARACTERISTICS
RESISTIVE LOAD

=2 Ade, ISl =0.2 Ado,

Delay Time

(Vec = 30 Vdc, IC

A,se Time

tp = 25 "s, Duty Cyel ... 1%)

Storage Time
F.lll Time

(VCC =30 Vde, Ie = 2 Adc,lBI
tp = 25 '''. Duty Cycle .. 1%}

td
t,

=182 = 0.2 Ade,

Is
If

*tndicates JEDEC Registered Data.
11} Pul •• TO>l, PW ~ 300 /01', Duty Cyel ... 2%.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT

Vee
-30V

-1

~~

H'25".~e

0__

RS

Scope

+9.~-;'-D
01
tr,tf '" 10 ns
Duty Cycle'" 1.0%

-4.0 V

-=

AS and RC Varied to Obtain Desired Current Levels
01 must be fast recovery type.

4-359

'"

1.5

_.

I"

5

-

1.5

'"

I"

•

2N6594

FIGURE 2 - THERMAL RESPONSE

~

~

~ 0.7 ~O-O.5
~

0.5

o

~
w

~

~
;t

•

ffi

I-

0.3 t-012

~ O. 2

ROJC(!) =,(I) ROJC
ROJC =1.75 0 CIW Max
o CU RVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 'I

,-::;; laiiili

,:::;;;; !II'"

1--0.1

TJ(pkl- TC =P(pk) ROJCItI

¢P

lb

O.05
O.
0.0 7t--0.02
0.05

f{W-

~ 0.0 3~ ~0.01

'ffi"" 0.0 2)-- !' Single Pulse
~

'""
-:i

DUTY CYCLE. 0 = '11'2

ill I I I I IIII

I I

~ 0,0 1

0.02

0.01

0.1

0.05

0.2

0.5

10

20

100

200

500

100

,.TIME(msl

1::

FIGURE 3 - SAFE OPERATING AREA
0
0

·-·d·,
..... ,

r· . t"

,
. r- .....

._.

t-.

1m,

I'

0

de

.....

5m'

-="

2

5

.....

I

I

I.Ll

..... ,

Safe operating area curves indicate 'C-VCE limits of the
transistor being observed for reliable operation; i.e., the
transistor must not be subjected to greater dissipation than
the curves indicate. Figure 4 may be used to derate the
curves shown or an effective RO JC(t) may. be computed
from Figure 2 for pulsed operation.-

"..... ' .

.,

=:.:-.:. ~~~~:!I~T;~ted
I

"-

.....

5

3 t-

,O.5ms

.....

..1

II
10

3D

20

50

70 80

VCE. COLLEGTGR·EMITIER VOLTAGE (VOLTSI

FIGURE 4 - POWER DERATING

O. 8

'"o
t;

:l:

'"' "- I"..

o. 6

['....

"

'"z

~ o. 4

~
~

o

"~

O. 2

o

o

20

40

60

80

100

120

TC. TEMPERATURE (OC)

4-360

140

160

180

'"

2DD

2N6594

FIGURE 5 - DC CURRENT GAIN
2D
D-

"'""z 100

FIGURE 6 - COLLECTOR SATURATION REGION

r-t-. T~='I~old
r-r-tf::±

70
D

'"
'"c

D

I'-.. I" t:-..

D

!'.

I0
D.I

~ 1.6

-55°C

~ 1. 2

.......

......,

.......

:::i
~

ro.B

\

'"t;
~

i"

D.5 D.7

0.4

7

>

10

D
10

5

20

IC. COLLECTOR CURRENT (AMPERESI

Q

~
w

:
......

Q

I

VBE(onJ @VCE : 4 V

!--

D.S

r-:

V

.D
0.1

ffi
::1
B

./ Y
~

a:

D.3

5000

V

L.

0.5 D.7

I- TJ: 15DoC
10

'"

I--

1000C

~

""'"

REVERSE

IC - ICES
0.1

FORWARD

I-- r-t- 25°C

.-I-I-t"'"
0.2

2Doo

100

~
:3

1/

,;
VeE("'I@le/IB =I~-

1000

I-

.~

>

O.4

500

1000

~~E:~tI @lbIB! 10

II iT

200

VCE:30V

I i II

I.2

IDo

FIGURE 8 - COLLECTOR CUT·OFF REGION

111
~

5D

lB. BASE CURRENT (mAl

FIGURE 7 - "ON" VOLTAGES

I.6

t-

\

:3

t!l

0.3

TJ: 25°C

SA

4A

Q

::"'joo.,

D.2

IC: I A

2

~

~

iii
a:

~

UUl

II

Q

25°C

;;:
a:
=>

~

II
VCE: 4 V

ID

Ie. COLLECTOR CURRENT (AMPERESI

D.ol
<

./

1.0

0.0

'1

2.0

..........

........

r--....

r-....

ICII

r--......

r----...

r-0.6

-

--

i--

~ 1. 5

20

.........

r!!-

r--I-

4

0.8
'Bl. BASE CURRENT (AMP)

12

1.0

1.0

" ........

.,.- / '

- -

:Ii
o
t;

~

f--

o
o

1.0

&.0

20

40

60

BO

100

120

140

160

TC. CASE TEIIPERATURE (oC)

2.

0

FIGURE 9 - SW(TCHING BEHAVIOR versus ICM
10

./

."...
1.5

2.0
'CM. COLLECTOR CURRENT (AMP)

5

/'

>< ~1

o~
1.0

~

;::
8.0 ::

I,

...............

........... V

!w

If

....~

5

9.0

V""

.,.- V
0.5

.......

'!.- /

1

~

=1.15 A. IB =O,B5 A. La = 13 ""

1.5

LB."

20

.............. .......

,;; 0.5

0.&
IBI. BASE CURRENT (AMP)

FIGURE 7 - SWITCHING BEHAVIOR versus
TEMPERATURE

F'GURE 8 - OPTIMUM DRIVE CONDITIONS

0.5

r..........

7

;/

./

r-...

"- r-....
"

ffi
"...~
w

4

"-

0

FIGURE 6 - OPTIMIZING DRIVE @ IC = 2.0 A

2.0

~

3.5

o

9.0

:--.!2

o

-.........::::

'"

0/
5

2.5

.....-

/'

-

If

o
0.5

4-365

L.--

2.0

1.0

1.5
2.0
'CM. COLLECTOR CURRENT (AIIP)

2.5

~

BU204, BU205

FIGURE 10 - THERMAL RESPONSE
I.0

o.

~
7~D-O.S
~_ O.5

--

we

"w

t--~

....

~

D. 3~ 0.2

~~ O.2

in'"
ze

I---

:~

o. 11==.0.05

""Z

I-

0.1

I - I-~

> zO.O 7~0.02
g~o.o5
~
3 - .-IC"

.

t!; ~O.O

_

•

;0,..

pHUl
tt----J

0.01

DUTY CYCLE. D : 11112

0.0 21--- SINGLE PULSE

I II

0.0 I
0.01

0.02 0.03

I III
0.05

0.1

0.2

0.3

0.5

2.0

1.0

3.0

5.0

II

I

30

50

20

10.

R9JCI.) : rlt! R9JC
R9JC· 2.5PC/W MIX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME Alii
TJlpk) - TC' P(pk) RUCI')
100

200

300

1000

500

'. TIME (ms)

FIGURE 12 - DC CURRENT GAIN

FIGURE 11 - COLLECTOR SATURATION REGION
_

!j
o



5.0

30

4.5

4.0 1\
1\
3.5

3.0
2.5
Z.O

1.5
1.0
0.5

0
0.1

;;:

\2.0A

\ 1.5 A

\

\

\

\

\
\.

\.

" ....

i'... ....... r0.2

0.5
0.4
0.3
IS. SASE CURRENT (AMP)

r--..

f - _25°C

z

1\

\ IC'0.7S

VC~=S~OV

I~JC

TJ1:

20

TJ: 25°C

'"
....

i:i

10

:::

~
<.>
e

7.0

"""

"'"' I\.

5.0

~

1\

-

3.0

~

2.0

~

0.6 0.7 O.S 0.91.0

1.5
0.03

0.05

0.5
1.0
0.1
0.2
IC. COLLECTOR CURRENT (AMP)

FIGURE 13 - "ON" VOLTAGES
2.0

1.6

~e


>0.4

o
0.25 0.3

VCE(saU @IClls • 2.0

0.4

----

0.5.
0.7
1.0
IC. COLLECTOR CURRENT (AMP)

4-366

1..

25°C

--:::::F- '(7
100°C

/ L
/2SoC- f-2.0

2.5

2.0

3.0

BU204, BU205

FIGURE 14 - MAXIMUM FORWARD BIAS
SAFE OPERATING AREA

10
5.0

a:
:;;:

2.0

.5.
Iz
w

1.0
0.5

:=I

0.2

a:

0.1

0
l-

0.05

a:
a:

t:I

t.)

W

--

[-

::...... .....

""' ........I '

1-.. ....... ~

:-..; ~.;::o;

""'
........
1==

TC <90°C

;:-....

r..... ......

""'

-......;;:
0.02 ~---- BONOINGWIRE LIMIT
u
SECONOARY BREAKDOWN LIMIT
0.01 ~
BU204
EO.005
....J
....J

0

0.002
0.001

2.0

.....

:-...

BU205
I
5.0
10
20
50
100
200
500
VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS)

4-367

1.0 j.lS
2.0 I5.0 ~
F=
10 I20 I-50
100
200 ~
500 F
I-'1.0 ms
2.0 ~
5.0
10 ~
F=
. de I-

t::

1000

2000

BU207
BU20S

De!oiigner!oi Data Sheet

5 AMPERE
NPN SILICON
POWER TRANSISTORS
1300 AND 1500 VOLTS

HORIZONTAL DEFLECTION TRANSISTOR

•

· .. specifically designed for' use in large screen color defleption
circuits.

•

Designer's Data for
"Worst Case" Conditions
The Designers Data Sheet per,
mits the design of most circuits
entirely from the information pre,
sented. Limit data - representing
device characteristics boundaries are given to facil itate "worst case"
design.

Collector-Emitter Voltage VCEX = 1300 Vdc - BU207
1500 Vdc - BU208

• Collector-Emitter Sustaining Voltage VCEO(sus) = 600 Vdc - BU207
700 Vdc - BU20B
• Switching Times with Inductive Loads, tf = 0.4 IJ.S (Typ)
IC = 4.5 A
•

@

~
lr~
r~,
Es:?-I;:

Optimum Drive Condition Curves

, . Glass Base-Collector Junction

i

*MAXIMUM RATINGS
Symbol

Rating
Collector·Emitter Voltagf1l

COllector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous
Peak (1)

Base Current - Peak 11)
Total Power Dissipation@Tc
Derate above 96°C

= ~50C

Operating and Storage Junction
Temperature Range

VCEOlsus)
VCEX
VEB
IC
ICM
IBM

Po
TJ, Tstg

BU207
600
1300

I BU20B
I
I

700
1500

5
5
7.5
4
12.5·
0.625
-65 to +115

PLANE

Unit
Vdc
Vdc
Vdc
Adc
Adc
Watts
W/oC

Thermal Aesistance, Junction to Case
Maximum Lead Temperature for Soldering

PIN 1. BASE
Z. EMITTER

CASE' COllECTOR

THERMAL CHARACTERISTICS
Characteristic

STYLE I:

°c

Symbol
R9JC
TL

Max
1.6
275

Purposes: liS" from Case for 5 Seconds
11) Pul •• Test: Puis. Width· 5 ms, Duty Cycl ... 10%.

Unit
DcIW
Dc

MILLIMETERS
11M MIN MAX

INCHES
MIN
MAX

39.37
- 1.550
21.0B
0.B3O
7.62 0.2 0 0.300
1.09 0.039 0.043
3.43
0.135
29.90 30.40 1.177 1.197
11.18 0.420 0.440
10.67
5.
5.59 0.210 0.220
16.64 17.15 0.655 0.675
11.18 12.19 0.440 0.490
n 3.64 4.09 0.151 0.161
R
26.67
- 1.050
Coltec:tor connectld to 1:_.

A
B
C
D
E
F
G
H
J
K

-

-

6.35
0.99

-

CASE 11-01

4-368

BU207, BU208

ELECTRICAL CHARACTERISTICS (TC = 250 unless otherwise noted.!

I

Charactoristic

Symbol

Min

Typ

Max

-

-

-

1.0
1.0

Unit

OFF CHARACTERISTICS (1 I
Collector·Emitter Sustaining Voltage

VCEO(sus)

(lC = 100 mAde, IS = 01

SU20B
SU207

600
700

Collector Cutoff Current

Vde

-

Vde

ICES

-

SU20B
SU207

(VCE = 1500 Vde, VSE = 0)
(VeE = 1300 Wdc, Vse = 01
Eminer Base Voltage

-

-

Vde

-

-

-

-

-

5

Vde

-

-

1.5

Vde

VESO

5.0

hFE

2.25

VCE(satl
VSE(satl

liE=10mA,lc=Ol
ON CHARACTERISTICS (II
DC Current Gain

(lC = 4.5 Adc, VCE = 5 Vdel
Collector-Emitter Saturation Voltage

(lC = 4.5 Adc,IS = 2

Ade)

Base Emitter Saturation Voltage

(lc = 4.5 Ade, IS = 2 Adc)
Second Breakdown Collector Current with Base
Forward Biased

ISlb

See Figure 14

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

(lC = 0.1 Adc, VCE = 5.0 Vdc, f test = 1 MHz)
Output Capacitance
(V CS = 10 Vde, IE = 0, f = 0.1 MHz)

fT

-

4.0

Cob

-

125

-

MHz
pF

SWITCHING CHARACTERISTICS
Fall Time

(lc = 4.5 Ade, IS = I.S Ade,
LS = 10 I'H, see Figure 1)

(II Pulse Test: Pulse Width

= 300 I'S, Duty Cycle .. 2%.

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT
+60V

Com
2 k/5 W

<:

820
5W

100/5W

.::...

100 V
15,750 Hz
Freq Adi

It!

100

1500
5W

L

·,OJjF
25 V

+

3

MA918
(Selected
1500VI

C

5W

10l'F
150 V

Pul •• Width Adj

60" Duty Cycle

-=

10 n
5W

Com .... 125 V

'c

L

C

A

mH

"F

3.5

0.87

0.013

4.5

0.67

0.017

DRIVER TRANSFORMER (Til
Motorola part numb.r 25D68782A-05·1/4" laminate "E" iron cor•.
Primary Inductance - 39 mHo Secondary Inductance - 0.22 mH,
Leakage Inductance with primary shorted - 2.0 JJH. Primary 260
turns, #28 AWG enamel wire, Secondary 17 turns, #22 AWG
ana mel wire.

4-369

BU207, BU208

BASE DRIVE: The Key to Performance

•

By now, the concept of controlling the shape of the
turn·off base current is widely accepted and applied in
horizontal deflection design. The problem stems from
the fact that good saturation of the output device, prior
to turn·off, must be assured. This is accomplished by
providing more than enough IBl to satisfy the lowest gain
output device hFE at the end of scan ICM. Worst·case
component variations and maximum high voltage loading
must also be taken into account.
If the base of the output transistor is driven by a very
low impedance source, the turn·off base current will reo
verse very quickly as shown in Figure 2. This results in
rapid, but only partial, collector turn·off, because excess
carriers become trapped in the high resistivity collector
and the transistor is still conductive. This is a high dissipa·
tion mode,since the collector voltage is rising very rapidly.
The problem is overcome by adding inductance to the
base circuit to slow the base current reversal as shown in
Figure 3, thus allowing excess carrier recombination in the
collector to occur while the base current is still flowing.
Choosing the right LB is usually done empirically, since
the equivalent circuit is complex, and since there are
several important variables (/CM' 'B1' and hFE at ICM).
One method is to plot fall time as a function of LB' at the
desired conditions, for several devices within the hFE
specification. A more informative method is to plot power
dissipation versus IBl for a range of values of LB as shown

in Figures 4 and 5. This shows the parameter that really
matters, dissipation, whether caused by switching or by
saturation. The negative slope of these curves at the left
(low IB1) is caused by saturation losses. The positive slope
portion at higher 'Bl' and low values of LB is due to
switching losses as described above. Note that for very low
LB a very narrow optimum is obtained. This occurs when
IBl hFE = ICM' and therefore would be acceptable only
for the "typical" device with constant ICM. As LB is in·
creased, the curves become broader and flatter above the
'B1 hFE = ICM point as the turn·off "tails" are brought
under control. _ Eventually, if LB is raised too far, the
dissipation all across the curve will rise, due to poor
initiation of switching rather than tailing. Plotting this
type of curve family for devices of different hFE' essen·
tially moves the curves to the left or right according to the
relation ISl hFE = constant. It then becomes obvious
that, for a specified ICM' an LB can be chosen which will
give low dissipation over a range of hFE and/or IB1' The
only remaining decision is to pick IBl high enough to
accommodate the lowest hFE -part specified. Figure 8
gives values recommended for LS and IBl for this device
over a wide range of ICM. These values were chosen from
a large number of curves like Figure 4 and Figure 5.
Neither LB nor IB 1 are absolutely critical, as can be seen
from the examples shown, and values of Figure 8 are pro·
vided for guidance only.

TEST CIRCUIT WAVEFORMS
FIGURE 2

FIGURE 3

(time)

(timo)

TEst CIRCUIT OPTIMIZATION
Tl\a test circuit may be used 1.0 evaluate davlcos In the con-

Once the required transistor operating current's determined,
fixed circuit vslue. may be selected from the tabla. Factorv tatting Is performed bV raadlng the current meter on IV • since the
Input power is proportional to current. No adjustment of the
test apparatus Is required.

ventlona' manner, 1.8., to measure fall tlma, storagv tlma, and

saturetlon voltage. However. this circuit was designed to evaluate
davlee, by a simple criterion, power supply input. Excessive
power Input can ba caused by a varietY of problems, but It Is the
dlltlpation In the transistor that II of fundamental itnpononca.

4-370

BU207, BU208

FIGURE 4 - OPTIMIZING DRIVE @ IC

= 3.5 A

FIGURE 5 - OPTIMIZING DRIVE

13

16

\\

1

\\\

\\\ ~
16

S~~B~""'- be
9

4r_

o

/'

LB .H

V

IC - 4.5 A

\
1\ \

5

l\

@

\~

-

\~

l\.
0-

\ l«.6

2-

~"

~

-

LB.H
12

/"

.L.

~

4

t-"

12

0.5

1.5

o

0.5

--

•

1.5

IBI. BASE CURRENT lAMP)

IBI. BASE CURRENT lAMP)
FIGURE 6 - SWITCHING BEHAVIOR vorsu.
TEMPERATURE
ICM = 3.5 A. IB.= 1.5 A. LB = 141'H

FIGURE 7 - SWITCHING BEHAVIOR vorsus
TEMPERATURE
ICM = 4.5A.IB= 1.75 A. LB a BI'H
I

,/

1.5

]
w

'"

;::
~

~

~

-

9.5

Is/

0.5

/'

/'

/'

~

~

;:
~

/

...

~

1.

~

'"

/

;::
~
~

I

:

o
o

100
120
BO
TC. CASE TEMPERATURE IOC)

40

60

140

20

,;::;K

-..........
..

~

r--.. ......

NOMINAL

Is7

15

r

1.5

'" :g
'"
~

-..... ,
liO""lillt:--

3

3.5

- --...

4.5

60

BO

100

120

6
140

160

t

9

i"'--..

-.....

W

LB

1

'"

~

>-

~
::

;;

B

r---.!O",'lill(_
I.

7

I'--. r-...

'"

Z ;::

<::

~
~

r---...

~

:

NOMINAL

6
5

It

0.5

4
3

o

o

40

FIGURE 9 - SWITCHING BEHAVIOR vorsus ICM
20

-

6.5

TC. CASE TEMPERATURE IOC)

FIGURE B - OPTIMUM DRIVE CONDITIONS

r--..

-

0

160

o

3

5

3.5

4.5

ICM. COLLECTOR CURRENT lAMP)

ICM. COLLECTOR CURRENT (AMP)

4-371

>-

...~

~
[

't

""

B

20

7

O.5 /

"7

~

o

:0

/

~

7.5

./

W

;;
8.5 ""

't

'y "

5

2

BU207, BU208

FIGURE 10 - THERMAL RESPONSE

2

•0 =

I

:0.5

.J!,

n

~~~

-0.

n

,..... V-

n

ro:

I- 1-1-

0."

.J ..

~

.J!,

I-'

f'

TJlpk) - TC = Plpk) ZOJCltl)
I " " III I
TT

'1/~2

( CYCLE

~NU~;~ APPROPRIATE 0 CURVE

n

•

-

.1
I." I
ReJC =1.60CIW Max
o CURVES APPLY FOR POWER
PU LSE TRAIN SHOWN
READ TIME At tl

~

f-

lI:!.

n

==

DO:
O. 01

.01

0,02

FOR ~OJC.(t),VALVE

IIII

I

.1

(.

{

5

10

50

lO

100

I

200

II
I{

t. TIME (mS)

FIGURE 11 - COLLECTOR SATURATION REGION

~
c
~

...

2.8

VCE = 5 V

i""

2.4

'"'"

!:;
c
>

ffi

!::

z
1. 61-' -\:'C=2A -

..,c

I-' ~3A

II

1

~

0.8

\

8

0.4

>

1\

\
\

~

7

u

5

o

\.

"-

f'...

10

\

0.5

I

i'-..

25°C

1'-

\.

i

,

1\

3

r-

0
0.3

TJ = 100°C

13

\

1\

\

;;:

...'"

4.5A

:+.5+A

~ '1.2

~

FIGURE 12'- DC CURRENT GAIN
20

I-' - -

2. 0
DOS 007 0.1

0.7
'B. BASE CURRENT (AMP)

0.2 0.3
0.5 0.7 1
'C. COLLECTOR CURRENT (AMP)

FIGURE 13 - "ON" VOLTAGES
/.4

1
1

/. 2

1
~

!:; 1
c
~
... O. 8

'"'"

!:;
o
>
>'

TJ'2S0~
~BEh.tI @le"8 = 2

o. 6

1...---

-

-l-

I--

O
0.05

Vf~(~'" @I~B

:1

0,1

0.2

f-

1

lo0'~..7 ~

O.4

o. 2

I--<~
./

......loo'C

......-Y'
25°C
1

0.3

0.5 0.1

1

'C. COLLECTOR CURRENT (AMP)

4-372

C-

BU207, BU208

FIGURE 14 - MAXIMUM FORWARD BIAS
SAFE OPERATING AREA

10

5

......

I

2

Et-,I

_IC (MAX)
1

li:
::;;

1

~"'
......
......

ICM (MAX)

I......
~

r...

.......

" I......
"-

r-...

r'\
"

' ....

I,

...... ,

I'-

:5 0.5
UJ

a:
=>

~
o

t;

r-..

0.2

o. 1

~,

0.05

UJ
...J

B0.02

~-

TC ';;;95 0 C
BONDiNG WIRE LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
DirTY i:VCLE' ';;;1%

" '"

........

........

F

::

~ts 1=

~
~f-- r-

II-r--

5 f-- 101:::=

~ 0.0 1
BU207
I
BU 20S

0.005

I

I

0.002

1

f10
20'=

500_ r-

.........

0.001

rr-

50_= ~
100- f200- r-

I-

""a:

lJ~~

II

1=
r-

2

10

20

50

100

200

==

dc~ -

500

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

4-373

1000

2000

•

D40Cl
D40C2
D40C4
D40C5
DUOWATT
-NPN SILICON
DARLINGTON AMPLIFIER
TRANSISTORS·

NPNSILICON DARLINGTON
AMPLIFIER TRANSISTORS

•

· .. designed for amplifier and driver applications where high gain is
an essential requirement, low power lamp and relay drivers and power
drivers for high-current applications such as voltage regulators .
•

High DC Current Gain hFE =40,000 (Min) @ IC =200 mAdc - D40C2, 5

•

Collector-Emitter Breakdown Voltage BVCEO = 40 Vdc (Min) @ IC = 10 mAdc - D40C4, 5

•

Low Collector-Emitter Saturation Voltage V CE(sat) = 1_5 Vdc (Max) @ IC =500 mAdc

•

Duowatt Package 2 Watts Free Air Dissipation @ T A

Tab forming and TO-6 lead forming available on
special request.

=

250 C

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
-Collector-Emitter Voltage

Emitter-Base Voltage

Symbol

D40Cl,2

VCEO

30

VCES

30

, VEBO

Collector Current - Continuous
Peak (1)

IC

I D40C4.5
40

Unit
'Vdc

40

Vdc

13

Vdc

0.5
1.0

Adc

Base Current - Continuous

18

100

mAde

Total Power Dissipation @TA - 25°C
Derate above 25°C (2)

Po

1.67
13.3

mW/oC

= 25°C

Po

6.25
50

mW/oC

TJ, T stg

-55 to +150

°c

-

260

°c

Total Power Dissipation@Tc
Derate above 2SoC

Operating and Storage Junction

Watts
Watts

Temperature Range
Solder Temperature, 1/16"' from Case
for 10 Seconds

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Ambient

R9JA

75

°C/W

Thermal Resistance, Junction to Case

R9JC

20

uC/W

(1) Pulse Width.:; 25 ms. Duty Cycle':; 50%.

(2) The actual power dissipation capability of Duowatt transistors are 2 WilT A

= 25°C.

MILLIMETERS
DIM MIN MAX
A 21.84 22.35
8
9.91 10.41
4.39
4.65
C
0.58 0.74
0
3,56
4.06
F
2.67
2.41
G
H
1.70 '1.96
J
0.48 0.66
K 12.19 12.95
1.65
2.03
L
9.91 10.16
N
Q
3.81
3.56
1.
1.07
R
1.87
9.14
T

INCHES
MIN MAX
0.8&0 0.880

'~I

0.173
0.023
0.140
0.095
0.067
0.019
0.480
0.065
0,390
0.140

.
0.026
0.510
0.080
0.400
0.150

0.042
0.310

0.069
0.3&0

TO-202AC
CASE 306-04

4-374

D40C1,D40C2,D40C4,D40C5

I

'ELECTRICAL CHARACTERISTICS ITA = 2S o C unless otherwise notedJ

I

Characteristic

Svmbol

Min

Max

30
40

-

-

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage III
flc = 10 mAdc, VBE = 0)

Vdc

BVCEO
D40Cl,2
D40C4,S

Collector Cutoff Current
IVCB = Rated VCES, IE = 0, TJ = 150 0 C)

ICBO

-

20

I'Adc

Collector Cutoff Current

ICES

-

0.5

J..'Adc

(VCE = Rated VCES, VBE = 0)
Emitter Cutoff Current
IVEB = 13 Vdc, IC = 0)
ON CHARACTERISTICS III

lEBO

-

100

nAdc

10,000
40,000

60,000
-

VCEI,at!

-

1.5

Vdc

VBElsat!

-

2.0

Vdc

Ccb

-

10

pF

hIe

1.0

-

-

Current Gain
flc = 200 mAdc, VCE = 5.0 Vdc)

-

hFE
D40Cl,4
D40C2,5

Collector-Emitter Saturation Voltage
flc = 500 mAde, IB = 0.5 mAde)
Base-Emitter Saturation Voltage
flc = 500 mAdc, I B = 0.5 mAdc!

DYNAMIC CHARACTERISTICS
ColleC'itor Capacitance

IVCB = 10 Vdc, IE = 0, I = 1.0 MHz)
High Frequency Current Gam

flc = 20 rnA, VCE = 5 Vdc, I = 100 MHz!
Input Impedance
flC = 20 mA, vCE = 5 Vdc, f = 1 kHz!

50

h,e

-

Ohms

(1) Pulse Test. Pulse W,dth .. 300 I'S, Duty Cycle .. 2.0%.

TYPICAL CHARACTERISTICS
FIGURE 1 - ACTIVE·REGION SAFE·OPERATING AREA

li:

~

iiia:
a:
:::.
...
a:
o

~

\OO~s

1

There are two limitations on the power handling ability of a

1m.

....

O.5

1',

de

u

- 0.05
0.02
0.5

I\..

·I'-.J

IIIII

'\.'

TJ = 150°C
Bonding Wire Limit
Thermal Limit, Singl. Pulse, TC =250 C
Second Breakdown limit

I

II II

1
7
W
~
VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS!

average junction temperature and second breakdown.

Safe operating area curves indicate IC-VCE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater diSSipation than the curves indicate.
The data of Figure 1 is based on T J(pk):= 1500 C; TC is variable
depending on conditions. Second breakdo,vn pulse limits are valid
lor duty cVcles to 10% provIded TJlpk)';; 1500 C. TJipk) mav be
calculated from the data in Figure 6. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations Imposed by second breakdown.

"

Tc: 25°C

TA =25°C

0.2

8 o. 1

de

transistor:

50

4-375

•

D40Cl,D40C2,D40C4,D40C5

TYPICAL CHARACTERISTICS (continued)

. FIGURE 3 - "ON" VOLTAGES

FIGURE 2 - DC CURRENT GAIN
300 k

2.0
VCP 5.0V

200 k
100 k

~1.6

2

;( 70 k
I- 50 k
~ 30 k

~

~ 20 k

c

..I-H1"""

5~0 V

>

>1.0

10 k
7.0 k
5.0k

VCEhat) .1c!IB - 500

O.B

3.0 k
20

30

50

70

100
200 300
500 700 1.0 k
IC. COLLECTOR CURRENT (mA)

II II

0.6
20

2.0 k

30

FIGURE 4 - COLLECTOR SATURATION REGION

50

70

.....

.....-

VBE(on). VC~ •

~1.2

-55OC

'"'c

•

~1.4

250C

~

VBE("I).Ic!IIt·~

c

'"ffi

~

r-- Tl'2~0~

1.8

TJ -125 OC

-

l-

100
200 300
500 700 1.0 k
IC. COLLECTOR CURRENT (mA)

FIGURE 5 - TEMPERATURE COEFFICIENT
t{).5

en 2.4

TJ' 25 0C

!:;
c
>

II II
II II

~ ~.5

~2.0

~ -0.10

'"

*
;:;

c

;; 1.6

III

"Applin fo, IcllB c; hFE/2

'"'
~

!:;

250C to 1250C

.....

"Svc fo, VCE(saU

-0.15

~

8

;;;

200mA

~ 1.2

500mA

~ -0.30
~

....

IC'50mA

~

> 0.4
0.5

5.0

10 20
50 100 200
lB. BASE CURRENT ("AI

r-III""'"

-0.45
20

500 1.0k 2.0k 5.0k

~
svtl'iBf I

-550C to 25 0C

-0.35

~-O.40

II III
1.0 2.0

I II
25 0C to 1250C

g; -0.25
~

1LU1

~125Oc -

-0.20

w

1.0 A

~

~ 0.8

2.0k

II
30

50

70

III

I

IU
500 700 1.0 k

100
200 300
IC. COLLECTOR CURRENT (mA)

2.0k

FIGURE 6 - THERMAL RESPONSE
1.0
0.7
O' 0.5
0.5

~~
~;;;

.... '"

~~

~!;.

-

-

0.3 I~
0.2
0.1

-

I- ~5

0.1

",w
~ 0.01

:i

Single Pulse

:=.~ 0.05

~~ 0.03 lAo.
0.02

-

p

::i!i!i~

HlJl --

Single Pul.

o CURVES Al'PlY FOR POWER

-t~j

Duty Cyr:lo, 0 =t1/12

0.01
0.02

z,,JA(t) -r(1) R,,JA
RSJA - 750C.w M••

P(pk/

0.2
0.01

'..'I""
0.01

0.05

0.1

0.2

0.5

1.0

2.0

z,JC(1) - ,(I) "'JC
RSJC • 200C.w Ma.

5.0

10

20
t,TIMElm~

·4-376

50

100

200

50fI

1.Ok

2.Ok

PUlSE TRAIN SHOWN
READ TIME AT tl
TJlpl) -TC' '(pl) RtJC(1)

Uk 10k

20k

50k lf11k

D40C1,D40C2,D40C4,D40C5

TYPICAL CHARACTERISTICS

FIGURE 7 - CAPACITANCE

FIGURE 8 - HIGH-FREQUENCY CURRENT GAIN

20

0
TJ=25 DC

z

VCE-5.0V
TJ=25 DC
f= 100MHz

~7.0
>ffi

~10

~

w
..,

....... .....

z

~7_0

~~5.0

a
>
~

~ ~""

0.2

0.5

1.0

2.0

5.0

10

20

~2.0
'"
:;;

I.0
5.0

50

-,

-

~ 3. 0

.....

3_0

0.1

5.0

..,

Cib

..,-

2.0
0.05

•

(continued)

\

7.0

10

20

30

50

70

100

200

IC. COLLECTOR CURRENT (rnA)

VR. REVERSE VOLTAGE (VOLTS)

4-377

"
300

500

NPN

0400
PNP

0410
DUOWATT

COM~LEMENTARY SILICON ANNULAR.
AMPLIFIER TRANSISTORS

COMPLEMENTARY SILICON
AMPLIFIER TRANSISTORS

. . . designed for general·purpose, medium-voltage, medium power
amplifier and driver applications; series, shunt and switching regulators, and low and high frequency inverters and converters .

•

•

Duowatt Package - 2 Watts Free Air Dissipatio~ @ T A = 2S o C
Tab forming and TO-5 lead forming Bvallable on
special request.

Q../
:;!:

c

c

~

~

~

ON

Symbol

8 _-

g:-

Voltage

VCEO

30

45

Collector-Emitter Voltage

VCES

45

60

Emitter-Base Voltage

VEBO
IC

Collector Current

Continuous
Peak 11)

Base Current
Total Power Dissipation @TA == 2SoC
Derate above 25°C (2)
Total Power Dissipation @TC == 2SoC
Derate above 25°C
Operating and Storage Junction

c ....

c
~

Rating
Collector~Emitter

I
r,]!~!
~ ===t-ii

r:: 7V'

MAXIMUM RATINGS

~~60
75

~ ::O~

~g

Unit

75

Vdc

90

Vdc

5.0

...

Vdc

Adc
1.0
2.0
1 0 0 _ mAde

IB

1.67
13.3

PD

Watts
mW/oC

6.25
Watts
mW/oC
50
°c
TJ,Tstg _ _ -55 to + 1 5 0 _
PD

Temperatu re Range
Solder Temperature, 1/16" from Case
for 10 Seconds

°c

260

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Resistance, Junction to Case

Symbol

Max

Unit

ROJA

75

°CIW

ROJC

20

°CIW

(1) Pulse Test: Pulse Width.; 300 !,S.

(2) The actual power dissipation capability of Duowatt transistors are 2 W @ T A = 2SoC.

STYLE 1
PIN 1. EMITTER

b.

2. BASE
3.
COLLECTOR
4. COLLECTOR

.

Dj~~~G

\

4-378

L---

R
iN-R]
Lr--:f-1
f~-=tJ

MILLIMETERS
MAX
DIM MIN
A 21.84 22.35
9.91 10.41
B
4.39
4.65
C
0.14
0
0.58
4.06
F
3.56
G
2.41
2.67
H
1.70
1.96
J
0.48
0.66
K 12.19 12.95
165
2.03
L
9.91 10.16
N
Q
3.56
3.81
R
.8
9.14
T

INCHES
MIN
MAX
0.860 0.880
0.390 0.410
0.173 0.183
0.023 0.029
0.140 0.160
0.095 0.105
0.067 0.077
0.019 0.026
0.480 0.510
0.065 0.080
0.390 0400
0.140 0.150
O. 10

TO-202AC
CASE 306-04

·Annular Semiconductors Patented by Motorola Inc.

Kl

D40D,NPN,D41D,PNP

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted.)

I

I

Charact.ristic

Min

Max

30
45
60
75

-

ICES

-

100

nAdc

lEBO

-

100

nAde

Symbol

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

(lc = 10 mAde, IB

= 0)

Vde

BVCEO

04001,2/04101,2
040010410--4,5
040010410-7,B
0400/0410-10,11,13,14

Collector Cutoff Current

-

(V CE = Rated V CES)
Emitter Cutoff Current

(VEB = 5,0 Vdc)
ON CHARACTERISTICS (1)
DC Current Gain

-

hFE

(lc = 100 mAdc, VCE = 2.0 Vde)

0400/0410-1.4,7,10,13
040010410-2,5,B,ll,14

50
120

150
360

(lc = 1.0 Adc, VCE = 2.0 Vdc)

04001.4,5,7 ,B,l 0,11
04101.4,5,7,B,10,ll
0400/0410-2

10
10
20

-

-

0.5
1.0
1.0

Collector-Emitter Saturation Voltage

(lC = 500 mAde, I B = 50 mAde)

Vdc

VCE{;at)

0400/0410-1,2,4,5
0400,7,B,10,l1,13,14
04107,B,10,ll,13,14

-

1.5

Vde

75

375

MHz

0400 series

-

0410 series

-

12
18

Base-Emitter Saturation Voltage

•

-

VBE{sat)

(lC = 500 mAde, I B = 50 mAde)
DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product

IT

(lc = 20 mA, VCE= 10 Vde, I = 20 MHz)
Collector-Base Capacitance

pF

Ceb

(VCB = 20 Vde, IE = 0, 1=1 MHz)

(1) Pulse Test: Pulse W,dth .. 300 ps, Outy Cycle .. 2.0%.

TYPICAL CHARACTERISTICS

FIGURE 2 - CAPACITANCES

FIGURE 1 - CURRENT·GAIN-BANDWIOTH PROOUCT

vJs! ...-

0

TJ=25 0 C

0

V

~

V

bJob
llL

V
V .... D~\dsUes

0

200

............
........

---0410 series
- - 0400 series

10 0 - 0
0

........

""

TJ - 25 0 C

C,b

-

0

Or- i-r-.

~

~'b"

0

0

7
5r-- r- Applies for Rated Vceo

0

3
2
0.1

10

20

30

50

70

100

200

300

500

lC, COLLECTOR CURRENT ImA)

4-379

II IIII
0.2

0.5

,

I

10
20
VR, REVERSE VOLTAGE IVOLTS)

50

100

0400, NPN, 0410,PNP

TYPICAL CHARACTERISTICS (continued)
0400 series
400

.
'"
~'"

[;
'-'

o

300

T]~ doc'

y~

...-

z 200

100
80

0

~ oV

TJ"'250C

--

10 0

~

n_~5oJ

--...-

0410 series

FIGURE 3 - DC CURRENT GAIN

r--......

15lc

~

~

0

J~~. i,ov

:--.,f\

I-~550C

01-0
VCP 1,0V

•

20

1,0

1.0

5,0

10
10
50
100
IC. COLLECTOR CURRENT ImA)

500

100

30

I,D k

I,D

5,0

10

10

50

10

100

200

500 1000

lC. COLLECTOR CURRENT ImA)

FIGURE 4 - "ON" VOLTAGE

1.0

111'TP15~C
I'

~
~
w

.

--

JJJ!..u Ii' Itlal. !o

0,8

0

1,0

I

0,6

r--

VaElonl @

V~E J",1 V

...-

..
e:

0

-

-

VBElon) Ii' VCE ·1.0 V

w

0,4

I

0,1

1,0

5,0

>
>'

0.4

0,2

-

VCElsall1i' IclIs· 10
1.0

0.6

...-

i:--

'"l-

>
>'

o

II 1111
II IIII

VBElsatl I!IICIIB • 10

~

2.

'"
:;

Tp150C

O,a

o

10
20
50
100
100
IC. COLLECTOR CURRENT ImAI

500

I-- VCElsatl Ii' Ic/IB' 10

1.0

1.0 k

5,0

1,0

10

~

10

50
100
IC. COLLECTOR CURRENT ImA)

100

'500 1.0 k

FIGURE 5 - COLLECTOR SATURATION REGION

0

1

~

T\ 15'oJ

1.0

'I

Tp 250C

o

~ o.8

8

~

~ O.6

6

'"w

250mA 50e rnA

IC'IOmA SOmA

1.0 A

1=

! o.

4

"1.0 A

~Tlml ~ii
III TtiHm:
0
0.05 0,1 0,2
0,5 1.0
2

~ i'H+t
mUl T111

2,0
5,0 10 20
lB. BASE CURRENT ImA)

50

4

o

~= 0,2

8

o
100 200

0,05 0,1

500

I-0,2

0,5 1.0

2,0

5,0

10

10

IS. BASE CURRENT ImA)

4-380

50 100 200

500

D40D, NPN, D41D,PNP

TYPICAL CHARACTERISTICS (continued)

FIGURE 6 - THERMAL RESPONSE
10
07
05

cia

~~ 03

~~

0.2

~~

w~

0.1

in",

o

~

05

~

Single Pulse

~.~ 0.05
003

-

-:::::

01

~~ 007

-=Ci;
'::"~

~;;;

~ to.O;'

-

i"'"

l-

r- 1

Stngle Pulse

-t;j

0.01

,;-

I

001
0.01

- lOJA{I} rll} ROJA
ROJA = 75 0 CNJ Max

-

0

pEfUl

...... 002

002

- - ZOJC(tl s r(ll ROJC
ROJC ~ 20o C/W Max

o CURVES APPL Y fOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11
TJ{p'}' TC ~ p(p'} ROJC{I}

Duty Cycle, 0 '" 11112

002

005

01

05

01

10

20

50

10

10
I, TIME lms)

50

100

100

500

10.

10.

5.0' 10.

50. 100.

10.

FIGURE 7 - ACTlVE·REG10N SAFE·OPERATING AREA
0400 series
2.0

1
....

~
=>
~

~

o

'"~

0410 series '

•

2k

l',

700

....

500

30 0

TC = 25 0 C

TA=25 0 C

200

20
1.0

500

de,

...

II

100

0

. . . .....IOU-

1k

70 0

0
0

1'.

100 $AS

~1.0ms

1.0 k

\

de .... ,

10

20

30

TA = 25 0 C

I

DEE

(Applies Below Raled VCEO)

S.O 7.0

200

50

70

TJ=150.lC

100

VCE, COllECTOR·EMITTER VOLTAGE {VOLTS}

~ "'"'-

'"

"

Thermal Deratmg"""'-

i'"

Second Breakdown Derating

---

I--.

'"I"

O.4

'"

~

I"-

"-

f o. 2

~

I"-...

0
20

30

50

70

100

for duty cycles to 10% provided TJ(pkl'" 150o C. TJ(pk) may be

'"'"'- I"'"-

~

'"

~
ffi

I'\.

.~,

calculated from the data in Figure 6. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

FIGURE 8 - POWER DERATING

~
: o.6
'"
z

..

The data of Figure 7 is based on TJ(pk)::: 150°C; TC IS variable
depending on conditions. Second breakdown pulse limits are valid

There are two limitations on the power handling ability of a

ll! o. 8

1.0 rus

VCE. COLLECTOR·EMITTER VOLTAGE {VOLTS}

transistor: average junction temperature and second breakdown.
Safe operatil19 area curves indicate le,VeE limits_of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.

1. 0

II

TC = 25 0 C '

7O~.!=-BondingvJire limit
50 - - -Thermal limit, Single Pulse, TC '" 250 C
- - - Second Breakdown limit
30
(Applies Below Rated VCECI
10
2.0
3.0
20
1.0
5.0 7.0 10

-

3.0

de

10

Tr 150 0 C
- BONDING WIRE LIMIT
THERMAL LIMIT. SINGLE PULSE
- - - SECOND BREAKDOWN LIMIT
2.0

de

300

40

60

80

100

TC. CASE TEMPERATURE (DC)

4-381

120

140

160

•

NPN

PNP

040El 041El
040E5 041E5
040E7 041E7

DUOWATT
COMPLEMENTARY SILICON ANNULAR.
.
AMPLIFIER TRANSISTORS

•

COMPLEMENTARY SILICON
AMPLIFIER TRANSISTORS

... designed for general·purpose, medium·voltage, medium power
amplifier and driver applications; series, shunt and switching regu·
lators, and low and high frequency inverters and converters .

• Duowatt Package - 2 Watts Free Air Dissipation @TA= 250 C

Tab forming and TO-5 lead forming available on

Ipeclal reque.t.

I

f==bo/'

a..../'

hll

MAXIMUM RATINGS
Rating
Collector·Emitter Voltage

Collector· Emitter Voltage
Emitter·Base Voltage
Collector Current

Continuous

Peak III
Base Current
Total Power Dissipation @I TA :: 2SoC
Derate above 2SoC (21
Total Power Dissipation @TC - 2S o C

Derate above 2SoC
Operating and Storage Junction

Unit
Symbol D4OI41ElID40/41E5ID40/41E7
Vde
30 I 60
VCEO
I 80
Vdc
40 I 70
VCES
I 90
,
Vdc
5.0
VEBO
2
Adc
IC
3
mAde
0.5
IB
Watts
1.67Po
1 3 . 3 - mW/oC
Watts
Po
8
mW/oC
64
°c
TJ,T stg - 5 5 t o + 1 5 0 -

-

STYLE 1.
PIN 1 EMITTER
2 BASE
3. COLLECTOR

'''[-l ~

4. COLLECTOR oj~

~

rN-hl
I--G

R

Lr--:i..J

t::::::::=r·=c

!

Temperature Range

260-

Solder Temperature, 1/16" from Case

°c

for 10 Seconds

DIM

THERMAL CHARACTERISTICS

Max

I

I

75

I

I

15.6

I

I

Symbol

I

Thermal Resistance, Junction to Ambient

I

Thermal Aesistance. Junction to Case

I

R8JA
R8JC

. Characteristic

NOTES

Unit
°c/w
°CIYI

1. Pulse Test: Pulse Width .. 300 "S.
2. The actual power dissipation capability of Duowatt transistors are 2 W
TA = 25°C.

@

A
8
C
D
F
G

MILLIMETERS
MIN
MAX

21.84
9.91
4.39
0.58
3.56
2.41

22.35
10.41
4.65
0.74
4.06
2.67

H

1.70

1.96

J

0.48
12.19
1.65
9.91
3.56
1.07
7.87

0.66
12.95
2.03
10.16
3:81
1. 5
9.14

K
L
N
Q

R
T

INCHES
MIN
MAX

0.860
0.390
0.173
0.023
0.140
0.095
0.067
0.019
0.480
0.065
0.390
0.140
0.042
0.310

TO-202AC
CASE 306.04

4-382

0.880
0.410
0.183
0.029
0.160
0.105
0.077
0.026
0.510
0.080
0.400
0.150
0.069
0.360

NPN D40E1, D40E5, D40E7
PNP D41E1, D41E5, D41E7

I

ELECTRICAL CHARACTERISTICS (TA = 2S o C unless otherwi ... noted.)
Charact8liltic
OFF CHARACTERISTICS
Collector· Emitter Breakdown Voltage
IIC = 10 mAde, IB a 0)

I

Max

Min

Symbol
BVCEO

D4o"EI/D41 EI
D40ES/D41 ES
D40E7/D4IE7

-

-

lEBO

-

ICES

hFE

100

nAde

100

nAde

-

-

50
10

B•••·Emitter Saturation Voltage
IIC = 1.0 Ade,lB = 100 mAdc)

Vdc

-

30
60
60

Emitter Cutoff Current
(VEB ~ S.O Vde, IC ~ 0)
Collector Cutoff Current
(VCE ~ R.ted VCES)
ON CHARACTERISTICS 11/
DC Current G.in
IIC = 100 mAde, VCE = 2.0 Vdc)
IIC = 1.0 Ade, VCE = 2.0 Vdc)
Collector-Emitter saturation Voltage
IIC a 1.0 Ade, IB = 100 mAde)

Unit

-

veE (sa"

-

1.0

Vdc

VBE(.at)

-

1.3

Vde

'T

75

375

MHz

Ccb

-

12
18

pF

DVNAMIC CHARACTERISTICS
Current Gain -Bandwidth Product
IIC = 20 mA, VCE = 10 Vdc, f = 20 MHz)
Collector-Base Capacitance

(VCB - 20Vdc, IE = 0, f

=I

D40E series
D41E series

MHz)

(1) Pul •• Te.t: Pul.e Width" 300 jI', Duty Cycl. " 2.0%.

TYPICAL CHARACTERISTICS

FIGURE 2 - CAPACITANCES

FIGURE 1 - CURRENT GAIN-BANDWIDTH PRODUCT
00

Uo~~rilS

vJJ

0

TJ"25DC ..... 1--" ....

./
00

I"

/

200

1---" ....

till

JIJ~!i.

70

..........
........

100
70

........

50 70 100
30
Ie. COLLECTOR CURRENT (mA)
20

'"

200

300

---04IE ..."
-D40ESlrias

I

TJ =25DC

C.b

-NI

0_
0
7
5-

50

10

--

3
2
0.1

500

4-383

_1
-r--

-

0.2

~Cb,

Applies for Ratad Vcao

II IIII
0.5

I

I>

-

10
20
VR. REVERSE VOLTAGE (VOLTSI

50

100

NPN D40E1, D40E5, D40E7
PNP D41E1, D41E5" D41E7

TYPICAL CHARACTE.RISTICS (continued)
D41E series

D40E series
FIGURE 3 - DC CURRENT GAIN

400

z 200

'"ffi>~

•

13

100
a0

o

60

u

~

40

'~

1--1--'"

;;:

I--

20
1.0

2.0

200

'">-z

~

r....:

~ 100

'"u:>

10
20
50
100
lC. COLLECTOR CURRENT ImAI

500

200

r-.....

--

25lc

;;:

Ji~· to V

50

TJ·1250C

z

~

ntoJ

I--'"

V

300

g

70

~

50

-

30
1.0

10k

1'--.'

i--'
-55°C

VCE'I.0V
5.0

2.0

10

50

20

100

200

500 1000

IC. COLLECTOR CURRENT ImAI

FIGURE 4 - "ON" VOLTAGE

1.0

o. a

mL'I@ ILa

~

~ 0.6
. w

1.0

II IITJ" 25bC I

VBElonl @JE

I--

l, 110

:;...

~

~

J1

~ O.6

1 V

>
>'

1111

1---1--'
~

.....

VBElon)@VCE = 5.0

w

;:'"
c5

0.4

>
,;

I

O.4

o. 2

0.2
,.,-'

o

II

11 1111
VBElsa'l@ Iclla ' 10

o.B

'"<
~

TJ: 25 0 c

1.0

-

VCElsa'I@ICIIB· 10
2.0

5.0

10
20
50
100
200
IC. COLLECTOR CURRENT ImAI

500

1.0

1.0 k

5.0

2.0

'"

.......

VCElsa,l@ ICIIB ' 10

o

10
20
50
100
IC. COLtECTOR CURRENT ImA)

200

500 1.0 k

FIGURE 5 - COLLECTOR SATURATION REGION

~

1.

0

T~ 12510J

o

>

~o

I.0

~

O.a

;; O.6

g

O.6

~

'"

~ O. B

'"
~
o

'"
~

~

~

:i

O. 4

\

o

g_ o.
8

~

>

2

~' iorA(~ill

IIIIH

0
0.05 O. I 0.2

~

0.5

rHmA

~

:;

1.0 A

1.0 2.0
5.0 10
lB. BASE CURRENT ImAI

III

250mA 500mA

1.0A

o.4

o

8

"'

~

100 200

IIIII

IC'10mA 50 rnA

~ o.2
::

~

111150
20

TJc 2.5OC

500

0

0.05 0.1

...
0.2

0.5 1.0 2.0

5.0

10

20

lB. BASE CURRENT ImA)

4-384
,

50 1l1li 200

5l1li

NPN D40E 1, D40E5, D40E7
PNP D41E1, D41E5, D41E7

TYPICAL CHARACTERISTICS (continued)
FIGURE 6 - THERMAL RESPONSE
1.0
O.

o.~

0 =0.5

~iii

I~ 0.3 I-

.....

oj

~

~iiI

~: 0.2
~g;

~=

O.
~~ 0.07
~.~ 0.05

-I"

-

0.1
~ 0.D5
I
SingllPulse

ZsJCltl =rltl RUC
ROJe =15.6 oCNI Max

pEfUl

Single Pulse

-:::Uj

1:':0.03 "" 0.02
0.01
O.oZ

- ZUAI'I = rill RBJA
ROJA =750CNI Max

o Curves Apply for Power
Pulse Train Shown
Read Tim'e at t 1
TJlpkl -TC = Plpkl RBJCItI
Duty Cycle. 0 11/12

-t~J=

.f'"

I

0.01

-

0.01 0.02

0.05

0.1

1.0

0.5

0.2

2.0

5.0

10

20

50

100

200

500

1.0k

Z.Ok

5.0k 10k

ZOk

50k lOOk

t. TIME ems)

FIGURE 7 - ACTIVE· REGION SAFE· OPERATING AREA

D40E series

D41E series

1m,

~

~

....

1
de
TC = 25°C

~ 0.5

=0.3
'"'"
~

0.1

j

0.05

t;

1=
~O.O

o

21=

0.0 1~

de
T,\ = 250C
,'j II

-

p.... ..100~s
"

~

"...

~

~

I"

i:l

....

3
2

1 m,

I'
de

I

de ..... t:':r-:-Tc 725°C
TA=25OC

o. 5
O. 2

t:s:100 ",

~

~ O. I

t;

TJ - 25°C

TJ = 25°C
Bonding Wire Limit
Thermal
Limit. Single Pulse
~O.O 2~
---Second Breakdown limit
0.0
(Applies Below Rated VCEol
I~F

~ 0.05 r o
r-

Bonding Wire Limit

- - - -Thermal Limit, Single Pulse
---Second Breakdown Limit

IAppl; .. Below Raled VCEOI
10
20
50
VCE. COLLECTOR·EMITIER VOLTAGE IVOLTSI

70

10
20
50
VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS

100

There are two limitations on the power handling ability of a

1--

'"""

~

~ O.8

""o

; O.6

"-

--

t-:.

--

Second Breakdown Denlting

Thermal Derating ' "

~

to

r-...

Z

~
ffi o.4

"'-

o

'"

~
Ii! o.2

40

60

80

-

.....

FIGURE 8 - POWER DERATING

""

~

0
20

70

100

The data of Figure 7 is based on T J(pkl =< 150°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJlpkl"'1500C. TJlpkl may be
calculated from the data in Figure 6. At high case temperatures.
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be ObseNed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.

I. 0

-

100

120

TC. CASE TEMPERATURE lOCI

4-385

""'-

140

160

NPN

040K
PNP

041K

DUOWATT
COMPLEMENTARY SILICON DARLINGTON
AMPLIFIER TRANSISTORS

•

· .. designed for amplifier and driver applications where high gain is
an essential requirement, low power lamp and relay drivers and
power drivers for high·current applications such as voltage regulators .
•

COMPLEMENTARY SILICON
DARLINGTON AMPLIFIER
TRANSISTORS

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.5 Vdc (Max) @ IC = 1.5 Adc for D40,41K1,2

• Duowatt Package 2 Watts Free Air Dissipation @ T A =25 0 C

Tab forming and TO·! lead forminG avanable
on special request.

r

I
F

o~

MAXIMUM RATINGS'
Rating
Collector-Emitter Voltage

Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current - Continuous

Symbol
VCEO
VCES
VEBO
IC

D40/41K
1,3

D40/41K
2,4

30
30

50
50
13
2.0
3.0
100
1.67
13.3

Peak 11)
Base Current - Continuous

Total Power Dissipation @TA :: 2SoC
Derate above 25°C (2)
Total Power Dissipation @ T C = 2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range
Solder Temperature, 1/16" from Case
for 10 Seconds

Unit
Vdc
Vde
Vdc
Adc

'B
Po

Po

mAde
Watts
mW/oC
Watts
mW/oC

TJ, T stg

10
80
-55 to +150

-

260

°c

I
I
I

Symbol
R6JA
R6JC

I
I
I

Max
75
12.5

7P-'

1

l,·Mi

OJ-j;J

~C
~---~~

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Ambient
Thermal Aesistance, Junction to Case

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
4. COLLECTOR

B,

I
I
I

1. Pulse Width .. 25 ms, Duty Cycle .. 50%.
2. Th'e actual power dissipation capability of Duowatt transistors are 2 W@TA

Unit
°C/W
uc/w

= 25°C.

MILLIMETERS
DIM MIN MAX
A 21.11C 22.35
9.91 10.41
B
C
4.39 4.65
0.58 0.74
0
F
3.56 4.06
2.41
2.67
G
H
1.70 1.96
J
0.48 0.66
K
12.19 12.95
L
1.65 2.03
N
9.91 10.16
Q
3.81
3.56
1.07
1.
R
7.87
9.14
T

INCHES
MIN MAX
0.860 0.880
0.390 D.410
0.173 0.183
0.023 0.029
0.140 0.160
0.095 0.105
0.067 0.077
0.019 0.026
0.480 0.510
0.065 0.080
0.390 D.400
0.140 0.150
0.04
0.069
0.310 I U.38l1

To-202AC
CASE 306-cM

4-386

NPN D40K, PND D41 K

ELECTRICAL CHARACTERISTICS (TA ~ 250 C unle.. otherwise noted.)

I

I

Ch.nocteristic

Symbol

Min

Max

Unit

BVCEO

30
50

-

Vdc

ICBO

-

20

/lAdc

ICES

-

0.5

/lAdc

lEBO

-

100

nAdc

OFF CHARACTERISTICS
Coliector·Emitter Broakdown Voltalie (1)
D40,41KI,3
!lC= !OmAdc}
D4D,41K2,4
Collector Cutoff Current
(VCB = Rated VCES,I!! = 0, TJ = 150°C)
Collector Cutoff Current
(VCE = Rated VCES, VBE = O)
Emitter Cutoff Current
(VEB = 13 Vdc, IC = O)
ON CHARACTERISTICS (I)
DC Current Gain
(lC = 200 mAde, VCE = 5.0 Vde)
!lC = 1.5 Adc,VCE = 5.0 Vdc)
(lC = 1.0 Adc, VCE = 5.0 Vdc)
Collector-Emitter Saturation Voltage
(lC = 1.5 Adc, 16 = 3.0 mAde)
!lC = 1.0 Adc, 16 = 2.0 mAl

hFE
All Devices
D40,41KI,2
D40.4IK3,4

Vde

VCElsatl
D40.4IKI.2
040,41 K3.4

Base-Emitter Saturation Voltage
(lC = 1.5 Adc, 16 = 3.0 mAdc)
(lC = 1.0 Adc, 16 = 2.0 mAde)

•

-

-

10,000
1,000
1,000

-

1.5
1.5

-

2.5
2.5

Vde

V6E(satl
D40,41Kl,2
D40,41K3.4

-

DYNAMIC CHARACTERISTICS
Collector Capacitenco
(VC6 = 10 Vdc, IE = 0, f = 1.0 MHz)

040K series
D41K series

High Frequency Current Gain

(lC

= 20.

mA, VCE

= 5 Vdc, I = 100 MHz)

Ccb

-

10
25

pF

Ihle l

1.0

-

-

I. Pulse Test: Pulse Width'; 300 I'S, Duty Cycle'; 2.0%.

TYPICAL CHARACTERISTICS

FIGURE 1 - DC SAFE OPERATING AREA

FIGURE 2 - POWER DERATING

TA TC

1r-rT11r--r--r--,--,

2.0 10

3.0 r-r--rrr-rr----r---.----r--.--T'"T'"

2.01-11-++-1++-+--+-+--+-+-'1-++++--+-1--+-1

I Tt-l.

0:-

1 sec

~a: 1.0~1F.~;mdc~lm~
~ 0.1
D.S

Te" 250C

de

......

0
~ 0.3 f-H+H-I-T
..!A:...',2_S.,C_-+--'1'-.d-++t-tl_+-t_+-f
~ 0.2 H+++I+---+-!_+++I....~I+l+--+--+-+--l

j

~

O.l~~I;I~m!~m!!m;I~~i~~~

~0.07

"""'r-...r-.... '"

~

1=

~
z

1.6

~ 1.2
<1:

T0 .~

6

"" "'' ' '

iii

~ 0.8
~

4

'~

~

,pO.4

-~

B 0.05

o
o

0.03 L...JL...J...L..I...LL_-'--1-_J--l--,-,~.u..L---L--'_-:':--:'
0.40.5 0.7 1.0
2.0 3.0
5.0 7.0 10
30 40
VCE, COLLECTOR·EMITTERVOLTAGE (VOLTS)

4-387

20

40

60

80
100
T, TEMPERATURE (DC)

"

120

~
140

160

NPN D40K, PND D41K

TYPICAL CHARACTERISTICS (continued)
DC CURRENT GAIN
FIGURE 3 - CD40K .ries)

FIGURE 4 - CD41K _ies)

300 k
200 k

.
z

100 k

zlOO k
~ 70 k

§ 50

25°C

~ 30 k
~ 20 k

"""

10 k
7.0 k
5.0 k

~

TJ -125°C

k

'" 3D k

~

c

•

JC~~5V t--

200 k

TJ -125°C

C 70 k
I- 50 k
z

~

300 k

VCE =S.OV

'"~

"

-55°C

c

2SoC

20 k

......

-5SoC

w

~ 10 k

~

7.0 k
5.0 k

3.0 k
20

50

3D

70

100
200 300
500 700 1.0 k
IC.COLLECTOR CURRENT ImA)

3.0 k
ZO

Z.Ok

3D

50

70 100
ZOO 300
500 700
IC. COLLECTOR CURRENT ImAI

1.0 k

2.ok

"ON" VOLTAGES
FIGURE 5 - CD40K _ies)
2.0
I.a

r--

FIGURE 6 - CD41K .rilS)

./

TJ =2SoC

1./

~

j~l!lcJlr~

4

11 Jl 1

O. a

lJlll
50

3D

70

/

!;

V

>- 1.0

....lI

.a

I

~

VBE I!IVCE - 5.0 V
2-

~ 1.

V
VCEI ..I) I!lclla - 500

I J..--t"" -1 i-'
..J...-1"': I •

I--"T

w

:.i!

/

VaElon) @ VC~ • 5.0 V

0

V~EC~llflll~IB =L500

1.6

o
;::. 1.4

~~

2

V
./

1.Bt-- t- TJ = 2SoC

V

6

O.6
20

2.0

100
ZOO 300
500 700 .1.0 k
IC. COLLECTOR CURRENT ImA)

2.0k

O.6
20

VCECallfllIC'IB' 500
50

3D

70 100
200 3D0
SOO 700
IC. COLLECTOR CURRENT ImAI

1.0 k

Uk

FIGURE 7 - THERMAL RESPONSE
1.0
O.
~ 0 =0.5
O.
~6
~; D.3t- 0.2

~~ O.2

1-"'
1-'"
~~ o. I ~
i~ 0.0 I

0.02

b:::::1iii

Single Pulse

-

-

0.1
0.05

a::i 0.0S

>-:10
~~O.O3""

...

~

:EnJl --tl-j

Singl,Pul1e

lIMld - rid R'M
R,JA • 750 CJW MIx

PlpIll

0.02
0.01

DCURVESAPPLYFORPOWER
PULSETRAIIISHIMN
READ TillE AT II
TJlpkI-TC - PCpkliltJCCtI
Duty Cycle. D• IIh2

.,..

II

12

I

0.0 I
0.01 0.02

ZVCCtl" .Cd iltJC
R8JC = 12.SoCJW MI.

O.OS

0.1

0.2

0.5

1.0

2.0

5.0

10

ZO
50
I. TillE CmrI

.+.388

100

200

500

Uk

Uk

Uk 10k

IIIk

50k lilli

NPN D40K, PND D41K

TYPICAL CHARACTERISTICS (continued)

CAPACITANCE
FIGURE 9 - (D41K seriesl

FIGURE B - (D40K sari..)

zo

-

40
TJ =25°C

-

~10
w

'"z

~7.0

U

~

:s 5.0

3D
~

oS

r-..'

20

III
r--.

C,b

~~
Cob

.'"
w

z
!:

C.b

.......

~

u

'"~

:'i

~

TJ =25°C

III

....,

10

",'

7.0

3.0
5.0
2.0
D.D5

0.1

0.5

0.2

1.0

2.0

5.0

10

20

50

0.05

0.1

0.2

VR. REVERSE VOLTAGE (VOLTSI

0.5
1.0
2.0
5.0
10
VR. REVERSE VOLTAGE (VOLTSI

20

50

HIGH FREQUENCY CURRENT GAIN
FIGURE 11 - (D41K series)

FIGURE 10 - (D40K sariesl
10

z

;;:
co

5.0

ffia:
a:

B

2.0

10
z

-

......
VCE =5.0 Vd;-- I-....
TJ =25°C
f= 100 MHz

~

is
=>
fil
ff

~ 5.0

1.0

§

a

i',

~

0.5

'"
;;:
\

0.2
0.02

0.03

0.05

2. 0

ffi

1.0

ffi
::E

0.5

--=

'"

o. 1
0.01

===

~

'"co
;;:

co

i

:::::::=VCE =5.0 Vd,
TJ=250C
f -100 MHz

0.1

0.2

0.3

0.5

01

o. 1
0.01

1.0

IC. COLLECTOR CURRENT (AMP)

0.02

0.05

0.1

0.2

IC. COLLECTOR CURRENT(AMPI

4-389

0.5

1.0

•

D40N3
D40N4

D40Nl
D40N2

NPN SILICON ANNULAR
HIGH VOLTAGE AMPLIFIER TRANSISTORS

DUOWATT
NPN SILICON
AMPLIFIER TRANSISTORS

· .. designed for high·voltage TV video arid chroma output circuits,
high·voltage linear amplifiers, and high·voltage transistor regulators.

• High Collector· Emitter Breakdown Voltage BVCE R = 300 Vdc (Min) @ IC = 1.0 mAdc - D40N3, 4
•

Low Collector·Base Capacitance Ccb = 3.0 pF (Maxi @ VCB = 20 Vdc

• Duowatt Package 2 Watts Fr,ee Air Dissipation

@

TA = 250 C
Tab form,!ng and TO·5 lead forming available on
special request.

A

Symbol

D40Nl,

Collector·Emitter Voltage (1, 2)

VCER

250

Collector-Base Voltage
Emitter-Base Voltage

VCSO
VESO
IC

250

Rating

Collector Current - Continuous

Operating and Storage Junction
Temperature Range

SolderTemperature.l/1S'· from Case
for 10 Seconds

21

D40N3,4

T

T

300

Vde
Vde
Vde

0.1
0.7

Ade

IS

250

mAde'

Po

1.67 (31
13.3

Watts
mWf'C

Po

6.25
50

Watts

mW/oC

TJ, T stg

-55 to +150

°c

-

260

°c

THERMAL CHARACTERISTICS
Symbol

Ma.

Unit

Thermal Resistance. Junction to Ambient

ROJA

75

°C/W

Thermal Resistance. Junction to Case

RUJC

20

°CIW

Characteristic

(II IC = 1.0 mAde, RSE = 10 kl1.
(21 Pulse Test: Pulse Width ~ 300 JlS, Dutv Cycle <; 2%.
(31 The actual power dissipation capability of Duowatt transistors are 2 W @ T A~ = 2SoC.
\

b

Unit

300

5.0

- Peak

Base Current
Total Power Dissipation @TA - 2SoC
Derate above 25°C
Total PQwer Dissipation @TC '" 2So C
Derate above 2SoC

I
--+ t

a

MAXIMUM RATINGS

nYUI

~.
H

,.

PIN I EMITTER
2 BASE
3 COLLECTOR
4. COLLECTOR

I

0-+
--l

r- N

K

-t-"

-G

1

C

Lr--~t:r4

r~~JJ
MILLIMETERS
MAX
DIM MIN
A 21.84 22.35
9.91 10.41
B
4.39
4.65
C
074
0.58
0
406
f
356
2.41
2.67
G
~. 1.96
0.48 06s
J
12.19 1295
K
1.65
2.03
L
991 10.16
N
Q
381
3.56
1.75
1.07
R
7.87
9.14
T

f-'!..

- INCHES
MIN MAX
0.860 0.880
0390 0.410
0.113 0.183
0023 0029
0140 0160
0095 0105
0061 00))
0019 0.026
0.480 0510
0065 0080
0390 0400
0140 0.150
0.042 0.069
0.310 0.360

TO·202AC
CAse 306.()4

4:-390

1

D40N1,D40N2,D40N3,D40N4

ELECTRICAL CHARACTERISTICS (TA

I

=25 0 C unless otherwise noted.)

I

Characteristic

Symbol

Min

Max

250
300

-

-

10
10

-

10

20
30
30
60
20
30

-

90
180

50

-

MHz

3.0

pF

Unit

OFF CHARACTERISTICS

Collector·Emitter Breakdown Voltage (1)
(lC = 1.0 mAde, IB = 0, RBE = 10 knl
Collector Cutoff Curront
, (VCB = 250 Vde, IE = 01
(VCB = 300 Vde, IE = 01
Emitter Cutoff Current
(VBE = 5.0 Vde, IC = 01
ON CHARACTERISTICS III

D

20 mAde, VCE

(lC· 40 mAde, VeE

D40N1,2
D40N3,4
lEBO

I'Ade

10 Vdcl

!lAde

-

hFE
D40N1,3
D40N2,4
D40N1,3
D40N2,4
D40N1,3
D40N2,4

= 10 Vdel
D

-

ICBO

DC Current Gain
(lC = 4.0 mAde, VCE = 10 Vdcl
(lC

Vde

BVCER
D40N1,2
D40N3,4

-

DYNAMIC CHARACTERISTICS
Current·Galn - Bandwidth Product
(lC = 20 mAde, VCE = 10 Vde, I - 20 MHzl

IT

Collector· Base Capacitance
(VCB = 20 Vde, Ie = 0, I = 1.0 MHzl

Ccb

(11 Pulse Test: Pul ... Width .. 300 1", Duty Cycle .. 2.0%.

TYPICAL CHARACTERISTICS
FIGURE 1 - ACTIVE·REGION SAFE OPERATING AREA
0

..

..

05 0

if

. ],,,100 "'

~ 0.20

~
§

01 0

de

005

de

TA =25 D C: ~tJc

"

=25 0C":"'t-

~

I'N
~ 0.02
I f---t- TJ =150 C
}.o
BONOING WIRE LIMIT
u 0.005 - - - THERMAL LIMIT. SINGLE PULSE. TC =250C
SECONO BREAKOOWN LIMIT
~
040Nl.2:-1"'
0.00 2
3• 4
0.00 1
1.0
2.0
50
10
20
50
100
200

g

10ms

50~s

....

1-..::::::::

---

There are two limitations on the power handling ability of a
transistor' average Junction temperature and second breakdown.

Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater diSSipation than the curves indicate.
The data of Figure 1 is based on TJ(pk) = 150o C; TC is variable
depending on conditions. Second breakdovvn pulse limits are valid
for duty cycles to 10% provided TJ(pkl ~ 150°C. TJ(pk) may be
calculated from the data in Figure 6. At high case temperatures,
thermal limitations Will reduce the power that can be handled to
values less than the limitatIOns Imposed by second breakdown.

r?m

500 10k

VCE. COLLECTOR·EMITTER VOLT AGE IVOl TS)

Circuit dmgrclms external to or containing Motorola products are Included as a means of Illustration only Complete information
suffiCient for construction purposes may not be fully illustrated Although the Information herein has been carefully checked and IS belIeved
to be reliable. Motorola assumes no responsibility for InaccuraCies Information hereIn does not convey to the purchaser any license under
the patent rights of Motorola or others
The Information contained herein IS for gUidance only. with no warranty of any tYpe, expressed or Implied. Motorola reserves the r'lght
to make any changes to the information and the product(s) to which the Information applies and to dIscontinue manufacture of the
product(s) at any time.

4-391

•

D40N1,D40N2,D40N3,D40N4

TYPICA!- CHARACTERISTICS (continued)

FIGURE 2 - DC CURRENT GAIN
300

TJ ~

.....

200
100
70
~ 50
~
0
~

FIGURE 3 - "ON" VOLTAGES
1.4

l2~oCI

........

25°C

•

a

~

F'

10
1.0
5.0

~
c

- '"""

~

20

u

1.0

2.0 3.0 5.0

10

20 3D

" ~~
50

100

. m\~11 @ ICIIB

'" 0.6
!:;
c
> 0.4
>'

"

'\:

Vcp2.0V

~

0.8

~
w

... ~,

L 'VCE =IOV

3.0
0.3 0.5

r

1.0

~

a

TJ =25°C

1.2

IIIII

I

o

0.3 0.5

z::'s.O

1.0

2.0 3.0 5.0

"
e..
'§
....

1. 6

-

~ 1.0

~

1.2

I 11- IIr
0.01 0.02 0.05 0.1

100

200300

~

~ -2.

100mA

~

N. 'll In--.. I

I-

i

H-rti5.0 ItI-H
1.0 2.0
10 20

50 100

0.5
0.2
lB. BASE CURRENT ImAI

·Applies for ICIIB" hFEI2

-·8vbforJCEI~tI

25 DC 10 125 0C

-55 DC 10 25 DC

§-l. o

o.8

o

50

2, 0

U

I II N-UI N.I

20 30

3.0

TJ' 25°C

50mA

10

FIGURE 5 - TEMPERATURE COEFFICIENTS

FIGURE 4 - COLLECTOR SATURATION REGION

30
mA

./

ICIIB =!-

IC. COllECTOR CURRENT lmAl

2.0

lC=I.0mA 3.0mA 10mA

I

II

~~~~~~tI

lC. COLLECTOR CURRENT ImAI

o.4

10

VB~11nl @ VCE = 10 V

0.2

200 300

=

o

.
I.L
-8VBforVBE

II
250C 1o 1250C

.

-55 DCto 250C

II

-3.0

-4.0
1.0

2.0

3.0

5.0 1.0

10

20

I

50

30

10 100

IC. COLLECTOR CURRENT ImAI

FIGURE 6 -.THERMAL RESPONSE
1.0
0.1
0=0.5
0.5

~~
~~

.... ::E

0.3 -0.2
0.2

:;::;;

t;g;

i;~ o. 1
~~ 0.07
;:_~ 0.05

~~ 0.03 "'"
0.02
0.01

-

::;;;~

~

0.1

-

-

o:Ds
SIr.jlePulse

:EflJl --

Smgle Pulse

Z8JA(l1 = rId R8JA
R8JA = 62.5°Crw MIX

Plpkl
0.02
0.01

-t\;-j

,1'"

l
0.01 0.02

DutY Cycle, D = 1,/12

0.05

0.1

0.2

0.5

1.0

2.0

- - Z6JC(l1 • r(ll R8JC
R8JC =12.S oCrw MIX

5.0

10

20
50
I, TIME Im.l

4-392

100

200

500

1.0 k

2.0 k

oCURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT If
TJlpkl -TC = PlpklReJCll1
S.Ok 10k

20k

SDk lOOk

D40N1,D40N2,D40N3,D40N4

TYPICAL CHARACTERISTICS (continued)

FIGURE 8 - CURRENT -GAIN BANDWIDTH PRODUCT

FIGURE 7 - CAPACITANCE
0
0
0

~

0

100

-

TJ =15'C

VCE=20V
Tp 25'C

0

=ti.

--

0

w

u
Z

I0

~ J. 0

~

u~

0

5.0
3.0

~
~

0

2.0
' -_iPP"j' If
1.0

O. 7
0.5

...... 1--..

1.0

2.0

j'j'j ti~BO
5.0

10

I--..
Cob
20

50

100

200

I0

0.5

500

0.7

1.0

2.0

3.0

5.0

7.0

10

20

30

50

IC. COLLECTOR CURRENT (rnA)

VR. REVERSE VOLTAGE (VOLTS)

APPLICATIONS INFORMATION
The D40N4 is primarily designed for use in the R, G, and
B output stages of color television receivers and with a high
BVCEO. it can supply the video amplitude requirements of
any known system. The law feedback capacitance provides good
video bandwidth with modest drive current requirements. Typical
drive is from an emitter-follower with a 4.7 k emitter-resistor
operated from a 2O-Volt supply. It will, therefore, be operable

worst-case signal conditions and some heat-sinking is required at
ambient temperatures above 50°C.
Used as a color difference output, where drive and bandwidth requirements are less severe, the D40N4 can be operated
with 27 k ohm load resistors (worst-case dissipation would
then be only 0.6 Watts). The device can, therefore, be operated
as a color-difference output without any heat radiator in ambient

directly from a number of available chroma demodulators. The

temperatures to 150 - (0.6)(75)

low output capacitance of this device adds little to the total
load capacitance, allowing improved bandwidth for a given
collector load resistor. Two typical applications for the D40N4
are shown in Figures 9 and 10.
Device dissipation will reach approximately 1.6 Watts under

In addition, the safe operating area of the D40N4 will fill the
requirements of the luminance output function with a total
equivalent load of 5.0 kilohms. Worse-case dissipation can reach

=

105°C.

3 Watts, this requires a total ROJA of (150-65)/3 = 28.4°CIW.

To achieve this a 2" X 3" aluminum plate will be required.

FIGURE 10 - RGB OUTPUT, MATRIXING COLOR
DIFFERENCE AND LUMINANCE INPUTS

FIGURE 9 - RGB OUTPUT WITH RGB INPUT

MCIl1'
CMRDM ..
DEMODUl~JO~

MCm)
CHROMA

OU_DDULATOR

4.393

•

D40Pl

.D40P3

D40P5

NPN SILICON ANNULAR
HIGH VOLTAGE AMPLIFIER TRANSISTORS

DUOWATT
NPN SILICON
AMPLIFIER TRANSISTORS

. designed for horizontal drive applications, high-voltage linear
amplifiers, and high-voltage transistor regulators.

•

•

High Collector-Emitter Breakdown Voltage BV CEO = 225 VdJ: (Min) @ IC = 1.0 mAdc - D40P5

•

Low Collector-Emitter Saturation Voltage VCE(sat) = 1.0 Vdc (Max) @ IC = 100 mAdc

•

Duowatt Package 2 Watts Free Air Dissipation@TA = 250 C

Tab forming and TO-5 lead forming available on
special request.

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector·Base Voltage
Emitter-Base Voltage
Collector Current Continuous
Peak (11
Base Current
Total Power Dissipation @ TA = 25°C
Derate above 25°C
Total Power Dissipation@Tc::2SoC
Derate above 250 e
Operating and Storage Junction
Temperature Range
Solder Temperature, 1116" from Case

for 10 Seconds

Symbol
VeEO
VeBO
VEBO
Ie
IB
Po

D40P1
120

..
..

I D40P3 I D4OP5
I 180 I 225

250 I 300
7.00.51.0100-1.67(21200

I

.

~13.3~

Po

6.25-

~50~

TJ.Tstg

_

.

-55 to + 150 ------

260-

Unit

Vdc
Vdc
Vdc
Adc

mAde
Watts
mW/oe
Waus

mW/oe
°c
°c
DIM

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to Case

A

Symbol

Max

Unit

R9JA
R9JC

75
20

°CIW
DCIW

111 Pul .. Test: Pul.. Width .. 1.0 ms, Duty Cycle .. 50%.
(2) The actual power dissipation capability of Duowatt transistors are 2 W @TA

= 25°C.

B

C
D
F

G
H
J
K

L
N
Q

R
T

MILLIMETERS
MIN MAX

INCHES
MIN MAX

21.84
9.91
439
058
356
241
1.70
048
1219
1.65
991
356
1.0
7.87

4.6&
074
4.06
2.67
196
0.66
1295
203
10.16
3.81

0860
0390
0173
0023
0140
0095
0067
0.019
0480
0.065
0390
0.140

0880
0410
0183
0029
0160
0105
0077
0026
0510
0.080
0400
0.1&0

9.14

0.310

0.360

223&
10.41

TO-202AC
CASE 306-04

4-394

D40P1, D40P3, D40P5

I

ELECTRICAL CHARACTERISTICS (TA = 25 0 C unless otherwise noted.)
Character
Symbol
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
BVCEO
040Pl
IIc = 1.0mAde,IB = 0)
040P3
D40P5
Collector Cutoff Current
'CBO
D40Pl
(VCB = 200 Vde, IE = 0)
D40P3
(VCB = 250 Vde, IE = 0)
D40P5
(VCB = 300 Vde,IE· 0)
Emitter Cutoff Current
'EBO
(VEB a 7.0 Vdc, IC = 0)
ON CHARACTERISTICS (1)
DC Current Gain
hFE
IIC = 80 mAde, VCE = 10 Vde)
(lc = 2.0 mAde, VCE = 10 Vde)
Collector-Emitter Saturation Voltage
VCE(.a!)
IIC = 100 mAde, IB = 10 mAde)
Base-Emitter Saturation Voltage
VBE(.a!)
(lc = 100 mAde,lB = 10 mAl
DVNAMIC CHARACTERISTICS
Currant-Geln - Bandwidth Product
fT
(lc = 80 mAde, VCE = 10 Vde, f = 20 MHz)
Collector-Base Capacitance
Ceb
(VCB· 10 Vde, 'E = 0, f = 1.0 MHz)
SWITCHING CHARACTERISTICS
Storage Time
IIC(on) =80 mA, 'B(on) = 8.0 mA, '8(0ff) =8.0 mAl

I

(1) Pul.e Te.t: Pulse Width

Min

Max

-

120
180
225

Unit
Vde

-

I'Ade

-

-

10
10
10
10

40
20

-

-

I'Ade

•

-

-

1.0

Vde

-

1.5

Vde

50

-

MHz

-

6.0

pF

<: 3001", Duty Cycle <: 2.0%.

TYPICAL CHARACTERISTICS
fiGURE 1 - CURRENT-GAIN - BANDWIDTH PRODUCT
'" 300

I

'"

~
I-

g

VCE' 20 V
Tj" 250C

200

e

~

'"e

l-

~ 100

FIGURE 2 - CAPACITANCE
100
70
50

~

-

30

-

~

z

;;:

~ 5.0

\

50

Y·3.0

'"

r-

Ccb

2.0

'"u

~

t--

~ 10
~ 1.0

70

'-?

§

C.b

w
u

.......... .......

z

:i

20

-

..-;;

1.0

30
10

50
30
20
lC. COLLECTOR CURRENT (mAl

70

100

0.3 0.50.7 1.0

4-395

2.0 3.0 5.07.0 10
20 30 50 70 100
VR, REVERSE VOLTAGE (VOLTSI

200300

D40P1, D40P3, D40P5

TVPICAL CHARACTERISTICS (Continued)

FIGURE 4 - "ON" VOLTAGE

FIGURE 3 - DC CURRENT GAIN
500

1.0

--

z

¢
'" 100

•

50

g

30

-

-

VBEhatl @Ic/lS ' 10

~

0

~

VSE{onl @VCE ' 10V

w

--VCE'2.0V
--VCE'10V

~ 20

2.0

'"

100

200

I

0

>
>'

,~

5.0
10
20
50
IC. COLLECTOR CURRENT {mAl

/'1

0.2

0
0.5

500

u.I

TJ' 25°C

.e

0.8
IC' 25 rnA. SOmA

~ 0.6

1\
\
- \

:::

0.4

o

~
~

>

0.1

\

0.1

I I II

I I II

~

+250& to +125 0C

~ -1.6

-

~
20 30

50 70100

<
.e

~a

160

.1
1
TA' 25°C
PULSE WIDTH' 30n",- r--IB~
DUTY CYCLE" 2.0%
,.\)f1\P-

~

12 0

~8 Of/.V~
~

40

---

h -/'

"'o

W/

. / . . . .---;;r.~
,~ -r

-

10

-550C to +250C

-2.4
0.2

20

/

0.5

1.0

5.0
10
20
2.0
IC. COLLECTOR CURRENT (mAl

50

,/

--

Ion

200

FIGURE 8 - COLLECTOR CUTOFF REGION
103

I--- I--"

-- -

r-

VCE - 150V

)---- TJ ' 150·C

/

I

0

....j.,....f-t[

OVS for VBe

600"A

V

V

-550C to +250 C

FIGURE 7 - COLLECTOR CHARACTERISTICS
200

+250 Cto +1250 C

~ -0.8

ih--

0.2 0.3 0.50.71.0
2.0 3.0 5.07.0 10
lB. BASE CURRENT {mAl

I I"

8

\

IT

500

'OVC FOR VCE(sa.1

U

\

.......

0.8

~
$

200 mA

\

"

0

100mA

200

I I II

II IIII
II IIII

>

o

2.0

* Applies tor lellB <:hFEI2

u

g,

'"~

!

1.0

5.0
5.0
10
20
50
100
IC. COLLECTOR CURRENT {mAl

FIGURE 6 - TEMPERATURE COEFFICIENTS
1.6

o

~

~

VCE{sa,I@IC/IS' 10

FIGURE 5 - COLLECTOR SATURATION REGION

~ 1.0

--

!:; 0.4

'""'~' ,

1

I II IIII

10

1.0

-I-+±:±:!:tt~

0.6

......- ~

V

'"

~

7.0
5. 0
0.5

II III

0.8

- -

25°C

;:::: -55°C _

10

~

-

Tj= 1500C

200

....
ffi

I I III

TJ '25°C

300

-

400 "A

I

20~"A
I
30

2~
40

50

VCE. COLLECTOR·EMITTER VOLTAGE {VOLTSI

4-396

r--

100°C

REVERSE

FORWARO

f-- 25°C
10-3 -0.4
-0.2
+0.2
+0.4
. VSE. BASE·EMITTER VOLTAGE (VOL TSI

+0.6

D40P1, D40P3, D40P5

TYPICAL CHARACTERISTICS (Continued)
FIGURE 9 - THERMAL RESPONSE
1.0

O.
O.

~D=O.S

-

;ic

~~ 0.3 I~
~~ D.2 0.1

~~

O. 1
in",
:i~ 0.0 7
~.~ 0.05
w~

~ I[Os

:?~ 0.03 10'\
0.02

-

-

b:;::;iii

SU'lglePulse

Single Pulse

PEJUl

0.02
0.01

I

Duty Cyele. 0 '" t1/12
0.05

0.1

O.S

0.2

1.0

2.0

5.0

10

20
50
I. TIME (m,)

FIGURE 10 - ACTIVE REGION SAFE-OPERATING AREA

700 0 0 0 R E m B m
100.,==
1
m
500



\

2.0

lOrnA

1 rnA 3 mA

~

30mA SOmA

w

200

0,3

300

lDOmA

1.6

~

tl

1.0

~

1.2

S.O

ICIIS "10

'I J..1

I

2.0

,/

100

10
20
50
IC' COLLECTOR CURRENT ImA!

200 300

1

L

r- "~C f~r VCE:...!

25 DC'D 1250C

8

-550C to 250C
25DC.o 1250C

~ -1.0

0.8

::>

-

r-..

~

1\

0.4

0.05 0.1

0.2
0.5 1.0 2.0
5.0
IS, SASE CURRENT ImA!

10

-55'D 25°C
I I

'~" -3.0 t-- 'IVS f;r VSE
:i'

r-

0
0.01 0.02

~ -2.0

1\

I'

I'

8
>

I

• ~PPli~'D ICllis ~ hFIEli

2.0

U

o

~_

-

l3

3;
E
....

:::

!,;,

1.0

I

FIGURE 5 - TEMPERATURE COEFFICIENTS
3.0

;'"o

~

I
VCE(sa.!

0.2

1,\

o

2:

I

1

FIGURE 4 - COLLECTOR SATURATION REGION
_

J

.,; 0.4

l\
30
50
100
IC, COLLECTOR CURRENT ImA!

VSE(Dn!@VCE- 10 V

0

\\

~

VBEI...!@ICIIS - 10

~

VCE" 10 v

-

1.0

0

20

II

g

25 DC

20

50

-4.0
1.0

100

10
S.O
30
3.0
IC, COLLECTOR CURRENT ImA!

100

50

FIGURE 6 - THERMAL RESPONSE
1.0
0.7
O' 0.5
0.5
~c
~~ 0.3

~~ 0.2

....
.... 0'"

r-

F

ffi~ 0.1

l-

1

i-- ~

,

I"'"

l:iiiiiiil

-

i

0.1
I

0.05

....

I

U;~

~~O.07

SmglePulse

:=.~ 0.05

~~

0.02

o CURVES APPLY FOR POWER

-t~j
OU'y Cycle, 0 "'11'2

1

0.01

ZOJA(.!" rl') R'JA
ROJA " 62.\"CIW Max

Plpk)

0.01
,1"

0.01

0.05

0.1

0.2

0.5

1.0

2.0

, J

:E.rLfl --

Single Pulse

0.03 !.o'\ 0.02
0.02

I

Z'JC(t) " rlt! R~JC
R'JC" 12.SDCIW Max

5.0

10

20
SO
',TIME(ms)

4-400

100

200

SOO

1.0k

2.0k

PULSE TRAIN SHOWN
READ TIME AT"
TJ(pk) -TC "P(pk! ROJCI')
S.Ok 10k

20k

SDk

l00~

MDS20, MDS21

TYPICAL CHARACTERISTICS Icontinued)

FIGURE 1 - CAPACITANCE

FIGURE 8 - CURRENT-GAIN-BANDWIDTH PRODUCT

100

'" 200

~

40
30
~

b
::>

,-

i=

'"Z

<

o

TJ·250C

S

~

10
5.0

2.0
1.0
0.5

4
;;:
'"
~

Ccb

",-

3.0

TJ·250C
80

70
60
50

~ 40

~

~

t- VCE! 20 V

~ 19~

C,b

20

w

150

Applies to Rated VCBO I

IIII

1.0

2.0

rI-

IIII
5.0

_

...--

--

30

20
15

::>

'"
.i-

t-10

20

50
100
VR. REVERSE VOLTAGE IVOLTS)

200

500

10

2.0

5.0
15
10
lC. COLLECTOR CURRENT ImA)

20

30

40

APPLICATIONS INFORMATION
The MDS21 is primarily designed for use in the R. G. and B
output stages of color television receivers, and with a high BVCEO
it can supply the video amplitude requirements of any known

system. The low feedback capacitance provides good video bandwidth with modest drive current requirements. Typical drive
is from an emitter-follower with a 4.7 k emitter-resistor operated
from a 20-Volt supplV. It will,-therefore, be operable directly from
a number of available chroma demodulators. The low output
capacitance of this device adds little to the total load capacitance,
allowing improved bandwidth for a given collector load resistor.
Two typical applications for the MDS21 are shown in Figures 9
and 10.
Device dissipation will reach approximately 1.6 Watts under
worst·case signal conditions and some heat sinking is required
at ambient temperature above 50o C.

Used as a color difference output, where drive and bandwidth
requirements are less severe, the MDS21 can be operated with
27 k ohm load resistors (worst-case dissipation would then be only
0.6 Watts). The device can, therefore, be operated as a color·
difference output without any heat radiator in ambient tempera·
tures to 150 - 10.61162.5) = 112.5 0 C.
In addition, the safe operating area of the MDS21 will fill
the requirements of the luminance output function with a total
equivalent load of 5.0 kilohms. Worst-case dissipation can reach

3 Watts; this requires a total ROJA of 1150 - 65)/3

= 28.4 0 C/W.

To achieve this a 2" x 3" aluminum plate will be required.

FIGURE 10 - MDS21 AS RGB OUTPUT. MATRIXING
COLOR DIFFERENCE AND LUMINANCE INPUTS

FIGURE 9 - MDS21 AS RGB OUTPUT WITH RGB INPUT

4-401

•

NPN

PNP

MDS26
MDS27

MDS76
MDS77

DUOWATT
3.0 AMPERE

Advance InforDl.ation

COMPLEMENTARY SILICON
POWER TRANSISTORS

COMPLEMENTARY PLASTIC SILICON
POWER TRANSISTORS

40,60 VOLTS
10 WATTS

. designed for low power audio amplifier and low current, high
speed switching applications.

•

CI

Collector·Emitter Sustaining Voltage VCEO(sus) = 40 Vdc - MDS26, MDS76
= 60 Vdc - MDS27, MDSn

•

DC Current Gain hFE = 40 (Min) @ Ie = 0.2 Adc
= 30 (Min)@lc= 1.0Adc

•

Current·Gain - Bandwidth Product tr = 50 MHz (Min) @ IC = 100 mAdc
Tab forming and TO·5 lead forming available on

• Annular Construction for Low Leakages ICBO = 100 nA (Max) @ Rated'VCB

special request.

MAXIMUM RATINGS
Rating

Collector-Base Voltage
Collector-Emitter Voltage
Emitter-Base Voltage

MDS27
MDS77

Unit

VCB

60

SO

Vdc

VCEO

40

60

Vdc

7.0-

Vdc

IC

-3.0-5.0-

Adc

IB

1.0

Adc

Po

2.0---0.Q16-

Watts

VEB

Collector Current - Continuous
Peak

Base Current
Total Device Dissipation
Derate above 2SDC

MDS26
MDS76

Svmbol

@

T A = 2SoC

Total Device Dissipation@Tc=2SoC
Derate above 25°C
Operating and Storage Junction

W/oc

----

Po
TJ.T stg

Watts.

-10
-SO_-65to+150 _ _

mW/oC
°c

atbo/'

r

ot~

b;-t",
ID

oj"U

,~-G

•N

PIN

L rr---:r J

LBASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

!~-=tJ

Temperatur, Range

THERMAL CHARACTERISTICS
Characteristic

Symbol

Thermal Resistance, Junction to Case

8JC

12.5

°C/W

Thermal Resistance, Junction to

8JA

62.5

°C/W

Max

Unit

MI LLIMETE RS
INCHES
DIM MIN
MAX
MIN
MAX
21.84 22.35 0.860 0.880
A
9.91 10.41 0.390 0.410
B
C
4.39
4.65 0.173 0.183

0
F
G
H

Ambient

J
K
L
N
0

R
T

0.58
3.56
1.41
1.70
0.48
11.19
1.65
9.91
3.56
1.07
7.87

0.74
4.06
1.67
1.96
0.66
12.95
2.03
10.16
3.81
1.75
9.14

0.023
0.140
0.095
0.067
0.019
0.480
0.065
0.390
0.140
0.042
0.310

CASE 306-04
TO-202 AC
Thill, advance Information and specification, .r. subject to chong_ without notlc•.

4-402

0.019
0.160
0.105
0.071
0.016
0.510
0.080
0.400
0.150
0.069
0.360

MDS26, MDS27NPN/MDS76, MDS77PNP

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise noted)
Min

Max

40
60

-

MDS26,MDS76
MOS27,MDS77

-

0,1
0,1

MDS26,MDS76
MDS27,MDS77

-

0.1
0.1

-

0.1

Characteristic

Svmbol

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lc = 10 mAde, Ie = 0)

Collector Cutoff Current

(VCB
(VCB

= 60 Vde,
= 80 Vde,

IE = 0)
IE = 0)

(VCB = 60 Vdc,lE
(VCB = 80 Vde, IE

=0, TC = 125°C)
= 0, TC ~ 125°C)

Vde

VCEO(sus)
MDS26,MDS76
MDS27,MDS77
ICBO

/lAde

mAde

Emitter Cutoff Current
(VBE = 7.0 Vde, IC = 0)

lEBO

/lAde

ON CHARACTERISTICS (1)
DC Current Gain

(lC = 200 mAdc, VCE = 1.0 Vdc)
(lc = 1.0 Ade, VCE = 1.0 Vde)
Collector-Emitter Saturation Voltage
(lC = 209 mAde, IB = 20 mAde)
(IC = 1.0 Ade, IB = 100 mAde)
(lC = 3.0 Ade, IB = 600 mAde)

VCElsat)

Base-Emitter Saturation Voltage

VBE(sat)

(lC = 2.0 Ade, IB

40
30

200

-

0.3
0,6

VBElon)

= 500 mAde, VCE = 1.0 Vde)

Vde

1.7
Vde

-

= 200 mAde)

Base-Emitter On Voltage

(lC

-

hFE

1.B
Vde

-

1.5

50

-

-

50
70

jlVNAMIC CHARACTER)STICS
Current-Gain - Bandwidth Product (2)
(lC = 100 mAde; VCE = 10 Vde, f test , ~ fo MHz)
Output Capacitance
IVCB = 10 Vde, IE = 0, f = 0,1 MHz)

MHz

fT
Cob

MDS26. MDS27
MDS76. MDS77

pF

-

(1) Pulse Te.t: Pulse Width"; 300 1lS. Duty Cycle"; 2.0%
(2) IT = Ihfel. f test

4-403

•

MOS60

PNP SILICON ANNULAR TRANSISTOR
DUOWATT
. designed for general·purpose applications requiring high breakdown voltages. low saturation voltages and low capacitance.

PNP SILICON
HIGH VOLTAGE
TRANSISTOR

• Complement to N.PN Type 2N6558

MAXIMUM RATINGS
Symbol

VII..

Unit

VCEO

300

Vde

Collector· Base Volt.

Vca

300

Vde

Emltter·Base Voltage

VEa

5.0

Vde

Collector Current - Continuous

IC

500

Total Power Dissipation" T A" 25°C
Der,ll ebove 2So C

Po

Total Power Dissipation iii TC .. 2So C

Po

2.0
16
10
BO
-5510+150

mAd.
Watt
mWJOC

R.ting
Collector-Emitter Voltage

Der.te above 2So C
Operating and Storage Junction
Temperature RInge

TJ.Tstg

THERMAL CHARACTERISTICS
Symbol

Ch.racmlstic

I

Thermal Resist,ncI, Junction to Case
Thermal Resistance, Junction to Ambient

ELECTRICAL CHARACTERISTICS IT A

8JC
8JA

=

,I
I

250C un.... otherNdo notodl

Ch.fKwistic

$0-

OFF CHARACTERISTICS
Collector EmItter Breakdown VOltage! 11
(Ie • 1 0 mAde. 10 .. 01

BVCEO

Coliector.Ba~

BVCHO

Breakdown Voltage
lie -100IlAdc,IE "'0)

Emitter-Base Breakdown Voltage

12.5

62.5

W....
mWf'c

OC

I

-I

-,

--

Unh
·uCIW

Unn
Vd.
Vd.

300
Vd.

BVEBO

5.0

lie .. 10 "Ade. Ie .. 01
ICBO

Emitter Cutoff Current

leBO

""de

0.2
""de

01

(VSE == 3.0 Vdc, IC == 01
ON CHARACTERISTICS

hFE

25
30
30

lie'" 10mAdc, VCE == 10 Vdcl
HC'" 3OmAdc, VCE == 10Vdc)
Coll8Ctor·EmitterSaturation Voltage
tic .. 30 mAde, 18 .. 3.0 mAdeI
Sase·EminerSaturation Voltage
tiC == 30 mAdc:, IB '"' 3.0 mAdel

a

300

Collector Cutoff Current
IVCB = 200Vdc,le .. 0)

DC Currlnt Gam
He == 1.0mAdc, Vee == 'OVdcl

I

°CIW

Vd.

VCElsat)

0.75
09

VBElsad

Vd.

OYNAMIC CHARACTERISTICS
Current·Gam Bandwidth Product
ClC" '0 mAde, VCE .. 20 Vdc, f .. '0 MHz)

t-r

Collector· Base Capacitance
(Vce = 2OVd(;.le -0, f .. 1.0 MHz)

e..,

MH,

45

.F

8.0

111 Pulse Test: Pulse Width" 300,,5. DutY Cycle" 2'lIo.

STYLE I:
PIN I. EMITTER
2. BASE
3. COLLECTOR
4. COLLECTOR
MILLIMETERS
INCHES
DIM MIN MAX
MIN MAX
A 21.B4 22.35 0.860 O.BBO
9.91
0.390
~
C T39 I~~t "[ill f~
0183
0.74 0023 0.029
0
0.58
406 0140 0160
F
~
I~
~ ~ 2.67 ~.§..
0067
f-.!.!-- 170 T.96
O.SS" "iiQj9.
~
i295· 10.4BO ,~
K
L
165
2.03 0.065
N
991 1016 0390
Q
3.56
3.81 0.140 0.150
1.07
1.75 0.042 0.069
R
7.B7
9.14 0.310 0.360
T

~ft4

CASE 306-04
TO·202 AC

4-404

~Ws-

~Wo-

MDS60

FIGURE 1 - DC CURRENT GAIN
15

a

10

TJ

0;

V~E ~ \0 ~~c

+125 0 C

a

z

;;:
'" a

......

r------ +25°[:

""'" .......

0-

~

0 _ - 5 5 0C

"""~

=>

u
u

~~

"""-

c

;

a
20
15
1.0

2.0

7.0

5.0

30

10

20

30

50

BO

I"
100

IC. COLLECTOR CURRENT (mAl

FIGURE 2 - CAPACITANCES

FIGURE 3 -CURRENT-GAIN-BANDWIDTH PRODUCT

a

10

'"
~

a

C,b

Or-a

TJ"25OC
80 -VCE ~20 Vdc

~

60

0C

'"

40

;;;

30

~

b-

100

./

\

V

z

a

;;:
'"

2. a

;--

1.a
01

02

0.5

1.0

2.0

50

10

20

50

100 200

~

f\

20

=>

u

C

.f
500 1000

0
1.0

50

20

FIGURE 4 - "ON" VOL TAGES
1.0

8

-

VB~ @JCEI~ 10 ~

-

---

1

f-i-"

~

~

8

o

1.0

2.0

5.0

10

0
TJ ~ 150°C

30
- - - SECOND BREAKDOWN LIMITED
20 - BONDING WI RE LIMITED

50

-- -

_.-

THERMALLYLlMITEDIHe~250C

a

-I-'"
20

~

100

~

I 1/

......

200

~

'"c

VCE(sa'l@ ICIIB ~ 10

....

300

0-

4

O. 2

100

50

20

FIGURE 5 -DC SAFE OPERATING AREA
500

I
I

10

Ie. COLLECTOR CURRENT (mAl

VR. REVERSE VOLTAGE (VOLTSI

0
20

100

30

!III

70

100

200

VCE. COLlECTOR·EMITTER VOLTAGE (VOLTSI

IC. COLLECTOR CURRENT (mAl

4-405

300

400

•

MOS1678

NPN SILICON ANNULAR. RF TRANSISTOR

DUOWATT
4W-27 MHz

___ designed for use in Citizen-band and other high-frequency
communications e'quipment operating to 30 MHz. Higher breakdown
voltages allow a high percentage of up-modulation in AM circuits.

RF POWER OUTPUT
TRANSISTOR
NPN SILICON

•

•

Output Power = 4 W (Min) @ VCC = 12 Vdc

It

Power Gain

•

High Collector-Emitter Breakdown Voltage - BVCER ;;;. 65 Vdc

= 10 dB (Min)

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Base Voltage

VCBO

65

Vdc

Collector-Emitter Voltage

VCER

65

Vdc

Emitter-Base Voltage

VEBO

4
3

Vdc

Rating

Collector Current - Continuous
Total Power Dissipation @TA

IC
PD

2
16

Watt
mW/oC

= 2SoC

PD

10
80

Watt
mW/oC

TJ. Tstg

-55to+150

°c

Derate above 2SoC
Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS

I
I

Characteristic
Thermal Reistance, Junction to Case

Thermal Resistance, Junction to Ambient

Symbol
8JC

I

8JA

I
I

J

available on special request.

Adc

= 2SoC

Derate above 2SoC
Total Power Dissipation@Tc

Tab-forming and TO-5 lead-forming

Max
12.5
62.5

I
I

1

Unit
°CIW

°c/w

Q~'

1

tln
j
""l~~","
l. I

om,

I.,

3. EMITTER
4. COLLECTOR

0-

R

K

'L"

-G

r-N~

L~5-.J

I"

FIGURE 1 - POWER GAIN

)-=J.J

10

..-

---

MILLIMETERS
DIM MIN .MAX
A 21.84 22.3&
B
9.91 10.41
C
4.39
4.65
D
0.58
0}4
F
3.56
4:06
G . 2.41
2.61
H
1.10
1.96
J
0.48
0.66
K
12.19 12.95
L
1.65
2.03
N
9.91 10.16
Q
3.&6
3.81
R
1.01
1.15
T
1.81
9.14

~

CIRCUIT TUNEP@Pin·0.25W
VCC"12Vdc
I'YMHZ

I

I

0.1

0.2

0.3

0.5

0.1

Pin. INPUT POWER (WATTS)
• Annular Semiconductors Patented by Motorola Inc.

4-406

INCHES
MIN
MAX
0.860 0.880
0.390 .0.410
0.113 0.183
0.023 0.029
0.140 0.160'
0.095 0.105
0.061 0.011
0.019 0.026
0.480. 0.510
0.065 0.080
0.390 0.400
0.140 0.150
0.042 0.069
0.310 0.360

~ASE 3116-04 .
TO-202AC •

MDS1678

ELECTRICAL CHARACTERISTICS (T A-

25 0 C unloss otherwise noted)

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)

-

-

Vde

BVCER

65

BVEBO

4

'CBO

-

-

0.01

15
10

-

1

Vde

45

pF

(lC -10 mAde, RBe = 10 n)

Emitter-Base Breakdown Voltage
(lE=l mAde,lc=O)
Collector Cutoff Current

(Vca = 30 Vde, IE = 0)

Vde
mAde

ON CHARACTERISTICS
DC Current Gain (2)
(lC = 500 mAde, Vce = 5 Vde)
(lC = 1.5 Ade, VCE = 5 Vde)

hFE

-

-

VCE(sat)

-

-

Cob

-

-

IT

100

GpE

10

-

-

dB

Pout

4

-

-

Watts

Collector Efficiency (3)
(Pout = 4 W, VCC = 12 Vde, f = 27 MHz)

1)

-

70

-

%

Percentage Up-Modulation (4)
(I = 27 MHz)

-

Collector-Emitter Saturation Voltage

(lC = 500 mAde, IB = 50 mAde)
DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 12 Vde, IE = 0, I = 1 MHz)
Current-Gain -Bandwidth Product

MHz

(lC = 100 mAde, VCE = 5 Vde, I = 20 MHz)
FUNCTIONAL TEST (Figur.l)
Common-Em itter Amplifier Power Gain

(Pout = 4 W, VCC = 12 Vde, I = 27 MHz)

Output Power
(Pin = 400 mW, VCC

= 12 Vde, f = 27 MHz)

%

85

(1) Pulsed through a 25 mH Inductor.

(2) Pulse Test: Pulse Width .. 300 "s, Duty Cycle .. 2.0%.
RFPout

(3) 1)

= (VCC) (lC) . 100

(4) Percentage Up-Modulation is measured in the test circuit (Figure 3) by setting the Carrier Power (Pc) to 4 Watts with Vee = 12 Vdc and
noting the power input. Then the Peak Envelope Power (PEP) is noted after doubling the original power input to simulate driver modulation
(at a 25% duty cycle for .thermal considerations) and raising the Vee to 24 Vdc (to simulate the modulating voltage). Percentage Up·
Modulation is then determined by the relation:

Percentage Up-Modulation:

FIGURE 2 -.OUTPUT POWER WITH VCC VARIATIONS

./'" ~
./

.//

,/ .....
"...-3
10

.......

.....

type 56-590-65/38

--

RFC2 -

26 Turns #22 enameled wiro (2 lavers-13 turns each
layerl 1/4" inner diameter
L 1 - 0.22 JlH mol dod choke
L2 - 0.68 J.lH molded choke

Pi~--::7:
O.4t..

FIGURE 3 - 27 MHz TEST CIRCUIT
r -__~______~____-oVcc

O.2W-

12 Vdc

./

14

112_ 1] 0100

C1. C2 - 9.0-180 pF ARCO 463 or equivalent
C3. C4 - 4.0-80 pF ARea 462 or equivalent
C5 - 0.02 IlF ceramic disc
C6 - 0.1 IlF ceramic disc
RFC1 - 4 turns #30 enameled wire wound on ferroxcube bead

0
f-CIRCUIT TUNED@VCC·24V,Pin·O.2W
DUTY CYCLE· 25%
!'27MHz

[ep~p)

C4

18

22

26

VCC, COLLECTOR SUPPLY VOLTAGE (VOLTS)

4-407

C3

Output

MJ41 0 (SILICON)
MJ411

HIGH VOLTAGE NPN SILICON TRANSISTORS
. designed for· medium to high voltage inverters, converters,
regulators ana switching circuits.
•

•

High Coliector·Emitter Voltage VCEO = 200 Volts - MJ410
300 Volts - MJ411

5 AMPERE
POWER TRANSISTORS
NPN SILICON
200-300 VOLTS
100 WATTS

•

DC Current Gain Specified @ 1.0 and 2.5 Adc

•

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.8 Vdc@ IC = 1.0 Adc

MAXIMUM RATINGS
Rating

I

Symbol

MJ410

VCEO

200

Collector-Base Voltage

VCB

200

Emitter·Base Voltage

VEB

5.0

Vdc

IC

5.0
10

Adc

Collector-Emitter Voltage

Collector Current - Continuous
Peak

I
I

MJ411

Unit

300 .

Vdc

300

Vdc

aase Current

IB

2.0

Adc

Total Device Dissipation@Tc"'7SoC
Derate above 7SoC

Po

100
1.33

WIDe

Operating Junction Temperature Range
Storage Temperature Range

Watts

TJ

-65 to +150

T stg

-65 to +200

·c
·c

THERMAL CHARACTERISTICS
Max

Characteristic

Thermal Resistance. Junction to Case

0.75

Lr~
r~,
I

ES::?-t;:
PLANE
-

ELECTRICAL CHARACTERISTICS fTC' 25·C unle... the",;,e nctedl

I

Characteristic

Symbol

Min

I

Max

Unit

OFF CHARACTERISTICS

. Follector-Emitter Sustaining Voltage

lie'" 100 mAde. IS '" 01

VCEO(susl
MJ410
MJ411

~lIector

Cutoff Current
IVCE = 200 Vdc. IS = 01

MJ410

IVCE = 300 Vdc. IS = 01

MJ411

Collector Cutoff Current
(VeE =200 Vdc. VEBloffl '" 1.5 Vdc.
TC -125c CI

(VeE "'300 Vdc. VEBlof') -1.5 Vdc,
TC'" 12S0C)
Emitter Cutoff Current
IVES· 5.0 Vdc. IC· 01

ICEO

ICEX
MJ410
MJ411
IESO

200
300

-

-

0.25

Vdc

mAde
0.25
mAde

-

0.5

-

5.0

STYLE 1:

PIN~: :':I~~"ER

0.5

CASE: COLLECTOR
mAde

MILLI ETERS
DIM MIN MAX

ON CHARACTERISTICS
DC Current Gain
(Ie" 1.0 Adc, VeE = 5.0 Vdc)

30

(Ie'" 2.5 Adc. VeE'" 5.0 Vdcl

10

Collector-Emitter Saturation Voltage

A
8
C

80

D
E

VCElsat)

O.S

Vdc

VSElsat)

1.2

Vdc

tiC = 1.0 Adc, IS' 0.1 Adc)

Base·Emitter Saturation Voltage
tiC;; 1.0 Adc, IS" 0.1 Adc)

NOTE:
1. DIM "0" IS alA.

Current-Gain-Bandwidth Product
(Ie" 200 mAde, VeE = 10 Vdc.

-

39.37
21.08

-

1.119
3.43

6.35
0.99

F 29.90
10.7
H 5.3
J 1.
K 11.8
0- 3.84
R

DVNAMIC CHARACTERISTICS

--

-

6

INCHES
MIN
MAX

-

1.550
0.830

0.039

0.043
0.135
1.197

o.

-

30.40 . 1.177
11.18
.59
1.15

12.19
4.09
26.67

.440
10
0.655
0.440
0.151

-

CASE 11-01
TO·3

f"'.OMHzl

4-408

Q.3tlO

0.220 .
0.675
0.480
0.161
.1.050

MJ410, MJ411

FIGURE 1 -ACTIVE REGION SAFE OPERATING AREA

10~~~~~~~~~~~~~~~~~~~~~~

5.0~

10I1ls~500", =~

oI-+t+t-j--,,-----::-±---+-+,..;...t--Pld!
0
TJ=150 e

riO

In',~~-+-+-1
'\,\

There are two limitations on the power handling ability of a
transistor: junction temperature and secondary breakdown. Safe
operating area curves indicate Ie-VeE limits of the transistor that
must be observed for reliable operation, i.e .. the transistor must not
be subjected to greater dissipation than the curves mdicate.
The data .of Figure 5 is based on T J (pk) = 150°C; T C is variable
depending on conditions. Pulse curves are valid for duty cycles of
10% provided TJ(pk)$150 o C. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by secondary breakdown.

~ 1.0~1~~~~~dc"~'I~
0.5

c:
=>

~O 0.2 H - - - - - - Secondary Breakdown Limited
r-_ _ _ _ lJonrling Wire limited

"

"

"-

g8 lt~f-~-~-~-~-~-~T~he~rm~'§I~Li~m~il~at~io~n~at~T~e~=~7~5~oe~~~'~~'~~~
__

Curves Apply Below Rated VCEO

0.05

!:2

MJ410_

0.01

H+H-t---t--if-+-+-H-+rr -

-

o.Q1.':-'-...L'-':':--_-:!::---L--L-:!:-L.LJ.~;:----::!::-...L--":::-:'
10

5.0

10

50

100

100

500

VeE. eo LLEeTOR·EMITTER VOL TAGE (VOL TSI

FIGURE 2 -DC CURRENT GAIN

FIGURE 3 - "ON" VOL TAGES

TJ - 150 0 e

0

'"

;;'

~
'"~

V

0

I-'"

V

0

'\ ~ VeE

-....

f-"

~

= 5.0 Vdc

0

150C

-I

?

1'1

'"'"
0:

~

I--- -55 0C
V l.-

J

11

1-[ 1[·1

a

0.05

0.1

0.1

0.3

0.5

10

1.0

3.0

0.05

5.0

0.1

0.1

03

0.5

1.0

10

FIGURE 4 -SUSTAINING VOLTAGE TEST LOAD LINE

FIGURE 5 -SUSTAINING VOLTAGE TEST CIRCUIT

50 0
50 mH
~ 400

.E

...
~

",~I

'" 30 0

~

....,
r--

VCEO(su,) ISAC~EPTABLE WHEN
.VeE;> RATED VCEO.AT IC = 100 mA

I.

8

~ 100

a

a

100

100

\

-=-

\

6.0 V

\

'MJ4\0MJ411

300 Il
300

30

IC. COLLECTO RCU RRENT (AMP)

Ie. COLLECTOR CURRENT (AMP)

200

,

~r--

f-f.+-H+-+-+++-t-t'1l"rFF--VeE(sat)@ le/18 = 5

5. 0

'"o
~

II

400

500

VeE. COLLECTOR·EMITTER VOLTAGE (VOL-TS)

4-409

1.0 11

5.0

MJ413 (SILI(:ON)
MJ423
MJ431

HIGH-VOLTAGE NPN SILICON TRANSISTORS

10 AMPERE
POWER TRANSISTORS
NPNSILICON

. . . designed for medium-to-high voltage inverters,
converters, regulators and switching circuits.
• High Voltage -

VCE<

= 400 Vdc

400 VOLTS
125 WATTS

• Gain Specified to 3.5 Amp
• High Frequency Response to 2.5 MHz

MAXIMUM RATINGS

Rating
Collector-Emitter Voltage
<.:.ueclor-..... .IIag.
Emltter-ISHe Vo tago
Collector (..'Urrent
ConttnuOWl
Base Current

Totar!,:t=~~':~lr.gon

9TC= .un.;

OperaUon Junction Temperature Range

Storage Temperature Range

Symbol

MJ413

MJ423

VCEX

.......

.......

...

I.

2.0

CB
EB
IC
IB,

400

MJ431

Unit

400

Vde

ow

,ac

IU

I.

AC1C

2.0

2.0

400

,ae

Ade

"D

;~~

;i~

TJ

-65 to +150

·C

-ti. 10 +200

-,;

T.tg

THERMAL CHARACTERISTICS

Characteristic

Max

Thermal Resistance. JuncUon to Case

ELECTRICAL CHARACTERISTICS

1.0
(Teo:: 25·'(: IInieu otherw.se noted)

Symbol

Characteristic

Min

Max

Unit

325

-

......

OFF CHARACTERISTICS
Collector-Emitter Sustalntng Voltage~'1
(lC • 100 mAde, Is • 0)
Collector Cutoff Current
(VCE • 400 Vclc, V£B(oIl) = I. S Vdc$

(VCEo 400 Vdc, VEB (oIl)' I. S Vde,
T C ·la5'C)
Emitter CUtoff CUrrent

(VBK' 5.0 Vde,

Ie' 0)

BVCEO(sUS)
MJ413, MJ423
MJ431
loIJ413, MJ423
MJ431
MJ413, MJ'423
MJ431

CEX

--

-

~BO

-

hFE

20
IS

0.2S
2.S
O.S
5.0
5.0
2.0

Vdc

mAde
mAde

ON CHARACTERISTICS
DC Current Gain III
(lc '" 0,5 Adc, VCE • 5.0 Vdc)

MJ413

(lC' 1.0 AcIc, Va' 5.0 Vdc)
(lc· 1.0 Adc, VCE ' 5.0 Vdc)

Ue:. 2.5 AcIe,

P'c

·2.5 Adc. VCE • 5.0 Vdc)
(lc· 3. 5 AcIc, VCE ' &.0 Vdc)

Collector.. Emitter SaturaUoQ Voltage 111
O. 5 AcIc,
0.05 AcIc)

nc -

(lC - 1.0 Me,
(lC - I. 5 Me,

Is'
Is' o. 10 Ade)
Is' o. 5 AcIc)

Bue..Emitter SaturatIon Vol.... I')
0.1 AcIc,
0.05 AcIc)

nc nc nc -1.1

MJ423

30
10

MJ431

IS
10

VCE • 5.0 Vdc)

Is'
1.0 AcIc, Is - O. I AcIc)
Adc, Is' O. 5 AcIc)

p-

MJ413

VC£(s••)

MJ423
MJ431
MJ413
MJ423
MJ4S1

VBE(sat)

---

80

90
35
-

.

Oe •

8
D

E

0.99

-

F 29.90

1.

Vde

K 11.18
3.14

Q

R

-

39.31
21.08
7,2
1.09
3,03

30,40
11.18

17.5
12.19
428,67

4-410

INCHES

MIN

MAX

-

1.550
0.830

-

0.2
0.039

-

1.177
0,4
o1

o.

11

-

CASE 11-411
, TO.a

CIarnml-GoIa - - 100 mAde, VCIt • lOVcIc•

1-1.0_)

A

0.8
0.8
0.7
I.n
1.25
1.5

STYlE 1,
PIN 1, BASE
2, EMITIER
CASE, COLLECTOR

MILliMETERS
DIM MIN MAX

Vde

DYNAMIC CHARACTERISTICS

I

-

D.043
0,135
1.197
0.440
O.
675
0.480
0.161
1.050

MJ413, MJ423, MJ431

FIGURE 1- ACTlVE·REGIOII SAFE·OPEIlATlIlG An~

FIGURE 2 - POWER·TEMPERATURE DERATING CURVE
125

"-

~

'\

"-

5

"- r\..
5

o
o

0.0\'=.0-:':2.0:--'-:4!::.0..':6"'.01...l..l:1':-0--::20:--'-:4!::0..':6=0~100~-:2:t00:--'-:-400:!::-'-~I:'iOOO·

W

~

W

W

~

m

"- '\.
~

~

~

~

Te. CASE TEMPERATURE I'CI

Ve •• COLLECTOR·EMITTER VOLTAGE (VOLTSI

FIGURE 4- SUSTlllfiltlG VOLTAGE TEST CIRCUIT

FIGURE 3 - SUSTJlIflItlG VOLTAGE TEST LOAD LlHE
500

50 mHy

-

.

"

1

r-- VCEO(.wllS ACC TABLE VIHEN
Vc. ;" 325 VAT Ie = 100 rnA

1\
I

100

100

200

\

l

300

,

\

l.01l .

300 Il
400

500

Va. COLLECTOR·EMITTER VOLTAGE !VOLTSI

10

7.0
VeE= 5.0 V
I'..

0

".

i

1

is
~

TJ=IOO'C~ N5'C
0

5.0

,.

3.0
2.0

VeE -lOY

25'C
TJ:= lOO'C

'" 1.0

0
0

1/

!;i8:
0.7
_ 0.5
['I,.

3.0

~ 0.3

"

2.0

1.~.1

TRArISCOtlDUCTA~CE

FIGURE 6-

FIGURE 5 - CURRENT GAlli
100
70
50

0.2

0.3

0.5

0.7

1.0

2.0

3.0

5.0

0.2
7.0

10

Ie. COl.L£CTOR CURREIIT IAMPI

I

j
0.5

Ii
1.0

1.5

Y", I!ASHIlITTER VOlTAGE 1VOlTS)

4-411

2.0

2.5

MJ802 (SILICON)

30 AMPERE
POWER TRANSISTOR
HIGH-POWER NPN SILICON TRANSISTOR

NPNSILICON
100 VOLTS
200 WATTS

· .. for use as an output device in complementary audio amplifiers to
100-Watts music power per channel.

•

High DC Current Gain - hFE

•

Excellent Safe Operating Area

=25-100@ IC =7.5 A

• Complement to the PNP MJ4502

MAXIMUM RATINGS
Symbol

Valua

Unit

100

Vdc

Collector-Base Voltage

VCER
VCB

100

Vdc

Collector-Emitter Voltage

VCEO

90

Vdc

VEB
IC

4.0

Vdc
Adc

Rating
Collector-Emitter Voltage

Emitter-Base Voltage
Collector Current

Base Current

IB

Total Device Dissipation @I T C = 250 C
Derate above 2SoC

Po

Operating and Storage Junction

TJ. Tstg

30
7.5
200
1.14

Watts
W/oC

-6510 +200

°c

lr~

lLE:B '
E

~

,

PLANE

Adc

STYLE 1:
PIN 1. 8ASE
2. EMITTER
CASE: COLLECTOR

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Thermal ReSistance, Junction to Case

MILLIMETERS
DIM MIN MAX

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
200

...........

5
~

150

~ r-....

~
ijj 100
E

a:

50

~

o

o

20

40

60

-

B

...........

z

0

~

-

A
C
D
E

""

6.35
0.99

-

29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.84
R
F

.......,.

"""""

80
100
120
TC. CASE TEMPERATURE (OCI

140

~
160

4-412

-

NOTE:

'"

180

200

1. DIM

"Q"

INCHES
MAX
MIN

- 1.550
0.830
0.250 0.300
0.039 .0.043
0.135
1.177 1.197
0.420 0.440
0.210 0.220
0.655 0.675
0.440 0.480
0.151 0.161
1.050

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19.
4.09
28.67

IS DIA.

-

-

-

. CASE' 11-01

.

TO-3

MJ802
ELECTR ICAL CHARACTERISTICS ITC = 25°C unl_ otherwise notedl
Characteristic

Symbol

Min

Max

Unit

BVCER

100

-

Vde

VCEOlsus)

90

-

Vde

1.0
5.0
1.0

mAde

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)

IIc = 200 mAde. RSE = 100 Ohms)
Collector-Emitter Sustaining Voltage 111
II C = 200 mAde)
Collector-Base Cutoff Current
(VCB = 100 Vde. IE = 0)
IVCB = 100 Vde.IE = O. TC = 150°C)

ICBO

Emitter-Base Cutoff Current
IVBE = 4.0 Vde. IC = 0)

lEBO

-

DC Current Gain "I
flc = 7.5 Ade. VCE = 2.0 Vde)

hFE

25

100

-

Base-Emitt.er "On" Voltage
IIc = 7.5 Ade. VCE = 2.0 Vdel

VBElonl

-

1.3

Vde

Collector-Emitter Saturation Voltage
IIc = 7.5 Ade. IR = 0.75 Adcl

VCElsatl

-

0.8

Vde

Base-Emitter Saturation Voltage
IIc = 7.5 Ade. IB = 0.75 Ade)

VBElsati

-

1.3

Vde

mAde

ON CHARACTERISTICS 11)

DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product
IIc = 1.0 Ade. VCE = 10 Vde. I

111

= 1.0 MHz)

Pulse Test: Pulse WidthS 300 Its, Duty' Cycle :s:'2.D%.

FIGURE 3 - "ON" VOLTAGES

FIGURE 2 - DC CURRENT GAIN
2.0

~

1.8

I

1.6

TJ 12JoJ

1.4

0

~

1.2

to

1.0

V

w

~0

:>

0.8

j"

0.6

P
~ 0.2

-

I-H-++Ht

VSE("l) @Ic/la= 10

111'1

OJ

II I

1111

0.2

aji"ii d tilult:~ if,et i l ICf~'
0.1 f::::-L::.l:::.l..LlJ:':--'-=~~::l:-1~~~::-L:Jf:-L:lol-.L..Ll:~~~
0.03 0.05
0.1
0.2 0.3 0.5
1.0
2.0 3.0 5.0
10.
20 30
IC. COLLECTOR CURRENT (AMP)

if

j

I

VSE @VCE = 2.0 V

0.4

Data shown is obtained Irom pulse testst-1f..j-I-H+--+'~~H

V

VCE(sat)@ IC/IS = 10

o

0.03 0.05

0.1

~

0.2 0.3 0.5
1.0
2.0 3.0 5.0
IC. COLLECTOR CURRENT (AMP)

10

20 30

FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA
100
50

~

;;:

"':';'

'"

5 20
t-

z

w

..
..~

ID

IX:
IX:

::> 5.0
IX:
0

t- 2.0

!2

0.5

-

~100,..-

1.0ms

'"
5.0 ms

"-

r---- TJ = 200 0 C

1.0 ~

0

... """

......

The Safe Operating Attla CUM15 indicate Ie - VeE limits below
which the deVice Will not enter tKondiry breakdown. Collector
IOld lines for &pee:iflc circuits must f,1I within the ~icabJ. Saf.
Ar.. to avoid c:aU5lng I catlStrOphk: failure. To insure operation
below the ~ .. imum T J. pOWiNemperature derating mult be obtIIfVed for both study state and putso power conditions.

. Secondary Breakdown Limited

~ --:.- ~~~~'IT:~~~=~C=250C
~

Pulse Duty Cycle S 10%

0.2
0.1
1.0

2.0

3.0

5.0
10
20
30
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

4-413

50

100

MJ900, MJ901 PNP (SILICON)
MJ1000, MJ100l NPN
8.0 AMPERE
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON

MEDIUM-POWER COMPLEMENTARY
SILICON TRANSISTORS
· . . for use as output devices in complementary general purpose
amplifier applications.

..

•

High DC Current Gain - hFE = 6000 (Typ)

•

Monolithic Construction with Built·ln Base·Emitter
Shunt Resistors

@

60-80 VOLTS
90 WATTS

IC = 3.0 Adc

MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

VCEO

MJ900
MJ901
MJ1000 MJ100l
60
80

Unit
Vdc

Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB

5.0

Vdc

IC

8.0

Adc

Base Current

IB

0.1

Adc

Total Device Dissipation@Tc= 2SoC

Po

90
0.515

Watts
WloC

TJ,Tstg

-55 to +200

°c

Collector Curront

60

Derate above 25°C
Operating and Storage Junction

80

Vdc

Lr~
r~K

Temperature Range

ESEATIN(~

THERMAL CHARACTERISTICS
Characteristic

PLANE

Max

Thermal Resistance. Junction to Case

1.94

FIGURE 1 - DARLINGTON CIRCUIT SCHEMATIC

STYLE 1:
PIN 1. BASE
2. EMITTER

Collector

PNP

MJ900
MJ9D1

B,se

r------ -I
I

I
I
I
I
I

I

--,

MJ1000
MJ100l

I

CASE: COLLECTOR

Collector

NPN

-1-'

r----

25°C

'"
~ 1000
<.>

,

z

j

VCE = 3.0 VollS

./

50
0.05

0.1

0.2

0.5

1.0

2.0

5.0

30
10 3

10

10 5
f. FREQUENCY (tlz)

FIGURE 4 - "ON" VOLTAGES
3.5

FIGURE 5 - DC SAFE OPERATING AREA
10
7.0
~
~ 5.0

I I
I I

3.0

TJ ~ 25 0lC

'"w
'"«
!:;
'">
:>

2.5

'"'"

I

1

VB~("li @lcllB = 25~

F
.~
. . . . 0.1 ~
0.5 -.
'"~ 0.3

VCEisal)1 @~CiIT Ttls)o
0.02

0.05

0.1

0.2

0.5

1.0

\'
SECONOARY BREAKOOWN LIMITATION
THERMAL LlMITATION@TC=250 C
BONOING WIRE LIMITATION

-

JJ90d.Mlloho
I
I I I
MJ90l, MJIOOI

0.2

I I 1111111

o

1\\

'" 1.0

IBEI@IIE~ ./

0.5

TJ=2000 C

'"~

1.5
1.0

=

;: 3.0
z
~ 2.0

I I

2- 2.0

0.01

[\

~ 100

IC; COLLECTOR CURRENT (AMP)

~

\

VCe=3.0 Vdc
IC = 3.0 Adc

200

2.0

5.0

I

0.1

10

1.0

2.0

3.0

5.0 1.0

10

20

30

\

50

70

100

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)
must not be subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations im·
posed by secondary breakdown.

IC. COLLECTOR CURRENT (AMP)
There are two limitations on the power handling ability of a
transistor: average junction temperature and secondary breakdown.
sate operating area curves indicate le-VCE limits of the transistor
that must be observed for reliable operation; e.g., the transistor

4-415

MJ2500, MJ2501 PNP (SILICON)
MJ3000, MJ3001 ,NPN
10AMPERE
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SI LICON

MEDIUM-POWER COMPLEMENTARY
SILICON TRANSISTORS

60-80 VOLTS
150 WATTS

: .. for use as output devices in complementary general purpose
amplifier applications .
• High DC Current Gain - hFE = 4000 (Typ) @ IC = 5.0 Adc
•

..

Monolithic Construction with Built·ln Base·Emitter
Shunt Resistors .

MAXIMUM RATINGS
Symbol

Rating
Coliector·Emitter Voltage

VCEO

Collector-Base Voltage

Vce

Emitter-Base Voltage

VEe

MJ2500 MJ2501
MJ3000 IMJ3OO1
'60
80
60

Unit

Vdc

5.0

Vdc

Collector Current

IC

10

Adc

Base Current

Ie

0.2

Adc

Total Device Dissipation@Tc=2SoC

Po

150

Watts

0.857

W/DC

TJ.Tstg

-55 to +200

°c

Symbol

Max

Unit

8JC

1.17

°C/W

Derate above 25°C
Operating and Storage Junction

lr~
,L-E::::H ,

Vdc

80

Es~i
PLANE

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Case

STYLE 1:
PIN 1. BASE
2. EMITTER
. NOTE:
CASE: COLLECTOR
1. DIM "0" IS DIA.
FIGURE 1 -DARLINGTON CIRCUIT SCHEMATIC

DIM
PNP
MJ2500
MJ2501

Collector

---,

,----+-,

Base

NPN
MJ3000
MJ3001

I

I
I
I
I
I
I

Collector

A

---,

,..-----

VaE @ VCE = 3.0

;; 1.0

~

a5

f-

I

~ 2.0

~

10-7.0
5.0

5.0

O. I
1.0

10

IC. COLLECTOR CURRENT (AMP)

There are two limitations on the power handling ability of a
transistor: junction temperature and secondary breakdown. Safe
operating area curves indicate IC-VCE limits of the transistor that
must be observed for reliable operation; e.g., the transistor must

2.0

3.0

5.0 7.0

10

20

30

50

70 100

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

not be subjected to greater dissipation than the curves indicate,
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations
imposed by secondary breakdown.

4-417

MJ3029 (SILICON)
MJ3030
NPN SILICON HIGH-VOLTAGE TRANSISTORS
5 AMPERE
POWER TRANSISTORS
NPN SILICON

. designed for TV horizontal and vertical deflection amplifier
circuits.

•

•

High Coliector·Emitter Sustaining Voltage VCEO(sus) = 250 Vdc (Min) MJ3029
325 Vdc (Min) MJ3030

•

Fast Fall Time in Horizontal Deflection tf = 1.0 IJ.s (Max) @VCC = 80 Vdc - MJ3030

•

Excellent Gain Linearity for Vertical Deflectio~ hfe@0.4Adc,hfe@0.3Adc= 0.95 (Min) - MJ3029

250-325 VOLTS
125 WATTS

MAXIMUM RATINGS
Symbol

MJ3029

MJ3030

Unit

Collector-Emitter Voltage

VCEO

325

Vdc

Collector-Emitter Voltage

VCER

250
500

-

Vdc

Volta~e

VCEX

-

700

Vdc

Rating

Collector-Emitter

VEa
IC

5.0

Vdc

5.0

Adc

Base Current

la

1.0

Adc

Total Device Dissipation @TC;:: 25°C

Po

125
1.0

Watts
wfDc

-65to'150

°c

Emitter-Base Voltage
Collector Current - Continuous

Derate above 25°C

TJ,Tstg

Operating and storage Junction
Temperature Range

Ir~
It

r
E

SEATlN~

PLANE

0

1r

K

~.

I---F-J-

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, JUnction to Case

I

Symbol

I

I

°JC

I

Max
1.0

I

Unit

I

°CIW

""

r--....

""- '\.

~ 100

l-

~
75

iii
Q

50

::

DIM

-

'\.
'\

I"'\.

'"~
~

~

'\

25

I'\.
'\

0
0

25

50

75

100

125

150

R
175

200

NOTE:
1. OIM "U" IS DlA.

MILLIMETERS
MIN MAX

A
B
C 6.35
D 0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q
3.84

'\.

2:

0

;::

~
~

1

STYLE 1:
PIN 1. BASE
2. EMITIER
CASE: COLLECTOR

FIGURE 1 - POWER·TEMPERATURE DERATING CURVE
125

1
~~ ""
J
~
t
1r
7
/

-

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
17.15
12.19
4.09
26.67

4-418

0.250
0.039

-

1.177
0.420
0.210
0.655
0.440
0.151

-

CASE 11-01

TO-3

Te, CASE TEMPERATURE ('C)

INCHES
MIN
MAX
1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ3029, MJ3030

ELECTRICAL CHARACTERISTICS (Te = 250 e unless otherwise noted)
Characteristic

Min

Ma.

Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Volt~ge(1)
(Ie;: 0.1 Adc,IB '" 0)

Vd,
250
325

Collector Cutoff Current
(VeE" 500 Vdc, RBe '" 1.5 k Ohms)

1.0

Collector Cutoff Current
(VeE'" 700 Vdc, VEB(offi '" 1.5 Vdcl

2.0

mAde
mAde

ON CHARACTERISTICS
DC Current Gain
(Ie = 0 3 Adc. VeE'" 5.0 Vdc){1)

25

lie'" 0.4 Adc, VeE = 5.0 Vdcl(1)

30

Gain Linearity

0.95
Vd,

Collector-Emitter Saturation Voltage
tie'" 3.0 Adc, IS = 0.8 Adcl

2.0

SWITCHING CHARACTERISTICS
Fall Time
(VCC=BOVdc,iC"3.0Adc,181 =O.BAde) Figure3

,

(1)PuJ$O Test: Pulso Width S30Q Ill, Duty Cyclo S2.0%.

FIGURE 2 - DC CURRENT GAIN
100
70
50

;;:
'"

20

g;

10

'-'
'-'
c

7.0
5.0

i:5
a:

~

VCE=2.0V

30

'"t-

FIGURE 3 - rEST FOR FALL TIME

"'

TJ=100~"\ I'\. 25

"to HP 212A

50

0C

1"\

3.0
2.0
1.0
0.1

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0 7.0

10

~~asPuts:~~~~~r·~~:o~~~~:'p:~~o~~~e55~~fa;A~,.

IC. COLLECTOR CURRENT (AMP)

0:

5.0 ~3.0

ffi

1.0

t

""

0.5
0.3
0.2

~
-'

0.1 -

~ 2.0
a:
~

FIGURE 1\ - ACTIVE REGION SAFE OPERATING AREA

.

10

-

.'\..

TJ = 150 0 C

100"

"-

de

1.0

- - - " S:condary Breakdown

-

*HP 212A: Set for 10 p,S wide pulses at 2000 pulses per sec.
(500 IJS interv,ls). Adjust for lal = 0.8 A.

ms""

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figure 4 is based on TJ(pkl = 1500 C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided TJ( kl'" 150 0 C. At high case
reduce the power that can
temperatures, thermal limitations
be handled to values less than the limitations imposed by second
breakdown.

limite~

Bonding Wire Limited

0.05 ~iermallimitallQn at TC = 25 C
.
. Curves Apply Below Rated VCEO
~ 0.03
MJ3029
0.02
~'J3030
0.0 1
10
20
30
50 70 100
200

wilr

0

f3

I I I II

...r

+

325

500 700 1000

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

4-419

•

M)3040
MJ3041
MJ3042

DARLINGTON
10AMPERE
POWER TRANSISTORS
NPN SILICON

HIGH VOLTAGE SILICON POWER
DARLINGTONS
· .. developed for line operated amplifier, series pass and switching
regulator applications.

•

•

Collector·Emitter Sustaining Voltage VCEO(sus) = 300 Vdc (Min) - MJ3040, MJ3041
= 350 Vdc (Min) - MJ3042

•

High DC Current Gain hFE = 100 (Min) @ IC = 2.5 Adc - MJ3040
= 250 (Min) @ IC = 2.5 Adc - MJ3041, MJ3042

•

Low Collector· Emitter Saturation Voltage VCE(sat) = 2.2 Vdc (Max) @ Ie = 2.5 Adc

•

Monolithic Construction with Built·ln
Base·Emitter Shunt Resistors

300, 350 VOLTS
175 WATTS

MAXIMUM RATINGS
Rating

Symbol

Collector-Base Voltage
Collector-Emitter Voltage

Continuous
Peak (11

IC

Total Device Dlssipation@Tc - 2SoC

Derate above 2SoC
Operating and Storage Junction
Temperature Range

MJ3042

Unit

400

400

500

Vdc

300

300

350

..
..
.

VCEO
VEB

Emitter-Base Voltage

Collector Current

MJ3040 MJ3041

VCB

Po
TJ, Tstg

8.0
10
15

175
1.0
_-65to+200 _

...
..

Vdc
Vdc
Adc

Watts
W/oc
DC

Lr~

rLE:B
Es~i·
PLANE

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
(1) Pulse Width = 5.0 ms, Duty Cycle .. 10%.

DARLINGTON SCHEMATIC

MILLIMETERS
DIM MIN MAX

COLLECTOR

r------- --,

'A
B
C

I

0
E

I

I
I

I

BASE

-6.35
0.99

-

F 25.90

I

1.

I

39.37
21.08
7.62
1.09
3.43

30.40
11.18

INCHES
MIN
MAX

-1.177

0.250
0.039

U20

O. 10
5.5~
1 .15 0.655
12.19 0.440
4.09 0.151
28.67
R
Collector connec:lld to c-.
H

I
I

5.3~

116.64
K 11.18
II
84
~

I

-

-

---'
EMITTER

CASE 11-01

(TO·3)

4-420

1.550
0.830
0.043
0.135
1.197
0.440
O. 0
0.675
0.48IJ
0.1&1
1.050

MJ3040, MJ3041, MJ3042

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.l
Characteristic

Symbol

Min

Max

300
350

-

-

1.0
1.0
5.0
5.0

-

40

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

VCEO(susl
MJ3040, MJ3041
MJ3042

(lC = 100 mAde, la = 01
Collector Cutoff Current
(Vca = 400 Vde, 'E = 01
(Vea= 500 Vde,IE = 01
(Vca= 400Vde,IE = 0, TC = 1000 CI
(Vca= 500Vde,'E = 0, TC = 100°C I

mAde

'eao

MJ3040, MJ3041
MJ3042
MJ3040, MJ3041
MJ3042

-

Emitter Cutoff Current

Vde

-

mAde

'EBO

(VBE = 5.0 Vde, IC = 01

ON CHARACTERISTICS
DC Current Gain

hFE

(lC = 2.5 Ade, VCE = 5.0 Vdel

MJ3040
MJ3041, MJ3042
MJ3040
MJ3041, MJ3042

(lC = 5.0 Ade, VeE = 5.0 Vdel

Collector-Emitter Saturation Voltage

VeElsatl

(lC = 2.5 Ade, I B = 50 mAdel
(I C = 5.0 Ade, I B = 400 mAdel

Base-Emitter Saturation Voltage

-

-

2.2

-

3.0

-

2.5

•

-

-

Vde

2.5
Vde

VBEls"tl

(lC = 5.0 Ade, 'B = 400 mAdel

Base-Emitter On Voltage

100
250
25
50

VBElonl

(lC = 2.5 Ade, VeE = 5.0 Vdel

Vde

FIGURE 2 - DC CURRENT GAIN

FIGURE 1 - FORWARD BIAS·SAFE OPERATING AREA

2000

o
0::

~
i:'j
:::

5.0 ms

s
~

z

~

....

10ms--

~

:>

'"'

'"g
" 0.2
j

...,=>

de

0.1

10

V

II ..........

V

100

There are two limitations on the power handling abilitv of a

transistor - average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; I,e., the
transistor: must not be subjected to greater dissipation than the
curves indicate.
S

15oDc; TC is variable

depending on conditions. At high else temperatures, thermal limi·
tations' will reduce the power that can be handled to values less
than the limitati~ns imposed by second breakdown.

4-421

"...

1-""30oC

II

"

VCE·3Vd,
- - - - - VeE· 5Vde

30 . /
300

-

l.H'

10
10

SO 10 100
200
20
30
VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

The data of Figure 1 is based on TJlpk)

200

-

21°C

./

300

<->

BONDING WIRE LIMIT
- - - - THERMAL LIMIT ISINGLE PULSE)
SECOND BREAKDOWN LIMIT
5

100
100

"w 100

TC· 25 0 C

:3
0.01
0005

II TJ· ISOoC

1000

0

;;.-;.

L III

02

03

0.5 01
I
IC. COLLECTOR CURRENT lAMP)

10

MJ4030, MJ4031, MJ4032 PNP (SIUCON)
MJ4033,-MJ4034, MJ4035 NPN
16 AMPERE
DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON

MEDIUM-POWER COMPLEMENTARY
SILICON TRANSISTORS

60-100 VOL TS
150 WATTS

. __ for use as output devices in complementary general purpose
amplifier applications_

•

=3500 (Typ) @ IC = 10 Adc

•

High DC Current Gain - hFE

•

Monolithic Construction iNith Built-In Base-Emitter
Shunt Resistor

MAXIMUM RATINGS

VCEO

MJ4030
MJ4033
60

MJ4031
MJ4034
80

MJ4032
MJ4035
100

Collector-Base Voltage

VCS

60

80

100

Emitter-Base Voltage

VES

5.0

Vdc

Collector Current

IC

16

Adc

Base Current

IS

0.5

Adc

Total Device Dissipation@Tc =25°C
Derate above 2S o C

Po

150
0.857

Watts
W/oC

TJ.Tstg

-55 to +200

°c

Rating

Symbol

Collector-Emitter Voltage

Operating and Storage Junction

Unit
Vdc
Vdc

l~~.

r-

0

E ~AnNG
PLANE

K

i

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Svmbol

I

Thermal Resistance. Junction to Case

9JC

I

Unit

Max
1.17

I

°C/W

. STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR
MILLIM ERS
DIM MIN MAX

FIGURE 1 -DARLINGTON CIRCUIT SCHEMATIC

PNP
MJ4030
MJ4031
MJ4032

Collector

--.,

,-----+.

Bose

I

I
I
I
I
I

NPN
MJ4033
MJ4034
MJ4035

Collector

--.,,-----+. I
I
I
I
I
I
__ ...II

Base

I
I
__ ...I

C

-6.35

0

0.99

A
B

E
F 9.90
G 10.67

H 5. 3
J 16.64
K 11.18

n
R

3.84

-

39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59·
17.15
12.19
4.09
26.67

NOTE:
1. DIM "Q" IS OIA.

INCHES
MIN
MAX

-

O. 50
0.039

-

1.177
0.420
0.210
0.655
0.440
0.151

-

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.2 0
0.675
0.480
0.161
1.05D

Collactor connected to CI!tS8.
Emitter

Emitter

CASE 11·01
(TO·3)

·.i·

4-422

MJ4030, MJ4031, MJ4032 PNP/MJ4033, MJ4034, MJ4035 NPN

ELECTRICAL CHARACTERISTICS ITc" 2SoC unless otherwise Mtedl

I

I

ChDracteristic

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltagell)
(Ie'" 100 mAde, Ie ., 0)

Min

Symbol

M!lx

We

BVCEO

60
BO

MJ4030, MJ4033

MJ4031, MJ4034

'00

MJ4032. MJ4035

Collector Emitter Leakage Current
{Vea" 60 Vdc, R.SE .. 1.0 k ohml

leER

{Vea ""80Vdc, RBe '" 1 Okohml

MJ4Q31. MJ4034

1.0

MJ4032. MJ4025

'.0
50
5.0
5.0

Aae = I.Ok ohm, TC '" 1500 CI

MJ4030. MJ4033

tVes =80Vdc, RBe:ll 1.0kohm. TC = lS00CI

MJ4031, MJ4034

(Vea "100Vdc. RBe = 1.0k ohm, TC '" 1S0oCI

MJ4032. MJ4035

Emitter CUloH Current
IVee ". 5.0 Vdc, Ie = 0)

5.0

lEBO

Collector-Emitter Leakage Current
(VCE = 30 Vdc, 10 = 0)

MJ4031. MJ4034

'VCE = 50 Vde, 18 = 0)

MJ4032. MJ4035

mAde
mAde

'CEO

3.0
3.0
30

MJ4030, MJ4033

(VCE '" 40 Vdc, IS '" 0)

mAde

,a

MJ40JO, MJ4033

(Vea = 100Vdc, RBe '" 1.0kohml
(VCS "'60 Vdc,

Unit

ON CHARACTERISTICS"l

'000

hFE

DC Currant Gain
(Ie'" 10 Adc, VeE'" 3.0 Vdc)
Collector·Emitter Saturation Voltage
tiC 1:'0 Ade. la.;. 40 mAde)

Vde

VCEt!:atl

25
4.0

(Ie = 16 Adc, IS = aD mAde)

aase-Emitter Voltage
(Ie'" 10 Adc, VCE" 3.0 Vdcl
(l)Pulse Tost: PulM

3.0

VBE

V,Mth~300

FIGURE 3 -SMALL-SIGNAL CURRENT GAIN

FIGURE 2 -DC CURRENT GAIN

,

50.00 0

lOO0
2000

20.000

...~ 1000

TJ = 150'C

'"

I-

,\

~ 2000

25'C

....-

B1000
is 500

~

~
c:::

VCE • 3.0 V,I"

0.1

0.2

lO0

to

200

'"
iii

10 0

j

100
0.05

500

~

~

-55'C

200

50
0.02

a
z'"

0.5

1.0

5.0

2.0

10

0

20

105
f. FAEUUENCY (Hz)

FIGURE 4 - "ON" VOLTAGES

_

I I

3.0

TJ ='25,h

FIGURE 5 - DC SAFE OPERATING AREA
50

§

~

o

ffi

5.0

r--

-

-

........

co

B 2.0

/

w

VBElsatl@ICIIB=250

1.5 -

VBE @VCE = 3.0

:> 1.0

filII

o.5

~

=

v',"

V

:3
~

VCE("'I@lclla = 2~

IIII!

o
0.02

~

20
.16
10

ii:

,

2.5

.:! 2.0

'"~
g

"

TC = 25'C
VeE = l.O Vdc
IC= 10Adc

1r..COLLECTOR CURRENTIAlIPI

3.5

-

I

z

10.000
z
:;: 5000

0.05

0.1

Vdc

,",S. Dury Cyclo ~2.D%.

0.5

ILL

1.0

5.0

10

Ic. COLLECTOR CURRENT (AMPI

TJ = 200'C

1.0
0.5

SECONOARY OREAKOOWN LIMITATION
0.2 - - -THERMAL LlMITATlON@TC'25'C
- - - BONOING WIRE LIMITATION
O. I

0.0 5
2.0

20

MJ40l0. MJ403~ :
MJ4031. ~IJ403~ _

I"(

.\ k-' MJ4032. MJ4035

5.0

10

20

,
50

100

200

VCE. COLLECTOR·EMmER VOLTAGE (VOLTSI

There are two limitations on the power handling ability of a
transistor: average junction temperature and secondary breakdown.
Safe operating area curves indicate IC-VCE limits of the transistor
that must be observed for reliable operation; e.g., the transistor

mU!lt not be subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitation. will reduce the
power that can be handled to values less than the limitations im·
posed by secondary br~akdown. .
.

4-423

MJ4502 (SILICON)

30 AMPERE
POWER TRANSISTOR
HIGH-POWER PNP SILICON TRANSISTOR

PNPSILICON
100 VOLTS
200 WATTS

· .. for use as an output device in complementary audio amplifiers
to 100-Watts music power per channel.

..

•

High DC Current Gain - hFE

•

Excellent Safe Operating Area

=25-100@ IC =7.5 A

• Complement to the NPN MJB02

MAXIMUM RATINGS
Rating
Coliector·Emitter Voltage
Coliector·Ba.. Voltage
Coliactor·Emitter Voltage
Emitter-Base Voltage
Collector CUrrant
Ba.. Currant
Total Daviee Dissipation@Tc = 25u C
Derate above 250 C
Operating and Storage Junction
Temperature Range

Symbol

Value

Unit

VCER
VCB
VCEO
VEB
IC
IB
Po

100
100
90
4.0

Vdc
Vdc
Vdc
Vdc
Adc
Adc
Watts
W/oC

30

TJ, Tstg

7.5
200
1.14
-65 to +200

i2=~=:1'"
":
.L~
r ,<" • !
.

E SEATING
PLANE

,

D ;'

C,'

K

'

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to ease

STYLE 1:
PIN 1. BASE
2. EMITIER
CASE: COLLECTOR

FIGURE 1 - POWER-TEMPERATURE DERATING CURVE
200

i

............

150

~I'--

z
o

~

DIM

......

~

~ 100

.

~

... ~
...........

50

~
0

20

40

60

80

A
B
C 6.35
D 0.99
E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
n 3.64
R

-

is

~

MILLIMETERS
MIN MAX

100

120

TC, CASE TEMPERATURE (OCI

140

'"

160

4-424

~

180

200

NOTE:

1. DIM "0"15 DIA.
INCHES
MIN .MAX

:. ... L550
39.37
0,830 )
21.08 '
7.62 0.250 0.300. '
1.09 . 0.039 ·0.043- .
. 0,135- .
3.43 -,
30.40 1.177 1.197
11.18 0.420 . 0.440
5.59 0.210 0.220
17.15 . 0:655' '0,675. :
12.19 0.440 '0.480
4.09 0.151 0.161
26,67
1.050

-

-

CASE 11-01
TO-3

... : . '

MJ4502
ELECTRICAL CHARACTERISTICS (TC =25°C unless otherwise notedl
Characteristic

Symbol

Min

Max

Unit

100

-

Vde

90

-

Vde

1.0
5.0
1.0

mAde

OFF CHARACTERISTICS
COllector-Emitter Breakdown Voltage 111

SVCER

(lc = 200 mAde, RSE = 100 Ohms)
Collector-Emitter Sustaining Voltage 111

VCEO(sus)

(I C • 200 mAde)

Collector-Base Cutoff Current
(VCS = 100 Vde, IE = 0)
(Vce = 100 Vdc, IE = 0, TC = lS0o C)

ICSO

Emitter-Base Cutoff Current

IEeO

-

hFE

25

100

-

VeE(on)

-

1.3

Vdc

ColJector-Em;tter Saturation Voltage
(lC = 7.5 Adc, IR = 0.75 Adcl

VCE(sat)

-

0.8

Vdc

Base-Emitter Saturation Voltage
(IC = 7.5 Adc, Ie = 0.75 Adc)

VeE (sa"

-

1.3

Vdc

mAde

(VeE = 4.0 Vdc, IC = 0)
ON CHARACTERISTICS 111
DC Current Gain
(lc = 7.5 Adc, VCE = 2.0 Vdc)
Base-Emitter "On" Voltage

(lc = 7.5 Adc, VCE = 2.0 Vdc)

•

DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product

(lC

= 1.0 Adc, VCE

= 10 Vdc,! = 1.0 MHz)

111 Pulse Test: Pulse Width~ 300 Ils, Duty Cycle ~2.0%.

FIGURE 2 - DC CURRENT GAIN

FIGURE 3 -

2.0

I

1. B

'TJLJoJ

I.6

~

1.4

~

1.2

o

w

!2'

'" 1. 0

~

§; O. B
k o. 6
f'

11111

O.2

11111

o.4

~ 0.21-t-1r+H-tt-++t+-++-Iftttl--t-++HH-+++tIf"o,;~H-:

-

f-+-I+++++ Data shown is obtained from pulse tests. +-1+H4H--+~"'"

anj aliu~d tilUjlil1 if"ti! ICf~'

0.1.,='::7.LJ...L~-'-;:':-':~~,-,-,-!:'::-...L..::'::-'::"::-'-~~:';;-"--::'~
0.03

O.O~

.0.1

0.2 0.3 0.5
1.0
2.0 3.0 5.0
IC. COLLECTOR CURRENT (AMP)

10

20 30

"olli" VOLTAGES

VUE(satl @lclluF 10

I--"

I/'

IL

L

VUE@VCE=2.0V

1 .1

VCE(sat! @lcIIB= 10
J.-0
0.03 0.05 0.1
0.2 0.3 0.5
1.0
2.0 3.0 5.0
IC. COLLECTOR CURRENT (AMPI

10

20 30

FIGURE 4 - ACTIVE REGION SAFE OPERATING AREA

50

~ 20 I===t:=t:::j=t:=+=~++"::'tc

........
1.0;;;;-' 100",100• •
" ~.
~W

::::l

a

The Saf. Operating Area Curvn indicate Ie - Vee limits below

5.0 ms

5.0

=~I~: f:V::C7,:~ ~~u~~t~S::C;:t~a;{t:~t~=;ii~:!~~!
Area to avo!tI causing a catastrophic f.ilur.. To insure operation

~
below for
the both
maximum
power·temperature
derating must be obG 2.0 1-1---=I- ~'T~J+=~2~0~OO~C~'::;j=l==+=~++++t===l==l==t=:j::-~""S:;d==t~HR~ S8Ned
steadyTJ.
stata
and pulse power conditions.
BondhlgWire
Limited Limited ~~~i~~!~!~E'~!~I!III~
~ 0.51.0 F.
~--'-'
Breakdown
--:-- .Secondary
Thermal UmitationsTC =25 C

B

~

~,-~,~,

0

r-:-:- . Pulse Duty Cycle S 10%
0.2t::-=+=+++=+=I=H:t+=t==t=+=H~t=H=l=t+1

0,1 . Ll"".O---'''-''''''-2~.0:--L.:.3-:f.0::-......L--:5~.0,-l......J......L...J...1~0:---....L-:!:20:--.J....-:;3~0-...L..--;!;50:--''--J.....J~100
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

4-425

MJ4645 '(SILICON)

thru
MJ4647

PNP SILICON POWER TRANSISTORS
designed for high-voltage amplifier and saturated switching
applications at collector currents to one Ampere. Ideally suited for
applications of dc-to-dc converters, relay and hammer drivers, motor
controls, and servo and pulse amplifiers. High-voltage ratings permit
direct-line operation.

•

•

Low Collector-Emitter Saturation Voltage 1.5 Vdc (Max) @ IC =500 mAdc
VCE(sat) =

•

High Collector-Emitter Breakdown Voltage BVCEO = 200, 300, and 400 Vdc (Min)

•

DC Current Gain Specified - 10 mAde to 500 mAde

1.0 AMPERE
POWER TRANSISTORS
PNP SILICON
200-300-400 VOLTS
5 WATTS

<

MAXIMUM RATINGS
R.tin,

Symbol

MJ4645

MJ4646

MJ4641

Unit

VCEO

200

300

400

Vdc

Collector·Base Voltage

Vca

200

300

400

Vdc

Emltter·Base Voltage

VEa

5,0

Vdc

Ie

0,5
10

Adc

Collector·Emltter Voltage

Collector Current - Continuous
Peak

Total Device DISSipation

Po

TC .. 25°C

@

Derate above 2SoC
Operating aDd Storage Junction

--

TJ.T stg

Temperature Range

5,0

Watts

28,6----

mwf'e

-65 to +200 - -

G
°e

STYLE 1
PIN 1. EM lITER
2. BASE
N
3, c(}LLECTO R

THERMAL CHARACTERISTICS
Characteristic:
Thermal Resistance, Junction to Case

FIGURE 1 - POWER DERATING

"'" "-

0

"-

0

"-

0

'"

f'.-

"

0

0
20

40

60

80

100

120

140

TC. CASE TEMPERATURE I'CI

MILLIMETERS
MIN MAX
8,89
9.40
8.00 B.51
6.10 6,60
0.406 0.533
0,229 3.18
0,406 0.483
5,33
.G
4.83
H
0.711 0,864
J
0.737 1.02
K 12.70
l
6.35
450 NOM
M
p
1.21
90 0 NOM
0
2.54
R

DIM
A
B
C
D
E
F

5.0

160

"'"

""

180

ZOO

4-426

INCHES
MIN
MAX
0.350 0,370
0.315 0.335
0,240 0,260
0,016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 0,040
0,500
0.250
45 0 NOM
0.050
900 NOM
0.100
-

All JEDEC dimensions and.notesapply.
CASE 79-02

TO-39 -

MJ4645 thru MJ4647

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise notedl
Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)
(lC = 10 mAde, IB = 0)

Vde

BVCEO

,
Collector-Base Breakdown Voltage
(lC = 100 "Ade, IE = 0)

-

200
300
400

-

200
300
400

-

-

-

-

BVEBO

5.0

-

-

Vde

ICEX

-

-

10

"Ade

20

-

-

25

-

-

20

-

-

-

0.5
0.6
0.75

1.0
1.2
1.5

40
30

-

-

-

-

80
60

td

-

ns

.-

-

100

tr

100

ns

toft

-

-

720

ns

MJ4645
MJ4646
MJ4647

-

-

-

Vde

BVCBO
MJ4645
MJ4646
MJ4647

Emitter-Base Breakdown Voltage

(IE = 100 "Ade, IC = 0)
Collector Cutoll Current
(VCE = 200 Vde, VBE(off) = 0.5 Vde)
ON CHARACTERISTICS
DC Current Gain
(lC = 10 mAde, VCE = 10 Vde)

_.

hFE

(lC= 100 mAde, VCE = 10Vde)(1)
(lc = 500 mAde, VCE = 10Yde) (1)
Collector-Emitter Saturation Voltage
(lC = 500 mAde, IB = 100 mAde)

Vde

VCE(satl
MJ4645
MJ4646
MJ4647

-

,

DYNAMIC CHARACTERISTICS
Current-Gain -Bandwidth Product

MHz

IT

(lC = 70 mAde, VCE = 20 Vde, I = 20 MHz)

MJ4645, MJ4646
MJ4647,

Output Capacitance

pF

Cob

(VCB = 20 Vde,,IE = 0, I = 100 kHz)

MJ4645
MJ4646, MJ4647

SWITCHING CHARACTERISTICS
Delay Time

(VCC = 100 Vde, IC = 500 mAde,

Rise Time

IBl = 50 mAde, VBE(ofl) = 5.0 Vde)
(VCC = 100 Vde, IC = 500 mAde,

Turn-Off
Time

IB 1 = IB2 = 50 mAde, Pulse Width

= 1.0,,5)

(1) Pulse Test: Pulse Width ~ 300 IJs. Duty Cycle ~ 2.0%.

FIGURE 2 - ACTIVE-REGiON SAFE OPERATING AREA
1.0
100",

0.7
0.5
ii:
~

5

...

~

1.Oms

5.0 m

O. 3
2 TJ· 200DC
O.

__1__ SE ONOARY

ITT
13 o.
7i--

~ ~:~5
8

D.D 3

:} 0.02
0.0 I
1.0

--

de

There are two limitations on the power handling ability of a

r,

.\

-r

20 30

VCE limits 01 the

transistor that must be observed for reliable operation; i.e., the
transistor must not be subjected to greater dissipation than the
curves indicate.

The data 01 Figure 2 is based on T J(pk) = 2000 C; T C is
variable dependiQg on conditions. Second breakdown pulse limits

"

CU RVES APPL Y ~mt4645RATED BVCEO
MJ4646-

2.0 3.0 5.07.0 10

average junction temperature and second breakdown.

Sale operating area curves indicate IC -

\

BREAKDOWN LIMITED
BONDING WIRE
LIMITED
'THE'RMALLY lIMITED@
·IC· 25DC (SINGLE PULSEI

1J1111

transistor:

~IJ~~~7

50 70 100

are valid lor duty cycles to 10% provided T J(pk) EO; 200o C. At
high case temperatures, thermal limitations will reduce the power

"
r...:~

200 300 500

that can be handled to values less than the limitations imposed
by second breakdown. .
1000

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTSI

4-427

•

MJ6700 (SILICON)

7 AMPERE
POWER TRANSISTORS
PNPSILICON

MEDIUM-POWER PNP SILICON TRANSISTORS
· . . designed for switching and wide-band amplifier applications.
•

60 VOLTS
60 WATTS

Low Collector-Emitter Saturation Voltage - VCE(sat) = 1.2 Vdc
(Max) @ IC = 7.0 Adc

• DC Current Gain Specified to 5 Amperes
• Excellent Safe Operating Area
• Packaged in the Compact. High Dissipation TO-59 Case

•

• Isolated Collector Configuration - 700 V Breakdown

MAXIMUM RATINGS
Symbol

_700

Unit

Collector-Emitter Voltage

VCEO

60

Vde

CoIlector-B ... Voltage

VCB

60

Vde

Emitter-Bose Voltage

VEB

5.0

Vde

Collector Current - Continuous

IC

7.0

Ade

a_Current

'B

1.0

Ado

Totat O..i<:. Dissipation" TC - 2SOC
Oorata above 2So C

Po

Rating

Operating end Storage Junction
Temperature Range

TJ. Tstg

60

Witts

343

mW/OC

~5to+200

Dc

~;.
~HLE1;

PIN 1. EMITTER
2. BASE
3. COLLECTOR

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case

FIGURE 1 - POWER-TEMPERATURE OERATING CURVE
DIM
60

.............

iii 50

B
C
E

..........

~

5

~ 40

z

G

.............

-0

S
iii 30

r--.....

~

is

'"~

20

~

el 0
0
20

40

60

80

H
J
K
L
N

100

120

140

P

............

Q

R

...........

S

I'-....
160

180

TC. CASE TEMPERATURE (OCI

Safe Area Curves are indicated by Figure 2. All limits are applicable and must be observed.

4-428

200

MILLIMETERS
MIN
MAX

10.77 11.10
8.13 11.89
2.29 3.81
4.70 5.46
1.98
10.16 11.56
14.48 19.38
2.29 2.79
6.35
4.14 4.80
1.02 1.65
8.08 9.65
4.212 4.310
9.65 11.10

INCHES
MIN
MAX

0.424
0.320
0.090
0.185

0.437
0.468
0.150
0.215
0.078
0.400 0.455
0.570 0.763
0.090 0.110
0.250
0.163 0.189
0.040 0.065
0.318 0.380
0.1658 0.1697
0.380 0.437

T
All JEOEC dimenSions and not.. apply

Collector isolated from case.
CASE 160-03
(TO-59)

MJ6700
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

Characteristic

Symbol

Min

Max

60

-

-

100

-

10

/JAde

-

1.0

mAde

-

10

-

100

25
25
15

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage 111
(lC = 50 mAde, IB = 01

Vde

VCEO(susl

Collector Cutoff Cu rrent
(VCE = 55 Vdc,IB = 01

pAde

ICEO

'Colleetor Cutoff Current
(VCE = 55 Vde, VSE(off) = 1.5 Vdel

ICEX

(VCE = 55 Vde, VSE(off) = 1.5 Vdc, TC = 1500 CI
Collector Cutoff Current
(VCB = 60Vdc,IE = 0)

ICSO

Emitter Cutoff Current
(VEB = 5.0 Vdc, Ir. = 01

IESO

pAdc
/JAde

ON CHARACTERISTICS III
DC Current Gain
(lC = 500 mAde, VCE = 2.0 Vdcl
(lC = 2.0 Ade, VCE = 2.0 Vdel
(lC = 5.0 Adc, VCE = 2.0 Vdel

hFE

Collector-Emitter Saturation Voltage
(lc = 2.0 Adc, IS = 0.2 Adel
(lC = 7.0 Adc, IS = 0.7 Adcl

VCE(satl

Base·Emitter Saturation Voltage
(lC = 2.0 Adc, IS = 0.2 Adcl
(lC = 7.0 Adc, IB = 0.7 Adcl

VBE(satl

-

180

Vde

-

0.7
1.2

-

1.2
2.0

30

-

-

300

-

1250

-

100

ns

1.0

/Js

150

!ily

-

Vdc

DYNAMIC CHARACTERISTICS
Current-Gain·Bandwidth Product
(lC = SOO mAde, VCE = 10 Vdc, f = 10 MHzI

MHz

fT

Output Capacitance
(VCB = 10 Vde, IE = 0, f = 100 kHzl

Cob

I nput Capacitance
(VSE = 2.0 Vde, IC = 0, f = 100 kHzl

Cib

pF
pF

SWITCHING CHARACTERISTICS
Delay Time

(VCC = 40 Vdc, VSE(offl =',£<0 Vde,

Rise Time

ld

IC=2.0Adc,ISl = 200 mAde 1

Storage Time

(VCC = 40 Vdc, IC = 2.0 Ade,

Fall Time

tr

IBl = 182= 200mAdcl

IU 'Pulse Test: Pulse Width

= 300 J,ls,

If

FIGURE 2 - ACTIVe·REGION SAF£ OPERATING AREA

~

...z

The Safe Operating Area Curves
indicate IC-VCE limits below
which the device will not enter
secondary breakdown. Collec·
tor load lines for specific circuits
must fall within tho applicable
Safe Area to avoid causing a
catastrophic failure. To insure

100/-1$

2.a
a

1.0ms

B D.5
~

d,

~

O. 2-f-TJ'2000C

j

0

--===SECONOARY BREAKDOWN LIMITED -

.1 ~---BONOING WIRE LIMITED
800
5
APPLY 'ELOIY RATED VCEO

5.0 ms

operation below the maximum

~~~RVES

0.0 1

lO

TJ, power·temperature derating
must be observed tor bolh steady
state and pulse power conditions.

MU67

00 2

2.0

3.0

5.0 7.0

10

ns

Duty Cycle = 2.0%

a
5. a
ii!

-

10

,

100

20

30

50

10

100

FIGURE 3 - SWITCHING TIME TEST CIRCUIT
INPUT PULSE

1----+,0".

r

OV-,

+11.6 V

-37V---L-J
25j.1F

~
151

Ir,lf~10~S
D.C.-2.0%

_

+3.3 V

VeE. COLLECTOR-EMITTER VOl. TAGE (VOLTSI

4-429

•

MJ81 00' (SILICON)

5 AMPERE
POWER TRANSISTORS

MEDIUM-POWER PNP SILICON TRANSISTORS
. designed for switching and wide band amplifier applications.

PNP SILICON

• Low Collector-Emitter Saturation Voltage -VCE(sat) = 1.2 Vdc (Max) @ IC = 5.0 Amp

..

60 VOLTS
10 WATTS

• DC Current Gain Specified to 5 Amperes
• Excellent Safe Operating Area
• Packaged in the Compact TO-39 Case for Critical Space-Limited
Applications.

MAXIMUM RATINGS
Symbol

Value

Unit

VCFn

60

Vdc

Collector-ease Voltage

VCR

60

Vdc

Emitter-aa.. Voltage

VI;Jt

5.0

Vdc

IC

5.0

Adc

Roling
Collector-Emitter Voltage

Collector Current - Continuous

aase Current
Total Device Dissipation
Derate above 25°C

@

la

1.0

Adc

Po

10
57.2

Watts
mW/oC

TJ.Tstg

-65 to +200

°c

T C = 25°C

Operating and Storage Junction
Temperature Range

.~1J~'~r:\
re-

SEATING
PLANE

THERMAL CHARACTERISTICS

---=f1l

~K

II

~

--u-o ISTYLE 1
..---I
PIN 1. EMIITER

/'

I

2. BASE
3. COLLECTOR

Q

Characteristic

N

Thermal Resistance. Junction to Case

FIGURE 1 -- POWER-TEMPERATURE DERATING CURVE
0

~

........

8, 0

~

'"~ 6.0
gj
~ 4.0

""

K

~
E 2.0
0

•

"."

'" ""

MILLIMETERS
INCHES
MIN MAX 'MIN
MAX
8.89 9.40
0.350 0.370
8.110 8.51
0:315 0.335
6.10 6.60
0.240 0.260
0.406 0.533 0.016 '0.021
0.009 0.125
0.229 3.18
0.406 0.483 0.016 0.019
4.83 5.33
0.190 0.210
0.711 0.864 0.028 0.034
J
0.737 1.02
0.029 0.040
K 12.70
0.500
L
6.35
- 0.250 M
45 0 NOM
45 0 NOM
p
1.27
0.050
Q
. 900 NOM
90 0 NOM
R
2.54
- 0.100 All JEDEC dimenSions and notes apply.
CASE 79·.02 ' . ; ' ....
TO-39
DIM
A
8
C
D
E
F
G
H

r-....

'-..

'"

m

~
~, ~
~
~
~
Te. CASE TEMPERATURE (OCI
Sift ArtI CutvlS Irt indiCltId by Figul1l 2. Alilimitl . . IPpliclbJl Ind must be observed.

4-430

-

MJ81 00

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Min

Max

60

-

-

100

-

10

"Ade

-

1.0

mAde

-

10

-

100

25
25
15

lBO

-

0.7
1.2

-

-

1.2
I.B

30

-

-

300

-

1250

td

-

100

tr

-

100

ns

-

1.0

"S

Symbol

Characteristic

Unit

OFF CHARACTERISTICS
Collector.Emitter Sustaining Voltage 111

Vde

VCEO(suSI

(lc = 50 mAde, IB = 01
Collector Cutoff Current

"A de

ICEO

(VCE = 55 Vde,IB = 0)
Collector Cutoll Current
(VCE = 55 Vde, VBE(oll) = 1.5 Vdel

ICEX

(VCE = 55 Vde, VBE(oll) = 1.5 Vde, TC = 1500 CI
Collector Cutoll Current
(VCB=60V,IE=01

ICBO

Emitter Cutoff Current

lEBO

"Ade
"Ade

(VBE = 5.0 Vde, IC = 01
ON CHARACTERISTICS 111

-

DC Current Gain
(lc = 500 mAde, VCE = 2.0 Vdel
(lC = 2.0 Ade, VCE = 2.0 Vdel
(lc = 5.0 Ade, VCE = 2.0 Vdel

hFE

Collector-Emitter Saturation Voltage
(IC = 2.0 Ade, IB = 0.2 Adc)
(lc = 5.0Ade,IB = 0.5 Ade)

VCE(satl

Base·Emitter Saturation Voltage
(lC = 2.0 Adc, IB - 0.2 Adcl
(lC = 5.0 Ade, IB = 0.5 Adc)

VSE(satl

Vde

Vde

DYNAMIC CHARACTERISTICS
Current·Gain - Bandwidth Product

(lC = 0.5 Adc, VCE

IT

= 10 Vde, I = 10 MHz)

Output Capacitance
(VCB = 10 Vdc, IE = 0, I = 100kHz)

Cob

Input Capacitance
(VSE = 2.0 Vde, IC

Cib

=0, I = 100 kHzl

MHz
pF
pF

SWITCHING CHARACTERISTICS
Delay Time

(VCC = 40 Vdc, VBE (off) ='4.0 Vde,

AiseTime

IC

Storage Time

(VCC = 40 Vdc, IC = 2.0 Adc,

Is

Fall Time

IBI = IB2 = 0.2 Adc)

tl

~

2.0 Adc,lBl

D

0.2 Adc)

150

ns

ns

111 Puis. Test: Pulse Width :5: 300 "s, Duty Cycle :5: 2.0%
FIGURE 2 - ACTIVE·REGION SAFE OPERATING AREA

FIGURE 3 - SWITCHING TIME TEST CIRCUIT

10
lDOIIS

5.0

The Sale Operating Area Curvas
indicate IC-VCE limits below
which the device will not enter
secondary breakdown. Collec·
tor load lines for specific circuits
must fall within the applicable
Safe Area to avoid causing a

~.Oms

...
~

1.11

I.Oms

:::: 0.5

I- TJ. 200'C

~

J=~:~~~~i~~~::~~: Limited I

0.2

de

catastrophic failure. To insure
operation below the maximum

~ 0.1 ~---- "T.~lrm~llimit~tiol1$ :
0.05 1=
,iIc.= ?50~ .
.
~
AppJicabJe For Rated BYCE
0.02
"Pulse Duty Cycle" 10%

8

0.01

1.0

2.0 3.0
5.0
10
20
30
50
VCE. COLLECTOR-EMITTER VOLTAGE (VOLTSI

TJ, power·temperature derating
must be observed for both steedy
state and pulse power conditions.

INPUT PULSE

1----+10".
OV-,

r

-37V---L-J
251'F

~

tr,tf~10~'
D.C. - 2.0%

100

4-431

+11.6 V

151

-=

+3.3 V

•

MJI0000
MJI0001

Designers Data Sheet

20 AMPERE

NPN SILICON
POWER DARLINGTON
TRANSISTORS

SWITCHMODE SERIES
NPN SILICON POWER DARLINGTON TRANSISTORS

•

350 and 400 VO LTS
175 WATTS

The MJ10000 and MJ10001 darlington transistors are designed
for high-voltage, high-speed, power switching in inductive circuits
where fall time is critical. They are particularly suited for line
· operated switch-mode applications such as:

•

•
•
•
•

Designer's Data for
"Worst Case" Conditions
The Designers Data Sheet permits. the design of most' circuits
entirely from the information presented. Limit data - representing
device characteristics boundaries -

~

Switching Regulators
Inverters
Solenoid and Relay Drivers
Motor Controls
Deflection Circuits

lli

lOOoC Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times With Inductive Loads 210 ns Inductive Fall Time (Typ)
Saturation Voltages
Leakage Currents

~100

"'15

are given to facilitate Hworst case"
design.

6

·~~·"'
. ..

l~"'
r

..•

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Emitter Voltage

Collector-Emitter Voltage
Emitter Base Voltage
Collector Current

Continuous
- Peak (1)

Base Current - Continuous

- Peak (1)
Total Power Dissipation@TC = 250 C
!" TC = 1000 C
Derate above 25°C
Operating and Storage Junction

Symbol
VCEO(sus)
VCEX(sus)
VCEV
VEa
IC
ICM
la
laM
Po

MJ10000
350
400
450

MJ10001
400
450
500

a
20
30
2.5
5
175
100
1
-65 to +200

TJ,TstQ

Unit

Vdc
Vdc
Vdc
Vdc
Adc

Maximum Lead Temperature for Soldering

'.

K

f ,

PIN I. BA~E:'
2. EMITTER
CASE:'COLlECTOR

Watts

W/oC

°c

"._,

....

MILLIMETERS
INCHES
DIM MIN' MAX 'MIN
MAX

'THERMAL CHARACTERISTICS
Characteristic

.0

Adc

Temperature Range

Thermal Resistance. Junction to Case

E SEATING
PLANE

C..

Symbol
RSJC
TL

Purposes: 1/8" from Case for 5 Seconds
(1) Pulse Test: Pulse Width = 5 ms, Duty Cvcle .. 10%.

Max
1
275

,

Unit
°C/W

DC

A
B
C
0

E

-

6.35
0.99 '

-

F 29.90
G 10.67

39.37:
21.0B
7.62
.1.09
3.43"
30.411
11.18'

'

-

1.550
0,830
0.300
0,043
- 0,1 5
1.177 1.197
0.420 '0,440

'0.250
0.039

5.
5.59 0.21
0.220
J 16.
17.15 0.655 0,675
'0,480
K II.IB
12.19 O.
Q
3.84
4.09 0.151 0.161
26.67 . R
1.050
ColiectorconMctedtoc•.
H

-

CASE 11-01

TO-3

,
4-432

-,

'
:

MJ10000, MJ10001

ELECTRICAL CHARACTERISTICS (Tc = 25°C unless otherwise notedl.
Characteristic
Symbol
OFF CHARACTERISTICS (2)
Collector~Emitter Sustaining Voltage (Table 1)
VCEO(sus)
MJ10000
(lc = 250 mA.le = O. Vcl amp = Rated VCEO)
MJ1000l

I

I

Collector-Emitter Sustaining Voltage (Table 1, Figure 12)

IC

MJ10000
MJ1000l
IC = 10 A. Vcl amp = Rated VCEX. TC = 100°C MJ10000
MJ1000l .
Collector Cutoff Current

ICEV

= Rated Value. VSE(off) = 1.5 Vdc)
= Rated Value. VSE(off) = 1.5 Vdc. TC = 150°C)

Collector Cutoff Current

(Vce

ICE.R

= Rated VCEV, RaE = 50 n, TC = 100°C)

Emitter Cutoff Current

(VES =8 Vde, IC

Typ

Max

350
400

-

-

400
450
275
325

-

-

-

-

0.25
5
5

mAdc

-

150

mAdc

-

leao

=0)

Unit
Vd~

Vde

VCEX(sus)

= 2 A. Vel amp = Rated VCEX. TC = 100°C

(VCEV
(Vcev

Min

-

mAdc

-

-

SECOND SREAKOOWN
See Figure 11

Second Breakdown Collector Current with base forward biased

ON CHARACTERISTICS (2)
DC Current Gain

Collector-Emitter Saturation Voltage

(lC = 10 Ade, la
(lC = 20 Adc, IS
(lC = 10 Ade, la

-

hFE

(lc ~ 5 Ade, VCE = 5 Vdc)
(lc = 10 Ade, Vce = 5 Vde)

VCE(satl

= 400 mAde)
= 1 Adc)
=400 mAdc, TC = 100°C)

-

600
400

-

-

Vde

-

-

1.9
3
2

-

2.5
2.5

Vf

-

3

5

Ihfe l

10

-

Base-Emitter Saturation Voltage

(lc = 10 Adc. la = 400 mAdc)
(lC = 10 Ade, la = 400 mAde, TC
Diode Forward Voltage (1)
(IF = 10 Ade)

50
40

VSE(sat)

= 100°C)

DYNAMIC CHARACTERISTICS
Small-Signal Current Gain
(lC = 1.0 Adc, VCE = 10 Vdc, f test = 1 MHz)
Output Capacitance

Cob

(Vca = 10 Vdc, IE = 0, f test = 100 kHz)

Vde

Vde

-

-

325

pF

0.12
0.20
1.5
1.1

0.2
0.6
3.5
2.4

I'S
I'S

3.5
1.5

6.5
3.7

1'.

1.0

-

I'S

100

SWITCHING CHARACTERISTICS
Resistive Load (Table 1)
Delay Time
Rise Time
Storage Time
Fall Time
Inductive Load.
Storage Ti,me
Crossover (Time
Storage Time

Crossover ,T,i,me
(1) The

(VCC =' 250 Vdc, IC = 10 A,
lSI = 400 mA, VSE(off) = 5 Vdc. tp = 50 I's,
Duty Cycle .. 2%1.

'd
tr

ts
tf

Clamp~d..ITable

1)

(lC =.10 A(pk), Vel amp = Rated VCEX, lal = 400 mA,
VSEloff) = 6 Vdc, TC = 100°C)

tsv
te

(lC = 10 Alpk), Vcl amp = Rated VCEX, 181 = 400 mA,
. 'VSEloff) = 6 Vdc, TC = 25°C)

tsv
te

..

-'

-

0.7

int~~fial··COliecto~.tt;) ..Emitter diode can eliminate the need for an external diode to clamp irytuctive loads.

Te.ts have shown that. the Forward Recovery Voltage IVf) of this diode is comparable to that of typical fast
recovery rectifiers. .

(2) Pulse T,;;t:.Pulse Widtli'~ 300 "s, Duty Cycle .. 2%.

4-433

-

1'.
1'.

I'S

"s

MJ10000, MJ10001

DC CHARACTERISTICS
FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE 1 - DC CURRENT GAIN

-

SOO

TJ = ISOoC

300
200
2!

;;:

a-

""

'"
100
~
ffi 10
~ 50

13
g

30

$

20

IC = SA

0.2 0.3

r-

8

V~E = 5)'

0.5 0.7

1\
1\

4

I

10

S

1
0.02

20

0.03

/
~c

/1

//J
'/

-..:-e . . .
TJ = -550 C

--

O.8

-

0.4
0.2

0.3

0.5 0.7

-

~

'"~
t5

1.6

>

1. 2

O.8
0.2

2S oC

-::-:: -r
2StC

--

-f

0.3

~VCE=2S0V

c

~

~

10 I

!J

100

20

TJ = 2S oC

/

t-- TJ = maC
102

10

O.S 0.7
IC. COLLECTOR CURRENT (AMP)

70 0

./

~

a:

./

100 0

1103

::1
13

-/

~

FIGURE 6 - OUTPUT CAPACITANCE

FIGURE 5 - COLLECTOR CUTOFF REGION

ill

/./

.J..:- i--

-ifooc
20

/.
/ ' 4-

)J = Jsoc

IC. COLLECTOR CURRENT (AMP)

104

1

I

~:~\~~I: U:~~B:l~
-j I

2

,,:

10

-

0.2 0.3
0.5 0.7
0.1
lB. BASE CUR RENT (AMP)

=

w

25 0 C ....

'\

II II

2.4f-- f -

ICIIB = 2S
6

20A

i'..

0.05 0.07

2.8

I II
I II

\: 15A

TJ" 25 0 C

FIGURE 4 - BASE-EMITTER VOLTAGE

FIGURE 3 - COLLECTOR EMMITTER SATURATION VOLTAGES

2

\

\
\
\

IC. COLLECTOR CURRENT (AMP)

2.4

\
\ IDA

2

I
1/

1\

\

'\.

I--

./

\
6

250 C

-5SoC

10

7
5

. I

f-

t-- t- 'OOOC
t-- r-15oC

/

,

0

t-.....

0

,

0

c....

f'

.......

0

i== F25 0 C

10-1
-0.2

+0.2
+0.4
+0.6
VBE. BASE·EMITTER VOLTAGE (VOLTS)

"

Cob

0
S0
0.4 0.6

+O.B

4-434

1

4 6 10
20
40 60
VR. REVERSE VOLTAGE (VOLTS)

100

1=
200

400

MJ10000, MJ10001

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE
VCEOlsusl

RESISTIVE
SWITCHING

VCEX($usl AND INDUCTIVE SWITCHING

en

01

Z

.... 0

2N29D7

Q2 2N2222

~E

Pulse Width

ZO

03 2N3762

adjusted to

-z

obtain epacifled
Ie (Rosiuive
Switchiag,
Pulse Width

8
PW Varied ,to Attain
Ie'" 250mA

A.

MJE210

a.

MJE2DO

01

1N914

02 lN914

- 50 III)

03 lN914

5~

o

U -'

~

Leoil = 180 JoIH

Leoll'" 10 mH Vee" 10 V
Reoll- 0.7 n
Vclamp " VCEOhuI)

~~od': ~8~ n

INDUCTIVE rEST CIRCUIT

Vel

amp

= Rated VCEX Value

VCC- 250V
RL" 26 n
Pulle Width" 60 III

RESISTIVE TEST CIRCUIT

OUTPUT WAVEFORMS
t1 AdJulted 10
Obtain Ie

l

Ie

I Reoll

I
I Leol!
Soo Above For
Detailed Conditions

VeE

0.1

TOlt EquJpmont
Scopo-Toktronlx
475 or Equlvalont

n

SWITCHING TIMES NOTE
FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS
Ie
90% Vcl ampI

100-

-

I~!90% Ie

amp Vcl'-j'

Irvlfl~lli"'" l"l-Ili-

-Isv

r-1f-Ic-\I-e

/

Vclamp
l a . - I--

,90%

IBI

-- --\- -\

"

I'\.

10% ......
10%
vclamp- l e -

Y

- .- --- -- -

-

f.-'""'"

~
Ie

In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
suppl ies and hammer drivers, current and voltage wave'
forms are not in phase. Therefore, separate measurements
must be made on each waveform to determine the total
switching time. For ttiis reason, the following new terms
have been defined.
tsv = Voltage Storage Time, 90% IS1 to 10% Vclamp
trY = Voltage Rise Time, 10-90% Vclamp
tfi = Current Fall Time, 90-10% IC
tti = Current Tail, 10-2% IC
tc = Crossover Time, 10% Vclamp to 10% Ie
An enlarged portion of the turn-off waveforms is shown in
Figure 7 to aid in the visual identity of these terms.

TIME

4-435

MJ10000, MJ10001

J

SWITCHING TIMES NOTE (continued)
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN·222:
PSWT = 1/2 VCCIC(tc! f
In general, trY + tfi "" tc' However, at lower
test currents this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified at 2SOC and has become a benchmark
for designers. However, for'designers of high frequency
converter circuits, the user oriented specifications which
make this a "SWITCH MODE" transistor are the inductive
switching speeds hc and t sv ) which are guaranteed at
100oC.

•

RESISTIVE SWITCHING PERFORMANCE
FIGURE 9 - TURN-OFF TIME

FIGURE 8 - TURN-ON TIME
2

-V~EIOff) ~ 5 V

.,.

~

w

----

1

o.7~

.3 0.5

0.7

]

~d

:E

w

.; 0.3

--...;:::

0.2

0.5

:E

~

;:::

-

i..;;-

VCc·250V
1 - IC/IB' 2S
TJ=2SoC

~

y
-....:::

;:::

./

./

0.1

20

/'1

V

0.2

O. 1

.?

./

0.3

....
10

"

~

I-

VBEloH) =SV
VCC=250V
IC/IB=2S_

I

V

T.

/

TJ=~SOC

10

1

20

IC, COLLECTOR CURRENT lAMP)

IC, COLLECTOR CURRENT lAMP)

111_ _ __
FIGURE 10 - THERMAL RESPONSE

w
u

0.7
0.50=0.5

~

~

e
~'o
c ...

:: g; 0.07~
f5

~

~
""

11 tnn

0.2

0.1
_

:EN

~~

~

0.2

.....
_1--

0.1

O.OS

0.03~ 0.02

0.021--"~t0.01 ....... 1-"1
SI7G~E r~Lr~
0.02

Plpk)

--f 111--- I

!. 0.05

0.01

-=

O.OS

~'2--1

'""'"

0.1

ZtIJCIt) • ,II) RuC
ROJC" l oCm M,x
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
REAO TIME AT II
TJlpk) - TC' Plpk).ZOJCII)

DUTY CYCLE, D' 11/12

11111
0.2

10

O.S
I,TIMElmsl

4-436

I

I
20

1'1 I I I III
50

'" 100

I

I
200

I

I I I II
500

1.Ok

MJ10000, MJ1000l

SAFE OPERATING AREA INFORMATION
The Safe Oporating Aroa figures shown in Figures 11 Dnd 12 :lrD
spocifiad rating! for tho:sB dovicos undor tho tost conditions sho'lln.

FORWARD BIAS
There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 11 is based on TC = 250 C; TJ(pkl
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;. 250 C. Second breakdown Iimitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 11 may be found
at any case temperature by using the appropriate curve on
Figure 13.
TJ(pkl may be calculated from the data in Figure 10.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second ·breakdown.

FIGURE II - FORWARD BIAS SAFE OPERATING AREA
50

10 ~~

IOO"~

20
~

'"

10
5

!

2

$
>-

I

oc 0.5

'"

~
'"

1m.
5~S

0.2
0.1

=. -

'" 0.05
~
0.02
0.01
0.005
4

TC = 250C
- BONDING WIRE LIMITED
THERMALLY LIMITED .
SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW RATEO VCEO

t=:dC

MJIOOO~~

MJIOOOI
6

20

10

40

60

100

200

350
400

VCE. COLLECTOR·EMITIER VOLTAGE IVOLTS)

FIGURE 12 - REVERSE BIAS SWITCHING
SAFE OPERATING AREA
20

'"

1

$
>-

REVERSE BIAS
For inductive loads, high voltage and high current must
be sustained simultaneously during turn-off, in most cases,
with the base to emitter junction reverse biased. Under
these conditions the collector voltage must be held to a
safe level at or below a specific value of collector current.
This can be accomplished by several means such as active
clamping, RC snubbing, load line shaping, etc. The safe
level for these devices is specified as VCEX (sus) at a given
collector current and represents a voltage·current condition that can be sustained during reverse biased turn·off.
This rating is verified under clamped conditions so that
the device is never subjected to an avalanche mode. Figure 12 gives the complete reverse bias safe operating area
characteristics.

~

TURN OFF LOAD LINE
BOUNOARY FOR MJIOOOI
THE LOCUS Fon MJIOOOO
-

"-['-.,.

300
400
200
100
VCE, COLLECTOR·EMITIER VOLTAGE IVOLTS)

500

FIGURE 13 - POWER DERATING

100

~ t-...

'""

............

§! 80
oc
Q

t;
~ 60

...... r-....

THERMA~

OERATING

'"==
!.i

~

SEJOND OAEAKO~WN_
DERATING

r--....

"

ffi40
Q

........
............

......

oc

~

~ 20

o
o

......
.......

"40

120
BD
TC. CAse TEMPERATU HE 1°C)

4-437

160

"

200

MJI0002
MJI0003

10 AMPERE

NPN SILICON
POWER DARLINGTON
TRANSISTORS

SWITCHMODE SERIES
NPN SILICON POWER DARLINGTON TRANSISTORS

350 and 400 VOLTS
150 WATTS

The MJ 10002 and MJ 10003 darl ington transistors are designed
for high·voltage, high·speed, power switching in inductive circuits
where fall time is critical. They are particularly suited for line
operated switch·mode applications such as:

Designer's Data for
"Worst Case" Conditions

o Switching Regulators
o. I nv~rters
.. Solenoid and Relay Drivers

The Designers Data Sheet per·
mits the design of most circuits.
entirely from the information pre·
sented. Limit data - representing
device characteristics boundaries are given to facil itate "worst case"
design.

o Motor Controls
o Deflection Circuits
1000 C Performance Specified for:

Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads140 ns Inductive Fall Time (Typ)
Saturation Voltages
Leakage Currents

MAXIMUM RATINGS
Symbol

Ratina
Collector-Emitter Voltage
Collector-Emitter Voltage
Collector-Emitter Voltage

Emitter Base Voltage
Collector Current - Continuous

-Peak (II
Base Current - Continuous

- Peak (II
Total Power Dissipation @ T C ::: 2SoC

@TC

= 100°C

Derate above 2SoC

Operating and Storage Junction
Temperature Range

MJIOO02
MJIOO03
400
350
VCEO(susl
450
400
VCEX(susl .
500
450
VCEV
VEB
8
10
IC
20
ICM
2.5
IB
5
IRM'
150
Po
100
0.86
-65 to +200
TJ,T stg

Unit

Vdc
Vdc
Vdc
Vdc
Adc

PLANE

Watts
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

W/oC

°c
MILLIMETERS

DIM

Symbol

Thermal Resistance. Junction to Case

ROJC

Maximum Lea~ -r;emperature for Soldering

"TL

M..
1.17
275

Purposes: l/S" from Case for 5 Seconds

(II Pulse Test: Pulse Width

ESEATIN(~

Adc

THERMAL CHARACTERISTICS
Characteristic

lr~
r~K

Unit
°C/W

°c

MIN

MAX

A
B

-

C

6.35
0.99

39.37
21.oB
7.62
1.09
3.43
30.40
11.18
5.59

0
E

-

F 29.90
G 10.67

H

5.33
J 16.64
K II.IB
Q
3.B4
R
-

= 5 ms, Duty Cycle .. 10%.

11.15

12.19
4.09
26.67

INCHES
MIN
MAX

-

0.250
0.039

-

1,171
0.420
0.210

0.655
0.440
0.151

-

Co"ectofconnected to case.
CASE 11·01

TO·J

4-438

1.550
0.B30
0.300
0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.11

1.050

\

MJ10002, MJ10003

ELECTRICAL CHARACTERISTICS

I

(TC' 2S oC unless otherwise noted/.

I

Charact.ristic

Min

Typ

Max

350
400

-

-

400
450
275
325

-

-

-

-

-

0.25
5

ICER

-

-

5

mAde

IEeO

-

-

175

mAde

Symbol

Unit

OFF CHARACTERISTICS (2)
Collector-Emitter Sustaining Voltage (Table 11

(lC = 250 mA.le· O. Vel amp

= Rated VCEO)

Collector-Emitter Sustaining Voltage !Table 1, Figure 121

(lC

= 1 A. Vclamp

• Rated VCEX. TC' 100oC)

(lc

= 5 A. Vel amp

• Rated VCEX. TC = 100oC)

MJ10002
MJ10003
MJ10002
MJ10003
ICEV

(VCEV = Rated Value. veE (off) • 1.5 Vde)
(VCEV ~ Rated Value. VeE(off) = 1.5 Vde. TC = 150°C)
Collector Cutoff Current

= Rated VCEV. ReE = 50 n. TC = 100°C)

Emitter Cutoft Current

(VEe = e Vde. IC

-

Vde

VCEX(sus)

Collector Cutoff Current

(VCE

Vdc

VCEO(sus)
MJ10002
MJ10003

= 0)

mAde

SECOND BREAKDOWN
Second Breakdown Collector Current with base forward biased

See Figure 11

ON CHARACTERISTICS (2)
DC Current Gain

hFE

Collector-Emitter Saturation Voltage

-

500
300

-

-

1.9
2.9
2

-

-

2.5
2.5

VI

-

3

5

I hfe 1

10

-

-

Cob

60

td

-

VCE(sat)

=

(lC' 5 Ade. Ie 250 mAde)
(lc 10 Ade. IS = lAde)
(lC = 5 Ade. Ie = 250 mAde. TC = 10oDC)

=

Base-Emitter Saturation Voltage

-

40
30

(lc = 2.5 Ade. VCE • 5 Vde)
(lC = 5 Ade. VCE = 5 Vde)

Vde

Vde

VeE(,at)

(lC = 5 Ade. IS = 250 mAde)
(lC = 5 Ade. Ie = 250 mAde. TC = 100oC)
Diode Forward Volt.ge (1)
(IF =5.0 Ade)

Vde

DYNAMIC CHARACTERISTICS
Small-Signal Current Gain

-

(lC'l Ade. VCE = 10 Vde. f test = I MHz)

Output Capacitance
(Vce =50 Vde.IE· O. f test = laO kHz)

275

pF

SWITCHING CHARACTERISTICS
Resistive Load (Table 1)
Delay Time
Rise Time

Storage Time

(VCC· 250 Vde. IC = 5 A.
leI = 250 mAo VBE(olf) = 5 Vde. tp = 50
Dutv Cycle .. 2.0%).

"S.

Fall Time

tr
ts
tf

-

0.05

0.2

"s

0.25

0.6

"s

1.2

3.0

"s

0.6

1.5

"s
"s

Inductive Load, Clamped (Table 1)
Storage Time
Crossover Time
Storage Time
Crossover Time

(lC =5 A(pk). Velamp = Rated VCEX. IBl = 250 mAo
VSE(ofl) = 5 Vde. TC = 100°C)

tsv

(lC =5 A(pk). Vel amp = Rated VCEX.IBl = 250 mAo
VeE(off) = 5 Vdc. TC = 2S0C)

tsv
te

te

-

2.1

5

-

1.3

3.3

"s

-

0.92

-

".

0.5

(1)

The internal Collector-to-Emitter diode can eliminllte the need for an external diode to clamp inductive loads.
Tests have shown'that the Forward Recovery Voltage IVf) of this diode is comparable to that of typical
fast recovery rectifiers.

(2)

Pulse Test: Pulse Width = 300

"S. Duty Cycle';; 2%.

4-439

"s

MJ10002, MJ10003

DC CHARACTERISTICS
FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE 1 - DC CURRENT GAIN

30 0

TJ

200

I--

10 O
z
;{ 70
... S0

~

~ 3,4

ISO'C

e2S~C

w

'"~
">ffi

'"

..

ffi

~I 0

-

./

~ 20

"..J

......

/

~ 30

./

7
S

-SS'C
I-

15

"'~"

I

0.1

2.6

2S'C

IC"0.3A- 2.S A

SA

'IDA

2.2

"-

a
1.4

......

~

0.2

0.3

7

O.S 0.7

10

20

10

30

SO

IC. COLLECTOR CURRENT (AMP)

-

f-

~

~ io

"w~

-r

~

./

ffi
t::
~

/./

~

.~

2.4

_....

1. 6

1.2

t::::=

TJ ~ 12S'C

~

Ik

10

t....-- v

O.B
0.1

t

II
II

1/
//

2S°;..-

I:::::
,

2SoC

/

..,

./

1- . /

--

i--

IS00C

II

0.2

O.S 0_7

0_3

10

IC. COLLECTOR CURRENT (AMP)

FIGURE 6 - OUTPUT CAPACITANCE

FIGURE 5 - COLLECTOR CUT-OFF REGION

F=

SOD 700

/

IIII
TJ" -SS'C

>

0.3
O.S 0.7
IC. COLLECTOR CURRENT (AMP)

VCE ~250v

300

.1,1 U.I.. IT

W

/

~
I

0.2

200

VBE{"tI@ IC/la" 10
VBE{,n) @VCE ~ S V

---

">-

,/
TJ ~ -SS'5,...-

2S'~

-

'"
~

1/

6

100

FIGURE 4 - BASE-EMITTER VOLTAGE

2. a
ICIIIB

70

lB. BASE CURRENT (mAl

FIGURE 3 - COLLECTOR-EMITTER SATURATION VOLTAGE

~1O
... 2

~

> 0,6

3

103

TJ

I

8

VCE ~ S V

n

I"
I

"2:-

40

0'1--.

TJ" 2SoC

~

0

100'C

fl

~.10 I

7S'C

Cob

~

0

"~10 o~REVERSE

0

FORWARO

0

2S'C
10- I
-0_2

r-

40
+0.2

+0.4

+0.6

+O.B

VBE. BASE-EMITTER VOLTAGE (VOLTS)

0.1 0.2

0_5

1

10

20

SO

100 200

VR. REVERSE VOLTAGE (VOLTS)

4-440

500 1000

MJ 10002, MJ 10003

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE

VCEO(susl

.

Pulse :!1V

Z
... 0

Width

::>>=
a.ZO
-z
o

~ ~

a'

~~I

Leoit" 10 mH
Rcoll'" 0.7 n

Vee"

2N2907

02 2N2222
03 2N3762

obtain spaclfied

04 MJE210

Ie (Resistive
SwitChing,

as

MJE200

Pulse Width
... 50,us)

0,

lN914

02

lN914

03

lN914

PW Varied to Attain
Ie" 250 rnA

CJ....I

--.L_J''>-'-~I

Pulse Width
adjusted to

"

5~

RESISTIVE
SWITCHING

VCEXlsusl AND INDUCTIVE SWITCHING

Lcoll'" 180 pH

10 V

~~OC': ~g~ n

Vcl amp " VCEO(sus)

Vee = 250 V
RL'" 50 n

Vclamp = Rated VCEX Value

Pulse Width = 50/011

INDUCTIVE TEST CIRCUIT

OUTPUT WAVEFORMS

RESISTIVE TeST CIRCUIT
t1 Adjusted to

Obtain

tf Clamped

Ie

~

3
rr
"

~~__~~_~~~

U

5
~

Lead (ICpk)

tl~

Vee

I Leol!
See Above For

Deta,led Conditions
Test Equipment
Scope-Tektronix
475 or Equivaient

0., n

SWITCHING TIMES NOTE

FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS

r-I

Ie

~

90% Vclamp

90% Ie

I

Vclamp -

.rvfl/lJt'fi-OOI-••i--

f- f--tsv

----J,f-.c-\ I-

/

Vclamp

'8-

'e

tf Unclamped "" t2
/

-

90% 181

-- --\- -- ----

-

~

"-

TIME

'"

10% ........
10%
V,'.mp- l e - t"i%~
Ie

In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current,and voltage wave·
forms are not in phase. Therefore, separate measurements
must be made on each waveform to determine the total
switching time. For this reason, the following new terms
have been defined.
tsv = Voltage Storage Time, 90% IB1 to 10% Vclamp
trv = Voltage Rise Time, 10-90% Vclamp
tfi = Current Fall Time, 90-10% IC
tti = Current Tail, 10-2% IC
. tc = Crossover Time, 10% Vcl amp to 10% IC
An enlarged portion of the turn·off waveforms is snown in
Figure 7 to aid in the visual identity of these terms.

4-441

MJ10002, MJ10003

SWITCHING TIME NOTES (continued)
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN-222:
PSWT ~ 112 Vecle(tc! f
In general, trv + tfi "" tc' However, at lower
test currents this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified at 2!Pe and has become a benchmark
for designers. However, for designers of high frequency
converter circuits, the user oriented specifications which
make this a "SWITCHMODE" transistor are the inductive
switching speeds (t c and t sv ) which are guaranteed at

•

lOOoe.

RESISTIVE SWn'CHING PERFORMANCE
FIGURE 9 - TURN-OFF TIME

FIGURE 8 - TURN-ON TIME

1
O. 7
O. 5 -

-

O. 3 -

10

.t

VCC" 250 V
IB1" 250 mA
TJ "25°C

..:,

-

O. 2

]
~

'r

O. 1

S 0.0 7

-

-- -

0.0 5
0.0 3
0.0 2
0.0 1
0.1

0.2

0.3

0.5 0.7

1/
0.7
0.5

Id

0.3

"-

·0.2
O. I
0.1

10

1

0.2

0.3

--

'1

0.5

VBElolfI- 5 v
VCC "250 V
IBI c250mA
TJ - 25°C

10

0.7

IC. COLLECTOR GURRENT lAMP!

IC. COLLECTOR CURRENT lAMP!

FIGURE 10 - THERMAL RESPONSE

1

«
~_
wO

IW

O. 7 =0 "0.5

>--~

O. 3== 0.2

",0

01

I-

~

~ ~ o. 2 I---

«z

ROJCI'! " rlt} ROJC
ROJCII! " 1 17 0C/W Max

o. 5

~; O.

t-

f--- 1-10--

1F==:O

05
0.0
-« 7~0.02
~ 0.0 5
>

o CURVES APPLY FOR POWER

---

....

PULSE TRAIN SHOWN
REAO TIME AlII
TJlpk! TC" P(pk! RoJCII!

2

g

~ ~o.o 3~

..-K:

PtrLfL
0.01

t~-J

0.0 21--- SINGLE PULSE
00 1
0.01

III
. 0.02 0.03

OUTY CYCLE. 0" 1)/12
0.05

0.1

0.2

0.3

10

0.5

\
I. TIME 1m,!

4-442

20

30

50

100

200

300

500

1000

MJ10002, MJ'i0003

figur~s

Tho Safe Operating Area

shown in Figuros 11 and 12 aro

SAFE OPERATING AREA INFORMATION

specified ratings for those dovicos under tho test conditions shown.

FORWARD BIAS
There are two limitations on the power handling ability
of a transistor: junction temperature and second breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable

FIGURE 11 -·ACTIVE·REGION SAFE OPERATING AREA

a

ii'!
~

100",-

5

m,

...

TC ~ 25 0C

~
a

~ 0.5

g
_

0.2

8

O. I

~

,

10"

10

r---

I ms

- -

BONDING WIRE LIMIT
THERMAL LIMIT
(SINGLE PULSE)
---SECOND BREAKDOWN LIMIT

The data of Figure 11 IS based on TC = 25°C; TJ(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;, 25°C. Second· breakdown limitations
do not derate the same as thermal limitations. Allowable
. current at the voltages shown on Figure 11 may be found
\ at any case temperature by uSing the appropriate curve on
Figure 13_
TJ(pk) may be calculated from the data In Figure 10.
At high case temperatures. thermal limitations will reduce
the power that can be handled to valups less than the

\.

" "'

0.05
002
4

operation; I.e., the transistor must not be subjected to
gr~ater diSSipation than the curves indicate.

"

de

MJIOO02~

S

20

10

40

60

lOa

MJ10003
200

=

,I

350
400

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

limitations Imposed by second breakdown.
FIGURE 12 - REVERSE BIASEO SWITCHING
SAFE OPERATING AREA

a

~

TU RN OFF LOAD LINE
BOUNDARY FOR MJIOO03
THE LOCUS FOR MJIOO02
IS 50 V LESS

I

REVERSE BIAS
For inductive loads, high voltage and high current must
be sustained simultaneously during turn-off, in most cases,
with the base to emitter junction reverse biased. Under
these conditions the collector voltage must be held to a
safe level at or below a specific value of collector current.
Thi.s can be accomplished by several means such as active
clamping, RC snubbing, load line shaping, etc. The safe
level for these devices is specified as V CEX (sus) at a given
collector current and represents a voltage-current condition that can be sustained during reverse biased turn-off.
This rating is verified under clamped conditions so that
the device is never subjected to an avalanche mode. Figure 12 gives the complete reverse bias safe operating area
characteristics.

I

l\

I\\.- -

TJ" IOOoC

VBE(off) ~ 5 V

l'tt - VBE(off)
It'\'.-- VBE(off)
\ ."'"
\
o

a

"'"

'"

300
400
200
100
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

~ 2V
~

aV

500

FIGURE 13 - POWER DERATING
10a

~ :-....

.............

~ 80

'"

"- SO

OERATING

'"z·
>=
~ 40
o
'"

~_

SECO~~~~i,~~QOWN _

.......

r-.....
"""THERMA~
""" I"'----

'"t;
o

i'..

...... r-......

~

r----.

""-

20

a

a

40

120
BO
Tc. CASE TEMPERATURE (DC)

4-443

160

"'"

"""

200

....,.... ...

~
. . /'1' '.'.
,.,

.

,

.
~"
.~

... ,.:

I"

:~

,

MJ10004
MJ10005

,

;'.

,~".';1

N

,

,Designers 'Data, Sheet

'

20 AMPERE

NPN SILICON
SWITCHMODE SERIES
NPN SILICON POWER DARLINGTON TRANSISTORS
WITH BASE-EMITTER SPEEDUP DIODE

•

POWER DARLINGTON
TRANSISTORS
3S0 and 400 VO LTS
175 WATTS

The MJ10004 and MJ10005 darlington transistors are designed
for high,voltage, high-speed, power switching in inductive circuits
where fall time is critical. They are particularly suited for line operated switchmode applications such as:
• Switching Regulators
• Inverters
• Solenoid and Relay Drivers
• Motor Controls
• Deflection Circuits
Fast Turn·Off Times
40 ns Inductive Fall Time - 250 C (Typ)
650 ns Inductive St,!rage Time - 250 C (Typ)

Designer's Data for
"Worst Case" Conditions
The Designers Data Sheet permits the design of most circuits
entirely from the information presented. Limit data - representing
device characteristics boundaries are given to facilitate "worst case"
design.

Operating Temperature Range ~65 to +2000 C
, lOOoC Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

MAXIMUM RATINGS

Collector-Emitter Voltage
Collector-Emitter Voltage

Emitter Base Voltage
Collector Current - Continuous

- Peak (11
Base Current - Continuous

- Peak (1)
Total Power Dissipation @ TC = 2SoC
@TC= 1000C
Derate above 2SoC

'MJ10004
3S0
400
450

Symbol

Rating
Collector-Emitter Voltage

VCEO(susl
VCEX(su,1
VCEV
VEB
IC
ICM
IB
IRM
Po

Operating and Storage Junction

MJ10005
400
450
500
8

20
30
2.S
5
175
100
1
-65 to +200

TJ,Tst9

Unit

Vdc
Vdc
Vdc
Vdc
Adc

Characteristic
Maximum Lead Temperature for Soldering
Purposes: 118" from Case for 5 Seconds

I~"
E~!
PLANE

Adc
Wans
W/oC

°c

Temperature Range
THERMAL CHARACTERISTICS
Thermal Resist8oce, Junction to Case

·Lr~

PIN I. BASE
2. EMITTER
CASE. COllECTOR
INCHES
MILLIMETERS
DIM MIN MAX
MAX
MIN

-

0,250
0039

F 29.90
~- 1067

11.18

0.420

5.59
1.15

0.210
0.655
0,440
0,151

Max

Unit

A

ROJC
TL

1
27S

°CIW
°c

C
D
E

(11 Pulse Test: Pulse Width = 5 ms, Duty Cvcle .. 10%

-

39.37
21.0B
7.2
1.09
3.43
30.40

Symbol

B

.35
0.99

-

H 5.
J 16.64
K 11.18

Q

R

3.S4

-

12.19

4.09
26.67

-

1.177

-

CollUle, conNeltd 10 c•.

CASE "·01

TO-3

4-444

1.550
0.S3O
0.3110
0.043
0.135
1.197
0.440
.220
0.675
0.480
0.161
1.050

MJ 10004, MJ 10005

ELECTRICAL CHARACTERISTICS (TC

I

0

25°C unless otherwISe noted).

I

Characteristic

Symbol

Min

Typ

Max

350
400

-

-

-

-

400
450
275
325

-

-

-

-

-

-

0.25
5

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (Table 1)
0

250 mA, 'B

'CEV

= Rated Value, VBE(offl = 1.5 Vdcl
= Rated Value, VBE(offl = 1.5 Vdc, TC = 1500 CI

Collector Cutoff Current

(VCE

= Rated VCEV. RBE = 50 n, TC = lOOoC)
g

2.Vdc, IC

-

'EBO

=0)

mAde

ICER

Emitter Cutoft Current

(VEB

Vdc

VCEX(sus)

Collector Cutoff Current

(VCEV
(VCEV

Vdc

VCEO(sus)

=0, Vcl amp = Rated VCEO)

MJ 10004
MJ 10005
COllector-Emitter Sustaining Voltage (Table 1. Figure 12)
MJ10004
IIC = 2 A, Vclamp = Rated VCEX, TC = 100°C)
MJ10005
IIC = 10 A, Velamp = Rated VCEX, TC = 100°C) MJ10004
MJ10005
IIC

~

mAde

175

mAde

SECOND BREAKDOWN
See Figure 11

Second Breakdown Collector Current with base forward biased

ON CHARACTERISTICS (21
DC Current Gain
IIC = 5 Adc. VCE = 5 Vde)
IIC = 10 Ade, VCE = 5 Vde)

hFE

Collector-Emitter Saturation Voltage
IIC = 10 Ade, I B =400 mAdel

IIC
(lC

VCE(satl

=20 Ade, 'B = 2 Adel
= 10 Ado, 'B = 400 mAde. TC = 1000 CI

Base-Emitter Saturation Voltage

flC = 10 Adc, 'B = 400 m~del
IIC = 10 Ade, 'B = 400 mAde, TC
Diode Forward Voltage (11
(IF = 10 Add

VBE(satl

-

50
40

-

600
400

-

-

1.9
3
2

-

Vde

-

-

Vde

-

-

-

2.5
2.5

Vf

-

3"

5

Ihf.)

10

-

-

-

Cob

100

325

pF

Id

-

0.12

0.2

liS

0.2

0.6

liS

0.6
0.15

1.5
0.5

liS

1.0
0.4

2.5
1.5

liS

= l000 CI

Vdc

DYNAMIC CHARACTERISTICS
Small·Signal Current Gain

flC = 1 Adc, VCE = 10 Vde, f test
Output Capacitance
(VCB = 10 Vdc, 'E

= 1 MHz)

= 0, ftest = 100 kHzl

SWITCHING CHARACTERISTICS
Resistive Load (Table 11
Delay Time
Rise Time
Storage Time

(VCC = 250 Vde, IC = 10 A,
'Bl = 400 mA, VBE(off) = 5 Vdc, tp = 50 liS,
Duty Cycle .. 2%).

Fall Time
Inductive Load, Clamped (Table 1)
Storage Time
Crossover Time
Storage Time
Crossover Time

tr
ts
tf

IIC = 10 A(pkl, Velamp = Rated VCEX, 'Bl = 400 rnA,
VBE(offl = 5 Vdc. TC = 100°C)

tsv
te

IIC = 10 A(pkl, Vel amp = Rated VCEX, 'Bl =400 rnA,
VBE(offl • 5 Vde, TC = 250 CI

t,v
te

-

-

0.65
0.2

(1) The internal Collector-to-Emitter diode can eliminate the need for an external diode to clamp inductive loads.
Tests have shown that the Forward Recovery Voltage JVft of this diode is comparable to that of typical fast
recovery rectifiers.

(21 Pulse Test: PW = 300 liS, Dutv Cycle .. 2%.

4-445

liS

liS

-

liS

-

liS

MJ10004, MJ10005

TYPICAL CHARACTERISTICS

FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE I - DC CURRENT GAIN
50 0

.- l-

20 0

I

lOA

IC" S A

1

02

\

1.4

I
002

10

OS 07

03

0.03

I'..

0 OS 007

0I

FIGURE 3 ~ COLLECTOR-EMITTER
SATURATION VOLTAGE

I II
ICllB" 2S

J

2. 4 - f-

JI/

6

TJ" -ssoc

=

10

b

-

O.

20

B
0.2

ia
=

~
8

~VCE" 2S0 lV

10 I

/./

0.. 0.7
IC, COLLECTOR CURRENT (AMP)

10

20

TJ" 2S oC

70 0

./
./

0

r-- TJ" 12SoC

0

2I;;
-I

/

100 0

10 3

102

..-~

FIGURE 6 - OUTPUT CAPACITANCE

FIGURE 5 - COLLECTOR CUTOFF REGION

~

k'/

..-

250 e

-~

0.3

IC, COLLECTOR CURRENT (AMP)

10 4

7
V tI

TJ 1= .J5 0 C

6

I.2

O.S 07

0.3

~

~~~!~~I =tcci~B:l~
-j -,

I- Kooc
02

0 S 0.7

T

--I--

O

O. 4 -

-I.

2

VA
'/

f--~II--- I-- 2S C V

I II

IT.ITII

/

B

03

FIGURE 4 - BASE-EMITTER VOLTAGE
2,B

I II

2

0.2

IB, BASE CUR RENT (AMP)

IC, COLLECTOR CURRENT lAMP)

24

1\

\

\

V E "5 ~

,..-

0

1\ 20A

ISA

\

IB

t-

I

\

\

-S50C

0/
O

TJ" 2S U C

1

\

'\.
2

0
0

rT

\"

26

25°C

I--"

0

7
5

1

TJ" 150 0 C

30 0

~

./

r-.....

'--IOOoC

/

.....

I - - r--7S oC

0

./

l"
...... t--

~ 10

~REVERSE

FORWARD

0
Cob

° F F 2 S0 C

10- I
-0.2

0

+0.2

+0.4

+0.6

50
0.4 0.6

+0.8

I

4

6

10

20

40 60

VR. REVERSE VOLTAGE (VOLTS)

VBE, BASE·EMITTER VOLTAGE (VOLTS)

4-446

100

t=
200

400

MJ10004, MJ10005

TABLE 1 - TEST CONDITIONS FOR DVNAII/lIC PERFORMANCE

VCEO(susl

RESISTIVE
SWITCHING

VCEX(susl ANO INDUCTIVE SWITCHING

PuI50 :/1V

0,

Width

2N2907

02 2N2222
Pulse Width

03 2N3762

adjusted to

3.

obtain specified
Ie (Resistive
SWitching.
Pulse Width
'" 50 ps)

PW Varied to Attain

IC" 250mA

MJE210

05 MJE200
D, 1N914
D2

lN914

D3 lN914

5~

U..J

~~

lead" 180 J.lH
~~O~' : ~g~ 11

Lcoll-l0mHVCC*'10V

Rcoil-D.7n
Vclamp" VCEO{slIs)

VCC""25DV
RL" 25 n

Vclamp ". Raled VCEX Value

Pulse Width'" 50 IlS

INDUCTIVE TEST CIRCUIT

RESISTIVE TEST CIRCUIT

OUTPUT WAVEFORMS

1 Ad,usted to
Oblam Ie
t

If Clamped

!!?
5

-<

u

If Unclamped ... t2

~:.6-_-t'-,.--'_

a:
iJ

....

LCO,IUepk'
t1

t=

Vee

, Leoil

:;;

12 "'" :":OIIIICpk'

See Above For
Detailed Conditions
VeE

r--n' .
{Clamp

D,n

Time

.... 12 ..J

,......
90% Vclamp

I-

r-'sv

try

1iJ..a\-lh--I'-',i-

i-J '-'c-\ r--

/

Vclamp

---

IS-

IIVO%

10%
Vclamp 90% 'SI

--\\

VcI,mpleT

-- ---.....-

---TIME

I'
10% .......

l e - 2%~
Ie

Test Equipment
Scope Tektronix
415 or EqulvlIilent

SWITCHING TIMES NOTE

FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS
Ie

Vcl amp

VeE or

1---

In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase, However, for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage wave·
forms are not in phase. Therefore, separate measurements
must be made on each waveform to determine the total
switching time, For this reason, the following new terms
have been defined.
tsv = Voltage Storage Time,.90% 181 to 10% Vcl amp
trY = Voltage Rise Time, 10-90% Vcl amp
tfi = Current Fall Time, 90-10% IC
tti = Current Tail, 10-2% IC
tc = Crossover Time, 10% Vcl amp to 10% IC
An enlarged portion of.the turn·off waveforms is shown in
Figure 7 to aid in the visual identity of these terms,

4-447

MJ10004, MJ10005

TYPICAL CHARACTERISTICS
SWITCHING TIME NOTES (continued)
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN-222:
PsWT = 1/2 VCCIC(tc! f

..

In general, trv + tfi "" t c - However, at lower
test currents this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified at 2!1>C and has become a benchmark
'for designers_ However, for designers of high frequency
converter circuits, the user oriented specifications which
make this a "SWITCH MODE" transistor are the inductive
switching speeds (tc and t sv ) which are guaranteed at

100oC.
RESISTIVE SWITCHING PERFORMANCE
FIGURE 9 - TURN-OFF TIME

FIGURE 8 - TURN-ON TIME
3

1

VBE(ofl)
VCC
.1
ICIIB
o. 5
TJ

2
VCC = 250 V
II---- IcllB - 25
TJ ~ 25°C

o. 71~
]

~

0.5

w

:g
w
!

~d

'";::

~

-- 0.3

--...;::::

C.2

~

y

7

"

./

o.2

fl

V

/

/
/

...",,-

V

'f

""

O. 1
0.0 7

t---

o. 1

..",17

V

O. 3

.>

I--

I"':::

=5 V
= 250 V
= 25
= 25°C

10

0.0 5
'1

20

10

20

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

FIGURE 10 - THERMAL RESPONSE
0.7
5 0 = 0.5

w

u

z

~

~-'e

2

~ ~

01

"w
:EN

~~

ffi

;;;

~
...
-

0.2
01
ZOJCIII = rill RQJC
ROJC =l oCIW Max
I.
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT"

0071-- 0.05
~ 005
C02
003
I L-~

r-

002~1--~~l'jJ.l"'~.0~1:L~id~tlli==+=+=+=+=~++t+==!=1=t~
1
_'''''''SI~G~Er~L~~
00

--~ I

001

002

I I I I II
005
01

0.2

TJlpkl - TC = Plpkl Z'JCIII
DUTY CYCLE. 0 = ""2

I IIII
10

05
t,

TIME fms!

4-448

I

I
20

I

I I I IIII
50

100

I

I
200

I

I I I II
500

1k

MJ10004, MJ10005

SAFE OPERATING AREA INFORMATION
The Safe Operating Area figures shown in Figures 11 and 12 are
specified ratings for these devices under the test conditions shown.

FIGURE 11 - FORWARD BIAS SAFE OPERATING AREA
50

..

10~s

10
5

::s
S

....

~

I

oc 0.5

~
~

-

'-.

0

f..l

1m,
5m,

2

B

0

lOO"~

20

0.2=

0.1='
0.05

0.02
0.01
0.005
4

TC - 25 0 C
- BONOING WIRE LIMITED =,dc
THERMALLY LIMITED
SECOND BREAKDOWN LIMITED'
CURVES APPLY BELOW RATED VCEO

-

MJIOO04 I-MJI0005 ,

~

6

10

20

40

60

100

1

200 350 /
400

VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS)

FORWARD BIAS
There are two' limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 11 is based on TC = 250 C; TJ(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;. 250 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 11 may be found
at any case temperature by using the appropriate curve on
Figure 13.
TJ(pk) may be calculated from .the data in Figure 10.
At high case temperatures. thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.

FIGURE 12 - REVERSE BIAS SWITCHING
SAFE OPERATING AREA

.

20

S

TURN OFF LOAO LINE
BOUNDARY FOR MJIO,005
THE LOCUS FOR MJIO,004
16 IS 50 V LESS I

~

12

::s

....
oc

:::>

I

'-'

l\

~'- :-- VBE(olf} = 5 V

TJ,,1000C

oc

0
....

~

B

E

4

1\\:-- VBE(olf} = 2 V

I\",,\, ~ VBE(olf} • 0 V

8

\

r-..." I'....
\"\.

0
0

300
400
200
100
VCE, COLLECTOR·EMITIER V'OLTAGE (VOLTS)

500

REVERSE BIAS
For inductive loads, high voltage and high current must
be sustained simultaneously during turn·off, in most cases,
with the base to emitter junction reverse biased. Under
these conditions the collector voltage must be held to a
safe level at or below a specific value of collector current.
This can be accomplished by several means such as active
clamping, RC snubbing, load line shaping, etc. The safe
level for these devices is specified as VCEX(sus) at a giv'en
collector current and represents a voltage·current condition that can be sustained during reverse biased turn-off.
This rating is verified under clamped conditions so that
the device is never subjected to an avalanche mode. Figure 12 gives the complete reverse bias safe operating area
characteristics.

FIGURE 13 - POWER DERATING
0

0

"""'::: t-......

'"

J'"--..-

i"-..
t-....
THERMA~
DERATING

0

SECOND BREAKDbwN_
DERATING

r---..

f'..

........

1"--.

I"'--

r-....

0

"

0

o

o

40

BO
120
TC. CASE TEMPERATURE (OC)

4-449

160

'" "

200

•

MJI0006
MJI0007

DesigneI"s Data Sheet
10 AMPERE

NPN SILICON

SWITCHMODE SERIES
NPN SILICON POWER DARLINGTON TRANSISTORS
WITH BASE-EMITTER SPEEDUP DIODE

•

POWER DARLINGTON
TRANSISTORS

The MJ10006 and MJ10007 darlington transistors are designed
for high-voltage, high-speed, power switching in inductive circuits
where fall time is critical. They are particularly suited for line operated switchmode applications such as:
Switching Regulators
Inverters
Solenoid and Relay Drivers
Motor Controls
Deflection Circuits
Fast Turn-Off Times
""00 "'15
30 ns Inductive Fall Time - 250 C (Typ)
500 ns Inductive Storage Time - 25 0 C (Typ) )
Operating Temperature Range -65 to +200 0 C
1000C Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

350 and 400 VOL TS
150 WATTS

~

•

~

•
•
•
•

Designer's Data for
"Worst Case" Conditions
The Designers Data Sheet permits the design of most circuits
entirely from the information presented. Limit data - representing
device characteristics boundaries are given to facilitate "worst case"
design_

6

MAXIMUM RATINGS
Symbol

Rating
Collector-Emitter Voltage

Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous

- Peak II)
Base Current - Continuous

-Peak 11)
Total Power Dissipation@ TC
@l

= 2SoC

MJ10006
350
400
450

VCEOlsus)
VCEXlsusl
VCEV
VEB
IC
ICM
IB
IBM
Po

8
10
20
2_5
5
150
100
0_86
-65 to +200

TC = 100°C

Derate above 25 0 C
Operating and Storage Junction

MJ10007
400
450
500

TJ,Tstg

Unit

Vdc
Vdc
Vdc
Vdc
Adc

Lr~
r~K
ESEATIN(~
PLANE

Adc
Watts
W/oC

°c

PIN I. BASE
2. EMITTER
CASE: COLLECTOR

Temperature Range
DIM

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
Maximum Lead Temperature for Soldering

Symbol
ROJC
TL

MIx
1_17
275

Purposes: 1/S" from Case for 5 Seconds
(1)> Pulse Tt;tSt: PuiS,!, Width:: 5 ml, Duty Cycle <; 10%.

Unit

°C/W

°c

A
B

MILLIMETE S
INCHES
MIN
MAX
MIN MAX

-

C 6.35
D 0.99
E
f 29.90
G I .6
5_3
J I.
K 11.1
D 3.84
R

-

39.37
21.OB
7_62
1.09
3.43
30.40
11.18
5.59
17.15
1 .19
4.09
26.17

0.250
0.039

-

1.177
0.420
0.210
0.655
0.440
0.151

-

Collector connected to ca.
CASE 11-01
TO-3

4-450

1.550
0.B30
O. 0
0.043
0.135
1.197
0.440
.220
0.675
0.480
0.161
1.050

I

MJ10006, MJ10007

ELECTRICAL CHARACTERISTICS ITC

I

c

25°C unless otherwISe noted!'

I

I'

Min

Typ

Mox

350
400

-

-

MJ10006
MJ10007

400
450

-

MJ10006
MJ10007

275
325

Charilctoristic

Symbol

Unit

OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltage (Table 11

IIc

= 250 mA,

IB

= 0,

Vel amp

= Rated

VCEO!

Collector-Emitter Sustaining Voltage !Table 1, Figure 121

IIC = 1 A, Vel amp = Rated VCEX' TC = 100°C)
(lC = 5 A, Vel amp = Rated VCEX, TC = 100°C)

ICEV

Collector Cutoff Current

= Rated

VCEV, RBE = 50

n, TC

-

mAde

-

ICER

-

-

lEBO

-

-

IVCEV = Rated Value, VBEloff! = 1,5 Vde)
IVCEV = Rated Value, VBEloff) = 1.5 Vde, TC = 150°C)

Vde

VCEX{,us!

Collector Cutoff Current

(VCE

Vde

VCEOlsu,!
MJ10006
MJ10007

0.25
5
5

mAde

175

mAde

= lOOoC)

Emitter Cutoff Current

(VEB = 2 Vde, IC = 0)
SECONO BREAKOOWN
See Figure 11

Second Breakdown Collector Current with base forward biased

ON CHARACTERISTICS 12)
DC Current Gam

-

hFE
40
30

-

500
300

-

-

-

-

:...

1.9
2.9
2

-

-

-

2,5
2.5

V,

-

3

5

Ih'e I

10

-

-

-

Cob

60

-

275

pF

td

-

0.05

0.2

~s

t,

-

0.25

0.6

~s

ts

-

0,5

"s

t,

-

0.06

1.5
0.5

IIC =5, Alpkl. Vcl amp = Rated VCEX, IBI = 250 rnA,
VBE(off) =5 Vde, TC = 100°C)

tsv

-

o.a

2.0

~s

te

0.6

1.5

"s

liC =5 A{pkl. Vel amp = Rated VCEX,lBl = 250 mA,
VBE(olf) = 5 Vde, TC = 25°C)

tsv

-

0.5
0.3

-

te

".

IIc = 2.5 Ade, VCE = 5 Vde)
IIc = 5 Ade, VCE = 5 Vde!
COllector-Emitter Saturation Voltage

VCEI,at!

(lC = 5 Ade, IB = 250 mAde!
(lc = 10 Ade, IB = 1 Ade!
(lc = 5 Ade, IB = 250 mAde, TC = lOOoC)

Base-Emitter Saturation Voltage
(lc = 5 Ade, la = 250 mAde!
(lc = 5 Ade, la = 250 mAde, TC = lOOoC)

VBElsati

Diode Forward Voltage (1)

Vde

Vde

Vdc

(IF =5Adcl
OYNAMIC CHARACTERISTICS
Smail-Signal Current Gain

IIc = 1 Ade, VCE = 10 Vdc, 'test = 1 MHzl

Output Capacitance
(Vca = 10 Vde, IE = 0, 'test = 100 kHz!

I

,

SWITCHING CHARACTERISTICS
Resistive Load (Table 11

Delay Time
Rise Time
Storage Time

(VCC = 250 Vdc, IC = 5 A,
IBl = 250mA,VBE(off) = 5Vde,tp= 50"s,
Duty Cycle';; 2.0%1.

Fall Time

"s

,Inductive Load, Clamped (Table 1)
Storage Time
Crossover Time
Storage Time
Crossover Time

(1)

The internal Colloctor·to-Emitter diode can eliminate the need for an external diode to clamp inductive loads.
Tests have shown that the Forward Recovery Voltage ,{Vf} of this diode is comparable to that of tvpical
fast recovery rectifiers.

(2)

Pulse Tost: PW = 300

~s,

Duty Cycle" 2%,

4-451

-

"s

MJ10006, MJ10007

TYPICAL CHARACTERISTICS
FIGURE 1 - DC CURRENT GAIN
300

g 3.4

TJ=IS00C

200

2S~C

100
z
;;: 70
'">- 50

~

•

<.>
<.>

..,,-

20

....

~1 0 /

I
vCf = S, V

0.2

03

O.S 0.7

1

2.2

~

l. S

""'"

~

1.4

S

1

IC=0.3A-

~

3

0.1

2. 6

'">ffi

TJ' 2S oC

::

-SSoC

'"W

'"~
'"~
w

V

30

:>

l'

FIGURE 2 - COLLECTOR SATURATION REGION

3'

2

S

7

......
.1
......

> O.6
10

10

20

30

50

70 100
200 300
lB. BASE CU RRENT ImA)

IC. COLLECTOR CURRENT (AMP)

FIGURE 3 - COLLECTOR·EMITTER SATURATION VOL TAGE

2

S
'"~
'"~
'">

II
TJ=-55~V

2

t"'""
8

250~

r--r

V

..,....Vv

0.2

0.3
0.5 0.7
IC. COLLECTOR CURRENT (AMP)

2.4

--- V~EI~tI'@ I,C\'~ ~

10
VBElon)@VCE • S V

1k

I;'

III

TJ = -5SoC

V
i--'" V-

H1
6

25~ ~

2

UL V

O. Sf-0.1

10

.....

II
V

/

1500 C

.-

FIGURE 5 - COLLECTOR CUTOFF REGION

1/

....... V

250C

..... V

~
I

4

r-

w

V

6

SOO 700

FIGURE 4 - BASE·EMITTER VOLTAGE

2.S

4

IC/I~ = 10

.1 'OA

5A

2.SA,

II
0.2

0.3

0.5 0.7
1
IC. COLLECTOR CURRENT (AMP)

10

FIGURE 6 - OUTPUT CAPACITANCE

103

400 ......

I.....

TJ·" 2SoC

~

~ 20 0

z

;0
U

§

Cob

~ 10 0

e:

:>

0

j

0

'"

40

10-1
-0.2

0.1 0.2

VBE. BASE·EMITTER VOLTAGE (VOLTS)

~
O.S

1

10

20

SO

100 200

VR. REVERSE VOLTAGE (VOLTS)

4-452

5001000

MJ10006, MJ10007

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE
RESISTIVE
VCEXlsus) AND INDUCTIVE SWITCHING

SWITCHING

0' 2N2907
02 2N2222
Pulse Width

OJ 2N3762

ad,ustad to
cblalnspocihed

O' MJE210

'e (Aesutlve
Switching.
Pulse Width

PW Varied to Attain

'" 50 ~u)

Ie" 250 rnA

as

MJE20Q

D'
D2

lN914
lN914

DJ lN914

Leoil" 10 mH

Reol'''' 0.7

Vee"

Leoll'" 180,l.lH
AeOlI '" 0 05 n
Vee =20V
fa = 500 kHz

10 V

n

Vclamp" VCEO(susJ

INDUCTIVE reST CIRCUIT,

Vee = 250 V
RL" 50 n
Pulse Width" 50 PI

Vcl amp " Rated VCEX Value

RESISTIVE TEST CIRCUIT

OUTPUT WAVEFORMS
t 1 Adjusted 10

Obtain

If Clamped

Ie

If Unclamped ... 12

<'

'1 ""

LCO~~~CPkl

L..I.o<----J.L-->....
12 .;;: leOd (lCpk'
Vel amp

0.1

Test Equipment
Scope-Tektronix

n

475

FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS

r-i-

Ie

IJI\!90% Ie

90% V,'amp

forVclamp

-- --\- -- ---

IB-

--

l'vfl~lh-

_I",

/10%

90% IBI

\

~

'-I,~ :--

1"-

10% ........

V,'amp- IC-

- -- -

....... ~
TIME

Vcl amp
I 01-1" ....

2%~
Ie

or Equipment

SWITCHING TIMES NOTE
In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage wave·
forms are not in phase. Therefore, separate measurements
must be made on each waveform to determine the total
switching time. For this reason, the following new term's
have been defined.
tsv ~ Voltage Storage Time, 90% IBI to 10% Vcl amp
trv ~ Voltage Rise Time, 10-90% Vclamp
tli ~ Current Fall Time, 90-10% IC
tti ~ Current Tail, 10-2% IC
tc ~ Crossover Time, 10% Vcl amp to 10% IC
An enlarged portion 01 the turn·off waveforms is shown in
Figure 7 to aid in the visual identity of these terms.

4-453

MJ10006, MJ10007

TYPICAL CHARACTERISTICS
SWITCHING TIME NOTES (continued)
For the designer. there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN-22.;~:
PSWT = 1/2 Vcclcltcl f
In general. trv + tfi "" t c - However. at lower
test currents this relationship may not be valid .
As is common with most switching transistors, resistive
switching is specified at 2!PC and has become a benchmark
for -designers. However. for designers of high frequency
converter circuits. the user oriented specifications which
make this a "SWITCHMODE" transistor are the inductive
switching speeds (tc and t sv ) which are guaranteed at
lOOoC.

•

RESISTIVE'SWITCHING PERFORMANCE

FIGURE 8 - TURN-ON TIME

FIGURE 9 - TURN·OFF TIME

1

VBE(offJ
vce
IBI
TJ

O.7

o.S =

r-.....

Vcc-2S0V
IBI"2SDmA
O. 3 - I- TJ" 2SoC

r-

O. 2

.

---

0.0 3
0.0 2
0.0 1
0.1

0.2

-

1-'''''

0.3

0.5 0.7

r--

'"

~ 0.3

'f

~

0.2

1'-

'd

1

Sv
250 V
2S0 mA
2SoC

-;;; o. 7
:- o. S

',1/

o. 1
~_ 0.0 7
0.0 S

~

's

1

"
"
"

'-

O. 1
0.07
O.OS
0.1

10

0.2

0.3

O.S 0.7

10

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

FIGURE 10 - THERMAL RESPONSE

1
~
O. 7=0"05
~ __ O. 5
wO

.
:: o.

--

",

~

~~

3== 0.2

O. 2

",0
",,'"



1. 2

~

--

10

0.8
0.2

20

/

1--:""-::

2SoC

1.6

:>

V

V 1#
k'?

TJ I• -Jsoc

2

w

I--'

0.\ 0.7

I

VBEI.. ,}@ If,'IB =10
--- VBE(on}@. Cf = 3 V

2~~

-I

V

f..-- ~

I- f.-1sooe

o. 4

TJ = 2SoC

0.2
0.5
IB' BASE CURRENT (AMP)

~
~

/A
'/

TJ' _\\Oe

2

0.1

'"

FIGURE 4 - BASE·EMITTER VOLTAGE
2.8

6

\
\

8
w

20

\=20A

\

FIGURE 3 - COLLECTOR-EMITTER
SATURATION VOLTAGE
2. 4

\ -IDA

~

,......

./

1\

IC'SA

> 2. 2

2SJC

.

I II
I II

2.6

.~

1'1

./'"

~
::1.
B 100

..

1E
w

TJ = ISOoC

z

40

3

I

0.3

0.5 0.1
IC. COLLECTOR CURRENT (AMP}

Ie. COLLECTOR CURRENT lAMP}

10

FIGURE 6 - OUTPUT CAPACITANCE

FIGURE 5 - COLLECTOR CUTOFF REGION
1000
C::VCE'2\0)V

1... 103
~B
::'"
;

8

102f==:

10 1

./

TJ'2soe

70 0

~ 500

/

r--- TJ' 12\OC

./

.......

"5 300

I

f::l000C

;t

:3

I

r-- r-7S·C

200

" ",

~

.j
:::>

~ to

~REVERSE

FORWARD

° F F 2 s oe

10' 1
-02

20

-06
-02
-04
VBE. BASE EMITTER VOLTAGE (VOLTS}

10 0

Cob
0

-0 B

S0
0.4 06

1

4

6

10

20

40 60

VR. REVERSE VOLTAGE IVOLTS}

4-458

100

=
200

400.

MJ10008, MJ10009

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE

VCEOlsusl

R!GISTIVE
S\VIT H

vceXIIUI' AND INDUCTIVE SWITCHING

TURN·ON TIME

..

Z
.... 0

~E
zo

Pul.e Width
Ddjultild to

-"8

IS1 adJuned to
obtain the torc::1Id
hFE d ..lr~

obU,n specified

Ie (R"""ve

TURN·OFF TIME
Uu Inductlvo swltchlna
driver •• the Input to

SwitChing,
Pulse Width

PW V.rled to Awln

"2!5 psi

'C· ,OOmA

5~

the 'OI',trw

Leoil· 10 mH Vee" 1Q V
RcoU-O.7fl
V cr • mp " VCEO(lu,1

U...J

Q~

tnt

circuit.

Vee" 250 V
RL - 26 n
Pul.e Width" 2el"

INDUCTIVE TEST CIRCUIT

RESISTIVE TEST CIRCUIT

OUTPUT WAVEFORMS
t 1 Adjusted to

.

II Clamped

....
S

r

"Ua:

E
....

,

I Reo.1

1

',Lcol '

l

Sae Abollo For
Detailed Conditions

Vc::lamp

-=..

J
-=- Vee

o--~L-J
2
~ b RS "
0.1

Ob',a.n

Ie

1

I

~Il-tf~

v CE

! ..-,
,

n

t2 ...

Lc~1I

tlepkl

VClamp

VeE or
Vcl amp

Ten Equipment
Scope - Tektronllt
475 or Equivalent

Time

-Adjust -V such that VSE(off)'" 5 V excopt as requirod for A8 SOA (Figuro 12).

SWITCHING TIMES NOTE

FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS

r-+
.,'amp J~90% 'e VCla~p..,.... f--Isv- 1>1- " +Hoo\-I" .... !-o-IU'
h '---1,--\

Ie

90%

/

Vclamp

'9-

-

10%
Vclamp-

90% '81

-- --\- --

~-

f----

\

~

--

I'\.

10% .......

'e-

---- -- -

-

TIME

r-i2%_
'e

In resistive switching circuits. rise. fall. and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
suppl ies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements
must be made on each waveform to determine the total
switching time. For this reason. the following new terms
have been defined.
t sv ; Voltage Storage Time, 90% IS1 to 10% Vclamp
trv; Voltage Rise Time, 10-90% Vel amp
tfi ; Current Fall Time, 90-10% IC
tti ; Current Tail, 10-2% IC
tc ; Crossover Time, 10% Vclamp to 10% IC
- continued -

4-459

••

MJ10008, MJ10009

TYPICAL CHARACTERISTICS

SWITCHING TIMES NOTE (continued)
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN·222:
PSWT = 1/2 Vcclc(tcl f
Typical inductive switching waveforms are shown in
Figure 7. In general, trv + tfi "" tc' However, at lower
test currents this relationship may not be valid .
As is common with most switching transistors, resistive
switching is specified at TC = 2S o C and has become a
benchmark for designers. However, for designers of
high frequency converter circuits, the user oriented
specifications which make this a "SWITCHMODE"
transistor are the inductive switching speeds (tc and tsv)
which are guaranteed at TC = lOOoC.

•

RESISTIVE SWITCHING PERFORMANCE
FIGURE 8 - TURN·ON TIME

"'
]

........

'P

~ 25"s.IDu.yICYCI~" b

"........

'"

.......

...........

/

_

'"r-.......

o.2

f:=Vcc = 250 V
f---lcliB=20
f--- VBEIDIf) = 5 V
0.5 f--- TJ 25DC

.,.,

~

"

...

~ O. 2 /

>1

;::

/

/

i't'-

V

.... ,

'P = 25",. Duty Cycl. " 2%

o. 1

i'..

o. I

f--

]

L

V

C

IcliB =20
TJ=25 DC

.........

w

;::

I

/

I I
VCC = 250 V

......

0.5

FIGURE 9 - TURN-OFF TIME

I

/

If

'd

0.0 5

5
10
IC. CDLLECTDR CURRENT (AMP)

. 20

20

5
10
IC. COLLECTOR CURRENT (AMPI

FIGURE 10 - THERMAL RESPONSE

I
_:;;00-

1IIIIt;;;.oIIT~JUl

0.05 _

--j 'I ~'2-

0.02.,.,

I-

d-::: -

0.03
0.02 ""'"'" 0 01
.....
0.01

"'1'

I

~

Z,'JCItI' ,1'1 RUJC
RUC = IDCN! Max
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 'I
TJlpk) - TC' Plpkl ZeJCltl

DUTY CYCLE. 0 =""2

SliG~E i~Lr~

I • I II
10

I

I
20

I

I I I I I II

I

I

I

I I I II

I
O.O~~~~~~~~~~~-L-L~~~~~
__~~-LLU~-L~~~~~~=-~~-L-L~~~
0.02

0.05.

0.1

0.2

05

1,

TIME Imsl

4-460

50

100

200

500

1k

MJ10008, MJ10009

SAFE OPERATING AREA INFORMATION

The Safe Operating Area figures shown in Figures 11 and 12 are
specified ratings for these devices under the test conditions shown.

FIGURE 11 - FORWARO BIAS SAFE OPERATING AREA
50
101-15

20
10
5

ii:

...'"

~

100",

2
1

iii
.,

.,

.,a

m'

.

0.2

-'

0.1~

~

-

8 0.05

.. Bonding Wire Limit

Thermallimil @TC:: 25 0 CI
ISingle Pulse)
Second Breakdown Umlt

de

S! 0.02
0.D1
0.005
6

10

50

20

~;:~~~:~ ~
200

100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

~
450 600
500

FORWARD BIAS
There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate .
The data of Figure 11 is based on TC = 25 0 C; TJ(pk)
is vanable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;. 250 C. Second breakdown Iimitations
do not derate the same as thermal Iimitations. Allowable
current at the voltages shown on Figure 11 may be found
at any case temperature by using the appropriate curve on
Figure 13.
TJ(pk) may be calculated from the data in Figure 10.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.

FIGURE 12 - REVERSE BIAS SWITCHING
SAFE OPERATING AREA (MJ10009)
20

I

18

~

14

.,i5

12

...

,

16

~

f----

\.

TC=100oC
IC/IB1" 20

~

<=
10
'-'
<=

..
.~
:::>

'-'

S!

For MJ1000B. the turn·off
8 rlold line IimiU are 50 V less.

6

VBE(oH) = 5 V
=2V
-OV-

4
2
0

0

,\\
\' ~
M

"'

\

400
200
100
300
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

500

REVERSE BIAS
For inductive loads, high voltage and high current must
be sustained simultaneously during turn-off, in most cases,
with the base to emitter junction reverse biased_ Under
these conditions the collector voitage must be held to a
safe level at or below a specific value of collector current,
This can be accomplished by several means such as active
clamping, RC snubbing, load line shaping, etc, The safe
level for these devices is specified as VCEX(sus) at a given
collector current and represents a voltage-current condition that can be sustained during reverse biased turn-off.
This rating is verified under clamped conditions so that
the device is never subjected to an avalanche mode. Figure 12 gives the complete reverse bias safe operating area
characteristics. See Table 1 for circuit conditions.
FIGURE 14 - REVERSE BASE CURRENT •• rsus
VBE(offl WITH NO EXTERNAL BASE RESISTANCE

FIGURE 13 - POWER DERATING
100

~ t--..

r---...

"'"1"""-

..

.,~80
t;

Derating-

~

.

ffi40

..........
..............

~

""

a:

0

o
o

40

,-

Derating

r--....
"-

,/'

Forward Bias
Second Breakdown -

...... ~

Therm8~

...:tz 60

I

0

BO
120
TC, CASE TEMPERATURE (DC)

V

7

./

V

5

V

V
IC = lOA

V
2 ~ Sel Table 1 for canditions•
Figure 7 for aveshapl.

.........

160

"" "'"

200

0

I
YBE(olf), REVERSE BASE CURRENT (YOLTS)

4-461

,

•

MJI00ll

Advance In.formation

8 AMPERE

NPN SIUCON
DARUNGTON
POWER TRANSISTOR

DARI..INGTON
HORIZONTAl.. DEFl-ECTION TRANSISTOR

.

1400 VOLTS
80 WATTS

, , , specifically designed for use in deflection circuits,

'

+-•

•

VCE(sat) = 3,0 Volts (Max)@IC=4,OAm ps.18=200m;-:A_ _

•

Built·ln Damper Diode

•

VCEX = 1400 Volts

•

Glassivated Base·Collector Junction

o Safe Operating Area @ 50!1s = 25

A.

200 V

MAXIMUM RATINGS
Symbol

Value

Unit

VCEX

1400

Vdc

Emitter Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous
Peak (11

IC
ICM

8.0
16

Adc

Base Current - Continuous
Peak (11

IB
IBM

2.0
4,0

Adc

Emitter Current - Continuous
Peak (I)

IE
IEM

10
20

Adc

Total Power DISSipation @ T C == 25 0 C

Po

80
0.6

Watts
W/oC

TJ, T stg

-65 to +150

°c

Symbol

Max

Unit

ReJC

1.56

°CIW

TL

275

°c

Rating
Collector-Emitter Voltage

Derate above 2SoC
Operatmg and Storage Junction
Temperature Range

Lr~
r~K
ESEATIN!~
PLANE

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Maximum Lead Temperature for
Soldering Purposes:
1.8" from Case for 5 Seconds

STYLE I'

(1) Pulse Test: Pu Ise Width = 1 ms, Duty Cycle.;;,;; 10%.

PIN 1. BASE
2. EMITTER
CASE, COLLECTOR

FIGURE 1 - FORWARD BIAS SAFE OPERATING AREA
20
0:

...z"

:>
w

'"'"=>
u
'"

0

0
0

MILLIMETERS
DIM MIN MAX

1.0 ms

A

2. 0

B
C

10
O. 5

~
S

D
E

0.2

O. 1
0.0 5

£? 0.0 2
00 1
0.00 5
7.0

-

-

6.35
0.99

-

F 29.90
G 10.67

de

5.33
J 16.64
K 11.18
n 3.84
H

BONDING WIRE LIMIT
- - - - THERMAL LIMIT ISINGLE PULSE)
- - - SECOND BREAK.DDWN LIMIT
10

.

~-+---,,<:
--+-.~~

20
30
50 70 100
200 300
VCE, COLLECTOR EMITTER VOLTAGE IVDLTSI

500 700

4-462

R

-

·39.37
21.08
7.62
1.09
3.43
30.40
11.18
5.59
11.15
12.19
4.09
26.67

INCHES

MIN

MAX

-

1.550
0.830
0.300
0.043
0.135
1.191
0.440
0.220
0.675
0.480
0.161
1.050

0.250
0.039

-

1.177
0.420
0.21
0.655
0.440
0.151

-

CASE 11·01

TO·3

I

MJ10011

ELECTRICAL CHARACTERISTICS

(TC

=

25 0 unless othe,wlSe notedl

Characteristic

OFF CHARACTERISTICS (1)
VCEOlsus)

700

-

-

Vdc

Collector Cutoff Current

ICES

-

-

0.25

mAde

IVCE = 1400 Vde, VSE = 0)
Em itter Cutoff Current
(VSE = 4.0 Vde, IC = 0)

IESO

-

-

50

mAde

-

-

3.0
3.0

-

-

2.0
2.0

1.2

2.0

Collector·Emltter Sustaining Voltage

lie = 100 mAde, IS = 01

ON CHARACTERISTICS III
Collector-Emitter Saturation Voltage

Vde

VCElsat)

(Ie = 3.5 Ade, IS = 0.15 Ade)
(lC = 4.0 Adc, IS = 0.2 Ade)
Base Emitter Saturation Voltage

Vde

VSElsat}

IIC = 3.5 Ade, IS = 0.15 Ade)
IIC = 4.0 Ade, IS = 0.2 Ade)
Forward Diode Voltage

VI

IIF = 4.0 Adc)
Second Breakdown Collector Current with Base Forward Biased

See Figure 1

ISlb

SWITCHING CHARACTERISTICS
Fall Time (See Figure 2)

IIC = 4.0 Adc, lSI = 0.2 Adcl
(1) Pulse Test: Pulse Width'" 300

}lS,

Duty Cycle

=.

2%.

FIGURE 2 - FALL TIME TEST CIRCUIT
Driver Supply

lW

+24 V

680

2.2 k

0.0075/
100 V

Width
Adj,
1 k

1.8 k

10

Capacitor values in JlF, resistors 1/4 watt unless
o!herwise noted,

5W
-+ 125 V

FIGURE 3 - DC CURRENT GAIN
200

V~E! 5.~ ~

......

I-

TC = 25 0 C

"\

~

10
01

0.2

1.0
05
2.0
'C, COLLECTOR CURRENT (AMPI

4-463

5.0

10

Vdc

•

IJ10012

NPN SILICON POWER DARLINGTON TRANSISTOR

15 AMPERE PEAK

The MJ1 0012 is a high·voltage, high·current darlington transistor
designed for automotive ignition, switching regulator and motor con·
trol applications.

POWER TRANSISTOR
DARLINGTON NPN SILICON
400 VOLTS
175 WATTS

• . Coliector·Emitter Sustaining Voltage VCEO(sus) =400 Vdc (Min)

•

•

175 Watts

Capabili~Y

Collector

at 50 Volts

• Automotive Functional Tests

Emitter

MAXIMUM RATINGS
Symbol

Value

Unit

Collector·Emitter Voltage

VCEO(SUS)

Collector.Emitter_Voltage
(RSE = 27 n)

VCER

400
550.

Vdc
Vdc

Collector·Base Voltage

VCBO
VEBO
IC

600
8
10
15

Vdc
Vdc
Adc

IB
Po

2
175
100
1
-65 to +200

Adc
Watts
Watts
W/oC

Rating

Emitter-Base Voltage
Collector Current - Continuous

-Peak (1)
Base' Current
Total Power Dissipation @TC

@>TC

= 2SoC

= 100°C

Derate above 2SoC
Operating and Storage Junction
Temperature Range

TJ, Tstg

Characteristic
Maximum Lead Temperature for Soldering

Es~1
PLANE

STYLE 1:
PIN 1. BASE
2. EMI'ITER
CASE: COLLECTOR

Dc

MILLIMETERS

DIM MIN

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case

Lr~
r~.

Symbol

Max

Unit

R6JC
TL

1
275

DcIW
"C

--

A
B
C
0

6.35
0.99

E
f

.90

-

o.

H
J

Purposes: 1/8" from Case for 5 Seconds

K
0
R

(1) Pulse Test: Puis. Width = 5 ms, Duty Cycle ... 10%.

1.18

3.14

-

MAX
39.37
21.08
7.62
1.89
3.43
30.40
11.1a
5.59
17.15
12.19
4.09
28.67

INCHES
MAX
MIN
~

-

0.250
0.039

0.043
0.135
1.171 ·1.197
0.420 0.440
0.210 0.220
0.655 0.675
0.440 0.480
0.151 0.161
1.050
-

-

CASE 11·01
TO·3

4-464

1.551!
0.830

MJ10012

ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted)

I

I

Symbol

Min

Typ

Max

VCEO(sus)

400

-

-

Vde

VCERlsus)

425

-

-

Vde

Collector Cutoff Current
(Rated VCER, RBE = 27 Ohms)

ICER

-

-

1

mAde

Collector Cutoff Current
IRated VCBO, IE = 0)

ICBO

-

-

1

mAde

Emitter Cutoff Current

lEBO

-

-

40

mAde

(lC a 3 Ade, VCE· 6 Vdel
(lC • 6 Ade, VCE = 6 Vdel
(lC = 10 Ade, VCE = 6 Vdel

hFE

300
100
20

-

-

Collector-Emitter Saturation Voltage
(lC = 3 Ade, IB = 0.3 Adel
(lC = 6 Ade, IB = 0.6 Adel
(lC = 10 Ade,IB = 2 Adel

VCElsat)

Base-Emitter Saturation Voltage
IIc = 6 Adc, IB = 0.6 Adc)
(lc = 10 Ade, IB = 2 Adel

VBElsati

Base-Emitter On Voltage
(lC = 10 Ade, VCE = 6 Vde)

VBElon)
Vf

Charactoristic

Unit

OFF CHARACTERISTICS (1)
Collector-Emitter Sustaining Voltage (Figure 1)
(lc = 200 mAde, I B = 0, Vel amp = Rated VCEO)

Collector-Emitter Sustain!"g Voltage (Figure 1)
IIC = 200 mAde, RBE = 27 Ohms,
Velamp = Rated VCER)

(VEB • 6 Vde, IC

a

01

ON CHARACTERISTICS (11

DC Curront Gain

Diode Forward Voltage

550350
150

4000

Vde

-

-

-

2.5
3

-

-

2.8

Vde

-

2

3.5

Vde

1.5
2
2.5

-

Vde

(IF = '10 Adel
DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 10 Vde, IE = 0, f test = 100 kHz)

(VCC

= 12 Vde,

= 6 Ade,
IBl = IB2 = 0.3 Ade)
IC

Figure 2

FUNCTIONAL TESTS
Second Breakdown Collector Current with
Base-Forward Biased

Pulsed Energy Test ISee Figure 121

IC2L

-2III Pulse Test: Pulse Width

rI

ov--1
:

n

~.

L

c

10 mH

---j " : - 100

f- 5 ms ..j

Vcl amp

220

• Adjust tl such that
Ie reaches 200 mA
at VCE == Vcl amp

I

-

I

180

FIGURE 2 - SWITCHING TIMES
TEST CIRCUIT

Vee"" 20 Vdc

L

-

= 300 IlS, Duty Cycle = 2%.

FIGURE 1 - SUSTAINING VOLTAGE
TEST CIRCUIT

10V

-

See Figure 10

IS/B

27

Vclamp

VCEO(sus) :: 400 Vdc
V CE A (sus) == 425 Vdc

4-465

mJ

MJ10012

FIGURE 4 - COLLECTOR-SATURATION REGION

FIGURE 3 - DC CURRENT GAIN
2000

~o

TJ-1500 e
1000

z 100

iii

500

~

30 0

/'"

~I

70

Ti

,p

-

•

~

2:

0.3

~
o

IC = 0.5 A

~

w

I

<.>

> 0.5

10

0.02
0.05
0.1
0.1
Ie. BASE CURRENT (AMP)

lelle = 5

2.8

~

0

2:

TJ = 150 0 C

2.4

II II
- - - VeE("I)@le/le = 5
------ VeE (on) @VCE = 6 V

-

w

'"«

1.4

~

f:.-:: ?

-300 e

>

TJ = -30 0 C

'"~
....

-2sbc

V

-2.5!C_

-'Loy

1.6

1ij

w

~

0.6

~

1.2

'"'"

>

o

0.2
0.1

0.2

0.3

>

10

0.5 0.1
Ie. COLLECTOR CURRENT (AMP)

0.8

--f-

--

FIGURE 7 - TURN-OFF SWITCHING TIME

0.2

0.3

~

1
-- O. 1
O. 5

0.5 0.1
IC. COLLECTOR CURRENT (AMP)

VCE - 250 Vdc
TJ=1500 C

If

V

150 0 C

10

FIGURE 8 - COLLECTOR CUTO.FF REGION

Is

,

...v

1.1-

r-

0.1

0

~
w

_--V

II

!:i
0

25 0 e

,;,
o

0.5

FIGURE 6 - BASE-EMITTER VOLTAGE

II
II

-....-

lOA

6

r-0.005 0.01

0.002

"

3

"

8

0.5 0.1
Ie. COLLECTOR CURRENT (AMP)

~
1ij

~

1\

1.5

'"o

o

~

I\,

~

U;I

;; 1.8

a'"

1\

'"

;;;

II II
0.2

TJ = 250 C

w

ooe

~ 2.2

~

\

1'\

FIGURE 5 - COLLECTOR-EMITTER
SATURATION VOLTAGE

o

~

\

>

!:i
o

- - - - - VeE = 6 Vdc

./

20 0. 1

.~

«

VeE '3Vdc

50
30

\

~ 2.S

-

II . . . . . i'"'"

<.>

W

1""'-

,,/

a- 200 /
clOD

-

25 0 e

\
\

\

>

./

./

Ie = lelES
TJ = 25 0 C
Iclle = 20
VCE =12 Vdc

1

-15 0 e

0.3
=250 e

O. 2

REVERSE

O. 1

0.2

10- 1
0.3

0.5

0.7
1
2
IC. COLLECTOR CURRENT (AMP)

10

-0.2

20

4-466

FORWARD

o

+0.2
+0.4
+0.6
VeE. eASE·EMITTER VOLTAGE (VOLTS)

+O.B

MJ10012

~:0
«

FIGURE 9 - THERMAL RESPONSE
1

i

~~5

~

o. 3

w

~

~~
«

7 0-0.5

0.2
2.
-0.1
O. 1 0.05

L---

:~~.~~
E
~

:=

-

]1[L

Plk)

-=

IJ

00

0.0

12

0.03'-+-"'-

~ 0.02

~
1-.

~

::::srNG~E PU~SE

00 1
. 0.01

DUTY CYCLE, 0

I I

=

11/12

ROJC(t) = r(11 ROJC
AOJC'" C/W Max

o CURVES APPLY FOR POWER
PULSE TRAIN SHOWr~
READ TIME AT 11

TJ(,k)

I 111111
0.1

0.05

0.02

01

10

0.5

20

100

50

TC - P(,k) ROJC(II

I 111111
200

500

1.000

2.000

t. TIME (ms)

FIGURE 10 - FORWARD BIAS SAFE OPERATING AREA

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e .• the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 10 is based on TC = 25 0 C; TJ(pkl is
variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;;. 25 0 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 10 may be found
at any case temperature by using the appropriate curve on
Figure 11.
TJ(pkl may be calculated from the data in Figure 11.
At high case temperatures. thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.

0
0
0:
:;

0

5

5

w

2

....z

'"'"
~
'"~

.....

100j.JS-

50 ms
10ms-1-

1

01

de

jo 1
8

Te -15°C
BONDING WIRE LIMIT
- THERMAL LIMIT (SINGLE PULSEI
SECOND BREAKDOWN LIMIT

;:'

00 1
0.00 5
5

10

10

30

50

70

100

200

300.

500

VeE. COLLECTOR·EMITTER VOLTAGE (VOL TSI

FIGURE 12 - USAGE TEST CIRCUIT

FIGURE 11- POWER DERATING
'10 0

~ t-.....

0

""'"

o

................

"""

THERMAL
DERATiNG

0

'0

10mH

40

Stan core

............

~

BO

SECOND BREAKDOWN
DERATiNG-

1.5
Vee'" 12 Vdc

120

TC. CASE TEMPERATURE 10C)

Vz = 400 V

10 Vdc

............

'" "

C2688

o~
5 ms

.........

I
I
.~

............

I

20

lN4933
0.3

220

"
160

27

"F

""-

"""

200
t1 to bo solectod such that JC roaches 6 Adc before switCh-off.

NOTE:
"Usago Tost," Figure 12 spoclflol enorgy handling capabilities
In an Dutomotlvo Ignition circuit.

4-467

M1I0013
M1I0014
D~~i g:n:e
I'S Bata Sheet
"

10 AMPERE

,

NPN SILICON
SWITCHMODE SERIES
NPN_SILICON POWER DARLINGTON TRANSISTORS

POWER DARLINGTON
TRANSISTORS

The MJ10013 and MJ10014 Darlington transistors are designed
for high-voltage, high-speed, power switching in inductive circuits
where fall time is critical. They are particularly suited for lineoperated switch mode applications such as:

•

..

•
•
•
•
•

550 AND 600 VOLTS
175 WATTS

f

Switching Regulators
Inverters
Solenoid and Relay Drivers
Motor Controls
Deflection Circuits

W

Fast Turn-Off Times

=tI100

"15

Designers Data for
"Worst-Case" Conditions
The Designers Data Sheet permits
the desigQ of most circuits entirely from
the information presented_ Limit datarepresenting device characteristic
boundaries-are given to facilitate

6

250 ns Inductive FAil Time-25 0 C (Typ)
500 ns Inductive Crossover Time-,25 0 C (Typ)
1.4 f-lS Inductive Storage Time-25 0 C (Typ)

•
•

Operating Temperature Range: -65 to

"worst-case" design.

+200 0 C

1000 C Performance Specified for:
R'eversed Biased SOA With Inductive Loads
Switching Times With Inductive Loads
Saturation Voltages
Leakage Currents

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous

-Peak (11
Base Current - Continuous

- Peak (11
Total Power Dissipation@TC = 25°C
@TC= 100°C
Derate above 25°C

Symbol
VCEOlsus)
VCEV
VEe
IC
ICM
IS
IBM ,
Po

Operating and Storage Junction
Temperature Range

MJ10013
550
650

TJ,Tstg

I

I
I

MJ10014
600
700

8
10
15
7
10
175
100
1
-65 to +200

Unit

Vdc
Vdc
Vdc
Adc

Characteristic
Maximum Lead Temperature for Soldering

ES:?-t;:

Watts
W/oC

°c

PIN 1. BASE

2, EMITTER
CASE COLLECTOR
MILLIMETERS
INCHES
DIM MIN MAX
MIN MAX

Symbol

Max

Unit

A

' R8JC
TL

1
275

°C/W

C
0
E

Purposes: l/S" from Case for 5 Seconds

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle .. 10%

°c

I

-

35
0.99

-

f 29,90
G 10, 7
H
J 16,64
K II.1B
Q
3,84
R

-

39,37
21,UB
7,2
1.09
3,43
31UO
11.18
5,9
17.15
12,19
4,09
26.67

-

0,
0,039

-

1.177
0,420
O. 10
0,655
0,440
0,151

-

Colltclorconnectldtoc_
CASE ,11·01

TO·3
DeSigners and SWltchmode are Trademarks of Motorola Inc.

4-468

I·

PLANE

Adc

THERMAL CHARACTERISTICS
Thermal Resist8oca. Junction to Case

Lr~
r~,

1,550
0,B30
0
0,043
0,135
1.197
0,440
0,220
0,675
0,4eo
0,161
1,050

MJ10013, MJ10014

ELECTRICAL CHARACTERISTICS ITC" 25°C unless otherwISe notedl
Characteristic

Symbol

Min

Typ

Max

550
600

-

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (Table 1)

(lC= 100mA.IB =01
.'

Collector Cutoff Current

-

Collector Cutoff Current

n. TC

ICER

-

mAde

ICEV

IVCEV ~ Rated Value. VBEloltl = 1.5 Vdel
IVCEV ~ Rated Value. "BEloltl = 1.5 Vde. TC = 1500 CI
IVCE = Rated VCEV. RBE = 50

Vde

VCEOlsusl
MJ10013
MJ10014

-

-

.,

0.3
5
5

mAde

175

mAde

= 100DCI

Emitter Cutoff Current

lEBO

IVEB = 2 Vde. IC = 01
SECOND BREAKDOWN
Second Breakdown Collector Current with base forward biased.

See Figure 12

Clamped Inductive SOA with Base Reverse Biased

See Figure 13

ON CHARACTERISTICS 121
DC Current Gam

-

hFE
10

-

500
250

-

-

2.5
2.6

.-

3

'20

(lC = 5 Ade. VCE = 5 Vdel
(lC = 10 Ade. VCE = 5 Vdel
Collector-Emitter Saturation Voltage

Vde

VCElsatl

(lC = 10 Ade. IS = 2 Adel
(lC = 10 Ade. IS = 2 Ade. TC = 100 0 CI
Base-Emitter Saturation Voltage

VBElsatl

Vde

-

-

Vf

-

3

5

Vdc

Smail-Signal Current Gain
(lC = 1 Ade. VCE = 10 Vdc. f test = 1 MHzl

I hIe I

10

-

-

-

Output Capacitance
IVCS = 10 Vde.IE = O. f test = 100 kHzl

Cob

100

350

pF

td

-

I"

(lC = 10 Ade. IB = 2 Adel
(lC = 10 Ade. IS = 2 Ade, TC = 1000CI
Diode Forward Voltage 11 J

3

(IF = 10 Adcl
DYNAMIC CHARACTERISTICS

SWITCHING CHARACTERISTICS
ReSistive Load (Table 11

Delav Time
Rise Time
Storage Time

IVCC = 250 Vdc. IC = 10 A.
ISl = 400 rnA. VBEloltl = 5 Vdc. tp = 50 ~'.
Duty Cycle'; 2%1.

0.02

0.2

tr

0.9

2

ts

4
1

tf

-

0.95
0.22

IIc = 10 Alpkl, Vcl amp = 250 Vdc.ISl = 1 A.
VBEloffl = 5 Vde, TC = 100 0 CI

ts

-

2.3
1

6

te

(Ie = 10 Alpkl. Vcl amp = 250 Vdc.ISl = 1 A.
VBEloff) = 5 Vdc. TC = 25 0 CI

ts

-

1.4
0.5

-

-

0.25

-

Fall Time

~,
~,

,.,

Inductive Load, Clamped (Table 1)
Storage Time
Crossover Time
Storage Time
Crossover Time
Fall Time

te
tfi

(11 The internal COllector·to·Emitter diode can eliminate the need for an external diode to clamp inductive loads.
Tests have shown that the Forward Recovery Voltage (Vf) of this diode is comparable to that of typical fast
recovery rectifier$.

121 Pul'e Test: . PW = 300 Il', Duty Cycle.; 2%.

4-469

3

~s

,.,
,.,
,.,
~,

•

MJ10013, MJ10014

TYPICAL CHARACTERISTICS

FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE 1 - DC CURIIENT GAIN

40O'
200

I--. TJ!

l.--

'"

;;: 100

~

ISO'~

"~
w

.C>

,

r-...

a

60

u

;"

20

./

V

'"

10

,

">

2. B

1il

2.2

~

1.&

'"
....
....

2S'C

40

3.4

<

:;

C>

§

1 1 _I
TJ·25'C

'"

VCE· S V

""'
c

\

•

~

>

O.IS

0.2

0.3

O.S 0.7
IC. COLLECTOR CURRENT (AMPI

10

N.

~

u

4

~~

IC· 2.S A \ SA

II "H- 1-1..

1
0.01

0.02 0.03 O.OS 0.07 0.1
0.2 0.3 O.S 0.7 1
lB. BASE CURRENT IAMPI

FIGURE 3 - COLLECTOR·EMITTER.
SATURATION VOLTAGE
2. B

2

2.4

,

I

I II

~

-t~

ICIIB ·10

w
C>

<

:;

">

>

-

TJ·1S0'C
O. S

I

o
0.1

0.2

0.3

,

~

//

w

2S'C

C>

.

/

~~

X ...

1. &

>
1. 2

O.S 0.7
IC. COLLECTOR CURRENT (AMPI

-

O.B
0.1

10

IIII

ICIIB· S

-VBE(,nl@3 V· VCE

~

c

/

-----

TJ = 25°C

S 7 10

VBEI",I @ IC/IB • 10

....
Ilc/IB·~

1.S

3

FIGURE 4 - BASE·EMITTER VOLTAGE

2. S

II

~
"
~

2

25°C

"

----

~
f0.2

...... ~
'/

V
.·I'SO'C

I

I

0.3
O.S 0.7
IC. COLLECTOR CURRENT IAMPI

10

FIGURE 6 - OUTPUT CAPACITANCE

FIGURE 5 - COLLECTOR CUTOFF REGION

100 0

104

-

/

iL 50 0

/

TJ - 12S'C

2

70 0

./

3 -VCE-250V

~300

/

~ 200

....
;:;

100'C

./

7S'C

./

TJ·2S'C

~,100

I

5

"'" 'r-.

0
7
~ 50
c
0
Q
U
20

1

'"'
:::>

~R"'''''

10- 1
·0.2

t--Fi rward
2S'C

+0.2

/

+0.4

+0.6

+O.B

VBE. BASE·EMITTER VOLTAGE (VOLTSI

4-470

10
. 0.4 0.&

C,'b

4 & 10
20
40 &0
VR. REVERSE VOLTAGE IVOLTSI

100

200

400

MJ10013, MJ10014

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE

VCEOlsus)

RESISTIVE
SWITCHIN

RBSOA ANO INOUCTIVE SWITCHING

Pulse ~V
[

Width]

Pulse Width
adjusted 10

O. MJE210

IRII'II\t.~e

CS M1E200

SWItt.hin;.

PW V.ned to
Ie" 2S0mA

Puls.1Il Width

An.i.,

21\,~9;;)7

2""2222

03 1NJ762

.obtain spac,f,ed

Ie

01
02

.. SO psi

Len,1 = 180,uH
Rcoll ~ 005H

Vee

~

tN914

02

1N914

OJ

lN914

Vcc- 2S0v
RL" 25 n

20V

Pulse W,dlh - 50 JJI

OUTPUT WAVEFORMS

INDUCTIVE TEST CIRCUIT

01

RESISTIVE TEST CIRCUIT
t1 AdJusted 10
Obtain Ie

..."'
S
u

a:

U

...
...~.

S-Abov. fOf

Oetai'5d Conditions
Tast Equipment
Scope - TekUOnll!
475 or Equivalent

SWITCHING TIME NOTE
tsv = Voltage Storage Time, 90% lSI to 10% Vcl amp
trv -" Voltage Rise Time, 10-90% Vcl amp
tfi = Current Fall Time, 90-10% IC
tti = Current Tail, 10-2% IC
te = Crossover Time, 10% Vcl amp to 10% IC
An enlarged portion of the turn·off waveforms is shown in
Figure 7 to aid in the visual identity of these terms.

In resistive switching circuits, rise, fall, and storage times
have been defined and apply to both current and voltage
waveforms since they are in phase. However, for inductive
loads which are common to SWITCHMODE power
supplies and hammer drivers, current and voltage wave·
forms are not in phase. Therefore, separate measurements
must be made on each waveform to determine the total
switching time. For this reason, the following new terms
have been defined.

- continued -

FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS

....... i-""'"

./

Vtl~mp_

'\
90% V,I.mpj

-

/
VeE

100V,lamp

r-

-- --\- -- --- --

""'-"""

I"

10% ' "
ICPK-

90% 101

.,.~

I

./

IC"IOA
10,"1 A

1\ 90% Ie
5.0

I

ii!

--J 1- 1, - \ I-

lO-

I--- r-

'rvffl~'fi- - l l i -

~ r-Isv

IC ..........

FIGURE 8 - PEAK REVERSE CURRENT

8.0

I~

:s"

ffi

- -

/

V
..........

~

~i;

. . . .V

V

2.0

./

1.0
1.0

2.0

.

5.0

VBEioff).-BASE.EMITTER VOLTAGE (VOLTS)
TIME

4-471

8.0

•

MJ10013, MJ10014

TYPICAL CHARACTERISTICS

SWITCHING TIMES NOTE (continued)
For the designer, there is minimal switching loss during
storage time and the predominant switching power losses
occur during' the crossover interval and can' be obtained
using the standard equation from AN-222:
PSWT = 1/2 Vcclc(tcl f
In general, trv + tfi "" tc. However, at low.er test currents this relationship may not be valid.
As is common w.ith most switching transistors, resistive
switching is specified at 2SOC and has become a benchmark
for designers. However, for designers of high frequency
converter circuits, the user oriented specifications which
make this a "SWITCH MODE" transistor are the inductive
switching speeds (t c and tsv) which are guaranteed at

•

lOOoC.

RESISTIVE SWITCHING PERFORMANCE
FIGURE 9 - TURN-ON TIME
1. 0
O. 7~TJ-25OC
o. 5~ IC/lo = 10
r- VCC = 250 V
O.3

O. 2

0.7

t,V

0.5

/

j

"-

~ o. I
:.0.07

~

-

0.0 5
0.03
0.0 2

0.0 1
1

FIGURE 10 - TURN-OFF TIME
1

td

I--

r-

0.3

~

V

r-t--.
f"-..

VOEloff)· 5 V
VCC=250V
Icilo = 10
TJ=rO C

0.2

-

--

....-

t\

O. 1
1.5

1.5

10
IC. COLLECTOR CURRENT lAMP)

10
IC. COLLECTOR CURRENT lAMP)

FIGURE 11 - THERMAL RESPONSE

I

TIME Imsl

4-472

MJ10013, MJ10014

SAFE OPERATING AREA INFORMATION

The Safa Operating Arsa figures shown in Figura 12 and 13 are
specified for thoses devices undor th. tent conditions mown.

FORWARD BIAS
FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA
50

;;0

'"
~

20
10

100",

5

S

lms-

2
1

DO

=>
'-'

0.5

DO
0

~

5m'

de

0.2

- BONDING WIRE LIMITED
- -THERMALLY LIMITED

0.1

8 0.05

SECONO BREAKOOWN lIMITEO
CURVES APPLY BELOW RATEO VCEO

~ 0.02

~mm; ~~

0.01
0.005
0.7 1

500
700

10
100
200
5
2
50
20
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 13 - REVERSE BIAS SWITCHING
SAFE OPERATING AREA

10

I

I

REVERSE BIAS

I

Turn· off load line

;;0

8

'">-

S

~DO

r-- boundary for MJ10014
r--- The locus for MJ10013
is 50 volts less.

6

a
'"
8j
0

4

8

2-

~\

2)-

[\.. v

"

~ 1'0..

r---

j
0

i--' VBE(olf) - 5 V

l\"

100

TJ ';;100oC

./

'1

O~

V

~ t-...

IC/ I B"5

400
500
600
200
300
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC- VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dis~ipation than the curves indicate.
The data of Figure 12 is based on TC = 25 0 C; TJ(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;. 25 0 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 12 may be found
at any case temperature by using the appropriate curve
on Figure 14.
T J(pk) may be calculated from the data in Figure 11.
At high case temperatures. thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.

For inductive loads. high voltage and high current
must be sustained simultaneously during turn·off, in
most cases, with the base to emitter junction reverse
biased. Under these conditions the collector voltage
must be held to a safe level at or below a specific value of
collector current. This can be accomplished by several
means such as active clamping. RC snubbing, load line
shaping. etc. The safe level for these devices is specified
as Reverse Bias Safe Operating Area and represents the
voltage·current conditions allowable during reverse biased
turn·off. This rating is verified under clamped conditions
so that the device is never subjected to an avalanche mode.
Figure 13 gives the complete RBSOA characteristics.

700

FIGURE 14 - POWER DERATING

100

0

0

~ t-.....

"

i'---.

1"-.... .......

"-

~

Second Breakdown Qeratlng

......;:..
.................

~

ThermalOeratlng

0

r----..

........

"

.........

0

"'" "-....

o

o

40

120
TC. CASE TEMPERATURE (DC)
80

4-473

160

200

MJI0015
MJI0016

50 AMPERE

SWITCHMODE SERIES
NPN SILICON POWER DARLINGTON TRANSISTORS
WITH BASE-EMITTER SPEEDUP DIODE

•

NPN SILICON
POWER DARLINGTON
TRANSISTORS
400 and 500 VOL TS
250 WATTS

The MJ10015 and MJ10016 Darlington transistors are designed
for high-voltage, high-speed, power switching in inductive circuits
where fall time is critical. They are particularly suited for lineoperated switch mode applications such as:
• Switching Regulators
• Motor Controls
• Inverters
• Solenoid and Relay Drivers
• Fast Turn-Off Times
1.0 lIS (max) Inductive Crossover Time - 20 Amps
2.5 lIS (max) Inductive Storage Time - 20 Amps
• Operating Temperature Range -65 to +200 o C
• Performance Specified for
Reversed Biased SOA with Inductive Loads
Switcliing Time\ with Inductive Loads
Saturation Voltages
Leakage Currents

MAXIMUM RATINGS
Rating

Symbol

MJ10015

Collector·Emitter Voltage

VCEOlsus)

400

Collector·Emitter Voltage

VCEV

600

I MJ10016
I 500
I 700

Unit

Vdc
Vdc

Emitter Base Voltage

VEB

B.O

Vdc

Collector Current - Continuous,

IC
ICM

50
75

Adc

IB
IBM

10
15

Adc

PD

250
143
1.43

Watts
W/oC

TJ, T stg

-65to +200

°c

-Peakll)

Base Current - Continous
- Peak (1)

Total Power Dissipation @TC =: 2SoC
@TC=100oC
Derate above 25°C
Operating and Storage Junction

STYLE 1,

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering Purposes:
1/8" from Case for 5 Seconds

Symbol

Max

Unit

ROJC
TL

0.7

°CIW

275

°c

PIN 1. BASE
2. EMITTER
CASE. COllECTOR
DIM
A
B
C
D
E
F
G
H
J
K

n

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle';; 10%

R

MILLIMETERS
MIN
MAX

38.35
19.30
6.35
1.45

-

29.90
10.61
5.21
16.64
11.18
3.84
24.89

39.37
21.0B
1.62
1.60
3.43
30.40
11.18
5.72
17.15
12.19
4.09
26.67

INCHES
MIN
MAX
1.510 1.550
0.760 0.830
0.250 0.300
0.057 0.063
0.135
1.111 1.191
0.420 0.440
0.205 0.225
0.55 O.
0.440 0.480
0.151 0.161
0.980 1.050

-

CASE 197'()1
MOOIFIEO TO·3
SWltchmode IS a trademark of

Motorola. Inc.

4-474

MJ10015, MJ10016

ELECTRICAL CHARACTERISTICS (TC = 2SoC unle.. otherwise noted)
Characteristic

Symbol

Min

Typ

Max

400
500

-

-

Unit

OFF CHARACTERISTICS (1)
Collector-Emitter Sustaining Voltage (Table 1)

(lC

= 1~0 mA, IB =0, Vel amp = Rated VCEO)

Collector Cutoff Current
IVCEV = Rated Value, VBE(offl

= 1.5 Vde)

Emitter Cutoff Current

(VEB

= 2.0 Vde,

IC

Vde

VCEO(sus)
MJ10015
MJ10016

=0)

ICEV

-

-

0.25

mAde

lEBO

-

-

350

mAde

SECOND BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased

See Figure 7

Clamped Inductive SOA with Base Reverse Biased

See Figure 8

ON CHARACTERISTICS (1)
DC Current Gain

(lC = 20 Ade, VCE
(lc' 40 Ade, VCE

= 20 Ade, IB = 1.0 Ade)
= 50 Ade,IB = 10Ade)
= 20 Ade, IB = 1.0 Adcl

Diode Forward Voltage (2)

(IF

-

-

-

2.2
5.0

VBE(sat)

-

-

2.75

Vile

Vf

-

2.5

5.0

Vde

Vde

VCElsat)

Base-Emitter Saturation Voltage

(lC

-

25
10

Collector-Emitter Saturation Voltage

(lC
(lC

-

hFE

=5.0 Vde)
= 5.0 Vde)

= 20 Ade)

DYNAMIC CHARACTERISTIC
Output Capacitance
(VCB = 10 Vde, IE

=0, f test = 100 kHz)

SWITCHING CHARACTERISTICS
Resistive Load (Table 11
Delay Time

Rise Time
Storage Time

IV CC = 250 Vde, IC = 20 A,
IBl = 1.0 Ade, VBE(off) = 5 Vde, tp

= 251's

Duty Cycle .. 2%1.

Fall Time

td

-

0.14

0.3

I'S

t,

0.3

1.0

I'S

ts

-

0.8

2.5

ps

tf

-

0.3

1.0

I'S

Inductive Load, Clamped (Table 1)

Storage Time

Crossover Time

(lC = 20 A(pk), Vel amp -250 V, 'Bl
VBEloff) = 5.0 Vde)

11) Pulse Test: Pulse Width

= 1.0 A,

te

= 300 I'S, Duty Cycle .. 2%.

-

t s•

I

1'.0

I

0.36

I

2.5

I

1.0

I

(2) The internal Collector-to-Emitter diode can eliminate the need for an external diode to clamp inductive loads_ Tests have shown that
the Forward Recovery Voltage (Vf) of this diode is comparable to that of typical fast recovery rectifiers.

4-475

I'S

ps

MJ10015, MJ10016

TYPICAL CHARACTERISTICS
FIGURE 2 - COLLECTOR·EMITTER
SATURATION VOL TAGE

FIGURE 1 - DC CURRENT GAIN

100

z

~

2.4

......

50

I'-.

V

....

i
~

..

o

°v

;

~

I'\.
\

TC~25'C

VCE ~ 5.0 V

2

J

I

2.0

1.6

~

"''"
«

\

~

VJ

1.2

0

10
2.0
5.0
IC, COLLECTOR CURRENT lAMPS)

1.0

20

V

'TJ 25'C

-r-i-""
J-:I--"
TJ

O.S

5.0
0.5

VV

~

>
,;

,\

0

A

'(j

ICIIS ~ 10

0

50

~150'C

!----

0.4
0.5

f I II
5,0

2.0

1.0

10

20

IC, COLLECTOR CURRENT lAMP)

FIGURE 3 - BASE·EMITTER SATURATION VOLTAGE

FIGURE 4 - COLLECTOR CUTOFF REGION

2.S

10 4

2.4

3

r=VCE·250 IV

/11

~o

ICIIS ~ 10

2. 2. 0

'""'
~
o

>,

./
1, 6

>'

O.S
0.5

V

TJ ~ 25'C

.....- I- r--

-

2

V

V V
V

t-- t-'000C
I

V

l--'

i

2,0

./

2

r-- r-750C
FORWARD

!+REVERSE

1-:TJ......~ 150'C

1.0

IL

r-- TJ • moc

°F=F=25 0C

I
5,0

10

20

10' I
-02

50

to 2

IC, COLLECTOR CURRENT lAMP)

FIGURE 5 - OUTPUT CAPACITANCE

150 0

J

100ot-----

.......

TJ ~ 25°C

0

........
0

I"-.....

0

100
0,4

+04

VSE, SASE EMITTER VOLTAGE IVOLTSI

...... r---

1.0

4,0

10

40

VR, REVERSE VOLTAGE IVOLTS)

4-476

100

400

+06

50

MJ10015, MJ10016

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE

VCEOhusl

RESISTIVE
SWITCHING

VCEX AND INDUCTIVE SWITCHING

TURN ON TIME

'"2

... 0

~E

20
-2

o

PUIIIl W,dth

181 .dluued to

adjusted to

obtain the forced

obtain ,peclf,ed

U

hFE dll.,rad

Ie (Reslltlllit

TURN-OFF TIME

SWitching.
Pul.e Width
• 25 ~II
.

PW Varied 10 Attain

Ie = 100 mA

Use inductive SWitchinG
circuit •• tho Input to

the rll.lstlvlI test Circuit.

Leoil

=

01
02
03
04

180 j.lH

Rcoil = 005!l
Vee'" 20 V

INDUCTIVE TEST CIRCUIT

OS
01
02
03

2N2907
2N2222
2N3762
MJE210

MJE200

lN914
1N914
1N914

VCC=2S0V
RL'" 12.SS"!
Pulse W,dth'" 25 j.J.S

RESISTIVE TEST CIRCUIT

OUTPUT WAVEFORMS
11 Adjusted to

Obtain Ie

'"...S

LconflCpk)

u

'1

'ij..."

A:---VCC-

12'" Leo.1 (lCpk)

...'"w

Vclamp

veEt vc""[::'

~mp
T,~.

Teu EqUipment
Scope - TektrorulC
475 or EqUivalent

1--'2-1

-Adjust -V such that VBE(off) = 5 V except as required for RS SOA (Figure 12),

FIGURE 6 - INDUCTIVE SWITCHING MEASUREMENTS

IC~

/

!--"'"

.,;"
IC""""

"10.

-

I1\ 90% IC
ffllJt 'H-- ";-

90% Vclilmp

f-- - t s v

' rv

~ f-l,-\

r--

V

1,\

10% Vclamp

VCE

l a -i -

Vcl amp _

I~

1

90%IBI

-- --\- -"

"-"

-

---

10% .......
IC pK -

tsv
trv
tfi
tti
tc

-;\i;

- -

= Voltage Storage Time, 90% IB1 to 10% Vcl amp
= Voltage Rise Time, 10-90% Vclamp
= Current Fall Time, 90-10% IC
=

Current Tail, 10 - 2% IC

= Crossover Time, 10% Vcl amp to 10% IC

For the designer, there is minimal switcning loss during
storage time and the predominant switching power losses
occur during the crossover interval and can be obtained
using the standard equation from AN·222:

TIME

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage
times have been' defined and apply to both current a~d
voltage waveforms since they are in phase. However,
for inductive loads which are common to SWITCHMODE
power supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate measure·
ments must be made on each waveform to determine the
total switching time. For this reason, the following new
terms have been defined.
'

In general, trv + tfi == tc. However, at lower test currents
this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified and has become a benchmark for
designers. However, for designers of high frequency con·
verter circuits, the user oriented specifications which
make this a "SWITCHMODE" transistor are the inductive
switching speeds (tc and tsv) which are guaranteed.

4-477

~Jl0015,

MJ10016

SAFE OPERATING AREA INFORMATION

The Safe Operating Area figures shown in Figures 7 and 8 are

specified ratings for these devices under the test conditions shown.

FORWARD BIAS
FIGURE 7 - FORWARD BIAS SAFE OPERATING AREA

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC- VCE
limits of the transistor. that must be observed for reliable
operation: i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The datal of Figwe 7 is based on TC = 25 0 C; TJ(pk) is
variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC;;' 25 0 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 7 may be found
at any case temperature by using the appropriate curve
on Figure 9.

10lis

o

~ 10

'"

,., 5.0

de

I-

•

~ 2.0
g; 1.0
~ 0.5
o
~ 0.2
j O.I~

MJI0015

20.05~
EO.02
0.01
O.OOS
1.0

MJIOOl6

TC - 25 0 C

==

BONDING WIRE LIMIT
THERMAL LIMIT
ISINGLE PULSE)
SECONO BREAKOOWN LIMIT

2.0

5.0

10

20

50

100

200

500

1000

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

REVERSE BIAS
FIGURE 8 - REVERSE BIAS SWITCH)NG
SAFE OPERATING AREA

For inductive loads, high voltage and high current must
be sustained simultaneously during turn-off, in most
cases, with the base to emitter junction reverse biased_
Under these conditions the collector voltage must be held
to a safe level at or below a specific value of collector
current. This can be accomplished by several means such
as active clamping, RC snubbing, load line shaping, etc.
The safe level for these devices is specified as Reverse Bias
Safe Operating Area and represents the voltage-current
condition allowable during reverse biased turn-off. This
rating is verified under clamped conditions so that the
device is never subjected to an avalanche mode. Figure 8
gives the complete R BSOA characteristics.

50

1\

\

1i!

40

i

30 -

,.,'"

i3

'"
0

~

2
E

\

Turn off load Line
Boundary fer MJ10016

\

_ The locus for MJ 100 15
IS 100 V less
20

\
\.

-~>IO

"- I'--..

IBI

10
VBElolf)' 5.0 V
-TC'25 0 C
I
I
o
100
o

200
300
400
VCE. COLLECTOR-EMITTER VOLTAGE IVOLTS)

500

FIGURE 10 - TYPICAL REVERSE BASE CURRENT
versus VBEloff) WITH NO EXTERNAL BASE RESISTANCE

FIGURE 9 - POWER DERATING
100

~ t--....

0

...........

" "'"

........

Therma~
Deratmg

--IiI

r-...

Derating

r---...

,

~

/'"

-

/"

3

"-

0

40

BO
120
TC. CASE TEMPERATURE IOC)

160

/

5

.............

"-

o
o

,/

/'"

Forward Bias
Second Breakdown -

V

IC' 20 A

V

2 ~ See Table 1 for conditions,
Figure 6 forwaveshape.

"'" ""-

1
0

200

4-478

2
4
6
VBElolf). REVERSE BASE VOLTAGE (VOLTS)

PNP

MJI1011, MJI1013,
MJI1015
NPN

MJII012, MJI1014,
MJI1016
HIGH·CURRENT COMPLEMENTARY
SILICON TRANSISTORS
30 AMPERE

. for use as output devices in complementary general purpose

DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON

amplifier applications.
•

High DC Current Gain - hFE ; 1000 (Min) @ IC; 20 Adc

•

Monolithic Construction with Built·ln Base·Emitter
Shunt Resistor

•

Junction Temperature to +200 o C

60·120 VOLTS
200 WATTS

MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

VCEO

MJll0ll MJll013 MJll015
MJll012 MJll014 MJll016
60
120
90
120

Unit

Vdc

Collector-Base Voltage

VeB

Emitter-Base Voltage

VEB

5

Vdc

60

90

Vdc

Collector Current

IC

30

Adc

Base Current

IS

Total DeVice Dlsslpatlon@Tc = 25°C
Derate above 25°C @TC; 100°C

PD

1
200
115

Watts

TJ.Tstg

-55 to +200

DC

Operating and Storage Junction

Adc
WloC

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

MaXimum Lead Temperature for
Soldering Purposes for < 10 Seconds.

Symbol
RUJC

Max
0.87

TL

275

Unit
DC/W
DC

PIN 1 BASE
2 EMITTER
CASE' COLLECTOR

FIGURE 1 - DARLINGTON CIRCUIT SCHEMATIC
Collector

PNP
MJ11011
MJll013

NPN

---,

---,
~--+-,

MJ11015

Base

I

IL _ _ _ _ _ _ _

~--+-,

I

I
I
I
I
I
I
__ ...11

DIM

Collector

I

I
I
I
I
I

Base

1
1

__ ...1

A
B
C

Emitter

-

39.37

-

1550

635

G 10.67
H 5.33
J
K

n

16.64
11.18
3.84
-

11 18
5.59
17.15
12.19
4.09
26.67

0.420
0210
0.655
0.440
0.151

-

Cul1ector connected to
CASE 11·01

TO·3

4-479

INCHES
MIN
MAX

2f~ 'lf150 ~{~~
o039~ O~043
r-4- r!!~- ~
·0135
343
~
F Ig-jjJ 3ii~40 f-[;/T [197

R
Emitter

MILLIMETERS
MAX
MIN

ca~e.

0440
0.120
0.675
0.480
0.161
1.050

MJ11011, MJ11013, MJ11015PNP/MJ11012, MJ11014, MJ11016NPN

I

ELECTRICAL CHARACTERISTICS ITe

2SoC unless otherwIse noted I

=-

Characteristic:

Symbol

M..

Min

Un,t

OFF CHARACTERISTICS
Collector-Em Iller Breakdown Voltagell)

60
90
120

MJ1101',MJtl012
MJ11013,MJ11014
MJ11015.MJ11016

Collector EmItter Leakage Current
(VeE = 60 Vdc, ABe = 1 k ohm I
(VeE" 90 Vdc, RBe" 1 k ohml
(VeE" 120 Vdc, RBE .. 1 k ohm)
(VeE" 60 Vdc, RBE 0- 1 k ohm,
TC - 150 0 CI
(VeE" 90 Vdc, RaE
1 k ohm,

TC" 150°C)
iVeE " 120 Vdc, ABe
TC = 150°C)

Vdc

BVCEO

ftC" 100 mAde, JS '" 0)

mAde

leER

MJ11011.MJll012
MJ11D13,MJ11014
MJ11015,MJ11016
MJ11011,MJ11012
MJ11013,MJ11014

MJ11015,MJ11016

1 k ohm,

Emitter Cutoff Current
IVSE . 5 Vdc,

Ie

=- 0)

Collector-Emltler leakage Current
(VeE" 50 Vdc, '8 - 0)

ON CHARACTERISTlCsl11
DC Current GaIn
flC '" 20 Adc, VCE = 5 Vdcl
IIc "" 30 Adc, VCE = 5 vdcl
COllector· Emitter SaturatIOn Voltage
IIC:' 20 Arie, IS '" 200 mAdel
IIC = 30 Ark, IS" 300 mAde)
Sase·Emitter Saturation Voltage
Ie = 20 Ade, IS '" 200 mAde}
IC '" 30 Ade, IS = 300 mAdel
DYNAMIC CHARACTERISTICS
Magnitude of Common Emitter Small·Slgnal Short·ClrCUlt
Forward Current Transfer RatiO
IIC'" 10 Ade, VeE = 3 Vdc, f " 1 MHz)
111 Pulse Test

Pulse Width -( 300 ~s, Duty Cycle

<:

2.0%

FIGURE 2 - DC CURRENT GAIN II)
30 k

FIGURE 3 - SMALL·SIGNAL CURRENT GAIN

--- PNP
MJll013, MJll015
MJ11011, MJ11014, MJll016
- - NPN MJll0ll,

10 k

1

z 10k

,

~

7k

~

5k

ag

!'

k

"-

""

2k

~

1

>-

~

\

0.05

a

...J
0.02
«

z

300
0.3

~
«

5 Vde

VCE

~Ji1n

VCE-3Vde'
IC -10 mAde'
TJ -1~OC
l
10
20
30

0.005

~

0.5 0.7

10

10

30

IC, COLLECTOR CURRENT lAMP)

FIGURE 4 - "ON" VOLTAGES II)

---

III
~50cl

I

TJ =

...
~

I,

V!l

i3

/ V, 'i

0.1

0.2

0.5

500 700 1.0 k

1-

0.5

'"

BONO',NG WiRE LIMITATION
THERMAL L1MITATlON@TC - 2SoC
SECOND BREAKDOWN LIMITATION

= 020.1

8

/

10

5

~

VBElsat)

o

300

10
10

r IcliB =100

VCElsall

50 70 100
100
I, FREQUENCY 1kHz)

FIGURE 5 - ACTIVE REGION DC SAFE OPERATING AREA

PNP MJ11011 , MJ 110113, M\11101~1
NPN MJll0l1, MJ11014, MJll016

1

,

0.0 1

t!)

700
500

PNP MJ11011, MJ11013, MJ11015
NPN MJll012, MJ11014, MJll016

0.05

MJ11011, MJ11012
MJ11013, MJll014
MJ11015, MJ11016

~ 0.02
0.01
10

50

100

10

10

30

50

70

100

200

VCE. COLLECTOR EMITTER VOLTAGE IVOL TS)
must not be subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations 1m·
posed by secondary breakdown.

IC, COLLECTOR CURRENT lAMP)
There are two limitations on the power handling ability of a
transistor' average Junction temperature and secondary breakdown.
Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation, e g., the transistor

4-480

NPN

PNP

MJI1028 MJI1029
MJI1030 MJI1031
MJI1032 M111033.
Advance Infor:rnation
50 AMPERE

COMPLEMENTARY SILICON
DARLINGTON
POWER TRANSISTOR

HIGH-CURRENT COMPLEMENTARY
SILICON TRANSISTORS
• .. for use as output devices in complementary general purpose
amplifier applications.
o

60-120 VOL TS
300 WATTS

High DC Current Gain - hFE = 1000 (Min) @ IC = 25 Adc
hFE = 400 (Min) @ IC = 50 Adc

•

e Curves to 100 A (Pulsed)
•

Diode Protection to Rated IC

•

Monolithic Construction with Built·ln Base-Emitter Shunt Resistor

•

Junction Temperature to +200 0 C

MAXIMUM RATINGS
MJ11028 MJ11030 MJ11032
Symbol MJ11029 MJ11031 MJ11033
60
90
120
VCEO
90
120
60
VC8
5
VE8
50
IC
100
ICM
2
18
300
PD
1.71
-55 to +200
TJ. Tstg

Rating

Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage

Collector Current-Continuous
Peak
\
Base Current-Continuous
Total Power Dissipation @ T C = 2SoC
Derate above 25 0 C @ T C = 100°C
Operating and Storage Junction

Unit

J:5tlJ

Vdc
Vdc
Vdc
Adc

T;

Adc
Watts

-ri'

0
~
---

SEATING
PLANE

W/oC
J-

°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Maximum Lead Temperature for

Soldering Purposes for" 1 a seconds
Thermal Resistance Junction to Case

Svmbol

Max

Unit

TL

275

DC

ROJC

0.584

DC
STYLE I:
PIN 1. 8ASE

2. EMITTER

CASE. COLLECTOR

FIGURE 1 - DARLINGTON CIRCUIT SCHEMATIC

PNP

Collector

Collector

NPN

--,

MJll029

r----+...,
.Base

I

I
I
I
I
I
I
I

__ .J

--,

MJll028
MJll030
MJll032

~----

../ V

'-'
w

~'

V

1.0

O.B

--

V

1.0

>

]
w

40

~

K

2.0

15~

1.5

/"

60
BO
100
120
Tc. CASE TEMPERATURE (oC)

>=

8.0 ~

'"o""

f.-

I;;
7.0

~

6.0
160

140

,

~]
~

e

og ;

.",-

/"

-.....

//

1.0

10

B.O

o

2.5

~

0.5

. 4-486

>=

:o

If

o
0.5

w

6.D~

-

ICM, COLLECTOR CURRENT (AMP)

~

,.

........

1'--:.' ~ ~ /
~

2.0

--

:;

FIGURE 9 - SWITCHING BEHAVIOR versus ICM
2

5!i

1.5

If

I---:- I--

20

9.0

V

I,

.......

/

/"

.,...-V

./'"
,..- V

0.5

O.B
IBI. BASE CURRENT (AMP)

r--

0.5

V

10

FIGURE 8 - OPTIMUM DRIVE CONDITIONS

o

. . . ><

0.6
IBI. BASE CURRENT (AMP)

ICM • 1.75 A. 18 • 0.85 A. La' 13 .H
LB.H
20

5.0

~ 0.5

I'-.......

4

./

FIGURE 7 - SWITCHING BEHAVIOR versus
TEMPERATURE

= 2.0 A

........

-----

2.0

...............

2.0

'""'- ...................
I\" t--...
0.4

IC = 1.5 A

l\
1\\ \

~

V

- -LB.H
4 ...........

@

1.0

1.5
2.0
ICM, COLLECTOR CURRENT (AMP)

I---

I;;

4.0

2.0
2.5

~

MJ12002

FIGURE 10 - THERMAL RESPONSE
1.0
:::

fi _
~O
x~

.... N

... :;

r5 ~

ina:

ZO

«Z

D. 7FD-O.5
D.5

O.31== 02
0.2
I-- 0.1

-

~: D. 11=:0.05
~ ~O.O 7::=:0.02

~;O.O5

::t ~O.03 :.-~~

0.02

-

0.0 1
0.01

....tC

-

"'""'

i--'

pITUl
tl;---J

IisJCld - ,(II RBJC
ROJC • I.S7 0CIW MIX

DUTY CYCLE. D ='1/'2

0.01

o CURVES APPLY FOR POWER

SINGLE PULSE

I II I
0.02 O.OJ

0.05

I III
0.1

02

0.3

0.5

2.0

1.0

3.0

10

5.0

II

I

JO

50

20

PULSE TRAIN SHOWN
READ TIME A"1
TJlpkl- TC =Plpkl ReJCld
100

200

JDO

5DO

1000

•

" TIME (m.1

FIGURE 11 - COLLECTOR SATURATION REGION

FIGURE 12 - DC CURRENT GAIN

en 5.0

JO

S
c
4.5
~

::g

4.0

~ 3.5

o

~

!:
ala:

3.0
2.5
2.0

o

~
_

1.5

1.0

8

W 0.5
'-'

:>

0
D.l

\

\

\ IC = 0.75

\
_\
\

:;;:

\2.0A

\ 1.5 A

\

\

1\

\

\.

-

t-0.2

0.3

0.4

0.5

-I-

......

I-

'"
~
a:

10

a

7.0

0

'-'

5.0

""" ......
"-

'-

~

1\

\.

"-

,

r- r-25DC
r-

z

\

VC~=5~OV

TJ1= I\mJc

20

TJ = 25°C

3.0

"-

~\

2.0
1.5
0.03

0.6 0.7 O.S 0.91.0

0.1
0.2
0.5
1.0
IC. COLLECTOR CURRENT (AMPI

0.05

IB, BASE CURRENT (AMPI

FIGURE 13 - "ON" VOLTAGES
2.0

1.6

~0
~
w

1.2

'"'"

S
o.S
0

VSE(,,"@ Iclla = 2.0

:-

I

::>
0.4

VCEI,,')@ IcllB = 2.0

I

o
0.2. 0.3

0.4

1000c

---

1.0
0.7
IC. COLLECTOR CURRENT IAMPI

0.5

4-487

)..

25DC

~ ~ 1.
100DC

L

L

,.../
25 DC

-

2.0

2.5

2.0

3.0

MJ12002

FIGURE 14 - MAXIMUM FORWARD BIAS
SAFE OPERATING AREA

20
10
li:
:;:

-- - .... --

5
l-

e::
w
tr.

""

1.0

a:

:::I

(.)

.........

a:

0

I-

(.)

w

r.....

"

50 ~s=1=

1.0 ms

de

SINGLE
PULSE:

......

0.1

i'..

§TC=25 0 C

-'
-'
0

(.)

c3
0.01

---

BONDING WIRE LIMIT
THERMAL LIMIT (SINGLE PULSE)
SECOND BREAKDOWN LIMIT

.........
I"'

0.005
0.002
. 8.010

20
30
50
100
200 300
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

500' 800

NOTE:
There are two limitations on the power handling ability of a transistor: average junction
temperature and second breakdown. Safe operating area curves indicate Ie-VeE limits
of the transistor that must be observed for reliable operation; i.e., the transistor must not
be subjected to greater dissipation than the curves Indicate.
The 50 liS 58. curve is beyond the thermal limits of this part. However, the parts will
survive a transient that remains within these S8 limits without failing.

4-488

IJ12004

I

De!Signe'rs Data Sheet

:,

5 AMPERE

NPN SILICON
.
POWER TRANSISTORS

HORIZONTAL DEFLECTION TRANSISTOR

1500 VOLTS

100 WATTS

, , , specifically designed for use in large screen color deflection
circuits,

, Designer's Data for
"Worst Case" Conditions

• Collector-Emitter Voltage - VCEX = 1500 'Vdc
• Glassivated Base-Collector Junction
• Safe Operating Area 50 Ils = 20 A, 400 V

The Designers Data Sheet per·
mits the design of rnost circuits
entirely from the information pre·
sented. Limit data - representing
device characteristics boundaries are given to facilitate "worst case"
design.

@

• Switching Times with Inductive Loads tf = 0.4 IlS (Typ) @ IC = 4.5 A

MAXIMUM RATINGS
Symbol

Rating,

Collector-Emitter Voltage

VCEOlsusl
VCEX

MJ12004
750

Vdc

VEB

5.0

Vdc

Collector Current - Continuous

IC

5.0

Adc

Base Current - Continuous

IB

4.0

Adc

Emitter Current - Continuous

IE

9.0

Adc

Po

100

Watts

T J, Tstg

0.8
-65 to +150

Emitter Base Voltage

Total Power Dissipation @TC

=

2SoC

@TC= 100°C

STYLE I:
PLANE
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

40

Derate aboye 25 0 C
Operating and Storage Junction

I~'
Es~1

Vdc

1500

Collector-Emitter Voltage

lr~

Unit

wfDc
DC

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering

Symbol
A6JC

Max
1.25

°crw

TL

275

DC

Purposes: 1/8" from Case for 5 Seconds

Unit

MILLIMETERS
DIM MIN MAX
A
B
C
0

6.35
0.99

11
G
J

K

n

R

39.37
21.08
7.62
1.09
3.43

INCHES
MAX
MIN

-

0.250
0.039

30.40 1.177
11.18 0.420
5.59 0.210
1
17.15 0.655
I.
12.19 0.440
3.84
4.09 0.151
28.67
Collector conn.cted to c...

-

-

CASE 11-01
TO-3

4-489

1.550
0.S30
0.300
0.043
0.135
1.197
0.440
0.220
0,675
0.480
0.161
1.050

•

MJ12004

ELECTRICAL CHARACTERISTICS (TC = 250 unless otherwise noted.)

I

C.....ct..iltlc
OFF CHARACTERISTICS (I)
Collector-Emitter Sustaining Voltage
(lC -50 mAde.IB =01
Collector Cutoff Current
(VCE ~ 1500 Vde. VBE = 01
Emitter Cutoff Current
(VBE = 5.0 Vde. IC ·0)
ON CHARACTERIST.ICS (1)

•

Symbol

Min

Typ

Max

Unit

VCEO(susl

750

-

-

Vdc

1.0

mAde

1.0

mAde

ICES
lEBO

Collector-Emitter Saturation Voltage
(lC = 4.5 Adc. IB = 1.8 Ade)
(lC = 3.5 Ade. IB = I .5 Adel
B_ Emitter Saturation Voltage
(lC = 4.5 Ade. IB = 1.8 Ade)
(lC = 3.5 Ade. IB = 1.5 Adel
Second Breakdown Collector Current with Base
Forward Bia~
DYNAMIC CHARACTERISTICS

VCE(satl

-

-

-

-

-

-

-

-

Vde

VBE(sat)

-

0.'

. 1.6
1.5

-

See Figure 14

ISIb

Current-Gain - Bandwidth Product
(lC = 0.1 Ade. VCE =5.0 Vde. 'test = I MHz)
Output Gepacitence
(VCB =10 Vde. IE =
= O. I MHzl

Vdc
5.0
5.0

'T

-

4

-

Cob

-

125

-

MHz
pF

~

SWITCHING CHARACTERiSTICS
Fall Time
(lC = 4.5 Ade. IBI = 1..11 Ade.
lB = B.O pH. See Figure 11

TC=250C
TC = 100°C

(11 Pulse Test: Pulse Width < 300

"s. Duty Cyele = 2%.

\

+60V

Com
2 kl5W

FIGURE 1 - SWITCHING TIMES TEST CIRCUIT,

820

5W

100

Ie

L

•10,.F
25V

+

3

MR918
(Selected
1500 VI

e

5W

10"F
150 V

Pul.. Width Adj
150% Duty Cycl.

-=
Ie

DRIVER TRANSFORMER (T1)

L

A

mH

3.5

0.87

0.013

4.5

0.67

0.017

+

Ion
5W
Com +125 V

Motorola part number 25068782A-QS·1/4"laminate "e" iron cor'a.
Primary Inductance - 39 mHo Secondary Inductance - 0.22 mHo
Le.kage Inductance with primary shorted - 2.0 IJ.H. Primary 260
turns, #28 AWG enamel wlr.. Secondary 17 turn., #22 AWG
enamel wir•.

4-490

MJ12004

BASE DRIVE: The Key to Performance
in Figures 4 and 5. This shows the parameter that really
matters, dissipation; whether caused by switching or by
saturation. The negative slope of these curves at the left
(low IB1) is caused by saturation losses. The positive slope
portion at higher IB1, and low values .of LB is due to
switching losses as described above. Note that for very low
LB a very narrow optimum is obtained. This occurs when
IB1 hFE = ICM' and therefore would be acceptable only
for the "typical" device with constant ICM. As LB is in·
creased, the curves become broader and flatter above the
IB1 hFE = ICM point as the turn·off "tails" are brought
under control. Eventually, if LB is raised too far, the
dissipation all across the curve will rise, due to poor
initiation of switching rather than tailing. Plotting this
type of curve family for devices of different hFE' essen·
tially moves the curves to the left or right according to the
relation IB1 hFE = constant. It then becomes obvious
that, for a specified leM' an LB can be chosen which will
give low dissipation over a range of hFE and/or IB1' The
only remaining decision is to pick IB1 high enough to
accommodate the lowest hFE part specified. Figure 8
gives values recommended for LB and IB1 for this device
over a wide range of ICM' These values were chosen from
a large number of curves like Figure 4 and Figure 5.
Neither LB nor IB1 are absolutely critical, as can be seen
from the examples shown, and values of Figure 8 are
provided for guidance only.

By now, the concept of controlling the shape of the
turn·off base current is widely accepted and applied in
horizontal deflection design. The problem stems from
the fact that good saturation of the output device, prior
to turn·off, must be assured. This is accomplished by
providing more than enough IB 1 to satisfy the lowest gain
output device hFE at the end of scan ICM. Worst·case
component variations and maximum high voltage loading
must also be taken into account.
If the base of the output transistor is driven by a very
low impedance source, the turn·off base current will reo
verse very quickly as shown in Figure 2. This results in
rapid, but only partial, collector turn·off, because excess
carriers become trapped in the high resistivity collector
and the transistor is still conductive. This is a high dissipa·
tion mode, since the collector voltage is rising very rapidly.
The probfem is overcome by adding inductance to the
base circuit to slow the base current reversal as shown in
Figure 3, thus allowing excess carrier recombination in the
collector to occur while the base current is still flowing.
Choosing the right LB is usually done empirically, since
the equivalent circuit is complex, and since there are
several important variables (lCM' IB1' and hFE at ICM).
One method is to plot fall time as a function of LB, at the
desired conditions; for several devices within the hFE
specification. A more informative method is to plot power
dissipation versus IB1 for a range of values of LB as shown

TEST CIRCUIT WAVEFORMS
FIGURE 2

FIGURE 3

Ie

Ie
(time)

(time)

TEST CIRCUIT OPTIMIZATION
The tost circuit may be used to evaluate devlcos In the conventional mannor, I.e •• to measure fall tlmo, storage time, and
saturation voltage. However, this circuit was designed to evaluate

Once the required tran,lstor operating current II determined,
fixed circuit values maY be selected from the table. Factory telt~
ing Is performed by roadlng the current meter only, since the
input power Is proportional to current. No adjustment of the
test apparatus Is required.

devices by 8 simple criterion, power supply input. ExcelSlve
power Input can be caused by a varlotY of problems, but It Is the
dlulpat:lon In tho trans'stor that Is of fundamental Importance.

4-491

•

MJ12004

FIGURE 4 - OPTIMIZING DRIVE@3.5A

FIGURE 5 - OPTIMIZING DRIVE @ 4.5 A
16

3

\\

5

\
I

\\\

/

LB.H

\\\ ~
16

\'\P. -.. . . . . ~
4"t<.

V

,~ \.
\~ ~

-

~\

-

.\

-

V

LBpH

--

12

\ '«)
~
""-"
4"

2-

./

~

•

9

I"'""

o

12

0.5

1.5

o

0.5

FIGURE 6 - SWITCHING BEHAVIOR versus
TEMPERATURE
ICM· 3.5 A. IB = 1.5 A. LB = 14 /JH
2

I

.-

9.5

ISV

,.

w

;:

....
....

I

,/

~

::
O.5

./

II

o

-

f-- r-

o.5

40

100
60
120
80
TC. CASE TEMPERATURE (OCI

'/

.
II:
II:

:::>

-

-

140 ISO

g

3.5

9

. . . r-........

5

...............

4.5

--

5

B

-....!.OoltINllt_

Is

7

............... r--....

I

r-

6
140150

I

t'-....

La

NOoltIN1,,£,,--

3

120
60
80
100
TC. CASE TEMPERATURE (OCI

FIGURE 9 - SWITCHING BEHAVIOR versus ICM

I

0.5

o

40

20

NOMINAL

............. ....,.,

!

!--f.-- r-

/'

20

,..--- ~

.............

J

/"

FIGURE B - OPTIMUM DRIVE CONDITIONS

11.5 r--.../ K
E

J

0

8

20

/

......-

/"

I

Z
o

~

I.5

V

V

1.5

FIGURE 7 - SWITCHING BEHAVIOR versus
TEMPERATURE
ICM = 4.5 A.IB = 1.75 A. LB = B/lH

/'

V

I.5

]

I

'BI. BASE CURRENT (AMPI

IBI. BASE CURRENT (AMPI

I'--...
NOMINAL

II

6

5
4

I

3

o

o

3

3.5

4.5
IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMPI

4-492

2

MJ12004

~:::;
'"

~
;;S
~

~
I;;

~

FIGURE 10- THERMAL RESPONSE
1.0

0.7
0.5 l - I- ~ Ruchl = r(t)RUC
I-- l- I- RSJC = 1.250CIW Max
0.3 I-- lTJ(pk) -TC = P(pkIRSJCftl
0.2 l - I-

V~
~

0.1

~

'" 0.07
ffi 0.05

'"

%
....

I-

0.03

ffi
;;; 0.02
z

;2 0.01

I-

0.02

0.5

0.2

0.1

0.05

1.0

2.0

5.0
t,TIME(ms)

20

10

50

FIGURE 11 - COLLECTOR SATURATION REGION

~

TJ = 100°C

2.4

to

1\
1\

~

>
~

:::
~

1.6 I -

~

0.8

8

0.4

~

>

z

~:lc=2A

II
-

II

I - t13 A

;;:

I

to

~3.5 ~4A

\

1.2

o

1.0k

2.0 k

ffi

4.5 A

0:
0:

\

I

u

o

\
\

\

~

0.5

['--.,

25°C

7

I'

":-

5

,'-.

~

\.

"-

\

a

13

\
1\
\

I

~

3

r--

2. 0
0.05 007 01

0.7
IB' BASE CURRENT (AMPI

0.2 0.3
0.5 0.7 I
'C, COLLECTOR CURRENT (AMPI

FIGURE 13 - "ON". VOLTAGES
1.4
1. 2
in

::;

J

1

TJ = 25°2

o

~
w

O. B

::;
'"o

O.6

to

>

:>

VCP 5 V

1"'"

I-

0
0.3

500

FIGURE 12- OCCURRENTGAIN

w

o

200

20

~ 2.8

o

100

VBE("t)@IC/'B = 2

i---'"":
1-11-1-

f-""

VfW1 @'C~'B ={

25°C

I
0.1

0.2

t-

~

o
0.05

1

1000~..7 ~

O.4

O. 2

~~

J.....-'

,......!-"'"1000C

0.3

0.5 0.7

IC, COLLECTOR CURRENT (AMP)

4·493 .

t-

•

MJ12004

FIGURE 14 - MAXIMUM FORWARD BIAS
SAFE OPERATING AREA

50

,....

20

1.0

•

a::

:=
c..>

~

....I

8

U

-I-

2PULSE~~

SINGLE

10
5.0
2.0

50lls

...

'_

1.0 ms

....

0.5

....

-

de

0.2

o. 11::
0.05
0.02
0.0 1
0.005
8.010

TC =25°C
---BONDING WIRE LIMIT
---THERMAL LIMIT
"""'""-SECOND BREAKDOWN LIMIT

I..........

40
100
20
60
200
400
VCE, COLLECTOR·EMITTER VOLTAGE (VOLT)

NOTE:
There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operatin~ area curves indicate Ie-VeE
limits of the transistor must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The 50 IlS 58 curve is beyond the thermal limits of this
part. However, the parts will survive a transient that remains
within these 58 limits without failing.'

4-494

600 800

MJ12005

Advance InforIDation
8 AMPERE

NPN SILICON
POWER TRANSISTOR

HORIZONTAL DEFLECTION TRANSISTOR
.. specifically designed for use in deflection circuits.

o VCEX

1500 VOLTS
100 WATTS

= 1500 V

•

o Glassivated Base·Coliector Junction
•

Safe Operating Area @ 50 /1S = 20 A, 400 V

MAXIMUM RATINGS
Symbol

Value

Unit

VCEX

1500

Vdc

VES

5.0

Collector Current - Continuous

IC

8.0

Vdc
Adc

Base Current - Continuous

IS

4.0

Adc

Emitter Current

IE

12

Adc

PD

100
0.8

Watts

W/oc

'TJ, T stg

-65 to + 150

°c

Symbol

Max

Unit

ROJC

1.25

TL

275

°CNv
uc

Rating
Collector-Emitter Voltage

Emitter-Base Voltage

Continuous

Total Power DISSipation @ T C

25°C

Derate above 25°C
Ope~at1ng

and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case
Maximum Lead Temperature for
Soldering Purposes: 1/8" from

Lrr='~3~
r~K
ESEATlN!~
I

PLANE

Case for 5 Seconds

FIGURE 1 - MAXIMUM FORWARD BIAS SAFE OPERATING AREA
50

ii!

'"
~

SINGLE PULSE

10

!O

1m,

0-

a

STYLE I:
PIN I. BASE
1. EMITTER
CASE: COLLECTOR

50,us

MILLIMETERS
DIM MIN MAX

10

A

'"

~8
~

B
de

0.1

=.
--

001 ='
0005
10

This

IS

C
D

E
F
G
H
J
K

WIRE LIMIT
---IBONDING
HE'RMALL Y LIMITED @TC '15°C
~ECONO

BREAKDOWN lI_r.lIT

100
10
30 40 50
500
VCE, COLLECTOR EMITTER VOLTAGE IVOL TS)

' 1000

advance information and specifications are subject to change without notice.

4-495

n

R

-

INCHES
MIN
MAX

-

39.37
11.0B
7.61 0.150
1.09 0.039
3.43
19.90 30.40 1.177
1067
11.18 0.420
5.33
5.59 0.110
16.64 17.15 0.655
11.18 11.19 0.440
3.B4
4.09 0.151
16.67
Collector connected 10 case.
CASE 11·01
ITO·3)

-

635
0.99

-

1.550
0.B30
0.300
0.043
0.135
1.197
0.440
0.110
0.675
0.480
0.161
1.050

MJ12005

ELECTRICAL CHARACTERISTICS

(TC • 25°C unless otherw;se noted)

Characteristic

Symbol

Min

Typ

Max

Unit

VCEOsus)

750

-

-

Vde

ICES

-

-

0.25

mAde

IEeO

-

-

0.1

mAde

VCE(s.,)

-

-

5.0

Vde

1.5

Vde

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(VC' 50 mAde, Ie • 0)

Collector Cutoff Current
(VCE' 1500 Vde, VeE' 0)
Em itter Cutoff Current
(VeE ~ 5.0 Vde, IC • 0)

ON CHARACTERISTICS (1)
Collector-Emitter Saturation Voltage

(lC • 5.0 Ade, Ie • 1.0 Ade)
Base Emitter Saturation Voltage
(lC' 5.0 Ade, Ie • 1.0 Ade)

VeE(s.,)

Second Breakdown Collector Current with Base Forward Biased

•

-

IS/b

-

See Figure 1

SWITCHING CHARACTERISTICS
Fall Time
(lC' 5.0 Ade, le1 • 1.0 Ade, Le' 8.0 ~H
(11 Pulse Test: Pulse Width.;;; 300 ~s, Duty Cycle' 2%.

FIGURE 2 - DC CURRENT GAIN

20

-

I
t""T

10. -

r-...

I

V~E' 5~ V

........

TJ' 25°C

"'-

u

.#'"

5.0

3.0
2.0
0.1

0.3

0.5

2.0

1.0

5.0

'c. COLLECTOR CURRENT (AMPS

Com
2 k/5W

10

FIGURE 3 - SWITCHING TIMES TEST CIRCUIT

820
5W
100

IC

L
MR918

·10 '"'~ +
25 V

C

(Selected
3
5W

1500 V)
10~F

150 V

Pul •• WIdth Ad)
50% Duty Cycl.
':'

'On
5W

DRIVER TRANSFORMER (T1)
IC'
A
5.0

L

C

mH

~F

0.575

0.018

Com +125 V

Motorola part number 2?068782A-QS-1/4" laminate "Eu iron core.
Primary Inductance - 39 mHo Secondary Inductance - 0.22 mH,
Leakage Inductance with primary shorted - 2.0 lotH. Primary 260
turns, #28 AWG enamel wire, Secondary 17 turns, #22 AWG
enamel wire.

4-496

MJ13014
MJ13015

10 AMPERE

SWITCHMODE"" SERIES
NPN SILICON POWER TRANSISTORS

NPN SILICON
POWER TRANSISTORS

The MJ13014 and MJ13015 transistors are designed for highvoltage, high-speed, power switching in inductive circuits where
fall time is critical. They are particularly suited for line operated
switchmode applications such as:

350 AND 400 VOLTS
150 WATTS

• Switching Regulators
• Inverters
• Solenoid and Relay Drivers
• Motor Controls
• Deflection Circuits

Designer's Data for
"Worst Case" Conditions
The Designers· Data Sheet per·
mits the design of most circuits
entirely from the information pre·
sented. Limit data - representing
device characterIStics boundaries are given to facil itate "worst case"
design.

Fast Turn - Off Times:
60 ns Inductive Fall Time @ 25°C (Typ)
120 ns Inductive Crossover Time@ 25 D C (Typ)
800 ns Inductive Storage Time @ 25°C (Typ)
Operating Temperature Range -65 to +200 o C
1000 C Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

J

MAXIMUM RATINGS
Symbol

MJ13014

Collector-Emitter Voltage

VCEO(sus)

350

Collector-Emitter Voltage

VCEV

550

Rating

Emitter Base Voltage
Collector Current

Base Current

Continuous
- Peak (1)

Continuous

- Peak (1)
Total Power Dissipation @TC

= 25 u C

Unit

400

Vde

600

Vde

I

VEB

6.0

Vde

IC
ICM

10
20

ADe

IS
IBM

5.0
10

Ade

PD

150
85.5
0.86

Watts

W/DC

-65 to +200

°c

@TC=1000C

Derate above 25°C
Operating and Storage Junction
Temperature Range

I MJ13015

I

TJ, T stg

Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering

E SEATING PLANE

Symbol

Max

Unit

ROJC

1.17

°CIW

TL

275

uc

Purposes: 1/8" from Case for 5 Seconds
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle" 10%.

-- 0

PIN 1 BASE
2 EMITTER
CASE COLLECTOR
MILLIMETERS

INCHES

DIM

MIN

MAX

MIN

MAX

A

-

3937
2108
762
109
343

-

1550

•

THERMAL CHARACTERISTICS
Characteristic

~B~--Hl~.
r
-tI

-

C 635
0 099
E
F 2990
G 10.67
H 5.33
J 1664
K 1118
Q
3.84
R
-

0250
0039

-

304ll

1.177

11.18
5.59
11.15
1219

0.420
0210
0.655
0440
0151

4.09
2667

-

CoUeC!olconnecudI0C_
CASE 11·01

TO·3
.. Trademark of Motorola Inc.

4-497

OB30
0.300
0043
0135
1197
0.440
0.220
06J5
0.480
0.161
1.050

MJ13014, MJ13015

ELECT'RICAL CHARACTERISTICS 1Tc - 25°C unlo.. othorwise noted)
Charactoristic

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage (Table 1)
(lC

= 100 rnA,

'B

VCEO(sus)

= 0)

MJI3014
MJI3015

Collector Cutoff Current
(VCEV = Rated Value, VBE(off)
(VCEV = Rated Value, VBE(off)

= 1.5 Vde)
= 1.5 Vde, TC = 150°C)

Collector Cutoff Current
(VCE = Rated VCEV, RBE = 50

n, TC = 100°C)

350
400

-

-

-

-

-

0.5

Vde

mAde

'CEV

ICER

2.5
3.0

mAde

1.0

mAde

'1

Emitter Cutoff Current
IVES = 6.0 Vde, IC = 0)'

lEBO

SECONO BREAKDOWN

•

Second Breakdown Collector Current with base forwarq biased

Spe Figure 12

Clamped Inductive SOA with Base Reverse Biased

See Figure 13

ON CHARACTERISTICS (I)

DC Current Gam
(lC = 2.5 Ado. VCE

Collector-Emitter SaturatIon Voltage

(lC" 5Ade,IB = 1.0 Ade)
(lC" 1 0 Adc, IS = 2.0 Adc)
(lC = 5 Adc, IS = 1.0 Adc, TC

I

12

-

40

-

-

1.4

5.0

-

1.5
1.5

Vde

VCE(sa!)

-

= 100°C)

Base-Emitter Saturation Voltage
(lC" 5 Ade, IB
(lC " 5 Adc, IB

-

hFE

= 5 Vde)

VBE(s.t)

=1.0 Add
=1.0 Adc, T C = 100°C)

-

2.4
Vdc

DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB = 10 Vde, IE

=0, f test = 1.0 kHz)

SWITCHING CHARACTERISTICS
Reslstl'lIe Load (Table 1)

= 250 Vde,lc = 5.0 A,IBI = 1.0 A,

Delay Time

IVCC

Rise Time

to

Storage Time

(VCC" 250 Vde,IC

Fall Time

VBEloffi

= 25 IJ.S,

Duty Cycle ~~ 2%)

= 5.0 A,IBI = 1.0 A,
= 5.0 Vdc, 'D = 25 "s, Duty Cycle"

2%1

,.

td

-

0.Q1

0.1

tr

-

0.OS5

0.5

Is
tf

-

O.S

2.0

us

-

0.095

0.5

~s

1.5

3.5

0.25

1.0

~s

Inductive Load Clamped (Table 1)

Storage Time
Crossover Time

IIC

Fall Time

Storage Time

= 5 A(pkl, Vel amp = 250 Vde,
=5 Vde, TC = IOOoCI

181

Isv

= 1.0 A,

te

VSE(offl

\

IIC

=5 A

= 250 Vde,
= 25 0 CI

(pk), Vel amp

Crossover Time VBE(offi = 5 Vdc, TC

IBI

= 1.0 A,

tfi

(1) Pulse Te~t: PW ::. 300 J.lS. Duty Cvcle ~ 2%.

4-498

0.12

-

0.8

-

te

-

0.12

tfi

-

0.06

tsv

Fall Time

-

-

,.
~s

~s
~s
~s

'"

MJ13014, MJ13015

DC CHARACTERISTICS

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 - COLLECTOR SATURATION REGION

100
10

2.0

en

!:;

f--

'"~

TJ = ISOoC

~
'"

....... r-,.

~

2SoC

.......... ~

<.>

c

I"~

0

I. 6

~

VCE=S.OV

0

~
....
....
~
ri:

0.8

~

0.4

1.2

IC =0.2SA

8

1.0

~

S.O
0.1

O.S 0.1 1.0
2.0 3.0
IC. COLLECTOR CURRENT lAMP)

0.3

S.O

O.OS

2. 0
1. 6

in

-

'"

1. 2

~
w

w

'"«

1. 2

l/

oa

0.2

0.3

O.S 0.1

1.0

2.0

3.0

I-r-;'SOC

S.O 10

o

10

0.1

0.2

0.3

O.S

IC' COLLECTOR CURRENT (AMP)

FIGURE 5 - COLLECTOR CUTOFF REGION

3.0

SO 1.0

10

FIGURE 6 - CAPACITANCE

,

/

103

TJ = ISooC
10 2

12SoC

......

C,b

I

;c_~ 10 0

V
./

/

w

/

<.>

-'---- -REVERSE

300

U
~

200

~.

,

f"""'-..

~r--.

100

0
0

'VCE-2SDV=

100
10- I
-0.4

FORWARD

SO0

Z

~

100°C
ISoC

10 I

TJ = 2SoC

t-.:..

lo~ 0

I

a:

8
E

2.0

2000

/

~

0 1 1.0

IC. COLLECTOR CURRENT (AMP)

104

'"

t=;SOOC

0.4

i-- ~ i---"~
ISOoC

TJ = 2SoC

I-:

_~r::::

,,:

0
0.1

~

VeE('at)@lc/la = S
VeE(on)@VCE=3

TJ =12soc

!:;
'"
>

O. 4

~

-

«
'"

!:;
a
'"
> O.
>'

....

-

~

!:;

3

2.03.0 S.01.0Io

JJll

---

Ic/le = S
1. 6

;(

0.20.3 0.S0.11.0

FIGURE 4 - BASE·EMITTER VOL TAGE

2. 0

~

0.1

lB. eASE CURRENT (AMP)

FIGURE 3 - COLLECTOR·EMITTER
SATURATION VOLTAGE

'"

SA

I""'-

0010.02

1.0 10

2.SA

IA

\
I....

0

>
0.2

TJ = 2SoC

2SoC

-0.2

+0.2

+0.4

0
20
0.1

+0.6

VeE. BASE·EMITTER VOLTAGE IVOLTS)

0.2

O.S

1.0 2.0

S.O

10

2030 S070100 200

VR. REVERSE VOLTAGE (VOLTS)

4-499

SOOIOOO

MJ13014, MJ13015

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE

RBSOA AND INDUCTIVE SWITCHING

VCEO(susl

RESISTIVE SWITCHING

R'

TURN ON TIME

R2

J

2

IS1 adjusted to
obtain the forced
hFE deSired
TURN·OFF TIME

PW Varied to Attain
'C=100mA

Use inductive ,witching
driver a. the input to
ma ''''.tive tMt circuit.

~-~>---~--o -5.2

J;250 pF

All PNP - MJE210
Adjust R 1 to obtain I B 1
For switching and RBSOA' A2 = 0
For BVCEO(sus). R2 =- .

Leon = 180".H
Aeoil = 0.05
Vee" 20 V

Leol!" 80 mH Vee = 10 V
Rc:oU- O. 70

n

V clamp" 250 V
RS adjusted 10 attain de,lred IS1

OUTPUT WAVEFORMS

INDUCTIVE TEST CIRCUIT

Vee

~

250 v

RL '" 50

n

Pulse Width::; 10 III

RESISTIVE TEST CIRCUIT
1, Adjusted to

'e

I.

r±i1L
1--.,

Obtain Ie

'1 ~'.m"d

1, ... Leoll (lCpk'

Vee

"t-

12'" Lcon(lCpk'

Se. Above for

Detailed Condition.

Velamp

Vee

Tan Equipment
Scope - Tektronht
475 or Equh,.lent

FIGURE 8 - PEAK REVERSE CURRENT

FIGURE 7- INDUCTIVE SWITCHING MEASUREMENTS
8.0

le~

/"
le./

./
I- f--Isv

/

Vcl.mp _

"\

r------

I

r------ I-

90%Vclamp j '~ 90% Ie

tlVfl ~tfi- !-tti-

5.0

i-l ~'c~ l-

V
10%Vclamp

VeE
18-

t-

----

I---

---

~

r-__
I"
10%.......
IC PK -

90%181

Ie' 5A
181' I A

I--

2%le

0

-- --\- -- --- -- - !--'"""

--

1.0
1.0

TIME

4-500

5.0
2.0
VBE(olf)- BASE·EMITTER VOLTAGE (VOLTSI

8.0

MJ13014, MJ13015

SWITCHING TIMES NOTE
In resistive switching circuits, rise, fall, and storage
times have been defined and apply to both current and
voltage waveforms since they are in phase. However,
for inductive loads which are common tp SWITCH MODE
power supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate measure·
ments must be made on each waveform to determine
the total switching time. For this reason; the following
new terms have been defined.
tsv·· Voltage Storage Time, 90% lSI to 10% Vcl amp
trv = Voltage Rise Time, 10-90% Vcl amp
tfi = Current Fall Time, 90-10% IC
tti = Current Tail, 10-2% IC
tc = Crossover Time, 10% Vcl amp to 10% IC
An enlarged portion of the inductive switching waveforms

is shown in Figure 7 to aid in the visual identity of these
terms.
For the designer, there is minimal switching loss
during storage time and the predominant switching
power losses occur during the crossover interval and
can be obtained using the standard equation from AN·222:
PSWT = 1/2 VCCIC(tc)f
In general, trv + tfi = tc' However, at lower test currents
this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified at 25 0 C and has become a bench·
mark for designers. However, for designers of high
frequency converter circuits, the user oriented specifica·
tions which make this a "SWITCHMODE" transistor are
the inductive switching speeds (t c and tsv) which are
guaranteed at 1000 C.

RESISTIVE SWITCHING

FIGURE 9 - TURN·ON SWITCHING TIMES
10
0.1
0.5

"-

0.2

"-..

~

~

I-

~ 25OV:=

30

IC)IS~I~t

0

VCC

0.3
."

FIGURE 10 - TURN·OFF TIME
50

TJ

VCE~250V

VSEI,"} ~ 5 V
I,

~ 25 ti C

"-

0.1

TJ ~ 25'C
IC/ls ~ 5

10
~

I,

";::::

-' 0.01
0.05

o. I

o5
03

...........

0.2

0.03

""

0.02
0.01
0.2

0.1

0.3

0.5 0 I

"'-

...........

2.0

1.0

"'-

1
00 I
0.0 5

Id

30

50 10

nt

10

02

03

IC. COLLECTOR CURRENT (AMP}

It

5.0 10

0 5 0 I 1.0
2.0
30
IC. COLLECTOR CURRENT (AMP}

10

FIGURE 11 - THERMAL RESPONSE
I
5
3 : = 01
2

-

-

01

-

RI/JeW '" rlt) RIIJC
RoJC(t) " 1 l' l1C W MM

--

I--'

o CURVES APPLY fOR POWER
PULSE TRAIN SHOWN
REAO TIME Alii

f.-- -"..

1=.005

,

0.02

-

0.0 1
001

;,..001

~J(pkl, - T~ ~ ~h}k) RIIJC(t)

-I

II

I--- I

1---~2 - I

SINGLE PULSE

I II
002 003

I

pHUl

51=.002
__

.-k::

-t-t-

-

I =0 ~ 05

DUTY CYCLE, 0

005

01

02

03

10

0.5
1.

TIME !msl

4-501

20

30

50

100

200

~

11/12

300

500

1000

MJ13014, MJ13015

SAFE OPERATING AREA INFORMATION
tlie Safe Operating Area figures shown in Figures 12 and 13.,.
specified for thasa devices under the test conditions shown.

20

ie

'"
....

~

ill
a:

•

~

8

~

FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA
10 $IS
100",-

10
1.0 ms

5.0

m,

5.0
TC : 25°C t - -

2.0

a:
=>
u 1.0
a:
0

FORWARD BIAS
There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; Le., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 12 is based on TC = 25 0 C; TJ(pk)
is variable depending on power level. Second breakdown
plJlse limits are valid for duty cycles to 10% but must be
derated when TC;;;' 250 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 12'may be found
at any case temperature by using the appropriate curve
on Figure 14.
.
TJ(pk) may be calculated from the data in Figure 11.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
Iimitations imposed by second breakdown.

"'-

I'\.

dt I'\.

Eo':"-....:, ~~~~~~GL ~\~~TLlMIT
(SINGLE PULSE)
---SECOND BREAKDOWN LIMIT

0.5

'\.

0.2

"'

0.1
0.05

"

MJ13014~

0.02
. 4.0

-=

6.0

10

40

20

60

100

MJI3015
200

350

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

400

FIGURE 13 - REVERSE BIAS SWITCHING
SAFE OPERATING AREA
10

~

~8

1\\\

r-

~

\\\ _VSE(off): 5 V
\ ~ 2V
\l)..) ~OV

."
'" "1""'-

4.0

'1\ "

'"

~

20

~

~

REVERSE BIAS
For inductive loads, high. voltage and high current
must be sustained simultaneously during turn-off, in
most cases, with the base to emitter junction reverse
biased. Under these conditions the collector voltage
must be held to a safe level at or below a specific value of
collector current. This can be accomplished by several
means such as active clamping, RC, snubbing, load line
shaping, etc. The safe level for these devices is specified
as Reverse Bias Safe Operating Area and represents the
voltage·current conditions during reverse biased turn·off.
This rating is verified under clamped conditions so that
the device is never subjected to an avalanche mode. Figure
13 gives RBSOA characteristics.

It.

TURN OFF LOAD LINE
SOt- BOUNDARY FOR MJI3015
THE LOCUS FOR MJI3014
IS 50 V LESS
~ 6.0 t- IC/ISI> 5
a:
0
I - TJ" lOOoC
~

....

0
0

100

200

300

400

500

VCE' COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 14 - POWER DERATING
100

0

0

~ t-....

l'--

1"""'"THERMA~

.........

DERATING

0

SECO~~~~i~~OWN _

r-......
.............

'"

...............
...............

:--.,.

"

0

0
40.

So

120
TC. CASE TEMPERATURE (oC)

4-502

"
160

'"

~

200

MJ13330
MJ13331
Designers·Data Sheet
20 AMPERE

NPN SILICON
POWER TRANSISTORS

SWITCHMODE· SERIES
NPN SILICON POWER TRANSISTORS

200 and 250 VOLTS
175 WATTS

The MJ13330 and MJ13331 transistors are designed for highvoltage, high-speed, power switching in inductive circuits where fall
time is criticaL They are particularly suited for line operated
switchmode applications such as:
•

Switching Regulators

•
•

Inverters
Solenoid and Relay Drivers

•

Motor Controls

•

Deflection Circuits

Designer's Data for
"Worst Case" Conditions
The Designers· Data Sheet per·
mits the design of most circuits
entirely from the information pre·
sented. Limit data - representing
device characteristics boundaries are given to facilitate "worst case"
design.

Fast Turn-Off Time
75 ns Inductive Fall Ti~e-250C (Typ)
150 ns Inductive Crossover Time-25 0 C (Typ)
900 ns Inductive Storage Time-250 C (Typ)
Operating Temperature Range -65 to +200 0 C
1000 C Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

Ln='::J~
MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Continuous

- Peak 11)
Sase Current - Continuous

-Peak

(1)

Total Power Dissipation

@

MJ13330
200
400

Symbol
VCEOlsusl
VCEV
VEB
IC
ICM
'B
IBM

T C = 2SoC

MJ13331
250
450

I
I

6

20
30
10
20
175
100

Po

@TC = 100°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

I

TJ,Tstg

Unit

Characteristic
Maximum Lead Temperature for Soldering
Purposes: 1/8" from Case for 5 Seconds

I

PLANE

Vdc
Vdc
Vdc
Adc
Adc
PIN I BASE

Watts

1

W/oC

-65 to +200

°c

2 EMITTER

CASE COLLECTOR
MILLIMETERS
INCHES
DIM MIN MAX
MIN
MAX

A
B
C

THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Case

r~K
ESEATlN!~

Symbol
A8JC
TL

Ma.
1
275

Unit

°C/W

°c

0
E
F
G
H
j

K
Q

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle .. 10%.

R

• Trademark of Motorola Inc.

Similar device types with higher VCEO ratings are: MJ13332 (350 VI thru MJ13335 (500 V).

4-503

-

39.37
2108
762 0250
1.09 0039
J43
2990
30'0 1.177
1067
11.18 0.420
533
5.59 0.210
17.15 0.655
16.6'
11.18 1219
0.440
409 0151
38'
26.67
Coileeioreonnec:lidtocile
CASE 11-01
TO·3

-

635
099

1550
0.830
0300
00'3
0.135
1197
0.440
0.220
0675
0.'80
0161
1.050

•

MJ13330, MJ13331

I

,

ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted.)
Symbol

Characteristic
Peak Forward Blocking Voltage
(RGK = 1000 Ohms)

25
50
100
200
300
400
500
600

-

-

-

-

-

-

IORM

-

-

500

"A

IRRM

-

-

500

"A

VTM

-

-

1.75

Volt

IGT

-

-

1.0

mAde

VGT

-

-

1.0

0.1

-

-

-

-

5.0

-

0.8
0.6

-

-

10

-

= 1000 Ohms, TJ = 110°C)

Peak On·State Voltage (Pulsed, 1.0 ms max, Duty Cycle ~ 1.0%)

(IF

-

= 110°C)

Peak Reverse Blocking Current

(Rated VRRM, RGK

Unit

Volt

MCR1906·1
MCRl906·2
MCRl906·3
MCR19064
MCR1906·5
MCR1906-6
MCR1906·7
MCR1906-8

Peak Forward Blocking Current
(Rated VORM, RGK = 1000 Ohms, TJ

Max

Typ

Min

VORM

= 1.0 Adc peak)

Gate Trigger Current (Continuous del
(VAK = 7.0 V, RL = 100 ohms)

Volt

Gate Trigger Voltage (Continuous de)

(VAK = 7.0 V, RL = 100 ohms)
(V AK = Rated VORM, RL = 100 ohms. RGK

= 1000 Ohms.

= 110°C)

TJ

Holding Current
IVAK = 7.0 V. RGK

IH

rnA

= 1000 ohms)

Turn-On Time
(lGT = 10 rnA, IF = 1.0 A)
II GT = 20 rnA, IF = 1.0 A)

tst

Turn-Off Time
(IF = 1.0 A, IR

tq

"s

"s

= 1.0 A. dv/dt = 20 V/"s. T J = 110°C)

CURRENT DERATING
FIGURE 1 - CASE TEMPERATURE REFERENCE
110
100

~~

I\~ ~,

w

~

90

~ "
=e.
~ ~

Q"

~



0.6

5a; 90
'" G

:(\

\ '\\ ~ ~

80

o~ 0=>

'";('

""

1.2

1.4

~
X

"
"

0.01

10

FIGURE 3 - COLLECTOR·EMITTER SATURATION REGION
0

6

1.1

Ii
II

l::
~
'"

~
~

O. B

S
~

>

15 aC

o

01

150 aC
0.5

10

"

1

8

::i

10

~
I-- I-

o

05

0.1

FIGURE 5 - COLLECTOR CUTOFF REGION

/

~

13

'"'"

~
S

~

l-

.....

/

/

r-- I-- REVERSE

u

z

10

Cot~

u

;t

100

;:\
<.S

FORWARD

100

/ VCE -150 V=

lS aC

-0.1

10

500

t:::

50

10- 1

-0.4

1.0
1.0
5.0
IC. COLLECTOR CURRENT lAMP)

«

L

/.

75 aC

100

~

1000

100 aC
10 1

./

~ 700

V

12S aC

101

-

V 1/

I
i'::l
C,b

1000

/
/

r-- t--Tr IS0 aC

t-

10

FIGURE 6 - CAPACITANCE
3000

.3 10 3

- --

150°C

>

104

:;;

5.0

ICIIB·5

-f.-:::::::

1.0
1.0
50
IC. COLLECTOR CURRENT (AMP)

20

6

'/

0.4

0.1
0.2
0.5
1.0
lB. BASE CURRENT (AMP)

FIGURE 4 - BASE·EMITTER VOLTAGE

I

':;

'"~

005

0

J

IC/IB·5

«
'"

001

+0.2

+0.4

30
01

+0.6

VBE. BASE·EMI.TTER VOLTAGE (VOLTS)

4-505

0.5

1.0

50 10
50 100
VR. REVERSE VOLTAGE (VOLTS)

500 1000

MJ13330, MJ13331

SWITCHING TIMES NOTE

In resistive switching circuits, rise, fall, and storage
times have been defined and apply to both current and
voltage waveforms since they are in phase. However,
for inductive loads which are common to SWITCH MODE
power supplies and hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate measure·
ments must be made on each waveform to determine
the total switching time. For this reason, the following.
new terms have been defined.
tsv = Voltage Storage Time, 90% IB1 t.o 10% Vcl amp
trv = Voltage Rise Time, 10-90% Vcl amp
tfi = Current Fall Time, 90-10% IC
tti = Current Tail, 10-2% IC
tc = Crossover Time, 10% Vclamp to 10% IC
An enlarged portion of the inductive switching waveforms
is shown in Figure 7 to aid in the visual identity of these
terms.
For the designer, there is minimal switching loss
during storage time and the. predominant switching
power losses .occur during the crossover interval and
can be obtained using the standard equation from AN·222:

FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS
IC!,!S-....

,,- I-"""

/

90%

I--

'4.

Vc'ampA 1\ 90% IC

I- I-Isv

IC"""""

Vclamp _

1'\

I

Iry

If! ~I"- t-Ili-

1---. !-Ic-\ l -

V
VCE

10%V clamp

I'

I B - i - 90%IBI

10% .......
ICPK-

r-;~

- --\- -- -- -- -- -

-

~

""""

TIME

FIGURE 8 - REVERSE BASE CURRENT v...us
VBE(off) WITH NO EXTERNAL BASE RESISTANCE
0

./"
I}

....V

I--

V
'"

2.

°v

IC ~ IDA
IBI ~ 2 A

/

PSWT = 1/2 \lCCICltc)f
In general, trv + tfi "" tc' However, at lower test currents
this relationship may not be valid.
As is common with most switching transistors, resistive
switching is specified at 250 C and has become a bench·
mark for designers. However, for designers of high
frequency converter circuits, the user oriented specifica'
tions which make this a "SWITCHMODE" transistor are
the inductive switching speeds Itc and t sv ) which are
guaranteed at lOOoC.

!

- t---

Vcl amp = 250 V_

TJ ~ 25°C

./

V

N

V
t--

2.0
5.0
VBElofli' REVERSE BASE VOLTAGE IVOLTS)

10

RESISTIVE SWITCHING PERFORMANCE
FIGURE 9 - TURN·ON SWITCHING TIMES

FIGURE 10 - TURN·OFF SWITCHING TIMES

2. 0

r-

.0

1. 0

..

IS

,...

.0

Ir~

O. 5
VCC~250V

l'

]

,.;::
w

o. 21"--..

o. 1

......

IC/ls ~ 5

....

0.0 5

........

V

r---

""'"

VCE

~

II

250 V

' - - IcllB ~ 5

;:;;;

.2'--- VBE(otl) ~ 5 V

Id

0.5

~

0
.5

..... r-....
........

0.02
0.2

IZ=

.1

........

1.0
2.0
5.0
IC' COLLECTOR CURRENT (AMP)

10

20

0.0 5

4-506

0.2

0.5

5.0
2.0
1.0
IC. COLLECTOR CURRENT (AMP)

10

20

MJ13330, MJ13331

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE

RBSOA AND INDUCTIVE SWITCHING

VCEO(sus)

RESISTIVE SWITCHING

,-,-----------~--~------_1~-o+15

Rl

47{1

TURN ON TIME
""0V>~Ol

20

en

•

oJL

Z

1-0
:;)-

.. !:

'81 adjusted fO

-Z

hFE desIred

ZO

obtain the forced

o

50

U

n

TURN OFF TIME
Use inductIve SWitching

PW Vaned to Attain
Ie = 100 rnA

dover ilS the ,nput to

Ihe reslstllo/. test Circuit

All Diodes - lN4934
All NPN - MJE200
All PNP - MJE210

~----~----~~

.. 52

:j; 250 ~F

Adjust Rl to obtain ISl
For SWitching and RBSOA, R2 = 0
For BVCEO(sus). A2 = "'"

Leoll = 80 mH

Vee

L eol' '" 180,uH

= ,0 V

Reoll

Aeoll = 0 7 n

~

005

Vcc'" 17SV
.R L =175
Pulse Width'" 25115

n

Vee'" 20 V

OUTPUT WAVEFORMS

INDUCTIVE TEST CIRCUIT

t,

RESISTIVE TEST CIRCUIT
Adjusted to

Obtain

Ie

.~
LCOIIIICpk)

5

------vee--

u

t 1 =0

U

12 "" LCOllllCpk J

0:

Iiiw

Vcl amp

I-

Test EqUipment
Scope -

TektronIx

475 or Equ;valent

FIGURE 11 - THERMAL RESPONSE
0
)

5

o • 05

- --tSlJL
~

3

i-'

02

?

01

«
~

"

00 )~ 005
00 5
~ 002

:: 003
~ 0.02 I..-:

in

.......,

z

...~

~

0.0 1 ........
001

002

PI,k)

~

1

-r~~

V
i

lSljGi E
005

o CURVES APPL Y FOR POWER
PULSE TRAIN SHOWN
READ TIME AT Ii

TJ(,k) - Te' pi,k) ZOJCIt)

DUTY CYCLE, [] '" 111t2

r~LIlI
0.1

ZOJCIt)-: r(l) RUJC
ROJC = l o CIW Max

I Illl
01

05

10

10

50

t. TIME (ms)

4-507

10

I I
10

I I IIIIII
50

100

I I
200

J I I III
500

10k

MJ13330, MJ13331

SAFE OPERATING AREA INFORMATION
FIGURE 12 - FORWARD BIAS SAFE OPERATING AREA

,.
5.

10 0
50
10

I-

~

5.

-

2. 0

~

-

0
0
-

1. 0

~ ::

5

-

-

- -

FORWARD BIAS

There are two limItations on the power handlIng abIlity
of a transistor: average junctIon temperature and second
breakdown. Safe operatIng area curves indicate IC-VCE
l,m,ts of the tranSIstor that must be observed for reliable
operatIon; i.e., the transistor must not be subjected to
greater diSSIpatIon than the curves ,nd,cate.
The data ot F,gure 12 IS based on TC = 250 C; TJ(pkl
IS va"abl~ depending on power level. Second breakdown
pulse lImits are valId tor duty cycles to 10% but must be
derated when TC ;;. 250 C. Second breakdown l,mitations
do not derate the same as thermal lImitations. Allowable
current at the voltages shown on Figure 12 may be found
al any case temperature by usong the approproate curve on
F,gure 14.
TJ(pkl may be calculated from the data In Figure 11.

100p,=
1.0ms-

~t:=

Bonding Wire limit
Thermally Limited (Single Pulse)
Second Breakdown limit

2

IOms

~ ~~

= 25 0 [:

Te

8 o. I
..9 0.0 5
0.0 2
0.0 1
3.0

MJ13330~

MJ13331=
5.0

10

20

50

~f"
200

100

300

VCE. COLlECTOR·EMITTER VOLTAGE (VOlTS(

At high case temperatures. thermal limitations will reduce
the power that can be handled to values less than the
FIGURE 13 - REVERSE BIAS SWITCHING
SAFE OPERATING AREA

lImItatIons Imposed by second breakdown.

0

REVERSE BIAS

MJ13331 Limits Shown

j\

IC/IS;' 5
r-TC';; 100°C

1\

S

1\ \
VSE(olli

0

MJ13330 Limit 50 V Less

\\
\'

2

4

For inductive loads, high voltage and high current must
be sustained simultaneously during turn·off, in most cases,
with the base to emitter junction reverse biased. Under
these conditions the collector voltage must be held to
a safe level at or below a specific value of collector cur·
rent. This can be accomplished by several means such as
active clamping, RC snubbing, load line shaping, etc. The
safe level for these devices is specified as Reverse Bias
Safe Operating Area and represents the voltage·current
condition allowable" during reverse biased turn·off. This
rating is ver ified under clamped conditions so that the
device is never subjected to an avalanche mode. Figure 13
gives the complete R BSOA characteristics.

II

6

VSE(ofl(

=5 V

=2 V \

\

""

100
200
300
400
VCE. COllECTOR·EMITTER VOLTAGE (VOlTS(

500

FIGURE 14 - POWER DERATING

100

~ t-.....

"" _""'-.

0

~ ......

THERMAL
DERATING

0

~

SEcokEAKDDWN
DERATING-

l'-..

f""-..
1'-

......

J'-..
...............

l'.

0

"'

0

o

o

40

120
. 80
TC. CASE TEMPERATURE (OC(

4-508

160

........

:".200

MJll332 M]1333Jt
1.1113333 M]1t3335
20 AMPERE

NPN SILICON
POWER TRANSISTORS

SWITCHMODE.I>. SERIES
NPN SILICON POWER TRANSISTORS

350-500 VOLTS
175 WATTS

The MJ13332 through MJ13335 transistors are designed for
high-voltage, high-speed, power switching in inductive circuits where
fall time is critical. They are particularly suited tor line operated
switch mode applications such as:

Designer's Data for
"Worst Case" Conditions

o Switching Regulators
o Inverters

The Designers'" Data Sheet permits the design ot most circuits
entirely from the information presented. Limit data - representing
device characteristics boundaries are given to facilitate "worst case"
design.

o Solenoid and Relay Drivers
o Motor Controls
o Deflection Circuits
Fast Turn-Off Times
200 ns Inductive Fa" Time-25°C (Typ)
1.811S Inductive Storage Time-25°C (Typ)
Operating Temperature Range -65 to +200 0 C
lOOoC Performance Specified for:
Reversed Biased SOA with Inductive Loads
Switching Times with Inductive Loads
Saturation Voltages
Leakage Currents

Lr~~H
r~-K

MAXIMUM RATINGS
N

M
M

M
M
M

~

~
-.,

Symbol

:;::

~
-.,

VCEOlsusl

350

400

VCEV

650

700

~

Rating
Coliector~Emitter

Voltage

Collector·Emitter Voltage

M
M

"

M

:;::

:;

Unit

450

500

Vdc

750

800

Vdc

LO

M

~
-.,

'SEATlN(-L
PLANF

Emitter Base Voltage

VES

6.0

Vdc

Collector Current - Continuous

Ie
leM

20
30

Adc

IS
ISM

10
15

Adc

PD

175
100
1.0

Watts

wloe

DIM

MIN

MAX

MIN

MAX

-65 to +200

°e

•

-

3937
2108

-

1550
0830
0300
0043

Peak 111
Base Current - Continuous

Peak 111

Total Power DIssipation @TC = 25°C
@Te= 1000 e

Derate above 25°C
Operating and Storage Junction

TJ, T stg

THERMAL CHARACTERISTICS
Max

Unit

ROJC

1.0

°e/w

TL

275

°e

Symbol

Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering

Purposes: 1/8" from Case for 5 Seconds
(11 Pulse Test: Pulse Width:. 5 ms, Duty Cycle

or;;;;

MILLIMETERS

8

Temperature Range

Characteristic

PIN 1 BASE
2 EMITTER
CASE COLLECTOR

10%.

Similar device types available with lower VCEO ratings, see the MJ13330 (200 VI and

63,
C
D 099
E
F '990
G 1067
H
533

16'

109
3'3
30.'0
l11B

ATrademark of Motorola Inc.

4-509

0039
1 171
0420

K 1118
38'

1219

Q

'09

0151

R

2667

1664

1115

ColieclOlconllrtltdtllCISe

CASE 11·01

TO-3

MJ13331 1250 VI.

0250

0210
0655
0440

J

S 59

INCHES

0135
1197

0440
0220
oS75
0'80
0161
1.050

!

MJ13332, MJ13333, MJ13334, MJ13335

ELECTRICAL CHARACTERISTICS ITC

=25°C unless otherwise noted).

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (Table 11
IIc = 100 rnA, IS = 0)
Collector Cutoff Current

IVCEV
IVCEV

200
250

-

-

-

-

0.25
5

mAde

ICEV

= Rated Value, VSEloff) =1.5 Vde)
= Rated Value, VSEloff) = 1.5 Vde, TC = 1500 C)

Collector Cutoff Current

ICER

IVCE = Rated VCEV, RSE
Emitter Cutoff Current
IVES = 6 Vde, IC =0)

Vde

VCEOlsus)
MJ13330
MJ13331

5

mAde

0.5

mAde

= 50 n, TC = 100o C)
IESO

SECOND BREAKDOWN
Second Breakdown Collector Current with base forward biased

See Figure 12

Clamped Inductive SOA with base reverse biased

See Figure 13

ON CHARACTERISTICS 11)
DC Current Gain

IIc
IIc

-

hFE

= 5 Ade, VCE = 5 Vde)
= 10 Adc, VCE = 5 Vdc)

Collector-Emitter Saturation Voltage
IIc = 10 Adc, IS = 1.5 Adc)
IIC = 20 Ade, IS = 5 Adc)
IIc = 10 Ade, IS = 1.8 Ade, Tc = 1000 C)

VCElsat)

Base-Emitter Saturation Voltage
IIc = 10 Ade, IS = 1.5 Ade)
IIC = 10 Ade, IB = 1.8 Ade, Tc

VSElsatl

15
8.0

-

-

75
40

-

-

1.5
3.5
2.5

-

-

Vde

Vde

-

-

1.8
1.8

fT

5

-

40

MHz

Cob

100

-

400

pF

td

-

0.08

0.20

~s

0.55

1.0

~s

0.70

3.5

~s

0.11

0.7

~s

1.35

4.5

~s

0.45

1.8

= 1000 C)

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product

IIC· 300 mAde, VCE

Output Capacitance
IVCS = 10 Vde, IE

= 10 Vde, f test = 1 MHz)

=0, f test = 100 kHz)

SWITCHING CHARACTERSITICS
Resistive Load (Table 1)
Delay Time'

= 175 Vde,

Rise Time

IVCC

Storage Time

VSEloff)

IC

= 10 A,

lSI· 1.5 Ade,

= 5 Vde, tp· 50 ~s,

tr

Duty Cycle.; 2%)

Fall Time

ts
tf

Inductive Load, Clamped (Table 1)

Storage Time
Crossover Time
Storage Time
Crossover Time

= 10 Alpk), Vel amp = 200 Vde,
= 5 Vde, TC = lOOoC)
IIC = 10 Alpk), Vel amp = 200 Vde,
VSEloff) = 5 Vde, TC = 25 0 C)
IIC

IBI

= 1.8 Ade,

VSEloff)

tsv
tc

lSI

= 1.5 Adc,

-

0.90

tsv

0.15

te

Fall Time

tfi

III Pulse Test: PW • 300 ~s, DulY Cycle'; 2%.

4-510

-

0.075

~s
~s
~s

-

~s

MJ13332, MJ13333, MJ13334, MJ13335

DC CHARACTERISTICS
FIGURE 2 - COLLECTOR SATURATION REGION

FIGURE 1 - DC CURRENT GAIN
10 0

-

0
i-TJ-25'C
0

~

5V

~

IC

1.4

~
a::

~
2.0

1.0

g o.
~

5.0

10

20

tl
>

\

6

0.2
0.2

\

1\

0.5

03

2.4

0.7

-IC/I S·5

'rf-

~

4 :::TJ

"I

25°C

I
2.0
5.0
1.0
IC. COLLECTOR CURRENT (AMP)

0.5

10

~

1 I

~
~

=

=

5.0

10

20

FIGURE 6 - OUTPUT CAPACITANCE

/
0

".........

TJ -150'C

10 2

I

125°C

'"

~

2.0

IC. COLLECTOR CURRENT (AMP)

60 0
=VCE~250V

>-

1.0

0.5

02

FIGURE 5 - COLLECTOR CUTOFF REGION

10 3

.-t;::

150'C

o

20

104

~

-i.----

/
TJ

i--

0.2

20

W

2

/

O.B

o

10

5.0

~

B _TJ ~ 25'C

~>

>

3.0

VBElsat)@ ICIIB ~ 5

~~1.2
'-'0

~ 0.4

2.0

6

I

U;J~

S

1.0

FIGURE 4 - BASE-EMITTER VOL TAGE

Tj~ 150,bf

::>

>~_20

t:::::> 1.6
,,-

'-

0

II
II

"'~
w!:;
>-0

\

lB. BASE CURRENT (AMP)

FIGURE 3 - COLLECTOR-EMITTER
SATURATION VOL TAGE

~

!\

20 A

t--

IC. COLLECTOR CURRENT (AMP)

28

\

~

1\
\

o

8
1.0

15 A IC

18

>
.~

0

0.5

~

10 A IC

~

>-

5.0
0.2

~

o

0

~

II

25'C

IC· 5 A

2:

" ~~

0

~

TJ

!:;
o

"-

VCE

2.2

en

t=TJ.150'C

IOO'C
10 1

0

./

........

/

75°C

8
10 01*==

I
FREVERSE

0

FORWARD

1= ~25'C
10- 1
-04

-0.2

""
C,b

60
+0.2

+0.4

0.4

+06

10

2.0

5.0

10

20

50

VR. REVERSE VOLTAGE (VOLTS)

VBE. BASE-EMITTER VOLTAGE (VOLTS)

4-511

100

~~
200

400

MJ13332, MJ13333, MJ13334, MJ13335

SWITCHING TIMES NOTE
FIGURE 7 - INDUCTIVE SWITCHING MEASUREMENTS

.,....,
."..-

1

V

1,\

In res'stlve switching circuits. rise, fall, and storage
times have been defined and apply to both cur~ent and
voltage waveforms since they are in phase. However,
for inductive loads which are common to SWITCHMODE
power supplies and- hammer drivers, current and voltage
waveforms are not in phase. Therefore, separate measure·
ments must be made on each waveform to determine
the total switching time. For this reason, the following
new terms have been defined.
t sv = Voltage Storage Time, 90% IS1 to 10% Vcl amp
trv = Voltage Rise Time, 10-90% Vclamp
tfi = Current Fall Time, 90-10% IC
tti = Current Tail, 10-2% IC
te = Crossover Time, 10% Vclamp to 10% IC
An enlarged portion of the inductive switching waveforms
is shown in Figure 7 to aid in the visual identity of these
terms.
For the designer,. there is minim~1 switching loss
during storage time and the predominant switching
power losses occur during the crossover interval and
can be obtained using the standard equation from AN·222:
PSWT = 1/2 VCCIC(tc)f
In general, trv + tfi ". tc' However, at lower test currents
this relationship may not be valid.
As is common with, most switching transistors, resistive
switching is specified at 25 0 C and has become a bench·
mark f9r designers. However, for designers of high
frequency converter circuits, the user oriented specifica·
tions which make this a "SWITCH MODE" transistor are
the inductive switching speeds (tc and tsv) which are
guaranteed at 1000 C.

•

~".mp_

t--

1\
'rv ffll-Jt 'f, -1-',,~ 1-"--\ f-

90%V ctam PA 90% IC

./
'C ............

'~

I- t--'sv

1,\

/
VCE

10%'
IC pK -

10% Vcl amp

r- 90% lSI
-- --\-

'S-

--- -

t-f2%IC

-

-

!--

~

TIME

FIGURE 8 - REVERSE BASE CURRENT
versus BASE EMITTER VOL TAGE

S.O
Vclamp " 200 V

I-IS1·1.5A
'C·1O A
0l---Tr 25 OC

~

2.0

..,....... V

V

V

!-'"

V

V

V

o
o

1.0

2.0

3.0

4.0

5.0

VSEloff). SASE·EMITTER VOLTAGE IVOLTS!

RESISTIVE SWITCHING
FIGURE 9 - TURN·ON TIME

FIGURE 10 - TURN-OFF TIME

1. 0

.0

o. 5

o. 5

"

3
~

;:::

VV

o. 2
0.1 0

0.0 5
1.0

-~
2.0

" V
V

V

3 o. 3
vSEloff!· 5 V
VCC·175V
IcIIS·5
TJ·250C

-'

t--

o. 1

~~
5.0

10

.......

'f

;!... o. 2

I--

20

IC. COLLECTOR CURRENT lAMP!

0.0 5
1.0

l'-b
r-

VSEloff} ·5 v
vCC· 175 v
IcIIS·5
Tr 25°C
2.0

3.0

5.0

IC. COLLECTOR CURRENT lAMP!

4-512

10

V

.1.

20

MJ13332, MJ13333, MJ13334, MJ13335

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE

RBSOA AND INDUCTIVE SWITCHING

VCEO(sus)

RESISTIVE SWITCHING

r-.-----------~--~------~~-O+1S

R1

47n

TURN ON TIME

(/l

Z

1-0
::1-

... !::

181 adjusted to
obU",n the forced

ZQ

-z

hFE de5ued

o

so n

u

TURN OFF TIME

PW Varied to An81n
Ie'" loa mA

Use ,nductiVe sWitching

driver as the rnput to
the resistIVe test Circuit

All Diodes - lN4934
All NPN - MJE200
All PNP - MJE210

.-------4------+---0 _ S. 2

J

250 "F

Adjust Rl to obtain IS1
For switchmg and ABSOA' R2 =

For BVCEO{sus). R2

L.eOII = 80 mJ-l

Vee

=

a

00

L eol' ~ lBO j.lH
Rcorl = 0 05 n
Vee'" 20 V

= 10 V

Reoil = a 7 n

Vee
250 V
AL - 50 12

V clamp = 250 V
RS adlusted to attain dfi!Slred ISl

Pulse Width

OUTPUT WAVEFORMS

INDUCTIVE TEST CIRCUIT

= 10 j.l.S

RESISTIVE TEST CIRCUIT

t,

Adjusted to

Obtain Ie

~

t, ""

:;
U

LCOII(ICpkl

Vee

'"
u
Iiiw

t2 "" LCOII{ICpkl

VCEtvc~

...

Vclamp

~mp

Test Equrpment

1-,,-1

Scope - Tektronix
475 or Equivalent

FIGURE 11- THERMAL RESPONSE
1

""

~

_

07
05

oil I

r-O' 0 5

--

~O

xw

I- N

~:;

Z""
""Z
UJ:E

Vi'"

03

0.2

ZO

",-

1== 0.2
t--

-

-

01

g;

005

~~

0.02

-

t--

00 1
001

I--

~

0 CURVES APPL Y fOR POWE R
PULSE TRAIN SHOWN

REAO TIME AI 'I

,

-~

'1==.005

~.~ 0.0 7~002

~ ~ 0.03

ROJC(t) ~ rW ROJC
RI/Jetl) 117 0C WMo.I)(

-I

,~Jlpkl

~

~

TC ~ Plpkl R,'JCllI

~:.:L...c...

PlfrLfl

...K

001

tf-I

SINGLE PULSE

11'-

I II
002 003

DUTY CYCLE., 0:: 11/12

005

01

02

03

10

-05
t. TIME (msJ

4-513

20

30

50

100

200

300

500

~

IUOO

MJ13332, MJ13333, MJ13334, MJ13335

SAFE OPERATING AREA INFORMATION
FIGURE 12 - FORWARO BIAS SAFE OPERATING AREA

0::

'>--"
~

:'>

10/-ls

10
10
5

lOOps

1m'

8

~

~
8

01
01
0.05

Bonding WlTe Limit
Thermal llmlt@Tc :: 25°C
(Sinqle Pulse)

~

30.02

•

001
0005

FORWARD BIAS
There are two limitations on the power handling ability
of a tranSistor: average junction temperature and second
breakdown. Safe operating area curves Indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; I.e., the transistor must not be subjected to
greater disSipation than the curves Ind;"ate.
The data of Figure 12 IS based on TC = 250 C; TJ(pk)
IS va"able depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;. 250 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at [he vol [ages shown on Figure 12 may be found
a[ any case temperature by uSing the approp"ate curve on
Figure 14.
TJ(pk) may be calculated from the data In Figure 11.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.

Second Breakdown limit
6

10

I:

==

de

MJI3331
MJI3333
MJI3334
MJ13335

50
100
100
10
VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

350450600
400500

FIGURE 13 - RBSOA, REVERSE BIAS SWITCHING
SAFE OPERATING AREA
0

K!
~
>--

REVERSE BIAS
~

6

1\\

/'
1\ iG V

ill
a:

~

2

\

a:
c

fiij

S

'"

."
~

8.01-- I-IC/ISI" 5
VSElof!) ~ 5 V
I-- I- TJ ~ loooe
4. 0

0

i

100

I

I

For inductive loads, high voltage and high current must
be sustained simultaneously during turn-off, in most cases,
with the base to emitter junction reverse biased. Under
these conditions the collector voltage must be held to
a safe level at or below a specific value of collector current. This can be accomplished by several means such as
active clamping, R C snubbing, load line shaping, etc. The
safe level for these devices is specified as Reverse Bias
Safe Operating Area and represents the voltage-current
condition allowable during reverse biased turn-off. This
rating is verified under clamped conditions so that the
device is never subjected to an avalanche mode. Figure 13
gives the complete R BSOA characteristics.

MJI3335
MJI3334
Mjl333j
MJ13332

~

\1\.' l\.
I\, ,,'\ l'.

",'\. f'..

\ l~ !'\b-,
300
400
500
600
200
VCE. COLLECTOR·EMITTER VOLTAGE IVOLTS)

FIGURE 14 - POWER DERATING
10 0

~~

'"

0

0

['..,

I'"

Forward Bias

......

t--.

Therma~
Derating ---

Second Breakdown -

,-

Deratmg

~
~

...... 1"-.

i'

r-.....

0

......

0

~

0
40

120
80
TC. CASE TEMPERATURE IOC)

4-514

160

~

200

PNP

NPN

1]14000 1]14001
MJ 14002 1.1140'03
1

70 AMPERES

HIGH-CURRENT COMPLEMENTARY
SILICON POWER TRANSISTORS

COMPLEMENTARY SILICON
POWER TRANSISTORS

... designed for use in high-power amplifier and switching circuit
applications .

60-80 VOLTS
300 WATTS

.. High Current Capability - IC Continuous = 70 Amperes

•

o DC Current Gain - hFE = 15-100 @ IC = 50 Adc
o Low Coliector·Emitter Saturation Voltage VCE(sat) = 2.5 Vdc (Max) @.IC = 50 Adc

MA"XIMUM RATINGS
Symbol

MJ14000
MJ14001

MJ14002
MJ14003

Unit·

Collector-Emitter Voltage

VCEO

'60

80

Vdc

Collector-Base Voltage
EmItter-Base Voltage

VC80

60

80

Rating

Collector Current Continuous
Base Current - Contil1uous
Emitter Current - Contmuous
Total Power Dissipation @TC - 2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range

Vdc

VEBO

5

Vdc

IC

70

Adc

IB

15

Adc

IE

85

Adc

Po

300

1.7

Watts
W/oC

TJ. T stg

-65 to +200

°c

~
~JJ

LI

,5.G

f'.

1

0

PLANE

J-

THERMAL CHARACTERISTICS

I

Characteristic
Thermal Resistance, Junction to Case

Symbol

I

ROJC

Max

Unit

0.584

°C/W

o
H

STYLE I,
PIN I. BASE
2. EMITTER
CASE. COLLECTOR

FIGURE 1 - DC CURRENT GAIN

500

-

30 0
200

"~

100

, MILLIMETERS
OIM MIN
MAX

.........

I-

~ 70
_

50

~

30

.t
OJ

20

10
5
0.7

_
_

VeE=5V
TJ=25 0 e

-I 1

A
B
C

38.35
19.30
6.35

0
E
F

INCHES·
MIN
MAX

39.37
21.08
1.62

1.510
0.160
0.250

1.45

I.SO

0.057

29.90

3.43
30.40
11.18

-

10.67

G
H
J
K

5.21
16.64

0
R

3.84
24.89

11.18

5.12

11.15
12.19
4.09
26.67

-

1.171
0.420
0.205
.55 O.
0.440 0.480
0.151 0.161
0.980 '1.0511

CASE 19H11
MODIFIED TO·3

10

20

30

50

70

Ie. COLLECTOR CURRENT (AMP)

This is advance information and specifications are subject to change without notice.

4-515

1.550
0.830
0.300
0.063
0.135
.191
0.440
0.225

MJ14000. MJ14002 NPN
MJ14001 • MJ14003 PNP

ELECTRICAL CHARACTERISTICS

(TC

= 25°C unless otherwise noted)

Characteristic

Symbol

Min

Max

60
80

-

-

-

1.0
1.0

-

-

1.0
1.0

-

1.0

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
IIC = 200 mAde, IB = 0)
Collector Cutoff Current
(VCE = 30 Vde, 'B = 0)
(VCE = 40 Vde, 'B = 0)

MJ14000, MJ14001
MJ14002, MJ14003

•

rnA

'CEX

= 60 Vde, VBE(off) = 1.5 V)
= 80 Vde, VBE(off) = 1.5 V)

MJ14000, MJ14001
MJ14002, MJ14003

Collector Cutoff Current
(Vce
(Vce

mA

ICEO

Collector Cutoff Current
(VCE
(VCE

Vde

VCEO(sus)
MJ14000, MJ14001
MJ14002, MJ14003

mA

'CBO

= 60 Vde, 'E = 0)
= 80 Vde, 'E =0)

MJ14000, MJ14001
MJ14002, MJ14003

-

Emitter Cutoff Current
(VBE = 5 Vde, IC = 0)

'EBO

1.0

-

1.0

30
15
5

-

mA

ON CHARACTERISTICS
DC Current Gain
IIc = 25 Ade,
(lc = 50 Ade,
(lc = 70 Ade,

(1)
VCE = 3 V)
VCE = 3 V)
VCE = 3 V)

hFE

Collector-Emitter Saturation Voltage (1)

Vde
1
2.5
'3

-

2
3
4

Vdc

VBE(sat)

(lc = 25 Adc, 'B = 2.5 Adc)
(lc = 50 Adc, IB = 5 Adc)
(lc = 70 Adc, 'B = 14 Adc)

-

DYNAMIC CHARACTERISTICS

Output Capacitance
(VCB

= 10 Vdc,

'E

= 0, f = 0.1

MHz)

Pulse Test: Pulse Width = 300l's, Duty Cycle'; 2%.

FIGURE 2 - DC SAFE OPERATING AREA
70
50

~ 30
;

~
i3

20

-'---

10

'"

~

-

-

-

Base-Emitter Saturation Voltage 11)

(1)

100

VCE(sat)

(lC = 25 Ade, Ie = 2.5 Ade)
(lc = 50 Ade, 'B = 5 Ade)
(lc = 70 Ade, Ie = 14 Ade)

TC

=

"-

250 C

Bonding Wire limn
Thermal limit
Second Breakdown Limit

"-

1' ....
de

5

1\

8

~

MJ14000, 14001
MJ14002,14003

0.7
1

10

20

VCE, COLLECTOR·EMITTER (VOLTS)

4-516

30

-

50

70 100

NPM
IJ15001
PHP
IJ15002
15 AMPERE

COMPLEMENTARY SILICON POWER TRANSISTORS

POWER TRANSISTORS
COMPLEMENTARY SILICON

The MJ15001 and MJ15002 are EPIBASE'" power transistors
designed for high power audio, disk head positioners and other
linear applications.

140 VOLTS
200 WATTS

«I

High Safe Operating Area (100% Tested) 200W@40V
50W@100V

•

o For Low Distortion Complementary Designs
o High DC Current Gain hFE = 25 (Min) @ IC = 4 Adc

Lr~

'~K
ESEATIN(~

I

PLANE

MAXIMUM RATINGS
Rating
Coliector·Emitter Voltage
Collector· Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Base Current - Continuous
Emitter Current Continuous
Total Power Dissipation@TC = 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range

Symbol
VCEO(sus)
VCBO
VEBO
IC
IB
IE
Po

Value
140

140
5
15

TJ,Tstg

5
20
200
1.14
-65 to +200

Svmbol

Max

Unit
Vdc
Vdc
Vdc
Adc
Adc
Adc
Watts
WloC

PIN 1. 8ASE
2. EMITIER
CASE: COLLECTOR

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering

AOJC
TL

0.875
265

Purposes: 1116" from Case for <;10s.

Unit
°cm
°c

DIM
A
8
C

a

MILLIMETERS
MIN MAX

-

6.35
0.99

-

E
F 29.90
G 10.67
H 5.33
J 16.64
K 11.18
Q

R

3.84

39.37

21.08
7.62
1.09
3.43
:11.40
11.18
5.59
17.15
12.19
4.09
26.67

INCHES
MIN
MAX

0.250
0.039

-

1.177
0.420
0.210
0.655
0.440
0.151

-

Collector connetted to c_.
CASE 11·01
TO-3

~r8demark. of Motorola Inc.

4-517

1.550
0.830
0.300
0.043
0.135
1.197
0.440
0.220
0.675

n.m

0.161
1.050

MJ15001 NPN
MJ15002PNP

l:LECTRICAL CHARACTERISTICS (TC = 250 C unle•• otherwise noted.1

I

I

Characteristic
OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage (11
(lr. = 200 mAde. IR = 0)
Collector Cutoff Current
(VCE e 140 Vde, VBE(off) ,;. 1.5 Vdel
(VCE = 140 Vde, V8E(off/ -1.5 Vdc, TC a lS00 CI
Collector Cutoff Current
(VCE = 140 Vde, IB = 01
Emitter Cutoff Current
(VEB = 5 Vde, IC = 0)
SECOND BREAKDOWN
Second Breakdown Collector Current with Base Forward Biased
(VCE = 40 Vde, t = 1 s (non·repetitivell
(VCE = 100 Vde, t = l,s (non·repetitivel
ON CHARACTERISTICS

•

DC Current Gain

(lC = 4 Ade, VCE = 2 Vde)
Collector-Emitter Saturation Voltage
IIC = 4 Ade, 18'" 0.4 Adel
Base-Emitter On Voltage
(lC = 4 Adc, VCE = 2 Vdcl
DYNAMIC CHARACTERISTICS

Min

MIX

Unit

VCEO(susl

140

-

Vde

ICEX

"Ade
mAde
"Ade

ICEO

-

100
2
250

lEBO

-

100

"Ade

hFE

25

150

-

1

Vde

2

Vdc

VCE(sat/

Current-Gain - Bandwidth Product
(lc = 0,5 Ade, VCE = 10 Vdc, f t • st = 0.5 MHzl
Output Capacitance
(VCB = 10 Vdc. IE = i test = 1 MHz)

p.

(1) Pulse Test: Pulse Width

Svmbol

VBE(onl

,-

IT

2

-

MHz

Cob

-

1000

pF

=300 "S. Duty Cycle .. 2%,

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA
There are two limitations on .. the powerhandling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves
indicate.
The data 01 Figu~e 1 is based on T J (pkl = 2000 C; t C iova, iable
depending' on conditions. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by second breakdown.

2U

10

L'--

Te ~ 25°C

!!;
5
l-

i

1\

<.>

'"

0

I

i===
~8 1=--f;::---- iS~~~~:~U~~gATION
0.7
0.5

TJ= 200°C
BONDING WIRE LIMITED

~ 0.3 1 - - - SECOND BREAKDOWN LIMITED
ICURVES APPLY BELOW RATED VCEO
0,2
2
5
7 10
20
30
50 70 100
VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS)

\
200

4-518

MJ15001NPN
MJ15002PNP

TYPICAL CHARACTERISTICS

FIGURE 2 - CAPACITANCES

---

100
~ 200

~

100

~

70
50

U

30

g
«
u

FIGURE 3 - CURRENT-GAIN - BANDWIDTH PRODUCT
~
;S

1000
700
500

TJ = 250Cr--

Cib
• ...; Cib

-

-.

10

t;

f.-

=>
c
c

:-

-

-

:f
:J:
b
~
'"

Cob

~

-

7

I II Ll

6

11111

"-

"

VCE = 10 V
5

-

I'''i' 11. 1iHI

I

Cob

I'--

TJ ~ 25°C

'5

;;;

Lilli
MJI5002 (PNP)

MJI5001INPN)
---MJI5001 INPN)
MJ150021PNP)

20

11111
11111

L II

10

1.5 2

5
10
20
10
VR. REVERSE VOLTAGE (VOLTS)

50

70

100

0.2

ISO

0.1

r.....

0.5 0.7
I
'C. COLLECTOR CURRENT lAMP)

10

FIGURE 4 - DC CURRENT GAIN
MJ150D1

-

-.-.
lCOoC'

200

TJ

MJ150D2

~

.I. .1.
-25°C

200
VCE = 2 Vdc

;;:

~

~

'"
~a:

20

u

10

10

I-

a
~
2
0.2

0.3

VCE = 2 Vd,

TJ=IOOoC
100
70 e- 25°C
z 50

0.5 0.7
I
'C. COLLECTOR CURRENT (AMP)

10

2
0.2

20

1\.."-

0.1

0.5

10

0.7
'C. COLLECTOR CURRENT (AMP)

20

FIGURE 5 - "ON" VOLTAGE
MJ15DD1

MJ15DD2

2.0

2.0

'V

1.6

rll
I

1.6

II
II/

~

'"

~ 1.2

c

~

W

to

~ 0.8 r--TJ =

250~

c

>
-I,,; 0.4 :::::rOOOC
vCEi..tI

o

0.2

0.3

~ ,dllB = 10

:::..

~ 1.2

~

VeE @VCE ·1 Vdc

--

.

~~

TJ = 1000C ~

t-"

0.4

~~
"I

0.5 0.7
I
5
'C. COLLECTOR CURRENT (AMP)

r-- TJ = 25°C

~ 0.8
>
>'

100°C

I- vcJ{so,i @l~/tB = 10

---

I

~

VeE @VCE = 2 Vdc

~

'"

~.,.

TJ = 1000C

~

~

,.., i-'"

'250C

o
10

0.2

20

0.3

0.5 0.7
IC. COLLECTOR CURRENT (AMP)

4-519

II

10

20

•

. MJ15001NPN
MJ15002PNP

FIGURE 6 - COLLECTOR SATURATION REGION
M~15002

MJ15001

~

2

c

~

I

s

TJ = 2soe

~

~ 1.6

>
~

w

IC = 4 A
2

\

::

'"
~
c

1\

\

c

::: 0.4

•

:!l

>

I'-..

s

:!l

>

0

0.02

0.03

O.OS 0.07 0.1

IC =4 A

0.2

0.3

1\ le=BA

j

\

'"

~...

.......

S

1. 6

~
~ o. B

I\.
O.S

0.7

I

TJ=2SoC

Ie = 2 A

;; 1.2

\IC=8A

~
ci: o. 8

9

I

c

Ie = 2 A

~
c

2

o.4
0
0.02

\..

I'0.03

O.OS 0.07

'"
0.1

0.2

0.3

lB. BASE CURRENT lAMP)

IS. BASE CURRENT lAMP)

4-520

o.s

0.7

1

MJ15003 NPN
MJ15004 PNP

COMPLEMENTARY SILICON POWER TRANSISTORS

20 AMPERE

POWER TRANSISTORS
COMPLEMENTARY SILICON
The MJ15003 and MJ15004 are EPIBASE power transistors
designed for high power audio, disk head positioners and other
linear applications.

140 VOLTS
250 WATTS

o High Safe Operating Area (100% Tested) 250 W@50 V
o For Low Distortion Complementary Designs
•

High DC Current Gain hFE = 25 (Min) @ IC

= 5 Adc

Lr~
r~K
ESEATlN!~
PLANE

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO(su~1

140

Vdc

Collector-Base Voltage

VCBO

Vdc

Emitter-Base Voltage

VEBO

140
5

Collector Current _. Continuous

IC

20

Adc

Base Current - Continuous

18

Adc

Emitter Current - Continuous

IE

Total Power Dissipation@ TC - 25°C
Derate above 25 DC

Po
TJ.Tstg

5
25
250
1.43
-65 to +200

Symbol

Max

Unit

ROJC

0.70

°C/W

TL

265

°c

Rating
Collector-Emitter Voltage

Operating and Storage Junction
Temperature Range

Vdc

Adc

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
Maximum Lead Temperature for Soldering

PIN 1. BASE
2. EMITTER
CASE, COLLECTOR

Watts
W/oC

DIM

Purposes; 1116" from Case for -z

a'"'"

MJ15004
VCE" 2 Vdc_

t---.

~150C

~

-

10 0

10
50

;;:

30

""

10

1
0.1

...'"ffi

.....

20

0.3

0.5

0.7

1•

Vel: "2 Vdc

15°C

50
30

'"
B

,

~

20

r":

u

o

0

w
J!o

1
5
3
1
0.2

20

10

i--- TJ" 100 uC
fi

ot::=

z

u
0

20 0

0.3

10

0.5 0.7

10

IC. COLLECTOR CURRENT lAMP)

IC. COLLECTOR CURRENT lAMP)

FIGURE 5 - "ON" VOLTAGE
MJ15003

MJ15004

/,

16

'I

V-/ I

;;;

!3
w

'II
hI
1/1
II I

I. 6

~

o

0

~

2

1.1

'""

VSE@VCE"1Vdc

!3

0.0 r--TJ = 25°C
>

0

=:::t== V

>'

~"trll'
0.4

~VCEI~') @Iclis = 10
11'1'1

o

0.2

0.3

0.5

....-::V

IV
IJ

V

~

~

>

>'

1. 2

TJ=100oC
O.

~C
'j i

0.7

10

I::::'~

-l-

4 100 C I I ~II .II

~ VCEI,ar) @Iclla - 10

0.2

IC. COLLECTOR CURRENT lAMP)

i VCE =1 Vdc

I11I

°

o

20

~af

O. 8-TJ I 25 0lC

TJ - 100°C

..Jd::1"
25°C

0.5

10
IC. COLLECTOR CURRENT lAMP)

4-523

/

/1
V

20

•

MJ15003 NPN

MJ15004 PNP

FIGURE 6 - COLLECTOR SATURATION VOL 'rAGE
MJ15003

;;;

MJ15004

2

~J= 2s!e

!:;

o

~

~

1.6

~

ffi

~

8

•

0.4

o

~

'"

le=2.SA

>

'"w

_\Ie = lOA

::
~

\

\

:\

"-

0.02 0.03

r-...

O.S

\ Ie = 10 A

I. 2

\

!\

o. 8
o.

4\

8
0.3

I II
TJ = 2S'C

IC = 5 A

t;

"j

t0.2

I
I

i'-

o

~

O.OS 0.07 0.1

I
IC = 2.S A

I.6

~

o

Ie = SA

l. 2

~ O. 8
o

o

w

o

:::;;

s

2

0.1

I

>

0
0.03

i'O.OS 0.07 0.1

"- ......
0.2

0.3

0.5 0.7

IB, BASE CURRENT lAMP)

18. BASE CURRENT lAMP)

4-524

NPN

PNP

M]15dbll

r~jlS@li2

10AMPERE

COMPLEMENTARY SILICON POWER TRANSISTORS

COMPLEMENTARY
POWER TRANSISTORS·

The MJ15011 and MJ15012 are' Power Base power transistors

250 VOLTS
200 WATTS

designed for high-power audio, disk head positioners, and other
linear applications. These devices can also be used in power
switching circuits such as relay or solenoid drivers, dc·to-dc

converters or inverters.

•

o High Safe Operating Area (100% Tested)
1.2 A@ 100 V
o Completely Characterized for Linear Operation
o High DC Current Gain and Low Saturation Voltage
hFE = 20 (Min) @ 2 A, 2 V
. VCE(sat) = 2.5 V (Max) @ IC = 4 A, IB = 0.4 A
o For Low Distortion Complementary Designs

lr~
r~K
ESEATIN!~

i

PLANE

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

VCEO(sus)

250

Vdc

Collector-Emitter Voltage

VCEX

250

Vdc

Rating

Emltter·Base Voltage

VEB

5

Vdc

Collector Current - Contmuous

IC
ICM

10
15

Adc

2

Adc

-Peak(l)
Base Current - Contmuous

IS
ISM

- Peak (1)
Emitter Current - Continuous

IE
IEM

- Peak III
Total Power DiSSipation
Derate above 25°C

@

TC

PD .

25°C

==.

Operating and Storage Junction
Temperature Range

TJ, Tst9

5
12
20
200
1.14
-65 to +200

Adc

°c

DIM

C

A
B

Characteristic

Thermal Resistance, Junction to Case
Maximum Lead Temperature for

Symbol

Max

Unit

ROJC

0.875

°C/W

E

TL

265

~C

F
G

Soldering Purposes

D

H

=-

5 ms, Duty Cycle

~

J
K

10%.

NOTE:
1. DIM "U"IS OIA.

Watts
W/oC

THERMAL CHARACTERISTICS

(1) Pulse Test: Pulse Width

STYLE 1:
PIN 1. BASE
2. EMITTER
CASE: COLLECTOR

n
R

MILLIMETERS
MAX
MIN

-

39.37
21.08
7.62 0.250
1.09 0.039
3.43
29.90 30.40 1.177
10.67 11.18 0.420
5.33· 5.59 0.210
16.64 17.15 0.655
11.18 12.19 0.440
4.09 0.151
3.84
- 26.67
Collector connected to case.
CASE 11·01
6.35
0.99

(TO·3)
ThIS IS advance information and

Power Base is

0

..
specIficatIons are subject to

chango Without notice.

trademark of Motorola.

4-525

INCHES
MIN
MAX

1.550
0.83l1
0.300
0.043
0.135
1.197
0.440
0.220·
0.675
0.480
0.161
1.050

MJ15011 NPN • MJ15012 PNP

ELECTRICAL CHARACTERISTICS

I

1Tc = 25°C unl." othe,w;s. noted)'
Svmbol

Min

Max

Unit

VCEOlsusl

250

-

Vde

ICEO

-

1

mAde

ICEX

-

500

~Ade

IESO

-

500

~Ade

20
5

100

-

0.8
2.5

-

2

Characteristic
OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (1)

IIc

= 100 mAl

Collector Cutoff Current
IVCE = 200 Vdel
Collector Cutoff Current
IVCE = 250 Vde, VSEloNI

= 1.5 Vdel

Em itter Cutoff Current

IVSE

= 5 Vdel

ON CHARACTERISTICS 111

DC Current Gam
IIc = 2 Ade, VCE = 2 Vdcl
IIc =4 Ade, VCE = 2 Vdel
Collector-Emitter Saturation Voltage
IIC = 2 Ade, IS = 0.2 Adcl
IIC = 4 Ade, IS = 0.4 Adcl
Base-Emitter On Voltage
IIC = 4 Ade, VCE = 2 Vdcl

•

-

hFE

Vde

VCElsa'1

VSElonl

Vdc

DYNAMIC CHARACTERISTICS
Output Capacitance
IVCS = 10Vde, f= 1 MHzl

SECOND SREAKDOWN
Second Breakdown Collector Current with Base Forward Biased

IVCE
IVCE

=
=

50 Vdc, , = 0.5 sl
100 Vde,' = 0.5 sl

111 Pulse Test: Pulse Width = 300 ~s, Duty Cycle" 2%.

FIGURE 2 - ACTIVE REGION SAFE OPERATING AREA

FIGURE 1 - DC CURRENT GAIN
200

f- i- i--

-

10
VCE' 2 Vde

.......

100

......

z

~

........

I'

50

I-

~

a

d,

,\"

20 -MJI5011-- MJI5012 - - '-'
c

I

\

.# 10

5
_

5

2-

-

-

- -

BONOINGWIRE LIMIT
THERMAL L1MIT@TC'25OC
(SINGLE PULSEI
SECONO BREAKOOWN LIMIT

--

I2

0.1

0.2

0.5

O. I

10

15

Ic, COLLECTOR CURRENT

20

30

50

70

100

'\.
'\.
150

VCE, COLLECTOR·EMITTER VOLTAGE (VOL TSI

4-526

200

300

NPN
MJ15022
MJ15024
16 AMPERE

SILICON POWER TRANSISTORS

SILICON
POWER TRANSISTORS

The MJ15022 and MJ15024 are PowerBase power transistors
designed for high power audio, disk head positioners and other
linear applications.

200 and 250 VOLTS
250 WATTS

•

High Safe Operating Area (100% Tested) 2A@80V

•

High DC Current Gain hFE = 15 (Min) @ IC = 8 Adc

•
lr~
r~K
ESEATlN/~
PLANE

MAXIMUM RATINGS
Symbol

MJ15022

I

MJ15024

Unit

Collector-Emitter Voltage

VCEO

200

I

250

Vdc

Collector-Base Voltage

VCBO

350

I

400

Vdc

Emitter-Base Voltage

VEBO

7

Vdc

Collector-Emitter V,oltage

VCEX

400

Vdc

IC

16
30

Adc

Rating

Collector Current - Continuous

Peak il)
Base Current - Continuous

IB

5

Adc

Total Power Dissipation@TC-25OC

PD

250
1.43

Watts
W/oC

TJ. T stg

-65 to +200

°c

Derate above 2SoC
Operating and Storage Junction

STYLE 1:
.
PIN 1. BASE
2. EMIITER
CASE: COLLECTOR

NOTE:
1. OIM "0" IS OIA.

Temperature Range
DIM

THE.RMAL CHARACTERISTICS
Characteristic

Symbol

Thermal Resistance, Junction to Case

ROJC

I
I

Max

Unit

A

0.70

°C/W

C

B
D

(1) Pulse Test: Pulse Width - 5 ms, Duty Cycle ~ 10%.

E
F

G
H
J
K
Q

R

MILLIMETERS
MAX
MIN

INCHES
MIN
MAX

-

39.37
21.08
7.62 0.250
1.09 0.039
3.43
29.90 30.40 1.177
10.67 11.18 0.420
5.33
5.59 0.210
16.64 17.15 0.655
11.18 12.19 0.440
3.84
4.09 0.151
26.67
Collector connected 10 case.
635
0.99

CASE 11·01

(TO·3)

4-527

I

1.550
0.B30
O.JOO

0.043
0.135
1.197
0.440
0.220
0.675
0.480
0.161
1.050

MJ15022, MJ15024 NPN

ELECTRICAL CHARACTERISTICS

I

ITC" 25°C unle.s otherwise noted,)

I

Characteristic

Symbol

Min

MIX

200
250

-

-

250
250

-

500
500

-

500

15
5

60

-

1.4
4.0

Unit

OFF CHARACTERISTICS

Collector·Emitter Sustaining Voltage (1)
(I~ / 100 mAde, IS = 01

VCEO(susl
MJ15022
MJ15024

Collector Cutoff Current
(VCE
(VCE

MJ15022
MJ15024
ICEO

= 150 Vde, IS = 01
IVCE = 200 Vde, IS = 01

MJ15022
MJ15024

(VCE

Emitter Cutoff Current

= 7 Vde,

IESO

= 01

IS

,

ICEX

= 200 Vde, VSE(offl = 1.5 Vdel
= 250 Vde, VSEloffl = 1.5 Vdel

Collector Cutoff Current

IVCE

-

"Ade
IJAdc

,uAdc

'Both

SECON.D BREAKDOWN

•

Second Breakdown Collector Current with Base Forward Biased
{VeE =<.50 Vdc, t::: 0.5 s (non-repetitive))
(VeE"" 80 Vdc, t::: 0.5 ~ (non-repetitive))

ON CHARACTERISTICS

DC Current Gain
(lC
(lC

Collector-Emitter Saturation Voltage
(lC
(lC

= 8 Ade, IS = 0.8 Ade)
= 16 Ade, IS = 3.2 Ade)
=8

Ade, VCE

Vde

VCElsat)

Base-Emitter On Voltage
(lC

-

hFE

= 8 Ade, VCE = 4 Vde)
= 16 Ade, VCE = 4 Vdel

VSElon)

-

IT
Cob

2.2

Vde

4

-

MHz

-

500

pF

= 4 Vdel

DYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product
IIc = 1 Ade, VCE = .10 Vde, 'test = 1 MHz)
Output Capacitance
IVCS

= 10 Vde,

IE

= 0, I test = 1

MHz)

11) Pulse Test: Puis. Width = 300 "s, Duty Cycle .. 2%.

FIGURE 1 - ACTIVE,REGION SAFE OPERATING AREA

100 ". ' , _
~
~

5°~'fl
f-+-+

There are two limitations on the powerhandling ability of a
transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves
indicate.
The data 01 Figure 1 is based on T J(pk) = 200°C; T C is variable
depending on conditions. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
less than the limitations imposed by second breakdown.

1--

20

0.2 ~+:j::::t+l+rn!=+:J=++~M~Jrtlt!50~21'2~t:+:f::4+l+tj
01~~~-L~~~~~~-L~~M~J~I~50~24~-L~~-L~~~
0.1 0.2
0.5 10
20
50 100
250 500 I k
VCE, COLLECTOR-EMITTER VOLTAGE IVOLTS)

4-528

MJ15022, MJ15024 NPN

TYPICAL CHARACTERISTICS
FIGURE 2 - CAPACITANCES
4000
300 0

--

r-

FIGURE 3 - CURRENT-GAIN-BANDWIDTH PRODUCT

C,b

I

TJ ° 25°C

Tr

25°C
VCEolOV

~ 1000

'Test'" 1 MHz

,

7

w

'-'

~ 500

i'-

5
Cob

j

--I'--

<.i

I

""

U

;::

i'

100
I
40
03

0.5

50

10

30

50

100

03

300

FIGURE 4 - DC CURRENT GAIN
200

B
g

j

~

10

I
I
Vl

IB

VCE ° 4 V
-~

TJ ° 25°C
50

-~

g 14

--

w

'"'"
:;

~

10
DB r-Tr 25 0 C-

0

>
>-

10

VBE(on)@VeE"4V

-I--

IIII

t- _I,OOOC
I I

50

2r--

05

1.0
2.0
50
'C. CO LLECTO R CU RRENT lAMPS)

10

°o

20

05

02

~

10

1I

IB

TJ '" 25°C

w

14

'"w~

1.0

\

'\

c
>

\

~

"'c~

0.6

c

'-' 02

~

>

0
0.03

/

\

\

16 A

IC04~
I

lin
IIII

0.1

0.2

BA

~

-

I-

-t++
II
0.5

'1.0

2.0

lB. BASE CURRENT lAMPS)

4-529

5.0.

10

30

1/

i'
i..--'~

100°C
20

IC. COLLECTOR CURRENT lAMPS)

2:

'"~

-

VCEI"ll @lIC/IB ° 10

- 2 5 0 C-

FIGURE 6 - COLLECTOR SATURATION REGION

c

{//

i

0

2:

~

20

10
02

50

FIGURE 5 - "ON" VOLTAGE

>-

~

2.0

10

TJ ° 100°C

100

"~

05

IC. COLLECTOR CURRENT I.AMPS)

VR. REVERSE VOLTAGE IVO LTSI

/.

50

10

20

•

MJE51T

thru
MJE53T
5 AMPERE

POWER TRANSISTORS
NPN SILICON

HIGH VOLTAGE NPN SILICON POWER TRANSISTORS

250, 300, 350 VOLTS
80 WATTS

· .. designed for high voltage inverters, switching regulators and line·
operated amplifier applications. Especiallv well suited for switching
power supplv applications.

•

•

Intended as Economical Substitutes for the Electricallv Similar
TIP51 thru TIP53 Series

•

High Coliector·Emitter Sustaining Voltage
VCEO(sus) = 250 V(min) - MJE51T
= 300 V(min) - MJE52T
= 350 V(min) - MJE53T

@

25 mAdc

MAXIMUM RATINGS
Rating

Svmbol MJE51T MJE52T MJE53T

Unit

COllector-Emitter Voltage

VCEO

250

300

350

Vdc

Collector· Base Voltage

Vca

350

400

450

Vdc

Emitter -8ase Voltage
Collector Current

.
-..•

VEa

Continuous

IC

•• Peak
Base Current

la

Total Power DiSSipation @.'TC '- 25°C
Derate above 2SoC

Po

Operating and Storage Junction
Temperature Range

..
....
...
..

6.0
5.0
10

..

2.0

80
_0.64

TJ.T"Q

~-65to+150~

-=11- 5

Adc

t-I

Watts
W/OC

K
!

°c

Symbol
ROJC

I

I

Max

I

Unit

1.56

I

°C/W

0:

'""'"

-

...'"

I-

~ 60
z

'"
~

--

"

t-...

..........

Thermal Derating"

~ 40

'"0:

..........

"'" "' -~

~

...'"

20

1--- . - _.00

MilliMETERS
DIM MIN MAX
A 15.11 15.75
9.65 10.29
B
4.06
4.B2
C
0.64
0.89
D
F
3.61
3.73
G
2.41
2.67
H
2.79
3.30
J
0.36
0.56
K 12.70 14.27
1.14
L
1.27
N
4.83
5.33
0
2.54
3.04
R 2.04
2.79
1.14 • 1.39
S
T
5.97
6.48
1.27
U
0.76
114
V

.......... Second
..........BreakdDV'4h Derating
._- --

20

40

100
120
60
80
TC. CASE TEMPERATURE (DC I

f"'..
f---

~

140

160

4-530

-

il~

l~'

STYLE I.
PIN 1. BASE
2 COLLECIOR
3 EMITTER
4. COLLECTOR

~

80

SECT A A

I-J

FIGURE 1 - POWER DERATING

i!

J

~

t

,"";1 ;~

J~r-

I~

-1J~R

Thermal Resistance, Junctlory to Case

100

F/i+-

!
A
Jt u

Adc

THERMAL CHARACTERISTICS
Characteristic

w~IT

C

I~U

Vdc

L

o~I~LG

NOTE
I DIM L& H APPLIES
TO ALLLEAOS
INCHES
MIN MAX
0.595 0.620
0.3BO 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.095 0.105
0.110 0.130
0014 0022
O.SOO 0.562
0.045 0.050
0.190 0.210
0.100 0.120
0.080 0.110
0.045· 0.055

~:~~ ~
OOSO
0.045

CASE 221A-02
TO·220AB

-

MJE51T thru MJE53T

ELECTRICAL CHARACTERISTICS IT C = 25 0 C unless otherwISe

notedl.

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage (11
(lC = 25 mAde, IB = 0)

Collector Cutoff Current

MJE51T
MJE52T
MJE53T

VBE
VBE
VBE

= 5,0 Vdc,

-

-

-

1.0
1.0
1.0

mAde

-

MJE51
MJE52
MJE53

,

lEBO

-

mAde

ICES

= 0)
= 0)
= 0)

Emitter Cutoff Current

(VBE

-

-

-

Collector Cutoff Current

= 350 Vdc,
= 400 Vdc,
= 450 Vde,

-

250
300
350
ICED

(VCE = 150 Vde, IB = 01
(VeE = 200 Vde, 18 = 01
(VCE = 250 Vde, IB = 01
(VCE
(VCE
(VCE

Vde

VCEOlsu,1
MJE51T
MJE52T
MJE53T

.-

1.0
1.0
10

-

-

30

-

50

-,

-

-

-

2.0

Vde

-

2.0

Vde

1.0

mAde

IC = 01

ON CHARACTERISTICS
DC Current Gam( 1)

(lC
(lC

= 0,3 Ade,
= 5.0 Ade,

= 10 Vde)
= 10 Vdc)

Collector·Emltter Saturation Voltage

(lC

= 5.0 Ade,

-

hFE

VCE
VCE
IB

=

VeEI,atl

2.0 Adc)

Base·Emltter On Voltage
(lC = 5.0 Ade, VCE = 10 Vdc)

VBE(onl

DYNAMIC CHARACTERISTICS
Smail-Signal Current Gam

(IC

= 0.2 Ade,

VCE

Smail-Signal Current Gam
(lc

= 0.2 Ade,

VCE

= 10 Vde,

= 10 Vdc,

2.5

-

-

-

hie

30

-

-

-

-

150

pF

0.5

-

2.0

-

f = 1.0 kHz)

Output Capacitance

(VCB

Ihle l

= 10Vde, f = 1.0MHz)

Cob
IE

= 0,

f = 0.1 MHz)

SWITCHING CHARACTERISTICS

Turn-On Time

ton

-

(VCC = 125 Vde, V8E(off) = 5.0 Vdc,
IC = 2.5 Adc, ISl = IB2 = 0.5 Ade)
Turn-Off Time

toff

(VCC= 125Vdc.IC= 2.5 Ade,
VBE(off) = 5.0 Vde, IBl = IB2 = 0.5 Adel

(lIPul,e Test: Pulse W,dth" 300 "': Duty Cycle " 2.0%

4-531

'"
jlS

MJE51T thru MJE53T

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - DC CURRENT GAIN
_00

VCC
+125 V

z

RC • SO
SCOPE

RB·20

...:;;:
0-

~
a:
::>
'"c

'"

~

Ir.lt~50ns

DUTY CYCLE· 1 0%
-5.0 V
RB and RC VARIEO TO OBTAIN DESIRED CURRENT LEVELS

•

01 MUST BE FAST RECOVERY TYPE ••g
MBD5300 USED ABOVE IB -100 mA
MSD6100 USED BELOW IB ·100 mA

VCE' 10 Vde
TJ=250 C -

100
70

""

SO
30

1\

20

10
0.05

'\
\

0.1

0.2

0.3

0.5 0.7

1.0

2.0

3.0

5.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 4 - ACTIVE·REGION SAFE OPERATING AREA

20
0

i

-

5. 0

.-~

~

0-

~

2. 0
TC

0:

a: 1. 0

i:!

-

=25°C

...-

-,.;..,'

de

--

~

5.Dms

_ Bondmg Wire limit

C

O. 5 ---- Thermal limit (Single Pulse)

~

O. 2

'"

O. 1

0:

0-

c

5
0.02
5.0 7.0

~om'
-

,ci=-:.:j::·t·

The data of Figure 4

-

~ l--

Second Breakdown limit
Curves applv below flted VCEO

~OO.' -

There are IWD hmltatlons on the power handling ability of a
tranSistor average Junction temperature and second brea'kdown.
Safe operating area curves IOd,cate Ie - VeE limits of the tranSistor
that must be observed for reliable operation; I.e., the transistor
must not be subjected to greater diSSipatiOn than the curves
indicate.

.......,
MJE5lT
MJE52T
MJE53T

-

~
r-r::

10
20
30
50 70 100
200
VCE. COLLECTOR·EMITTER VOLTAGE (VOL TS)

300

IS

based on TC

=

25°C; TJlpk)

IS

variable dependmg on power level. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ(pk) ~ 1S00C. At
high case temperatures, thermal limitations will reduce the power
that can be handled to lIalues less than the limitations imposed bV
second breakdown. Second breakdown limitations do not derate
the same as thermal limitations. Allowable current at the voltages
shown on Figure 4 may be found at any case temperature bV
using the appropnate curve on Figure 1.

500

4-532

MJEI05

(SILICON)

MEDIUM-POWER PNP SILICON TRANSISTOR

5AMPERE
POWER TRANSISTOR

... for use as an output device in complementary audio amplifiers
up to 20·Watts music power per channel.

PNP SILICON

•

High DC Current Gain - hFE = 25·100@ IC = 2.0 A

•

Thermopad

50 VOLTS
65 WATTS

High·Efficiency Compact Package

o Complementary to NPN MJE205

MAXIMUM RATINGS
Symbol

Value

VCEO

50

Vde

Collector-Base Voltage

VCB

50

Vde

Emitter-Base Voltage

VEB

4.0

Vde

IC

5.0

Ade

Rating
COllector-Emluer Voltage

Collector Current
Base Current

Total Power Dissipation @TC - 25°C

IB

2.5

Ade

POlll

65
0.522

Watts

W/oC

TJ. Tstg

-55 to +150

°c

Derate above 2SoC
Operating and Storage Junction

Unit

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Th'ermal Resistance, Junction to Case
(1) Safe Area Curves are Indicated by Figure 1. Both limits are applicable and must beobscrved.

ELECTRICAL' CHARACTERISTICS ITC
Characteristic

=

25°C unless otherwise noted I

I

Symbol

I

Min

I Max I

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage (2)

IIc

= 100 mAde, IB = 0)

Collector Cutoff Current

IVCB
IVCB

= 50 Vde, IE = 0)
= 50 Vde,IE = 0, TC = 150°C)

Emitter Cutoff Current

IVBE

= 4.0 Vde, IC = 0)

Vde

BVCEO
50

-

-

0.1
2.0

-

1.0

mAde

ICBO

lEBO

mAde

IIc = 2.0 AdC, VCE = 2.0 Vdc)

A

0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
0.166 BSC
0.105 0.115
0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0.075 0.085
0.245 0.255
0.080

B

C
D
F
G
H
J
K

n

-

hFE

IIc =2.0 Ade, VCE = 2.0 Vdel
Base-Emitter Voltage

INCHES
MIN MAX

M

ON CHARACTERISTICS
DC Current Gain

MILLIMETERS
DIM MIN
MAX

25

100

-

1.2

Vde

VBE

(2) PulsaTe$t: Pulse Width ~3001J1, Duty Cycle ~2.0%.

4-533

R
U
V

16.13 16.38
12.57 12.83
3.18 3.43
1.09 1.24
3.51 3.76
4.22 BSC
2.67 2.92
0.813 0.864
15.11 16.3B
90 TYP
4.70 4.95
1.91 2.16
6.22 6.48
2.03

CASE 90·05
TO·127

•

MJE105

FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA
I0

1.0~TJ.'5IJOC
~ 5. 0

~ 3.0

~

E 2.0

'"

1.0p-----THERMAL LIMIT iii TC = 2SoC

~

::

It=:' . -

Safe operating area curves indicate Ie . VeE limIts of the transistor
that must be observed for reliable operation; I.e., the transistor must
not be subjected to greater dissipation than the curves indicate.
The data of Figure 1 is based on TJ(pk) = 150°C; TC is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provIded T J(pk) ,;;1500 C. At hIgh case

1\ \

OONOING WIRE LIMIT
SECOND OREAKOOWN LIMit

5

o
'-'
~

~

". ~.Oms
U

a'"
'"

There are two limitations on the power handling ability of a
transistor; average Junction temperature and second breakdown.

100",

,

temperatures, thermal limitations will reduce the power that can be
handled to v~lues less than the limitations Imposed by second
breakdown .

de

.3

1\

.2

o.1
1.0

2.0

3.0

5.0

7.0

10

20

50

30

VCE. COLLECTOR·EMITIER VOLTAGE IVOLTS)

FIGURE 3 - DC CURRENT GAIN

FIGURE 2 - "ON" VOLTAGES
2.0

I"I

1.8

~

~
w

...

ffi
:::;
<[

'"o'"

1.4
1.2
1.0
VaEI... ) iii Ic/'O =10

~ 0.8

II

0

> 0.6
0.4

r--

0.2

o
0.01

~

r---.

I .I

t

I~

......

0.02 0.03 0.05
0.1
0.2 0.3 O.S
1.0
IC. COLLECTOR CURRENT lAMPS)

;

1.0

~

0.1

'"'"
G

0.3

~I-"

:ssoJ

~

O. 1
0.01

2.0 3.0 5.0

0.02 0.03

0.1

0.05

0.2 0.3

~
~

~

0

,

"-

"I',

,

0

25

0.5 0.7 1.0

IC. COLLECTOR CURRENT lAMPS)

~

0

"'~

FIGURE 4 - POWER DERATING
60

=2.0 V

r-....
...... "-

25 0C

,

65

VCE

'TJ ~'S00IC

f-o'"l-I--

'-'
c 0.2

/

I I III

1 VeE I... ) iii 'C/'o' 10

2.0

E 0.5

~

.....

VOE iii VCE" 2.0 V

1

3.0

N

TJ =250C

1.6

0

5.0

50
15
100
. Te. CASE TEMPERATURE (OC)

4-534

126

"

150

175

2.0 3.0 4.0

MJEI10 thru MJE172 PNP (SILICON)
'MJE 180 thru MJE182 NPN

COMPLEMENTARY PLASTIC SILICON
POWER TRANSISTORS
3 AMPERE

designed for low power audio amplifier and low current, high
speed switching applications.

POWER TRANSISTORS
COMPLEMENTARY SILICON

.. Collector· Emitter Sustaining Voltage VCEO(sus) = 40Vdc - MJE170, MJE180
= 60 Vdc - MJE171, MJE 181
= 80 Vdc - MJEl72, MJE 182
•

DC Current Gain hFE = 30 (Min) @ IC = 0.5 Adc
= 12 (Min) @ IC = 1.5 Adc

•

Current·Gain - Bandwidth Product fT = 50 MHz (Min) @ IC = 100 mAde

•

Annular Construction for Low Leakages'CBO = 100nA(Max)@lRatedVCB

40-60·80 VOL TS
12.5 WATTS

•

MAXIMUM RATINGS
Rating

Symbol

Collector-Base Voltage
COllector-Emitter Voltage

Emltter·Base Voltage
ColI~ctor

Current

MJE170 MJE171
MJE180 MJE181

MJE172
MJE182

Unit

Ves

60

80

100

Vdc

VeEO

40

60

80

Vdc

VES

----70-

Vdc

Ie

- - - - 3.0 - - - ---6.0----

Adc

Continuous
Peak

Base Current

IS

1.0

Adc

T A - 25°C

PD

1.5_
---0.012_

Watts

Total Power Disslpation@Tc =- 25 0 C

PD

_ 1 2 . 5 - -_ _

Total Power Dissipation
Derate above 25°C

@

Derate above 25°C
Operating and Storage Junction

Temperature Range

TJ,Tstg

WIDe

- - - - 0.1 - - - -

Watts
WIDe

_ - -65 to ' 1 5 0 - _

De

,

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Thermal Resistance, Junction to Case

Unit

10

Thermal Rt!slstance, Junction to

83.4

Ambient

FIGURE 1 - POWER DERATING

DIM

TA Te

2814
;;; 241 1 ......

c:

'"z~

2010

~

1680

o

fi

I--.

i5 126.0

,

.-

"" , ,
.....

~

~

~

N
riA

K
M

........

"'......

"' "'

Q

R

~~

40

60

A

H

0

10

I--

"re

0420

o

-

o

......

~ 0840

-

8u

100

120

u
v

~
140

160

r. TEMPERATURE (DC)

MILLIMETERS
MIN MAX
10.80 11.05
7.49
7.75
2.41
2.67
0.51
0.66
2.92
3.18
2.~1
2.46
2.16
2.41
0.38
0.64
15.37 16.64
30 TYP

3.76
1.14
0.64
3.68
1.02

4.01
1.40
0.89
3.94

30 TYP

0.148
0.045
0.025
0.145
0.040

eASE 77-03
TO·126

4-535

INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.125
0.091 0.097
0.085 0.095
0.015 0.025
0.605 0.655
0.158
0.055
0.035
0.155

MJE170, MJE171, MJE172,'PNP MJE180, MJE181, MJE182 NPN

ElECTR ICAl CHARACTER ISTICS IT C = 25°C unless otherwise noted)

I

I

Characteristic

Symbol

Min

Max

40
60
80

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lC = 10 mAde, IS = 0)

a

Collector Cutoff Current
(VCS = 60 Vde, IE = 0)
(VCS = 80 Vde, IE = 0)
(VCS = 100 Vde, IE = 0)
.
(VCS = 60 Vde, IE = 0, TC = 150°C)
(VCS = 80 Vde, IE = 0, TC = 150°C)
(VCS = 100 Vde, IE = 0, TC = 150°C)

Vde

VCEO(sus)
MJE 170, MJE 180
MJE171, MJE181
MJEl72, MJE182

"Ade

ICSO
MJE170,
MJE171,
MJEl72,
MJE 170,
MJE171,
MJE 172,

-

MJE180
MJE181
MJE182
MJE 180
MJE181
MJE 182

-

0.1
0.1
0.1
0.1
0.1
0.1

-

0.1

50
30
12

250

-

-

0.3
0.9
1.7

-

1.5
2.0

-

1.2

50

-

-

50
30

-

Emitter Cutoff Current
(VSE = 7.0 Vde, IC = 0)

mAde

"A de

IESO

ON CHARACTERISTICS
DC Current Gain
(lC = 100 mAde, VCE = 1.0 Vde)
(Ie = 500 mAde, VCE = 1.0 Vde)
(Ie = 1.5 Ade, VCE = 1.0 Vde)

-

hFE

Collector-Emitter Saturation Voltage
(Ie = 500 mAde, IS = 50 mAde)
(Ie = 1.5 Ade, IS = 150 mAde)
(Ie = 3.0 Ade, IS = 600 mAde)

Vde

VCE(sat)

. Base-Emitter Saturation Voltage
(Ie = 1.5 Ade, IS = 150 mAde)
(Ie = 3.0 Ade, IS = 600 mAde)

-

-

Vde

VSE(sat)

Sase-Emitter On Voltage
(Ie = 500 mAde, VCE = 1.0 Vde)

Vde

VSE(on)

DYNAMIC CHARACTERISTICS
Current-Gain - Sandwidth Product (1)
(lC = 100 mAde, VCE = 10 Vde, f test = 10 MHz)

fT

Output Capacitance
(VCS = 10 Vde, IE

Cob

(1) IT = Ihle

= 0, 1= 0.1

MHz)

,e I test

MHz

MJE170/MJEl72
MJE180/MJE182

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN-ON TIME
30 0

VCC
+30 V

A

100

tr. tf:::.l0 ns

w

-=

VCC = 30 V _
tICI1B = 10
VBE(off) = 4.0 V
TJ - 25 0 C"=

=F==

f=

~
·51

~

Ir

SCOPE

RB

-9.0 V

I II

200

RC

+~] --\--,

pF

'"t=--

0,

-=

50
30

...

20
Id
10

-4V
DUTY CYCLE = 1.0%
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

7.0
5.0

0, MUST BE FAST RECOVERY TYPE, e9:
MBD5300 USED AboVE 18 ~100 rnA
MSD6100 USED BELOW IB ~100 rnA

3.0
0.03

For PNP test circuit, reverse all polarities.

"'''i'-..
./
" ......

PNP MJEI70/MJE172
I

I I I I II
0.05 0.07 0.1

NP~ MJ~'80/MIJE'~2
0.2

0.3

0.5

0.7

1.0

IC, COLLECTOR CURRENT (AMP)

4-536

2.0

3.0

MJE170, MJE171, MJE172, PNP MJE180, MJE181, MJE182 NPN

FIGURE 4 - THERMAL RESPONSE
1.0
0.7 - 0 0.5
0.5

-

~c

~~

0.3

~~

0.2

w«
.... c

~

ffi~
til~

--

_0.2
-0.1

~

0.05

O. 1

~~O.O
........

)

0.03

~

r--- ~O TN~Ll TrEI)

OUTY CYCLE. 0 = 11/11

0.02

i

0.05

J1

0.1

0.1

1.0

0.5

0 CURJES

I::::::

.

~~~

~0.01

0.0 1
0.01

0JC(I) = r(I)OJC
8JC = 100 CIW Max

~~ 1= ===

0.01

2~O.05 ~
-",

=-

1:0"""

PULSE TRAIN SHOWN
READ TIME AT 11

1- -

?,Pk) -; TC P(Pt)

I

I II

5.0

1.0

A~PL~ F~RI POWER= =

1- -

=
-

~JCi')1
I

10

I

50

10

F
r--

100

200

I. TIME (ms)

ACTIVE·REGION SAFE OPERATING AREA
FIGURE 6 - MJE180. MJE181. MJE182

FIGURE 5 - MJE170. MJE171. MJEl72
10

10

5.0

~ 2.0

....

'"

I-- - - -

~

de

Fe

0.5

:'.11~

'"~O.05

F

~

0.01
0.0 1
1.0

~t=
..... /

"

...........

~ 1.0 E--

a

--

.....

~

100

'\

PSt

SOUps

5.0

'"

$

....

1.0 - -

50

1.0

VCE. COLLECTO R-EMITTER VOLTAGE (VOLTS)

transistor - average Junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor that must be observed for reliable operation; i.e., the transistor

must not be subjected to greater dissipation than the curves indicate.
The data of Figures 5and 6isbasedonTJ(pk) = 1500 C;TC is

100
~

100

~

70

-

'" '"

:--

)/
l ...

I II

MJE181
20
30

10

VCC = 30 V_
ICIIB 10.=
IBl IB1TJ = 15°C

I'
........

TJ ·15 0 C - -

~.

r-....

)0

~

50

'"
«
....

........

.......

"-

t--.....

z

U

;;:

PNPMJE170/MJEl72 -NPN MJE180/MJE182 :-II

........ :-..

Gib

t'-... . . . .

30

;3

50

01-- - - - PNP MJE170/MJE172
I-I I I I II PN MIJEliO/MJEI181
10
0.03
005 0.0) 0.1
0.1 0.3

0.5 0.7

100

ture, thermal limitations will reduce the power that can be handled
to values Jess than the limitations imposed by second breakdown.

w

"-

",-

r......

)0

FIGURE 8 - CAPACITANCE

......

30

50

variable depending on conditions. Second breakdown pulse limits
are valid for dutV cvcles to 10% provided TJ(pk) < 150°C. TJ(pk)
may be calculated from the data in Figure 4. At high case tempera-

100

ts

300

R~T,E~ YfEO -+~~~::~

5.0 ).0

3.0

FIGURE 7 - TURN·OFF TIME

-.

'"',

VCE. COLLECTOR· EMITTER VOLTAGE (VOLTS)

There are two limitations on the power handling ability of a

1000
)00
500

TJ 150°C
BONDING WIRE LIMITED
THERMALLY LlMITED@
TC = 15°C (SINGLE PULSE)
SECOND 8REAKDOWN LIMITED
CURVES APPLY BELOW
I

0.0 1
1.0

100

t'x

de

0.0 1

I I

f".....

5.0ms

O. 5

-- _ _ _-_ _
:='" o.1
~ o. 1 =
'"~O.O 5==-

TJ =150°C
5.0 ms
- BONDING WIRE LIMITED
- : - THERMALLY LIMITED @ ,~
TC =15°C (SINGLE PULSE)
SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW
RATED VCEO -MJE170
MJE171
MJE171
5.0
10
1.0 30
10
30
-

500ps

y

.....

~ 1.0

~

-- ~~~Opsm

.....

~

1.0

............

20

I-

........

Cob

i1.0

10
0.5

3.0

IC. COLLECTOR CURRENT (AMP)

0.7

1.0

1.0

3.0

5.0

).0

- --

10

VR. REVERSE VOLTAGE (VOLTS)

4-537

r-..........

20

-

30

50

MJE170, MJE171, MJE172, PNP MJE180, MJE181, M,JE182 NPN

PNP

NPN

MJE170, MJE171, MJE172

MJE180, MJE181, MJE182
FIGURE 9 - DC CURRENT GAIN

200

";C
'"

i

•

g

~

T~ J1150'C

200

VCE= 1.0 V

~

ii- t-

10 0

"

~

ill

0

'"

-55'C

30

-I--

a'"

~

'-'

~

0

10
0.03

0.05 0.07 0.1

VCE-l.oV

"-

25'C

10 0

;C

25'C

7O

-r-.,

f--j-TJ= '10~C

0.2

0.3

0.5 0.7

c

i
~

1.0

~3.0

70

r-

-55'C

50

~

.....

" "-"' ~

30
0

""

10

0.03

2.0

0.05 0.07 0.1

0.2

0.3

0.5 0.7

1.0

2.0

3.0

IC. COLLECTOR CURRENT lAMP)

IC. COLLECTOR CURRENT lAMP)

FIGURE 10 - "ON" VOLTAGES

--,--

1.4

f-- TJ = 25'C

1. 2

-

I

~ 1.0

V~EI~tJ ~ IcllB - 10

c

~ o.S---+=-++

~c o.6 ,...VSE@V,CE= 1.0 V
0.4

I
I

o. 2
;-

0
0.03

V

~ 1.0

~

VCElsat)
0.2

0.3

I

'"~
'"«
~
'">

1.0

I

2.0

V

r- VBEI~t)I@IIC/lB =10

V

f-'"'"

r-/

0.6 t-- VBE @VCE = 1.0 V

./
VC)ElsatJ@ IcllB = 5.0 and 10

o

3.0

v

0.8

o. 2

Ic/lB = 5.0

0.5 0.7

II

>. 0.4

./ /'
V

IcIIB=~

0.05 0.07 0.1

1.2

/ /

>

>~

'---1/

1.4

- TJ = 25'C

0.03

0.2

0.05 0.07 0.1

IC. COLLECTOR CURRENT lAMP)

0.3

--

0.5 0.7

1.0

2.0

3.0

IC. COLLECTOR CURRENT lAMP)

FIGURE 11 - TEMPERATURE COEFFICIENTS
+2.0
U

"-

§ +1 .0
~

I-

ill

JJ

'APPLIES FO R IcIIB" hFE/2

III
I II

II

-ttr

$
S

g;

~
~

-1.0

i

-55 DCto +25 0 C

~

j..}

250C to 150 C
OVB FOR VBE

-2.0

l-

i
-3.0
0.03

I I

I I

:..-

0.2

0.3

0.5

III1.0

0.7

~ -1.0

3.0

IC. COLLECTOR CURRENT lAMP)

25'Cto~~V

t---

-3.0
0.03

OVB FOR VBE

25,h
I I II L
I III
0.5 0.7 1.0

-55'C to

II II

II II

0.05 0.07 0.1

0.2

0.3

IC. COLLECTOR CURRENT lAMP)

4-538

./

1111.,./ V

w

i

./
V

tttr
- 55 0 Cto 250C

l-

2.0

250C to 150 0 C

"BVC FOR VCElsatl

~ -2.0

III

0.05 0.07 0.1

II II
II II

ill
u

...- . /

J1LII
I IIII

"APPLIES FOR Ic/IB"hFE/2

;; +1.0

V

I I0 III

+2.0

I-

~

- 550 c' to 25°C

w

./

....-

250C to 1~OoC

"ave FOR VCElsat)

u

u

'3E:

\

2.0

3.0

MJE 200 NPN
MJE210 PNP

(SILICON)

COMPLEMENTARY SILICON POWER
PLASTIC TRANSISTORS

5 AMPERE

designed for low voltage, low'power, high·gain audio amplifier
applications.
•

Collector· Emitter Sustaining Voltage VCEO(sus) = 25 Vdc (Min) @ IC = 10 mAdc

•

High DC Current Gain -

•

Low Collector· Emitter Saturation Voltage VCE(sat) ~ 0.3 Vdc (Max) @ IC = 500 mAdc
= 0.75 Vdc (Max) @ IC = 2.0 Adc

•

High Current·Gain - Bandwidth Product -fT = 65 MHz (Min) @ IC = 100 mAdc

o Annular

POWER TRANSISTORS
COMPLEMENTARY SILICON
25 VOLTS
15 WATTS

hFE = 70 (Min) @ IC = 500 mAdc
= 45 (Min) @ IC = 2.0 Adc
= 10 (Min) @ IC = 5.0 Adc

Construction for Low Leakage - ICBO =100 nAdc@RatedVCB

MAXIMUM RATINGS
Rating

Unit

Symbol

Value

VC8

40

Vdc

VCEO

25

Vdc

VE8

8.0

Vdc

IC

5.0
10

Adc

Base Current

18

1.0

Adc

Total Power Dissipatio~ @ Tc. = 25°C

PD

15
0.12

Watts
W/oC

PD

1.5
0.012

Watts
W/oC

TJ,T stg

-65to+150

°c

Collector-Base Voltage
Collector-EmItter Voltage
Emitter-Base Voltage
Collector Current - Continuous

Peak

Derate above 2SoC

Total Power Dissipation @ T A
Derate above 2SoC

=

2SoC

Operatmg and Storage Junction
Temperature Range

K

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

(}JC

8.34

°C/W

Thermal Resistance. Junction to Ambient

°JA

83.4

°C/W

FIGURE 1 - POWER DERATING
6

1

r---2

DIM

A
B

C

i"..

1

.........

H

J

i"..

K

"-

0

40

60

o
F

G

"'-

0

0
20

STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE
MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

10.80
7.49
2.41
0.51
2.92
2.31
2.16
0.38
15.37

0.425
0.295
0.095
0.020
0.115
0.091
0.085
0.015
0.605

M

'" "'"'

100
110
80
T, TEMPERATURE (DC)

140

0

Q

R
S
U

0
160

4-539

V

11.05
7.75
2.67
0.66
3.18
2.46
2.41
0.64
16.64
3D TYP

3.76
1.14
0.64
3.68
1.02

4.01
1.40
0.89
3.94

0.435
0.305
0.105
0.026
0.125
0.097
0.095
0.025
0.655

3D TYP

0.148
0.045
0.025
0.145
0.040

CASE 77·03
TO·126

0.158
0.055
0.035
0.155

MJE200, NPN MJE210 PNP

ELECTRICAL CHARACTERISTICS (TC

I

= 25°C unless otherwise noted)

I

Characteristic

Symbol

Min

Max

Unit

VCEOlsus)

25

-

Vde

-

100
100

nAde
/lAde

-

100

70
45
10

-

OFF CHARACTERISTICS
COllector-Emitter Sustaining Voltage (1)
(lC = 10 mAde, IB = 0)
Collector Cutoff Current
IVCB = 40 Vde, IE = 0)
IVCB = 40 Vde, IE = 0, TJ

ICBO

= 125°C)

Emitter Cutoff Current
(VBE = B.O Vde, IC = Ol

•

nAde

lEBO

ON CHARACTERISTICS
DC Current Gain (1)
(lC = 500 mAde, VCE = 1.0 Vde)
(lC = 2.0 Ade, VCE = 1.0 Vde)
(lC = 5.0 Ade, VCE = 2.0 Vde)

-

hFE

Collector·Emitter Saturation Voltage (1)
(I C = 500 mAde, I B = 50 mAde!
(lC = 2.0 Ade, I B = 200 mAde)
IIc = 5.0 Ade, I B = 1.0 Ade)

VCElsat)

Base-Emitter Saturation Voltage (1)
IIc = 5.0 Ade, IB = 1.0 Ade)

Base·Emitter On Voltage (1)
(lc = 2.0 Ade, VCE = 1.0 Vde

180

Vde

-

0.3
0.75
1.8

VBElsat)

-

2.5

Vde

VBElon)

-

1.6

Vde

fT

65

-

MHz

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product (2)
(lC = 100 mAde, VCE = 10 Vde, f test

= 10 MHz)

Output Capacitance

(VCB

= 10 Vde,

IE

= 0, f = 0.1

(1) Pulse test: Pulse Width
(2) IT = hlel . Itest

I

pF

Cob
MHz)

MJE200
MJE210

BO
120

~

-

= 300 IlS, Duty Cycle'" 2.0%.

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

FIGURE 3 - TURN·ON TIME
300
200
100

SCOPE

g'
w

51

'"t=

~

I~~~: ~~ V _
TJ ~ 250C-

~tr

70
50
30

.......

20

"

I r• If::;: 10 os

DUTY CYCLE

'"

,...
l...........

i-1tdtnroffl; 5.0('

-4 V
1 0%
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

10
7.0
5.0

01 MUST BE FAST RECOVERY TYPE, '9
MBD5300 USED ABOVE IS ~100 mA
MSD6fOO USED BELOW IS 0·100 mA

3.0
005 0.07 0.1

FOR PNP TEST CIRCUIT, REVERSE ALL PO LARITIES

4-540

r- -:--

~

-""
.....

MJE200lNPNI
MJE210 IPNPI·

0.2
0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT lAMP)

2.0

3.0

50

MJE200, NPN MJE210 PNP

FIGURE 4 - THERMAL RESPONSE

1.0

~ o

0.7

LU
<.)

:'i'
l;;
t1

0.5

0.5

0.3 f - - -0.2

~ i3 0.2 t--- -'01

""W

,,~

~~

o. (

~ ~O.O 7
~ ~O.05 ~
on
f-z

...~

~

IlJ!2t-

",-,

0.03

-

"""

-

mll-t---t--

i - b:::=~

p( k)
P

tl---

~r2
t--o(SiNGLE PULSE)

I

I I I III

=0 CURVES APPLY FOR POWER::
-PULSE TRAIN SHOWN
-

I

REA~TI~EIA','1

12--

0.Q1

OJC(I) = rll) OJC
OJC = B.34oC/W M,,-I--

-

DUTY CYCLE. 0 = q/12

TJltli TIC

I

pn) (JC(I)

~

0.02
I

0.0 1
0.02

""

I
0.05

0.1

0.5

0.2

1.0

I
5.0

2.0
I. TIME 1m,)

""

TT

I
50

20

10

100

200

FIGURE 5 -ACTIVE REGION SAFE OPERATING AREA
I. 0

a:-

...:'!.'"
~

'"

=>
'-'

'"

a

~
8

~

5001"

7. 0
5. 0

~1001'''=

1.Oms

......

......

3. 0

.....

'F~'

There are two limitations on the power handlmg ability of a
tranSistor
average Junction temperature and second breakdown.
Safe operating area curves indicate le.VeE limits of the tranSistor

r'\:

J iH\.. . . l'\."" 1'\

de

2.0

that must be observed for reliable operation,

TJ = 150°C
I. 01=-_- BONDING WIRE LIMITED
7
THERMALLY
L1MITED@TC=250C
O.
I(SINGLE PULSE)
o. 51:::
_ _ _ SECOND BREAKDOWN LIMITED

r= - --

CURVES APPLY BELlOW
RATED VCEO

3
2

Ie,

the tranSistor

must not be subjected to greater diSSipation than the curves mdlcate.
The data of Figure 5 IS based on T J(pkl = 150°C; T C IS variable
depending on conditions Second breakdown pulse limits are valid
for duty cycles ~o 10% provided T Jlpkl :s;; 150°C. T J(pk) may be
calculated from the data In Figure 4 At high case temperatures,
thermal limitations WIll reduce the power that can be handled to
values less than the Ilmnations Imposed by second breakdown

"-

oI
1.0

2.0
3.0
5.0
7.0
10
VCE. COLLECTOR·EMITTER VOL TAGE (VOLTS)

20

30

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN·OFF TIME

100 a

30 a
200

~
i=

I"'-

,

t":

10 0

0
0
0
0

=

VCC - 30 V'
ICIIB= 10
IBI = IB2 _
TJ = 25°C _

- ---- -

70 0
50 0

I,

=

..........

1'-.... "t-.

----

10
0.05 0.07

MJE200 (NPN)
MJE210 (PNP)

~

~

0

;:t

0

- r=t-

ri-...
:--.

oS

0

-

- - MJE200 (NPN)

T~

= 2'5 0C

-

......

r--.;;

-""

;3

~

t--

Cob

"

f'

I'-~ t-~

""MJrr)

II
0.1

w
'-'
z

<..)

<..)

0

~

z

=-~

;;:
10 0
80

'"t~
'"
1:l

~

<..)

0

"'- ~

II

0.05 0.07 0.1

~

1'\ ~.

--VCE=1.0V
- - - VCE = 2.0 V

20

\\

0.2 0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT lAMP)

i}= 150JC

200

;;:

60
0

JI . 1

2.0

3.0

~

f=:

2S!C
100
80

"--"
-- 1.'- ....,

-55°C

60

~,

"- ~~ , \"

- - VCE=1.0V
- - - VCE = 2.0 V

40

"\",

11 1

20
0.05 0.07 0.1

5.0

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT lAMP)

2.0

.\

3a

5.0

FIGURE 9 - "ON" VOLTAGE
2.0

2.0
ITl! !SOC

1.6
in

~

2: 1.2
w

'"
«
~

.-::::;:::;

VSElsat)@IC/ls-l0

0.8

>
,,;

~SE I@VCE = 1.~ V
0.4
-

o

~

.61:1'

0

0

~JI=12~oc

1. 6

--

Jc~!sat) @iCII~-lO

0.05 0.07 0.1

~

.... I:::?

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT lAMP)

1.2

w

«
'"

~

O. 8

>
,,;

./

.,..,

/.~

, O.4

;;:;;-

VSElsal)@ Iclis = 10

n

1

vlS

c £= :1.0

~

3.0

a

5.0

0.05 0.07

V

-'"

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT lAMP)

0.1

!j

./'

JcL!,ll@ Iclls =1 10
2.0

k:::: '?'

~

2.0

3.0

5.0

FIGURE 10 - TEMPERATURE COEFFICIENTS

u

+2.5

3;

+2.0

~

+1.5

+2.5

.IAJpUES Foh IC)18" h~E/31

~ +2.0

:>

.E
t-

U

~ +0.5

o

OVC for VCEI,,')

<..)

~

~

-0.5
·1.0

'" -1.5
~
-2.0

i

+1.5

~

t-

i::5 +1.0

./7
250C 10 1500C
.-"" j
/
-5~0~ !.I2~oC
./
/

L Ll

-2. 5
0.05 0.07 0.1

V

-I-t:t11 V
I I

0.2 0.3
0.5 0.7 1.0
IC, COLLECTOR CURRENT lAMP)

~ +05

I

I

S

~

I

., I I
I FE/3

II

.lavc LVl~lsal)

II ....... V

"IT- f.;55 0C 10 25°C

-0.5

250C 10 150°C /

t-

~ -1.0

~ -1 5

5.0

I

2~OC 101150!? Lh

I

w

-550C to 250C

3.0

I

8

/'
2.0

+1.0

U

..,

250C 10 1500C
OVS for VSE

ffi

~~P~~IES FJ~ 1II1

0VS for VSE

';. -2. a
0;::,
-2. 5
0.05 007 0.1

I

0.2

0.3

0.5 0.7

-

V

./'V

~V

-

·55 OC10250C

1.0

2.0

IC, COLLECTOR CURRENT lAMP)

4-542

I

~

3a

5a

MJE205

(SILICON)

MEDIUM-POWER NPN SILICON TRANSISTOR

5 AMPERE
POWER TRANSISTOR
NPN SILICON

. . . for use as an output device in complementary audio amplifiers
up to 20·\iVatts music power per channel.

•

50 VOLTS
65 WATTS

- High DC Current Gain - hFE = 25·100@ IC = 2.0 A
-Thermopad High-Efficiency Compact Package
-Complementary to PNP MJE 105

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO
VC8
VE8
IC
18
PDt

50
50
4.0
5.0
2.5
65
0.522
-55 to +150

Vdc

Collector· Emitter Voltage
Collector-Base Voltage

Emitter-Base Vortage
Collector Current
Base Current
Total Device Dissipation @TC 25 u C
Derate above 2SoC

Operating and Storage Junction
Temperature Range

TJ, T stg

Vdc
Vdc
Adc
Adc
Watts
W/oC

°c

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case
tSafe Area Curves are Indicated by FLgure 1. Both limits are applicable and must be observed.

STYLE 2:
PIN 1. EMITTER

2. CO LLECTO R
3. BASE
ElECTR ICAl CHARACTERISTICS (TC

I

Characteristic

I

=

25°C unless otherwise noted I

Symbol

I

Min

I

Max

Unit

OFF CHARACTERISTICS
Coliector·Emltter Breakdown Voltage:t

Vdc

8VCEOf

IIc = 100 mAde, IB = 01
Collector Cutoff Current
(VC8 = 50 Vdc, IE = 0)

ICBO

(VCB = 50 Vdc, IE = 0, TC= 150°C)
EmJtter Cutoff Current
(VBE = 4.0 Vdc, IC = 0)

lEBO

50

-

.-

0.1
2.0

-

1.0

25

100

-

1.2

mAd,c

mAde

ON CHARACTERISTICS
DC Current Gain
IIc = 2.0 Adc, VCE = 2.0 Vdcl
Base-Emitter Voltage
IIc = 2.0 Adc, VCE = 2.0 Vdc)

-

hFE

Vdc

V8E

:j:Pulse Test: Pulse Wldth~300 J.l.S, Duty Cycle~2.0%.

4-543

MILLIMETERS
DIM MIN
MAX
A IB.13 lB.38
B
12.57 12.83
e 3.18 3.43
D
1.09 1.24
F
3.51 3.76
G
4.22 ase
H
2.67 2.92
J
0.813 0.864
K 15.11 lB.38
90 TYP
M
Q
4.70 4.95
1.91 2.16
R
U
B.22 6.48
V
2.03

INCHES
MIN MAX
0.B35 0.B45
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
0.166 BSC
0.105 0.115
0.032 0.034
0.595 0.645
9° TYP
0.185 0.195
0.075 0.085
0.245 0.255
0.080

CASE 90-05
TO·127

MJE205

FIGURE 1 - ACTIVE REGION 'SAFE
OPERATING AREA
0

==::t:=

7. O~TJ = lS00 C

-

ii! 5.Ot--- --,....- r- 1- -

.

~ 3. 0
~ 2.0

,\

cr

1\ \

a 1.01==------ THERMAL LIMIT @Tc= 25 C
0

~ O. 71==-

-

The data-of Figure 1 IS based on TJlpk) = lS00C; TC IS vanable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) ~150oC. At high case
temperatures. thermal IIml.tatlons will reduce the power that can be
handled to values less than the limitations Imposed by second
breakdown.

BONOING WIRE LIMIT
SECONO BREAKOOWN LIMIT

5

de

8 o. 3

I.l

!:2 o. 2

-.J

O. 1
1.0

•

There are two limitations on the power handlmg ability of a
transistor; average junction temperature and second breakdown.
Safe operating area curves indicate Ie . VeE limits of the tranSistor
that must be observed for reliable operation; i.e., the tranSistor must
not be subjected to greater diSSipation than the curves indicate.

...., ~
... "~.Om'

....

~. o.

Note 1:

100.,

2.0

5.0

3.0

7.0

10

50

30

20

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 2 - "ON" VOLTAGES
2 0 ,-----r---r-r-rrn-n-,.-,--,--,r-r-rrrrr--lr-r---r-r-1

FIGURE 3 - DC CURRENT GAIN

lli

5.0

18r---~~-+~tTH+--+-+--r-r++i+Tr~-+--+-~
TJ = 25 0 C

1.&

~ 1.4
o

1.2

~

f--+-++-l-H-thf--+-+-+-H+tttt-H-hhi
/.

~

~

>

0.8
0.&

0.02 0.03 005

0.2 0.3

0.5

1.0

~

0.3

'-'

0.2

a

I I II ...... f/

0.1

0

2.0 3.0

I"-,.

-55 0

W

0.1
0.01

5.0

0.02 0.03

0.05

0.1

..

50

0

z

40

iii

30

"-

~

" "- "-

~

;::
;t
0

cr

~ 20

...
...ci

0.2 0.3

0.5 0.7 1.0

, IC. COLLECTOR CURRENT lAMPS)

;;;

I:

"

~
~

FIGURE 4 - POWER DERATING
&0

t'o..'

J

\

IC. COLLECTOR CURRENT lAMPS)

&5

........, I'

25 0 C

0.5

15
cr

O.~ ~~~~~V~C~E(sa~t~)@~I~C/~IB~=~I~O±~~:~-ttT~t!Ilrlln!~1~t=J~O
0.01

;-

VCE" 2.0 V

1500 C

;-i--"'"

'"
....

0.41-_+--t--+++i+ft--t-_VBt-E_@-tV_C+E-t-_2·rOHv+t------j--..l/£.-r-H

II

1.0

TJ

~

<1 0.7

~

VBE(sat)@ICIlB = 10

~

z

~ 1.0 1--+--t-+1-H-t+r-+-+-+-+-++++++r-::;-","""V'7''+---t-I

o

«
~

2.0

0

r----+-t-~_+t_ti+__t_t-+_+_H_tt_tt__j_jl-,
./"'I7'H

2

3.0

::l

'-

"" '-

0

'-

10

25

50
75
100
125
TC. CASE TEMPERATURE (OCI

4-544

,
"

150

175

2.0 3.0 4.0

NPN

MJE240 thru MJE244
PNP

MJE250 thru MJE254

COMPLEMENTARY SILICON POWER
PLASTIC TRANSISTORS

4AMPERE

· .. designed for low power audio amplifier and low·current, high·
speed switching applications.
•

High Collector-Emitter Sustaining Voltage VCEO(sus) = 80 Vdc (Min) - MJE240/2, MJE250/2
= 100 Vdc (Min) - MJE243/4, MJE253/4

•

High DC Current Gain @ IC = 200 mAdc
hFE = 40-200 - MJE240, MJE250
= 40-120 - MJE241,243, MJE251,253
= 25 (Min) - MJE242,44, MJE252,54

•

Low Collector· Emitter Saturation VoltageVCE(sat) = 0.3 Vdc (Max) @ IC = 500 mAdc

•

High Current Gain Bandwidth ProductfT = 40 MHz (Min) @ IC = 100 mAdc

•

Annular Construction for Low' Leakages
ICBO = 100 nAdc (Max) @ Rated VCB

POWER TRANSISTORS
COMPLEMENTARY SILICON
80,100 VOL TS
15 WATTS

•

MAXIMUM RATINGS

SYmbol

MJE240
MJE241
MJE242
MJE250
MJE251
MJE252

MJE243
MJE244
MJE253
MJEZ54

Unit

V~EO

80

100

Vd,

Collector-Base Voltage

VCB

80

100

Vd,

Emitter-Base Voltage

VEB

7.0

Vd,

lC

4.0
8.0

Ad,

Collector-Emitter Voltage

Collector Current - Continuous
Peak.

Base Current
Total Power Dissipatlon@Tc
Derate above 2S0C

25°C

Total Power DlulPation @TA = 2S0C
Deratll above 25°C
Operating and Storage Junction
Temperature Range

'B .

1.0

Ad,

PO.

IS
0.12

wIDe

Po

I.S
0.012

TJ,Tstg

-65 to +150

Watts
Watts

wIDe
°c

THERMAL CHARACTERISTICS
Thermal

".stance. Junction to ase
eslstance, unction to Ambient

STYLE 6
PIN I CATHODE
2. GATE
3. ANODE

FIGURE 1 - POWER DERATING
6

1.6

r~

...... t'-".
2

c

""

0

1.2

~

r--.,

c
Q8.

r--..

""

0

40

60

ill ....
~>

<5
z
0.4

r--.,

0
20

~

120
80
100
T. TEMPERATURE ('C)

. . . r--..
140

'iil
>

'~

0
160

4-545

MILLIMETERS
DIM MIN MAX
A 1 80 11.05
B
7.49
115
C
241
2.61
o 0.51 0.66
F
G
H
J
K

M
Q

R

S
U
V

2.92

3.18
2.46
2A1
0.64
16.64
30 TVP
3.76
4.01
1.14
1.40
0.64
0.B9
36B 3.94
1.02

2.31
1.27
0.38
15.11

CASE 77·04
TO·126

MJE240 thru MJE244, NPN,
MJE250 thru MJE254, PNP

ELECTRICAL CHARACTERISTICS ITC = 25°C unl... otherwi .. noted)
Symbol

Min

Max

80

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

VCEOI.us)
MJE240,MJE241,MJE242,
MJE250,MJE251,MJE252 .

IIc = 10 mAde, IS = 0)

~~~~:~:~~g~:
Collector Cutoff Current
IVcs = 80 Vde, IE • 0)

,IVCS = 100 Vde, IE = 0)
IVCE = 80 Vde, IE

=0, TC = 125o C)

IVCE = 100 Vde, IE = 0, TC = 1250 C)

•

100
ICSO

MJE240,MJE241,MJE242,
MJE250,MJE251,MJE252
MJE243,MJE244,
MJE253,MJE254,
MJE 240,MJE 241,MJE242
MJE250,MJE251,MJE252,
MJE243,MJE244
MJE253,MJE254

Emitter Cutoff Current
IVSE = 7.0 Vde, IC

0.1

-

0.1

-

0.1

-

0.1

-

0.1

40

200

40

120

I'Ade

mAde

",Adc

IESO

=0)

-

Vde

ON CHARACTERISTICS
DC Current Gain
IIc =200 mAde, VCE

IIc = 1.0 Ade, VCE

= 1.0 Vde)

IIC' 1.0 Ade, VCE

= 1.0 Vde)

IIc

=2.0 Ade, VCE =

MJE240,MJE250
MJE241,MJE251,
MJE243,MJE253
MJE242,MJE252,
MJE244,MJE254
MJE241,MJE251,
MJE243,MJE253
MJE242,MJE252
MJE244,MJE254
MJE240,MJE250

1.0 Vde)

II
f
f

Collector-Emitter Saturation Voltage

VCEls.,)

IIc = 500 mAde, IS = 50 mAde)
IIc - 1.0 Ade, IS = 100 mAde)
IIc

=2.0 Ade, IS -

All Type.
MJE241,MJE251,
MJE243,MJE253
MJE240, MJE250

200 mAde)

f

Base-Emitter Saturation Voltage
IIc

-

hFE

= 1.0 Vde)

-

20

-

10

-

15

-

-

0.3
0.6

-

0.8

-

1.8

-

1.5

40

-

-

50
70

Vde

Vde

VSElse,)

=2.0 Ade, IS = 200 mAde)

Base-Emitter On Voltage

25

VSElon)

IIc = 500 mAde, VCE • 1.0 Vde)

Vde

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
IIc = 100 mAde, VCE = 10 Vde, ftest = 10 MHz)

IT

Output Capacitance
IVcs -10Vde,IE' 0, f= 0.1 MHz)

Cob

MJE240/MJE244
MJE250/MJE254

FIGURE 2 - SWITCHING TIME TEST CIRCUIT

MHz
pF

FIGURE 3 - TURN-ON TIME
500

T~-250C- I-

Yee=30Y- Ile/IS"TO _

300

I-

200
RB

SCOPE

10 0
0
0

51

I'....

0

-4 V
CYCLE = 1.0%
RB.od RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

101=

01 MUST BE FAST RECOVERY TYPE, ego
MB05300 USED ABOVE IB ~100 mA
MSDSlo0 USED BELOW 'B =100 mA

1=:.-

7.Ot=:
5.0
0.04 O.OS

FOR PNPTEST CIRCUIT, REVERSE ALL POLARITIES

-

I"-

D
f r• tf:!::10 ns
~UTY

,,-

r-

......'I"" I '

~IIVBEfifl) =

r--...

C-

V

c-

'=m~=m::!~W
0.1

0.2

0.4

O.S

1.0

IC, COLLECTOR CURRENT lAMP)

4-546

ro

I,

2.0

4.0

MJE240 thru MJE244, NPN,
MJE250 thru MJE254, PNP

~IGURE

4 - THERMAL RESPONSE

1. 0

O. 7~ D- 0.5

w

'-'

z

O.5

B3

I-- 0.2
0.3
o. 2 - 1--0.1

~

~Q
«w
::!:::!
~~

~:i 0, 1
~:5 0.0 7
ffi~o.o 5 =

-

;;;

z

0.03 -

~

>-

"mJL

r-- ~ ...

-:::;;;;;.

;;;,...--

O.~

PI,kl

t

~r2
0.01

r ISlN~L1 PP~Sfl

0.02

'2

--

-

I

0.0 1

0.02

~

1 12

I 11111

0.1

0.5

0.2

1.0

2.0
I, TIME Im.1

-

I

10

5.0

i

~JC a~4~crl~ax-1-

=:0 CURVES APPL Y FOR POWER::;
-PULSE TRAIN SHOWN
READ TIME Altl

DUTY CYCLE. D ~ 1t/12

11111
0.05

-r-0JCItI~'JIIOJC
-r-

TJ t l ,-

I

I I

20

50

YIp['r

,OJCIII

-

1111
100

200

FIGURE 5 - 'ACTIVE-REGION SAFE OPERATING AREA
10
5.0

0:
~ 2.0

ffi
'"13a:
'"o
~

1.0

0.5

8

l'OT

-

S

........

t== =TJ ~ 150'C

..."

, ~t:

...

....

de

-

2.0

3.0

"\

I

MJ1Ei~0/MJEI242, MJE250/MJE252'
MJE2431MJE244, MJE2531MJE254

,

0.02
0.0 1
1.0

Safe operating area curves indicate le·VeE limits of the tranSistor
that must be observed for reliable operation; I e., the tranSistor
must not be subjected to greater diSSipation than the curves indicate.
Thedata of Figure 5 IS based on T Jlpkl = 1500 C; TC IS variable
depending on conditions Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pk) ~ 150°C. T J(pkl may be
calculated from the data In Figure 4 At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations Imposed by second breakdown.

5.0
m.

BONDING WIRE LIMITED
---THERMALLY LlMITEO@TC-25'C
0.2
(SINGLE PULSEI
--SECOND BREAKDOWN LIMITED
O.
1 ~ ~CURVES APPLY BELOW
0,05 f-- ==t=RATEO VCEO

~

There are two limitations on the power handling abllitv of a
. transistor
average Junction temperature and second breakdown .

t'\~

5.0 7.0

10

20

30

50

70

100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS!

FIGURE 6 - TURN-OFF TIME
2000

FIGURE 7 - CAPACITANCE
200

TJ = 25'C_ I-VCC ~ 30 V
Iclla = 10 ::::
IB1- IB2
~

1000

=t::::::

700
500

- --

r--

10 0

I.

~ 300
~ 200
>=

.......

-.... .......

100

0

......

.........

0

70

0

,

50

If

'==~j~~~~jU~ !~~/

30 f20
0.04 0.06

0.1

0.2

0.4

0.6

1.0

2.0

10
1.0

4.0

IC, COLLECTOR CURRENT lAMP)

,
I

-

T}= 25" C

Cib

I--

-

C,~ .......

1"-1....

+1--

- - -MJE2401M-JE244 INPN)
--MJE2501MJE254 (PNP)
2.0

3.0

5.0

7.0

II

10

20

VR, REVERSE VOLTAGE (VOLTSI

4-547

30

50

70 100

II

MJE240 thru MJE244, NPN,
MJE250 thru MJE254, PNP

NPN

PNP

I

MJE240 thru MJE244

MJE250 thru MJE254

FIGURE 8 - DC CURRENT GAIN
500

200

0;;;:::,

z

;;:

2St?

...

100

~

50

~

30

to

or=:

i:'i

a

200

--

3001- T = 1500 C

~~~:~:~~~

r'1::!
::... .~
~

~ 20
0
7.0
5. 0
0.04 0.06

•

-

70
50

to

::
a

-5S oC

~

.,
Q

~

~

I~

I

JCE =!1.0 V -

.111

-

TJ = IS0 0 C

100

2S oC

VCE = 2.0 V

-SSoc

-

"-

~~

.......

~...

"

10
7.0
5.0
3.0

0.1

0.2

0.4

0.6

1.0

2.0
0.04 0.06

4.0

2.0

0.1

0.2

IC. COLLECTOR CURRENT (AMP)

0.4

0.6

1.0

2.0

4.0

IC. COLLECTOR CURRENT (AMP!

FIGURE 9 - " N" VOL TAGES
).4

-I) ~~oc

g

1.4

Iff

1.2
1.0

~

~

1. 2

./

g

O.a VaE(..,!@llc/la= 10

/I

W

to

~

IV

O.6 VaE@VCE=1.0V

.#

Q

>

>~

o.4

.lnB,=~::

o.2
o

0.04 0.06

-+1"'11

I

-_VCE(sa,!
0.1

0.2

0.4

II
0.6

II
1.0

1. 0

Q

Q

~

-

~'

o. a

'"~

O.6

TJ!2S 0 C·

I II
I II
I II
VBE(sa')@ IcllB = 10
VBE@VCE-I.OV

~

~

"APPLIES FOR Iclla" hFE/3

+2.0

JJ~

0:= :::=pr

VCE(sa'!
2.0

o

4.0

0.04

0.06

2S oC '0 ISOOC_

"SVC FOR VCE(sati

8

-SSoc '0 2S oC

w
~ ·0.5

...

~ ·1.0

2~

...:> -1.5
-2.o SVB FOR VBE
'"

-2.

5~

0.04 0.06

0.1

..s

/
.....-::

/
II
J.k:::::: ::..--

/

0.2

0.4

0.6

1.0

2.0

4.0

~ +0. S

J-

0.4

0.6

-~5UC '0

c:c -0. 5

I..--'"

25"C

l

~

i
4.0

V

IC. COLLECTOR CURRENT (AMP)

f I IIII

JI II

0.04 0.06

0.1

0.2

0.4

0.6

1.0

IC. COLLECTOR CURRENT (AMP)

4-548

/

/

/

-1.0
~ I--'"
f-25 0 '0 ISOOJ
~ -1. S
syBtiRIW- c0
0
-55
C
'0
25
C
o
-2.

-2.S
2.0

/

V

HrTl

w

-5S oC '0 25 0 C

1.0

II
250 C '0 150 0 C .....-

"SVC FOR VCE(sa,)

8

v

I

v

II

+1. 5

~
.~ +1.0

II
0.2

f-- -

S.O

II

IC. COLLECTOR CURRENT (AMP)

+1.0

~

/

JI JI
0.1

:;;

U

$ 1-0.5

/
ICIIB = 10 ./..

O. 2

I
I

"
I
I
I
IJ 1-

Q

g +I.S

ffi

~

FIGURE 10 - TEMPERATURE COEFFICIENTS
+2.S
"APPLIES FOR IC/IB" hFE/3
~ +2.0

+2.5

>

--

>
>' O.4

IC. COLLECTOR CURRENT (AMP)·

~

~

2.0

.........v

4.0

MJE340 (SILICON)

0.5 AMPERE
POWER TRANSISTOR
PLASTIC MEDIUM POWER NPN
SILICON TRANSISTOR

NPN SILICON
300 VOLTS
20 WATTS

· .. useful for high·voltage general purpose applications.

•

• Suitable for Transformerless, Line·Operated Equipment
• Thermopad Construction Provides High Power Dissipation Rating
for High Reliability

MAXIMUM RATINGS
Symbol

Value

Unit

Collector-Emitter Voltage

VCEO

300

Vdc

Emitter-Base Voltage

VEB

3.0

Vdc

IC

500

mAde

PO.

20
0.16

Watts

Rating

Collector Current - Continuous

Total Power Dissipation @TC = 2SoC
Derate above 25°C

-65 to

TJ, T stg

Operating and Storage Junction

W/oC

~150

°c

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

STYlE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE

Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)

I

Characteristic

I

Symbol

I

Min

I

Max

I

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

IIc

= 1.0 mAde,

IB

= 01

Collector Cutoff Current

(VCR

= 300 Vde,

IF

= 01

Emitter Cutoff Current

(VEB

= 3.0 Vde, IC ~ 01

VCEOlsusl

300

-

Vde

ICBO

-

100

/lAde

lEBO

-

100

/lAde

MILLIMETERS
INCHES
DIM MIN MAX
MIN MAX
A 10.80 11.05 0.425 0.435
7.49
7.75 0.295 0.305
B
2.41
2.67 0.095 0.105
C
0.51
0.66 0.020 0.026
0
2.92
3.18 0.115 0.125
F
2.46 0.091 0.097
2.31
G
1.27
2.41 0.050 0.095
H
0.64 0.D15 0.025
J
0.38
0.595 0.655
16.64
K 15.11
30 TYP
3DTYP
M
Q
4.01 0.148 0.158
3.76
1.14
1.40 0.045 0.055
R
0.89 0.025 0.035
S
0.64
3.94 0.145 0.155
U
3.68
0.040
V
1.02

-

ON CHARACTERISTICS

CASE 77·04
TO·126

DC Current Gain

IIC = 50 mAde, VCE = 10 Vdel

4-549

,

MJE340

FIGURE 1 - POWER TEMPERATURE DERATING

FIGURE 2- "ON" VOLTAGES

32

~

28

,

~ 20

iii~

16

'"

2

O.B

r-...

~

........

'"
w

r--....

•

:>

~
40

/

L

V ./

'"
>

4.0

20

I
VaE@VCE=10V

0.6

'" 0.4
«
':;

MJE3~

o

~/,-i

1/

2:

Ii! 8.0
~

o

IL

11

~BJ (Sat) @ ~C~I~ = 10
1 L'IiTi

.TJ=250 C

~ 24

'"~

~

1.0

...........

V

......

1~laT

i'...

140

120
80
100
60
TC. CASE TEMPERATURE (DC)

Iclia = 10

VCE(..,)
0.2

160

30

20

10

50

100

200

500

300

IC. COLLECTOR CURRENT (mA)

ACTIVE-REGION SAFE OPERATING AREA
FIGURE 3 - MJE340
1.0

!

0.5

ill

0.3

~

0.2

0-

a:

.

101"~

...

TJ = 150·

Jlt~

~

a:

:3

ts::: t-

:'1.

co

~ o.

500".

I

SECONO BREAKDOWN LIMIT
- BONDING WIRE LIMIT
THERMAL lIMITlHC' 25 0 C
(SINGLE PULSE)

-

0.05

'\

J} 0.03 - - - - -

"-

0.02

"-

II

0.0 I
10

20

50

30

100

1\
300

200

VCE. COLLECTOR EMITIERVOLTAGE (VOLTS)

There are two limitations on the power' handling abifity of a transistor: average junctio'n temperature and second breakdown. Safe operating
area curves indicate le·VeE limits of the tr~nsistor that must be observed for reliable operation; i.e., the transistor must not be subjected

to greater pissipation than the curves indicate.
.
The data of Figure 3 is based on TJ(pk) = 1500 C; TC is variable depending on conditions. Second breakdown pulse limits are valid
for duty cvcles to 10% provided TJ(pk) ~ 1500C. At high case temperatures. thermal limitations will reduce the power that can be handled to
values I ... Ulan the.lirnitations imposed bV second breakdown.
FIGURE 4 - DC CURRENT GAIN
300
200

.-

TJ=\500J

z

;;:

'"

0-

ffi
a:

'"
:::>
co

.1

100

- - -+100 oC

70

50

'"u:;
~

I

~

.

30
20

I---

--

--~

~

+250C

~

co

- l:::_-:t:-

~-

---...
-

..;.. I-" P"""

-55 0 C

~ ~~

--

VCE=10V
-

~
.'~

-:..::

:..

-

r-..
~

.:\.-;~-"-

-",;.

\'~ ~
~

~
2.0

3.0

5.0

7.0

10

20

30

IC. COLLECTOR CURRENT (mAde)

4-550

50

70

100

200

r-t--

~....-;:

",

~

~

\

\

10
1.0

VCE=2.0V

300

1\. . .
500

IJE341

(SILICON)

MJE344

0.5 AMPERE
POWER TRANSISTORS

PLASTIC NPN SILICON
MEDIUM-POWER TRANSISTORS

NPN SILICON
150-200 VOLTS
20 WATTS

... useful for medium voltage applications requiring high fT such as
converters and extended range amplifiers.

II

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Collector-Base Voltage

Symbol

MJE341

MJE344

Unit

VCEO
VCB

150

200

Vdc

175

200

Vdc
Vdc

VEB
IC

3.0
5.0
-500-

mAde

Base Current

IS

_250_

mAde

Total Power Dissipation @TC=2SoC
Derate above 2SoC
Operating and Storage Junction
Temperature Range

Po

20
0.16
_ - 6 5 to +150 _

Watts
W/oC

Emitter-Base Voltage
Collector Current - Continuous

TJ.T stg

°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

Symbol

Max

Unit

OJC

6.25

°C/W

FIGURE 1 - ACTlVE·REGION SAFE OPERATING AREA
1.0

SOO"'r-

Q5

(.11)

"\
2
1

TJ • 150°C

\.1.0 ..
(.11)

--- --

r\

SECOND BREAKDIlI\N LIMIT
BONDING IIlRE LIMIT
THERMAL UMlTIIHC· 25'C

de

MILLIMETERS
MIN
MAX
A 10.80 11.05
B
7.49
7.75
2.41
2.67
C
0.66
0
0.51
2.92
3.18
F
2.31
2.46
G
2.41
H
2.16
0.64
J
0.38
K 15.37 16.64
30 TYP
M
n 3.76 4.01
1.40
R
1.14
S
0.64
0.89
3.94
U
3.68
V
1.02

DIM

I'..

'\

[02
0.0 I

10

20

30

40

100

200

JIll

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

There are two limitations on the power handling abilitv of a
transistor: average junction temperature and second breakdown.

Safe operating area curves indicate Ie-VeE limits of the transistor
that must be observed for reliable operation; i.B., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figur. 1 is based on TJ(pkl = 1600 C; TC is
variable depending on conditions. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ(pkl ~ 1500 C. At
high case temperatures, thermal limitations will reduce the power
that can be handled to values less than the limitations imposed by

second breakdown.

4-551

INCHES
MIN
MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.125
0.091 0.097
0.085 0.095
0.015 0.025
0.605 0.655
30 TYP
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155
0.040

CASE 77'()3
TO-126

MJE341, MJE344

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Unit

Min

Max

150
200

-

-

1.0

-

1.0

-

0.3

-

0.1

20

-

25
30

200
300

20

-

-

1.0
2.3

VBE(on)

-

1.0

Vde

IT

15

-

MHz

Cob

-

15

pF

hfe

25

-

-

Symbol

Characteristic

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage
(lc = 1.0 mAde, IB = 0)
Collector Cutoff Current
(VCE = 150 Vde, IB = 0)
(VCE

= 200 Vde,

MJE341
MJE344

Collector Cutoff Current
(VCB = 175 Vde, IE = 0)
(VCB

•

MJE341
MJE344

= 200 Vde, IE = 0)

MJE341

= 5.0 Vde,

MJE344

(VEB

mAdit

ICBO

Emitter Cutoff Cu rrent
(VEB = 3.0 Vde, IC = 0)

mAde

ICED

= 0)

IB

Vde

VCEO(sus)
MJE341
MJE344

0.1
mAde

lEBO

IC = 0)

0.1

-ON CHARACTERISTICS
DC Current Gain
(lC = 10 mAde, VCE
(lC

= 50 mAde, VCE

(lC

= 150 mAde, VCE = 10 Vdc)

MJE341
MJE341
MJE344
MJE341

Collector-Emitter Saturation Voltage
(lC = 50 mAde, IB = 5.0 mAde)
IIC

-

hFE

= 10 Vde)
= 10 Vde)

Vde

VCE(satl
MJE344
MJE341 '

= 150 mAde, IB = 15 mAde)

Base-Emitter On Voltaga
IIc = 50 mAde, VCE = 10 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
IIC = 50 mAde, VCE = 25 Vde, f
Output Capacitance
(VCB = 20 Vde, IE

= 10 MHz)

= 0, f = 100 kHz)

Small·Signal Current Gain
IIC = 50 mAde, VCE = 10 Vde, f

= 1.0 kHz)

FIGURE 2 - DC CURRENT GAIN
300

VCE', 10V

200
TJ

;;: 100

...'"

70

'"

50

..,'"
~
:>

30
20

--- VCE' 2.0V

=+T500C

~

z

ffi

FIGURE 3 - "ON" VOLTAGES
1.0

...

'

~

+250C

....

- r\'

-55°C _

~

,
2.0 3.0

5.0 7.0 10

20

30

50 70 100

0.6

VeE @I VCE ' 10V

\

0.4

r-- VCE(sat)Ic/la '
o

200 300 500

10

lC, COLLECTOR CURRENT (mA)

1/

-

....

10

V ./
,.....~

Iclle = 5.0
I I
I
20
30
50

/

~

TJ = +25 0C_

I I
TOO

>do:

L

/

IC, COLLECTOR CU'RRENT (mA)

4-552

..".

T l.H-tt-::::::
'rt
I

0.2

~

10
1.0

.

..,..
~

'"
'"""
~
'">

~
w

O.S

j llJ
.L 1.- 1, I ( ( (
VSE(satl@lIClie' TO

200

300

I
500

MJE350

(SILICON)

PLASTIC MEDIUM POWER PNP
SILICON TRANSISTOR
· .. designed for use in line·operated applications such as low power,
line·operated series pass and switching regulators requiring PNP
capability.
•

High Collector-Emitter Sustaining Voltage VCEO(sus) = 300 Vdc@ IC = 1.0 mAde

•

Excellent DC Current Gain hFE = 30·240 @ IC = 50 mAdc

•

Plastic Thermopad Package'

Q,5AMPERE
POWER TRANSISTOR
PNP SILICON
300 VOLTS
20 WATTS

II

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Emitter-Base Voltage
Collector Current - Continuous

Total Power Dissipation

@

Symbol

Value

Unit

VCEO

300

Vde

VEe
IC

3.0

Vde

500

mAde

20
0.16

W/oC

Po

T C == 25°C

Derate above 2SoC

TJ,T s1g

Operating and Storage Junction

Watts

-65 to +150

DC

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance,Junction to Case

I

ELECTRICAL CHARACTERISTICS (TC

Cha~acteristic

I

=

25°C unless otherwise noted)

Symbol

I

Min

I

DIM

Max

Unit

300

-

Vde

ICSO

-

100

~Ade

G
H

IESO

-

100

!LAde

K
M

A

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

IIc

= 1.0 mAde, IS = 0)

Collector Cu'toft Current

VCEO(sus)

(Vce = 300 Vde, IE = 01
Emitter Cutoff Current

(VEe = 3.0 Vde, IC = 0)

Q

R

ON CHARACTERISTICS

v

DC Current Gain

IIC

= 50 mAde, VCE

= 10 Vde)

MILLIMETERS
MIN MAX
10.80 11.05
7.49
7.75
2.41
2.67
0.51
0.66
2.92
3.18
2.31
2.46
1.27
2.41
0.38
0.64
15.11 16.64
30 TYP
3.76
4.01
1.14
1.40
0.64
0.89
3.68
3.94
1.02

INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.125
0.091 0.097
0.050 0.095
0.015 0.025
0.595 0.655
3° TYP
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155
0.040

CASE 77·04

T0-126

4-553

MJE350

FIGURE 2 - "ON" VOL TAGES

FIGURE 1 - DC CURRENT GAIN
200

1. 0

TJ = ISO'C

M1J,c

l"""z

100

'"
ffi

70

;;:

}slc

-sS'C

a

"""" ."

VCE = 2.0 V
- - - VCC=10V

III

'~

~

200

300

~
8
E

O. 4

Icils =11O;f-

V

o. 2

/J...-'

VCEI"r)
S.O 7.0

500

ICiI)s - ~.o

~

>

10 0

de

",-1.0m

+0. 8

..§ +0. 4

20
30
SO 70 100
IC, COLLECTOR CURRENT ImA)

0
20
10
20

--

TJ = 150'C

SONDING WI RE LIMITED
THERMALLY LlMITED@TC=2S'C
IISEC?ND ~RE~KD~WIN \I~ITED
30

500

II +100 c to il500C

II II

+25 0 C to +100 oC ,

0

V

~

0
• SS'C " +2S'C'/

'\

II
I
I+~s'c rl +15:0'~ ~ ~

a
6

" ....."

200
50
70
100
VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

300

• Applies for ICilS < hFE/4

2

I-- t--

200

'OVC for VCEI"r)

SOO~s

""-

10

FIGURE 4 - TEMPERATURE COEFFICIENTS
2
G

" "

I'\.

20 0

0
0

0

>
:>

~

-

0-

o

II

w

'"~

«

0

- -

'"'"
~

--

L.-

VI.--

..;;.-

VSE@VCE-lOV

?! o. 6

FIGURE 3 - ACTIVE·REGION SAFE OPERATING AREA
1000
70 0
1001'S
SO0

"f5

~ I-

VSEI"r)@ ICilS = 10

,,~
50 70 100
20
30
IC. COLLECTOR CURRENT ImA)

10

.E 300

I-III

0

~ ~ '\\

I II

10
S.O 7.0

"
.....

"

III

0
20

•

o. a

~

::l so

'"o

"""\

I'--

0

'"

300

-2. a
5.0

400

1 \

OV8 for V8E

c

I

I II

7.0

i

-~s~C "I +2s

Tnl

10

20

30

50

70

100

200

300

500

Ic, COLLECTOR CURRENT ImAi

FIGURE 5 - POWER DERATING
0
I

There are two limitations on the power handling ability of a

transistor: average junction temperature and second breakdown.
Safe operating area curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must nat be subjected to greater dissipation than the curves indicate.
Tho data of Figure 3 is based on T J(pk) = 150°C; TC is variabl.

~
0-

"

6

«

~

z

0

>=

"'-

2

;::
~

C

depending on conditions. Second breakdown pulse limits are valid
for duty cyclos to 10% provided TJ(pk) .;;; 150°C. At high cas.

'"~

temperatures, thermal li~itations will reduce the power that can
be handled to values less than the limitations imposed by second
breakdown.

~

~

8. 0

"

I'-..

"- 1"-..

4. 0

0

4-554

"-

20

40

60
80
100
120
TC, CASE TEMPERATURE ('C)

" '"
140

160

MJE370

(SILICON)

PLASTIC MEDIUM-POWER PNP
SI LICON TRANSISTOR

3 AMPERE
POWER TRANSISTOR

· .. designed for use in general·purpose amplifiers and switching
circuits. Recommended for use in 5 to 10 Watt audio amplifiers.uti·
lizing complementary symmetry circuitry.
•

DC Current Gain - hFE = 25 (Min)

•

Complementary to NPN MJE520

@

PNP SILICON
30 VOLTS
25 WATTS

•

IC = 1.0 Adc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

30

Vde

Collector-Base Voltage

VCB

30

Vde

EmitteraSase Voltage

VEB

4.0

Vde

IC

3.0

Ade

Coliector~Emitter

Voltage

Collector Current - Continuous

- Peak

7.0

Base Current - Continuous

IB

2.0

Ade

Total Power Dissipation@TC= 2SoC
Derate above 25°C

Po

25
0.2

Watts

W/oC

TJ, T stg

-65 to +150

°c

Operating and Storage Junction

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

STYLE 1
PIN 1. EMITTER
2. COLLECTOR
3. BASE

ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)
Characteristic

Svmbol

I

Min

Max

30

-

Vde

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1 J VCEOlsus)

IIC

='100 mAde, IB = 0)

Collector-Ba.. Cutoff Current
(VCB = 30 Vde, IE = 0)

ICBO

-

.100

"Ade

Emitter-Base Cutoff Current

lEBO

-

100

"Ade

(VEB

~

4.0 Vde, IC

s

0)

ON CHARACTERISTICS

DC Current Gain
(lC = 1.0 Ade, VCE

= 1.0 Vde)

MILLIMETERS
DIM MIN MAX
A 10.80 11.05
7.49
7.75
8
2.41
C
2.67
0
0.51
0.66
2.91
3.18
F
2.31
2.46
G
2.16
2.41
H
0.64
J
0.38
K 15.37 16.64
M
3' TYP
Q
3.76
4.01
1.14
1.40
R
S
0.64
0.89
U
3.68
3.94
V
1.02

INCHES
MIN MAX
0.415 0.435
0.195 0.305
0.095 0.105
0.010 0.026
0.115 0.115

•
0.148
0.045
0.025
0.145
0.040

CASE 77·03
TO-126

(1) Pulse Teet: Pulse Width S300p.s. Dutv Cvcle ~2.0".

4-555

0.095
0.025
0.655
P
0.158
0.055
0.035
0.155

-

MJE370

FIGURE 1 0

r-.--

~

ACTIVE-REGION SAFE OPERATING AREA

- .... - r--

I-

~

3.0

~

2. 0

a:
:::>
'-'
a:

...

....

must not be subjected to greater dissipation than the curves indicate.

...

dc'"

TJ = 1500C

I

1.0

:=

There are two limitations on the power handling ability of a
transistor: average junction temperatura and second breakdown.
Safa operating area curves indicate Ie - VeE limits of the transistor
that must be observed for reliable operation; i.e., the trSlnsistor

1.0ms--

....
5.0ms

ii:' 5. 0

~ o. 5

o

~ O. 3 -

I

- -

SECOND BREAKDOWN LIMITED
BONDING WIRE LIMITED'

-

THEiMAT LlIMITtDtlC,,50C

-

The data of Figure 1

.........

I

based on TJ(pk) ,. 150°C; TC is

variable depending on conditions. Second breakdown pulse limits

are valid for duty cycles to 10% provided T J)pk) ~ 150°C. At
high case temperatures, thermal limitations will reduce the power
that can be handled to values less than the limitations imposed by
second breakdown.

O. 2

I

O. 1

1.0

3.0

III

5.0

10

20

30

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

•

FIGURE 3 - "ON" VOLTAGE

FIGURE 2 - DC CURRENT GAIN

I. 5

1000

700
500

VeE

1.0 V

r-

I. 2

TJ = 25'C

IV
9

TJ=+150'C

I-::

6

30

O. 3

III

~II

'2.0 3.0 5.0

20 30 50
100
200 300 500
Ie, COLLECTOR CURRENT (mAl

10

V

I

YeEI ••• }@lell.-1O

III

10

IL

V,,@VeE =2.0V

55'C

20

10

V.E"d,@lc/l •

+25'C

0
0

0
2.0 3,0 5.0

10002000

10

20 30

50

,100

200 300 500

1000

2000

Ie. COLLECTOR CURRENT (mAl

FIGURE 4 - THERMAL RESPONSE

_ 1.0
!9_ O. 7

0 0.5

15.

0

~

0.2

O.3

li!

~ 0.2

i1i

"" o. I

! 0.07

-

-

0.1

....

0.05
0.01

~ 0.05 _

§ 0.03 .......

F"'"

IrLrL
~h~
t,

SINGLE PULSE

!i1

DUTY CYCLE, D I,ll,

~ 0.02

IIIIII

;g 0.0 I
0.01

8JC(t) = r(t)8JC
8JC = 5.0 CIW Max
D CURVES APPLY FOR'POWER
PULSE TRAIN SHOWN
READ TIME"AT q
TJ(pk) Tc=P(pk)8Jc(t)

i:::::="

I-

0.02 0,03

0.05

0.1

I II I IIIIII
0.2

0.3

0.5

1.0

2.0

3.0

5,0

I,TlMElmsl

4-556

10

I
20

30

50

100

200

300

500

1000

IJE311

4 AMPERE

PLASTIC MEDIUM-POWER PNP
SILICON TRANSISTORS

POWER TRANSISTORS
PNPSILICON
40 VOLTS
40 WATTS

. . . designed for use in general-purpose amplifier and switching
circuits. Recommended for use in 5 to 20 Watt audio amplifiers uti·
lizing complementary symmetry circuitry.

•

.. DC Current Gain - hFE = 40 (Min) @ IC = 1.0 Adc
o MJE371 is Complementary to NPN MJE521

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

40

Vdc

Collector-Base Voltage

VCB

40

Vdc

Emitter-Base Voltage

VEB

4.0

Vdc

IC

4.0

Adc

Rating
Collector-Emitter Voltage

Collector Current - Continuous

B.O

- Peak
Base Current - Continuous

Total Power Dissipation
Derate above 2So C

@

TC

= 25°C

Operating and Storage Junction
Temperature Range

IB

2.0

Adc

Po

40
320

Watts
mW/oC

TJ. Tstg

-65 to +150

°c

THI'RMAL CHA~ACTERISTICS
STYLE I
PIN 1. EMITTER
2. COLLECTOR
3. BASE

Max

Characteristic

3.12

Thermal Resistance, Junction to Case

ELECTRICAL CHARACTERISTICS ITC = 250 C unless otherwise noted)
Characteristic

Symbol

Min

Max

Unit

VCEOlsus)

40

-

Vdc

ICBO

-

100

I'Adc

lEBO

-

100

I'Adc

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)

IIc = lOOmAdc.IB = 0)
Collector-Base Cutoff Current

IVCB

= 40 Vdc.

IE

= 0)

Emitter-Base Cutoff Current

IVEB

Q

U

ON CHARACTERISTICS

V

DC Current Gain (1)

30 TYP

M

R
S

= 4.0 Vdc. IC = 0)

IIc = 1.0 Adc. VCE

MILliMETERS
INCHES
DIM MIN MAX
MIN MAX
A 10.BO 11.05 0.425 0.435
7.49
7.75
B
I 0.3D5
2.41
2.67
C
I 0.105
D 0.51
0.66
1 0.026
2.92
3.18
F
1 0•125
2.31
2.46
G
1 0•097
1.27
2.41
H
1 0.095
0.64
J
0.38
1 0.025
K 15.11 16.64
~
3.76
1.14
0.64
3.68
1.02

4.01
1.40
0.89
3.94

-

CASE 77-114
= 1.0 Vdc)

TO·126

(1) Pulse Test: Pulse WidthS 300 Its Duty Cycle~ 2.0%.

4-557

~

1 0.158
1 0.055
1 0.035
1 0•155
L....::-

MJE371

FIGURE 1 - ACTIVE-REGION SAFE OPERATING AREA
0
100",

0:

'" 5_ 0
5

.....

>--

~ 3.0
_

a

1.Oms

.....

....

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown.
Safe operating aroa curves indicate Ie . Vee limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.
The data of Figura 1 I, balad on T J(pk) ... l50o e; TC I.
variable depending on conditions. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ(pk) ~ l50 o e. At
high cess temperatures, thermal limitations will reduce the power
that can be handled to values Ie.. than the limitations imposed by
second breakdown.

5.0 ms

2.0
TJ = 150°C

o'" 1. 0

de""

r-== - Second Breakdown Limit
~ o. 5 J:::::=
1------Bonding Wire lImit

II

o

'"~

Thermal Limit@Tc-250C

0.3

o. 2

-I I

O. I
2.0

4.0

/I

S.O

8.0

10

20

so

40

VCE. COLLECTOR-EMITTER VOLTAGE IVOLTSI

FIGURE 2 - DC CURRENT GAIN

CII

~

10
7.0
5.0

150°C
VCE - 1.0 Vde

~

2.0

z-

;;:

I ::~
>--

:5

i

0

I"-

-55°C

1.0

TJ'250C

I.S

~ 3.0

CJ

I I

TJ' 25 0e

f--r-

::l

'"~

FIGURE 3 - "ON" VOLTAGE
2.0

V.

1.2

~
w

'"

'"

:;

I:?

VaElsall@le/la= 10

o.a

0

VaElonl@VCE -1.0 V

>

0.3

~

0.2

III

0.4

III

I'"

VCElsat)@lclla- 10

o

O. 1

0.01

0.2 0.3 0.5
1.0
0.02 0.03 0.05
0.1
IC. COLLECTOR CURRENT IAMPI

2.0 3.0 4.0

0.005 0.01

0.02 0.03 0.05
0.1
0.2 0.3 0.5
Ie. COLLECTOR CURRENT IAMPI

1.0

2.0 3.04.0

FIGURE 4 - THERMAL RESPONSE

~

1.0
0.7 t==0 - 0.5
0.5

~~

0.3

il

0.2

in'"
~

",-

>--w

~~

I--

=-

0.2

-

I-- -0.1

~ ~ 0.07 F ' 0.02
~~ 0.03

~ 0.02

I::::

--

~ -.".

0.1 I-- -0.05

~~ 0.0 51'""
w-'

,....

-

~

I-- -0.01

>--

0.0 1
0.01

OJclt1 = rill OJC
OJC = 3.12°CIW Max

'L

,

....1:::'

-

I

Single Pulse

PIPklfifi
0 CURVES APPLY FOR POWER
B ! J ; - t . SINGLE PULSE TRAIN SHOWN
12
PULSE REAOTIMEAT!J
OUTY CYCLE. 0 ·!J/12

I
0.02 0.03

I
0.05

I I I
0.1

0.2

0.3

0.5

1.0

I

2.0

3.0

I I I I'll
5.0

I. TIME OR PULSE WIDTH 1m,)

4-558

10

TJlpkl- TC = Plpkl OJCIII

L iLL I I Lilli
20

50

100

111
200

500

1000

MJE520 (SILICON)

3 AMPERE
POWER TRANSISTOR

PLASTIC MEDIUM-POWER NPN
SI LICON TRANSISTOR

NPN SILICON
30 VOLTS

· .. designed for use in general·purpose amplifier and switching
circuits. Recommended for use in 5 to 10 Watt audio amplifiers utilizing complementary symmetry circuitry.
• DC Current Gain - hFE = 25 (Min)
• Complementary to PNP MJE370

@

IC

25 WATTS

..

= 1.0l'.dc

MAXIMUM RATINGS
Symbol

Value

Unit

VCEO

30

Vdc

Collector-Base Voltage

Vca

30

Vdc

Emitter-Base Voltage

VEa

4.0

Vdc

IC

3.0

Adc

Rating
Collector-Emitter V.oltage

Collector Current - Continuous

- Peak

7.0

Base Current - Continuous

Total Power Dissipation @ T C

= 25°C

la

2.0

Adc

Po

25
0.2

W/oC

Derate above 25°C

TJ. Tstg

Operating and Storage Junction
Temperature Range

Watts

-65 to +150

°c

s

~H

K

1--0

L--lLJ

GJ:i

1:$1

THERMAL CHARACTERISTICS
Characteristic

DIM

Thermal Resistance, Junction to Case

A

B
C
D
F

ELECTRICAL CHARACTERISTICS ITC = 25c C unless otherwise noted)
Symbol

Characteristic

Min

Max

Unit

G

H
J

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (11

VCEOlsus)

30

-

Vde

K
M

R
S

(lC = 100 mAde, la = 0)
COllector-Base Cutoff Current

Icao

-

100

I'Ade

IEaO

-

100

"Ade

U

(Vca = 30 Vde, IE = 0)
Emitter-Base Cutoff Current

(VEa = 4.0 Vdc, IC = 01

a
V

MILLIMETERS
MIN MAX
10.BO 11.05
1.49
1.15
2,41
2,61
0,51
0,66
2.92
3.18
2.46
2.31
2.41
2.16
0,38 0,64
15.31 16.64
30 TYP
3.16 4,01
\.14
1.40
0.89
0.64
3.6B
3.94
1.02

-

STYLE 1
PIN I. EMITTER
2, COLLECTOR
3, BASE

INCHES
MIN

~
~

0,305
10,105
10,026
0. 125
10.\191
10,\195
10.025
1

1

~
P
0,148
0.045
0.025
0.145
0.040

ON CHARACTERISTICS
DC Current Gain (11
(lc = 1.0 Ade, VCE

= 1.0 Vdcl

,r

CASE 77-03
TO-I26

(1) Pulse Test: Pulse Width "5: 300 ,",5, Duty Cycle S:2.0%.

4-559

0.158
0,055
0.035
0,155

-

MJE520

FIGURE 1 ACTIVE·REGION SAFE OPERATING AREA
0
~
~

~
Iz

~

r - 1-- t-I--

3.0
TJ = 150DC

o

"I

1.0

t;

j
8

~

•

- -

0.5

0.3
0.2

-

The data of Figure 1

..... -

...

de

1

""""

SECOND BREAKDOWN LIMITED
BONDING WIRE LIMITED
THERMALLY lIMITED@TC= 25 DC

based on TJlpk)

=

1500 C; Te is

variable depending on conditions. Second breakdown pulse limits
ara valid for duty cycles to 10% provided (T Jpk) ~ 150°C. At
high case temperatures. thermal limitations will reduce the power
that can be handled to values less than the limitations imposed by
second breakdown.
There are two limitations on the power handling ability of a

,

...

2.0

'"

a:

I.omsS.Dms~-

:>

'-'

I - I-- -

5.0

transistor:

average junction temperature and second breakdown.

Safe operating area curves indicate Ie . VeE limits of the transistor

that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.

T T

O•I
1.0

2.0

3.0

5.0

10

3D

20

VCE, COLLECTOR·EMITTER VOLTAGE IVOLTS)

FIGURE.2_- DC CURRENT GAIN

FIGURE 3 - "ON" VOLTAGE

..

..

100 0
700
50 0

1.5

TIT
Ve.

I 11.1

~ 300

l-

~ 200

~

1.2

I.OV

~

...

r-...

TJ = 150'C

i-

100
0
0

~

.,

25'C

TJ = 25'C
~

0.9

~

..

~ 0.6

V,,@Ve•

55'C
0

~

10

V"I"'I@le/ l,

t;

2.0V

17

I I II

0.3

0
10
Z.O 3.0 5.0

Ve. 1"'I@lell, = 10

II
10

20 30

50

100

200 300 500

a

1000 2000

2.0 3.0 5.0

10

Ie, COLLECTOR CURRENT ImA)

20 30

50

100

200 300 500

1000 2000

Ie, COLLECTOR CURRENT ImA)

FIGURE 4 - THERMAL RESPONSE

ffi

1.0
::; 0.7
~ 5.0

N

0=0.5

......

0.2

o

~

~ 0.3

Z

~
~

0.2

'''--

0.1
;;! 0.0 7
~ 0.05
w

>:

I-

0.03

~

0.02

!;;
z

:i 0.01
';

"'"

--

O,QJ

--"

0.05
0.01

'1JLJL
Plp'l

V

~h~

I, .
DUTY CYCLE, 0 1, /1,

SINGLE PULSE

I III
0.02 0.03

0.05

6JCIt) .. rlt) 6JC
6JC = 5.0 DC/W Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
,REAOTIMEATq
TJlpk) TC = Plpk) 6JCltl

I-"
l.-

0.1

0.1

I 1.1
0.2

0.3

0.5

1.0

2.0

.11111

3.0 5.0
I,TIMElmsl

4-560

10

20

30

50

100

200

300

500

1000

PNP

MJE700 thru MJE103
NPN
MJE800 thru MJE803

4.0 AMPERE

. PLASTIC MEDIUM-POWER
COMPLEMENTARY SILICON TRANSISTORS
... designed to replace discrete driver and output stages in complementary audio amplifier applications.
•

High DC Current Gai n hFE = 750 (Min) @ IC = 1.5 and 2.0 Adc

•

Monolithic Construction

•

Three Lead Design - Emitter-Base Resistors to Limit Leakage
Multiplication are Built in.

DARLINGTON
POWER TRANSISTORS
COMPLEMENTARY SILICON

60-80 VOLTS
40 WATTS

..

MAXIMUM RATINGS

Rating

Coliector·Emltter Voltage

Symbol

MJE700
MJE701
MJE800
MJE801

MJE702
MJE703
MJE802
MJE803

Unit

VCEO

60

80

Vdc

COllector-Base Voltage

VC8

60

80

Vdc

Emitter-Base Voltage

VEB

5.0

Vdc

IC

4.0

Adc

Collector Current

Base Current
Total Power Dissipation @ T C

= 2SoC

IB

0.1

Adc

Po

40
0.32

Watts
W/oC

TJ. T stg

-55 to +150

Uc

Derate above 25°C
Operating and Storage Junction
Temperating Range

THERMAL CHARACTERISTICS

Characteristic

I

Thermal Resistance. Junction to

Ca~e

Symbol

I

Max

I

3.13

ROJC

Unit

STYLE 6
PIN 1. CATHODE

°C/W

1. GATE
3. ANODE
MILLIMETERS

DIM MIN
A 10.80

FIGURE 1 - POWER DERATING
40

5
i'S

f".-

30

",

S 20

F

.......

J
K

i'-..

i5

'"
10

""".

R
S
U

V

" ,

0.64
16.64
30 TYP

3.76
1.14
0.64
3.68
1.02

4.01
1.40
0.89
3.94

-

INCHES

MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.125
0.091 0.097
0.050 0.085
0.015 0.025
0.595 0.655
3 TYP
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155
0.040

-

CASE 77-04

......

~

o
15

1.75
2.61

2.41

0.38
15.11

M
Q

11.05

0.66
3.18
2.46

G
H

~

~

~

7.49

0

z
o

~
-

8
C

MAX

50

75
100
Te. CASE TEMPERATURE lOCI

115

150

4-561

When mounting the device, torque not to
exceed 6".0 in.·lb.
If lead bending is required, use suitable
clamps or other supports between transistor
fase and point of bend.

MJE700 thru MJE703PNP/ MJE800 thru MJE803NPN

ELECTRICAL CHARACTERISTICS (TC; 25°C

I

unless otherwise noted)

Symbol

Characteristic

Min

Max

60
80

-

-

-

100
100

-

100
500

-

2.0

750
750

-

-

2.5
2.8

Unit

OFF CHARACTERISTICS
COllector-Emitter Breakdown Voltage III
(lC; 50 mAde, IB; 01
Collector Cutoff Current
(VCE ~ 60 Vdc, IB : 01
(VCE = 80 Vdc, IB : 01

= 100oC)

•

lEBO

= 0)

IC

~Ade

mAde

ICBO

EmItter Cutoff Current

= 5.0 Vde,

-

ICEO
MJE700, MJE701, MJE800, MJE801
M.IE702, MJE703, MJE802, MJE803

Coliector Cutoff Current
(VCB: Rated BVCEO, IE = 01
(VCB = Rated BVCEO, IE: 0, TC

(VBE

Vde

BVCEO
MJE700, MJE70l, MJEBOO, MJE801
MJE702, MJE703, MJE802, MJE803

~A

ON CHARACTERISTICS (II

DC Current Gain

-

hFE
MJE700, MJE702, MJEBOO, MJE802
MJE701, MJE703, MJEBOI, MJEB03

(lC: 1.5 Ade, VCE "3.0 Vdel
(lC: 2.0 Ade, VCE : 3.0 Vdel

. Collector·Emitter Saturation Voltage
MJE700, MJE702, MJE800, MJE802
MJE701. MJE703, MJEBOI, MJE803

(lc: 1.5Ade,IB: 30 mAde)
IIC=2.0Adc.IB:40mAdel

-~

=3.0 Vdel

-

MJE700, MJE702, MJE800, MJE802
MJE70l, MJE703, MJE80l, MJE803

= 3.0 Vdcl

Vele
Vde

VBE(onl

Base·Emitter On Voltage
IIc = 1.5 Ade, VeE
(I C =2.0 Adc, V CE

VCE(sat)

-

2.5
2.5

-

DYNAMIC CHARACTERISTICS

Small-Signal Current Gain
(lc = 1.5Ade. VCE = 3.0 Vde, f: 1.0 MHzl
(1)Pulse Test:

Pulse Width ~ 300 JJ.s, Duty Cyclo -::; 2.0%.

FIGURE 2 - DC SAFE OPERATING AREA
5~ 0

"-

3.0
'"

5

....

ia
'"
o

~
8

~

....

20
1.0

"-

-

-

0.7

BondingWireUrnit
Thermal Limit al TC '" 250C
Secondary Breakdown limit

O. 5

0.3

Tel~ 2~O~

O. 2

r,

There are two limitations on the power handling ability of a

transistor: average junction temperature and secondary breakdown.
Safe operating area curves indicate IC-VCE limits of the transistor
that must be observed for reliable operation; e.g., the transistor
must not bd subjected to greater dissipation than the curves indicate.
At high case temperatures, thermal limitations will reduce the
power that can be handled to values less than the limitations imposed by secondary breakdown.

1\

"III

O. 1

"-

~m~u~~~H
MJEJ02. J03.
MJE802.803

O.oJ
0.0 5

1.0

2.0

3.0

5.0

J.O

10

20

30

50

JO 100

VeE, eOLLEeTOR~EMITTER VOLTAGE (VOLTS)

FIGURE 3 - DARLINGTON CIRCUIT SCHEMATIC
PNP
MJEJOO
thru

MJEJ03

Collector

NPN
MJE800

-,

,----+.

thru

MJE803

I

B;lse

ColieclOr

r---------,
:
I

I

Base

Emitter

4-562

MJE1290 MJE 1291 PNP
MJE 1660 MJE 1661 NPN

(SILICON)

15 AMPERE

COMPLEMENTARY SILICON

POWER TRANSISTORS
COMPLEMENTARY SILICON

MEDIUM-POWER TRANSISTORS

40·60 VOLTS
... designed for use in power amplifier and switching applications.

90 WATTS

o High Collector CurrentIC=15Adc
o High DC Current Gain hFE = 10 (Min) @ IC

= 15 Adc

MAXIMUM RATINGS
MJE1291
MJE1661
60

Unit

VCEO

MJE1290
MJE1660
40

Collector-Base Voltage

VCB

40

60

Vdc

Emltter~Base

. Symbol

Rating
Collector-Emitter Voltage

Vdc

VEB

5.0

Vdc

Collector Current-Continuous

IC

15

Adc

Base Current

IB

5.0

Adc

PD

90
0.72

Watts
W/oC

TJ. T stg

-65'0+150

DC

Voltage

Total Power Dissipation

@

T C = 2SoC

Derate above 25°C
Operating and Storage Junction

Temperature Range

r-.-

B--

1M-1·
'--~

12

---L

~I~VIH

THERMAL CHARACTERISTICS
Characteristics

M

t-

1.39

2. COLLECTOR

3. BASE

'.

FIGURE 1 - POWER TEMPERATURE OERATING CURVE

DIM
A
B
C
D

0

-'"

-'"

0

F

"-

.-"'.

0

G
H
J
K

-'"

0

"-

M

"-

0

Q
..

"-

-

r---

25

50

75
100
125
TC. CASE TEMPERATURE lOCI

R
U

"-

V

"0

1

L

. ~=-r C

0

,

+n-- 0
--li--J
--lGi=
R
STYLE 2:
:l.1 PIN 1. EMITTER

Max

Thermal Resistance, Junction to Case

l-f

F

--IUr~

MILLIMETERS
MIN
MAX

INCHES
MIN MAX

16.13 16.38
12.57 12.83
3.18 3.43
1.09 1.24
3.51 3.76
4.22 BSC
2.67 2.92
0.813 0.864
15.11 16.38
90 TVP
. 4.70 4.95
1.91
2.16
6.22 6.48
2.03

0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
0.166 BSC
0.105 0.115
0.032 0.034
0.595 0.645
90 TVP
0.185 0.195
0.075 0.085
0.245 0.255
0.080

.CASE 90·05
TO-127
150

175

When mounting the device, torque not
to excet:d 8.0 in.-Ib.
If lead bending is required, use suitable
clamps or other supports between transistor case and point of bend.

4-563

MjEi29o, MoJE1291 PNP/MJE1660, MJE1661 NPN

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)

I

Symbol

Characteristic

Min

- Max

40
60

-

-

1.0

-

0.7
0.7

-

0.7
0.7

-

1.0

20
10

100

-

1.8

-

2.5

3.0

-

25

-

Unit

OFF CHARACTERISTICS
Collector·Emitter Sustaining Voltage III
= 200 mAde, la = 0)

Vde

VCEO(sus)

(Ie

MJE1290, MJEI660
MJE1291, MJE1661

Collector Cutoff Current
(VCE = 30 Vde, la = 01

mAde

ICEO

Collector Cutoff Current
(VCE = 40 Vde, VaE = 0)
(VeE = 60 Vde, VaE = 0)

mAde

.ICES
MJE 1290, MJE 1660
MJE1291, MJE1661

Collector Cutoff Current

mAde

Icao

(Vca = 40 Vdi:, IE = 0)
(Vca = 60 Vde, IE = 0)

MJE1290, MJE1660
MJE1291, MJE1661

Emitter Cutoff Current

mAde

IEaO

(VaE = 5.0 Vde, IE = 01
ON CHARACTERISTICS
DC Current Gain 111
(IC = 5.0 Ade, VCE = 4.0 Vde)
(lC ='15 Ade, VCE = 4.0 Vde)

hFE

Collector-Emitter Saturation Voltage III
(lC = 15 Ade, la = 1.5 Ade)

VCE(satl

Base-Emitter on Voltage III
(lC = 15 Ade, VeE = 4.0 Vdcl

VBE(on)

--

Vde
Vde

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(IC = 1.0 Ade, VCE = 10 Vdc, f = 1.0 MHz)

fT

Small-Signal Current Gain
(lC = 1.0 Ade, VCE = 10 Vde, I = 1.0 kHz)

hfe

MHz

-

(11 Pulse Test: Pulse Width'S 300 Ils. Duty Cycle'S 2.0%.

FIGURE 2 - DC SAFE OPERATING AREA

100

l

50 =-iJ 150°C

---

20

~ 10

~ 5.0

- - - - Secondary Breakdown Limited
- - - - - Thermally Limited, TC =250C

'"a:
~::l0

-- -

--- -

2.0

Bonding Wire limited

1.0

8

~

-MJE1291

~ .-MJE1661
\ ~

0.5
MJE1290, MJE1660

O. 2

IIII

O. I

1.0

The Safe Operating Area Curves Indicate IC~VCE limits below
which the device will not enter secondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To Insure operation
below the maximum T J. power·temperature derating must be observed for both steady state and pulse power conditions.

2.0

3.0

5.0 7.0

10

20

30

50

70 100

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

4-564

MJE1909

4 W (CW) -27 MHz

NPN SILICON RF POWER TRANSISTOR

RF POWER
TRANSISTOR

· .. this device is designed for use in large signal R.F. output
amplifier stages in communications equipment operating to 50 MHz.
This device is specifically tested for use at 27 MHz in Citizen
Band equipment.

NPNSILICON

• Withstands Open and Short Circuit load in AM Operation
•

Specified 12 V. 27 M Hi Characteristics
Output Power = 4 W (CW)
Minimum Efficiency = 60% (CW)

•

MAXIMUM RATINGS
Rating
COllector-Emitter Voltage

IRBE

Symbol

Value

Unit

VCER

75

Vdc
Vdc

= 150 nl

Collector-Base Voltage

VCBO

75

Emitter-Base Voltage

VEBO

4.0

Vdc

IC

3.0

Adc

PD

10
100

Watts
mW/oC

TJ. T stg

-55to+150

°c

Collector Current

Peak 111

Tatal Power Dissipation @ T C

50°C

Derate Above 50°C
Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
111

P~lse Width .. 20 ms. Duty Cycle .. 50%

STYLE 1.

PIN 1 BASE
2. COLLECTOR
3. EMITIER
4. COLLECTOR

DIM

...1

J

Svmbol

I

Max

ROJC

I

10

I
I

Unit

°C/W

A
B

C
D
F
G

H
J
K
L
N
Q

R
5

T
U

CASE 221A·D2
TO·220AB

4-565

MJE1909

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic

Symbol

Min

Max

Unit

hFE

20

150

-

0.6.

Vdc

OFF CHARACTERISTICS

Collector Cutoff Current
(VCB = 40 Vdc, IE = 0)
ON CHARACTERISTICS
DC Current Gain (1).
(lC' = 0.5 Adc, VCE ~ 10 V)

Collector-Emitter Saturation Voltage (1)

VCE(sat)

(lC = 1 Adc, IB = 0.1 Adc)
DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 150 rnA, VCE = 10 V, I = 100 MHz)

•

Output Capacitance

IT

100

-

MHz

Cob

-

70

pF

(VCB = 10 Vdc, IE =0, 1= 1.0 MHz)
FUNCTIONAL TESTS (Figure 1)

Output Power

4.0

Watts

60

%'

(VCC = 12 V, 1= 27 MHz, Pin = 0.2 W)
Collector Efficiency
(VCC = 12 V, I = 27 MHz, Pin = 0.2 W)
(1) Pulse Test: Pulse Width = 300 I'S, Duty Cycle':; 2%

FIGURE 1 - TEST CIRCUIT SCHEMATIC

&.--I"f"V-y-''-_-JLI\..__--l,,) Output
50

Lt

~~~t(Ot---21--~~--rv~~---'---4
RFC

C2

68 pF

30

n

C2. C3: ..... 110 pF Variable Capacitor

Cl. C4: ~ 75 pF Variable Capacitor
L 1: 0.15 to 0.22 ~H. Q "'" 5
L2: 0.46 IlH, Q ~ 5

4-566

n

Load

MJE2360T
MJE23611

NPN SILICON HIGH-VOLTAGE TRANSISTOR

Q.5AMPERE
POWER TRANSISTORS
NPN SILICON

· .. useful for general-purpose. high voltage applications requiring
high fT.
•

Collector-Emitter Sustaining Voltag'e VCEO(sus) = 350 Vdc (Min) @ IC = 2.5 mAdc

•

DC Current Gain hFE = 40 (Min) @ IC = 100 mAdc - MJE2361T

III

Current-Gain-Bandwidth Product fT = 10 MHz (Typ) @ IC = 50 mAdc

350 VOLTS
30 WATTS

•

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Collector· Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Svmbol

Value

Unit

VeEO
VeB
VEB
Ie

350

18

0.25

Vdc
Vdc
Vdc
Adc
Adc

PD

30
0.24

Watts

TJ.T stg

-65 to +150

°e

Svmbol

Max

Unit

8JC

4.167

°e/w

Base Current
Total Power DISSipation

@

TC = 25°C

375
6.0
0.5

Derate above 2SoC
Operating and Storage Junction

III
,J~[~
jtu

w/oe

Temperature Range

T-JI
J

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

~

~

z
0
;::

:t

3.

EMITTE.R

4. COllECTOR

DIM

••

..........
25
20

'"iii!
~

.JI-~

2. COLLECTOR

30

15

~

-l~

35

ili
is

,.

JSECTAA

STYLE 1.
PIN 1. BASE

FIGURE 1 - POWER· TEMPERATURE DERATING CURVE
40

f-

K

..........

'" "'-.

10

H

J
K
L

•
•
0
R

"" '" "'-. r-....

5.0

o

C
0
F
G

~

o

20

40

60

80

100

120

140

T

U

160

V

NOTE.
1. DIM. L& H APPLIES

TO ALL LEADS.

MILLIMETERS
MIN MAX
15.11 15.15
9.65 10.29
4.06
4.82
0.64
0.89
3.61
3.73
2.41
2.61
2.79
3.30
0.36
0.b6
12.70 1411
1.14
1.21
4.83
5.33
'.54 3."
2.04
2.79
1.14
139
5.97
6.48
1.21
0.76
1,14

INCHES
MI. MAX
0.595 0.620
0.405
0.38
0.160 0.190
0.025 0.035
0.142 0.141
0.095 0.105
0.110 0.130
0.014 0.022
0.500 0.562
0.045 0050
0.190 0.210
0.100 0.120
0.080 0.110
0 .. ' 0.055
0.235 0.255
0.030 0.050
0.045

CASE 221 A.Q2
(TO·220 ASI

TC. CASE TEMPERATURE tDCI

4-567

MJE2360T, MJE2361T

ELECTRICAL CHARACTERISTICS (Te = 25 0 e unless otherwise noted)
Characteristic
OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltagell)

VCEO(,u,'

350

-

-

Vde

ICEO

-

-

0,25

mAde

ICEX

-

-

0.5

mAde

Collector Cutoff Current
(VCB ".375 Vde, IE " 0)

ICBO

-

-

0.1

mAde

Emitter Cutoff Current

lEBO

-

-

0.1

mAde

-

200
250

IIC = 2.5 mAde, IB = 01

Collector Cutoff Current
(VCE = 250Vde,IB = 01

Collector Cutoff Current
(VeE'" 375 Vde, VEB(olfl" 1.5 Vdel

•

(VBE " 5.0 Vde, IC " 0)
ON CHARACTERISTICS (11

DC Current Gain

-

hFE

IIc = 50 mAde, VCE = 10 Vde)
r;:

MJE2360T
MJE2361T

25
50

IIc = 100 mAde, VCE = 10 Vde)

MJE2360T

15
40

MJE2361T
Collector-Emitter Saturation Voltage

VCE(,.,)

-

-

-

1.5

Vde

1.0

Vde

MHz

(lC = 100 mAde, IB = 10 mAde)
Base-Emitter On Voltage

'vBE (onl

-

-

IT

-

10 .

-

Cob

-

20

-

IIc = 100 mAde, VCE = 10 Vde)
DYNAMIC CHARACTERISTICS
Current-Gain- BandwIdth Product
IIc = 50 mAde, VCE = 10 Vde, I

=1 0

MHzl

Output Capacitance
(VCB

= 100 Vde,

(1 )Pulse Test

IE

pF

= 0, I = 100 kHz)

Pulse Width.s; 300 #ls, Duty Cycle ~ 20%.

FIGURE 2 - OC SAFE OPERATING AREA
1.0
;c

0.5

~ 0.3
I-

~ 0.2

B

'"ot;
j

- - - Secondary Breakdown limited
- - -:L Brnding Wire Limited

O. 1

1\

The Safe Operating Area Curves indicate Ie-VeE limits below
which the device will not enter secondary breakdown. Collector

load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic faIlure. To insure operation
below the ma)(imum T J. power-temperature derati~g must be observed for both steady state and pulse power conditions.

0.0 5

S 0.0 3 - T J -150°C
I I I
!2 0.0 2
0.0 1
1.0

2.0

5.0

I)

II
10

20

50

100

200

500 1000

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTS)

4-568

NPN

MJE28@1 p MJE28@11f
PNP

MJE2901, MJE2901T
10 AMPERE

COMPLEMENTARY SILICON PLASTIC
POWER TRANSISTORS

COMPLEMENTARY SILICON
POWER TRANSISTORS

... for use as an output device in complementary audio amplifiers
up to 35·Watts music power per channel.

60 VOLTS
75. 90 WATTS

Q
High DC Current Gain - hFE = 25·100@ IC = 3.0 A
o Choice of Packages - MJE2801, 2901 - TO·225AB (TO·127)
MJE280tT, 2901T - TO·220AB

MAXIMUM RATINGS
Symbol

Valuo

Unit

VCEO

60

Vde

Collector-Base Voltage

VCB

60

Vde

Emitter-Base Voltage

Rating'

Collector-Emitter Voltage

VEB

4.0

Vde

Collector Current

IC

10

Ade

Base Current

IB

5.0

Ade

PIN I er.4ITTER
2 COllECTOR
3 BASE

DIM
A

•
C
D
F

G
H

90
75

Operating and StOfEgB Junction

TJ. T,tg

J
K
M

0.72
0.6

W/oc

-5510 +150

°c

o
A

MJE2801
MJE2901

CASE 90·05
TO·225AB
ITO-1271

Temperature Aange

THERMAL CHARACTERISTICS
Cha.ractoristic

Symbol

Thermal ROliltonce, Junction to Cesa

°JC

~I- s c

I~'
rJ ~~T"

Unit

Ma.

°CIW

ELECTRICAL CHARACTERISTICS ITC
Characteristic

I

I

Min

I Max I

60

-

Coliector·Cutoff Current
IVCB

= 60 Vde, IE

IVCB = 60 Vde, IE = 0, TC = 150DcI

IVBE

-

0.1

-

2.0

-

1.0

hFE

(lC' 3.0 Ade, VCE • 2.0 Vdel

Base-Emitter Voltage

25

G
H
J

K

-

1.4

Pulso T ..t: Pulse Width ~300 Ils, Dutv Cycle <;;2.0%.

6Tradomark of Motorole Inc.

4-569

a

-

R

Vde

S
T
U

100

VBE

(lC = 3.0 Ade, VCE • 2.0 Vdel
(1)

•

l
N

ON CHARACTERISTICS
DC Current Gain

DIM MIN
A 1511

C
0
F

mAde

'EBO

= 4.0 Vde, IC =.01

MILLIMETERS

mAde

ICBO

= 01

Emitter Cutoff Current

Vde

BVCEO

lic = 200 mAde, IB = 01

H

-:J--R
1-,

Unit

OFF CHARACTERISTICS
Collector· Emitter Breakdown Voltage 11)

v,
J

J~-

= 25°C unless otherwISe notedl

Symbol

a

T

lu

I

1Sa'. ArOB Curl,lq$ ara indicated by F Igur. 1. Both limits are applicable and must beobservod.

I

r S-'_J

--1

A

1.39
1.67

MJE2801, 2901
MJE2801T,2901T

•

STYlE 2

Watts

Pot

Totol Power Oi .. lpation @ T C - 25°C
MJE2801,2901
MJE2B01T,2901T
Oorato obove 250 C
MJE2801, 2901
MJE2801T,2901T

\

965
.06
064
361
241

219
036

MAX
1515
10.29

089

373

261
330
056
1427
1.21

254

304
2.19
1.39
6.4B
121

II.

591
016

II.

0

0

'.2 0160

1210
114
483

20.

INCHES
MIN
059S

533

-

0025
0142
0095
OliO
0014
o SOD

0045
0190
DI
O.OBO

0045
0235
0030
0045

MAX
0620
0405
0.190
0035
0141
0105
0130
0022
0562
0050
0210
0.120
0.110
0055
0255
0050

-

CASE 221A.o2
TO·220AB

STYLE I

PIN I
2
J
4

BASE
COLLECTOR

EMITTER
COllECTOR

NOTE
101M L & H APPLIES
TO ALL LEADS

MJE2801T
MJE2901T

MJE2801/MJE2801T NPN, MJE2901/MJE2901T prJP

FIGURE 1 - ACTIVE REGION
SAFE OPERATING AREA
10
7.0
5.0

11III.olMJE2801
,.JE2901

13.0

' .. 1\

ico 2.0
co
a 1.0 ~-- 80NOING ~IR~ LIIM\A~

:

~

II

0.1

=-----

0.5

,

'.

MJE280IT~
I .1 MJE290IT

There are two limitations on the power handling abilitv of a
transistor: average junction temperature and second oreakdown.
Safe operating Brea curves indicate Ie . VeE limits of the transistor
that mu'st beobselVed for reliable operation; I.e., the transistor must

1M

\

\~,\

not be subjected to' greater dissipation than the curves indicate.

The data of Figure I is based on T Jlpk) = ISOoC; TC IS var;able
depending on conditions. Second breakdown pulse limits are valid

THERMALLY L1MIT@lTC= 2'J'
SECONDARY BREAKDOWN LI ITEO

for duty cvcles to 10% provided T Jlpk) .;;; ISOoC. At high case
temperatures, thermal limitations will reduce the power that can be
handled to values less than the limitations imposed bV second
breakdown.
.

B 0.3
!} 0.2
O. I
1.0

2.0

3.0

5.0

7.0

10

20

3D

50 60

VCE. COLLECTOR-EMITTER VOLTAGE IVOLTS)

FIGURE 2 - OC CURRENT GAIN

FIGURE 3 - POWER DERATING
90

500

~

100

~co

50

u

0

~

0

...
1'1
o

VCE = 2.OV

TJ"~C

200

z

L'-.
80
E
......
<
I---

ill

300

..-

it; 70

..........

:z

~~~C

0

;:: 60
~ 50

i"o...

~

MJE2BOIT .....
MJE290lT

i5 40
-55°C

"..

'"
~

......

Ii:

~

" ' MJE2BOI
MJE2901

3D

20

r-....",
-........: ~
~
~
..........

10
0
5.0
0.01

o
0.02

0.05

0.1
0.2
0.5
1.0
2.0
IC. COLLECTOR CURRENT lAMPS)

5.0

o

75
100
125
50
TC. CASE TEMPERATURE 10C}

25

10

150

175

FIGURE 4 - "ON" VOLTAGES
MJE2901/MJE2901T

MJE2B01/MJE2B01T
0

1.4

1.2

TJ' 25°C

TJ - 2SoC
6

J

-

1

VBElsaU IiIICIIB' 10

l---

::,.....-

2
VeEI .. t}@IC·IS·

6

VBE IiIVCE • 2.0 V

8

4

VSE@VCE·

1..1 JL

0.2

VCElsaU Ii!>lclle = 10

o
0.1

0.2

0.3

0.5,

1.0

--

/.

I~

~

3b~

VCE! .. )Q,iICill! ID_
3.0

5.0

0
0.1

10

IC. COLLECTOR CURRENT lAMP)

4-570

I:::::V
V

I -, '1111

4

V

.......

2.0

::;;.

0.2

03

f-

10
05
20 3D
IC. COLLECTOR CURRENT lAMP}

so

10

IJ1:2955, MJE29551f
MJE3055 9 IJE30551T

PNP (SILICON)
NPN

10 AMPERE

. COMPLEMENTARY SILICON PLASTIC
POWER TRANSISTORS

COMPLEMENTARY SILICON
POWER TRANSISTORS

designed for use in general·purpose amplifier and switching
applications.

60 VOLTS

75. 90 WATTS

o DC Current Gain Specified to 10 Amperes
o High Current Gain - Bandwidth Product 1,- = ~.O MHz (MinI @ IC = 500 mAdc
o Choice of Packages - MJE3055, MJE2955 - TO-225AB (TO·1271
MJE3055T, MJE2955T - TO-220AB
MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

Symbol

Value

Unit

Vdc
Vdc

VCEO

60

Collector-Base Voltage

Vce

70

Emi~ter-Base

VEe

5.0

Vdc

IC

10

Podc

Ie

6.0

Voltage

Collector Current
Base Current

Operating and Storage Junction
Temperature Range

Adc

Watts
W/oC

Pot

Total Power Dissipation @ TC = 250 C
MJE3055, MJE2955
MJE3055T, MJE2955T
Derate above 250 C
MJE3055, MJE2955
MJE3055T,MJE2955T

90
75

TJ. T stg

••

0.72
0.6

W/oC

-55 to +150

°c

THERMAL CHARACTERISTICS
Ma.

Symbol

Charac:taristic

Thermal Resistance. Junction to esse

Unit

°CIW

OJC
1.39
1.67

MJE3055, MJE2955
MJE3055T, MJE2955T

tSafc Araa Curvos are indicated by Figure 1. Both limits are appllcablo and must be observed.

~

i

FIGURE I - ACTlVE·REGION SAFE OPERATING AREA
0
1.0msli{IDO,,-,
7.0
.0.. Ir-' I5.0

.......

z

~

2.

.~

./

MJEJ055. MJE2955 . /
0

u

o. 7

8 D.5 -1--~

!-'

0

o

~

MJE3055T
MJE2955T

0

~

O. 3

O. 2

o. I
5.0

.....

......

de
~

\ ,\ ~

7.0

TC<25'CI0<0.1I

\

1

10
20
30
VCE. COLLECTOR·EMITIER VOLTAGE (VOLTS)

50 60

Th.'••'.I...o hmll.I,orolon Iha powa' handlln" ablilly of a 1Ianl"to' av., ••• "nat,on
tampe,atu.a and laGond braakdown Safa ope.at,nlla.ea cu.v" ,nd,eal. Ie VCE I'm.tlof
tM t.an .. "o. Ihat, mun be ob,.'vee! fo, r.habl. oDe'at.on ,e, th. tranilito. must not b.
SUbl.et.eI to g,.at., d,,,,.,.,I,on Ihan th. cu'v.' ,nd.cate
Th. date of F'gu,. I '. b.Md on TJIPkJ ~ ISOoC. TC" v.... ~ •• d.p'nd'"OoncondJ
I.on. &.aeonel braakdown pul .. l"n"l are va •• d fa. dUIV CVelaS Iq, 10" prov,ded TJlpkl
S IS0 0 C At h,gh ea.. ,.mp••alu,.,. Iha,mal hm.!allonl w,1I .eduee 'ha powa. Ihal can b.
hand lad to val .... 1.11 Ihan tn. Ioml1al.onl .mposed bv .Kond br.akdown IS.. AN 41SAJ

4-571

1ft

~

r+c+
C
0
F
G

TJ"150'C

- - - SECOND BREAKDOWN LIMITED
- - - - BONDING WIRE LIMITED
- - - - THERMALLY LIMITED

1J

",

H
J
K
L

4.06
0.64
361
241
219
036
1210

"n "'
"'
0

S
T
U

483
S33
254
30'
2a. '279
139
591
6"
121
076

"'

-

INCHES
MAX

UI~

0595
O.~O

0160
0025
0142
0095
0110
DOl"
0500
Oil'S
0190
lDO
0080
Oil'S
0235
0030

o

DOC!)

0620
O.40S
0.190

STYLE 1
PIN I
2
3
"

BASE
COllECTOR
EMITTER
COllECTOR

om
0.147

o IDS
0130
0022
SS2
0050
0210
0120
0110
0055
0255
0050

o

-

CASE 221A·02
TQ·220AB

NOTE
I DIM L & H APPLIES
TO AULEAOS

MJE2955T
MJE3055T

MJE2955,MJE2955T,PNP,MJE3055,MJE3055T,NPN

ELECTRICAL CHARACTERISTICS (TC = 25°C unlesso.herw.se no.ed)

I

I . Symbol .1

Choroct.,i.i.

Min

Max

60

-

-

700

-

1.0
5.0

-

1.0

-

10

-

5.0

20

100

5.0

-

-

1.1
B.O

-

I.B

Unit.

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1l

Vde

VCEO(sus)

(lC· 200 mAde,lB = 0)

Collector Cutoff Current
(VCE = 30 Vde, IB

/'Ade

ICED

=0)

Collector Cutoff Current

mAde

ICEX

(VCE • 70 Vde, VEB(off) • 1.5 Vdc)
IVCE -10 Vdc, VEBloff)- 1.5 Vdc, TC' lsaGC)

Collector Cutoff Current

mAde

ICBO

IVCB = 10 Vde, IE - 0)
IVCB -10 Vde,IE - 0, TC = IS00C)

•

Emitter Cutoff Current

mAde

lEBO

(VBE - 5.0 Vde, IC - 0)

ON CHARACTERISTICS
DC Current Gain 111
IIc = 4.0 Ade, VCE = 4.0 Vde)
IIc

-

hFE

= 10 Ade, VCE ·4.0 Vde)

Collector-Emitter Saturation Voltage (1)

Vde

VCEI ..tI

IIC' 4.0Ade,IB - 0.4 Ade)
IIc - 10Ade, IB = 3.3 Ade)
Base·Emitter On Voltage (11

Vde

VBElon)

IIc • 4.0 Ade, VCE • 4.0 Vde)

DYNAMIC CHARACTERISTICS
Current-Gain-8andwidth Product
IIC - SUO mAde, VCE = 10 Vde, f = 500 kHz)
(1)Pul .. Test: Pul .. Width ~300 "'S. Duty Cycl.~2.0%.

FIGURE 3 - POWER DERATING

FIGURE 2 - DC CURRENT GAIN
90

SOO

S

80

lOG
200

TJ

--

z

~ 100
~

z

~

!IO

:;:

30

i

2D

VeE' 20v

ISODC

s

;;

'0

I".......

I--

"' "'
"

z
a
;:: 60

2~oC

:
~

·5SoC

,0

~
i5

~~

MJE30SST
MJE29SST

40

~

~

M~E3OSS

MJE29S1

.."..

."",

30

~

"-

i~

10
\0

0

o
S0
001

0.02

DOS

01
0.2
O.S
10
2.0
Ie. COLLECTOR CURRENT lAMP I

SO

o

"'

100

10

ISO

Te. CASE TEMPERATURE (oC1

FIGURE 4 - "ON" VOLTAGES

...
..

MJE2955, 2955T

~

0
TJ" 25°C

2

m

MJE3055, 3055T

TJ"2SoC

6

~I.O
2

•

~

•

o.

r--

0

D.'

.....,b:;

VaElal) • lelia .. 10

~
§!
>"

V8EGVCE=3.0V

vJEll., L,J,. !'0
02

0.3

U

~
3.0

O.G

5.0

VeE .vee '"' 2.0 V

•

0
,0.1

'0

..............

o.

.;'"

D.2

I-""
2.0

VSElsal'.'c/1a;; 10

,~ 0.8

k:::

VCEfsall.IC/IB· 10
0.2

0.3

D.S

2.0

'C. COLLECTOR CURRENT (AMPI

'C. CO~LECTOR CURRENT IAMPI

4-572

3.0

.0

MJE3300 MJE330:1 MJE3302
MJE3310 MJE3311 MJE3312

NPN
PNP

PLASTIC DARLINGTON COMPLEMENTARY
SILICON ANNULAR POWER TRANSISTORS
· .. designed for general-purpose amplifier and high·speed switching
applications.
•

High DC Current Gain hFE = 2000 (Typ) @ IC = 1.0 Adc

•

Collector-Emitter Sustaining Voltage - @ 10 mAdc
VCEO(sus) = 40 Vdc (Min) - MJE3310/MJE3300
= 60 Vdc (Min) ,- MJE3311/MJE3301
= 80 Vdc (Min) - MJE3312/MJE3302

- 1000

dC

SONOING WIRE LIMITED
'\.
- - - THERMALLY lIMITEO@TC=25 0 C
(SINGLE PULSE)
SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW RATED VCEO

0.0 2

-

200 0

\:

1'- ...........

FIGURE 3 - TYPICAL DC CURRENT GAIN
300 0

30

50

\

100

70 100

0.2

0.3

VCE,COLLECTORHIITTERVOLTAGE (VOLTS)

0.5

0.7

1.0

2.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 4 - DARLINGTON CIRCUIT SCHEMATIC

PNP
MJE3310
thru
MJE3312

Collector

Collector
~PN

---,

r----+-----,

Base

MJE3300

I
I

thru
MJE3302

Base

I
I
I
I

,----

---,

I
I

I
I
I
I
I
I

I
I
I

IL

__ J
Emitter

___ _

__ J

Emitter

4-574

3.0

4.0 5.0

MJE343:9 (SILICON)
MJE34'4;O

0.3 AMPERE
NPN SILICON HIGH-VOLTAGE POWER TRANSISTORS
. . . designed for use in line·operated equipment requiring high fT.

NPN SILICON
POWER TRANSISTORS
250-350 VOL TS
15 WATTS

o. High DC Current Gain hFE = 40-160 @ IC = 20 mAdc
o Current·Gain- Bandwidth Product fT = 15 MHz (Min) @ IC = 10 mAde
o Low Output Capacitance Cob = 10 pF (Max) @ f = 1.0 MHz

MAXIMUM RATINGS
Rating

Symbol

MJE3439

MJE3440

VeEO

350

250

Vdc

Collector-Base Voltage

VeB

450

350

Vdc

Emitter-Base Voltage

VES

Collector-Emitter Voltage

Collector Current

Continuous

--

Ie

I!:Sase t.,;urrent

-

IS

Total Power Dissipation@Tc==2SoC
O~rate above 25°C

PD

IOperating and Storage Junction
Temperature Range

5.0

Unit

---

Adc

150

mAde

15
0.12

-

Watts
WIDe
De

-65 to +150

TJ,T stg

Vdc

0.3

THERMAL CHARACTERISTICS
Characteristic
hermal Resistance. Junction to Case

STYLE I
PIN I. EMITTER
FIGURE 1 - POWER-TEMPERATURE OERATING CURVE
16

2. COLLECTOR
3. BASE

I---

....-

~

'"

G
'"

o

O. I
0.07
0.05
0.03

The Safe Operating Area Curves indicate· Ie-VeE limits below

which the device will not enter socondary breakdown. Collector
load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J. power-temperature derating must be observed for both steady state and pulse power conditions.

~ 0.02
_

8

0.0 I
0.007

MJE3439 .

" 0.005
-' 0.003
0.002

MJE3440

0.00 I
1.0

2.03.0 5.07.010

20 30

50 70 100

200 300 500

1000

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

4-576

MJE13002
MJE13003

Designers Data Sheet

I

.

1.5 AMPERE

NPN SILICON
POWER TRANSISTORS
300 and 400 VOL TS
40 WATTS

SWITCHMODE SERIES
NPN SILICON POWER TRANSISTORS

The MJE13002 and MJE13003 are designed for high·voltage,
high·speed power switching inductive circuits where fall time is
critical. They are particularly suited for 115 and 220 V switch-mode
applications such as Switching Regulators, Inverters, Motor Controls,
Solenoid/Relay drivers and Deflection circuits.
SPECIFICATION FEATURES:
• Reverse Biased SOA with Inductive Loads @TC = 1000 C
• Inductive Switching Matrix 0.5 to 1.5 Amp, 25 and 100 0 C
. . . t c @ 1 A, 1000 C is 290 ns (Typ).
"! 700 V Blocking Capability
• SOA and Switching Applications Information.

Designer's Data for
"Worst Case" Conditions
The Designers Data Sheet permits the design of most circuits
entirely from the information presented. Limit data - representing
device characteristics boundaries are given to facilitate "worst case"
design .

MAXIMUM RATINGS
Symbol

Rating
Collector-Emitter Voltage
Collector-Emitter Voltage

Emitter Base Voltage
Collector Current

Continuous

-Peak III
Base Current - Continuous

-Peak 111
Emitter Current -·Continuous

- Peak (11
Total Power Oissipation@T A:::' 2SoC

VCEOlsusl
VCEV
VEBO
IC
ICM
iB
iBM
IE
IEM
Po

MJE13002
300
600

Derate above 25°C
Total Power Dissipation@Tc=250C
Derate above 2SoC

Po
TJ,T stg

Operating and Storage JUnction

I MJE13003
I 400
I 700

Unit

Vdc
Vdc
Vdc
Adc

9

1.5
3

Adc

0.75
1.5
2.25
4.5
1.4
11.2
40
320
-65 to +150

Adc

Watts

mW/oC
°c
MILLIMETERS

Temperature Range

DIM
A

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Thermal Resistance. Junction to

Symbol

Max

Unit

ROJC
ReJA

3.12
89

°C/W
°C/W

TL

275

°c

Ambient

Maximum Lead Temperature for
Soldering Purposes: l/S" from Case
for 5 Seconds

STYLE 3
PIN 1. BASE
2. COLLECTOR
3. EMITIER

Watts

mW/oC

,
C

D

F
G
H
J
K
Q

11) Pulse Test: Pulse Width = 5 ms, Duty-Cycle';;;; 10%.

-

149
141
051
191
131
116
038
1537

M
R

,

MIN
1080

S
U
V

376

"'

064
368
101

MAX
1105

'"
"6
141

161
066
3"
064
1664
3C1 TYP

.01

140
089
394

INCHES

MIN
0425
0295

MAX
0435
0305
oog, 0105
0020 0026
0115 0125
0091 0097
0085 0095
0015 0025
0605 0655
31)TYP
0148 0158
004' 0055
0025 0035
0145 0155

0040

CASE 77-03
TO-126

4-577

•

I

MJE13002 MJE13003

ELECTRICAL CHARACTERISTICS ITC = 25°C unl;" otherwise noted'!
Symbol

Characteristic

Min

Typ

Max

300
400

-

-

-

-

-

1
5

Unit

OFF CHARACTERISTICS 11)
Collector-Emitter Sustaining Voltage

•

Vde

VCEO(sus)
MJE13002
MJE13003

(lC = 10 rnA, IB = 0)
Collector Cutoff CUrrent
(VCEV = Rated Value, VBE(off) = 1,5 Vde)
(VCEV = Rated Value, VBE(off) = 1.5 Vde, TC = lOOoC)

ICEV

Emitter Cutoff Current
(VEB = 9 Vde, IC = 0)

lEBO

mAde

1

mAde

SECOND BRIOAKDOWN
Second Breakdown Co~lector Current with base forward biased

See Figure 1

ON CHARACTERISTICS 11)
DC Current Gain
(lC = 0.5 Ade, VCE = 2 Vde)
(lc = 1 Ade, VCE = 2 Vde)

hFE

Collector-Emitter Saturation Voltage

(lC
(lC
(lC
(lc

-

B
5

-

40
25

-

-

0.5
1
3
1

-

-

-

1
1.2
1.1

fT

4

10

-

MHz

Cob

-

21

-

pF

-

0.05

0.1

I'S

0.5

1

I'S

2

4

I'S

0.4

0.7

I'S

1.7

4

1'5

0.29

0.75

1'5

Vde

VCE(sat)

= 0.5 Ade, IB = 0.1 Ade)
= 1 Ade, I B = 0.25 Ade)
= 1.5 Ade, IB = 0.5 Ade)
= 1 Ade, IB = 0.25 Ade, TC = 100°C)

Base-Emitter Saturation Voltage
IIc = 0.5 Ade, IB = 0.1 Add
IIc = 1 Ade, IB = 0.25 Ade)
IIc ="1 Ade, IB = 0.25 Ade, Tc = lOOOC)

Vde

VBE(sat)

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

IIc = 100 mAde, VCE = 10 Vde, f = 1 MHz)

Output Capacitance
(VCB·l0Vde,IE=0,f=0.1 MHz)
SWITCHING CHARACTERISTICS

Resistive Load (Table 1)
Delay Time

(VCC = 125 Vde, IC = 1 A,

td

Rise Time

IBl = IB2 = 0.2 A, tp - 25 1'5,

tr

Storage Time

Duty Cycle .. 1%)

ts

Fall Time

tf

Inductive Load, Clamped (Table 1, Figure 131

Voltage Storage Time

IIC = 1 A, V clamp = 300 Vde,

tsv

Crossover Time

IBl = 0.2 A, VBEloff) = 5 Vde, TC = 100°C)

te

(l)Pulse Test: Pulse width = 300 I'S, Duty Cycle = 2%.

4-578

-

MJE13003

MJE13002

FIGURE 1 - FORWARD BIAS SAFE OPERATION AREA

FIGURE 2 - REVERSE BIAS SAFE OPERATING AREA
6

10

F-=
f-- -

5

- - 1-:-

..... ..........

-:~=~

--

-- ---=-

2
1
5

c;j:-

t=

.+----=r-I-

_~~0"51--

f--.....

2r---:--r----- 1----

lO~~~b

:-~~~i==~

'_0-

de

.-

5

10

1000C
IBI' 1 A

1

r--_\

e:sl=
~jm~~~~ :=;

f-- _. -

0.0 2 00 I
5

r-- TC

-

r----

- -

8

,

- - - SECONO BREAKDOWN LIMIT I
CURVES APPLY BELOW RATED VCED

1

~__

5.0 m,'--'k-- -c. ~I-

TC,25 0C

=_-=--= ~~~~~~AGLJi:~JTl~t~¥le ~ ~--~-f--Ii'-. t-..

2

-t-'-ffP
~t$~

20

30

50

70

200

100

300

VBE!oll)' 9 V

MJE13002-

s:...MJ~'3003-~
~

l~-

1.5 V
400
500
600
700
BOO
100
200
300
VCEV. COLLECTOR·EMITTER CLAMP VOLTAGE IVOLTSI

o
o

500

I --'
L-I

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI

The Safe Operating Area figures shown in Figures 1 and 2 are specified ratings for these devices under the test conditions shown.

FIGURE 3 - FORWARD BIAS POWER DERATING
1

""

8

rr-....

'" "

I-

6

THERMAL

DERATING

'"'" "

2

10

60

40

-l- f-

t-..

4

a

BRE1KOO~N +- I -

SECONO
OERATING

f ' r-.

120

IUO

80

'" f'...
140

TC. CASE TEMPERATURE lOCI

160

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 1 is based on TC = 25 0 C; TJ(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;. 250 C. Second breakdown Iimitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 1 may be found
at any case temperature by using the appropriate curve on
Figure 3.
TJ(pk) may be caiculated from the data in Figure 4.
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.
Use of reverse bias safe operating area data (Figure 2) is
discussed in the designer's application section.

FIGURE 4 - THERMAL RESPONSE
I

=£

" o. 7=0'0.5
~ o. 5
UJ~
u;~

ZOJCI.I- rltl ROJC
AUJC:; 3.t2°CIW Max

~--

>-"

z-~

1--

1
02

~ ~ 0 II--

0.05

~ ~ 0.0 71==

0.02

>->-

~ ~o.o 5

~~ 00 3 ...... ~ D02

0.0 1
0.01

~

",.0 I

,

o CURVES APPLY fOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11

,

~

l--

I

~ j;...

!

I

' I

TJ{pk)~TC" P(pk) R,JJC(t)

pFSUl~

tl<- --i

-!::

I

-l-----

ri--- Smgle Pulse
-i'
0.01

i I
0.02 0.03

+--- Ii-

'2

DUTY CYCLE, 0:: tlit2

Ii
0.05

'jC

t-

I I I: I i I
0.1

0.2

0.3

05

10
t. TIME OR PULSE WIDTH Im,l

4-579

20

50

100

200

500

1000

•

MJE13002 MJE13003

FIGURE 5 - DC CURRENT GAIN

a
a

~

1.6

w

'"
~
o

~ :-: ....

T

-2: ~L:::

I

...,a

4
0.02 0.03

I

IIII

~_

,

,

\

0
0.002

0.5 0.7

t-- t0.005

0.01

IC. COLLECTOR CURRENT lAMP)

JBEI~t) @ll~/IS I. 3 1

I. 2

1 1

I

TJ'-SSOC _

'">
>0.10

-

0.05

a

0.02 0.03

...-

25°C

...-::

~::;..-

--

....

ISOoC

0.05 0.D7 0.1
0.2
0.3
0.5 0.7
IC. COLLECTOR CURRENT (AMP)

FIGURE 10 - CAPACITANCE

<

SO0

VCjE • 2S~V

I

/

300

I

r-TJ'1500C

I

"'

/

I

I

§

I

./

I - - r-500C

100

w
...,

0

~

50

~

3

>-

TJ' 2S'C

~
C,b

200

3

10

/

~O.l 5

0.05 0.07 0.1
0.2 0.3
0.5 0.7.
IC. COLLECTOR CURRENT lAMP)

f--1250C
1021--I--- t--IOOoC
I--- r-75'C
1

L

Ic/is' 3

~O.20

FIGURE 9 - COLLECTOR CUTOFF REGION

:=

I
I

'"
>-

0.05

FIGURE 8 - COLLECTOR-EMITTER SATURATION REG)ON

FIGURE 7 - BASE-EMITTER VOLTAGE

~
w

0.02

lB. SASE CURRENT lAMP)

1. 4

o

1.5 A

1\ \
\ \
\

\

\

0.4

~

0.3

IA-

0.3 A 0.5 A

8
>

0.2

IC' 0.1 Ii

o

I

0.05 0.07 0.1

-

~ o. B

~

VCE' 2 V
VCE' 5 V

-I-

1.2

~

.-

~1 a
-f-

~

I"'l ....

-55°C

c

•

~~~12S0C

~

o

TJ'ISO~C

a
z
;;:
'"z>- a
~ 2a

8

FIGURE 6 - COLLECTOR SATURATION REGION

I"-

0

..., 20
...,-

........

,
Cob

0
7
5
0.1

1== t==250C

FORWARD
10- 1~ FREVERSE
-/).2
+0.2
+0.4
-0.4
VBE. BASE·EMITIER VOLTAGE (VOLTS)

+0.6

0.2

0.5

1

5

10

20

SO 100

VR. REVERSE VOLTAGE (VOLTS!

4-580

200

5001000

MJE13002

MJE13003

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE
RESISTIVE
SWITCHING

REVERSE BIAS SAFE OPERATING AREA AND INDUCTIVE SWITCHING

IN4933

p;j:5V

r---W--4~~MJE210

Vee

+125 V

en

~

:::l
U

a:

c:;

0.001 pF

5V

!:

Duty Cycle

~

10%

>en

33

~~ -V2N2222

1~
6

6S

w

:+m

lk

1 k

~L270

,

~

en

:;;
a:

'c

ou.
w

~

~ 1 kV

01

5.1k

I

.t--

Scope

~

-4.0 V

51

-- VBE(off)

GAP for 30 mH/2A

Leoil "" 50 mH

Vee = 125 V
Vee"" 20 V

Re = 125 n

V clamp"" 300 Vdc

01 = , N5820 or Equiv.
RS = 47 n

OUTPUT WAVEFORMS

Unclamped

~ t2

11 Adjusted to
Obtain 'e

t

Test EqUipment

tf

;:
>In

·Selected for

:-iW

tf Clamped

l'v
r<
!.--" --... I---

Vcl amp

~ ~VeE

~o:M_JE20~

47

Ie

t +n.' -/t-/;f

-.,..

1

rvf--

2N2905

Coli Data:
Ferroxcube Core ;;6656
Full Bobbin (-200 Turns) ::20

.

RS

IS

0.02pF

PW and V CC Adjusted for Desired
RS Adjusted for Desired ISl

MRS2S'

lk

5V

IN4933

>NOTE

IN4933

~

BTUT ~

L

Scopp.-Tektronlcs
475 or EqUivalent

t r. tf < 10 ns
Duty Cycle'" , .0%
AS and RC adjusted
for desired IS and Ie

W

>-

DESIGNERS INFORMATION FOR APPLICATIONS AND SWITCHMODE SPECIFICATIONS
condition. Maximum ICEV at rated VCEV is specified
at a relatively low reverse bias (1.5 Volts) both at 25 0 C
and lOOoC. Increasing the reverse bias will give some
improvement in device blocking capability.
The sustaining or active region voltage requirements
in switching applications occur during turn-on and turnoff. If the load contains a significant capacitive component,
high current and voltage can exist simultaneously during
turn-on and the pulsed forward bias SOA curves (Figure 1) are the proper design limits.
For inductive loads, high voltage and current must be
sustained simultaneously during turn-off, in most cases,
with the base to emitter junction reverse biased. Under
these conditions the collector voltage must be held to a
safe level at or below a specific value of collector current.
This can be accomplished by several means such as active
clamping, RC snubbing, load line shaping, etc. The safe
level for these devices is specified as a Reverse Bias Safe
Operating Area (Figure 2) which represents voltagecurrent conditions that can be sustained during reverse
biased turn-off. This rating is verified under clamped
conditions so that the device is never subjected to an
avalanche mdde.
In the four application examples (Table 2) load lines
are shown in relation to the pulsed forward and reverse
biased SOA curves.

INTRODUCTION
The primary considerations when selecting a power
transistor for SWITCHMODE applications are voltage
and current ratings, switching speed, and energy handling
capability. In this section, these specifications will be
discussed and related to the circuit examples illustrated
in Table 2.(1)

VOLTAGE REQUIREMENTS
Both blocking voltage and sustaining voltage are
important in SWITCHMODE applications.
Circuits Band C in Table 2 illustrate applications
that require high blocking voltage capability. In both
circuits the switching transistor is subjected to voltages
substantially higher than V CC after the device is completely off (see load line diagrams at IC ~ Ileakage '" 0
in Table 2). The blocking capability at this point depends
on the base to emitter conditions and the device junction
temperature_ Since the highest device capability occurs
when the base to emitter junction is reverse biased
(VCEV), this is the recommended and specified use
(1) For detailed information on specific switching applications,

see Motorola Application Notes AN-SS8, AN-719. AN-737.
AN-752, AN-767 and Engineering Bulletin

EB-39.

4-581

•

I

MJE13002 MJE13003

handling capability and low saturation voltage. On this
data sheet, these parameters have been specified at 1
amperes which represents typical design. conditions for
these devices, The current drive requirements are usually
dictated by the V CE (sat) specification because the maxi·
mum saturation voltage is specified at a forced gain
condition which must be duplicated or exceeded in the
application to control the saturation voltage.

VOLTAGE REQUIREMENTS (continued)
In ci'rcuits A and D, inductive reactance is clamped by
the diodes shown, In circuits Band C the voltage is
clamped by the output rectifiers, however, the voltage
induced in the primary leakage inductance is not clamped
by these diodes and could be large enough to destroy the
device, A snubber' network or an additional clamp may
be required to keep the turn·off load line within the
Reverse B'ias SOA curve,
Load lines that fall within the pulsed forward biased
SOA curve during turn·on and within the reverse bias
SOA curve during turn·off are considered safe, with the
following assumptions:
The device thermal limitations are not exceeded.
The turn·on time does not exceed 10 Il-s (see
standard pulsed forward SOA curves in Figure 1).

(1)

(2)

II

SlflilTCHING REQUIREMENTS
In many switching applications, a major portion of the
transistor power dissipation occurs during the fall time
(tfi)' For this reason considerable effort is usually devoted
to reducing· the fall time, The recommended way t(J'
accomplish this is to reverse bias the base·emitter junction
during turn·off, The reverse biased switching character·
istics for inductive loads are discussed in Figure 11 and
Table 3 and resistive loads in Figures 13 and 14, Usually
the inductive load component will be .the dominant
factor in SWITCHMODE applications and the inductive
switching data will more closely represent the device
performance in actual application. The inductive switch·
ing characteristics are derived from the same circuit used
to specify the reverse biased SOA curves, ISee Table 1)
providing correlation between test procedures and actual
use conditions,

(3)

The base drive conditions are within the specified
limits shown on the Reverse Bias SOA curve
(Figure 2).

CURRENT REQUIREMENTS
An efficient switching transistor must operate at the
required current level with good fall time, high energy

RESISTIVE SWITCHING PERFORMANCE
FIGURE 11 - TURN·ON TIME

FIGURE 12 - TURN·OFF TIME

2

10
)

VCC 0 125 V
IC/lBo 5
TJ '" 25 0 C

1

)~I'

w

"t=

e--

I"f:::

0, 2

......

2

f"':::,

o. 3

VCC 0125 V=
ICIIB 0 5
TJ °250C -

t-

3

0, 5
~

Is

5

1
0, 7

f'-..

td@VBElolf)'5
1

O. 5

0,0 )
, 0,0 5

3

-.....

tt

2

00 3

00 2
002 003,

.:

o1
0,050,0)

0,3

02

0,1

05 0)

10

002

20

003

0,05 00) 0,1

02

03

,0.5, 0)

1

2

IC, COLLECTOR CURRENT iAMP)

Ie, COLLECTOR CURRENT (AMP)

FIGURE 14 - TYPICAL INDUCTIVE SWITCHING WAVEFORMS

FIGURE 13 - INDUCTIVE SWITCHING MEASUREMENTS

(at 300 V and 1 A with IB1 = 0.2 A and VBE(off) =,5,0 VI
IC

--

90% VCE A~90% IC

r--- tsv

~trv tH~·t!i-~tu-..

-

--

VCE
IB-

---? '-tc-\

/

vCE
90% IBI

r-----

-- --\- -- ---- -~

--

>

10%' ......
IC-

>z
w

>

c

c
4:
:;;

1,\

10%

-

r--

t"z%'IC

>
0

~

w

'"

'"~

co
co
=>

0

>

"

I---

TIME

TIME 100 nslDIV

4-582

MJE13002

MJE13003

TABLE 2 - APPLICATIONS EXAMPLES OF SWITCHING CIRCUITS

CIRCUIT

LOAD LINE DIAGRAMS

SERIES SWITCHING
REGULATOR

3.0 A - - - - "\

TIME DIAGRAMS

Turn-On (Forward Bias) SOA

, / ton ~ lOlls
\

Duty Cycle

... TC"" 100oC~

~

\

a

~

10%

"PO" 4BO W @

1.5 A

',-<300 V

Turn-Off (Reverse 8las) SOA
1.5 V ~ VaE(off) .:,: 9.0 V

/

I Duty Cycle';;; 10%
,"----''---.

A

Time

,,
Vcc

VCE

I
VCC 400 V

CD

700

vCD

Col/ector Voltage

Notes.

CD

MJE13003 Voltage Ratings (VCEO(sus) and VCEV) are Shown,
MJE 13002 Ratings ore 100 V Lower.
See AN-S69 for Pulse Power Derating Procedure.

®
RINGING CHOKE
INVERTER

3,QA----""\

\"
\

/Turn-O n (Forward Bias) SOA
ton ~ lOlls
Duty CYCle
'0%

<

III~
Ne

Vcc

B

~!

~

1 ~o 8_

300 V

'I(

1.5 A

~~"

~

Turn-Off

Turn·Off (Reverse Bias) SOA
-,
I

1.5 V ~ VBE(off) oS;; 9.0 V
Duty Cycle ~ '0%

/

CD

MJE13003 Voltage Ratings (VCEO(sus) and VCEV) Are Shown.
MJE13002 Ratings Are 100 V Lower.
See AN·569 For Pulse Power Derating Procedure
. / Turn·On (Forward Bias! SOA
t on <;10ps

3.0A----,/
\

DutY Cycle -::;;; 10%

'c.

... TC= 1000 C - ' , PO=,480W@

~

11101

\

8 1.5 A

'300 V

Turn·Off (Reverse Bias) SOA

" ' . . . . . ' . 5 V -r;,; VSE(off!
Turn-On

0

I

,

I

I

~ 9.0

V

Dutv Cycle ~ 10%

I
I

@)

MJE 13003 Voltage Ratings (VCEO(sus) and VCEV) Are Shown,
MJE13002 Ratings Are 100 V Lower.
See AN-569 for Pulse Power Derating Procedure.

\

Dutv Cycle :r;;; 10%

TC"'OOoC-' P,O"4BOW@

~

\

t.

<3

1.5 A

',300 V

Turn-Off (Reverse Bias) SOA

, 1 . 5 V ~ VBE(off) ~ 9 ..0 V
..... ....,
Duty Cycle ~ 10%

s

~

o

u



~

./

TJ ~ I_ ssdc

09

25'C

0-

~

2~_
I5O'C

0.5

>

03
0.04 0.06

...-

I-

~

V

~

~

V

'"

... 01

'l

1-"..1

V

-)-

0.2

~~

le/lB ~4

0.4 5

11

;:J;_

'(f1

~~

t: g 0.35

:;;-

WW

TJ ~ -55'C

:= ~ 0.25

I
25'~

j>

8

e

>
0.6

0.1 5
0.05
0.04 0.06

0.1

t-- VeE-250V

'"o
~

I

0.4

15O'C

0.6

.....

1/

W

II

'-'
~ 300

5

I--- 1-- 100'C

1== F=7~OC
500 C

:t
~.

I
/

1/

I
25'C
O. I F = FREVERSE

-0.4

-0.2

Cib

k

10 0
~ 50 0

1== F=125'C

8
.9

I

11
I--TJ ~ Iso'e

10

0.2

/ . ~V

~

k

1k

i3

I-" I:::;;E;:

t& ~

FIGURE 10 - CAPACITANCE

FIGURE 9 - COLLECTOR CUTOFF REGION

100

b--- f---

/

Ie. COLLECTOR CURRENT lAMP)

10 k

...
~_

0.1

COLLECTOR·EMITTER SATURATION VOL TAGE

IC. COLLECTOR CURRENT (AMP)

«
.3

0.5

'-'0

l-

Ok

0.3

D:~

./

I
0.1

a-

0.55

'"

2V

1

W

~
:£:

FIGURE

z

I I I I ~~E(sal) ~ IC~IB ~ 41

--

0.2

lB. BASE CURRENT lAMP)

FIGURE 7 - BASE·EMITTER VOLTAGE

~

.....
-r-

0.1

0.05

114A

1\

f\...

0

IC. COLLECTOR CURRENT lAMP)

1.3

3A

TJ ~ 2S'C

II II
1

1\

"

8 o. 4
>

0.06

1\

o. 8

g

5

2A

1. 2

~
ci:
o

~ ~ ~ ~~

VCE - 2 V
VCE ~ 5 V

I

\

lIC.~ IA

~

~ ~,

·5S'C

'-'

1.6

11
II

\

1

'"w~
'"
'"
~
'"
ffi

I-

25'C

<1

'"
~

~

125'C

FORWARO
+0.2
+0.4

20 0
Cob
100
0
0
0
20
0.3

+0.6

VBE. BASE·EMITTER VOLTAGE IVOLTS)

l'
0.5

10

30

SO

VR. REVERSE VOLTAGE (VOLTS)

4-588

!--t100

300

MJE13004,MJE13005

TABLE 1 - TEST CONDITIONS FOR DYNAMIC PERFORMANCE
RESISTIVE
SWITCHING

REVERSE BIAS SAF.E OPERATING AREA AND INDUCTIVE SWITCHING

IN4933
+125 V

Vee
L

33

MRB2S*

IN4933

Vcl amp

Duty Cycle

~

=s; 10

ns

t r • tf

I.

10%

Selected for:'" 1 k V

5.1 k

-40 v

51

NOTE
PWand

Vee

Adjusted for Desired

Ie

Rs Adjusted for OCsired le1

Coil Data.
Ferro)(cube Core -F6656

Full Bobbin ( .... '6 Turns) #16

- VSE(off)

GAP for 200 .uH/20A

Vee == 20 V
Vel amp =- 300 Vdc

Lcoil == 200 /JH

Vee - 125 V
Re
62 n
01 "- , N5820 or EQulV
RB
22 n
0

0

OUTPUT WAVEFORMS
II)

::;:

11 Adjusted to

a:

au.

Obtain I C"

Test EqUipment

w

>
«

Scope -

s:

TektroniX

475 or Equivalent

!iw.i
....

'2 ~

Lead (Ie k)

P
VClamp

t,.

tf ...: 10 ns

Duty Cycle

== ,

0%

R Band RC adjusted
for deSIred 18 and IC

APPLICATIONS INFORMATION FOR SWITCHMODE'" SPECIFICATIONS
INTRODUCTION
The primary considerations when selecting a power
transistor for SWITCHMODE applications are voltage
and current ratings, switching speed, and energy handling
capability. In this section, these specifications will be
discussed and related to the circuit examples illustrated
in Table 2.(1)

VOLTAGE REOUIREMENTS
Both blocking voltage and sustaining voltage are
important in SWITCHMODE applications.
Circuits Band C in Table 2 illustrate applications
that require high blocking voltage capability. In both
circuits the switching transistor is subjected to voltages
substantially higher than V CC after the device is completely off (see load line diagrams at IC = Ileakage "" 0
in Table 2). The blocking capability at this point depends
on the base to emitter conditions and the device junction
temperature. Since the highest device capability occurs
when the base to emitter junction is reverse biased
(VCEV), .this is the recommended and specified use
(11

For detailed Information on specific switchmg applications,
see Motorola Application Notes AN·719, AN·737. AN-767.

condition_ Maximum ICEV at rated VCEV is specified
at a relatively low reverse bias (1.5 Volts) both at 25 0 C
and 100 0 C. Increasing the reverse bias will give some
improvement in device blocking capability.
The sustaining or active region voltage requirements
in switching applications occur during turn-on and turn-

off. If the load contains a significant capacitive component,
high current and voltage can exist simultaneously during
turn-on and the pulsed forward bias SOA curves (Fig·
ure 1) are the proper design limits.
For inductive loads, high voltage and current must be
sustained simultaneously during turn-off, in most cases,
with the base to emitter junction reverse biased_ Under
these conditions the collector voltage must be held to a
safe level at or below a specific value of collector current.
This can be accomplished by several means such as active
clamping, RC snubbing, load line shaping, etc. The safe
level for these devices is specified as a Reverse Bias Safe
Operating Area (Figure 2) which represents voltagecurrent conditions that can be sustained dUring ·reverse
biased turn-off. This rating is verified under clamped
conditions so that the device is. never subjected to an
avalanche mode.
In the four application examples (Table 2) load line~
are shown in relation to the pulsed forward and reverse
biased SOA curves.

AN-752

4-589

..

MJE13004,MJE13005

VOL TAGE REQUIREMENTS (continued 1

handling capability and low saturation voltage, On this
data sheet, these parameters have been specified at 5
amperes which represe.nts typical design conditions for
these devices. The current drive requir'ements are usually
dictated by the VCE(satl specification because the maxi·
mum saturation voltage is specified at a forced gain
condition which must be duplicated or exceeded in the
application to control the saturation voltage.

In circuits A and D, inductive reactance is clamped by
the diodes shown. In circuits Band C the voltage is
clamped by the ou'tput rectifiers, however, th~ voltage
induced in the primary leakage inductance is not clamped
by these diodes and could be large enough to destroy the
device. A s'lubber network or an additional clamp may
be required to keep the turn· off load line within the
Reverse Bias SOA curve,
.
Load lines that fall within the pulsed forward biased
SOA curve during turn·on and within the re'Verse bias
SOA curve during turn·off are considered safe, with the
, following assumptions:

•

(11

The device thermal limitations are not exceeded,

(21

The turn·on time does not exceed 10 I1S (see stan·
dard pulsed forward SOA curves in Figure 11-

(31

The base drive conditions are within the specified
limits shown on the Reverse Bias SOA curve
(Figure 2!.

I

SWITCHING REQUIREMENTS
In many switching applications, a major portion of the
transistor power dissipation occurs during the fall time
(tfi!. For this reason considerable effort is usually devoted
to reducing the fall time. The recommended way to~
accomplish this is to reverse bias the base·emitter junction
during turn·off, The reverse biased switching character·
istics for inductive. loads are discussed in Figure 11 and
Table 3 and resistive loads in Figures 13 and 14. Usually
the inductive load component will be the dominant
factor in SWITCHMODE applications and the inductive
switching data will more closely represent the device
performance in actual application: The inductive switch·
ing characteristics are derived from the same circuit used
to specify the reverse biased SOA curves, (See Table 11
providing correlation l:Jetween test procedures and actual
use conditions,

. CURRENT REQUIREMENTS
An efficient switching transistor must operate at the
required current level with good fall time, high energy

RESISTIVE SWITCHING PERFORMANCE
FIGURE 11 - TURN·ON TIME
I

VCC"125~
lclis - 5
Tr 25"C

O. 5

r'-.. 'r

O. 2

~

.

I-

FIGURE 12 - TURN·OFF TIME

10

./

~

1/

"

,

........
.3

~

O. 1

w

";:::

0.0 5

0.5

'd@VSE(offl" 5 v

I--

tt

0.3

I-+--l

0.0 2
0.0 1
0.04

VCC-125V
Ic/lS - 5
TJ" 25°C

0.2
O. 1

0.1

0.4

0.2

0.04

Ie, COLLECTOR CURRENT (AMPI

0.1

0.2

0.5

IC, COLLECTOR CURRENT (AMPI

FIGURE 13 - INDUCTIVE SWITCHING MEASUREMENTS

FIGURE 14 - TYPICAL INDUCTIVE SWITCHING WAVEFORMS
(at 300 V and 4 A with IBT = 0.8 A and VBE(offl = 5.0 VI

r-t

IC
90% Vcl amp

I- ---tsv

f-------

trv

A~90% Ie

ff'H-\·tfl ..... -", ...

, i---1 I-',~ r--

/

Vclamp

Vclamp 90~'.

IS 1

--1--\- - :

1

.............

----

--

f.---

>

-

'"

c

c

:;

:

'"

c

W

«
>:;

w

'"
·B

>

,

TIME

TIME 100 n,/OIV

4-590

MJE13004,MJE13005

TABLE 2 - APPLICATIONS EXAMPLES OF SWITCHING CIRCUITS

LOAD LINE DIAGRAMS

CIRCUIT
SERIES SWITCHING
REGULATOR

16A - - - - "\

TIME DIAGRAMS

Turn-On (Forward BI.,) SOA

" t o n <; 10",.
Dutv Cycle <; 10%

\

E TC -1000~ PO:
~

\

a
A

SA

r--""-----\"

S

.!l
o
u

320OW®

') r

" .......... 300 V

Turn-Off (Reverse Bias) SOA

1.5 V <;VBE(off)" 9,0 V
Duty Cycle.s;; 10%

Vee
700

Time

vu
640

Unit

Vdc
Vdc
Vdc
Adc
Adc
Adc

Characteristic

Thermal Resistance, Junction to
Ambient
Maximum Lead Temperature tor
Soldering Purposes: l/S" from Case
for 5 Seconds

l'

-65 to +150

Symbol

MIx

Unit

ROJC
ROJA

1.56
62.5

°CIW
uCIW

TL

276

°c

111 Pulse Test: Pulse Width = 5 ms, Duty Cycle'; 10%.

/1--_-----1

~ v

tu

UI
K

o

/4Trt

llW

,lor-I

.L",

T
JSECTA.A

1"';13
A iJ
'j' j~
L

3. EMITTER

4. COLLECTOR

Lf

NOTE
1. DIM. L& H APPLIES
TO ALL LEAOS.

MILLIMETERS
DIM MIN MAX
A 15.11 15.75
B
9.65 10.29
C
4,06
4,82
o 0.64 0.89
F
3.61
3.73
G
2,41
2.67
H
2.79
3.30
J
0.36
0.56
K 12.70 14.27
L
1.14
1.27
N
4.83
5.33
Q
2.54
3.04
R 2.04
2.79
S
1.14
1.39
T
5,97
6,48
U
0.76
1.27
V
1.14

INCHES
MIN MAX
0.595 0.620
0.380 0.405
0,160 0,190
0.025 0,035
0.142 0.147
0,095 0.105
0,110 0,130
0.014 0.022
0,500 0,562
0.045 0,050
0.190 0.210
0.100 0.120
0,080 0.110
0.045 0,055
0,235 0,255
0.030 0.050
0.045

CASE 221A-02
TO·220AB

4-593

.:.l

""~,: ,~i~t~
2. COLLECTOR

Watt.
mWloC
Watts
mWloC
uC

THERMAL CHARACTERISTICS
Thermal Aesistance, Junction to Case

I

C

H

MJE13006,MJE13007

ELECTRICAL CHARACTERISTICS ITC = 2SoC unless otherwise noted.!
Symbol

Characteristic

Min

Typ

Max

300
400

-

-

-

-

1
S

Unit

'OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

Collector Cutoff Current

ICEV

IVCEV = Rated Value, VaEloffl = 1.5 Vde)
IVCEV = Rated Value, VaEloffl = I.S Vde, TC = 100°C)

•

Vde

VCEOlsus)
MJE13006
MJE13007

IIC= 10mA,la=0)

mAde

lEBO

Emitter Cutoff Current

-

1

mAde

IVEa = 9 Vde, IC = 0)
SECOND aREAKDOWN
Second Breakdown Collector Current with base forward biased

See Figure 1

Clamped Inductive SOA with Base Reverse Biased

See Figurp 2

'ON CHARACTERISTICS

VCEI.a!)

Collector-Emitter Saturation Voltage

IIC = 2 Adc,
IIc = S Ade,
IIc = 8 Ade,
IIc = S Adc,

la
la
18
la

-

hFE

DC Current Gain
IIC = 2 Ade, VCE = 5 Vdc)
IIc = 5 Ade, VCE = 5 Vdc)
= 0.4 Ade)
= 1 Ade)
= 2 Adc)
= 1 Adc, TC = 100°C)

8
6

-

40
30

-

-

1
1.5
3
2

Vde

-

Vde

VaElsat)

Base-Emitter Saturation Voltage

-

-

-

IT

4

-

-

MHz

Cob

-

110

-

pF

td

-

0.05

0.1

/JS

0.5

1

I'S

1

3

I'S

0.15

0.7

/J.

tsv

-

0.86

2.3

/J'

te

-

0.14

0.7

/J'

IIc = 2 Adc, la = 0.4 Adc)
IIc = S Adc, I a = 1 Ade)
(lc = S Adc, la = 1 Adc, TC = 1000 C)

-

1.2
1.6 •
I.S

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product

(lc = SOO mAde, VCE = 10 Vde, 1=1 MHz)
Output Capacitance

IVca - 10 Vdc, IE = 0, I = 0.1 MHz)
SWITCHING CHARACTERISTICS
Resistive Load (Table 11

=125 Vdc, IC = S A,

Delay Time

(VCC

Rise Time

lal = 182

Storage Time

Duty Cycle" 1%)

= 1 A,

tr

tp = 251's,

t.
tl

Fall Time

Inductive Load; Clamped ITable 1, Figure 13)
Voltage Storage Time

Crossover Time

!.IC = 5 A, Vel amp = 300 Vdc,

I 181 = 1 A, V8E(off) = 5 Vdc, TC

·Pul •• T.st: Pul •• Width

a

a

1000 C)

3001", Duty Cycl. = 2%.

\ 4-594

MJE13006,MJE13007

FIGURE 1 - FORWARD BIAS SAFE OPERATING AREA

5

~

....

I
'"0

~
8
~

10

-'h.. 10"~E

10

~

FIGURE 2 - REVERSE BIAS SWITCHING SAFE OPERATING AREA

-

20

1
(SinglePulse)- DC

2

100"'~r-=F

rn,

1',

"

1

=25 DC

0.5

TC

0.2

_I.
"
THERMAL
LIMIT(Single Pulse

0.05

5

002

~

"

6

~

4

~

:

'"0

0

1\\

TC .. l00 DC
/--IBI = 2.5A

\\~

_\\' ~
'\ "-

u

~

"

- - - BONDING WIRE LIMIT
SECOND BREAKDOWN LIMIT
CURVES APPL Y BELOW RATED VCEO:3; 1=1=
MJE 13006 ="
MJE1300i= I--'
500
200 300
10
20
30
50 70 100

--

0.1

8

,;:

I"

MJE13006
MJE13007

2

,""
.'\

...... .:-......

~

~~

7

00

100

VCE. COLLECTOR - EMITTER VOLTAGE IVOL TS)

300

200

VBEIDff) =9 V -

-:-+

400

500

.

1:":=

5 V _

VV
="::F::::;:lJ5
700
600
800

VCEV. COLLECTOR·EMITTER CLAMP VOLTAGE IVOLTS)

The Safe Operating Area figures shown in Figures 1 and 2 are specIfied ratings for these deVices under the test conditions shown.

FIGURE 3 - FORWARD BIAS POWER DERATING

~ r<=

'"

08

o

t;

~

-

r-- I-

I"

z

>=

I-

'"

0.6

THERMAL
DERATING

;;;

~ 0.4

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e .• the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 1 is based on TC =' 25 0 C; TJ(pk)
is variable depending on power level, Second breakdown
pube limits are valid for duty cycles to 10% but must be
derated when TC;;' 25 0 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 1 may be found
at any case temperature by using the appropriate curve on
Figure 3.
TJ(pk) may be calculated from the data in Figure 4.
At high case temperatures. thermal limitations will reduce
the power that can be handled to values less than the
limitations imp~osed by second breakdown.
Use of reverse biased safe operating area data (Figure 2)
is discussed in the applications information section.

SECOND BREAKOOWN
DERATING
-

--

r--...

1- t-

1'-..

'" "

'"~

~ 0.2

I'..

f'...
40

~

100

BO

60

140

120

Te. CASE TEMPERATURE IDC)

160

FIGURE 4 - TYPICAL THERMAL RESPONSE [ZOJc(t)]

7
5

0= 0 5

2

..

. .

3

-

02

~ 00 2"""'"

gj

~

- ""'I
g 001
001
001

-

tJUl"
~~~

.....
I

01

1

~

PI,kl

Z(JJCOI ~ rfl! ROJC
ROJe :.1.56° crw Max
o CU RVES APPL Y fOR POWER
PULSE TRAIN SHOWN.
READ TIME AT IJ
TJI,k) • TC = PI,kI.Z/lJCiIl

DUTY CYCLE. 0 • 1J112

SlnEI~Lr[1
005

1

:::;;;00

;;;.-"

01
1
'" 0 07 - 005
~ 00 5 - 002
~ 003

;:;;0-

.-- -: 1""'1-'

01

05

11111
10

2
t,

TIME (ms)

4-595

I I
20

I I

11'111
50
100

Ii
100

I LiUl
500

1 k

•

MJE13006,MJE13007

FIGURE 5 -DC CURRENT GAIN

0

FIGURE 6 - COLLECTOR SATURATION REGION

~/ 150D~

•

2:

1'-

N

C

'"o~

"'-.

>

B

0.2

I

03

I

05 0.7
IC, COLLECTOR CURRENT (AMP)

1.6

O. 6

~

Ic/lB - 3

o

TJ - -55 DC

w

to

1

o. B

I-- l -

-I--I-

I-o.4
0.1

0

0.2

--

0.3

!:::'JODC

t-

t-

~

o

>

V

>"

t-

0.5 0.7
IC. COLLECTOR CURRENT (AMP)

L

Ic/lS - 3.
TJ--SSD~

0.3
~

o. 2

0
0.1

10

0.2

.....
l::;2

0.3

0,5

~

d"

~

~

~ ISODC

1&1

2SoC

0.7

10

IC, COLLECTOR CURRENT (AMP)

FIGURE 10 - CAPACITANCE

/

/

TJ = 2S DC

5K

/

--I-

2K

a

-

=150 DC

~ 100 I - - _125DC
-IOODC
-75 DC

I

,

.1

I
I

~VCIE =250:

f---TJ

!J

0.3
0.5 0.7
IB, SASE CURRENT (AMP)

10K

....1
z

u

l - t-

w
to

IK

10

'-

"'" r--

S

FIGURE 9 - COLLECTOR CUTOFF REGION

o

\

2: 0.4

+---25 DC - -

.6

'"
~

I\,

\

0.2

BA

o

2:. 1. 2

_

1
\

FIGURE 8 - COLLECTOR·EMITTER SATURATION VOLTAGE
O. 7

~ 1. 4f-- i-

5A

\

0
0.05 0.07 0.1

10

B

10K

3A

4

FIGURE 7 - BASE·EMITTER SATURATION VOLTAGE

>-

1A

a

I

0.1

~

=

VCE = 5V

4

>

IC

t-

6

o

1. 2

TJ = 25 0 C

1

1. 6

w

to

-1 I'---".,\

0

\

~

o

r--..l
0

2

~

-

I

I

~

/

....
'"

./

w

~

./

50 0

U 20 0
~

5
u

-50DC

:::::::: =25 C
-= :; REVERSE

10 0
CDb

0
0

0

0,1
·04

Cib

IK

FORWARD

·0.2
+0,2
+0.4
VBE, BASE·EMITTER VOLTAGE (VOLTS)

0
1 0.1 0,2
+0.6

0,5

10

20

SO

VR, REVERSE VOLTAGE (VOLTS)

4-596

100 200

500 1000

MJE13006,MJE13007

TABLE 2 - APPLICATIONS EXAMPLES OF SWITCHING CIRCUITS

CIRCUIT

LOAD LINE DIAGRAMS

SERIES SWITCHING
REGULATOR

~ ton'"
\

lOlls

DutY Cycle';;; 10%

:: Te -

1000~ Po = 3200W®

U

"...
300 V
---'-----<-

~

SA

j

A

TIME DIAGRAMS

Turn.On (Forward BI.,) SOA

l6A - - - - '\

Turn-Off (Raveraa Biasl SOA

1.5 V .:; VSEloff) .:; 9.0 V
Duty Cycle

<:

10%

Time

~--'----,

(j

u

700

v

33 IN4933

!:
:>
tJ
0:

U
l-

1

Duty Cycle" 1 0%
tr,tf ~ 10 ns

Vcl amp
·Selected for

~ 1 kV

V>

w

I-

"-4.0 V

NOTE
PW and Vee Adjusted for Posired
AS Adjusted for Desired 181

Ie
-VBE(off)

Vee'" 125 V

Coil Data'

GAP for 200 J,lH/20A

Vee'" 20 V

Ferro)(cube Core P6656
Full Bobbin (-16 Turns) #16

Leail "" 200 J.lH

Vclamp

= 300

Rc = 25 n
Vdc

D1 '" 1 N5B20 or Equlv

, RB

= Ion

OUTPUT WAVEFORMS
V>

:<
0:
o

tl Adjusted to
Obtam Ie

II.

Test Equipment

W

~

LcoolllCpkl
" ~
VCC

s:

Iiiw

Scope - Tektronix
475 or Equivalent

'2 ~ Lco,IIICpk'

I-

tf < 10 ns
Duty Cycle == 1.0%

t r.

Vclamp

AS and RC adjusted
for desired IS and Ie

APPLICATIONS INFORMATION FOR SWITCHMODE

cpndition. Maximum ICEV at rated VCEV is specified
at a relatively low reverse bias (1.5 Volts) both at 25 0 C
and lOOoC. Increasing the reverse bias will give some
improvement in device blocking capability.
The sustaining or active region voltage requirements
in switching applications occur during turn·on and turn·
off. If the load contains a significant capacitive component,
high current and voltage can exist simultaneously during
turn·on and the pulsed forward bias SOA curves (Fig·
ure 1) are the proper design limits.
For inductive loads, high voltage and current must be
sustained simultaneously during turn·off, in most cases,
with the base to emitter junction reverse biased. Under
these conditions the collector voltage must be held to a
safe level at or below a specific value of collector current.
This can be accolJ1pl ished by several means such as active
clamping, RC snubbing, load line shaping, etc. The safe
level for these devices is specified as a Reverse Bias Safe
Operating' Area (Figure 2) which represents voltage·
current conditions that can be sustained during reverse
biased turn·off. This rating is verified under clamped
conditions so that the device is never subjected to an
avalanche mode.
In the four application examples (Table 2) load lines
are shown in relation to the pulsed forward and reverse
biased SOA curves .

INTRODUCTION
The primary considerations when selecting a power
transistor for SWITCHMODE applications are voltage
and current ratings, switching speed, and energy handling
capability. In this section, these specifications will be
discussed antl related to the circuit examples illustrated
in Table 2.(1)

VOLTAGE REQUIREMENTS
Both blocking voltage and sustaining voltage are
important in SWITCHMODE applications.
Circuits Band C in Table 2 illustrate applications
that require high blocking voltage capability. In both
circuits the switching transistor is subjected> to voltages
substantially higher than VCC after the device is com·
pletely off (see load line diagrams at IC = Ileakage '" 0
in Table 2). The blocking capability at this point depends
on the basa to emitter conditions and the device junction
temperature. Since the highest device capability occurs
when the base to emitter junction is reverse biased
(VCEV), this is the recommended and specified use
(1)

SPECIFICATIONS

For detailed information on specific switching application.,
••• Motorola Application Not•• AN·719, AN·737. AN·7S7,
AN·762

4-599

MJE13006,MJE13007

VOLTAGE REQUIREMENTS (continued)

handling capability and low saturation voltage. On this
data sheet, these parameters have been specified at 5
amperes which represents typical design conditions for
these devices. The current drive requirements are usually
dictated by the VCE(sat) specification because the maxi·
mum saturation voltage is specified at a forced gain
condition which must be duplicated or exceeded in the
application to control the saturation voltage.

In circuits A and D, inductive reactance is clamped by
the diodes shown. In circuits Band C the voltage is
clamped by the output rectifiers, however, the voltage
induced in the primary leakage inductance is not clamped
by these diodes and could be large enough to destroy the
device. 'A snubber network or an additional clamp may
be required to keep the turn·off load line within the
Reverse Bias SOA curve.
Load lines that fall within the pulsed forward biased
SOA curve during turn·on and within the reverse bias
SOA curve during turn·off are considered safe, with the
following assumptions:
.

•

(1)

The device thermal limitations are not exceeded.

(2)

The turn·on time does not exceed 10 /1S (see stan·
dard pulsed forward SOA curves in Figure 1).

(3)

The base drive conditions are within the specified
limits shown on the Reverse Bias SOA curve
(Figure 2).

CURRENT REQUIREMENTS
An efficient switching transistor must operate at the
required current level with good fall time, high energy

SWITCHING REQUIREMENTS
In many switching applications, a major portion of the
transistor power dissipation occurs during the fall time
(tfi)' For this reason considerable effort is usually devoted
to reducing the fall time, The recommended way to
accomplish this is to reverse bias the base·emitter junction
during turn·off, The reverse biased switching character·
istics for inductive loads are discussed in Figure 11 and
Table 3 and resistive loads in Figures 13 and 14, Usually
the inductive load component will be the dominant
factor in SWITCHMODE applications and the inductive
switching data will more closely represent the device
performance in actual application. The inductive switch·
ing characteristics are derived from the same circuit used
to specify the reverse biased SOA curves, (See Table 1)
providing correlation between test procedures and actual
use conditions,

RESISTIVE SWITCHING PERFORMANCE
FIGURE 11 - TURN·ON TIME

FIGURE 12 - TURN·OFF TIME
2K

lK

500

]

~r

.::-,.

~
lK

'\. r-...

300

-

I"-

~

V

'"

500

;::
3D D

100

I"\.

"

200

0
0,2

0,3

0,5 0.7

1

100
0,1

10

IC, COLLECTOR CURRENT (AMP)

0,3

If
D,S

0.7

I-'
3

10

FIGURE 14 - TYPICAL INOUCTIVE SWITCHING WAVEFORMS
(at 300 V and SA with IB1 = 1.SA and VBE(off) = 5 VI

r-t-

IC

90% Vclamp l~ 90% IC

r-- -Isv
--

Irv

h

. -"-

:fl~II.'''''
r-Ic~

/

Vclilmp

t-

Vclamp-

90% IBI

-,-

~

-

j...---

r-

I"

10%

r----- --l-\ -- ----

r----

0,2

i'

IC, COLLECTOR CURRENT (AMP)

FIGURE 13 - INDUCTIVE SWITCHING MEASUREMENTS

IB-

VCC·l 25V
ICI1B·5
TJ·25 0 C

lI"-

Id@VBE(off) c 5V

0

-t--r--...

700

r'\. 'r-.

~ 200

;::

-'

Is

Vee - 125 V
Ic/IB·5
TJ·25 0 C

100

Vclamp -

1-''''''

10% ......
IC-

veE

?
c

?
c

~

:>

M

r;;~
IC

-

Ie

I

'"!

0

"'w

I2
w

"
of
I-

a:
a:

.J

::J

0

0

>
Ie

TIME
TIME

4-600

20 ns/DIV

MJE13008
MJE13009

12 AMPERE

NPN SILICON
POWER TRANSISTORS
300 anll400 VOLTS
100 WATTS

SWITCHMODE SERIES
NPN SILICON POWER TRANSISTORS
The MJE 13008 and MJE 13009 are designed for high·voltage,
high·speed power switching inductive circuits where fall time is
critical. They are particu larly su ited for 115 and 220 V switch·
mode applications such as Switching Regulators, I nverters, Motor
Controls, Solenoid/Relay drivers and Deflectioncircuits.
SPECIFICATION FEATURES:

Designer's Data for
"Worst Case" Conditions

.. VCEO(sus) 400 V and 300 V
.. Reverse Bias SOA with Inductive Loads

@

T C = 1000 C

The" Designers Data Sheet per·
mits the design of most circuits
entirely from the information pre:
sented. Limit data - representing
device characteristics boundaries are given to facilitate "worst case"
design.

.. Inductive Switching Matrix 3 to 12 Amp, 25 and 1000 C
... t c @ 8 A, 1000 C is 120 ns (Typ).
.. 700 V 8 locking Capability
o SOA and Switching Applications Information.

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Collector-Emitter Voltage
Emitter Base Voltage
Collector Current - Contmuous

Symbol

MJE13008

VCEOlsusl

300

VCEV

600

I MJE13009

Unit

I

400

Vdc

700

Vdc

I

Veso

9

Vdc

IC
ICM

12
24

Adc

Base Current - Continuous
- Peak III
Emitter Current -: Continuous
-Peak III
Total Power Dissipation@T A = 25°C
Derate above 2SoC

IS
'BM
Ie

6
12

Adc

18
36

Adc

Watts
mW/oC

Total Power Dissipation@Tc=25 0 C
Derate above 2SoC

Po

2
16
100
800

Watts
mW/oC

-6510 +150

°c

- Peak III

Operating and Storage Junction

'EM
Po

TJ,Tsl9

Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case
Thermal Resistance, Junction to
Ambient
Maximum Lead Temperature for
Soldering Purposes' , IS" from Case

Symbol

Max

Unit

ROJC
ROJA

1.25
62.5

°C/W
°C/W

TL

275

°c

for 5 Seconds
III Pulse Test: Pulse Width

= 5 ms, Outy Cycle ..

10%.

~4l-.ia

F
I-~
i '+tu
r-1-J J~r
=1l'-

S

C

/o/It
~

U
~J-R
ST~,~E r ::
K

./;/
J SECTA·A

,~b:'l
l~

i !u~II

II'lf't-L

o....j :-

2. COLLECTOR
J. EMITTER
4. COLLECTOR

MILLIMETERS
DIM MIN
MAX
A 15.11 15.75
8
9.65 10.29
C
4.06
4.82
D
0.64
0.89
F
3.61
3.73
G
2.41
2.67
H
2.79
3.30
J
0.36
0.56
K 12.70 14.27
L
1.14
1.27
N
4.83
5.33
Q
2.54
3.04
R
2.04
2.79
S
1.14
1.39
T
5.97
6.48
U
0,76
1.27
V
1.14

INCHES
MIN MAX
0.595 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.095 0.105
0.110 0.130
0.014 0.022
0.500 0.562
0.045 0.050
0.190 0.210
0.100 0.120
0.080 0.110
0.045 0.055
0.235 0.255
0.030 0.050
0.045

CASE 221A.Q2
TO·220AB

4-601

G

NOTE
I. DIM. l & H APPLIES
TO ALL LEADS.

MJE13008,MJE13009

ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted.)
Symbol

Characteristic

Min

Typ

Max

300
400

-

-

-

-

1
5

Unit

'OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage

IIc

= 10 mA,

la

MJE1300a
MJEI3009

Collector Cutoff Current

IVCEV
IVCEV

•

ICEV

= Rated Value, VaEloff) = 1.5 Vde)
= Rated Value, VaEloff) = 1.5 Vde, TC = 100°(:)

Emitter Cutoff Current

IVEa

=9 Vde,

IC

Vde

VCEOlsus)

=0)

IEaO

= 0)

-

-

mAde

1

mA~c

SECOND aREAKDOWN
Second Breakdown Collector Current with base forward biased

See Figure 1

Clamped Inductive SOA with Base Reverse Biased

See Figur. 2

'ON CHARACTERISTICS
DC Current Gain

IIc
IIc

5 Ade, VCE
=a Ade, VCE

Collector~Emitter

(lC
IIc
IIc
IIc

hFE

~

40
30

-

-

I
1.5
3
2

-

-

-

-

1.2
1.6
1.5

IT

4

-

-

MHz

Cob

-

laO

-

pF

8
6

Saturation Voltage

VCEls.t)

=5 Ade, la = lAde)
=a Ade,la = 1,6 Ade)
= 12 Ade, la =3 Adc)
=a Ade, la = 1.6 Ade, Tc = 100°C)

Base-Emitter Saturation Voltage

IIC
IIc
(lc

--

= 5 Vde)
= 5 Vde)

VBEIs.t)

=5 Adc, la = lAde)
=a Ade, la = 1.6 Ade)
=a Ade,la = 1.6 Ade, Tc = 100°C)

-

-

-

Vde

Vde

DYNAMIC CHARACTERISTICS
Current-Gain - Bandwidth Product
IIc = 500 mAde, VCE = 10 Vde, I

= 1 MHz)

Output Capacitance

!Vca' 10 Vde. IE

~

O. I

=

0.1 MHz)

SWITCHING CHARACTERISTICS
Resistive Load (Table 1)

= 125 Vde, IC =a A,
= la2 = 1.6 A, tp = 25 ~s,

Oelay Time

IVCC

td

-

0.06

0.1

~s

Rise Time

lal

tr

0.45

1

~s

Storage Time

Duty Cycle

-

1.3

3

~s

0.2

0.7

/lS

0.92

2.3

/lS

0.12

0.7

~s

:r;,;;,

1%)

ts

Fall Time

tl

Inductive Load, Clamped (Table 1, Figure 13)
Voltage Storage Time

.

Cro"over Time

Pulse Test. Puis. Width

=S A, Vel amp = 300 Vde,
= 5 Vde, TC = 100°C)
-- 300 /lS, Duty Cycle = 2% .

(lC

tsv

lSI ~ 1.6 A, VSEloffl

te

4-602

-

MJE13008,MJE13009

FIGURE 2 - REVERSE BIAS SWITCHING SAFE
OPERATING AREA

FIGURE 1 - FORWARD BIAS SAFE
OPERATING AREA
4

10"'5

o
§'
~
~
::1

2

(Single Pulsel

10

2

a

Bf--

1

:3
~
8

_ !C<;100 0 C
'Bl" 2.5 A

-

-THERMAL LIMIT (Single Pulse)

0.5E-- - BONDING WIRE LIMIT
SECOND BREAK~OWN LIMIT

t-

1\

0

1m.

5

CURVES APPl Y BELOW RATEO VCEO

0.2
0.1
~ 0.05

rs:;,-

20

10

5

30

50

70

100

200

300

1\

4

1\ I\.
~

2

MJE 1300B;:;;;:
MJEI300S-f---..:'-

0.02
0.01

6

0

500

VCE. COLLECTOR - EMITTER VOLTAGE (VOL TSI

~

VBE(offl" S V
MJE1300B

.........

~JE1300

~J

.l"- S V

3 V1.5 V
100
200
300
400
500
600
BOO
700
VCEV. CoLLECTOR·EMITTER CLAMP VOLTAGE (VOLTSI

The Safe Operating Araa figuras shown in Figures 1 and 2 are specified ratings for these devices under the test conditions shown.

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i.e .• the transistor must not be subjected to
greater dissipation than the curves indicate .
The data of Figure 1 is based on TC ~ 25 0 C; TJ(pk)
is variable depending on power level. Second breakdown
pulse limits are valid for duty cycles to 10% but must be
derated when TC ;;. 25 0 C. Second breakdown limitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 1 may be found
at any case temperature by using the 'appropriate curve on
Figure 3.
TJ(pk) may be calculated from the data in Figure 4 .
At high case temperatures, thermal limitations will reduce
the power that can be handled to values less than the
limitations imposed by second breakdown.
Use of reverse biased safa oparating area data (Figure 2)
is discussed in the applications information section.

FIGURE 3 - FORWARD BIAS POWER DERATING
1

I---

'"" r--....

O. B
a:
o

""'"

t;

:t

.........

o. 6

I---

..........

......

:;'"
z

"'-

ffi

THERMAL
DERATING

O. 4

o

"-

a:

.~

-

SECOND BREAKDOWN
OERATING

r-

."-

-...

L-

......

O. 2

.......
0
20

40

"

60
BO
100
120
TC. CASE TEMPERATURE (OCI

140

160

FIGURE 4 - TYPICAL THERMAL RESPONSE

"
~

:::;

'"

:
o

~
w

u

:i
in

10
7
05

o • 05

--

3

02

$
...

~ 0021-"

/
g 00.
00'

...-::

02

;;;..-

01

01
'" 00 7 - 005
~ 00 5 - 002
t- 00 3

~

IZOJc(tll

~

,.......,

002

_t::;:::::"

....

-

P'pkl

tJUl
-r~~

~UTY

SljGi EilLli
005

01

ro

05
I,

TIME fms)

4-603

TJlpkl - TC' Plpkl ZOJCI.,

CYCLE. 0 • 111'2

IIIII
02

ZOJClli • rl., ROJC
ROJC ·1.25'CII'I Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT II

I

I
20

I I I IIIII
50

'00

I

I
200

I

I I III
500

•0k

•

MJE13008,MJE13009

FIGURE 5 -DC CURRENT GAIN

FIGURE 6 - COLLECTOR SATURATION REGION

0

2

s
o

2S oC
-.0;.;'-.

'"~

r-'

> I. 2

I
0.3

\

o

~ ..

't

\

~

10

0
0.05

>

20

om

0.2

0.1

IC. COLLECTOR CURRENT (AMP)

•

'"
~

o

-

--.---

w

'"

2SoC

o. a

>
>.

O.

'11.2 0.3

-

0.5 0.7

I I III

~

00.

V

~
w

V

~

'--SSoc

o.3

~

./lsooc

~ O. 2

...,;~

>.

I

7

3

0

I

0.2

20

0.3

0.5 0.7

;

moc

r----- -IOOOC

:::>

10

r---- -75 0 C

I
L

/

~

./

;) 200

0

fORWARD

·02
+02
+0'
VBE. BASE EMITTER VOLTAGE IVol TS)

J
!

0

• o. I

+06

4-604

~Ob

"

100
a0
60

t== :=25 C
·0 •

--

400

i3

;t

r---- -50OC

O. Ir+= FREVERSE

-

_ IK
~ 800
~ 600

I

I

8
~

,

Cib

2K

I
r-TJ '150OC

...'"
'"~

I

IK

100

20

FIGURE 10 - CAPACITANCE

.K
r::::Vcr 2S0V

z

10

IC. COLLECTOR CURRENT (AMP)

FIGURE 9 - COLLECT9R CUTOFF REGION

~

~ V25 0 C

o. I

10K

~

-

Iclla·3

•

IC. COLLECTOR CURRENT (AMP)

~

0.3
0.5 0.7
I
lB. aASE CURRENT (AMP)

o. 5

,..".

-

O. 6

-"

TJ· 150 0 C/r

f-

TJ=-SS~

I

~

i'...

o. 6

Ic/lB = 3

~o

\

\

O. 7

II
II

I. 2

\

FIGURE 8 - COLLECTOR·EMITTER
SATURATION VOLTAGE

FIGURE 7 - BASE·EMITTER SATURATION VOLTAGE

I.

1\12A

r-

I'-.

8

1'.

0.5 0.7

i\
\

!\

1\

f5.;, o. a

aA

5A

\3A

!::

,,~

VCE SV

5
0.2

IC· I A

~

i

7

1\

o

-SSoC

0

I. 6

w
co

......... ~ISOOC

0

•

TJ·25 0 C

~

0

0.2

0.5

50 I
2
5 10 20
I
VR. REVERSE VOLTAGE (VOLTS)

II
'TJ

~ 2;O~

MJE13008,MJE13009

TABLE 2 - APPLICATIONS EXAMPLES OF SWITCHING CIRCUITS

LOAD LINE DIAGRAMS

CIRCUIT
SERIES SWITCHING
REGULATOR

24A - - -. -

"'\

Turn-On (Forward Bias) SOA

't""'" ton.s::;; 10 Ils
\

~TC·l000C~
~

a
A

TIME DIAGRAMS

12A

2

,

Duty Cycle'" 10%
PO=4000W@

'~350V
1

Ie
Turn-Off (Reverse Bias) SOA

1.5 V " VBE(off) " 9.0 V

........_L-_~DUty Cycle ~ 10%

~
o
u

ll;lO:f
Tlmo

VeE

Vee
700 VG)
Collector Voltage
Notes:


i'i

:;

~

o

N

In

IZ
w

IC

-

W

a:
a:

"«

u

>

I~

o

:J

.-!--

\

Ie

'-'"""
veE

TIME

TIME 20 ns/DIV

4-608

NPN

PNP

MJE15028MJ£15029
MJE15030MJElS031

Advance Irn:folPlI1Ol.atiion

8AMPERE

POWER TRANSISTORS
COMPLEMENTARY SILICON

COMPLEMENTARY SILICON PLASTIC
POWER TRANSISTORS
· .. designed for use as high·frequency drivers in audio amplifiers.
•

DC Current Gain Specified to 4.0 Amperes
hFE =40(Min) @ IC =3.0 Adc
= 20(Min) @ IC = 4.0 Adc

•

Coliector·Emitter Sustaining Voltage VCEO(sus) = 120 Vdc (Min) - MJE15028, MJE15029
= 150 Vdc (Min) - MJE15030, MJE15031

120-150 VOLTS
50 WATTS

•

High Current Gain -:- Bandwidth Product
t-r =30 MHz (Min) @ IC = 500 mAdc
o ; O·220AB Compact Package

o TO·55 Leadform Also Available

MAXIMUM RATINGS
Symbol

MJEI5028
MJE15029

MJEI5030
MJEI5031

Unit

VeEO

120

150

Vdc

Collector-Base Voltage

Vee

120

150

Vdc

Emitter-Base Voltage

VEe

Rating
Collector· Emitter Voltage

Collector Current -- Continuous
Peak

Ie

Base Current

Ie

Total Power Dissipation
@Te=250e

Po

Derate above 25°C
Operating and Storage Junction
Temperature Range

TJ, Tst9

..

5.0

.
.
..

8.0
16

~

.
..

2.0
50
0.40

~-65

to +150 ______

Vdc

Characteristic

I
I

Symbol
ROJe

I
I

Max
2.5

I
I

-lot-

Adc

LJ
..i

Watts
w;oe

SECT A·A

o,e

THERMAL CHARACTERISTICS

Thermal Resistance, Junction to Case

tu

Adc

Unit
°e/W

l-!-R
-11-J
BASE
-I

STYLE I:
PIN I.,
2.
3.
4,

COLLECTOR
EMITTER
COLLECTOR
MILLIMETERS
MIN
.!!J!! 15:11
-4B .9.65

~.
0

.~

4,06
0,64
3,61

MAX
15,75
10,29
4,82
0.89
3.73
2.67
3.30
0,56

r:+tT
+
+
--t. &~} 'fIT7
r-P9

K

4.N
0
R
S
T

u
V

Tf4

-j.17

4.83
2.54
2.04
1.14
5.97
0.76
1.14

5.33
3.04
2.79
1.39
6,48
1.27

INCHES
MIN MAX
0,595
0.380
0,160
0.025
0.142
0.095
O.11D
0.014

~,:~ ~
0.120
0,080
0,045
0,235
0.030
0.045

TO·220AB

..

.

chang~

without notice •

4-609

0,02~_

~
0.045 ~
0050

CASE 221A.Q2

'
This is advance information and specifications
are subject to

0,620
0,405
0190
0,035
0.147
0,105
0,130

0110
0055
0.255
0,050

MJE15028,' MJE15030 NPN/MJE15029, MJE15031 PNP

ELECTRICAL CHARACTERISTICS ITC • 2S o C unless otherwise noted)

I

Characteristic

Symbol

Min

Max

120
ISO

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lC' 10 mAde, IB • 0)

Collector Cutoff Current

mAde

ICEO

-

MJE1S028, MJE1S029
MJE1S030, MJE1S031

IVCE • 120 Vde,IB' 0)
IVCE' ISO Vde, lB' 0)
Collector Cutoff Current

•

Vde

VCEOlsus)
MJE1S028, MJE1S029
MJE1S030, MJE1S031

ICBO

MJE1S028, MJE1S029
MJE1S030, MJE1S031

IVCB' 120 Vde,IE' 0)
IVCB' lS0 Vde,IE' 0)

Emitter Cutoff Current

0.1
0.1

lEBO

/.lAde

-

10
10

-

10

40
40
40
20

-

"Ade

IVBe • 5.0 Vde. IC • 0)
ON CHARACTERISTICS II)

OCCurrent Gain
(lC • 0.1 Ade, VCE
(lc • 2.0 Ade, VCE
(lc • 3.0 Ade, VCE
(lc • 4.0 Ade, VCE

-

hFE

•
•
•
•

2.0
2.0
2.0
2.0

Vde)
Vde)
Vde)
Vde)

DC Current Gain Linearity

Typ
2
3

hFE

IVCE From 2.0V to 20V,IC From O.lA to 3A)
INPN TO PNP)
Collector-Emitter Saturation Voltage

VCEIs.t)

-

O.S

Vde

VBElon)

-

1.0

Vde

(lC' 1.0 Ade, IB • 0.1 Ade)
Base-Emitter On Voltage
(lC' 1.0 Ade, VCE • 2.0 Vde)

DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product (2)
(lC' SOO mAde, VCE • 10 Vde, f tes! ' 10 MHz)

11 )Pulse Test: Pulse Width
12lfT

0

~

300

#l5,

Duty Cycle

~

2.0%.

I hfe 1° f,el'

4-610

-

-

MPS -U01 (SILICON)
MPS- U01A
!

NPN SILICON ANNULAR

TRANSISTORS

... designed for complementary symmetry audio circuits to 5 Watts
output.

NPN SILICON
AUDIO TRANSISTORS

.. Excellent Current Gain Linearity - 1.0 mAdc to 1.0 Adc
.. Low Collector-Emitter Saturation Voltage VCE(sat) = 0.5 Vdc (Max) @ IC = 1.0 Adc

•

.. Complements to PNP MPS-U51 and MPS-U51A
.. Uniwatt Package for Excellent Thermal Properties 1.0 Watt @ T A = 25 0 C

MAXIMUM RATINGS
Symbol

MPS-UOI

MPS-UOIA

Unit

VCEO

30

40

Vdc

Collector-Base Voltage

VCB

'40

50

Vdc

Emitter-Base Voltage

VEB

5.0

Collector Current - Continuous

IC

2.0

Adc

Total Power Dissipation @ T A = 25o~
Derate above 2SoC

Po

1.0
8.0

Watt
mW/oC

Total Power Dissipation @ T C = 2SoC

PD

10
80

mW/oC

-55'0+150

°c

Rating
Collector-Emitter Voltage

Derate above 25°C
Operating and Storage Junction

TJ.Ts'g

Vdc

Watts

-II--J

STYLE 1:
PIN 1. EMITTER
2. SASE
3. COLLECTOR

Temperature Range

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

ReJC

12_5

°C/W

Thermal Resistance, Junction to Ambient

R9JA

125

°C/W

Characteristic

Unlwatt packages can be To-5 lead formed by adding -5 to the d9vi~e title and tab formed for
flush mountrng by adding -1 to the device titls.

DIM

MILLIMETERS
MAX
MIN

A 9.14
9.53
S
6.60
1.24
C 5.41
5.66
0
0.38
0.53
F 3.18
3.33
G
2.54 SSC
H
3.94
4.19
J
0.36
0.41
K 12.01 12.70
L 25.02 25.53
N
5.08 SSC
n 2.39 2.69
R 1.14
1.40

INCHES
MIN
MAX
0.360 0.315
0.260 0.285
0.213 0.223
0.015 0.021
0.125 0.131
0.100 SSC
0.155 0.165
0.014 0.016
0.415 0.500
0.985 1.005
0.200 SSC
0.094 0.106
0.045 0.055

CASE 152-02

4-611

MPS-U01,MPS-U01A
ELECTRICAL CHARACTERISTICS IT A '25°C unless otherwIse noted I
Characteristic

Symbol

Min

Max

30
40

-

40
50

-

50

-

-

0.1

-

0.1

55

-

60

-

Unit

OFF CHARACTERISTICS
Coliector·Emitter Breakdown Voltage (11

(lC

MPS-UOI
MPS-UOIA

Collector-Base Breakdown Voltage

IIC

= 100 "Ade,
= 100 "Ade,

Vde

BVCBO
MPS·UOI
MPS·U01A

IE = 01

Emitter·Base Breakdown Voltage

(IE

Vde

BVCEO

= 10 mAde, IB = 01

BVEBO

Vde

Ie = 01

Collector Cutoff Current
IVCB = 30 Vde, IE = 01

IVCB = 40 Vde, IE

/JAde

ICBO
MPS·UOI

= 01

MPS·UOIA

Emitter Cutoff Current
IVBE = 3.0 Vde, IC = 01

lEBO

0.1
IJAdc

ON CHARACTERISTlCSlli
DC Current Gam
(lC = 10 mAde, VCE = 1.0 Vdel

•

(lC = 100 mAde, VCE

~

-

hFE

1.0 Vdel

50

-

VCE{sati

-

0.5

Vdc

VBElonl

-

1.2

Vde

IT

50

-

MHz

Cob

-

20

pF

(lc = 1 0 Ade, VCE = 1.0 Vdel
Collector·Emltter Saturation Voltage

(lC

= 1.0Ade,IB = 0.1

Adel

\

Base-Emitter On Voltage

(lC = 1.0 Ade, VCE = 1.0 Vdel
OYNAMIC CHARACTERISTICS

Current·Gain-Bandwldth Product
(lc = 50 mAde, VCE = 10 Vde, 1= 20 MHzl
Output Capacitance

IVCB

= 10 Vde,IE = 0, I

= 1.0 MHzl

(1)Pulse Test: Pulse Width 'S300IlS. Duty Cycle "f. 2 0%.

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 - "ON" VOLTAGES

500

";;;:

...'"
ffi

1.0

r---

300

III

TJ = 250C

~

~

I---""

VBElsatl@ICIIB=10

O.B

200

-r:
VBE@VCE

'"
i!

0.6

'"
'"
~
'"
>

0.4

1.0 V

w

=>

r-

u
U

1"

Q

~

~ J

I - TJ 25 C

~CE ~ 1.0 V~C

100

>'
0.2

VCElsatl @IC/IB= 10

70

10

20

50

100

200

500

"",l-

o

50
1000

10

20

IC, COLLECTOR CURRENT 1m AI

30

50

100

200

300

500

1000

IC, COLLECTOR CURRENT ImA)

FIGURE 3 - DC SAFE OPERATING AREA
2.0

c::
'" I.
:$

~

'{

T4~,

0

7==

o. -

:: 0.5
or

=

TJ 150°C
BONOING WIRE LIMIT
THERMAL L1MIT@TC -250C
SECONO BREAKOOWN LIMIT

Q

~

0.3

8

0.2

~

There are two limitations on the power handling ability of a transistor: junction temperature and secondary. breakdown. Safe
operating area curves indicate IC-VCE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.

I"

The data of Figure 3 is based on TJ(pk) = 150°C; TC is variable

""=~

MPS·UOI

depending on conditions. At high case temperatures, thermal
limitations wilt reduce the power that can be handled to values
less than the limitations imposed by secondary breakdown.

~

MPS'i 01A
0.1

2.0

4.0

6.0

10

20

40

VCE. COLLECTOR·EMITTER VOLTAGE IVOLTSI

4-612

MPS • U0·2

(SILICON)

NPN SILICON ANNULAR
AMPLIFIER TRANSISTOR
designed for general-purpose, high-voltage amplifier and
driver appl ications.

NPN SILICON
AMPLIFIER TRANSISTOR

• High Power Dissipation - Po = 10 W@TC = 25 0 C
• Complement to PNP MPS-U52

•

MAXIMUM RATINGS

Symbol

Value

Unit

VCEO

40

Vde

Collector-Base Voltage

Vca

60

Vde

Emitter-Base Voltage

Rating
Collector-Emitter Voltage

VEa

5.0

Vde

Collector Currenl - Conhnuous

IC

800

mAde

Total Power Dissipation@ T A = 25°C

PD

Derate above 2S"C
Tolal Power Dissipation@ TC

=2S

a

1.0

Watt

8.0

mW/oC

PD

C

Derate above 25°C
Ope rating and Storage JunctIon

Temperature Range

10

Watts

80

mW/"C
·C

T J • Tatg

-5510 +150

Symbol

Max

A

THERMAL CHARACTERISTICS

Characteristic
Thermal ReSistance', Junction to Case
Thermal ReSistance, JunctIon to Ambient

ELECTRICAL CHARACTERISTICS

Unit

R9JC

12_5

'C/W

R9JA

125

"C/W

(T... ;;: 2S·C unless otherwIse noted)

Characteristic

Symbol

Min

Max

Unit

o

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(IC = I. 0 mAde, la = 0)

BV CEO

Collector-Base Breakdown Voltage
(IC =IOO"Ade, IE = 0)

BVcao

Colleelor Cutoff Current
(V ca = 40 Vde, IE = 0)

Vdc
40

nAde

ICBO

100

ON CHARACTERISTICS
DC Current Gain
(IC = 10 mAde, VCE = 10 Vde)
(Ie

=150 mAde,

VeE

hFE

=10 Vdc)

50
50

(lC = SOO mAde, V CE = 10 Vde)

30

Collector-Emitter Saturation Voltage
(Ie :;;; 150 mAde, Is = 15 mAde)

VCE(sat)

Base':Emitter Saturation Voltage
(Ie = 150 mAde, IS = 15 mAde)

VBE(sat)

-

-

-

OUtput Capacitance
(V CB = 10 VdC, IE = 0, I = 100 kHz)

A

300

Vde
0_ 4

G
H

VdC

1.3

J
K

L
N

DYNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(Ie :;;; 20 mAde, VCE = 20 Vdc, (~ 100 MHz

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
(COLLECTOR CONNECTEO
TO TAB)

Vde
60

Q

IT
Cob

100

-

-

20

MHz
pF

4-613

R

MPS-U02

FIGURE 2 - COLLECTOR·EMITTER
SATURATION VOLTAGE versus BASE CURRENT

FIGURE 1 - NORMALIZED DC CURRENT GAIN

~.: r-t-

2.0 , - - " Irrrrlnr-~-rrrl"T1"r-'-rrrnnr---r-rTTTTTTI

a:;;;
wI-

Ilel;

UI~A -+-f-ttHltIIlllllr-t-+t+tifltf+-+++ttH!{

0.81--t-Ft+ltItt--+-1-++tI'lW rnA t-+t+fjrtlH--I-++I-I+Hl

t: g 0.71--t-+iH+H+f-.,-+-H-Hti'Hl--l-ll 250 rnA
"'-

\

~~~
\~~
o~
tT
~ c5 O.51-+-tl1fttHtt-+--H-H-lHt--l-+H+I+l+-1f.+++l-++H
2...:.i=~ 0.41-+-HH-I-Htt-+--H-H-HHt--l-+-1rt+l+l+--+''''I-oW±HI
! ~ 0.31-+-t-I'ttHtt-+--H-H+I\I---l-+-HIHH+--++++l-++H
~>

~~
~
> ;;Ii n.21--t--H+fI[Ift-+-H-f++Hr"'rl-l--H++Hf""-d--t-t+f+Hl

- - - VCE=10V

•

0.1

~tHt-++-IIII' I '" ",",o--t--+-l\l-tltl
0.1

1.0

10

100

0.1

"',

1-+++++tHf'. . . +++tltHt--l-1"'l-HI#tI-+++tltHl
..

LOA

0.1

1.0

IC. COLLECTOR CURRENT (rnA)

FIGURE 3 - BASE·EMITTER VOLTAGE
versus COLLECTOR CURRENT
50

~
o 0.8

/'

30

:!
w

u.

l-

~

./

0.7

o

..,zw

>

20

«

'"
~
;;;

-........."

I--

l-

e;

/f-"""

~..,

0.6

..,.

:l:

~

~

100

FIGURE 4 - CAPACITANCE versus VOLTAGE

0.9

'"~

10

lB. BASE CURRENT (rnA)

0.5

-.........,
10

1\
........

1\ Cib
...........

7.0

>

0.4

....t--.5°t
,

5.0

, 0.1

1.0

100

10

LOA

0.1

10

1.0

100

REVERSE VOLTAGE (VOLTS)

IC. COLLECTOR CURRENT (rnA)

FIGURE 5 - CURRENT·GAIN·BANDWIDTH PRODUCT
FIGURE 6- ACTIVE REGION DC SAFE OPERATING AREA
versus COLLECTOR CURRENT
"N

2.0

1000

'"

t'"

:'\

700

::>

;;;: 1.0

e

f

.5

500

I-

:z:

l-

e

~
z
:i

V

300

z

«

'"
200
Iffi

'"

..,'"::>
J:'

100

/

VCE=20V

~

0.7
0.5

e

~

'\.

0.3

'\

e

~ 0.2 t - - -

I-- _

/
1.0

'\.

'"

\

V

~

a'"

I

0.1

10
100
IC. COLLECTOR CURRENT (rnA)

1.0P.

- - - Thermal limitation
- - Secondary Breakdown limitation

1.0

2.0

'\.

I I I 11111' I
3.0'

5.0

7.0

10

20

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

4-614

"

30

50

MPS-D03

MPS-UD4
NPN SILICON ANNULAR
HIGH VOLTAGE AMPLIFIER TRANSISTORS

NPN SILICON
AMPLIFIER
TRANSISTORS

... designed for horizontal drive applications, high·voltage linear
amplifiers, and high·voltage transistor regulators.
•

High Collector· Emitter Breakdown Voltage BVCEO = 180 Vdc (Min) @ IC = 1 mAdc - MPS·U04

e

Low Coliector·Emitter Saturation Voltage VCE(sat) = Q.5 Vdc (Max) @ IC = 200 mAde

•

.. High Power Dissipation Po = 10 W @TC = 25 0 C

MAXIMUM RATINGS
Rating

Symbol

MPS·U03

MPS·U04

Unit

VCEO

120

180

Vdc

Collector-Base Voltage

VC8

120

180

Vdc

Emitter-Base Voltage

VE8

<'

Collector Current

IC

1

Adc

Total Power Dissipation @ T A - 25°C
Derate Above 2SoC

Po

1
8

Watts
mW/oC

Total Power Dissipation @ T C - 2SoC

Po

10
80

Watts
mW/oC

TJ, T stg

-55to+150

°c

-

260

°c

Collector-Emitter Voltage

Derate Above 25°C
Operating and Storage Junction

Vdc

o

Temperature Range

Solder Temperature, 1/16" From Case
for 10 Seconds

STYLE 1:
PIN 1. EMITIER
2. BASE
3. COLLECTOR
(COLLECTOR CONNECTED
TO TAB)

THERMAL CHARACTERISTICS
• Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Ambient

ROJA

125

Thermal Resistance, Junction to Case

ROJC

12.5

°CIW
uC/W

DIM

MilLIMETERS
MIN
MAX

A

9.53

B

1.24

C
D

5.66
0.53

INCHES
MIN
MAX

G
H
K
L
N
Q

R

CASE 152·02
Annular Semiconductors Patented by Motorola Inc.

4-615

MPS-U03, MPS-U04

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

I

I

Characteristic

Unit

Min

Max

120
180

-

120
180

-

5.0

-

-

0.1
0.1

hFE

40

-

-

VCE(s.t)

-

0.5

Vde

VBE(on)

-

1.0

Vde

35

-

MHz

-

12

pF

-

110

pF

Symbol

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
IIc = 1.0 mAde,lB =0)

Vde

BVCEO
MPS·U03
MPS·U04

Collector-Base Breakdown Voltage
(lC = 100 pAde, IE = 0)

Vde

BVCBO
MPS·U03
MPS·U04

Emitter-Base Breakdown Voltage

BVEBO

-

Vde

(IE = 100 "Ade,IC = 0)

Collector Cutoff Current

•

"Ade

ICBO

(VCB = 100 Vde, IE = 0)
(VCB = 150 Vde, IE = 0)

MPS·U03
MPS'U04

ON CHARACTERISTICS (1)

DC Current Gain

IIc = 10 mAde, VCE = 10 Vde)
Collector-Emitter Saturation Voltage

IIc = 200 mAde, I B = 20 mAde)
Base-Emitter On Voltage

IIc = 200 mAde, VCE = 1.0 Vdc)
DVNAMIC CHARACTERISTICS
Current-Gain-Bandwidth Product
(lC = 50 mAde, V CE = 20 Vdc, I

IT

=20 MHz)

Output Capacitance

Cob

(VCB = 10 Vde, IE

=0, I = 100 kHz)

Input Capacitance
(VeE = 0.5 Vde, IC

Cib

=0, I = 100 kHz)

-

(1) Pulse Test: Pulse Width .. 300 "s, Duty Cycle .. 2.0%.

TYPICAL CHARACTERISTICS
FIGURE 2 - CAPACITANCE

FIGURE 1 - CURRENT -GAIN - BANDWIDTH PRODUCT
'100

~ 300

.

10

~
~

200

'"f
:z:

:;
~

z

:i

z
C

100

70

---

VCE' 20V
TJ=250 C

50
~

30

-

~ 20

...

r- .......

w

~ib

TJ= 250 C

I

~ 10

~ 7.0
~ 5.0

<;I

1\

~ 50

,; 3.0

.'"

Cob- I-

-

2.0

a:
a:

.t: 30
10

20

30

50

10

100

IC, COLLECTOR CURRENT (mA)

4-616

1.0
0.3 0.5 OJ 1.0

2.0 3.0 5.0 1.0 10
20 30 50 10 100
VR, REVERSE VOLTAGE (VOLTS)

200 300

MPS-U03, MPS-U04

TYPICAL CHARACTERISTICS (Continued)

FIGURE 3 - DC CURRENT GAIN

FIGURE 4 - "ON" VOLTAGE

500

10

--

z

.

'"

-

2S'C

-'=

100

ii:l

-

TJ = ISO'C

200



~

FIGURE 6 - TEMPERATURE COEFFICIENTS
1.6

e.>

u

-

VBE(,n)@VCE = 10 V

FIGURE 5 - COLLECTOR SATURATION REGION

I

,/'

VCEI",)@IC/IB = 10

so

2.0

1.0

. /~

::: 10

>
>-

\

,,~

I II III

10

'"
~
c

,

@ ICIlB

-'-:_.L~ :...--

0.6

w

so

u

II 1111
II 1111

TJ =2S'C

300

-

100'C

I

2~
40

so

10- 3=--0.4

REVERSE

_

FORWARD

2S'C
-02

,

+02

+0.4

VBE. BASE·EMITTER VOLTAGE (VOLTS)

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

4-617

+0.6

MPS-U03, MPS-U04

TYPICAL CHARACTERISTICS (Continued)
FIGURE 9 - THERMAL RESPONSE
1.0
O. 7 0 _ 0.5
0.5

~~

0.3 -0.2

ffi~

!E~

w~

o.

0.1

,- 'ii.05

~~ 0.07
;:-~

~

"

Single Pulse

~~~ 0.05

-;u;

....

--

-

-

b:i!!!iii

~; 0.2

- - Z.JCIIi • 'Iii R.JC

ffiJl --

SmglePulse

•

I

•

D.O'

0.02

Duty Cycle, 0:::: 11/12

0.'

0.05

05

0.2

1.0

70

50

.0
t,

20
50
TIME (msl

FIGURE 10 - ACTIVE REGION SAFE'()PERATING AREA
.500

.s....

~
B

100",_

700

500
1m,
Tc-250e

200

'"o

TA" 250e

~

100

8

0

~

0
10
I 52

~

-'\.

di'

'\

de

-

_ Bonding Wire limit
---Thermal limit Smgle Pulse
--Second Breakdown limit
(Applies Below Rated VCEO)
10

~,

10

30

50

70

100

100

.00

200

500

1.0k

VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

FIGURE 11 - POWER DERATING
1.0

~

~ 0.8

u..

to

""
---;:::s

0.6

Derating

z
;::

;;:

~

-~

I
.

I

~

Deratmg

~

"" ""

0.4

'"
3

:r 0.2

f'....
"-

--f-20

40

--

Second Breakdown

"" "

'"ot;

«

10k

PULSE TRAIN SHOWN
REAO TIME AT I.
TJlpk) - Te· Plpk) R.Jell)
S.O k 10 k

20 k

50 k 100 k

There are two limitations on the power handling ability
of a transistor: average junction temperature and second
breakdown, Safe operating area curves indicate IC-VCE
limits of the transistor that must be observed for reliable
operation; i,e., the transistor must not be subjected to
greater dissipation than the curves indicate.
The data of Figure 10 is based on TC = 250 C; TJ(pk)
is variable depending on power level. Second breakdown
pulse I.mits are valid for duty cycles to 10% but must be
derated when T C ;;:. 250 C. Second breakdown Iimitations
do not derate the same as thermal limitations. Allowable
current at the voltages shown on Figure 10 may be found
at any case temperature by uSing the appropriate curve on
Figure 11,
T J(pk) may be calculated from the data in Figure 9.
At high case temperatures, thermal limitatIons will reduce
the power that can be handled to values less than the
limitations Imposed by second breakdown.

I

1000

::<

o CURVES APPLY FOR POWER

-t~J

1'"

ZOJAII)' 'II) R.JA

R6JA = 125 0CIW Max

P(pk)

0.03 "'" 0.02
0.01
0.02
0.0

ROJC = 12.5 0CIW Max

60
100
80
110
TC. CASE TEMPERATURE lOCI

4-618

"'-

"" "
140

.60

MPS .. U05 (SILICON)
MPS-UOG

NPN SILICON
AMPLIFIER TRANSISTORS

NPN SILICON ANNULAR
AMPLIFIER TRANSISTORS
· .. designed for general·purpose, high·voltage amplifier and driver
applications.

•

o High Collector· Emitter Breakdown Voltage BVCEO = 60 Vdc (Min) @ IC = 1.0 mAde - MPS-U05
80 Vdc (Min) @ IC = 1.0 mAde - MPS-U06
•

High Power Dissipation - PD = IOW@TC=250C

•

Complements to PNP MPS-U55 and MPS-U56

MAXIMUM RATINGS
Rating

Symbol

Collector-Emitter Voltage

MPS·U051 MPS·U06

I

80

I

80

Unit
. Vdc

VCEO

60

Collector-Base Voltage

VCB

60

Emitter-Base Voltage

VEB

4.0

Vdc

IC

2.0

Adc

Po

1.0
8.0

mW/oC

Po

10
80

Watts
mW/oC

TJ,TsI9

-5510 +150

°c

Collector Current - Continuous
Total Power Dissipation @ T A

= 2SoC

Derate above 25°C
Total Power Dissipation @ T C

= 2SoC

Derate above 2SoC
Operating and Storage Junction

,~C:-=- ~ "1ft'
rrt~ =:rf, III

Vdc

J

Watt

0--

21

I

Jj

I~ G ~
I---.4-N

Temperature Range

PIN~. ~~~~TER
J.

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance. Junction to Case

ROJC

12.5

°C/W

Thermal Resistance, Junction to Ambient

ROJA

125

°C/W

Characteristic

--ILJ

STYLE 1:

COLLECTOR

MILLIMETERS
DIM MIN
MAX

INCHES
MIN
MAX

A 9.14
9.53
B 6.60
1.24
e
5.41
5.66
o
0.38
0.53
F
3.18
3.33
G
2.54 BSe
H 3.94
4.19
J
0.36
0.41
K 12.01 12.70
L 25.02 25.53
N
5.08 BSe
Q
2.39
2.69
R 1.14
1.40

0.360 0.315
0.260 0.285
0.213 0.223
0.015 0.021
0.125 0.131
0.1008se
0.155 0.165
0.014 0.016
0.475 0.500
0.985 1.005
0.200 BSe
0.094 0.106
0.045 0.055

CASE 152-02

4-619

MPS-U05, MPS-U06

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)

I

I

Characteristic

Symbol

I

Min

Typ

Max

SO
BO

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage
(lC = 1.0 mAde,lB = 0)

Vde

BVCEO

4.0

-

-

-

-

100
100

80
SO

125
100
55

-

-

0.4

MPS-U05
MPS-UOS

Emitter-Base Breakdown Voltage
(IE = 100 "Ade, IC = 0)

BVEBO

Collector Cutoll Current
(VCB = 40 Vde, IE = 0)
(VCB = SO Vde, IE = 0)

Vde
nAde

ICBO
MPS-U05
MPS-U06

ON CHARACTERISTICS

•

DC Current Gain (11
(Ie = 50 mAde, VCE = 1.0 Vdcl
(Ie = 250 mAde, VCE = 1.0 Vde)
(Ie = 500 mAde, VCE = 1.0 Vde)

-

hFE

-

Collector-Emitter Saturation Voltage( 11
(lC = 250 mAde,lB = 10 mAde)
(I e = 250 mAde, I B = 25 mAde)

VCE(sat)

-

0.18
0.1

Base-Emitter On Voltage (11
(lC = 250 mAde, VCE = 5.0 Vde)

VBE(on)

-

0.74

1.2

Vde

IT

50

150

-

MHz

Cob

-

S.O

12

pF

Vde

-

SMALL·SIGNAL CHARACTERISTICS
Current·Gain-Bandwidth Product (If
(lC = 250 mAde, VeE = 5.0 Vde, 1 = 100 MHz)

Output Capacitance
(VCB

= 10 Vde,

IE

= 0, I = 100 kHz)

(1 )Pulse Test: Pulse Width

~300

jJs, Duty Cycle S:2.0%.

FIGURE 1 - DC CURRENT GAIN
30 0

200

0

FIGURE 2 - "ON" VOLTAGES
0

·t~EI,I, OVd,
TJ = 25°C

f-U,,1

IIIIIIII

L1.i+ttr: V

,

........

~

VBE{on)@ VCE

0

~

5 0 We

--f--

4

0

.....

V:EI~~' ~ lei,,: ~',~'

8

2
VCEfSdt)@ICIIB:l0

0

J0

50

10

50

100

200

10

500

20

50

Ie. COLLECTOR CURRENT (mAl

FIGURE 3 - DC SAFE OPERATING AREA
2 . 0 r - - - , - , - , - " ' , . . , - r n - - , -........-rTTTl

10
20
50
100
Ic. COLLECTOR CURRENT (mAl

200

'00

FIGURE 4 - CURRENT -GAIN-BANDWIDTH PRODUCT
~ 3D 0

I---'"

~

i

"-

/'

20 0

::::

\

c

~

100

;:\
~

10

~

5

g
O.O~';;0--:;2'::.0-L.L-,J5;;-0J...L.I..lflO;---!:20;-.L....L.5f.;0.LI~100

a
,t:

0

\0
0

VeE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

There are two limitations on the power handling ability of a
transistor: junction temperature and second breakdown. Safe
operating area curves indicate Ie - VeE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must
not be su.bjected to greater dissipation than the curves indicate.

VCE :50Vde

lirte
10

20

5'

100

200

500

IC. COllECTOR CURRENT (rnA)

The data 01 Figure 3 is based on T J(pk)

= 150o c; T C is variable

depending on conditions. At high case temperatures, thermal
limitations will reduce the power that can be handled to values less
than the limitations imposed by second breakdown.

4-620

MPS ·0:07 (SILICON)

NPN SILICON
AMPLIFIER TRANSISTOR

NPN SILICON ANNULAR
AMPLIFIER TRANSISTOR

•

. . . designed for general-purpose, high-voltage amplifier and driver
applications.

•

High Collector-Emitter Breakdown Voltage BVCEO = 100 Vde (Min) @ IC = 1.0 mAde

•

High Power Dissipation - PD = 10 W@ TC = 25 0 C

•

Complement to PNP MPS-U57
F

L

MAXIMUM RATINGS
Symbol

Value

Unit

100

= 2SoC

VeEO
VeB
VEB
Ie
Po

2.0
1.0
8.0

Vdc
Vdc'
Vdc
Adc
Watt
mW/oe

= 250 e

PD

10
80

Watts
mW/oe

TJ,Tstg

-55 to +150

°e

Rating
Collector-Emitter Voltage

Collector· Base Voltage
Emitter-Base Voltage
Collector Current - Continuous

Total Power Dissipaton. @ T A

100
4.0

Derate above 25°C

Total Power DIssipaton@Te
Derate above 2SoC

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, Junction to Case

ROJC

12.5

°CIW

Thermal Resi~nce. Junction to Ambient

ROJA

125

°e/w

Characteristic

D

JJ

[:±
'G'

N

MILLIMETERS
DIM MIN
MAX
A
B
e
0
F
G
H
J

r-JL
c-ir~
Q
R

9.14
9.53
6.60
7.24
5.41
5.66
0.38
0.53
3.18
3.33
2.54 BSC
3.94
4.19
0.36
0.41
12.70
25.53
BSe
2.69
1.14
1.40

$

--II--J

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR
INCHES
MIN
MAX

0.360 0.375
0.260 0.285
0.213 0.223
0.015 0.021
0.125 0.131
0.100 BSe
0.155 0.165
0.014 0.016
0.475 0.500
0.985 1.005
0.200 BSe
0.094 0.106
0.045 0.055

CASE 152-02

MPS-U07

ELECTRICAL CHARACTERISTICS (TA ~ 25°C unless otherwise noted)
Characteristic

Min

Typ

Max

Unit

.BVCEO

100·

-

-

Vde

BVEBO

4.0

-

-

Vde

ICBO

-

-

100

nAde

60
30

-

110
65
33

-

-

0.18
0.1

0.4

VBE(onl

-

0.76

1.2

Vdc

fT

50

150

-

MHz

Cob

-

6.0

12

pF

OFF CHARACTERISTICS
Collector-Emitter Breakdown' Voltage (1)
(lC~1.0mAde,IB~01

Emitter-Base Breakdown Voltage
(IE ~ 100"Ade,IC ~ 01
Collector Cutoff Current
(VCB = 80 Vde, IE = 01
ON CHARACTERISTICS

•

DC Current Gain (11
(I C = 50 mAde, V CE = 1.0 Vdel
(lC = 250 mAde, VCE = 1.0 Vdel
(IC = 500 mAde, VCE = 1.0 Vdel
Collector-Emitter Saturation Voltage (11
(lC = 250 mAde, IB = 10 mAdel
(lC = 250 mAde, IB = 25 mAde 1

Vde

VCE(satl

Base-Emitter On Voltage (11
(lC = 250 mAde, VCE = 5.0 Vdcl
SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product (11
(lc = 250 mAde, VCE =5.0 Vdc, f = 100 MHz)
Output Capacitance
(VCB = 10 Vdc, IE

-

hFE

= 0, f = 100 kHzl

-

Pulse Width ~300 ,",5, Duty Cycle~2.0%.

(11Pulse Test:

FIGURE 1 - DC CURRENT GAIN
200

FIGURE 2 - "ON" VOLTAGES
10

~CE=1.0VdC

09

TJ=25 0C

IIII

TJ·2SOC

1111

0.8

I
I

I
I

I-

VBE(sat}@lclla"10

0
0
0

-

i

07

~

[15

S

04

=>

03

......
......

VSE(on!@VCE=SOVdc

06

§!

\

02

0

~

VCE(sal)@IC/lB=10

1
20
501.0

10

5010100

20

200

o

'00

1.0

SO

2.0

Ie. COLLECTOR CURRENT (rnA)

~ o.

~

""

/"

,

II

2-TJ=150oC

1l

g

O. 1 ~.~

~ 0.0

,

I

-

:j 0.0 2

1.0

Second Breakdown llmlled
Bonding Wire Limited
Thermal Llmllatlons@Te=25OC
Applicable To BVCEO

200300 SOO

2.0

'.0

10

~

\

I'-.
Vce- S.OVdc
TJ=2S oC

II

I II III

,

QO 1

0.00

100

~ 300

0

1. 0

....

C

50

FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT

2.0

!'"

20

Ie. COLLECTOR CURRENT (rnA)

FIGURE 3 - DC SAFE OPERATING AREA

,.

10

20

50

~

100

VeE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

There are two· limitations on the power handling ability of a
transistor: junction temperature and second breakdown. Safe
operating area curves indicate I C - VCE limits of the transistor that

must be observed for reliable operation; i.e., the transistor must

0

3 S.0 7.0

II

10

20

5010100

200

500

Ie. COLLECTOR CURRENT (mAl

The data of Figure 3 is based onTJ(pkl = 150 0 C; TC is variable

depending on conditions. At high case temperatures, thermal
limitations will reduce the power that can be handled to values less
than the limitations imposed by second breakdown.

not be subjected to greater dissipation than the curves indicate.

4-622

MPS '.. iB 1I)

(SILICON)

NPN SILICON
HIGH VOLTAGE
AMPLIFIER
TRANSISTOR
NPN SILICON ANNULAR TRANSISTOR

... designed for high·voltage video and luminance output stages in
TV receivers.

"

High Coliector·Emitter Breakdown Voltage BVCEO = 300 Vdc (Min) @ IC = 1.0 mAdc

"

Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.75 Vdc (Max) @ IC = 30 mAdc

"

Low Collector·Base Capacitance Ccb = 3.0 pF (Max) @ VCB = 20 Vdc

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

VCEO

300

Vdc

Collector-Base Voltage

VCB

300

Vdc

Emitter-Base Voltage

VEB

6.0

Vdc

Collector-Emitter Voltage

Collector Current

~

Continuous

Total Power Dissipation @ T A = 2SoC

IC

500

mAde

Po

1.0
8.0

Watt
mW/oC

Po

10
80

Watts
mW/oC

TJ.T st9

-55'0+150

°c

Derate above 25°C
Total Power Dissipation
Derate above 2SoC

@

TC = 2SoC

Operating and Storage Junction Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

ROJC

12.5

°C/W

Thermal Resistance, Junction to Ambient

ROJA'

125

°C/W

D-

-H--J

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

DIM

A
B
C
·0
F
G
H

J
K
L
N
Q

-

R

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

9.14
9.53
6.60
7.24
5.41
5.66
0.3B
0.53
3.18
3.33
2.54 BSC
3.94
4.19
0.36
0.41
12.07 12.70
25.02 25.53
5.08 BSC
2.39
2.69
1.14
1.40

0.360 0.315
0.260 0.285
0.213 0.223
0.015 0.021
0.125 0.131
0.100 BSC
0.155 0.165
0.014 0.016
0.475 0.500
0.9B5 1.005
0.200 USC
0.094 0.106
0,045 0.055

CASE 152·02

4-623

MPS-U10

ELECTRICAL CHARACTERISTICS

(TA = 25°C unless otherwise noted)

Characteristics

Svmbol

Min

Max

Unit

Collector-Emitter Breakdown Voltage (1)
(lC = 1.0 mAdc, IB = 0)

BVCEO

300

-

Vdc

Collector-Base Breakdown Voltage
(lC = 100l'Ade, IE = 0)

BVCBO

300

-

Vde

Emitter-Base Breakdown Voltage
(IE = 100 I'Ade, IC = 0)

BVEBO

6,0

-

Vde

Collector Cutoff Current
(VCB = 200 Vde, IE = OJ

ICBO

-

0.2

I'Ade

Emitter Cutoff Current
(VBE = 6.0 Vde, IC = 0)

lEBO

-

0.1

I'Ade

25

OFF CHARACTERISTICS

-•

ON CHARACTERISTICS

DC Current Gain
(lc = 1_0 mAde, VCE = 10 Vde)

-

hFE

40

-

Collector-E mitter Saturation Vol~age
(lC = 30 mAdc, IB = 3.0 mAde)

VCE(sat)

-

0.75

Vde

Base-E mitter On Voltage

VBE(onJ

-

0.B5

Vde

Current-Gain-Bandwidth Product (1)
(lC = 10 mAdc, VCE = 20 Vdc, f = 100 MHz)

t,-

46

-

MHz

Collector-Base Capacitance
(VCB = 20 Vde, IE = 0, f = ~.O MHz)

Ceb

-

3.0

pF

(lC = 10 mAde, VCE = 10 Vdc)

40

(lC = 30 mAde, VCE = 10 Vdc)

(lC = 30 mAde, VCE = 10 Vde)
DYNAMIC CHARACTERISTICS

(1)Pulse Test: Pulse Width ~300 ~s. Duty CycleS 2%.

FIGURE 1 - DC SAFE OPERATING AREA
600
500
40 0

"-

f"".

-,

30 0

.....

......

i'-

0

.........

I'

~t--

0

f--f--.
f--.

-

1
30
15

-

Second Breakdown Limited
Bonding Wire Limited
- Thermal Limitations Te 25'e

II

II
20

......

The Safe Operating Area Curves indicate IC-VCE limits below
which the device will not enter second breakdown. Collector

\

load lines for specific circuits must fall within the applicable Safe
Area to avoid causing a catastrophic failure. To insure operation
below the maximum T J, power-temperature derating must be observed for both steady state and pulse power conditions.

.....
" ,1"\

30
50
70
100
150 200
VeE, eOLLEeTO~·EMITTER VOLTAGE (VOL TSJ

I"
300

4-624

MPS-Ul0

FIGURE 2 - DC CURRENT GAIN
200

I

VCE = 110 Vdc

z

:;;:

.T}=+I~I--

100

to

....

~

I---

0:

a
<>
"
~

0

30
20
1.0

--

---

I

............

!----

I'-.

........ t-.....

-

~
25 0 C

~

I--

-

I-l -I-

I--

L-- I--Sr C

I"I'-

'\.

\

1\

I

'\

I

2.0

3.0

5.0

10

7.0

30

20

50

70

100

IC. COLLECTOR CURRENT (rnA)

FIGURE 4 - CURRENT-GAIN-BANDWIDTH PRODUCT

FIGURE 3 - CAPACITANCES
0

10 0

0
0
0

Cob

O

t-....

l...-

V

0

ot---

0/

0
0

Ccb......

2. 0
1.0
0.2

V

T"""'-

1.0

2.0

5.0

10

TJ=25 0 C

i"-

r0.5

II

20

50

100

0
2.0

200

5.0

FIGURE 5 - "ON" VOLTAGES
1. 0
TJ=25 0 C

o. 8

~

O. 6

I

VBE@VCE=IOV

w

to

;.
" 0.4

II
)

>
,;

0.2

j...--

VCE{sat) @Icils = 10

o
1.0

"'"r"
20

Ie. CO LLECTO R CU RRENT (rnA)

VR. REVERSE VOLTAGE (VOLTS)

"
2:

10

2.0

3.0

5.0

10

20

IC. COLLECTOR CURRENTlmA)

4-625

30

50

100

50

100

MPS"Ul0

APPLICATIONS INFORMATION
The MPS-Ul0 is primarily designed for use in the R, G, and B output
stages of color television receivers and with a high BVCEO. it can
supply the video amplitude requirements of any known system.

dissipator of 40.5 0 CIW, or lower, will be required. A black anodized 0.020" thick aluminum plate measuring 1" x 2" can be folded
into a channel shape and formed with "feet" to snap into a printed
circuit panel for support. This will provide the safety factor.
Used as a color difference output, where drive and bandwidth
requirements are less severe, the MPS-U10 can be operated with
27 k ohm load resistors (worst-,case dissipation would then be only
0.6 Watts). The device can, therefore, be operated as a colordifference output without any heat radiator in ambient temperatures
to 150·0.6 (1251 = 7S o C.
In addition the safe operating area of the MPS-Ul0 will fill the
requirements of the luminance output function with a total
equivalent load of 5.0 kilohms. Worst-case dissipation can reach 3
Watts, this requires a total R6JA of 150-65/3 = 28.4°C/W. This
28.4°C/W means a heat dissipator of 15.90 C/W, (approximately 2"
x 3" aluminum plate) will be required .

The low feedback capacitance provides good video bandwidth with
modest drive current requirements. Typical drive is from an
emitterMfollower with a 4.7 k emitter-resistor operated from a
2Q..Volt supply. It will, therefore, be operable directly from a
number of available chroma demodulators. The low output capac-

itance of this device adds little to the total load capacitance, allowing improved bandwidth f~r a given collector load resistor. Two
typical applications for the MPS-UlO are shown in Figures 6 and 7.

Device dissipation will reach approximately 1.6 Watts under
worst-case signal conditions and some heat sinking is required. At
an operating ambient temperature of 65 0 C, a thermal resistance
R6JA =150-65/1.6 = 530 C/W will be required. The junction-tocase thermal resistance,RSJc,of the device is 12.50 CIW, thus a heat

•

FIGURE 6 - MPS-U10AS RGB OUTPUT WITH RGB INPUT

+2&0 Vdt

0----....,---..,.---,

9 GREEN

t,IC1326

11 RED

CHROMA
DEMODULATOR

H>---1r--......---+--t-1...
13 BLUE

41k

4H

,so

330

680

330

680

330

L--==:t=~=j:=~b---o+20 v

FIGURE 7 -MPS-Ul0AS RGB OUTPUT,MATRIXING COLOR
DIFFERENCE AND LUMINANCE INPUTS

1 G-Y

MC1328

CHROMA
DEMODULATOR

IJ..~2~R:::-Y~~t...j_~~+=r~-4-r...,...,..,.,.-;:::t
'-D...!.!.'-.
4S-Y

4-626

MPS • 031 (SILICON)

NPN SILICON ANNULAR RF TRANSISTOR

3.SW -27 MHz

... designed for use in Citizen· Band and other high·frequency com·
munications equipment operating to 30 MHz. Higher breakdown
voltages allow a high percentage of up'modulation in AM circuits.
This device is designed to be used with the MPSBOOO driver and the
MPS8001 RF oscillator.

RF POWER OUTPUT
TRANSISTOR

o Output Power = 3.5 W (Mini

@

NPN SILICON

VCC = 13.6 Vdc

•

o Power Gain = 11.5 dB (Mini
o High Collector· Emitter Breakdown VoltageBVCES;;' 65 Vdc
o DC Current Gain Linear to 500 mAdc

F

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage
Emitter-Base Voltage
Collector Current --- Continuous

Total Power Dissipation @ T A

= 2SoC

Symbol

Value

VCES

65

Vdc

VEB

3.0

Vdc.

IC

500

mAde

Po

1.0

Watt
mW/oC

Derate above 2SoC

Total Power Dissipation@ TC = 25°C
Derate above 2SoC

8.0

Po

10

Unit

80

Watt
mW/oC

TJ,Tstg

-55 to +150

°c

Symbol

Max

Unit

Thermal Resistance. Junction to Case

ReJA

12.5

°C/W

Thermal Resistance, Junction to Ambient

ReJA

125

°C/W

Operating and Storage Junction
Temperature Range

THERMAL CHARACTERISTICS
Characteristic

o

-l1-J

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

OIM

,

MILLIMETERS
MAX
MIN

9.14
9.53
6.60
7.24
&.41
5.66
0.38
0.53
3.18
3.33
2.54 ase
3.94
4.19
0.36
0.41
12.07 12.70
L 25.02 25.53
fl
5.08 asc
Q
2.69
2.39
1.14
1.40
R

A
B
e
0
F
G
H
J
K

INCHES
MIN
MAX

0.360 0.375
0.260 0.285
0.213 0.223
0.015 0.021
0.125 0.131
0.100 BSe
0.155 0.165
0.014 0.016

B
O.

CASE 152·02

4-627

~
0.106
0.055

MPS-U31

ElECTR ICAl CHARACTER ISTICS (TA = 25 0 C unless otherwise noted.)

I

Characteristic

I

Symbol

Min

Ty!>

Max

Unit

Collector-Emitter Breakdown Voltage (1)
IIC = 150 mAde, VBE = 0)

BVCES

65

-

-

Vde

Emitter-Base Breakdown Voltage
liE = 1.0 mAde, IC = 0)

BVEBO

3.0

-

-

Vde

ICBO

-

-

0.01

mAde

Common·Emitter Amplifier Power Gain
(Pout = 3.5 W, Vce = 13.6 Vdc, i = 27 MHz)

GpE

11.5

-

-

dB

Output Power
(Pin = 250 mW, VCC: 13.6 Vde, f = 27 MHz)

Pout

3.5

-

-

Watts

'1

-

70

-

%

-

-

85

-,

%

Off CHARACTERISTICS

Collector Cutoff Current
(VCB = 50 Vdc, IE = 0)
ON CHARACTERISTICS

•

DC Current Gain (2)
IIC = 100 mAde, VCE

= 10 Vde)

DVNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 12 Vde, IE = 0, f = 1.0 MHz)

fUNCTIONAL TEST (Figure 11

Collector Efficiency (3)
(Pout = 3.5 W, VCC = 13.6 Vde, f

= 27

MHz)

Percentage Up-Modulation (4)
(f = 27 MHz)

(I) Pulsed thru a 25 mH Inductor
(2) Pulse Test: Pulse Width ~300 !,s,
Duty Cycle ~2.0%.
(3)

Jl

= RF Pout •• 100
(VCC) IIC)

(4)
Percentage Up·Modulation is measured in the test circuit
(Figure 11 by setting the Carrier Power (Pc) to 3.5 Watts with
VCC = 13.6 Vde and noting the power input. Then the Peak
Envelope Power (PEP) is noted after doubling the original power
input to simulate driver modulation (at a 25% dutY cycle for therm·
al considerations) and raising the Vee to 25 Vdc ho simulate the
modulatingvoltageL Percentage Up-Modulation is then determined
by the relation:

Percentage Up·Modulation

=

EP
[( Ppe )

1/2,

-1 ] .100

FIGURE 1 - 27 MHz TEST CIRCUIT

Cl. C2 9.0·180 pF ARCO 463 0' Equivalent
C3. C4 5.0·80 pF ARCO 462 0" Equivalent
C5 0.02 pF Ceramic Disc
C6 0.1 J.lF Ceramic Oisc
RFel 4 Turns #30 Enameled Wire Wound on
Ferroxcub. Bead Type 56·590·65I3B
RFC2

26 Turns 122 Enameled Wire 12 Layers-

L1
L2

0.22"H Molded Choke
0.68"H Molded Cijoke

13 Turns Each layer) %" Inner Diameter

4-628

MPS-U31

POWER OUTPUT

FIGURE 3 - VCC = 13.6 Vdc

FIGURE 2 - Vcc = 12.5 Vdc

20

,/"

TC ~ 25°C

~

10

~

7.0

;!:

5.0

....

"

I-""

0

....d

Circuit Tuned@15W
L VCC=2SV .,~
@250C Duty Cycl.

VCC=25V
@25% Duty Cycle
-TC ~25uC

P.E.P.
./

Go

l-

~

=>

"" , /

::=> 3.0
"~ 2.0 V ~~CC=12.5V
@100% Duty Cycle

0

Circuit Tuned@4.0W
VCC = 12.5 V

7

Go

1.0
0.05

0.07

0.7

0.5

1.0

1.0

!-"V

V

0

0.2
0.3
Pin. INPUT POWER IWATTS)

0.1

~

0.05

0.07

10 0

~ ~

50

z~

Z

300

0

,/

Cib

r-

t:

'" 30
«

5U

30

.i
15

1.0

5.0

2.0

10

·20

50

100

200

500

~

20
10
7.0
5.0
0.1

20

0.2

0.5

2.0

5.0

10

TJ = 1~50J

~

25°C

2

~o
>

-55°C

.--'

Y?Elsat)

V

J

VBE@VCE=10V

0.4

o.2

VCE= 10V
1.0

2.0

5.0

10

20

50

100

I---

ICIIB = 10

,;

,

I--"""'

20

0.5

100

0.6

w

>--

'-" ...

0

0

50

TJ= 250 C

u;

-

20

1.0

0.8

0

i'

FIGURE 7 - ON VOLTAGES

FIGURE 6 - DC CURRENT GAIN

200

1.0

......

YR. REVERSE VOLTAGE IVOLTS)

IC. COLLECTOR CURRENT ImA)

0

1.0

100
w
'"«z 70
50

"'Go

0.5

0.7

~
~

W'"

'"
B

0.5

TJ = 25 0 C

f--

200

V

1-0

0.2
0.3
Pin. INPUT POWER IWATTS)

FIGURE 5 - CAPACITANCE

VCE = 10 V
TA - 25°C

:z:

I-

70

0.1

500

200

~~

VCC = 13.6 V
@100% Duty Cycle

,/

FIGURE 4 - CURRENT·GAIN - BANDWIDTH PRODUCT

o
~
z

/'
./

!-"

0

V

P.E.P. VVCC=25V
@25% Duty Cycle
L

200

500

IC. COLLECTOR CURRENT ImA)

o

0.5

VCEI ..t) @ lellB = 10
1.0

2.0

5.0

20

50

IC. COLLECTOR CURRENT ImA)

4-629

-

I-

10

100

200

500

•

MPS-U31

FIGURE 8 - TYPICAL APPLICATION - 27 MHz CITIZEN·BAND TRANSMITTER

L3

3.9 IlH

MSD6100

250 pF

L4

'50 pF

MSD6100

13.6 V

Modulated

,13.6 V
For complete information on this circuit, refer to Motorola
Application Note, AN-596.

Casa·(Tabl·to-Sink Thermal Resistances (ROCSI
for Common Mounting Methods
Condition
No Grease
With Dow-340

Thermal Compound
With Dow-340 and 2 mil

Mica Washer

With 0.'" Chassis Block
and Oow·340

With 0.'" Block, Dow·340
and 2 mil Mica Washer

With 0.062" Block and
Dow·340

With 0.062" Block, Dow·340
and 2 mil Mica Washer

Roes In
°C/W

Mounting Screw
Torque On.llbs.1

4.25

5

2.'
1.7

2
5

4.7
4.3

2
5

2.4

5

4.9

5

2.2

5

4.7

5

LEAD FORM AND MOUNTING INFORMATION
FOR UNIWATT PACKAGE

Heat Sink

~
.

0.131

Tab formed for
flush mounting
order lIS MPS-U31·'

4-630

MPS .. U45

NPN SILICON
DARLINGTON
TRANSISTOR

NPN SILICON OARLINGTON
AMPLIFIER TRANSISTOR
... designed for amplifier and driver applications.
o High DC Current Gain hFE = 25,000 (Min) @ IC
15,000 (Min) @ IC

..

= 200 mAdc
= 500

mAdc

o Coliector·Emitter Breakdown Voltage BVCES = 40 Vdc (Min) @ IC = 100 /lAdc
o Low Coliector·Emitter Saturation Voltage VeE!sat) = 1.5 Vdc @ IC = 1.0 Adc
o Monolithic Construction for High Reliability
o Complement to PNP MPS·U95

F

MAXIMUM RATINGS
Rating

Symbol

Value

Unit

Collector-Emitter Voltage

VCEO(ll

40

Vdc

Collector-Emitter Voltage

VCES

40

Vdc

Collector-Base Voltage

VCB

50

Vdc

Emitter·Base Voltage

VEB

12

Vdc

Collector Current

IC

2.0

Adc

Total Power Dissipation @ T A = 25°C

Po

1.0
80

Watt
mW/oC

Po

10
80

Watts
mW/oC

TJ,T stg

-55 to +150

°c

Derate above 25~C

Total Power Dissipation@ Te = 25°C
Derate above 25°C
Operating and Storage JunctIon
Temperature Range

o

---II-J

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

.
OIM

THERMAL CHARACTERISTICS
Characteristic

3 2

Symbol

Max

Unit

Thermal Resistance, Junction to Ambient

ROJA

125

°CIW

Thermal Resistance, Junction to Case

ROJC

12.5

°C/W

(1) Due to the monolithic construction of this device, breakdown voltages of both
transistor elements are identical. BVCES is tested in lieu of BVCEO in order to
avoid errors caused by noise pickup. The voltage measured during the BVCES
test is the BVCEO of the output transistor.

MILLIMETERS
MAX
MIN

9.53
A 9.14
B 6.60
7.24
5.66
C 5.41
0
0.38
0.53
F
3.18
3.33
G
2.54 BSe
4.19
H 3.94
0.36
0.41
J
K 12.07 12.70
L 25.02 25.53
5.08 sse
N
Q
2.39
2.69
1.40
R 1.14

INCHES
MIN
MAX
0.360 0.315
0.260 0.285
0.213 0.223
0.015 0.021
0.125 0.131
0.100 BSC
0.155 0.165
0.014 0.D16
0.475 0.500

i

CASE 152·02

4-631

~

rllik
I 0.106
0.055

MPS-U45

ELECTRICAL CHARACTERISTICS (T A

= 25 0 C unless otherwise noted)

1~____________________C_h_.r_a_ct_._ri_n_i_C________________________LI~s~y_m_b~O~I__L-__M~in~__L-__T~Y~P~__~~M~aX~__L-~U~n~i~t__-"I·
OFF CHARACTERISTICS

•

Collector-Emitter Breakdown Voltage
(lc = 100 "Ade, VBE = 0)

BVCES

40

-

-

Vdc

Collector-Base Breakdown Voltage
(IC = 100 "Ade, IE = 0)

BVCBO

50

-

-

Vde

Emitter-Base Breakdown Voltage
(IE = 10 "Ade, IC = 0)

BVEBO

12

-

-

Vde

Collector Cutoff Current
(VCB = 30 Vde, IE = 0)

ICBO

-

-

100

nAdc

Emitter Cutoff Current
(VEB = 10 VdC, IC = 0)

lEBO

-

-

100

nAde

25,000
15,000
4,000

65,000
35,000
12,000

150,000
-

ON CHARACTERISTlCS(l)
DC Current Gain
(lC = 200 mAde, VCE
(lC
(lc

-

hFE

= 5.0 Vde)
= 5.0 Vde)

= 500 mAde, VCE
= 1.0 Ade, vCE = 5.0 Vde)

Collector-Emitter Saturation Voltage
(lc = 1.0 Ade, IB = 2.0 mAde)

VCE(satl

-

1.2

1.5

Vde

Base-Emitter Saturation Voltage
(Ie = 1.0 Adc, I B = 2.0 mAde)

VBE(satl

-

1.85

2_0

Vde

Base-Emitter On Voltage
(lc = 1.0 Ade, VCE = 5.0 Vde)

VBE(on)

-

1.7

2.0

Vde

Ihlel

1.0

3.2

-

-

Ceb

-

2.5

6.0

pF

DYNAMIC CHARACTERISTICS
Small-5ignal Current Gain (1)
(lC = 200 mAde, VCE = 5.0 Vde, I

= 100 MHz)

Collector Base Capacitance

(VCB

= 10 Vde, IE = 0, I = 1.0 MHz)

(1)Pulse Test: Pulse Width ~300 p.s, Duty Cycle ~ 2.0%.

Uniwatt darlington transistors can be used in any number of low power applications, such as relay drivers, motor control and as general
purpose amplifiers. As an audio amplifier these devices, when used as a complementary pair, can drive 3.5 watts into a 3.2 ohm speaker using
a 14 volt supply with less than one per cant distortion. Because of the high gain the base drive requIrement is as low as 1 mA in this application.
They are also useful as power drivers for high current application such as voltage regulators.

~632

MPS-U45

FIGURE 1 -- DC CURRENT GAIN
300
200

~

...- FTJ

125'C

~
70
;;: 50

z

~dEI= 5.0 V-

..........

II

100

FIGURE 2 -- SMALL-5IGNAL CURRENT GAIN
10
z

['..

;;:

25'C

'"
13
'-'
co

;

~

2.0

~

1.0

=

::::::

VCE = 5.0 VdC...... ~
TJ = 25°C
f=100MHz

'"u=>

to
f-

~

5.0

to
f-

z

20

to

~

~

10
7.0
5.0

~

i
'\. \\

0.05

0.1

0.2

0.5

0.5

«

_155~C

3.0
0.02

O. 1

2.0

1.0

0.2

0.01

0.02

0.03

FIGURE 3 -- "ON" VOLTAGES

2.
5
2.0

1. 5f-

t-ySE(~t) @ICIIS=500_

w

to

«

~

>

1.0

I I

O. Sf-

;;

k---I--'
t:-I--'

f-"

.s

L

0.03

1.0

_I--'

1I

~

~

i--'-

0vs For VBE

-3.0

8
-4.0

I I
0.05

-2.0

f-

<3

I I

I I

0.02

0.5

'-'

l-iCE(trnlj=lr

o

0.3

-1.0

~

VSE@VCE = 5.0 V

:>

0.2

)

I I

c;

0.1

FIGURE 4 -- TEMPERATURE COEFFICIENT

I-~ =125'~
J I' I

0;

0.05

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

~

1'1'

0.1

0.2

0.3

0.5

1.0

-5.0
0.01

2.0

r-

V

IL

~v

r0.02

IC. COLLECTOR CURRENT (AMP)

0.03

0.05

0.1

0.2

0.3

0.5

1.0

IC. COLLECTOR CURRENT (AMP)

FIGURE 5 -- DC SAFE OPERATING AREA
2.0

...

1'\
I'

~

~ 1.0

"\

There are'two limitations on the power handling ability of p

f-

r5

0.7

'"
B

0.5

'"

.'\

'"co

~

transistor: junction temperature and second breakdown. Safe
operating area curves indicate Ie-VeE I,imits of the transistor that
must be observed for reliable operation; i.e., the transistor must not
be subjected to greater djssipation than the curves indicate.

~

0.3

-

co

I-

TJ = 150'C
BONOING WIRE LIMITATION
THERMAL LlMITATlON@TC=25'C
SIECONIO BiEAionN ilMITATliN
I
3.0
5.0
7.0
10

----

~ 0.2

The data of Figure 5 is based on T J(pk) ~ 1500 C; TC is variable

"'\.

-:.=:

O. 1

2.0

I

20

30'

depending on conditions. At high case temperatures, thermal limitations will reduce the power that can be handled to values less
than the limitations imposed by second. breakdown.

'40

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

4-633

..

MPS-U45

5·WATT AUDIO AMPLIFIER
'20 V
470 k

101~F

18k
02

L8M

04

01

INPUT 0---:)
0.1

0.47
1000 ~F

Uk

~F

8n
3.3 k

68

0.47

03

3.0M
,

1.5 k
100~F

05
8.2 k

01· MPS·A 1310ARLINGTON) .
02· MPS·A70
03· MPS·A20
04· MPS·U45
{COMPLEMENTARY
05· MPS·U95
OARLINGTONS

4-634

US!
U:511A

PNP SILICON ANNULAR TRANSISTORS
PNP SILICON
AUDIO TRANSISTORS

... designed for complementary symmetry audio circuits to 5 Watts
output.
.. Excellent Current Gain Linearity - 1.0 mAdc to 1.0 Adc
.. Low Coliector·Emitter Saturation Voltage VCE(sat) = 0.7 Vdc (Max) @ IC = 1.0 Adc

•

.. Complements to NPN MPS·UOl and MPS·U01A
o Uniwatt Package for Excellent Thermal Properties 1.0 Watt @ T p.. = 250 C

F

MAXIMUM RATINGS
Rating

Symbol

MPS·U51

MPS·U51A

VCEO

30

40

Collector-Base Voltage

VCB

40

50

Emitter-Base Voltage

VEB

5.0

Vdc

Collector Current - Continuous

IC

20

Adc

Total Power Dissipation @ TA= 2S o C

Po

1.0

Watt
mW/oC

Collector-Emitter Voltage

Derate above 2S o C
Total Power Dissipation
Derate above 2SoC

8.0
@

T C = 2SoC

Operating and Storage Junction

Unit
Vdc
Vdc

10

Watts

80

mW/oC

-55 to +150

"c

Po
TJ,Tstg

,

STYLE 1:

Temperature. Range

PIN 1. EMITTER
2. BASE
3. COLLECTOR

THERMAL CHARACTERISTICS
Characteristic

Symbol

Max

Unit

Thermal Resistance, Junction to Case

ReJC

12.5

°C/W

Thermal Resistance. Junction to Ambient

ReJA

125

°CIW

MILLIMETERS
DIM MIN MAX
A
B
C

0
F
G
H
J
K
L

N
Q

R

9.14
9.53
6.60
1.24
5.41
5.66
0.38
0.53
3.1Il 3.~
2.54 BSe
3.94
4.19
0.36
0.41
12.07 12.70
25.02 25.53
5.08 BSe
2.39
2.69
1.14
1.40

INCHES
MIN
MAX
0.360 0.315
0.260 0.285
0.213 0.223
0.015 0.021
0.125 0.131
0.100 BSe
0.155 0.165
0.014 0.016
0.475 0.500
0.985 1.005
0.200 BSe
0.094 0.106
0.045 0.055

CASE 152·02

4-635

MPS-US1,MPS-US1A
ELECTRICAL CHARACTERISTICS ITA' 2SoC unl... otherwIse notedl
Symbol

Characteristic

Min

Mo.

30
40

-

-

40
SO

-

S.O

-

-

0.1

-

0.1

",Adc

VCElsotl

0.7

Vde

VBElonl

1.2

Vde

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage

Vde

BVCEO
MPS-USl
MPS-US1A

IIC' 1.0 mAde, lB' 01
Collector·Base Breakdown Voltage

Vde

BVCBO

lie' 100~Ade,IE' 01-

MPS-USl
MPS-US1A

Emitter-Base Breakdown Voltage

BVEBO

Vde

liE' 100 ~Ade, IC' 01
Collector Cutoff Current

IJ.Adc

ICBO

IVCB' 30 Vde, IE • 01

MPS-USl

IVCB' 40 Vde, IE • 01

MPS-US1A

Emitter Cutoff Current

lEBO

0.1

IVBE • 3.0 Vde. IC • 01
ON CHARACTERISTICSlll
DC Current Gam

IIC

-

liliiii

=

hFE

10 mAde, VCE' 1.0 Vdel

55

IIC' 100 mAde, VCE • 1.0 Vdel

60

fl e ' l

50

0 Ade, VCE • 1.0 Vdel

Coliector·Emltter Saturation Voltage

II C • 1.0 Ade. lB' 0.1 Adel
Base-Emitter On Voltage

IIC

=

1.0 Ade. VCE • 1.0 Vdel

DYNAMIC CHARACTERISTICS
Bandwidth Product
IIc' 50 mAde, VCE • 10 Vde, I ' 20 MHzl

Cl,Jrrent-Galn

Output Capacitance
IVCB' 10 Vde, IE • 0, 1'100 kHzl

IT

50

Cob

-

MHz
30

pF

(1 )Pulse Test: Pulse Width ~300 IJ.S, Duty Cvc:le "S. 2 0%.

FIGURE 2 - "ON" VOLTAGES

FIGURE 1 - DC CURRENT GAIN
500

1.0

z 300 -

;;:

'"
~
or

I-

200

a
'"
Q

~

100

II II

J

- T ) 25 C

~CEI. 1.0 JdC

-

0.8

TJ·250C

~
Q

--

~

--

c

0.4

>

:>
VCElsa'l@ lellB '1~

200

500

1000

10

i--'

....

-ttrTT

o

50
100

.J....+--r

VBE @VCE • 1.0 V

«

0.2

50

J.-.+-f

w

'"
:;

:-- .....

20

I-

0.6

70

10

-

r-r
I-

VBElsa'l@ ICIIB' 10_

20

IC, COLLECTOR CURRENT 1m AI

30

50

100

200

300

500

1000

IC, COLLECTOR CURRENT (mAl

FIGURE 3 - DC SAFE OPERATING AREA
2.0

ii:
:;;

5
I-

I',
'"',"

1.0

ffi
or

0.7

::>

0.5

or

'"or

TJ"150·

Q

I-

~
c

'"~

0.3

"-'\
I

_ , - - - - Secondary Breakdown Limited
- - - - - Bonding Wire Limited
- - Thermallimitations @ Te = 2SoC

0.2

-I

1

1

APL'icat'Iorrr

0.1
2.0

3.0

5.0

There are two limitations on the power handling ability of a tran·
sistor: junction temperature and second breakdown. Safe
operating area curves indicate IC-VCE limits of the transistor that
must be observed for reliable operation; i.e., the transistor must
not be subjected to greater dissipation than the curves indicate.

11
10

I

"' -

MPS-U51

MPS-~51A
20

c

~

30

The data of Figure 3 is based on T J(pk) = 1SOOC; T is variable
depending on conditions. At high case temperatures, thermal
limitations will reduce the power that can be handled to values
less than t~e limitations imposed by second breakdown.

40

VCE, COLLECTOR·EMITIER VOLTAGE (VOLTSI

4-636

MPS . U5!2 (SILICON)

PNP SILICON ANNULAR TRANSISTOR
PNP SILICON
AMPLIFIER TRANSISTOR

... designed for general-purpose amplifier and driver applications.
• Complement to NPN MPS·U02

•

MAXIMUM RATINGS

Rating

Symbol

Value

Unit

V CEO

40

Vdc

V CB

60

Vdc

'V EB

5.0

Vdc

Cullcl'tor Current - Cuntmuous

IC

1.5

Total Power Dissipation@ T A = 25°C

Po

1.0

Watt

8.0

mW/'"C

Cullel'ioc-Enutler VUlloll!,€'

Collector- 8.lse

VoltJ.~e

Enlltter-B.lse Voltage

DerJ.te above

2,5~C

Total Power Dissipation @ TC = 25°(,

Po

Derate .lbove 25°C

T

Operatmg and Storage Juncholl
Temperature RJ.nge

J'

T

til

stg

Ade

10

Watts

80

mW/oC

-55 to +150

'c

THERMAL CHARACTERISTICS

F

Max

Symbol

Characteristic
Therm.!l Resistance, JunctIon to Case
Thermal ReSistance, JunctlOn to Ambient

ELECTRICAL CHARACTERISTICS

ROJC

12.5

R~JA

125

Unit
cC/W

'C/W

Characteristic

Symbol

Min

Max

Vdc

Collector-Emitter Bred.kdown Voltage

= 1.0 mAde,

16

=0)

JJ

Unit

OFF CHARACTERISTICS
(Ie

D

40

Collector-Base Breakdown

Vdc

Volta~(!

60

(Ie = 100 p Adc.. , IE'" 0)

nAde

Collector Cutoff Current

C±N

100

(VCB = 40 Vdc, IE = 0)

ON CHARACTERISTICS (2)
DC Current GaUl

DIM

50

(Ie = 10 mAde, VeE = 10 Vdc)

=10 Vdc)

50

(Ie = 500 mAde, VCE = 10 Vdc)

30

(Ie = 150 mAde, VeE

L

3 2

(T ... :; 25-C \Jnles~ o!herwi\e noted)

Collector-Enlltter Satur.lhon Voltolge
(Ie = 150 mAde, 18 = 15 mAde)

VCE(sat)

B.. ~e-Emltter SJ.turallOn Voltage
(Ie = 150 mAde, IS = 15 mAde)

VSE(sat)

A

300

B
C
Vdc

0.4

0

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

0.375
0.285
0.223
0.021

9.14
6.60
5.41
0.38

F

G
Vdc

H

J

1.3

K
DYNAMIC CHARACTERISTICS

L

Current-Gam-BandwIdth Product (2)
(Ie =20 mAde, VCE = 20 Vdc, f = 100 MHz
Output CapaCItance
(V CB 10 Vdc,

=

IE

MHz
100

N
Q

R
pF

=

0,

(=

100 kHz)

24

(1) R8JA is measured with device soldered into a typical printed circuit board
(2) Pulse Test: Pulse WidthS'300

IlS,

Duty CycleS2. 0%

4-637

-H-J

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

CASE 152-02

MPS-U52

FIGURE 1 - DC CURRENT GAIN
300

TJ = l250C 1

250lc

z

;;:

'"
tz

~ 100

'"
i'l
g

•

~

~f-

-

- ......
r-.
-

- 8-

200'-

FrGURE 2 - "ON" VOLTAGES

1.4

--

'-550~

,

'"!3..

5.0

2.0

,\

I

10

O.6=

20
50
100
200
IC. COLLECTOR CURRENT (mA)

500

O.2

J

"-

0

1000 2000

VCE( ..tl

2.0

5.0

ICIIB -10
10

20

IC=10mA 50mA

150mA

5

mA

7

1000mA

~

2

O

0.05 0.1

r--

,....
0.5

1.0

2.0

5.0

10

20

50

100 200

O. 12.0

500

x

II II

t;

VCE = .20 V
TJ=250C
t= 100 MHz

~

'\
6.0
8.0 10
20
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

~

40

FIGURE 6 - CAPACITANCE
200
TJ =25 0C

........ ~

200

-

100

l- NCib

~ 70

...........
.......

w
u

z

g

. / ./

~

;;: 100

'",.:.

0-:-

30

"-

U 20

z

Cob

::: 70

'":::>

~ 50
J:" 2.0 3.0

'\

4.0

FIGURE 5 - CURRENT·GAIN BANDWIDTH PRODUCT

",500

~
z

1,\

t0.2

lB. BASE CURRENT (rnA)

5 30Of-- _
~

'\

TJ=150oC
- - - BONOING WIRE LIMIT
3r-- ___ THERMALLIMIT@TC=250C
- - SECONO BREAKOOWN LIMIT
2

1\

4

z

1000 2000

1"1'

5

i=
o

500

0

'"

O. 6

200

FIGURE 4 - DC SAFE OPERATING AREA

0

>

100

2.0

TJ = 250

2:- O. 8
w

!3
0

50

IC. COLLECTOR CURRENT (mA)

1. 0

.

,
L

FIGURE 3 - COLLECTOR SATURATION REGION

~

VBE(on)@VCE- \0 V

~
,; O.4

1\

~~7" VCE-IIO Y

I111

~

=1::::

~ O.8 - VBE( ..t)@ICIIB= 10

w

VCE-1.0V

30

1.0

~

I',

70
01-

TJ = 250C

1. 2

5.0

7.0

10

20

30

50

70

100

0

200

I"- r"-t0.1

0.2

0.5

1.0

2.0

5.0

10

VR. REVERSE VOLTAGE (VOLTS)

IC. COLLECTOR CIIRRENT (mA)

4-638

20

50

100

MPS 015'5 (SILICON)
MPS· U5i6

PNP SILICON ANNULAR
AMPLIFIER TRANSISTORS

PNPSILICON
AMPLIFIER TRANSISTORS

... designed for general·purpose. high·voltage amplifier and driver
applications.
D

0

0

•

High Collector· Emitter Breakdown Voltage BVCEO = 60 Vde (Min) @ IC = 1.0 mAde - MPS-U55
BO Vde (Min) @ IC = 1.0 mAdc - MPS-U56
High Power Dissipation - Po

= 10 W @TC = 25 0 C.

Complements to NPN MPS-U05 and MPS-U06

MAXIMUM RATINGS
Rating

Svmbol

Collector·Emitter Voltage

MPS.U55L MPS·U56

Unit

60

I

80

Vdc

60

1

80

Vdc

VCEO

Collector-Base Voltage

VeB

Emitter-Base Voltage

VEB

4.0

Total Power Dissipation

IC

2.0

Adc

T A = 25°C

Po

1.0
8.0

Watt
mW/oC

@

TC = 2SoC

Po

10
80

Watts
mW/oC

TJ.Tstg

-55 to +150

°c

Derate above 2SoC

Total Power Dissipation
Derate above 2SoC

Operating and Storage Junction

3 l

STYLE 1
PIN I EMITTER

Characteristic
Thermal Resistance. Junction to Ambient
Thermal Resistance, Junction to Case

2 BASE
3 COLLECTOR

~-~-

Unit

OIM

MIN

ROJA

125

°CIW

A

9,14

°CIW

B

c

D

F
G
H

J

K
L
N

•
R

-1LJ

N

MILLIMETERS

Max

12.5

I

--i..J±

Symbol

AOJC

IJ

0-

Temperature Range

THERMAL CHARACTERISTICS

R

r"lU_

Vdc

@

Collector Current - Continuous

H
A]

F-

MAX

9.53
660
1.24
5.41
5.66
038
0.53
3.18
3.3
2.548SC
394 4.19
036
0.41
12.07 12.70
2502 25.53
508 esc

239

2.60

1.14

.. 40

INCHES
MIN

MAX

Q.360

0315

0.260 0285
0.213 0.223
001
0021
0.125 0131
o.100BSC
0.155 0.165
0014 0016
0.475 0500
09B' 100'
0.2008SC
0.094 0.106
0.045 0.055

Collector Connected
to Tab

CASE 152·02

4-639

MPS-U55, MPS-U56

ELECTRICAL CHARACTERISTICS IT A = 25°C unless otherwise noted)

I

Ch.......iltlc

I

Symbol

Min

Typ

Max

60
80

-

-

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
(lC g 1.0 mAdc, IB = 01

BVCEO
MPS·U55
MPS·U56

Emitter·Base Breakdown Voltage
(IE - l00"Adc, IC = 0)

BVEBO

Collector Cutoff Current
(VCB = 40 Vdc, IE - 0)
(VCB = 60 Vdc, IE = 0)

4.0

-

-

-

-

100
100

80
50

160
130
80

-

ICBO
I

Vdc

MPS·U55
MPS·U56

Vdc
nAdc

ON CHARACTERISTICS

•

DC Current Gain (11
(lC = 50 mAdc, VCE = 1.0 Vdcl
(lC = 250 mAde, VCE = 1.0 Vdcl
(lC = 500 mAdc, VCE = 1.0 Vdcl

-

hFE

-

Coliector·Eminer Saturation Voltage(1 1
(lc = 250 mAde, IB = 10 mAdc)
(I C = 250 mAdc, I B = 25 mAdc)

VCE(satl

Base·Emittar On Voltage (11
(lC = 250 mAde, VCE = 5.0 Vdc)

VBE(on)

Vde

-

-

0.22
0.15

0.5

0.78

1.2

Vdc

fy

50

100

-

MHz

Cob

-

10

15

pF

-

SMALL-SIGNAL CHARACTERISTICS
Current·Gain-Bandwidth Product (1)
(lC = 250 mAde, VCE = 5.0 Vdc, f = 100 MHzI
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 100 kHz)
(l)Pulse Test: Pulse Width ';;300

"5. Duty Cycle ';;2.0%.

FIGURE 1 - DC CURRENT GAIN
300
200

FIGURE 2 - "ON" VOLTAGES
0

-Jc~ ~ ',.0 Vde
TJ"25 0C

.-tJ,J

IIIIII

v"l.,) ~ ,J,,;! IJ

8

. . . . . r'\

b--'

.J...l-tttT

"","f-""

VBE(onl Iii VeE = 5 0 Vdt

6

t-

0
4

0
0

2

t::::

VCEbatl@lltllB=10
30

"

0
10

20
50
100
Ie. COLLECTOR CURRENT (mAl

200

10

'00

FIGURE 3 - ACTIVE-REGION SAFE
OPERATING AREA

FIGURE 4

0

"

20

~

200

10
20
50
100
Ie. COLLECTOR CURRENT (mAl

500

CURRENT-GAIN-BANDWIDTH PRODUCT

~

['-.

'I\.

0
0
0
VCP50Vdc

0

J1ll"C
10

There are two limitations on tha power handling ability of a
transistor: iunction tamparatura and second breakdown. Sata
operating area curves indicate IC - VCE limits of tha transistor that
must ba observed for reliable operation; I.a., the transistor must
not ba subjacted to groater dissipation than tha curvas Indlcata.

20

,.

'00

'c. COLLECTOR CURRENT ImAI

VCIi. COLLECTOR·EMITTEII VOLTAGE (VOLTSI
I

200

'00

The data of Figure 3 is based onTJ(pk) = 1500C; TC Is variable
depending on conditions. At high cass tamperatures, thermal
limitations will reduce the power that can ba handled to valuas less
than the limitations Imposed bV second:breakdown.

4-640

MPS . U5'1 (SILICON)

AMPLIFIER TRANSISTOR

PNP SILICON'ANNULAR
AMPLIFIER TRANSISTOR

PNP SILICON

•

· .. designed for general-purpose. high-voltage amplifier and driver
applications.

•

High Collector-Emitter Breakdown Voltage BVCEO; 100 Vdc (Min) @ IC; 1.0 mAdc

•

High Power Dissipation - PD; 10 W@ TC; 25 0 C

•

Complement to NPN MPS-U07

H
F

MAXIMUM RATINGS
Rating
Collector-Emitter Voltage

Svmbol

Value

Unit

VCEO

100
100
4.0

Vdc

2.0
1.0
B.O

Adc

Collector-Base Voltage

VCB

Emitter-Base Voltage

VEB

Collector Current - Continuous

IC

Total Power Dissipation @ T A - 2SoC

Po

Derate above 25°C
Total Povver Dissipation \@ TC
Derate above 2SoC

= 2So C

Operating and Storage Junction

Po
TJ.Tstg

Vdc

Watt
mW/oC

10
BO
-55 to +150

Watts
mW/oC
°c

Thermal Resistance. Junction to Ambient

A

c
o

THERMAL CHARACTERISTICS
Thermal Resistance. JUnction to Case

STYLE 1:
PIN 1. EMITTER
2. BASE
3. COLLECTOR

Vdc

Temperature Range

Characteristic

o

G
Symbol
RaJC
RaJA

Max

12.5
125

Unit

H

J

°C/W

K

°C/W

L
N

o
R

CASE 152-02

4-641

MPS-U57

ELECTRICAL CHARACTERISTICS (T A

I

~

25°C unless otherwise noted)

I

Characteristic

Symbol

I

Min

Typ

Max

Unit

OFF CHARACTERISTICS
Collector-Emitter Breakdown Voltage (11
(lC = LO mAde, IB = 01

BVCEO

100

-

-

Vde

Emitter-Base Breakdown Voltage
(IC = 100 "Ade, IE = 01

BVEBO

4,0

-

-

Vde

ICBO

-

-

100

nAde

60
30

140
65
30

Collector Cutoff Current
(VCB = 40 Vde, IE = 0)
ON CHARACTERISTICS (11

DC Current Gain
(lC
(lC
(lC

•

Coliector~Emitter

(lC
(I C

-

hFE

= 50 mAde, VCE = 1.0 Vdel
= 250 mAde, VCE = 1.0 Vde)
= 500 mAde, VCE = 1.0 Vdel

-

Saturation Voltage

-

Vde

VCE(satl

= 250 mAde, IB = 10 mAde)
= 250 mAde, I B = 25 mAde)

-

Base-Emitter On Voltage
(I C = 250 mAde, V CE = 5.0 Vdcl

0.24
0.15

0.5
1.2

Vde

-

MHz

VBE(onl

-

0.78

fT

50

100

Cob

-

10

-

SMALL-SIGNAL CHARACTERISTICS
Current-Gain-Bandwidth Product (11
(lc = 250 mAde, VCE = 5.0 Vdc, f = 100 MHzl
Output Capacitance
(VCB = 10 Vdc, IE = 0, f

= 100 kHz)

15

pF

(11 Pulse Test: Pulse Width.;; 300"s, Duty Cycle';; 2.0%..
FIGURE 2 - "ON" VOLTAGES

FIGURE 1 - DC CURRENT GAIN
2DO

:f-~,.I,..i:

'.

•,

'"

0

VBElon)@VCE:SOVdc

4

,

,

1\

VCElsall@IC/ls"IO

20

6070100

200

0
1.0

500

!. . . .

IT-

1

20
1111
5.07.0 10

r-

5

..'1
VeE'" OVdc
TJ=25 0 C

V

1

H-tt

6

'\

0

0

-.l-.lllU

V,IE(~tJ@l,c,JB~ 10

a

5

Ie. COLLECTOR CURRENT (mA)

1

20

60

100

200300500

Ie, COLlEC!OR CUR RENT {mAl

FIGURE 3 - DC SAFE OPERATING AREA

FIGURE 4 - CURRENT·GAIN-BANDWIDTH PRODUCT

5.0

~ 300

2.0

....
~

~

"....
~

10

z

0.5

"

02 f---+-t-TJ

~

~

=

~

150 0 C

r J
SecondBreakdownlim.ted
I

g

0.1

I

~

0.05

I 111111

0.01

~ a

I

~

~

0.005
10

5.0

10

20

100

"-

i"-.

=<

Applicable To BVCEO

~()O2

i:'-.

.!, , 0

Bonding Wife Limlt!d
ThermailimilaMII5 @I Te " 25 or.

10

V

....=
c

~

u

200

IE

50

100

VeE, COLLECTOR-EMITTER VOLTAGE (VOLTS)

VeE =50Vdc

lill"C

30
SO 7.0

10

20

5070100

200

500

IC. COLLECTOR CURRENT (mAl

There are two limitations on the power handling ability of a

The data of Figure 3 is based on TJ(pkl = 150°C; TC is variable

transistor: junction temperature and second breakdown. Safe
operating area curves indicate IC - VCE limits of the transistor that

depending on conditions. At high case temperatures, thermal
limitations will reduce the power that can be handled to values less

must be observed for reliable operation; i.e., the transistor must

than t,he limitations imposed by second breakdown.

. not be subjected to greater dissipation than the curves indicate.

4-642

MPS • U60 (SILICON)

PNP SILICON ANNULAR TRANSISTOR
PNP SILICON
HIGH VOLTAGE
TRANSISTOR

. designed for general·purpose applications requiring high break·
down voltages, low saturation voltages and low capacitance.
o Complement to NPN Type MPS-U 10

•

MAXIMUM RATINGS
Symbol

Value

Unit

veE a

300

Vdo

Collector· Base Voltage

VCB

300

Vdo

Emltter·Base Voltage

VEB

50

Vdo

Rating

Collector-Emitter Voltage

Collector Current

Continuous

Total Power Dlsslpatlon@IA"'2SoC

IC

500

mAde

Po

1a
80

Watt
mWf'C

Po

10
BO

mWflC

-55 to +150

°c

Derate above 2SoC
Total Power' Dlsslpatlon@Te"2SoC

Derate above 2S0C
Operating and Storage Junction

TJ,Tstg

Watts

Temperature Range

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

ELECTRICAL CHARACTERISTICS IT A

I

Characteristic

~

25°C unless otherWise noted)

I

Symbol

Min'

M ..

Unit

OFF CHARACTERISTICS
Collector Emllier Breakdown VOltage( lJ

300
BVCBO

emmer·Base Breakdown Voltage
(Ie = 10j.lAdc, IC" 01

~VeBO

Vd,

D--

300
Vdo

50

Collector Cutoff Current
(VeB '" 200 Vd!;;,le =01

leBO

emitter Cutoff Current

leBO

(VBE '" 3.0 Vdc, IC

Vdo

BVCEO

IIC = 1 0 mAde, IR = 0)
COllector-Base Breakdown Voltage
(lC'" 100 j.lAdc, Ie '" 01

IlAd!;;

STYLE 1.
PIN 1. EMITTER
2. BASE
3. COLLECTOR

02
/-lAd!;;

= OJ

01

ON CHARACTERISTICS
DC Current Gain (2)
(Ie = 1 o mAde, VCE = 10Vdd
IIC::: 10mAdc, Vee

-FE

DIM

25
30
30

= 10Vdcl

lie'" 30 mAde, VCE::: 10 Vdc)
CoiJector·EmlUerSaturation Voltage
IIC '" 20mAdc,IB '" 2.0mAdcl

VCElsatl

Base·Emitter Saturation Voltage
IIC = 20 mAde, IS '" 2.0 mAde)

VSElsati

A
B
Vdo

0.75
0.9

Vdo

C
D

F
G

H

DYNAMIC CHARACTERISTICS
Current·Galn-Bandwldth Product
lie" 10 mAd!;;, VeE'" 20 Vdc, f '" 100MHzI

'T

Collector-Base Capacitance
(VeB:E 20Vdc,Ie '" 0, f = 1.0MHzl

Cob

MH,

60

pF

B.O

J
K
L
N
Q

R

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

9.14
9.53
6.60
7.24
5.41
5.66
0.38
0.53
3.18
3.33
2.54 BSC
3.94
4.19
0.36
0.41
12.07 12.70
25.02 25.53
5.08 BSC
2.39
2.69
1.14
1.40

11.360 0.375
0.260 0.285
0.213 0.223
0.015 0.021
0.125 0.131
0.100 BSC
0.155 0.165
0.014 0.D16
0.475 0.500
0.985 1.005
0.2008SC
0.094 0.106
0.045 0.055

(1) Pulse Test: Pulse Width" 300 jlS, Duty Cycle" 2.0%.

CASE 152-02

4-643

MPS-U60

FIGURE 1 - DC CURRENT GAIN
150

V~E = \0 V~c

TJ=+1250C

10 0

z

_ + 2 5 0C

;;:

'"
>z
w

g;

70

~

50 _ - 5 5bC

........

::>

""'"10":::::

'-'
'-'
c

~

~

""

30

~
~

10
15
1.0

2.0

3.0

7.0

5.0

10

20

30

50

.'\

80

10~

IC, COLLECTOR CURRENT (mAl

•

FIGURE 2 - CAPACITANCES

FIGURE 3 - CURRENT·GAIN-BANDWIDTH PRODUCT

100

'" 100
TJ·250C

~
t:;

50

w

20

-l-

5

g;

10

~

60

'"c>-

40

Z

30

~

i'-



C,b

'-'
z

Tr250C
80 -VCE - 20 Vdc

10

20

50

100 200

~

\

./

1\

./

/

1\

20

0:

~

Crb)

,t:

500 1000

10
1.0

5.0

2.0

\fR, REVERSE VOLTAGE (VOLTS)

;;;
':;
c

~

w

-

-

-

O. 6

_f-

>

:>

.s<

200

~0:

100

~
0:
c

[j

O. 4

....
....

c

'-'

o. 1

o

1.0

2.0

5.0

II II

10

~

--

VCE(..,) @ICIIB = 10

20

50

.....

.

>-

'"':;

'-'

FIGURE 2 - SMALL·SIGNAL CURRENT GAIN

vrt v

150

o.2
O. 1

2.0

0.01

0.02

0.05

0.1

FIGURE 3 - "ON" VOLTAGES

2.0

r- -

.5

l--':: ~

~-O.8

f--

U

1.5 r- VaE(sa') @lc/la=500

w

~

VBE@W-5.~V

Ol


>'

--

II

'"

~

0.5

~

II
0.05

0.02

i

0.2

0.1

0.5

2.0

1.0

.---'

1--+-+-f-+++-H.......-;;:-=""~-.-+-+-t+H

.... -4.0

II

o

f--j-j+-++-H-H---f--l-+-+-HA'H--

f--j-j+-++-H-H---f--I-+~~-9·+t·rt·---­

~ -3.2

VCE(sa,)@lclla = 500

~"_-.
_'-.'
..
-

1-

~ -2.4

I-

I--:

nVC FOR VCE(sa!)
-1.6

8

V

v-=

- - - --- -.

--

~

0VB IFOR

-

.

1

----1

V~E ++t-t-H+-'--j

-I'I--j--l-++-ltt-.---j

-4a~~~~~~~__~~~~~~~~~__~

0.02

0.05

0.1

0.2

0.5

1.0

2.0

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

FIGURE 5 - DC SAFE OPERATING AREA

,

2.0

"....

ffi
~

I,

'\

"-

ii:
::; 10

There are two limitations on the power handling ability of a
transistor: junction temperature and second, breakdown. Safe

0.7

operating area curves indicate Ie-VeE limits of the transistor that

~ 0.5

'"

~

8

~

~

0.3

I-- -

0.2

must be observed for reliable operation; Le., the transistor must not
be subjected to greater dissipation than the curves indicate.
The data of Figure 5 is based on T J(pkl = 150°C; TC is vartable
depending on conditions. At high case temperatures. thermal limitations will reduce the power that can be handled to values less
than the limitations Imposed by second breakdown.

'\

a:

TJ = 150°C
BONOING WIRE LIMITATION
---- THERMAL LlMITATlON@TC=250C

'\.

r---r- __

I I

0.1
2.0

30

SiCONt BiEArOrr ilMITATlfN
5.0

7.0

10

20

30

40

VCE. COLLECTOR·EMITTER VOLTAGE (VOLTS)

4-647

•
,

~ +0: :==:=:~.~~-+r-trtn+r._---.. _ --+'-t--+H++F=.-.r.
___.~

TJ = 25°C

~

1.0

FIGURE 4 - TEMPERATURE COEFFICIENT

2.5

'"
2:

0.5

0.2

IC. COLLECTOR CURRENT (AMP)

IC. COLLECTOR CURRENT (AMP)

MPS-U95

5-WATT AUDIO AMPLIFIER
+20 V
470k

1.8k

10.I P F

10.I P F
Q2

1.8M

04

•

INPUT

0---1

01

0.47
1000pF

1.5 k

0.1 pF

8n
3.3 k

68

-=
0.47

03

3.0M
+
100pF

1.5 k

05
8.2k

01· MPS·A 13 (DARLINGTON)
02· MPS·A70
03· MPS·A20
04·Mps·U45
{COMPLEMENTARY
05 . MPS·U95
OAR LlNGTONS

4-648

NPN

PNP

11P29
11P29A
11P298
11P29C

TIP30
TIP30A
11P30B
11P30C
1 AMPERE

COMPLEMENTARY SILICON PLASTIC
POWER TRANSISTORS

POWER TRANSISTORS
COMPLEMENTARY SILICON
40·60-80·100 VOLTS
30 WATTS

... designed for use in general purpose amplifier and switching
applications. Compact TO·220 AB package. TO·66 leadform also
available.

MAXIMUM RATINGS
Symbol

R.tlng

Collector-Emitter Voltage
Collector-Base Voltage
Emitter-Base Voltage
ColleClor Current ContinuOLlS
Peak

VCEO

Vca
VEa
Ie

Peak

la
Po

Base Current
Totat Power DISSipation

TC=2So C
Derate above 2So C
Total Power DISSipation
@TA = 2SoC
@l

Po

TlP29
TIP30

.
....

40
40

I

TIP29A
TIP30A

Operating and Storage Junction
Temperature Range

TJ,T ng

...

TIP29C
TIP30C

Unit

100
100

Vdc
Vdc
Vdc
Adc

..
.

..

32

..
..
...

-65 to +150

...

30
0.24

...

.

TIP29B

TIP30a
ao
80

5.0
1.0
3.0
0.4

~

2.0

..

Derate above 2SoC
Unclamped Inductive Load
Energv ISee Note 3)

t

60
60

0.016

WIDe
Watts

WIDe
mJ

De

,I

THERMAL CHARACTERISTICS

Thermal Resistance, Junction to Case
Thermal ReSIstance, JunctIon to Ambient

ELECTRICAL CHARACTERISTICS ITC '" 25°C unless otherwise noted)

I

CharKteristic
OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage 111
IIC = 30 mAdc, IS = 01

TIP29, TIP30
T1P29A, TIP30A
TlP29B, TIP30S
TlP29C, TIP30C

Collector Cutoff Current
TJP29, TIP29A, TlP30, TIP30A
(VCE = 30 Vdc, 18 = 01
TlP29S, TlP29C, TIP30S. TlP30C
IVCE '"' 60 Vdc, IS = 01
Collector Cutoff Current
T1P29. TIP30
{VCE = 40 Vdc, VEe = OJ
TlP29A, TIP30A
(VeE'" 60 Vdc, VES;; 01
T1P29B. TIP30B
(VCE "" 80 Vdc, VES '" 0)
TlP29C. TIP30C
(VCE '" 100 Vdc, VEe" 0)
Emitter Cutoff Current
(VeE = 5.0 Vde, IC = 0)
ON CHARACTERISTICS (1'
DC Current Gam
IIc" 0.2 Adc, VCE .. 4.0 Vdcl
lie = 1.0 Adc. VeE = 4.0 Vdcl
Collector-Emitter Saturation Voltage
lie" 1.0 Adc, Ie" 125 mAdel
Base·Emltter On Voltage
(Ie = 1.0 Ade, VCE '" 4.0 Vde)
DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product (2)
lie" 200 mAde, VCE" 10 Vdc, f test "" 1 MHz)
Small-Signal Current Gain
lie" 0.2 Adc, VCE = 10 Vd!:, f = 1 kHz I
111 Pulse Test: Pulse Width

~

•

Adc
Watts

SvmboJ

Min

VCEOlsus)

40
60
80
100

Ma.

Unit

Vdc

mAde

'CEO

0.3
0.3
/JAde

leES

200
200
200
200
1.0

mAdc

75
0.7

Vdc

1.3

Vdc

D-1c

-Jf
,.I

SECT A-A

I-JR

STYLE 1:
PIN 1.
2.
3.
.4.

H

BASE
COLLECTOR
EMITTER
COLLECTOR

MILLIMETERS
DIM MIN MAX
A 15.11 15.15
9.65 10.29
B
4.06
4.82
C
0.89
D 0.64
F
3.61
3.13
G
2.61
2.41
H
2.19
3.30
J
0.56
0.36
K 12.10 1421
L
1.14
1.21
N
4.83
5.33
Q
2.54 3.04
R
2.19
2.04
S
1.14
1.39
T
5.91
6.48
U
0.16
1.21
1.14
V

'I+<.L

Dd~tG
INCHES
MIN MAX
0.595 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.141
0.095 0.105
0.110 0.130
0.014 0.022
0.500 0.562
0.045 0.050
0.190 0.210
0.100 0.120
0.080 0.110
0.045 0.055
0.235 0.255
0.030 0.050
0.045

CASE 221A-ll2
To-:z20AB

300 /-IS, Duty Cycle'" 2.0%.

(21 tr .. Ihfe'. f test
(3) This rating based on testing with LC = 20 mH, RaE'" 100 n, Vee = 10 V. IC '" 1.8 A, P.R.F.;. 10 Hz.

4-649

TIP29, TIP29A, TIP29B, TIP29C, NPN, TIP30, TIP30A, TIP30B, TIP3OC, PNP

FIGURE 1 - DC CURRENT GAIN

FIGURE 2 - TURN-OFF TIME
l. 0
2.0 -

500
lO0 -

---

riJ \JoJc
25'C

0

~~-

I

-55 0 C

:g
w

'"

0

•

'"

;::

~

7.0
5. 0
DOl

rt-H-.

005 0.07 01
.O.l
0.5 07 10
IC. COLLECTOR CURRENT lAMP)

1. 0:::s;
~t=lf@VCC
O. 7
O. 5

O. 2
O. f

0.07
0.0 5
0.0 3
O.Ol . 0.05 0.07 0.1
02
O.l
0.5 0.7 1.0
IC. COLLECTOR CURRENT (AMP)

lO

---I

-

f--.!J

--I

APPROX
+11 V

I

:
Vin-

1- -

RC

I--

I

0.7
05

I

:g

11 d.O

n.

t2

I---

TURN·OFF PULSE

-

t,@VCC=lOV

~-

t,@VCC=IOV

o. 1

-4.0 V

td@VESI,ff)=2 0 V

0.0 7
0.05

I

--i

O.l

:l;::1

Cjd« C,b

: : loo

a
3a

IC' 0.3 A

2

=

O_r- -55 DC

1ij

a:

~

3.0A

\

\

0, 8

>-

~
~

a
7.a
5. a

8

1

O
1.0

3.0

"t-

i"

~.

0.05 0.07 0.1
0.3
0.5 0.7 1.0
IC. COLLECTOR CURRENT IAMPI

..... 1-

\

o.4

>

0.03

1.0A

"'~

......

~.

•

Tp 25 DC

c

25 DCj'

"' 10a

~
=
ag

2. a

-

2.0

5.0

10

50

20

100

200

500

1000

lB. CASE CURRENT ImAl

FIGURE 11 - TEMPERATURE COEFFICIENTS

FIGURE 10 - "ON" VOLTAGES
+2. 5

G
3;

1.2 H-t-t-+t1ft--+--H-t-I-++H--+-+-H-t+l+t--+--;l

v

~ 1.0 H+l+HK--+--H+f-+f.~-+--+-H-++l++--./-cA'--j

~ ~~VB~E~Is~at)~@~I~C/~IB~=~10~~~~~~~~ff~~~~
0.6

VBE@VCE=2.0V-+++-I-+++I+--+-.l
j

+

a

a

"'~

-0. 5

0.2 0.3 0.5
0.02 0.03 0.05
0.1
IC. COLLECTOR CURRENT (AMPS)

0.01

1.0

'"

2.0 3.0

-

2.0 3.0

1.0

FIGURE 13 - EFFECTS OF BASE·EMITTER RESIS1ANCE

~ 107

~
~
i:i
ffi

1 = T p 150~C

a=
=
100 = =100 DC
c

~ 1 :!=::
jl08

r-....

S

-VCE-30V

~ 10

r

,/

OVB FOR VBE
L>~'-2 .0
II
-2. 5
0.2 0.3 0.5
0.003 0.005 0.01
0.02
0.05 0.1
IC. COLLECTOR CURRENT lAMP)

%

.3
>-

,/

a

I

U lill

FIGURE 12 - COLLECTOR CUT·OFF REGION

10 2

1/

~ -1. 5

103
_

/

II
'OVC FOR VCE(sa')

It!

~Elsatl @ICIIB=110 +-H-++l+t--+-+-+++tJ.l.!'/"---f---1

0.003 0.005

8
t~ -1.

:> 0.4 f-+-t
II-t-tl 111ft1--+--H-f-H+H--+-+-H-+tI+t----t7<-t
0.2

'APPLIES FOR IcllB <;hFE/2
TJ' -65 DC TO +150 DC

a

~ O.B H-H+HK--+--H+f-+f.~-+k::---t::;;j.,:lsfmP'f--I-I
~>

+2. a

.§ +1. 5
~
ffi +1.
U
~ +0. 5

I ........
10 5

~

=REVERSE

FORWARD

~

"'

~

..........

10 6

- +t04

~

VCE' 30 V

.......
I

IC~ICES

IC'2xICES

IC'10xICES

.........

......

.......
......

......

(TYPICAL IC~S VALUES
OBTAINED FROM FIGURE 12)

~IO- 21== 1==25DC
10- 3
-0.4

.........

r-...

r--..

ICES
-0.3

-0.2

-0.1

+0.1

+0.2

+0.3

+0.4

+0.5

+0.6

VBE. BASE·EMITTER VOLTAGE (VOLTS)

4-654

40

100
60
80
120
TJ. JUNCTION TEMPERATURE (DC)

1.40

160

NPN

PNP

TIP41
TIP41A
TIP41B
IlP41C

TIP42
TIP42A
TIP42B
TIP42C
6 AMPERE
POWER TRANSISTORS
COMPLEMENTARY SILICON

COMPLEMENTARY SILICON PLASTIC
POWER TRANSISTORS
. . . designed for use in general purpose amplifier and switching
applications.

40-60-80-100 VOLTS
65 WATTS

o Collector· Emitter Saturation Voltage VCE(sat) = 1.5 Vdc (Max) @ IC = 6.0 Adc
o Collector· Emitter Sustaining Voltage VCEO(sus) = 40 Vdc (Min) - TIP41, TIP42
= 60 Vdc (Min) - TIP41A, TIP42A
= 80 Vdc (Min) - TIP41B, TIP42B
= 100 Vdc (Min) - TIP41C, TIP42C
o High Current Gain - Bandwidth Product
fT = 3.0 MHz (Min) @ IC = 500 mAdc

•

o Compact TO·220 IAB Package
o TO·66 Leadform Also Available
"MAXIMUM RATINGS
Symbol

TIP41
TIP42

TIP41A
TIP42A

TIP41B
TlP42B

TIP41C
TIP42C

Unit

VCEO

40

60

80

100

Vdc

Collector-Base Voltage

VCB

40

60

80

100

Vdc

Emitter-Base Voltage

VEB

Rating

Collector-Emitter Voltage

Collector Current

Continuous

IC

.

Peak

Base Current

18

Total Power Dissipation
@TC = 25°C
Derate above 25°C

Po

Total Power Dissipation
@TA=250C
Derate above 2SoC

Po

Unclamped Inductive
Load Energy (1)

5.0

Vdc

6
10

Adc

2.0

Adc

65

Watts

0.92

W/oC

.

2.0
0.Q16
E

Operating and Storage Junction TJ.Tstg

Temperature Range

62.5

-

-65 to +150

Watts
W/oC
°C/W

-

°c

I
' \ I~
J~r

~~='~Dd'~N''t~·
K

STYLE 1:
PIN 1.
2.
3.
4.

BASE
COLLECTOR
EMITTER
COLLECTOR
MILLIMETERS
MIN MAX
15.11 15.75
9.65 10.29
B
4.82
C 4.06
0.64
0.8.!1
D
F
3.61
3.73
G
2.41
2.67
H
2.79
3.30
J
0.36
0.56
K 12.70 14.27
1.27.
L
1.14
N
4.83
5.33
n 2.64 3.04
R
2.04
2.79
S
1.14
1.39
T
6.48
5.97
U
0.76
1.27
1.14
V

DIM
A

THERMAL CHARACTERISTICS
Symbol

Max

Unit

Thermal Resistance, JunctIon to Case

R8JC

1.92

°C/W

Thermal Resistance. Junction to Ambient

R8JA

62.5

°C/W

ChDracteristic

(l)IC = 2.8 A. L = 50 mHo P.R.F. = 10 Hz, VCC = 10 V, RBE = 100.0.

L-'
H

INCHES
MIN MAX
0.595 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.095 0.105
0.110 0.130
0.014 0.022
0.500 0.562
0.045 0.050
0.190 0.210
0.100 0.120
O.OBO 0.110
0.045 0.055
0.235 0.255
0.030 0.050
0.045

CASE 22IA,G2
T()'220AB

4-655

TIP41, TIP41A, TlP41B, TIP41C, NPN, TIP42, TlP42A, TIP42B, TIP42C, PNP

ELECTRICAL CHARACTERISTICS (TC 250 C unless otherwise noted)
Q

I

I

Characteristic

Symbol

Min

Max

VCEO(,us)

40
60
BO
100

-

Unit

OFF CHARACTERISTICS
TIP41 , TIP42
TIP41A, TlP42A
TIP41B, TIP42B
TIP41C, TIP42C

Collector·Emitter Sustaining Voltage (1)
(lC = 30 mAde, IB = 0)

Collector Cutoff Currant
(VCE = 30 Vde, IB = 0)
(VCE = 60 Vde, IB = 0)
Collector Cutoff Current
(VCE = 40 Vde, VEB =0)
(VCE = 60 Vde, VEB = 0)
(VCE = BO Vde, VEB = 0)
(VCE = 100 Vdc, VEB = 0)
Emitter Cutoff Current
(V BE =5.0 Vde, IC '= (I)
ON CHARACTERISTICS (1)

-

mAde

ICEO
TIP41 , TIP41A, TIP42, TIP42A
TIP41B, TIP41C, TIP42B, TlP42C

-

0.7
0.7

-

400
400
400
400

-

/,Ade

ICES
TIP41, TIP42
TlP41 A, TlP42A
TIP41 B, TlP42B
TIP41C, TIP42C

-

-

hFE

Base-Emitter On Voltage
IIC = 6.0 Ade, V CE = 4.0 Vde)

mAde

1.0

lEBO

DC Current Gain
(lC = 0.3 Ade, VCE = 4.0 Vde)
(lC = 3.0 Ade, VCE = 4.0 Vde)
Collector·Emitter Saturation Voltage
(lC = 6.0 Ade, I B = 600 mAde)

Vdc

-

30
15

75

VCE(satl

-

1.5

Vde

VBE(on)

-

2.0

Vde

fT

3.0

-

MHz

Ihfel

20

-

-

DYNAMIC CHARACTERISTICS
Current Gain - Bandwidth Product (2)
IIC = 500 mAde, VCE = 10 Vde, f test = 1 MHz)
Small·Signal Current Gain
(lC = 0.5 'Ade, VCE = 10 Vde, f = 1 kHz)

(1) Pulse Te.t: Pul.ewidth'; 300 /", Duty Cycle'; 2.0%.
(2) fT = Ihfele f t ••t
TA TC
FIGURE 1 - POWER DERATING
4,0 80

~
I- 3,0 60
..
120

140

160

T, TEMPERATURE (OC)

FIGURE 3 - TURN·ON TIME

FIGURE 2 - SWITCHING TIME TEST CIRCUIT
2.0

VCC
+30 v

A

0.7
0.5

RC
SCOPE

RB

+:] --\--,

]:

0.3

w

0,2

'"

;::

·g,O V
51

01

........
I""---.tr

........

0, 1

Ir. tf:5:.10ns
·4V
CYCLE· 1.0%
RB and RC VARIED TO OBTAIN DESIRED CURRENT LEVELS

~UTY

TJ.2JOC I
VCC· 30 V
ICIIB ·10

1.0

-=

01 MUST BE FAST RECOVERY TYPE, og:
MB05300 USED ABOVE IB =100 rnA
MS06100 USED BELOW 18 =100 rnA

.......

r-....

-

i""

td@VBEloff)=5.0

0,07
0.05
0,03
0,02
0.06

0,1

0,2

0.4

0,6

1.0

IC, COLLECTOR CURRENT lAMP)

4-656

2,0

4,0

6.0

TIP41, TIP41A, TlP41 B, TIP41C, NPN, TIP42, TIP42A, TIP42B, TIP42C, PNP

FIGURE 4 - THERMAL RESPONSE

~

1. 0

~

o. 5

~ O. 7
o

0" 0.5

~
:'i o. 2

0.2

to

0.1

~ 0.0 7 -

0.05

o. 3

~ o. 1

ffi
:z:

0.0 5

-

0,0 3

ffi

0.02 ...-.:

....
in

;z

a:
'"
....

~

0.0 I 0.01

".

--:::::?

Plpkl

;;;0.-1"""

0.02

I-

--

fo.ol::::

r- i-"

n

SliG~E r~Lrr

0.02

0.05

-

0.1

ZeJCIII " r(.1 ReJC
ROJC" 3.125° CIW Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT '1'

tJUl
12~~

TJ(pkl- TC" P(pkl ZeJCltl

DUTY CYCLE. 0 "11/'2

11111
02

05

10

2.0

5.0

I

10

I

I I I I I I II

so

20

100

I

I

I I '"
soo
1.0 k

I

200

I, TIME (ms)

FIGURE 5 - ACTIVE-REGION SAFE OPERATING AREA
0

E

S.O

0.5 ms

.....

~

.... 3.0

i:ii

~ 2.0 r- -

TJ

=150°C

......

"-

- - - SECOND BREAKDOWN LTD
a: 1.0
BONDING WIRE LTD
o
THERMAL LIMITATION TC-2SoC
I---t--t-t(SIN
GLE PU LSEI
_ 0.5
CURVES APPLY BELOW RATED VCEO
8
E 0.3
TIP.!I, TIP4~::rTIP41A, TIP42A
0.2
TIP41 B, TIP42B
TlP41 C, TlP42C
O. 1

-

§

I

II

I

I

II

I

S.O

There are two limitations on the power handling ability of a
transistor: average junction temperature and second breakdown .
Safe operating area curves indicate le·VeE limits of the transistor
that must be observed for reliable operation; i.e., the transistor
must not be subjected to greater dissipation than the curves indicate.

~

.......

I'\l.:°m

"- ,s.o l\..
ms",

The data of Figure 5 is based on T J(pkJ = 150°C; T C is variable
depending on conditions. Second breakdown pulse limits are valid
for duty cycles to 10% provided T J(pkl.o;; 150°C. T J(pkl may be
calculated from the data in Figure 4. At high case temperatures,
thermal limitations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown.

1\

10
20
40
60
VCE, COLLECTOR·EMITTER VOLTAGE (VOLTS)

BO 100

FIGURE 7 - CAPACITANCE

FIGURE 6 - TURN-OFF TIME
30 0

5.0
TJ =25°C
VCC =30 V
ICIIB =10
IBI =IS2

3.0
2.0

's

1.0

];
w

'"

;=

200

...........

0.2

-

TJ~2SJC- --

r-

0.7
0.5
0.3

I I

....

'f

~
--;-

0

r"-

Cob

-- ......

0

0.1
0.07
O.OS
0.06

0.1

1.0
0.2
0.4 0.6
IC, COLLECTOR CURRENT (AMP)

2.0

4.0

30
O.S

6.0

1.0

2.0

3.0

5.0

10

VR, REVERSE VOLTAGE (VOLTS)

4-657

20

r30

50

•

TIP41, TIP41A, TIP41B, TIP41C, NPN, TIP42, TlP42A, TlP42B, TIP42C, PNP

FIGURE 8 - DC CURRENT GAIN

FIGURE 9 - COLLECTOR SATURATION REGION

500

20

200

II
II

VeE' 2.0 V

300

..........

1J.150 oe

1.6
IC·1.0A

0

I- 25 0e

0
0

-

-55'e

..:-..

0
7.0
5. 0
0.06

•

~

O. S

1"'-1"-

0.4

~

0.1

0.2 0.3
0.4 0.6 1.0
Ie: eOLLECTOR CURRENT (AMP)

2.0

4.0

>

6.0

0
10

II

u

E.

w

'-= f:::::: i="'"

VSE( .. ,)@IC/IB·IO
I

0.4

(SE@)VCE)·.4.U

0.2

~

-

0.3 0.4

f.--0.6

1.0

1000

500

F~R I'CIIS 
~
...il'l

V
2.0

~

3.0 4.0

6.0

V

+25 0 C to +150 oC

'0.5

I L .....1-4

'ove FOR VCE(sat)

8

,/

II
0.1

U

~

Y

VCE(",)@IC/IB' 10
0
0.06

300

t;; +1.0

~

0

i!

>
>'

50
100
200
lB. SASE CURRENT (rnA)

z

5 1.2
O.S

.lJpLES

:;: '2.0
~

~

30

FIGURE 11 - TEMPERATURE COEFFICIENTS

1.6

0

20

+2,5

TJ'250C

'"
«

5.0A

!\

FIGURE 10 - "ON" VOLTAGES
2.0

2.5A

~5iJ

1.2

0
0

T;'

-55°C to '25 0C
-0.5

II

-1.0
-1.5

fVS FOR VSE

-2.0
-2.5
0.06

0.1

'~5°f'ln~

-550C to +25 DC

I
0.2

Ie. COLLECTOR CURRENT (AMP)

./

0.3

0.5

-

II II
1.0

2.9

3.0 0.4

0.6

IC. COLLECTOR CURRENT lAMP)

FIGURE 12 - COLLECTOR CUT-OFF REGION

FIGURE 13 - EFFECTS OF BASE-EMITTER RESISTANCE
10 M

1/

VCr30V

I'-.

r-...

100'C

=

16· wlx IC~S

I"

r--....

k

"><"

IC'2xICES I--

-

25°C

.......
FORWAR~

k ::::: (TYpical ICES Values I

-0.2

-0.1
.0.1 '0.2 '0.3 '0.4 '0.5
VSE. BASE·EMITIER VAOLTAGE (VOLTS)

........

.......

== I Obtained from ~igure 112)

10-3

-0.3

r--..

IC 'ICES

k

IC 'ICES

'0.6

'0.7

4-658

0.1 k
20

40

100
120
60
80
TJ.JUNCTION TEMPERATURE (OC)

140

160

TIP47 TIP48
TIP49 TIP50

1.0 AMPERE

HIGH VOLTAGE NPN SILICON POWER TRANSISTORS
... designed for line operated audio output amplifier, SWitchmode(l)
power supply drivers and other switching applications.
III

POWER TRANSISTORS
NPN SILICON
250·300·350·400 VOLTS
40 WATTS

250 V to 400 V (Min) - VCEO(sus)

o 1 A Rated Collector Current
o Popular TO·220 Plastic Package
CI

TO·66 Leadform Available

II

MAXIMUM RATINGS
Rating

Symbol

Coliector·Emitter Voltage
Collector-Base Voltage

Emitter-Base Voltage
Collector Current Continuous

TIP47
250
3S0

VeEO
VeB
VEB
Ie

-

I
I
I

-
III
Co-

Unit

Vdc
Vdc
Vdc
Adc

t>

Adc

40
0.32

I>
0>-

Watts

2.0
_0.016

Co-

...

Watts
wIDe

I>

mJ

_-6Sto+150_

°e

-

a

~

-0. 5

~

-1.

i
0.05

APPLIES FOR Iclla < hFE/5

1l'i

liE

o. 1

+3.5

.§

...'"

"'"

O. 1

~

2.0

4-661

+15' IC

-55 0 C to +25 0 C

1

i

I T

I

~

I

I I
0.05

~

+25' C 10+150' C~

51-8~B FhR tB~

-2.5
0.02

'till~

550Ctot~510C-

0.2
0.5
IC. COLLECTOR CURRENT (AMPS)
0.1

:J:j;;p

1.0

2.0

•

TIP47, TIP48,

TIP4~,

TIP50 NPN

FIGURE 8 - INDUCTIVE LOAD SWITCHING

Voltage and Current Waveforms

Test Circuit

I

ovi

u

Input

-,

Voltage

Vee = 20 V

: - - - : - ' 00 m. ----<
:
I
1
I
1
COllect~;63 A~l--I ---

'eM:::: 0.63 A.

~

'"t-

~

i

I
I
I

I

I

I

I
I

I
I

1---------1---1
I
I
I
I
I
I

0
0

I

__

FIGURE 10 - "ON" VOLTAGES
1.4

VIC~ 2Jo v

1. 2

0=TJ-1500 C

~e

25 0 C

I

~

~

-55'C

;3

g

I
I
I

VCE(sat)--

lQ0

z

oV

VCER,-t--- I
I
Collector
I
'Voltage
I
I
I
10 V
I

FIGURE 9 - DC CURRENT GAIN
20 0

__
-5 V - - , .

.---------i--

Ie Monitor

Current

•

(See Note A)

r---I I
-I
U'

100mH
Input

Note A: Input pulse width is increased until

tw:::::: 3 ms

I

i

0

6. 0

./

1. 0

VBE('aI)@ ICIIB' 5.0
O. 8

w

'"'"~

VBE(on)@VCE - 4 V
O.6

e

O.2

I
i/

TJ 25 0 C

>
>' O. 4

4. 0

,.......-: . /

VCE(~1i @ICIIB·15.0V

V

~

2.0
0.01

0.04 0.06 0.1
0.2
0.4 0.6
Ic. COLLECTOR CURRENT (AMPS)

1.0

o0.02

2.0

4-662

0.04 0.06

0.1
0.2
0.4 0.6
IC. COLLECTOR CURRENT (AMPS)

2.0

NPN

PNP

TIPIOO llPIOS
TIPIOI TIPI06
TIPI02 TIPI01
PLASTIC MEDIUM-POWER
COMPLEMENTARY SILICON TRANSISTORS

DARLINGTON
8 AMPERE

· .. designed for general'purpose amplifier and low·speed switching
applications.

COMPLEMENTARY SILICON
POWER TRANSISTORS

o High DC Current Gain hFE = 2500 (Typ) @ IC = 4.0 Adc

60-80·100 VOLTS
80 WATTS

o Collector· Emitter Sustaining Voltage - @ 30 mAdc
VCEO(sus) = 60 Vdc (Min) - TIP100, TIP105
= 80 Vdc (Min) - TlPl0l, TIP106
= 100 Vdc (Min) - TIP102, TIP107
•

Low Collector· Emitter Saturation Voltage VCE(sat) = 2.0 Vdc (Max) @ IC=3.0 Adc
= 2.5 Vdc (Max) @ IC = 8.0 Adc

•

Monolithic Construction with Built·ln Base·Emitter
Shunt Resistors

•
•

TO-220AB. Compact Package
TO-66 Leadform Also Available

•

"MAXIMUM RATINGS
Symbol

TlPl00,
TlPl05

VeEO

60

Collector-Base Voltage

Vea

60

Emitter-Base Voltage

VEa

5.0

Vdc
Adc

Rating

Collector-Emitter Voltage

Collector Current

TIP10l, TIP102,
TlPl06 TIP107

Unit

80

100

Vdc

80

100

Vdc

Ie

8.0
15

Base Current

la

1.0

Adc

Total Power Dissipation @ TC - 2SoC
Derate above 25°C
Unclamped Inductive Load Energy (1)
Total Power-Dissipation @ TA 25 0 e
Derate above 2SoC

Po

80
0.64

Watts

E

30

mJ

Po

2.0
- - - - 0.016 - - -

Watts

w/oe

TJ, T stg

- - -65 to +150 - - -

°e

Continuous

Peak

Operating and Storage Junction
Temperature Range

w/oe

I

,

[I

J~r

I~

J SECT A-A

THERMAL CHARACTERISTICS
Characteristics

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

(1) Ie

= 1.1

A, L = 50 mH, P.R.F.

STYLE 1.
PIN 1.
2.
3.
4.

ROJA

= 10 Hz, Vee = 20 V, RaE = 100 ll.

FIGURE 1 - POWER DERATING

MILLIMETERS
DIM MIN MAX
A 15.11 15.75
9.65 10.29
4.06
4.82
C
0.64
0.89
0
F
3.61
3.73
G
2.41
2.67
H
2.79
3.30
J
0.36
0.56
K 12.70 14.27
L
1.14
1.27
N
4.83
5.33
Q
3.04
2.54
R
2.04
2.19
1.39
....}}4
14T
5.91
6.48
U
0.16
1.21
1.14
V

TA TC
4.0 80

::

~

"'-.

3.060

t-+.

1"'-.
~TC

z

c

~
~
C

......
2.040

.........

,.
~

w

r---....

~ 10 20

--

r--..

I"---.

~

o
o

20

BASE
COLLECTOR
EMITTER
COLLECroR

40

60

60

'" "" "'-.

TA

-....

I'--..

100

-.........::: ~

120

140

INCHES
MIN MAX
0.595 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142
0.095
0.110 0.130
0.014 0.022
0.500 0.562
0.045 0.050
0.190 0.210
0.100 0.120
0.080 0.110
0.045 0.055
0.235 0.255
0.030 0.050
0.045

160

CASE 221A-02

T, TEMPERATURE lOCI

T().220AB

4-663

~:l*-

TIP100, TIP10l, TIP102 NPN/TIP105, TIP106, TIP107 PNP

ELECTRICAL CHARACTERISTICS (TC

= 250 C unless otherwise noted)
Symbol

Characteristic

. Min

Unit'

Max

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
(lC = 30 mAde, la = 0)

•

Collector Cutoff Current
(VCE = 30 Vde, la = 0)
(VCE =40 Vde, la = 0)
(VCE = 50 Vde, la = 0)

TIP100, TlPl05
TIP10l, TIP106
TIP102, TIP107

Collector Cuttoff Current
(Vca = BO Vde, IE = 0)
(VCB = BO Vde, IE = 0)
(Vca = 100 Vde, IE = 0)

TIP100, TIP105
TIP101, TIP106
TIP102, TIP107

= 5_0 Vde,

IC

-

BO
BO
100

-

-

50
50
50

-

50
50
50
B_O

j.Ade

ICED

I'Ade

Icao

Emitter Cutoff Current
(VaE

Vde

VCEO(sus)
TIP100, TlPl05
TIP101, TIP106
TIP102, TIP107

-

lEaD

=0)

mAde

ON-CHARACTERISTICS (1)
DC Current Gain
(lc = 3_0 Ade, VCE
(lc =B.O Ade, V CE

Collector-Emitter Saturation Voltage
(lC
(lc

1000
200

20,000

-

2.0
2.5

-

2.B

4.0

-

Vde

VCE(sat)

=3.0 Ade, IB =B.O mAde)
=B.O Ade, IB = BO mAde)

Base-Emitter On Voltage
(Ie

-

hFE

= 4_0 Vde) .
= 4.0 Vde)

Vde

VaE(on)

= B.O Ade, VCE = 4.0 Vde).

DYNAMIC CHARACTERISTICS
Small-Signal Current Gain
(lC = 3.0 Ade, VCE = 4.0 Vde, f

Ihfe I

= 1.0 MHz)

Output Capacitance
(VCB

= 10 Vde, IE =0, f = 0.1

pF

Cob
MHz)

-

TIP105, TIP10B, TIP107
TlPl00, TIP10l, TIP102

300
200

(1) Pulse Test: Pulse Width .. 300 I'S, Duty Cycle .. 2%.

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - SWITCHING TIMES

5. 0
3.

Vee

-30V

RS & RC VARIED TO OBTAIN DESIRED CURRENT lEVELS
Dl. MUST BE FAST RECOVERY TYPES,' g.,
MBD5300 USED ABOVE 18 '" 100 rnA
MSD6100 USED BELOW Ie'" 100 rnA

Re
SCOPE

1.0
O. 7
'" O. 5
;::
3
O.

~

V,

::';~~-~J~-----~--]~
VI

approx __

-12V

I

I

lr.1t<100s

25,.,5

0:>.,

2. 0

"

_.

__J-

It...
,l..-

..- ''::--.......

l-

t-...

If

_

.......

.

O.If- Vcc = 30 V
I-IC/IS = 250
lSI = 1~2
Id @ VBElolI) = 0
O. IFTJ=25 c
PNP
0.0 7
NPN
0.0 5
0.5 0.7 1.0
0.2 0.3
0.1

If,

-.

-~ c........~

;>

fOfldandl r.D,lsdlSCDnnecled
and V2=O

For NPNlen circuit reverse all polantles.

DUTY CYCLE = 1 0%

2.0

3.0

IC. CO LLECTOR CURRENT (AMP)

4-664

5.0 7.0

10

TlPl00, TlPl0l, TIP102 NPN/TIP105, TIP106, TIP107 PNP

FIGURE 4 - THERMAL RESPONSE

~

I. 0

::;

o. )

io

O. 5

~
w

O. 3

Z

O. 2

'-'

~

0" 0.5

-'""'"

0.2

--~
;;;;;..-

0.1

'~

O. I

ZoJC(II" rltl ROJC
ROJC " 1.5S'CNI Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT 11

0.07 r - 0.05

..J

~

0.05

:r
-00
:: 0.03
I 1-_

......

~ 0.02 '""""'ro.ii'r--.j,.~"l-H-H+--I;-+--t-H-++t++-+-+-+-+-j

!

OOI ......

n

0.01

>-

-

SljGniLJj

002

005

TJ(pkl- TC" P(pkl ZOJC(II
DUTY CYCLE. 0 "11/12

IIIII

0I

02

10

05

I I

10

2.0
5.0
I, TIME (ms)

I I I IIIII
50

20

100

I I

I I I III

200

500

10k

FIGURE 5 - ACTlVE·REGION SAFE OPERATING AREA
20

1b-l::
<-,

10

;;:

5.0

~

There are twO limitations on' the power handling ability of a
tranSistor:

>~

de

2.0

~

a

1.0

'"0

0.5

~
8

0.1

The data of Figure 51s based on TJ(pk) = 150°C; TC Isv8nable
depending on conditions. Second breakdown pulse limits are valid
for dUly cycles to 10% prOVided TJ(pkl < ISOoC. T Jlpkl may be
calculated from the data in Figure 4. At high case temperatures,
thermal limItations will reduce the power that can be handled to
values less than the limitations imposed by second breakdown

TIPIOO. TIPI05
TIPIOI. TIPIOS
TIPI02. TIPIO)

0.05
0.02
1.0

average junction temperature and second breakdown.

Safe operating area curves indicate Ie - V CE limits of the transistor that must be observed for reliable operation, I.e., the transistor
must not be subjected to greater disSipation than the curves Indicate.

'" "!>,
~

TJ"150'C
- - BONDING WIRE LIMITED
- - - THERMALLY LIMITEO@TC"25'C
- - - SECOND BREAKDOWN LIMITED
CURVES APPLY BELOW RATED VCEO

0.2

~.

......

10
5.0
20
50
2.0
VCE. COLLECTOR·EMITTER VOLTAGE (VOLTSI

100

FIGURE 7 - CAPACITANCE

FIGURE 6 - SMALL-5IGNAL CURRENT GAIN
10.000

300
TJ" 25'C

500 0
'" 300 0
~ 200 0
>~ 100 0
~
50 0
;i 300
t5 20 0

20 0

w

a
~

10 0

""

50

~

;# ;~
10
10

:::::: ~:::..!'""

-

u

z

TC" 25'C

""

~ 70

20

>.....

C"

50

I ~~N
5.0

C,b

.~

PNP

I

"-

r-

U

VCE" 4.0 Vde
IC" J 0 Adc

I

t-....

;:: 100

--

f- _ _ _ _ PNP
10

20

50

100

200

30
0.1

500. 1000

I. FREQUENCY (kHzl

- - -NPN
02

05

10

20

50

10

VR. REVERSE VOLTAGE IVOLTSI

4-665

20

50

100

TIP100. TlP101. TIP102 NPN/TlP105. TIP106. TIP107 PNP

NPN
TIP100, TIP101, TIP102

FIGURE B - DC CURRENT GAIN
20,00 0

20,000

10.000
7000
z 500 0

! 5000

;3

.
:l
...."
c

•

;

VCE~410~

VeE" 4.0V

10,000

Ii; 3000

PNP
TIP105,TIP106, TIP107

I

TJ • 1500 C.....

2000

y

-

V

C

~

~ 300

\.

~

I

1000

:;:z
500

",\

.;"

.....r

~

100 0
~ 70 0
0
- 500=,-55 C
30
20

0.2

I

i--'

25 0 C

-

'"'"c"

-550 C

300
,/
200
0.1

"

200 0"'"

'"

250 C /

1500 :""'-

Tp

o

0.3

0.5 0.7

1.0

2.0

3.0

5.0

7.0

10

~/

y

0.1

0.2

0.3

0.5 0.7

IC, COLLECTOR CURRENT (AMP)

1.0

2.0

3.0

I

5.0

7.0 10

Ir COLLECTOR CURRENT lAMP)

FIGURE 9 - COLLECTOR SATURATION REGION

en
~

3.0

'"~

III
I "2.oA

'"

~

8

~

> 1.0
03

- r-

BOA

1\

\

~ 1.8

~

S

---

"--

14

. r- ) - -

~

0.7

1.0

2.0

3.0

5.0

7.0

20

10

30

---

_.

2.2

'"

i'
0.5

TJ "15°C

II

4.0 A

'C" 2.oA

~

\..

14

2.6

'"ffi
::

\

1.8

U

I III

~

\
\

2.2

::
~a:

~

\

~

I III

'"~

B.oA

. ~ 2.6

ffi'"

r;; 3.0
~

TJ" 25'C
4.0 A

> 1.0
0.3

0.5 0.7

1.0

Is, SASE CURRENT (mA)

2.0

3.0

5.0

7.0

10

20

3D

I•. SASE CURRENT ImAI

FIGURE 10 - "ON" VOLTAGES
3.0

'3.0

TJ" 25°C

TJL5,IC
5

~

/v

0

V-/
b:::: ~

5 VSEljatl@ ICIIS" 250

o.5

01

I
02

10

'">

15

05

07

1.0

20

3D

50

70

IC. COLLECTOR CURRENT IAMPI

_.)-.

/

,
-- --: V
_V

---

VSE @VCE - 40 V
I

V
k""

VSElsatl@ICIiS - 250

II

I I

-

l1
1-

-;/
--

-

VCE(!odt) ~:lIC le"O 250

02

03

05 07

10

20

IC. COLLECTOR CURRENT lAMP)

4-666

~

-

r-

05
01

10

--

)---

,0

~

,-

)--- '---

>'

,,/

I
03

f----

'"~
w
'"

'"~

/'
VSE @VCE " 4.0 V
08VCEI .. ,I@IC'IS"25o

--I-

25

j

30

50

70

10

TlP100, TIP101, TlP102 NPN/TlP105, TIP106,' TIP107 PNP

I

NPN
TIP100. TIP101,TIP102

PNP
TIP105,TIP106, TIP107

FIGURE 11 - TEMPERATURE COEFFICIENTS
+S 0

'S 0
u

~ +40

~

:>

:>

'ICIIB" hFEI3

.§ +3.0
>z

~ +2.0

ffi

2SoC 10 ISOoC

+1.0

w

'"

-1.0

ffi
~

-3.0

i

-4.0

~

.

'OVC for VCE(."I

-2.0

/

/'
/'

/

250C 10 150~1-""

-H-t"

0VB for VBE

>-

-S.O

'ICIIB' hFEI3

0.1

0.2

..j..-

0.5 0.7

8
~

2.0

3.0

S.O

7.0

live lor VCElsal)

'1

1.1

-20

f-'"

Ii

1

:> ·4.0
'" ·S.O
0.1

-S50C 10 25°C

V-

V
2S0CIOIS~ ......
-550C 10 25 0C

~ -30 "VBforVBE-

10

-

/'

,,/

w

I

1.0

V
2SoC 10 ISOoC

~ -1.0

-55DC to 250C

I I /I

0.3

t2.0

U

~ +1.0

k;::::::: .......

;:::::::;r

1

fS

11

~

-SSoC 10 2S oC

8
::l

+40

E

~ +30

IIII
0.2

0.3

IC. COLLECTOR CURRENT (AMPI

O.S

1.0

2.0

3.0

S.O

7.0

10

IC. COLLECTOR CURRENT (AMPI

FIGURE 12 - COLLECTOR CUT-OFF REGION
10S

IDS

4=REVERSE= I!=FORWARO

~
a'"
'"o

10 3

3 = VCE - 30V

j--VCE - 30 V

2

10 2

f- TJ - ISOoC

~

10 1

~

100

8

L

I--TJ -ISOoC
I

r-- 100°C

r--10- 1
-0.6

0

25°C

0.4

-0.2

+0.2

+0.4

+0.6

+0.8

+1.0

+1.2

+1.4

r--

100°C

i==

25°C

10- I
.0.6

.

0.4

.0.2

VBE. BASE EMITTER VOLTAGE (VOLTSI

0.2

-0.4

0.6

-0.8

1.0

VBE. BASE·EMITTER VOLTAGE (VOLTSI

FIGURE 13 - OARLINGTON SCHEMATIC
COLLECTOR

NPN
TIP 100
TIP 101
TlP·102

PNP

--,

,...---+--,

BASE
I

I

I
I

IL _ _ _ _ _ _ _

TIP IDS
TIP 106
TIP 107

I

I
I
I
'1
I
I

COLLECTOR

--,

r---~h

I

I
I.
I
I

BASE

I
I
I

I

__ ...l

' __ ...l

EMITTER

EMIITER

·4-667

1.2

1. 4

•

NPN

PNP

I1PII0 TIP115
TIPlll TIP116
TIP112 TIP117
PLASTIC MEDIUM·POWER
COMPLEMENTARY SILICON TRANSISTORS

DARLINGTON
2 AMPERE

... designed for general·purpose amplifier and low-speed switching
appl ications.

•

COMPLEMENTARY SILICON
POWER TRANSISTORS

• High DC Current Gain hFE ~ 2500 (Typ) @ IC ~ 1.0 Adc
• Collector· Emitter Sustaining Voltage - @ 30 mAdc
VCEO(sus) ~ 60 Vdc (Min) - TIPll0, TIPl15
~ BOVdc(Min)- TIPlll,TIPl16
~ 100 Vdc (Min) - TIPl12, TIPl17
• Low Collector· Emitter Saturation Voltage VCE(sat) ~ 2.5 Vdc (Max) @ IC ~ 2.0 Adc
• Monolithic Construction with Built·ln Base·Emitter
Shunt Resistors
• TO·220AB Compact Package
• TO·66 Leadform Also Available

60·80·100 VOLTS
60 WATTS

*MAXIMUM RATINGS
'Symbol

Rating
Collector~Emitter

Voltage

VCEO
VCB
VEB
IC

Collector-Base Voltage
Emitter-Base Voltage
Collector Current

Continuous

Peak
Base Current
Total Power Dissipation @TC = 2SoC
Derate above 25°C
Total Power Dissipation @ T A - 25°C

TIP110,
TIP116
60
60
4
-4

4

IB
Po
Po

Derate above 2SoC

E

Unclamped Inductive

TIP111,
TlP116
80
80
5.0
2.0
4.0 .

TIP112,
TIP117
100
100

......
.....

50
50
4
0.4
4
2.0
_0,016_
_25
4

......

..

..

Load Energy - Figure 13
Operating and Storage Junction.

TJ.Tstg

_ - 6 5 to +150 _

Unit

.Vdc
Vdc
Vdc
Adc
mAde
Watts
wf'c
Watts
W/oC

mJ
°c

=11~fS -C

I(~
j

l'lu

T-I Jr

Ll '0
j
K

SECTA·A

I-!- R
-ll--J

--l

THERMAL CHARACTERISTICS
Characteristics
Thermal Resistance, Junction to Case

Thermal Resistance, Junction to Ambient

Symbol

Max

Unit

R6JC
R6JA

2.5

°C/W
°C/W

62.5

~

3.060

z

0

...........
r-...
.......... r--...... . . .

>=

:!t

Bi

2.040

c

'"3;:

..........

i;:...:: ~

~ 1.020
~c

..........

~

00
0

20

40

60
80
100
T, TEMPERATURE (OCI

"""

120

BASE
COLLECTOR
EMITIER
COLLECTOR

MILLIMETERS
D1M MIN MAX
A 15.11 15.75
B
9.65 10.29
C
4.06
4.82
o 0.64 0.89
F
3.61
3.73
G
2.41
2.67
H
2.79
3.30
J
U.36
0.56
K 12.70 14.27
l
1.14
1.27
N
4.83
5.33
Q
2.54
3.04
R
2.04
2.79
S
1.14
1.39
T
5.97
6.48
U
0.76
1.27

FIGURE 1 - POWER DERATING
TA TC

~

STYLE 1:
PIN 1.
2.
3.
4.

V

1'000.

140

160

'4-668

1.14

INCHES
MIN MAX
0.595 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.095 0.105
0.110 0.130
0.014 0.022
0.500 0.562
0.045 0.050
0.190 0.210
0.100 0.120'
O.OBO 0.110
0.045 0.055
0.235 0.255
0.030 0.050
0.045

CASE 221A-02

T0-220AB

TIPll0, TIPlll, TlPl12, NPN, TIPl15, TlPl16, TIPl17, PNP

ELECTRICAL CHARACTERISTICS

I

(TC

= 2S o C unless otherwise noted)

Characteristic

Symbol

Min

Max

60
80
100

-

Unit

OFF CHARACTERISTICS
Coliector·Emitter Sustaining Voltage (1)
(lC = 30 mAde, IB = 0)

Collector Cutoff Current
(VCE - 30 Vdc, IB = 0)
(VCE = 40 Vdc, IB = 0)
(VCE =50 Vdc, IB = 0)
Collector Cutoff Current
(Vce = 60 Vdc, IE =0)
(Vce =SO Vdc, IE = 0)
(Vce = 100 Vdc, IE = 0)
Emitter Cutoff Current
(VSE =5.0 Vde, IC = 0)

Vdc

VCEO(sus)

TIPll0, TIP11S
TlPlll, TIPl16
TIPl12, TIPl17

-

ICEO

-

TIPll0, TIPl15
TIPlll, TIPl16
TIPl12, TlPl17

mAde

I

2.0
2.0
2.0
mAde

ICBO
TIPll0, TIPl15
TIPlll, TlPl16
TIPl12, TIPl17

1.0
1.0
1.0

~

-

I SO

ON CHARACTERISTICS (1)
OC Current Gain
(lc = 1.0 Adc, VCE =4.0 Vdc)
(lc = 2.0 Ade, VCE = 4.0 Vdc)

2.0

•

mAde

-

hFE

-

1000
500

Collector-Emitter Sat!Jration Voltage
(lc = 2.0 Adc, IB = 8.0 mAde)

VCE(sat)

Base-Emitter On Voltage
(lC = 2.0 Ade, VCE = 4.0 Vde)

VSE(on)

DVNAMIC CHARACTERISTICS
Small·Signal Current Gain
(lc = 0.75 Ade, VCE = 10 Vde, I = 1.0 MHz)

Ihle l

Output Capacitance
(VCS = 10 Vde, IE = 0, I = 0.1 MHz)

Cob

Vdc

-

2.5

-

2.8

25

-

Vdc

pF

-

TIPllS, TIPl16, TIPl17
TIPll0, TIPlll, TIPl12

200
100

(1) Pulse Test: Pulse Width .. 300 I'S, Duty Cycle .. 2%.

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

FIGURE 3 - SWITCHING TIMES
4.

Vee

VCC Iclla
101
TJ

30 V
=
250 _ t=
102
=25'C

01".

-JOV
RS & Re VARIED TO

oaTAIf~

DESIRED CURRENT lEVELS

.0,. MUST BE FAST RECOVERY TYPES, e g.
"'805300 useD ABOVE '8'" 100 rnA
MS06100 USED BELOW IS ~ 100 rnA

Re

I?"~ t\.

0
8

o. 6
o.4

fortdillldl r.O,lSdlsconnetted

and V2= D, RBand RCarevarled
10 obtain deslffd leSf currents
For NPN lest cncUll,uversedlode,
polarrtlesand mput pulses

O. 2

t~

~

2.0
SCOPE

I-'
~

0.04

j...>"

-........

PNP
--NPN
0.06
0.1

-

"-b

VI--'

t,

-.

.....

...

r--..... I"'- k-'

0.2

0.4

0.6

:=

7'

r~@4JfI)=OI
1.0

IC. COLLECTOR CURRENT (AMP)

4-669

" l'

Dtf

2.0

4.0

TlP110, TIP111, TIP112, NPN, TIP115, TIP116, TIP117, PNP

FIGURE 4 - THERMAL RESPONSE

~

10

:::;

7
0' 05
5

«
~

0

~

3

..,
~

z

2

~

1

~

02
01

ZOJCI1l

~

r{tl ROJC

RIJJC ~ 2.5 0 eIW Max

o CURVES APPL Y FOR POWER

PULSE TRAIN SHOWN
READ TIME AT"
DUTY CYCLE.

02

•

10

05

a~q

IIIII

I I

10

20

50
20
I TIME !msl

TJlpki

TC - Plpkl ZOjClli

12

I I I IIIII

I I

100

50

I I I III

200

500

10k

ACTIVE-REGION SAFE-OPERATING AREA
FIGURE 5 - TIPl15,l16,l17

FIGURE 6 - TIPll0,lll,l12

10

~~

10

~. 4.0

4.0
1m.

I-

2.0

~a:

aa:

~

Sm.
TJ :1S0oC
"

,,

de

.. i\

I-

~ 2.0

.

•

1.0

~

~

d~

T,- IS00C

1.0

t\

o

0

~

~8

f-.

-BONDING WIRE LIMITED
- - - - THERMALLY LIMITED
@TC:250C (SINGLE PULSEI
- - SECONDARY BREAKDOWN LIMITED

8
_u

r-t
.

0.1

1.0

CURVES APPLY BELOW
RATED VCEO
.

II

_u

TIP115
TIPI1S
TIPll7

40
10
VCE ' COLLECTOR EMITTER VOLTAGE (VOLTS)

-

-BONOING WIRE LIMITED
- - - - THERMALLY LIMITED
__

~E~~~~5:~~~~g~!~~~~~+ED

r-tCURVES APPLY BELOW
RATEO VCEO
O. 11.0

TlPll0 TIP111TIP112

II

10
V CE ' COLLECTOR EMITTER VOLTAGE (VOLTS)

SO 80 100

SO 80 100

FIGURE 7 - CAPACITANCE
200

I

""

TC: 2SoC
There are twO limitations on the power handlmg ability of a
tranSistor _ average Junction temperature and second breakdown

Safe operating area curves indicate

Ie - V CE limits of the tran-

sistor that mu~t be observed for reltable operation, I.e., the transistor
must not be subjected to greater diSSipation than the curves indicate

The data of Figures 5 and 6 is based on TJ(pk) = 1500 C; TC is
variable depending on conditions. Second breakdown pulse limits
are valid for duty cycles to 10% provided TJ(ok) <150°C. TJ(pk)

~ 100

.

w
u

z

l-

70

U

SO

..,-

30

§

--

-

Cob

!o:::LCib

20

mavbecalculated from the data in Figure 4. At high case tempera·
tures, thermallirnitationswill reduce the power that can be handled
to values less than the limitations imposed by second breakdown.

r--..
....

"

~

--

---PNP

1- III 10
0.040.0S 0.1

NtN
0.2

0.4 O.S

1.0

2.0

4.0 S.O

VR, REVERSE VOLTAGE (VOLTS)

4-670

10

20

40

TIPll0, TIPlll, TIPl12, NPN, TIPl15, TIP116, TIPl17, PNP

NPN
TIP110,111,112

PNP
TIP115, 116, 117
FIGURE 8 - DC CURRENT GAIN

60 k

6.0 k

TJ' moc

VCE

4.0 k

«

...~ 20 k
~
a 10 k V
u

800

o

3.0 V

TC' 12SoC
4.0 k

"

/

30 k

z

0

z 3.0k

~~

V

~ 2.0k

r-- i'.. ~

,

"\\1\

V

-SSoC

W
~ 600

\\

~

800

-

600

/

40 0
004

0.01l

0.2
0406
10
IC. COLLECTOR CURRENT (AMP)

01

20

300
004

4.0

/"

~

r\\.

\.\

I"-

'\

/

400

30 0

VCE' 3.0 V-

i'..'"

-lsoc ,/'

V

~ I.Ok

~

~

/

;:;:

-

006

2.0

02
0.4
0.6
10
IC. COLLECTOR CIJRRENT (AMP)

0.1

4.0

FIGURE 9 - COLLECTOR SATURATION REGION

~ 34
o

~

3.0

'"
'"

~c_

nr

>

~

>-!::

~

22

IIII

.JLl

LL

1.0A

~ 26

o

ro-

-

20A

-

E-

S

18
--j-oo

1.4

I.........

1.0

~

> 0.6
0.1

I II I

~

en

--j

'"

0.5

1.0

20

5.0

34

r---t_

t~1

>

'"

~ 2.2

--

"'"

'" 18

-

o

>--

o

~

>

1.0

06

L ___

100

50

20

-

1t--

-

- -

40 A

-I--

1--\:.---

- --

~

-

_. -

---

.

0.5

0.2

I0

2.0

.-

~-

-

j-.-

'B. BASE CURRENT (rnA)

.

TJ' 25 0 C

r-~

---

-J

01

"--:rl~)2

II

2011

~ ~-~- :-1 .

t~~_

~ 14

r..J

10

-1~t

26. - 05A _e-~ •
o

I

I---

f-=r ~lf 3
!c.

'"~"

If
0.2

~

2:. 30

!,

o

~

, 40~

_! __'TJ:~Wc

5.0

10

--

-

-t-

50

20

100

'B. BASE CURRENT (mAT

FIGURE lD-"ON" VOLTAGES
2

2. 2

I II
TJ'" 25°C

a

~

2.

1. 4 -

v~Eisa:) ~"Clla • 250

'"

'"t-

"5

>

1.0

:>

... V

I II

VaE@ VCE

0

V
'-""
3.0 v

!/

I II
I-: v~Eisa:i ~I'CIIB ! 25ri

~

V

~

o

'"'"

"~~

t-

Till

J U

1.0

:>

/:

.......- v - ' I-""

II II
J VaE(sa') @Iclla - 250

2:. 1.4

o. 6
O. 2
0.04 0.06

II II
TJ·25 0 C

18

t-

VSE@VCE- 3.0 V

I
./

JC~(~~T @ Icll8 .1250

,/

V

f--"

0.6

0.1

0.4 0.6
1.0
0.2
IC. COLLECTOR CURRENT (AMP)

2.0

0.2
0.04

• 4.0

4-671

0.06

0.1

0.2
0.4 0.6
1.0
IC, COLLECTOR CURRENT (AMP)

2.0

4.0

•

TIPll0, TIPlll, TIPl12, NPN,TIPl15, TlPl16, TIPl17, PNP
PNP
TIP115, 116, 117

NPN
TIPf10, 111,112
FIGURE 11 - TEMPERATURE COEFFICIEIIITS.
+0. 8

+0 8
'APPLIES FOR fCllB < hFEI3

'APPLlEO FOR ICIIB < hFEI3

-

0

-.,.t---

.-~

t- _. - -_.-

1-- I-- _..
.1-

8
6

-- I - - -

- - 1--

2Isa:Cl~

2
OVC for VBE

0
-4. 8

0.04

II II

0.06

0,

~

IIII

c-.

I .U1'"

I
1--f 6 'OVC for
VCEI,,!)

i7"

_

IIIII

0.2
04 0.6
1.0
IC. COLLECTOR CURRENT lAMP)

2.0

4.0

/

TTn:;;7'["

-4.8
0.04

--'----0

"'7"

~

oI-fiVB for VBE

'1

I V

2SaC 'a ISOaC./

2

-~S~CI fsa c

.,-

u..--r
-SSac 'a 2S aC

4

~ P'
......

1"
I

21SaiCI"'SOX

8

~ p~ tz

'OVC for VCEI ..!)
I - f--- f--f-- _ -550C 10 25 0C

4

..

-~

~f-,

TITT

0

-ISr~ !a 2sa~

""11
0.06

I I 1\

I

0.4 0.6
1.0
0.2
fC. COLLECTOR CURRENT lAMP)

0.1

2.0

4.0

FIGURE 12 - COLLECTOR CUT·OFF REGION
'lOS

105

;;

104

~RE)lERSE== FFORWARO

.3

....

~
'"u
'"0

103

103= VCE"30V

-=-VCE" 30 V

=>

~

10 2
I- TJ

=ISOaC

10 I

0

u

~

100

r---- 100aC

~ 100

r - - 100aC

I--- 2S aC
+0 2

+0.4

+0.6

+0.8

+ 1.0

+1.2

10- 1
+D.6

+1.4

+0.4

+0.2

VBE. BASE EMITTER VOLTAGE IVOLTS)

-0.2

-0.4

-0.6

-0.8_

-1.0

-1.2

-1. 4

VBE. BASE·EMITTER VOLTAGE IVOLTS)

FIGURE 13 - INDUCTIVE LOAD SWITCHING
TEST CIRCUIT

VOL TAGE AND CURRENT WAVEFORMS
VCE MONITOR

~
D

-,,

,
ITUT +
!, -=-

VCC""20V

:

_-+ :

MONITOR

L-..oNv-......

_J

Rs

=

D.l

n

r---l

I

I

i

:----T---'DD ms - - - - - '
,I
I

I
I

'I

I

,----·-----i--

CURRENT

0:

I

VCER--!--- f

20 V

Input pulse width is Increased untIl leM = 0.71 A.
NPN test shown; for PNP test
reverse all polaritv and use MJE224 driver.

VCE(satl--

4-672

~.

COLLEC·TO:~T-1---

COLLECTOR
VOLTAGE
NOTE A:

} - - tw ;;; 3.5 ms (See Note A)
,

INPUT
-,
VOLTAGE
__ ~
-5 V --,
j.

D 71

Ie

I

I

I

:: I

'---------l---1

:
I

:
I

I
I

I
,
I

I

, __

NPN

PNP

I1P120 TIP125
TIP121 11P126
TIP122 TIP127
PLASTIC MEDIUM-POWER
COMPLEMENTARY SILICON TRANSISTORS

DARLINGTON
8 AMPERE

... designed for general'purpose amplifier and low-speed switching
applications.
" High DC Current Gain hFE = 2500 (Typl @ IC = 4.0 Adc
o Collector-Emitter Sustaining Voltage - @ 100 mAdc
VCEO(susl = 60 Vdc (MinI - TlP120. TIP125
= 80 Vdc (Minl- TIP121. TlP126
= 100 Vdc (MinI - TIP122. TIP127
" Low Collector-Emitter Saturation Voltage VCE(satl = 2.0 Vdc (MaxI @ IC = 3.0 Adc
= 4.0 Vdc (MaxI @ IC = 5.0 Adc
" Monolithic Construction with Bui't:'n Base-Emitter
Shunt Resistors
" TO-220AB Compact Package
o TO-66 Leadform Also Available

COMPLEMENTARY SILICON
, POWER TRANSISTORS
60-80-100 VOLTS
65 WATTS

•

*MAXIMUM RATINGS
Rating

Collector-Emitter Voltage

60

VeEO
Vee

Collector-Base Voltage
Emitter-Base Voltage

Collector Current

TIP120.
TIP125

Symbol

60

Ie

Peak
Base Cu rrent

..

Ie

Total Power Dissipation @ T C == 2SoC
Derate above 2SoC

Po

Total Power Dissipation @ TA = 2SoC
Derate above 2SoC

Po

Unclamped Inductive

..

•

•
•
•
•
•
•

65
0.52
_2.0
0.Q16

-..

..

50

--65to+150-

TJ, Tstg

Temperature Range

TIP122.
T1P127
100
100

120

....

E

Load Energy (1)
Operating and Storage Junction,

80
5.0
5.0
8.0

•
...

VEe

Continuous

TIP121.
TIP126
80

Unit

Vde
Vde
Vde
Ade
mAde
Watts

w/oe

Watts

w/oe
mJ
°e

THERMAL CHARACTERISTICS
Characteristics
Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient
(1) Ie

STYLE I:'
PIN I.
2.
3.
4.

= 1 A, L = 100 mHo P.R.F. = 10 Hz, Vee = 20 V, ReE = 100.n.

'"::
;::
'"

"-

3 0 60

z
0

~
~

2.04 0

...........

C

'"

~

i2

MILLIMETERS
OIM MIN MAX
A 15.11 15.75
9.65 10.29
B
4.06
4.82
C
0.64
0.B9
0
F
3.61
3.73
G
2.41
2.67
H
2.79
3.30
J.
0.36
0.56
K 12.10 14.21
L
1.14
1.21
N
4.83
5.33
Q
2.54
3.04
R
2.04
2.19
S
1.14
1.39
T
5.91
6.48
U
0.76
1.27
1.14
V

FIGURE 1 - POWER DERATING

TA TC
4.0 B0

"'r--....

~c
TA

.............

1.0 20

"'" "".......

............ ~

~ f::::..

0
20

40

60

BO

100

120

140

BASE
COLLECTOR
EMITTER
COLLECTOR

160

T. TEMPERATURE (OC)

4-673

INCHES
MIN MAX
0.595 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.095 0.105
0.110 0.130
0.014 0.022
0.500 0.562
0.045 0.050
0:190 0.210
0.100 0.120
O.OBO 0.110
0.045 0.055
0.235 0.255
0.030 0.050
0.045

CASE 221A'()2
T0-220AB

TIP120, TlP121, TIP122, NPN, TIP125, TIP126, TIP127, PNP

ELECTRICAL CHARACTERISTICS

I

(TC = 25 0C unless otherwise noted)

Characteristic

Symbol

Min

Unit

Max

OFF CHARACTERISTICS
Collector-Emitter Sustaining Voltage (1)
IIC':' 100 mAde, Ie = 0)

•

Collector Cutoff Current
(VCE = 30 Vdc, Ie = 0)
(VCE = 40 Vde, Ie = 0)
!VCE = 50 Vde, Ie = 0)
Collector Cutoff Current
(Vce = 60 Vde, IE = 0)
(Vce,= BO Vde, IE = 0)
(VCB = 100 Vde, Ie = 0)
Emitter Cutoll Current
(VBE = 5.0 Vde, IC = 0)'

VCEO(sus)
TIP120, TlP125
TIP121, TIP126
TIP122, TIP127
ICED'
TIP120, TIP125
TIP121, TIP126
TIP122, TIP127

Vde

-

60
80
100

-

mAde

-

0.5
0.5
0.5

-

0.2
0.2
0.2
2.0

-

mAde

ICBO
TIP120, TIP125
TIP121, TIP126
TIP122, TIP127

-

-

lEBO

ON CHARACTERISTICS 11)
DC Current Gain
IIC = 0.5 Adc, VCE = 3.0 Vde)
IIC = 3.0 Ade, VCE = 3.0 Vde)

mAde

-

hFE

-

1000
1000

Collector-Emitter Saturation Voltage
IIC = 3.0 Ad~, Ie = 12 mAde)
IIc = 5.0 Ade, IB = 20 mAde)
Base-Emitter On Vol
IIC =3.0 Ade, VCE =3.0 Vde)

Vde

VCE(satl

rage

-

-

2,0
4.0

-

2.5

4.0

-

Vde

VBE(on)

DYNAMIC CHARACTERISTICS
Small-5ignal Current Gain
IIC =3.0 Ade, VCE =4.0 Vde, I = 1.0 MHz)

Ihle l

Output Capaci tance
(VCB = 10 Vde, IE = 0, 1= 0.1 MHz)

Cob

-

TlP125, TIP126, TIP127
TIP120, TIP121, TIP122

pF

300
200

-

11) Pulse Test: Pulse Width .. 300 ).IS, Duty Cvele" 2%.

FIGURE 3 - SWITCHING TIMES

FIGURE 2 - SWITCHING TIMES TEST CIRCUIT

5. O~-~:- + - 0
0>'"
'l~
2.

Vee

-JOV
R8 & Re VARIED 10 OBTAIN DESIRED CURRENT LEVELS
0,. MUST BE FAST RECOVERY TYPES, e 9 ,
MBOS3QO USED ABOVE 18 "'- tOO rnA
MSD6100 USED BElOW 18'" 100 rnA

Re
1. o

SCOPE

~ o. 7
:E o. 5
>=

O.

3

>~
"-

--

-1+ t

For NPN test tlrCUlt reverse all pol.mttes

1-::"- -

- If ~ ~r-:-."-

If

ve~

_

-Ir~ f-- -

r---

-- .,-t-

..

-r-'" 1--:2.0

3.0

Ie. COLLECTOR CURRENT (AMP)

4-674

-

.--..,
,

O. 11-= 30 V
I-le/1 B=150 j...
~~
101 = I 2
-.
O. IF=Tr25~e,,,,,, Id@VOE(offl- OV
PNP'
0.0 7
NPN ..
0.05
0.5 0.7 1.0
0.2 0.3
0.1

tor Id andtr, 0, IS disconnected
andV2 =0

,....j

I

5.0 7.0

10

TIP120, TIP121, TlP122, NPN, TIP125, TIP126, TlP127, PNP

FIGURE 4 - THERMAL RESPONSE

~

10

,.~

07

o ·05

5

'"

o
i!O

3

"'z
~

'-'

~ _I:::;::'"

~"""

01

~

-

f-":: ~

02

O. 2
O. I

.. 00 7 - 005
ffi 005
- 002
I- 00 3

'"

d:::

I-

~ 00 2 i--'"
z
;:; 00 1""'I001
002
in

--1"

I-"

SI~G1E i~Lrr
005

-

01

...
PI,kl
ZOJCItI • rill ROJC
ROJC • 3.125° CIW Max
o CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
REAO TIME AT 11

tJUl
12~~

TJI,kl - TC· PI,kl ZOJCltI

DUTY CYCLE. 0 ·11112

IIIII
10

05

02

20
f,

10

50
TIME Imsl

I

I

I I I IIIII

I

100

50

20

I

I I'"

I

200

500

1.0k

FIGURE 5 - ACTlVE·REGION SAFE OPERATING AREA'
20
1001'S

10
-

...

"

0

30

-----PNP
- - -NPN

01
f.

FREOUENCY IkHzl

0.2

0.5

I
10

20

50

10

VR. REVERSE VOLTAGE (VOLTSI

4-675

20

50

100

•

. TIP120, TIP121, TIP122, NPN, TIP125, TIP126, TIP127, PNP

NPN
TIP120, TIP121, TIP122

I

FIGURE 8 - DC CURRENT GAIN
20.000

20,000

'" 3000
!;;

10,000
7000
z 5000

Tr1500C........

y

2000

;

SOD

300
200

•

250C /

1000

"
~

~

-

V

=>

c

~"

0.1

0.2

......... ~

2000

I--

=>

~ 1000

"'~

250C

..........

......r

c
~ 700
SOD ~,-550C

300
200
0.1

I

,./

TJ = 1500C..........

:: 3000

-550C

7-

V~E ~ 410 ~

VCE=4.0V

~ 5000

~

,

I II

I

!D,OOO

<.>
<.>

PNP
TIP125, TIP126, TIP127

0.3

0.5 0.7

V

1.0

2.0

3.0

5.0

7.0

10

.Y
0.2

0.3

0.5 0.7

IC, COLLECTOR CURRENT IAMPI

1.0

2.0

3.0

5.0

7.0 10

Ir COLLECTOR CURRENT IAMPI

FIGURE 9 - COLLECTOR SATURATION REGION
[ij

3.0

JII

!:;
o

~
~

2.6

22

o

~

8

~

>

2.6

IC = 2.0A

4.0A

1\

\

r:i: 18

~8

S.OA

\

~

\..

TJ = 25 0C

II

....
....

\

1.4

I III

~ 2.2

\

1.8

II

1 lLl

~o

\

::
~a:

~
~

\

'"

3.0

!:;
c

S.OA

!:;
o

ffi

en

TJ=250C
4.0A

IC = 2.0 A

I'

1.4

~

1.0
0.3

0.5

0.7

1.0

2.0

3.0

5.0

7.0

20

10

> 1.0
0.3

30

05 0.7

1.0

IB, BASE CURRENT ImAI

2.0

3.0

5.0

7.0

10

20

30

IR. BASE CURRENT ImAi

FIGURE 10 - "ON" VOLTAGES
3.0

3.0
fJL5 0lC

2.5

TJ = 25°C

2. 5

/

/

/1/

0

V-.
~

5 VBElj,,)@llefIB = 250
VBE@VCE=40V

.........

o-+-+-tVCEI",)@IC'IB=250
O. 5
01

~
V

5 VBE I@VCE=40V

./

0

-I-'"

o5

1

o2

0.3

05

0 7 10

20

30

50

.,.,-

70

01

10

I L
VCE(SdO

0,2

03

(ti'

Ii

Ie IS" 250

05 07

10

20

Ie. COLLECTOR CURRENT 'A!IP,

IC. COLLECTOR CURRENT IA'IPI

4-676

V

../

VBElsall@lICIiB = 250

I I

,../

30

50

70

10

l1P120, TlP121, TIP122, NPN, TIP125, TIP126, TIP127, PNP

NPN
TIP120, TIP121, TIP122

PNP
TIP125, TIP126, TIP127

I

FIGURE 11 - TEMPERATURE COEFFICIENTS
0

g:
>

'S 0
;:;

+4. 0

"IC/IS" hFE/3

.§. +3. 0
~
2.0

0+
~

25 0 C to 150°C

+1.0

S

"'

~

~

~ -2.0

-4.0

IIII

-S.O
0.1

0.2

0.3

O.S 0.7

1.0

3.0

t2 a

V

S.O

250C to 150 0 C

w

live for

~ -10

/

~

I

7.0

VCE(sat)

I Ii
I I I

~ -20

-55°C to 25°C

2.0

ffi

"ICiIS" hFEI3

S

",-

-+-

H-t:C

0VB for Vse

>-

+30

~ +1.0

/

",-

2S0CtoISO~

1:5 -3.0

i

.-:::::- / "

*()VC for VCElsat)

-1.0

+40

'~"
;:;

v.:

-55°C to 250C

w

:I

t7

=2

-30 "VSlorVSE-

" ·S.O
0.1

10

0.2

"

___

-'/

-SSoC 10 2SoC

2S0CtoIS~

:> -4 0
03

0.5

./

LlIL

1.0

""...... ""-55°C 10 25 0 C

20

3.0

S.O

7.0

10

IC, COLLECTOR CURRENT (AMP)

IC, COLLECTOR CURRENT (AMP)

FIGURE 12 - COLLECTOR CUT-OFF REGION
10 S

lOS

-

!=REVERSE= ,,==FORWARO
10'

;(

~
B
"'o

10 3

.3
>-

"'
B

102

f- Tr ISOoC

~
S

Wi

=?

10 0

~ 10 31== VCE"30V

-VCE"30V

.--

I--

102

§

10 I

_

S

I - - 100°C

10- 1
-0.6

a::

o

I-- TJ °ISOoC
I--

~1O 0

100°C

I - - 2SoC

2SoC
10- I

-0.4 -0.2

+0.2

+0.4

to.6

+0.8

+1.0

+1.2

+1.4

+0.6

+0.4

+0 2

VSE, SASE EMITTER VOLTAGE (VOLTS)

-0.2

-0.4

-O.S

-O.S

-1.0

VSE. SASE·EMITTER VOLTAGE (VOLTS)

FIGURE 13 - DARLINGTON SCHEMATIC
COLLECTOR

NPN
TIPI20
TIPI21
TIPI22

PNP.

--..,

--..,

r------1~

SASE

CO LLECTOR

r------1>--,

I

I

I

I

I

I
I
I

BASE

I
I
I

I

I

I

l'--"oAh_"'VVIr-+--'
L
_ _ _ _ '- _ _ _ _ ...JI

__ ...J

I

I

EMITTER

EMITTER

4-677

-1.2

-1. 4

•

•

4-678

I

Thyristor Selector Guide

5-1

EJI!

MI !I!!l':!.!!~!!!u:~~R
HANDLING APPLICATION

.

Thyristors and their trigger devices can take numerous forms, but they share these characteristics:
• They are "open circuits," capable of withstanding rated voltage until triggered .
• They become low-impedance current paths when triggered, and remain so, even after the
trigger source is removed, until current through that path stops, or is reduced below a minimum
"holding" level.
The regenerative action which "holds" a Thyristor in the "on" state is due to multiple layers of opposite
P and N silicon, in which part of the load current through the Thyristor is injected to supplement the trigger
current, and to sustain conduction when the trigger is removed. This characteristic, coupled with the
Thyristor's low "on resistance," makes it possible to control a portion of each cycle of an AC power
waveform into a load, in low-dissipation "dimming" or motor speed control applications, to precisely switch
capacitive discharge currents in automotive ignition systems, or to efficiently modulate radar systems with
high current, fast pulses .

•

seRs
Silicon-Controlled Rectifiers (SCRs) are Thyristors intended to switch load currents
in one direction only, making them useful for DC and half-wave AC applications as
well as full-wave applications. in which bidirectional current is routed in one direction
through the SCR via a bridge rectifier.

For battery chargers, flashers and other
applications where high humidity. conditions
might- be encountered. the 20 Ampere.
metal-packaged, pressfit SCR line is highly
popular. due to low manufacturing cost.

High·current Radar pulse modulator
SCRs.

Types 2N6506. 2N3896 and 2N6396 are
especially sutted for use in Power Supply
Crowbar Protection.
.

TRIGGER DEVICES
Motorola supplies a variety of trigger devices
whose characteristics and modes 01 triggering
are suited to different signal sources.
• Unijunction Transistors - UJT - A
negative resistance, threshold sensitive
device especially suited to unidirectional
triggering of SCRs, pulse generators,
oscillators, and timing circuits.
• Programmable Unijunction Transistors PUT - Similar to the UJT, but capable of
externally preset threshold characteristics
via a voltage divider.
• Bilateral Triggers - DIAC - A low-cost
bidirectionaltriggerwhich can drive a Triac
in full-wave AC applications.
• Silicon Bidirectional Switch - SBS Similar to a DIAC, the SBS has an added
gate electrode lor external
synchronization.
• Optically Coupled Triac Driver - Allows
bidirectional Triac triggering from low-level
logic, such as Microprocessor outputs,
while isolating these sensitive sources by
as much as 1500V fromAC line transients.

TRIACs
Triacs are bidirectional Thyristors, in which a single trigger source turns
the device on for load current in either direction. Because they do not
require a bridge rectifier in order to handle full-wave AC, Triacs are
useful in AC power applications that require full source power control
capability to be applied to the load.

To isolate sensitive IGs, such as
Microprocessors from damaging line

For high-volume consumer use in

power swttches, lamp dimmers, and
motor speed controls, consider the

voltages, the Power Triac may be driven by
an Optically Coupled Triac Driver.

low-cost, medium-current.

plastic packaged 2N6342.

For high sensnivity and IC logic
compatibility, investigate the MAC92
and 2N606B series ol.Triaes.

For applications in which an AC load is turned
off after a fixed time interval, Motorola offers a
selection 01 WTs and PUTs .

..

In AC-operated appliances that use
quick·disconnect terminals lor
assembly ease, such as Microwave
Ovens, Motor Controls, and Space .
Heaters, check out the MAC20,
MAC25, and MACSO series.

Using Triaes lor a dazzling Light Show?
Low-cost DIACs or extemally triggerable

saSs will turn you ani

5-3

Quadrant I
MT2+

TRIAC
Forward
Br ••kovar

CHARACTERISTIC
CURVES

Voltage'

Cur,..nt

'\

Reverse
Breakaver

Voltagel
Current

SCR

SCR

A

Quadrant III

MT2-

o.{
K

>

Br.akover
POint

Reverse
Avalanche

1(-1

Rellion

DIAC
1(+)

V(+)

VI-J
V.

a

11-)

UJT

VEBl
Cutoff
Region

~

I Negative

I Resistance I Saturation
Region :
Region

I

Vp - - -

t

VEBI(S8tl~ ___

Vv

SBS

(+)

Vs
/IH

V(-)

IE

IV

J

I

IS
V (+)

IS

/
IH
Vs

r

PUT
Vp
Vs

•"

IH

1(+1

~t.f

>

VF

Vv

/VORM
Ip

IV

V.H~-~--

IF

IA

'\

Reverse
Bra.kOller

Voltagel
Current

Quadrant III

MT2 -

5-4

Quadrant I

MT2+

OPTICALLY
COUPLED
TRIAC
DRIVER

NUMERIC INDEX
The following Motorola device types are recommended from the standpoint of cost, performance and
delivery. If your specific requirement is not included in this listing (or the on~ below it), please ask your
Motorola Sales Representative for special price and delivery information.
Device Type

Device Type

Device Type

Device Type

MAC Devices (Trlaes)
MAC15
MAC15A
MAC20
MAC20A
MAC25
MAC25A
MAC35
MAC36
MAC37
MAC38
MAC50
MAC50A

MBS4992

MOC3010
MOC3011

2N4183 to 4190
2N4199 to 4204
2N4212 to 4219
2N4441 to 4444
2N4851 to 4853
2N4870
2N4871
2N4948 to 4949
2N5060 to 5064
2N5164 to 5171
2N5431
2N5441 to 5446
2N5567 to 5570
2N5571 to 5574
2N6027
2N602!\
2N6068 to 6075
2N6114
2N6116 to 6118
2N6145 to 6147
2N6151
2N6152
2N6153
2N6154
2N6155
2N6156
2N6157 to 6165
2N6167 to 6170
2N6171 to 6173
2N6174
2N6236 to 6241
2N6342 to 6349
21116394 to 6399
2N6400 to 6405
2N6504 to 6509

M~C92

MAC220
MAC221
MAC40688 Replaced
by T6420B
MAC40689 Replaced
byT6420D
MAC40690 Replaced
byT6420M
MAC40795 Replaced
byT4101M
MAC40796 Replaced
by T4111M
MAC40799 Replaced
by T4121B
MAC40800 Replaced
by T4121D
MAC40801 Replaced
by T~121M
MBS Devices
(Bilateral Switch)
MBS4991

MCR Devices (SCRs)
MCR63
MCR64
MCR65
MCR100
MCR10l
MCR102
MCR103
MCR104
MCR106
MCR120
MCR201
MCR202
MCR203
MCR204
MCR205
MCR206
MCR220
MCR221
MCR649AP
MCR729
MCR914
MCR1906
MCR1718
MCR2305 Replaced
by 2N4167/74

MPU Devices
(Programmable UJT)
MPU131
MPU132
. MPU133
MPU6027
MPU6028
MU Devices (UJT)
MU10
MU20
MU2646
MU2647
MU4891
MU4892
MU4893
MU4894
1N Devices (Triggers)
lN5758 to 5762
2N Devices
2N681 to 692
2N1595 to 1599
2Nl842 to 1850
2N2322 to 2329
2N2573 to 2579
2N2646
2N2647
2N3668 to 3670
2N3870 to 3873
2N3896 to 3899
2N3980
2N4103
2N4167 to 4174

MCR26P4L Replaced
by 2N4183/90
MCR3000
MCR3818
MCR3835
MCR3918
MCR3935

The popular device types listed below, originally introduced by other manufacturers, are now produced
in volume by Motorola.
Device Type
"C" Devices (SCRs)
C35
Cl06
C122
, C228
C228()3
C229
C230
C230()3
C231
C231()3
C232
C233

Device Type

Device Type

Device Type

"S" Devices (SCRs)
S2800
S6200
S621 0
S6220
"SC" Devices
(Trlaes)
SC136
SC141
SC146
SC245
SC245()3
SC246

SC250
SC250( )3
SC251
SC260
SC260( )3
SC261
"r' Devices (Trlaes)
T2300P
T2301P
T2302P
T2500
T2800
T2801

T2802
T4100
T4101
T4110
T4111
T4120
T4121
T62IOO
T6401
T6410
T6411
T6420
T6421

5-5

•

... Metal or Plastic Packages

WSCRs

... 0.5 to 55 Amperes RMS
... 25 to 800 Volts
... Industry Standards, with a variety of Custom
Specifications and Leadforms available.

ON-STATE (RMS) CURRENT
0.5 AMP

0.8 AMP

1.6 AMPS

4.0 AMPS

".:

. "./<":.

v

~

••

":Ii::i , .'
·. . :· . ·i/r~.:,:

•

)
., ..:

'.sO,
, .

MCR203

:108 ,

MCR204

'~--~t-

________
MCR206

:

'V"M

. ,.
,3Q~ V •

MCR103
2N506l
MCR104
r-~2N~OO~6~2

2N1595

2N2322

2N42l2

MCR1906-l

2N2323

2N42l3'

MCR1906-2

77'0$
.. .. .'ca.i&
TO<126'

,.

.. ~2·'

MCR106-1
2N6236
MCR106-2
2N62~7

C106Yl
Cl06Fl

MCR106-3
MCR1906-3
Cl06Al
1-________
~~~~4______
~
2N6238
MCR106-4
MCR1906-4
Cl06Bl
2N6239

2N42l4
2N2324
-+________
+-______

2N1596
__1-______

MCR120
2N5064

2N159?

2N2326

2N4216

MCR100-5

2N1598

2N2328

2N4218

MCR1906-5

MCR106-5

Cl06Cl

MCR100·6

2N1599

2N2329

2N42l9

MCR1906-6

MCR106-6
2N6240

Cl06Dl

MCR1906-?

MCR106-?

Cl06El

MCR1906-8

MCR106-8
2N624l

Cl06Ml

"

,V""" "av

MCR100-?

. 608V .

MCR100-8

. '. 700'

MCR106-9

808V,
"

10

'. ·tl

15

'

. ,

..

,"

. "·16.,

;1!O

15'

i~--~r-~~-4~--~~~~+---~~~~-4~~~+-~--~~~~

I'

~ lmAl

' G.lf " 0 . 2 .

,til'

0.:1 . D . t

.1"'1.0

. 0.2

0.2

I.~~~~--~~~-+~~+-~~~~~~~--~~~
•

tq.(V}'
:. :;'

.. iii ," I,. tmAl ,
\.

.. o.a:', .•

5.0

"lui' .

. 1.0 -'./ .

'. :.3.0':
5.lJTyp

2.0

5.0

5.0

····0.8

........)

3.0

,

ON-STATE (RMS) CURRENT

,
'\ · · · ·. ·. .· . ·. I.~
8.0 AMPS

.

:

ease 90-0$Style 1

.

....

-, -,

Case 22i'IJa

MCR3000-1
2N4441
MCR3000-2
MCR3000-3
2N4442
MCR3000-4
MCR3000-5
2N4443
MCR3000-6
MCR3000-7
2N4444
MGR3000-8
MCR3000-9
MCR3000-10

80'

_11&,

~l

C122Fl
S2800F
G122Al
S2800A
G122Bl
S2800B
C122Cl
S2800C
C12201
S28000
C122El
S2800E
C122Ml
S2800M
G122S1
S2800S
C122Nl
S2800N

C122/S2800' .
. l!OJ100

.

.

c... .n

. Style,

12 AMPS

12.5 AMPS

16 AMPS

.... ::, ..
' . "

. . ..

ea•• m-02 :

:.'

ea.. ,i4'

TQ.2222OAB
$lyle 2

$tvle 2

"25 V

T2500A

SC141A

T2500B

SC141B

T2500C

SC141C

T2500D

SC141D

T2500E

SC141E

T2500M

SC141M

T2500S

SC141S

T2500N

SC141N

60

80

,

MAC220-2
MAC221-2
MAC220-3
MAC221-3
2N6342
2N6346
MAC220-5
MAC221-5
2N6343
2N6347
MAC220-7
MAC221-7
2N6344
2N6348
MAC220-9
MAC221-9
2N6345
2N6349

5GV

100 V
SC146B

2N5567

SC146C
SC146D

SC246B

2N5569

SC246C
2N5568

SC246D

2N5570

SC245B

T4121B

SC245C

T4121C

SC245D

T4121D

2N6342A

2N6343A

SC245E

T4121E

SC146M

SC246M

SC245M

T4121M

SC146S

SC246S

SC245S

T4121S

SC146N

SC246N

SC245N

T4121N

2N6345A

100

'100

120

100

100

100

2N6347A

2N6344A

2N6348A

20

50

50

50

25

SO

25

50
50

75#

5Q

41)

50

50
75#

,SO,

25

50

40
25
40

2N6349A

120

40

-

2.$
2:5

2.5

2.5

2.5

2.5

50
50
'50

-

' 25 ,
40
25
40

50
-

\,. 2.5

:' '2.5"
2.5

2.5#
"

2',5
;2.511'

SOOV

,'t...

(AmPll)

2:5
2,5
2.5

51)

MT2i+)G(+)

75

MTl!(+)G(-}

50
7!i

MT2{-)G(-)
MT2{-}G(+)

Z.O

2.0
2,$

Yo, @ we IV
MT2(+)G(+)
M12(+JGH

2.0

2.0
2.5

MTa(-)O(-)
MT2{-lG(+)

50

"

: 2.0

' ',Hi

600,V

!a.@2S"C(MAI

60 '
25

2.5
2,5
2.5

400 V

mv

"

IiO

YD...

IiOOV

SC246E

121)

200Y

aoov

SC146E

.'100

2N6346A

2.S ;:
2.5
2.5

2.5

-

2.5
2.5
2.5,
2,5 '

#Denotes 2N6346-49 and MAC221 Series only.

5-11

'1!.5
2.5

2.5

-

a.S:

-

i

~s:
i~

is:
...1

I
g

~

TRIACs (continued)

r

""'I

ON-STATE (RMS) CURRENT

., I

15 AMPS
,

•

t:.

.~i~OJ

.

,

,

./

.-

,. ,fi

.~'.

..

.

,

.

, .. ' 1:...

25 AMPS

.

17_

.

..

';.

~1I2WIi
' ,",TO-_
_

"

' :~3'1j-01'

. lItyJwa

: "

:',

.',

.

yl<\2, '

,:

:'

SIY"'~

au

4··' 4

--'
~.~

c.a._..
~2

..

50W

J

100 v
200Y

·.V_

2N5571

3OO.Y

",

..V

SC251B

2N5573

SC250B

SC251C
2N5572

SC251 0

2N6145

SC250C
2N5574

SC250D

2N6146

T4120B

MAC15-4

MAC15A4

MAC20-4

MAC20A4

MAC25-4 MAC25A4

T4120C

MAC15-5

MAC15A5

MAC20-5

MAC20A5

MAC25-5 MAC25A5

T4120D

MAC15-6

MAC15A6

MAC20-6

MAC20A6

MAC25-6 MAC25A6

T4120E

MAC15-7

MAC15A7

MAC20-7

MAC20A7

MAC25-7 MAC25A7

T4120M

MAC15-8

MAC15AB

MAC20-8

MAC20A8

MAC25-8 MAC25A8

MAC15A9

MAC20-9

MAC20A9

MAC25-9 MAC25A9

'"

.:'
,,'

SOLI V

SC251E

SC250E

.S8li 'y

SC251M

SC250M

flln

SC251S

SC250S

T4120S

MAC15-9

800 V,

SC251N

SC250N

T4120N

MAC15-10 MAC15Al0 MAC20-10 MAC20Al0 MAC25-10 MAC25Al0

2N6147

.; ~ .:
.-

iT..... · 100

I'

"I

iEj

.50

",*)8,:..) ·:.SO..

50

r.mt+~Gf+1 .

: so '

50

50
80
50

.

50

so

50

:-"

2.0

2,5

2.5.
2.5
2.5

2;5· .

U

2.5

2.5

2.5

2.5

.' is

2.5 .

2.5

2.S

'2.5

Jmt:-t&i+}

2.S

.. ....;...

2,5,

-.

··iitI·
;...
'50

U'

Mm-:)B(-)

..

so

-

. ,2.5

',,',

80

50,

-sa

'

2.5·

5-12

150

:150

,sa

59

Bl}' .

-

'2,5
2.5

"

so

.so

Ml2(+)GH

' tOll

100
,

rm(+j8(+l :50
M1'2( +)Bf~) so·

I~:tI v...@2ft.(V
.
',;
"-

100

!o:t@25"CtMAl

WHG(+)

;r;

100

2.0

'-

'.

:,

50
'15
50

rs

150

'150 .
:

·so . .
•.. 50'

so .:.

~.,

,

"

250

250

70
70
70'

10
10

,

50

.50 .
50
15

-

100

2.0

2-D

2.0

; 2Jl

2.0'

2.0

' 2.0

2.0

2.0

2.0 :.

2.5

;....

, 2.5'

2.0.
2.5

2.0' .

70

-

2.11 '

2.0
'2.5/

\.

/'

ON-STATE (RMS) CURRENT

"""

"

30 AMPS

...

-

.; StyJe 2

40 AMPS

I

~

5rr

~$lt-Ol

Case:31Q.01
SlyI_JI

~3'''O1

StyJe 2

I

f~>'

Styje •

~-4

THYRISTOR CROSS REFERENCE (continued)

PART NO.

MAC35-8
MAC36-1
MAC36-2
MAC36-3
MAC36-4
MAC36-5
MAC36-6
MAC36-7
MAC36-B
MAC37-1
MAC37-2
MAC37-3
MAC37-4
MAC37-5
MAC37-6
MAC37-7
MAC37-8
MAC3B-l
MAC38-2
MAC3B-3
MAC3B-4
MAC3B-5
MAC3B-6
MAC3B-7
MAC38-8
MAC77-1 ,
MAC77-2
MAC77-3
MAC77-4
MAC77-5
MAC77-6
MAC77-7
MAC77-8
MAC5571
MAC5572
MAC5573
MAC5574
MAC40802
MAC40803
MAC40804
MCR106-1
MCR106-2
MCR106-3
MCR106-4
MCR106-5
MCR106-6
MCR106-7
MCR106-8
MCR306-1
MCR306-2
MCR306-3
MCR306-4
MCR306-5
MCR306-6
MCR600-1
MCR600-2
MCR600-3
MCR600-3.5
MCR600-4
MCR80B-l
. MCR80B-2
MCR808-3
MCR808-4
MCRB08-5
MCRB08-6
MCR808-7
MCR808-8

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

2N6159
2N6160
2N6160
2N6160
2N6160
2N6161
2N6161
2N6162
2N6162
2N6157
2N6157
2N6157
2N6157
2N6158
2N6158
2N6159
2N6159
2N6160
2N6160
2N6160
2N6160
2N6161
2N6161
2N6162
2N6162
2N606B
2N6069
2N6070
2N6071
2N6072
2N6073
2N6074
2N6075
2N5571
2N5572
2N5573
2N5574
2N6145
2N6146
2N6147
2N6236
2N6237
2N623B
2N6239
2N6240
2N6240
2N6241
2N6241
2N6236
2N6237
2N6238
2N6239
2N6240
2N6240
MCR102
MCR103
MCR104
MCRl15
MCR120
MCR3818-1
2N5164
MCR3818-3
2N5165
MCR3818-5
2N5166
MCR3818-7
2N5167

PART NO.

MCR808-9
MCR808-10
MCR808R2
MCR808R4
MCR808R6
MCR808R8
MCR1305R2
MCR1305R4
MCR1305R6
MCR1305RB
MCR130B-l
MCR130B-2
MCR130B-3
MCR1308-4
MCR1308-5
MCR1308-6
MCR130B-7
MCR1308-8
MCR130B-9
MCR130BR2
MCR130BR4
MCR130BR6
MCR130BR8
MCR1604-1
MCR1604-2
MCR1604-3
MCR1604-4
MCR1604-5
MCR1604-6
MCR1604-7
MCR1604-8
MCR2305-1
MCR2305-2
MCR2305-3
MCR2305-4
MCR2305-5
MCR2305-6
MCR2305-7
MCR2305-B
MCR2315-1
MCR2315-2
MCR2315-3
MCR2315-4
MCR2315-5
MCR2315-6
MCR2315-7
MCR2315-8
MCR2604-1
MCR2604-2
MCR2604-3
MCR2604-5
MCR2604-6
MCR2604-7
MCR2604-8
MCR2604-B
MCR2604Ll
MCR2604L2
MCR2604L3
MCR2604L4·
MCR2604L5
MCR2604L6
MCR2604L7
MCR2604L8
MCR281B-l
MCR2818-2
MCR2818-3
MCR2818-4

MOTOROLA
MOTOROLA
SII~ILAR
DIRECT
REPLACEMENT REPLACEMENT

MCR3818-9
2N2647-10
2N5164
2N5165
2N5166
2N5167
2N5168
2N5169
2N5170
2N5171
MCR3918-1
2N5168
MCR391B-3
2N5169
MCR391B-5
2N5170
MCR391B-7
2N5170
MCR3918-9
2N516B
2N5169
2N5170
2N5171
2N4183
2N4184
2N41B5
2N41B6
2N4187
' 2N4188
2N4189
2N4190
2N4167
2N4168
2N4169
2N4170
2N4171
2N4172
2N4173
2N4174
2N4167
2N416B
2N4169
2N4170
2N4171
2N4172
2N4173
2N4174
2N4183
2N4184
2N4185
2N4187
2N4188
2N4189
2N4186
2N4190
2N4183
2N4184
2N41B5
2N41B6
2N4187
2N41BB
2N41B9
2N4190
MCR3818-1
2N5164
MCR3818-3
2N5165

DEVICES NOT SHOWN IF MOTOROLA NUMBER IS IDENTICAL.
REFER TO CHAPTER 1

6-5

PART NO.

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

MCR2818-5
MCR2818-6
MCR2818-7
MCR2818-8
MCR2818R2
MCR2818R4
MCR2818R6
MCR2B1BRB
MCR2B35-1
MCR2B35-2
MCR2835-3
MCR2835-4
MCR2B35-5
MCR2835-6
MCR2835-7
MCR2835-B
MCR291B-l
MCR2918-2
MCR291B-3
MCR291B-4
MCR2918-5
MCR2918-6
MCR2918-7
MCR291B-B
MCR291BR2
-4R2918R4
MCR2918R6
MCR291BR8
MCR2935-1
MCR2935-2
MCR2935-3
MCR2935-4
MCR2935-5
MCR2935-6
MCR2935-7
MCR2935-B
MCR3000-1C
MCR3000-2
MCR3000-3C
MCR3000-4
MCR3000-5C
MCR3000-6
MCR3000-7C
MCR3000-B
MCR3000-9C
MCR3000-10C
MCR3818,R-2
MCR3818,R-4
MCR3818,R-6
MCR3818,R-8
MCR3835-3
MCR3835-4
MCR3835-6
MCR3835-8
MCR391B,R-2
MCR3918,R-4
MCR391B,R-6
MCR391B,R-8
MCR3935-3
MCR3935-4
MCR3935-6
MCR3935-8
MCR4018-3
MCR401B-4
MCR401B-5
MCR4018-6
MCR4018-7

MCR3818-5
2N5166
MCR3818-7
2N5167
2N5164
2N5165
2N5166
2N5167
MCR3B35-1
MCR3B35-2
2N3B7O
2N3871
MCR3B35-5
2N3872
MCR3B35-7
2N3B73
MCR391B-l
2N5168
MCR3918-3
2N5169
MCR3918-5
2N5170
MCR3918-7
2N5171
2N516B
2N5169
2N5170
2N5171
MCR3935-1
MCR3935-2
2N3896
2N3897
MCR3935-5
2N3898
MCR3935-7
2N3899
MCR3000-1
2N4441
MCR3000-3
2N4442
MCR3000-5
2N4443
MCR3000-7
2N4444
MCR3000-9
MCR3000-10
2N5164
2N5165
2N5166
2N5167
2N3870
2N3871
2N3872
2N3873
2N516B
2N5169
2N5170
2N5171
2N3B96
2N3B97
2N3B98
2N3B99
2N6167
2N6168
2N6169
2N6169
2N6170

THYRISTOR CROSS REFERENCE (continued)

PART NO.

•

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

MCR4018·8
MCR4035-3
MCR4035-4
MCR4035·5
MCR4035-6
MCR4035-7
MCR4035·8
MPT20
MPT24'
MPT28
MPT32
MPT36
MPU231
MPU232
MPU233
MU970
MU971
0200E3
0201014
02025G
02025H
02040D
0401014
04025G
04025H
04040D
0501014
05025G
05025H
0601014
06015G
06015H
06040D
S0301MS3
S0303lS2
S0303lS3
S030Bl
S0325C
S0325G
S0325H
S0335G
S0335H
S0501MS3
S0503lS2
S0503lS3
S0525C
S0525G
S0525H
S0535G
S1001MS3
S1003lS2
S1003lS3
S1008l
S1025C
S1025G
S1025H
S1035G
S2001MS3
S2003lS2
S2003lS3
S2025C
S2025G
S2025H
S2035G
S2035H
S2800A SERIES
S40068

2N6170
2N6171
2N6172
2N6173
2N6173
2N6174
2N6174
1N5758
1N5759
1N5760
1N5761
1N5762
2N6116
2N6117
2N6118
2N2646
2N2647
MAC92-4
2N6346A
MAC37-4
MAC38-4
MAC40688
2N6347A
MAC37-6
MAC38-6
MAC40689
MAC10-7
MAC37-7
MAC38-7
2N6348A
MAC40797
MAC40798
MAC40690
MCR1906-1
MCR106-1
MCR106-1
MCR3000-1
MCR649-1
MCR3835-1
MCR3935-1
MCR3835-1·
MCR3935-1
MCR1906-2
MCR106-2
MCR106-2
MCR649-2
MCR3835-2
MCR3935-2
MCR3835-2
MCR1906-3
MCR106-3
MCR106-3
MCR3000-3
MCR649-3
MCR3818-3
MCR3896
MCR3870
MCR1906-4
MCR106-4
MCR106-4
MCR649-4
MCR3818-4
MCR3897
MCR3871
MCR3897
NOTE 1
MCR729-6

PART NO.

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

S4008l
S4025C
S4025G
S4025H
S4035G
2N3872
S4035H
2N3898
S5OO68
S5008l
S5025C
S5025G
S5025H
S5035G
MCR3835-7
S5035H
MCR3935-7
S60068
S6025G
S6025H
S6035G
2N3873
S6035H
2N3899
S6200A SERIES NOTE 1
S6210 SERIES NOTE 1
S6220A SERIES NOTE 1
SC141
NOTE 1
SC141A SERIES NOTE 1
SC141A1
SC141A
SC1418
SC14181
SC1418 SERIES NOTE 1
SC141C
SC141C1
SC141C SERIES NOTE 1
SC141D
SC141D1
SC141D SERIES NOTE 1
SC141E
SC141E1
SC141E SERIES NOTE 1
SC141M
SC141M1
SC141M SERIES NOTE 1
SC146A
SC146A1
SC146A SERIES NOTE 1
SC1468
SC14681
SC1468 SERIES NOTE 1
SC146C
SC146C1
SC146C SERIES NOTE 1
SC146D
SC146D1
SC146D SERIES NOTE 1
SC146E
SC146E1
SC146E SERIES NOTE 1
SC146M
SC146M1
SC146M SERIES NOTE 1
SC245 SERIES NOTE 1
SC246 SERIES NOTE 1
SC250 SERIES NOTE 1
SC251 SERIES NOTE 1
SC260 SERIES NOTE 1
SC261 SERIES NOTE 1
S0303lS2
S0503lS2
S1003lS2
S2003lS2
S4003lS2
S6003lS2
T2300A
T23008
T2300C
T2300D
T2300E
T2300F
T2300M
T2301A
T23018

DEVICES NOT SHOWN IF MOTOROLA NUMBER IS IDENTICAL;
REFER TO CHAPTER 1

MCR3000-6
MCR649-6
2N3872
2N3898
MCR729-7
MCR3000-7
MCR649·7
MCR3835-7
MCR3935-7
MCR729-8
MCR3835-8
2N3899

PART NO.

MOTOROLA
MOTOROLA
DIRECT
SIMILAR
REPLACEMENT REPLACEMENT

T2301C
T2301D
T2301E
T2301F
T2301M
T2302A
T23028
T2302C
T2302D
T2302E
T2302F
T2302M
T2500 SERIES
T2800 SERIES
T2801 SERIES
T2802 SERIES
T2850A
T28508
T2850D
T4120 SERIES
T412i SERIES
T6400 SERIES
T6401 SERIES
T6410 SERIES
T6411 SERIES
T6420 SERIES
T6421 SERIES

NOTE r
NOTE 1
NOTE 1
NOTE 1

T2301PC5
T2301PD5
T2301PE5
T2301PF5
T2301PM5
T2302PA5
T2302P85
T2302PC5
T2302PD5
T2302PE5
T2302PF5
T2302PM5

2N6346A
2N6346A
2N6347A
NOTE 1
NOTE 1
NOTE 1
NOTE 1
NOTE 1
NOTE 1
NOTE 1
NOTE 1

MCR106-1
MCR106-2
MCR106-3
MCR106-4
MCR106-6
MCR106-8
T2300PA5
T23OOP85
T2300PC5
T2300PD5
T2300PE5
T2300PF5
T2300PM5
T2301PA5
T2301PA5
NOTE 1: MOTOROLA DEVICE NUMBERS IDENTICAL

6-6

Thyristor Data Sheets

7-1,

II

IN 5758, A
thru
IN5762,A

DIACS

BIDIRECTIONAL DIODE THYRISTORS
two-terminal 3-layer devices that exhibit bidirectional negative resistance switching characteristics_ These economical, durable
devices have been developed for use in thyristor triggering circuits
for lamp drivers and universal motor' speed controls.
o Switching Voltage Range - 20 to 36 Volts Nominal
o Symmetrical Characteristics
.. Passivated Surface for Reliability and Uniformity

*MAXIMUM RATINGS (TA = 25 0 C unless otherwise noted)
Rating

Symbol

Peak Pulse Current
130 IlS duration, 120 Hz

Value

Unit
MT1

Amp

Ipulse

MT2

2.0

repetition rate)

P~wor Dissipation @ T A = -40 to +2SoC

300
4.0

mW
mW/oC

TJ

-40 to +100

°c

T stg

-40 to +150

°c

Po

Derate above 2SoC
Operating Junction Temperature Range

Storage Temperature Range

T

Symbol

Characteristic

IT A

lN5758
lN5759
lNS760
lN5761
lN5762
lN5758A
lN5759A
lN5760A
lN5761A
lN5762A
IS
CI

1 N5758/5762
1 N5758A/5762A

(Both Directions)

= IS to 1=

10mAI

lN5758.A,1 N5759.A
lN5760.A.61.A,62.A

Leakage Current

16
20
24
28
32
18
22
26
30
34

24
28
32
36
40
22
26
30
34
38

-

100
25

5.0
7.0

-

Peak Pulse Amplitude (Rgure 11
(Both POlarities)
lN5758.A,IN5759,A
1 N5760.A.61.A.62.A

K

1
·0

j 0

I SECT. A·A

Il A

10
Volts

(Vs+I-IVS-1

lN5758/5762
1 N5758A15762A

Unit

STYLE J:
PIN 1. MAIN TERMINAL 1
2. MAIN TERMINAL 2

Volts

-

(Both Directionsl.IApplied Voltage = 14 Voltsl

---

Il A

18

Switching Voltage Symmetry

T

Volts

EN

Switching Voltage Change

(1".1

Max

Vs

Switching Current
(Both Directions)

= -40to+75 0

Min

,----

SEATING
PLANE

*E:LECTRICAL CHARACTERISTICS ITA = 25°C unless otherwise noted)

Switching Voltage
(Both Directions)

1
A

,

-

±4.0
±2.0

3.0
5.0

-

Volts

-'ndlcatosJEDEC Registered Data.

7-2

DIM
A
0
J
K

MILLIMETERS
MIN
MAX

4.45
0.41
.2.29
12.70

4.70
0.48
2.79

INCHES
MAX
MIN

0.175
0.DI6
0.090
·0.500

CASE 182-03

0.185
0.DI9
0.110

1N5758,A thru 1N5762,A

TYPICAL ELECTRICAL CHARACTERISTICS
FIGURE 1 - PEAK PULSE AMPLITUDE TEST CIRCUIT

FIGURE 2 - VOLT·AMPERE CHARACTERISTICS

Cl

Rl

1(+)

"

10 k

I
I

f-~v+-:

I

10mA - - - - - -

Oiodo
Under

50 V

R2

VI-) -~~==::~::;:;;:::=;:::::fr~-=-=-=:-T===~l;_V(+)
r---i

V out

lOOn

Test

I

I

Vs

ls

I

____ J 10mA

T

Reverse

FIGURE 3 - BREAKDVER VOLTAGE BEHAVIOR

Forward

IC-)

FIGURE 4 - NORMALIZED OUTPUT VOLTAGE BEHAVIOR

2.0

20

""11!
"
~
w

1.5

N
::l 15

""~
">to

1.0

~::l

I

'-

"

IS" IOmA

W

to

0.9

~Ev'ERSE

z 0.8

:;:
~

0.7

~c;j

0.6

""
"

~
;;;

-

FORWARD

--.........

I=;--FORWARD

W

to

~""
>

~

">'"

10
09

~ERSE

--=-

---(-....

.......

08

~

07
U6

>
0.5
-40

-20

40

20

60

05
-40

100

80

-20

TJ. JUNCTION TEMPERATURE (DC)

FIGURE 5 - SWITCHING TIMES

~

II

150k

REVERSE
70

'">=
w

w

60
50

~

"'

,,;

40

0.3.F-:J'

il'---,

II
FORWAiiD"

60

100

L1Q-~~r-~----------,

~

Load

6.0 to 900
Watts

10%

~ R(

tr

"ADJUSTED FOR Ip

.............

-

--

117 V Ac
60 Hz

Motorola
Bilateral
Trigger

0.021'F

• 20
10

o

L26----~~---~------~

0.1

'"

FIGURE 6 - CONTROL CIRCUIT

30

0.05

80

RL

TJ - 25 0 C
80

40

TJ. JUNCTION TEMPERATURE (DC)

100
90

20

0.2

0.3

0.5

1.0
Ip. PEAK CURRENT (AMPERES)

2.0

3.0

5.0

7-3

Motorola
2N6148
Triac

2N681
thru
2N692

SILICON
CONTR.DLLED RECTIFIER

REVERSE BLOCKING TRIODE THYRISTORS
designed primarily for half·wave ac control applications, such
as motor controls, heating controls and power supplies; or where·
ever half·wave silicon gate·controlled, solid·state devices are needed .

25 AMPERES RMS
25·800 VOL TS

• Glass Passivated Junctions and Center Gate Fire for Greater Para·
meter Uniformity and Stability
• Blocking Voltage to 800 Volts

MAXI MUM RATINGS (T J = 125°C unless otherwise noted)
Rating

•

'Peak Repetitive Off·State Blocking Voltage (1)
2N681
2N682
2N683
2N684
2N685
2N686
2N687
2N68B
2N689
2N690
2N691
2N692
·Peak Non-Repetitive Reverse Voltage
2N681
2N682
2N683
2N684
2N685
2N686
2N687
2N688
2N689
2N690
2N691
2N692
"AMS On-State Current (All Conduction Angles)

Symbol
VRRM
or
VORM

Value

Unit
Volts

25
50
100
150
200
250
300
400
500
600
700
800
Volts

VRSM
35
75
150
225
300
350
400
500
600
720
840
960
IT(RMS)

25

Amp

IT(AV)

16

Amp

·Peak Non-Repetitive Surge Current
(One cvcle, 60 Hz, preceded and followed
by rated current and voltage)

ITSM

150

Amp

Circuit Fusing Considerations
(T J = -40 to +1250 C, t = 1.0 to 8.3 ..;,)

12 t

93

A 2,

-Average On-State Current (TC - 6SoC)

·Peak Gate Power
* Average Gate Power

·Peak Forward Gate Current 2N681·2N689
2N690-2N692
"Peak Gate Voltage - Forward
Reverse
·Operating Junction Temperature Range
·Storage Temperature Range
Stud Torque

PGM

5.0

Watts

PG(AV)

0.5

Watt

IGM

2.0
1.2

Amp

VFGM
VRGM

10
5.0

Volt,

TJ

-65 to +125

uC

T stg

-65 to +150

°c

-

30

in. lb.

MILLIMETERS
INCHES
MIN
MIN
MAX
MAX
A 15.34 15.60 0.604 0.614
B
14.00 14.20 0.551 0.559
C 26.67 30.23 1.050 1.190
F
3.43 4.06 0.135 0.160
2.29 REF
0.090 REF
H
J
10.67 11.56 0.420 0.455
15.75 17.02 0.620 0.670
K
7.62 8.89 o..OU! 0.• 5
l
n
1.4
2.16 U.U~~ ! 0.08
1.65 REF
R
0.065 REF
T 12.73 12.83 0.501 0.505

DIM

STYLE 1:
PIN 1. CATHODE
2. GATE
3. ANODE
CASE 263-03

7-4

2N6al thru 2N692

THERMAL CHARACTERISTICS
Characteristic

Max

Symbol

Thermal Resistance, Junction to Case

Unit

2.0

ElECTR ICAl CHARACTERISTICS (T J = 25°C unless otherwise

noted'!

Characteristic

Symbol

-Average Forward or Reverse Blocking Current
(R.ted VORM or VRRM. gate open •
. TJ = 125°C)

Typ

Min

Max

Unit

mA

IO(AV).IR(AV)

-

2N681·2N684
2N685
2N686
2N687
2N688
2N689
2N690
2N691
2N692

Peak Forward or Reverse Blocking Current
(Rat~d VORM or VRRM. gate open. T J = 125°C)

-

-

-

-

-

6.5
6.0
5.5
5.0
4.0
3.0
2.5
2.25
2.0

-

-

2.0

-

-

-

-

-

-

mA

IORM.IRRM

·Peak On-State Voltage
(lTM = 50.3 A peak. Pulse Width .. 1.0 ms.
Outy Cycle .. 2.0%)

VTM

Gate Trigger Current. Continuous de

IGT

mA

-

-

40
80

-

0.65

-

2.0
3.0

0.25

-

-

IH

-

7.3

50

mA

dv/dt

-

30

-

VII's

(VAK = 12 Vdc. RL = 50 nJ
"(VAK = 12 Vdc. RL = 50 n.TC = -65°C)

-

Gate Trigger Voltage, Continuous de
·(VAK = 12 Vdc. RL = 50 nJ

Volts

2.0

Volts

VGT

"(VAK = 12 Vdc. RL = 50 n. TJ = -65°C)

·Gate Non-Trigger Voltage

Volts

VGO

(Rated VORM. RL = 50 n. TJ = 125°C)
Holding Current
(VAK = 12 Vdc. Gate Open)
Critical Rate of Rise of Off·State Voltage

(Rated VORM. Exponential Waveform, T J

= 125°C,

Gate Open)

·Indicates JEDEC Registered Data.

FIGURE 2 - MAXIMUM ON·STATE POWER DISSIPATION

FIGURE 1 - AVERAGE CURRENT DERATING

125

~

G

...

~115

w

" "
'"

~ 105
~

95

~

85

'"'"

~~

I'..

~

....
w

a: 300

r-.;;:

~~

1'..'

S24
~

,.

90·

§

"

dc_

r-.... I"

.'"
.

-

ffi

i'... r-....
'I r-....
1200
1 II

>

o

II
2.0

4.0

6.0

8.0

10

12

I
14

I -lcrl-; ---r---t--+-:-I7'~"'T-""7'"
CON~UCTION ANGLE

12r----t----+~~~~~~~+_--~~--_+--~

TJ.125·C

:;;8.0r---t--,..r..51111""1""'-_+--+_-~~-_+-~

$

IS>

~ 65

• =

ffi20r----t----+----~--_+~~~~~~""7~--~
o
~ 16r----t----+---,~~~~~~~~~--_+--~

L
t'-,.

180·

A

;;;28

- -

:-"

I'...:
"-0 '-..,: i'...

75

55

-

-

• = CON~UCTION ANGLE

60

::>

X

A-1"1-

...... ~ ~

'"::>

~r---r--.--.---r--.--.---r--'

L

"'iil'llll ...
:""IIi lSI.!

... 4.0\---:l..,.."f---\---+--+-----j---j--+--{

16

2.0

IT(AV). AVERAGE ON·STATE CURRENT (AMP)

6.0

8.0

10

12

IT(AV). AVERAGE ON-STATE CURRENT (AMPS)

7-5

14

16

2N681 thru' 2N692

FIGURE 3 - ON-STATE CHARACTERISTICS

FIGURE 4 - MAXIMUM'NON-REPETITIVE SURGE CURRENT

10q

150

70

Ii:

~

-

20

i

:::: 10
a:

~

z

7.0

5.0

~'"

~

"' '"

1=60Hz

120
-

~110

If
VLY\.=
I CYCLEl

.........
.......

~

SURGE IS PRECEDED AND
FOLLOWED BY RATED
CURRENT AND VOLTAGE

.........
.......
......

100
1.0

3.0

2.0

I

4.0

6.0

B.o

10

NUMBER OF CYCLES

I

o

~ 3.0

~
;!;

5.:

250 C

I .

o

Z~

~ 130

II

!z

"

'"a:to

TJ=1250 C /

~

~

ffi
a:

/

30

~

~14D

~

50

I
I

2.0

L

.

•1::" 1.0

,

0.7

I

0.5

I

I

0.3

I

0.2

•

I

0.1

1.4
1.B
2.2
2.6
3.0
VTM, MAXIMUM INSTANTAN EOUS ON-STATE VO LTAG E (VOLTS)

1.0

FIGURE 5 - THERMAL RESPONSE
UJ

~

~

iii

1.0
0.7
0.5

...-

0.3

ko-"'"

~c 0.2

<'"
",!:>!

ffi ~

"''''

i-""

0.1

Z9JC(t) = R9JC. r(l)

:: ~ 0.07
ffi - 0.05
in
:'i 0.03

'"

I-

~

0.02
0.01
0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

1.0

20 3D
50
I, TIME (m~

7-6

100

200

300

500

1.ok

2.ok 3.0k 5.ok

10k

2N681 thru 2N692

,
TYPICAL CHARACTERISTICS

FIGURE 7 - GATE TRIGGER CURRENT

FIGURE 6 - PULSE TRIGGER CURRENT
100
10
~

=

OFF·STATE VOLTAGE -12 V
RL'50n-

50

5 30 "\.

~~

20

~

=>
'-'

,

I""'---

\

OFFISTATEIVDLT~GE 'li V

RL'?On-

i'-.........

TJ' -55 0 C
I

r....

IIII

'" 10
!;(
t::I

2.0

.......

25°C

7.0

..........

~ 5.0

'-....

r-

~

3.0
.- 2.0

'"

1.0
0.2

0.5

1.0

h11+
IIII

2.0

5.0

10

'-....

.-

........
20

50

100

2.0
-60

200

..........
-40

-20

FIGURE 8 - GATE TRIGGER VOLTAGE
1.0

~

~

0.8

r-....

'"
~
o
>

ffi

DFF1TATE

r--.....

~
a;

BO

100

120

140

FIGURE 9 - HOLDING CURRENT

lOLTA~E' Jv-

OFIF-STATIE

VOL~AGE ,112 V
RL'50n-

I 'r-.......

. . . 1'
........

60

20

RL' 50 n

0.6

40

TJ. JUNCTION TEMPERATURE IDe)

PULSE WIDTH 1m,)

~

20

I-....

..........

t-....

r--....

...........

I-

'"~ 0.4
..:

......
.............

r--.......

...........
3.0

~

0.2
-60

-40

-20

20

40

60

BO

100

120

2.0
-60

140

-40

-20

10

40

60

BO

TJ. JUNCTION TEMPERATURE IDe)

TJ. JUNCTION TEMPERATURE IDe)

7-7

100

120

140

2N1595
thru
2N1599
G

A

o>-----1.M~::.....----ft"",~+-----+---.,--+-----+-''t---+------i

~~'10

~~

"'~~100~---+--~;-~~~~-P~--+-

"'-

~ ~ 80

-'I-

"''''
~~

901---+--- 30

~ I-

SO

:5 ~

120f-"l-",......,r-

°,.

j!;;(

-600 •

"'ffi

90·

I
~I?!~"S;". 39. S9.CIRCUIT _---';"'--'!-ISo"-il-""',-+----,

SO~----+-----~~~~~~~~--+-----+---~

"'~

"''''
~ ~ 401-----1-----1--'1.-1'<-....."''''''''----."...0;:---+-----1
«
'"

RESISTIVE OR INDUCTIVE LOAD. 50 to 400 Hz
70 121 CASE TEMPERATURE MEASURED AT CENTER -t--+-"...-l
OF BDnOM OF CASE
60 (3) 12SoC JUNCTION TEMPERATURE
"1.4
I.S
1.0
1.2
o
0.2
0.4
O.S
O.S

~

201-----1-----1----J~~--~~~

°0L---~OL"I----~0~"2~--~----~0~.4----~0~.~~--~0~.S~--,,:0.7

IFIAVI. AVERAGE FORWARO CURRENT IAMPI

IFIAVI, AVERAGE FORWARD CURRENT IAMPI

7-9

2N1842
thru
2N1850
Ac

SILICON
CONTROLLED RECTIFIERS

REVERSE BLOCKING TRIODE THYRISTOR
designed primarily for half-wave ac control applications, such
as motor controls, heating controls and power supplies; or whereever half-wave silicon gate-controlled, solid-state devices are needed.

16 AMPERE RMS

25-500 VOLTS

• Glass Passivated Junctions with Center Gate Geometry for
Greater Parameter Uniformity and Stability
• Blocking Voltage to 500 Volts

. MAXIMUM RATINGS ITJ = 10o"C unless otherwise noted I
Rating
··Peak Repetitive Forward or Reverse Blocking
Voltege {II
2N1842
2NI843
2NI844
2NI845
2NI846
2NI847
2NI848
2NI849
2N1850
*Non·Repetitive Peak R,8verse Voltage
2NI842
2NI843
2NI844
2NI845
2NI846
2NI847
2NI848
2NI849
2NI850
• Average OnoState Current (TC = 35u CI

Symbol

25

50

VAAM

100
160
200
250
300
400
500
Volts

VASM

'
~
A~

35
75
150
225
300
350
400
500
600

*,..eak Non-Repetitive Surge Current

•

Unit
Volt.

Value

VOAM
or

lOne cycle, 60 Hz, preceded and followed

B T

ITIAVI
ITSM

10
125

Amp
Amp

12,

60

A 2s

PGM

5.0
0.5
2.0

Watts
Watt
Amp

10
5.0

Volts

-40 to +100

uC

by rated current and voltage)

Circuit Fusing
{TJ = -40 to +1 OOoC, t = 1.0 to 8.3 mol

·Peak Gate Power
... Average Gate Power

PGIAVI
IGM

·Peak Forward Gate Current
·Peak Gate Voltage - Forward
Reverse
·Operating JUnction Temperature Range

VFGM
VAGM
TJ
T stg

·Storage Temperature Range

°c

-40 to +125

THERMAL CHARACTERISTICS
Characteristic
Thermal Aesistance, Junction to Case

I
I

Symbol
ASJC

I
I

Max
2.0

I
I

Unit
°CIW

{I I VOAM and VAAM for .n types can be applied on a continuous de basis without
incurring damage. Ratings apply for zero or negative gate voltage. Devices should
not be tasted for blocking capability In a manner such thet the voltage supplied
exceeds the rated blocking voltage.
"Indicate. JEOEC Aagistered Data.

DIM

A
B

C
F
H
J
K

L
Q

R
T

MILLIMETERS
MIN
MAX
15.34 15.60
14.00 14.20
26.67 30.23
3.43 4.06
2.29 REF
10.67 11.56
15.75 17.02
7.62 B.••
1.4U
2.16
1.65 REF
12.73 12.B3

INCHES
MIN
MAX
0.604 0.614
0.551 0.559
1.050 1.190
0.135 0.160
0.090 REF
0.420 0.455
0.620 0.670
0.300 _0~50
0.OB5
U.U"
0.065 RE>
0.501 0.505

STYLE 1:
PIN 1. CATHODE
2. GATE
3.ANDDE

CASE 263-03

7-10

2N1842 thru 2N1850

ELECTRICAL CHARACTERISTICS (TC = 25°C unle.. otherwise noted.)
Symbol
Characteristic
"Average Forward or Rove ..... Blocking Current
IO(AV),1R(AV)
(VO 2 Rated VORM. VR = Rated VRRM.TC = 35°C)'
2NI842
2NI843
2NI844
2NI845
2N1B46
2NI847
2NI848
2NI849
2N1850
Peak Forward or Reverse Blocking Current

Min

Typ

Max

-

-

22.5
19
12.5
6.5
6.0
5.6
5.0
4.0
3.0

-

-

-

-

Unit
mA

mA

IORM,IRRM

(VO Rated VORM. Vb = Rated VRRM. gate open.
TC = 100°C) I
"Peak On-5tate Voltaga
(ITM· 31.4 A peak. Pulse Width"; 1.0ms.
Outy Cycle"; 2.0')6)
Gate Trigger Current. Continuous de
(VO = 12 Vdc. RL = 50 .n)
"(VO = 12 Vdc. RL = 5O.n. TC = -4DoC)
Gate Trigger Voltage. Continuous de
(VO = 12 Vdc. RL = 50.n)
"lVo = 12 Vdc. RL = 5O.n. TC = -40°C)
"(VO RatedVORM. RL = 5O.n. TC = 100°C)

-

-

-

VTM

6.0
2.5

-

Volts

mA

IGT

-

6.0

-

0.65

VGT

-

IH

(VO = 12 Vdc. Gate Open)
Critical Rate of Rise of Off·State Voltage
(VO = Ratad VORM. Exponential Waveform.
TC = IODoC. Gate Open)

-

7.0
30

-

-

mA

-

dv/dt

Voits

3.5

-

0.3

Holding Current

80
150

VII'S

*lndiCBtes JEDEC Registered Data.

FIGURE 1 - AVERAGE CURRENT OERATING

FIGURE 2 - GATE TRIGGER CURRENT

~100~~-r----r----r----r----r----r---~----'

2.0

Off~TATEIVOLT~GE = Ii V

or
'"
:::>

i

RL=50n-

80

::;;
~

0

'" 60
~

~---t--~~~~~

i

0

40

~---+----I--

.....
~

0

~
...

......

INDUCTIVE LOAD, 50 TO 400 CPS

0~0--~----~--~--~--~10----1~2--~1~4--~16

2.0
·60

·40

·20

ITIAV). AVERAGE fORWARD CURRENT lAMPS)
10

offlTATE
0.8

>
~ 0.6

'"
!;;:

lOLTA~E'
lJ V_
RL = 50"

80

100

120

140

OF 1f-8TAT 1E VOLiAGE = \2 V
RL=50n-

1

.... 10

r---......

~

or

.......

"'....a;

60

FIGURE 4 - HOLOING CURRENT

...... r---......

o

40

20

. . . r--....,

"'~

20

TJ. JUNCTION TEMPERATURE loC)

FIGURE 3 - GATE TRIGGER VOLTAGE

~

~

.........

0

DC. 1¢. 3.t>. 641. CIRCUIT·RESISTIVE OR

~

::;;

.2

1"-

'

~ 20~--~---+---1----r---+---~--~~~
::;;

•

__r-~~~~~~~~~

<.)

'"

r--....

a

.........

....

"'z

.9o 5.0

........

r--..
~

'"~

0.4

"'...:

3.0

$'
0.2
·60

·40

·20

20

- 40

60

80

100

120

2.0
·60

140

TJ. JUNCTION TEMPERATURE loC)

·40

·20

~

40

W

~

TJ. JUNCTION TEMP~RATURE loC)

7-11

~

W

140

2N1842A

thru
211850A

Ao

REVERSE BLOCKING TRIODE THYRISTOR
designed primarily for half·wave ac control applications, such
as motor controls, heating controls and power supplies; or where·
ever half·wave silicon gate·controlled, solid·state devices are needed.
• Glass Passivated Junctions. with Center Gate Geometry for
Greater Parameter Uniformity and Stability
• . Blocking Voltage to 500 Volts
• Junction Temperature Rated

@

SILICON CONTROLLED
RECTIFIERS
16 AMPERE RMS
26 - 500 VOLTS

1250 C

MAXIMUM RATINGS ITc= 125°C unless otherwise noted.}
Rating

Symbol

·Peak Repetitive Forward or
Reverse Blocking Voltage (1)

2N1842A
2NI843A
2N1844A
2NI845A
2NI846A
2NI847A
2NI848A
2NI849A
2N1850A

·Non-Repetitive Peak Reverse Voltage

•

Unit

Value

Volts

VORM
or
VRRM

25
50
100
150
200
250
.300
400
500
Volts

VRSM

2NI842A
2NI843A
2N1844A
2N1845A
2NI846A
2NI847A
2NI848A
2NI849A
2N1850A

35
75
150
225
300
350
400
500
600

• Average On·Stete Current (T C = 80°C)
·Peak Non-Repetitive Surge Current

IT(AV)

10

Amp

ITSM

125

Amp

12t

60

A 2,

(One cycle. 60 Hz. preceded and followed
bV rated current and voltage)

Circuit Fusing
(TJ = -65 to +1250 C, t

= 1.0 to 8.3 msl

·Peak Gate Power
• Average Gate Power

·Peak Forward Gate Current

·Peak Gate Voltage - Forward
Reverse
·Operating Junction Temperature Range

·Storage Temperature Range

PGM

5.0

Watts

PG(AVI

0.5

Watt

IGM

2.0

Amp

VFGM
VRGM
TJ

10
5.0

Volts

-65 to +125

vc

T stg

-65 to +126

°c

A

THERMAL CHARACTERISTIC
Characterlstio
Thermal ResistancB, Junction to Case

I

Symbol

1

R8JC

J
J

Max
2.0

DIM

l
l

B

C
F
H
J
K

Unit
°CIW

(1 I VORM and VRRM for a" types can be applied on a continuous de basis without
incurring damage. Ratings apply for zero or negative gate voltage. Devices should

not be tested for blocking capability in a manner such that the voltage suppUed
exceeds the rated blocking voltage.
*Indicates JEDEC Registered Data.

L

n
R
T

MILLIMETERS
MAX'
MIN
15.34 15.60
14.00 14.20
26.67 30.23
3.43 4.06
2.29 REF
10.67 11.56
15.75 17.02
7.62 8.89
1.40 2.16
1.65 REF
12.73 12.83

INCHES
MIN
MAX
0.604 0.614
0.551 0.559
1.050 1.190
0.135 0.160
0.090 REF
0.420 0.455
0.620 0.670
0.• 00 0.30"
0.055 0.085
0.06 REF
0.501 0.505

STYLE 1:
PIN 1. CATHODE
2. GATE
3.ANODE
CASE 263·03

7-12

2N1842A thru 2N1850A
(TC = 126·C unl... oll1_i.. noted.1
ChII,_iotic
Symbol
Min
• Average Forward or Reverse Blocking Current
'O(AVI.'R(AVI
(VO = Rated VORM or VR = Rated VRRM.
llllto open. TC - 12SoC)
2NI842A
2NI843A
2NI844A
2NI845A
2NI846A
2NI847A
2NI84BA
2NI849A
2N1850A

ELECTRICAL CHARACTERISTICS

Typ

Max

-

-

22.5
19
12.5
6.5
6.0
5.5
5.0
4.0
3.0

-

6.0
2.5

-

6.0

-

80
150

-

0.65

-

-

Peak Forward or Reverse Blocking Current

Unit
rnA

rnA

'ORM.'RRM

(VO = Rated VORM or VR = Rated VRRM.
gate open. TC = 125°C) ,
• Peak On-State Voltage
IiTM =31.4 A peak. Pulse Width" 1.0 ms.
Duty Cvcle" 2.0%1
Gate Trigger Current. Continuous de
(VO = 12 Vdc. RL = 50 n)
'VO = 12 Vdc. RL ~ 50 n;TC = -65°C)
Gate Trigger Voltage, Continuous de
(VO = 12 Vdc, RL = 50 n)
'(VO = 12 Vdc. RL = 50 n. TC = -40°C)
• (VO = 12 Vdc, RL = 50 n, TC = _65°C)
'(VO = Rated VORM. RL = 50 n. TC = 1250 CI

-

VTM

Volts

mA

IGT

Volts

VGT

-

-

Holding Current

-

-

7.0
30

-

mA

'H

(VO = 12 Vdc, Gate Open)
Critical Rate of Rise of Off-State Voltage

3.5
3.7

-

0.25

-

dV/dt

-

V/~S

(Vo = Rated VORM Exponential VVaveform.

TC

= 1250 C. Gate Open)

·Indicates JEDEC Registered Data.

FIGURE 1 - AVERAGE CURRENT DERATING
U 140 r---,---..,---,.--"T"""--,--"T"""--,.----,

FIGURE 2 - GATE TRIGGER CURRENT
2.0

!!..

'"::>
'"

i

~
'"<

DC,

130
125
120

I~. 3~. 6~, CIRCUIT·RESISTIVE DR
INDUCTIVE LOAD, 50 TO 400 ~PS

l...
z

~

"~
'"~
~

<
:;;
::>
:;;

x

<
:;;

~

I'

110

ffi

100

OFFISTATEIVOLT~GE. IJ V

0

RL,5O<>-

r-....
.......

70

.......

'"to

90

~ 5.0

80

'"~

.........
............

to

............

~3 0

DC
70
60

.......

.........

20

.2

4

10

14

12

16

,SO

-40

-20

IT(AV). AVERAGE FORWARO CURRENT (AMPS)

1.0
~

0

~ 0.8

r--....

to

«

~

>

ffi

OFF1TATE

r-....

0.6

........

............

to
to

..."'

'"~

......

100

120

140

~2

............

OF1F.STAT1E VOLiAGE'
V
RL' 50 n-

".....

0.4

80

20

IJV_
RL' 50!!

........

so

FIGURE 4 - HOLDING CURRENT

lOLTA~E'

i""--..

40

TJ, JUNCTION TEMPERATURE (OC)

FIGURE 3 - GATE TRIGGER VOLTAGE

0;

20

......

i""--..

..........

to

..:
to

..........

3.0

>

0.2
-SO

-40

-20

20

40

so

80

100

120

2.0
-SO

140

TJ, JUN.cTION TEMPERATURE 1°C)

I

-40

-20

20

40

so

80

TJ. JUNCTION TEMPERATURE (OC)

7-13

100

120

140

•

212322
thru
212329
SI LICON .cONTROLLED
RECTIFIER
REVERSE BLOCKING TRIODE THYRISTOR

1,6 AMPERE RMS

25 thru 400 VOLTS

· .. all-diffused PNP devices designed for gating operation in mAl
pA signal or detection circuits.
•

Low·Level Gate Characteristics
IGT = 200 pA (Maxi @ 250 C

•

Low Holding Current - IH = 2.0 mA (Maxi @25 0 C

• Anode Common to Case
• Glass·to·Metal Bond for Maximum Hermetic Seal

*MAXIMUM RATINGS (TC

=

250 C unless otherwISe noted RGK
Symbol

Rating
Peak Repetitive Forward and Reverse
Blocking Voltage

(Notes 2 and 3)

Non- Repetitive Peak Reverse Blocking Voltage

•

VRRM

25
50
100
150
200
250
300
400

Volts

VRSM
40
75
150
225
300

2N2322
2N2323
2N2324
2N2325
2N2326
2N2327
2N2328
2N2329

RMS On-State Current

Unit
Volts

VORM
or
2N2322
2N2323
2N2324
2N2325
2N2326
2N2327
2N2328
2N2329

(t" 5.0 ms, Notes 2 and 3)

= 1000 ohms)

Value

350
400
500
IT(RMS)

1.6

Amp

(All Conduction Angles)

Average On-State Current

=85 0 C
= 300 C

Peak Non-Repetitive Surge Current

(One Cycle,l!O Hz, T C

Amp

IT(AV)
TC
TA

=BOaC)

1.0
0.45
ITSM

15

Amp

PGM

0.1
0.01

Watt

Preceded and followed by rated current
and voltage
Peak Gate Power
Average Gate Power

PG(AV)

Peak Gate Current

IGM

Peak Gate Voltage

VGM

0.1
6.0

Operating Junction Temperature Range
Storage Ten,perature Range
Lead Solder Temperature

TJ

-65 to +125

TstQ

-65 to +150

-

+230

(>1/16" from case, 10 s max)

Watt
Amp
Volts

°c
°c
uc

STYLE 3:
PIN 1. CATHODE
2. GATE
3. ANODE (CONNECTED TO CASEI
MILLIMETERS
MIN MAX
8.89 9.40
B
8.00 8.51
6.10 6.60
C
0
0.406 0.533
E
0.229 3.18
F
0.406 0.483
G
4.83 5.33
H
0.711 0.864
J
0.737 1.02
K 12.70
L
6.35
M
450 NOM
P
1.27
Q
900 NOM
R
2.54
-

DIM
A

-

-

INCHES
MIN MAX
0.350 0.370
0.315 0.335
0.240 0.260
0.016 0.021
0.009 0.125
0.016 0.019
0.190 0.210
0.028 0.034
0.029 0.040
0.500
0.250
450 NOM
0.050
900 NOM
0.100

All JEDEC dimensions and notes apply. '
CASE 79·02
T0-39

-Indicat•• JEDEC Registered Data.

7-14

-

2N2322 thru 2N2329

ELECTRICAL CHARACTERISTICS (T c = 25 0 C unless otherwise noted RGK = 1000 ohmsl
Characteristic

Symbol

Min

Max

IRRM

-

100

Unit
j.lA

IDRM

-

100

j.lA

-

-

1.5
2.0

-

200
350'

-

0.8
1.0

0.1

-

-

2.0
3.0

0.15

-

·Peak Reverse Blocking Current

(Rated VRRM, TJ = 1250 CI
·Peak Forward Blocking Current

(Rated VORM, TJ = 1250 CI
Peal' On·State Voltage
(lTM = 1.0 A Peakl
(lTM = 3.14 A Peak, TC = 85 0 CI"
Gate Trigger Current (Note 11
(VD = 6.0 Vdc, RL = 100 ohmsl
(V 0 = 6.0 Vdc, R L = 100 ohms, T C = -650 CI
Gate Trigger Voltage
(VO = 6.0 Vdc, RL = 100 ohmsl
(VO = 6.0 Vdc, RL = 100 ohms, TC = -650 CI"
(VO = Rated VORM, RL = 100 ohm., TJ = 1250 CI"

jJ.A

IGT

Volts

VGT

Holding Current

(YO
(VO
(VO

Volts

VTM

mA

IH

= 6.0 Vdcl
= 6.0 Vdc, TC = -650 CI"
= 6.0 Vdc, TC = 1250 CI"

-Indicates JEDEC Registered Data.
Notes: 1. RGK current is not included in measurement.

2. Thyristor devices shall not be tested with a constant current

3. Thyristor devices shall not have a positive bias applied to the

source for forward or reverse blocking capability such that the

gate concurrently with a negative potential applied to the anode.

voltage applied exceeds the rated blocking voltage.

CURRENT DERATING

~

~
~

130

'"=>t-

~

w

~

t-

~

120

~ 120

w'

-'

90

'"j
'"'"=>
x"
"'"

u'

t-

15
~

80

'"
w

60

'";:'"
j

40

-'

'"

;:

--1+-

~ 100

t-

100

;3
w

~-+---+----I--+--~

~

--jaf--

110

~

t-

140

=>

w

•

FIGURE 2 - AMBIENT TEMPERATURE

FIGURE 1 - CASE TEMPERATURE

80

'"=>'"
"x
'"
...'"

10
60
0

0.4
0.6
0.8
1.0
1.2
ITIAVI. AVERAGE ON·STATE CURRENT lAMP)

1.4

","

7-15

de

20
0
0

0.1

0.2
0.3
0.4
0.5
0.6
ITIAVI. AVERAGE ONSTATE CURRENT lAMP)

0.1

2N2573 thru 212579
MCR649AP·I thru ·10

SILICON CONTROLLED
RECTIFIER
25 AMPERES RMS
25-500 VOLTS

REVERSE BLOCKING TRIODE THYRISTOR
designed for industrial applications such as motor controls,
heater controls, and power supplies, wherever half·wave or de silicon
gate controlled devices are needed.
• Glass PaSsivated Junctions for Maximum Reliability
• Center Gate Geometry'for Parameter Uniformity
• High Surge Current, ITSM = 260 A, for Crowbar Service
CASE 61-03

CASE 54-06

2N2573
thru
2N2579

r--;::=

~ ~E~.~~--I-

STV''''

~IN I. GATE
2.CATHOOf
CASE. ANODE I

MAXIMUM RATINGS ITJ = 125°C unle.. otherwise noted I

•

Rating
Peak Repetitive Forward and R8VBna

Blockingyoltoge 11)
2N2573, MCR649AP·l
2N2574, MCR649AP·2'
2N2575, MCR649AP-3
2N2576, MCR649AP4
2N2577, MCR649AP·5
2N2578, MCR649AP-6
2N2579, MCR649AP·7
On-Stoto Current
Circuit Fusing
ITJ = -650 C to.+1250C, t .. 8.3 msl
Paak Surge Current
10na Cycle, 60 Hz, T J = -65° to +1250 C)
Peak Gate Power - Forward
Average Gate Power - Forward
Peak Gate Current - Forward
Peak Gate Voltoge - Forward
Ravarse
Operating Junction Temperature
Storage Temperature
Thermal Resistance, Junction to Case

Symbol
VORM
or
VRRM

Valua

':CMIIX

Amp
A2sec.

ITSM

260

Amp

PGM
PG(AVG)
IGM
VGFM
VGRM
TJ
Tsta
R8JC

5.0
0.5
2.0
10
5.0'
-65 to +125
-65 to +150
1.5

Watts
Watts
Amp
Volts

Q

,~.

•

ITIRMS)
12 t

1101

lUll

0:" 32
3

II

UCI

10111111

01

1.117

1181

·s

100

,:~ o.21~ o~

•

n

DISO

: ':.10

"24"
zt

1

HI

OflO

D880

ono
I

D

, . . O"D

CASE 61-03

°c
°c
°CIW

(1) VORM and VRRM for ell types can be applied on e continuous besis without Incurring

damage. Ratings applV for zero or negative gate voltage.

SEATI"G'LANE

D
U

Unit
Volts

25
50
100
200
300
400
500
25
275

MCR649AP·'
thru
MCR649AP·l0

'''':'::'.':''~J
I
'

•
• • ,2

21119

D

In

-

11010

-

OIlS

or- 0051
1111

I

':

,
,

Q

H

+

1 +

..

R

1117

•

, ,

~~

CASE 54-06

7-16

A8

I r--+--+-t

G

2N2573 thru 2N2579 / MCR649AP-1 thru -10

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Characteristic
Peak Forward Blocking Current

(VO

IORM

= Rated VORM with gale open, T J = 125°C)

Peak Reverse Blocking Current

(VR

IGT

= 7 Vdc, RL = 10011.)
Rated VORM, RL

=

100 n, TJ

= 20 Adc)

-

0.6

5.0

-

-

40

-

0.7

0.3

-

3.5

-

1.1

1.4

mA

Volts

IH

= 7 Vdc, Gate Open)

Turn-On Time (Id + 'r)
(I GT = 50 rnA, IT = IDA, Vo =Rated VORM)
Turn-Off Time
(IT = 10 A,IR = 10 A.dv/dl = 20 V/!'s, TJ = 1250 C)
(VO = Raled Vollage VORM)

tgt

mA

-

10

-

1.0

-

-

30

-

-

30

-

!,S

Iq

dv/dl

Forward Voltage Application Rate (Exponential)

fGale Open, TJ

5.0

VTM

Holding Current

IVO

0.6

Units
mA

Volts

= 125°C)

ForWard On Voltage

(lTM

-

VGT

= 7 Vdc, RL = 10011.)
=

Max

mA

= Rated VRRM, TJ = 1250 C)

Gate Trigger Voltage (Continuous dc)

(VO
(VO

Typ

IRRM

Gate Trigger Current (Continuous de)

(VO

Min

!,s

V/!'s

= 125°C, Vo = Rated VORM)

FIGURE 1 - CURRENT DERATING

FIGURE 2 - GATE TRIGGER CHARACTERISTICS
MAXIMUM ALLOWA8LE
FO'RWARO GATE
CURRENT
IGM=2AMP

125

D

120
115

~

u

w

2.0

1.0

~
....U

I

..,.

ANGLE
105

s.....

'"

~
....
w

0.2

w

0.1

....

90

I

I

,;

-'"

.05

80
75

•

.02
70

TYPICAL
TRIGGER
POINT

MAXIMUM ALLOWABLE FORWARO ..............
GATE VOLTAGE 10 VOLTS

.0001~

65
10

15

20

25

ITIAVI. AVERAGE FORWARD CURRENT (AMPI

~

I;

0.3

7-17

ANO CURRENT WITHIN THIS AREA

I
40 mA MINIMUM
GATE CURRENT REQUIRED
J
TO TRIGGER ALL UNITS
I
(125'C - 25 mAl
I
1-65'C - 80 mAl
L_. _________ _

;3

85

r

I
IA~~ ~~I~~G~IEL~ ~I:I~~;RO!~I!~;~~~~~E

ill

a'"'"

95

5

MAXIMUM ALLOWA8LE
GATE POWER
PGM = 5 WATTS

I

=> 100

~

3.5VOLTS~
MINIMUM
GATE VOLTAGE
REQUIREO TO TRIGGER

180'-

'CONOUCTI~;;'7-

110
0

I

;

~

I~

4
5
6
7
VGT, GATE VOLTAGE IVOLTS)

10

•

2N2573 thru 2N2579/ MCR649AP-1 thru -10

FIGURE 4 - MAXIMUM ALI,OWABLE NON-RECURRENT
SURGE CURRENT

FIGURE 3 - ON-STATE CHARACTERISTICS

,

100
'1-

ill
a:

50
~

Ii;

~

20

1.17

t----- TYPICAL

'V ,P

§a: 10
a
~

'7

a 250
:il

MAXIMUM -

, 1/, I

SURGE IS PRECEDED AND
FOLLOWED BY RATED
CURRENT AND VOLTAGE.

I-

~

"'-...... r--

~ 200
w

i'-......... r----.. r-..

>

~

5.0

w

~.

z

,d

~
~

a:

/

.1

,

~
~-:11 CYCLE

2.0

1il
z

I
--,/ ---

I

;; 1.0

~ 0.5

,

;!;

.t:
0.2

I
0.0

....

~

TJ"12SoC TJ-250 C

«

"'"
~

100
10

20

40

60

CYCLES AT 60 Hz
I

:I

I

0.1

in 150

FIGURE 6 - EFFECT OF TEMPERATURE ON
TYPICAL GATE CURRENT

2.5

0.5
1.0
1.5
2.0
vr.INSTANTANEOUS FORWARD ON VOLTAGE (VOLTS)

20
FIGURE 5 - EFFECT OF TEMPERATURE ON
TYPICAL HOLDING CURRENT

"ill
,g
I-

20

a:
a:

.........

OF~.sTAT~ VOLT~GE = i V

I'--.I'-..

aa: 7.0

OF~-5TAT~ VOliAGE = ~ V

r----.. ..........

10

.........

w
to

.'"

........

5.0

....... .........

I-

w

I-

.......

r-..

•

r..........
:!E

2.0
-60

-40

-20

0
20
40
60
80
100
TJ. JUNCTION TEMPERATURE (OC)

120

~

c

~

........

0.8

........

>

..'"'"
I-

w

I-

........

0.5

r--

r--...

r--...

>

ill

I

0.6

......

z

«
a:

0.4

/

."

0.4

"" 0.2

-40

-20

20
40
60
80
100
TJ,JUNCTION TEMPERATURE (OC)

120

140

- 'V

0.0
.001

.002

CURVE OEFINES TEMP. RISE
OF JUNCTION ABOVE CASE
FOR SINGLE LOAD PULSE OF
DURATION I.
PEAK ALLOWABLE DISSIPATION
IN RECTIFIER FDR TIME I
EQUALS 1250C (MAX. TJ)
MINUS MEASURED CASTTEMP.•
DIVIDED BY THE TRANSIENT
THERMAL RESISTANCE.
P
_ TJ( ...x)- TC paak----

/

in
I-

0.3
-60

140

/

_I

1.0

ffi

"

lI-

«

to
~

~

III....

.« 0.8

...........
...........

0.6

120

V

~ 1.2
'"z

OFF-5TATE VOLTAGE =7 V -

100

",..

1.4

w

~
c 0.7

ffi

0
20
40
60
80
TJ. JUNCTION TEMPERATURE (OC)

1.6

1.0

., 0.9

-20

FIGURE 8 - MAXIMUM TRANSIENT THERMAL
RESISTANCE JUNCTION TO CASE

140

FIGURE 7 - EFFECT OF TEMPERATURE ON
TYPICAL GATE VOLTAGE

«
'"

-40

3.0
2.0
-60

w

..............

«
'"j. 3.0

,
.005

.01

.02

.05

t.TIME(~

7-18

0.1

"It!
0.2

,
0.5

1.0

2N2646
2N2647

PN UNIJUNCTION
TRANSISTORS

SILICON PN
UNIJUNCTION TRANSISTORS
· .. designed for use in pulse and timing circuits, sensing circuits and
thyristor trigger circuits. These devices feature:

•

Low Peak Point Current - 2.0 /1A (Max)

•

Low Emitter Reverse Current - 200 nA (Max)

•

Passivated Surface for Reliability and Uniformity

*MAXIMUM RATINGS (TA: 25"C unle" otherwise noted.1
Symbol

Value

Power Dissipation (1)

Po

300

mW

RMS Emitter Current

IE(RMS)

50

mA

Rating

Peak Pulse Emitter Current (21
Emitter Reverse Voltage

Interba.. Vollage
Operating Junction Temperature Range

Storage Temperature Range

Unit

iE

2.0

'Amp

VB2E

30

Volts

VB2Bl

35

Volts

TJ

-6510 +125

T slO

-6510 +150

°c
°c

• Indicates JEOEC Registered Data.

t 1) Derate 3.0 mW/oC increase in ambient temperature. The total power dissipation
(available power to Emitter and Base·Two) must be limited by the external circuitry.

(2) Capacitor discharge - 10 I'F or less, 30 volts or less.

STYLE I:
PIN I. EMITrER
2. BASE I
3. BASE 2

Pi n 3 Connected to Case.
INCHES
MILLIMETERS
DIM MIN MAX
MIN MAX
A 5.31 5.84 0.209 0.230
B 4.52 4.95
0.178 0.195
C 4.32 5.33 0.170 12IQ
0 0.41 0.48 0.016 0.019
G 2.54 TYP
0.100 TYP
H 0.91 1.17 0.036 0.046
J
0.71 1.22 0.028 0.048
K 12.70
0.500
M
45_u TYP
45 0 TYP
N 1.27 TYP
IJ!IilLTYP
CASE 22A·Ol

(TO· IS Except for L.ead Posi ti on)

7-19

2N2646, 2N2647

-ELECTRICAL CHARACTERISTICS (TA = 25"C unless otherwise noted.)
Symbol

Min

Typ

MIx

0.56
0.68

-

0.75
0.82

rBB

4.7

7.0

9.1

kohms

arBB

0.1

-

0.9

%/oC

Emitter Saturation Voltage
(VB2Bl = 10 V, IE = 50 mAl (Note 2)

VEBI (sat)

-

3.5

-

Volts

Modulated Interbase Current
(VB2Bl = 10 V,IE = 50 mAl

IB2(mod)

-

15

-

mA

-

0.005
0.005

12
0.2

-

1.0
1.0

5.0
2.0

4.0
B.O

6.0
10

-

3.0
6.0

5.0
7.0

-

Characteristic
Intrinsic Standoff Ratio

(VB2B 1 = 10 V) (Note 1)

Interbase Resistance
(VB2Bl = 3.0 V, IE

Unit

-

'I

2N2646
2N2647

= 0)

Interbase Resistance Temperature Coefficient
(VB2Bl = 3.0 V, IE = 0, TA = -55"C to +125"C)

Emitter Reverse Current

IEB20
2N2646
2N2647

(VB2E = 30 V,IBI = 0)

"A

Ip

Peak Point Emitter Current

2N2646
2N2647

(VB2Bl = 25 V)
Valley Point Current

"A

mA

IV
2N2646
2N2647

(VB2Bl = 20 V, RB2 = 100 ohms) (Note 2)
Base·One Peak Pulse Voltage
(Note 3, Figure 3)

2N2646
2N2647

• Indicates JEDEC Registered Data.

Volts

VOBI

(2) Use pul ... techniques: PW '" 300 "s, duty cycle ~ 2% to avoid
internal heating due to interbase modulation which may result in

Notes:

erroneous readings.

(1) Intrinsic standoff ratio,

(3) Base-One Peak Pulse Voltage is measured in circuit of Figure 3.
This specification is used to ensure minimum pulse amplitude for
applications in SeR, firing circuits and other types of pulse circuits.

11. is defined by equation:

Vp - VF

'1=---

•

VB2Bl
Where Vp

= Peak Point

VB2Bl

Emitter Voltage

= Interbase Voltage

VF = Emitter to Base-One Junction Diode Drop

(.. 0.45 V@ 10 "A)

FIGURE2

FIGURE 1
UNIJUNCTION TRANSISTOR SYMBOL
AND NOMENCLATURE

-

STATIC EMITTER CHARACTERISTIC
CURVES

FIGURE 3 - VOBI TEST CIRCUIT
(Typical Relaxation Oscillator I

(Exaggerated to Show Details)

Ve

IB2
Cutoff
Region

Negative
Resistance...,.. Saturation
Region

I

Region

+20 V

Ie

-f]l---

veB1( •• ,)
Vv

I

VOB1

t

-

-f-+~----~---~.

Iv

leo

7-20

Ie

2N3668 thru 2N3670
2N4103
G

A

o-....~..)---

r---

>

.......

'"

~

...... r--.....

'"iii
~

-..........

0

H-J

I

OFF-STATE VOLTAGE -12V

.:----..

o. B

.:----..

o. 7 t---- r------

- -I - - f--- 1---

.........

o. 5 t------

--t---

I.........

o.6t--- t---- 1--- - - - -~

~

r-..

"

~O. 4
>

2. 0
-60

O. 3
-40

-20

20
40
60
BO
TJ, JUNCTION TEMPERATURE IOC)

100

120

140

-60

-40

-20

20
40
60
80
100
TJ, JUNCTION TEMPERATURE IOC)

120

140

•
7-23

2N3870 thru 2N3813
2N3896 thru 2N3899
2N6171 thru 2N6174
SILICON
CONTROLLED
RECTIFIERS

Ao

REVERSE BLOCKING TRIODE THYRISTORS

35 AMPERES RMS
100-800 VOLTS

· .. designed for industrial and consumer applications such as power
supplies; battery chargers; temperature, motor, light and welder
controls.
CASE 311·01
(Stud Isolated I

• Economical for a Wide Range of Uses
• High Surge Current - ITSM = 350 Amp

~

• Practical Level Triggering and Holding Characteristics 4.0 and 5.2 mA (Typ) @ TC = 25 0 C
• Rugged Construction in Either Pressfit, Stud or Isolated
Stud Package

MAXIMUM RATI NGS

IT c

2N6171
thru
2N6174

'" 1oooe unless otherWise noted}
• Symbol

Rating

Value

Volts

"Peak Repetitive Forward or Reverse
Blocking Voltage 11'
IT J '" -40 to +1000C. 1/2 Sine Wave, 50 to

Unit

2N3896.
2N3B97.
2N3B9B.
2N3B99.

~

.

""t;i2N3873
il

,,
CASE 175.Q2
2N3896
thru
2N3899

CASE 174·03
TO-203

, 2N3870
thru
2N3873
STYLE J.

VORM

TERM 1 GATE
2. CATHODE
3 ANODE

400 Hz. Gate Open)
2N3B70.
2N3B71.
2N3B72.
2N3B73.

CASE 174-03
TO_203 '
2N3870
thru

100
200

2N6171
2N6172
2N6173
2N6174

400
600

Volts

·Peak Non-Repetitive
Forward Dr Reverse Blockmg Voltage

It

oS.

5.0 msl

2N3B70.
2N3B71.
2N3B72.
2N3B73.

•

2N3B96.
2N3B97.
2N389B.
2N3B99.

150
330
660
700

2N6171
2N6172
2N6173
2N6174

.. Average On-State Current 121
ITC == -40 to +6So C)
(TC'" +8SoCI

Amp

'nAV)
22
11

·Peak Non·Repetltlve Surge Current
lOne cycle. 60 Hz) IT C '" +6So CI
Circuit FUSing
fTC = -40 to +100oCl
It = 1.0 to 8.3 msl

·Peak Gate Poyver

350

Amp

510

ALs

20

Watts

• Average Gate Power

0.5

Watt

"Peak Forward Gate Current

2.0

Amp

10

Volts

·Operating Junction Temperature
Range .

-40 to +100

°c

·Storage Temperature Range

-40 to +150

°c

30

In lb.

Peak Gate Voltage

Stud Torque

·THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction ·to Case
2N3870 thru 2N3873. 2N3896 thru 2N3899
2N6171 thru 2N6174

Symbol

M ••

Unit

°C/W
0.9
1.0

-Indlcatn JEDEC Registered Data.
01 Ratings apply for zero or negative gate voltage. DeVIces shall not have III positive bIas
applied to the gate concurrently with a negative potentIal on the anode. Oh'It:es should
not be telted with a constant current source for forward or reverse blocking capabilitv
such that the voltage applied exc_d_ the rated blocking voltage.
(2) Iiolated stud davices must be de~ated an additional 10 percent.

7-24

2N3896
thru
2N3899

l~r

CASE 175·02
STYlE 1
'
TERM 1 CATHODE
2 GATE
STUD ANODE

2N3870 thru 2N3873, 2N3896 thru 2N3899, 2N6171 thru 2N6174

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Characteristic
.. Peak Forward Blocking Current

(VO

= Rated VORM, with gate open, TC = 1000 CI
2N3B70,
2N3871,
2N3872,
2N3873,

2N3B96,
2N3897,
2N3898,
2N3899,

Min

Typ

Max

Unit
mA

IORM

-

2N6171
2N6172
2N6173
2N6174

-

.. Peak Reverse Blocking Current

1.0
1.0
1.0
1.0

2.0
2.5
3.0
4.0
mA

IRRM

(VR = Rated VRRM,with gate open, TC = 1000 CI
2N3870, 2N3896, 2N6171
2N3871, 2N3897, 2N6172
2N3872, 2N3898, 2N6173
2N3873, 2N3899, 2N6174

-

1.0
1.0
1.0
1.0

2.0
2.5
3.0
4.0

1.5

1.85

Volts

-

9.0
4.0

80
40

mA

-

0.9
0.69

3.0
1.6

IH

-

14
5.2

90
50

mA

tgt

-

-

1.5

1'5

-

-

25
35

-

-

50

-

-

"Peak On-State Voltage
(lTM = 69 A Peakl

VTM

"Gate Trigger Current, Continuous de
(Vo = 12 V, RL = 24 ohmsl

'TC = -40°C
TC = 25°C

IGT

"Gate Trigger Voltage Continuous de

-

Volts

VGT
'TC = -40°C
TC = 25°C

(VD = 12 V, RL = 24 ohmsl

'TC = _40°C
TC = 25°C

"Holding Current (Gate Open)

(VO = 12 V, ITM = 200 mAl

"Gate Controlled Turn-On Time (td + trl
(lTM =41 Ade, Vo = rated VORM,
IGT = 40 mAde, Rise Time"" 0.051'5, Pulse Width = 101'51
Circuit Commutated Turn-Off Time
(lTM = lOA,lR = 10AI
(lTM = 10 A,IR = 10 A, TC = 1000 CI

tq

Forward Voltage Application Rate

dv/dt

1'5

V/"s

(TC = 100°C, Vo = Rated VORMI
·1 ndicates JEDEC Registered Data.

FIGURE 1 - AVER'AGE CURRENT DERATING

10

0,,0

0

Types 2N6171 thru 2NG174 must be derated
an additional 10%. For example, in FIgure 1,
the max TC at 20 A (180 0 Conduction) IS JOoe.,

~~

a derating of 30oe. These types must be

~ ~ derated JJoC. therefore, the allowable TC (maxi
'\ ~~ ~670C.
I
I
a" 300 _
1'\ ~"
.!1l
60 0 _
'\ "-..
-jal-

1,\ 1"-..":

.-120·

io50

o

•

FIGURE 2 - ON·STATE POWER DISSIPATION

5.0

10

15

CONOUCTION ANGLE

'

'-'

=

OFF-STATE VOLTAGE· 12 V.
. RL=24n-

i

I' i\

Ii Ilil
25°C

5.0

r-

!-' 3.0

:.....

,+,'

1.0

1-+-

1

2.0

5.0

'"'"
~
I"'
'"

I--

..

i-H,

IDO'C

I.0

0.5

ffi

-

!

IIII

I

IIII

I

10

20

OFF~TATE)VOLT~GE = IJ V

RL=24n-

~ 10
1:;

r,..,...

~ 2.0

0.2

!...

TJ = -40'C

.....-

"' 10
~ 7.0

,--

z

.......... io....

I\,

I-

~

FIGURE 7 - GATE TRIGGER CURRENT
2.0

I'...

7.0

.......
..........

5.0

............

-............

,t; 3.0

.......

--50

100

2.0
-60

200

-40

-20

PULSE WIDTH 1m,)

~

OFF1TATE

~ 0.8

..............

'"
~
o
>

ffi

O.S

..........

'"

...'"a;
~

lOLTA~E.
ILRL=24n

80

OFIF-STATIE

100

120

140

.........

..........
~

r-....

~

§

..........

I--....

5.0

r--......

o

'":E

0.4

'"!-'

VOL~AGE .112 V
RL = 24 n

~

~
B 7.0
..........

60

20

;:: 10

.....

40

FIGURE 9 - HOLDING CURRENT

FIGURE 8 - GATE TRIGGER VOLTAGE
1.0
~
o

20

TJ. JUNCTION TEMPERATURE 1°C)

3_0

~

0.2
-60

-40

-20

20

40

60

80

100

120

2.0
-60

140

TJ. JUNCTION TEMPERATURE 1°C)

-40

-20

20

40

60

80

TJ. JUNCTION TEMPERATURE 1°C)

7-27

100

120

140

•

2N3980

SILICON ANNULARt PN UNIJUNCTION TRANSISTOR
· .. designed for military and industrial use in pulse, timing, sensing,
and oscillator circuits. These devices feature:
o
•
o
•

Low Peak Point Current - 2.0 IJA ma!<
Fast Switching - to 1.0 MHz '
Low Emitter Reverse Current - 10 nA max
Passivated Surface for Reliability and Uniformity

MAXIMUM RATINGS IT A

~ 250 C unless otherwise noted)

Symbol

Rating

Unit

Po

360

mW

RMS Emitter Current

Ie

50

mA

Peak Pulse Emitter Current (2)

ie

1.0

Amp

Characteristic

RMS Power Dissipation (1)

Emitter Reverse Voltage
Interbase Voltage

VB2E

30

Volts

VB2Bl

35

Volts

Tsto

-65 to +200

°c

Storage"Temperature Range
(1)

II'

(2)

PN UNIJUNCTICN
TRANSISTOR

Derate 2.4 mW/oC increase in ambient tem~erature. Total power dissipation (available
power to Emitter and Base-Two) must. be limited by external circuitry.
Capacitance discharge current must fall to 0.37 Amp 'within 3.0 ms and PRR < 10 PPS.

;

STYLE 1
PIN 1. EMITTER
2. BASE 1
3. BASE 2 CONNECTED TO CASE
INCHES
MILLIMETERS
MIN MAX
MIN MAX
A 5.31
5.84 0.209 0.230
8 4.52 4.95 0.178 0.195
C 4.32 5.33 0.170 0.210
0 0.41
0.48 0.016 0.019
G 2.54 TYP
H 0.91
1.17
0.046
J
0.71
1.22
0.048
K 12.70
M 450 TYP
P
N
1.27TYP
0.050 TYP
..
TO-1S except for lead posltlDn

DIM

tAnnular Semiconductors Patented by Motorola Inc.

~.

i

CASE 22A.(JI
(TO-IS Type)

7-28

2N3980

E\.ECTRICAL CHARACTERISTICS

(TA = 25°C unless otherwise noted.)

Characteristic

Symbol

Intrinsic Standoff Ratio

(VB2Bl = 10 V) Note 1

Interbsse Resistance

Typ

Max

0.6B

-

0.B2

4.0

6.0

B.O

0.4

-

0.9

-

2.5

3.0

12

15

-

-

5.0

Unit

k ohms

RBB

(VB2Bl = 3.0 V, IE = 0)

Interbase Resistance Temperature Coefficient
(VB2Bl = 3.0 V, IE = 0, TA = -6SoC to +1000 C);

%/oC

QRBB

Emitter Saturation Voltage
(VB281 = 10 V, IE = 50 mAl Note 2

VEB1(sot!

Modulated Interbase Current
(VB2Bl = 10 V, IE = 50 mAl

IB2(mod)

Emitter Reverse Current
(VB2E
(VB2E

Min

'1/

Volts
mA

IEB20

=30 V, IBI

= 0)
= 30 V, IBI = 0, TA = 12SoC)

Peak Point Emitter Current

-

-

10
1.0

-

0.6

2.0

1.0

4.0

10

6.0

B.O

-

1.0

1.25

-

nA

J!.A
J!.A

Ip

(VB2Bl = 25V)
Vallev Point Current

mA

IV

(VB2Bl = 20 V, RB2 = 100 ohms) Note 2
Base-One Peak Pulse Voltage

Volts

VOBI

(Noto 3, Figure 3)
I(max)

Maximum Oscillation Frequency

MHz

(Figur.4)
NOTES

1. Intrinsic standoff ratio,
7]. is defined by equation:

2. Use pulse techniques: PW

VB2Bl = Intorbase Voltage

=: Emitter to Base-Qne Junction
(0.45V,@ 10 J!.A)

FIGURE 1 - UNIJUNCTION
TRANSISTOR
SYMBOL AND
NOMENCLATURE

Diode Drop

FIGURE 2 - STATIC EMITTER
CHARACTERISTICS CURVES

FIGURE 3 - VOB1
TEST CIRCUIT

(Exaggerated to Show Details)

(Typical Relaxation Oscillator)

VE NEGATIVE
CUTOFF ' RESISTANCE
REGION

fJ.S

duty cycle

~2%

to avoid

Vp
IE
E

I " PEAK
:
I
POINT _ I
:

:

I

+20 V

+20 V

:

:

FIGUfiE 4 - f(max) MAXIMUM
FREQUENCY TEST CIRCUIT

SATURATION

f-REGION-I- REGION

I

RB2
lOOn

RB2
100 n

EMITTER TO
BASE-l

I

VB2Bl

I
I

VEBI

I
-+---t-----::::..-~~-

(sat)

VE

300

3. Base-One Peak Pulse Voltage is measured in circuit of Figure 3.
This specification is used to ensure minimum pulse amplitude for
applications in ACR firing circuits and other types of pulse circuits.

Where Vp = Peak Point Emitter Voltage
V(EB1)

~

internal heating due to interbase modulation which may result in
erroneous readings.

=,Vp - V(EB1)
'1/
VB2Bl

Vv

I

-+-f.l------:'I--.....I.-IE
Ip
IV
lEO

7-29

CI
0.21'F

RBI
20 n

RBI
20n'

TO
FREQUENCY
COUNTER

•

2N4167thru 2N4174
2N4183thru 2N4190

[

SILICON CONTROLLED
RECTIFIERS
REVERSE BLOCKING TRIODE THYRISTOR
8-AMPERE RMS

· .. multi·purpose PNPN silicon controlled rectifiers suited for indus·
trial, consumer, and mulitary applications. Offered in a choice of
space·saving, economi"Ca1 packages for mounting versatility.

25 thru 600 VOLTS

• Uniform Low·Level Noise·1 mmune Gate Triggering IGT = 10 mA (Typ) @TC = 250 C
• Low Forward "On" Voltage VT = 1.0 V (Typ) @ 5.0 Amp

@

'
Fi

250 C

• High Surge·Current Capability ITSM ~ 100 Amp Peak
• Shorted Emitter Construction

t-= l

(Apply over operating temperature range and for all case types unless otherwise notedl

·Peak Repetitive Forward and Reverse Blocking
2N4167.83.

VORM
50

VRRM

100

2N4170.86.

200

2N4171.87.

300

2N4172.88.

400

2N4173.89.

500

2N4174.90.

600

Forward Current RMS
lOne cycle. 60 Hz. T J

= -40 to

DIM

A
C
F

G
J

•

.. Peak Gate Power

.. Average Gate Power
·Peak Gate Current
Peak Gate Voltage 121

·Operating Temperature Range

·Storage Temperature Range

MILLIMETERS
MIN MAX
- 1110
787
178TYP
219
279
1012 1148
16.16
- 1549

8.0

Amp

ITSM

100

Amp

12,

40

PGM

5.0

Watt

PGIAVI

0.5

Watt

IGM

2.0

Amp

VGM

10

Volts

TJ

-40 to +100

°c

Tst9

-40 to +150

°c

15

in.lb:

Symbol

Typ

Ma.

Unit

Thermal ReSl'ilance. Junction to Case

ROJC

1.5

2.5"

°CIW

Thermal ReSistance, Case to Ambient
ISee FIg. III 2N4183·98

ROCA

°C/W

50

-

NOTES
101M "G" MEASURED AT CAN.
2 LEAD NO 3 t7.50OlSPLACEMEHT.

1
STYLE I'
PIN 1 GATE
2. CATHODE
3 ANODE

DIM

A
C
0
F
G

•
L

(1) Ratings apply for zero or negative gate voltage. Devices should not be tested for blocking
capability in a manner such that the voltage applied exceeds the rated blocking voltage.
(2) Devices should not be operated with a pOSitive bias applied to the gate concurrently
with 8 negative potential applied to the anode.
,
-Indicates JEDEC Registered Data

7-30

-

2N4167-74
CASE 86'()1

A 2s

THERMAL CHARACTERISTICS
Characteristic

INCHES
MIN MAX
0437
0310
0010TYP
0090 0.110
0422 0452
0660
- 0610

L
NOTE.
I [!1M "G" MEASURED AT CAN,

ITIRMSI

Stud Torque

r

SEAliNG PLANE

~== . . 'O·J2UNF·2A

+1000 CI

Circuit FUSing
ITJ = -40 to +1000 C; t""8.3 msl

~

....

STYLE I
PIN 1. GATE
2. CATHODE
STUD ANODE

25

2N4169.85.

·Peak Forward Surge Current

L

Unit
Volts

or

2N4168.84.

•

Value

Symbol

Rating
Voltage (1)

!

o

MAXIMUM RATINGS

P

•

MILLIMETERS
MIN MAX

...

-

109'

591

'16
J

2.29

'86

5l
279

3353
3150TYP

INCHI:S
MIN MAX

-

~1!

DO"

DO

0'"

0.110

1320
12

DO;
7
10' '91 .13
'OJ '58
'08 "01 D.
- 1.~_~

457
3048

2N4183-90
CASE 87L"()1

2N4167 thru 2N4174/2N4183 thru 2N4190

ELECTRICAL CHARACTERISTICS (TC ~ 250 C unless otherwise nOled)
Symbol

Characteristic
·Peak Forward Blocking Current

Min

Typ

Max

-

-

2.0

-

-

2.0

-

10

30

-

-

60

(VO = Rated VORM@TJ=.1000 C,gateopen)
-Peak Reverse Blocking Current

rnA
mA

IRRM

(VR = Rated VRRM@TJ= 1000 C, gate open)
Gate Trigger Current (Continuous dc) (1)
(VO 7.0 Vdc, RL = 100 n)
·(VO = 7.0 Vdc, RL = 100 n, TC = -400 C)

IGT

Gate Trigger Voltage IContinuous de)

VGT

=

mA

Volts

-

(VO = 7.0 Vac, RL = 100 n)
·(VO = 7.0 Vdc, RL 100 n, TC = -400 C)
·(VO = 7.0 Vdc, RL = 100 n, TJ = 1000 C)

=

-Forward "On" Voltage (pulsed. 1.0 ms max. duty
(lTM = 15.7 A)

Unit

IORM

cycle~'%)

-

IH

-

2.5

-

-

-

1.4

2.0

-

10

30

-

-

60

-

1.0

-

-

15

-

25

-

-

50

-

mA

NO = 7.0 Vdc, gate open)
·(VO = 7.0 Vdc, gate open, TC = _40 0 C)
Turn-On Time ltd + t,)

0.2

Volts

VTM

Holding Current

1.5

0.75

'on

"s

(lG = 20 mAde, IF = 5.0 Ade, Vo = Rated VORM)
Turn-Off Time
(IF = 5.0 Adc. IR = 5.0 Adc)

'off

(IF = 5.0 Adc,IR = 5.0 Adc, TJ =
(dv/dl

1000 C,

"s

Vo = Rated VORM)

= 30 V/"s)

Forward Voltage Application Rate (Exponential)
(Gate open, TJ = 1000 C, Vo = Rated VORM)

dv/dt

V/"s

(1) For optimum operation, i,e, faster turn-on, lower sWitching losses, best di/dt capability. recommended IGT '" 200 rnA minimum .

• Indicates JEOEC Registered Data

"

•

TYPICAL TRIGGER CHARACTERISTICS
FIGURE 2 - CAPACITIVE DISCHARGE
TRIGGERING

FIGURE I - PULSE CURRENT
TRIGGERING

50

150

Vo = 7.0 Vdc

I"

100

;;:

70

"-

....

~

....w

20

~

10

~
0

5.0

co

"",-

'"

"co..:

!E 10
7.0
5.0
0.05

20

~
w

l~";=

0

.§ 50

30

~

TJ =25 0C

Vo = 7.0 Vdc

I\-

-

r-....

>

TJ = -550C

"'-....

I-= CT

0
'"
....

r-- ~C'

U 2.0

............

;t
~

~ 1.0

100°C
0.1

0.2

0.5

1.0

2.0

5.0

10

20

0.5
200

50

500

1000 2000

t-I-o-----PF

'w.AVERAGETRIGGER PULSE WIDTH (,.,)

7-31

5000 10.01

••

":'-

---

0.02

cr. TRIGGER CAPACITANCE

0.05

0.1

0.2

"r---~·I

2N4167 thru 2N4174/2N4183 thru 2N4190

CURRENT DERATING
FIGURE 4 - MAXIMUM AMBIENT
TEMPERATURE

FIGURE 3 - MAXIMUM CASE TEMPERATURE
100
90

~
w
0:
=
!c
0:

......
....
..'"...
~

aD
70
60

w

z 50
;;;

<

....

40

30
20
0

ITlAV),AVERAGE FORWARD CURRENT (AMP)

IT(AV),AVERAGE FORWARO CURRENT (AMP)

FIGURE 5 - POWER DISSIPATION

FIGURE 6 - MAXIMUM SURGE CAPABILITY

O!~r-...
0:

~

0

~

r"-

S~~I~~ETROA~~~~~

0-

~S
~~6.0~--~----~__"f-~~~+---

........

0

~z

1 :--..

"'0

~~4.01-----r--11~~~~-+----+---

0

>

0

~~
.0

OEVICE IN FREE STILL AIR

$
~

•

3.0

2.0

M~X

w
u

z

;:

1.0
TYP

Q.5

ffi

..........-:: V

~

f-"'"

~ 0.2

~ o. 1
~
....
-,;0.05
U

~~

......

;;:0.03
N
0.02

0.05

0.1

0.2

0.5

1.0,

1"'-, .......

20

30

50

II 100
I

NUMBER OF CYCLES

FIGURE 7 - THERMAL RESPONSE

ffi

10

5.0

ITlAV),AVERAGE FORWARO CURRENT (AMP)

~
....

"'- .....

r--:DEVICE tOUNTEO ON
I I IHEAT SINK

2.0

~-

J

I
RATEO LOAD CONDITIONS
TJ =-40°C to +IOOoC
PULSE REPETITION
...........~QUENCY =60 Hz

r-....

2.0

5.0
t, TIME (m.)

7-32

10

20

50

100

-

1-;--

200

--

500

1000

2000

2N4167 thru 2N4174/2N4183 thru 2N4190

FIGURE 8 - FORWARD VOLTAGE
Ii: 100

~

10

ffi

50

TYP
MAX-

~ 3D
B
w

10

~

7.0

c

I

20

z~

'/

::;

o

0.4

~
a:

a
'"z

§

I

'"~

O.B

-- - --

~

I-

1.0

0.3
1.2

1.6

2.0

2.4

2.8

3.2

3.6

-40

4.0

-20

20

vr,lNSTANTANEOUS ON·STATE VOLTAGE (VOLTS)

Rl

'"~

200

w

'"~

g

~

;:;

FIGURE 11 - CASE-TO-AMBIENT THERMAL RESISTANCE

Units mounted In center _
of square sheet of l/B'lOch
thick bright copper. Heat sinks _
hetdvertically Instill Blr.
(Heatsmkareaistwice-

"'\.

"

\\

area of one side)

~

"I",

20
10
1.0

../:... L = 314"
l. = 114"

~

50

~
'"

+-

'\
2.0

TYPICAL TERMINAL
STRIP OR PRINTED
CIRCUIT BOARD MOUNTING
(CASE B7L)
L = LEAD LENGTH -

~

z

in

5.0

100

BO

60

"I'

100

60

40

TJ, JUNCTION TEMPERATURE (DC)

FIGURE 10 - TYPICAL THERMAL RESISTANCE OF PLATES
400

- -

0.7

<:> 0.5

fAl

~ 1.0

VD = 7.0 Vdc

I-

//

2.0

I I I

2.0

;S

Tp250 C
Tp 100 0 C

~ 3.0
z

ffi

N

<

./

ffi 5.0

::

..&"

/ ~i j '

z

~

FIGURE 9 - HOLDING CURRENT
3.0

10

10

15

o

100

-.....;;:::: ~

.200

300

AIR FLOW,lINEAR FTIMIN

ROSA, THERMAL RESISTANCE (OCM)

7-33

400

500

2N4199
thru
2N4204
Designers Data Sheet

,

REVERSE BLOCKING TRIODE THYRISTOR

SILICON·
CONTROLLED
RECTIFIERS

fast switching, high-voltage Thyristors especially designed for
pulse modulator applications in radar and other similar equipment_

100 AMPERE PULSE
300 thru 800 VOLTS

• Guaranteed Limits on All Critical Parameters
• High-Voltage: VDRM = 300 to 800 Volts

Designers Data for
"Worst Case" Conditions

• Maximum Turn-On Times Specified - 300 to 400 ns
•

Thll Designers" Data Sheets permit the design of most circuits
entirely from the information presented. Limit curves -: representing
boundaries on device characteristics
- are given to facilitate "worst
case" design.

Repetitive Pulse Current to 100 Amperes

• Stable Switching Characteristics Over an Operating
Temperature Range From -65 to +1050 C
• Pulse Repetition RateS as High as 20,000 pps
• Jan Versions Available

MAXIMUM RATINGS
Symbol

Value

Unit

Peak Reverse Blocking Voltage (11 (TJ - 1050 CI

VRRM

50

Volts

'Peak Forward Blocking Voltage (11 2N4199
(TC = 105°C)
2N4200
2N4201
2N4202
2N4203
2N4204

VDRM

300
400
500
600
700
800

Volts

Repetitive Peak OnaState Current
(PW = 3:0 1'5, Duty Cycle = 0_6%, T C = 85°C)

ITf:\M

100

Amp

Continuous On-State Current (TC - 65°C)
Current Application Rate (2)

IT
di/dt

5.0

Amp

5000

AIl's

Rating

•

PGFM

20

Watts

PGF(AV)

1

Watt

Peak Forward Gate Current

IGFM

5.0

Amp

Peak Gate Voltage - Forward
Reverse (3)

VGFM
VGRM

10
10

Volts

Peak forward Gate Power
Average Forward Gate Power

Operating Junction Temperature Range
Blocking State
Conducting State
Storage Temperature Range

STYLE 1.
PIN I. CATHODE
2. GATE
STUD -ANODE

°c

TJ
-65 to +105
-65 to +200
T stg

-65 to +200

Stud Torque

°c
in_lb.

15

THERMAL CHARACTER.ISTICS
Characteristic
"Thermal Resistance. Junction to Case

I

Symbol

I

Max

R8JC

I

3.0

I

Unit
°C/W

(11 Characterized for unilateral applications where reverse blocking capability is not important.
Higher voltage units available upon request. VORM and VRRM may be applied as a
continuous dc voltage for, zero or negative gate voltage but positive gate voltage must not
be applied concurrently with a negative potential on the anode. When checking blocking
capability. do not permit the applied voltage to exceed the rated voltage.
(2) Minimum Gate Trigger Pulse: iG = 200 rnA. PW c 1 #AS. tr :::: 20 ns.
(3) Do not reverse bias gate during forward conduction if anode current exceeds 10 amperes.
.Trademark of Motorola Inc.
*JEOEC Registered Data

7-34

MILLIMETERS
MIN MAX
A 12.57" 12.83
B 10.77 11.10
10.80
C
D 3.94
4.10
3.56
E
J 10.16 11.51
K
1.12
L
11.18
N
1.11
Q
1.02
1.91

DIM

-

INCHES
MIN MAX
0.495 0.505
0.424 0.431
0.425
0.155 0.185
0.140
0.400 0.453
I U••••
0.100
0.280
0.040 0.015

CASE 63-03

-

-

2N41~9

thru 2N4204

ELECTRICAL CHARACTERISTICS ITC = 2SoC unless otherwise noted)
Fig. No.

Symbol

Min

Max

Unit

·Peak Forward and Rewrse Blocking Current
IRated VORM and VRRM. TC = IOSoC. gate open)
Gate Trigger Current IContinuous de)
(Anode Voltage = 7.0 Vde. RL = 100 ohms. TC = 25o C)
" (Anode Voltage = 7.0 Vde. RL = 100 ohms. TC = ..oSoC)
Gate Trigger Voltage (Continuous de)
IAnode VoItal!" = rated VORM. RL = 100 ohms. TC = 10So C)
IAnode Voltage = 7.0 Vde. RL = 100 ohms. TC = 2So C)
" (Anode Voltage = 7.0 Vdc. RL = 100 ohms. TC = ..oSOC)

17

IORM
IRRM

-

2.0
2.0

mA

14

IGT

-

-

50
100

0.2

-

-

I.S
2.0

-Hording Current

18

3.0

-

CharllCteri$tic

.

12

VGT

-

-Forward "On'" Voltage

UTM = S Adc. PW = 1.0 m. max. Outy cycle" 1%)
-Dynamic Forward "On" Voltage
(0.5 ,.. after 50% decay point on dynamic forward voltage waveform.)

8

VTM

7

vTM

Forward-Current: 30 A pulse

Volts

mA

IH

(Anode Voltage = 7.0 Vdc. gate open. T C = 10So C)

Gate Pulse: at 200 rnA. PW = 1.0,... tr = 20 ns
"Turn.()n Time (2) ITM = 30A
Delay Time
Rise Time

rnA

Volts

Volts

-

2S

-

200

-

200
ISO
130
100

-

20

2S0

-

ns
All types
2N4199 and 2N4200
2N4201
2N4202
2N4203 and 2N4204

·Pulse Tum.Qff Time

Test Conditions: PFN discharge; Forward Current = 30 A pulse;
Reverse Current = S.O A. TC = 8So C.dv/dt = 250 VII'S to Rated VORM;
Reverse anode voltage during turn-off interval:; 0 V;
Reverse gate bias during turn~ff interval -= 6.0 V.
-Forward Voltage Application Rate (Linear Rise of Voltage)
ITC = 10SCC. gate open. Vo = Rated VORM)

1.9
1.11

td
tr

2.13

tq

16

I'S

dv/dt

VII'S

·VORM for all types can be applied on a continuous de basis without incurring damage. Ratings apply for zero or negative gate voltage. When
checking forward or reverse blocking capability. these devices should not be tested with a constant current source in a manner that the voltage
applied exceeds the rated blocking voltage. Other voltage units available upon request.

TEST CIRCUITS
FIGURE 1 - TURN'()N TIME

FIGURE 2 - TURN'()FF TIME

200 H (+)

PFN. Zo = 2.0 n

RE-APPLIED
FORWARD VOLTAGE.
dv/dt = 250 VII's

'0:'0":":\
I'

RS·,·on

·Two lN4937 fast-recovery diodes in series
each shunted by a 180 kn resistor.

7-35

RC· 2.on

2N4199 thru 2N4204

FIGURE 3 - MAXIMUM ALLOWABLE FORWARD PULSE CURRENT
Q:' 200

~

""

§ 100
a:
=>
....
w

~
co

L-:~

0

/'

_

~

0

'"

0

"
""

:;:
.t:'
5.0
1.0

n, . 2.0

-

500 AI", MAX

"

:::---':c = 25 0C t-

~

I I

/

a:

~

~

~

pea~

.::::::::::::

~ p.. ...

junction "mp.",ure 01 200 0C. Junction temperature
must be no higher than 1050 C prior to application of forward blocking voltage.

0.1.. i! based up'on •

I II

4.0

10 n,

20

40

100

I

n,

I 'I I I

200

400

I I IJ

I

1.0",

2.0

-I

4.0

40

100",

200

1 m,

400

'. TIME OR PULSE WIDTH

FIGURE 5 - DERATING USING TYPICAL SWITCHING LOSSES

FIGURE 4 - DERATING USING NO SWITCHING LOSSES
~

'"5

100 "

"'-

I-

~

70

G

1\

w

~

ir
co
a:

~

:;:
~

"-

Data is based on

maXi~

........

""-

steady-state forward drop dat
(Figure 8) at TJ = 20DD and

e

data of Figure 6. Turn-on power

'r-..

transients are neglected. The curves

"'"

or===-VA'

IIH

'1-

1=100Hz
.- 500 Hz

~ I:::,...
i'

I'.

0

TJ·200 0C
TC = 85 0C

I" f::::!::: ~N.

2.OkHz

i'1'

I'.

~1'

"f(r--

I'

0

70

!

0.5 I"

~~~-"t- 101"
~ ~~
O'SI"J /
jS'OI'-'J /
10 p.'

100

200·C8S·C-

Lll

--

201"

-=--...

""...

~

V

~....

!J tYPiC:~ ~./

PFN circuits. Actual circuits should be
0 checked as indicated in the design note.
100
200
500
1k
2k

PW. PU LSE WIDTH (",I

TJ
Tc

[s.Op.'

Data i, indicative of capaJJ

N l' I"N
50

PW

VA.~800V

0

10 kHz i"o!:'O kHz

30

300 V

0j!!!_~ F=

/1/1.0kHz

I~OkH:--'
indicate maximum capability that
can be approached using delay rea ctDr
,. 20 circuits.
.J::1.0
2.0
3.0
5.0 7.0 10
20

'x"

•

0

~

'" f'
i'. I'..
I,"
I'..

5k

10k

20k

I. PULSE REPETITION RATE (HzI

DESIGN NOTE
Use of Transient Thermal Resistance Data
A. train of periodical power pulses can be represented
, by the model shown in' Fig. A.. Using the model and the
device thermal response, the normalized effective transient
thermal resistance of Fig. 6 was calculated for various
duty cycles from:
r(tl = 0 + (1 - 01 0 rItA. + tpl + r(tA.1 - r(tpl
To find OJc(tl multiply the value obtained from Fig. 6
by the steady-state value 0 JC .(001. Use 30 CIW for worstcase results; use 20 CIW for typical information.
DESIGN EXA.MPLE
A. 2N4199 discharging a PFN, transient power pulse
shown in Fig. C.
Conditions: VA.K = 150 V., IPK =44 A.., f = 5000 Hz.
Determine: .a.T
Method 1: (See Fig.A.1 PA.tA.ischosentohavethesame
energy as the actual power pulse, i.e.: the area under the
curves are equal. PA. equals the peak of the actual power
·pulse. A.t a pulse repetition frequency of 5000 Hz and

T A. = 2.14 JlS (0 = 0.01071; the reading on Fig. 6 is 0.039.
:'. .a. T =r(tl ROJC (001 P;t.. = (0.0391 (3) (10001 = 1200 C.
Method 2: For a, power waveform where the time of
the peak power is short compared to the total transient,
the foregoing method results in an overly' large safety
factor. A. pulse model closer to the real case is shown in
Fig. B. Using the transient thermal resistance information
for D = 0 in Fig. 6, .a. T(t41 and .a. T (t51 can be evaluated
from
.a. T(t41 = [Pl [r(T1) + (.1 ~ D11 0 r(T + Tll + 0 - r(TIl
+P2[(1-D210r(TI+D2-r(T-T21J] ROJC

~

0.03

0.05

-

~~

2 _
0.0

:;..,:::

..... ~
o

1--"""

i

°ITY CYi LE

STEADY STATE VALUES F
OJC(~) - 30 C,w MAX
OJC(~) = 2oC,w TYP
I-

F

~

~0.005

......... [,,01

~\iOl °1=OISINIGLEtULSE)

~ 0.0 1~
0.1 .'

----

O~r-

.,.

...-

I--

0.2

1.0.,

0.4

2.0

4.0

10.,

20

40

100.,

200

1.0 ms

400

2.0

10 ms

4.0

40

20

100 ms

I, TIME DR PULSE WIDTH

FORWARD "ON"VOLTAGE DATA

FIGURE 7 - TYPICAL OYNAMIC FORWARD."ON" VOLTAGE

a:-

~
-

~
_

! r-l~~~II

100 i
90'HIIJ

I i':::I. I !f'

II

~ SO

~
~

50

-

401 1!

;

I

i , Iiit,---

I I
I,

I!

IH
IU

J
.,

':11

o

I

/

I

/

if"

I. V

0

Q

I

II
II

//

(Time reference -

100

I

fI

/I

;.~ :~J I II / t

¢Yi

~;g-~'f!;g
II!, '-7fw/J~-:g
1,1
R·C DISCHARGE
~-IG=200mA
1 ~
~ I~
Tc=25°C
~"'-"'1 1
;"'-'"', "'- rv -V~'~800V-i
19~

Q

BO~"'-H5':
70

Wi

FIGURE 8 - MAXIMUM STEADY-STATE

-·.-VA,~600~_

1050 C_

II ---VA,~400V
IL --VA,~400V- ,,?ti?_

I

I

II
/1/
f

/
IIj

10

700

o
o

800

,
I

N.!

.JJ
'II

'1'/
v,

0

"
/ /
10% point of peak ~nade current. Value at spe~Jfled tIme after reference point)
200
300
400
500
600
'T, TRANSIENT FORWARD "ON" VOLTAGE (VOLTS)

I"

r-. 1

200 oC-

I
TOSOOV,~Q'"
./J - - - - VAK ~ 400 V " ' T0800V
~

'/1

I

TJ = 25 0 C_

Q

I

I

100

~

~
1 2 3

4

5 6

7 8

9 10 11 12

of, FORWARD "ON" VOLTAGE (VOL TSI

DESIGN NDTE CONTINUED

1000I

J

6T(t41'" I 1000 [0.0205 + (1 - 5.25 • 10.3 ) 0.27 + 5.25 • 10.3 - 0.271
+ 700 [(1 - 7.75.10.3 ) 0.27 + 7.75· 10.3 - 0.2711 3'" 93.51 o C

I~J

800

AT(t5) =- I 1000 (0.032 + 11 - 5.25.10.3 ) 0.27 + 5.25 • 10.3 - 0.27 - 0.02051
+ 700 10.025 + (1 - 7.75.10. 3 ) 0.27 + 7.75.10.3 - 0.27) I 3'" 10S.6oC

I

~ 600 I

~

'"
~

..

:

I

I

I

I

I

I

P,

r-I'r--

i

400

i"'.

I

in

~:-..

PA

i--IA'

I,

200

o

o

, i
, I

,

!-- APf'ROXIMATION

P~

I,

"'",
-.......:

I

0.5

!
1.0

1.5

2.0

2.5

3.0

3.5

. / ~CTUAl PULSE

"l
'N
4.0

4.5

5.0

I,TIMEI.,I

FIGURE A - SIMPLE MDDEL

FIGURE B - MORE ACCUI!ATE MODEL

7-37

FIGURE C - AN ACTUAL TRANSIENT POWER PULSE

2N4199 thru 2N4204

SWITCHING CHARACTERISTICS

TRIGGERING CHARACTERISTICS

FIGURE 9 - DELAY TIME

FIGURE 10 - TYPICAL PULSE TRIGGER CHARGE/CURRENT

500
300

] 200
w

'"~ 100
:5

~

,I

....

-- --

MAXIMUM
............ I---.

-

.....

............

TYPICAL

70
0

100

VA~" 40d V.ITIM· ~01r-

0.1 pF CAPACITANCE
DISCHARGE CIRCUIT
TJ=-65TO+l0SDC _

100
VAK = 7 V

~ 70
w
0

~IGT

r-!

0:

I-

«

5

r- 1-:--,

to
to

'IIV

"- I),

30

!'\ .""-

0:
W

70

TJ=-65 DC

to

20

1111D

"

"'

....
w

~1 0

8 0 GT

to

,.:: 7

501

V

v
v

V

25 C

~

.....

~

/

30 ~

'"

20 '"'

l/

ffi
to
to

1o~
w

7 ~

to

0
(rl~E TIME

20
70

50

to

'"

or 1

fl

GAT TRIGGEr PULS,E ~ 2rnsl,

100

200

500

300

700

3
0.05 0.07 0.1

1000

0.2

IG. GATE CURRENT (mAl

1.8

~F

~ ;::;:::

"

0

•

0

0
100

~

-

-650 C

1.4

w

~ 1.2
~

I
~;:c
....... 2S DC

........

~

----

...........

l"'-

i-

1.0

3X~ ~k1J
IDA

ITM"II

w

~ 10 -I-~

~

~

I--

7.0

::>

~ 5.0

~

..... I"""

-'

"

P 3. 0

,-

1---

1--",1--'
k
-40

~-

-

10-

-20

~

~

0:

-

~ 0.6

i--"

r-

-

TYPICAL'
-;;: VD

RATED VORM

M!I~~M

~ 0.4

to

~ 0.2 1-1- NON·TRIGGER REGION
>

t-

o

-80

-60

-40

-20

20

40

60

aD

100

120

TJ. JUNCTION TEMPERATURE (OCI

i

,g

~~

B

70

r50

I"--

W

g


'"z

'"~
'"

1.0

~

300

~~

o-JO.)DR~

/W

w

./

2000

. / /. V

:>

~

0.7

~

O.S

~

::r
ffi

ffi:::;

i'...

r--....
-I"-

O~3

:!

i'l"1

-'

200

300

SOD

IUD

1000

2000

dvldt. LINEAR RATE OF APPLIED VOLTAGE

"'1il1:>'"
:>

3000

-

~ 700
500

SOOO

I10SoC

0.2

{VI"~

I

./

w

"'

P

~

20

'"z

10

13

/'

/

V V

......-

/

§

3

'"'"

TTPIC~

2

~

I

IT:

0.5
0.2
-60

1.0

R~VERSE

2.0

3.0

S.O

VOLTAGE (VOLTS)

-

-

~L@TJ=1050C- I

I

I

<';;~M @.fJ = 10~OC- -

FORWARD

I-L f-- REVERSE

-40

-20

20

40

60

80

100

120

+0.5

TJ. JUNCTION TEMPERATURE (OC)

-I

-3

-2

-5

VGK. GATE·TO·CATHOOE VOLTAGE (VOLTS)

FIGURE 19 - TYPICAL ANODE-TO-CATHODE CAPACITANCE
50

FIGURE 20 - TYPICAL GATE·TO-CATHODE CAPACITANCE
~ 240

~
~

w
u

TJ = 25°C

z
'" 30

w

'"
!;(

U

'"

200 1\

5
g

180

;t
w

r-....

~

220

z

"'-

~ 20

'"'"

w
u
I-

2N4204

t;
;t

'"
:;:;

/'

....-

~ 30

I-

~ I~
~

GAT~ OPE~

:;:

MAXIMUM

50
20

0.7

TVPICAL@TJ=2SoC

VAK=IVt==

70

100

a

O.S

FIGURE 18 - HOLDING CURRENT

50

200

~

0.3

100

~ 500
I-

:...r---

VGK. GATE·TO·CATHODE

FIGURE 17 - FORWARD BLOCKING CURRENT
2000
1000 .."VO = VORM

/

2SoC

i--

40 0
0.1

~

I-'

L -

'"w

~

~ 0.2
100

TJ = -6SoC

~
~ 1000

~

10

\

'" 160
!;(
'"w

140

'"'"

120

I-

I-

'"

~

'"""

:3
""

(§ 5
1

10

20

50

100

200

500

1000

100

'" --~ ........

~

.......

TJ = 2SoC

o

-2

r-.

-6

r-- I---8

VGK. GATE.TO·CATHOOE VOLTAGE (VOLTS)

VAK. ANOOE·TO·CATHOOE VOLTAGE (VOLTS)

7-39

-10

•

2N4212

thru

2N4216

SILICON CONTROLLED
RECTIFIERS
REVERSE BLOCKING TRIODE·THYRISTOR

PNPN
1.6 AMPERES RMS
25-200 VOLTS

· . . all·diffused PN PN devices designed for operation in mA/1lA
signal or detection circuits.
•

Low·Level Gate Characteristics IGT =100 jl.A Max@ 2So C
• Low Holding Current - IHX =3.0 mA Max @ 2So C
• Anode Common To Case
• Glass·to·Metal Bond for Maximum Hermetic Seal

~IJ~::':

~
*MAXIMUM RATINGS

(TJ

Symbol

Peak Repetitive Forward and Reverse
Blocking Voltage
2N4212
2N4213
2N4214
2N4215
2N4216
Forward Current R MS
(All Conduction Angles)

Peak Surge Current

Rating

VORM
or
VRRM

SE:~~~ -11-0

Volt

0/'1

100
150
200

M

IT(RM,S)

1.6

Amp

ITSM

15

Amp

STYLE

PIN 1. CATHODE·

2. GATE
3. ANODE ICONNECTEO TO CASE)

DIM
A
PGFM

0.1

Watt

PGF(AV)

0.01

Watt

Peak Gate Current - Forward

IGFM

0.1

Amp

Peak Gate Voltage - Forward

VGFM

6.0

Volt

Reverse

Operating Junction Temperature

If.GRM

6.0

TJ

-65 to +125

°c

T stg

-65 to +150

-

+230

°c
°c

(> 1/16.. from case,10 ..,c, max)

B
C

o

E
F

G
H

J

Range

Storage Temperature Range
Lead Solder Temperature

.

t3Y'V¥J
H

25

50

No Repetition until
Thermal Equilibrium
is Restored
Peak Gate Power - Forward

K

~

Unit

(One Cycle, 60 Hz)

Average Gate Power - Forward

L

:::::::.ti

= 1250 C unless otherwise noted)

Characteristic

•

c

--

K
L

M
P

n
R

MILLIMETERS
MIN MAX
8.89 9.40
8.00 8.51
6.10 6.60
0.406 0.533
0.229 3.18
0.406 0.483
4.83 5.33
0.711 0.864
0.737 1.02
12.70
6.35
45 0 NOM
1.27
90 0 NOM
2.54

All JEDEC dimensions and notes apply.
CASE 79-02

• JEOEC Registered Values.

TO-39

7-40

2N4212 thru 2N4216

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted RGK
, = 1000 ohmsl
Characteristics
·Peak Forward and Reverse Blocking Current

Symbol
IORM
or
IRRM

iRated VORM and VRRM, T J = 12SoC)

·Forward "On" Voltage

VTM

(lTM = 1.0 Adc peak)
Gate Trigger Currant (Note 2)
(Vo = 7.0 V, RL = 100 ohms)
(TC = 25°C)
(TC = -65°C)

IGT

Gate Trigger Voltage
(VO = 7.0 V, RL = 100 ohms, TC = 25°C)
"(VO = 7.0 V, RL = 100 ohms, TC = ~650C)
"(Vo = Rated VORM RL = 100 ohms, TJ = 125°C)

VGT

Holding Current (VO

Min

Max

Unit

-

200

I'A

-

1.5

"Ade

-

-

-

0.1

= 7.0 VI TC = 25°C
"TC = -65°C

Volt

100
300
Volt
0.8
1.0

-

IHX

3.0
7.0

Turn-On TIme

ton

Turn·Off Time

toll

Circuit dependent,
consult manufacturer

•

JEOEC Registered Values
Notes: 1. VORM and VRRM can be applied for all types on a

continuous de basis without incurring damage.
2. RG K current is not included in measurement.

Thyristor devices shall not be tested with a cqnstant current source
for forward or reverse blocking capability such that the voltage applied
exceeds the rated blocking voltage.
Thyristor devices shall not have a positive bias applied to the gate
concurrently with a negative potential applied to the anode.

FIGURE 2 - AMBIENT TEMPERATURE

FIGURE 1 - CASE TEMPERATURE vsCURRENT

YS

CURRENT

R

~130r---'----r---'----.----r---;-;--'----'

:

mA

~140r----.----.-----r----.-----r----r----'

:;:

~ 110~b;;:-+----+~--+----+--- ~

120~~~~-+--~----+---~-­

~

~110r---~~~~~~--+----t--

5100

~ 100r---+--;-t~~~~~~-r---i----T---~

;:;w BOf---+~~~~-k---+--r----+---l

.

..~

-1 10

90
80

§l

"x

"'"

70

~ 60 0

0.2

0.4

0.6

1,0

IT!AV). AVERAGE ON STATE CURRENT (AMP)

Il(AVI, AVERAGE ON·STATE CURRENT lAMP)

7-41

2N4441
thru
2N4444
.,~~G_OK

A O>-_.....

SILICON
CONTROLLED RECTIFIERS
REVERSE BLOCKING TRIODE THYRISTORS

B.O AMPERES RMS
50 thru 600 VOLTS

. designed for high·volume consumer phase·control applications
such as motor speed, temperature, and light controls and for switch·
ing applications in ignition and starting systems, voltage regulators,
vending machines, and lamp drivers requiring:
• Small, Rugged, Thermopad 10 Construction - for Low Thermal
Resistance, High Heat Dissipation, and Durability.
• Practical Level Triggering and Holding Characteristics @ 250 C
IGT = 7.0 mA (Typ)
IH = 6.0 mA (Typ)
•

Low "On" Voltage - VTM

= 1.0 Volt (Typ) @ 5.0 Am:p @ 250 C

• High Surge Current Rating - ITSM = 80 Amp

"
ur=r-rf'
M-1t-, '
G A

MAXIMUM RATING

(TJ ~ l000C unless otherwise noted)

Rating
Blocking Voltage (Note1) 2N4441

Volts

vORM
VRRM

50
200
400
600

2N4442
2N4443
2N4444

-Non-Repetitive Peak Reverse Blocking
Voltage (t

= 5.0 ms (max)

•

300
500
700
Amp
8.0

= 7:!'C

5.1

Amp

ITSM

80

Amp

12 t

25

A 2s

Watts
Watt

.IT(AVI

(112 cycle. 60 Hz preceded and followed by

rated current and voltage)
Circuit Fusing
(TJ = -40 to +1000C;
t = 1.0 to 8.3 msl

·Peak Gate Power
... Average Gate Power
·Peak Forward Gate Current
·peak Reverse Gate Voltage
*Operating Junction Temperature Range
*Storage Temperature Range
Mounting Torque 16:32 screw) (Note 2)

~
~

F

M

0

V tH

K

STYLE 1:
PIN 1. CATHODE
2.ANOOE
3. GATE
NOTES:
1. DIM "0" UNCONTROLLED IN ZONE "H"
2. DIM "F" OIA THRU
3. HEAT SINK CONTACT AREA (BOTTOM)
4. LEADS WITHIN 0.005" RAO OF TRUE
POSITION (TPI AT MAXIMUM MATERIAL
CONDITION.

PGM

5.0
0.5

IGM

2.0

Amp

VRGM

10

Volts

DIM

°c

A
B
C
0

TJ

-40 to +100

T stg

-40 to +150

-

8.0

°c
in. lb.

MILLIMETERS
MIN
MAX
16.13
12.57
3:18

16.38
12.83
3.43

Ii

~

Symbol

Typ

Max

Unit

f-fi-f-

R6JC

-

2.5

°C/W

fi<

40

-

M

R6JA

°C/W

n
R
U

*Indicates JEDEC Registered Data.
A-rrademark of Motorola Inc.
- Notes 1, 2,See page 2

V

4.70
1.91
6.22
2.03

4.95
2.16
6.48

-

INCHES
MIN MAX
0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
'0.166 BSC
0.105· 0.115
0.032 0.034
0.595 0.645
9' TYP
0.185 0.195
0.075 0.OB5
0.245 0.255
0.080

CASE 90-05

7-42

..

--l~J

~
~=it

PG(AV)

THERMAL CHARACTERISTICS
Characteristic
*Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

B'-'

-l~tO.

IT(RMS)

·Peak Non-Repetitive Surge Current

--ru
.

. 75

(All Conduction Angles)
Average On-5tate Current. TC

,

Volts

VRSM

duration)
2N4441
2N4442
2N4443
2N4444

*RMS On-5tate Current

Unit

Value

Symbol

Peak Repetitive Forward and Reverse

2N4441 thru 2N4444

ELECTRICAL CHARACTERISTICS eTC = 25°C unless otherwiso noted)
Characteristic

Svmbol

Peak Forward Blocking Current

evO

= Rated VORM, TJ = l00o e, gate open)

Peak Reverse Blocking Current
evO = Rated VRRM, TJ = 100o e, gate ?pen)

IRRM

Gate Trigger Current (Continuous de)
1VO" 7.0 Vdc, RL = 100 Ohms)

IGT
Te
• Te

= 25°C
= -40o e

Gate Trigger Voltage (Continuous de)
1VO = 7.0 Vdc, RL = 100 Ohms)
Te = 25°C
1VO = 7.0 Vde, RL = 100 Ohm,)
Te = _40°C
1VO = Rated VORM, RL = 100 Ohms)
TJ = 100°C

VGT

Peak On·State Voltage
(Pulse Width = 1.0 to 2.0 ms, Duty Cycle':;; 2.0% )
IITM = 5.0 A peak)
• IITM = 15.7 A peak)

VTM

Holding Current

Te= 25°C
= -40o e

• Te
Gate Controlled Turn-On Time

= 5.0A,

IR

Max

-

-

2.0

-

-

2.0

tq

= 5.0 A, T J = 10o"e)

Critical Rate of Rise af Off-St:

SURGE IS PRECEDED AND FOLLOWED
8Y RATEOICURRE~TANDIVOL1AG~

~

3.0

10

o
2.0

1.0.

3.0

6.0

4.0

8.0

2.0
-40

10

FIGUR~

7 - TYPICAL GATE TRIGGER CURRENT
VD -

w

i.o Vdc

ffi

'"a:

~
.......

7.0

.",

...w

5.0

~

--- ---

,t; 3.0
-20

20

1.0

.........

'"~

'"

2.0
-40

40

100

60

VD - 710 Vdc

g

10

...,

80

FIGURE 8 - TYPICAL GATE TRIGGER VOLTAGE

.§

z

60

1. 2

"... r----.
0:
0:

40

TJ. JUNCTION TEMPERATURE lOCI

.20

:>

20

-20

NUMBER OF CYCLES

--

o

-

>

ffi

i'-

w
~

-

~

'"

...'"a:

.......

80

0.8

.............. I---..

0.6

'",.:
>'"
0.4
-40

100

-20

20

40

60

----

80

100

TJ.JUNCTION TEMPERATURE lOCI

TJ. JUNCTION TEMPERATURE lOCI

•
7-45

2N4851
thru
2N4853
PN UNIJUNCTION
TRANSISTORS
SILICON UNIJUNCTION TRANSISTOR
designed for pulse and timing circuits, sensing circuits, and
thyristor trigger circuits.
• Low Peak·Point Current - Ip = 0.4 p.A Max
•

Low Emitter Reverse Current - IEO = 50 nA Max

• Fast Switching - 1.0 MHz Min

*MAXIMUM RATINGS ITA
Rating
RMS Power Dissipation 11)

= 25 0 C unless otherwise noted)
Symbol

Valua

Unit

Po
Ie
ie

300
50
1.5
30
35
-65 to +125
-65 to +200

mW
mA
Amp
Volts
Volts

RMS Emitter Current

Peak-Pulse Emitter Current (21

Emitter Reverse Voltage
Interbasa Voltaga (3)

VB2E
VB2Bl
TJ
Tstg

Operating Junction Temperature Range
Storage Temperature Range

°c
°c

'Indicate. JEDEC Registered Oat.

SEATING
PLANE

(1) Derate 3.0 mW/oC inqrease in ambient temperature

(2) Duty cycle .. 1%, PRR = Isee figure 6)
(3) Basad upon power dissipation at T A = 250 C

II

FIGURE 1 - UNIJUNCTION
TRANSISTOR
SYMBOL ANO NOMENCLATURE

-

162

-

IE

I

Ve

E

NOTE:
1. PIN 3 CONNECTED TO CASE.

FIGURE 2 - STATIC EMITTER
CHARACTERISTICS CURVES
VE R~~~~:I~~E
CUTOFF
'_REGION _ _ SATURATION
REGION
REGION
Vp

II
U<:.T
POINT

62

)
Bl

VBE1Isat)
Vv

-Ip

I
I

162

= 0

2. BASE 1
3. BASE 2

DI~'

-t---- -=--V---.....c..
I
I
I

PIN 1. EMITTER

EMITTER TO
6ASE ONE
CHARACTERISTIC

VALLEY \
POINT

VB2Bl.

STYLE 1:

I

III
I

A
B
C

o

G
H
J
K
M

IV

N

lEO

MILLIMETERS
MIN MAX
5.31 5.B4
4.52 4.95
4.32 5.33
0.41
0.48
2.54 TYP
0.91
1.17
0.71
1.22
12.70
45.TYP
1.27 TYP

CASE 22A ·01
ITO.1S Ex.~Pt for Lead Position)

7-46

2N4851 thru 2N4853

ELECTRICAL CHARACTER ISTICS

(TA ~ 25°C unle.. otherwise noted)

Figura
No.
4,8

Rating
'Intrlnsic Standoff Ratio (11
(VB2B"1 ~ 10 VI

Symbol

2N4851
2N4852, 2N4853

·'ntarbese Resistance

11,12

Typ

Max

0.56
0.70

-

-

0.75
0.85

4.7

-

9.1

12 .

0.2

-

0.8

-

2.5

-

-

15

-

-

-

0.1
0.05

-

-

2.0
0.4

2.0
4.0
6.0

-

-

-

-

-

%/oC

aBB
VEB1(satl
IB2(modl

7

IEB20

-

9,10

Ip

13,14

Volts

5

mA
IlA

IlA

mA

IV

3,17

Unit

kohms

rBB

(VB2Bl ~3.0V,IE ~O)

·'ntarbase Resistance Temperature Coefficient
(VB2Bl ~ 3.0 V, IE ~ 0, TA = -65 to +125°<;1
Emitter Saturation Voltage (21
(VB2Bl ~ 10 V, IE ~ 50 mAl
Modulated Interbase Current
(VB2Bl ~ 10 V, IE ~ 50 mAl
·Emitter Reverse Current
2N4851, 2N4852
(VB2E ~ 30 V,IBI ~ 0)
2N4853
·Peak..point Emitter Current
2N4851, 2N4852
(VB2Bl ~ 25 VI
2N4853
'Valley-Point Current (21
(VB281 =20V,RB2= 1000hmsl 2N4851
2N4852
2N4853
'Bese-One Peak Pulse Voltage
2N4851
2N4852
2N4853
*Maximum Frequencv of Oscillation

Min

11

-

vOBI

3.0
5.0
6.0

-

f(max)

1.0

1.25

-

Volts

MHz

'Indicates JEOEC Registered Data.
(1) 11, Intrinsic standoff ratio, is defined in terms of the peak-point voltage, Vp. by means of the equation: Vp = 1J VS2B1 + VF. where VF is

about 0.49 volt at 25°C @ IF = 10 #LA and decreases.with temperature at about 2.5 mvfJC. The test circuit is shown in Figure 4. Components
R,. C" and the UJT form a relaxation oscillator; the remaining circuitry serves as a peak-voltage detector. The forward drop of Diode 01
compensates for VF. To, use, the "cal" button is pushed, and R3 is adjusted to make the current meter, M1, read full scale. When the "cal"
button is released, the value of 7) is read directly from the meter, if full scale on the meter reads 1.0.
(2) Use pulse techniques: PW ~ 300 IJ.S. duty cycle" 2.0% to avoid internal heating, which may result in erroneous readings .

FIGURE 3 - VOBI
TEST CIRCUIT

FIGURE 4 Vl '

~

FIGURE 5 - f(max)
TEST CIRCUIT

TEST CIRCUIT

+10 V

Vl

+20V

FIGURE 6 - PRR TEST CIRCUIT
ANOWAVEFORM
DUTY CYCLE .. 1%. PRR" 10 pp.

+ 20 V
RB2
100 !l
R1ADJUSTED
~_~--.:",FOR f(max)

Cl

0.15 ~;:f==t====:::::lF---F

CURRENT WAVEFORM THRU Rl

O.lIlF

0.21lF

RBl
47 !l

to,. diode with the following
characteristics:
~

0.49 V @ I F

~

20-30 V
(Adjust for

1.5 A

peak in A,)

l,10llA FULL SCALE

VF

TO
FREQUENCY
COUNTER

10 IlA

IR"2.0IlA@VR~20V

7-47

•

2N4851 thru 2N4853

TYPICAL CHARACTERISTICS

FIGURE 8 -INTRINSIC STANDOFF RATIO

FIGURE 7 - EMITTER REVERSE CURRENT

!

1.0

0-

O. 5

~

o. 2

'~
<.>
w

o. 1

'"ffi

G; 0.05

'"

~

~sy-

VB2Bl = 10 V

&II OPEN FOR lEB20
SW CLOSED FOR IEB2S

I

-

A

o
;::

~

......'"

< O.

B__

z

L

'./

./

~

IL

O. 1

<.>

0-

~ 0.00 2 ::::::...

ffi 0.00 1

:!: O.6

-

-60

'"

~ r'

-40

-20

20

40

60

BO

100

120

O. 5
-60

140

I--

2N4B52, 2N48 3

I--

2N4B5\

-

I--

~

;;;

0.00 5== IEB2

--- -- ---I--

0
0

0.02
0.01

!

j

D-9

-40

20

ro

~

~

N00

100

lro

NO

TJ, JUNCTION TEMPERATURE (OC)

TJ,JUNCTION TEMPERATURE (OC)

PEAK POINT CURRENT
FIGURE 9 - EFFECT OF VOLTAGE

FIGURE 10 - EFFECT OF TEMPERATURE

2. 5

TJ=25 0 C

;<

-=z
0-

w
a:
a:

::>
<.>

'"

w

2. 0

1. 5

1=
~

0Z

~<

Il!

V82Bl = 25 V
B

~\

1\ \
\ I'\.

6 ........

r--

'\,

1.0

"

'\..

o

o

4

...........

i'-..

O. 5

!f

•

1.0

3.0

6.0

9.0

"-

2N4851,2N4B52

~

2N4853

~

2"

t--...

12

15

lB

21

24

21

0
-60

3D

-

l""- t---

--

2N4B51,2N4B52

.......... r--

2N4B53

I
-40

ro

-20

VB2BI, INTER BASE VOLTAGE (VOLTS)

40

60

80

100

120

140

TJ, JUNCTION TEMPERATURE (OC)

INTERBASE RESISTANCE
FIGURE 11 - EFFECT OF VOLTAGE

Ii:
N

1.5

::;

~

1.4

FIGURE 12 - EFFECT OF TEMPERATURE
2

NORMALIZED Q!l3.0 V
TJ = 250 C
IE=O

/

o

z

~

iii'"

~

1.3

1.

:
c:r:

1.0

. . . .V

a:

.,./ r'"
~

M

~
~

U

~

ffi

~

~

........ ~4B52

0
~

8. 0

V

ffi
~

6.0

;

4.

,/'

V
......... V

-40

20

20

40

60

. BO

TJ, JUNCTION TEMPERATURE (OC)

VB2B1.INTERBASE VOLTAGE (VOLTS)

7-48

21«B51

O~

2. 0
-60

~

....

.......".

w

~

V

./

1

o

~

V

1.2

ffi
~

~

V

W

~

w
<.>

2N4B53

VB2B1 = 3.0 V
IpO

g

100

120

140

2N4851 thru 2N4853

TYPICAL CHARACTERISTICS
VALLEY CURRENT
FIGURE 14 - EFFECT OF TEMPERATURE

FIGURE 13 - EFFECT OF VOLTAGE
16

6
TJ· Z50C

'4 . RBZ· '0011

1
.... ,Z
~

0:

,

~

0
Z~4B~

S;
~

8.0

;

6.0

~

4.0

~
...:::

.? z.0
0
3.0

6.0

----

~ :/""

9.0

'Z

~

~

......... l--

---,.

"....

oS

~
'8

~

Z4

Z7

--~
-- --

Db- r-..

r- .:::::::

8.0

~ Or-~ 6.

f-

ZI

Z

~

~

I--Z~485'

'5

VBZ8'· ZO V
4r-- R8Z·'001l

.?

4. 0

ZN4ii51'

Z.O
0
-60

30

I- 2N4853

-40

-ZO

ZO

VBZ81.INTERBASE VOLTAGE (VOLTS)

40

r- rr-

r- ~r-

I"'"

r--

...... 1"-

60

80

'00

'ZO

140

TJ, JUNCTION TEMPERATURE (DC)

VALLEVVOLTAGE
FIGURE 16 - EFFECT OF TEMPERATURE

FIGURE 15 - EFFECT OF VOLTAGE
1.8

I. 8

TJ =Z5 0 C
VBZB1· 10 V

TJ.Z50 C

~

1.7

0

~
w

'"«
~

0

1.6

>

~«

> ·1.5

/
V

,;

>

1.4

o

3.0

B.O

V
90

V

V

./

V

~

-- --""" -

I--6-

r- r-

4

-

2

12

15

18

21

24

21

1. 0

30

-60

-40

w

-ZO

VBZ81.1NTER8ASE VOLTAGE (VOLTS)

~

00

~

'00

'W

MO

TJ,JUNCTION TEMPERATURE (DC)

FIGURE 17 - OUTPUT VOLTAGE

~ 20

RB,-'OOIl

~ '0
'"~ 1.0
o

>

,

5.0

~ 3.0

....
,. ,.

~ 2.0

""

,......-: 1---

~w to

:zz

O. 7
~ O. 5

;; O. 3"
o
> O.Z
0:00'

--'

.....
0.002

-

-0.005

--:- .- - - - --'.-'
.... 1-

I- ~

,~-'

,'" _...
I---

0.0'

O.OZ

0.05

0.'

on
~-

-

,Oll

(SEE FIGURE 3)

o.Z

C" CIRCUIT CAPACITANCE, EMITTER TO GROUND (.FI

7-49

'-r--

~<

0.5

-

1.0

-VI = ZO V
RBZ·'OOIl
TA·250 C
2N4B5'
- - ZN4852, ZN4853
2.0

5.0

'0

•

2N4870
2N4871

,IL---_ _
~__'__::_-----'
SILICON

PN UNIJUNCTION
TRANSISTORS

UNIJUNCTION TRANSISTORS

.designed for pulse and timing circuits, sensing circuits, and
thyristor trigger circuits. These devices feature:

,

•
•
•

Low Peak Point Current - 1.0 JJ.A Typical

Low Emitter Reverse Current - 5.0 nA Typical
• Passivated
Surface for Reliability and Uniformity
One·Piece Injection·Molded Unibloc* Plastic Package for
Economy and Reliability
B1

MAXIMUM RATINGS (TA = 25 0 unless otherwise noted)
Rating

Symbol

Value

Unit

PD'

300

",W

Ie

50
1.5
30
36
·55 to +125
-55 to +150

mA

RMS Power Dissipation·

RMS Emitter Current
Peak·Pulse Emitter Current,··

ie••

Emitter Revers~ Voltage

VB2E

Interbase Voltaget
Operating Junction Temperature Range
Storage Temperature Range

VB2B1t
TJ
T stg

Amp
VoltS
Volts

r-tB

A

SEATINGP~i---'-==fT1
~

,

PLANE F

-------1

°c
°c

K

I

·Derate 3.0 mW/DC increase in ambient temperature.
""Duty cycle <; 1%, PRR = 10 PPS (see Figure 51.
taased upon power dissipation at TA = 2SoC.

FIGURE 1 -UNIJUNCTION
TRANSISTOR SYMBOL
AND NOMENCLATURE

FIGURE 2 -STATIC EMITTER
CHARACTERISTICS CURVES

STYLE 9:
PIN I. BASE 1
1, EMITTER
3 BASE 1

182

CUTO'f
REGION
DIM
A

B
C
D

E

F

G
V8281

H
J

VE81 (sat)

MILLIMETERS
MAX
MIN

4.32
4.44
3,18
0,41
0,41
1.14

INCHES
MIN
MAX

0.170
0.175
0.125
0,016
0.016
0,045

-

0,210
0,205
0,165
0,022
0,019
0,055
D.l00
0,105

0,095
0,500
0,25D
L
2,92 0,080 0,115
N
P
0,115
R
1
S
0..41 0.014 0,016
All JEDEC dimensions and notes apply,

Vv

K

1.41
12,70
6,35
2.03
1,92
3,43
0,36

5,33
5.11
4,19
0,56
0,48
1,40
1,54
2,67

-

CASE 29'()2

7-50

2N4870,2N4871

ELECTRICAl. CHARACTERISTICS

(T A: 25°C unless otherwise noted)

Chafilct8ri:!rtic

Intrinsic Standoff Ratio·
IVS2Bl : 10 V)

Fig. No.

Symbol

4,7

11·

2N4870
2N4871

Interba,e Resistance
IVB2Bl : 3.0 V, 'E: 0)
Intarbasa Resistance Temperature Coefficient
IVB2Bl : 3.0 v, 'E: 0, TA: -65 to +1250 C)
Emitter Saturation Voltage··
IVB2Bl : 10 V, IE: 50 mAl
Modulated Interbasa Current
IVB2Bl: 10 V, 'E: 50 mAl
Emitter Reverse Current
(VB2E: 30 V, 'Bl : 0)
Peak·Point Emitter Current
IVB2Bl : 25 V)
Valley·Point Current· *
(V82Bl = 20 V, RB2: 100 ohms)

10,11

Min

Typ

Max

0.56
0.70

-

0.75
0.85

4.0

6.0

9.1

0.10

-

0.90

-

2.5

-

-

15

-

-

0.005

1.0

-

1.0

5.0

2.0
4.0
3.0
5.0

. 5.0
7.0
6.0
8.0

-

kohms

%/oC

aRBB
VEBHsatl··
'R2(mod)

6

'EB20

8,9

Base-One Peak Pulse Voltage

Volts
mA
IlA

Ip

12,13
2N4870
2N4871
2N4870
2N4871

-

RB8

11

Il A

IV··

3,16

VOBI

Unit

mA

-

Volts

-

... 12. Intrinsic standoff ratio, is defined in terms of the peak-point voltage. Vp. by means of the equation: Vp = 11 VS2Bl + VF. where VF is
@ IF = 10 JlA and decreases with temperature at about 2.5 mV IOC. The test circuit is shown in Figure 4. Components
R" C" and the UJT form a relaxation oscillator; the remaining circuitry serves as a peak~voltage detector. The forward drop of Diode 01

about 0.49 volt at 25°C

compensates for VR, To use, the "c~I" button is pushed, and R3 is adjusted to make the current meter, Ml. read full scale. When the "cal"
button is released, the value of n is read directly from the meter, if full scale on the meter reads 1.0.

** Use pulse techniques: PW ~ 300 /.LS, duty cycle.so; 2.0% to avoid internal heating, which may result in erroneous readings.

FIGURE·3 -VOBI TEST CIRCUIT

VI

FIGURE 4

-1)

TEST CIRCUIT

FIGURE 5 - PRR TEST CIRCUIT
AND WAVEFORM

+10V

DUTY CYCLE -:;;;; 1% PRR.~ 10 pps

+20 V

Rl

RB2

20kn

loon

I

0.15

CAC'1

~::t==:.i=======*---F-

R2
CURRENT WAVEFORM THRU Rl
910 kn

Ell

Vos,

~

°l t
C2

R3
100 k1!

1.0 IlF

Cl

O.IIlF
20·30 V
(Adjust for 1.5 A
peak in A1)

to" diode with the following characteristics:

VF =0.49V@IF=10IlA
IR" 2.0 IlA@VR: 20 V

7-51

-=-

2N4870. 2N4871

. TYPICAL CHARACTERISTICS
FIGURE 6 - EMITTER REVERSE CURRENT

;c

1. 0

-=ffi

O. 5

a~

O. 2

~

o. 1

~

0.0 5

-

-40

o. 6

~

IEB2

,;

~o.oo 2~'~
wO.oo 1

-60

o

-r

-

jo.oa5~
-

FIGUAE 7 - INTRINSIC STANDOFF RATIO

o. 9

-20

W

W

~

M

~

r--

r--

r--

O. 5

~

lW

-- -- - -

-60

-40

r-

-20

W

-

W

~

2N4B71

2N4B7~

-

IM

100

lW

~

TJ.JUNCTION TEMPERATURE (DC)

TJ. JUNCTION TEMPEIfATURE (DC)

PEAK POINT CURRENT
FIGURE 8 - EFFECT OF VOLTAGE

FIGURE 9 - EFFECT OF TEMPERATURE

3.0
TJ

;c

-=>-

2.5

\

~

z

~
~

0.5

«

a

;c

.-=>~

\

..... ............

1.2
1.0

-

z

~ 0.4

"". 0.2

«

~

.!f-

:sf.
3.0

6.0

9.0

12

15

18

21

24

27

o

-60

30

-40

20

-20

40

60

80

100

120

140

TJ. JUNCTION TEMPERATURE (OCI

VB2Bl.INTERBASE VOLTAGE (VOL TSI

INTERBASE RESISTANCE
FIGURE 10 - EFFECT OF VOLTAGE

FIGURE 11 - EFFECT OF TEMPERATURE

1.4
NO RMALIZEO @ 3.0 V
TJ = 250 C
IE = 0

ffi

N

:::;

«

io1i

10

~
z

~w
~

ffi
~

::l

a:

1.2

. . .V

1. 1

1.0

o

3.0

---

v

6.U

V
9.0

V

/

u

z

V

15

18

21

8.0

~

~w

~

6.0

~

4.0

./

>-

;;

...........
12

./'"

w

I

1.3

z

~

VB2Bl = 3.0 V
IE = 0

a

:,

24

27

30

V82Bl.INTERBASE VOLTAGE (VOLTS)

~

2.0
-60

-40

....... ...........

-20

2N4870

V
,/

./'

20

40

60

80

TJ. JUNCTION TEMPERATURE (DC)

7-52

~1

100

120

140

2N4870, 2N4871

TYPICAL CHARACTERISTICS
VALLEY CURRENT
FIGURE 12 - EFFECT OF VOL TAGE

FIGURE 13 - EFFECT OF TEMPERATURE

6
;(

..s
I-

ffi

a:
a:

a

16

TJ = 250 C
4 RS2 = 1001l

..s

12

6. 0

~

4.0

J?

. /V

...V

2. 0
0

3.0

-

6.0

I

I--

....-

~ 8.0

o

I--

I-""" 2N4B70
~ f-9.0

12

15

IS

21

24

27

12

l-

-irs: - -

10

;

VB2S1 =20 V
14 r-RS2 = 1001l

;(

10

:--

~

8.0

~
~

r-6.0

">

4.0

J?

2.0
0
-60

3D

t--

r-

-40

-20

--

:--:-_

r-- .........

2Ntl
2N4BiiI'

20

40

r- :--..

60

BO

-

-I"-

100

120

140

TJ, JUNCTION TEMPERATURE (OC)

VS2Blo INTER,SASE VOLTAGE (VOLTS)

VALLEY VOLTAGE
FIGURE 14 - EFFECT OF VOLTAGE

FIGURE 15 - EFFECT OF TEMPERATURE

B

I.B
TJ = 250C

.-./I--

~

~
o

1. 7

.,,/

~
W

~

~

>

~
">:>

V

1.6

"o

:;

/

>

>

~
">j

V

1.4

o

30

80

90

12

15

18

21

24

21

r-- t--

1.4

-..

1.2

1.0
-60

3D

-

:-- :--

w
to

/

1. 5

t-1.6

~

./

to

VS2Bl = 10 V

~o

-40

-20

20

40

60

80

100

120

140

TJ, JUNCTION TEMPERATURE (0 C)

VB2Bl..1NTERBASE VOLTAGE (VOLTS)

FIGURE 16 - OUTPUT VOLTAGE

u; 20

:;

RBI

o

2:.

10

~

1. 0

~

_....

5.0

>

~ 3.0

~

'"
;:li
~

1.0

~

O. 7

~

I---:::

o. 5

;;'; 0.3
~ 0.2
Q.QOl

-- ....

~ 2.0

""~'
0.002

-

0.005.

- - ,-,- -:- -

-' .-...-:
~
~

~-

.-

=

1O01l

20[1

~

.- -

lOll

.....

!ill":::

tSEEFIGURE31

Vl- 20~l=
RB2 -1001l
TA - 25 0 C
2N4B70
--2N4871

f

0.01

0.02

0.05

0.1

0.2

0.5

Cl, CIRCUIT CAPACITANCE, EMITTER TO GROUND ("F)

7-53

1.0

2.0

5.0

10

2N494S2N4949

_~--------,---E

'I'--

::_----'

PN UNIJUNCTION
TRAN~ISTORS

SILICON UNIJUNCTION TRANSISTORS
, .. designed for military and industrial use in pulse, timing, trigger·
ing, sensing, and oscillator circuits. The annular process provides low
leakage current, fast switching and low peak·point currents as well as
outstanding reliability and uniformity. Recommended usage includes:
• Silicon Controlled Rectifier Triggering Circuits - 2N4948
•

Long·time Delay Circuits - 2N4949

\

MAXIMUM RATINGS (T A ~ 25 0 C unless otherwise notedl
Rating
RMS Power Dissipation·
RMS Emitter Current
Peak Pulse Emitter Current**
Emitter Reverse Voltage

Storage Temperature Range

.

Symbol

Value

Unit

Po
Ie
ie
VB2E
Tstg

360'
50
1.0"
30
-65 to +200

mW
mA
Amp
Volts

°c

NOTE:
1, PIN 3 CONNECTED TO CASE,

STYLE 1:
PIN 1, EMITTER
2, BASE I
3, BASE 2

Derate 2.4 mW/oC increase in ambient temperature. Total power dissipation (available

power to Emitter and Base-Two) must be limited by external circuitry_ Interbase voltage

(VS2Bl) limited by power dissipation, VB2Bl = "'RBB • Po •

*,.

Capacitance discharge current must fall to 0.37 Amp within 3.0 ms and PRR.=;;;; 10 PPS .

SEATING

•
DIM
A
B

C
0

G
H

J
K

M
N

MILLIMETERS
MIN MAX
5,31
5,B4
4,52 4.95
4,32 5,33
0,41
0.48
2,54 TYP
0,91
1,17
0,11
1,22
12.70
45 0 TYP
1.27 TYP

INCHES
MIN r~AX
0,209 0,230
0,178 0,195
0,170 0,210
0,QI6 0,019
0,100 TYP
0,036 0.046
0,02B O,04B
0.500
45 0 TYP
0,050 TYP

CASE 22A·01

TO·18 PACKAGE
(Except for lead position)

7-54

2N4948, 2N4949

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic

Symbol

Intrinsic Standoff Aatio

(VB2Bl

= 10 V)

Interbase Resistance Temperature Coefficient

0.82
0.86

4.0

7.0

12.0

0.1

-

0.9

-

2.5

3.0

12

15

-

-

5.0

-

-

10
1.0

-

0.6
0.6

2.0
1.0

2.0

4.0

-

3.0
6.0

5.0
B.O

-

-

1.25

-

%/oC
Volts

VEB1(sat)

= 50 mAl Note 2

rnA

IB2(mod)

= 10 V,IE = 50 mAl

Emitter Reverse Current

IEB20

= 30 V,lBl =0)
= 30 V,lBl =0, TA = 12S0C)

nA
/lA

Ip

Peak Point Emitter Curront

(VB2Bl

-

aRBB

Modulated Interbase Current

(VB2E
(VB2E

0.55
0.74

Unit

kohms

= 3.0 V, IE = 0, TA =-650 C to +100o C)

Emitter Saturation Voltage

(VB2Bl

Max

RBB
2N494B, 2N4949

.(VB2Bl =3.0V,IE=0)

(VB2Bl = 10 V, IE

Typ

-

2N4948
2N4949

Note 1

Interbase Resistance

(VB2Bl

Min

T/

= 25 V)'

/lA

2N4948
2N4949

Valley Point Current

rnA

IV

(VB2Bl = 20 V, RB2 = 100 ohms) Note 2
Base-One Peak Pulse Voltage
(Note 3, Figur. 3)

2N4948, 2N4949
VOBl
2N4949
2N4948

Maximum Oscillation Frequency

Volts

-

MHz

I(max)

(Figure 4)
NOTES

i.

2. Use pulse techniques: PW R:: 300 IlS duty cycle ~ 2% to avoid
internal 'heating due \0 interbase modulation which may result in

Intrinsic standoff ratio.
7), is defined by equation:
T/ =

Where Vp

erroneous readings.

Vp - V(EB1)
VB2Bl

3. Base-One Peak Pulse Voltage is measured in circuit of Figure 3.
This specification is used to ensure minimum pulse amplitude for
applications in SeA firing circuits and other types of pulse circuits.

= Peak Point Emitter Voltage

VB2Bl = Interbase Voltage
V (EB1) = E~itter to Base·One Junction Diode Drop
(" 0.45 V @ 10 /lA)

FIGURE 1 - UNIJUNCTION TRANSISTOR
SYMBOL AND. NOMENCLATURE

FIGURE 2 - STATIC EMITTER
CHARACTERISTICS CURVES

FIGURE 3 - VOB1 TEST CIRCUIT
(Typical Relaxation Oscillator'

v,

'B2

REGION

I

Ve'

V,
+20 V

+20V

R,
20 kO

'e

FIGURE 4 - F(mlxl MAXIMUM
FREQUENCY TEST CIRCUIT

RB2
1000

R,
50 kO

RB2
lOOn

B;
.'

.-

VB2Bl: VEBlhatl

B,

Vv

C,

O.2#F

Ip

Iv

'eo

7-55

vf}l'

RB'
20n

RB'
20 ti

TO
FREQUENCY
COUNTER

•

2N5060
thru
2N5064
AO_--1.DI~
__
G--oOK
SILICON CONTROLLED
RECTIFIERS

REVERSE BLOCKING TRIODE THYRISTORS

Annular. PNPN devi~s designed for high volume consumer
applications such as relay and lamp'drivers, small motor controls, gate
drivers for larger thyristors, and sensing and detection circuits.
Supplied in an inexpensive plastic TO-92 package which is readily
adaptable for use in automatic insertion equipment.
• Sensitive Gate Trigger Current - 200 J,lA Maximum

0.8 AMPERE RMS
30 thru 200 VOLTS

• Low Reverse and Forward Blocking Current 50J,lA Maximum, TC = l25 0 C
• Low Holding Current - 5.0 mA Maximum
• Passivated Surface for Reliability and Uniformity
• Also Available with TO-5 or TO-1B Lead Form
MAXIMUM RATINGS(1)
Symbol

Rlting
"Peak Repetitive Reverse Blocking Voltage 11)
(RGK· 1000 ohms, TC = +1250 C) 2N5060
2N5061
2N5062
2N5063
2N5064

VORM
VRRM

On-5tete Current RMS
(All Conduction' Angles)

IT(RMS)

• Average On-State Current
(TC = S70C)
(TC= 10~C)

IT(AV)

Value

Unit
Volts

30
60
100
150
200
0.8

MB

Amp
Amp

0.51
0.255

·Peak Non-Repet'itive Surge Current, T A:: 2SoC

...""1;:PI~
~
PLANE F _

1~IHI--j..L

ITSM

10

Amp

12 t

0.15

A 2s

PGM

0.1

Watt

(112 cycle, Sine WINe, SO Hz)

Circuit Fusing Considerations. TA = 25°C

•

D~1iG
..:1 J 1-=

(t = 1.0 to 8.3 ms)
'Peak Gate Power. T A = 25°C

PG(AV)

0.Q1

Watt

·Peak Forward Gate Current, T A = 2SoC
(3OO~s. 120PPS) ,

IFGM

.1.0

Amp

·Peak Reverse Gate Voltage

VRGM

5.0

Volts

TJ

S5 to +125

°c

T stg

S5 to +150

°c

-

+230'

°c

Symbol

Max

Unit

ROJC

75

°CIW

ROJA

200

°CIW

'Average Gate Po",",r, TA = 25°C

·Operating Junction Temperature Range

@

Rated

VRRM and VORM

·Storage Temperature__ ~ange
-Lead Solder Temperature
(Lead Length .. !i1S" from case. 10 s Max)

THERMAL CHARACTERISTICS
Characteristic

-Thermal Resistance, Junction to Case (2)
Thermal ReSistance, Junction to Ambient

(1 ) Ratings apply for zero or negative gete voltage. Device

ratings exclude having a
positive bias applied to the gete concurrently with a negative potantlal on the anode.
. Devices should not be tested with a constant current source for forward or reverse
blocking capability such that the voltage applied exceeds the reted blocking voltage.

(2) Thi. measurement 1. made with the case mounted "flat side down" on a hast sink
and held in position by means of a matal clamp over the curved surface •
• AnnularSemiconductor Patented by Motorola Inc.
"Indicates JEOEC Registered Data.

7-56

A

STYLE 10:
PIN I.
2.

3.

CATHODE
GATE
ANODE

r---IR

K

I

~

U{

SECT.A·A

~
~

MILLIMETERS
INCHES
MIN MAX MIN MAX
4.32
5.33 0.170 0.210
8
4.44
5.21 0.175 0.2 5
C
3.18
4.19 ·0.125 0.165
D
0.41
0.56 0.016 0.022
F
0.41
0.48 0.016 0.019
1.14
G
1.40 0.045 0.055
H
2.54
0.100
J
2.41
2.61 0.095 DelOS
K 12.10
0.500
L
6.35
0.2
N
2.03
2.92 0.080 0.115
P
2.92
0.115
3.43
R
.1
S
0.36
0.41 0.014 O.OJ§
All JEDEC ~imensions and notes applv.

DIM
A

CASE 29-02
TO-92

C

2N5060 thru 2N5064

ELECTRICAL CHARACTERISTICS (4) (TC· 2SoC unle.. otherwise notedl
Charamrlltie
·Peak Forward Blocking Voltage (Note 1)
(Tc z 12SOC, RGK= l0000hmsl

Symbol

Min

VORM
2N51l6O
2N5061
2N5062
2N5063
2N5064

30
60
100
150
200

-

-

SO

/"A

50

/"A

-

1.7

Volts

-

200
350

/"A

0.8
1.2

Volts

-

-

-

5.0
10

mA

-

-

3.0
0.2

-

-

tq

-

10
30

-

ps

dv/dt

-

300

-

Vips

·Peak Reverse Blocking Current
(Rated VRRM@TC= 125o C, RGK = l0000hmsl
"Forward "On" Voltege (Nota 21
(lTM= 1.2Apeak@TA= 250 C)
Gate Trigger Current (Continuous de) (Note 3)
"(Anode Voltogo = 7.0 Vdc, RL = 100 Ohms,
AGK= l0000hms)

'RRM
VTM
TC=250 C
TC = -sSOC

IGT

TC·250C
TC = -650 C
TC= 12SoC

VGT

-

Turn-On Time
Delay Time
Rise Time
(iGT= 1.0mA, RGK = 1.0 Ohm, Vo = Rated VORM
Forward Current = 1.0 A, dildt = 6.0 Alps)
,

-

Unit
Volts

-

IORM

TC= 250 C
TC = -65°C

-

Max

-

·Peak Forward Blocking Current
(Aated VORM@TC=12SOC,AGK= l0000hmsl

Gate Trigger Voltage (Continuous de)
"(Anode Voltege = 7.0 Vdc, RL = 100 Ohm.)
(Anode Voltage = Rated VORM, RL = 100 Ohm.)
Holding Current
"(Anode Voltege = 7.0 Vdc, initiating current = 20 mA

Typ

-

VGO

0.1

'H

-

-

-

/"s

fcI
tr

Turn-Off Time
(Forward Current = 1.0 A pulse, Pulse Width = 50 /"s, 0.1%
Duty Cycle, dildt = 6.0 Alps, dv/dt = 20 V Ips, IGT = 1.0 mA,
RGK = 1.0 k Ohm)

2N5060,2N5061
2N5062,5063,5064

Forward Voltage Application Rate
(Rated VORM, RGK = 1.0 k, Exponential)

·'ndicates JE DEC Registered Data.

2. Forward current applied for 1.0 ms maximum duration. duty

1. VCRM and VRRMfora11 typascan baapplied on a continuous
de basis without incurring damage. Ratings apply for zoro or
negatlv. gato voltage but positive gate voltago shall not be
applied concurrently with a negative potential on tho anode.
Whon checking forward or reverse blocking capability, thyristor devices should nat be tested with a constant current source
in 8 manner that the voltage applied exceeds the rated blocking
voltage.

cycle .. 1.0%.

3. RGK current is not included in measurement.
4. For electrical characteristics for G8te-to~athode resistance
other than 1000 ohms see Motorola Bulletin EB-30.

CURRENT DERATING
FIGURE 1 - MAXIMUM CASE TEMPERATURE
I;' 130
w

~ 120

~b

~ ~ ;::- r-

~w

.. 110
~ 100

SO

~

80

,

'\ ~ ~

1li

~

a '=

\.

"'

\
0:=

300

60

~

50

o

0_1

CONduCTIO~ ANG[EN_a
CASE MEASUREMENT
POINT - CENTER OF
-. -.......!:LAT PORTION

"

~

..... t'-...' ~

60·

""_ 10

i'"

.....

0.2

FIGURE 2 - MAXIMUM AMBIENT TENI'ERATURE

0.3

soci'.

120·

r---- ~
I':::

0.4

~O.

0.5

ITIAV), AVERAGE ON·STATE CURRENT lAMP)

IT(AV), AVERAGE ON-5TATE CURRENT (AMP)

7-57

•

2N5060 thru 2N5064

FIGURE 4 - MAXIMUM NON,REPETITIVE SURGE CURRENT

FIGURE 3 -TYPICAL FORWARD VOLTAGE
5.0

3.0

V

2.0

a:-

10

I./':

TJ= 125 0 C/

II

1.0

/~ V

~

'"

0.2

2.0

E

I

I I

1.0
1.0

II

o

~
z

3.0

'"~
""

to

:E

.'-'

~

~
w

'"

0.5

0.3

3.0

5.0

7.0

10

20

50

30

II

FIGURE 5 - POWER DISSIPATION
0.8

O. 1

.t::: 0.07

~
.=
hON-;jcto:~NGLEI
-'
I

1200 18~

60~

90 0

V/
/. // V

1/
/ / / ,0/ V/ V
./" ~c

0=

0.05

30 0

;I'

/. /~ ~

I

0.02

I

/'

/

/"

/: ~ ~ V

II
0.5

•

•

I

0.03

0.0 1

70 100

NUMBER OF CYCLES

z

:!

2.0

I

;!:

~

-

'"

250 C _ f--

Il!

:::>

~z

5.0

~

~ o. 7
~

7.0

0-

S

1/ V

i/

i

1.5

1.0

o

2.5

2.0

'T, INSTANTANEOUS ON·STATE VOLTAGE (VOLTS)

"

~

o

0.1

0.2

04

0.3

0.5

ITIAV), AVERAGE ON-STATE CURRENT (AMP)

FIGURE 6 - THERMAL RESPONSE
1.0
w

li1

--

0.5

~

~.... 0

~~
~~

0.2
,D.

1

0-'"

~ ~ 0.05

--

t-"

in

z

~

0-

0.02

0.0 1
0.002

0.005

0.01

0.02

0.05

0.1

0.2

t, TIME (SECONDS)

7-58

0.5

1.0

2.0

5.0

10

20

2N5060 thru 2N5064

TYPICAL CHARACTERISTICS
FIGURE 7 - GATE TRIGGER VOLTAGE
0.8

~ D. 7
w
C>

<
':;
o O. 6

AK = 7.0 1V
RL=IOO'RGK= 1.0k_

I'..

>

g'"

J

"'" ""- r'-;

~

,

!.<
C>

ci

..........

O. 5

I-

r---

w

O. 4

~

10

a'"

5.0

ffi

-25

25

g

........

50

75

100

RL: 100..,::::::::::::
2N5062·S4
~

r--- 2N 506()'SI

2. 0

~

1.0

~

D.5

w

'1'0.

.--50

VAK-7.0V~

10 0

~ 50
'"o
~ 2O~

"- i'-..

---

:>

O. 3
-75

c
~

I-

w

a=

FIGURE B - GATE TRIGGER CURRENT
200

,;
!:E O.2

125

-75

-25

-50

TJ. JUNCTION TEMPERATURE (DC)

ffi

N

3.0

::;
<

~ 2.0

c

~
I-

1
AK = 7.0 v
RL-IUO RGK= 1.0k_

.......... ""

~ 1.0

'"z o. 8
C
%

100

125

ON STATE

BLOCKING
STATE

~+

----I

'--V

I

+V
I

I

A2N50S0,61
2N5062.s4'

O. S
0.4
-75

J--

£:.-::.I H

VRAM

..........

§

3

TYPICAL V - I CHARACTERISTICS

-V

---~ ~

~

75

50

FIGURE 10 - CHARACTERISTICS AND SYMBOLS

J
'-

25

Tj,JUNCTION TEMPERATURE (DC)

FIGURE 9 - HOLDING CURRENT
4.0

-

~

......

I

-

LOAD

~

I
-50

-25

25

&0

75

100

125
K

TJ,JUNCTION TEMPERATURE lOCI

7-59

•

2N5164
thru
2N5171
AO

~G

OK

SILICON CONTROLLED
RECITIFIER
20 AMPERES RMS
50-600 'VOLTS

REVERSE BLOCKING TRIODE THYRISTOR'
· _ . designed for industrial and consumer applications such as power
supplies, battery chargers, temperature, motor, light and welder
controls.
• Supplied in Either Pressfit or Stud Package
• High Surge Current Rating - ITSM = 240 Amp
• Low On-State Voltage - 1.2 V (Typ) @ ITM = 20 Amp
• Practical Level Triggering and Holding Characteristics 40 mA (Max) and 50 mA (Max) @TC= 2S o C
MAXIMUM RATINGS
Reting
• Peak Forward and 'Repetitive Rave ... Blocking
Voltage 111, 121
2N5164.2N5168
2N5165.2N5169
2N5166.2N5170
2N5167.2N5171
'Non-repetitive Peak Revar. Blocking Voltage
2N5164.2N5168
2N5165.2N5169
2N5166.2N5170
2N5167.2N5171
On-8tate Current RMS
Average On-State Current
(TC=6~C)

•

Circuit Fusing
(TJ = -40 to +100Dc. t ';;;8.3 ms)
'Peak Non-Repetitive Surge Current
(Ona evcle. 60 Hz. TJ = -40 to +100DC)
Preceded and followed by rated current
.
and voltage.
'Peak Gate Power
(Maximum Pulse Width· 101'1)
• Average Gate Power
'Peak Forward Gato Currant
(Maximum Pulse Width - 101'11
Peak Gata Voltage
·Operating Junction Temperature Range
'Storage Temperatura Range
Stud Torque
2N516B-2N5171

Symbol

Value

Unit

Volts

VORM'
or
VRRM

50
200
400
600

"1JFG

Volt.

VRSM

ITIRMS)
ITIAV)

75
300
500
700
20
13

I"t

235

.~

2N5164
2N5165
2N6168
2N5167

L
DI"~
~

1"

Amp
Amp

I
~

STYLE I:
l.eATHDDE
2. GATE

WE. ANODE

MILLIMEtERS

A"s

ITSM

240

Amp

PGM

5.0

Watts

PG(AVI
IGM

0.5
2.0

Watt
Amp

VGM
TJ
Tsig

10

-40 to +100

Volts
"c
wc

IDM

MAX

,

a

-40 to +150 .
30

Mil
12.73

1.40

CASE 31041
2N5168
2N5169
2N5170
2N5171

in. lb.
STYLE 1:

THERMAL CHARACTERISTICS

Plll.CATHODE

Characteristic
'Thermal Rellttance. Junction to ease
2N5164. 65. 68. 67
2N516B. 69. 70, 71

Symbol

Typ

M41x

1.0
1.1

1,5,
1.6

R6JC

I. BATE
'.AlDIE

Unit
':'CIW
EO

(11 VORM'or all ty_ can be applied on a continuous dc b..ls without Incurring dam_.
Rotlngs apply for zero or n......ve gato
De_I_should not be _
for blocking
capability In a mann.r IUch that tho vol_applied 8X_S tho rated blocking _01_.
(2)D..I... should not be operatad with a positive bl.. applied to tho geta concurrent with •
potontlal appl)ed to tho onodo.

_01_.

_Iva

,....
CASEZUG3

7-60

2N5164 thru 2N5171

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
·Peak Forward Blocking~Current

Symbol

Min

Max

Unit

loRM

-

5.0

mA

5.0

mA

(Vo = Rated VoRM @l T J = 100°C, gate open)

·Peak Reverse Blocking Current

IRRM

(VR = Rated VRRM @l T J = 100o e, gate open)
Gate Trigger Current (Continuous de) (2)
(Vo = 7.0 Vdc, RL 100 n)
*(Vo = 7.0 Vdc, RL 100 n, Te = -40o C)

IGT

=
=

Gate Trigger Voltage (Continuous de)
(Vo = 7.0 Vdc, gate open)
*(Vo = 7.0 Vdc, RL = 100 n, TC = -40o C)
*(Vo =Rated VoRM, RL = 100 n, TJ = 100°C'

VGT

Peak On·State Voltage (Pulse Width = 1.0 ms max, duty cycle <:;;1%)
(lTM=20A)

VTM

mA
~

40

-

75
Volts

-

1.5
2.5

0.2

-

-

1.5

-

50

Volts

*UTM = 41 A)
Holding Current
1Vo = 7.0 Vdc, gate open),

-

1.7
mA

IH

*(VO = 7.0 Vdc, gate open, TC = -40°C)

90
Typical

Gate Controlled Turn-On Time (td + t r )

j.ls

1.0

tgt

(lTM = 20 A, IGT = 40 mAde, Vo = Rated VoRM)

Circuit Com mutated Turn-Off Time

j.lS

tq

(lTM= 10A,IR= lOA)

20

IITM = 10 A,IR = 10 A, TJ = 100o C)

30

(Vo = VoRM = rated voltage)
(dv/dt = 30 V/j.ls)
Critica~

V/j.ls

50

dv/dt

Rate of Rise of Off-State Voltage

(Vo = Rated VoRM, Exponential Wave Form, Gate open, T J = 1000 C)

·Indicates JEDEC registered data.

EFFECT OF TEMPERATURE UPON TYPICAL TRIGGER CHARACTERISTICS
FIGURE 2 - GATE TRIGGER VOLTAGE

FIGURE 1 - GATE TRIGGER CURRENT
20

"

:;c

~

10

r

1.0
OJF.STJE VOJAGE = \ V-

~o

I

::.

.............

...........

~ 0.8

~

......

~ 1.0

...........

~

co

.............

co

..........

~ 5.0

...........

~ 0.7

.......

to

"'....
....

........

g 0.6

"'

r-....

.............
f'....

....
~

w

<
to

~. 3.0

r

OFF-STATE VOLTAGE = 7 V -

0.9

l'--..

0.5

t;- 0.4

.P

>
2. 0
-60

-40

-20

0

20

4D

60

BO

100

120

140

TJ, JUNCTION TEMPERATURE lOCI

0.3
-60

-40

-20

20

40

60

BO

TJ, JUNCTION TEMPERATURE IOC)

7-61

100

120

140

2N5164 thru 2N5171

MAXIMUM ALLOWABLE NON-REPETITIVE SURGE CURRENT
FIGURE 4 - SUB·CYClE SURGES

FIGURE 3 - 60 Hz SURGES
240
22 0

1"'-

,.

ii: 200

T~

I

l'-

~

--

, .... 1"-

so0

II

pllOR
SJRG1E
SCR OPERATED AT
RATED LOAD CONDITIONS
TJ = ·40·C to '100o C
f = 60 MHz

£' 40

~

....

w

140
12 0

~

E

w

r.......

~

~

~ 300

"-

160

'"
~

L~oLLI

~

§ 180
a'"

O~

f \
I-

10 0

~

"'-

~

"

""'"

w

~ 200

1'-:--.,

12, =23S A2,

'"

o

V

'"~

"-

.

r--.

1 CYCLE..j

80

o

1.0.

4.0

2.0

6.0 8.0 10

40

20
NUMBER OF CYCLES

100
1.0

60 80100

FIGURE 5 - GATE TRIGGER
CHARACTERISTICS

•

2.0

0.7

~

O.S

....

ii:

13
w

0.1

!E

O.OS

10

f'-.-. r--.....

~ 7.0

2.0
-60

MAXIMUM ALLOWABLE FORWARD
GATE VOLTAGE VGM = 10 VOLTS
0.00010tt1ll--.---.,--,,--r,:;;;;"'..,,--r'-'--1I.---i

rr--::===

=---,

U

U

U

~

M

,

I

o

40 mA GATE CURRENT REQUIRED
TO TRIGGER ALL UNITS@TJ=2Soc

Ul~

OJF-5TJE V O L L I

I

'":~ 3.0

L __ , _____ _

0.02

I

§

ALL UNITS WILL TRIGGER AT ANY VOLTAGE
AND CURRENT WITHiN THIS AREA
Hc = 2S oC, VAK = 7.0 VI

0.03

10

:--..

~ 5.0

I
I

7.0

........

13

0.2

....

6.0

i'l'i

RECOMMENDED TRIGGER
CURRENT

;; 0.07

3.0
PU LSE WIDTH 1m,)

20

GATE CURRENT

j

I

1.0

FIGURE 6 - EFFECT OF TEMPERATURE ON
TYPICAL HalOING CURRENT

rr---,r--""- MAXIMUM ALLOWABLE FORWARD

~ 0.3

l.S

~

U

U

10

VG, GATE VOLTAGE (VOLTS)

7-62

-40

-20
0
20
40
60
80
. TJ, JUNCTION TEMPERATURE 10C)

100

120

140

2N5164 thru 2N5171

DERATING AND DISSIPATION FOR RESISTIVE AND INDUCTIVE
LOADS (f = 60 to 400 Hz, SINE WAVE)
FIGURE 7 - AVERAGE CURRENT DERATING

FIGURE 8 - DN-STATE POWER DISSIPATION

24

a:

3!

w

'"~

~

90 I---I\:--''It''~''''';;:-+--+--+

1800

cii)2 0

/,/V

~I=

~
ai

~~

:;; 80 I---t--+-.,....---'''d-~-+~-&-

u.Z
wei

3

a:

900

16

V~ ~
·=O/.r& V
~O

~~ 12
~

win

~

>'"

~c

~ 701---t--4--~-~--+-~~~~~~-~~
«

4.0

6.0

8.0

10

12

16

14

18

~~

'>

i

'"....U

2.0

8.0

4.0

2.0

(l

-

--1.~

I I I I

4.0

ITIAV). AVERAGE ON·STATE CURRENT lAMP)

k"

a = CONDUCTION ANGLE -

~
o~
o

20

/'

/'

6.0

8.0

10

11

14

16

18

20

InA V). AVERAGE ON·STATE CURRENT lAMP)

FIGURE 9 - ON·STATE CHARACTERISTICS
_ 250
~ 200

:!
~

100

~ 70

a
w

~
~
ffi
Z

;:
Z

~

50
30

TYP\~AL

.r./'

//

//

--/"

---

--

20
10
7. 0
5.0

MAXIMUM

-

- TJ =100 0c
TJ =250C

3. 0
2.0

;;E
.~ 1. 0

0.15

I

I

0.5

1.0

1.5

2.0

2.5

3.0

3.5

3.75

"J.INSTANTANEOUS ON·STATE VOLTAGE IVOLT~)

FIGURE 11 - MOUNTING DETAILS FOR
PRESSFIT THYRISTORS

FIGURE 10 - TYPICAL THERMAL
RESISTANCE OF PLATES
400

'"

w

5200
;;E

~
~ 100

d

e

\

""

T

'"in
~
0:

'" '"

air. (Heat sink area is twica

20 r-area of ona side.l)
10
1.0

1.5

2.0

3.0

5.0

R8SA. THERMAL RESISTANCE 10CIWI

7.0

r,WT

'*'

-l

I-

Heat Sink Mounting

1

~0

Jntimat~

'"

.01 Nom

Di••

Rivet

or- :~c~~:g~at~I~~I~~~~~.at
r - sinks held venically in still

Ur-·01Nom.

-F==J / H"t Sink
~
C@%W'#/WA

.24

~« of-- Units mounted in center of
Z

~

.501

-.1: 505

I"

Chamfer

~

Contact Area

Additional
/ ' Heat Sink Plate

v~4'&

Complete 'ThinChassis
Knurl Contact
Area

Thin·Chassis Mounting

10

The hole edge must be chamfered as shown to prevent shearing
off the knurled edge of the rectifier during press-in. The pressing
force should be applied evenly on the shoulder ring to avoid tilting
. or canting of the rectifier case in the hole during the pressing operation. Also, the use of a thermal joint compound will be of considerable aid. The pressing force will vary frQm 250 to 1000
pounds, depending upon the heat sink material. Recommer1ded
hardnesses are: copper - less than 50 on the Rockwell F scale;
aluminum - less than 65 on the Brinell scale. A heat sink as thin
as 1/8" may be used, but the interface thermal resistance will increase in proportion to the reduction of contact area. A thin
chassis requires the addition of a back-up plate.

7-63

2N5431
SILICON ANNULARt UNIJUNCTION TRANSISTORS
PN UNIJUNCTION
TRANSISTORS

· . . characterized primarily for low interbase·voltage operation
in sensing, pulse triggering, and timjng circuits.
• Low RBB Spread - 6.0 to B.5 kfl
• Low Peak·Point Current - Ip = 4.0 J.lA (Max) @ VB2B1 = 4.0 V
• Low Emitter Saturation Voltage - VEB 1(sat) =3.0 V (Max)
• Narrow Intrinsic Standoff Ratio -1'/ = 0.72 to O.BO

MAXIMUM RATINGS (T A = 25°C unle.. otherwise noted)
Rating

Symbol

Value

Unit

PO"
Ie

300
50
1.5
30
35
-65 to +125
-65 to +200

mW

RMS Power Dissipation·

RMS Emitter Current
Peak~Pulse Emitter Currant··

ie••

Emitter Reverse Voltage

VB2E
VB2Bl*
TJ
Tstg

Interb.se Voltage*
Operating Junction Temperatura Range
Storage Temperature Range

I'l~

rnA
A
V
V
°c
°c
SEATING

·Derate 3.0 mW/oC increase in ambient temperature.
"Duty Cycle .. 1.0%. PRR = 10 PPS (see figure 51.
etBased upon power dissipation .t T A = 25°C.

•

FIGURE 1 - UNIJUNCTION TRANSISTOR
SYMBOL AND NOMENCLATURE

K

~

-11-0

FIGURE 2 - STATIC EMITTER
CHARACTERISTICS CURVES
NOTE:
1. PIN 3 CONNECTED TO CASE.

CUTOFF
REGION

STYLE 1:
PIN 1. EMITTER
2. BASE 1
3. BASE 2
DIM
A

E

B,

B

VB2Bl

C

VEB1Isat)

0
G
H
J

Vv

K
~~------~-----L-IE

Ip

IV

lEO

M
N

MILLIMETERS
MIN MAX
5.31 5.84
4.52 4.95
4.32 5.33
0.41 0.48
2.54 TYP
0.91 1.11
0.11 1.22
12.70
45 0 TYP
1.27 TYP

INCHES
MIN MAX
0.209 0.230
0.118 0.195
0.170 1.210
0.016 0.019
0.100TYP
0.036 0.046
0.028 0.048
0.500
45 0 TYP
0.050 TYP

CASE 22A
(TO-1S Outline
Except for Lead Position)

7-64

2N5431

ELECTRICAL CHARACTERISTICS (TA ~ 2SoC unl ... oth.rwi.. notod)
Char_istic
Intrinsic Stondoff Ratio 1
(VB2Bl = 10 V)
Intorbase R.sistance
(VB2Bl ~ 3.0 V.IE - 0)
Int.rbase R.sist.nce T.mp.r.tura Co.fficl.nt
(VB2Bl = 3.0 V. IE = 0, TA = 0 to l000 C)
Emitter Saturation Voltage 2
(VB2Bl -10 V,IE = SOmA)
Modul.t.d Intorbase Curr.nt
(VB2Bl = 10 V, IE = 50 mAl
Emitter Reverse Current
(VB2E = 30 V, IBI = 0)
Peak·Point Emitter Current
(VB2Bl = 25 V)
(VB2Bl = 4.0 V)
Vall.Y'Point Curr.nt 2
(VB281 = 20 V, RB2 = 100 ohm.)
B•••'One P~ak Pulse Voltage
(VBB = 4.0 volu)

Fig. No.
4

Symbol

Min

Max

0.72

0.80

Unit

-

'I

kn

RBB
6.0

B.5

0.4

0.8

-

3.0

5.0

30

-

10

-

0.4
4.0

%/DC

QRBB
VEB1(s.d

V
mA

IB2(mod)
IEB20
Ip

nA
IlA

mA

IV
3

-

2.0
1.0

V081

-

V

1 'I, Intrinsic st.ndoff ratio, Is defin.d in tarms of the p.ak-point volt.ge, Vp by me.ns of the .quation: Vp = '1VB2Bl +VF wh.re VF is
about 0.45 volt at 250 C CiilIF = 10 IlA .nd d.cr..... with temp.ratura.t .bout'2.S mVjDC. Th. test circuit is .hown In Figure Compon.nu
Rl, Cl, .nd the UJT form. rel.x.tion o.cill.tor; the r.maining circuitry s.rves as a pa.k.yoltage d.t.ctor. Th. forward drop of Diode 01
compensates for VF To use,. the "ca'" button is pushed, and R3 is adjusted to make the current meter, M1 read full scale. When the "ca'"
button is released, th~ value of ." is read directly from the meter, if full scale on the meter reads 1.0.
'

4:

2 Use pulse technique~; PW

Pt#

300 Jl.s, Dutv Cvcle '" 2.0% to avoid internal heating, which may result in erroneous readings.

FIGURE 3 - VOSI TEST CIRCUIT

\/1
r-----~~----~
+20 V

Rl

RB2

10kn

lOOn

DUTY CYCLE .. 1.0%, PRR .. 10 PPS

tl0v
O------~------._----~

0.15

Rl
10kn

CAL'1

--Efl
•

FIGURE 5 - PRR TEST CIRCUIT
AND WAVEFORM

FIGURE 4 - 'I TEST CIRCUIT

~=t==::J:======:t.--..f=

CURRENT WAVEFORM THRU Rl

910 kn

VOBl

RBl
20n

20·30 V
(Adj ust for 1.5 A
peak in Ril

151lF
to,. diode with the following characteristics:

VF = 0.49 V @ IF = 10 IlA
IR .. 2.0 IlA @ VR = 20 V

7-65

-=

Rl
O.ln

•

2N5441 thru 2N5446
MAC40688 thru
MAC40690

MT20

~G OMTl

TRIACS

SILICON alDIRECTIONAL TRIODE THYRISl'ORS

't

40 AMPERES RMI
200-600 VOLTS

MAC40688 ,thOU MAC40890

Q

· .. design!!d primarilv for industrial and militarv applications for the
control of ac loads in applications such as light dimmers, power supplies, heating controls, motor controls, welding equipment and power
switching systems; or wherever full,wave, silicon gate controlled
solid·state devices are needed.

STYLE 2:
1. lIT 1
2. GATE
3. MT2

'I

"-I
.' Glass Passivated Junctions and Center Gate Fire
•
•

.... ...••,, ...•
....
- ,

....

IIILLIIlET£RS

Isolated Stud ~or Ease of Assemblv
Gate Triggering Guaranteed In All .. Quadrants

DIM

•
"
,"•
•

,,

'2.13

-

,.G

2.4,
2.01
11.58

~"

,... ,.,
IAI

2.1'

T

-

3.43

IlIJ03 0'"
0.420 0
0
D.3I5

0....
0.'35

•

0.

0'50

CASE 311:01

MAXIMUM RATINGS
Rating
"Peak Repetitive Off-S_ Voltage
(TJ a -65 to +110"C)
1/2 Sine WIN8 50 to 60 Hz, Gate Open
"Peek Princlplll Voltage
2N5441, 2N5444, MAC40688
2N5442, 2N5445, MAC40689
2N5443, 2N5448, MAC40690
"RMS Dn-Stl118 Current
(TC pIIr Fig. 2~
(TC - +100"C)
Full Sine Wove, 50 to 60 Hz
"P.. k Non-Repetldve Surge Current
(One full Cvcle of surge current at 60 Hz.'
pl'8Clllded end followed by .40 A RMS current.
TJ • +11O"C)
"Peek Gate Power
(Pulse Width· 10 p. Max)
"A-.geGataPower
"Peek Gota Current (10 ps Max)
"P..k Gate Voltage
"Operating Junction Templlfllture Range
"Storage Templlfature Range
"Stud Torqua

I.,

...... .... .,

,."
'.12

L

IICHU

Symbol

Vilul

VDRM

Unit
Volts

2N5444 thou 2N5448
STYLE 2:
PINt IITI

2. GAT£
3. lIT 2

200
400
600
Amp

IT(RMS)

DIM

20
ITSM

300

•

Amp'

f

",
•

.... .... ....
55' •

_UIMERRI

••
.,
• ,'-"

40

'

. ,...

D.614

,~

2.28 REf
15.75 17

L

'ICMIS

'UG

1.1150 .1.190

.13

..50

IU8CIREF

0

,,
'5CASE
0' ....283-03
.1

PGM
PGIAV)
IGM
VGM
TJ
TIbI

THERMAL CHARACTERISTICS
C,*-lItio
Symbol
"Thermal Resistance, Junction to Case
RUC
2N5441, 2N~2, 2N5443
2N5444, 2N5445, 2N5448
MAC4OII88 MAC40689 MAC40690
"I ndicates JE DEC Rogoatarad Data for 2N5441 thru 2N5448.

40 .

Watts

0.75
4.0
30
-65 to +110
-65 to +150
30

Watt
Amp
Volt.

Mix

Unit
uc/w

0.8
0.9
1.0

12.73

T

2N5441 thru 2N5443
stYU2:
1. liT 1
2. DATE
CASE. tIl2

°c
Dc
In. lb.

DIM

MlLL_TEU
_

MAX

17312.13

,

1

UD

~

111

"2.11
CASE 310-01

7-66'

G

2N5441 thru 2N5446, MAC40688 thru MAC40690

ELECTRICAL CHARACTERISTICS ITc = 250 C and either polarity of MT2 to MTl voltage, unless otherwise noted.1
Typ

Max

Unit

IDRM

-

0.5

4.0

rnA

VTM

-

1.65

1.85

Volts

Symbol

Characteri~1ic

·Peak On..state VoltilglJ

Rated VDRM @TJ = 110Dc
"Peak On·State Voltage
ITM = 56 A Pea~, Pulse Width';; 1.0 ms, Duty Cycle';; 2.0%
Gate Trigger Current (1)
Main Terminal Voltage = 12 Vdc, RL·~ 500hms

-Holding Current
Main Terminal Voltage = 12 Vdc, Gate Open
Initiating Current = 150 rnA

-

-

70
70
70
100
125
240

_.
-

-

2.0
2.0
2.0
2.5
3.4

-

Volts

VGT

-

0.2

-

-

rnA

IH

-

TC = 250 C
'TC = -65°C
4tTurn..()n Time
Main Terminal Voltage = Rated VDRM,ITM = 56 A,
Gate Source Voltage = 12 V, RS = 12 Ohms, Rise Time = 0.1 ItS,
Pulse Width = 2.0 ItS
Rate~

mA

IGT

MT21+I.GI+1
MT21+I,GH
MT2 I-I. GI-I
MT2 I-I, GI+I
*MT2 1+1, GI+I; MT2 H, G I-ITC = -65°C
"MT21+I, GH; MT2 I-I, GI+I TC = -65°C
·Gate Trigger Voltage
Main Terminal Voltage = 12 Vdc, RL = 50 Ohms
MT2 1+1, GI+I
MT21+I,GH
MT2H,GH
MT2H,GI+I
• All Quadrants, T C = -6SoCI
"Main Terminal Vol~ge = Rated VDRM ~ R L = 10 k ohms, TJ = +110o C

·Critical

Min

-Rise of Commutation Voltage

-

-

70

-

100
2.0

1.0

Igt

dv/dtlcl

Rated VDRM,ITM = 40 A, Commutating
di/dt = 22 Alms, gate energized
TC = 70°C 2N5441 , 2N5442, 2N5443
= 65°C 2N5444, 2N5445, 2N5446
=6oDc MAC4Q688, MAC40689, MAC40690

V/"s

5.0
5.0
5.0

GritieaJ Rate of Rise of Off State Voltage

dv/dt

Rated VDRM, Exponential Voltage Rise,
Gate Opon, T C = IloDc
2N5441 , 2N5444, MAC40688
2N5442, 2N5445, MAC40689
2N5443.2N5446, MAC40690

7-67

30
30
30

VII"

50
30
20

"I ndic.tes JEDEC Registered Data for 2N5441 thru 2N5446.

I'S

•

2N5441 thru 2N5446, MAC40688 thru MAC40690

FIGURE 2 - RMS CURRENT DERATING

FIGURE 1 - ON-8TATE POWER DISSIPATION

i
z

0

50

0

'"\l:

!2

'"..
..S
w

CUR~ENTJAVEFOIRM = SINUSOIbAL

120

30

,~'--90 01_,--~ ~,~
x ....

0

;!1~

..

1.3

I

~

-- -

!:;
0
> 1. 1......;;: to-

'"w

'"
to

.."''"

.9

"""-

I-

w

.7

;;.

.5

I-

•

r--

QUAD RANTS

.3
-liD

t
\

-40

I

~
~ ,£ 17"000 ~

">

I
2 i-"""
,/
3

4'

/'

/'

-20

20

--

~

40

----

g

80

100

~

..........

~

I-

w

~

'"

--.::
120

..... r--..

~~

20

"'

"""-

~ 10

I"-

60

30

ffi

-s::::

........

1 50
~

~

=01 +0111

FIGURE 4 - TYPICAL GATE TRIGGER CURRENT

r-..

~~

STUDTYPES-~

CONDUCTION ANGLE

70

OFF-STATE VOLTAGE = 12 V -

:-.

r--ISOLATEDt----'~"""'i---t--...-..,

ITlRMS). RMS ON·STATE CURRENT lAMP)

FIGURE 3 - TYPICAL GATE TRIGGER VOLTAGE
1.7

...... STUDTYPES

.,,~

/3600

V

~~

~

--

500~-~~10~~~~20~~-~30~~--~40~~--'5~0

40

10
20
30
ITIRMS). FULL CYCLE RMS ON·STATE CURRENT lAMP)

,.PRESS·FIT TYPES
OIlll-~.:::!11_...:::-+-.,.f-+-+-_1

1800~

0

o

~

w

,

~ 5 70

ffi

1.5

IT'I...............

~ ffi~
'"

20

~
0

-+--+---+---+---1

~~110~~~-f--~.......,f-.......,f-.......,f-.......,f-.......,~.......,---l

> 10

to

LOAD = RESISTIVE OR INDUCTIVE
CONDUCTION ANG~E = 3600

~""""""Ff':'---l---t---+-;;I-'-,;F----1 .. - --........:.J
~~ 100~-~-~1~~~.......,f_.......,f_.......,f_.......,f_.......,f_.......,-__l

40

~

iii

1~r--,--~--.---.--,---r---r--._--.__,

CURRENT WAVEFORM =SINUSOIDAL
LOAD = RESISTIVE OR INDUCTIVE -+-.......,f_-+~-;/

QUADRANT~

7.0
-liD

140

-40

I
OF~-STAT~ VOL~AGE = \2 V-

r--..... .......

.......

f""::: ~

p........,

W
H'Y
4-

20
40
60
80
T.I,JUNCTION TEMPERATURE 10C)

-20

Tj.JUNCTIDN TEMPERATURE 10C)

.....

~ ~........ ..........
i'-.....
I . . . . r--..... ~ ~
100

120

140

FIGURE 5 - TYPICAL THERMAL RESPONSE
1.0
....

0.7

..

0.5

ilL

PRESSFIT PACKAGE

~~ 0.3

I-N

,.....

~~ 0.2

w'"

;;;=

....... ~

~~ O. 1

"'~~ 0.01

:--rr;;-D PACKAGE AND ISOLATED STUD PACKAGE

.-,.....

~ ~ 0.05

"""
~ f3 0.03
:t=

Z8Jfltl

0.02
0.0 1
0.05

i ,Ii) i ~61~
·IJI

0.1

0.2

0.5

1.0

2.0

5.0

10

20

t. TIME 1m.)

7-68

50

100

200

500

1k

2k

5k

2N5441 thru 2N5446, MAC40688 thru MAC40690

FIGURE 6 - ON-sTATE CHARACTERISTICS
0

FIGURE 7 - TYPICAL HOLDING CURRENT
30

R

"

0

_20
<

....

~

a:

al0
'"
z
~

Ii

0
~

I"t'.........

oS

0

~

GATE OPEN

H

0

1. 0

L

..I'

1.0

'"~ 5.0

MAIN TERMINAL #1 POSITIVE

.....::: i:'-"

['"'00,

"'-

......

r- TIN Tj"MIN1 :z PjSITIVEI

~

....

~ 5.0

a:
w

II

....

t"

...

3. 0
~o

:::0

u

......
"'- ......

-40

-20

20

40

60

80

100

120

140

TJ. JUNCTION TEMPERATURE (DC)

3.0

~
~ 2. 0

c

FIGURE 8 - MAXIMUM ALLOWABLE SURGE CURRENT

'"
:::0

ffi
z

;::

z
<

500

1. 0

~

In 0.7
~

.~

ffia:

0.5

a:
~

o.3

300 .........

200

r--. t'--

w

>

TJ = -65 '0 1100 C
f= 60 Hz

r-

~

o.2

r----. f""-

w

z
:

<

100

~

~

.1
7

MO

f"
M M
U
U
~ U U U il
VTM. MAXIMUM INSTANTANEOUS ON·STATE VOLTAGE (VOLTS)

0

7

50

U

1.0

2.0

5.0

7.0

10

20

NUMBER OF FULL CYCLES

7-69

50

70

100

•

2N5567 thru 2N5570
T4101M, T4111M
T4121 series
MT20~MTt

TRIACS
10 AMPERES RMS
2OO-eoo VOLTS

BIDIRECTIONAL TRIODE THYRISTORS
· .. designed primarily for industrial and military applications for the
fUliwave control of ac loads in applications such as light dimmers,
power supplies, heating controls, motor controls, welding equipment
and power switching systems.

• All Diffused and Glass Passivated Junctions for Greater Stability
• Pressfit, Stud and Isolated Stud Packages
• Gate Triggering Guaranteed In All 4 Quadrants

2N5567
2N5568
T4101M

MIlliMETERS
DIM MIN MAl(
A 1213
I
1111
C
839
f
254
F
089
J
204
K

•o

MAXIMUM RATINGS
Rating

•

VOAM

"Peak Gate Voltage
*RMS On-State Current
T C = -6S 10 +8SoC
TC = +9o"C
(Full cvcle, Sine Wave. 50 to 60 Hz)
·Peak Non.Repetitive Surge Current
(One Full cycle of surge current at 60 Hz,
preceeded and followed by rated current,
TC = 85°C)
Circuit Fusing Considerations
(T C = -65 to +850 C. t = 1.0 to 8.3 m,)

VGM

"(T C = BSoC, Pulse Width = 1.0 ",)
·Average Gate Power
(T C = BSoC. Pulse Width = 8.3 ms)
·Operating Junction Temperature Range
·Storage Temperature Range
Stud Torque

2 MAIN TERMINAL 1

3 MAIN TERMINAL 2

CASE 17403

Svmbol

·Peak Repetitive Off·State Voltage
(TJ = -6510 +1000C)
1/2 Sine WINe 50 to 60 Hz, Gale Open
2N5557, 2N5569. T41219
2N5568, 2NS570, T41210
T4101M,T4111M,T4121M

Peak Gate Power

STYLE 3
TERM 1 GATE

~_

Value

Unit
Volts

2N5569
2N5570
T4111M

200
400
600
20

ITiAMS)

L

c.··'!
.'r

Volts
Amp

10
6.7

,

MILLIMETERS
DIM MIN MAX

ITSM

100

Amp

121

40

A2,

PGM

16

Watts

PG(AV)

O.S

Watt

TJ
T,tg

-65 to +100
-65 to +150

°c
°c

30

in. lb.

A !!l34 I!1S0
I
1400 1420
C0102413
F
089 216
H
229 REF
J
106111SS
It
918 1054
L
699 115
Q
16!1 406
R
I 611 REF
T
1210 12.83

STYlEJ
TERM 1 MAIN TERMINAL'

Z GATE
STUD MAtN TERMINAL 2

CASE 175·02

" --.
DmJ
•

1

G

R1t~

I L~'

2

Chlr.ct_istic
"'Thermal Resistance, Junction to Case
Stud and P....sfit
Isolated Stud

INCHES
MIN MAX

DIM

Symbol

Max

AOJC
1.0
1.1

"Indicates JEDEC Registered Data.

Unit
°CIW

A

,
I

1213

f
G
H
J
It

165

l

2.16
1061

9.18
699

•• '4•8
R

152

T

.19

05510559
0501 UOS
1.030
01165 0.160
0255
P.0850095
0420 Q.4S5
0315 0415
02150305
0.2550215
0.15 DIY
0060 0010
OOlS Don

CASE 235-02

7-70

~.

i

-

1.•
_

C

THERMAL CHARACTERISTICS

N

1I.28UN".

__ -

STYLE 2

PIN 1. MAIN TERMINAL 1

2. GATE
3. HlAIN TERMINAL 2
STUD ISOLATED

2N5567 thru 2N5570, T4101M,

ELECTRICAL CHARACTERISTICS (TC

= 25°C

T4111M~

and Either Polarity of MT2 to MTI Voltage unle•• otherwi.e noted I

Characterist ic
·Peak Blocking Current
Vo = Rated VORM@TC = 100°C
·Peak On-State Voltage
'TM = 14.2 A Peak, Pulse W,dth = 1.0 to 2.0 ms, Duty Cycl.';;;2.0%
Gate Trigger Current, Pulse Width ~ 50 IlS (11
Vo = 12 Vdc, RL = 12 Ohms
MT2 (+1. G 1+1: MT2 (-I, G (-I
MT2 1+1, G (-I: MT2 1-1, G 1+1
'MT21+I, G (+1: MT21-1. G I-I, TC = -65°C
·MT21+1. G (-I: MT21-1, G (+1. TC = -65°C
Gate Trigger Voltage, ContInuous de (All Quadrants)

Vo

= 12 Vdc, RL = 12 Ohms

Vo

= Rated VORM, RL = 125 n

TC
'TC
TC

T4121 series

Symbol

Min

Typ

Max

Unit

'ORM

-

-

2.0

mA

VTM

-

1.3

1.65

Volts

-

-

-

-

-

-

-

-

25
40
100
150
Volts

VGT

= 25°C
= _65°C
= 100°C

0.2

Holding Current

2.5
4.0

mA

'H

Vo ·12 Vdc, Gate Open
TC = 25°C
'TC = -65°C

-

-

30
200

-

1.0

2.5

-

Gate Controlled Turn-On Time

Vo = Rated VORM, 'TM = 15 A Peak,
IGT = 160 mA, RISe Time = 0.1 JJS, Pulse Width
MT2 1+1, G 1+1: MT2 I-I. G I-I

mA

'GT

tgt

JJS

= 2.0jJs
V/sss

dv/dtlcl

·Cntical Rate-of:Rise of Commutation Voltage
Vo = Rated VORM 'TM = 14.2 A Peak, Commutating
dl/dt == 5.4 Alms, g~te ~nenergized
TC = 85°C

10

2.0

VII's

dv/dt

Critical Rate-of-Rlse of Off-State Voltage
Vo = Rated VORM, Exponential Voltage Rise. Gate Open,

.

TC = 10oDc:
'2N5567, '2N5569, T4121B
*2N5568, *2N5570, T41210
T4101M, T4111M, T4121M

30
20
10

*' ndlcates JEDEC Registered Data.

I UAII Voltage polarity reference to main terminal 1.

7-71

150
100
75

-

2N5567thru 2N5570, T4101M, T4111M, T4121 series

~

FIGURE 1 - RMS CURRENT DERATING
(Isolated Stud,
100

w

"'"

'"
:>

<
~

96

ill
t-

F~LL

WivE SIN1USOIOL-- ,--WAVEFORM'
.

.......... r-...

....~
x
..

~

92

........

de

"'-.,.

88

~

-I.
~

2

0

4

6

0

8

1.0

I

./
./

I-'

./

".

'"~
o

1.2

>

ffi

'"'"
~

1.0
0.8

w

:;;:
CJ

0.6

-

'"

>'" 0.4
-60

J
I
-40

lol-'==F=t==t==t---t

10
IT(RMS). RMS ON-STATE CURRENT (AMP,

FIGURE 6 - TYPICAL GATE TRIGGER CURRENT
50

OFIF-STA~E VOdAGE: bV<
.§

j

............
1~
12

a'"

~

I 3-;"
I

tw

<

........
...:::::::=::

20
40
60
80
TJ. JUNCTION TEMPERATURE 1°C)

100

~

~-I'/

1----

7-72

2

~Ii:::

5.0
-60

140

..............

.........

'"~7.0

120

r.......: r........
...............

10

OFIF-STAAvOL+AGE: 112 V-

i'-.

.......

.......
20

........

t-......

'"w
'"'"0:

........

/ " -......;;: ~

..............

t-

/

"'" J..........
::::::=::::

30

il'l

dUAOR~NT4

............

-20

10

:;; 2.01--I-"""~iiI'I'::;"''''F-+--

4

r- QUADRANTS

9.0

~

,

"'"

B.O

7.0

~ 4.01---4--t-~~~;;.s"""7¥"-\t--I--t--l

~ 1.6
w

6.0

~

8.01--1--+--t-+

FIGURE 5 - TYPICAL GATE TRIGGER VOLTAGE

2: 1.4 ............

5.0

CONDUCTION ANGLE

IT(RMS). RMS ON-STATE CURRENT lAMP)

o

4.0

~ 6.01--1--f---+--+'''''''rl'::;.''5;-F-7''''l-:7''f--f--i

~ P""

2

•

3.0

~

.
..
.

TYPICAL

,/

......-: V

1.8

2.0

ffi>

'"

~ ;....--

......

12

>

./

MAXIMUM . /

V
./ V

..........

f\_i"t

14

~

/
V

r-........

FIGURE 4 - POWER OISSIPATION
IP,assfit and Stud)
16rr==I~~~==~--r--r--~~---r~

i

I

f-- ~:I~~~~~onIV

"'-.,.

ITIRMS). ON·STATE CURRENT (AMP)

FIGURE 3 - POWER DISSIPATION
(Isolated Stud'

I--- r--FULL WAVE SINUSOIDAL

"'" ""

........

5

10

ITIRMS,. RMS ON-STATE CURRENT lAMP)

........

•• CONDUCTION ANGLE

"'"

84

-

r--.,,"'" :--.,,": lBOo OR LESS
~ I'---

...... 1'..

{:l

-.....;::: ~

..........

:>

:i

....... ~

5

-- I---

T4121 serie$(lnly

w

~

FIGURE 2 - RMS CURRENT DERATING
IP,assfit and Stud.

100

-40

-20

........
....... r-......

.:::-- r........

~~
........

:::s

11
b: ~
.......

.........

0
20
40
60
80
TJ.JUNCTION TEMPERATURE 10C)

100

120

140

2N5567thru 2N5570, T4101M, T4111M, T4121 series

FIGURE 7 - ON-STATE CHARACTERISTICS

FIGURE 8 - TYPICAL HOLDING CURRENT
20

IUD
0

TJ' 250 C

0

Ii

;;:

ffi~

//

10

"-

1.0

'"

~ 5.0

§

o
::

"........

MAIN TERMINAL #1
POSITIVE

......

prSlTIvr

:!E- 3.0

I

2.0
-60

w

/

""-..
r--...
/ ..........
............
MAIN TERMINAL #Z

:::>

~ 7.0

~

10

GATE OPEN

u

1/

'"~
~

1

/V

/ ~OOC

3D

......... .......

..............

;'

50

a:
a:

.....

/

-40

-ZO

.........

I

ZO
40
60
BO
TJ.JUNCTION TEMPERATURE (OCI

5.0

i'.... ,...

"- ...

100

120 140

z

o

S 3.0
~

z

FIGURE 9 - MAXIMUM NON-REPETITIVE SURGE CURRENT

~ 2. 0

zoo

i

;;:

.~

'"~

1. 0

TJ=-LJoool
=

IZ

O. 7

;

100

O.5

w

70

;'1

~
'" 50

.3

it!

~

O. 2

1:" 30

-

O. 1
0

1.0

zo

4.0

3.0

2.0

.......

f

.......

"'-

current.

1Jg\1
z.o

1.0

3.0

60Hz

Surge IS preceded and
follDwed by rated

5.0}.o

~

10

20

....... ......

30

so

70 100

NUMBER OF CYCLES

ViM. INSTANTANEOUS ON·STATE VOLTAGE (VOLTS)

•

FIGURE 10 - TYPICAL THERMAL RESPONSE
1.0
0.7

O. 5
~O



. / V"/900

K/
t".' ['-.. <"' ~ b.:

2

f=Fr:~'

5.0
-60

........

t'---.. r-......
1-"""'" ~ b,.
r-.......
.......

~ t

......

OFIF-sTAiE VOLiAGE =112 V-

r--......

r-.. '"

Or--..

'"'"
0;
....

......

3

~ 2

/

I

> 0.4
-60

;::..".

I/" ~

0.8

w

!;;:

~

JUADRiNT4

........

= 10QDC

9.01---t--+---+7'7"".:?1":7"":;>I

ffi

'"'"
~

i!!i

O+-5TA~E VOdAGE = \2 V-

~ 1.6

~

~.
• =CONDUCTION ANGLE

FIGURE 3 - TYPICAL GATE TRIGGER VOLTAGE

--

'"

..

'.....

"

~.r-

! ::t----It-----Ilr--

.......

14

18

~

......

"- -.......:
~ '-.....

21

ffi

•

/IS0 0

~.

SO
75

i

"'" 300

~ S5

'x~"

_ Nrr===~======'--'---,--~---'~~

~~

-40

-20

D

V

.....
........

20
40
60
SO
TJ, JUNCTION TEMPERATURE (OCI

100

120

140

2N5571 thru 2N5574, 2N6145 thru 2N6147, T4100M, T4110M,

FIGURE 6 - TYPICAL HOlOING CURRENT

FIGURE 5 - MAXIMUM ON.sTATE CHARACTERISTICS

20

100
70

..Y
TJ = 25°C

50

30

/.

100°C

/V
V

110
>-

iJi
~

V

20

a

I

GATE OPEN

~

f'--- r--....

7.0

"

/

I

.......

........

.........

I-....

.............

/

§

MAIN TERMINAL #2
prSITIV~

o

:z:
: ' 3.0

10

MAIN TERMINAL #1
POSITIVE

I'-..

~ 5.0

(f
~

.............

r--....

"...........

"""-

....

~

G

2.0
-60

7.0
5.0

w

3.0

~

2.0

II

1.0

I

o

z

:!z

100

120 140

200
~

~

-i510 .loool

>z

~

.Co

20
40
60
BO
TJ. JUNCTION TEMPERATURE (OC,

FIGURE 7 - MAXIMUM NON·REPETITIVE SURGE CURRENT

I

:il

,,;

-20

I

~
z

~

-40

I

0.7

TJ =

~ 100

0.5

a'"

II

w

~
""

0.3

~

o.2
O. 1
0.6 O.B

ill
r

,
1.0 1.2

1.4

1.6 1.B 2.0 - 2.2 2.4

2.6 2.B 3.0

.......

70

'" 50

30

t--

current.

IY\PI

20
1.0

3.2 3.4

f =60Hz
Surge is preceded and
followed by rated

2.0

3.0

VfM. MAXIMUM INSTANTANEOUS ON-5TATE VOLTAGE (VOLTS'

5.0 7.0

...............

10

....... ........

20

30

50

70 100

NUMBER OF CYCLES

•

FIGURE 8 - TYPICAL THERMAL RESPONSE
1.0

0.7
0.5

PRESSFIT PACKAGE

-'0

-0

~~ O. 1

-

~~ 0.07
~~ 0.05

:g~

0.03

ZOJfh'i

0.0 2

III I

0.0 1
0.05

'(I' i ~Oll

0.1

0.2

0.5

1.0

2.0

5.0

10

20

I. TIME (m.)

7-77

50

100

200

500

lk

2k

5k

2N6027
2N6028

PROGRAMMABLE UNIJUNCTION
TRANSISTORS
40 VOLTS
375mW

SILICON PROGRAMMABLE
UNIJUNCTION TRANSISTORS

..

..

· .. designed to enable the engineer to program unijunction char·
acteristics such as RBB.fI. IV. and Ip by merely selecting two resistor
values. Application includes thyristor·trigger. oscillator. pulse and
timing circuits. These devices may also be used in special thyristor
applications due to the availability of an anode gate. Supplied in an
inexpensive TO-92 plastic package for high·volume requirements. this
package is readily adaptable for use in automatic insertion equipment.
A

•
• Low On· State Voltage - 1.5 VoltsMaximum@IF = 50 mA
• Low Gate to Anode Leakage Current - 10 nA Maximum
• ,High Peak Output Voltage - 11 Volts Typical
• Low Offset Voltage - 0.35 Volt Typical (RG = 10 k ohms)
Programmable - RBB.fI. IV and Ip.

K

t---j-B

I

SEATlNGP~i-.-~'~~~;._1t
PLANE F

•

rA

I

)

L

. __ .J_

K

___ J.
., r

D-=:IjU
Rating

·Power Dissipation
Derate Above 25°C

Symbol

Value

Unit

PF
1/8JA

300
4.0

mW
mW/oC

-DC forward Anode Current
Derate Above 2SoC

IT

150
2.67

mAo
rnA/oC

• DC Gate Current

IG

±50

mA

1.0
2,0

Amp
Amp

5.0

Amp

Repetitive Peak Forward Current
100 ~s Pulse Wid/h. 1.0% Duty Cycle
*20 liS Pulse Width, 1.0% Duty Cycle

ITRM

Non-Repetitive Peak Forward Current
lOllS Pulse Width

ITSM

* Gate to Cathode Forward Voltage

VGKF

40

Volt

• Gate to Cathode Reverse Voltage

VGKR

Volt

Gate to Anode Reverse Voltage

VGAR

-5.0
40

VAK

±40

Volt

TJ

-50 to +100

T stg

-55 to +150

°c
°c

flo

0

.::J J ~G.

MAXIMUM RATINGS

"Anode to Cathode Voltage (1)

Operating Junction Temperature Range

... Storage Temperature Range

Voll

• Indicates JEDEC Registered Data

SECT. A·A

1:~~I:~t'Jrc

2:>J
~

N ......

3. CATHODE

MILLIMETERS
MIN MAX
4.32
5.33
4.44
5.21
3.18
4.19
0.41
0,5S
0.41
0.48
1.14
1.40
2.54
2.41
2.S7
12.70
6.35
2.03
2.92
2.92
3.43
0.3S
0.41

INCHES
MIN MAX
0.170 0.210
0.175 0.205
0.125 o ISS
D
O.OIS 0.022
F
O.OIS 0.019
G
0.045 0.055
H
DIDO
J
0095 0.105
K
0.500
L
0.250
N
0.080 0.115
P
0.115
R
.135
S
0.014 O.OIS
All JEDEC dimensions and notes apply.

DIM
A
B

-*-

-

-

·TO·92

=

PLASTIC

7-78

N

~1-

STYLE 16:
PIN 1. ANODE
2. GATE

CASE 29·02

(1) Anode positive, RGK "" 1000 ohms
Anode negative. AG K
open

~
,

-

2N6027,2N6028

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Characteristic
"Peak Current
(VS: 10 Vdc, RG : 1.0 Mlll

Figure

Symbol

2,9,11

Ip

Min

Typ

Max

-

1.25
0.08

2,0
0.15

4.0
0.70

5.0
1.0

2NS027
2NS028

0.2
0.2

0.70
0.50

I.S
O.S

(Both Types)

0.2

0.35

O.S

2NS027
2NS028

-

18
18

50
25

2NS027
2N6028

70
25

270
270

-

2NS027
2N6028

1.5
1.0

-

2NS027
2NS028

(VS: 10 Vdc, RG: 10 k ohm,!

2NS027
2NS028
1

.. Offset Voltage
(VS: 10 Vdc, RG: 1.0 Mn!
(VS: 10 Vdc, RG: 10 k ohm,l
·Valley. Current
(VS = 10 Vdc, RG = 1.0 Mil)

1,4,5,

(VS = 10 Vdc, RG = 10 k ohms)
(VS = 10 Vdc, RG = 200 Ohms)
.. Gate to Anode Leak'age Current
(VS : 40 Vdc, T A = 25°C, Cathode Open!
(VS : 40 Vdc, T A = 75°C, Cathode Open)

Unit
JJA

Volts

VT

JJA

IV

-

mA

nAdc

'GAO

1.0
3.0

10

-

5.0

50

-

-

-

'GKS

• Forward Voltage IIF:: 50 rnA Peak)

I,S

VF

-

08

1.5

Volts

.. Peak Output Voltage
(VB: 20 Vdc, Cc : 0.2 JJF)

3,7

Vo

S.O

11

-

Volts

3

tr

-

40

80

ns

Gate to Cathode Leakage Current
(VS : 40 Vdc, Anode to Cathode Shorted)

Pulse Voltage Rise Time
(VB = 20 Vdc, Cc = 0.2 JJF)

nAdc

Indicates JEDEC Registered Data

FIGURE 1 - ELECTRICAL CHARACTERIZATION

~

+Va
G

AI
K

lA - Programmable Unijunction

with "Program" Resistors
Al and R2'

•

R1R2

+o~~'

A2

1 B - Equivalent Test Circuit for
Figure lA used for electrical

characteristics testing

__~L-______~____~~-+

Ie - Electrical Characteristics

(also see Figure 2)

FIGURE 2 - PEAK CURRENT (lp) lEST CIRCUIT

'A

'GAO

FIGURE 3 - Va

AN~

I, TEST CIRCUIT

+V
510 k

16 k

Va

6V
A

~~: ~~~2

27 k

Cc

(See Figure 1)

0.6 V

Scopo

20

Put
Under
Test

7-79

~~-4------------

__

2N6027, 2N6028

TYPICAL VALLEY CURRENT BEHAVIOR
FIGURE 4 - EFFECT OF SUPPL V VOLTAGE

FIGURE 5 - EFFECT OF TEMPERATURE

1000

aDo

~TA=2aOe
ao o ~(SEE FIGURE 1)

i

ffi

RG= 10kS!=

300

;(

20 0

0-

~

0
5

t

0

III

100

1:l

aD

20

>

I O~
a.o

-

-

t

10

10

a.o
-50

20

-2a

TA = 250 e

r--

~

~

+50

+25

+100

ee = 0.2 pF

TA=2aoe
(SEE FIGURE 3)

/""

w

1.0

g

0.5

!:;
10
>

0.2

I-

:z

O. I

EO

'"

0.05

'"
«

EO

Ia

....v

0-

0:

:::>

0

'"~

5.0

.j

0.0 I
0.01

0
0.02

0.05.

0.1

0.2

0.5

1.0

2.0

'~

./

~.

./
L :...------ ~
a.o

a.o

10

~

~ r-

L

20

30

VS. SUPPLY VOLTAGE (VOLTS)

IF. PEAK FORWARD CURRENT (AMP)

B2

FIGURE 8 - STANDARD UNIJUNCTION
COMPARED TO PROGRAMMABLE UNIJUNCTION
STANDARD UNIJUNCTIDN

Elt-{B2
P

r----~--

R2

N

RBB - R1 + R2

R1
1)=--R1
R1 + R2

B1

B1
Circuit Symbol

Equivalent Circuit

Typical Application

PROGRAMMABLE UNIJUNCTION
A

E

14:
N

N

R1

P

K

RT
::R BB=R1+R2
R1

G

.A

G

1)=Ri+R2

K

B1
Circuit Svmbol .

Equivalent Circuit

with External "Program"
Resistors R 1 and A2

7-80

L

V

il!

~ 0.02

II

1.0~1'.

0

~

2.0

'"

~

~

FIGURE 7 - PEAK OUTPUT VOLTAGE
a

~

i

~

TA. AMBIENT TEMPERATURE (DC)

FIGURE 6 - FORWARD VOLTAGE

w

- --

r--VS = 10 VOLTS
(SEE FIGURE 1)

1.0MS!_

0

~

RG = 10kS!

100 kS!

VS.SUPPLYVOLTAGE (VOLTS)

S 5.0 1=

--

r-..
::---...

..~

0

r--.

::;

100 kS!

a 100

;

200

.3

0:
0:

!"-.

300

Typical Application

+,

~
40

2N6027, 2N6028

TYPICAL PEAK CURRENT BEHAVIOR
2N6027
FIGURE 9 - EFFECT OF SUPPLY VOLTAGE AND RG

FIGURE 10 - EFFECT OF TEMPERATURE AND RG
100

10

50

5. 0

1

3. 0

ffi

2.0

~
~

~'"
~

1.0

~

.......

20

~::--,

;

=

~

'" 2.0

~

100kn
1.0Mn

O. 3

TA - 25 0 C
(SEE FIGURE 2)

5.0

I

I

10

15

RG = 10 kn

1.0

100 k!!

0.5

0.2
0.1

5.0

1l

F=.RG=10kn

0.5

Vs = 10 VOLTS
(SEE FIGURE 2)

:--"

10

1.0Mn

0.2
O. 1
-50

20

+50

+25

-25

VS. SUPPLY VOLTAGE (VOLTS)

+15

+100

TA.AMBIENT TEMPERATURE (DC)

2N6028
FIGURE 11 - EFFECT OF SUPPLY VOLTAGE AND RG

FIGURE 12 - EFFECT OF TEMPERATURE AND RG

1.0

10

0.1

0

0.5

~
Iifi

~

'"

O. 3

0.2

RG

10kn

«

100kn

3
I-

r...

~
~

O. 1

If 0.0 5

::.::: 0.2
~
~ O. 1

1.0Mn

0.03

TA = 25 0 C
(SEE FIGURE 2)

0.02

5.0

10

15

r-- RG = 10kn

20

--

.......

.......

.......

tOM!!

I

0.02

0.0 1
-50

/

......

100~

0.0 5

t---

I

0.0 I

!"'>o

1. 0

o. 5

1l

~ 0.0 1

VS= 10 VOLTS
(SEE FIGURE 2)

.......

2.0 ~~
.....

-25

~

+25

+50

TA. AMBIENT TEMPERATURE (DC)

VS.SUPPLY VO LTAGE (VOLTSI

7-81

~

+15

-=---+100

•

2N6068 ,A, B(SILICON)
thru

2N6075,A,B
MT20~MTI

SENSITIVE GATE

SILICON BIDIRECTIONAL THYRISTORS
· .. designed primarily for full·wave ac control applications, such as light
dimmers, motor controls, heating controls and power supplies; or wherever
full·wave silicon gate controlled solid·state devices are needed. Triac type
thyristors switch from a blocking to a conducting state for either polarity
of applied anode voltage with positive or negative gate triggering.

TRIACS
(THYRISTORS)
4 AMPERES RMS
25 THRU 600 VOLTS

• Sensitive Gate Triggering (A and B versions) Uniquely Compatible for
Direct Coupling to TTL, HTL, CMOS and Operational Amplifier
Integrated Circuit Logic Functions.
• Gate Triggering 2 Mode - 2N6068 thru 2N6075
4 Mode - 2N6068A,B thru 2N6075A,B
• Blocking Voltages to 600 Volts
• All Diffused and Glass Passivated Junctions for Greater Parameter Uni·
formity and Stability
• Small, Rugged, Thermopad Construction for Low Thermal Resistance,
High Heat Dissipation and Durability
MAXIMUM RATINGS
Value

Unit

Rating
-Repetitive Peak Off·State Voltage. Note 1
ITJ = 1l0o CI
2N6068.A.B
2N6069,A,B
2N6070 .A,B
2N6071.A,B
2N6072,A.B
2N6073.A,B
2N6074,A,B
2N6075 AB

Symbol

·On·State Current RMS ITC = 85°C)

IT(RMS)

4.0

Amp

ITSM

30

Amp

12 t

3.6

A 2s

·Peak Surge Current

Volts

VDRM
25
50
100
200
300
400
500
600

"7
A

t-L-JLJ

lOne Full cycle. 60 Hz. TJ =-40 to +110 o C)

II

K

Circuit Fusing Considerations

IT J = -40 to+ll0oC, t= 1.0 to8.3 ms)·
"'Peak Gate Power

·Average Gate Power
·Peak Gate Voltage

PGM

.10

Watts

PG(AV)

0.5

Watt

VGM

5.0

Volts

TJ
Tstg
-

-40to+ll0

°c

"'Operating Junction Temperature Range
·Storage Temperature Range
Mounting Torque (6·32 Screw). Note 2

THERMAL CHARACTERISTICS

-40 to +150

°c

8.0

in. lb.

)

!~~

~-i

DIM

Characteristic

A
B
C

jI'Thermal Resistance.)unction to Case
Thermal Resistance. Case to Ambient

0
F

-Indicates JEOEC Registered Data

NOTES:
1. Ratings apply for open gate conditions. Thyristor devices shall not be
tested with a constant current source for blocking capability such that
the voltage applied exceeds the rated blocking voltage.
2. Torque rating applies with use of torque washer (Shakeproof WD19523
or equivalent). Mounting torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Main terminal 2 and heat·
sink contact pad are common.
For soldering purposes (either terminal connection or device mounting),
soldering temperatures shall not exceed +2000C, for 10 seconds. Consult factory for lead bending options.

7-82

G
J
K
Q

S
U

MILLIMETERS
MIN MAX
9.91 11.43
8.38
6.86
3.30
1.78
0.51
0.66
2.92
3.00
2.29 BSe
0.38
0.64
15.11 16.64
4.45
3.30
0.64
0.89
3.81 NOM

STYLE 5
PIN 1. MTI
2. MT2
3. GATE
INCHES
MIN MAX
0.390 0.450
0.270 0.330
0.070 0.130
0.020 0.026
0.115 0.118
0.090 BSe
0.025
0.655
0.175
0.035
NOM

CASE 77-02

2N6068,A,B thru 2NS075,A,8 (continued)
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Min

Typ

Max

Unit

'Peak Blocking Current (Either Directionl
Rated VDRM@TJ = 110oC, Gate Open

'DRM

-

-

2.0

mA

'OnoState Voltage (Either Directionl
ITM = S.O A Peak

VTM

-

-

2.0

Volts

Charecteristic

'Peak Gate Trigger Voltage
Main Terminal Voltage = 12 Vdc, RL = 100 Ohms, TJ = _40°C
MT2 1+1, G(+I; MT2 H, GI-) All Types
MT2 (+1, G(-I; MT2 H, G(+I 2NS06BA,B thru 2NS075A,B
Main Terminal Voltage = RatedVDRM, RL = 10k ohms, TJ = 110°C
MT2 (+1, G(+I; MT2 (-I, GH All Types
MT2 (+), G(-I; MT2 (-), G(+) 2NS06BA,B thru 2NS075A,B
'Holding Current (Either Directionl
Main Terminal Voltage = 12 Vdc, Gate Open, T J = -40°C
Initiating Current = 1.0 Adc
2N6068 thru 2N6075
2NS068A,B th~u 2NS075A,B
TJ

= 25°C

Volts

VGTM

-

1.4
1.4

2.5
2.5

0.2
0.2

-

-

mA

'H

-

-

-

-

70
30

-

-

30
15

ton

-

1.S

-

115

dvldt

-

5.0

-

V/,"s

,

2N6068 thru 2N6075
2NS068A,B thru 2N6075A,B

Turn·On Time (Either Direction)
'TM = 14 Adc, IGT = 100 mAdc
Blocking Voltage Application Rate at Commutation
@ VDRM, T J = 85°C, Gate Open

QUADRANT
(See Definition Below)

I

Peak Gate Trigger Current
Main Terminal Voltage

= 12 Vdc,

RL

= 100 ohms

Maximum Value

Type

IGTM
@TJ

I
mA

II
rnA

-III
rnA

IV
rnA

2NSOS8
thru
2N6075

+2SoC

30

-

30

-

-40°C

SO

-

60

-

2N6068A
thru
2N607SA

+25 0 C
_40DC

5.0

5.0

5.0

10

20

20

20

30

+25 0 C

3.0

3.0

3.0

5.0

_40 oC

15

15

15

20

2NS068B
thru
2NS075B
·Indicates JEDEC Registered Data.

QUADRANT DEFINITIONS
MT21+1
aUADRAUT I

QUADRANT II

SAMPLE APPLICATION:
TTL·SENSITIVE GATE 4 AMPERE TRIAC
TRIGGERS IN MODES II AND III

TrI~f

devlcn are ,~commended h:or gatmg on

Tn~cs

They IlIO ... ,dl!

SENSITIVE GATE LOGIC REFERENCE

I Cons,stlm predll;:tilble turn-on pom1S

3 Fan turn·on lillie tor cooler, more eff.c.ent
and rehabl., aptritlon
MT2Itl.GI_1

MT2t o l.Gt.'

Tn

EL.ECTRICAl CHA.~ACTER'STICS 01 RECOMMENDEO
BIDIRECTIONAL SWITCHES

QI-II------+-----GI.I
QUADRANT III

QUADRANT IV

PART NUMB'EA

V.
IS
VSl - VS2
Temperature
Cmln.c.enl

MT21-1,GI-I

Limp Q,mrner

G"neril
MBS4991

M6S4992

15 - 90 V

350",AMa ..

l:lo,.A Mol"

30·· SOV
100 - 400 ",A

02 VM.:o:

035 V MiIIJi

002"oC TVp

See AN 526 fOI Theory ill'id C"arecterI5t1C50f S,licon 8,dII1C1'I'Ir.al ~wlt(hts

MT2I-1

7-83

Hn
MeMOS INANDI

MtlSl00

60 - 10 V
D5VMa:o:

III

~!IONS

For 2N6068 Thru 2N6075

USAGE

FIRING QUADRANT

Ie LOGIC

2N6068A

Serl~

Senes

S.fle,
2N6Q68A
S."el

2N6068B

2N60688

Ser,85

S.,""

2N6068A

2N6068A
SlIlIe,

2N6068A

IV

2N60688

1N60b8B

s.,..,.

MeMOS (Buffer)
Op.rat.ona'
Amp!!'''!!'
Zero Voltllil!
Swlteh

2N6068A

Sarin

2N6068A

2NbOG8A
S811es

Series

58".'

2N6068,A,B thru 2N6075,A,B

(continued)

FIGURE 2 - RMS CURRENT DERATING

FIGURE 1 .- AVERAGE CURRENT DERATING
110

11°[:l~!!~~~~J:=I~J-;'=[=J

~~

.

~ ~ t-.......

~ 100

'\-, ~ ~ t-....

0:

~

a=30D

I

0:

~ 90
~

i'-..
~~
120·

60·

180·

0-

w

~

~

t.>

~ 80

~

.Ja

10

a.CONDUCTION ANGLE

o

1.0

3.0

2.0

10 a'CONDUCTION ANGLE
o
1.0

4.0

InAV). AVERAGE ON·STATE CURRENT (AMP)

>

4.0

. FIGURE 4 - POWER DISSIPATION

FIGURE 3 - POWER DISSIPATION

§_

3.0

2.0

IT(RMS). RMS DN·STATE CURRENT(AMP)

§

6.0

0:

6.0

~a~'~C~ON~D~U~C~TI~O~N~A~NG~L=E+-_-+_ _+-_~~~~~~

e
0:

~

~

~
~ 4.01--+--I--+-,.Lt-A-A~C--+---+----1

~ 4.01--+---l--+---+--~~~S"c..b-<~-l
co

«
0:

0:

w

;;:

w

>
<[

~ 2.01--+-Tl7S~~~-+--+---+---+---l

~ I--+--:..,;g::~~-=+--+--+~-II---l
2.0

II

1.0

2.0

o~~~LlJ-lj
o
1.0
2.0
3.0
4.0

4.0

3.0

IT(AV). AVERAGE ON·STATE CURRENT (AMP)

InRMS). RMS DN·STATE CURRENT (AMP)

FIGURE 6-TYPICALGATE·TRIGGER CURRENT

FIGURE 5 - TYPICAL GATE·TRIGGER VOLTAGE

~ 3.0

O~F.STAiE VOL+AGE .112 Vdc

::;

;!

ffi
~

~

W

to

>

ffi

to
to

2.0

o

o

~

OFF·STATE VOLTAGE' 12 Vdc_
ALL MODES

N

::;

ALL MODES

2. 0

0:

o

3. 0

1.0

~

r--- r--- r-

W
0:

a

1. 0

........

0:

1""--

O. 1

~ O.7

f'::

S!

ir.

t--....

0:

0-

0-

~ O.5

w

!;;:

to

O.5

f-.

to

1!

O. 3
>
-lIO

I'---. i'--

!;;

to

-40

-20

20

40

60

80

100

120

140

~ O. 3

!E

TJ. JUNCTION TEMPERATURE (·C)

-60

-40

-20

20

40

60

80

TJ. JUNCTION TEMPERATURE(·C)

7-84

100

120

140

2N6068,A,8 thru 2N6075,A,8 (continued)

FIGURE 7 - MAXIMUM ON-STATE CHARACTERISTICS

40
./

30

FIGUR E 8 - TYPICAL HOLDING CURRENT
3.0

V
ffi

./:;:.....--'"

20
~

~

10

~

N

:;

V

0

l!;

....
z
w

1.0

...

0.7

0:
0:

to

z

§
0

:z:

a:- 5.0
:e

ffi
0:

TJ=110oC
3.0

=>

~z

..........

0.5

0.3
-60

d

-40

20

-20

III

0:

...w

........

...........

....

~

I

S

....

" ""-

::>

u

7.0

"-

2.0

<
~

I
I
GATE OPEN
APPLIES TO EITHER DIRECTION

40

60

80

100

120

140

TJ, JUNCTION TEMPERATURE (OC)

II

2.0

..

0

TJ = 25°C

r

FIGURE 9 - MAXIMUM ALLOWABLE SURGE CURRENT

1.0

4
2

0.7

III

S

0.5

I

ffi

~

I

4

>

2 r---

~ 2

r-....

T1: ~OHt; +110oC

............

r-......r-..

~ 20

I

o

r-.......

26

~
w

1

0.2

0--.......

.... 28

I

0.3

0.1

~ '3

><
~

II

.........

18

6

2.0

1.0

3.0

4.0

14
1.0

5.0

2.0

VTM, ON-5TATE VOLTAGE (VOLTS)

4.0

3.0

5.0

7.0

10

NUMBER OF FULL CYCLES

FIGURE 10 - THERMAL RESPONSE

~ 10
!!.

~ 5.0

-

z

m3.0

...

i! 2.0

--

~

ffi 1.0

....
'"

~

!

0.5

§

O. 1
0.1

TYPICAL

I-"""

' ; 0.2

n

---

0.3

f-:::: r:::

MAXIMUM

~ ::::::::
0.2

po

,

0.5

1.0

2.0

5.0

10

20

50
t,TIME(ms)

7-85

100

200

500

1.0k

2.0k

5.0k

10k

•

2N6116 2N6117
2N6118
(FORMERL Y MPU231, MPU232, MPU233)

SILICON
PROGRAMMABLE UNIJUNCTION
TRANSISTORS
40 VOLTS
250mW

SI LICON PROGRAMMABLE
UNIJUNCTION TRANSISTORS
· . . designed to enable the engineer to "program" unijunction
characteristics such as RBB, 1/. IV. and Ip by merely selecting two
resistor values. Application includes thyristor·triggor. oscillator. pu lse
and timing circuits. These devices may al!;() be used in special
thyristor applications due to the availability of an anode gate.

•

•

Programmable - RBB. 1/. IV and Ip

•

Hermetic TO·1S Package

•

Low On·State Voltage -- 1.5 Volts Maximum @ IF = 50 mA

•

Low Gate to Anode Leakage Current - 5.0 nA Maximum

•

High Peak Output Voltage - 16 Volts Typical

•

Low Offset Voltage - 0.35 Volt Typical (RG = 10 k ohms)

SEATING
PLANE

,
'MAXIMUM RATINGS
Symbol

Rating
Repetitive Peak Forward Current

Value

Unit

1.0
2.0

Amp
Amp

5.0

Amp

200
'2.0

rnA
mA/oC

ITRM

100 ~s Pulse Width. 1.0% Duty Cycle
20 ~s Pulse Width, 1.0% Duty Cycle
Non-Repetitive Peak Forward Current

ITSM

10 IJS Pulse Width
DC Forward Anode Current

IT

Derate Above 2SoC
IG

1.20

rnA

VGKF

40

Volt

Gate to Cathode Reverse Voltage

VGKR

5.0

Gate to Anode Reverse Voltage

VGAR

40

Volt

VAK

1.40

Volt

PF
l/uJA

250
2.5

mW
mW/oC

DC Gate Current
Gate to Cathode Forward Voltage

Anode to Cathode Voltage
Forward Power Dissipation @TA

= 2SoC

Derate A.bove 25°C
Operating Junction Temperature Range
Storage Temperature Range

Volt

\

TJ

-55 to +125

T stg

-65 to +200

t'ndicates JE DEC Registered Data

°c
°c

DIM

MILLIMETERS
MIN MAX

INCHES
MIN
MAX

0.209 0.230
5.84
0.178 0.195
4.95
0.170 0.210
5.33
0.533 0.016 0.021
0
0.030
0.762
E
0.406 0.483
F
2.548Se
G
~
H 0.914 1.17
1 0.046
0.048
J
0.711 1.22
i U.boo
K 12.70
0.250
6.35
L
45 BSe
M
45° 8Se
O. o BS
N
1.278SC
0.050
1.27
P

A
B
C

5.31
4.52
4.32
0.406

-

--

;

-WL

-

All JEOEC notes ilnd dimensions apply.
CASE 22·03

(TO·1S1

7-86

2N6116,2N6117.2N6118

* ELECTRICAL CHARACTERISTICS

(TA

= 25°C unless otherwise noted)

Characteristic
Offset Voltage

(VS

= 10 Vdc,

RG

= 1.0 Mn)

(VS

= 10 Vdc,

RG

= 10 k ohms)

2N6116
2N6117
2N6118
All Types

Gate to Anode Leakage Current

(VS
(VS
G~te

= 40 Vdc, T A = 25°C, Cathode Open)
=40 Vdc, T A = 75°C, Cathode Open)

to Cathode Leakage Current

(VS

= 40 Vdc, Anode to Cathode.Shorted)

Peak Current

(VS

= 10 Vdc, RG = 10 Mn)

(VS

= 10 Vdc, RG = 10 k ohms)

2N6116
2N6117
2N6118
2N6116
2N6117
2N6118

Symbol

Min

Typ

Max

Unit

1

VT

0.2
0.2
0.2
0.2

0.70
0.50
0.40
0.35

1.6
0.6
0.6
0.6

Volts

-

IGAO

-

1.0
30

5.0
75

5.0

50

nAdc

1.25
0.19
0.08
4.0
1.20
0.70

2.0
0.3
0.15
5.0
2.0
1.0

IlA

18
18
270
270
0.8

50
25

-

IGKS

-

2,9·14

Ip

-

1.4,5

I

IV

= 10 Vdc, RG = 1.0 Mn)

IlA

-

2N6116,2N6117
2N6118
(VS = 10 Vdc, RG = 10 k ohms) 2N6116
2N6117,2N6118
Forward Voltage (IF - 50 mA Peak)

70
50

Peak Output Voltage
(VB = 20 Vdc, Cc = 0.2IlF)
Pulse Voltage Rise Time

(VB

nAdc

-

Valley Current

(VS

Figure

-

1,6

VT

-

1.5

Volts

3,7

Vo

6.0

16

-

Volts

3

tr

-

40

80

ns

= 20 Vdc, Cc = 0.2IlF)

·'ndicates JEOEC Registered Data

FIGURE T - ELECTRICAL CHARACTERIZATION

~

A

R2
Rl

-u~~~-VS=Af+R2VB

Rl

lA - PROGRAMMABLE UNIJUNCTION
WITH "PROGRAM" RESISTORS

f,l+::

R _ RIR2

Vp vp- Vs

--+P------L-----~~ IA

lB - EQUIVALENT TEST CIRCUIT FOR
FIGURE lA USED FOR ELECTRICAL
CHARACTERISTICS TESTING
(ALSO SEE FIGURE 2)

RI and R2

FIGURE 2 - PEAK CURRENT lip) TEST CIRCUIT

IF

lC - EL;CTBICAL CHARACTERISTICS

FIGURE 3 - Vo AND tr TEST CIRCUIT

+V

IpISENSE)
100pV = 1.0 nA

ADJUST

IV

IGAO

510 k

16k.

VD

6V

-=-

VB
0.01 jJF

RG ~ R/2
Vs ~ VB/2

Cc

27 k

(See Figure 1)

SCOPE

201l
20

PUT
UNDER
TEST

7-87

0.6 V -7'=1--1------------

•

2N6116, 2N6117, 2N6118

TYPICAL VALLEY CURRENT BEHAVIOR

FIGURE 4 - EFFECT OF SUPPLY VOLTAGE
1000

1000

t==TA=250 C
ISEE FIGURE 1)

f:=

RG= 10kU=

50 o

!

FIGURE 5 - EFFECT OF TEMPERATURE

i

=<
.3
....

~ 20 0
0:
0:

B

;
~

?

0

0
I O~
5.0

50

.
>

20

I--

5.0
-75

20

FIGURE 6 - FORWARD VOLTAGE

w

2. O

g

1. 6

~
~

~

TJ = 250 C-

./'

1. 2

/'

ri-

~

V

~

'"
""

...: O.4

.,:

~

>

1.0

......v

....

~
~

0.5

/"

15

.

0.2

2.0

5.0

--

/'

/'

.....-::

5.0

~

r-

J---

10

15

20

25

VS. SUPPLY VOLTAGE IVOLTS)

FIGURE 8 - STANDARD UNIJUNCTION
COMPARED TO PROGRAMMABLE UNIJUNCTION
STANDARD UNIJUNCTIDN

B2.

:~

RB2

RBB=AI+A2
Al

"= lfi+l!2

AI

Bl

CIRCUIT SYMBOL

RT

Eryp

Bl
TYPICAL APPLICATION

EQUIVALENT CIACUIT
PROGRAMMABLE UNIJUNCTION

t,
A

E~p
G

: : ABB=RI+R2

fl=~

N

~

Al

Cc

K

. CIRCUIT SYMBOL

BI
EQUIVALENT CIACUIT
WITH EXTERNAL "PAOGAAM"
AESISTORS Rland R2

7-88

-

/'

o
o

5.0

/'

",,10

IF. PEAK FORWARD CURRENT lAMP)

'~

+l25

/'

'">

~

0.1

+100

Cc = 0.2.F

TA = 250 C
ISEE FIGURE 3)

20

~

lI!

0
0.05

+75

w

'" O.B

•

I---

~

I-

;

+So

+25

1.0Ju

FIGURE 7 - PEAK OUTPUT VOLTAGE
25

2.4

100kSl==

TA. AMBIENT TEMPERATURE IOC)

2. B

~
'"
~

r-t--

............... r-

-25

-50

VS.SUPPLYVOLTAGE IVOLTS)

RG = 10kSl

........

Vs = 10 Volts
ISEE FIGURE 1)

10

j1.0MU_
IS

r--..
..........

?

10

"

100

0:

a

~

-

0

200

iii
0:

100 kl!

100

--

500

300

TYPICAL APPLICATION

30

~

35

40

2N6116;2N6117,2N6118

TYPICAL PEAK CURRENT BEHAVIOR
2N6116
FIGURE 10 - EFFECT OF TEMPERATURE AND RG

FIGURE 9 - EFFECT OF SUPPLY VOLTAGE ANO RG
10

100
50

7.0
5.0

...~

3.0

13

1.0
F="= RG • 10 kn
0.7
0.5
100kn

~

"~

~

20
10

,

2.0

50
2.0
1.0

1.0Mn -

f----- TA· 25°C
(SEE FIGURE 2)

5.0

_RG-l0kn

:--...

100 k-

~

(SEE FIGURE 21

2.0

B

~

r---

.3

i

1.0

"~

o. 7 = R G · l 0 k n

.:f

0.5
0.3

~'"

~

-

100 k!!

O. 1
50

5.0
2.0

~

"'-

10
05

AG= 10ku

0.2
01

f'....

15

20

100kn

------

0.02
0.01
-75

10M!!
10

Vs 10VOLTS(SEE FIGUR~ 2) =

."'"

0.05

O. 2

.

20
10

10Mf2

-50

-25

0,

+25

+50

+75

+100

+125

TA. AMBIENT TEMPE RATURE (OC)

VS. SUPPLY VOLTAGE IVOLTS)

2N6118
FIGURE 14 - EFFECT OF TEMPERATURE AND RG

FIGURE 13 - EFFECT OF SUPPLY VOLTAGE AND RG

~

i
'"

~

.:f

1.0

50

07
0.5

20
10

03

RG· 10 k!!

~

IOOkH

.3
>z

0.2

w

1
0.0 7
005

10M!!

0.03

~

TA = 25°C
(SEE FIGURE 21

00 2
0.0 1
5.0

'"'"=>
u
"
~

10

15

2.0
10

20

VS· 10 VOLTS(SEE FIGURE 2) ~

"-

t-...

0.5

-- r-

RG -10 k!!

0.2
01

""-.. ..........

0.05
0.02
001
0005
-75

r---

_\

5.0

100 k!2

-.......-..-. --............
10M"~

-50

-25

+25

+50

TA.AMBIENTTEMPERATURE (OC)

VS.SUPPLY VOLTAGE (VOLTS)

7-89

+75

+100

+125

2N6151 (SILICON)
thru

2N6156
Q----il~~I----O
TRIACS
(THYRISTORS)
10 AMPERES RMS

SILICON BIDIRECTIONAL THYRISTORS
... designed primarily for full·wave ac control applications, such as
light dimmers, motor controls, heating controls and power supplies;
or wherever full·wave silicon gate controlled solid·state devices are
needed. Triac type thyristors switch from a blocking to a conducting
state for either polarity of applied anode voltage with positive or
negative gate triggering,
•

All Diffused and Passivated Junctions for Greater Parameter Uni·
formity and Stability

•

Small, Rugged, Thermopad Construction for Low Thermal
Resistance, High Heat Dissipation and Durability

•

Gate Triggering Guaranteed in Two (2N6154, 2N6155, 2N6156)
or Four Modes (2N6151, 2N6152, 2N6153)

MAXIMUM RATINGS
Rating
• Repetitive Peak Off-State Voltage, Note 1

(TJ

=-40 to +loooC)

Svmbol

Value

Unit
Volts

VORM

% Sine Wave 50 to 60 Hz, Gate Open
Peak Principle Voltage

,.

2N6151,2N6154
2N6152,2N6155
2N6153,2N6156
·Peak Gate Voltage

'OnoState Current RMS (TC = -40 to +750 C)
Full Cycle Sine Wave 50 to 60 Hz (TC = +900 C)
·Peak Surge Current

(One Full Cycle, 60 Hz, TJ = +750 C)
preceded and followed by 10 A Current
Circuite Fusing Considerations

=-40 to +1000 C, t = 1.0to 8,3 ms)
'Peak Gate Power (TJ =+750 C,Pulse Width = 2.0,...)
• Average Gate Power ITJ - +75°C, t =8.3 ms)

-

200
400
600

VGM

10

Volts

IT(RMS)

10
5.0

Amp

ITSM

100

Amp

12t

40

A2s

STYLE 4:
PIN I.MTI
2. MT2

3. GATE

(TJ

·Peak Gate Current
·Operating Junction Temperature Range

·Storage Temperature Range
·Mounting Torque (6-32 Screw), Note 2

PGM

20

Watts

PG(AV)

0.5

Watt

IGM

2.0

Amp

TJ

-40 to +100

°c

Tstg

-40 to +150

-

8.0

Characteristic

Svmbol

Max

Unit

R8JC
R8CA

2.0
50

°CIW

Thermal Resistance Case to Ambient

Q

°C/W

U

A
B

°c

C
0

in.lb

F

THERMAL CHARACTERISTICS

* Thermal Resistance, Junction to Case

DIM

G
H
J
K
M

R

MILLIMETERS
MIN
MAX

INCHES
MIN MAX
16.13 16.38 0.635 0.645
12.57 12.83 0.495 0.505
3.18 3.43 0.125 0.135
1.09 1.24 0.043 0.049
3.51 3.76 0.138 0.148
4.22 BSC
0.166 BSC
2.67 2.92 0.105 0.115
0.813 0.864 0.032 0.034
15.11 16.38 0.5\~
90 TYP
4.70 4.95 0.185 0.195
1.91 2.16 0.075 0.085
6.22 6.48 0.245 0.255

CASE 90·05

·Indicatas JEOEC Registered Data.

7-90

2N6151 thru 2N6156 (continued)

ELECTRICAL CHARACTERISTICS (Tc = 250 unless otherwise noted)
Symbol

Min

Typ

Max

Unit

'Peak Blocking Current (Either Direction)
Rated VDRM @TJ = tOOoC. Gate Open

IDRM

-

-

2.0

mA

·On·State Voltage (Either Direction)
ITM = 14 A Peak; Pulse Width = 1.0 to 2.0 ms. Duty CycleS2.0 %

VTM

-

1.3

1.B

Volts

Charactoristic

Gate Trigger Current, Continuous de

Main Terminal Voltage = 12 Vdc, RL
Minimum Gote Pulse Width = 2.0,..s
MT2 (+), G(+) All Types
MT2 (+), G(-) 2N6151 thru 2N6153
MT2 H, GH All Types
MT2 H, G(+) 2N6151 thru 2N6153
'MT2 (+), G(+); MT2 H, GH TC
*MT2 (+), GH; MT2 H, G(+) TC

= -40oC All Types
= -40o C 2N6151 thru

Gate Trigger Voltage, Continuous de
Main Terminal Voltage = 12 Vdc, RL
Minimum Gate Pulse Width

MT2
MT2
MT2
MT2

(+),
(+),
H,
H,

G(+)
GH
GH
G(+)

=

mA

IGT

= 100 Ohms

-

2N6153

50
75
50
75

-

100
125

-

Volts

VGT

= 100 Ohms

2.0 ,",S

-

All Types
2N6151 thru 2N6153
All Types
2N6151 thru 2N6153

*MT2 (+), G(+); MT2 H, GH TC
*MT2 (+). GH; MT2 H, G(+) TC

= -40oC All Types
= -40o C 2N6151 thru

Holding Current (Either Direction)
Main Terminal Voltage = 12 Vdc, Gate Open, }

= 200 rnA

-

0.9
0.9
1.1
1.4

-

-

.-

2.5
3.0

0.2
0.2

-

-

-

6.0

-

40
75'

tgt

-

1.5

2.0

,..s

dv/dt

-

5.0

-

V/,..s

-'

2N6153

Main Terminal Voltage = Rated VDRM, RL ~ 10 k ohms, TJ
*MT2 (+). G(+); MT2 H, GH All Types
'MT2 (+). GH; MT2 H, G(+) 2N6151 thru 2N6153

Initiating Current

6.0
6.0
10
25

= 1000 C

2.0
2.5
2.0
2.5

mA

IH
TC = 2So C
TC = -40°C

*Turn-On Time

Main Terminal Voltage = Rated VORM ' ITM = 14 A
Gate Source Voltage = 12 V, RS =100 Ohms, Rise Time = 0.1 ,..S,
Pulse Width = 2.0 ,..s
Blocking Voltage Application Rate at Commutation, f =60 Hz,TC =75 0 C
On-State Conditions:

ITM = 14 A, Pulse Width = 4.0 ms, dildt =5.3 Alms
Off-State Conditions:
Main Terminal Voltage = Rated VDRM (200,... minI.
Gate Source Voltage = a V, RS = 100!1
-Indicates JEDEC Registered Data

NOTES:
1. Ratings apply for open gate conditions. Thyristor devices shall not be tested with a constant current source for blocking capability such
that tho voltage applied exceeds the rated block jng voltage.

2.

Torque rating applies with use of torque washer (Shakeproof WD 19522 #6 or equivalent). Mounting torque in excess of 8 in. Ibs. does not
appreciably lower case-to-sink thermal resistance. Anode lead and heatsink contact pad are common.
For soldering purposes (either terminal connection or device mounting), soldering temperatures shall not exceed +2300 C.

Electrical Characteristics
Trigger devices are recommended for gating on Triaes
Triggers Provide:
1. Consistent predictable turn-on points.

2. Simplified circuitry.
3. Fast turn-on time for cooler, more efficient
and reliable operation.

For General Usage

For Lamp Dimmer

Symbol

MBS4991

MBS4992

MBS100

=
IS =

6.0-10V

7.5-9.0 V

3.0-5.0 V

350,..A Max

120,..AMax

100-400,..A

0.2 V Max

0.35 V Max

Vs

0.5 V Max
VS1-VS2=
Temperatur. Coefficient = 0.02%/oC Typ

See AN-526 for Theorv and Characteristics of Silicon Bidirectional Switches.

7-91

•

2N6151 thru 2N6156

(continued)

FIGURE 1 - AVERAGE CURRENT DERATING

100

'"'
...::>'"

90

~

80

c
w

I~ ~

...~
5u
...

~~

"I"

;2

1'\

iJ\y '"

~ ~ t"'---.

90

I":IS::: t---..

w

...«'"
::>

~~

600

1

70

e..
'"'

~ ~ t;::::".

a = 300

w

FIGURE 2 - RMS CURRENT DERATING

...... ~

100

'"
...~

'w

~t:--...
120 0

90'ri'

150 0

t>: R~
........

80

5u
...

..1.

iJ\y

70

..1.

.= CO~DUCTIIDN ANfLE

60

o

~

• = 1800

w

1800

30 0

/~Do_

.= C~NDUCrION A~GLE

60

2.0

4.0

6.0

8.0

10

o

2.0

IT(AV). AVERAGE ON·STATE CURRENT (AMP)

4.0

6.0

8.0

10

IT(RMS). RMS ON·STATE CURRENT (AMP)

I

FIGURE 3 - POWER DISSIPATION

FIGURE 4 - POWER DISSIPATION

16

r
'i riJ\y
..1.

12

'"w

~
w

to

-

L

.=300

8.0

1;'0 0

~~

i

~

~
4.0

.= CONDUCTION ANG LE +--+---1f---+~"'9'P""==-j;,"-i

:ll

8.0 t--+--+-+--t--+--I7"7t~""'f-:;;;..f--j

«

~

:>
~

~

2.0

4.0

~-J.:J:
..1. ~ . +--+--+--+-

:;;

~~

o~

12

:;;

~

~ 0"
~~

«

•

120 0

.=CONDUCTION ANGLe' -60~

:;;
:>
~

lJOO

W~

6.0

8.0

10

4.0 t--t--+--tno1S.......-:?"~j,oo-'9-~

o~fijnm
o
2.0

IT(AV). AVERAGE·ON·STATE CURRENT (AMP)

FIGURE 5 - TYPICAL GATE TRIGGER VOLTAGE
1

~

w

to

~
o
ffi
to
to

...a:
...~

1.0

§

1

l - I'-

1

O. 7

w

O. 5

r----.

'"
o
g

...z

-

-

10

w

~ 1.0

r- r-- ........

r-...

::>

r--

:;;to'"'

O.7

...0:

.5

to
w

1

!;;:

,..:
to
>

1

1

OFF·STATE VOLTAGE = 12 Vdc
ALL MODES

:::;

« 2.0

".

-

8.0

3.0

N

OFF·STATE VOLTAGE -12 Vdc
ALL MODES
.

l- t-

6.0

FIGURE 6 - TYPICAL GATE TRIGGER CURRENT

3. 0

~
c5 2.0

4.0

IT(RMS). RMS ON·STATE CURRENT (AMP)

-

r--.

to

O.3
-40

,..:
!E O.3

-20

20

40

60

80

100

-40

-20

20

40

60

TJ.JUNCTION TEMPERATURE (OC)

TJ.JUNCTION TEMPERATURE (OC)

7-92

80

100

2N6151 thru 2N6156 (continued)

FIGURE 7 - MAXIMUM ON·STATE CHARACTERISTICS

FIGURE 8 - TYPICAL HOLDING CURRENT

"

0
0

3.0

/~

~ P'

0

./

c

~

l/

:::;

«

II

iiiz

40

0;

I

0.3

~

80

....

I
I

0.5

O. 2
0.5

r----

I

B
w

1.0

'"~

I II
II

~

....

",

~ o. 5
o

0
~

I I
GAfe OPEN I
INITIATING CURRENT - 200 mAde
APPLIES TO EITHER DIRECTION

......

0:

~

i~

0

""'

2.0

'"~

I

I I

20

t---

TJ =-40 to +100 oC
6OH,

li

o
1.0

1.5

2.0

2.5

3.0

3.5

4.0

1.0

3.0

2.0

5.0

7.0

10

NUMBER OF FULL CYCLES

VTM, ON·STATE VOLTAGE IVOLTS)

FIGURE 10 - THERMAL RESPONSE

2. 0

I--

0
5

.........

3

MA:" 1--""1--'

2

~

1

g

~I-

TYPICAL

I--"""

5

~ 0.03

0.02
5xl0-5

lxlO-4

2xl0·4

5xl0·4

lxl0-3 2xl0":3

5xl0·3

0.01

0.02

t, TIME I,)

7-93

0.05

0.1

0.2

0.5

1.0

2.0

5,0

2N6151

thru
2N6165
MT20~MTI
TRIACS
SILICON BIDIRECTIONAL TRIODE THYRISTORS

30 AMPERES RMS
200-600 VOLTS

· .. designed primarily for industrial and military applications for the
control of ac loads in applications such as light dimmers. power sup'
plies, heating controls, motor controls, welding equipment and power
switching systems; or wherever full·wave, silicon gate controlled
solid·state devices are needed.
•

Glass Passivated Junctions and Center Gate Fire

•
•

Isolated Stud for Ease of Assembly
Gate Triggering Guaranteed I nAil 4 Quadrants

~

'Peak Repetitive Off-5tate Voltage
ITJ

=

Symbol

~">

.~ l:~

MAXIMUM RATINGS
Rating

2N6157·59

Unit

Value

Volts

VDRM

-65 to +1250 CI

1/2 Sine W;rve 50 to 60 Hz, Gate Open

i

MILlIMETfRS

,--;.• :----T
".'M M'. M.X
I -~
~ I

L

12.1312.83

>~iiQXLJ.::2~~
1.40

"'Peak Pnnclpal Voltage
2N6157, 2N6160, 2N6163
2N6158, 2N61S'I, 2N6164
2N6159, 2N6162, 2N6165

"Peak Gate Voltage

*RMS On-State Current

200
400
600
VGM

Volts

10

Amp
30

rr~

'-A::::J

PIN 1. MTl

::~~E

20

•

ITSM

250

Amp

12t

210

A 2s

PGM

20

Watts

PGIAVI

0.5

Watt

IGM

2.0

Amp

TJ

-65 to +125

DC

T stg

-65 to +150

°c

-

30

in. lb.

(One Full Cycle of surge current
at 60 Hz, preceeded and followed by a 30 ARMS current,
TJ = +125 0 CI
Circuit Fusing Considerations

ITJ = -65 to +1250 C,
t = 1.0 to 8.3 msl

• Peak.. Gate Power

CASE 263-03

IT J = +80DC, Pulse Width = 2.0 !lsi

... Average Gate Power
ITJ = +800 C, t = 8.3 msl

·Peak Gate Current
·Operating Junction Temperature Range
·Stor~ge

Temperature Range

·Stud Torque

0055

STYLE 2:
2N6160-62
"

Full Sine Wave, 50 to 60 Hz

·Peak Non-Repetitive Surge Current

17.02
2.1&

CASE 310-01

ITIRMSI

IT C " -65 to +85 0 CI
ITC = +100DCI

I

2N6160 thru 2N6165

THERMAL CHARACTERISTICS
Characteristic
-Thermal Resistance, Junction to Case
CASE 311-01

-Indicates JEOEC Registered Data.

7-94

eo

'<'~''-_
/0.'

2N6157 thru 2N6165

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
• Peak Blocking Current (Either Direction)

Symbol

Min

Typ

Max

Unit

IDRM

-

-

7.0

mA

VTM

-

I.S

2.0

Volts

-

15
20
20
30

60
70
70
100

-

200
250

-

O.B
0.7
0.B5

Rated ifDRM@TJ= 12SoC
'Peak On-State Voltage IEither Direction)
ITM = 42·A Peak. Pulse Width = 1.0 to 2.0 ms. Duty Cycle" 2.0 %
Gate Trigger Current. Continuous de 111

Main Terminal Voltage = 12 Vdc. RL
MT2 (+1. G(+I
MT2 (+). GH
MT2H.GH
MT2H.G(+1

mA

IGT

= 50 Ohms

'MT2 (+1. G(+I; MT2 (-I. GH TC =-6SoC
'MT21+1. G(-I; MT2 (-I. G(+I TC = -6SoC
Gate Trigger Voltage, Continuous de
Main Terminal VOltage

= 12 Vdc.

Volts

VGT

R L = 50 Ohms

MT2 (+1. G(+I
MT2 (+1. G(-I
MT2H.GI-1
MT2 I-l. GI+I·
'All Ouadrants. T C = -6SoCI
'Main Terminal Voltage = Rated VDRM. RL

= 10 k ohms. TJ =+12SoC

1.1

-

20

Holding Current

2.0
2.1
2.1
2.S
3.4

-

mA

IH

Main Terminal Voltage = 12 Vdc. Gate Open
I nitiating Current:::: 500 rnA
MT2 (+)
MT2 (-I
-Either Direction, TC:::: -65°C

-Turn·On Time

tilt

-

-

70
80·
200

1.0

2.0

I"

-

5.0

-

V/!'s

8
10

Main Terminal Voltage "" Rated VORM. ITM :: 42 A,

Gate Source Voltage = 12 V.
Pulse Width = 2.0!,s

RS~

50 Ohms. Rise Time

= O.I!,s.

Blocking Voltage Application Rate at Commutation, f == 60 HZ,T C - 85u C

dv/dtlc)

IOn-State Conditions:

ITM

= 421'.. Pulse Width = 4.0 ms. di/dt = 17.5 Alms

Off State Conditions:
Main Terminal Voltage"" Rated VORM (200 IolS min),

Gate Source Voltage = 0 V. RS

•

= SO n

-Indicates JEOEC Rogistered Data.
(1) All voltage polarity reference to main terminal 1.

FIGURE 2 - POWER DISSIPATION

FIGURE 1 - RMS CURRENT DERATING
12S

i"'ooI

....

118

"

u

Q

W

'":::>

~

~
....

110

5
~

...... ::s:~
.......

94

cf-

8S I'-

f78 c70

o

0'=

I"": E':::

de-

102

w

6

I
II!!!

r-

~~

V

..-:

I""" t"

1800

90·
_ 30·

140

'"
~

w

" -...; t":t-..
~

" " "-

j\Y
a: ja

48

8.0

12

IS

20

24

-j\Y
j
_
==

de_ .."" V
a= 180....

a

~

24

,.

« 16

~
.a.. B.O

~

........ '"'"

o
o

32

4.0

h

~ ~ V;
~

:;;..

=e:r-:::::

~

::;.- L

-< .v'
.... SO·

V

7-95

i""

"....

30·

I
8.0

12

16

20

24

ITIRMS). RMS ON·STATE CURRENT IAMPI

ITiRMSI. RMS ON·STATE CURRENT IAMPI

./

../ /" ./ V

120· .../. 17' ../ V
90· ... ......: V ~
V

a: CONDUCTION ANGLE

2

>

28

V
1,,/ V

to

ffi

........ .:"

I I I I
4.0

1

W

"-

CONOUCTION ANGLE

_I

28

32

2N6157 thru 2N6165

FIGURE 3 - TYPICAL GATE TRIGGER VOLTAGE

,

1.7

~
'"
2:
w
'"

FIGURE 5 - MAXIMUM ON-STATE CHARACTERISTICS

,

,

300

1.5
1.3

~

'">
""w
'";;;'"

1.1
.9

r-

r-.....

---

r-;;: ~

r-.

-~

'-'

....
w
....

.7

;:.

2
.5 r-OUAORANTSt 3

..'"

...c
./

,/"';

, \ 4
·40

,/

./
20

·20

~

-- --~

40

60

80

Ii:

~

........ :::

100

...

120

140

~
g;

,

;C

SO

10

ffi

7.0

~

5.0

~
a

30

'"
'"
;;;

20

ffi

~~

.......

.........

....
w
~

'"

:§. 10

QUAO

7.0
-60

•

RANT~ ~ ~ ~
4'

-40

p-....,

r"':: t-....

........

f>:>< ~
~ t-....-......;;
.......

V

............

20

·20

2. 0

.r-....

~

1

z
;,. 3. 0
.~

j'-.... ~
.......

40

1.0

r-.....

r--.... ~ ~

60

80

100

120

0.7
0.5
0.3
1.0

140

T.I,JUNCTION TEMPERATURE (OCI

20

r-...

!.... I' t'--..
........
ill
~

~

'"z
~

to

,

3.0

3.4

3.8

4.2

4.6

5.0

FIGURE 7 - MAXIMUM ALLOWABLE SURGE CURRENT

'" 300
........
a~ 20 0 1'-0.

MAIN TERMINAL #1 POSITIVE

~ t-...
.......

/

w

>

~

"""" ........

w

~

.......

~

.......

..........

r---. ....

Z

~ 100

r-...

....... ~
~

TJ '" -65 to 125°C
I: 60 Hz

w

~

~

"
E

I"
·20

2.6

0::

== S.O I-- jAIN TjRMINA,L ~ PiSITIVE,

-40

2.2

;

::

3.0
-60

1.8

50 0

GATE OPEN

-'

1.0

1.4

ViM, MAXIMUM INSTANTANEOUS ON-STATE VOLTAGE (VOLTSI

FIGURE 6 - TYPICAL HOLDING CURRENT
30

r

~

OF~-STAT~ VOLiAGE' \2 V-

............

1/,/

/I

.,i5
z

-

1/

20

w

~

-:,.. V

1/

0

u

=>

70

,

0

FIGURE 4 - TYPICAL GATE TRIGGER CURRENT

.......

./

L ~ ~250C

0

........

TJ, JUNCTION TEMPERATURE (DC)

....

TJ = 250C

100

........

(I , /

.3
·60

.§

i..---""

200
OFF-STATE VOLTAGE: 12 V -

00

~

lW

0
7

50
1.0

~

TJ,JUNCTION TEMPERATURE (OCI

2.0

5.0

7.0

10

20

NUMBER OF FULL CYCLES

7-96

50

70

100

2N6157 thru 2N6165

FIGURE 8 - TYPICAL THERMAL RESPONSE

-I

L

1'0~!l~~~~~~~~~~~~~~~~~~~~~~~~~!!~~~~~~~~~~~~~~

0.7
0.5

~ ~ 0.3 t-++ttl--if--f--+PR_EI-SS,F_ITI-PI-AI:JCKI-IA...G",Eq:--:±,....-I-=FH+I*-l-t--t-t++++tf--++-l-lH+f-H+-H-t-+--H
~ ~ 0.2 t-++ttl----If--f---t::;;;I-"1"'I::I-I-H::::-.:..S~ PACKAGE-HH-I-H-+-+--+-+-++-I+++-++-I-H+++H---l-f--l--H
W",

~it ~ O'I~~I~~~j-~-~;ijl~~~!III~;;§~;ijl~~~~~;I~;;§~~
f 'i '(I' i
0:-

~ ~ 0.07

~ ~ 0.05
'-'"'

iii 0.03 f-+++It--+-+-+-H+++l+--+-+-f-H--HI+t+-+-+ Z8J lt
~81~
0.02t-++ttl--lf--f--+++I-I-H+-+-+--t-t-t-H+tt--+-+-t-t-t-++ttl--l-lf-+++-l..-tiH+-+-+--t-l-i

-

W 0:

0.01 !:-:I....l..l.l::l~+.--L.......l....:L,-L-l~---l+.--L..--'-:L,-L-l.J...J,l:---l+-_.l......J
II-::II:-JIU...L.11~...L....."~.l-...J.~-l...LI,L-...L.....,,l-.L....l-:-1
0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

t,

20

TIME (ms'

7-97·

50

100

200

500

Ik

2k

5k

2N6167
thru
2N6170
SILICON CONTROLLED
RECTIFIER
REVERSE· BLOCKING TRIODE THYRISTOR
20 AMPERES RMS
100-600 VOLTS

· .. designed for industrial and consumer applications such as power
supplies; battery chargers; temperature, motor, light and welder can·
trois.
• Economical for a Wide Range of Uses
•

High Surge Current - ITSM = 240 Amp

• Rugged Construction in Isolated Stud Package

MAXIMUM RATINGS
Rating
·Peak Repetitive Forward and Reverse
Blocking Voltage 11)
(TJ = _40°C to +100o C)

Symbol

Value

2N6167
2N6168
2N6169
2N6170

-Non-Repetitive Peak Reverse

Unit
Volts

VDRM
VRRM
100
200

400
600

Volts

VRSM

Blocking Voltage It ';;5.0 ms)
2N6167
2N6168
2N6169
2N6170

•

... Average Forward Current

150
250
450
650
Amp

IT(AV)

(T C = -40 to +65 0 C)
(+850 C)

13
6.5

• Peak Surge Current

Amp

ITSM

(One cycle, 60 Hz) IT C = +6SoC)
11.5 ms pulse@TJ = 100Dc

240
560

Preceeded and followed by no current
or Voltage
Circuit Fusing
(T J =-40 to +100DC) (t = 1.0 to 8.3 ms)

·Peak Gate Power
... Average Gate Power
... Peak Forward Gate Current
·Operating Junction Temperat~re Range

·Storage Temperature Range
·Stud Torque

12 t

235

A 2s

PGM

5.0

Watts

PG(AV)

0.5

Watt

IGFM

2.0

Amp

TJ

-40 to +100

°c

Tstg

-40 to +150

°c

DIM
A

-

30

in. lb.

C

Symbol

Max

Unit

R6JC

1.5

°CIW

*THERMAL CHARACTERISTiCS
Characteristic

Thermal Resistance, Junction to Case

8

F
G

H
J

K

L

Indicates JEOeC Registered Data.
(1) Ratings apply for zero or negative gate

STYLE I:
1. CATHODE
2. GATE
3. ANODE

voltage.

Devices shall not have a positive bias
applied to the gate concurrently with a negative potential on the anode. Device, should
not be tested with a constant current source for forward or reverse block ing capability
such that the voltage applied exceeds the rated block ing voltage.

7-98

n
T

MILLIMETERS
MIN MAX
14.2
12.73 12.83
- 32.51
4.06
2.16
2.41
1.60 2.01
10.67 11.56
7.62
8.89
6.48
6.99
1.40
2.16
3.43
3.81

INCHES
MIN MAX
0.551 0.559
0.501 0.505
- 1.280
0.1611
0.085 0.095
0.063 0.079
0.420 0.455
0.300 0.350
0.255 0.275
0.055 0.085
0.135 0.150

CASE 311-01

2N6167 thru 2N6170

ELECTRICAL CHARACTERISTICS (TC

= 25°C unless otherwise noted)

Char~tcristic

Symbol

• Peak Forward Blocking Current
IVo = Rated VORM, gate open, T J = 100°C I
2N6167
2N6168
2N6169
2N6170

IORM

* Peak Reverse Blocking Current
IVR = Rated VRRM,gate open, TJ = 1000 CI
2N6167
2N6168
2N6169
2N6170

IRRM

-

1.0
1.0
1.0
1.0

-

-

Gate Trigger VoltagJ!, Continuous de

2.0
2.5
3.0
4.0

,

mA

-

"TC ~ -40°C
TC = 25°C

IVo = 12 V, RL = 24 fll

Unit

Max

mA

-

·Peak Forward "On" Voltage
IITM = 41 A Peakl
Gate Trigger Current, Continuous de

Typ

Min

1.0
1.0
1.0
1.0

2.0
2.5
3.0
4.0

1.5

1.7

Volts

mA

VTM

_.

IGT

-

-

-

2.1

75
40

-

-

0.8
0.63

2.5
1.6

-

-

90
50

mA

3.5

-

-

1.0

~s

-

-

25
40

, --

-

50

-

Volts

VGT

1VO=12V,RL=24fll

"TC = -400 C
TC = 250 C

Holding Current

"TC. = -40°C
TC = 25°C

IVO = 12 V.gate open,
IT = 200 mAl

IH

·Turn~On

Time ltd + t r)
IITM = 41 Adc, Vo = Rated VORM,
IGT = 200 mAde, RiseTime,;;; 0.05 ~s,PulseW,dth = 10 Itsl

ton

Turn-Qff Time

'off

~s

IITM = 10 A. I R = 10 AI
IITM = 10 A,IR = 10 A, TJ = 100DCI
Forward Voltage Application Rate

dv/dt

V/~s

(TJ = 100°C, Vo = Rated VORMI
"Indicates JEDEC Registered Data.

FIGURE 1 - AVERAGE CURRENT OERATING

FIGURE 2 - POWER DISSIPATION

o~~
5
\~~

8

o

0

10

~
w
~

I-

;li
~

ii'l
I-

5

'";3
§l

0

5

x

0

w

;:;;

«

'"

U

I-

60·

90·

"

180·

0
2.0

4.0

6.0

8.0

10

12

I

14

16

18

c:t '"

2
0

L

300

1

L

1/
IL

L

./

1- JLL IL !.."

V

J:'~

r----

-== ~-ANGLE
.= CONDUCTION

./

I
TJ~100·C

~ I-'"

1/,& V
'6i'

.0

""

90·

600

r-- t -

~I'..

1'\

.L

L.

6

• = CONDUCTION ANGLE

5

de

/'

180·

1\ !0-"~
.J11 _
-j-I........
\ \ 1\.'
\
1\ 1\ r\ I'""" ........I'..
0:"'300

./

4

t--

O~
2.0

20

4.0

6.0

8.0

10

12

14.

16

ITIAVI,AVERAGE FORWARD CURRENT (AMPI

IT(AV),AVERAGE FORWARD CURRENT IAMPI

7-99

18

20

•

2N6167 thru 2N6170

FIGURE 3 - MAXIMUM ON-sTATE
CHARACTERISTICS

FIGURE 4 - MAXIMUM NON-REPETITIVE SURGE CURRENT

300

500

....... 1---"

200

V ....... V

r- r-

0
0

II
'I

0
0

-t0CLE~

-

/ ....-;~C

IJ " 250

100

k- I-

-

-

t--

r-r-:-

V
TJ" +1000 C
f - 60 Hz

I

-~UR~E IS PIREC~O~O fN10 tWOW~O

50
1.0

I

2.0

3.0

5.0

7.0

10

By RA1~D C~R~E~TI
20

50

30

70 100

NUMBER OF CYCLES

FIGURE 5 - CHARACTERISTICS AND
SYMBOLS
0
+1
2.0

1.0

-v _

REVERSE
BLOCKING
REGION
IH-

•

~~~f;I:I:D;R~M~-~~~~~~~

o.7

+V

IRRM

-0.5
O.3
0.4

•

FORWARD
BREAKOVER
POINT

•

1(: VT

2.B

2.0

1.2

3.6

5.2

4.4

REVERSE
AVALANCHE
REGION

6.0

-I

IVDRM

FORWARD
BLOCKING
REGION

vr.INSTANTANEOUS ON-STAIE VOLTAGE (VOLISI

FIGURE 6 - THERMAL RESPONSE

-'

~C

1.0
O.7
5
O.

-

:r: w O.3

I-

t-N

!z ~

O.2

W:E
0;",

....... ....-

~~

O. 1
~ ~ 0.0 7
>2

~ ~ 0.0 5

1.L.::3
0.0 3
u.",
w

-'2

ZOJC(U" ,ltl-

f'l II IOI~

0.0 2
0.0 1
0.05

I

0.1

0.2

0.5

1.0

2.0

5.0

10

7-100

20

I

II

50

II

100

200

500

lk

2k

5k

2N6167 thru 2N6170

FIGURE 7 - TYPICAL GATE TRIGGER
CURRENT

FIGURE 8 - TYPICAL GATE TRIGGER
VOLTAGE

20

!

I-

E5

~

'"w
'"'"a;

10

1.0

;-......,
.........

1.0

o

'"'"
=:i

o

'"'"

......... 1--.

~

w

w

'"'"

~

2.0
-40

-20

20

40

60

80

100

120

140

TJ. JUNCTiON TEMPERATURE 1°C)

FIGURE 9 - TYPICAL HOLDING CURRENT
OFF 1STATE 1VOLT1GE •

5.0

.!

V-

t'---- r-..

I-

'"z

-.....

13

.........

-.....

§
0

'"
;E' 3.0
2.0
-60

i""--,

'"

0.5

r--.

-40

-20

20

40

60

80

0.4
0.3
-60

-40

-20

0

20

40

60

80

TJ. JUNCTION TEMPERATURE lOCI

20

1.0

['--..,

I-

~ 3.0

~

.........

~ 0.6

.............

!;(

;(

~

0.7

>

I-

,g 10

~

~ 0,8

........

5.0

I
OFF·STATE VOLTAGE· 12 V -

~ 0.9

OF~.sTAT~ VOLTIAGE .12 V

100

120

140

TJ, JUNCTION TEMPERATURE 1°C)

7-101

100

120

140

2N6236

thru
2N6241

SILICON CONTROLLED
RECTIFIERS
4.0 AMPERES RMS
30 thru 600 VOLTS

REVERSE BLOCKING TRIODE THYRISTORS
PNPN devices designed for high volume consumer applications
such as temperature, light, and speed control; process and remote
control, and warning systems where reliability of operation is
important.
•
•
•
•

Passivated Surface for Reliabiiity and 'Uniformity
Power Rated at Economical Prices
Practical Level Triggering and Holding Characteristics
Flat, Rugged, Thermopad'" Construction for LowThermal Resist·
ance, High Heat Dissipation and Durability
• Recommended Electrical Replacement for C 106

MAXIMUM RATINGS ITC

~ 110°C unless otherwise noted.)

-Repetitive Peak Forward and Reverse
Blocking Voltage INote 1)
11/2 Sine Wave)
2N6236
!RGK ~ 1000 ohms,
2N6237
0
. TC ~ -40 to +110 C)
2N6238
2N6239
2N6240
2N6241

VORM

-Non-Repetitive Peak Reverse Blocking Voltage

VRSM

.. Average On-5tate Current
IT C ~ -40 to +900 C)

Unit

Volts
30
50
100
200
400
600

VRRM

Volts

2N6236
2N6237
2N6238
2N6239
2N6240
2N6241

11/2 Sine Wave,
RGK ~ 1000 ohms,
TC = -40 to +1100 C)

•

Value

Symbol

Rating

50
100
150
250
450
650
Amp

ITIAV)
2.6
1.6

ITC = +1000 C)
·Surge On-State Current
1112 Sine Wave, 60 Hz, T C ~ +900 C)
11/2 Sine Wave, 1.5 ms, T C = +900 C)

Amp

ITSM
25
35

12,

2.6

A 2s

PGM

0.5

Watts

PGIAV)

0.1

Watt

Peak Forward Gate Current

IGM

0.2

Amp

Peak Reverse Gate Voltage

VRGM

6.0

Volts

TJ

-40 to +110

°c

T stg

-40 to +150

°e

6.0

in.lb

Circuit Fusing

ITC

=-40 to

110°C, t

= 1.0 to 8.3 ms)

·Peak Gate Power

(Pulse Width ~ 10 ).IS, TC

=90°C)

* Average Gate Power
It

=8.3 ms, TC = 900C)

·Operating Junction Temperature Range

·Storage'Temperature Range
Mounting Torque

(Note 2)

THERMAL CHARACTERISTICS
Characteristic
·Thermal Resistance. Junction
to Case
Thermal Resistance Junction
~o

Symbol

Min

Max

Unit

RaJC

-

3.0

°elW

RaJA

-

75

°CIW

Ambient

·Indicates JEDEC Registered Data.
"'Trademark of Motorola Inc.

7-102

STYLE 2
PIN 1. CATHODE
2. ANODE
3. GATE

MILLIMETERS
INCHES
MIN MAX
DIM MIN MAX
A 10.80 11.05 0.425 0.435
7.49
7.75 0.295 0.305
B
2.41
2.67 0.095 0.105
C
0.51
0.66 0.020 0.026
0
F
2.92
318 0.115 0.125
2.31
2.46 0.091 0.097
G
1.27
2.41 0.050 0.095
H
0.64 0.D15 0.D25
J
0.38
K 15.11 16.64 0.595 0655
30 TYP
3"TYP
M
Q
4.01 0.148 0.158
3.76
1.40 0.045 0.055
R
1.14
S
0.64
0.89 0.025 0.035
3.68
3.94 0.145 0.155
U
V
1.02
0.040
CASE 77·04

2N6236 thru 2N6241

ELECTRICAL CHARACTERISTICS (Tc = 25°C and RGK

~ 1000 ohms unless otherwise noted)

Characteristics

Svmbol

·Peak Forward Blocking Current (Note 1)
(Rated VORM, TC = 110°C)

IORM

·Peak Reverse Blocking Current (Note 1)

IRRM

(Rated VRRM, TC

= 110°C)

·Peak Forward "On" Voltage
(lTM

= B.2 A

Peak, Pulse Width

IGT

Gate Trigger Voltage (Continuous del

VGT

(Source Voltage = 12 V, RS = 50 Ohms)
'IVAK = 12 Vdc, RL = 24 Ohms, TC = -~C)

Gate Non·Trigger Voltage

= Rated VORM, RL = 100 Ohms, TC = 110°C)
= 12 Vdc,

IGT

TC
TC

= 25°C
= -40°C

*Total Turn-On Time

-

200

-

-

200

-

-

2.2

-

-

200
500

Forward Voltage Application Rate
V ORM ' TC

Unit
/lA
/lA
Volts
/lA

-

Volts

-

-

1.0

0.2

-

-

-

-

5.0
10

-

-

2.0

-

10

-

Volts
rnA

/lS

tgt

(Source Voltage = 12 V, RS = 6.0 k Ohms)
(lTM = B.2 A, IGT = 2.0 rnA, Rated VORM)
(Rise Time = 20 ns, Pulse Width = 10 /ls)

= Rated

-

IH

= 2.0 rnA)
-(Initiating On-State Current = 200 mAJ

1VO

Max

VGO

Holding Current
(V AK

TVp

VTM

= 1 to 2 ms, 2% Outv Cvcle)

Gate Trigger Current (Continuous del (Note 3)
(VAK = 12 Vdc, RL = 24 Ohms)
'(VAK = 12 Vdc, RL = 24 Ohms, TC = -40°C)

(VAK

Min

dv/dt

= 110°C)

V//ls

*Indicates JEDEC Registered Data

NOTES:
1. Ratings apply for zero or negative gate voltage. Devices shall
not have a positive bias applied to the gate concurrently with a
negative potential on the anode. Devices should not be tested
with a constant current source for forvvard or reverse blocking
capability such that the voltage applied e':tceeds the rated
block ing voltage.

2. Torque rating applies with use of torque washer ('Shakeproof
WD19523 or equivalent). Mounting torque in e)(cess of 6 in. lb.
does not appreciably lower case-to-sink thermal, resistance.
Anode lead and heatsink contact pad are common. (See
AN·290 B)

For soldering purposes (either terminal connection or device
mounting), soldering temperatures shall not 8)(ceed +225 0 C.
For optimum results, an activated flux (oxide removing) is
recommended.

3. Measurement does not include RG K current.

CURRENT DERATING

FIGURE 2 - MAXIMUM AMBIENT TEMPERATURE

FIGURE 1 - MAXIMUM CASE TEMPERATURE

110 =-..,--.-~--,--..,..--,--,--..,

ITlAV). AVERAGE FORWARD CURRENT (AMPI

ITIAV), AVERAGE FORWARD CURRENT (AMPI

7-103

•

2N6342 thru 2N6349
MAC 220 series
MAC 221 series
MT20---...fO:~G

OMT1

-I~----------------------------------------~

TRIACS

BIDIRECTIONAL TRIODE THYRISTORS
... designed primarily for full·wave ac control applications. such as
light dimmers. motor controls. heating controls and power supplies;
or wherever full·wave silicon gate controlled·solid·state devices are
needed. Triac type thyristors switch from a blocking to a conducting
state for either polarity of applied anode voltage with positive or
negative gate triggering.
• Blocking Voltage to 800 Volts
• All 'Diffused and Glass Passivated Junctions for Greater
Parameter Uniformity and Stability
• Small. Rugged. ThermowaUA. Construction for Low Thermal
Resistance. High Heat Dissipation and Durability
• Gate Triggering Guaranteed in Two Modes (2N6342. 2N6343.
2N6344. 2N6345. MAC220 Series) or Four Modes (2N6346.
2N6347. 2N6348.2N6349.MAC221 Series)
• For 400 Hz Operation. Consult Factory
• 12 Ampere Devices Available as 2N6342A thru 2N6349A

8 AMPERES RMS
50-800 VOLTS

MT2

MTl
MT2
G

MAXIMUM RATINGS
Symbol

Rating

·Peak Repetitive Off-State Voltage
IT J = -40 to +100o CI
~

•

Value

Unit
Volts

VORM

Sine Wave 50 to 60 Hl, Gate Open

MAC220·2.MAC221·2
MAC220·3.MAC221·3
2N6342.2N6346
MAC220·5.MAC221·5
2N6343.2N6347
'MAC220·7.MAC221·7
2N6344.2N6348
MAC220-9.MAC221·9
2N6345.2N6349
ITC
*RMS On-State Current
Full Cycle Sine Wave 50 to 60 Hz ITC

50
100
200

300
400
500
600
700
BOO

= +BOoC)

IT(RMS)

8.0
4.0

Amp

ITSM

100

Amp

12 t

40

A 2s

= +900 C)

"Peak Non-Repetitive Surge Current

lOne Full Cycle, 60 Hz, TJ = +BOOC)
preceded and followed by 10 Rated Current
Circuit Fusing

IT J

= -40 to +IOOoC. t = 1.0 to B.3 ms)

·Peak Gate Power CTC= +80o C,Pulse Width;: 2.0jJS)

PGM

20

Watts

PGIAV)

0.5

Watt

"Peak Gate Current

IGM

2.0

Amp

·Peak Gate Voltage

VGM

10

Volts

TJ

-40 to +100

°c
°c

• Average Gate Power IT C = +BOoC, t

= 8.3 ms)

·Operating Junction Temperature Range

"Storage Temperature Range

T

stg

-40 to +150

THERMAL CHARACTERISTICS
Characteristic
.. Thermal Resistance. Junction to Case

I

Symbol

I

M..

I

Unit

I

ROJC

I

2.2

I

°C/W

-Indicates JEOEC Registered Data.
ATrademark of Motorola Inc.

7-104

STYLE 2:
PIN I. MAIN TERMINAL I
2. MAIN TERMINAL 2
3. GATE
4. MAIN TERMINAL 2
MILLIMETERS
INCHES
MIN MAX MIN MAX
14.23 15.87 0.560 0.625
B
9.16 10.66 0.380 0.420
C
3.56 4.82 0.140 0.190
D
1.14 0.020 0.045
0.51
F
3.531 3.733 0.139 0.147
G
2.29 2.79 0.090 0.110
H
.35
- 0.250
J
0.31 1.14 0.012 0.045
K
1270 14.27 0.500 0.562
L
0.045 0.070
14 1.71
N
4.83 5.33/ 0.190 0.210
Q
2.54 3.04 0.100 0.120
2.04 2.92
0.080 0.115
R
S
0.020 0.055
0.51 1.39
T
5.85 6.85 0.230 0.270
CASE 221'()2
TO·220AB
All JEDEC dimenSions and notes apply

DIM
A

-

2N6342 thru 2N6349, MAC220 series, MAC221 series

ELECTRICAL CHARACTERISTICS (TC = 25°C, and Eithar Polarity of MT2 to MTt Voltage, unless otherwise noted)
Symbol

Min

Typ

Max

Unit

• Peak 'Off-8tate Current
Vo - Rated VORM@TJ= 100°C, Gat. Open

IORM

-

-

2.0

mA

"Peak On-8tate Voltage
'TM = 11 A Peak; Pulse Width = 1.0 to 2,0 ms. Duty Cycle:S2.0 %

VTM

-

1.3

1.55

Characteristic

Gate Trigger Current, Continuous de

Vo

(+), G(+)
(+). GH
H, GI-)
H, G(+)

mA

IGT

= 12 vcic, RL = 100 Ohms

Minimum Gate Pulse Width

MT2
MT2
MT2
MT2

Volts

= 2.0 IJ.S

-

All Types
2N6346 thru 49,MAC221
All Types
2N6346 thru 49.MAC221

"MT2 (+), G(+); MT2 H. GH TC = -400C All Types
"MT2 (+), GH; MT2 H, G(+I TC = -40°C 2N6346 thru 49,MAC221
Gate Trigger Voltage. Continuous de

50
75
50
75

-

100
125
Volts

VGT

Vo = 12 Vdc, RL = 100 Ohms
Minimum Gate Pulse Width = 2.0 I'S
MT2 (+1, G(+) All Tvpes
MT2 1+), GH 2N6346 thru 49. MAC221
MT2 H, GH All Tvpes
MT2 H. GI+) 2N6346 thru 49, MAC221

-

0,9
0.9

-

1.4

2.0
2.5
2.0
2.5

-

-

-

2,5
3,0

0.2
0.2

-

-

-

6.0

-

40
75

tgt

-

1.5

2.0

I'S

dv/dtlc)

-

5.0

-

VII'S

"MT2 (+1, G(+I; MT2 (-I, G(-I TC = -40°C All Types
"MT2 1+1, GH; MT2 H, GI+) TC = -40°C 2N6346 thru 49, MAC221
Vo = Rated VORM, RL = 10k Ohms, TJ = 100°C
"MT2 1+1, GI+); MT2 H, GH All Types
"MT2 1+), GH; MT2 H, GI-) 2N6346 thru 49, MAC7.21
·Holding Current

Vo = 12 Vdc, Gate Open
'T= 200mA

12
12
20
35

}

mA

'H

Te = 25°C
"Te = -40°C

*Turn.Qn Time

1-1

Vo = Rated VORM, ITM = 11 A,
IGT = 120 mA, Rise Time = 0.1 I'S,
Pulse Width = 2.0 I'S
Critical Rate of Rise of Commutation Voltage

Vo = Rated VORM, 'TM = 11 A,
Comroutating di/dt = 4.3 Alms,
Gate Unenergized, TC =BOoe

•

·Indicates JEDEC Registered Data

FIGURE 1 - RMS CURRENT DERATING

FIGURE 2 - ON-8TATE POWER DISSIPATION

w

'"

.;;

"'>
w"

4.0 f---+--t--+-'R'9'~E7"t""'''-b~+-_l

~

2.0f---+-___~~~~_F-+--t_-+-_l
O~~~_~~~jo--~-~~~~-~-~

o

IT(RMSI, RMS ON·STATE CURRENT (AMPI

1.0

2.0

3.0

4.0

5.0

6.0

'TlRMS), RMS ON-5TATE CURRENT (AMP)

7-105

7.0

8.0

2N6342 thru 2N6349, MAC220 series, MAC221 series

FIGU~E

~

..........

~

~

ffi to
0.8

0-

~

......... J

......

12~

'"

I

-60

-40
-20

~

'"w
'"'"

-

3/

0.4

~ 20

~

~ 10 QUADRANT

'"

20
40
60
80· 100
TJ. JUNCTION TEMPERATURE (OCI

50

fi

120

140

~ r-......

[>

I;;>
!- - ~ r: ~ ~ r--.....

-40

"""'"100

-20

20
40
60
80
TJ. JUNCTION TEMPERATURE (OC)

!
~

,

.........

7.0

~ 5.0

§

.........

"'-

........
"/ K
"'-

r-....... .........,

MAIN TERMINAL #2

o

prSITIV~

'" 3.0
:;i

25 0 C

10

7.0

140

' / MAIN .TERMINAL #1
POSITIVE

1'l

1/
TJ=100oC

........... ~ i'...

10

ffi

j'f'
LO

120

GATE OPEN

..........

......

v

,

FIGURE 6 - TYPICAL HOLDING CURRENT

~

30

~

............

20

70

;
~

..... r-.,.

..........

.....

5.0
-60

FIGURE 5 - ON-STATE CHARACTERISTICS

Ii:

.......

r-...::

'"~. 7.0

r::::::=:

100

..

O~.STAiE VOl~AGE =112 v-

. . . . r--...,

"- "-

~

J

I'".;;::'"
.......
1 ?'"-- ;:::::::: t:,..,
. / -..;;: ~

QUADRANTS
.

'" 0.6

~ 30

dUAORiNT 4

............

K

<

I
I

..........

~
~ 1.2

;

50

OFIF.sTA~E VOLiAGE = \2 v-

1.6

~ 1.4
w

'"~

FIGURE 4 - TYPICAL GATE TRIGGER CURRENT

3 -TYPICAL GATE TRIGGER VOLTAGE

1.8

I

2.0
-60

III

-40

-20

5.0

20
40
60
80
TJ. JUNCTION TEMPERATURE (DC)

100

120 140

1'l
3.0

I

Z.O

FIGURE 7 - MAXIMUM NON-REPETITIVE SURGE CURRENT
100

~

1.0

~

7

0-

O. 5

::::>

60

0.3

'"'"~

40

0.2

~

~
~

"""---l

I I--L

80

(\1

O. 1
0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

4.0

4.4

VTM.INSTANTANEOUS ON·STATE VOLTAGE (VOLTS)

I
20

f----

TJ = 1000 C
f ~ 60 Hz

I

I----- SUfg e is prectded ani fOlllwed

rv ratd cur nt

o
1.0

2.0

3.0
NUMBER OF CYCLES

7-106

-r-. r-

-CYCLE -

'"

E

-r-.-

\J

'w"'

:E

Ir\

5.0

7.0

10

2N6342 thru 2N6349, MAC220 series, MAC221 series

FIGURE 8 - TYPICAL THERMAL RESPONSE
10

o.s

-- -

~

~ 0.2

~

01

~
o

;00

os

I
ZOJCIII ~ rltl

O

ROJC

0.02
00 I
0.1

0.2

o.s

1.0

2.0

s.o

so

20

100

200

soo

1.0 k

2.0 k

S.O k

10 k

I,TIMElmsl

•
7-107

2N6342A

thru

2N6349A
MT2

O----t,;;~G
TRIACS
12 AMPERES RMS
2oo-BOO VOLTS

BIDIRECTIONAL TRIODE THYRISTORS
· .. designed primarily for hill-wave ac control applications, such as
light dimmers, motor controls, heating controls and power supplies;
or wherever full-wave silicon gate controlled solid·state devices are
needed. Triac type thyristors switch from a blocking to a conducting
state for either polarity of applied anode voltage with positive or
negative gate triggering.
• Blocking Voltage to 800 Volts'
• All Diffused and Glass Passivated Junctions for Greater Parameter
Uniformity and Stability
• Small, Rugged, ThermowattA Construction for Low Thermal
Resistance, High Heat Dissipation and Durability
• Gate Triggering Guaranteed in Two Modes (2N6342A, 2N6343A,
2N6344A, 2N6345A) or Four Modes (2N6346A, 2N6347A,
2N6348A, 2N,6349A)
e For 400 Hz Operation, Consult Factory
.8 Ampere Devices Available as 2N6342 thru 2N6349

MT2

MT1
MT2
G

MAXIMUM RATINGS
Rating
'Peak Repetitive Off-State Voltage
(TJ = -40 to +1100C)
. Y.. Sine Wave 50 to 60 Hz. Gate Open

•

Symbol

2N6342A, 2N6346A
2N6343A. 2N6347 A
2N6344A, 2N6348A
2N6345A, 2N6349A
*RMS

On~State

Current

(Full cycle, Sine Wave,

50 to 60 Hz)

Value

VORM

200
400
600
SOO
Amp

IT(RMS)
TC = +soOe
TC = +950 e

·Peak Non·Repetitive Surge Current
(One Full Cycle,60 Hz. T C = +800 e.

Unit
Volt.

12
6.0
ITSM

120

Amp.
DIM

Preceded and Followed by Rated Current!
Circuit Fusing

(TJ ~ -40 to +1100 C. t = 1.0 to S.3 m.)
'Peak Gate Power (TC=+800 C. Pulse Width = 2.0",
• Average Gate Power (T C = +800 C. t = 8.3 ms)
·Peak Gate Current
·Peak Gate Voltage
·OperatingJunction Temperature Range
·Storage Temperature Range

12 t

59

A2.

PGM
PG(AV)
IGM
VGM
TJ
Tstg

20
0.5'
2.0
.,0
-40 to +110
-4010 +150

Watt.
Watt
Amp
Volts
uc
°c

THERMAL CHARACTERISTIC
Characteristic
·Thermal Resistance,Junction to Case

STYLE 2:
PIN I. MAIN TERMINAL 1
2. MAIN TERMINAL 2
3. GATE
4. MAIN TERMINAL 2

Symbol
R9JC

Max
2.0

·'ndicates JEOEC Registered Data.
jl,Trademark of Motorola Inc.

7-108

Unit
°e/W

A
B
C
D
F
G
H
J
K
L
N

0
~

S
T

MILLIMETERS
MIN
MAX

INCHES
MIN
MAX

14.23 15.B7 0.560
9.66 10.66 0.3BO
3.56 4.B2 0.140
0.51
1.14 0.020
3.531 3.733 0.139
2.29 2.79 0.090
6.35
0.31 1.14 0.012
12.70 14.27 0.500
0.045
1.77
0.190
4.B3 5.33
0.100
2.54 3.04
2.04 2.92
O.OBO
0.020
0.51 1.39
0.230
5.B5 6.B5
CASE 221·D2

-

0625
0.420
0.190
0.045
0.147
0.110
0.250
0.045
0.562
0.070
0.210
0.120
0.115
0.055
0.270

TO·220 AB
All JEDEC dimenSions and notes apply

2N6342A thru 2N6349A

ELECTRICAL CHARACTERISTICS (TC = 25 0 unl.ess otherwise noted)
Characteristic

·Peak 01f-5tato Current
Vo

= Rated VORM,TJ = II0oC, Gate Open

• Peak On-State Voltage (Either Direction)
ITM

= 17 A

Peak; Pulse Width

= 1.0 to 2.0 ms, Duty CycleS2.0 %

Symbol

Min

Typ

Max

Unit

IORM

-

-

2.0

mA

VTM

-

1.3

1.75

Volts

Gate Trigger Current. Continuous de
Vo ~ 12 Vdc, RL = 100 ohms
Minimum Gate Pulse Width

rnA

IGT

= 2.0 p.s

-

MT2 1+1, GI+I All Types
MT2 1+1, GI-) 2N6346A thru 2N6349A
MT2 1-1, GI-I All Types
MT2 1-1, GI+I 2N6346A thru 2N6349A

-

-

-

*MT2 1+1, GI+I; MT2 I-I, GI-I TC = -400C All Types
*MT2 1+1, GI-I; MT2 I-I, GI+I TC = -40°C 2N6346A thru 2N6349A
"Peak Gate Trigger Voltage
Vo = 12 Vdc, RL = 100 ohms

6.0
6.0
10
25

50
75
50
75

-

100
125

-

Volts

VGT

Minimum Gate Pulse Width::: 2.0 fJ.S

-

MT2 I+l. GI+I All Types
MT2 1+1, GI-I 2N6346A thru 2N6349A
MT2 I-I, GI-I All Types
MT2 1-1, G 1+1 2N6346A thru 2N6349A
*MT2 1+1, GI+I; MT2
*MT2 1+1. GI-I; MT2

-

1-1, GI-I TC = -40°C All Types
1-1. GI+I TC = -40°C 2N6346A thru 2N6349A

2.0
2.5
2.0
2.5

-

2.5
3.0

-

-

0.2
0.2

-

-

-

6.0

-

40
75

tgt

-

1.5

2.0

dv/dtlc)

-

5.0

-

Vo = Rated VORM, RL = 10k ohrns\ TJ =100o C
*MT2 1+1. GI+I; MT2 1-1, GI-) All Types
*MT2 1+1. GI-I; MT2 1-1, GI+I 2N6346A thru 2N6349A
Holding Current (Either Direction)

-

rnA

IH

}

VO= 12 Vdc, Gate Open
IT= 200mA

0.9
0.9
1.1
1.4

TC = 25°C
*TC = -40°C

*Turn-On Time

ps

Vo = Rated VORM, ITM = 17A
IGT = 120mA,RiseTime=0.1 ps,
Pulse Width = 2.0ps
Critical Rate of Rise of Commutation Voltage
Vo = Rated VORM, ITM = 17A, Commutating

Vips

di/dt = 6.5 Alms, G~te Unenergized
TC = BoDe
·'ndicates JEDEC Registered Data

FIGURE I - RMS CURRENT DERATING

......

11 0

~
w

10 0

~~
~~ ~ ~

ii'li
_

90

I-

w

'";:!

c.3 80

~o.

LI

60·

K~~~

'"=>

-~
_.1.
.

I-

'"

90·

I" ~ ~

t:::

""

'~

de

o

2.0

4.0

6.0

lJ.0.-t-180·

;:: ~ r'.
"- ~"~
"'- ~ ~

,=CONOUCTION ANGLE
70

FIGURE 2 - ON-5TATE POWER DISSIPATION
0

S.O

10

.........

~

12

~

de

i

61--

~

21--

'"

I--

~
.1,

>.

«
:>

0:

-J't+

4.0

~ ./' V V \. V

:2: ~ ." Ir:: 11:::: ISD"
120

TJ'"O·C

8.0

V

~ 'jV V
~ ..Ll [L V

.·CONOUCTION ANGLE

w

'"ffi

I,/:V

v: V

A~ :% ~ ~ ~O.
d. ~ ~ ~ 60·

..... ~ :@: ~

,'3D"

0

14

2.0

ITlRMS). RMS ON-5TATE CURRENT. lAMP)

4.0

6.0

S.O

10

ITIRMS), RMS ON-5rATE CURRENT lAMP)

7-109

12

14

2N6342A thru 2N6349A

FIGURE 3 - TYPICAL GATE TRIGGER VOL TAGE

FIGURE 4 - TYPICAL GATE TRIGGER CURRENT

:----..

50

1.8
OFIF-STAiE VOL iAGE: \2 V1.6

I
I

S 1.4
~

..............

w

'"~

1.2

o

'"tt:
~

~ ~

?""- :::::"'=:::

0.6

r- QUADRANTS

0.4
-60

I

P3-:'"~

~

.......

r---:::::: ~ .....

FF!---r-r-12L'

-

~~

20
40
60
80
-20 TJ: JUNCTION TEMPERATURE IDC)

100

120

140

.......

~~

.........
--.........

>< ~ ~ R: <..

-40

-20

.........

20
40
60
80
TJ. JUNCTIOll TEMPERATURE IDC)

20

/

!

//

lO

l
TJ:l00DC

10
7.0

I

~

10

I'-......

I-

#

30

120

140

GATE OPEN

.......

"...-

50

100

FIGURE 6 - TYPICAL HOLDING CURRENT

FIGURE 5 - ON-8TATE CHARACTERISTICS

70

:>.

........

I

50
-60

100

~

~ 7.0

/"

'""........

~ 5.0

..........

MAIN TERMINAL 02

,
~

prSITIVf

~. 3.0

I'-...

..........

:--..
.......

I

2.0
-60

/I

........

/

.~:r

25DC

MAIN TERMINAL ~1
POSITIVE

/

""',...

-40

-20

5.0

•

""~

1;:::

I

-40

.........

-.......:

i'-.

L
......... ./
.......

~

0.8

I-

w

;}

...........

OFIF'STAiE VOL+AGE: 112 V-

--.........

~

rlUADRiNT 4

.........

>
~ 1.0

~

.......

20
40
60
80
TJ. JUNCTION TEMPERATURE IDC)

100

120

140

3.0

I

2.0

FIGURE 7 - MAXIMUM NON·REPETITIVE SURGE CURRENT
100

,.'"

1.0
:@

:'>

~

I "'t--l

80

60

r\

40

I-CYCLE -

f-

~
;:;

O. 7

t:"

o. 5

\J

w

~
~

o. 3

""
~

~

O. 1
0.4

0.8

1.2

1.6

2.0

24

2.8

3.2

36

4.0

4.4

7-110

I--

TJ: 100 DC

20

r---- f ~ 60 Hz I
or - - surge IS preTded an, tailored
10

20

tryed cur

30
NUMBE R OF CYCLES

IITM. MAXIMUM INSTANTANEOUS ON·STATE VOLTAGE IVOLTS)

- --

I

~

O. 2

1(\ -- i-- .....

5.0

nt
70

10

2N6342A thru 2N6349A

FIGURE 8 - TYPICAL THERMAL RESPONSE
1.0
w

~

O.S

'"

l;;
~

a: 3" 0.2

~

~~

~~

>-'"
"''''
>-0

f5

;;;

0.1

--

ZOJClti • rltl

0

ROJC

~O.05

z

~

I-

0.02
0.01
0.1

0.2

0.5

1.0

2.0

5.0

20

50

100

200

500

1.0k

2.0k

5.0 k

10 k

t,TlMElmsi

•
7-111

2N6394 MCR220-S
thru MCR220· 7
2N6399 MCR220-9
G

o>----1~
..d--o

A

K

SILICON CONTROLLED
RECTIFIERS
12 AMPERES RMS
50-800 VOLTS

REVERSE BLOCKING TRIODE THYRISTORS
designed primarily for half-wave ac control applications, such
as motor controls, heating controls and power supplies.
A

• Glass Passivated Junctions with Center Gate Geometry for
Greater Parameter Uniformity and Stability
• Small, Rugged, ThermowattA Construction for Low Thermal Resistance, High Heat Dissipation and Durability
• Blocking Voltage to 800 Vqlts

K
A

G

*MAXIMUM RATINGS
Symbol

Rating

•

Peak Repetitive Forward and Reverse Blocking
Voltage
2N6394
2N6395
(TJ = -40 to 125°C)
2N6396
MCR220-5
2N6397 '
MCR220-7
2N6398
MCR220-9
2N6399

RMS OnoState Current
TC
(All Conduction Angles)

= 90°C

Peak Non-Repetitive Surge Current
(1/2 cycle, Sine Wave. 60 Hz. TJ = 1250 C)
Circuit Fusing
(TJ

=-40 to +1250 C, t =

VRRM
VORM

Value

Unit
Volts

SO

6I
1

100
200
300
400

SOO

-l

600
.700
800
IT(RMS)

12

Amps

ITSM

100

Amps

12 t

40

A 2s

Forward Peak Gate Power

Forward Peak Gate Current

PGM

20

Watts

PG(AV)

0.5

Watt

Amps

IGM

2.0

TJ

-40 to +125

DC

Storage Temperature Range

T stg

1"0 to +150

°c

Symbol

Max

Unit

ROJC

2.0

°C/W

THERMAL CHARACTERISTICS
Characteristic

Dd~EG

1-.

PIN 1. CATHODE
2.ANOOE
3. GATE
4', ANOOE
AU JEOEC dmtellstOns ami

nOle~

MILLIMETERS

Operating Junction Temperature Range

Thermal Resistance, Junction to Case

-I'I-H,L

R

STYLE 1:

1.0 to 8.3 ms)

Forward Average Gate Power

H

S[C~ A-A

DIM

MIN

MAX

MIN

7-112

MAX

0.560 0625
1423 1581
6 1066 03BO 0420
0140 0190
356 482
0
1.14 0.020 0045
051
F
3531 3.733 0139 0141
G
0090 0110
229
279
..
H
0.250
635
1.14 0.012 0045
031
K
0.500 0562
1270 14.27
L
4 177
00'5 0010
0190 0210
N
.83 5.33
Q
0100 0120
25' 30.
0080 0.115
R
2.04 292
S
0020 0055
. I 139
0230 0270
C..!-c...i.B_5 6.85

A

B
C

•

CASE 221-02
TO 220 AB

• Indicates JEDEC Rogist8red Data.
"Trademark of Motorola Inc.

,1!lPly

INCHES

2N6394 thru 2N6399, MCR220-5, MCR220-7, MCR220-9

ELECTRICAL CHARACTERISTICS;(TC = 25°C unless otherwise noted.)
Symbol

Characteristic

·

'Peak
Forward Blocking Current
'
(VO = Rated VORM@TJ= 125°C)

• Peak Reverse Blocking Current

Min

Typ

Max

Unit

IORM

-

-

2.0

mA

'RRM

-

-

2.0

mA

VTM

-

1.7

2.2

Volts

IGT

-

5.0

30

mA

-

0.7

1.5

0.2

-

-

6.0

40

mA

-

1.0

2.0

jlS

-

15
35

-

50

-

(VR = Rated VRRM@TJ= 125°C)
• Forward "On" Voltage
(lTM = 24 A Peak)
• Gate Trigger Current (Continuous de)

(VO = 12 Vde, RL

=100 Ohms)

• Gate Trigger Voltage (Continuous de)
(VO = 12 Vde, RL = 100 Ohms)
(VO

=Rated VORM, RL

Volts

VGT

Volts

VGO
= 100 Ohms, TJ = 125°C)

• Holding Current

'H

(Vo = 12 Vde)
Turn·On Time
(lTM = 12 A, IGT = 40 mAde, Vo = Rated VORM

tgt

Turn-Off Time (VO = Rated VORM)
(lTM = 12 A,IR a 12 A)
(lTM = 12 A, 'R = 12 A, TJ = 125°C)

tq

Critical Rate-of-Rise of Off-State Voltage

dv/dt

jlS

V/jls

Exponential

(VO = Rated VORM, T J = 125°C)

'IndicatesJEOEC Regrstered Data.

FIGURE 2 - MAXIMUM ON-8TATE POWER DISSIPATION

FIGURE 1 - CURRENT DERATING

a

~130r----.----r----r---'r----r---'r----r---'

a:

~ 125h.~~----~--~--~~--~­

_~

ffi

~ 120r-~~~~~--~--~r_--~-

...w

ffi

~ 115

20
18

-

16
14

-

a

A-1"1-

= CONDUCTION

w

10

ffi

8.0

'"
«

"

'~ 105r---_r----r-,,_r~~k-~~~~~--_r--~

:>

~ 100r_--~----r---~--~~~~--~r_--_P~

"'" 6,0

S

~ 4.0

:::>

~ 95r---~----r_--~--~~r_~~~r_~d_--~

2.0

60·
Q

~ 90~0--~1~.0--~2~.0--~3~.0--~~~~J-~~--~~~

300

V

,/

, / ./' /""
TJ

7-113

=125·C

iiP'"

~

~

U

~

M

IT(AV), AVERAGE ON-5TATE CURRENT (AMP)

IT(AV), AVERAGE ON-5TATE CURRENT (AMP)

~

/ / / ./' . /

V~ /"/ Y
/. ~ I::/'
~~

o~
o
u

~

/

900

ANGLE

~ 12

~ 110r---~--~~~~~~k-~~--~r_--~--~

;;-180·

U

B.O

•

2N6394 thru 2N6399. MCR220-5. MCR220-7. MCR220-9

100

10

V

3D

Ib
V

20

!Z

........,25.C

~

10

.

'"~

65

:E

60

E

z

3.0

Iil
z

2.0

.......

.......
F'

I--- SURGE IS PRdcEOED AND FOLLOWED
BY ~ATEO C~RRENT

2.0

1.0

!;(
c
~

...... .......

5

50

::>

'-' 5.0
w

I;;

~

r--- ......

TJ·'25·C
f· 60 Hz

~ 70

1.0

~

.......... 1-0..

~ 75

I-

ill

85

B80

V

II

Ii:"
~

V

.............

~ 90

V

50

I"'--...

£' 95

./

TJ = 25·C

,..

FIGURE 4 - MAXIMUM NON-REPETITIVE SURGE CURRENT

FIGURE 3 - ON-STATE CHARACTERISTICS

.,l1li

3.0
4.0
NUMBER OF CYCLES

6.0

B.O

10

<[

IZ
<[

In

,... 1.0

~

.C- 0.1

0.5

0.3

0.2

,.

4.4
1.2
2.0
2.B
3.6
5.2
lITH,lNSTANTANEOUS ON-5TATE VOLTAGE IVOLTS)

6.0

FIGURE 5 - THERMAL RESPONSE

'-'

I. 0
O. 1
o. 5

~a

o. 2

w

iii~
. I

~~

O. 3

..-

ffi ~ o. 1
"',..
:: ~ 0.01

ffi -

0.05

~
....

0.03
0.02

u;

-=

-~

ZOJClt) = ROJC. rlt)

./

.".

0.0 1
0.1

0.2

0.3

0.5

1.0

2.0

3.0

5.0

10

2~

30
50
t,TIMEII)'I')

7-114

100

200

300

500

1.0k

2.0k 3.0k 5.0k

10k

2N6394 thru 2N6399, MCR220-5, MCR220-7, MCR220-9

TYPICAL CHARACTERISTICS

FIGURE 6 - PULSE TRIGGER CURRENT
300

I .1111

200
~

.g

~

100

I

FIGURE 7 - GATE TRIGGER CURRENT

I

IIIII

\

!;:(

30

'" 20

:''"1i
~~

...........

....
iii

\

f\

~

I
0.7

...... 1"-

TJ:-40oC

1:l

I"-

25 0 C

'"
~
'"a;

1000 e

!;:(

",

10

0.5

10
20
PULSE WIDTH I",)

-'"

~

-""'"
I.............

50

100

!E 0.3
-40

200

40
80
TJ, JUNCTION TEMPERATURE IOC)

DF~.STATJ VOLTAGE: I~ V-

«

1

O. 9

.......

~

0.8

~

a;

....
~

«

~

.......

1:l

.......

~

W

o. 7

.........
.........

'"~ o. 5
0.4
-60

I

I0

'" .....

-20

20

40

60

80

100

120

I

I

.......,

~ 5. 0

.........

.......

:.........
-40

I

b."

:I:

>

160

0

'"z
97. 0
o

.........

0, 6

120

OFF·STATE VOLTAGE· 12 V

1.0

C:;

,

FIGURE 9 - HOLOING CURRENT
0

~

~

.......,

'".....

FIGURE 8 - GATE TRIGGER VOLTAGE
1
o

f"-..

~ 0.5

E
3
0.2

I

I'--......

70
~ 50
W

I

OF~-5TAT~ VOLiAGE: \2 V - r--

f--

OFF-5TATE VOLTAGE: 12 V

I'~

140

TJ, JUNCTION TEMPERATURE IOC)

3. 0
-60

-40

-20

20

40

60

80

TJ,JUNCTION TEMPERATURE IOC)

7-115

r--

100

120

140

2N6400 MCR221-5
thru, MCR221-7
2N6405 MeR2 21-9
G

A

I

Df-~----

~

116

112

"~

108

:E.

104

..

x

"~

,~

~

"- "-~ ~ r-...
\.
"-"- ~'-.
\

"" ,
"I

{:

0:

=

300

60· I

I
1.0

2.0

3.0

CONOUCTION
ANGLE

~

\.

>-

~

~

" "-"

120

~

A-1"1-

...."

5.0

6.0

~

........

r-....
de

8.0

"-

90·

'-.

180·

120· ......

I
7.0

"'ffi
>

.
.

8.0

9.0

c::

"'-10

/

V/

V;;
j V>-

u

«~

ANGLE

u

u

~

~

~

M

M

IT(AVI. AVERAGE ON·SlATE FORWARO CURRENT (AMPI

7-117

W

•

2N6400 thru 2N6405, MCR221-5, MCR221-7, MCR221-9

FIGURE 3 -ION-STATE CHARACTERISTICS
200

FIGURE 4 - MAXIMUM NON-REPETITIVE SURGE CURRENT
160

~

~

100

~ 150

;/'"

§

B140

70

..

//

50

::E
~

30

~

20

1::

~
~ 130

/

~'"

j
TJ =125'C /I

ti 120
r

10

~

70

z

5.0

~

o

PCh

'"

I"

w

~

o

'"'"~

'"" ""-

~

""- ..........

TJ = 125'C

-

'i 6OHZ

r-.... ....,

SURGE IS PRECEDED AND

I--- FOLL~WED BYIRATE~ CUR1RENT
3.0

2.0

V/25'C

4.0

6.0

B.O

10

NUMBER OF CYCLES

"'"

zffi 3.0

~

~

2.0

!;

:i

.t:"

1.0

0.7

0.5

0.3
0.2

U

M

U

U

U

U

U

U

U

U

U

VfM,INSTANTANEOUS ON·STATE VOLTAGE IVOLTS)

•

FIGURE 5 - THERMAL RESPONSE
1.0
w

~

~

iii

0.7
0.5

0.3
I

~c 0.2

~~
ffi
~
",::E

.;.

f--'"

O. 1

""'"

f--.

)

,

ZOJCI.) = ROJC. ,I')

~ ~ 0.01
0.0 5

ffi -

u;

~

0.03

~

0.02

"'"

0.0 1
0.1

:/

0.2

0.3

0.5

1.0

2.0

3.0

5.0

20
t,

30

50

TIME (ms)

7-118

100

200 JOO

500

1.0k

2.0k J.Ok 5.0k

10 k

2N6400 thru 2N6405, MCR221-5,MCR221-7, MCR221-9

TYPICAL TRIGGER CHARACTERISTICS

FIGURE 6 - PULSE TRIGGER CURRENT

FIGURE 7 - GATE TRIGGER CURRENT

. 100

=

70

_

'\.

.............

....

20

RL=50n-

"

Ti= -40°C

'\.

.'"

13

OFF's,.ATEIVOLT~GE = IJ V

OFF·STATE VOLTAGE - 12 ~
RL' 50 n-

50

1
§ 30

2.0

10
CC; 7.0
w

....

:: 3.0
.~ 2.0
I. 0
0.2

"

25°&

~ 5.0

rm;C

0.5

1.0

2.0

5.0

10

'" "'"

0

1111
20

50

100

2.0
-60

200

-40

20

-20

PULSE WIDTH Im,l

40

60

.......
..........

80

100

120

140

TJ. JUNCTION TEMPERATUR E lOCI

FIGURE 8 - GATE TRIGGER VOLTAGE

FIGURE 9 - HOLDING CURRENT

1.0

20

~

OFF1TATE lOLT)GE - I L RL = 50 n

o

~ 0.8

..............

'"~

g

OF1F.sTAT1E VOLjAGE = 112 V
RL=50n-

~
;: 10

.......

ffi 0.6

........

to
to

~
w
!C

..........

........

..........

~
B 1.0

........

r-....

'"z

.........

0.4

9o 5.0

~

......
['.....

:z:

......... ~

~

to

,..:

3.0

{;
0.2
-60

2.0

-4D

-20

20

40

60

80

100

.120

~

140

TJ.JUNCTION TEMPERATURE lOCI

-4D

~

0

~

40

00

00

TJ. JUNCTION TEMPERATURE lOCI

7-119

~

~

~

•

2N6504
thru
2N6509

-I'---_ _~_)_ _
AO~~........
~F-~~-O K

_

SILICON CONTROLLED
RECTIFIER
25 AMPERES RMS
50 - 800 VOLTS

REVERSE BLOCKING TRIODE THYRISTORS
· .. designed primarily for half-wave ac control applications. such as
motor controls. heating controls and power supply crowbar circuits.
• Glass Passivated Junctions with Center Gate Geometry for Greater
Parameter Uniformity and Stability

A

• Small. Rugged. Thermowatt'" Constructed for Low Thermal
Resistance. High Heat Dissipation and Durability

K
A

• Blocking Voltage to 800 Volts

G

• 300 A Surge Current Capability

"MAXIMUM RATINGS

•

Rating
Peak Repetitive Forward and Reverse
Voltage II)
2N6504
2N6505
2N6506
2N6507
2N6508
2N6509
RMS On-State Current
Average On-State Current ITC +85U C)
Peak Non-Repetitive Surge Current 8.3 ms
11/2 Cvcle. Sine Wave)
1.5ms
Forward Peak Gate Power
Forward Average Gate Power
Forward Peak Gate Current
Operating Junction Temperature Range
Storage Temperature Range

-

Symbol

Valua

VRRM
VORM

50
100
200
400
600
800
, 25
16

ITiRMS)
TIAV)
ITSM
PGM
PGIAV)
IGM
TJ
Tstg

Unit
Volts

Amps
Amps
Amp.

300
350
20
0.5
2
-40 to +125
-40 to +150

Watts
Watt
Amps

Max
1.5

Unit
°C/W

PIN

uc
°c

"THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance. Junction to Case

I

Symbol
R9JC

I

11) VORM and VRRM for .11 tYpes can be applied on a continuous dc basis
without incurring damage. Ratings apply for zero or negative gate voltage.
Oevicas should not be tested for blocking capabilitY in a manner such that
the voltage supplied exceads the rated blocking voltage.
"Trademark of Motorola Inc.
• Indicates JEOEC Registered Data.

7-120

STYLE 1,

i: ~~1~~qE
3. GATE
4 ANODE

MILLIMETERS
INCHES
MIN MAX MIN MAX
14.23 15.Bl 0.560 0.625
10.66 0.3BO 0.420
C
.6 4.B2 0.140 0.190
D
1.14 0.020 0.045
0.51
F
3.531 3.133 0.139 0.141
G
2.29 2.19 0.090 0.110
0.250
H
6.35
J
0.31 1.14 0.012 0.045
K
.10 14.21 0.500 0.562
L
0.045 0.010
111
0.190 0.210
N
4.83 5.33
Q
0.100 0.120
2.! 4 3.04
0.080 0.115
.4 2.92
P
S
o 1 1.39 0.020 0.055
T
0.230 0.210
5.85 6.85
CASE 221-02
TO·220AB
All JEDEC dimensions and notes apply

DIM
A

•

-

-

2N6504 thru 2N6509

ELECTRICAL CHARACTERISTICS (TC ~ 25°C unle•• otherwise noted)
Characteristic
·Peak Forward Blocking Current
(VO = Rated VORM@TJ= 125°C)

Min

TVp

Max

Unit

IORM

-

-

2

mA

IRRM

-

-

2

mA

VTM

-

-

1.8

Volts

IGT

-

-

40
75

mA

25

-

1

1.5

Volts

0.2

-

-

IH

-

35

40

mA

'9'

-.

1.5

2

/IS

-

15
35

-

-

50

SVmbol

·Peak Reverse Blocking Current

(VR = Rated VRRM @TJ= 125°C)
" Peak On-State Voltage
IITM = 50 A, P.W." 300 ,.s, Duty Cycle .. 2%)
• Gate Trigger Current (Continuous de)

TC = 25°C
(VO = 12 Vdc, RL = 100 Ohms) TC = -40 oC

*Gate Trigger Voltage (Continuous del
(VO = 12 Vde RL = 100 Ohms, TC = -40°C)
(Vo = Rated VORM, RL = 100 Ohms, TJ = 125°C)

VGT

-Holding Current

(VO

-

= 12 Vdc, TC = 25°C)

Turn·On Time
IITM = 25 A, IGT = 50 mAde, Vo = Rated VORM)
Turn·Off Time (VO = Reted VORM)
IITM = 25 A, IR = 25 A)
IITM = 25 A, IR = 25 A, TJ = 125°C)

/IS

Iq

dv/dt

Critical Rat. of Rise of Off·Stat. Voltag.
(Gata Open, Vo = VORM, Exponential Waveform, TJ = 125°C)

-

V//ls

"Indicates JEOEC Registered Data.

FIGURE 2 - MAXIMUM ON·STATE POWER DISSIPATION

FIGURE 1 - AVERAGE CURRENT DERATING
13 0

~

"'

...'"

:>

~

al...
"'

11 0

~

\
\

"" '"
\

....;

0

'\ "-

~ ..........

\

• =CONDUCTION AINGLE

'\..

""-

• V3D'

""-

60' 1\..90'

II
4

~
-l.1-

r-.....

• =30'\

0

4

• =dONOUCTION ANGLE

"< \

:>

2=f

-l.1-

~~

;3 10
0

.''"'x""

~-E

12 O~ ~

8

)

I

I

I

"-

6

""'-

180'

'-....

8

""'-

"'12

de

16

1/

/'"

90'
/

/V

/ /- / / / .,-V

V~ ~ ~
~ ~ j:/"

oi~ P

20

/
60'

/'

./

= 12SoC

16

IT(AV), AVERAGE ON·STATE FORWARD CURRENT (AMPS)

IT(AV), ON·STATE FORWARO CURRENT (AMPS)

7-121

de

/
TJ

12

180'

20

•

2N6504 thru 2N6509

FIGURE 3 - ONoSTATE CHARACTERISTICS

FIGURE 4 - MAXIMUM NON-REPETITIVE SURGE CURRENT

100

3110

0

~ 275

0

IL-

0

1250cl
0

li

0

v...

cs

~

§

"'"

~ 250

....

--'-

<>

=

iil

!L

~'"

~

25°C

1=

7

V\J0

.........

225

...........

t'-..

i"--.

TC = 85°C
60HZ
r----

fi

..........

200

SURGE IS PRECEDED AND
t--FOL':ltEO BYtATEY CURrENT

f".

175

10

1

5

NUMBER OF CYCLES

I

1

3

I

2

1

,,,
,

.7

.5
.3

i

.2

.1
0.4

!

0.8

1.6

1.2

2.4

2.8

VTM, INSTANTANEOUS VOLTAGE (VOLTS)

II

FIGURE 5 - THERMAL RESPONSE
~

0.7

z

05

iii
cr _

0.2

'"t;;

~c

I--'

03

!.--

",'"

"'~

~~

/-""

o. 1

ZOJCIt)

ROJC .,ltl

"'''' 005

:: ~ 0.0 7
~ ~

u;
~

0.0 3

I-

0.0 2

"

0.0 1

0.1

0.2

0.3

0.5

10

20
t,

30
50
TIME(ms)

7-122

100

200 300

500

1k

2k

3k

k

10

2N6504 thru 2N6509

TYPICAL TRIGGER CHARACTERISTICS

FIGURE 6 - PULSE TRIGGER CURRENT
100
10

OFF·STATE VOLTAGE - 12 V

tr-.--1-I-- r-RL -100 n
h

d' 50
.§

~ :~

~
w

>-

C3

FIGURE 7 - GATE TRIGGER CURRENT

"

l~

........... 1-0..

~

10

T

1.0

:: 3.0

-t

-;lli:
- 1-125°C _.-

t-

.~ 2.0
1.0
0.2

f-

tfIf
IIII
0.5

1.0

2.0

5.0

10

20

OFFkATEIVOLT~GE - ,i v

RL-Ioon -

'"

llL
25°C ~::- t - -

~ 5.0 f--

=

!

TJ - -40°C

----~

2.0

......

--

..........

..........

~

T

-+

'"

i
50

100

200

2.0
-60

-40

-20

PULSE WIDTH Im'l

W

~

"..........

w w

~

I~

~

TJ, JUNCTION TEMPERATURE (OCI

FIGURE 8 - GATE TRIGGER VOLTAGE

FIGURE 9 - HOLDING CURRENT

1.0

20

~
~

......

OFIF.STATIE VOLiAGE _1'2 V
HL-Ioon-

OFF.lTATE lOLT}GE - I L RL-Ioon
0.8

...........

..... 1'--..

'"
~
o

.......

>

~ 0.6

...........

"'
>-

......

0

........

t'-....

w

.........

~ 0.4

"-

.......

..........

...........
........ 1'-

'",..:

3.0

!;:
02
-60

-40

-20

20

40

60

BO

100

120

140

2.0
-60

-40

-20

W

~

W

W

TJ, JUNCTION TEMPERATURE (OCI

TJ,JUNCTIOrl TEMPERATURE (OCI

7-123

~

IW

I~

•

C·35

series
REVERSE BLOCKING TRIODE THYRISTOR

SILICON CONTROLLED·
RECTIFIER

designed primarily for half-wave ac control applications, such
as motor controls, heating controls and power supplies; or whereever half-wave silicon gate-controlled, solid-state devices are needed
• Glass Passivated Junctions and Center Gate Fire for Greater
Parameter Uniformity and Stability
• Blocking Voltage to 800 Volts

35 AMPERE RMS
26-8110 VOLTS

MAXIMUM RATI NGS (TJ • 1250 C unl.u oth.rwls& noted )
Rating
Peak Repetitive Forward and Ravena
Blocking Volt.ge (1)
(TC = -65 to +125 0 C)
C35U
C36F
C35A
C35G
C35B
C35H
C36C
C350
C35E
C35M
C35S
C35N

Symbol
VORM
or
VRRM

,

•

Non-R.petltive P•• k R.verS& Voltage
C35U
ITC = -65 to +125 0 C,
C35F
V < 6.0ms)
C35A"
C35G
C35B
C35H
C36C
C350
C35E
C35M
C35S
C35N
RMS On-Stat. Current (All Conduction Angles)
P•• k Non-R.petltive Surge Current
(On. cycle, 60 Hz)
Circuit Fusing
It 1.0 to 8.3 ms)

VRSM

Value

Unit
Volts

25
50
100
150
200
260
300
400
500
600
700
800
Volts
35
75
150
225
300
350
400
500
600
720
840
960

IT(RMS)

35

Amp

'TSM

225

Amp

. 75

A 2s

Q

P.ak Gata Power
Awrage Gata Pow.r
P.ak RewrS& Gate Voltage
Op.ratlng Junction Temperature Rang.

Storage Temperature Range

MILLIMETERS
MIN MAX
15.34 15.60
14.00 14.20
B
C 26.67 30.23
3.43 4.06
f
2.29 REF
H
J
10.67 11.56
15.75 17.02
K

DIM
12 t
PGM

5

Watts

PG(AV)

0.5

VGRM
TJ

5

Watt
Volts

-65 to +126

Tstg

-65 to +150

THERMAL CHARCTERISTICS

°c
°c

·A

L
II

R
T

INCHES
MIN
MAX
0.614
0.559
1.190
0.160
REF
0.455
0.670

0.604
0.551
1.050
0.135
0.090
0.420
0.620

7~--"",,,,- ~~

1.~ 2.16
1.65 REF
12.73 12.83

~

Th.rm.1 Resistance, Junction to C...

STYLE I:
PIN 1. CATHODE
2. GATE
3.ANOOE

I1t"VORM.nd·VRRM for all types can be appli.d on a contlnuousdc basis without
incurring damage. Ratings applv for zaro or negative gate voltage. O.vlc....hould
not be tested for blocking capability In a mann.r such th.t tha voltage suppllad
axcaods the rated blocking voltage.

CASE 263-03
Similar to T0-48

Char_riotlc

7-124

O.ilII5

0.065 REF
0.501 0.505

C3S Series

ELECTRICAL CHARACTERISTICS

(TJ - 25°C unle.. otherwl.. noted.)
Symbol

Chl_lstlc
Peak Ravena or Forward Blocking Current
(VO - Rated VORM, TC - +1250 C)
(VR - Rated VRRM, TC -12SoC)

C35U,F.A,G
C35B
C35H
C35C
C350
C35E
C35M
C35S
C35N

Average Forward or Revena 810cklng Current
(VO - Rated VORM TC - +12S0C)
(VR = Rated VRRM: TC -12S0C)

C35U,F,A,G
C358
C35H
C35C
C350
C35E
C35M
C35S
C35N

,

IORM
or
IRRM

IORM (AV)
or
IRRM(AV)

IGT

w

-' 60

~«

ii'"

i

y'

.....

40
20

~

~

......

-

-

-

6.5
6
5.5
5
4
3
2.5
2.25

-

2

-

-

2

6

-

-

-

Volts

mA

-

-

3

-

-

100

C35U,i=,M,S,N

10

C35A,G,B,H
C3SC,O,E

25

-

Volts

IH

dvldt

20

mA

VII'S

-

-

FIGURE 2 - POWER DISSIPATION
(HALF-WAVE SINE WAVE)
0

I

de

0

~

/

al.
180·

.....

"....... ......
" '"
."
........

"I

0

........

'l ',,"

I

0

I'..

60. 90. 120.

II

II

w

~

""

180·

u

de

u

n

120· V
91J01/1/
60'// V
V
a-3D·/, YI/ /"

:~

.......

I

I
a"'30 o

u

mA

-

,

'\. ~~
'\
'\

-

-

FIGURE 1 - CURRENT DERATING
(HALF·WAVE RECTIFIED SINE WAVE)

....

-

Unit
mA

.25

Critical Rate of Ri.. of Forward Blocking Voltage
Vo = Rated VORM, TC = +1250C)

. ~ 80

-

-

VGT

Holding Currant
(VO = 24 Vdc, Gate Supply = 10 V, 20 n, 45 "' minimum
pulse width, IT = 0.5A)

J

13
12
11
10
8
6
5
4.5
4

40
80

Gata Trigger Voltage, Continuous de
(VO = 12 Vdc, RL = 50 n, TC = ~50C to +1250 C)
(VO = Rated VORM, RL = 1000 n, TC = 125°C)

.....

-

-

Gate Trigger Current, Continuous de

!ffi 100

-

-

VTM

140

Max

-

PeaR On·State Voltego
(ITt" = 50.3 A peak, Pulse Width'; 1 ms,
Duty Cycle'; 2.0%)

~
~ 120

Typ

-

(VO = 12 Vdc, RL = 50 n)
(VO = 12 Vdc, RL· 50 n, TC = ~50C)

~

Min

L
36

/'1!

V

V

12

IT(AV), AVERAGE ON-STATE CURRENT (AMPS)

!/"

/

~

..!,,\;

I
16

20

24

28

32

IT (AV),AVERAGE ON-STATE CURRENT (AMP)

7-125

36

Cl06
series

REVERSE BLOCKING TRIODE THYRISTORS
· .. Glassivated PNPN devices designed for high volume consumer
applications' such as temperature, light, and speed control; process
and remote control, and warning systems where reliability of operation is important.

SILICON CONTROLLED
RECTIFIER
4 AMPERES RMS
15 thru 600 VOLTS

• Glassivated Surface for Reliability and Uniformity
• Power Rated at Economical Prices
• Practical Level Triggering and Holding Characteristics
• Flat, Rugged, ThermopadA Construction for Low Thermal
Res"istance, High Heat Dissipation and Durability

MAXIMUM RATINGS
Symbol

Rating

Peak Repetitive Forward and
Reverse Blocking Voltage
RGK =1 kfl
T C = _40° to 110°C

•

C106Q
C106Y
C106F
C106A
C1OS8
C106C
C1060
C106E
C106M

IT(RMS)

Average Forward Current
TA = 30°C

IT(AV)

Peek Non-Repetitive Surge Current
(1/2 Cycle, 60 Hz, TJ = -40 to +1100 C)

ITSM

>

Unit

15
30
50
100
200
300
400
500
600

~ UBt-1:; t F

f~::11a
::II +

4

Amp
Amp

2.55

12 t

1.5 ms

Peak Gate Power

20

Amp

0.5

A2,

PGM

0.5

Watt

Average Gate Power
Peak Forward Gato Current

PG(AV)

0.1

Watt

IGFM

0.2

Amp

Peak Reverse Gate Voltage

VGRM

6

Volts

Operating Junction Temperature Range
Storage Temperature Range
Mounting Torque (Note 1)

TJ

-40 to +110

Tstg

-40 to +150

°c
°c

-

6

in. lb.

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

I

Symbol

I

Max

I

I
I

R8JC

I
I

3

I
I

R6JA

G

Volts

OR
VRRM

RMS Forward Current
(All Conduction Angle,)

Circuit Fusing t

Value

VORM

75

NOTE 1. Torque rating applies with use of torque washer (Shakeproof
WD 19523 or equivalent). Mounting torque in excess of 6 in. lb.

does not appreciablv lower case-to·sink thermal resistance. Anode
lead and heatsink contact pad are common. (See AN-290 B)

For soldering purposes (either terminal connection or device mount·
ing), soldering temperatures shall not exceed +225 0 C. For opti·
mum results, an activated flux (oxide removing) is recommended.

Unit
°CIW
°CIW

II

\-,~ --1

_v1H

j

~f
K

L
~;e--oJ:.t -JLJ

--G

,E3-c
M--J~·+

MILLIMETERS
DIM MIN
MAX
A 10.80 11 05
7.49
775
B
261
2.41
C
0.66
D
0.51
2.92
F
3.18
2.46
2.31
G
2.41
H
1.27
0.64
0.38
K 15.11 16.64
30 TYP
M
n 3.76 4.01
R
1.14
1.40
0.89
S
0.64
3.94
U
3.68
V
1.02

J

-

STYLE 2
PIN 1 CATHODE
2. ANODE
3. GATE
INCHES
MIN MAX
0.425 0435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0125
0.091 0097
0.050 0095
0015 0025
0.595 0655
30 TYP
0.148 0.158
0.045 0.055
0.025 0035
0145 0.155
0.040

\

CASE 77-04
TO·126

I

·Trademark of Motorola Inc.

7-126

C106 series

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Symbol

Choractoristic

Peak Forward Blocking Current
(Rated VORM, RGK = 1000 Ohms, T J = 25°C)
(Rated V ORM , RGI< = 1000 Ohms, T J = 110°C)

IORM

Peak Reverse Blocking Current
(Rated VRRM, RGK = 1000 Ohms, T J = 25°C)
(Rated VRRM, RGK = 1000 Ohms, TJ = 1100 C)

IRRM

Forward "On" Voltage
(J FM =4 A Peak)

VTM

Gate Trigger Current (Continuous de)

Gate Trigger Voltage (Continuous de)
TJ = 25°C
(V AK = 6 Vdc, RL = 100 Ohms, RGK = 1000 Ohms) TJ =-400 C
(V AK = Rated VORM, R L = 3000 Ohms, RGK = 1000 Ohms,
T J = 110°C)

VGT

Holding Current
(VO = 12 Vdc, RGK = 1000 Ohms)

IHX

-

Volts
I'A

TJ = 25°C
TJ = -400 C
TJ = +110 0 C

-

30
75

200
500

0,4
0.5
0.2

-

O.B

0.3
0.4
0.14

-

3

Volts

1

-

-

mA

6
2

-

VII's

40

-

I'S

tq

-

1.2

Turn-Off Time

,~

90

"

70

50

~

20

o

.4

hMPE~ATURk ~ l10bc

/.

;:

........
.........

~

DC

Ei
~

....... -.(('

~

.......

I
HALF1SINE ~AVE I
RESISTIVE OR INDUCTIVE LOAD
50 TO 400Hz.

r------...

~

"-

.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
IT (A VI AVERAGE ON-liTATE CURRENT (AMPERES)

V
V. . . . V

z
o

.........

I
I

--.......... j

~

.......

I'-

'6

~

.......

"-

~~~I~~:~i ~:~~DUCTIVE LOAD.'

50 to 400 Hz

JUNhlON

o

,/

40

to

z

\

~ 30

10

.t:

I'S

FIGURE 2 - MAXIMUM ON-5TATE POWER DISSIPATION

Vi

........... ~

80

~

I-

2.2

B

60

w

I'A
10
100

-

-

<

'-'
U

-

tgt

:::>

'"

10
100

Turn-On Time

110

ill
I-

-

Unit

dvldt

100

'"

-

-

FIGURE 1 - AVERAGE CURRENT DERATING

I-

MilX

IGT

Forward Voltage Application Rate
(T J = 110°C, RGK = 1000 Ohms, Vo = Rated VORM)

w

Typ

I'A

(VAK =6 Vdc, RL = 100 Ohms)
(V AK = 6 Vdc, RL = 100 Ohms, TC = -400 C)

~

Min

4.0

w
to

ffi>

< 0
:;; 0

,/

/

-"

I"
;'

?'

.4

.8
1.2
1.6
2.0
2.4
2.6
3.2
3.6
IT (AVI AVERAGE DN·STATE CURRENT (AMPERESI

PO.I'Dg. Intorchano.abillty
The dimensional diagrams balow compare tho critical dimensions of tho Motorola C-l06 packega
with competitive devlcas. It h.1 be.n demonstratad that tho smellor dimensions of the Motorola pack.go meke It compatlblo In most lead-mount and chassis-mount eppllcatlons. The usor Is advlsod to
compare all critical dlmen.lon. for mounting compatibility.
.

Compotltlve C-1 06 Package

7-127

OC

I?-i""
~

~

Motorola C-106 Pack ago

r-

,/'

4.0

C122
.

series

SILICON CONTROLLED
RECTIFIER

REVERSE BLOCKING TRIODE THYRISTOR

· .. designed primarily for half·wave ac control applications, such
as motor controls, heating controls and power supplies; or where·
ever half·wave silicon gate-controlled, solid·state devices are needed.

8 AMPERES RMS
50-600 VOLTS

• Glass Passivated Junctions and Center Gate Fire for Greater
Parameter Uniformity and Stability
• Small, Rugged, ThermowatrA' Construction for Low Thermal
Resistance, High Heat Dissipation and Durability
•

A

Blocking Voltage to 600 Volts

• Different Lead Form Configurations,
Suffix (2) thru (6) available, see
Thyristor Selection Guide for Information

MAXIMUM RATINGS
(Note 2)

Rating
Repetitive Peak Off·State Voltage
Repetitive Peak Reverse Voltage

Symbol

C122F
C122A
C122S
C122C
C122D
C122E
C122M
Non·Repetitive Peak Reverse Voltage

•

(All Conduction Angles)

TC" 75°C

Peak Forward Surge Current

Unit

Volts
50
100
200
300
400
500
600

R

I-~

ITIRMS)

8

Amps

ITSM

90

Amps

12 t

34

A 2s

t=8.3m.
Forward Peak Gate Power (t = 10 "s)
Forward Average Gate Power

Watts

Forward Peak Gate Current
Operating Junction Temperature Range
Storage Temperature Range

PGM

5
0.5

Watt

IGM

Amps

TJ

2
-40 to +100

Tst.

-40 to +125

°c

°c
N

s

Characteristic

T

Thermal Resistance, Junction to Case
(1) VORM for all types can be applied on 8 continuous de basis without Incur·
ring damage. Ratings applv for zero or negative gate voltage. Device. should
not be tasted for blocking capability In iii manner such that the voltage
supplied exceeds the rated blocking voltage.
(2) Add lead form suffix deslgnator"( )" to part: number for lead configurations 2 thru 6. See Thyristor Selection Guide for Information .
.. Trademark of Motorola Inc.

7-128

Dj~EG

MILLIMETERS

A
B
C

n

THERMAL CHARACTERISTICS

fI+lL

PIN I. CATHODE
2. ANODE
3. GATE
4. ANODE
DIM

PG(AV)

H

T;CTA."

75
200
300
400
500
600
700

(1/2 Cycle, Sine Wave, 60 Hz,)
Circuit Fusing Considerations

~

Volts

VRSM

C122F
C122A
C122S
'C122C
C1220
C122E
C122M
Forward Current RMS

Value

VORM
VRRM

MIN MAX
14.23 15.B7 0.560
6 10.66 0.3BO
4.B2 0.140
.5
0.51 1.14 0.020
3.31 3.733 0.139
2.29 2.79 0.090
6.35
.1 1.14 0.012
0.500
1 .70 14.27
0.045
17
4.B3 5.33 0.190
0.100
4 3.04
2.92 O.OBO
.0
0.020
I 1.39
5.B5 6.B5 0.230
CASE 22HI2
TO·22OAB

All JEDEC dimensions and notes apply
NOTE: SUFFIX (1) Lud Conflgur.tlon
AV.II.ble.t st.ndard.

C122 series

ELECTRICAL CHARACTERISTICS (TC

25°C unless otherwise noted)

=

Characteristic
(VO

TC
TC

= Rated VORM)

Peak Reverse Blocking Current

(VR

Min

Typ

Max

Unit

0.1
0.5

mA

IRRM

-

0.1
0.5

mA

VTM

-

-

1.83

Volts

-

-

25
40

-

-

1.5
2

Symbol

= 25°C
= 100°C
TC = 25°C
TC = 100°C

Peak Forward Blocking Current

= Rated VRRM)

IORM

Peak On·State Voltage (1) ,
!lTM = 16 A Peak, TC = 25°C)
Gate Trigger Current (Continuous de)

(VO
(VO

mA

IGT

=6 V. RL = 91 Ohms. TC = 25°C)
=6 V, RL = 45 Ohms. TC = -40°C)

Gate Trigger Voltage (Continuous de)

Volts

VGT

=6 V. RL =91 Ohms, TC = 25°C)
=6 V. RL =45 Ohms, TC = -40 0 C)
(Vo = Rated VORM, RL = 1000 Ohms. TC = 100°C)
(VO
(VO

0.2

Holding Current

IVO = 24 Vdc, IT = 0.5 A,
0.1 to 10 ms Pulse, Gate Trigger Source

-

mA

IH

= 7 V, 20 Ohms)
TC = 25°C
TC = -40 0 C

-

30
60

tq

-

50

-

"s

dv/dt

-

50

-

V/"s

Turn·Off Time IVO ~ Rated VORM)
IiTM = 8 A, IR = 8A)
Critical Rate-of·Rise of Off-State Voltage
(VO = Rated VORM, Linear, TC = 100°C)
II) Pulse Test: Pulse Width = 1 ms, Outy Cycle';; 2%.
FIGURE 1 - CURRENT DERATING (HALF·WAVE)

FIGURE 2 - CURRENT OERATING (FULL·WAVE)

w

w

~

:>

'"
....

'"

~

~

~....

~
....
w

~

<3

..
..1ij

u'

80

w

~

"

85

w

~w

..'"
..1i~
"..x

90

~

'"
;:

~OUCTIOfl

.""x

MGLE

60
0

....

..;

15
10
65
60
0

....

IT(AV).AVERAGE ON.sTATE FORWARD CURRENT (AMPERESI

FIGURE 3 - MAXIMUM POWER DISSIPATION (HALF·WAVE)

FIGURE 4 - MAXIMUM POWER DISSIPATION (FULL-WAVE)

......

~

r- R~SIShvEI OR iNOJCTI~E LbAOl50tO 410 Hi

2
3
4·
IT(AVI. AVERAGE ON.sTATE CURRENT (AMPERES)

10

~

DC

z

0

>=

;t

./

1800

9UO
61-CONOUCTION
r - ANGLE 3D·

2r-

.~

~

~
2

v:

'"w
~w

'L'

120· /

- 6~
/. I'l
~V /

iii
c

./

!<
....

"'::5

"

w

'"~
>

«
u'
....

4

ITlAV). AVERAGE ON.sTATE CURRENT (AMPERES)

7-129

r---+--~~~~~r--~___

~

r---b~~~--r--~. ~ ..
l--zjjijl!l~_+--_+

II
•
__I--_DlfCYtU
Of SIIf'flY fllEQUElC'I'

RESISTIVE OR INDUCTIVE LOAD. 50TO 400 Hz
1234561
IT(AV).AVERAGE ON.sTATE CURRENT (AMPERES)

e228

C228( )3
e229
series
REVERSE BLOCKING TRIODE THYRISTOR
... designed for industrial and consumer applications such as power
supplies, battery chargers, temperature, motor, light and welder
controls.
• Economical for a Wide Range of Uses
o High Surge Current - ITSM = 300 Amp
e Low Forward "On" Voltage - 1.2 V (Typ) @ ITM = 35 Amp
o Practical Level Triggering and Holding Characteristics 10 mA (Typ) @TC=25 0 C
o Rugged Construction in Either Pressfit, Stud, or Isolated
Stud Packages
o Glass Passivated Junctions for Maximum Reliability

SILICON CONTROLLED
RECTIFIER
35 AMPERES RMS
60 thru 600 VOLTS

C229Sarios

STVLE1'1_

1 CATHODE
2 GATE
CAS• •N•• '

a

0

"

MAXIMUM RATINGS
Rating
Repetitive Peak OffoState Voltage (1)
ITJ ~ -40 to +12S0 C)
C229F, C228F, C228F3
C229A, C228A, C228A3
C229B, C228B, C228B3
C229C, C228C, C228C3
C2290, C2280, C22803
C229E, C228E, C228E3
C229M, C228M, C228M3

•

Non·Repetltlve Reverso Voltage
ITJ • -40 to +1260 C)
C229F, C228F, C228F3
C229A, C228A, C228A3
C229B, C22BB, C228B3
C229C, C228C, C228C3
C2290, C2280, C22B03
C229E, C22BE, C22BE3
C229M, C22BM, C22BM3
Forward Currant RMS
Peek Surge Current
lon8 cycle, 60 Hz) ITC - -40 to +1260 C I
Circuit FUllng Consideration.
ITC ~ -40 to +125 °C) It = 1.0 to B.3 ml)
Peak Gate Power
Average' Gate Power
Peak Forward Gate Current
Operating Junction Temperature Range
~torage Temperature Range
Stud Torque

Symbol

Value

50
100
200
300
400
600
600

C228 Saries '
Volt.

VRSM

r~

~
~'A~

ITIRMS)
IT5M

76
160
300
400
600
600
720
36
300

Amp
Amp

12 t

370

A2.

.

STYLE 1:
PIN 1. CATHODE

l.GATE
3.AIIOOE

A

C
F
H
J
I{

-

6
0.6
2
-40 to +125
-40 to +150
30

Symbol

Max

PGM
PGIAV)
IGM
TJ
T.t9

Watts
Watt
Amp
DC
DC

in. lb.
Unit

L

n
n
T

C228( ) 3 Sari..

'
[fD
p,.
A B

I

STYLE ,.
1. CATHODE
2. GATE
3. ANODE

1.7
1.85

15.34 15.60
1400 14.20
26.61 30.23
3.43 4.06
2.29 REF
10.6111.56
15.15 11.02

DIM
A

MIN

8

12.73

, f
G
H
J
K
l
Q

T

7-130

2.16
1.60
10.61
7.62
6.48
1.40
3.43

0.5010.505

C~SE

MILLIMETERS
MAX

"

0.6200.670

_.~.

1.5
12.73 12.83

C

(1) VORM and VRRM for all types can be applied on a continuous
de basis without incurring damage. Ratings apply for zero or
negative gate voltage. Devices shall not have a positive bias
applied to the gate concurrently with a negative potential
on the anode.

0.604 0.614
0.5510.559
1.050 \.190
01350.160
0.090 REF

.,

'

°C/W

ROJC

INCHES
MAX

MILLIMETERS
DIM MIN MAX

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
C228 and C229 Series
C2281 ) 3 Series

CASE 310·01

Unit

Volts

VORM
and
VRRM

311·01

C228, C228( )3, C229 series

ELECTRICAL CHARACTERISTICS ITC = 25°C unle.s otherwise noted.)
Charactoristic

Symbol

Min

Typ

Max

Unit

P.ak Forward Blc"king Current
IAated VOAM, with gat. open)

TC
TC

=25°C
= 125°C

lOAM

-

-

1

rnA

Peak Reverse BI ~ki ng Current

TC = 25°C
TC'1250C

IAAM

IAated VAAM)

-

Forward "On" Voltage

VTM

= 100 A Peak)

(tTM

Gate Trigger Current

IVO
(VO

Gate Trigger Voltage
(110 = 12 Vde, RL =80 Ohm., TC = 25°C)
(VO = 6 Vde, AL = 80 Ohms, TC = -40oC)

Holding Current

V GT

=+125 0e)

Te - 25 e
Te = -40o e
u

(Anode Voltage

= 24 V, gate open)

IH

Turn·On Time ltd + t r )
(tTM ~ 35 Ade, IGT =40 mAde)

ton

Turn-Off .Time

toff

(tTM
(tTM

= 10 A,
= 10 A,

IA
IA

= 10 A)
= 10 A, Te = 100oe)

= 1000 e

-

1

-

-

3

-

-

1.9

-

-

40
80

-

-

2.5

-

3

0.2

-

-

Volts

-

-

-

75
150

mA

-

-

1.0

-

-

20
35
50

-

dv/dt

mA

Volt.
mA

Volts

~.

,lS
-

Forward Voltage Application Rate

(Te

-

VGT

Gate Trigger Voltage

.J

3

IGT

= 12 Vde, AL =80 Ohm., TC =25°C)
=6 Vde, AL ~ 50 Ohms, TC = -400C)

(Aated VOAM, AL ~ 1000 Ohm',TC

-

-

V/~s

)

FIGURE 1 - CUAAENT DERATING
(HALF·WAVE RECTIFIED SINE WAVE)

w

•

FIGURE 2 - CURRENT DEAATING
(FULL·WAVE RECTIFIED SINE WAVE)

g

40
IT (AV), AVERAGE ON·STATE CURRENT (AMPS)

IT (A V) AVERAGE ON.sTATE CURRENT (AMPS)

7-131

C230,231
C230( )3, 231( )3
C232,233
series

REVERSE BLOCKING TRIODE-THYRISTOR

SILICON CONTROLLED
RECTIFIER

· .. designed for industrial and consumer applications such as power
supplies; battery chargers; temperature, motor, light, and welder
controls.

25 AMPERES RMS
50 thru 600 VOLTS

•

Economical for a Wide Range of Uses

•

High Surge Current - ITSM = 250 Amp

•

Low Forward "On" Voltage - 1.2 V (Typ) @ ITM = 25 Amp

•

Practical Lev,el Triggering and Holding Characteristics 10 mA (Typ) @TC = 25 0 C

•

Rugged Construction in Either Pressfit, Stud or Isolated Stud

•

Glass Passivated Junctions for Maximum Reliability

STVLE l'

1 GATE
2 CATHODE
CASE ANODE

.,.
A

,,a
•,
f

•
Q

MAXIMUM RATINGS ITC ~ 1000C unless otherwise noted)
Rating

Peak Repetitive Off·State Voltage II)
ITC = -40 to +IOOoC)
All Types

Suffix

Symbol

Value

Unit

F

VORM
and
VRRM

Volts

ITIRMS)
ITSM

50
100
200
300
400
500
600
75
150
300
400
500
600
720
25
250

12t

260

A2s

PGM
PGIAV)
IGM
TJ
Tstg

5
0.5
2
-40 to +100
-40 to +125
30

Watts

A
B

C
0

E
M
Non-Repetitive Reverse Voltage

•

ITC = -40 to 100°C)
All Types

F

VRSM

A
B

C
0

E
M
Forward Current RMS
Peak Surge Current

lOne Cycle, 60 Hz)(TC

= -40 to 100°C)

Circuit Fusing

ITC

C232 and C233 series
STYLE 1
TERM 1. CATHODE
2 GATE

STUD ANODE

f~lJ

Volts

Q

Amp
Amp

1

c

L

lrr~

.,.• .,. ..x .,.
,
•,,
•
a

f
K

Q

T

MILLIMETERS

INCHES

153. 15.S0
1400 1•. 20
20.10 2.13

O.S04 O.SI.
0551 0559
D.815 0.950
0.03
D.090REF
0.420 0455
0.• '5
0.215 0.305
0.1&0
O.OBSREF
0.505

... "

2.29 REF
1061 11.56
IDS.
6.99 1.75
1.6
1.65 REF
1210 12.13

MAX

.,.,

..,,'

11

.lI

..

"
.,'"

~

i --r'Case 175 02 "
"""'

SEATING PLANE

\

= -40 to +IOOoC)(t = 1.0 to B.3 ms)

Peak Gate Power
Average Gate Power

Peak Forward Gate Current
Operating Junction Temperature Range

Storage Temperature Range

Stud Torque

-

Watt

Amp
°c
°c
in. lb.

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Pressfit and Stud

Isolated Stud

Symbol

Max

Unit

C230 and 231 series
STYlE 1
1. CATHODE
2. GATE
3. ANODE
STUD ISOLATED

u ' ·
~

.,. MI"

MILLIMETERS

1.00
1.15

MAX

12.13 12.13
21.18

. ...

0.110

0.255

2.41
10.'7 II.

D.415

1.71

7.15

0.275

....

..55 • 1

....
1.52

RBJC

INCHES
MAX
0.559
0.501 0.505

MI"
•,• ". ". ."
-u. ..
...- ,
•
a.
.....
.....
•42. ....
'" "54 ....
.".... ...., , ."",
•
1.71

~"

OG"

OG"

11) VORM and VRRM for all types can be applied on a continuous dc basis without
incurring damage. Ratings apply, for zero or negative gate voltage. Devices shall not
have a positive bias applied to the gate concurrently with a negative potential on
the anode.

C230C 13 and C231 C13.rles

7-132

C230, 231 / C230( )3,231 ()3 / C232,233 series

ELECTRICAL CHARACTERISTICS

(TC

= 25°C

unless otherwise noted)

Characteristic
Peak Forward Blocking Currrent
(VO a Rated VORM, with gate open)
(VR • Rated VRRM)

Min

Typ

IORM
or

-

0.5
1.0

TC = 25 0 C
TC'100 0 C

Forward "On" Voltage

Unit

, Max

Symbol

mA

IRRM

-

VTM

-

-

-

-

25
40

-

-

-

9.0
20

-

1.5
2.0

Volts

1.9

(lTM = 100 A Peak, Pulse Width" 1 ms, Duty Cycle" 2%)
Gate Trigger Current, C230, C230( )3, C232 series
(VO· 12 Vdc, RL = 120 Ohms)
(VO = 12 Vdc, RL = 60 Ohms)

mA

IGT
TC = -400 C

Gate Triggar Current, C231, C231 ( )3, C233
(VO = 12 Vdc, RL ·120 Ohms)
(VO· 12 Vdc, RL = 60 Ohms)

mA

IGT
TC = -40°C

Gate Trigger Voltage

VGT

(VD = 12 Vdc, RL ·120 Ohms)
(VO -12 Vdc, RL = 60 Ohms)
(VO = Rated VDRM, RL = 1000 Ohms)
Holding Current
(VO = 24 V, gate open, IT = 0.5 A)

-

IH
TC = -40°C

Turn-On Time (td + t r )
(lTM = 25 Adc, IGT = 40 mAde, Vo = Rated VORM)

tgt

Turn-Off Time
(lTM =10 A, IR = 10 A, Pulse Width = 50 I'S,
dv/dt = 20 VII's, Vo = Rated VORM)

TC

=

Forward Voltage Application Rate
(VO = Rated VORM)

TC

=1000 C

tq

0.2

-

-

-

-

1000 C
dv/dt

FIGURE 1 - CURRENT DERATING FOR
PRESSFIT AND NON-ISOLATED STUD
100 ""ll=-

Volts

-

TC = -40°C
TC = +100 0 C

mA

-

50
100

1.0

-

I'S
I'S

-

25
35

-

100

VII's

FIGURE 2 - ON-STATE POWER DISSIPATION
versus ON-STATE CURRENT

30

de ;"

~
....

:,/'

'"

~ 24

z
0
;::

;::
ill

lBO'

120'/
18

90'

C

60'

'" 12
~

Q=

.:w

to

'">
'"
.E

~ 6.0

12

16

I

-

20

24

~

.,

/V

I

/'
V'h/::
;/

300

~~

/'

./
i--

~~~~ -

J. ~

Q

= Conduction Angle

/'P"

28

4.0

ITIAVI. AVERAGE FORWARD CURRENT lAMPS)

8.0

12

16

24

20

28

ITiAVI. AVERAGE FORWARD CURRENT (AMPSI

NOTE: Derating is for Pressift and Stud Devices. Isolated stud devices must be derated
an additional 15%. For examplerlhe max Te@ 16 A 080 0 conduction anglel
is 70 0 e, it derating of 300 e. Isolated stud devices musl be derated 34.5 0 C;
therefore, the maximum TCis 65.5 0 C.
FIGURE 4 - GATE VOLTAGE VARIATION
WITH TEMPERATURE

FIGURE 3 - GATE CURRENT VARIATION
WITH TEMPERATURE

20

'"....

1.0

.~

g

~

'"'"
ffi

10

~

I

o

Off·Stale Voltage =12 V

r-.....

I

......

1.0

2

~ 5.0

Off-State Voltage

...........

.......

g
....0;

i'....

~
to

~

12 V -

-

I"-.

~ 0.1

ffi

'Z

...........

~

........

I

0.9

~ 0.8

to
to

~

I

...........

r-........

0.6

r-....

0.5

......

'"~ 0.4

to

3.0

>
2.0
-60

-40

-20

0

20

40

60

80

100

120

140

TJ. JUNCTION TEMPERATURE 10C)

0.3
-60

-40

-20

20

40

60

80

TJ, JUNCTION TEMPERATURE I'C)

7-133

100

120

140

•

MAC15
MAC15A
OMTI

I

TRIACS

15 AMPERES RMS
200-800 VOLTS

BIDIRECTIONAL TRIODE THYRISTORS
· .. designed primarily for full·wave ac control applications, such as
solid·state relays, motor controls, heating controls and power supplies;
or wherever full·wave silicon gate controlled solid·state devices are
needed. Triac type thyristors switch from a blocking to a conducting
state for either polarity of applied anode voltage with positive or
negative gate triggering.

MT2

MTt

• Blocking Voltage to 800 Volts
• All Diffused and Glass Passivated Junctions for Greater Parameter
Uniformity and Stability
• Small, Rugged, Thermowaw~ Construction for Low Thermal
Resistance, High Heat Dissipation and Durability
• Gate Triggering Guaranteed in Two Modes (MACI5)
Four Modes (MACI5A)

MT2
G

MAXIMUM RATINGS
Rating

Peak Repetitive Off-State Voltage
ITJ = -40 to 125°C)

•

Full Cycle Sine Wave 50 to 60 Hz ITC = +90o C)

Circuit Fusing
Peak Surge Current
lOne Full Cycle, 60 Hz,TC = +BOoCI
preceded and followed by rated current
Peak Gate Power IT C = +800 C, Pulse Width = 2 ."
Average Gat. Power IT C = +BOoC, I = 8.3 ms)

Peak Gate Current
Operating Junction Temperature Range
Storage Temperature Range

Value

Unit
Volts

VORM

MAC15-4, MAC15A-4
MAC15-6, MAC15A-6
MAC15·B, MAC15A-8
MAC15-10, MAC15A-10

Peak Gate Voltage
On-State Current RMS

200
400
600
800

,

VGM

10

Volts

ITIRMS)

15

Amp

Thermal Resistance. Junction to Case

K

LL
--l-[L

A 2 sec

Amp

PGM

20

Watts

PGIAVI
IGM

0.5

G

2

Watt
Amp

-40 to +125
-401o +150

°c
°c

K
L
M
N
P

R8JC

Max
2

Unit

°CIW

DIM
A
C
0
E
F
H
J

a

R

MIN
0.380
0.560
0.010
0.045
0090
0100
0.139
0.500
0.130
0.140
0.080
0011
0.020
0.190

MAX
0410
0615
0.045
0.150
0070
0.110
0.110
0141
0.561
0.170
0.190
0.115
0.045
0.055
0.110

MIN
9.660
1413
0510
1.140

7-134

MAX
1066
1587
1.140
6.350

1~~

~.~~~ ~
3.531
11.10
5.850
3.560
2.040
0310
0.510
4.830

CASE 221.02
TO·220 AB
aTradem8rk of Motorola Inc.

G

R

' - ' '-INCHES MllUMET E-FiS

93
150

Symbol

o-l (......

3. Gate
All JEDEC dllnenslOns and notes applV

12 t

TJ
T stg

d'lfE'L

--H..:p

Pin 1. MT 1
2. MT 2

ITSM

THERMAL CHARACTERISTIC

Characteristic

J

123

Symbol

~.~~~

14.17
6.810

i~¥O1.140
1.390
5330

MAC15, MAC15A

ELECTRICAL CHARACTERISTICS (TC = 25°C, and alther polarity of MT2to MTl Voltage unless otherwise noted)
Charactorlstlc
Peak Blocking Currerit
VO· Rated VORM@TJ = 125°C, Gate Open
Peak OnoState Voltaga
ITM = 21 A Peak; Pulse Width = 1 to 2 ms, Duty Cycle .. 2%
Peak Gate Trlggar Current
Vo = 12 Vdc, RL = 100 Ohms
Minimum Gate Pulse Width = 21's
MT2 (+), G(+) - MAC15, MAC15A
MT2 H), GH - MAC15A
MT2 H, G(-) - MAC15, MAC16A
MT2 H, G(+) - MAC15A
Peak Gate Triggar Voltaga
Vo = 12 Vdc, RL = 100 Ohms
Minimum Gata Pulse Width = 2 j.IS
MT2 1+), GI+) - MAC15, MAC15A
MT2 1+), GI-) - MAC15A
MT2 H, GH - MAC15, MAC15A
MT2 H, GI+) - MAC15A
Vo = Rated VORM, RL = 10k Ohms, TJ = 110°C
MT2 1+), GI+); MT2 H, GH - MAC15, MAC15A
MT2 1+), GI-); MT2 (-), GI+) - MAC15A

Symbol

Min

TVp

MaK

IORM

-

-

2

Unit
mA

VTM

-

1.3

1.S

Volts
mA

IGTM

-

-

-

-

pO

-

75
50
75

-

Volts

VGTM

-

0.9
0.9
1.1
1.4

0.2
0.2

-

-

6

40

mA

-

-

2
2.5
2
2.5

-

Holding Current (Either Direction)

IH

-

Turn·On Time
Vo =Rated VORM,ITM =17 A
IGT = 120 mA, Rise Time =0.1

t9t

-

1.5

2

j.IS

dv/dtlc)

-

5

-

VII's

Vo =12 Vdc, Gate Open
ITA 200 mA

j.IS,

Pulse Width

=21's

Critical Rate of Rise of Commutation Voltage

Vo =Rated VORM, ITM =21 A, Commutating
dl!dt = 8 Alms, Gate Un energized, TC = 80°C

7-135

, MAC15, MAC15A

FIGURE 1 - RMS CURRENT DERATING

FIGURE 4 - TYPICAL GATE TRIGGER CURRENT

so

130

........ ~

~ 120

11

1!i

100

I-

0

a .180° .......

w

5

80

.§ 30

a
0:

20

~

~

w

~

i'-

10
12
ITIRMS). RMS ON.sTATE CURRENT lAMP)
4

10

16

..............

~ i"'-.

i""- r--.,

t>.., k" ~

;:t<

S.o

-60

V

,~

2

....

-40

-20

~

20
40
60
80
100
TJ. JUNCTION TEMPERATURE (OC)

120

140

FIGURE 5 - ON-STATE CHARACTERISTICS
100
0

,

~ 16

TJ"'" 12S DC

I-

!

~

.......

::--

QUATNTy:::

FIGURE 2 - ONoSTATE POWER DISSIPATION
20

0:

OF'F.sTAie VOL+AGE .',2 V-

...........

i"'-. i"'-.
..........

r-I-- . .
r-r-!'

I

'"E~ 7.0

I'\.
14

.=CONOUCTION ANGLE

o

~
I-

de"", f'.... ~
TJ~ 12S0' \

""-

ffi

'"'"

.........

,

r.....,

r......

I-

~

..... ~ ~ r-..

.J.

~ 9o

I'

<

~~
/ /a'600
ja- 900
~~
~~

W

0:

~

/a=300

12 '

w

~

ffi

TJ = 2SoC

..L

0

.J. '

~

'"

L

/
12SoC

IV'

0

I

>

<
:>
~

,/

/

0

I

~

0
0
10

0

14

12

16
S

ITlRMS). ON·STATE CURRENT lAMP)

•

If

1/

3

FIGURE 3':' TYPICAL GAT!, TRIGGER VOLTAGE

I
I

2

I.B
OF'F-STAiE VOLiAGE = \2V-

~

1.6

~ 1.4
w

'"~
>

'"~

.............

.........

1.2

o

ffi

I
I

1.0

r..;;:

0.8

~

12 ~
5 0.6 I- QUADRANTS
I
3-:'"
w

l' 0.4

-60

-..... J

1~ ~
L

I-

I
-40

o.7

. dUAORiNT 4

.........
~

1

I

o.S
.......

I

o. 3

......
.......

o. 2

I

r-..

20
40
60
80
100
-20 TJ. JUNCTION TEMPERATURE 10C)

120

:
,

140

o.1
0.4

0.8

1.2

1.6

2.4

2.8

3.2

3.6

VTM.INSTANTANEOUS ON.sTATE VOLTAGE IVOLTS)

7-136

4.4

MAC15, MAC15A

FIGURE 6 - TYPICAL HOLOING CURRENT
20

I"-..

!
ffi

.
~

~

10

..........

.........

.......

7.0

1/

~ 5.0

i§

'"
:=- 3.0

L

2.0
-60

-40

-20

~ 200

,..

~

-.... ........

MAIN TERMINAL #2
prSITlVr

o

----

a::
MAIN TERMINAL #1
POSITIVE

"'
/ i'-.

:::I

FIGURE 7 -MAXIMUM NON-REPETITIVE SURGE CURRENT
300

GATE OPEN

i:l
w

.......

'"
=
~

............

'"~

".............
"-

20
40
~
~
TJ. JUNCTION TEMPERATURE (OCI

~

..

100
70
50

TC • SOOC
f • 60 Hz
Surge is preceded and followed by rated current

,!'

m

r-- 1--1-

30
~

10

1

NUMBER OF CYCLES

FIGURE 8 - THERMAL RESPONSE
w
u

0.5

~-

0.2

~

~o

,......-

;;~

....- ....ZOJCltl =,(II· ROJC

ffi ~ O. 1
,..=
,..0
ffi ~ 0.05
",::!!

u;

z

«

=
~

0.02

'2
0.0 1
0.1

0.2

0.5

10

20

50
t. TIME (ms)

7-137

100

200

500

1k

2k

5k

10 k

•

MAC20j MAC20A
15 AMPERES RMS

MAC25j MAC25A
25 AMPERES RMS

MACSOj MACSOA
40 AMPERES RMS

MT20~----~~G
TRIACS
200-800 VOLTS

SILICON BIDIRECTIONAL TRIODE THYRISTORS
· .. designed primarily for industrial and consumer applications
for full-wave control of ac loads such as appliance controls, power
supplies, solid·state relays, heating controls, motor controls, welding
equipment, and power switching systems.
•

Electrically Isolated From Mounting Base

•

Isolation Voltage of 2500 Volts RMS

• Quick" Connect/Disconnect Terminals
•

Glass-Passivated and Center Gate Geometry

• Gate Triggering Guaranteed in Three Modes (MAC20/25/50)
Four Modes (MAC20A/25A/50A)

MAXIMUM RATINGS ITJ = -0 to +12So C unless otherwise noted)

Rating
Repetitive Peak

Off~State

Svmbol

Voltage

20

1.

25

Volts
---200 ___
--'300--- - 4 0 0 ___
--500---600 _ _
--700 _ _
---800 _ _

RMS On·State Current~
ITC = 1000 C for MAC20/A)
TC = 900 C for MAC25/AI
ITC = 70 0 C for MAC50/A)

ITIRMS)
15

-

Peak Non-Repetitive Surge Current

-

-

25

-

-

40

Amp,

ITSM

150

250

300

Amps

12 t

90

260

375

A2s

lane Full Cycle, 60 Hzl
Circuit Fusing

It = 1 to 8.3

m,l

Aver age Gate Power

PGIAVI

0.5

O.S

0.75

Watts

Peak Gate Current 1101',1

IGM

2

2

4

Amp,

Operating Junction Temperatura Range

TJ

-0 to +125

°c

Storage Temperature Range

T,tg

-40 to +125

°c

THERMAL CHARACTERISTICS

I

Characteristic
Thermal Resistance, Junction to Cese (DC)

IApperant)°

Svmbol
ROJC

I

Maximum Value
1.6
1.3

1.5
1.0

-

1.4
0.95

I

Unit
°C/W

°Oefined as: 11250 C. - T CI for a,60 Hz full sine wave.

N

J-J

Unit

50

1/2 Sine Wave SO to 60 Hz, Gate Open

•

MT1

Z. MTZ
3. GATE

VORM

MAC20/25/50-4, MAC20A/2SAl50A-4
MAC20/25/S0'5, MAC20Al25A150A-5
MAC20/25/50-6, MAC20A/25A/50A-6
MAC20/2S/SO·7, MAC20A/25A/50A-7
MAC20/2S/50-B, MAC20A/2SA/50A-B
MAC20/25/50-9, MAC20A/25A/50A-9
MAC20/25/50-10, MAC20A/2SA/50A-l0

.~.QB
~

STYLE Z.

MACsaries

I ~~;lf'
u.l ~
f---- ~-::

NOTE:
A
...
1. DIMENSIONS D AND F
Temperature
Reference
Point
APPLY TO TERM 1 ANO Z.
Z. MTl AND MT2THICKNESSES ARE A
NOMINAL 0.03Z".
GATE TERMINAL THICKNESS IS A
NOMINAL O.OZO".·
DIM
A
8

C
0
E
F
G
J
K
L
M
N
Q

R

MILLIMETERS
MIN MAX
39.37
26.67
27.30
6.22
6.48
3.02
3.33
1.78
12.19 12.70
29.90 30.40
35.56 37.08
4.57
4.95
350
400
300
350
3.81
4.09
19.81 22.35

INCHES
MIN MAX
1.550
1.050
1.075
0.245 0.255
0.119 0.131
0.070
"0.480 0.500
1.171 1.197
1.400 1.460
0.180 0.195
50
400
300
35 0
0.150 0.161
0.78
0.880

T
CASE 326-01

PAV
°Gat. terminal thlckn ... of .032" is available. Designate a deVice with .032" terminal, by
adding e T efter the davie. type. For axample, MAC20A4T_

7-138

MAC20/MAC20A, MAC25/MAC25A, MAC50/MAC50A

ELECTRICAL CHARACTERISTICS
(All voltage polarity reference to MT1; applies to either polarity of MT2 to MT1, TC "" 2SoC unless otherwise noted)

MAC20/20A

Characteristic

Symbol

Peak Blocking Current
Vo = Rated VORM. Gate Open

TC
TC

= 125°C
= 250 C

lOAM

Peak On-State Voltage

MAC25/25A

MACSO/SOA

Min Typ Max Min Typ Max Min Typ Max

-

-

-

2
0.1

-

-

-

2
0.1

-

2
0.1

Unit
mA

Volts

VTM

Pulse Width:::: 1 ms, Duty Cycle 2%
ITM
ITM
ITM

=21 A
=35 A
= 56 A

Peak
Peak
Peak

Peak Gate Trigger Current
V0

MT2 (+1. G (+1; MT2
MT2 (-I. G (+1

(-I. G (-I; MT2 (+1. G (-I

A SuffiX Only

Vo = Rated VORM. RL = 10 k!1. TC = 12SoC
Holding Current

IH

= 12 Vdc. Gate Open. RL = 40 Ohms

Turn-On Time

~

115

aJ
...
w

'"~

'~"

-

-

-

1.65 1.75
mA

-

15
30

50
75

-

20
35

70
100

-

-

0.9

2

2

-

1.4 2.5

-

1.1

-

20
35

70
100

Volts

1.3 2.5

0.2

-

-

0.2

-

-

-

6

40

-

10

75

-

1.5

-

-

-

-

-

0.2

-

-

-

1.5

-

-

-

1.1

2

1.3

2.5

-

-

10

75

-

-

-

1.5

-

MAC20/20A

5

30

-

-

-

-

-

-

-

VORM. ITM = 35 A.
Commutating di/dt = 16 Alms. TC

= 90°C

MAC25/2SA

-

-

-

5

30

-

-

-

-

Vo

VORM. ITM = 40 A.
Commutating di/dt "" 22 Alms. T C

= 70c e

MAC50/50A

-

-

-

-

-

30

-

100

-

5

100

= Rated

= Rated

.......... ~

dv/dt

t-....
f',.........

60

:---..

" ........ "" .....
MAC20/A

MAC25/A

50

.........

I'..

16

24

32

MAC25/A
MAC20/AL ~

40

o
a

L

k""

/'

0

MAC50/A .........

0'. V

.u.V

.,;;: r

...,." .....

8.0

16

24

32

IT(RMS!. RMS ON·STATE CURRENT (AMPERES!

IT(RMSI. RMS ON·STATE CURRENT (AMPERESI

7-139

~

L

0

0

o

MAC50/A/

0

........

5

55

•

V/!'s

FIGURE 2 - MAXIMUM POWER OISSIPATION

........ f"'...

5

75

70

~

5

mA

V/!'s

= Rated VORM.ITM = 21

j

'=>"

-

Vo

~~8 5

«

-

A.
Commutating di/dt = 8 A/ms. TC = 100°C

105

~~9

-

Vo

~

«

-

1.4 1.7

dv/dt(cl

FIGURE 1 - CURRENT OERATING
=>

-

!,S

MAC20/20A
MAC25/25A
MAC50/50A

Critical Rate-of-Rise of Off-State Voltage (Exponential Rise)
Vo = Rated VORM. Gate Open. TC = 125°C

125

-

tgt

=Rated VORM.
ITM = 17 A. IG = 120 mA
ITM = 25 Adc. IG = 200 mA
ITM = 56 A. IG = 200 mA

Critical Rate-of-Rise of Commutation Voltage

~

-

VGTM

= 50 Ohms. Pulse Width =2!'s

MT2 (+1. G (+1; MT2 (-I. G (-I; MT2 (+1. G (-I
MT2 (-I. G (+1

Vo

1.6

-

A Suffix Only

Peak Gate Trigger Voltage

Vo

1.3

IGTM

= 12 Vdc. A L = 50 Ohms. Pulse Width =2 !,S

Vo = 12 Vdc. RL

-

MAC20/20A
MAC25/25A
MAC50/50A

40

MAC3S-1 thru
MAC3S-S, MAC3S-10
MAC36-1 thru
MAC36-S.MAC36-10
TRIAC
(THYRISTORS)
SILICON BIDIRECTIONAL THYRISTORS

25 AMPERES RMS
25 thru 800 VOLTS

· .. designed primarily for industrial and military applications for the
control of ac loads in applications such as solid:state relays, light
dimmers, power supplies, heating controls, motor controls, welding
equipment and power switching systems; or wherever full·wave,
silicon gate controlled solid·state devices are needed.
• 25 Amperes RMS @TC

=67 0 C

• Low On·State Voltage - 1.5 Volts Maximum
• Glass Passivated Junctions for Maximum Reliability

r

MAC 35

MAC 36

CASE 310·01

CASE 263·03

MAXIMUM RATINGS
Rating

Value

Symbol

,Repetitive Peek Off·Stete Voltage 111

• 'M

•

•

'16

•
•

--

'"'01 .06'

•••

IT(RMSI

25
50
100
200
300
400
500
600
800
25

Amp

ITSM

225

Amp

12 t

210

A2 s

Peak Gate Power 121

PGM

5.0

Watts

Average Gate Power

PG(AVI

0.5

Watt

o.lICM

1.050 1190
0.1350.180
D.IJ9OREF

-2
-3

n, - """
MAC35
MAC36

::~

-6

-7

•

MILLIMETERS
INCHES
MI. MAlI
MIN
1273 12.83 0501 0.505
0.160
F
2.41
H
I
0079
7 ,
J
0300
2661
1.050
l
1702
1.40
DOSS

Unit

Volts

VORM

-8
-10
On-5tate Current RMS
Peak Surge Current

(One Full cycle. 60 Hz,
T = -40 to +1100 CI

'16

-

U,'

STYLE ,.
I. CATHODE

2 GATE
CASE. ANODE

CASE 3t()'01

Circuit Fusing Considerations
ITJ = -40 to +ll00C,
t = 1,0 to 8,3 msl

'"

Peak Gate Current 121

IGM

2.0

Amp

Operating Junction Temperature Range

TJ

-40 to +110

Storage Temperature Range

Tstg

-40 to +150

°c
°c

MAC35

MILLIMETERS
11M

MIN

IfilCHES

MAX

M

•

D.614

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance.
Stud Torque

Junction~to-Case

I
I
I

Symbol

R8JC

-

I
I
I

Max
1.0
30

I
I
I

Unit
°C/W

mLEI:
PIN I.CATHOOE
Z.GATE
3. ANODE

in. lb.

(1)For e1ther direction of blocking voltage. VORM for all typa. can be applied on a continuoul de ba,ls without incurring damage. Rating. apply for open gata conditions.
Thyristor device' shall not be telted with a constant current source for blocking capability luch thet the voltage applied exceedl the rated blocking voltage.

CASE 263·03 MAC36

Metric "MS" thread denoted by addition of Mfollowing last digit
of part number, i.e., MAC3S·1M.

. (21T J "" 110°C, 1.0-second maximum duration; 5.0% duty cycle, ITM "" 10 Amps.
©

7-140

MOTOROLA INC. 1975

OS 8533 R1

MAC35-1 thru MAC35-8, MAC35-10/MAC36-1 thru MAC36-8, MAC36-10

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise ncited)
Symbol

Min

Typ

Max

Unit

Peak Blocking ~urrent (Either Direction)
Riled VORM@TJ= 11o"C

IORM

-

-

4.0

mA

On-5l11te Voltage (Eithar Direction)
ITM=35APaak
Gila Trigger Currant, Continuous dc (1)
Main Tarminal Voltage = 1.0 Vdc, RL = 47 oh,!,s
MT2(+)G(+); MT2(-)G(-)
MT2(+)G(-); MT2(-)G(+)

VTM

-

1.3

1.5

Volu

IGT

-

20

75

mA

30

100

mA

VGT

-

1.0
1.2

3.0
3.0

Volu
VolU

VGO

0.2

-

-

V!'lt
mA

Ch.-ristic

IGT

Gate Trigger Voltage, Continuous dc (1)
Main Terminal Voltage = 7.0 Vdc; R L = 47 ohms
MT2(+)G(+); MT2(-)GH
MT2(+) GH; MT21-)GI+)

VGT

Gata Trigger Voltage, Continuous dc - All Mod..
Main Terminal Voltage = Rated VORM, RL = 100 ohms, TJ = 11o"C

'.

Holding Currant IEithar Oiraction)
Main Terminal Voltage = 7.0 Vdc, Gate Open,
I nitisting Current = 150 mA

IH

-

10

75

Turn-On Time
ITM = 25 Adc, IGT = 200 mA

ton

-

1.0

-

".

dv/dt

-

100

-

VI".

Critical Forward Voltage Application Rate IExponential Rise
of Voltage)
@VORM,TJ=11o"C,GateOpen

•

FIGURE 1 - MAXIMUM THERMAL RESPONSE
1.0
~
WZ

MAC 35

0.5

=:~

t;:~

~~

0.2

w ....

0""

MAC 36

~~ 0.1

:~

I
R.JC =1.0'CIW MAX

V

MAC 35

~ ~O.05
z_
-:i~
";'~O.O 2

0.0 1
0.02

~ --

MAC 36
~

0.05

0.1

0.2

0.5

1.0

2.0

5.0

10

t.TIMElms)

7-141

20

50

100

200

500

1000

2000

MAC35-1 thru MAC35-8, MAC35-10/MAC36-1 thru MAC36-8, MAC36-10

FIGURE 3 - RMS CURRENT DERATING

FIGURE 2 - AVERAGE CURRENT DERATING
110

~
w

~ I!oo..

~"' ~ r.:::::::: to-.......

90

"

a:

:::>

!;;:
a:

110

70

........ .........
\. ........

lli
Iw

a=

50

5

..;

9110

'"w

........ r--.

a:

:::>

70

~

60

I-

50

;2

180"

120"

lli

300\

5.0

80

I-

W

5

40

{}

30
20

.=CONOUCTION ANGLE

o

90

0

.J.

30

10

-

......... .........
.......... ...............

~

~

I-

~

\

~

100

MAJ35-

10
10

15

20

0

25

20

IT (AVI. AVERAGE ON.sTATE CURRENT (AMPI

FIGURE 5 - RMS CURRENT DERATING

FIGURE 4 - AVERAGE CURRENT DERATING
11 o~
0

'"

o
w

a:

~

~"
~

70
50

w

5..;
I-

3

o

110

~

I

" "'- f',.

'\

'"

\

100

MAC 36 -

~ f::::::::.t-

U

["--..: t:----.

.!J\jf\.=I
.J.

:::>

I-

70

~

60

I-

50

«
a:

180"
900 i'- 1200.........

........

5.0

•

90

w
a: 80

r--... r--........

..........

'\

\

e..

lli

60"

w

~

5

40

I-

30

..;

30"

20

o .=CONOUCTION ANGLE I

10

10

15

20

0

25

IT (AVI. AVERAGE ON·STATE CURRENT (AMPI

IT (RMSI. RMS ON-STATE CURRENT (AMPI

FIGURE 6 - POWER DISSIPATION versus AVERAGE CURRENT

40

~
a:
w

'"
~

~
.J.

20

=7;1 0

~
I«

900

~V

~

a:

~

600 ~

A ~

:>
~

o~ ~

5.0

25
20

«

~

30

w

'"
~
>

~ ~~

35

~

~

.~30~ ~

;c

~

1800
12J

.=CONOUCTION ANGLE

~

~

w

FIGURE 7 - POWER DISSIPATION versus RMS CURRENT

401,--,---,---,--,---.,--,--,---,--..,--

-J.j+

30

25

IT (RMSI. RMS ON·STATE CURRENT (AMPI

.= CONDUCTION ANG LE
15
10
5.0
0

10

15

20

0

25

2.5

5.0

7.5

10

12.5

15

17.5

IT (RMSI. RMS ON·STATE CURRENT (AMPI

IT (AVI. AVERAGE ON.sTATE CURRENT (AMPI

7-142

20

22.5

25

MAC35-1 thru MAC35-8, MAC35-10/MAC36-1 thru MAC36-8, MAC36-10

FIGURE 8 - MAXIMUM ON·STATE CHARACTERISTICS

FIGURE 9 - MAXIMUM MUL TI-CYCLE SURGE RATING

200

10 0

251C
X

:::

0

100° C

f::

0

10

200

..........

t-.... .........

I-

~_

a

150

w

>

~

b-..

100

2

.........

u;

'"
~

~

0::

~

~

A

0

:il

~

/ "

0

I2

250

........

0

I'

o
1.0

2.0

3.0

7.0

5.0 7.0

10

30

20

50

70 100

FULL CYCLES AT SO Hz

B 5,0
S
0
"?
w

3.

FIGURE 10 - TYPICAL HOLDING CURRENT

is
~ 2.0
3.0

....

~

1. 0

"'

o.7

",0

=>
<>2

2. 0

..........

~t;

i5 ~

O.5

~-

"0
0",

~~

o.7

o.3

:i§ o. 5

o.2

"'oz

;:;

o. 1

o

0.2

o.s

1.0 1.2

2.4

2.0

I.S

:--...

....

j:

t-- ~~:c~~~~lII~~!'R~EC\ERISTICS
o. 2

2.B

-"""

r-.....

0, 3

50

50

100

TJ • JUNCTION TEMPERATURE (oC)

VTM • ON-STATE VOLTAGE (VOLTS)

FIGURE 11 - TYPICAL GATE TRIGGER CURRENT

FIGURE 12 - TYPICAL GATE TRIGGER VOLTAGE

.0

.0

'-...

0

.0

I~

.0

~

- -

.0

t--

.7

.7

......

.5
-

-50

.5

.........

~~:C~~~gm~!'R~tTERISTICS

c - ~~:c~~~~lII~~!R~C\ERISTICS

"-

.3
.2

['-.........

1. 0

50

.3

.2

100

TJ• JUNCTION TEMPERATURE (oC)

50

50
TJ• JUNCTION TEMPERATURE (OC)

7-143

100

MAC37·1 thru MAC37·7 (SILICON)
MAC38·1 thru MAC38·7·

SILICON BIDIRECTIONAL THYRISTORS
· .. designed primarily for industrial and military applications for the
control of ac loads in applications such as light dimmers, power supplies, heating controls, motor controls, welding equipment and power
switching systems; or wherever full-wave, silicon gate controlled
solid-state devices are needed.
• .Glass Passivated and Center Gate Fire
• 25 Amperes RMS @TC= 67 0 C
• Isolated Stud Available

I
TRIAC
(THYRISTORS)
25 AMPERES RMS
25 thru 500 VOLTS

MAXIMUM RATINGS

•

, Rating

Symbol

Repetitive Peak Off-State Voltage (11
-1
ITJ = 110°C)
-2
-3
MAC37
-4
MAC38
-5
-6
-7·

VORM

On-State Current RMS

ITIRMSI

25

Amp

ITSM

225

Amp

12 t

210

A2 s

Peak Gate Power 121

PGM

5.0·

Watts

Average Gate Power

PGIAV)

0.5

Watt

IGM

2.0

Amp
°c

Peak Surge Current

lOne Full cycle, 60 Hz,
TJ = -40 to +1100 C)
Circuit Fusing Considerations

ITJ = -40 to +l100C,
t = 1.0 to 8.3 msl

Peak Gate Current (2)
Operating Junction Temperature Range
Storage Temperature Range

Stud Torque

Value

Unit

Volts
25

50
100
200
300
400
500

TJ

-40 to +110

Tst9

-40to +150

°c

-

30

in. lb.

, MAC31

(1)For either dlrecti.on of blbcking voltage. VORM for all types can be applied on a continuous de basis without Incurring damage. Ratings apply for open gate conditions.

Thyristor devices shall not be tested with a constant currant sourca for blocking capability such that the voltage applied exceods the rated blocking voltage.

(2)T J;; 110°C, 1.0 second maximum duration; 5.0% duty cycle, ITM;; 10 Amp.

THERMAL CHARACTERISTICS

MAC38

Characteristic
Thermal Resistance, Junction to Case

7-144

MAC37-1 thru MAC37-7/MAC38-1 thru MAC38-7 (continued)

ELECTRICAL CHARACTERISTICS (Te = 250 e unless otherwise noted)
Ch_teristic

Symbol

Min

Typ

Max

Unit

Peak Blocking Current (Either Direction)
Rated VDRM @lTJ = 110CC

IDRM

-

-

2.0

mA

On-5tate Voltage (Either D.irection)
ITM = 35 A Peak

VTM

-

1.4

1.9

Volts

IGT

-

20

75

mA

Gate Trigger Current, Continuous de (1)
Main Terminal Voltage = 7.0 Vdc, RL = 47 ohms
MT2(+IG(+I; MT2(-IG(-1

mA
Gate Trigger Voltage, Continuous de 1-11
Main Terminal Voltage ~ 7.0 Vdc, RL = 47 ohmsMT2(+IG(+I; MT2(-lG(-l

VGT

-

1.0

3.0

Volts

VGD

0.2

-

-

Volt

Holding Current (Either Directionl
Main Terminal Voltage =7.0 Vdc, Gate Open,
Initiating Current = 150 mA

IH

-

10

75

mA

Turn-On Time

Ion

-

1.0

-

"S

dv/dt

-

100

-

V/"s

Gat. Trigger Voltage, Continuous de - MT2(+1 G(+I; MT2H GH
Main Terminal Voltage = Rated VORM, RL = 100 ohms, T J = 110CC

ITM

= 25 Adc, IGT = 200 mA

Critical Forward Voltage Application Rate (Exponential Rise
of Voltage I
@l VDRM, TJ = 11OCC, Gate Open
(1)AII voltage polarity reference to main terminal 1.

FIGURE 1 - MAXIMUM THERMAL RESPONSE
1.0

MAC 37

~ 0.5

w'"

>-

~~

O. 2

w ....

MAC 38

--

~.

c

I-

<[

~
illlw

70

a=

w

0:

r--..

::>

180·

300\

~
ill
I-

50 I -

I-

5.0

60 t40 I -

~

~
I-

IS

20

25

o

5.0

"

70

\

~

i'1i

50

i'-.

...........

r-...

\

w

~
..;

'-'

•

I-

"

w

0:

I'-...... ...........

I
o .=CONDUCTIDN ANGLE I

80

::>

.......... 90· .......... 120·........

« 70

~

60

I-

50

i'1i

60·

w

~

« 40

'-'

..;

I-

.J.

10

90

I-

180·

30
20
10

IS

0

25

20

5.0

25

FIGURE 7 - POWER DISSIPATION versus RMS CURRENT
40

40

.1

+--j_-+_+- 120·

30

900

0:

180·
./

~
I<[

~V

~

.= CONDUCTIDN ANGLE +--601-,.~-t~T'l'~b£....j--+--I

~

0:

20

w

20

I:;
>

>
<[

30
25

'"
«

I:;

35

~
~

<[

;;

20

IS

10

IT (RMS). RMS ON-STATE CURRENT (AMP)

FIGURE 6 - POWER DISSIPATION versus AVERAGE CURRENT'

'"

25

100
'-'
0

IT (AV). AVERAGE ON·STATE CURRENT (AMP)

~
w

20

FIGURE 5,.. RMS CURRENT DERATING

30 . ! J \ j f \ . = 3 O .

5.0

i

IS

10

IT(RMS). RMS ON-STATE CURRENT (AMP)

MAC'38 -

t'..::: ~
.~ ["'-..., ~ r----.

<[

I-

"

110

\.

0:

::>

91

-d~"""" V
.=~~

30

10
10

~~

W

-

.=CONDUCTION ANGLE

FIGURE 4 - AVERAGE CURRENT DERATING

90

L.>< ::>::: t'::
oD'" V l/" .......

-18f.'

.J.

IT (AV). AVERAGE ON·STATE CURRENT (AMP)

110

........., ~ ~

20

.=CONOUCTION ANGLE

o

80
70 I -

w

M~C 37- f---

.... ~

90

!;;:

5..;

.J.

30
.10

!a.

.............

120·

90·

100
'-'

r-...

r--.....

~

MAL7-

~

~
..;

'-'
I-

""-

\

so

-- ........... ....

110

.=CONDUCTION ANGLE

15

«
;; 10
<[
a: 5.0

10

<[

.;;:;

o

0
5.0

10

15

20

25

0

2.5

5.0

7.5

10

12.5

IS

17.5

IT (RMS). RMS ON-STATE CURRENT (AMP)

IT (AV). AVERAGE ON-STATE CURRENT (AMP)

7-146

20

22.5

25

MAC37-1 thru MAC37-7/MAC38-1 thru MAC38-7 (continued)

FIGURE 9 - MAXIMUM MUL TI-CYCLE SURGE RATING

FIGURE 8 - MAXIMUM ON·STATE CHARACTERISTICS

-

300

V

200

. / ......

TJ = 25 0C

./

100

,

0
~

...

0

~
~

0

~

10

'"~

7.0

20 0

~'"

15 0

...

~ ~50C

............

i'-..

i"-

w

~

>

1//

~

10 0

"r-..

z

0;

""
~

A

0

0
1.0

/I

w

Z

~

S

I

is

o

25 0

=>
'-'

_7 0

~

~

~

2.0

3.0

'I

5.0 7.0

10

20

r-....
50

30

70

100

FULL CYCLES AT 60 Hz

FIGURE 10 - TYPICAL HOLOING CURRENT

z

~ 5.0
z

I

~

I

~

• 3_0

.~

~

3.0

~

2.0

=>-

f--

...........

'-'z

2. 0

",0

z;::

c~

i5 2:

'-.....

1. 0

~

,",0

Oao

1. 0

~~ O. 7

:::;

o. 7

........

j=
1.0

1.4

1.8

2.2

2.6

3.0

3.4

3.8

4.2

4.6

0.3
0.2

5.0

50

-50

FIGURE 12 - TYPICAL GATE TRIGGER VOLTAGE

FIGURE 11 - TYPICAL GATE TRIGGER CURRENT

~
B
'"
'"'"
ii

~

.0

~

w

...

~

..........

2. 0

.0

~

~

.7

.

O. 5

o

.3

'"

:::;

~
z

2.0

w

~

'"'"
j§

-

1. 0

w

~

N

3.0

ao

w

"
r-- ~~:c~~7g~Ilg~~'R~tTERISTICS

.2

"

~

o.7

.

O.5

o

o. 3

'"~
-.........

N

:::;

...... r-...

~

z

50

50

100

TJ, JUNCTION TEMPERATURE (oCI

VTM,INSTANTANEOUS ON-STATE VOLTAGE (VOLTSI

...

.......

1-- ~~:c~~7gm~!it~tTERISTICS

~

o. 5

o. 3

...

~§ 0.5

o.2

100

TJ, JUNCTION TEMPERATURE (oCI

-

i--

r-- ~~:c~~7g~Ilg~~it~EtTERISTICS
-50

50
TJ, JUNCTION TEMPERATURE (oCI

7-147

100

•

MAC92-1

thru

MAC92-8
MT2

O~----I~~I--G-~OMTI
TRIACS
0.6 AMPERE RMS
30-600 VOLTS

SILICON BIDIRECTIONAL TRIODE THYRISTORS
... designed for use in solid state relays, TTL logic and light indus·
trial applications. Supplied in an inexpensive plastic TO-92 package
which is readily adaptable for use in automatic insertion equipment.

• Sensitive Gate Triggering Guaranteed in Three Modes


6.0

r--..

--

b-..

...........

-

Quadrants 2 and 3

.............

:--........ ......

.......

~

QUadrtnt 1- I - -

~

4.0

a

3.0

w
'"
'"~

....
w
!;c

-40

10
20

20

+20

, +40

+60

+80

+100

.............

..........

r-......

r-..
.......

2.0

" '-.....

'",.:
0.9
0.8
O. 7
-60

+120 +140

Quadrants 2 and 3

......

r-......

.

"'-....

!E 1.0

o
60

-

.............

1 5.0
...............

..........

-

FIGURE 2 - TYPICAL GATE TRIGGER
CURRENT
7.0

t-.....

o

>

0.1

-

FIGURE 1-TYPICALGATETRIGGER
VOLTAGE

o

2.5
3.5

mA

TC = 25°C
TC = -400 C

Initiating Current = 20 rnA

1.4

IH

Vo = 7.0 Vdc, Gate Open;

w

5.0

VGT

Holding Current

CJ

1.9
mA

Vo = 7.0 Vdc, RL = 100 Ohms
Minimum Gate Pulse Width = 2.0 p.s
MT2(+), G(+); MT2(-), GI-I, MT2(+), GI-I
MT2(+), G(+); MT21-1, G(-), MT2(+), G(-); TC = -40 0 C
Vo = Rated VORM, RL = 10 k ohms, TJ = 110°C
MT2(+), G(+); MT21-1, G(-)

.............

IGT

Gate Trigger Voltage, Continuous de

1. 8

100
Volts

MT2(+), G(+); MT21-1, GI-I, MT2(+), GH

2. 0

-

VTM

Gate Trigger Current, Continuous de
Vo = 7.0 Vdc, RL = 100 Ohms

~

Unit
IlA

IORM

~

Quadrant 1

........
-40

-20

+20

+40

+60

+80

TJ.JUNCTION TEMPERATURE (DCI

TJ. JUNCTION TEMPERATURE IDCI

7-149

+100

+120 +140

•

MAC92-1 thru MAC92-8

FIGURE 3 - AVERAGE CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

0

'"w

95

'"
....

85

~

75

:>

FIGURE 4 - RMS CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

o· CONOUCTION ANGLE

;i

1!l
....
w

5..;
....

65
55
45
1800
35

100

0

300

200

700

800

IT(AV).AVERAGE ON·STATE CURRENT (mA)

ITiRMSI. AVERAGE ON-STATE CURRENT (mA)

FIGURE 5 - AVERAGE CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

(1tY

115

t--...

or-1 ~o-

""l1lI ~
~~

'\

\

5

'""

I\,

\

~ 75f----+--t--+~~~~~~~~~-i

~
....
....
15

,~ t--....<""" 900
~~ k-- 12OO

a.: 30 0 \

'" '" .""-1'-.
'"
60 0"-

50

100

150

200

250

:i

~

:--""'180 0

300

350

55

0;

35
15
0

400

ITiAVI. AVERAGE ON·STATE CURRENT (mA)

200

250

300

IT(RMS). RMS ON·STATE CURRENT (mAl

FIGURE 7 - ON·STATE POWER DISSIPATION

~ 0.8

~o
~

o· CONOUCTION ANGLE

1\

15

•

'"=>

.--

~" ~

5

o

o'-'
w

o· CONDUCTION ANGLE-

"-~

5

FIGURE 6 - RMS CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

FIGURE B - ON-sTATE POWER DISSIPATION

~ 0.8

~

~
~ 0.6 f----+-

~

~

0.6

~

w

w

to

ffi O.41---+----,h4'>1SoL--1-

to

>

;;:

"" 0.21---+U."j--+--1~

ffi

0.4 t---t---t----v"T'71f7.''7''i"sr-.'

-+--t--..,

~ O.2t---t--~~:7':!~;"':"'t--

ITlRMS). RMS ON-STATE CURRENT (mAl

IT(AV). AVERAGE ON-STATE CURRENT (mA)

7-150

MAC92-1 thru MAC92-8

FIGURE 9 -ON-5TATE
CHARACTERISTICS

4.0

.h ~

TJ= l10 DC
•0

'"

.6

il'i

.4

f'"

0

........

7.0

1

,
r-....

.... 5.0

~
'"'"
'"

4.0

.....

,
~

'" 3.0

IV

z

...........

§

.....

~ 2. 0
~

~

"

'"
a'"

~

--

/. ~25DC

1.0

....'"

FIGURE 10 - TYPICAL HOLDING CURRENT

,

.0

1.0

-60

-40

20

+20

+40

+60

+80

+100

+120 +140

TJ.JUNCTION TEMPERATURE (DC)

o. 2

Z
0:>

FIGURE 11 - MAXIMUM ALLOWABLE
SURGE CURRENT

'"

'"z
iil

.1

0

~

~ 0.0 6

~.

.~~ 0.04

.......r-.

.0

i""'-b

~

.0

0.0 2

.0

0.0 I

r--,

0.00 6
0.4

TJ = l10 DC

.J

f = 60 Hz
._1.
Surge is pre~eded and follDwed by rated current.

I

.0
2.0

1.2

2.8

3.6

5.2

4.4

6.0

.

I I IIIII

2

I

10
NUMBER OF CYCLES

VTM.INSTANTANEOUS ON-STATE VOLTAGE (VOLTS)

I

I
3D

50

100

•

FIGURE 12 - THERMAL RESPONSE

~

1.0

N

:l

'"
iii

0.5

0:>

;0
w
u

0.2

~
fZ

O. I

z

I-- f~

ZOJC(t) = r(l) - ROJC

a:

~

~ 0.05

"....

~
in

~

::

0.0 2
,

0,0 I

2.0

5.0

10

20

50

100

200
I. TIME

7-151

(m.1

500

1.0 k

2.0k

5.0 k

10 k

20 k

M8S4991
M8S4992

MT2

OO-.....,~I-II:f'I-+--OO MTI
SILICON
BIDIRECTIONAL SWITCH
(PLASTIC)

BIDIRECTIONAL DIODE THYRISTORS

· .• designed for full·wave triggering in Triac phase control circuits,
half-wave SCR triggering application and as voltage level detectors.
Supplied in an inexpensive plastic TO-92 package for high-volume
requirements, this low-cost plastic package is readily adaptable for use
in automatic insertion equipment.
.

• Low Switching Voltage - 8.0 Volts Typical
• Uniform Characteristics in Each Direction
•
•
•

MT2

Low On-State Voltage - 1.7 Volts Maximum
Low Off-State Current - 0.1 /lA Maximum
Low Temperature Coefficient - 0.02 %/OC Typical

I1~B

SEATINGP~i'---' --

A

H ---

t

PLANE F

L

_.1

•

K

I
MAXIMUM RATINGS
Symbol

Value

Unit

Power Dissipation

Rating

Po

500

mW

DC Forward Current

IF

200

mA

DC Gate Current (off-sIal. only!

IG(offl

5_0

mA

Repetitive Peak Forward Current

IFM(rep!

2.0

Amp

IFM(nonrep)

6.0

Amp

TJ

-5510 +125

°c

(1.0% Duty Cycle, 10", Pulse
Width, T A = 1000C!
Non.Repetitive Forward Current

10 u, Pulse Widlh T ..

= 25°C

Operating Junction Temperature

Range
Storage Temperature Range

T'lg

-6510 +150

°c

STYLE 12:
PIN 1. MAIN TERMINAL 1
2. GATE
3. MAIN TERMINAL 2
MILLIMETERS
MIN MAX
4.32
&.33
4.44
&.21
B
3.1B
4.19
C
D
0.41
0.&6
f
0.41
0.48
1.14
1.4D
G
H
2.54
2.41
2.67
J
K 12.70
L
6.35
N
2.03
2.92
P
2.92
3.43
R
0.41
S
D.36

DIM
A

-

-

-

INCHES
MIN MAX
0.170 0.210
0.175 0.20&
0.12& 0.16&
0.D16 0.D22
0.016 D.019
0.045 D.O&&
D.l0D
D.09& D.l0&
0.500
0.250
D.DBD D.115
0.115
10.135
0.D14 0.D16

-

-

All JEDEC dimensions and notes applv.

CASE 29-D2

TO-92
PLASTIC

7-152

MBS4991, MBS4992

ELECTRICAL CHARACTERISTICS (T A = 25°C unless otherwise noted)
Symbol

Characteristic

Max

6.0
7.5

8.0
8.0

10
9.0

-

175
90

500
120

-

-

0.3
0.1

0.5
0.2

-

-

100

-

0.7
0.2

1.5
0.5

-

0.08
2.0
0.08
6.0

1.0
10
0.1
10

-

-

1.4
1.5

1.7
1.7

-

Unit

IS

Switching Current

ItAde

MBS4991
MBS4992
IVS1-VS21

Switching Voltage Differential

Vde

MBS4991
MBS4992

Gate Trigger Current

IGF

= 5.0 Vde RL = 1.0 K ohml

MBS4992

/lAde

IH

Holding Current

mAde

MBS4991
MBS4992
IB

Off·State Blocking Current
(VF = 5.0 Vdc. T A = 250 CI
(VF = 5.0 Vde. T A = B50 CI
(VF = 5.0 Vdc. T A ~ 250 CI
(VF = 5.0 Vdc. T A = 1000CI

MBS4991
MBS4991
MBS4992
MBS4992

/lAde

-

-

,

VF

Forward On-State Voltage
(IF
(IF

Typ

Vde

MBS4991
MBS4992

(VF

Min

Vs

Switching Voltage

= 175 mAdel
= 200 mAdel

Vdc

MBS4991
MBS4992

Peak Output V'lltage (Cc =0.1 /IF. RL - 20ohms. (Figure7l

Va

3.5

4.8

"-urn-On Time (Figure 8)

tan

1.0

Tum-Off Time (Figure 91

taft

Temperature Coefficient of Switching Voltage (-50 to +1250 C)

TC

-

30
+0.02

Vde
/lS
ItS

%/oC

TYPICAL ELECTRICAL CHARACTERISTICS

FIGURE 2 - SWITCHING CURRENT versus TEMPERATURE

FIGURE 1 - SWITCHING VOLTAGE versus TEMPERATURE

B.O

1.04

ffi

~

N

1.03

'"o

1.02

w

1.0 1

:::;

~

!!!.

~
~

o

1.00

I--V

>

~

0,9 9

~
I-

0,98

~

~

--

...........

/

.....-

;::

6.0

~

5.0

~

4.0

....

B

3.0

5....

2.0

'"z
~

!!!

0.96
-50

-25

+25

+50

\

\.

'or

0,9 7

-75

1.0

:::;
'"

+75

+100

+125

f'...
~

1.0

o
-75

-50

-25

--

+25

I--

+50

TA. AMBIENT TEMPERATURE (DC)

TA. AMBIENT TEMPERATURE (DCI

7-153

+75

+100

+125

M 854991, M 854992

FIGURE 4 - OFF-STATE BLOCKING CURRENT
versus TEMPERA TURE

. FIGURE 3 - HOLDING CURRENT versus TEMPERATURE
10.0

80

~::;

Normalized

« 6.0
~

c
z

~a
'"
z

\

5.0
4.0

10

25°C

2.0

~

1.0

~

- f---

a

!
w

'" -

>«

o
-50

-25

+25

0.1

t<;

'-....

-75

VF-5_0V- ' - 1.0

'"z

\\

3.0

§

c
:r

1
>-

7.0

~
~

'"IE

+50

+75

+100

.;'

0.01

+125

-50

-25

TA. AMBIENT TEMPERATURE 1°C)

+25

FIGURE 5 - ON-STATE VOLTAGE versus FORWARD CURRENT

7. 0

~

-

1.0

w

>-

«

5.0

'"

4.0

C;
o

>
>-

~

3.0

:::.:::

2.0

0.1

1::c

~

~

..--

~~

/

'-I

C

/'

~RL=500<>

....;

-RL=100<>
:::.::
= 50 <>
RL = 20 <>

~L

/'

iLTl1

.; 1.0
>

u:
0.01

•

~

'"

z

«
'"

6.0

c

t<;
c
c

o

1.0

2.0

3.0

+100 +125

----

,;0

'"
>~
a

+75

FIGURE 6 - PEAK OUTPUT VOL TAGE (FUNCTION OF RL AND Ce )

10

S

+50

TA. AMBIENT TEMPERATURE 10C)

4.0

5.0

DOl

0.02

0.05

0.1

0.2

II

0.5

TA = 25°C
1.0

Ce• CHARGlNG CAPACITANCE I"F)

VF. FORWARO ON-STATE VOLTAGE IVOLTS)

FIGURE 7 - PEAK OUTPUT VOLTAGE TEST CIRCUIT
10 K

D.U.T.

L

7-154

2.0

5.0

10

M 8S4991, M 8S4992

FIGURE 8 - TURN-ON TIME TEST CIRCUIT
Mercury Relay

,-OH!
Anode
Voltage

~12V

,-o_n

Vs

D.U.T.

,
____I ton II-I

Turn-on time is measured from the time

,

Vs is achieved to the time when the anode voltage drops to within 90% of the difforence between Vs and VF-

FIGURE 9 - TURN-OFF TIME TEST CIRCUIT

Anode

soon

100n

+
5.0 V

Voltage

C

-=-

MT2

Mercurv
Relpv

O.U.T.

(N.O.1
~

________-4____________________

~MT1

With the SSS in conduction and the relay contacts open, close the contacts to cause anode A2 to be driven negative. Decrease C until the SSS
just remains off when anode A2 becomes positive.

The turn-off time. toff. is the time from initial contact closure and until anode A2 voltage

reaches zero volts.

FIGURE 10 - DEVICE EQUIVALENT CIRCUIT. CHARACTERISTICS AND SYMBOLS

MT2

MT2

G

----~~=-----+_---=~~------~~+v

MT1

CIRCUIT SYMBOL

-,

MT1

eQUIVALENT CIRCUIT

7-155

CHARACTERISTICS

•

MCR63·1 thru 10
MCR64-1 thru 10
M~R6S·1 thru 10

REVERSE BLOCKJNG TRIODE THYRISTOR

SILICON CONTROLLED
RECTIFIER

· .. designed for industrial and consumer applications such as power
supplies; battery chargers; temperature,. motor, light, and welder
controls.

55 AMPERES RMS
25-800 VOLTS

•

Economical for a Wide Range of Uses

•
•

High Surge Current - ITSM = 550 Amp
Rugged Construction in Either Pressfit, Stud, or Isolated Stud

'. Glass Passivated Junctions for Maximum Reliability

CASE 310'()1

MAXIMUM RATINGS

MCA63

Rating

Symbol

Peak' Repetitive Forward and Reverse

VDRM(lI
or

Blocking Voltage

MCR63
MCR64
MCR65

r
r
-2
-3
-4
-5
-6
-7

VRRM

-8

-9
-10

Non-Repetitive Peak Reverse
Blocking Voltage

(t5:5.0m,)

•

MCR63
MCR64
MCR65

Forward Current RMS

,Value
25
50
100
200
300
400
500
600
700
800

Volts

VRSM

IT(RMS)

35
75
150
300
400
500
600
700
800
900
55

Amp

ITSM

550

Amp

12,

1255

-2
-3
-4
-5
-6
' -7
-8
-9
-10

Peak Surge Current

Unit
Volts

(T J = -40 to

+1250 C)(t =

< 2 ,",51

A2,

PGFM

20

PGF(AV)

0.5

Watts
Watt

IGFM

2.0

VGFM
VGRM

10
10

Volts

TJ

-40 to +125

T stg

-40to+150

°c
°c

-

30

in. lb.

Characteristic

Isolat~

Stud

I. CATHODE

2. GATE
CASE. ANODE

Elil t: l:J1dJ:!CASE3~ID'"~
A

•
C
F

G
H
J

Symbol

Max

Unit

°C/W

R8JC
1.0
1.1

MILLIMETERS
M'N MAX
14020
12.73 1283
32.51
'06
2.16
0085
16.
101 0063
10.61 1156 0420
0300
0.255
2.16
1.40
3.81
343

"

-

24'

.

• '62, ."
'"
•
T

7-156

.....'35 "50"50
0215
008.

MCR64 se,io.
STYLE 1:
PIN I. CATHODE
Z.GATJ;
3. ANODE

III_ MIN

'NCHES

••

MAl

1534 15.60
1400 14.20
26.1 0.23
43 4.06
2.29 REF
10.711.58
15.75 n.02

,.

D..604 0.614
0.5510.55
1.0501.190
0.1350.160
0.090 REF
0.420
455

0.620

0.&7

Q.5Gl

0.505

1

12.'1312.83

(1)VRRM for all types can be applied on a continuous de basis without incurring damage
Rating$ applv for zero or negative gata voltage. Devices shall not have a positive bias applied
to the gate concurrently with a negative p~tential on the anode.

X
.559
0.505
1.280
O.IGB
0095
0019
0455

CASE 311·01

A

THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case
Pressfit and Stud

MCR63se,ias

0'.

Peak Gate Voltage - Forward
Reverse

Stud Torque

series

3. ANODE

Amp

Opera,ing Junction Temperature Range

~

MCA64

STYLE I

H --

Peak Forward Gate Current

Storage Temperature Range

CASE 263'()3

sarie,

l

I

Average Gate Power (Pulse Width

MCA66

MCR65se,ias

1.0 to 8.3 m,)

Peak Gate Power

CASE 311'()1

STYLE I'
I. CATHODE
2. GATE'

(One cycle. 60 Hz) (T J = -40 '0 + 12SoC)

Circuit Fusing Considerations

,aria'

CASE2I3.Qa

MCR63-1 thru10, MCR64-1 thru10, MCR65-1 thru10

ELECTRICAL CHARACTERISTICS ITC = 25°C unless otherwise noted)
Characteristic
Peak Forward Blocking Current

IV 0 = Rated V ORM. with gate open. T J

~

Min

Max

Unit

IORM

-

2.0

rnA

IRRM

-

2.0

rnA

VTM

-

2.0

Volts

-

40
75

-

3.0
3.5

125°C)

Peak Reverse Blocking Current

IVR

Symbol

= Rated VRRM. with gate open. TJ = 125°C)

Forward "On" Voltage
IITM = 175 A Peak)
Gate Trigger Current (Continuous dcl
IVO = 12 V. RL = 50 n)

Gate Trigger Voltage (Continuous de)
IVO = 12 V. RL = 50 nr
IVO

0.2

-

IH

-

60

rnA

dv/dt

50

-

V/~s

= 50 n. Gate Open)

Forward Voltage Application Rate
IT J = 125°C. Vo = Rated VORM)

FIGURE 1 - AVERAGE CURRENT DERATING

~
~

10 5

~~

5

~

65

i'"

45

'"

25

...

;:3

x

...'"U

Volts

VGT
TC = 25°C
TC = -40°C

= Rated VORM. RL = 1.0 kn. TJ = 125°C)

Holding Current
IVO = 12 V. RL

125

rnA

IGT
TC = 25°C
TC = -40°C

~~
.~ ~ ~

1\
\

"-

1\

FIGURE 2 - POWER DISSIPATION
~ 60

~

"\ "

...... ........
........
........

i

Th

-r. .........

'" 50

3:
~

60·

40
Q'''

..........

30 0

IIJV
60·

90·

ro

w

I

/

/

L{' -

/
V

-"
Irl..

-r-- ~i r-

./

II/,: V

180·
Derate MCR65 series
by an additional 10%.

w

I /

./

180·

~ /
I I
I 1// / . /

de

\
a - 30 0

I
9~.

I
~

I

I
~

I/. (p

-

-

l.,
60

ITIAV). AVERAGE ON·STATE CURRENT lAMPS)

7-157

~

10

20
30
40
50
ITlAV). AVERAGE ON·STATE CURRENT lAMPS)

60

•

MeRlO 0 series

A

O>-----l.~~_G

0

K

PLASTIC SI LICON
CONTROLLED RECTIFIERS
O.B AMPERE RMS
100 to 600 VOLTS

REVERSE BLOCKING TRIODE THYRISTORS
PNPN devices designed for high volume, line·powered consumer
applications such as relay and lamp drivers, small motor controls,
gate drivers for larger thyristors, and sensing and detection circuits.
Supplied in an inexPensive plastic TO·92 package which is readily
adaptable for use in automatic insertion equipment.
• Sensitive Gate Trigger Current - 200l1A Maximum
•

Low Reverse and Foryvard Blocking Current 100 I1A Maximum, T C = 125 0 C

•

Low Holding Current - 5.0 mA Maximum

A

• Glass·Passivated Surface for Reliability and Uniformity
•

Also Available with TO-5 or TO-18 Lead Form

MAXIMUM RATINGS
Symbol

Rating
Peak Reverse Blocking Voltage

•

Value

Unit
Volts

VRRM
MCR100·3
MCR100-4
MCR 100·5
MCR100-6
MCR100·7
MCR100·B

Forward Current RMS (See Figures 1 & 2)

100
200
300
400
500
600
ITIRMS)

O.B

Amp

'TSM

10

Amp

(All Conduction Angles)

Peak Forward Surge Current, T A - 2SoC
(112 cycle, Sine Wave, 60 Hz)

STYLE 10:

121

Circuit Fusing Considerations, T A = 25°C
II = 1.010 B.3 ms)
Peak Gate Power - Forward, T A = 25°C
Average Gate Power - Forward, TA - 25°C
Peak Gate Current - Forward. T A
1300 "s, 120 PPS)

= 2SoC

Peak Gate Voltage - Reverse

0.415

A 2s

PGM

0.1

Watt

PGFIAV)

0.01

Watt

IGFM

1.0

Amp

5.0

Volts

VGRM

Operating Junction Temperature Range@ Rated
VRRM and VORM

TJ

-40 to +125

°c

Storage Temperature Range

T stg

-40 to +150

-

+230

°c
°c

Lead Solder Temperature
«1/16" from case, 10s max)

THERMAL CHARACTERISTICS
Characteristic
ThermClI Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

T

Symbol
R 8JC

I
I

Max

I

75

I
I

°C/W

I

R8JA

I

200

I

°C/W

7-158

Unit

PIN 1.
2
3.

CATHOOE
GATE
ANODE

MILLIMETERS
INCHES
MIN MAX
MIN MAX
4.32
5.33 0170 0.210
4.44
5.21 0.175 0.205
, B
C
318
4.19 0.125 0.165
0.41
0
056 0.016 0.022
F
0.41
0.48 0016 0.019
1.14
1.40 0045 0.055
G
0.100
H
254
2.4j
J
2.67 0.095 0.105
K 12.70
0.500
L
6.35
0.250
N
2.03
2.92 O.OBO 0.115
P
2.92
0.115
3.43
R
0.135
s 0.36 0.41 0.014 O.or6
All JEOEC dimensions and notes apply.
CASE 29-02
TO·92
DIM
A

Me R 100. series

ELECTRICAL CHARACTERISTICS (RGK = 1000 Ohms)
Symbol

Characteristic

Peak Forward Blocking Voltage
(TC

Min

Max

= 125°C)

MCR100·3
MCR100-4
MCR 100·5
MCR100-6
MCR100·7
MCR 100·8

Unit
Volts

VDRM
100
200
300
400
500

600

Peak Forward Blocking Current
(Rated VDRM @TC ':' 125°C)

IDRM

-

100

"A

Peak Reverse Blocking Current
(Rated VRRM@TC = 125°C)

IRRM

-

100

"A

Forward "On" Voltage (Note 11

VTM

-

1.7

Volts

TC - 25°C

IGT

-

200

I'A

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vdc. RL = 100 Ohms)
(Anode Voltage = Rated VDRM. RL = 100 Ohms)

TC - 25°C
TC = -40°C
TC = 125°C

VGT

-

0.8
1.2

Volts

Holding Current
(Anode Voltage

TC - 25°C

IH

(lTM = LOA peak@TA=25oC)

Gate Trigger Current (Continuous del (Note 2)
(Anode Voltage = 7.0 Vdc. RL = 100 Ohms)

= 7.0

Vdc, initiating current

= 20 rnA)

TC = -40°C

0.1

-

-

5.0
10

mA

NOTE:
1. Forward current applied for 1.0 ms maximum duration, duty cycle "- 1.0%.
2. RGK current is not included in measurement.

FIGURE 1 - CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

I;' 130
w

~

~~_
~

w

1=

I~ ~ ::--'--~ r--..

110

'\ ~ ~

i'il

90

\

~

~"'

80

'"

70

~

'"

60

'"'"

50

x

oj
I-

0:=

o

130,---,,---,----,----,----~--~----~--,

0CONJUCTlO~ ANG~E ./110

120 ~ 10:::-

~ 100

FIGURE 2 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

0.1

~'

-

""

"

30 0

0.2

CASE MEASUREMENT
POINT - CENTER OF
--........!:~T PORTION

'"""- ~

0....... ~

SO}. 120·

60·

0.3

~ ~O.

0.4

0.5

ITlAV). AVERAGE ON·STATE CURRENT (AMP)

ITlAV). AVERAGE ON-STATE CURRENT (AMP)

7-159

•

MeRIOI

thru

MCRI04

~t-~-G-o K

A o----1. .

SILICON
CONTROLLED RECTIFIERS
0.8 AMPERE RMS
15 thru 100 VOLTS

REVERSE BLOCKING TRIODE THYRISTOR
· .. Annular. PNPN devices designed for low cost, high volume con·
sumer applications such as relay and lamp drivers, small motor
controls, gate drivers for larger thyristors, and sensing and detection
circuits. Supplied in an inexpensive plastic TO·92 package' which is
readily adaptable for use in automatic insertion equipment.
,. Sensitive Gate Trigger Current - 200 IlA Maximum
•
.

Low Reverse and Forward Blocking Current 100 IlA Maximum, TC = 85 0 C

•

Low Holding Current - 5.0 mA Maximum

•

Passivated Surface for Reliability and Uniformity

•

Also available with TO-5 or TO-18 Lead Form

A

MAXIMUM RATINGS(1)
Rating

lIymbol

Peak Reverse Blocking Voltage
IRGK

•

= 1000 ohms, TC =

+85 0 C)

Value

MCR10l
MCR102
MCR103
MCR104

Forward Current RMS (See Figures 1 &·2)

Unit
Volts

VRRM
15
30
60
100
ITIRMSI

0.8

Amp

ITSM

10

Amp

12t

0.415

A2,

0.1

Watt

(All Conduction Angles)

Peak Forward Surge Current, T A = 2SoC

11/2 cycle, Sine Wave/60 Hzl
Circuit Fusing Considerations, T A = 2SoC
It = 1.0 to 8.3 m,l

Peak Gate Power - Forward. T A = 2SoC
Average

G~te

Power - Forward, T A = 2SoC

Peak Gate Current - Forward, T A - 25v C

PGM

0.01

Watt

IGM

1.0

Amp

VGM

4.0

Volts

PGIAVI

STYLE lU'
PIN 1. CATHODE
2. GATE
3. ANODE

13001", 120 PPSI

Peak Gate Voltage - Reverse
Operating Junction Temperature Range@ Rated

TJ

-65 to +85

°c

T stg

-65 to +150

-

+230

°c
°c

Symbol'

VRRM and VORM

Storage Temperature Range
Lead Solder Temperature
1<1/16"fromcase,10,maxl

THERMAL CHARACTERISTICS
Max

Unit

Thermal Resistance, Junction to Case

R8JC

75

°C/W

Thermal Resistanct!, Junction to Ambient

R8JA

200

°C/W

Characteristic

+Annular Semiconductor Patented by Motorola Inc.
(1) Temperature reference point for all case temperature is center of flat
portion of package.
(TC:: +8SoC unless otherwise noted.)

7-160

MILLIMETERS
MIN MAX
4.32
5.33
4.44
B
521
C
318
4.19
0.41
0.56
0
F
0.41
048
G
114
1.40
H
2.54
J
'2.41
2.67
K
12.70
L
6.35
2.03
292
P
2.92
3.43
'R
S
0.36
0.41

DIM
A

--tL

INCHES
MIN MAX
0.170 0.2lU
0175 0205
0125 0165
0.016 0.022
0016 0.019
0045 0.055
0.100
0.095 0.105
0.500
0.250
0080 0.115
0.115
0135
0014 0.016

All JEOEC dimenSIons and nOlesapply.
CASE 29·02
TO·92

MCR101 thru MCR104

ELECTRICAL CHARACTERISTICS (RGK = 1000 Ohms)
Symbol

Characteristic

Peak Forward Blocking Voltage (Note 1)
ITC

= 85°C)

MCR101
MCR102
MCR103
MCR104

Peak Forward Blocking Current

IRated VDRM @TC

IDRM

Unit

Min

Max

15
30
60
100

-

-

100

I'A

100

I'A

Volts

VDRM

-

=85°C)

Peak Reverse Blocking Current
IRated VRRM @TC = 85°C)

IRRM

Forward "On" Voltage INote 2)
IITM = 1.0 A peak @ T A = 25°C)

VTM

-

1.7

Volts

IGT

-

200

I'A

VGT

-

0.8
1.2

VGD

0.1

-

IH

-

S.O
10

= 25°C

Gate Trigger Current (Continuous dc) (Note 3)
(Anode Voltage = 7.0Vdc, RL = 100 Ohms)

TC

Gate Trigger Voltage (Continuous dc)
(Anode Voltage = 7.0 Vdc, RL = 100 Ohms)

TC - 2SoC
TC = -6SoC
TC = 85°C

Holding Current
(Anode Voltage

TC = 2SoC
TC = -6SoC

= 7.0 Vdc,

initiating current = 20 rnA)

1. VORM and VRRM for all types can be applied on a continuous
de basis without incurring damage. Ratings apply for zero or
applied concurrently with a negative potential on the anode.
When checking forward or reverse blocking capability, thyristor devices should not be tested with a constant current source

FIGURE 1 - CURRENT DERATING
IREFERENCE: CASE TEMPERATURE)

=-

-r----.

a=

CA:EN~~~SUREMENT

FLAT PORTION

1'-.. . . . . . 0 ~

\ "'.""
300

"'1'..'

o

0.1

0.2

RGK current is not included in measurement.

--

60 0

90 0

.:::::

0.3

I -

N~

IS::
120 0

10

3.

POINT - CENTER OF

~ ~ ~ t-....
\.

Forward current applied for 1.0 ms maximum duration, duty
cycle S 1.0%.

A

""COI'OUCT'!'

~ ~ ;::-- r-

2.

FIGURE 2 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

90

0.4

mA

in a manner that the voltage applied exceeds the rated blocking
voltage.

negative gate voltage but positive gate voltoge shall not be

~

-

Volts

'"

180 0

0.5

IFIAV), AVERAGE FORWARD CURRENT lAMP)

IFIAV), AVERAGE FORWARD CURRENT IAMPI

7-161

MCR106·1
thru
MCR106·8

SILICON CONTROLLED
RECTIFIERS
4.0 AMPERES RMS
30 thru 600 VOL TS

REVERSE BLOCKING TRIODE THYRISTORS

· .. PNPN devices designed for high volume consumer applications
such as temperature, light, and speed control; process and remote
control, and warning systems where reliability of operation is

important.

• Glass·Passivated Surface for Reliability and Uniformity
• Power Rated at Economical Prices
•

Practical Level Triggering and Holding Characteristics

•

Flat. Rugged, ThermopadA'Construction for Low Thermal Resist·
ance, High Heat Dissipation and Durability.

G

K

MAXIMUM RATINGS
Symbol

Rating
Peak Reverse Blocking Voltage

INote 11

•

Vallie

,

MCR 106·1
·2
·3
-4
-5
~6

-7
-8
RMS Forward Current

IT(RMS)

Unit

Volts

VRRM
30
60
100
200
300
400
500
600
4.0

Amp

(All Conduction Angles)
Average Forward Current

2.55
0.68

Peak Non-Repetitive Surge Current

(112 cycle, 60 Hz, T J

= -40 to +11 OOC)

Circuit Fusing Considerations

(TJ

Amp

IT(AV)

TC = 93°C
TA = 30°C
ITSM

25

Amp

12 t

2.6

A2s

PGM

0.5
0.1

Watt

=-40 to +1100 C. t = 1.0 to 8.3 ms)

Peak Gate Power
Average Gate Power

DIM

PG(AV)

Watt

Peak Forward Gate Current

IGM

0.2

Amp

Peak Reverse Gate Voltage

VRGM

6.0

Volts

TJ
T stg

-40 to +110

°c

Operating Junction Temper~ture Range

Storage Temperature Range

-40 to +150
6.0

Mounting Torque (Note 2)

°c
in. lb.

Characteristic

-

Thermal Resistance. Junction to Ambient

A
B
C

D
F
G
H
J
K

M

n

THERMAL CHARACTERISTICS
Thermal Resistance. Junction to Case

STYLE 2
PIN I. CATHODE
2. ANODE
3. GATE

Symbol

Max

Unit

. R6JC

3.0
75

°CNV
uCNV

R6JA

...Trademark of Motorola Inc.

7-162

R
S
U

V

MIN MAX
10.80 11.05
7.49
7.75
2. 1 2.67
O. I
0.66
2. 2 3.18
2.31
2.46
1.27
2.41
0.38
0.64
15.11 16.64
3D TYP
3.76
4.01
1.14
1.40
0.64
0.89
3.68
3.94
1.02

CASE 77·04

MCR106-1 thru MCR106-8

ELECTRICAL CHARACTERISTICS (TC

= 25°C and

RGK

= 1000 ohms unless otherwise noted)

Characteristic
Peak Forward Blocking Voltage
(TJ = 110°C, Note 1)

Symbol

Min

Typ

Max

MCR106-1
-2
-3
-4
-5

-6
-7
-8

Unit

Volts

VORM

-

30
60
100
200
300
400
500
600

-

-

-

-

-

-

Peak Forward Blocking Current
(Rated VORM, TJ = 1100 CI

IORM

-

-

200

~A

Peak Reverse Blocking Current

IRRM

-

-

200

"A

VTM

-

-

2.0

Volts

-

200
500

IRated VRRM, TJ = 110°C)

Forward "On" Voltage
IITM = 4.0 A Peak)

Gate Trigger Current (Continuous de) Note 3

j,.A

IGT

= 100 ohms)
= 100 ohms, TC = -40°C)

-

-

Gate Trigger Voltage (Continuous dcl
IVAK = 7.0Vdc,RL = 100 ohms, TC = 25°C)

VGT

-

-

1.0

Volts

Gate Non-Trigger Voltage

VGO

0.2

-

-

Volts

IH

-

-

5.0

mA

dv/dt

-

10

-

V/~s

(V AK = 7.0 Vdc, RL
IVAK = 7.0 Vdc, RL

IV AK = Rated VORM, RL = 100 ohms, T J = 110°C)
Holding Current
(V AK = 7.0 Vdc, TC = 25°C)

Forward Voltage Application Rate
(TJ = 110°C)

NOTES'

1. Ratings apply for zero or negative gate voltage but positive
gate voltage shall not be applied concurrently with C1 negative
potential on the anode.

When checking forward or reverse

blocking capability, thyristor deVices should not be tested With

2. Torque ratmg applies With use of torque washer (Shakeproaf
WD19523 or equivalent). Mounting torque In excess af 6 in. lb.
does not appreciably lower case-to-sink thermal resistance. Anode
lead and heatsink contact pad are common. (See AN-290 BI

a constant current source in a manner that the voltage applied
exceeds the rated blocking voltage.

For soldering purposes (either terminal connection or deVice
mounting), soldering temperatures shall not exceed +225 0 C. For
optimum results. an activated flux (oxide removing) isrecomrnended.
3. RGK current is not included in measurement.

CURRENT DERATING
FIGURE 1 - MAXIMUM CASE TEMPERATURE

FIGURE 2 - MAXIMUM AMBIENT TEMPERATURE

30~O--~O~.1~~O~.2~--of.3~--~~~~--~--~~--~
ITIAVI, AVERAGE fORWARD CURRENT IAMPI

ITIAV), AVERAGE fORWARD CURRENT (AMPI

7-163

•

MCRIIS
MCRl20

AO_-I.~(_G_o K

PLASTIC SILICON
CONTROLLED RECTIFIERS
0.8 AMPERE RMS
100 and 200 VOLTS

REVERSE BLOCKING TRIODE THYRiSTORS
Annuiar. PNPN devices designed for high volume consumer
applications such as relay and lamp drivers, small motor controls, gate
drivers for larger thyristors, and sensing and detection circuits.
Supplied in an inexpensive plastic TO·92 package which is readily
adaptable for use in automatic inse~tion equipment.
• Sensitive Gate Trigger Current - 200 /JA Maximum
•

Low Reverse and Forward Blocking Current 100/JAMaximum, TC': 1100 C

•

Low Holding Current - 5.0 mA Maximum

• Passivated Surface for Reliability and Uniformity
• Also Available with TO~5 or TO-l B Lead Form

MAXIMUM RATINGS(1)
Symbol

Rating
Peak Reverse Blocking Voltage

g'

Value

MCRl15
MCR120
Forward Current RMS (See Figures 1 & 2)

IT(RMS)

Unit
Volts

VRRM
150
200
0.8

. MB

Amp

(All Conduction Angles)

Peak Forward Surge Current, T A

=

25°C

ITSM

10

Amp

12,

0.415

A2,

(112 cycle, Sine Wave, SO Hz)

Circuit Fl;Ising Considerations, "'FA - 25°C

P~lE':frl
---

H

SEATING
PLANE F

Average Gate Power
Peak Gate Current

Forward, T A
Forward, TA

= 25°C
25 C

PGM

0.1

Watt

PGF(AV)

0.01

Watt

IGFM

1.0

Amp

VGRM

5.0

Volts

TJ

-S5 '0+110

°c

rl

R

,

~-<>-o
L' "
N

----.1

K-

I

(, = 1.0 '08.3 m,)
Peak Gate Power - Forward, T A - 25u C

A

Dj'~
~G
J i-,:

N
STYLE 10:
PIN 1. CATHODE

~

2.

GATE

3. ANODE

S
SECT. A·A

(300I",120PPS)

Peak Gate Voltage - Reverse
Operating Junction Temperature Range@ Rated
VRRM and VDRM

Storage Temperature Range
Lead Solder Temperature

T stg

-65 to +150

°c

-

+230

°c

«IllS" from case, 10 s max)

DIM
A

4.32
B
4.44
C
3.1B
0 . 0.41
F
0.41
G
1.14
H
J
K
L
N

THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

+Annular Semiconductor Patented by Motorola Inc.
(11 Temperature reference point for all case temperatures in center of flat portion
of package, (T C = + 11 OoC unless otherwise noted.)

.1-164

MILLIMETERS
MIN MAX

-

5.33
5.21
4.19
0.56
0.48
1.40
2.54
2.67

C

INCHES
MIN MAX

0.110
0.115
0.125
0.016
0.016
0.045

-

0.210
0.205
0.165
0.022
0.019
0.055
0.100
0.105

2.41
0.095
12.70
0.500
6.35
11250
2.03
2.92 O.OBO 0.115
P
2.92
0.115
R
3.43
0.135
S
0.36
0.41 0.014 0.016
All JEDEC dimensions and notes apply,

-

CASE 2U-02
TO·92

-

MCR115, MCR120

ELECTRICAL CHARACTERISTICS (RGK = 1000 Ohms)
Symbol

Characteristic
Peak Forward Blocking Voltage (Note 11

Min

Max

Unit
Volts

VDRM
150
200

-

IDRM

-

100

IJA

IRRM

-

100

IJA

VTM

-

1.7

Volts

TC = 25°C

IGT

-

200

IJA

Gate Trigger Voltage (Continuous del
(Anode Voltage = 7.0 Vdc, RL = 100 Ohms)
(Anode Voltage = Rated VDRM, RL = 100 Ohms)

TC = 25°C
TC = -65°C
TC = 110°C

VGT

-

0.8
1.2

Volts

VGD

0.1

-

Holding Current
(Anode Voltage

TC = 2SoC
TC = -65°C

IH

-

5.0
10

(TC = 110°C)

MCRl15
MCR120

Peak Forward Blocking Current

(Rated VDRM@TC= 110°C)
Peak Reverse Blocking Current

(Rated VRRM@TC= 110°C)
Forward "On" Voltage (Note 2)
(lTM = 1.0 A peak @ T A = 25°C)
Gate Trigger Current (Continuous del (Note 3)

(Anode Voltage = 7.0 Vdc, RL = 100 Ohms)

1.

= 7.0 Vdc,

initiating current = 20 rnA)

VORMsnd VRRMforall types can be applied on acdntinuous
de basis without incurring damage. Ratings apply for zero or

in a manner that the voltage applied exceeds the rated block ing
voltage.

negative gate voltage but positive gate voltage shall not be
applied concurrently with a negative potential on the anode.
When checking forward or reverse blocking capability. thyristor devices should not be tested with a constant current source

2.

Forward current applied for 1.0 ms maximum duration, duty
cycle ::S' 1.0%.

3.

RG K current is not included in measurement.

FIGURE 1 - CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

-110

~

100

","""
~

110

I'" 30

0

~T
~

tl"'CONOUCTION
f-- ANGLE
CASE MEASUREMENT
POINT - CENTER OF

40 t----FLrpORTiON

100 f-....,,"""~.....,--+---+

I--

~~

"\

30

FIGURE 2 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE)

~ ~ r--

~~

"'-i'-:: r':::

D-

~
90
0

r--- r--.

U

~~ 90~--f~~~~~~-4-~~~--r--+--~

""~

de

.............

..........

'" ""
~

.......

120 0

I

W

180 0

E; ~

~""
~~

80 f--+-..,...p.~"".--''k--1--+--+---1

~ ~ 70f--+--~-'H""'''''+~c-'1''-+--+---1
:§~

x
""",,

I-

60

,"w

~~ 50f--+--+--\+-~~~~~-+-~~--1
40~-+---r-~~~\-~~~~--+-~~
30L-_~

o

0.1

0.2

mA

Q.3

0.4

o

0.5

__~___Li-~~~~~~--~--~
01
IF(AV), AVERAGE FORWARD CURRENT (AMP)

IF(AV), AVERAGE FORWARD CU RRENT (AMP)

7-165

04

•

MCR20!
thru
MCR206
G

A

o>-----l~~~_O K

SILICON
CONTROLLED RECTIFIERS
0.5 AMPERE RMS
15-200 VOLTS

REVERSE BLOCKING TRIODE THYRISTORS

· .. Annular. PNPN devices designed for industrial/military applica·
tions such as relay and lamp drivers, small motor controllers and
drivers for larger thyristors, and in sensing and detection circuits.

•

•
•

Sensitive Gate Trigger Current - 200llA Maximum
Low Reverse and Forward Blocking Current lOOIlA Maximum, TC = 1250 C
Low Holding Current - 5.0 mA Maximum

• Passivated Surface for Reliability and Uniformity
• TO-18 Hermetically Sealed Metal Package
MAXIMUM RATINGS
Symbol

Rating

Peak Off-State and Reverse Voltage

•

Value

MCR201
MCR202
MCR203
MCR204
MCR205
MCR206

ITIRMS)

15
30
60
100
150
200
0.5

Amp

ITSM

6.0

Amp

12t

0.15

A2s

PGM
PGFIAV)
IGFM

0.1
0.01
1.0

Watt
Watt
Amp

VGRM
TJ

4.0
-65 to +125

Volts
°c

Tstg

-65 to +150

(

RMS On·5t8te Current

Unit

Volts

VORM
VRRM

SEATING
PLANE

IAII Conduction Angles)(See Figs. 4 & 5)
Peak Non-Repetitive Forward Surge Current
1112 cycle, Sine Wave, 60 Hz)
Circuit Fusing Considerations,

It

=

1.0 to 8.3 ms)

Peak Forward Gate Power
Average Forward Gate Power
Peak Forward Gate Current
1300 I'S, 120 PPS)
Peak Reverse Gate Voltage
Operating Junction Temperature Range @ Rated

VRRM and VORM
Storage Temperature Range

C

THERMAL CHARACTERISTICS
Characteris:tic

Thermal Resistance, Junction to Case
Thermal Resistance, Junction to Ambient

I
I
I

Symbol
9JC
9JA

I
I
I

Max
150
400

• Annular Semiconductor Patented by Motorola Inc.

I
I
I

Unit

°C/W
°C/W

STYLE 6'
PIN 1. CATHODE
2. GATE
3. ANODE

DIM

MILLIMETERS
MIN
MAX

INCHES
MAX
MIN

5.31
5.84
0.20S 0230
4.52 4.S5
0.178 o IS5
4.32 5.33
0.170 0.210
0.406 0.533 0.016 0.021
0.030
0.762
0.406 0.483 0.016 O.DIS
2.54
BSC
0.1008SC
G
H
0.914 1.17
0.036 0.046
J
0.711 1.22
0.028 0.048
K 12.70
10.500
L
6.35
0.250
45 0 BSC
45u 8SC
M
N
1.27 Bse
0.0508SC
P
1.27
- 0.050
A
B
e
0
E
F

-

-

-

All JEQEC notes and dimensions apply .
CASE 22-03

ITO-IS)

7-166

MCR201 thru MCR206

ELECTRICAL CHARACTERISTICS (RGK = 1000 Ohms)
Symbol

Min

Max

Unit

Peak Forward Blocking Current
(Rated VDRM@TC= 125°C)

IDRM

-

100

IlA

Peak Reverse Blocking Current
(Rated VRRM@ TC = 125°C)

IRRM

100

IlA

Peak On-State Voltage
(lTM = 1.2 A peak, ImS, Duty Cycle'; 1%)

VTM

-

1.7

Volts

-

200
350

IlA

-

0.8
1.2

Volts

Characteristic

Gate Trigger Current (Continuous de) (Note 1)
(Anode Voltage = 7.0Vde, RL = 100 Ohms)

TC - 25u C
TC = -65°C

IGT

Gate Trigger Voltage (Continuous de)
(Anode Voltage = 7.0 Vde, RL = 100 Ohms)

TC-250C.
TC'; -65°C
TC = 125°C

VGT

TC = 25°C

Holding Current
(Anode Voltage = 7.0 Vde,
15

IH

~

w

'"=>
~

105

~ ......

5

...........

.J~ ~~

-

~ 85

90·

~

~

-.. . . .

65

.......

12~"

..... 1'-..

lBO·

~ 45

,.=>

~~

25

I
I

,.,.

100

200

400

300

O. 7

'"

d. 5

a

/ /

/1

1.0

~

~

I
I

0

/'

500

~

I

0.2

1/

Ii

'"
~
~

0.6

0=

r--'

~ON-jC';;~~NGLJ
I

~~
"'<

w;::
>-

""z
=>1"""
~~
,,~

0:=

0.4

:s:~o 0.2

:;;

~

o~
o

/

60~

.~~

~/

90·

I I

30 0

V/ i j

/'

I I

0.03

""'-;;C

I

0.02

/. /h ~ / ' V
/: ~ ~ V

I

I

0.01

~r100

0.07
0.05

/ 1/ ' / / /
/ / / ~V
L

0.5
200

300

400

500

IT(AVI. AVERAGE ON·STATE CURRENT (mAl

7-167

I

I

""~ o. 1

120· lB~

II

I

~

FIGURE 2 - POWER DISSIPATION

25·C- I--

III

0.3

z

5l
z
0.8

/

I

o
~

--/ / '

f. I

w

IT(AVI. AVERAGE ON-STATE CURRENT (mAl

/

TJ = 125°C

2.0

r

x

""

mA

........-:

3.0

• =CONDUCTION ANGLE
f =60 Hz

j

I-

5.0
10

FIGURE 3 - FORWARD VOLTAGE

_1.1..-

'''\:i'..

60}

w

"'

-

-

5. 0

~

~~

15

0.1

not Included In measurement.

FIGURE 1 - CURRENT DERATING
(REFERENCE: CASE TEMPERATURE)

~ 125

-

_TC = -65°C

initiat!ng current = 20 mAl

1. RGK current

-

1.0

1.5

2.0

VTM,INSTANTANEOUS ON-STATE VOLTAGE (VOLTSI

2.5

MCR201 thru MCR206

FIGURE 4 - SURGE RATINGS
0:

'"5>-

I0

~ 7.0

0:

.

~

5.0

.,~

130

--

I

zw

.J\J\...

-I

-l-

;;;

1--1 CYCLE

'"we..>
"".... !!o-

TA' 25°C

~

:: 3.0
>

i~
9~
.... 0:

............

>=

~

>-

""

50

",,"

>-

2.0

1.0

3.0

5.0

7.0

10

20

30

50

30

70 100

"

" ,de

1\ \ I\"\.
\ ,\
\.1 BOo
0<=300
\60<\ ,
\ \ <0l\.

X

~ 1.0

-1.,1-

0<" CONDUCTION ANGLE

\' ~ I"
,\\'

"" ...

'"~

.!:-

90

=>""
""w
->-

""

~

~ i'..
"'~,
I\~

110

""w 70

i'

2. 0

.

FIGURE 5 - CURRENT DERATING
(REFERENCE: AMBIENT TEMPERATURE I

o

80

160

"-

'"
240

400

320

IT(AV),AVERAGE ON-STATE CURRENT (mA)

NUMBER OF CYCLESAT60 H.

FIGURE 6 - THERMAL RESPONSE
>-

ffi

~

1.0

0.7
0.5

- -

~~ 0.3

I-'

wZ

~~ 0.2
w~

~w

~ ~ 0.1
~ ~ 0.01

. ,.,
No:

~ ~O.05

~

z

"'2

"JC(t) =,It "JC

0.03
0.02

-----

0.01
0.0001

0.0003 0.0005

0.001

0.003 0.005

0.01

0.03

0.05

t, TIME (SECONDS)

•
7-168

0.1

0.3

0.5

1.0

3.0

5.0

10

MCR201 thru MCR206

TYPICAL CHARACTERISTICS
FIGURE 7 - GATE TRIGGER VOLTAGE

FIGURE 8 - GATE TRIGGER CURRENT
10

0.8

en

!:;

0.7

~:::; 5.0

~

i"'-..

o

~

~

0.6

w

!;;:

.

,

~
~ 2.0

""'-



.....

0.5

'"

'"

~

~

"'-1"'-

0.4

a:

'"'"'

25

50

........ t-o..

ffi

~

75

0.5

.....

'"'"a:
....

0.3
-25

"'"

1.0

:>

't-".
-50

i"--.

....

~ 0.2

125

100

......

;;

........
150

~·O. 1

!E

-50

~5

0

~

~

H

100

125

TJ, JUNCTION TEMPERATURE (OC)

TJ. JUNCTION TEMPERATURE lOCI

FIGURE 9 - HOLDING CURRENT

3.0

ffi

RGK I'IKn

2.0

N

:::;

~

~

'"o

~ 1.0

I'--- r---

~

'"~

O.7

......

§'" O.5

......

o
x

£

-

O.3
-50

-25

0
25
50
75
100
TJ, JUNCTION TEMPERATURE laC)

125

150

•
7-169

MCR729-5

thru
MCR729-10
OA

SILICON CONTROLLED
REpl FIERS
5 AMPERES RMS
300-800 VOL TS

REVERSE BLOCKING TRIODE THYRISTOR

· ..

fast switching, high·voltage Silicon Controlled 'Rectifiers es·
peciallv designed for pulse modulator applications in radar and other
similar equipment.
High·Voltage: VORM = 300 to BOO Volts
• Turn·On
Times: 'in Nanosecond Range

• Repetitive Pulse Current to 100 Amps
• Stable
Switching Characteristics Over an Operating Temperature
•
Range From -65 to +105 C
• Pulse Repetition Rates as High as 10,000 pps
0

~
R

MAXIMUM RATINGS (T J = 105 0 e unless otherwise noted)
Symbol
Characteristic
Peak Repetitive Forward Blocking Voltage*(1)
VORM
,
MCR729·5
-6

·7
-8
·9

•

·10
Peak Repetitive Reverse Blocking Voltage III
Forward Current RMS
Average Forward Power
Peak Repetitive On-State Control

VRRM
ITIRMS)
PFIAV)
ITRM

N

Value

Unit

Volts
300
400
500
600
700
800
50
5
5
100

-,aL~
T
~I

I

\tA~NG
PLANE

Amps

Watts

Amps

Average Forward Gate Power

Peak Forward Gate Current

Peak Forward Gate Voltage
Peak Reverse Gate Voltage
Operating Junction Temperature Range
Storage Temperature Range

Stud Torque

PGFM
PGFIAV)
IGFM
VGFM
VGRM
TJ
T,tg

20
1
5
10
10
-65 to +105
-65 to +150
15

Watts
Watt
Amp,

Volt"
Volts

°c
°c
in/lb

·Characterized for unilateral applications where reverse blocking capability Is not important. Higher VROM ra~ed units available on request.
(1) Ratings apply for zero or negative gate voltages. Devices shall not have a positive bias
to the gate concunently with a negative potential on the anode. Devices should not be
tested with a constant current source for forward and reverse blocking voltages such that
the applied voltage exceeds the ratings.

o~

---.

t-rF1o

Volts

1011UNI2I1

IPW= 10",)
Peak Forward Gate Power

B

STYLE 1.
PIN 1. CATHODE
1, GATE
STUD - ANODE
DIM
8
C

E
F
G
H
J
K
N

P
Q

R
S
T

I

I

~ ~H
i~

~

~

I

- 51-

NOTE:
1. ALL RULES & NOTES
ASSOCIATED WITH
REFERENCED TO·64
OUTLINE SHALL APPLY,

MILLIMETERS
MIN
MAX
10,71 11.10
1,62 10,16
1.52 4.45
1,03 3,45
0,33
1.98
10.16 11.51
1),18 21.12
10.71
4,14 4,80
1.02 1.91
10,16
4,111 4.310
1.52

-

-

-

INCHES
MIN
MAX
0,424 0,431
0,300 0,400
0,060 0,1)5
0,080 0,136
0,013
0,018
0.4
0,45
0.100 0,855
0,424
0,163 0,189
0,040 0.015
0.400
0,1658 0,1691
0.060

CASE 63-03

7-170

K

-

-

MCR729-5 thru MCR729-10

ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Peak Forward Blocking Current
(Vo = Rated VORM, TC = 105°C, gate open)

Symbol

Min

Typ

Max

Unit

-

0.2

2

mA

IORM

Gate Trigger Current (Continuous de)
(VO = 7 Vde, RL = 100 ohms)

IGT

-

10

50

mAde

Gate Trigger Voltage (Continuous de)
(VO = 7 Vde, R L = 100 ohms)

VGT

-

0.8

1.5

Volts

IH

3

15

-

mA

Forward On Voltage
(/TM = SA, PW..; lmS, Duty Cycle"; 1%)

VTM

-

-

2.6

Volts

Dynamic forward On Voltage

vTM

-

15

25

Volts

Holding Current
(VO = 7 Vdc, gate open)

(0.5 jlS after 50% pt, IG = 200 mA, Vo = Rated
VORM, iF (pulse) = 30 Amps)
Turn-On Time hd + t r )
(/G = 200 mA, Vo = Rated VORM)
(iTM = 30 Amps peak)
(iTM = 100 Amps peak)

ns

ton

-

200
400

-

Turn-On Time Variation
(TC = +250 C to +1050 C and -6S o C to +2S o C,
iTM =30 A)

ton

-

!SOO

-

ns

Pulse Turn-Off Time

tree

-

15

-

jlS

dvldt

50

-

-

V/jls

°JC

-

-

4

°C/W

(iF(pul,e) ; 30 Amps, Ireverse = 0)
(I nductive charging circuit)

Forward Voltage Application Rate (Linear Rate of Rise)
(VO = Rated VORM, gate open, TC = IOSoC)

Thermal Resistance (Junction to Case)

7-171

MCR1718·5
thru
MCR1718·8
SILICON CONTROLLED
RECTIFIER
REVERSE BLOCKING TRIODE THYRISTOR
25 AMPERES RMS
300 thru 600 VOLTS

· .. fast switching, high·voltage thyristors especially designed for
pulse modulator applications.

• High-Voltage Capability from 300 to 600 Volts
• Repetitive Pulse Current to 1000 Amp
• Pulse Repetition as High as 4000 pps
• Current Application Rate as High as 1000 A/J!.s

MAXIMUM RATINGS
Value

Symbol

Rating
Peak Repetitive Forward or Reverse
Blocking Voltage *
MCR1718-5

Unit
Volts

VORM
VRRM

IT9

300
400
500
600

-6
-7
-8

B T

!

.

::!II

i--A~

Peak Reverse Blocking Voltage

(Transient) (Non-Recurrent 5 ms (max)
MCR1718-5
-6
-7
-8

•

Volts

VRSM
400
500
600
700

Forward Current RMS
Peak Forward Surge Current

IT(RMS)

25

Amp

ITSM

1000

Amp

dildt

1000

AIl's

12 t

250

A 2s

PF(AV)

30

Watts

PGM

20

Watts

(1-10 ~s Pulse Width)
Current Application Rate

(up to 1000 A peak)

UNF·2A

Circuit Fusing

(T J

=-65 to +1250 C; t

~ 1.0 ms

Dynamic Average Power

(TC

=65°C)

Peak Gate Power - Forward
Average Gate Power - Forward

PG(AV)

Peak Gate Current - Forward

IGM

Peak Gate Voltage

VGM

Operating Junction Temperature Range

TJ
T stg

Storage Temperature Range

,

,

Stud Torque

STYLE "
PIN 1. CATHODE
2. GATE
3. ANODE

1.0

Watt

5.0

Amp

10

Volts

-65 to +125

°c

B

-65 to +150

°c

3Q

in.-Ib

C
F
H
J
K
L

·VORM and VRRM for all types can be applied on a continuous de basis
without incurring damage.
Ratings apply for zero or negative gate voltage.

DIM
A

n
R

THERMAL CHARACTERISTICS

Characteristic
Thermal Resistance, Junction to Case

T

I

Symbol
A8JC

I

Max

I

2.0

Unit
°CIW

7-172

MILLIMETERS
MIN
MAX
15.J4 15.60
14.00 14.20
26.67 30.23
3.43 4.06
2.29 REF
10.67 11.56
15.75 17.02
7.62 8.••
1.40 2.16
1.65 REF
12.73 12.83

INCHES
MIN
MAX
0.614
0.559
1.190
0.160
REF
0.455
0.670
0.•50
u.uoo 0.085
0.065 REF
0.501 0.505

0.604
0.551
1.050
0.135
0.090
0.420
0.620
0.300

CASE 263-03

MCR171S-5 thru MCR171S-S

ELECTRICAL CHARACTERISTICS (TC = 2So C unless otherwise noted)
Symbol

Characteristic
Peak Forward Blocking Current

(Vo

= Rated VORM with gate open, TJ = 12So C)

Peak Reverse Blocking Current

(VO

IRRM

= Rated VRRM with gate open, TJ = 12So C)

Forward "On" Voltage
(lTM = 2S Adc)

VTM

Dynamic Forward On Voltage

vTM

(lGT = SOO mA, Ipulse = SOO Amps)
(1.0 I'S after start (10% pt.) of Ipul se )
(S.O I'S after st~rt (10% pt.) of Ipul se )
Gate Trigger Current {Continuous del

(VO

VGO
IH

= 7.0 Vdc, Gate Open)
= 7.0 Vdc, Gate Open, TJ = 12SoC)

-

-

8.0

-

-

8.0

-

1.1

1.3

-

30
5.0

-

-

10

SO

0.25

0.8
-

I.S

5.0

15
6.0

-

mA
Volts

mA
Volts

mA

I'S

tq

= 500 A, IR = 10 A, dv/dt = 20 VII's Vo = Rated VORM,
VR = Rated VRRM)

Units
mA

-

Circuit Commutated Turn·Off Time

(IF

Max

VGT

= 7 Vdc, RL = SO Ohms)
= Rated VORM, R L = 50 Ohms, T J = 125°C)

Holding Current

(VO
(VO

Typ

IGT

= 7Vdc, RL = 5010hms)

Gate Trigger Voltage (Continuous de)

(Vo
(Vo

Min

10RM

-

20

-

-

,100

-

(Conductive Charging Circuit - Circuit dependent)
Critical Exponential Rate of Rise

(Gate Open, T J

dv/dt

= 12SoC, Vo = Rated VORM)

VII's

11lVORM for all types can be supplied on a continuous de basis without incurring damage.
Ratings apply for zero or negative gate voltage.

•

7-173

MCR1906-1

thru

MCR1906-6
G

A

o>---_~~~----- 1/16" From Case, 10 s max.1

MILLIMETERS
MIN MAX
889 9'0
800 851
610 660
0406 0533
0229 318
0406

0.483

483

533

0111
0131
1270

0864

102

635
450 NOM
1.27
90 0 NOM

25'

INCHES
MIN
MAX
0350 0310
0315 0335
0240 0260
0016 0021
0009 0125
0016 0019
0190 0210
0028 0034
0029 0040
0500
0250
45 0 NOM
0050
90 0 NOM
DIDO

All JEDEC dimenSions and nOlesapply
CASE 79-02
TO·39

7-174

MCR1906-1 thru MCR1906-6

ELECTRICAL CHARACTERISTICS (TC = 25 0 C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
MJ13335
MJ13334
MJ13333
MJ13332

Collector-Emitter Sustaining Voltage (Table 1)

(lC

= 100 mA,

IB

= 0)

Collector Cutoff Current

(VCEV
(VCEV

VCEO(sus)

500
450
400
350

-

-

-

-

-

mAde

ICEV

= Rated Value, VBE(off) = 1.5 Vdc)
= Rated Value, VBE(oll) = 1.5 Vdc, TC = 150o C)

Collector Cutoff Current
(VCE = Rated VCEV, RBE

ICER

Vdc

-

0.25
5.0
5.0

mAde

1.0

mAde

= 50 n, TC = 100o C)

Em iner Cutoff Current
(VEB = 6.0 Vdc, IC = 0)

lEBO

. SECOND BREAKDOWN
Second Breakdown Collector Current with base forward biased

See Figure 12

Clamped Inductive SOA with Base Reverse Biased

See Figure 13

ON CHARACTERISTICS (1)
DC Current Gain
(IC = 5.0 Adc, VCE

hFE

= 5.0

Collector-Emitter Saturation Voltage

(lC
(lC
!lc

= 10 Adc,
= 20 Adc,
= 10 Adc,

IB
IB
IB

= 10 Adc,
= 10 Adc,

IB
IB

60

= 2.0 Adc)
= 2.0 Ade, TC = 100o C)

Vdc

VCE(sat)

-

= 2.0 Ade)
= 6.7 Ade)
= 2.0 Ade, Tc = 100oC)

Base-Emitter Saturation Voltage

!lc
(IC

10

Vdc)

-

1.8
5.0
2.4
Vde

VBE(sat)

-

-

1.8
1.8

td

-

0.02

0.1

~s

tr

-

0.3

0.7

~s

""

DYNAMIC CHARACTERISTICS
Output Capacitance
(VCB = 10 Vde, IE

= 0, I test = 1.0 kHz)
SWITCHING CHARACTERISTICS
Resistive Load (Table 1)
Delay Time
Rise Time

Storage Time

(VCC = 250 Vdc, IC = 10 A,
IBl = 2.0 A, VBE(off) = 5.0 Vde, tp
Duty Cycle .. 2.0%)

= 10 ~s,

Fall Time

ts

1.6

4.0

~s

tl

O.~

0.7

~s

2.5

5.0

~s

0.8

2.0

~s

Inductive Load, Clamped (Table 1)

Storage Time

Crossover Time
Storage Time
Crossover Time
Fall Time

(lC - 10 A(pk), Vcl amp - 250 Vde, IBl - 2.0 A,
VBE(off) = 5 Vdc, TC = 100o C)
,
(lC = 10 A(pk), Vel amp = 250 Vde, IBl
VBE(oll) = 5 Vde, TC = 25 0 C)

= 2.0 A,

tsv
te
tsv

1.8

te

0.4

tfi

(1) Pulse Test: PW· 300 ~s, Duty Cycle .. 2%.

7-175

-

-

0.2

~s

~s

-

~s

MCR3818 -1 thru MCR3818 -10
MCR3918 -1 thru MCR3918 -10

SI LICON CONTROLLED
RECTIFIER

AO

REVERSE BLOCKING TRIODE THYRISTOa

20 AMPERES RMS
25-800 VOLTS

· .. designed for industrial and consumer applications such as power
supplies; battery chargers, temperature, motor, light and welder
controls.
• Supplied in Either Pressfit or Stud Package
•

High Surge Current Rating - ITSM = 240 Amp

•

Low On-State Voltage.:. 1.2 V (Typ)

@

ITM = 20 Amp

• Practical Level Triggering and Holding Characteristics 40 mA (Max) and 50 mA (Max) @ TC = 25 0 C
MAXIMUM RATINGS
Rating

Symbol

Value

VORM
·or
VRRM

25
50
100
200
300
400
500
600
700
800

Unit

Peak Repetitive Forward and Reverse Voltage (1)

MCR3818, MCR3918-1
'-2
-3

-4
·5
-6
-7
·8
-9
·10

Non8Repetitive Reverse Blocking Voltage
MCR3818, MCR3918 - 1
-2
-3

Volts
35
75
150
300
400
500
600
700
800
900

-5
·6
·7
-8
-9
-10

On-State Current R MS
Average On-State Cu~rent

STYLE 1
TERM I (jATf
2 CATHODE
3 ANODE

MCR3818
SERIES

VRSM

-4

I

Volts

CASE 174·03

ITIRMSI

20

Amp

'ITIAVI

13

Amp

ITC = 67°C I

Circuit Fusing
IT J = -40 to +1 OOoC, t "" 8.3 msl
Peak Non-Repetitive Surge Current
lOne cycle, 60 Hz, T J = -40 to +1000 CI
Pea k Gate Power
IMaximum Pulse Width = 10 /lsi
Average Gate Power

Peak Forward Gate Current
IMaximum Pulse Width

I

l-

E

1.0
-60

0.3
-40

-10

010406080
TJ, JUNGTION TEMPERATURE lOG)

100

110

140

7-177

-60

-40

-10

10
40
60
80
100
TJ, JUNGTION TEMPERATURE lOCI

110

140

MCR3818/3918 series

MAXIMUM ALLOWABLE NON-REPETITIVE SURGE CURRENT
FIGURE 3 - 60 Hz SURGES
24

o

22 0

1"'-

.

FIGURE 4 - SUB-CYCLE SURGES
500

T~

"

0
0

I Pi.OR
sJRGIE I I
SCR OPERATED AT
RATED LOAD CONDITIONS
TJ = _40DC to +100DC
f = 60 MHz

'r--

0'"

0

"'" f' r--..

0
0

0

V '\
f-l

""'"

~f'
12t = 235 A2,

f'r-0

L-1J.J

0

l"f'

II

CYCLE-j

BO

o

:=:

1.0

2.0

4.0

6.0 B.O 10

20

40

60

10 0
1.0

BO 100

1.5

2.0

FIGURE 5 - GATE TRIGGER
CHARACTERISTICS
2.0

-

>-

FI

~; g
i= SI

0:

GATE VOLTAGE
REQUIRED TRIGGER @TJ= 25°C

!

w

l-

«

'"

9o

":~ 3.0
2.0
-60

40 mA GATE CURRENT REQUIRED
TO TRIGGER ALL UNITS@TJ=25 DC

0.02

rr-=

MAXIMUM ALLOWABLE FORWARD
GATE VOLTAGE VGM = 10 VOLTS
0.000101t'1-,---,---r,
0.2

1.0

=---'l
-"T,--,F-r,-,,---r-lI,---j

2.0

I'--

~ 5. 0

\

0.03

......

:>

'"

I ALL UNITS WILL TRIGGER AT ANY VOLTAGE
AND CURRENT WITHIN THIS AREA
I
{TC = 25 DC. VAK = 7.0 Vi
L _________

z

r--......

~ 7.0

RECOMMENDED TRIGGER
CURRENT

:>~

0

10

~ V~

il'i

~~err-

I

r------..

I-

~u

~~71

'"

I-

10

OJF-STAJE VOJAGE =

...J:r~

5

7.0

0

!;(~GI

~
....

5.0

FIGURE 6 - EFFECT OF TEMPERATURE ON
TYPICAL HOLDING CURRENT

MAXIMUM ALLOWABLE FORWARD
GATE CURRENT

««
z~

3.0
PULSE WIOTH (m,)

NUMBER OF CYCLES

3.0

4.0

5.0

6.0

7.0

B.O

9.0

10

VG. GATE VOLTAGE (VOLTS)

7-178

-40

-20

20
40
60
BO
TJ. JUNCTION TEMPERATURE (DC)

100

120

140

MCR3818/3918 series

DERATING AND DISSIPATION FOR RESISTIVE AND INDUCTIVE
LOADS (f = 60 to 400 Hz, SINE WAVE)
FIGURE 7 - AVERAGE CURRENT DERATING

FIGURE 8 - ON-5TATE POWER DISSIPATIOi>.l

~

~

4

r
w

~

180'

0

o

6

~

2

'"~

0

60'

I

701--+--+-~4--+-+-~.-~-~~~1--4

•

~
o~
2.0

4.0'

60

8.0

10

12

14

16

18

o

20

(l

InAV). AVERAGE ON·STATE CURRENT (AMP)

-

~

CONDUCTION ANGLE -

I I I I
4.0

20

-

---1o~

A~

0

U
r-

/,/-V

0-3//- ~ ~

::;;

«
::;;

/~

90'

15

:: 80 I--+--\----l'.:-'....r~+-"'od_

//

60

8.0

10

12

14

16

18

20

InAV). AVERAGE ON·STATE CURRENT (AMP)

FIGURE 9 - ON-5TATE CHARACTERISTICS
_

25 0

~ 20 0

:>

"""'"

~ 10 0
~ 70

~ 50

TYPII~AL

30

S 20
"I

z

;:z
~

MAXIMUM

TJ
TJ

I

3. 0

2. 0

~

lOO'C
25'C

I

:E
.~

,,/'

.'l

//

//

~ 10
~ 7. 0
z 5.0

- r--

I--"

II I

1. 0
025

I

I

I

1.0

0.5

1.5

2.5

2.0

3.0

3.5

3.75

VT.INSTANTANEOUS ON·STATE VOLTAGE (VOLTS)

FIGURE 10 - TYPICAL THERMAL
RESISTANCE OF PLATES

FIGURE 11 - MOUNTING DETAILS FOR
PRESSFIT THYRISTORS

400r-----r_~r-----r---r_-.--r_._r_ro

i

200

~

I---+---l-"~,,'-I---+--I--++++-l

.-L:505 Oi•. -F==!/ Heat Sink
~
~

'"'
{:}

40

~~

~~

«

600- 900
20

-

~c

'>

10

$.

tt:

30

r-a=300

1/ /

/

/'

1=

I//V./'/""

/- ~ ~
b@ f:::/

~~

o
o

4.0

InAV). AVERAGE FORWARD GURRENT (AMP)

FIGURE 3 - TYPICAL GATE TRIGGER CURRENT

'"
'"'"

"'
«

0;~

16

W

«
'"

,

20

24

28

32

36

40

OFF·STATE VOLTAGE =

'"
'"'"
W

----....

'I"---..

--........

'" 3.0
E'

W

001

'"

0.4

1-"

--........

--........

I"--..

0.6

"'
:;:
I--

V

.............

0.8

':;
0.7
0
>

..........

5.0

0.9

o

2:

I'----..

W

I-w
I--

12

FIGURE 4 - TYPICAL GATE TRIGGER VOLTAGE

OFF·STATE VOLTAGE. 7V

.§

~
a 7.0

8.0

1.0

:<
10

a = GONDUCTION ANGLE

InAV), AVERAGE FORWARD CURRENT (AMP)

20

I--

V

V.
/. /

30

w~
"'I--

,",W

50

180 0

"-z

60

:§f5
xl--

V

40

~~

~!2...

;:w
0'"

de

'"

1"-...
.........

>'"
2.0
-60

-40

-20

20
40
60
80
100
TJ,JUNGT10N TEMPERATURE 10GI .

120

140

7-181

0.3
-60

-40

-20

20
40
60
80
100
TJ. JUNCTION TEMPERATURE (OCI

120

140

MOC3010
MOC3011

OPTICALLY ISOLATED TRIAC DRIVER
These devices consist of a gallium-arsenide infrared emitting diode,
optically coupled to a silicon bilateral switch and are designed for
applications requiring isolated triac triggering, low-current isolated
ac switching, high electrical isolation (to 7500 V peak).·high detector
standoff voltage, small size, and low cost .

OPTICALL V ISOLATED
TRIAC DRIVER

• UL Recognized File Number 54915
MAXIMUM RATINGS (TA = 260C unle.. otherwise notedl

I

Rating
Svmbol
INFRARED EMITTING DIODE MAXIMUM RATINGS

V.lue

Unit

Reversa.Voltage

VR

3.0

Volts

Forward Current - Continuous

IF

50

mA

Total Power Qissipation@ T A = 2SoC

Po

100

mW

1.33

mW/oC

r

Negligible Power in Transistor

Derate above 25°C
OUTPUT DRIVER MAXIMUM RATINGS
OlloState Output Terminal Voltage
OnoState RMS Current
(Full Cvcle, 50 to 60 HzI

TA = 25°C
TA = 70°C

Peak Nonrepetitive Surge Current

VORM

250

Volts

IT(RMSI

100
50

mA
rnA

ITSM

1.2

A

Po

300
4.0

rnW
mW/oC

7500

Vac

Po

330
4.4

mW
mW/oC
°c

(PW= 10ms,OC= 10%)
Total Power Dissipation @ TA :: 25°C
Derate above 250 e
TOTAL DEVICE MAXIMUM RATINGS
Isolation Surge Voltage (1)
(Peak ac Voltage, 60 Hz,

• VISO

5 Second Duration)

•

Total Power Dissipation @ T A =- 2SoC
Derate above 250C
Junction Temperature \Range
Ambient Operating Temperature Range

Storage Temperature Range
Soldering Temperature (1051
(1) Isolation surge voltage,

Anode 1 ,-

Visa. is an

~---

TJ

"40 to +100

TA
T stg

-40 to +70

°c

-40 to +150

°c

-

260

°c

internal device dielectric breakdown rating.

r---L~ 6 Main Terminal

NOTES:
1. LEADS WITHIN 0.25 mm (0.0101
DIAMETER OF TRUE POSITION
AT SEATING PLANE AT
MAXIMUM MATERIAL
CONDITION.
2. DIMENSION "L" TO CENTER OF
LEADS WHEN FORMED PARALLEl.

OIM

A

a

C
0
Cathode 2 ,,------'

5 Triac Driver Substrate
DO NOT Connect

F
G
H
J
K

L
3

4 Main Terminal

M
N
p

R

MilliMETERS
MAX'
MIN
B.13
B.B9
1.27
2.03
5.0B
2.92
0.41
0.51
1.02
1.7B
2.54
BSC
1.02
2.16
0.20
0.30
3.81
2.54
7.62
ase
00
150
0.38
2.54
0.61
0.97
6.10
6.60

INCHES
MIN
MAX
0.320 0.350
0.050 O.OBO
0.115 0.200
0.016 0.020
0.D40 0.070
0.100 BSC
0.040 0.OB5
-0.008 0.012
0.100 0.150
0.300 OSC
00
150
0.015 0.100
0.032 0.038
0.240 0.260

CASE 730

7-182

MOC3010, MOC3011

ELECTRICAL CHARACTERISTICS (TA

= 250 C ~nless otherwise noted I

I Symbol

Min

TVp

Max

Unit

IA

-

0.05

100

!"A

VF

-

1.2

1.5

Volts

lOAM

-

10

100

nA

VTM

-

2.5

3.0'

Volts

Critical Rate of Rise of Off-5tate Voltage. Figure 3

dv/dt

-

2.0

dv/dt

-

0.15

-

VI!"s

Critical Rate of Rise of Commutation Voltage, Figure 3 .

-

8.0
5.0

15
10

-

100

-

Characteristic

LED CHARACTERISTICS

Reverse Leakage Current
(VA

=3.0VI

Forward Voltage

(IF = 10 mAl
DETECTOR CHARACTERISTICS (IF = 0 unless otherwise noted I
Peak Blocking Current, Either Direction

(Aated VOAM. Note 11
Peak

On~State

(lTM

Voltage, Either Direction

= 100 rnA Peakl

VI!"s

(I load = 15 mAl
COUPLED CHARACTERISTICS
LEO Trigger Current, Current Required to Latch Output

rnA

1FT

(Main Terminal Voltage = 3.0 VI

MOC3010
MOC3011

Holding Current, Either Direction

IH

!"A

Note 1. Test voltage must be applied within dv/dt rating.
2. Additional information on the use of the MOC3010/3011
is available in Application Note AN·780.

TYPICAL ELECTRICAL CHARACTERISTICS

TA=250 C

FIGURE 1 - ON-5TATE CHARACTERISTICS
+800

f- oltput

L.. IWidt~

= 801
",

IF=20mA

C
.E +400 f- f = 60 Hz

....

/

V

'"'"
a

1.5

~

1.3

/

. Til = 250 C

ill

V

FIGURE 2 - TRIGGER CURRENT vorlul TEMPERATURE

r-

....

~1. 1

/

ffi

N

:::;

w

~

/

t;;

z
o
.. ·400
.t-

. . . .V
~

'"~

D.9

o

/

z

-- -..

r-

r--- . . . .

0.7

i'"""-- r--...

,./

-800
-14 -12 -10 -8.0 -6.0 -4.0 -2.0

0

2.0 4.0 6.0

8.0

10

12

0.5
-40

14

-20

20

40

60

TA. AMBIENT TEMPERATURE (OCI

VTM. ON-5TATE VOLTAGE (VOLTSI

7-183

80

100

•

MOC3010, MOC3011

FIGURE 4 - dv/dt versus LOAD RESISTANCE

FIGURE 3 - dv/dt TEST CIRCUIT
6
2

0.24

2.4

Sialic

MOC3010
MOC3011

0.20

2.0
4

-;

-'!
_ Vin=30VRMS
>
;:; 1.6 Test Circuit in Figure 3

~

n n n n+

Commutating ..."",.

SV

/

O.B

JUUU~
I Commutatlng
I Static I
t-- dv/dt ~dv/dt~

0.4

1.2
O.B
RL. LOAD RESISTANCE (kll)

..........

RL = 2

t;
J

'i O.B

.... I-l-

RL.- 510 II

0.4

I

25

~

30

40

dv/d' = 8.9 Vin I
RI =1 kll

0

..
r--.

.....: ..

--- - -

:I""- ' -

10

0
.~

0.04

o

I I

·0

Test Circuit in Figure 3

0

.......

~ 1.2

50

BO

70

60

90

1.\

110

10

100

FIGURE 7 - MAXIMUM NONREPETITIVE SURGE CURRENT

3.0

_

t!J5WI
IF=20mA

":$>ffi

~

... 2.0
:::>

w

to

a:

-

iil

'"
~

H

-

I--

1.0

'"

E
o
0.01

IDe

I. MAXIMUM OPERATING FREQUENCY (Hz)

TA. AMBIENT TEMPERATURE (OC)

i1!

~
...

2.0

000

0.20

Circuit in Figure 3

... ... ;;",.
ill -

1.6

: dv/d,· 0.15 V/••

Commutating dv/dt

.........

E
.,Z

0.08

Staticdv/dt

1.6

0.12

FIGURE 6 - COMMUTATING dv/dt versus FREQUENCY
0.24

2.0

~

0.04

o

FIGURE 6 - dv/dt versus TEMPERATURE

•

~

0.4

24

...

----

I---

g

~
.c:

/'

dv/dt - B.9 f Vln

~

,....

I

~1.2

-

~

0.16

0.1

1.0
pw. PULSE WIDTH (m.)

7-184

10

100

MOC3010, MOC3011

FIGURE 8 - LAMP DRIVER APPLICATION

5W

VCC

o-_~R;i~nV-.o.~I--_~6~____J.,.J
120 Vac
4

FIGURE 9 - RESISTIVE LOAD

6

390

n
120 V
60 Hz

MOC3010
MOC3011

4

•

FIGURE 10 - INDUCTIVE LOAD.

6

lao n

.220

n

120 V
60 Hz

MOC3010

Cl

MOC3011

R

4
C2

R. C1, C2 Values Depend upon Load Condition.

7-185

MPU131
MPU132
MPU133

PROGRAMMABLE UNIJUNCTION
TRANSISTORS

SILICON PROGRAMMABLE
UNIJUNCTION TRANSISTORS
designed to enable the engineer to "program" unijunction
characteristics such as RBB, 11, lV, and Ip by merely selecting two
resistor values. Application includes thyristor-trigger, oscillator, pulse
and timing circuits. The MPU131, MPU132 and MPU133 may also
be used in special thyristor applications due to the availability of an
anode gate. Supplied in an inexpensive T0-92 plastic package for
high-volume requirements, this package is readily adaptable for use in
automatic insertion equipment.
• Programmable - RBB,11, IV and Ip.

A

•

Low On-State Voltage - 1.5 Volts Maximum@ 'F'; 50 mA

•

Low Gate to Anode Leakage Current - 5.0 nA Maximum

MB

•

A

SEATINGP~t---'
~
~

• High Peak Output Voitage - 11 Volts Typical
Low Offset Voltage - 0.35 Volt Typical (RG = 10 k ohms)

PLANE F

. ---.l

II

Rating
Power Dissipation

Derate Above 25°C
DC Forward Anode Current

Symbol

Value

Unit

PF
1/9JA

375
5.0

mW
mW/oC

IT

200
2.67

mA/oC

±20

mA

1.0
2.0

Amp
Amp

Derate Above 250 C
DC Gate Current
Repetitive Peak Forward Current

IG

~7

rnA

ITSM

Amp

5.0

10 itS Pulse Width

DIM
A

B
C
D

Gate to Cathode Forward Voltage

VGKF

40

Volt

VGKR

5.0

Volt

G
H

Gate to Anode Reverse Voltage

VGAR

40

Volt

J

Anode to Cathode Voltage (1)

VAK

±40

Volt

TJ

-50 to +100

°c
°c

Storage Temperature Range

Tstg

-65 to +150

SECT. A·A

c

f

STYLE 10'
PIN 1. CATHODE
2. GATE
3 ANODE

Gate to Cathode Reverse Voltage

Operating Junction Temperature Range

~

ItR

.I.TRM

100 ItS Pulse Width. 1.0% Duty Cycle
20 ItS Pulse Width, 1.0% Duty Cycle
Non-Repetitive Peak Forward Current

I

Dj?-~

MAXIMUM RATINGS

K

F

K
L
N
P
R
S

MILLIMETERS
MIN
MAX

4.32
4.44
3.18
0.41
0.41
1.14

-

2.41
12.70
6.35
2.03
2.92
3.43
0.36

5.33
5.21
4.19
0.56
0.48
1.40
2.54
2.67

2.92
-

INCHES
MIN
MAX

0.170
0.175
0.125
0.016
0.016
0.045
0.095
0.500
0.25
0.080
0.115
~

0.41 J!Jl!4

0.210
0.205
0.165
0.022
0.019
0.055
0.100
0.105
0.115

-

QJ!J

All JEDEC dimensions and notesapplV.
CASE 29-02

(1) Anode positive, AGK "'" 1k ohm
Anode negative, RG K .... open

7-186

MPU131, MPU132, MPU133

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Figure

Symbol

Min

Typ

Max

Unit

MPU131
MPLJ132
MPU133
MPU131
MPU132
MPU133

2,9-14

Ip

-

1.25
0.19
0.08
4.0
1.20
0.70

2.0
0.30
0.15
5.0
2.0
1.0

"A

MPU131
MPU132
MPU133

1

VT

0.2
0.2
0.2
0.2

0.70
0.50
0.40
0.35

1.6
0.6
0.6
0.6

Volts

1.4,5,

IV

-

50
25

70
50

18
18
270
270

-

1.0
30

5.0
75

-

5.0

50

nAdc

Characteristic
Peak Current

(VS

= 10 Vdc,

(VS

= 10 Vdc, RG = 10 k ohms)

RG

= 1.0 Mfl)

Offset Voltage
(VS = 10 Vdc, RG = 1.0 Mn)
(VS

= 10 Vdc,

RG

Valley Current
IVS = 10 Vdc, RG

IVS = 10 Vdc, RG

= 10 k ohms)

.-

-

-

IAII Types)

= 1.0 Mfl)

MPU131,132
MPU133
MPU131
MPU132,133

= 10 k ohms)

"A

"

Gate to Anode Leakage Current

IGAO

(VS = 40 Vdc, TA = 25°C, Cathode Open)
(VS = 40 Vdc, TA = 75°C, Cathode Open)
Gate to Cathode Leakage Current
IVS = 40 Vdc, Anode to Cathode Shorted)

Forward Voltage (IF

IGKS

=50 mA Peak)

Peak Output Voltage
(Va =20 Vdc, Cc = 0.2 "F)

Pulse Voltage Rise Time

nAdc

1,6

VF

-

O.B

1.5

Volts

3,7

Vo

6.0

11

-

Volts

3

tr

-

40

80

ns

IVa ='20 Vdc, Cc = 0.2 "F)
FIGURE 1 - ELECTRICAL CHARACTERIZATION

A

R2

G
-Vs '" Rt1'1 R2 V S

Al
K

lA - Programmable Unljunctlon
with "Program" Resistors
R1 and R2

1 B -- Equivalent Test Circuit for
Figure 1A used for electrical

Ie -

Electrical Characteristics

charactoristics testing
(also see Figure 2)

FIGURE 3 - VoAND tr TEST CIRCUIT

FIGURE 2 - PEAK CURRENT (lp) TEST CIRCUIT

+V
510 k

16 k

Vo

6V
A
RG "- R/'2
Vs ~ VS/2
(See Figure 1)

Cc

27.k

Scope

20 !!
Put
20

Under

Test

7-187

0.6 V ~=~-I-_ _ _ _ _ _ _...

·MPU131, MPU132, MPU133

TYPICAL VALLEY CURRENT BEHAVIOR

FIGURE 5 - EFFECT OF TEMPERATURE

FIGURE 4 - EFFECT OF SUPPLY VOLTAGE
1000

I--- TA ' 25'C
50o f=:{SEE FIGURE 11

i

§

RG,lOkH=

300

 10 0
'-'

«
>

~

0

?-

0

-

500

200

.:....

~

100

=>
'-'

'"

50

'"

-

0
I0"'-50

>

20

?

5.0

2:

2.0

0

w

==

10

{SEE FIGURE 11

1.0Mn_
15

10

5.0
-50

20

-15

TA

o

2:

1.0

'"
o

0.2

~

0.1

'"

0.05

~

20

L

~
....
~
5o

0.01
0.01

15

. . . .V

>

'"~

oj

u:
> 0.01

II

Cc =0.2"F

TA'15'C
g r-- {SEE FIGURE 31

25'C

w

«

0.02

0.05

0.1

0.2

0.5

1.0

2.0

50

/"

./

o /'
5.0
o

5.0

../

..............

~

10

-- -

15

10

15

VS. SUPPLY VOLTAGE {VOLTSI

STANDARD UNIJUNCTION

Bl

'~-r

r----~-+

R2

P'
N

.

R1

RSS" R1 + R2

Rl
n- R1
-+ R2

Bl

Equivalent Circuit

Circuit Sytnbol

Typical Application

PROGRAMMABLE UNIJUNCTION
A

CfT"
K

E

t1"
R

p

N
p

N

G

2 RBB - Rl + R2
Rl

n-RT+R2

Rl

K

.

CC.

Bl

Circuit Symbol

Equivalent Circuit
with External "Program"
Resistors R1 and R2

7-188

~

,..-

FIGURE 8 - STANDARO UNIJUNCTION
COMPARED TO PROGRAMMABLE UNIJUNCTIO~I
B2

/"

,/
10

IF. PEAK FORWARD CURRENT (AMP)

'~

+100

FIGURE 7 - PEAK OUTPUT VOLTAGE

0.5

1;;

+15

15

0

~

+50

+25

TA. AMBIENT TEMPERATURE {'CI

'"«
>
~

r- ....... _........:1.0M U 1

I-- VS'10VOLTS

FIGURE 6 - FORWARD VOLTAGE

~

-100 kU

VS.SUPPLY VOLTAGE {VOLTSI

10

RG '10 kn

..........

~

.«

-

....... r-

Typical Application

30

35

40

MPU131, MPU132, MPU133

TYPICAL PEAK CURRENT BEHAVIOR
MPU131
FIGURE 9 - EFFECT OF SUPPLY VOLTAGE ANO RG

FIGURE 10 - EFFECT OF TEMPERATURE AND RG
100

10

50

5.0

1....
~
=
a
'"
~

If

3.0
2.0
1.0

~

~

r---.RG

0.5

1DkU
100kU
1.0MU

0.3
0.2

20

...........

10

........ .........

Vs I1DVOLTS
(SEE FIGURE 2)

.........

~

5.0

a
:to::

2.0

~

1.0 i===RG -1DkU

TA: 25°C
(SEE FIGURE 2)

100kn

O. 5

5.0

I

I

10

15

O. 1
-50

20

.........

1.0MU

0.2

0.1

-..

.......

........

+50

+25

-25

VS. SUPPLY VOLTAGE (VOLTS)

+15

+100

TA.AMBIENTTEMPERATURE (OC)

MPU132
FIGURE 11 - EFFECT OF SUPPLY VOLTAGE AND RG

FIGURE 12 - EFFECT OF TEMPERATURE AND RG

10

30
20

5.0

"'

10
TA - 25°C
(SEE FIGURE 2)

0

-

"'

0
0
_RG=10kU

Vs: 10 VOLT~.~
(SEE FIGURE 2)=

5
-RG:1DkU
2

100kU

10

15

20

.........

.........

.........

.........

1.0MU

0.05
0.03
-50

1.0MU

"'

100kU '"

O. 1

0.2

O. 1
5.0

"'-...

........

+25

-25

+50

+15

+100

TA. AMBIENT TEMPERATURE (OC)

Vs. SUPPLY VOLTAGE (VOLTS)

MPU133
FIGURE 13 - EFFECT OF SUPPLY VOLTAGE AND RG

:<

10

0.1
0.5

50

3

0.3

~

0.2

....

a=

FIGURE 14 - EFFECT OF TEMPERATURE AND RG

1.0

RG = 10kU

:<

100kU

3

i

'I-

......

0.1
0.01
0.05
If

'"
~

!Io::

:'.5

10

~

"'

0.5
0.2 -R.E-1DkU ...........

15

.........

./""'....
.........

100-Gl

1.0~n

.........

0.02

0.01
5.0

1.0

VS-1DVOLTS
(SEE FIGURE 2)

...........

0.05

TA 25°C
(SEE FIGURE 2) f - - ; -

0.02

\."'-

~ O. 1

1.0MU

0.03

2.0

20

0.0 1
-50

-25

+25

+50

TA. AMBIENT TEMPERATURE (OC)

VS. SUPPLY VOLTAGE (VOLTS)

7-189

-

.........
+15

+100

•

MPU6027
MPU6028

PROGRAMMABLE UNIJUNCTION
TRANSISTORS

SILICON PROGRAMMABLE
UNIJUNCTION TRANSISTORS
· .. designed to enable the engineer to "program" unijunction characteristics such as RBB.ll. IV. and Ip by merely selecting two resistor
values. Application includes thyristor·trigger. oscillator. pulse and
timing circuits. These devices may also be used in special thyristor
applications due to the availability of an anode gate. Supplied in an
inexpensive TO-92 plastic package for high·volume requirements. this
package is readily adaptable for use in automatic insertion equipment.

K

•

Programmable - RBB. 11. IV and Ip.

•

Low On·State Voltage - 1 5 Volts Maximum@ IF = 50 mA

•
•
•

High Peak Output Voltage - 11 Volts Typical

Low Gate to Anode Leakage Current - 10 nA Maximum

Low Offset Voltage - 0.35 Volt Typical (RG

'i~'
__J
~

= 10k ohms)

SEATING
PLANE F

'L

. _.1

O-jti._G

~

JI-=

rt

MAXIMUM RATINGS
Rating
Power DI5slpation(1)
Derate Above 2SDC
DC Forward Anode Current(2)

Symbol
PF
l/tiJA

375
5.0

mW
mW/oC

'T

200
2.67

mA
mA/oC

'G

±50

mA

1.0
2.0

Amp
Amp

50

Amp

Derate Above 25°C
DC Gate Current
Repetitive Peak Forward Current

'TRM

100"s Pulse W,dth. 1.0% Duty Cycle
20", Pulse W,dth. 1.0% Duty Cycle
Non-Repetitive Peak Forward"Cutrent
10 ~s Pulse WIdth

'TSM

Gate to Cathode Forward Voltage

VGKF

40

Volt

Gate to Cathode Reverse Voltage

VGKR

-5.0

Volt

Gate to Anode Reverse Voltage (1)

VGAR

40

Volt

VAK

J-40

Volt.

TJ

-50 to +100

°c
°c

Anode to Cathode Voltage
Operating Junction Temperilture Range
Storage Temperature Range

T stg

-55 to +150

(1) Anode positive, RG K = 1 k. ohm
Anode negative, RGK z::I open

SECT. A·A

R ,

~d

Unit

Value

'

C

N

2,;!

N

STYLE 16:
PIN 1. ANODE
2. GATE
3. CATHODE
MILLIMETERS
MIN MAX
4.32
5.33
B
4.44
5.11
C
3.18
4.19
D
0.41
0.56
F
0.48
0.41
G
1.14
1.40
H
2.54
J
2.41
2.61
K 17.10
L
6.35
N
2.03
2.92
P
2.92
R
3.43
S
0.41
0.36

DIM
A

-

-

niCHES
MIN MAX
0.170 0.210
0.175 0.205
0.115 0.165
0.016 0.021
0.016 0.019
0.045 0.055
- 0.100
0.095 0.105
0.500
0.250
0.080 0.115
0.115

-

I

O. 14

0.016

All JEDEC dimensiansand notes apply.

CASE 29-02
TO-92

7-190

K

MPU6027, MPU6028

ELECTRICAL CHARACTERISTICS (T A = 2SoC unless otherwise noted)
Characteristic

Peak Current

Figure

Symbol

2.9.11

Ip.

Min

Typ

Max

1.25
0.08

2.0
0.15

-

4.0
0.70

5.0
1.0

IVs = 10 Vdc. RG = 1 0 M!!I

MPU6027
MPU6028

-

!VS = 10 Vdc. RG = 10 k ohms)

MPU6027
MPU6028

-

Offset Voltage
IVS = 10 Vdc. RG
(VS

= 10 Vdc.

RG

-

1
MPU6027
MPU6028

0.2
0.2

0.70
0.50

1.6
0.6

= 10 k ohms)

(Both Types)

0.2

0.35

0.6

1.4.5.

Valley Current

IV

"A

IVS = 10 Vdc. RG = 1.0 Mn)

MPU6027
MPU6028

-

18
18

50
25

IVS = 10 Vdc, RG = 10 k ohm.)

MPU6027
MPU6028

70
25

270
270

-

-

1.0
3.0

10

-

5.0

50

-

Gate to Anode Leakage Current

"A

Volts

VT

1.0 Mlli

co

Unit

nAdc

IGAO

IVS = 40 Vdc. TA = 25°C. Cathode Open)
IVS = 40 Vdc. TA'= 75°C. Cathode Open)

-

-

IGKS

Forward Voltage IIF = 50 mA Peak)

1.6

VF

-

0.8

1.5

Volts

Peak Output Voltage
IVB = 20 Vdc. Cc = 0.2 "F)

3,7

Vo

6.0

11

-

Volts

tr

-

40

80

ns

Gate to Cathode Leakage Current

nAdc

IVS'= 40 Vdc. Anode to Cathode Shorted)

3

Pulse Voltage Rise Time

IVB = 20 Vdc. Cc = 0 2 "F)

-

FIGURE 1 - ELECTRICAL CHARACTERIZATION

[tJ

+Va
A

~

R2
G

RG

~Vs = RIR:

R2 Va

A1R2
+ R2

= RI

RG

RI

-=-

vAK

K

1A - Programmable Unijunction

with "Program" Resistors
R1 and R2

Vs

--tp~----~----~--_ IA

1 B - Equivalent Test Circuit for
Figure 1A used for electrical

IGAO

characteristics testing

Ie - Electrical Characteristics

(also see Figure 2)

FIGURE 3 - Vo AND tr TEST CIRCUIT

FIGURE 2 - PEAK CURRENT lip) TEST CIRCUIT,

+V
510 k

16 k

Va

6V

R

27 k

Scope
20
Put
20

Under

Test

7-191

n

0.6 V't';;.,;;;j!-+-________

MPU6027, MPU6028

TYPICAL VALLEY CURRENT BEHAVIOR

FIGURE 5 - EFFECT OF TEMPERATURE

FIGURE 4 - EFFECT OF SUPPLY VOLTAGE

1000
25 0 C

I==TA
500 ~ISEE FIGURE 11

!

RG

lOkl!=

>- 200

I
~

«
>

?

-

~

300
0

lOOk(!

........

50
30
20
10 ~
5.0

-

0
10

1.0M,,_
15

10

5,0
-50

20

w

+50

+25

+75

CC', 0.2"F

TA=25 0C

7
/"

1--

/'

5
0.5

~

0.2

~

0.1

'"

0.05

...... V

V

-

V
0

> 0.02
0.01
0.01

+100

ISEE FIGURE 31

1.U

o

u:

•

i'-

r-...1.0 M

FIGURE 7 - PEAK OUTPUT VOLTAGE

f--

~

....

TA, AMBIENT TEMPERATURE lOCI

25

>
~

r-.

-25

.FIGURE 6 - FORWARD VOLTAGE

~

~

i---VS' 10 VOLTS
ISEE FIGURE 11

VS,SUPPL Y VOLTAGE IVOLTSI

to

--!lG - 10 kl!

I-..

100 kll

100

"-

o
0.02

0.05

0.1

0.2

0,5

.1.0

2.0

o

5.0

5.0

./

--

1--;.- /

10

~

l--- ~
15

20

25

30

VS.SUPPLY VOLTAGE IVOLTSI

IF, PEAK FORWARO CURRENT IAMPI

FIGURE 8 - STANDARD UNIJUNCTION
COMPARED TO PROGRAMMABLE UNIJUNCTION
STANDARD UNIJUNCTION

,.----1'--+

B2
E f L { P: : RBB = Rl + R2
R 1 ~:

BI
Equivalent Circuit

Bl
Circuit Symbol

PROGRAMMABLE UNIJUNCTION

E

~P
. G

N

P
N
K

Rl

Ri"'+'R2

•

Typical Application

::RBB:Rl+R2
RI
1) = Rl + R2
RI

K

BI
Circuit Symbol

Equivalent Circuit

with External "Program"
Resistors R 1 and R2

7-192

Typical Applicetlon

35

40

MPU6027. MPU6028

TYPICAL PEAK CURRENT BEHAVIOR
MPU6027
FIGURE 9 - EFF ECT OF SUPPL Y VOL TAGE ANO RG

FIGURE 10 - EFFECT OF TEMPERATURE AND RG
100

0

0

5. 0

1

~

3. 0

.3

~ 2.0

a

1. 0

><

«

~

!f


«
S

«

~.

C

20

4

8

I'

16

IT IAV), AVERAGE ON~TAH CURRENT (AMP)

IT (AVI, AVERAGE ON STATE CURRENT lAMP)

7-203

20

SCl36
series

MT2

O~---IO~

G

o MT1

TRIACS
3 AMPER ES RMS .
200-600 VOLTS

BIDIRECTIONAL TRIODE THYRISTORS
designed primarily for full-wave ac control applications, such as
light dimmers, motor controls, heating controls and power supplies_
•

Low Off-State Leakage Currents

•

All Diffused and Glass Passivated Junctions for Greater Parameter
Uniformity and Stability

•

Rugged Industry Proven ThermopadL1 Construction

•

TO-5 Lead Form Available

MAXIMUM RATINGS
Symbol

Rating'

Peak Repetitive Off-State Voltage
(TC = 1100 CI

•

Value

Unit

IT(RMS)

200
300
400
500
600
3_0

Amp

ITSM

30

Amp

12t

3.6

A2s

(t = 1 to 8.3 ms)
Critical Rate of Rise of On·State Current

di/dt

Peak Gate Power

PGM

5.0
5.0
0.1
5.0
-40 to +110
-40 to +150

B
C

SC136.1 0
E
M
RMS On-5tate Current
(TC =65°C)
Peak Non-Repetitive Surge Current

K

Volts

VORM

STYLE 7
PIN 1 MTl
2 GATE
3 MT2

(One Full Cycle, 60 Hz)
Circuit Fusing

Average Gate Power

PG(AV)

Peak Gata Voltage

VGM

Operating Junction Temperature Range

TJ
Tsto

Storage Temperature Range
THERMAL CHARACTERISTICS
Characteristic

Thermal Resistance. Junction to Case
Junction to Ambient

AIl'S

Watts
Watt
Volts

°c
°c

DIM
A

8
C
D
F
G

H

Symbol
R9JC
R9JA

Max
10
75

ATrademark of Motorola Inc.

I

Unit
°C/W
°C/W

J

K
M

n

R
5
U

v

MILLIMETERS
MIN MAX
10.80 11.05
749
7.75
1.41
1.67
0.51
0.66
1.92
3.18
2.31
2.46
1.17
2.41
0.64
0.38
15.11 16.64
30 TYP
4.01
3.76
1.14
1.40
0.89
0.64
3.94
3.68
1.01

INCHES
MIN MAX
0.425 0.435
0.195 0.305
0.095 0.105
0.020 0.016
0.115 0.125
0.091 0.097
0.050 0.095
0.015 0.025
0.595 0655
30 TYP
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155
0.040

CASE 77·04
TO·126

7-204

SC 136 series

-ELECTRICAL CHARACTERISTICS (TC = +2So C either polarity of MT2·to MT1 voltage unle.. otherwise notedl
Symbol

Characteristic
Peak Oll-State Current
(VO = Rated VORM, Gate Open I

-

-

10
500
1.8

TC = 2So C
TC

=-40o C

Modesl

...............

........

0.2

-

-

-

50
100

-

-

mAde

= 25°C

TC

-

-

-

-

-

=-40°C
dv/dt

50
100

-

100
200

15

-

Volts/"s

-

TC = 110°C
dv/dt(el

VoltS/IlS

-

TC = 65°C

-

5

./

/

I'\.
'\ / .

V

r--.....
i""-

CAS

,/'
I

\

O.B

.,../
1.6

V"

.....V

7

REFERENCE:

•

FIGURE 2 - MAXIMUM POWER DISSIPATION

'\

o

-

mAde

AMBIENT

30

2.0
3.0

-

...............
,I

~
~ 50

"...x
"

-

TJ= 110DC
GATE POWER ~ .IW
FULL-WAVE
SINUSOIDAL CURRENT

I\.

"\

70

50

J

90

~
g

-

-

t""- r-..

'"::>

~

-

FIGURE 1 - RMS CURRENT OERATING

w

25

IL
TC

Trigger Source: 10 V, 50 Ohms,
MT2 (+1, G (+1; MT2 (-I, G H;
MT2 (+1, G (-I
Critical Rate-af-Rise of Off-State Voltage
(VO = Rated VORM, Gate Open I
Critical Rate-af-Rise of Commutating Voltage
(VO = Rated VORM, IT(RMSI = 3 A,
di/dt = 1.6 Alms, Gate Openl

...ill

-

IH

latching Current

~

-

Vde

TC = 2So C
TC = -40o C
TC = 110°C

= 24 Vde, RL = 200 Ohms, Gate Open I

S '\.

Volts

VGT

(VO = 24 Vdel
Trigger Source: 6 VI 50 Ohms,
MT2 (+1, G (+1; MT2 (-I, G H;
MT2 (+1, G (-I

w

-

mAde

TC = 25°C
TC = -40°C

~ 110

-

-

Unit
IlA

IGT

Holding Current

(VO

Max

VTM

(Vo = 12 Vdc, RL = 50 Ohmsl
MT2 (+1, G (+1; MT2 (-I, G (-I, MT2 (+1 G (-I
OC Gate Trigger Voltage
(VO = 12 Vde, RL = SOOhmsl
MT2 (+1, G (+1; MT2 H, G H; MT2 (+1, G H

= Rated VORM, All

Typ

TC = +2So C
TC ~ +110o C

Peak On-State Voltege
(lTM = SA,Puise Width - 1 ms, Outy Cycle < 2%1
DC Gate Trigger Current
(VO = 6 Vde, R L = 50 Ohmsl
MT2 (+1, G (+1; MT2 (-I, G H; MT2 (+1, G H

(VO

Min

IORM

2.4

,.,

..,- / '
O.B

3.2

V

TJ=IIODC
FULL-WAVE
SINUSOIDAL
CURRENT

7-205

-

I
1.6

2.4

ITIRMSI,RMS ON-STATE CURRENT lAMP)

ITlRMS), RMS ON-STATE CURRENT (AMP)

-

.. 3.2

SC141
SC146

MT2

O~---t.,;~

G

TRIACS
6 ANO 10 AMPERES RMS
200-600 VOLTS

BIDIRECTIONAL TRIODE THYRISTORS
· .. designed primarily for full·wave ac control applications, such as
light dimmers, motor controls, heating controls and po.wer supplies.

MT2

• Triggering Specified in Three Quadrants
• Blocking Voltage to 600 Volts
• All Diffused and Glass Passivated Junctions for Greater. Parameter
Uniformity and Stability
• Small, Rugged, Thermowatt.a. Construction for Low Thermal
" Resistance, High Heat Dissipation and Durability

MTI
MT2
GATE

MAXIMUM RATINGS
Rating
Peak Repetitive Off-State Voltage, Gate Ope!".
SC141
SCI46

•

Symbol

M

SC141
SC146
Peak Non·Repetitive Surge Current
One Full Cvcle, 60 Hz
SC141
SCI46
Circuit Fusing Considerations
SC141
t = 8.3 ms
SC146
Peak Gate Power {Pulse Width = 10 I'sl
Average Gate Power (TC = +80 oC, t =8.3 msl
Peak Gate Current (Pulse Width = 10 I'sl
Peak G.te Voltage
Operating Junction Temperature Range
Storage Temperature Range

Unit

Volts
200
400
500
600

.~~

RMS On-State Current
TC = BOaC

Value

VORM

Amp

IT{RMSI

-

6
10
Amp

ITSM
80
120
12 t

PGM
PG(Avl
IGM
VGM
TJ
T stg

A2s
26.5
60
10
0.5
3.5
10
-40 to +100
-40 to +125

MILLIMETERS

Watts
Watt
Amp
Volts
°c
°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
SC141
SCI46

Symbol
R8JC

Max

Unit
°C/W

2.2·
1.5

This is advance information and specifications are subject to change without notice.
"Trademark of Motorola Inc.

7-206

STYLE 2.
PIN 1. MAIN JERMINAll
2. MAIN TERMINAL 2
3. GATE
4. MAIN TERMINAL 2

DIM
A

MIN

MAX

INCHES

MIN

MAX

0560 0.625
1423 1587
B
10.66 0.380 0.420
C
0.140 0.190
4.82
35
D
1.14
0.020 0045
051
F
3.531 3733 0.139 0.147
0.090 0110
G
2.79
2.29
0.250
H
6.35
0.012 0.045
J
0.31
0.500 0.562
K
12.70 1427
l
0.045 0070
171
0.190 0.210
N
483 533
0100 0120
2.54 304
n
0.080 0115
2.04 292
R
S
0.020 0055
1.39
051
T
0.230 0.270
585 685
CASE 221.()2
10·220 AB
All JEDEC dimensions and notes apply

"'

-

SC141,SC146

ELECTRICAL CHARACTERISTICS (TC ~ +250 C, Either Polarity of MT2 - to - MTI Voltage unless otherwise noted I
Symbol

Characteristic
Peak Off-State Current

Min

Typ

Max

Unjt
mA

-

-

0.1
0.5

-

-

1.83
1.65

IORM

VO: Rated VORM I
TC: +25 0 C
TC = +1000 C

Gate Open-Circuited

Peak On-State Voltage
Pulse Width .. 1 ms, Duty Cycle .. 2%.
SC141 ITM : 8.5 A Peak
SC146 ITM : 14 A Peak
Critical Rate of Rise of 0lf-State Voltage
VO: Rated VORM, Gate Open-Circuited,

Volts

VTM

50·

dv/dt

Volts/"s

TC: +1000 C

Exponential Waveform

dv/dt(cl

Critical Rate-ot-Rise of Commutating Off-State Voltage (1)

Volts/"s

IT(RMSI: Rated IT(RMSI, Vo : Rated VORM,
TC = +800 C
Gate Open-Circuited

SC141 Commutating dildt = 3.2 Alms
SC146 Commutating di/dt:5.4 Aim,
DC Gate Trigger Current

92

w

~

-

80
80

-

-

-

-

- -

2.5
2.5
3.5
3.5

mAdc

-

-

50
100
mAdc

IL

f·

:-"-

"-

-

Vdc

TC: +25 0 C
TC: -40°C

,
-

~

5Jro 60 1HZ_

FIGURE 2 - POWER DISSIPATION

o

~

iii

o

,.=

.........

:-"-

'\

'\.

:-"-

{T'
l\.
I'\.

~
w

"

50

30
SCI41
STEADY STATE
RMS LIMIT'

20

yo
'/
SCI46
STEADY STATE
RMS LIMIT

10

'"ffi

~C146

100
200
200
400

100

z

:-"-

"

-

-

FIGURE 1 - RMSCURRENT DERATING

~

50
50

0.2

VO: 24 Vdc
Gate Tri"gger Source = 15 V,100 Ohms, Trigger Mode
MT2 (+1, Gate (+1; MT2 (-I, Gate H
MT2 (+1. Gate H
MT2 (+1, Gate (+1; MT2 H, Gate H;
TC: -40°C
MT2 (+1, Gate (-I;
TC: -40°C

~

-

-

Latching Current

96

-

IH

Vo = 24 Vdc, IT: 0.5A
Puls~ Width: 1 ms, Duty Cycle .. 2%.
Gate Trigger Source = 7 V, 20 Ohms

w

mAdc

VGT

Holding Current

=
=>
~

-

IGT

VO: 12 Vdc, Trigger Mode
MT2 (+1, Gate (+1; MT2 (-I, Gate H; RL=1000hms
MT2 (+1, Gate H; RL: 50 Ohms
MT2 (+1, Gate (+1; MT2 H, Gate H; RL : 50 Ohms
TC: -40°C
MT2 (+1, Gate H; RL: 25 Ohms;
TC: -40°C
DC Gate Trigger Vol tage
V 0 : 12 Vdc, Trigger Mode
MT2 (+1, Gate (+1; MT2 H, Gate (-I; RL : 100 Ohms
MT2 (+1, Gate (-I; RL : 50 Ohms
MT2 (+1, Gate (+1; MT2 H, Gate (-I; RL : 50 Ohms
TC: -40°C
MT2 (+1, Gate (-I; RL " 25 Ohms;
TC: -40°C
VO: Rated VORM; RL: 1000 Ohms; All Polarities
TC: +100o C

~ 100

-

4
4

>

'"
1i

..........

';1x"

i""...

~

10
IT(RMSI. RMS ON.sTATE CURRENT (AMP)

ii:"

7-207

,y
I

0.5 0.7

.#

I.TJ '" lOooe
2.t ONOUCTION ANGLE;; 3600
3.t URRENT WAVEFORM IS
SINUSDIDAL

2
3
5
7
10
20
ITIRMS),RMSDN.sTATE CURRENT lAMP)

30

SC245
SC245 ( )3
SC246
TRIACS
MT2

o----~.. ~

10 AMPERES RMS
200-600 VOLTS

BIDIRECTIONAL TRIODE THYRISTORS
· .. designed primarily for industrial and military applications for the
fullwave control of ac loads in applications such as light dimmers,
power supplies, heating controls, motor controls, welding equipment
and power switching systems.
• All Diffused and Glass Passivated Junctions for Greater Stability
• Gate Triggering Guaranteed In All '4 Ouadrants
• Three Package Choices
Pressfit - SC245 Series
Stud - SC246 Series
Isolated Stud - SC245 ( ) 3 Series

CASE 174-03
SC245
STUD

STYLE 3
TERM 1 MAIN TERMINAL 1

2 GATE
STUD MAIN TERMINAL Z

MAXIMUM RATINGS
Rating
Repetitive Peak Off·State Voltege (11
TC = _40 o C to +1000 C
SC246B, SC245B, SC245B3
,
SC246D, SC245D, SC245D3
SC246E, SC245E, SC245'E3
SC246M, SC245M, SC245M3
RMS On·Stat. Current
Peak Non·Repetitive Surge Current
(On. Full Cycle,60 Hzl
Circuit Fusing Considerations
t= 1 ms
t =8.3 ms
Peak Gate Power
Average Gat. Power
Operating Junction Temperature Range
Storage Tamperatur. Range
Stud Torque

Symbol

Value

VDRM

IT(RMSI
ITSM

200
400
500
600
10
100

12 t

PGM
PG(AVI
TJ
Toto

Unit
Volts

B

C
F
H

J
K
L

20
41.5
10
0.5
-40 to +100
-40 to +126
3u

Q

Amp
Amp
A2.

INCHES
MIN MAX
0604 0614
0.5510.559
14001420
.8150.9
2010 2413
089 216 00350.085
D.09r,REF
229REF
10611156 0420 (1455
918 1054 D.JB5 0415
699 7.15 02150305
.065
.1
165 405
DOSS REf
165 REF
1210 1283 0500 0.505

MILLIMETERS
DIM MIN MAX
A 1534 1560

R
T

CASE 175-02
SC245( 13
ISOLATED
STUD

STYlE 2
PIN 1 MAIN TERMINAL I

2. GATE
3. MAIN TERMINAL 2

STUD ISOLATED

Watts
Watt
uC
°c
in. lb.

THERMAL CHARACTERISTICS
Character
Thermal Resistance, Junction to Case
Prossfit and Stud
Isolated Stud

Symbol

MIX

R9JC

Unit

°CIW
2.0
2.15

CASE 235-02

7-208

SC245, SC245( )3, SC246

ELECTRICAL CHARACTERISTICS (TC = +250 C, either polarity of MT2 to MTl unless otherwise noted I
Symbol

Characteristic
Peak Off-5tate Current
Rated VORM = Peak Off-State Voltage,
Gate Open-Circuited
TC = +250
TC = +100 0 C
Peak On-State Voltage
ITM = 14 A Peak, Pulse Width = 1 ms,
Duty Cycle'; 2%.

Min

Typ

Max

-

-

Volts

Unit
mA

IORM

VTM

-

-

0.1
0.5
1.65

dv/dt

-

50

-

Volts/lls

dv/dtlcl

4

-

-

Volts/lls

-

Critical Rate of Rise of Off·State Voltage

Rated VORM, Gate Open-Circuited,
Exponential Waveform

TC = +1000 C
Critical Rate-of-Rise of Commutating Off-State Voltage
ITIRMSI = Rated RMS On-State Current
VORM = Rated Peak Off-State Voltage,
Gate Open-Circuited, Commutating dildt = 5.4 Alms
TC = +78.5 0 C
DC Gate Trigger Current

mAde

IGT

VO= 12Vdc
MT2 1+I,Gate 1+1; MT2 1-1, Gate I-I; RL = lOOn
MT2 1+1, Gate I-I;
RL=50n
MT2 1+1, Gate 1+1; MT2 1-1, Gate 1-1 RL= 50n, TC=-40oC
MT2 1+1, Gate I-I
RL= 25n, TC =-40 o C
DC Gate Trigger Voltage
VO=12Vdc
MT2 1+1. Gate 1+1; MT2 1-1, Gate I-I; RL=100n
MT2 1+1, Gate I-I
RL = 50n
MT2 1+1, Gate 1+1; MT2 I-I, Gate 1-1 RL = 50n, TC = -40 0 C
MT2 1+1, Gate I-I
RL = 25n, TC = -40°C
Vo = Rated VORM,RL = 1 kn, TC = 100°C
All Trigger Modes
Holding Current

-

-

-

-

50
50
80
80

-

-

2.5
2.5
3.5
3.5

-

Vdc

VGT

-

-

.2

mAde

IH

Main Terminal Voltage" 24 Vdc, IT = 0.5A
Pulse Width = 0.1 to 10 ms
Gate Trigger Source = 7 V, 20 Ohms
TC = +250 C
TC =-40o C

-

Latching Current

-

-

50
100
mAde

IL

Main Terminal Source Voltage = 24 Vdc,
Gate Trigger Source = 15 V, 1 00 O~ms,
Pulse Width => 50 JlS, Rise and Fall Times maximum
Trigger Mode
.

MT2
MT2
MT2
MT2

1+1, Gate
1+1, Gat.
1+1, Gate
1+1, Gate

1+1; MT2 I-I, Gate I-I; TC = 25°C
I-I
1+); MT2 1-1, Gate 1-1; TC = -40o C
1-)

w

~ 96

"'- ~
~

i

........ ;:-.....

_ 92
~
....
w 88

~

~ 84

~

.
..'"x'"
j

!!5

......... .......

.......

FULL WAVE
r - SINUSOIDAL

t--

80

WAVEFORM

,
)0...

,/'
ISOLATED STUD

.,..

z
o

-

-

100
200
200
400

.0

100

20

~ 10

.....

STEADY·STATE
RMS LIMIT

C

....... ......

"

o

-

-

::;

......

76

72

i

200

~

STUD AND PRESSFIT

/'
K.

-

FIGURE 2 - MAXIMUM ON-5TATE POWER DISSIPATION

FIGURE 1 - CURRENT DERATING
~ 100

•

= 5 JJS

~w
'"

.

"""'-

::;

"

:;;(.0.5
;;

TJ '" 100OC-f-

./

FULL.wAVE
SINEWAVE
OPERATION

I-

~E

~O.2
10

0.6

10

20

ITIRMS). RMS ON·STATE CURRENT lAMP)

IT(RMS). RMS orl-STATE CURRENT lAMP)

7-209

40

60

SC250
SC250( )3
SC251
TRIACS
OMTI

15 AMPERES RMS
200-600 VOLTS

mLE3'
TERM. I. GATE
2. MAIN TERMINAL 1
1 MAIN TERMINAL Z

BIDIRECTIONAL TRIODE THYRISTORS
· .. designed primarily for industrial and military applications for the
control of ac loads in applications such as light dimmers, power supplies, heating controls, motor controls, welding equipment and power
switching systems; or wherever full-wave, silicon gate controlled solidstate devices a're needed.
• All Diffused and Glass Passivated Junctions for Greater Stability
• Pressfit, Stud and Isolated Stud Packages
• Gate Triggering Guaranteed In All 3 Quadrants

MAXIMUM RATINGS

•

Rating
Repelitive Peak Off-State Voltage
. SC251B, SC250B, SC250B3
SC251 D. SC250D, SC250D3
SC251E, SC250E, SC250E3
SC251 M, SC250M, SC250M3
RMS OnoState Current
Peak Non-Repetitive Surge Current
(One Full Cycle, 60 Hz'
Circuit FUSing Considerations

t-' rns
t 8.3 ms

Symbol

'IT(RMS)
ITSM

Piak Gete Power (Pulse Width = 10 ps'
Operating Junction Temperature Range
Storage Temperature Range

Unit
Volts

200
400
500
600
15
100

Amp
Amp

12 t

PGM

20
41.5
10

Watts

PG(AV)

0.5

Watt

IGM
TJ

2
-40 to +115
-40 to +125

Amp

30

in. lb.

=

Peak Gate Power
Average Gate Power

Valua

VORM

Tit

Stud Torque

CASE 175·02

SC260( )3
ISOLATED STUD
STYlEl.
PIN 1 MAIN TERMINAL I
2. GATE
3 MAIN TERMlHAl2
STUOISOlATED

t~·-"
B

A

I -.

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
SC250, SC251
SC250 ( ) 3

Symbol

Max

R8JC
2
2.3

Unit
INCHES
MillIMETERS
DIM • • MAX MIN MAl
A 1400 IUD 0.5510.559
•
12.13 12.13 0.501 D.5t5
C
26.16
1.030
f
1.65
4. • 0.065 0.160
0255
G
L"
H
2.18 2.41 0.015 0.095
J
10.&111.56 0420 0.455
K
9.11 10.54 0.385 0.415
l
UI US 6.2150.3t15
II
6.41 6.99 0.Z5S 6.215
1 0.135 0150
1.52 1.11 0.010 0010
0.89 UI o.m 0085
CASE 236<12

This Is advance information and specifications are subject to change without notice.

7-210

'~I

R-j

1-

H

~r'

HI~:;;~r
c

f-J

N

=
=

L-=

1/4lBUNF2A

SC250,SC250( )3,SC251

ELECTRICAL CHARACTERISTICS
(TC ~ +2So C unle.. otherwise noted Velues apply for either polarity of Main Terminel 2 Characteristics referenced to Main Terminal 1 I
Symbol
Typ
Max
Unit
Min
Characteristic
mA
Peak Off-Stat. Current
IORM
Vo ~ Rated VORM
0
0.1
TC = +25 C
Gate Open-Circuited
0.5
TC = +1150 C
1.65
Volts
P.ak On-State Voltage
VTM
ITM - 21 A. Pul •• Width = 1 ms. Duty Cycl ... 2%.
100
Critical Ret. of Rise of Off-St.t. Voltage
dv/dt
Volts/"s
Rated VORM. Gat. O~n·Circuit.d.
Exponential Waveform.
TC = +1150 C
VoltST",
dv/dt(CI
Critical Rate-of-Ris. of Commutating Off-State Voltag. (1 I
IT(RMSI = Rated RM5 On-Stat. Current. Vo = VORM
Gate Open-Circuitod. Commutating di/dt = 8 Alms
'SC250.SC251
TC = +84 o C
4
SC250( 13
TC = +7SoC
4
mAde
DC Gate Trigger Current
IGT
VO=12Vdc
50
MT2 (+1. Gate (+1; MT2 (-I. Gat. (-I; RL = 100 Ohms
50
MT2 (+1.' Gate (-I; RL - 50 Ohms
mAde
DC Gate Trigger Current
IGT
Vo = 12 Vdc. TC = -40°C
80
MT2 (+1. Gate (+1; MT2 (-I. Gate (-I; RL : 50 Ohms
80
MT2 (+1. Gat. (-I; R L : 25 Ohms
Vdc
DC Gata Trigger Voltage
VGT
VO: 12Vdc
2.5
MT2 (+1. Gate (+1; MT2 i-I. Gata i-I; RL = 100 Ohms
2.5
MT2 (+1. Gate'(-I; RL : 50 Ohm.
Vdc
DC Gate Trigger Voltag.
VGT
Vo = 12 Vdc. TC: -40°C
MT2 (+1. Gate (+1; MT2 (-I. Gat. (-I; RL = 50 Ohm.
3.5
3.5
MT2 (+1. Gat. i-I; RL· 25 Ohm.
Vdc
DC Gate Non-Trigger Voltage
VGO
0.20
Vo = Rat.d VORM. RL - 1 K Ohms. TC = 115°C
All Trigger Mode.
mAde
Holding Current
IH
VO: 24 Vdc. Peak Initiating Current: 0.5 A.
Puis. Width: 0.1 to 10 ms. Gat. Trigger
Source = 7 V. 20 Ohm.
TC: +25 0 C
50
100
TC = -40°C
mAde
Latching Current
IL
VO: 24 Vdc. Gate Trigger Source = 15 V, 100 Ohms.
Pulse Width = 50 p.s, 51JS Maximum Rise and Fall Times
MT2 (+1. Gata (+1; MT2 i-I. Gate (-);
100
MT2 (+1. Gate i-I
TC: 25°C
MT2 (+1. Gate (+1; MT2 (-I. Gate (-I;
TC: _40°C
200
MT2 (+1. Gate (-I
-

-

-

.

-

-

-

-

-

-

-

-

-

FIGURE 2 - MAXIMUM ON-STATE POWER DISSIPATION

f;IGURE 1 - CURRENT DERATING

""""",=

,

FULL

~ !::--..

,

°fERATION

....... t:--..
"- ~ESSFIT&STUD

,

"'1...'

,

ISOLATED STUD ' "

r--- r---"

,

20

W~VE SIN~ WAVE

7
,/

2

./

•

..........

"" , "

1/

't7~

./

TJ "" [lI60C

~

FULL WAVE
SINE WAVE

I---

OPERfTlON

0

12
IT(RMSI. RMS ON STATE CURRENT fAMP!

12
If(RMSI, RMS A.VERAGE DN-5TATE CURRENT (AMP)

7-211

v

\--

"

•

SC260

SC260( )3

SC261
MT2

O----~..
~

G

OMTI

TRIACS
26 AMPERES RMS
200-600 VOLTS

BIDIRECTIONAL TRIODE THYRISTORS
· .. designed primarily for industrial and military applications for the
control of ac loads in applications such as light dimmers, power sup·
plies, heating controls, motor controls, welding equipment arid power
switching systems; or wherever full·wave, silicon gate controlled solidstate devices are needed.

SC261

ST'flE2
1 MTI
2 GATE
CASE MT2

• All Diffused and Glass Passivated Junctions for Greater Stability
• Pressfit, Stud and Isolated Stud Packages
• Gate Triggering Guaranteed In All 3 Quadrants

MILLIMETERS
DIM MIN MAX
12131283

·t'~ sink thermal
r.slstillncc. Main terrninal 2 and heal sink contac;t pad an. cammon,
For soldering PUfJ,lOSCS. {either tltrmin:ll connection or device ITIOuntlngl, $olderlng tern·
peratures s.hall not i!)(cF.-ed -10 2000C. for 10 seconds. Consult fa:::to,'( tor I",ad bending

options..
"'Trademark of Motorola Inc,

7-214

CASE 77·04
T0-126

T2300P, T2301P, T2302P series

ELECTRICAL CHARACTERISTICS
(Voltage reference is to main terminal 1. Data applies for either polarity of MT2 to MT1 voltages and for TC == 25°C unless otherwise noted,)
Characteristic
All Types

Peak Repetitive Off-State Current
(VO ' Rated VORM, Gate Open, TC' 100DC)
Peak On-State Voltage
(lTM ' 3.5 A, Pulse Width", 1 ms, Outy Cycle .. 2%)

All Types

DC Gate Trigger Voltage (All Modesl
(VO'12V,RL'30n)
(VO ' Rated VORM, RL ' 10 kn, TC '.lOODC)

Symbol

Min

Typ

Max

Unit

IORM

-

-

0.75

mA

VTM

-

-

1.8

Volts

-

-

2.2

-

-

-

-

3.0
4.0
10

-

-

Volts

VGTM
0.15

DC Gate Trigger Current (All Modesl

mA

IGTM
T2300P Series
T2301 P Series
T2302P Series

(VO'12V,RL'30nl

Holding Current

-

mA

IH
T2300P, T2301 P Series
T2302P Series
T2300P, T2301 P Series
T2302P Series

(VO '12 V, ITM '150 mA, Gate Open)
(TC ' _40DC)
Gate-Controlled Turn-On Time

All Types

tgt

-

All Types

dv/dt(c)

-

2.0

5.0
15
17
35
2.5

~s

(VO ' Rated VORM, IG ' 60 mA, ITM ' 3.5 A)
Critical Rate of Rise of Commutating Voltage

V/~s

(VOM ' Rated VORM, IT(RMS) , 2.5 A,
dl/dt ' 0.95 Alms, Gate Unenergized, T C ' 70 DC)
Critical Rate of Rise of Off-State Voltage
(VOM = Rated VORM, Exponential Rise, Gate Open)
T2300P, T2301P Series
(TC' 90 DC)
(TC'lOODC)
T2302P Series

100

~
w

'"=>
....

~

~
....
w

~

--

-

l"- i--.

BO

!--

60

FIGURE 2 - RMS CURRENT DERATING FOR
OPERATION WITHOUT HEAT SINK

I"

~

--

w

=>
"'
....

~

75

~
....
....
~

50

I.

I

..... r-...

I

I

I

I

Full-wave sinusoidal waveform .

"- f',
..... r-...

iii

,....'"=>
,.

40

I'..

25

,.x

Full-waveslnusotdalwaveform.

'"U
....

-

5.0
10

100

;3

1!i
'"

1.0

;:
1..===

-::;

./

0.4

r::::-

./

V / V

V

:/

/'

w

'"
~>

0.8

1.0

ITIRMS). RMS ON·STATE CURRENT lAMP)

IT(RMS), RMS ON·STATE CURRENT lAMP)

TVPlcal

I-- f-

1

l../ '". / / '

:/

0.8

Full-wave sinusoidal waveform .

1.2

1.6

2.0

IT(RMS), RMS ON·STATE CURRENT (AMP)

7-215

2.4

2.B

1.2

I--

•

12500

MT2

o-----1~
..~=-G--O MTI

TRIACS

6 AMPERES RMS
200-400 VOLTS

BIDIRECTIONAL TRIODE THYRISTORS

· .. designed primarily for full·wave ac control applications, such as
light dimmers, motor controls, ~eating controls and,power supplies.

•

Blocking Voltage to 400 Volts

•

All Diffused and Glass Passivated Junctions for Greater
Parameter Uniformity and Stability

MT2

MT1
MT2
G

• Small, Rugged, Thermowatt A Construction for Low Thermal
Resistance, High Heat Dissipation and Durability

MAXIMUM RATINGS
Rating
Peak Repetitive Off·State Voltage
ITJ = -40 to +IOOo C) Gate Open
T2500

•

Symbol

Unit
Volt.

Value

VOROM

B
0
RMS On·State Current
(TC = +BOaC)
Full Cycle Sine Wave 50 to 60 Hz
Peak Non·Repetitive Surge Current
(One Full CY,cle,,60 Hz, TC = +800 CI, _ ,
Peak Gate Power
, (T C = +BOaC, Pulse Width = 1 ,..1

Average Gate Power
(TC = +BOaC, t a 8.3 ms)

IT(RMSI

200
400
6

Amp

ITSM

60

Amp

PGM

16

Watts

PG(AV)

0.2

Watt

IGTM
TJ
T sta

4
-40 to +100
-40 to +150

Amp
C
DC

MILLIMETERS

Paak uata Trigger Current (Pulse Width = 10,..1
Operating JUnction Temperature Range
Storage Temperature Range

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

STYLE 2:
PIN I.MAIN TERMINAL 1
2, MAIN TERMINAL 2
3, GATE
4, MAIN TERMINAL 2

I

Symbol
RSJC

I

Max

.1

2.7

ATrademlrk of Motorola Inc.

7-216

Unit
DC/W

DIM

MIN

MAX

INCit..-MAX

MJ!!

14,23 15,87 0,560 0,625
1 ,66 0,380 0,420
C
3,56 4,82 0,140 0,190
0
l,I4 0,020 0,045
0,51
F
3,31 3,733 0,139 0,147
G
2,29 2,79 0,090 0,110
H
6,35
- 0,250
J
31 l,I4 0,012 0,045
K
0.562
0500
14.27
12
L
0,045 0,070
U7
N
Yi 5,33 0,190 0,210
Q
0,100 0,120
,04
4
2.04 2~2 0,080 0,115
R
S
0,020 0,055
.1 L39
T
5,85 6,85 0.230 0,270
CASE 221.02
TO·22DAB
All JEDEC dimensions and notes apply

A
8

°

T2500

ELECTRICAL CHARACTERISTICS

(Tc

= 250 C and

Charect.iltic
Peak Off-5tate Current
Vo = Aated VOAM@TJ

Either Polarity of MT2-to-MTl Voltage, unless otherwise specifiedJ
Typ
Symbol
Min
Max

-

lOAM

= 1000 C, Gate Open

Maximum On-5tate Voltage (Either Direction)
ITM =30 A Peak

VTM

Gate Trigger Current, Continuous de

-

2

Unit
mA

-

2

Volts
mA

IGT

VD =12 Vdc, AL = 12 Ohms
VMT2 (+), VG(+)
VMT2 (+), VGH
VMT2H,VGH
VMT2 H, VG(+)
Gata Trigger Voltaga, Continuous de (All Polarities)
Vo = 12 Vdc, AL = 12 Ohms
VD = VOAM, AL = 125 Ohms, TC = 1000 C
Holding Current
Vo = 12 Vdc, Gate Opan
Initiating Current = 150 mA, TC = 25 0 C
Gate Controlled Turn-Dn·Time
Vo = Aated VOAM, IT = 10 A,
IGT = 160 mA, Ai .. Time =0.1 ~s

-

25
60
25
60

1.25

2.5

15

30

mA

'"

IHO

lot

-

1.6

2.5

dv/dt(c)

-

10

-

VGT

Critical Rate of Rise of Commutation Voltage
Vo = Aated VOAM, IT(AMS) = 6 A,

10
20
15
30

0.2
-

Volts

-

-

V/~s

Commutating di/dt = 3.2 Alms,
Gate Unenergized, TC =BOoC

Critical Aate of Aise of Off-5tate Voltage
Vo = Aated VORM, Exponential Voltage Aise,
Gate Open, T C =100 0 C
T2500B
T25000

V/~s

dv/dt

-

100
75

-

-

-

~ 10

01".
6

2

~

" '"

FUILL W~VE I
SINUSOIDAL WAVEFORM- I--

"-

0

/

2

,;'
~V -/

" "'~

./

/

/

./

V'
TYPICAL

V

V ",..

"2

FJLL W~VE I
I
I
SINUSOIDAL WAVEFORM

~

"-

V

MAXIMUM

-

8

....,'

•

FIGURE 2 - POWER DISSIPATION

FIGURE 1 - CURRENT DERATING

/. :;....- .....
0 ...... ~

~

10

4

ITlRMSJ, RMS ON-STATE CURRENT IAMI')

ITIRMS). RMS ON-STATE CURRENT lAMP)

7-217

12

14

T2800
T2802
MT2

o----li~~
....--G~O MTl

TRIACS
8 AMPERES RMS
200-600 VOLTS

BIDIRECTIONAL TRIODE THYRISTORS
. designed primarily for full·wave ac control appl ications, such as
light dimmers, motor controls, heating controls and power supplies.
) • Blocking Voltage to 600 Volts
MT2

•

All Diffused and Glass Passivated Junctions for Greater
Parameter Uniformity and Stability

• Small, Rugged, Thermowatt.ol. Construction for Low Thermal
Resistance, High Heat Dissipation and Durability

MTl
MT2
G

• T2800 - Four Quadrant Gating
T2802 - Two Quadrant Gating

MAXIMUM RATINGS
Symbol

Rating
Peak Repetitive Off·State Voltage (11 .
(T J = -40 to +100 0 CI Gate Open'
T2800
T2802

,

II

ITC
RMS On-State Current
(Conduction Angle ~ 360°C)

Value

VORM

\!

=+BOoCI

Unit
Volts

IT(RMS)

200
300
400
500
600
8

Amp

ITSM

100

Amp

12 t

50

A2 s

PGM

16
0.35

Watts

PG(AV)
IGTM
TJ
T stg

4
-40 to +100
-40 to +150

Symbol

Max

' R6JC

2.2

STYLE 2:

Peak Non-Repetitive Surge Current
(One, Full ,Cycle, 60 Hz, T J = +800 CI
Fusing Current

= -40 to +1000 C. t = 1.25 to 10 msl
Peak Gate Power (Pulse Width = 1 Ilsl

•

PIN 1. MAIN TERMINAL 1

2, MAIN TERMINAL 2
3. GATE
4. MAIN TERMINAL 2

(TJ

Average Gate Power
Pe~k

Gate Trigger Current (Pulse Width = 1 jtSl

Operating Junction Temperatura Range

Storage Temperature Range

Watt
Amp
°c
°c

Thermal Resistance. Junction to Case

I

B

C
D
F
G

H

THERMAL CHARACTERISTICS
Characteristic

DIM
A

Unit
°C/W

(11 Ratings apply for open gate conditions. Thyristor devices shall not be tested with a

constant current source for blocking capability such that the voltage applied exceeds
the rated blocking voltage.

"Trademark of Motorola Inc.

7-218

J
K

L
N
Q
~

S
T

MILLIMETERS
MIN MAX
14.23 '6.87
6 10.66
3.56 4.82
0.51
1.14
.531 3.733
2.29 2.79
6.35
...0;1 1.14
12.70 14.27
4. 3
4
2.04
I
5.85

II
5.33
3.04
2.92
1.39
6.85

INCHES
MIN MAX
0.560 0.625
0.380 0.420
0.140 0.150
0.020 0.045
0.139 0.147
0.090 0.110
0.250
0.012 0.045
0.500 0.562
0.045 0.010
0.190 0.210
0.100 0.120
0.080 0.115
0.020 0.055
0.230 0.270

CASE 221-02
TO·220AB
All JEDEC dimensions and notes apply

T2800, T2802

ELECTRICAL CHARACTERISTICS ITC

~ 25°C unles. otherwise noted)

Characteristic

Peak Off·Stete CUI rent (Either Direction)
R.ted VORM@ TC ~ lCOu C, Gate Open
Peak On·Stato Voltege (Either Direction)
IT ~ 30 A Peak

Gate Trigger Current, Continuous de
Vo ~ 12 Vdc, RL ~ 12 Ohm.
VMT2 (+), VG(+) T2800
T2B02
VMT2 (+), VGH T2800 Only
VMT2 <-). VGH T2800
T2802
VMT2 (_I, VG(+) T28000nlv
Gate Trigger Voltage, Continuous de (All Polarities~
Vo ~ 12 Vdc, RL = 100 Ohms
RL = 125 Ohm., Vo = VORM, TC = 100°C
Holding Current (Either Direction)
Vo = 12 Vdc, Gate Open,
T2800
IT=125mA
T2B02
Gat. Controlled Turn·On Tim.
Rated VOROM, IT ~ 10 A, IGT ~ 80 mA, Rise Time ~ 0.1 ".
Critical Rate of Rise of Commutation Voltage
Rated VORM, IT(RMS) = B.O A, Commutating di/d, ~ 4.3 AIm.,
Oate Unenergized, T C ~ BOoC
Critical Rate of Ri •• of OffoStata Voltage
Rated VORM,Exponential Voltage Rise,
Gate Open, TC ~ 100°C
T2BOO
T2802

Symbol

Min

Typ

Unit

-

Max

10RM

-

2

mA

VTM

-

1.7

2

Volts

-

10
25
20
15
25
30

25
50
60
25
50
60

-

1.25

2.5

-

-

-

w
<:

0.2

..........

5 95
...i'1i
~

90

igt

-

15

30

20

60

-

1.6

-

.......

~

co

~

85

B

80

VI".

VI".

-

100
B5
75
65
60

I

C
0
E
M

-

-

-

-

FIGURE 2 - POWER DISSIPATION

I
L

I-- -~I~~Ls~i;!~
I-- -WAVEFORM

FULL CYCLE
f-SINUSOIOAL

MAXIMUM/"

./

o

/

/ ./
V

//"

~AVEFORM

1---

:::>

,..

10

dv/dt{c)

TYPICAL

/"

~

~

.

-

dv/dt

'" ,
'"

w

'"x
'".
...'u"

1'0..

-. - -

w

j

mA

IHO

f'...

:::>

~

Volt.

VGT

FIGURE 1 - CURRENT DERATING
~ 100

mA

IGT

IL ~

/. V

........:: V

"' ~

~

A V

4

IT(RMS). RMS ON-5TATE CURRENT (AMP)

IT(RMSl, RMS ON·STATE CURRENT lAMP)

7-219

10

12

12801

MT20----~.. G

TRIACS
, 6 AMPERES RMS
200-600 VOLTS

BIDIRECTIONAL TRIODE THYRISTORS
... designed primarily for full-wave ac control applications, such as
light dimmers, motor controls, heating controls and power supplies.
•

MT2

Blocking Voltage to 600 Volts

• All Diffused and Glass Passivated Junctions for Greater
Parameter Uniformity and Stability

MT1

MT2

G

• Small, Rugged, Thermowatt A Construction for Low Thermal
Resistance, High Heat Dissipation and Durability

MAXIMUM RATINGS
Rating
Peak Repetitive Off-State Voltage (1 I
(TJ = -40 to +1000 CI Gate Opan

•

T2BOl

Symbol

Volue

Unit
Volts

VORM

H

(TC =+BOoCI
RMS On·State Current
(Conduction Angle = 360°C I
Peak Non-Repetitive Surge Current
(One Full Cycle,60 HzI
Fusing Current

(TJ =-40 to +1ooo C, t = 1 to 8.3 msl
Peak Gate Power
(TC = +BOaC, Pulse Width =2 /lsI
Average Gate Power
fTC = +800 C, t = B.3 msl
P.. k Gate Trigger Current (Pulse Width a 1 /lSI
Operating Junction Temperature Range
Storage Temperatura Range

200
300
400
500
600
ITiRMSI

6

Amp

ITSM

BO

Amp

12 t

35

A2 s

PGM

16

Watts

A

PG(AVI

0.35

Watt

B
C
D

IGTM
TJ
Tstg

4
-40 to +100
-40 to +150

Amp

F
G
H

Symbol

Max
2.2

DIM

°c
°c

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

STVlE2:
PIN 1. MAIN TERMINAL 1
, 2. MAIN TERMINAl2
3. GATE
4. MAIN TERMINAL 2

•
K

l
N
Q

R6JC

I

Unit
°C/W

(11 Ratings apply for opan gate conditions. Thyristor devices shall not be tested with a
constant current source for blocking capability such that the voltage applied exceeds
the rated blocking voltage.

..

This Is advance Information and specifications are subject to change without notice .

6Trademark of Motorola Inc.

7-220

R
S
T

MIlliMETERS
INCHES
MIN MAX MIN
MAX
14.23 15.87 0.560 0.625
10.66 0.380 0.420
3.56 4.82 0.140 0.190
1.14 0.020 0.045
51
.531 3.733 0.139 0.147
2.29 2.79 0.090 0.110
0.250
6.35
0.31 1.14 0.012 0.045
0.500 0.562
1 .70 14.27
0.045 0.070
171
0.190 0210
4.83 5.33
0.100 0.120
4 3.04
0.080 0.115
2.04 2.92
0.020 0.055
O. 1 1.39
0.230 0.270
5.85 6.85
CASE 221·02

TO·220AB

All JEDEC dimenSions and notes applv

T2801

ELECTRICAL CHARACTERISTICS ITc = 2So C, Either Polarity of MT2-to-MTI Voltage, unle.. otherwise specified)
Typ
Symbol
Max
Characteristic
Min
Peak Off-8tate Curront
IORM
2
Rated VORM, Gate Open, TJ = looo C
Peak On-State Voltage
3
VTM
2
ITM ·30 A P~ak; Pulse Width = 1 to 2 m., Outy Cycle C; 2%

-

Gate Trigger Curront, Continuous dc 11)
Vo -12 Vdc, RL = 12 Ohms

IGT

Gate Trigger Voltage, Continuous de: (1)

VGT

VO· 12 Vdc, RL = 12 Ohms
I
VO· VORM, RL = 125 Ohms, TC = l000 C
Holding Curront IElther Olrectlon)
VO· 12 Vdc, Gate Opan, Initiating Current = 150 rnA
Turn.()n Time (1) ,
Vo = Ratad VORM,IT· 10A,IGT =.BOmA, Rise Time =0.1 ".
Vo = Rated VORM, IT(RMS) = 6.0 A, Commutatlng di/dt = 4.3 Alms,
Gata Unenergized, T C = BOoC

25

-

1.5

rnA

SO

0.2

-

-

100

4

rnA

tgt

2.2

".

dv/dt(c)

10

V/"s

dv/dt

Critical Rat. of Ri •• of Off-State Voltage
Vo = VORM, Exponential Voltage Rise, Gats Open, TC = 1000 C

T2BOI

-

Volts

Volts

IH

Critical Rate of Rise of Commutation Voltage

Unit
mA

-

Ii

VII'S
50
40
30
20

-

-

-

-

-

-

11) Apphes for MT2 (+), G 1+), MT2 H, G H ,

FIGURE 1 - CURRENT OERATING
0

.........

r--....

i!!

["""'-..

FULL WAVE SINUSOIDAL
WAVEFORM

6

i'..
2

FIGURE 2 - POWER OISSIPATION

i

!--

z

0

10

-

/

FULL WAVE SINUSOIDAL
WAVEFORM

~

~

I"

/

ill

'" "

/

c
'"
~

-

,/

~

w
to

"

./

~>

«
:;«

'" "

ii:"

/

,/
".-

.",

,.../
2
4
IT(RMSI. RMS ON·STATE CURRENT IAMPI

ITiRMSI. RMS ON-STATE CURRENT (AMP)

7-221

•

14120

MT2

0----4,;~ G

0

MTl

TRIACS
15 AMPERES RMS
2OO~OO VOLTS

SILICON BIDIRECTIONAL TRIODE THYRISTORS
· .. designed primarily for industrial and military applications for
full wave control of ac loads in applications such as light dimmers,
power supplies, heating controls, motor controls, welding equipment
and power switching systems.

,
•

All Diffused and Glass Passivated Junctions for Greater Stability

•

Isolated Stud Package

• Gate Triggering Guaranteed In All 4 Quadrants

STYLE 1:
PIN I MAIN TERMINAL 1
1 GATE
3. MAIN TERMINAL 1
STUD ISOLATED

MAXIMUM RATINGS

•

Unit

Value

Symbol

Rating
Peak Repetitive Off·State Voltage 111
IT J ~ -65 to +100 oCI Gate Open
T4120B
0
M

Volts

VORM

I~-'I
<:>"7 j
U_
~
A

B

I

200
400
600

RMS On-State Current
(Conduction Angle ~ 360°C I TC = +750 C

Peak Non-Repetitive Surge Current
lOne Full Cycle. 60 Hzl
Circuit Fusing

ITIRMSI

15

Amp

ITSM

100

Amp

12 t

50

AI.,

...

ITC = -65 to +100 0 C. t = 1.25 to 10 msl

Peak Gate Power (Pulse Width = 1.0 }Js)
Average Gate Power

Peak Gate Trigger Current (Pulse Width - 1 .usl
Operating Case Temperature Range
Storage Temperature Range

PGM

16

Watts

PGIAV)
IGTM

0.5

Watt

4

Amp

TC

-i>5 to +100

T stg

-65 to +150

°c
°c

30

in. lb.

Stud Torque

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

I

Svmbol
ROJC

I

Max

I

1.1

Unit
°CIW

111 Ratinqs apply for open gate conditions. Thyristor devices shall not be tested with a

constant current source for blocking cCtpability such that the voltage applied exceeds
the rated blocking voltage.

MILLIMETERS
MIN MAX
14.00 14.20
12.73 12.83
- 28.18
1.6& 4.08
8.48
2.18 2.41
10.81 11.58
K
9.78 10.54
L
8.99 1.15
N
8.48 8.91
1.81
ilL
1M
R
1.52 1.18
T
0.89 2.19

DIM
'A
8
C
F
G
H
J

-

INCHES
MIN MAX
0.551 0.559
0.501 0.506
1.030
0.085 0.1611
0.255
0.086 0.085
0.420 0.465
0.
.41
0.215 0.306
0.265 0.215
0.135 ; 0.160
0.080 0.010
0.035 0.085

-

CASE 235·02

7-222

T4120

ELECTRICAL CHARACTERISTICS (TC = 25°C. either polarity of MT2 to MTI voltage. unless otherwise noted)
Characteristic

Symbol

Min

Typ

Max

Unit

IORM

-

-

2

mA

VTM

-

1.4

1.8

Volts

Peak Off-State Current Gate Open
Rated VORM @ TC = 100°C
Peak On-State Voltage

IT = 21 A Peak
Gate Trigger Current, Continuous de (1)

mA

IGT

Vo = 12 Vdc.RL = 30 Ohms
VMT2
VMT2
VMT2
VMT2

-

-

(+). VG (+); VMT2 H. VG H
(+). VG H; VMT2 H. VG 1+)
1+). VG 1+); VMT2 (-). VG 1_). TC = -65 0 C
(+). VG (-j: VMT2 (-). VG 1+). TC = -65 0 C

-

Gate Trigger Voltage, Continuous de (All Quadrants)

50
80

150
200
Volts

VGT

VD = 12 Vdc. RL =·30 Ohms

-

TC = 25°C
TC = -65°C
Vo = Rated VOROM. RL = 125 Ohms. TC = 100°C

-

0.2

Holding Current

2.5
4

rnA

IH

Vo = 12 Vdc. Gate Open
IT = 500 rnA

-

-

300

tgt

-

1.6

2.5

dv/dt(c)

2

10

-

TC = 25°C
TC = -65 0 C
Gate Controlled Turn-On Time

75
!lS

VO'= Rated VORM. ITM = 25 A Peak.
IGT = 160 mAo Rise Time = 0.1 ItS

Critical Rate-of-Rise of Commutation Voltage

Vllts

Rated VORM. IT(RMS) = 15 A.
Commutating di/dt = 8 Alms. Gate Unenergized. TC = 75°C
Critical Rate-of-Rise of Off-State Voltage

dv/dt

VII's

Rated VORM, Exponential Voltage Rise, Gate Open. TC:::: 100°C
T4120B

30
20
10

0
M

150
100
75

-

(1) All Voltage polarity reference to main terminal 1.

FIGURE 1 - CURRENT DERATING

1\
5

0

5

0

"-

FULL

W~VE SIN~SOIDAL

"-

'"

~
....
«
z

0

~

0

WAVE FORM

"-

'.

~

;::
;t
~
<5

L
MAXIMUML

5

;'

=

3!

~

l?
w

...... 1'-.

........

.....

0

'"

ill>

«
:;;
«

..............
.........

5

•

FIGURE 2 - POWER DISSIPATION
5

12

"

0:-

16

'T(RMS). RMS ON·STATE CURRENT (AMP)

5

~

,

V

~

V ~ICiL
L V

/. V

FULL WAVE SINJSOIOAL
WAVE FORM

r----

O~ ~

12
ITIRMS). ON-STATE CURRENT lAMP)

7-223

~

16

16400
16410
16420
MT20~MT1

I

TRIACS
40 AMPERES RMS
200-800 VOLTS

SILICON BIDIRECTIONAL TRIODE THYRISTORS
... designed primarily for industrial and military applications for the
control of ac loads in applications such as power supplies, heating
controls, motor controls, welding equipment and power switching
systems; or wherever full-wave, silicon gate controlled solid-state
devices are needed.

• Glass Passivated Junctions and Center Gate Fire
Press Fit Stud - T6400
• Stud
-T6410

STYLEl.
1. MTI

Isolated Stud - T6420

•

2.

Gate Triggering Guaranteed in All 4 Quadrants

,

T6400
PRESS FIT
CASE 310.01

~

MAXIMUM RATINGS
Rating

II

GATE

CASE.Mf2

Symbol

Value

Unit

Peak Repetitive OIl-8tate Voltage
(TJ = -65 to +11 OOC) Gate Open
T6400B, T6410B. T6420B
T6400D, T6410D, T6420D
T6400M, T6410M. T6420M
T6400N, T641 ON, T6420N

VDRM

On·State Current RMS
T C (Pressfill = 70°C
(Conduction Angle= 360 0 C)TC (Stud) = 650C

IT(RMS)

40

Amp

Peak Surge Current (Non·Repetitive)
(One Full Cycle. 60 Hz)
Circuit Fusing
(TJ = -65 to +1100 C, t = 1.25 to 10 ms)

'TSM

300

Amp

12 t

450

A 2s

Peak Gate Power
(Pulse Width = 10 I's)

PGM

40

Watts

PG(AV)

0.75

Watt

IGTM

12

Amp

TC

-65 to +110

°c

TS!9

-65 to +150

°c

-

30

in. lb.

Symbol

Max

Unit

ROJC

0.8
0.9
1.0

°C/W

Volts

Average Gate Power
Operating Temperature Range

Storage Temperature Range
Stud Torque

"-1

•

"

200
400
600
800

Peak Gate Current (Pulse Width = II's)

t~ [1
iT
~

..

L-.!=

STYlE 2

PIN I MTI

2. GATE
3MT2

T6410
STUD
CASE 263·03

L

, ..... UIlf.ZA

MIlliMETERS
DIll 111111
A lbl41560

...

n

34

40

2,29J1EF
"15.1511
1

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

Pressfit

Stud
Isolated Stud

STYLE 2:
1. MTI
2. GATE
3. MT2

T6420
ISOLATED STUD
CASE 311.01

,a ,
343

7-224

I

1

T6400, T6410, T6420

ELECTRICAL CHARACTERISTICS ITe: 25 0 e unless otherwise noted)
Characteristic
Peak Off·State Current (Either Direction)
Rated VORM @TJ

=110°C, Gate Open

Maximum On-State Voltage (Either Direction)

Symbol

Min

Typ

Max

Unit

IORM

-

-

4

mA

VTM

-

1.5

2

Volts

IT: 100 A Peak

Gate Trigger Current. Continuous de (1)

mA

IGT

VO: 12 Vdc. RL ' 30 Ohms
VMT2
VMT2
VMT2
VMT2

-

1+). VGI+)
1+). VGI_)
1-). VGI_)
1-). VGI+)

-

-

-

VMT2 1+). VGI+); VMT2 I:"). VGI-)' Te: -65°C
VMT2 1+). VGI-F VMT21-). VGI+). Te: -65°C

Gate Trigger VQltage~ Continuous de

Holding Current IEither Oirectionl
Vo = 12 Vdc. Gate Open
Initiating Current:..: 500 mA

TC
TC

-

-

1.35

2.5

-

0.2

-

3.4
-

Volts

mA

= 200 rnA, Rise Time = 0.1

T e IPress!,t) . 70 0 e

-

25

60

-

lOa

tgt

-

1.7

3

"s

dv/dtlc)

-

5

-

Vips

= 2So e
= -OSoC
ps

Critical Rate of Rise of Commutation Voltage, On-State Conditions:
dl/dt = 22 Alms, Gate UrumtH~JilCd. Vo -" Rated VOROM.

=40 A.

125
240

-

IHO

Gate Controlled Turn-On Time

ITIRMS)

-

50
80
50
80

VGT

VO: 12 Vdc, RL: 30 Ohms. Te: 25 0 e
Te: -6Soe
Vo = Rated VORM, RL = 125 Ohms, TC = 110°C

Rated VORM. IT = 60 A, IGT

15
30
20
40

Te IStud)

=6So e

(1) All voltage polarity reference to main term mal 1.

fiGURE 2 - RMS CURRENT DERATING

fiGURE 1 - ON-STATE POWER OISSIPATION

~

0

z

0

Ii
0

>=

:;:
iii
0

~
w

o

'"f:j'"
>

0

CONDUCTION ANGLE

I

I

./ /"

~~1I0~~+---+---4---4---~---~---+---t---+---1

,..w
"'g~ 100~--+---+-~~~4----~--~---+---t---+---1
....
'"
~ ffi 90
~

::>~

:!~
x I- 80

"'w

TYPICAL

10
20
30
ITlRMS). FULL CYCLE RMS ON·STATE CURRENT lAMP)

120

.",

"''''
.='5

.....r./

I ~
a:
I
'" 0~'1

'"s

.//
/. ./

MAXIMUM
IBO·V.36O.

'" 0, +0111

0

//
/ /
/

OI~rrOlil

0

3:'"

/

CURRENT WAVEFORM' SINUSOIDAL
LOAD, RESISTIVE OR INDUCTIVE
CONDUCTION ANGLE' 360.

70
60

50~0--~---1~0~~--~20~--L-~3~0---L---4tO'-~--~50

40

ITlRMS). RMS ON·STATE CURRENT lAMP)

7-225

•

16401
16411
16~21

TRIACS
30 AMPERES RMS
200-600 VOLTS

T6401

SILICON BIDIRECTIONAL TRIODE THYRISTORS
· .. designed primarily for industrial and military applications for
full wave control of ac loads in applications such as light dimmers.
power supplies. heating controls. motor controls. welding equipment
and power switching systems.
• Glass Passivated Junctions and Center Gate Geometry
• Isolated Stud Available for Ease of Assembly (T6421 Series)
• Gate Triggering Guaranteed In All 4 Modes

~
Hi/l=

~I
L 6
PRESS FIT
CASE 310-01

~
~

STYLE 2
I Mfl
2 GATE
CASE MT2

.,.

INCHES
MILLIMETERS
DIM MIN MAX
MAX
1213 1283 0501 0505
0.160
2.41 0 "
1.52
1.18 0.060 0.010
0300
'62
1050
2661
0610
1102
0055 0085

"6

"6

,

'"

14'

'16

T6fll

fl~
.'

B T

I i~

MAXIMUM RATINGS
Rating

•

Symbol

Repetitive Peak Off-5tate Voltage
(TJ = -65 to +1000 CI Gate Open
T6401B. T6411B, T6421B
T6401D, T6411D, T6421 0
T6401M,T6411M,T6421M
On-5tate Current RMS
(Conduction Angle = 3600 CI T C .. +650 C

Valua

Unit

200
400
600
IT(RMSI

PIN 1 MTI
I
STYlE2. •

!.~~E

,,'

30

IHM

Amp

300

Amp

12 t

450

A2s

PGM

40

Watts

PG(AVI

0.75

Watt

Peak Gate Current Pulse Width .. 1 /Lsi

IGM
TC
T st

2
-65 to +100

Amp

Operating Case Temperature Range

MILLIMETERS
MIN
MAX

A

10.6111.5
15.15 17.02

(Pulse Width = 1.0 /Lsi

I. 5RE
'2.83

1213

T6421

Average Gate Power

Storage Temperature Range

°c
in. lb.

Symbol

Max

Unit

R9JC

0,8
0.9
1.0

°C/W

THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case

Pressfit

Stud
Isolated Stud

lr~

ji~

°c

-65 to +150
30

Stud Torque

!

, STYLE2:
1 MTI
2. GATE

tF~~GK

C

•

l

3. MT2

j

Q.

T

l_~ -~ .••
ISOLATED STUD
CASE 311-01

7-226

INCHES
MAX

0.604
0.51

.•• ,

0614

.5

1050 1190
0.1350.160
0090REF

.16

STUD
CASE 263-03

(TJ = -65 to +1000 C, t = 1.25 to 10 msl ,
Peak Gate Power

15.34 15.60
1400 14.20
26.6130.23
343 406

2.29 REF

(One Full Cycle, 60 HzI
Circuit Fusing

; ____ <

1,1",,11

Volts

VDRM

ITSM

Peak Non-Repetitive Surge Current

211

'-A:"::...l

0. 5
0.501 0505

T6401, T6411, T6421

ELECTRICAL CHARACTERISTICS

(TC

= 2SoC, and

Either Polarity of MT2 to MT1, unless otherwise noted 1

Churactertstic
Peak Off-5tate Current

Vo = Rated VORM@TJ = 100o C, Gate Open
Maximum On~State Voltage (Eithsr Direction)

ITM : 100 A Peak
Gate Trigger Current, Continuous de (1)

Symbol

Min

Typ

Max

Unit

IORM

-

-

4

mA

VTM

-

2.1

2.5

Volts

-

20
35

50
80

-

1.35

2.5

-

mA

IGT

Vo = 1,2 Vdc, RL " 30 Ohms
VMT2 (+), VG(+I; VMT2H,vG(-1
VMT2 (+1, VG(_I; VMT2(-I,vG(+1

Gate Trigger Volt3ge. Continuous de. All Trigger Modes

VO: 12 Vdc, RL : 30 Ohms
Vo = Rated VORM, RL = 125 Ohms, TC

= 100°C

Holding Current

Vo = 12 Vdc, Gate Open
'T=150mA
Gate Controlled Turn~On Time

Vo

= Rated VORM,ITM =45 A, IGT: 200 mA, Ri.e Time-: 0.1 I'S

Critical Rate of Rise of Commutation Voltage. On-State Conditions:

dildt: 16 Alms, Gate Unenergized, Vo

Volts

,

VGT

-

0.2

-

IHO

-

-

60

mA

tgt

-

1.7

3

I'S

3

20

-

VII'S

dvldt(c)

= Rated VORM,

IT(RMSI : 30 A, T C : Rated Value from Figure 1
VII'S

dvldt

Critical Rate of Rise of Off-State Voltage·

Vo = Rated VORM, Exponential Rise, TC = 100°C
T6401 B, T6411 B, T6421 B
T64010, T64110, T6421 0
T6401M, T6411M, T6421M

-

-

40
25
20

FIGURE 2 - POWER DISSIPATION

FIGURE 1 - CURRENT DERATING
u

0

w

~

>-

~>-

r-

w

/

FULL WAVE
SINUSOIDAL
WAVEFORM

/

'"
;';

V'

w

0

0

:::>

u'

>-

/
TYPICAL

V-

V V
V V
/

~

i

.j
."""x

/

MAXIMUM

~

/
/' / '

)~ V

50
0

16

24

32

16

24

IT (RMS), ON-STATE CURRENT (AMP)

IT(RMSI, RMS ON-STATE CURRENT (AMP)

7-227

32

40

•
7-228

Leadforms, Hardware,
and Mounting Techniques

8-1

II

II

8-2

LEADFORM OPTIONS
Plastic packaged semiconductors may be leadfonned to a
variety of configurations for Insertion Into sockets and
boards designed for metal can devices. The following are
standard leadfonns offered by Motorola.

THYRISTOR AND TRIGGER LEADFORM OPTIONS
To order leadformed product, determine the form desired,
and specify case number and applicable lea~form number. A
special device title will be assigned by the factory to process
your order. Certain standard devices already incorporate a
leadform, and may be purchased without consulting the
factory.

Case 29
Lead Form 5
(TO·S2To FitTO·5)

1;~-

.J". /~

'U.tIRCLE~

L:>.~

rana

LOlA

Case 29

---r

. J'r
13"· $. . .

Lead Form IS
(TO·S2To FiITO·1S)

1"·'1

kg;]

E.

'~GSt)---~-~r
0511---

~--.i~
~"Tnl:'~:l ~
.!!.!.!!

j

--.i

e,!III

- - .L

0580

Lead Form 2

Lead Form 3

n

Surlltl

Moun'mg

(Metali

SurlllCl

~M,"",""U''''

m
~

Case 90
Lead Form 1

I

~~--=l
0540

Case 221
Lead Form 2

0605

m~::'
"'j'
~ Ll
MuT"

0.511

(MellI)

~

.

~,

r

Mounhng'Su.bll:1

--,;p-

Lead Form 4

-.l O~5S

L ~::-j
E!3@ ====p ~
'G,,,
L
'jj""j"W

054i

.

Case 221
Laad Form 4

=fi

'f~J:~~
LosDD

Q'-.
Su.face

0320

0150-J

0550

(Matal)

CaSen
Forms 11 and 21

U'

0385

Moo",".

(MII.I!

~ead

'.

0580

!I!tf:~
om I L~:L~;;;

n~0025R~T"'P

IMlta11

Lead Form 3

9.ill

~
--lI..-0093TYP

0060

~ t0205~'

fM:u~,,:gt

Case 77

Case 77

0375

--.l
!!!.2

1m ~~!~

.

'Casen

Load Form 1

l~l

J-""."

I==='="'l_

_;--r .~="""'_........
~~======':-

Case 77

't'

a 1110

I

~.-

~

Case 221
Lead Form 5

.. rD.",

~O.2DO:tDD'O

0i'i0
r

~t ~~O.05DmlXl

8-3

Case 221
Lead Form 6

•

PLASTIC POWER TRANSISTOR
LEADFORM OPTIONS

TO-128 (ca.. 77), TO-127 (Ca.. 90), TO-220 (Ca.. 221A)
Devices may be leadformed by first converting to a special
"SJE" number. The factory must be given the designation of
the package and the applicable leadform suffix letter. The
factory must be consulted.

TO-202 (DuDwaH)

Ca.. 152 (UnlwaH)

Any device in these packages may be leadformed by designating the proper suffix number after the device type called
out.
Example-To lead form an MPS-U01 into the TO-5 configuration, designate it as: MPS-U01-05.

T0126 Lead Forms

efi
~~tl or

10126-A

_J ~r
·-1~0.093T".

~rO'5°01
T
ET

.

C

30'

-I

Lo.093T".

1012~__;

~
0.391

__

0

~56

JJ
'I--~-0093rYp
_LL

~=T-T

0.366 05Jl
_ 0.316 0:481

1

MountInISurf.t.

•

0.100

MountingSurtace

•

10126-D

10126- E

~It
0.601

10126-F

0.706

~

0.507

0.677

*

I

--Il..-O.093 T".

E

!±
Min. MIL

-=r-r

,

J 1--0.0931".

E~

0.226
0.186

Mountins

Mountina:SIfffICl

SUrfict

8-4

0.607

0.467 0567
--.L
.

+

Plastic Power Transistor
leadform Options (continued)

T0127 Lead Forms

T

;;~A

~L
O.~07

10127 - B

t

J

0587 0.857
0837

I

t

-

-1I'~O 166

~

T0127 - C

0.597

0840

-1

IrH::l:--0B20

L,

iT!

I

0.205
Mm.

I

'r

"~
---I 1-•.
.~rr;r.:=t=:S
I ~ uU.
--

---I 1-

0.025R••. ,,,.

'

166

0166

0.025 Rad. TyP.

i-..'58~

L.""".'
t
Surflce

t--O.840~

Surface

Mountm,Surface

m.:9

4srrr.:==.E,0=25=R.=•. 3,yo
1'1 ~O.S701
0.590.1

MOl/hlml

0.697

III

1°·680

0.820

CASE 152·

UNIWATT
CASE 152 - 1

:::;

",::,
J. Collector

CASE 152 - 5

ITO - 5 Type)
0.240
0.Z80

I

•.

04.

321

---4-9~~
-TI
1 1

0.895 Typ.

,,:1"" j

0080
0.120

• .100 ,,,.

Betweell Leads

-1 'I

~

'I

•

0.065 Typ.--! _

:!:.

.100 .
0.020

~_1...
0.025
II ~:031R~

flat Typ.

---.,~

T0202·

DUOWATT
T0202 - 1

T0202 - 2

~

T0202 - 5

i

I

- t~95R'1 g:E
0.120 ReI.

-r-~-

0.810 Ref.

~
1r::~~

,:-..-:-',,-,-----,4-

Pian'! -=-

- 0 34;'0 390

0.100 Re'., 1 ] -

•

T0220
T0220 - A

T0220 - C

T0220 - B
IJEDEC T0220 - AA)

-,-

ITO - 5 Type)

0.620
..-L!

~ I
I
I

•.195

0.595

0.620

j

f

1.00 .".

, o.mC'-

0'380

~~

O.l77Typ.

_L

0.405
0237

0025 Rid. Typ.

0.2571

-,

.",,;,,,,S,,'ac.
0090

-l

~.19O
'- I

a 210

~8

. 38.-1WI

•. 100 ,,,.

Between Leads I

0.405

r

0.327
0 337

'0.575

11-0.605
~ 0.660

0.'9O-j'
0.210

.J L_
I

i

a

.>00

'==F---r-

'
0:110 ---,

I

lI

100 ,

O.

a

0.690

8-5

..J

OJ!O}IlL

0.57S

.L~:~ •. 545
0.\'.
:::--11-- I
0.090

__

Mounlln,Sur!acl

liP·

MOUNTING
HARDWARE
-TO-3
*NO. 6 SHEET METAL SCREWS
B51564FOO3

This hardware is applicable
to the following packages.

INSULATOR
(3 OPTIONS AVAILABLE)
MICA-B52600FOll
FIBERGLASS-B51OBOAOOI
ANODIZED ALUMINUMB51078AOOI

SEMICONDUCTOR
TO·3

CHASSIS OR
HEAT SINK

CASE
CASE
CASE
CASE
CASE
CASE
CASE

1 (TO·3)
3
11A
11 (TO·3)
12
54
197

• Longer screws (not available from Motorola) and multiple bushings may be required
f~r

•

thick chassis or heat sink .

DRAWINGS NOT
TO SCALE

--- -- -- - - MOUNT ON FRONT OF CHASSIS

/0

0

0

FRONT TEMPLATE
B'51087AOO1

MOUNT ON BACK OF CHASSIS

r-

'\

-- -- -- - 0...
/"0
0
--

0

,0

BACK TEMPLATE
B51087AOO2

0

0..1 "-0

8-6

0..1
,

MOUNTING HARDWARE TO-3

.-;. ...---,-O'c-' .1730

,
_0.655

-J

·1.600

0.003 TEFLON·COATED
FIBERGLASS INSULATOR
B51080AOOl

.020 ALUMINUM
If~SULATOR

B51078AOOl
.002 MICA
INSULATOR
B52600FOll

XP PHENOLIC.
VACUUM WAX

IMPREGNATED

BRASS,
--::? CADMIUM PLATED
0.0002 THK

·O±~lJ -~lfl~±~

L.177

±.003

OIA

NYLON INSULATING BUSHING
B51547FOO2

TRANSISTOR SOCKET
B51084AOOl

.-~
~
MAX

O'L

2.03·2.36
0.OBo.0.093J

I..

@

J

. ])

12.70± 0.79
0.500± 0.031

NO.6 SHEET METAL SCREW
B51564F003
- 9 00

._--------,
Moum ON FRONT OF CHASSIS

•
BACK TEMPLATE
B51087AOO2
FRONT TEMPLA TE
B51087AOOl

8-7

/187

MOUNTING
HARDWARE
TO-66
·NO.6SHEET
METAL SCREWS
B51564FOOJ

TO·66
(CASE 80)

--u~-

p

-B--

·c

II

MICA INSULATOR
B52600FOO8
·NYLON INSULATING

~~==~====~~~~~~[

BUSHING
B51547FOO2

,.

-t

t I

K

E

I

. SEATING PLANE
---F--

s

• Longer screws (not available from Motorola) and multiple bushings may be required for

thick chassis or heat sink.

•

MOUNT ON FRONT OF CHASSIS

o

MOUNT ON BACK OF CHASSIS

o o

o

o

o

a
o

'0
FRONT TEMPLATE
B54879COOl

o

(DRAWINGS NOT
TO SCALE)

a

MILLIMETERS
DIM MIN MAX
B 11.94 12.70
6.35 8.64
C
D
0.71 0.86
1.27 1.91
E
F 24.33 24.43
4,83 5.33
G
2.67
H 2.41
J 14.48 14.99
K
9.14
P
1.27
Q
3.86
3.61
S
8.89
T
3.68
U
- 15.75

-

INCHES
MIN MAX
0.470 0.500
0.250 0.340
0.028 0.034
0.050 0.075
0.958 0.962
0.190 0.210
0.095 0.105
0.570 0.590
0.360
- 0.050
0.142 0.152
0.350
0.145
- 0.620

All JEDEC Dimensions and and Notes Apply.
CASE 80
(TO-66)

BACK TEMPLATE
B54879COO2

8-8

MOUNTING HARDWARE T0-66

L
0.275
"'-M
..

,--

2.03·2.36
0.080·0.093

~

___ _

-@-

]

I
12.70±. 0.79
0.500±. 0.031

1.340

NO.6 SHEET METAL SCREW
B51564F003

XP PHENOLIC
VACUUM WAX
IMPREGNATEO

.049 DIA
.043
(2 HOLES)

.156 ±.002 OIA
(2 HOLES)

.188 R TYP

0.005 MICA INSULATOR
852600F008

.100
±.015

0 •.003 MICA INSULATOR
B52600F009

BRASS
CADMIUM PLATED
.030 THK

5/32IN·---lU·
MAX
13/32 IN .
.112 CIA

(2 HOLES FOR
#4·40 SCREW)

.060 ±.005l

r·

r

143 ±.003 .
CIA

--.l

. -0'---

TRANSISTOR SOCKET
B54837COOl

.L.l77

+

±.003

.

DIA
NYLON INSULATING BUSHING
851547F002
.200
.210

0.855

Q.9ii5

------.120DIA~ .

'188DIA¢
.08 CIA
(2)

.188
DIA,

$.120DIA

BACK TEMPLATE
B54879C002
~-+

___ 1.075
1.ii95
FRONT TEMPLATE
B54879COOl

8-9

•

MOUNTING
HARDWARE
TO-126

~
1§f"

_ _ 4·40 HEX HEAD SCREW
B09489A030

~
/~
~
I

_ _ COMPRESSION WASHER
B52200F006

"SEMICONDUCTOR" _ _
TO-126
(CASE 77)
I

--•

®

ROUND MICA INSULATOR
B52600F003

HEATSINK OR CHASSIS

MILLIMETERS
DIM MIN MAX
A 10.80 11.05
7.49
7.75
B
2.41
2.67
C
0.51
0.66
D
2.92
3.18
F
2.31
2.46
G
1.27
2.41
H
0.38
0.64
J
K 15.11 16.64
3 TYP
M
Q
4.01
3.76
1.14
1.40
R
0.64
0.89
S
3.68
3.94
U
V
1.02

I

@
TORQUE REQUIREMENTS
O.SSN·m (6IN-LBS.) MAX.

INCHES
MIN MAX
0.425 0.435
0.295 0.305
0.095 0.105
0.020 0.026
0.115 0.125
0.091 0.097
0.050 0.095
0.015 0.025
0.595 0.655
3D TYP
0.148 0.158
0.045 0.055
0.025 0.035
0.145 0.155
0.040

CASE 77·04
TO-126

8-10

-

MOUNTING HARDWARE TO-126

(DIMENSIONS

MILLIMETERS)
INCH

2.95·312
0.116·0.123

I

~

~

+

~
~

O.1,24QUNC28

0.241 0.250

.".J :..
[I I)
6.98·7.34

2.21-2.49

"m.

102127
Q.040·0 050

---r

4-40 HEX NUT
CARBON STEEL,
CADMIUM PLATED
B09490A005

S:reEL COMPRESSION WASHER
B52200F006

3.18·343

01250135

---r

~
~'241.S2
460 475

+

~

I

513 MIN

011240UNC2A

f------ ~24:~ ~25~~ - - - - - I

J

Y
,

OOO~~:~ ~~3

a
---

100490060

1
~

04'Or

SOO

!
4-40 HEX HEAD SCREW
CARBON STEEL,
CADMIUM PLATED
B094B9A003

ROUNO MICA INSULATOR
B52600FOO3

8-11

•

MOUNTING
HARDWARE
TO-127, CASE 90
Part numbers in this

Part numbers in this'

column for

column for

*HIGH VOLTAGE
INSULATED MOUNTING

INSULATED
MOUNTING

6-32 HEX HEAD SCREW
B094B9A031

'-

V

4·40 HEX HEAD SCREW
B09489A030

~

-""""1r"

~/

B

NYLON INSULATING BUSHING
(For 4-40 Screw)
B51547FOll

STEEL COMPRESSION WASHER ___
(For 6-32 Screw)
~
B52200FOO4
~

SEMICONDUCTOR
(CASE 90)

RECTANGULAR
MICA INSULATOR
B0560SAOOl

•

DIM
A
4-40
COMPRESSION WASHER
B52200F006

~ __

6-32 HEX HEAD NUT - - - - ~

4-40 HEX NUT
B09490AOO5

B09490AOO6

B

C
D
F
G

H
J
K
M
Q

R
TORQUE REQUIREMENTS
Insulated 0.68 N-m (S IN. LBS.) MAX
High Voltage Insulated 0.90 N·m (6 IN. LBS') MAX
• High voltage mounting requirements depend on use environment. User is encouraged
to make his own evaluation.

8-12

U

MILLIMETERS
MIN
MAX
16.13 16.38
12.57 12.83
3.18 3.43
1.09 1.24
3.51 3.76
4.22 esc
2.67 2.92
0.813 0.864
15.11 16.38
90 TYP
4.70 4.95
1.91 2.16
6.22 6.48

INCHES
MIN MAX
0.635 0.645
0.495 0.505
0.125 0.135
0.043 0.049
0.138 0.148
0.166 esc
0.105 0.115
0.032 0.034
0.595 0.645
90 TYP
0.185 0.195
0.075 0.085
0.245 0.255

CASE 90
(TO·127)

MOUNTING HARDWARE TO-127, CASE 90 '

OUTLINE DIMENSIONS
01 MENSIONS _ MI LLIMETER
INCH

3'71'3'81~

..~. J . ..,.~

~

•.,~- 1°..=.•, ""•.~

<==S

0411-0.050

0.265.0.275

0.323.0.33::.=1°. 045'0055

.

I@A

.~~;:::.~~\~.~

==o~

1.19·1.30

~_r·r··~·

U_

c=:=:s T
f

3.45·3.58

~

:y-

B -

-

----r

4 19432
0,

~C

[I J)

I

W

JI _~

0

;65~O: 170

STEEL COMPRESSION
WASHER

STEEL COMPRESSION
WASHER

NYLON INSULATING BUSHING

B52200F004

B52200F006

B51547FOll

HEX NUT
CARBON STEEL.
CADMIUM PLATED

E

~ ,.,,.~~
0.B02·0.B22

~lllJ

18.54·19.05
0.730·0.750

G

i

~

,--a~

1

M~V~-i

J

0.002-

I

0.003

r - - - 0.590·0.610 - j

14.99-15.49

1---0.05-0.08

=================,

N

.~

r0.002·0.003

-T

ROUND MICA INSULATOR

RECTANGULAR MICA INSULATOR

(See table below.!

(See table below.)

HEX HEAD SCREW
CARBON STEEL.
CADMIUM PLATED

DIMENSIONS - MILLIMETER (INCH)

•

RECTANGULAR MICA INSULATOR

ROUND MICA INSULATOR
PART NO.

DIME

PART NO.

DIMG

B52600F013

3.56·3.Bl (0.14CHl.150)

B056OBAOOI

3.6B·3.94 (0.145·0.155)

B52600F015

2.B7·2.97 (0.113-0.117)

B056OBA002

2.B7-3.00 (0.113·0.11B)

HEX NUT
DIMA

DIMB

DIMe

DIMD

6.12·6.35 (0.241·0.2501

6.98·7.34 (0.275-0.2891

2.21·2.49 (0.087·0.09BI

2.84 NOM (0.112 NOMI

7.67·7.92 (0.302·0.3121

8.74·9.17 (0.344·0.3611

2.59-2.90 (0.102·0.1141

3.50 NOM (0.138 NOMI

HEX HEAD SCREW

DIMN

DIMP

DIMQ

DIMR

11.94·12.1010.410·0.5001

1.24·1.5210.049·0.0601

5.13 MIN 10.202 MINI

4.61).4.1510. lBl·0.1871

11.94·12.1010.470·0.5001

2.03·2.3610.061).0.0931

6.91 MIN 10.212 MINI

6.211-6.3510.244-0.2501

8-13

MOUNTING
HARDWARE
TO-220AB
PREFERRED ARRANGEMENT
for Isolated or Non·ilDlated

ALTERNATE ARRANGEMENT
for IsoletlCl Mounting
when Screw must be at
Heat·Sink Potential.
4-40 Hardware is U.....

Mounting. krew is at Semiconductor Ca. Pot.nti.l~ .
6·32 Hardware is U .....

Chooll from Pa ... Listed

...

U.. Parts Listed 801_.

Below. . . .

. y:::::.----:-

6-32 HEX HEAD SCREW
B09489A035

~

4-40 HEX HEAD SCREW
B09489A034

'.

R

~J

II

MILLIMETERS

DIM
A

I

./ NYLON INSULATING BUSHING

i . ./
~
I

111 RECTANGULAR STEEL
WASHER
B09002AOOI

.

I

B51547F015

I

~[I=:r:::::=:::::::::J

.

n

A

I

/

SEMICONDUCTOR \ :
(CASE 221. 221A)
"-

N

SEMICONDUCTOR
(CASE 221. 221M

>

I

c:::::::::~~_~

MIN MAX
14-23 15-87
10.66
3. 6 4-82
0.51
'-14
31 3.733
.29 V9
.35
.1 '-14
12.7 14.27
4 177
4.3 5.33
4 3.04
2.04 2.92
1.39
5.B5 US

INCHES

MIN
0.560
0.380
0.140
0.020
0.139
0.090

0.625
0.420
0-190
0.045
0.147
0.110
0.250
0.045
0.562
0070
0.210
0.120

0.012
0.500
0045
0.190
0.100
D.DBD 0.115
0.020 DOSS
0.230 0.270
CASE 22HJ.2
TO·220AB
All JEOEC dImenSions and

H

I'I-H,L

Dj~EG
nOles applV

(21 RECTANGULAR MICA
INSULATOR,

IC:I:==:;====I:============~

BOBB53AOOI

HEAT SINK

"-?,.----,
(21 NYLON BUSHING
B51547FOO5

,

•

'------'It,

HEAT SINK
'-.....r-~:.......--,

~

(31 FLAT WASHER
B51567F036.
(41 COMPRESSION
LOCK WASHER
B62200F004
6-32 HEX NUT
B09490AOO6

' " RECTANGULAR
MICA INSULATOR
B08853AOOI

:

~

~

COMPRESSION WASHER
B52200FOO5
/

_____
. _ _ 4-40 HEX NUT
B09490A005

~

('J:,.--'---rX--')
U.ed with thin challis and/or large hOle.
(2) U..d when Ilo'atlon J. required.
(3) Required when nylon bushing and lock wa.har are us.d.
(4) ComprH.lon wa.har preferred when plastic Insulating
(1)

material I, u••d.
TORQUE REQUIREMENTS
Insul.ted 0.6B N·M (6 In·lbo) m ••

MILLIMETERS
DIM MIN MAX
A 15.11 15.75
9.65 10.29
8
4.82
C 4.06
0.84
0
0.89
f
3.61
3.73
G
2.41
2.67
H
2.79
3.30
J
0.36
0.56
K 12.70 14.27
1.14
L
1.27
N
4.83
5.33
n 2.54 3.04
R
2.04
2.79
S
1.14
1.39
T
5.97
6.41
U
0.76
1.27
1.14
V

INCHES
MIN MAX
0.595 0.620
0.380 0.405
0.160 0.190
0.025 0.035
0.142 0.147
0.095 0.105
0.110 0.130
0.014 0.022
0.500 0.562
0.845 0.050
0.190 0.210
0.100 0.120
D.08O 0.110
0.845 0.055
0.235 0.255
0.0 0 0.050
0.045
CASE 221A-02
TI).220AB

Nonlnlulatad 0.9 N-M (8 In-lba) max.

8-14

MOUNTING HARDWARE TO-220AB

(DIMENSION _ MILLIMETER)
INCH
MICA INSULATOR
BOB853AOOI
3.05·3.28

031~~~'~~O@L
-- .
I

;'

•

-

I

8.20-846

1- 0323

I
I
I

o.i:l:i-'

1.14-1.40

100450055

I ....=:==-;s-I- T

~
~

9.53·10.0

147·1 57

~~
13 B4·14.10
0545·0555

~

L~~

0.375.0.39~

----==-=s

I

14.60·14.86

0.575·0.585

"11.14.1.40
0.045·0.055
STEEL COMPRESSION
WASHER
B52200F005

STEEL COMPRESSION
WASHER

483·533
0190·0.210
0.05·00B

21 OB·21 59
0.B30·0 850

B52200F004

~OOO2.0003

---~=-,
HEX HEAD SCREW
CARBON STEE L
CADMIUM·PLATED
(See table below,)

HEX NUT
CARBON STEEL
CADMIUM·PLATED
(See table below.)

K

E§J

NYLON
INSULATING BUSHING
(See table below.)

3 58-3 68

00"""
~ ~~
+

f~
11__

•.••. "

10.16-1 0.41
0.400·0.410

Iii

[I

f

N

RECTANGULAR
STEEL WASHER
B09002AOOI

.

LiI'-M

0.215-0 225
~

I

.

1.52·1.62
0.OSQ.0.OS4

t

DIMENSIONS - MILLIMETER (INCH)
NYLON BUSHING
PART NO.

DIMA

B51547FOO5

9.40-9.65
(0.370-0.380)

3.84-4.09
(0.151-0.1611

2.16-2.41
(0.085-0.095

B51547F015

5.59-6.10
(0.22P.0.2401

3.05-3.15
10.120-0.1241

1.57-1.68
10.062-0.0661

DIMB

DIMe

DIMD

DIME

6.10-6.35
(0.240-0.2501

1.02-1.27
(0.040-0.0501

3.56-3.66
10.140-0.1441

0.51-0.64
10.020.0.0251

HEX NUT
TYPE

PART NO.

DIMG

DIMH

DIMJ

DIMK

4·40

B09490AOO5

6.12·63510.241·0.2501

6.98·7.34 10.275·02891

2.21·2.4910.087·0.0981

2.84 NOM 10 112 NOMI

6·32

B09490A006

767·7.9210302·03121

8 74·9.17 10344·0.361 I

2.59·2.9010.1020.1141

350 NOM 10.138 NOMI

HEX HEAO SCREW
TYPE

PART NO.

DIMM·

DIMN

DIMP

DIMQ

DIMR

4-40

B09489A034

0.112·40

1.5710.621

1.24·1.52 10.049-0.0601

5.13 MIN 10.202 MINI

4.60·4.7510181-01871

6-32

B09489A035

0.138·32

1.5710.621

2 OJ·2.36 10.08Q.0.0931

6.91 MIN 10.272 MINI

6.2Q.6.35 10 244·0.2501

~15

•

AN-778

MOUNTING TECHNIQUES FOR
POWER SEMICONDUCTORS
In many situations the case of the seiniconductor must
be isolated electrically from its mounting surface. The
isolation material is, to some extent, a thermal isolator
as well, which raises junction operating temperatures. In
addition, the possibility of arc-over problems is introduced if high voltages are being handled. Electrical
isolation thus places additional demands upon the
mounting procedure.
Proper mounting procedures necessitate attention
to the following areas:
I. Mounting surface preparation,
2. Application of thermal compounds,
3. Installation of the insulator,
4. Fastening of the assembly, and
5. Lead bending and soldering.
In this note, the procedures are discussed in general
terms. Specific details for each class of packages are
given in the figures and in Table 1. Appendix A contains
a brief review of thermal resistance concepts, and
Appendix B lists sources of supply for accessories.
Motorola supplies hardware for all power packages. It is
detailed on separate data sheets for each package type.

INTRODUCTION
Current and power ratings of semiconductors are
inseparably linked to their thermal environment. Except
for lead-mounted parts used at low 'currents, a heat
exchanger is required to prevent the junction temperature
from exceeding its rated limit, thereby running the risk
of a high failure rate. Furthermore, semiconductorindustry field history indicates that the failure rate of
most silicon semiconductors decreases approximately
by one half for a decrease in junction temperature from
1600 C to 135 0 C.*
Many failures or' power semiconductors can be traced
to faulty mounting procedures. With metal packaged
devices, faulty mounting generally causes unnecessarily
high junctjon temperature, resulting in reduced component lifetime, although mechanical damage has
occurred on occasion from mounting'securely to a warped
surface. ,With the widespread use of various plastic'
packaged semiconductors, the dimension of mechanical
damage becomes very significant.
'
Figure I shows an example of'doing nearly everything
wrong. In this instance, the device to be victimized is
in the TO-220 package. The leads are bent to fit into
a socket-an operation which, if not properly done, can
crack the package, break the bonding wires, or crack the
die; The package is fastened with a sheet-metal screw
through a 1/4"-hole containing a fiber-insulating sleeve.
!he force used to tighten the screw pulls the package
mto the hole, causing enough distortion to crack the die.
Even if the die were not cracked, the contact area is small
because of the area consumed by the large hole and the
~owing of the package; the result is' a much higher
JunctIOn temperature than expected. If a rough heat sink
surface and some burrs around. the hole are present,
many-but unfortunately not all-poor mounting practices
are covered.

MOUNTING SURFACE PREPARATION
In general, the heat-sink mounting surface should have
a flatness and finish comparable to that of the semiconductor package. In lower power applications, the
heat-sink sllrface is satisfactory if it appears flat against
a straight edge and is free from deep scratches. In highpower applications, a more detailed examination of the
'
surface is required.
Surface Flatness
Surface flatness is determined by comparing the
variance in height (t.h) of the test specimen to that of
a reference standard as indicated in Figure 2. Flatness is
normally specified as a fraction of the Total Indicator
R~ading (TIR). The mounting surface flatness, i.e.,
t.h/TIR, is satisfactory in most cases if less than 4 mils per
inch, which is normal for extruded aluminum-although
disc type devices usually require 1 mil per inch.

•

Surface Finish
Surface finish is the average of the deviations both
above and below the mean value of surface height. For
minin1um interface resistance, a finish in the range of 50
to 60 micro inches is satisfactory;* a finer finish is costly
to achieve and does not significantly lower contact
resistance. Most commercially available cast or extruded

FIGURE 1 - Extreme Ca.e of Improperly Mounting
A Semiconductor CDistonion Exaggerated)

* See MIL-Handbook-217B, Section 2.2

*Tests run by Thermalloy (Catalog #74-INS-3, page 14)
using a copper TO-3 package with a typical 32-microinch
finish, showed that finishes between 16 and 64 Jj-in
caused less than ± 2.5% difference in interface thermal
resistance.

8-16

AN-778

TIR = Total Indicator Reading

Reference Piece

Device Mounting Area

FIGURE 2 - Surface Flatness

Another treated aluminum finish is iridite, or chromate·
acid dip, which offers low resistance because of its thin
surface, yet has good electrical properties because it
resists .oxidation. It need only be cleaned of the oils and
films that collect in the manufacture and storage of the
sinks, a practice which should be applied to all heat sinks.
For economy, paint is sometimes used for sinks; removal
of the paint where the semiconductor is attached is
usually reqUired because of paint's high thermal resistance.
However, when it is necessary to insulate the semi·
conductor package from, the heat sink, anodized or
painted surfaces may be more effective than other
insulating materials which tend to creep (i.e., they flow),
thereby reducing contact pressure.
It is also necessary that the surface be free from all
foreign material, film, and oxide (freshly bared aluminum
forms an oxide layer in a few seconds). Unless used
immediately after machining, it is a good practice to
polish the mounting area with No. 000 steel wool,
followed by an acetone or alcohol rinse. Thermal grease
should be immediately applied thereafter and the semi·
conductor attached as the grease readily collects dust
and metal particles.

heat sinks will require spotfacing when used in high·
power applications. In general, milled or machined
surfaces are satisfactory if prepared with tools in good
working condition.
Mounting holes generally should only be large enough
to allow clearance of the fastener. The larger packages
having mounting holes removed from the semiconductor
die location, such as a TO·3, may successfully be used
with larger holes to accommodate an insulating bushing,
but Thermopad plastic packages are intolerant of this
condition. For these packages, a smaller screw size must
be used such that the hole for the bushing does not
exceed the hole in the package ..
Punched mounting holes have been a source of trouble
because if not properly done, the area around a punched
hole is depressed in the process. This "crater" in the heat
sink around the mounting hole can cause two problems.
The device can be damaged by distortion of the package
as the mounting pressure attempts to conform it to the
shape of the heat·sink indentation, or the device may only
bridge the crater and leave a significant percentage of
its heat·dissipating surface out of contact with the heat
sink. The first effect may often be detected immediately
by visual cracks in the package (if plastic), but usually
an u~natural stress is imposed, which results in an early·
life failure. The second effect results in hotter operation
and is not manifested until much later.
Although punched holes are seldom acceptable in the
relatively thick material used for extruded aluminum heat
sinks, several manufacturers are capable of properly
utilizing the capabilities inherent in both fine·edge
blanking or sheared·through holes when applied to sheet
metal as commonly used for stamped heat sinks. The
holes are pierced using Class A progressive dies mounted
on four·post die sets equipped with proper pressure pads
and holding fixtures.
When mounting holes are drilled, a general practice
with extruded aluminum, surface cleanup is important.
Chamfers must be avoided because they reduce heat
transfer surface and increase mounting stress. The edges
should be broken to remove burrs which cause poor
contact between device and heat sink and may puncture
isolation material.
Many aluminum heat sinks are black·anodized to
improve radiation ability and prevent corrosion.
Anodizing results ih significant electrical but negligible
thermal insulation. It need only be removed from the
mounting area ,when electrical contact is required.

THERMAL COMPOUNDS
'To improve contacts, thermal joint compounds or
greases are used to fill air voids between all mating surfaces .
Values of thermal resistivity vary from 0.1 0 degrees
Celsius·inches per watt, for copper film to 12000 C·in/W
for air, whereas satisfactory' joint compounds will have
a resistivity of approximately 60 0 C·in/W. Therefore, the
voids, scratches, and imperfections which are filled with
a joint compound, will have a thermal resistance of about
1/20th of the original value which makes a significant
reduction in th'e overall interface thermal resistance.
Joint compounds are a formulation of fine zinc particles
in a silicon oil which main tains a grease·like consistency
with time and temperature. Since some of these com·
pounds do not spread well, they should be evenly applied
in' a very thin layer using a spatula or Iintless brush, and
wiped lightly to remove excess material. Some cyclic
rotation of the package will help the compound spread
evenly over the entire contact area. ,Experience will
indicate whether the quantity is sufficient, as excess will
appear around the edges of the contact area. To prevent
accumulation of airborne particulate matter, excess

8-17

••

AN-778

compound should be wiped away using a cloth moistened
with acetone or alcohol. These solvents should not contact
plastic-encapsulated devices, as they may enter the
package and cause a leakage path or carry in substances
which might attack the assembly.
Data showing the effeci of compounds on several
package types under different mounting conditions is
shown in Table I. The rougher the surface, the more
valuable the grease becomes in lowering contact resistance; therefore, when mica insulating washers are used,
use of grease is generally mandatory. The joint compound
also improves the breakdown rating of the insulator and

is therefore highly desirable despite the handling problems
created by its affinity for foreign matter. Some sources
of supply for joint compounds are shown in Appendix B.
Some users and heat-smk manufacturers prefer not
to use compounds. This necessitates use of a heat sink
with lower thermal resistance which imposes additional
cost, but which may be inconsequential when low power
is being handled. Others design on the basis of not using
grease, but apply it as an added safety factor, so that
if improperly applied, operating temperatures will not
exceed the design values.

TABLE I
Approximate Values for Interface Thermal Resistance and Other Package Data
(See Table II for Ca'SB Number to JEDEC Outline Cross-Reference)

Drv l",tmf'ace values are subject to wide variation because of 8l

i1l
f

/

16 0

1/

/

/

FASTENING TECHNIQUES

TO·126

Each of the various types of packages in use requires
different fastening techniques. Details pertaining to each
type are discussed in following sections. Some general
considerations follow.
To prevent galvanic action from occurring when devices
are used on aluminum heat sinks in a corrosive
atmosphere, many devices are nickel- or gold-plated.
Consequently, precautions must be taken not to mar
the finish.
Manufacturers which proVide heat sinks for general use
and other associated hardware are listed in Appendix B.
Manufacturer's catalogs should be consulted to obtain
more detailed information. Motorola also has mounting
hardware available for a number of different packages.
Consult the Hardware Data Sheet for dimensions of
the components and part numbers.
Specific fastening techniques are discussed in the
remainder of this note for the follOWing categories of
semiconductor pa9kage.
I. Stud mount: 00-4, 00-5, 00-9, 00-30, TO-59.
T0-60/63, TO-83, TO-93/94, etc.
2. Flange mount: 00-43, 00-44, TO-3, TO-37,
T0-41, TO-53, TO-66, etc.
3. Pressfit: 00-21, DO-24, TO-203
4. Disc: 00-200 and TO-200 Families
5. Thermopad®: TO-I 26/7
6. Thermowatt®: TO-220 Family
7. Tab Mount (Duowau® and Uniwatt®): TO-202
Family
8. RF Stripline: TO-119/121. TO-I 28/9, TO-216

l---

/

120

I

o .1/
/I

0"

1

o
o

20

40

60

80

100

DEFLECTION OF WASHER DURING MOUNTING (%)

FIGURE 5 - Characteristics of the Bell Compression
Washers Designed for Use with Thermopad Semiconductors

Machine Screws
Machine screws and nuts form a trouble-free fastener
system for all types of packages which have mounting
holes. Torque ratings apply when dry; therefore, care
must be exercised when using thermal grease to prevent it
from getting on the threads as inconsistent torque
readings resul t. Machine screw heads should not directly
contact the surface of any of the Thermopad plastic
package types as the screw heads are not sufficiently flat
to provide properly distributed force.
Self-Tapping Screws
Under some conditions, sheet-metal screws are
acceptable. However, during the tapping process with a
standard screw, a volcano-like protrusion will develop in
the metal being threaded; a very unsatisfactory surface

"Trademark E. I. DuPont

8-21

•

AN-778

Stud Mount

Flange Mount
Few known mounting difficulties exist. with this type
of package. The rugged base and distance between die
and mounting holes combine to make it extremely
difficult to cause any warpage unless mounted on a
surface which is badly bowed or unless one side is
tightened excessively before the other screw is started.
A typical mounting installation is shown in Figure 7.
Machine screws, self·tapping screws, eyelets, or rivets
may be used to secure the package.

Mounting errors with stud·mounted parts are generally
confined to application of excessive torque or tapping the
stud into a threaded heat·sink hole. Both these practices
may cause a warpage of the hex base which may crack
the semiconductor die. The best fastening method is to
use a nut and washer; the details are shown in Figure 6.

o

No.6 Sheet Metel Screwl

I

@_

MicaWa,her

~_T.flon

Bushing

I

"."'".-~
I

@_MiceW8Iher

@-,., ...,-~,
I

I

•

~_~~T~;""
FIGU RE 7 -

Mounting~ Details for

Flat·BaM Mounted

Semiconductor. CTO-3 Shownl.
When not using'! a socket, machine screws tightened to
their torque limits will produce lowest thermal resistance.

Press Fit
For most applications, the press·fit case should be
mounted according to the instructions shown in Figure 8.
A special fixture meeting the necessary requirements
is a must.

Disc
. Disc type devices also require special handling. The
details are shown in Figure 9.

FIGURE 6 - Mounting Ootail.
For Stud-Mounted Semiconductors

8-22

AN·778

Shoulder Ring

~

.501

1
-1.24

T

-

.505 01.

.01

I·

·1 /

~

I

j~.OI Nom.

i :W-~omV

The hole edge must be chamfered as shown to pr.vent shearing
off the knurled edge of the case during press-in. The pressing force
should be applied evenlv on tho shoulder ring to avoid tilting
or canting of the case in the hole during thll pressing operation,
Also, the use of a thermal joint compound will be of cunslderable
aid. The pressing force will VIUY from 250 to 1000 pounds,
depending upon the heat-sink matarial. Recommended hardnessas

Heat Sink,

'fit/6@;%%?£

®%'%;@

r-

--i

0.0499 ± 0.001 Ola.

Heat Sink Mounting

Rlv." "'\

.

~

~

~
~llIIlIlIIr~ "

Intimate
Contact Ar..

Additional

/HeatSinkPlate

Complete
Knurl Contact

are: copper-Isss than 50 on the Rockwell F scale; aluminum-less
than 6& on the Brinell scale. A heat sink as thin as l/S" may be
used, but thE:. interfac6 thermal reSistance will inCreS$8 in direct
proportion to the contact area. A thin chassis requires the addition
of a backup plate.

Thin Chassis

Ar ..

Thin-Chassis Mounting

FIGURE 8 - Mounting Details for

P,ass~Fit

Semiconductors

•
A self.levellng type mounting clamp is recommended to assure
parallelism and even distribution of pressure on each contact area.
A swivel type clamp or 8 narrow leaf spring In contact with the
heat dissipator provides acceptable performance.
The clamping force should be applied smooth Iv. evenly. and
perpel"ldlcularly to the semiconductor package to prevent defor-

mation of the device or the heat·dissipator mounting surfaces
during Installation. The spring used should provide 8 mounting
force within the range recommended by the semiconductor manufacturar; clamping forces usually range fro,,' SOD to 2000 pounds
force depending upon the type number.

Installation of an assembly of disc-tYpe semiconductors
mounted between two heat dissipator, should be done In 8 manner
to permit one heat dissipator to move with respect to the other_
MO\lement' will al,lOld stresses baing developed due to thermal
expansion, which could damage the semiconduetor.
Similarly, when two or more devictls art' to be operated elec·
trically in parallel, one of the heat dissipators used may ba
common to all devices, Individual haut disslpators must be provided against the other mounting sUlfocos. of the semiconductors
$0 that tne mounting force applied in each case will be
independently adjustable.

FIGURE 9 - Mounting Details for

8-23

Disc~Type

Semiconductors

AN-778

Thennopad

Several types of fasteners may be used to secure the
Thermopad package; machine screws, eyelets, or clips
are preferred. With screws or eyelets, a bell compression
washer should be used which applies the proper force
to the package over a fairly wide range of deflection.
Screws should not be tightened with any type of airdriven torque gun or eqUipment which may cause high
impact. Characteristics of the recommended washers
are shown in Figure 5.
Figure 10 shows details of mounting TO,126 or
TO-127 devices. Use of the clip requires that caution be
exercised to insure that adequate mounting force is
applied. When electrical isolation is required, a bushing
inside the mounting hole will insure that the screw threads
do not contact the metal base.

The Motorola Thermopad® plastic power packages
have been designed to feature minimum size with no
compromise in thermal resistance. This is accomplished
by die·bonding the silicon chip on one side of a thin
copper sheet; the opposite side is exposed as a mounting
surface. The copper sheet has a hole for mounting, i.e.,
plastic is molded enveloping the chip but leaving the
mounting hole open. The benefits of this construction
are obtained at the expense of a requirement that strict,
attention be paid to the mounting procedure. Success
in mounting Thermopad devices depends largely upon
using a compression washer which provides a controlJable
pressure across a large bearing surface. Having a small hole
with no chamfer and a flat, burr-free, well-finished heat
sink are also important requirements.

t1---

Machine Screw or

Sheet Metal Screw

Compression Washer .

Eyelet

Compression Washer

Thermopad Package

Mica Washer (OPtional)
Spring Lock Washer
Machine or Speed

Nut

(8) Machine Screw Mounting

(bl Eyelet Mounting

~
~

Part C52825·011

PartsC50272·Q11 and C51451-0"

Material: Heat-Treated Spring

_-=___....-5_te_e_1,:o_,O_'_"...,ThiCkness

•

Material: Heat-Treated Spring
Steel 0.011 Thickness

~04~O.056

o'~""pi.1

tIS',

7

Panel

Range

-0.480

TO-127 Clip

TO-126 Clip
(cl Tinnorman Clips (Eaton Corp.1

FIGURE 10 - Recommended Mounting Arrangements for TO-I26 and TO-127 Thermopad Package.

8-24

AN-778

The case 199 Thermopad is not more tolerant of
mounting conditions than Case 77 or 90 parts even
though the fastener does not bear on the plastic. The
screw must not contact the semiconductor base plate
as screw heads are not flat enough to apply pressure evenly
and may cause warpage of the base plate resulting in die
fracture. Procedures for mounting the Case 199 are
shown in Figure II.

6·32
Machine Screw

the plastic body during the driving operation. Such
contact can result in damage to the plastic body and
internal deVice connections. To minimize this problem,
Motorola TO-220 packages have a chamfer on' one end.
TO-220 packages of other manufacturers may need
a spacer or combination spacer and isolation bushing
to raise the screw head above the top surface of the plastic.
In situations where the Thermowatt package is making
direct contact with the heat sink, an eyelet may be used,
provided sharp blows or impact shock is avoided.

V

~~

==== __ Washer
Flat

Thermopad ~ -

Cas. 199

r'....--_ _ _, -_ _ _,

l. ______ J

f=

Compression --~
__

b) Alternate Arrangement
for Isolated Mounting
whon Screw must be at
Heat-Sink Potential.
4-40 Hardware is Used.

Choose from Parts Listed
Below.

Use Parts Listed Below.

.. S!jf-_ _

Heat Sink ---JL_ _....L......L._ _ _ _ _ _....

Washer

a) Preferred Arrangement
for Isolated or Non-isolated
Mounting. Screw is at Semiconductor Case Potential.
6-32 Hardware is Used.

CIIJ

6-32 Nut

(8) Machine Screw Mounting with Compression Washer

Compression Washer
10r6-32 Screw

II /"

--------~
~

----'1==
.

Nylon Isolation Bushing ____ rl
- ~~--...,
l ____ J
Thermopad Cas. 199

•

4.40 Hex Head Screw

6-32 Hex.../'
Head Screw

c:::::::z::::::

Insulating Washer IOPtionlll.---"'r
_ _r-,-__-:__

Nylon Insulating Bushing

lllf
(1) Rectangular Steel!

~

Semiconductor

\1

Weshe,

n~2:2:'A=)==:: : :>

:L-J..!- - - - - -....

Heat Sink ---1L_ _ _

Semiconductor
(Case 221, 221 A)

(b) Preferred Mounting Method, Required When Isolation Is
Needed. Machine Screw, Flat Washer and Nut, Sheet Metal
Screw and Speed Nut, or Eyelet May Be Used for Fasteners

'\

::

(2)Rectangular Mica
Insulator

FIGURE 11 - Various Mounting Schemes

For the Case 199 Thermopad

"-

Heat Sink

(al shows direct contact with heat sink.

Rectangu lar
Mica Insulator

(b) shows technique when isolation is required.
Manual Assembly Should Be Used.
(2)Nylon Bushing

~'--~. . . . . . i_L,
..

Thennowatt®
The popular TO-220 Thermowatt® package also
requires attention to mounting details. Figure 12 shows
suggested mounting arrangements and haraware. The
rectangular washer shown in Figure 12a is used to minimize
distortion of the mounting flange; excessive distortion
could cause damage to the semiconductor chip. Use of the
washer is only important when the size of the mounting
hole exceeds 0.140 inch (6-32 clearance). Larger holes
are needed to accommodate insulating bushings when the
screw is electrically connected to the case; however, the
holes should not be larger than necessary to provide
hardware clearance and should never exceed a diameter
of 0.250 inch. Flange distortion is also possible if excessive
torque is used during mounting. A maximum torque of
8 inch-pounds is suggested when using a 6-32 screw.
Care should be exercised to assure that the tool used
to drive the mounting screw never comes in contact with

"-

Heat Sink

(3) Flat Washer
(4) compres:·"o=n.=====>
or Lock Washer

. . . .\~~::,;.::,=(7
.

6-32 Hex Nut

. / Compression Washer
./

_ _ _ _ _ _ 4-40 Hex Nut

. . . . (;;: J)
(1)
(2)
(3)
(4)

Used with thin chassis and/or large hole.
Used when isolation is required_
Required when nylon bushing and lock washer are used.
Compression washer preferred when plastic insulating
material is used.
TqRQUE REQUIREMENTS
Insulated 0.68 N-M (6 in-Ibs) max
Noninsylated 0.9 N-M (8 in-Ibs) max

FIGURE 12 - Mounting Arrangements for Thermowatt Packages

8-25

•

AN-778

Note that th~ radius of the fillet must be small enough to
allow the tab to lie flat on the heat sink. To utilize an
existing chassis and board arrangement on heat sinking.
it may be necessary to have the device lie flat on the
chassis. In this case, the chassis mounting blocks shown
in Figure i3d might be utilized. A possible application
is shown in Figure 13e, where a complementary transistor pair is used. Insulated screws and mica insulating
washers under the blocks must be used to prevent·
shorting of the collector circuits of the two transistors.
Alternately, an insulated bushing and a #3 screw could
be used to secure the packages.
To avoid the use of mounting blocks, a tab-forming
option is available. Alternately, some eqUipment manufacturers have constructed heat sinks with a flat, raised
island to permit the package to be flat. Users should
not attempt to bend the tab as a cracked die is the
probable result.

Tab Mount
Although the Duowatt® and Uniwatt® packages are
designed primarily for use in low-power applications
where heat sinks are not required, they can be used
to dissipate up to 10 watts if properly mounted to a heat
sink. These _ packages are relatively rugged, since the
mounting hole is not close to the die; mounting stresses,
theref!)re, are not easily transmitted to the die.
Figure I3 shows some possible mounting arrangements.
An axial load of 300 Ibs-force produces minimum contact
thermal resistance. This is achieved at 6 in-lhs when a
440 machine screw is used. A sheet-metal screw and
speed-nut can be substituted for the machine screw
and nut, but torque readings are uncertain. The riveting
technique should produce 300 lbs-force, using a gradually
increasing pressure such as provided by an arbor press.
The extrusion requires a punch press to manufacture;
however, it is potentially the least expensive technique.

H

~
~

, .:::-.ri

~

L

'-I...........

W

D. Chassis Mounting Block Details

Block Dimensions

H

W

Duowatt

Unill'iatt

•

0.140
0.113

0.4
0.3

T

L

B", Rivet

0.5
0.3

Low
Block

High
Block

0.07
0.06

0.12
0.12

t
~
~

Cj'CUit

Emitter

L./ad~

C. Extrusion, Used as Rivet

Board

~

~

~:~k

E. Chassis Mount Block, Mounting Details

Use Nylon Screws and Mica Insulating Washer to Prevent
Shorting the Tabs to the Chassis, and Thus to Each Other.

FIGURE 13 - Methods of Mounting Duowatt and Uniwatt Transistors to a Heat Sink

8-26

AN-778

R.F. Stripline

under the types of loads encountered when the mounting
screws are tightened, permanent deformation of the flange
may result. Corrective action after the flange has been
bent will not necessarily insure proper thermal contact
with the heat sink.
The flang~ surface as supplied with Motorola transistors is either flat or slightly convex. It is important
that the mating heat-sink surface also be flat or slightly
convex to provide the best contact when the device is
properly secured.
Since the flange may be permanently deformed during
mounting, the device should not be dismounted and
remounted in another position, without checking the
flatness. The flange may be resurfaced using emery cloth
mounted on a large, flat block. While this removes the
gold- or nickel-plating, the thin layer of copper oxide
which rapidly forms causes an insignificant increase in
thermal resistance, although corrosion may occur.

Besides the usua~ precautions regarding surface flatness
and torque, the stripline package (see Figure 14a) requires
attention to the following: .
I. The device should never be mounted in such a
manner as to place ceramic-to-metal joints in tension.
2. The device should never be mounted in such a
manner as to .apply force on the strip leads in a. vertical
direction towards the cap.
3. When the device is mounted in a printed circuit board
with the copper stud or flange and BeQ portion of the
header passing through a hole in the circuit board,
adequate clearance must be provided for the BeQ to
prevent shear forces from being applied to the leads.
4. Some clearance must be allowed between the leads,
and the circuit board when the device is properly secured
to the heat sink.
5. The device should be properly secured into the heat
sinks before the device leads are attached into the circuit:
6. The leads must not be used to prevent device
rotation on stud type devices during stud torque application. A wrench flat is provided for this purpose.
Most of the considerations listed above are designed
to prevent tension at the metal-ceramic interfaces on the
SQE package. Improper mechanical design can lead to
application of stresses to these joints resulting in device
destruction. Three joints are considered: the cap to the
BeQ disc, the leads to the disc, and the stud or flange
to the disc.
The jOint between the ceramic cap and the BeD
ceramic disc is composed of a material which loses
strength above 17S oC. While the strength of the material
returns upon cooling, any force applied to the cap .at
high temperature may result in failure of the cap to
ceramic jOint.
Figure 14b shows a cross-section of a printed circuit
board and heat-sink assembly for mounting a stud type
stripline device. H is the distance from the top surface
of the printed circuit board to the D-flat heat-sink surface.
If H is less than the minimum distance from the bottom
of the lead material to the mounting surface of the
package, there is no possibility of tensile forces in the
copper stud-BeD ceramic joint. If, however, H is greater
than the package dimension, considerable force is applied
to the cap to BeQ joint and the BeQ to stud joint. Two
occurances are possible at this point. The first is a cap
joint failure when the structure is heated, as might occur
during the lead-soldering operation; while the second is
BeQ to stud failure if the force generated is high enough.
Lack of contact between the device and the heat-sink
surface will occur as the differences between H and the
package dimension becomes larger, this may result in
device failure as power is applied.
Figure 14c shows a typical mounting technique for
flange-type stripline transistors. Again, H is defined' as
the distance from the top of the printed circuit board to
the heat-sink surface. If distance H is less than the
minimum distance from the bottom of transistor lead
to the bottom surface of the flange, tensile forces at the
various joints in the package are avoided. However, if
distance H exceeds the package dimension, problems
similar to those discussed for the stud type devices can
occur. Because of the ability of the copper flange to bend

(a) Component Parts of a Stud Mount Stripline Package.

Flange Mounted Packages Are Similarly Constructed

"0" Flat

Printed

(~.-i<;'i'-I+r'4--+ Metal
Heat

Sink
Side View

Cross Section
(b) Typical Study Type SOE Transistor Mounting Methods

Mounting
Holes

Circuit
Board

'--':.....,=-...,,::-->-=..~ Copper

Conductors

Spacer

Sink Surface

(e) Flange Type SOA Transistor Mounting Method

FIGURE 14 - Mounting Details for SOE Transistors

8-27

•

AN-778

FREE AIR AND SOCKET MOUNTING

In certain situati·ons. in particular where semiconductor
testing is required, sockets are desirable. Manufacturers
have provided sockets for all the packages available from
Motorola. The user is urged to consult manufacturers'
catalogs for specific details.

In applications where average power dissipation is of
the order of a watt or so, power semiconductors may be
mounted with little or no heat-sinking_ The leads of the
various metal power packages are not designed to support
the packages; their cases must be· firmly supported to
avoid the possibility of cracked glass-to-metal seals around
the leads. The plastic packages may be supported by their
leads in applications where high shock and vibration
stresses are not encountered and where no heat sink is
used. The leads should be as short as possible to increase
vibration resistance and reduce thermal resistance.
In many situations, because its leads are fairly heavy,
the TO-127 package has supported a small heat sink;
however, no definitive data is available. When using a
small heat sink, it is good practice to have the sink rigidly
mounted such that the sink or the board is providing total
support for the semiconductor. Two possible arrangements
are shown in Figure 15. The arrangement of part (a) could
be used with any plastic package, but the scheme of part
(b) is more practical with Case 77 or Case 90 Thermopad
devices. With the other package types, mounting the
transistor on top of the heat sink is more practical.

HANDLING PINS. LEADS, AND TABS
The pins and lugs of metal-packaged devices are not
designed for any bending or stress. If abused, the glassto-metal seals could crack. Wires may be attached using
sockets, crimp connectors, or solder, proVided the datasheet ratings are observed.
The leads and tabs of the plastic packages are more
flexible and can be reshaped, although this is not a recommended procedure for users to do. In some cases, a heat
sink can be chosen which makes lead-bending unnecessary.
Numerous lead- and tab-forming options are available
from Motorola. Preformed leads remove the risk of
device damage caused by bending from the users.
If, however, lead-bending is done by the user, several
basic considerations should be observed. When bending
the lead, support must be placed between the point of
bending and the package. For forming small quantitites
of units, a pair of pliers may be used to clamp the leads
at the case, while bending with the fingers or another
pair of pliers. For production quantities, a suitable fixture
should be made.
The following rules should be observed to avoid
damage to the package.
1. A lead-bend radius greater than 1/16 inch is advisable
for TO-I 26, 1/10 inch for TO-I 27 and Case 199, and 1/32
inch for TO-220.
2. No twisting of leads should be done at the case.
3. No axial motion of the lead should be allowed
with respect to the case.
The leads of plastic packages are not designed to withstand excessive axial pull. Force in this direction greater
than 4 pounds may result in permanent . damage to the
device. If the mounting arrangement imposes axial stress
on the leads, a condition which may be caused by thermal
cycling, some method of strain relief should be devised.
An acceptable lead-forming method that provides this
relief is to incorporate an S-bend into the lead. Wirewrapping of the leads is permissible, provided that the
lead is restrained between the plastic case and the point
of the wrapping. The leads may be soldered; the maximum soldering temperature, however, must not exceed
275 0 C and must be applied for not more than 5 seconds
at a distance greater than 1/8 inch from the plastic case.
When wires are used for connections, care should be
exercised to assure that movement of the wire does not
cause movement of the lead at the lead-to-plastic junctions.

Thermopad
Heat-Sink Surface

Twist Locks
Circuit

Board~

or
Solderable

Legs
(a) Simple Plate, Vertically Mounted

•

CLEANING CIRCUIT BOARDS
It is important that any solvents or cleaning chemicals
used in the process of degreasing or flux removal do not
affect the reliability of the deVices.
Alcohol and un chlorinated Freon solvents are generally
satisfactory for use with plastic devices, since they do not
damage the package. Hydrocarbons such as gasoline may
cause the encapsulant to swell, possibly damaging the

(b) Commercial Sink, Horizontally Mounted

FIGURE 15 - Methods of Using Small Heat Sinks
With Plastic Semicondu·ctor Packages

8-28

AN-778

transistor die. Likewise, chlorinated Freon solvents are
unsuitable, since they may cause the outer package
to dissolve and swell.
When using an ultrasonic cleaner for cleaning circuit
boards, care should be taken with regard to ultrasonic
energy and time of application. This is particularly true
if the packages are free-standing without support.

Substitution
This method is based upon substituting an easily
measurable, smooth dc source for a complex waveform.
A switching arrangement is provided which allows
operating the load with the device under test, until it
stabilizes in temperature. Case temperature is monitored.
By throwing the switch to the "test" position, the device
under test is connected to a dc power supply, while another
pole of the switch supplies the normal power to the load
to keep it operating at full power level. The dc supply is
adjusted so that the semiconductor case temperature
remains apprpximately constant when the switch is thrown
to each position for about 10 seconds. The dc voltage and
current values are multiplied together to obtain average
power. It is generally necessary that a Kelvin connection
be used for the device voltage measurement.

THERMAL SYSTEM EVALUAnON
Assuming that a suitable method of mounting the semiconductor without incurring damage has been achieved,
it is important to ascertain whether the junction temperature is within bounds.
In applications where the power dissipated in the
semiconductor consists of pulses at a low duty cycle,
the instantaneous or peak junction temperature, not
average temperature, may be the limiting condition. In
this case, use must be made of transient thermal resistance
data. For a full explanation of its use, see Motorola
Application Note, AN-569_
Other applications, notably RF power amplifiers
or switches driving highly reactive loads, may create
severe current crowding conditions which render the
traditional concepts of thermal resistance or transient
thermal impedance invalid. In' this case, transistor
safe operating area or thyristor di/dt limits, as appJjcable,
must be observed.
Fortunately, in many applications, a calculation of
the average junction temperature is sufficient. It is
based on the concept of thermal resistance between
the junction and a temperature reference point on the
case. (See Appendix A.) /I rille wire thermocouple should
be used, such as #32/1 we;, to determine case temperature.
Average operating junction temperature can be computed
from the following equation:

where

APPENDIX A
THERMAL RESISTANCE CONCEPTS
The basic equation for heat transfer under steady-state
conditions is generally written as:
q=hA'c'T
where

(I)

q = rate of heat transfer or power dissipation
(PO),
h = heat transfer cofficient.
A = area involved in heat transfer,
,C,T = temperature difference between regions
of heat transfer.

However, electrical engineers generally find it easier to
work in terms of thermal resistance, defined as the ratio
of temperature to power. From Equation I, thermal resistance, RO, is
(2)
RO = ,C,T/q = l/hA

TJ =T('+ ROJC xPO
T J = junction temperature (0C)
TC = case temperature (OC)
ROJC = thermal resistance junction-to-case as
specified on the data sheet (OC/W)
Po = power dissipiated in the device (W).

The coefficient (h) depends upon the heat transfer
mechanism used and various factors involved in that
particular mechanism.
An analogy between Equation (2) and Ohm's Law is
often made to form models of heat flow. Note that
,C,T could be thought of as a voltage; thermal resistance
corresponds to electrical resistance (R); and, power (q) is
analogous to current (I). This gives risc to a basic thermal
resistance model for a semiconductor as indicated by
Figure AI.
The equivalent electrical circuit may be analyzed by
using Kirchoffs Law and the following equation results:

The difficulty in applying the equation often lies
in determining the power dissipation. Two commonly
used empirical methods are graphical integration
and substitution.
Graphical Integration

where

Graphical integration may' be performed by taking
oscilloscope pictures of a complete cycle of the voltage
and current waveforms, using a limit device. The pictures
should be taken with the temperature stabilized. Corresponding points are then read from each photo at a
suitable number of time increments. Each pair of voltage and curren t values are multiplied together to give
instantaneous values of power. The results are plotted
on linear graph paper, the number of squares within
the curve counted, and the total divided by the number
of squares along the time axis. The quotient is the average
power dissipation.

TJ = PO(ROJC + ROCS + ROSA) + TA
TJ = junction temperature,
Po = power dissipation,
ROJC = semiconductor thermal resistance
Gunction to case),
ROCS = interface thermal resistance
(case to heat sink),
ROSA = heat sink thermal resistance
(heat sink to ambient),
TA = ambient temperature.

(3)

The thermal resistance junction to ambient is the sum
of the individual components. Each component must be
minimized if the lowest junction temperature is to result.

8-29

•

AN-778

The value for the interface thermal resistance, ROCS, is
affected by the mounting procedure and may be significant compared to the other thermal-resistance terms_
The thermal resistance of the heat sink is not constant;
it decreases as ambient temperature increases and is
affected by orientation of the sink. Tlie thermal resistance

of the semicon.ductor is also variable; it is a function of
biasing and temperature. In some applications such as in
RF power amplifiers and short-pulse applications, the
concept may be invalid because of localized heating in
the semiconductor chip.

T J. Junction Temperature ~

r---::;=o

Roes
ROSA

FIGURE A1 - Basic Thermal Resistance Model Showing Thermal to Electrical Analogy for a Semiconductor

,APPENDIXB
SOURCES OF ACCESSORIES
Insulators
Manufacturer

Joint Compound

BeO

Aavid Eng.

Ther-o-link 1000

-

-

-

-

-

#829

-

-

X

-

IERC

Thermate

Staver

-

-

Thermacote

AHAM
Astrodyne

Delbert Blinn

Thermalloy

Tor

Tran-tee
Wakefield Eng,

•

-

X

X

-

-

-

X

X

X

X

X

X

X

X

X

X

X

-

X

-

-

X'

X

X

X

X

X

X

X

X

X

-

-

-

-

-

-

-

X

X

-

X

X

-

X

X

X

X

X

X

X

X

X

-

-

-

-

,-

X

X

-

X

X

X

-

X

-

X

-

-

X

-

X

X

-

X

X

X

-

X

-

X

X

X

X

-

X

-

-

-

X

TJC

X
X

Type 1,20

X

Wei Corp.

-

-

XL500

Other sources for Joint Compounds:

AI02 Anodize Mica

Heat Sinks

Plastic Silicone
Film Rubber Stud Flange Disc Thermowatt Uni/Duo Watt RF Stripline

-

-

-

-

-

X
X

Dow Corning, Type 340
Emerson & Cuming, Eccoshield - SO (Electrically Conducting)
Emerson & Cuming, Eccotherm - TC-4 (Electrically Insulating)

APPENDIX B
SUPPLIERS ADDRESSES
Aavid Engineering, Inc., 30 Cook Court, Laconia, New
Hampshire 03246
(603) 5244443

International Electronics Research Corporation, 135 West
Magnolia Boulevard, Burbank, Califofilia 91502
(213) 849-2481
The Staver Company, Inc., 41-51 North Saxon Avenue,
Bay Shore, Long Island, New York 11706
(5\6) 666-8000
Thermalloy, Inc., P,O. Box 34829, 2021 West Valley
View Lane, Dallas, Texas 75234
(214) 2434321
Tor Corporation, 14715 Arminta Street, Van Nuys,
California 91402
(213) 786-6524
Tran-tec Corporation, P.O, Box 1044, Columbus,
Nebraska 68601
(402) 564-2748
Wakefield Engineering, Inc., Wakefield, Massachusetts
01880
(617) 245-5900
Wei Corporation, 1405 South Village Way, Santa Ana,
California 92705
(614) 834-9333

AHAM Heat Sinks, 27901 Front ,Street, Rancho, California 92390
(714) 6764151
Astrodyne, Inc., 353 Middlesex Avenue, Wilmington,
Massachusetts 01887
(617) 272-3850
Delbert Blinn Company, P.O. Box 2007, Pomona, California 91766
(714) 623-1257
Dow Corning, Savage Road Building, Midland, Michigan
48640
(517) 636-8000
Eaton Corporation, Engineered Fasteners Division,
Tinnerman Plant, P.O. Box 6688, Cleveland, Ohio 44101
(216) 523-5327
Emerson & Cuming, Inc., Dielectric Materials Division,
869 Washington Street, Canton, Massachusetts 02021
(617) 828-3300

8-30

Rectifier and Zener Diode
Selector Guide

9-1

These selector guides are included as a quick reference to Motorola product lines often
used in conjunction with power devices.

RECTIFIERS
General-Pu rpose Rectifiers
Motorola offers a, wide variety of low·cost devices, packaged to meet diverse mounting
requirements. Of particular interest are plastic "buttons': such as the MR2500 series,
designed for clip or recessed mounting, and the new plastic D04 stud·mounts, derived
from these buttons, types MR2000S and MR2500S. AI/listed lines are available with
anode-to-case connection by adding URn suffix to the standard part nutnber.

r

10. AV!!RAGe fUlCTIFI!!D FOAWARb CURRENT (Anlpel'••

1.0
59-01
(00-41)

1.5
59-04
(00-15)

3D
70

267

194

Metal

Metal

Plastic

Plastic

Plastic

!SO

lN4001

lN5391

lN4719

lN4997

MR500

lN5400

MR750

tOO

lN4002

lN5392

lN4720

lN4998

MR501

lN5401

MR751

'200

lN4003

lN5393

lN4721

lN4999

MR502

lN5402

MR752

40D

lN4004

lN5395

lN4722

lN5000

MR504

lN5404

MR754

600 ..

lN4005t

lN5397

lN4723

lN5001

MR50S

lN540S

MR75S

silo

lN4006 t

lN5398

lN4724

lN5002

MR508

lN5407

MR758

1000

lN4007 t

lN5399

lN4725

lN5003

MR510

lN5408

MR760

IF$M
lAmps)

30

50

300

300

100

200

400

TAIt. Aated 10

75

TL -70

75

75

95

TL - 105°C

60

{oct

TC@Rated

l"Cl
TjlMa.}

•

I

III p

VRRM
Volts

10
175

175

175

175

lOCI

t Package Size: 0.120" Max Oiameter by 0.2S0" Max Length

9-2

12

6,(1

60

175

175

175

245
(00-41

283-01
(00-41

Metal

Plastic

~

e1

~

MR1120
lNI199,A.B
MR1121
lNI200.A,B

lN1199C

MR1122
1 NI202,A.B
MR1124
lNI204,A.B
MR1126
lNI206.A,B

lN1202C

lN1200C

lN1204C
lN1206C

MR1128
lN3988
MRII30 .
lN3990
300

400

150

150

190

200

GENERAL PURPOSE RECTIFIERS (continued)

to. AVERAGE RECnFIED FOAwAAPCURRENT tAnlPefesl.

I

1$

20'

42A
(00-5)
Metal

. . :. 2S

.I

42A
(00-5)

283-01
(00-4)

283-01
(00-4)

Metal

Plastic

Plastic

9

Plastic

1'.",30

'. I .

3!1

40

50

43
(00-21)

43
(00-21)

42A
(00-5)

42A
(00-5)

43-04

Metal

Metal

Metal

Metal

~

~

__ -,1'

193-03

f)

f

Metal

liP

!iS

lN3208

1 N248B
lN1191

MR2000S

MR2500S

MR2500

lN3491

lN3659

lN1183

lNl183A

MR5005

lN3209

lN249B
lN1-192

MR2001S

MR2501S

MR2501

lN3492

lN3660

lN1184

lNl184A

MR5010

lN3210

lN250B
lNl194

MR2002S

MR2502S

MR2502

lN3493

lN3661

lN1186

lNl186A

MR5020

lN3212

lNl196
lNl196A

MR2004S

MR2504S

MR2504

lN3495

lN3663

lN1188

lNl188A

MR5040

lN3214

lNl198A
lN3214

MR2006S

MR2506S

MR2506

. MR328

CF

lN1190

lNl190A

CF

CF

CF

MR2008S

MR2508S

MR2508

MR330

CF

lN3766

CF

CF

CF

CF

MR2010S

MR2510S

MR2510

MR331

CF

lN3768

CF

CF

250

350

400

600

400

.300

400

400

800

600

150

150

150

150

150

130

100

140

150

150

175

175

190

190

195

175

At.

Request Data Sheet for Mount-ing Information

CF: Consult Factory

9-3

Rectifier Bridges
Motorola SUPERBRIDGES offer cost effectiveness and reliability in single phase
applications. Chiplleadframe techniques are used for lower·current types, while the higher
current assemblies combine pretested "button" rectifier cells for low assembly cost and
high yields. Performance of four individual diodes is achieved at the cost of only two,
with reliability of the whole assembly comparable to that of a single unit. The higher
current assemblies feature versatile slip·onlsolder/wire wrap terminals.

10. DC OUTPUT CURR.ENT CAmper..)
'2.:0
4.0/8.0*
12

1.5

1.\1

109·03

312·02

117

312·02
0,6"

k~-;; )t;~~
r--{ }t~
l...

A..

04

0,15

,VRRM
Volts

::(015

50

"015

~~

~ /0:75
0,2

'iU

~

35

309A·02

.. -».

>- I~/ ~:;
,,~

;

,;

so~

~.

"

1,3/a"

'iU

so"-

'iU

3N246
MDA100A

3N253
MDA200

MDA970·1

MDA1200

MDA2500

MDA3500
BYW60

MDA920A3

3N247
MDA101A

3N254
MDA201

MDA970·2

MDA1201

MDA2501

MDA3501
BYW61

MDA920A4

3N248
MDA102A

3N255
MDA202

MDA970·3

MDAI202

MDA2502

MDA3502
BYW62

MDA920A6

3N249
MDA104A

3N256
MDA204

MDA970·5

MDA1204

MDA2504

MDA3504
BYW64

, 1lOo

MDA920A7

3N250
MDA106A

3N257
MDA206

CF

MDA1206

MDA2506

MDA3506
BYW66

800

MDA920A8

3N251
MDA108A

3N258
MDA20B

MDA3508
BYW68

MDA920A9

3N252
MDAll0A

3N259
MDA210

MDA3510

32

45

60

50

75

55

','

200 ,
,

"

"

4011, '

1000,
"

fFSM

..

,.. lAmp)

, TAllii Rat9d 10 '

,', ,lOCI'

100

400

400

100

55

55

175

175

175

,

,

toel" " "

}fJlMaI(}, ,:
"tOC)'

400

"

TC. ~odfO:

II

25

309A·03

MD~920A2

, 100

"

'iU

~
/,,?,~

321.01:;1

175

150

175

150

'

CF: Consult Factory

'4,0 A@TA = 25°C
8,OA@TC=550C

en, UL
'nil

RECOGNIZED

SUPERBRIDGES is a trademark of Motorola Inc:,

9-4

Dimensions given are nominal

Fast Recovery Rectifiers
... available for designs requiring a power rectifier having maximum
switching times ranging from 200 ns to 750 ns. These devices are
offered in current ranges of 1.0 to 50 amperes and in voltages to
600 volts. Higher voltages are available upon request, but a necessary
trade-off against switching speeds results. Reverse polarity (anode
to case) obtained by adding an "R" suffix.

10, AVERAGE RECTIFIED FORWARD CURREt,lT {Ampores,
20 .
3.0
5.0
&.Q
12

1..0
59-{)4
Plastic

60
Metal

70
Metal

267-01
Plastic

194
Plastic

5t'-{)2
IDO-4)
Metal
Note 1

/ f ff I f

VRRM
IVolts)

I

30

40

257
100-5)
Metal
Notes 2_ 3

J 50

42A
100-5)
Metal

~ ~

~

./~

It'"

. 50

lN4933 t

MR810 MR830 MR800 MR850

MR910 MR820 lN3879

lN3889

lN3899

lN3909 MR860 MR870

: .100

lN4934

MR811

MR911

lN389(! IN.3900

lN39tO MR861 MR871

':200 .

MR83.1 MR801

MR851

MR821 1N3880

lN4935 t

MR812 MR832 MR802 MR852

MR912 MR822 lN3881

IN3891

lN3901

lN39'11 MR862 MR87

.:./'~

lN4936 t

MR814 MR834 MR804 MR854

MR914 MR824 lN3883

1N3893

lN3903

lN3913 MR864 MR87'

"iIlJO

lN4937 t

MR816 MR836 MR806 MR856

MR916 MR826 MR1366 MR1376 MR1386 MR1396 MR866 MR87E

MR817

MR917

"

'BOil
. ',1QOO.·

MR818

':'.<:~

30

30

'fA·CtJiated 10

75

75

·..····'°01'

:TC tf l'tllt8d 10

MR918
100

100

100

100

100

100

300

90'

90'

55'

150

200

250

300

350

400

100

100

100

100

100

100

'. iDeI
''fJ~1

.'

.~Dcn

150

150

150

150

175

175

175

150

150

150

150

160

160

.·;t"

0.2

0.75

0.2

0.2

0.2

0.75

0.2

'0.2

0.2

0.2

0.2

0.2

0.2

>~}.'

*Must be derated for reverse power dissipation. See Data Sheet.
t Package Size: 0.120" Max 0 iameter by 0.260" Max Length
JAN/JANTXIV) available

. NOTES: 1. Also available in economical Case 245; add suffix -245 to part number. (Not applicable in JAN or JTX.)
2. Also available in economical Case 42A; add suffix -42A to part number. (Not applicable in JAN or JTX.I

3.' Braided lead top terminal configuration available; consult your Sales Representative.

9-5

•

v

Schottky Rectifiers
Refinements in processing of SWITCHMODE Schottky Power Rectifiers are producing
ruggedness and temperature performance comparable to silicon-junction rectifiers, with
the high speed and low forward voltage drop characteristic of Schottky's metal/silicon
junctions. Ideal for use in low voltage, high frequency power ~upplies and as very fast
clamping diodes, these devices feature switching times less than 70 ns, and are offered
in current ranges from 0.5 to 75 amperes, and reverse voltages to 45.

10. AVERAGE, RECTIFIED FORWAROetJRRENT
1.0'
3.0'
3.0 '
!
59-04
267
60

0'.5
51-02
IDO-71
Glass

Plastic

fAmp., .. ~ ,

,/

s.o

15,
245
(DO-41

Metal

Plastic

/ / I

Metal

~~

VRRM
IVoltsl

, 20'
30

MBR020

lN5817

MBR120P

lN5820

MBR320P

MBR320M

lN5823

lN5826

MBR1520

ttMBR030

lNse18

MBR130P

lN5B21

MBR330P

MBR330M

lN5B24

lN5B27

MBR1530

MBR335P

MBR335M

,35,"
40'

MBR135P

MBR1535

MBR040

lN5819

MBR140P

lN5822

MBR340P

MBR340M

ttlN5B25

lN5828

MBR1540

5.0

100

50

250

200

500

500

500

500

B5

80

125

125

45
,IFSM
CAmps)

tTc @ Rated 10

(OCt:
TA@,Rated 10.

pe,Boa'"

50

MouotlClC)
tTL @ Rated 10

tOC)
TJ(Max)'

IOCl
MaXVF@',

IFM,-Ia

•

125

90

80

95

85

90

80

125

125

125

125

125

125

0,45@5A
'0.60
0,65
'0,525
0.60
'0,55
TL = 25°C TL =25°C TL = 25°C TL =25 0 C TL = 25°C TC = 25°C

* Values are for the 40·Volt units. The lower voltage parts provide lower limits .

t Must be derated for reverse power dissipation. See Data Sheet.
ttMotorola TX versions available, consult factory.

SWITCHMODE is a trademark of Motorola Inc.

9-6

0,55
'0.50
'0.38
TC = 25°C TC =25°C TC = 25°C

SCHOTTKY RECTIFIERS (continued)

, 10. AVERAGE RECTiFIED FD,RWARD: CURRENT (Amper..l, '
lIS

'40' ",

3&

245
(00-4)
Metal

11
lN5829
lN5830

MBR2520
MBR2530

M8R3&20 '

MBR2535
tlN5831

MBR2540

$041

I'

60
257
(00-5)

Metal
Note 1

Metal

Metal
Note 1

t

~

lN5832

MBR4020

lN5833

MBR4030

MBR4020PF
MBR4030PF

MBR4035

MBR4035PF

MBR3535
lN6096

':\'

50
430-2
(00-21)

1)

lN6005

.

257
(00-5)

lN5834

' MaR6020
lN609y.', ,,::,5051

MSR;7520
MBR7.630

, :MB'R6036

MBR7535

JN6O\li!'

MBR4040

75

MBR7640

:tMBR6045 ,MBfl764 5 ,

tMfilR3546 ,

BOO

BOO

400

:600

800

800

800

8O(V,

85

80

70

'jja5

75

70

50

cza'

~OO
"

"

90,

1000

90

.. .
:

,

125

125

'0.48
TC = 25°C

0.55
TC = 25°C

125

,,"100

125

1J.81i1'!> 78.5A O;70@78.5A

:'fa ~ 70"e ,16

'0.59
= 125°C TC = 25°C

•••• p

•••

125

125

0.63
Tc = 25°C

0.63
TC = 25°C

125';" "

, ..
.. ,

150 '

"

150,

,., ~'

O.8eli>lS1A O~Wl.157A 0.904l>220A

'rd'-: ip!l¢ ; TC'" t2S0C

Tc:" i;?6.?e

Capable of 150°C junction temperature operation .

(1) Braided lead top terminal contiguration available; consult your Sales Representative.

tMotorola TX v.ersions available, consult factory.

9-7

•

ZENER DIODES
Zener and Avalanche Regulator Diodes
Motorola's standard Zeners and Avalanche
Regulator diodes comprise the largest inventoried
line in the ,industry .. Continuous development of
improved manufacturing techniques have resulted
in computerized diffusion and test, as well as
critical process controls learned from surface·
sensitive MOS fabrication. Resultant 'high yields
lower factory costs. Check the following features
for-application to you~ specific requirements:
• Wide selection of package materials and styles:
Plastic (Surmetic) for low cost, mechanical
ruggedness
Glass for highest reliability, lowest cost
. Metal for highest power
• Power ratings from 0.25 to 50 Watts
• Breakdown voltages from 1.B to 200 V in
approximately 10% steps
• Available tolerances from 20% (low cost) to
as tight as ·1% (critical applications) with
off-the·shel f del ivery
.
• Special selection of electrical characteristics
available at low cost due to high-volume
lines (check your Motorola sales representative for special quotations)
• JAN/JANTX (V) availability (designated by tint)
• Speci'al glass now 'used in 00-35 packages is'
compatible with low temperature alloy
processes, yielding sharper breakdown and
I~w leakage,

1. The Zener ,voltage is measured at approximately 1/4
the rated power, exe~pt for the MZ4614/1 N4099
series. This series is measured with IZT == 250 }JAde.
The 1 N4370/1 N746 series is measured with IZ.T =
20 mAde.
2. Contact your Motorola representative for information

on intermed,iate yoltages and tighter tolerances.
Tolerances
=

± 5%.

4. No suffix = ± 20%} with guaranteed limits on VZ,
A suffix = ± 10%
VF, and IR only'
B suffix' = ±5%
'
C suffix = ± 2%
o suffix = ± 1%'

5. 1 N4370/1 N746 series: No suffix = ± 10%
A suffix = ±5%
1 N957 series:
No Suffix = ± 20%
A suffix = ± 10%
B suffix

•

INotol)

250 MILLIWATT
1400 mW Pack"llo)
Low Noise
Cathode·
Polarity Mark
INotos2,3)

= ± 5%

6. No suffix"" ±10%, with guaranteed limits on VZ.VF,
and IR only
A suffix = ± 10%
B suffix = ±5%

::' ,:; JA'N/JANTXIVI available, ±5% only.
tMilitary parts in lN43701746/962 series at standard
lN985-1N992 supplied in 00-7.
#1 N5271 - 1 N5281 supplied in Surmetie 00-7.

400 MILLIWATT
Low Noise
Low Leakage
Cathode·
Polarity Mark
INotos2,41

500 MILLIWATT
Cathode· Polarity Mark

/

Gla..
Case 51 100-71
1.8
2,0
2.2
2.4
2.7
3.0
3,3
3.6
3.9
4,3
4.7
5.1
5.6
6.2
6.8

M2:4614
·MZ4615
MZ46'EI
MZ4611'
: . ,MZ4618'. '.:.
M:t461~ .'

7,5

1N41111,l'

'.~5!J21

8.2

"1'4'1>'

lf11"~

8.7
9.t

'fII4'1I2

10

,'' '4.04 :

IN
1

.. ..

13
14
15
16

':

l~~~

,
.N51i>211
',1115530
lNSS31
lN5532

.,

:~:m"

lN55:!3
"1115535

'11015536
11<15537

11'44.111
'",4112

17

ll11$i1$e
'

,

"."~~~
lli1l164,

.; .. ",
.1N!l11$
. -"'1411(1,'.

~~m,'
~~~~~ .

11'44121
lN4122
tN41.2;1
· ,"'1N4124

:lNII.2'1
I~:i~
11'141211

'1N4,:29
·,IN4T30·
'. : 1014131'
,"lN4132 .
· .:: .11114133.

· ,~=;lrs,'

.

,

.: .,

.'~

lN957

i~~

.

l~~g
11'<751

lN960
1101758,
lN961
lN962
1N759
lN963'
,~

11115S34

.'. :"0141~
'IN4110

18
19
20
22
24
25
27
28
30
33
36
39
43
47
51
'56
60
62
68
75
82
87
91
100
110
120
130
140
150
160
170
180
200

~...
. ,~.

'INI!II26 ,'"

··,.U·0410..

:~'06

tlll141 .

l=ra:<

.,r

\I"4~03

..

~I

,.',f'43'1f
,
~.~?; '"

W\;523',·· ,'. : .'

M
'.
. M~4626 ' , .
M2:4627 , ..-'

, '."4Il" . ;'

Glass
100-35)t

:. :" .,. .

.,:

; ' , ..~~~~

.:.

:. ';" ,;

. 11115544
11115545
lN5546

11'4&65
1NII66

lN5221
lN5223
1N5225

lN5226
lN5227
lN5228
lN5229
lN5230
lN5231
lN5232
lN5234
lN5235
lN5236
lN5237
lN5238
lN5239
lN5240
lN5241
lN5242
lN5243

lN5244
lN5245
lN5246
lN5247

lN9G7

lN5248
1N5249

lNaGtl
1!11S.1i
lN910
1JiI911
.1.101912

.tll/973

lN974
.IN975
1!11S16
.1N911

1111978

',101979

'm=~
11'4982
,1~.3,
..

"·11\1984

:.:=
:IN981

':'N988 .
;!IIS8g
11<1990·

~~~.

9-8

I INot.. 2,6)

INotes 2,5)

/.

11
12

NOTES

3 .. No suffix

Nominal
Zener
Voltage

tN5250
lN5251
lN5252
lN5253
lN5254
lN5255
1 N5256
lN5257
lN5258
lN5259
lN5260
lN5261
lN5262
lN5263 .
lN5264
,N5265
lN5266
lN5267
lN5268
lN5269
lN5270

lN5271#
lN5272#
lN5273#
lN5274#
lN5275#
lN5276#
lN5277 #

i~m~#
11'45281 #

ZENER AND AVALANCHE REGULATOR DioDES (continued)

1 WATT

Nominal
Zener
Voltage

Cathode =
Polaritv Mark

1 WATT

Cathode
to Case
Metal
Case 52
(00·13)

1.5 WATT

1.5 WATT

5 WATT

Cathode =
Polarity Mark

Cathode
to Case

Cathode =
Polarity Marl<

50 WATT

10 WATT

Cathode to Case

i~i.
Ca .. 59

(00·41)

120
130
150
160
170
180
200
A, RA, and RS ." Reverse

Ca•• 55

= 1 N3993 Series

Anode to Case
= 1 N2970 Series

Anode to Case

Metal
Case 54

(T0·3)

Metal
Case 58
(00·5)

lN3819
lN3820

.;; ... JAN/JANTX{V) available, ±5% only.

NOTES-Tolerances (continued)
7.

No suffix"'"

;!:

10%

A suffix ~ ± 5%
8. 1N3821 series:
lN3016 series:

9.

C suffix == ±2%
o suffix:: ± 1%
10. No suffix:::: ± 20%
A suffix"" ± 10%
B suffix:::: t 5%
11. No suffix'" ±20% with guaranteed limits on VZ. VF. IR.
and iR only
A suffix:::: ± 10%
B suffix == ± 5%

No suffix"-! 10%
A suffix" ! 5%
No suffix:: 120%
A suffix == i 10%
B suffix:::: ± 5%

No suffix == .!: 20%
A suffix = ± 10%
B suffix == ! 5%

9-9

•

Zener Reference Devices
at the specifically Indicated test temperatures and test current

For applications VIIhere output voltage must remain within
narrow limits during changes In input voltage, load resistance

and temperature. Motorola guarantees all Reference Devices

(JEDEC Standard #5). Temperature Coefficient is alia speci·
fied but should be considered as a reference only - not a max-

to fall within the specified maximum voltage variations.Il.VZ.

imum rating.

Devices in this table -are hermetically sealed structures.
Includes JAN. JANTX and radiation hardened device types.
These temperature compensated Zener Reference Diodes have
low dynamic impedance and silicon-oxide-passivated junctions

~"
GLASS

for long-term stability.

--:::2

~

·~~S;A5L

All deVices Case 51 (00·7) e)Ccept as noted.

-.
..

'

..

~;

_.

AVERAGE rl!MP£lI4TUflE COEFFICIENT .ovell nllr OI'C!RATiNG RA/IICI£

,

;::
1'"
. Clurnmt::
'mAde"

·r.. :

'1"_'

9.0t'K/'"C
.Qto.Ioe
Jypa

""""

...:·r_.·."'.
: oO.k:e

!~yz

Mox

Yo"".

':tNe21 ,

0.096

.iN~r

0048

,N$$+'

0.019

lNe21~'

0.009

H'8~;·,.·

0.005

lN821A

0.096

lN823A

0048

lNB25A

0.019

lN827A

0.009

lN829A

0.005

B
A
B
A
B
A
B
A

1 N4565

0.018
0.099
0.048
0.099
0.048
0.099
0,048
0.099

1 N4566

0.024

lN4567

0.010

lN4568

1 N4569

lN4578
lN4578A
lN4583
lN45B3A

0.005
0.010
0,005
0.010
0.005
0.010
0005
0.010

lN4579
lN4579A
lN4584
lN45B4A

0.002
0.005
0.002.
0.005
0.002
0.005
0.002
0.005

10
10
0.5
0.5
1.0
1.0
7.5
7.5
7.6

A
C
B
A
B
A
B
A
C

11.7

."'N_SA
lN4570

1N4"610A
lN4575
lN457SA
lN4S80
lN4580A

lN4573

·'.I1/46f'tA
1 N4576
lN4576A
lN4S81
lN4581A

0.010
;'NO!!11ZA 0.020
lN4577
0.010
lN4577A 0.020
lN4582
0.010
lN4582A 0.020

1N,4I>1;!'A

lN4~

1 N4574

'N45l4A

0.065
0.085

, ..;0186,

lN315SA

IN'3156A

0.026
0.034

1I'..I3Hl7,
lNa157A

0.013
0.017

lN4775
lN4775A
1 N4780
lN4780A

0.064
0.132
0.064
0.132

lN4776
'1N4776A
lN47Bl
lN4781A

0.032
0.066
0.032
0.066

1 N4777
lN4777A
lN4782
lN4782A

0.013
0.026
0.013
0,026

lN4778
lN4778A
lN4783
lN4783A

0.006
0013
0,006
0.013

lN4779
lN4779A
lN4784
lN4784A

0.003
0.007
o.ooa
0.007

lN935
lN935A
1-N9358j

0.067
0.139
0.184

lN936
lN936A

0.033
0.069
0.092

lN937
lN937A
tN9318 j

0.013
0.027
0.037

lN938
lN938A

0.006
0.013
0.018

lN939
lN939A

""'113"'("

lN1iIi*,

0.003
0.007
0.009

lN941
1N941A

. ,;;'941.11;

-55,0, +25, +75, +100
0, +25, +75
-55,0, +25, +75, +100, +150
0, +25, +70
-55,0, +25, +75, +125
-55,0, +75, +125, +185
+25, +75, +100

0.088
0.081
0.239

&

lN942
lN942A
l'~42P

0.044
0.090
0,120

'.""s3Im:

.'N2166,A 0.007 .,N2169,A 0,004
.,N2167,A 0.017 .,N2170,A 0.009
.'N216B,A 0.023 .'N2171,A 0.012

.,N2163,A 0.033
.,N2164,A 0.086
.'N2165,A 0.110

E

B
A
C

IN45Il8A'

lN4572

0.024
0.050
0.024
0.025
0.024
0.050

1.l\1."fl!lll:..

F

7.5
7.5
7.5

,N"II.nA 0.020

lN4571

0.130
0.072

0

10

1./OO,l!i6B"". 0.050

lN3154A

·...lN3~54,.

Test Temperature Points

•

""'.

A

~.2VI

E

o..,..i·
Typo

'IhII4

A

(Suffix
"A"

F
G

. ~."

,O.illil~
!AVz

'~'

7.5

9.4,0.4

o

""tri· :

.

7.5
0.5
0.5
1.0
1.0
2.0
2.0
4.0
4.0

9.0

C

"-TI"""r

:,~'

6.2&

8.5

•

Malt

6.2&
6.4

8.4

A

AV;jt

lN943
1N943A
'N9~g.

0.018
0.036
0.047

Non-suffix - ZZT - 15, "A" Suffi)C - ZZT" 10
JAN/JANTX(V)

9-10

avall~ble,

lN944
1N944A

:,,,,'9449

• 5% only

0.009
0.018
0.024

lN945
lN945A

,,.94!1$•

0.004
0.009
0,012

Precision Reference Diodes
Designed, manufactured and tested for ultra-high stability of

voltage with time and temperature change. Use of special measurement equipment and voltage standards provide calibration
directlv traceable to the National Bureau of Standards.

CERTIFIEO VOL TAGE TIME STABILITY OVER 1000 HOURS OF OPERATION

(PartslMillion Change)

Temperatur.
Stability

Ref.rance
Voltage
Volts

T ...
Current
mA l\VZlmV)

6.2:!: 5%

7.5

2.5

<5 PPM/1000 HR

OPTemp
Range

°e

25,75,100

Device
. Type

Change
"V
Max

MZ605

30

<10 PPM/1000 HR

Chango
"V
Max

Device
Type
MZ610

60

Amplifying Regulator Diodes

ELECTRICAL CHARACTERISTICS (IZT = 5 OmA VCEO =JOVI

66

G6

GU

10

50

5.0

Test Temperature

°c

8G

1::]
E

'B

.

NPN

A

66

10.

S.O

5.0

YII •

95

9.5

95

i:]~

"
"
"

10

5.0

5.0

10

50

-59, 0, +25,
-55, +100

MCA1921
MCA1922
MCA1923
MCA1924

0.139
0.069
0.026
0.013

MCA1931
MCA1932
MCA1933
MCA1934

0.060
0.030
0.012
0.006

MCA2011
MCA2012
MCA2014
MCA2014

-55, a, +25
+75, +100

0.124
0.062
0.024
0.012

MCA2021
MCA2022
MCA2023
MCA2024

-55,0, +25
+75,+100,+150

0.164
0.082
0.032
0.016

MCA2031
MCA2032
MCA2033
MCA2034

0.071
0.035
0.014
0.007

MCA2111
MCA2112
MCA2113
MCA2114

0.147
0.073
0.028
0.014

MCA2121
MCA2122
MCA2123
MCA2124

0.194
0.097
0.038
0.019

MCA2131
MCA2132
MCA2133
MCA2134

0.082
0.041
0.016
0.008

MCA2211
MCA2212
MCA2213
MCA2214

0.170
0.085
0.034
0017

MCA2221
MCA2222
MCA2223
MCA2224

0.225
0.112
0.044
0.022

MCA2231
MCA2232
MCA2233
MCA2234

0, +25, +75

-55,0, +25
-75,+100

-55,0, +25
+75,-100,+150

0, +25, +75

-55, 0, +25

-55,0, +25
+75,+100,+150

120

Chango
"V
Max

MZ64Q

240

/~

Type

0.105
0.052
0.020
0.010

0, +25, +75

MZ620

Device
Tvpe

Devl~.

O. +25, +75

+75, +100
5.0

VQlu

MCA1911
MCA1912
MCA1913
MCA1914

CASE
212·01
UG

AVREF
0.051
0.025
0.010
0.005

-55,0, +25
+75,+100,+150

Type

High impedance diodes whose "constant current
source" characteristic complements the "constant Voltage" of the zener line. Currents are
available from 0.22 to 4.7 mA, with usable
voltage range from a minimum limit of 1.0 to
2.5 V, up to a voltage compliance of 100 V,
for the lN5283 series, or 70 V, for the
Mel 1300 series.

temperature compensation for excellent reference voltage
stability. Available with either PNP or NPN transistors by adding
either P or N suffix to part number.

Tolefaftae
.%

Dovie.

<40 PPM/1000 HR

Change
"V
Max

Field-Effect Current
Regulator Diodes.

Designed for use in regulated power supplies as a combination
voltage reference element and error voltage amplifier. providing

VREP
1101..

<20 PPM/1000 HR

Case 51

00-7

K"~

Rog~-Cur1ent

OeviCD

NGm

TYIle

0.22
0.24
0.27
0.30

lN5283
lN5284
1N5285

0.33
0.39
043
0.47

1NS281
IN!$2aS

0.55
0.62
0.68
0.75

IN:52SS

1NEi2S9

1N5290
lN152"91
lN5:l92
1N5293
lN5::t!'94

0.82
0.91
1.00
1.10

1NS29S
lN5296

1.20
1.30
140
1.50

1N5299

1.60
1.80
2.00
2.20

lN5303
1N5304

2.40
2.70
3.00
3.30

1N5307
1N54QJ1
lN15309

3.60
3.90
4.30
4.70

lN5311
lN531:;!
1"15313

tN5291
1N5298
1N6300
1N6301
lN530;2:

1N.5305

1N53Q$

lNS~10

limiting

Mn
MOl<

Volts

275
2.35
1.95
1.60

100
1.00
1.00
1.00

~1.35

1.00
0.870
0.750

1.00
1.05
1.05
1.05

0.560
0.470
0.400
0.335

i.10
1.13
1.15
1.20

0.290
0.240
0.205
0.180

1.25
1.29
1.35
1.40

0.155
0135
0.115
0.105

1.45
1.50
1.55
1.60

0.092
0.074
0.061
0.052

1.65
1.75
1.85
1.95

0.044
0.035
0.029
0.024

2.00
2.15
2.25
3.35
2.50
2.60
2.75
2.90

Ma.

1"'5314

0.020
0.017
0.014
0.012

0.5tO.3
1.0tO.6
2.0tO.6
3.0+0.6

MCL1300
MCL1301
MCL 1302
MCL1303

0.500
0.200
0.100
0.050

1.00
1.50
2.00
2.00

4.0:t0.6

MeL 1304

0.025

2.50

c:::J

9-11

Imp

Voltage
%K
@VK=6.0V @IL-O.Slp

Ip
@VT"25V
mA

JAN/JANTX (V) availability

Low Voltage Regulators .

ELECTRICAL CHARACTERISTICS

High-conductance silicon diodes designed as stable
forward-reference sources for transistor amplifier biasing
and similar applications. Available in high reliability glass
construction or economic plastic packaging.

ITA

/

= 25°C unless otherwise noted).

Forwani
Rafareneot
Voltage

~'"C(~~.7)

Leakage

Current

Min

Max

Tast
Cul1'lll1t
IF rnA

0.63

0.71

10

10

5.0

MZ2360

1.24

1.38

10

10

5.0

MZ2361

1.90
0.58
1.29
1.33
1.94
2.00
0.58

2.10
0.70
1.43
1.39
2.14
2.08
0.70

10
1.0
10
10
10
10
1.0

10
0.1

5.0
4.0

MZ2362
.4M.64FR10
.4Ml.36FR5
.4M1.36FR2
.4M2.04FR5
.4M2.04FR2
lN816

IR~VR

"A Volts

1

l

O..,1ce

Type

e_
59
Surmetlc
51
Surmetic
51
Glass

.j

Transient Suppressors
Transient suppressors designed for applications requiring protection of voltage sensitive
electronic devices in danger of destruction by high energy voltage transients. Select from
standard factory available types or design the suppressor to meet specific needs by paralleling
cells. For specific options, i.e., non·standard voltages, higher powe( capacity, and package
configurations, consult factory.

Ipp

..,I"

~
~

10

20

3D
40
TlIllt_(m!l

so

60

CASE 119

IR

"

R_
VR
Operath1g Vol_ CUI't.nt
Ni>m'

"....

•

14
14
28
28
28
165
165
165

AVi

8rwkdOW\"I Voltage

Min
\lIRMS!.

"A

Volts

10
10
20
20
20
117
117
117

50

16
16
32
32
32
180
180
180

I

@

Ve
Clampillg \lolUige

,

Mall

IZT
rnA

Volts

0.4 .
0.4
0.2
0.2
0.2
0.03
0.03
0.03

24
20
50
45
40
250
225
205

9-12

•

Ipp.
Amp
200
200
100
100
100
20
20
20

VF
FDtWaI'd V"ltag8

Volt.
1.5

@

IF
Amp
10

II

O"'IceType
MPZ5·16A
MPZ5·16B
MPZ5·32A
MPZ5·32B
MPZ5·32C
MPZ5·180A
MPZ5·180B
MPZ5·180C

e-.
119

I

supplementary Literature
10-1

II

III
10-2

SUPPLEMENTAL LITERATURE
The following documents may provide additional information for your circuit designs.
Copies may be obtained from Motorola Semiconductor Products Inc., Literature Distribution Center, P.O. Box 20924, Phoenix, AZ 85036.

POWER SUPPLY CIRCUIT DESIGN
AN-719 A New Approach to Switching
Regulators

AN-767 A Line Operated, Regulated
5V 150A Switching Power Supply

This article describes a 24-Volt, 3-Ampere
switching mode supply. It operates at 20 kHz
from a 120 Vac line with an overall efficiency of
70%. New techniques are used to shape the load
line. The control portion uses a quad comparator
and an opto coupler and features short circuit
protection.

This application note describes a regulated
220V ac to 5 Vdc converter using high voltage
switching transistors and Schottky barrier rectifiers. The control functions are all performed by
integrated circuits.

AN-786 Power Darlington Load Line
Considerations

AN-725 A Low-Cost 80 V-1.5 A Color TV
Power Supply

Power Darlington load lines are discussed in
the light of a typical application of a Switchmode
Darlington power transistor. Darlington advantages are reviewed and the test circuit is
introduced. Load line analysis revealed a reverse
bias SOA problem and just enough snubbing
was used to insure reliability without unduly sacrificing efficiency.

A full-wave SCR power supply is proposed
for application in line operated color television
receivers. Economy of design is maintained while
providing good regulation against line, load and
temperature changes.

AN-737A Switched Mode Power
Supplies-Highlighting a 5-V, 40-A
Inverter Design

EB-52 Control Your Switching Regulator
With The MC3380 Astable Multivibrator

This application note identifies the features of
various regulator circuits that are in use today in
AC to DC power supplies. The note also illustrates how these circuits may be used as
complementary building blocks in a system design. Primary emphasis is on switched mode
regulators beause they fill the present need for
energy and space savings.
A complete 5-V, 40-A line operated inverter
supply is described in detail including 'design
procedures for the magnetic components. The
inverter itself is a "state-of-the-art" design which
features CMOS logic, high voltage power transistors, Schottky rectifiers and an opto-electronic
coupler. It operates with a full load efficiency of
80% at a frequency of 20kHz.

Engineering Bulletin EB-52 describes the
operation and characteristics of the MC3380
astable multivibrator and details the design of a
200 volt switching regulator circuit for gas discharge displays using this device as the control
element.

EB-66 A Symmetry Correcting Circuit
for Use with the MC3420
EB-66 shows a method of implementing "an
external symmetry-correction circuit with the
MC3420 Switch mode Regulator Control IC to
insure balanced operation. of the power transformer in push-pull inverter configurations.

MC3420/3520 Switch mode Regulator
Control Circuit

AN-752 An 80-Watt Switching Regulator
for CATV and Industrial Applications

The MC3520/3420 is an inverter control unit
which provides all the control circuitry for PWM
push-pull, bridge and s~ries type Switch mode
power supplies.

This application note describes a 24-Volt, 3Ampere switching, regulated power supply that
operates above 18 kHz from a 40-to 60-Volt, 60Hz square wave source (CATV power line from a
ferroresonant fransformer) or a dc standby
source with input output isolation. The control
circuit consists of a dual operational amplifier
and a linear integrated circuit timer which are
used to vary the on time of a new high-speed
power transistor. The circuit provides good efficiency, good regulation, low output ripple and
incorporates input and output voltage over shutdown protection.

TL494/495 Switchmode Pulse Width
Modulation Control Circuits
The TL494 and TL495 combine the best features of existing PWM control circuits and add
other on-Chip functions. These devices provide,
on a single monolithic chip, all the control circuitry for PWM push-pull, bridge and series type
switch mode power supplies.

10-3

AUDIO CONTROL CIRCUIT DESIGN
AN-240 SCR Power Control
Fundamentals

AN-705 Pulse Width Modulation for
Small DC Motor Control

Relationships of control angle to peak voltage, average voltage, RMS voltage and power
are presented in chart form. Time constants for
relaxation oscillators are discussed for both DC
and AC supplies. These basic form the heart of
SCR control.

This application note explains the use of
modern pulse width modulation techniques as an
efficient and economical solution to sin all DC
motor control. Several practical circuit design
approaches using discrete, operational amplifier
and integrated circuit devices are described and
illustrated.

AN-483B 20 and 30 Watt Power
Amplifiers Using Darlington Output
Transistors

AN-712A Interface Techniques Between
Industrial Logic and Power Devices

Use of monolithic power Darlington output
transistors can greatly simplify the design of
highfidelity amplifiers. Described herein is a 20Watt amplifier which uses only three transistors,
and a 30-Watt amplifier which uses four.

This application note presents worst case
design approaches to illustrate the methods 0.1
interfacing McMOS and MHTL logic to various
power load levels, both ac and dc. Interface devices vary from small-signal transistors to power
transistors and thyristors, using direct couplingllevel translation and optoelectronic coupling techniques.

AN-484A Medium-Power Audio
Amplifiers
This note describes a basic circuit design
approach for audio complementary power amplifiers. Procedures are detailed for the selection of
input, driver and output tran~istors. Both simple
and Darlington transistor systems are included.
Biasing, thermal considerations, overload pro'tection and power supply information is given
extensive treatment.
DeSign examples, including all circuit values,.
performance data and and suggested P.C. board
layouts, are given for Simple tranasistor am,plfiers at the 3,5, 7, 10, 15,20,25, and 35 Watt
levels. Also included are three amplfiers using Darlington output transistors at the 15, 20, and
25 Watt levels.

,I

AN-755 Solid-State Relays for AC Power
Control
Solid-State Relays (SSRs) using both SCRs
and Triacs are examined in detail. The advantages
and
disadvantages of SSRs compared with electromechanical relays are discussed. Inductive loads
are reviewed and snubbing suggestions made.
Parts lists are given for SSRs for voltages of 120
and 240 V rms and currents from 5 to 113 A
rms. Also described are circuits to give ac and
CMOS compatibility.

AN-766 A Variable Frequency Control for

AN-485 High-Power Audio Amplifiers
with Short-Circuit Protect jon

30 Induction Motors

_This application note describes a recommended circuit approach for high-performance
audio amplifiers in the 35-Watt to 100-Watt RMS
power range. Circuitry is included which enables
the amplifier to operate safely continuously under any load condition including a short.

This application note describes a variable
variable voltage drive system for three-phase
induction motor controls. A survey of possible
system configurations and a detailed description
of a semi-converter/transistor inverter quasisquare wave drive system are incJuded.

10-4

POWER TRANSISTORS
AN-S69 Transient Thermal
Resistance - General Data and Its Use

AN-78S Reverse Bias Safe Operating
Area

Data illustrating the' thermal response of a
number of semiconductor die and package
combinations are given. Its use, employing the
concepts of transient thermal resistance and
superposition, permit the circuit designer to predict semiconductor junction temperature at any
point in time during application of a complex
power pulse train.

The rating of high voltage, high speed switching transistors for safe turn-off operations is
examined. Clamped inductive turn-off measurements are used to generate a switching
RBSOA-reverse bias safe operating areawhich can be used in conjunction with load line
analysis to assure proper transistor operation.
The effects of inductance, temperature, base
turn-off conditions and forward base drive on
RBSOA are included in the discussion.

AN-778 Mounting Techniques for Power
Semiconductors

EN-101 Verifying Collector Voltage
Ratings

For reliable operation, semiconductors must
be properly mounted. Discussed are aspects of
preparing the mounting surface, using thermal
compounds, insulation techniques, fastening
techniques, handling of leads and pins, and evaluation methods for the thermal system.

Methods of verifying the various voltage ratings given on transistor data sheets are
described. Practical test circuits are given and
testing problems are discussed. A detailed ~iS­
cussion of the avalanche breakdown mechanism
and the Significance of various voltage ratings is
also included.

THYRISTORS
AN-S68 A Fuse-Thyristor Coordination
Primer

AN-466 Circuit Applications for the Triac
This note discusses the basic theory of operation of the triac with control methods and
circuit applications. Among the applications included are basic switches, lamp dimmers, motor
controls, a heater control, a flasher, a regulator,
protective circuits and zero-point switching.

This report treats the considerations required
for the use of fuses in protecting thyristors
against short circuit fault currents. Basics of .the
mating philosophy are discussed and practical
examples of coordination are given. Symbols,
terms and their definitions are included.

ZENER DIODES
AN-784 Transient Power Capability of
Zener Diodes
Because of the sensitivity cif semiconductor
components to voltage transients in exceSs of
their ratings, circuits are often designed to inhibit voltage surges in order to protect
equipment from catastrophic failure. This note
discusses the power capability of zener diodes
for transient suppression.'

10-5

10-6

®

MOTOROLA Semiconductor Products Inc .
. BOX 20912 . PHOEWX . ARIZONA 85036 . A SUBSIDIARY OF MOTOROLA INC.



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:06:17 12:41:05-08:00
Modify Date                     : 2017:06:17 13:23:42-07:00
Metadata Date                   : 2017:06:17 13:23:42-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:4da3973c-c10a-1949-a0ec-6aee33cc8eac
Instance ID                     : uuid:81b5af97-c35f-df41-91fd-c448cb65e55e
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 1022
EXIF Metadata provided by EXIF.tools

Navigation menu