1978_Optoelectronics_Designers_Catalog 1978 Optoelectronics Designers Catalog

User Manual: 1978_Optoelectronics_Designers_Catalog

Open the PDF directly: View PDF PDF.
Page Count: 242

Download1978_Optoelectronics_Designers_Catalog 1978 Optoelectronics Designers Catalog
Open PDF In BrowserView PDF
~ ~ta

.()~~~

~~~

~~

~• ~

~

HEWLETT -h ~ PACKARD
COMPONENTS

ELMAR
ELECTRONICS

~~~!~E~O~!~3611
MOUNTAIN VIEW
CALIFORNIA 94040
OAKLAND OFFICE
(415) 8*-3311

A decade of intensive solid state research, the
development of advanced manufacturing techniques and continued expansion has enabled
Hewlett-Packard to become a high volume
supplier of quality, competitively priced LED
displays, LED lamps, optocouplers, and photodetectors.
In addition to our broad product line, HewlettPackard also offers the following services:
immediate delivery from any of our authorized
stocking distributors, applications support,
special QA testing, and a one year guarantee
on all of our optoelectronic products.
This package of products and services has
enabled Hewlett-Packard to become a recognized leader in the optoelectronic industry.

HP produces more
than 3,500 products
at 30 domestic
divisions in California, Colorado,
Oregon,
Idaho,
Massachusetts, New
Jersey and Pennsylvania and at overseas
plants located in the German Federal
Republic, Scotland, France, Japan, Singapore, Malaysia and Brazil.

Hewlett-Packard is one of the world's
leading designers and manufacturers of
electronic, medical, analytical, and computing instruments and systems, diodes,
transistors, and optoelectronic products.
Since its founding in Palo Alto, California,
in 1939, HP has done its best to offer only
products that represent significant technological advancements.

However, for the customer, HewlettPackard is no further away than the
nearest telephone. Hewlett-Packard currently has sales and service offices
located around the world.
These field offices are staffed by trained
engineers, each of whom has the primary
responsibility of providing technical assistance and data to customers. A vast
communications network has been established to link each field office with the
factories and with corporate offices. No
matter what the product or the request, a
customer can be accommodated by a
single contact with the company.

To maintain its leadership in instrument
and component technology, HewlettPackard invests heavily in new product
development. Research and development
expenditures traditionally average about
10 percent of sales revenue, and 1,500
engineers and scientists are assigned the
responsibilities of carrying out the company's various Rand D projects.
ii

Hewlett-Packard is guided by a set of
written objectives. One of these is "to
provide products and services of the
greatest possible value to our customers".
Through application of advanced technology, efficient manufacturing, and imaginative marketing, it is the customer that
the more than 30,000 Hewlett-Packard
people strive to serve. Every effort is made
to anticipate the customer's needs, to
provide the customer with products that

will enable more efficient operation, to
offer the kind of service and reliability that
will merit the customer's highest confidence, and to provide all of this at a
reasonable price.
To better serve its many customers' broad
spectrum of technological needs, Hewlett-Packard publishes several catalogs.
Among these are:
• Electronic Instruments and Systems for
Measurement! Computation (General
Catalog)
• DC Power Supply Catalog
• Medical Instrumentation Catalog
• Analytical Instruments for Chemistry
Catalog
• Coax, and W / G Measurement Accessories Catalog
• Diode and Transistor Catalog
All catalogs are available at no charge
from your local HP sales office.

iii

Hewlett-Packard's Optoelectronic Division offers a complete line of
GaAsP and GaP discrete light emitting
diodes (LED's), numeric, hexadecimal,
and alphanumeric displays. These components provide solid state reliability to
any visible readout. As status indicators,
arrays, multi-digit or multi-character displays, these compact LED's are electrically compatible with monolithic integrated circuits, with a useful life greater
than 100,000 hours.

by ground loops and induced common
mode noise for both analog and digital
applications in commercial, industrial, and
military products. Hewlett-Packard's original approach toward integrated output
detectors provides
performance not
found in conventional phototransistor
output optocouplers. With 3000 VDe
isolation, the types of optocouplers
available include high speed devices
capable of 10M bits and high gain devices
which are specified at 400% eTR at input
currents as low as 0.5mA. In addition,
highly linear optocouplers are useful in
analog applications, and a new integrated
input optically coupled line receiver can
be connected directly to twisted pair wires
without additional circuitry. Most of these
devices are available in dual versions, as
well as in hermetic 01 P packages. For
military users, Hewlett-Packard's established hi-rei capability facilitates economical, hi-rei purchases.

Q~tQcQu~le~s
Hewlett-Packard's family of optocouplers
provide economical, high performance
solutions to problems caused

iv

Dis~la~s
Low cost numeric displays, packaged single
or clustered, are
available in character
heights from .11" to .8".
Low power small character
displays have been designed for
portable instrumentation and calculator
applications. Other seven-segment display units are available in red, yellow, ~nd
green colors for use in instrumentation,
point of sale terminals, and TV. indic.ator
applications. High power, sun-light vlev:able, large character displays are readily
adapted to outdoor terminals, gas pumps
and agricultural instrumentation. For
these displays, Hewlett-Packard has
successfully integrated a gray package
design with untinted segments. This
results in excellent bright ambient contrast enhancement.

These displays have been designed for
low cost and ease of application in a wide
range of environments.
Alphanumeric displays are available in
two attractive configurations. Small alphanumeric displays feature four 5 x 7 dot
matrix characters and on-board shift
registers for data storage. They are
contained in 16-pin DIPs which are endstackable for unlimited possibilities in
alphanumeric display formatting.
The first 16-segment solid state LED
alphanumeric displays from HewlettPackard are now available in four- and
eight- character end-stackable modules.
They are designed for use in computer
peripheral products, automotive instrument panels, calculators, and electronic instruments and systems
requiring low power consumption in an easy-to-read display.
Magnification of the LED by an
integral lens results in a character size of 3.8mm (0.150 in.).
Drawing as little as 1.0 to 1.5mA
average current per segment, this
enhances character intensity while
keeping power use at a minimum.

Integrated numeric and hexadecimal displays (with on-board IC's), available in
plastic and hermetic packages, solve the
designer's
decoding/driving problem.

v

Emitter's
Hewlett-Packard offers high radiant intensity emitters near-IR in both floodlight
and spotlight configurations. These emitters are ideally suited for use in optical
transducers and encoders, smoke detectors, bar code scanners, paper-tape
readers, and fiber optic drivers.

lolid :tate Lamps
LED lamps are available in a wide variety
of plastic and hermetic packages to
satisfy almost any application. Many
styles can be mounted on a front panel
using clips and all are suitable for P.C.
board mounting. Hewlett-Packard military
screened hermetic lamps are very popular in applications demanding hi-reliability.
Products with wide or narrow viewing
angles, and a range of brightnesses, are
available in red, high efficiency red, yellow
and green. Package styles include the
traditional T-1-3/4, T-1, and TO-18
packages, as well as our own subminiature (stackable on 2.54mm [0.100 in.]
centers), rectangular, and panel mountable hermetic packages.

vi

~In ~hotQdiQdes
Hewlett-Packard PIN photodiodes are
excellent light detectors with an exceptionally fast response of 1ns, wide spectral
response from near infrared to ultra-violet,
and wide range linearity (constant efficiency over 6 decades of amplitude). With
dark current as low as 250pA at 10V,
these detectors are especially well-suited
for operation at low light levels. The device
construction allows high speed operation
at reverse voltages of 5 volts.

Ficer' Q~ics
One of the pioneers in fiber optic
technology, Hewlett-Packard is currently
developing fiber optic systems for digital
applications. Further details on this
exciting new area of data communications is explained in the fiber optic section,
page 215.

Applications include fiber optic receivers,
laser scanners, rangefinders, and power
monitors, radiometers and photometers,
process control systems, and medical
diagnostic equipment.
High reliability test programs are available.

vii

This Optoelectronic Designer's Catalog
contains detailed, up-to-date specifications on our complete optoelectronic
product line. It is divided into five major
product sections: Solid State Lamps, Solid
State Displays, Optocouplers, Emitters,
and PIN Photodiodes. A special introductory section on Fiber Optics is also
included. This catalog also includes
an Index on Optoelectronic Application
Notes which are available from any of the
Hewlett-Packard Sales and Service Offices listed on page 224 and from any of
the Franchised Distributors listed on page
222.

How To Order
All Hewlett-Packard components may be
ordered through any of the Sales and
Service Offices listed on page 224. In
addition, for immediate delivery of Hewlett-Packard optoelectronic components,
contact any of the world-wide stocking
distributors listed on page 222.

Warranty
HP's Components are warranted against
defects in material and workmanship for a
period of one year from the date of
shipment. HP will repair or, at its option,
replace Components that prove to be
defective in material or workmanship
under proper use during the warranty
period. This warranty extends only to HP
customers.

How To Use This Catalog
Three methods are incorporated for
locating components:
• a Table of Contents that allows you to
locate components by their general
description.

No other warranties are expressed or
implied, including but not limited to,
the implied warranties or merchantability and fitness for a particular
purpose. HP is not liable for consequential damages.

• a Numeric Index that lists all components by part number, and
• a Selection Guide for each product
group giving a brief overview of the
product line.
viii

Numeric Index ................... x
Solid State Lamps
Selection Guide ................ 2
Red Lamps .................... 6
Red, High Efficiency Red,
Yellow and Green Lamps ...... 22
Integrated Lamps .............. 40
Hermetically Sealed Lamps ..... 44
Panel Mounting Kit ............. 50

Solid State Displays
Selection Guide ............... 52
Red, High Efficiency Red, Yellow
and Green Seven Segment
Displays ..................... 59
Red Seven Segment Displays ... 87
Integrated Displays .......... 111
Hermetically Sealed
Integrated Displays ........ . 120
Alphanumeric Displays ...... . 132
Chips ..................... . 146
Optocouplers
Selection Guide .............
High Speed Optocouplers ....
Low Input Current/High
Gain Optocouplers ..........
High Reliability Optocouplers ..

Emitters
Selection Guide
Emitters ................... .

204
206

PIN Photodiodes
Selection Guide
PI N Photodiodes

205
210

Fiber Optics
Introduction .................

216

Appendix
Application Note Index .......
Distributor Stocking Locations..
Hewlett-Packard Sales and
Service Offices .............
Profile and Inquiry Card

156
158
184
196

ix

218
222
224

OPTOCOUPLERS
TX-4365[1] _ _ See 6N134 TXV
See 6N134 TXVB
TXB-4365[1J _
5082-4350[1]
See 6N135
5082-4351[1]
See 6N136
5082-4352[2] __ See HCPL-2502
5082-4354[2] __ See HCPL-2530
5082-4355[2] __ See HCPL-2531
5082-4360[1]
See 6N137
See HCPL-2601
5082-4361 [2] _
See HCPL-2630
5082-4364[2] _
See 6N134
5082-4365[1]
5082-4370[1]
See 6N138
See 6N139
5082-4371 [1]
HCPL-2502 (5082-4352)
158
162
HCPL-2530 (5082-4354)
HCPL-2531 (5082-4355)
162
170
HCPL-2601 (5082-4361)
HCPL-2602
174
HCPL-2630 (5082-4364)
180
188
HCPL-2730
HCPL-2731
188
HCPL-2770
200
192
4N45
192
4N46
196
6N134 (5082-4365)
6N134 TXV (TX-4365) _ _ 196
6N134 TXVB (TXB-4365)
196
158
6N 135 (5082-4350)
158
6N 136 (5082-4351 )
166
6N137 (5082-4360)
184
6N138 (5082-4370)
184
6N139 (5082-4371)
6N140 (HCPL-2770) - - - 200

DISPLAYS (Cont.)

DISPLAYS

* HDSP-2000
* HDSP-3400
* HDSP-3401
* HDSP-3403
* HDSP-3405
* HDSP-3406
* HDSP-3530
* HDSP-3531
* HDSP-3533
* HDSP-3536
* HDSP-3730
* HDSP-3731
* HDSP-3733
* HDSP-3736
* HDSP-4030
* HDSP-4031
* HDSP-4033
* HDSP-4036
* HDSP-4130
* HDSP-4131
* HDSP-4133
* HDSP-4136
* HDSP-6504
* HDSP-6508

132
59
59
59
59
59
63
63
63
63
63
63
63
63
63
63
63
63
63
63
63
63
136
136
120
120
142
142
142
103
103
107
107

5082-7010
5082-7011
5082-7100
5082-7101
5082-7102
5082-7240
5082-7241
5082-7265
5082-7275
X

5082-7285
5082-7295
5082-7300
5082· 7302
5082-7304 .
5082-7340
5082-7356
5082-7357
5082-7358
5082-7359
5082-7391
5082-7392
5082-7393
5082-7395
5082-7402
5082-7403
5082-7404
5082-7405
5082-7412
5082-7413
5082-7414
5082-7415
5082-7432
5082-7433
5082-7440
5082-7441
5082-7442
5082-7444
5082-7445
5082-7446
5082-7447
5082-7448
5082-7449

107
107
111
111
111
111
115
115
115
115
126
126
126
126
87
87
87
87
87
87
87
87
91
91
95
95
95
95
95
95
95
95
95

DISPLAYS (Cont)
5082-7610
5082-7611
5082-7613
5082-7616
5082-7620
5082-7621
5082-7623
5082-7626
5082-7630
5082-7631
5082-7633
5082-7636
5082-7650
5082-7651
5082-7653
5082-7656
5082-7660
5082-7661
5082-7663
5082-7666
5082-7670
5082-7671
5082-7673
5082-7676
5082-7730
5082-7732
5082-7736
5082-7740
5082-7750
5082-7752
5082-7756
5082-7760
5082-7811
5082-7821
5082-7832
5082-7833
5082-7837
5082-7838
5082-7842
5082-7843
5082-7847
5082-7848
5082-7851
5082-7852
5082-7853
5082-7856
5082-7861
5082-7862
5082-7863
5082-7866
5082-7871
5082-7872
5082-7881
5082-7882
5082-7890
5082-7892
5082-7893

EMITTERS
69
69
69
69
69
69
69
69
69
69
69
69
74
74
74
74
74
74
74
74
74
74
74
74
79
79
79
79
83
83
83
83
146
146
146
150
150
150
146
150
150
150
146
146
146
150
146
146
146
150
146
150
146
150
146
146
146

LAMPS (Cont)

HEMT-3300
HEMT-6000

206
208

PHOTODETECTORS
5082-4203
5082-4204
5082-4205
5082-4207
5082-4220

210
210
210
210
210

LAMPS
HLMP-0300
32
HLMP-0301 (5082-4670)
32
HLMP-0400
32
HLMP-0401 (5082-4570)
32
HLMP-0500
32
HLMP-0501 (5082-4970)
32
HLMP-1300
36
HLMP-1301 (5082-4684)
36
HLMP-1302
36
HLMP-1400
36
HLMP-1401 (5082-4584)
36
HLMP-1402
36
HLMP-1500
36
HLMP-1501 (5082-4984)
36
HLMP-1502
36
HLMP-6203
14
HLMP-6204
14
HLMP-6205
14
* HLMP-6620
16
* HLMP-6600
16
1 N5765 (5082-4420)
44
1N6092 (5082-4620)
44
1N6093 (5082-4520)
44
1N6094 (5082-4920)
44
JAN 1N5765
44
JANTX 1N5765
44
5082-4100
18
5082-4101
18
5082-4150
18
5082-4160
18
5082-4190
18
5082-4403
6
5082-4415
6
5082-4420
See 1 N5765
5082-4440
6
5082-4444
6
5082-4468
42
5082-4480
8
5082-4483
8
5082-4484
12
5082-4486
8
5082-4487
10
5082-4488
10
12
5082-4494
5082-4520
See 1 N6093
5082-4550
28

xi

5082-4555
5082-4557
5082-4558
5082-4570
5082-4584
5082-4587
5082-4590
5082-4592
5082-4595
5082-4597
5082-4620
5082-4650
5082-4655
5082-4657
5082-4658
5082-4670
5082-4684
5082-4687
5082-4690
5082-4693
5082-4694
5082-4695
5082-4707
5082-4732
5082-4787
5082-4790
5082-4791
5082-4850
5082-4855
5082-4860
5082-4880
5082-4881
5082-4882
5082-4883
5082-4884
5082-4885
5082-4886
5082-4887
5082-4888
5082-4920
5082-4950
5082-4955
5082-4957
5082-4958
5082-4970
5082-4984
5082-4987
5082-4990
5082-4992
5082-4995
5082-4997

__
__

__
__

__
__

28
28
28
See HLMP-0401
See HLMP-1401
44
22
22
22
22
See 1 N6092
28
28
28
28
See HLMP-0301
See HLMP-1301
44
22
22
22
22
50
40
44
22
22
12
12
42
6
6
6
6
6
6
6
6
6
See 1N6094
28
28
28
28
See HLMP-0501
See HLMP-1501
44
22
22
22
22

Notes: 1. EIA Registered. Part No. changed.
2. Part No. changed.

*

New product. New to catalog.

Solid State LClm~s
Selection Guide

..................... 2

• Clear or Red Lamps
• Red, High Efficiency Red, Yellow
and Green Lamps
• Integrated Lamps
• Hermetically Sealed Lamps
• Panel Mounting Kit
• Chips

1

High Efficiency Red, Yellow, Green LED Lamps
Device
Part No.
Photo
5082-

-

4650
..

4655

Description
Color

Emitting
Material

High
GaAsp on GaP
Efficiency
Red
(635nm)(2)

Package

Lens

T-1%; Plastic; Long,
General Purpose
Leads(3)

Red
Diffused

28',1,
[1)

Typical
Forward
Voltage

Page
No.
28

90°
4.0mcd@10mA
2.2 Volts
@10mA

12.0mcd @10mA

Red NonDiffused

4657

Typical
Luminous
Intensity
2.0mcd@10mA

35°
24.0mcd@10mA

4658

i---------

4690

C-·---::

Red
Diffused

3.5mcd@10mA
T-l% (Low Profile)
Plastic; Long,General
7.0mcd@10mA
Purpose Leads

Red
NonDiffused

8.0mcd@10mA

4693
4694
4695

22
50°

45°
11.0mcd@10mA
i---------

,""''"

::

HLMP1300
HLMP1301
(50824684)

----~

E-'~.
"'.

II

Yellow
GaAsP on GaP
(583nm)(2)

T-l%; Plastic; Long
General Purpose
Leads[3)

Yellow
Diffused

100°

2.5 Volts
@25mA

28
90°

3.0mcd@10mA

T-1 %(Low Profile)
3.5mcd@10mA
Plastic; Long, General
Purpose Leads
6.0mcd @10mA
6.5mcd@10mA

4597

Yellow
NonDiffused

HLMP1400

Yellow
Diffused

2.2 Volts
@10mA
35°

16.0mcd@10mA

4592

22
50°

45°
11.0mcd@10mA
T- i; Plastic; Long
Leads [4)

HLMP1401
(50824584)
HLMP1402
4150

32

1.8mcd@10mA

Yellow
Diffused

4595

1-,

2.5mcd @25mA

9.0mcd @10mA

4590

18

80°

1.0mcd @25mA

Yellow
NonDiffused

4558

......._._---

3.0mcd @10mA

1.5mcd@15mA

4555
4557

-"~""-'

i---------

Sub min.; Plastic;
Radial Leads
Rectangular; Plastic;
Long, Gen. Purpose
Leads

Red
Diffused
Red
Diffused

HLMP0300
HLMP0301
(50824670)
4550

70°

2.5mcd @10mA

4160

~--

36

1.5mcd@10mA
2.0mcd @10mA

HLMP1302

.....

(

T-l, Plastic, Long
Leads [4)

Red
Diffused

I-36

1.5mcd @10mA

2.5mcd@10mA

60°

4.0mcd@10mA
Yellow
Diffused

Sub min.; Plastic;
Radial Leads

2.0mcd @10mA

90°

I--18

For Applications Information, see pages 218-221.

Notes: See page 5.

2

Description

Device
Part No.
Photo
5082·

E==~~~~~

Emitting
Material

Yellow
Diffused

Green
GaP
(565nm)[21

Green
Diffused

Rectangular; Plastic;
Long, Gen. Purpose
Leads

T-l %; Plastic; Long
General Purpose
Leads[3]

4997

Green
Non·
Diffused

HLMp·
1500

Green
Diffused

28

90°
3.0mcd @20mA

T-l%(Low Profile)
Plastic; Long General
Purpose Leads

2.4 Volts
@20mA

r22

4.5mcd @20mA
50°
7.5mcd @20mA
6.5mcd @20mA
40°
11.0mcd@20mA

T-l; Plastic; Long
Leads[4J

r-36

1.2mcd@10mA

HLMp·
1502

3.0mcd @10mA

60°

-

4190

Green
Diffused

Sub min.; Plastic;
Radial Leads

1.5mcd @20mA

HLMp·
0500

Green
Diffused

Rectangular; Plastic;
Long, Gen. Purpose
Leads

1.2mcd@25mA

HLMp·
0501
(50824970)

~

32
2.5 Volts
@25mA

1.8mcd @20mA

2.0mcd@10mA

'"'

100°

2.5mcd @25mA

HLMp·
1501
~-- (50824984)

Ii

Page
No.

30°

4992
4995

Typical
Forward
Voltage

16.0mcd @20mA

Green
Diffused

4990

1.2mcd @25mA

28';'
[IJ

9.0mcd @20mA

Green
Non·
Diffused

4958

Typical
Luminous
Intensity

1.5mcd@15mA

4955
4957

(t

Package

Lens

HLMp· Yellow
GaAsP on GaP
(583nm)[2J
0400
HLMp·
0401
(50824570)
4950

""

Color

2.5mcd @25mA

18

70°

32
100°

2.5 Volts
@25mA

1.5mcd@15mA

Red LED Lamps
Device

."

Description
Part No.
5082-

Photo

.. ,

-==

I{i;

4850

Color

Emitting
Material

Red
GaAsP on GaAs
(655nm)[2]

Package

Lens
Red
Diffused

T·m; Plastic; Long
Wire Wrap. Leads[3]

Typical
Luminous
Intensity

28';'
[1)

Typical
Forward
Voltage

0.8mcd @20mA

Page
No.
12

95°
4855

1.4mcd @20mA

4484

T·l; Plastic; Long
Leads[4]

4494
4790

1.6 Volts
@20mA

0.8mcd @20mA
120

0

1.4mcd @20mA
Red
Diffused

T-l% (Low Profile)
Plastic; Long, Gen.
Purpose Leads

4791

22

1.2mcd @20mA
60°
2.5mcd @20mA

1.6 Volts
@20mA

For Applications Information, see pages 218-221.

Notes: See page 5.

3

Oevice
Photo

==

es:

Oescription
Part No.
5082·

Color

Emitting
Material

4480

Red
(655nm)[2]

GaAsP on GaAs

4483
4486

4487
4488

.'

"o'~'

4100

lens

Package

Red

T·l; Plastic; Long
Leads[4)

oiffused
Clear
oiff used

28';;
[1]

0.8mcd @20mA

120°

Typical
Forward
Voltage

Page
No.
8

1.6 Volts

r--- @20mA

Clear
Non·
Diffused

80°

Clear
Non·
Diffused

T·l (Low Profile);
PlastiCr. Lo ng
Leads 4)

Red
Diffused

Submin.; Plastic;
Radial Leads

0.5mcd@10mA

Red
Diffused

Array; Plastic Radial
Leads

1.0mcd @ lOrnA

Red
Diffused

T-l %; Plastic; S)lOrt,
Leads[3]
T-1%; Plastic; Short,
Bent LeadS[4]
T-l %; Plastic; Short
Leads [3]
T·I %; Plastic; Short,
Bent Leads[4]

4101
HLMp·
-"- 6203

Typical
luminous
Intensity

0.8mcd @20mA
120°

1.6 Volts
@20mA

45°

1.6 Volts
@IOmA

45°

1.6 Volts
@10mA

Guaranteed Min.
0.3mcd @20mA

10

18

1.0mcd @10mA

14

HLMp·
6204

i!

.....

HLMP·
6205

_l'>

j;\"

-d

4403

_.

-,

4415

4403/4440

I

4440

,)

4415/4444

.--

4444
4880
4883
4886
4881
4884

Red
Diffused
Clear Non·
Diffused
Clear
Diffused

75°

4882

Red
Diffused

1.6 Volts
@20mA

0.7mcd@20mA

T-l%; Plastic; Lon 9
Wire Wrap. Leads[3]

6

58°

r----0.8mcd @20mA

50 0

r-65°
58 0

r--

Clear Non·
Diffused
Clear
Diffused

4888

1.2mcd@20mA

Red
Diffused

4887

4885

6

1.3mcd@20mA

50 0

r---

1.6 Volts
@20mA

65°
58°
-

Clear Non·
Diffused

1.8mcd @20mA

50°

-

Clear
Diffused

65°

Notes: See page 5.

For Applications Information, see pages 218-221.

4

Integrated LED Lamps
Description

Device
Part No.
5082·

Photo

d

~~

Integration

Color

Package

Lens

Red
T·l; Plastic; Long
Diffused Leads[4}

4732

Red
Voltage Sensing
(655nm) IC integrated
[2}
with GaAsP
LED chip

4860

Red
T·l"'; Plastic;
Diffused Long Leads[3}

4468

Resistor chip
integrated with
GaAsP LED
chip

HLMP6620
HLMp·
6600

Resistor chip
integrated with
GaAsP LED
chip

Submin.,
Red
Diffused Plastic;
Radial Leads

Typical
Luminous
Intensity

28'/,

0.7mcd
@2.'15V

95°

Typical
Forward
Current

[1}

13mA@
2.75V

58°
0.8mcd
@5.0V

T·l; Plastic;
Clear
Diffused Long Leads[4}

40

42
16mA@
5.0V

70°

3.5mA@
5.0V
9.6mA@
5.0V

0.6mcd
@5.0V
2.4mcd
@5.0V

Page
No.

90°

16

Hermetically Sealed LED Lamps
Device
Photo

Description
Part No.

1N5765
JAN 1N5765[5]
JAN TX lN5765[5]

11\

Color
Red
(655nm)[2]

Emitting
Material
GaAsP on GaAs

Lens
Red
Diffused

(5082·4420)
5082·4787[6}

Minimum
Luminous
Intensity
Hermetic/TO·46; 0.5mcd @
Long Leads[4]
20mA
Package

28'1z
[I]

70°

Typical
Forward
Voltage
1.6 Volts
@20mA

Page
No.
44

Panel Mount

~
1 N6092 [6]
(5082·4620)

High Eff.
Red
(635nm)[2]

GaAsP on GaP

Red
Diffused

5082.4687 [6]

Hermetic/TO·46
Long Leads! 4]

1.0mcd @
20mA

2.0 Volts
@20mA

0.8mcd @
25m A

2.1 Volts
@25mA

Panel Mount

~
1 N6093 [6]
(5082·4520)

~,;:,

Oii\~;J"".:.

(jii=::
NOTES: 1.
2.
3.
4.
5.
6.

Yellow
(583nm)l2]

GaAsP on GaP

Yellow
Diffused

5082.4587 [6)

1 N6094 [6]
(5082·4920)

Hermetic/TO·46
Long Leads!4]

Panel Mount

Green
(565nm)l2)

GaP

Green
Diffused

5082-4987[6}

Hermetic/TO·46
Long Leads! 4}

Panel Mount

0% is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
Peak Wavelength.
Panel Mountable. For Panel Mounting Kit, see page 50.
PC Board Mountable.
Military Approved and qualified for High Reliability Applications.
Military Approved and qualified JAN and JAN TX versions of this part are now available ..

5

For Applications Information,
see pages 218·221.

i

HEWLETT

PACKARD

5082-4403
5082-4415
5082-4440
5082-4444
5082 -4880 SERIES

SOLID STATE LAMPS

COMPONENTS

TECHNICAL DATA APRIL 1978

Features

CATHODE

IDENTIFICATION

• EASILY PANEL MOUNTABLE
• HIGH BRIGHTNESS OVER A WIDE
VIEWING ANGLE
• RUGGED CONSTRUCTION FOR EASE
OF HANDLING
• STURDY LEADS ON 2S.4mm (0.10 In.)
CENTERS
• IC COMPATIBLE/LOW POWER
CONSUMPTION

I

5.0.

MIN.

~TH~

• LONG LIFE
1.02 1.0401
0.64 (.025)

Description

I

1--1.201 -

CATHODE

~l

~ (.2401
5.59 (.2201

1.02 1.0401 TYP.
0.64 1.025)

NOTE: AN EPOX~.MINISCUSMAY EXTEND ABOUT
lmm (.040 ) DOWN THE LEADS.

The 5082-4403, -4415, -4440, -4444 and the -4880 series
are plastic encapsulated Gallium Arsenide Phosphide
Light Emitting Diodes. They radiate light in the 655
nanometer (red light) region.

i

ANODE

3.05 1.1201
(.080)--1

i03

5082·4415
5082-4444

CATHODE COLOR DOT IDENTIFICATION

5082·4403
5082-4440
5082·4415
5082·4444

The 5082-4403 and -4440 are LEDs with a red diffused
plastic lens, providing high visibility for circuit board or
panel mounting with a clip.

WHITE DOT
ORANGE DOT
WHITE DOT
ORANGe DOT

~~~L

The 5082-4415 and -4444 have the added feature of a 90°
lead bend for edge mounting on circuit boards.

5082·4403
5082-4440

DIMENSIONS IN MILLI""ETRES AND CINCHES).

·4880 SER I ES
PLASTIC

The 5082-4880 series is available in three different lens
configurations. These are Red Diffused, Clear Diffused,
and Clear Non-Diffused.

t

6.10 (.240)

5.5BrnDi

The Red Diffused lens provides an excellent off/on
contrast ratio. The Clear Non-Diffused lens is designed
for applications where a point source is desired. It is
particularly useful where the light must be focused or
diffused with external optics. The Clear Diffused lens is
useful in masking the red color in the off condition.

r

rUO[:I

CATHODE

0.76r.D3O)

15.24
1.6001

L'

LED SELECTION GUIDE

16.51

1.651

0.76 (.0301
0.51 (.020)

3.05 (.120)

2.03 (.0801

0.5
1.0
1.6

LONG LEAD (UNBENT)
Clear NonClear
Red
Diffused
Diffused
Diffused
Lens
Lens
Lens
5082-4880 5082-4883 5082-4886
5082-4881 5082-4884 5082-4887
5082-4882 5082-4885 5082-4888

0.3
0.8
0.3
0.8

5082-4440
5082-4403
5082-4444
5082-4415

MINIMUM
LIGHT
O.UTPUT
(mcd)

I

----

CATHODE COLOR DOT IDENTIFICATION
5082·4880, ·4883, -4886
GREEN DOT

5082·4881,,4884, "4887
5082·4882, ·4885, "4888

BLUE: DOT
YELlOW DOT

NOTE: AN EPOXY MINISCUS MAY EXTEND ABOUT
1mm (.040") DOWN THE LEADS.

Maximum Ratings at TA=25°C
DC Power Dissipation ...•..........•.......... 100 mW
DC Forward Current' •.•........••.............. 50 mA
(berate linearly from 50°C at 0.2mA/oCl
Peak Transierit Forward Current ......•...•..•••. 1 Amp
(ll.1sec pulse width, 300 pps)
Isolation Voltage (between lead and base) ..••...•. 300V
Operating and Storage
Temperature Range .................. -55°Cto+l00°C
Lead Soldering Temperature ••...•.•.•.. 230° C for 7 sec

SHORT LEAD
UNBENT
BENT

6

Electrical Characteristics at TA =25°C
5082·4403
5082·4415
Symbol
IV

Parameter

Luminous

5082·4880
5082·4883
5082·4886

5082·4440
5082·4444

5082·4881
5082·4884
5082·4887

5082·4882
5082·4885
5082·4888

Test

Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Units
0.8

1.2

0.3

0.8

0.5

0.7

1.0

1.3

1.6

1.8

mcd

655

nm

Conditions

IF; 20mA

Intensity
APEAK

Wavelength

655

655

655

655

Measurement
at Peak

T.

Speed of
Re.ponse

15

15

15

15

15

C

Capacitance

200

200

200

200

200

OJC

Thermal

87

87

100

100

100

1.6 2.0

1.6

ns
pF
°C/W Junction to
Cathode Lead

Resistance
VF

Forward
Voltage

BVR

Reverse Break·
down Voltage

1.6

3

10

2.0

1.6

3

10

2.0

10

3

3

2.0

2.0

1.6

3

10

10

V

IF

~

20mA

V

IR

~

100ILA

TYPICAL RELATIVE LUMINOUS INTENSITY VERSUS ANGULAR DISPLACEMENT
44XX

4880,4881,4882

FORWARD CURRENT VS. VOLTAGE
CHARACTER ISTICS
50

'"E

40

I

....

:l

:::

30

""
Ii!

20

'"

;:
0:

12
10
-~

v
0.4

0.8

1.2

2.0

1.6

FORWARD CURRENT - VOLTAGE CHARACTER ISTIeS

4883,4884,4885

4886,4887,4888

LUMINOUS INTENSITY VS. FORWARD
CURRENT (IF)
2.50
2.25

/'

2.00
1.75

L

1.50

/

1.25

1/

1.00

/

.75

/

.50
.25

/
10

20

30

40

IF - FORWARD CURRENT - rnA

7

50

HEWLETT·

PACKARD

5082~4480

SOLID STATE LAMPS

SERIES

COMPONENTS

TECHNICAL DATA APRIL 1978

Features
I-- 3.19 (.125)

• HIGH INTENSITY: 0.8mcd TYPICAL

1__ 3,43!:ill.l

~~

• SMALL SIZE T~1 DIAMETER 3.18mm (0.125")

2.92 (.1151

,.f.
S.10(.2401

• IC COMPATIBLE

3.4,'(.135)

~

'T~=F-'

• RELIABLE AND RUGGED

Description

NOM.

The 5082-4480 is a series of Gallium Arsenide Phosphide
Light Emitting Diodes designed for applications where
space is at a premium, such as in high density arrays.

1_

5082-4480 - Red Diffused lens provides excellent on-off
contrast ratio, high axial luminous intensity, and wide viewing angle.

I

--...

-

5082-4483 - Same as 5082-4480, but Clear Diffused
to mask red color in the "off" condition.

,."'~

-

MAX.

..- ;:~::~~~

,--

03;9--

CATHODE

v

IN .--

.~

,./

r ~~

0.39 (.015)

- - ..

f

NOTE: AN EPOXY MINISCUS MAY ExnND ABOUT
lmm (.040") DOWN THE LEADS,

Maximum Ratings at TA =25°C

DIMENSIONS IN MllLlMETRES AND (INCHES).

100mW

DC Forward Current
50mA
(Derate linearly from 50°C at 0.2mA/"C)
Peak Forward Current
1 Amp
•...• - '(1 ·.u~e~ 'p~I~'; ';'idth, 300 pps)
Operating and Storage
Temperature Range . . . . . . . . . . . . -55°C to +100 o C
Lead Soldering Temperature .... __ .

II

0.64 (.O26)

5082-4486 - Clear Non-Diffused plastic lens provides a
point source. Useful when illuminating external lens, annunciators, or photo-detectors.

.................
.................

l

15.491fO.611

14.12 (0.56)

The 5082-4480 series is available in three lens configuratiol)s.

DC Power Dissipation

rnnos)

PLASTIC-I

• WIDE VIEWING ANGLE

PART NO.

LENS CONFIGURATION
Rod Diffused

5082-4480

Untinted Diffused
Clear Plastic

5082-4483
5082-4486

230 0 C for 7 sec.

Electrical Characteristics at TA =25°C
Symbol

5082-4480
5082-4483
5082·4486

Parameters
Min.

Iv

Luminous Intensity

ApEAK

Wavelength

0,3

Typ.

Units
Max.

0.8

mcd

655

nm

Ts

Speed of Response

15

ns

C

Capacitance

200

pF

°JC

Thermal Resistance

270

VF

Forward Voltage

BV R

Reverse Breakdown Voltage

1.6
10

3
8

Test Conditions

°CIW
2.0

IF= 20m A
Measurement at Peak

VF = 0, f = 1 MHz
Junction to Cathode Lead

V

I F =20mA

V

IR = 10pA

5082-4480 AND 5082-4483

5082-4486
30'

E

...

;

50'

50'

SO'

60"

SO'

70'

70'

70"

80'

60'

SO' .

90'

90'

90'

Figure 2. Relative Luminous Intensity
vs. Angular Displacement.

50

2.50

40

!:: 2.00
en

>

...'w"

/'
/

1.75

/'

en 1.50
:::l

0

c

20

a:

'":::l
:E
....

1.25

>

.75

w

0

LL

I

2.25

~

30

u

a:

~
w

10

-~

o
o

0.4

0.8

.. v

1.2

1.6

30"

50'

w

..:

20'

40'

:::l

;:

10"

40"

I

'a:a:"

0"

40'

Figure 1. Relative Luminous Intensity
vs. Angular Displacement.

..:

10"

20'

a:
2.0

/

1.00

/

.50
.25

/

/

./
10

20

30

40

50

FORWARO CURRENT - VOLTAGE CHARACTERISTICS

IF - FORWARD CURRENT - mA

Fig.ure 3. Forward Current vs. Voltage
Characteristic.

Figure 4. Luminous Intensity vs. Forward
Current (IF).

9

PAOKARD
COMPONENTS

LOW PROFILE
SOLID STATE LAMPS

Features
• LOW COST: BROAD APPLICATION

-

PLASTIc";::

• LOW PROFILE: 4.S7mm (0.18") LENS HEIGHT
TYPICAL

5.08

~

5082-4487
5082-4488

TECHNICAL DATA APRIL 1978

r~~

3.30 1.13O} MAX.

3.30 (0.13O) NOM.

··f~--1

,~.~
ML

• HIGH DENSITY PACKAGING
• LONG LIFE: SOLID STATE RELIABILITY
• LOW POWER REQUIREMENTS:
20mA@ 1.6V

Ji

• HIGH LIGHT OUTPUT: 0.8mcd TYPICAL

-...!I

1

'"~,~."

i~L~

:-....
~§H1oOI
I·
2.03 f.OOOi

g:~~1

CATHODE~={
2M~25}

0.38 (]ff5j

NOTE' AN EPOXV MINISCUS MAY exTEND ABOUT
lmm (.040'" OOWN THE LEAOS.
ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).

Description
The 5082·4487 and 5082-4488 are Gallium Arsenide Phosphide Light Emitting Diodes for High Volume/
Low Cost Applications such as indicators for calculators, cameras, appliances, automobile instrument
panels, and many other commercial uses.
The 5082-4487 is a clear non-diffused lens, low profile T -1 LED lamp, and has a typical light output
of 0.8 mcd at 20 mA.
The 5082-4488 is a clear non-diffused, low profile T-1 LED lamp, and has a guaranteed minimum
light output of 0.3 mcd at 20 mAo

Absolute Maximum Ratings at TA =25°C
DC Power Dissipation ........................•.......•......................... 100mW
DC Forward Current [Derate linearly from 50°C at 0.2mAtC] ......................... 50mW
Peak Forward Current [1~sec pulse width, 300pps] ...............•................... 1 Amp
Operating and Storage Temperature Range ................................. -55°C to +100oC
Lead Soldering Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
230°C for 7 sec.
10

Electrical/Optical Characteristics at TA =25°C
5082·4487
TVp.
Max.

5082·4488
Max.
TVp.

Units

Test Conditions

0.8

mcd

IF =20mA

655

655

nm

Measurement at
Peak

Speed of Response

10

10

ns

C

Capacitance

100

100

pF

VF = 0, f = 1 MHz

VF

Forward Voltage

1.6

V

IF = 20mA

BVR

Reverse Breakdown
Voltage

V

IR = 1OO.uA

Svmbol

Parameters

Iv

Luminous Intensity

0.8

APEAK

Wavelength

7,

Min.

0.3

2.50
2.25

TA - 25°C

e
I

/

1.75

I-- I--

30

/

1.50

i'l
a:

1.00

20

~

.75

/

_
.

/

I

.50

..!- 10

o

.25

/
o

0.4

0.8

1.2

1.6

/

/

./

o
o

2.0

"'-"'--

/

1.25

c

i

/'

2.00

«40

a:

2.0

10

3

50

~a:

1.6

2.0

10

3

Min.

10

20

30

40

50

IF - FORWARD CURRENT - mA

VF - FORWARD VOLTAGE - VOLTS

Figure 2. Typical Luminous Intensity Versus
Forward Current.

Figure 1. Typical Forward Current Versus
Voltage Characteristic.

Figure 3. Typical Relative Luminous Intensity
Versus Angular Displacement.

11

HEWLETT

PACKARD

COMPONENTS

5082-4850
5082-4855
5082-4484
5082-4494

COMMERCIAL
LIGHT EMITTING
DIODES

TECHNICAL DATA APRIL 1978
DIMENSIONS IN MILUMETERSANO HNCHES}

Features
• LOW COST: BROAD APPLICATION
• LONG LIFE: SOLID STATE RELIABILITY
• LOW POWER REQUIREMENTS: 20mA @ 1.6V
• HIGH LIGHT OUTPUT
0.8 mcd TYPICAL FOR 5082-4850/4484
1.4 mcd TYPICAL FOR 5082-4855/4494

12.70 (.50

• WIDE VIEWING ANGLE

13.97 1.5:L'N.

ill

• RED DIFFUSED LENS

Description
NOTE~ AN EPOXY MINISCUS MAY EXTEND ABOUT

lmm (.()40") DOWN THE LEADS.

5082-4850/4855

F

PLA~~;t·
~l:::
r- .
~~

The 5082-4850/4855 and 5082-4484/4494 are Gallium Arsenide
Phosphide Light Emitting Diodes intended for High Volume/Low
Cost applications such as indicators for appliances, automobile
instrument panels and many other commercial uses.
The 5082-4850/4855 are T-1% lamp size,have red diffused lenses
and can be panel mounted using mounting clip 5082-4707.

2.921.115)

13.431.,351

~

6.10(.240)

5DB+=~-1'·0X04o)
I

The 5082-4484/4494 are T-1 lamp size, have red diffused lenses
and are ideal where space is at a premium, such as high density
arrays.

NOM

14.22 (0.56)
MIN.

15.49 (0.61)
MIN.
I

Absolute Maximum Ratings at TA =25°C

I

_I
--=1

II

0.64 (.025)
0.38 (.015} -

Power Dissipation .............................. 100mW
DC Forward Current (Derate linearly from
50°C at 0.2mAtC) .. . . . . . . . . . . . . . .. . . . . . . .. ..
MAX.

... ~:~ ::~~g~
II
-

,~-!

CATHOD~t
VlN

- _/

50mA

3.05 (0.120)
-

0.64 f.026)

0.38 e015)

Peak Forward Current. . . . . . . . . . . . . . . . . . . . . . . . . .. 1Amp
(1 tlsec pulse width, 300pps)
Operating and Storage
Temperature Range ..................... -55°C to +1 OO°C
Lead Soldering Temperature. . . . . . . . . . . . ..

12

230°C for 7 sec.

Electrical Characteristics at TA =25°C
5082·4484

5082·4855

5082·4850
Symbol

Parameters
Min.

IV
APEAK

Typ. Max. Min.

Typ.

0.8

1.4

0.8

1.4

mcd

IF =20mA
Measurement
at Peak

Wavelength

655

655

655

655

nm

10

10

10

10

ns

100

100

100

pF

VF=O,
1 = lMHz

V

IF = 20mA

V

IR = 100jlA

·C/W

Junction to
Cathode Lead

C

Capacitance

100

Forward
Voltage
Reverse
Breakdown
Voltage

1.6

Thermal
Resistance

8 JC

Test Conditions

0.8

Speed 01
Response

eVR

Units
Typ. Max.

Luminous
Intensity

TS

VF

Mex. Min.

5082·4494

Typ. Max. Min.

3

1.6

2.0

10

3

100

1.6

2.0

3

10
100

0.8

2.0

1.6

10

3

2.0

10

100

100

50
40

TA = 25c C

30

'"

E

20

....z

w

a:
a:

10

::J

<.>

c

a:
;:
a:

'"

12

-~

1
1.40

1.60

1.70

V F - FORWARD VOLTAGE - VOLTS

Figure 2. Relative Luminous Intensity Versus
Angular Displacement For
5082·4850/4855.

Figure 1. Forward Current Versus Forward Vol·
tage Characteristic For 5082·48501
4855/4484/4494.
2.50
2.25

/

2.00

/

1.75

/

1.50

/

1.25

/

1.00
.75

/

.50
.25

/

/

./

o
o

10

20

30

40

50

IF - FORWARD CURRENT - rnA

Figure 4. Relative Luminous Intensity Versus
Forward Current For 5082·48501
4855/4484/4494.

Figure 3. Relative Luminous Intensity Versus
Angular Displacement For
5082-4484/4494.

13

HEWLETTj PACKARD
COMPONENTS

MATCHED ARRAYS OF 3- ELEMENT. HLMP - 6203
SUBMINIATURE RED 4-ELEMENT. HLMP- 6204
SOLID STATE LAMPS 5- ELEMENT. HLMP - 6205
TECHNICAL DATA APRIL 1978

Features
• EXCELLENT UNIFORMITY BETWEEN
ELEMENTS AND BETWEEN ARRAYS
• EASY INSERTION AND ALIGNMENT
• VERSATILE LENGTHS - 3,4,5 ELEMENTS
• END STACKABLE FOR LONGER ARRAYS
• COMPACT SUBMINIATURE PACKAGE STYLE
• NO CROSSTALK BETWEEN ELEMENTS

Description
The HLMP-62XX Series arrays are comprised of several
Gallium Arsenide Phosphide Red Solid State Lamps
molded as a single bar. Arrays are tested to assure
uniformity between elements and matching between
arrays. Each element has separately accessible leads and
a red diffused lens which provides a wide viewing angle
and a high on/off contrast ratio. Center-to-center spacing
is 2.54mm (.100 in.) between elements and arrays are end
stackable on 2.54mm (.100 in.) centers.

Absolute Maximum
Ratings/Element at TA = 25°C
Power Dissipation .•..••...................... 100mW
Average Forward Current (Derate linearly from
50· C at 0.2mA/· /C) .... .. . .. .. . . . . .. • .. .. ... 50 mA
Peak Forward Current (see Figure4) ......... 1000mA
Operating and Storage
Temperature Range ............... -55·Cto +100·C
Lead Soldering Temperature [1.6 mm
(0.063 in.) from body] ............... 230·Cfor3sec.

package Dimensions

Notes:
1. All dimenskmuJII!l in millimetres (inches).
2. Silver-plated leads. See Application Bulletin 3.
3. UW may bend leads as. shown.
4. ov.n length Is the number of ekJmen1;, times
2.64rnm (.loa in.t.

L--::rFr---T=r.-'I.--=T=r_J"-

~ (.065) DIA.
1.91 t.o75)

o

,z!~R
... (.035)

-11.91 (.015)
MAX.

Lcb

T

18

L!!W

.16(.0301
MAX.

Il
II

~(:009) III

Jr

II
II

c-1

1.91~ Iii
2.16 tOSS)

+tlL

I-- 2'~J:oL..j SEe NOTE 3

14

Electrical SpecificationS/Element at TA =25°C
Symbol

Description

Iv

Axial Luminous Intensity

281/2

Ineluded Angle Between Half
Luminous Intensity Points

Min.

Typ.

.5

1.0

mcd

IF = 10 mA; Note 1

2

45

Deg.

Note 2

5

Max.

Test Conditions

Units

ApEAK

Pea k Wave length

655

nm

Measurement

Ad

Dominant Wavelength

640

nm

Note 3

Ts

Speed of Response

1.5

ns

C

Capacitance

100

pF

eJC

Thermal Resistance

125

°C/W

VF

Forward Voltage

BVR

Reverse Breakdown Voltage

Tfv

Luminous Efficacy

2.0

Peak

VF =O;f= 1 MHz
Junction to Cathode Lead at
.79mm(.031 in)from the body

V

IF = 10 mA

10

V

IR = 100 IlA

55

Im/W

1.6
3

@

Figure

1

Note 4

Notes:
1. Arrays are categorized for luminous intensity with the intensity category designated by a color dot located on the cathode side of
the package.
2. e1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
3. Dominant wavelength. Ad. is derived from the CIE Chromaticity Diagram and is that single wavelength which defines the color of
the device.
4. Radiant intensity, Ie, in watts/steradian, may be found from the equation Ie = 'V/TjVI where Iv is the luminous intensity in candelas
and 'lv is the luminous efficacy in lumens/watt.

5.0

1.30

./
4.0

~

e-

<{

V

I

<'

<{

~

><'
UE

I

3.0

!

~

"
~

V
1.20

1.10

>~

-<{

3~

/

II

wO

«g:

V

1.0

..-

!;!!:i

*@

I

w!::!

2.0

f- i--

t5~

1.00

I

1/

~

/
10

30

40

50

IF - FORWARD CURRENT - rnA

VF - FORWARD VOLTAGE - VOLTS

Figure 1. Forward Current vs.
Forward Voltage.

tp - PULSE DURATION -

20

Figure 2. Relative Luminous Intensity
vs. DC Forward Current.

j.lS

20

40

60

80

100

IpEAK - PEAK CURRENT - rnA

Figure 3. Relative Efficiency
(Luminous Intensity per Unit
Current) VS. Peak Current.

--------..

Figure 4. Maximum Tolerable Peak Current
vs. Pulse Duration. (IDe MAX
as per MAX Ratings).

Figure 5. Relative Luminous Intensity vs. Angular Displacement.

15

SUBMINIATURE ·RESISTOR LAMPS
HEWLETT

HIGH EFFICIENCY RED

PACKARD

COMPONENTS

'----______• .. \ \

5 VOLT, 4mA e HLMP-6620
. __
5 _VO---,lT_,1_0m_A_e_H_LM_P_-6_60_0_ _ _
TECHNICAL DATA

Features
• IDEAL FOR TTL AND LSTTL GATE
STATUS INDICATION
• REQUIRES NO EXTERNAL RESISTORS WITH
5 VOLT SUPPLY
• SPACE SAVING SUBMINIATURE PACKAGE
• TWO CHOICES OF CURRENT LEVEL
• RUGGED INTEGRAL RESISTOR AND
REVERSE PROTECTION DIODE
• EXCELLENT VIEWING ANGLE

Description

Absolute Maximum Ratings

The HLMP-6600 and HLMP-6620 provide a Red
Gallium Arsenide Phosphide on Gallium Phosphide Light Emitting Diode together with an
integral biasing resistor and reverse protection
diode. The package has a red diffused lens and
radial leads. Tape-and-reel mounting is available
on request.

DC Forward Voltage
Reverse Voltage
Operating Temperature Range
Storage Temperature Range
Lead Soldering Temperature
[1.6mm (0.063 in.) from body]

package Dimensions

i
-Lc:::J

".4 1.45J MIN.-I
BOTH SIDES

~ww

.56 (.022)

l

~~--

T
~:~~ ::~;~l

DIA.

TOP VIEW
NOTES:
1. ALL DIMENSIONS ARE IN MllLiMETRES (INCHES).
2. SILVER·PLATED LEADS. see APPLICATION BULLETIN 3.
3. USER MAY BEND LEADS AS SHOWN.

SIDE VIEW

16

--J

APRIL 1978

HLMP-6600 HLMP-6820
6 Volts
6 Volts
15 Volts
15 Volts
-55°e to 70°C
-55°C to l00·e
230· e for 5 sec.

Electrical/Optical Characteristics at TA =25°C
HLMP-6600
Symbol

Parameter

HLMP-6620

Min.

Typ.

Max.

Min.

Typ.

Max.

Units

1.0

2.4

-

0.2

0.6

-

mcd

VF = 5 Volts
(See Figure 1)
Note 1
(See Figure 2)
Measurement at
Peak

Iv

Axial Luminous Intensity

212>1/2

Included Angle Between
Half Luminous Intensity
Points

90·

90·

APEAK

Peak Wavelength

635

635

nm

Ad

Dominant Wavelength

628

0j

Thermal Resistance

120

628
120

·C/W

IF

Forward Current

9.6

IR

Reverse Current

flv

Luminous Efficacy

13

3.5

5
.. 10

10
147

nm

147

Test Conditions

Note 2
Junction to
Cathode Lead at
0.79mm (0.031 in.>
From Body

mA

VF=5 Volts
(See Figure 3)

p.A

VR=15 Volts

Im/W

Note 3

NOTES:
1. (-)1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, Ad, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the
color of the device.
3. Radiant intensity, Ie, in waltsl steradian, may be found from the equation Ie = Iv/~v' where Iv is the luminous intensity in candelas and ~v
is the luminous efficacy in lumens/walt.

1.6

I

1.4

>

>--

~~
~g

1.2

-'"

1.0

~fa

0.8

3~

0.6

-

/
II

..

::J",

::EN

w:;

~~
~z
uj0:

/

0.4

I

'-1---

/

0.2

I

/

gO' 1--+--t--+---'-+3~r--,,:,::0::-'.:'.20:::'-=3'::0':-4:'::0:-'~50:::'-:6=0':-7:::0:::-'-=8'::0':-9:'::O:-':C
, 00 •

VF - FORWARD VOLTAGE - VOLTS

Figure 1. Relative Luminous Intensity vs.

Figure 2. Relative Luminous Intensity vs.
Angular Displacement.

Forward Voltage.
16

1.0

14

~
I

~
w

0:
0:

!

12
01--- f--

I

/

J

HLMP.o600/

::J

"C

ii!

Ii

I

w

./

V~ HLMr.fl6201

o

o

in

;!:

V

0:'

>
>-

15>-

~ VI

0.5

2
~
uj
0:

0

550

750

VF - FORWARD VOLTAGE - VOLTS

WAVELENGTH - nm

Figure 3. Forward Current vs. Forward
Voltage.

Figure 4. Relative Intensity vs. Wavelength.

17

SUBMINIATURE SOLID STATE LAMPS

S

HEWLETT

PACKARD

COMPONENTS

RED
HIGH EFFICIENCY RED
YEllOW
GREEN

•
•
•
•

5082-4100/4101
5082 -4160
5082-4150
5082-4190

TECHNICAL DATA APRIL 1978

Features
• SUBMINIATURE PACKAGE STYLE
• END STACKABLE ON 2.21mm
(0.087 In. ) CENTERS
• LOW PACKAGE PROFILE
• RADIAL LEADS
• WIDE VIEWING ANGLE
• LONG LIFE - SOLID STATE
RELIABILITY
• CHOICE OF 4 BRIGHT COLORS
Red
High Efficiency Red
Yellow
Green

Description
The 5082-4100/4101,4150,4160 and 4190 are solid state lamps encapsulated in a radial lead subminiature package of
molded epoxy. They utilize a tinted, diffused lens providing high on-off contrast and wide-angle viewing.
The -4100/4101 utilizes a GaAsP LED chip in a deep red molded package.
The -4160 has a high-efficiency red GaAsP on GaP LED chip in a light red molded package. This lamp's efficiency is
comparable to that of the GaP red but does not saturate at low current levels.
The -4150 provides a yellow GaAsP on GaP LED chip in a yellow molded package.
The -4190 provides a green GaP LED chip in a green molded package.

package Dimensions
~~

~

\l

.~~R

=

2.92(.115)

l'

Ii--rnr.oB7l-iI
1.96!mZ)

TOP VIEW

END VIEW

NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. SILVER-PLATED LEADS. SEE APPLICATION BULLETIN 3.
3. USER MAY BEND LEADS AS SHOWN.

SIDE VIEW

18

Absolute Maximum Ratings at TA=25°C
High Eft.

Power Dissipation

Yellow

Green

4160

4150

4190

Units

100

120

120

120

mW

50[1]

Average Forward Current

20[1]

1000
See Fig. 5

Peak Forward Current

Red

4100/4101

Red

Parameter

20 [1]

60
See Fig. 10

Operating and Storage
Temperature Range

30[2]

60
See Fig. 15

mA

60
See Fig. 20

mA

-55°C to 100°C

Lead Soldering Temperature
[1.6mm (0.063 in.) from body]

230°C for 3 seconds
1. Derate from 50° C at 0.2mA/o C
2. Derate from 50° C at DAmAtO C

Electrical/Optical Characteristics at TA=25°C
5082-4100/4101

Symbol

Descrlpllon

Iv

Axial Luminous
Intensity

29 1/1

Included Angle
Between Half
Luminous Intensity
Points

45

ApEAK

Peak Wavelength

Ad

Dominant Wavelength

Typ.

Min.

5082·4150

5082-4160

Te.t Conditions

0.8.1 1.5.l
At IF; 20m A

mcd

If-l0mA.
Figs. 3.8.13,18

90

70

deg.

Note 1. Figuras
6,11,16.21

635

583

565

nm

Measurement

628

585

572

nm

Note 2

ns

Typ.

1.0

2.0

80

655
640

-10.5 .7/1.0

5082-4190

Unite

Min.

Max.

Min.

Typ.

1.0

3.0

Max.

Max.

Min.

Typ.

Ma ••

at Peak
TS

Speed of Response

15

90

90

200

C

Capacitance

100

11

15

13

pi'

ale

Thermal Resistance

125

120

100

100

"CM

VF

Forward Voltage

1.6

2.2

2.0

2.2

3.0

2.4

3.0

3.0

V

1,;10m/l,
Figures 2, 7,
12, 17

V

IR;

At IF = 20m A
BVR
~v

Reverse Breakdown
Voltage

3.0

10

Luminous Efficacy

55

5.0

5.0
147

5.0
570

665

V,=O; f-l MHz
Junction to
Cathode Lead at
0.79mm (.031 in)
from Body

ImM

100~A

Note 3

NOTES:
1. 0 1/ 2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, Ad, is derived from the GIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, Ie, in watts/steradian, may be found from the equation le=lv/11v, where Iv is the luminous intensity in candelas and Tfv is the luminous
efficacy in lumens/watt.

1.0

,\'' ' ::7 \
~J ~'U- ~

GREEN",

0.5

0
500

/

I

RED

TA '" 25°C

GaAsP RED

YELLOW

I

550

650

600

WAVELENGTH - nm

Figure 1. Relative Intensity vs. Wavelength.

19

700

750

Red 5082-4100/4101
0

,

0

I I

/'

i

/i

-

!
0

,/
yl

o

1/1
o./i 1

1.70

Figure 2. Forward Current vs.
Forward Voltage.

TA

,

E

"

:- .
0

30

~

~

~

_.
I

100
IpEAK - PEAK CURRENT - rnA

Figure 4. Relative Efficiency
(Luminous Intensity per Unit
Current) vs. Peak Current.

1.5

~~

=>~

zw

~~
~~
w~
>~

j:~

I.'

~-

V

3.'

V f - FORWARD VOLTAGE-V

Figure 7. Forward Current vs.
Forward Voltage.

~~

1.2

u~

[t!;;:

V
10

>0

I.'
I.'

V

/

2.0

00

/
2.0

1.6

2~OC

~:=

)
1.0

c- TA ""

~~

I
II

10

.5

-

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

~

~

'.

20

~

II

PULSE DURATiON - 1'5

High Efficiency Red 5082 -4160
" ~25~C
3.'
I
~

1.1 0

---- f--

Figure 3. Relative Luminous Intensity
vs. Forward Current.

Figure 5. Maximum Tolerable Peak Current vs. Pulse Duration. (I DC MAX
as per MAX Ratings)

I

_- t-

IF - FORWARD CURRENT - rnA

VF - FORWARD VOLTAGE - VOLTS

tp -

..

VI
I
/

0

...-

1.20

~fil

>,;

i=

20

0;
2-

w"
!- E

10

!g'"
Q[:

2.5

~

"
E
I

>-

!-

ffi

""
'"
";:""
"

TA

e

1.30

~5'C

2.0

/v

~~

1.5 1-'

2N
~:::i

",,,,

"

....
w"

a:
~

1.0

>0
-2

!--

I

~

-~

.5

"
1
1.40

1.70

o

/

o

V F - FORWARD VOLTAGE - V

Figure 2. Forward Current versus

Forward Voltage.

/

-

./
;;

,-

1.20

~

/

>-

"fil

V

N

1.10

::;

"1'.""a

/

1.00

l
10

20

30

40

50

20

40

60

80

IF - FORWARD CURRENT - rnA

IpEAK - PEAK CURRENT - rnA

Figure 3. Relative Luminous Intensity
versus Forward Current.

Figure 4. Relative Efficiency
(Luminous Intensity

per Unit Current I
versus Peak Current.

tp - PULSE DURATION - ~s

Figure 5. Maximum Tolerable Peak Current versus Pulse
Duration. (I DC MAX as per MAX Ratings)

Figure 6. Relative Luminous Intensity versus
Angular Displacement.

24

100

HIGH EFFICIENCY RED 5082-4690 SERIES
Electrical Specifications at TA =25°C
Description

Symbol

Axial Luminous Intensity

Iv

Device
5082-

Min. Typ. Max.

4690
4693
4694
4695

5.0
4.0

1.5

3.5
7.0
8.0
11.0

8.0

50
50

4690
4693
4694
4695

Units

Test Conditions

mcd

IF; 10mA (Fig.B)

deg.

Note 1 (Fig. 11)

20y,

Included Angle Between
Half Luminous Intensity
Points

APEAK

Peak Wavelength

635

nm

Measurement @ Pea k (F ig. 1)

Ad

Dominant Wavelength

626

nm

Note 2

Ts

Speed of Response

90

ns

C

Capacitance

16

pF

OJC

Thermal Resistance

130

°CIW

VF

Forward Voltage

2.2

BVA

Reverse Breakdown Voltage

llv

Luminous Efficacy

45
45

3.0

V
V

5.0
147

ImIW

VF = 0; f = 1 MHz
Junction to Cathode Lead 1.6mm
(0.063 in.) from BodV
IF = 10mA (Fig. 7)
IA ; 100J.lA
Note 3

Notes: 1. OVa is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, i\d, is derived from the Cl E
chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity Ie, in watts/steradian may be found
from the equation Ie = lv/fly. where Iv is the luminous intensity in candelas and flv is the luminous efficacy in lumens/watt.
20
TA

'E"
I

I-

~25°C

I

15

0:
:::l

0

10

0:

'"

;:
0:

~
I

-~

1.0

1.5

1.6

2~C

1.5

/

!z~

;;jl:::l'"

2.0

00
zw
-N

,,:::l-'

-,'"

w"
>0:
-0
I-z

"'uj
0:

2.0

"

~<
wE

)
.5

3.0 I - TA

I-

I
/

ill0:
0

,.

2.5

3.0

1.0

V
/'

V F - FORWARD VOLTAGE - V

~
10

15

Figure 8. Relative Luminous Intensity
versus Forward Current.

Forward Voltage.

1.4

0",

~C§

1.3

0-

~~

1.2

Wo
WW

1.1

~~
wo:

1.0

~

.8

>N

.9

0:0

.7

IF - FORWARD CURRENT - rnA

Figure 7. Forward Current versus

U
,.0

20

_-.L_ t----

r-~

.......

--

f----- - - - ~~

/

-f

--

/

._"

~

--

~-

--- c------- --

- - "_._.-

~

--- -

J

~-

10

20

30

40

50

IpEAK - PEAK CURRENT - rnA

Figure 9. Relative Efficiency
(Luminous Intensity
per Unit Current)
versus Peak Current.

II

111111111 I

\

\

,

1\

11111I II

\

',".0-'-.I.J..lJ.WI'0::-'-LI..LLU'''0'''0-'-'WJ''''OLOO-'-..l.U'"'0"''-.OOO
'
tp - PULSE DURATION - J,lS

Figure 10. Maximum Tolerable Peak Current versus Pulse
Duration. (lDC MAX as per MAX Ratings)

Figure 11. Relative Luminous Intensity versus
Angular Displacement.

25

60

YELLOW 5082-4590 SERIES
Electrical Specifications at TA=25°C
Description

Symbol

Device
5082·

Min. Typ. Max.

Units

Test Conditions

1.5 3.5
4.5 6.0
4.0 6.5
8.0 11.0

moo

'F = 10mA (Fig. 131 .

50
50
45
45

deg.

Note 1 (Fig. 16)

Iv

Axial Luminous Intensity

4590
4592
4595
4597

29%

Included Angle Between
Half Luminous Intensity'
Points

4590
4592
4595
4597

APEAK

Peak Wavelength

583

nm

Measurement @ Peak (Fig. 11

i\!

Dominant Wavelength

585

nm

Note 2

'1"$

Speed of Response

90

ns

C

Capacitance

18

pF

OJC

Thermal Resistance

100

°elW

VF

Forward Voltage

eVR

Reverse Breakdown Voltage

l1v

Luminous Efficacy

2.2

3.0

5.0

=0; f =1 MHz

V

IF= lOrnA {Fig. 121

V

IR =lOOt1A
Note 3

·'mlW

570

VF

. Junction to Cathode Lead 1.6mm
(0.063 in.) from Body

Notes: 1.11% is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, ~. is derived from the CIE
chromaticity diagram and represents the single wavelength which defines the color of the device.' 3. Radiant Intensity Ie. in watts/steradian may be found
from the equation Ie = Iv/Ttv. where Iv is the luminous intensity in candelas and 11v is the luminous efficacy in lumens/watt.
20
TA

1

..
I

~25'C

"
0

'~"
'"f2
I
-~

.

15

I

10

I
:
i

I I

.5

1.0

;;;

- 1/'
--1-1;1 I

1.5

2.0

""
,,,,-'

/

1.5

00
ZW
-N

.J.

VF - FORWARD VOLTAGE

.

2.0

!2~

1/

i

l

TA • 25 C

>

'"z"
we

~

a:
a:
u

2.5

I

2.5

-,"
w"

1.0

/

>'"
0

!;;(~

oj

a:

3.0

-v

Figure 12. Forward Current versus
Forward Voltage.

.5

/

1.6

/
/

1.5

U

>0

u"
Ze
!!!"
u~~

.V

Wo
WW

,;

1.3

,/

1.2

>N

1.1

-'::E
""

1.0

t=:;

".-'"

1.4

I
/

wa:

"'0
~

.9
,8

10

15

20

IF - FORWARD CURRENT - rnA

Figure 13. Relative .Luminous Intensity
versus Forward Current.

/

I
10

20

30

40

Figure 16. Relative Luminous Intensitv versus
Angular Displacement

26

60

Figure 14. Relative Efficiency
(Luminous Intensity
per Unit Current)
versus Peek Current.

tp - PULSE DURATION -p.s

Figure 15. Maximum Tolerable Peak Current versus Pulse
Duration. (lDC MAX as per MAX Ratings).

50

IpEAK - PEAK CURRENT - rnA

GREEN 5082 -4990 SERI ES
Electrical Specifications at TA=25°C
Description

Symbol

Device
5082·

Min. Typ. Max.

Units

Test Conditions

2.0
6.0
3.5
8.0

4.5
7.5
6.5
11.0

mcd

IF

50
50
40
40

deg.

Note 1 (Fig.21)

Iv

Axial Luminous Intensity

4990
4992
4995
4997

20%

Included Angle Between
Half Luminous Intensity
Points

4990
4992
4995
4997

ApEAK

Peak Wavelength

565

nm

Measurement @ Peak (Fig. 1)

Ad

Dominant Wavelength

570

nm

Note 2

Ts

Speed of Response

200

ns

C

capacitance

12

pF

/lJC

Thermal Resistance

90

°C/W

VF

Forward Voltage

BVR

Reverse Breakdown Voltage

l1v

Luminous Efficacy

2.4

3.0

5.0

= 0; f = '1

MHz

Junction to Cathode Lead 1.6mm
(0.063 in.) from Body

V

IF

V

IR

ImlW

665

VF

= 20mA (Fig.18)

= 20mA (Fig. 17)
= 100pA

Note 3

Notes: 1.6% is the off-axis angle at which the luminous intensity is half the axial luminous intensity. 2. Dominant wavelength, Ad. is derived from the CI E
chromaticity diagram and represents the single wavelength which defines the color of the device. 3. Radiant Intensity Ie. in watts/steradian may be found
from the equation Ie = Iv/flv. where Iv is the luminous intensity in candelas and l1v is the luminous efficacy in lumens/watt.
20
TA

"

...>

E
I

I-

ill_
z"
wE

15--

"'0
ZN

Z
W
I%:
I%:

U

0

r-, '/
!

2_D

1.5

~~

::J

! 25"C

I

oe
zw

10

-N

lE-

I%:

1.0

-,"
w lE

~
I%:

::J-'

12

5;;

>1%:
_0

I
-~

.5

W
I%:

00

Figure 17. Forward Current versus
Forward Voltage.

3

I

2

I'
1
1.0

10

>0

1.3

~d
UN

1.2

u"

ff~

WW

~~

1%:0

.9

WI%:

;;

.8
20

/

1.1
1.0

25

30

/
I

I

10

I
20

30

40

50

IF - FORWARD CURRENT - mA

IpEAK - PEAK CURRENT - rnA

Figure 18. Relative Luminous Intensity

Figure 19. Relative Efficiency
(Luminous Intensity
per Unit Currentl
versus Peak Current.

,,

100

3OOH,

1000

.,.

/

>N

versus Forward Current.

3KHz
130 K~il
I
10KH,
1 KH,

100 KHz

15

,'"
_/

1.4

U

we

y
/1
......,/'
10

FORWARD VOLTAGE - V

!/v

LI

3.0

v, -

1

1.5

III

l00H,

90'1--+--+--+--~

10,000

tp - PULSE DURATION - J.l$

Figure 21. Relative Luminous Intensity versus
Angular Displacement.

Figure 20. Maximum Tolerable Peak Current versus Pulse
Duration. (lDC MAX -as per MAX ratingsl.

27

100'

60

HEWLETT

j

SOLID STATE LAMPS
PACKARD

HIGH EFFICIENCY RED· 5082·4650 Series
YELLOW· 5082 -4550 Series
GREEN • 5082-4950 Series

COMPONENTS

TECHNICAL DATA

APRIL 1978

Features
• HIGH INTENSITY
• CHOICE OF 3 BRIGHT COLORS
High Efficiency Red
Yellow
Green
• POPULAR T-H4 DIAMETER PACKAGE
• LIGHT OUTPUT CATEGORIES
• WIDE VIEWING ANGLE AND NARROW
VIEWING. ANGLE TYPES
• GENERAL PURPOSE LEADS
• IC COMPATIBLE/LOW CURRENT
REQUIREMENTS
• RELIABLE AND RUGGED

Description
The 5082-4650 and the 5082-4550 Series lamps are
Gallium Arsenide Phosphide on Gallium Phosphide
diodes emitting red and yellow light respectively. The
5082-4950 Series lamps are green light emitting Gallium
Phosphide diodes.

Part
Number
5082-

General purpose and selected brightness versions of both
the diffused and non-diffused lens type are available in
each family.

4650

Package Dimensions

4655

f

4657

9.41 (.373)

4658

r-----~ 5.oa (.200)
I~ 4.32WOi
PLASTIC

7.91if.3i3)

11
11.05)
MIN.

11.00)
MIN.

---{l

4550
4555

0.891.035)

0:64 ro26i

4557

l!S~

0.361.014)

4558
4950
4955

CATHODE

NOTeS;

-I

4957
2.54(.10)
NOM.

1.

ALL DIMENSIONS ARE !N MllllMETRES {INCHES}.

2.

SILVER il'lATEO LEADS. SEE! APPLICATION BULLfTIN.3.

3.

AN EPOXY MINISCUSMAYEXTENO ABOUT 1mm
(,040") DOWN THE LEADS.

4958

28

Application
Indicator General Purpose
Indicator High Ambient
Illuminator/Point
Source
Illuminator/High
Brightness
Indicator
General Purpose
Indicator High Ambient
illuminator/Point
Source
Illuminator/High
Brightness
Indicator General Purpose
Indicator High Ambient

Lens

Color

Diffused
Wide Angle
Non Diffused

High
Efficiency
Red

Narrow Angle
Diffused
Wide Angle
Non-Diffused

Yellow

Narrow Angle
Diffused
Wide Angle

Illuminator/Point Non-Diffused
Source
Illuminator/High Narrow Angle
Brightness

Green

Electrical Characteristics at TA =25°C
Symbol

Description
Luminous Intensity

IV

20y,

Included Angle
Between Half
Luminous Intensity
Points

Device
50824650
4655
4657
4658

Min.
1.0
3.0
9.0
15.0

Typ.
2.0
4.0
12.0
24.0

4550
4555
4557
4558

1.0
2.2
6.0
12.0

1.8
3.0
9.0
16.0

4950
4955
4957
4958

1.0
2.2
6.0
12.0

1.8
3.0
9.0
16.0

4650
4655
4657
4658

90
90
35
35

4550
4555
4557
4558

90
90
35
35

4950
4955
4957
4958

90
90
30
30

Max.

Units

Test Conditons

mcd.

IF = lOrnA
(Fig. 3)

mcd.

IF = 10mA
(Fig. 8)

mcd.

IF = 20mA
(Fig. 13)

D8g.

IF = lOrnA
See Note 1 (Fig. 6)

De9.

IF = lOrnA
See Note 1 (Fig. 11)

De9.

IF = 20mA
See Note 1 (F ig. 16)

ApEAK

Peak Wavelength

4650s
4550s
49505

635
583
565

nm

Measurement at Peak
(Fig. 1)

Ad

Dominant Wavelength

46505
4550s
4950s

626
585
572

nm

See Note 2 (Fig.1)

78

Speed of Response

4650s
4550s
4950s

90
90
200

ns

C

Capacitance

46505
4550s
49505

16
18
18

pF

ElJC

Thermal Resistance

46505
45505
49505

135
135
145

°CIW

Junction to Cathode
Lead at Seating Plane

VF

Forward Voltage

4650s
45505
4950s

2.2
2.2
2.4

V

IF = lOrnA (Fig. 2,
IF = lOrnA Fig. 7,
IF = 20mA Fig. 12)

BVR

Reverse Breakdown Volt.

All

1)v

Luminous Efficacy

4650$
4550s
49505

NOTES:
1. E>% is the

off~axis

3.0
3.0
3.0

5.0

V
147
570
665

lumens/watt

VF = 0, f = 1 MHz

IR = 100MA
See Note 3

angle at which the luminous intensity is half the axial luminous intensity.

2. The dominant wavelength, Ad, is derived from the CI E chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, Ie. in watts/steradian, may be found from the equation le::::1v/T1v. where Iv is the luminous intensity in candelas and l1vis the luminous

efficacy in lumens/watt.

29

Absolute Maximum Ratings
HIgh EffIciency Red
4650 Series

Parameter

Power Dissipation

Yellow
4550 Ser/es

120
20111

120
201t}

Average Forward Current
Peak Operating Forward Current

Green
4950 Series

60
(Fig.5)

UnIts

120
30121

mW
mA
mA

60
60
(Fig. 15)
(Fig. 10)
-55°C to +100°C

Operating and Storage Temperature Range
lead Solder Temperature (1.6mm[0.063
inch] below package base)

260°C for 5 seconds

1. Derate from 50° C at 0.2mAlo C
2. Derate from 50°C at 0.4mA/oC

1.0

GREEN

.~

HIGH EFFICIENCY

zw

RED

l-

i!;

w

;::

0.5

5w
II:

0
500

650

750

WAVELENGTH - nm

Figure 1. Relative Intensity vo. Wavelength.

High Efficiency Red 5082-4650 Series
20

'A

~2S"C

I

5

j

0

2.5

VF - fORWARD VOLTAGE

-v

.5

1.0

1.5

2.0

0

1.5

3.0

Figure 2. Forward Current vs.
Forward Voltage

0

g

/

V
../"

...- -

1. 6

Jc

.0

II
A

5

0

01-'••

V

1.4

~

1

!;;:

1 .2

3

~

1. 1

:::;

1.0

~

9

~

L.

8

/

I

I

--t--

7
10

15

2D

IF - FORWARD CURRENT - mA

Figure 3. Relative Luminous Intensity
vs. Forward Current.

6
'010203040

80'

"';;.0..LLllill'!;;0...LJWJl'~OO;;-'-""':I~OOO;;;'-~'0~.OOO
tp - PULSE DURATION -

90'1--t--t---t--:B

~

Figure 5. Maximum Tolerable Peak Cur·
rent vs. Pulse Duration. (I DC MAX
as per MAX Ratings.)

Figure 6. Relative Luminous Intensity vo. Angular Displacement.

30

60

Figure 4. Relative Efficiency
(Luminous Intensity per Unit
Current) vs. Peak Current.

t--

~Ii
j]

50

IpEAK -PEAKCURRENT-mA

Yellow 5082-4550 Series
20
TA

'"

E
I

I
~

2.5

~ 25 C

I

v

I

15

TA '" 2Jc
2.0

--

I

,
10

1.5

II '

'~"

Ir

_.
I

.5

)
00

,5

1.0

1.5

2.0

2.5

VF - FORWARD VOLTAGE

V

1.0

3.0

/

V

1.6

/

1.4

1.3
1.2
1.1

1.0

1/1

/1

-v

.S

.8

10

--.
----- -7 ~.~.

i

.7 0

20

15

--

1.5

IF - FORWARD CURRENT - rnA

Figure 7. Forward Current vs.
Forward Voltage.

~' ---~-

~-

V

•

--

I
:

10

20

30

40

50

60

IpEAK - PEAK CURRENT - rnA

Figure 8. Relative Luminous Intensity
vs. Forward Current.

Figure 9. Relative Efficiency
(Luminous Intensity per Unit

Current) vs. Peak Current.

tp - PULSE DURATJON -;tS

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

Figure 10. Maximum Tolerable Peak Current vs. Pulse Duration. (loc MAX
as per MAX Ratings)

Green 5082-4950 Series
20
TA

'"E
I

~

1le

15

5

~ 25"C

I
I

~--

10

TA

'~"

_.
I

~

~
:J

'~"

~

1.0

1.5

2.5

3.0

VF -FOAWARDVOLTAGE-V

Figure 12. Forward Current vs.
Forward Voltage.

tp -

u

1.0

.5

00

V

10

Y
15

>c

1.3

~2
UN

1.2

'-'",

/

1.5

,,/
2.0

,..

1.4

2.0

~

)
.5

25'C

N
~~

~~

a:~

20

25

30

IF - FORWARD CURRENT - rnA

Figure 13. Relative Luminous Intensity
vs. Forward Current.

./
,/

1. 1
1.0

.,
.7 0

j

--

/

V
11

10

20

30

40

60

Figure 14. Relative Efficiency
(luminous Intensity per Unit
Current) vs. Peak Current.

Figure 16. Relative luminous Intensity vs. Angular Displacement.

31

50

IpEAK - PEAK CURRENT - rnA

PULSE DURATION-I-I$

Figure 15. Maximum Tolerable Peak Current vs. Pulse Duration. (lOC MAX
as per MAX Ratings)

.'"

RECTANGULAR SOLID STATE LAMPS
HEWLETT

PACKARD

HIGH EFFICIENCY RED HlMP-0300/0301 (5082-4670)
YELLOW HlMP-0400/0401 (5082-4570)
GREEN HlMP-0500/0501 (5082-4970)

COMPONENTS

TECHNICAL DATA

APRIL 1978

Features
• RECTANGULAR LIGHT EMITTING SURFACE
o FLAT HIGH STERANCE EMITTING SURFACE

• STACKABLE ON 2.54 MM (0.100 INCH)
CENTERS
• IDEAL AS FLUSH MOUNTED PANEL
INDICATORS
o IDEAL FOR BACKLIGHTING LEGENDS

• LONG LIFE: SOLID STATE.RELIABILITY
o CHOICE OF 3 BRIGHT COLORS

HIGH EFFICIENCY RED
YELLOW
GREEN
• IC COMPATIBLE/LOW CURRENT
REQUIREMENTS

Description
The HLMP-03XX, -04XX, -05XX are solid state lamps encapsulated in an axial lead rectangular epoxy package. They utilize
a tinted, diffused epoxy to provide high on-off contrast and a flat high intensity emitting surface. Borderless package
design allows creation of uninterrupted light emitting areas.
The HLMP-0300 and -0301 have a high"efficiency red GaAsP on GaP LED chip in a light red epoxy package. This lamp's
efficiency is comparable to that of the Gap red, but extends to higher current levels.
The HLMP-0400 and -0401 provide a yellow GaAsP on GaP LED chip in a yellow epoxy package.
The HLMP-0500 and -0501 provide a green GaP LED chip in a green epoxy package.

package Dimensions

l 1-;;:

::~:;

1-~~~1-26'67 (1.05) M I N . -

I

n-~---r=l-~~~:-I
~

LIGHT EMITTING SURFACE

/

I

PLASTIC

TOP VIEW

AXIAL LUMIKOUS INTEKSITY

HER

!

'

CATHODE

SIDE VIEW

TYP.

.8

1.0 mcd

IF - 25mA

HLMP·0301

1.5

2.5 mcd

IF'" 25mA

(5082·4670)

YEllOW

I

-25.40 (I.()I)) MIN.'-

MIN.

HLMP-0300

.8

1.5 mcd

IF'" 15mA

HLMP-0400

1.0

1.2mcd

IF - 25mA

HLMP·0401

2.0

2.5 mcd

IF

1.0

1.5 med

IF'" 15mA

HLMP-0500

1.0

1.2 med

IF'" 25mA

HLMP·0501

1.5

2.5med

IF'" 25mA

1.0

1.5 med

IF '" 20mA

(5082·4570)
GREEN

TEST CONDITIONS

{50B2-4970J

25mA

NOTE: Luminous $ttlral'lce. Lv, in foot lamberH, may be found from the equation
~--+D
NOTES,
1. ALL DIMENSIONS ARE IN
MILLIMETRES (INCHES).
:§1 (.025)
2. SILVER·PLATED LEADS.
.361.014)
SEE APPLICATION
BULLETIN 3,
3.
AN EPOXV MINISCUS MAY EXTEND
ABOUT lmm (,040") DOWN THE
LEADS.

1*

o

Lv ; 16."1 Iv. where Iv is the- luminous

2.54 (.l()1)1 NOMINAL

BOTTOM VIEW

32

in~(!mity

in

mllt1£;<.md"la~

Absolute Maximum Ratings at TA =25°C
Hlgh·Efflclency Red
HLMP·0300/0301

Yellow
HLMp·0400/0401

Green
HLMp·0500/0501

Units

Power Dissipation

120

120

120

mW

Average Forward Current

30 (11

30[1]

30]1]

mA

Parameter

60
See Figure 5

Peak Forward Current

60
See Figure 10

Operating and Storage
Temperature Range

60
See Figure 15

mA

-55°C to 100°C

Lead Soldering Temperature
[1.6mm (O.063 in.) from body]

260° C for 5 seconds

1. Derate from 50° C at OAmA/o C.

Electrical/Optical Characteristics at TA =25°C
HLMP·0300/0301 HLMp·0400/0401 HLMP-0500/0501
Units
Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.

Test Conditions

Symbol

Description

20 1/2

Included Angle
Between Half
Luminous Intensity
Points, Both Axes

100

100

100

deg.

Note 1. Figul"es
6,11,16

)\PEAK

Peak Wavelength

635

583

565

nm

Measurement at
Peak

Ad

Dominant Wavelength

626

585

571

nm

Note 2

TS

Speed of Response

90

90

200

ns

C

Capacitance

17

17

17

pF

0JC

Thermal Resistance

130

130

130

°C/W

VF

Forward Voltage

2.5

BVR

Reverse Breakdown
Voltage

1/,

Luminous Efficacy

5.0

2.5

3.0
5.0

147

2.5

3.0

3.0

5.0
570

665

VF=O; f=l MHz
Junction to Cathode
Lead at 1.6 mm
(0.063 in.) from
Body

V

IF= 25mA
Figures 2,7,12

V

IR = 100 flA

Im/W

Note 3

NOTES:

1. ElJ/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
The dominant wavelength, Ad, is derived from the elE chromaticity diagram and represents the single wavelength which defines the
2. color of the device.
.
3. Radiant intensity, I" in watts/steradian, may be found from the equation 1,=lv/'Iv, where Iv is the luminous intensity in candelas and
'Iv is the luminous efficacy in lumens/watt.

33

1.0

GREEN

>
t-

HIGH EFFICIENCY
RED

in

iEt-

O;
w

0.5

>
i=

~

'"
0
500

750

650
WAVELENGTH - nm

Figure 1. Relative Intensity vs. Wavelength.

HIGH EFFICIENCY RED HLMP-030010301 {S082-11670>
3.0

>
I-

in-

2Il:

I'
151--+-+-+-++~t-t-+-lfI/-+i-+-l
I
10

H--l--+--+1--+--+-+-+,+f--+---

Z"
wE
I-~
Z_
;;;1-

2.0

00
Zw
-N

1.5

=>"

,,=>-'
-,"
w"
>'"

1.0

1.5

2.0

2.5

3.0

Figure 2. Forward Current vs. Forward
Voltage.

t+l

-

H-+

/

!--L.L
I

00

1.5

V

I
....r--T

V

V

/ ~f--

,

10

15

I

1.0

JV

0:1-

~~

I

>N

i=~

""
-'"
"'0

.5

w",

r

20

25

IF - FORWARD CURRENT - rnA

Figure 3. Relative Luminous Intensity vs.
Forward Current.

u"
~E
-~
u_

~

!--!--

I

I

"........-

U
>0

~"

,

/

-- -TA '" lS"C

--I~

/

I

1.0

0.5

-+-

I

-0

~~

V F - FORWARD VOLTAGE - V

2.5

r-i..I,.,h

o
o

10

20

30

40

Figure 6. Relative Luminous Intensity vs. Angular Displacement.

34

60

Figure 4. Relative Efficiency (Luminous
Intensity per Unit Current) vs. Peak Current.

Ip - PULSE DURATION -ps

Figure 5. Maximum Tolerable Peak Current vs.
Pulse Duration. (IDe MAX as per MAX Ratings.)

50

IpEAK - PEAK CURRENT - mA

YELLOW HLMP-0400/0401 (5082-4570)
I ~ "25'~
1--1+ --j-- Ift- > -+..'".~- 30

"
E
I

>-

i!i0:

3.0

25

_L

il
0

0:

II

i

r==

15

1

1/

I
-~

00

I

1
I 1
0.5

1.0

/
1.5

~0:
-0

~~

2.5

2.0

1.5

~

t7

. . . . r-

"T r-f-

~r

I

I

-_..

f

17

0.5

I-p

o
o

3.0

1. 5

Y

rt-

'2
I

,/.~

-+-1-

,-t+

:--,

-J-

--

G
a

"~E

/'"

1.0

>-

15

20

25

Figure 7. Forward Current vs. Forward
Voltage.

-

N

::;

"~

5

~
0

10

-~

V

/

"a

10

30

IF - FORWARD CURRENT - rnA

VF - FORWARD VOLT AGE - V

- --

TA - 25'C

I

-

+~+.-L f-.-!

1.0

0:

. I

2.0

2.5

~>-

I

1---;--

Ii

10

~-

I

I

20

0:

"'"
f2

__L

I

I

0:

>-

20

30

40

50

60

IpEAK - PEAK CURRENT - rnA

Figure 8. Relative luminous Intensity vs.
Forward Current.

Figure 9. Relative Efficiency (Luminous
I ntensity per Unit Current) vs. Peak Current.

3.0 r-rTmnr-TTTmTIrTTTITmr-nTTTmi

lL-LLUWL-~llli~~~llL~Ull~

1

10

lOa

1000

Ip - PULSE DURATION

10,000

-;.lS

Figure 10. Maximum Tolerable Peak Current vs.
Pulse Duration. (IDe MAX as per MAX Ratings.)

Figure 11. Relative luminous Intensity vs. Angular Displacement.

GREEN HLMP-0500/0501 (5082-4970)
1.5

30
TA ; 25'C

"
E

>
>-0
2N

I

>-

~

20

3~

0:

"g
U

15

"~

10

1.4
2.0

U

1.5
I

00

,,:=~
,,~

~"
W"

1.0

>0:

_0

f2

>-2

g-

I
-~

.5

00
V F - FORWARD VOLTAGE -

v

J ./

,r

VV

/

u"

1.3

UN

~8

1.2

H:~

We
WW

1.1

~~

1.0

0:0

.9

r ~
T
A

wo:

/
/

~

.S

15

20

25

30

Figure 13. Relative Luminous Intensity vs.
Forward Current.

.7

,.- .""
/'

/
10

2S'C

>!::!

/

IF - FORWARD CURRENT - rnA

Figure 12. Forward Current vs. Forward
Voltage.

>0

o

V
10

20

30

40

50

Figure 14. Relative Efficiency (Luminous
Intensity per Unit Current) vs. Peak Current.

',L.....LLllllJ'''0--'-.lll.ll,lLOO::-'-.JlLLL,lL100::0-WlLLL,o,000
JJJ

Ip - PULSE DURATION -tls

Figure 15. Maximum Tolerable Peak Current vs.
Pulse Duration. (IDe MAX as per MAX Ratings.)

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

35

60

IpEAK - PEAK CURRENT - mA

SOLID STATE LAMPS
HEWLETT'

PACKARD

HIGH EFFICIENCY RED· HlMP-1300.-130115082-4684}.-1302
YELLOW· HlMP-1400.-1401(5082-4584).-1402
GREEN • HlMP-1500.-1501(5082-4984).-1502

COMPONENTS

TECHNICAL DATA APRIL 1978

Features

I

• HIGH INTENSITY
• WIDE VIEWING ANGLE
• SMALL SIZE T-1 DIAMETER
3.1Smm (0.125 inch)
• IC COMPATIBLE
• RELIABLE AND RUGGED
• CHOICE OF 3 BRIGHT COLORS
HIGH EFFICIENCY RED
YELLOW
GREEN

Description
The HLMP-1300, -1301, and -1302 have a Gallium
Arsenide Phosphide on Gallium Phosphide High Efficiency Red Light Emitting Diode packaged in a T-1 outline
with a red diffused lens, which provides excellent on-off
contrast ratio, high axial luminous intensity and a wide
viewing angle.

package Dimensions
'---- 3.18 (.125)
,..- 2.671.105)

PLA~_
-...;;.

The HLMP-1400, -1401, and -1402 have a Gallium
Arsenide Phosphide on Gallium Phosphide Yellow Light
Emitting Diode packaged in a T-1 outline with a yellow
diffused lens, which provides good on-off contrast ratio,
high axial luminous intensity and a wide viewing angle.

~3.43(.1351
~ 2.92 r.1i5l

1

The HLMP-1500, -1501, and -1502 have a Gallium
Phosphide Green Light Emitting Diode packaged in a T-1
outline with a green diffused lens, which provides good
on-off contrast ratio. high axial luminous intensity, and a
wide viewing angle.

f

1.021.0401
NOM.

26.6711.051

Iv - Axial Luminous Intensity at 25°C
(Figures 3,S,15)
IV (mcd)

1 Min.

l1)'p./Test Conditions

High Efficiency Red
HLMP-1300
HLMP-1301 (-4684)
HLMP-1302
Yellow
HLMP-1400
HLMP-1401 (-4584)
HLMP-1402
Green
HLMP-1500
HLMP-1501 (-4984)
HLMP-1502

I
----.-i
t

0'64~1'0251
[3jj
(.0151
-

,-

CATHO:E

... _/

0.51 (.020)
NOTES:
0.41
1. ALL DIMENSIONS ARE IN MILllMETRES (INCHES).
2. SILVER PLATED LEADS. SEE APPLICATIONS
BULLETIN 3.
3. AN EPOXY MINISCUS MAY EXTEND ABOUT lmm
(.040") DOWN THE LEADS.
IN

I.Oi6i

36

\ 0.5 \1.5\
1.0
2.0 IF=10 mA
2.0
2.5
15
1 0.5
. 1IF=10 mA
1.0 1 2.5
4.0
2.5
12
1 0.5/
. 1IF=20 mA
0.8
2.0
2.0
3.0

Absolute Maximum Ratings at TA = 25°C
High Efficiency Red
Yellow
Green
HLMP-1300, 1301, 1302 HLMP-1400,1401,1402 HLMP-1500,1501,1502 Unit'

Parameter
Power Dissipation (Derate

120

120

120

mW

Average Forward Current

20[1]

20 111

30[21

mA

Peak Forward Current

60
See Figure 5

60
See Figure 10

Operating and Storage
Temperature Range

60
See Figure 15

mA

-55°C to 100°C

Lead Soldering Temperature
[1.6mm (0.063 in.) from Body]

230°C for 7 Seconds
1. Derate from 50° C at 0.2mAlo C
2. Derate from 50° C at O.4mA/o C

Electrical/Optical Characteristics at TA = 25°C
Symbol
201/2

Description

HLMP-1300, -1301,
-1302

HLMP-1400, -1401,
-1402

HLMP-1500,-1501,
-1502

Min.

Min.

Min.

Included Angle
Between Half
Luminous Intensity
Points

Typ.

Max.

Typ.

Max.

Typ.

Max.

Units

Test Conditions
Note 1 (Figs. 6.
11. 161

70

60

60

Deg.

Apeak

Peak Wavelength

635

583

565

nm

Measurement
at Peak

Ad

Dominant
Wavelength

628

585

572

nm

Note 2

TS

Speed of Response

90

90

200

ns

C

Capacitance

20

15

8

pF

VF=O; 1=1 MHz

0JC

Thermal Resistance

95

95

95

°CIW

Junction to
Cathode Lead
at 0.79mm
(0.031 in.1
From Body

VF

Forward Voltage

2.2

BVR

Reverse Breakdown
Voltage

'1v

Luminous Efficacy

2.2

3.0

5.0

3.0

3.0
2.4
at IF = 20mA

5.0

5.0

147

570

IF=10mA
(Figs. 2,7,121

V

IR=100j.LA

V
665

lm/W

Note 3

is the off-axis angle at which the luminous intensity is half the axial luminous intenSity.
2. The dominant wavelength, Ad, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the
color of the device.
3. Radiant intensity, Ie, in watts/steradian, may be found from the equation le=lv/1)v' where Iv is the luminous intenSity in candelas and '1v
is the luminous efficacy in lumens/watt.

1. 01/2

1.0

GREEN"

0.5

0
500

(

\"""'~'
IRED " ' "

YEllOW

1

\---

550

\

~.-~

TA '" 2S"C

r\

~~

600

650

WAVELENGTH - nm

Figure 1. Relative Intensity vs. Wavelength.

37

I

700

750

High Efficiency Red HLMP-1300, -1301 (5082-4684) ,-1302
20

I

T. !2II"C

C

E
I

~

!iu
e

15

o ~T•

I

10

i

/

0

/

I

-"

)
°0

.•

1.0

'.I

ZOO

I."
1.S

..l·t

0

/

'"

•

2.15

0

3.0

v

V, - 'ORWARD VOLTAGE -

/

14

~1

1.3

~~

1

:::S

V

~~

S ..

2

/

1. I

V

10

w",

9

"'e
;;

s

I

7
IS

10

"

20

If - FORWARD CURRENT - mA

Figure 2. Forward Current VI.
Forward Voltage.

-

_.,!••••·b
",-

U

>e

'PEAK - PEAK CURRENT - mA

Figure 3. Relative Luminous Intensltv
vs. Forward Current.

Figure 4. RelatIVe Efficiency
(Luminous Intensity per Unit
Current) vs. Peak Current.

90'f--+--+--+--E!~
tp - PULSE DURATION

-I'.

Figure 5. Maximum Tolerable Peak Current VI. Pula! Duration. (I DCMAX
as per MAX Ratings).

Figure 6. Relative Lumlnouslntensitv vs. Angular Displacement.

Yellow HLMP-1400, -1401 (5082-4584), -1402
20

TA

1I
.

~

16

~

10

I
Ii?

I
.!<

~ 25'C

I

~

~1
zl!

I

.5

1.0

1.5

J

2.0

V F - FORWARD VOLTAGE -

T••

,J'e

'.0

/

~~ 1.S

!i!iil
:it::!
~~

/

S

0

'.S

w"

1.0

~-

.S

~c

>'"
;:E1

2.5

3.0

v

Figure 7. Forward Current vs.
Forward Voltage.

00

/
./'

/

1.6

/

.....

1.S

...

>H I.'

!ilC 1.3
~S
u-

tE~
we
ww

V

>t!

3~

~i

/'

1.2
1.1
1.0

"'--,-"

L

., j
I
.S

10

15

20

IF - FORWARD CURRENT - rnA

Figure 8. Relative Luminous Intensitv
vs. Forward Current.

.7 0

10

20

30

40

80

Figure 9. Relative Efficiency .
(Luminous Intensltv per Unit
CUrrent) vs. Peak Current.

.O'f--+--+--+---i~~I--:':!:O·~2O':;-;!30~'-=4O'!:;-;SOS·'"'''':±;--=70;;'"'''''!:;-;'''~''''
tp - PULSE DURATION -J.lS

Figure 11. Relative Luminouslntensltv vs. Angular Displacement.

38

50

'PEAK - PEAK CURRENT - mA

&D'

Figure 10. Maximum Tolerable Peak Current
vs. Pulse Duration. (I DC MAX
as.per MAX Ratings.)

-

Green HLMP-1500,-1501 (5082-4984) ,-1502
20

T.

~ 25"C

I

5

~
~

~

I

•

~

«

~

1.0

1.5

2.0

2.5

3.0

V, - FORWARD VOLTAGE - V

1.0

.5

V

o•

2

V

I

8

15

20

25

30

Figure 13. Relative Luminous Intensity
vs. Forward Current.

.7 0

"

/

9

. . .VV
10

/

0

IF - FORWARD CURRENT - rnA

Figure 12. Forward Current YS.
Forward Voltage.

'"

3

/

15

~

)
.6

4

_---------+-----'

0.38 {.0151

ALL DIMENSIONS ARE IN MILLIMETRES (INCHES),
NOTE: AN EPOXY MINISCUS MAY EXTEND A8QUT lmm 10.040"; DOWN THE LEAOS.

Features

Description

• HIGH SENSITIVITY: 10mV ON TO OFF

The HP voltage sensing LEOs use an integrated circuit and a
red GaAsP LED to provide a complete voltage sensing function
in a standard red diffused T·l LED package. When the input
voltage (V IN) exceeds the threshold voltage (V TH) the LED
turns "on". The high gain of the comparator provides un·
ambiguous indication by the LED of the input voltage with
respect to the threshold voltage. The V-I characteristics are
resistive above and below the threshold voltage. This allows
battery testing under simulated load conditions. Use of a
resistor, diode or zener in series allows the threshold voltage
to be increased to any desired voltage. A resistor in parallel
allows the sensing LED to be used as a current threshold
indicator.

• BUILT IN LED CURRENT LIMITING
• TEMPERATURE COMPENSATED THRESHOLD
VOLTAGE
• COMPACT: PACKAGE INCLUDES
INTEGRATED CIRCUIT AND LED
• GUARANTEED MINIMUM LUMINOUS
INTENSITY
• THRESHOLD VOLTAGE CAN BE INCREASED
WITH EXTERNAL COMPONENT

The 5082-4732 has a nominal threshold voltage of 2.7V.

Applications
• Push-to· test battery voltage tester (pagers,
cameras, appliances, radios, test equipment... )
• Logic level indicator
• Power supply voltage monitor
• V-U meter
• Analog level sense
• Voltage indicating arrays - use several with
different thresholds
• Current monitor

Absolute Maximum Ratings
Storage Temperature . . . . . . . . . . . . . . . -55°C to +100°C
Operating Temperature . . . . . . . . . . . . . . . _55°C to +85°C
Lead Solder Temperature. . . . . . . . . . . .. 230°C for 7 Sec
Input Voltage - VIN III . . . . . . . . . . . . . . . . . . . . +5V dc
Reverse Input Voltage - VR .. . . . . . . . . . . . . . .. -0.5V
NOTES:
1. Derate Iinearly above 50° C free-air temperature at a rate of 37m V 1° c.

40

Electro-Optical Characteristics at TA=25°C
5082-4732
Typ.

Max.

Units

2.9

V

Sym.

Min.

Threshold Voltage

VTH

2.5

Temperature Coefficient
of Threshold

lIVTH
lITA

Input Current

liN

Luminous I"tensity
Wavelength

0.7

mcd

APEAK

655

Dominant Wavelength

Ad

639

Parameter

2.7
-1

13

0.3

50

,

...>in
...;::::~
:E

:3
I

VIN = 5.0V

2

VIN = 2.75V
Measurement at peak

1

nm
nm

Note 1

2

SO

«

2.S

E

J

2.0

V

1.S

'":::Ja
z

VIN

mA

TA o2S"C

T A '" 25~C
E

= 2.75V

mA

60

3.0

1l

Fig.
1,2

mVtC

33

Iv

Test Conditions

10mV

"OFF" TO "ON"

1.0

Y'

.5

/

...I

40

~

a:
a:

C---+---T

~ V'N

011N

:::J

30

~
;::::

20

~

10

...
OJ

:=t!
',V'N
- "

,II'N

i-\

- - ··10012

-

!----

V

tA /

8012

\

l/rY

-'

o

o
V'N -INPUTVOLTAGE-V

V'N - INPUT VOLTAGE - V

Figure 1. Luminous Intensity vs.

Figure 2. Input Current vs. Input Voltage.

I nput Voltage.

Figure 3. Relative luminous Intensity vs.
Angular Displacement.

Techniques For Increasing The Threshold vOltage
V'TH

lIV'TH

External Component

V'TH

TC

=--- (mVtC)
I!.TA

EXTERNAL
COMPONENT

V'H

r----------l

: ~ll:

I / . I VOLTAGE
/ " SENSlNG
I
I LED
,
I

I
I
L __________ J

-=-

Notes:

V~H

V~H
~~

V~H
~
z

V /TH

V

Schottky Diode
VTH + 0.45V

-2

VTH +0.75V

-2.5

VTH + 1.6V

-2.9

(HP 5082·2835)
P·N Diode
(lN914)
LED
(HP 5082·4484)
Zener Diode
VTH + Vz

-1 + Zener TC

V TH

1. The dominant wavelength, Ad, is derived from the CI E chromaticity diagram and represents the single wavelength which
defines the color of the device.
2. ITH is the maximum CUrrent just below the threshold, VTH. Since both ITH and VTH are variable, a precise value of
V TH is obtainable only by selecting R to fit the measured characteristics of the individual devices (e.g., with curve tracer).
3. The temperature coefficient (TC) will be a function of the resistor TC and the value of the resistor.

41

HEWLETT

PACKARD

RESISTOR LEDs

COMPONENTS

5082-4860
5082-4468

TECHNICAL DATA APRIL 1978
3.18 r.1261

Wr.w51

l

=--r

I

(40r.0551

ijY.[0301

NOM.

15,49 (0.61)
MIN.

15.24

(.600)

]~

I
_L
3.05 r.1201

..
'\
\

f,~30)

DJJ)

~:~~

-...(

3.05 rO.1201
MAX.

II-

2.03 toSO)

0.76

,·oH04ol

,~:~~ i:6a~:

t

rng;

i

-t

t

0.64 r.025)
0.38 [015)

O]l f.O'2Ol CAiHO-OE--- ~.

5082·4860

OIMENSIONS IN MllllMETRES AND (INCHES)

5082-4468

NOTE: AN EPOXY MINtscUs MAY EXTEND ABOUT

"((1m (O.O4O") DOWN THE LEADS.

Features
• TTL COMPATIBLE: 16mA @ 5 VOLTS TYPICAL
• INTEGRAL CURRENT LIMITING RESISTOR
• T-1 DIAMETER PACKAGE, 3.1Bmm (.125 in.)
T-13f4 DIAMETER PACKAGE, 5.0Bmm (.200 in.)
• RUGGED AND RELIABLE

Description
The HP Resistor-LED series provides an integral current limiting resistor in series with the LED. Applications include panel mounted indicators, cartridge indicators, and lighted switches.
The 5082-4860 is a standard red diffused 5.08mm (.200") diameter (T-1 % size) LED, with long wire wrappable leads.
The 5082-4468 is a clear diffused 3.18mm (.125") diameter (T-1 size) LE D.

Absolute Maximum Ratings at TA = 25°C
DC Forward Voltage [Derate linearly to 5V @ 100D e) .................................. 7.5V
Reverse Voltage ................................................................. 7V
Isolation Voltage [between lead and base of the 5082-4860). . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 300V
Operating and Storage Temperature Range .................................. -55°C to +100 o e
Lead Soldering Temperature ............................................. 230 D e for 7 sec.

42

Electrical Characteristics at TA = 25°C
5082-4860/·4468
Symbol

Parameters

Iv

Luminous Intensity

Typ.

Min.
.--.

0.3

Max.

Test Conditions

Units

= 5.0V

0.8

mcd

VF

655

nm

Measurement at Peak

~.--

ApEAK

Wavelength

Ts

Speed of Response

15

IF

Forward Current

16

BVR

Reverse Breakdown Voltage

ns
20

._- 1----

VF = 5.0V

mA
V

3

IR

= 100JlA

TYPICAL RELATIVE LUMINOUS INTENSITY VERSUS ANGULAR DISPLACEMENT
4860

4468

1000

30

2.50

800

I

25

600
~

"
E

I 20

ffi

a:
a:

""
"a:

15

f2

10

iE"
I

r------ .

/
v

/

/
I

/
VF - FORWARD VOLTAGE - V

Figure 1. Typical DC Forward Current Voltage Characteristic

400

I

...>

~

...

2.25

'\

200

2.00

[\.

'\

;,

"'

""z

100
80

:3

60

;;

1.75

'\

~a:

1.0 0

1"'-

40

20

1\

/

.75
.50

o
-50

-25

25

50

TC - CASE TEMPERATURE -

75

100

°c

Figure 2. Relative Luminosity vs. Case
Temperature

43

/

/

.25
1
-75

/

V

1.25

I"

w

>
;::

/

1.50

/

/

V

o

10

VF - FORWARD VOLTAGE - V

Figure 3. Relative Luminous Intensity
vs. Voltage

HEWLETT' PACKARD

COMPONENTS

HERMETIC
SOLID
STATE
LAMPS

TO·46
PANEL MOUNT
1N6092 (5082·4620)
5082·4687
1N6093 (5082-4520)
5082-4587
1N6094 (5082-4920)
5082-4987
1N5765 (5082-4420)
5082-4787
JAN 1N5765/1N6D9211N6093I1N6094
JAN TX lN5765/1N6D92I1N6093/1N6094
TECHNICAL DATA APRIL 1978

Features
• CHOICE OF4 COLORS
Red
High Efficiency Red
Yellow
Green
• DESIGNED FOR HIGH-RELIABILITY
APPLICATIONS
• HERMETICALLY SEALED
• WIDE VIEWING ANGLE
• LOW POWER OPERATION
• IC COMPATIBLE
• LONG LIFE
• PANEL MOUNT OPTION HAS WIRE
WRAPPABLE LEADS AND AN
ELECTRICALLY ISOLATED CASE

T0-46

Description
The 1N5765, 1N6092, 1N6093, and 1N6094 are hermetically sealed solid state lamps encapsulated in a TO-46
package with a tinted diffused plastic lens over a glass
window. These hermetic lamps provide good on-off
contrast, high axial luminous intensity and a wide viewing
angle.

COLOR CODE IDENTIFICATION
1 N5765, 5082·4787
RED
1 N6092, 5082·4687
HIGH EFFICIENCY RED
1 N6093, 5082·4587
YELLOW
GREEN
1 N6094, 5082-4987

The 5082-4787, 4687, 4587 and 4987 are hermetically
sealed solid state lamps encapsulated in a panel
mountable fixture. The semiconductor chips are packaged in a hermetically sealed TO-46 package with a tinted
diffused plastic lens over glass window. This TO-46
package is then encapsulated in a panel mountable fixture
designed for high reliability applications. The encapsulated LED lamp assembly provides a high on-off contrast,
a high axial luminous intensity and a wide viewing angle.
The 1N5765 and 5082-4787 utilize a GaAsP LED chip with
a red diffused plastic lens over glass window.
The 1N6092 and 5082-4687 have a high efficiency red
GaAsP on GaP LED chip with a red diffused plastic lens
over glass window. This lamp's efficiency is comparableto
that of a GaP red but extends to higher current levels.
The 1N6093 and 5082-4587 provide a yellow GaAsP on
GaP LED chip with a yellow diffused plastic lens over glass
window.

HERMETIC PANEL MOUNT

The 1N6094 and 5082-4987 provide a green GaP LED chip
with a green diffused plastic lens over glass window.

44

JAN lN5765:
Samples of each lot are subjected to Group A inspection for parameters listed in Table I, and to Group
B and Group C tests listed below. All tests are to the conditions and limits specified by MI L·S·19500/467. A summary of
the data gathered in Groups A, B, and C lot acceptance testing is supplied with each shipment.
JAN TX lN5765:
Devices undergo 100% screening tests as listed below to the conditions and limits specified by MIL·
S·19500/467. The JAN TX lot is then subjected to Group A, Group B and Group C tests as for the JAN 1 N5765 above.
A summary of the data gathered in Groups A, Band C acceptance testing can be provided upon request. Serialized data can
be gathered, but lead times will be increased accordingly.
Method
MIL·STD·750

Group B Sample Acceptance Tests
Physical Dimensions

2066

Solderability

2026

Thermal Shock

1056A

Temperature Cycling

1051A

Fine Leak Test

1071H

Gross Leak Test

1071C

Moisture Resistance

1021

Mechanical Shock

2016

Vibration

2056

Constant Acceleration

2006

Terminal Strength

2036E

Salt Atmosphere

1041

Temp. Storage (lOOoC, 340 hours)

1032

Operating Life (50mAdc, 340 hours)

1027

Group C Sample Acceptance Tests

Method
MIL·STD·750

Low Temp Operation (-55°C)
Breakdown Voltage
Temperature Cycling

4021
1051A

Resistance to Solvents
Temp. Storage (100°C, 1 K hours)
Operating Life (50 mAde, 1 K hours)

1031
1026

•

Peak Forward Pu Ise Current
TX Screening (100%)
Temp. Storage (100°C, 72 hours)
Temperature Cycling

1051A

Constant Acceleration

2006

Fine Leak Test

1071H

Gross Leak Test

1071C

Burn-in (50mAdc, 168 hours)
Evaluation of Drift
(lV1,VF ,I R )

°MI L-STD·202 Method 215

Electrical/Optical Characteristics at TA=25°C
(Per Table I, Group A Testing of MI L·S 19500/467)
Specification

Symbol

Min.

Max.

Units

Test Conditions

Luminous Intensity (Axial)

IV1

0.5

3.0

mcd

IF ; 20mAdc, e = 0°

Luminous Intensity (off Axis)

IV2

0.3

mcd

IF ; 20mAdc, e = 30 0 [see Note 21

Wavelength

Av

630

Capacitance

700

nM

Design Parameter

C

300

pF

VR = 0, f = 1 MHz

Forward Voltage

VF

2.0

Vdc

IF =20mAdc

Reverse Current

IR

1

pAdc

NOTES:
1. Derate 0.67 mAdc/oC for TA above 25°C.
2. These specifications apply only to JAN/JAN TX levels.

45

VR = 3Vdc [see Note 21

Absolute Maximum Ratings at TA =25°C
Parameter

Red

High Eft. Red

1N5765/4787

1N6092/4687

100

120

Power Dissipation
(derate linearly from 50°C at

Yellow

Green

Units

1N6093/4587 1N6094/4987

120

120

mW

35[2)

35[2J

mA

1.6mW/OC)

50[1]

Average Forward Current

35[21

1000
See Fig. 5

Peak Forward Current

60
See Fig. 10

Operating and Storage
Temperature Range
Lead Soldering Temperature
[1.6mm (0.063 in.) from body]

60
See Fig. 20

60
See Fig. 15

mA

-65°C to 100°C
260°C for 7 seconds.

1. Derate from 50° C at 0.2mA/o C
2. Derate from 50° C at 0.5mA/o C

Electrical/Optical Characteristics at TA=25°C
1 N5765/5082-4787 1 N6092/5082-4687 1 N6093/5082-4587

Symbol

Description

Iv

Axial Luminous
Intensity

26 1.'2

Included Angle
Between Half
Luminous Intensity
Points

60

ApEAK

Peak Wavelength

Min.

Typ.

0.5

1.0

Max.

Min.

Typ.

1.0

2.5

Max.

1N6094/5082-4987

Units

Tes' Condillona

081 1.el_
At IF ~ 25mA

mcd

IF - 20mA
Figs. 3,8,13,18

70

70

dog.

Note 1. Figures
6,11, 16, 21

583

565

nm

Measurement
al Peak

585

570

nm

Nole 2

200

200

ns

Min.

Typ.

1.0

2.5

70

655

635

640

626

10

200

Ma •.

Min.

Typ.

Ad

Dominant Wavelength

is
C

Speeo 01 Response
Capacitance

200

35

35

35

(i.}{.'

Thermal Resistance*

425

425

425

425

ElK

Thermal Resistance:#<*

550

VF

Forward Voltage

1.6

550

550

2.0

2.0

3.0

2.0

~,

Reverse Breakdown
Voltage
Luminous Efficacy

4

5
56

5.0

5.0
140

pF

550
3.0

2.1
At IF

BVR

Ma ••

'CIW

NoteS

V

IF

~20mA

Figures 2, 7,
12, 17
V

600

1-1 MHz

Note 3

~25mA

5.0
455

3.0

V,~O:

·C/W

Im/W

IR -

100~A

NOle 4

NOTES:
1. 81/2 is the off-axis angle at which the luminous intensity i~ half the axial luminous intensity.
2. The dominant wavelength, .\I. is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color 01 the device.
3. Junction to Cathode Lead with 3.1Bmm (0.125 inch) of leads exposed between base olllange and heat sink.
4. Radiant intensity. Ic, in watts/steradian, may be found from the equation Ie = Iv/7'/\'. where Iv is the luminous intensity in candelas and TJv is the luminous
efficacy in lumens/watt.

*Panel mount.
··TO-46
,.Or---------------r-~

__--~~------------_.~~_.~------------_.--------------_,

WAVELENGTH - nm

Figure 1. Relative Intensity vs. Wavelength.

46

package Dimensions

1 N5765, 1 N6092, 1 N6093, 1 N6094

5082-4787,4687,4587,4987
_13.21 ~
12.70 (.500)

..-9.B6~ ...

9.47 (.313)

CATHODE

\

-Q2!~
0.56 (.022J

NOTES:

1. All EXTERNAL METAL SURFACES OF THE PACKAGE
ARE BLACK ANODIZED EXCEPT FOR THE ALDDINE
AREA OF THE FLANGE AND THE GOLD PLATED LEADS.

2. MOUNTING HARPWARE WHICH INCLUDES ONE LOCK
WASHER AND ONE HEX· NUT IS INCLUDED WITH EACH
PANEL MOUNTABLE H£RMETIC SOLID STATE LAMP.
3, USE OF METRIC DRILL SIZE 8.20 MILLIMETRES OR
ENGLISH DRill SIZE P (O.323 INCH) IS RECOMMENDED

OUTLINE TO-46

FOR PRODUCING HOLE IN THE PANEl FOR PANEL
MOUNTING.

NOTES:
1. ALL DIMENSIONS ARE IN MILt..1METRES HNCHES,.
2. GOlo.-PLATED LEADS.

4. ALL DIMENSIONS ARE IN MllliMETRES (INCHES).

RED 1NS76S/S082-4787
2.5

50

40

«

30

I

20

E

....

TA .,.

1. 5

~5"C

TAl"

-

~~

~~
2.5

0.50

V

•

1.

/

·

/

-

10.00

VF - FORWARD VOLTAGE-V

.-

15.00 20.00

25.00

30.00

35.00

Figure 8. Relative Luminous Intensity
vs. Forward Current.

'"'"--'" -

'"

J"
1--'-

--

I

·•0

10

IF - FORWARD CURRENT - rnA

Figure 7. Forward Current vs.
Forward Voltage.

~".

2

V

0.00
5.00

3.0

1/

+.,~~

1.4

/

_0

~z

V

I

,,~

0.25

2.0

•

2.00

I

')"'c

20

30

40

50

60

IpEAK - PEAK CURRENT - rnA

Figure 9. Relative Efficiency
(Luminous IntensitY per Unit
Current) vs. Peak CUrrent.

3.'
W

~

~~
~Z

OW
~~

~~

~~
xo
~
~

2.
1.72

I.'

~

1.4
1.3

I

1.2

l

~~

;]

1.1
I.'

1
tp - PULSE DURATION -111

Figure 10. Maximum Tolerable Peak Cur·
rentvs. Pulse Duration. (IDC MAX
as par MAX Ratings)

Figure 11. Relative Luminous Intensity vs. Angular Displacement.

YELLOW 1N6093/5082-4587
20

T.

~

2.25

~2S'C

I
/

I

~ I.

o
iil
~

f2
I

10

-

~

2
~
~

)
.5

1.0

1.5

1.•

r--

--

-

-~

r---

1.75

/

1.50

1.25

V

~
::i 1.00

/

•
•

2.00

17
t---

/

0.75

2.0

2.5

3.0

Figure 12. Forward Current vs.
Forward Voltage.

'.005.00

10.00

1.2

~~
~j

I.'

tE!;t
w~

~o

g

V

VF -FORWARDVOLTAGE-V

1.4

H

/

0.50

li

~1
5~

>0

15.00 20.00 25.00

30.00 35.00

IF - FORWARD CURRENT - rnA

Figure 13. Relative Luminous Intensity
vs. Forward Current.

..
..

-

0

40

Figure 16. Relative Luminous Intensity vs. Angular Displacement.

48

80

Figure 14. Relative Efficiency
(Luminous Intensity per Unit
Current) vs. Peak Current.

tp - PULSE DURATION -111

Figure 15. Maximum Tolerable Peak Cur·
rent vs. Pulse Duration. (lDC MAX
as per MAX Ratings)

50

IpEAK - PEAK CURRENT - rnA

GREEN 1N6094/S082-4987
0

~ 2:5'C

TA

I

I

5

I

51---

1.0

1.5

2.0

~

2.0

~ 1.72

1.5
1.4

IiI,i

I.

il

f-~

!J

I

I

i

i' _.lli

~

I !!
_.' .,' :
,i,1

\ 1\
,.!;

"

3f--i
-.
1

0

I'

II-\1i;,\ II I'
i_ iI
"I

10
tp -

:!I
100

Iii III
1.000

1.0

~

2.5

[1'1

~

:::::i

.8

.6:-0--f.:---f.:--:!::--f.;--;5i:::0-::!60

3.0
IF - FORWARD CURRENT - mA

Figure 17. Forward Current vs.
Forward Voltage.

...z

1.2

~

VF - fOfiWARDVOLTAGE - V

3.0

1
.~

)
.5

1.4

C

I
'/

0

0

U

Figure 18. Relative Luminous Intensity
vs. Forward Current.

IpEAK - PEAK CURRENT - rnA

Figure 19. Relative Efficiency
(Luminous Intensity per Unit
Current) vs. Peak Current.

i
i I

:r
I!I

~l

h~
10.000

PULSE DURATION -I'S

Figure 20. Maximum Tolerable Peak Cur·
rent vs. Pulse Duration. (lOC MAX
as per MAX Ratings)

Figure 21. Relative Luminous Intensity vs. Angular Displacement.

49

PAOKARD
COMPONENTS

CLIP AND RETAINING
RING FOR PANEL 5082-4707·
MOUNTED LEOS
TECHNICAL DATA

APRIL 1977

Description
The 5082-4707 is a black plastic mounting clip
and retaining ring. It is designed to panel mount
Hewlett Packard Solid State T-1% size lamps. This
clip and ring combination is intended for installation in instrument panels up to 3.18mm (.125")
thick. For panels greater than 3.18mm (.125"),
counterboring is required to the 3.18mm (.125")
thickness.

III.

6.35
(.250)

DIA.

IIJ

J..-- 6.66 (.270) CIA.-+!

CLIP

Mounting Instructions
1. Drill a 6.35mm (.250") dia. hole in the
panel. Deburr but do not chamfer the
edges of the hole.
2. Press the panel clip into the hole from
the front of the panel.

3. Press the LED into the clip from the
back. Use blunt long nose pliers to push
on the LED. Do not use force on the
LED leads. A tool such as a nut driver
may be used to press on the cI ip.

4. Slip a plastic retaining ring onto the back
of the clip and press tight using tools such
as two nut drivers.

50

I

9.53 1.375 1 D I A . _

RETAINING
RING

Selection Guide .................... 52
o Red, High Efficiency Red, Yellow
and Green Seven Segment Displays
o Red Seven Segment Displays

• Integrated Displays
• Hermetically Sealed Integrated Displays
• Alphanumeric Displays
• Chips

51

Red, High Efficiency Red, Yellow and Green Seven Segment LED Displays
Device
5082·7610

5082·7611

5082·7613

5082·7616

5082·7620
5082-7621
5082-7623
5082-7626
5082-7630
5082-7631
5082·7633
5082-7636

~

Package

Application

Page
No.

7.62mm (.3") High
Efficiency Red, Common
Anode, lHOP
7.62mm (.3") High
Efficiency Red, Common
Anode, RHOP
7.62mm (.3") High
Efficiency Red, Common
Cathode, RHOP
7.62mm (.3") High
Efficiency Red, Universal
Polarity Overflow Indicator
RHOP
7.62mm (.3") Yellow,
Common Anode lHOP
7.62mm (.3") Yellow,
Common Anode RHOP
7.62mm (.3") Yellow,
Common Cathode, RHOP
7.62mm (.3") Yellow,
Universal Polarity & Overflow
Indicator RHOP
7.62mm (.3") Green,
Common Anode lHOP
7.62mm (.3") Green,
Common Anode RHOP
7.62mm (.3") Green,
Common Cathode RHOP
7.62mm (.3") Green,
Un iversal Polarity & Overflow
Indicator RHOP

14 Pin Epoxy,
7.62mm (.3") OIP
.75"H x .4"W x .18"0

General Purpose Market
• Test Equipment
• 0 igital Clocks
• Clock Radios
• TV Channel Indicators
• Business Machines
o Oigitallnstruments
• Automobiles
For further information ask for
Application Note 941 and 964;
Application Bulletins 1 through
4. (See page 218)

69

HOSP-3530

7.62mm (.3") High Efficiency
Red, Common Anode, lHOP

HOSp·3531

7.62mm (.3") High Efficiency
Red, Common Anode, RHOP

HOSp·3533

7.62mm (.3") High Efficiency
Red, Common Cathode RHOP

HOSp·3536
HOSp·4030

7.62mm (.3") High Efficiency
Red, Universal Polarity
Overflow Indicator RHOP
7.62mm (.3") Yellow,
Common Anode, LHOP

HOSP-4031

7.62mm (.3") Yellow,
Common Anode, RHOP

HOSP-4033

7.62mm (.3") Yellow,
Common Cathode, RHOP

HOSP-4036

It

Description

5082-7650

5082·7651

10 Pin Epoxy,
7.62mm (.3") OIP
.75"H x .4"W x .18"0
14 Pin Epoxy,
7.62mm (.3") OIP
.75"H x .4"W x .18"0

(Same as 5082-7613)
14 Pin Epoxy,
7.62mm (.3") OIP
.75"H x .4"W x .18"0

(Same as 5082-7613)
14 Pin Epoxy,
7.62mm (.3")0 IP
.75"H x .4"W x .18"0
14 Pin Epoxy,
7.62mm (.3") OIP
_75"H x .4"W x .18"0
10 Pin Epoxy,
7.62mm (.3") OIP
.75"H x .4"W x .18"0
14 Pin Epoxy,
7.62mm (.3") OIP
.75"H x .4"W x .18"0

10 Pin Epoxy,
7.62mm (.3") OIP
.75"H x .4"W x .18"0
14 Pin Epoxy,
7.62mm (.3") OIP
.75"H x .4"W x .18"0
14 Pin Epoxy,
7.62mm (.3") OIP
.75"H x .5"W x .25"0

7.62mm (.3") Yellow,
Universal Polarity Overflow
Indicator RHOP
10.92mm(.43") High
Efficiency Red, Common
Anode, LHOP
10.92mm (.43") High
Efficiency Red, Common
Anode, RHOP

52

r--63

-

74

10.92mm (.43") High
Efficiency Red, Common
Cathode RHOP
10.92mm (.43") High
Efficiency Red Universal
5082·7656 Polarity & Overflow Indicator
RHOP
10.92mm(.43") Yellow
5082·7660 Common Anode LHOP
5082·7653

•

5082·7661

10.92mm(.43") Yellow
Common Anode RHOP

5082·7663

10.92mm(.43") Yellow
Common Cathode RHOP

5082·7670

10.92mm(.43")Yellow
Universal Polarity & Overflow
Indicator RHOP
10.92mm(.43") Green
Common Anode LHOP

5082·7671

10.92mm(.43") Green
Common Anode RHOP

5082·7666

5082·7673
5082·7676

HOSp·3730

HOSp·3731

J

HOSp·3733

HOSp·3736
0",

~f.~1JW

HDSp·4130
HDSp·4131
HDSp·4133
HDSP·4136
HDSP·3400

,/'I

Package

Description

Device

HDSp·3401
HDSp·3403

14 Pin Epoxy,
7.62mm (.3") DIP
.75"H x .5"W x .25"0

Application

Page
No.

General Purpose Market
• Test Equipment
• 0 igital Clocks
• Clock Radios
• TV Channel Indicators
• Business Machines
• Digital Instruments
• Automobiles
For further information ask for
Application Note 941 and 964;
Application Bulletins 1 through
4. (See page 218)

74

10.92mm(.43") Green
Common Cathode RHOP
10.92mm(.43") Green
Universal Polarity & Overflow
Indicator RHOP
10.92mm (.43") High
Efficiency Red, Common
Anode, LHOP
10.92mm (.43") High
Efficiency Red, Common
Anode, RHOP
10.92mm (.43") High
Efficiency Red, Common
Cathode, RHOP
10.92mm (.43") High
Efficiency Red, Universal
Polarity Overflow Indicator
RHDP
10.92mm (.43") Yellow,
Common Anode lHDP

---s3

10.92mm (.43") Yellow,
Common Anode RHDP
10.92mm (.43") Yellow,
Common Cathode RHDP
10.92mm (.43") Yellow,
Universal Polarity Overflow
Indicator RHO P
20.32mm (.8") Red, Common
Anode lHDP
20.32mm (.8") Red, Common
Anode RHDP
20.32mm (.8") Red, Common
Cathode RHDP

HDSp·3405 20.32mm (.8") Red, Common
Cathode lHDP
20.32mm L8") Red, Universal
HDSP·340B Polarity Overflow Indicator
RHDP

53

18 Pin Epoxy,
20.32mm (.8") DIP
1.09"H x .78"W x
.33"0

General Purpose Market
• Test Equipment
• Digital Clocks
• Clock Radios
• TV Channel Indicators
• Business Machines
• Digital Instruments
For further information ask for
Application Note 941 and 964;
Application Bulletins 1 through
4. (See page 218)

59

Device

Description
5082-7730

7.62mm{.3") Red, Common
Anode, lHDP

5082-7731

7.62mm{.3") Red, Common
Anode, RHDP

Package
14 Pin Epoxy,
7.62mm(.3") DIP
.75"H x .4"W x.18"O

7.62mm(.3") Red, Common
5082-7736 Anode, Polarity & Overflow
Indicator
5082-7740

5082-7750

-~

6082-7751
5082-7756
5082-7760

7.62mm(.3") Red, Common
Cathode, RHOP

10 Pin Epoxy,
7.62mm (.3") DIP
.75"Hx.4"Wx_18"O

10.92mm(.43") Red, Common
Anode, lHOP
10.92mm(.43") Red, Common
Anode, RHDP
10.92mm(.43") Red, Universal
Polarity & Overflow Indicator,
RHDP
10.92mm(.43") Red, Common
Cathode, RHO P

14 Pin Epoxy,
7.62mm (.3") DIP
. 75"H x .5"W x .25"D

Application
General Purpose Market
• Test Equipment
• Digital Clocks
• Clock Radios
• TV Channel Indicators
• Business Machines
• Digital Instruments
• Automobiles
For further information ask for
Application Note 941 and 964;
Application Bulletins 1 through
4. (See page 218)

Page
No.
79

83

Red Seven Segment LED Displays
Device

Description

Package
12 Pin Epoxy,
7.62mm (.3") DIP

-

< '-

.-

14Pin Epoxy,
7.62mm (.3") DIP
12 Pin Epoxy,
7.62mm (.3") DIP

5082-7432

2.79mm(.11") Red, 2 Digits
Right.!21 RHDP

12 Pin Epoxy,
7.62mm (.3") DIP

91

5082-7433

2.79mm tIl") Red, 3 Digits,
RHDP
50.8mm(2") P.C. Bd.,
17 Term. Edge Con.

95

14 Pin Epoxy,
7.62mm (.3") DIP

2.67mm(.105") Red, 8 Digits,
Mounted on P.C. Board
2.67mm{.105") Red, 8 Digits,
Mounted on P.C. Board

60.3mm(2.375")PC Bd.,
17Term. Edge Con.

5082-7441

2.67mm{.105") Red, 9 Digits,
Mounted on P.C. Board

50.8mm(2") PC Bd.,
17 Term. Edge Con.

5082-7449

2.67mm(.105") Red, 9 Digits,
Mounted on P.C. Board

60.3mm(2.375") PC Bd.,
17 Term. Edge Con.

5082-7440
5082-7448

54

Small Display Market
• Portable/Battery
Power Instruments
• Portable Calculators
• Digital Counters
• Digital Thermometers
• Digital Micrometers
• Stopwatches
• Cameras
• Copiers
• Digital Telephone
Peripherals
• Data Entry Terminals
• Taxi Meters

Page
No_

2.79mm(.11") Red, 3 Digits
Right,ll] Centered D.P.
2.79mm(.11") Red, 3 Digits
5082-7403
left.!l] Centered D.P.
2.79mm{.11") Red,4 Digits
5082-7404
Centered D.P.
5082-7405 2.79mm(.11") Red, 5 Digits,
Centered D.P.
2.79mm (.11") Red, 3 Digits
5082-7412
Right.!ll RHOP
2.79mm (.11") Red, 3 Digits
5082-7413
left.!ll RHDP
2.79mm(.11") Red, 4 Digit,
5082-7414
RHDP
2.79mm(.11") Red, 5 Digit,
5082-7415
RHDP
5082-7402

-/:!r,;.{i 8"13

Application

87

For further information ask for
Application Note 937.
(See page 218)

Description

Package

5082·7442

2.54mmC1 00"1 Red, 12 Digits,
Mounted on P.C. Board

60.3mm(2.375"IPC Bd.,
20 Term. Edge Con.

5082·7445

2.54mmC100"1 Red, 12 Digits,
Mounted on P.C. Board

5082·7444

2.54mmC100"1 Red, 14 Digits,
Mounted on P.C. Board

5082·7446

2.92mmC115"1 Red, 16 Digits,
Mounted on P.C. Board

5082·7447

2.85mmC112"1 Red, 140 igits,
Mounted on P.C. Board

Small Display Market
o Porta bIe /Battery
Power Instru ments
59.6mm(2.345"IPC Bd., o Portable Calculators
20 Term. Edge Con.
G Digital Counters
• Digital Thermometers
60.3mm(2.375"1 PC Bd., o Digital Micrometers
22 Term. Edge Con.
o Stopwatches
o Cameras
69.85mm(2.750"IPC Bd., a Copiers
24 Term. Edge Con.
a Digital Telephone
Peripherals
60.3mm(2.375"1 PC Bd., a Data Entry Terminals
22 Term. Edge Con.
a Taxi Meters

5082·7240

2.59mm(.102"1 Red, 8 0 igits,
Mounted on P.C. Board

50.8mm (2"1 PC Bd.,
17 Term. Edge Con.

5082·7241

2.59mmC102"1 Red, 9 Digits,
Mounted on P.C. Board.

Device

~

\rE):'t~.;:.

5082-7265
5082·7285
5082-7275
5082-7295

Application

For further information ask for
Application Note 937.
(See page 2181

Page
No.
99

103

4.45mm(.175"1 Red, 5 Digits, 50.8mm(2"1 PC Bd.,
Mounted on P.C. Board.
15 Term. Edge Con.
Centered D.P.
4.45mm(.175"1 Red, 5 Digits
Mounted on P.C. Board. RHDP
4.45mm(.175"1 Red, 15 Digits, 91.2mm(3.59"1 PC Bd.,
Mounted on P.C. Board.
23 Term. Edge Con.
Centered D.P.
4.45mm(.175"1 Red, 15 Digits,
Mounted on P.C. Board. RHDP

Integrated LED Displays
Device

Description
5082-7300

5082-7302

5082·7340
5082-7304
5082-7356

5082-7357

5082-7359
5082-7358

Package

7.4mm (.29"14x7 Single Digit
Numeric, RHDP, Built·ln
oecover/Driver /Memory
7.4mm (.29"1 4x7 Single Digit
Numeric, LHDP, Built-In
Decover /Driver/Memory
7.4mm (.29"1 4x7 Single Digit
Hexadecimal, Bu ilt-I n
Decoder/Driver/Memory
7.4mm (.29"1 Overrange
Character Plus/Minus Sign
7.4mm (.29"1 4x7 Single Digit
Numeric, RHDP, Built·ln
Decoder /D river/Me mory
7.4mm(.29"14x7 Single Digit
Numeric, LHDP, Built·ln
Decoder /D river/Memory
7.4mm (.29"1 4x7 Single Digit
Hexadecimal, Bu ilt-I n
Decoder/D river/Memory
7.4mm(.29"1 Overrange
Character Plus/Minus Sign
55

8 Pin Epoxy,
15.2mm (.6"1 DIP

Application
General Purpose Market
o Test Equipment
o Business Machines
a Computer Peripherals
o Avionics

Page
No.
111

For further information ask
for Application Note 934 on
LED Display Installation
Techniques

8 Pin Glass Ceramic
15.2mm (.6"1 DIP

a Medical Equipment
o Industrial and Process Control
Equipment
a Computers
o Where Ceramic Package IC's
are required.

115

Hermetically Sealed Integrated LED Displays

.~
\
........ j.:<

j.c~~·'"
s;"c"

:,_

1'"
~~

.

-

.. ,(

,

5082-7010

/

5082-7011
5082·7391

5082-7392

5082-7395
5082-7393

Application

Page
No.

Description

Package

6.8mm (.27") 5x7 Single Digit
Numeric, LHDP, Built-In
Decoder/Driver
6.8mm (.27") Plus/Minus
Sign

8 Pin Hermetic
2.54mm (.100") Pin
Centers

• Ground, Airborne,
Shipboard Equipment
• Fire Control Systems
• Space Flight Systems

120

7.4mm (.29") 4x7 Single Digit
Numeric, RH DP, Built-In
Decoder /0 river/Memory
7.4mm(.29") 4x7 Single Digit
Numeric, LHDP, Built-In
Decoder /0 river/Memory
7.4mm(.29") 4x7 Single Digit
Hexadecimal, Built-In
Decoder /0 river/Memory

8 Pin Hermetic
15.2mm (.6") DIP
with Gold Plated Leads

• Ground, Airborne,
Shipboard Equipment
• Fire Control Systems
• Space Flight Systems
• Other High Reliability
Applications
(TX Programs available,
see page 1261

126

Device

7.4mm(.29") Overrange
Character Plus/Minus Sign

Alphanumeric LED Displays
Device

Description

Package

Application

Page
No.
132

3.8mm (.15") 5x7 Four CharHDSP-2000 acter Alphanumeric Built-In
Shift Register, Drivers

12 Pin Ceramic 7.62mm
(.3") DIP. Redglass
Contrast Filter

•
•
•
•
•

3.8mm (.15") Sixteen
HDSP-6504 Segment Four Character
Alphanumeric

26 Pin
15.2mm (.6") DIP

136

3.8mm (.15") Sixteen
HDSP-6508 Segment Eight Character
Alphanumeric

22 Pin
15.2mm (.6") DIP

• Computer Peripherals and
Terminals
• Computer Base Emergency
Mobile Units
• Automotive Instrument
Panels
• Desk Top Calculators
• Hand-held Instruments
For further information ask for
Application Note 931 and
Application Bulletin 53
General Purpose Market
• Business Machines
• Calculators
• Solid State CRT
• High Reliability Applications
For further information ask for
Application Note 931 on
Alphanumeric Displays

142

5082-7100

7.4mm (.29") 5x7 Three Digit
Alphanumeric

22 Pin Hermetic
15.2mm (.6") DIP

5082-7101

7.4mm (.29") 5x7 Four Digit
Alphanumeric

28 Pin Hermetic
15.2mm (.6") DIP

5082-7102

7.4mm (.29") 5x7 Five Digit
Alphanumeric

36 Pin Hermetic
15.2mm (.6") DIP

56

Programmable Calculators
Computer Terminals
Business Machines
Medical Instruments
Portable, Hand-held or
mobile data entry, readout or communications
For further information ask for
Application Note 966 and
Application Bulletin 51

LED Chips
Device
5082·
7811

Description

Shipping
Carrier

7 Seg. 53 mil Character Height Monolithic
LED Chip in Scribed Wafer Form

Wafer Mounted
On Vinyl Film

5082· 7 Seg. 53 mil Character Height Monolithic
7821 LED Chip
5082·
7832

7 Seg. 80 mil Character Height Monolithic
LED Chip in Scribed Wafer Form

5082· 9 Seg. 80 mil Character Height Monolithic
7833 LED Chip in Scribed Wafer Form

Wafer Mounted
on Vinyl Film
Waffle Pack

7 Seg. 88 mil Character Height Monolithic
LED Chip in Scribed Wafer Form
7 Seg. 88 mil Character Height Monolithic
LED Chip

50827838

2 Seg. "0 NE" 88 mil Character Height
Monolithic LED Chip in Scribed Wafer
Form
5082- 2 Seg. "0 NE" 88 mil Character Height
7848 Monolithic LED Chip

5082·
7851

7 Seg. 100 mil Character Height Monolithic
LED Chip in Scribed Wafer Form

5082·
7861
5082·
7852
5082·
7862
5082·
7853
5082·
7863

7 Seg. 100 mil Character Height Monolithic
LED Chip
9 Seg. 100 mil Character Height Monolithic
LED Chip in Scribed Wafer Form
mil Character Height Monolithic
9
LED
2 Seg. 100 mil Character Height Monolithic
LED Chip in Scribed Wafer Form
2 Seg. 100 mil Character Height Monolithic
LED Chip

57

6°
(typical)

1.50x 1.35mm
(59x53mil)

5°
(typical)

2.24x 1.42mm
(88x56mil)

Page
No.
146

Wafer Mounted
OnVinyl Film
Waffle Pack

50827837
50827847

Chip
Size

Waffle Pack

5082· 7 Seg. 80 mil Character Height Monolithic
7842 LED Chip

5082- 9 Seg. 80 mil Character Height Monolithic
7843 LED Chip

Tilt
Angle

Wafer Mounted
on Vinyl Film
Waffle Pack

150
2.24 x 1.62mm
(88 x 64mm)

5°

2.5 x 1.6mm
(98 x 63mil)

Wafer Mounted
on Vinyl Film
2_36 x 0.64mm
(93 x 25mil)

Waffle Pack

Wafer Mounted
On Vinyl Film
Waffle Pack

Wafer Mounted
On Vinyl Film
Waffle Pack

146
5°

2.27x 1.91 mm
(107x75mil)

5°

2.72xl.91mm
(l07x75mil)

5°

2.72xO.89mm
(107x35mil)

Device

~~tt ':~]
•

J

- ; : : - - - - _, _____

Shipping
Carrier

Tilt
Angle

Chip
Size

5082· 7 Seg. 120 mil Character Height Monolithic
7871 LED Chip in Scribed Wafer Form

Wafer Mounted
On Vinyl Film

5°

5082· 7 Seg. 120 mil Character Height Monolithic
7881 LED Chip

Waffle Pack

3.25x2.34mm
(128x92mil)

5082· 9 Seg. 120 mil Character Height Monolithic
7872 LED Chip in Scribed Wafer Form
5082· 9 Seg. 120 mil Character Height Monolithic
7882 LED Chip

Wafer Mounted
on Vinyl Film
Waffle Pack

5°

3.25 x 2.34mm
(128x 92mil)

5082· Dash Colon Monolithic LED Chip in
7856 Scribed Wafer Form
5082· Dash Colon Monolithic LED Chip
7866

Wafer Mounted
on Vinyl Film
Waffle Pack

5°

0.18 x 0.18mm
(7 x 7mil)

5082· 11 mil Discrete LED
7892

Waffle Pack

5082· 11 mil Discrete LED
7893

Glass Vial

Description
~

~~~
Il"1 ,,'

Page
No.
146

,'\,,),"1'
! "~~ ~;':'~~:~ti-~~,~~'.' i; i
",··r

i·l~

'f

~@~~ytfii

,

____, ,_
_ • __
0-_ _
-_._----:

f

,

''''7
"

'.. 1~>,:i~}\1

1;i1:):~~L~:
~tJll
:e",',}:-::'; ,
:;,~

.

150

i'l

.::; 1

(dt") it ,~W,::;Jj : .~
':'"~~iJ,q
i~ fit;;-'.~l:;:';·
."-

(.'

~~i1g~jl

58

146
0.38xO.38mm
(15x15mil)

20mm (0.8") RED

HEWLETTlpACKARD

HDSP-3400
SERIES
_ _ _ _ _D_I_S_P_L_IXt_Y
_ _ _ _ _---'

SEVEN SEGMENT

•

C_O_M_PO_N_E_N_TS___

L - -_ _

•• \

\~

TECHNICAL DATA

APRIL 1978

Features
• 20mm (0.8") DIGIT HEIGHT
Viewing Up to 10 Metres (33 Feet)
• EXCELLENT CHARACTER APPEARANCE
Excellent Readability In Bright Ambients
Through Superior Contrast Enhancement
- Gray Body Color
- Untinted Segments
Wide Viewing Angle
Evenly Lighted Segments
Mitered Corners on Segments
• LOW POWER REQUIREMENTS
Single GaAsP Chip per Segment
• EASY MOUNTING ON PC BOARD OR SOCKETS
Industry Standard 1S.24mm (0.6") DIP with
Lead Spacing on 2.S4mm (0.1") Centers
Industry Standard Package Dimensions
and Pinouts
• CATEGORIZED FOR LUMINOUS INTENSITY
Assures Uniformity of Light Output from
Unit to Unit Within a Single Category
• IC COMPATIBLE
• MECHANICALLY RUGGED

Description
The HDSP-3400 Series are very large 20.32mm (0.8 in.>
GaAsP LED seven segment displays. Designed for
viewing distances up to 10 metres (33 feet>, these single
digit displays provide excellent readability in bright
ambients.
These devices utilize a standard 15.24mm (0.6 in.>dual in
line package configuration that permits mounting on PC
boards or in standard IC sockets. Requiring a low forward
voltage, these displays are inherently IC compatible,
allowing for easy integration into electronic instrumentation, pOint-of-sale terminals, TVs, weighing scales, and
digital clocks.

Devices
Part No. HDSP

Description

Package Drawing

-3400

Common Anode Left Hand Decimal

-3401

Common Anode Right Hand Decimal

A

B

-3403

Common Cathode Right Hand Decimal

C

-3405

Common Cathode Left Hand Decimal

D

-3406

Universal Overflow ±1 Right Hand Decimal

E

Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram E.

59

package Dimensions
1.78

(0.0701

I;

1

1

(0'8 00)

12

____ !

27.69

±

0.25

+
+

7
8
9

010
++__l-I~~1
{1.090, 0., 1

1-_ _

LHDP

i..- '
'i.

i

NOTE 4

(0.0501

LCHARACTER

'i.
PACKAGE-1

,
S
19.96MAX'l
110.786 MAX.I

FRONT VIEW E
LUMINOUS
INTENSITY
CATEGORY

0.51

.

~

G

If=LoB
\

x
X
;;IN

.,.

I

10.600' 0.0101

NOPIN
CATHODE 3
CATHODE f

1
2

3
4

ANODEI~J

PIN 2 AND 17

CATHODE e
ANODElJl
CATHODE up
NO PIN
NO PIN
NOPIN
CAtHODE d
ANODEPl

7

8
9
10
11
12
13
14
15
16
17

DATE CODE

SIDE VIEW

END VIEW

NOTES:
1. Dimensions in millimetres and (inches).
2. All untoleranced dimensions are tor reference only.
3. Redundant anodes.

~3400

6
6

~x

~1~.:::~::51

Pin

10.2001

IJ;>-

10.0401

1---:-A

-=f10.0201

8.38' 0.25

-.L 10.330' 0.0101

~

I.

+

+

RHOP

(0.325)

FRONT VIEW A,D

10.~

+

+

NOTE 4

8.25
.27

LpACKAGE

6.1 MIN.

+

3

4
5
6

20.32

+

2

"

___.___

~~
CATHODE a
CATHODE f

CATHODE c
CATHODE g
CATHODE b
NO PIN
ANODE!Jl

ANODEl31
CATHOOE e
ANOOEPI
NO. CONNEC.
NO PIN
NO PIN
CATHOOE dp
CATHODE Cf
ANOOEiJI
CATHODE c
CATHODE g
CATHODE b
NO PIN
ANODE PI

NO PIN

NO PIN

-.---

F~ncl~~-·o~3403
~-~-

NO PIN
ANODE a
ANODE1
CATHODEI~1

ANODE e

·3405
~NO'PIN
ANODE a
ANODE f

CATHODEI~1
ANODE e

CATHODE1~1

CATHODEI~J

NO CONNEC
NO PIN
NO PIN
ANODE dp
ANODE d
CATHODEI61
ANODE c
ANODE 9
ANODE b
NO PIN
CATHQOEICI
NO PIN

ANODE Cfp
NO PIN
NO PIN
NO PIN
ANODE d
CATIiODEI~)

ANODE c
ANODE 9
ANODE b
NOPIN
CATHODE1ul
NO PIN

-3406

NO PIN
CAtHODE a
ANODt; d
CATHODE d
CATHODE c
CATHODE e
ANODE e
CATHODEdp
NO PIN
ANODE dp

CATHODEdp
CATHOOE b
ANODE b
ANODE c
ANODE a
NO PIN
CATHOOt a
NO PIN

4. Unused dp position.
5. See Internal Circuit Diagram.
6. Redundant cathodes.

Internal Circuit Diagram
18

18

A

B

c

D

E

Absolute Maximum Ratings
Average Power Dissipation per Segment or DP ~

"

1\

ILl-"

,
\

i"

~~~

1\

~~~

I

1.5

Xix
~ ~
" "
;.9

1\

111
10

t

~~~
i-- 1\J.

1
N' ~- N"I

~I

~a~

OF loc MAX

Vv

'\'

111

100

1000

50

OPERATION
IN THIS
REGION
REOUIRES
TEMPERATURE
DERATING

~

1\

"
E
I
I-

illrr:

""c"
:;

"X
:;
"
x
•"

30

I'
10

"
0

4--

DC
OPERATION

00

10.000

.0- r- t-

II

lao

~

160

illrr:

140

~ rl-

120

~

100

II -.- r-

l001~1~100100~O

IpEAK - PEAK SEGMENT CURRENT - rnA

Figure 3. Relative Efficiency (Luminous
Intensity per Unit Current) VB. Peak
Segment Current.

1.8

~~

1.4

~s

1.2

w:E

60

70

1.0

IJ
1.2

1.4

100

t- t-

I/'

It:

-

I

V

II

1/

0

1.6

1.8

VF - FORWARD VOLTAGE - V

Figure 4. Peak Forward Segment
Current vs. Peak Forward Voltage.

62

1/

1.0
0.8

O. 2

j

'

808~90
"c

V

1.6

2:~
~~ 0.6
a::
0.4

1

0

0-

00

~<
~~

~~

80

20

00

50

I

2.0 j--

~

I

"~
~

40

2.2

rr:

o
o w

30

2.4

I
I

-

rr:

I

20

Figure 2. Maximum Allowabla DC Current
per Segment va. Ambient Temperature.

r

ac
f2

10

TA - AMBIENT TEMPERATURE -

1
rr:

'\

20

I

200

v

1\

:;

Figure 1. Maximum Allowable Peak Current va. Pulse Duration.

V

,

~

rr:

tp - PULSE DURATION - ps

1.3

'\

40

2.0

10

20

30

40

50

60

IF - SEGMENT DC CURRENT - rnA

Figure 5. Relallve Luminous Intenalty vs.
DC Forward Current.

7.6/10.9 mm (0.3/0.43 INCH)
SEVEN SEGMENT DISPLAYS FOR
HIGH LIGHT AMBIENT CONDITIONS
HIGH EFFICIENCY RED .HDSP-3530/373. 0 SERIES
YEllOW· HDSP-4030/413D SERIES

;:-?f/

iJ

HEWLETT

PACKARD

COMPONENTS

•

.' \\

TECHNICAL DATA APRIL 1978

Features

I,"~-'''''-''-----~'---'-'~'-'-''''''--

... - ..... _.... _', ..... j

i,

i

II. .,.•.~,.:·

• HIGH LIGHT OUTPUT
Typically 2300 ILcd/Segment at 100mA Peak,
20mA Average
Designed for Multiplex Operation

L~/~

• CHOICE OF TWO COLORS
High Efficiency Red
Yellow

.',' '·.1

'

1

'1
1

- , ' ., . ", J

• EXCELLENT CHARACTER APPEARANCE
Evenly Lighted Segments
Wide Viewing Angle
Gray Body Color for Optimum Contrast

.~'

.. : '.' ':j

'1"

,'.'.'-

. "'."

,!

,.'.

'.:'

;i:·:~L~~;::L··:::~::~~{;{)·j

o EASY MOUNTING ON PC BOARD OR SOCK:ETS

Description

Industry Standard 7.62mm (0.3 In.) DIP Leads
on 2.S4mm (0.1 In.) Centers
o

. /.···1

The HDSP-3530/4030 and -3730/4130 series are 7.621
10.92mm (0.3/0.43 in,) high efficiency red and yellow
displays designed for use in high light ambient conditions.
These displays are designed for use in instruments,
airplane cockpits, weighing scales, and point of sale
terminals.

CATEGORIZED FOR LUMINOUS INTENSITY
Use of Like Categories Yields a Uniform Display

• IC COMPATIBLE
• MECHANICALLY RUGGED

The HDSP-3530/4030 and -3730/4130 series devices
utilize high efficiency LED chips, which are made from
GaAsP on a transparent GaP substrate. The active
junction area is larger than that used in the 50827610176201765017660 series to permit higher peak
currents.

Devices

PJ"~-dp

MAX . [ -

4.06 (.1601

7.62

CATHODE-e
ANODE..

ANODE..
ANODE-b

10.16
(.4001

MIN.

ANOOEod
NO PIN
CATHooe...
CATHODE·.

~ATHODE'"
CATHODe ..

1
L

0

-35361-4036

o

package Dimensions (HDSP-3730/4130 Series)

10'

10"

11

'0
,1-_ _t-_-+J. 8
Note

6.35 (.2501

L.._ _~--I+ 8

3.181.125}

~=.:!

4J
-

R.H.D.P.

Nota 4

5.21 (.205)

E

H

F.G
FRONT VIEW

1

_12.70 1.500)
MAX.

_I

I-

1.02

I.0j' *
t~t-)..-

t

4.06~.'60}

---_.

C~~~R Note 7

LUMINOUS
INTENSITY
CATEGORY

~I _I

6.35 C.260}

_L

E. F.G.H
END VIEW

DATE CODE

7

I

-I

-11'1-0.261.010}

7.621.300}-j--

IT}

2.54 (.100)

E.F.G.H
SIDE VIEW

8
9
10
11
12
13
14

G

3730/-4130

·3731'-4131

-3733/·4133

CATHODE-.
CATHODE-'

CATHODE·a

NoPIN
NO PIN

5
6

I

----,-----

F

ANODe I'll

3
4

15.24

MIN.

~I

r~N

0.51
1.020)

FUNCTION

E

CATHODE-d.
CATHODE·,
CATHODE·d
NOcONN.15}
CATHODE·.
CATHOOE-.

CATHOOE-.
ANODE[3J

H

I ANODE-.

ANOOE-'
CATHOOEIG]
NO PIN
I NO PIN
NO PIN
NO PIN
NO CONN. I'} NO CONN. IS}
CATHODE-.
ANODE ..
CATHODE-d
ANODE-d
CATHODE..
CATHODE·.
NOPfN

CATHODE·b
ANODE!31

CATHODE-b
ANODE'3}

NO PIN
CATHODE-c

CATHOOE-e
ANODE·e
ANODE·.
ANOOE-dp

ANODE ••
ANODE·.
NOP'N

CATHODE·dp
CATHODE b
CATHODE'a
NO PIN

ANODE-b
CATHODE I.}

ANODE-b

CATHODE"'" • ANODE"'.

NO PIN

-3736/-4136
CATHoDE-d
ANODE-d

I
I

ANOOE·a

NOTES:

1. Dimensions in millimeters and (inches).
2. All untoleranced dimensions are for

reference only.
3, Redundant anodes.
4.

Unused dp position.

S. See Internal Circuit Diagram
6. Redundant cathode.
.
7. For HDSP-4130 series product only.

Internal Circuit Diagram (HDSP-3730/4130 Series)
14

10

E

F

G

66

H

Electrical/Optical Characteristics at TA =25°C
HIGH EFFICIENCY RED HDSP-3530/-3531/-3533/-3536/-3730/-3731/-3733/-3736
Parameter

Test Condition

Min.

Typ.

100mA Pk: 1 of 5
Duty Factor

1000

2300

#,cd

1800

#,cd

APEAK

635

nm

Ad

626

nm

Symbol

I

Luminous Intensity/Segment l3)
Iv

(Digit Average)
Peak Wavelength
Dominant Wavelength(4)
1"--'
Forward Voltage/Segment or D.P.
Reverse Current/Segment or D.P.
Response Time, Rise and Fa1l 16)
Temperature Coefficient of VF/Segment or D.P.

20mA DC

VF

IF

IA

= 100mA
VA = 6V

2.55

tr, tf

AVF/oC

IF

= 100mA

Max.

3.1

Units

V

10

,.,.A

300

ns

-1.1

mV/oC

YELLOW HDSP-4030/-4031/-4033/-4036/-4130/-41311-4133/-4136
Parameter

Symbol

Luminous Intensity/Segment I3 )
Iv
(Digit Average)
Peak Wavelength
Dominant

Wavelength I4•5 )

Typ.

1000

2700

/Lcd

2100

,.,.cd

583

nm

APEAK

Reverse Current/Segment or D.P.

IA

IF = 100mA
VA

= 6Y

tr, tf
::"YF/oC

Mall.

IF = 100mA

2.6
10

Units

nm

585

Ad
VF

Temperature Coefficient of VF/Segment or D.P.

Min.

20mA DC

Forward Voltage/Segment or D.P.

Response Time, Rise and Fa1l 16)

Test Condillon

100mA Pk: 1 of 5
Duty Factor

3.1

V
/LA

200

ns

-1.1

mV;oC

NOTES:
3. The digits are categorized for luminous intensity with the intensity category designated by a letter located on the right hand side of the
package.
4. The dominant wavelength, Ad. is derived from the CIE chromaticity diagram and is that single wavelength which defines the color of the
device.
5. The HDSP-4030/-4130 series yellow displays are categorized as to dominant wavelength with the category designated by a number adjacent
to the intensity category letter.
6. The rise and fall times are for a 10'10-90% change of light intensity to a step change in current.

66

Operational Considerations
Example: For HDSP-4030 series

ELECTRICAL

IJIPEAK = 1.00 at IPEAK = 100mA

The HDSP-3530/3730/4030/4130 series of display devices
are composed of eight light emitting diodes, with the light
from each LED optically stretched to form individual
segments and a decimal point. The LEDs have a large area
P-N junction diffused into a GaAsP epitaxial layer on a
GaP transparent substrate.

_ [20mAJ [1.00] [ 2.7mcd ]
Iv TIME AVG 20mA

The time average luminous intensity may be adjusted for
operating ambient temperature by the following exponential equation:

These display devices are designed for strobed operation
at high peak currents. The typical forward voltage values,
scaled from Figure 4, should be used for calculating the
current limiting resistor values and typical power
dissipation. Expected maximum VF values forthe purpose
of driver circuit design and maximum power dissipation
may be calculated using the following VF models:
VF = 2.0V
VF = 1.9V

Iv (TA) = Iv (25°C) e[K ITA - 25 cB
0

+ IPEAK (110)

For IPEAK

~

(140)

The objective of contrast enhancement is to provide good
display readability in the end use ambient light. The
concept is to employ luminance contrast techniques to
enhance readability by having the off-segments blend into
the display background and have the on-segments stand
out vividly against this same background. Therefore,
these display devices are assembled with a gray package
and untinted encapsulating epoxy in the segments.

Temperature derated strobed operating conditions are
obtained from Figures 1 and 2. Figure 1 relates pulse
duration (tp), refresh rate (f), and the ratio of maximum
peak current to maximum dc current (JPEAK MAX/loc
MAX)' Figure 2 presents the maximum allowed dc c'urrent
vs. ambient temperature. To most effectively use Figures 1
and 2, perform the following steps:

Contrast enhancement in bright ambients may be
achieved by using a neutral density gray filter such as
Panelgraphic Chromafilter Gray 10. Additional contrast
enhancement may be achieved by using the neutral
density 3M Light Control Film (louvered filterl.

1. Determine desired duty factor, DF.
Example: Five digits, DF = 1/5
2. Determine desired refresh rate, f. Use duty factor to
calculate pulse duration, tp. Note: DF = Hp.
Example: f = 1 kHz, tp = 200 J.LS
3. Enter Figure 1 at the calculated tp. Move vertically to the
refresh rate line and record the corresponding value of
IPEAK MAX/I DC MAX.
Example: At tp = 200J.Ls and f = 1 kHz, IPEAK MAX/I DC
MAX = 4.0
4. From Figure 2, determine loc MAX. Note: loc MAX is
derated above T A = 50° C.
Example: At TA = 60°C, loc MAX = 25mA
5. Calculate IPEAK MAX from IPEAK MAX/loc MAX ratio
and calculate IAVG from IPEAK MAX and DF.
Example: IPEAK MAX = (4.m (25mA) = 100mA peak.IAVG
= (1/5) (100mA) = 20mA average.

MECHANICAL
These devices are constructed utilizing a lead frame in a
standard DIP package. The LED dice are attached directly
to the lead frame. Therefore, the cathode leads are the
direct thermal and mechanical stress paths to the LED
dice. The absolute maximum allowed junction temperature, TJ MAX, is 100°C. The maximum power ratings have
been established so that the worst case VF device does not
exceed this limit. For most reliable operation, it is
recommended that the device pin-to-ambient thermal
resistance through the PC board be less than 320° C/W per
segment. This will then establish a maximum thermal
resistance LED junction-to-ambient of 602° C/W per
segment.

The above calculations determine the maximum allowed
strobing conditions. Operation at a reduced peak current
and/or pulse width may be desirable to adjust display light
output to match ambient light level or to reduce power
dissipation to insure even more reliable operation.

To optimize device optical performance, specially
developed plastics are used which restrict the solvents
that may be used for cleaning. It is recommended that only
mixtures of Freon (F113) and alcohol be used for vapor
cleaning processes, with an immersion time in the vapors
of less than two (2) minutes maximum. Some suggested
vapor cleaning solvents are Freon TE, Genesolv DI-15 or
DE-15, Arklone A or K. A 60°C (140°F) water cleaning
process may also be used, which includes a neutralizer
rinse (3% ammonia solution or equivalent), a surfactant
rinse (1% detergent solution or equivalent), a hot water
rinse and a thorough air dry. Room temperature cleaning
may be accomplished with Freon T -E35 or T -P35, Ethanol,
Isopropanol or water with a mild detergent.

Refresh rates of 1 kHz or faster provide the most efficient
operation resulting in the maximum possible time average
luminous intensity.
The time average luminous intensity may be calculated
using the relative efficiency characteristic of Figure 3,
IJIPEAK' and adjusted for operating ambient temperature.
The time average luminous intensity at TA=25°C is
calculated as follows:

v TIME AVG

K
-0.0131/oC
-0.0112/oC

CONTRAST ENHANCEMENT

For 10mA ::; loc ::; 30mA

I

Device
-3530/3730 Series
-4030/4130 Series

Example: Iv (70°C) = (2.7mcd) e[-0.0112 170-25U= 1.63mcd/
segment

30mA

+ loc

= 2.7mcd/
segment

= [IAVG ] [IJIPEAK] [Iv DATA SHEET]
20mA

67

,

i

OPERATION I N

THIS REGION

'-

,..,

\.

\~

~

r:

IDCMAX

;~..('.

~,~-a'9<:

~f,~

t

I

'?s,-~"'-$-

K

~ '?

\

\
10

REOUIRES
TEMPERATUR
DERATING OF

100

".>-

i\

'lll

I~

DC OPERA TION
10,000

1000

tp - PULSE DURATION - p.s

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration.

40

1.1

-

-~

HDSp·3530/3730 SERIES

«

1.0

E
I

...

~

.9

~

30

a:
a:
u

'\..

::l
U

0

""X

20

"
«
"_:5

12
10

::l

'\..

«
I

X

/

.8
.7

~

.5 1/

"\

/ ' -":\

./

.6

/

I
i

.3

.2
1
. 20

120

1.8

i I
HDSP-3530!3730 SERIES

100

::l

-

U

I

«
'"

I

60

~

~-,--'

40

I

!J
II

H

I
20

~

o

1.0

! ...t
1.5

/I

•

1.2

~ ~
00

1.0

~~
-' «

.8

... z
~a:

HDsP403OI41~

I

/

E

0

~g

A

2.5

N

/

/

zw

//+ t-xt
+

2.0

...

W

-,.' -'---i'--

I

1.4

Z

,-+-

~

'"
_it

1.6

~
z «

Ci.i _

11

i

80

0

II

,

;\ -j

!

~

a:
«
;:
a:

120

100

Figure 3. Relative Elliciency (Luminous
Intensity per Unit Current) vs. Peak Segment Current.

E

a:
a:

80

60

40

IpEAK - PEAK SEGMENT CURRENT - rnA

Figure 2. Maximum Allowable DC Current
per Segment vs. Ambient Temperature.

«
I

HDse·4030/4130 SERI ES

.4

TA - AMBIENT TEMPERATURE - °C

...

V

V

1
3.0

.6
.4

.2

./'

00

3.4

./

/

/

10

15

20

25

30

IF - SEGMENT DC CURRENT - rnA

V F - PEAK FORWARD VOLTAGE - V

Figure 4. Peak Forward Segment Current vs.
Peak Forward Voltage.

Figure 5. Relative Luminous Intensity vs. DC
Forward Current.

68

HEWLETT

PACKARD

.3 INCH SEVEN SEGMENT DISPLAYS
HIGH EFFICIENCY RED . 5082-7610 SERIES
YEllOW· 5082 -7620 SERIES

COMPONENTS

GREEN·

5082-7630 SERIES

TECHNICAL DATA APRIL 1978

Features
e COMPACT SIZE

• CHOICE OF 3 BRIGHT COLORS
High Efficiency Red
Yellow
Green
OJ

LOW CURRENT OPERATION
As Low as 3mA per Segment
Designed for Multiplex Operation

OJ

EXCELLENT CHARACTER APPEARANCE
Evenly Lighted Segments
Wide Viewing Angle
Body Color Improves "Off" Segment
Contrast

o EASY MOUNTING ON PC BOARD OR

SOCKETS
Industry Standard 7.S2mm (.3 in.) DIP
Leads on 2.S4mm (.1 in.) Centers
.. CATEGORIZED FOR LUMINOUS
INTENSITY
Use of Like Categories Yields a Uniform
Display
.. IC COMPATIBLE
.. MECHANICALLY RUGGED

Description
The 5082-7610, -7620, and -7630 series are 7.62mm (.3 in.) High
Efficiency Red, Yellow, and Green seven segment displays.
These displays are designed for use in instruments, point of sale
terminals, clocks, and appliances .
The -7610, and -7620 series devices utilize high efficiency LED
chips which are made from GaAsP on a transparent GaP
substrate.
The -7630 series devices utilize chips made from GaP on a
transparent GaP substrate.

Devices
Pari No. 5082-

Package
Drawing

Color

Description

-7610

High Efficiency Red

Common Anode Left Hand Decimal

-7611

High Efficiency Red

Common Anode Right Hand Decimal

B

-7613

High Efficiency Red

Common Cathode Right Hand Decimal

C

A

-7616

High Efficiency Red

Universal Overflow ±1 Right Ha"d Decimal

0

-7620

Yellow

Common Anode Left Hand Decimal

A

-7621

Yellow

Common Anode Right Hand Decimal

B

-7623

Yellow

Common Cathode Right Hand Decimal

C

-7626

Yellow

Universal OverflOW ±1 Right Hand Decimal

0

-7630

Green

Common Anode Left Hand Decimal

A

-7631

Green

Common Anode Right Hand Decimal

B

-7633

Green

Common Cathode Right Hand Decimal

C

-7636

Green

Universal Overflow ±1 Right Hand Decimal

0

NOTE: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram D.

69

--

package Dimensions
FUNCTION

.......... 5.18
1.2041

PIN
10'

1 +

14

e

2

t

3

+fo.~OIi

L.H.D.P.
Note 7

13
12+

i110<
~~
d:

....L---=-W'

I~~~I

1:+

1
2

3
4

19.05' 0.25
1.750' .0101

5
6
7
8

9'----R.H.D.P.

5.721.2251

8

Note 7

9

--.----~-+---tJ
3.94 (.1551
3.94 1.1551
5.08
(.2001

10

"12

A,B,C

13
14

0

A
·7610/-7620/
-7630
CATHODE..
CATHODE·!
ANODEI31
NOPIN
NO PIN

CATHODE-dp
CATHODE ..
CATHODE-d
NOCONN.151
CATHODE·.
CATHODE ..
NO PIN
CATHODE·b
ANODEl3i

8

-7611/-7621/
-7631
CATHODE·,
CATHDDE·!
ANDDE"I
NO PIN
NO PIN
NOCONN.15i
CATHODE ..
CATHODE-d
CATHODE... p
CATHODE..,
CATHODE,\!
NOPIN
CATHODE-b
ANODE(,I

C
-7613/-7623/

-7633
CATHODEI.I
ANODE·!
ANODE ..

D
-1616/-7626/
-7636
ANODEod
NOPIN
CATHODE-d

ANODE·e

CATt-IODE..:-

ANOOE·d
CATHODE1.i
ANODE-dp
ANODE-c:
ANODE-b
ANODE·,

CATHODE ..
ANODE ..
ANODE..,
ANODE-dp
NOPIN
CATHODE-dp
CATHODE·b
CATHODE ..
ANODS ..
ANODE·b __

LUMINOUS

INTENSITY
CATEGORY

4.45 (.1751

,
DATE CODe

, I 6.10
11.2401

A,B,O
SIDE

'0 .'6 MAX I--1(4001
'1
-~

~

:-~-l '"j'2.54
1.1001

0.51
(.0201

~

Rt

1.1801

4.061.1601
MIN.

~

I

--11'1--0.251.0101

7.621.3001~

A,B,C,O
END

C
SIDE
NOTES,
1. Dimensions in millimeters and (inches).
2. All untoleranced dimensions are
for reference only

3. Redundant anodes.

4.
5.
6.
1.

Unused dp position.
See Internal Circuit Diagram.
Redundant cathode.
See part number table for l.H.D.P. and R.H.D.P. designation.

Internal Circuit Diagram

A

C

B

o

Absolute Maximum Ratings
DC Power Dissipation Per Segment or D.Pyl (T A=25° C)
. . . . . . . . . .. 50mW
Operating Temperature Range ................................. -40°C to +85°C
Storage Temperature Range ................................... -40°C to +85°C
Peak Forward Current Per Segment or D.P.!J) (TA=25°C) .................... 60mA
Average Forward Current Per Segment or D.P.(1.2) (TA=25°C) ............... 20mA
Reverse Voltage Per Segment or D.P ........................................ 6.0V
Lead Soldering Temperature ................................... 260° C for 3 Sec
[1.59mm (1/16 inch) below seating plane 141 )
70

Notes: 1. See power derating curve
(Fig. 2). 2. Derate DC current from
50'C at O.4mAI"C per segment.
3. See pulse width limitation curve
(Fig. 2) and Duty Factor Curve (Fig.
5). 4. Clean only in water, isopropanol, ethanol, Freon TF or TE (or
equivalent) and Genesolv 01-15 or
DE-15 (or equivalenl).

Electrical/Optical Characteristics at TA =25°C
HIGH EFFICIENCY RED 5082-7610/-7611/-7613/-7616
Parameter
Luminous Intensity/Segment 15.81

Symbol

k
(Digit Average)
Peal( Wavelength

Test Condition

5mA D.C.
20mA D.C.
60mA Pk: 1 of 6
Duty Factor

Min.
70

Typ.

Max.

Units

250
1430

/Lcd
/Lcd

810

/Lcd

APEAK

635

nm

Dominant Wavelength {6\

Ad

626

nm

Forward Voltage/Segment or D.P.

VF

Reverse Current/Segment or D.P.

IR

Response Time {7l
Temperature Coefficient of Ve/Segment or D.P.

IF = 5mA
IF = 20m A
IF =60mA

1.7
2.0
2.8

VR =6V

2.5

10

/LA
ns

90
-2.0

t" tf
t;.VF/oC

V

mVrC

YELLOW 5082-7620/-7621/-7623/-7626
Symbol

Parameter
Luminous Intensity/Segment {5"1

5mA D.C.
20mA D.C.
60mA Pk: 1 of 6
Duty Factor

I,
(Digit Average)
Peak Wavelength
Dominant Wavelength {61

Test Condition

Min.
90

APEAK
Ad

Forward Voltage/Segment or D.P.

II' = SmA
II' - 20m A
IF - 60mA

VI

Reverse Current/Segment or D.P.
Response Time (71

II<

Temperature Coefficient of V";Segment or D.P.

VI< =6V

Typ.

Max.

/Lcd
/Lcd

740

/Lcd

583

nm

585
1.8
2.2
3.1

nm
2.5

10

V
/LA
ns
mV/oC

90

t" t,
vFrc

Units

200
1200

-2.0

GREEN 5082-7630/-7631/-7633/-7636
Parameter
Luminous Intensity/Segment 15.S)

Symbol

10mA
20mA
60mA
Duty

I,
(Digit Average)
Peak Wavelength
Dominant Wavelength

Test Condition

D.C.
D.C.
Pk: 1 of 6
Factor

Min.
150

APEAK
(6)

Ad

Forward Voltage/Segment or D.P.

Vr

Reverse Current/Segment or D.P.
Response Time (71

IF

Temperature Coefficient of VF/Segment or D.P.

IF = 5mA
IF - 20mA
iI· - 60mA
VR = 6V

Typ.

Units

/Lcd
/Lcd

540

/Lcd

565

nm

572
1.9
2.2
2.9

nm

10
90
-2.0

t" I,
'::Nrl°C

Max.

300
765

2.5

V
/LA
ns

mVrC

NOTES: .5. The digits are categorized for luminous intensity with the intensity category designated by a letter located on the right hand side of the package.
6. The dominant wavelength, Ad. is derived from the C.I.E. Chromaticity Diagram and is that single wavelength which defines the color of the device.
7. Time for a 10% - 90% change of light intensity for step change in current.
8. Temperature coefficient of luminous intensity 1,;oC is determined by the formula:
IVTA

= IV250Ce[K(TA-25°C)].

Device

-7610 series
-7620 series
-7630 series

71

-K-

-.0131/'C
-.0112/'C
-.0104/'C

operational Considerations
These displays may be operated in the strobed mode at
currents up to 60mA peak. When operating at peak
currents above 5mA for red and yellow or 1OmA for green,
there will be an improvement in the relative efficiency of
the display (see Figure 3). Light output at higher currents
can be calculated using the following relationship:

ELECTRICAL
The 5082-7600 series of display products are arrays of
eight light emitting diodes which are optically magnified
to form seven individual segments plus a decimal point.
The diodes in these displays utilize a Gallium Arsenide
Phosphide junction on a Gallium Phosphide substrate to
produce high efficiency red and yellow emission spectra
and a Gallium Phosphide junction for the green. In the
case of the red displays, efficiency is improved by at least
a factor of 4 over the standard Gallium Arsenide
Phosphide based technology. The use of Gallium
Phosphide as the substrate does result in an internal
dynamic resistance in the range of 12-480. It is this
resistance which causes the substantially higher forward
voltage specifications in the new devices.

~ IAVO

] [Iv SPEC ]
IVTlME AVO = - - -]['7IPEAK
IAVO SPEC '71 PEAK SPEC
I AVO

'7IPEAK

+ Rs

Iv SPEC

(IF - 5mA)

Relative efficiency at data sheet peak
current where luminous intensity Iv SPEC
is specified.
= Data sheet luminous intenSity, specified at
IAVO SPEC and IPEAK SPEC.

Example: Ip = 40mA and IAVO = 10mA:

where VSmA and Rs are found in the following table:
Device
-7610 Series

VSmA
1.65V

Rs
210

-7620 Series

1.75V

250

-7630 Series

= Relative efficiency at operating peak current.

'7IPEAK SPEC

The user should be careful to scale the appropriate
forward voltage from the VF versus I F curve, Figure 4, when
designing for a particular forward current. Another way to
obtain VF would be to use the following formula:
VF = VSmA

Operating point average current

IAVO SPEC= Average current for data sheet luminous intensity value, Iv SPEC

1.85V

Iv TIME AVO = ( 10mA)
5mA (1.58)
-1- (300,.,d) = 948,.,cd/seg.
CONTRAST ENHANCEMENT
The 5082-7600 series devices have been optimized for use
in actual display systems. In order to maximum "ON-OFF"
contrast, the bodies of the displays have been painted to
match the appearance of an unilluminated segment. The
emission wavelength of the red displays has been shifted
from the standard GaAsP - 655nm to 635nm in order to
provide an easier to read device.

190

Figure 1 relates refresh rate, f, and pulse duration, tp, to a
ratio which defines the maximum desirable operating
peak current as a function of derated dc current,
Ip MAX/I DC MAX. To most effectively utilize Figure 1, perform the following steps:

All of the colored display products should be used in
conjunction with contrast enhancing filters. Some
suggested contrast filters: for red displays, Panelgraphic
Scarlet Red 65 or Homalite 1670; for yellow displays,
Panelgraphic Yellow 27 or Homalite (100-1720, 100-1726);
for green, Panelgraphic Green 48 or Homalite (100-1440,
100-1425). Another excellent contrast enhancement
material for all colors is the 3M light control film.

1. Determine desired duty factor.
Example: Four digit display, duty factor = 1/4
2. Determine desired refresh rate, f. Use duty factor to
calculate pulse duration, tp.
Note: ftp = Duty Factor
Example: f=1 kHz; tp=250 ,.,sec
3. Enter Figure 1 at the calculated tp. Move vertically to the
refresh rate line and then record the corresponding
value of Ip MAX/loc MAX.
Example: At tp=250 ,.,sec and f=1 kHz,
Ip MAx/IDe MAX = 4.0
4. From Figure 2, determine the value for loc MAX.
Note: loc MAX is derated above T A=50° C
Example: At TA=70°C, loc MAX=12mA
5. Calculate Ip MAX from Ip MAX/loc MAX ratio and
calculate IAVO from Ip and duty factor.
Example: Ip = (4.0) (12mA) = 48mA peak
IAvo=(1/4) (48mA) = 12mA average.

MECHANICAL
The 5082-7600 series devices are constructed utilizing a
lead frame in. a standard DIP package. The individual
packages may be close-packed on 10.16mm (.4 in.)
centers on a PC board. Also, the larger character height
allows other character spacing options when desired. The
leadframe has an integral seating plane which will hold the
package approximately 1.52mm (.060 in.) above the PC
board during standard soldering and flux removal
operation. To optimize device performance, new materials
are used that are limited to certain solvent materials for
flux removal. It is recommended that only mixtures of
Freon and alcohol be used for post solder vapor cleaning
processes, with an immersion timein the vapors up to two
minutes maximum. Suggested products are Freon TF,
Freon TE, Genesolv DI-15 and Genesolv DE-15. Isoproponal, Ethanol or water may also be used for cleaning
operations.

The above calculations determine the maximum
tolerable strobing conditions. Operation at a reduced
peak current or duty factor is suggested to help insure
even more reliable operation.
Refresh rates of 1kHz or faster provide the most efficient
operation resulting in the maximum possible time average
luminous intenSity.

72

20
15
10

•
8
7

OPERATION IN
THIS REGION
REOUIRES
TEMPERATURE

I\.

1\

\

DERATING OF
'oCMAX

\ ,
1>."
1:
XI
~

X

::l"

"

~I

1.5

"

"

u

1

~.s>

~~- - ~ ~y~

,

\.

If
1

10

~ ~'-R

1\ 1

1r

1000

100

10000 DC OPERATION

tp - PULSE DURATION - JlSEC

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration.

~

\

18

\

I

~

16

a:
a:

14

CJ
CJ

2

"

I--

\

I

""
"

""~,,,O~C;\o'"

"~c.o~\,,,c;1"

0

8i-- 70V~"~
6/

i
I

--r'-

LA
~o

C

1\ 1

\

--l

""

~

37

a:

31

15

1\

I

20

11

-

4

u

I

1.8

43

26

)(

.s>

1.•

-- 50

20

I ~082;7620 S~ ~ f--

5082·7630 SERIES
1.7

I

..... ~ X~

1.6

~

>CJ

2

iii

u

U

c

""
"X
""
I

~
w

!i...

1.1

w
a:

)(

"
u

"

1.4
1.3

2:

1.2

..

~

.;: ~ ~ 6\l1H61~ERIES

'"

I
/

1.0

.8

..0

2

,

1.5

1/

.7

0

00
TA - AMBIENT TEMPERATURE _

cc

5

10 15 20 25 30 35 40 45 50 55 60 65
I pEAK - PEAK SEGMENT CURRENT - rnA

Figure 3. Relative Luminous Efficiency (Luminous
Intensity per Unit Current) vs. Peak Segment

Figure 2. Maximum Allowable DC Current and DC
Power Dissipation Per Segment as a Function
of Ambient Temperature.

Current.

eo
50

",..
E
I

iiirr

5082·7610 SERIES'/

I

40

U

30

IV

~
I

10

o

7~

VI

~

rr 20
-~

I

5D82.7~ bE~'E~/

a:

"rrc

1 I

5082·7620 SERIES

if}
~rL~

/.~f
o

0.5

1.0

1.41.61.82.02.22.42.62.83.03.2

V f - FORWARD VOLTAGE - V

Figure 4. Forward Current vs. Forward Voltage
Characteristic.

Figure 5. Normalized Angular Distribution of Luminous
Intensity.

73

,

,

'~43
HEWLETT'

PACKARD

COMPONENTS

INCH SEVEN SEGMENT DISPLAYS'
HIGH EFFICIENCY RED • 5082 -7650 SERIES
YEllOW • 5082 -7660 SERIES
GREEN • 5082 -7670 SERIES
TECHNICAL DATA APRIL 1978

Features
• LARGE DIGIT
Viewing up to 6 meters (19.7 feet)
• CHOICE OF 3 BRIGHT COLORS
High Efficiency Red
Yellow
Green
• LOW CURRENT OPERATION
As Low as 3mA per Segment
Designed for Multiplex Operation
• EXCELLENT CHARACTER APPEARANCE
Evenly Lighted Segments
Wide Viewing Angle
Body Color Improves "Off" Segment
Contrast
• EASY MOUNTING ON PC BOARD OR
SOCKETS
Industry Standard 7.62mm (.3") DIP
Leads on 2.S4mm (.1") Centers

Description

• CATEGORIZED FOR LUMINOUS
INTENSITY
Assures Uniformity of Light Output from
Unit to Unit within a Single Category
• IC COMPATIBLE
• MECHANICALLY RUGGED

The 5082-7650, -7660, and -7670 series are large 10.92mm (.43
in.) Red, Yellow, and Green seven segment displays. These
displays are designed for use in instruments, point of sale
terminals, clocks, and appliances.
The -7650 and -7660 series devices utilize high efficiency LED
chips which are made from GaAsP on a transparent GaP
substrate.
The -7670 series devices utilize chips made from GaP on a
transparent GaP substrate.

Devices
Package Drawing

Part No. 5082-

Color

-7650

High Efficiency Red

Common Anode Left Hand Decimal

-7651

High Efficiency Red

Common Anode Right Hand Decimal

B

-7653

High Efficiency Red

Common Cathode Right Hand Decimal

C

-7656

High Efficiency Red

Universal Overflow ±1 Right Hand Decimal

D

-7660

Yellow

Common Anode Left Hand Decimal

A

-7661

Yellow

Comon Anode Right Hand Decimal

B

-7663

Yellow

Common Cathode Right Hand Decimal

C

-7666

Yellow

Universal Overflow ±1 Right Hand Decimal

D

-7670

Green

Common Anode Left Hand Decimal

A

-7671

Green

Common Anode Right Hand Decimal

B

-7673

Green

Common Cathode Right Hand Decimal

C

-7676

Green

Universal Overflow ±1 Right Hand Decimal

D

Description

Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins, see internal diagram D.

74

A

Package Dimensions
10'

j,+

~ '===:J
a .\.

'
1
I

+

19.05! 0.25 4 ...
1.750

.010) : :

1

+

bO +

00

\\

11

10.36

:0-.1)

...

8

R.H.D.P.

\

NOTE [4]

A

D

B,C

FRONT VIEW
FUNCTION

LUMINOUS

INTENSITY

_I

1

_12.70 (.SOO)
MAX.

_I

PIN

CATEGORY

~7670

_~::±'250)

I
~I

4.061.100)
MIN.,

f

L

1

END VIEW

IT
15.24

I
--111- 0.25 (.010)

7.621.300)-t----!

A
-165iJ/-7fjfJ1)j

-,

DATA CODe

2.54 (.100)

I
2
3
4
6
6

7
8
9
III

11
12
13

SIDE VIEW
NOTES,
1. Dimensions in millimeters and (inches).
2. All untoleranced dimensions are for

I.

B

-1551/-75611
~7671

CATfIODE ..
CATfIODE·'
ANODE"!
NO PIN·
NO.IN
NOCONN.I"

CATIlODE·.
CATHODE·'
ANODEI'I
NO PIN
NO.IN
CATHODE-dp
CATHODE·.

CATtroDE-&.

CATHOOE-d

CATHODE-d

NO CONN. 1&)
CATHODE·,

CATHOOe·c

CATHODE~

NO.IN
CATHODE·b
ANOOEI3I .

CATHODE-dp
CATHODE·S
NOPIN
CATHODE·b

ANODE I')

C
-7553/-76631
-1613
ANOOE.a
ANODE·f

CATHODEl.1
NO PIN

NO PIN
NOCONN.l5]
ANODE.e
ANOD£-d

0

·765<)/·76661
·7616
CATHOOE-d

ANODE-d
NO PIN
CATHODE-e
CATHOOE-e
ANODE-e
ANOOE·c

ANODE-dp
·ANODE",

ANODE-dp
CATHODE·dp
CATHODE·.

ANODE~

CATHODE-a

NO PIN
ANODE·.
CATHODEI.I

NO PIN
ANOOE-a
ANODE·.

reference only.
3. Redundant anodes.

4. Unused dp position.
5. See Internal Circuit Diagram.
6. Redundant cathode.

Internal Circuit Diagram

A

B

C

Absolute Maximum Ratings
DC Power Dissipation PerSegmentorD.p.(l) (TA=25°C) ...................... 50mW
Operating Temperature Range ................................. -40°C to +85°C
Storage Temperature Range ................................... -40"C to +85°C
Peak Forward Current Per Segment or D.p(3)(TA=25°C) .................... 60mA
DC Forward Current Per Segmentor D.p.(1.2) (T A=25°C) ...................... 20mA
Reverse Voltage Per Segment or D.P............................... ; ........ 6.0V
Lead Soldering Temperature ................................... 260° C for 3 Sec
[1.59mm (1/16 inch) below seating plane(4)]
75

D

Notes: 1. See power derating
curve (Fig.2). 2. Derate average
current from 50" C at O.4mAf' C per
segment. 3. See Maximum Tolerable Segment Peak Current vs.
Pulse Duration curve, (Fig. 1). 4.
Clean only in water, isopropanol,
ethanol, Freon TF or TE (or
equivalent) and GenesolvDI-150r
DE-15 (or equivalent).

Electrical/Optical Characteristics at TA =25°C
HIGH EFFICIENCY RED 5082-7650/-7651/-7653/-7656
Parameter

Symbol

Luminous Intensity/Segment(5,8)

L
(Digit Average)
Peak Wavelength

Test Condition

Min.

Typ.

5mA D.C.
20mA D.C.
60mA Pk: 1 of 6
Duty Factor

135

300
1720

Max.

Units

970

pcd
pcd
pcd

ApEAK

635

nm

Dominant Wavelength(6)

Ad

626

nm

Forward Voltage/Segment or D.P.

VF

= 5mA
IF = 20mA

1.7
2.0
2.8

IF

IF = 60mA
Reverse Current/Segmenl or D.P.
Response Time(7)
Temperature Coefficient of VF/Segmenl or D.P.

VR

IR

= 6V

V

2.5

10

I" tr
!:"vF/oC

pA

90

ns

-2.0

mVrC

YELLOW 5082-7660/-7661/-7663/-7666
Parameter

Symbol

Luminous Inlensity/Segment(5,8)
I,.
(Digit Average)

Test Condition

Min.

Typ.

5mA D.C.
20mA D.C.
60mA Pk: 1 of 6
Duty Factor

100

250
1500

pcd
pcd

925

!lcd

Max.

Units

ApEAK

583

nm

Dominant Wavelength(6)

Ad

585

nm

Forward Vollage/Segment or D.P.

VF

Peak Wavelength

Reverse Current/Segment or D.P.

IF

= 5mA

I.
If

= 20mA

VI(

I"

Response Time(7)

1,. t,

Temperature Coefficient of VdSegment or D.P.

VF/oC

1.8
2.2
3.1

= 60mA

V

2.5

= 6V

!lA
90

ns

-2.0

mVIOC

GREEN 5082-7670/-7671/-7673/-7676
Parameter

Symbol

Luminous Intensity/Segment (5,8)
I,
(Digit Average)

Test Condition
10mA D.C.
20mA D.C.
60mA Pk: 1 of 6
Duty Factor

Min.

Typ.

125

250
640

!led
!lcd

450

)lcd

Max.

Units

APEAK

565

nm

Dominant Wavelength(6)

AJ

572

nm

Forward Voltage/Segment or D.P.

VF

Peak Wavelength

Reverse Current/Segment or D.P.
Response Time (11
Temperature Coefficient of VclSegment or D.P.

= 10mA
IF = 20mA
IF = 60mA

IF

V R = 6V

II'

1.9
2.2
2.9

V

2.5

10

/i A

t" t,

90

ns

::"vr./" C

-2.0

mVrC

NOTES:
5. The digits are categorized for luminous intensity with the intenSity category deSignated by a letter located on the right hand side of the package.
6. The dominant wavelength. Ad. is derived from the C.I.E. Chromaticity Diagram and is that single wavelength which defines the colorofthedevice.
7. Time for a 10% - 90% change of light intensity for step change in current.
8. Temperature coefficient of luminous intenSity Iv.FG is determined by the formula: IVTA

76

= I V2S0 ,c elK (TA - 25"C)].

DEVICE

-7650 Series
-7660 Series
-7670 Series

K
-.0131;oC
-.0112;oC
-.0104;oC

20
15
10

9

8
7

OPERATION IN
THIS REGION

\
\

6

~

\
~

\

\1

1.5

,1

REQUIRES

TEMPERATURE

~\

I\.

\

tp -

Ii

I

"

1000

PULSE DURATION -

'oCMAX

,

?~ ~y~
~. ~,-~

100

10

DERATING OF

~SEC

10000 DC OPERATION

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration.

1. 9

"
E
I

f-

'6

"'"'u=>

,4

ffi

u

":E=>

i\

'8

31
26

~o

\

,r-,r-~"~~G\o"

,<-",Va~\"G

70v"''''~

-

":EI

37

\

I A

10

X

\

I

'2

:E

43

/

\

20

s:E
I

""u

-

~

f2

u

":E=>
:E

,
"
1\
" ""
:E

u

~w

1. 3

~

1. 1

~

V

V

1.2

/

1. 0
.9

,-: f.- '?" 5;J2.7~5~SERIES

II

II

.7
20

30

40

50

60

70

60

o

00

80 85 90

"

50BH650 SERIES . /
40

"'u"'=>
""'

30

"'

20

J

I

I

I

r--------- 5082-7660I SERIES
I
I
I

50B2· 7'70 ~ER IES . /

to

15 20 25 30 35 40 45 50 55 60 65

IpEAK - PEAK SEGMENT CURRENT - rnA

Figure 3. Relative Luminous Efficiency (Luminous
Intensity per Unit Current) vs. Peak Segment
Current.

~'l~
~~

I ! vV
:I

-~

10

o

5

Ij~

50
E
I

"s:

5

.B

Figure 2. Maximum Allowable DC Current and DC
Power Dissipation Per Segment as a Function
of Ambient Temperature.

~

1.4

"'

~

TA - AMBIENT TEMPERATURE - °C

ffi

,.

ffi
u
>

09
10

f-

>

u

Ii-" I--

K XL

1. 6

1!"'

X

.P

5082·1670 SERIES

1. 7

I

-

I 5QB2.7660S~

,.B

50

20

o

0.5

1.0

VV

L~W

1.4 1.6 1.8 2.0 2.2 2.4 2.62.8 3.0 3.2

V F - FORWARD VOLTAGE - V

Figure 4. Forward Current
Characteristic.

VS.

Forward Voltage

Figure 5. Normalized Angular Distribution of Luminous
Intensity.

77

Operational Considerations
These displays may be operated in the strobed mode at
currents up to 60mA peak. When operating at peak
currents above 5mA for red and yellow or 10mA for green,
there will be an improvement in the relative efficiency of
the display (see Figure 3). Light output at higher currents
can be calculated using the following relationship:

ELECTRICAL
The 5082-7600 series of display products are arrays of
eight light emitting diodes which are optically magnifiEid
to form seven individual segments plus a decimal point.
The diodes in these displays utilize a Gallium Arsenide
Phosphide junction on a Gallium Phosphide substrate to
produce high efficiency red and yellow emission spectra
and a Gallium Phosphide junction for the green. In the
case of the red displays, efficiency is improved by at least
a factor of 4 over the standard Gallium Arsenide
Phosphide based technology. The use of Gallium
Phosphide as the substrate does result in an internal
dynamic resistance in the range of 12-480. It is this
resistance which causes the substantially higher forward
voltage specifications in the new devices.
The user should be careful to scale the appropriate
forward voltage from the VFversus IF curve, Figure 4, when
designing for a particular forward current. Another way to
obtain VF would be to use the following formula:
VF = VSmA

+ Rs (IF -

~

' Avo
Operating pOint average current
IAVO SPEC= Average current for data sheet luminous intensity value, Iv SPEC
I7IpEAK

= Relative efficiency at operating peak current.

I7IpEAK SPEC

Relative efficiency at data sheet peak
current where luminous intensity Iv SPEC
is specified.
Iv SPEC = Data sheet luminous intensity, specified at
IAVO SPEC and IpEAK SPEC·

5mA)

=

Example: Ip = 40mA and IAVO = 10mA:

r.1.58)

where VSmA and Rs are found In the following table:
Device
-7650 Series
-7660 Series
-7670 Series

J

IAVO
] [ Iv SPEC ]
Iv TIME AVO = - - [I7IPEAK
IAVO SPEC I7IpEAK SPEC

VSmA
1.65V
1.75V
1.85V

.

Iv TIME AVO = ( 10mA)
5mA \-1- (300I'd) = 94Bl'cd/seg.

Rs
210
250
190

CONTRAST ENHANCEMENT
The 50B2-7600 series devices have been optimized for use
in actual display systems. In order to maximum "ON-OFF"
contrast, the bodies of the displays have been painted to
match the appearance of an unilluminated segment. The
emission wavelength of the red displays has been shifted
from the standard GaAsP - 655nmto 635nm in order to
provide an easier to read device.

Figure 1 relates refresh rate, f, and pulse duration, tp, to a
ratio which defines the maximum desirable operating
peak current as a· function of derated dc current,
Ip MAX/loc MAX. To most effectively utilize Figure 1, perform the following steps:

All of the colored display products should be used in
conjunction with contrast enhancing filters. Some
suggested contrast filters: for red displays, Panelgraphic
Scarlet Red 65 or Homalite 1670; for yellow displays,
Panelgraphic Amber 23 or Homallte (100-1720, 100-1726);
for green, Panelgraphic Green 4B or Homalite (100-1440,
100-1425). Another excellent contrast enhancement
material for all colors Is the 3M light control film.

1. Determine desired duty factor.
Example: Four digit display, duty factor = 1/4
2. Determine desired refresh rate, f. Use duty factor to
calculate pulse duration, tp.
Note: ftp = Duty Factor
Example: f=1 kHz; tp=250 I'sec
3. Enter Figure 1 atthe calculated tp. Move vertically to the
refresh rate line and then record the corresponding
value of Ip MAX/IDC MAX.
Example: At tp=250 jisec and f=1 kHz,
Ip MAx/I DC MAX = 4.0
4. From Figure 2, determine the value for loc MAX.
Note: IDc MAX is derated above TA=50" C
Example: At TA=70"C, loc MAX=12mA
5. Calculate Ip MAX from Ip MAX/loe MAX ratio and
calculate IAVO from Ip and duty factor.
Example: Ip = (4.0) (12mA) = 48mA peak
IAvo=(1I4) (48mA) =< 12mA average.

MECHANICAL
The 5082-7600 series devices are constructed utilizing a
lead frame in a standard DIP package. The individual
packages may be close-packed on 12.7mm (.5 in.) centers
on a PC board. Also, the larger character height allows
other character spacing options when desired. The
leadframe has an integral seating plane which will hold the
package approximately 1.52mm (.060 in.) above the PC
board during standard soldering and flux removal
operation. To optimize device performance, new materials
are used that are limited to certain solvent materials for
flux removal. It is recommended that only mixtures of
Freon and alcohol be used for post solder vapor cleaning
processes, with an immersion time in the vapors up to two
minutes maximum. Suggested products are Freon TF,
Freon TE, Genesolv 01-15 and Genesolv DE-15. Isoproponal, Ethanol or water may also be used for cleaning
operations.

The above calculations determine the maximum
tolerable strobing conditions. Operation at a reduced
peak current or duty factor is suggested to help insure
even more reliable operation.
Refresh ratl'S of 1kHz or faster provide the most efficient
operation resulting in the maximum possible time average
luminous intenSity.

78

l&

0.3 INCH RED
SEVEN SEGMENT
DISPLAY

-O=:-~-==

HEWLETT

PACKARD

COMPONENTS

5082 -7730 SERIES
5082-7740
TECHNICAL DATA APRIL 1978

Features
• 5082-7730
Common Anode
Left Hand D.P.
o 5082-7731

Common Anode
Right Hand D.P.
o 5082-7736

Polarity and Overflow Indicator
Universal Pinout
Right Hand D.P.
• 5082-7740
Common Cathode
Right Hand D.P.

Description
The HP 5082-7730/7740 series devices are common anode
LED displays. The series includes a left hand and a right
hand decimal point numeric display as well as a polarity
and overflow indicator. The large 7.62 mm (0.3 in.) high
character size generates a bright, continuously uniform
seven segment display. Designed for viewing distances of
up to 3 meters (9.9 feet), these single digit displays provide
a high contrast ratio and a wide viewing angle.

o EXCELLENT CHARACTER APPEARANCE

Continuous Uniform Segments
Wide Viewing Angle
High Contrast
o IC COMPATIBLE

1.6V dc per Segment
o STANDARD 0.3" DIP LEAD CONFIGURATION

The 5082-7730 series devices utilize a standard 7.62 mm
(0.3 in.) dual-in-line package configuration that permits
mounting on PC boards or in standard IC sockets.
Requiring a low forward voltage, these displays are
inherently IC compatible, allowing for easy integration
into electronic instrumentation, pOint of sale terminals,
TVs, radios, and digital clocks.

PC Board or Standard Socket Mountable
o CATEGORIZED FOR LUMINOUS INTENSITY

Assures Uniformity of light Output from
Unit to Unit withing a Single Category

Devices
Part No.
5082-

Description

Package Drawing

7730

Common Anode Left Hand Decimal

A

7731

Common Anode Right Hand Decimal

B

7736

Universal Overflow ±1 Right Hand Decimal

C

7740

Common Cathode Right Hand Decimal

0

Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram C.

79

Package Dimensions
_

FUNCTION

5.18
(.2041

PIN
10'

2

1 +

2

1

14
13
12

,

11

3
4
5
6
7
8
9
10
11

7.62
(.3001

10

9----R.H.D.P.
8

Note 7

--.-----~-+-j.I

3.941.1551

12
13
14

A,B,D

LUMINOUS
INTENSITY
CATEGORY

A
·7100
CATHODE ..
CATHODE·{
ANODEIlI
NO PIN
NO PIN
CATHODE-dp
CATHODE..
CATHODE-d
NDCONN.l5!
CATHODE..
CATHODE"
NDPIN
CATHODE-b
ANODEI"

B

·7131
CATHODE ..
CATHODE·,
ANOOEi,1
NO PIN
NO PIN
NO CONN.lSI
CATHODe..
CATHODS-d
CATHODE-dp
CATHODE·,
CATHODEiI
NO PIN
CATHODE·b
ANDDEI'!

C
·7736
ANODE-d
NO PIN
CATHODEod
CATHOOE·,
CATHOOE·.
ANODE ..
ANODe ..
ANODE-dp
NO PIN
CATHODE-dp
CATHODE-b
CATHODE·.
ANODE..
ANODE·b

0

I

·7740
CATHODEI6)
ANODH
ANODE"
ANODe..
ANODE-d
CATHODEI'!
ANODEodp
ANODe ..
ANODe-b
ANODE ..

I

C

LUMINOUS
INTENSITY

-1E'254 (.0101

11

4.45 (.1751"

CATEGORY

(1~'t

1 I~
L
Rt
10.16 MAX .
(.4001

~.J2(.04:1
2.54 (.1001

15.24
(.6001
1

~~
-=-=r==r

0.51
(.0201

--''-~- I

OATE CODE

. :t t "r~

..- .
'
6.10
~ (.2401

A,B,C

o

SIDE

SIDE

~

2.54
(.1001

0.51
(.0201

(.1801

4.06(.1601
MIN.

-r- '
7.62

--11'1-- 0.25 (.0101
(.3001~
A,B,C,O
END

NOTES:

1. Dimensions in millimeters and (inches).
2. All untoleranced dimensions are
for reference only
3. Redundant anodes.

4. Unused dp poSition.

5. See Internal Circuit Diagram.
6. Redundant cathode.
7. See part number table for L.H.D.P. and R.H.D.P. designation.

Internal Circuit Diagram

A

C

B

o

Absolute Maximum Ratings
DC Power Dissipation Per Segment or D.P,II) (T A=25° C)
. . . . . . . . . .. 42mW
Operating Temperature Range ................................. -400 C to +85° C
Storage Temperature Range ................................... -40° C to +85° C
Peak Forward Current Per Segment or D.P.(3) (TA=25°C) .................... 150mA
Average Forward Current Per Segment or D.P.!Io') (TA=25°C) ............... 25mA
Reverse Voltage Per Segment or D.P........................................ 6.0V
Lead Soldering Temperature ................................... 260° C for 3 Sec
[1.59mm (1/16 inch) below seating plane I'! 1

80

Notes: 1. See power derating curve
(Fig. 2). 2. Berate DC current from
50' C at 0.43mAI" C per segment.
3. See pulse width limitation curve
(Fig. 2) and Duty Factor Curve (Fig.
5). 4. Clean only in water, isopropanol, ethanol, Freon TF or TE (or
equivalent) and Genesolv 01-15 or
DE-IS (or equivalent).

Electrical/Optical Characteristics at TA =25°C
Test Condition

Symbol

Description
Luminous Intensity/Segment
(Digit Average)

(2.4)

5082-7740

5082- 7730/31/36

Peak Wavelength

Min.

Typ.

Iv

IpEAK = 100mA
10% Duty Cycle

50

200

Iv

IF = 20mA

100

350

(2)

Ad

Units

Jlcd

655

APEAK

Dominant Wavelength

Max.

nm

640

nm

Forward Voltage, any Segment or D.P.

Vr

IF = 20mA

1.6

Reverse Current, any Segment or D.P.

IR

VR = 6V

10

JlA

Rise and Fall Time

t" tf

10

ns

-2.0

mVI'C

III

Temperature Coefficient of Forward Voltage

6.VrI"C

2.0

V

Notes:
1. The digits are categorized for luminous intensity with the intensity category designated by a letter located on the right hand side of the package.
2. The dominant wavelength, Ad. is derived from the CIE Chromaticity Diagram and is that single wavelength which defines the color of the device.
3. Time for a 10% - 90% change of light intensity for step change in current.
4. Temperature coefficient of luminous intensity Ivre is determined by the formula: IVTA
IV250C e[(-·0188I"C)(TA - 25°C)].

=

operational Considerations
ELECTRICAL

Refresh rates of 1kHz or faster provide the most efficient
operation reulting in the maximum possible time average
luminous intensity.

The 5082-7730/7740 series display is composed of eight
light emitting diodes optically magnified to form seven
individual segments and decimal point.

This display may be operated at various peak currents
(see Figure 3). Light output fora selected peak current can
be calculated as follows:

The diodes are made of GaAsP (Gallium Arsenide
Phosphide) junction on a GaAs substrate. Diode turn-on
voltage is approximately 1.55 volts and typical forward
diode resistance is 5 ohms. For strobing at peak currents a
user should take this forward resistance into account.

IVTIMEAVG= [

Typical forward voltage may be scaled from Figure 4 or
calculated from the following formula:
VF = 1.55V + (30 x IPEAK)

IAVG ~ G1)IPEAK ~ II
l
LVSPE~
IAVG SPEC 1)IPEAK SPEC

IAVG
IAVG SPEC ==

Operating point average current
Average current for data sheet luminous intensity value, IV SPEC

t1IPEAK
rll PEAK SPEC

==

IV SPEC

Relative efficiency at operating peak current
Relative efficiency at data sheet peak current where luminous
intensity IV SPEC is specified.
Data sheet luminous intensity, specified at IAVG SPEC and

IpEAK SPEC

Figure 1 relates refresh rate. f. and pulse duration. tp. to a
ratio which defines the maximum desirable operating
peak current as a function of derated dc current.
Ip MAx/IDe MAX. To most effectively utilize Figure 1. perform the following steps:

CONTRAST ENHANCEMENT
The 5082-7730/7740 series display may be effectively
filtered using one of the following filter products: Homalite
H100-1605: H 100-1804 (purple); Panelgraphic Ruby Red
60: Dark Red 63: Purple 90; Plexiglas 2423; 3M Brand Light
Control Film for daylight viewing. For further information
see Application Note 964.

1. Determine desired duty factor.
Example: Four digit display. duty factor = 1/4.
2. Determine desired refresh rate, f. Use duty factor to
calculate pulse duration. tp. Note: Itp = Duty Factor
Example: f = 1kHz; tp = 250 Jlsec.
3. Enter Figure 1 at the calculated tp. Move vertically to the
refresh rate line and then record the corresponding
value of Ip MAx/IDe MAX.
Example: At Ip = 250 Jlsec and f=1kHz,
Ip MAX/I DC MAX = 4.0
4. From Figure 2. determine the value for IDe MAX.
Note: IDe MAX is derated above T A=50° C
Example: At T A=70°C. IDe MAX = 1604mA.
5. Calculate Ip MAX from Ip MAx/IDe MAX ratio and
calculate IAVG from Ip and duty factor.
Example: Ip=(4.0) (1604mA) = 65.6mA peak
IAVG=(1/4) (65.6mA) = 1604mA average.

MECHANICAL
The 5082-773017740 series devices are constructed
utilizing a lead frame in a standard DIP package. The
individual packages may be close-packed on 10.16mm (A
in.) centers on a PC board. Also. the larger character
height allows other character spacing options when
desired. The lead frame has an integral seating plane
which will hold the package approximately 1.52mm (.060
in.) above the PC board during standard soldering and
flux removal operation. To optimize device performance.
new materials are used that are limited to certain solvent
materials for flux removal. It is recommended that only
mixtures of Freon and alcohol be used for post solder
vapor cleaning processes. with an immersion time in the
vapors.up to two minutes maximum. Suggested products
are Freon TF. Freon TE. Genesolv DI-15 and Genesolv DE15. Isoproponal, Ethanol or water may also be used for
cleaning operations.

The above calculations determine the maximum
tolerable strobing conditions. Operation at a reduced
peak current or duty factor is suggested to help insure
even more reliable operation.

81

20

,,0

."

15

~~
~~I-

10
9

"w
w ....

l

,,0:

ZW
_0

\

\

8

~ffi~
::> .. 0:

'\

7

'\
'\

~~a

\

"0",.
......
oz::>
,. .... 0

1>

~

Ow,.

i=~~

~G~
I

l.

,. ",.

1.5

;~

1

1

OPERATIO NIN
THISREGION
REOUIRES
TEMPERA TURE
CERATINGOF

10

IocMAx.

A.

t

..

\.

~~ ~
~~

\,

."

\-

,1\'*

~

\

100

....-OCOPER ATION
10000

1000

tp - PULSE DURATION - ,uSEe

Figure 1. Maximum Tolerable Peak Current vs. Pulse Duration.

25

"
E
I

....

15
0:
0:

24 C--22

r--

f-- .

18

"O~O

u

16

2l

14 1--

--

12
10

.---

I'EGO!JI~~ I'~G\o"
::::-O~E.~\

42
40

>

u

~

I

1. 1

I

r\t-

20

::>

,.~
,.~

f - .--i .__

-

I"'X

\

i

I

x

",.u

.- _.

.P

0

10

.-- -,-- ,--

20

30

40

~

.- . -

U

>
"'

~

1

~

1

..

o

.7 0

808590

Figure 2. Maximum Allowable DC Current and DC
Power Dissipation per Segment as a Function
of Ambient Temperature.

E

....
z
~

~
0:
"'0-

..

~

160
14•
12.
100

8.
60

..iil ••
E
;0

a:

20

'" •
•

./
.4

.8

1.2

1.6

2.0

2-4

20.

3.

40

50

Figure 3. Relative Efficiency (Luminous Intensity per Unit
Current) versus Peak Current per Segment.

a:

::>
u

10

IpEAK - PEAK SEGMENT CURRENT - rnA

TA - AMBIENT TEMPERATURE _ °C

.

I

--

~
o
z

..0

70

/

V

:::;

1
u

60

.9

0:

~---

50

1.0

S

2.8

3.2

VF - FORWARD VOLTAGE - V

82

II

.43 INCH RED
SEVEN SEGMENT
DISPLAY

===<

HEWLETT

PACKARD

COMPONENTS

5082 -7750 SERIES
5082-7760

TECHNICAL DATA

APRIL 1978

Features
• 5082-7750
Common Anode
Left Hand D.P.
• 5082-7751
Common Anode
Right Hand D.P.
• 5082-7756
Polarity and Overflow Indicator
Universal Pinout
Right Hand D.P.
• 5082-7760
Common Cathode
Right Hand D.P.
• LARGE DIGIT
Viewing Up to 6 Meters (19.7 Feet)

Description

• EXCELLENT CHARACTER APPEARANCE
Continuous Uniform Segments
Wide Viewing Angle
High Contrast

. The 5082-7750/7760 series are large 10.92mm (.43 in.)
GaAsP LED seven segment displays. Designed for
viewing distances up to 6 meters (19.7 feet), these single
digit displays provide a high contrast ratio and a wide
viewing angle.

• IC COMPATIBLE
• STANDARD 7.62mm (.3 in.) DIP
LEAD CONFIGURATION
PC Board or Standard Socket Mountable

These devices utilize a standard 7.62mm (.3 in.) dual-inline package configuration that permits mounting on PC
boards or in standard IC sockets. Requiring a low forward
voltage, these displays are inherently IC compatible,
allowing for easy integration into electronic instrumentation, point of sale terminals, TVs, radios, and digital
clocks.

• CATEGORIZED FOR LUMINOUS INTENSITY
Assures Uniformity of Light Output from
Unit to Unit within a Single Category

Devices
Part No. 5082-

Description

Package Drawing

-7750

Common Anode Left Hand Decimal

A

-7751

Common Anode Right Hand Decimal

B

-7756

Universal Overflow ±1 Right Hand Decimal

C

-7760

Common Cathode Right Hand Decimal

0

Note: Universal pinout brings the anode and cathode of each segment's LED out to separate pins. See internal diagram C.

83

package Dimensions
7.01 (.276)

7,01 (.276)

~ _____________ I
·1

1
2

+
+
+

'U=lE

13
+ 12

,

b

+'U~D +

+

L.H.D.P.

1

3

11 10.92 (,430)

+ 10

j

10.92 (.430) 4
5

I

_c+_~

+
~---=-H1"

d

+

1--; ,
1P

-10·

cull'0~

12

J

NO"4~
6.35 (.250)

(750 + .010):

~

6

1

_~ll--l0°

if ,.

d

L

'rr" -~
U:
bO + ~~ (.4r
13

D

1905"025 3 : c

+ ~

7'~
dl
.
/L_ _t-_-H 8

5,08 (.200)

2

11
c + 10

+

- l __~6~+~

~ 8 Note 4

I

-

~~~ ~-JC:JJ ~:
1 + '0. ljt

,

12

8)

-----.0. 9------1.

0

+-

7

3.18 (.l2S)

10!36

.~ '-... R.H.D.P.

~

R.H.D.P.

~-------- 5.21 (.205)

A

c

B,D
FRONT VIEW
LUMINOUS
INTENSITY \
CATEGORY

_
1

MAX.

~
~.'60) I I '

-I

6.351.250)

4.06

\

1.52

-l~- 1~~,60)

12.70 -(.500)-1

t

MIN..

i PIN i~--

-1

I

~\~

r

~~

19.05 ± 0.25

I'r

;;7

1.750(0)

i

--r-- I -1117.621.300,+------1

0.251.010)

-I

,

2.541.100)

DATA CODE

\.

15.24

1

7

II 8
9
110
[ 12
13

SIDE VIEW

-----/."NF'6N~C-~--T~-~~
·7751

I

i

7756

-7760

I

~;~~~~J;; ~~~~~~J;: T~~~~Fd r~~~~11::l
4

11

END VIEW

A
·7750

I

NO PIN

NO PIN

NO PIN
CATHODE-fir

NO PiN
NO CONN.[5\

CATHODE·fj

CATHODE·e: ANODE-c

CATHODE-d

: CATHODE-c

! CATHODE·!':
ANODE-e

'CATHQOE-d 'ANODE-dp
I
CATHODE-dp : CATHODE-dp
CATHODE~c I CATHQDE·b

i i
: NO CONN.l51

I CATHODE-c

I CAT HOD E.g
I NO PIN

'I

I

CATHODE-s

I

NO p[rll

I CATHODE·\) l' CATHODE·b

!

CATHODE-a

NO PIN

<

NO PIN
NO CONN.[5!
' ANODE·o

I

ANODE·d
ANODE-(Ip
ANODE-c
ANODE'g

I NO PIN

NO PIN
- ANODE'a

I ANODE·b

_~_~.-L ~~~~ ~~~~~?OE-b ~ATHOOE[G!
__

NOTES:

__

1. Dimensions in millimeters and (inches).
2. All untoleranced dimensions are for
reference only.
3. Redundant anodes.

4. Unused dp position.
S. See Internal Circuit Diagram.
6. Redundant cathodes.

Internal Circuit Diagram

A

c

B

Absolute Maximum Ratings
DC Power Dissipation Per Segment or D.p.Il) (T A=25°C)
. . . . . . . . .. 42mW
Operating Temperature Range ................................. -40° C to +85° C
Storage Temperature Range ................................... -40° C to +85° C
Peak Forward Current Per Segment or D.pIJ)(T A =25°C) .................... 150mA
DC Forward Current Per Segment or D.P.ll.2) (T A=25°C).
25m A
Reverse Voltage Per Segment or D.P ........................................ 6.0V
Lead Soldering Temperature ................................... 260° C for 3 Sec
[1.59mm (1/16 inch) below seating plane(4)]

84

D

Notes: 1. See power derating curve
(Fig.2). 2. Derate average current
from 50°C at 0.43mA/oC per
segment. 3. See Maximum Tolerable Segment Peak Current vs.
Pulse Duration curve. (Fig. 1). 4.
Clean only in water. isopropanol.
ethanol. Freon TF or TE (or
equivalent) and Genesolv DI-15 or
DE-15 (or equivalent).

Electrical/Optical Characteristics at TA=25°C
Symbol

Description
Luminous Intensity/Segment (2,4)

Min.

Test Condition
IPEAK = 100mA
12.5% Duty Cycle

Iv

(Digit Average)

IF = 20mA

Typ.

Max.

!,cd

350
150

Units

400

Peak Wavelength

APEAK

655

nm

Dominant Wavelength (2)

Ad

645

nm

Forward Voltage, any Segment or D.P.

VF

IF = 20mA

1.6

Reverse Current, any Segment or D.P.

IR

VR =6V

10

Rise and Fall Time

Ir,tf

(3)

Temperature Coefficient of Forward Voltage

;;'VFI"C

2.0

V
!J.A

10

ns

-2.0

mV/"C

Notes:
1. The digits are categorized for luminous intensity with the intensity category designated by a letter located on the right hand side of the package.
2. The dominant wavelength, Ad, is derived from the CIE Chromaticity Diagram and is that single wavelength which defines the color of the device.
3. Time for a 10% - 90% change of light intensity for step change in currenl.
'
4. Temperature coefficient of luminous intensity Ivre is determined by the formula:lvTA = IV2SoC e((-·0l88/ 0 q (TA - 2SoCJ]

Operational Considerations

Refresh rates of 1kHz or faster provide the most efficient
operation reulting in the maximum possible time average
luminous intensity.

ELECTRICAL
The 5082-7750/7760 series display is composed of eight
light emitting diodes optically magnified to form seven
individual segments and decimal point.

This display may be
(see Figure 3). Light
may be calculated
following formula:
Iv = (Iv 20mA) 7JIPEAK

The diodes are made of GaAsP(Gallium Arsenide
Phosphide) junction on a GaAs substrate. Diode turn-on
voltage is approximately 1.S5 volts and typical forward
diode resistance is S ohms. For strobing at peak currents a
user should take this forward resistance into account.

operated at various peak currents
output for a selected peak current
from the 20mA value using the
(
)
IF AVG
20mA

Where: Iv = Luminous Intensity at desired IAVG
Iv 20m A = Luminous Intensity at IF = 20mA
IAVG = Average Forward Current per segment = (IPEAK X Duty Factor)

Typical forward voltage may be scaled from Figure 4 or
calculated from the following formula:
VF = 1.S5V + (30 x IpEAK)

7J'IPEAK = Relative Efficiency Factor at Peak
Operating Forward Current from Figure 3.

Figure 1 relates refresh rate, f, and pulse duration, tp, to a
ratio which defines the maximum desirable operating
peak current as a function of derated dc current,
Ip MAX/loc MAX. To most effectively utilize Figure 1, perform the following steps:

CONTRAST ENHANCEMENT
The 5082-77S0/7760 series display may be effectively
filtered using one ofthe following filter products: Homalite
H 100-1605 or H 100-1804 Purple; Panelgraphic Ruby Red
60, Dark Red 63 or Purple 90; Plexiglas 2423; 3M Brand
Light Control Film for daylight viewing.

1. Determine desired duty factor.
Example: Four digit display, duty factor = 1/4.
2. Determine desired refresh rate, f. Use duty factor to
calculate pulse duration, tp. Note: ftp = Duty Factor
Example: f = 1kHz; tp = 2S0 !,sec.
3. Enter Figure 1 althe calculated tp. Move vertically to the
refresh rate line and then record the corresponding
value of Ip MAX/I DC MAX.
Example: At tp = 2S0 !,sec anf f=1 kHz,
Ip MAx/IDe MAX = 4.0
4. From Figure 2, determine the value for loc MAX.
Note: loc MAX is derated above TA=SO°C
Example: At TA=70°C, loc MAX = 16.4mA.
5. Calculate Ip MAX from Ip MAX/loc MAX ratio and
calculate IAVG from Ip and duty factor.
Example: Ip=(4.0) (16.4mA) = 6S.6mA peak
IAVO={1/4) (6S.6mA) = 16.4mA average.

MECHANICAL
The S082-77S017760 series devices are constructed
utilizing a lead frame in a standard DIP package. The
individual packages may be close-packed on 12.7mm (.S
in.) centers on a PC board. Also, the larger character
height allows other character spacing options when
desired. The lead frame has an integral seating plane
wh,ich will hold the package approximately 1.52mm (.060
in.) above the PC board during standard soldering and
flux removal operation. To optimize device performance,
new materials are used that are limited to certain solvent
materials for flux removal. It is recommended that only
mixtures of Freon and alcohol be used for post solder
vapor cleaning processes, with an immersion time in the
vapors .up to two minutes maximum. Suggested products
are Freon TF, Freon TE, Genesolv DI-15and Genesolv DE1S. Isoproponal, Ethanol or water may also be used for
cleaning operations.

The above calculations determine the maximum
tolerable strobing conditions. Operation at a reduced
peak current or duty factor is suggested to help insure
even more reliable operation.
85

20

,,0

;:l~
.. <
,,0:

l

15

.... w

10
9
8
7

<0:
0:::>

w ........

~ffi~
~~a
<0"

OPERATIO NIN
THISREGI ON
REQUIRES
TEMPERA TURE
DERATINGOF

1\

ZW
_0

'\

'\

'oCMAX.

::> .. 0:

~.

1\

2 .... 0
...... 2
oz::>
OW2

%

t=~~
~i3==
I

l.. "
"

~

1.6

~ u
~

~

~

-~'*

l\

\

....

1

~~

f'\ ..'A

10

1

f

,..
~

ECHNICA L DATA

~t

~

\

100

....--DCOPER ATION
10000

1000

tp - PULSE DURATION - ~SEC

Figure 1. Maximum Tolerable Pask Current vs. Pulse Duration.

25
24

\.

22
20
16

3

!lO~O .. - - ~

o;i.>l\ll ~G\O!I
l'f.C:~\!I~
.-I-f.-' O?Ill'''

14

3

I"\,

18

12
10

1. 1

4
4

--

30

\.1
\

1\

2
2
1
1
1

~

...--

>
u

15

I

0:

~

~
~

1.0

w

"02

>

~a:

::>
2

~2

.9

S
N

~

I

x

""u

a:

/

J

/:

I

8

0

z

..0

7

0

10

20

30

40

50

T. - AMBIENT TEMPERATURE _·C

IpEAK - PEAK SEGMENT CURRENT - mA

Figure 2. Maximum Allowable DC Current and DC
Power Dissipation par Segment as a Function
of Ambient Temperature.

Figure 3. Relative Efficiency (Luminous Intensity per Unit
Current) versus Peak Current per Segment.

..

E

100
140

....
Z

~ 12.

~
~
~
a:

100
80

a:

"u

80

0

a:

"a:
~

40

~

20

..J

~

o

o

.4

.8

1.2

1.6

2.0

2.4

2.8

3.2

V F - FORWARD VOLTAGE - V

Figure 5. Normalized Angular Distrubution of
Luminous Intensity.

Figure 4. Forward Current versus Forward
Voltage.

86

SOLID STATE
NUMERIC INDICATOR
(7 segment MonolithiC)

HEWLETTlfJ PACKARD
COMPONENTS

5082-7400
SERIES

TECHNICAL DATA

APRIL 1977

Features
• ULTRA LOW POWER
Excellent Readability at Only 500 J.lA
Average per Segment
• CONSTRUCTED FOR STROBED OPERATION
Minimizes Lead Connections
• STANDARD DIP PACKAGE
End Stackable
Integral Red Contrast Filter
Rugged Construction
• CATEGORIZED FOR LUMINOUS INTENSITY
Assures Uniformity of Light Output from
Unit to Unit within a Single Category
• IC COMPATIBLE

Description
The HP 5082-7400 series are 2.79mm (.11"), seven
segment GaAsP numeric indicators packaged in 3,
4, and 5 digit end-stackable clusters. An integral
magnification technique increases the luminous intensity, thereby making ultra-low power consumption possible. Options include either the standard
lower right hand decimal point or a centered decimal point for increased legibility in multi-cluster
applications.
Applications include hand-held calculators, portable instruments, digital thermometers, or any other
product requiring low power, low cost, minimum
space, and long lifetime indicators.

Device Selection Guide
Configuration
Digits per
Cluster
3 (right)
3 (left)

4
5

Part Number
Center Decimal Point

Right Decimal Point

5082-7402

5082-7412

5082-7403

5082-7413

5082-7404

5082-7414

5082-7405

5082-7415

Device

I lalalal
lalalal I

I

IBIBIBIBI
IBIB 18_I?I~]
87

Absolute Maximum Ratings
Parameter

Symbol

< 1 msec)

Peak Forward Current per Segment (Duration

Min.

Max.

Units
mA

IpEAK

110

Average Current per Segment

I AVG

5

mA

Power Dissipation per Digit (1)

PD

80

mW

Operating Temperature, Ambient

TA

-40

75

°C

Ts

-40

100

°C

5

V

Storage Temperature
1--:=-Reverse Voltage
NOTES: 1.

VR

At 25°C; derate 1mWrC above 25°C ambient.

--

2. See Mechanical Section for recommended flux removal solvents.

Electrical/Optical Characteristics at TA=25°C
Parameter
Luminous Intensity/Segment or dp [3,4)
(Time Averaged)
Peak Wavelength

Symbol

Test Condition

Min.

Typ.

Iv

IAVO = 1mA
(lPK = 10mA
duty cycle'" 10"A»

5

20

Reverse Current/Segment or dp

nm

VR"'5V

IR

Rise and Fall Time [5]

/.lcd

1.6

IF'" 10mA

VF

Units

655

A-PEAK

Forward Voltage/Segment or dp

Max.

2.0

V

100

p..A
ns

10

t., tf

NOTES: 3. The digits are categorized for luminous intensity. Intensity categories are designated by a letter located on the back side of
the package. 4. Operation at Peak Currents less than 5mA is not recommended. 5. Time for a 10%-90% change of light intensity for step change in current.
>

...

in

5%/

1Cv. ~

ai~ .16

~ E,

~~ .10

~ffi

3~

///

.08
.06

c!::

~~

"' ...

~~

":;;
~~

~~

--'w
~
<.>

.4

,8
1.2
1.6 2.0 2.4
VF- FORWARD VOLTAGE -

2.B

...~

3.2

v
Figura 1. Forward Current vs.
Forward Voltage.
5.0

~~
0

4
-60

-40

-20

0

20

--

,I. 8

\-..l

-

!

t

I

OJ

~

._1

"

I I
I
I

6.0

~

1. o

lii!
i

8

w

~

.'f...

'"

'!-.

60

f-

/
/

Y
4

I-

2

0

80

~

V-I -_.- --,-- - - I---

1.4
1.2

>

"

1.6

itw
:3

.;:-..

40

4.0

2.0

0.6 0.8 1.0

Figure 2. Typical Time Averaged Luminous Intensity per Segmant
(Digit Averagel vs. Average Current per Segment.

RANGE

~

0.4

levu. - AVERAGE CURRENT PER SEGMENT - rnA

STORAGE AND

k -J--OPERATING

.01

?W

/
~:;

,02

.."'",
o~~--~~~~~~~·~~.

~

DUTY CYCLE
,04

20%

1///
~~

20

40

60

80

100

IpEAK - PEAK CURRENT PER SEGMENT - mA

Tc - CASE TEMPERATURE - °c

Figure 4. Relative Luminous Efficiency vs.
Peak Cu rrent per Segment.

Figure 3. Relative Luminous Intensity vs. Case
Temperature at Fixed Current Level.

88

package Description

NOTES: 1. Dimensions in millimeters and (inches).
2. Tolerances on all dimensions are ±O.03Bmm (±.015 in.) unless otherwise noted.

6.35± 0.25
(.250 ± .010)

7.62

LED

~~~~~~~

:t

hJH~I

PIN 1 KEY--. 1

2.54
(.1001
REF.

IL

0.25 II
1.0101-1 t--

5"
REF.""

Figure 5. 5082-7402/·7403/-7404/
·7412/·7413/·7414

0.025

1.(,300:!: ,010)./

All Devices

Figure 6. 5082-7405/7415

Magnified Character Font Description

.

r"~-

DIMENSIONS IN MILLIMETERS AND (lNCHESI.

DEVICES

a

I

9

f

5082-7402
5082-7403
5082-7404
5082-7405

DEVICES

dP.

_

5"

9

2.7941.11)

5"

d

Figure 8. Right Decimal POint
Configuration

Figure 7. Center Decimal Point Configuration.

I

U
"
.~
f

5082-7412
5082-7413
5082-7414
5082-7415

2.794 (.11)

':l
LJ""

C

~.57;:~~.62l..

DIMENSIONS IN MILLIMETERS AND (INCHES}.

REF.

d~

.767 (.0311
RE~

dP.

.533 (.0211
RE~

Device Pin Description
PIN NO.

5082-7402/7412
FUNCTION

5082-7403/7413
FUNCTION

5082-7404/7414
FUNCTION

5082-7405/7415
FUNCTION

1

SEE NOTE 1.

CATHODE 1

CATHODE 1

CATHODE 1

2

ANODEe

ANODEe

ANODEe

ANODEe

3

ANODEc

ANODEc

ANODE c

ANODEc

4

CATHODE 3

CATHODE 3

CATHODE 3

CATHODE 3

5

ANODE dp

ANODE dp

ANODE dp

ANODE dp

6

CATHODE 4

SEE NOTE 1.

CATHODE 4

7

ANODEg

ANODEg

ANODEg

8

ANODEd

ANODEd

ANODEd

9

ANODEf

ANODEf

.A,NODE f

CATHODE 2

CATHODE 2

CATHODE 2

ANODEf

ANODEb

ANODEb

ANODEb

(See Note 1)

ANODE a.

ANODE a

ANODE a

10
--11
12
13

-

14

-

-

-

-

-

NOT E 1. Leave Pin unconnected
89

I

ANODE d
CATHODE 5

I

ANODEg
CATHODE 4

ANODE b
CATHODE 2
ANODE a

Electrical

character with its own unique time frame.
A detailed discussion of display circuits and drive
techniques appears in Application Note 937.

Character encoding can be performed by commercially available BCD-7 segment decoder/driver
circuits. Through the use of a strobing technique,
only one decoder/driver is required for each display. In addition, the number of interconnection
lines between the display and the drive circuitry
is minimized to 8 + N, where N is the number of
characters in the display.
Each of the segments on the display is "addressable" on two sets of lines - the "character. enable"
lines and the "segment enable" lines. Displays are
wired so that all of the cathodes of all segments
comprising one character are wired together to a
single character enable line. Similarly, the anodes
of each of like segments (e.g., all of the decimal
points, all of the center line anodes, etc.) are wired
to a single line. Therefore, a single digit in the cluster can be illuminated by connecting the appropriate
character enable line, with the appropriate segment
enable lines for the character being displayed. When
each character in the display is illuminated in
sequence, at a. minimum of 100 times a second,
flicker free characters are formed.
The decimal point in the 7412, 7413, 7414, and
7415 displays is located at the lower right of the
digit for conventional driving schemes.
The 7402, 7403, 7404 and 7405 displays contain
a centrally located decimal point which is activated
in place of a digit. In long registers, this technique
of setting off the decimal point significantly improves the display's readability. With respect to
timing, the decimal point is treated as a separate

I

MOS
"CALCULATOR
ON A CHIP"

,-

I
1~

I

I-f--

ANODE
DRIVERS

·
·,

Mechanical
The 5082-7400 series package is a standard '12 or 14
Pin DIP consisting of a plastic encapsulated lead
frame with integral molded lenses. It is designed
for plugging into DIP sockets or soldering into PC
boards. The lead frame construction allows use of
standard DIP insertion tools and techniques. Alignment problems are simplified due to the clustering
of digits in a single package. The shoulders of the
lead frame pins are intentionally raised above the
bottom of the package to allow tilt mounting of up
to 20 0 from the PC board.
To improve display contrast, the plastic incorporates
a red dye that absorbs strongly at all visible wavelengths except the 655 nm emitted by the LED. In
addition, the lead frames are selectively darkened
to reduce reflectance. An additional filter, such as
Plexiglass 2423, Panelgraphic60 or 63, and Homalite
100-1600, will further lower the ambient reflectance
and improve display contrast.
The devices can be soldered for up to 5 seconds at a
maximum solder temperature of 230°C(1/16" below
the seating plane). The plastic encapsulant used in
these displays may be damaged by some solvents
commonly used for flux removal. It is recommended
that only Freon TE, Freon TE-35, Freon TF, Isopropanol, or soap and water be used for cleaning operations,

R

- I.:f

~

d
f

d.

,

I

2
3

CATHODE
DRIVERS

4

5

•

1 B.6 9 D 5 3
I I I

7
8

I

J

9

Figure 9. Block Diagram for Calculator Display Using Lower Right Hand Decimal Point.

R

CHARACTER
SERIAL
DATA

SOURCE

4 7LINE
SEGMENT
BCD TO
DECODER/
DRIVER

~~~~~

- .., 1 B

69D53

Figure 10. Block Diagram for Display Using Center Decimal Point.
90

SOLID STATE
NUMERIC INDICATOR
(7 segment Monolithic)

HEWLETT" PACKARD
COMPONENTS

5082-7430
SERIES

TECHNICAL DATA APRI L 1977

Features
• MOS COMPATIBLE
Can be Driven Directly from many
MOS Circuits
• LOW POWER
Excellent Readability at Only 250 J-IA Average
per Segment
o CONSTRUCTED FOR STROBED OPERATION

Minimizes Lead Connections
• STANDARD DIP PACKAGE
End Stackable
Integral Red Contrast Filter
Rugged Construction
• CATEGORIZED FOR LUMINOUS INTENSITY
Assures Uniformity of Light Output from
Unit to Unit within a Single Category

Description
The HP 5082-7430 series displays are 2.79mm (.11
inch, seven segment GaAsP numeric indicators packaged in 2 or 3 digit end-stackable clusters on 200
mil centers. An integral magnification technique increases the luminous intensity, thereby making ultra-Iowpower consumption possible. These clusters

have the standard lower right hand decimal points.
Applications include hand-held calculators, portable
instruments, digital thermometers, or any other
product requiring low power, low cost, minimum
space, and long lifetime indicators.

Device Selection Guide
Digits per
Cluster

Configuration
Part Number
Package

Device

2(right)

I IBIBI

(Figure 5)

5082-7432

3

I~I~IBI

(Figure 5)

5082-7433

91

Absolute Maximum Ratings
Parameter
Peak Forward Current per Segment or dp (Duration

Symbol

< 500).ls)

Average Current per Segment or dp

IpEAK

Min.

Max.
50

Units
mA

IAVG

5

mA

Power Dissipation per Digit [1]

Po

80

mW

Operating Temperature, Ambient

TA

-40

75

Storage Temperature

Ts

-40

100

Reverse Voltage

VR

°c
°c
V
°c

5

Solder Temperature 1/16" below seating plane (t";;3 sec.) [2]
NOTES:

1. Derate linearly@ 1 mW(C above 25°C ambient.

230

2. See Mechanical section for recommended flux removal solvents.

Electrical/Optical Characteristics at TA =25°C
Parameter

Symbol

Luminous Intensity/Segment or dp [3.4J

Iv

Peak Wavelength

APEAK

Test Condition

Min.

Typ.

IAVG = 500).lA
(l pK = 5mA
duty cycle = 10%)

10

40

pcd

655

nm

Forward Voltage/Segment or dp

VF

IF= 5mA

Reverse Current/Segment or dp

IR

VR = 5V

Rise and Fall Time [51

t r • tf

1.55

Max.

Units

2.0

V

100

).IA

10

ns

NOTES: 3. The digits are categorized for luminous intensity. I ntensitY categories are designated by a letter located on the back side of
the package. 4. Operation at Peak Currents less than 3.5mA is not recommended. 5. Time for a 10%-90% change of light intensity for step change in current.
50

1000

I

lI

"E

45

....

40

'"'"
"u

35

"z
ww
",:; 300 f-- DUTY CYCLE", 5% "
"",
",w
10% "
wOO 200

30

>'"
,,~

"s:'"

25

w,.

fi'

20

-'Z

'~"

15

~

"'"

I

....

~ ....
.... 0;

"w
u ....

a::~

"""z
:."

10

....

~

::

!J

o
o

,2

.4

.6

.8

1.0 1.2 1.4 1.6 1.8 2.0

VF - PEAK FORWARD VOLTAGE - V

500
400

20%~

100

0 'Y

50
40
30
20

~ l!

I

1/ // /

h~

10
0.1

/

0.2 0.3

I

0.5

1.0

2

3

10

IAVG - AVERAGE CURRENT PER SEGMENT - rnA

Figure 1. Peak Forward Current vs.
Peak Forward Voltage

Figure 2. Typical Time Averaged Luminous Intensity
per Segment vs. Average Current per Segment

10

,.....

0;

~~

....

"
~

:."
z

::
w

>

~

c:

~

1

"'- .......

0.5
0.4

,

tlJ:r!."

1.0

.8
.6

>
i=

.4

'"

.2

"ul

0.2

r

/

/

-j

I

-40

-20

20

40

60

10

80

20

30

40

50

IpEAK - PEAK CURRENT PER SEGMENT - rnA

TA - AMBIENT TEMPERATURE _ DC

F~ure

§
""'z
:."
::

VC-

I1.2

w

0.3

O. 1
-60

1.4

~
U

."",.

~

,.u

3. Relative Luminous Intensity vs. Ambient
Temperature at Fixed Current Level

Figure 4. Relative Luminous Efficiency vs. Peak
Current per Segment

92

package Description

.'.,
m'""'" JB
5.08 (.2001

--r--

6.36 ± 0.25
(.250'.0101

~

1--1
I

I

2

3

-t- -+- -+1

~15.37(.6051~1

1

.1.

6.60 (.2601

1.78
+f(.0701

M

MAX.

4.06
(.16011

' S E A T I N G PLANE

(.o~
1.40

,,

J-

432+051

1(.;70;.0201

~

(~~~I-.f~.

REF.

Figure 5.

Magnified Character Font Description
DEVICES
5082-7432
5082-7433

'~::'""n
,U'J
-J

DIMENSIONS IN MILLIMETERS AND (lNCHESI.

'

PLANE

-i II;--2.54 (.1001
1.27 (.0501

.510±.12S
(.020 '.0051

7 62 3
. •.

I

~
ttr~~

2.03

MAX.

1.22<.178
(0.48' .0071

NOTES, 1. DIMENSIONS IN MILLIMETERS AND (lNCHESI.
2. TOLERANCES ON ALL DIMENSIONS ARE 0.038 '(.0151
UNLESS OTHERWISE SPECIFIED.

-If[
~

Figure 6.

Device Pin Description
PIN
NUMBER

5082-7432
FUNCTION

5082-7433
FUNCTION

1

SEE NOTE 1.

CATHODE 1
ANODEe

2

ANODEe

3

ANODEd

ANODEd

4

CATHODE 2

CATHODE 2

5

ANODEc

ANODEc

6

ANODEdp

ANODEdp

7

CATHODE 3

CATHODE 3

8

ANODEb

ANODE b
ANODEg

9

ANODEg

10

ANODE a

ANODEa

11

ANODEf

ANODEf

12

SEE NOTE 1.

SEE NOTE 1.

NOTE 1. Leave Pin unconnected.

93

I

I

REF_ \ -

Electrical/Optical

only one decoder/driver is required for very long
multidigit displays.

The 5082-7430 series devices utilize a monolithic
GaAsP chip of 8 common cathode devices for each
display digit. The segment anodes of each digit
are interconnected, forming an 8 by N line array,
where N is the number of characters in the display.
Each chip is positioned under an integrally molded
lens giving a magnified character height of 2.79mm
(0.11) inches. Satisfactory viewing will be realized
within an angle of approximately ±20° from the center-line of the digit.

A discussion of display circuits and drive techniques
appears in Application Note 946.

Mechanical
The 5082-7430 series package is a standard 12 Pin
DIP consisting of a plastic encapsulated lead frame
with integrally molded lenses. It is designed for
plugging into DIP sockets or soldering into PC
boards. Alignment problems are simplified due to
the clustering of digits in a single package.

To improve display contrast, the plastic encapsulant
contains a red dye to reduce the reflected ambient
light. An additional filter, such as Plexiglass 2423,
Panelgraphic 60 or 63, and Homalite 100-1600, will
further lower the ambient reflectance and improve
display contrast.

The devices can be soldered for up to 5 seconds at
a maximum solder temperature of 230°C (1/16"
below the seating plane). The plastic encapsulant
used in these displays may be damaged by some
solvents commonly used for flux removal. It is
recommended that only Freon TE, Freon TE-35,
Freon TF, Isopropanol, or soap and water be used
for cleaning operations.

Character encoding on the 5082-7430 series devices
is performed by standard 7 segment decoder/driver
circuits. Through the use of strobing techniques

MaS
"CALCULATOR
ON A CHIP"

1~

---

=
--

2

3
CATHODE
DRIVERS

4

Yl Bfj~g [JS3
I

I

5
6
7

8
9

Figure 7. Block Diagram for Calculator Display

94

SPECIAL PARTS
FOR CALCULATORS

HEWLETTj PACKARD
COMPONENTS

5082-7440
SERIES

TECHNICAL DATA

APRIL 1977

Features
• MOS COMPATIBLE
Can be driven directly from MOS circuits.
• LOW POWER
Excellent readability at only
average per segment.

250~A

• UNIFORM ALIGNMENT
Excellent alignment is assured by design.
• MATCHED BRIGHTNESS
Uniformity of light output from digit to
digit on a single PC Board.
• AVAILABLE IN 50.8mm (2.0 inch) AND
60.325mm (2.375 inch) BOARD LENGTHS

Description
The HP 5082-7440 series displays are 2.67mm (.105")
high, seven segment GaAsP Numeric Indicators mounted
in an eight or nine digit configuration on a P.C. Board.
These special parts, designed specifically for calculators,
have right hand decimal points and are mounted on

5.08mm (200 mil) centers. The plastic lens magnifies the
digits and includes an integral protective bezel.
Applications are primarily portable, hand-held calculators
and other products requiring low power, low cost and long
lifetime indicators which occupy a minimum of space.

Device Selection Guide
Digits
Per
PC Board

8

9

Configuration
Part No.
Device

Package

B. B. B. B. Be B. B. B.
B. B. B. B. B. B. B. B. B.
95

5082·7440
(Figure 5)

5082·7448
5082·7441
(Figure 5)

5082·7449

Absolute Maximum Ratings
Symbol

Parameter
Peak Forward Current per Segment or dp (Duration

< 500115)

Min.

Max.

Units

50

mA

IpEAK

Average Current per Segment or dp[1]

IAVG

3

mA

Power Dissipation per Digit

Po

50

mW

I

Operating Temperature, Ambient

TA

-20

+85

Storage Temperature

Ts

-20

+85

°c
°c

Reverse Voltage

VR

5
230

°c

------"

Solder Temperature at connector edge (t~3 sec.) (21
NOTES: 1. Derate linearly

@

O.lmAtC above 60'C ambient.

V

2. See Mechanical section for recommended soldering techniques

and flux removal solvents.

Electrical/Optical Characteristics at TA =25°C
Parameter
f-Luminous Intensity/Segment or d pI3.4J

Symbol

Peak Wavelength

-- f---Min.

IAVG = 500l1A
9
(lPK = 5mA
duty cycle = 10%)1-

IV

Forward Voltage/Segment or dp

IF

VF

= 5mA

I

Max.

}led

655

nm

1.55

V

NOTES: 3. See Figure 7 for test circu it.
4. Operation at Peak Currents of less than 3.5mA is not recommended.
50

«

E
I

I-

15

'"
"'""0

«
'"

s:
Ii:'"

'"~
I

~

45

I
I-

40

2
0wW

35
30

«w
o::~

15

>-",
1-"

0
2

I

1-

~

i/

o
o

.2

.4

.6

.8

:3

1;{) 1.2 1.4 1.6 1.8 2.0

v
Figure 1. Peak Forward Current vs.
Peak Forward Voltage
VF - PEAK FORWARD VOLTAGE -

~~

2

~

:3
«

'"

I~ ~

10
0.1

0.5
0.4
0.3

/

0.2 0.3

0.5

1.0

2

10

3

1.4

U

1.2

"

~ .......,

~

..

~

1.0

2

"

.8

:3

.6

>
;::

.4

0

~

w

:iw

'"

-40

-20

20

40

TA - AMBIENT TEMPERATURE _

60

V

f.-'

I

'"

0.2

o~o

>-

"2w

~

"'"0

uj

/ '/ /
I

1.6

>-

;::

19'

1/

Figure 2. Typical Time Averaged Luminous Intensity
per Segment vs. Average Current per Segment

I-

w

~

'AVO - AVERAGE CURRENT PER SEGMENT - rnA

10

>

50
40
30
20

5% ~

/J vy

-'z

"I-

0

~~~~;;

1-0;

10

;,

DUTY CYCLE

;§I-

20

ffi
I-

500
400

>'"
«~
w>- 100

25

0;

1000

to" 300
«to
"'w 200
w'"

/

II

.2

5

80

°c

10

15

20

25

30

35

40

45

50

IpEAK - PEAK CURRENT PER SEGMENT - rnA

Figure 3. Relative Luminous Intensity vs. Ambient
Temperature at Fixed Current Level

Figure 4. Relative Luminous Efficiency vs. Peak
Current per Sag ment

96

Units

40

i

Apeak

f---

Typ.

Test Condition

package Description

.308
.012)

Figure 5.

Magnified Character Font Description
DEVICES

5082·7440
5082·7441
5082·7448
5082·7449

Note:

At! dimensions
amI (inchos).

1,1

Part No.

Dim. A

Dim.B

Dim.C

5082·7440

50.800(2.000)

0.760(.030)

5.08(.200)

5082·7441

50.800(2.000)

0.760(.030)

5.08(.200)

5082·7448

60.325(2.375)

5.512(.217)

9.830(.387)

5082·7449

60.325(2.375)

5.512(.217)

9.830(.387)

--

millimeters

Tolerances: ±.381 (.015)

Table 1.

Figure 6.

Device Pin Description
Pin
No.

5082·7440
5082·7448
Function

5082·7441
5082·7449
Function

Pin
No.

5082·7440
5082·7448
Function

1
2
3
4
5
6

N/C
Se9. c Anode

Dig. 1 Cathode
Seg. c Anode

Seg. d Anode

Dig. 2 Cathode

Dig. 2 Cathode

d.p. Anode

d.p. Anode

~ig.

Dig. 3 Cathode

10
11
12
13
14
15
16
17

7

8
9

3 Cathode
Seg. a Anode
~ig. 4 Cathode
Seg. e Anode
Dig. 5 Cathode

Seg. a Anode
~ig.

4 Cathode

Seg. e Anode
~ig.

5 Cathode

97

I

II

5082·7441
5082·7449
Function
Seg. d Anode

Dig. 6 Cathode

~ig.

Seg. g Anode

Seg. g Anode

6 Cathode

Dig. 7 Cathode

~ig.

Seg. b Anode

Seg. b Anode

~ig.

8 Cathode

7 Cathode

Dig. 8 Cathode

Se9. f Anode

Seg. f Anode

Dig. 9 Cathode

Dig. 9 Cathode

Electrical/Optical
The HP 5082-7440 series devices utilize a monolithic
GaAsP chip containing 7 segments and a decimal point for
each display digit. The segments of each digit are interconnected, forming an 8 by N line array, where N is the
number of characters in the display. Each chip is positioned
under a separate element of a plastic magnifying lens, producing a magnified character height of 0.105" (2,67mm).
Satisfactory viewing will be realized within an angle of approximately ±200 from the centerline of the digit. The secondary lens magnifier that will increase character height
from 2.67mm (0.105") to 3.33mm (0.131 ") and reduce
viewing angle in the vertical plane only from ±20° to approximately ±18° is available as a special product. A filter, such
as Plexiglass 2423, Panelgraphic 60 or 63, and Homalite 1001600, will lower ambient reflectance and improve display
contrast. Character encoding of the -7440 series devices is
performed by standard 7 segment decoder driver circuits.

through holesat the connector edge of the board or by insertion into a standard PC board connector.
The devices may be soldered for up to 3 seconds per tab at
a maximum solderihg temperature of 230°C. Heat should
be applied only to the edge connector tab areas of the PC
board. Heating other areas of the board to temperatures in
excess of 85° C can resu It in permanent damage to the display. It is recommended that a rosin core wire solder or a
low temperature deactivating flux and solid core wire
solder be used in soldering operations.

special Cleaning Instructions
For bulk cleaning after a flow solder operation, the following process is recommended: Wash display in clean liquid
Freon TP-35 or Freon TE-35 solvent for a time period up
to 2 minutes maximum. Air dry for a sufficient length of
time to allow solvent to evaporate from beneath display
lens. Mainta'in solvent temperature below 30°C (86°F).
Methanol, isopropanol, or ethanol may be used for hand
clean ing at room temperatu reo Water may be used for hand
cleaning if it is not permitted to collect under display lens.

The 5082·7440 series devices are tested for digit to digit
luminous intensity matching using the circuit depicted in
Figure 7. Component values are chosen to give an IF of
5mA per segment at a segment VF of 1.55 volts. This test
method is preferred in order to provide the best possible
simulation of the end product drive circuit, thereby insuring excellent digit to digit matching. If the device is to
be driven from Vcc potentials of less than 3.5 volts, it is
recommended that the factory be contacted.

Solvent vapor cleaning at elevated temperatures is not recommended as such processes will damage display lens. Ketones, esters, aromatic and chlorinated hydrocarbon solvents
will also damage display lens. Alcohol base active rosin flux
mixtures should be prevented from coming in contact with
display lens.
These devices are constructed on a silver plated printed circuit board. To prevent the formation of a tarnish (AQ2S)
which could impair solderability, the boards should be stored
in the unopened shipping packages until they are used. Further information on the storage, handling and cleaning of silver-plated components is contained in Hewlett-Packard Application Bulletin No.3.

Mechanical
The 5082·7440 series devices are constructed on a standard
printed circuit board substrate. A separately molded plastic
. lens containing 9 individual magnifying elements is attached
to the PC board over the digits. The device may be mounted
either by use of pins which may be soldered into .the plate
+5 VOLTS

SEGMENT

SWITCH
{TYP.1 OF

1~

As·61lOl1

--r-;---;---------r
,----

1
I

L- _ _ _ _ _ _ _
DIGIT

SWITC"

I

1----------1
I
~I-+--+---~--~
L ________

~

OIGlT1

(1 PER DIGIT)

Figure 7. Circuit Diagram used for Testing the Luminous Intensity of the HP 5082-7440

98

1
I
I
I

l

~

SPECIAL PARTS FOR
SCIENTIFIC AND
BUSINESS CALCULATORS

HEWLETT~PACKARD
COMPONENTS

5082-7442
5082-7444
5082-1445
5082-7446
5082-7447

TECHNICAL DATA

APRIL 1977

Features
• 12, 14, AND 16 DIGIT CONFIGURATIONS
• MOS COMPATIBLE
Can be driven directly from most
MOS circuits.
• LOW POWER
Excellent readability at only 250JlA
average per segment.
• UNIFORM ALIGNMENT
Excellent Alignment is assured by
design.
• MATCHED BRIGHTNESS
Uniformity of light output from digit
to digit on a single PC board.

Description
The HP 5082-7442, 7444, 7446, and 7447 are seven segment GaAsP Numeric indicators mounted in 12, 14, or 16 digit
configurations on a P.C. board. These special parts, designed specifically for scientific and business calculators, have
right hand decimal points and are mounted on 175 mil (4.45mm) centers in the 12 digit configurations and 150 mil
(3.81 mm) centers in the 14 and 16 digit configurations. The plastic lens magnifies the digits and includes an integral
protective bezel.
Applications are primarily portable, hand held calculators, digital telephone peripherals, data entry terminals and other
products requiring low power, low cost, and long lifetime indicators which occupy a minimum of space.

Device Selection Guide
Digits
Per PC

Digit
Height
mm (Inchea)

Configuration

12

2.54
(.100)

CI _.L.CI.C'.U.U.
CI CI CI CI U.U.L.U.
CI CI fj C' U.
CI
U.

14

2.54
(.100)

14

16

Board

Package
DEVICE

FI CI

Part
No.
5082-

Figure 4

7442
and
7445

CI U.
0 U.
CI U.
CI _I. _I. '_1.
CI CI.
CI U.
C/ [='
CI L •
D. I. CI~
_I. U.

Figure 5

7444

2.84
(.112)

l~l~6'CIC/BCll~B9C'6'ClB
_I. _I. _I. U. U. =to U. _I. L • L • U. _I. U. L.

Figure 5

7447

2.92
(.115)

C
CI D.
nB
CI9
n E'
n O.
n 6'
CI CJ.
n C'
01-'
::1.' U.
L • U.
C. CI.
-,. CI.
_1. CI.
=1. CJ.
O.

Figure 6

7446

DE'

F' F'

'5082-7447 Is a 5082-7444 with a slide-In cylindrical lens to provide added magnification.

99

CI

.

Maximum Ratings
Parameter

Symbol

Min.

Max.

Units

Peak Forward Current per Segment or dp (Duration <500",s)

IPEAk

50

mA

Average Current per Segment or dpll)

I Avo

3

mA

Power Dissipation per Digit

PD

50

mW

Operating Temperature, Ambient

TA

-20

+85

°C

Storage Temperature

Ts

-20

+85

°C

Reverse Voltage

VR

Solder Temperature at connector edge (t ~3 sec.)IZ)
NOTES:

5

V

230

°C

1. Derate linearly at O.1mAl"C above 60"C ambient.
2. See Mechanical section for recommended soldering techniques and flux removal solvents.

Electrical/optical Characteristics at TA =25°C
Part No.

Parameter

Symbol

Test Condition

744217445

5mA Peak
1/12 Duty Cycle
Luminous Intensityl
Segment or dpllJ
(Digit Average)

7444/7447

5mA Peak
1/14 Duty Cycle

Iv

Peak Wavelength

7442/7445
7444/7447
7446

o;

31:7'r!,

0:
0:

10

"0

30

3

'"

25

;;:

fr

20

:1
w

'"
~

15

~

o. 5
o. 4

10

~

0, 3

0:

o. 2

0:
0:

I

35

f Lcd

655

nm

1.55

V

1.4

40

;:

7

Unils

0

45

35

::>

Max.

3. Operation at Peak Currents of less than 3.5mA is not recommended.

5
4

t-

/lcd

IF = 5mA

VF

>t-

10

35

ApEAK

Forward Voltagel
Segment or dp

50

'E"

Typ.

7

5mA Peak
1/16 Duty Cycle

7446

NOTE:

Min.

t-

~

~

"
o
o

1/
.2

.4

.6

.8

1.0 1.2

1.4

1.6 1.8 2.0

VF - PEAK FORWARD VOLTAGE -

Figure 1. Peak Forward CUrrent v•.
Peak Forward Voltage

v

1.2

2~ ~
1

1
°:..so

I

1.o

~

~

......

v

at

~h

~

JIIL
4

2

-40

-20

20

40

TA - AMBIENT TEMPERATURE _

60

°c

Figure 2. Relative Luminous Intensity vs.
Ambient Temperature at Fixed
Current Level.

ao

0

10

20

30

40

50

IpEAK - PEAK CURRENT PER SEGMENT - mA

Figure 3. Relative Luminous Efficiency vs.
Peak Current per Segment.

Electrical/Optical
The HP 5082-7442, 7444, 7445, 7446 and 7447 devices
utilize a monolithic GaAsP chip containing 7 segments
and a decimal point for each display digit. The segments
of each digit are interconnected, forming an 8 by N line
array, where N is the number of digits in the display. Each
chip is positioned under a separate element of a plastic
magnifying lens, producing a magnified character.
Satisfactory viewing will be realized within an angle of
approximately ±20° from the centerline of the digit. A
filter, such as plexiglass 2423, Panelgraphic 60 or 63, and

Homalite 100-1600, will lower the ambient reflectance and
improve display contrast. Digit encoding of these devices
is performed by standard 7 segment decoder driver
circuits.
These devices are tested for digit-to-digit luminous
intensity matching. This test is performed with a power
supply of 5V and component values selected to supply
5mA IPEAK at VF = 1.55V. If the device is to be driven from
Vee potentials of less than 3.5 volts, it is recommended that
the factory be contacted.
100

Mechanical Specifications

Special Cleaning Instructions

The 5082-7442, 7444, 7445, 7446, and 7447 devices are
constructed on a silver plated printed circuit board
substrate, A molded plastic lens array is attached to the PC
board over the digits to provide magnification.

For bulk cleaning after a flow solder operation, the
following process is recommended. Wash display in clean
liquid Freon TP - 35 or Freon TE - 35 solvent for a time
period up to 2 minutes maximum. Air dry for a sufficient
length of time to allow. solvent to evaporate from beneath
display lens. Maintain solvent temperature below 30° C
(86° F). Methanol, isopropanol, or ethanol may be used for
cleaning at room temperature. Soap and water solutions
may be utilized for removing water-soluble fluxes from the
contact area but must not be allowed to collect under the
display lens.

These devices may be mounted using anyone of several
different techniques. The most straightforward is the use
of standard PC board edge connectors. A less expensive
approach can be implemented through the useof stamped
or etched metal mounting clips such as those available
from Burndy (Series LED-B) or JAV Manufacturing
(Series 1255). Some of these devices will also serve as an
integral display support. A third approach would be the
use of a row of wire stakes which would first be soldered to
the PC mother-board and the display board then inserted
over the wire stakes and soldered in place.

Solvent vapor cleaning at elevated temperatures is not
recommended as such processes will damage display
lens. Ketones, esters, aromatic and chlorinated hydrocarbon solvents will also damage display lens. Alcohol
base active rosin flux mixtures should be prevented from
coming in contact with display lens.

The devices may be soldered for up to 3 seconds per tab at
a maximum soldering temperature of 2300 C. Heat should
be applied only to the edge connector tab areas of the PC
board. Heating other areas of the board to temperatures in
excess of 85°C can result in permanent damage to the
lens. It is recommended that a rosin core wire solder or a
low temperature deactivating flux and solid core wire
solder be used in soldering operations. A solder
containing approximately 2% silver (Sn 62) will enhance
solderability by preventing leaching of the plated silver off
the PC board into the solder solution.

These devices are constructed on a silver plated printed
circuit board. To prevent the formation of a tarnish (Ag,S)
which could impair solderability, the boards should be
stored in the unopened shipping packages until they are
used. Further information on the storage, handling and
cleaning of silver-plated components is contained in
Hewlett-Packard Application Bulletin NO.3.

Device Pin Description
Pin
No.

5082-7442
5082-7444
5082-7447
Function

1
2
3
4
5
6
7

Cathode-Digit 1
Cathode-Digit 2
Catll0de-Digit 3
Anode-Segment c
Cathode-Digit 4
Anode-DP
C"lhodo-Digit 5

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

I

I

Anuda-Segrnent

a

Cathode-Digit 6
Anode-Segment e
Cathode-Digit 7
Anode-Segment d
Cathode-Digit 8
Anode-Segment g
Cathode-Digit 9
Anode-Segment b
Cathode-Digit 10
Anode-Segment f
Cathode-Digit 1"1
Cathode-Digit 12
Cathode-Digit 13
Cathode-Digit 14

5082-7445
Function

5082-7446
Function

Anode-Segment a
Anode-Segment f
Anode-Segment b
Anode-Segment c
Anode-Segment d
Anode-Segment DP
Anoda-Segment e
Anode-Segment g
Cathode-Digit 3
Cathode-Digit 2
Cathode-Digit 4
Cathode-Digit 1
Cathode-Digit 5
Cathode-Digit 12
Cathode-Digit 6
Cathode-Digit 11
Cathode-Digit 7
Cathode-Digit 10
Cathode-Digit 9
Cathode-Digit 8

Cathode-Digit 1
Cathode-Digit 2
Cathode-Digit 3
Cathode-Digit 4
Cathode-Digit 5
Anode-Segment e
Cathode-Digit 6
Anode-Segment d
Cathode-Digit 7
Anode-Segment a
Cathode-Digit 8
Anode-Segment DP
Cathode-Digit 9
Anode-Segment c
Cathode-Digit 10
Anode-Segment g
Cathode-Digit 11
Anode-Segment b
Cathode-Digit 12
Anode-Segment f
Cathode-Digit 13
Cathode-Digit 14
Cathode-Digit 15
Cathode-Digit 16

101

package Dimensions
x

~

56.B 12.2351
4.5 (.l75) (11 PLCS EQl SP.
NON·ACCUM. TOLERANCES)

OEVICE

X

Y

Z

5082·1442

60.3
12.3751

6.03
1·23751

1.02
1.0401

5082·7445

59.6

5.70

1.42

12.3451

1.22251

1.0561

I

lB'31 '721°_~+_------f6»)«D)@@@@@@@@@@@@@@@@@@
~ Lj I-1~
1

1.91.0751

2

3

4

5

6

7

8

9

10 11 12 13 14

16 17 18 19 20

2.51.1001

(19 PLCS NON·ACCUM.
TOLERANCES)

'=~.~

(.062±.OlD)

1.1 ± ,13

1.160' .0051

12.7 ± .13
(.50 ± .005)

l
7

Z
DIAMETER
THROUGH
20 PLACES
±.T3 (.005)

PROTECTIVE
BEZEL

Figure 4.

-----1'1

1------------60.312.3751-------------1'1
~-----------56.812.2351

1--1- 3.B 1.1501 113 PlCS EOl SPC.

rt~~=1~=F~~~~N~D~N~.A~C~C=UM~.=T=O~l=ER=A=N~C~E~SI~~============~' - . - - - - - 4 - -

-I

r

lB.31.7201

e@@@@@@@@@@@@@@@®@®®~

1

-r-~
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
I I tI--2.51.1001 121 PlCS NDN-ACCUM.
1.9 I.075.
TOlERANCESI

1.02< .13
1.040 ± .0051

50827444

3.61.1401

50827447

Figure 5.

I-~--------- I~~j~: OO~~I---------------I·I
1 - - - - - - - - - - - {~~~~: ~O~~l~-----------3.Bl 1.150115 SPACES
TOL. NON·ACCUMULATIVE

- r18.29

±

0.38

"T"

t

11.18

~""",eW@""®~®-!::@W@:-®~O-¥®.....®~®=-®!o!..0~®...lo®~®,w®~®*O-'"'®w,®,w®~®':':_O-'"'®w,@t,_l~~--~_

-r-~
I

2.54 (.100)

1.4401

1

2

3

4

5

6

7

B

9

10 11 12 13 14 15 16 17 18 19

t1--2.54 1.1001 23 SPACES

20 21 22 23 24

'" 1.02 (.040) DlA
PLATED THRU
24 HOLES

TOL. NON·ACCUMULATIVE

5.721.2251

Figure 6.

DEVICE

X

y

5082·7442

2.54
(.100)

1.42
1 1.056 )
1.40
1.055)
1.42
(.0561

1----- 2.54
5082-7444
5082-7445
5OR2·7446

1.100)
2.54
1.100)
1.1161

1.40
(.0551

2.84
1.1(2)

1.40
(.0551

2.92-

-

5082·7447

102

NOTES: 1. ALL DIMENSIONS IN MILLIMETRES AND

IINCHESI.
2. TOLERANCES ON ALL DIMENSIONS ARE
±O.38 (.015) UNLESS OTHERWISE
SPECIFIED.

r

Ii

HEWLETT

SPECIAL PARTS
FOR CALCULATORS

PACKARD

COMPONENTS

5082-7240
SERIES

TECHNICAL DATA

APRIL 1977

Features
• MOS COMPATIBLE
Can be driven directly from MOS circuits.
" LOW POWER
Excellent readability at only 250IJA
average per segment.
" UNIFORM ALIGNMENT
Excellent alignment is assured by design .
• MATCHED BRIGHTNESS
Uniformity of light output from digit to
digit on a single PC Board.
" STATE OF THE ART LENS DESIGN
Assures the best possible character
height, viewing angle, off-axis
distortion tradeoff.

Description
The HP S082-7240 series displays are 2.59mm (.102")
high, seven segment GaAsP Numeric Indicators mounted
in an eight or nine digit configuration on a P. C. Board.
These special parts, designed specifically for calculators,
have right hand decimal points and are mounted on
S.08mm (200 mil) centers. The plastic lens over the digits
has a magnifier and a protective bezel built-in. A

secondary magnifying lens, available on special request,
can be added to the primary lens for additional character
enlargement.
Applications are primarily portable, hand-held calculators
and other products requiring low power, low cost and long
lifetime indicators which occupy a minimum of space.

Device Selection Guide
Digits
Per
PC Board

8

9

. Configuration

--,---------

Part No.

Package

Device

B. BD B. B. B. B. B. B.
B. B. B. B. B. B. B. B. Ba
103

(Figure 5)

5082-7240

(Figure 5)

5082-7241

Absolute Maximum Ratings
Symbol

[

Parameter

P"k

I

Min.

Fo~"d Cocco", pO' ",m,"' " dp [D",,"'" < 500""~~''

Average Current per Segment or dp[l1

50

IAVG

------Po
----_

Power Dissipation per Digit
Operating Temperature, Ambient

+1

TA

Reverse Vol tage
Solder Temperature at connector edge (t";;;3 sec.) [2)
NOTES: 1. Derate linearly

@

0.1 mArC above 60' C ambient.

-Ts- - - - -

VR

Units

+~

I

3

mW

mA

i

50

-20

j

+85

°c

-20

I

+85

°c

--

1

Storage Temperature

Max.

-----1-;:0-

V

1---

°c

2. See Mechanical sec'Lion for recommended soldering techniques
and flux removal solvents.

Electrical/Optical Characteristics at TA=25°C
Parameter

Symbol

Luminous Intensity/Segment or

Iv

)[3.4)

Peak Wavelength

Apeak

Forward Voltage/Segment or dp

VF

j----.

Test Condition

Min. [ Typ. [ Max.

IAVG ~ 500!lA
(lpK = 5mA
duty cycle = 10%)

~'~l6~J-

1----

IF = 5mA

'

655

1 1.6

I

50

"

45

I-

40

iiia:
a:

""
a:
CI

"a:s:

f--

..

35
I

30

20

'"~

15

-1-

,

25

fi'
I

,-_._.
f-- i--- i-

-_.. -

I,

_.-

-c--

10

~

--

-

-~

o
o

.2

.4

.6

.8

L

1.0 1.2 1.4

1.6 1.8 2.0
IAVG - AVERAGE CURRENT PER SEGMENT - rnA

VF - PEAK FORWARD VOLTAGE - V

Figure 1. Peak Forward Current vs.
Peak Forward Voltage

Figure 2. Typical Time Averaged luminous Intensity
per Segment vs. Average Current per Segment

10

1.6

>-

u;

:">,

iiiI-

~..,..;

;,

;;.~,

I~

"'"

0
2

:;;

w

"~
a:

0.5
0.4
0.3

c::;

1.2

~

~~
I' ~;;:,.

3

-20

"~
a:

20

40

60

:/

II

1.0
.8

I

.--.

--

/

i
i

o

80

°c
Figure 3. Relative Luminous Intensity vs. Ambient
Temperature at Fixed Current .Levol

-i---

-~±tl

o ___LL

T A - AMBIENT TEMPERATURE -

f+1-- -

.6 - - - - .4

f--

I

w

i
-40

- ---I
I

2

:;;

>

0.2
0.1
-60

1.4

~
"'"0

-

3
>

>-

"iii

I-

5

10

15

20

25

[

30

35

40

45

50

IpEAK - PEAK CURRENT PER SEGMENT - rnA

Figure 4. Relative luminous Efficiency vs. Peak
Current per Segment

104

!led

I
nm
V

NOTES: 3. See Figure 7 for test circuit.
4. Operation at Peak Currents of less than 3.0mA is not recommended.

E
I

Units

package Description

I

762 t .331
/.030,;
.015)

----~-----~

_

I

50.aoo
> .321
(2.00' .015)
---

L___ . f.---~-- ~-~- 49.276 ~ .2[)4
1.016 ~ .331
'
(.040 ~ .01511:
_____

._-.,.

I

(1.940: .010) -------~- ...

1-.__ 5.08 (200)
I
TYP.

I

7'}'-:31~'~~
J _____
~.
QIGIT=tl------

l)

_

T~-

1

2.540 ± .:::81

.... 1

2

3

:.... --

4

5

6

7

[l

9

10 11 12 13 14 15 16 17 '

2.54 (.100) NON·cur.1ULATIVE

965.t 127
(038
005)

-

~-...

DIA TVP

i+-31 _-

•

5 080

234r~

I

(200

010)

I

(1 ;~i.

I

~

.015)

~;~l -.......

I

I
r" - .

508,: .301
L020

-"'-

1

015)

! --":

~~~~"~~~~~~w\4?~

J___
,-

~23'68~,~81+ o;~~ _ _
f J

--'8-2 0 8 _
(720

(.100~.Ol!:j)

-1--~--- .. ~~

1

(.2BO:: .015)

i.i:; ~+ gfi)
..

NOTES: 1. Ol1l1cml'JIJ> III m,lhnwtcrs 111lJ (incl\es)
2. logo :Jmi 113rt numb<:r .;jrt! Or) b;lc/< 01·7240 & 7241.
shd~t mto pflmary
I~ns afld 1[1(;ro,\'iC~ Ch::HGctcr hci!jht I'; JvadJbJe

3. &cond,)ry 1.37X milGmrH:f dTJI
il$Special product,

Figure 5.

Magni'fied Character Font Description
DEVICES

5082-7240
5082-7241

Note:

All

c.hnlension~

in rniflimeten

'"

,

"0z

;;

/
1.4 1.6

_lpEA~ " 200~A
l-

20

3
1.8

10
.1

2.0 2.2 2.4 2.6

eTOR "

2",{,

1%,~

r-

~-

....

II

~~

g~i~ ~ :g~g~: ~l"

lUTY Fr

~~

40 f-- r-- -

-~+--i-

r----1-

200 r" .. -- DUTY FACTOR'"

>w
w>
:; ....
,,~

80

I

z
Ow
w:;

~

1'/.

r-

V/

I ~~F

J-J;'I

IpEAK '" 6mA

1.0

I

10

'AVG - AVERAGE CURRENT PER SEGMENT - rnA

VF - PEAK FORWARD VOLTAGE - V

Figure 2. Typical Time Averaged Luminous Intensity

Figure 1. Peak Forward Current vs.

Peak Forward Voltage.

per Segment vs. Average Current per Segment.

108

2.0

r-,--,-,-,-,-,--,-,-,-,

'.9 - - - -f-- --1---+---1---+---1---1
'.8
'.7
'.6 f---+---I-- - - ---+--1::t=4:~:::1:::::e~
1---_
'.5 - - -t----l--r---I-t---l

,
0.5
0.4
0.3

--.t""'-

'4
-t"--

t

'3

--c~-

r--- r-----~~

r----- --- -

--

,., J
'.0 f

t--~

1---

!

i

I

---

:: 11

0.2

.7

0.' L..-.L--l:--'--:':---'--'--'-:':-L--l:--'--:':--'--:'
-60

/"

-.fr---f---'.2
-t- -,-+---+--+-+--1

.......

--40

-20

0

20

40

TA - AMBIENT TEMPERATURE -

60

.6

80

°c

t--t--+--+I-t--t---t---t----t---t--i

0~:':20"--;4:-0-6:,:10:-::8:-0-:,7.00:-:C,2"'0-':':4"-0-:-,6"'0-''''3::-0~200
IpEAK - PEAK CURRENT PER SEGMENT - rnA

Figure 4. Relative Luminous Efficiency vs. Peak
Current per Segment.

Figure 3. Relative Luminous Intensity vs. Ambient
Temperature at Fixed Current Level.

Electrical

Mechanical

The HP 5082-7265,7275,7285, and 7295 devices utilize a
seven segment monolithic GaAsP chip. The 5082-7285
and 7295 devices use a separate decimal point chip
located to the rig ht of each dig it. The 5082-7265 and 7275
devices use a centered decimal pOint on the monolithic
seven segment chip. The centered decimal point version
improves the displays readability by dedicating an entire
digit position to distinguishing the decimal point. In the
driving scheme for the centered decimal point version the
decimal point is treated as a separate character with its
own time frame.

These devices are constructed on a standard printed
circuit board substrate. A separately molded plastic lens is
attached to the PC board over the digits. The lens is an
acrylic styrene material that gives good optical lens
performance, but is subject to scratching so care should
be exercised in handling.
The device may be mounted either by use of pins which
may be soldered into the plated through holes at the
connector edge of the PC board or by insertion into a
standard PC board connector. The devices may be
soldered for up to 3 seconds per tab at a maximum
soldering temperature of 230°C. Heat should be applied
only to the edge connector tab areas of the PC board.
Heating other areas of the board to temperatures in excess
of 85° C can result in permanent damage to the display. It
is recommended that a rosin core wire solder or a low
temperature deactivating flux and solid wire solder be
used in soldering operations.

The segments and decimal points of each digit are
interconnected, forming an 8 by N line array, where N is
the number of characters in the display. Character
encoding is performed by standard 7 segment decoder
driver circuits. A detailed discussion of display circuits
and drive techniques appears in Applications Note 937.
These devices are tested for digit to digit luminous
intensity using the circuit depicted in Figure 8.
Component values are chosen to give a Peak IF of 10 mA
per segment for the 5 digit displays and 30 mA per
segment for the 15 digit displays. This test method is
preferred in order to provide the best possible simulation
of the end product drive circuit, thereby ensuring
excellent digit to digit matching. If the device is to be
driven at peak currents of less than 6.0 mA, it is
recommended that the HP field salesman or factory be
contacted.

The PC board is silver plated. To prevent the formation of a
tarnish (Ag2S) which could impair solderability the
displays should be stored in the unopened shipping
packages until they are used. Further information on the
storage, handling, and cleaning of silver plated components is contained in Hewlett-Packard Application Bulletin No.3.
+5 VOLTS

ISEGMENT
O-----l........
r- (T~IJg~ 7)

For special product applications, the number of digits per
display can be altered. It is also possible to provide a colon
instead of the centered decimal point. Contact the HP field
salesman or factory to discuss such special modifications.

RS::: 2ao!?
(5 DIGIT DISPLAY)

Rs ~ gOD
(15 DIGIT DISPLAY)

r-

--,

1----

~t~4--+~!~~

Optical

I
I
.,.
I
L ____ _

Each chip is positioned under a separate element of a
plastic magnifying lens, producing a magnified character
height of 4.45mm (.175"). To increase vertical viewing
angle the secondary cylindrical magnifier can be removed
reducing character height to 3.86mm (.152"). A filter, such
as Panelgraphic 60 or 63, or Homalite 100-1600, will lower
ambient reflectance and improve display contrast.

DIGIT
SWITCH
(1 PER DIGIT)

t

-------1
DIGIT 1

I

•••

I
L _____

i'
I
I
I
I

J

Figure 5. Circuit Diagram used for Testing the Luminous Intensity.

109

package Dimensions

I

~'~

____

~~_~~
-

__

----------1

91.948 ± 0.381

I

(3.620' .010)

0.381 MAX.

~_~_~;:~~~: ~o~~;~-~-~--~~-~--~-~:~II 2.6~;015)
1_----~-45.593±.381

~2~~~ TYP.

li

TOLERANCES ARE ±O.203 (±.OOB) UNLESS OTHERWISE NOTED

ALL DIMENSIONS IN MILLIMETEASAND (INCHES).

_

RIVET HEIGHT

(.105)

~

11.795:!: .015)

r---'------)---------~------H____.

I

~i1J5~ DIA. TYP,
Figure 6. 5082·7275,5082·7295.

0.381 (.015) MAX.
RIVET HEIGHT

---

r

0.610
(.024)

22.606 ± 0,381

(.89I·015)

i

7.62 _'
h.300)
1

234567

~2'54

7.061 ± .381
(.278 ± .015)

(.100)

(14 PLCS. NON·ACCUM, TOLERANCES)

Figure 7. 5082·7265,5082·7285.

Magnified Character

Device Pin Description

Font Description
DEVICES
5082-7265
5082-7275

DEVICES
5082-7285
5082-7295

Pin

5082-7265
5082-7265

5062-7275
5062-7295

No,

Function

Function

1
2
3
4

5
6
7

8
9
10
11
12

13
14
15
16
17
18
19
20
21

ALL DIMENSIONS IN MILLIMETERS AND (INCHES).

NOTE 1. Bonding Option for Colon Instead of Decimal Point.
See Electrical Section.

22
23

Figure 8.

110

Anode Segment
Anode Segment
Anode Seg ment
Cathode Digit 1
Cathode Digit 2
Cathode Digit 3
Cathode Digit 4
Cathode Digit 5
Cathode Digit 6
Cathode Digit 7
Anode Segment
Anode Segment
Anode Segment
Anode Segment
Anode Segment

b
g
e

Cathode Digit 1
Cathode Digit 2
Cathode Digit 3
CathOde Digit 4
Anode Segment dp
Cathode Digit 5
Anode Segment

c

Cathode Digit 6
Anode Segment e
Cathode Digit 7
dp

Anode Seg ment a

d

Cathode Digit 8
Anode Segment 9
Cathode Digit 9
Anode Segment d
Cathode Digit 10
Anode Segment f
Cathode Digit 11

c
a
f

Anode Segment b

Cathode
Cathode
Cathode
Cathode

Digit
Digit
Digit
Digit

12
13
14
15

NUMERIC and
HEXADECIMAL
INDICATORS

-=:=:~2

HEWLETTll PACKARD
COMPONENTS

5082-7300
5082-1302
5082-1304
5082 -1340

TECHNICAL DATA APRIL 1978

Features
• NUMERIC 5082-7300/-7302 • HEXADECIMAL 5082-7340
0-9, Test State, Minus
0-9, A-F, Base 16
Sign, Blank Stales
Operation
Decimal Point
Blanking Control,
7300 Right Hand D.P.
Conserves Power
7302 Left Hand D.P.
No Decimal Point
• DTL/TTL COMPATIBLE
o INCLUDES DECODER/DRIVER WITH 5 BIT MEMORY
8421 Positive Logic Input
o 4 x 7 DOT MATRIX ARRAY
Shaped Character, Excellent Readibility
• STANDARD .600 INCH x .400 INCH DUAL-IN-LiNE
PACKAGE INCLUDING CONTRAST FILTER
• CATEGORIZED FOR LUMINOUS INTENSITY
Assures Uniformity of Light Output from
Unit to Unit within a Single Category

Description

The 5082-7302 is the same as the 5082-7300, except that
the decimal point is located on the left-hand side of the
digit.
The 5082-7340 hexadecimal indicator decodes positive 8421
logic inputs into 16 states, 0-9 and A-F. In place of the
decimal point an input is provided for blanking the display
(all LED's off). without losing the contents of the memory.
Applications include terminals and computer systems using
the base-16 character set.
The 5082-7304 is a (± 1.) overrange character, including decimal point, used in instrumentation applications.

The HP 5082-7300 series solid state numeric and hexadecimal indicators with on-board decoder/driver and memory provide a reliable, low-cost method for displaying
digital information.
The 5082-7300 numeric indicator decodes positive 8421
BCD logic inputs into characters 0-9, a "-" sign, a test
pattern, and four blanks in the invalid BCD states, The
unit employs a right-hand decimal point. Typical applications include point-of-sale terminals, instrumentation, and
computer systems.

package Dimensions
7300

7302

7340

~10.2MAX'j

f.--10.2 MAX'j
r- {ADO)

I

j

(ADO)

r-

1

If

14.0
1.551

14.0

~.:l

(.55)

~:J

I

I

1 4.8

~(.19)

5

6

7

8

LUMINOUS
INTENSITY
CATEGORY

DATE CODE
PIN 1 KEY

4

3

2

1

TT~'~O"

152

(.sOO)

LL

(.17)

FUNCTION
5082-7300
5082-7340
and 7302

Numer;c

Hexadecimal

1

Input 2

2

Input 4

Input 4

3
4

Input 8

Input 8

Decimal
point

Blanking
control

5

Latch
enable

Latch
enable

6

Ground

Ground

7

Vee

Vee

I---g""- -"Input

1

Input 2

Input 1

1.5

,-1--1--,

SEATING
PLANE

0.3 ±O.OB TYP.
(.012.1.003)

/i~'~
4.ri --i I-

PIN

+

111

(.061

NOTES:
1. Dimensions in millimetres and {inches}.
2. Unless otherwise specified, the tolerance
on all dimensions is ±.38mm (±.015")
3. Digit center line is ±.25mm (±.01")
from package center line.

Absolute Maximum Ratings
Description

Symbol

Min.

Max.

Unit

Ts

+100

·C

Te

-40
-20

+85

°C

Vee

-0.5

+7.0

V"VOP,V E
VB

-0.5

+7.0

V
V

-0.5

Vee

V

230

°C

Storage temperature, ambient
. Operating temperature, case 1,.21
Supply voltage l3 '
Voltage applied to Input logic, dp and enable pins
Voltage applied to blanking input l71
Maximum solder temperature at 1.59mm (.062 inch)
below seating plane; t .;;; 5 seconds

Recommended Operating Conditions
Symbol

Min.

Nom.

Max.

Vec

4.5

5.0

5.5

V

Operating temperature, case

Te

+85

Enable Pulse Width
Time data must be held before positive transition
of enable line
Time data must be held after positive transition
of enable line

tw

-20
120

°C
nsec

ISETUP

50

nsec

tHOLD

50

nsec

Description
Supply Voltage

Enable pulse rise time

200

hLH

Electrical/Optical Characteristics
Description
Supply Current
Power dissipation
Luminous intensity per LED
(Digit average) 15,6)
Logic low-level Input voltage
Logic high-level input voltage
Enable low-voltage; data being
entered
Enable high-voltage; data not
being entered
Blanking low-voltage; display
not blanked i11
Blanking high-voltage; display
blanked (7)

Unit

nsec

(Te = -20°C to +85°C, unless otherwise specified).
Typ.'4)

Max.

Unit

Icc
PT

Vce=5.5V (Numeral

112

170

mA

5 and dp lighted)

560

935

mW

Iv

Vcc=5.0V, Tc=25°C

Symbol

Test Conditions

32

70

/-tcd
0.8

V'L
VIM
VEL

Min.

V

2.0

V

0.8

Vcc=4.5V

V

2.0

VEA

V
0.8

VBL
3.5

VBH

V

-

V

Blanking low-level Input current(7)

ISl

Vec=5.5V, VBL =0.8V

20

Blanking high-level input current PI

ISH

Vec=5.5V. VOH=4.5V

2.0

/-t A
rnA

Logic low-level input current

hL

mA

1m

Vcc=5.5V. V'L=O.4V
Vcc=5.5V, VIH=2.4V

-1.6

Logic high-level Input current
Enable low-level input current

+250

IEL

Vec=5.5V. VEL=O.4V

-1.6

/-tA
rnA

IEH

Vcc=5.5V, VEH=2.4V

Enable high-level input current
Peak wavelength
Dominant Wavelength

(8)

APEAK

Tc=25°C

Ad

Tc=25°C

Weight

+250
655
640
0.8

/-tA
nm
nm
gm

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: 0'A=5(f' C!w;
0,c=15° C/W; 2. 0CA of a mounted display should not exceed 35° C/W for operation up to T e = +85° C. 3. Voltage values are with respect to
device ground, pin 6. 4. All typical values at Vcc=S.O Volts, Te=2So C. 5. Thesadisplays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The
luminous intensity at a specific case temperature, Iv(Te) may be calculated from this relationship: Iv(Te)=lv (25°C) e[:·0188)"C ITc-2S'CI]
7. Applies only to 7340. 8. The dominant wavelength, Ad, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

112

.5

Pin.

'SETUP

Vee N;~

'HOLD

DATA INPUT
(LOW LEVEL DATAl

INPUT
Dpl21

DATA INPUT
(HIGH LEVEL DATAl

1.SV

1.5V

a:

""
";;z
z

.20~

t!t5v90%

CONTROL

.15

Vu ""

.IE

1 -_ - r -

~
a

"OV

E

-'.6

I

l-

i--~

-1.4

w
~

3.~1J

F-:--

0

20

40

I:?

-.6

:r

80

90

L

L

L

L

L

L

H

L

L

H

L

L

L

H

H

L

H

L

L

H

,-

L

H

H

L

L

H

H

H

H

L

l

L

L

L

H

:----

-- H

I

x~

1.0

\-

ITe'25'C 1_

- -I - -

Vee" s.ov

-1.0
-.0

I

-.6

-.2
2.0

3.0

4.0

Figure 5_ Typical Latch Enable Input
Current vs. Voltage for the
5082-7300 Series Devices_

S082·7300n302

6082-7340

()

if
....

L

I

...I,

......
V, •

5.0

V

\
VE "5Vt

IJ' I \_

00 0.5 1.0

2.0

4.0

3.0

VIN - LOGIC VOLTAGE -

....,

-=-+-- ...

:"J

Il

Figure 6_ Typical Logic and Decimal
Point Input Current vs.
Voltage for the 5082-7300
Series Devices. Decimal
Point Applies to 5082-7300
and -7302 Only.

-~-

i"j

:...
.....
:" .
..
,

,

:::,

' '!
;::;

..

;:::
..
..

<;!

l

I '~

L

l

H

H

(BLANK)

H

H

L

L

tBLANK)

H

H

L

H

....

D

H

H

H

L

(BLANK)

t:.
....

H

H

H

(BLANl<1

I

DECIMAL PT.12l

ENABLE[11
BLANKING(3J

,

H

I

(:£
...

e
C
~

..

ON

Vop - L

OFF

Vop'= H

LOAD DATA

V.

LATCH DATA

VE

DISPLAY·ON

va
v.

r5rSPLAY-OFF

=L

.-,:r--l
-H

--

Notes:
1. H - Logic High; L - Logic Low. With the enable input at logic high
changes in BCD input logic levels or D.P. input have no effect upon
display memory, displayed character, or D.P.
2. The decimal point input, DP, pertains only to the 5082-7300 and
5082-7302 displays,
3. The blanking control input, B, pertains only to the 5082-7340
hexadecimal display. Blanking input has no effect upon display
memory.

113

5.0

v

..... ,
....
..,
.....,

....
..

5

v

-1.4

-" -.'

VE - LATCH ENABLE VOLTAGE - V

H

H

•

3

-1.6

"c;

9

TRUTH TABLE

".

H

2

I

BCDOATA[1i

)(.

r----

Y /i

1

/

IZ

i3

-.2

Figure 4. Typical Blanking Control
Input Current vs.
Temperature 5082-7340.

E

\
\

00

/

!

-t.8

",

Vee" S.OV

........

_w

Tc - CASE TEMPERATURE _ °c

c---

I

~ -1.2

, -.'

:l

r - I-

60

r - - - - _.

_.r---

/V

Figure 3. Typical Blanking Control
Current vs. Voltage for
5082·7340.

~C'25'cl_

ffi

I

VB - BLANKING VOLTAGE -

-1.0

~

+---

-20

LEO
MATRIX

-1.2 I-

VB'" O.8V

0

f--

.1

6--::;,

·1 •

"

.05

MATRIX
DRIVER

I
.2

~
I
-"

Figure 2. Block Diagram of 5082·7300
Series Logic.

·OV

"

LED
4_

GROUND

VE

:5 .10
,

Z

II

Vee'" S.OV
Tc '" 25°C

.3

00

J- ' ,v, - r -

r---..

r--

"
DP

VU" 4.5V

15a: . 2 5 - ___

ia

MATRIX
DECODER

z
;;

BLANKING I3]

-1- V(;C '" 5.0\.1 __

I-

f--

. - DP

ttTLH

Figure 1. Timing Diagram of 5082-7300
Series Logic.

"E,

E

I

t,.-

!
.35 ' "
.30-- ~~ --

LATCH
MEMORY

1.5V

,J

ENABLE
INPUT

..

"

I
I-

8_Xl
l_X2
2-:<4
3-XS

LOGIC

~

1.5V

5~

ENABLE

Solid State Over Range Character
For display applications requiring a ±, 1, or decimal point designation, the 5082·7304 over range character is available. This
display module comes in the same package as the 5082·7300 series numeric indicator and is completely compatible with it.

package Dimensions
FRONT VIEW

SIDE VIEW

REAR VIEW

5

6

7

END VIEW
PIN

.-Lo.,oo

8

2
3

Numeral One
Numeral One

4
5

Open

I

6

Open

--I

7
S

Vee
Minus/Plus

_-!-_..,

SEATING ....

"""SEATING
PLANE

PLA~E I I
...i.....:'!tr.-h+n-ri

0.3 ±O.08 TYP.

]
1.3 TYP.

(.050'
4

3

2

FUNCTION
Plus

1

-+{

I

DP

1

I\IOTES: 1. Dimensions in inches and (millimeters).
2. Unless otherwise specified, the tolerance

5082-7304

on all dimensions is ±.015 inches. (± .38mm)

TRUTH TABLE FOR 5082·7304
CHARACTER

PIN

+

-

1
Decimal Point
Blank
NOTES:

TYPICAL DRIVING CIRCUIT FOR 5082·7304.

1

2,3

4

8

H
L
X
X

X

X
X
X
H

H
H
X

L

L

X
H
X
L

L

X
:::1

DESCRIPTION

SYMBOL MIN

MAX

UNIT

-40
-20

+100
+85

°c
°c

Ts
TC

Forward current, each LED

'F

VR

Reverse voltClge, each LED

NUME~ALONE

M~S

~

I
I
I
I
I

Absolute Maximum Ratings
Storage temperature, ambient
Operating temperature, case

Vee

r---------- ----------,

I

L: Line switching transistor in Fig. 7 cutoff.
H:Line switching transistor in Fig. 7 saturated.
X: 'don't care'

10

mA

4

V

,

I
,
I
I
I

6600

seou

100U

,s

---"1

:son

150$1

RECOMMENDED OPERATING CONDITIONS
SYMBOL MIN NOM MAX UNIT
LED supply voltage

V c

Forward current, each LE 0

'F

4.5

5.0

5.5

V

5.0

10

rnA

NOTE:
LED current must be externally limited. Refer to figure 7

Figure 7.

for recommended resistor values.

Electrical/optical Characteristics (Te = -20De TO +85 e, UNLESS OTHERWISE SPECIFIED)
0

DESCRIPTION
Forward Voltage per LED

TEST CONDITIONS

SYMBOL

MIN

I F =10mA

TYP

MAX

UNIT

1.6

2.0

V

250

320

mW

Power dissipation

VF
PT

Luminous Intensity per LED (digit average)

Iv

Peak wavelength

Apeak

Tc =25"<:

655

Spectral halfwidth

.:l.A.l/2

TC=2SoC

30

nm

0.8

gm

IF

= 10 mA

all diodes lit
IF =6 mA

32

70

Tc = 2SoC

Weight

114

"cd
nm

I

HEWLETT

NUMERIC AND
HEXADECIMAL DISPLAYS
FOR INDUSTRIAL
APPLICATIONS

PACKARD

COMPONENTS

5082-7356
5082-7357
5082-7358
5082-7359

TECHNICAL DATA APRIL 1978

Features
• CERAMIC/GLASS PACKAGE
• ADDED RELIABILITY
• NUMERIC 5082-7356/-7357
0-9, Test State, Minus Sign, Blank States
Decimal Point
7356 Right Hand D.P.
7357 Left Hand D.P.
• HEXADECIMAL 5082-7359
0-9, A-F, Base 16 Operation
Blanking Control, Conserves Power
No Decimal Point
• TTL COMPATIBLE
" INCLUDES DECODER/DRIVER WITH 5 BIT
MEMORY
8421 Positive Logic Input and Decimal Point
• 4 x 7 DOT MATRIX ARRAY
Shaped Character, Excellent Readability
• STANDARD DUAL-IN-LiNE PACKAGE
15.2mm x 10.2mm (.6 inch x .4 inch)
• CATEGORIZED FOR LUMINOUS INTENSITY
Assures Uniformity of Light Output from Unit to
Unit within a Single Category

pattern, and four blanks in the invalid BCD states. The unit
employs a right-hand decimal point. Typical applications
include control systems, instrumentation, communication systems and transportation equipment.
The 5082-7357 is the same as the 5082-7356 except that
the decimal point is located on the left-hand side of the
digit.

The HP 5082-7350 series solid state numeric and
hexadecimal indicators with on-board decoder/driver and
memory provide 7.4mm (0.29 inch) displays for use in
adverse industrial environments.

The 5082-7359 hexadecimal indicator decodes positive
8421 logic inputs into 16 states, 0-9 and A-F. In place of the
decimal point an input is provided for blanking thedisplay
(all LED's off), without losing the contents of the memory.
Applications include terminals and computer systems
using the base-16 character set.

The 5082-7356 numeric indicator decodes positive 8421
BCD logic inputs into characters 0-9, a " -" sign, a test

The 5082-7358 is a "±1." overrange display, including a
right hand decimal point.

Description

package Dimensions
IMAX'j
1,.-, 10.2(AOO)

~10.2MAX'j
1r - (.400)

7357

r---cSOc.cS2:-:,7;;;:35:::F60"UN",CrT-,:I~"'~;;:;2:-:'7""35;;;:9:-'

7359

O::

AND 7357
f--__ I-..::N"'U""MERIC

1

11

Inpu:.:,tc2_ _+--....:I"'np'-"u.t:..:2:........-J
2

13.5

13.5

L,t,4r-rIr-r-",~1

'd-t±J-c:rJ

~ 4.8

Input 4

~nput

4

-~"~~~

~:r

~-

------;--

5

(.19)

4.8

HEXA·
DECIMAL

PIN

De,elmal

I

POlOt
----L
J-~~ i

Sianking
contr~l_

latch

enable

I

ena~l~

6

Ground

I

Ground

8

Input 1

(.19)

5

6

7

8

REAR VIEW
LUMINOUS
INTENSITY
CATEGORY

DATE CODE
PIN 1 KEY
4

3

2

1

SIDl~[IEW
1:*010'
152
!.6eO}

lL
2.8~ ~I

(.111

SEATING
PLANE

END VIEW

~'8
1.'
t
I
~_'

~

SEATING
PLANE

O.3tO.08TVP.

4.3 I~__
(.171

r--

(.012 ±.003)

+

1.3

(.151

-TIl
1\_

---1

115

3.4

0.5 '0.08

TYP.

(.020 t.003)

2.S±.13TYP.
(.10 t.OOS)

r

NOTES:

(.06)

Typ.~I' Q~,

(.050)

Input 1

1. Dimensions in millimetresand (inches).
2 Unless otherwise specified. the tolerance
on all dimensions is ±.38mm (±.015")
3. Digit center line is ±.25mm (±.O,")
from package center line.

Absolute Maximum Ratings
Symbol

Min.

Mall.

Unit

Storage temperature. ambient

Ts

-65

+125

°C

Operating temperature, ambient 11,')

TA

-55

+100

°C

Supply voltage l3 )

VeL

-0.5

+7.0

V

VI.VDP,VE

-0.5

+7.0

V

VB

-0.5

Vee

V

260

°C

Description

Voltage applied to input logic. dp and enable pins
Voltage applied to blanking input(1)
Maximum solder temperature at 1.59mm (.062 inch)
below seating plane; t :;;;; 5 seconds

Recommended operating Conditions
Min.

Nom.

Max.

Vee

4.5

5.0

5.5

V

Operating temperature. ambient

TA

0

+70

Enable Pulse Width

Description

Symbol

Supply Voltage

Unit

tw

100

°C
nsec

Time data must be held before positive transition
of enable line

tSETUP

50

nsec

Time data must be held after positive transition
of enable line

tHOU)

50

nsec

hw

Enable pulse rise time

Electrical/optical Characteristics

200

nsec

(TA = COC to +70°C. unless otherwise specified).
Typ.(4)

Malt.

Unit

Supply Current

Icc

Vec=5.5V (Numeral

112

170

mA

Power dissipation

PT

5 and dp lighted)

560

935

mW

Luminous intensity per LED
(Digit average) 15061

I,

Vec=5.0V, TA=25°C

Description

Logic low-level input voltage

Symbol

Test Conditions

Min.

40

85

,ucd
0.8

V

Logic high-level input voltage

VIL
VIH

Enable low-voltage; data being
entered

VEL

Enable high-voltage; data not
being entered

VEIl

Blanking low-voltage; display
not blanked (7)

Val.

Blanking high-voltage; display
blanked (7)

Van

Blanking low-level input current<7)

I Bc

Vcc=5.5V. VBL=0.8V

50

,uA

Blanking high-level input current (7)

IBII

Vce=5.5V. VSIl=4.5V

1.0

mA

Logic low-level input current

ilL

Vcc=5.5V. VIL=OAV

-1.6

mA

Logic high-level input current

IIH

Vcc=5.5V. VIH=2AV

Enable low-level input current

IEL

Vce=5.5V, VEI.=OAV

+100
-1.6

mA

Enable high-level input current
Peak wavelength
Dominant Wavelength

(81

IEIl

2.0

V

Vec=4.5V

0.8
2.0

V
V

0.8
3.5

V
V

Vcc=5.5V, VEH=2.4V

+130

,uA
fJ A

APEAK

TA=25°C

655

nm

Ad

TA=25°C

640

nm

1.0

gm

Weight

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: 8)A=50°CIW;
0)c=15° CIW; 2. 0eA of a mounted display should not exceed 35° CIW for operation up to T A=+1 000 C. 3. Voltage values are with respectto
device ground, pin 6. 4. All typical values at Vcc=5.0 Volts, T A=25°C. 5. These displays are.categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The
luminous intensity at a specific ambient temperature, Iv(TA), may be calculated from this relationship: I v(TA)=lv(2'o q (.985) [TA-25'C]
7. Applies only to 7359. 8. The dominant wavelength, Ad, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

116

t SETUP

t HOLD

TRUTH TABLE

BCD DATAI,I

DATA INPUT
(LOW LEVEL DATAl

k;-

lo5V

DATA INPUT
(HIGH LEVEL DATA)

1.SV

,J

ENABLE
INPUT
'.5V

.tTLH
1.5V

X.

X,

X,

L

L

L

L

L

L

L

H

L

L

H

L

L

L

H

H

~
90%

'1

tw-

Figure 1. Timing Diagram of 5082-7350
Series Logic.

Pin.

N;~

Vee

5~

ENABLE
LOGIC

a_Xl

INPUT

2-X4
3-X8

-

l_X2

DP[2]

4~

LATCH
MEMORY

DP

j
BLANK1NG[JI
CONTROL
4_

L

H

L

L

H

L

H

L

H

H

L
H

GROUND

.,
h

,

L

H

H

L

L

L

H

L

L

H

H

L

H

L

..

H

L

H

H

IBLANK)

H

H

L

L

(BLANK)

H

H

L

H

H

H

H

L

IBLANKI

H

H

H

H

(BLANK)

DECIMAL PT.(2]

ENABLEI1J
BLANK1NG{3!

-

:"1

...
.....,

H

t

MATRIX
DRIVER

..

L

MATRIX
DECODER

50S2·7359

...

0'
LED

5082-7356/7357

X,

LED

..

c;

.

,

ON

VD,

OFF

V DP '" H

L

LOAD OATA

VE .. L

LATCH DATA
DISPLAY·ON

V, " H
L
VB

DISPLAY·OFF

V,

-H

MATRIX

Notes:
1. H = Logic High; L =Logic Low. With the enable input at logic high
changes in BCD input logic levels or D,P. input have no effect upon
display memory. displayed character. or D.P.
2. The decimal paint Input. DP. pertains only to the 5082.. 7356 and
5082.. 7357 displays.
3, The blanking control input. B. pertains only to the 5082.. 7359
hexadecimal display. Blanking input has no effect upon display

6---.:::J...

Figure 2. Block Diagram of 5082-7350
Series Logic.

memory.

.5

"E

~

.4

,3

=

I

:>

"

=

2

/

I

.1

00

....-

1

I
I

i/ /

I

~

~

\;

5.0V
25"C
I

,

./ Vi

L

:>

u

'"
;;

200

V~' 5JV

'"

z
z

;;:

~

'00

-"

50

I

,

I
3

w 250

a:
a:

~

" i'."" '50

Vi

I

2

300

I

I
Vee
Tc

u

z
;;:
z

1.

!

I

'"

350

I

4

5

VB - BLANKING VOLTAGE - V

Figure 3. Typical Blanking Control
Current vs. Voltage for 50827359.

--"- ........

20

40

60

TA - AMBIENT TEMPERATURE -

80

w

~

"'

-1.0

"15
'"
~

-.6

I

-.4

:l

_.Bt--"

.......

\
\

_w

-.2
100

ac

Figure 4. Typical Blanking Control
Input Current vs. Ambient
Temperature for 5082-7359.

117

Vee'" 5.0V
-1.4

u

~5V

0

I

~c=25'C 1 _

-1.6

:> -1.2

'--.

-20

"E
15a:'"
a:

Va"'" 4.5V

Vf} "'O,BV

0
-55 -40

I

-l.a

Ve"'OVVI "'OV

00

1.0

~

2,0

3.0

4.0

5.0

Ve - LATCH ENABLE VOLTAGE - V

Figure 5. Typical Latch Enable Input
Current vs. Voltage.

I

-1.8

~

ITc '

1.0

I

- - - -" - lOO!)

5fiOi!

560\1

ISO!l

I
~

ISO!l

SIDE

,J!"~.JoJ,,

rU;U

PLANE

~ I

I rJ.fl.fU1 '"

(.«10)

~1

.•
SEATING-I CHi)

7358

XYY . .

J

15
.U:i61

I

-:It
11_

fl

DATECCDE

I.HYP.

PIN 1 KEv

(.OOH

3.'
CBS}

~'~'~-----j

~3";"";"

Figure 9. Typical Driving Circuit.

0.5 '0.08 TYP.
(.020

t

.003)

TRUTH TABLE

2.5t,13TYP.
(.10 ~.0051

PIN
1

Plus

2

Numeral One

1. DIMENSIONS IN MtLLIMETRESAND (INCHES),

3
4

Numeral Dna

ON All DIMENSIONS IS i..38 MM (! .015 INCHES).

1

2,3

4

8

+

H

X

X

-

L

X

X

1

H

X

Decimal Point

X
X

H
H
X

X

H

X

Blank

L

L

L

L

FUNCTION

NOTES;
2. UNLESS OTHERWISE SPECIFIED, THE TOLERANCE

PIN

CHARACTER

END

REAR

0

DP
Open

6

Open

7
B

Mlnu~/Plus

NOTES:

V"

L: Line switching transistor in Figure 9 cutoff.

H: Line switching transistor in Figure 9 saturated.
X: 'Don't care'

Electrical/Optical Characteristics
5082-7358

[fA

= o°C to 70°C,

Unless Otherwise Specified)

DESCRIPTION

SYMBOL

TEST CONDITIONS

Forward Voltage per LED

VF

I F =10mA

Power dissipation

PT

IF - 10 mA

Luminous Intensity per LED (digit average)

Iv

Peak wavelength

Apeak

MIN

all diodes lit

IF = 6 mA

40

TYP

MAX

UNIT

1.6

2.0

V

280

320

mW

85

T c =25°C

Dominant Wavelength

Tc

Ad

~

655

TC = 25°C

640

nm

1.0

gm

Weight

Recommended Operating
Conditions
Vee

Forward current, each LED

IF

4.5

nm

Absolute Maximum Ratings

SYMBOL MIN NOM MAX UNIT
L.ED supply voltage

"cd

2SoC

5.0

5.5

V

5.0

10

mA

DESCRIPTION

NOTE:
LED current must be externally limited. Refer to Figure 9

for recommended resistor values.

119

SYMBOL MIN. MAX.

UNIT

Cc

Storage temperature, ambient

TS

-65

+125

Operating temperature, ambient

TA

-55

+100

°c

Forward current, each LED

IF

10

mA

Reverse voltage, each LED

VR

4

V

SOLID STATE
NUMERIC
INDICATOR

~

~

HEWLETT~ PACKARD
COMPONENTS

5082-7010
5082-7011

TECHNICAL DATA

APRIL 1977

Features
• RUGGED, SHOCK RESISTANT, HERMETIC
• DESIGNED TO MEET MIL STANDARDS
• INCLUDES DECODER/DRIVER
BCD Inputs
• TTL/DTL COMPATIBLE
• CONTROLLABLE LIGHT OUTPUT

• 5 x 7 LED MATRIX CHARACTER

Description
The HP 5082·7010 solid state numeric indicator with
built·in decoder/driver provides a hermetically tested
6.8mm (0.27 in.) display for use in military or adverse
industrial environments. Typical applications include
ground, airborne and shipboard equipment, fire con·
trol systems, medical instruments, and space flight
systems.

displayed for invalid codes. A left·hand decimal point
is included which must be externally current limited.

The 5082-7010 is a modified 5x7 matrix display that
indicates the numerals 0-9 when presented with a
BCD code. The BCD code is negative logic with blanks

Both displays allow luminous intensity to be varied
by changing the DC drive voltage or by pulse duration
modulation of the LED voltage.

The 5082-7011 is a companion plus/minus sign in the
same hermetically tested package. Plus/minus indications require only that voltage be applied to two input pins.

package Dimensions
5082·7010

5082·7011

PIN

FUNCTION

PIN

FUNCTION

PIN

FUNC!ION

PIN

FUNCTION

1
2
3
4

Input 1

5
6
7
8

1
2
3
4

NC
NC
Plu.
NC

5

VDP

Input 4
Ground
Vee

NC
Ground
Minus/Plus
NC

VLED

InputS

Notes:

Input 2

6
7
8

1. Unless otherwise specified. the tolerance on all dimensions is :1:0.38 mm. (±O.015 inches).
2. All dimensions in millimetre. and (inches).
3. The package and mounting pins are tin plated Kovar.

120

Absolute Maximum Ratings
Description

Symbol

Min.

Max.

Unit

TS

-65

+100

°c

Operating Temperature, Case

Te

-55

+95

°c

Logic Supply Voltage to Ground

Vee

-0.5

+7.0

V

Logic I nput Voltage

VI

-0.5

+5.5

V

LED Supply Voltage to Ground

VLED[l]

-0.5

+5.5

V

Decimal Point Current

IDP

-10

rnA

Storage Temperature, Ambient

Note: 1. Above T e = 65°C derate V LED per derating curve in Figure 10.

Recommended Operating Conditions
Symbol

Min.

Nom.

Max.

Unit

Vee

4.5

5.0

5.5

V

LED Supply Voltage, Display Ott

VLED

-0.5

0

+1.0

V

Description
Logic Supply Voltage

LED Supply Voltage, Display On

VLED

3.0

4.2

5.5

V

Decimal Point Current

I DP[2J

0

-5.0

-10.0

mA

Logic Input Voltage, "H" State

VIH

2.0

5.5

V

Logic Input Voltage, "L" State

V IL

0

0.8

V

Note: 2. Decimal point current must be externally current limited. See application information.

Electrical/Optical Characteristics

Truth Table

Case Temperature, Te = O°C to 70°C, unless otherwise specified
Description

Symbol

Test
Conditions

Min.

Typ.[41 Max.

Unit

Logic Supply Current

lee

Vee = 5.5V

45

75

rnA

LED Supply Current

'LED
[3]
[5]

Vee
5.5V
5.5V
5.5V

255
170
125

350
235

mA

Logic Input Current,
"H" State (ea. input)

VLED
5.5V
4.2V
3.5V

IIH

Vee = 5.5V
VIH=2.4V

100

p.A

Logic I nput Current,
"L" State (ea. input)

IlL

Vee = 5.5V
VIL = O.4V

-1.6

rnA

Decimal Point
Voltage Drop

V LED
-VDp

IDP = -lOmA

1.6

2.0

V

Vee
5.5V
5.5V
5.5V

VLED
5.5V
4.2V
3.5V

1.7
1.0
0.7

2.3
1.4

W

VLED
5.5V
4.2V
3.5V

Te
25°C
25°C
25°C

PT
[3]
[5]

Power Dissipation

Luminous Intensity
per LED (digit avg.)
Peak Wavelength
Spectral Halfwidth

I

60
40

p.cd

Apeak

655

nm

l>Ay,

30

nm

4.9

gram

Weight
Notes:

0

H

H

H

H

1

H

H

H

L

3. With numeral 8 displayed.
4. All tYpical values at T e = 25°C.
5. Te = DOe to 65°e for VLED = 5.5V.

!

i

.;;--

2

H

H

L

H

~::~

3

H

H

L

L

....::~

4

H

L

H

H

tot

iH

L

i...

L

H

I:::,
:.-

I

H

L
I

6

H

II L

7

H

IL

8

L

9

il

,

I+-rI
H

I

H

".u·

--

iLL

H

''';l
-+.
;:::;

--I---;u-

Blank

H , H ,L
'·..1
I --~i~"~--~~-L IH!L HI

Blank

L

BLank

L

Blank

L

! H iLL I

tL-'-~+-L: H H
L ,H

L'

I

Blank

L

L

L

H

Blank

L

L

L

L

VI L = 0.0 to 0.8V
VIH = 2.0 to 5.5V
121

,''',

:...:

~--

5

115
80
50

Iv

Logic
Character XS'X4 X2X1

V LED

Vee

LEOs
5k!"!

Sk!1

900n

lOGIC INPUT

VDP

GROUND

GROUND

Figure 1. Equivalent input circuit of the 5082·7010 decoder.
Note: Display metal case is isolated from ground pin #6.

Figure 2. Equivalent circuit of the 5082-7010 as seen from
LED and decimal pOint drive lines.

PLUS 0 - -.....- - - . . . . . ,

,

-1.0
-0.9

" -0.8
E
I

...
Z

"

-0.7

w
a:
a: -0.6

:>

u

...
~

.- r-Tc' 25"C

~

Vee" 5.5V

-0.5

~ -0.4

u

t;

9

-0.3

I
.= -0.2

-0.1

o

o

1.0

2.0

3.0

4.0

5.0

VI - LOGIC INPUT VOLTAGE - V

Figure 3. Equivalent circuit of 5082·7011 plus/minus
sign. All resistors 345!l. typical. Note: Display
metal case is isolated from ground pin #6.

Figure 4. Input current as a function of input Voltage,
each input.

100
-1.10

90

'3.

80

...I

70

a:

60

f:i
a:

:>

f---

I

vcc~ 5.5V

c(

VIH'" 2.4V

E
I

50

u
t;

40

~

g

I

r--. ...........

.........

-0.80

I'--..
"-...

~~ -0.70
u
t;

30
20

I

10

o
-55

~

[I

I

-=

~ -0.90
a:
a:

I

.u

~

VCC =S.5V
Vil = O.4V

-1.00

-40

-20

20

V
40

60

9 -0.60

/

.-~-

./

'-

I
~

.: -0.60

f--80

-0.40
-55 -40

95

Te - CASE TEMPERATURE - °c

-20

20

40

TC - CASE TEMPERATURE -

Figure 5. Logic "H" input current as a function of case
temperature, each input.

60

80

95

"c

Figure 6. Logic uL or input current as a function of case
temperature, each input.

122

120

I I

2eo
Vcc= 5.5V

~

I.

~CU;"~~~L e DISPLAYED

240 -

I

/

I-

~

200

u

::;

160

/
V

il::
~

cw
-'
I

~

120
eo

/

V

40

o

I

I-

I

lLl

BO

I

fii

I-

I

.,;;

I

60

:::l

e

z

I

:E
:::l

I

40

V

-'

/1

I

I

RECOMMENDED
I
_OPERAT'NG_'
RANGE
,-

.:

I

I

I

,

20

/
RECOMMENDED
OPERATING-r-

I
I

I

5

I

/

in

I

/'

o

~
>

V

II:
II:
:::l

I
I

100 : - - - Te' 25"C
Vee =r S.SV

1:

rOE

o

o

5.5 6

5

VLED - LED SUPPLY VOLTAGE - V

5.5

6

VLED - LED SUPPLY VOLTAGE - V

Figure 7. LED supply current as a function of
LED supply voltage.

Figure 8. Luminous intensity per LED (digit average)
as a function of LED supply voltage.

3.0

Vee;: 5.5V
2.5
;0
I

f----

NUMERAL

;"

2.3

Z

e

i

2.0

is

1.5

ffi

~

I\.

1.15
1.0

l-

.5

"~

I

NUMERAL 8 AND
4 r - - DP DISPLAYED

4.2

~

3.5

~

\

~

~
I

S

I
I
I

"e

Ve~ =5.5V

I

w

I

l-

I
~

>

I

;'\.,

-

\

I
I

ili

-'

5.5

a AND DP DISPLAYED

~

>~

1

I
I
20

40

6065

eo

20

95100

95100

Figure 9. Maximum power derating as a function of
case temperature.

Figure 10. LED voltage derating as a function of
case temperature.

•.0

"- "~

in

fii
~

'"e

"

:::l

z

eo

Tc - CASE TEMPERATURE _ °C

4.0

i

6065

40

TC - CASE TEMPERATURE _ °C

1.0

:l

w

>

5

'"

4.0

~
c

3.0

ffi

2.0

20

40

60

TC - CASE TEMPERATURE _

eo

f'-.
"1\

I

I

I
I

I
I
I
I

>~

1.0

"- ...,

-..........

I
Vee = B.BV
I
NUMERAL 8 AND DP DISPLAYED

~

"-...,

0.4

-20

w

~

~
"-

-40

I
I

I

w

-60

'-.........

I

>

II:

o.3

-'

5.0

I
I
0

~B

100

°c

-40

-20

20

40

TA - AMBIENT TEMPERATURE _

Figure 11. Relative luminous intensity as a function of case
temperature at fixed current level.

60

°c

Figure 12. LED voltage derating as a function of ambienttemporature,display soldered into p.e. board without heat sink.

123

Solid State PIus/Minus Sign 5082·7011

Truth Table

For display applications requiring ± designation, the 5082·
7011 solid state plus/minus sign is available. This display
module comes in the same package as the 5082-7010 numeric indicator and is completely compatible with it. Plus
or minus information can be indicated by supplying voltage
to one (minus sign) or two (plus sign) input leads. A third
lead is provided for the ground connection. Luminous in·
tensity is controlled by changing the LED drive voltage.
Each LED has its own built-in 345[2 (nominal) current
limiting resistor. Therefore, no external current limiting
is required for voltages at 5.5V or lower. Like the numeric
indicator, the -7011 plus/minus sign is TTL/DTL compatible.

CHARACTER

PIN
3

7

+

H

H

-

l

H

L

L

Blank

VL = -0.5 to 1.0V
VH = 3.0 to 5.5V

Electrical/Optical Characteristics
Case Temperature, Tc = O°C to 70°C, unless otherwise specified
Symbol

Description
LED Supply Current

ILED

PT

Power Dissipation

Luminous Intensity per LED (Digit Avg.)

Typ.[l1

Max.

VLED =5.5V

105

150

VLED =4.2V

70

100

VLED '" 5.5V

0.6

0.9

VLED = 4.2V

0.3

0.6

Test Conditions

IvI Z]

VLED'" 5.5V

60

115

VU,D =4.2V

40

80

VLED
Peak Wavelength

Apeak

Spectral Halfwidth

~AY.,

=3.5V

655

1. All typical values at TC = 25°C
2. At TC = 25°C

Absolute Maximum Ratings
Description

Symbol

Min.

Max.

Unit

TS

-65

+100

Operating Temperature. Case

Tc

-55

+95

°c
°c

Plus, Plus/Minus Input
Potential to Ground

VLED

-0.5

5.5

V

Storage Temperature. Ambient

Recommended Operating Conditions
Symbol

Min.

Nom.

Max.

Unit

LED Supply Voltage.
Display Off

VLED

-0.5

0

1.0

V

LED Supply Voltage.
Display On

VLED

3.0

4.2

5.5

V

Description

124

Unit
mA

W

/Jcd

50

Weight
Notes:

Min.

nm

30

nm

4.9

gram

Applications
Decimal Point Limiting Resistor
The decimal point of the 5082-7010 display requires an external current limiting resistor, between pin 2 and ground.
Recommended resistor value is 220n, 1/4 watt.
Mounting

ing the display on an appropriate heat sink or metal core
printed circuit board. Thermal conducting compound such
as Wakefield 120 or Dow Corning 340 can be used between
display and heat sink. See figure 10 for VLED derating vs.
display case temperature.
Operation Without Heat Sink

The 5082-7010 and 5082-7011 displays are packaged with
two rows of 4 contact pins each in a DIP configuration
with a row center line spacing of 0.890 inches.
Normal mounting is directly onto a printed circuit board.
If desired, these displays may be socket mounted using
contact strip connectors such as Augat's 325-AG I or AMP
583773-1 or 583774-1.
Heat Sink Operation
Optimum display case operating temperature for the 50827010 and 7011 displays is Tc=OoC to 70°C as measured
on back surface. Maintaining the display case operating
temperature within this range may be achieved by mount-

125

These displays may also be operated without the use of a
heat sink. The thermal resistance from case to ambient
for these displays when soldered into a printed circuit
board is nominally eCA =30 oC/W. See figure 12 for V LED
derating vs. ambient temperature.
Cleaning
Post solder cleaning may be accomplished using water,
Freon/alcohol mixtures formulated for vapor cleaning processing (up to 2 minutes in vapors at boiling) or Freon/
alcohol mixtures formulated for room temperature cleaning.
Suggested solvents: Freon TF, Freon TE, Genesolv D 1-15,
Genesolv D E-15.

J

HEWLETT

NUMERIC AND
HEXADECIMAL DISPLAYS
FOR HIGH RELIABILITY
APPLICATIONS

PACKARD

COMPONENTS

5082· 7391
5082-7392
5082 -1393
5082-1395

TECHNICAL DATA APRIL 1978

Features
• PERFORMANCE GUARANTEED OVER
TEMPERATURE
• HERMETICITY GUARANTEED
• TXV SCREENING AVAILABLE
• GOLD PLATED LEADS
• HIGH TEMPERATURE STABILIZED
• NUMERIC
5082-7391 Right Hand D.P.
5082-7392 Left Hand D.P.
• HEXADECIMAL
5082-7395
• TTL COMPATIBLE
• DECODER/DRIVER WITH 5 BIT MEMORY
• 4 x 7 DOT MATRIX ARRAY
Shaped Character, Excellent Readability
• STANDARD DUAL-IN-L1NE PACKAGE
• CATEGORIZED FOR LUMINOUS INTENSITY
Assures Uniformity of Light Output from
Unit to Unit within a Single Category

pattern, and lour blanks in the invalid BCD states. The unit
employs a right-hand decimal point. Typical applications
include control systems, instrumentation, communication systems and transportation equipment.
The 5082-7392 is the same as the 5082-7391 except that
the decimal point is located on the lelt-hand side 01 the
digit.

Description
The HP 5082-7390 series solid state numeric and
hexadecimal indicators with on-board decoderIdriver and
memory are herml;ltically tested 7.4mm (0.29 inch)
displays lor use in military and aerospace applications.

The 5082-7395 hexadecimal indicator decodes positive
8421 logic inputs into 16states, 0-9 and A-F. In place olthe
decimal point an input is provided lor blanking the display
(ali LED's off), without losing the contents olthe memory.
Applications include terminals and computer systems
using the base-16 character set.

The 5082-7391 numeric indicator decodes positive 8421
BCD logic inputs into characters 0-9, a " -" sign, a test

The 5082-7393 is a "±1.." overrange display, including a
right hand decimal point.

package Dimensions
1--'0.2
MAX'j
1..- (.400)

7395

-1

PIN

1
2
3

13.5

4

"ri-r::rlrlr:::r'·:r

5

I

' I 4 .•
r--------t""(.19)

REAR VIEW
LUMINOUS
INTENSITY
CATEGORY

SIDE VIEW

T-

15.2

I

~o.,..

..

PLANE

(.600)

DATE CODE
PIN 1 KEY

LL

PLANE

Q,3±O.OBTVP.

(2;~I--l
4.1-1_
--I
(.17)

+

(.012 ±.003)

8

END VIEW

~'
'.3 TYP'1!'
(.050)

,..

~
'- -tTl
Q~, 11_ TYP.

SEATING

"""""'SEATING

6
7

(,15).

(06)

I

-j

3.4

0.' .0.08

(.020 ±,003)

2.5 ±O.13 TVP.
(,10 ±.aDS)

126

FUNCTION
5082·7391
5082·7395
AND 7392
HEXA·
NUMERIC
DECIMAL
Input 2
Input 2
Input 4
Inpu,4
InputS
Input 8
Decimal
Blanking
point
control
latch
Latch
enable
enable
Ground
Ground

Vee

Vee

Input 1

Input 1

NOTES:
1. Dimensions in millimetres and (inches).

2. Unless otherwise specified, the tolerance
on all dimensions is ±,38mm (t.OlS")
3. Digit center line is ±.25mm (t,Ol")
from package center line.
4. Lead material is gold plated copper
alloy.

Absolute Maximum Ratings
Description

Symbol

Min.

Max.

Unit

Ts

-65

+125

°C

T"
Vee

-55
-0.5

+100
+7.0

°C
V

VI,VDP,V E

-0.5

+7.0

V

VB

-0.5

Vee

V

260

°C

Storage temperature, ambient
Operating temperature, ambient 11,2)
Supply voltage (3)
Voltage applied to input logic, dp and enable pins
Voltage applied to blanking input (7)
Maximum solder temperature at 1.59mm (.062 Inch)
below seating plane; t ~ 5 seconds

Recommended operating Conditions
Description

Symbol

Supply Voltage
Operating temperature, ambient

Min.

TA

4.5
-55

Vee

Nom.

Max.

5.0

5.5

V

+100

Unit

tw

100

°C
nsec

Time data must be held before positive transition
of enable line

tSETUP

50

nsec

Time data must be held after positive transition
of enable line

tHOU)

50

nsec

(I,,)

Enable Pulse Width

Enable pulse rise time

200

trLH

Electrical/Optical Characteristics
Description

Symbol

Supply Current
Power dissipation
Luminous intensity per LED
(Digit average) (5,6)
Logic low-level input voltage

(TA = -55°C to +100°C, unless otherwise specified)

Test Conditions

Min.

Typ.14 1

Max.

Unit

Icc
PT

Vce=5.5V (Numeral

112

170

mA

5 and dp lighted)

560

935

mW

I,

Vcc=5.0V, TA=25°C

Logic high-level input voltage

VIL
VIH

Enable low-voltage; data being
entered

VEL

Enable high-voltage; data not
being entered

VEH

Blanking low-voltage; display
not blanked (7)

VBL

Blanking high-voltage; display
blanked (7)

VRH

Blanking low-level input current

nsec

40

85

!,cd
0.8

V

2.0

V
0.8

Vcc=4.5V

V

2.0

V
0.8

V

3.5

V

IBI.

Vcc=5.5V, VBL=0.8V

50

IBH

Vcc=S.5V, VBH=4.5V

Logic high-level input current

iIL
IJH

1.0
-1.6

Vec=5.5V, V1H=2.4V

Enable lOW-level input current

lEI.

Vcc=5.5V, VEJ.=0.4V

Enable high-level input current

IEH
ApEAK

TA=25°C

655

!'A
nm

Ad

TA=25°C

640

nm

(7)

Blanking high-level input current
Logic low-level input current

Peak wavelength
Dominant Wavelength

(8)

(7)

Vcc=5.5V, VIL=O.4V

mA

+100
-1.6

Vce=5.5V, VElI =2.4V

Weight

!,A
mA

J1A
mA

+130

1.0

gm
5x10

Leak Rate

7

cc/sec

Notes: 1. Nominal thermal resistance of a display mounted in a socket which is soldered into a printed circuit board: 0 JA =5(1'C/W;
0Jc=15° C/w. 2. 0CA of a mounted display should not exceed 35° C/wfor operation up to T A=+1 0(1' C. 3. Voltage values are with respectto
device ground, pin 6. 4. All typical values at Vcc=5.0 Volts, TA=25°C. 5. These displays are categorized for luminous intensity with the intensity category designated by a letter located on the back of the display contiguous with the Hewlett-Packard logo marking. 6. The
luminous intensity at a specific ambient temperature, Iv(TA). may be calculated from this relationship: Iv(T A)=I V(25o C) (.985) [T A-25'C]
7. Applies only to 7395. 8. The dominant wavelength, Ad, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

127

TRUTH TABLE

t HoLD

tserup
DATA INPUT
ILOW LEVEL DATA)

DATA INPUT
(HIGH LEVEL DATAl

- tTL"

1.5V

ENABLE
INPUT

X.

~

1.5V

~

~~~

~90%

Figure 1. Timing Diagram of 5082-7390
Series Logic.

Pin.

N;~

Vee

5-----.

LOGIC

a_Xl

INPUT

2--.. X4
3-X8

-

1 ____ X2

--

LATCH
MEMORY

DpI21 4-DP

L

L

L

l

L

L

H

L

L

H

L

L

L

H

H

L

H

L

E

~

a:

"z
"~

.2

Vee'" S.OV
I Tc - 25·C

I

~I I

/

00

k-'

1

V
,/
2

/

..

..

H

L

H

H

H

H

L

L

L

H

L

L

H

H

L

H

L

H

L

H

H

(BLANK'

H

H

L

L

(BLANK}

..

..

,";

....

I":

H

H

L

H

....

H

H

H

L

(BLANKi

H

H

H

H

(8LANK)

...
...
,".
I,,'

i··
" ..

,i::'
VO? ~ L

ON

..........-

OFF

V o ? '"

LOAD DATA

V. " L

LATCH DATA

V,

'H

DISPLAY-ON

VB

. L

DISPLAY·OFF

VB

-H

H

1. H ; Logic High; L ; Logic Low. With the enable input at logic high
changes in BCD input logic levels or D.P. input have no ellect upon
display memory. displayed character, or D.P.
2. The decimal point input, DP, pertains only to the 5082-7391 and
5082-7392 displays.
3. The blanking control input, B, pertains only to the 5082-7395
hexadecimal display. Blanking input has no ellect upon display
memory.

300

I

.1

..
..
I::;,
..

....

Notes:

350

I

-"

........
,,

LED

..

tl

f..!

MATRIX

1

.3

;"5

H

8lANKING[3)

.5

'"

....

"

...,

L

DECIMAL PT.!:i'1

Figure 2. Block Diagram of 5082-7390
Series Logic.

I
I-

...
! ...

L

MATRIX

.~

GROUND

Ci
.,i.

...r"..

H

OECODER

--

t)

L

L

j
LED

5082·7395

...
....,

H

DP
MA1RIX
DRIVER

5082·7391/7392

.....,

L

ENMLE(1J

BLANKING I31
CONTROL
4_

X,

l

I

1.5V

ENABLE

BCDOATAIlJ
X2
X.

/

!zw

/

a:
a:

"u
~"

V

250

I-

200

"z

150

"~

100

-"

50

z

"-

V~-5.Jv

~

i"'- b-...

........

-...

3

4

5

VB - BLANKING VOLTAGE - V

Figure 3. Typical Blanking Control
Current vs. Voltage for 50827395.

--

~B "'4.SV

t- -...

~.V

I

-20

0

20

40

60

80

100

TA - AMBIENT TEMPERATURE _ °C

Figure 4. Typical Blanking Control
Input Current vs. Ambient
Temperature for 5082-7395.

128

E -1.6

I-

15a:
a:

Vee'" 5.0V

-1.4
-1.2

"u
"'al
1i'"i -................
:z:
-1.0

~

I
_w

..

-

-.'

"-

1
\

-.2

Va .. O.BV
0
-55 -40

'"

J

V,"'{)V

" .........

I
~c=25.C 1 _

~1.8

v.=ov_

00

~

1.0

2.0

3.0

4.0

5.0

V E - LATCH ENABLE VOLTAGE - V

Figure 5. Typical Latch Enable Input
Current vs. Voltage.

1.0

I

-1.8

il1-1.•4
-1.

ITc -25"C I -

I-

Vee" 5.DV

a:z
:>w
tJ a: .7
I- a:

z

£5
;;5

~ -1. 2

G -1. O - f---u

I

z

.....

•

_.

4
2

0

o

"'-

~ v, ·OV

-

Z

.5

~~

.4

r--

Vee .,5.0V
V1L '" O.8V

5.0

o

·55 -40

a~

ir:zl-CJ
i ~

16

1-!5

i

~!:!

~

9

_w

I

14

_=

20

40

60

80

100

Figure 7. Typical Logic and Enable
Low Input Current vs.
Ambient Temperature.

/

/

8
6
4

o

/

/

10

2
-20

I

c- -

~I

TA - AMBIENT TEMPERATURE _ DC

V1N - LOGIC VOLTAGE - V

Figure 6. Typical Logic and Decimal
Point Input Current vs.
Voltage.

I 22

20 c-- f - vee til fi.OV
V 1H = 2.4V
18

~

8 .3
-- .1

4.0

24

i::t 12

I ....

3.0

~

,,;;

_Ld 1...1.2

2.0

«

~ 5;

..........

.6

g~
in

,rr~
1.0

-r-_

2.
I-

«u

\

0.5

I

~ I- .8

!;;

§ -.8

«E .•

-

/
/'

I--":"

-55 -40

-20

a

20

40

60

80

100

TA - AMBIENT TEMPERATURE - DC

Figure 8. Typical Logic and Enable
High Input Current vs.
Ambient Temperature.

operational Considerations
These displays may be mounted by soldering directly to a
printed circuit board or inserted into a socket. The leadto-lead pin spacing is 2.54mm (0.100 inch) and the lead
row spacing is 15.24mm (0.600 inch). These displays may
be end stacked with 2.54mm (0.100 inch) spacing between
outside pins of adjacent displays. Sockets such as Augat
324-AG2D (3 digits) or Augat 508-AG8D (one digit, right
angle mounting) may be used.

ELECTRICAL
The 5082-7390 series devices use a modified 4 x 7 dot
matrix of light emitting diodes (LED's) to display
decimal/hexadecimal numeric information. The LED's are
driven by constant current drivers. BCD information is
accepted by the display memory when the enable line is at
logic low and the data is latched when the enable is at
logic high. To avoid the latching of erroneous information,
the enable pulse rise time should not exceed 200
nanoseconds. Using the enable pulse width and data
setup and hold times listed in the Recommended
Operating Conditions allows data to be clocked into an
array of displays at a 6.7MHz rate.

The primary thermal path for power dissipation is through
the device leads. Therefore, to insure reliable operation up
to an ambient temperature of +100"C, it is important to
maintain a case-to-ambient thermal resistance of less
than 35°C/watt as measured on top of display pin 3.
Post solder cleaning may be accomplished using water,
Freon/alcohol mixtures formulated for vapor cleaning
processing (up to 2 minutes in vapors at boiling) or
Freon/alcohol mixtures formulated for room temperature
cleaning. Suggested solvents: Freon TF, Freon TE,
Genesolv 01-15, Genesolv DE-15.

The blanking control input on the 5082-7395 display
blanks (turns off) the displayed hexadecimal information
without disturbing the contents of display memory. The
display is blanked at a minimum threshold level of 3.5
volts. This may be easily achieved by using an open
collector TTL gate and a pull-up resistor. For example,
(1/6) 7416 hexinverter buffer/driver and a 1200hm pull-up
resistor will provide sufficient drive to blank eight
displays. The size of the blanking pull-up resistor may be
calculated from the following formula, where N is the
number of digits:

PRECONDITIONING
5082-7390 series displays are 100% preconditioned by 24
hou r storage at 125° C.
CONTRAST ENHANCEMENT

Rbl..k = (Vee - 3.5V)/[N (1.0mA)]

The 5082-7390 displays have been designed to provide the
maximum posible ON/OFF contrast when placed behind
an appropriate contrast enhancement filter. Some
suggested filters are Panelgraphic Ruby Red 60 and Dark
Red 63, SGL Homalite H100-1605, 3M Light Control Film
and Polaroid HRCP Red Circular Polarizing Filter. For
further information see Hewlett-Packard Application Note
964.

The decimal point input is active low true and this data is
latched into the display memory in the same fashion as is,
the BCD data. The decimal point LED is driven by the onboard IC.
MECHANICAL
5082-7390 series displays are hermetically tested for use
in environments which require a high reliability device.
These displays are designed and tested to meet a helium
leak rate of 5 x 10-7 cc/sec and a standard dye penetrant
gross leak test.

129

High Reliability Test Program
Hewlett-Packard provides standard high reliability test programs. patterned
after MIL-M-38510 in order to facilitate the use of HP products in military
programs.

PART NUMBER SYSTEM
WlthTXV

Standard
Product

Screening

lkfeenlng
Plus Group B

The TXV prefix identifies a part which has been preconditioned and
screened per Table 1.

5082-7391

TXV-7391

TXVB-7391

5082-7392

TXV-7392

TXVB-7392

The TXVB prefix identifies a part which has been preconditioned and
screened per Table 1. and comes from a lot which has been subjected to the .
Group B tests described in Table 2.

5082-7395

TXV-7395

TXVB-7395

HP offers two levels of high reliability testing:

WilhTXV

Table 1. TXV Preconditioning and Screening -100%.

Examination or Test
1. Internal Visual Inspection
2.
3.
4.
5.
6.
7.
8.
9.

Electrical Test Iv. Icc. ' BL• 'BfI. lEt.
High Temperature Storage
Temperature Cycling
Acceleration
Helium Leak Test
Gross Leak Test
Electrical Test: Same as Step 2
Burn-in

'Efl. "L,

"fl.

MIL-STO-883
Methods
HP Procedure
72-0352

Per Electrical/Optical Characterstics.
125"C. 168 hours.
-65°C to +125·C. 10 cycles.
2.000 G, y, orientation,
Condition A, limit pressure to 25psi for 1 hour.
Condition D, 40psi for 1 hour.

1008
1010
2001
1014
1014
1015

10. Electrical Test as in Step 2
11. Sample Electrical Test Over Temperature:
fcc. h~L, 18H. IEL. lEn. IlL. 1m
12. External Visual

Conditions

T A =1000C, t=l68 hours, at Vc c=5.0V and cycling through
logic at 1 character per sec.
Per Electrical Characteristics, TA -55·C, +100·C, LTPD=7

2009

Table 2. Group B.
Examination or Test
Subgroup 1
Physical Dimensions
Subgroup 2
Solderability
Temperature CYCling
Thermal Shock
Hermetic Seal
Moisture Resistance
End Points: Electrical Test
Subgroup 3
Shock - Non-operating
Vibration Variable Frequency
Constant Acceleration
End Points: Electrical Test
Subgroup 4
Terminal Strength
End Points: Hermetic Seal
Subgroup 5
Salt Atmosphere
Subgroup 6
High Temperature Life
End Points: Electrical Test
Subgroup 7
Steady State Operating Life
End Points: Electrical Test

MIL-STD-883
Condition

Method

LTPD
20

2008

Package Dimensions per Product Outline Drawing.

2003
1010
1011
1014

Immersion within 0.062" of seating plane 260·C, t=5 sec., omit aging.
10 cycles -65" C to +125· C
Test Condition A
Condition A, limit pressure to 25psi for 1 hour, and Condition D,
40psi for 1 hour.
Omit initial conditioning.
Same as Step 2, Table 1.

15

1004

15
2002
2007
2001

1500 G. t=0.5ms. 5 blows in each orientation XI. YI. Y2.
Non-operating.
2.000 G, YI orientation.
Same as Step 2, Table 1.

2004
1014

Test Condition B2.
Condition A. limit pressure to 25psi for 1 hour. and Condition D.
40psi for 1 hour.

1009

Test Condition A

1008

TA=125°C. non-operating, t=oI000 hours.
Same as Step 2. Table 1.

1005

T A =1000C. t=1000 hours. at Vcc=5.0V and cycling through logic at
1 character per second.
Same as Step 2. Table 1.

15

15
X=7

X=5

130

Solid State Over Range Character
For display applications requiring a ±, 1, or decimal pOint designation, the 5082-7393 over range character is avaiiable.This
display module comes in the same package as the 5082-7390 series numeric indicator and is completely compatible with it.

Package Dimensions
r---------- ----------,I
.7

lite.

M~S

NUMERAl ONE

~

I
I

"""""'SEATING

I
I
I

PLANE

0.3 :to.08 TYP.

+

(.012 ! ,OOJ}

(~~l-l ~fl ~
-.f

FRONT

{,171

~

---,,2

"4

.s

lOOn

6000

"""

---lOt

1500

SIDE

Figure 9. Typical Driving Circuit.
DATE CODE

PIN 1 KEV

TRUTH TABLE

REAR

CHARACTER

END
PIN

FUNCTION

1

Plus
NumeralOn.

2
3

NumeralOn.

5

Open

.

Open

NOTES:
1. DIMENSIONS IN MILLIMETRES AND (INCHES).
2. UNLESS OTHERWISE SPECIFIED, THE TOlERANCE
ON All OIMENstONS IS 1..38 MM (± .015INCHES~.

•

+

-1

op

6
7

Decimal Point
Blank

V"

PIN
1

2,3

4

8

H
L
X
X
L

X

X

X

X

H

X
H
L

H
H
X
X
L

X
L

NOTES: L: Line switching transistor in Figure 9 cutoff.
H: Line switching transistor in Figure 9 saturated.
X: 'Don't care'

MlnuS/l"lu,

Electrical/Optical Characteristics
5082-7393

(TA

= -55°C to +100°C, Unless Otherwise
DESCRIPTION

Specified)

SYMBOL

TEST CONDITIONS

Forward Voltaga per LED
Power dissipation

VF
PT

Luminous I ntensity per LED (digit average)

Iv

Peak wavelength

Apeak

lOrnA
~ lOrnA
all diodes lit
IF ~6mA
Tr. = 25°C
Tc: 25"C

Ad

TC=250 C

Dominant Wavelength
Weight

Recommended Operating
Conditions

'F
'F

Forward

curt.nt~

each LEO

VCC
IF

4.5

5.0
5.0

5.5
10

~

40

TYP

MAX

UNIT

1.6

2.0

V

280

320

mW

85

"cd
640

rom
nm

1.0

gm

665

Absolute Maximum Ratings

SYMBOL MIN NOM MAX UNIT
LEO supply volt_

MIN

DEsCRIPTION
SYMBOL MIN. MAX. UNIT
Storage temperature, ambient
-65 +125
TS
Operating temperature, ambient
-55 +100
TA
Forward current, each LEO
10
rnA
IF
Reverse voltage, each LED
V
4
VR

·c
·c

V

mA

NOTE:
LED current must be externally limited. Refer to Figure 9
for recommended resistor values.

131

II

HEWLETT

FOUR CHARACTER
SOLID STATE
ALPHANUMERIC
DISPLAY

PACKARD

COMPONENTS

HDSP-2000

TECHNICAL DATA

APRIL 1978

Features
• INTEGRATED SHIFT REGISTERS WITH
CONSTANT CURRENT DRIVERS
• CERAMIC 7.62 mm (.3 in.) DIP
Integral Red Glass Contrast Filter
• WIDE VIEWING ANGLE
• END STACKABLE 4 CHARACTER PACKAGE
• PIN ECONOMY
12 Pins for 4 Characters
• TTL COMPATIBLE
• 5x7 LED MATRIX DISPLAYS FULL ASCII
CODE
• RUGGED, LONG OPERATING LIFE
• CATEGORIZED FOR LUMINOUS INTENSITY
Assures Ease of Package to
Package Brightness Matching

Description
The HP HDSP-2000 display is a 3.Bmm (0.15 inch) 5x7 LED array for display of alphanumeric information. The device is
available in 4 character clusters and is packaged in a 12-pin dual-in-line type package. An on-board SIPO (serial-inparallel-out) 7 bit shift register associated with each digit controls constant current LED row drivers. Full character display
is achieved by external column strobing. The constant current LED drivers are externally programmable and typically
capable of sinking 13.5mA peak per diode. Applications include interactive 1/0 terminals, point of sale equipment, portable
telecommunications gear, and hand held equipment requiring alphanumeric displays.

package Dimensions
I~~)

MAX.

~-.~

SEE NOTE~

I

,

P'N

2

f

3
4
5
6

3.7 REF. 7.25
(.'461
(2901

'1

_
PIN \ MARKED BY
DOT ON BACK OF

4.44t.13

P'N
7

•

9
10
11
12

FUNCTION

DATA OUT
V
Vee

CLOCK
GROUND

DATA IN

·00 NOT CONNECT OR USE

_

(.175.!-.005)

1.271:.13
(.050 '1':.005)

PACKAGE.

t

6.85

f.%101

I
1.27 _
(.0501

FUNCTION
COLUMN 1
COLUMN 2
COLUMN 3
COLUMN 4
COLUMN 5
INT. CONNECT"

-H-.54::1:.08
(.020 + .G03}

!

I

-I

I 2.54 ,.13 TYP.
!- NON
(.'00'.0051
ACCUM.

n

TVP'---1lr

.26'.05
(.0'0'.0021

7.62

(.3001

132

~

NOTES:

1. DIMENSIONS IN nUn (inches).
2. UNLESS OTHERWISE sp-eCIFIED THE

TOLERANCE ON ALL DIMENSIONS
lS !:".38 mm (,+;.016''')
3. lEAO MATERIAL IS GOLD PLATED
COPPER ALLOY.

4. CHARACTERS ARE CENTERED
WITH RESPECT TO LEADS WITHIN
i.13mm ft.005").

Absolute Maximum Ratings
Supply Voltage Vee to Ground .......... -0.5V to 6.0V
Inputs, Data Out and VB ................ -0.5V to Vl'e
Column Input Voltage, Veo!. .......... -0.5V to +6.0V
Free Air Operating Temperature
Range, T'pl. . . . . . . . . . . . . . . . . . . . . . .. -20° C to +70° C

Storage Temperature Range, Ts ..... -55°C to +100°C
Maximum Allowable Package Dissipation
atT A =25°C(I,',6 1 ••••••••••••••••••••••••• 1.70 Watts
Maximum Solder Temperature 1.59mm (.063")
Below Seating Plane t<5 secs ............... 260° C

Recommended Operating Conditions
Parameter
Supply Voltage

Symbol
VC(

Data Out Current. l.ow State
Data Out Current. I-IIgl1St81e

Min.

Nom.
5.0

4.75

Max.
5.25

Units
V

1.6
-0.5

mA
mA

Vee

45

V
ns

0

ns

lUI
lOll

Column Input Voltage. Column On

VUH .

2.6

Setup Time
Hold Time

t,~lUP

70
30
75
0

tholJ

Width of Clock
Cloci< Frequ8ncy
Clock Transition Time
Free Air Operating Temperature Range

tv.(Clodl

f.'loc\..

ns
3

200
70

til!!

-20

T,

MHz
ns
°C

Electrical Characteristics Over Operating Temperature Range
(Unless otherwise specified.)
Symbol

Description
Supply Current

Ie c

leol

Column Current at any Column Input

leO!

Peak Luminous Intensity per LEDI3.7j
(Character I~,verage)
'VB,cioCk or Data Input Threshold High
VB. Clock or Data Input Threshold Low

1\ rr: ,'''Vllt

Input Current Logical 1

IVB, Clock

Vll
lUi

I

J Va,Clock

1111

lnout Cu..-rent Logic2i [}

~'-----------------r

Data In

Data In-

Data Out Voltage

!iI

III
VOH

VOL

Power Dissipation Per Paci(age"
Peak Wavelength
Dominant Wavelength I"

p"

Max.

Units

O.4V

45

60

mA

2.4V

73

95

mA

1.5

mA

Min.

Vee ~ 5.25V
V{ LOCK = VPA I A = 2.4V
All SR Stages ~
Logical 1
Vcc

Column Current at allY Column Input

Typ.·

Test Conditions

~

VLOI

~

5.25V

All SR Stages

~

Logical 1

V"
Vn

~

VB~O.4V

VB~2.4V

Vl't ~ S.OV. Vc <)( - 3.SV
T, .~ 25°C III
VB~2.4V
Vl'e
VCl'

~

~

VCOI

~

105

V.,

~

S.25V. VII

Vl'e

~

4.7SV.

~

~

1011 ~

410

O.4V
-O.SmA, V""I

V
20
10
-SOO
-250

2.4V

= OV

Vce = 4.75V, 101. = 1.6mA, Ven, = OV
Vce - 5.0V, VeoL - 2.6V,
15 LEOs on per character, VB ~ 2.4V

2.4

mA
!,cd

200

2.0

4.75V

5.25V. Vlli

335

0.8

V

80
40

!,A

-800
-400

3.4
0.2
0.66

!'A
!,A
!,A
V

0.4

V
W

A.PFAK

655

nm

A,t

639

nm

• All typical values specified at Vee:::: 5.0V and T A == 25°C unless otherwise noted.
"Power dissipation per package with 4 characters illuminated.
NOTES:

1. Maximum absolute dissipation is with the device in a socket having a·thermal resistance from pins to ambient of 35°C/watt.
2. The device should be derated linearly above 25°C at 16mWrC (see Electrical Description on page 3).
3. The characters are categorized for Luminous IntenSity with the intenSity category designated by a letter code on the bottom of the

package.
4. Ti refers to the initial case temperature of the device immediately prior to the light measurement.
5. Dominant wavelength Ad. is derived from the CIE chromaticity diagram, and represents the single wavelength which defines the color
of the device.
6. Maximum allowable dissipation is derived from Vee = VB = VeOL = 5.25 Volts, 20 LEOs on per character.
7. The luminous stearance of the LED may be calculated using the following relationships:
Lv (Lux) = Iv (Candela)/A (Metre)'
Lv (Footlamberts) = "Iv (Candela)/A (Foot)'
A = 5.3 x to'" M' = 5.8 x 10-; (Foot)'

133

Post solder cleaning may be accomplished using water,
Freon/alcohol mixtures formulated for vapor cleaning
processing (up to 2 minutes in vapors at boiling) or
Freon/alcohol mixtures formulated for room temperature
cleaning. Suggested solvents: Freon TF. Freon TE.
Genesolv 01-15. Genesolv DE-15.

Electrical Description
Parameter
fm" Max.

The HDSP-2000 four character alphanumeric display has
been designed to allow the user maximum flexibility in
interface electronics design. Each four character display
module features Data In and Data Out terminals arrayed
for easy PC board interconnection such that display
strings of up to 80 digits may be driven from a single
character generator. Data Out represents the output of the
7th bit of digit number 4 shift register. Shift register
clocking occurs on the high to low transition of the Clock
input. The like columns of each character in a display
cluster are tied to a single pin. Figure 5 is the block
diagram for the HDSP-2000. High true data in the shift
register enables the output current mirror driver stage
associated with each row of LEDs in the 5x7 diode array.

Condition Min. Typ. Max. Units
3

CLOCK Rate
tPLIl, trilL
Propagation
delay CLOCK
to DATA OUT

CL "" 15pF
RL=2.4Kn

MHz

ns

90

Figure 1. Switching Characteristics. (Vee = 5V,
TA = -20°C to +70° C)

Mechanical and
Thermal Considerations

The reference current for the current mirror is generated
from the output voltage of the VB input buffer applied
across the resistor R. The TTL compatible VB input may
either be tied to Vee for maximum display intensity or pulse
width modulated to achieve intensity control and
reduction in power consumption.

The HDSP-2000 is available in a standard 121ead ceramicglass dual in-line package. It is designed for plugging into
DIP sockets or soldering into PC boards. The packages
may be horizontally or vertically stacked for character
arrays of any desired size.

The normal mode of operation is depicted in the block
diagram of Figure 6. In this circuit. binary input data for
digit 4, column 1 is decoded by the 71ine output ROM and
then loaded into the 7 on board shift register locations 1
through 7 through a parallel-in-serial-out shift register.
Column 1 data fordigits3. 2and 1 issimilarlydecoded and
shifted into the display shift register locations. The
column 1 input is now enabled for an appropriate period of
time. T. A similar process is repeated for columns 2. 3.4
and 5. If the time necessary to decode and load data into
the shift register is t. then with 5 columns. each column of
the display is operating at a duty factor of:

The -2000 can be operated over a wide range of
temperature and supply voltages. Full power operation at
T A "" 25° C (Vee = VB = VeOL = 5.25V) is possible by
providing a total thermal resistance from the seating plane
of the pins to ambient of 35°C/W/cluster maximum. For
operation above TA = 25°C, the maximum device
dissipation should be derated above 25°C at 16mW/oC
(see Figure 2). Power derating can be achieved by either
decreasing VeoL or decreasing the average drive current
through pulse width modulation of VB.
The -2000 display has an integral contrast enhancement
filter in the glass lens. Additional front panel contrast
filters may by desirable in most actual display applications. Some suggested filters are Panel graphic Ruby Red
60, SGL Homalite H100-1605 and Plexiglass 2423.
Hewlett-Packard Application Note 964 treats this subject
in greater detail.

ffi

2.0

~w

0

"-

~e

~ ~ 1.5
jl

~
0:
0:

""
'"
~

...L

"'"
"'1"\

"'"

100

1---

1--

I

~

~

~~>S<-- r-

20

~

10
7

,
rK
"I

"'"

'I;.

'I;.

i'

I

1

10

-

1-- r--

--

:s

-9"".; "
"",

~
ill

r - 1--1-- r I

~~
"

'I;.

1

III

r-- f - -- r-- I-'--'

_.

"-

r.......
i
-- I-- - r-.
-- r- - -- I--

""

--

50

1000

100

-

- r-- I-- _.- "'- ~

I

200

50

."

r--

60

80

70

TA - AMBIENT TEMPERATURE -

tp -;- PULSE DURATION - ps

85

"c

IpEAK· tp (TA) '" dF (TA) jlpEAK .tp (FIGURE 1)1

Figure 1. Maximum Allowed Peak Current vs. Pulse Duration. Derate derived
operating conditions above TA = 50°C using Figure 2.

15
14
13 -

>

"~

12

ii:
w

10

i3

~

!!:
>=

~

0:

I
~

~

i'

-L_-L
c,.

-

-

0.9
0,8

--

0,7

i

i

0,6 -

f-'--

j-

I~

"

l==~-

.-

r-- -

- ... -

1--- -0,1 f---

--_.

r-.-

0,2
0

~--

10

20

1---

~

I---

I

~
I-

160

0:
0:

140

"uc

120

~

100

nI -.--

0:

f -100

--

1--

~

80

'"~

60

I

40
0

l

1,0

o

0

o

3

4

1,2

1,4

J

1,6

1,8

2,0

VF - PEAK FORWARD VOLTAGE - V

Figure 3. Relative Luminous Efficiency
(Luminous I ntensity Per Unit Current)
vs. Peak Segment Current.

2

I
,

o

200

I

I

-

IpEAK - PEAK SEGMENT CURRENT - rnA

o

-.-

0:

I

-1 r:=
50

--

180 -

§

Ii ---

,--

1

200

~

iT r11-i -.
± ~--p- i-"' -,--

11

0,5
04
0,3

-

,-

Figure 2. Temperature Derating Factor
For Operating Conditions When T A
Exceeds 50° C.

Figure 4. Peak Forward Segment
Current vs. Peak Forward Voltage.

5

7

6

8

9

A

B

C

D

E

F

[ER13ClJEFGHI~klMND
PQR5TUVWXYZ [ \ J ? ~
II

o

o

±fJi%i'J
<>
3Y 5 51B 9
Figure 5.

Typical 64 Character ASCII Set.

o
Additional Character Font

138

*+/
/

/

L

~?

Package Dimensions

r

28.8
(1.1351

MAX._}
(.1251
3.18

22

12

i

21.3'
(.841)

.4

.021

11

=
PIN 1
(NOTE 31

I

(NOTE 41

+(*1

I
.

r=r:owJ

254
I I
l.iOOI TYP. --I I -

-r

3.81 , .25
(.150' .011

3.81 ± .25
(.150 ± .01)
NOTES:
1. ALL DIMENSIONS IN MllLiMETRES AND (INCHES),
2. ALL UNTOLERANCED DIMENSIONS ARE FOR REFERENCE ONLY.
3. PIN 1 IDENTIFIED BY INK DOT ADJACENT TO LEAD.
4. DEVICE PACKAGE ISSTRAIGHTWlTHIN INDICATED LIMIT.

Figure 6. HDSP·6504

Magnified Character
Font Description

Figure 7. HDSP·650S

Device Pin Description
Function
Pin
No.

DEVICES

1

HDSP·6504
HDSP·6508

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17

18

Figure S.

19
20
21
22
23
24
25
26

139

HDSP-6504

Anode
Anode
Cathode
Anode
Anode
Cathode
Anode
Anode
Anode
Cathode
Anode
Anode
Anode
Anode
Anode
Anode
Cathode
Anode
Anode
Anode
Anode
Anode

Segment g1
Segment DP
Digit 1
Segment d2
Segment I
Digit 3
Segment e
Segment m
Segment k
Digit 4
Segment dl
Segmentj
Segment Co
Segment g2
Segment a2
Segment i
Digit 2
Segment b
Segment al
Segment c
Segment h
Segment f

HDSP-6508

Anode
Anode
Cathode
Anode
Anode
Cathode
Anode
Anode
Anode
Cathode
Anode
Cathode
Cathode
Cathode
Cathode
Anode
Anode
Anode
Anode
Anode
Cathode
Anode
Anode
Anode
Anode
Anode

Segment g1
Segment DP
Digit 1
Segment d2
Segment I
Digit 3
Segment e
Segment m
Segment k
Digit 4
Segment dl
Digit 6
Digit 8
Digit 7
Digit 5
Segmentj
Segment Co
Segment g2
Segment a2
Segment i
Digit 2
Segment b
Segment al
Segment c
Segment h
Segment f

operational Considerations
ELECTRICAL
The H DSP-6504 and -6508 devices utilize large monolithic
16 segment GaAsP LED chips with centered decimal point
and colon. Like segments of each digit are electrically
interconnected to form an 18 by N array, where N is the
quantity of characters in the display. In the driving scheme
the decimal point or colon is treated as a separate
character with its own time frame. A detailed discussion of
character font capabilities, ASCII code to 16 segment
decoding and display drive techniques will appear in a
forthcoming application bulletin.

5.
6.
7.

These displays are designed specifically for strobed
(multiplexed) operation, with a minimum recommended
time average forward current per segment of 0.875mA.
Under normal operating situations the maximum number
of illuminated segments needed to represent a given
character is 10. Therefore, except where noted, the
information presented in this data sheet is for a maximum
of 10 segments illuminated per character!

8.

dissipation with the least loss of light output. To obtain
the temperature derated operating conditions perform
the following steps.
Determine maximum operating ambient temperature.
Example: TA = 70·C
Multiply IPEAK. tp.
Example: (100mA) (62.5j.1s) = 6250mA - j.lS
From Figure 2 determine derating factor, dF. Multiply
above IpEAK. tp product bydF.
Example: At TA = 70 D C, dF = 0:69
dF(lPEAK.tp) = (0.69) (6250> = 4312.5mA - j.ls
Calculate derated operating conditions.
Example: Maintain tp = 62.5j.1s and derate IPEAK
IPEAK =

4312.5mA - j.ls
62.5j.1s

= 69mA peak
current

The maximum allowed operating conditions, temperature
derated to an ambient of 70·C are now determined.
Example: f = 1kHz, tp = 62.5j.1s, IPEAK = 69mA and IAVG =
4.31mA.

The typical forward voltage values, scaled from Figure 4,
should be used for calculating the current limiting resistor
values and typical power dissipation. Expected maximum
VF values for tlie purpose of driver circuit design may be
calculated using the following VF model:

The above calculations determine the maximum allowed
strobing conditions. Operation at a reduced combination
of peak current and pulse width may be desirable to adjust
display light output to match ambient light levels and/or
to insure even more reliable operation.

VF = 1.85V + IPEAK (1.80>
For: 30mA :s: IPEAK :s: 200mA
VF = 1.58V + IPEAK (10.70>
For: 10mA:s: IPEAK :s: 30m A

Refresh rates of 1kHz or faster provide the most efficient
operation resulting in the maximum possible light output
for long character strings.
The time average luminous intensity may be calculated
using the relative efficiency characteristic of Figure 3,
'7rpEAK' and correcting for operating ambienttemperature.
The time average luminous intensity at TA = 25 D C is
calculated as follows:

Pulsed operating conditions on a per segment basis are
derived from Figure 1 and are temperature derated using
Figure 2. Figure 1 relates maximum allowed segment peak
current, IPEAK, to the maximum allowed pulse duration, tp,
for various strobing refresh rates, f. To most effectively
utilize Figure 1, perform the following steps:

Iv TIME AVG = [ IPEAK.DF] ['7l pEAK ] [Iv DATA SHEET]
1.875mA

1. Determine desired duty factor, DF.
Example: Sixteen characters, DF = 1/16
2. Determine desired refresh rate, f. Use duty factor to
calculate pulse duration, tp. Note: DF = ftp
Example: f = 1kHz, tp = 62.5j.1s
3. Enter Figure 1 atthe calculated tp. Move vertically to the
refresh rate line and record the corresponding value of
IPEAK.
Example: At tp = 62.5j.1s and f = 1kHz, IPEAK =100mA
IAVG = IPEAK. DF = (100mA) (1/16) = 6.25mA
4. The maximum allowed operating conditions, not
temperature derated, are now known. If the operating
ambient temperature is above 50·C, the operating
conditions derived from Figure 1 must be temperature
derated.

Example: Iv TIME AVG =

[(6~~~~~~6)Jr1.10][1.65mCd]

Iv TIME AVG = 4.17mcd/digit, total for 16
segments, T A = 25· C
This time average luminous intensity is corrected for
temperature by the following exponential equation:
Iv (TA) = Iv (25·C)e [-.OlSS·/C ITA -2S'CI]
Example: for TA = 70 D C,
1.79mcd/digit
Iv (70·C) = (4.17mcd)e [-.OlSS 170-2S'CI] = total for 16
segments

OPTICAL AND CONTRAST
ENHANCEMENT

Figure 2 derates the product IPEAK • tp with ambient
temperature. The designer has the option of maintaining either tp or IPEAK and derating IpEAK or tp. The
choice of derating IPEAK results in a lower power

Each large monolithic chip is positioned under a separate
element of a plastiC aspheric magnifying lens, producing a
magnified character height of 3.810mm U50 inch>. The
aspheric lens provides wide included viewing angles of 76
degrees horizontal and 80 degrees vertical with low off
axis distortion. These two features, coupled with the very

"More than 10 segments may be illuminated in a given character,
provided the maximum allowed character power dissipation,
temperature derated, is not exceeded.

140

high segment luminous sterance, provide to the user a
display with excellent readability in bright ambient light
for viewing distances in the range of 2 metres. Effective
contrast enhancement can be obtained by employing any
of the following optical filter products: Panelgraphic:
Ruby Red 60, Dark Red 63 or Purple 90; SGL Homalite:
H100-1605 Red or H100-1804 Purple, Plexiglas 2423. For
very bright ambients, such as indirect sunlight, the 3M
Light Control Film is recommended: Red 655, Violet,
Purple or Neutral Density.

The four character and eight character devices can be end
stacked to form a character string which is a multiple of a
basic four character grouping. As an example, one -6504
and two -6508 devices will form a 20 character string.
These devices may be soldered onto a printed circuit
board or inserted into 24 and 28 pin DIP LSI sockets. The
socket spacing must allow for device end stacking.
The absolute maximum allowed LED junction temperature, TJmax, is 110° C. The maximum power ratings have
been established so as not to exceed this limit. For most
reliable operation, it is recommended that the PC board
thermal resistance to ambient be less than 108°C/W/
character. This will then establish a maximum thermal
resistance LED junction-to-ambient of 340°C/w/character.

For those applications requiring only 4 or 8 characters, a
secondary barrel magnifier, HP part number HDSP-6505
(four character) and -6509 (eight character), may be
inserted into support grooves on the primary magnifier.
This secondary magnifier increases the character height
to 4.45mm <.175 inch) without loss of horizontal viewing
angle (see below).

Optimum wave soldering is accomplished by using a good
quality RMA rosin or organic acid flux and setting the
solder wave temperature and dwell timeat245°C for 1-1/2
to 2 seconds. For device cleaning in a vapor cleaning
process, only mixtures of Freon (F113) and alcohol is
recommended with an immersion time in the vapors for
less than 2 minutes. Suggested cleaning solvents are
Freon TE, Genesolv 01-15 or DE-15, ArkloneA or K. Room
temperature cleaning may be accomplished with Freon TE35 or T-P35, Ethanol, Isopropanol or water with a mild
detergent.

MECHANICAL
These devices are constructed by LED die attaching and
wire bonding to a high temperature PC board substrate. A
precision molded plastic lens is attached to the PC board
and the resulting assembly is backfilled with a sealing
epoxy to form an environmentally sealed unit.

OPTIONAL
4 DIGIT MAGNIFIER
HDSP-6505

r

OPTIONAL
8 DIGIT MAGNIFIER
HDSP-6509

3, . 7 5 -

_1_

('.2501
-

_'·57
(.06)

1

-i-O'" ,r-1i--r -------'1]_

14.58

,/'

5
1'0 : ,

II

I

'

•

(.5741

L

1.

[

END VIEW
(BOTH)

5

3,.88MAX._1
('.2551

I

MOUNTED ON HDSP·6504

MOUNTED ON HDSp·6508

Figure 9. Design Data for Optional Barrel Magnifier in Single Display Applications.

141

1. ALL DIMENSIONS IN
MILLIMETRES AND (INCHES).
2. THIS SECONDARY MAGNIFIER
INCREASES THE CHARACTER
HEIGHT TO 4.45mm (.175 in.)

HEWLETT

LED SOLID STATE
ALPHANUMERIC
INDICATOR

PACKARD

COMPONENTS

5082-7100
5082-7101
5082-7102

TECHNICAL DATA APRIL 1978

Features
• S x 7 LED MATRIX CHARACTER
Human Factors Engineered
• BRIGHTNESS CONTROLLABLE
• IC COMPATIBLE
• SMALL SIZE
Standard 1S.24mm (.600 inch) Dual In-Line
Package; 6.9mm (.27 inch) Character Height
• WIDE VIEWING ANGLE
• RUGGED, SHOCK RESISTANT
Hermetically Sealed
Designed to Meet MIL Standards
• LONG OPERATING LIFE

Description
The Hewlett-Packard 5082-7100 Series is an X-V addressable, 5 x 7 LED Matrix capable of displaying the
full alphanumeric character set. This alphanumeric indicator series is available in 3,4, or 5 character endstackable clusters. The clusters permit compact presentation of information, ease of character alignment,
minimum number of interconnections, and compatibility with multiplexing driving schemes.
Alphanumeric applications include computer terminals, calculators, military equipment and space flight
readouts.
The 5082-7100 is a three character cluster.
The 5082-7101 is a four character cluster.
The 5082-7102 is a five character cluster.

Absolute Maximum Ratings
Parameter

Symbol

Min.

Max.

Units

Peak Forward Current Per LED
(Duration < 1 ms)

IpEAK

100

mA

Average Current Per LED

IAVG

10

mA

Power Dissipation Per
Character (All diodes lit) (1)

Po

700

mW

Operating Temperature, Case

Tc

-55

95

°c

Storage Temperature

Ts

-55

100

°c

Reverse Voltage Per LED

VR

4

V

Note 1: At 25°C Case Temperature; derate 8.5mW/oC above 25°C.

142

Electrical/Optical Characteristics at Tc = 25°C
Symbol

Min.

Typ.

Peak Luminous Intensity Per LED
(Character Average) @ Pulse
Current of 100mA/LED

Iv (PEAK)

1.0

2.2

mcd

Reverse Current Per LED

IR

10

p.A

Peak Forward Voltage @ Pulse
Current of 50mA/LED

VF

1.7

Peak Wavelength

ApEAK

655

nm

Spectral Line Halfwidth

AA1/2

30

nm

Rise and Fall Times [1)

t r •tf

10

ns

Parameter

@

VA = 4V

Max.

Units

2.0

V

Note 1. Time for a 10% - 90% change of light intensity for step change in current.


u;

l-

---

---

15

~

-

'"

::J
0

z
:ii

-1+,1+

+i++ +Htf-H+I t-l

--+---

:l

--- -- -- -

w

>
;::

I

f2

--~ --

I
~

----

---~-- - - --

I

w
a:
a:
::J
u

-- -_ ..

---r--- -

10 - - - - ---- -.-

00

0_4

-0-

0_8

.-

:3
w

1.0

a:

0

--:-----[7 --- -1.2

1.6

2_0

VF • FORWARD VOLTAGE· V

Figure 1.

TC • CASE TEMPERATURE -

Forward Current-Voltage Characteristic.

Figure 2.

'c

Relative Luminous Intensity vs. Case
Temperature at Fixed Current Level.

1.0

8

/
w

~

ffi

/'

/
./

/-'

---

6
20

~

w

";::

10LA--~LLL-L------L----~--~--L8~10_

20

AVERAGE CURRENT PER LED - mA

Figure 3.

40

60

80

100

PEAK CURRENT PER LED - mA

Typical Time Average Luminous
Intensity per LED vs. Average
Current per LED.

Figure 4.

143

Typical Relative Luminous Efficiency vs.
Peak Current per LED.

Package Dimensions and Pin Configurations
GLASS
3.05 1.12)

MAX.

1

,

ORIENTATION MARK METAL TAB
71 (28)
ON BACK OF SUBSTRATE
... -' REF _ .... 1

5082·7100n101/7102

1.271.050)

1:='4.481.571_1
MAX.

REf

3'O:1~~Ol

-P

n-r-;I -w

1 65 (.0651

13.1
(.5,4)

~

23.2

]

(.911

1

4.3

~·-·121
20

3

1.171 4

I
L_

19

5

18 27.6911.09)

:: r'!

6

.L..
.... __.' .:

::

10
11

5082-7101
ORIENTATION MARK METAL TAB

ONBAC."1~·ATE,,,

n
I

22.4

I

{.S8)

1

13.5

1.53)

.L2"-::l1+----'=-=r'-'--'_.6

3

(,18)

4
5

--..;::::l-1f---"=-T~-

I

1~'2~) 1-------'~'-'3H__-"="F'_"10

11
12
--"'.'-"---'13

b<+--"=:r-

14

T-I,.

36
35

3.
33

26

32

~ I

30

22 35.6 (1.401
21
MAX.
20
;

28

31

2.

,.

27

18

25

17

2.

16

23

15

22

_5~~~~01

26

21

20

Note$!

1. Dimensions are in miUimetres and (Inches),
2. Unless otherwise specified. the tolerance on all dilll8nsions is to.38mm {±.OlS in.l.

3. Character Size 6.9 x4.9mm (.27 x .19 m.).

Device Pin Description
5082·7100

5082·7101

5082·7102

Pin

Function

Pin

Function

Pin

Function

Pin

Function

Pin

1

Anode G

Anode B

1

Anode C

1

3d

2
3
4

4c

2

1c

17

18

4a
Anode B

19

3.

3
4
5

20
21
22
23

3b

1e
Anode F
2b
2d
2e

3e

22

N/C
1c
1e
AnodeG
2b
2d
Anode 0
Anode E
3c
3d
Anode F
4b
4d
4e

15
16

3c

12
13
14
15
16
17
18
19
20
21

2

lc

3

1d
Anode F
Anode E

4

5
6
7

8
9
10
11

2b
2d
Anode C
3a

3b
Anode A
2e

5

2c

6
7
8
9
10
11
12

2a
AnodeD

1e
1b

1a

13

14

24
25
26
27
28

3a
2e

Function fPin
N/C
19

~ II

B

Anode E

1a 1b 1c

C

D

5082-7100/7101/7102
Schematic Wiring Diagram

1d 1e 2a

2b 2c 2d 2e

'''

G I-CHARACTER l_I-CHARACTER

23
24
25
26

4e
4c
N/C
Anode C

9

3c

27

3d

10

3e

28
29

3b

lb

HI ~OdeG

1a

14

Anode A
1d

4d

. N/C

3a 3b 3c 3d 3e 4a 4b 4c 4d 4e 5a 5b 5c ScI 5e

2~I-CHARACTER 3+CHARACTER _+CHARACTER 5-1
144

Sa
Anode 0

2a

18

;,1 ;,1 ';,1 JI'JI
;,1 ;,1 JI'~ '~
;,1 JtI 'JI' 'JI 'JI
J .,I I~ I .. '~
;,1 'Jil 1;,1 1.Jf '.:It
;,1 ;,1 I".,
.,(.:Jl' 'Jil 1.:Jl' 'JiI'JI

21

22

2c

~~ I:~C
A

20

Function

5e
5c

3a

30

Anode B

31

2c

32
33
34
35
36

' !~odeA
I 1d
1b
13

operating Considerations
ELECTRICAL
The 5 x 7 matrix of LED's, which make up each character, are X-V addressable. This allows for a
simple addressing, decoding and driving scheme between the display module and customer furnished
logic.
There are three main advantages to the use of this type of X-V addressable array:
1. It is an elementary addressing scheme and provides the least number of interconnection pins for the
number of diodes addressed. Thus, it offers maximum flexibility toward integrating the display into
particular applications.
2. This method of addressing offers the advantage of sharing the Read-Only-Memory character generator
among several display elements. One character generating ROM can be shared over 25 or more 5 x 7
dot matrix characters with substantial cost savings.
3. In many cases equipments will already have a portion of the required decoder/driver (timing and clock
circuitry plus buffer storage) logic circuitry available for the display.
To form alphanumeric characters a method called "scanning" or "strobing" is used. Information is
addressed to the display by selecting one row of diodes at a time, energizing the appropriate diodes in
that row and then proceeding to the next row. After all rows have been excited one at a time, the
process is repeated. By scanning through all rows at least 100 times a second, a flicker free character
can be produced. When information moves sequentially from row to row of the display (top to bottom)
this is row scanning, as illustrated in Figure 5. Information can also be moved from column to column
(left to right across the display) in a column scanning mode. For most applications (5 or more characters to share the same ROM) it is more economical to use row scanning.
A much more detailed description of general scanning techniques along with specific circuit recommendations is contained in HP Application Note 931.
MECHANICAL/THERMAL MOUNTING
The solid state display typically operates with 200mW power dissipation per character. However, if the
operating conditions are such that the power dissipation exceeds the derated maximum allowable value,
the device should be heat sunk. The usual mounting technique combines mechanical support and thermal
heat sinking in a common structure. A metal strap or bar can be mounted behind the display using
silicone grease to insure good thermal control. A well-designed heat sink can limit the case temperature
to within 10°C of ambient.

6 LINE ASCII

ARRAY SELECT
MASTER

CLOCK
TIMING
CIRCUITRY

L

t::::I

1

t::::I

2

3

t::::I

l::::f

4

C. ",~="~, ~"'~

11
5

II 1

READ ONLY
MEMORY

C'il~ n,"~'~"~,

L-..J
g~~~E~~
ROW
DRIVERS

1

I

I

1

LED
DISPLAY

Figure 5.

I

II
II - -

2

LED
DISPLAY

I

I

~

r-

I

3

LED
DISPLAY

I---

Row Scanning Block Diagram.

145

4

3

2

I

I
I
II---

I

4

LED
DISPLAY

I

I
I
II---

r

5

I

5

1

LED
DISPLAY

HEWLETT

l,~

PACKARD
~
COMPONENTS

rViONOUTHIC LED CHIPS

5082-7800
SERIES

TECHNICAL DATA

APRIL 1977

Features
• FOUR CHARACTER SIZES, COMMON
CATHODE
53 mil, 80 mil, 100 mil, 120 mil.
o DISCRETE AND MONOLITHIC COLON

CHIPS
" AVERAGE LUMINOUS INTENSITY AND
DiSTRIBUTION SPECIFIED FOR EACH
WAFER
• 100% ELECTRICALLY TESTED AND
VISUALLY INSPECTED
.. LOW POWER
MOS Compatible
.. CONTINUOUS SEGMENTS
Excellent Aesthetic Appearance

Description

packaging

The HP 5082-7800 series are common cathode monolithic
chips, specifically designed for hybrid applications. Chips
are available in seven segment. nine segment and one digit
fonts. Colons are available in discrete or monolithic form.
All chips are made of GaAsP material and are suitable for
die attach and wire bonding to appropriate substrates.
Chips are 100% visually inspected to HP standard criteria.

Hewlett Packard offers chips packaged on vinyl film or in
waffle packages.

Device Selection Guide
Chamcler Height

Font

Chip Size

Tilt
Angle
Degrees

1.35 mm (53 mil)

7 segment

1.50 x 1.35 mm
(59 x 53 mil)

6
(Typical)

2.03 mm (80 mil)

7 segment

2.24 x 1.42 mm
(88 x 56 mil)

2.54 mm (100 mil)

7 segment

2.54 mm (100 mil)

Stroke
Width
mm(mll)

Minimum Bonding
Pad Size

Vinyl Film
PIN 5082-

Waffle Pack
PIN 5082-

0.084 (3.3)

0.15 x 0.18 mm
(6x 7 mil)

7811

7821

5
(Typical)

0.127 (5)

0.15 x 0.18 mm
(6x 7 mil)

7832

7842

2.72 x 1.91 mm
(107 X 75 mil)

5

0.114 (4.5)

0.18 x 0.23 mm
(7 x 9mil)

7851

7861

9 segment

2.72 x 1.91 rnm
(107 x 75 mil)

5

0.114 (4.5)

0.18 x 0.23 mm
(7 x 9mil)

7852

7862

2.54 mm (100 mil)

1 or colon

2.72 x 0.89 mm
(107 x 35 mil)

5

0.114 (4.5)

0.18 x 0.23 mm
(7 x 9 mil)

7853

7863

3.05 mm (120 mil)

7 segment

3.25 x 2.34 mm
(128 x 92 mil)

5

0.102 (4)

0.20 x 0.30 mm
(8 x 12 mil)

7871

7881

0.38 x 0.38 mm
(15 x 15 mil)

--

--

0.12 mm (4.8 mil)
diameter

7890'

7892'

0.28 rom (011 mil)
square

I decimal point
i

or colon

'Standard packaging is a vial (PIN 5082-7893).

146

-r

Device Dimensions

n
~il,.
,,,,u~,
nm

fr h£j:l
l l
I~~CI
I
PJd :

I

2.24

(881

:

i~

--,

I

~

i

lUys:J

1--~~-~;~---.I

'

rP

2.03
(801

~~~~

,

5

-+---(60)-

1--~4~~-

1.50
(591

-r

1.52

Q

5 (TYPICAL)

I

i"""'

1
1.42
I.
1-(561-1

I

I

1.91
r--(751--1

5082·7832/42

5082·7811/21

5082·7851/61,5082·7852/62

I

<----1.96
(771

1-

0.38
(15)

•

•

I

n---g------:,,-rf""

'' i
1

3.25

0.38

ij

I

I

0.28

l_ --------r-f~~I~:::ING
l-~i21~---

5082·7853/63

5082·7890/93

5082·7871/81

All dimensions are in millimeters and (mils).
Detailed drawings of each chip are available upon request.

Absolute Maximum Ratings
Storage Temperature Range
Reverse Voltage

(I) ••••.•••••••••••••••.•••.••••••••••••••••••••••••

-40°C to +125°C

(I) • • . • • • . • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • . . • • • • • • • •.

Assembly Temperature (Duration

~5

AREA

5V

min.) ................................................ 420°C

Operating Junction Temperature

Description
Peak Forward Current/Segment
(pulse duration ~500 Jlsec.)
Average Forward Current/Segment
Wire Bonder Force

1.35 mm
(53 mil)

2.03mm
(80 mil)

2.54mm
(100 mil)

3.05
(120 mil)

0.28 mm
(11 mil)

Units

50

100

25

25

100

mA

5

5

6

6

10

mA

125

125

125

125

95

gm

Note 1. Rating applies to chip only.

Electrical/Optical CharacteristiCS at TA =25°C
Common Specifications for All Devices
IR, Reverse Current/Segment ................................................................................... 100 JlA max. at VR =5V
ApEAK,

Peak Wavelength ..................................................................................................... 655 nm (typical)

Ad, Dominant Wavelength (I)

................................................................................................

640 nm (typical)

0Jc, Chip Thermal Resistance (Junction to back contact)

11 miland53mil ...................................................................................................... 85°C/W
80mil,100miland120mil ...................................................................................... 45°C/W

147

Electrical/Optical Characteristics at TA=2SoC
5082-7811/21
Symbol

Min.

Typ.

Max.

Units

Luminous Intensity/Segment (Digit
Average)

50

70

--

,ucd

Segment to Segment Intensity Ratio
(Within Each Digit)

--

1.2:1

1.7:1

Luminous Intensity Normalized
Standard Deviation (Digit to Digit)

--

0.10

0.15

Iv
VF

Forward Voltage/Segment

1.4

1.6

1.8

Iv

-

IT (2)

Description

1.35 mm (53 mil) Character Height

5082-7832/42
Symbol

Description

V

Typ.

Max.

Units

80

150

--

,ucd

Segment to Segment Intensity Ratio
(Within Each Digit)

--

1.2:1

1.7:1

Luminous Intensity Normalized
Standard Deviation (Digit to Digit)

--

0.10

0.15

Iv

VF

Forward Voltage/Segment

1.4

1.6

1.8

IT (2)

5082-7851/61, -7852/62, -7853/63
Symbol
Iv

a

Iv·

(2)

Description

V

Min.

Typ.

Max.

Units

60

85

--

,ucd

Segment to Segment Intensity Ratio
(Within Each Digit)

--

1.2:1

1.7:1

Luminous Intensity Normalized
Standard Deviation (Digit to Digit)

--

0.10

0.15

1.4

1.6

1.8

V

Typ.

Max.

Units

60

85

--

,ucd

Segment to Segment Intensity Ratio
(Within Each Digit)

--

1.2:1

1.7:1

Luminous Intensity Normalized
Standard Deviation (Digit to Digit)

--

0.10

0.15

Iv
VI'

Forward Voltage/Segment

1.4

1.6

1.8

0121

Iv
a

(2)

~

Fjgure
2

IF = 10mA DC

1

Test Conditions
IF = 6mA DC

Figure
3

IF=6mADC

1

Test Conditions
IF - 6mA DC

Figure

3

V

IF

6mA DC

1

0.28 mm (11 mil) Square
Min.

Typ.

Max.

Units

Test Cond!Uons

45

80

140

,ucd

IF = 6mA

3

Luminous Intensity Normalized
Standard Deviation

--

0.10

0.15

Forward Voltage

1.4

1.6

1.8

V

IF = 6mA

1

Luminous Intensity (Wafer Average)

VF
Notes:

Description

IF - 10mA DC

IF = 6mA DC

5082-7890/92/93
Symbol

Test Conditions

3.05 mm (120 mil) Character Height
Min.

-

Description

1

IF=6mADC

Luminous Intensity/Segment (Digit
Average)

Iv

h = SmA DC

2.54 mm (100 mil) Character Height

5082-7871/81
Symbol

2

If = 10mA DC

Luminous Intensity/Segment (Digit
Average)

Forwa,rd Voltage/Segment

VI'

Figure

2.03 mm (80 mil) Character Height
Min.

-

IF = 5mA DC
Ir = SmA DC

Luminous Intensity/Segment (Digit
Average)

h·

Test Conditions

Figure

1. Dominant wavelength, Ad, is derived from the C.I.E. chromaticity diagram and represents that single wavelength which defines the color ofthe device.
2. I; is the mean value and a is the standard deviation of the wafer luminous intensity.

148

Typical Characteristic Curves
0

I
0

5082·7871/81 ,

I
0_5082-7851/61
8
6

t
/

~.1852/62

Y
./
./

5082·78"121
·7832/42
-7890/92193

I

....;. 5082.7832142._

1.2
1.

1
-

I

--

I

1
1.3

(25"1-

/I

1.4

~/

1.5

1.6

1.7

1.8

g

.4

6

I'

TA'"25~C_

10
15
20
25
30
IF - PEAK FORWARD CURRENT - rnA

VF - PEAK FORWARD VOLT AGE - V

~ t-::

"

IJ

35

Figure 2. Relative Luminous Efficiency
(Luminous Intensity per Unit
Current) vs. Peak Current
per Segment.

-

L---

--'" -, ,-

-

""--50B2-7890f92/93

-

5082·7851 {61

.7853/6, '

'/"

4
_ TA "25'C_

2

.2

1.9

Figure 1. Peak Forward Current vs.
Peak Forward Voltage.

8

'/

>

/I

2

~H 1----

w

;..-

o ..-?

_ .7853/63

4

I

50IB2.787~/81- - - ......-

1. 4 -

r--~ SOj2.78"::';"

II

1/

1. 6

1.6

/

0

0

I
56

10

15

20

25

t=
30

35

Ip - PEAK FORWARD CURRENT - rnA

Figure 3. Relative Luminous Efficiency
(Luminous Intensity per Unit
Current) vs. Peak Current
per Segment.

strobing Considerations

Visual Inspection

The time average luminous intenSity at TA = 25°C may be
calculated for any specific drive condition from the
following formula:

All chips are 100% visually inspected to HP specification.
A copy of the visual inspection specification is available
on request. Also available is a visual training manual.

JG,

Iv time avg = [-II".
DC spec

Where:

PEAK] Qv,p,,]

Recommended Incoming
Inspection Procedures

I". = average operating current

IDe ,poe = data sheet current at which Iv ,poe is measured
Iv ,poe = data sheet luminous intensity at IDe ,poe
'11

Hewlett-Packard guarantees all visual parameters. Customers should perform incoming inspection to the same
levels. It is important that these chips be handled
carefully. Excessive or rough handling of chips can cause
scratched or broken units. All shipments must be
accepted or rejected on a lot basis. Samples should be
selected and tested for the visual specifications to the
recommended AQL level. Before a lot will be authorized
for return, the inspected units should be returned to
Hewlett-Packard for our verification. Returns cannot be
accepted after the entire lot has been removed from its
shipping container. Returns must be made in the original
shipping container.

PEAK = relative luminous efficiency at peak
operating current (See Figures 2 and 3).

The luminous intensity at any chip operating temperature
may be calculated using the following formula:
Iv (T A) = Iv (25°C) exp [(-0.0188/"C)(T A-25°C) 1

Assembly Information
The cathOde metallization (chip back contact) is a
gold/germanium alloy and the anode bonding pads are
aluminum. Conductive silver epoxy for die attach is
preferred. If eutectic die attach is used, gold/germanium
preforms are recommended. Gold wire of .025 mm (1 mil)
or .038 mm (1.5 mil) diameter should be used for lead
bonding. The .025 mm diameter wire is recommended for
the .28 mm (11 mil) decimal point die. The substrate
temperature should be in the range of 275-330°C and the
bonder capillary temperature should be set between
100°C and 350°C. Ultrasonic wire bonding may be used
also.
For more detailed assembly information, refer to HewlettPackard Application Bulletin NO.8.

149

5082-7833/43
5082·7837/47
5082 -7838/48
5082 -7856/66
5082 -7872182

MONOLITHIC
LED CHIPS

HEWLETTj PACKARD
COMPONENTS

TECHNICAL DATA

APRIL 1977

Features
• THREE CHARACTER SIZES, COMMON
CATHODE
80 mil, 88 mil, 120 mil
• MONOLITHIC DASH AND COLON CHIP
• AVERAGE LUMINOUS INTENSITY AND
DISTRIBUTION SPECIFIED FOR EACH
WAFER
• 100% ELECTRICALLY TESTED AND
VISUALLY INSPECTED
• LOW POWER
MOS Compatible
• CONTINUOUS SEGMENTS
Excellent Aesthetic Appearance

Description

packaging

The HP 5082-7800 series are common cathode monolithic
chips, specifically designed for hybrid applications. Chips
are available in seven segment, nine segment, "one" digit
and dash colon fonts.

Hewlett-Packard offers chips packaged on vinyl film or in
waffle packages.

All chips are made of GaAsP material and are suitable for
die attach and wire bonding to appropriate substrates.
Chips are 100% visually inspected to HP standard criteria.

Device Selection Guide
Till
Angle
Degrees

Stroke
Width
Minimum Bonding Vinyl Film Waffle Pack
mm (mil)
Pad Size
PIN 5082- PIM 5082-

Character Height

Font

Chip Size

Dash Colon

ill

1.70 x 1.45 mm
(67 x 57 mil)

5

0.088 (3.5)

0.18xO.18mm
(7 x 7 mil)

7856

7866

2.03 mm (80 mil)

9 segment

2.24 x 1.62 mm
(88 x 64 mil)

5

0.127 (5)

0.15 x 0.18 mm
(6 x 7 mil)

7833

7843

2.24 mm (88 mil)

7 segment

2.5 x 1.6 mm
(98 x 63 mil)

5

0.076 (3)

0.18 x 0.18 mm
(7 x 7 mil)

7837

7847

2.24 mm (88 mil)

2 segment

2.36 x 0.64 mm
(93 x 25 mil)

-

0.076 (3)

0.18xO.18mm
(7 x 7 mil)

7838

7848

3.25 x 2.34 mm
(128 x 92 mil)

5

0.20 x 0.30 mm
(8 x 12 mil)

7872

"ONE"
3.05 mm (120 mil)

9 segment

- - c--.

0.102(4)

150

7882

Device Dimensions
-;5~~-~

_'27~-r5(50)

-

lr]i

224:~: 25

'~!LJi~'"'
--~~~~~~~~-----

_'·6_lt

1

5082-7833/43

(63)

5082-7838/48

5082-7837/47

-~5~~--[-5"

f! r
1.7
(67)

LJJ
I

i

I

i

I

II

i

I
I
I

{li

I

r

1.55

(61)

I

I
I

QJ
1
1_'·45~
(57)

5082-7856/66
All dimensions are in millimeters and (mils).
Detailed drawmgs of each chip are available upon request.

5082-7872182

Absolute Maximum Ratings
Storage Temperature Range(J) ................................................. -40°C to +125° C
Reverse Voltage ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5V
Assembly Temperature (Duration ~ 5 min.) ................................................ 420° C
Operating Junction Temperature ......................................................... 125° C
Dash
Colon

2.03 mm
(80 mil)

2.24 mm
(88 mil)

3.05 mm
(120 mil)

Units

Peak Forward Current/Segment
(pulse duration ~ 500 j.lsec.)

25

25

25

25

mA

Average Forward Current/Segment

10

10

10

10

mA

125

125

125

125

gm

Description

Wire Bonder Force (Thermo-compression)
Note 1. Rating applies to chip only.

Electrical/Optical Characteristics at TA =25°C
Common Specifications for All Devices
IR. Reverse Current/Segment ............................................. 100 j.lA max. at VR = 5 V
Peak Wavelength ........................................................ 655 nm (typical)
Ad. DominantWavelength()) ..................................................... 640nm (typical)
0Jc. Chip Thermal Resistance (Junction to back contact) .................................. 45° C/W
APEAK.

151

Electrical/Optical Characteristics at TA=25°C
Dash -

5082-7856/66
Symbol
Iv

Min.

Typ.

Max.

Units

Luminous Intensity/Segment (Digit
Average)

60

85

-

!led

Segment to Segment Intensity Ratio
(Within Each Digit)

Description

-

1.2:1

1.7:1

Iv

Luminous Intensity Normalized
Standard Deviation (Digit to Digit)

-

0.10

0.15

VF

Forward Voltage/Segment

1.4

1.6

1.8

0 121

Iv

0121

Typ.

Max.

Units

60

85

-

!lcd

Segment to Segment Intensity Ratio
(Within Each Digit)

-

1.2:1

1.7:1

Tv
VI'

Forward Voltage/Segment

-

0.10

0.15

1.6

1.8

Min.

Typ.

Max.

Iv

Units

Luminous Intensity/Segment (Digit
Average)

60

85

-

!lcd

Segment to Segment Intensity Ratio
(Within Each Digit)

Description

1

Test Conditions

Figure

2
IF = 6 rnA DC

1.4

1

V

2.24 mm (88 mil) Character Height

5082-7837/47, -7838/48
Symbol

2

V

Min.

Luminous Intensity Normalized
Standard Deviation (Digit to Digit)

Figure

IF = 6 rnA DC

Luminous Intensity/Segment (Digit
Average)

Description

Test Conditions

2.03 mm (80 mil) Character Height

5082-7833/43
Symbol

Colon Chip

Test Conditions

Figure

2

-

1.2:1

1.7:1

Tv

Luminous Intensity Normalized
Standard Deviation (Digit to Digit)

-

0.10

0.15

VI'

Forward Voltage/Segment

1.4

1.6

1.8

5082-7872/82

3.05 mm (120 mil) Character Height

Symbol

Min.

Typ.

Max.

Units

60

85

-

!lcd

ale)

Iv

Description

Luminous Intensity/Segment (Digit
Average)
Segment to Segment Intensity Ratio
(Within Each Digit)

-

1.2:1

1.7:1

Iv

Luminous Inten~ity Normalized
Standard Deviation (Digit to Digit)

-

0.10

0.15

VF

Forward Voltage/Segment

1.4

1.6

1.8

0(1)

If =6 mA DC

V

1

Test Conditions

Figure

2
11'= 6 mA DC

V

1

Notes: 1. Dominant wavelength, Ad. is derived from the C.I.E. chromaticity diagram and represents that single wavelength which defines the color of
the device.
.
2. fv is the mean value and u is the standard deviation of the wafer luminous intensity.

152

Typical Characteristic Curves
50
40

'"

1. 6

I

~

-

E
I

~a:
a:

::J

""a:>:
'a:"

20 r------

5082.7l7218\

10

I

/I

1. 2

~/

1.

/I
2

-~

1.3

1.5

1.4

5082-7B72/8~

.-~

11-

1.7

VS.

- S082·7833/43 _ _ 5082-7856/66

i

'.L

1.8

--j--

2
0

1.9

V F - PEAK FORWARD VOLTAGE - V

Figure 1. Peak Forward Current

. - .-.- -

~g~~:;:;~j:~ -- -

/I

0

1.6

-- -

._-

4

iA 25~d

1//

1

2
=,:.=::t,:: r ---

o=~

6

::~:;:~:;:~ -

/I

~

8~/l

5082·7833/43 5082·7&37/47 -

~

~'"

1.4

56

10

15

20

TA · 2 S · C -

±-±=
25

30

35

Ip - PEAK FORWARD CURRENT - rnA

Peak Forward Voltage.

Figure 2. Relative Luminous Efficiency (Luminous Intensity per

Unit Current) vs. Peak Current per Segment.

strobing Considerations

Visual Inspection

The time average luminous intensity at T A = 25°C may be
calculated for any specific drive condition from the
following formula:

All chips are 100% visually inspected to HP specification.
A copy of the visual inspection specification is available
on request.

Iv time avg

=

[~J
IDe

[7JI PEAK] [Iv spec

spec

J

Where: I"g = average operati ng cu rrent
IDe
Iv

spec

spec

= data sheet current at which Iv

= data sheet

spec

luminous intensity at IDe

is measured
spec

7JI PEAK = relative luminous efficiency at peak

operating current (See Figures 1 and 2).
The luminous intensity at any chip operating temperature
may be calculated using the following formula:
Iv = (Iv at 25°C) exp [-0.018/o C (TA - 25°C)]

Assembly Information
The cathode metallization (chip back content) is a
gold/germanium alloy and the anode bonding pads are
aluminum. Conductive silver epoxy for die attach is
preferred. If eutectic die attach is used, gold/germanium
preforms are recommended. Thermocompression or
ultrasonic bonding with gold wire as well as aluminum
ultrasonic bonding may be used with typical IC bonding
parameter settings.
For more detailed assembly information, refer to HewlettPackard Applcation Bulletin No.8.

153

Recommended Incoming
Inspection Procedures
Helwett-Packard guarantees all visual parameters. Customers should perform incoming inspection to the same
levels. It is important that these chips be handled carefully.
Excessive or rough handling of chips can cause scratched
or broken units. All shipments must be accepted or
rejected on a lot basis. Samples should be selected and
tested for the visual specifications to the recommended
AQL level. Before a lot will be authorized for return, the
inspected units should be returned to Hewlett-Packard for
our verification. Returns cannot be accepted after the
entire lot has been removed from its shipping container.

154

SelectionGuide

..................

• High Speed Optocouplers
• Low Input Current/High Gain
Optocouplers
• High Reliability Optocouplers

155

156

High Speed Optocouplers
Device

Description
6N135
(5082·4350)

~~

ANODE 2 -j.

7 Va

CATHODE 3

6 VO

4

5 GND

-rn~

CATHODE, 2 '

1 V01

CATHODE2 3 .

6 Va:/:

ANODE z 4

II
11
CATHODE 11
ANODE

5 GNO

vee

ru

J .,co:; tnVE
GND

IT

ANODE!!~ l.1>;f!Jv.

r

-IT

Dual Channel
TransiStor Output

~

APIID~IT~. vcclil
CATHOD~!!
'1>--1nV01

II

16mA

3000Vdc[31

16mA

3000Vdc[3[

158

'.

Line Receiver, Analog
Circuits, TTlICMOS,
TTl/lSTIl Ground
Isolation

1Mbitls

7% Min.

162

19% Min.

Line Receiver, High
Speed logic Ground
Isolation

10M Bitls 700% Typ 5.0mA

3000Vdcl3[ 166

HCPl·2601
(5082·4361 )

High Common Mode
Rejection, Optically
Coupled logic Gate

Line Receiver, High
Speed logic Ground
Isolation In High
Ground or Induced
Noise Environments

10M bitls 700% Typ

5.0mA

3000Vdcl31 170

HCPl·2602

Optically Coupled
Line Receiver

Replace Conventional
Lirie Receivers In High
Ground or Induced
Noise Environments

10M bitls 700% Typ. 5.0mA

3000Vdc[31 174

HCPl·2630
(5082·4364)

Dual Channel
Optically Coupled
Gate

Line Receiver, High
Speed logic Ground
Isolation

10M bitls 700% Typ. 5.0mA

3000Vdc[3[ 180

!lVOUT

ANODE, II

19% Min.

Page
No.

Optically Coupled
logic Gate

~r51
~ 1I

CATOODE,

Input To
Output
Insulation

6N137
(5082·4360)

~VOUT

v" ~VE

II

Current Specified
Transfer
InpU1
Ratio
Current
7% Min.

15·22%[21

-'GNot!l

l!

Line Receiver, Analog
Circuits, TIl/CMOS,
TIl/lSTIl Ground
Isolation

Typical
Data
Rates
1Mbitls

III

v,,~

CATHODE[!

~INo{!

6N136
(5082·4351)
HCPl·2502
(5082·4352)
HCPl·2530
(5082·4354)
HCPl·2531
(5082·4355)

~VDur

[!

+INa{!

Transistor Output

Application[11

J: ,I>--:ru v

o•

GND

~

Low Input Current/High Gain Optocouplers
Device

ANODE
CATHODE

"~~~
~
~
~~ ~
/,

-..

~GND

~~
2

1 VOl

3!-

6 VOl

ANODE! 4

Application[ 11

6N138
(5082·4370)

low Saturation
Voltage, High Gain
Output, Vcc=7VMax.

6N139
(5082·4371)

low Saturation
Voltage, High Gain
Output, Vcc=18V
Max.

Line Receiver, low
Current Ground
Isolation, TIlml,
lSTIl/TTL, CMOSI
TTl
line Receiver, Ultra
low Current Ground
Isolation, CMOS/lSTIl
CMOSml, CMOSI
CMOS

HCPl·2730

Dual Channel, High
Gain, Vcc=7V Max.
Dual Channel, High
Gain, Vcc=18V Max.

Line Receiver, Po larity 300k bitls 300% Min. 1.6mA
Sensing, low Current
Ground Isolation
400%Min. 0.5mA

3000Vdcl31 188

4N45

Darlington 0 utput
Vcc=7V Max.

AC Isolation, Relay·
logic Isolation

30DDVdc[31

4N46

Darlington 0 utput
Vcc=2DV Max~

Va

Vo

I!

HCPl·2731

5 GND

-~.

CATHODE 2 "

3

Typical
Current Specified
Input To
Page
InpU1
Data
Transfer
OU1put
Rates
Ratio
Current
Insulation No.
300kbit/s 300% Min. 1.6mA 3000Vdcl31 184

Description

400% Min.

3k bitls

0.5mA

250% Min. 1.0mA

5 VO

4 GND

350% Min. D.5mA

156

192

High Reliability Optocouplers
Description

Device

.'"""t]".
ANODE , 2
3

Va:

....

•

15
14 VOl

13

CATHODEz 5

ANODEz6
1

,

-:.

12 Voz

GND

II
10

'~"

Dual Channel
6N134
Hermetically Sealed
(5082·4365) Optically Coupled
logic Gate.
TXV - Screened
6N134 TXV
TXVB - Screened
(TX·4365)
with Group B
Data

HCPl·2770
(6N140)
TXHCPl·
2770

6

TXBHCPl·
2770

:::::

5~.;.:

:;...--"'

13

Typical
Data
Rates

Current
Transfer
Ratio

Specified
Input
Current

Input To
Page
Output
Insulation No.

Line Receiver,
Ground Isolation for
High Reliability
Systems

10M bitls 400% Typ.

10mA

1500Vdc

196

line Receiver, low
Power Ground
Isolation for High
Reliability Systems

300k bitls 300% Min.

0.5mA

1500Vdc

200

6N134 TXVB
(TXB·4365)

:~~~:!

4

Application!11

Hermetically Sealed
Package Containing
4 low Input Current,
High Gain Isolators

12

11

l~NDID

'<::.--'

Notes: 1. For further information ask for Application Notes AN939, AN947 .. AN948. AN951·1 and AN951·2 {See pages 218·2211.
2 The HCPL·2502 Current Transfer Ratio Specification is guaranteed to be 15% minimum and 22% maximum.
3. Recognized under the Component Recognition Program of Underwriters Laboratories Inc. (F ile No. E55361).

157

HEWLETT·

PACKARD

COMPONENTS

HlGH SPEED
OPTICALLY
COUPLED
ISOLATORS

6N135 (5082 - 4350)
6N136 (5082 - 4351)
HCPL -2502 (5082- 4352)
TECHNICAL DATA APRIL 1978

OUTLINE ORAWING'

SCHEMATIC

~

8

,..-----=---- GND

Features

Applications

• HIGH SPEED: 1 Mbitls
• TTL COMPATIBLE
• RECOGNIZED UNDER THE COMPONENT
PROGRAM OF UNDERWRITERS
LABORATORIES, INC. (FILE NO. E55361)
• HIGH COMMON MODE TRANSIENT IMMUNITY:
1000V/j.ls
• 3000Vdc INSULATION VOLTAGE
• 2 MHz BANDWIDTH
• OPEN COLLECTOR OUTPUT

•

Line Receivers - High common mode transient immunity
(>1 OOOV /p.s) and low input-output capacitance (O.6pF).

•

High Speed Logic Ground Isolation - TTL/TTL, TTL/
LTTL, TTL/CMOS, TTL/LSTTL.
Replace Slow Phototransistor Isolators - Pins 2-7 of the
-4350 series conform to pins 1-6 of 6 pin phototransistor
isolators. Pin 8 can be tied to any available bias voltage of
1.5V to 15V for high speed operation.
Replace Pulse Transformers - Save board space and weight.
Analog Signal Ground Isolation - Integrated photon detector provides improved linearity over phototransistor type.

Description

Absolute Maximum Ratings'

These diode-transistor optocouplers use a light emitting
diode and an integrated photon detector to provide 3000V dc
electrical insulation between input and output. Separate
connection for the photodiode bias and output transistor
collector improve the speed up to a hundred times that of a
conventional photo-transistor isolator by reducing the basecollector capacitance.
The 6N135 is suitable for use in TTL/CMOS, TTL/LTTL or
wide bandwidth analog applications. Current transfer ratio
(CTR) for the 6N135 is 7% minimum at IF = 16 mAo
The 6N136 is suitable for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input
LED will provide enough output cu rrent for 1 TTL load and a
5.6 kO pull-up resistor. CTR of the 6N136 is 19% minimum at
IF = 16 mAo
The HCPL-2502 is suitable for use in applications where
matched or known CTR is desired. CTR is 15 to 22% at
IF=16mA.
*JEDEC Registered Data. (The HCPL-2502 is not registered.)

•

•
•

Storage Temperature . . . . . . . . . . . . . . . _55°C to +125°C
Operating Temperature . . . . . . . . . . . . . . . -55°C to 100°C
Lead Solder Temperature. . . . . . . . . . . .
260°C for lOs
(l.6mm below seating plane)
Average Input Current -IF . . . . . . . . . . . . . . . . 25mA[1]
Peak Input Current·- IF . . . . . . . . . . . . . . . . . . . 50mA[2]
(50% duty cycle, 1 ms pulse width)
Peak Transient Input Current - IF. . . . . . . . . . . . .. 1.0A
«lp.s pulse width, 300pps)
Reverse Input Voltage - VR (Pin 3-2) . . . . . . . . . . . .. 5V
Input Power Dissipation . . . . . . . . . . . . . . . . .. 45mW[3]
Average Output Current - 10 (Pin 6) . . . . . . . . . . . . 8mA
Peak Output Current . . . . . . . . . . . . . . . . . . . . . . . 16mA
Emitter-Base Reverse Voltage (Pin 5-7). . . . . . . . . . . .. 5V
Supply and Output Voltage - VCC (Pin 8-5), Vo (Pir, 6-5)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -O.5V to 15V
Base Current - 18 (Pin 7) . . . . . . . . . . . . . . . . . . . . 5mA
Output Power Dissipation . . . . . . . . . . . . . . . . . 100mW[4]
158

See notes, following page.

Electrical Specifications
Parameter

Sym.

Current Transfer Ratio

CTR'

Device
6N135
6N136
HCPL·2502

(TA = 25°C)
Min.

Typ.

7
19
15

18
24

6N135

Max.

Units

Test Conditions

IF = 16mA, Vo = OAV, VCC = 4.5V

22

%
%
%

0.4

V

IF

0.1

004

V

IF = 16mA, 10: 2AmA. VCC: 4.5V

3

500

nA

IF = OmA, Vo = VCC = 5.5V

100

p.A

IF = Om A, Vo = VCC: 15V

p.A

IF: 16mA, VO: Open, VCC: 15V
IF: OmA, VO: Open, VCC = 15V

0.1

VOL

Logic High
Output Current

10H"

Logic High
Output Current

10H'

Logic Low
Supply Current

ICCL

40

Logic High
Supply Current

ICCH·

0.02

1

p.A

1.5

1.7

V

IF= 16mA

mVtC

IF = 16mA

V

IR: 10p.A

Input Forward Voltage

VF'

Temperature Coefficient
of Forward Voltage

ll.VF

-ATA

-1.8

Input Reverse Breakdown
BVR'
Voltage
Input Capacitance

5

pF

f = 1MHz, VF = 0

p.A

45% Relative Humidity, t=5 sec.
VI.O = 3000 Vdc

1012

.11

VI.O

CI·O

0.6

pF

f = lMHz

hFE

150

-

Vo = 5V, 10 = 3mA

60

CIN

Input_ Output Insulation
Leakage Current

11.0·

Resistance
(J nput·Output)

RI·O

Capacitance
(lnput·Output)
Transistor DC
Current Gain

1.0

Switching specifications

1,2

Note

5

= 16mA. 10 = 1.1mA, VCC = 4.5V

Logic Low
Output Voltage

6N136
HCPL·2502

Fig.

6

3

6

= 500V dc

6
6

(T A = 25°C)

VCC = 5V, IF = l6mA UNLESS OTHERWISE SPECIFIED
Parameter

-Sym.

Device

Min.

Typ.

Max.

Units

Test Conditions

Propagation Delay
Time To Logic Low
at Output

6N135
tPHL* 6N136
HCPL·2502

0.5

1.5

p.s

RL = 4.1k.l1

0.2

0.8

jlS

RL = 1.9k.l1

Propagation Delay
Time To Logic High
at Output

6N135
tpLH* 6N136
HCPL·2502

0.4

1.5

p.s

RL =4.1k.l1

0.3

0.8

p.s

RL = 1.9k.l1

Common Mode Tran·
sient Immunity at Logic
High Level Output

6N135
6N136
HCPL·2502

·1000

Vljls

IF =OmA, VCM = 10Vp-p" RL =4.1k.l1

CMH

1000

Vlp.s

IF =OmA, VCM = 10Vp_p, RL = 1.9k.\1

Common Mode Tran·
sient ImmunitY at Logic
Low Level Output

CML

6N135
6N136
HCPL·2502

Bandwidth

BW

-1000

V/p.s

VCM = 10Vpop, RL = 4.1kn

-1000

V/p.s

VCM = 10Vpop , RL = 1.9kn

2

MHz

RL = lOOn

Fig.

Note

5,9

8,9

5,9

8,9

10

7,8,9

10

7,8,9

8

10

NOTES: 1. Derate linearly above 7rfC free-air temperature at a rate of O.8mAfC .
.2. Derate linearly above 70°C free-air temperature at a rate of 1.6mAfC.
3.
4.
5.
6.
7.

Derate linearly above 70°C free-air temperature at a rate of O.9mWfC.
Derate linearly above 70°C free-air temperature at a rate of 2.0mWfC.
CURRENT TRANSFER RATIO is defined as the ratio of output collector current, 10, to the forward LED input current, IF, times 100%.
Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5. 6, 7. and a"shorted together.
Common mode transient immunity in Logic High level is the maximum tolerable (positivel dVCM/dt on the leading edge of the common mode pulse. VCM. to assure
that the output will remain in a Logic High state Ii.e .• Va > 2.0VI. Common mode transient immunity in Logic Low level is the maximum tolerable Inegativel dVCM/dt
on the trailing edge of the common mode pulse signal. VCM. to assure that the output will remain in a Logic Low state Ii.e .• Vo < 0.8VI.
8. The 1.9kO load represents 1 TTL unit load of 1.6mA and 8 5.6kn pull-up resistor.
.
9. The 4.1kO load represents 1 LSTTL unit load of 0.36mA and a 6.1kn pull-up resistor.
10. The frequency at which the 8C output voltage is 3 dB b1!low the low frequency asymptote.

*JEDEC Registered Data.'

159

10

---- -----....-

-Vec~5.0V

.......
I

/

i

~

0:
0:

I-

Vee - 5.0V
Vo - OAV

....-"""" .... 36 rnA

,

>II.

--

_ _ 30 mA

0

16

~

0:
0:

.,~z

_ 2 5 rnA

14








1.4

1.5

1.6

1.7

.0~''''.I:--'--L-'-.J...J...u.7-...L..-'-...L..J....l.J.J.l':':0--L-'--L..J...J''''''',~00

1.8

IF - INPUT CURRENT - rnA

"" - FORWARD VOLTAGE - V

Figure 4. Output Current vs. Input Current.

Figure 3. Input Current vs. Forward Voltage.

I

800

I. - 16mA,Vee • 5.0V
-6NI36 (RL • 4.1klll

,

2

>
+5V

j

=:;....90%_
RL

'f
I--~---ovo

A

Vo ----""~;;;;_------- 5V
SWITCH AT A: IF= OmA
VCM

Vo - - - - - - - - - - -..~VOL

L-----~-------{nr_----~_.

SWITCH AT B: IF '" 16mA

HPB007
PULSE GEN.

Figure 10. Test Circuit for Transient Immunity and Typical Waveforms.

'JEDEC Registered Data.

161

HEWLETT

PACKARD

COMPONENTS

r; -I
illliW
9.90 f.390J

8

7

6

5

HCPL-2530
(5082 -4354)

DUAL HIGH SPEED
OPTICALLY COUPLED
ISOLATORS

HCPL-2531
(5082 - 4355)

TECHNICAL DATA APRIL 1978
SCHEMATIC

OUTLINE DRAWING

.,...---~==*
ill~

TYPE

-,-

NUMBER

DATE
CODE

~

0.331.013)

7.36~

if.6ij(.2601

7.B8(.310)

~

5"TYP.

•
t

t

101
7
, ; - - - --- O V01

4

+ 4.70 (.186) MAX.

-- t

'8

r - 1 r - - - - - - - o Vee

6.10~

_1F2

3

CATHODE,

0.51 (.020)
MIN.

2:92(.115)
MIN.

102
-6
._--+---oV02

5

-_--oGND

Features

Applications

• HIGH SPEED: 1 Mbitls
• TTL COMPATIBLE
• HIGH COMMON MODE TRANSIENT IMMUNITY:
>1000V/lJs
• HIGH DENSITY PACKAGING
• 3000Vdc INSULATION VOLTAGE
• 3 MHz BANDWIDTH
• OPEN COLLECTOR OUTPUTS
• RECOGNIZED UNDER THE COMPONENT
PROGRAM OF UNDERWRITERS
LABORATORIES, INC. (FILE NO. E55361)

• Line Receivers - High common mode transient immunity
(>1 OOOV /J.IS) and low input-output capacitance (0.6pF).
• High Speed Logic Ground Isolation - TTL/TTL, TTL/
LTTL, TTL/CMOS, TTL/LSTTL.
• Replace Pulse Transformers - Save board space and weight.
• Analog Signal Ground Isolation - Integrated photon detector provides improved linearity over phototransistor type.
• Polarity Sensing.
• Isolated Analog Amplifier - Dual channel packaging enhances thermal tracking.

Absolute Maximum Ratings

Description
The HCPL·2530/31 dual isolators contain a pair of light emitting
diodes and integrated photon detectors with 3000V dc electri·
cal insulation between input and output. Separate connection
for the photodiode bias and output transistor collectors improve
the speed up to a hundred times that of a conventional photo·
transistor isolator by reducing the base-collector capacitance.
The HCPL-2530 is suitable for use in TTL/CMOS, TTL/LSTTL
or wide bandwidth analog applications. Current transfer ratio
(CTR) for the -2530 is 7% minimum at IF = 16 rnA.
The HCPL-2531 is suitable for high speed TTL/TTL applications. A standard 16 mA TTL sink current through the input
LED will provide enough output current for 1 TTL load and a
5.6kU pull-up resistor. CTR of the -2531 is 19% minimum at
IF = 16 rnA.
162

Storage Temperature . . . . . . . . . . . . . . . _55°C to +12SoC
Operating Temperature . . . . . . . . . . . . . . -S5°C to +1 OO°C
Lead Solder Temperature . . . . . . . . . . . . .. 260°C for 10s
(1.6mm below seating plane)
Average Input Current - IF (each channel) . . . . .. 2SmA[1]
Peak Input Current -IF (each channel) ......... SOmA[2]
(SO% duty cycle, 1 ms pulse width)
Peak Transient Input Current - IF (each channel) .... 1.0A
«1J.Ls pulse width, 300pps)
Reverse Input Voltage - VR (each channel) . . . . . . . . . . SV
Input Power Dissipation (each channel) . . . . . . .. 4SmW[3]
Average Output Current - 10 (each channel) ....... 8mA
Peak Output Current - 10 (each channel) . . . . . . . . . . 16mA
Supply and Output Voltage - VCC (Pin 8-S), Vo (Pin 7,6-5)
· . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' ... -0.5V to 15V
Output Power Dissipation (each channel) . . . . . .
35mW[4]
See notes, following page.

Electrical specifications AT TA = 25°C
Parameter
Current Transfer Ratio

Sym.
CTR

Logic Low
Output Voltage

VOL

Logic High
Output Current

10H

Logic High
Output Current

10H

Device
HCPL·

Min.

Typ.

7

18
24

2530
2531

19

IF = 16mA, Va = OAV, VCC = 4.5V

0.4

V

IF

0.1

0.4

V

IF = 16mA, 10

3

500

nA

IF

100

IlA

IF = OmA, Va = Vce = 15V

IF=16mA

mV('C

IF = 16mA

5

V

IF = 10llA

5

f - 1 MHz, VF - 0

5

--

-1.8
5

VR

11-0

pF

60
1.0

/JA

Current

RI_O

10 12

n

CI-O

0.6

11-1

0.005

RI_I

1011

n

0.25

pF

CI_I

Switching Specifications
Sym.

Propagation Delay
Time To Logic Low
at Output

tpHL

Propagation Delay
Time to Logic High
at Output

tpLH

Common Mode Transient ImmunitY at Logic
High Level Output

CMH

Common Mode Transient Immunity at Logic
low level Output

CMl

Bandwidth

BW

NOTES:

IFl - IF2 = 16mA

V

CIN

Parameter

5

1.7

Input - Output
Insulation Leakage

Resistance (I nput·' nput)

5

1.5

Input Capacitance

Capacitance
(Input-Input)

6

/lA

t:.TA

Input-Input Insulation
Lea kage Current

= 5.5V

2

of Forward Voltage

(Input-Output I

Va = VCC

5

0.05

VF

Capacitance

= Om A,

5,6

ICCH

t:.VF

Resistance
(Input-Output)

= 16mA,10 = 1.lmA, VCC=4.5V
= 2.4mA, VCC=4.5V

0.1

/JA

1,2

Note

80

Input Forward Voltage

Breakdown Voltage

%
%

Fig.

ICCL

Temperature Coefficient

Input Reverse

Test Conditions

2531

Logic High
Supply Current

Units

2530

Logic Low
Supply Current

Max.

Device
HCPL-

ATTA

Min.

Val = V02 = Open, VCC = 15V
IFl = IF2 = OmA
Val = V02 = Open, VCC = 15V

3

45% Relative Humidity, t=5s

5

7

VI-O = 3000Vdc
VI_O = 500V dc

7

pF

f = 1 MHz

7

/JA

45% Relative Humidity, t=55,
V 1.1 = 500Vdc

8

V I_I

= 500V de

8

f = 1 MHz

8

= 25°C, VCC = 5V,I F = l6mA, UNLESS OTHERWISE SPECIFIED
Typ.

Max.

Units

Test Conditions

2530

0.3

1.5

IlS

RL = 4.1 kn

2531

0.2

0.8

IlS

RL=1.9kn

2530

0.4

1.5

/JS

RL=4.1k!l.

2531

0.3

0.8

/lS

RL = 1.9kn

2530

1000

V//ls

IF =OmA,RL =4.1 kn,VCM=10Vp _p

2531

1000

V//Js

IF=OmA,RL=1.9kn, VCM=10Vp-p

2530

-1000

V//ls

VCM=10V p_p , RL = 4.1kn

2531

-1000

V//ls

VCM = 10Vp -p, Rl = 1.9kn

MHz

RL = lOOn

3

Fig.

Note

5,9

10,11

5,9

10,11

10

9,10,11

10

9,10,11

8

12

Derate linearly above 70c C free-air temperature at a rate of-O.SmAf'C.
Derate linearly above 70° C free-air temperature at a rate of 1.6mAf C.
Derate linearly above 70°C free·air temperature at a rate of 0.9mWfC.
Derate linearly above 70°C free--air temperature at a rate of 1.0mWrC.
Each channel.
CURRENT TRANSFER RATIO is defined as the ratio of output collector current, 10. to the forward LED input curr~nt, IF, times 100%.
Device considered a two·terminal device: Pins 1. 2. 3. and 4 shorted together and Pins 5, 6,7. and 8 shorted together.
Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.
Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVCM/dt on the leading edge of the common mode pulse VCM. to
assure that the output will remain in a Logic High state (i.e .. Va >2.0V). Common mode transient immunity in Logic Low level is the maximum tolerable
Inegative) dVCM/dt on the trailing edge of the common mode pulse signal, VCM, to assure that the output will remain in a Logic Low stateH.e .. Va ---

::J

-20

0

-25

""a:

>--

2

-30
.01

0.1

10

1.0

f - FREQUENCY - MHz

+5V <>----

u

a;

40

w

30

8

20

~

..J
..J

--

~

60

I-

iiia;

... ...... ...
...
...... 1.¢- _......
......
...... t>-

70

,........

:..-

-

c--

6 ..t>-

~-

-,

~~.

\

.mA

~"
3rnA

_0

-

-- -- -....

NOTES:
1. The tpLH propagation delay Is measured from the 3.75mA point on the trailing
edge of the input pulse to the 1.5V point on the trailing edge olthe output pulse.
2. The t PHL propagation delay is measured from the 3.75mA point on the leading
edge of the input pulse to 1.5V point on the leading edge of the output pulse.
3. ThetELH enable propagation delay Is measured from the 1.5V pOintolthetrailing
edge of the input pulse to the 1.5V point on the trailing edge of the output pulse.
4. The tEHL enable propagation delay Is measured from the 1.5V point on the
leading edge of the input pulse to the 1.5V point on the leading edge of the
output pulse.
5. Device considered a two terminal device: pins 2 and 3 shorted together, and
pins 5, 6, 7, and 8 shorted together.
6. Common mode transient immunity in Logic High level is the maximum tolerable
(positive) dVcM/dt on the leading edge of the common mode pulse, VCM, to
assure that the output will remain in a Logic High state (i.e., VO>2.0V). Common
mode transient immunity in Logie Low level is the maximum tolerable
(negative) dVcM/dt on the trailing edge of the common mode pulse signal, VCM,
to assure that the output will remain in a Logic Low state (I.e., VO
u

MAX. DC_
RATlr

oa;

-

<:
;:
a;

,

~

10

~

Vo - COLLECTOR VOLTAGE - V

Note: Dashed characteristics - denote pulsed operation only.

'FL

oo~~~~~~~~~~~~~~c=~~~l~'~~
VF - INPUT DIODE FORWARD VOLTAGE - VOLTS

Figure 4. I nput Diode Forward Characteristic.
CURVE
TRACER
TERMINALS

,

>

IF ""5mA

w

~

0.6

..J

I--

::>

i--

>
I-

Figure 2. Isolator Collector Characteristics.

ro ......

0

~ O.S

'0 • 12.8mA
'0 ·9.6mA
'0 ·6.4mA

::>
0

,...

:R

,
w

Vcc' 5.OV

>

\'

~

g
!;

~

,

o

:R

1
0

'"\\\\::

,

0.4

so

25

TA'25°C-

TA - TEMPERATURE _

75

°c

Figure 5. Output Voltage. VOL vs. Temperature and Fan-Out.

RL

350!l

vl~~

100
IF -250/l.A

\*1

,

--

__ !2.•..!6.:':..

Vee ·5.5 V

"

Vo ·5.5V

6

I'--

IF - INPUT DIODE FORWARD CURRENT - mA

»(D--+-....- O Vo
o

25

50

TA - TEMPERATURE _

Figure 3. Input-Output Characteristics.

75

°c

Figure 6. Output Current.IOH vs. Temperature (IF=250pAl.

168

INPUTVE
...._ _ _.. MONITORING NODE

+sv
PULSE
GENERATOR

GENERATOR
PULSE

2o=SOO

2o-SOO

1--'---1

tRIO' 50S

tRIO' 5n.

H---+--o

I,
MONITORING
NODE

*Ct.

OUTPUTI/o
MONITORING
NOOE

H---+-o

470

*<1.

- - -350mV (IF""7.5mA)
INPUT
I,
J-----\---17SmV(l,=3.7SmAI
'PH L

I--

-..J

'PL H

I

1 ______

~PUT

1--

~

e~TPUT

OUTPUTVo
MONITORING
NODE

is approximately 1 6pF. which includes
probe and stray wiring capacitance.

---I

t--~-rTf====~~~t_--~

is approximately 15 pF. which includes
probe and stray wiring capacitance.

J-----\---I.SV

VOH

- . j "HL

1_____ 1. SV

I-

~

'ELH

r--:-

~VOH

1------:--=--=--=~t~~
I

e~TPUT

- - - - - VOL

-=-

---3.0V

Figure 7. Test Circuit for tpHL and tpLH"·

Figure 8. Test Circuit for tELH and tEHL'

l00r---------------,
>

~0

...

z

0

j

------tplH

RL"'4kn

_

ChanA

[D---;;;;;;b"H__-f!~~::a.an
+sv

;::

""
"
~
if
I
~

!r

§

so

-'\------t---RL'''!!

./-

tPHL

-=

ChanA~

Chan B

~

10

I tDL =50ns (delay in responsato

~
.

TA '" 2S"C

logic High Level input)

J---- tDH '" 20ns (delay in response to logic Low Level input)

IFH - PULSE INPUT CURRENT· rnA

Figure 9. Propagation Delav. tPHL and tPLH
vs. Pulse Input Current. IFH.

Figure 10. Response Delav Between TTL Gates.

tr;; 160ns
tf= 55n.

1-+---""'--0 va

A
Vo

SV

Vo

~VOL

~
SWITCH AT A: IF'" OmA

IicM
L------+---------{Jlr-~------~

SWITCH AT B: IF= 5mA

HP1900A
PULSE GEN.

20 = son

Figure 11. Test Circuit for Transient Immunity and TVPical Waveforms•

•• JEDEC Registered Data.

169

-=

B

HIGH CMR, HIGH SPEED HCPl- 2601
OPTICALLY COUPLED GATE (5082-4361)

PACKARD

HEWLETT
'''''''~\

~

COIVi PONENTS

TECHNICAL DATA APRIL 1978

J ?-i
+-

OUTLINE DRAWING

___ ICC

I

018 f 0011

0331.0131

610lMQl
~J.1!OJ 660f~O)
78813101
j

VF

-

-T

-t

I
I

L

L---~--~------~---oGND

t

5 TYP

~~j

1

DIMENSIONS IN MILl,IMEfAESANO (INCHES)

5

TRUTH TABLE
(Positive Logic)
A 0.01 TO 0.1 "F BYPASS CAPACITOR
MUST BE CONNECTED BETWEEN
PINS 8 AND 5 (See Note 1).

Figure 1. Schematic.

Input

Enable

Output

H

H
H

L
H

L
L

H

L
H
L

H

Features

Applications

•

•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•

INTERNAL SHIELD FOR HIGH COMMON
MODE REJECTION (CMR)
HIGH SPEED
GUARANTEED MINIMUM COMMON MODE
TRANSIENT IMMUNITY: 1000V/1lS
LSTTL/TTL COMPATIBLE
LOW INPUT CURRENT REQUIRED: 5mA
GUARANTEED PERFORMANCE OVER TEMPERATURE: OCC to 70 c C
STROBABLE OUTPUT
RECOGNIZED UNDER THE COMPONENT
PROGRAM OF UNDERWRITERS LABORATORIES, INC. (FILE NO. E55361)
3000 Vdc INSULATION VOLTAGE

Isolated Line Receiver
Simplex/Multiplex Data Transmission
Computer-Peripheral Interface
Microprocessor System Interface
Digital Isolation for A/D, D/A Conversion
Switching Power Supply
Instrument Input/Output Isolation
Ground Loop Elimination
Pulse Transformer Replacement

Recommended Operating

O
CondOt
I Ions

Description

Sym. Min. Max.

Units

0

250

6.3"

20

/LA
mA

4.5

5.5

V

2.0

5.S

V

0

0.8

V

Input Current, Low Level

IFL

Input Current, High Level

IFH

Supply Voltage, Output

Vee
High Level Enable Voltage VEIl
Low Level Enable Voltage VEL

The HCPL-2601 optically coupled gate combines a GaAsP
light emitting diode and an integrated high gain photor:l
detector. An enable input allows the detector to be
strobed. The output of the detector I.C. is an open
collector Schottky clamped transistor. The internal shield
provides a guaranteed common mode transient immunity
specification of 1000 volts/l'sec., equivalent to rejecting a
300 volt P-P sinusoid at 1 MHz.

Fan Out (TTL Load)

N

Operating Temperature

TA

8
0

70

"C

Absolute Maximum Ratings
(No Derating Required up to 70 C C)

This unique design provides maximum D.C. and A.C.
circuit isolation while achieving TTL compatibility. The
isolator D.C. operational parameters are guaranteed from
O°C to 70°C allowing troublefree system performance.
This isolation is achieved with a typical propagation delay
of 35 nsec.

Storage Temperature .............. -55°Cto+125°C
Operating Temperature . . . . . . . . . . . . . . .. OCC to +70° C
Lead Solder Temperature ...........
260°C for lOS
(1.6mm below seating plane)
Forward Input Current - IF (see Note 2) ....... 20 mA
Reverse Input Voltage ........................... 5 V
Supply Voltage-Vee ............................ 7V
Enable Input Voltage- VE ....................... 5.5 V
(Not to exceed Vee by more than 500 mY)
Output Collector Current -10 .............. . .. 25 mA
Output Collector Power Dissipation . . . . . . . . . .. 40 mW
OutputColiectorVoltage-Vo .................... 7V

The HCPL-2601's are suitable for high speed logic
interfacing, input/output buffering, as line receivers in
environments that conventional line receivers cannot
tolerate and are recommended for use in extremely high
ground or induced noise environments.

"6.3mA condition permits at least 20% CTR degradation guardband. Initial switching threshold is SmA or less.

170

Electrical Characteristics
(Over Recommended Temperature, TA = O°C to +70°C, Unless Otherwise Noted)
Typ.·

Max.

Units

Test Condillons

High Level Output Current

IOH

7

250

J.l.A

Vee = 5.5V, Vo = 5.5V,
IF = 250 J.l.A, VI' = 2.0 V

2

Low Level Output Voltage

VOL

0.4

0.6

V

Vee = 5.5V, IF = 5 mA
VE = 2.0 V,
10L (Sinking) = 13 mA

3,5

High Level Supply Current

lecH

10

15

mA

Vec = 5.5V, IF = 0,
VE=0.5V

Low Level Supply Current

IcCL

15

18

mA

Vce = 5.5V, IF = 10 mA,
VE=0.5V

Low Level Enable Current

-2.0

mA

Vee = 5.5 V, VE = 0.5 V

mA

'Icc = 5.5 V, 'IE = 2.0'1

Parameter

Symbol

Min.

IEL

-1.6

High Level Enable Current

IEH

-1.0

High Level Enable Voltage

VEil

Low Level Enable Voltage

VEL

Input Forward Voltage
Input Reverse Breakdown
Voltage

2.0

V
0.8
1.5

VI'
BVR

Figure Note

1.75

5

11

V
V

IF = 10 mA, TA = 25°C

V

IR = 10 I' A, TA = 25°C

Input Capacitance

C IN

60

pF

Input Diode Temperature
Coefficient

::NF

-1.6

mV/oC

4

VF = 0, 1 = 1 MHz
IF = 10 mA

ilTA

Input-Output Insulation
Leakage Current

11-0

1

Resistance (Input-Output)

RI-o

10 12

Capacitance (Input-Output)

CI-O

0.6

Relative Humidity = 45%
TA=25°C,t=5s,
VI-a = 3000 Vde

3

n

VI-a = 500 V

3

pF

f = 1 MHz

3

I' A

• All typical values are at Vee = SV, T A = 25° c.

switching Characteristics

(TA = 25°C, Vee = 5V)
Typ.

Max.

Units

Propagation Delay Time to
High Output level

tpLH

35

75

ns

Propagation Delay Time to
Low Output Level

tpHL

35

75

ns

Output Rise Time (10-90%)

tf

Parameter

Symbol

Min.

Test Conditions

RL = 350

n

Figure

Note

6

4

6

5

CL=15pF
25

ns

IF = 7.5 mA

Output Fall Time (90-10%)

tf

15

ns

Propagation Delay Time of
Enable from VEH to VEL

tUH

25

ns

RL = 350 n, CL = 15 pF,
IF = 7.5 mA, VEH = 3 V,
VEL = 0 V

9

6

Propagation Delay Time 01
Enable from VEL to VEH

tEHI.

15

ns

RL = 350 n, CL = 15 pF,
IF = 7,5 mA, VEil = 3 V,
VEL = 0 V

9

7

Common Mode
Transient Immunity
at High Output Level

CMf!

10,000

VII's

VeM = 50 V (peak),
Vo (min.) = 2 V,
RL = 350 n, IF = 0 mA

12

8,10

Common Mode
Transient Immunity
at Low Output Level

CML

VII's

VCM = 50 V (peak),
Vo (max.) = 0.8 V,
RL = 350 n, IF = 7.5 mA

12

9,10

1000

-1000 -10,000

171

NOTES:
1. Bypassing of the power supply line is required, with a 0.01 /LF ceramic

2.

3.
4.

5.

6. The tELl! enable propagation delay is measured from the 1.5 V painton
the trailing edge of the enable input pulse to the 1.5 V point on the
trailing edge of the output pulse.
7. The tEIIL enable propagation delay is measured from the 1.5 V point on
the leading edge of the enable input pulse to the 1.5 V pOint on the
leading edge of the output pulse.
B. CMII is the maximum tolerable rate of rise of the common mode voltage
to assure that the output will remain in a high logic state (i.e .• Vom'
>2.0 V).
9. CML is the maximum tolerable rate of fall of the common mode voltage
to assure that the output will remain in a low logic state (Le., VOUT <0.8
V).

disc capacitor adjacent to each isolator as illustrated in Figure 15. The
power supply bus for the isolator(s) should be separate from the bus for
any active loads, otherwise a larger value of bypass capaCitor (up to 0.1
/LF) may be needed to suppress regenerative feedback via the power
supply.
Peaking circuits may produce transient input currents up to 50 rnA, 50
ns maximum pulse width, provided average current does not exceed 20
rnA.
Device considered a two terminal device: pins 1, 2. 3 and 4 shorted
together. and pins 5, 6, 7 and B shorted together.
The tPl.II propagation delay is measured from the 3.75 rnA point on the
trailing edge of the input pulse to the 1.5 Vpoint on the trailing edge of
the output pulse.
The tpIIL propagation delay is measured from the 3.75 rnA point on the
leading edge of the input pulse to the 1.5V point on the leading edge of
the output pulse.

,

~

Vee l• 5.5~
Vo = 5.5V V. - 2.OV
'F • 250.A-

15

I-

i'a:il
a:

::>
u
::>

l-

10

0-

I'.

I-

....0w

~

O.S

>
~

5

:I:

0.7

0

'"~

100

I
!
!

0

10

20

30

40

--r---.

50

60

70

~

9,

0.2

f--'o·9.SmA/
I

8.0 I - - \ - 7.0 f - -

.:~±:

6.0 f - - 1----f----

,

0

3.0

>0 '2.0
1.0
00

~

0.1

0

10

I
50

40

..L

~, 0.01

i

30

20

r----'

"a:

v:/ Vi

10 =6.4mA/

0.1

;:

TA -25'C=

-~

SO

0.001
1.0

70

1.2

1.4

1.S

1.8

2.0

V, . FORWARD INPUTVDLTAGE-V

Figure 3. Low Level Output Voltage
vs. Temperature.

Figure 4. Input Diode Forward
Characteristic.

PULSE

Vee -S.OV

I--'--"r----f--

--'

i--

tR"Sm

Rl

= 350n

TA

=O-70~C

.~
Input

3

Nods 47n

4

VCC~

4.0

c,'

GND 5

R,

r

- - - I "7.5mA

5.0

6.0

IF - FORWARD INPUT CURRENT - rnA

Figure 5. Output Voltage vs. Forward
Input Current.

J------~---':.'.75mA

r-~~TPUT~""5V
----l

tpHL

1-

~

tpLH

Figure 6. Test Circuit for tpHL and t pLH '

172

= 5.0V
:=

7.6mA

70

:"iw

SO

tpl" Rl 04k.:1.

50

~ tPl"~

0

..

z

0
OUlputVo
Monlt04'ing
Nod.

1--',

I

>

~

"cL isapproximatelv15pF,whichinciudes
probeandslraywiringcapacitanCIi!.

::PUT
3.0

'5V

1!. Je,'
MO"itO~ ~6

Rl =lk'n
I
T•• 0-70'C

2.0

2

20"500

~ 2~:~t;~: .~t':"

:-.,...
1.0

80 I-- V:c

GENERATOR

--

5.0

!:; 4.0

::::>

!

1.0

l-

a:

0.31-- 101- 12.8;nA

;:

--

.....

HPSOO18

9.0

I-

a:

::>
u

~.-

..L

10

TA -TEMPERATURE_oC

Figure 2. High Level Output Current
vs. Temperature.

,
w
'"...."
g

i'a:il

~
0

TA - TEMPERATURE - 'c

>

I-

!

.

0

>0
0

;

E
,

'0 -16.0mA

~

"

"

2.0V
- 5.0mA
"I
I
o

ul 0.4

';:",
.SJ

Vee = 5..5V

V.

::>

r- r--

= "fcMVCM (p-p)

max

11. No external pull up is required for a high logic state on theenable inpul.

!

0.5

I-

J

--dt

0.8

w

I-

i'... ......

::>

,

>

10. For sinusoidal voltages, (ldVCMI

>=

~"0

,

If

:r

~
tpHL RL

~.±= tPLe
.. 3500.

~

Rl "kn

40 t-r~ tpHl At, '" 1kO

30 F"
tpHL Rt. s4kJl

20
0

10

20

30

40

50

60

TA '" TEMPERATURE - °C

Figure 7.

Propagation Delay vs.
Temperature.

70

HPB0078

70

PULSE

I-- 1--1---- I-- -Vee

c

,.I

~

80

1---

. -TA

70

f--

I
I

"0z

60

";t

50

;:

I-- r - -

I

30

0

I--

;t

350n

"HL RL = ~on_

~PHL RIL • 4k28

10

I
16

14

12

18

20

Figure 8.

210

·CL I,approxlmately lSpF, whichinclude-s
probe and stray wIring capacitance.

~PUT

-----.in --- -'t---

R

'"
I

iT
~.

60

--

50
40

-., tElH

0

t-

~12000 - f - -

~
I
~ 10000 h+-+-i-I+-I---

A

RL = lkn

Output Vo
pj6I-F==+----OMonitoring

Nod.

T

40

50

60

~

~

"

O~

I

:5 :i

YOH '" 2.0 V

IFH

1.2

'-..,.

600

800

=

°~<

.8

-

Figure 13. Common Mode Transient
Immunity vs. Common
Mode Transient Amplitude.

-

7.5mA-

ENABLE
!IF USED)

~

.7

DUTPUTl

'-..,.
............

'-.,.

ENABLE

r'-o

10

20

30

40

50

60

!IF USED)

70
DUTPUT2

TA - TEMPERATURE - °C

Figure 14. Relative Common Mode
Transient Immunity vs.
Temperature.

Figure 15. Recommended Printed Circuit
Board Layout.

173

1000

COMMON MODE
TRANSIENT AMPLITUDE - V
V CM

1.0
.9

1 ...

'-'

400

IFl '" OrnA
Rl = 3SOn _

~

0:1-

I

I

200

VOL'" 0.8 V

ffi
;:Ui

:;

Figure 12. Test Circuit for Common Mode
Transient Immunity and
Typical Waveforms.

00

I

GND BUS (BACK)

1,3

'-'I~
1.1

wo:

'" 25~C

Veel • 5.01v

~z

~ ~

TA

4000 I---\l--+-i-+--+-+-+--j~+--!
-~" A~D C1MH+--+-I_+-+-i

8

1.4

~~

~-..

~ 2000

~

w

In '" 0 rnA

0:

70

Figure 11. Rise, Fall Time vs.
Temperature.

5.0 V

'FH • 7.5 rnA



-

20

0
TA - TEMPERATURE - ~c

Figure 9. Test Circuit for tEHL and t ELH .

I

RL = lk~

10

10

~w

--- -- - - A~'~~

30
20

20

w
I

3.0V

'" 14kO

tr - - -

w

1-

w

'"Z

,5V

!:T".::

,fl

Vee" 5,0 V
190 r--I F '" 7.5 rnA

tfHl

g;
-'
tpLH for proper operation. A NOR flipflop has infinite CMR for POSITIVELY sloped transients
but requires tpHL < tpLH for proper operation. An
exclusive-OR flip-flop has infinite CMR for common mode
transients of EITHER polarity and operates with either
tpHL > tpLH or tpHL  tpLH' so NAND gates are preferred in the R-S
flip-flop. A higher drive amplitude or different circuit
configuration could make tpHL 
tpLH ortpHL2.0 V).
9. CM). is the maximum tolerable rate of fall of the common mode voltage
to assure that the output will remain in a low logic state (Le., Vot ''I' <0.8

supply.
2. The HCPL-2602 is tested such that operation at II minimum of 5 mA will
provide the user a minimum of 20% guard band for LED light output
degradation.
3. Deuice considered a two terminal device: pins 1, 2, 3 and 4 shorted
together, and pins 5, 6, 7 and 8 shorted together.
4. The tPUl propagation delay is measured from the 3.75 rnA paint on the
trailing edge of the input pulse to the 1.5 V point on the trailing edge of
the output pulse.
5. The tpHL propagation delay is measured from the 3.75 rnA point on the
leading edge of the input pulse to the 1.5V point on the leading edge of
the output pulse.

9.0 r--.

.. ---.

,

B.O

>,
w

"S"
0

7.0

c-----

6.0

I---

>

5.0

~
....

4.0

....

..

-

_

........

w

-_..

""s
0
i

",

0

0

1.8

~

1.6

:>

~ TA "0-7O'e

.......

1.0
0

1.0

25'e

!J V

/11

~

3.0

4.0

~,O

,I!

~- .-L-t-~--i--- VE

OB

-l-.---/----l---I----i--

0.5

~

I

0.7

g~ -~--

I

"'--

"....0

~

1.2

"i

1.0

..9

i

II

J ,. ,.~--- -- ~--~-- L10'" 16.0mA

10

20

30

40

50

60

"
10 "

Figure 3. Input Characteristics.

~G~~!i~:RI

,NPUT

II

Vcc~~

IT

3

@:

U

Figure 5. Low Level Output Voltage
vs. Temperature.

__-L__

20

30

~

40

__

~~

50

__-"

60

70

I

c

,

>

~

RL

6

CL"
Output Vo
,---G",N",D'f5~_ _'" ~:!toring

r---'I

o
2
o

~

~

o

' \ - - - I,

:E

~ 7.5 rnA

J----~~ 1--~11~3'75mA
-----.; tpHL

TA - TEMPERATURE -"C

~

80r--'---'---.---'---r---r--~

*CL is approximately 15 pF, which includes
probe and stray wiring capacitance.

~,

__

10

, -_ _ _- ,

-=-t.£1IC~:..r.:::-iZJ. BY~:SS
I,
11'('1 :.'U'] .;~

Input
Monitoring
Node 47n

o

Figure 4. High Level Output Current
vs. Temperature.

"'501~

tR '" Sns

I

OL-~

TA -TEMPERATURE-'C

0,4

~

250pA -

I

II - INPUT CURRENT - rnA

Zo

-

-" 2.0V

J:

0

'" 2,OV
"5.0 mA

5.5V

w

~

6.0

08,---,---,--,---.,.----r-...,---,
vee" 5.5V

:!

~
....

~

Vo
V,

"u....

70~C

5.5~

Vee!
15

a:

1.'

Figure 2. Output Voltage vs. Forward
Input Current.

o

"l.,
iiia:
....

~

2.0

(p-p)

rna.'

No external pull up is required for a high logic state on the enable input.

O'c

II - FORWARD INPUT CURRENT - rnA

~
~

11

,

I

BL • lk'n
~

>
~

TA "'0'-70'C

>0 2.0

2.0

....

,

Re" 350rl
3.0

2.2

~ rrkMVCM

dt

2.4

>,

.....

(ldVCM1J
---

2.B

.-:--+.-Vee" 5.0V

............

V).

10. For sinusoidal voltages,

1---

--,

Z~TPUT~I

tpLH

__

r--

-Y-____

200'----'1O--='20=--3::':0=--40.L-.---:5"'0--:BLO-....70
1.5V

Figure 6. Test Circuit for tpHL and tpLH'

178

TA - TEMPERATURE _ °c

Figure 7. Propagation Delay v•.
Temperature.

80

2

240

70

~
c

60

z
0
;::

50

'"'~"

I I

,

I

>

"

:l
:t

lkn

tpLH At

l·

\

\'PLH RL = 3501l

30

4k" f--

j'HL Ri' lk

20
10

20

30

I

I

40

50

~,

80

w'

60
40

;:
~

20

... -

tr

---

+5V

___

RL

I

-t- - ---

RL ..

F-- - - '

'"ii:,

"

RL .14k"

200

;::

/ tplH Al = 35011

,

40

I
I!-

w

\\.

0

lE

220

tLH AL I", 4kn

Vee =S.OV
liN'" 7.5 rnA

lk!~

I

RL - 3501l

-1--

--'

- - --

20

30

40

50

TA - TEMPERATURE _

60

c

50

-., tELH

~, 12000

3Son

Z

-

"~ 8000

0

1--

'~"

;;;

0

30

~

20

HP 1900A

0:

PULSE GEN.

at

i\''"i

Zo =500

VCM

!)V

0

0

CM H

...J"--

SWITCH AT B: I, = 7.5 mA

'c

TA - TEMPERATURE -

Vo 0.5 V _ _ _

Figure 11. Enable Propagation Delay
vs. Temperature.

1.4

w

Vc~ =

C

~.~

zOZ
~ ~
o~

1.3

VOH

ffi

~
1.1
j:ii)

..........

...I c:(

"
""~

-

Vo (milK. I

Figure 12. Test Circuit for Common Mode
Transient Immunity and
Typical Waveforms.

"u

~LANDCMH

,

I

I

I i

I I

00

200

400

600

800

VCM - COMMON Mooe
TRANSIENT AMPLITUDE -

Figure 13. Common Mode Transient
Immunity vs, Common
Mode Transient Amplitude.

5.0 1V

= 2.0 V

-

.9

:8
.7

o

10

20

"H

= 1,5mA-

"L

'" OmA

3D

.........

40

ENABLE
(IF USEDI

ENABLE
(IF USEDI

..........

"

60

50

TA - TEMPERATURE -

°c

70

OUTPUT 2

Figure 14. Relative Common Mode
Transient Immunity vs.
Temperature,

Figure 15. Recommended Printed Circuit
Board Layout.

179

1000

v

OUTPUT 1

"

0:1-

1
uf

4000

RL '" 350 l.1 _

r---..

"'Z
wo: 1.0

SOl

6000

--

.-

.- .

I'H '" 7.5mA
I'L ·OmA
VOH ' 2,0 V
VOL = 0.8 V
RL = 350 II
TA • 2G'C

VOL" 0.8 V

1.2

ul-

~

=i

0:
I~

~ 2000

SWITCH AT A: I, = 0

~w

-

o

OV

10

I

-- -

~

40

.

t-

Vee'" 6.0V

~ 10000
:J

;::

u

\+-

Figure 1O. Test Circuit for tEHL and tELH'

+5V

>

IEHL

e~TPUT~_"sv

°c

70

I

...'w"

~PUT J-----~---'.SV

70

Figure 9. Rise, Fall Time vs.
Temperature.

":'"
-J.OV

AL - 35011. lk!Z. 4kn
10

Figure 8. Propagation Delay vs. Pulse
Input Current.

60

·CL il approximately 15 pF. which includes
probe and stray wiring capacitance.

~

60

I, - PULSE INPUT CURRENT - rnA

2

OutputVo
Monitoring
Nod.

HEWLETTj PACKARD
COMPONENTS

DUAL DTL/TTL
COMPATIBLE OPTICALLY
COUPLED GATE

HCPl-2630
(5082 -4364)

TECHNICAL DATA APRIL 1978

~
~7

OUTLINE DRAWING
Vee
VOl

~6

DATE

eOOE
NOTE:
A .01 TO O,'MF BYPASS CAPACITOR MUST BE
CONNECTED BETWEEN PINS 8 AND 5

.--------rr:===*
-1--

0.'8 LQQ1}
0.33 (.013~

TYPE
NUMBER

V02

tm ::~~ ~

7.36
7.B8 (.3l0)

!

' - - - - - o _ _ + - - - 0 GND

Features
•
•
•
•
•
•

HIGH DENSITY PACKAGING
DTL/TTL COMPATIBLE: 5V SUPPLY
ULTRA HIGH SPEED
LOW INPUT CURRENT REQUIRED
HIGH COMMON MODE REJECTION
GUARANTEED PERFORMANCE OVER
TEMPERATURE
• RECOGNIZED UNDER THE COMPONENT
PROGRAM OF UNDERWRITERS
LABORATORIES, INC. (FILE NO. E55361)
• 3000Vdc INSULATION VOLTAGE

Recommended Operating
Conditions

Description / Applications
The HCPL-2630 consists of a pair of inverting optically coupled
gates each with a GaAsP photon emitting diode and a unique
integrated detector. The photons are collected in the detector
by a photodiode and then amplified by a high gain linear amplifier that drives a Schottky clamped open collector output
transistor. Each circuit is temperature, current and voltage compensated.
This unique dual isolator design provides maximum DC and AC
circuit isolation between each input and output while achieving
DTL/TTL circuit compatibility. The isolator operational parameters are guaranteed from OoC to 70°C, such that a minimum
input current of 5 mA in each channel will sink an eight gate
fan-out (13 mAl at the output with 5 volt VCC applied to the
detector. This isolation and coupling is achieved with a typical
propagation delay of 50 nsec.
The HCPL-2630 can be used in high speed digital interface applications where common mode signals must be rejected such
as for a line receiver and digital programming of floating power
supplies, motors, and other machine control systems. The elimination of ground loops can be accomplished between system
interfaces such as between a computer and a peripheral memory, printer, controller, etc.
The open collector output provides capability for bussing,
strobing and "WIR ED-OR" connection. In all applications, the
dual channel configuration allows for high density packaging,
increased convenience and more usable board space.

Sym.

Min.

Max.

Units

IFL

0

250

JJA
mA

Input Current, Low Level
Each Channel
Input Current, High Level
Each Channel
Supply Voltage. Output

IFH

6.3'

VCC

4.5

10
5.5

0

70

V

Fan Out (TTL Load)
Each Channel
Operating Temperature

N
TA

8

°c

Absolute Maximum Ratings
(No derating required up to 70°C)
Storage Temperature ................. -55°C to +125°C
Operating Temperature .................. DoC to +70°C
Lead Solder Temperature ................. 260°C for 10s
(1.6mm below seating plane)
Peak Forward Input
Current (each channel) ..... 20 mA « 1 msec Duration)
Average Forward Input Current (each channel) ..... 10 mA
Reverse Input Voltage (each channel) . . . . . . . . . . . . . . .. 5V
Supply Voltage - VCC .......... 7V (1 Minute Maximum)
Output Current - 10 (each channel) .............. 16 mA
Output Voltage - Va (each channel) ................ 7V
Output Collector Power Dissipation ............. 60 mW

180

*6.3mA condition permits at least 20% CTR degradation guardband.
Initial switching threshold is 5mA or less.

Electrical Characteristics
OVER RECOMMENDED TEMPERATURE (TA
Parameter

Symbol

Min.

= O°C TO 70°C)
Typ.* Max.

UNLESS OTHERWISE NOTED
Units

Figure

Test Conditions

High Level Output Current

10H

50

250

pA

Vec = 5.5V, Vo = 5.5V,
IF = 250pA

Low Level Output Voltage

VOL

0.5

0.6

V

VCC = 5.5V, IF = 5mA
10L (Sinking) = 13mA

High Level Supply Current

ICCH

14

30

mA

Vec = 5.5V, IF = 0
(Both Channels)

Low Level Supply

ICCL

26

36

mA

VCC = 5.5V. IF = 10mA
(Both Channels)

Input - Output
Insulation Leakage Current

"-0

1.0

/1 A

Relative Humidity
TA = 25°C, t = 5s,
V 1-0 = 3000Vdc

4

10 12

n

VI·O

0.6

pF

f

Input Forward Voltage

VF

1.5

Input Reverse Breakdown
Voltage

BVR

Input Capacitance

CIN

60

Input-Input Insulation
Leakage Current

I,.,

0.005

Resistance (lnput·lnput)

.V

3

= 500V, T A = 25°C
= lMHz, T A = 25°C
IF = 10mA, T A = 25°C

RI·o
CI·O

5

3

4

Resistance (I nput·Output)

V

3

= 45%

Capacitance (I nput·Output)

1.75

Note

4
4

7,3

IR = lOpA, TA = 25°C

pF

VF=O,f=lMHz

3

/1 A

Relative Humidity = 45%,
t=5s, V'.I=500V

8

R I_I

10"

n

VI-! = 500V

8

Capacitance (Input·lnput)

C'.I

0.25

pF

f = lMHz

8

Current Transfer Ratio

CTR

700

%

IF = 5.0mA, RL = lOOn

2

6

• All typical values are at VCC = 5V, TA = 25°e

Switching Characteristics at TA =25°C Vcc = SV
I

EACH CHANNEL
Parameter

Symbol

Min.

Typ.

Max.

Units

Test Conditions

Figure

Note

Propagation Delay Time to
High Output Level

tpLH

55

75

ns

RL = 350 n, CL = 15pF,
IF = 7.5mA

5,6

1

Propagation Delay Time to
Low Output Level

tpHL

40

75

ns

RL = 350 n, C L = 15pF,
IF = 7.5mA

5,6

2

Output Rise·Fall Time (1 ()"'90%)

tr, tf

25

ns

Common Mode Transient
Immunity at High Output level

CM H

50

V1/15

RL = 350 n, C L = 15pF,
IF = 7.5mA
VCM = 10Vp_p,
RL=350n,
Vo (min.) = 2V, IF = OmA

8

5

Common Mode Transient
Immunity at low Output level

CM L

-150

V l/1s

8

5

VeM = lOVp_p•
RL = 350n,
Vo (max.) = O.SV
IF

= 7.5mA

NOTE: It is essential that a bypass capacitor (.Ol"F to O.l"F, ceramic) be connected from pin 8 to pin 5. Total lead length between both
ends of the capacitor and the isolator pins should not exceed 20mm. Failure to provide the bypass may impair the switching properties.

181

NOTES:

'E"

...I

""
0

20

...

t

~...
0

"I
S

10

~

I

~

R,

3iiffi

\\:

v]kn
4kfi

M
IX '1\

1

00
IF - INPUT DIODE FORWARD CURRENT .- mA

====-.m:~-"V;ln-+--...--o

+5V

Vo

.... ~.,.. .... ,....

.

....

'-

....-""".,.,..

"' ....

'T A .. 2$"C

.
,
, ....
V :);~ -- '-~I

a:
a:

4.5mA

30

iiia:

~

I

TA~25"C-

""\ ~
\\

......

,, ;;,'t'mA
J....... ' ......
V
I

I
w

Figure 3, Input-Output Characteristics.

.
y

40

VCC'" 8.0V

>

1. The tpLH propagation delay is measured from the 3.75 mA pOint
on the trailing edge of the input pulse to the 1.5V point on the trailing edge of the output pulse.
2. The tpHL propagation delay is measured from the 3.75 mA point
on the leading edge of the input pulse to the 1.5V point on the
leading edge of the output pulse.
3. Each channel.
4. Measured between pins 1, 2,3, and 4 shorted together, and pins 5, 6,
7, and 8 shorted together.
5. Common mode transient immunity in Logic High level is the maxi·
mum tolerable (positive) dV CM/dt on the leading edge of the common mode pulse, VCM. to assure that the output will remain in a
Logic High state (i.e., VO>2.0V). Common mode transient immunity
in Logic Low level is the maximum tolerable (negative) dVCM/dt on
the trailing edge of the common mode pulse signal, VCM, to assure
that the output will remain in a Logic Low state (Le., VO-

~

Vo
INPUT
MONITORING

47

NODE

c,*

n

c

z
0
;:

OUTPUT
MONITORING
NODE

"

L'l

CL. is approximately 15 pF, which includes
probe and stray wiring capacitance.

~

IPLH~

RL"4H~ ____ \ - - - -

",.,,,..-

\\
\

\

SO

0

-=

:::
I

"
-

-

i

- 350mV {IF '" 7.SmAJ

INPUT

IF

J - - - - - \ - - - 1 7 S m v I IF .3.7SmAI

I---

--I

r--

10

i _______Y-____ 1V:~

- . j tPH L

~~TPUT

tpLH

IFH - PULSE INPUT CURRENT· rnA

- - - - - VOL

Figure 6. Propagation Delay, tpHL and tpLH
1/S. Pulse Input Current, I FH.

Fioure 5. Test Circuit for tpHL and tPLH.

Chan A

+SV
INPUT ~-.....~-,.

--' .....~-nChanB
~~---+--.--o+SV

7404
Chan

A~L._ _ _ _'"

Chan B

1----- i
---f-:_____
. .i

1-

tDl '" 50

05

(delay in response to

logic low level input)

tOH = 30 ns (delay in response to

logic high level inputl
TA" 25c C

Figure 7.

tl
tf

VCM

..

Response Delay Between TTL Gates.

160ns

~~---~~~+SV

= 55ns

3S0n

Vo
Vo - - - -.....
"--""
.._ - - - -_ _ _ SV
SWITCH AT A: IF'" OmA
VCM

Vo

-----------~Vo,

L-----------+---~n.~------~

SWITCH AT B: IF'" SmA

HP 1900A
PULSE GEN.

Zo '" son

Figure 8. Test Circ"it for Transient Immunity and TVpical Waveforms.

183

I

HEWLETT

PACKARD

COMPONENTS

LOW INPUT CURRENT,
HIGH GAIN OPTICALLY
COUPLED ISOLATORS

6N138 (5082 -4370)
6N139 (5082 -4371)

TECHNICAL DATA APRIL 1978

1

OUTLINE DRAWING*

SCHEMATIC

"'--~-'-;::::=='T
TYPE
NUMBER
DATE

CODE

g:m~l

f •.,oL

~~ 6.60-(.260)
1,88 (.310)

Vee
8

!Icc

+
ANODE]2
'F

VF

-:;;;.

CATHODE 3

1

"Il

Features

Applications

•
•
•
•
•
•

•

Ground Isolate Most Logic Families - TTL!TTL, CMOS/
TTL, CMOS/CMOS, LTIL/TIL, CMOS/LTTL

•

Low Input Current Line Receiver - Long Line or Partyline

•

EIA RS-232C Line Receiver

•
•
•
•

HIGH CURRENT TRANSFER RATIO - 800% TYPICAL
LOW INPUT CURRENT REQUIREMENT - O.SmA
TTL COMPATIBLE OUTPUT - 0.1V VOL
3000 Vdc INSULATION VOLTAGE
HIGH COMMON MODE REJECTION - 500V/~s
PERFORMANCE GUARANTEED OVER TEMPERATURE
O°C to 70°C
BASE ACCESS ALLOWS GAIN BANDWIDTH
ADJUSTMENT
HIGH OUTPUT CURRENT - 60mA
DC TO 1M bit/s OPERATION
RECOGNIZED UNDER THE COMPONENT PROGRAM
OF UNDERWRITERS LABORATORIES, INC.
(FILE NO. ESS361)

• Telephone Ring Detector
•

117 V ac Line Voltage Status Indicator - Low Input Power
Dissipation

•

Low Power Systems - Ground Isolation

Description
These high gain series isolators use a Light Emitting Diode and
an integrated high gain photon detector to provide 3000V de
electrical insulation, 500V/J.(s common mode transient immunity and extremely high current transfer ratio between input
and output. Separate pins for the photodiode and output
stage result in TTL compatible saturation voltages and high
speed operation. Where desired the Vee and Vo terminals
may be tied together to achieve conventional photodarlington
operation. A base access terminal allows a gain bandwidth
adjustment to be made.
The 6N 139 is suitable for use in CMOS, LTTL or other
low power applications. A 400% minimum current transfer
ratio is guaranteed over a 0·70°C operating range for only
0.5mA of LED current.
The 6N138 is suitable for use mainly in TIL applications.
Current Transfer Ratio is 300% minimum over 0-70°C for an
LED current of 1.6mA [1 TTL unit load (U.L.)]. A 300%
minimum CTR enables operation with 1 U.L. in, 1 U.L. out
with a 2.2 krl pull-up resistor.
'JEDEC Registered Data.

Absolute Maximum Ratings *
Storage Temperature . . . . . . . . . . . . . _55°C to +125°C
Operating Temperature. . . . . . . . . . . . . . .. O°C to +70°C
Lead Solder Temperature .. . . . . . . . . . .
260°C for lOs
(1.6mm below seJting plane)
Average Input Current-IF ..... _ . . . . . . . . . . 20mA [1]
Peak Input Current - IF . . . . . . . . . . . . . . . . . . . . 40mA
(50% duty cycle, 1 ms pulse width)
Peak Transient Input Current - IF . . . . . . . . . . . . . . 1.0A
(';;; 1J.(s pulse width, 300 pps)
Reverse Input Voltage - VR . . . . . . . . . . . . . . . . . . . 5V
Input Power Dissipation . . . . . . . . . . . . _ . . .. 35mW [2]
Output Current - 10 (Pin 6) . . . . . . . . . . . . . . 60mA [3]
Emitter-Base Reverse Voltage (Pin 5-7) . . . . . . . . . . . 0.5V
Supply and Output Voltage - Vee (Pin 8-5), Vo (pin 6-5)
5082-4370 . . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 7V
5082-4371 . . . . . . . . . . . . . . . . . . . . . . . . -0.5 to 18V
Output Power Dissipation . . . . . . . . . . . . . . . . 100mW [4]
See notes, following page.

184

Electrical specifications
OVER RECOMMENDED TEMPERATURE (TA= QOC to 70°C), UNLESS OTHERWISE SPECIFIED
Parameter

Current Transfer Ratio

Sym.
CTR*

Device
SN139
SN138

Logic Low
Output Voltage

VOL

Min.

Typ.""

400
500
300

800
900
600

Max.

%
0-

SN138

0.1
0.1
0.2
0.1

0.4
004
004
0.4

6N139
6N138

0.05
0.1

100
250

SN139

Units

'"
V
V

Test Conditions

Fig.

Note

IF - 0.5mA, Vo ~ OAV, VCC - 4.5V
IF ~ l.SmA. Vo = 0.4V, VCC=4.5V
IF - I.SmA, Vo - OAV, VCC -4.5V

3

5,6

IF = I.SmA, 10 - S.4mA, VCC=4.5V
IF = 5mA, 10 = 15mA, VCC = 4.5V
IF = 12mA, 10 = 24mA, VCC ~ 4.5V
IF ~ l.SmA, 10 - 4.8mA, VCC - 4.5V

1,2

S

/lA
/JA

IF ~ OmA, Va = VCC = 18V
IF -OmA, VO= VCC= 7V

S

0.2

mA

IF = l.SmA, Va = Open, VCC = 5V

6

ICCH

10

nA

IF = OmA, Va = Open, VCC = 5V

6

Input Forward Voltage

VF'

1.4

V

IF = I.SmA, TA = 25°C

Input Reverse
Breakdown Voltage

BVR*

Logic High
Output Current

10H*

Logic Low
SupplV Current

ICCL

Logic High
Supply Current

Temperature Coefficient
of Forward Voltage
Input Capacitance

5

AVF

AlA
CIN

1.7

IR = 10/lA, TA=25°C

V
-1.8

mvtC

60

pF

1=1 MHz, VF = 0

/JA

45% Relative Humidity, TA = 25° C
t = 5 s, VI_O = 3000Vdc

7

VI_O = 500Vdc

7

f=lMHz

7

Input - Output
Insulation Leakage

1.0

11·0*

Current
Resistance

4

(J nput-Outpull

RI-O

10"

n

Capacitance
(I nput-Output)

CI-O

0.6

pF

IF = 1.6mA

• ·AII typicals at TA = 25°C and VCC = 5V, unless otherwise noted.

switching Specifications
AT TA= 25°C
Parameter

Sym.

Propagation Delay Time
To Logic Low at Output tPHL*

Device
6N139
6N138

Propagation Delay Time
To Logic High at Output

tPLH*

6N139
6N138

Min.

Typ.

Max.

5
0.2
1

25
1
10

5
1
4

60
7
35

Units
/lS
/JS
/lS
/lS

Fig.

Note

IF - 0.5mA, RL = 4.7kn
IF = 12mA, RL = 270n
IF= I.SmA, RL 2.2kn

9

6,8

IF - 0.5mA, RL - 4.7kn
IF = 12mA, RL = 270n
IF - 1.6mA. RL - 2.2kn

9

6.8

Test Conditions

Common Mode Transient
Immunity at Logic High CMH
Level Output

500

V//Js

IF = OmA. R L = 2.2kn. RCC = 0
IVcml= 10Vp _p

10

9.10

Common Mode Transient
Immunity at Logic Low CML
Level Output

-500

V//Js

IF = I.SmA. R L = 2.2kn, RCC = 0
Ivcml= 10Vp -p

10

9.10

NOTES:
1. Derate linearlv above 50°C free-air temperature at a rate of 0.4mArC.
2_ Derate linearly above 50°C free-air temperature at a rate of O. 7mWf' C.
3. Derate linearly above 25°C free-air temperature at a rate of 0.7mAf'C.
4. Derate linearly above 25°C free-air temperature at a rate of 2.0mWf'C.
5. DC CURRENT TRANSFER RATIO is defined as the ratio of output collector current. 10. to the forward LED input current. IF. times 100%.
6. Pi n 7 Open.
7. Device considered a two-terminal device: Pins I, 2. 3, and 4 shorted together and Pins 5. 6, 7. and 8 shorted together.
8_ Use of a resistor between pin 5 and 7 will decrease gain and delay time. See Application Note 951-1 for more details.
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVcm/dt on the leading edge of the common mode
pulse, Vem. to assure that the output will remain in a Logic High state (j.e.• Vo > 2.0V). Common mode transient immunity in Logic Low level
is the maximum tolerable (negative) dVcm/dt on the trailing edge of the common mode pulse signal, Vem ' to assure that the output will remain
in ~ Logic Low state (j.e., Va < 0.8V).
10. In applications where dVldt may exceed 50,OOOV/IIS (such as static discharge) a series resistor. RCC. should be included to protect
the detector IC from destructively high surge currents. The recommended value is RCC '"
IV
kil.
0.15 IF (mA)
*JEDEC Registered Data.

185

50

5o,---------------~----------------_r----_,

Vee >:!5V
TA ;;:.2S"C

..
I

"'"'u=>

25

....

~

1.5mA

=>

0
I

~

3.6mA
3.0mA

~
~

2.SmA
2.0mA

y

.9

15mA

J;

O.SmA

--

If~5.0rnA
4.$fnA
4J)mA

E

....
1li

'LOmA

D.GmA

Vo - OUTPUT VOLTAGE - V

Vo - OUTPUT VOLTAGE - V

Figure 1. 6N139 DC Transfer Characteristics.

Figure 2. 6N138 DC Transfer Characteristics.

100

?f. 1000
I

LJ

I
I
I

10

o

<[

~

1/ .£1/

E
I

....
1li

"' 800

~
::i 600 r----/,f/-

"'"'=>
<.>
o
"'

"'........

IF

1. 0

i~

1li"' 400 f--++.f---- 7 ¥

"'=>
u
I

I

"'t;

1

1_0

10

IF - FORWARD CURRENT - rnA

.0 1

1.1

Figure 3. Current Transfer Ratio vs. Forward Current.

-

r---

1/

/

1.2

1.3

1.4

1.5

1.6

1.7

1.8

\If - FORWARD VOLTAGE - V

Figure 4. Input Diode Forward Current vs.
Forward Voltage.

1 0 0 . , - - - - - - , - - - - - - - - , - -_ _ _ _, - _ - ,

100.,---------,------,..-------,..---,
~

10. f-------t--_·-------cJ.o""--

~

"'=>

vcc=5V

u

Vo'O.4V

....

10.

I

....
1li
"' 1.01-------_·_--+---.,,.----+-

....
1li
"'

1.01------t-----:1."

"'u=>
....

=>

::l

5

o

,90.010

.9 0.010 f-------t'__/;~

i=

~

0.10

I

I

0.10

1.0

0.0~,0':-,0::---L-'CL..::-':-::------::':-------=----..J

10.

IF - INPUT DIODE FORWARD CURRENT - rnA

Figure 5.

IF - INPUT DIODE FORWARD CURRENT - rnA

Figure 6. 6N138 Output Current vs. Input Diode
Forward Current.

6N139 Output Current vs. Input Diode
Forward Current.

186

R)2.2kil

'OO.f__-------+-------~f__---_l

IF""1.6mA

r-l/f"50,us

!t

(SEE FIG. 9 FOR TEST CIRCUITI

I

S
w
c
z

o

~

~o

if
I

".........

~

'"

V

..... ?

".........

~
"I

w

,,;

;::

'o.f__----~"--.".'+---·-----f__---_l

Isr 9
FIG.

'PHL

'0

20

30

IF ADJUSTED FOR VOL' 2V

40

60

50

70

,.OO':.,--"--'--'--'-LL"":,':.O:--'---'-...L..LLL",,:,'::O.--'---"-'

80

TA -TEMPERATURE-"C

RL - LOAD RESISTANCE - kil

Figure 7. Propagation Delay vs. Temperature.

':~

Figure B. Non Saturated Rise and Fall Times vs. Load
Resistance.

HP 8007
PULSe

I

GEN.

I
Vo

FOR TEST CIRCUIT)

5V

I

Zo-50il

I--~----o +5V

tr"'5ru

(SATURATED
RESPONSE)

I---+--~--o Vo

1/f< loop.s
IF MONITOR
5V

10%

"
Figure 9. Switching Test Circuit.*

'.~1

VeM

Rce··
1-'VItv--- 2.0V). Common mode transient i!TImunity in Logic Low
level is the maximum tolerable inegative} dVCM dt on the trailing edge
of the common mode pulse signal, VCM, to assure that the output will
remain in a Logic Low state (Le., Vo < 0.8V).
11. In applications where dV!dt may exceed 50,000 V/p.s (such as a static
discharge) a series resistor, Ree, should be included to protect the
detector Ie from destructively high surge currents. The recommended
"" _ _'_V__ kn.
value is R
ec 0.3' F (mAl

r

189

Absolute Maximum Ratings
Input Power Dissipation
(each channel) . . . . . . . . . . . . . . . . . . .. 35 mW [2)
Output Current -- 10
(each channel) . . . . . . . • . . . . . .• . . . •. 60 rnA [3)
Supply and OutputVoltage-- Vee (Pin 8-5), Vo (Pin
7,6-5)[4)
HCPL-2730 ..............•.......•• -0.5 to 7V
HCPL-2731 •..............••...... -0.5to 18V
Output Power Dissipation
(each channel) . . . • . . • . • . . • . . . . . .. 100 mW[5)

Storage Temperature .......... -55°C to +125°C
Operating Temperature ......... -40° C to +85° C
LeadSolderTemperature ....•.. 260°Cfor10sec
C1.6mm below seating plane)
Average Input Current -- IF
(each channel) ..•.....•............ 20mA I1 )
Peak Input Current -- IF
(each channel) . . . • . . . • . . . • . . . . . . . . . .. 40 rnA
(50% duty cycle, 1 ms pulse width)
Reverse Input Voltage -- VR
(each channel) ..........•............... 5V

..6

1I

>=

~

i

~a:

1400

1I

12ool---+l'7"""'I''Io.:>-'''t7.

a:

a:

::0

~

1000

a:

~ 8OO1--'~~~~~~-+---~

u

~

ffi

a:

o

600I--flfir~-+--;~~+--~

B

I
1}

::0

u

~

o
I

.9

I

~
1.0
Vo -OUTPUTVOLTAGE-V

3.0

10

Figure 1. DC Transfer Characteristics.

100

30

IF - INPUT DIODE FORWARD CURRENT - mA

IF - FORWARD CU.RRENT - mA

Figure 2. Current Transfer Ratio vs.
Forward Current.

Figure 3. Output Current vs. Input
Diode Forward Current.

100

T.!25·C
1I

,.
I

10

~
a:

ali!

iit
I

1.0

/

1

O. 1
1.1

/

1.2

1.3

I

H"I'V1730
HCPL-2131

I ~-

:--

VF

1.4

1.5

1.6

1.7

1.8

VF - FORWARD VOLTAGE - V

Figure 4. Input Diode Forward Current
vs. Forward Voltage.

100

IF - INPUT DIODE FORWARD CURRENT - mA

Figure 5. Supply Current Per Channel
vs. Input Diode Forward Current.

190

T....; INPUT PULSE PERIOD - ms

Figure 6. Propagation Delay To Logic
Low vs. Pulse Period.

35

,,
>

~o

30

25

"o

0

~
~,

15

~

0

HCPl'2 31!1 f "'D.GmA,A L "'4.7kn~
- - HCPl-2730(lF '" 1.6 mA, 1\ "2.2 kSH

V

Vee ~ 5V

---'-

;'He

10

00

10

20

40

.........

't."LH

--

--

50

/'

.,..- ../

."

Vee .. 5V
60

j... ... ......

50

60

1=-

tP~H

RL '"

2~2 lin
10

Figure 8. Propagation Delay vs. Input
Diode Forward Current.

HPB007
PULSE

I

---J

r,

IF -INPUT DIODE FORWARD CURRENT - mA

___ --.J.------

---,

o

¥!----5V ===Vo

HCPL·2730
HCPL·2731

hr---Q+5V

GEN.
ZO '" son
t, '" 5r"

---Voe

',---

"HL

I

0

70

Figure 7. Propagation Delay vs.
Temperature.

vo--- ~ 1.5V

~~: Z.kkn OR 4.11\n

o \

TA - TEMPERATURE _·C

"

HCPL·2731

tpW RL '" t..7kn
0

40

HCPL·2730

15'C

30

;'He

30

TA

IF MONITOR

1.5V
-- -

VOL
t pLH -

Figure 9, Switching Test Circuit.

HCPL·2730
HCPL·27Jt

+5V

If

~-------~~~--------5V
SWITCH AT A:

IF'" OmA

VO-----------~VOl
SWITCH AT B:

IF '" 1.6mA
HP1900A

"See Note 11.

PULSE GEN.

Figure 10. Test Circuit for Transient immunity and Typical Waveforms.

191

HEWLETT

II

PACKARD

COMPONENTS

LOW INPUT CURRENT,
HIGH GAIN
OPTOCOUPLER

4N45
4N46

TECHNICAL DATA

APRIL 1978

t
~':" ~r 'ii-:-':===g-~~tfi

~~~;1

+ ',-_
ANODE~'
~-,oYo6
V,
_
CATHODE;
aND

~

•

~~ "0~

so TYP•

YXX Rl

• Va

UL ~;;i.~=~5:::===:;;;:;;;:::::
RECOGNITION

Schematic

Features
• HIGH CURRENT TRANSFER RATIO 1000% TYPICAL
• LOW INPUT CURRENT REQUIREMENT 0.5mA
• 3000 Vdc INSULATION VOLTAGE
• PERFORMANCE GUARANTEED OVER O°C TO
70°C TEMPERATURE RANGE
• RECOGNIZED UNDER THE COMPONENT
PROGRAM OF UNDERWRITERS
LABORATORIES INC. (FILE NO. E55361)
• INTERNAL BASE-EMITTER RESISTOR
MINIMIZES OUTPUT LEAKAGE
• GAIN-BANDWIDTH ADJUSTMENT PIN
• HIGH COMMON MODE REJECTION

Description
The 4N45/46 optocouplers contain a GaAsP light emitting
diode optically coupled to a high gain photodetector IC.
The excellent performance over temperature results from
the inclusion of an integrated emitter-base bypass resistor
which shunts photodiode and first stage leakage currents
to ground. External access to the second stage base
provides better noise rejection than a conventional
photodarlington detector. An external resistor or capacitor at the base can be added to makea gain-bandwidth or
input current threshold adjustment. The base lead can
also be used for feedback.
The high current transfer ratio at very low input currents
permits circuit designs in which adequate margin can be
allowed for the effects of CTR degradation over time.
The 4N46 has a 350% minimum CTR at an input current of
only 0.5mA making it ideal for use in low input current
applications such as MOS, CMOS and low power logic
interfacing. Compatibility with high voltage CMOS logic
systems is assured by the 20V minimum breakdown
voltage of the output transistor and by the guaranteed
maximum output leakage (IOH) at 18V.
The 4N45 has a 250% minimum CTR at 1.0mA input
current and a 7V minimum breakdown voltage rating.

I I

4.70(.185)

------.~

I"

J

j.

..L

ANODE

MAX.

~.
1

6

V

.

•

CATHODE 2

\\

5

Va

4

GNO

0.51t.0201

ffif.OiiOi

2.68(.1051

1

3

'~~<.!!!!MIN'

2.16 (.085)

2.541.100)

0.65 (.026)

~(.09Q'
2.801.110)

OIMENSIONS IN MILLIMETERS AND UfoIClfES),

Outline Drawing*

Applications
•
•
•
•

Telephone Ring Detector
Digital Logic Ground Isolation
Low Input Current Line Receiver
Line Voltage Status Indicator
Dissipation
• Logic to Reed Relay Interface
• Level Shifting
• Interface Between Logic Families

Low Input Power

Absolute Maximum Ratings*
Storage Temperature ............... -55°Cto+125°C
Operating Temperature ........•.••. -40°C to +70°C
Lead Solder Temperature .............. 260° C for lOs.
(1.6mm below seating plane)
AveragelnputCurrent-IF .....•........... 20mA[1]
PeaklnputCurrent-IF ................•..... 40mA
(50% duty cycle, lms pulse width)
Peak Transient Input Current -IF .............•. 1.0A
(..;;1 ps pulse width, 300pps)
Reverse Input Voltage - VR ....................... 5V
Input Power Dissipation .................... 35mW[2]
Output Current -10 (Pin 5) ........•........ 60 mA[3]
Emitter-Base Reverse Voltage (Pins 4-6) .. . . . . . .. 0.5V
Output Voltage - Vo (Pin 5-4)
4N45 ................................... -0.5 to 7V
4N46 ............•............•.••..... -0.5t020V
Output PowerDissipation ................. 100mW[4]
See notes, following page

• JEDEC Registered Data.

192

Electrical Specifications
OVER RECOMMENDED TEMPERATURE (T A = O°C TO 70°C), UNLESS OTHERWISE SPECIFIED
Parameter

Current Transfer Ratio

Sym.
CTR*

Device

Min.

Typ.··

4N46

350
500
200

1500
1500
600

4N45

250

1200
500

200

Logic High Output
Current

Input Forward Voltage
Temperature Coefficient
of Forward Voltage

1.0
1.2

V

4N46

.001

100

p.A

IF =OmA, Va

4N45

.001

250

p.A

IF

1.4

1.7

V

IF = 1.0mA, TA: 2S C

-l.S

--

V

mVfC
V

5

pF

Input Capacitance

CIN

input-Output Insulation
Leakage Current

11-0'

Resistance (lnput...()utput)

RI_O

1012

f!

CI-O

0.6

pF

Capacitance
(Input-Output)

60
1.0

MA

Fig.

Note

4

5,6

2

6

IF: 1.0mA, Vo : 1.0V
IF = lOmA, Vo = 1.2V

.90
.95

VF*

BVR*

%

4N45

lIVF
lITA

Input Reverse Breakdown
Voltage

%

Test Conditions
IF: 0.5mA, Vo : 1.0V
IF = 1.0mA, Vo : 1.0V
IF: 10mA, Vo = 1.2V

1.0
1.0
1.2

VOL

IOH'

Units

.90
.92
.95

4N46
Logic Low Output
Voltage

Max.

IF = 0.5mA, IOL = 1.75mA
IF = 1.OmA, IOL = 5.0mA
IF = lOrnA, IOL = 20mA
IF = 1.0mA, IOL = 2.5mA
IF = lOrnA, IOL = 20mA

= lSV

6

= OmA, Vo : 5V
Q

1

IF = 1.0mA
IR = 101'A, TA = 2SoC

f

= 1 MHz, VF

=0

7

45% Relative Humidity, TA=25°C
t = 5 s, VI...() = 3000VDC
V,_O = 500VDC

7

f - lMHz

7

Switching Specifications
AT TA = 25°C
Parameter

Propagation Delay Time To
Logic Low at Output
Propagation Delay Time To
Logic High at Output

Symbol

Min.

Typ.·'

tPHL

80

tpHL'

5

Max.

50

Units

Test Conditions

I'S

IF

= 1.0mA, RL = 10k!1.

p.s

IF

= 10mA,RL = 220f!

1'5

IF = 1.0mA, RL = 10kf!

p.s

IF = lOrnA, RL = 220!1.

Fig.

Note

8

6,S

B

6,B

tpLH

1500

tPLH*

150

Common Mode Transient
Immunity at Logic High
Level Output

CMH

500

VII's

IF: OmA, RL =10kfl
IVcml: 10V p _p

9

9

Common Mode Transient
Immunity at Logic Low
Level OUlput

CML

-500

VII's

IF: 1.OrnA, RL = 10kf!
IVeml = 10V p _p

9

9

500·

'JEDEC Registered Dala.
"AII typicals at TA = 25°C, unless otherwise noted.
NOTES:
1. Derate linearly above 50° C free-air temperature al a rale of 0.4mAf C.
2. Derate linearly above 50° C free-air temperature at a rate of 0.7mWfC.
3. Derate linearly above 25°C free-air temperature at a rate of O.SmAfC.
4. Derate lirearly above 25° C free-air temperature at a rate of 1.5mWf C.
5. DC CURR ENT TRANSFER RATIO is defined as the ratio of OUlput collector current, 10, to the forward LED inpul current, IF, times
100%.
6. Pin 6 Open.
7. Device considered a two-terminal device: Pins 1, 2, 3 shorted together and Pins 4, 5, and 6 shorted together.
8. Use of a resistor between pin 4 and 6 will decrease gain and delay time. (See Figures 10 and 12).
9. Common mode transient immunity in Logic High level is the maximum tolerable (positive) dV cmldt on the leading edge of the common
mode pulse, Vcm, to assure that Ihe output will remain in a Logic High slate O.e., Va > 2.5V). Common mode transient immunily in
Logic Low level is the maximum tolerable (negative) dVcm/dt on Ihe trailing edge of the common mode pulse signal, Vcm , to assure
that the output will remain in a Logic Low state O.e., Vo < 2.5V).

193

100

1,

~
I

10

~
0:

!Ii
u
Ii!

i,
.!!-

1.0

E

'~
I.01
1.1

/
/

1.2

I

II

100

,
1,
~0:

5

1.5

,..,-

,

0

S

1.6

20

o
o

1.7

1.0

Figure 1, Input Diode Forward Current vs,
Forward Voltage.

...~

1.6

~

.

~

0:
I-

~0:
0:

:>

1.4

10,000

TA.26°C

I

~

1.0

c
z
o

0.'

O.O~'':I--'-"-J...l..l.u:',.0:-.L...!...w~10~.0:---''-'-..u..'':,~00.0

5.0

4.0

,..
,
:::;
0:

100

\

',.....

1.0

...

~

_tplH
_ _ tPHL

.-'I

~-

c

z
o

100

I

..... -.1.

r-----r--....

TA = 25"C

~,

10

:,

~~

15

20

I

-50

-25

Figura 5. Propagation Dalay vs. Forward
Current.

..

Figure 6. Propagation Delay vs.
Temparature.

0----11"---I

'PHLj~

---VOL

'F-----,""1--o

!

~

"~".I--'-J..l..i.lJ.lJl'.O:-'...lJ.-'":I':-O..J....c.:..l1,"!oo::-...lJ.Jl,!'.'O·OO

I

5V ___ Vo

2.6V

-~P:H....j

RL - LOAD RESISTOR - kG

VOL

Figure 7. Propagation Dalay vs Load
Raslstor.

VcM

10V--~[~

ov

1~

-I

t,.

Figure 8. Switching Test Circuit

~

,•. ,,"8n.

't~~t':::::'9O%-

Vo

Va

------~~~~-----------5V

SWITCH AT A: IF'" OmA

~VOL

Vo - - - - - - - - - - -...

HP1900A

SWITCH AT B: 'F • 1.0 mA

PULSE GEN.

Figure 9. Test Circuit'for Transient Immunity and Typical Waveforms.

194

mA

fA "25"C

50

'F

Va---~~2.5V

yo

-- --.1.

TA - TEMPERATURE _ °C

IF - FORWARD CURRENT - rnA

Figure 4. Current Transfer Ratio vs.
Input Current.

-l~r I,

/ / R,· 220n, IF "1,0mA

E_ -- 1-"--

1.0

RL

-- ~1""-J~-J

~ E-

10

IF - FORWARD CURRENT - mA

-

,

r:> AL -2200
~\\ <"
...
:::

Z

50 100

10,000

, 1000

10

0

0:

Current.

V-RL!lOkQ

"

20

IF - FORWARD CURRENT - rnA

Figura 3. Output Currant vs. Input

1000

I

u

iiiN

10

3.0

E _-'PLH

~

1.2

5

2.0

---'j"'

\ - - - - ± - - - CTA: II I, '" 1,QmA

2

NORMALIZED TO,
IF·,.omA

TA '" 25~C

Characteristics.

NORMALIZEO TO;

1.0

VO"'T.OV

O.2mA

Figure 2. Typical DC Transfer

vO"'.ov

t;

\.J O.5J.. - I-- -

Va - OUTPUT VOLTAGE - V

VF - FORWARD VOLTAGE - V

0:

..... - -- -

~-

40

,c

TA

1.4

,
1/ -:;. ,

:>

!;

:.}
- -

--

--

~ ..~.. _I- =
-"'!i;r
... a~,.._ -

"".'
t

U

~

•.J.
- U;;.t
~;f'"

I

60

0:

I l..

1.3

-T~'~'C

80

76

100

0

2.0

a:

1.•

Vo '" 1,OV
NORMALIZED TO:

1.•

eTR@IF" 1.0 rnA, AX ,"""

~

~
'"...a:"
...
z

15a:

---F--

1.4
1.2

/

'

1.0

Rx"'''''

/Rx

~

,.
I

~
c

1~-

z

'

47kn
--,-----

a

to

~

a:

"0~

::>

"
~

Va

it

.

::;

I

"a::;
a

z

1.00~.1:-'-.LU~1.'::-0.....LLLl~10;--'...l.J.J.lJ!ll1::00:-'-..LLLl,~000

I

...a:
"

Figure 10. External Base
Resistor, RX

100
IF - FORWARD CURRENT - mA

Rx - EXTERNAL RESISTOR - kn

Figure 11. Effect of RX On
Current Transfer Ratio

Figure 12. Effect of R X On
Propagation Delay

Applications
4N46

RX (kn)

Vee

75 k,n
tPHlll-Is)

tPLH {/.u}

5

320
200
140
80
45

~

100
41
20
10

5
5
6
6

TELEPHONE{

lN914

LINE

0-01--~-I

Va

O.lIlF

NOTE: AN INTEGRATOR MAY BE REQUIRED AT THE OUTPUT TO
ELIMINATE DIALING PULSES AND LINE TRANSIENTS.
·SCHMIDT TRIGGER RECOMMENDED

BECAUSE OF LONG t" tf.

TTL Interface

Telephone Ring Detector

V

j F (>> 1.0mA-4N45
I

4N46

Vee

V (Vdc or Vrmt)

ADD FOR

I

Va

AC INPUT

Rs

24
4"

47kn
100kfl
220kn

230

470kO

11.

0.5 rnA - 4N46)
Vee

(~~ ~~~~ - 4N46)

V_IF (mWl
11
22
62
113

Line Voltage Monitor

CMOS Interface
+VCC2

+VCC 1 0 - - - -........---,

CHARACTERISTICS
RIN"" 30Mn, ROUT"" 60n
VIN(MAX.)" Vee, -1V. LINEARITY BETTER THAN 6%

f---Ht--<>VaUT

DESIGN COMMENTS

«<

R1 _ NOT CRITICAL
VIN (MAX,) - (- VCC 1) -VBE)hFE OJ
IF (MAx')
R2 - NOT CRITICAL (OMIT IF 0.2 TO O.3V OFFSET IS TOLERABLE)
VIN (MAX.)

R4>

+ VeE

1 rnA
VIN (MAX.)

Rs>

2.5rnA

R,
6.ak
NOTE: ADJUST AJ SO VOUT '" VIN AT VIN = VIN (MAX,)

2

-vee1
01.02 - 2N3904
Q3 - 2N3906

Analog Signal Isolation

195

HEWLETTifi PACKARD
COMPONENTS

DUAL CHANNEL
HERMETICALLY
SEALED OPTICALLY
COUPLED ISOLATOR

6N134
(5082 -4365)
6Nl34 TXV (TX - 4365)
6N134 TXVB (TXB - 4366)
TECHNICAL DATA APRIL 1978

+~

OUTLINE DRAWING*
DATECODE~

V~'J~

r

TYPE {'. V. VB 1

t

hp XXX yy

8.13 (.3201

19

T

6N134

!
PIN l!OENTIFIER

NOTE:
A .01 TO O.lj.!F BYPASS CAPACITOR MUST BE
CONNECTED BETWEEN PINS 15 AND 10.

ViR1iRt1n .

• HERMETICALLY SEALED
• HIGH SPEED
• PERFORMANCE GUARANTEED OVER -55°C TO
+125°C AMBIENT TEMPERATURE RANGE
• STANDARD HIGH RELIABILITY SCREENED
PARTS AVAILABLE
• TTL COMPATIBLE INPUT AND OUTPUT
• HIGH COMMON MODE REJECTION
• DUAL-IN-LINE PACKAGE
• 1500Vdc INSULATION VOLTAGE
• EIA REGISTRATION
• HIGH RADIATION IMMUNITY

. . . . 1I' ;r-I

2.2' W&QI 0.511.020{
2.79 (.110)

MAX,

.=rr

_11_ -

11
GND

10

M1(:I501
MIN.
DIMENSIONS IN MILLiMETRES AND {INCHES!.

Recommended Operating
Conditions
TABLE I
Sym.

Min.

Max.

Units

IFL

0

250

/lA

IFH

12.5"

20

mA

VCC

4.5

5.5

V

-55

125

lnput Current, Low Level
Each Channel

Applications

Input Current, High Level
Each Channel

Logic Ground Isolation
Line Receiver
Computer - Peripheral Interface
Vehicle Command/Control Isolation
High Reliability Systems
System Test Equipment Isolation

Supply Voltage
Fan Out (TTL Load)
Each Channel
Operating Temperature

N

TA

6

°c

Absolute Maximum Ratings*

Description
The 6N134 consists of a pair of inverting optically coupled
gates, each with a light emitting diode and a unique high gain
integrated photon detector in a hermetically sealed ceramic
package. The output of the detector is an open collector
Schottky clamped transistor.
This unique dual isolator design provides maximum DC and
AC circuit isolation between each input and output while
achieving TTL circuit compatibility. The isolator operational
parameters are guaranteed from -55°C to +125°C, such that a
minimum input current of 10 mA in each channel will sink a
six gate fanout (10 mAl at the output with 4.5 to 5.5 V VCC
applied to the detector. This isolation and coupling is achieved
,with a typical propagation delay of 55 nsec.
• JEDEC Registered Data.

,,~,-

-.£MIN

Features

•
•
•
•
•
•

_I

20.00 l1.W
4.32\.1701
20.83(.a20'--~Mt X.

\'

L-_ _ _+--4-_ _'O'O GND

196

(No derating required up to 125°C)
Storage Temperature ................. -65°C to +150°C
Operating Temperature ............... -55°C to +125°C
Lead Solder Temperature. . . . . . . . . . . . . . .. 260°C for 10s
(1.6mm below seating plane)
Peak Forward Input
Current (each channel) ......• 40 mA (.;;; 1 ms Duration)
Average Input Forward Current (each channel) ..... 20 mA
Input Power Dissipation (each channel) ........... 35 mW
Reverse Input Voltage (each channel) . . . . . . . . . . . . . . .. 5V
Supply Voltage - VCC ........................... 7V
Output Current - 10 (each channel) . . . . . . . . . . . . .. 25 mA
Output Power Dissipation (each channel) ........ " 40 mW
Output Voltage - Va (each channel) . . . . . . . . . . . . . . . .. 7V
Total Power Dissipation (both channels) ......... 350 mW
·'12.5mA condition permits at least 20% CTR degradation guard band.
Initial switching threshold is lOrnA or less.

TABLE II

Electrical Characteristics
OVER RECOMMENDED TEMPERATURE (TA
Parameter

Symbol

High Level Output Current

= -55°C TO +125°C)

UNLESS OTHERWISE NOTED

Typ.**

Max.

Units

IOH *

5

250

pA

Low Level Output Voltage

VOL *

0.5

0.6

V

High Level Supply Current

ICCH *

18

28

rnA

Low Level Supply Current

ICCL *

26

36

rnA

VCC - 5.5V, IF = 20mA
(Both Channels)

1.5

1.75

Input Forward Voltage

VF*

Input Reverse Breakdown

BVR *

Min.

5

Test Conditions
Vcc = 5.5V, Vo
IF = 250pA

Figure

= 5.5V,

Vcc = 5.5V, IF = lOrnA
10L (Sinking) = lOrnA
Vcc = 5.5V, IF = 0
(Both Channels)

Y

IF = 20mA, TA = 25°C

V

IR

= 10pA, TA = 25°C

VF

= 0, f =

Note
1

4

1

1

1

Voltage
I nput Capacitance
Input Diode Temperature
Coefficient

CIN

60

pF

AVF

-1.9

mV/oC

1

VI _ 0 - 1500Vdc,
Relative Humidity = 45%
TA = 25°e, t = 5s

2

11·0 *

Resistance (I nput-Output)

RI·O
CI-O

1012

on

1.7

pF

Input-Input Insulation
Leakage Current

II-I

0.5

nA

Resistance (Input-Input)

RI_I

1012

on

VI_I = 500V

Capacitance (Input-Input)

CI_I

0.55

pF

f= lMHz

1.0

J.lA

TABLE III

Switching Characteristics
Parameter

Symbol

Propagation Delay Time to

tpLH *

AT TA
Min.

= 25°C, Vee = 5V
Typ.

Max.

Units

65

90

ns

High Output Level
Propagation Delay Time to

VI-O = 500V
f=lMHz

3

tpHL *

90

55

ns

4

4
""All typical values are at VCC = 5V, TA = 25°C

EACH CHANNEL
Test Conditions
RL = 510on, CL = 15pF,
RL = 510on, eL

= 15pF

t r, tf

ns.

35

Note

2,3

5

2,3

6

6

7

6

8

RL = 510n, CL = 15pF
IF

= 13mA

CMH

100

VIps

VCM = 10V (peak).
Va (min.) = 2V,

CML

-400

Vips

Transient Immunity

VCM = 10V (peak).
Vo(max.) = 0.8V,

at Low Output Level

RL = 510n, IF = 10mA

Transient Immunity
at High Output Level
Common Mode

Figure

IF = 13mA

(10-90%)
Common Mode

3
'4

Relative Humidity = 45%,
VI_I=500V, t=55

IF = 13mA

Low Output Level
Output Rise-Fall Time

1

ATA

Input - Output
Insulation Leakage Current
Capacitance (Input-Output)

lMHz

IF = 20mA

RL = 510n, IF

= OmA

NOTES:
1. Each channel.
2. Measured between pins 1 through 8 shorted together and pins 9
through 16 shorted together.
3. Measured between pins 1 and 2 or 5 and 6 shorted together, and
pins 9 through 16 shorted 'together.
4. Measured between pins 1 and 2 shorted together, and pins 5 and 6
shorted together.
5.
!,hee t;~hrn:~~::9::i:'e ~~~~t i~u~:a:~~ ~r.':s~ ~~~n~·:~:'~~:~~i~;
edge of the output pulse.

• JEDEC Registered Data.

6. The tPIfL propagation delay is measured from the 6.5mA point on
the leading edge of the input pulse to the 1.5V point on the leading
edge of the output pulse.
7. CMH is the max. tolerable common mode transient to assure that
the output will remain In a high logic state (i.e., Vo > 2.0V).
S. CML is the max. tolerable common mode transient to assure that
the output will remain In a low logic state (i ••.. V0 < O.SV).

9. It is essential that a bypass capacitor (.01 to 0.1jLF, ceramic) be con-

197

nected from p.in 10 to pin 15. Total lead length between both ends of
the capacitor and the isolator pins should not exceed 20mm.

100

I

TA "'25°C

"....E

I

10

1Sa:
a:

tR" 5n$

.----:;

16
:----.. Vee

'-.:' t>

3

'1

"a:

c

IZ;:

2

"

0.1

~

J

i?

*

I

~
~ 0.01

I

1.2

1.4

1.6

1.8

Vo
.01

~F

f

BYPASS

eL*

~

10

9

CL is approximately 15 pF, which includes
probe and stray wiring capacitance.

or----

J-----\---

---

',~PUT
1.0

RL

11
GNO

B

....

0.001

I.

6
7

;:
a:

5V

15

:~~t>-::

MONITORING
NODE
47H

1.0

:0

GENERATOR
HP 80078
Zo"'50H

INPUT

I

h.

~

PULSE

IF"13mA

IF·6.SmA

I- ---I tPLH r---~VOH

2.0

------I

tPH L

~~TPUT

VF' INPUT FORWARD VOLTAGE - V

1 _ _ _ _ _ _ _ I _____ .

1 5V

- - - - - VOL

Figure 1. Input Diode Forward Characteristic

Figure 2. Test Circuit for tpHL and tPLH*

---, --.
---z ~~

'F_
100
TA'25"e

RC • 510111...RL '4l<(I . - - -

-- <
-K -- .-

~

>

~

c
z
c

.......' -

60

><: ........

i=

":;::"

40

-----

tpLH

""T-

g:

10

8

12

14

16

5

I

"~

•

>

3

~
50
I

R,

2

I

§

IF - PULSE INPUT CURRENT - rnA

0

'0

2

Figure 3. Propagation Delay, tpHL and tpLH
vs. Pulse Input Current, I FH

~

100

/

80

z

/

c

i=

"":;::

60

K"

0

g:

40

/.

'14:

k"

IF)

4"

/'

tPHl

V

I.

~

3

/

V

12

:~'ll>':: u:~
2

>

~
C

4
6
8
10
If - INPUT DIODE fORWARD CURRENT·· rnA

Figure 4. Input·Output Characteristics

y

120

TA"2S IJ £ : _

\' R\
\\ 51iiD
\\, ~/~~g
J/\

w

20

veel • 5V I
IF=13mA
Rl' 510(1

-::-

9

Vee" soy

>

tPHl

18

rw-----

8

0

6

Vo

.01 ilF

BYPASS

6

20

0

1I

RL

11

GNO

7

- -- - 8"""-

14

6

+5V

15

:~~t>-::

.....

0

~''''
.....

3

Vee" 5V

80

16
vee

tPl.H

.....

15

'4

.01 f.J.F
BYPASS

•

Va

11

GND

7

8

10

9
VeM

.rL
-::-

HP 1900A
PULSE GEN.

lOV - - - - VeM

20

:::.c

OV
0
-40

-20

0

20

40

60

·80

100

Va
TA - TEMPERATURE

"c
Va

Figure 5. Propagation Delay

• JEDEC Registered Data.

YS.

IF = 0

5V

120

Temperature

Va

(min.)

Va (max.)
.5V

1\

IF=10mA

Figure 6. Typical Common Mode Rejection Characteristics/Circuit

198

High Reliability Test Program
Hewlett Packard provides standard high reliability test programs, patterned after MIL-M-38510 in order to facilitate the
use of HP products in military programs_
HP offers two levels of high reliability testing:
• The TXV prefix identifies a part which has been preconditioned and screened per Table IV_
• The TXVB prefix identifies a part which has been preconditioned and screened per Table IV, and comes from a lot
which has been subjected to the Group B tests detailed in
Table V_

TABLE IV

Part Number System
Commercial
Product

With TX
Screening

With TX
Screening
Plus Group B

6N134
(5082-4365)

6NI34 TXV
(TX-4365)

6NI34TXVB
(TXB-4365)

TXV Preconditioning and Screening - 100%

Exa minatlon or Test
1.
Pre-Cap Visual Inspection
2.
Electrical Test: 10H, VOL, ICCH, ICCL, VF, BVR, 11-0
3.
High Temperature Storage
Temperature Cycling
4.
5.
Acceleration
Helium Leak Test
6.
Gross Leak Test
7.
8.
Electrical Test: VOL
Burn-In
9.
10.
11.
12.

Electrical Test: Same as Step 2
Evaluate Drift
Sample Electrical Test: 'OH, VOL, ICCH, ICCl

13.
14.

Sample Electrical Test: tPLH, tPHL
External Visual

MIL-STD-B83
Methods

Conditions

HP Procedure 72-4063,4
Per Table II, TA = 25° C
168 hrs. @ 150°C
_65° C to +150° C
20KG, VI
Test Condo A
Test Condo C
Per Table II, TA ~ 25°C
168 hrs., TA = 125"C,
VCC=5.5V, IF=13mA, 10=25mA

1008
1010
2001
1014
1014
1015

Max. LlVOL = ±20%
Per Table II, LTPD=7
TA = _55°C, +125°C
Per Table II, TA=25°C, LTPD=7
2009

TABLE V, GROUP B
MIL-STD-B83
Examination· or Test
Subgroup 1
Physical Dimensions
Subgroup 2
Solderability

Method

Condition

LTPD
15

2008

See Product Outline Drawing
20
Immersion within 2.5mm of body, 16

2003

terminations

Subgroup 3
Temperature Cycling
Thermal Shock
Hermetic Seal, Fine Leak
Hermetic Seal, Gross Leak
End Points: 10H, VOL, 'CCH, ICCL, VF,
BVR,II_O
Subgroup 4
Shock, non-operating
Constant Acceleration
End Points: Same as Subgroup 3
Subgroup 5
Terminal Strength .. tension

Subgroup 6
High Temperature Life
End Points: Same as Subgroup 3
Subgroup 7
Steady State Operating Life
End Points: Same as Subgroup 3

15
Test Condition
Test Condition
Test Condition
Test Condition

1010
lOll
1014
1014

C
A, 5 cycles
A
C,

Per Table II, TA = 25°C
15
2002
2001

1500 G, t = 0.5 ms, 5 blows in each orientation
XI, VI, V2
20KG, VI

2004

Test Condition A, 4.5N (1 Ib.l, 15s

1008

TA = 150°C

A= 7

1005

Vec = 5.5V, IF = 13mA, 10 = 25mA, TA = 125°C

A=7

15

199

HERMETICALLY SEALED,
HCPL _2710
FOUR CHANNEL,
(6Nl40)
LOW INPUT CURRENT TXVHCPL - 2710
OPTOCOUPLER TXVBHCPL - 2170

HEWLETTj PACKARD
COMPONENTS

TECHNICAL DATA APRIL 1978

::;* --

OAT ECODE'---,

I"

,TVPE -. V. VBI

t

hpXXX VV

~

8.13 (.320)

14

•.....---j---==--<:iVOI
2770

'i'

3D
-5

T·

I

~2

PIN 1 IDENTIFIER

~

13

~--+--+-"---oV02

I
I Mr· 2
mmtn~"1

~3

:? -

*--

,
~

2006 !2W
20:83(:8201---·

•

--LMIN

~ 12
~--+--+-"---oV03

_

! !

70 --~4

_I

8V~'

"

4.32(.170)

~ 11
•.....-----'-+-==---<:iV..

5

I ~!J!W

t-

4

0.51 (,020)
2.79(.1101
MAX.

_1'1_

DIMENSIONS IN MILLIMETERS
AND (INCHES).

10

~

6

~

11

7

' / GND

10

3.81 (.1501
MIN.

Outline Drawing

'--+---+---oGND
Schematic

Features

Description

• HERMETICALLY SEALED

The HCPL-2770 contains four GaAsP light emitting
diodes, each of which is optically coupled to a
corresponding integrated high gain photon detector. A
common pin for the photodiodes and first stage of each
detector IC (VCC) permits lower output saturation voltage
and higher speed operation than possible with conventional photodarlington type optocouplers. Also, the
separate Vcc pin can be strobed low as an output disable
or operated with supply voltages as low as 1.6V without
adversely affecting the parametric performance.

• HIGH DENSITY PACKAGING
• HIGH CURRENT TRANSFER RATIO: 500%
TYPICAL
• PERFORMANCE GUARANTEED OVER -55°C
TO 100°C AMBIENT TEMPERATURE RANGE
• STANDARD HIGH RELIABILITY SCREENED
PARTS AVAILABLE
• 1500 VDC INSULATION VOLTAGE

The outstanding high temperature performance of this
split Darlington type output amplifier results from the
inclusion of an integrated emitter-.base bypass resistor
which shunts photodiode and first stage leakage currents
to ground.

• LOW INPUT CURRENT REQUIREMENT: 0.5 mA
• LOW OUTPUT SATURATION VOLTAGE: 0.1V
TYPICAL
• LOW POWER CONSUMPTION

The high current transfer ratio at very low input currents
permits circuit designs in which adequate margin can be
allowed for the effects of CTR degradation over time.

• HIGH RADIATION IMMUNITY

Applications

The HCPL-2770 has a 300% minimum CTR at an input
current of only 0.5mA making it ideal for use in low input
current applications such as MOS, CMOS and low power
logic interfacing or RS-232C data transmission systems.
Compatibility with high voltage CMOS logic systems is
assured by the 18V Vcc and by the guaranteed maximum
output leakage (IOH) at 18V.

• Isolated Input Line Receiver
• System Test Equipment Isolation
• Digital Logic Ground Isolation
• Vehicle Command/Control Isolation
• EIA RS-232C Line Receiver
• Microprocessor System Interface

Important specifications such as CTR, leakage current,
supply current and output saturation voltage are
guaranteed over the -55 0 C to 1000 C temperature range to
allow trouble free system operation.

• Current Loop Receiver
• Level Shifting
• Process Control Input/Output Isolation
200

TABLE I

Absolute Maximum Ratings

Recommended Operating
Conditions
Symbol
Input Current, Low Level
(Each Channel)

IFL

Input Current, High Level
(Each Channel)

IFH
VCC

Supply Voltage

Max.

Units

2

p.A

0.5

5

mA

1.6

18

V

Min.

Storage Temperature ••..•.......•.. -65°Cto+150°C
Operating Temperature .•.........•. -55° C to +100° C
LeadSolderTernperature •.....•.•..... 260°Cfor10s.
(1.6rnrn below seating plane)
Peak Input Current (each channel,
~ 1 ms duration) ............................ 20 rnA
Average Input Current, IF (each channel) ..••... 10 rnA
Reverse Input Voltage, VR (each channel) .•....•.• 5V
Output Current, 10 (each channel) ..•.....•..•. 40 rnA
Output Voltage, Vo (each channel)
-0.5 to 20 Vll]
Supply Voltage, Vee .............•.••.. -0.5t020Vll]
Output Power Dissipation (each channel)
50 rnW12]

TABLE II

Electrical Characteristics T A = -55°C to 100°C, Unless Otherwise Specified
Parameter

Symbol

Min.

Typ.

CTR

300
300
200

250

p.A

Units

Max.

w
N

Logic High Output Current

10H

1000
750
400
.005

Logic Low Supply Current

ICCL

2

4

rnA

Logic High Supply Current

ICCH

.010

40

pA

Input Forward Voltage
Input Reverse Breakdown
Voltage
Temperature Coefficient of
01 Forward Voltage

VF
BVR

1.4

1.7

V
V

Current Transfer Ratio

Input Capacitance
Input·Output Insulation
Leakage Current
Resistance (Input-Output)
Capacita nce (I nput-Output)
Input· Input Insulation
Leakage Current
Resistance (Input-Input)

Capacitance (lnput·lnput)

%

%

5
-1.8

t'.VF

Test Conditions
IF=0.5mA, VO=O.4V, VCC=4.5V
IF=1.6mA, VO=O.4V, VCC=4.5V
IF=5mA, VO=O.4V, VCC=4.5V
IF - 21lA
VO=VCc=18V
IF1-IF2-IF3-IF4-1.6mA
VCC=18V
IF1- IF2- IF3- IF4-0
VCc=18V
IF-l.6mA, TA-25°C
IR=l OIlA, T A=25°C

Figure

Note

3

3,4
3,5

1

3

3

mVtC IF = 1.6mA

3

t1TA
pF

60

CIN

p.A

1.0

11·0
RI_O
CI_O
11.1

lOlL

RI_I

10 12

n

CI·I

1

pF

n
pF

1.5
0.5

nA

f-1MHz, VF - 0, TA 25'C
45% Relative Humidity,TA-25Q Cr
t = 5 s., VI.O = 1500 Vdc
VI.O -500 Vdc, TA = 25°C
1= 1 MHz, T A - 25°C
45% Relative Humidity, VI.I=500 Vdc,
TA=25°C, t=5 s.

3
6
3,7
3,7
8

VI.I = 500Vdc, TA = 25"C

8

1 = 1 MHz, T A = 25° C

8

TABLE III

Switching Characteristics
Parameter

Symbol

Propagation Delay Time
To Logic High At Output

tPLH

Propagation Delay Time
To Logic Low At Output

tpHL

Common Mode T ra nsient

CMH

Min.

500

TA

= 25°C,

VCC

= 5V

Typ.

Max.

Units

25
10
35

60
20
100

IlS

2

5

IlS
pS

1000

Immunity At Logic High
Level Output
Common Mode Transient
-500
-1000
CML
Immunity At Logic Low
Level Output
NOTES:
1. Pin 10 should be the most negative voltage at the detector side.
2. Output power is collector output power plus one fourth of total
supply power.
3. Each channel.
4. CURRENT TRANSFER RATIO is defined as the ratio of out·
put collector current, 10, to the forward LED input current, IF,
times 100%.
5. IF=2pA lor channel under test. For all other channels, IF=10mA.
6. Device considered a two-terminal device: Pins 1 through 8 are
shorted together and pins 9 through 16 are shorted together.
7. Measured between each input pair shorted together and all output pins.

Each Channel
Test Conditions
IF=0.5mA, RL=4.7kn
IF=5mA, RL =680n
IF=0.5mA, R L -4.7k!1

Figure

Note

8
8

8

p.s
V//ls

IF-SmA, RL =680n
IF=O, R L =1.5kn
IVCMI = 50V p _p

8
9

9,11

V/p.s

IF-l.6mA, R L -1.5k!1
IVCMI ~ 50V p •p

9

10,11

8. Measured between adjacent input pairs shorted together, i.e. be-

tween pins 1 and 2 shorted together and pins 3 and 4 shorted
together 1 etc.
9. CMH is the maximum tolerable common mode transient to assure
that the output will remain in a high logic state (i.e. Vo > 2.0V).
10. CML is the maximum tolerable common mode transient to assure
that the output will remain in a low logic state (i.e. Vo < 0.8VI.
11. In applications where dV/dt may exceed 50,000 V/p.s (such as
a static discharge) a series resistor, RCC, should be included to
protect the detector IC's from destructively high surge currents.
The recommended value is RCC '"
lV
k!1.
0.6 IF (mA)

201

...«9

'.5

a:
a:
w

NORMALJZEO TO;
eTR AT IF '" O.6mA.

!ri
«

TA '" 25~C

~

Vee'" 5V
'.0 f-.----I'l...~~+vo • Q.4V-_

......a:
fii

a:
a:

a
~

::;

«

"a:z
0

I

...a:

'.a

'.6

"

Figure 1. Input Diode Forward Current vs.
Forward Voltage.

IF - INPUT DIODE FORWARD CURRENT - rnA

Figure 2. Normalized DC Transfer
Characteristics.

Figure 3. Normalized Current Transfer
Ratio vs. Input Diode Forward
Current.
'20

~

I

110

~

~ '00
I

"
i3
g

4./-1'- " --

~

~

• __ ..

~

t~l I
Al

~

I

40

z
;::

30

,/'

0

i

20

IE
I

-

-<

'"
--p(j

I

'0

,

f'.

• SmA,

80

z

70

;::

60

":1:

50

0

«
0

40

I

30

IE

...

Figure 5. Propagation Delay to Logic Low
vs, Input Pulse Period.

O.SmA, RI- '" 4.7kSZ
1,6JtJA,Rl "'1..5k.n
R" • G801l

=<

"5V~

i

I

1

i

,--

f-.--- ,t,

"ut. .tpHL

:

20

,

~

'0

-40 -20

I i
I I

--t-L17
II"r -l/i .

1

c-J

-_.. -r- r-

a

V

,.t-J- .. I,

,I':E

LH

-

-:t.- - It::~-

20 40 60

ao

,........

100

TA - TEMPERATURE - aC

Figure 6. Propagation Delay vs.
Temperature

Vee'" 5V
T '" 2S'C

i

HP8007

PULSE
GEN.

IF

Zo '" 5On.,-=L--J=-

...v

f t =5ns

I

~-

V

0

...

1_

I"L~ . R~ • ,·.5k1l1 ,

«

":1:

I

=<

--IF

T - INPUT PULSE PERIOD - ms

--Ht"J A, ••.7k1}- -~

>

~0

i

~ sson TO ·Okn --

Rr '" sson

~
c

....... IF

Vee

90

>

--I,

0.01 OL.O"',LLWlOlli.,:--'--u'.illl'-.LL.llLLllL..J....L!.LUJJJ,
QO

IF - INPUT DIODE FORWARD CURRENT - rnA

50

O.!lmA, RL • 4,7""
'" ,'.SmA, f\. ., l,Skn

,w:~~~~
~

I

Figure 4. Normalized Supply Current vs.
Input Diode Forward Current,

I~

- - If'" SmA,

~
~

j

-:-'--~-l'---:----

/'

o
z
o

0.01"',:--'....L.LOLL.5='-.L...l....Li5='"=0-L..l..L1.1lliJ
.

'0

0.5

Vo -QUTPUTVOLTAGE-V

VF -FORWARDVOLTAGE-V

I"LH

Al .. 680n

! I

--IJ4=:5V

IF MONITOR

---Vo

1.5V

00

9

'0
---

IF - INPUT DIODE FORWARD CURRENT - rnA

VOL.

t pLH -

Figure 7. Propagation Delay vs. Input Diode
Forward Current.

Figure 8. Switching Test Circuit.

VCM

+'W~-o+5V

2.4- VF
R2>-~R ,.; VCC-VF-IFR2
1

Va - - - - " " " ' _
..- - - - - - - - - SV

IF + 'LEAK

r------,
I

~VaL

Va - - - - - - - - - - -...
SWITCH AT B: IF= 1.6mA

HP1900A

*See Note 11.

PULSE GEN.

Figure 9. Test Circuit for Transient Immunity and Typical Waveforms.

202

I

I

I

I

I

~6~,~io~~~~~Jg~t
-----:L
IS NOT USED.

:
_____
.J

Figure 10. Recommended drive circuitry
using TTL logic.

High Reliability Test Program
Hewlett Packard provides standard high reliability test
programs, patterned after MIL-M-38510 in order to
facilitate the use of HP products in military programs.
HP offers two levels of high reliability testing:
• The TXV prefix identifies a part which has been
preconditioned and screened per Table IV.
• The TXVB prefix identifies a part which has been
preconditioned and screened per Table IV, and comes
from a lot which has been subjected to the Group B
tests detailed in Table V.

Part Number System

Product

WithTXV
S... eening

WithTXV
Screening
Plus Group B

HCPL-2770

TXVHCPL-2770

TXVBHCPL-2770

Commercial

(6N140)

TABLE IV TXV Preconditioning and Screening - 100%
MIL·STD-883
Examination or Test

o ED Procedure

1.
2.
3.
4.
5.
6.
7.

Pre-Cap Visual Inspection
High Temperature Storage
Temperature Cycling
Acceleration
Helium Leak Test
Gross Leak Test
Electrical Test CTR, 10H, ICCL,

8.

ICCH, VF, BVR:
Burn·ln

1015

Electrica I Test: Same as step 7 and 11-0
Evaluate Drift
External Visual

2009

9.
10.
11.

Conditions

Methods
1008
1010
2001
1014
1014

72-4063, 72-4064
72 hrs. @ 150°C
_65°C to +150Q C
20KG,YI
Cond.A
Condo C
T A = 25° C, per Table II
VCC = 18V, IF = 5mA, 10 = lOrnA
t= 168hrs.@TA=100°C
TA = 25°C, per Table II
Max. llCTR = ±25%@ IF = 1.6mA

TABLE V, Group B
Examination or Test

MIL-STD-883
Condition

Method

LTPD

Subgroup 1
Physical Dimensions

2016

See Product Outline Drawing

15

Subgroup 2
Solderabi lity

2003

Immersion within 2.5mm of body,
16 terminations

20

1010
1011
1014
1014

Test Condition C
Test Condition A, 5 cycles
Test Condition A
Test Condition C

15

Subgroup 3
Temperature Cycling
Therma I Shock
Hermetic Seal, Fine Leak
Hermetic Seal, Gross Leak
End. Points:
CTR,IOH, ICCL, ICCH, VF, BVR
Subgroup 4
Shock, non-operating
Constant Acceleration
End Points:
Same as Subgroup 3
Subgroup 5
Terminal Strength, tension
Subgroup 6
High Temperature Life
End Points:
Same as Subgroup 3
Subgroup 7
Steady State Operating Life
End Points:
Same as Subgroup 3

Per Table II, TA = 25°C
2002

15

2001

1500 G, t = 0.5 ms, 5 blows in each orientation
X1, Y1, Y2
20KG, Y1

2004

Test Condition A, 4.5N (1 lb.), 150.

15

1008

TA = 150°C, non-operating

",,= 7

1005

VCC=18V,IF =5mA, 10 = 10mA,TA = 100c C

""=7

203

204

I)

Features

II

Advantages

G)

Benefits

Near IR emission

Visible

Facilitates alignment

Functions with most
silicon phototransistors
and photodiodes

Easy to use

Cost effective implementation

Plastic Package

Low cost

Cost effective implementation

HEMT 3300 uses isotropic Provides floodlight type
LED chip
beam

Well suited for applications
that require a large area to
be irradiated

HEMT 6000 uses surface
emitter LED chip

Provides bright spot
of light

Facilitates focusing light on
active area of photodetector

HEMT 6000 has offset
wirebond

Active area of the chip
is not masked or
shadowed

Facilitates use with fiber
optics

HEMT 6000 has reciprocal Can function as an
optical port
emitter or narrow band
detector

Single device performs two
functions

~In ~natadiades
•

F~atures

• Advantages

• Benefits

Offset wirebond

Can be used with fiber
optics

Fiber can be placed directly
over active area

All HP PIN photodiodes
have anti-reflective coating

Converts more incident
radiation (light) into
photocurrent

High Responsivity

Wide spectral response
(ultraviolet through IR)

A single device can cover
the light spectrum plus
UV and IR

Works with a variety of
sources

Low junction capacitance

Wide bandwidth

Can detect high speed pulses

ULTRA Linear

Permits operation over
10 decades

Eliminates the need for
equalization

205

670nm
HIGH RADIANT
INTENSITY
EMITTER

.~

.HEWLETTll PACKARD
COMPONENTS

HEMT-3300

,/

TECHNICAL DATA APRIL 1977

package Dimensions

Features
• HIGH EFFICIENCY

.

UNDIFFUSED.UNTINTED
(CLEAR) PLASTIC

• NONSATURATING OUTPUT
.• NARROW BEAM ANGLE

I' '1-

9.471.373}
7.95 (.313)

• VISIBLE FLUX AIDS ALIGNMENT
• BANDWIDTH: DC TO 3 MHz

11

• IC COMPATIBLE/LOW CURRENT
REQUIREMENT

26.67

---i1
0.891.035)
0.64 (.025)

~~

LIt

Description
The HEMT-3300 is a visible, near-IR, source using a
GaAsP on GaP LED chip optimized for maximum
quantum efficiency at 670 nm. The emitter's beam is
sufficiently narrow to minimize stray flux problems, yet
broad enough to simplify optical alignment. This product
is suitable for use in consumer and industrial applications
such as optical transducers and encoders, smoke
detectors, assembly line monitors, small parts counters,
paper tape readers and fi ber optic drivers.

-r

5.08,.200)
4.32 (.170)

0.641.0251
0.36 (.014)
NOTES:

1. ALL DIMENSIONS ARE IN

MILLIMETRES (INCHES).
2. SILVER·PLATED LEADS
SEe APPLICATION
BULLETIN 3.
a CHIP CENTERING WITHIN
THE PACKAGE IS

CONSISTENT WITH
FOOTNOTE 3.

OutlineT -1%

Electrical/Optical Characteristics at TA=25°C
Symbol

Description

Ie

Axial Radiant Intensity

Ke

Temperature Coefficient.
of Intensity

llv

Luminous Efficacy

Units

Test Conditions

SOO

p.W/sr

IF = 10 mA

-0.009

0C- 1

IF = 10 mA, Note 1

22

ImlW

Note 2

Min.

Typ.

200

Max.

Figure

3.4

\' ........

20%

Half Intensity Total Angle

22

deg.

Note 3, IF = 10 mA

6

APEAK

Peak Wavelength

670

nm

Measured at Peak

1

~ApEAK/~T

Spectral Shift Temperature
Coefficient

nmfC

Measured at Peak,
Note 4

tr

Output Rise Time
(10%-90%)

120

ns

IpEAK = 10 mA

tf

Output Fall Time
(90%-10%)

50

ns

IpEAK = 10 mA Pulse

Co

Capacitance

15

BVR

Reverse Breakdown Voltage

0.089

5.0

pF

VF = 0; f '" 1 MHz

V

IR = 100pA

V

IF=10mA

VF

Forward Voltage

~VF/~T

Temperature Coefficient
of VF

-2.2

mVfC

IF = 100p.A

ElJC

Thermal Resistance

160

°CIW

Junction to cathode
lead at seating plane.

1.9

.

2.5

.

2

Notes: 1. Ie (T) = Ie (25 °C)exp [Ke(T - 25"C)] 2. I v = Tlvle where I v IS on candela, Ie on watts/steradian and Tlv In lumen/watt.
3. 13)(, is the off-axis angle at which the radiant intensity is half the axial intensity. The deviation between the mechanical and optical axis is
typically within a conical half-angle of five degrees. 4. APEAK (T) = APEAK (25°C)

206

+ (aAPEAK!<1T) (T - 25°C).

Maximum Ratings at TA=25°C

TA '" 25~C

PULSED
101-"
100 H~

10

Power Dissipation .......................... 120 mW
(derate linearly from 50°C at 1.6 mW/°C)
Average Forward Current ..................... 30 mA
(derate linearly from 50°C at 0.4 mA/°C)
Peak Forward Current ................... See Figure 5
Operating and Storage
TemperatureRange ............... -55°Cto+100°C
Lead Soldering Temperature .......... 260° C for 5 sec.
(1.6 mm [0.063 inch] from body)

/

1

DC

/

0.1

0.0 1
.3

.5

2

3 45

10

20 30 50 80

IF - FORWARD CURRENT - rnA

Figure 3. Relative Radiant Intensity versus Forward Current.
1.2

1.0

I

-1- --t!·2+C

~

W

I

0.4

J

0.2

o

600

1\
T.

II

.%V
620

I" 'tO~C

I

640

680

0.9

>N
t=::i

0.8

:I;:
wa:

0.7

a:c

l\

;0

~

I

660

1.0

H:~
~fi1

f\:

~

1.1

""

,,-

\

>

~

>c
Z E
!!!o

I

0.6

1.2

U

I.J

0.8

~
~

1.3

I

~]

A

0;

1.4

! ..

700

0."
0.5

~

720

740

0.4

760

.1

"E

1 1-

50

>-

TA -

f5

~

"a:
C

";:a:
~

25~C

,

f5

,

a:>a:Z
COw
"a:
"a:
<(=>
w"

,

40

20

10

o1.6

~~

,

30

~"
00
0>-

i /
1/
I
/'

1.8

\g g
"

... ~

I

l

"."~
~

1
2.0

2

~

V

/1

3

~"
XC

/

I

-"

Figure 4. Relative Efficiency (Radiant Intensity per Unit
Current) versus Peak Current.
>-

I I

I

_0-

2.2

10203050100

IPEAK - PEAK CURRENT - rnA

Figure 1. Relative Intensity versus Wavelength.

60

2345

.2 .3 .5

;... - WAVELENGTH - nm

2.4

2.6

2.8

U

_0

1

' 5 ;;\"

~ \ l~
10

"-;!:

.

1

100

1000

10,000

tp - PULSE DURATION -JlS

VF -FORWARDVOlTAGE-V

Figure 2. Forward Current versus Forward Voltage.

Figure 5. Maximum Tolerable Peak Current versus Pulse
Duration. (Joe MAX as per MAX Ratingsl

e - OFF-AXIS ANGLE -

DEGREES (CONE HALF-ANGLE)

Figure 6. Far·Field Radiation Pattern.

207

HEWLETT

. PACKARD

COMPONENTS

700nm
HIGH INTENSITY
SUBMINIATURE
EMITTER

HEMT -6000

TECHNICAL DATA

APRIL 1977

Features
1'~,'~~r;i~-1

• HIGH RADIANT INTENSITY

111~~

AAIljlc::::Js=I~t1/.)TI~:~~

• NARROW BEAM ANGLE
• NONSATURATING OUTPUT

T

• BANDWIDTH: DC TO 5 MHz

~ I
l------..j ~ ::g;g:

ANODE

~:~~ t~l

• IC COMPATIBLE/LOW CURRENT
REQUIREMENT

'CATHODE

OIA.

MECHANICAL
AXIS

• VISIBLE FLUX AIDS ALIGNMENT

UNTlNTE~O

\

(CLEARI EPOXY
UNDIFFUSED.

\

J. .( lI
l

:H ~

+= ,

Description

I

-ffi"

.~

1.911.075) MAX.

27 !iOs5i
050)
140

jl:

.76(.0301MAK1:1

t

2.s~~~~}

\l
"U4 10311
[.049)

..i

i::
1
::
~::
~~

The HEMT-6000 uses a GaAsPchip designed for optimum
tradeoff between speed and quantum efficiency. This
optimization allows a flat modulation bandwidth of 5 MHz
without peaking, yet provides a radiant flux level
comparable to that of 900nm IREDs. The subminiature
package allows operation of multiple closely-spaced
channels, while the narrow beam angle minimizes
crosstalk. The nominal 700nm wavelength can offer
spectral performance advantages over 900nm I REDs, and
is sufficiently visible to aid optical alignment. Applications
include paper-tape readers, punch-card readers, bar code
scanners, optical encoders or transducers, interrupt
modules, safety interlocks, tape loop stabilizers and fiber
optic drivers.

1-

,,~~~R

2921116)

See NOTE 3

NOTES;

1. All OIMENSIONS ARE IN M!LlIMElAES (INCHES),

4. EPOXV ENCAPSULANT HASA REFflACTIVE INDEX OF 1.53.

Maximum Ratings at TA = 25°C

CHIP CENTERING WITHIN THE PACKAGE IS CONSISTENT
WITH FOOTNOTE:t

1.2 "'T"""""'-Lr-r-r-'--"-,..,..~

Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 mW
(derate linearly from 70°C @ 1.0mW;oC)

1.0

-t--t--t--tJ-I>1r-t-t-t-t--

Average Forward Current ..................... 20 mA
(derate linearly from 70°C @ O.4mA/oC)
Peak Forward Current ................... See Figure 5
Operating and Storage
TemperatureRange ................. -55° to+l00°C
Lead Soldering
Temperature ...................... 260°Cfor5sec.
[1.6 mm (0.063 in.) from body]
A - WAVELENGTH - nm

Figure 1. Relative Intensity versus Wavelength.

208

I

I-'HH~~-I

2. SILVEA·PLATED LEADS. SEE APPUCATION BULLETIN 3,
3, USER MAY BEND LEADS AS SHOWN.
ij.

jX

=

I

Electrical/Optical Characteristics at TA=25°C
Description

Symbol

Min.

Typ.

100

250

Jl.W/sr

-0.005

°C-1

Note 1
Note 2

Max.

Test Conditions

Units

...
Ke

Temperature Coefficient of Intensity

T/v

Luminous Efficacy

2.5

Im/W

28}>

Optical Axis Half Intensity Total Angle

16

deg.

Note 3, IF

690·715

nm

Measured @ Peak

.193

nmfC

ApEAK

Peak Wavelength (Range)

Ll\~*I

Spectral Shift Temperature Coefficient

tr

Output Rise Time (10%-90%)

70

ns

tf

Output Fall Time (90%-10%)

40

ns

Co

Capacitance

65

pF

BVR

Reverse Breakdown Voltage

VF

Forward Voltage

12

5

1.5

V

LlVF/LlT Temperature Coefficient of VF

-2.1

mVtc

Thermal Resistance

140

°C/W

8JC

3,4

= 10 mA

6
1

Measured @ Peak, Note 4

= 10 mA
= 10 mA
VF = 0; f = 1 MHz
IR = 100Jl.A
IF = 10 mA
IPEAK

V

1.8

IF

Fig.

= 10mA

Radiant Intensity along Mechanical
Axis

IpEAK

2

IF = 100 Jl.A
Junction to cathode lead
at 0.79 mm (.031 in)
from body

NOTES: 1. lem = Ie (25°C) exp IKe (T - 25°C)).
2. Iv =1/vle where Iv is in candela, Ie in watts/steradian,and tlv in lumen/watt.
3. Ely, is the off-axis angle at which the radiant intensity is half the intensity along the optical axis. The deviation between the
mechanical.and the optical axis is typically within a conical half·angle of three degrees.
4. 11. m·= 11. (25°C) + (A1I. /AT) IT - 25°C)
PEAK

PEAK

PEAK

100

1.5

1= f=

~

TA - 25"C

TA '" 25~C

ii;-

I

10

>-~
UE

z"
wE

V

I~

1111111

>l1-0

Zo

~~

UI-

z~

a:
a:

ac

!!!~

U:::~

.. a:~

>::;

1-0

wo

.. 0

a:

~!

1/

~
~
I

l - I-

-~

0.1
1.2

~~

:s~
w

1.4

1.5

1.6

1.7

a:

0.5
0.1

1.8

vF -FORWARD VOLTAGE-V

IF - FORWARD CURRENT - mA

Figure 2. Forward Current versus
Forward Voltage.

f'"

a:~

V
1.3

/.

U.O
Ww 1.0
wN

-w
ON

Figure 3. Relative Radiant Intensity
versus Forward Current.

10

laO

IpEAK - PEAK CURRENT - mA

Figure 4. Relative Efficiency (Radiant Intensity
per Unit Current) versus Peak Current.

..

0

;::

a: w
>-~

1-'"

~~

0.20

Ww
I-z

~8

~ffi

x>
.0.15 ::J.~'"
u. ..
@~
:::i!:

0.10 N:I:

;:3:
0.05 a:
0

z

90
tp - PULSE DURATION

L_L_L_.L_..L==::t::~~o~110-210-310:40:t::±50::::l60~70::d80-.J900.00

-p.s

NORMALIZED INTENSITY

Figure 5. Maximum Tolerable Peak Current versus Pulse
Duration. (lDC MAX as per MAX Ratings)

0- OFF·AXIS ANGLE - DEGREES
ICONE HALF·ANGLE)

Figure 6. Far-Field Radiation Pattern.

209

PACKARD

HEWLETT

5082·4200

PIN PHOTODIODES

SERIES

COMPONENTS

TECHNICAL DATA APRIL 1978

n-

Features

Active area: 1mm Diam 5082-420
TALL SIZE
5082-4203
{
0.5mm Diam 5082-4204 (To-18)
5082-4220 - Short (To-46)
0.25mm Magnified 2.5x 5082-4205 - Subminiature

• HIGH SENSITIVITY (NEP<·108 dBm)
• WIDE DYNAMIC RANGE (1% LINEARITY
OVER 100 dB)
• BROAD SPECTRAL RESPONSE
• HIGH SPEED (Tr. Tt,<1ns)
• STABILITY SUITABLE FOR PHOTOMETRY/
RADIOMETRY
• HIGH RELIABILITY
• FLOATING, SHIELDED CONSTRUCTION
• LOW CAPACITANCE
• LOW NOISE

Description
The HP silicon planar PIN photodiodes are ultra-fast light
detectors for visible and near infrared radiation. Their
response to blue and violet is unusually good for low dark
current silicon photodiodes.

The 5082-4203, -4204, and -4207 are packaged on a
standard TO-18 header with a flat glass window cap. For
versatility of circuit connection, they are electrically
insulated from the header. The light sensitve area of the
5082-4203 and -4204 is 0.508mm (0.020 inch) in diameter
and is located 1.905mm (0.075 inch) behind the window.
The light sensitive area of the 5082-4207 is 1.016mm (0.040
inch) in diameter and is also located 1.905mm (0.075 inch)
behind the window.

These devices are suitable for applications such as high
speed tachometry, optical distance measurement, star
tracking, densitometry, radiometry, and fiber-optic
termination.
The speed of response of these detectors is less than one
nanosecond. Laser pulses shorter than 0.1 nanosecond
may be observed. The frequency response extends from
dc to 1 GHz.

The 5082-4205 is in a low capacitance Kovar and ceramic
package of very small dimensions, with a hemispherical
glass lens.
The 5082-4220 is packaged on a TO-46 header with the
0.508mm(0.020 inch) diameter sensitive area located
2.540mm (0.100 inch) behind a flat glass window.

The low dark current of these planar diodes enables
detection of very low light levels. The quantum detection
efficiency is constant over ten decades of light intensity,
providing a wide dynamiC range.

package Dimensions

rr

DIMENSIONS IN MILLIMETERS (INCHES).

4.•00
(.189)
3.937

11.1551

GLASS

.991

WINDOW

"1

(.039)

t

5.003

ANOD:t:E¢:::;t;:'=b

(.197)

r-I--*----I

!

.406

t

I

I--

mmm

:e,

·tt
1.651
(.065)

-.i

1.016)

f~~g)MIN.

I

1.511

(.210)

HEADERTD·l.

ANODE

CATHODE

CONNECTED
TO CASE

-4203, -4204, -4207

3.937

rCA
'2.235_1

~Htcl".31

It38.10

"i
ANODE

~1'~'~

flcATHODE

AND CASE

TO 46 HEADER

I

1-(.088)

-4205

210

4.648

3.683

CATHODE

(.060)

-.i (~i~~l ~

5.334_

t I.~~~)

('15S1Jl

-4220

Absolute Maximum Ratings
·4203
100
200
50

Parameter
PMAX Power Dissipation 1
Peak Reverse Voltage 2
Steady Reverse Voltage 3

·4204
100
200
20

-4205
50
200
50

·4207
100
200
20

Units
mW
volts
volts

·4220
100
200
50

Electrical/Optical Characteristics at TA =25°C
Symbol
Re,Oo
Rq,'A
A

Description

Min.

Axiallncidance

Response at
770nm141
Active Area4
Flux. Responsivity 770 nm S

R¢

·4203
Typ.

Max.

Min.

·4204
Typ.

Max.

Min.

·4205
Typ.

Max.

Min.

·4207
Typ.

Max.

Min.

·4220
Typ.

Max.

Units

1.0

1.0

1.5'

4.0

1.0

~cm121

2x
103
.5

2x

3x

8x
103
.5

2.
10·3

cml21

10.3

10-3'

.5

.5

.5

I!A
MW

(Fig. 1,31
.15

2.5

5.0

1.4 x
10·14

5.7 x
10 "

8.1 x
10 14

0.6

2.0

Dark Current6

10

nA

IFig.4)
NEP

Noise Equivalent

O·

OetectivityS

Ci

Junction Capaci·
lanc.9 (Fig. 5)
Package

5.1.
!O·14

Power 7 (Fig. 8)

Cp

8.7 x
1011

2.8.
10.14
1.6 x
10 12

1.5 x

4.0"
1012

1.5

2.0

2

2

10 12

W

2.0

pF

2

pF

300

300

ns

5.5

0.1

~

~

5.6 x
1011

Capacitance 10

Zero Bias Speed
(Rise, Fall Tim,)

tr,tf

300

300

300

11

Rev.-Bias Speed
(Rise, Fall Tim.)
12
Serj~s Resistance

tr,tf

Rs

1

1

50

50

1

1

1

ns

50

50

50

n

*see Note 4.

NOTES:
1000 A
Ip (avg MAX.)
Ip(PEAK) 

_+_. .____ . _----.Fi----F-. __

"'~I\

"
~
~ ,oO~---r--+--4--4-~7f~-+--1

Figure 3. Typical Output Characteristics
at ~ = 900nm.

45

55

75

65

TEMPERATURE _

85

95

°c

Figure 4. Dark Current at -10V Bias
vs. Temperature.

,--,1" '-

~ 3.5.),-50 2 0'420Y- .•.- . - ~ 2~ - \ ---_.-I--'''''''-'''''''_;''''';''''''-+-+---I

2"'
5082 0::i :~~ f ,.5p.,,+--f---l="l--f--':r::::'-F=t--I

o~tl=Ej::E:508~'2~-=J~2;059+~'::'::-1~310

15 -20 -25

10·

16L,""O,C--,O...,--,...lO..,.·--,.J..O.,..,--,'"'O·,...........J,O..,,_-i,O·
RL - LOAD RESISTANCE - OHMS

Figure 6. Noise vs. Load Resistance.

30 -35 -40 -45

VA - REVERSE VOLTAGE - V

Figure 5. Typical Capacitance Variation
With Applied Voltage.
10' ,~~. .~--~~_~-......,_....,

NEPDUETO
BOTH SOURCes

OF NOISE

RL - LOAD RESISTANCE.- OHMS

Figure 8. Noise Equivalent Power vs. Load Resistance.

Figure 7. Photodiode Cut-Off Frequency
vs. Load Resistance (C = 2pF).

Ip=Signal current ~ 0.5p.A/i..W x flux input at '770 nm
I N= Shot noise current
<1.2 x 10-14 amps!Hz1/2(5082-4204}
<4 x 10-14 amps/Hz1l2(5082-4207}
I D= Dark current
<600 x 10-12 amps at -10 V dc (5082-4204)
<2500 x 10-12ampsat -10 V dc (5082-4207)
Rp" 10110
RS= <500

Figure g. Photodiode Equivalent Circuit.

212

Application Information
NOISE FREE PROPERTIES

5082-4205 MOUNTING RECOMMENDATIONS

The noise current of the PIN diodes is negligible. This is a
direct result of the exceptionally low leakage current, in
accordance with the shot noise formula IN = (2qIR~f) 1/2.
Since the leakage current does not exceed 600 picoamps
for the 5082-4204 at a reverse bias of 10 volts, shot noise
current is less than 1.4 x 10- 14 amp HZ- I/ 2 at this voltage.

a. The 5082-4205 is intended to be soldered to a printed
circuit board having a thicknessoffrom 0.51 to 1.S2mm
(0.02 to 0.06 inch).
b. Soldering temperature should be controlled so that at
no time does the case temperature approach 280°C.
The lowest solder melting point in the device is 280"C
(gold-tin eutectic). If this temperature is approached,
the solder will soften, and the lens may fall off. Lead-tin
solder is recommended for mounting the package, and
should be applied with a small soldering iron, for the
shortest possible time, to avoid the temperature
approaching 280°C.
c. Contact to the lens end should be made by soldering
to one or both of the tabs provided. Care should be
exercised to prevent solder from coming in contact
with the lens.
d. If printed circuit board mounting is not convenient,
wire leads may be soldering or welded to the devices
using the precautions noted above.

Excess noise is also 'very low, appearing only at
frequencies below 10 Hz, and varying approximately as
1/f. When the output of the diode is observed in a load,
thermal noise of the load resistance (Rd is 1.28 x 10- 10
(Rd- I/ 2 X (~f)I/2 at 25°C, and far exceeds the diode shot
noise for load resistance less than 100 megohms (see
Figure 6). Thus in high frequency operation where low
values of load resistance are required for high cut-off
frequency, all PIN photodiodes contribute virtually no
noise to the system (see Figures 6 and 7).
HIGH SPEED PROPERTIES
Ultra-fast operation is possible because the HP PIN
photodiodes are capable of a response time less than one
nanosecond. A significant advantage of this device is that
the speed of response is exhibited at relatively low reverse
bias (-10 to -20 volts).

LINEAR OPERATION
Having an equivalent circuit as shown in Figure 9,
operation of the photodiode is most linear when operated
with a current amplifier as shown in Figure 10.

OFF-AXIS INCIDANCE RESPONSE
Response of the photodiodes to a uniform field of radiant
incidance Ee, parallel to the polar axis is given by I = (RA) x
Ee for 770nm. The response from a field not parallel to the
axis can be found by multiplying (RA) by a normalizing
factor obtained from the radiation pattern at the angle of
operation. For example, the multiplying factor for the
5082-4207 with incidance Ee at an angle of 40° from the
polar axis is 0.8. If Ee = 1mW/cm 2, then Ip = k x (RA) x Ee;
Ip = 0.8 x 4.0 x 1 = 3.2 !Lamps.

R,

:I

R2

VOUT = R1

Up + 10)

'--______________.---o]VOUT
Figure 10. Linear Operation.

Lowest noise is obtained with Ec = 0, but higher speed and
wider dynamic range are obtained if 5 < Ec < 20 volts. The
amplifier should have as high an input resistance as
possib'le to permit high loop gain. If the photodiode is
reversed, bias should also be reversed.

SPECTRAL RESPONSE
To obtain the response at a wavelength other than 770nm,
the relative spectral response must be considered.
Referring to the spectral response curve, Figure 1, obtain
response, X, at the wavelength desired. Then the ratio of
the response at the desired wavelength to response at
770nm is given by:

LOGARITHMIC OPERATION
If the photodiode is operated at zero bias with a very high
impedance amplifier, the output voltage will be:

RATIO =..K0.5
Multiplying this ratio by the incidance response at 770nm
gives the incidance response at the desired wavelength.

VOUT = (1

R2 kT
+-).
RI
q

kT

where Is = IF (e nV -1) -I

ULTRAVIOLET RESPONSE
Under reverse bias, a region around the outside edge of
the nominal active area becomes responsive. The width of
this annular ring is approximately 2S!Lm (0.001 inch) at
-20V, and expands with higher reverse voltage. Responsivity in this edge region is higher than in the interior,
particularly at shorter wavelengths; at 400nm the interior,
responsivity is 0.1 AIW while edge responsivity is 0.35
A/w. At wavelengths shorter than 400nm, attenuation by
the glass window affects response adversely; hence UV
detection is improved by removal of the glass or
substitution of a sapphire window (available on special
order). Speed of response for edge incidance is tr, It ~
300ns.

n

j/.n

Ip
(1+-)
Is

at 0 < IF < 0.1mA

using a circuit as shown in Figure 11.

Figure 11. LogarithmicOparation.

Output voltage, VOUT, is positive as the photocurrent, Ip,
flows back through the photodiode making the anode
positive.

213

214

Fiber' Q~ics
Fiber optics is just beginning to emerge as a
practical technology for data communications. Some important advantages of fiber
optic data transmission are shown on the
following pages.

215

Pice,.. Q~tics

Features

Advantages

Benefits

1.

Optical transmission
path

Complete input-output
electrical isolation

Freedom from ground loops.
Lightning safe.

2.

Light pulse "carrier"
signals

No EMI susceptibility or
radiation

Freedom from induced noise.
Freedom from crosstalk.
Secure communications.

Very high distance/bandwidth
products achievable

Greater data rates at longer
distances than wire / coax.

Light weight, small diameter
cables possible.

Lower cost installation and
maintenance. More bandwidth
(channels) per unit area or unit
weight.

3.

Bandwidth independent
of cable size

216

In addition to the discrete emitters and detectors
described in this catalog, Hewlett-Packard is
developing integrated fiber optic systems for digital
applications. The systems are ideal for point-topoint, processor-to-processor, and processor-toperipheral interconnection in noisy environments,
or at distances/bandwidths difficult to achieve with
wire or coax systems.

Applications

•
•
•
•
•
•

Computer Installations
Distributed Processing
Hospital Systems
Process Control
Power Plant Communications
Secure Communications

Elements of the HP System will include modular
optical transmitters and receivers, single fiber
optical connectors, and compatible optical fiber
cables. Transmission capabilities will include
distances to 1 kilometer and data rates to 20M bits
NRZ (10 MHz clock rate).

Several cable alternatives are planned, including
single and dual channel versions. All types will be
reinforced and jacketed for industrial use. Compatible .field installable connectors will be available
for module-to-cable and cable-to-cable interconnections.

HP System Features

•
•
•
•
•
•
•

For more information on these new product
developments contact your local Hewlett-Packard
Components Field Engineer, or write HewlettPackard Optoelectronics Division, 640 Page Mill
Road, Palo Alto, California.

Compatible Modules, Connectors, and Cable
Miniature PC Board Mount Packages
TTL Electrical Interfaces
Single 5V Power Supply
Pre-aligned Emitter and Detector Interfaces
Integral Optical Connectors
Self-Checking "Link Monitor" Feature

217

~~~lication

notes

APPLICATION NOTE 931
This Application Note begins with an explanation of the strobing technique, followed by a
discussion of the uses and advantages of the
right hand and center decimal point products.

Solid State Alphanumeric Display ... Decoder/
Driver Circuitry
Hewlett-Packard offers a series of solid state
displays capable of producing multiple alphanumeric characters utilizing 5 x 7 dot arrays of
GaAsP light emitting diodes (LED's), These 5 x 7
dot arrays exhibit clear, easily read characters.
In addition, each array is X-V addressable to
allow for a simple addressing, decoding, and
driving scheme between the display module
and external logic.

Several circuits are given for typical applications. Finally, a discussion of interfacing to
various data forms is presented along with
comments on mounting the displays.
APPLICATION NOTE 939
High Speed Optically Coupled Isolators

Methods of addressing, decoding and driving
information to such an X-V addressable matrix
are covered in detail in this application note.
The note starts with a general definition of the
scanning or strobing technique used for this
simplified addressing and then proceeds to
describe horizontal and vertical strobing.
Finally, a detailed circuit description is given for
a practical vertical strobing application.

Often designers are faced with the problem of
providing circuit isolation in order to prevent
ground loops and common mode signals.
Typical devices for doing this have been relays,
transformers and line receivers. However, both
relays and transformers are low speed devices,
incompatible with modern logic circuits. Line
receiver circuits are fast enough, but are limited
to a common mode voltage of 3 volts.

APPLICATION NOTE 934

In addition, they do not protect very well against
ground loop signals. Now Optically Coupled
Isolators are available which solve most
isolation problems.

5082-7300 Series Solid State Display
Installation Techniques
The 5082-7300 series Numeric/Hexadecimal indicators are an excellent solution to most
standard display problems in commercial,
industrial and military applications. The unit
integrates the display character and associated
drive electronics in a single package. This
advantage allows for space, pin and labor cost
reductions, at the same time improving overall
reliability.

This Application Note contains a description of
Hewlett-Packard's high speed isolators, and
discusses their applications in digital and
analog systems.
APPLICATION NOTE 941
5082-7700 Series Seven Segment LED Display
Applications

The information presented in this note describes general methods of incorporating the
-7730 into varied applications.

The HP 5082-7700 series of LED displays are
available in both common anode and common
cathode configurations. These single digit
displays have been engineered to provide a high
contrast ratio and a wide viewing angle.

APPLICATION NOTE 937
Monolithic Seven Segment LED Display
Installation Techniques

This Application Note begins with DC drive
techniques and circuits. Next is an explanation
of the strobe drive technique and the resultant
increase in device efficiency. This is followed by
general strobing circuits and some typical
applications such as clocks, calculators and
counters.

The Hewlett-Packard series of small endstackable monolithic GaAsP displays are
designed for strobing, a drive method that
allows time sharing of the character generator
among the digits in a display.
218

Finally, information is presented on general
operating conditions, including intensity uniformity, light output control as a function of
ambient light, contrast enhancement and
device mounting.

cation note describes design considerations
and circuit techniques with special emphasis on
selection of line.drivers, transmission lines, and
line receiver t~rmination for optimum data rate
and common mode rejection. Both resistive and
active terminations are described in detail.
Specific techniques are described for multiplexing applications, and for common mode
rejection and data rate enhancement.

APPLICATION NOTE 945
Photometry of Red LEDs
Nearly all LEOs are used either as discrete
indicator lamps or as elements of a segmented
or dot-matrix display. As such, they are viewed
directly by human viewers, so the primary
criteria for determining their performance is the
judgment of a viewer. Equipment for measuring
LED light output should, therefore, simulate
human vision.

APPLICATION NOTE 948
Performance of the 5082-4350/51/60 Series of
Isolators in Short to Moderate Length Digital
Data Transmission Systems
Optically coupled isolators (opto-isolators) can
function as excellent alternatives to integrated
circuit line receivers in digital data transmission
applications. Their major advantages consist of
superior common-mode noise rejection and
true ground isolation between the two subsystems.

This Application Note will provide answers to
these questions:
1. What to measure (definitions of terms)
2. How to measure it (apparatus arrangement)
3. Whose equipment to use (criteria for
selection)

This application note describes the basic
design elements of a data transmission link and
presents examples of systems that Will be useful.
at distances that range from 1 ft. to 300 ft. and
have a moderate overall cost.

APPLICATION NOTE 946
5082-7430 Series Monolithic Seven Segment
Displays
The HP 5082-7430 series solid state displays are
common cathode, 2 and 3 digit clusters capable
of displaying numeric and selected alphabetic
data. These GaAsP displays employ an integral
magnification technique to increase both the
character size and the luminous intensity of
each monolithic digit. The resultant 2.79mm
(0.11") high character is viewable at distances of
up to 5 feet when operated at as little as 0.5mW
per segment.

APPLICATION NOTE 951-1
Applications for Low Input Current, High Gain
Optically Coupled Isolators
Optically coupled isolators are useful in
applications where large common mode signals
are encountered. Examples are: line receivers,
logic isolation, power lines, medical equipment
and telephone lines. This application note has
at least one example in each of these areas for
the 5082-4370 series high CTR isolators.

These displays are deSigned for strobed
operation. In strobing, the decoder is timeshared among the digits in the display, which
are illuminated one at a time.

APPLICATION NOTE 951-2
Linear Applications of Optically
Isolators

Typical applications, such as an Electronic
Stopwatch, a battery operated Event Counter
and a Four Function Calculator are discussed in
this note.

Coupled

Optically coupled isolators can be used to
transfer an analog signal between two isolated
systems. In many instances, isolators can
replace expensive transformers, instrumentation amplifiers, and A/D conversion schemes.
This application note discusses several circuit
techniques by which 5082-4350 series optically
coupled isolators can be used to transmit
analog information. The operation of each
circuit is explained in detail and typical circuit
performance is given.

APPLICATION NOTE 947
Digital Data Transmission Using Optically
Coupled Isolators
Optically coupled isolators make ideal line
receivers for digital data transmission applications. They are especially useful for elimination
of common mode interference between two
isolated data transmission systems. This appli219

APPLICATION NOTE 964
Contrast Enhancement Techniques

APPLICATION BULLETIN 4
Detection and Indication of Segment Failures in
Seven Segment LED Displays

This Application Note presents various criteria
and techniques that a display engineer should
consider to obtain optimum contrast enhancement for red, yellow and green LED displays. A
representative list of filter manufacturers and
available filters is given at the end of this
discussion.

The occurrence of a segment failure in certain
applications of seven segment displays can
have serious consequences if a resultant
erroneous message is read by the viewer. This
application bulletin discusses three techniques
for detecting open segment lines and presenting this information to the viewer.

APPLICATION NOTE 966
The HOSP-2000 provides a unique yet simple
and low cost method for addressing display
data to a 5 x 7 alphanumeric display. This
application note is intended to serve as a design
and application guide for users of the HOSP2000. The information presented will cover the
theory of the device design and operation,
considerations for specific circuit design,
thermal management, power derating and heat
sinking, and intensity modulation techniques.

~~~licCltiQn

APPLICATION BULLETIN 50
Hewlett-Packard Watch Chip Drawings
As an aid to designers of hybrid devices using
LED display chips and discrete LEOs, this
bulletin provides detailed dimensionalinformation on all Hewlett-Packard 5082-7800 series
display chip products.

APPLICATION BULLETIN 51
Interfacing the HDSP-2000
Microprocessor

Bulletins

Display

to

a

Interface of the HOSP-2000 alphanumeric
display to a microprocessor involves the design
of a relatively simple interface element. This
bulletin briefly discusses the tradeoffs involved
in the design of such an interface and provides a
specific example of an interface to the 8080
microprocessor along with appropriate software.

APPLICATION BULLETIN 1
Construction and Performance of High Efficiency Red, Yellow and Green LED Materials
The high luminous efficiency of HewlettPackard's High Efficiency Red, Yellow and
Green lamps and displays is made possible by a
new king of light emitting material utilizing a
GaP transparent substrate. This application
bulletin discusses the construction and performance of this material as compared to
standard red GaAsP and red GaP materials.

APPLICATION BULLETIN 52
Large Monolithic LED Displays
The trend to incorporate more complex functions into smaller package configurations that
are portable and battery powered is reaching a
point where the limiting items are the space and
power constraints imposed upon the display at
the operator-to-machine interface. The large
monolithic LED display has been designed to
meet many of these constraints. This application bulletin describes the beneficial features of
a large monolithic LED display and presents
circuits which interface the display to CMOS
logic and to a microprocessor.

APPLICATION BULLETIN 3
Soldering Hewlett-Packard Silver Plated Lead
Frame LED Devices
Many of Hewlett-Packard's commercial LED
devices use a silver plated lead frame. Soldering
to a silver lead frame provides a reliable
electrical and mechanical connection and is no
more complicated than soldering to a gold lead
frame. Some suggestions on how to handle and
solder silver plated lead frame devices are
presented.
220

APPLICATION BULLETIN 53
Interfacing the HDSP-6504/6508 16 Segment
Alphanumeric Display

circuit depicted in this Bulletin is modeled on
the circuit depicted in Figure 3 of HewlettPackard's Application Note No. 966. The
advantages of this new circuit are realized by
using predominantly TTL logic, a low cost 128
byte NMOS RAM, and a low cost, single supply
NMOS character generator.

The man machine interface can most efficiently
be bridged through the use of an Alphanumeric
Display. Advances in monolithic LED manufacturing technology have permitted the introduction of an alphanumeric display using a
sixteen segment font with a decimal and colon.
The use of this new display is the topic of this
application bulletin and it is intended to assist
the designer in the following areas:

The circuit is ideal for interface to microprocessor type systems, since data load into the
refresh memory is accomplished just as if it
were any other RAM on the DATA BUS.

1. Electrical drive conditions;
2. Design of a standalone ASCII to eighteen
segment decoder, and;
3. A 6800 microprocessor interface.
OPTOELECTRONICS APPLICATIONS
MANUAL (HPBK-1000)

APPLICATION BULLETIN 54
Mechanical Handling of Subminiature LED
Lamps and Arrays

The commercial availability of the Light
Emitting Diode has provided electronic system
designers with a revolutionary component for
application in the areas of information display
and photocouplers.

The Need for Careful Mechanical Handling
Hewlett-Packard . manufactures a series of
individual LED lamps and lamp arrays that are
very small epoxy encapsulated devices. These
devices are classified as having a SUBMINIATURE package configuration. When carefully
installed on a printed circuit board, these
devices will reliably function with a long
predictable operating life.

Many electronic engineers have encountered
the need for a resource of information about the
application of and designing with LED products. This book is intended to serve as an
engineering guide to the use of a wide range of
solid state optoelectronic products.

To obtain long operating life, these subminiature devices must be carefully installed on the
printed circuit board in such a manner as to
insure the integrity of the encapsulating epoxy.
This will in turn maintain the integrity of the
device by not permitting mechanical and
thermal stresses to induce strains on the LED
die attach and wire bonds which may cause
failure.

The book is divided into chapters covering each
of the generalized LED product types. Additional chapters treat such peripheral information as
contrast enhancement techniques, photometry
and radiometry, LED reliability, mechanical
considerations of LED devices, photodiodes
and LED theory.
This book is available from a Hewlett-Packard
franchised distributor or from the McGraw-Hili
Publishing Company, at $19.25. A complete
listing of all HP Components franchised
distributors can be found on pages 222 and 223.

This application bulletin describes the subminiature package assembly, the package's mechanical limitations and offers specific suggestions for proper installation.
APPLICATION BULLETIN 55
Low Cost Interface for a 32 Character HDSP2000 Alphanumeric Display
The cost of the support electron ics necessary to
operate the HDSP-2000 can be reduced
through the selection of cost-optimized rather
than function-organized components. The
221

HEWLETT- ~~C~~AD
DIITAIDUTQA ITQC~ln; LQC~TIQnl
UNITED STATES
ALABAMA
Hall-Mark Electronics
4739 Commercial Drive
Huntsville 35805
(205) 837-8700

FLORIDA
Hall-Mark Electronics
1302 W. McNab Road
Ft. Lauderdale 33309
(305) 971-9280

MASS. (Con!.)
Wilshire Electronics
One Wilshire Road
Burlington 01603
(617) 272-8200

ARIZONA

Hall-Mark Electronics
7233 Lake Ellenor Drive
Orlando 32609
(305) 855-4020

MICHIGAN
Hamilton/Avnet
32467 Schoolcraft Road
livonia 48150
(313) 522-4700
Schweber Electronics
33540 Schoolcraft Road
livonia 46150
(313) 525-8100

Hamilton/Avnet
2615 S. 21 st Street
Phoenix 85034
(602) 275-7851
liberty Electronics
8155 North 24th Avenue
Phoenix 85021
(602) 249-2232
In Tucson 16021 884-7082

CALIFORNIA
Eln,ar Electronics
2288 Charleston Road
MI. View 94040
(415) 961-3611
Hamilton Electro Sales
10912 Washington Boulevard
Culver City 90230
(213) 558-2020
Hamilton/ Avnet
8917 Complex Drive
San Diego 92123
(714) 279-2421
Hamilton/Avnet
575 E. Middlefield Road
M!. View 94040
(415) 961-7000
liberty Electronics
124 Maryland Street
EI Segu~do 90245
(213) 322-8100
liberty Electronics
8248 Mercury Court
San Diego 92111
(714) 565-9171
Schweber Electronics
17811 Gillette Avenue
Irvine 92714
(714) 556-3880
COLORADO
Elmar Electronics
6777 E. 50th Avenue
Commerce City 80022
(303) 287-9611
Hamilton/Avnet
5921 N. Broadway
Denver 80216
(303) 534-1212
CONNECTICUT
Schweber Electronics
Finance Drive
Commerce Industrial Park
Danbury 06810
(203) 792-3500
Wilshire Electronics
2554 State Street
Hamden 06514
(203) 281-1166

Schweber Electronics
2830 N. 29th Terrace
Hollywood 33020
(305) 927 -0511

GEORGIA
Schweber Electronics
4126 Pleasantdale Road
Atlanta 30340
(404) 449-9170

MINNESOTA
Hall-Mark Electronics
9201 Penn Avenue, So.
Suite 10
Bloomington 55431
(612) 684-9056

INDIANA
Pioneer-Standard
6406 Castleplace Drive
Indianapolis 46250
(317) 849-7300

Hamilton/Avnet
7663 Washington Avenue S.
Edina 55435
(612) 941-3801

ILLINOIS
Hall-Mark Electronics
180 Crossen
Elk Grove Village 60007
(312) 437-8800

Schweber Electronics
7402 Washington Avenue, So.
Eden Prairie 55343
(612) 941-5280

MISSOURI
Hall-Mark Electronics
13769 Rider Trail
Earth City 63045
(314) 291-5350
Hamilton/Avnet
396 Brookes Lane
Hazelwood 63042
(314) 731-1144

Hamilton/Avnet
3901 N. 25th Avenue
Schiller Park 60176
(312) 678-6310
Schweber Electronics
1275 Brummel Avenue
Elk Grove Village 60007
(312) 593-2740

NEW JERSEY
Schweber Electronics
43 Belmont Drive
Somerset 08873
(201) 469-6006
Wilshire Electronics
855 Industrial Hwy.
Unit #5
Cinnaminson 08077
(609) 786-8990
Wilshire Electronics
1111 Paulison Avenue
Clifton 07015
(201) 340-1900
Wilshire Electronics
921 Bergen Avenue
Suite 1125
Jersey City 07306
(201) 653-4939

KANSAS
Hall-Mark Electronics
11870 West 91st Street
Shawnee Mission 66214
(913) 666-4747
Hamilton/ Avnet
9900 Pflumm Road, Suite 37
Lenexa 66215
(913) 888-8900
MARYLAND
Hall-Mark Electronics
6655 Amberton Drive
Baltimore 21227
(301) 796-9300
Schweber Electronics
5640 Fisher Lane
Rockville 20852
(301) 881-3300
Wilshire Electronics
1037 Taft Street
Rockville 20850
(301) 340-7900
MASSACHUSETTS
Schweber Electronics
213 Third Avenue
Waltham 02154
(617) ('90-6484

NEW MEXICO
Hamilton/Avnet
2524 Baylor S.E.
Albuquerque 67119
(505) 765-1500

222

NEW YORK
Schweber Electronics
2 Townline Circle
Rochester 14623
(716) 461-4000
Schweber Electronics
Jericho Turnpike
Westbury 11590
(516) 334-7474
Wilshire Electronics
10 Hooper Road
Endwell 13760
16071 754-1570
Wilshire Electronics
1655 New Highway IUnit B)
Farmingdale 11735
(516) 293-5775
Wilshire Electronics
1260 Scottsville Road
Rochester 14624
(716) 235-7620

NORTH CAROLINA
Hall-Mark Electronics
1208 Front Street, Bldg. K
Raleigh 27609
(919) 632-4465
OHIO
Hall-Mark Electronics
6969 Worthington-Galena Road
Worthington 43065
(614) 646-1682.
Pioneer-Standard
4600 East 131st Street
Cleveland 44105
(216) 587-3600
Pioneer-Standard
1900 Troy Street
Dayton 45404
(513) 236-9900
Schweber Electronics
23660 Commerce Park Road
Beachwood 44112
(216) 464-2970
OKLAHOMA
Hall-Mark Electronics
4846 So. 63rd E. Avenue
Tulsa 74145
(916) 835-6458
OREGON
liberty Electronics
2035 S.w. 56th, Room lllB
Portland 97221
(503) 292-9234
Representative
Northwest Marketing
Associates, Inc.
9999 S.w. Wilshire Street
Suite 211
Portland 97225
(503) 297-2581
(206) 455-5e46

PENNSYLVANIA
Hall-Mark Electronics
458 Pike Roaa
Huntingdon Valley 19001
12151355-7300
Pioneer-Standard
560 Alpha Drive
Pittsburg h 15238
1412) 782-2300
Schweber Electronics
101 Rock Road
Horsham 19044
16091 964-4496
12151 441-0600
TEXAS
Hall-Mark Electronics
3100-A Industrial Terrace
Austin 78758
15121837-2814
Hall-Mark Electronics
9333 Forest Lane
Dallas 75222
12141234-7400
Hall-Mark Electronics
8000 Westglen
P.O. Box 42190
Houston 77042
17131781-6100
Schweber Electronics
14177 Proton Road
Dallas 75240
12141661-5010
Schweber Electronics
7420 Harwin Drive
Houston 77036
17131 784-3600
UTAH
Hamiiton/Avnet
1585 West 2100 South
Salt Lake City 84119
18011 972-2800

CANADA

JAPAN

Hamiltonl Avnet
3688 Nashua Drive
Units G & H
Mississauga, Ontario L4V1M5
14161677-7432 or
14161745-1908

Ryoyo Electric Corporation
Konwa Building
12-22 Tsukiji, 1-Chome
Chuo-Ku, Tokyo
Tokyo 1031 543-7711

Hamilton/Avnet
2670 Paulus Street
Ville St. Laurent
Montreal, Quebec K2C 3J2
15141331-6443

AUSTRALIA
Amtron Tyree Pty. Ltd.
115 Highbury Road
Burwood, Victoria 3125
03292338
Amtron Tyree Pty. Ltd.
176 Botany Street
Waterloo NSW 2017
026989666

Hamiltonl Avnet
1785 Courtwood Crescent
Ottawa, Ontario H4S 1G2
16131226-1700
Zentronics, Ltd.
99 Norfinch Drive
Downsview, Ontario M3N1W8
14161 635-2822
Zentronics, Ltd.
8146 Montview Road
Town of Mount Royal
Montreal, Quebec H4P2L7
15141 735-5361
Zentronics, Ltd.
141 Catherine Street
Ottawa, Ontario K2P1C3
16131238-6411
Representatives
Cantec Reps., Inc.
880 Cedarbrae Avenue
Milton, Ontario L9T3X1
14161 624-9696
Cantec Reps., Inc.
41 Cleopatra Drive
Ottawa, Ontario K2GOB6
16131 225-0363
Cantec Reps., Inc.
15432 Oakwood Street
Pierrefonds, P.Q. H9H1Y2
15141 620-3121

EUROPE
BELGIUM
Diode Belgium
Rue Picard 202 Picardstratt
1020 Bruxelles - Brussels
102142851 05
DENMARK
G.D.S. - Henckel A.p.S.
Hovedgaden 16
4622 Havdrup
1030) 38 57 16
ENGLAND
Celdis, Ltd.
37-39 Loverock Road
Reading, Berks RG3 lED
Reading 582211
Crellon Electronics Ltd.
380 Bath Road
Slough, Berks SL 16JE
Macro Marketing
396 Bath Road
Slough Bucks
Slough 38811

WASHINGTON
Hamilton/Avnet
13407 Northrup Way
Bellevue 98005
12061746-8750
Liberty Electronics
1750 132nd Avenue, N.E.
Bellevue 98005
12061 453-8300
Representative
Northwest Marketing
Associates. Inc.
12835 Bellevue-Redmond Road
Suite 203E
Bellevue 98005
12061 455-5846
WISCONSIN
Hall-Mark Electronics
237 South Curtis
West Allis 53214
14141476-1270
Hamilton/Avnet
2975 Moorland Road
New Berlin 53151
14141784-4510

NORTH AMERICA

FINLAND
Field OY
Veneentekijantie 18
00210 Helsinki 21
6922577

Mexel
Tlacoquemecatl 139-401
Esq. Adolfo Prieto
Mexico 12, D.F.

FRANCE
S.C.A.I.B.S.A.
15-17 Avenue de Segur
Paris VII
5559554
Feutrier lie de France
93 Rte des Fusilles

SOUTH AMERICA
Datatronix Electronica LTDA
Av. Pacaembu, 746-C11
Sao Paulo, Brazil
66-7929/67 -8725

de la Resistance

92150 Suresnes
7724646
Ets. F. Feutrier
Mat. Electrique
Et Electronique
Rue des Trois Glorieuses
42270 St-Priest-En-Jarez
St. Etienne

SOUTH AFRICA
Fairmont Electronics IPtyl Ltd.
P.O. Box 41102
Craighal12024
Transvaal
48-6421

77_711 C:"1

223

"l"

GERMANY
EBV Elektronik
Gabriel-Max-Strasse 72
8000 Muenchen 90
10891 64 40 55
Ingenieurbuero Dreyer
Flensburger Strasse 3
2380 Schleswig
104621123 121
RTG E. Springorum Kg
Bronnerstrasse 7

4600 Dortmund
10231154951
RTG Distron
Mecklenburgische Stl. 241
lOno Berlin 33
103018243061
ISRAEL
Electronics and Engineering
Division of Motorola Israel LTD.
P.O. B 25016
Tel Aviv
Tel Aviv 36941/2/3
ITALY
Celdis Italiana
vis Luigi Barzini 20
1-20125 Milano
680681
Eledra S.P.A.
Vlale Elvezla, 18
20154 Milano
3493041
NETHERLANDS
B.V. Diode
Hollandtlaan 22
Utrecht
10301884214
NORWAY
Ola Tandberg Elektro A/S
Skedsmogt. 25
Oslo 6
197030
SPAIN
Diode Espana
Avda de BraSil, 7
Edif, Iberia Mart
Madrid 20
4553718
SWEDEN
Interelko A.B.
Sandsborgsviigen 50
122 33 Enskede
1081 492505

SWITZ~RLAND
Baerlocher A.G.
Corporation for
Electronic Products
Forrlibuckstrasse 110
8005 Zurich
429900

I~LII ~n~ IIAUICI OFFICII
UNITED STATES
ALABAMA
8290 Whitesburg Dr., S.E.
P.O. Box 4207

FLORIDA
P.O. Box 24210
2806 W. Oakland Park. Blvd.
Ft. Lauderdale 33311

Huntsville 35802
Tel, (205) 661-4591

Tel (305) 731-2020
• Jacksonville

Medical Only
228 W. Valley Ave"
Room 220

~~~j(~J41e~~~~og~~

~lr(Jo~t94~-~g~~J2

P.O. Box 13910

6177 lake Ellenor Dr.
Orlando 32809
Tel: (305) 659-2900

ARIZONA

2336 E. Magnolia St.
Phoenix 85034
Tel: (602) 244·1361
2424 East Aragon Rd.
Tucson 85706

P.D. Box 12826
Pensacola 32575

Tel (904) 476-6422
GEORGIA
P.O. Box 105005
Atlanta 30348

Tel (6021294-3146
"ARKANSAS
Medical Service Only
P.O. Box 5646
Brady Station
little Rock 72215

tWii~~i65~4'~£O
Medical Service Only

~~~r4o~f7~~~~92

Tel: (501) 376-1644
CALIFORNIA
1430 East Orangethorpe Ave
Fullerton 92631

Tel: (714) 670-1000

P.O. Box 2103
Warner Robins 31098

Tel: (9121 922-0449
HAWAII
2875 So. King Street
Honolulu 96814

3939 lankershim Boulevard

~e?:'W,~)O~'1rf2a~ 91604

Tel: (606) 955-4455

TWX: 910-499-2671

Telex: 723·705

5400 West Rosecrans Blvd.
P.O. Box 92105
World Way Postal Center

ILLINOIS
5201 Tollview Dr.
ROiling meadows 60008

i~:S(~~~~I;~7950g009

i~X\3~n_~~~:~~~~

"Los Angeles

INDIANA
7301 North Shadeland Ave.

TeL (2131776-7500
3003 Scott Boulevard
Santa Clara 95050

Indlana~OIis46250

Tel: (317 642-1000
TWX: 61 -260-1797

Tel: (406) 249-7000
TWX: 910-336-0516

IOWA
2415 Heinz Road
Iowa City 52240

~~,~~~~r~~~·6165
646 W. North Market Blvd
Sacramento 95834

Tel: (319) 336-9466

Tel: (916) 929-7222

KENTUCKY
Medical Only
Atkillson Square
3901 Atkinso~ Or.,
Suite 407 Atkillson Square
loulsvllle.40218

9606 Aero Drive
P.O. Box 23333
San Diego 92123

Tel (7141279-3200
COLORADO
5600 South Ulster Parkway
Engll!wood 80110

Tel: (502) 456-1573
LOUISIANA
P.O. Box 840
3229·39 Williams Boulevard
Kenner 70063

Tel: (303) 771-3455
CONNECTICUT
12 lunar Drive
New Haven 06525

Tel (5041443-6201
MARYLAND
6707 Whitestone Road
Baltimore 21207

Tel (203) 369-6551
TWX: 710-465·2029

2 ChOke Cherry Road
Rockville 20850

tWP?l n~t~~~~
MASSACHUSETTS

32 Hartwell Ave.

f:~:~fj)~6~~~~~O

TWX, 710-326-6904

NEW YORK

6 Automation lane
Computer Park

m

5'550
t:lb irr6)'
201 Soulll Avenue

f~:U&~~i:~:.'r31ij601
TWX, 510-253-5961
650 Perinton Hill Office Park

TENNESSEE
'Knoxville

~e~~i(~a~ 5~e~i~~5~~~

3027 Vanguard Dr
Direclo;'s Plaza

rer(~~~s3~~~gj70
Nashville

MICHIGAN
23855 Research Drive

~:~rft~~ 1~~~~950

~ej~i{t~ 51e~i~~~~~~

~~~(~f3~t~;6~~~~ 48024

5858 East Molloy Road

TEXAS
P.O. Box 1270
201 E. Arapaho Rd.
Richardson 75080

724 West Centre Ave
Kalamazoo 49002

Tel: (606) 323-6362

~er(g15je4~~~JJ86

TWX: 710·541·0482
1 Crossways Park West
WOOdbU1; 11797

MINNESOTA
2400 N. Prior Ave
St. Paul 55113

Tel: (5166 21-0300
TWX: 71 -990-4951

Tel: (612) 636-0700

NORTH CAROLINA
P.O. Box 5188
1923 North Main Street
High Point 27262

MISSISSIPPI
"Jackson

Tel: (919) 665-6101

MISSOURI
11131 Colorado Ave.

OHIO
16500 Sprague Road
Cleveland 44130

TWX: 910-771-2067
1024 Executive Parkway
SI. Louis 63141

Tel: (314) 676-0200
NEBRASKA

M~1i~~r~nWoad

Suite 110
Omaha 68106

Tel: (402) 392-0946
NEW JERSEY
W. 120 Century Rd.
Paramus 07652

+Wpn6-~~:~~~
Crystal Brook Prolessional
Building
Eatontown 07724

Tel:(201) 542-1384
NEW MEXICO
P.O. Box 11634
Station E
11300 lomas Blvd., N.E.
Albuquer~e 87123

twP~f6-~6~: m~

156 Wyatt Drive
Las Cruces 88001

Tel: (505) 526-2464
TWX: 910-9963-0550

10535 Harwin Dr.
Houston 77036

Tel (713) 776-6400

~~~i(~aJ,1e98ii:93~

~e~:n(~~~)~la.~cx157

Tel: (2141231-6101

Tel: (2161 243-7300
TWX: 810·423-9430
330 Progress Rd.
Dayton 45449

Tel: (5131 659-6202
1041 Kingsmill Parkway
Columbus 43229
Tel: (614) 436·1041
OKLAHOMA
P.O. Box 32008
Oklahoma Clly 73132

Tel (405) 721-0200
OREGON
17890 SW lower Boones
Ferry Road
Tualatin 97062
Tel: (503) 620·3350

PENNSYLVANIA
111 Zeta Drive
Pittsburgh 15238

Tel: (412) 762-0400
1021 8th Avenue
King 01 Prussia Industrial Park

~1~Y2n)p2~5~~h~9406
TWX: 510-660-2670

SOUTH CAROLINA
6941-0 N. Trenholm Road
Columbia 29260

Tel: (803) 762-6493

205 Billy Mitchell Road
San Antonio 78226

Tel (5121434-6241
UTAH
2160 South 3270 West Street
Salt Lake City 84119

Tel: (601) 972-4711
VIRGINA
P.O. Box 12778
No.7 Koger Exec. Center
Suite 212
Norfolk 23502

Tel:(604) 461-402516
P.O. Box 9669

~~~t~~~~r~3~2~ngs

Road

Tel (604) 265-3431
WASHINGTON
Bellelield Office Pk
1203·114th Ave. S.E
Bellevue 98004

tWp~n-1~gm
"WEST VIRGINIA
Medical/Analytical Only
Charleston

Tel: (304) 345-1640
WISCONSIN
9004 West Lincoln Ave.
Wesl Allis 53227
Tel: (414) 541·0550
FOR U.S. AREAS NOT LISTED:
Contact the regional of/ice
nearest you: Atlanta, Georgia
North Hollywood, California ...
Rockville, Maryland ... Rolling Meadows,
Illinois. Their complete
addresses are listed above
"Service Only

1/78

Tel (301) 944-5400
TWX: 710-662-9157

CANADA
NOVA SCOTIA
Hewlett·Packard (Canada) Ltd
800 Windmill Road
Dartmouth B3B 1II

ALBERTA
Hewlett·Packard (Canada) Ltd.
11620A - 168th Street
EdmontonT5M 3T9

Tel (9021469-7620

Tel: (4031452-3670

fef:'~:~~) Ti5H3_~~~ 3

Twx: 610·821-6141

~l~(l~~i6~:-~:jo 1M8
TWX: 610-492-4246

TWX: 610-271·4482 HFX

TWX: 610-831·2431

~it,'j~'2~a~i~~r~r ~t~n~~a.)

Hewlett·Packard (Canada) Ltd.
6877 Goreway Drive

Ltd.

MANITOBA
Hewlett·Packard (Canada) Ltd.
513 Century St.
St. James
Winnipeg R3H Ol8
Tel: (204) 786·7581

TWX: 610-671-3531

ONTARIO
Hewlett·Packard (Canada) ltd.
1020 Morrison Dr.
Ottawa K2H 8K7

Tel: (6131620-6463
TWX: 610-563-1636

224

QUEBEC
Hewlett·Packard (Canada) Ltd
275 Hymus Blvd
Pointe Claire H9R 1G7

+WPii~~%:m~

TLX: 05-821521 HPCl

FOR CANADIAN AREAS NOT LISTED:
Contact Hewlett·Packard (Canada)
Ltd. in Mississauga

CENTRAL AND SOUTH AMERICA
ARGENTINA
Hewletl-Packard Argentina
S.A
Av. Leandro N, Alem 822 - 12
10018uon08 Aires
Tel. 31-6063,4,5,6 and 7
Telex: 122443 AR CIGY
Caele: HEWPACK AAG
BOLIVIA
Casa Ka",hn S,A
Calle PotOSI' 1130

P.O. Box 500
La Paz
Tel: 41530,53221
Telex: ewe ax 5298,IIT 3560082
Cable' KAVlIN
BRAZil
Hewlett-Packard do BraSil
l,e,C. ltda
Avenlda RIO Negro, 9S0
Alphavitle
06400Barueri SP

Tel: 429·3222
Hewlett·Packard do Brasil

l.e.C. Ltda
Rua Padre Chagas. 32
90000-Porto Alegre-RS

Tel: (0512) 22-2998. 22·5621
Cable- HEWPACK PoUo Alegre

Hewlett-Packard do Brasil
I.E.C. Ltda.
Rua SiQueira Campos. 53

Copacabana
2000Q-Rlo de Janeiro
Tel: 257·80-g4-DOQ (021)
Telex: 391·212·1905 HEWP-BR
Cable: HEW PACK

Rio de Janeiro
CHILE
Calcagni y"Metcalfe Ltda.
Alameda 580-01. 807
Caslila 2118

~::n~~a8~~3 1
Telex: 3520001 CALMET
Cable: CALMET Santiago
COLOMBIA
Instrumenlacidn
Henrlk A Langebaek & Kler S.A
Carrera 7 No. 48-75
Apartado AIlreo 6287
Bogota. I O.E
Tel: 69-88-77
Cable: AARIS Bogota
Telex: 044-400
COSTA RICA
Cientiflca Costarricense S A
Avenida 2, Calle 5
San Pedro de Montes de Oca
Apartado 10159
San Jose
Tel: 24-38-20. 24-08-19
Telex: 2367 GAlGUR CR
Cable: GALGUR

ECUADOR
Calculators Only
Computadoras y EQuipos
Electrdnlcos
P.O. Box 6423 CCI
Eloy Alfaro #1824.3 PI so
Quito
Tel: 453482
Telex: 02-2113 Sagita Ed
Cable: Saglta-Oullo
-EL SALVADOR
Instrumentacion y Procesamlcnto
Electronlco de el Salvador
Bulevar de los Heroes 11-48
San Salvador
Tel: 252787
GUATEMALA
IPESA
Avenida La Reforma 3-48.
Zona 9
Guatemata City
Tei: 63627. 64786
Telex: 4192 Teletro Gu
MEXICO
Hewlett-Packard Mexicana.
SA de C.V
Av. Perifeflco Sur No. 6501
Tepepan. Xochimllco
Mexico 23. O.F
Tel: 905-676·4600

Hewlett·Packard Mexlcana,
SA de C.V
Ave. Constitucidn No. 2184
Monterrey, N.L.
Tel: 48-71-32. 48-71-84
Telex: 038-410
NICARAGUA
Roberto Teran G.
Apartado Postal 689
Edificio Teran
Managua
Tel' 25114, 23412.23454
Cable: ROTERAN Managua
PANAMA
Electrdnico Balboa, S.A
PO. Box 4929
Calle Samuel lewis
Cui dad de Panama
Tel: 64·2700
Telex: 3483103 Curunda
Canal Zone
Cable: ELECTRON Panama
PERU
Compai'lla Eleclro Medica S.A
los Flamencos 145
San Isidro CaSIlia 1030
Lima 1
Tel: 41-4325
Cable: ElMEO Lima

PUERTO RICO
Hewlett·Packard Inter·Americas
Puerto Rico Branch OHice
Calle 272.
No. 203 Urb. Country Club
Caroltna 00924
Tel: (B09) 752-7255
Telex: 3450514
URUGUAY
Pablo Ferrando S.A
ComerClal e Industrial
Avenlda Ilalia 2877
Casdla de Correa 370
Montevideo
Tel: 40-3102
Cable: RADIUM Montevideo
VENEZUELA
Hewlett-Packard de Venezuela

CA

P.O Box50933
Caracas 105
Los RUices Norte
3a Transversal
Edificio Segre
Caracas 107
Tel: 35-00-11 (20 lines)
Telex: 25145 HEWPACK
Cable. HEWPACK Caracas
FOR AREAS NOT liSTED, CONTACT:

~nier'_ef:e~~ckaa;d
3200 Hillview Ave
Palo Alto, Caltfornla 94304
Tel: (415) 493-1501
TWX: 910-373-1260
Cable: HEWPACK Palo Alto
Telex: 034-8300, 034-8493

EUROPE, NORTH AFRICA AND MIDDLE EAST
AUSTRIA
Hewlett·Packard Ges.m.b.H
Handelskai 52
P.O. box 7
A-1205 Vienna
Tel: (0222) 351621 to 27
cable: HEWPAK Vienna
Telex: 75923 hewpak a
BELGIUM
Hewlett·Packard 8enelu>:
SAINV
Avenue de COl-Vert. 1,
~Grocnkraaglaan)

-1170 Brussels

t~~I~?2~Al~fB~~ ~~ussels

Telex: 23 494 paloben bru
CYPRUS
Kypronics
19. Gregorios & Xenopoulos Rd.
P.O. Box 1152
CY-Nlcosia
Tel: 45628/29
Cable: KYPRONICS PANDEHIS
Telex: 3018

CZECHOSLOVAKIA
Vyvojova a Provozni Zakladna
Vyzkumnych Ustavu v Bechovicich
CSSR-25097 Bechovice u Prahy
Tel: 899341
Telex: 121333
Institute of Medical Bionics
Vyskumny Ustav Lekarskej Bioniky
Jedlova 6
CS-88345 Bratlslava-Kramare
Tel: 44-551/45-541
DDR
Entwicklungslabor der TU Dresden
b~~~~~~~Sinstitut Meinsberg

WaldhelmlMeinsberg
Tei: 37667
Telex: 112145
Export Contact AG Zuerich
Guenther Forgber
Schlegelstrasse 15
1040 Berlin
Tel: 42-74-12
Telex: 111889

DENMARK
Hewlell-packard A/S

~~~~v:~~~irkertld

Tel: (02) 81 6640
Cable: HEWPACK AS
Telex: 37409 hpas dk
Hewlett-Packard A/S

~~~~~oeJ

klikebOrg
Tel (06) 82 71 66

t~I;~:: rIE~~f8~sA~k
FINLAND
Hewlett-Packard OY
Nahkahousuntie 5
P.O. Box 6
SF-00211 Helsinki 21
Tel: (90) 6923031
Cable: HEWPACKDY Helsinki
Telex: 12-1563 HEWPA SF
FRANCE
Hewlett-Packard France
Quartier de Courtaboeut
Boite Postale No.6
F-91401 Orsay Cedex
Tel: (1) 907 78 25
Cable: HEWPACK Orsay
Telex: 600048
Hewlett-Packard France
Agency R~gionale
"Le SaQuin"
Chemin des Mouilles
8.P. 162
F-69130 Eeully
T,I (78) 33 81 25.
Cable: HEWPACK Eculy
Telex: 31 0517

Hewlett-Packard France
Agence Regionale
Perlcentre de la Cepi~re
Chemin de la Ceplere. 20
F-31300 Toulouse-Le Mirall
Tel (61) 40 11 12
Cable: HEWPACK 51957
Telex: 510957
Hewlett-Packard France
Agence R~gionale
Aeroport principal de
Marseilie-Marignane
F-13721 Marignane
Tel (91) 89 12 36
Cable: HEWPACK MARGN
Telex. 410770

Hewlett-Packard France

~~~~~~~ueeg~~a~~chesler

B.P. 1124
F-35014 Rennes Cede>:
Tel (99) 36 33 21
Cable: HEWPACK 74912
Telex' 740912
Hewlett-Packard France
Agence Regionale
74. AII~e de la Robertsau
F-57000 Strasbourg
Tel: (88) 35 23 20/21
Telex: 890141
Cable: HEWPACK STRBG
Hewlett-Packard France
Agence R~gionale
Centre Vauban
201. rue Colbert
Entr~e A2
F-59000 Lilla
Tel: (20) 51 44 14
Telex: 820744
Hewlett-Packard France
Centre d' Affaires Paris-Nord
BAIlment AmpE!re
Rue de La Commune de Paris
B.P.300
F-93153 Le Blanc Mesnll C~dex
Tel (01) 9318850

GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH
Vertriebszenlrale Frankfurt
Bernerstrasse 117
Postfach 560 140
0-6000 Frankfurt 56
Tel: (0611) 5004-1
Cable: HEWPACKSA Frankfurt
Tel: (0611) 5004-1
Cable: HEWPACKSA Frankfurt
Telex: 04 13249 hpHmd
Hewlett-Packard GmbH
Technisches Buero BClblingen
Herrenbergerstrasse 110
D-7030 B6blingen. WlJrttemberg

t~I~I~~~OE3~l~~~-~lingen
Telex: 07265739 bbn

225

Hewlett-Packard GmbH
Technisches Buero Dlisseldor1
Emanuel-leutze-Str.l (Seestern)
0-4000 Dusseldorf 11
Tel: (0211) 59711
Telex: 085/86 533 hpdd d
Hewlett-Packard GmbH
Technisches Buero Hamburg
Wendenstrasse 23
0-2000 Hamburg 1

t~I~I~~tOJ~~A~3K~~ Hamburg
Telex: 21 53 032 hphh d
Hewlett-Packard GmbH
Technisches Buere Hannover
Am Grossmarkt 6
0-3000 Hannover 91
Tel: (0511) 46 60 01
Telex: 092 3259
Hewlett-Packard GmbH
Werk Groetzingen
Ohmstrasse 5
0-7500 Karlsruke 41

i::~1?b~~§265g76?

06

Hewlett-Packard GmbH
Technisches Buere Nuremberg
Neumeyer Str. 90

~~~5(~~1~)r5~m3~e~~/85
Telex: 0623 860
Hewlett-Packard GmbH
Technisches Buere Mlinchen
Untel'hachinger Strasse 28
ISAR Center
0-8012 Ottobrunn
Tel (089) 601 306117
Cable: HEWPACKSA MLInchen
Telex: 0524985
Hewlett-Packard GmbH
Technisches Buero Berlin
Keith Strasse 2-4
0-1000 Berlin 30
Tel: (030) 24 90 86
Telex: 183405 hpbln d
GREECE
Kostas Karayannis
08, Omirou Street
GR-Athens 133
Tel: 3237731
Cable: RAKAR Athens
Telex: 21 5962 rkar gr

.

~r~W.~61 0~.IYpapathanaSsiOu
Marni 17
GR - Athens 103
Tel: 522 1915
Cabie: INTEKNIKA Athens
Telex: 21 5329 INTE GR
Medical Only'
Technomed Hellas ltd
52.Skooufa Street
GR - Athens 135
Tel: 352 6972, 363 3830
Cable:ETALAK athens
Telex: 21-4693 ETAL GR
HUNGARY
MTA
MlJszenlgYI ~s Mer~slechnikal
Szolgalala
Lenin Krt. 67
1391 Budapest VI
Tel: 42 03 38
Telex: 22 51 14
ICELAND
Medical Only
Eldlng Trading Company Inc
Hafnarhvoli - Tryggvatotu
IS-Reykjavik
Tel: 1 5820
Cable: ELDING Reykjavik
IRAN
Hewlett-Packard Iran ltd.
No. 13, Fourteenth SI
Miremad Avenue
P.O. Box 41/2419
IR-Tehran
Tel: 851082-7
Telex: 21 2574 khrm ir
IRAQ
Hewlett-Packard Trading Co
4/1/8 Mansoor City
Baghdad
Tel: 5517827

gl;I~:: ~1~ph:t&1bQ. ik
Baghdad Iraq

IRELAND
Hewlett-Packard Ltd
King Street Lane
GB-Wlnnersh,Wokingham
Berks. RG11 5AR
Tel: (0734) 78 47 74
Telex: 847178/848179

& Co

EUROPE, NORTH AFRICA AND MIDDLE EAST (Cont.)
ITALY
Hewlen·~ackard

Itafia.na S.p.A.

VIa Amenao VesPuccl 2
Casella poslale 3645

1·20100 Milano
Tel: (2) 6251 (10 lines)
Cable: HEWPACKIT Milano

Tele .. : 32046
Hewlett·Packard lIaliana $,p,A

Via Pietro MaronceUi 40
(ang, Via Visentin)

1-35100 Padova
Tel: (49) 664666
Telex: 41612 Hewpacki
Mea'icalonly
Hewlett-Packard Italiana S.p.A,
Via d'Aghiardi, 7
1-56100 PiS3
Tel: (050) 2 32 04
Telex: 32046 via Milano
Hewlett-Packard Italiana S.p.A.
Via G, Armellini 10
1-00143 Roma
Tel: (06) 54 69 61

Telex: 61514
Cable: HEWPACKIT Rama

Hewlett-Packard ItaUana S.p.A.
Corso Giovanni Lanza
1·1031 Torino
Tel: (011) 662245/659306
Medical/Calculators Only
Hewlett-Packard Iialiana S,p.A.
Via Principe Nicola 43 G/C
1·95126 Catania
Tel:(095) 37 05 04
Hewlett-Packard Italiana S.p.A
Via Amerigo Vespucci, 9
1-80142 Napoli
Tel: (061) 33 77 11
Hewlett-Packard Itallana S,p.A
Via E, Masi, 918

~:1~16~'?3~~8n87
KUWAIT
AI-Khaldiya Trading &
P. go~~~c~i~8_~~it
Kuwait
Tel: 424910-411726

~;I~I~:: ~i~t~~e:f kt
LUXEMBURG
Hewlett-Packard Benelux

SA/NY
Avenue du Col-Vert, "

~~~~~~k~~~I:;~IS

~;~I~~WAtb2B~~ ~~ussels

Telex: 23 494

MOROCCO
Gerep
190, Blvd, Brahim Roudani
Casablanca
Tel: 25-16-76125-90-99
Cable: Gerep-Casa
Telex: 23739 .

NETHERLANDS
Hewlett-Packard Benelux N, V,
Van Heuven Goedhartlaan 121
P.O. Box 667
Nl-1134 Amstelveen
Tel: (020) 47 20 21
Cable: PALO BEN Amsterdam
Telex: 13216 hepa nl
NORWAY
Hewlett-Packard Norge A/S
Nesveien 13
Box 149
N-1344 Hallum
Tel: (02) 53 63 60
Telex: 16621 hpnas n
POLANO
Biuro Inlormacji Technicznej
Hewlett-Packard
Ul Stawki 2, 6P
00-950Warszaw8
Tel: 395962{395187
Telex: 81 24 53 hepa pi
UNIPAN
Zaklad Ooswiadc.zalny

~~~OK~~j~:rari~~ %~~~~~~ej 51/55

00-800 Warszawa
Tel: 36190
Telex: 81 4648

za~~~y~~~~Owcze Sprzetu
Plac Komuny Paryskiej 6
90-007 Lod'
Tel: 334-41, 337-63
PORTUGAL
Telectra-Empresa Tl!cnica de
Equipamentos EIl!ctricos S,a,r.1
Rua Rodrigo da Fonseca 103
P,O. Box 2531
P-Llsbon 1

~;I~)~~ %E~c~~12lisbon

Telex: 12598
Medical only
Mundinter
Intercambio Mundial de Com~rcio
S.a.r.1.
AV.A,A.de Aguiar 138
P.O. Box 2761
P - Lisbon
Tel: (19) 53 21 31/7
Cable: INTERCAMBJO lisbon
RUMANIA
Hewlett-Packard Reprezentanta
Bd,N, Balcescu 16
Bucharest
Tel: 158023/138885
Telex: 10440
I.I.R.U.C.
Intreprinderea Pentru
Intretinerea
Si Repararea Utilajelor de Calcul
B-dul prof. Oimitrie Pompei 6
Bucharest-Sectorul 2
Tel: 126430
Telex: 11716

SAUDI ARABIA
Modern Electronic Establishment
King Abdul Aziz str.(Head office}
P.O. Box 1228
Jeddah
Tel: 31173-332201
Cable: ELECTRA
P.D. Box 2728 (Service center)
Riyadh'
Tel. 62596-66232
Cable: RAOUFCO
SPAIN
Hewlett-Packard Espanola, S.A.
Jerel, Calle 3
E-Madrld 16
Tel:(l) 458 26 00 (10 lines)
Telex: 23515 hpe
Hewlett-Packard Espanola. S.A
Milanesado 21-23
E-Barcelona 17
Tel: (3) 203 6200 (5 lines)
Telex: 52603 hpbe e
Hewlett-Packard Espanola, S,A
Av ~~mdn ~ Cajal. 1
Ediflclo SeVilla, planta 9",
E-Sevllle 5
Tel: 64 44 54/58

~ji~~~~-~Ii~~al~d 7~sGanOla S.A.
E-Bltbao-l
Tel: 23 83 06/23 82 06
Calculators Only
Hewlett-Packard Espanola S.A.
Gran Via Fernando EI Cat6hco, 67
E-Valoncla-8
Tel: 326 67 28/326 85 55
SWEDEN
Hewlett-Packard Sverige A8
Enlghetsvagen 1-3
Fack
S-161 20 Bromma 20
Tel: (06) 730 05 50
Cable: MEASUREMENTS
Stockholm
Telex: 10721
Hewlett-Packard Sverige A8
Ostra Vinlergatan 22
S-702 40 Orebro
Tel (019) 140720
Hewlett-Packard Sverige AS
fr6tailsgatan 30
S-421 32 Vastra Fr61unda
Tel (031) 49 09 50
Telex: 10721 Via Bromma Office
SWITZERLAND
Hewlett-Packard (Schweil) AG
Ziircherstrasse 20
P.O. Box 307
CH-8952 Schlieren-Zurich
Tel: (01) 730 52 40/730 18 21
Cable: HPAG CH
Telex; 53933 hpag ch
Hewlett-Packard (schweiz) AG
Chateau Bloc 19

f~~\~1~)L96 ~if22n-Geneva

Cable: HEWPACKAG Geneva
Telex: 27 333 hpag ch

226

SYRIA
Medical/Calculator only
Sawah & Co.
Place Azm~
BP. 2306
SYR-Oamascus
Tel: 16367, 19697, 14268
Cable: SAWAH, Damascus
TURKEY
Telekom Engineering Bureau
P.O. Box 437
Beyoglu
TR-Istanbul
Tel: 49 40 40
Cable: TElEMATION Istanbul
Telex: 23609
Medical only
E.MA
Muhendislik Kolle!dif Sirketi
Adakale Sokak 4116
TR·Ankara
Tel: 175622
Analytical only
Yilmaz Ozyurek
Milli Mudafaa Cad No, 16/6
Kizilay
TR-Ankara
Tel: 250309
Telex: 42576 ozek Ir
UNITED KINGDOM
Hewlett-Packard ltd.
King Street lane
GB-Wlnnersh, Wokingham
Berks. RG 11 5AR
Tel: (0734) 76 47 74
Cable: Hewpie london
Telex:847178/9
Hewlett-Packard ltd.
Trafalgar House,
Navigation Road
Altrlncham
Cheshire WA14 lNU
Tel: (061) 9266422
Telex: 668068
Hewlett-Packard ltd

We~~~a~~u~se

Dudley Road
Halesowen,
West Midlands B62 8SD
Tel: (021) 550 9911
Telex: 339105
Hewlett-Packard ltd.
Wedge House
799, london Road
GB- Thornton Heath
Surrey CA4 6Xl
Tel: (01) 6840103/8
Telex: 946825
Hewlett-Packard ltd
clo Makro
South Service wholesale Centre
Wear Industrial Estate
Washington
GB-New Town, County Durham
Tel: Washington 46400.1 ext. 57/58

Hewlett-Packard Ltd
10, Wesley SI
GB-Castteford
West Yorkshire WF10 lAE
Tel (09775) 50402
Telex: 557355
Hewlett·Packard ltd
1, Wallace Way
GB-Hltchin
Herts
Tel: (0462) 52824/56704
Telex: 825981
Hewlet-Packard ltd
2C, Avonbeg Industrial Estate
long Mile Road
Dublin 12
Tel: Dublin 509458
Telex: 30439
USSR
Hewlett-Packard
Representative Office USSR
Pokrovsky Boulevard 4117-KW 12
Moscow 101000
Tel:294-2024
Telex: 7825 hewpak su

YUGOSLAVIA
Iskra·standard/Hewlett-Packard
Miklosiceva 38MI

~!I~~03~j~8b~~/3~ 16 74

Telex: 31583

SOCIALIST COUNTRIES
NOT SHOWN PLEASE
CONTACT:
Hewlett-Packard Ges, m, b.H
P.O. Box 7
A-1205 Vienna, Austria
Tel: (0222) 35 16 21 to 27
Cable: HEWPAK Vienna
Telex: 75923 hewpak a
MEDITERRANEAN AND
MIDDLE EAST COUNTRIES
NOT SHOWN PLEASE CONTACT:
Hewlett-Packard S.A
Mediterranean and Middle
East Operations
35, Kolokotroni Street
Platia Kelallariou
GR-Kifissia-Athens, Greece
Tel: 80603371359/429
Telex: 21-6588
Cable: HEWPACKSA Athens
FOR OTHER AREAS
NOT LISTED CONTACT
Hewlett-Packard S.A
7, rue du Bois-du-Lan
P.O. Box
CH-1217 Meyrin 2 - Geneva
Switzerland
Tel: (022) 62 70 00
Cable: HEWPACKSA Geneva
Telex: 2 24 86

AFRICA, ASIA, AUSTRALIA
ANGOLA

Telectra
Empresa Tecnlca de
Equlpamentos
Electncos, S A R.L
R Barbosa Rodrigues 42-1 DT
Calxa Postal, 6487

luanda
Tel: 35515/6
Cable: TELECTRA Luanda
AUSTRALIA
Hewlett-Packard Australia

Ply Ltd.
31-41 Joseph Street
Blackburn. Vlctona 3130

P.O. Box 36
Doncaster East, Victoria 3109
Tel. 89-6351
Telex: 31-024
Cable: HEWPARD Melbourne
Hewlett-Packard Australia
Ply. Ltd

31 Bridge Street
Pymble
New South Wales, 2073
Tel' 449-6566
Telex 21561
Cable" HEWPARD Sydney
Hewlett-Packard Australia
Ply. Ltd
153 Greenhill Road
Parkside. SA.. 5063
Tel. 272-5911
Telex' 82536 ADEL
Cable. HEWPARD ADELAID
Hewlett-Packard Australia
Ply Ltd
141 Stirling Highway

Nedlands. W A. 6009

Tel. 86-5455
Telex 93859 PERTH
Cable" HEWPARD PERTH
Hewlett-Packard Australia

12r~oTltgrigOng

Street
Fyshwick, A.C T 2609
Tel 95-2733
Telex' 62650 Canberra
Cable HEWPARD CANBERRA
Hewlett Packard Australia
Pty Ltd
5th Floor
Teachers UniOn BUilding
495-499 Boundary Street
f~:ri2~]_~~~4 4000 Queensland
Cable HEWPARD Brisbane
GUAM
Medical/Pocket Calculators Only
Guam Medical Supply, Inc.
Jay Ease BUilding, Room 210
PO. Box 8947

i~~6~6~~~1 ~6911
Cable: EARMED Guam
HONG KONG
Schmidt & Co.(Hong Kong) Ltd
PD. Box 297
Connahght Centre
39th Floor
Connaughl Road. Central
Hong Kong
Tel H-255291-5
Telex' 74765 SCHMC HX
Cable SCHMIDTCO Hong Kong
INDIA
Blue Star ltd
Kasturl Buildings
Jamshedll Tata Ad
Bombay 400 020
Tel' 29 50 21
Telex: 001-2156
Cable BLUEFROST
Blue Star Ltd.
Sahas
414/2 Vir Savarkar Marg
Prabhadevi

~f.~~% ~~o 025
Telex 011-4093
Cable FROSTBLUE

Blue Star Ltd
Band B.ox House
Prabhadevr

~e~~~ah b~O 025
Telex 011-3751
Cable BLUESTAR
Blue Star Ltd
7 Hare Street
PO, Box 506
Calcutta 700 001
Tel 23-0131
Telex: 021-7655
Cable. BLUESTAR
Blue Star Ltd
7th & 8th Floor
Bhandari House
91 Nehru Place
New Delhi 110024
Tel 634770 & 635166
Telex: 031-2463
Cable. BLUESTAA
Blue Star Ltd.
Blue Star House
It/l1A Magarath Road
Bangalore 560 025
Tel 55668
Telex: 043-430
Cable: BLUESTAR
Blue Star Ltd
Meeakshl Mandrran
x:o/1678 Mahatma Gandhi Rd
Cochin 682 016
Tel: 32069.32161.32282
Telex: 0885-514
Cable' BLUESTAR
Blue Star ltd
1-1-117/1
Sarojlni Devi Road
Secunderabad 500 003
Tel: 70126, 70127
Cable: BLUEFROST
Telex: 015-459
Blue Star ltd.
2/34 Kodambakkam High Road
Madras 600034
Tel 82056
Telex 041-379
Cable 8LUESTAR
INDONESIA
BERCA IndoneSia P T
P.O. Box 496/Jkt
JLN.Abdul MUls 62
Jakarta
Tel. 40369, 49886,49255,356038
JKT 42895
Cable' BE RCA CON
BERCA Indonesia P.t.
63 JL Raya Gubeng

fel:r~~~6;
ISRAEL
ElectrOniCS & Englfleerlflg Dlv.
of Motorola Israel Ltd
17, Kremenetskl Street
P.O. Box 25016
Tel-Aviv
Tel. 38973
Telex' 33569
Cable. BASTEL Tel-AVIV
JAPAN
Vokogawa-Hewlett-Packard Ltd
Ohashi Building
59-1 Voyogl l-Chome
Shlbuya-ku, Tokyo 151
Tel. 03-370-2281/92
Telex: 232-2024YHP MARKET
TDK 23-724
Cable YHPMARKET
Vokogawa-Hewlett-Packard Ltd
Chuo Bldg., 4th Floor
4-20, Nlshlnakajlma 5-chome
Vodogawa-ku,Osaka-shi
Osaka,532
Tel' 06-304-6021
Yokogawa-Hewlett-PaCkard Ltd
Nakamo Building
24 Kaml Sasajlma-cho

~:I~am~~r~~l_~frloya

Yokogawa-Hewlett-Packard Ltd
Tanlgawa BUlldmg
2-24-1 Tsuruya-cho
Kanagawa-ku
Yokohama, 221
Tel 045·312-1252
Telex 382-3204 YHP YOK
Vokogawa·Hewlett-Packard Ltd
Mlto Mltsu Buildmg
105, Chome-l,San-no-maru
Mito, Ibaragl 310
Tel: 0292-25-7470
Yokogawa·Hewlen-Packard lid
Inoue BUilding
1348-3, Asahl-cho, l-chorne

fetl~O~~'2~2;_t~a5~a

243

vokogawa-Hewlett-Packard Ltd
Kumagaya Asahl
Hackljunl Building
4th Floor
3-4,Tsukuba

fe~~:~5_~~:6~~~ama 360
KENYA
Technical EnOlneermg
Servlces(E.A )Ltd.,
P.O Box 18311
Nairobi
Tel 557726/556762
Cable PROTON
Medical Only
InternatIOnal AeradlO(E A.)Ltd
P.O Box 19012
Nairobi Airport
Nairobi
Tel: 336055/56
Telex: 22201122301
Cable: INTAERIO Nairobi
KOREA
Samsung ElectroniCS Co., Ltd
20th FI Dongbang Bldg 250,2-KA
C,P,O. Box 2775
Taepyung-Ro. Chung-Ku
Seoul
Tel' (23) 6811
Telex: 22575
Cable ELEKSTAR Seoul
MALAYSIA
Teknik Mutu Sdn Bhd.
2 Lorong 13/6A
SectIOn 13
Petaling Jaya,Selangor
Tel. 54994/54916
Telex' MA 37605
Protei EngmeermQ
P.O. Box 1917
lot 259, Satok Road
Kuching, Sarawak
Tel: 2400
Cable: PROTEl ENG
MOZAMBIQUE
A N Goncalves, Lta.
162, l' Apt. 14 Av D. lUIS
Calxa Postal 107
Lourenco Marques
Tet 27091,27114
Telex: 6-203 NEGON Mo
Cable' NEGON
NEW ZEALAND
Hewlett-Packard (N.l.) Ltd
P.O. Box 9443
Courtenay Place
Wellington
Tel 877-199
Cable' HEWPACK Wellmgton
Hewlett-Packard (N l) Ltd.
Pakuranga ProfeSSIOnal Centre
267 Pakuranga Highway
Box 51092

fe~.k~69_6~1
Cable: HEWPACK,Auckland

Analytlcal/MedlcalOnly
Medical Supplies N.l. Ltd
SCIentifiC DIVISion
79 Carlton Gore Rd Newmarket
POBox 1234
Auckland
Tel. 75-289
Cable DENTAL Auckland
Analytical/Medical Only
Medical Supplies N.Z Ltd
POBox 1994
147-161 Tory St
Wellington
Tel 850·799
Telex 3858
Cable DENTAL. Wellington
Analytical/Medical Only
Medical Supplies N l. lid
P.O Box 309
239 Stanmore Road
Christchurch
Tel: 892-019
Cable' DENTAL, Chnstchurch
Analytical/Medical Only
Medical Supplies N l. Ltd
303 Great Kmg Street
P.O. Box 233
Dunedin
Tel. 88-817
Cable' DENTAL. Dunedin
NIGERIA
The Electronics
InstrumefitatlOns Ltd
N6B/770 Oyo Road
Oluseun House
PM 8. 5402
Ibadan
Tel 61577
Telex. 31231 TEll Nigeria
Cable THETEIL Ibadan
The Electronics InstrumentatlOnsLtd.
144 Agege Motor Road, Mushm
POBox 6645
Lagos
Cable THETEIL lagos
PAKISTAN
Mushko & Company, Ltd
Gosman Chambers
Abdullah HarOOfl Road
Karachi-3
Tel' 511027. 512927
Telex: 2894
Cable COOPERATOR Karachi
Mushko & Company, ltd
38B, Satellite Town

fe~.~~I~~~di
Cable FEMUS Rawalpindi
PHILIPPINES
The Onlme Advanced
Systems CorporatIOn
RICO House
Amorsolo cor. Herrera Str
LegaspI Village, Makatl
Metro Manila
Tel 85-35-81,85-34-91
Telex 3274 ONLINE
RHODESIA
Field Technical Sales
45 KelVin Road Nqrth
P.O Box 3458
Salisbury
Tel 705231 (5 Imes)
Telex RH 4122
SINGAPORE
Hewlett-Packard Smgapore
{Pte.ILtd.
1150 Depot Road
Alexandra P O. Box 58

f~I~~~~_~r3~~
Telex HPSG RS 21486
Cable' HEWPACK, Singapore

SOUTH AFRICA
Hewlett·Packard South Africa
{Pty I. Ltd
Private Bag Wendywood
Sandton. Transvaal 2144
Hewlett-Packard Centre
Daphne Street. Wendywood,
Sandlon, Transvaal 2144
Tel. 802-10408
Telex: 8-4782
Cable HEWPACK JOHANNESBURG
Service Department
Hewlett-Packard South Africa

p.h'tx
~~d325
Gramley, Sandton. 2018
451 Wynberg ExtenSion 3,
Sandt on , 2001
Tel: 636-8188/9
Telex' 8-2391
Hewlett-Packard South Africa

6~~d~ ~~~

P
Howard Place, Cape Provmce, 7450
Pifle Park Centre. Forest DrIVe,
Plnelands, Cape PrOVince, 7405
Tel' 53-7955 thu 9
Telex 57-0006
Service Department
Hewlen-Packard South Africa
{Pty.I.ltd.
POBox 37099
Overport, Durban 4067

~~~b~I~~~s~oad

Durban, 4001
Tel: 88-7478
Telex: 6-7954

TAIWAN
Hewlett-Packard Far East Ltd,
Taiwan Branch
39 Chung Hsiao West Road
Sec 1, 7th Floor
Taipei
Tel 3819160-4
Cable: HEWPACK TAIPEI
Hewlett-PaCkard Far East Ltd
Taiwan Branch
68-2. Chung Cheng 3rd. Road

~e~:o(~~\u2n4~318_KaOhSiUng

Analytical Only
San Kwang Instruments Co, Ltd ,
No. 20, Vung SUI Road
Taipei
Tel: 3715171-4 (5 lines)
Telex: 22894 SANKWANG
Cable' SANKWANG TAIPEI
TANZANIA
Medical Only
International Aeradlo (E.A.), Ltd.
P.O. Box 861
Dar es Salaam
Tel: 21251 Ext. 265
Telex: 41030
THAILAND
UNtMESA Co., Ltd
Elcom Research BUilding
2538 Sukumvit Ave
Bangkok
Tel. 3932387, 3930338
Cable UNIMESA Bangkok
UGANDA
Medical Only
International Ae$dio(E.A.). LId.,
P.O. Box 2571
Kampala
Tel: 54388
Cable INTAERID Kampala
ZAMBIA

~'5' ~~bxu?7~~ambla) Ltd
Lusaka
Tel: 73793
Cable: ARJAYTEE, Lusaka
OTHER AREAS NOT USTEO, CONTACT:
Hew1et1-Packard Intercontinental
3200 Hillview Ave
Palo Alto, California 94304

, 450

Tel: {4151493-1501
TWX: 910-373-1267
Cable HEWPACK Palo Alto

227

NOTES

228

For more information call your local HP Sales Office or East (301 ) 948-6370Midwest (312) 255-9800 - South (404) 955-1500 - West (213) 877-1282. Or
write : Hewlett-Packard Components, 640 Page Mill Road, Palo Alto,
California 94304. In Europe, Hewlett-Packard GmbH, P.O. Box 250,
Herrenberger Str. 110, D-7030 Boeblingen, West Germany. In Japan , YHP, 329-21 , Takaido-Higashi , Suginami-Ku , Tokyo , 168.
Printed in U.S.A.

Revised from 5953-0335 D (4177)
Data Subject to Change

5953-0372 D
(April, 1978)



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37
Create Date                     : 2013:08:05 08:30:23-08:00
Modify Date                     : 2013:08:05 10:15:50-07:00
Metadata Date                   : 2013:08:05 10:15:50-07:00
Producer                        : Adobe Acrobat 9.55 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:35cee07f-d5f3-e748-8eeb-b746e2d40b66
Instance ID                     : uuid:accad374-445b-eb41-a385-f3a9eb7bfde4
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 242
EXIF Metadata provided by EXIF.tools

Navigation menu