1978_Philips_Semiconductors_and_Integrated_Circuits_Part_4a_Transmitting_Transistors_and_Modules 1978 Philips Semiconductors And Integrated Circuits Part 4a Transmitting Transistors Modules

User Manual: 1978_Philips_Semiconductors_and_Integrated_Circuits_Part_4a_Transmitting_Transistors_and_Modules

Open the PDF directly: View PDF PDF.
Page Count: 735

Download1978_Philips_Semiconductors_and_Integrated_Circuits_Part_4a_Transmitting_Transistors_and_Modules 1978 Philips Semiconductors And Integrated Circuits Part 4a Transmitting Transistors Modules
Open PDF In BrowserView PDF
Semiconductors and
integrated cir~uits
Part 4a

December 1978

Transmitting transistors and modules

SEMICONDUCTORS AND INTEGRATED CIRCUITS
PART 4a -- DECEMBER 1978

TRANSMITTING TRANSISTORS AND MODULES

INDEX

---

GENERAL

--

TRANSMITTING TRANSISTORS AND MODULES

---

ACCESSORIES

____Jl__
DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.

ELECTRON TUBES

BLUE
RED

SEMICONDUCTORS AND INTEGRATED CIRCUITS
COMPONENTS AND MATERIALS

GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and
reissued periodically.
Where ratings or specifications differ from those published in the preceding edition they are pointed
out by arrows. Where application information is given it is advisory and does not form part of the
product specification.
If you need confirmation that the published data about any of our products are the latest available,
please contact our representative. He is at your service and will be glad to answer your inquiries..

This information is furnished for guidance. and with no guarantee as to its accuracy or completeness; its publication conveys no licence
under any patent or other right. nor does the publisher assume liability for any consequence of its use; specifications and availability of
goods mentioned in it are subject to change without notice; it is not to be reproduced in any way. in Whole or in part without the
written consent of the publisher.

I (octOber

1977

__Jl------ELECTRON TUBES (BLUE SERIES)

Part 1a December 1975

ET1a 12-75

Transmitting tubes for communication, tubes for r.f. heating
Types PE05/25 to TBW15/25

Part 1b August 1977

ET1 b 08-77

Transmitting tubes for communication, tubes for r.f. heating,
amplifier circuit assemblies

Part 2a November 1977

ET2a 11-77

Microwave tubes
Communication magnetrons, magnetrons for microwave
heating, klystrons, travelling-wave tubes, diodes, triodes
T-R switches

Part 2b May 1978

ET2b 05-78

Microwave semiconductors and components
Gunn, Impatt and noise diodes, mixer and detector diodes,
backward diodes, varactor diodes, Gunn oscillators, subassemblies, circulators and isolators

Part 3

January 1975

ET301-75

Special Ouality tubes, miscellaneous devices

Part 4

March 1975

ET403-75

Receiving tubes

Part 5a March 1978

ET5a 03-78

Cathode-ray tubes
Instrument tubes, monitor and display tubes, C.R. tubes
for special applications

Part 5b December 1978

ET5b 12-78

Camera tubes and accessories,image intensifiers

Part 6

ET601-77

Products for nuclear technology
Channel electron multipliers, neutron tubes, Geiger-Mu"er
tubes

Part 7a March 1977

ET7a 03-77

Gas-filled tubes
\Thyratrons, industrial rectifying tubes, ignitrons,
high-voltage rectifying tubes

Part 7b March 1977

ET7b 03-77

Gas-filled tubes
Segment indicator tubes, indicator tubes, switching diodes,
dry reed contact units

January 1977

Part 8

May 1977

ET805-77

TV picture tubes

Part 9

March 1978

ET903-78

Photomultiplier tubes; phototubes

September 1978

(

~_ _jl_ _
SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

Part 1a August 1978

SC1a 08-78

Rectifier diodes, thyristors, triacs
Rectifier diodes, voltage regulator diodes (> 1,5 W),
transient suppressor diodes, rectifier stacks, thyristors, triacs

Part 1b May 1977

SC1b 05-77

Diodes
Small signal germanium diodes, small si!lnal silicon diodes,
special diodes, voltage regulator diodes « 1,5 W), voltage
reference diodes, tuner diodes

Part 2

November 1977

SC211-77

Low-frequency and dual transistors

Part 3

January 1978

SC301-78

High-frequency, switching and field-effect transistors

Part 4a December 1978

SC4a 12-78

Transmitting transistors and modules

Part 4b September 1978

SC4b 09-78

Devices for optoelectronics
Photosensitive diodes and transistors, light emitting diodes,
photocouplers, infrared sensitive devices,
photoconductive devices

Part 4c July 1978

SC4c 07-78

Discrete semiconductors for hybrid thick and thin-film circuits

Part 5a November 1976

SC5a 11-76

Professional analogue integrated circuits

Part 5b March 1977

SC5b 03-77

Consumer integrated circuits
Radio-audio, television

Part 6

SC610-77

Digital integrated circuits
LOCMOS HE4000B family

October 1977

Signetics integrated circuits 1978

Bipolar and MOS memories
Bipolar and MOS microprocessors
Analogue circuits
Logic - TTL

December 1978

__Jl____
COMPONENTS AND MATERIALS (GREEN SERIES)
CM106-77

Assemblies for industrial use
High noise immunity logic FZ/30-series, counter modules
50-series, NORbits 60-series, 61-series, circuit blocks
90-series, circuit block CSA70(L), PLC modules, input/
output devices, hybrid circuits, peripheral devices, ferrite
core memory products

Part 2a October 1977

CM2a 10-77

Resistors
Fixed resistors, variable resistors, voltage dependent resistors
(VOR), light dependent resistors (LOR), negative temperature coefficient thermistors (NTC), positive temperature
coefficient thermistors (PTC), test switches

Part 2b February 1978

CM2b02-78

Capacitors
Electrolytic and solid capacitors, film capacitors, ceramic
capacitors, variable capacitors

CM301-77

Radio, audio, television
,Components for black and white television, components
for colour television

Part 1

Part 3

June 1977

'January 1977

Part 3a September 1978

CM3a 09-78

FM tuners, television tuners, surface acoustic wave filters

Part 3b October 1978

CM3b 10-78

Loudspeakers

Part 4a November 1978

CM4a 11-78

Soft ferrites
Ferrites for radio, audio and television, beads and chokes,
Ferroxcube potcores and square cores, Ferroxcube transformer cores

CM4b 12-76

Piezoelectric ceramics, permanent magnet materials

Part 4b

Oe~mber

Part 6

April1977

CM604-77

Electric motors and accessories
Small synchronous motors, stepper motors, miniature
direct current motors

Part 7

September 1971

CM7 09-71

Circuit blocks
Circuit blocks 100 kHz-series; circuit blocks l-series, circuit
blocks 10-series, circuit blocks for ferrite core memory drive

Part 8

February 1977

CM802-77

Variable mains transformel'S

Part 9

March 1976

CM9 03-76

Piezoelectric quartz devices

CM 10 04-78

Connectors

1976

Part 10 April 1978

October 1978

(

___~______jl__

IND_EX_

INDEX OF TYPE NUMBERS
Data Handbooks SC1a to SC4c

The inclusion of a type number in this publication does not necessarily imply its availability.
type no.

part section

AAll9
AAZlS
AAZl7
AAZl8
ACl25

lb
lb
lb
lb
2

PC
GB
GB
GB

ACl26
ACl27
AC128
ACl28/01
Acl32

2
2
2
2
2

LF

ACl87
ACl87/0l
ACl88
ACl88/0l
AD161

2
2
2
2
2

LF

ADl62
AF367
ASZl5
ASZl6
ASZ17

2
3
2
2
2

ASZl8
BAlOO
BAlO2
BAl45
BAl48
BAlS7
BAl58
BAl59
BAl82
BA216

la
la
la
Ib
lb

type no.

part section

BA2l7
BA2l8
BA2l9
BA220
BA22l

lb
lb
lb
lb
lb

BA222
BA243
BA244
BA280
BA3l4

lb
Ib
lb
1b
1b
1b
lb
lb
lb
lb

Vrg
Vrg

P

BA314A
BA3l5
BA3l6
BA3l7
BA318

P
HFSW
P
P
P

BA379
BAS16
BATl7
BATl8
BAV10

lb
4c
4c
4c
lb

T

2

p

lb
lb
la
la

AD

BAV18
BAVl9
BAV20
BAV2l
BAV45

Ib
lb
lb
lb
Ib

BAV70
BAV99
BAW2lA
BAW21B
BAW56

4c
4c
lb
lb
4c

LF

LF
LF
LF
LF

LF
LF
LF

'r
R
R
R
R
R

T
WD

AD
= Silicon alloyed diodes
GB
= Germanium gold bonded diodes
HFSW = High-frequency and switching transistors
= Low-frequency transistors
LF
Mm = Discrete semiconductors for hybrid
thick and thin-film circuits
= Low-frequency power transiStors
P

WD

WD
WD
WD
WD
WD

T
T
T
Vrg

WD

WD
WD

MIn
MIn
MIn
WD
WD
WD

WD
WD

Sp
MIn
MIn
WD

WD
MIn

type no.

part section

BAW62
BAXl2
BAXl2A
BAXl3
BAX14

lb
lb
11:>
Ib
Ib

BAXl4A
BAXlS
BAXl6
BAX17
BAX18

lb
lb
lb
Ib
lb

WD

BAX18A
BBlOSA
BBlO5B
BB105G
BBlO6

lb
Ib
Ib
1b
1b

WD
T
T
T
T

BBll0B
BBll0G
BBl17
BBl19
BB204B

lb
lb
lb
lb
lb

T
T
T
T
T

BB204G
BB20SA
BB205B
BB20SG
BBY3l

Ib
lb
lb
lb
4c

T
T
T
T

BClO7
BClO8
BCI09
BC140
BC141

2
2
2
2
2

WD
WD
WD
WD

WD
WD
WD

WD
WD

MIn

LF
LF
LF

LF
LF

PC = Germanium point contact diodes
R = Rectifier diodes
Sp = Special diodes
T = Tuner diodes
Vrg = Voltage regulator diodes
WD = Silicon whisk~rless diodes

September 1978

:~_IND_EX---"""jl________
type no.

I

§

=

part

section

BC146
BC147
BC148
BC149
BC157

2
2
2
2
2

LF

BC158
BC159
BC160
BC161
BCl77

2
2
2
2
2

LF
LF
LF

BC178
BC179
BC200
BC264A
BC264B

2
2
2
3
3

BC264C
BC264D
BC327
BC328
BC337

3
3
2
2
2

BC338
BC368
BC369
BC546
BC547

2
2
2
2

LF
LF

2

LF

BC548
BC549
BC550
BC556
BC557

2
2
2
2
2

LF
LF
LF

BC558
BC559
BC560
BC635
BC636

2
2
2
2
2

BC637
BC638
BC639
BC640
BCW29;R

2
2
2
2
4c

LF
LF
LF
LF

LF
LF
LF
LF
LF

FET
FET
FET
FET
LF
LF
LF

LF

LF
LF

LF
LF
LF
LF
LF
LF
LF

LF
LF
LF
MIn

DT = Dual transistors
FET = Field-effect transistors
LF = Low-frequency transistors

2

September 1978

(

type. no.

part section

part section

/BD135
BD136
BD137
BD138
BD139

2
2
2
2
2

p
p

BD140
BD181
BD182
BD183
BD201

2
2
2
2
2

P
p
p
p
p

BD202
BD203
BD204
BD226
BD227

2
2
2
2
2

p
p
p
p
p

BD228
BD229
BD230
BD231
BD232

2
2
2
2
2

p
p
p
p
p

BD233
BD234
BD235
BD236
BD237

2
2
2
2
2

p
P

BD238
BD262
BD262A
BD262B
BD263

2
2
2
2
2

P
P
p

DT

BD263A
BD263B
BD266
BD266A
BD266B

2
2
2
2
2

P
P
p
P
P

DT
p
p
p
p

BD267
BD267A
BD267B
BD291
BD292

2
2
2
2
2

p
P
P
p
p

BCW30;R
BCW31;R
BCW32;R
BCw33;R
BCW69;R

40
4c
4c
4c
4c

MIn
MIn
MIn

BCW70;R
BCW71;R
BCW72;R
BCX17;R
BCX18;R

40
40
4c
4c
4c

MIn
MIn

BCX19;R
BCX20;R
BCX51
BCX52
BCX53

4c
4c
4c
4c
4c

BCX54
BCX55
BCX56
BCY30A
BCY31A

4c
4c
4c
2
2

MIn
MIn
MIn

BCY32A
BCY33A
BCY34A
BCY55
BCY56

2
2
2
2
2

LF
LF

BCY57
BCY58
BCY59
BCY70
BCY71

2
2
2
2
2

LF
LF
LF
LF

BCY72
BCY78
BCY79
BCY87
BCY88

2
2
2
2
2

LF
LF
LF
DT

BCY89
BD115
BD131
BD132
BD133

2
2
2
2
2

MIn
MIn

MIn
MIn
MIn
MIn

Mm
Mm
MIn

Mm

LF
LF

LF
DT

LF

LF

.

type no.

P
p
p

p

P
p
p
p

Mm = Discrete semiconductors for hybrid
thick and thin-film circuits
P = Low-frequency power transistors

_ _ _Jl_IND_EX
type no.

part section

type no.

part section

type no.

part

section

B0293
B0294
B0329
B0330
B0331

2
2
2
2
2

p
p
p
p
p

BOX64A
BOX64B
. BOX65
BOX65A
BOX65B

2
2
2
2
2

P
P
P
P
P

BF195
BF196
BF197
BF198
BF199

3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

B0332
B0333
B0334
B0335
B0336

2
2
2
2
2

p
p
p

Box66
BOX66A
Box66B
BOX67
BOX67A

2
2
2
2
2

P
P
P
P
P

BF200
BF240
BF241
BF245A
BF245B

3
3
3
3
3

HFSW
HFSW
HFSW
FET
FET

B0433
B0434
B0435
B0436
B0437

2
2
2
2
2

BOX67B
BOX 77
BOX78
Box91
BOX92

2
2
2
2
2

P
P
p

BF245C
BF256A
BF256B
BF256C
BF324

3
3
3
3
3

FET
FET
FET
FET
HFSW

B0438
B0645
B0646
B0647
B0648

2
2
2
2
2

BOX93
Box94
BOX95
BOX96
BOY20

2
2
2
2
2

BF327
BF336
BF337
BF338
BF362

3
3
3
3
3

FET
HFSW
HFSW
HFSW
HFSW

B0649
B0650
B0675
B0676
B0677

2
2
2
2
2

BOY90
BOY91
BOY92
BOY93
BOY94

2
2
2
2
2

BF363
BF422
BF423
BF450
BF451

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

B0678
B0679
B0680
B0681
B0682

2
2
2
2
2

BOY96
BOY97
BF115
BF167
BF173

2
2
3
3
3

HFSW
HFSW
HFSW

BF457
BF458
BF459
BF480
BF494

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

BOX35
BOX36
BOX37
BOX62
BOX62A

2
2
2
2
2

P
p
p

BFl77
BF178
BF179
BF180
BF181

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

BF495
BF550;R
BF622
BF623
BFQ10

3
4c
4c
4c
3

MIn
MIn
MIn

BOX62B
BOX63
BOX63A
BOX63B
BOX64

2
2
2
2
2

P
p

BF182
BF183
BF184
BF185
BF194

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

BFQ11
BFQ12
BFQ13
BFQ14
BFQ15

3
3
3
3
3

FET
FET
FET
FET
FET

P
p
p
p

P
p
p
p
p
p

P
p
p
p
p
p

P
p

P
p
p
p

P
P

P
P
P

FET = Field-effect transistors
HFSW = High-frequency and switching transistors
Mm
= Discrete semiconductors for hybrid
thick and thin-film circuits

P
p
p

P
P
p
P
p
p

P
p
P
p

P

:3

-

HFSW

FET

P = Low-frequency power transistors

September 1978

3

_I_NDE_X

_Jl_______ _ _

type no.

part

section

type no.

part

BFQ16
BFQ17
BFQ18A
BFQ19
BFQ23

3
4c
4c
4c
3

FET

4c
3
3
3
3

MIn

HFSW

BFT93;R
BFW10
BFW11
BFW12
BFW13

BFQ24
BFQ32
BFQ34
BFQ42
BFQ43

3
3
3
4a
4a

HFSW
HFSW
HFSW
Tra
Tra

BFW16A
BFW17A
BFW30
BFW45
BFW61

3
3
3
3
3

BFR29
BFR30
BFR31
BFR49
BFR53;R

3
4c
4c
3
4c

FET

MIll

BFW92
BFW93
BFX34
BFX89
BFY50

BFR64
BFR65
BFR84
BFR90
BFR91

3
3
3
3
3

HFSW
HFSW
FET
HFSW
HFSW

BFY51
BFY52
BFY55
BFY90

BFR92;R
BFR93;R
BFR94
BFR95
BFR96

4c
4c
3
3
3

MIll

BFS17;R
BFS18;R
BFS19;R
BFS20;R
BFS21

4c
4c
4c
4c
3

MIll

MIn
MIn
MIn

BFS21A
BFS22A
BFS23A
BFS28
BFT24

3
4a
4a
3
3

FET
Tra
Tra
FET
HFSW

BFT25;R
BFT44
BFT45
BFT46
BFT92;R

4c
3
3
4c
4c

MIn

type no.

section

part

section

BGY33
BGY35
'BGY36
BGY37
BLV10

4a
4a
4a
3
4a

Tra
Tra
Tra
HFSW
Tra

HFSW
HFSW
HFSW
HFSW
FET

BLV11
BLV20
BLV21
BLW29
BLW31

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

3
3
3
3
3

HFSW
HFSW
HFSW·
HFSW
HFSW

BLW32
BLW33
BLW34
BLW60
BLW60C

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

3
3
3
3

HFSW
HFSW
HFSW
HFSW

BLW64
BLW75
BLW76
BLW77
BLW78

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

1a

R

la

R

1a

·R

BLW79
BLW80
BLW81
BLW82
BLW83

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

1a

R

1a

R

BLW84
BLW85
BLW86
BLW87
BLW95

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

1a

R

1a

R

BLW98
BLX13
BLX13C
BLX14
BLX15

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BLX39
BLX65
BLX66
BLX67
BLX'68

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

J

MIn

MID
MID

MID
MIll

HFSW

MID

HFSW
HFSW
HFSW

FET

HFSW
HFSW
MIn
MIn

BG1895541
BG1895641
BG1897541
BG1897542
BG1897,...
641
BG1897642
BG1898541
BG189864~

BGY22
BGY22A
BGY23
BGY23A
BGY32

FET = Field-effect transistors
HFSW = High~frequency and switching transistors
Mm
= Discrete semiconductors for hybrid
thick and thin-film circuits

4

September 1978

(

FET
FET
FET
FET

1a

R

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

R
Tra

J

,

= Rectifier diodes
= Transmitting transistors and modules

_-.,..-_____________Jl__

IN_DE_X_

type no.

type no.

part

BLX69A
BLX91A
BLX92A
BLX93A
BLX94A

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BRY39
(SeS)
BRY39
(PUT)
BRY61

BLX95
BLX96
BLX97
BLX98
BLY87A

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BLY87e
BLY88A
BLY88e
BLY89A
BLY8ge

4a
4a
4a
4a
4a

BLY90
BLY91A
BLY91e
BLY92A
BLY92e

section

part section

type no.

part section
3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

3

HFSW

3
4c

MIn

BSX20
BSx21
BSX45
BSX46
BSX47

BSR12;R
BSR30
BSR31
BSR32
BSR33

4c
4c
4c
4c
4c

MIn
MIn
MIn
MIn
MIn

BSX59
BSX60
BSX61
BT126
BT128 +

3
3
3
1a
1a

HFSW
HFSW
HFSW
Th
Th

Tra
Tra
Tra
Tra
Tra

BSR40
BSR41
BSR42
BSR43
BSR56

4c
4c
4c
4c
4c

MIn
MIn
MIn

BT129
BT137
BT138
B'l'139
BT151

+
+
+
+
+

1a
1a
1a
la
1a

Tri
Tri
Tri
Th

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BSR57
BSR58
BSS38
BSS50
BSS51

4c
4c
3
3
3

MIn
MIn

BTW23
BTW24
BTW30
BTW31
BTW33

+
+
+
+
+

la
la
1a
la
la

Th
Th
Th

BLY93A
BLY93e
BLY94
BPW22
BPW34

4a
4a
4a
4b
4b

Tra
Tra
Tra
PDT
PDT

BSS52
BSS60
BSS61
BSS63;R
BSS64;R

3
3
3
4c
4c

HFSW
HFSW
HFSW

BTW34
BTW38
BTW40
BTW41
BTW42

+
+
+
+
+

la
la
la
la
la

Tri
Th
Th
Tri
Th

BPX25
BPX29
BPX40
BPX41
BPX42

4b
4b
4b
4b
4b

PDT
PDT
PDT
PDT
PDT

BSS68
BSV15
BSV16
BSV17
BSV52;R

3
3
3
3'
4c

MIn

BTW43
BTW45
BTW47
BTW92
BTX18

+
+
+
+
+

la
la
la
la
la

Tri
Th
Th
Th
Th

BPX47A
BPX70
BPX71
BPX72
BPx94

4b
4b
4b
4b
4b

PDT
PDT
PDT
PDT
PDT

BSV64
BSV78
BSV79
BSV80
BSV81

3
3
3
3
3

HFSW
FET
FET
FET
FET

BTX94
BTY79
BTY87
BTY91
BUI05

+
+
+
+

la
la
la
la
2

Tri
Th
Th

BPx95B
BR100
BRI0l
BRY39

4b
la
3
la

PDT
Th
HFSW
Th

BSW41A
BSW66
BSW67
BSW68
BSX19

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

BUI08
BU126
BU132
BU133
BU204

2
2
2
2
2

P
P
P
P
P

HFSW

Mm
MIn

HFSW
HFSW
HFSW

Mm
MIn

HFSW
HFSW
HFSW
HFSW

'

Th

--

Th
Th

Th

P

+ = series.
FET
HFSW
Mm

P
PDT

Field-effect transistors
High-frequency and switching transistors
= Discrete semiconductors for hybrid
thick and thin-film circuits
= Low-frequency power transistors
= Photodiodes or transistors
=
=

Th
Tra
Tri

= Thyristors
= Transmitting transistors and modules
= Triacs

September 1978

5

_IND_EX

--

_Jl_______

type no.

part section

BU205
BU206
BU207A
BU'208A
BU209A

2
2
2
2
2

Bu326A
BUX80
BUX81
BUX82
BUX83

type no.

part section

type no.

P
P
P

BY478
BYW19
BYW29
BYW30
BYW31

+
+
+
+

la
la
la
la
la

R
R
R
R
R

BZV38
BZWIO
BZW70 +
BZW86 +
BZW91 +

Ib
la
la
la
la

2
2
2
2
2

P
p
p
p
p

BYW54
BYW55
BYW56
BYW92 +
BYXI0

la
la
la
la
la

R
R
R
R
R

BZW93
BZW95
BZW96
BZX55
BZX61

+
+
+
+

la
la
la
Ib
Ib

BUX84
BUX85
BUX86
BUX87
BY126

2
2
2
2
la

p
p
p

+
+
+
+
+

la
la
la
la
la

R
R
R
R
R

BZX70
BZX75
BZX79
BZX84
BZX87

+
+
+
+
+

la
Ib
Ib
4c
Ib

Vrg
Vrg
Vrg

P
R

BYX22
BYX25
BYX29
BYX30
BYX32

BY127
BY164
BY176
BY179
BY184

la
la
la
la
la

R
R
R
R
R

BYX35
BYX36
BYX38
BYX39
BYX42

+
+
+
+

la
la
la
la
la

R
R
R
R
R

BZX90
BZX91
BZX92
BZX93
BZY78

Ib
Ib
Ib
Ib
Ib

Vrf
Vrf
Vrf
Vrf
Vrf

BYl87
BYl88 +
BY206
BY207
BY208 +

la
la
la
la
la

R
R
R
R
R

BYX45
BYX46
BYX49
BYX50
BYX52

+
+
+
+
+

la
la
la
la
la

R
R
R
R
R

BZY88
BZY91
BZY93
BZY95
BZY96

lb
la
la
la
la

Vrg
Vrg
Vrg
Vrg
Vrg

BY209
BY223
BY224 +
BY225 +
BY226

la
la
la
la
la

R
R
R
R
R

BYX55
BYX56
BYX71
BYX90
BYX91

+
+
+

la
la
la
la
la

R
R
R
R
R

BZZl4
BZZ15
BZZ16
BZZ17
BZZ18

la
la
la
la
la

Vrg
Vrg
Vrg
Vrg
Vrg

R
R
R
R

la
la
la
la
la

Vrg
Vrg
Vrg
Vrg
Vrg

la
la
la
la
la

Vrg
Vrg
Vrg
Vrg
V,rg

p
p

+

BY227
BY228
BY277 +
BY406
BY407

la
la
la
la
la

R
R
R
R
R

BYX96
BYX97
BYX98
BYX99
BZVIO

+
+
+
+

la
la
la
la
Ib

Vrf

BZzl9
BZZ20
BZZ21
BZZ22
BZZ23

BY409
BY409A
BY476
BY476A
BY477

la
la
la
la
la

R
R
R
R
R

BZVll
BZV12
BZV13
BZV14
BZV15 +

Ib
lb
Ib
Ib
la

Vrf
Vrf
Vrf
Vrf
Vrg

BZZ24
BZZ25
BZZ26
BZZ27
Bzz28

-I;

+
+
+
+
+

part section

+ = series.

6

Mm

=

P
R

=
=

Discrete semiconductors for hybrid
thick and thin-film circuits
low-frequency power transistors
Rectifier diodes

September 1978

(

TS = Transient suppressor diodes
Vrf = Voltage reference diodes
Vrg = Voltage regulator diodes

Vrf

TS
TS
TS
TS
TS
TS
TS
Vrg
Vrg

MIn

Vrg

_ _ _J
type no.

part section

type no.

part

section

INDEX

type no.

part

section

BZZ29
CNY22
CNY23
CNY42
CNY43

la
4b
4b
4b
4b

Vrg
PhC
PhC
PhC
PhC

ORP66
ORP68
ORP69
OSB9110
OSB9210

4b
4b
4b
1a
la

Ph
Ph
Ph
St
St

1N3890
1N3891
1N3892
IN4009
1N4148

1a
la
la
Ib
1b

R
R
R
WD
WD

CNY44
CNY46
CNY47
CNY47A
CNY48

4b
4b
4b
4b
4b

PhC
PhC
PhC
PhC
PhC

OSB9310
OSB9410
OSM9110
OSM9210
08M9310

1a
1a
1a
1a
1a

St
St
St
St
St

1N4150
1N4151
IN4154
1N4446
1N4448

1b
1b
1b
1b
1b

WD
WD
WD
WD

CQYllB
CQY11C·
CQY24A
CQY46A
CQY47A

4b
4b
4b
4b
4b

LED
LED
LED
LED
LED

08M9410
08S9110
0889210
0889310
OS89410

1a
1a
1a
1a
1a

8t
8t
8t
St
8t

1N5060
1N5061
1N5062
1N5729B
1N5730B

1a
1a
1a
1b
1b

R
R
R
Vrg
Vrg

CQY49B
CQY49C
CQY50
CQY52
CQY54

4b
4b
4b
4b
4b

LED
LED
LED
LED
LED

RPY58A
RPY71
RPY76A
RPY82
RPY84

4b
4b
4b
4b
4b

Ph
Ph

IN5731B
IN5732B
1N5733B
IN5734B
1N5735B

1b
Ib
Ib
Ib
1b

Vrg
Vrg
Vrg
Vrg
Vrg

CQY58
CQY88
CQY89
CQY94
CQY95

4b
4b
4b
4b
4b

LED
LED
LED
LED
LED

RPY85
RPY86
RPY87
RPY88
RPY89

4b
4b
4b
4b
4b

Ph
I
I
I
I

1N5736B
1N5737B
IN5738B
IN5739B
IN5740B

Ib
Ib
1b
1b
Ib

Vrg
Vrg
Vrg
Vrg
Vrg

CQY96
CQY97
OM7
OA90
OA91

4b
4b
1b
1b
1b

LED
LED
GB
PC
PC

1N821
IN823
1N825
IN827
IN829

Ib
1b
1b
Ib
1b

Vrf
Vrf
Vrf
Vrf
Vrf

iN5741B
1N5742B
1N5743B
1N5744B
IN5745B

1b
1b
1b
1b
1b

Vrg
Vrg
Vrg
Vrg
Vrg

OA95
OA200
OA202
ORPIO
ORP13

1b
Ib
1b
4b
4b

PC
AD
AD
I
I

IN914
IN914A
1N916
1N916A
IN916B

Ib
Ib
1b
1b
1b

WD
WD
WD
WD
WD

1N5746B
1N5747B
1N5748B
1N5749B
1N5750B

1b
1b
1b
Ib
1b

Vrg
Vrg
Vrg
Vrg
Vrg

ORP23
ORP52
ORP60
ORP61
ORP62

4b
4b
4b
4b
4b

Ph
Ph
Ph
Ph
Ph

1N3879
1N3880
IN3881
1N3882
IN3889

la
1a
la
la
la

R
R
R
R
R

IN5751B
1N5752B
1N5753B
1N5754B
IN5755B

Ib
Ib
Ib
1b
1b

Vrg
Vrg
Vrg
Vrg
Vrg

AD
GB
I

LED
PC
Ph

= Silicon alloyed diodes

= Germanium gold bonded diodes
= I nfrared devices
= Light-emitting diodes
= Germanium point contact diodes
= Photoconductjve devices

I

Ph
Ph

WD

PhC = Photocouplers
R = Rectifier diodes
St = Rectifier stacks
Vrf = Voltage reference diodes
Vrg = Voltage regulator diodes
WD = Silicon whiskerless diodes

September 1978

7

type no.

~
-

part section

type no.

type no.

part section

1N5756B
1N5757B
2N918
2N929
2N930

1b
1b
3
2
2

Vrg
Vrg
HFSW
LF
LF

2N3866
2N3924
2N3926
2N3927
2N3966

4a
4a
4a
4a
J

Tra
Tra
Tra
Tra
FET

56231
5623-3
56234
56245

1a
1a
1a
2,3,
4a

2N1613
2N1711
2N1893
2N2218
2N2218A

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

2N4030
2N4031
2N4032
2N4033
2N4036

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

56246

1a
to 4a A
1a
DH
1a
DH
2
A

2N2219
2N2219A
2N2221
2N2221A
2N2222

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

2N4091
2N4092
2N4093
2N4347
2N4391

3
3
3
2
3

FET
FET
FET

56261a
56262A
56263

FET

56264A

1a
to 4a A
1a
A

2N2222A
2N2297
2N2368
2N2369
2N2369A

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

2N4392
2N4393
2N4427
2N4856
2N4857

3
3
4a
3
3

FET
FET
Tra
FET
FET

56268
56271
56278
56280
56290

1a
la
1a
1a
la

DH
DH
DH
DH
HE

2N2483
2N2484
2N2894
2N2894A
2N2904

2
2
3
3
3

LF
LF
HFSW
HFSW
HFSW

2N4858
2N4859
2N4860
2N4861
2N5415

3
3
3
3
3

FET
FET
FET
FET
HFSW

56293
56295
56299
56309B
56309R

1a
la
1a
1a
1a

HE
A
A
A
A

2N2904A
2N2905
2N2905A
2N2906
2N2906A

3
3
3
3
3

. HFSW
HFSW
HFSW
HFSW
HFSW

2N5416
61SV
40820
40835
40838

3
4b
3
3
3

HFSW
HFSW
HFSW
HFSW

56312
56313
56314
56315
56316

1a
1a
1a
1a
la

DH
DH
DH
DH
A

2N2907
2N2907A
2N3019
2N3020
2N3055

3
3
3
3
2

HFSW
HFSW
HFSW
HFSW

56200

2,3,
4a
2
2
2

A
A
A
A

56318
56319
56326
56333
56334

la
1a
2,3
2,3
1a

DH
DH.
A
A
DH

2N3375
2N3442
2N3553
2N3632
2N3823

4a
2
4a
4a
3

Tra

56337
56339
56348
56349
56350

1a
2
la
la
1a

A
A
DH
DH
DH

p
p

Tra
Tra
FET

562(11
56201c
56201d
56201j
56203
56218
56230

A
= Accessories
DH
= Diecast heatsinks
FET = Field-effect transistors
HE
= Heatsink extrusions
HFSW = High-frequency and switching transistors

8

part section

. September 1978

(

2
2
2,3,
4a
1a

56253
56256
56261

p

I

A
A
A
HE

"

2

1 15 °CIW)
TRANSISTOR; power, audio frequency (Rth j-mb E;; 15 OCIW)
DIODE; tunnel
TRANSISTOR; low power, high frequency (Rth j-mb > 15 °CIW>
MULTIPLE OF DISSIMILAR DEVICES - MISCELLANEOUS; e.g. oscillator
DIODE; magnetic sensitive
TRANSISTOR; power, high frequency (Rth j-mb ~ 15 °C/W)
PHOTO-COUPLER
RADIATION DETECTOR; e.g. high sensitivity phototransistor
RADIATION GENERATOR; e.g. light-emitting diode (LED)
CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power (Rth j-mb > 15 °C/W)
TRANSISTOR; low power, switching (Rth j-mb > 15 OCIW)
CONTROL AND SWITCHING DEVICE; e.g. thyristor, power (Rthj-mb E;; 15 °C/W)
TRANSISTOR; power, switching (Rth j-mb E;; 15 OCIW)
DIODE: mUltiplier, e.g. varactor, step recovery
DIODE; rectifying, booster
DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)

March 1978

TYPE
DESIGNATION

L'
~-------------------------------------------------

SERIAL NUMBER
Three figures, running from 100 to 999, for devices primarily intended for consumer equipment.

One letter, (Z, Y, X, etc.) and two figures, running from 10 to 99, for devices primarily intended for
indu$trial/professional equipment.
,
This letter has no fixed meaning except W, which is used for transient suppressor diodes.
VERSION LETTER
It indicates a minor variant of the basic type either electrically or mechanically. The letter never has a
fixed meaning, except letter R, indicating reverse voltage, e.g. collector to case or anode ,to stud~
SUFFIX
Sub-classification can be used for devices supplied in a wide range of variants called associated types.
Following sub-cOding suffixes are in use:
1. VOLTAGE REFERENCE and VOLTAGE REGULATOR DIODES: ONE LETTER and ONE
NUMBER
The If:TTE R indicates the nominal tolerance of the Zener (regulation, working or reference) voltage
A. 1% (according to IEC 63: series E96)
8. 2% (according to IEC 63: series E48)
C. 5% (according to IEC 63: series E24)
O. 10% (according to IEC 63: series E12)
E. 20% (according to IEC 63: series E6)
ihe number denotes the typical operating (Zener) voltage related to the nominal current rating for
the whole range.
The letter 'V' is used instead of the decimal point.

~
-

2. TRANSIENT SUPPRESSOR DIODES: ONE NUMBER
The NUMBER indicates the maximum recommended continuous reversed (stand-off) voltage VR' The
letter 'V' is used as above.

\
3. CONVENTIONAL and CONTROLLED AVALANCHE RECTIFIER DIODES and THYRISTORS:
ONE NUMBER
'
The NUMBER indicates the rated maximum repetitive peak reverse voltage (VRRM) or the rated
repetitive peak off-state voltage (VDRM), whichever is the lower. Reversed polarity is indicated by
letter R, immediately after the number.
4. RADIATION DETECTORS: ONE NUMBER, preceded by a hyphen (-)
The NUMBER indicates the depletion layer in ~m. The resolution is indicated by a version LETTER.
5. ARRAY OF RADIATION DETECTORS'and GENERATORS: ONE NUMBER, preceded by a stroke
(/).
The NUMBER indicates how many basic devices are assembled into the array.

2

______Jl__
RATING SYSTEMS
The rating systems described are those recommended by the International Electrotechnical Commission
(lEC) in its Publication 134.
DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note
This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property
may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed
as a value for stated or recognized conditions. Acharacteristic may also be a set of related values,
usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values
for the type. A bogey electronic device for any particular application can be obtained by considering
only those characteristics which are directly related to the application.

Rating. A value which establ.ishes either a limiting capability or a limiting condi.tion for an electronic
device. It is determined for specified values of environment and operation, and may be stated in any
su'itable terms.
Note
Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their
interp~etation.

Note
The rating system indicates the division of responsibility between the device manufacturer and the
circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.
ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to
any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device,
taking no responsibility for equipment variations, environmental variations, and the effects of changes
in operating conditions due to variations in the characteristics of the device under consideration and
of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and throughout life, no absolute maximum
value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control
adjustment, load variations, signal variation, environmental conditions, and variations in characteristics
of the device under consideration and of all other electronic devices in the equipment.

'I (Oct~1977

.-

__Jl_ __________
DESIGN MAXIMUM RATING SYSTEM
Design maximum ratings are limiting values of operating and environmental conditions applicable to a
bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device,
taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.
The equipment manufacturer should design so that, initially and throughout life, n6 design maximum
value for the intended service is exceeded with a bogey device under theworst probable operating
conditions with respect to supply voltage variation, equipment component variation, variation in
characteristics of all other devices in the equipment, equipment control adjustment, load variation,
signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM
Design centre ratings are limiting values of operating and environmental conditions applicable to a
bogey electronic device of a specified type as defined by its published data, and should riot be exceeded under normal conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device
in average applications, taking responsibility for normal changes in operating conditions due to rated
supply voltage variation, equipment component variation, equipment control adjustment, load variation,
signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

-

The equipment manufacturer should design so that, initially, no design centre value for the intended
service is exceeded with a bogey electronic device in equipment operating at the stated normal supply
voltage.

2

Octcber

19771 (

LETTER SYMBOLS

LETTER SYMBOLS FOR TRANSISTORS AND SIGNAL DIODES
based on lEe Publication 148
LEITER SYMBOLS FOR CURRENTS, VOLTAGES AND POWERS
Basic letters

The basic letters to be used are:
I, i = current
V, v = voltage
P, p = power
Lower-case basic letters shall be used for the representation of instantaneous values
which vary with time.
In all other instances upper-case basic letters shall be used.
Subscripts
A, a
(AV) , (av)
B, b

(BR)
C,c
D,d
E,e
F, f
G,g
K,k

M,m
0,0
R,r

(RMS) , (rms)
S, s

x,x
Z,z

Anode terminal
Average value
Base terminal, for MOS devices: Substrate'
Breakdown
Collector terminal
Drain terminal
Emitter terminal
Forward
Gate terminal
Cathode terminal
Peak value
As third subscript: The terminal not mentioned is open circuited
As first subscript: Reverse. As second subscript: Repetitive.
As third subscript: With a specified resistance between the terminal
not mentioned and the reference terminal.
R.M.S. value
As first or second subscript: Source terminal (for FETS only)
As second subscript: Non-repetitive (not for FETS)
As third subscript: Shor,t circuit between the terminal not mentioned
and the reference terminal
Specified circuit'
Replaces R to indicate the actual working voltage, current or power
of voltage reference and voltage regulator diodes.

I

Note: No additional subscript is used for d. c. values.

February 1974

II

II

--

LETTER SYMBOLS

Upper-case subscripts shall be used for the indication of:
a) continuous (d. c.) values (without signal)
Example IB
b) instantaneous total values
Example iB
c) average total values
Example' IB(A V)
d) peak total values
Example IBM
e) root-mean-square total values
Example IB(RMS)

--

Lower-case subscripts shall be used for the indication of values applying to the varying
component alone:

~

=
-

a) instantaneous values
Example ib
b) root-mean-square values
Example Ib(rms)
c) peak values
Example Ibm
d) average values
Example Ib(av)
Note: If more than one subscript is used, subscript for which both styles exist shall
either be all upper-case or all lower-case.
Additional rules for subscripts

Subscripts for currents
Transistors: If it is necessary to indicate the terminal carrying the current, this should
be done by the first subscript (conventional current flow from the external
circuit into the terminal is positive).
Examples: IB' iB, ib' Ibm
Diodes:

To indicate a forward current (conventional current flow into the anode
terminal) the subscript F or f should be used; for a reverse current
(conventional current flow out of the anode terminal) the subscript R or r'
should be used.
.
Examples: IF, IR' iF, If(rms)

2

II

February 1974

LETTER SYMBOLS

Subscripts for voltages
Transistors: If it is necessary to indicate the points between which a voltage is measured, this should be done by the first two subscripts. The first subscript
indicates the terminal at whiCh the voltage is measured and the second the
reference terminal or the circuit node. Where there is no possibility of
confusion, the second subscript may be omitted.
Examples: V , v ' v be ' Vbem
BE BE
Diodes:

To indicate a forward voltage (anode positive with respect to cathode), the
subscript P or f should be used; for a reverse voltage (anode negative with
respect to cathode) the subscript R or r should be used.
Examples: Vp ' VR , v ' Vrm
P

Subscripts for supply voltages or

s~pply

currents

Supply voltages or supply currents shall be indicated by repeating the appropriate term_inal subscript.
Examples: Vee' lEE
Note: If it is necessary to indicate a reference terminal, this should be done by a third
subscript
Example: VCCE
Subscripts for devices having more than one terminal of the saine kind
If a device has more than one terminal of the same kind, the subscript is formed by the

apprLS

Upper-case letters shall be used for the representation of:
a) electrical parameters of external circuits and of circuits in which the device form
only a part;
b) all inductances and capacitances.
Lower-case letters shall be used for the representation of electrical parameters inhe:ent in the device (with the exception of inductances and capacitances).

Subscripts
General subscripts
The following is a list of the most important general subscripts used for electrical pa; II meters of semiconductor devices:
F, f
= forward; forward transfer
I, i (or 1)
input
L, 1
load
0, 0 (or 2) = output
R, r
reverse; reverse transfer
S, s
= source

=
=
=
-

The upper-case variant of a subscript shall be used for the designation of static (d. c.)
values.
Examples: hPE

static value of forward current transfer ratio in commonemitter configuration (d. c. current gain)
d. c. value of the external emitter resistance.

Note: The static value is the slope of the line from the origin to the operating point 011
the appropriate characteristic curve, i. e. the quotient of the appropriate electrical quantities at the operating point.
The lower-case variant of a subscript shall be used for the designation of small- signal
values.
Examples: h

small-signal value of the short-'-circuit forward
current transfer ratio in common-emitter contiguration

fe

Ze = Re + jX

e

== small-signal value of the external impedance

Note: If more than one subscript is used, subscripts for which both styles exist shall
either be all upper-case or all lower-case
Examples: hPE' YRE' hfe

February 1974

II

5

lETTER SYMBOLS

II

Subscripts for four-pole matJ;"ix parameters
The first letter subscript (or double numeric subscript) indicates input, output, forward
transfer or reverse transfer
Examples: hi (or h )
l1
h (or h 2.)
2
h~ (or h 21 )
hr (or 012)
A further subscript is used for the identification of the circuit configuration. When no
confusion is possible, this further subscript may be omitted.

Examples: h (or h
), hFE (or h
)
21E
fe
21e
Distinction between real and imaginary parts
If it is necessary to distinguish between real and imaginary parts of electricalparameters, no additional subscripts should be used. If basic symbols for the real and imaginary.parts exist, these may be used.

Examples: Zi
Yfe

= Ri + jX i

= gfe + jbfe

If such symbols do not exist or if they are not suitable, the following notation shall be

used:
I

Examples: Re (h ) etc. for the real part of hib
ib
1m (h ) etc. for the imaginary part of h
ib
ib

•..¥

6

II

February 1974

S·PARAMETERS

SCATTERING PARAMETERS
In distinction to the conventional h, y and z-parameters, s-parameters relate to travelling wave conditions. The figure below shows a two-port network with the incident and
reflected waves aI' b I , a2 and b 2 •

Zo

11511

7Z65646.1

Zo

= characteristic impedance of the transmission line in which the two-port is
connected.

Vi

= i,flcident voltage

V r = reflected (generated) voltage
The four -pole equations for s -parameters are:
b1

= sUai + s12a 2

b2 = s2I a l

+ s22a 2

Using the subscripts i for 11, r for 12, f for 21 and

0

for 22, it follows that:

1
s. = sl1 = b ,1
1
al a2= 0

sr = s12 =

:~ , al =0
2

Sf

b 1
= s21 =, al
a2

So = s22 =

=0

:~ Ia 1 = 0

1) The squares of these quantities have the dimension of power.

February 1974

II

I~

S-PARAMETERS

The s -parameters can be named and expressed as follows:
si=

8

11

= Input reflectio~ coefficient..
.
The complex ratio of the reflected wave and the incident wave at the input.
under the conditions Zl :: Zo and V 82 :: O.

sr = 812 :: Reverse transmission coefficient.
. .
The complex ratio of the generated wave at the input and the incident wave at
the output. under the conditions Zs :: Zo and V sl :: O.
Sf = s2l = Forward transmission coefficient.
The complex ratio of the generated wave at the.output and the incident wave at
the input. under the conditions Zl :: Zo and V s2 = a

So :: 822 :: Output reflection coefficient.
The complex ratio of the reflected wave and the incident wave at the output,
under the conditions Zs = Zo and V sl :: O.

2

II

II

February 1974

TRANSMITIING TRANSISTORS AND MODULES
Type number survey
Selection guide
Line-ups
Envelopes
Soldering recommendations

TYPE NUMBER
SURVEY

l

'------------------------------------------------

In this alphanumeric list we present all transmitting transistors and modules mentioned in this handbook together with the most important data.
type number

,

---

..

envelope

mode of operation

fr~uency

MHz

output power
W

c.w.
c.w.
c.w.
c.w.
C.w.

BGY22A
BGY23
BGY23A
BGY32
BGY33

SOT-75A
SOT-75A
SOT-75A
SOT-132
SOT-132

C.w.
C.w.
C.w.
C.w.
C.w.

12,5
13,5
12,5
12,5
12,5

BGY35
BGY36
BLV10
BLV11
\ BLV20

SOT-132
SOT-132
SOT-123
SOT-123
SOT-123

C.w.
C.w.
c.w. class-B
c.w. class-B
c.w. class-B

12,5
12,5
13,5
13,5
28

BLV21
BLW29
BLW31
BLW32
BLW33

SOT-123
SOT-120
SOT-120
SOT-122
SOT-122

c.w. class-B
c.w. class-B
c.w. class-B
class-A
class-A

132-156
148-174
175
175
175
_175
28
13,5 175
13,5 . 175
25
860
25
860

BLW34
BLW60

SOT-122
SOT-56

BLW60C

SOT-120

class-A
c.w. class-B
s.s.b. class-AB
C.w. class-B
s.s.b. class-AB

25
12,5
12,5
12,5
12,5

860
175
1,6-28
175
1,6-28

1,8 (note 1)
45
3-30 (note 2)
45
3-30 (note 2)

9
5,5
19,5
5,5
19,5

BLW64
BLW75
BLW76

class-A
SOT-56
SOT-l05
class-A
SOT-121A s.s.b. class-AB
c.w. class-B
SOT-121B s.s.b. class-AB
c.w. class-B

25
25
28
28
28
28

224,25
224,25
1,6-28
108
1,6-28
87,5

10 (note 3)
14 (note 3)
8-80 (note 2)
80
15-130 (note 2)
130

9,5
8
13
7,9
12
7,5

SOT-121A c.w. class-B
s.s.b. class-A
SOT-122
c.w. class-B
c.w. class-B
SOT-122
c.w. class-B
c.w. class-B

28
26
12,5
12,5
12,5
12,5

150
28
470
175
470
175

BLW78
BLW79
BLW80

Notes:
1. Po sync at dim < -60 dB.
2. P.E.P. at d3 < -30 dB.
3. Po sync at dim < -55 dB.
4. P.E.P. at d3 < -40 dB.
September 1978

(

2
4
4
4
2,5

420-480
380-480
420-480
68-88
80-108

2,5
7
7
18
18

11
12
B
10
17

TO-39
TO-39
TO-39
TO-39
SOT-75A

class-B
class-B
class-B
class-B

13,5 175
13,5 . 175
13,5 175
28
175
13,5 380-512

power gain
dB

BFQ42
BFQ43
BFS22A
BFS23A
BGY22

BLW77

1

VCE
V

18
18
8
15
8
15
15
28
0,5 (note 1)
1,0 (note 1)

100

30
2
2
4
4

(note 4)

"

17
4,5
4,5
22,6
22,6
20,8
20,8
9
8
12
10
10

9
11
10

6
19,5
9
13,5
8
15

\

TYPE NUMBER
SURVEY
type number

envelope

power gain
dB

frequency

c. w. class-B
c.w. class-B
c.w. class-B
c.w. class-S
s.s.b. class-A
s.s.b. class-AS

12,5
12,5
12,5
13,5
26
28

470
175
470
470
1,6-2S
1,6-28

10
10
30
30
0-10
3-30

6
13,5
5
6,1
20
21

t.w. class-S
c.w. class-S
s.s.b. class-AS
c.w. class-S
s.s.b. class-AB
s.s.b. class-A

28
12,5
12,5
28
28
26

175
175
1,6-28
175
1,6-28
1,6-28

25
45
3-30 (note 1)
45
5-47,5 (note 1)
17 (note 2)

9
5
19,5
7,5
19
22

175
28
860
28
28
70

25
160
3,5 (note 3)
0-8 (note 2)
25 (note 1)
25
0-8 (note 2)
3-25 (note 1)
15 (note 2)
7,5-50 (note 1)

6
14
6,5
18
18
17

MHz

BLW81

SOT-122

BLW82

SOT-119

BLW83

SOT-123

SLW84
SLW85

SOT-123
SOT-123

SLW86

SOT-123

SLW87
SLW95
BLW98
BLX13

SOT-123
SOT-121A
SOT-122
SOT-56

c.w. class-S
s.s.b. class-AB
class-A
s.s.b. class-A
s.s.b. class-AB
c.w. class-B

13,5
50
25
26
28
28

BLX13C

SOT-120

BLX14

SOT-55

s.s.b. class-A
s.s.b. class-AB
s.s.b. class-A
s.s.b. class-AS
C.w. class·S
C.w. class-B

26
28
28
28
28
28

1,6-28
1,6-28
1,6-28
1,6-28
70
30

50
40
50
50
28
28
26
12,5
12,5
12,5
12,5
12,5
12,5
12,5
12,5
13,5
28
28
28
28

1,6-28
1,6-28
70
108

SLX15

SOT-55

s.s.b. class-AS
s.s.b. class-A
c.w. class-S
c.w. class-S

SLX39

SOT-120

SLX65

TO-39

c.w. class-B
s.s.b. class-AB
s.s.b. class-A
c.w. class-B
c.w. class-S

BLX66

SOT-48

BLX67

SOT-48

BLX68

SOT-48

c.w.
c.w.
C.w.
c.w.
C.w.

BLX69A
BLX91A
BLX92A
SLX93A
BLX94A

SOT-48
SOT-48
SOT·48
SOT-48
SOT-48

C.w.
c.w.
c.w.
c.w.
c.w.

Notes:
1. P.E.P. at d3 < -30 dB.

output power
W

VCE
V

mode of operation

class-B
class-B
class-B
class-S
class-S
C.w. class-B
class-S
class-B
class-B
class-B
class-B

2. P.E.P. at d3 < -40 dS.

175
1,6-28
1,6-28
470
175
470
175
470
175
470
175
470
470
470
470
470

50
50

20
21
13
13
7,5
16

(note 1)
(note 2)

14
14
10
7,5

45
5-42,5 (note 1)
15 (note 2)
2
2
2,5
3
2,5
3
7
7,2

7,5
19
20
6
12
8,5
20
8,5
20
5
12,6

20-150
30
150
150

4
11
11
8,5

20
1
2,5
7
25

3. Po sync at dim

6

< -60 dB.

-------------------

i(~~19~

2

TYPE NUMBER
SURVEY

l
~----------------------------------------------

---

type number

envelope

mode of operation

VeE
V.

frequency
MHz

BLX95
BLX96
BLX97
BLX98
BLY87A

SOT-56
SOT-48
SOT-48
SOT-48
SOT-48

c.w. class-B
class-A
class-A
class-A
c.w. class-B

28
25
25
25
13,5

470
860
860
860
175

40

BLY87C
BLY88A
BLY88C
BLY89A
BLY89C
BLY90
BLY91A
BLY91C
BLY92A
BLY92C

SOT-120
SOT-48
SOT-120
SOT-56
SOT-120

c.w. class-B
c.w. class-B
c.w. class-B
c.w. class-B
c.w. class-8

13,5
13,5
13,5
13,5
13,5

175
175
175
175
175

8
15
15
25
25

12
7,5
8
6
6

SOT-55
SOT-48
SOT-120
SOT-48
SOT-120

c.w.
c.w.
c.w.
c.w.
c.w.

class-B
class-B
class-B
class-B
class-B

12,5
28
28
28
28

175
175
175
175
175

50
8
8
15
15

5
12
12
10
10

BLY93A
BLY93C
BLY94
2N3375

SOT-56
SOT-120
SOT-55
TO-60

c.w.
c.w.
c.w.
c.w.
c.w.

class-B
class-B
class-B
class-B
class-B

28
28
28
28
28

175
175
175
100
400

25
25
50
7,5
3

9
9
7
8,8
- 4,8

2N3553
2N3632
2N3866
2N3924
2N3926

TO-39
TO-60
TO-39
TO-39
TO-60

c.w.
c.w.
c.w.
c.w.
c.w.

class-B
class-B
class-B
class-B
class-B

28
28
28
13,5
13,5

175
175
400
175
175

2,5
13,5
1
4
7

10
5,9
10
6
5,4

2N3927
2N4427

TO-60
TO-39

c.w. class-B
c.w. class-B

13,5
12

175
175

12
1

4,8
10

Note:
1. Po sync at dim < -60 dB.

3

September 1978

r

output power
W

0,5 (note 1)
1,0 (note 1)
3,5 (note 1)
8

power gain
dB
4,5
6
5,5
5
9

SELECTION
GUIDE

l
'----------------------------------------------

In this list we present a survey of all transmitting transistors and modules grouped in accordance with
the main r.f. power application area together with the most important data.

s.s.b. class·AB; f = 28 MHz;
dj; d5 < -'30 dB

----

s.s.b. class-A; f = 28 MHz;
d3; ,d5 < -40 dB

s.s.b. class-AB; f = 28 MHz;
d3; d5 < -30 dB

s.s.b. class·A; f =28 MHz;
d3; d5 < -40 dB

September 1978

(

PL (P.E.P.)
W

Gp
dB

28
28
28
28
28

10
10
10
25
25

20
20
20
18
18

28
28
28
28
28

25
40
45
50
80

18
17
17
13
. 13

BLW77
BLX15
BLW95

SOT-121B 28
SOT-55
50
SOT-121A 50

130
150
160

12
14
14

BLY91A
BLY91C
BLV20
BLY92A
BLY92C

SOT-48
SOT-120
SOT-123
SOT-48
SOT-120

26.
26
26
26
26

1,3
1,3
1,3
2,5
2,5

20
20
20
20
20

BLV21
BLX13
BLX13C
BLW83
BLX39

SOT-123
SOT-56
SOT-120
SOT-123
SOT-120

26
26
26
26
26

2,5 .
8
8
10
15

20
18
20
20
18

BLW86
BLW78

SOT-123
26
SOT-121A 26

17
30

20
18

BLY88A
BLY88C
BLV11
BLY89A
BLY89C

SOT-48
SOT-120
SOT-123
SOT-56
SOT-120

13,6
13,5
13,5
13,5
13,5

10
10
10
15
15

18
18
18
18
18

BLW87
BLW60
BLW60C
BLW85

SOT-123
SOT-56
SOT-120
SOT-123

13,5
12,5
12,5
12,5

15
30
30
30

18
18
18
18

BLY87A
BLY87C
BLV10
BLY88A
BLY88C

SOT-48
SOT-120
SOT-123
SOT·48
SOT-120

12
12
12
12
12

BLV11
BLY89A
BLY89C
BLW87

SOT-123
SOT-56
SOT-120
SOT·123

12
12
12'
12

type number

envelope

VCE
V

BLY92A
BLY92C
BLV21
BLX13
BLX13C

SOT-48
SOT-120
SOT-123
SOT-56
SOT-120

BLW83
BLX39
BLW86
BLX14
BLW76

SOT-123 .
SOT-120
SOT-123
SOT-55
SOT-121A

1.
1
2
2

18
18
18
18
18

2
6
6
6

18
18
18
18

1

\

_____J
type number

v.h.f. base stations;
class-B operation

v.h.f. mobile transmitters;
class-B operation

envelope

SELECTION
GUIDE
f

VCE
V

MHz

Pl
W

Gp
dB

2N3866
BFS23A
BlY91A
BlY91C
BlV20

TO-39
TO-39
SOT-48
SOT-120
SOT-123

28
28
28
28
28

175
175
175
175
175

1
4
8
8
8

15
10
12
12
12

BlY92A
BlY92C
BlV21
BlY93A
BlY93C

SOT-48
SOT-120
SOT-123
SOT-56
SOT-120

28
28
28
28
28

175
175
175
175
175

15
15
15
25
25

10
10
10
9
9

BlW84
BlX39
BlW86
BlY94
BlW76

SOT-123
SOT-120
SOT-123
SOT-55
SOT-121A

28
28
28
28
28

175
175
175
175
108

25
45
45
50
80

9
7,5
7,5
7
8

BLW78
BlW77
BlX15
BLW95

SOT-121A
SOT-121B
SOT-55
SOT-121A

28
28
50
50

150
87,5
108
108

100
130
150
160

6
7,5
7,5
7,0

2N4427
BFQ42
BFS22A
BFQ43
BlY87A

TO~39

TO-39
TO-39
TO-39·
SOT-48

12
13,5
13,5
13,5
13,5

175
175
175
175
175

1
2
4
4
8

10
11
8
12

BlY87C
BlV10
BLW29
BlY88A
BlY88C

SOT-120
SOT-123
SOT-120
SOT-48
'SOT-120

13,5
13,5
13,5
13,5
13,5

175
175
175
175
175

8
8
15
15
15

12

BlVl1
BlY89A
BlY89C
BlW87
BlW31

SOT-123
SOT-56
SOT-120
SOT-123
SOT-120

13,5
13,5
13,5
13,5
13,5

175
175
175
175
175

15
25
25
25
28

BlW60
BlW60C
BlW85
BlY90

SOT-56
SOT-120
SOT-123
SOT-55

12,5
12,5
12,5
12,5

175
175
175
175

45
45
45
50

9
9
10
7,5
7,5
7,5

6
6
6

9
5,5
5,5

5
5

• Emitter connected to case.
September 1978

2

SELECTION
GUIDE

l"'----_________
envelope

VB
V

v.h.f, modules for
mobile transmitters

BGY32
BGY33
BGY35
BGY36

SOT-132
SOT-132
SOT-132
SOT-132

12,5
12,5
12,5
12,5

68-88
18
80-108 18
132~156 18
148-174 18

u.h.f. modules for
mobile transmitters

BGY22
BGY22A
BGY23
BGY23A

SOT-75A
SOT-75A
SOT-75A
SOT-75A

13,5
12,5
13,5
12,5

380-512
420-480
380-480
420-480

type number

envelope VeE
V

f
MHz

PL

2N3866
BLX91A
BLX92A
BLX93A
BLX94A
BLX95

TO-39
SOT-48
SOT-48
SOT-48
SOT-48
SOT-56

28
28
28
28
28
28

470
470
470
470
470
470

7
11
2,5 11
7
8,5
6
25
40
4,5

BLX65
BLW79
BLX66
BLX67
BLW80

TO-39
SOT-122
SOT-48A
SOT-48
SOT-122

12,5
12,5
12,5
12,5
12,5

470
470
470
470
470

BLX68
BLW81
BLX69A
BLW82

SOT-48
SOT-122
SOT-48
SOT-119

12,5
12,5
13,5
12,5

470
470
470
470

type number

envelope

f
MHz

Po~nc

BLX91A
BLX92A
B.LX93A
BLX94A
BLW64
BLW75

SOT-48
SOT-48
SOT-48
SOT-48
SOT-56
SOT-l05

225
225
225
225
225
225

0,45
0,7
1,6
5
10
14

55
55
55
55
55
55

BFR96 •
BFQ34 •
BLW32
BLX96
BLW33

SOT-37
SOT-122
SOT-122
SOT-48
SOT-122

860
860
860
860
860

0,08
0,3
0,5
0,5
1,0

60
60
60
60
60

BLX97
BLW34
BLX98
BLW98

SOT-48
SOT-122
SOT-48
SOT-122

860
860
860
860

1,0
1,8
3,5
3,5

60
60
60
60

u.h.f. base stations
c1ass-B operation

---.......
=

u.h.f. mobile transmitters
class-B operation

TV transposer circuits
band III; class-A operation

TV transposer circuits
band IV-V; class-A operation

A Without stud.
• See Handbook Se3.

3

f
MHz

type number

September 1978

r

PL
W

Gp
dB
22,6
22,6
20,8
20,8

2,5 17
2,5 17
7,0 4,5
7,0 4,5

W

Gp
dB

1

1

2
2
2,5
2,5
4
7
10
20
30

6
9
8,5
8,5
8
5
6
4
5

dim G p
dB dB

VeE
V

Ie
mA

17
17
15
12
10
8

25
25
25
25
25
25

75
115
260
800
1600
2400

10
10
12
6
10

10
15
25
25
25

50
120
150
250
300

25
25
25
25

500
600
850
850

5,5
9
5
6,5

__---J

LINE-UPS

In this section we present information on recommended circuit line-ups in the main r.f. power application areas. A comprehensive range of output power levels is indicated together with our recommended
types in the. particular line-up configuration. The necessary drive power level for each line-up is indicated in the first column.
More detailed application information as well as computer aided design parameters are available on
request.
S.S.B. TRANSMITTERS (1,5 MHz - 30 MHz)
input power
mW

1st stage

30
30
50
50
100
100

BLY87C
BLV10
8 LY88C
BLV11
BLY89C
BLW87

50
50
150
250
500

BLY91C
BLV20
BLW83
2 x BLW83
2 x BLW86

300
300
600
600
40
40

2 x BLX13C
2 x BLW83
2 x BLX39
2 x BLW86
BLY91C
BLV20

2nd stage

*
*
*
*
*
*
*
*
*
*
*
**
**
**
**
**
**

stud S
flange F

PL (P.E.P.)
W

VCE
V

BLY89C
BLW87
BLW60C
BLW85
4,x BLW60C
4x BLW85

30
30
50
50
100
100

13
13
13
13
13
13

S
F
S

2
2
2
2
4

50
50
150
250
450

28
28
28
28
28

S

300
·300
550
550
1000
1000

50
50
50
50
50
50

S

2
2
2
2

3rd stage

x
x
x
x

x
x
x
x
x

2x
2x
4x
4x
2x
2x

BLX13C
BLW83
BLW76
BLW77
BLW77
BLX15
BLW95
BLX15
BLW95
BLW78 **
BLW78 **

8 x BLX15
8 x BLW95

F

S
F
F
F
F
F
F

S
F
S/F
F

MILITARY COMMUNICATION TRANSMITTERS (25 MHz - 80 MHz)
Input power
mW

1st stage

30
30
60
60
100
100

2N4427
2N4427
BLY87C
BLV10
BlY87C
BLV10

50

BlY91C
BlV20
BlY91C
BlV20
BlV20
BlV20

50
100
100
15
25

2nd stage

*
*
*
*

*
*

3rd stage

PL
W

VCE
V

studS
flange F

x
x
x
x
x
x

BlY87C
BlV10
BLY88C
BlV10
BlY89C
BlW87

15
15
25
25
50
50

13
13
13
13
13
13

S
F
S

2x
2x
2x
2x
2x
2x

BLX13C
aLW83
BLX39
BlW86
BlV20
BlW83

60
60
90
90
200
250

28
28
28
28
28
28

S

2
2
2
2
2
2

* Class-A operation.
** 28 V supply voltage; class-A operation.

2 x BlW78
2 x BlW77

,I

F

S
F
F

S
F
F

F

September 1978

1~

L_IN_E_-U_P_s__

__

~jl~:______________-------------MOBILE TRANSMITTERS (68 MHz':": 87,5 MHz)

input power
mW

1st stage

20
20

2N4427
2N4427
2N4427
BSX19 •
BFQ42
BFQ43
BFQ43 ,

36
10
70
160
160

"

2nd stage

PL

BLY87C
BLV10
BLW29
BGY32
BLW31
BLW60C
BLW85

W

VCE
V

8
8
14
18
28
45
45

13
13
13
13
13
13
13

PL

VCE
V

stud S
flange F
S
F
S
F
S
S
F

BASE STATIONS (68 MHz..:.. 87,5 MHz)
input power
mW

65
65
125
15
50
50

--

~

--

1st stage

2nd stage

3rd stage

W
BFS23A
BFS23A
BLX92A
2N3866
2N3866 **
2N3866 **

BLY93C
BLW84
BLX39
BLV21
BLY93C
BLW84

**
**

BLW78
BLX15
BLW95

25
25
50
100
150
150

28
28
28
28
50

50

stud S
flange F
S
F
S
F
S
F

F.M. BROADCAST TRANSMITTERS (87,5 MHz - 108 MHz)
input power
mW

1st stage

100
140
40
75
75
140
140

BGY33
BLX92A
2N3866
BLX92A
BLX92A
BLX92A
BLX92A

2nd stage

**
**
**
**

2 x BLW85
,BLX39
BLV21
BLX39 **
BLW86 **
BLX39 **
BLW86 **

3rd stage

BLW78
BLX15
BLW95
2.x BLX15
2 x BLW95

PL
W

VCE
V

80
50
100
150
150
250
250

13
28
28

50
50
50
50

stud S
flange F
F
S
F
S

S/F
S

S/F

A.M. AIRCRAFT TRANSMITTERS (118 MHz -136 MHz)
input power
mW

1st stage

2nd stage

110
240
240

BLX92A
BLY91C
BLV20
BLX92A
BLX92A

BLY93C
BLX39
BLW86 ,
BLY93C
BLW84

100
100

• See Handbook SC3.

* * 28 V supply voltage.
2

September 1978

(

3rd stage

PUcarr)
W

6
BLW78
BLW78

12
12
25

25

VCE
V

stud S
flange F

13/28
13/28
13/28
13/28
13/28

S
S
F
S/F

S/F

_______________jl__,LlN_E-U_~

__

PORTABLE AND MOBILE TRANSMITTERS (132 MHz -174 MHz)
input powe..
mW

1st stage

2nd stage

40
100
100
125
150
250
120
150

2N4427
2N4427
2N4427
BFQ42
BGY36
BFQ43
BFQ42
BGY36

BFQ43
BLY87C
BLV10
BLW29
BLW31
BLW29
BLWB5

3rd stage

PL
W
2
8
8
14
18
28

45
45

BLW60C

VCE
V
7,5,
13
13
13
13
13
13
13

stud S
flange F

S
F
S
F
S
S
F

BASE STATIONS (132 MHz -174 MHz)
input power
mW

1st stage

2nd stage

200
200
25
25
200
200

BLY91C
BLV20
2N3866
2N3866
BFS23A
BFS23A

BLY93C
BLW84
BLY91C
BLV20
BLY93C
BLW84

3rd stage

BLX39
BLW86
2x BLX39
2xBLW86

PL
W

VCE
V

25
25
50
50
100
100

28
28
28
28
28
28

stud S
flange F
S
F
S
F
S
F

TV TRANSMITTERS AND TRANSPOSERS (Band III: 174 MHz - 230 MHz)
input power
mW

1st stage

15

BLX93A
BLX94A
BLX93A

60
10

2nd stage

BLW64
BLW75
BLW64

3rd stage

2xBLW75
4xBLW75
2xBLW75

4th stage

8xBLW75

W

VCE
V

25
50
100

25
25
25

Po sync

stud S
flange F
S
S
S

PORTABLE AND MOBILE TRANSMITTERS (400 MHz - 470 MHz)
input power
mW

1st stage

2nd stage

3rd stage

15

BFR96·
BLW79
BLW79
BLW79

BLW79
BLWBO
BLW81
BLWBO

BLW80
BLW81
BLX69A
BLW81

50
220

50

4th stage

BLW82

PL
W

VCE
V

stud S
flange F

2
10
18
30

7,5
13
13
13

S
S
S
S/F

• See Handbook Se3.
September 1978

3

Jl

LINE-UPS

BASE STATIONS (400 MHz - 470 MHz)
input power
mW
70
70

1st stage

2nd stage

3rd stage

4th stage

PL
W

BLX91A
BLX91A

BLX93A
BLX93A

BLX94A
BLX94A

25
2x BLX95

72

VCE
V
28
28

stud S
flange F
S
S

TV TRANSMITTERS AND TRANSPOSERS (Band IV/V: 470 MHz - 860 MHz)
input power
mW

1 st stage

2nd stage

3rd stage

7
3

BFQ34.
BFQ34.
BLW32

BLW34
BLW33
BLW34

BLW98
BLW98
2xBLW98
2xBLW98 4xBLW98

5

---

• See Handbook SC3.

4

September 1978

(

4th stage

Po sync
W

VCE
V

3
6
12

25
25
25

stud S
flange F
S
S
S

~__J
MECHANICAL DATA

ENVELOPES
Dimensions in mm

SOT-48

(I

~
l_a,.J

1
25min
b

1
.... 9,75 max
-25min

,,5;-c:{]

J5

8-32UNC
plastic

tL

4-

7266608

-

SOT-48

3,5 [

I J

30
--i.7\--

1,52

r

+

metal

f!{i•
+

~

!.

,3
,0 2,85

C.J·

__ 9,75 __
max

25min

J::

8:-32~NC ~
~

.....1,6 __
max

" 8 -7Z61111.1

~

[

collector
identification

--~.J

pia stic

-

_1\.. - 0,13

_ ' 2 , 0 _ 5,75
11,2
max

This envelope is also supplied with different collector identification(bevelled collector lead).

September 1978

ENVELOPES

j l_________________

MECHANICAL DATA

Dimensions in mm

SOT-48

metQI

collector
ide'ntificQtion

-- ~~~--

25min---

plQstic

1

7Z62200,1

SOT· 55

0.28_
0,23

----

_

11

+
sp

1

Ij.

+

(I I J

1{~)
7Z607?7.1

114·x28 UNF

jl

ENVELOPES

--------------------------------------------~
MECHANICAL DATA

Dimensions in mm

SOT-75A

~_ _

32,25 _ _- 1
31,75

f--l~y.IO,51@IAI
,

---

(3x)

~14,sl...

neS90'

SOT-105

.... "'00,17,11
10-32UNF

t

9,75
max

+

/

~

+"
1'98~t

-~--.'

r-

t

9,8

max

max

7Z 70225.1

4,5/..4,0
..-11,5--. 7,2
max
10,7

September 1978

3

Dimensions in mm

MECHANICAL DATA

SOT-119

-

25,6 _ _ _ I
max
3,2
-2,9
6,25 _

--0,1

min

i

cerami

5,7

e

_t~3

-c

3,~

~n

1

+

25,2
max 118,421-

+

-+e

I

5,7
5,3

t

---

-r.

_l_

7Z77385.2

+

,-12',32-/

2·~t---1

I!

t

Iii 1---

t

-,0'--5-,
--'-7
4

.

I_=-t-l

x

" SOT-120

I

e

--.. +-0,14

amin (4x)

ceramic

/,/'1-,' +
,
-t--+--+
\,
,
I

c

28

"

(

26

, I /
~

j

b
BeQ

meta!

e

..I

II

4

t

---

.

-

5,9
5,5

I.

9,8 max l+-

September 1978

..

28
26

(

4--11,8 - - 7,0 max -7ZS9881.1

________J
MECHANICAL DATA

Dimensions in mm

SOT-121A

3,2
-2,9

e

-II-g:~~

>5,9
5,5

/'
6,9
min

~

-1 -

ceramic

' - - - - - 1

25,2

1842 _

13

TL

_1'

I

~~1'352,4

_ 12,5_1
m~x
1

metal
7275334.1

SOT-121B is identical to SOT-121A
except for the thickness of the leads
which lies between 0,23 and 0,27 mm.

4,4
3,8

+

+

7
max

SOT-122

-e-t

1,52

~

c

+
=c::(J
+

9 min (4x)

6,5
6,2

25,4
b

___ 0,17
0,11
1,98 max
-ceramic

--1
~r==H

8-32UNC

+

28,2

j

ENVELOPES

1

"'--+

t

BeQ
metal

e

•

-./5,911
1 5,5 1
-- 7,6 max -28,2
25,4

..

1276390

. __ 5,6 __
max

September 1978

5

ENVELOPES

j l________________

MECHANICAL DATA

Dimensions in mm

SOT-123

-

7Z7738S.1

---

4,55
4,10
2,54

t

6

September 1978

I

I. .

r

j

ENVELOPES

------------------------------~--~
MECHANICAL DATA

Dimensions in mm

SOT-132

,---rn-----·

I

....,

..

~--

---"1 "

' - - 144 ,91

--~""I

:~I--IT
~

'

I II,,' 42
t .... MIT i i i I~I'I,--7,65

max

+

+
3,3 +

9L..--_-_-----.,.__---'p
1-+-----

61,0 - - -....~A

..,.--_ ~.c=::==================~-h _t

t •

8,5

17,0 3,5

•

+

1."--- 52,5 ----.1
1....- - - - ·

67,5

-----+-I

7Z69427.1

'I

September 1978

7

~

jl~.______________________________

__E_N_VE_L_O_P_ES___

. MECHANICAL DATA

Dimensions in mm

TO-39; collector
connected to case.

t [}:
-

b

0,51
+max

====::1-

8,5.
max

c

====::I

L

+

====::I

.[6,6
max-l-'2,7
min

_I "''''''
.

.-- 9,4 -..

max

TO-39; emitter
connected to case.

----

-DE
t

b

.

8,5
max

e

+max
= . . -0,51

=====:I

•

-L

.

6,6
max

=

-..1_12,7

min

_I

+

?Z78135

9,4 -..

max

TO-60

..

8

September 1978

(

~.

SOLDERING
RECOMMENDATIONS

RULES FOR MOUNTING QUARTER-INCH CAPSTAN HEADERS
AS USED FOR R.F. POWER TRANSISTORS
A 5 mm thick brass nut is supplied with each transistor for securing it to a heats ink.
To ensure optimum heat transfer and avoid damage to the threaded stud of the transistor
the following recommendations should"be observed:
-Diameter of mounting hole in heatsink: 4,10 mm (+0, OS; -0, 00)
-Heats ink to be at least 3 mm thick.
Attachment to a thinner heatsink may damage the mounting stud.
-Heatsink surfaces at the mounting hole to be flat, parallel, and free of burrs or oxidation.
-Mounting nut torque: 0,80 Nm
(+0, OS;
8, a kg cm (+0,5 ;
If security against vibration is required,
Do not use washers; they impair the heat

-0, 00)
-0, a )
use a locking compound such as Lock-tite.
transfer.

-Recommended distance ftomthe top surface of heats ink to surface of printed wiringboard:
2,9 mm (0,0; -0,2)
Tension in the transistor leads sets the limit on spacing between heatsink and printed
wiring board; in general, the leads can withstand more pull in the downward than in the
upward direction.
-Solder the leads to the connection pads with resin -cored lead -tin solder, using an iron
of normal temperature. Soldering iron temperatures as high as 350 0C are safely tolerable; the transistor can withstand an interior temperature of 250 oC for about ten
minutes.
The leads may be tinned, if required, by dipping them into a solder bath at about
230 °C; each lead may be dipped up to its full length. A flux of the quality of Super-Safe
is recommended; after tinning, surplus flux should be rinsed away in tap water.

II

September 1974

_ _ _J

BFQ42

V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, B or C operated mobile
transmitters with a nominal supply voltage of 13,5 V. The transistor is resistance stabilized and is
guaranteed to withstand severe load mismatch conditions with a supply over-voltage to 16,5 V. The
BFQ42 is especiallY'suited as a driver transistor for the BLW29 in a two-stage wide-band or semi-wideband v.h. f. amplifier delivering 15 W output power.
It has a TO-39 metal envelope with the collector connected to the case.
QUICK REFERENCE DATA
R. F. performance up to T amb = 25 °C; Rth c-a = 32 °C/W
mode of operation

Gp
dB

VCE
V

MHz

PL
W-

c.w. class-B

13,5

175

2

>

c.w. class-B

12,5

175

2

typo 10,5

>

11

1]

Zj

%

n

YL
mAN

7,8,- j4,6

22- j18

60

typ.65

MECHANICAL DATA

Dimensions in mm

Fi!J. 1 TO-39; collector connected to case.

-CF
t

b

=
=

8,5
max
c

-

=:=-0,51
+max

L

[

1..- 12,7 _I

6.6 __

max

min

+

7Z59322.1

9,4 _
max

Maximum lead diameter is guaranteed only for 12,7 mm.
Accessories supplied on request: 56218 (package); 56245 (distance disc).

I (M~h1978

_B_FQ4_2

_Jl_______

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-emitter voltage (VSE = 0)
peak value

V CESM

max.

36 V

Collector-emitter voltage (open base)

VCEO

max.

18 V

Emitter-base voltage (open collector)

VEBO

max.

4 V

Collector current (average)

IC(AV)

max.

0,6 A

ICM

max.

1,8 A

Ptot

max.

7,2 W

Collector current (peak value); f> 1 MHz

=25 °C

Total pOWer dissipation up to T mb
Storage temperature

T stg

-65 to + 200°C

Junction temperature

Tj

max.

200°C
7Z77614

7Z77613

10

IC

(AI

---

0(5

"~~~
,0

,

0,3

~~~~

~

0

"~

~

\\

~\
~

/'

~'?

~~'>0

0,2

1
0, 5

Ptot
(WI

m

8 9 10

- -'.

(1 )

"

:""-r--..

......

I

...... ~

r- ......

(1 )

1"r-...

/ /0,0.37 W1°C

""I'
r....

(2)
~

VCE (V)

o
20

7Z77577

(2) Free-air operation; using a spring cooling clip.

~.~
t

top view

~

derate by

' .... .

5

r-~

"

.

...... (2)

\

0

(1) Mounted on a heatsink ..

'heatsink

- -.. ~~

0

~

7

.....

()

~
6

~.-

'

o

50

derate by
r-..c: 0,016W/oC

100.
150
Th' Tamb (oC)

(1 I Short-time r.f. operation during mismatch;
Rth mb-h = 3 °C/W; Rth c-a = 32 °C/W;
f;;;;'l MHz.
(2) Continuous d.c: and r.f. operation;
Rth mb-h =3 °C/W; Rth c-a = 32 °C/W.
Fig. 3 Total power dissipation; VCE .:;;; 16,5 V.
- - - Mounted on a heatsink.
- - Free-air operation; using a spring
cooling clip having a thermal resistance
of 32 °C/W.

Fig. 2. D.C. SOAR.

2

Ma~19781r---------

Jl

V.H.F. power transistor

THERMAL RESISTANCE

BFQ42

Rth j-mb

24 0C/W

From junction to case

Rth j-c

From mounting base to heatsink

Rth mb-h

29 °C/W
3 0C/W

From junction to mounting base

CHARACTE R ISTICS
Tj

= 25 0C

Collector-emitter breakdown voltage
VBE = 0; IC = 2 rnA

V(BR)CES

>

36 V

Collector-emitter breakdown voltage
open base; IC = 25 rnA

V(BR)CEO

>

18 V

Emitter-base breakdown voltage
open collector; IE = 1 rnA

V(BR)EBO

>

4 V

Collector cut-off current
VBE = 0; VCE = 18 V

ICES

<

ESBO
ESBR

>
>

hFE

typo 30
10 to 60

Collector-emitter saturation voltage*
IC = 0,75 A; IB = 0,15 A

VCEsat

typo 0,9 V

Transition frequency at f = 100 MHz *
-IE =0,25 A; VCB = 13,5 V
-IE = 0,75 A; VCB = 13,5 V

fT
fT

typo 750 MHz
typo 625 MHz

ColI.ector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 13,5 V

Cc

typo 8,6 pF

Feedback capacitance at f = 1 MHz
IC = 20 rnA; VCE = 13,5 V

Cre

typo 3,8 pF

Second breakdown energy; L
open base
RBE = 10 n.
D.C. current gain *
IC = 0,25 A; VCE

rnA

= 25 mH; f =50 Hz

=5 V

0,5 mJ
0,5 mJ

-

.§]

* Measured under pulse conditions: tp ~ 200 IJ.S; 8 ~ 0,02.

March 1978

3

Jl____

_BFQ_42

7Z77615

7Z77616

40

20

\
\

,

lI""i"""

~

1'"""
~
~

I .....

r---,.

~
~

\

VCE= f\.13,5V-

r\.

,

1\

I

5V

"

I-- I--

.......

,

20

typ

I '~

10

...... r---,.

-.I -~
I

--==

o

o

o

0,5

IC (A)

1,5

o

Fig. 4 Typical values; Tj = 25 aC.

5

(V) 15

7Z77617

fT
(MHz)

)~

......... i'oo..

/

~yp

',,-

If
I

~

r--...

500

4

CB

Fig. 5 IE = Ie = 0; f = 1 MHz; Tj = 25 aC.

1000

a

10 V

o

March

1r

1978

'

.........

I"'- ~

0,5
Fig. 6 VCB = 13,5 \/; f = 100 MHz; Tj = 25 aC.

1,5

BFQ42

V.H.F. power transistor

APPLICATION INFORMATION

R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)

Tamb = 25 oC; Rth c-a = 32 °C/W
f (MHz)

VCE (V)

PL (W)

Ps (W)

G p (9B)

IC (A)

175
175

13,5

2

<0,16

>

<0,25

12,5

2

11

typo 10,5

Zi (.m

17 (%)

>

60

YL(mA!V)

7,8-j4,6

22-j18

typ.65

C5

'----n-.....----' .....

~

.7' ...
'

-1/

.......

~

....

/1/

I.

V ~

50

Gp

/
/ / "'

, ,,'
I/,
., '

o

o

o
100

200

300
P

s (mW)

Fig. 9 Typical values; f = 175 MHz;
Tamb = 25 °C; Rth c-a = 32 °C!W.

o

o
2

P

L

(W)

3

Fig. 10 Typical values; f = 175 MHz;
VCE == 13,5 V;
Tamb = 25 oC; - - - VCE = 12,5 V; Rth c-a == 32 OC!W.

March 1978

7

,__BF_Q42_Jl_______
APPLICATION INFORMATION (continued).
7Z77620

7Z77621

JS~RI=- f 2,5

2,5

50

PLno
(W)

T

VSWR= I 2,5

(VSWR = 1)

P Lnom
(W)
(VS WR = 1)

2

~

...... r-...
....... ~

...... ~
1,5

2

r-... ~

f" ......

~ ~ r-....
......

I"'iOO
~

r....

r-... ~ - "'1"- 10

" r.....

---

Ps r PSnom

-

1,5
1

1,1

1,2

VCE
VCEnom

Fig. 11 R.F. SOAR (short-time operation
during mismatch); f = 175 MHz; Th = 70 oC;
Rth mb-h = 3 °C/W; VCEnom = 13,5 V or 12,5 V;
Ps = PS nom at V CEnom and VSWR = 1.

I"- 5

~

:::-

.....

20
50

Ps f-PSnom f--

0,5

1

1,1

1,2

VCE '
VCEnom

Fig. 12 R.F. SOAR (short-time operation
during mismatch); f = 175 °C; Tamb = 70 °C;
Rth c-a=32 °C/W;VCEnom = 13,5 Vor 12,5 V;
Ps = PS nom at V CEnom and VSWR = 1.

Note to Figs 11 and 12:
The transistor has been developed for use with unstabilized supply voltages. As the output power and
drive power increase with the supply voltage, the nominal output power must be derated in accordance with
the graph for safe operation at supply voltages other than the nominal. The graph shows the permissible
output power under nominal conditions (VSWR = 1), as a function of the expected supply over-voltage
.
ratio with VSWR as parameter.
The graph applies to the situation in which the drive (PS/PS nom ) increases linearly with supply overvoltage ratio.

8

Mareh 1978

J(

BFQ42

V.H.F. power transistor

OPERATING NOTE Below 100 MHz a base-emitter resistor of 22 U is recommended to avoid oscillation. This resistor must be effective for r.f. only.
7Z77622

+30

7Z77623

60

I
I

(U)
I-r-

+20

II-

CL~
..l. _

RL

.... ....

r-i"'- ....

-I/ j '

,

'""'

(

~

R L-

1..1

I\.
r'I

+10

o

I

~

q,Xj

~

40

-20

If
~

1/

L,..olo""

xi """

o

1/

II

..... i"""
i"""

I- xi

i,.o"

,"""I-"

V

V

-10

20

1/

I
!I
I-I--c C L

-40

II

-20

-30

o

o

200

f (MHz)

Fig. 13.

400

o

f (MHz)

-60
400

Fig: 14.

7Z77624

30

200

Gp
(dB)
Conditions for Figs 13,14 and 15:

20

Typical values; VCE = 13,5 V; PL
-~
,

.....

= 2 W;

T amb = 25 oC; Rth c-a =32 °C!W.

,

"
"l""'-

10

I"
I'~

I"-

o

Fig. 15.

o

200

f (MHz)

400

March 1978

9

BFQ43

V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, B or C operated mobile
transmitters with a nominal supply voltage of 13,5 V. The transistor is resistance stabilized and is
guaranteed to withstand severe load mismatch conditions with a supply over-voltage to 16,5 V. The
BFQ43 is especially suited as a driver transistor for the BLW31 in a two-stage wide-band or semi-wideband v.h.f. amplifier delivering 28 W output power.
It has a TO-39 metal envelope with the emitter connected to the case, which enables excellent heatsinking and emitter grounding.

QUICK REFERENCE DATA
R.F. performance up to Th
mode of operation

= 25 °C

VCE
V

f
MHz

PL
W

c.w. class-S

13,5

175

4

>

c.w. class-B

12,5

175

4

typ.12

Gp
dB

-

zi

1/

12

>

55

YL

n

mAN

3,2 + jO,03

53-j29

%

-

-

typ.60

MECHAN ICAl DATA

Dimensions in mm

Fig. 1 TO-39; emitter connected to case.

-[}:
t.

b

max

e

-

. . 5,08 --

t

--L

9,4 _

,

= = 0 ,+max
51

=

8,5

===

1_12.7 _17278135

6.6 .......
max

min

max

Maximum lead diameter is guaranteed only for 12,7 mm.
Accessories supplied on request: 56218 (package); 56245 (distance disc).

I(

Maroh 1978

~

jl~________~________________

___
8_Fa_4_3___
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-emitter voltage (VSE = 0)
peak value

36 V
18 V

V CESM

max.

Collector-emitter voltage (open base)

VCEO

max.

Emitter-base voltage (open collector)

VEBO

max.

4 V

IC(AV)

max.

1,25 A

Collector current (average)

f> 1 MHz

ICM

max.

3,75 A

Total power dissipation up to T mb = 25 °C

Ptot

max.

12 W

Storage temperature

T stg

Operating junction temperature

Tj

-65 to + 150 °C
200 qc
max.

Collector current (peak value);

7Z17626

2
IC
(AI

Ptot
(W)

1\

1"- '\.

--

7Z77627

15

.....

,).

'-

/-

~,,\
~~

I\..~~

~..>o

.

~6'

0

,,'b

0,5

10

....

......
(1) ....

r--..
1'00".

0

.....

10

VCE (VI

Fig. 2 D.C. SOAR.

.....

.....
......
(2) .....

5

5

.....

..... ~

"\

0,1

1'-0..

20

30

o
o

r..... .....

.....

50

100

(1) Short-time r.f. operation during mismatch;

f ~ 1 MHz.
(2) Continuous d.c. and r.t. operation; derate

by 0,05 W/oC.
Fig. 3 Total power dissipation; VCE';:;;; 16,5 V.
THERMAL RESISTANCE (dissipation = 4 W; T mb == 82 oc, i.e. Th = 70 OC)

2

From junction to mounting base

Rth j-mb·

From mounting base to heatsink

Rih mb-h

March 1978

r

18 0C/W

3

0 C/W

BFQ43

V.H.F. power transistor

CHARACTERISTICS
Tj = 25 0C
Collector-emitter breakdown voltage
VBE = 0; IC = 5 mA

V(BR)CES

>

36 V

Collector-emitter breakdown voltage
open base; IC = 50 mA

V(BR)CEO

>

18 V

Emitter-base breakdown voltage
open collector; IE = 2 mA

V(BR)EBO

>

4 V

Collector cut-off current
VBE = 0; VCE = 18 V

ICES

<

2 mA

Second breakdown energy; L = 25 mH; f = 50 Hz
open base
RBE = 10 n

ESBO
ESBR

>
>

D.C. current gain *
IC = 0,5 A; VCE = 5 V

hFE

typo
40
10 to 80

Collector-emitter saturation voltage *
IC= 1,5A; IB=O,3A

VCEsat

typo

0,9 V

Transition frequency at f = 100 MHz *
-IE = 0,5 A; VCB = 13,5 V
-IE = 1,5 A; VCB = 13,5 V

fT
fT

typo
typo

750 MHz
625 MHz

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 13,5 V

Cc

typo

15 pF

Feedback capacitance at f = 1 MHz
IC = 20 rnA; VCE = 13,5 V

Cre

typo

7,3 pF

* Measured under pulse conditions; tp

~

0,5 mJ
0,5 mJ

200 ps; 5 ~ 0,02.

March 1978

3

____

-BF-a-4-3--~jl~-------------------------7Z77628

60

1.001-1-

.....

"""

If

,,

•
40

,

i;'"

cc
~

I

-

....

. 7Z77629

60

(pF)

Vce=
I\. 13,5 V

40

'-

II
1\
~

\. 5Vf-

,
\.
~

20

"

20

typ

....

~Iooo.
!-~ ...

--=-..-

o

o

o

2

IC(A)

Fig. 4 Typical values; Tj = 250C.

o

10
Fig. 5 Ie = Ie = 0; f

Vcs (V)

= 1 MHz; Tj = 25°C.
7Z77630

1500
fT
(MHz)

1000

I'"

"",""

...

-

typ
-~

r-.

i"'"
f"'o
i"'ooo

500

o

a

0,5
Fig. 6 VCS

4

20

March 1978

r

1,5

= 13,5V; f = 100 MHz; Tj = 25°C.

.....

-Ie (A)

2

V'_H'_F._po_we_rt_~_nSi_no_r

__

jl____

B_F_Q_43_____

____________________

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit}
Th = 25

°c

f (MHz)

VCE (V)

Pl (W)

Ps(W)

175

13,5

4

<0,25

175

12,5

4

Gp (dB)

IC(A)

>

<0,54

12

typ.12

Zj(n)

YL(mAIV)

3,2 + jO,03

53-j29

1/ (%)

>

55

typ.60

C5
50n
50n

C4

R2

~
7Z77637.1

--

Fig. 7 Test circuit; c.w. class-B.
List of components:
Cl = C5 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222 809 07004)
C2 = C6 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
C3 = 100pF ceramic 'capacitor
C4 = 100 nF polyester capacitor
L 1 = 2 turns Cu wire (1,0 mm); into dia.. 4,0 mm; length 3 mm; leads 2 x 5 mm
L2 = 7 turns enamelled Cu wire (0,5 mm); into dia. 3,0 mm; length 4 mm; leads 2 x 5 mm
L3 = L5 = Ferroxcube wide-band h.f. choke, grade 38 (cat. no. 4312 020 36640)'
L4 = 4 turns enamelled Cu wire (1,0 mm); into dia. 5,5 mm; length 5 mm; leads 2 x 5 mm
L6 = 5 turns enamelled Cu wire (1,0 mm); into dia. 5,5 mm; length 7,5 mm; leads 2 x 5 mm
Rl

= R2 =

10

n carbon resistor

Component layout and printed-circuit board for 175 MHz test circuit are shown in Fig. 8.

September 1978

5

~_jl~.

_____B_F_Q_43_,

__________________________

APPLICATION INFORMATION (continued)

55

7Z77575.1

,
I

---- -

~

. ":
..

1

;

,

....... :

7Zi7576

Fig. 8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets.
Material of printed-circuit board: 1,6 mm epoxy fibre-glass.
The case is directly grounded on the printed-circuit board.

6

jl_____S-_F_:_~

_ _V_.H_.F_.p_ow_er_tr_an_sis_tor_____________________

7Z77631

7,5

3_____

7Z77632

20

100

Th= 25°C

v

5

Gp

~~l

v
10~

/

(dB) r- G p

1--1' T 1
I I I
1 1 1

11

:--...

""".'

V 1/ ..... Th=70 0 C I-f-f - VV

(%)
~,

~~
0
~ ~ _Th=25 C

1/ /

.d' ~~

II'l

r~

10

1/,

I-- t-

~

P'

k"
l1V

'II

70 0

-=s 70 0 C
~~ = 25 0 C_
50

C ,V

J'fJ

2,5

n

'1
IJ
"

o

o

o

0,5

o

o
2,5

(W) 7,5
L
Fig. 10 Typical values; f = 175 MHz;
VCE = 13,5 V; - - - VCE = 12,5 V.

PS(W)

Fig. 9 Typical values; f = 175 MHz;
~ VCE = 13,5 V; - - - VCE = 12,5 V.

5

P

7Z77633

5

I

P Lno m
f(W )

Fig. 11 R.F. SOAR (short-time operation during
mismatch); f = 175 MHz; Th = 70 0C.
Rth mb-h = 3 °C/W; VCEnom = 13,5 or 12,5 V;
Ps = PSnom at VCEnom and VSWR = 1.

I

l

I

VSWR= 5

(V'SWR =1)

4,5

i' "

.....
I\..

...........

4

,
.....

t-......

t-......
......

""

f'

"

"t--..

"I'-.

"-

r-.....

........

"

10
1

..... 20

'" I"'-

50

The transistor has been developed for use with
unstabilized supply voltages. As the output power
and drive power increase with the supply voltage,
the nominal output power must be derated ih
accordance with the graph for safe operation at
supply voltages other than the nominal. The graph
shows the permissible output power under nominal
conditions (VSWR = 1), as a function of the
expected supply over-voltage ratio with VSWR as
parameter.
The graph applies to the situation in which the
drive (PS/PS nom ) increases linearly with supply
over-voltage ratio.

3,5

P

s

I--

PSnom t--

3
1

1,1

1,2

VCE
VCEnom

March 1978

7

_B_FQ4_3

_Jl",,---._ _ _ _ _ __

OPERATING NOTE Below 140 MHz a base-emitter resistor of 10 n is recommended to avoid oscillation. This resistor mus~ be effective for r.f. only.
7Z77634

+10

-.

Xi
V

7Z77635

30

I

I

,)

fj

)~

xi

(n )~ I\q
Ii

1\

+5

r\

-I:;f-

.... 1""

RL

I....

!'

V

IJ

20

II'

o

I

C L 1-'-

"

V

"
-25

)1""' ...

J

I\.

q~

100.

10..

~'

to..

III

I"'"

"'"

II

V

" RLfJ""Io

I

J

o

-J
II

xi

---

"

10

II

'/

[7

Ii

..... llc L

I'

-5

50

II

o

o

250
f (MHz)
Fig. 12.

500

o

7Z77636

30

250
Fig. 13.

f (MHz)

-75
500

Gp
(dB )

20
Conditions for Figs 12, 13 and 14:
r-"",

Typical values; VeE = 13,5 V; PL == 4 W;
Th = 25 °C.

"""~
1\.1',;
'\.

'\.

'"

10

i"o..
I'

....
1"10..

o

8

Fig. 14.

o
March 1978

250

r

f (MHz)

500

_______Jl__

BF_S22A_

V.H.F. POWER TRANSISTOR

N-P-N epitaxial planar transistor intended for use in class-A, Band C operated mobile, industrial and
military transmitters with a supply voltage of 13,5 V. The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions with a supply over-voltage to 16,5 V.
It has a TO-39 metal envelope with the collector connected to the case.
QUICK REFERENCE DATA
R.F. performance up to T mb = 25 °C in an unneutralized common-emitter class-B circuit
- mode of operation

c.w.
C.w.

V

MHz

13,5
12,5

175

Gp
dB

PL,
W

VCE

>

4
4

175

8
typ.8

YL

zi

11

n

%

>

60
typ.60

3,9

mA/V

+ j2,2

MECHANICAL DATA

37 - j22

Dimensions in mm

Fig. 1 TO-39; collector connected to case.

-[1=

b

8,5

c:::=:::=- 0,51
+max
c:::=:::::::a

L

c:::=:::=

t.

.

max

c

[

+

6.6...1- 12.7

max

min

_I

7Z59322.1

-+- 9,4 _
max

Maximum lead diameter is guaranteed only for 12,7 mm.
Accessories: 56218 (package); 56245 (distance disc).

'I

September 19711

BFS22A

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

Collector-emitter voltage (open base)

VCEO

max.

36

'V

max.

18

V

VEBO

max.

4

V

Collector current (average)

IC(AV)

max. 0.75

A

Collector current (peak value) f >lMHz

ICM

max. 2.25

A

max.

W

f',I,-

Emitter -base voltage (open collector)
Currents

Power dissipation
Total power dissipation up to Tmb
f> 1MHz

=25 °c
.

8
7260973

7Z60974

D.C.SOARI

-.....
JOI!IIIo-

-=

V CEE16.5V l -

I

10

f >1MHz

~

short time_~"-1.,.~
operation
~ -?j3-1-

ITmb=25°C

\\

0.3

I\.

t- I- normal operation
t- I- V.S.W.R.<3

,

0.2

2.5

0

0.1
0

100 Tmb(OCI 150

50

5

6

7

8 9 10

20

VCE (V)

Temperature
Storage temperature

Tstg

-65 to +200

°c

Operating junction temperature

Tj

max.

200

°c

THERMAL RESISTANCE

From junction to mounting base

Rth j-mb

22

°C/W

From mounting base to heatsink
with a boron nitride washer
for electrical. insulation

Rth mb-h

2.5

°C/W

2

II

II

April 1971

II

BFS22A

T j = 25 0 C unless otherwise specified

CHARACTERISTICS
Collector cut -off current

= 0;

ICEO

<

5

Collector -base voltage
open emitter, IC = 1 rnA

V(BR)CBO

>

36

V

Collector -emitter voltage
open base, IC = 10 rnA

V(BR)CEO >

18

V

. Emitter -base voltage
open collector, IE = 1 rnA

V(BR)EBO

>

4

V

open base
-VBE = 1.5V; RBE =33 Q

E
E

>
>

0.5
0.5

V

hFE

>

5

fT

typo

700

Cc

typo
<

15
20

pF
pF

Cre

typo

11

pF

IB

VCE

==

14 V

rnA

Breakdown voltages

Transient energy
L = 25 mH; f = 50 Hz
mWs
mWs

D. C. current gain
IC = 500 rnA; VC E

=5

Transition frequency
IC

= 350 rnA;

VCE

= 10 V

MHz

Collector capacitance at f = 1 MHz
IE

= Ie = 0;

VCB

= 15 V

Feedback capacitance at f = 1 MHz
IC

= 50 rnA; VCE = 15 V

Apri11971

II

3

BFS22A

II

I
7Z60975

1000'
fy

Vce=10V

(MHz)

750
~

-r-- ""'"-

typ

~

~

I'"

'" "-

500

~

250

---

o
o

0.5

2

1.5

2.5

lelA)

3

7%60970

30
~

\,

Cc:
(pF)

20

Ie=I.=O
f=1MHz

I\.

\

r\.

I--

r\. typ
~

f'~

10

o
o

4

II

10

Vce (V)

20

II

May 1971

II

BFS22A

APPLICATION INFORMATION

R. F. performance in c. w. operation (unneutralised common-emitter class B circuit)
f

= 175 MHz;

Tmb up to 25 °c

Vcc(V)

PS(W)

PL(W)

IC(A)

Gp(dB)

71(%)

z'"i(Q)

YL(mA./V)

13.5
12.5

< 0.63
typ.0.63

4
4

< 0.49
typ.0.53

> 8
typ.8

> 60
typ.60

3.9+j2.2

37-j22

Test circuit

son

C1
C2
C3
C4
C5

= C6 = 4

L4
L5

= 8 turns

L7

=

leads 2 x 10 mm
7 turns enamelled Cu wire (1.0 mm);winding pitch 1.0 mm; into diam. 6 mm;
leads 2 x 5 mm

R1

=

R2

to 29 pF air trimmer with insulated rotor

= C7 = 4 to 29 pF air trimmer with non -insulated rotor
=
39 pF ceramic
=
100 pF ceramic
=
15 nF polyester
Ll = 1 turn enamelled Cu wire (1.0 mm); into diam. 10 mm; leads 2 x 10 mm
L2 = 6 turns enamelled Cu wire (0.7 mm); into diam. 4 mm; leads 2 x 10 mm
L3 = L6 = ferroxcube choke (code number 4312 020 36640)
,
enamelled Cu wire. (0. 7 mm); int. diam.

4 mm; leads 2 x 10 mm

= 5 turns enamelled Cu wire (1.0 mm);winding pitch 1.0 mm; into diam. 8 mm;

=

10

May 1974

n

carbon

II

5

BFS22A

II
11&0969

7.5

f=115MHz
Tmb=25°C t--

see page 5

5

/

typtyp

~~
Vcc =13.5V
~"
.

//"

h 1'12.5V

2.5

I. ~

)V

#

--............

a

a

---

6

II

0.5

PsIWI

II

April 1971

BFS22A
II

7Z60971

7Z60972

RF. SOAR

R.F. SOAR
5

5
PLnom
(WI
V.S.W.R.=1

PLnom

(WI
v.S.W.R.=1
4

'""",,-

4

r-o.ks:W

'""",,-

~'0
I r-..
'""",,1"""',,-

~,t"

~~'O

t'.. '$,'r--..

""'"~

3

I"

~
......

2

2

1.0

k

I'"

...... t-...SO

1

'" '"'"

~<-t-

~I-I-

P
-ISnom

1.1

1.2

Psnom-t-

1.1

1.2

Vee
Vee nom

1

1.0

1.2

1.4

1.1

1.2

Vee
Vee nom

Conditions for R. F. SOAR:
f
175 MHz
PSnom = Ps at VCC = V CCnom and V .S. W .R. = 1
0
see also page 5
Tmb
70 C
VCCnom= 12.5 or 13.5 V

The transistor has been developed for use with un stabilized supply voltages. As the
output power and drive power increase with the supply voltage, the nominal output
power must be derated in accordance with the graphs above for safe operation at
supply voltages other than the nominal. The graphs show the allowable output power
under nominal conditions, as a functi on of the supplyovervoltageratio, withY. S. W.R.
as parameter.
The left hand graph applies to the situation in which the drive (Ps/PSnom) increases
linearly with supply overvoltage ratio.
The right hand graph shows the derating factor to be applied when the drive (Ps/PSnom )
increases as the square of the supply overvoltage ratio (V CC/V CCnom)·
Depending on the operating conditions, the appropriate derating factor may lie in the
region between the linear and the square -law functions.

April 1971

II

7

I

.

BFS22A

II

OPERATING NOTE Below 70 MHz a base-emitter resistor of 10 Q is recommended to
avoid oscillation. This resistor .must be effective for both d. c. and r. f.
1Z68907

power gain versus frequency
(class B operation)

20

Gp

....

(dB)

\

'"

15

~

,

VCC ;" 13,5 V PL =4W
Tmb == 25 °c typo values

~

\

-

,
\.
[\.

10

\.
~

"'" ....

.........

5

---

=

o

o

200

100

300
f (MHz)
7Z68909

7Z68908

input impedance (series components) versus frequency
(class B operation)

10

ri
xl

100
RL

ri

l\
5 t-It-\~+-+-t-I-+-+-+--+--+--dtI&Xi -

(0)

(Q)

10"

"1

vee = 13.5 V
PL =4W
Tmb = 25 °e

,..- I--

--

I--

r-

r-Hrl-4-+-+-r~~~~+-+-r-r;

I\.

load impedance (parallel components) versus frequency
(class B operation)

typo values

~

.....

-CL-I

./'f"'"

75

-25
I

/

--ri ~

CL

J

J

I

(pF)
I

I

50 r-RL

-50

I

I

" "-

J

1/
1-

X.

'I.. I
I

J
,

-5 .........-+-+--+-+-+-+...... VCC = 13,5 V,..........-+--t-+-'-+-+-+-t P L = 4 W
~f-+-+-+--+--+--+---lTmb
r-r-t-4-+-+-r~-itYP.

8

II

J

values

f (MHz)

.....

I-"

-RL.
-75

I

-

300

-

I

= 25 °c -

200

100

25

o

-c'L
I

o

200

100

II

f (MHz)

300

May 1974

_______Jl_.

_BF_S23A_

V.H.F. POWER TRANSISTOR

N-P-N epitaxial planar transistor intended for use in class-A, Band C operated mobile, industrial and
military transmitters with a supply voltage of 28 V. The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions.
It has a TO-39 metal envelope with the collector connected to the case.
QUrCK REFERENCE DATA
R.F. performance up to T mb = 25 °C in an unneutralized common-emitter class-B circuit
mode of operation

c.w.

VCE
V

f
MHz

PL

28

175

-zi

11

W

Gp
dB

%

.n

mAN

4

>10

>65

2,3+j1,6

8,9-j18,1

MECHANICAL DATA

YL

Dimensions in mm

Fig. 1 TO-39; collector connected to case.

-0=
t

b

c:::=:::a- 0,51
+max

8,5
max

c

-

L

=::I'

L --.1_
6,6
max

+

=

12,7
min

_I

725932.2.1

9,4 _
max

Maximum lead diameter is guaranteed only for 12,7 mm.
Accessories: 56218 (package); 56245 (distance disc).

September 1978

BFS23A

II

I

RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
"voltages
Collector-base voltage (open emitter)
peak value

VCBOM max.
/

65

V

Collector-emitter voltage (open base)

VCEO

max.

36

V

Emitter-base voltage (open collector)
Currents

VEBO

max.

4

V

Collector current (average)

IC(AV)

max.

0.5

A

Collector current (peak value) f> 1 MHz

ICM

max.

1.5

A

Ptot

max.

8

w

Power dissipation
Total power dissipation up to Tmb
f> 1 MHz

= 25°C

'1%6097'

7260 980

1Tmb=25°C

D.C. SOAR

Ie

---=

(A I

0.5

\

0.4

0.3
5

I-t-+-+-+-I-+-+--+'~-+-+-II-+--+--I

\\
!\

~

f-+- normal operation -+-+--+-+--1-1
I-f-

V.S.W.R.<3 +-~-+-+-+-+-+-I

0.2

\

O'--"--I--L.-..I..-'-...L-....L-....I.......IL.....I--L-..I..-L....L-.J

o

20

50

30
40
VeE (VI

Temperature
Storage temperature
Operating junction temperature

K

Tstg

-65 to +200

°c

Tj

max.

°C

200

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

22

°C/W

From mounting base to heats ink
with a boron nitride washer
for electrical insulation

Rth mb-h

2.5

°C/W

2

II

II

April 1971

II

II
Tj

CHARACTERISTICS

BFS23A

= 25 °c unless otherwise specified

Collector cut-off current

= 28 V

ICEO

<

5

Collector-base voltage
open emitter, IC = 1 rnA

V(BR)CBO

>

65

V

Colfector-emitter voltage
open base, IC = 10 rnA

V(BR)CEO

>

36

V

Emitter-base voltage
open collector; IE = 1 rnA

V(BR)EBO

>

4

V

E
E

>
>

0.5
0.5

hFE

>

5

fT

typo

500

Cc

typo

<

10
15

pF
pF

Cre

typo

7.5

pF

IB = 0; VCE

rnA

Breakdown voltages

Transient energy
L

= 25

mH; f

= 50 Hz
open base
- VBE =1. 5 V; RBE =33 Q

mWs
mWs

D. C. current gain

= 500

rnA; VCE

Transition

fre9.uenc~

IC

IC

= 400

=5 V

rnA; VCE = 20 V

MHz

Collector capacitance at f = 1 MHz
IE

= Ie = 0;

V CB

= 30 V

Feedback capacitance at f
IC

= 25

rnA; VCE

April 1971

=30 V

II

= 1 MHz

II

3

--

BFS23A

II
7160982

600

I I I I

VCE =20V
~

.... "'"

typ

[..,01

"""

J;

""'"

~

400

~I-

J;

'"

I\..

"
I\.

1\

200

--

o
o

1.5

0.5

lelA)

:

7Z60978

1\

20

IE=Ie=O
f=1MHz

I-

\

Cc
IpFI

I'I\.

15

I\.
,,-typ

'"
10

r--....

to--

1"'"'-

5

o

4

II

o

10

20 Vea IV)

30

II

April 1971

II

BFS23A

APPLICATION INFORMATION
R. F. performance in c. w. operation (unneutralised common -emitter class B circuit)
VCC

= 28 V;

Tmb up to 25

°c

YL

f(MHz)

(rnA/V)

8.9 - j18.1

175
Test circuit

50n
50n

---Cl
C2
G3
C4
C5
Ll
L2
L3
L4
L5

= C6 = 4 to 29 pF air trimmer with insulated rotor
= C7= 4 to 29 pF air trimmer with non-insulated rotor
=
39 pF ceramic
=
100 pF ceramic
=
15 nF polyester
= 1 turn enamelled Cu wire (1.0 mql); into diam. 10 mm; leads
= 6 turns enamelled Cu wire (0. 7 mm); into diam. 4 mm; leads

2 x 10 mm
2 x 10 mm

= L6 = ferroxcube

choke (code number 4312 020 36640)
turns enamelled Cu wire (0. 7 mm); into diam. 4 mm; leads 2 x 10 mm
turns enamelled Cu wire (1.0 mm); winding pitch 1.0 mm; into diam. 8 mm;
leads 2 x 10 mm
L 7 = 4 turns enamelled Cu wire (1.0 mm); winding pitch 1.0 mm; int. diam. 6 mm;
leads 2 x 5 mm

Rl

=8
=5

= R2 = 10 n

May 1974

carbon

II

II

5

I

BFS23A

IL
7%60981

7.5

7Z60977

7.5

II

R.F. SOAR

Vee=28V
f=175MHz r-Tmb=25OC r--

Vee= 28V
f=175MHz

see page 5

5

/

V

5

1/"'"

Tmb=50oC
70°C
gOoe

Vtyp

/

2.5

2.5

/
/

r

----

o

o

)'

0.25

PsIW)

0.5

o

1

10

V.S.W.R. 50

For high voltage operation, a stabilized
power supply is generally used.
The graph shows the allowable· output
power under nominal conditions as a
function of the V. S • W . R., with heatsink temperature as parameter.

6

II

II

April 1971

II

II

BFS23A

OPERATING NOTE Below 100 MHz a base -emitter resistor of 10 Q is recommended to
avoid oscillation. This resistor must be effective for both d. c. and r. f.
7Z68910

30

power gain versus frequency
. (class B operation)
I I I
I I
11 1 J I
Vee = 28 V 1-PL = 4 W . 1-1-Tmb = 2S °e 1--

20
1 ... ""-

typo values

,

~

I,

1--

,
~

10

"
o

o

200

20 r-______________________

~1Z~68~9~'1

....

f (MHz)

q

Xi

7Z68912

load impedance (parallel components) versus frequency
(class B operation)

I I I I I I
t-+-+-i'-f-+-+-+-+-+--+-i

Vee

= 28 V

I-

I-+-+-~-+-+_+-+-+_+-f P L
10
I-+-+-~-+-+_+-+-+_+-f

= 4W
. ::
Tmb = 25 °e~
typ. values I-

~

Vee = 28 V
PL = 4W
Tmb = 2S °e

,

J

200 l-iyL_ typo values

-,

rri~+-I-+-+-+-+-+-~~~rr,-~~

t---ttl,rt-~-++-i~+-I-+-+-+-+Ioo'-2"Xi -1-1\

400

300

input impedance (series components) versus frequency
(class B operation)

(~

--

,
'\.

'f'

I

,

o t-+-+-+-+-+-+:J4I'~'_t_+_t_+_+_t_+_+_t_+_+_t_t

,

100

1/

1/

-l- t::;;; eL: 1-11-1~

~

II"

;-~O

~

11

RL-H-

'"

CL

II

,

(pF)
1

11

-40

CL
I
I

-10

&....I.1~l.....i-...L-I.....J..~_'_..o...I.........L...J.....I...J.....I.......I._I

o

May 1974

200

II

f (MHz)

400

o

L

o

200

II

f(MHz)

400

7

II

BGY22
BGY22A

I

U.H.F. POWER AMPLIFIER MODULES

Broadband amplifier modules primarily designed for mobile applications operating directly from 12 V vehicle electrical systems. The module will produce 2,5 W output into
a 50 Q load over the bands 380 to 512 MHz for the BGY22, and 420 to 480 MHz for the
.BGY22A.
QUICK REFERENCE DATA

Type
number

Mode of
operation

Freq. range
(MHz)

BGY22
BGY22

C.w.
C.w.

380 to 512
380 to 512

BGY22A

C.W.

420 to 480

VB
. (V)

11
(%)

PD
(mW)

(W)

PL

13,5
13,5

50
50

>
2,5
typo 2,9

12,5

50

>

2,5

Zs

= ZL
(Q)

>
40
typo 50

50
50

>

50

40

Dimensions in mm

MECHANICAL DATA

SOT-75A
~

_ _ _ 32,25 _ _ _.1
31,75

Tenninal connections
1 = input lead
2 =+V8
3 = output lead
4 = r. f. and d. C. ground

i-.I~Y.lo,51®IAI
,

(3x)

-.1 4 •5

1...

12159Ql

To ensure good thermal contact between mounting base and heatsink, burrs or thickening
at the edges of the heatsink holes should be removed and the package bolted down onto a
fla.t surface.
Devices may be soldered directly into a circuit with a soldering iron at a maximum iron
temperature of 245 °c for 10 seconds at least 1 mm frOm the plastic.

July 1976

II

--

BGY22
BG.Y2,2A

It

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
D. C. voltages (with respect to flange)
Supply terminal

VB

max.

18

V

Input terminal

±VI

max.

25

V

Output terminal

±VO

max.

25

V

I tot

·maX.

800

rnA

PD

max.

150

mW

Current
Supply current (d. c.)
Drive power

= 13,5 V;

V.B

ZL

= 50 Q.

Temperatures

---

Storage temperature

T stg -40 to +100

Operating heatsink temperature

Th

max.

°C

PL for fault condition

PL for normal operation
7Z62913 1

6

°C

90

7Z62911 1

4
PLnom

~~~

(W)

~~$.
I
0""1';
3 ~ V;S'-fi~
~ h~",
r-~, ~$.
lJ«t-

4

~0""1';

.....

....... ~~!}ooJ .......

....

......~

...... ......

2

-

Ve

100

50

o

1

Venom

1,1 ,

1,2

Po

--1,3

POnom

Where PLnom
andPLnom

2

= PL at VB = 13,5 V;
= PL at VB = 12,5 V;

II

ZL
ZL

= 50 Q
= 50 Q

(BGY22)
(BGY22A)

II

July 1976

BGY22
BGY22A
CHARACTERISTICS

Th = 25 °C unless otherwise specified

Reference planes at r. f. input and output terminals are 1 mm from the plastic encapsulation.
Frequency range 380-512 MHz; VB
Frequency range 420-480 MHz; VB

= 13,5 V (BGY22)
= 12,5 V (BGY22A)

.

Quiescent current
PD = 0

IBQ

4,0 to 12,0

rnA

PL.

2,5 to

3,5

W

40

%

475

rnA

Load power
PD = 50 mW

Efficiency
PD = 50 mW

>

Supply current
PD = 50 mW

Itot

typo

Harmonic content
PD = 50 mW

Any harmonic is at least 20 dB
down relative to carrier

Input VSWR with respect to 50
PD

= 50

Q

mW

VSWR <

2

Temperature coefficient of PL
PD

= 50

mW; Th

= 25 to

70 0C

typo

-10

mW/oC

Stability
VB = 10, 5 to 15 V; PD = 10 mW to 100 m W
Th = -40 to +90 °C
Output load VSWR S 3, all phases
Output load VSWR S 10, all phases

July 1976

II

No instabilities
No appreciable
instabilities

II

3

-

BGY22·
BGY22A
7Z62978 1

6

7Z62976 1

6

typ.values

typo values

Po = 50mW
Th= 25°C

VB =13,5 V
Th= 25°C

4

4
:-"'~

....

...

...

-

-I"'"

Iooot-'

VB=~

I"

15 V II

~

--.. ....

..... 113,5 Vr-~!!!Io

....

12,5 V-

2

.....

2

Po=
""" 100mW
l-.l-.l
_iLl

"

,
"'-

~

50~W

~

20mW

--

o

450

350

f (MHz)

o

550

350

f (MHz)

450

. 550

7Z62979 1

80

typo values

VB = 13,5 V
T h= 25°C
)

60

--,...
....
....

r-- ...

I"'"

i""'1-o.

i""',,-

-~Ioo.

-~

40

20
350

4

II

450

....

"

I\..

PO=
SOmW
~ 100mW
20mW

-~ 1-00

1""'...;

f (MHz)

550

II

July 1976

BGY22
BGY22A
APPLICATION INFORMATION
R. F. performance in c. w. operation; T h ::: 25 °C
Orive source and load impedance Zs = ZL= 50
Type number

f(MHz)

BGY22
BGY22
BGY22
BGY22

380
380
380
380

BGY22A

420 to 480

to
to
to
to

Q

n (%)

VB (V)

Po (mW)

15,0
13,5
13,5
12,5

50
50
50
50

typo
>
typo
typo

3,5
2,5
2,9
2,5

typo
>
typo
typo

47
40
47
47

12,5

50

>

2,5

>

40

512
512
512
512

PL (W)

\

The modules are designed to withstand full load mismatch under the following conditions:
Po = POnom + 20%; Th = 70°C
VB ::: 16,5 V (BGY22)
VB = 15,0 V (BGY22A)
VSWR :: 50 at any phase
where PDnom ::: PD for 2,5 W module output under nominal conditions.

July 1976

II

5

BGY22
BGY22A

II

+j

t

OH---+-~~~~~~~~~~~--~~~~~~m

~

-j

---

-

Typical variation of input
impedance with frequency

VB
f

= 13,5 V

= 470 MHz

+j

t

OH---4-~~~~~~~~~~~~~~~~~~m

~

10

,;, j

Typical variation of power
dissipation with load impedance
7Z72672

6

[I

II

July 1976

BGY22
BGY22A

VB

=

Po

= 50

13,5 V

mW

f = 470 MHz

Typical variation of load
power with load impedance

VB = 13,5 V

Po

= 50

mW

f = 470 MHz

+j

10

t

10

Typical variation of
efficiency wi.th load impedance
7Z72674

July 1976

II

7

BGY23
BGY23A

U.H.F. POWER AMPLIFIER MODULES

Broadband amplifier modules primarily designed for mobile applications operating directly from 12 V vehicle electrical systems. The modules are suitable for driving directly from the BGY22 and BGY22A respectively, and when so driven will produce 7 W
output into a 50 Q load over the band 380 to 480 MHz for the BGY23, and 7 W over the
band 420 to 480 MHz for the BGY23A.
QUICK REFERENCE DATA

Type
number

Mode of
operation

Freq. range
(MHz)

VB
(V)

PD

PL

1')

(W)

(W)

(%)

(Q)

BGY23
BGY23
BGY23

C.w.
C.w.
C.W.

380 - 480
380 - 480
480 - 512

13,5
13,5
13,5

2,5
2,5
2,5

7,0
>
typo 8,3
typo 7,5

60
typo 71
typo 69

50
50
50

BGY23A

C.W.

420 - 480

12,5

2,5

>

60

50

MECHANICAL DATA

SOT-75A

7,0

Zs

>

>

= ZL

Dimensions in mm

~_ _ _ 32,25' _ _ _"1

31,75

A

f
r
316~~.~L-~~4~-~~F=~-~~~~-~'~

Terminal connections
1 = input lead
2 =+VB
3 = output lead
4 = r.f. and d.c. ground

9,5
min

+

i--I~Y.lo,51@IAI
,

(3x)

-.14,51.-

?laS90,

To ensure good thermal contact between mounting base and heatsink, burrs or thickening
at the edges of the heatsink holes should be removed and the package bolted down onto a
flat surface.
Devices may be soldered directly into a circuit with a soldering iron at a maximum iron
temperature of 245 °c for 10 seconds atleast 1 mm from the plastic.

July 1976

II

1

BGY23 .
BGY23A

I

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEe 134)

D. C. voltages (with respect to flange)
Supply terminal
Input terminal (no external d.·c. connection)
Output terminal

VB

max.

18

V

±VI

max.

0,5

V

±VO

max.

25

V

Ito't

max.

1,7

A

PD

max.

3,5

W

T stg . -40 to +100

°C

90

oc

Current
Supply current (d. c.)
Drive power
VB ::: 13, 5 V; Z L ::: 50 Q
Temperatures
Storage temperature
Operating heatsink temperature

-

max.

Th

PL for fault condition

PL for normal operation

-

7Z62972 1

PLr+~~-r~~~r+4rr+~~-r+;

10

'-"'s~~

(W)r+~rr+;~r+~rr~~r+~~ P Lnom (W)

7,5

~"'s
~$o,. ~
_s.~~s.
JJ~.:>oo
..... 0,.7';

)

c

1'~~.90 01"' .....
....... ~

............

.....
5

2,5

1,1

1,2

VB

I--

VBnom

I--

Po

1,3

POnom

Where PLnom :::PL at VB =' 13,5 V; ZL ::: 50 Q (BGY23)
and PLnom ::: PL at VB .='" 12,5 V; ZL =' 50 Q (BGY23A)

2

II

II

July 1976

BGY23
BGY23A
CHARACTERISTICS

Th = 25 oC unless otherwise specified

Reference planes at r. f. input and output terminals are 1 mm from the plastic encapsulation.
Frequency range 380-512 MHz; VB == 13,5 V (BGY23)
Frequency range 420-480 MHz; VB = 12,5 V (BGY23A)
Quiescent

curren~

PD = 0

IBQ

<

5,0

mA

Load power
PD = 2,5 W; f = 380-480 MHz

BGY23

PL

7,0 to 9,5

W

PD = 2,5 W: f = 480-512 MHz

BGY23

PL

typo

7,5

W

PD = 2,5 W; f = 420-480 MHz

BGY23A

PL

7,0 to 9,5

W

>

60

%

900

rnA

Efficiency
PD = 2,5 W
Supply current
PD=2,5W

Itot

typo

Harmonic content

PD = 2,5 W

Any harmonic is at least 20 dB
down relative to carrier

Input VSWR with respect to 50

Q

PD = 2,5 W

VSWR

<

2

Temperature coefficient of PL
PD = 2,5 W; Th = 25 to 70 °C

typo

-20

mW JOC

Stability
VB = 10, 5 V to 15 V; PD = 1 W to 3, 5 W
Th = -40 °c to +90 oC
Output load VSWR ~ 3, all phases
Output load VSWR ~ 10, all phases

July 1976

II

No instabilities
No appreciable
instabilities

3

BGY23
BGY23A

II
7Z62977 1

15

7Z62975 1

15

typo values

typo values

Po =2,5W
T h = 25°C

VB =13,5 V
T h = 25°C

10

10

.... """
....

~

- .... ...

-

VB = f15 V f-

;-1-00.

.....

Po= r-

1""- ....

i"o.
r- ....

" 13,5 V12,5V-

r, 3;OWfI'"

~

2,5W2;OW-

5

5

---

450

f (MHz)

550

450

f (MHz)

550

7Z62980 1

100

typo values

VB =13,5 V
T h = 2SOC

80
2,5W
3.0w ..;;:~
2,0\AJ ....

-

;-

F.h=
3,OW

....

1""--_

....

2;5W_
2.0W-

60

40
350

4

II

450

f (MHz)

550

II

July 1976

BGY23
BGY23A
APPLICATION INFORMATION
R. F. performance in c. w. operation; Th = 25 0C
Drive source and load impedance Zs = Z L = 50
f (MHz)

Type number

Q

VB (V)

Po (W)

P L (W)

BGY23
BGY23
BGY23
BGY23
BGY23

380
380
380
480
380

512
480
480
512
512

15,0
13,5
13,5
13,5
12,5

2,5
2,5
2,52,5
2,5

typo
>
typo
typo
typo

9,0
7,0

BGY23A

420 to 480

12,5

2,5

>

to
to
to
to
to

11 (%)

7,5
7,4

typo
>
typo
typo
typo

65
60
71
69
70

7,0

>

60

8,3

Connection of the BGY22/BGY22A to the BGY23/BGY23A respectively can be either by 50 Q
transmission line or directly with a total lead length not greater than 2 mm.
The modules are designed to withstand full load mismatch under the following conditions:
Po = POnom

+ 20%; Th = 70 °C

VB = 16,5 V (BGY23)
VB = 15,0 V (BGY23A)
VSWR = 50 at any phase
where PO nom

July 1976

= Po for

II

7,0 W module output under nominal conditions.

5

BGY23
BGY23A

II

+j

t

O~--~~~~~~~++~~~~--~~~~~~oo

~

-j

--

Typical variation of input
impedance with frequency

VB = 13,5 V
f = 470 MHz

+j

t

BGY22/23 or
BGY22A/23A
cascaded amplifier

10

0

00

~

10

-j

Typical variation of overall power
dissipation with load impedance

6

II

n72677

II

July 1976

BGY23
BGY23A

VB = 13,5 V
f

= 470

MHz

+j

t

BGY22/23 or
BGY22A/23A
cascaded amplifier

0

00

~

-j

--

Typical variation of load
power with load impedance

VB = 13,5 V
f

= 470

MHz

+j

10

t

BGY22/23 or
BGY22A/23A
cascaded amplifier

0

00

~

10

-j

Typical variation of overall
efficiency with load impedance

July 1976

II

7Z72678

7

BGY32 BGY33
BGY35 BGY36

VH.F. POWER AMPLIFIER MODULES

A range of broadband amplifier modules designed for mobile communications equipments, operating
directly from 12 V vehicle electrical systems. The devices will produce 18 W output into a 50 n load.
The modules consist of a two stage r.f. amplifier using n-p-n transistor chips, together with lumpedelement matching components.
QUICK REFERENCE DATA
type number mode of frequency
operation
range
f (MHz)

nominal supply
voltages

drive
power

load nominal input
power
impedance
VB1 = VB2 (V) PD (mW) PL (W)
zi In)

BGY32

C.w.

68 to 88

12,5

100

>

18

BGY33

C.w.

80 to 108

12,5

100

>

18

BGY35

C.w.

132 to 156

12,5

150

>

18

BGY36

C.w.

148 to 174

12,5

150

>

18

typ 23
typ 22
typ 22
typ 21

nominal load
impedance
ZL (n)

50

50

50

50

50

50

50

50

CIRCUIT DIAGRAM

5
3

r---------------------------~~----~----------~+VB2

+VB1

r-o
7

1
inputo-l

2

6

4
CAUTION These devices incorporate beryllium oxide, the dust of which is toxic. The devices are
entirely safe provided that they are not dismantled.
.

1(JUlY

1977

output

'l'

BGY~2

BGY33
BGY35 BGY36

'-----------------------------------------~-------Dimensions in mm

--. MECHANICAL DATA
Fig. 1 SOT-132.

.

~--~--~~~I

•

~------·~I'

rn----..~I
--~-'I'
'II

-.~ ~I--I
~ I~

0

I

t -. ~It i

j

0

7,65

II
00

'

42

I~I 1,---

max

+

---

3,3 +

Lead reference

91..--_-____---IF
1------- 61,0 ------'---1 A

.,.--- ~f-J::=======L....h --.J
t •
17,0 3,5
•

1 = Input
2 =Earth
3 = Supply +VB1
4 = Earth
5 =Supply +VB2
6 = Earth
7 = Output

+

1,oJI-HH±~m

I....~--I....~-----

52,5 - - - - - - t..~1

67,S ------.1

7Z69427,'

Mounting and soldering recommendations
To ensure good thermal transfer the module should be mounted using heatsink compound onto a
heatsink with a flat surface; if an isolation washer is usedheatsink compound should be used on both
sides of the insulator. Burrs and thickening of the holes in the heatsink should be removed and 3 mm
bolts tightened to torques of 0,5 Nm minimum.
Devices may be soldered directly into a circuit with a soldering iron at maximum iron temperature of
245 0C for 10 seconds at least 1 mm from the plastic.,

2

August 1978

(

BGY32 BGY33
BGY35 BGY36

V.H.F. power amplifier modules

RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)

D.C. voltages (with respect to flange)
D.C. supply terminals
R.F. input terminal
R.F. output terminal

VBl and VB2

max

15 V

±VI

max

25 V

±VO

max

25 V

Power
Input drive power BGY32 and BGY33

Po

max

200 mW

Input drive power BGY35 and BGY36

Po

max

300 mW

Load power

PL

max

30

W

7Z73726 1

40

PL
(W)

VSWR = 1
30

.......
r-......

""",

i'

20

10

o
-50

o

Temperatures
Storage temperature

-40 to 100 0C

Operating heatsink temperature

max

July 1977

90 °C

3

BGY32 BGY33
BGY35 SGY36

l_ __

CHARACTE R ISTICS
Th=25 0 C
Quiescent current

BGY32 BGY33 BGY35 BGY36

VB1 = VB2 = 12,5 V; Po = 0;
1801
1802

RS=RL=500

Frequency range

typ
typ

6
13

6
13

6
13

6 mA
13 mA

>
<

68
88

80
108

132
156

148 MHz
174 MHz

>

18
23

18
22

W
W

40
50

40
50

%
%

Load power
VB1 =V82= 12,5V; RS= RL =500

PL

BGY32 and BGY33; Po = 100 mW

1 7'/
PL

BGY35 and BGY36; Po = 150 mW

!

7'/

-

Harmonic output

typ

>
typ

>
typ

>
typ

18
22

18 W
21 W

40
50

40 %
50 %

Any single harmonic will be at least 25 d8 down
relative to carrier

Input VSWR with respect to 500
Stability

typ

1,5

The module is stable with load VSWR up to 3
(all phases) when operated with matched output
power greater than 6 W.

Ruggedness
The modules are capable of withstanding load mismatch of up to 50 VSWR for short period overload
conditions, with PO, V81 and V82 at maximum values providing the combination does not result in
the matched r.f. output power rating being exceeded.
APPLICATION INFORMATION
Supply
An electrolytic capacitor of 10 IlF (25 V), in parallel with a polyester capacitor of 100 nF to earth, is
recommended as decoupling arrangement for each power supply pin.
Power rating'
In general it is recommended that the output power from the module under nominal design conditions
should not exceed 23 W in order to provide adequate safety margin under fault conditions.
Gain control
Power output can be controlled by variation of the driver stage supply voltage VB1. The supply required is a voltage regulator with a current rating of 0,75 A, and an output voltage range of 3 V to 12 V.

4

July

19771

r

BGY32 BGY33
BGY35 BGY36

V.H.F. power amplifier modules

7Z77192

35

BGY32

Po= 100mW
typical values

30

7Z77193

VB1 =VB2 = 12,5 V -f- 1-1- BGY32
typical values

1--,,,,
~

"-

~

25

--

~

L,..oo
~

"

'I\.V B1 = VB2 =
LI
I I
\.
13,8 V
i""'o

....

Y

20

I II
II I

15

1""'01'00..

tzt

I
~

I
I

....

....

II
-f=76 MHz
-l68 MHz ~f- -f-ff-88 MHz

V- ""'"

II
II

12,5 V

"

......

~,..

1/'/

I
....... 10,5 V

11/
1111
II

,

10

I
II

o

5
60

30

80

f (MHz)

7Z77194

I
I

V B2 = 12,5 V

o

100

BGY32

VB1 =VB2= 12,5 V
Po = 100 mW

,

I
J

(...00 ......

J...

88 MHz

~

'('

20

I

..... ~
..... r-.,

i"""

100

20

J I
II
J
J
II
II I
I
I

T/
(%)

10

'/ I
I I

...

typ

--

50

I'"
~

1/11
I
.I

PL f--

I

'/

10

typ

I....

I

rl

~

-- f-f- BGY32

;/

b
A

200

Po (mWI

7Z77195

30

PO =100mW r--f-- , - - f =: 7' 76 MHz
typical values
68 MHz
1/

100

..... TJ

1--

I

if

0
0

0
10

VBl (VI

20

60

80

I

f (MHz)

July 1977.

0
100

5

l

BGY32 BGY33
BGY35 BGY36

_

'-------------------------------------------------10

7Z77261

7Z77196

VB1 =VB2= 12,5 V r -r r BGY32
PD = 100 mW
typical values

BGY32

I--

-

-

VBl = V B2 = 12,5 V
P L =23 W

+2
AG p

(dB)
-30

+1

"

-

\..
\..
~

I'...

....
~

°

......

"-50

-l"- I-

-

.... -..!.Y~
1"- .....

I'...

~ d2 -eI\.
r--"""

- .....

",

.....

~

..........

-1

,
1\

--='
-

d3 r-rI

. -70
60

80

100

f (MHz)

7Z17197

40

BGY33

PD = 100 mW

-2

o

30

typical values

25

7Z77198

VB1=VB 2=12,5V r-rtypical values '

IJ
I I
J
f= I I
94 MHz ~
20 80 MHz!,/
108 MHz
I

30

-.....

.....

'"

VB1 =V B2 =
13,8 V -r---

I

--

BGY33

t!"!'''''
",
~~

r;..J.

I II .....
12,5 V r-r-~
I'

'r"' ....

"

~

20

10
r- ... .20,5 V r-r--r-

"""'~

....

i"'"

10

6

r
90

70

July

19771

f (MHz) -.

110

o
o

100

PD(mW)

200

BGY32· BGY33
BGY35 BGY36

· V.H.F. power amplifier modules

7Z77199

30

V B 2 = 12,5 V

BGY33
I I
f = -+---I-

PO= 100 mW
typical values
1".00
",.

I""

I"IIIF

t...II

V B1 =V B2 =12,5V
Po = 100 mW
typical values

- f - f-f-

BGY33

94 MHz

80 MHz
108 MHz

~

20

7Z77200

30

~

_P
20

/~

L

i""'o~

i"'"

i."'"

100

/

II
I[

'/
T/
(%)

I

II

II
'J I
J II

I-

1} ..

10

-

r-'I'- ..

10
I

50

~-

I

o

o
o

10

20

90

f (MHz)

7Z7 7201

-10

V B l =VB2= 12,5 V

1 - -1-1-

""-"-

BGY33

- f -f -

+2

V B1 = V B2 = 12,5 V
PL = 23 W

~Gp

(dB)

;

-30

110

7Z77261

BGY33

Po = 100 mW
typical values
I
'- d2

--

o

70

+1

" "~

"

~

o

~

-r-I-

\..

-...

typ
-

....... 1'-....

....... .......

-50

............

-1

'wi
~

/

- d3

-70
70

..... 1--'

-2
90

f (MHz)

110

o

25

Ir

July 1977

7

l.

BGY32 BGY33
BGY35 BGY36

_

'-------------------------------------------------7277202

40

BGY35

PO =150mW

7Z77203

30
V B1 =V B2 =12,5V
typical values

typical values

....

V

- f - f-f-

_

-

....

132 MHz

,,~

30

I

f=LLL
144 ~~z

........ 156 MHz

.... 1"""

/

BGY35

I~

20

'I

I
V B1 =VB2:"~
13,8 V

-r-.

,.

./

I 1'1

,

I I
20

12,5~

-~

r- ...
10

r

10,5 V
I I"'f'

-

....

....

"

,

II

-

r

I

I
II

I I

10 I I
120

,140

f (MHz)

160

7277204

30

V B2 =12,5V

BGY35

PO =150mW
typical values

o
o

30

I
I
f = +---+-+-144 MHz
156 MHz
..... ::::. 132 MHz

200

1..&

20

V

(mW)

->- f-f-

BGY35

PO=150mW
typical values

L
1

- ....

....

1

J

~

~

20 r- PL.: V

J

400

7Z77205

VB1 = VB2 = 12,5 V

" ....
/i,...-t:;:'

Po

r-" 100

'V

/J/

T/
(%)

1)1
1/, I

'I

1/1

10

10

[I

o

o

8

r
10

July 1977

~

f-

T/

--

~

o
20

120

50

o
140

f (MHz)

160

J

V.H.F. power amplifier modules

BGY32 BGY33
BGY35 BGY36

--------o

7Z77261

7Z77206

V B1 = V B2 = 12,5 V
Po = 150 mW
typical values

BGY35

t-t- r-t-

I-- I--I--

BGY35

V B1

= V B2 = 12,5 V

P L =23 W

+2
~Gp

(dB)
-20

+1

d2

r-

I"""
i"'"

""'" 1""'"
i""'",,I-

........

d3

-

1--

-40

o

-i""-- I- ~

typ

1-1--..

r-... r-

..... r--,.

I"""

,

~

I

-1

II

,

I\~

-2

-60
120

140

f(MHz)

160

7Z77207

40

BGY36

PO =150mW
typical values

o

25

7Z77208

30

V B1 =V B2 =12,5V
typical values

L..-:.... I-:::~

30
V B1 = VB2
"",I"""
15 V V
IA
I

20

r....ioo"~

20

L.-f'" "'"
13,8 V I--

....

I'

"'"'

n

'"

'" f = f-+-+161 MHz
I" ['\174MHz
148 MHz

'l J
III

1"-

1'"

II

10

I

12,~ V

IJ
II

I I
10,~~

10
140

'"

II
II

I'

t....

BGY36

"

V
1/ 1/
,J
JIJ II

1'-

1..-1"""

I"

~I ...

~t--.

I,..o~

--

f-+-

I-t-

o
160

f (MHz)

180

o

200

Po

(mW)

400

9

l

BGY32 BGY33
BGY35 BGY36

'---------------------------~--------------7Z77209 '

30

V B2 = 12;5 V

BGY36
I I I I
I I I

PO =150mW
typical values

f =
k:::=

~~I-

20

t-++-

161 MHz
k 174 MHz
148MHz

~

7Z77210

30

V B1 =VB2 =12,5V

1-1- f-I-

BGY36

Po = 150 mW
typical values
)

PL
1--

~

1,..- ....

20

.....

,

100

.".

~v~

VVII
/1

1J

II
I

(%)

I

1

I
II II

II

10

1]

I-I- ...

I
II

-1-

I'"

10

,...

"'"

50

I
II J
II

I

1/
II

---

o

o
o

o

10

20

160

1-1- f-f-

7Z77261

+2

)

-20

+1

(dB)

o

d2 ,..."",
1 I
I I

r- F- l- I-

typ

r...~

1""-"",

~
~t--

I I

"
r--""

-1
r ......

r

160

July 1977

~

-2
f (MHz)

r-....
r"

r'"

~-

-60
140

180

180

BGY36 I- 1-1- V =VB2= 12,5V
B1
PL =23 W

BGY36

ilG p

t- d~ _"'"

10

f(MHz)

7Z77211

VB1 =VB2= 12,5 V
Po = 150 mW
typical values

-40

o

140

o

25

l___

DEVELOPMENT SAMPLE DATA
This information is derived from development samples made available
for evaluation. It does not form part of our data handbook system and
does not necessarily imply that the device will go into production

B_L_V_10_ __

V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated mobile, h.f. and
v.h.f. transmitters with a nominal supply voltC\ge of 13,5 V. The transistor is resistance stabilized and
is guaranteed to withstand severe load mismatch conditions with a supply over-voltage to 16,5 V.
It has a 3/8" flange envelope with a ceramic cap. All leads are isolated from the flange.
QUICK REFERENCE DATA
R.F. performance up to Th = 25 °C in an unneutralized common-emitter class-B circuit
mode of operation

Gp

'Tl

dB

%

VCE
V

MHz

c.w.

13,5

175

8

>

C.w.

12,5

175

8

typo 10,5

9,0

>

YL

zi

70

n

mAN

2,8 + j1,2

76 - j16

typ .. 75

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-123.

--

0,17
- - --0,11

ceramic

" " 20,6

metal
7Z77386.1

6,35 - Torque on screw: min. 0,6 Nm (6 kg cm)
max. 0,75 Nm (7,5 kg cm)
2,54

t

I I; ! I I
1

1 ~~~

1_ _

t

Recommended screw: raised cheese-head
4-40 UNC/2A
Heatsink compound must be applied sparingly
and evenly.

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damag~.

September 1978

Jl____________________

_BL_V10
RATINGS

Limiting values in accordance with the Absolute Maximum System (lEC 134)
Collector-emitter voltage (VSE :::: 0)
peak value

V CESM

max.

Collector-emitter voltage (open base)

VCEO

max.

Emitter-base voltage (open collector)

VESO

max.

Collector current (average)

IC(AV)

max.

1,5 A

Collector current (peak value); f > 1 MHz

ICM

max.

4,0 A

R.F. power dissipation (f> 1 MHz); T mb = 25 °C

Prf
T stg

max.

Storage temperature
Operating junction temperature

Tj

7Z77722

1,5

1\

20 W
-65 to + 150 0C
200 0C
max.

7Z77723

30
Prf

\

\

----

36 V
18 V
4 V

(W)

....

\

Ie

\
\

\

(A)

\

, ,
1\

1\

\

-

/

I--

1/

\
/i\.

Th=70oe

~

III

,

/

T m b=250C

-

I

20

N.
II
I'

\

,
1\,

.....

....

O'e,.

~~l'e6
YO
!

~~l*

"~
* / 0 - 1--

....

10

I....

"- ....
1'1 ...

1\
I'\..

I"

I'I.(0C-~""" C - ! - -

\

'-

....

1

I

....

\
,I\.
I"

o

0,5

5

10

15 VeE (V) 20

Fig. 2 D.C. SOAR.

o

50

100

Fig.3 R.F. power dissipation; VCE ~ 16,5 V;
f> 1 MHz.
I Continuous d.c. operation
II Continuous r.f. operation
III Short-time operation during mismatch

THERMAL RESISTANCE (dissipation = 8 W; T mb= 72,4 oC, i.e. Th = 70 OC)
Rth j-mb(dc)

10,7 0C/W

From junction to mounting base (r.f. dissipation)

Rth j-mb(rf)

From mounting base to heatsink

Rth mb-h

8,6 °C/W
0,3 0C/W

From junction to mounting base (d.c. dissipation)

2

September 1978

(

Jl

V.H.F. power transistor

----------------------

-----------------------------------------------------CHARACTERISTICS

BLV10

Tj = 25 °C
Collector-emitter breakdown voltage
VBE=0;IC=5mA

V(BR)CES

>

36 V

Collector-emitter breakdown voltage
open base; IC = 25 rnA

V(BR)CEO

>

18 V

Emitter-base breakdown voltage
open collector; IE = 1 rnA

V(BR)EBO

>

4 V

Collector cut-off current
VBE = 0; VCE = 18 V

ICES

<

2 rnA

Second breakdown energy; L = 25 mH; f = 50 Hz
open base

ESBO

>
>

0,5 mJ

ESBR

D.C. current gain *
IC = 0,,15: A; \ftcE = 5 V

hFE

typo
40
10 to 100

Collector-emitter saturation voltage *
IC=2A;IB=0,4A

VCEsat

typo

0,85 V

Transition frequency at f = 100 MHz *
-IE = 0,75 A; VCB = 13,5 V

fT

typo

950 MHz

fT

typo

850 MHz

Cc

typo

16,5 pF

Feedback capacitance at f = 1 MHz
IC = 100 rnA; VCE = 13,5 V

Cre

typo

12 pF

Collector-flange capacitance

Ccf

typo

2 pF

RBE = 10n

-I E = 2 A; V CB

= 13,5 V
Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 13,5 V

0,5 mJ

--

* Measured under pulse conditions: tp ,;;;;;; 200 IlS; l) ,;;;;;; 0,02.
September 1978

3

---,J l"""---_ _ _ _ __

_B_LV1_0

7Z77725

7Z77724

40

100

Cc
(pF)

30

75

1\

"-

50

-

~~

I

17

.......

to-..

l/ .....

r-....

VCE =
13,5 V

to- r- '-

10

o

o

2

IC (A)

Fig. 4 Typical values; Tj = 25°C.

3

o

5

I.......

/

/ /

fT
(MHz)

CB

(V) 15

Fig. 5 IE~le=0;f=1 MHz;Tj=250C.

j

./

~

"'"

- --............ -...... - ......
- '" ......
........

.....

I

.......

...... ........

VCB =
"I'.. ~ 13,5V

71/
7/

J
1

~

I

o

September 1978

l-Il-I-

I

' 10V

2
Fig. 6 Typical values; f = 100 MHz; Tj = 25°C.

4

10 V

7Z77732

1000

o

I 't-.....

'5V

·0

500

typ

"'-

i"""o ~~

25

---

.........

20

(

3

Jl_____

B_L_V_10_____

__V_.H_.F_.p_ow_er_tr_an_siu_o_r_____________________

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th

= 25 °C

f (MHz)

VCE (V)

PL (W)

Ps (W)

Gp (dB)

IC(A)

< 1,0

>

< 0,85

175

13,5

8

175

12,5

S

9,0

typo 10,5

YL (mAIY)

11(%)

>

70

2,8 + j1,2

76 - j16

typo 75

C6
~----~-.--o50n

C7

-Fig. 7 Test circuit; c.w. class-B.
List of components:
C1 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222 S09 07004)
C2 = C7 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 S09 0700S)
C3a = C3b = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor
C5 = 100 nF polyester capacitor
C6 = 5 to 60 pFfilm dielectric trimmer (cat. no. 2222 S09 07011)
L1 = 2 turns Cu wire (1,6 mm); into dia. 4,5 mm; length 5,7 mm; leads 2 x 5 mm
L2 = 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm
L3 = LS = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)
L4 = L5 = strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
L6 = 3 turns Cu wire (1,6 mm); into dia. 7,5 mm; length 7,5 mm; leads 2 x 5 mm
L7 = 3 turns Cu wire (1,6 mm); into dia. 6,5 mm; length 7,4 mm; leads 2 x 5 mm
L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
R 1 = 10 n carbon resistor
R2 = 4,7 n carbon resistor
Component layout and printed-circuit board for 175 MHz test circuit see Fig. S.

September 1978

5

Jl

BLV10

I-

-------

-I

150

72

7Z78506

---=
.7Z78508

Fig. 8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

6

September 1978

(

__

~V'_H'_F._~_~_rt_ran_si_~_r

________________

7Z78514.1

15

I I
t
Th=25o~
~

I.....

/

/
j

Gp

.,..

(dB)

"

i.""

10

~

'"

=

1\

Gp .

"-"

'" , I'.I'. .....
~

"

l~

Th = t-70 oC.~
.12 250C t-- 100
~
1.1.

'r-

~

'.I'

t

~

i/I~

1.

L"..~~

•

~r:::::::

t/l/

LL~V

rll 'V'

'J

"

''-

'17

j

25 0 C r70 0 C ~

5

5

o

BL_V_10_____

1.
t\.

10

~ "
70 0 C

jl_____

__

72785101

15

I'

1\--,1"

~

o

2

P

s (W)

Fig. 9 Typical values; f = 175 MHz;
- - VCE = 13,5 V; - - - VCE = 12,5 V.

o

(%)

50

o

---

o
10

20

Fig. 10 Typical values; f = 175 MHz;
- - VCE = 13,5 V; - - - VCE = 12,5 V.

7Z78511

10
PLno m
(W)

VSWR =

VSWR = 1

.............

7,5

-i--

1p

............

Note to Fig. 11:
The transistor has been developed for use with
unstabilized supply voltages. As the output power
and drive power increase with the supply voltage,
the nominal output power IT!ust be derated in
accordance with the graph for safe operation at
supply voltages other than the nominal. The graph
shows the permissible output power under nominal
conditions (VSWR = 1), as a function of the expected supply over-voltage ratio with VSWR as
parameter.

50

5

2,5

o

Ps f - '
PSnom 1

1,1

'Fig. 11 R.F. SOAR (short-time operation during
mismatch); f= 175 MHz; Th = 70 oC;
Rth mb-h = 0,3 oCIW; VCEnom = 13,5 V or
12,5 V; Ps = PS nom at VCEnom and VSWR = 1.

The graph applies to the situation in which the
drive (PS/PSnoml increases linearly with supply
over-voltage ratio.

1,2~
VCEnom
September 1978

7

Jl_____

_BL-----""'V10

7Z78513

10

7Z78512

o

25
~

,
I'

xiIL.,..oo ".,

--

ILl'

-'

1\ ifJ

/

o

]

rp-

'f'
~xi
1- ~

---

I

1
r- I/C L

"

,

r--.

......

~
~

5

o

100

200

f (MHz)

300

Fig. 12 Input impedance (series components).

-100

RL t-

10

-10

-

-50

Il

~V'

-5

CL
(pF)

~~
15

~

~

~

\

20

CL

~",

r- ~RL

I-- ~ri

I-""~

-150

o

100

200 f (MHz) 300

Fig. 13 'Load impedance (parallel components) •.

7Z78515

20
Conditions for Figs 12,13 and 14:

,

Gp

~

" , ~,
"

(dB)

15

\

Typical values; VCE
Th = 25 oC.

,

OPERATING NOTE
Below 70 MHz a base-emitter resistor of 10 n
is recommended to avoid oscillation.
This resistor must be effective for r.f. only.

"I\.,

10

"I'

"~

i"'"

5

o

o

100

200
Fig. 14.

8

September 1978

= 13,5 V; PL = 8 W;

(

f (MHz)

300

l___

DEVELOPMENT SAMPLE DATA
This information is derived from development samples made available
for evaluation. It does not form part of our data handbook system and
does not necessarily imply that the device will go into production

B_L_V1_1_ __

V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated mobile, h.f. and
v.h.f. transmitters with a nominal supply voltage of 13,5 V. The transistor is resistance stabilized and is'
guaranteed to withstand severe load mismatch conditions with a supply over-voltage to 16,5 V.
It has a 3/8" flange envelope with a ceramic cap. All leads are isolated from the flange.
QUICK REFERENCE DATA
R.F. performance up to Th = 25 °C in an unneutralized common-emitter class-B circuit
mode of operation

Gp
dB

VCE

n

%

MHz

c.w.

13,5

175

15

>

c.w.

12,5

175

15

typ.7,5

8,0

>

YL
mAN

Zi

1/

V

60

2,3 + j2,2

130 - j4,4

typ.67

MECHANICAL DATA

---

Dimensions in mm

Fig. 1 SOT-123.

0,17
- - --0,11

32"-

-~/~:~
e

"
5

"'20.6
7Z77386.1

6,35 - -

2,54

t

r I;
1

!I1

4,55
4,10

Torque on screw: min. 0,6 Nm ,(6 kg cm)
max. 0,75 Nh'l (7,5 kg em)

•

1 ;;,~;

1_ _

t

Recommended screw: raised cheese-head
4-40 UNC/2A
Heatsink compound must be applied sparingly
and evenly.

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

September 1978

1

_B~LV1_1______.Jl--..---.--_RATINGS
Limiting values, in accordance with the Absol.ute Maximum System (lEC 134)
Collector-emitter voltage (VBE = 0)
peak valu~

VCESM

max.

36 V

Collector-emitter voltage (open base)

VCEO

max.

18 V

VEBO

max.

4 V

IC(AV)

max.

3 A

ICM

max.

8A
36 W

Emitter-base voltage (ope~ collector)
Collector current (average)
Collector current (peak value);

(t>

R_F. power dissipation

t>

1 MHz

1 MHz); T mb = 25 °C

Storage temperature
Operating junction temperature

7Z77733

3,5

Ie

--=
=
-

Prf

max.

T stg

-65 to

Tj

max."

+ 150 0C
200 0C

7Z77734

60

Prf

(A)

(W)

\

\
1

1\ ..-\

,%

1\ \\

2,5

40

~

\'-::s'.A~d'0
\1
0
\-1
0

- f - f-

III

1\
0

1\

\0

,

\
I\,

1,5

,

1\

."\

"

20

\

1'..'

~

\

0,5

..
r- - -

I t-t-t-+-t-+-t-I-+-f-t--+-j"f--+t...-:-:f
"Ii

,
OI-..L.........I-J..~--L...J.-L-L..J.-I....J-J....L...L....L...J;....I.-I

o

10

. VeE (V)

20

Fig. 2 D.C. SOAR.

o

50

100

Fig.3 R.F. power dissipation; VCE";; 16,5 V;

f> 1 MHz.
I Continuous d.c. operation
II Continuous r.t. operation
III Short-time operation during mismatch
THERMAL RESISTANCE (dissipation == 15W; T mb

2

= 74,5 oC, i.e. Th = 70. o C)

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

6,55 0C/W

From junction to mounting base (r.t. dissipation)

Rth j-l1)p(rf)

4,95 0C/W

From mounting base to heatsink

Rth mb-h

September 1978

r

0;3 0C/W

C

C

l

Jl

V.H.F. power transistor

CHARACTER ISTICS .

BLV11

Tj == 25 °C
Collector-emitter breakdown voltage
VBE = 0; IC = 10 mA

V(BR)CES

>

36 V

Collector-emitter breakdown voltage
open base; Ie = 50 mA

V(BR)CEO

>

18 V

Emitter-base breakdown voltage
open collector; IE == 4 rnA

V(BR)EBO

>

4 V

Collector out-off current
VBE = 0; VCE = 18 V

ICES

<

4 mA

Second breakdown energy; L = 25 mH; f = 50 Hz
open base

ESBO
ESBR

>
>

D.C. current gain *
IC==1,5A;VCE=5V

hFE

typo
40
10 to 100

Collector-emitter saturation voltage *
IC == 4,5 A; IB == 0,9 A

VCEsat

typo

Transition frequency at f== 100 MHz *
"":'IE = 1,5 A; VCB == 13,5 V

fT

typo

850 MHz
800 MHz

RBE = 10 n

-IE = 4,5 A; VCB == 13,5 V

2,5 mJ
2,5 mJ

1,0 V

fT

typo

Collector capacitance at f = 1 MHz
IE = Ie == 0; VCB == 13,5 V

C'c

typo

32 pF

Feedback capacitance at f = 1 MHz
IC = 200 mA; VCE = 13,5 V

Cre

typo

23 pF

Collector-flange capacitance

Ccf

typo

2 pF

---

* Measured under pulse conditions: tp <; 200 JlS; 8 < 0,02.
September 1978

3

J

l"""---_ _ _ _ _ _ _ _ _ __

__
BLV1_1______

7Z77735

60
~ ... i"'"

7Z77736

150

VCE =
13,5 V

Cc

1.;0

(pF)
IJ

40

5V

J

1. . . .

100

1"'"1'-"",

1000'

II

V-

II

1\

II

1
l\.

"

50

20

,
r-o.

~

typ

1""0"""

---

o

o

2,5

IC (A)

Fig. 4 Typical values; Tj

5

= 25°C.

o
o

1"001'-"""

10

20

VCB(V)

Fig. 5 IE = Ie = 0; f =1 MHz; Tj = 25°C.
7Z77737

1000
I

VCB =

.Jioo"'"

fT

7

(MHz)

1/

-r-. l""- I -

~

II ~
II
rlj

-I""- 13,5V

~

I--

~

I--

r- 10V

rJ

W

500

/J

,

/

I

"

o

o

2
Fig: 6, Typical values; f

4

September 1978

r

4

= 100 MHz; Tj =250C.

-IE (A)

6

J

V.H.F. power transistor

BLV11

- - APPLICATION INFORMATION

R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25 °C
f (MHz)

VCE (V)

PL (W)

Ps (W)

G p (dB)

IC(A)

<2,4

>

< 1,85

175

13,5

15

175

12,5

15

8,0

typo 7,5 .

YL (mAN)

17 (%)

>

60

2,3 + j2,2

130 - j4,4

typo 67

C6

L5

""'----:1+-......- 0

50 n

C7

Fig. 7 Test circuit;

C.W.

class-B.

List of components:
C1 = 2,5 to 20 pF film dielectric trimmer (cat. no. 222280907004)
C2 = C7 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
C3a = C3b = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor
C5 = 100 nF polyester capacitor
C6 = 5 to 60 pF film dielectric trimmer (cat. no. 2222 809 07011)
L1 = 2 turns Cu wire (1,6 mm); into dia. 4,5 mm; length 5,7 mm; leads 2 x 5 mm
L2 = 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm
L3 = L8 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 431202036640)
L4 = L5 = strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
L6 = 3 turns Cu wire (1,6 mm); into dia. 7,5 mm; length 7,5 mm; leads 2 x 5 mm
L7 = 3 turns Cu wire (1,6 mm); into dia. 6,5 mm; length 7,4 mm; leads 2 x 5 mm
L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
R1 = 10 U carbon resistor
R2 = 4,7 U carbon resistor
Component layout and printed-circuit board for 175 MHz test circuit see Fig. 8.

September 1978

5

BLV11

72

7Z78506

----

7Z7850B

Fig. 8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connectionsare made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

6

September 1978

r

~~------B_L_V_1_1______

__V_._H_.F_.p_o_we_r_tr_an_sirt_o_r__________________________

7Z77739

7Z77738
~

~

20

i/

)~Th= 25 0 C-

~ I'

7

PL

~

I

Gp

10

..... ;::

J

(W)

I I' ~
I 'V

15

"

--- -....
~

J

70°C

Gp

..

IJ

!J

10

"

.......

\.

"-

"\ 70°C
100

5
Th = 25°C

rr

~

J

.....

~

f

o

/

'J

J~'

II

5

Th=250C
A

.... -if...

~

(dB)

V

-i'-....

...... .........

I--

o
o

2,5

5

P (W) 7,5

s

T/
1
T/ - (%)

\l 01
70

50

C

-

o
5

10

15

P (W) 20
L

--

Fig. 10 Typical values; f = 175 MHz;
- - VCE = 13,5 V; - - - VCE = 12,5 V.

Fig. 9 Typical values; f = 175 MHz;
- .- VCE = 13,5 V; - - - VCE = 12,5 V.
7Z77740

16

P Lno m
(W)

(VSWR =1)
15

,

\ \

\ \
\

\

\
~

VSWR= 4,5 ~'-

-

5

\

'1\ 1\
,
,\, ,
1\,
1\ ,

,

Note to Fig. 11:
The transistor has been developed for use with
unstabilized supply voltages. As the output power
and drive power increase with the supply voltage,
the nominal output power must be derated in
accordance with the graph for safe operation at
supply voltages other than the nominal. The graph
shows the permissible output power under nominal
conditions (VSWR = 1), as a function of the expected supply over-voltage ratio with VSWR as
parameter.

~

\

\

,

\ \

14

\

1\

\ \
\ \
1\ \

,

13

10

\

20

\

-

\

5P-

12
1

1,1

I

Fig. 11 R.F. SOAR (short-time operation during
mismatch); f = 175 MHz; Th = 70°C;
Rth mb-h = 0,3 °C/W; VCEnom = 13,5 V or
12,5 V; Ps = PS nom at VCEnom and VSWR = 1.

P

s

PSnom

The graph applies to the situation in which the
drive (PS/PS nom ) increases linearly with supply
over-voltage ratio.

1,2

September 1978

7

__
BL_V11----""J

l___~ _____________7Z68944.1

7Z689451

CL

5
..... 1""""

ri

... q

xi
(n)

Il

,

)

~

If
j

15

1\...1'""'
~

RL

~

,

10

1/

J

~J

.

-150

II

l

xi
t-

-5

-100
RL t-1".000" i-""

III
5

If

--

I

I

,.....~

II/
~

(pF)

l',/l

II
-2,5

CL

l

1\

/

o

-50

II

r i ,-- t-

"

o

o

100

200

300

o

~

CL
100

200

Fig. 12 Input impedance (series components).

300
f(MHz)

f (MHz)

Fig. 13 Load impedance (parallel components).

7268943.1

,\

20

Conditions for Figs 12, 13 and 14:

I,

Gp
(dB)

~

Typical values: VCE
Th = 25 °C.

,
\

,

OPERATING NOTE
Below 50 MHz a base-emitter resistor of 10 n
is recommended to avoid oscillation.
This resistor must be effective for r.f. only.

·1\

" 1"'-

10

"

"-

r..

5

o

8

= 13,5 V; PL = 15 W;

\

15

o

o

L

Xi t- t-

1\

2,5

I"-

100

September 1978

200

r

300
f (MHz)

Fig. 14.

l___

DEVELOPMENT SAMPLE DATA
This information is derived from development samples made available
for evaluation. It does not form part of our data handbook system and
does not necessarily imply that the device will go into production

BL_V_2_0_ _

V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated h.f. and v.h.f.
transmitters with a nominal supply voltage of 28 V. The transistor is resistance stabilized and is guaranteed to withstand severe load mismatch conditions.
It has a 3/8" flange envelope with a ceramic cap. All leads are isolated from the flange.
QUICK REFERENCE DATA
R.F. performance up to Th = 25 0C in an unneutralized common-emitter class-B circuit
mode of operation

VCE
V

MHz

28

175

c.w.

zi

%

n

YL
mAN

>65

1,8 + jO,7

18 - j20

1/

> 12

8

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-123.

0,17
--- --0,11

"'20.6

metal
7Z77386.1

6,35 - -

2,54

t

r I;
1

! 11

Torque on screw: min. 0,6 Nm (6 kg cm)
max. 0,75 Nm (7,5 kg em)

1 ~~;

1_ _

t

Recommended screw: raised cheese-head
4-40 UNC/2A
Heatsink compound must be applied sparingly
and evenly.

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.
September 1978

1

,BLV20
l"",----" _ _ _
~ATINGS

'

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-emitter voltage (VBE = 0)
peak v a l u e '

V CESM

max.

Collector-emitter voltage (open base)

V CEO

max.

Emitter-base voltage (open collector)

VEBO

Collector current (average)

IC(AV)

Collector current (peak value); f > 1 MHz

leM

R.F. power dissipation (f> 1 MHz); T mb::;; 25 °C
Storage temperature

Prf
T stg

65
36
4
max.
max.
0,9
max.
2,5
20
max.
-65 to + 150

Operating junction temperature

Tj

max.

7Z77741

V
V

V
A
A

W
oC

200 °C

7Z77723

30
Prf
(W)

--.....

I"

~

\

'c

/

V

\

Th= 70

~

.,

~

r\.

/

°c

~

"

"" "

* "<

0" f'

""/0-

D.C. SOAR.

o

...

....

I"
I'

I

o

f--

/oC-~~C- re' I ...

..........

"

YO

I

10

30 VCE (V) 40
~

.....

1/ ~~feS'6

r""

20
Fig.

~

I'

........ ~

.....

 1 MHz.
, Continuous d.c. operation
II Continuous r.f. operation
III Short-time operation during mismatch

THERMAL RESISTANCE (dissipation= 8 W; T mb = 72,4 oC, i.e. Th = 70 Oe)

2,

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

From junction to mounting base (r. t dissipation)

Rthj-mb(rf}

From mounting base to heatsink

Rth mb-h

September 1978

(

10,7 o~/W
8,6 °C/W
0,3 °C/W

C

Jl

V.H.F. power transistor

CHARACTE R ISTICS

BLV20

Tj = 25 0C
Collector-emitter breakdown voltage
VBE = 0; IC = 2 rnA

V(BR)CES

>

65 V

Collector-emitter breakdown voltage
open base; IC = 10 rnA

V(BR)CEO

>

36 V

Emitter-base breakdown voltage
open collector; IE = 1 rnA

V(BR)EBO

>

4 V

Collector cut-off current
VBE = 0; VCE = 36 V

'CES

<

Second breakdown energy; L = 25 mH; f = 50 Hz
open base

ESBO

>

0,5 mJ
0,5 mJ

RBE = 10 n

rnA

ESBR

>

D.C. current gain *
lC=0,4A;VCE=5V

hFE

typo
50
10 to 100

Collector-emitter saturation voltage *
~C = 1,25 A; IB = 0,25 A

VCEsat

typo

0,8 V

Transition frequency at f = 100 MHz *
-IE = 0,4 A; VCB = 28 V

fT

typo

600 MHz

fT

typo

520 MHz

Cc

typo

10 pF

-IE = 1,25 A; VCB = 28 V
Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 28 V
Feedback capacitance at f = 1 MHz
IC = 50 rnA; VCE = 28 V

Cre

typo

7,1 pF

Collector-flange capacitance

Ccf

typo

2 pF

'* Measured under pulse conditions: tp ~ 200 [..I.S; 6 .;;;;; 0,02.

I'

september 1978

---

---

3

_B_,LV2_0

_'Jl_______
7Z77743

7Z77742

40

100

Cc
(pF)
30

75

II
50

r- ....

"

V CE =28V

~",.

-~

'-- r--

II

J
\
j

-

II

20

"-

"-

5V

""'"",

...... typ

r--. .....

10

25

-

-=-

o

o

o

0,5

IC (A)

1,5

o

10

- r- ~

'

20 V
(V) 30
CB

'-

Fig. 4 Typical values; Tj

=25 aC.

Fig. 5 IE

= Ie = 0; f = 1 MHz; Tj = 25 aC.
7Z77744

1000

fT
(MHz)

r--_

i..--" ~ i""'""

~~

500

VL

-

......0;

~ 1'000..

-r-:

VCB
28V
20V -

IX

}j

rI

/1
I

o

4,

o

September 1978

0,5
-IE (A)
Fig. 6 Typical values; f =,100 MHz; Tj = 25 aC. ,

r

1,5

J
----'

BLV20

V.H.F. power transistor

APPLICATION INFORMATION

R.F. performance in C.w. operation (unneutralized common-emitter class-B circuit)
Th

= 25 oC

f (MHz)
175

VCE (V)

PL (W)

28

8

Ps (W)

<0,5

G p (dB)

IC(A)

11 (%)

> 12

<0,44

>65

YL (mAN)
1,8 + jO,7

18 - j20

C6

L5

~----~-.--o50n

50 n

C7

D--H.......-..J

Fig. 7 Test circuit; c.w. class-B.
List of components:
C1 = C6 = 2,5 to 20 pF film dielectric trimmer (cat. no. 222280907004)
C2 = 5 to 60 pF film dielectric trimmer (cat. no. 2222 809 07011)
C3 = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor
C5 = 100 n F polyester capacitor
C7 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
L 1 = 1 turn Cu wire (1,6 mm); into dia. 8,4 mm; leads 2 x 5 mm
L2 = 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm
L3 = L8 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)
L4 = L5 = strip (12 mm x 6 mm); tap for C3 at 5 mm from transistor
L6 = 6 turns enamelled Cu wire (1,0 mm); into dia. 9,0 mm; length 9,2 mm; leads 2 x 5 mm
L7 = 4 turns enamelled Cu wire (1,Omm); into dia. 8,2 mm; length 5,0 mm; leads 2 x 5 mm
L4 and L5 are strips on a double Cu-clad printed-circuit,board with epoxy fibre-glass dielectric,
thickness 1/16".
R1 = 10 n carbon resistor
R2 = 4,7 n carbon resistor
Component layout and printed-circuit board for 175 MHz test circuit see Fig. 8.

September 1978

5

_J l_._______________________

I-'"---"B_LV2_0

72

7Z78507

---....
.....
.....

7Z78509

Fig. 8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

6

September 1978

(

----Jl-_-BL-V-2-0-..-_

_V_.H_.F_.p_ow_e_rtr_an_sist_o_r_ _ _ _ _ _

c
c)

7Z71745

15

15

7Z77746

r-t-'G
H-

P

~

~t"o..

I"r" ....

Gp
Th= 25

II'
I;"

1.1
J

1'0.

°e

1/

10

1,.;0'

70°C f-r-r-

10

100

I'

1/

I'
i...I'l""'"

~~,...

.JI/
'I
III

Th = -r~ 250C r-

70°C

JI~

5

..... .....

~

(dB)

5

/

t-f- T1

~II""

....

Th = -r- T1
25°C ~ (%)

~

wOe
50

'1
J

II

J

J

------

~

~

C
:>

o

o

o

0,5

P

s (W)

Fig. 9 Typical values; VeE == 28 V;
f = 175 MHz.

::

J

~

)

J

o

o

20

10

-

Fig. 10 Typical values; VeE = 28 V;
= 175 MHz.

f

7Z71747

11
I

PLn om
(W )

~ (VSW R = 1)

J

)

10

~

Th=
50 0 e

~

~

9

~

°e/w .

...... "'" 70 ° e

'\.

":,

8

Fig. 11 R.F. SOAR; c.w. class-B operation;
f = 175 MHz; VeE = 28 V; Rth mb-h ==0,3
The graph shows the permissible output power
under nominal conditions (VSWR =1) as a
function of the expected VSWR during shorttime mismatch conditions with heatsink
temperatures as parameter.

~ 90° e

7
1

10

VSWR

September 1978

7

---,J l"'"'----_ _ _ _ _~

_B_LV2_0

7Z68947

15

0

7Z68948

150

.~

J
,~

CL

RL
(n)

(n)

~i""

Xi
~

10

5
Xi

I'
~~
~

I
'i

,

-5

50

RL
1"0.

ro-

-40

1/

CL

ro-

I"'"

q

I"'"

I
I

o
o

200

400

f (MHz)

Fig. 12 Input impedance (series components).

j

o

J.

o

200

f (MHz)

-60
400

Fig. 13 Load impedance (parallel components).

7Z68946

30

Gp
(dB)

Conditions for Figs 12, 13 and 14.
Typical values; VeE
Th = 25 °C.

20

Below 100 MHz a base-emitter resistor of 10
is recommended to avoid oscillation.
This resistor must be effective for r.f. only.

1\,,1\
~

\..

III.

"-

~

1'0.

10

....
~

o

= 28 V; PL =8 W;

OPERATING NOTE

I-~

'"

o

200

September 1978

(

r--~

f (MHz)

Fig. 14.

8

""""

il

-10

1\

--

I
II
~IL

,\

...=-

'£

\.

~,

5

-20

/

!\

x 1\1'

""'""""

"""I""'"

Il':

11
1\

0

iI"'"

q

RL

100

(n)

I'"

I.,.;

~

I"""

400

n

l___

DEVELOPMENT SAMPLE DATA
This information is derived from development samples made available
for evaluation. It does not form part of our data handbook system and
does not necessarily imply that the device will go into production

B_L_V_21_ __

V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated h.f. and v.h.f.
transmitters with a nominal supply voltage of 28 V. The transistor is resistance stabilized and is guaranteed to withstand severe load mismatch conditions.
It has a 3/8" flange envelope with a ceramic cap. All leads are isolated from the flange.
QUICK REFERENCE DATA
R.F. performance up to Til = 25 °C in an unneutralized common-emitter class-B circuit
mode of operation

c.w.

VCE
V

f
MHz

PL

Gp
dB

1/

W

28

175

15

> 10

>65

-

YL

zi

n

%

mAN

1,4 + j1,85

MECHANICAL DATA

33- j27,5

Dimensions in mm

Fig. 1 SOT-123.

0,17
- - --0,11

ceramic

' " 206

metal
7277386.1

6,35 - -

2,54

t

rIi!

,

II

4,55
4,10

+

+

,-'-,--I :~;
t

Torque on screw: min. 0,6 Nm (6 kg cm)
max. 0,75 Nm (7,5 kg cm)
Recommended screw: raised cheese-head
4-40 UNC/2A
Heatsink compound must be applied sparingly
and evenly.

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

'I

September 1978

---

B_LV~21_'

: -_ _

__

l_~_________________

RATINGS
Limiting values in accordance with the Absolute Maximum,System (lEC 134)
Collector-emitter voltage (VBE =0)
peak value

65
36
max.
4
max.
1,75
5,0
max.
max.
36
-65 to + 150
200
max.
max.

VCESM

Collector-emitter voltage (open base)

max.

VCEO

Emitter-base voltage (open collector)
Collector current (average)
Collector current (peak value); t> 1 MHz

ICM

R.F. power dissipation (t> 1 MHz); T mb = 25 oC
S~orage

temperature

Operating junction temperature

7Z77748

2
IC
(A)

---

--

V
V
A
A

W
0C
0C

7Z77734

60

Prf

.-

(W)
~ ""\

,

!\

1,5

,

0

T mb=25 C

!'\

~

,

'/

I-f-f-

r-

\

"°c "'
[,

Th = 70

I'

.....

0,5

.....

.\
~
,~

...

20

"

1"-

20

I'

/oc

I

0,

..: 6111/ 0

I

C

.....

.

r.....

....

'

.

.......

30 VCE (V) 40

THERMAL RESISTANCE (dissipation

o
o

50

Fig. 3 R.F. power dissipation; VCE ~ 28 V;
t> 1 MHz.
I Continuous.d.c. operation
II Continuous r.t. operation
III. Short-time operation during mismatch

Fig. 2 D.C. SOAR.

= 15 W; T mb = 74,5 oC, i.e. Th = 70 OC)

I=rom junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

From junction to mounting.base (r.t. dissipation)

Rth j-mb(rf)

From mounting base to heatsink

Rth rrib-h

(

I

~

-f-I-

o

September 1978

.....

Q'&

..... "'ilt.
-r-r- II r--~~6yo
I l'ot:..?~
-I.... _

r\

10

III

I"""

\
/

""

40

~

~

2

V

6,55 0C/W
4,95 0C/W
0,3 0C!W

__V_._H._F._po_w_er_tr_an_siR_o_r____________________

---~l.-----B-L_V_2_1

_____

CHARACTE R ISTICS
Tj = 25 0C
Collector-emitter breakdown voltage
VBE = 0; IC = 5 rnA

V(BR)CES

>

65 V

Collector-emitter breakdown voltage
open base; IC = 25 rnA

V(BR)CEO

>

36 V

Emitter-base breakdown voltage
open collector; IE = 2 mA

V(BR)EBO

>

4 V

Collector cut-off current
VBE=0;VCE=36V

ICES

<

2 rnA

Second breakdown energy; L = 25 mH; f = 50 Hz
open base

ESBO
ESBR

>
>

D.C. current gain *
IC = 0,7 A; VCE = 5 V

hFE

typo
50
10 to 100

Collector-emitter saturation voltage *
IC=2A;IB=0,4A

VCEsat

typo

Transition frequency at f = 100 MHz *
-IE = 0,7 A; VCB = 28 V

fT

typo

650 MHz

fT

typo

625 MHz

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 28 V

Cc

typo

18 pF

Feedback capacitance at f = 1 MHz
IC = 100 mA; VCE = 28 V

Cre

typo

12,8 pF

Collector-flange capacitance

Ccf

typo

2 pF

RBE= 10n

-I E = 2 A; V CB = 28 V

2,5 mJ
2,5 mJ

0,65 V

--

-

J
l

* Measured under pulse conditions: tp ~ 200 ps;

/j ..:;;; 0,02.

September '1978

3

~B_LV2_1

_jl___~___
7Z77749

150

7Z77750

60

Cc
(pF)

40

100

,

\

VCE =
_ 28V

\.

""' ....

"'

-

50

,

1"'-1000..

....",

....

20

..... 1000..

typ
1"'-"",

5V

-I-~

"

I\..

-.-=_.... .

o

o

2

4

IC (A)

Fig. 4 Typical values; Tj

= 25 oC.

o

o

20

VCB(V)

Fig. 5 IE = Ie = 0; f = 1 MHz; Tj = 25 °C.
7Z77751

750

,,. -

fT

(MHz)

~

~

",.

1"""1-_

-~

... :-1- .......... -I'-'

500

r-.. r-..

i"""....;t-o

II'

...;;~

II

..... ~
~~

...." ~
~

250

o

4

40

o

September 1978

2
Fig. 6 Typical values; f

(

3

-IE (A)

= 100 MHz; Tj = 25 oC.

4

VCB = f-:28V =~
20V --

V_.H_.F_.p_ow_er_tr_an_si~_or

__

_____

~l

_____________________

B_L_V2_1_____

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25 °C
f (MHz)
175

VCE (V)

PL (W)

Ps (W)

Gp (dB)

IC(A)

71(%)

28

15

< 1,5

> 10

<0,83

>65

YL (mAN)
1,4 + j 1,85

33 - j27,5

C6

C7

C5

R2

~

I

-

7Z77761

Fig. 7 Test circuit; c.w. class-B.
List of components:
Cl = C6 = 2,5 to 20 pF film dielectric trimmer (cat. no. 222280907004)
C2 = 5 to 60 pF film dielectric trimmer (cat. no. 222280907011)
C3 = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor
C5 = 100 nF polyester capacitor
C7 = 4 to 40 pF film dielectric trimmer (cat. no. 222280907008)
L1 = 1 turn Cu wire (1,6 mm); into dia. 8,4 mm; leads 2 x 5 mm
L2 = 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm
L3 = L8 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)
L4 = L5 = strip (12 mm x 6 mm); tap for C3 at 5 mm from transistor
L6 = 6 turns enamelled Cu wire (1,0 mm); into dia. 9,0 mm; length 9,2 mm; leads 2 x 5 mm
L7 = 4 turns enamelled Cu wire (1,0 mm); into dia. 8,2 mm; length 5,0 mm; leads 2 x 5 mm
L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
Rl = 10 n carbon resistor
R2 = 4,7 n carbon resistor
Component layout and printed-circuit board for 175 MHz test circuit see Fig. 8.

September 1978

5

I

BLV21

72

7Z78507

-::::
---

7Z78509

Fig. 8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being full.y metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

6

September 1978

r

V_.H_.F_.p_ow_er_tr_an_siu_o~r

__

jl_.____

B_L_V_2_1____

___________________

7Z77752

30

7277753

15

I

,.....

Th=250e
J.,.ol I

v

20
I...;
I)'
,J

LI

~

Gp
(dB)

~

i""'"

~I

I I I
70 0 e

I.,.;

I I I
I
I
Th =
0
""" .....25 e

,...
1'0-

70 0 e

10

- t - 1-,.-

100

.J

~

~

IIX

77 ~ ....

r/

.... ~-

5

.... ....

... - 70
:.-

ILI£
10

I I

""'- ,......""" ,...
Gp I'to-.. -I'- ...

1,.00"'1:="

0

e

Th=
25 0 e

1/
(%)

I-t-f-

~

50

J

Y
iLl
r'"

o

o

o

P

s

2

(W)

Fig. 9 Typical values; VCE = 28 V;
f = 175 MHz.

20

o

5

25

15
Fig. 10 Typical values; VCE = 28 V;
= 175 MHz.

f

7Z77754

I·

PLnom
(W)

(VSW R=1)

I"-

Th=
0
"'" 50 e

U

-'-"ro-...

r--..r-o
15

"- r"'--..

II

70 0 e
1111I

U

i""

1111I
90 0 e

Fig. 11 R.F. SOAR; c.w. class-B operation;
f = 175 MHz; VCE = 28 V; Rth mb-h = 0,3 0C/W.
The graph shows the permissible output power
under nominal conditions (VSWR= 1) as a
function of the expected VSWR during shorttime mismatch conditions with heatsink
temperatures as parameter.

10
1

10

VSWR

September 1978

7

---"'Jl_________

_B_LV2_1

7Z68950

7268951

80

I

5

,.

xi

ri
Xi

q

(n)

II

Ll

2,5

o

)~

./

... 1-

/

,

\

./

"-

,

o

ri

RL
1\
!\

r-

L

i""""

1".0"'"

'60

/
/

II

40

I
I

,,

I
I

xiI

---

II

20

o

100

200 f (MHz) 300

Fig. 12 Input impedance (series,components).

'" ....

-~-

RL - ~-

-100

II
II
CL

o~

200

f (MHz)

400

Fig. 13 Load impedance (parallel components).

7Z68949

30

Gp
(dB)

.'.

Conditions for Figs.12, 13 and 14.
Typical values; VCE
Th = 25 °C.

"

'"

20

\.

= 28 V; PL = 15 W;

OPERATING NOTE
\..

Below 100 MHz a base~emitter resistor of 10 n
is recommended to avoid oscillation.
This resistor must be effective for r.f. only.

,

'1\

\.

'"

10

......
"""1'00..

0
0

200
Fig. 14.

8

"'

I

J
'I

-5

-50

II

\

1/
-2,5

1/

,

~

_ C - r-rL

September 1978

(

f (MHz)

400

_ _ _Jl_BLW_29
V.H.F. POWER TRANSISTOR
N-P-N silicon planar epitaxial transistor intended for use in class-A, B or C operated mobile
transmitters with a nominal supply voltage of 13,5 V. Because of the high gain and excellent power
handling capability, the transistor is especially suited for design of wide-band and semi-wide-band
v.h.f. amplifiers. Together with a BFQ42 driver stage, the chain can deliver 15 W with a maximum
drive power of 120 mW at 175 M Hz. The transistor is resistance stabi Iized and is guaranteed to withstand severe load mismatch conditions with a supply over-voltage to 16,5 V.
It has a 3/8" capstan envelope with a ceramic cap. All leads are isolated from the stud.
QUICK REFERENCE DATA

R. F. performance up to T h = 25 0C
V CE
V

f
MHz

PL

Gp

1/

W

dB

%

c.w. class-B

13,5

175

15

> 10

>60

C.w. class-B

12,5

175

15

typ.10,5

typ.67

mode of operation

I

//-1-"
(

28

,

• fE--

--

t

3,15

+

\

...... 0,14

+

+

\'

+--+--+

26

180-j54

Dimensions in mm

e
8min (4x)
c

mAN

1,3+ jO,68

MECHANICAL DATA '
Fig. 1 SOT-120.
.----"-

YL

zi

n

8,4
max

' /L
~

b

•

BeQ
metal

1

e

J I.

..

-

5,9
5,5

9,8max

......

28
26

Torque on nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kg cm)

----11,8- 7,0 max ......

..

7Z69881.1

Diameter of clearance hole in heatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.

IrMa~h

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

1978

-

r---B_LW2_9

_jl_____~____

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-emitter voltage (VBE = 0)
peak value

V CESM

max.

36 V

Collector-emitter voltage (open base)

VCEO

max.

18 V

Emitter-base voltage (open collector)

VEBO

max.

4 V

Collector. current (average)

IC(AV)

max.

2,75 A

Collector current (peak value); f> 1 MHz

ICM

max.

8 A

Prf
T stg
Tj

max.

53 W

R.F. power dissipation (f> 1 MHz); T mb = 25 °C
Storage temperature
Operating junction temperature

7Z77580

3
2

T mb= 25

IC

---

~
00

200 °C

7Z77581

60

I I I I~
I I I
short-time '-J
."\.
operation
during mismatch
I I

'"

Prf
(W)

Th=70 0 C

(A)

-65 to + 150 oC
max.

"'"

I'

1-1- 1-1-

....

......
i"'o
'" continuous
f operation
.
r-f.... r ..
t-f-,...." derate by
_
....
"
0 3W/ o C _
I

40

1'0

~~~~
I I I ~

......

....

1.1

,

I'

,..

\

~

l~

·io..1 I I.....

0,5

continuous
'~
d.c. operation
:"'!!Jo
Irt-~
derate by 0,25W/oC

~""'~

20
0,2

0,1
2

5

10

20

o

o

50

VCE (V)

Fig. 2 D.C. SOAR.

Fig.3 R.F. power dissipation; VCE
1 MHz.

< 16,5 V;

f~

THERMAL RESISTANCE (dissipation = 15 W; T mb = 77 oC, i.e. Th = 70 oC)

2

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

3,7 oCIW

From junction to mounting base (r.f. dissipation)

Rth j-mb(rf)

3,05 oCIW

From mounting base to heatsink

Rth mb-h

0,45 oC/W

Jl

V.H.F. power transistor

CHARACTER ISTICS

BLW29

Tj = 25 °C
Collector-emitter breakdown voltage
VBE=0;IC=15mA

V(BR)CES

>

36 V

Collector-emitter breakdown voltage
open base; IC = 100 mA

V(BR)CEO

>

18 V

Emitter-base breakdown voltage
open collector; IE = 5 mA

V(BR)EBO

>

4 V

Collector cut-off current
VBE==0;VCE=18V

ICES

<

5 mA

Second breakdown energy; L = 25 m H; f = 50 Hz
open base
RBE = 10 n

ESBO
ESBR

>
>

4 mJ

D.C. current gain*
IC=l,75A;VCE=5V

hFE

typo
40
10 to 80

Collector-emitter saturation voltage*
IC = 5 A; 18 = 1 A

VCEsat

typo

Transition frequency at f = 100 M Hz*
-IE = 1,75 A; VCB = 13,5 V
-IE = 5 A; VCB = 13,5 V

fT
fT

typo
typo

900 MHz
825 MHz

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 13,5 V

Cc

typo

43 pF

Cre
Ccs

typo

27 pF

typo

2 pF

Feedback capacitance at f = 1 MHz
IC = 100 mA; VCE = 13,5 V
Collector-stud capacitance

* Measured under pulse conditions: tp ,,;;; 200 IlS; 8 ,,;;; 0,02.

I(

4 mJ

1,5 V

Maroh 1978

-

3

Jl~.__~

;_BLW_29

7Z77582

60

7Z77583

150

Cc
i"'"

[.,.0

......

iI'

,I

40

VCE=

r...

1,..0'

,

V

(pF)

13,5 V
I I
I
I
5 V-I-

il

100 1\\

1\
1\

""20

--

o

=

50

o

5

Fig. 4 Typical values; Tj = 25

IC (A)

10

cc.

typ

I"lo...

""' ....

o
o

-fo-

10

.......

VCB (V)

Fig. 5 IE = Ie = 0; f = 1 MHz; Tj = 25

cc.

7Z77584

1500

fT
(MHz)

1000
,..."",typ

1".0001"'"

ii'

l""-

i.-'

I"'"

"

II

"

""-

500

r--.

"

o

o

2

(
1

4

6

Fig. 6 VCB = 13,5 V; f = 100 MHz; Tj = 25

4

20

Maroh 1978

-IE (A)

cc.

f"'oo ...

8

V_'H_'F_'~_W_~_t~_ns_;rt_or

__

jl_____

8L_W
__
29_____

____________________

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit>
Th = 25 °C
f(MHz)

VCE (V)

PL (W)

Ps(W)

Gp (dB)

IC(A)

1/(%)

Zi (.0)

175

13,5

15

<1,5

>10

<1,85

>60

1,3+ jO,68

175

12,5

15

typo 1,34 typo 10,5 typ.1,8

YL (mAN)
180 - j54

typ.67

L7

C6

son
C7

50n

.-=

----

+VCC
\

Fig. 7 Test circuit;

C.W.

class-B.

List of components:
C1 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222 809 07004)
C2 =C6 = C7 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
C3a = C3b = 47 pF ceramic capacitor (500 V)
C4 = 1 nF ceramic capacitor
C5 = 100 nF polyester capacitor
L1 = % turn Cu wire (1,6 mm); into dia. 6,0 mm; leads 2 x 5 mm
L2 =.L6 = Ferroxcube wide-band h.f. choke, grade 3B (cat. np. 4312 020 36640)
L3 = L4 =strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
L5 =4% turns closely wound enamelled Cu wire (1,6 mm); into dia. 6,0 mm; leads 2 x 5 mm
L7 = 2 turns closely wound enamelled Cu wire (1,6 mm); into dia. 6,0 mm; leads 2 x 5 mm
L3 and L4 are strips on a double Cu-clad printed-circuit boa~d with epoxy fibre-glass dielectric,
thickness 1/16".
R1 = R2 = 10.0 carbon resistor
Component layout and printed-circuit board for 175 MHz test circuit are shown in Fig. 8.

September 1978

5

---'Jl__________

_B_LW2_9

APPLICATION INFORMATION (continued)

7Z77571.1

-

7Z77512

Fig. 8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

6

September 1978

(

Jl_____

BL_W_2_9_____

___
V,_H._F._po_we_rt_ran_si_sto_r____________________

7Z77589

7Z77588

30

100

20
t--

Th=25 0 C r---

Gp

\

(dB)

1'-1:.,.-11
"'" I I

20

" .... :< >t:I II

./

~

;"

V

?
/

,

Th=25 0 C 75
VI I I I

I~

"'''

~ ~ i.....'
~ ~ ><

,..TJ= r::: f0o- l- &

10

/'U'
'I.

":--.

I I
Th = 70 °c
I

i'c:;: 25

-~

"-

II!.
11
IL'

_b!1t
...J I

I

0

50

C

~<

1'1

10

o

~

'~~

'"

/

T}

(%)

~

15

70 0 C -r-r-

~

Gp

70 0 C

"

-

t--

25

5

o

o

2

P

4

(W)

s

Fig.9 Typical values; f = 175 MHz;
VCE = 13,5 V; - - - VCE = 12,5 V.

o

o

--

10

20 P (W) 30
L
Fig. 10 Typical values; f = 175 MHz;
VCE = 13,5 V; - - - VCE = 12,5 V.

7Z77590

,

,

20

"-

:'\' '\
r'\. '\ "\
P Ln om

(W )
(VSW R = 1)

VSWR=
"- 5

f-

'\.

'" '"
\..r\.

r-...~

r\.

~,

,~

~ 10

i\.. f'.. 20
~ 50

15

t-- -

,...-

- PS- --PSnom -

10

1

Fig. 11 R.F. SOAR (short-time operation
during mismatch); f = 175 MHz; Th = 70 oC;
Rth mb-h = 0,45 oCIW; VCEnom = 13,5 Vor
12,5 V; Ps = PS nom at VCEnom and
VSWR = 1 (see page 5).

1,1

1,2

VCE
VCEnom

The transistor has been developed for use with
unstabiliied supply voltages. As the output
power and drive power increase with the supply
voltage, the nominal output power must be
derated in accordance with the graph for safe
operation at supply voltages other than the
nominal. The graph shows the permissible
output power under nominal conditions
(VSWR = 1 ), as a function of the expected
supply over-voltage ratio with VSWR as parameter.
The graph applies to the situation in which the
drive (PS/PS nom ) increases linearly with supply
over-voltage ratio.

IrM.~h

1978

7

~J l""'--_ _ _ _ __

------.B_LW2_9

OPERATING NOTE Below 70 MHz a base,emitter resistor of 10
oscillation. This resistor must be effective for r.f. only.
7277586

q

n is recommended to avoid
7Z77587

7,5

11

CL

1 I

xi

"",I"""

I.

~RL

(n)

+5

,

... ....."

\

+2,5

".

1/

I' .....

Xi

fj

"""

"'"
5

I

RL

J

-100

q
I

II

If'

1/

I

/I

II

-2,5

...

.,..

....

II

V

I-'
xi

I
I
~

II

I"

o

'I

""""

o

II
fJ

V-

2,5

-200

-5
t-

o

o

250

f (MHz)

500

Cl
1

o

Fig. 12.

-300
250

f (MHz)

500

Fig. 13.
7277585

30

Gp
(dB)

20

Conditions for Figs 12, 13 and 14:

.,

Typical values; VCE = 13,5 V; PL = 15 W;
Th = 25 °C.

'I\.

"
I'

10

~

~

...
I"

o
8

r-- ...

r-Fig. 14.

o

250

M~h1978 .~

(

f (MHz)

500

_ _ _ _ _ _Jl_BLW_31
V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, B or C operated mobile
transmitters with a nominal supply voltage of 13,5 V. Because of the high gain and excellent power
handling capability, the transistor is especially suited for design of wide-band and semi-wide-band
v.h.f. amplifiers. Together with a BFQ43 driver stage, the chain can deliver 28 W with a maximum drive
power of 250 mW at 175 MHz. The transistor is resistance stabilized and is guaranteed to withstand
sever.e load mismatch conditions with a supply over-voltage to 16,5 V.
It has a 3/8" capstan envelope with a ceramic cap. All leads are isolated from the stud.
QUICK REFERENCE DATA

R. F. performance up to T h = 25 °C
mode of operation

f
MHz

VCE
V

-

PL

Gp

11

W

dB

%

c.w. class-B

13,5

175

28

>9

>60

c.w. class-B

12,5

175

28

typ.9,5

typ.70

MECHANICAL DATA
Ffg. 1 SOT-120.

I

IT]

t

e

8min (4x)

~-..//1-',

28
26

"

+

(
,
-t--+--+
\
'
I

' I /

'~

1

b

$
m

I
I.... 8,6' __

,
5

•

YL

zi

n

mAN

0,9 + jO,9

380+ j40

-

-

t_
315 r=F'l.

Dimensions in mm

+-~

--"-0,14
1,6 max

--1'--

ceramic

:t"I".1stt-=--=-I--,ot::=;;;::I:=-r111

mQ'

-'

-- 2•9 ~ 8,~5-.
min

BeQ
metal

e

J~I.
5,5

.

-

9,8max
28

--

26

Torque on nut: min. 0,75 Nm
(7,5 kgcm)
max. 0,85 Nm
(8,5 kgcm)

-11,8 -

..

7,0 max -7Z69881.1

Diameter of clearance hole in heatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

March 1978

--

-----'JL_ _ _ _ _ __

_B_LW3_1
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-emitter voltage (VBE == 0)
peak value

V CESM

max.

36 V

Collector-emitter voltage (open base)

VCEO

max.

18 V

Emitter-base voltage (open collectod

VEBO

max.

4 V

Collector current (average)

IC(AV)

max.

6 A

t> 1 MHz
(t> 1 MHz); T mb = 25 °c

Collector current (peak value);

ICM

max.

15 A

R.F. power dissipation

Prf

max.

96 W

Storage temperature

T stg

Operating junction temperature

Tj

-65 to + 150 °c
200 0 C

max.

7277593

7277592

20
IC
(A)

100

10

(W)

"

Prf

--

.....

75
\T m b=25 C

""\

"

'1\. derate by

50

Th=70~

continuou~

""

I\..

I\..
d.c. operatio;-.L
derate by .... ~...
by 0,39W/oC

-

"

2

25

o
10

5

20
VCE (V)

30

50

"-

'"
100

150,
Th (oC)

Fig.3 R.F. power dissipation; VCE ~ 16,5 V;
f;;;;'1 MHz.

Fig. 2 D.C. SOAR.

THERMAL RESISTANCE (dissipation

o

"

~~48W/oC

[,

\

"l

'"
-- ~continuous
~.f. operation

'. .,

0

1"\

5

2

short-time operation
"" during mismatch

= 25 W; T mb = 81

oCr i.e. Th ='70 °Cl
2,40C/W

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

From junction to mounting base (r.t. dissipation)

Rth j-mb(rf)

1,85

0 C/W

From mounting base to heatsink

Rth mb-h

0,45

0 C/W

Maroh 1978

r
1

Jl

V.H.F. power transistor

CHARACTERISTICS

BLW31

Tj = 25 °C
Collector-emitter breakdown voltage
VBE == 0; IC == 25 mA

V(BH)CES

>

36 V

Collector-emitter breakdown voltage
open base; IC == 100 mA

V(BR}CEO

>

18 V

Emitter-base breakdown voltage
open collector; IE == 10 mA

V(BR)EBO

>

4 V

ICES

<

10 mA

ESBO
ESBR

>
>

8 mJ
8 mJ

hFE

typo
40
10.to 80

Collector-emitter saturation voltage*
I C = lOA; I B == 2 A

VCEsat

typo

Transition frequency at f:: 100 MHz*
-IE == 3,5 A; VCB = 13,5 V
-IE = 10 A; VCB= 13,5 V

fT
fT

typo
typo

850 MHz
700 MHz

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 13,5 V

Cc

typo

92 pF

Cre
Ccs

typo

58 pF

typo

2 pF

Collector cut-off current
VBE == 0; VCE == 18 V
Second breakdown energy; L = 25 mH; f
open base
RBE == 10n
D.C. current gain*
IC = 3,5 A; VCE

= 50 Hz

=5 V

Feedback capacitance at f = 1 MHz
. IC = 100 mA; VCE = 13,5 V
Collector-stud capacitance

1,8 V

---

* Measured under pulse conditions: tp ~ 200 /lS; 0 ~ 0,02.

March 1978

3

Jl_______

i----B_LW_31__

7Z77595

60

Cc

.....

f'

7Z77598

300

(pF)
~

40 lL

,

~

If

\.
ioo"

"""

"-

I

VCE= 13,5V
I\.

,

\

200

,

1\

\.

""-

1\ 5V-f-+-

......

r-"""

100

20

-=
-

~

o

o

10

IC (A)

r-_~

typ

-r-

o

o
10
V
(V)
20
CB
Fig. 5 IE = Ie = 0; f= 1 MHz; Tj= 25 oC.

20

Fig. 4 Typical values; Tj = 25 oC.

7Z77597

1000

-

.......

..... 1--""

fT
(MHz)

I

V

'/

I

typ

~
.........

'\

I(

r\.

~
r\.

500

~

r'\..

~
.........

"'"

'"
o

o

5
Fig. 6 VCB

4

10

= 13,5 V; f = 100 MHz; Tj = 25 oC.

15

V'_H'_F._~_we_rt_ra_nSi_sto_r

___

jl_____

BL_W_3_1____

____________________

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th

= 2~ °C

f (MHz)

VCE (V)

PL(W)

Ps (W)

Gp (dB)

175

13,5

28

<3,5

>9

175

12,5

28

typo 3,15 typ.9,5

IC (A)

1/ (%)

Zi (n)

<3,45

>60

0,9 + jO,9

typ.3,2

typ.70

YL (mAN)
380 + j40

C6
50n
C7

50n

-Fig. 7 Test circuit; c.w. class-B.
List of components:
C1 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222 809 07004)
C2 = C7 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
C3a = C3b = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor
C5 = 100 nF polyester capacitor
C6 = 7 to 100 pF film dielectric trimmer (cat. no. 2222 809 07015)
L1 = % turn Cu wire (1,6 mm); into dia. 6,0 mm; leads 2 x 5 mm
L2 = 100 nH; 7·turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm; leads 2 x 5 mm
L3 = L7 = Ferroxcube wide-band h.f. choke, grade 38 (cat. no. 4312 020 36640)
L4 = L5 = strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
L6 = 3% turns closely wound enamelled Cu wire (1,6 mm) into dia. 6,0 mm; leads 2 x 5 mm
L8 = 1 turn Cu wire (1,6 mm) into dia. 6,0 mm; leads 2 x 5 mm
L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
R1 = R2 = 10 n carbon resistor
Component layout and printed-circuit board for 175 MHz test circuit are shown in Fig. 8.

September 1978

5

__BLW_31_Jl",--_~_____
APPLICATION INFORMATION (continued)

72

7Z77573.1

--

7Z77574

Fig. 8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-gl"ass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu .straps are used for a direct contact between upper and lower sheets.

6

September 1978

r

__

V_'H_'F_._po_~_rt_ran_Sis_to_r

jl_____

7Z77599

15

31~

B_LW
__

____________________

___

7Z77600

Gp
~

50

~

Gp
Th=250C /"

V

....,~

/
/
/~

,,,,,vI(
~

~

I--

~

1]
~

(dB)

"' .....
i"o.. ......
,,~

-,

10

~

~
'1
I' I" II
~ 1'1
70°C

~

I~I'-"

/~

~~

II

...

~'<

I'.

25 0 C
70 0 C t-

~P'"

VI

1#

I' Th=250C 100

~

70°C

V7

25

(%)

~~

1]r- ~f-""

5

50

v

V

II
~

J

o

o

o

2,5

5

P (W)
s

7,5

Fig. 9 Typical values; f = 175 MHz;
VeE::: 13,5 V; - - - VeE == 12,5 V.

,,
1\

35

~

(VSW R=1)

1\ VSWR=
5

"

1\

\ \

I--

"\
\

1\ \
\\

30

"

\

\.

\
~

10

1\
i\

\ 20
\

50

Ps - PSnom -

25
1,1

1,2

Fi(:l. 11 R.F. SOAR (short-time operation
during mismatch); f = 175 MHz; Th ::: 70 oC;
Rth mb-h ::: 0,45 °C/W; V CEnom ::: 13,5 V or
12,5 V; PS::: PS nom at VCEnom and
VSWR = 1 (see page 5).
The transistor has been developed for use with
unstabilized supply voltages. As the output
power and drive power increase with the supply
voltage, the nominal output power must be
derated in accordance with the graph for safe
operation at supply voltages other than the
nominal. The graph shows the permissible
output power under nominal conditions
(VSWR ::: 1), as a function of the expected
supply over-voltage ratio with VSWR as parameter.

1\

\

\

1

50

Fig. 10 Typical values; f = 175 MHz;
VCE ::: 13,5 V; - - - VeE = 12,5 V.

~

1\

(W)

o
25

7Z77601

\ \

PLnom

o

The graph applies to the situation in which the
drive (PS/PS nom ) increases linearly with supply
over-voltage ratio.

VCE
VCEnom

March 1978

7

Jl'---_-__

I~.

BLW_31

OPERATING NOTE B'elow 50 MHz a base-emitter resistor of 10 n is recommended to avoid
oscillation. This resistor must be effective for r.f. only.
7Z77594

+3
q

7Z77602

4

[, X' f-"
'/
I

q

xi

1/
i~

(n,)

1-'

+2

+500

"

L...~

1/

+1

(pF) .

~

V

1\

RL C L

3

+250

r- rj I-

1/

RL

o

J

....

I'\.

... /'1/

J
II

-1

2

I

/

CL

/

o
-250

II

II
"

1/

I/j

rl

-2

----

I ,
.I

-

xi

I-

-3

-500

I

II

I
II
1

o

200

f (MHz)

400

- CL
0

-750
200

f (MHz)

400

Fig. 13 .

. Fig. 12.
7Z77596

30

Gp
(dB )
Conditions for Figs 12, 13 and 14:

20

Typical values; VCE
Th = 25 °C.

"1\
•

~

I'

,
1\
1'1

. 10

~

l"-

o

8

t"-

r--.....

Fig. 14.

o

200

March 1978

f (MHz)

400

= 13,5 V; PL = 28 W;

DEVELOPMENT SAMPLE DATA
_7_~JBLY fA

This information is derived from development samples made available
for evaluation. It does not form part of our data handbook system and
does not necessarily imply that the device will go into production

(BLW32)

U.H.F. POWER TRANSISTOR
N-P-N silicon planar epitaxial transistor primarily intended for use in linear u.h.f. amplifiers for
television transmitters and transposers. The excellent d.c. ~issipation properties for class-A operation
are obtained by means of diffused emitter ballasting resistors and a multi-base structure, providing an
optimum temperature profile on the crystal area. The combination of optimum thermal design and the
application of gold sandwich metallization realizes excellent reliability properties.
The transistor has a %" capstan envelope with ceramic cap.
QUICK REFERENCE DATA
R.F. performance
mode of operation

fvision
MHz

VCE
V

IC
rnA

Th

°C

dim *
dB

Po sync *
W

860
860

25
25

150
150

70
25

-60
-60

>

class-A; linear amplifier

Gp
dB

>

11
typ.12,2

0,5
typ.0,63

* Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal-16 dB), zero dB
corresponds to peak sync level.
MECHAN ICAl DATA
Fig. 1 SOT-122.
1,52

,=c:::(J

Dimensions in mm

______ 0,17

+

8-32UNC

1

0,11
1,98 max

---4+-------+-1'--

c

-=-'

28,2
25,4

ceramic

6,5
6,2

'j~

t

--+1.....4--1

+

BeD
metal

e

__I 11

5,9
5,5 1
-- I 7,6 max -28,2 _ _ _--I~I
25,4
Torque on nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kgcm)

7Z76390

1.....
----

max

--

Diameter of clearance hole in heatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

October 1978

-------

731BLY/A

(BLW32)
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Collector-emitter voltage
(peak value); VeE =0

VCESM

max.

VCEO

max.

50 V
30 V

Emitter-base voltage (open collector)

VEBO

max.

4 V

Collector current
d.c. or average

IC

max.

mA
mA

Storage temperature

'CM
Ptot
Tstg

max.

Operating junction temperature

Tj

open base

(peak value); f > 1 MHz
- . Total power dissipation up to T mb = 25 °C

7Z77704 1

2
IC

650
1000
max.
10,8
-65 to +150
200
max.

W
°C
0C

7Z777051

15
Ptot

(A)

(W)

-==

T mb = 25 0 c

==

"".

"-

0,5

10

/

'X

~

"-

Th=70 0 C'

1\

5

10

VCE (V)

I'.

.....

....
I"
~

(1)

~

.....
I'

5

30

20

.....
i'oo..

\,

0,1

i"I..

50

(1)· Second breakdown limit (independent

of temperature).

.
Fig. 3 Power derating curve vs. temperature.

Fig. 2 D.C. SOAR.

- . THERMAL RESISTANCE (see Fig. 4)

2

From junction to mounting base
(dissipation = 3,75 W; T mb =. 72,3 oC; i.e. Th = 70 OC)

Rthj-mb

From mounting base to heatsink

Rthmb-h

October 1978

(

15,0 oC/W
0,6 0C/W

j

U.H.F. power transistor

731BLY/A
(BLW32)

- - 7Z77709.1

I I
I
J J
I oVI "N.
" II
__ l-ovJ~

l.t,l -

c

/

If
I'

'

18 f-+- -f- 1I,).f- -~J-~ovL ~
f-f- -

,,-<::-

..... ~

J

V

Rth j-h
(oC/W)

I
I

J

J

Ii""

...

J

1/

/

1/

,'"" 70

/
J

1/

II

+

Of--

__ ......

77<

$'

~

0

I

----

0

.... .I..>

I(

.J'

12 L

I I
I
ISO
I 0

/..>

0 0

1/

-' """'"

J

~~

SOol

r"

~

/

"

~/

~

J

I

,
"-.J'

1/

....,~

~,_,....

", "I::)~

/
I

1/

~

..........
0Oo""f--

~I/

I
./

-'

IX

.....

I

I

I
II

14

..... iIl

....

1""" .... "

IJ

"""

Ir"'-o

,
/

I'

~rt}

J

11

I

J

ovJ

")
I(

J

I

1/

II
I' ,

..... 
>

Emitter-base breakdown voltage
open collector; IE == 1 rnA

V(BR)EBO

>

4 V

Collector cut-off current
VBE =0; VCE = 30 V
VBE = 0; VCE = 30 V; Tj = 175 oc

ICES
ICES

0,5 rnA
1,2 rnA

D.C. current gain *
IC= 150mA;VCE=25V

hFE

<
<
>

hFE

<

120

VCEsat

typo

500 rnV

tr
fT

typo
typo

3,5 GHz
;3,4 GHz

Cc

typo

3,7 pF

Cre
Ccs

typo

1,9 pF

typo

2 pF

V(BR)CES

open base; IC = 15 rnA

IC = 150 mA; VCE

=25 V; Tj = 175 0 C

Collector-emitter saturation voltage
I C = 300 rnA; I B = 30 rnA

20
40

**

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB =25 V
Feedback capacitance at f = 1 MHz
IC = 10 mA; V CE = 25 V
Collector-stud capacitance

* Measured under pulse conditions: tp ~ 300 IJ,S; l)

~

0,02.

** Measured under pulse conditions: tp ~ 50 tJ.s; l) ~ 0,01.
4

30 V

*

Transition frequency at f = 500 MHz
-IE = 150 rnA; VCB =25 V
-IE =300 rnA; VCB =25 V

---

typo

50 V

j

U.H.F. power transistor

731BLY/A
.(BLW32)

~~7Z78616

7Z78618

10

50

,'-

.....

17

I

Cc

-\.

\
\

(pF)

I

\.

'I
~

""""

25

......

,

~

'"

I'

"

r\.

r\:

,

~

5

1\

"'"

i"""i

~ VeE=

~

r-.!.~

l"'- I--

r\. ", 25 V "

I
5V

\

250

500 IC (rnA) 750

Fig. 5 Typic~1 values; Tj

10

00

=25 °C.

20 VCB (V) 30

Fig. 6 IE = Ie = 0; f = 1 MHz; Tj

= 250C.
7Z78625

4
typ
~

:-

......

~",

.... (0
~

fT
(GHz)

J

1/

J

1/
II

~

".

-""(0. ...

....
""- r ...

.....

2

I......
"'I......

o

o

250
Fig. 7 VCB

500

-IE (rnA)

750

=25 V; f =500 MHz; Tj =25°C.
October 1978'

5

l_________

731BLY/A
(BLW32)

---

APPLICATION INFORMATION
fVision (MHz)

VCE (V)

IC(mA)

Til (OC)

dim (dB) *

25
25
25

150
150
150

70
70
25

-60
-60
-60

860
860
860

Po sync (W) *

G p (dB)

>

>

0,5
typo 0,58
typo 0,63

11
typo 12,2
typo 12,2

* Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB), zero dB
corresponds to peak sync level.

--

C9

-

+VBB

+VCC

7Z77950

Fig. 8 Test circuit at fvision = 860 MHz.
List of components:
C1
C2
C4
C7
C9
C10
C11
C14
C15

= C3 = 2 to 9 pF film dielectric trimmer (cat. no. 222280909002)
= C6 = C8 = 1 to 3,5 pF film dielectric trimmer (cat. no. 222280905001)
= C5 = 3 pF chip capacitor
= 2 to 18 pF film dielectric trimmer (cat. no. 222280909003)
=C12 = 1 nF chip capacitor
= 100 nF polyester capacitor
= C13 = 470 nF polyester capacitor
10 nF polyester capacitor
= 3,3#lF/40 V solid aluminium electrolytic capacitor

=

L 1 = stripline (13,2 mm x 4,3 mm)
L2 = stripline (15,2 mm x 4,3 mm)
L3 = micro choke 0,47 #lH (4322057 04770)
L4 = 4 turns closely wound enamelled Cu wire (1,0 mm); into dia. 5,5 mm; leads 2 x 5 mm
L5 = stripline (37,0 mm x 4,3 mm)
L6 = stripline (13,5 mm x 4,3 mm)
L 1; L2; L5 and L6 are striplines on a double Cu-clad printed-circuit board with PTFE fibre-glass dieelectric (€r = 2,74); thickness 1,5 mm.

6

October 1978

r

j

U.H.F. power transistor

731BLY/A
(BLW32)

----

List of components:
C1 = C2 = C3 = 100 nF polyester capacitor
C4 = 10 IlF/25 V solid aluminium
electrolytic capacitor
R1 = 150 n carbon resistor (0,25 W)
R2 = 100 n carbon resistor (0,25 W)
R3 = 82 n carbon resistor (0,25 W)
R4 = R5 = 2,2 kn carbon resistor (0,25 W)
R6 = 12 n carbon resistor (0,5 W)
R7 = R8 = 820 n carbon resistor (0,5 W)
R9 = 33 n carbon resistor (0,25 W)

+Vs

D1

+Vee

e1
+Vss

01 = BZY88-C3V3
02 = BY206
TRl = B0136

R4

Fig.9 Bias circuit for class-A linear amplifier at
fvision = 860 MHz.

7Z78624

-50

~h ~76 o~-

1
25

de

v+'~
k-'i...-'~

)

v ...

I-'" ..... +'

..... v

VI-'"

VI/

vv

-60

./

1/1/

VV

v:

/v

I/V

IV

h

-70

'/

I

o

0,5

1,0

Posync (W)

1,5

(1) Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB), zero
dB corresponds to peak sync level. Intermodulation distortion of input signal :e;;; -75 dB.
Fig. 10 Intermodulation distortion as a function of output power.
Typical values; VCE = 25 V; IC = 150 rnA; fvision = 860 MHz.

Information for wide-band application from 470 to 860 MHz available on request.

October 1978

7

l

731BLY/A
(~LW32)

'-------------------------------------------------7Z7770S.1

10

ri

7Z77707 1

.100

-

i'

r---.

t- RL

r""l""r-o

"-

'\.

,

~

~

o

!\.

75

./

1
)

~

/

V
-.

II
j

50

-10

1

l[

Ii
IJ

11

-20

L
lL

25

L

,....
~

'"

~

~

t - - - I-Xi
t - - - rXL I,,;
i

--

--

o

-30
10

• 10

Fig. 11 Input impedance (series components).

Fig. 12 Load impedance (series components).

7Z777081

35

"
1\
\,

25

Conditions for Figs 11,12 and 13:
Typical values; V CE
Th =70 o C.

\

= 25 V; I C = 150 rnA;

.\
\

,

,

Ruggedness

15

The BLW32 is capable of withstanding a load
mismatch (VSWR = 50) under the following
conditions:

~

=

=

=

f 860 MHz; VCE 25 V; IC 150 rnA;
Th =70 °C and Pl(AV) = 1 W.
This holds for single-tone as Well as for two-tone
operation (vision and sound).
5
10

10 2
Fig. 13.

8

October 1978

(

f (MHz)

10 3

DEVELOPMENT SAMPLE DATA
732BLY/A
(BLW33)

This information is derived from development samples made available
for evaluation. It does not form part of our data handbook system and
does not necessarily imply that the device will go into production

U.H.F. POWER TRANSISTOR
N-P-N silicon planar epitaxial transistor primarily intended for use in linear u.h.f. amplifien for
television transmitters and transposers. The excellent d.c. dissipation properties for class-A operation
are obtained by means of diffused emitter ballasting resistors and a multi-base structure, providing an
optimum temperature profile on the crystal area. The combination of optimum thermal design and the
application of gold sandwich metallization realizes excellent reliability properties.
The transistor has a %" capstan envelope with ceramic cap.
QUICK REFERENCE DATA
R.F. performance
mode of operation

fvision
MHz

VCE
V

IC
mA

Th
°C

dim *
dB

Po sync *
·W

860
860

25
25

300

70
25

-60
-60

>

class-A; linear amplifier

300

Gp
dB

>

10,0
typ.10,5

1,0
typo 1,15

* Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB), zero dB
corresponds to peak sync level.
MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-122.

CIJ

~

9 min (4x)

r

•

c

28,2
25,4

b

j

+
',52
5

=c::(]

+

+

$l_a:6J

+

8-32UNC

+
6,5
6,2

t

-

_0,'7
0,"
ceramic

+

+

BeO
metal

e

-.1 5,911

5,5 1
-. I 7,6 max - ..__- - - 28,2 _____~I
25,4
Torque on nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kgcm)

7Z76390

Diameter of clearance hole inheatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This device incorporates beryllium oxide, the ~ust of which is toxic. The device is entirely
safe provided that the BeO disc is not dam8ged.

i(~~197a

-4-

l

732BLY/A
(BLW33)

'---------------------------------------------------

RATINGS

Limiting values in accordance with the Absolute Maximum System (I EC 134)
Collector-emitter voltage
(peak value); VBE = 0
open base

50 V
30 V

VCEO

Emitter-base voltage (open collector)

VEBO

max.

4 V

Collector current
d.c. or average

1,25 A

IC

max.

> 1 MHz

ICM

max.

1,9 A

Total power dissipation up to T mb = 25 °C

Ptot

max.

19,3 W

Storage temperature

T stg

Operating junction temperature

I

IC

,"{

"-I\.

""-'\..
Th =70 C

0,5

7Z77711 1

30

(W)

1\

20

\

/"\.
o

\(1)

......... I".
~

[\.\
~

'"

i"

~

""" ,.....

10

0,1

5

10

VCE (V)

200°C

Ptot

T mb =250c

(A )

-65 to +150 0C
max.

Tj

7Z77710 1

2

---

max.
max.

(peak value); f
:- .

VCESM

20

l"'o

"""

50

30

"

~

100

(1) Second breakdown limit (independent

, of temperature).
Fig. 3 Power derating curve vs. temperature.

Fig. 2 D.C. SOAR.
---.

2

THERMAL RESISTANCE (see Fig.4)
From junction to mounting base
(dissipation = 7,5 W; T mb = 74,5 oC; i.e. Th = 70 °C)

Rth j-mb

10,1 °C/W

From mounting base to heatsink

Rth mb-h

0,6 °C/W

October 1978

(

j

U.H.F. power transistor

732BLY/A
(BLW33)

----7Z777151

15

...
....

",1......

~'"

"

",

....

,"
I.-'~

..... 1'

~/'

,.::::

..., "" ......

10

.......
~

....
....

~ ......

..,'

"

~.? ......

:>k:'

:>< .......
",

,.- >< ........

,.. .,.,

-

",.....-

.".....

......

~

I ....

",~

.".

~

~ <'1'00.

K

......

.............

,.. ,........ ...........,.? ...... >-.. . I"'- ..... , ,.
~

io'

I....

,.- >< ......
? <::. ....

-",.....-

-

::: ><

...... ......

>::::: ........

-

-

r.....

.......~ f!!" ~

I'i'"

"'i'"

...

~

0

0

(")

",.....

.....

..

.........>-.:: ~
...-c: ...
r......

........ i'"

.......

....

.......

...

...... r"~

...... 1-"

...... ~

o

.........

......... ......

-

-

.... r--

-

~- ~- ~0-

(")

0- 0-

(")

(")

--:-1~-

g0-

---

(")

5

c)

o

o

10

Ptot (W)

20

Fig. 4 Maximum thermal resistance from junction to heatsink as a function of power dissipation, with
heatsink and junction temperature as parameters. (Rth mb-h = 0,6 OCIW).
Example
Nominal class-A operation: VCE = 25 V; tc = 300 mA; Th = 70 °C.
Fig. 4 shows:

Rth j-h
Tj

Typical device: Rth j-h
Tj

max.
max.

10,7 °CIW
150 0C

typo
typo

8,25 °CIW
132 0C

October 1978

3

732BLY/A
(BLW33)

-..

CHARACTERISTICS

l

Tj = 25 0C unless otherwise specified
Collector-emitter breakdown voltage
VBE = 0; IC = 4 rnA

V(BR)CEO

>
>

Emitter-bBse breakdown voltage
open collector; IE = 2 rnA

V(BR)EBO

>

4V

Collector cut-off current
VBE = 0; VCE = 30 V
VBE=0;VCE=30V;Tj= 175 0 C

ICES
ICES

<
<

1,0 rnA
2,5 rnA

D.C. current gain
I C = 300 rnA; V CE = '25 V

hFE

>

20
40

hFE

<

120

VCEsat

typo

450 rnV

fT

fT

typo
typo

3,4 GHz
3,1 GHz

Collector capacitance at f = 1 MHz
IE= le=0;VCB=25V

Cc

typo

6,6 pF

Feedback capacitance at f = 1 MHz
IC = 20 rnA; V CE = 25 V

Cre

typo

3,5 pF

Ccs

typo

2 pF

V(BR)CES

open base; IC = 30 rnA

IC = 300 rnA; VCE = 25 V; Tj

=175 oc

Collector-emitter saturation voltage
I C = 600 rnA; I B = 60 rnA

-

**

Collector-stud capacitance

*

Measured under pulse conditions: tp <; 300 #lS; ~ <; Oi02.

** Measured under pulse conditions: tp <; 50 #lS; ~ "" 0,01.
4

30 V

*

Transition frequency at f = 500 MHz
-IE = 300 rnA; VCB = 25 V
-IE = 600 rnA; VCB ='25 V

---

typo

50 V

J
----

I

732BLY/A
(BLW33)

U.H.F. power transistor

7Z78619

7Z78617

50

20
I;'"

Cc

I..

(pF)

I/'
J

I\.

IJ

J

1/
1/

,... r-

I

25

15

\

1\

"

-~

I'.. VCE=-

25V

I\.

l - I-I--

~

r-

~

"

'"

'"

10

~

typ
""'""" ...... 1"-0
~
I"'-

....... """ 5V

0,5

I--

IC (A)

Fig. 5 Typical values; Tj

5

o

1,5

= 25 °e.

o
Fig. 6 IE

10

--

20 VCS (V) 30

= Ie = 0; f = 1 MHz; Tj = 25 °e.
7Z78623

4

~

/

fT

-

typ

t""'-- .......

'I'

1/

(GHz)

~

I'

I
1/

"

I'

2

' ' ' " .... ""~
~

o

-.

o

.........

0,5
Fig. 7

Vee = 25 V; f = 500 MHz; Tj = 25 °e.

1,5

I (octOber

1978

6

l

732BLY/A
(BLW3~1

---.

---------------------------------------------------APPLICATION INFORMATION
fvision (MHz)

VCE (V)

Ic(mA)

Th (OC)

dim (dB)

25
25
25

300
300
300

70
70
25

-60
-60
-60

860
860
860

*

Po sync (W)

Gp (dB)

*

>

>

1,0
typo 1,07
typo 1,15

10
typo 10,5
typo 10,5

* Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB), zero dB
corresponds to peak sync level.
L2

L3

I

C15

--

+Vcc

'/

7Z77950

Fig. 8 .Test circuit at fvision = 860 MHz.
List of components:
C1 =C3 = 2 to 9 pF film dielectric trimmer (cat. no. 222280909002)
C2 = C6 = C8 = 1 to 3,5 pF film dielectric trimmer (cat. no. 222280905001)
C4 = C5 = 3 pF chip capacitor
C7 = 2 to 18 pF film dielectric trimmer (cat. no. 222280909003)
C9 = C12 = 1 !iF chip capacitor
C10 = 100 n F polyester capacitor
C11 = C13 = 470 nF polyester capacitor
C14 = 10 nF polyester capacitor
C15 = 3,3 MF/40 V solid aluminium electrolytic capacitor
L1 = stripline (13,2 mm x 4,3 mm)
L2 = stripline (15,2 mm x 4,3 mm)
L3 = micro choke 0,47 MH (4322'05704770)
L4 = 4 turns closely wound enamelled Cu wire (1,0 mm); into dia. 5,5 mm; leads 2 x 5 mm
L5 = stripline (37,0 mm x 4,3 mm)
L6 = stripline (13,5 mm x 4,3 mm)
L 1; L2; L5 and L6 are striplines on a double Cu-clad printed-circuit board with PTFE fibre-glass dieelectric (€r = 2,74); thickness 1,5 mm.

6

October 1978

(

j

U.H.F. power transistor

732BLY/A
(BLW33)

- - r------.---_-_-----.------ +Vs

List of components:
C1 = C2 = C3 = 100 nF polyester capacitor
C4 = 10 J,tF/25 V solid aluminium
electrolytic c~pacitor

02

01

t-------

+vcc

Cl

R1 = 150 n carbon resistor (0,25 W)
R2 = 100 n carbon resistor (0,25 W)
R3 = 82 n carbon resistor (0,25 W)
R4 = R5 = 2,2 kn carbon resistor (0,25 W)
R6 = 5,6 n carbon resistor (1 W)
R7 = R8 = 820 n carbon resistor (0,5 W)
R9 = 33 n carbon resistor (0,25 W)
01 = BZY88-C3V3
02 = BY206
TR1 = B0136

7Z77949

Fig. 9 Bias circuit for class-A linear amplifier at
fvision = 860 MHz.

---

7Z78621

-50

T 1~70 0c

~t"".J 1

I--"v I-"'" 250C

V

)

i--'"

Vi..-'I-"

1'1.;0'
-'"

v-'"

k"
V

""

--

V

-60
./

1/
/

V

1/1/

IV
-70

II

o

3

Po sync (WI

(1) Three-tone test method (vision carrier-:8 dB, sound carrier -7 dB, sideband signal -16 dB), zero
dB corresponds to peak sync level. Intermodulation distortion of input signal'" -75 dB.
Fig. 10 Intermodulation distortion as a function of output power.
Typical values; VCE = 25 V; IC = 300 rnA; fvision = 860 MHz.
Information for wide-band application from 470 to 860 MHz available on request.

October 1978

7

l

732BLY/A
(BLW33)

'-------------------------------------------------7Z77712.1

5

rj

I'

-

"'-

V
o

l/

/

I
---.

7Z777131

50

J

_RL

roo

"

'",l\

,

Ii
37,5

\

\
1\

-5

,

25

J

.,./

'I

J

-10

/

Xj

If'

-

---

~

/

12,5

I
r--- -

~~

- XL'"

o

-15

10

10

f (MHz)

Fig. 11 Input impedance (series components).

Fig. 12 Load impedance (series components).

7Z777141

35
~

r\

Gp
(dB)

~

25

\

Conditions for Figs 11, 12 and 13:

\

= 25 V; IC = 300 rnA;

~

--

\

.-

i\
\

15

~

,

Ruggedness
The BLW33 is capable of withstanding a load
mismatch (VSWR =-50) under the following
conditions:
f = 860 MHz; VCE = 25 V; IC = 300 mA;
Th =70 oC and PL(AV) ~ 2 W.
This holds for single-tone as well as for two-tone
operation (vision and sound).

5
10

10 2
Fig. 13.

8

Typical values; VCE
Th = 70 0 C.

f (MHz)

DEVELOPMENT SAMPLE DATA
733BLY/A
(BLW34)

This information ;is derived from development samples made available
for evaluation. It .does not form part of our data handbook system and
does not necessarily imply that the device will go into production

U.H.F. POWER TRANSISTOR
N-P-N silicon planar epitaxial transistor primarily intended for use in linear u.h.f. amplifiers for
television transmitters and transposers. The excellent d.c. dissipation properties for class-A operation
are obtained by means of diffused emitter ballasting resistors and a multi-base structure, providing an
optimum temperature profile on the crystal area.· The combination of optimum thermal design and the
application of gold sandwich metallization realizes excellent reliability properties.
The transistor has a %" capstan envelope with ceramic cap.
QUICK REFERENCE DATA
R.F. performance
mode of operation

fvision
MHz

VCE
V

IC
mA

Th
°C

dim *
dB

Po sync *
W

860
860

25
25

600
600

70
25

-60
-60

>

class-A; linear amplifier

Gp
dB

>

1,8
typo 2,15

9

typ.10,2

* Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal-16 dB), zero dB

--

4-

corresponds to peak sync level.
Dimensions in mm

MECHANICAL DATA

-e-,

Fig. 1 SOT-122.

CIJ

9 min (4x)

1

•

28,2
25,4

+

1,52=c:Q
5

+

+

8-32UNC

+

$1_8:6J ,
6,5
6,2

b

j

+

,

-

_0,17
0,11
ceramic

+

+

BeO
metal

~~------~-~-+~

I

II

5,9
-- 55 ---17,6 'max 1--1 - - - - - 28,2 _____ I
25,4
Torque on nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kg cm)

7Z76390

-- -max

Diameter of clearance hole in heatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION· This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

October 1978

--

l

733BLY/A
(BLW34)

'-----------------------------------------------------

RATINGS

Limiting values in accordance withthe Absolute Maximum System (I EC 134)
Collector-emitter voltage
(peak value); VBE = 0

VCESM

max.

50 V

VCEO.

max.

30 V

Emitter-base voltage (open collector)

VEBO

max.,

4 V

Collector current
d.c. or average

IC

max.

2,25 A

ICM
Ptot

max.

3,5 A

max.

31 W

open base

(peak value); f
-.

> 1 MHz

Total power dissipation at T mb = 25 °C
Storage temperature

Tstg
Tj

Operating junction temperature

7Z777161

4

Ie

max.

200 0C
7Z77717 1

40

1

Tmb =25 0 C

(AI

--

-65 to +150 °C

'"

2

==
==

~J

I'~

r-

30

""-

1\111
T h ~ 70 °C"

,"I
~

\.

I",,\
\

I'.
~

~

0,5

~

."

20

~

I"
I'..
~

0,2

10

5

10 VCE (V) 20

30

o

"

50

(1) Second breakdown limit (independent
of temperature) ..
Fig. 3 Power derating curve vs. temperature.

Fig. 2 D.C. SOAR.
-.

2

THERMAL.RESISTANCE (see Fig.A)
From junction to mounting base
(dissipation.= 15 W; T mb = 79 oC; i.e. Th=70 oC)

Rth j-mb

6,2 0C!W

From mounting base to heatsink

Rth mb-h

0,6 oCIW

October 1978

r

j

U.H.F. power transistor

733BLY/A
(BLW34)

- - 7Z77721 1

,I,
!/

II'"

1/

.'

I'

V
It'" '"'"

"

1"0.

1/
I.J' ....
I.,

7

Ll

i""o!

,..

V

6

/;""'"

t"l1C

J

io""
I"-

>-

......... I!""

""

..... ""'"

)

,5

I'"

o

.......

" I"'! ."

/

I'

'"i...o""
.....

.....

..... ;
i...o" .....

'" ....

r-...

i)'

--

"'"
~~

I"
~

....

;

~
....

~

~

i...o"

--

~~

.)

.....
10"'"
~

4

IL

I.....

L..o

""''

I...

I"'-

""'"

~

L..o .....

.....

.....

...

.......

.....
~

i...o"

J

....

~~

,.. .....

io""

.....

~

.....

I"

..J'

(

.....

......

1'" .....

~

~'" .......
r").

.....

/.;'

" I"

r"o,

..J'

J

~

I>

/

.....
i'ooo.

IL'
1" ....

~

It"'T""

~

i)oC

I....

1.1'

'"
.J'I"

/

II'"
I'

1'-0.
~

I'

I'

LL

(

~

1,'

l'

II'

)

io""

~

8

(

1/

"'"

II
N

--"

o- f- N - t- U1- t- -...J- 1-0
U1_ t- 0_ t- U1_
t- o. t- Ul_ t- 0
0
I-~- I-- ~- I-- ~- I-- (")0 t- (")0
(")
-...I- I--

'"'"

10

20

Ptot (W)

30

Fig. 4 Maximum thermal resistance from junction to heatsink as a function of power dissipation, with
heatsink and junction temperature as parameters .. (Rth mb-h = 0,6 0C/W).
Example
Nominal class-A operation: VCE = 25 V; IC = 600 rnA; Th = 70 0C.
Fig. 4 shows:

Rth j-h
Tj

max. 6,75 °C/W
max. 170 0C

Typical device: Rth j-h
Tj

typo 5,45 oC/W
typo 152 0C

I (Octo~r

1978

--

3

733BLY/A
(BLW34)
~

CHARACTERISTICS

l

Tj = 25 oC unless otherwise specified
Collector-emitter breakdown voltage
VBE = 0; IC = 8 mA

V(BR)CEO

>
>

Emitter-base breakdown voltage
open collector; IE = 4 mA

V(BR)EBO

>

4V

Collector cut~off current
VBE=0;VCE=30V
VBE = O;VCE = 30V;Tj = 175 0 C

'CES
ICES

2,0 mA
5,0 mA

D.C. current gain
I C = 600 mA; V CE = 25 V

hFE

<
<
>

hFE

<

120

VCEsat

typo

450 mV

fT

fT

typo
typo

3,3 GHz
3,0 GHz

Cc

typo

13,5 pF

Cre
Ccs

typo

8,4 pF

typo

2 pF

V(BR)CES

open base; IC = 60 mA

IC = 600 mA; VCE = 25 V; Tj = 175 °c
Collector-emitter saturation voltage
Ie = 1,2 A; I B = 0,12 A

**

Collector capacitance at f = 1 MHz
Ie = Ie = 0; VCB = 25 V
Feedback capacitance at f = 1 MHz
I C = 40 mA; V ce = 25 V
Collector-stud capacitance

*

Measured under pulse conditions: tp ~ 300 JlS; 6 <; 0,02.

** Measl.lred under pulse conditions: tp ~ 50 JlS; 6 <; 0,01.
4

20
40

*

Transition frequency at f = 500 MHz
-IE = 0,6 A; VCB = 25 V
-I E = 1,2 A; V CB = 25 V

--

typo

50 V
30 V

J

U.H.F. power transistor

----7Z78615

....

50

,
/

,

V

""

7Z78614

60

~

\

V CE

=-

-

25V

40

I
i/

25

~.

733BLY/A
(BLW34)

..........

~-

" i\..

J

\

~

I\.

20

5V

" typ
1""' .....
1'--

2

IC (A)

Fig. 5 Typical values; Tj

= 250C.

20

3

V eB (V)

----

40

7Z78620

4
I

typ

~

fT
(GHz)

1/

I

'I
I

II

2

J

-

-

..... .....
I.....

"

"-

i'
1',

"
'~,

~

'I......

o

o

....... ......

3

2

Fig. 7 VCB = 25 V; f = 500 MHz; Tj = 250C

~ (OctOber

1978

5

733BLY/A
(BLW34)

--

APPLICATION INFORMATION
fvision (MHz)

VCE (V)

IC(mA)

Th (OC)

25
25
25

600
600
600

70
70
25

860
860
860

dim (dB) *
-60
-60
-60

Po sync (W) *

Gp (dB)

>

>

1,8
typo 1,9
typo 2,15

9
typo 10,2
typo 10,2

* Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16dB), zero dB
corresponds to peak sync level.
VSWR output < 2

50n

50n

C5

---

C12

C4
BY206

~------~---------------+----------7-Z-7-79-4-8~-------

Fig. 8 Test circuit at fvision

= 860 MHz.

l.:ist of components:
C1 = C2 = 1,4 pF to 5,5 pF film dielectric trimmer (cat. no. 2222809 09001)
C3 = 2 x 5,6 pF chip capacitors (in parallel)
C4 = C5 = 100 nF polyester capacitor
C6 = C7 = 1 n F f-eed-through capacitor
C8 = 10 ILF/40 V solid aluminium electrolytic capacitor
C9 = 470 nF polyester capacitor
C10 = 2 to 18 pF film dielectric trimmer (cat. no. 2222809 09003)
Cl1 = 2 to 9 pF film dielectric trimmer (cat. rio. 2222809 09002)
C12 = 5,6 pF ceramic capacitor

8

Octorer

19~1

(

+Vs

J

U.H.F. power transistor

733BLY/A
(BLW34)

----------------------------------------------------~
List of components (continued):
R1 = 1,8 kn carbon resistor (0,5 W)
R2 = 150 n· carbon resistor (0,25 W)
R3 = 100 n wirewound potentiometer (3 W)
R4 = 33 on carbon resistor (0,5 W)
R5 = 220 n carbon resistor (1 W)
R6 = 3 on; parallel connection of 4 x 12 on carbon resistors (1 Weach)

L1 = stripline (13,6 mm x 6,9 mm)
L2 = microchoke 0,47 #LH (cat. no. 432205704770)
L3 = 1 turn Cu wire (1 mm); internal diameter 5,5 mm; leads 2 x 5 mm
L4 = stripline (40,8 mm x 6,9 mm)
•
L1 and L4 are striplines on a double Cu-clad printed-circuit board with PTFE fibre-glass dielectric
(€r= 2,74};,thickness 1,5 mm.

7Z78622

-50

I I I

.I

Th = 70 °C- -

"'" "'"

...... .....
..,,~ "",

.... v v ...

. . .v

-60

/

V
V

.",

~

,.,
........ ... 25 oc_ ..... ",.

f--

t--

.."

--

~ ~"

./""

/""

/ /

/ /
/ /

/ /
I

~

II
, I
-70

o

2

4

Po sync (W)

6

(1) Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB),
zero dB corresponds to peak sync level. Intermodulation distortion of input signal ~ -75 dB.
Fig. 9 Intermodulation distortion as a function of output power.
Typical values; VCE = 2n V; IC = 600 rnA; fvision = 860 MHz.

Information for wide-band application from 470 to 860 MHz available on request.

I(

October 1978

7

l

733BLY/A
(BLW34)

'-------~-----------------------------------7Z777181

5

7Z777191

30

RL ~I-I2,5

I--- f-

'"

~

r·

~

'1\

II

t--

20

IJ

V

0

/

\

/

~

V

~~~

10

1/

-2,5
IJ

I---

V

~ x.1f

J'

' - - i-- XL

o

-5

-

10

,

r\

)

-.

~

f (MHz)

Fig. 10 Input impedance (series components).

10

~

/

",irr'

I

f (MHz)

Fig. 11 Load impedance (series components).

7Z77720 1

35

\.

,
Conditions for Figs 10, 11 and 12:
Typical values; VCE = 25 V; IC = 600 mA;
Th = 70 0 C.

'\
\

25

1\

\

~

Ruggedness

1\

15

~

The B LW34 is capable of withstanding a load
mismatch (VSWR =50) under the following
conditions:
.
f=860 MHz; VCE = 25 V; IC = 600 rnA;
Th = 70 °C and PL(AV) = 4 W.
This holds for single-tone as well as for two-tone
operation (vision and sound).

5
10

10 2

I(

Fig. 12.

8

October 1978

f (MHz)

_ _ _Jl_BLW_60
V.H.F. POWER TRANSISTOR
N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated mobile, industrial
and military transmitters with a nominal supply voltage of 12,5 V. The transistor is resistance stabilized.
Every transistor is tested under severe load mismatch conditions with a supply over-voltage to 15 V.
Matched hFE groups are available on request.
It has a plastic encapsulated stripline package. All leads are isolated from the stud.
QUICK REFERENCE DATA
R.F. performance up to Th =:25 0C
mode of operation VCE
V

f
MHz

PL
W

175

45

Gp
dB

>

-

zi

1/

>

C.w. (class-B)

12,5

s.s.b. (class-AB)

12,5 1,6-28 3-30 (P.E.P.) typo 19,5 typ.35

5,5

YL
mAN

n

%
75 1,1

d3

dB

+ j1,4 310 + j95
typo -33
-

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-56.

W

S
,1
4,9
-~

.~
1.- 9,5-.1

-.

-

3,00 __
2,85

27 _ _ _ __

..

max

--

-+--F===p1
10-32UNF

7Z60000 4

---

115
10:7-

When locking is required an adhesive is preferred instead of a lock washer.
Torque on nut: min. 1,5 Nm
'(15 kg cm)
max. 1,7 Nm
(17 kg cm)

Diameter of clearance hole in heatsink: max. 5,0 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

September 1978

BLW60

II

I

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Collector:- base voltage (open emitter)
peak value

VCBOM

max.

36

V

Collector-emitter voltage (open base)

VCEO

max.

18

V

Emitter- base voltage (open collector)

VEBO

max.

4

V

IC(AV)

max.

8

A

lCM

max.

20

A

max.

65

W

Currents
Collector current (average)
Collector current (peak value); f

:!

IMHz

Power dissipation
Total power dissipation at Th ::: 70°C
f ;::: 1 MHz; VCE ::s 15 V; Rth mb-h ::s 0,3 °C/W
Derate by 0,5 W/oC for 50 OC ::s Th::S 1000C

-

---

....,...
.-

1l e7070 .1

7Z670691

150

D.C.SOARI

J Th=70oC

Ic
VeE ~15V
f ~ 1MHz

Ptot
(W)

I--

(A )
7

I Rth mb_h~O,3°C/W

h
.

6
100

short time operation
VSWR>3

,.........

. . . 1'-...

;-....

5

.........

..........

~

normal operation
VSWR <3

50

'"

3

I '~

50

~

4

" ........
100

2

15

6

7

8

9 10

VCE (V)

20

-65 to +200

°C

Temperature
Storage temperature

2

II

T stg

September 1974

II

BLW60

II

CHARACTERISTICS

Tj = 25 °C unless otherwise specified

Breakdown voltages
Collector- base voltage
open emitter; IC = 100 rnA

V(BR)CBO

>

36

V

Collector-emitter voltage
open base; IC = 100 rnA

V(BR)CEO >

18

V

Emitter- base voltage
open collector; IE = 25 rnA

V(BR)EBO

>

4

V

E

>

8

mWs

E

>

8

mWs

Transient energy
L = 25 mH; f = 50 Hz
open base
-VBE

= 1,5

V; RBE

= 33 Q

D. C. current gain
IC = 1 A; VCE == 5 V

20 to 100

hFE

---

D.C. current gain ratio of matched devices
IC

= 1 A; VCE =

5V

hFE1/hFE2<

1,2

Transition freguency
IC

= 6 A; VCE

==

10 V

typo

550

MHz

typo
<

120
160

pF
pF

typo

80

pF

typo

2

pF

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 15 V
Feedback capacitance
Ie = 200 rnA; VCE = 15 V
Collector- stud capacitance

June 1976

II

3

BLW60

II

II

1Z61080

1000
fT

typical values

(MHz)

750

500 , j ~

~

~

...."""

-

"""

~t....,.... ~ ~

l"'-I-l -

l - t-..

VCE12,5V

-S

i"'""-

I""- ~

lOV
. I
7,?V

l- I- 1-100..
l""- i"'""-

5V

250

o
o

2,5

10

7,5

5

12,5

IC (A)

15

7Z6707?

300

1

-I

1
1

1

T
IE=Ie=O' f-f=1MHz --

Cc

\

(pF)

1
~
~

200

\

I'

"- I'typl
-....~

........
:""I ....

....1-

100

o

4

II

o

10

veB (YO)

-""'

20

September 1974

II

BLW60

II

APPLICATION INFORMATION

R. F. performance in c. w. operation (unneutralized common-emitter class B circl;it)
f:::: 175 MHz; Th up to 25 oC; Rth mb-h

S

0,3 oCjW.

VCC (V)

YL (rnA/V)

12,5

310 + j95

Test circuit for 175 MHz:

--+1

C9

Zi

r--t't-.......- - t ( ) J

son

son

L3

VB

C1
2 to 20 pF
C2
4 to 40 pF
56 pF
C3 :::: C4 :::: C5 :::: C6 ::::
C7
100 pF
CB
100 nF
C9
4 to 80 pF
ClO ::::
4 to 60 pF

film dielectric trimmer
film dielectric trimmer
ceramic capacitor
ceramic capacitor
polyester capacitor
film dielectric trimmer
film dielectric trimmer

L1:::: 1,5 turns enamelled Cu wire (1,5 mm); into diam. 6 mm; length 4 mm;
leads 2 x 5 mm
L2::::
7 turns closely wound enamelled Cu wire (0,5 mm); into diam. 3 rom;
leads 2 x 5 mm
L3 :::: L4 :::: ferroxcube choke (code number 4312 020 36640)
L5::::
bifilar wound enamelled Cu wire (1,0 mm); see figure on page 6
R1:::: 10
R2 :::: 4, 7

Q
Q

carbon resistor
carbon resistor

Component lay-out for 175 MHz test circuit see page 6.

September 1974

r

I

5

BLW60

II

I

APPLICATION INFORMATION (continued)
1....·~------.,....------123mm---...,-----~----,----··1

55mm

ground plane removed

----

~.: ;.I:.· :. ;:~.' :~.

..:. : .:.,::.;.: : .: : .:

. :. :. :.• :.:;.;•: .:

;I~~~~~~~1~;t~~~r~!~~~;~r.

I
7Z66943

The circuit and the components are situated on one side of the epoxy fibre-glass board,
the other side being fully metallized to serve as earth. Earth connections are made by
means of hollow rivets.

6

II

September ·1974.'

II

BLW60

7Z67075 I

60

I I I I
Vee =13,5V

40

~

,

i~
~

,,

Vee =12,SV

,-

,~

11

~
~

I

f-'

100

J

"I
Ii'

, I

~I

/

1/
I

, lA"'1
, " 12,5V

=H=

-I- -

~

1)-

(%1
I

PL

At PL = 45 Wand Vee = 12,5 V, the
output power at heatsink temperatures
between 25 0e and 70 oe relative to
that at 25 °e is diminished by
60 mW/oe.

I

20

50
typo values
f-r-f=175 MH~
f-Th=25°C
f-fRth mb- h ~ 0,3°C/W f-rI I
I
I I I
I I I I
I 1I I
10
20
Ps(WI

----

7Z69173

60

f=17SMHz
Th=700C
Rth mb-.h ~ 0,3 °C/W
PLnom
Veenom = 12,5 V
(WI
PSnom Ps at Vee
12,5 V and VSWR=1
see page 5
50

=

R.F.SOAR

=

VSWR=10-

.....

'"

1
I
r-... 50,~

40
"

Thetra'nsistor has been developed for
use with unstabilized supply voltages,
As the output power and drive power
increase with the supply voltage, the
nominal output power (PLnom) must
be derated in accordance with the adjacent graph for safe operation at supply voltages other than nominal.
The graph shows the allowable output
power uflder nominal conditions as a
function of the supply over~oltage ratio
with VSWR as parameter. The graph
applies to the situation in which the
drive (PS/PS nom ) .increases linearly
with supply overvoltage ratio
(Vee/Veenom)'

=-

30

1,0

September 1974

II

1,1

Ps f-t-t-t- PSnom - t-t- 1, 2

1,1

1,2

I

7

BLW60

II

II
7Z67079

30

power gain versus frequency:
I I I I I I I
II II I I I

Vec=12,5V r-r-PL=45W
\

20

\
'\.

,
" \..typ

10

~
~

.....

----

o

-

o

100

.........

f (MHz)

200

7Z67071

7Z6701Z

input impedance (series components) versus frequency

load impedance (parallel components) versus frequency
I

+1000

+2

ri

ri
Xi

+5

... .....

l.,.o

I
I I

...-

RL

[..0'

~

-- RL
(Q)

1

f"

(Q)

~

/

I

o

~

o

,/

~

~

J

~-

O·

J

J CL

If Xi I

L

If

J
II

I

-2

typo values rrVce= 12,5V' r-ir-rPL =45W
: r-r-

l,,,

,I

typo values r--

-',

-1000

-5
Vee=12,5V 1-''':'PL =45W
...... -

I I I I 1\ I

I

o

8

100

II

I I

I I I I

f (MHz)

I I I

I I II

200

o

100

II

I

f (MHz)

200

September 1974

V_'H'_F._po_~_rt_ran_Si_uo_r

__

jl____

B_L_W_60_____

____________________

APPLICATION INFORMATION (continued)
R.F. performance in s.s.b. class-AB operation

= 12,5 V; Th up to 25 oC; Rth mb-h ~ 0,3 oC/W
= 28,000 MHz; f2 = 28,001 MHz

VCE
f1

output pov3er

71dt

W

%

d3
dB *

dS
dB *

IC(ZS)
mA

typ.35

typo -33

typo -36

25

3 to 30 (P.E.P.)

typ.19,5

Test circuit; s.s.b. class-AB.

C3

C4

r-------.....-o +Ve= 12,5V

TR2

+Ve=12,5V
7Z66944

bias

list of components on page 10.

* Stated intermodulation distortion figures are referred to the according level of either of the equal
amplified tones. Relative to the according peak envelope powers these figures should be increased
by 6 dB.

September 1978

9

BLW6011
APPUCATION INFORMATION (continued)
List of components:
Tri

=Tr2 =BOI37

CI
C2
C3
C4
C5 =C7
C6
C8 = CIS
C9
CIO =:=
Cll,=
CI2 =,
CI3 =
CI4 =

100 pF air dielectric capacitor (single insulated rotor)
27 pF ceramic capacitor
, 180 pF ceramic capacitor
100 pF air dielectric capacitor (single non-insulated rotor)
3,9 nFpolyester capacitor (±10%)
2 x 270 pF polystyrene capacitors in parallel
=CI6 :: 100 nF polyester capacitor (±IO%)
2,2 jJF moulded metallized polyester capacitor
2 x 385,pF film dielectric trimmers in parallel
,
68 pF ceramic capacitor
2 x 82 pF ceramic capacitors in parallel
47pF ceramic capacitor
385pF film dielectric trimm~r

88 nH; 3 turns Cu wire (1,0 mm); intern'al d~ameter 9 mm; coil length 6,1 mm;
leads 2 x 5mm
L2 :: L5 = ferroxcube bead; grade 3B (code number -t312 029 36640)
L3 ::
68 nH; 3 turns enamelled Cu wire (1, 6'mm); internal diameter 8 mm;
coil length 8,3 mm; l~ads 2 x 5 mm
L4 =
96 nH; 3 turns enamelled eu wire (1,6 mm); internal diameter 10 mm;
~oiJ length 7,6 mm; lea<;ls 2 x 5 mm
Ll ::

..........
=
--

'

RI

=

R2 ::=
R3 ::
R4
R5
. R6

=
=
=

10

27 Q carbon resistor (±5%)
4, 7 Q carbon resistor (±5%)
1,5 kQ carbon'resistor (±5%)
10 Q wire-wound potentiometer (3 W)
47 Q wire-wound resistor (5,5 W)
150 Q carbon resistor (±5%)

II

September 1974

II

II
7Z670741

o

typo values
Vcc =12,5 V
f1 = 28,000 MHz
f2 =28,001 MHz
Th =25°C
-20
Rth mb~h ~ 0,3 °C/W
I C(ZSI=25mA
I

7Z610181

60

intermodulation distortion
versus output power 11

double -tone efficiency,
versus output power

Vcc = 12,5V
11 = 28,000 MHz
12 = 28,001 MHz
Th =2SoC
Rth mb~h ~ 0,3 °C/W
40 IC(ZS) = 25 mA

1Jdt
(%)

J

,

~I"""

11
I

I

-40

~

I/"

typ 1.0"

~

,

100..

~

I/"
I~

20

j

j
I000o''

IL
~
i

20

P.E.P. (W)

1Z61073 !

d3
ds

typo values
Vcc =13,5 V
(dB)
f1 = 28,000 MHz
f2 28,001 MHz
Th =25°C
-20
Rth mb~h ~ 0,3°C/W
I C(Z5)=25 mA
I
I
-f\ d 3
\.

20

40

intermodulation distortion
versus output power 1)

P.E.P. (W)

double -tone efficiency
versus output power

11
I I

IL

J

,,

1/

.... "

~

~

"

~

20

!/,~

-d~ I\.

ty~1""

-

.... "'"

f"

i"""

I I

1/

40

7Z610161

60

Vcc = 13,SV
f1 = 28,000 MHz
f 2 =28,001 MHz
Th =2SoC
Rth mb~h ~ 0,3°C/W
40 Ic(ZS)= 2SmA

=

"100..

IJ'

I/"

.,"""

"'"

-40

,

.... io""

~

r- d'~ I\.

o

~
~

I

r-~ d3
1\

BLW60

L~

~"""

~

"

......

1/

""
20

P.E.P. (W)

40

20

P.E.P. (W)

40

1) Stated intermodulation distortion figures are referred to the according level of either
of the equal amplified tones. Relative to the according peak envelope powers these
figures should be .increased by 6 dB.

September 1974

11

BLW60

II

II
72;67082

30

power gain versus frequency
typ- r--

....

r-~

.............

..........
t-o...

20

"

"""""'"

10

o
1

10

f (MHz)

S. S. B. class AB operation
Conditions:
::: 30 W (PEP)
::: 12,5 V
::: 25 rnA

PL
Vec

IC(ZS)
Th
::: 25°C
Rth mb-h;$ 0,3 °C/W
ZL
::: 1,9 Q

PL
VCC

= 35

W (PEP)

= 13,5 V

IC(ZS)
= 25 rnA
Th
= 25°C
Rth mb-h;$ 0,3 oC/W
ZL
= 1,9Q

The curve (both conditions) holds for an unneutralized amplifier.

12,

II

September 1974

II

BLW60

II

7Z67081

10

input impedance (series components) versus frequency

'"

(0)

" " ,,1

typical values

r'

7,5

~

",
r\.

5

'\
~~

,

2,5

./

/"
-Xi

I\.

..... '"

~~

''''"""-

"'III~

"'

---

o
10

f (MHz)

S.S.B. class AB operation
Conditions:
PL

Vec

= 30 W (PEP)
= 12,5 V
= 25 rnA
= 25 °C

IC(ZS)
Th
Rth mb-h:S 0,3 °C/W
ZL
= 1,90

PL

= 35

Vec

= 13,5 V
= 25 rnA

W (PEP)

IC(ZS)
Th
= 25
°C
Rth rnb-h:S 0,3 °C/W
ZL
= 1,9Q

The curve (both conditions) holds for an unneutralized amplifier.

September 1974

13

_ _ _ _ _ _Jl_BLW_6OC
V.H.F. POWER TRANSISTOR
N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated mobile; industrial
and military transmitters with a nominal supply voltage of 12,5 V. The transistor is rli!Sistance stabilized
and is guaranteed to withstand severe load mismatch conditions with a supply over-voltage to 16,5 V.
Matched hFE groups are available on request.
.
It has a 3/8" capstan envelope with a ceramic cap. All leads are isolated from the stud.
QUICK REFERENCE DATA
R.F. performance up to Th = 25 0C
mode of operation VCC
V

f
MHz

c.w. (class-B)

12,5

175

s.s.b. (class-AB)

12,5 1,6-28

~~

PL
W

45

>

-zi

1'/

5,5

>

YL

n

%

d3
dB

mAN

-

75 1,1 + j1,4 310+ j95

-

3-30 (P.E.P.) typ 19,5 typ 35

-

MECHANICAL DATA

typ -33

Dimensions in mm

----

50T-120

•

r-er

I

CI:Js

8min (4x)

c

.//'1-,

I(

28
26

,

t

3~5

--.

+

EG

-

-- .... 0.14

1,6 max

--II+-

ceramic

\

t--+---+
,
I

1\ ~

"~
I /

b

BeQ

1

metal

2.6_

e

4

-

~I~I.
5,5
9,8 max

28

max

__ 41....

+-

26

Torque on nut: min 0,75 Nm
(7,5 kg cm)
max 0,85 Nm
(8,5 kg cm)

min

--11,8 -

..

7,0 max ...
7l69881.1

Diameter of clearance hole in heatsink: max 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end Qf hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This dev.ice incorporates beryllium oxide, the dust of which is toxic. The deviceis'enttrely
safe provided that the BeO disc is not damaged.

IIJUIY1977

1

Jl____________

_BL_W6_0C_____
RATINGS

Limiting values in accordance with the AbsoJute Maximum System (IEC 134)·
Collector-emitter voltage (VBE :;:: 0)
peak value

VCESM

max.

36 V

Collector-emitter voltage (open base)

VCEO

max.

18 V

Emitter-base voltage (open-collector)

VEBO

max.

4 V

Collector current (average)

IC(AV)

max.

9 A

Collector current (peak value); f> 1 MHz

ICM

max.

22 A

max.

100 W

R.F. power dissipation (f> 1 MHz); T mb:;:: 25 0C
Storage temperatu re

-65 to + 150 0C

Operating junction temperature

max.
7Z77249

20

I D.C. SOAR

.200 0C
,7Z77855

150

IC

(A )

Prf
(WI

10

---

"

" 1\..)-

~

1\

"

5

~

100

I....

'?

~~

....

~

,)I'l\?
~

.

~

10

VCE(V)

30

Fig. 2 D.C. SOAR.

,..

II t-~",OJ.- 0
1""1 ..

50

20

O'er.
i.... ilfe.

I""

t-t- t-t-

5

I.... '

I

:-to..

.s- 0

i\Z'b ('

1

r'"

I""~ r-r- III

.l~$..?~/ _ t-t-tJ I
0c ,- t-t-t03
,.~ 8W/o,1 ~
l'" C

~

I'"

I

o

o

50

Fig.3 R.F. power dissipation; VCE E;;; 16,5 V;
f>1 MHz.
I Continuous d.c. operation
II Continuous r.f. operation
III Short-time operation during mismatch

- - THE~MAL RESISTANCE (dissipation:;:: 40 W; T mb:;:: 88 oC, i.e. Th :;:: 70 OC)
Rth j-mb(dc)

2,8 oCIW

From junction to mounting base (r.f. dissipation)

Rth j-mb(rf)

2,05 oCIW

From mounting base to heatsink

Rth mb-h

0,45 oCIW

From junction to mounting base (d.c. dissipation)

2

September 1978

(

Jl

V.H.F. power transistor

CHARACTERISTICS

BLW60C

Tj = 25 °C
Breakdown voltage
Collector-emitter voltage
VBE = 0; IC = 50 mA

V(BR)CES

>

36 V

Collector-emitter voltage
open base; Ie = 100 mA

V(BR)CEO

>

18 V

Emitter-base voltage
open collector; IE = 25 mA

V(BR)EBO

>

4 V

ICES

<

25 rnA

E
E

>
>

hFE

typ
50
10 to 80

hFE1/hFE2

<

1,2

VCEsat

typ

1,5 V

fT

typ
typ

650 MHz
600 MHz

typ

120 pF
160 pF

Collector cut-off current
VBE=0;VCE=15V
Transient energy
L = 25 mH; f = 50 Hz
open base
-VBE = 1,5 V; RBE = 33 n
D.C. current gain *
IC=4A;VCE=5V

8 rnWs
8 rnWs

--=

D.C. current gain ratio of matched devices *
IC = 4 A; VeE = 5 V
Collector-emitter saturation voltage *
le= 12,5 A; IB=2,5A
Transiti~n

frequency at f = 100 MHz *

Ie = 4 A; VeE = 12,5 V
IC = ~2,5 A; VCE = 12,5 V

fT

Collector capacitance at f = 1 MHz
IE

= Ie = 0; VeB = 15 V

Cc

<

Cre

typ

80 pF

Ces

typ

2 pF

Feedback capacitance at f = 1 MHz
le= 200 mA; VeE = 15 V
Collector-stud capacitance

* Measured under pulse conditions: tp <;; 200 IlS; lj <;; 0,02.

I(

July 1977

3

----"Jl""---_ _ _ _ __

_BL_W6OC_·'

1Z77251

typical values

7Z67077 1

300

IE=le=O

Tj = 25°C

f

100

Cc

= 1 MHz

,

1\

(pF)

\

,

200

VCE=
12,5 V

,..

I\,

""-,tv.,
10..

5V

50

~"""

~

...

,...'"" ....
~

100

---

o

o

5

10

'c (A)

o
o

15

10

V

CB

(V)

20~

7Z77257

750

typical values

,

fT
(MHz)

-...

",.

J
'I

500

".~

......

........
~

... -.

-~-.

J

"'100..
~,...

II

1.. ....

-~

~

....

VeE=
12,5V
I I
10.. 10V
I I

'"

....

-~

1"""""""

-I"'-

~

f= 100MHz
Tj = 25°C
I I
I
1"'"100..

~

--

"

I"""

I

!"'II,

I
5V

250

0
0

4

5

II

July19n

10

15

'C(A)

20

V._H._F._~_~_rt_ra_n$i_rto_r

___

jl____

B_L_W_6_0C_·___

_____________________

APPLICATION INFORMATION
A.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25 oC·

f (MHz)

VCC (V)

PL(W)

Ps (W)

Gp (dB)

IC (A)

1/ (%)

175

12,5

45

< 12,7

>

<4,8

>

175

13,5

45

5,5

typ 6,0

75

YL
(mAN)
..
1,1 + j1,4

310 + j95

typ 75

Test circuit for 175 MHz

--~-It--+---<)

50 n

C8

50 n D--H--+--'

---List of components:
C1 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222809 07004)
C2 = C8 = 4 to 40 pF film dielectric trimmer (cat. no. 2222809 07008)
C3a = C3b = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor
C5 = 100 nF polyester capacitor
C6a = C6b = 8,2 pF ceramic capacitor (500 V)
C7 = 5 to 60 pF film dielectric trimmer (cat. no. 2222 809 07011)
L1 = 1 turn Cu wire (1,6 mm); into dia. 9,0 mm; leads 2 x5 mm
L2 = 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm; leads 2 x 5 mm
L3 = L8 = Ferroxcube choke coil (cat. no. 4312 02036640)
L4 = L5 = strip (12 mm x 6 mm); taps for C3~ and C3b at 5 mm from transistor
L6 = 2 turns enamelled Cu wire (1,6 mm); into dia. 5,Omm; length 6,0 mm; leads 2 x 5 mm
L7 = 2 turns enamelled Cu wire (1,6 mm); into dia. 4,5mm; length 6,0 mm;leads 2 x 5 mm
L4 and L5 are strips on a double Cu-clad printed~circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
A1 = 10 n (±10%) carbon resistor
A2 = 4,7 n (±5%) carbon resistor
Component layout and printed-circuit board for 175 MHz test circuit on page 6.

~

r

July 1917

5

Jl""----____

_BLW_6OC

APPLICATION INFORMATION (continued)

Component layout and printed"circuit board for 175 MHz test circuit.

72

---=

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter I~ads Cu straps are used for a direct contact between upper and lower sheets.

6

July

19771 (

V_'H_'F:_po_w_er_t~_ns_ino_r

__

jl____

B_L_W_6_OC_____

____________________

7Z77252

7Z77253

typical values

- - V e e = 12,5V

f = 175 MHz

---Vee = 13,5 V

typical values
f = 175 MHz
Th = 25 °e

- - V e e = 12,5V
- - - Vee = 13,5 V

10

75
Th =25 °e

~.J'".

.>'J>'
~....
!.--"

50

100

i.---' ....

....... ,.. Th=0
70 e

.....

(dB )

AT!

---

Gp

;;;
_J-

'::11"':

/I/' '/

1

....

r/ v

I~V

1 ..

'"

7j

(%)

1-1.,..

i'-o.

r"'-~

/v

5

,...

G'"
PI-f--

,A"

1~2V

25

--

50

A

o

o

o

10

20 P (W) 30

s

10

-

o
30

-

50

7Z77254

R.F.SOAR
50

eonditions for R.F. SOAR

P Lno m
(W)

V5WR =1

I\.
I\.

"- r\.

,

~

I"

~

"\

40

VSWR=
5

'\

,
"
'"
"\

'\

r'\

r'\

~
~

""" "
"-

10
20
50
P

s

PSnom

30

1

1,1

1,2

Vee
Veenom

f= 175 MHz
Th =70 °e
Rth mb-h= 0,45 °C/W
VeCnom = 12,5 V or 13,5 V
PS= PS nom at Veenom and VSWR = 1
see page 5
The transistor has been developed for use with
unstabilized supply voltages. As the output
power and drive power increase with the supply
voltage, the nominal output power must be
derated in accordance with the graph for safe
operation at supply voltages other than the
nominal. The graph shows the permissible output
power under nominal conditions (VSWR = 1), as
a function of the expected supply over-voltage
ratio with VSWR as parameter.
The graph applies to the situation in which the
drive (PS/PS nom ) increases linearly with supply
over-voltage ratio.

I (JUlY

1977

7

Jl_______- - -

_ _ _.BLW--6OC
_

7Z670791

30

power gain versus frequency
(class- B operation)
..

Gp
(dB)

,
20

I'

,

Measuring conditions for the graphs
on this page

,

Vec =
"I\.tvp

12,5,V

PL =45W

Th

=25 °C

typical values

10

"1'0..

---........

.........

o

-.....

o

.'

100

f (MHz)

200

7Z67071.1

7Z67072.1

load impedance (parallel components)
versus frequency (class- B operation) ,

input impedance (series components)
versus frequency (class- B operation),
I
I

+2

+5

I

+1

I

rj

[

i..oo'

....

RL -_I"'"

~"""~

I"

~I-

i.oo"

~

1/
1/

o

,

o

./
~ xi

~

~

~-

o

CL

If

J
'(

'/

:/

I'.
I:

-2

o
8

-5

,I
100

july

19771 ( .

f (MHz)

200

o

.,
100

f (MHz)

200

,J~_____

__V_.H_.F_._po_w_er_tr_an_sis_to_r________________________

B_LW_,_6_0_C_____

APPLICATION INFORMATION (continued)
R.F. performance in s.s.b. class-AB operation
VCE = 12,5 V; Th up to 25 °C; Rth mb-h';;;; 0,45 °C/W
fl = 28,000 MHz; f2 = 28,001 MHz
output power
W
3 to 30 (P.E.P.)

Gp
dB

'TIdt

%

d3
dB *

d5
dB *

IC(ZS)
rnA

typ ,19,5

typ 35

typ -33

typ -36

25

Test circuit
S.S.B. class-AB

TR2

+YS=12,5V
7Z66944

bias

R6

List of components:
TRl = TR2 = BD137
Cl = 100 pF air dielectric trimmer (single insulated rotor type)
C2 = 27 pF ceramic capacitor
C3 = 180 pF ceramic capacitor
C4 = 100 pF air dielectric trimmer (single non-insulated rotor type)
C5 = C7 = 3,9 nF polyester capacitor
C6 = 2 x 270 pF polystyrene capacitors in parallel
C8 = C15 = C16 = 100 nF polyester capacitor
C9 = 2,2 J.lF moulded metallized polyester capacitor
Cl0 = 2 x 385 pF film dielectric trimmer
C11 = 68 pF ceramic capacitor

* Stated intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB.
,<

,

September 1978

9

l~

BLW60C

____________________________

APPLICATION INFORMATION (continued)
List of components (continued)
C12 = 2 x 82 pF ceramic capacitors in parallel
C13 = 47 pF ceramic capacitor
C14 =385 pF film dielectric trimmer

L1
L2
L3
L4

=88 nH; 3 turns Cu wire (1,0 mm); into dia. 9 mm; length 6,1 mm; leads 2 x 5 mm
= L5 = Ferroxcube choke c9i1 (eat. no. 4312 020 36640)

= 68 nH; 3 turns enameliedCu wire (1,6 mm); into dia. 8 mm; length 8,3 mm; leads 2 x 5 mm

=96 nH; 3 turns enamelle(fCu wire (1,6 mm); into dia. 10 mm; length 7,6 mm;, leads 2 x 5 mm
R1 = 27 n (±5%) carbon resistor
R2 =4,7 n (±5%) carbon resistor
R3 = 1,5 kn (±5%) carbon resistor

R4 = 10 n wirewound potentiometer (3 W)
R5 = 47
wirewound resistor (5,5 W)
R6 = 150
(±5%) carbon resistor

n
n

Measuring conditions for the upper graphs on page 11
VCC = 12,5 V
f1 = 28,000 MHz
f2 = 28,001 MHz
Th = 25 °C
Rth mb-h ~ 0,45 °C/W
IC(ZS) = 25 mA
typical values

---~

Measuring conditions for the lower graphs on page 11
VCC = 13,5 V
f1 = 28,000 MHz
f2 = 28,001 MHz
Th = 25
Rth mb-h ~ 0,45 oC/W
IC(ZS) = 25 mA
typical values

°c

10

July

19771

r

Jl____

B_LW
__
60_C_____

_V_"H_"F_"p_O_we_rt_ran_sis_to_r____________________
7Z670742

o

intermodulation distortion versus
output power *

7Z670782

60

double-tone efficiency
output power

~ersus

7]dt
(%)

-20

40
1

d3
I\.

/
typ......

/

1

-40 dS " \ \

"

1/

I'-

-

",
~

1/

1/

20

I

...:

....

,."

1/

I

\

.",.

1/
I

1.,,000

"

/

f',

I

-60

o

20

P.E.P. (W)

40

7Z67073 2

o

intermodulation distortion versus
output power *

o I
o

20

P.E.P. (W)

--

40

7Z67076 2

60

double-tone efficiency versus
output power

7]dt
(%)

-20

40

L.,..-"".

1.1

d3

typ....

I\,

7
I

\.
.\
-40 dS, \

11'/

"""

l...o'

20

)

.., ....

:...

"

.....

o

~

/~

1\

..... ~

-60

~"".

1/

~

20

P.E.P.

(W)

40

o
o

V'

20

P.E.P. (W)

40

* Stated intermodulation distortion figures are referred to the according level of either of the equal
amplified tones" Relative to the according peak envelope powers these figures should be increased
by 6 dB"

11

11 _

_Jl________

BLW_60_C

_

7Z77256

40

Gp
(dB)

r·I
en)

30

7,5

""

~

20

7Z77255

10

input impedance (series components)
versus frequency

"1\,
\

2,5

,
1\
1\

~

~

10

o

5

V"

,

.z.....

V
~

o
10

1

o
f (MHz)

1

10

S.S.B. class-AB operation
Conditions for the graphs above:
VCC = 12,5 V
PL = 30 W (P.E.P.)
Th = 25 °C
Rth mb-h ~ 0,45 °C/W
IC(ZS) = 25 mA
ZL = 1,9 n

VCC = 13,5 V
PL = 35 W (P.E.P.)
Th = 25 oC
Rth mb-h ~ 0,45 °C/W
IC(ZS) = 25 mA
ZL = 1,9 n

The typical curves (both conditions) hold for an unneutralized amplifier.

12

(
1

July 1977

xi-

~L

-'.

2,5

~

---

5

-2,5,
~ rj r-

f (MHz)

______Jl_BL_W64_
TV TRANS POSER TRANSISTOR FOR BAND III

N-P-N silicon planar epitaxial transistor assembled in a plastic encapsulated stripline package all leads
of which are isolated from the stud. Excellent d.c. dissipation properties have been obtained by means
of internal emitter-ballasting resistors and gold metallization. Detailed information is presented for
application of this device in preamplifiers for television transposers and transmitters in band III.
QUICK REFERENCE DATA
Collector-base voltage (open emitter; peak value)
Collector-emitter voltage (open base)
Collector current (average)
D.C. power dissipation up to Th = 70 0C
Thermal resistance from junction to mounting base
Transition frequency
IC = 4,0 A; VCE = 25 V
Output power at fvision = 224,25 MHz *
IC = 1,6 A; VCE = 25 V; Th = 70 °C; dim = -55 dB
IC = 1,6 A; VCE = 25 V; Th = 70 oC; dim = -52 dB
Power gain at fvision = 224,25 MHz
IC = 1,6 A; VCE = 25 V; Th = 70 °C

VCBOM
VCEO
IC(AV)
Ptot
Rth j-mb

max.
max.
max.
max.

60
32
3
40
3,0

V
V
A
W
°C/W

fT

typo

900

MHz

Po sync
Po sync

>

10,0
13,5

W
W

Gp

>

9,5

dB

typo

* Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB), zero
dB corresponds to peak sync level.
MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-56.

-+-f====pt

-+-

I
1,98 mox_

3,00--..
2,85

27 ____--.
max

72600004

--

~6:~-

When locking is required an adhesive is preferred instead of a lock washer.
Torque on nut: min. 1,5 Nm
(15 kg cm)
max. 1,7 Nm
(17 kg cm)

Diameter of clearance hole in heatsink: max. 5,0 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer
or countersink either end of hole.

September 1978

-

BLW64

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages
Collector-base voltage (open emitter)
peak value
Collector -emitter voltage (R BE
peak value

VCBOM

max.

60

V

VCERM

max.

60

V

VCEO

max.

32

V

VEBO

max.

4

V

IC(AV)

milf·

3,0

A

ICM

max.

9,0

A

Ptot

max.

40

W

= 10 Q)

Collector -emitter voltage (open base)
Emitter -base voltage (open collector)
Currents
Collector current (average)
Collector current (peak value) f > 1 MHz
Power dissipation
D. C. power dissipation up to Th

= 70 °c

7Z67547

---

IC

-

(A)

D.C. SOAR
Th ~ 70 °c
Rth mb-h~O,3 °C/W

10
1
derate by 3,3 WJOC for
50 °c ~ Th s 100 °c
I I I.! I I \~ /
f---P tot max (d.c.)

1"\

10

VCE (V)

10 2

Temperatures
Storage temperature
Junction temperature

Tstg
Tj

-65 to +200
max.
200

THERMAL Rl!SISTANCE

From junction to mounting base
From mounting base to heatsink

2

II

Rth j-mb
Rth mb-h

3,0
0,3

February 1975

BLW64

II

II
CHARACTERISTICS

Tj

= 25

°C unlesd otherwise specified

Breakdown voltages
Collector -base voltage
open emitter, IC = 50 rnA

V(BR)CBO

>

60

V

Collector -emitter voltage
R BE = 10 Q, IC = 50 rnA

V(BR)CER

>

60

V

Collector -emitter voltage
open base , IC = 50 rnA

V(BR)CEO

>

32

V

Emitter -base voltage
open collector, IE = 10 rnA

V(BR)EBO

>

4

V

E
E

>
>

4,5
4,5

>

typo

25
40

fT

typo

900

Cc

typo
<

68
80

pF
pF

Cre

typo

39

pF

Ccs

typo

2

pF

Transient energy
L

= 25

mH; f

= 50 Hz
open base
-VBE = 1,5 V; RBE

= 33

Q

mWs
mWs

D. C. current gain
IC

= 1,0 A;

VC E

=5 V

hFE

-

Transition frequency
IC

= 4 A;

VC E

= 25

V

Collector capacitance at f
IE

= Ie = 0;

VCB

MHz

= 1 MHz

= 30 V
= 1 MHz
= 30 V

Feedback capacitance at f
Ie

= 200

rnA; VCE

Collector -stud capac itance

June 1976

II

II

3

BLW64

II

II
7Z72572

75

VCE

1j = 25

7Z6754l

300

=5V

I

°c

L· I
_LL-+---tt-t--

I
I

IE =Ie =0 1-+f= 1 MHz c-rr-t-Tj = 250C c-r-

I

1
1

50

200

,

,

\

typ

V

/

1\

'\

I

\.

25

100

:--... .......... typ

-r-.!r-

o
o

--

IC (A)

o
o

2

20

VCB (V)

40

7Z67548

1000
fT
(MHz)

V

750

L

1/

""""

typ

-i'-

V

I

" ,,

VCE =25V r-- t--Tj =25 °c - -

\

~

'\

I\,

500

1\
'\

~

\..
250

o
o

4

2,5

II

5

7,5

10

12,5

II

Ie (A)

15

June 1976

II

BLW64

APPLICATION INFORMATION

dim *)
(dB)

fvision
(MHz)

VCE
(V)

Gp
(dB)

Po sync *)

(A)

(W)

Th
(OC)

Rth mb-h
(OC/W)

-55
-52

224,25
224,25

25
25

1,6
1,6

> 9,5
> 9,5

10,0
>
typo 13,5

70
70

:s 0,3
:s 0,3

Ie

*) Three -tone test method (vision carrier -8 dB, sound carrier -7 dB, side band signal

-16 dB), zero dB corresponds to peak sync level.
Test circuit at f

= 224,25 MHz

C6

-R2

R3

R4

List of components: see page 6.
Component lay-out and printed circuit board for f = 224,25 MHz test circuit on page 7.

February 1975

II

II

5

II

BLW64

APPLICATION INFORMATION

(continued)

List, of components:
Tr 1 = BD135
Tr 2 = 8D136
Cl
C2
4 to
C3
4 to
C4 = C5 =
C6
4 to
C7
4 to
C8 = CI0 =

•

C9
Cll =
C12 =
C13 =

330
40
60
82
100
60
820
47
22
47
100

pF
pF
pF
pF
pF
pF
pF
!-IF
!-IF
!-IF
nF

chip capacitor
film dielectric trimmer
film dielectric trimmer
chip capacitor, placed 5 mm from transistor edge
film dielectric trimmer
film dielectric trimmer
chip capacitor
electrolytic capacitor 6,3 V
electrolytic capacitor 40 V
electrolytic capacitor 40 V
polyester capacitor

Ll ='24,7 nB; 1,5 turns closely wound enamelled Cu wire (0,7 mm); into diam. 4, S'mm;
leads 2 x 5 mm.

=

L2 = 8, 3 nH formed by
L3 =
formed by
L4 = 100 nH; 3,5 turns
leads
L5 = 22 nH; 1,5 turns
leads
L6 = 36 nH; 1,5 turns
leads
Rl
R2
R3
R4
R5
R6

metallization on printed board.
metallization on printed board.
closely wound enamelled Cu wire (0,7 mm); into diam. 5,5 mm;
2 x 5 mm.
closely wound enamelled Cu wire (1,6 mm); into diam. 4,5 mm;
2 x 8 mm.
closely wound enamelled eu wire (1,6 mm); into diam. 4,0 mm;
2 x 10 mm.

=
=
=
=

4, 7 Q carbon resistor
330 Q
470 Q potentiometer
4,7 kQ
=
2,7 kQ
= R 7 = R8 = 4,7 Q (5,5 W)
R9 =
180 Q (5, 5 W)
RIO =
68 Q

6

II

II

February 1975

II

BLW64

II

APPLICATION INFORMATION (continued)
Component lay-out and printed circuit board for f:::: 224,25 MHz test circuit.
98mm

"I

~l..~_C'_I_--I+
~0iiCJ.~
~
,*,Cl0 ~

@J
=Cl

c,

o
\Ll

C3

/i"'.
C40C .@]
0.' \\..1. @] ~
c.

L6

C5~

o

L5~

L4~~C8

42mm

C7

L------===--D"C3-====--+_ _ _ _==_J
7Z67606

J.li~l : ~ :.

.:;: :
~. ~. ~-=;&"

i.,:! .:,~! ~ .;:~ ':;.~>"':;~!':.";~ L: ~. :~.;:

. . . .. - .

:. : .: .: .:

:.::.::.:::1.:.1:..1.:.:.:1:!:•.,:i:.!.:,i...

..

.. •. ........
::;:::
.•
::.::::.:
..
:..::::.:
....
::::.•.
:..
::::
..
••.:::
. .:.:l
..... . ....
:;.::.:i...........
:::
....::.f:
.....::
...:i.:.:
. . :.:!
.....
. ...::::
...

Thickness: 1,6 mm

The circuit and the components are situated on one side of the epoxy fibre-glass board,
the other side being fully metallized to serve as earth. Earth connections are made by
means of hollow rivets.
Component lay-out and printed circuit board for bias circuit.

to L4;C8;C9

L0:,0 .

to L6;Cl0;Cl1jC12
ground

.7

.8

c19
+Vs

7Z67607

February 1975

II

7

BLW64

II

II
7Z67545 1

intermodulation distortion versus
peak-sync power

7Z67544

30

power gain versus frequency
(class A operation)
I

three-tone test method (vision
carrier -adB, sound carher -7dB,
sideband signal -16 dB I, zero dB
corresponds to peak sync level

I'..

\.

(dBI

20

f"ision

.....

= 224,25 MHz

...."..,!=yp
.....

"- r\.
~

-55

" typ

f--

t-t--

.....
..... "'" ..... i"oo.

10
"-

I

"-

= 70°C
Rthmb-h~ 0,3 °C/W

"'"

I
I

IC=I,6A
VCE =25V

Th

r\.

dim

,

Ic =1,6A
VCE = 25 V

,

-60

I I

-f--

'",

I'..

---

-50

2

5

10

15

Po sync (WI

7Z67541

7Z67542

load impedance (parallel components) versus frequency (class
A operation)
I I II I
[
I
I

,,~

~

r:1_

,/

typo values f - IC :::1,6A - -- -SO
VCE=25V - -

20

~

I

~

",

f--

250

f (MHz)

150

50

30

input impedance (series components) versus frequency (class
A operation)

.,

o

/

-......

~Xi

o 1/

·b ~~
-~~

..........

. . . r-.

I I
I

.........RL

10

~

r-

-100

typo values t-tIC = 1,6A f-+f-rVCE=25V t-tI I
-1

150

50

8

II

I I I
I I I I

f (MHi)

250

o

SO

150

II

f (MHz)

250

February 1975

-----.,--------------------BLW75

TV TRANSPOSER TRANSISTOR FOR BAND III

N-P-N silicon planar epitaxial transistor assembled in a stripline package with a ceramic cap. All leads
are isolated from the stud. Excellent d.c. dissipation properties have been obtained by means of internal
emitter-ballasting resistors and gold metallization. Detailed information is presented for application of
this device in preamplifiers for television transposers and transmitters in band III.
QUICK REFERENCE DATA
Collector-base voltage (open emitter; peak value)
Collector-emitter voltage (open base)
Collector current (average)
D.C. power dissipation at Th = 70 oC
Thermal resistance from junction to mounting base
Transition frequency
IC = 6,0 A; VCE = 25 V
Output power at fvision = 224,25 MHz *
IC = 2,4 A; VCE = 25 V; Th = 70 oC; dim = -55 dB
IC = 2,4A; VCE = 25 V; Th = 70 oC; dim = -52 dB
Power gain at fvision = 224,25 MHz
IC = 2,4 A; VCE = 25 V; Th = 70 °C

60
32
4
60
1,9

VCBOM
VCEO
IC(AV)
Ptot
Rth j-mb

max.
max.
max.
max.

fT

typo

800

MHz

Po sync
Po sync

>

14,0
19,5

W
W

Gp

>

8,0

dB

typo

V
V
A

W
°C/W

* Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB), zero
dB corresponds to peak sync level.
MECHANICAL DATA

Dimensions in mm

...

Fig. 1

0,17
"'0,11

10-32UNF

t

9,75
max

•

.,I

+--.- ++
r--

1,98 ...
max

...
..

7l 70225.1

___ 11,5_
10,7

max

t

9,8
max

...

4,51.4,0
7,2
max

When locking is required an adhesive is preferred instead of a lock. washer.
Torque on nut: min. 1,5 Nm
(15 kg em)
ma~. 1,7 Nm
(17 kg em)

Diameter of clearance hole in heatsink: max. 5,0 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer
or countersink either end of hole.

September 1978

BLW75

I

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
.Voltages
Collector~ base volta~ (open emitter)

peak value
Collector-emitter voltage (RBE
peak value

VCBOM

max.

60

V

= 10 Q)
VCERM

max.

60

V

Collector-emitter voltage (open base)

VCEO

max.

32

V

Emitter- base voltage (open collector)

VEBO

max.

4

V

Collector current (average)

IC(AV)

max.

4,0

A

Collector current (peak value) f > 1 MHz

ICM

max.

12,0

A

Ptot

max.

60

W

-65 to +125
200

°c
°c

Currents

Power dissipation
D.C. power dissipation at Th

= 70 <>c

7Z67983 1

D.C.SOAR ~

---

Th=70oC
Rth mb-h~O,3 ~/W

Ic
(AI

10

uprate for 50:C ~Th < 70:C.
derate for 70 C

60

V

Collector-emitter voltage
RBE = lOQ,
IC = 50 rnA

V(BR)CER

>

60

V

Collector-emitter voltage
open base,
IC = 50 rnA

V(BR)CEO

>

32

V

Emitter- base voltage
open collector, IE = 10 rnA

V(BR)EBO

>

4

V

E
E

>
>

8,0
8,0

Transient energy
L == 25 mH; f = 50 Hz

open base
-VBE = 1,5 V; RBE = 33 Q

rnWs
rnWs

D. C. current gain

IC = 2,

a A; VCE

= 25 V

>

20

typo

45

typo

800

MHz

typo

95
120

pF
pF

typo

55

pF

typo

2

pF

Transition freguency
IC

= 6, a A; VCE = 25 V'

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 30 V

Cc

<

Feedback capacitance at f = 1 MHz
IC = 0,2 A; VCE = 30 V
Collector- stud capacitance

April 1976

II

Cre

3

BLW75

II

I
7Z67984 1

75

7Z67986 1

300

IE=Ie=O
f =1MHz
Tj = 25°C

VeE =25V
Tj = 25°C
Cc

(pFI

50

200

typ

\
\

~

~

'\

""
25

--

~

~yp
~1'0000

100

o
o

o
o

2

Ie (AI

20

r-_ I-t- ..

Vee (V)

40

=
7Z67987 1

1000

VeE = 25 V
Tj = 25°C

typ
750

~

i"'"-"
i---" ~

-

r-..."""

/
I

II
500

~

r'\

f'..

I
I

f'..

~

~

250

2,5

4

5

II

7,5

10

12,5

II

Ie (AI

15

April 1976

II

BLW7S

APPLICATION INFORMATION
dim >:<)
(dB)

fvision
(MHz)

VCE
(V)

-55
-52

224,25
224,25

25

2S

Gp
(dB)

Po sync *)

(A)

(W)

Th
(OC)

Rth mb-h
(OC/W)

2,4
2,4

> 8,0
> 8,0

14,0
>
typo 19,5

70
70

:s 0,3
s 0,3

IC

*) Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal

-16 dB), zero dB corresponds to peak sync level.
Test circuit for f

=224,25 MHz
C6

,._._._._._._._-_.

'-'-'---'-'-'-'-'!

BIAS CIRCUIT

+Vs

I

i

i
i

R3

i
i

C13

i
i

I

i
i

RS

i
i

C14

I

!

I

L._. _____ .___ ._._. ___ ._._. ___________ ._. ___ ._._. _____ ._.-.J
7Z72636

List of components: see page 6.
Component layout and printed-circuit board for f ::: 224,25 MHz test circuit onpage 7.

April 1976

II

S

BLW75

I

II

APPLICATION INFORMATION (continued)
List of components:
TRl= BD135
TR2 = BD136
220 pF
Cl
4 to 40 pF
C2
C3
5 to 60 pF
C4 = C5 = 82 pF
C6
7 to 100 pF
4 to 40 pF
C7
C8 = C 10 = 820 pF
220~
C9
47 ~
Cll =
C12 =
47 fJF'
C13 =
100 nF
C14 =
33 nF
Ll

--

ceramic plate capacitor
film dielectric trimmer
film dielectric trimmer
chip capacitor, placed 1 mm from transistor edge
film dielectric trimmer
film dielectric trimmer
chip capacitor
electrolytic capacitor 10 V
electrolytic capacitor 40 V
electrolytic capacitor 40 V
polyester capacitor
polyester capacitor

24,7 nH; 1,.5 turns closely wound enamelled Cu wire (0,7 mm); into dia.
leads 2 x 5 mm.
L2
8,3 nH formed by metallization on printed-circuit board
L3
0,7 nH formed by metallization on printed-circuit board
L4
100 nH; 3,5 turns closely wound enamelled Cu wire (0,7 mm); into dia.
leads 2 x 5 mm.
L5 = 15, nH;
1 turn enamelled Cu wire (1,6 mm); into dia. 4,5 mm; leads
L6 = 26,4 nH; 1,5 turns closely wound enamelled Cu wire (1,6 mm); into dia.
leads 2 x 10 mm.
=

°

4,5 mm;

5,5 mm;
2 x 8 mm.
5,1 mm;

Rl
4, 7 Q carbon resistor
R2
15 Q carbon resistor
R3
180 Q carbon resistor (1 W)
R4
470 Q potentiometer
R5
4, 7 kQ carbon resistor
R6
2,7 kQ carbon resistor
R7 = 4 x 4,7 Q (2 W); in parallel
R8
150 Q (5,5 W)
R9
68 Q carbon resistor (1 W)
RIO =
10 Q carbon resistor

6

II

II

April 1976

II

II

BLW75

APPLICATION INFORMATION (continued)

Component layout and printed-circuit board for f = 224,25 MHz test circuit without bias
circuit.

I-

-I

98mm

n

~c,
=

~L1

Cl

@
C3

Cll

+~ ~Cl0 ~+

~

C12

I

L6

rivets

c<~

C5cr

C6

~@]

42mm

@]

~Rl \\J

I

C7

L4~~CB

~
7Z72635

:~..: ~:. ~:' ":'; .: ":.~ :~.:;~;~ ~; ~ ;~W;:~. : : ;:r ~:r.;~j :tI.

1111\\lljljj

.::::'::..

.:..;.::.:. . . :.'.: .
::

.,:;:~:;:~:;:~:;:~ ?

·······················:·:·:·:·;~;~i~i~;?~:~'~?:~'~,~,~:~:~.
::::::::........................
...... ....
;::}

. :..::. . . . . :

~.:! I~:.! :.~,;:"~, !.:~;!: '~.:; :. :~.lj :~.! ;:.~

: :.:.: : .:..::.:.:.::::.:::l:..I.:!.::i..:'.:I:'.,.:!:::.i:.i.·i:!:.:':.,::.:::.:.:;:.;:..

..:;.. ...

~

..:.: ': : :.;...:': :

::j... . ..

..:.::.::.::.::::... ...

Thickness: 1,6 mm

...
:;:::.:
...

..
:::~:::

.:;:~::.

The circuit and the components are situated on one side of the epoxy fibre-glass board,
the other side being fully metallized to serve as earth. Earth connections are made by
means of hollow rivets.

April 1976

II

7

BLW75

II

II

7267979

15

I

cross modulation and intermodulation
distortion versus peak. sync power

I I
I 1

I

dim 2) ~
j..o"

1

I 1

1

r-I--

r-r-10

~r--

f-f-

l/

VCE = 25 V
Th = 70°C

I~

Rth mb-h ~ 0,3 °C/W
fvision = 224,25 MHz

"'"

~

i.I'"

r--r-r--r--

i.I'"

I c =2,4A

1--1--

1--1-

-50

dim
(dB)

~

I-r-I-r-- typical values

Iii'"

I

"'"

L;o

-55

1/
J

I;"

I'

I/'

~

I......

I......

I.;'
I~

1/

1/

1/

r.....

J

5

1/

60

i.I'"

I

~

~

I'
· ...... ~dcm 1)

o
o

5

=

10

15

Po sync (W)

20

65

1) Two-tone test method (vision carrier 0 dB, sound carrier -7 dB), zero dB corresponds
to peak sync leve1.
2) Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal
-16 dB), zero dB corresponds to peak sync level.

In the application information a collector-emitter voltage VCE =25 V and collector current
IC = 2,4 A are recommended.
If a higher collector voltage (within the limiting values) is used, precautions must be
taken to ensure that the impedance presented to the collector circuit does not vary excessively with frequency. This is especially important in wideband circuits where a relatively wide variation of load impedance over the frequency band may be expected. Tuning
of the output circuit at high level should be avoided or, if essential, it should be performed
very carefully, otherwise very high load impedances may occur during which the maximum ratings of the transistor can be exceeded.

8

II

II

April 1976

BLW75

II
30

1267985

power gain versus frequency - f -r-fr-r r - r
(class-A operation)

I I
I I

Gp
(dB)

Ie =2,4.A 1--r-VeE =25 V r-r-

20 1"- 1\

""'

"'
~

,,",,~yp

......

10

,....~

t"-

o50

150

7Z67981

2

'"

input impedance (series components)
versus frequency (class-A operation)

. . . r-.

250

f (MHz)

1267982

15

I

,

(.0.)

~

I I
I
~

y
Xi

typ.values -r-fI e =2,4A - r

1..00'

VeE = 25 V

'"
_ ri

-70

load impedance (parallel components)
versus frequency (class-A operation)

-I-

-90

10

r-r--.

ri_

II"

...... ~

't'

.....
I""~

........

Xi

o/

I"~

,

~

i"""

.....

~

~

5

""'",-

R

r

~r- -110
Ir-...

.....

I

r··\. . c. L r

typo values r - -

r-Ie= 2,4.A 1
-VeE

=25 V

r-

I It I

-1

I I I I

150

50

April 1976

II

f (MHz)

250

o

50

150

f (MHz)

-130
250

9

_ _ _~jl_BLW_76
H.F.N.H.F. POWER TRANSISTOR
N-P-N silicon planar epitaxial transistor intended for use in class-AB or class-B 9perated high power
transmitters in the h. f. and v.h. f. bands. The transistor presents excellent performance as a linear amplifier in the h.f. band. It is resistance stabilized and is guaranteed to withstand severe load mismatch
conditions. Transistors are deliv~red in matched hFE groups.
The transistor has a %" flange envelope with a ceramic ·cap. All leads are isolated from the flange.
QUICK REFERENCE DATA
R.F. performance up to Th = 25 °C
mode of operation

VCE
V

IC(ZS)
A

f
MHz

s.s.b. (class-AS)

28

0,05

1,6-28

c.w. (class-B)

28

-

108

PL

Gp

W

dB

8-80 (P.E.P.)
80

11

%

>13

>35*

typo 7,9

typ.70

d3
dB

<-30

-

* At 80W P.E.P.

--

MECHANICAL DATA
SOT-121A (see page 2)

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the seo disc is not damaged.

December 1977

Jl_______

_BLW----"""76

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-121A.
3,2

-II-g:g

-2,9

e

"

/5,9
5,5

/'

-1 -,......,

"'---1

25,2

6,9

~

1

29

27Vls'35 -1- 12,5 - I

---

m~x

t

2,4

t

bdiiiU

j.

I

4,4
3,8

+

t

•

7
max

Recommended screw: raised cheese-head 4-40 UNC/2A

(

_T
7Z75334.1

Heatsink compound must be applied sparingly and evenly.

December 1977

13

metal

Torque on screw: min. 0,6 Nm (6 kg cm)
max. 0,75 Nm (7,5 kg em)

2

1842 _

TL

min

ceramic

t

l__

H.F./V.H.F. power transistor

B_L_W_7_6_ __

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-emitter voltage (VBE = 0)
peak value

V CESM

max.

70 V

Collector-emitter voltage (open base)

VCEO

max.

35V
4 V

Emitter-base voltage (open collector)

VEBO

max.

Collector current (average)

IC(AV)

max.

8 A

Collector current (peak value); f> 1 MHz

ICM

max.

20 A
140 W

R.F. power dissipation (f> 1 MHz); T mb = 25 °C

Prf

max.

Storage temperature

T stg

-65 to + 150 0C

Operating junction temperature
20

max.

Tj
7Z77440

D.C. SOAR

150

IC
(A)

200 DC
7Z77441.1

I
I
~~ -r- III

1"0...

I'\.

I'

......
1"0...

......

~

10

I'\.

, "';..
"'-

'"y

5

"-

,J~ ~~ ,
~~('

2

20

VCE (V)

40

Fig. 2 D.C. SOAR.

THERMAL RESISTANCE (dissipation

I-~ ~I-o.:
- ; - ;-~I'
<'it

~

.'>.>'--r-If,;/0.
-r-__
6;.(' _
"' 0.$8
-

'" r-.. O'E'I'c'irE'

-'" ~tz,,/o

50 r-- -I- I

1
10

I"'"

~~

~~

5

II

100

o

~

"C -i"

o

50

Fig. 3 R.F. power dissipation; VCE ';;;;28 V;
f> 1 MHz.
I Continuous d.c. operation
I I Continuous r. f. operation
III Short-time operation during mismatch

= 60 W; T mb = 82 oC, i.e. Th = 70 oC)

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

1,92 0C/W

From junction to mounting base (r.f. dissipation)

Rth j-mb(rf)

1,33 oCIW

From mounting base to heatsink

Rth mb-h

0,2 oCIW

September 1978

3.

BLW76

Jl

CHARACTE R ISTICS
Tj ~ 25 oC

---

---

-

Collector-emitter breakdown voltage
VBE = 0; IC = 50 mA

V(BR)CES

>

70 V

Collector-emitter breakdown voltage
open base; IC = 50 mA

V(BR)CEO

>

35 V

Emitter-base breakdown voltage
open collector; IE = 10 mA

V(BR)EBO

>

4 V

Collector cut-off current
VBE=0;VCE=35V

ICES

<

10 mA

D.C. current gain*
'C=4A;VCE=5V

hFE

D.C. current gain ratio of matched devices*
IC=4A;VCE=5V

hFE1/hFE2

<

1,2

Collector-emitter saturation voltage*
IC = 12,5 A; IB = 2,5 A

VCEsat

typo

2,5 V

for

tr

typo
typo

315 MHz
305 MHz

Transition frequency at f = 100 MHz*
-IE=4A;VCB=28V
-IE = 12,5 A; VCB = 28 V
Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 28 V

Cc

typo

125 pF

Feedback capacitance at f = 1 MHz
IC = 50 mA; V CE = 28 V

Cre

typo

85 pF

Collector-flange capacitance

Ccf

typo

3 pF

* Measured under pulse conditions: tp ~ 200 J.lS; ~,~ 0,02.

4

15 to 80

September 1978

r

H'_F'_N_'H_'_F._p_ow_e_rt_~_nS_is_to_r

___

~~,

_______________________

1Z11442

60

I "
I I
I 11 I I
I

I

B_L_VV-7-6------

_____

1211443

600

_

VCE =28V _

Cc

r-r-.

(pF)

"
400

40
1""0

"

,

",'\
~

5V
1,\

,

20

o

o

10

IC (A)

~

I\.

,
20

Fig. 4 Typical values; Tj = 25°C.

200

i'o.

typ

.... 1"'-

r-t-_

o
o

20

Fig. 5 IE

V

CB (V)

-

40

= Ie = 0; f = 1 MHz; Tj = 25 °c.
12714441

600

)

typ

1.-....

~I--

(.,.0 .....

V

r"-r-.

II

r"-Iooo.

,

200 I
I

o

o

10

5
Fig. 6 VCB

15

20

= 28 V; f = 100 MHz; Tj = 25°C.
September 1978

5

---'Jl__________

_B_LW7_6

APPLICATION INFORMATION
R.F. performance in s.s.b. class-AB operation (linear power amplifier)
VCE

= 28 V; Th = 25 oC; f1 = 28,000 MHz; f2 = 28,001

output power

W
8 to 80 (P.E.P.)

Gp
dB

> 13

'Tldt (%)
IC(A)
at 80 W P.E.P.
>35

<4,1

MHz

d3
dB

d5
dB

IC(ZS)
A

<-30

<-30

0,05

500.

=
.-......
+VCC

7Z75530.1

Fig. 7 Test circuit; s.s.b. class-AB.
List of components:
C1 = 27 pF ceramic capacitor (500 V)
C2 = 100 pF air dielectric trimmer (single insulated rotor type)
C3 = 100 pF polystyrene capacitor
C4 = C6 = C9 = 100 nF polyester capacitor
C5 = 280 pF air dielectric trimmer (single non-insulated rotor type)
C7 = C8 = 3,9 nF ceramic capacitor
C10 = 2,2 J.LF moulded metallized polyester capacitor
C11 = 180 pF polystyrene capacitor
C12 = 2 x 68 pF ceramic capacitors in parallel (500 V)
C13 = 120 pF polystyrene capacitor

6

September 1978

r..-------

,J~_____

B
__
LW
__7_6______

__H_._F.!_V_.H_.F_._po_w_er_t_ra_"S_ist_or_______________________

C14 = C15 = 280 pF air dielectric trimmer (single insulated rotor type)
C16 = 56 pF ceramic capacitor (500 V)
L1 =
L2 =
L3 =
L5 =
R1
R2
R3
R4
R5
R6
R7

108 nH; 4 turns Cu wire (1,6 mm); into dia. 8,7 mm; length 11,2 mm; leads 2 x 7 mm
L4 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)
88 nH; 3 turns Cu wire (1,6 mm); into dia'. 8,0 mm; length 8,0 mm; leads 2 x 7 mm
120 nH; 4 turns Cu wire (1,6 mm); into dia. 9,3 mm; length 11,2 mm; leads 2 x 7 mm

= 1,5 kQ (± 5%) carbon resistor (0,5 W)
= 10 Q wirewound potentiometer (3 W)
= 0,9 Q; parallel connection of 2 x 1,8 .n carbon resistors (± 5%; 0,5 W each)
= 60 Q; parallel connection of 2 x 120 Q wirewound resistors (5,5 IN each)
= 56 Q (± 5%) carbon resistor (0,5 W)
= 33 Q (± 5%) carbon resistor (0,5 W)
= 4,7 Q (± 5%) carbon resistor (0,5 W)
1Z77445

-20 '

d3
d5
(dB)

7Z77446

60

30

Gp
(dB)

1Jdt
(%)

,

,,

-30 r- d3

I.-

40

-'

f-

I\.

-40

--- d5

-50

'

-....

/

I

\.

.....

I
II .",'"

-....

20

10

r

\.
1"'1.

~

V

I

....... ,

~

f- 1J dt I/'
1/

I
If

o

o

o

---

20

~

Gp
.... t-

I

I'

[7

.,

50

P.E.P. (W)

Fig.8 Intermodulation distortion as a
function of output power. *

100

o

50

P.E.P. (W)

100

Fig. 9 Double-tone efficiency and power gain
as a function of output power.

Conditions for Figs 8 and 9:
VCE

= 28 V;

IC(ZS)

= 50 mA; fl = 28,000 MHi; f2 = 28,001

MHz; Th

= 25 oC; typical values.

* Stated intermodulation distortion figures are referred to the according level of either of the equal
amplified tones. Relative to the according peak envelope powers these figures should be increased by
6dB.

September 1978

7

~B_LW7_6

Jl___. ____~~-

___

APPLICATION INFORMATION (continued)
7Z77447

40

7Z77448

10

Gp

q

(dB)

(n)

\

,

2,5

\

Xi
(n)

\

30

\

7,5

o

\

r"r--. ...

/
\

"'

\

"-

20

5

'\

J

,

/
L_

\
Il

_\

2,5

10

1I
~

-5

.I

f'....

--

o

1

10

f (MHz)

Fig. 10 Power gain as a function of
frequency.

2,5

'I

_I

--

xi

10

2

o

. . . r-.

q
-7,5

1

10

f (MHz)

10 2

Fig. 11 Input impedance (series components) as a
function of frequency.

Figs 10 and 11 are typical curves and hold for an unneutralized amplifier in s.s.b. class-AB operation.
Conditions:
VCE = 28 V; IC(ZS) = 50 rnA; PL = 80 W; Th = 25 oC; ZL = 3,9

8

December 1977

n.

Jl

H.F.!V.H.F. power transistor

---------------------

------------------------------------------------------7Z77449

40

BLW76

7Z77450

20

2,5

Gp

Xi

(dB)

(n)

30

o

15

r- 1"-1--

Xi

'"
20

/

"

'\.

L
L
L

-~

10

~

-.~

\

\
10

[\

,

"-..... to- i"'!'

5

-5
I'...

o

1

10

o
f (MHz)

Fig. 12 Power gain as a function of
frequency.

-2,5

1

10

--

t-- q

-7,5
f (MHz)

10 2

Fig. 13 Input impedance (series components)
as a function of frequency.

Figs 12 and 13 are typical curves and hold for a push-pull amplifier with cross-neutralization in s.s.b.
class-AB operation.
Conditions:
VCE = 28 V; IC(ZS) = 50 mA; PL

= 80 W; Th = 25 °C; ZL = 3,9 U; neutralizing capacitor:

68pF.

December 1977

9

_B_LW7_6

_0Jl""'---_ _ _ _ _ __

APPLICATION INFORMATION (continued)
7Z77451

150

Fig. 14 R.F. SOAR; s.s.b. class-AB operation;
fl = 28,000 MHz; f2 = 28,001 MHz; VCE = 28 V;
Rth mb-h = 0,2 °C/W.
The graph shows the permissible output
power under nominal conditions (VSWR = 1)
as a function ,of the expected VSWR during
short-time mismatch conditions with heatsink
temperatures as parameter.

PLnom
(WP.E.P.)
(VSWR=l)

\
"

~

1.

1\

100

1\

1\

,

..... r---..L
I I

1\

r\

~h~500C

'" .......... to-70 0C
I'
...............

--,
-

J!.O °c

50

1

10

December 1977

10

f

VSWR

,J~______

B_LW
__7_6_____

___H_o_Fo_N_oH_o_Fo_p_ow_e_r_tra_"_Sis_to_r_______________________

R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25 °C
f (MHz)
108

Ps (W)

G p (dB)

IC (A)

typ.13

typ.7,9

typ.4,1

11 (%)

typ.70

zi (n)

Y (mAN)
L

0,85 + j1,0 174 - j40
C8

--=
Fig. 15 Test circuit; c.w. class-B.
List of components:
C1 = C9 = C10 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
C2 = 5 to 60 pF film dielectric trimmer (cat. no. 2222 809 07011)
C3 = 22 pF ceramic capacitor (500 V)
C4ab = 2 x 82 pF ceramic capacitorsin parallel (500 V)
C5 = 270 pF polystyrene capacitor
C6 = 100 nF polyester capacitor
C7a = 8,2 pF ceramic capacitor (500 V)
C7b = 10 pF ceramic capacitor (500 VI
C 8 = 5,6 pF ceramic capacitor (500 V)
C11 = 10 pF ceramic capacitor (500 V)
L1
L2
L3
L4
L6
L8

= 21 nH; 2 turns Cu wire (1,0 mm); into dia. 4,0 mm; length 3,5 mm; leads 2 x 5 mm

= L5 =2,4 nH; strip (12 mm x 6 mm); tap for L4 at 6 mm from transistor
=
=
=
=

L 7 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 431202036640)
100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm; leads 2 x 5 mm
49 nH; 2 turns Cu wire (1,6 mm); into dia. 9,0 mm; length 4,7 mm; leads 2 x 5 mm
56 nH; 2 turns Cu wire (1,6 mm); into dia. 10,0 mm; length 4,5 mm; leads 2 x 5 mm

L2 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric.
R1 = R2 = 10 n (±10%) carbon resistor
Component layout and printed-circuit board for 108 MHz test circuit are shown in Figo 16.

September 1978

11

jl________~

_BLW_76

APPLICATION INFORMATION (continued)

7Z78091.1

-=
~

=

7Z78092

"Fig. 16 Component layout and printed-circuit board for 108 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

12

September 19'18

(

H_'_F'_N_'H_'_F._po_w_e_rt_~_nS_in_o_r

__

,J~_____

B_L_VV
__7_6_______

_______________________

7Z77453

7277452

150

I;'

, I'

I;'

I'

10

typ l'
II

:'

Gp

~IC:"

~

I~

V

I

•

1- ,-

-! .... ~

".

i'

1/
(%)

Gp -

/
J

J

5

J

50

-

'TI-

~to..

l""""

(dBI

I _

100

100

I
II

50

II
II'

o

o

Fig. 17 VCE

150

20

Ps (WI

40

= 28 V; f = 108 MHz; Th = 25 oc.
7Z71454

o
o

o
50

100 P (W) 150
L

Fig. 18 VCE = 28 V; f::: 108 MHz; Th = 25 oC;
typical values.

I
I
I

P lno m

(W I
(VSWR =1)

,

\

100

1\ \

,

,

\
~

"
""

~

--

. . . r---.

...........

"'" ......... .......

Th=

50 0 C
IIIII

70 0 C
1I11I

Fig. 19 R.F. SOAR; C.w. class-B operation;
f = 108 MHz; VCE = 28 V; Rth mb-h = 0,2 oC/W.
The graph shows the permissible output power
under nominal conditions (VSWR = 11 as a function of the expected VSWR during short-time
mismatch conditions with heatsink temperatures
as parameter.

90 0

liilJ

50
1

10

VSWR

December 1977

13

Jl""-----_ _.

~BLW7

______
6

APPLICATION INFORMATION (continued)
7Z77466

7Z77466

+7,5

Xi

1-1--

CL

RL r-r-I""",,,,,,

(n)

+2

+0,75

1

RL

(nF)

+5

+0,5

I

q
xi

V

(n)

"

j

I

+2,5

+0,25

fj 1 - - -

)I"

I/'

o

o

Ii

CL I-r-r-

~

If

10'"

II

II

-2,5

J

-0,25

I
II

-2

---

o

-5

-0,5

J

II

-7,5

o

100

f (MHz)

200

0

100

f (MHz)

-0,75
200

Fig. 20 VCE=28V;PL=80W;Th=25 0 C

Fig.21 VCE = 28 V; PL = 80 W; Th = 25 oC;

typical values.

typical values.

7Z774S7

30

Gp
(dB)

,

20

I,

\

,
" typ

"-

10

I'
r-..
f"

Fig. 22 VeE = 28 V; PL = 80 W; Th = 25 °C.

0
0

14

December 1977

100

(

f (MHz)

200

______Jl__

BL_W77_

H.F.N.H.F. POWER TRANSISTOR
N-P-N silicon planar epitaxial transistor intended for use in class-AB or class-B operated high power
transmitters in the h.f. and v.h.f. bands. The transistor presents excellent performance as a linear amplifier in the h.f. band. It is resistance stabilized and is guaranteed to withstand severe load mismatch
conditions. Transistors are delivered in matched hFE groups.
Th~

transistor has a W' flange envelope with a ceramic cap. All leads are isolated from the flange.

QUICK REFERENCE DATA

R.F. performance up to Th = 25 °C
mode of operation
VCE
IC(ZS)

s.s.b. (class-AB)

V

A

MHz

PL
W

Gp
dB

%

d3
dB

28

0,1

1,6-28

15-130

> 12

>37,5*

<-30

typ.7,5

typ.75

11

(P.E.P.)

c.w. (class-B)

28

87,5

130

* At 130 W P.E.P.
M.ECHAN ICAl DATA
SOT-121B (see page 2)

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeD disc is not damaged.

December 1977

-.-....J

_B_LW7_7

L_________

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-121B.

3,2
-2,9

e

)5,9
5,5

/'
6,9
min

~29

1

27~)6'35_

--

1- 12.5
m~x

•

2,4

t

metal
7Z75533.1

4,4

l

Ui!iU

I . I

3,8

• •
7

.+

max

Torque on screw: min. 0,6 Nm (6 kg cm)
max. 0,75 Nm (7,5 kg cm)
Recommended screw: raised cheese-head 4-40 UNC/2A
Heatsink compound must be applied sparingly and evenly.

2

December 1977

(

+

_____

~l

___
H._F.N
__
.H_.F_.p_ow_er_tr_an_sis_ro_r___________________

B_LW
__
77_____

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Collector-emitter voltage (VBE = 0)
peak value

VCESM

max.

70 V

Collector-emitter voltage (open base)

VCEO

max.

35 V

Emitter-base voltage (open collector)

VEBO

max.

4 V

Collector current (average)

IC(AV)

max.

12 A

Collector current (peak value); f> 1 MHz

ICM

max.

R.F. power dissipation (f> 1 MHz); T mb = 25 °C

Prf

max.

Storage temperature

T stg

-65to+ 150 °C

Tj

max.

Operating junction temperature
7Z77458

20

D.C. SOAR

30 A

W

245

200 °C
7Z77459.1

300

IC
(A)

Prf

10

(W)

'\.)-

1\
"-

""

"-">6
)-

~~

~~6'or--

('-

'>0

5

0
('

-~

"\

I'-..

~~ ,r-l-

200

~

III

I'

N

i""o

I

'

I-I-~qtl9
II

..

r·

f'I\

~y,

I 1 ~ h"

(fer.
.I
qfe 6

5

10

20

~CE (V)

a

40

Fig. 2 D.C. SOAR.

-h/o '-r-

r"', ...

/0('

l-

I ....

r-r- rr-

1

/Iv-I-r-t-

yo I I I~(' rr- ,8

70 V

Collector-emitter breakdown voltage
open base; IC = 100 mA

V(BR)CEO

>

35 V

Emitter-base breakdown voltage
open collector; IE = 20 mA

V(BR)EBO

>

4 V

Collector cut-off current
VBE =0; VCE =35 V

ICES

<

20 mA

D.C. current gain*
IC = 7 A; VCE = 5 V

hFE

D.C. current gain ratio of matched devices*
IC = 7 A; VCE = 5 V
~

hFE1/hFE2

<

Collector-emitter saturation voltage*
IC=20A; IB=4A

VCEsat

typo

2 V

Transition frequency at f = 100 MHz*
-I E = 7 A; V CB = 28 V
-IE = 20 A; VCB = 28 V

for
fT

typo
typo

320 MHz
300 MHz

Collector capacitance at f = 1 MHz
IE = Ie =0; VCB = 28 V

Cc

typo

255 pF

Feedback capacitance at f = 1 MHz
IC = 100 mA; YCE = 28 V

Cre

typo

175 pF

Ccf

typo

3 pF

Collector-flange capacitance

* Measured under pulse conditions: tp ~ 200 J.,LS; ~ :e;;;; 0,02.

4

Seprem~19781 (

15 to 80
1,2

l. .__

H.F./V.H.F. power transistor

B_LW_7_7_ _

7Z77460

100

7Z77461

1500

Cc
(pF)

1000

50

l- f--:"

VCE =28V

-

,

IT

5V
I.....

500

r--...

~
1"'0'",,""
- I - ... 1-

o

o

typ

1- ....

o
10

Fig. 4 Typical values; Tj

20

IC (A) 30

= 250C.

o

20

. Fig. 5 IE = Ie = 0; f

VCB (V)

---

40

= 1 MHz; Tj = 25°C.
7i77462 1

600

fr
(MHz)

400
typ
I..o~

II

200
I

1/

o

o

..

5

10
Fig. 6 VCB

15

-IE(A)

20

= 28 V; f = 100 MHz; Tj = 25°C.
September 1978

5

Jl________

_BLw_
n __

APPLICATION INFORMATION
R.F. performance in's.s.b. class-AB operation (linear power amplifier)
VCE

= 28 V; Th = 2S oC; f1 = 28,000 MHz; f2 = 28,001

output power

W
15 to 130 (P.E.P.)

Gp
dB

lldt (%)

> 12

>37,5

MHz

IC (A)

d3

dS

IC(ZS)

at 130 W P.E.P.

dB

dB

A

<-30

<-30

0,1

<6,2

son

C1

son

L1

CS

-+VCC

7Z75529,1

Fig. 7 Test circuit; s.s.b. class-AB.
List of components:
C1 = 27 pF ceramic capacitor (500 V)
C2 = 100 pF air dielectric trimmer (single insulated rotor type)
C3 = 180 pF polystyrene capacitor
C4 = C6 = C9 = 100 n F polyester capacitor
CS = 100 pF air dielectric trimmer (single non-insulated rotor type)
C7 = C8 = 3,9 nF ceramic capacitor
C10 = 2,21lF moulded metallized polyester capacitor
Cll = 2 x 180 pF polysterene capacitors in parallel
C12 = 3 x 56 pF and 33 pF ceramic capacitors in parallel (SOO V)
C13 = 4 x S6 pF and 68 pF ceramic capacitors in parallel (500 V)
6

September

19781 (

H_._F._/V_.H_._F._po_w_e_rt_~_ns_in_o_r

___

~~

______
B_L\N
__7_7_____

______________________

C14 = 360 pF air dielectric trimmer (single insulated rotor type)
C15 = 360 pF air dielectric trimmer (single non-insulated rotor type)
L 1 = 88 nH; 3 turns Cu wire (1,0 mm); into dia. 9,0 mm; length 6,1 mm; leads 2 x 7 mm
L2 = L4 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 431202036640)
L3 = L5 = 80 nH; 2,5 turns closely wound enamelled Cu wire (1,6 mm); into dia. 10,0 mm; .
leads 2 x 7 mm
Rl
R2
R3
R4
R5
R6
R7

= 470 Q wirewound resistor (5,5 W)
4,7 Q wirewound potentiometer (3 W)
= 0,55
parallel connection of 4 x 2,2 carbon resistors (± 5%; 0,5 W each)
= 45
parallel connection of 4 x 180 wirewound resistors (5,5 W each)
= 56
(± 5%) carbon resistor (0,5 W)
= 27
(± 5%) carbon resistor (0,5 W)
= 4,7 Q (± 5%) carbon resistor (0,5 W)

=

n;
n;
n
n

n
n

7Z77464

7Z77463

;

-20

/'"

40

,/
d3
d5
(dB)

'TIdt

-

(%)

d3

'" "
-40

r0-

dS

-

/

1/ ......

"""

_\

-1\

~-r

Gp

- --

1.1'

J

(dB)

/

/1/
~

V

~

Gp

/

"'\

V

20

1/

V

I

20
'TIdt

J

If

10

If
J

/

J

\1

-60

o

50

100

150
P.E.P. (W)

Fig. 8 Intermodulation distortion as a
function of output power: *

o

o

o
50

100

150

P.E.P. (W)

Fig. 9 Double-tone efficiency and power
gain as a function of output power.

Conditions for Figs 8 and 9:
VCE

= 28 V; 'C(ZS) = 100 rnA; fl

= 28,000 MHz; f2

= 28,001

MHz; Th

=25 °C; typical values.

* Stated interrnodulation distortion figures are referred to the according level of either of the equal
amplified tones . .Relative to the according peak envelope powers these figures should be increased
by 6 dB.

September 1978

--7

j

_B_LW7_7____

l'--.._ _ _ _ _ _ _ _ _ __

APPLICATION INFORMATION (continued)
7Z77465

40

Gp
(dB)

7Z77466

5

\

,

\

Ji
(n)

Xi
(n)

1\

-

,30

\
\

,

1--0.
1'1'00

-7

.

1\

J

\.

2,5

\

"

'I

\

"" o

o

10

-1

"

10

---

7
7
fj

1\.,

I"'\.

20

o

xi

I

J

"-

-2
~

q

o
f (MHz)

Fig. 10 Power gain as a function of
frequency.

-3

1

10

f (MHz)'

10

2

Fig. 11 Input impedance (series components)
as a function of frequency.

Figs 10 and 11 are typical curves and hold for an unneutralized amplifier in s.s.b. class-AB operation.
Conditions:
VCE = 28 V;IC(ZS)

8

December 1977

= 100 mA; PL = 130 W; Th =25 oC; ZL = 2,5 n.

r

.H_.F_._~_w_er_t_m_nS_iR_o_r

___H_.F_.N
__

______

~

1Z77467

40
Gp
(dB)

~~,

_______________

7Z71468

7,5

J Xi

q
(n)

-

30

/

,

"

t--

"""'r-.

5

"\.

"'\

i\

Xi

-1

~

I

\,

2,5

o

(n)

I
7
/II

\

"'20

_____
B_L_VV_7_7______

~

"

2

IJ

~

10

'-~

o

~

~

....... r-.

q

---

o
1

10

f (MHz)

Fig. 12 Power gain as a function of
frequency.

1

10

f (MHz)

Fig. 13 Input impedance (series components)
as a function of frequency.

Figs 12 and 13 are typical curves and hold for a push-pull amplifier with cross-neutralization in s.s.b
class-AB operation.
Conditions:
VCE = 28 V; IC(ZS)

= 100 mA; PL = 130 W; Th = 25 oC; ZL = 2,5 n; neutralizing capacitor:

150 pF.

December 1977

9

Jl"""---_ _~

---.-BLW7
_____
7

APPLICATION INFORMATION (continued)
7Z77469

250

Fig. 14 R.F. SOAR; 5.s.b. class-AS operation;

f1

(WP.E.P.)
(VSWR = 1)

200

~ ~

" 1\1\

~

150

\

-E

-

0

1

December 1977

10

(

Th=

.....
i""'""'" ......... I'--.

"

100

10

= 28,000 MHz; f2 = 28,001

MHz; VCE

= 28 V;

Rth mb-h =0,2 oelW.
The graph shows the permissible output power
under nominal conditions (VSWR = 1) as a
function of the expected VSWR during shorttime mismatch conditions with heatsink temperatures as parameter.

P Lnom

..... r--.

...

0
50
C
I I I II

70°C
LIlli
.... 90°C

IIII
VSWR

~~

______
B_L_VV_7_7______

___H_.F_.I_V_.H_.F_._po_w_e_rt_rn_ns_is_ro_r________________________

R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25 °C
f (MHz)

VCE(V)

PL (W)

87,5

28

130

PS(W)

IC (A)

Gp (dB)

typ.23,2 typ.7,5

1/ (%)

typo 6,2 typo 75

~ (n)

YL (mAN)

0,62 + jO,73

273 - j42

C8
C9
'--+----f'It---..--u 5 on
Cl0

50n o--U_I---"'9--I

--

+VCC
Fig. 15 Test circuit;

C.W.

class-B.

List of componer.lts:
Cl = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
C2 = C9 = Cl0 = 7 to 100 pF film dielectric trimmer (cat. no. 2222 809 07015)
C3 = C8 = 22 pF ceramic capacitor (500 V)
C4 = 4 x 82 pF ceramic capacitors in parallel (500 V)
C5 = 390 pF polystyrene capacitor
C6 = 220 nF polyester capacitor
C7a = 2 x 10 pF ceramic capacitors in parallel (500 V)
C7b = 2 x 8,2 pF ceramic capacitors in parallel (500 V)

L1 = 25 nH; 2 turns Cu wire (1,6 mm); into dia. 5,0 mm; length 4,6 mm; leads 2 x 5 mm
L2 = L5 = 2,4 nH; strip (12 mm x 6 mm); tap for L4 and L6 at 5 mm from transistor
L3 = L7 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)
L4 = 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm; leads 2 x 5 mm
L6 = 46 nH; 2 turns Cu wire (2,0 mm); into dia. 9,0 mm; length 6,0 mm; leads 2 x 5 mm
L8 = 44 nH; 2 turns Cu wire (2,0 mm); into dia. 9,0 mm; length 6,7 mm; leads 2 x 5 mm
L2 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric.
R1
R2

= 10 n (± 10%) carbon resistor
= 4,7 n (± 10%) carbon resistor

Component layout and printed-circuit board for 87,5 MHz test circuit are shown in Fig. 16.

September 1978

11

,_BLW77_Jl"""----____
APPLICATION INFORMATION (continued)

, - - - - - - - - - 116

--------~ , _
1

o

65

strip

o
7Z78093.1

--

1278094

Fig. 16 Component layout and printed-circuit board for 87,5 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

12

September 1978

(

H'_F_'N_'H_'_F._p_ow_e_rt_~_nS_in_or

___

~.~

_____B_L_W
__
77______

_______________________

7Z77470

7Z77471

v
200

,~

-'

10

100

1_'

PL

I

(W)

Gp

L

150

~-

II

I

I
I

100

I

1"/
(%)

1/

(dB)

I

--~
!ooo.,

"

typ

I
I

J

I' Gp -

5

50

J

J

50

/
1/

o

o

o

Fig. 17 VCE

25

50

P (W) 75

s

= 28 V; f = 87,5 MHz; Th = 25 0C.

o

0
100

Fig. 18 VCE = 28 V; f
typical values.

200

300
P

L

(W)

= 87,5 MHz; Th = 25 oC;

7Z77472

175

,

PLnom
(W)

(VSWR = 1)

',\

\\
,\
\ :\

125

\\

\

\\
\

I\.

1\

"",'" .........
f'....

i"--ioo..

Th=

50 0 C
IIIII

70

~~

Fig. 19 R.F. SOAR; c.w. class-B operation;
=87,5 MHz; VCE = 28 V; Rth mb-h = 0,2 oC/w.
The graph shows the permissible output power
under nominal conditions (VSWR :::: 1) as a
function of the expected VSWR during shorttime mismatch conditions with heatsink temperatures as parameter.

f

"

0

c

III

90°
ill

75
1

10

VSWR

December 1977

13

APPLICATION INFORMATION (continued)
7Z77473

7Z77474

+5

I

....1--

,_-1-

+0,5

RL

+2

,
~

Xi
I

o

o

I

L..o'

.....

r- q

CL

10"'"

J

o

II

I

I/'

I
I

:1

-5

,

-2

--

~0,5

I

-10

o

100

Fig. 20 VCE = 28 V; PL
typical values.

f (MHz)

200

= 130 W; Th = 25 oC;
7Z77475

0

100

Fig.21 VCE = 28 V; PL
typical values.

f (MHz)

-1
200

= 130 W; Th = 25 oC;

20

1\

Gp

\

(dB)

~

\
\

,

1\ typ
10

"\

"

o

14

.....
~

.........

Fig. 22 VCE

o

50

December 1977

100

(

f (MHz)

150

= 28 V; PL = 130 W; Th = 25 oc.

_ _ _Jl_BLW_78
H.F.N.H.F. POWER TRANSISTOR
N-P-N silicon planar epitaxial transistor intended for use in class-A, AB or B operated mobile, industrial
and military transmitters in the h.f. and v.h.f. bands. It is resistance stabilized and is guaranteed to
withstand severe load mismatch conditions.
It has a 'W' flange envelope with a ceramic cap. All leads are isolated from the flange.

QUICK REFERENCE DATA

R. F. performance up to T h = 25 °C
mode of operation

V CE
V

f
MHz

c.w. (class-B)

28

150

s.s.b. (class-A; IC = 3 A)

26

28

Ps

17

%

W

100
35 (P.E.P.)

< 25
typ.O,4

>6
typ.19,5

d3
dB

> 70
typo -40

MECHANICAL DATA
SOT-121A (see page 2)

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.
September 1978

_Jl_______

__
B_LW7_B

Dimensions in mm

MECHANICAL DATA
Fig. 1 SOT-121A.

-

3,2
-2,9

"

/5,9

e

5,5

/'

1

-r-

6,9

25,2

min

1842

TL
metal
7275334.1

--t

1- ~~;-I

t

Wi!iU

2,4

I

4,4
3,8

I

• •
+

7
max

t

Torque on screw: min. 0,6 Nm (6 kg em)
max. 0,75 Nm (7,5 kg cm)
Recommended screw: raised cheese-head 4-40UNC/2A
Heatsink compound must be applied sparingly and evenly ..

2

January 1978

(

H_'F_'/_V_'H_'F_.~ _r_tr_an_Si_Ho_r

___

__

,Jl.______B_LW_._7_8_____

_______________________

RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Collector-emitter voltage (VBE
peak value

=0)
V CESM

max.

70 V

Collector-emitter voltage (open base)

VCEO

max.

~5 V

Emitter-base voltage (open collector)

VEBO

max.

4 V

Collector current (aver~ge)

IC(AV)

max.

10 A

Collector current (peak value); f> 1 MHz

ICM

max.

25 A

R.F. power dissipation (f> 1 MHz); T mb = 25 oC)

max.

160 W

Storage temperature

Prf
T stg

Operating junction temperature

Tj

max.

7Z77504

20

-65 to +150 0C
200°C
7Z77505 1

200

IC
(A)

Prf
(W)

10

"-

"-

"-

'" "" '?

150 I'"

)-

~~
""'~ ~
'b ~o
~6'

/-

5

,

1
5

10

20

VCE (V)

40

Fig. 2 D.C. SOAR.

THERMAL RESISTANCE (dissipation

.......

'I.

'" "

2

~

..... J

"\

...

"

II r- r-~Qll
I ~6).....
I
I K l?..>,9
I"-

f--i-

~.'.
....yo

I ... lI"q

' .. r~6

/0

('-

,6,
"j,z,-/o

I

50

I"

"-

~

100

--

I'"

III

~

,.....cr
, 1"'10.

I
I
I
I

, I

I

o

50

Fig.3 R.F. power dissipation; VCE EO;; 28 V;
f> 1 MHz.
I Continuous d.c. operation
II Continuous r.f. operation
III Short-time operation during mismatch

= 80 W; T mb = 86 oC; i.e. Th = 70 OC)

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

1,45 oCIW

From junction to mounting base (r.f. dissipation)

Rth j-mb(rf)

1,06 oc/w

From mounting base to heatsink

Rth mb-h

0,2 °C/W

September 1978

3

BLW78

Jl

CHARACTERisTICS
Tj = 25 0C
Collector-emitter breakdown voltage
VBE = 0; IC= 50 mA

V(BR)CES

>

70 V

Collector-emitter breakdown voltage
open base; IC = 100 mA

V(BR)CEO

>

35 V

Emitter-base breakdown voltage
open collector; I E = 5 mA

V(BR)EBO

>

4 V

Collector cut-off current
VBE = 0; V CE = 35 V

ICES

<

5 mA

D.C. current gain*
I C = 5 A; V CE = 5 V

hFE

20 to 85

Collector-emitter saturation voltage
IC=15A;IB=3A

VCEsat

typo

fT
fT

typo 370 MHz
typo 350 MHz

Transition frequency at f = 100 MHz*
-IE = 5 A; VCB = 28 V
-I E = 15 A; V CB = 28 V
Collector capacitance at f = 1 MHz
IE = Ie = 0; VCS = 28 V

--

Cc

typo 155 pF

Feedback capacitance at f = 1 MHz
IC = 100 rnA; VCE = 28 V

Cre

typo 102 pF

Collector-flange capacitance

Ccf

typo

.. Measured under pulse conditions: tp ~ 200 IlS; 8 ~ 0,02.

4

2 V

January 1978

r

3 pF

H_.F_'/_V_.H_.F_._po_~rt_~_ns_is_ro_r

___

__

~~,

_________________________
7Z77506

75

I I I
I I

I I

_____B_L_VV
__7_B______
7Z77507

600

I I
I I I

I I

Cc

VCE"'28V

(pFI

400

50
5V

.........

,,
,
1\
1\

10"'"

"-

,
I'

25

200

I.....

.....

...."""

o
o

o
5

IC (AI

10

o

20

-,....
r-of- typ

40

VCB (VI

Fig. 5 IE = Ie = 0; f = 1 MHz; Tj = 25 0C.

Fig. 4 Typical values; Tj = 25 0C.

7Z77508

750

fT
(MHz)

500

v
I/v

,...1000

J.,.oo"""

J"ooo"""

"'"~

~

o

o

5

10

Fig. 6 Typical values; f

15

~f~~

1

20V

1/
II

250

VCB 28V

1-1-

20

= 100 MHz; Tj =25°C.
January 1978

5

_J l________

,_____B_LW7_B

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-8 circuit); Th

Zj

f (MHz)

(n)

0,73 + j1,35

150

=25 0C

Yl (mAN)
225- i35

50n
50n

---

+VCC
Fig. 7 Test circuit; c.w. class-8; f

--

-.

= 150 MHz.

List of components:
C1 = C2 = C7 = C8 = 5 to 100 pF film dielectric trimmer
C3 = 203 pF; 2 x 82 pF and 39 pF ceramic capacitors in parallel (500 V)
C4 = 39 pF ceramic capacitor (500 V)
C5 = 1 n F feed-through capacitor
C6 = 100 n F polyester capacitor
L1 = strip (30 mm x 8 mm);bent to form inverted 'u' shape with top 15 mm above heatsink, and
bottom 5 mm above heatsink
l2 = 1 IlH r.f. choke
l3 = strip; shape as shown in Fig. 8; 5 mm above heatsink
l4 = strip (40 mm x 8 mm); bent in form
25 mm at 15 mm above heatsink, 5 mm at 5 mm
above heatsink
l5 = strip (75 mm long; width 8 mm); 5 mm above base

.....r-,

l1, l3, l4, and l5 are copper strips with a thickness of 0,6 mm.
Heatsink: aluminium; 0,9 oCIW
At Pl = 100 Wand VCE = 28 V, the output power at heatsink temperatures between 25 0C and 90 °C
relative to that at 25 0C is diminished by typo 0,12 W/oC.
Component layout on an aluminium heatsink for 150 MHz teSt circuit is shown in Fig. 8.

6

September 1978

(

H_._F._/V_.H_.F_._~_~_r_t_ra_nS_ist_or

__

~~

________________________

B_L_VV_7_B_______

______

C5

output

50n

C7
aluminium heatsink
7Z77518

Fig. 8 Component layout on an aluminium heatsink for 150 MHz test circuit. ® Earthing bolts.

September 1978

7

APPLICATION INFORMATION (continued)
7Z77509
cl

150

7Z77510

I

100

10
II'
I)

typ

100

Tl

Gp

II'

1,..0001-

(dB)

j

1..00'"

[7

I/'

T

I""'" ~

i'~

/

j

1/
(%)

Gp

V

V
j

I

5

50

If

50

II
I

J

--==

o

o

20

s (W)
VCE = 28 V; f = 150 MHz; Th = 25 °C.

Fig. 9

P

150

40

7Z77511

o
o

0
50

100 P (W) 150
L
Fig. 10 VCE = 28 V; f = 150 MHz; Th = 25 OC;
typical values.

P Lno m

(W )
(VSWR

= 1)

,

,

~

100

~

i\

I~"""

Th ~70

N

~90oC

50

o
1

8

°c

~

Ir

January 1978

10

VSWR

10 2

Fig. 11 R.F. SOAR; C.w. class-B operation;
f = 150 MHz; VCE = 28 V; Rth mb-h = 0,2 oC/W.
The graph shows the permissible output power
under nominal conditions (VSWR = 1) as a
function of the expected VSWR during shorttime mismatch conditions with heatsink temperatures as parameter.

H_'F_,/_V_'H_'F_._po_~_r_t_ran_S_ist_or

__

~~

_______________________

OPERATING NOTE B.elow 50 MHz a base-emitter resistor of 4,7
oscillation. This resistor must be effective for d. only.
7277512

3

n

______
B_L_VV_7_B______

is recommended to avoid
7Z77513

6

I

o

CL

Iioii'

I

~

I

2

1

II
t,

...

I
I
I

l..I'

I'

J
IJ

I

~

1,.0'

r'I I,

x j

I""

4

-250

1,..0
1..00

,
I

~

o

RL

L...o"""

[[

RL

rj

1,..0"'"
~

~

[I

i/
I;'

1/
Xj

-1

-500

2
I

-2

f-- -

CL
I

-3

o

o

100

f (MHz)

200

o

100

f (MHz)

-750
200

Fig. 13.

Fig. 12.
7277514

30

Gp
(dB)

20

Conditions for Figs 12, 13 and 14:

1\

VCE = 28 V; PL = 100 W; Th
typical values.

I\,

I'

I"

I'
I"

10

= 25 °C;

....
f"oo..

"1'00..

o

o

100

typ

f (MHz)

f-

200

Fig. 14.

January 1978

9

:~B_LW7_8 Jl'" '- - ~
___

_ _ _ _ __

APPLICATION INFORMATION (continued)
R.f.. performance in s.s.b. class-A operation
--. VCE = 26 V; Th = 40 oc; fl

= 28,000 MHz; f2 = 28,001

output power

IC
A

W
35 (P.E.P.)

~Hz

typ.19,5

3

typo -40
Cl0

50n
50n
C12

----

+VCC

C14

2
R8

"

Fig. 15 Test circuit; s.s.b. class-A; f

= 28 MHz.

List of components:
C1 = 33 pF ceramic capacitor (500 V)
C2 = 100 pF air dielectric trimmer (single insulated rotor type)
C3 = 280 pF air dielectric trimmer (single non-insulated rotor type)
C4 = 180 pF polystyrene capacitor
C5 = C6 = C7 = 3,9 nF ceramic capacitor
C8 = 2 x 33 pF ceramic capacitors in parallel (500 V)
C9 = 330 n F polyester capacitor
C10 = 82 pF ceramic capacitor (500 V)
Cll = 100 pF air dielectric trimmer (single insulated rotor type)
C12 = 180 pF air dielectric trimmer (single non-insulated rotor type)
C13 = 150 pFpolystyrene capacitor
C14 = 390 nF polyester capacitor

10

September 1978

(

7Z77S17.1

I

C13

H_'F_.I_V'_H_'F_.p_o_~_r_tr_an_Sis_to_r

___

~~

_______________________

B_L_VV
__7_8_____

_____

list of components 'in Fig. 15 (continued):
L1 =
L2 =
L3 =
L4 =
L5 =

72 nH; 3 turns Cu wire (1,0 mm); into dia. 7 mm; length 4,8 mm; leads 2 x 5 mm
Cu strip (28 mm x 5 mm x 0,2 mm); 18 mm at 3 mm above printed-circuit board
Ferroxcube choke coil (cat. no. 431202036640)
297 nH; 6 turns Cu wire (1,5 mm); into dia. 12 mm; length 16 mm; leads 2 x 5 mm
331 nH; 7 turns Cu wire (1,5 mm); into dia. 12 mm; length 20,8 mm; leads 2 x 5 mm

R1 = 1,5 kU (± 5%) carbon resistor (0,5 W)
R2 = 100 n (± 5%) carbon resistOr (0,5 W)
R3 = 68 n (± 5%) carbon resistor (0,5 W)
R4 = 100 n wirewound potentiometer (1 W)
R5 = 33 n (± 5%) carbon resistor (0,5 W)
R6 = 0,68 U (± 10%) wirewound resistor (7 W)
'R7 = 120 n wirewound resistor (8 W)
R8 = 10 n (± 10%) carbon resistor (0,5 W)
7Z77S1S

~30

r

/

I

tYPj
-40

/

V

/

/

V

/

-50

I

/

V

J

-60

I
o

25

P.E.P. (W)

50

Fig. 16 Intermodulation distortion as a function
of output power; VCE = 26 V; Ie.= 3 A;
f1 = 28,000 MHz; f2 = 28,001 MHz;Th = 40 oC.

January 1978

11

_____Jl____

BLW_79

U.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for transmitting applications in class-A, B or C in the
u.h.f. and v.h.f. range for nominal supply voltages up to 13,5 V. The resistance stabilization of the
transistor provides protection against device damage at severe load mismatch conditions.
The transistor is housed in a %" capstan envelope with a ceramic cap.'
QUICK REFERENCE DATA

R.F. performance up to Th = 25
Vce

mode of operation

°e in an unneutralized common-emitter class-B circuit
Gp
dB

V

f
MHz

PL
W

c.w.

12,5

470

2

>

c.w.

12,5

175

2

typ 13,5

zi

11

>

9,0

YL

n

%

mA/V

60

3,5 + jO,4

28-j38

typ 60

4,2 - j3,4

25- j24

Dimensions in mm

MECHANICAL DATA
SOT-122

CIJ

-e-t

)

9 min (4x)

+

c

28,2
25,4

b

j

3,05

,

e

+
1,52
5

=c::(]

+

+

$1_8.6J

+

8-32UNC

+
6,5
6,2

--

__ 0,17
0,11
ceramic

+
BeD
metal

~-+-------+~~~

I

II

__ 3,21

5,9
-- 55 ---17,6 'max 1-1..__- - - - - 28,2 ______--I~I
25,4
Torque on nut: min 0,75 Nm
(7,5 kg cm)
max 0,85 Nm
(8,5 kg em)

2,8
5,6
max

7Z76390

Diameter of clearance hole in heatsink: max 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This dev.ice incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

I(

May 1971

----

Jl"'----___

_BLW--"",79
RATINGS

Limiting values in accordance with the Absolute Maximum System (lEC134)
Voltages
Collector-emitter voltage (VBE = 0)
peak value
Collector-emitter voltage (open base)
Emitter-base voltage (open collector)

VCESM

max

36 V

VCEO

max

17V

VEBO

max

4 V

IC

max

0,5 A

ICM

max

1,5 A

Ptot

max

8,5 W

Currents
Collector current (d.c.)
Collector current (peak value);

t> 1 MHz

Power dissipation
Total power dissipation (d.c. and

r.t.)

up to Th
7Z77140

D.C.SOAR

IC
(A)

--

1Th=700C

7Z77148

15

r.t.

power dissipation
VCE~ 16,5 V

Prf

0,7

-

= 70 0C

t> 1 MHz

(W)

0,6

1J I I
L
I I . I I I
1 1

0,5

1 1 1

derate by
0,066 W/oC
I

10
0,4

:"L

J.

1"'-

I"
I
continuous operation and short -~
.....
r- time operation during mismatch

0,3

I-

0,2

0,1

-

5

5

6

7

8 9 10

VCE (V)

20

o
o

50

Temperatures
Storage temperature

-65 to +150 °C
max
200 0C

Operating junction temperature
THERMAL RESISTANCE

2

From junction to mounting base

. Rth j~mb

14,5 °C/W

From mounting base to heatsink

8th mb-h

0,6 °C/W

Jl

U.H.F. power transistor

CH.~RAeTE RISTICS

Tj

BLW79

= 25 °C

Breakdown voltages
Collector-emitter voltage
VBE = 0; Ie = 5 mA

V(BR)CES

>

36 V

Collector-emitter voltage
open base; IC = 25 mA

V(BR)CEO

>

17V

Emitter-base voltage
open collector; IE = 2 mA

V(BR)EBO

>

4 V

ICES

<

2 mA

Collector cut-off current
VBE = 0; VCE
D.C. current gain

= 17 V
*

Ic=250rnA;VCE=5V
Collector-emitter saturation voltage

hFE

IC

10
35

VCEsat

typ

0,6 V

= 500 MHz *

=250 rnA; VCE = 12,5 V

IC =750 rnA; VCE

typ

*

IC = 750 rnA; IB = 150 mA
Transition frequency at f

>

= 12,5 V

fT

typ

1,5 GHz

fr

typ

1,0 GHz

Ce

typ

8 pF

Cre

typ

3,6 pF

Ces

typ

2 pF

-

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 12;5 V
Feedback capacitance at f = 1 MHz
IC = 20 rnA; VCE = 12,5 V
Collector-stud capacitance

* Measured under pulse conditions: tp :E;;; 200 fJS; 6 :E;;; 0,02.

I(

May 1977

3

Jl'---_______

I-B_LW7_9____

7Z77144

7Z77143

15

IE=le=O

VCE = 5 V

_....

40

I

l/

=25°C

Tj

",

I'
typ

I\,

10

,

"-

I\..

~p

" "

~
20

"

"

= 1 MHz

Tj = 25°C

I\.

(pF)

"-

30

f

1\

Cc

r-;;

....

5

10

-----

o
o

0,5

o
o

IC (AI 1,5

10

VCB (VI

20

7Z77149

2

VCE = 12,5 V
f = 500 MHz
Tj = 25°C

.... "'"

V
I

"

",,"I\..typ

'\

J

1,\

r'\

I'

1'\

"

~

"- I'-.....

0,5

4

....... r-....

r--... "'-

IC (AI

~ I--

1,5

jl_____

BL_W
__
79_____

__
U_OH_OF_op_ow_er_tr_anS_in_or_____________________

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25

°c

f (MHz)

VCE (V)

PL (W)

470

12,5

2

470
175

13,5
12,5

2
2

Ps (W)

Gp (dB)

< 0,25 >
-

-

9,0

typ 10,5
typ 13,5

IC(A)

< 0,27 >
-

Zi (n)

71 (%)
60

typ 70
typ 60

3,5 + jO,4

YL (mAN)
28-j38

-

4,2 - j3,4

25- j24

Test circuit for 470 MHz
C1

C8
50[2
C7

50[2

C51~

---

~

C6

R2

7Z76581.1

+VCC
List of components:
C1
C2
C3
C5
C6
C8

= 2,2 pF (± 0,25 pF) ceramic capacitor

= C4 = C7 = 1,4 to 5,5 pF

film dielectric trimmer (cat. no. 2222 809 09001)

= 3,3 pF (± 0,25 pF) ceramic capacitor
= 100 pF ceramic feed-through capacitor
= 100 nF polyester capacitor

= 2 to 18 pF film dielectric trimmer (cat. no. 2222 809 09Q03)

L 1 = stripline (35,6 ml1'1 x 6,0 mm)
L2 = L3 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 02036640)
L4 = 178 nH; 4 turns Cu wire (1 mm); into dia. 6 mm; length 7 mm; leads 2 x 5 mm
L5 = stripline (10,0 mm x 6,0 mm)
L6 = 28 nH; % turn Cu wire (1 mm); into dia. 10 mm
L 1 and L5 are striplines on a double Cu-c1ad printed-circuit board with PTFE fibre-glass dielectric
(er = 2,74); thickness 1/16".
R1 = 100 n (± 5%) carbon resistor
R2 = 10 n (± 5%) carbon resistor
Component layout and printed-circuit board for 470 MHz test circuit see page 6.

September 1978

5

Jl________

__
BLW_79____

·APPLICATION INFORMAiTlON (continued)
Component layout and printed-circuit board for 470 MHz test circuit.

I~

112

58

7Z76579

----

7Z76580

The circuit and the components are situated on one side of the PTFE fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets.

6

.Jl_____

B_L_W_7_9______

__
U_,H_,F_,p_ow_e_r_tra_ns_ist_or________________________

1Z77147

6
f = 470 MHz

--VCC= 12,5 V

typical values

- -

-VCC= 13,5 V

7Z17146

15
f = 470 MHz
Th = 25
typical values

- - VCC= 12,5 V

°c

Gp
(dB)

-

-

-

VCC = 13,5 V

1 1

I I
1 1

6P

1

4

10
0

Th=25

C,

.-

... 1-

i-

-t-oo

I'"
i"""~

-- t:;1?

t""-~

~
~

1,.000

1"-

1. . . .

I"~
11"1..-"

v.~

2
~

v.. liP'

~

.....

"
~

~~

0

C. 1-1- r-I-

I~

5

"

.... ""'

-liliiii ~~

~

(%)

r--. 1"-1 ..
~

50

"
I'

r-1-11

~

.,

11

~,

..... 10'

70

100

t"o.

l...i

II'

o
o

0,25

P (W)

s

0,5

o
o

2

4

----

o

7Z17145

R.F.SOAR

4
PLno m
(W)
VSWR =1
VSWR=

3

.... ~

I

9- - f -

r--.. !---50
2

Ps
PSnom

o
1

1,1

1,2

Conditions for R,F, SOAR
f= 470 MHz
Th = 70 °C
Rth mb-h = 0,6 °C/W
VCCnom = 12,5 V or 13;5 V
Ps = PS nom at VCCnom and VSWR = 1
see page 5
The transistor has been developed for use
with unstabilized supply voltages. As the
output power and drive power increase with
the supply voltage, the nominal output
power must be derated in accordance with
the graph for safe operation at supply
voltages other than the nominal. The graph
shows the permissible output power under
nominal conditions (VSWR = 1), as a
function of the expected supply over-voltage
ratio, with VSWR as parameter,
The graph applies to the situation in which
the drive (PS/PSno~) increases linearly with
supply over-voltage ratio.

VCC
VCCnom

7

1_

BLW_79~jl_·_____.....-_

_

OPERATING NOTE Below 300 MHz a base-emitter resistor of 10 n is recommended to avoid oscillation. This resistor must be effective for r.f. orilo/.
7Z77141

20

power gain' versus frequency
(class- B operation) ,

Gp
(dB)
Measuring conditions for the graphs on this page
15

Vee =

r- ...

.... .....

",

~

l"I

12,5

V

PL =2W
Th = 25 °e
typical values
~

1'\

I'.
~

I

10

:"-

"

"

-------

5
100
10

ri

xi
(n)

5

300

f (MHz)

500

7Z77139

input impedance (series components)
versus frequency (class- B operation)

7Z77142

45

load impedance (parallel components)
versus frequency (class- B operation)
I

~

I

I
I\.r i

~L

,

I'

.....
~

40

~

J"'o.,

....

....
r--

.q

-

I'

.....

CL

....

'"

1/

x~

o

./

~

i.;'

~~

-5

300

'"

"

1".001"'"

.....I-'"
I

r--~

Rl

Ii'"'~

10

r-...

~

20

Cll/'

1/
~

1/

J

I(

I

100

8

~

"/

~

35

~

X·

o

f (MHz)

500

30
100

30
300

f (MHz)

500

_______Jl__

BLW_BO_

U.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for transmitting applications in class-A, B or C in the
u.h.f. and v.h.f. range for nominal supply voltages up to 13,5 V.
The resistance stabilization of the transistor provides protection against device damage at severe load
mismatch conditions.
The transistor is housed in a %" capstan envelope with a ceramic cap.
QUICK REFERENCE DATA
R.F. performance up to T h = 25 oC in an unneutralized common-emitter class-B circuit
mode of operation

VCC

PL
W

Gp
dB

V

f
MHz

c.w.

12,5

470

4

>

c.w.

12,5

175

4

typ 15,0

11

zi

>

8,0

YL

n

%

mAN

60

2,1 + j2,3

57-j56

typ 60

2,0 - j2,2

51-j48

MECHANICAL DATA

Dimensions in mm

SOT-122

-e-t

1,52

1

•
b

j

____ 0,17
0,11

8-32UNC
6,5
6,2

25,4

=c::(J

+

9 min (4x)

28,2

+

t

ceramic

+
+

BeO
metal

e

...3,21
2,8

..15,911 .
I 5,5 I
-- 7,6

__ 5,6 __

max --

II

28,2
25,4

Torque on nut: min 0,75 Nm
(7,5 kg cm)
max 0,85 Nm
(8,5 kg cm)

7Z76390

max

•
Diameter of clearance hole in heatsink: max 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This dev.ice incorporates beryllium oxide, the dust of which is toxic. The device is entirelv
safe provided that the BeO disc is not damaged.

May 1977

1

l__________

BLW80

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC134)
Voltages

=0)

Collector-emitter voltage (VSE
peak value

VCESM

max

36 V

Collector-emitter voltage (open base)

VCEO

max

17V

Emitter-base voltage (open collector)

VESO

max

4 V

IC

max

1 A

ICM

max

3 A

Ptot

max

17 W

Currents
Collector current (d.c.)
Collector current (peak value);

t> 1 MHz

Power dissipation
Total power dissipation (d.c. and r. t.) up to T mb = 25 0 C

2

7Z77150

D.C.SOAR

I

IC

-==
--

(A)

T mb= 25

r.t. power dissipation
VCE~

°c

Prf

/

"

20

1'0

short time operationduring mismatch I

0,5

....

-10

0,1

5

10

VCE (V)

20

30

16,5 V

t> 1 MHz

(W)

'"e--

Th = 70 o

7Z77159

30

1'10..

..... "'"

r--.. derate by

....
""N. 0,092 W1°C r-~
II~

t-

continuous operation ....

o
o

.....

..... '"

50

Temperatures
Storage temperature

-65 to +150 °C

Operating junction temperature

max

200 0 C

THERMAL RESISTANCE

2

From junction to mounting base

Rth j-mb

10,3 °C/W

Fr~m

Rth mb-h

0,6 oCIW

mounting base to heatsink

Jl

U.H.F. power transistor

CHARACTERISTICS

BLW80

Tj = 25 °C
Breakdown voltages
Collector-emitter voltage
VBE = 0; IC = 10 rnA

V(BR)CES

>

36 V

Collector-emitter voltage
open base; IC = 50 rnA

V(BR)CEO

>

17V

Emitter-base voltage
open collector; IE = 4 rnA

V(BR)EBO

>

4 V

ICES

<

4 rnA

Collector cut-off current
VBE=O;VCE= 17V
D.C. current gain

*

IC = 0,5 A; VCE = 5 V
Collector-emitter saturation voltage

>

hFE

typ

10
35

typ

0,75 V

*

IC = 1,5 A; IB = 0,3 A

VCEsat

Transition frequency at f = 500 MHz *
IC = 0,5 A; VeE = 12,5 V

fT

typ

1,75 GHz

Ie = 1,5 A; VeE = 12,5 V

fT

typ

1,25 GHz

Cc

typ

14 pF

Cre

typ

7,1 pF

e cs

typ

2 pF

-

Collector capacitance at f = 1 MHz
IE = Ie = 0; VeB

= 12,5 V

Feedback capacitance at f = 1 MHz
Ie = 40 rnA; VeE = 12,5 V
Collector-stud capacitance

* Measured under pulse conditions: tp E;;; 200 ILS; l) E;;; 0,02.

'I (~y1977

3

-.....-J l"'---_ _

_B_LWB_O

7Z77156

~______
, 7Z77154

30

IE=le=O
f = 1 MHz

VCE = 5 V
Tj == 25°C

40

Tj = 25 0 C
)

1...... 1~

!o....
......

30

'"

1\
~

1\

"""

~

20

~

I\.typ

,
I\,

20

typ

""

,

I\.

I"

1'100.

I\.

o

o

o

o

10

VCB (V)

20

7Z77160

2

V

.........

_l-

r- ....

VCE = 12,5 V
f =500 MHz

.........

Tj = 25°C

~

1'"
)

to-.

10

"-

10

------

"- I"'-

1\

~

I"

typ

'"

""i\r-....
~

~

f'.

'"

~

.......

~

I"'.

2

4

IC(A)

3

U_'H_'F_.p_~_e_rt~_n_Sis_to_r

__

·_"'_··-Jl____B_L_W_B_O____

__________________

APPLICATION INFORMATION
R.F. performance in C.w. operation (unneutralized common-emitter c1ass-B circuit)
Th:::: 25 °C
f(MHz)

VCE(V)

PL (W)

PS(W)

Gp (dB)

470

12,5

4

<0,63

>

470
175

13,5
12,5

4
4

-

8,0

typ 9,5
typ 15,0

'C(A)
<0,53

-

17 (%)

>

60

typ 65
typ 60

Zj(n)
2,1 + j2,3

YL (mAN)
57-j56

-

-

2,0 - j2,2

51 - j48

Test circuit for 470 MHz

son
son

--+VCC
Ust of components:
C1 ::::
C2 ::::
C3::::
C4::::
C5::::
C6 ::::

2,2 pF (± 0,25 pF) ceramic capacitor
C7 :::: C8 :::: 1,4 to 5,5 pF film dielectric trimmer (cat. no. 2222 809 09001 )
5,6 pF (± 0,25 pF) ceramic capacitor
2 to 9 pF film dielectric trimmer (cat. no. 2222 809 09002)
100 pF ceramic feed-through capacitor
lOOn F polyester' capacitor

Ll ::::
L2::::
L3::::
L5::::
L6 ==
L7 ==

stripline (22,5 mm x 6,0 mm)
13 turns closely wound enamelled Cu wire (0,5 mm); into dia. 4 mm; leads 2 x 5 mm
L4:::: Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 02036640)
51 nH; 3,5 tljrns Cu wire (1 mm); into dia. 6 mm; coil length 7 mm; leads 2 x 5 mm
stripline (10,0 mm x 6,0 mm)
15 nH; 1 turn Cu wire (1 mm); into dia. 5 mm; leads 2 x 5 mm

L1 and L6 are striplines on a double Cu-clad printed-circuit board with PTFE fibre-glass dielectric
(Er == 2,74); thickness 1/16".

R 1 :::: R2 == 10 n (± 5%) carbon resistor
Component layout and printed-circuit board for 470 MHz test circuit see page 6.

September 1978

5

_BL_W8~O_Jl"'-----______
APPLICATION INFORMATION (continued)
Component layout and printed-circuit board for 470 MHz test circuit.
101

L3

58

7Z76582

---,
--

7Z76583

The circuit and the components are situated on one side of the PTFE fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets.

6

U_.H_.F_.~_w_e_rt_~n_sis_ro_r

__

__________________
1277155

- - V e e = 12,5 V

f = 470 MHz
typical values

-

-

-Vee = 13,5 V

I I I

7Z77158

f = 470 MHz
Th = 25 °e
Gp typical values

~~

.. L
~. V
~

1/. .

5

,

~

2,5

,

~

[/ ....

...j.;;~Gp

...

..... 100(

..... ~ '"

10

~~

....

looe

/.",-..... ; '
~~
I.~

t00

.... ....

V ~5~e

,~

Vee = 12,5 V
---Vce=13,5V

I

-

L

Th =25 °e

....

I~

5

"
""'

-..

iJllllill'"

,

B_L_W_8_0____

15

(dB)

7,5

____

~J[

17
(%)
\..
~

~

.-

50

~

,
I

1-17

.~

o

o

0,5

PS(W) 1,5

o
o

----

o
10

5

7Z77157

6
PLnom
(W)
VSWR =1

~

,

\

\

R.F.SOAR

Conditions for R.F. SOAR

6

f= 470 MHz
Th = 70 °e
Rth mb-h = 0,6 °e/w
VeCnom = 12,5 V or 13,5 V
Ps = PSnom at Vecnom and VSWR
see page 5

\
,\
\

,\

\

\

~

\
5,5

\

l\
\

,

VSWR=- 10

,

i\

~

\
I\.

\
5
1

1,1

~

50 PSnom

1,2

=1

The transistor has been developed for use
with unstabilized supply voltages. As the
output power and drive power increase with
the supply voltage, the nominal output
power must be derated in accordance with
the graph for safe operation at supply
voltages other that the nominal. The graph
shows the permissible output power under
nominal conditions (VSWR = 1),as a
function of the expected supply over-voltage
ratio, with VSWR as parameter.
. The graph applies to the situation in ,which
the drive (PS/PS nom ) increases linearly
with supply over-voltage ratio.

Vee
Veenom

I

(May 1977

7

_Jl~.

_BL_WB_O

_______

OPERATING NOTE Below 300 MHz a base-emitter resistor of 10 n is recommended to avoid oscillation. This resistor must be effective for r.f. only.
7Z77152

20

power gain versus frequency
(class- B operation)

Gp
(dB )

I'

Measuring conditions for the graphs on this page

,-

VCC = 12,5 V

15

PL =4W

,Th

1,\

'" r\..
10

---

=25 °C

typical values

I\..

" I\.. I\..:
:'\.

I'

'"

.....

5
100

300

f (MHz)

500

1Z77151

10

input impedance (series components)
versus frequency (class- B operation)

22

7Z77153

load impedance (parallel components)
versus frequency (class- B operation)
I
.J,..I

10

,

q

,

Xi
(n)

~ RI..:'
I'

20

5

v
,...,.-

"-

10""

CL
'" Cli-- (pF)

r...,.

30

IJI
~

~i

" I"

Xi
1;0

'I'""" ....

L..o

"

IT
fj

J

o

.....
.....

t,..'

~

V
J

II

18

~

"'"

1/

" " ....."

Ii CI..:

L;'

II'"

50

~L

If"

V
IlXj

-5 I
100

8

70

16
300

f (MHz)

500

100

300

f (MHz)

500"

BLW81

U.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for transmitting applications in class-A, B or C in the
.
u.h. f. and v.h. f. range for nominal supply voltages up to 13,5 V.
The resistance stabilization of the transistor provides protection against device damage at severe load
.
mismatch conditions.
The transistor is housed in a %" capstan envelope with a ceramic cap.
QUICK REFERENCE DATA
R.F. performance up to Th
mode of operation

=25 °C in an unneutralized common-emitter class-B circuit
-

Gp

'T/

dB

%

VCC
V

f
MHz

PL
W

c.w.

12,5

470

10

>

C.w.

12,5

175

10

typ 13,5

>

6,0

zi

YL
mAN

n

60

1,3 + j2,5

150-j66

typ 60

1,2 - jO,6

140-j80

Dimensions in mm

MECHANICAL DATA
SOT-122

CIJ

+
5

+

1

nt
1_8:6J

c

28,2
25,4

j

1,52

,
6,5
6,2

t

=c:::O

+

--

+

8-32UNC

_0,17
0,11
ceramic

+
+

II
--17,6 'max 1--

BeD
metal

I

5,9
-- 55 --

I~"
____

28,2
25,4

Torque on nut: min 0,75 Nm
(7,5 kgem)
max 0,85 Nm
(8,5 kg em)

--

7Z76390

- - - - - - t..~1

max

Diameter of clearance hole in heatsink: max 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeD disc is not damaged.

"I .

May 1977

l'----________

BLW81.

RATINGS

Limiting values in accordance with the Absolute Maximum System !lEC134)
Voltages
Collector-emitter voltage (VBE
peak value

=0)
VCESM

max

36 V

VeEO

max

17 V

VEBO

max

4 V

Collector current (d.c. or average)

Ie

max

2,5 A

Collector current (peak value); f> 1 MHz

ICM

max

74 5 A

Ptot

max

Collector-emitter voltage (open base)
. Emitter-oase voltage (open collector)
Currents

Power dissipation
R.F. power dissipation (f > 1 MHz); T mb = 25 °C
7Z77161

Ie

D.C.SOAR

7Z77170

60

r.f. power dissipation

(A )

-

~

VeE ~ 16,5 V
f> 1 MHz

Prf

7

(W )

6

5

40

..........

~ismatch

T

Tmb=

"'"

2

0

e

'l'(

7

8 9 10

V

"

CE (V)

20

..... 100...

Tderate by _t:::::!Io. ~

-~f-

continuous operation "If'

20

Th=70~

6

.....

+rl rt~204 W/oC

3

1
5

~

short time
operation during

4

" 25

40 W

o

o

""

50

Temperatures
Storage temperature

-65 to +150

Operating junction temperature

max

°c

200 °C

THERMAL RESISTANCE

2

From junction to mounting base

Rth j-mb

From mounting base to heatsink

Rth mb-h

May

1977~

(

4,3 0e/W
0,6 0e/W

BLW81

U.H.F. power transistor

CHARACTERISTICS
Tj=25 0 C
Breakdown voltages
Collector-emitter voltage
VBE = 0; IC =25 mA
Collector-emitter voltage
open base; IC = 100 rnA
Emitter-base voltage
open collector; 'E = lOrnA

V(BR)CES

>

36 V

V(BR)CEO

>

17 V

V(BRIEBO

>

4 V

'CES

<

10 rnA

>
typ

10
35

typ

0,75 V

Collector cut-off current
V BE

= 0; V CE = 17 V

D.C. current gain
IC

*

= 1,25 A; VCE =5 V

Collector-emitter saturation voltage
IC = 3,75 A; IB

hFE

*

=0,75 A

VCEsat

Transition frequency at f == 500 MHz *

= 12,5 V
= 12,5 V

fT

typ

1,3 GHz

fT

typ

0,9 GHz

= Ie = 0; VCB = 12,5 V

Cc

typ

34 pF

= 1 MHz
= 100 rnA; VCE = 12,5 V

Cre

typ

18 pF

Ccs

typ

2 pF

IC = 1,25 A; VCE
IC = 3,75 A; VCE

Collector capacitance at f = 1 MHz
'E

Feedback capacitance at f
IC

Collector-stud capacitance

* Measured under pulse conditions: tp ~ 200 JlS; 6 ~ 0,02.
May 1977

3

!-_BLW_81_jl"",--~______
7Z77167

VCE = 5 V
Tj = 25°C

40

II

r"

1/

7Z77165

60

,

Cc

I'

"- r{YP

I" r\.

f

1\

(pF)

30

= Ie = 0
= 1 MHz
Tj = 25°C
IE

1\

typ

40

,

" ...."

1\

1\
20

,...""" ....

\

\

20

10

--.....
.....

o

o
o

-

2,5

o

IC (A) 7,5

5

10

. V CB (V)

20

7Z77171

2
VCE

= 12,5 V

f = 500 MHz

Tj

fT
(GHz)

1/1"'"

V

-

= 25°C

~
..... t--..,

I"'

/

V

typ

'" '"

~

I"-...

....... t'---.
...... t--.....~
~

o

o

4

2,5

May 1917\ (

5

r--.. 1-0...

IC (A)

7,5

J[_____

B_LW
__
8_1____

__U_.H_.F_.p_ow_er_tr_an_sist_or_____________________

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutrillized common-emitter class-B circuit)
Th

= 25 °C

f (MHz)

VCE (V)

PL (W)

470

12,5

470
175

13,5
12,5

Ps (W)

G p (dB)

10

<

>

10
10

typ 1,9
typ 0,45

2,5

6,0

typ 7,2
typ 13,5

IC (A)

< 1,33

Zi (n)

YL (mA/V)

60

1,3 + j2,5

150 - j66

typ 75
typ 60

1,2 - jO,6

140- j80

'f/ (%)

>

Test circuit for 470 MHz
C10

50n
C9

50n

C71~

~

C8

R2

1Z76587.1

+VCC
List of components:
Cl = 2,2 pF (± 0,25 pF) ceramic capacitor
C2 = C9 = C10 = 2 to 18 pF film dielectric trimmer (cat. no. 222280909003)
C3 = 3,9 pF (± 0,25 pF) ceramic capacitor
C4 = 1,4 to 5,5 pF film dielectric trimmer (cat. no. 2222 809 09001)
C5 = C6 = 15 pF ceramic chip capacitor (cat. no. 2222 851 13159)
. C7 = 100 pF ceramic feed-through capacitor
C8 = 100 nF polyester capacitor
L 1 = stripline (27,9 mm x 6,0 mm)
L2 = 13 turns closely wound enamelled Cu wire (O,5 mm); into dia. = 4 mm; leads 2 x 5 mm
L3 = 17 nH; 1% turns enamelled Cu wire (1 mm); spacing 1 mm; into dia. = 6 mm; leads 2 x 5 mm
L4 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)
L5 = stripline (45,8 mm x 6,0 mm)
L 1 and L5 are striplines on a double Cu-clad printed-circuit board with PTFE fibre-glass dielectric
(€r = 2,74); thickness 1/16".
Rl
R2

= 1 n (± 5%) carbon resistor
= 10 n (± 5%) carbon resistor

Component layout and printed-circuit board for 470 MHz test circuit see page 6.

September 1978

5

l__________

BLW81

APPLICATION INFORMATION (continued)
Component layout and printed-circuit board for 470 MHz test circuit.

14

124

~I

-I
56

_I
7Z76585

--

--

7216586

The circuit and the components are situated on one side of the PTFE fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets.

6

Jl_____

B_LW
__
81_____

__U_,H_,F_,p_ow_er_tr_an_sis_to_r_____________________

1277169

30
f = 470 MHz

- - - Vee = 12,5 V

typical values

- - - Vee =13,5 V

7Z77166

f = 470 MHz
Th = 25 °e
10 typical values

Gp

20

~..... ~ ~

(dB)

Th=25 o~ r-I- f-~
I\.
"'1\ i..-"
i..-"
I"'~

.....

A

""' .....

I- 1/ ..;. 70 0 e

10

~
~

-

Vee = 13,5 V 100

-

17
(%)

~~.

""'T/ roo-

.

"- r\."

"" ',

5

[.,.0 .....

-

'" .... "

~

""' ....

I.-

,.

.A

:."..

Vee = 12,5 V

~"'"

50

\..

r..
Gp '

~

I'..

-~

'£

o

o

2,5

5

Ps (W)

o

o

o
10

20

P (W) 30
L

7277168

13

\.

~

PLnom
(W)

",

VSWR =1

\

\
\

\.

12

,

\.

2,25

f = 470 MHz
Th =70 °e
Rth mb-h = 0,6 °e/w
Veenom = 12,5 V or 13,5 V
Ps = PS nom at V Cenom and VSWR = 1
see page 5

~

~ VSWR=
5

The transistor has been developed for use
with unstabilized supply voltages. As the
output power and drive power increase
with the supply voltage, the nominal output
power must be derated in accordance with
the graph for safe operation at supply
voltages other than the nominal. The graph
shows the permissible output power under
nominal conditions (VSWR = 1), as a
function of the expected supply over-voltage
ratio, with VSWR as parameter.

1\

~

\

"

11

Measuring conditions for R.F. SOAR

111+
1

\.

\.

\

R.F. SOAR

I\"

10

""

~ 10

.' I,

50

Ps
PSnom

9
1

1,1

1,2

The graph applies to the situation in which
the drive (PS/PS nom ) increases linearly with
supply over-voltage ratio.

Vee
Veenom

May 1977

7

_Jl___________

_ _B_LWB_1

OPERATING NOTE Below 200 MHz a base-emitter resistor of 10 n is recommended to avoid oscillation. Th is resistor must be effective for r. f. only.
7Z77163

20

power gain versus frequency
(class- B operation)

Gp
(dB)
I\.

,

15

,

Measuring conditions for the graphs on this page

VCC = 12,5 V
PL = 10 W

,

Th

=

25 °C
typical values

"

,
'\.
~

10

'" '"

"

~

t"--

.....

5
100

4

q

300

f (MHz)

500

7Z77162

input impedance (series components)
versus frequency (class- B operation)
1

8

7Z77164

load impedance (parallel components)
versus frequency (class- B operation)

..... ~

X'

. (n)

~

~

~

7,5

2
ri

J

~

rj

....

,
,

7

I
1/

",

I
II
CL

l/

."

XI,

""'"
50

J

'f\" ,

,........

100

-~ I--~

r--

I

1'0 RL
"l

1

I'

I

V
/I

-2 '1
100

'f'

1\ J

~

o

,

~

~

J

RL
'\

/

8

-~=
Lr-

J

xi

o

6,5
300

f (MHz)

500

I

100

150
300

f (MHz)

500

BLW82

U.H.F. POWER TRANSISTOR

Internally matched n-p-n silicon planar epitaxial transistor intended for use in high-power wide-band
and semi-wide-band u.h.f. amplifiers with a nominal supply voltage of 12,5 V. The transistor is resistance stabilized and is guaranteed to withstand severe load mismatch conditions with a supply overvoltage to 16,5 V. Diffused emitter-ballasting resistors and the application of a gold sandwich
metallization give optimum features of ruggedness and reliability.
The transistor is especially suited as add-on-final stage for low-power modules.
The transistor has a %" 6-lead flange envelope with a ceramic cap. All leads are isolated from the flange.
QUICK REFERENCE DATA
R.F. performance up to Th
mode of operation

c.w.
C.w.

VCE
V
12,5
13,5

= 25 oC in an unneutralized common-emitter class-B circuit
Gp
dB

PL
MHz

W

470

30

470

30

>

5
typ:6,1

>

YL

zi

11

%
60

n

mA/V

1,4 + j3,0

250 + j200

typ.65

MECHANICAL DATA
SOT-119 (see page 2).

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

'I (

April 1978

BLW82

____ ________________________

l~ ~

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-119.

•

25,6

-

max

------i.'" I
3,2
-2,9
__ 6,25
min

-

-- -0,13

ceramic

+
e

5,7

_.~3

-c

3,.8 +
.-!!!!n +

1

25,2
max

-r118,421-

-te

5,7
5,3

t

--

-

_1_

1

-1
12,!
ma:

-~
metal

7Z77385.2

Torque on screw: min. 0,6 Nm (6 kg em)
max. 0,75 Nm (7,5 kg em)
Recommended screw: raised cheese-head 4·40 UNC/2A
Heatsink compound must be applied sparingly and evenly.

2

~ri1197B ~

(

BLW82

U.H.F. power transistor

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Collector-emitter voltage (VBE = 0)
peak value

V CESM

max.

36 V

Collector-emitter voltage (open base)

V CEO

max.

17V

Emitter-base voltage (open collector)

VEBO

max.

4 V

Collector current (average)

'C(AV)

max.

7 A

Collector current (peak value); f> 1 MHz/

ICM

max.

18 A
100 W

R.F. power dissipation (f> 1 MHz); T mb = 25 °C

Prf

max.

Storage temperatu re

Tstg

-65 to + 150 0C

Operating junction temperature

Tj

max.

7Z78267

200 0C

7Z78268

150

10

III

'C
(A)

,

1\

o

5

10

.....

~'"

~

"

..... 1'-0...

'" ~
..........

I'

....

....

r-tO,6,

'0 l J 1 j"ot.C'

,'1'*'
,
....
/0C'
1',..:

50

....
t"'-

I

15VCE (v)20

.... .....

i"

i"""'-

o

o

....

I'

...

50

Fig.3 R.F. power dissipation; VCE ~ 16,5 V;
f> 1 MHz.
, Continuous d.c. operation
II Continuous r.f. operation
III Short-time operation during mismatch

Fig. 2 D.C. SOAR.

THERMAL RESISTANCE (dissipation

....

,
El 6

II~/o

\.

= 70 0 C

roo..

I

,!

'~mb =25 0 C
"-

f- Th

~~ ~~EI"q

\

I' I\.

5

f-

100

= 40 W; T mb = 78 oC,

i.e. Th

= 70 oC)

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

From junction to mounting base (r. f. dissipation)

Rth j-mb(rf)

From mounting base to heatsink

Rth mb-h

2,8 °C/W
1,95 oCIW

0,2 °C/W

April 1978

3

BLW82

Jl

CHARACTERISTICS

TJ.= 25 °C

i

CollectQr-emitter breakdown voltage
VBE = 0; IC = 50 mA

V(BR)CES

>

36 V

Collector-emitter breakdown voltage
open base; IC = 100 mA

V(BR)CEO

>

17 V

Emitter-base breakdown voltage
open collector; 'E = 20 mA

V(BR)EBO

>

4 V

Collector cut-off current
VBE = 0; VCE = 17 V

'CES

<

20 mA

Second breakdown energy; L = 25 mH; f = 50 Hz
open base
RBE = 10 n

ESBO
ESBR

>
>

D.C. current gain *
'C=4A;VCE=5V

hFE

Collector-emitter saturation voltage *
IC=12A;IB=2,4A

VCEsat

typo

1,4 V

Transition frequency at f = 500 MHz *
-IE = 4 A; VCB = 12,5 V
-IE = 12 A; VCB = 12,5 V

fT
fT

typo
typo

2,2 GHz
1,5 GHz

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 12,5 V

Cc

typo

88pF

Feedback capacitance at f = 1 MHz
IC.= 200 mA; VCE = 12,5 V

Cre

typo

56 pF

Collector-flange capacitance

Ccf

typo

3 pF

* Measured under pulse conditions: tp ..;; 200 }lS; 6 ~ 0,02.

4

April

19781 (

typo

4,5 mJ
4,5 mJ
40
10 to 80

j

U.H.F. power transistor

BLW82

- - - - - - - " " "
7Z78270

7Z78269

60

, -

.....

,

,

200

1

\

1/

\ VCE

J

,

J

40

I
,~

~

....

.....

=

,12,5 V

,

,

\

\

\.

L

\

\

\

I
\

,
"

100

,

I\.

......

,

1""00" ~p

1\5V

20

o
o

10

o
o

20

IC (AI

10

.-. r- r-

-

20

30

VCB(VI
Fig. 5 IE = Ie = 0; f = 1 MHz; Tj = 25 cc.

Fig. 4 Typical values; Tj :; 25 cC.

7Z78279

3

fT

(GHzl
~I"'"

i;'

2

1- ...

....

i"""

r--

Ioo....f"

1/1.10"

f",["\\

'J

.1 .
, J L.,.oo

....

IV

1"1.

..........

1'-",
~,

!'.

J

I\.

"
"

I\.

"I'
i\

"

~
~

V

~

~

CB

:;

"'~
~ 12,5 V
, 10 V
I
5V I I

o
o

I I
I I I I

5

'

10

15

Fig. 6 Typical values; f = 500 MHz; Tj = 25

20

-IE (AI

cc.

I(

April 1978

5

BLW82

APPLICATION INFORMATION
R.F. performance in C.w. operation (unneutralized common-emitter class-B circuit)
Th

= 25 °C

f (MHz)

VCE (V)

PL (W)

Ps(W)

Gp (dB)

470

12,5

30

<9,5

>

470

13,5

30

5

IC(A)
<4

typ.6,1

li(O)

YL (mAN)

1,4 + j3,0

250+ j200

17 (%)

>

60

typ.65

C8

L6

50n
50n

C7

C5

~

----

7278280.1

+VCC
Fig. 7 Test circuit; c.w. class-B.
- . List of components:
C1 = C2= C7 = C8 = 2 to 9 pF film dielectric trimmer (cat. no. 2222809 09002)
C3 = C6 = 3,9 pF ceramic capacitor (500 V)
C4 = 100 pF feed-through capacitor
C5 = 100 nF polyester capacitor
L 1 = stripline (24,0 mm x 6,7 mm)
L2 = 10 turns closely wound enamelled Cu wire (0,4 mm); into dia. 4 mm
L3 = 2 turns enamelled Cu wire (0,6 mm); Ferroxcube tube core, grade 385 (cat. no. 4313 02015170)
L4 = 12,6 nH; 2,5 turns enamelled Cu wire (0,7 mm); into dia. 4 mm; length 3 mm; leads 2 x 5 mm
L5 = Ferroxcube wide-band h.f. choke, grade 38 (cat. no. 431202036640)
L6= stripline (28,4 mm x 6,7 mm)
L 1 and L6 are striplines on a double Cu-clad printed-circuit board with PTFE fibre-glass dielectric
(er = 2,74); thickness 1/16".
R1= R2 = 100 carbon resistor
Component layout and printed-circuit board for 470 MHz test circuit are shown in Fig. 8.

6

July

19781 (

j

U.H.F. power transistor

BLW82

----

7Z78204.1

104

~

+"".•

56,5
(1)

"~ ~

_______
..'1I_""'_'(1_)_ _ _ __ _

--

1

__

7Z78205.1

(1)

[~ double Cu-clad printed-circuit board
. -----==- -

Cu strap (thick 0,3 mm; wide 5,0 mm)

7Z78206

Fig. 8 Component layout and printed-circuit board for 470 MHz test circuit.
The circuit and the components are situated on one side of the PTFE fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

July 1978

7

BLW82

7Z78272

7Z 7 8271

60

10

,-- Th =
i/

40

~ 70°C

Vf
1/1/'
J

25°C
IJ L

io""

~"

-" r-

,I,.
rJ

5

~

I,V

~

20

"

Th =
2SoC

I..,
r""-'

I

2S~C

!\.

I

70°C

fI

J.'

....
-.---

-,

o

o

10

'

20

P

s (W)

o

10

20

Fig. 9.

30 PL(W) 40

Fig. 10.
7Z78273

100

11

Conditions for Figs 9, 10 and 11:

(%)

--

~ i-"

!-"

~I'oo...

1-

so

.,

-'

70°C

o

10

20

(
1

Fig. 11.

8

Th =
2SoC-

April 1978

30 P L (W) 40

= 470 MHz;
= 12,5 V; - - - VCE = 13,5 V.

Typical values; f
-

VCE

___
U._H_.F_.p_o_we_r_tr_an_sis_to_r________________________

~~~

B_L_VV_B_2______

______

7Z78274

40

40

P Ln om

(W

7Z78275

P Ln om

I
....... .......
:

(VSW R = 1)

VSWR=
6

.....

~ .....

f'

I

I

10

i"o...

......

(W )

~

VSWR= r-r-

,
1"-.

(VSW R = 1)

..... 1'00..

..... 1'00..

30

- - r-

\. .'\
I\.

I

'\

\.
'\.

, "-, '\

r\.

~5

'\.

2p
50

"

30

10
" " ". . . 5020
I\..

i"o...

~20

PSnom -

1

1,1

-

4

1,2
VCEnom

Fig. 12 R.F. SOAR (short-time operation
during mismatch); f = 470 MHz; Th = 70 oC;
Rth mb-h = 0,2 °C/W; VCEnom = 12,5 V;
Ps = PS nom at VCEnom and VSWR = 1.

20

I

Ps PSnom 1

1,1

1,2

--

VCE
VCEnom

Fig. 13 R.F. SOAR (short-time operation
during mismatch); f = 470 MHz; Th = 70 oC;
Rth mb-h = 0,2 °C/W; VCEnom = 13,5 V;
Ps = PS nom at VCEnom and VSWR = 1.

Note to Figs 12 and 1:3:
The transistor has been developed for use with unstabilized supply voltages. As the output power and
drive power increase with the supply voltage, the nominal output power must be derated in accordance
with the graph for safe operation at supply voltages other than the nominal. The graph shows the
permissible output power under nominal conditions (VSWR = 1). as a function of the expected supply
over-voltage ratio with VSWR as parameter.
The graph applies to the situation in which the drive (PS/PS nom ) increases linearly with supply overvoltage ratio.

April 1978

9

l"----'---________

BLW82

7Z78276

5

7Z78277

6

CL
(pF)

(n)

4

....

100

CL
_ ...

~

3
~

~

/

,

4

I

,/

50

~

~
~

•
,,,

2

t,...

I

't'
~

/

1-1- -ri

....

.J

2

o

~RL
~

fI'

1;0

-50

If
IJ

o

I'

-100

1-1- xi~

I
I

-==

-1

-==

I

o

250

f(MHz)

500

Fig. 14 Input impedance (series components).

o
o

250

f (MHz)

500

Fig. 15 Load impedance (parallel components).

7Z78278

15
\

\
\

'\
Conditions for Figs 14, 15 and 16:

I\.

10

Typical values; VCE = 12,5 V; PL = 30 W;
Th:::: 25 °C.

"

~
~

....

l'
1' ... -

5

o
o

250

Fig. 16.
10

April 1978

r

f (MHz)

500

_______Jl_BL_W83_
H.F.N.H.F. POWER TRANSISTOR
N-P-N silicon planar epitaxial transistor for use in transmitting amplifiers operating in the h.f. and v.h.f.
bands, with a nominal supply voltage of 28 V. The transistor is specified for s.s.b. applications as linear
amplifier in class-A and AB. The device is resistance stabilized and is guaranteed to withstand severe
load mismatch conditions.
Matched hFE groups are available on request.
It has a 3/8" flange envelope with a ceramic cap. All leads are isolated from the flange.
QUICK REFERENCE DATA
R. F. performance
mode of operation

VCE
V

f
MHz

G

PL

,d~

W

>

l1dt

%

-

IC
A

d3
dB

<

Th

°C

s.s.b. (class-A)

26

1,6 - 28 0- 10 (P.E.P.)

-40

70

s.s.b. (class-AB)

28

1,6 - 28 3 - 30 (P.E.P.) typo 21 typo 40 typo 1,34 ,typ. -30

25

__

-y/~:~
32 "

e

1,35

____ 0,17 Dimensions in mm
0,11

MECHANICAL DATA
Fig. 1 SOT-123.

20

"

"'20,6
7Z77386.1

6,35 - -

2,54

t

I I;

I

I1

4,55
4,10

Torque on screw: min. 0,6 Nm (6 kg cm)
max. 0,75 Nm (7,5 kg cm)

+

I___t

~~~

t

Recommended screw: raised cheese-head
4-40 UNC/2A
Heatsink compound must be applied sparingly
and evenly.

Ir~y1978

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

--

l

BLW83

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Collector-emitter.voltage (VeE = 0)
peak value

V CESM

max.

65 V

Collector-emitter voltage (open base)

VCEO

max.

36 V

Emitter-base voltage (open-collector)

VEBO

max.

4 V

Collector current (average)

'C(AV)

max.

3 A

Collector current (peak value); f> 1 MHz

ICM

max.

R.F. power dissipation (f> 1 MHz); T mb = 25 °C

max.

Storage temperature

Prf
T stg

Operating junction temperature

Tj

max.

W

-65 to +150 0C
200 0C

7Z77522

7Z7752'1

10

100

IC

e
==

9 A
76

(A)

Prf

'"

short-time
operation
during mismatch- r-

~

(W)

0

N"mb=25 C

"

continuous ~
r-~ &r.f.
operation ~

Th=70~1\1\

~

'~

50

derate by 1 _I
0
0,42 W1 ""

I"

~

,

....

"

continuous "'"
"
"'"
_ d.c. operation"
-f--;. derate by
...."
o
0,32W/ C '

o
50
VCE (V)

10

100

Fig. 2 D.C. SOAR.

THERMAL RESISTANCE (dissipation

2

o

50

100

(0

Th

Fig.3 R.F. power dissipation; VCE
f;;;"l MHz.

~

C)

150

28 V;

=35 W; T mb = 80 oC, i.e. Th =70 oC)

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

3,15 0C/W

From junction to mounting base (r.f. dissipation)

Rth j-mb(rf)

.2,35 oCIW

From mounting base to heatsink

Rth mb-h

May 1978

I(

0,3 oCIW

__

H_'_F'_/V_'H_'F_._~_~_r_tr_an_si_rto_r

~~

_____B_L_W
__
83
______

_______________________

CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector-emitter breakdown
VBE=0;lc=10mA

vol~age

V(BR)CES

>

65 V

Collector-emitter breakdown voltage
open base; IC = 50 rnA

V(BR)CEO

>

36 V

Emitter-base breakdown voltage
.~ open collector; IE = 10 rnA

V(BR)EBO

>

4 V

Collector cut-off current
VBE=0;VCE=36V

ICES

<

4 rnA

Second breakdown energy; L = 25 m H; f = 50 Hz
open base
RBE = 100

ESBO
ESBR

>
>

8 mJ
8 mJ

D.C. current gain *
IC = 1,25 A; VCE = 5 V

hFE

typo
50
10 to 100

D.C. current gain ratio of matched devices*
IC = 1,25 A; VCE = 5 V

hFE1/hFE2

<

1,2

Collector-emitter saturation voltage*
IC = 3,75 A; IB = 0,75 A

VCEsat

typo

1,5 V

Transition frequency at f = 100 MHz*
-IE = 1,25 A; VCB = 28 V
-IE = 3,75 A; VCB = 28 V

fT
fT

typo
typo

530 MHz
530 MHz

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 28 V

Cc

typo

50 pF

Feedback capacitance at f = 1 MHz
IC = 100 rnA; VCE = 28 V

Cre

typo

31 pF

Collector-flange capacitance

Ccf

typo

2 pF

--

7Z77762

3

l"
b

IC

'I
Th= 70 o C l(l25 0 C
1~
I

(A)

2

.'.
1/
'j

/J

1/
/)

'I'~
~'f'

o

-,'
o

0,5

1,5 VSE (V) 2

Fig. 4 Typical values; VCE = 28 V.
* Measured under pulse conditions: tp 0;;;;; 200 /lS; 5 0;;;;; 0,02.

~

(

May 1978

3

_B_LWB_3

_J l""---__________
7Z77763

75

,~

Cc

t'...

-"

50

....

,

7Z77784

150

(pF)

'\
!'\VCE=28V

'I\..\

100

~

I\.

\

\

".

\

....

1,\ \

---.....
-

o

"""

5V\

25

o

o

5

'CIA)

-...~

10

Fig. 5 Typical values; Tj = 250C.

typ t-I-

i""","

50

r-~

o

20

40

Vca (V)

Fig. 6 IE=l e =0;f=1 MHz;Tj

= 250C.
7Z77766

600
fT
(MHz)

1..0"

1"'"1000

1.00"

r"'t"-I!..

iI"

I/'

r"'"",

J

,.

J.

400

... ""
I'

,...
t'oo..

~

.....

"

I'

....

"

"LIi.

Vca=28V-

"-

200
I"

15V

o

o

2

4

6

-IE (A)

Fig. 7 Typical values;f = 100 MHz; Tj = 25.0C.

4

8

1--

H_'F_'N_'H_'_F._po_~_rt_ra_ns_isto_r

__

Jl_____

BL_W
__
83__

___________________

~_

APPLICATION INFORMATION

R.F. performance in s.s.b. class-A operation (linear power amplifier)
VCE

= 26 V; f1 = 28,000 MHz; f2 = 28,001

~C

output power
W

>

MHz

IC
A

d3
dB*

d5
dB*

Th
°C

10 (P.E.P.)
typo 11 (P.E.P.)

>

20

1,35

-40

<-40

70

typo 12 (P.E.P.)

typ.24

1,35

-40

<-40

25

C10
50n

son
C2
C7
C6

.---....
-

H

-

~+
C8
L2

~

I
R5

R8
+VCC

BY206

1Z77772.1

R2

Fig. 8 Test circuit; s.s.b. class-A.
List of components on page 6.
* Stated intermodulation distortion figures are referred to the according level of either of the equal
amplified tones. Relative to the according peak envelope powers these figures should be increased
by 6 dB.

"I (September

1978

5

Jl""'--'-_ _ _

;_BLW-----"""83

List of components in Fig. 8:
Cl =
C3 =
C4 =
C5 =
C6 =
C7 =
C9 =
Cl0 =
C12 =

C2 = 10 to 780 pF film dielectric trimmer
22 nF ceramic capacitor (63 V)
47 JLF/l0 V electrolytic capacitor
56 pF ceramic capacitor (500 V)
47 JLF/35 V electrolytic capacitor
C8 = 220 nF polyester capacitor
10 JLF/35 V electrolytic capacitor
Cll = 7 to 100 pF film dielectric trimmer
82 pF ceramic capacitor (fiOO V)

L1
L2
L4
L5

3 turns closely wound enamelled Cu wire (1,6 mm); into dia. 9,0 mm; leads to 2 x 5 mm
L3 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 431202036640)
11 turns closely wound enamelled Cu wire (1,6 mm); into dia. 11,0 mm
14 turns closely wound enamelled Cu wire (1,6 mm); into dia. 11,0 mm

=
=
=
=

Rl = 600 n; parallel connection of 2 x 1,2 kn carbon resistors (±5%; 0,5 W each)
15 n carbon resistor (±5%; 0,25 W)
R2
R3
1,2 n; parallel connection of 4 x 4,7 n carbon resistors (±5%; 0,125 W each)
R4
33 n carbon resistor (±5%; 0,25 W)
R5
18 n carbon resistor (±5%; 0,25 W)
R6 = 120 n wirewound resistor (±5%; 5,5 W)
R7
1 n carbon resistor (±5%; 0,125 W)
R8 = 47 n wirewound potentiometer (3 W)
R9 =1,57 n; parallel connection of 3 x 4,7 n wirewound resistors (±5%; 5,5 W each)

----

1Z77766

-20

IC=0,8A
/

.....

-40

,
1/

",.

~l.-'

~

~

....

~

,;

....

V"

~

~~
~

V

,;,

1c/\A I-- 1,35A
/1.1 1.1'
/1/

"

1-

.'

",

~

~&~
~~.

-60

o

5

10

P.E.P. (W)

15

Fig. 9 Intermodulation distortion as a function of output power.
Typical values; V CE = 26 V; - - T h = 70 oC; - - - T h = 25 °C.

6

M8V 1978

I(

H'_F'_N_'H_'F_'_~_M_r_tra_n_Sis_m_r

___

,Jl._____B_L_W_8_3_____

_____________________

R.F. performance in s.s.b. class-AB operation (linear power amplifier)
VCE

= 28 V; f1 = 28,000 MHz; f2 = 28,001

output power

17dt (%) IC (A)
at 30 W P.E.P.

W
3 to 30 (P.E.P.)
3 to 25 (P.E.P.)

MHz

typo 21

typo 40

typo 1,34

typ.21

Th
°C

d3
dB*

d5
dB*

IC(ZS)
mA

typo -30

<-30

25

25

typo -30

<-30

25

70

C7
50n
C8
C2

temperature
compensated bias

' - - -......- -......- - 0 +VCC

----

7Z77771.1

Fig. 10 Test circuit; s.s.b. class-AB.
List of components:
C1 = C2 = 10 to 780 pF film dielectric trimmer
C3 = C5 = C6 = 220 nF polyester capacitor
C4 = 56 pF ceramic capacitor (500 V)
C7 = C8 = 15 to 575 pF film dielectric trimmer
L 1 = 4 turns closely wound enamelled Cu wire (1,6 mm); into dia. 7,0 mm; leads 2 x 5 mm
L2 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 431202036640)
L3 = 4 turns enamelled Cu wire (1,6 mm); into dia. 10 mm; length 9,4 mm; leads 2 x 5 mm
L4 = 7 turns enamelled Cu wire (1,6 mm); into dia. 12 mm; length 17,2 mm; leads 2 x 5 mm
R1 = 1,2 n; parallel connection of 4 x 4,7
R2 = 39 n carbon resistor

n carbon resistors

* Stated intermodulation distortion figures are referred to the according level of either of the equal
amplified tones. Relative to the according peak envelope powers these figures should be increased
by 6 dB.

September 1978

7

---'Jl_____- - - - -

_B_LW8_3

7Z77770

-20

Th=
90°C
~ 70°C
~ SOOC
I I ./ 2SoC
,....)
J JJ
Th=

d3

J
If

I ..

-30

II I
~

I
~
~~

I

J
II

dS
-40

1\' ,,," '\
\

II
IA.:If..

\ 1\
\

I

-so

Gp

(%)

(dB)

-G p

.......

40

,

".
r-

~

~

~r/

1-1
I
II

20

I

.

I
I

,

o

o

10

17dt
/

20

P.E~P. (W)

40

o

o
20

P.E.P. (W)

=28 V; IC(ZS) = 25 rnA; fl = 28,000 MHz;f2 = 28,001

MHz; typical values.

Conditions for Fig. 12:
VCE =28 V; IC(ZS)

=25 rnA; f1 =28,000 MHz; f2 =28,001 MHz; Th = 2S °C; typical values.

* See note on page 7.

40

Fig, 12 Double-tone efficiency and power gain as a
function of output power.

Conditions for Fig. 11:

8

20

~

Fig. 11 Interrnodulation distortion as a function
of output power. *

VCE

30

lldt

1..-':1"

l !l

---

./

..t!~v

I\',~

90°C
70°C
SOOC
2SoC

7Z77769

60

J

l-....__B_L_W_8_3_ _

_H_.F_.!V_.H_.F_.po_we_rt_ran_Sis_to_r_ _ _ _ _ _ _ _ _

7Z17767

30

7Z71768

20

q\

r-r-",

~

Gp

"'

(dB)

1\

q
(0)

\

~

\

I

,

v
]

7

,

15

r\

20

,
1\

\

10

5

/
1/

1\

-7,5

1\

\

,
'I-

Xi
Ul)

I

,

\

10

-2,5

-5

I

1\
_ X·

J

~

-10

~

'"'"""",o

o
1

10

f (MHz)

Fig. 13 Power gain as a function of frequency.

1

10

f (MHz)

--

-12,5
10 2

Fig. 14 Input impedance (series components) as a
function of frequency.

Figs 13 and 14 are typical curves and hold for an un neutralized amplifier in s.s.b. class-AB operation.
Conditions:
V CE

= 28 V; IC(ZS) = 25 mA; PL = 30 W; Th = 25 oC; ZL = 9,5 O.

Ruggedness in s.s.b. operation
The B LW83 is capable of withstanding a load mismatch (VSWR = 50) under the following conditions:
f1 = 28,000 MHz; f2 = 28,001 MHz; VCE = 28 V; Th = 70 °C and PLnom = 35 W (P.E.P.).

9

_____J

BLW84

V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated v.h.f. transmitters
with a nominal supply voltage of 28 V. The transistor is resistance stabilized and is guaranteed to withstand severe load mismatch conditions.
It has a 3/8" flange envelope with a ceramic cap. All leads are isolated from the flange.
QUICK REFERENCE DATA
R.F. performance up to Th = 25 0C in an unneutralized common-emitter class-B circuit
mode of operation

c.w.

Gp

VCE
V

MHz

28

175

n

zi

YL
mAN

1,0 + j1,2

59-j54

dB

>9

25

>60

MECHANICAL DATA

0,17 Dimensions in mm

"'- 59
__ y3,2

Fig. 1 SOT-123.

2,9/5:5
e

- - --0,11

"

" " 20.6
6,35

--

7Z77386.1

Torque on screw: min. 0,6 Nm (6 kg cm)
max. 0,75 Nm (7,5 kgcm)

I

2,54

f

r 1:

~

I:

11

7,25

---t-iax

f

Recommended· screw: raised cheese-head
4-40 UNC/2A
Heatsink compound must be applied
sparingly and evenly.

CAUTION This deVice incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the 8eOdisc is not damaged.

'I

Febn 1 MHz

ICM

peak value
Collector-emitter voltage (open base)
Emitter-base voltage

(~pen

collector)

max.

9 A

R.F. power dissipation (f> 1 MHz); T mb = 25 °c

max.

76 W

Storage temperature

-65 to

Operating junction temperature

max.

--

100

IC
(AI

---

200 0C

7Z71522

7Z77521

10

+ 150 0C

Prf

'"

iW)

f'{mb=25 °c

Th=70~\
~

short-time
operation
_
...... during mismatch
:continuous
~
r- ~
~
.... ~r.~f. operation
derate by I ~I
~ 0,42W/ o ",

f'

b

50

'~

..

...

.......

"ro...

continuous ... ,....
"_ d.c. operation......
"derate by '~"
0,32W/oC

-

o

10- 1

5

50
VCE (VI

10

100

Fig. 2 D.C. SOAR.

...

o

50

Fig. 3 R.F. power dissipation; VCE
1 MHz.
~

~

28 V;

f~

THERMAL RESISTANCE (dissipation = 20 W; T mb =76 oC; i.e. Th

2

= 70 OC)

From junction to mounting base (d.c. dissipation)

Rth j-mb (de)

From junction to mounting base (r. f. dissipation)

Rth j-mb (rf)

From mounting base to heatsink

Rth mb-h

February .1978

(

3,OoC/W
2,25 0 C/W

0,3

0 C/W

Jl____

V_.H_.F_.~_w_er_tr_8nS_in_or

__

B_L_W_8_4____

_____________________

CHARACTERISTICS
Tj =25 0C
Collector-emitter breakdown voltage
VBE=0;IC=10mA

V(BR)CES

>

65 V

Collector-emitter breakdown voltage
open base; IC = 50 rnA

V(BR)CEO

>

36 V

Emitter·base breakdown voltage
open collector; IE = 10 rnA

V(BR)EBO

>

4 V

Collector cut· off current
VBE = O;VCE = 36 V

ICES

<

4 rnA

Second breakdown energy; L = 25 mH; f = 50 Hz
open base
RBE= 100

ESBO
ESBR

>
>

8 mJ
8 mJ

D.C. current gain *
IC = 1,25 A; VCE

hFE

typo
45
10 to 100

Collector-emitter saturation voltage *
Ic = 3,75 A; IB = 0,75 A

VCEsat

typo

Transition frequency at f = 100 MHz *
-IE = 1,25 A; VCB = 28 V
-IE = 3,75 A; VCB = 28 V

fT
fT

typo
typo

650 MHz
650 MHz

Collector capacitance at f = 1 MHz
IE = Ie =0; V CB '= 28 V

Cc

typo

45 pF

Feedback capacitance at f = 1 MHz
IC= 100mA;VCE =28V

Cre

typo

28 pF

Ccf

typo

2 pF

=5 V

Collector-flange capacitance

* Measured under pulse conditions: tp ~ 200 IlS; ~

~

0,02.

1,5 V

r~B_LW8_4 Jl'---______
__

7Z1"'523

60
i"'"

7Z'77524

150

....
i'I...

Cc

\.

IpF)
'\.

~

40

.....

" , '-

" VCE=28V

100

~

\

\

\1

Y
\.

\.

\

~

\

1\.,

20

~

\

~

50

r-r5V r-r-

........

typ

r-_,-

r-

.

---

o

o

5

IC(A)

Fig. 4 Typical values; Tj

o

o

10

=25 °C.

......

Fig. 5 IE

20

40

Vce IV)

= Ie =0; f =1 MHz; Tj =25 oC.

....
....

.... ....

250r+~~~~~~~~~~~~~~~+4~~4-~~~~~~~~~~~~

"
I I
I I
I I

O~~~~~~~~~~~~~~~~~~~~~~~~~~T~~I

o

2

4

Fig. 6 Typical values; f

4

6

-IE (A)

= 100 MHz; Tj =25 oC.

8

V_.H_.F_._po_w_e_rt_~_ns_is_ro_r

___

~~

__________________________

______
B_L_VV_8_4______

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th

=:

25 °C

f (MHz)

175

j VCE (V)
I 28

PL (W)

Ps (W)

Gp (dB)

IC (A)

1/ (%)

Zi (n)

YL (mAN)

25

<3,15

>9

<1,49

>60

1,0+j1,2

59-j54

C8

50n 0 -...............1

-Fig. 7 Test circuit; c.w. class-B.
List of components
C1 = C7 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222 809 07004)
C2 = 5 to 60 pF film dielectric trimmer (cat. no. 2222 80907011)
C3a = C3b = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor (500 V)
C5 = 100 nF (± 10%) polyester capacitor
G6a = 2,2 pF ceramic capacitor (500 V)
C6b = 1,8 pF ceramic capacitor (500 V)
C8 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
L1 = 14 nH; 1 turn enamelled Cu wire (1,6 mm); into dia. 7,7 mm; leads 2 x 5 mm
L2 = 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia ..3 mm; leads 2 x 5 mm
L3 = L8 = Ferroxcube wide-band h.f. choke, grade 38 (cat. no. 4312 020 36640)
L4 = L5 = strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
L6 = 80 nH; 3 turns enamelled Cu wire (1,6 mm); into dia. 9,0 mm; length 8,0 mm; leads 2 x 5 mm
L7 = 62 nH; 3 turns enamelled Cu wire (1,6 mm); into dia. 7,5 mm; length 8,1 mm; leads 2 x 5 mm
L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
Rl

= R2 = 10 n

(± 10%) carbon resistor (0,25 W)

Component layout and printed-circuit board for 175 MHz test circuit are shown in Fig. 8.

September 1978

5

_-BLW-84-jl---_-----..:--APPLICATION IN FORMATION (continued)

.72

7Z77549.1

-==....=
"'""-

7Z77548

Fig. 8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.
To minimize the dielectric losses, the ground plane under the interconnection of l7 and C7 has .been
removed.

6

September 1978

r

v_'H_'F_.po_w_er_t~_nS_jst_or

__

Jl____

7Z77525

60

I I I I
I
I

,
I'

...

~

Gp

1)

~

(dB)

(%)

~

-";;,'"

..

70°C

....

/
/

~

I

Gp~

T

7'

7Z77526

15

r

Th=250C '-f-

40

B_L_W_8_4____

____________________

I"-

"'"

...

~

'-

10

,If'

~

/J

'-I

.....
\.

,

...

."

100

\.

"f
r)

)

roo..,
~

Ii
'I

20

~J

5

A
II

r

17:::

I
II

50

~.I"

1"":10""

,J
o
o

5

Ps (W)

10

Fig. 9 VCE = 28 V; f = 175 MHz; typical values.

o
o

o
25

50

Fig. 10 VCE = 28 V;f= 175 MHz; typical values;
- - - Th = 25°C; - - Th = 70°C.

7Z77528

35 I

P Ln om
( W)
(VSW R = 1)

r-..., Th=50oC
.........

30

.........
.... 70°C

1'1

25

.............. 10....

IITII
90°C

Fig. 11 R.F. SOAR; c.w. class-B operation;
f = 175 MHz; VCE = 28 V; Rth mb-h = 0,3 oC/W.

20

15

1

10

VSWR

102

The graph shows the permissible output power
under nominal conditions (VSWR = 1) as a
function of the expected VSWR during shorttime mismatch conditions with heatsink
temperatures as parameter.

1_

February 1978

7

jl_____~__

I_B_LW8_4__

OPERATING NOTE Below 70 MHz a base-emitter resistor of 10 n is recommended to avoid oscillation.
This resistor must be effective for r.f. only.
7Z77529

7Z77530

o

+5
q
Xi
(n)

Xi

+2,5

q

Ll
\

...... ~
~~

~~ ~

~

I...-'

~RL

r-q

~

~

V

'(

IV

J

II

-,

20

I

---

Ifl'

r\

II

II

Ilxj
I-

-5

15

o

-100

I

\

iI'
-2,5

1/

1\

25

~

-50

~

\

!/

(pF)

_100- io-

~

\

~

V

o

I-

30

CL

CL l -

100

200
Fig. 12.

300

-150

"

ri CL

0

100

f (MHz)

RL

"Ii~

·
F Ig.

I--

-200
200 300
13
f (MHz)

•

7Z77531

40

Gp
(dB)
Conditions for Figs 12, 13 and 14:

30

Typical values;
Th = 25

°e.

20

"

10

r\.

,,'

1\

'" '"

1"'0"
!"'i"oo,.
~

""""

100

8

February 1978

200

r

300
f (MHz)

Fig. 14.

YeE = 28 V; PL = 25 W;

_______Jl___

BL_W85_

H.F'/V.H.F. POWER TRANSISTOR
J

N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated mobile h.f. and
v.h.f. transmitters with a nominal supply voltage of 12,5 V. The transistor is resistance stabilized and
is guaranteed to withstand severe load mismatch conditions with a supply over-voltage to 16,5 V.
Matched hFE groups are available on request.
It has a 3/8" flange envelope with a ceramic cap. All leads are isolated from the flange.
QUICK REFERENCE DATA
R.F. performance up to Th = 25 °C
mode of operation VCE

V
c.w. (class-B)

12,5

s.s.b. (class-AB)

12,5

MECHANICAL DATA
Fig. 1 SOT-123.

f
MHz

PL

Gp
dB

'Y/

zi

YL

W

%

n

mAN

175

45

>5

> 75

1,2 + j1,4

320 + j150

1,6-28 3-30 (P.E.P.) typo 19,5 typo 35

--

typ.-33

o 17Dimensions in mm
- - --0:11

32 "'-

-y/~:~
e

d3
dB

"

" " 20,6
7Z77386.1

6,35 - -

4,55
4,10

t
2,54

t

I I :.l I I

I .I I~ ---t ~t~~

Torque on screw: min. 0,6 Nm (6 kg cm)
max. 0,75 Nm (7,5 kgcm)
Recommended screw: raised cheese-head
4-40 UNC!2A

Heatsink compound must be applied sparingly
and evenly~

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

Il'ebruary

1978

_B_LW8_5

_Jl________

RATI.NGS
,Limiting values in accordance with the Absolute Maximum System (lEC 134)
Collector-emitter voltage (VBE
peak value

= 0)
VCESM

max.

36 V

Collector-emitter voltage (open base)

VCEO

ma>.<.

18 V

Emitter-base voltage (open-collector)

VEBO

max.

4 V

Collector current (average)

'C(AV)

max.

9A

'CM

max.

> 1 MHz

Collector current (peak value); f

R.F. power dissipation (f> 1 MHz); T mb = 25

°c

22 A

Storage temperature

- 65 to

Operating junction temperature

max.

W

105

max.

+ 150 °c
200 0C

7Z17533
7Z77532

20

Ie

100

(A)

,

Prf -

----

10

" "-.
5

l\.

(W)

",l\.

1 .•1

I

'\i.short-tlm~

I.'

,

~

continuous
1\..,
~ r.f. operation l\..
'" derate by I

-r-

" . O,58W/ o C

"

"\

""
50

\

20
30
VCE (V)'

Fig. 2 D.C. SOAR.

" '..

""

I\..
continuous
~
d.c. operation 'derate by'
0,43W/ oC'·

o
10

5

I

mismatch

"-

Th=700~

2

1

1"-' operation durlng-

'- -

\..Tmb=25 0e

""

""

o

50

-",

100

Th

(0) 150

C

Fig. 3 R.F. power dissipation; VCE ~ 16,5 V;
1 MHz.

f~

THERMAL RESISTANCE (dissipation = 30 W; T mb = 79 oC; i.e. Th

= 70 OC)

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

From junction to mounting base (d. dissipation)

Rth j-mb(rf)

1,8 0C/W

Rt"h mb-h

0,3 oCIW

From mounting base to heatsink

2

February 1978

r

2,5 oCIW

Jl

H.F.N.H.F. power transistor

BLW85

CHARACTERISTICS
Tj = 25 0C
Collector-emitter breaKdown voltage
VBE = 0; IC = 50 rnA

V(BR)CES

>

36 V

Collector-emitter breakdown voltage
open base; IC = 100 inA

V(BR)CEO

>

18 V

Emitter-base breakdown voltage
open collector; IE = 25 rnA

V(BR)EBO

>

4 V

Collector cut-off current
VBE=0;VCE=18V

ICES

<

25 rnA

Second breakdown energy; L = 25 mH; f = 50 Hz
open base
RBE = 10 n

ESBO
ESBR

>
>

8 mJ
8 mJ

D.C. current gain*
IC=4A;VCE=5V

hFE

typo 50
10 to 80

D.C. current gain ratio of matched devices*
I C = 4 A; V CE = 5 V

hFE1/hFE2

<

Collector-emitter saturation voltage*
IC = 12,5 A; 18 = 2,5 A

VCEsat

typ: 1,5 V

Transition frequency at f = 100 MHz*
-IE =
4 A; V CB = 12,5 V
-IE = 12,5 A; VCB = 12,5 V

fT
fT

typo 650 MHz
typo 600 MHz

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 15 V

1,2

Cc

typo 120 pF

Feedback capacitance at f = 1 MHz
I C = 200 rnA; V CE = 15 V

Cre

typo

82 pF

Collector-flange capacitance

Ccf

typo

2 pF

* Measured under pulse conditions: tp ~ 200 JlS; 6 ~ 0,02.

February 1978

3

__BLW_85_Jl,--._ _ _ _ _ __
7Z77251

7Z67077.1

300

typical values
Tj = 25°C

Ie: le: O
f

100

Cc

= 1 MHz_

1\

(pF)

~

1\

200

Vce=
12,5 V

1\

L"

, 10'

~

/

I" typ

.... "'"

5V

50

io"""

,..
~

.... r- ....

100

o

0

5

0

==
5

10

o

IC (A) 15

10

Vce (V)

Fig. 5 Tj: 250C.

Fig. 4.

7Z77257.A

750

fT
(MHz)

-....

io""
,~

II

-....

~

....

....

r""-o
1""'" ....

..... ~

r---

"

_Ll
1'-00

"'"

~

I (

,..."" ,...

r- ...

I0000 ....
•

1""'10-

....

'I

500

typical values
f = 100 MHz
Tj: 25°C

~

Vce:
12,5V

I"o!.

10V

....

,..

I I
11

i"""

11
I"'"

( (

~

5V

250

0

4

0

February 1978

5

r

10
Fig.6.

15

-IE (A)

20

20

BLW85

H.F.N.H.F. power transistor

APPLICATION INFORMATION
R.F. performance in C.w. operation (unneutralized common-emitter class-B circuit)
Th

= 25 °C

f (MHz)

VCE (V)

175

12,5

45

175

13,5

45

PL (W)

Ps (W)
<14,2

Gp (dB)
>5

IC (A)
<4,8

typo 6,0

1/ (%)

>75

Zi (n)

YL (mA/V)

1,2+j1,4

320+j150

typo 75

'--.......r.--H-......--o 50 U

C8

Fig. 7 Test circuit;

C.W.

class-B.

List of components:
C1 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222 S09 07004)
C2 = CS = 4 to 40 pF film dielectric trimmer (cat. no. 222280907008)
C3a = C3b =47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor (500 V)
C5 = 100 n F polyester capacitor
C6a = C6b ::: 8,2 pF ceramic capacitor (500 V)
C7 = 5 to 60 pF film dielectric trimmer (cat. no. 2222 S09 07011)
L 1 = 1 turn Cu wire (1,6 mm); into dia. 9,0 mm; leads 2 x 5 mm
L2 = 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm; leads 2 x 5 mm
L3 = LS = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)
L4 = L5 =strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
L6 = 2 turns enamelled Cu wire (1,6 mm); into dia. 5,0 mm; length 6,0 mm; leads 2 x 5 mm
L7 = 2 turns enamelled Cu wire (1,6 mm); into dia. 4,5 mm; length 6,0 mm; leads 2 x 5 mm
L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
Rl = 10 n (±10%) carbon resistor (0,25 W)
R2 = 4,7 n (±5%) carbon resistor (0,25 W)
Component layout and printed-circuit board for 175 MHz test circuit are shown in Fig. S.

'I (~prem~r

1978

5

_jl_"_______

I,_B_LW8_5

APPLICATION INFORMATION (continued)
~------~------------------

150

72

7Z77549.1

---

\ 7Z77548

Fig. 8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and" the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between Lipper and lower sheets. "
To minimize the dielectric losses, the ground plane under the interconnection of L7 and C7 has been
removed.

6

September 1978

(

H'_F'_N_'H_'F_._~_m_r_tr_an_Si_st_or

___

~~

_______________________

7Z77534

100

B_L_W
__85------

_____

7Z77535

15

Gp
(dB )

Th=25 0 C

f-

,~

-

10

100

\'> ,""

11 .. --I - X

...... l~ ;>0-1""'"
~i'" ....... ~

/~
",

50

~Th = 70 °c

~~

11.

:;:

..

(%)

F

,,"'"

~~~

IJ '/

~--

~

.....

~

I'

5

loT"'! ...
J.,r"ol--.

50

Gp r-r-r--

IV

~
~

o

f/

o

o

10

20

P (W) 30

s

Fig. 9 Typical values; f = 175 MHz;
- - VCE = 12,5 V; - - - VCE = 13,5 V.

10

0
30

PL(W)

50

Fig. 10 Typical values; f = 175 MHz; T h = 25°C;
- - VCE = 12,5 V; - - - VCE = 13,5 V.

7Z77536

,

50

'\

"- ~

,,
, ,
"
I\.

VSWR=
4
~

""-

~

i\.

"-

40

I--

i\.

"- ~

""I\.."

, '""
I\..

PLnom
( W)

The transistor has been developed for use with
unstabilized supply voltages. As the output power
and drive power increase with the supply voltage,
the nominal output power must be derated in
accordance with the graph .for safe operation at
supply voltages other than the nominal. The graph
shows the permissible output power under nominal
conditions (VSWR = 1), as a function of the
expected supply over-voltage ratio with VSWR as
parameter.

5

"- r\.

" '"

I\..

10

"' 20
I
~
50

Fig. 11 R.F. SOAR (short-time operation during
mismatch); f = 175 MHz; Th = 70 oC;
Rth mb-h = 0,3 oC/W; V CEnom = 12,5 V or 13,5 V;
Ps = PS nom at VCEnomand VSWR = 1 (see page 5).

f- -

I--

(VSW R = 1)

The graph applies to the situation in which the
drive (PS/PSnom ) increases linearly with supply
over-voltage ratio.

~
PSnom

30

1

1,1

1,2

February 1978

7

J

_B_LW8_5____

l",---:_ _ _ _ _ __

APPLICATION INFORMATION (continued)
7Z77537

7Z77638

~Xi I-

RL 1-1-

+2
I~

""""

fj

r"'rj I-

~

(n)

,

I

-

/

o

....

~

"I
~

xi

,,- ~

",.."",

i""
~-"'"

+250

i""'1oo.

...
C·LI-~

I

I

o

~

.... ~

+500
CL
(pF)

I

o

1/
'(

J

250

1£

J

II

-2

---

I'

J

-5

I

o

100

f (MHz)

200

-500

o

100

f (MHz)

200

Fig. 13.

Fig. 12.
7Z77539

30

Gp
(dB)

Conditions for Figs 12, 13 and 14:

,

20

I'\.

Typical values; VCE = 12,5 V; PL = 45 W;
Th = 25 °C.

,
:\.
ill..

10

~

:"

i'o..

....

... ...
Fig. 14.

o

8

o
February 1978

100

(

f (MHz)

200

H'_F'_N_'H_.'F_'_~_M_r_tr_an_sis_w_r

___

,J~_____

B_L_W
__8_5_____

______________________

R.F. performance in s.s.b. class-AB operation
VCE = 12,5 V; Th up to 25 oC; Rth mb-h ~ 0,3 oC/W
fl = 28,000 MHz;f2 = 28,001 MHz
output power

3 to 30 (P.E.P.)

%

d3
dB*

d5
dB*

IC(ZS)
mA

typ.35

typo -33

typo -36

25

l1dt

W
typ.19,5

C3

C4

--

+Vs=12,5V
7Z66944

bias

R6

Fig. 15 Test circuit; s.s.b. class-AB.
List of components:
TR1

= TR2 = B0137

=

C1 100 pF air dielectric trimmer (single insulated rotor type)
C2 = 27 pF ceramic capacitor (500 V)
C3 = 180 pF polystyrene capacitor
C4 = 100 pF air dielectric trimmer (single non-insulated rotor type)
C5 = C7 = 3,9 n F polyester capacitor
C6 = 2 x 270 pF polystyrene capacitors in parallel
C8 = C15 = C16 = 100 nF polyester capacitor
C9 = 2,2 J.LF moulded metallized polyester capacitor
C10 = 2 x 385 pF (sections in parallel) film dielectric trimmer
C11 =68 pF ceramic capacitor (500 V)

* Stated intermoduJation distortion figures are referred to the according level of either of the equal am-

I(

plified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB.

September 1978

9

J

_B_LW8_5__

l",,"----·_ _ _ _ _ _

APPLICATION INFORMATION (continued)
List of components (continued)
C12 = 2 x 82 pF ceramic capacitors in parallel (500 V)
C13 = 47 pF ceramic capacitor (500 V)
C14 =385. pF film dielectric trimmer

L1 = 88 nH; 3 turns Cu wire (1,0 mm); into dia. 9 mm; length 6,1 mm; leads 2 x 5 mm
L2 = L5 = Ferroxcube choke coil (cat. no. 431202036640)
L3 = 68 nH; 3 turns enamelled Cu wire (1,6 mm); into dia. 8 mm; length 8,3 mm; leads 2 x 5 mm
L4 = 96 nH; 3 turns enamelled Cu wire (1,6 mm); into dia. 10 mm; length 7,6 ":lm; leaCls 2 x 5 mm
27 n (±5%) carbon resistor (0,5 W)
4,7 n (±5%) carbon resistor (0,25 W)
1,5 kn (±5%) carbon resistor (0,5 W)
10 n wirewound potentiometer (3 W)
47 n wirewound resistor (5,5 W)
150 n(±5%) carbon resistor (0,25 W)

R1 =
R2 =
R3 =
R4 =
R5 =
R6 =

7Z670742

°

intermodulation distortion versus
output power *

7Z670782

60

double-tone efficiency versus
output power

1]dt

---_.

(%)

-20

40

,

.......

/

d3
\.

-40 d~ ~

,
"

~
i"""

/

I

!\.

./

~

....

"

J

....

~

II

I'

if'

-60

°

~

20

J

f

"

;'

I
1\

~

typ

/

i.-

20
Fig. 16.

P.E.P. (W)

40

°o

20

P.E.P. (W)

40

Fig. 17.

Conditions for Figs 16 and 17:
VCE = 12,5 V; f1 = 28,000 MHz; f2 = 28,001 MHz; Th = 25 oc; Rth mb-h<;;0,3 0 CIW; IC(ZS) =25mA;
typical values.
.

* See page 11.
10

February 1978

(

H_'_F'_N_'H_'F_._~_~_r_tr_an_si_sro_r

__

,J~_____

7Z670732

o

intermodulation distortion versus
output power *

7Z67076 2

60

d3
d5
(dB)

l1dt

-20

40

double-tone efficiency versus
output power

(%)

,

L

d3

typ.....

,\.

I\,

-40 d5'1'.

j

,

/

,/

o

I"

20

~

•

1/

r. ....

"

........
.",.

~

11',1

I\.

"'"

-60

B_L_VV
__8_5_____

_______________________

~

V
1

1'0

i..o'

20

P.E.P. (W)

40

Fig. 18.

o
o

20

P.E.P. (W)

---

40

Fig. 19.

Conditions for Figs 18 and 19:

VCE = 13,5 V; fl
typical values.

= 28,000 MHz; f2 = 28,001

MHz; Th

= 25 oc; Rth mb-h

.;;;;; 0,3 °C/W; IC(ZS) = 25 rnA;

* Stated intermodulation distortion figures are referred to the according level of either of the equal
amplified tones. Relative to the according peak envelope powers these figures should be increased
by 6 dB.
February 1978

11

_B_LW8_5

_Jl__________

APPLICATION INFORMATION (continued)
7Z77540

40

7Z77541

10

Gp

Xi

'\

(dB)

,

(11)

\.

30

-

~

-

7,5

\

"-

,

+2,5

~

i"oo...

20

"

I'

5

o
I
~

_\.

2,5

10

'\.

'\

--

I

'"

3i
-,

+5

o
1

10

f (MHz)

10 2

Fig. 20 Power gain as a function of frequency.

\./
A

xi

V
-2,5

f'

fj

I

o

-5

1

10

f (MHz)

10

2

Fig.21 Input impedance (series components) as a
function of frequency,

Fig. 20 and 21 are typical curves and hold for an unneutralized amplifier in s.s.b. class-AB operation.
Conditions:
VCE = 12,5 V
PL =30 W (P.E.P.)
Th = 25 °C
Rth mb-h .;;;; 0,3 oCIW
IC(ZS) = 25 mA
ZL = 1,8 n

12

September 1978

VCE = 13,5 V
PL = 35 W (P.E.P.)
Th = 25°C
Rth mb-h oE;;; 0,3 oclW
IC(ZS) = 25 mA
ZL= 1,8 n

(

_ _ _ _ _Jl_BLW_86
H.F'/V.H.F. POWER TRANSISTOR
N-P-N silicon planar epitaxial transistor intended for use in class-A, AB and B operated h.f. and v.h.f.
transmitters with a nominal supply voltage of 28 V. The transistor is resistance stabilized and is
guaranteed to withstand severe load mismatch conditions. Matched hFE groups are available on request.
It has a 3/8" flange envelope with a ceramic cap. All leads are isolated from the flange.
QUICK REFERENCE DATA

R. F. performance up to T h = 25 °C
mode of operation

f
MHz

VCE
V

Gp
dB

PL

W

c.w. (class-B)

28

175

s.s.b. (class-AB)

28

1,6 - 28

s.s.b. (class-A)

26

1,6 - 28

>

45

7,5

-

>

n

-

-

-

-

typo -30

-

-

typo -42

Dimensions in mm

MECHANICAL DATA
Fig. 1 SOT-123.

d3
dB

70 0,7 + j1,3 110 - j62

5-47,5(P.E.P.) typ.19 typ.45
17(P.E.P.) typ.22

YL
mAIV

zi

11

%

--

0,17

-7/~:~
e

-

- - --0,11

32 "'-

"

~20'6
7Z77386.1

6,35 - -

2,54

t

I I; ! I 1

I

4,55
4,10

•

I---t

Torque on screw: min. 0,6 Nm (6 kg em)
max. 0,75 Nm (7,5 kg em)
7,25

Recommended screw: raised cheese-head
4-40 UNC/2A

~X Heatsink compound must be applied sparingly

t

and evenly.

CAUTION This,dev.ice incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

IIJUI

Y 1978

Jl"""'"----_ __

_BLW_86
RATINGS

Limiting values in accordance with the Absolute Maximum System (lEC 134)
Collector-emitter voltage (VBE = 0)
peak value

VCESM

max.

65 V

Collector-emitter voltage (open base)

VCEO

max.

36 V
4 V

Emitter-base voltage (open-collector)

VEBO

max.

Collector current (average)

IC(AV)

max.

4 A

Collector current (peak value); f > 1 MHz

ICM

max.

12 A

max.

105 W

R.F. power dissipation (f > 1 MHz); T mb = 25 °C

-65 to +150 0C

Storage temperature

max.

Operating junction temperature

7Z77781

200 °C

7Z77782

150

Prf
(WI
10

-

....

Ie

-

100 I'

(A)

....

........

,/-~6~~

;..
~~

~6'

'>0 0

.....

..... ~(;>/"I

5

~

~

III

....

....

1I~4-

II~
0<1

~

~'.Jl1--.. /oCT

50

~

I"'"

"-.0

'\

I

1\

""

....

....

~

~

1

30

10

.... .....

~(;>6
YO

VCE (VI

80

Fig. 2 D.C. SOAR.

o

o

100

50

Fig.3 R.F. power dissipation; VCE E;;; 28 V;
f>lMHz.
I Continuous d.c. operation
II Continuous r.f. operation
III Short-time operation during mismatch

THERMAL RESISTANCE (dissipation = 45 W; T mb = 83,5 oC, i.e. Th = 70 OC)

2

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

2,65 oCIW

From junction to mounting base (r.f. dissipation)

Rth j-mb(rf)

1,95 0C/W

From mounting base to heatsink

Rth mb-h

July

19781 (

0,3 0C/W

,J~_____

B_L_VV
__8_6______

___H_.F_.!_V_.H_.F_._po_w_e_rt_ra_"_Sis_to_r________________________

CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector-emitter breakdown voltage
VSE=0;lc=25mA

V(BR)CES,

>

65 V

Collector-emitter breakdown voltage
open base; IC = 100 mA

V(BR)CEO

>

36 V

Emitter-base breakdown voltage
open collector; IE = 10 mA

V(BR)EBO

>

4 V

Collector cut-off current
VSE=0;VCE=36V

ICES

<

10 mA

Second breakdown energy; L = 25 m H; f = 50 Hz
open base
RBE = 10n

ESBO
ESBR

>
>

8 mJ
8 mJ

D.C. current gain*
I C = 2,5 A; V CE = 5 V

hFE

typo
45
10 to 80

D.C. current gain ratio of matched devices*
I C = 2,5 A; V CE = 5 V

hFE1/hFE2

<

1,2

Collector-'emitter saturation voltage*
I C = 7,5 A; I B == 1,5 A

VCEsat

typo

1,5 V

Transition frequency at f = 100 MHz*
-IE = 2,5 A; VCB = 28 V
-IE = 7,5 A; VCB = 28 V

fT
fT

typo
typo

570 MHz
570 MHz

Collector capacitance at f == 1 MHz
IE = Ie = 0; VCS = 28 V

Cc

typo

82 pF

Feedback capacitance at f = 1 MHz
I C = 100 mA; V CE = 28 V

Cre

typo

54 pF

Collector-flange capacitance

Ccf

typo

2 pF

-

7277788

4

,

~

"

/

Ie

I',

(A)

I" '
1

2

''1'

fr,1

Th = 70 0 e

25 0

e

/'1'

~J

1/
~

o
o

~"""".

0,5

1.

VBE (V)

1,5

Fig. 4 Typical values; VCE == 28 V.
* Measured under pulse conditions: tp ~ 200 J.LS; [j ~ 0,02.

I(

July 1978

3

Jl___________

_B_LW8_6___

7Z77795

100

7z.77796

300

Cc
(pF)

-......

/

I

200
~

I
50

-

,,-

,

l

f", V =28V
CE

1\

\.

"'

......

I

,,

~

100

"""1'10..

....

typ
....1-0 ....

"-

-~

I\.

" 5V

---

o

-

r-

o

o

5

10

Fig. 5 Typical values; Tj

IC (A) 15

= 25 QC.

o

20

Fig. 6 IE

40

Vca (V)

= Ie = 0; f = 1 MHz; Tj = 25 oC.
7Z77797

1000

fr
(MHz)

500

,Ib

o

"

,,~~

-

o

-- ---- vca

----

5

Ir

Fig. 7 Typical values; f

4

July 1978

10

= 100 MHz; Tj = 25 0C.

28V -

-

15 v

15

H_.F_'/V~._H_.F_.p_o_~_r_tr_an_s_ist_or

___

______________

~

~~,

_________

8_~

_____B_L_VV
__

______

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25 °C
f (MHz)

VCE (V)

PL (W)

175

28

45

Ps (W)
<8

Gp (dB)

IC (A)

11 (%)

>7,5

<2,47

>70

Zj

(n)

0,7+j1,3

YL (mAN)
110-j62

"'-.............." -.......- 0 50

n

C8

50 n 0-.............--'

-Fig. 8 Test circuit; c.w. class-B.
List of components:
C1 = C7 = 2,5 to 20 pF film dielectric trimmer (cat. no. 222280907004)
C2 = 5 to 60 pF film dielectric trimmer (cat. no. 222280907011)
C3a = C3b = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor
C5 = 100 nF polyester capacitor
C6a = 2,2 pF ceramic capacitor (500 V)
C6b = 1,8 pF ceramic capacitor (500 V)
C8 = 4 to 40 pF film dielectric trimmer (cat. no. 222280907008)
L1 =
L2 =
L3 =
L..4 =
L6 =
L7 =

14 nH; 1 turn Cu wire (1,6 mm); into dia. 7,7 mm; leads 2 x 5 mm
100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm; leads 2 x 5 mm
L8 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 431202036640)
L5 = strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
80 nH; 3 turns Cu wire (1,6 mm); into dia. 9,0 mm; length 8,0 mm; leads 2 x 5 mm
62 nH; 3 turns Cu wire (1,6 mm); into dia. 7,5 mm; length 8,1 mm; leads 2 x 5 mm

L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
R1 = R2= 10 n carbon resistor
Component layout and printed-circuit board for 175 MHz test circuit see Fig. 9.

September 1978

5

72

7Z77549.1

7Z7 7548 .

Fig. 9 Component layout and printed-circuit board for 175 MHz te!!t circuit.

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of ho'liow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.
To minimize the dielectric losses, the ground plane under the interconnection of L7 and C7 has been
removed.

6

September 1978

r

jl

H.F.IV.H.F. power transistor

--------------

BLW86

'-----72771'90

7Z77789

75

I

T h = 25°C ~

,

,

,. ~I

70 0 C-

i

~

Gp

I' ~

I

~

J

'I
'I

fl
/,
f!

Gp

I

!J
II
25

--

~

(dB)

'II'

50

100

10

i

5

-- ....

'

.......

-'. :;..--

.....

(%)

~ ...;
~

,,"'"

-

17
...

"

"I\;

/)'1'

//
V

50

\11

)7

IJ

.,

III

r!1

r

,
,

J

I

I

a

a

10

P

20

s (W)

a

a

o

25

50

P (W) 75
L

Fig. 10 Typical values; V CE == 28 V; f == 175 MHz. Fig.-ll Typical values; V CE == 28 V; f == 175 MHz;
- - - Th == 25 oC; - - Th == 70 °C.
7Z77794

100
1

P Ln om

(W )
(VSW R = 1)

1\
.....

50

~

Th=50oC
............ """III

r---

a

1

I I

.............. '"-

10

r

70°C
IIII1

t--

-

900C

Fig. 12 R.F. SOAR; C.w. class-B operation;
f == 175 MHz; VCE == 28 V; Rth mb-h == 0,3 °C/W.
The graph shows the permissible output power
under nominal conditions (VSWR == 1) as a function
of the expected VSWR during short-time mismatch
conditions with heatsink temperatures as parameter.

VSWR

.

July 1978

7

)l~______________________________

______B_L_W_8_6____

7Z77791

7Z77792

:

+2,5

q
Xi
(n)

r

+1,25

-q

",

,

........

,

10

RL

X· 1,,01>

I

I

~'f'

I

I

/

-~ ~ Iooot

ri

1/

~

J

I

5

"

I

lJ
I"-

t-- LXi

-2,5

-250

I
I
1

I
I

---

CL .t-- -

I(

'I

-1,25

-

--- ,,""-

J

'f'

/

I'

...... ~ I--'

1/

J

o

....

~ L I"- - o

1--'-

o

200

100

f (MHz)

300

Fig. 13 Input impedance (series components).

o
o

~CL
100

200

f (MHz)

-500
300

Fig. 14 Load impedance (parallel components).

7Z77793

,
20

Gp
(dB)

,

\

OPERATING NOTE
Below 75 MHz a base-emitter resistor of 1051 is
recommended to avoid oscillation. This resistor
must be effective for d. only.

\

,

~

,

\.

Conditions for Figs 13; 14 and 15.
Typical values; VCE

'\
\.

10

I\.

"-

o
o

100

r"..

..... ~

200

f (MHz)

Fig. 15 Power gain versus frequency.

8

300

= 28 V; PL = 45 W; Th =

25 °C.

H.F.N.H.F. power transistor

Jl

BLW86

------------- - .'

R.F. performance in s.s.b. class-AB operation (linear power amplifier)

VCE

= 28 V; f1 =28,000 MHz; f2 = 28,001

output power

W

~C

MHz

l1dt (%) IC (A)
at 47,5 W (P.E.P.)

5 to 47,5 (P.E.P.)

typ.19

typ.45

5 to 42,5 (P.E.P.)

typ.19

-

typ.1,9

-

d3
dB*

Th
oC

d5
dB*

IC(lS)
mA

typo -30

<-30

50

25

typo -30

<-30

50

70

C7

C8
C2

~--~----~----o +VCC

temperature
compensated bias

---=

7Z77771.1

Fig. 16 Test circuit; s.s.b. class-AB.
List of components:
C1 = C2 = 10 to 780 pF film dielectric trimmer
C3 = C5 = C6 = 220 n F polyester capacitor
C4 = 56 pF ceramic capacitor (500 V)
C7 = C8 = 15 to 575 pFfilm dielectric trimmer
L1 = 4 turns closely wound enamelled Cu wire (1,6 mm); into dia. 7,0 mm; leads 2 x 5 mm
L2 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 431202036640)
L3 =4 turns enamelled Cu wire (1,6 mm); into dia. 10 mm; length 9,4 mm; leads 2 x 5 mm
L4 = 7 turns .enamelled Cu wire (1,6 mm); into dia. 12 mm; length 17,2 mm; leads 2 x 5 mm
R1 = 1,2 n; parallel connection of 4 x 4,7 n carbon resistors
R2 7' 39 n carbon resistor

* Stated intermodulation distortion figures are referrec:t to the according level of either of the equal
amplified tones. ~elative to the according peak envelope powers these figures should be increased
by 6dB.

'I (

September 1978

9

_BLW8~l,,----

____

7Z71787

-20

7Z77186

UUUU

f-

-30

I""

40

17

1:1

\I \ 1\
~~

-

III I

I Tldt

.II:~e::1

!)oJ1 I I
f'll I I1II
III

l\
1\'

-40 ~ d 5

J

\

~~
~I\.'

~

15

f7

II

V

\ \

~~
'''I~

7

JII /

20

Gp
(dB)

I;

(%)

~

~

7

Tldt

II 0 0 0 0
.cOOOLt>
1--.0) "Lt>N

d3

I,

Gp

50

30

II.

il

1\ 11 III
'\ll

.,

I\ll.,

10

II

I

20

I

." 1;-, .,

,

5

7

II

--

-50

10

o

25

P.E.P. (W)

50

o

o

25

50

75
P.E.P. (W)

Fig. 17 Interrnodulation distortion as a function
of output power.*

Fig. 18 Double-tone efficiency and power gain as a
function of output power.

Conditions for Fig. 17:
VCE

= 28 V;

~onditions

VCE

IC(ZS)

= 50 rnA; f1 = 28,000 MHz; f2 = 28,001

for Fig. 18:

= 28 V; IC(ZS) = 50 rnA; f1 = 28,000 MHz; f2 = 28,001

* See note on page 9.

10

MHz; typical values.

July

19781 (

MHz; Th

= 25 oC; typical values.

,J~______

B_L_VV_8_6______

___H_.F_.!_V_.H_.F_.-po_w_e_rt_ra_"S_is_to_r________________________
7Z77785

30

-

7Z77784

20

-"""
r-.....

Gp

'"

(dB)

!\

20

......

10

",

'\

'-. r-- rj
o

10

.JII'

" .........
o

X·I

./
-I-

-10
10

1

f (MHz)

Fig. 19 Power gain as a function of frequency.

1

10

-

f (MHz)

Fig. 20 Input impedance (series components) as a
function of frequency.

Figs 19 and 20 are typical curves and hold for an unneutralized amplifier in s.s.b. class-AB operation.
Conditions:
VCE

= 28 V;

IC(ZS)

= 50 mA; PL = 47,5 W; Th = 25 oC; ZL = 6,4 n.

Ruggedness in s.s.b. operation
The BLW86 is capable of withstanding a load mismatch (VSWR = 50) under the following conditions:
class-AB operation; f1 = 28,000 MHz; f2 = 28,001 MHz; VCE = 28 V; Th = 70 °C and PLnom = 50 W
P.E.P.

II

JUIY

11
1978

_BLW_86

_Jl__________ _

R.F. performance in s.s.b. class-A operation (linear power amplifier)
VCE

=26 V; f1 = 28,000 MHz; f2 = 28,001

output power

MHz

dGp

IC

d3

d5

W

B

A

dB-

dB-

17 (P.E.P.)
17 (P.E.P.)

typ.22
typ.22

1,7
1,7

typo -40
typo -42

<-40

70

<-40

25
C10
'--t'l--+--{,J

50 n

50 n

0 -........___--'

-----

R5

R8

.-~--~---.----+---~+VCC

BY206

7Z77798.1

Fig. 21 Test circuit; s.s.b. class-A.

- Stated intermodulation distortion figures are referred to the according level of either of the equal
amplified tones. Relative to the according peak envelope powers these figures should be increased
by 6 dB.

12

September 1978

(

H_'F_'/V_'H_'F_._~_~_r_tr_an_Sin_o_r

___

~~

_____________________

B_L_W_8_6_____

_____

List of components in Fig. 21:
C1 = C2 = 10 to 780 pF film dielectric trimmer
C3 = 22 nF ·ceramic capacitor (63 V)
C4 = 47 J.tF/10 V electrolytic capacitor
C5 = 56 pF ceramic capacitor (500 V)
C6 = 47 J.tF/35 V electrolytic capacitor
C7 = C8 = 220 n F polyester capacitor
C9 = 10 J.tF/35 V electrolytic capacitor
C10 = 10 to 210 pF film dielectric trimmer
C11 = 15 to 575 pF film dielectric trimmer

L 1 = 3 turns closely wound enamelled Cu wire (1,6 mm); into dia. 9,0 mm; leads 2 x 5 mm
L2 = L3 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 431202036640)
L4 = 11 turns closely wound enamelled Cu wire (1,6 mm); into dia. 11,0 mm
L5 = 14 turns closely wound enamelled Cu wire (1,6 mm); into dia. 11,0 mm

R1 = 600 .0; parallel connection of 2 x 1,2 kn carbon resistors (±5%; 0,5 W each)
R2 = 15 .0 carbon resistor (±5%; 0,25 W)
R3 = 1,2 .0; parallel connection of 4 x 4,7 n carbon resistors (±5%; 0,125 W each)
R4 = 33 n carbon resistor (±5%; 0,25 W)
R5 = 18.0 carbon resistor (±5%; 0,25 W)
R6 = 120.0 wirewound resistor (±5%; 5,5 W)
R7 =
1 .0 carbon resistor (±5%; 0,125 W)
R8 = 47.0 wirewound potentiometer (3 W)
R9 = 1,57.0; parallel connection of 3 x 4,7 n wirewound resistors (±5%; 5,5 W each)

--

7Z77783

-30

,.b<~/.. LI_~~ ~

d3
(dB)
q

'\~

~

'~ V

-40

/i ...... V'

"""'v

~'fI'

L.,..ooloo-""

I

~

'\~ ...

/~

...... """

~ J....,.o ~

1/ ~ r..,..~

~ ~"""
AI~ ~

-50

1...- ~

.J!l~

.. 70

1,6 + j1,4

210 + j5,5

f/

>6

25

Dimensions in mm

MECHANICAL DATA
Fig. 1 SOT-.123.

zi

%

---

0,17
--- -0,11

-y/~:~
3,2 "

e

"
5

~206
6,35

--

I

2,54

t

II;

1

I

7Z77386.1

4,55

Torque on screw: min. 0,6 Nm (6 kg cm)
max. 0,75 Nm (7,5 kg cm)

4,10

t

I! I___
J

7,25

t~ax

t

Recommended screw: raised cheese-head
4-40 UNC/2A
Heatsink compound must be applied sparingly
and evenly.

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.
February 1978

1

_B_LWB____
7

_J l"'---_ _ _ _ _ __

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Collector-emitter voltage (V BE
peak value

=0)
VCESM

max.

36 V

Collector-emitter voltage (open base)

VCEO

max.

18 V

Emitter-base voltage (open collector)

VEBO

max.

4V

'C(AV)

max.

6A

ICM

max.

12 A

Prf

max.

76 W

Collector current (average)
Collector current (peak value); f

> 1 MHz

R.F. power dissipation (f> 1 MHz); T mb = 25 °C

- 65 to +,150 oc

Storage temperature

max.

OPerating junction temperature
20

-----

IC
(A)

100

10

(WI

Prf

"",

5

'\.Tmb =25 °c

~.'"

....

'" "'iiii,,-

continuous 'I ... ~
'~
_ d.c. operation:'"
1--1- derate by . ~ ....
0,32W/ oC ....

2

o
10

"''-'

50

Th'700~

5

short-time
operation
._
r~ during mismatch
f- continuous ~
I -~
~r.f. operation ~
i-r-..... derate by I I
" 0,42W/°t;
~

~

---

r\.

'I'

200 oC
7Z77522

7Z77642

20
VCE (V)

30

o

50

100.

Th

(0 )150

C

Fig.3 R.F. power dissipation; VCE";; 16,5 V;

Fig. 2 D.C. SOAR ..

f;;;' 1 MHz.

THERMAL RESISTANCE (dissipation

2

=20 W; T mb =76 oC; i.e. Th =70 0 C)

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

From junction to mounting base (r.f. dissipation)

Rth j-mb(rf)

From mounting base to heatsink

Rth mb-h

February 1978

(

3,00C

2,25 oCIW
0,3 °C/W

Jl

V.H.F. power transistor

CHARACTERISTICS

BLW87

Tj = 25 0C
Collector-emitter breakdown voltage
VBE = 0; IC = 25 rnA

V(BR)CES

>

36 V

Collector-emitter breakdown voltage
open base; IC = 50 rnA

V(BR)CEO

>

18 V

Emitter-base breakdown voltage
open collector; IE = lOrnA

V(BR)EBO

>

4 V

Collector cut-off current
VSE=O;VCE= 18V

ICES

<

10 rnA

Second breakdown energy; L = 25 m H; f = 50 Hz
open base
RBE = 10 n

ESBO
ESBR

>
>

8 mJ
8 mJ

D.C. current gain*
I C = 2,5 A; V CE = 5 V

hFE

typo
50
10 to 80

Collector-emitter saturation voltage*
IC = 7,5 A; IB =1,5 A

VCEsat

typo

Transition frequency at f = 100 MHz*
-IE =2,5 A; VCB = 13,5 V
-IE =7,5 A; VCB = 13,5 V

fT
fT

typo
typo

800 MHz
750 MHz

Collector capacitance at f = 1 MHz
IE=l e =0;VCB=15V

1,7 V

Cc

typo

65 pF

Feedback capacitance at f = 1 MHz
IC = 100 rnA; VCE = 15 V

Cre

typo

41 pF

Collector-flange capacitance

Ccf

typo

2 pF

* Measured under pulse conditions: tp

~

----

200 JJ.s; S ~ 0,02.

'] (

February 1978

3

7Z77108

100

7Z77111

300

typ values

'E = Ie = 0

Tj =25 °c

f = 1 MHz

Cc
(pF)

75

200

r-- ~ ~

1/

.

r""-o"

,

~\

veE =

...... ~

50 I.'
V

13,5 V
I

r......

"

~

100

5V

ts

yp

25

, o0

5

10
Fig.

~I""-

o
o

'C(A) 15

r-- """-

20

10

4.

Fig. 5 Tj

= 250C.
7Z77112.A

1000

VCB =13,5V.
f= 100 MHz

/.

,..

fT
(MHz)

Tj = 25°C

typ
-i""-o

~

r- i"'-ooo
i""""'-

/

~
........

~

"- ~

500

o
o

5

10
Fig. 6.

CS

~

~

-IE (A)

15

Jl

V.H.F. power transistor

BLW87

---'---~~:~

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25 aC
f (MHz)

175
175

VCE (V)

13,5
12,5

PL (W)

Ps (W)

Gp (dB)

25
25 :

<6,25

>

6

typ.6,6

IC (A)

< 2,64

Zi (n)

r} (%)

>

Y L (mAN)

70 1,6 + j1,4 210 +j5,5

typ.75

C8

50.Q o-+t-...........J

~
........
.

7Z77104

..........
:

'/

Fig. 7 Test circuit; c.w. class-B.

List of components:
C1 = 2,5 to 20 pF film dielectric trimmer (cat. no. 222280907004)
C2 = C8 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
C3a = C3b = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor (500 V)
C5 = 100 n F polyester capacitor
C6a = C6b = 8,2 pF ceramic capacitor (500 V)
C7 = 5 to 60 pF film dielectric trimmer (cat. no. 222280907011)
: L1 =
L2 =
L3 =
L4 =
L6 =
L7 =

1 turn Cu wire (1,6 mm); into dia. 9,0 mm; leads 2x 5mm
100 nH; 1 turns closely wound enamelled Cu wire (0,5 mm); int.dia. 3 mm; leads 2 x 5 mm
L8 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 02036640)
L5= strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
2 turns Cu wire (1,6 mm); into dia. 5,0 mm; length 6,0 mm; leads 2 x 5 mm
2 turns Cu wire (1,6 mm); into dia. 4,5 mm; length 6,0 mm; leads 2 x 5 mm

L4 and L5 are strips on a double Cu-c1ad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
R1= 10 n (± 10%) carbon resistor (0,25 W)
R2 = 4,7 n (± 5%) carbon resistor (0,25 W)
Component layout and printed-circuit board for 175 MHz test circuit are shown in Fig. 8.

'I (

September 19r5

5

Jl""----___

_BLW_87

APPLICATION INFORMATION (continued)

72

7Z77549.1

--I

\

7Z7 7548
\

Fig. 8 Component layout and printed-cjrcuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized Jo serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

6

September 1978

(

:_H'_F._~_~_ru_an~Si_Ro_r

___

Jl____B_L_W~8_7

____

_____________________
7Z77110.A

7Z77109A

- - VCE =13,5V

typical vall!es
f:;; 175 MHz

typical values
--VCE= 13,5V
f= 175 MHz
---VCE = 12,5 V
Th = 25 °c

---VCE=12,5V

I·J-

~ t-- Th=

/

/

/

/

30

i

V'~

.L. ~:

25 0 C-

'-

l....III

~---

10

~ ""
Th= 70 °c

f-~Gp~

r-.

.... ....
....

Gp

~'

(dB)

1M

20

100

V"

",..

....

/J

..

.......,-:

T1
.... r"i

""" ....

'

....

..

'

....

"

,

5

I(f

Tlr- (%)

50

J.

Ii

10

r
I

I

II
5

10 Ps (W) 15
Fig.9.

20

o

PL (W)

40

Fig. 10.
7Z77543

40
PLnom
(W)
(V SWR= 1 )
VSWR=_

30

..... ~

20

20
50

-

/

10

s-

Fig. 11 R.F. SOAR (short-time operation during
mismatch); f = 175 MHz; Th = 70 oC;
- Rth mb-h = 0,3 oCIW; V CEnom = 13,5 V or 12,5 V;
PS:;; PS nom at VCEnom and VSWR:;; 1 (see page 5).
The transistor has been developed for use with
unstabilized supply voltages. As the output power
and drive power increase with the supply voltage,
the nominal output power must be derated in
accordance with the QJ'aph for safe operation at
supply voltages other than the nominal. 'The graph
shows the permissible output power under nominal
conditions (VSWR :;; 1), as a function of the
expected supply over-voltage ratio with VSW R as
parameter.
The graph applies to the situation in which the ,
drive (PS/PSnom ) increases linearly with supply
over-voltage ratio.

P

PSnom

0
1.1

1,2

VCE
VCEnom

February 1978

7

Jl'
- - - "--,~""""'--BLW87:

OPERATING NOTE Below 50 MHz a base-emitter resistor of'10 n is recommended to avoid
oscillation. This resi'stor ,must b~ effective for r.f. only. "
," ' .
'", "
7Z67569

7Z67568

input impedance (series components)
versus frequency (Class-B oper~tlon)

load impedance (parallel components,)
versus frecjuen.cy (class-B operation) "

(

'-'::.
"

I-

+2,5

1\ ri \
~

~ ~i-

,-

-

~

1\
r-- ~ RL

ri:- --,. ~

~

./

\.

/

o

250

7,5

1

~

5

~

,

CL

...... too..

1/ '

)

If

---

2,5

250

rI

1

,I

~

o

100

200 f (MHz) 300

Il CL

o
o

~

,

100

Fig. 12.

500
200

f (MHz)

Fig. 13.
7Z67567

power gain versus frequency
(dass- B operation)
20

\

Gp
(dB )

\

Conditions for Figs 12, 13 and 14:

1\ \
\

15

Typical values; VCE
Th = 25 °C.

\
\.
\.

10

",
""

~

"

5

o

o

8

o

JJ.
I'

I 'x.
I--

-5

'"'"

RL

J

I

I-

~I-"""

II

I,)
-2,5

,.....

Fig. 14.
100

February 1978

200

(

f (MHz)

300

= 13,5V; PL = 25 W;

300

DEVELOPMENT SAMPLE DATA
BLW95

This information is derived from development samples made available
for evaluation. It does not form part of our data handbook system and
does not necessarily imply that the device will go into production

H.F. POWER TRANSISTOR

. N-P-N silicon planar epitaxial transistor intended for use in class-AB operated high power industrial and
military transmitting equipment in the h.f. band. The transistor presents excellent performance as a
linear amplifier in s.s.b.applications. It is resistance stabilized and is guaranteed to withstand severe
load mismatch conditions. Matched hFE groups are available on request.
The transistor has a Y:z" flange envelope with a ceramic cap. All leads are isolated from the flange.
QUICK REFERENCE DATA

R. F. performance up to T h == 25 0(:
mode of operation

V CE
V

IC(ZS)
A

50

0,1

s.s.b. (class-AB)

Gp
1,6 - 28

20 - 160 (P.E.P.1

dB

1]dt
%

d3
dB

> 14

>40*

<-30

* At 160 W P.E.P.
MECHANICAL DATA
SOT-121A (see page 2)

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

September 1978

1

J

___...,BL_W9_5______

l""---_ _ _ _ _ __
Dimensions in mm

MECHANICAL DATA
Fig. 1 SOT-121A.

3,2

-2,9
e

T

>5,9
5,5

/'

.---1
--,.....,
,

TL

25,2

6,9
min

~.

ceramic

13

~x

I

~vl'351- 12,5
m~x .

t

I

wrliP

2,4

I

t

I

metal
7Z75334.1

4,4
3,8

• •

7 .

t

Torque on screw: min. 0,6 Nm (6 kg cm)
max. 0,75 Nm (7,5 kg em)
Recommended screw: raised cheese-head 4-40 UNC/2A
Heatsink compound must be applied sparingly and evenly.

September 1978

1842

gg
:

(

max

t

H'_F'_~_W._t_~_nS_i~_r

__

jl_____

BL_W_9_5_____

______________________

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Collector-emitter voltage (VSE
peak value

= 0)

Collector-emitter voltage (open base)
Emitter"base voltage (open collector)
Collector current (average)
Collector current (peak value);

t> 1 MHz

V CESM

max.

110 V

VCEO

max.

53 V

VEBO

max.

4 V

IC(AV)

max.

8 A
20 A

ICM

max.

Storage temperature

Prf
T stg

-65 to + 150 °C

Operating junction temperature

Tj

max.

(t>

R.F. power dissipation

1 MHz); T mb

= 25 oC

7Z77895

30

IC

Prf
(W)

'", '\ '"'''?6~

200

~$

)-

'Z~

--bo

'\

N.
I

"

~

... «
-':::~ql'e6
.

10 2

50

o

I I

r--:..', 11----1--

I~O'--

/'°C-II...

r..

I

o

---

....

~, l'e 6y 0 I I ~C' "', ,8< ~ o'-:-P~
~ ...

1-1- - l -

1

I I l"o..::J.-,
Clerq

100

"

10

.....

r ..

1

200 °C

.... ,...

~- ~I- III
t-~ f';t-

~I ....

K '\

W

7Z774~9

)-

5

245

300

(A)

10

max.

50

100

VCE (V)
Fig.3 R.F. power dissipation; VCE ~50 V;
1 MHz.
I Continuous d.c. operation
II Continuous r.t. operation
III Short-time operation during mismatch

Fig. 2 D.C. SOAR.

t~

THERMAL RESISTANCE (dissipation

= 100 W; T mb = 90 oC, i.e. Th =70 OC)

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

1,0 0C/W

From junction to mounting base (r.t. dissipation)

Rth j-mb(rf)

0,7 oC/W

From mounting base to heatsink

Rth mb-h

0,2 oC/W

i(~m~1978

3

Jl__________

_B_.LW_95______

CHARACTE R ISTICS
Tj = 250C
Collector-emitter breakdown voltage
VBE = 0; IC = 25 rnA

V(BR)CES

>

110 V

Collector-emitter breakdown voltage
open base; IC = 100 rnA

V(BR)CEO

>

53 V

Emitter-base breakdown voltage
open collector; IE = 20 rnA

V(BR)EBO

>

4 V

- Collector cut-off current
VBE =O;VCE = 53 V

---

. ...-

ICES

<

10 rnA

Second breakdown energy; L = 25 mH; f = 50 Hz
open base
RBE = 10 n

ESBO
ESBR

>
>

12,5 mJ
12,5 mJ

D.C. current gain *
IC;:: 4 A; VCE = 5 V

hFE

typo
30
'15 to 50

D.C. current gain ratio of matched devices *
IC=4A;VCE=5V
'

hFE 1/hFE2

..;;

1,2

Collector-emitter saturation voltage *
IC = 12,5 A; IB;::; 2,5. A

VCEsat

typo

2,2 V

Transition frequency at f = 100 MHz *
-IE':
4 A; VCB 'F 40 V
-':Ie = 12,5 A; VCB = 40 V

for
for

typo
typo

270 MHz
285 MHz

Collector capacitance at f= 1 MHz
IE = Ie = 0; VCB='5QV' ,

Cc

typo

185 pF

Feedback capaCitance
= 1 MHz
IC = 150 rnA; VCE':::; 50 V

Cre

typo

115 pF

Collector-flange capaci~ance

'Ccf

typo

3 pF

aU

* Measured under pulse conditions:'t p ;;;;;;' 200 J.LS; /j ..;; 0,02.
4

September 1978

(

Jl

H.F. power transistor

--------------~--------~------------------------'
7Z77896
60

10

BLW95

--~------------~-7Z77897

IC

(A)

.... ~

V

~
40

VCE =40V

I

I

~

"""'~

..... 1-"

V
J typ

20V

""",,,,,, "'" '-~,....

_Ll
I I
I I

i"""

./

II

~

~

~5V

20

I

I

II
J

10- 2
500

1000

750

o

1250
VBE(V)

Fig. 4 VCE::; 40 V;Th = 25 °C.

o

10

IC (AI

Fig. 5 Typical values; Tj = 25 DC.
7Z77899

7Z77898

300

~CB=40V

"""

1/
II

fT
(MHz)

J'""'±-..l.
r-t- ~V

I-"

1/1/

~l

'J

1/",
f/

200

1/

'"

20

-rJ~V
r-_
rr--

I
I
5V

1000

Cc
(pF)
750

,

I""'-

1
\

500

J

100

,

"" ......

250

o

o

o
10 \

-IE(A)

20

Fig. 6 TYPi~a~~alue's; i= 100 MHz; Tj = 25 DC.

,

~

o

r- I"--

25

-

typ
,

=

50 V

(V) 75
CB
Fig . .7 'E::; Ie == O;f = 1 MHz;Tj= 25 OC.

i--s-ep. t.-em. . . .

be-r--1-g-78----------S------

Jl_ _ _~_____---.--

_B_LW9_5__

APPLICATION INFORMATION
R.F. performance in s.s.b. class-AB operation (Jinear power amplifier)
VCE

=50 V;.Th =25 oC; f1 =28,000 MHz; f2 =28,001

output power

lldt(%)
IC (A)
at 160 W (P.E.P.) .

W
'20 to 160 (P.E.P.)

MHz

> 14

>40

<4,0

IC(ZS)

d3
dB *

d5
dB *

<-30

<-30

A
0,1

C10

C12

--

C13

temperature
compensated
t-I--t=~--o +Vcc

~

7277894

Fig. 8 Test circuit; s.s.b. class-A8.
List of components:

q,

=; C10 = 100 pF film dielectric trimmer
C2 "" C6 = 27 pF ceramic capacitor (500 V)
C3 = 220 pF polystyrene capacitor
C4:;:; C13 = 100 pF film dielectric trimmer
C!);o; C7 = 3,9 nF ceramic capacitor
C8 = 100 nF polyester capacitor
09 = 2,2 IlF moulded metallized polyester capacitor
el1 = 68 pF ceramic capacitor (500 V)
C12 =220 pF polystyrene capacitor

L 1 .., 88 nH; 3 turns Cu wire (1,0 mm); into dia. 9,0 mm; length 6,1 mm; leads 2 x 5 mm
~ :;: L5 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)
L3"" 180 nH; 4 turns enamelled Cu wire (1,6 mm); into dia. 12,0 mm; length 9,9 mm; leads 2 x 10 mm
L4 = ~50 nH; 7 turns enamelled Cu wire (1,6 mm); into dis. 12,0 mm; length 19,1 mm; leads 2 x 10mm
R 1·=; 0,66 n; parallel connection of 5 x 3,3
R2;;1 27
carbon resistor (± 5%; 0,5 W)
R3 = 4,7 carbon resistor (± 5%; 0,5 W)

n
n

n carbon resistors (± 5%; 0,5 Weach)

* Stated intermodulation distortion figures are referred to the according level of either of the equal am- .
plified tones•. Relative to the according peak envelope powers these figures- should be increased by 6 dB.

6

September 1978

(

H_'F_.~_w_er_t~_m_iu_or

__

____________________

7Z77900

-20

~jl____

B_L_W_9_5____

7Z77901

60

20

d3
dS
(dB)

17dt

Gp

(%)

(dB)
I""

-30

I-

l""

•

d3

40

I\.

"I-

I

,

dS

r--.

-40

'"

Gp

1-

""" ....

~

it'"

,""- 1S

,.."
!~

I
'/

'\.

:.."

,

I
II

.~

20

/

"411
~

1\

....

10

/
'1dtJ

'/
~"I

I

\.

J
,~

-50

o

100

P.E.P. (W)

Fig. 9 Intermodulation distortion as a
function of output power. *

200

o
o

--

5
100

P.E.P. (W)

200

Fig. 10 Double-tone efficiency and power
gain as a function of output power.

Conditions for Figs 9 and 10:
VCE

=50 V; IC(ZS) =0,1 A; f1 =28,000 MHz; f2 =28,001

MHz; Th

=25 oC; typical values.

Ruggedness
The BLW95 is capable of withstanding full load mismatch (VSWR = 50) up to 150 W (P.E.P.) under the
following conditions:
VeE

= 45V; f =28 MHz; Th =70 oC; Rth mb-h =0,2 oC/W.

* See note on page 6.
September 1978

7

Jl""----......----~

_B_LW9_5__

7Z7790S

40

7277904

7,5

Gp
(dB)

30

......

-

ri\

5
"

~

...

\

\:
\

.\
~

20

\

\

I

2,5 -xi

N~

!\

~

1\

~

""f'
~

---

10

~

..

o

~.

1

10

f (MHz)

Fig. 11 Power gain as a function, of frequency.

1

10

f (MHz)

Fig. 12 Input impedance (series components)
as a function of frequency.

Figs 11 and 12 are typical curves and hold for an unneutralized amplifier in s.s ..b. class-AB operation.
Conditions:
VCE = 50 V; IC(ZS) = 0,1 A; PL = 160 W (P.E.P.); Th
parallel with -188 pF).

8

Septf:!mber .1978

(

= 25 oC; ZL = 6,25 n

in series with 7,3 nH (in

____

~l

_H_.F_._po_we_rt_ra_nsi_rto_r______________________

7Z77903

40

B_L_W_9_5_____

7Z77902

7,5

Gp

ri

(dB)

\

-

30

,

1\

5

-r-.

\

I\..

~,

~

1\

\

20

/t"

2,5

~~

I

~
~

-xi

1\

"

o

10
1

10

f (MHz)

Fig. 13 Power gain as a function of frequency.

10

1

f (MHz)

Fig. 14 Input impedance (series components)
as a function of frequency.

Figs 13 and 14 are typical curves and hold for one transistor of a push-pull amplifier with crossneutralization in s.s.b. class-AB operation.
Conditions:
VCE = 50 V; IC(ZS) = 0,1 A; PL = 160 W (P.E.P.); Th = 25 oC; ZL
(in parallel with -267 pF); neutralizing capacitor: 82 pF.

= 6,25 n

in series with 10,4 nH

September 1978

9

______----------jL--B-~-98-U.H.F. POWER TRANSISTOR

I

N-P-N silicon planar epitaxial transistor intended for use in u.h. f. power amplifiers, where optimum
linearity is required. The transistor is specially suited for all transistorized television transposers and
transmitters in band IV and V, as well as for driver stages in tube systems. The combination of excellent d.c.dissip"ltion properties, which have been obtained by means of diffused emitter-ballasting resistors and the application of a Ti-Pt-Au sandwich metallization, gives an optimum reliability.
The transistor has a %" capstan envelope with ceramic cap.

QUICK REFERENCE DATA

R. F. performance
mode of operation

c1ar;s-A; linear}
amplifier

fvision
MHz

VCE

IC

Th

rnA

°C

dim *
dB

Po sync *

V

W

~g

860
860

25
25

850
850

70
25

-60
-60

>3,5
typ.4,4

>6,5
typ.7

* Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB), zero dB
corresponds to peak sync level.

MECHANICAL DATA

Dimensions in mm

--

Fig. 1 SOT-122.

-;-,

1,52

9 min (4x)

)

6,5
6,2
b

j

- . . -4-

0,17

0,11

8-32UNC

t

28,2
25,4

+
=c::(]
+

ceramic

+

t

BeD
metal

e

~15,911

I

5,5

I

~ 7,6 max ---

•

28,2
25,4

Torque on nut: min. 0,75 Nm
(7,5 kgcm)
max. 0,85 Nm
(8,,5 kg cm)

7Z76390

..

max

Diameter of clearance hole in heatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.

CAUTION Tilis device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeD disc is not damaged.
January 1978

_BL_W9_8

_Jl_:______

RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Colle,ctor-base voltage (open emitter; peak value)
Collector-emitter voltage (open base)
Em itter-base voltage (open collector)

VCBOM

max.

VCEO

max.

27 V

·50 V

VEBO

max.

Collector current (d.c.)

'C

max.

Collector current (peak value) f> 1 MHz

ICM

max,.

3,5 V
2 A
4 A

Total power dissipation at Th = 70 0C

Ptot

max

21,5 W

Storage temperature

T stg

Operating junction temperature

Tj

-65 to + 150 °C
200 0C
max.

7Z67289 1

D.C.SOAR ~

Th=70oC
°
Rth mb-h =0,6 C/W

Ic
(A)

--

10
uprate for 50oC~Th< 70°C.
derate for 70°C < T h ~ 100 

50 V

Collector-emitter breakdown voltage
open base; IC = 25 mA

V(8R)CEO

>

27 V

Emitter-base breakdown voltage
open collector; I E= 5 mA

V(8R)E80

>

3,5 V

D.C. current gain*
IC = 0,85 A; V CE = 25 V

hFE

>
typo

15
40

Collector-emitter saturation voltage*
le:= 500 mA; 18 = 100 mA

VCEsat

typo

0,25 V

TranSition frequency at f = 500 MHz*
-IE = 0,85 A; VC8 = 25 V

fT

typo

2,5 GHz . - -

Collector capacitance at f = 1 MHz
IE = Ie = 0; VC8= 25 V

Cc

typo

24 pF
30 pF

Feedback capacitance at f = 1 MHz
IC = 50 mA; VCE = 25 V; T mb = 25 °C

<

Cre

typo

Collector-stud capacitance

Ccs

typo

15 pF
2 pF

---

* Measured under pulse conditions; tp < 200 IlS; fJ 0;;;; 0,02.

September 1978

3

---,J l"'----_ _ _ _ _ _//_

_B_LW9_8

7Z78108

7Z78109

60

,

100

,

.... ~

40

,
.,

....

VCE:, 1-125Vf- ':"rI I
I
5V f--f-

.... p"""

i.;'
... r"

...

Cc
(pF)
1/

75

I

~

\

,

l/

\

100'"

50

:/

,,

/

1\

20

/

-~~ ~

1. . . . . . . " " -

25

--.
--

IC(A)
Fig. 3 Typical values; Tj

=250C.

2

o

r--

o

10
Fig.4 IE

20 VCS (V) 30

= Ie =0; f = 1 'MHz; Tj = 25°C.
7Z781031

4

f'r
(GHz)
3

,
~

~

-

./""

2

-...!.y!., -

............

/

I

.......

r--...

~

~ ......

J

/'

2
Fig. 5 VCS

4

September 1978

r

/

;

/

= 25 V; f = 50Q MHz; Tj = 25°C.

.~

."

3

jl--___

BL_W_9_8_____

___
UOH_OF_o_po_we_rt_ra_nsi_sto_r_____________________

APPLICATION INFORMATION
fvision (MHz)
860
860
860

VCE (V)

IC (mA)

25
2.5
25

850
850
850

Th (OC)
70
70
25

dim (dB)*

Po sync (W)*

-60
-60
-60

>3,5
typ.3,8
typ.4,4

Gp (dB)
>6,5
typ.7
typ.7

* Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB), zero dB
corresponds to peak sync level.

----

R6
~--~--~--------------~~--------------~~7~Z7~81~12--~+VS

Fig. 6 Test circuit at fvision = 860 MHz.
List of components (see also page 6):
Cl =
C3 =
C5 =
C7 =
C8 =
C9 =
Cl0 =
Cl1 =
C12 =

C2 = 1,4 to 5,5 pF film dielectric trimmers (cat. noo 222280909001)
C4 = -1 00 n F polyester capacitors
C6 = 1 nF feed-through capacitors
5,6 pFceramic capacitor
2 to 18 pF film dielectric trimmer (cat. noo 222280909003)
2 to 9 pF film dielectric trimmer (cato no. 2222809 09002)
10 J,LF/40 V solid aluminium electrolytic capacitor
470 nF polyester capacitor
2 x 3,3 pF chip capacitors (in parallel)

Ir

January 1978

5

APPLICATION INFORMATION (continued)
List of components (continued)

n

R 1 = 150 n carbon resistor (0,25 W)
R2= 1,8 kn carbon resistor (0,5 W)
R3 = 33 n carbon resistor (0,5 W)
R4 = 220 n carbon resistor ( 1 W)

R5 = 4 x 12 carbon resistors in parallel (1 Weach)
R6 = 1 kn carbon resistor (0,25 W)
R7 = 220 carbon potentiometer (0,25 W)

n

L 1 = stripJine (13,6 mm,x 6,9 mm)
L2 = microchoke 0,47 pH (cat. no. 4322 057 04770)
L3 = 1 turn Cu wire (1 mm); internal diameter 5,5 mm; leads 2 x 5 mm
L4 = stripline (40,8 mm x 6,9 mm)
L 1 and L4 are striplines on a double Cu-clad printed-circuit board with PTFE fibre-glass dielectric
(e r = 2,74); thickness 1,5 mm.
96mm

I"

--

-------

"I

--------[0
C8

L4

0

--------C9~
band JZ:
7Z78111.1

1
47mm

1

Note
Hole in printed-circuit
board: q, 9,7 mm.

7Z78110

Fig. 7 Component layout and printed-circuitboard for 860 MHz test circuit.
The circuit and the components are situated on one side of the PTFE fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets.

6

September 1978

(

U_'H_'F_.p_~_e_rt_rn _Sis_to_r

__

jl_____

B_LW
__
98_____

_____________________

7Z78104

-50

d.

1m

0

(1)

T h "'70 C

1

(dB)

V I
/

I

-55
/

~

7

25 °C

V

/

I

/

II
j

1/

i

!/ !/
J

II

I J
II I
-60

o

1

V

5

10

Po sync (W)

---=

15

-.

(1) Three-tone,test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal -16 dB),
zero dB corresponds to'peak sync level. Intermodulation distortion of input signal ~ -75 dB.
Fig.8 Intermodulation distortion as a function of output power.
Typical values; VCE ; 25 V; IC; 850 rnA; fvision =860 MHz.

Information for wide-band application from 470 to 860 MHz available on request.

"I (

January 1978

7

jl____
. _ __

_BLW_98

7278107

7,5

7278105

15

"""
Xi "

5

./
/'

/

,,~

"'-

''"

10

/'

V

.......... ...........

/

~
~L

-15

~

.........

~

/
2,5

-10

. . . . j'..

/'

......... ,C

5

L

"

-20

rj f - -

--.-......

o

a

650

400

f (MHz)

900

Fig.9 Input impedance (series components)
as a function of frequency.

-25

400

650

f (MHz)

900

Fig. 10 Load impedance (parallel components) as a function of frequency.

7278106

15

~

""

10

I'...

Conditions for Figs 9, 10 and 11

""~typ

.......

""

VCE
~

= 25 V;

Ie

=850 mA; typical values .

r-

5

a

Fig. 11 Power gain as a function of frequency.

400

8

January

650

19781 (

f (MHz)

900

_ _ _Jl_BLX_13
H.F.N.H.F. POWER TRANSISTOR
N-P-N epitaxial planar transistor intended for s.s.b. in class-A and AB and in f.m. transmitting applications in class-C with a supply voltage up to 28 V. The transistor is resistance stabilized and tested
under severe load mismatch conditions. It has a %" capstan envelope with a moulded cap. All leads
are isolated from the stud.
QUICK REFERENCE DATA
mode of operation VCE
V
s~s.b.

(class-A)
s.s.b. (class-AB)

26
28

f1
MHz

f2
MHz

PL
W

28,000
28,000

28,001
28,001

0-8(P.E.P.)
25(P.E.P.)

mode of operation VCE
f
V MHz
C.W.

(class-B)

28

70

Ps
W

PL
W

Gp
dB

Gp
dB

IC
A

d3
dB

> 18 < -40 <
> 18 typo -35 typo
IC
A

-

zi

'Tl
%

typ.0,5 25 typ.17 typo 1,49

1,2
1,28

n

'Tldt

%

typ.35
YL
mAN

typ.60 0,53 - j1,4 42,5 - j54

MECHANICAL DATA

--

Dimensions in mm

Fig. 1 SOT-56.

$1.-

-,-F=="f"I
10-32UNF'

9,5-.1

___ 1

,91..-

3,00 ___

3
3,5
27

max

2,85
72600004

---

n:~-

When locking is required an adhesive is preferred instead of a lock washer.
Torque on nut: min. 1,5 Nm
(15 kg cm)
max. 1,7 Nm
(17 kg cm)

Diameter of clearance hole in heatsink: max. 5,0 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer
or countersink either end of hole.
September 1978

'1

BLX13.

II·

RATINGS Limiting values in accordance withthe Absolute Maximum System (lEC 134)
Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

max.

65

V

Collector-emitter voltage (open base)

VCEO

max.

36

V

Emitter-base voltage (open collector)

VEBO

max.

4.0

V

Collector current (average)

IC(AV)

max.

3.0

A

Collector current (peak value) f> 1 MHz

ICM

max.

6

A

max.

62.5

W

Currents

Power dissipation
Total power dissipation up to Th

= 25 °C

f> 1 MHz

7ZlOO •

1Z6t1S4

---

I

D.C. SOAR

Ic

100

(AI
5

Ptot

VCE «;28V

f>1MHz

1-1-

(WI
~

sort time ~.I~

4

~"t;,

75 operation' V.S.W.R.>3

0..;;,,$.0

-f-

'''/0

f-I-r- .,

3

~""'bt-s'.

\ '\

50

~~
. >0

2

0

\

Temperature

~.J/o

......" C'/~

"-

"

" r\
f\

20

"""<'JS~I'~
~$ll

"'"' C}~

normal

2S I- l - I- operation

\

I- ~ I- V.S.W.R.<3

I

f\

30

40

Vce(VI

T stg

-30 to +200

Tj

max.

200

°c
°c

From junction to mounting base

Rth j-mb

=

2.5

°C/W

From mounting base to heatsink

Rtb mb-h

0.3

°C/W

Storage temperature
Operating junction temperature

THERMAL RESISTANCE

2

II

II

May 1971

II

II
Tj :;; 25

CHARACl'ERISTICS

BLX13

°c Wlless otherwise

specified

Breakdown voltages
Collector-base voltage
open emitter; IC :;; 50 mA

V(BR)CBO

>

65

V

Collector-emitter voltage
open base; IC = 50 mA

V(BR)CEO

>

36

V

Emitter-base voltage
open collector; IE = 10 rnA

V(BR)EBO

>

4.0

V

E
E

>

>

8
8

hFE

typo
50
10 to 100

fT

typo

500

Cc

typo
<

50
65

pF
pF

Cre

typo

31

pF

Ccs

typo

2

pF

energ~

Transient

L =.25 mH; f = 50 Hz
open base
- VBE = 1. 5 V; RBE

= 33 Q

mWs
mWs

D. C. current gain
IC = 1. OA; V CE = 5 V
Transition frequency
IC = 3.0A; VCE:;; 20 V
Collector caEacitance at f
IE

= Ie

MHz

=1· MHz

= 0; VCB = 30 V

Feedback caEacitance
IC

= 100 rnA;

VCE = 30 V

Collector - stud caEacitance

3

May 1971

II

If

---

BLX13

II
7Z60031

600

I I I I
I II I

Vce=20V

1r
(MHz )

... 1-1"""

.......

typ

~

i"'o

~

"'"

'I

400

--

II

" ""- ""-

.~

~
~

I

~

200

-----

4

2

Ic

6

8

(A)

tZ60026

IE=Ie=O

100

f=1MHz

\

75

~
~

"

typ
~

.........

50

.

II

r- l- I-

.

10

4

.......

~

Cc
. (pF )

25

I-

20 Vcsev)

30

II

May 1971

II

BLX13

726"19

1.25

VCE=28V
Th=25°C

VeE
(V)
~

./
;'

I..o'~

-,,"
--'~

0.75

-

~

-

l.,.....--'"'" typ
-~

0.5

0.25
10- 2

May 1971

Ic (A)

II

II

10

5

--

BLX13

II

APPLICATION INFORMATION
R. F ~ performance in S. S. B. operation (linear power amplifier)
V CE

f1

= 26 V;

Th up to 25 oC

= 28. ?OO MHz; f2 = 28.001

MHz

output power

IC

(W)

(A)

> 18

0-8 (PEP)

< -40

Class

< 1. 2

A

Test circuit:

S.5.B.
class A

160to260pF 50n

--

-L1

= 3 turns

enamelled Cu
leads 50 mm totally
L2 = 7 turns enamelled Cu
(code number of 3H1:
'L3 = 4 turns enamelled Cu
L4 = 7 turns enamelled Cu

wire (1. 5 mm); winding pitch 2.5 mm; into diam. 7 mm
wire
4322
wire
wire

(0. 7 mm) on 3H 1 toroid; 60 IlH
020 36620)
(1. 5 mm); winding pitch 2.5 mm; into diam. 10 mm
(1. 5 mm); winding pitch 2.5 mm; into diam.12 mm

Detailed information for a wide band application
1.6 to 28 MHz available on request

1) Stated figures are maxima encountered at any driving level between the specified
values of PEP and are referred to the according level of either of the equal amp!.
tones. Relative to the according peak envelope power these figures should be increased by 6 dB.

6

II

II

May 1974

II

BLX13

7Z61165

-35

I I "
I I J
I I
I I I I

Vce=26V
r-rr-rTh=70oC
1-1Rth mb-h= 0.3°C/W
I I I I

I I

Ic=0.8A- 1.0A- 1.2Aoj
.J
J

-40

,

,

/

J
J

I
/

J
J

/
/

-45

,

J

,

J
I~

I

'I

1/
1~

J

"

iIi"~
~

---

fl

-50

May 1971

II

JV

o

5

P.E.P. (WI

10

II

7

BLX13

II

APPLICATION INFORMATION
R. F. performance in S. S. B. operation (linear power amplifier)

= 28 V; Th up to 25 °C
= 28.000 MHz; f2 = 28.001

VCC
f1

MHz

output power
(W)

(%)

d3
(dB) 1)

ICZS
(mA)

IC
(A)

Class

(dB)

25 PEP

> 18

typo 35

typo -35

25

typo 1. 28

AB

dt

Gp

Test circuit:

S.S.B.
class

160to 260pF 50 It

-J--.....- - - -.....-=-=-==-o+vcc

D1
L1

= AYYlO/120
= 3 turns enamelled Cu wire

leads 50 mm totally
L2 = 7 turns enamelled Cu
(code number of 3Hl:
L3 = 4 turns enamelled Cu
L4 = 7 turns enamelled.Cu

wire
4322
wire
wire

(1. 5 mm); winding pitch 2.5 mm; into diam. 7 mm

(0. 7 mm) on 3Hl toroid; 60\lH
020 36620)
(1. 5 mm); winding pitch 2.5 mm; into diam.lO mm
(1.- 5 mm); winding pitch 2.5 mm; into diam.12 mm

1) Stated intermodulation distortion figures are referred to the according level of
either of the equal amplified tones. Relative to the according peak envelope powers
these figures should be increased by 6 dB.

8

II

II

May 1971 .

II

BLX13

II

7Z611?O

-25

d3
ds
(dB I

Vee= 28V
f-- f-lezs= 2SmA
t-Th =25°C

,

~

-30

j

t7

\
V

\
-35

~

dJ V

"- I '

......

V

-

V

j

V

v

dsl/

....... ",.,
/

L

-40

-45

o

5

20

15

10

25

P. E.P. (WI 30

7Z6116?

40

Conditions:
Gp
(dB)

-

30

25 W PEP

VCC

28 V

ICZS

~typ

"

PL

ZL

"

Th

= 25 rnA
= 12.5 Q
25°C

20

10

1

May 1971

10

II

f (MHz)

9

---

BLX13

II

II

Conditions:

-----

PL

25 W PEP

Vce =

28 V

I CZS

10

=

25 rnA

zi

=12.5Q

Th

=

25 0 C

II

II

May 1971

II_~ BLX13

I
APPLICATION INFORMATION
R. F. performance in c. w. operation

VCC

= 28 V;

Th up to 25

(class'~_

°c

f
(MHz)

Ps
(W)

PL
(W)

IC
(A)

70

typo 0.5

25

typo 1.49

YL
(rnA/V)

typo 17

typo 60

0.53-j1.4

42.5-j54

Test circuit:
4to100pF

C.W.
elass B

son

-......
....-

Ll

= 93 nH; 3 turnS enamelled Cu wire

(1. 5 mm); into diam. 10 mm; length 8 mm;
leads 2 x 5 mm
L2 =147nH; 5 turns enamelled Cu wire (1. 5 mm); into diam. 9 mm; length 14 mm;
leads 2 x S mm
L3 =1l8nH;4 turns enamelled Cuwire (1.5 mm); into diam. 9mm; length 10.5mm;
leads 2 x 5 mm
L4 = FXC choke (code number 4312 020 36640)

May 1971

i

11

BLX13

, II

II
7Z61168

7 Z61166

40
R.F. SOAR

f=70MHz rVee=28V rTh=25°e

40

f=70MHz
Vee = 2aV

Pl(W I
(V.S.W.R.=1 ,

Rth

mb-h =0.3

O

C/W

I

Th=50oe
30
1.,.00' ......

-~

30

i""""

70 0 e

,,-typ
20

9hoe

II
I

20

10

--

Ps (WI '1.5

0.5

10 V.S.W.R.

50,

For high voltage operation, a stabilized
power supply is generally used.
The graph shows the allowable output
power under nominal conditions as a
function of the V. S . W • R., with heatsink temperature as parameter.

12

II

tl_ _

May 1971

____---Jl--BL-X13-C_
H.F.N.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor for use in transmitting amplifiers operating in the h.f. and v.h.f.
bands, with a nominal supply voltage of 28 V. The transistor is specified for s.s.b. applications as linear
amplifier in class-A and AB. The device is resistance stabilized and is guaranteed to withstand severe
load mismatch conditions.
Matched hFE groups are available on request.
It has a 3/8" capstan envelope with a ceramic cap. All leads are isolated from the stud.
QUICK REFERENCE DATA
R.F. performance
mode of operation VCE
V

f
MHz

Gp

PL
W

dB

s.s.b. (class-A)

26

1,6-28 0-8 (P.E.P.)

>

s.s.b. (class-AS)

28

1,6-28 3 - 25 (P.E.P.)

typ.21

20

Ie
A

1/dt
%

-

1,25

typ.45

typo 1,0

MECHANICAL DATA

+315~-+--~

~~
8min (4x)

1

/~1-'
,

(

1\\

'

~

-40

70

typo -30

25

---

"'-0,14

1,6 max

---II'"

~
+

\

+--+----t-

28

26

<

Dimensions in mm

Fig. 1 SOT-120.

c

Th
°C

d3
dB

ceramic

8,4

max

/1

b

+
BeQ

___ 29 ... 8,65_
,
min

j

metal

e

J I.

~

-

5,9
5,5

9,8 max

...

28

26

Torque on nut: min. 0,75 Nm
(7,5 kg em)
max. 0,85 Nm
(8,5 kg em)

-'1,8-7,Omax ...

..

7Z69881.1

Diameter of clearance hole in heatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

'I

July 1978

-----

_jl~

__
BLX_13C_,

_______

RATINGS
limiting values in accordance with the Absolute Maxiinum System (IEC 134)
Collector-emitter voltage (VBE = 0)
peak value

VCESM

max.

Collector-emitter voltage (open base)

VCEO

max.

Emitter-base voltage (open-collector)

VEBO

max.

Collector current (average)

IC(AV)

max.

3 A

ICM

max.

9 A

Prf
T stg
Tj

max.

Collector current (peak value); f

> 1 MHz

R.F. power dissipation (f > 1 MHz); T mb = 25 °C
Storage temperature
Operating junction temperature

V

4 V'

73

W

-65 to + 150 °C
max.

200 0C

7Z77834

7Z77833

10

65

·36 V

100

IC
(A)

Prf

---

(W)

"'~ ,,~
Th=700~

~mb=250C

~

""'-

75 f- "I
I

rs

r50

~

~

~

qr$

f-" -~q~8
't-o

r- 1-1

" ""

0) ~/~
";'9~

o
r-./ C "'"
"'

.

25

10- 1

o
5

10

50

100

o

.......

"'r ...

50

V CE (V)

Fig. 3 R.F. power dissipation; VCE ~ 28 V;
1 MHz.
I Continuous d.c. operation
" Continuous r.f. operation
III Short-time operating during mismatch

Fig. 2 D.C. SOAR.

f~

THERMAL RESISTANCE (dissipation

2

= 32,5 W; T mb = 85 oC, i.e. Th = 70 oC)
3,55 OC!W

From junction to mounting base (d.c.dissipation)

Rth j-mb(dc)

From junction to mounting base (r.f. dissipation)

Rth j-mb(rf)

2,65 OC!W

From mounting base to heatsink

Rth mb-h

0,45 oC/W

July 197B

~

(

~~

___H_._F._/V_.H_._F._p_ow_e_rt_ra_"S_iS_W_r_______________________

B_L_X_13_C
______

______

CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector-emitter breakdown voltage
VBE = 0; IC = 10 mA

V(BR)CES

>

65 V

Collector-emitter breakdown voltage
open base; IC = 50 mA

V(BR)CEO

>

36 V

Emitter-base breakdown voltage
open collector; IE = 10 rnA

V(BR)EBO

>

4 V

Collector cut-off current
VBE=0;VCE=36V

ICES

<

4 rnA

ESBO
ESBR

>
>

8 mJ
8 mJ

D.C. current gain *
IC = 1,25 A; V CE = 5 V

hFE

typo
50
10 to 100

D.C. current gain ratio of matched devices *
IC = 1,25 A; VCE = 5 V

hFE1/hFE2

<

1,2

Collector-emitter saturation voltage *
IC = 3,75 A; IB = 0,75 A

VCEsat

typo

1,5 V

Transition frequency at f = 100 MHz *
-IE = 1,25 A; VCB = 28 V
-IE = 3,75 A; Vce= 28 V

fT
fT

typo
typo

530 MHz
530 MHz

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 28 V

Cc

typo

50 pF

Cre
Ccs '

typo

31 pF

typo

2 pF

Second breakdown energy; L
open base
RBE = 10n

= 25 mH; f = 50 Hz

Feedback capacitance at f = 1 MHz
IC = 100 mA; VCE = 28 V
Collector-stud capacitance

---...,..

7Z77762

3

~!'
b

IC

-;,/

,

(A)

Th= 70 0 C-; IIl 25 0 C

2

I

"

1/
'J

V.

)V
J'j
I/~
v:;~

o

.... i'"

o

0,5

1,5 V

BE

(V) 2

Fig. 4 Typical values; VCE = 28 V.

* Measured under pulse conditions: tp";; 200 p.s;

l) ..;;

0,02.

If

July 1978

3

_____
BL_X_13_C__

_______________~_____________

~Jl

7Z77763

75

/-

7Z77764

150

Cc

.........

(pF)

'\
50

\'V CE=28V

--

./

..............

~

"""\

---

o

~

\

\. '\

~

~

5

..... ~

la,

IC(A)

typ
1'-1-

1"-"-

50

a

o

\
\

\
5V

25

100

\

a

Fig. 5 Typical values; Tj = 25 cC.

20
Fig.6 IE

VCs(V)

>-1-

40

= Ie = 0; f = 1 MHz; Tj = 25 cC.
7Z77765

600

...

~"

fT
(MHz)

,/

,

J

... ..............

.,

L.

400

~

....

.... ....

'" ......

~

'"

""" '"
"-

200

VCB =28V-

I"

'"
" 15V --

a

,

a

-

r
2

4

6

-IE (A)

Fig. 7 Typical values; f = 100 MHz; Tj = 25 cC.

4

July 1978

~

8

Jl- - - - BLX13C

H.F./V.H.F. power transistor

-------------'
APPLICATION INFORMATION
R.F. performance in s.s.b. class-A operation (linear power amplifier)
VCE

= 26 V; f1 = 28,000 MHz; f2 = 28,001
Gp

IC

dB

A

d3
dB*

20
typ.24

1,25

-40

<-40

70

1,25

-40

<-40

25

output power
W

>

>

8 (P.E.P.)

typo 10 (P.E.P.)

MHz

d5
dB*

C10

50n

Cll

D--K_,........I

C2

C8
L2

~

I
R5

BY206

7Z77798.1

Fig. 8 Test circuit; s.s.b. class-A.
List of components on page 6.

* Stated intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB.
September 1978

5

J

l"""--_ _ _ _ _ __

__
BlX_13C_ _

List of components in Fig. 8:
C1 == C2 = '0 to 780 pF film dielectric trimmer
C3 == 22 nF ceramic capacitor (63 V)
C4 == 47 IlF/10 V electrolytic capacitor
C5 == 56 pF ceramic capacitor (500 V)
C6 = 47 IlF/35 V electrolytic capacitor
C7 = C8 == 220 nF polyester capacitor
C9::: 10 IlF/35 V electrolytic capacitor
C10 = 10 to 210 pF film dielectric trimmer
C11 == 15 to 575 film dielectric trimmer
L 1 ::: 3 turns closely wound enamelled Cu wire (1,6 mm); into dia. 9,0 mm; leads 2 x 5 mm
L2 = L3 = Ferroxcube wide-band h.f. choke, grade 38 (cat. no. 4312 020 36640)
L4::: '1 turns closely wound enamelled Cu wire (',6 mm); into dia. '1,0 mm
L5 == 14 turns closely enamelled Cu wire (',6 mm); into dia. ",0 mm
R1 :::
R2:::
R3 ==
R4 =
R5 =
R6 ==
R7 ==
R8 ==
R9 ==

---

600 n; parallel connection of 2 x ',2 kn carbon resistors (± 5%; 0,5 W each)
15 n carbon resistor (± 5%; 0,25 W)
1,2
parallel connection of 4 x 4,7 n carbon resistors (± 5%; 0,125 W each)
33 n carbon resistor (± 5%; 0,25 W)
18 n ,carbon resistor (± 5%; 0,25 W)
120 n wirewound resistor (± 5%; 5,5 W)
1
carbon resistor (± 5%; 0,125 W)
47 n wirewound potentiometer (3 W)
1,57 n; parallel connection of 3 x 4,7 n wirevvound resistors(± 5%; 5,5 W each)

n
n

7277835

-20

I I
J I I

I

I

I
« -« ~ --- -euci - q -C"t
- ;" -V~ ')...
-'-

-It)

li

00

"

II ),

./

-40

'",

..

..... 1...0'

~~

I'~

.)<;

I::'

~11'f"

~

.,.

i-'

10-

J,.o-

"",''''

J...ooI:Ii ~I,.ool"

"""'
.... [.jI~
.Ir~

-60

o

5

10

P.E.P. (W)

15

Fig. 9 Intermodulation distortion as a function of output power.
Typical values; VCE = 26 V; f1 == 28,000 MHz; f2 = 28,001 MHz;
Th=70 0 C;--- Th=25 0 C.

6

July 1978

~

r

H_'F_'N_'_H'_F._p_ow_e_rt_ra_nS~i~_or

___

,Jl._____B_L_X_13_C_____

______________________

R.F. performance in s.s.b. class-AB operation (linear power amplifier)
VCE

= 28 V; f1 = 28,000 MHz; f2 = 28,001

output power

Gp
dB

w

3 to 25 (P.E.P.)

typ.21

3 to 22 (P.E.P.)

typ.21

MHz

IC(A)
17dt (%)
at 25 W P.E.P.
typ; 45

typ.1,0

d3
dB *

d5
dB *

IC(ZS)
mA

Th

°c

typo -30

<-30

25

25

typo -30

<-30

25

70

C7

.'--oft--..--o 50 n
C8
C2

"---......---..---u +V CC

temperature
compensated bias

C6

l .

7Z77771.1

Fig. 10 Test circuit; s.s.b. class-AB.
List of components:
C1 = C2 = 10 to 780 pF film dielectric trimmer
C3 = C5 = C6 = 220 nF polyester capacitor
C4 = 56 pF ceramic capacitor (500 V)
C7 = C8 = 15 to 575 pF film dielectric trimmer
L1 =
L2 =
L3 =
L4=

4 turns closely wound enamelledCu wire (1,6 mm); into dia. 7,0 mm; leads 2 x 5 mm
Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)
4 turns enamelled Cu wire (1,6 mm); into dia. 10 mm; length 9,4 mm; leads 2.x 5 mm
7 turns enamelled Cu wire (1,6 mm); into dia. 12 mm; length 17,2 mm; leJids2 x 5 mm

R1 = 1,2 n; parallel connection of 4 x 4,7
R2 = 39 n carbon resistor

n carbon resistors

* Stated intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB.

September 1978

7

jl~_______

_B_LX13_C__

7Z77836

-20

7Z77837

30

Gp
(dB)
Th=
r-f-J:.L
790°C
JIL
/I
?'7700C
"I 1 rJ-r- iL,
SOoC
/I '"""~ r-,:':::: 2SoC
,/
i?'

d3

,

-30

~

~

~

~

~

\'

dS
-40

~'\

,
, ;,:::,

~

,

-so

,

~

'""'G
r- p
1/

40

!J

"

~I-"

1/
/

I

~T/dt /

II
1111

".

10

II

20

,I
~

:1

20

P.E.P. (W)

40

Fig. 11 Intermodulation distortion as a function
of output power. *

o

o
20

P.E.P. (W)

for Fig. 11:

Conditions for Fig. 12:
VCE = 28 V; 'C(lS) = 25 mA; fl = 28,000 MHz; f2 = 28,001 MHz; Th = 25 oC; typical values.

I(

* See note on page 7.

July 1978

40

Fig. 12 Double-tone efficiency and power gain as a
function of output power.

VCE = 28 V; IC(lS) = 2S mA; fl = 28,000 MHz; f2 = 28,001 MHz; typical values.

8

(%)

V

20

o

o

~onditions

1}dt

~

1\\

\

----

60

J
l
-------------~

BLX13C

H.F.IV.H.F. power transistor

----

-"

7Z77838

40

Gp
(dB)

,

20

r---

)

-

30

7Z77839

If

\:i

/~.
If '

\

....

15

"

1\

\

~

~

1\
10

20

1\

\

\
\
\
5

10

o

o
10

f (MHz)

Fig. 13 Power gain as a function of frequency.

Xi
(il )

J
-5

-7,5

I'
1\

\

1

I
I
I
I
I
V

-2,5

1

'(

""

-10

1\

""

............

10

f (MHz)

---

-125
10 2
'

Fig. 14 Input impedance (series components) as a
function of frequency.

Figs 13 and 14 are typical curves and hold for an unneutralized amplifier in s.s.b. class-AB operation.
Conditions:
VCE = 28 V; IC(ZS) = 25 mA; PL = 25 W; Th = 25 oC; ZL = 12 n.
Ruggedness in s.s.b. operation
The BLX13C is capable of withstanding a load mismatch (VSWR ~ 50) under the following conditions:
f1"= 28,000 MHz; f2 = 28,001 MHz; VCE = 28 V; Th = 70 °c and PLnom = 30 W (P.E.P.).

I(

July 1978

9

_ _ _ _ _ _ _Jl____...BLX-14
H.F.N.H.F. POWER TRANSISTOR
Silicon n-p-n power transistor for use in industrial and military s.s.b. and c.w. equipment operating in
the h.f. and v.h.f. band:
• rated for 50 W P.E.P. at 1,6 MHz to 28 MHz
(intermodulation distortion better than 30 d8 down); full load mismatch permissible at stud
temperatures up to 70 0C
• rated at 50 W for frequencies up to 70 MHz in c.w. operation
• supply voltage 28 V
• plastic stripline package
QUICK REFERENCE DATA
mode of operation

s.s.b. (class-A)
s.s.b. (class-AB)
C.W. (class-B)
C.W. (class-B)
M~CHANICAL

·G p
dB

VCE
V

f
MHz

PL

28
28
28
28

1,6 to 28
1,6 to 28
70
30

15 (P.E.P.)
7,5-50 (P.E.P.)
50

W

50

>
>
>

13
13
7,5
typo 16

d3
dB

IC(ZS)
A

typo -40
-30

2,0
0,1

<

DATA

Dimensions in mm

Fig. 1 SOT-55.

+

0,28_ _
0,23
11

5~

•

1.....1 - - - - 2 1 - - - 1
!-.-_ _ _ 27.2: _ _ _----i..~1

_ 1 3 ••
12,5

J·~ __
max

(I IJ

0.2'
max

?Z58786.2

26,8

When locking is ~equired an adhesive is preferred instead of a lock washer.
Torque on nut: min. 2,3 Nm
(23 kg cm)
ma~. 2,7 Nm
(27 kg cm)

Diameter of clearance hole in heatsink: max. 6,5 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer
or countersink either end of hole.

...

~

September 1978

---

II

BlX14

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

max.

85

V

Collector-emitter voltage (R BE = 10 Q)
peak value

VCERM

max.

85

V

Collector-emitter voltage (open base)

VCEO

max.

36

V

VEBO

max.

4.0

V

Collector current (average)

ICAV

max.

4.0

A

Collector current (peak value) f> 1 MHz

ICM

max.

12

A

88

W

Emitter-base voltage (open collector)
Currents

Power dissipation

-----

Total power dissipation up to Th = 25 °C
f> 1 MHz
7Z60en

short time
operation

~\'d-tVCE~28V '''~
f>1MHz
~.rc9. I

100 V.S.W.R.> 3 IPtot

(WI

.

r\."Q

I

~~~".'

~~)

I'\"'~
~ex
"Q~/o

75

max.

?Z11101

6

D.C. SOAR

Ie
(A)

,

Jj..

4

r.
I'

r\rt~

50

\

"

1'\

J
r- r- .norma I operation
r- r-r- V. S.W.R.< 3

I-

'h=100oC

"I'

"'Ir"-

I-~ 25°C

'''I

2

1"\

"

25

00

50·

Temperature
Storage temperature
Operating junction temp erature

0
0

20

VeE (V)

T stg
Tj

-65to +200
max. +200

40

°c
°c

THERMAL RESISTANCE

From junction to mounting base
From mounting base to heats ink

2

II

1.8 °C/W
0.2 °C/W

Rth j-mb
Rth mb-h

II

May 1971

II
Tj = 25

CHARACTERISTICS

°c

BlX14

unless otherwise specified

Breakdown voltages
Collector- base voltage
open emitter; IC = 25 rnA

V(BR)CBO

>

85

V

Collector-emitter voltage
RBE = 10 Q; IC = 25 rnA

V(BR)CER

>

85

V

Collector-emitter voltage
open base; IC = 50 rnA

V(BR)CEO

>

36

V

Emitter-base voltage
open collector; IE = 10 rnA

V(BR)EBO

>

4.0

V

VCEsat

<

1.0

V

E
E

>
>

8
8

hFE

15 to 100

fT

typo

250

MHz

Cc

typo

<

115
125

pF
pF

Cre

typo

90

pF

C cs

typo

3.5

pF

Collector-emitter saturation voltage
IC

= 0.7 A;

IB

= 0.14 A

Transient energy
L

= 25

rnH; f

= 50 Hz
open base
-VBE = 1. 5 V;RBE

= 33Q

mWs
mWs

D. C. current gain
IC

= 1. 4 A;

VCE

=6

V

Transition frequency
IC

= 3.0 A;

VCE

= 10 V

Collector capacitance at f
IE

= Ie = 0;

VCB

= 30

= 100 rnA.;

VCE

= 1 MHz

= 30 V

Collector-stud capacitance

May 1971

MHz

V

Feedback capacitance at f
IC

=1

II

3

----

II

BLX14

7Z10. . 4

7%10 . .3

Jc
. Vce=20V .....

400

f1

IE -1,,,,0 t-

Cc
(pFI

(MHzl

300

300

f - ~F-

200

f=1MHz

400

typ

,

~

1\

r"-r--_

\

I

200

II

~

""'"",

r"'o~ t~

r-r--

-=
..-

~I!!o.

r-

100

100

~

-.01

5

10

Ie (AI

15

10

20 Vee (VI

30

7Z1I100

Ie
(rnA )

veE =28V

Th =25°C

typ

800

4

II

1000 \'ee(rnV) 1200

II

May 1971

II

BLX14

II

APPLICATION INFORMATION

R. F. performance in S. S. B. operation (linear power amplifier)
VCC
f1

= 28 V;

Th up to 25 °C

= 28.000 MHz; f2 = 28.001 MHz
output
power
(W)

7. 5 to 50 (PEP)

G

Yldt

(dm

(%)

>13

>35

d3
(dB) 1)
<

-30

dS
(dB) 1)

<

-30

I CZS
(A)

0.1

At temperatures up to 90 0 C the output power relative to that at 25
by a factor -40 m W IOC

I
(k)

Class

<2.55

°c

AD

is diminished

The transistor is designed to withstand a full load misroatch operating under
SOW PEP at VCC = 28 V and Th = 70 °C

------

Test circuit:

S.s.B.
elass A-B

~7I~~--------~------n~c

D1

= AYYlO/120

L1

= 3 turns enamelled Cu wire (1. 5 mm); winding pitch 2.5 mm; int. diam. 7 mm

L2

= 7 turns enamelled Cu wire (0.7 mm) on 3H1 toroid; 60 ~H

L3
L4

= 4 turns enamelled Cu wire (1.5 mm); winding pitch 2.5 mm;int. diam. lOmm
= 7 turns enamelled Cu wire (1. 5 mm); winding pitch 2.5 mm; int. diam. 12mm

leads 50 mm totally
(code number of 3H1: 4322 020 36620)

1) Stated figures are maxima encountered at any driving level between the specified
values of PEP and are referred to the according level of either of the equal amp!.
tones. Relative to the according peak envelope power these figtl}:es should be increased by 6 dB.

May 1971

II

II

5

BLX14

II

II
7%11105

ZlIlO/.<

------

1-1- t--

-20

---

)

.....

f--

Vee=28V

I - 'f,=2.aoOOMHz
III-

f2= 28.001 MHz
Th =25°C
I ezs =100mA

..... -.

d3

.--

-

~

-40

Vee=28V
f, =2aoOOMHz
40 f2 =28.001 MHz
Iezs=O.lA
Th =25°C

typicaL values

7

7

/

/
~

V'

rtdt

/

~

(%)

/
/

,

/

~

......

" f'd s-

1/

20

I
I

----

-60

o

25

o
o

50 P.E.P.(W) 75

7Z II 107

60

I I JI I I I

I I I

I I I I

typicaL vaLues

P.E.P.

f, = 2.8.000 MHz
f z===2.aOOl MHz
Iezs=O.lA
Vee =28V

(W)

50

-~

I II
I I I

....

r--~

,;,. ....

6

II

r--

---

d3

40

25

-20

,...~E.P.

.... """

30

50 P.E.P. (W) 75

~5

....

-~

75

(

-30

-40

Th

(OC)

125

II

May 1971

BLX14

II

II

7Z6089 5

30

f

I
I

I

I

: typical values 1---

Gp

..... .... ....

(dBI

..........

.... ..
"""""'"

20

......

..........

.

...

............
""""".....

10

o
1

10

f (MHz.

100

S.S.B. class AB operation

PL
VCC
Ie
ZL
Th

50 W PEP
28 V
100 rnA
= 6.25 n
0
25 e

The drawn curve holds for an unneutralized amplifier.
The dashed curve holds for a push-pull amplifier with cross neutralization.
Collector -base neutralizing capacitor: 82 pF

May 1971

II

II

7

,-----

BLX14

II

II

--S.S.B. class AB operation

PL

VCC

IC
ZL
Th

50
28
100
= 6.25
25

W PEP
V

rnA

n

0

C

The upper graph holds for a push-pull amplifier with cross neutralization.
Collector -base neutralizing capacitor: 82 pF
The lower graph holds for an unneutralized amplifier.

II

II

May 1971

BLX14

II
APPLICATION INFORMATION (continued)
R. F. performance in s. s. b. operation (linear power amplifier)

°c
= 28,000 MHz; f2 = 28,001 MHz

VCC = 28 V; Th up to 25

f1

output
power

Gp

d3

(dB)

(dB) 1)

d5
(dB) 1)

(A)

> 13

typo -40

typo -45

2,0

(W)

15 PEP

Class

IC

A

160to260pF 50n

Test circuit:

S.S.B.
class-A

r-----+--------~---7-Z'-n-550+~e

L1 = 3 turns enamelled Cu wire (1,5 mm); winding pitch 2,5 mm; into dia. 7 mm
leads 50 mm totally
L2 = 7 turns enamelled Cu wire (0,7 mm) on 3H1 toroid; 60 fJH
(code number of 3H1: 4322 020 36620)
L3 = 4 turns enamelled Cu wire (1,5 mm); winding pitch 2,5 mm; into dia. 10 mm
L4 = 7 turns enamelled Cu wire (1,5 mm); winding pitch 2,5 mm; into dia. 12 mm
7Z11102.

7Z11103

typical values
-20

typical values 1 - - -

Th =25°C
f, = 28,000 MHz
f2= 28,001 MHz
Vee=28V

20

1---1----

1---

P.E.P.

Th =2SoC
f, = 28,000 MHz
f2=28,001 MHz
d3=-40dB
Vee =28V

(W)

L

24V

-I--

=l,SA

Ie

V"

1/

-40

,
i;"

i.-'"

V

~

,

1..,..0- ......

..... 1-'

,

l.;V

-60

S

June 1976

...

10

1.--'1"""

V

lS

10

II

P.E.P.(W) 20

"

//

2A

~

~

0
1

-,-V

/7
ILL
j

"
1,S

2 Ie

II

(A) 2,S

9

--

II

BLX14

APPLICATION INFORMATION
R. F. performance in c. w. operation (class B)

= 28

Vee

f (MHz)
70
50
30

V; Th up to 25.

°c

Ps (W)

PL (W)

8.9
4
typo
typo 1.2

50
50
50

<

IC (A)
3.25
typo 3.25
typo 3.25

<

Gp (dB)
>

typo
typo

7.5
11

16

11 (%)

55
typo 55
typo 55
>

At temperatures up to 90°C the output power relative to that at 25
factor -40 mW IOC.

Zi (Q)

YL (mA/V)

1. 0+ jO. 2

120 - j75·

-

-

°c

is diminished by a

Test circuit:
4tol04pF

C.W.
70 MHz

son.

I

L1 =·60 mm straight enamelled eu wire (1. 5 mm); 9 mm above chassis
L2 = FXC choke coil (code number 4322 020 .'36640)
L3 = 2 turns enamelled Cu wire (1. 5 mm);. winding pitch
2 mm; internal diam. 10 mm;
leads 55 mm totally
L4 = 3 turns enamelled Cu wire (1. 5 mm); winding pitch 2.5 mm; internal diam. 10 mm;
leads 50 mm totally
.

10

II

II

May 1974

II
75

7%11111

/

I I I \I I I I

-- f- typical values

r- ,-Ver28V- r-

f=70MHz
Th =25OC

7Z1m.

60

I J

typical values

-- r-

f=70MHz

)- - f - Th =25°C

If ~24v

J

/ I
50

I

40

/ /

I

'/
1/
11/

it

25

//

I(f

J/
I)'

1/

Ps= 7.5W--

J

j

J,

BLX14

/5W

-- --

~

I
II

Ii'

I

/

13.5V

/

If

If'

20

2.5W 1-1-1-

/
J

I.."

"
10

Ps (W)

60

20

o
o

20

veE (V)

40

7Z 111 06

TTTTI
TT1TI
Vee=28V
f =70MHz

I
T
I

r

50

~~ ....

APL
ATmb=-

r-t--.

~On ,W

-~

°

.... -..

40

__
Ma_Y_l_97_1_ _ _ 11

II

11

---

- ..

-----

II

BLX14

APPUCATION INFORMATION (continued)
Test circuit:

c.w.
50 MHz

Ll
L2

= 1 turn

L3
L4

= FXC choke coil (code number 4322 02036640)

enamelled Cu wire (1. 5 mm); into diam. 10 mm; leads 40 mm totally

= 4 turns enamelled Cu wire (1.5 mm); into diam. 12 mm; leads40mmtotally
winding pitch 2 mm

= 3 turns

enamelled Cu wire (1. '5 mm); int. diam. 10 mm; leads 40 mm totally
winding pitch 2 mm

75

7Z11110

typical values

j

f=50MHz
Th =25OC

PL

70

VCE=28V

j

I

J
I

50

25

",

~ I

,

J

..,
J

" 2W-

I

, ,"
5

II

'"

J

II

/

o
o

12

30

Ps (W)

10

--

II

I
I

-~

I

J

13.5V

4W

I

Vi
IV

/1
/1
/
// /

f--of.-

I

,1 / ~24V

I /
//

50

P~=6W

f =50MHz
Th = 25°C

7

(W)

7Z11111

I I I

typical values

~

~

f--of--

"
VeE (V)

40

II

BLX14

II

APPUCATION INFORMATION (continued)

son

43to143pF

Test circuit

C.W.
30 MHz

L 1 = 2 turns enamelled Cu
leads 60 mm totally
L2 = 7 turns enamelled Cu
(code number of 3H1:
L3 = 4 turns enamelled Cu
leads 50 mm totally
L4 = 6 turns enamelled Cu
leads 50 mm totally

wire (1. 5 mm); winding pitch 2 mm; into diam. 10 mm
wire (0.7 mm) on 3Hl toroid; 60.uH
4322 020 36620)
wire (1. 5 mm); winding pitch 2 mm; into diam. 10 mm
wire (1.5 mm); winding pitch 2 mm; into diam. 12 mm

7Z1110.

70

I I I

,

,'VCE =

60

I

8V _

7Z11109

I I I I

typical values

Ps=~.5yJ-r--

f=30MHz
Th = 25°C

I

~

1

I

40

I
".
I

'I

IJ

typical values

I

f =30MHz
Th = 25°C

,,

.J

I

,

20
~

~O.5W 1-""-

II

f

I J
I I
I
II I
I

'I
IJ

I
I

il
'I II

30

I
I
I

J1W t-'- ' - ' -

{

.J 24V

J

50

I

II'

./

3.5V

~

!J

I

,

10

o

May 1971

2

II

Ps (W)·

4

20

VCE (V)

40

13

---

BLX14

70~

II

II

______~__~__~~-T~~~______~____~__~~~'~Z_60~e9~6~

R.F. SOAR

f=30 to70MHz

PL(WI t-----+--'---;---+--+--+-+--+-++-----t---+----I Vee= 28V
(V. S.W. R.=1 I

r~h mb_h=Q.20 C/W r-

\.
\.

60~-----+---+~~-+~,~~~~r---~-+~~--~~~~~

\
.

\.

~

"-

------.-.......
.....
........
.......
---

30~----~--~-~~~~~~------~----~--~~~~~~

10

1

V.S.W.R.

50

For high voltage operation, a stabilized power supply is generally used.
The graph shows. the allowable output power under nominal conditions as a function
of the V. S. W •R.. with heatsink temperature as par~meter.

14

II

II

May 1971

II

BLX14

OPERATING NOTE Below 50 MHz a base-emitter resistor of 6,8 Q is recommended to
avoid oscillation. This resistor must be effective for both d.c. and r.f.
7Z67570

power gain versus frequency
(class B operation)
20

Gp

,

(dB)

VCC =28V
PL=50W
Th =25 °C
typo values

\

15

,

\

-

-~

\

'I\,
~

10

" .... '~

5

o

o \

50

100

-

150
f (MHz)

7Z67571

7Z67572

input impedance (series components) versus frequency
(class B operation)

load impedance (parallel comp0nents) versus frequency
(class B operation)

15

I I

RL

-

r-~'1
r-.... ....

~

.....

CL
(pF)

(Q)

I
,..- f- Xi
rc r-

12,5

~

I--

~

\

'f'

/

\

I

o

10
-CL

J

I~

I
:f

VCC =28V ,......PL=50W
Th =25 oc
typo values -

7,5

-

I

r
X·

-- _,I
o

./

--

.- CL

f-- r---

-250

-

5
100

50

150

-o

"

-~

II

RL -

..-

VCC=28V
PL=50W
Th=25 0C
typo values

-

-500

100

50

150
f (MHz)

f (MHz)

)ecember 1973

~

/

J
.f

-2

,

~.."

~

/

-1

0

_RL

II

15

_ _ _ _jl_BLX_15
H.F.N.H.F. POWER TRANSISTOR
Silicon n-p-n power transistor for use in industrial and military s.s.b. and c.w. equipment operating in
the h.f. and v.h.f. band:
• rated for 150W P.E.P. at 1,6 MHz to 28 MHz
(intermodulation distortion better than 30 d8 down)
• rated at 150 W output power for frequencies up to 108 MHz in c.w. operation
• supply voltage up to 50 V
• plastic encapsulated stripline package
• delivered in matched hFE groups
QUICK REFERENCE DATA
mode of operation

s.s.b. (class-AB)
s.s.b. (class-A)
C.W. (class-B)
C.W. (class-B)

VCE
V

f
MHz

PL
W

50
40
50
50

1,6 to 28
1,6 to 28
70
108

20 to 150 (P.E.P.)
typo 30 (P.E.P.)
150
150

Gp
dB

d3
dB

IC(ZS)
A

14
14
10
typo 7,5

<-30
<-40

0,10
2,5

-

-

>
>
>

-

-

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-55.
0,28_ _
0,23
11
5,5

+

---21--...
' -_ _ _ 27,2 _ _ _ _
1
26,8
1.....

1

_13"_~'~
12,5

[I IJ

1{~
7Z 607 ?7.1

1A"x28UNf

_ _ 0,2'

max

max
7Z 58786.2

When locking is required an adhesive is preferred instead of a lock washer.
Torque on nut: min. 2,3 Nm
(23 kg cm)
ma~. 2,7 Nm
(27 kg cm)

Diameter of clearance hole in heatsink: max. 6,5 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer
or countersink either end of hole.

September 1978

---

---

~
~

II

BLX;J5

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Collector - base voltage (open emitter)
peak value

VCBOM

max.

110

V

Collector -emitter voltage (RBE = 10 Q)
peak value

VCERM

max.

110

V

Collector-emitter voltage (open base)

VCEO

max.

53

V

Emitter-base voltage (open collector)

VEBO

max.

4,0

V

Collector current (average)

IC(AV)

max.

6,5

A

Collector current (peak value) f > 1 MHz

ICM

max.

20

A

Currents

Power dissipation
·7Z67520

10 2 D.C. SOAR

7Z67521

300

_Ll~

I I I I

IC
(A)

Ptot
(W)

10

200
Th 25°C
~

~

VCE::S 50V ->-.f?; 1 MHz r-f-

~

t-short time operation
VSWR>3
Iii"'"
tl] .:".l..

IL

~

,.....
I'

I

./'Q~~

Th =70 °C. ~ ~-

~~

"J.O

~8

I./S;~~r+-

°0""'~r-

~~

100
f-f- normal
f-f-.

operat ion
VSWR<3

10- 1

o
10

1

- 0

50

Temperatures
Storage temperature
Junction temperature

Tstg
Tj

-65 to +20q
max.
200

°C

°c

THERMAL RESISTANCE
From junction to mounting base
From mounting base to heatsink

2

II

0,75
0,15

Rth j-mb
Rth mb-h

II

August 1973

II

II

CHARACfERISTICS

Breakdown

BLXl5

Tj = 25

°c unless

otherwise specified

volta~s

Collector- base voltage
open emitter ; IC = lOOmA

V(BR)CBO

>

110

V

Collector-emitter voltage
; IC = 100mA
RBE == 50

V(BR)CER

>

110

V

Collector-emitter voltage
; IC = 1QOmA
open base

V(BR)CEO

>

53

V

Emitter- base voltage
opert collector; IE = 20mA

V(BR)EBO

>

4,0

V

E
E

>
>

12,5
12,5

Transient ener81
L = 25mH; f = 50Hz
open base
-VBE == 1,5 V; RBE = 330

mWs
mWs

DoC. current gain
IC = 1,4 A

;VCE = 6V

---

15 to 50

hFE

D.C. current gain ratio of matched devices
IC = 1,4 A

;VCE = 6V

hFE1/hFE2 <

1,2

Transition freguencx
IC = 6,0 A

; VCE = 35 V

fT

typo

275

MHz

Cc

typo
<

185
220

pF
pF

Cre

typo

115

pF

C cs

typo

3,5

pF

Collector capacitance at f = 1 MHz
IE = Ie = 0

; VCB

= 50 V

Feedback capacitance at f

= 1 MHz

IC = 150 rnA; VeE = 50 V
Collector- stud caEacitance

August 1973

II

3

BLXl5

II

II

7Z67531

typo values

400

7Z62647

fT
(MHz)

Cc
750

VCE=35V- I~~

r'l
j!/

200

.....

~

25V'=

...-

II

-~ ~

J

, l.- t-

rooroo-

i5V-: ~

500

,

1

100

~

5V-: ""'
f"

I""-' ~

r-....

\

'1'00..

250

2V

-~~

-'-

o

o

o

Il
II
\

r- l"- I'- ~

fI

-

Il-

(pF)

300

---

f=IMHz
IE=Ie=O

1000

f-

5

10 IC (A)

o

15

25

50 V CB (V) 75

7Z67522

10

VCE 40V I-I--Th =25 °c I--

IC
(A)

y

II

to-

[7

I

II

J typ

If

10-1
I

I

II
10- 2
500

4

II

J

750

1000

1250
VBE (V)

~~...

August 1973

BLX15

II
APPLICATION INFORMATION
R. F. performance in s. s. b. operation (linear power amplifier)
Th up to 25 °C

fl

= 28,000

MHz; f2

= 28,001

MHz

Gp
(dB)

(%)

d3
(dB) 1)

d5
(dB) 1)

ICZS
(A)

IC
(A)

VCE
(V)

Class

(W)

20 to 150 (PEP)
typo
30 (PEP)

> 14
> 14

>
37,5
typo 15

< -30
< -40

< -30
< -40

0,10
2,5

< 4

50
40

AB
A

output power

S.S.B. test circuit class AB; f

ndt

-

=28 MHz

bias

List of components: see page 6.

1) Stated figures are maxima encountered at any driving level between the spec ified values
of PEP and are referred to the according level of either of the equal amplified tones.
Relative to the according peak envelope power these figures should be increased by 6dB.

August 1973

II

5

BLX15

II

II

APPLICATION INFORMATION (continued)
List of components:
Tr1 = B0135
Tr2 = B0228
C1
C2
C3
C4
C5
C8
C9
Cll
C12

100
27
180
100
= C13 =
= C7 =
3,9
= C14 = CIS = 100

air dielectric capacitor (single insulated rotor type)
ceramic capacitor
ceramic capacitor
ait dielectric capacitor (single non-insulated rotor)
polyester capacitor (±10%)
polyester capacitor (±10%)
2,2 \IF moulded metallized polyester capacitor
68 pF ceramic capacitor
220 pF ceramic capacitor

= ClO =
= C6 =

=
=

pF
pF
pF
pF
nF
nF

Ll =

88 nH; 3 turns Cu wire (l,Omm); internal diameter 9 mm; coil length 6,1 mm;
. leads 2 x 5 mm
.
L2 = L5 == ferroxcube bead, grade 3B (code number 4312 020 36640)
L3 =
180 nH; 4 turns enamelled Cu wire (1,5 mm); internal diameter 12 mm;
coil length 9,9 mm; leads 2 x 10 mm
L4 =
350 nF!; 7 turns enamelled Cu wire (1,5 mm); internal diameter 12.mm;
coil length 19,1 mm; leads 2 x 10 mm

R1
R2
R3
R4
R5
R6
R7

= 0,66 Q parallel connection of 5 x 3,3 Q carbon resistors (±5%; 0,5 W each)
= 27 Q carbon resistor (± 5%; 0,5 W)
= 4, 7Q carbori resistor (± 5%; 0,5 W)
= 5,6 kQ carbon resistor (±5%; 1 W)
= 15 Q wire-wound potentiometer (3W)
= 157 Q parallel connection of 3 x 470 Q wire-wound resistors (5,5W each)
= 68 Q carbon resistor (±5%;0,5W)
7Z67740

-20

intermodulation distortion versus heatsink temp.
I I
L

dim
(dB)

I I I
I I I
ILl 1 J 1

-7"yp

....
~

VCC=50V
r-rf1 =28,000 MHz '-r-rf2 = 28,001 MHz r-t"IcZs=100mA r-t"-

-50

-60

6

I I I

d3 ~tl 150W P.E.P.-

I

I I I
I
I
I I I \I I \I

o

II

25

50

75'

100

125
150
Th (OC)

II

August 1973

BLX15

II
7Z67515

o

intermodulation distortion
versus P.E.P.

dim

I

typo values
1-11-1Vee =50V
I-tfl = 28,000 MHz 1-1f2 = 28,001 MHz 1-11-1Th =25 0e
1-1I-tIezs=IOOmA

(dB)

-20
1-1- I-

d3
1-1- ~

I- Vee =50V
~ fl =28,000MHz
I - f2 = 28,001 MHz
Th=25 oe
40
I- Iezs = IOOmA

-d5

V'

t=

v'

I....

1:1
V

I
1/

. . . vrtyp

L,...I ... I'"
.... 1-"

~

-40

double -tone efficiency
versus P.E.P.

.... 1...

--.,

I

1-1-

I
I

I

7Z67519

60

20
1/
i/
1/

-60

o

100

P.E.P. (W) 200.

7Z67517

o

intermodulation distortion
versus P.E.P.

-20

I-~

7Z67523

double - tone efficiency
versus P.E.P.
I
I
I

(%)

i/

i7

40

i/

~13
diS

J"o

-40

-

~

L....
........

\I'

1/

1/

)

II

[:;..0

20

;/
I

J
,/

-60

1/

i/

l/

l.-

1/ typ

f',
1-1-

P.E.P. (W) 200

'ldt

1 1

typo values
I-t1-1Vee =40V
1-1fl = 28,000 MHz I-f-;
f2 = 28,001 MHz 1-11-1Th =25 oe
1-1Iezs= 100mA 1-1-

(dB)

60

100

I I I

I
I

I

dim

o
o

o

__A_.u_gu_s_t_19_7_3_ _ _

100

11

P.E.P. (W)

200

o
o

1-1Vee=40V
f-Ifl = 28,000 MHz I-if2 = 28,001 MHZI-ITh = 25 0e
I-ii--iIezs = IOOmA f-f-

I

100

II

I

P.E.P. (W) 200

7

---

BLX1SII
7Z67S16

7,5

40

input impedance (series components) versus frequency

1·
hI
1\
5

7Z67S26

power gain versus frequency

typo values

,

30

'\

-

...

typ
~

,

'\

1\
/~

2,5

I---~i

1\

~~

IX'

i~
!

I

' \ : .....

1\

---

~

20

"

o
10

f (MHz)

I
I
10 2

10
10

f (MHz)

10 2

S. S. B. class All operation
PL
Vee
Iezs

150 W (PEP)
50 V
100 rnA

Th
ZL

25
6,25

0

Q

e
in series with 10,4 nH (in parallel with -267 pF)

The graphs hold for one transistor of a push-pull amplifier with cross neutralization;
collector (Trl) - base (Tr2), neutralizing capacitor: 82 pF.

8

II

August 1973

II
7Z67514

7,5

power gain versus frequency

typo values

f----q

\

7Z67527

40

input impedance (series components) versus frequency

5

BLX1S

,

30

~

,

\
I

2,5 t--xi

- r- r--Ioo..

"

typ

r\.

\

\

-,~

i\
I'

~

\

20

~

\

~
t-

""" \

o
10

s. S. B.

f (MHz)

10 2

10
10

f (MHz)

10 2

class AB operation

PL
Vee

150 W (PEP)
50 V
Iezs
100 rnA
Th
25 0 e
ZL
= 6,25 Q in series with 7,3 nH (in parallel with -188 pF)
The graphs hold for an unneutralized amplifier.

August 1973

II

9

BLX15

II

APPLICATION INFORMATION (continued)
S.S.B. test circuit class-A; f

=28 MHz

-----

7Z67SS1

List of components: (see also page 11)
D1 = BY206
TR1 =-BD204

Cl = ClO = 100 pF air dielectric capacitor (single insulated rotor type)
C2 = C6 = 27 pF ceramic capacitor
C3
180 pF ceramic capacitor
C4 = C13 = 100 pF air dielectric capacitor (single non-insulated rotor)
CS = C7 = 3,9 nF polyester capacitor (±1O%)
C8
100 nF polyester capacitor (±10%)
C9
2,2VF moulded metallized polyester capacitor
C 11 =
68 pF ceramic capacitor
C12 =
220 pF ceramic capacitor

10

II

II

June 1976

II

BLX15

II

APPLICATION INFORMATION (continued)
List of components: (continued)
L1

=

88 nH; 3 turns Cu wire (l,Omm); internal diameter 9mm; coil length 6,1 mm;
leads 2 x 5 mm
L2 = L5 ::: ferroxcube bead, grade 3B (code number 4312 020 36440)
L3 =
180 nH; 4 turns enamelled Cu wire (1,5 mm); internal diameter 12 mm;
coil length 9,9mm; leads 2 x 10 mm
L4 =
350 nH; 7 turns enamelled Cu wire (1,5 mm); internal diameter 12 mm;
coil length 19,1 mm; leads 2 x 10 mm
R1

= 0,66 Q

R2
R3

R4
R5
R6
R7
R8
R9
RIO

=

7Z6·7532

-20
dim
(dB)

third order intermodulation distortion versus P.E.P. (class A operation)

-

-30

parallel connection of 5 x 3,3 Q carbon resistors (±5%; 0,5 W each)
27 Q carbon resistor (±5%; 0,5 W)
4,7 Q carbon resistor (±5%; 0,5W)
50 Q wire-wound potentiometer (1 W)
10 Q carbon resistor (± 5%; 1 W)
560 Q enamelled wire-wound resistor (5,5 W)
270 Q carbon resistor (±5%; 1 W)
0,6 Q parallel connection of 3 x 1,8 Q wire-wound resistors (8 W each)
90 Q parallel connection of 3 x 270 Q enamelled wire-wound resistor (5,5 W each)
12 Q carbon resistor (± 5%; 1 W)

-

typo values
VCE=40V
fl = 28,000 MHz
f2 =28,001 MHz
Th=25 0 C
Ic=2A

2,5A

V

V

-40

'/

/

/ ' ..,.~

./ ~"'" ".,.,.

/

./'"

~~
~~

,,- -~

~I"""

~

".,.,.

3A

...... V"

V

V

",."

/. ~ .."

-50

~~

~ V"

4~
T

-60
0

10

20

30

40

50

60
P.E.P. (W)

August 1973

II

11

--

Jl'---_ _

_BLX-"",15

APPLICATION INFORMATION (continued)
R.F. performance in c.w. operation (class-B circuit)
VCE = 50 V; Th up to 25 °C
f (MHz)
--

IC(A)

Ps (W)

<

15
typo '30

70
108

150
150

<

4,6
typ.4,0

Gp (dB)

>

10
typo 7,5

71(%)

>

65
typ.75

Test circuit: 70 MHz; C.w. class-B.

C6

Zs=

son

List of components:
L1 =
L2 =
L3 =
L4 =

60 mm straight enamelled Cu wire (1,6 mm); 9 mm above chassis
Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)
18 turns enamelled Cu wire (1,6 mm); internal diameter 10 mm; pitch 2 mm; leads 55 mm totally
3 turns enamelled Cu wire (1,6 mm); internal diameter 10 mm; pitch 2,5mm; leads 50 mm totally

C1 = 4 to 29 pF concentric air trimmer in parallel with 10 pF ceramic capacitor
C2 = 4 to 104 pF film dielectric trimmer in parallel with 56 pF ceramic capacitor
C3 = 4 to 104 pF film dielectric trimmer
C4 = 4 to 104 pF film dielectric trimmer in parallel with 47 pF ceramic capacitor
C5 = 100 nF polyester capacitor (± 10%)
C6 = 1 nF ceramic feed-through capacitor
R

= 10 n carbon resistor (0,5 W)

At PL = 150 Wand V CE = 50 V, the output power at heatsink temperatures between 25 0C and 75 oC
relative to that at 25 0C is diminished by 100 mW/oC.

12

September 1978

r

II

BLX15

7Z67530

300

load power and efficiency versus
source power (class B operation)
I
I

I I
I I

f-I- f=70MHz
f-tf-t- Th =25 °e I-t- t-I-Vee =50Vt1-1- typo values 1-1- t-Il~~
200
100
V

10'40' v~

t-

~

rt(Vee =50V)

f-

.....

~

"

100

/
II"

10'

Ii"

/

10'

I""

r

,

'f'

~

~

L

~

y.

2~.. ~

....

50

" "

~

1/''''1/
1/1/

V

o
o
200

10

7Z67524

R.F. SOAR (class B operation)

PL

1111

(W)

VSWR=l
150

20

Ps (W)

-

\

,

"'"\ ~

~

f=70MHz
Vee =50V
Rth mb'-h = 0,15 °e/w

~\\

I

\l\ ~~

l\~~
~~

100

J
J

I_I

Th =50 °C

~

II

I"'--- 70°C

r---...

90°C

10

VSWR

Indicated load power as a function of
overload.
The graph has been derived from an
evaluation of the performance of
transistors matched up to 180W load
power in the test amplifier on page 12
and subsequently subjected tovarious
mismatch conditions at 50 V with
VSWR up to 50 and elevated heats ink
temperatures.
This indicates a restriction to the
load power matched under nominal
conditions in the recommended test
configuration.

50

Am!!l!':t 1973

II

13

BLX1S

II

APPLICATION INFORMATION (continued)

Test circuit:

C7
Zs=

SOn.

716'553

C.W.
l08MHz

+Vcc

List of components:

---

C1
C3
C4
C5
C6
C7

== C2 == 40 pF film dielectric trimmer
==
400 pF parallel connection of 4 x 100 pF ceramic capacitors
==
270 pF ceramic capacitor
==
100 nF polyester capacitor (± 10%)
==
20 pF parallel connection of 2 x 10 pF ceramic capacitors
== C8 == 60 pF film dielectric trimmer

L1 ==

49 nH; 2 turns enamelled Cu wire (1,5 mm); internal diameter 9 mm;
coil length 4,8 mm; leads 2 x 5 mm
L2 ==
strip-line (7,7 mm x 6 mm); tap for C3 is 7,5 mm from transistor edge
L3'== L6 == ferroxcube bead, grade 3B (code number 4312 020 36640)
L4 ==
67 nH; 3 turns enamelled Cu wire (1,5 mm); internal diameter 8 mm;
coil length 8,3 mm; leads 2 x 5 mm
L5 ==
57 nH; 2 turns enamelled Cu wire (1,5 mm); internal diameter 10 mm;
coil length 4,5 mm; leads 2 x 5 mm

R == 10 Q carbon resistor (0,5 W)

Component lay-out for 108 MHz test circuit see page 15.

14

II

II

August 1973

II

BLX15

II

APPLICATION INFORMATION (continued)
Component lay-out and printed circuit board for 108 MHz test circuit.
R

I

[~l~,~~~~4~ ~c,

0

J-

+Vcc

@'~,tJtl ~~I~~rl-{
I

0

J

7Z67718

ground plane removed

Dimensions of printed circuit board 123 mm x 55 mm.

I:::

::1\:1:'

•
I ...
::

~: :~:;: : : : :;~ m~m~; _.

:~~~;~~~~;f~~~~II~t

.:..::

-

:~.: ~: ~:.~: ~.: :.~:"'~.: '.: .:' ~.',: :~,. : ,

". .. . . . . .:. . . ::. . . . .: ..: :.:' :. .

7Z67664
The circuit has been built on epoxy fibre-glass double copper clad printed circuit board
(thickness 1/16"). To minimize the dielectric losses, the ground plane under the interconnection of L5, C6 and C7 has been removed.

August 1973

II

II

15

---

BLX15

II

II
7Z 67528

300

7Z67525

load power and effic~ency versus
source power (class B operation)

f-I-

I I I I
I IJ L
f= 108 MHz
Th = 25 °e

1-1-

typo values

f-I1-1-

20

! I
LL

J{

J

Gp

100

Vee=50V !-PL==150W rTh==25 0 e !--

.\

(dB)

(%)

200

power gain versus frequency
(class B operation)

\

15

\

Vee =50V 1-1-

11.. (Vee =50V)

f-

,

Y

1/',/
fi/

~

V'4

I'll,.;'

"

'fI'"

40V

l\.

10

I-f-

I'-

~

1

].,,0010'

I/~

I\.

I
I

i'"

V

1/

1

~
t..,..o

j

100

,"

i-'

\. typ

IG

28V 50

i""

i'-

"""i""

5

~

o

o

o

20

o

40

P s (W)

50

100

7Z67529

1267518

input impedance (series com;"
ponents) versus frequency
(class B operation)

2

I
:--

I-I--

typo values
Vee =50V
PL=150W
1

""i

-

--L
/

/

/

o

.

--

(Q)

!--

15

I--

I-:-

/

)t'
I~

I

RL

/

i

load impedance (parallel com ponents) versus frequency (class
B operation)

17,5

/

/

I

typo values
Vee=50V
PL=150W

eL
(pF)
1

0

1
I
I

I

-I"-

q12,5 -

I

:f

."".,,,,. r--

-1]

-250

V

,V

'I\.

-'Ii

10

-1

~

I

-500

~!

;"..1

r---:- r- e"
L

--.. .......

-.l .-l

~

I

I

o

100

50

150

7,5

1
0

50

100

f (MHz)

16

--

",

RL

\ if

I

IA
I-- e-- ~i

-2

150
f (MHz)

II

150
f (MHz)

II

August 1973

_ _ _Jl'----BLX_39
H.F.lV.H.F. POWER TRANSISTOR
N-P.N silicon planar epitaxial transistor intended for use in class-A, Band C operated h.f. and v.h.f.
transmitters with a nominal supply voltage of 28 V. The transistor is resistance stabilized and is
guaranteed to withstand severe load mismatch conditions. Matched hFE groups are available on
request.
It has a 3/8" capstan envelope with a ceramic cap. All leads are isolated from the stud.
QUICK REFERENCE DATA
R. F. performance up to T h = 25 °C
mode of

VCE

f

PL

o_p_e_r_at_io_n_____r_V
__+-_M_H_Z-4_____W
____

Gp
1/
Ii
YL
I ~~
~~-d-B--~---o/c-o--~---n____~.-m-A-I-V--~

s.s.b. (class-AB)

28
28

175
45
>
1,6-28 5-42,5(P.E.P) typo

7,5 >
19 typo

s.s.b. (class-A)

26

1,6-28

20

c.w. (etass·B)

15 (P.E.P) typo

7°10,7 + jl,3 110 __
50
-

-

_~

typo -42

Dimensions in mm

CI]-s'

Fig. 1 SOT-120.

r-~

I

Smin (4x)

28
26

typo -30

________~i______

MECHANICAL DATA

c

j621

---17/ ' '\
-t--+---r
~~
,
I

---.

+

~/

,:c-rr===L_
+---~
--

315

"-0,14

1,6 max

--1

S

ceramic
1- -

b

BeG
metal

1

2,6_

~e

~I

..

-

5,9
5,5

I.

9,Smax

28
26

max

-. 4

--

Torque on nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kg cm)

mm

-11,S -

•

1..-

7,0 max -7Z69BB1.1

Diameter of clearance hole in heatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

~ (JUlY

1978

---

l_______- -

BLX39

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Collector-emitter voltage (VBe = 0)
peak value

VCESM

max.

65 V

Collector-emitter voltage (open base)

VCEO

max.

36 V

Emitter-base voltage (open-collector)

VEBO

. max.

4 V

Collector current (average) .

IC(AV)

max.

4A

Collector current (peak value); f > 1 MHz

ICM

max.

12 A
100

W

R.F. power dissipation (f> 1 MHz); T mb = 25 °C

max.

Storage temperature

- 65 to + 150 oC

Operating junction temperature

max.
7Z77854

200 0C
7Z77855

150

Prf
(W)

100

..... ~

.... ;;;;,:r r
"""

"~
~ ~.

'"

,)0

.

?~ Z

1""""

...

I

o

*/0

.:..38 W/o
I...

,I.

C

-I ...

I

>- ~r-r-

C.- - r r

~

~
"~

'\

1
10

30

V

CE (V)

80

THERMAL RESISTANCE (dissipation

o

o

50

100

Fig. 3 R.F. power dissipation; VCE ..;;; 28 V;
f> 1 MHz.
I Continuous d.c. operation
II Continuous d. operation
III Short-time operation during mismatch

Fig. 2 D.C. SOAR.

2

I"

II -~,6yO
N$.,?

'50

--r -

.....

I
.......... O'~,.
..... il1e.

.... 1 ...

~6'

I"~

III

= 40 W; T mb = 88 oC, i ..e. Th = 70 oC)

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

2,8 oC/W

From junction to mounting base (r.f. dissipation)

Rth j-mb(rf)

2,05 0C/W

From mounting base to heatsink

Rth mb-h

0,45 'oC/W

July

19781 (

H_.F_,/_V_.H_.F_._~_w_er_t_ra_nS_is_to_r

___

~~

________________________

B_L_X_3_9______

______

CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector-emitter breakdown voltage
VBE = 0; IC = 25 mA

V(BR)CES

>

65 V

Collector-emitter breakdown voltage
open base; IC = 100 mA

V(BR)CEO

>

36 V

Emitter-base breakdown voltage
open collector; 'E = 10 mA

V(BR)EBO

>

4 V

Collector cut-off current
VBE=0;VCE=36V

'CES

<

10 mA

Second breakdown energy; L = 25 mH; f = 50 Hz
open base
RBE = 10 n

ESBO
ESBR

>
>

8 mJ
8 mJ

hFE

typo 45
10 to 80

hFE1/hFE2

<

D.C. current gain *
IC=2,5A;VCE=5V
D.C. current gain ratio of matched devices ..
IC = 2,5 A; VCE = 5 V
Collector-emitter saturation voltage
IC = 7,5 A; 'B= 1,5 A

1,2

*
VCEsat

typo 1,5 V

Transition frequency at f = 100 MHz *
-IE = 2,5 A; VCB = 28 V
-I E = 7,5 A; V CB = 28 V

fT
fT

typo 570 MHz
typo 570 MHz

Collector capacitance at f = 1 MHz
'E = Ie = 0; VCB = 28 V

Cc

typo

82 pF

Cre
Ccs

typo

54 pF

typo

2 pF

Feedback capacitance at f = 1 MHz
IC = 100 mA; VCE 28 V

=

Collector-stud capacitance

---

7Z77788

4

, I',
r7

'c

II'.

(A)

1.1

2
Th

"

= 70 0 C 1/:1-

25°C

1/'

I~I~

';"L
I-

o

o

I'"

"

0,5

VBE (V)

1,5

Fig. 4 Typical values; VCE = 28 V.

* Measured under pulse conditions: tp ~ 200 JJS; 6 ~ 0,02.
3

j l""""----_ __ _

_BL_X39

7Z77795

7Z77796

300
100

Cc
(pF)

,

,

200 1
r- ..... 1000.

/

.r"

I
I

"""

50

-i'o

fI'

I

II
i\

V CE =28V

\..

"

"'
~

100

""",,-

I\..

....

typ

-~-

\..

r-i""""

"'t5V -

--

o

o

o

5

10

IC(A) 15

Fig. 5 Typical values; Tj = 250C.

o

20

VCS(V)

40

Fig.6 IE = Ie:::; 0; f = 1 MHz; Tj = 250C.
7Z77797

1000

fT
(MHz)

~"t"

500

II

~

--

-- - -r-

----

'I

o

o

5

10

Fig. 7 Typical values; f =100 MHz; Tj = 250C.

4

July

19781 (

'- VCB '" 28 V-

---

15 V

15

jl

H.F.lV.H.F. power transistor

BLX39

- - - - - - - - - - - - - - ._----APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25 oC
f (MHz)

175

Ps (W)

Gp (dB)

YL (mAN)

7,5

110 - j62

Fig. S Test circuit; C.w. class-B.
List of components:
C1 = C7 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222 S09 07004)
C2 = 5 to 60 pF film dielectric trimmer (cat. no. 2222 S09 07011)
C3a = C3b = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor (500 V)
C5 = 100 n F polyester capacitor
C6a = 2,2 pF ceramic capacitor (500 V)
C6b = 1,S pF ceramic capacitor (500 V)
CS = 4 to 40 pF film dielectric trimmer (cat. no. 2222 S09 0700S)
L1 = 14 nH; 1 turn Cu wire (1,6 mm); into dia. 7,7 mm; leads 2 x 5 mm
L2 = 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm; leads 2 x 5 mm
L3 = LS = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 431202036640)
L4 = L5 = strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
L6 = SO nH; 3 turns Cu wire (1,6 mm); into dia. 9,0 mm; length S,O mm; leads 2 x 5 mm
L7 = 62 nH; 3 turns Cu wire (1,6 mm); into dia. 7,5 mm; length S,l mm; lei3ds 2 x 5 mm
L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
Rl

= R2 = 10 n carbon resistor.

Component layout and printed-circuit board for 175 MHz test circuit see Fig. 9.

Ir

5

JU,Y

1978

----,J l"'---_ _ _ _ __

_B_LX3_9

72

---

7Z77103

Fig. 9 Component layout and printed-circuit board for 175 MHz test circuit.

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.
To minimize the dielectric losses, the ground plane under the interconnection of L7 and C7 has been
removed.

6

July

19781(

,J~,_____

H'_F_'/V_'_H'_F_.~

___

B_L_X
__
3_9______

__
we_r_tr_an_S_ist_or_________________________
7Z77856

100

7Z77857

100

10

PL

Gp

T}

(W)

(dB)

(%)

..... J:::...

7,5

75

IV

Th = 25°C

W

~

....... 1'"

....
/r/

50

"

V
~

Gp

L-l
70°C

5

v

--

-r-::.

1\

I~

75

'" I"-

~

r/ .....

J

'--to.
.......

\

50

J

/~

1fI

.IV

T}

I,

.,
6 > 65
2,0 typ.0,21 typo 12 typ.75

-

-

MECHANICAL DATA

Dimensions in mm

--

Fig. 1 TO-39; collector connected to case.

-0=
t

b

c=1-

8,5

max

c

L

+

====::::iI

[
_

0,S1

+max

====::::iI

6.6

_L

max

12,7

min

_I """"

.

9,4-.
max

Maximum lead diameter is guaranteed only for 12,7 mm.
Accessories: 56218 (package); 56245 (distance disc).

I·

September 1978

·8LX65

II

II
7Z61139

6

1,1 I I I

10

l l L I I'

7Z61738

D.C: SOAR

VeE~16.SV ' - -

Ptot

f

(W)

~

~10MHz

--

. Ie
(A)

short time
operation
V.S.W.R.~3

4

"

~

,
'\.

'\.

,
I'\.

2

,
1\

~
TCQse=2 SoC

1-1- _ normal operation
1-1- ;--1- V.S.W.R<3

-----

o
o

12SoC

10

2

II

II

December 1971

II

II

BLX65

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

max.

36

V

Collector-emitter voltage (VBE
peak value

VCESM

max.

36

V

VCEO

max.

18

V

VEBO

max.

4

V

IC(AV)

max.

0.7

A

ICM

max.

2.0

A

Ptot

max.

3.0

W

Storage temperature

Tstg

-65 to +150

oc

Operating junction temperature

Tj

max

165

°c

=

0)

Collector-emitter voltage (open base)
Emitter-base voltage (open 'collector)
Currents
Collector current (average)
Collector current (peak

v~lue)

f > 1 MHz

Power dissipation
Total power dissipation up to T case
f> 10 MHz

= 90 °c

Temperatures

THERMAL RESISTANCE
From junction to case

Rth j-c

From mOlIDting base to heats ink
with a boron nitride washer for
electrical insulation

Rth mb-h·

December 1971

II

25

°C/W

2.5

°C/W

3

-----

BLX65

II

II

CHARACTERISTICS

Tj

= 25 °c unless otherwise specified

Breakdown voltag:es
Collector-base voltage
open emitter, IC = 10 rnA

V(BR)CBO

>

36

V

Collector-emitter voltage
VBE = 0; IC = 10 rnA

V(BR)CES

>

36

V

Collector-emitter voltage
open base, IC = 25 rnA

V(BR)CEO

>

18

V

Emitter-base voltage
open collector, IE = 1'. 0 rnA

V(BR)EBO

>

4

V

VCEsat

typo

0.1

V

hFE

typo

10
40

fT

typo

1400

Cc

typo
<

6.5
9.0

pF
pF

Cre

typo

4.8

pF

Collector-emitter saturation voltag:e
IC

= 100 rnA; IB = 20

D. C. current
IC

---

rnA

~in

= 100 rnA;

VCE

=5 V

>

Transition frequency
IC

= 200 rnA; VCE = 5 V; f = 500 MHz

Collector capacitance at f
IE

MHz

= 1 MHz

=Ie = 0; VCB = 10 V

Feedback capacitance at f =1 MHz
IC

= 20 rnA; VCE = 10 V

4

II

1_

December 1971

BLX65

II

II

7Z62 1 99

2000

fr
(MHz)

VCE=5V

1500
..",..

...-

-- -- -

typ

",.,.

....... .......

........

.......
................

1000

f"".,~

~
......

'"

500

o
o

0.2

0.1

0.4

0.3

0.5

Ic (AI

0.6

7Z66U1

IE=Ie=O
f=1MHz

10

Cc
(pF)
7.5

--

\

\

,

~

"",,~p

.... r-.

-

5

2.S

10

December 1971

II

20

Vee(V)

30

II

5

----

-

BLX65

II

II

APPLICATION INFORMATION
R. F. performance in c. w. operation (unneutralized common-emitter class B circuit)
Tcase up to 25 0 C
f
(MHz)

VCC
(V)

Ps
(W)

PL
(W)

IC

Gp

(A)'

(dB)

470
470
175

13.8
12.5
12.5

typo 0.4
<
0.5
typo 0.12

2.0
2.0
2.0

typo 0.22
<
0.25
typo 0.21

typo 7
<
6
typo 12

T/
(%)

typo 66
65 .
>
typo 75

Zi
(0)

YL
(rnA/V)

5+ jIl

17 - j19

-

-

. Test circuit:

C8

output

son

input

----

500.

7ZS1744

To obtain optimum gain performance the emitter lead length should not exceed 1.6 mm
C1 ::: C2 ::: C4 ::: C5 ::: 1. 8 to 18 pF film dielectric trimmer
C3 =
22 pF disc ceramic capacitor
C6 =
10 nF ceramic capacitor
C7 =
0.1 jJF polyester capacitor
C8 =
4 nF feed-through capacitor
l-1 =
L2 :::
L3:::
L4:::

1 turn Cu wire (1 mm); into diam. 5 mm, max. lead length 1 mm
0.22 jJH choke
1 turn Cu wire (1 mm); into diam. 7 mm; lead length 2 mm
1 turn Cu wire (1 mm); into diam. 5 mm; lead length 2 mm

R ::: 10 Q carbon
At PL ::: 2.0 W and VCC::: 12.5 V the output power at case temperatures between 25 °C and
90

°c relative to that at 25 °c is

diminished by typo 5 mW IOC.

The transistor is designed to withstand full load mismatch in the test circuit under the
following conditions: VCC ::: 16.5 V; f::: 470 MHz; Tease::: 70 °c
V; S. W.R. ::: 50 : 1 through all phases; Ps :::PSnom + 20 %
where PSnom ::: Ps for 1. 4 W transistor output into 50 0 load at VCC = 13.8 V.
Component lay-out for 470 MHz see page 7.

6

II

II

May 1974

BLX65

II

II

APPLICATION INFORMATION (continued)
Component lay-out and printed circuit board for 470 MHz test circuit.

,. . 1---------.
80mm ---------~I

--

C7L2G~ ~C6

Y U~ L4 CS
<=I@ Fd'J~.bc.~9. (@F
C1

L1

C2~ ~C3

1

40mm

~C4

j
7Z61747

-7Z61746.1

Shaded area copper
Back area not metalized
Material of printed circuit board: ].5 mm epoxy fibre-glass

November 1973

7

BLX65

II

II
7Z61742

3

I
I
typical values f =470MHz Tease =25 °c -

~

7Z66132

I 1

~~I-

.~.
(:,/1- ~~

~(jJ "
, 1/

2
J

r

I J
If

~

III

~

""

-

Iiiiiil

",~

I' '/

V

13.8V",....

~

';I'"

~

rl

~

/
I/J

-

i-"1':

50

~

I

-----

12.5V

6.9V.

II

~

". io"""
~ ./~
VCC=6.9~i"""
",';1' V

(Ofo)

/

,

..,.~

1\

~

I

typical values
l -I f=470MHz
I--I-Tease= 25°C

100

II'"

rJ

1/

J.

/

1/

o
o

0.5

Ps(WI

0.25

1Z66133

3

=

~I

t----

-

typical values
I-f= 175MHz
Tease = 25°C

1\
(Ofo)

~.&

7

1-00

I

6.9V

..;,
/

,/

-

~.-

V

-Vcc=12~V

....-

""

/

6.9V

50

0.25

8

1Z66130

'"

If

00

0.7S

II

2

I

P (W)

150

'typical values
t---f = 175MHz
Tease 25°C

!V

0.5

II

Ps(W)

O.S

0

0

0.25

Ps(W)

IL_~

May

0.5

1974

II

II

BLX65

7Z61741

R.F. SOAR
4

PLnom
(W)

V.S.W. R.=1

3
V.S.W.R.=3
........ "'"

2

~

.......

10
~

.......
.....~

50

""" .....

Ps

o1.0

PSnom
1.1

1.2

---

-

Vee
Vee nom

Conditions for R. F. SOAR
f

Tcase

470 MHz
70

PSnom

=Ps at VCC

= VCCnom and V.S. W.R. :: 1

0C

see also page 6

VCCnom =: 13.8 V

The transistor was developed for use with unstabilized supply voltage VCC.
The above graph is based on its measured performance in the circuit given on page 6.
Supply voltage was varied from VCCnom to 1.2 VCCnom, and V.S.W.R. from 1 to 50.
It shows the maximum allowable output power under nominal conditions in order not to
exceed the maximum allowable power dissipation under conditions of supply overvoltage
(VCC > VCCnom) and load mismatch (V.S. W.R. > 1).
It is assumed that the drive power increases linearly with the supply voltage; i. e.
Ps/PSnom = VCC/VCCnom·

December 1971

II

9

BLX6:5

I

II

APPLICATION INFORMATION (continued)
Test circuit for 175 MHz

C6

output

son

input

son

7Z61743

To obtain optimum gain performance the emitter lead length should not exceed 1. 6 mm

-=
-

Cl
C2
C5
C6

= C4 = 60 pF concentric air trimmer
= C3 = 30 pF concentric air trimmer
= 0.25 IJF polyester capacitor

=

4 nF feed-through capacitor

Ll = 25 mm straight Cu wire (1.2 mm); height above print 3 mm
L2 = 3 turns Cu wire (0.5 mm) on ferrite FX1115, d = 2 mm, D = 4 mm, 1 = 5 mm,
material 3B (code number 311399116740)
L3 = 5 turns closely wound Cu wire (1. 2 mm); into diam. 10 mm; lead length 5 mm
L4 = 3 turns closely wound Cu wire (1. 2 mm); into diam. 10 mm; lead length 5 mm
R

= 10 Q

carbon

Graphs (PL versus Ps and

n versus Ps) for

175 MHz on page 8.

Component lay-out for 175 MHz on page 11.

10

II

\I

May 1974

II

II

BLX65

APPLICATION INFORMATION (continued)
Component lay-out and printed cicuit board for 175 MHz test circuit:

I·

-I

80mm

u$
l1
:J

I

b

0

e

40mm

0

cs

--c=:=J-

t
screen

7Z61748

I
---

Shaded area copper
Back area not metallized
Material of printed circuit board: 1. 5 mm epoxy fibre-glass

November 1973

II

II

11

BLX65

I

II

OPERATING NOTE Below 200 MHz a base-emitter resistor of 10 Q is recommended to
avoid oscillation. This resistor must be effective for both d. c. and r. f.
7Z68913

30

power gain versus frequency
(class B operation)
I
I

I I I I I I
I I
I I

Vee =13,8 V
PL = 2W
Tcase = 25 °e
typo values

20

r-r-

f--+-

r-ri-r.... 1-

r""Jooo..
I"""

"

....
~

I""

10

I'
1""""",
1"'""",
I"'"

----

a

300

100
7Z68914

20

input impedance (series components) versus frequency
(class B operation)
\

-

\
I I

\

I

load impedance (parallel components) versus frequency
(class B operation)
LLl i
ii
eL

\RL

,

I

Vee = 13,8 V
f-PL = 2W
10 1-..... Tease = 25 °e
typo values
......

I I I I I
J I
Vee = 13,8 V
PL = 2W
Tease = 25 °e
typo values

~

~"xi

-

--

;

500
7Z68915

90

\ I I

\

f(~z)

80

1
\

~

f - - r-

(pF)

a
I

~

~

"'ri'"
" ....
V

~

l.I "

ri

,. "

o

,
i"""

70

i...o'I"

~

".
II

12

...~
~
~

-10

V

i...o'

100

t!!.

"""'

;

\

~i

-10

d

..,.'"

1\

300

II

f(~z)

500

60

~Ir
100

,
"-

l"I'"
I"!!.
I. . . . .

300

RL

~

f(~z)

Jr ___

500

May 1974

_ _ _ _ _jl_BLX_66
U.H.F.N.H.F. TRANSMITTING TRANSISTOR
N-P-N transistor intended for use in class-B and e operated mobile, industrial and military transmitters
with a supply voltage of 13,8 V. It has a capstan envelope with a moulded cap. All leads are isolated
from the stud.
QUICK REFERENCE DATA
R.F. performance up to T mb = 25 °e in an unneutralized common-emitter class-B circuit
mode of operation VeE
f
MHz
V
c.w.
C.W.
C.w.
C.w.

13,8
13,8
12,5
12,5

Ps

PL

W

W

Gp
dB

Ie
A

11

%

-Zi
n

YL
mA/V

typo 10
typ.65
typo 9,5 typ.75 2,6 + j4,8 23- j23
> 8,5 > 65
typ.20
typ.84
-

470 typo 0,15 1,5 typ.O,17
470 typ.0,28 2,5 typ.0,24
470 < 0,35 2,5 < 0,31
175 typ.0,03 3,0 typ.O,29

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-48 (without stud).

metal

1i

2~

14

L

TLJ
,

plast.'ic

1.1
max
b

~I

i---+

9.75 __
max
25 min - - - - - -

j~~~~tC~~~atton
?Zf>2200.1

September 1978

BLX66

II

II
7Z61752

10

I
VCE~16.5V

10

f~10MHz

1-1-

7Z61749

D.C. SOAR

Ie
(A)

Ptot

(W)

7.5

I'

"

short time

I-- operation
I-- V.S.W.R.>3

·5

""
:

f',

I'

.....

~T

m b=2SoC

......
~

2.5

normal operation
V.S.W,R.<3

-=-

50

2

125°C

""

10

II

II

November 197i

BLX66

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

max.

36

V

Collector-emitter voltage (R BE = 0)
peak value

VCESM

max.

36

V

Collector-emitter voltage (open base)

V

max.

18

V

V EBO

max.

4

V

Collector current (average)

IC(AV)

max.

0.7 A

Collector current (peak value) f> 1 MHz

ICM

max.

2.0

A

P tot

max.

4.0

W

-65 to + 150

°c
°c

Emitter-base voltage (open collector)

CEO

Currents

Power dissipation
Total pow~r dissipation up to T mb
f> 10 MHz

= 90 °c

Temperatures
Storage temperature

T stg

Junction temperature

Tj

max.

150

THERMAL RESISTANCE
From junction to mounting base

November 1971

II

3

--

-

BLX66

II

CHARACTERISTICS
Breakdown

T j = 25 °C unless otherwise specified

volta~es

Collector-base voltage
open emitter, IC = 10 rnA

V(BR)CBO

>

36

V

Collector-emitter voltage
VBE = 0; IC = 10 rnA

V (BR)CES

>

36

V

Collector-emitter voltage
open base, IC = 25 rnA

V(BR)CEO

>

18

V

Emitter-base voltage
open collector, IE = I, 0 rnA

V (BR)EBO

>

4

V

VCEsat

typo

0,1

V

hFE

>
typo

10
40

fT

typo

1400

Cc

typo
<

6,5
9,0

pF
pF

IC = 20 rnA; VCE = 10 V

Cre

typo

4,8

pF

Collector-stud capacitance

C cs

typo

2

pF

Collector-emitter saturation voltage
IC = 100 rnA; IB = 20 rnA
D. C. current gain
IC = 100 rnA; VCE = 5 V
Transition frequency

--

IC = 200 rnA; VCE = 5 V; f = 500 MHz

MHz

Collector capacitance at f = 1 MHz
IE =Ie = 0; VCB = lOV
Feedback capacitance at f = 1 MHz

4

II

June 1976

BLX66

II
2000

7Z&2198

fT

VCE=SV

(MHz)

1S00

-r-. ..... """

typ

~ i-"'"
~

......
"""" .............

1000

...........
........ i"o..

r"

.......

SOO

o
o

0.1

0.2

0.4

0.3

O.S

Ic (A)

0.6

7262197

10

Cc
pF

7.S

,

IE=Ie=O r-rf=1MHz

,\

,

~

1,\

,
'" typ

..... ~

5

2.S

·10

November 1971

II

20 Vce (V) 30

II

5

---

II

BLX66

APPLICATION INFORMATION

R. F. performance in c. w. operation (unneutralizedcommon-emitter class B circuit)
Tmb

= 25

°c

f
(MHz)

VCC
(V)

Ps

PL

(W)

(W)

470
470
470
175

13.8
13.8
12.5
12.5

typ.0.15
typo 0.28
<
0.35
typo 0.03

1.5
2.5
2.5
3.0

IC
(A)
typ ..
typ..
<
typo

0.17
0.24
0.31
0.29

Test circuit for 470 MHz:

G

11

zi

(dE)

(%)

(Q)

typo 10
typo 9.5
>
8.5
typo 20

typo
typo
>
typo

65
75
65
84

YL
(rnA/V)

-

-

2.6+j4.8

23 - j2.'3

-

-

-

C5

output

son

input

son

-.-.....
C1
C3
C5
C8

= C2 = C6 = C7 = 1. 8 to
= C4 =
=

18 pF
18 pF
4 nF
O. IIlF

=

film dielectric trimmer
disc ceramic capacitor
feed-through capacitor
polyester capacitor

Ll = 1 turn Cu wire (1. 2. mm); into diam. 6 mm;max. lead length 1 mm.
L2 = 1 IlH choke
L3 = 30 mm straight Cu wire (2 mm); height above print 2 mm.
L4 == 2 turns closely wound Cu wire (0. 5 mm);int. diam. 3 mm; max. lead length 8 mm.
R

= 10 Q carbon

At P L = 2.5 Wand VC = 12.5 V the output power at mounting-base temperatures
between 25 °c and 90 ~C relative to that at 25 °c is. diminished by typo 5 mW /oC
The transistor is designed to withstand full load mismatch in the test circuit under
the following conditions: VCG = 16.5 V; f = 470 MHz; T mb = 70 °C;
V. S. W. R. = 50 : 1 through all phases; Ps =Psnom + 20 % .
where PSnom =P s for 2.5 W transistor output into· 50 Q load at VCC = 13.8 V
Component lay-out for 470 MHz see page 7

6

II

II

May 1974

II

BLX66

II

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 470 MHz test circuit.

I

,....... . . . . - - - - - - - - - - - - 1 1 0 m m - - - - - - - ' - - - - - ' - -...
~

SOmm

7Z61754

---

-

7Z61755.1

Snaded area copper
Back area completely copper clad
Material of printed circuit board: 1. 5 mIn epoxy fibre glass

December

~ 973

II

II

7

II

BLX66

1ZU'..

1U17S0

3

I

II I I I
I-~

1--

I

:v~c~

I I I I I L1

'1- ~~

typical values _-13.8~ , "
f=470MHz
I~

1-- Tmb=25°C

I~"

,,,

12.5V- I-~

~

2

typical values IIf=470MHz
1-1Tmb=25°C

100

'f.

Vc c =12.5V-:

~

,

rJ

-..,-

... 1""
~

..4

1".00

~

I.;

J

...,1""

...,1""

-~I"""

13.8v--

ioo"'

50

J

,

-----

0.2

=

Ps (WI

0.2

.0.4

Ps (WI

0.4

/

8

II

J[

November 1971

II

BLX66

?Z617S1

R.F. SOAR
4
PLnom

(W)
V.S.w. R.=1
V.S.W.R.=10

3

50

2

Ps
PSnom t-

1.1

1.2

--

Vee
Vee nom

Conditions for R. F. SOAR
f

Tmb

470 MHz

PS nom

=Ps

at VCC

= VCCnom and V.S. W.R. = 1

0

70 C

see also page 6

VCCnom = 13.8 V

The transistor was developed for use with unstabilized supply voltage VCC.
The above graph is based on its measured performance in the circuit given on page 6.
Supply voltage was varied from VCCnom to 1. 2VCCnom. and V.S. W.R. from 1 to 50.
It shows the max. allowable output power under nominal conditions in order not to
exceed the max. allowable power dissipation under conditions of supply overvoltage
(VCC > VCCnom) and load mismatch (V.S. W.R. > 1).
It is assumed that the drive power increases linearly with the supply voltage; i. e.
PS/PSnom = VCC/VCCnom.

November 1971

II

II

9

II

B.LX66

APPLICATION INFORMATION (continued)

Test circuit for 175 :MHz:
C6

output

son

input

son

7ZSS141

..........
"""'"-

-........

C1
C2
C5
C6

= C3 = C4
=
=
=

=

30 pF
60 pF
0.25 jJF
4 nF

concentric air trimmer
concentric air trimmer
polyester capacitor
feed -through capacitor

Ll = 25 mm straight Cu wire (1. 2 mm); height above print max. 3 mm
L2 = 3 turns closely wound Cu wire (1. 2 mm); int. diam. 10mm;max. leadlenghtSmm
L3 =2 tumscloselywoundCuwire(l. 7mm);int. diam. 12mm;max.leadlenght5mm
Rl = 50 Q carbon
R2 = 1.2 kQ carbon
R3 = 5 Q carbon
Component lay-out for 175 MHz see page 11.

10

II

II

November 1971

II

BLX66

II

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 175 MHz test circuit.

1.....I - - - - - - - - - - - - - l l 0 m m - - - - - - - - - - -•• ,

SOmm

7Z65141

.-

-

Shaded area copper
Back area not metallized
Material of printed circuit board: 1. 5 mm epoxy fibre glass

December 1973

II

11

BLX66

II

.11

OPERATING NOTE Below 280 MHz a base -emitter resistor of 10 Q is recommended to
avoid oscillation. This resistor must be effective for both d. c. and r. f.
7Z68916

30

power gain versus frequency
(class B operation)
1/ 1 1 , ,

,, ,,,

Vee = 13,8 Vf--+-

PL = 2,5 W 1-1f-+Tmb = 25 °e
....
1typo values
~r--

20

r--100000

....

....

'"

"-

..... ,...

.....

.... ....

10

-

....

o
300

100
7Z68917

10

______________________

7~Z~68~91~8

RL
( Q)~rr~------~~~~~M
1\
vee = 13.8 Vf--+--+-+-+-+-+-'c;1

*i
,

q

~

\1

RL\-I-,

-

1000"

-,

,

60 t-+--t-lt-+--+--r-r-r--,.....,.-t--t::rPI..oo,+-"+-+-+ -10

ri

t-+-+-1----*,+--Ir++,3It'-t--+--t-+-+-+-+-+
,

~

1\

~

L);;.

PL = 2.5 W
Tmb = 25 °e
typo values

1/

\.

"

II

bL
1

t--+-t-t-+-iII'l~t+-+-t-t-+-t-t-t-t-++--+(~~)

~

~

j

'I'

\.

1 1
, ,

50 t--+~1~1-t-++.\.+-t-+-t-t-+-t-++-+ -20

o

1

Vee = 13,8 V--

= 2,5 W --Tmb = 25 °e --

J
1/

PL

/
~

-5

500

load impedance (parallel components) versus frequency
(class B operation)

input impedance (series components) versus frequency
(class B operation)

5

70

f (MHz)

"

typo values
1 1

300

100

12

II

II 1

f (MHz)

500

~

"-

i'.

eL

--

"""

tXi

,

,1 ,1
40

....

.... ...,fL
1 r
1 1
1 1

1 1

100

300

II

f (MHz)

500

May 1974

II

BLX67

II

U.H.F./V.H.F. TRANSMITTING TRANSISTOR
N-P-N transistor intended for use in class Band e operated mobile, industrialand
military transmitters with a supply voltage of 13.8 V. It has a capstan envelope with
a moulded cap. All leads are isolated from the stud."
QUICK REFERENCE DATA

R. F. performance up to Th
Mode of Vee
f
operation (V) (MHz)
c. w.
c. w.
c. w.
C.w.

13.8
13.8
12.5
12.5

470
470
470
175

= 25 °e

in an unneutralized common-emitter
class B circuit

Ps

PL

Ie

YL

(W)

(W)

(A)

(rnA/V)

typo 0.15 1. 5 typo 0.17 typo 10 typo 65
typo 0.353.0 typo 0.28 typo 9.3 typo 79 2.9+j5.127- j21

<

0.352.5 <

0.3 1 >

typo 0.03 3.0 type 0.29/typ.

8.5>
65
20 type 84
Dimensions in mm

MECHANICAL DATA

SOT-48
3.5 [

I ]

30

~2·.7!""

1.52.

metal

1t

25

min 14

!

+

1.1

max

Lb

I

8-32~NC\
:-s.:

t

7.3
7.0 2.85

r

~~

II

I

+

.... 1-

collector
identification

.... ~1~--

pi astic

..II....... 0.13

1.6 ....
max

25min---··'

.-

-+- 8 ....
1Z61711

_12.0_ 5.75
11. 2
max

When locking is required an adhesive instead of a lock washer is preferred
Torque on nut: min. 7.5 kg cm
(0. 75 Newton metres)
max. 8. 5 kg em
(0. 85 Newton metres)

May 1974

II

-

Diameter of clearance hole in heatsink: max.
4.17 mm.
M9unting hole to have no burrs at either end
De-burring must leave surface flat; do not
chamfer or countersink either end of hole.

II

1

----

II

MX67

7261758

10

j
VeE~16.5 V

10

f

~10MH

z

1-,.....

Ptot

(WI

7Z61156

D.C; SOAR

Ie
(AI

I"
short time

7.5 I"- operation
I- v.S.W.R.>3

""

'"

~

I'

"

5
~

.25

normal operation
V.S.w.R.<3

------

I' ""

1

~

Th =25°C
125°C

--'-

2

50

2

10

II

II

November 1971

BLX67

II

II

RATINGS Limiting values in accordance with the Absolute MaximumSystem(IEGI34)
Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

max.

36

V

Collector-emitter voltage (RBE = 0)
peak value

VCESM

max.

36

V

Collector-emitter voltage (open base)

VCEO

max.

18

V

Emitter-base voltage (open collector)

VEBO

max.

4

V

Collector current (average)

IC(AV)

max.

0.7

A

Collector current (peak value) f> 1 MHz

rCM

max.

2.0

A

Ptot

max.

4.5

W

Storage temperature

T stg

-6,5 to +150

°c

Junction temperature

Tj

max.

150

°c

Currents

Power dissipation
Total power dissipation up to T h = 90 °c
f> 10 MHz
Temperature

THERMAL RESISTANCE
From junction to mounting base
From mounting base to heats ink

August 1972

II

Rth j-mb =
Rth mb-h =

II

°C/W
°C/W

12

0.6

3

-

-

----

BLX67
II

I
Tj :;:; 25 0C unless otherwise specified

CHARACTERISTICS
Breakdown voltages
Collector-base voltage
open emitter, IC = 10 rnA

V(BR)CBO

>

Collector-emitter voltage
VBE = 0; IC = 10 rnA

V (BR)CES

>

Collector-emitter voltage
open base, IC = 25 rnA

V(BR)CEO

Emitter-base voltage
open collector, IE = 1,0 rnA

36

V

36

V

>

18

V

V(BR)EBO

>

4

V

VCEsat

typo

0,1

V

hFE

>
typo

10
40

fT

typo

1400

Cc

typo
<

6,5
9,0

pF
pF

= 20 rnA; VCE = lOV

Cre

typo

4,8

pF,

Collector-stud caEacitance

C cs

typo

2

".-

Collector-emitter saturation voltag:e
IC

= 100 rnA; IB = 20 rnA

D. C. current g:ain
IC

= 100 rnA; VCE = 5 V

Transition frequency
IC

= 0,2 A; VCE = 5 V; f = 500 MHz

Collector capacitance at f
IE

IC

= 1 MHz

= Ie = 0; VCB = 10 V

Feedback capacitance at f

4

II

MHz

= 1 MHz

II

pF

June 1976

BLX67

II

7Z6ZZ03

2000

fT
(MHz)

Vce=5V

1500

r- r- r- Io....

typ

10--""

I---" """"

-"

~

I"""'" r-...

1000

..... r-...
...... "-.

......
~

500

0.3

0.2

0.1

0.4

o.~

I c (A)

0.6

7Z62202

10

Cc

(pF)
7.5

Ie=Ie=O f - f f=1MHz

,
,

1\

I\.
'" typ

I"

5

" -

2.5

o
o

November 1971

II

10

20

Vce (V) 30

II

5

---

II

BLX67

APPLICATION INFORMATION

Tj

=

25 °c unless otherwise specified

R. F. performance in c. w. operation (unneutralized common -emitter class B circuit)
Th up to 25 °c
f
(MHz)

VCC
(V)

470
470
470
175

13.8
13.8
12.5
12.5

Ps
(W)
typo
typo
<
typo

0.15
0.35
0.35
0.03

PL
(W)
1.5
3.0
2.5
3.0

typo
typo
<
typo

IC

G

11

zi

(A)

(Ji)

(%)

(Q)

0.17
0.28
0.31
0.29

Test circuit for 470 MHz:

typo 10
typo 9.3
>
8.5
typo 20

typo
typo
>
typo

65
79
65
84

YL
(rnA/V)

-

-

2.9+j5.1

27 - j21

-

-

-

'cs

output

son

input

son

---

C1 = C2 = C6 = C7 = 1. 8 to 18 pF film dielectric trimmer
C3 = C4 =
18 pF disc ceramic capacitor
C5 =
4 nF feed -through capacitor
C8 =
O. 1 j-lF polyester capacitor
L1 = 1 turn Cu wire (1. 2 mm); into diam. 6 mm; max. lead length 1 mm
L2 = 1 j-lH choke
L3 = 30 mm straight Cu wire (2 mm); height above print 2 mm
L4 = 2 turns closely wound Cu wire (0.5 mm); int. diam. 3 mm; max. lead length 8 mm
R

= 10 Q

carbon

At P L =2.5 Wand V CC =12.5 V, the ou~utpower ,at heatsink temperatures between
25 °c and 90 °c relative to that at 25 C is diminished by typo 5 mW /oC.
The transistor is designed to withstand full load mismatch in the test circuit under
the following conditions: VCC = 16.5 V; f = 470 MHz; Th = 70 °C;
V. S. W.R. = 50 : 1 through all phases; Ps = P Snom + 20 %
where PSnom =Ps for 2.5 W transistor output into 50 Q load and VCC = 13.8 V

Component lay-out for 470 MHz see page 7

6

II

II

May 1974

II

BLX67

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 470 MHz test circuit.
1"'4~-----------110mm

- - - - - - - - - - -•• 1

SOmm

7Z61754

,- -

---

7Z61755.1

Shaded area copper '
Back area completely copper clad.
Material of printed circuit board: 1,5 mm epoxy fibre glass.

May 1974

II

II

7

BLX67II
.

7Z61757

4 I- typical values
f=470MHz
ITh=25°C .

J

VI/

1/

1/ )
Vee=
13.8vlIlI'
JI/12.5V
'J

3

7262201

100

75

II.

,

Ih
/1
10
r

l..o-lO'l.,..oo~

(%1

V
2

11111-

Vcc=12.5V
13.8V-

11.
~

~
l;o'

~

V ..... ~
VI/'
1/ V
V

50

J

25

J

i/

---

0.5 Ps (WI 0.75

0.25

8

II

0.5 Ps (WI 0.75

0.25

II

November 1971

II

BLX67

7Z61759

R.F. SOAR
4

PLnom
(W)

VSW R=1

3

VSWR=3

"

~

~

~

"

I"

~.

~10

'" "'-"
'" 50

"'-

2

01,0

1,1

1,2

Ps
rPSnom
Vee
Vee nom

---

Conditions for R. F. SOAR
470 MHz
70 0 C

VeCnom

PSnom = Ps at VCC = VCCnom and VSWR = 1
Rth rnb-h

= 13,8 V

= 0,6

°C /W

see also page 6

The trans istor was developed for use with unstabilized supply voltage VCC.
The above graph is based on its measured performance in the circuit given on page 6.
Supply voltage was varied from VCCnom to 1,2 VCCnom. and VSWR from 1 to 50.
lt shows the max. permissible output power under nominal conditions in order not to exceed the max. permissible power dissipation under conditions of supply over-voltage
(Vee> VCCnom) and load mismatch (VSWR > 1).
lt is assumed that the drive power increases linearly with the supply voltage; i. e.
PS/PS nom = VCC/Veenom·

June 1976

II

II

9

-----

BLX67

II

APPLICATION INFORMATION (continued)
Test circuit for 175 MHz:
C6

output

son

C1 = C3 = C4= 30 pF concentric air trimmer
60 pF concentric air trimmer
C2 =
0.25 iJF ceramic capacitor
C5 =
4 nF· polyester capacitor
C6 =
L1 = 25 mm straight Cu wire (1. 2 mm); height above print max. 3 mm
L2 = 3 turns closely wound Cu wire (1. 2 mm); into diam. 10 mm; lead length 5 mm
L3 = 2 turns closely wound Cu wire (1. 7 mm); into diam. 12 mm; lead length 5 mm
R1 = 50 Q carbon
R2 = 1. 2 kQ carbon
R3 = 5 Q carbon
Component lay-out for 175 MHz see page 11.

10

II

II

November 197

BLX67

II

APPLICATION INFORMATION (continued)
Component lay-out and printed circuit board for 175MHz test circuit.



....-----------ll0mm-----------~~1

50mm

7Z65142

----

Shaded area copper
Back area not metalized
Material of pcb : 1.5 mm epoxy fibre glass

December 1973

II

11

BLX67II
OPERATING NOTE Below 200 MHz a base-emitter resistor of 10 Q is recommended to
llvoid oscillat,ion. This resistor must be effective for both d. c. and r. f.
7Z68919

30

power gain versus frequericy
(class B operation)

Gp

I 1
I I

I 1I I
I I
I

Vee = 13,8 V 1-11-1PL = 3W
1-1Th = 25 °e 1-1typo values -I-

(dB)

20

........

....
~

.....

.....

,

~

10

---

i""",

o

300

100
7Z68920

10

input impedance (series components) versus frequency
(class B operation)
1
I

,,

Ki
\.

,/1
~
I

.

eL
~i""'I""l

,

\.

50

~

'\.

ri

~

,

, '"

r
I

40

/

Vee = 13,8 V -PL = 3W
-rTh = 25 °e
,typo values

I I

bLl

If

(pF)

I\.

'"'" "-

II
I I

r-,

Vee = 13,8 V
PL = 3 W
f-I-'- ~ Th = 25 °e
eL- I- typ. values
I-I(...i- I-

--

/'

I~t-~
t-I-

--

j

~x·

II
I I

11

300

100

12

-10

'f'

J

-5

io"""

'Ji
If

1/

J

I I

~,.

'" ...........
o

7Z68921

load impedance (parallel components) versus frequency
(class B operation)
\R L

I

~

500

(~z)

60

xi
5

f

II

I I

1 I

I
f(~z)

500

30

I I

100

I I I
I I I

.....

....

-~O
I
1

1""' ....

~
RL

L1 1
I I I

300

II

f (MHz)

500

May 1974

BLX68

II

II

U~H.F./

V.H.F. POWER TRANSISTOR

N-P-N- transistor intended for use in class Band e operated mobile, industrial and
military transmitters with a supply voltage of 13.8 V. It has a capstan envelope with
a moulded cap. All leads are isolated from the stud.
QUICK REFERENCE DATA

R.F. performance up to Th
Mode of Vee f
operation (V) MHz
13.8
13.8
12.5
12.5

c.w
c.w
c.w.
c.w.

Ps
(W)

= 25 0e

in an unneutralised common-emitter
class B circuit.

PL
(W)

Ie

Gp

11

Zi

YL

(A)

(dB)

(%)

(Q)

(rnA/V)

470 < 2.0 7.0 <
470 typ.2.0 7.8 typo
470 < 2.2 7.0 <
175 typo 0.4 7.2 typo

MECHANICAL DATA

0.78 > 5.4 >
0.81 typo 5.9 typo
0.86 > 5.0 >
0.87 typ.12.6 typo

t

SOT-48

3.5

t

65
70 2.4+ j6.7 60 - j20
65
66
Dimensions in mm

[

I

)

1.52

r~

..... 30
2·.7!~

metal

1t

25
min 14

j

~

~
[8~J

1.1
max

Lb

r

25 min

8-32~NC

!

+

\

\:

7.3
7:0 2.85

pi astic
I

~7
I>

iI

...

collector
identification

. - 9.75 ___
max
4

+

I

1.6 ___
max

II

~

...

. .11.... 1- 0.13

--- 8 -7Z61?11

When locking is required an adhesive
Torque on nut: min. 7.5 kg cm
(0.75 Newton metres)
tnax. 8.5 kg cm
(0.85 Newton metres)

May 1974

II

_12.0_ 5.75
11.2
max

-

instead of a lock washer is preferred.
Diameter of clearance hole in heatsink: max.
4.17 mm.
Mounting hole to have no burrs at either end.
De -burring must leave surface flat; do not
chamfer or countersink either end of hole.

1

II

--

--'--,

al.)(68

II·

II

RATINGS Limitingvalues in accordance with the Absolute Maximum System (lEC 134)
Voltages
Collector- base voltage (oPe'ri ~mitter)
peak value

VCBOM

max.

36 V

VCESM

max.

36 V

Collector-emitter voltage (open base)

VCEO

max.

18 V

Emitter-base voltage (open collector)

VEBO

max.

4 V

rC(AV)

max.

1.0 A

'rCM

max.

4.0 A

Ptot

max.

Storage temperature

Tstg

-65 to + 150 °C '

Junction temperature

Tj

max.

Collector-emitter voltage (RBE
peak value

= 0)

Currents
Collector current (average)
. Collector current (peak value) f > 1 MHz
Power dissipation
Total power dissipation up to Th
f> 10 Wlz

= 70 0C
10

W

Temperatures

150

°C

Rth'J-mb

7.0

°C/W

Rth mb-h

0.6

°C/W

THERMAL RESISTANCE
From' junction to mounting 'base
From mounting base to heatsink

2

II

K.

November 1971

BlX68

II

II
7Z61765

r\.

20

short time
I-operation
Ptot I- V.S.W.R>3

1
VeE~16.5 V
~10MH zt--r-

I\. f

,

(W)

'\

Ie

r\.

C\

f'

I"
5

7Z61760

D.C. SOAR

(A)

15

10

10

'" '"

~

Th =25°C
125°C

....

normal operation
V.S.w.R.< 3

50

November 1971

---

10

II

3

BLX68
II
CHARACl'ERlSTICS

II

Tj ;:;: 25 °c unless

otherwise specified

Breakdown voltages
Collector-base voltage
open emitter, IC = 10 rnA

V(BR)CBO

>

36

Collector - emitter voltage
VBE = 0; IC = 10 mA.

V(BR)CES

>

36 V

Collector-emitter voltage
open base, IC = 25 rnA

V(BR)CEO

>

18

Emitter- base voltage
open collector, IE = 1. 0 mA

V(BR)EBO

>

V

V

4 V

Collector-emitter saturation vOltage

----

rnA~IB

VCEsat

typo

0.2

hFE

>
typo

10
40

fT

typo 1300

Cc

typo
<

14
20

Ce

typo

65 pF

IC = 50 rnA; VCE = 10 V

Cre

typo 10.5 pF

Collector-stud capacitance

Ccs

typo

IC = 500

= 100 rnA

V

D. C. current gain
IC = 500. mA; VCE = 5 V
Transition frequency
Ie = 500 rnA; VCE = 5 V; f = 500 MHz

MHz

Collector capacitance at f = 1 MHz
IE=Ie=O;VCB=lOV

pF
pF

Emitter capacitance at f = 1 MHz
IC = Ic = 0; VEB = 0
Feedback capacitance at f = 1 MHz

4

II

2 pF

November 1971

BLX68

II

II
?ZIZZO&

2000
fr

VCE=5V

(MHz)

1500
typ

,/

..... .....

r---. ~
.....

1000

"'

.... ......

500

o
o

0.25

0.5

1.25

0.75

Ic (A) 1.5

1Z617&3

30

I I I I
I I I I
IE= Ie=O
. f=1MHz

Cc

l-

f-

(pF)

\

20

~

"

~

typ
:0..

-1-00
1-"",-

10

10

November 1971

II

Vce(V)

20

II

5

----

BlX6'8

II

I

APPLICATION INFORMATION
R. F. performance in c. w. operation (uimeutralizedcommon.:.erhitter class B circuit)
Th up to 25. oC
f
(MHz)

VCC
(V)

Ps
(W)

PL
(W)

470
470
470
175

13.8
13.8
~.? 5
12.5

< ·2.0
typo 2.0
<
2.2
typo 0.4

7.0
7.8
7.0
7;2

G

IC
(A)

<
typo
<
typo

Test circuit for 470 MHz:

O. 78
0.8.1
0.86
0.87

(dB)

>
5.4
typo 5.9
>
5.0
typ.12.6

17

-zi

(%)

(Q)

>
typo
>
typo

65
70
65

60

YL
(rnAjV)

-

-

2.4+ j6.7

60 - j20

-

-

-

-

C7

.--------------.-o+vcc

J;

output

son

input

son

-

cs
7Z61767

Cl = C2
C3 =
C6 =
C7 =
C8 =

= C4 = C5 = 1. 8 to

18 pF
6.8 pF
O. 1 \1F
4 nF
10 pF

film dielectric trimmer
cE.ramic capacitor
polyester capacitor
feed-through capacitor
ceramic capacitor

Ll = L4 = L5 = 20 mm straight Cu wire (1. 2 mm); height above print 12 mm
L2 = 0.47 iJH choke
L3 = 1 turn Cu wire (1. 7 mm); int. diam. 10 mm; max. lead length 5 mm
R = 10

Q

carbon

At P L = 7.0 Wand VCC = 12.5 V the output power at heatsink temperatures between
25 °c and 90 °c relative to that at 25 °c is diminished by typo 10 mW JOC
The transistor is designed to withstand, full load. mismatch in the test circuit under
the following conditions: V CC= 16.5 V; f = .470 MHz; Th = 70 °C;
V. S. W. R. = 50 : 1 through all phases; P s = PS nom + 20 %
where P Snom = P s for 7.0 Wtransistor output into 50 Q load at VCC = 13.8 V
Component lay-out for 470 MHz see page 7

6

II

May 1974

II
APPLICATION INFORMATION

BLX68

(continued)

Component lay-out and printed circuit board for 470 MHz test circuit.
,••- - - - - - - - - - - - 1 4 0 m m --~-------'---_.I

<1

L r&-,~C5
~

4J·

ffi
C1~~J
~
~

~

I

I

J~lY1r ~~~
l4

C7

r=-l

R

L5

50mm

C6

1Z61nl

7Z61770.1

Shaded area copper
Back area completely copper clad
Material of printed circuit board: 1. 5 mm epoxy fibre glass

December 1973

II

7

II

BLX68

7%12205

7Z81761

I
10

~
~

I

;... typical values
f=470MHz
I - Th=250C

"

~ V
~

1l.

1%1

~ ~'t-

. i.-

l.L
If'~

typical va.lues
1-1f=470MHz
t-ITh=25°C'

100

.!~

75

V'

..... ts ~ """,Vcc=13.8V
r-... f"-..L.

II'~

~~
~
12.5V ~

I"-J

1/
'/

5

50

I{.,

.I."

,A

,

'L

25

II

--

2

Ps(WI

3

2

Ps (WI

3

-

7Z61204

7Z6176Z

typical values t - f f=175MHz 1 - Th=25°C

10

Ib~ f -

~.

~~

~2
,/

IL
~

5

,

l/
~

'"

\'l.~'11 ...

,L"

typical values
1-1f=175MHz
t-ITh=25°C

100

1\.
(%1
75

Vcc·=13.8V

=-

1..".00'1-""

~"""""

V

-I""-

12.5V

50

~.'V

'r

25

0.5 Ps (WI

0.25

8

II

0.75

0.25

0.5

II

Ps (WI 0.75

May 1974

II
10

II

7Z61766

R.F. SOAR

r-- r-. ~ ....

...... r-. ...... ....

r-- r-. ..........

PLnom

r-- r-. ......

(W)

VSW R

BLX68

=1

VSWR~3

1b
r-- r-. ~
-~ ~

5~

~-

5

---

Ps
PSnom

o

1,1

1,0

1,2

Vee
Vee nom

Conditions for R. F. SOAR:
470 MHz

PS nom

=Ps at VCC =VCCnom arid VSWR = 1

70 0 C
VCCnom

= 13,8 V

see also page 6

The transistor was developed for use with unstabilized supply voltage VCC.
The above graph is based on its measured performance in the circuit given on page 6.
Supply voltage was varied from VCCnom to 1,2 VCCnom, and VSWR from 1 to 50.
It shows the max. permissible output power under nominal conditions in order not to exceed the max. permissible power dissipation under conditions of supply over-voltage
(V CC > VCCnom) and load mismatch (VSWR > 1).
It is assumed that'the drive power increases linearly with the supply voltage; i. e.
PS/PS nom = VCC/VCCnom·

June 1976

II

II

9

BLX68

II

APPLICATION INFORMATION

II
(continued)

Test circuit for 175 MHz:

C6

output

son

---

Cl
C2
C5
C6

= C3 = C4 =
=
=

=

30 pF concentric air trimmer
60 pF concentric air trimmer
0.25 \IF polyester capacitor
4.0 nF feed-through capacitor

Ll = 25 mm straight Cu wire (1. 2 mm); height above print 3 mm
L2 = 3 turns Cu wire (0.5 mm) on Ferrite FXll15, d = 2 mm, D = 4 mm, 1 = 5mm
material 3B (code number 311399116740)
L3 = 5 turns closely wound Cu wire (1.2 mm); into diam. 10 mm; lead length 5 mm
L4 = 3 turns closely wound Cu wire (1. 2 mm); into diam. 10 mm; lead length 5 mm
R

= 10 Q carbon
Graphs (PL versus Ps and n versus Ps) for 175 MHz on page 8.
Component lay-out for 175 MH~ on page 11.

10

II

May 1974

APPLICATION INFORMATION

(continued)

Component lay-out and printed circuit board for 175 MHz test circuit

1-------------110mm------------.,

4
1....

SOmm

7Z61768

7Z61769.1

Shaded area copper
Back area not metalized
Material of printed circuit board: 1.5 mm epoxy fibre glass

December 1973

II

II

11

BLX68

II

II
30

power gain versus frequency
(class B operation)
I
I

I I I II
I ~ _1 ~ ~

Vee = 13,8 V I-fPL = 7,8 W --~
fTh = 25 °e -~

20
1\

!,
\.

"

I'"

10

typ
I'
I""-

"""

"""

--

-

o

100

f(~)

300
7Z68923

10

input impedance (series components) versus frequency
(class B operation)

~

500
7Z68924

35

load impedance (parallel components) versus frequency
(class B operation)

I

,

I

~

eL

xi

~

I.'

5

i."
ioI"'"

~

,

ri

.......

~
~

If"

,,-

~~

ri

.".

/I'

I

I I
I I

RL

~

J
~

!/

Vee = 13,8V f-tPL = 7,8 W - I -ITh = 25 °e - I typo values - I -

xi

"

12

T~O

J
II

15

Ii'

100

(f~)'

"

i""oo ...

1/

-5

J

r-...lJ

/I'

o

b~

1,.0001""'"

25

ioI"'"

300

II

I ! I I I

f (MHz)

500

I

I

5

eL
100

Vee = 13,8V
PL = 7,8 W
.... - to -40
0
Th= 25 e
typo values
I I I
I I I

300

II

I I I
I I I

.f(MHz)

500

May 1974

BLX69A

II

II
U.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class A, B and e operated
industrial and military transmitters with a supply voltage of 13, 5 V.
The transistor is resistance stabilized. Gold metallization ensures· extremely high reliability. Every transistor is tested under severe load mismatch conditions with a supply
overvoltage to 16,5 V.
It has a capstan envelope with a moulded cap. All leads are isolated from the stud.
mobil~,

QUICK REFERENCE DATA

R. F. performance up to T mb

= 25 °e

in an unneutralised common -emitter
class B circuit.

Ps

f
Mode of Vee
operation (V) (MHz)

rN)

Ie

Gp

'YJ

Zi

(A)

(dB)

(%)

(Q)

1,2+ j4, 5

c.w.

13,5

470

< 8,0

20

<2,28

>4

>65

c.w.

12,5

470

< 6, 8

17

<2,09

>4

>65

163 - j35 .

Dimensions in mm

MECHANICAL DATA

SOT-48

~

rnj

6,5min (4x)

~
L. ,j

1
25min

j

!-:----I\.

.

+

"sL.---4fj
+ I-il.J

8-32UNC

plastiC

tL

__13,71....
... 9,75 max
-25min

-

7Z6660e

When locking is required, an adhesive instead of a lock washer is preferred.
Torque on nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kg cm)

February 1975

II

Diameter of clearance hole in heatsink: max.
4,17 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not
chamfer or countersink either end of hole.

II

1

--

--=

B1X69A

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)

Voltages
Collector':"base voltage (open emitter)
peak value

VCBOM

max.

36

V

Collector-emitter voltage (open base)

VCEO

max.

18

V

VEBO

max.

4

V

Collector current (average)

IC(AV)

max.

3,5

A

Collector current (peak value) f > 1 MHz

ICM

max.

10

A

max.

50

Emitter-base voltage (open collector)
Currents

Power dissipation
Total power dissipation up to Th = 25 °c
f

~

1 MHz
7Z603031

60

short time
operation
VSWR >3

--I'-

Ptot

(WI

~~VCE"16,SV

.....

~I).

D.C. SOAR

1'1)/~",,(

f :!! 1MHz


36

V

Collector-emitter voltage
open base
; IC = 25 rnA

V(BR)CEO

>

18

V

Emitter-base voltage
open collector; IE = 10 rnA

V(BR)EBO

>

4

V

E
E

>
>

3,1
3,1

hFE

>
typo

10
30

fT

typo

1,0

Cc

typo
<

55
70

pF
pF

Cre

typo

32

pF

C cs

typo

2

pF

Transient energy
L = 25 mH; f = 50 Hz
open base
-VBE = 1,5V;RBE =33Q

mWs
roWs

D.C. current gain
IC = 1 A; VCE = 5 V
Transition frequency
IC = 2 A; VCE = 10 V

GHz

Collector capacitance at f = 1 MHz
IE = Ie = 0; V CB = 15 V
Feedback capacitance
IC = 100 rnA; V CE = 15 V
Collector -~tud capacitance

February 1975

II

3

--

.BLX69A

II

II
7Z6030S 1

1500

I

TJ =25OC

fT
(MHz )

, ,.

1000

~"..

....

typ

.......

J

'I

.....

I'.

'" , ,
"

500

o

-:-'-

-f--

.....

,I

--

I I

fT
... Vce=10V
I

o

2

Ic(A)

6

""
""
8

7Z60302 1

300

IE=Ie=O
f= 1MHz

Cc

f----

Tj=25°C

(pI=" )

200

,

\
\
100

~
\,- typ

"" .........

10

4

II

Vce (V)

20

II

February 1975

U'_H'_F._~w_e_rt_~n_Sin_o_r

__

jl____

B_LX
__
6_9A_____

___________________

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
T mb up to 25 °C
f(MHz)

VCE (V)

470
470
175

13,5
12,5
12,5

Ps (W)

PL (W)

<
<

8,00
6,80
typo 1,35

20
17
17

IC(A)

<
<

2,28
2,09
typ.2,30

Gp (dB)

>
>

4
4
typo 11

Zi(n)

11 (%)

>
>

65
65
typ.60

YL (rnA/V)

1,2 + j4,5

163 - j35

-

-

Test circuit: 470 MHz; C.W. class-B.

input

l1

L4

output

C7
Zs=

son

C8

R1
L2

---

7Z5S637.'

List of components:

= C2 = C7 = C8 = 2,0 to 9,0 pF film dielectric trimmer (cat. no. 2222 809 09002)
= C4 = 15 pF chip capacitor
= 100 pF feed-through capacitor
= 33 nF polyester capacitor
R 1 = 1 n carbon resistor
R2 = 10 n carbon resistor
L 1 = stripline (41,1 mm x 5,0 mm)
L2 = 13 turns closely wound enamelled Cu wire (0,5 mm); into dia. 4,0 mm (0,32IlH)
L3 = 2 turns Cu wire (1 mm); winding pitch 1,5 mm; into dia. 4 mm; leads 2 x 5 mm

C1
C3
C5
C6

L4 = stripline (52,7 mm x 5,0 mm)
L5 = Ferroxcube choke coil. Z (at f

=50 MHz) = 750 n± 20% (cat. no. 4312 020 36640)

L 1 and L4 are strip lines on a double Cu-clad print plate with PTF E fibre-glass dielectric.
(e r = 2,74); thickness 1,45 mm.
Component layout and printed-circuit board for 470 MHz test circuit see page 6.

September 1978

5

_B_LX6_9A

_Jl_______

APPLICATION INFORMATION (continued)
Component layout and printed-circuit board for 470 MHz test circuit.
- 4 - - - - - - - - - - - 1 4 6 m m - - - - - - - - - -...

47

--

7Z66443.1

The circuit and the components are situated on one side of the PTFE fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets.
7Z586061

30

1

IJ

typical values
f=470MHz
Tmb=2SoC

lL

~

20

,/

,

lL I'
~

f-I- 1-- Vee = 13, 5VI'

.,

~

I'

/
/'/
12.5V

'j

I{,

10

6

September 1978

r

1/1/'

r/

5

Ps(Wl

10

BLX69A

II

72603061

40

R.F. SOAR
f =470MHz
Tfl=70°C
Rth mb-h=O,SoC/W

PSnom=PS at Vce=Veenom and VSWR= 1
see page 5

(W)

VSWR =1

VSWR=10
50

20

PLnom max at Veenom=13,5V
I I
12,5V

10

1,1

o

1,0

1,1

Ps
Ps nom

1,2
1,2

1,3

~

1,3

Vee nom

The transistor has been developed for use with unstabilized supply voltages. As the output power and drive power increase with the supply voltage, the nominal output power
must be derated in accordance with the graph above for safe operation at supply voltages
other than the nominal. .The graph shows the allowable output power, under nominal conditions, as a function of the supply overvoltage ratio, with VSWR as parameter.
The graph applies to the situation in which the drive (Ps/PSnom) increases linearly with
the supply ov.ervoltage ratio.
The horizontal line at 20 W applies at VCCnom = 13,5 V.
For V CCnom = 12,5 V, PL should be derated to 17 W.

February 1975

II

II

7

---

I

BLX69A

IL
7Z6892S

30

power gain versus frequency
(class B operation)
11

1 T 11

I I I I I

I

Vee = 13,5 Vt-ft-fPL = 20 W
1->Tmb= 25 °e t-f-

20

1\

I'

I\.
II\.
~

10

r....

'" ~~yp

.... "'"

1"- ....
~Ioo.

---

o

7Z68926

10

t-tt-t1-11-1t-t-

?l68927

load impedance (parallel components) versus frequency
(class B operation)
I

,

i
10'"

J

I~

10'"

o

'" "'"

ri

11
~Ioo.

-50

"'"

~

6

"'" "- I\.
R~

II

, i
I I

J
II

II

eL
300

100

8

roo

II

Xi

-5

(pF)

fJ
fl

I'

II"'"

eL

II

"II

100'

"'"

1.-1

"'"

I\,

7

~

ri

C'L

~RL

I
I

Vee = 13,5V'
PL = 20 W
Tmb = 25 °e
typo values

500.

8

input impedance (series components) versus frequency
(class B operation)
1 I I
I I I
I I I I I I I

5

f (~z)

300

100

II

f(~z)

500

5

T

100

Vee = 13,5V
PL = 20W
1-1- -100
Tmb = 25 °e
typo values
11 I I I I I
T 11 iT
T

300

II

f (MHz)

500

February 197:

II

BlX91A

II

U.H.F. TRANSMITTING TRANSISTOR

N-P-N siliconplanar epitaxial transiBtor intendedfortransmitting applications in class-A,
B or e with a supply voltage up to 28 V.
The transistor is resistance stabilized and is tested under severe load mismatch conditions.
Gold metallization ensures extremely high reliability.
It has a capstan envelope with a moulded cap. All leads are isolated from the stud.
QUICK REFERENCE DATA

R. F. performance up to Th = 25
Mode of Vee
f
operation (V) (MHz)
c.w.
C.w.
C.w.
C.W.

24
28
28
28

Ps
(mW)

470 typo 50
470 <
80
470 typo 80
1000 typo 400

°e

in an unneutralized common-emitter
class-B circuit.

PL
(W)

Ie
(rnA)

0,85
1,0
1,45
1,4

typo 67
<
71
typo 86
typo 100

Gp
(dB)
typo 12,3 typo
>
11,0 >
typo 12,6 typo
typo 5,4 typo

zi

YL

(Q)

(rnA/V)

53
50
60 2,5 + jO,2
50

3,4 - j16

D imens ions in mm

MECHANICAL DATA

SOT-48
3,5 [

I J

30

-- 2',7t:--

1,52.

t
metal

1i
t
j

25 14
min

+

1,1
max

Lb

I

+

--

~~;-.

25min

.-

\

~~a

stic

..i

!

7,3
7,0 2,85

•

8-32~NC

II

P
......

collector
identification

~

..11""'1- 0,13

1,6 .....
max

-------t~1

.-

..... 8 .....
7Z61711

_12,0_ 5,75
11,2
max

When locking is required an adhesive instead of a lock washer is preferred.
Torque on nut: min. 0,75 Nm
Diameter of clearance hole in heatsink: max.
(7,5 kg cm)
4,17 mm.
max. 0,85 Nm
Mounting hole to have no burrs at either end.
(8,5 kg cm)
De-burring must leave surface flat; do not
chamfer or countersink either end of hole.

June 1976

II

II

--

--

BLX91A

II

RATINGS Limiting value::; in accordance with the Absolute Maximum System (IEC134)
Voltages
Collector- base voltage (open emitter)
peak value

VCBOM

max.

65

V

VCESM

max.

65

V

Collector-emitter voltage (open base)

VCEO

max.

33

V

Emitter-base voltage (open collector)

VEBO

max.

4,0

V

Collector current (d. c.)

IC

max.

400

rnA

Collector current (peak value); f e:: 10 MHz

ICM

max.

800

rnA

Ptot

max.

4,0

W

Storage temperature

Tstg

-65 to +150

°c

Operating junction temperature

T·J

max.

°c

Collector-emitter voltage (VBE
peak value

= 0)

Currents

Power dissipation
Total power dissipation up to Th = 70 °c
f e:: 10 MHz (see ahw page :3)
Temperatures

200

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

32,5

°c/w

From mounting base to heatsink

Rth mb-h

0,6

°C/W

2

II

II

June 1976

I

II
7Z62869

6

I

I

I

I

I

I

.p. -t'. V CE

Ptot short time
(W) operation
VSWR~3

4

:$

-f-

~cj'

IC

Th

(A)

= 70°C

1

><
0

.......

~0

1\ "

~

0

Q..

~-- -.<-

1\.4cj'

P tot max (d.c.)

l\. >< I I
I 0 I I
I ~0
I-~normal operation-

-

I-f-VSWR:5 3

June 1976

D.C. SOAR

rl
~I

f..

\~

o
o

7Z62865

10

28 V ->-

~f~lOMHz
,/~
I
?\\
r

\.~

2

BLX91A

r

0

'A"

:

derate by 33 OC/W for
70 °C< Th< 1.25 °c

10- 1

-0

,.... -~L- >->-f-

"

10- 2
100

II

Th (OC)

200

1

10

II

V CE (V)

10 2

3

------

BLX91A

II

CHARACTERISTICS

Tj

==

25°C unless otherwise specified

Breakdown voltages
Collector- base voltage
open emitter, IC == 10 rnA

V(BR)CBO

>

65

V

Collector-emitter voltage
VBE == 0, IC == 10 rnA

V(BR)CES

>

65

V

Collector-emitter voltage
open base, IC == 25 rnA

V(BR)CEO

>

33

V

Emitter- base voltage
open collector, IE == 1,0 rnA

V(BR)EBO

>

4,0

V

hFE

>
typo

10
35

fT

typo

1,2

GHz

Cc

typo

3,5

pF

Ce

typo

11

pF

Cre

typo

2,5

pF

C cs

typo

2,0

pF

D. C. current gain

.IC

==

100 rnA; VCE

== 5,~

V

Transition frequency
IC

==

50 rnA; VCE

==

5,0 V

Collector capacitance at f
IE

==

Ie

==

==

1 MHz

0; V CB = 10 V

Emitter capacitance at f = 1 MHz
, IC

==

Ic

==

0; V EB

==

0

Feedback capacitance at f
IC

==

5 rnA; V CE

==

==

10 V

Collector-stud capacitance

4

II

1 MHz

II

June 1976

II
7Z62875

BLX91A

7Z62874

6

1

111

~~

VCE =28V I-typo values r-

Cc
'\

(pF)

15

~

-

-I-

f - 200 MHz

,

~

1\

4

f"

"-

,
~

....

~yp

,..."",
10
~v

~ i"'"

400

~

IE = Ie = 0 t-tf= 1MHz r-r-

. . . r--

r-"",

~

2

1'\

5
~,....

o

o

-fO~

'" .... ,

o

100 IE (rnA) 150

50

o

20

VCB (V)

40

7Z62860

2

fT

(GHz)

VCE -28V

1,5

,... ,...

-

I-'" I- ~

typ

--

l"- I'-.

r--

0,5

o

o

June 1976

25

50

II

75

100

125 IC (rnA)

I!

150

5

---

BLX91A

II

I
7Z62895

-6

I I

7262885

-30

I

"-

arg sie
I

Ipqo
I I....
Y
I .J..,oo

1\
\

" ....

-4

~,

ISiel

L..I""'"

"

~~~o

~

......
10...

"""

125°
1
I
I

ISre11'"

"- l'ii\;

-20

Ipqc

"

I
""""'1
11'0.

75°

180°
I
I
I

:'arg sie
1/

-2

'"

I

kIIje1

Jrk

I
I
I

[,.

/I"

I

I-~-J...

1,..0 ....

-155°

I

I

arg sre

I I

5qo

~

-10

t

1. . . . . · -

-rI

I I

i.'

I I

1

I I

130°

IE =75mA
VCE=28V
- typo values

=

t-

----

o

1

o

f (MHz)

500

1000

7Z62887

30

500

7Z62894

1

I

I

T

arg Soe

IE =75mA
~ VCE =28V
f- typo values

1

1000

f (MHz)

f-

125°

(dB)

I

1 I

o

arg sfe

IE =75mA
~ VCE=28V
ISfel f- typo values
t-

I

125°

1

1

",.,
1\1

20

,

1

Ipqo

,

~'~

r:.;o

arg Soe

I

I'

75°

"

I'.

1,\

1-':- :=~Isoel

"

ISfel ~fI'

I

100'"

~I'.arg sfe f-I- 1-50°
I......

"

I~

1'>0.

I"'>

"r--. r...

-5

J

1/

'--

1
1

~

:"

-75°

~

I

.'

I

1")"",

I

~

I

"""

.'

I-f-

1
1

l'

I-f-I-r--f-f- f-r-

1..'

-10

1
1

1\

10

I

-15

1

I I

1

=

o

1

11

25°

- IE =75mA
VCE =28V
t- typo values

"

L""

r--.

50°
~

I

~

L.,..o

"""'+-.

25°

"

25°

"I--

o
o

500

6

II

f (MHz)

1000

o
o

500

II

f (MHz)

1000

June 1976

BLX91A

II

II
APPLICATION INFORMATION

R. F. performance in c. w. operation (Unneutralized common -emitter class -8 circuit)
Th = 25°C

v CC (V)

f (MHz) Ps (mW) PL (W) IC (rnA) G p (dB)

24
28
28
28

470
470
470
1000

typo 50
80
<
typo 80
typo 400

0,85
1,0
1,45
1,4

typo 67
71
<
typo 86
typo 100

1')

(%)

typo 12,3 typo
11,0 >
>
typo 12,6 typo
typo 5,4 typo

Zi

(Q)

53
50
60 2,5 + jO,2
50

YL (rnA/V)
3,4 - j16
-

Test circuit for 470 MHz:

cs

output

son

---

input

son

Cl
C3
C5
C6
C8
Ll
L2
-L3
L4

= C2 = C7 = 1,8 to 18
= C4 =
18
=
1
=
1,0'to 9,0
=
0,1

pF
pF
nF
pF
flF

film dielectric trimmer
disc ceramic capacitor
feed-through capacitor
film dielectric trimmer
polyester capacitor

= 1 turn Cu wire (1,2 mm); into dia. 5 mm; lead length = 2 mm
=0,47flH cho,ke
= 4 turns closely wound enamelled Cu wire (1,2mm);int. dia. 6,5 mm; lead length=4mm
=5turnscloselywoundenamelledCuwire(0,5mm);int. dia.
4 mm; lead length=5mm

R :::: 10 Q carbon
At PL = 1,0 Wand V CC = 28 V, the output power at heatsink temperatures between 25 °c
and 900C relative to that at 25 °c is diminished by typo 2 mW lOCo .
The transistor is designed to withstand full load mismatch in the test circuit under the
following conditions: V CC = 28 V; f = 470 MHz; Th = 90 °C.
VSWR = 50 : 1 through all phases; PL = 1,2 W.
Component layout for 470 MHz test circuit see page 8.

June 1976

II

II

7

BLX91A

II

II

APPLICATION INFORMATION (continued)

Component layout and printed-circuit board for 470 MHz test circuit.
4f - - - - - - - - - - - 1....

100mm - - - - - - - - - - -......,
----~

_r----J

o

C8

o

C7

r!J~

50mm

~C6

o

7Z66742

7Z66743.1

Shaded area copper
Back area completely copper clad
Material of printed-circuit board: 1,5 mm epoxy fibre-glass

8

II

II

June 1976

BLX91A

II
7Z62882

7262883

f = 470 MHz r-Vee =28V rTh = 25 °e r--

f=470MHz Vee=24V
Th=25 0 e e---

-

"".1,5

1,5

..... ~

10"

c,. ...

V'PL

...... 1-'

V
typ

~L

"

V typ

V'

100

TL

~

(%)

~"

II'

0,5

/

I

I

~

" l.oootyp

l - I-

i-I- 1-~- ~.~

YL

~

ho

I,..-

j
0,5

o

2

100

50

YL

If

(%)

I{

I--'

~tY'p

rc

t-

~

-I.

~o

Ps (mW) 150

o
o

50

100

Ps (mW) 150

________~__________~7~Z6~2~86~6~
R.F. SOAR f = 470 MHz

~

pdw)
(VSWR = 1)

f-I-

Vee=28V
Rth mb-h=0,6 °e/w

I----+--++++-+++h\-

~h kjol ~

1, 5 I-----+--If-+-I-fll\+++~,c-~ - 5,2 W
~

~~
0e .."..-I-.....-H-+H

Th = 90
~-+--+--t-

0,5

~o

V'.

~

o

lL

Indicated load power as a function of overload
The graph has been derived from an evaluation
of the performance of transistors matched up
to 1,6 W load power in the test amplifier on
page 7 and subsequently subjected to various
mismatch conditions at 28 V with VSWR up to
50 and elevated heatsink temperatures.
This indicates a restriction to the load power
matched under nominal conditions in the recommended test configuration.

Ptot =4,6 W-+-t-+-t-t+t-l

L-_L-.~-Wu..J....I..I.-_...l..--l.....""""''''''''''''L..U

1

June 1976

10

II

VSWR

II

9

---

II

BLX91A

OPERATING NOTE Below 350 MHz a base -emitrer resistor of 10 Q is recommended to
avoid oscillation. This resistor must be effective for both d. c. and r. f.
7Z68928

30

power gain versus frequency
(class-B operation)
I I I I I I 1
1 1

1 1

Vee = 28 V
PL = 1,45 W
Th = 25 °e
typo values

20

..

"

f-+1-1-

f-ff-If-f-

I'"

1_ .... 1-"

......

fo,..
J""Io

10

----

o

100

300
7Z68929

20

input impedance (series components) versus· frequency
(class-B operation)

800

I I
I I
1I I I
I

l"i
I'

I'

7Z68930

load impedance (parallel components) versus frequency
(class-B operation)
TT TTT
1

I

Vee = 28 V
PL = 1,45 W
Th = 25 °e
typo values

600

f-f- f-ff-f-f-f~I-I-O

f-+-8=
f-f-

eL

I......

""'" I'"

ri
-~
-1
Y
]; Xi

l'o ....
1-""

o

I-RL
I'

.........
J,... ....

t....

(pF)
I

1
I

"

f'

400

f-e _L....
I

J"

~~

500

I

Vee = 28 V f-f-I-PL = 1,45 W 1-1-1f-+-fTh = 25 °e f-+-Itypo values I-t-I-

10

f (rvn-Iz)

L.o

'"

:§..
1.0 ....

r...

""-

eL
1

~ ....

I

~

""'"

jRr:;
I 1

TI
-10

100

10

300

II

f (MHz)

500

200

100

300

II

f(rvn-Iz)

500

June 1976

II

BLX92A

II

U.H.F. TRANSMITTING TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for transmitting applications in class-A,
B or e with a supply voltage up to 28 V.
The transistor is resistance stabilized and is tested under severe load mismatch conditions.
Gold metallization ensures extremely high reliability.
It has a capstan envelope with a moulded cap. All leads are isolated from the stud.
QUItK REFERENCE DATA
R. F. performance up to Th
Mode of Vee
f
operation (V) (MHz)
c.w.

C.w.
C.w.
C.w.

24
28
28
28

470
470
470
1000

= 25 °e

Ps
(W)
typo
<
typo
typo

PL
(W)

0,2
0,2
0,2
0,7

2,4
2,5
3,0
2,5

in an unneutralized common-emitter
c1ass-B circuit.
Ie
(rnA)

typo
<
typo
typo

143
149
162
179

7J

zi

YL

(%)

(Q)

(rnA/V)

typo 10,8 typo
11,0 >
>
typo 11,7 typo
typo 5,5 typo

70
60
66 1,8 + j2,8 7,2 - j24
50

MECHANICAL DATA

Dimensions in mm

SOT-48

CI J

3,5

1,52~

3,0t-2,7.

+
pia stic

metal

1i

~~n

14

~
L.,J

1,1

max

Lb

r

j

-- ~~~-25min

+

8-32~NC
I

~

!

7.3
7,0 2,85

+

]

I

~If

-

f

collector
identification

_11--- 0,13

1,6 ...

max

----t~1

7Z61711

..-

-- 8-_12,0_ 5,75
max
11,2

-

When locking is required an adhesive instead of a lock washer is preferred.
Torque on nut: min. 0,75 Nm
Diameter of clearance hole in heatsink: max.
(7.5 kg cm)
4,17 mm.
max. 0,85 Nm
Mounting hole to have no burrs at either end.
(8,5 kg cm)
De-burring must leave surface flat; do not
chamfer or countersink either end of hole.

June 1976

II

II

1

--

---

BLX92A

II

"

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Collector-base voltage (open emitter)
peak value
Collector-emitter voltage (VBE
peak value

VCBOM

max.

65

V

= 0)
VCESM

max.

65

V

Collector-emitter voltage (open base)

VCEO

max.

33

V

Emitter- base voltage (open collector)

VEBO

max.

4,0

V

IC

max.

0,7

A

ICM

max.

2,0

A

Ptot

max.

6,0

W

Storage temperature

Tstg

-65 to +150

°c

Operating junction temperature

Tj

max.

°c

Currents
Collector current (d. c. )
Collector current (peak value) f

2::

10 MHz

Power dissipation
Total power dissipation up to Th
f 2:: 10 MHz (see also page 3)

= 70°C

Temperatures

200

THERMAL RESISTANCE
From junction to mounting base
From mounting base to heatsink

2

II

Rth j-mb

21,4

°c/w

Rth mb-h

0,6

°C/W

JI

June 1976

II

BLX92A

7262870

7262861.

10 D.C. SOAR
10

Ptot

1--1-+-+--+-+--+---1'---+-1 V CE

IC

~--~~~~~---+--+-t-~~

(A)~-4-4~HH~--~~+++H~

~~~

(W)

short time -!-operation
- --0
VSWR 2': 3'~

7,5

:Q./

~~-I

I-o-Io-+--+--+-+-i--ti:!''.? ~

5

:5 28 V f f 2': 10 MHz }-

-1.f-1---t-+-t---f--f--1 0./

I"'~ x
O'-t-f"" "6) ;"'-f"

0

C:--t;:

~-+~-+-+-~~~~-I
'I '"
"~'--+-I+--+--1
~-+~-+-+-~I-+-t-"'~x 0 f-+-

I----1H-+--1--t-+--t-H-t~"'" 6)

70 0 C
Ptot max (d,c.)
/1I)...-,LTh
"'I.
derate by 22 °C/W for +---~,,:-+-+-+-H-,~
70 °C< Th< 125 °c
~

I 1111111

~

..,-1-

'" ~--q;.
normal operation
- VSWR:$ 3
+-I-+-Hf-t--- 2,5 1--1-+-+-t-+-t--i-+-+--t--t-t-H-r-1
t-

O~~~~~~~~~~~~~

o

June 1976

100 Th (OC) 150

50

II

10-2~--~~~~~--~~~~~
1
10
VCE (V) 10 2

BLX92A

II

II

CHARACTERISTICS
Breakdo~n

Tj

= 25 °c

unless otherwise specified

voltages

Collector- base voltage
open emitter, IC = 10 rnA

V(BR)CBO

>

65

V

Collector-emitter voltage
VBE = 0, IC = 10 rnA

V(BR)CES

>

65

V

Collector-emitter voltage
open base, IC = 25 rnA

V(BR)CEO

>

33

V

Emitter- base voltage
open c(>llector, IE = 1,0 rnA

V(BR)EBO

>

4,0

V

VCEsat

typo

0,17

V

= 5,0 V

hFE

>
typo

10
40

= 5,0

h'

typo

1,2

GHz

Cc

typ,

·6,5

pF

Ce

typo

25

pF

= 10 V

Cre

typo

4,8

pF

Collector-stud capadtance

C cs

typo

2,0

pF

Collector-emitter saturation vOltage
IC

= 100

rnA; IB ::: 20 rnA

D. C. current gain
IC

--

~

=

= 100

rnA; VCE

Transition frequency
IC

= 100

rnA; VCE

V

Collector capacitance at f ::: 1 MHz
IE

= Ie = 0: V CB = 10 V

Emitter capacitance at f

= 1 MHz

Ie = Ic = 0; VEB = a
Feedback capacitance at f
Ie

= 10

4

rnA; V CE

II

= 1 MHz

II

June 1976

II

BLX92A

II
7Z62876

15

1
1
-f- -

ISfel

1 1 1
1 L.J....,I....o ....

f=200MHz

~

7Z62872

1"""1.

I .....
1
1 1
/ I I ./1 I
I 1 I I
I

10

VCE =28V typo values-

(dB)

Cc
(pF)

IE =Ie =0 ff= 1 MHz r\

7,5

10

....-

\

,

~

" ...,., ......typ

,... .....

'400

.......

5

""'"

5
2,5
i"'--

..... 1""'"

~OO

o

I"

I I
1 I

o

100

IE (rnA)

o
o

200

10

20 VCB (V) 30

7Z62861

2000
fT

VCE =28V

(MHz)

1500

,.,.-10- i""'"'"

typ

/"

-

r- r- ioi'~

1000

500

o
o

50

_ _J_un_e_19_7_6_ _

100

II

150

200

250 IC (rnA) ; 300

5

---

-

BLX92A

-4

II

II
7Z62884

~~

I I

arg sie

~ VeE =28V

I

- typo values

......

~

ro-..

112~0

ISrel

~

;

......

.' "

~

....

100°

10"

.'

~

"-N
115~0 .

-

.... i'""
I.....

/

180°

!-i_ -i-J.
/1"'"

-10

50°
/

/I

155°

2

500

7Z62893

30

25°

IE = 100 rnA
~ VCE=28V
t- typo values

1000

f (MHz)

/

t-

o

o

1 I

/

o

500

7Z62891
/

a:rg soe

arg sfe
/

ISfe I

/

125°

(dB)

1\
1\
\

/

,
\

/ I

100°

,

~,

1\'

/

/

/

/

-10

..
,"

."

.... '

I.....

-100°

"-

'"

75°

-~

""
arg Soe

/

'"'"

-~

75°

I"-

""'!..J

/-,....

~.

I I
1

/

-5

50°
.

"'

i'..

r- IE = 100 rnA
~ VCE=28V
r- typo values

......

I

.....

/ ./ I

500

II

/
/

", I'
r--

/

~

....

-~

/

/

6

I
I

~

1 /

I" '.
10 ,-+- -ISfe\ \- ~-..;arg sfe r-- -r-50o
r-+r-

ISoel

1 1

l\~

o
o

.... 1-0

I

/

~I

1\

20

1000

f (MHz)

-15

/

1

75~

arg sre

I

,. arg sie

"

~

~

-20

~

o

-

/

[".

"-

"

/

arg sre

105°

i;"

---

/

....

ISiel

"- ~

-2

7Z62886

-30

II I
- IE = 100 rnA

f (MHz)

....

"

=

I""-r-.,.

1000

25°

- IE = 100 rnA
VCE=28V
- typo values

25°

o

o

I

I

500

II

f (MHz)

1000-

June 1976

BLX92A

II

APPLICATION INFORMATION
R. F. performance in c. w. operation (Unneutralized common -emitter class - B circuit)
Th = 25

°c

VCC (V) f (MHz)
24
28
28
28

470
470
470
1000

Ps (W)
typo
<
typo
typo

0,2
0,2
0,2
0,7

PL (W) IC (rnA)
2,4
2,5
3,0
2,5

typo
<
typo
typo

143
149
162
179

n (%)

~p(dB)

typo 10,8
>
11,0
typo 11,7
typo 5,5

typo 70
>
60
typo 66
typo 50

zi (Q)

YL (rnA/V)

-

-

1,8 + j2.8
-

7,2 - j24
-

Test circuit for 470 MHz:
C5

output

son

input

son

C1
C3
C5
C6
C8
L1
L2
L3
L4

= C2 = 1,8 to 18 pF film dielectric trimmer
= C4 =
18 pF disc ceramic capacitor
=
1 nF feed-through capacitor
= C7 = 1,0 to 9,0 pF film dielectric trimmer
=
0,1 f-lF polyester capacitor
=1 turn Cu wire (1,2 mm); int. dia. 5 mm; lead length = 2

mm
f-lH choke
=2 turns closely wound enamelled Cu wire (1,2 mm); int. dia. 6,5 mm; lead length =4 mm
=3 turns closelywoundenamelledCu wire (0,5 mm); int. dia. 4,0 mm; lead length =5 mm

=0,47

R = 10

Q

carbon

At PL = 2,5 Wand V CC = 28 V, the output power at heatsink temperatures between 25
and 90 °c relative to that at 25 °c is diminished by typo 5 mW /oC.
The transistor is designed to withstand full load mismatch in the test circuit under the
following conditions: VCC = 28 V; f = 470 MHz; Th = 90 °c.
VSWR = 50 : 1 through all phases; PL = 2.5 W.
Component layout for 470 MHz test circuit see page 8.

June 1976

II

7

°c

BLX92A

II

II

APPLICATION INFORMATION (continued)
Component layout and printed-circuit board for 470 MHz test circuit.
1"'4~-~-------- 100mm

- - - - - - - - - - - - 1...1

-cr----J

o

~

C8
C7

C6

9®'P

0

~

50mm

o

1Z66740

----

Shade area copper
Backarea completely copper clad
Material ofprinted-cir~uit board: 1;5 mm epoxy fibre-glass

8

II

II

June 1976

II

BLX92A

II
7Z62880

6

1
I

I

7Z62878

6

I I I 111
I I I I I I

1

f=470MHz r-rVCC=24V t-rr-rTh =25 °C r-r-

f=470MHz t-tr-tVCC=28V r-r
Th =25 °C t-t-

,- ~

I

}go

4

1
I

4

PL

.J.A'"
-rL~ ~t-'

YL

10'

2

1/

-~tYP/

l/
l/

(1)

It: , ........

...

L

I

50

,

~

1#.

2

, ..
~

,

,'"

r.

l1,

l/

(%)

"'" 'it,
50

if

I I

IY

-iyp

I'

°°
5

~

-typ /

f-f- -lltyp

,

100

~

rL

L,;"I'

~

0,2

Ps (W)

0,4

°o

I
I

0,2

0,4

Ps (W)

7Z62867

R.F. SOAR

f=470MHz
VCC=28V
Rth mb-h =0,6 °C/W

I I-+-

P{(W)
(VSWR = 1)

4

1\
\

,

~
3

I'

~

Indicated load power as a function of overload
The graph has been derived from an evaluation
of the performance of transistors matched up
to 3,8 W load power in the test amplifier on
page 7 and subsequently subjected to various
mismatch conditions at 28 V with VSWR up to
50 and elevated heatsinktemperatures.
This indicates a restriction to the load power
matched under nominal conditions in the rec0mmended test configuration.

Th :::70 °C
I' Ptot =8,5W

~~

I'

""

............
Th=90 OC-rPtot=7,5W

II

2

1

June 1976

10

II

VSWR

9

--

=

BLX92A

II

II

OPERATING NOTE Below 350 MHz a base-emitter resistor of 10 Q is recommended to
avoid oscillation. This resistor must be effective for both d. c. and r. f.
7Z68931

30

power gain versus frequency
(class-B operation)
1/ II I
I I I I

-"",,-

...

I'

Vee = 28 V r-rPL = 3 W f-+f-fTh = 25 °e -'-typo values I-r..... "'"

1'0.

,
1"0

.....
I'

...

10

--

o

300

100
7Z68932

20

f (MHz)

7Z68933

250

load impedance (parallel components) versus frequency
(class-B operation)

input impedance (series components) versus frequency
(class -B operation)
I

10

typo values

q
I'

,

I-~ RL

1 I I 1

J J li J
Vee = 28 V r-rPL = 3 W 1-1..... 1Th = 25 °e --r-

500

200

"

1-1-

"I'

Xt

1 1
1
eL
Vee = 28 V - I - PL = 3 W -r- - (pF)
Th = 25 °e -I- -r- -5
typo values
i

I
I

I'

,,"""

l"
r--. ... .L

o

,

.... ,...

,
I'

ri

150

~

CL
1'-

L,.oo

i""

,

-

eL

I"-

.... ~
~

,,-.'"

.~I.l'

~

~I

Ii
I I

-10

......

.... _I I

.,...,..,

~

RL

~
i""

xi
i

-10

100
300

100

IQ

II

f (MHz)

500

100

300

f (MHz)

500

June 1976

BLX93A

II
U.H.F. TRANSMITTING TRANSISTOR

N -P -N s ilic on planar epitaxial trans istor intended for trans mitting applications in clas s - A,
B or e with a supply voltage up to 28 V.
The trans istor is resistance stabilized and is tested under severe load mismatch conditions.
Gold metallization ensures extremely high reliability.
It has a capstan envelope with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA
R. F. performance up to Th == 25
f
Mode of Vee
operation (V) (MHz)
c.w.
C.W.
C.W.
C.W.

24
28
28
28

470
470
470
1000

Ps
(W)
typo
<
typo
typo

1,0
1,0
1,0
1,5

°e

in an unneutralized common-emitter
class-B circuit.

PL

(W)

7,0
7,0
8,0
5,0

typo
<
typo
typo

rj

-Zi

(
typo
typo

8,5
8,5
9,0
5,2

typ ..
>
typo
typo

-

YL

(rnA/V)

70
60
75 1,8 + j5,3 19 - j32
45
-

Dimensions in mm

MECHANICAL DATA
SOT-48
3,5 [

I J

3,0
--2,7~

1,52.

metal

f!t
[".]

1

~~

14

1

__ 9,75 __

+

I

t

7,3
7,0 2,85

+

25min

~

fI

1,6 __
max

---~I

7Z61111

pia stic
I

. . rt

~

collector
identification

max
..

8-32~NC \

-

_11..-- 0,13

-- 8 -_12,0_ 5,75
11,2
max

--

When locking is required an adhesive instead of a lock washer is preferred.
Torque on nut: min. 0,75 Nm
Diameter of clearance hole in heats ink : max.
(7,5 kg cm)
4,17 mm.
max. 0,85 Nm
Mounting hole to have no burrs at either end.
(8,5 kg cm)
De-burring must leave surface flat; do not
chamfer or countersink either end of hole.

June 1976

II

BLX93A

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Collector - base voltage (open emitter)
peak value

'VCBOM

max.

65

V

Collector-emitter voltage (VBE = 0)
peak value

VCESM

max.

65

V

Collector - emitter voltage (open base)

VCEO

max.

33

V

VEBO

max.

4,0

V

IC

max.

1,0

A

ICM

max.

3,0

A

Ptot

max.

12,5

W

Storage temperature

Tstg

'-65 to +150

°c

Operating junction temperature

Tj

max.

200

°C

Emitter-base voltage (open collector)
Currents
Collector current (d. c. )
Collector current (peak value) f

~

10 MHz

Power dissipation
Total power dissipation up to Th
f ~ 10 MHz (see also page 3)

--=

= 70°C

Temperatures

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

9,8

°C/W

From mounting base to heats ink

Rth mb-h

0,6

°C/W

2

II

II

June 1976

7Z62863

10

D.e.SOAR

Ie

1

f= Ptot max (d.c.)

I- 70 0C< Th< 1250C

r----

short time
operation
VSWR ~ 3

15

Th 70 0 e

~

r- derate by 10,4 °C/W for

"-

June 1976

II

VeE (V)

'(5"

"V 0-1"-

C;-~
-

.

~ '6j

f- f-

5

10

x ol_t-r-

"

r.... x 0

f- f-

1

f ~ 10 MHz

"'1'\.~'6'

10

/

10- 2

VeE :$28V

./'4

~

Th =25 °e
125 oe)

10- 1

;-c

7Z62871

tS'4 ~
J
f', ~6' 1

~
y~
r-

o

o

50

3

BLX93A

II
CHARACTERISTICS

Tj

=25 °c

unless otherwise specified

Breakdown voltages
Collector- base voltage
open emitter, IC = 10 rnA

V(BR)CBO

>

65

V

Collector-emitter voltage
open base, IC:: 10 rnA

V(BR)CES

>

65

V

Collector-emitter voltage
open base, IC = 25 rnA

V(BR)CEO

>

33

V

Emitter- base voltage
open collector, IE = 1,0 rnA

V(BR)EBO

>

4,0

V

hFE

>
typo

10
35

fT

typo

1,2

Cc

typo

14

pF

Ce

typo

60

pF

= 20 rnA ; V CE = 10 V

Cre

typo

10

pF

Collector-stud capacitance

C cs

typo

2,0

pF

D.C. currentgain
IC

= 100 rnA; VCE = 5,0 V

Transition frequency

---

IC

= 200

rnA; VCE

= 5,0 V

Collector capacitance at f
IE

= Ie = 0; V CB

IC :: Ic

= 1 MHz

= 0; VEB = 0

Feedback capacitance at f
IC

4

= 1 MHz

:: 10 V

Emitter capacitance at f

II

GHz

= 1 MHz

June 1976

II
7Z62877

20

I I

I I

I I

I I

7Z62873

30

VCE =28V - typo values - -

-- I-

10

r-r-.

f=200MHz

BLX93A

- ....

I

I I

I

I L

IE =Ie =0 I-t-f= 1 MHz f---+-

\

20

\
I\,

....

400

o

~

- --

....

"""

....

800

10

..... typ
1" ....

-r-._

~

o

-10

o

250

IE (rnA)

o

500

20

VCB (V)

40

7Z62862

2
fT

VCE = 28V

(GHz)

-

1,5
typ

l.,....o-" ~

r--. 1--0..

/'r'

/

0,5

o
o

June 1976

100

200

II

300

400

500 IC (rnA) 600

II

5

---

-

II

BlX93A

7Z62888

-2

I

" 1 11

I I

7Z62889

-30

,

~rg 'sie

t- IE =200rnA
~ VCE=28V
t- typo values

I I

11

I'

lOS o

1~~0

~

Si~ ..

.-

~~
~.f':l

~

~

,20

J

I

....

100 0

'"

~~

~l

~..l

N

~Sl°

1.00-

"75 0

_Ll

arg Sre

11
J:~

"

-'

o
/srel- I-r-- t- 12S
..l

....

_l~

-1

o

...l

.....

11

ISiel

arg

~
..l
arg sre

~8~0

~.

~

-10

~1

"'i"oo

-:50 0

i
~.

~~

~

1

I

~~

..l

1SS o

---

1

=

I I I I

o

o

f (MHz)

SOO

o

1000

7Z62892

arg sfe
1

100 0

1\
,\

20

I'~

\.

11
7S o

I\'

,

1\ " ....

....

\

arg soe

!"!.. ~-

.'

-10

,

"j I

I

~J.

I I

I

Isoel

-12S o

:-~

i""' ...

I I

~

~~

-S

1..l

~I

'laO<>

~

!"'o!

o r- .IE = 200 rnA

r""""""

I I

"- i""o

I

1S0 0

~~

2S o

..l~'"

1
I

1

arg sfe- I-r- t-SO o
~

~

.1 ~
-17S o

11

ISfel

~

~ VCE=28V

1

J 1
0

'-75

r-

typo values

o

I I I I I

SOO

6

:=
I-

~

arg soe

IE = 200 rnA
VCE = 28V
typo values

~~

["100

I-

(dB)

1000

1Z62890

I I I I
~

ISoel

f (MHz)

11

.....

10
"

SOO

-IS

1

2S o

-- IE =200 rnA
VCE =28V
- typo values

II

f (MHz)

1000

o

SOO

II

f (MHz)

1000

June 1976

II

BLX93A

APPLICATION INFORMATION
R. F. performance in c. w. operation (Unneutralized common-emitter c1ass-B circuit)
Th = 25 °c

v cc (V)

f (MHz)

Ps (W)

PL (W)

IC (A)

24
28
28
28

470
470
470
1000

typo 1,0
1,0
<
typo 1,0
typo 1,5

7,0
7,0
8,0
5,0

typo 0,42
0,42
<
typo 0,38
typo 0,40

Gp (dB)
typo
>
typo
typo

8,5
8,5
9,0
5,2

r)

(%)

typo
>
typo
typo

zi (Q)

70
60
75 1,S+j5,3
45
-

YL (rnA/V)

19 - j32

-

Test circuit for 470 MHz:

C5

output

son

---

input

son

C1
C3
C5
C6
C8

:;: C2:;: 1,8 to 18
:;: C4 =
18
:;:
1
:;: C7 :;: 1,0 to 9,0
:;:
0,1

pF
pF
nF
pF
j-lF

film ·dielectric trimmer
disc ceramic capacitor
feed-through capacitor
film dielectric trimmer
polyester capacitor

L1
L2
L3
L4

:;: 1 turn Cu wire (1,2 mm); int. dia. 5 mm; lead length = 2 mm
:;: 0,47 j-lH choke
= 2 turns closelywoundenamelledCuwire (1,2mm);int. dia. 6,5 mm; lead length=4mm
:;: 3 turns closelywoundenamelledCu wire (0,5 mm); into dia. 4,0 mm; lead length =5 mm

R:;: lOQ carbon
At PL = 7,0 Wand V CC = 28 V, the output power at heatsink temperatures between 25 °c
and 90 °c relative to that at 25 °c is diminished by typo 10 mW lOCo
The transistor is designed to withstand full load mismatch in the test circuit under the
following conditions: VCC = 28 V; f:;: 470 MHz; Th :;: 90 °C.
VSWR = 50 : 1 through all phases; PL :;: 7,0 W.
Component layout for 470 MHz test circuit see page 8.

June 1976

II

II

7

BLX93A

II

APPLICATION INFORMATION (continued)

Component layout and printed-circuit board for 470 MHz test circuit.

l. . .~----------

100mm - - - - - - - - - - - - - . - ,

--cr-----J

o

C8
.

C7 C6

~
®

0

~

50mm

o

7Z6674.0

----

7Z66741. 1

Shaded area copper
Back area completely copper clad
Material of printed-circuit board: 1,5 mm epoxy fibre-glass

8

II

II

June 1976

II
7Z62879

15

I
I

BLX93A

7Z62881

15

I I
I I

I II II
1 1 1 1 1

f=470MHz r-r1-1Vee =24V 1-1Th =25 °e r-r10

100

f=470MHz r-I\r ee = 28V ,-II -Th =25 °e --IPL

10

PL p~ ~_I{
:A"

" I~ 17

,I'

1/1
V- ~

yt-

f'

(%)
t-~I';"

~I'tz

."1""

I-t- ~~tYP

l.l

5 t-I- rrtyp

50

1/

5

1/

)

~~typ

rt

(%)

TL

"
50

'£

If

t-II-e- ) -1"(

~

I
I
I

o

lL

100
1 _I

Iftyp

j

o

"

L

~

1

Ps (W)

2

o
o

1

2

Ps (W)

7Z62868

10

R.F. SOAR
P~(W)

1
1

-I-

(VSWR = I)

f=470MHz
Vee=28V
Rth mb-h =0,6 °e/w
Th :::::70 °e
~t=20W

"'~

7,5

-I-

---l

Th=90 °e
Ptot = 18W

Indicated load power as a function of overload
The graph has been derived from an evaluation
of the performance of transistors matched up
to 8 W load power in the test amplifier on
page 7 and subsequently subjected to various
mismatch conditions at 28 V with VSWR· up to
50 and elevated heatsink temperatures.
This indicates a restriction to the load power
matched under nominal conditions in the rec0mmended test configuration.

5

2,5
1

June 1976

10

II

VSWR

II

9

-----

II

BLX93A.

OPERATING NOTE Below 250 MHz a base-emitter resistor of 10 Q is recommended to
avoid oscillation. This resistor must be effective for both d. c. and r. f.
7Z68934

30

power gain versus frequency
(class-B operation)
IJ
11

20

I I I

J I I
Vee = 28 V
PL = 8 W
Th = 25 °e

-----

typo values

:-~

--

l\.

"" -...
.....
I'.

10

---

300

100
7Z68935

input impedance (series components) versus frequency
(class-B operation)
I

I
I

I

r-r- Vce = 28 V
r-r- PL = 8 W
5 r-rr-r- Th = 25 °e

f (MHz)

7Z68936

load impedance (parallel components) versus frequency
(c1ass-B operation)
I

,

80

I I

I

Vee = 28 V
It 1-i"-r- PL = 8W
L_ r-rI~
Th = 25 °e
typo
values
\.

,

~

'\.

';

_I""':

,

r:1

ill"'"

I'

1/
>/

~

~

"

eL
I

....

-20

~
"""""1'0..

....

i"""....,j",

RL

If

IL

~l

CL

I

I
I

I I
I

I
I

300

100

II

f (MHz)

500

40

-~
CL

(pF)

~

1/

60

,

~

I)'

;,

10

500

~

,

-5

....

I

x~

,,-

i-r- typo values

o

~

100

I
I

I I

~l

....

~"""

o
10

....

100

I

300

II

f (MHz)

500

June 1976

BLX94A

II

II

U.H.F. POWER TRANSISTOR
N - Pr N silicon planar epitaxial transistor for use in class A, B or e amplifiers in U. H. F.
transmitters with supply voltages up to 28 V.
The transistor is resistance stabilized and tested under conditions of severe load mismatch. Gold metallization ensures extremely high reliability.
The transistor is housed in a plastic encapsulated stripline package. All leads are isolated from the stud.
QUICK REFERENCE DATA

R. F. performance up to T mb = 25 °e in an unneutralized common -emitter
class B circuit.

Mode of
operation

Vee

f

Ps

Ie

(V)

(MHz)

(W)

(A)

c.w.

28

470

< 6,25

25

< 1,62

11
(%)

> 6

> 55

0, 8

zi

YL

(Q)

(rnA/V)

+ j4, 3

62 - j64

Dimensions in mm

MECHANICAL DATA

SOT-48

~
6,5 min (4x)

1

plastiC

25min
b

L--+_ _

-+-_!-~

e

--13.71 __

...... 9,75max --25min -

7Z66608

When locking is required, an adhesive instead of a lock washer is preferred.
Torque on nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kg cm)

September 1974

II

Diameter of clearance hole in heatsink: max.
4,17 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not
chamfer or countersink either end of hole.

II

1

----

---

II

BLX94A

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

Collector-emitter voltage (open base)

max.

65

V

VCEO

max.

30

V

VEBO

max.

4

V

Collector current (average)

IC(AV)

max.

2,0

A

Collector current (peak value)f > 1 MHz

ICM

max.

6,0

A

Ptot

max.

50

Emitter-base voltage (open collector)
Currents

Power dissipation
Total power dissipation up to Tb = 25

°c

f> 1 MHz
~i
f-short time ~14""1..
--("4~ I~
~operation
-I-f-./'q ""'J..-.:l
~~
Ptot VSWR > 3
, .9)(' St-+~
(W)
o ~I-

~4'

"

./Q~

40

W
7Z62524

716252'

60

D.C. SOAR
Th- 25OC
IC
(A)

'6j 0~
0

f'<'-

'.9 .'"
)(0

10
"-

'6j '0"

.0~'~1,-

:

20 -I- -I-

normal operation
VSWR < 3

I I I
I~

'"
\

~

I I
I I

VCE s 28V t-If ~ 1 MHz 1-1-

o
o

I I

I I I

I~

~~~

50

10- 1
1

10

VCE (V)

10 2

Temperatures
Storage temperature
Junction temperature

Tstg

-65 to+200

°C

Tj

max.

200

°C

THERMAL RESISTANCE
·Prom junction to mounting base

Rthj-mb

2,9

°C/W

Prom mounting base to heatsink

Rthmb-h

0,6

°C/W

2

II

September 1974

II

BLX94A

II

CHARACTERISTICS

Tj

= 25 °c

unless otherwise specified

Collector cut-off current

= 0;

= 28 V

ICEO

<

10

rnA

Collector-base voltage
open emitter, IC = 25 rnA

V(BR)CBO

>

65

V

Collector-emitter voltage
open base, IC = 25 rnA

V(BR)CEO >

30

V

Emitter-base v9ltage
open collector, IE = 10 rnA

V(BR)EBO

>

4

V

E
E

>
>

3

mWs
mWs

hFE

>
typo

15
50

fT

typo

1,0

Cc

typo
<

32
50

pF
pF

= 30 V

Cre

typ.,

18

pF

Collector-stud caEacitance

C cs

typo

2

pF

IB

VCE

Breakdown voltages

Transient energy
L

= 25

mH; f

= 50 Hz
open base
-VBE = 1,5 V; RBE

= 33 \,~

3

---

D. C. current gain
IC

= 1 A;

VCE

=

5V

Transition frequency
IC

= 2 A;

VCE

= 20 V

Collector capacitance at f
IE

= Ie = 0;

VCB

IC

= 100 rnA;

June 1976

= 1 MHz

= 30 V

Feedback capacitance at f
VCE

II

GHz

= 1 MHz

3

11

=
-

BLX94A

II

II
7Z6~526

1500

I
I

I

I I
I I

T
VCE =20V

1-1-

fT
(MHz)

1000

""" ....

i;o'

-~io...

typ

..........

~

....
~

'/

"I'- ,

"

500

o

o

3

2

IC (A)

4

=

7Z62525

70

I
I

l .

T
I

IE =Ie =0
f= 1 MHz

\
\

Cc

I
I

1-'---

(pF)

\

,

,

I\.

50

1\

"'

typ

.....

....

4

II

.....
....."'"

30

10

I"

o

20

VCB (V)

40

September 1974

~l.-

__U_.H_.F_._po_w_er_tr_an_si_sto_r_________________________

____

B_L_X_9_4_A_"____

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter c1ass-B circuit)
f = 470 MHz; T mb = 25 °C
VCE (V)

Ps (W)

28

<6,25

25

IC (A)

G p (dB)

1/(%)

< 1,62

>6

>55

YL (mAN)
0,8 + j4,3

62 - j64

Test circuit: 470 MHz; c.w. class-B.
input

L1

output

L4

C7
Zs=

son

ZL=

C8

R1

son

L2

7Z58637.1

List of components:
C1 = C2 = C8 = 2 to.9 pF film dielectric trimmer (cat. no. 222280909002)
C3 = C4 = 15 pF chip capacitor
C5 = 100 pF feed-through capacitor
C6 = 33 nF polyester capacitor
C7 = 2 to 18 pF film dielectric trimmer (cat. no. 2222 809 09003)
R1 = 1 n carbon resistor
R2 = 10 n carbon resistor
L 1 = stripline (40,8 mm x 5,0 mm)
L2 = 13 turns closely wound enamelled Cu wire (0,5 mm); into dia. 4,0 mm
L3 = 2 turns Cu wire (1 mm); winding pitch 1,5 mm; into dia. 4 mm; leads 2 x 5 mm
L4= stripline (52;4 mm x 5,0 mm)
L5 = Ferroxcube choke coil. Z (at f = 50 MHz) = 750 n ± 20% (cat. no. 431202036640)
L 1 and L4 are striplines on a double Cu-clad print plate with PTFE fibre-glass dielectric.
(e r = 2,74); thickness 1;45 mm.

Component layout and printed-circuit board for 470 MHz test circuit see page 6.

September 1978

5

Jl"'----_____

;-B_LX9_4A____

APPLICATION INFORMATION (continued)
Component layout and priilted-circuit board for 470 MHz test circuit.
- - - - - - - - - - 1 4 . 6 m m - - - - - - - - - -....1

1.....

--

7Z6644.3.1

The circuit and the components are situated on one side of the PTFE fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are·made by means of hollow rivets.

6

September 1978

(

II
7Z62522

7Z625231

40
R.F. SOAR

-

./

~ PL-

II

1

=

f=470 MHz rVCC=28V f - Th =25 °c r- -

30

BLX94A

f
470 MHz
Vee = 28 V
Rth mb-h = 0,6 °C/W

30

L
~

..........z.h :: 50 °

~

20

lOp

~

V'typ

"f/.
(1)

10 50

~C

~

:/

~

V

20

j

.........

typ

~
90 CC
r----~

"'"'- '-- --11- f -

~~r7

'/

o
o

10

2,5

5

Ps (W) 7,5

1

10

---

---

VSWR

For high voltage operation, a stabilized
power supply is generally used.
The graph shows the allowable output
power under nominal conditions as a _
function of the VSWR, with heatsink
temperature as parameter.

September 1974

II

II

7

II

BLX94A

7Z68937 1

30

power gain versus frequency
( cI ass B operation)

I I I
I I I
I
Vee = 28 V
PL = 25 W
Tmb = 25°C

Gp
(dB)

20

-----

~

"\

"-

,
I"
~

10

r"~yp

1"""'"""

.....

--

300

7Z689381

10

input impedance (series. components)
versus frequency (class B operation)

I I

f,-

'-

5

f-

30

I I

"

....

500

f (MHz)

7Z68939 1

load impedance (parallel components)
versus frequency (class B operation)
I
typo values

I
"I...

I.

typo values

~ RL

Vee =28 V
PL = 25 W
Tmb = 25°C

'"

Xj

A"

.,""

Vee = 28 V
PL = 25 W
Tmb =25°C

.....

r--.

20
L.,.op

a

"

-20

r"'-

i"

~~""'-

.....
r"'-"",-

1..0l...oo

"
o

,

I

rj

........

~

I
10

40

I
I
I
I

-1 CL
-5
100

8

300

II

f (MHz)

500

o

100

I

-60

f (MHzr

300

II

500

September 1974

_ _ _jl_BLX_95
U.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for transmitting applications in class-A, B or C in the
u.h.f. frequency range for supply voltages up to 28 V. The transistor is resistance stabilized and is
tested under severe load mismatch conditions. Due to a gold metallization excellent reliability properties have been obtained. The transistor is housed in a capstan envelope with a moulded cap. All leads'
are isolated from the stud.
QUICK REFERENCE DATA
R.F. performance up to Th = 25 0C in an unneutralized common-emitter class-B circuit
mode of operation

c.w.
c.w.

VCE
V

f
MHz

28
28

470
175

Ps
W

<

PL
W

14,2

typo 3,2

40
40

Gp
dB

IC
A

<

2,4

typo 1,9

<

7'/

%

>

4,5

typo 11

MECHANICAL DATA

60

typo 75

Dimensions in mm

Fig. 1 SOT-56.

9,65
max

10-32UNF'

•

1,,98 max-I 1.___

~

,91.-

3
___ 3,5
27 _____ ___
___ 1

max

I

3,00 ___
2,85

I
7ZS0000.4 I-

-;

5';~_

115
10:7- max

When locking is required an adhesive is preferred instead of a lock washer.
Torque on nut: min. 1,5 Nm
(15 kg cm)
max. 1,7 Nm
(17 kg cm)

Diameter of clearance hole in heatsink: max. 5,0 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer
or countersink either end of hole.

September 1978

---

II

BLX95

RATINGS Limiting values in accordance with the Absolute Maximum System (IECI34)
Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

max.

65

V

Collector-emitter voltage (RBE = 10Q)
peak value

VCERM

max.

65

V

Collector-emitter voltage (open base)

VCEO

max.

30

V

Emitter-base voltage (open collector)

VEBO

max.

4

V-

Collector current (average)

IC(AV)

max.

3,0

A

Collector current (peak value) f > 1 MHz

ICM

max.

10,0

A

Currents

Power dissipation
7Z67539

Th $ 25°C
Rth mb-h =0,3 °c/w

IC
(A)

7Z67540

150

D.C. SOAR

_Ll
I I

VCE $ 28V
1 MHz

f~

P tot

t-tt-t-

(W)

100

10

short time ope~atiori

VSWR~~ J
P tot

A
max (d.c.)

""N

i\

1"'-

<'0 ....

'l-O.3)~_

50

C'/W-.....

I--

t--

VCE (V)

~

I I

l?th ~-.l
J"h;;(;'

1--

10

1""",

J-.l-.l

10 2

o

normal operation
I

,~Sffffll'

II II I
II II J

I I I
llJ

o

Temperatures
Storage temperature
Junction temperature

Tstg
Tj

-65 to +200
max.
200

°c
°c

THERMAL RESISTANCE
From junction to mounting base
From mounting base to heatsink

2

II

2,0
0,3

Rth j-mb
Rth mb-h

II

°C/W
°C/W

November 1975

BLX95

II

CHARACfERISTICS

Tj

= 25 °c

unless otherwise specified

Breakdown voltages
Collector- base voltage
open emitter, IC = 50 rnA

V(BR)CBO

>

65

V

Collector-emitter voltage
RBE = lOQ, IC = 50 rnA

V(BR)CER

>

65

V

Collector-emitter voltage
open base, IC = 50 rnA

V(BR)CEO

>

30

V

Emitter- base voltage
open collector, IE = 10 rnA

V(BR)EBO

>

4

V

E
E

>
>

4,5
4,5

hFE

25 to 100

Transient energy
L = 25 mH; f = 50 Hz

open base
- VBE = 1,5 V; RBE = 33

Q

mWs
mWs

D. C. current gain
IC = 1,0 A; VCE = 5 V
Transition frequency
IC = 4 A: VCE = 25 V
Collector capacitance at f
IE

C0llector-stud capacitance

II

MHz

typo
<

68
80

pF
pF

typo

39

pF

typo

2

pF

= 1 MHz

IC = 200 rnA; VC E = 30 V

November 1975

900

= 1 MHz

= Ie = 0: V CB = 30 V

Feedback capacitance at f

typo

C cs

II

3

---

II

BLX95

7Z67546

150

I

7Z67543

300

I
I

I
I

I
I

IE =Ie =0 1--+f=l MHz 1-1-Tj=25 0 C I-r-

r-rVCE= 5 V 1-1Tj =25 °C 1-+-

~I--

200

100

\
\
\

,

\

,-

50
1/

---

1\

typ

100

~

1/

o

o
o

2

IC (A)

o

r--.

typ
-I'-~

20

r-

V CB '(V)

40

7Z67548

1000
fT
(MHz)

/'

..-

typ

r---.~

,I'

r\..

/

750

VCE =25V
Tj =25 °C

,

1\

/

\

f-- f--

I--- I---

,

\.

"

500

\.
\

\
250

"

o
o

4

2,5

II

5

7,5

10

12,5

l1

IC (A)

15

November 1975

·_Jl_____

B_LX_9_5_____

__
U_.H_.F._po_w_er_tra_"S_isto_r___________________

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
VeE = 28 V; Th up to 25

f (MHz)
470
175

°c
'ctAl

Ps (W)

<

14,2
typo 3,2

40
40

<

2,4
typo 1,9

Gp (dB)

1/(%)

>

4,5
typo 11

>

60
typ.75

Test circuit: 470 MHz; c.w. class-B.
input

L4

L1

output

Zs=

500

R1
L2

7Z70269.1

List of components:
C1
C2
C3
C5
C6
C9

= C7 = C8 = 2 to 18 pF film dielectric trimmer (cat. no. 222280909003)
= 1,8 to 9 pF film dielectric trimmer (cat. no. 222280909002)
= C4 = 18 pF chip capacitor
= 100 pF feed-through capacitor
= 33 nF polyester capacitor
= 2 x 3,3 pF miniature ceramic plate capacitors (in parallel)

R 1 = 1 n carbon resistor (0,25 W)
R2 = 10 n carbon resistor (0,25 W)
L 1 = stripline (21,4 mm x 5,3 mm)
L2 = 13 turns closely wound enamelled Cu wire (0,5 mm); internal diameter 4,0 mm
L3 = strip line (43,8 mm x 3,0 mm)
L4 = stripline (45,5 mm x 5,3 mm)
L5 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)
L 1; L3; L4 are striplines on a double Cu-clad print plate with PTFE fibre-glass dielectric.
(er = 2,74); thickness 1/32",
'
At PL = 40 Wand VCE = 28 V, the output power at heatsink temperatures between 25 0C and 70 0C
relative to that at 25 0C is diminished by typo 50 mW/oC.
The transistor is designed to withstand full load mismatch in the test circuit under the following
conditions: VCE = 28 V; f = 470 MHz; Th = 70 0C.
VSWR :::: 50 through all phases; PL = 36 W.
Component layout and'printed-circuit board for 470 MHz test circuit see page 6.

September 1978

5

Jl,,--._ _ _ _ _ __

,_B_LX9_5_____

APPLICATION IN FORMATION (continued)
Component layout and printed-circuit board for 470 MHz test circuit.
112mm

I

$

~~

L2

rivets

~c41 ~

C2

Rl~%
o ,----

O

L--f---

.G}Cl

11

-----------_1

~
C3

n

~vets

+vcc

r--------~ r--ll

r---r-----:-~L-.J
:I
L3
C5
L5
))

C9~

C7

---------~i~

r
42mm

- - - - -1;:-- -c'O--'~

~C8

j

7Z67605.1

I

---

The circuit and the components are situated on one side of the PTFE fibre-glass board, the otherside
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets.

6

September 1978

r

BLX95

II
7Z67534

60
load power and efficiency
versus source power
(class B operation)
I
I
I-ft-t-

40

I-ft-t-

I-f-

I
I

/

I
I

.,

11

1/

(%)

/,

typo values
Vee=28V
f=470MHz
Th =25 °e

_Ll
100

1/ PL
V

lL
/

YL

1

-I- ~-

V

J ..... r'"
,

J.L
~
~

A~

/"/

20

50

J

--

o
o

10 .

20

Ps (W)

7267538

60

R.F. SOAR
Ip

I

L

-

t--

(W)
I-(VSWR=l)-

IIIII

I

f=470MHz
Vee =28V
Rth mb-h =0,3 °e/W

I

50

I

I

Th =50 °e
~

70 0 e
I'

40

90

0e

'"

"- .........
~

...........

t-r-

r--.....

Indicated load power as· a function of
overload.
The graph has been derived from an
evaluation of the performance of
transistors matched up to 46 W load
power in the test amplifier on page 5
and subsequently subjected tovarious
mismatch conditions at 28 V with
VSWR up to 50 and elevated heatsink
temperatures.
This indicates a restriction to the
load power matched under nominal
conditions in the recommended test
configuration.

i"""'-- 1'-1'-

30

10

August 1973

II

VSWR

II

7

---

BLX95

I

II

APPLICATION INFORMATION (continued)

Test circuit for 175 MHz:

Zs=

son

7Z67SS4

+Vcc

List of components:
C1=
2,5 to 20 pF film dielectric trimmer
C2 =
4 to 40 pF film dielectric trimmer
C3 = C4 =
47 pF ceramic capacitor
100 pF ceramic capacitor
C5 =
C6 =
100 nF polyester capacitor
C7 =
6,8 pF ceramic capacitor
C8 =
4 to 60 pF film dielectric trimmer
C9 =
4 to 100 pF film dielectric trimmer

(code number 2222 80907004)
(code number 2222 80907008)

(code number 2222 80907011)
(code number 2222 80907015)

L1 =

0,5 turn enamelled Cu wire (1,5 mm); into diam. 6 mm;
lead length 2 x 6 mm
L2 =
100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into diam. 3 mm;
lead length 2 x 5 mm
L3 = L4 = ferroxcube choke coil (code number 4312 020 36640)
L5 =
53 nH; 2 turns enamelled Cu wire (1,5 mm); into diam. 10 mm;
coil length 5,2 mm; lead length 2 x 5 mm
L6 =
46 nH; 2 turns enamelled Cu wire (1,5 mm); into diam. 9 mm;
coil length 5,4 mm; lead length 2 x 5 mm
R1

= R2 =

10 Q carbon resistor (0,25 W)

Component lay-out for 175 MHz test circuit see page 9.

8

II

II

August 1973

BLX95

II
APPLICATION INFORMATION (continued)
Component lay-out and printed circuit board for 175 MHz test circuit.

J

ground plane removed

Dimensions of printed circuit board 123 mm x 55 mm.

I

I
7Z66943

The circuit and the components are situated on one side of the epoxy fibre-glass board,
the other side being fully metallized to serve as earth. Earth connections are made by
means of hollow rivets.

AUQ'Ust 1973

II

9

II

BLX95

7Z67537

75

7Z67536

15

load power and efficiency versus
source power (class B operation)

t--

50

t--

typo values
Vee=28V
f=175MHz
Th=25 0 e

1\

--

1,2

GHz

Po sync

>

0,5

W

Gp

>

6

dB

~C) Three -tone test method (vision carrier -8 dB, sound carrier -7 dB, side band

signal -16 dB), zero dB corresponds to peak sync level.

MECHANICAL DATA

Dimens ions in mm

SOT-48

3,5e

I J

30
--2:7\--

1,52.

metal

i

+

1

!.

~

8-32~NC \
~

7,3
7,0 2,85

+

--

fI

~

_1\

~~~ ......

25 min

...

astic

1,6 ......
max

--'---'~I

7Z66722

--8--

.-

_12,0_ 5,75
11,2
max

I

When locking is required an adhesive instead of a lock washer is preferred.
Torque on nut: min. 0, 75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kg em)

September 1974

II

Diameter of clearance hole in heats ink: max.
4,17 mm.
Mountinghole to have no burrs at either end.
De -burring must leave surface flat; do not
chamfer or countersink either end of hole.

--

---

BLX96

II

I

RATINGS Limiting value~ in accordance With the Absolute Maximum System (IEC134)

Voltages
Collector-base voltage (open emitter; peak value)

VCBOM

max.

40

V

Collector -emitter voltage (RBE = 10 Q; peak value)

VCERM

max.

40

V

Collector -emitter voltage (open base)

VCEO

max.

27

V

VEBO

max.

3,5

V

Collector current (d. c. )

max.

0,4

Collector current (peak value) f> 1 MHz

max.

Emitter -base voltage (open collector)
Currents

A

A

Power dissipation
Total power dissipation up to Th = 100
10 4

---

°c

max.

6,25

W

°c
°c

7Z62833

D.C. SOAR

IC
(mA)

Th !S 100 0C
Rth mb-h =0,6

°c/w

10 3

~

/ I'
t - - - t-Ptot max (d.c.)

10
10

Temperatures

VCE (V)

10 2

Storage temperature

T stg

-65 to +200

Junction temperature

Tj

max .

200

. THERMAL RESISTANCE
From junction to mounting base
From mounting base to heatsink

2

II

Rth j-mb

15

°c/w

Rth mb-h

0,6

°CjW

JJ

September 1974

BLX96

II
CHARACTERISTICS

T j = 25

°c

unless otherwise specified

Collector cut -off current
IE = 0; V CB = 20 V

ICBO

<

100

iJA

Collector -base voltage
open emitter; IC = 1 rnA

V(BR)CBO

>

40

V

Collector -emitter voltage
RBE = 10 Q; IC = 5 rnA
open base; IC = 5 rnA

V(BR)CER
V(BR)CEO

>
>

40
27

V
V

Emitter -base voltage
open collector; IE == 1 rnA

V(BR)EBO

>

3,5

V

VCEsat

<

0,75

V

IC = 200 rnA; V CE = 20 V

hFE

>

30

IC = 400 rnA; V CE = 20 V

hFE

>

20

IC = 200 rnA; V CE = 20 V

fT

>

1,2

GHz

IC = 350 rnA; V CE = 20 V

fT

>

1,0

GHz

Cc

<

10

pF

Cre

typo

3,5

pF

Ccs

typo

2

pF

Breakdown voltages

Saturation voltage
IC = 200 rnA; IB = 20 rnA
D. C. current 8:ain

Transition frequency

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 20 V
Feedback capacitance at f = 1 MHz
IC = lOrnA; V C E = 20 V; T rnb = 25
Collector -stud capacitance

September 1974

°c

3

BLX96

II

II
7Z62844

60

1
~

1

I

-.1
I

typo values
Tj = 25°C

t-

1262842

1
-.1

-.11
J I

V~~ ~20V

f-

I-t-:-~~

I-~t-

.... 1-'"

40

1/
I'

IE=Ie=O r-f= 1 MHz rTj =25 0c r--

(pF)

"'"

V

20

Cc

5V frr--

15

1\

\

1\
I\.

10

" ......

20

-

typ

""':i""'o-

.....

-r--

5

--

o
o

-

200

IC (rnA)

o

400

o

10

20 VCB (V) 30

7Z62846

3

I I II I
Ili-.1-.1

VCE =20V
Tj=25 0 C

fT
(GHz)

t-tt-tr-f-

2

typ

.... 1-"'''""

1/

II'

~

V

~

,

J

o

o

4

100

II

200

300

IC (rnA)

400

September 1974

BLX96
II

II
APPLICATION INFORMATION
dim(dB) >!<)

fvision (MHz)

VCE (V)

IC (rnA)

Gp (dB)

Po sync (W) >:')

Th (OC)

-60
-60

860
860

25
25

250
250

6
>
typo 7

0,5
>
typo 0,6

25
2S

*) Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, s,ideband signal
-16 dB), zero dB corresponds to peak sync level.

Test circuit at fvision = 860 MHz'
VSWR output<2

son
C2

---

-

C8

BY206

R7
7Z66738.1

+Vs

List of components: (see also page 6)
C1 = C2 = C10 = 2 to 9 pF film dielectric trimmers
C3 = C4 = C12·= 100 nF polyester capacitors
C5 = C7 = C8
100 pF feed-through capacitors·
C6 =
2 x 2, 7 pF in parallel, cnip capacitors
C9 =
2 to 18 pF film dielectric trimmer
Cll =
10 !JF /40 V solid aluminium electrolytic capacitor
R1 = 220 Q
R2 = 4,7 kQ
R3 = 100 Q
R4 = 10 Q

June 1976

RS =.470 Q (1 W)
R6 = 3 x 22 Q in parallel; (1 W)
R7= 12kQ
R8 = 1 kQ

II

II

5

_B_LX9_6

_Jl___________

APPLICATION INFORMATION (continued)
List of components: (continued)
L 1 = stripline (14,8 mm x 4,3 mm)
L2 = 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm
L3 = 2 turns Cu wire (1 mm); winding pitch 1,5 mm; into dia. 4,5 mm; leads 2 x 5 mm
L4 = stripline (29,5 mm x 4,3 mm)
L 1 and L4 are striplineson a double Cu-clad print plate with PTFE fibre-glass dielectric (er = 2,74);
thickness 1,45 mm.
Layout of printed-circuit board for 860 MHz test circuit.

1. .1 - - - - - - - - - - - - - o

92 mm

---------------.·1

-1

o

00

o

35mm

~_--------.J_j

--

7Z66736.1

The circuit and the components are situated on one side of the PTFE fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets.
Layout of printed board bias circuit.

I.....f - - - - - - - - - - -

6

September 1978

r

76 mm - - - - - - - - - -.....,

BLX96

II
7Z62839

7Z62835

intermodulation distortion versus output power

,

1\

three-tone test method (vision carrier -8 dB, '
sound carrier -7 dB, sideband signal -16 dB),
zero dB corresponds to peak sync level.

-70

10

\

Gp

dim
Ic=250mA
VCE=25V
Th =25 °c
f= 860 MHz

(dB)

-65

I--

,

~

(dB)

I--

tiP

"

f-

7,5

~

"

f-

,

-60

power gain versus
frequency

5

~

1\
" typ
-55

2,5

"'

""

....

"

r- IC = 250 rnA
t-- VCE =25V
r- Th = 25°C

o

-50

o

0,5

Po (W) 1,5

250

500

750

1000
f (MHz)

7Z62838

7Z62841

input impedance (series components) versus frequency

3,5

125
I

Xi

ri
.....

t YP
............

3

/

~ /

ll

RL

L f - -(Q)

(Q)

7,5

100

/'I/'

/

"

~

Xi
I

-

-

-

r-

-CL

"

",.'

RL

75

i""'o ~

f-

1000

r7,5

"
5

r-

·750

-

50
r-

II

typ_ -

....... ~

25
250

IC = 250 rnA
VCE = 25 V
Th = 25 °c
500

750

1000
f (MHz)

f (MHz)

September 1974

10

i--" ....

......
2,5

500

./

I",
5

IC = 250 rnA
VCE=25V
Th = 25°C

1,5
250

ty~

I

2

-

-CL
(pF)

typ'-

/

2,5

load impedance (parallel components) versus frequency

II

7

----

BLX97

II

II

SILICON PLANAR EPITAXIAL TRANSISTOR
N-P-Nmulti-emittersilicontransistor in a capstan envelope. It has extremely good intermodulation properties and high power gain.
.
The device is primarily intended for pre -amplifiers in television transmitters and transposers.
QUICK REFERENCE DATA

Collector-base voltage (open emitter; peak value)
Collector-emitter voltage (open base)
Collector current (peak value)
Junction temperature
Thermal resistance from junction to mounting base
Transition frequency
IC = 400mA; VCE = 20V
Output power at fvision = 860 MHz >:')
IC = 500mA; VCE = 25V; Th = 25 0 C; dim = -60dB
Power gain at fvision = 860 MHz
IC = 500mA; VCE= 25 V; Th = 25 0 C

VCBOM
VCEO
ICM
Tj
Rth j -mb

max.
max.
max.
max.

40
27
2
200
7,5

V
V
A
oC
°C/W

fT

>

1,2

GHz

Po sync

>

1,0

W·

Gp

>

5,5

dB

>:<) Three -tone test method (vision carrier -8 dB, sound carrier -7 dB, side band

signal -16 dB), zero dB corresponds to peak sync level.
Dimens ions in mm

MECHANICAL DATA

SOT-48
3,5 [

I J

30
--2:71--

1,52.

pia stic

metal

+ ,. 8-32~NC

1i

~~

!.

7.,3
7.,0 2;85

14

+

j

.-

--- ~~~--- - - . - 1

\

...i

II
~

1,6 __
max

25min

7Z66722

~

.11..-- 0,13

....

..- 8-__ 12,0--,+- 5,75 I
11,2
max

-

When locking is required an adhesive instead of a lock washer is preferred.
Torque on nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kg cm)

September 1974

II

Diameter of clearance hole in heats ink: max.
4,17 mm.
Mountinghole to have no burrs at either end.
De-burring must leave surface flat; do not
chamfer or countersink either end of hole.

II

---

BLX97

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Collector-base voltage (open emitter; peak value)

VCBOM

max.

40

V

Collector -emitter voltage (RBE = 10 Q;peak value)

VCERM
VCEO

max.

40

V

max.

27

V

VEBO

max.

3,5

V

IC

max.

0,8

A

ICM

max.

2

A

Ptot

max.

12,5

W

Collector -emitter voltage (open base)
Emitter-base voltage (open collector)
Currents
Collector current (d. c.)
Collector current (peak value) f > 1 MHz
Power dissipation
Total power dissipation up to Th = 100 °c

7Z62832

D.C. SOAR
IC

Th ~ 100°C
Rth mb-h =0,6 °C/W

(rnA)

t""--

Ptot max (d.c.)/

10
10

Temperatures

VCE (V)

10 2

Storage temperature

T stg

-65 to +200

°c

Junction temperature

Tj

max.

°c

200

THERMAL RESISTANCE
From junction to mounting base
From mounting base to heatsink

2

II

Rth j-mb

7,5

°C/W

Rth mb-h

0,6

°c/W

1

September 1974

II
CHARACfERISTICS

Tj

BLX97

= 25 °c unless otherwise specified

Collector cut -off current
IE

= 0; VCB = 20 V

I CBO

<

200

IJA

Collector -base voltage
open emitter; IC = 2 rnA

V(BR)CBO

>

40

V

Collector -emitter voltage
RBE = 10 Q; IC = 10 rnA
open base; IC = 10 rnA

V(BR)CER
V(BR)CEO

>
>

40
27

V
V

Emitter -base voltage
open collector; IE = 2 rnA

V(BR)EBO

>

3,5

V

VCEsat

<

0, 75

V

hFE

>

30

hFE

>

20

fT

>

1,2

GHz

fT

>

1,0

GHz

Cc

<

20

pF

Cre

typo

7

pF

C cs

typo

2

pF

Breakdown voltages

Saturation voltage
IC = 400 rnA; IB = 40 rnA
D. C. current gain
IC = 400 rnA; V CE

= 20 V

IC = 800 rnA; V CE = 20 V

--

Transition frequency
IC = 400 rnA; V C E = 20 V
IC

= 700 rnA; V CE = 20 V

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 20 V
Feedback capacitance at f

= 1 MHz

IC = 20 rnA; VCE = 20 V; Tmb = 25
Collector -stud capacitance

September 1974

II

°c

3

BLX97

II

7Z52845

60

I

I I I

:= typo

7Z62843

Ll
J
I I
I I

values

V~E'='2bv ~

r- Tj = 25°C

I-f-~r-""I-

I"

IE =Ie =0 rf= 1 MHz t-Tj =25 °c t-

40

Cc

1-1-" 1""'1""'"

..... "'"

(pF)

~

5V-r-

40 1/

r-r--

i'

30

1\

_\
1\
\..

20

I'...

20

"-

typ
r- ro--t-

10

-----

o

-

-

o

o

400

IC (rnA)

o

800

10

20 VCB (V) 30

7Z62847

3

~

I

I I I
I I I I

VCE =20V r-tt-tTj~25 °c r-t-

fT
(GHz)

2

t..o'

LI

I/'

"'"

typ

.... "'"

j

Li

o
o

4

200

II

400

600

Ie

(rnA.)

800

September 1974

II

BLX97

II

APPLICATION INFORMATION

dim (dB) ':')

fvision (MHz)

VCE (V)

IC (rnA)

Gp (dB)

Po sync (W) *)

Th (OC)

-60
-60

860
860

25

500
500

5,5
>
typo 6,5

1,0
>
typo 1,1

25
25

~5

>,,c) Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal

-16 dB), zero dB corresponds to

pe~k

sync level.

Test circuit at fvision = 860 MHz
C1

L1

son

C2

--C8

R1
7Z66738.1

+Vs

List of components: (see also page 6)
C 1 = C 2 = C 10 = 2 to 9
C3 = C4 = C12 = 100
C5 = C7 = C8
100
C6 =
2 x 2,7
C9 =
2 to 18
Cll :::
10
R1 = 220 Q
R2 = 4,7 kQ

R5 ::: 470 Q (1 W)
R6 = 3 x 22 Q in parallel; (1 W)
R7= 12kQ
R8 = 1 kQ

R3 = 100 Q

R4 = 10

Q

June 1976

pF film dielectric trimmers
nF polyester capacitors
pFfeed-through capacitors
pF in parallel, chip capacitors
pF film dielectric trimmer
!-IF /40 V solid aluminium eiectrolytic capacitor

II

II

5

Jl____

_BL_X97

APPLICATION INFORMATION (continued)
List of components: (continued)

II = stripline (14,8 mm x 4,3 mm)
l2 = 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm
l3 = 2 turns Cu wire (1 mm); winding pitch 1,5 mm; into dia. 4,5 mm; leads 2 x 5 mm
l4 = stripline (29,5 mm x 4,3 mm)
l1 and l4 are striplines on a double Cu-clad print plate with PTF E fibre-glass dielectric (e r = 2,74);
thickness 1,45 mm.
layout of printed-circuit board for 860 MHz test circuit.

1--------------

1....

o

, 00

92 mm

-I

o

o

35mm

~--'-----------I_l

-

--

7Z66736.1

The circuit and the components are situated on one side of the PTFE fibre-glass board, the other side
being fully metallized to, serve as earth. Earth connections are made by means of hollow rivets.
layout of printed board bias circuit.

I. . .

~---------

I

76 mm - - - - - - - - - -...
~

7Z66737.1

6

September 1978

(

II

II

7Z62831.

7Z6281.0

-

intermodulation distortion versus output power
three-tone test method (vision carrier - 8 dB,
sound carrier -7 dB, sideband signal -16dB),
zero dB corresponds to peak sync level.

-70

t--

power gain versus frequency

12,5

IC = 500 rnA
VCE == 25 V
Th = 25°C

Gp

dim
IC==500mA VCE =25V Th==25 0 C rf= 860 MHz

(dB)

-65

(dB)

"

10

-

,

-60

BLX97

,
'\

I-I--

t--

r\. typ
I\.

,

I\.

7,5

~

r-....

i\

"-

-55

typ
5

'\
!~

1,,\
-50

o

2

Po (W)

3

2,5
250

500

750

1000
f (MHz)

?IS283?

7Z62836

input impedance (series components) versus frequency

2,5

load impedance (parallel components) versus frequency

40

Xi

RL

(Q)

(Q)

JL
'\

"I

2

-

I--

_

ri ....

......

,

7,5

typ

...........

I"" k"
.....

~

1,5

./~

~

I--

Kr

I\.
~

typ

10

p

l\.

V

5

typ

20

'It-'"

~

t-- t-- --CL'" .."

~".

."

20
~

1

2,5
I--

~

./

- r- Xi /
J

'\

30

./

-

-CL
(pF)

~

10

Ic = 500 rnA
VCE = 25 V
Th = 25 oc

0,5
250

10

IC = 500 rnA
t-- VCE=25V
I-- Th = 25°C
f--

o
500

750

1000

250

500

750

1000
f (MHz)

f (MHz)

7

September 1974

II

BLX9S

II

II
U.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor assembled in a plastic encapsulated stripline
package all leads of which are isolated from the stud. Excellent d. c. dissipation properties have been obtained by means of internal emitter-ballasting resistors and gold metallization. Detailed information is presented for application of this device in preamplifiers
for television trans posers and transmitters in band IV - V.
QUICK REFERENCE DATA

Collector-base voltage (open emitter; peak value)
Collector-emitter voltage (open base)
Collector current (peak value)
Junction temperature
Thermal resistance from junction to mounting base
Transition frequency
IC = 1 A; VCE = 25 V
Output power at fvision = 860 MHz ~~)
IC = 850 rnA; VCE = 25 V; Th=70 0 C;dim=-60dB
Power gain at fvision = 860 MHz
IC = 850 rnA; VCE = 25 V; Th=70 0 C

VCBOM
VCEO
ICM
Tj
Rth j-mb

max. 50
max. 27
max.
4
max. 200
5,5

V
V
A

fT

typo

2,5

GHz

Po sync

>

3,5

W

Gp

>

5,0

dB

°c
°C/W

~~) Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband

signal -16 dB), zero dB corresponds tb peak sync level.
MECHANICAL DATA

Dimensions in mm

SOT-48

~
6,5 min 14x)

1

5

+

,,5!-c::[1
8-32UNC

plastic

tL

25min

j

!-:---I\b

__13,71 __
.... 9,75max
-25iTlin

...-

7Z66608

When locking is required an adhesive instead of a lock washer is preferred.
Torque on,nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kg cm)

March 1976

II

Diameter of clearance hole in heatsink: max.
4,17 mm.
Mounting hole to have no burrs at either end.
De - burring must leave surface flat; do not
chamfer or countersink either end of hole.

II

---

BLX98

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Collector- base voltage (open emitter; peak value)

VCBOM

max.

50

V

Collecto"r-emitter voltage (open base)

VCEO

max.

27

V

Emitter- base voltage (open collector)

VEl30

max.

3,5

V

Collector current (d. c.)

IC

max.

2

A

Collector current (peak v,alue) f >1 M-:lz

ICM

max.

4

A

Ptot

max.

21;5

W

Currents

Power dissipation
Total power dissipation at Th

=70°C

1Z67289 1

D.C.SOAR ~

Th=70oC
Rth mb-h = 0,6 tt/W

Ie
(A)

10

uprate for SOoC:E;Th< 70°C,
derate for 70°C 

50

V

Collector-emitter voltage
open base; IC = 25 rnA

V(l3R)CEO

>

27

V

Ernitter- base voltage
open collector; IE = 5 rnA

V(BR)EBO

>

3,5

V

VCEsat

<

0,75

V

hFE

>typo

15
40

fT

typo

2,5

Cc

typo
<

24
30

pF
pF

Cre

typo

15

pF

C cs

typo

2

pF

Saturation voltage
IC = 500 rnA; IB = 100 rnA
DoC current gain
0

IC == 1 A; V CE = 25 V
Transition frequency
IC == 1 A; V CE = 25 V

GHz

Collector capacitance at f = 1 MHz
IE == Ie = 0; V CB == 25 V
Feedback capacitance at f = 1 MHz
IC == 50 rnA; VCE == 25 V; Trnb == 25
Collector- stud capacitance

March 1976

II

°c

II

3

--

BLX98

II

11

7Z67291

7Z67288

60

typo values

Ie =le=O
f =1 MHz
Tj=25°C

Tj=25°C
I I
I I

100

I

Cc

Vee = r-r-r25V 1-1-1"",-

40

I

75

I

io""

, "'"
,

(pF)

5V 1-- r--

.... 1-"

1\
1\

I,0000 ....

If

50

,
1\

~
20

"

I....... "

25

o
o

~

o
o

2

Ie (A)

:- r-l ~

10

20

V

eB

r-

(V)

30

7Z67293

4

Vee =25 V
Tj =25OC

fT
(GHz)

3

,

2

I
If

o
o

4

~

,,"

-

typ

r- ~

t"-o-

....... ~
.............

V

...... ~
.......

0,5

1,5

II

2

2,5

II

Ie (A)

3

March 1976

I

Il

BLX98

APPLICATION INFORMATION

fvision (MHz)

V CE (V)

IC (rnA)

860

25
25

850
850

-60
-60
~~)

860

>
5,0
typo 5,5

I

>
3,5
typo 4,0

I

70
70

Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal
-16 dB), zero dB corresponds to peak sync level.

Test circuit at fvision = 860 MHz
VSWR input < 1,1

C1

son
C2

L1

C12

C3

C4

R6
~--~--~----------------~--------------~--7Z-6~72-9S~.2-o+VS

List of components: (see also page 6)
C 1 = C2 = 1,4 to 5,5 pF film dielectric trimmers (2222 809 09001)
C3 = C4 =
100 nF polyester capacitors
C5 = C6 =
1 nF feed-through capacitors
5, 6 pF ceramic capacitor
C7
2 to 18 pF film dielectric trimmer (2222 809 09003)
C8
C9
2 to
9 pF film dielectric trimmer (2222 809 09002)
10 ~ /40 V solid aluminium electrolytic capacitor
CIO =
Cll =
470 nF polyester capacitor
2 x 3,3 pF chip capacitors (in parallel)
C12 =

March 1976

II

II

5

~B_LX9_8

_J

L"""----_ _ _ _ __

APPLICATION INFORMATION (continued)
List of components: (continued)
R5 = 4 x 120 in parallel (4 x 1 W)
R6 = 1 kO
R7 = 220 0 (potentiometer)

Rl = 1500
R2= 1,8 kO
R3= 330
R4= 220 0 (1 W)

L1 = stripline (13,6 mmx 6,9 mm)
L2 = micro choke 0,47 pH (cat. no. 4322 05704770)
L3 = 1 turn Cu wire (1 mm); internal diameter 5,5 mm; leads 2 x 5 mm
L4 = stripline (40,8 mm x 6,9 mm)
L 1 and L4 are striplines on a double Cu-clad print plate with PTFE fibre-glass dielectric (€r = 2,74);
thickness 1,45 mm.
Component layout and printed-circuit board for 860 MHz test circuit.
96mm

"j

C5
C6

t

ivcc

C11

~
--------[0
---------

---

L4

0

C9~
band JZ:
7Z73S01.2

I
47mm

1

The circuit and the components are situated on one side of the PTF E fibre-glass board, the other side
being fully metallized. to serve as earth. Earth connections are made by means of hollow rivets;

6

September 1978

(

II

BLX98

II
7Z67287 1

-50

typo values
d·1m *)

II

(dB)

I
T h =70oCJ

-55

J

VeE = 25 V
Ie =850rnA
f vision = 860 MHz

I
I

J

--'il 25 °C

'I

J

J
'I

II

J

I

II

I

II

II

-60

J

o

15

10

5

7Z72541

typo values

10

7Z72542

typo values

Ie= 850 rnA
Th = 70 °c

VeE = 25 V

VeE = 25 V

10

r-

.....

dim*) =
52 dB
I

7,5

-~O~B r-

5

~

""""

2,5

r-

I-"

I- f
-58dB

-

d·1m*)-

I

l5 4 fB -

-~6~B r-

-5

-

Ie = 850 rnA
Th = 70°C

--

ri""""

-

52 dB
J I

~4~B

--

56dB

-rl

~8~B
~60dB

2,5

o400

o

500

600 f (MHz) 700

Measured in a TV band IV circuit.

600

800

700

f (MHz)

900

Measured in a TV band V circuit.

Detailed information concerning these circuits, available on request.
*) Three-tone test method (vision carrier -8 dB, sound carrier -7 dB, sideband signal
-16 dB), zero dB corresponds to peak sync level.
Intermodulation distortion of input signal :S -75 dB.

March 1976

II

II

7

BLX98

II

II
7Z72543

=
=
T h =70°C

VeE 25 V
Ie 850mA

,

10

Gp
(dB)

~

'""'

7,5

"' typ

'"
5

"

2,5

o

--

500

250

750 f (MHz) 1000

7Z672$2 1

7Z67290 1

input impedance (series component s )
versus frequency

load impedance (parallel components)
versus frequency

typo values
VeE = 25 V
Ie = 850 mA

typo values
VCE = 25 V
Ic = 850 mA
15

7,5

V

7

1/

X j - '--

10
RL

\
10

f'-

/
~

./

CL

15

\.
I\..

5
~

ri_

I

8

I
II

"-

2,5

0
250

500

'""" ...... ~

-

750 f (MHz) 1000

II

f-- l -

0
250

-

...... J
/~

20

.,."

500

750

II

f (MHz)

25
1000

March 1976

II

BLY87A

V.H.F. POWER TRANSISTOR
N -P-N epitaxial planar transistor intended for usein class A, Band e operated mobile, industrial and military transmitters with a supply voltage of 13.5 V. The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions with a supply overvoltage to 16.5 V. It has a -l-tt capstan envelope
with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA
R. F. performance up to T mb = 25 0 e in an unneutralised common -emitter
class B circuit.
Mode of
operation
c.w.
C.w.

f
Vee
(V) (MHz)
13.5
12.5

175
175

Ps

PL

Ie

(W)

(W)

(A)

< 1.0
typ.1.0

8
8

Gp
(dB)

Zi

(%)

(Q)

> 9
> 70
< 0.85
typ.0.91 typ.9 typ.70

MECHANICAL DATA

-

If

YL
(mA/V)

2.8 + j1.2 76 -j16

-

-

Dimensions in mm

SOT-48

o

,,5;-~

6,5min (4x)

1,6max

+ L

--

!--------i\b

•

3,0
2,7

11,2

-- 9,75 max --25min - -

Torque on nut: min. 7.5 kg cm
(0.75 Newton metres)
max. 8.5 kg cm
(0.85 Newton metres)

~ metal

1

__ :':,0

__ /3,71 __

plastic

1

~~~~I

25min

j

-1.

8-32UNC

1

___ 0,147
0,107

___ 3.0/
2,7

7l666QB

__ 5,75 _
max

Diameter of clearance hole in heatsink: max.
4.17 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not
chamfer or countersink either end of hole.

When locking is required, an adhesive instead of a lock washer is preferred.

May 1974

II

II

1

II

BLY87A

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

max.

36

V

Collector-emitter voltage (open base)

VCEO

max.

18

V

Emitter-base voltage (open collector)

VEBO

max.

4

V

Collector current (average)

IC(AV)

max. 1. 25' A

Collector current (peak value) f > 1 MHz

ICM

max. 3.75

A

Ptot

max. 17.5

W

Currents

Power dissipation'
Total power dissipation up to T h
f> 1 MHz

= 25

°c
7Z60940

7Z60941

---

.
."...,1; ~j1 Vce E16.5V Ishort ~Ime:~./~
f > 1 MHz
operation --~~"t".9 .1
'
V.S.W.~.>~
,,'~ICO I

20
Ptot

(WI

~~-~ I

" '6'..10

1-1- ~rX~

Th = 25°C

Ic
(A)

C-~ I- f - f -

~,/';

,,~~

15

D.C. SOAR

10

,,"0.~

'~~

""

10
1--1-

normal operation

1--1-

V.S.W.R.<3

,

5

o
o

100 Tj, (OC) 150

50

102

Vce(V)

10

TeI:llperature
Storage temperature

Tstg

-30 to+200

°c

Operating junction temperature

Tj

max.

200

°c

THERMAL RESISTANCE

From junction t.o mounting base

Rth j-mb

9.4

°C/W

From mounting base to heatsink

Rth mh-h

0.6

°C/W

2

II

II

April 1971

II

BLY87A

Tj = 25 0 C unless otherwise specified

CHARACfERISTICS
Collector cut ~off current

ICEO

<

5

Collector -base voltage
open emitter, IC = 1 rnA

V(BR)CBO

>

36

V

Collector -emitter voltage
open base, IC = 10 rnA

V(BR)CEO

>

18

V

Emitter -base voltage
open collector, IE = 1 rnA

V(BR)EBO

>

4

V

E
E

>
>

0.5
0.5

hFE

>

5

fT

typo 700

MHz

Cc

typo
<

15
20

pF
pF

Cre

typo

11

pF

C cs

typo

2

pF

IB = 0; VCE = 14 V

rnA

Breakdown voltages

Transient energy
L = 25 mH; f = 50 Hz
open base
-VBE=1.5V; RBE=33Q

mWs
mWs

D. C. current gain
IC = 500 rnA; VCE = 5 V

-

Transition frequency
IC = 500 rnA; VC E = 10 V
Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 15 V
Feedback capacitance at f
IC = 100 rnA; VCE

= 1 MHz

= 15 V

Collector -stud capacitance

April 1971

II

II

3

BLY87A

II
7Z60943

1000

, fT

VCE=10V

(MHz)
750
1"...00 ~

I"-

1"-00

typ

~

r--..

r--..~

r-..;
~

500

250

o

o

2

1.5

0.5

2.5

Ic(A)

3

7Z60938

30
~

\,

Cc
(pF)

20

IE=Ie=O
f=1MHz

\

r\.

I--

~typ

I '~

-

10

o
o

4

II

10

Vcs (V)

20

April 1971

II

BLY87A

APPLICATION INFORMATION
R. F. performance in c. w. operation (unneutralised common-emitter class B circuit)
f = 175 MHz; Tmb up to 25 0 C
VCC(V)

PS(W)

PL(W)

IC (A)

Gp(dB)

11 (%)

Zi (Q)

YdmA/V)

13.5
12.5

< 1.0
typ.l. 0

8
8

< 0.85
typ.' 0.91

>9
typ.9

> 70
typ.70

2.8 + j1.2

76 -j16

Test circuit

son

C1
C2
C3
C4
C5

=

2.5 to 20 pF film dielectric trimmer (code number 2222 809 07004)

= C6 = C7 = 4 to 40 pF film dielectric trimmer (code number 2222 809 07008)

=
=

=
=

47 pF ceramic
100 pF ceramic
150 nF polyester

L4

=

O. 5 tur'n enamelled Cu wire (1. 5 mm); tnt. diam. 6 mm; leads 2 x 10 mm
ferroxcube choke (code number 4312 020 36640)
2.5 turns closely wound enamelled Cu wire (1. 5 mm); into diam. 6mm;
leads 2 x 10 mm
4.5 turns enamelledCuwire(l.5mm);int.diam. 6mm;leads2xl0 mm

R

= 10 n

carbon

Ll
L2 = ,L5 =
L3 =

Component lay-out for 175 MHz test circuit see page 6

May 1974

II

5

--

II

BLY81A

APPLICATION INFORMATION (continued)
Component lay-out and printed circuit board for 175 MHz test circUit.

I-----------166mm---------.

1'.....

C4

~

7Z60944

----

::t~l;~~t~~~~~:~:~;l;~;~~~;~;~;~:~

.11 t:' ,.: :I.\:I. :;. ~:.

l\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\l

11\\i\\:

~:·i.~:;· . :·~.; :l. ~·:

..........:·
...
..
:I.·::·...:l.·..:::\.:·:l.·
...:::l
.......:::\.·.::::.i:
...
::.l.·
•. :·:l:·
.•...:\
...

wall
:,:.:::.:::·.:1:...:1.:..::.\:...:1::..:1.:::1.:..

t)W .. <::.

..
::.:..:...

··

···· ..::.:.:..:..:..:.:..:.:..:..:.:.i::::.\:..::l:..:·.l:...:·.l:.:.:l.:.::l.:.::l:..:.:l.::.:l:...:l.

'

:;:;:

7Z67868

The circuit and the components are situated on one side of the epoxy fibre -glass
board, the other side being fully metallised to serve as earth. Earth- connections
are made by means of hollow rivets.

6

II

II

December 1973

II

BLY87A

II

OPERATING NOTE Below 70 MHz a base -emitter resistor of 10 Q is recommended to
avoid oscillation. This resistor must be effective for both d. c. and r. f.
7Z68940

7Z60937

10 rI--

f= 175 MHz
Th= 25°C

20

see page 5

./ typ

V

7.5

power gain versus frequency
(class B operation)

V

1/
~

~

t~p- t--

/

Gp

,
"' ,
\

"

(dB)

\

I'

15

Vee =13.5 V1/ /

Vee == 13,5 VrP L == 8. W
rTmb == 25 °e rtypo values r-

1\

//
~

5

1\

..

V V12.5V
11/

"- ~

10

Vj

~

II"
Ih

rl

.... r--...
I"""-

2.5

o

I'

5

o

0.5

Ps(WI 1.5

o

o

100

200

300
f (MHz)

7Z68941

input impedance (series components) versus frequency
(class B operation)

10

25

RL ... Iii
L

f-~'~
\

(Q)

,

xi

'-r-

,;

o

~",

l....oo"

eL
i

/

\

-50

I

I

eL

",

ri

(pF)
1 i
':'100

, 1\
15

, "
Vee == 13,5 V rt-P L == 8 W
Tmb == 25 °e rtypo values r-

May 1974

r-

1

-d~

~

r--..

i.oo'"

",.

~~L

~II'

-5

o

~

\ if

10"

xi,J ~

./~

1\

20

..... .....,

"

~10

1268942

load impedance (parallel components) versus frequency
(class B operation)

200

100

300
f (MHz)

II

10

'--

Vee == 13,5 V

-150

- P L == 8 W
-,...... Tmb == 25 °e
typo values

5

o

100

200

300
f (MHz)

7

---

BLY87A

II

II
7Z60939

7Z60942.

R.F. SOAR

R.F. SOAR
10

10

PLnom
(WI
V.S.W.R.=1

PLnom
(WI
V.S.W.R.=1

"-

7.5

V.~.W.R.=10-

7.5

" """'" 56

5

k.s:~

1'""

""

R·~~1.

°

s:!
r"'0

I-- I-- I--

5

2.5

--

...&.+--1-

...&.+-- +-

o
1.0

1.1

12

1.1

1.2

PSnom -

Vee
Vee nom

+-

o
1.0

P

1.2

1.4

1.1

1.2 ' Vee

Snom

-I--

Vee nom

Conditions for R. F. SOAR:
f
175 MHz
P
= P atVr;c = VCC
s= 0 6 O'G/W nom and V.S.W.R. = 1
Th
70 °c
Rsnom
th mb-h
•
VCCnom= 12.5 or 13.5 V see also page 5
The transistor has been developed for use with unstabilized supply voltages:. As the
output power and drive power increase with the supply voltage, the nominal output
power must be derated in accordance with the graphs above for safe operation at
supply voltages other than the nominal. The graphs show the allowable output power
under nominal conditions, as aiunction of the supply overvoltage ratio, with V. S. W. R.
as parameter.
The left hand graph applies to the situation in which the drive (Ps/PS nom ) increases
linearly with supply overvoltage ratio.
The right hand graph shows the derating factor to be applied when the drive (PSiPSnom)
increases as the square of the supply overvoltage ratio (V CC IV CCnom)·
Depending on the operating conditions, the appropriate derating factor may lie in the
region between the linear and the square -law functions.

8

II

II

April 1971

_______Jl__

BL_Y87_C_

V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated mobile, h.f. and
v.h.f. transmitters with a nominal supply voltage of 13,5 V. The transistor is resistance stabilized and
is guaranteed to withstand severe load mismatch conditions with a supply over-voltage to 16,5 V.
It has a 3/8" capstan envelope with a ceramic cap. All leads are isolated from the stud.
QUICK REFERENCE DATA
R.F. performance up to Th = 25 0C in an unneutralized common-emitter class-B circuit
mode of operation

VCE
V

f
MHz

PL
W

c.w.

13,5
12,5

175

8

>

175

8

typo 11,5

c.w.

Gp
dB

11
%

>

12,0

zi

YL
mAN

n
60

2,2

+ jO,4

96 - j28

typ.65

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-120.

rn

r-~

I

8min (4x)

c

/. . . 1-"

28
26

(

,

\'

\

'

/)

+--+--t~

•

$
'

I--

1

B,6 -.

5

+--~

-'--0,14
1,6 max

•

-'1 14-

+

L.-tf="====F-iHII

,

-t-+--,~=:=b.,f-'ill

~~x
I

--

t_
315~B-32UNC

_$_

b

•

ceramic

1,5=

-'---+----.--+-29-+......
- ,-65-_-!--Hnl
B
'
min

BeD
metal

e

•

-

r-I

5,9
5,5

I..

9,8 max

4-

28
26

Torque on nut: min. 0,75 Nm
(7,5 kg em)
max. 0,85 Nm
(8,5 kg em)

-11,8-7,Omax

..

4-

7Z69881.1

Diameter of clearance hole in heatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged ..

I

May 1978

~_BLY_87_C_Jl'--__________
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Collector-emitter voltage (VBE = 0)
peak value

V CESM

max.

36 V

Collector-emitter voltage (open base)

VCEO

max.

18 V

Emitter-base voltage (open collector)

VEBO

max_

4 V

Collector current (average)

IC(AV)

max.

1,5 A

ICM

max.

4,0 A

Prf

max.

t> 1 MHz

Collector current (peak value);

(t>

R.F. power dissipation

1 MHz); T mb = 25 °C.
7Z77722

1,5

1\
\

7Z77723

30
Prf

\

(W)
......

\

IC

\
\

~.

(A)

1

-

\

,

\
\

V

°c

r-..

I--

1""100._

,
~

\

r-...

..

.....

~~E>6

1\

"

YO

!

I'

0" *

".<
f- - f -f-

*/0

I'I~OC-~"" C -

10

....

~

....

......
.... 1...

I

I\..

......

0'61,.

....

,,
1\

~

r-...

~

"l
II

\

1/1\.

Th--; 70

0

......

III
I

20

}mb==25 C

1\
~

I--I--

20 W

\

"r"
·0

0,5
10

5

15 V
(V) 20
CE

Fig. 2 D.C. SOAR.

o

50

100

Fig. 3 R.F. power-dissipation; VCE:S;;;; 16,5 V;
1 MHz.
I Continuous d.c. operation
II Continuous r.t. operation
III Short-time operation during mismatch

t>

Storage temperature

-65 to + 150 oC

Operating junction temperature

max.

200 0C

THERMAL RESISTAI\[CE (dissipation = 8 W; Tmb = 73,5 °C, i.e. Th == 70 OC)
From junction to mounting·base (d:c. dissipation)

Rth j-mb(dc)

From junction to mounting base (r.t. dissipation)

Rth j-mb(rf)

1r

From mounting base to heatsink

2

1978
May

Rth mb-h

10,7 0C/W

8,6 0C/W
0,45 0C/W

____

~l

__V_.H_.F_.p_ow_er_tr_an_sis_tor_____________________

B_L_Y_8_7_C_____

CHARACTERISTICS
Tj

= 25°C

Collector-emitter breakdown voltage
VBE = 0; IC = 5 mA

V(BR)CES

>

36 V

Collector-emitter breakdown voltage
open base; IC = 25 mA

V(BR)CEO

>

18 V

Emitter-base breakdown voltage
open collector; IE = 1 mA

V(BR)EBO

>

4 V

Collector cut-off current
VBE = 0; VCE = 18 V

ICES

<

2 mA

Second breakdown energy; L = 25 mH; f = 50 Hz
open base

ESBO

>
>

RBE = 10 n

ESBR

0,5 mJ
0,5 mJ

D.C. current gain *
IC= 0,75 A; VCE = 5 V

hFE

Collector-emitter saturation voltage *
IC=2A;IB=0,4A

VCEsat

typo

Transition frequency at f = 100 MHz *
-IE= 0,75 A; VeB = 13,5 V

fT

typo

950 MHz

fT

typo

850 MHz

Cc

typo

16,5 pF

Cre
Ccs

typo

12 pF

typo

2 pF

-IE = 2 A; VCB = 13,5 V
Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 13,5 V
Feedback capacitance at f = 1 MHz
IC = 100 mA; VCE = 13,5 V
Collector-stud capacitance

typo

40
10 to 100
0,85 V

--

* Measured under pulse conditions: tp';;;; 200.lLs; (, .;;;; 0,02.
"

May 1978

3

_B_LY87_C

_J l""-___________
7Z77725

7Z77724

40

100

Cc
(pF)

30

75

"

~

50

-I'-- t--.

JIo-"""

I

,

~

r-

~

r-...

VCE =
13,5 V

o

-

""

typ

t-...

~ 1-0-..

I"- r- Io-.

'"" '5V
10

25

-

'" I'-..

20

o

o

2

Fig. 4 Typical values; Tj = 25

IC (A)

be.

3

o

5

Fig.5 IE

1.0 V

CB

(V) 15

= Ie = 0; f = 1 MHz; Tj = 25 ae.
7Z77732

1000

l/

,.

- ---....r-- - -

V , / -'

....... 10... !'--- ~

/ 1/

fT
(MHz)

J

i""""'oo

r-... ....... ~
....... .........

J

I"

'1'.""''''-

III
II

~

'

V CB =

~~

13,5V

~~

I

10V

J

II

500

,

o

o

2
Fig. 6 Typical values; f = 100 MHz;.Tj = 25

4

May

1978~

(

3

ae.

Jl____

B_L_y_87_C____

___
V._H.F_._po_we_rt_ran_sis_to_r____________________

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25 °C
f (MHz)

VCE (V)

PL (W)

Ps (W)

Gp (dB)

IC (A)

<0,5

>

<0,99

175

13,5,

8

175

12,5

8

12,0

typo 11,5

1/(%)

>

60

Zi (on)

YL (mAN)

2,2 + jO,4

96 - j28

typ.65

C6

L5

50n
C7

50n

Fig. 7 Test circuit;

C.W.

class-B.

List of components:
C1 = 2,5 to 20 pF film dielectric trimmer (cat. no. 222280907004)
C2 = C7 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
C3a = C3b = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor
C5 = 100 nF polyester capacitor
C6 = 5 to 60 pF film dielectric trimmer (cat. no. 222280907011)
L1 =
L2 =
L3 =
L4 =
L6:::
L7 =

2 turns Cu wire (1,6 mm); into dia. 4,5 mm; length 5,7 mm; leads 2 x 5 mm
100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm
L8::: Ferroxcube choke coil (cat. no. 4312 02036640)
L5::: strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
3 turns Cu lJI,Iire (1,6 mm); into dia. 7,5 mm; length 7,5 mm; leads 2 x 5 mm
3 turns Cu wire (1,6 mm); into dia. 6,5mm; length 704 mm; leads 2 x 5 mm

L4 and L5 are strips on a double Cu-c1ad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
R 1 = 10 n carbon resistor
R2 = 4,7 n carbon resistor
Component layout and printed-circuit board for 175 MHz test circuit see Fig. 8.

I(

May 1978

5

_B_LYB_7C

_Jl___________
72

7 Z 78436

-

--

7Z78437

Fig. 8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

6

Mav 1978

I(

Jl____

B_L_Y_8_7C____

___V_,H_,F_,p_ow_er_tr_an_sis_to_r_____________________

7Z77726

I~

PL
(W)

1/

,

I

7,5

/

K )<
V .'>

V

j"oo ....
~~

.......
~

~'

~

/"'-

-

Th = 70°C

...... 10'

1/
(%)

r- Th = 25°C
\\
1\ \
20
1-1.

I V /

,,~

~

.... ~

~

1]

I"

-

r--r- :::~

pO

......

70°C'

/

If.
IJ!/
II

5

-

~-.-<

1/ V

Ij,

80

..... ~

Th = 25°C
10

7Z77727

30

-...f-:; Th = 25°C

'-70°C

'C;

f'.

10

......

..........
......

r--

r-..

;......

40

......
~

\ G p _ ~=:=

2,5

\

o

o

o

0,5

1,5

P

s (W)

Fig.9 Typical values; f = 175 MHz;
- - VCE = 13,5 V; - - - VCE = 12,5 V.

2,5

20
12,5

7,5

-=-

Fig. 10 Typical values; f = 175 MHz;
- - VeE = 13,5 V; - - - VCE = 12,5 V.

7Z77728

9

\

PLno m
(W)

VSWR = 1

\

, ,i\
1\

\

,
\
~

\

\

'\

\
\

8

The transistor has been developed for use with
unstabilized supply voltages. As the output
power and drive power increase with the supply
voltage, the nominal output power must be
derated in accordance with the graph for safe
operation at supply voltages other than the
nominal. The graph shows the permissible output
power under nominal conditions (VSWR = 1), as
a function of the expected supply over-voltage
ratio with VSWR as parameter.

10

,

'\

\

'\
'\

20

I

\

I
50
Ps
PSnom

7
1

1,1

Fig. 11 R.F. SOAR (short-time operation
during mismatch); f = 175 MHz; Th = 70°C;
Rth mb-h = 0,45 °C/W; VCEnom = 13,5 V or
12,5 V; Ps = PS nom at VCEnom and VSWR = 1.
Note to Fig. 11:

\

1\
1\

I--

\

\ \
\

VSWR=

6

1,2

The' graph applies to the situation in which the
drive (PS/PS nom ) increases linearly with supply
over-voltage ratio.

VCE
VCEnom

I(

May 1978

7

_BL_Y87_C

_Jl_______
7Z77729

10

7Z77730

15

CL
,~

r'I

-R
-, L

1\
\

xi
~

\

5

,

1\

J

""'100.

10

,

~

-50

J

i/
V

I

r'I

I

iI""

1/

o

-~

...... ...

III

./

,

I
~

I
I
RL

J

~

,

r

""'~

~

o

5

1/

f-

II
CL

-100

'f

xi

.......

-5

-

,

J J
If

o

o

200

t (MHz)

400

Fig. 12 Input impedance (series components).

f (MHz)

-150
400

Fig. 13 Load impedance (parallel components).

Conditions for Figs 12, 13 and 14:

Gp

I....

l"-

(dB)

Typical values; VCE = 13,5 V; PL = 8 W;
Th = 25 oC.

,
"

'\. 1\

OPERATING NOTE

\

15

\

Below 100 M Hz a base-em itter resistor of 10 n
is recommended to avoid oscillation.
This resistor must be effective for r.t. only.

,
\

1\

"

10

"

r'\

I'-

"

1'\

...
i"o..

o

200

t (MHz)

Fig. 14.

8

200

7Z77731

20

5

o

400

I

BLY88A

II
V.H.F. POWER TRANSISTOR

N -P-N epitaxial planar transistor intended for use in class A, Band e operated mobile, industrial and military transmitters with a supply voltage of 13. 5V. The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions with a supply o-vervoltage to 16.5 V. It has a i" capstan envelope
with a moulded cap. All leads are isolated from the stud.

QUICK REFERENCE DATA
R. F. performance up to Tmb
f
Mode of Vee
operation (V) (MHz)
C.w.
C.w.

13.5
12.5

175
175

= 25 0 e in an unneutralised common -emitter
class B circuit.

Ps

(W)
< 2.65
typ.2.65

PL
(W)

Ie

Gp

Y)

(A)

(dB)

(%)

Z'i

YL

(Q)

(rnA/V)

15
< 1.71
> 65 2.3+j2.2 128-j4.4
> 7.5
15 typ.1.85 typo 7.5 typ.65

MECHANICAL DATA

Dimensions in mm

SOT-48
_ _ 0,147
0,107

~

-1'--

6,5min (4x)

1

tL

plastic

~~~~I

25min

j

1,6max

8-32UNC

~b

--:':'°1

e

11,2

-.13,71 __
.... 9,75 max
-25min

-.3.01

-•

Torque on nut: min. 7.5 kg em
(0. 75 Newton metres)
max. 8.5 kg cm
(0.85 Newton metres)

1Z66608

J

metal

2,7
___ 5,75 _
max

Diameter of clearance hole in heatsink: max.
4.17 mm.
Mounting hole to have no burrs at either end.
De -burring must leave surface flat; do not
chamfer or countersink either end of hole.

When locking is required, an adhesive instead of a lock washer is preferred.

May 1974

II

\I

1

--

BLY88A

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

max.

36

Collector-emitter voltage (open base)

VCEO

max.

18

V

VEBO

max.

4

V

IC(AV)

max.

2.5

A

ICM

max.

7.5

A

Ptot

max.

32

Emitter -base voltage (open collector)

V

Currents
Collector current (average)
Collector (peak value) f> 1 MHz
Power dissipation
Total power dissipation up to Th
f> 1 MHz

= 25

°c
7Z60956

7%60959

----

I
short time ~~.I
operation .
~''I'(
V.S.W.R.>3 r- '" .9.
0

Ptot

(WI

~

30

Th= 25°C

Ic
(AI

1'\..'6''/0

I-I-~"'~./~'S~
"

D.C.SOAR

VCE ~ 16.SV If >1MHz

~I

40

w

"

~.9

'" ·0
~6'./0

CJ:'~

10

,

~~

"

20

I'"

f--

I-

~

normal operation
V.S.w.R.< 3

10

o
o

1

10

50

10 2

VCE (V)

Temperature
Storage temperature

Tstg

-30 to +200

°C

Operating junction temperature

Tj

max.

200

°c

THERMAL RESISTANCE

From junction to mounting base

Rthj-mb

4.9

°C/W

From mounting base to heatsink

Rmb-h

0.6

°C/W

2

II

I

April 1971

BLY88A

II

II
CHARACTERISTICS

Tj

= 25 0 C unless

otherwise specified

Collector cut -off current
IB

= 0; VCE = 14 V

10

rnA

Breakdown voltages
Collector -base voltage
open emitter, IC = 3 rnA

V(BR)CBO

>

36 V

Collector -emitter voltage
open base, IC = 25 rnA

V(BR)CEO

>

18

Emitter -base voltage
open collector; IE = 3 rnA

V(BR)EBO

>

E
E

>
>

2.0
4.5

hFE

>

5

fT

typo

700

typo
<

34
40

pF
pF

Cre

typo

25

pF

C cs

typo

V

4 'V

Transient energy

L = 25 mH; f = 50 Hz
open base
-VBE = 1. 5 V; RBE =33 Q

mWs
mWs

D. C. current gain
IC = 500 rnA; VC E = 5 V
Transition frequency
IC = 1A; VCE = lOY

MHz

Collector capacitance at f = I MHz
IE = Ie

= 0;

VCB

= IS

V

Cc

Feedback capacitance at f = 1 MHz
IC = 100 rnA; VCE

= 15 V

Collector -stud capacitance

April 1971

II

II

2 pF

3

----

-=

--

BLY88A

II

II

7Z60960

1000
fy

VCE=10V

(MHz)

750

,,'

,

.""..

-..... ......

typ

......

...... .....

500

250

o
o

2

5

4

3

IcIA)

6

7Z60955

75

IE=Ie=O
f=1MHz

Cc

-

(pF)

50

"

~

~typ

"

~

-

25

o
o

4

II

10

Vce (V)

20

II

April 1971

II

II

BLY88A

APPLICATION INFORMATION
R. F. performance in c. w. operation (unneutralised common -emitter class B circuit)
f = 175 MHz; Tmb up to 25 0 C
VCC(V)

PS(W)

PdW)

IC(A)

Gp(dB)

13.5
12.5

< 2.65
typo 2. 65

15
15

<1.71
typo 1. 85

> 7.5
typo 7. 5

n(%)

zHQ)

YL(mA/V)

> 65 2.3+j2.2 128-j4.4
typ.65

Test circuit

son
son

(C>-If---K_,.......I

Cl=
2.5 to 20 pF film dielectric trimmer (code number 2222 809 07004)
C2=C6=C7= 4 to 40 pF film dielectric trimmer (code number 2222 80907008)
C3=
47 pF ceramic
C4=
100 pF ceramic
C5=
150 nF pOlyester
Ll=
L2=L5=
L3=
L4=

0.5 turn enamelledCuwire (1.5mm); int.diam. 6mm;leads2xl0mm
ferroxcube choke (code number 4312 020 36640)
2.5 turns closely wound enamelled Cu wire (l.5 mm);int.diam.6mm;
leads 2.xlOmm
2.5 turnsenamelledCuwire (1.5mm); inLdiam. 6mm;leads2xl0mm

R = 10 Q carbon

Component lay-out for 175 MHz test circuit see page 6.

May 1974

II

\I

5

--

BLY88A

II

II

APPLICATION INFORMATION

(continued)

Component lay-out and printed circuit board for 175 MHz test circui. t.

I" "

·1-----------106mm-----------..

C1

00~L~

C2 C3[.
C6
7Z60944

-----

::!:~:~~~~:~:~:~:~:l:~t~~~!;:::

~\ i\ :
\\\\\\\\\\\tt l\\\\\\

.

:.~ ,~.: ~\: ~.': .:~' .: ·~:. ~:·. :·.l:~·;.i:~ .~ .~,: " :," ~:,. ~:, :, .:~,:;.,:.; :,.~ ;,:.~ :.i·":~'
1\\\'\\\\\\\\\\\\\\\\\\\\\\'\\\\\

11\1\\\ {:::

:::::

.

:. ~l:.\·~: ,:.\ :, \ .: ~· :. l:~.· tr . ~111
..

..
:l.:::::::.:,:::.:
..

••

<::.

...

7Z67868

The circuit and the components are situated on one side of the epoxy fibre -glass
board, the other side being fully metallised to serve as earth. Earth connections
are made by means of hollow rivets.

6

II

December 1973

II

BLY88A

II

OPERATING NOTE Below SO MHz a base -emitter resistor of 10 Q is recommended to
avoid oscillation. This resistor must be effective for both d.c. and r. f.
7260954

30

f=175MHz
Th= 25°C r-see page 5

7Z68943

power gain versus frequency
(class B operation)

20

I\.

Gp

'1
\

(dB)
20

.,.,
'/

Vcc =13.5V

~V

"

,

1\

15

\

typ- I - - typ

~V

Vee = 13,5 VrPL = 15 W
rTmb = 25 °e rtypo values r-

,
~

10

,
L,\

h V12.5V

10

~

)V

......

r"-

Iff
/1
1/'

5

o
o

2.5

o

PsIW)

-o

100

200

300
f (MHz)

7Z68944

input impedance (series components) versus frequency
(class B operation)

5

,-J~i
II

,

\

\

-

~.

20

-

r-

- ri

-

r-

)'
~

J

(Q)

I(

J

15

I

.J

r-

/

RL

10

/

1
I
~... lL

-

Vee = 13,5 V
,.....
PL = 15 W
Tmb = 25 °e ,.....
typo values

J

I
I

o

May 1974

200

II

f (MHz)

300

f

,
o

100

I

.1

~100
1"..00" i"

RL

I-- t-

I

II

5

-

I-xi

-5

J

"' ...

IJI

-50

eL
(pF)

I

,

ll

II
-2,5

I

1-,

~

o

eL_ I-

I"""'"

/

RL

I 1

,

7Z68945

load impedance (par. components)
versus freq. (class B operation)

r--

a

~eL

vee = 13,5 Vr- --150
PL = 15 W
Tmb = 25 °e
typo values
100

200

300
f (MHz)

II

7

--

BLY88A

II

II
7Z609U

7Z101"

R.F. SOAR

R.F. SOAR

20

20

PLnom

PLnom
(WI
V.S.W. R.=1

(WI
V.S.W. R.=1
I!S.ijf

15

i'o

.'="'" ·1t~10

~ll

--"- - I -

15

...... ~

ks'1f(

...... ••.;.;l~·~1~
......... SO"""" .....~

10

10

5

5

.!l,.1-r-

~I- l -

o
1.0

t!

1.2

1.1

1.2

PSnom - I -

Vee

o
1.0

1.2

P
-f1.4 Snom

1.1

1.2

Veenom

Vee
Vee nom

Conditions for R.F. SOAR:
f
175 MHz
P
= Ps at Vr.C = VCC
and V.S.W.R. = 1
s
Th
70 °c
R~o~_h = 0.6 tfC/W
nom
VCCnom= 12.5 or 13.5V see also page 5
The transistor has been developed for use with unstabilized supply voltages. As the
output pcmer and drive power increase with the supply voltage, the nominal output
power must be derated in accordance with the graphs above for safe operation at
supply voltages other than the nominal. The graphs show the allowable output power
under nominal conditions, as a function of the supply overvoltage ratio, with V. S. W. R.
as parameter.
The left hand graph applies to the situation in which the drive (PS/PSnom) increases
linearly with supply overvoltage ratio.
The right hand graph shows the derating factor to be applied when the drive (P s/PSnom)
increases as the square of the supply overvoltage ratio (V CCIV CCnom).
Depending on the operating conditions, the appropriate derating factor maylie in the
region between the linear and the square-law functions.

8

II

II

April 1971

______________Jl__

BL_Y88_C_

V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated mobile, h.f. and
v.h.f. transmitters with a nominal supply voltage of 13,5 V. The transistor is resistance stabilized and is
guaranteed to withstand severe load mismatch conditions with a supply over-voltage to 16,5 V.
It has a 3/8" capstan envelope with a ceramic cap. All leads are isolated from the stud.
QUICK REFERENCE DATA

R.F. performance up to Th = 25 0C in an unneutralized common-emitter class-B circuit
mode of operation

c.w.

C.w.

Gp
dB

PL

VCE
V

MHz

W

13,5
12,5

175
175

15
15

>

zi

f/

3,0

typ.7,5

>

YL

n

%
60

mAN

2,3 + j2,2

Dimensions in mm

MECHANICAL DATA
Fig. 1 SOT-120.

-.

•

[IJ~

t

~--

I

e

8min (4x)

~/1-,

I(

,

~
\

+---+--t,

28

26

1\ ~

'

I /

I

~

I

130 - j4,4

typ.67

j

b

$l_a,6J

~--0,14

1,6 max
8-32UNC

~II'-

ceramic

+

,

8,4

max

BeQ
metal

e

1-1

..

-

5,9
5,5

I.

9,8 max

.-

28

26

Torque on nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kg cm)

- - 1 1 , 8 - 7,0 max

..

4-

7ZSS881.1

Diameter of clearance hole in heatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

I(

Mav1978

_J l"--_--:---_____

__
BLY_88_C
RATINGS

Limiting values in accordance with the Absolute Maximum System (I EC 134)
Collector-emitter voltage (VBE = 0)
peak value

V CESM

max.

36 V

Collector-emitter voltage (open base)

VCEO

max.

18 V

Emitter-base voltage (open collector)

VEBO

max.

4 V

Collector current (average)

IC(AV)

max.

3 A

Collector current (peak value); f > 1 MHz

leM

max.

8 A

R.F. power dissipation (f> 1 MHz); T mb = 25 °C

max.

36 W

Storage temperature

Prf
T stg

Operating junction temperature

Tj

7Z77733

3,5

'c

max.

200 °C

7Z77734

60

Prf

(A)

-

-65 to +150 0C

\

\~

~

2,5

(W)

\

'~d'
1\

II

40

~

\~~lS'o

'-:5

1"010...

-r-

('l

II

\....l

I\.

0

0
\('l

-1- -

¥

,--

\

\.
I\.

1,5

'\..

,

\

"

,\
N

......

....
f'

O'&/:
II :"'':::.':!I..,qf&6

-- ...

20

\

......

r........."'
~Yo

I "N.'?*

/oC

... ... ...0. '6£11'/0

....

I"-I...C

1-1-1-

~

,

..... ......
....

I\,

'

.

"
0,5

o

o

10

VCE (V)

20

o

100

50

Fig.3 R.F. power dissipation; VCE";;; 16,5 V;
f>1 MHz.
I Continuous d.c. operation
II Continuous r.f. operation
III Short-time operation during mismatch

Fig. 2 D.C. SOAR.

THERMAL RESISTANCE (dissipation = 15 W; T mb = 77 oC, i.e. Th = 70 OC)
From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

=6,55 °C/W

From junction to mounting base (r.f. dissipation)

Rth j-mb(rf)

= 4,95 0C/W

Rthmb-h

=0,45 °C/W

I(

From mounting base to heatsink

2

Mav1978

Jl

V.H.F. power transistor

CHARACTERISTICS

BlY88e

Tj = 25 °C
Collector-emitter breakdown voltage
VBE=0;lc=10mA

V(BR)CES

>

36 V

Collector-emitter breakdown voltage
open base; IC = 50 mA

V(BR)CEO

>

18 V

Emitter-base breakdown voltage
open collector; IE = 4 mA

V(BR)EBO

>

4

Collector cut-off current
VBE = 0; VCE = 18 V

ICES

<

4 mA

Second breakdown energy; L = 25 m H; f = 50 Hz
open base
RBE = 10 n

ESBO
ESBR

>
>

D.C. current gain*
le= 1,5A;VCE=5V

hFE

typo 40
10 to 100

Collector-emitter saturation voltage*
IC = 4,5 A; IB == 0,9 A

VCEsat

typo 1,0 V

Transition frequency at f = 100 MHz*
-IE = 1,5 A; VCB == 13,5 V

fT

typo 850 MHz

fT

typo 800 MHz

Cc

typo

32 pF

Cre
Ccs

typo

23 pF

typo

2 pF

-IE = 4,5 A; VCB = 13,5 V
Collector capacitance at f = 1 MHz
'E= le=O;VCB= 13,5V
Feedback capacitance at f = 1 MHz
IC = 200 mA; VCE = 13,5 V
Collector-stud capacitance

* Measured under pulse conditions: tp ~ 200 J.1.S; [)

< 0,02.

'I (

V

2,5 mJ
2,5 mJ

May 1978

---

3

Jl"'"--_ _ _ _ _ __

_BL_Y88_C_____

7Z77735

60
.... 1-"1""'

7Z77736

150

VCE =
13,5 V

Cc

"

(pF)

'/'
II

5V

,

40

~

100

r--Ioo.

I'

II

,

II

I

1\

L\

I'
20

50

~

I"
~

typ
I"""f'ooo
I""I"-i'oo

--==

-

o

o

2,5

IC (AI

Fig. 4 Typical values; Tj = 25

5

o
o

10

V

CB (V)

20

0c.
7277737

1000

fT
(MHz)

/

"'~

- r--

",,""

1/ V
i/
Ih
rl

r--

VCB =

t-- t--

r- I- 13,5V

t-- t--

! - lOV

I~

500

IJ

I

f

o

o

2
Fig. 6 Typical values; f

4

4

= 100 MHz; Tj = 25 oc.

6

V'_H'_F._po_~_r_tra_nS_im_r

___

____

~l

_____________________

B_L_Y_88_C____

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th

= 25 °C

f (MHz)

I VCE (V)

PL (W)

175

13,5
12,5

15
15

175

Ps (W)

G p (dB)

IC (A)

'f/ (%)

<2,4

>

< 1,85

>

8,0
typ.7,5

Zi (51)

YL (mAN)

60 2,3 + j2,2
typ.67

130 - j4,4

C6

L5

~----~-+--050n

C7

C5

R2

~

--

7277760

Fig. 7 Test circuit; c.w. class-B.
List of components:
C1 = 2,5 to 20 pF film dielectric trimmer (cat. no. 222280907004)
C2 = C7 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
C3a= C3b = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor
C5 = 100 n F polyester capacitor
C6 = 5 to 60 pF film dielectric trimmer (cat. no. 2222 B09 07011)
L1
L2
L3
L4
L6
L7

= 2 turns Cu wire (1,6 mm); into dia. 4,5 mm; length 5,7 mm; leads 2 x 5 mm
= 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm
= LB = Ferroxcube choke coil (cat. no. 4312 020 36640)
= L5 = strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
= 3 turns Cu wire (1,6 mm); into dia. 7,5 mm; length 7,5 mm; leads 2 x 5 mm
= 3 turns Cu wire (1,6 mm); into dia. 6,5 mm; length 7,4 mm; leads 2 x 5 mm

L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
R1 = 10 51 carbon resistor
R2 = 4,7 51 carbon resistor
Component layout and printed-circuit board for 175 MHz test circuit see Fig. B.

5

Jl_________

_BL_Y88_C___

72

7Z78436

---

7Z78437

Fig. 8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

6

May

19781 (

~~,

___V_._H._F_.p_ow_e_r_tr_an_sis_ro_r___________________________

B_L_Y_8_8_C
_____

____

7Z77739

7Z77738

"

Ii"--~
,J

20

1/

PL

j

(W)

'I I'

I

15

V

iJ

II
1/)
rJ

I

.,

25 0 C-

""
70°C

Gp

r'\.

rr

r-....
r-....

I\.

r--.:

\

70

0

e
100

5
Th = 25°C

,

,

-~

J

~

/'

o

Kl

~

,

I

5

;h=250C

-t-.,r...... 10........

(dB)

II/,'

.,.

I

Gp

10

1-== b::: l-I-~

1/

I

IJ

10

/

v

[)~Th= -

r--

o

o

2.5

P (W) 7.5

5

s

Fig. 9 Typical values; f = 175 MHz;
- - VCE = 13,5 V; - - - - VCE = 12,5 V.

\I 0'
70 C

-

.....

,

17

17 -

(%)

50

o
5

10

15

P

L

---

(W) 20

Fig. 10 Typical values; f = 175 MHz;
- - VCE = 13,5 V; - - - - VCE = 12,5 V.

7Z77740

16
P Lno m

,

,
, ,

\

\ \

(W)

(VSWR = 1)

VSWR = f-4.5 I-+- f--

5

I\.

\ \

Note to Fig. 11:

1\
1\ ,
1\,
1\,
" 1\
1\

15

The transistor has been developed for use with
unstabilized supply voltages. As the output power
and drive power increase with the supply voltage,
the nominal output power must be derated in
accordance with the graph for safe operation at
supply voltages other than the nominal. The graph
shows the permissible output power under nominal
conditions (VSWR = 1), as a function of the
expected supply over-voltage ratio with VSWR as
parameter.

r\

1\
r\ \

14

"1\ \
"", \ 1\
1\

10

1\

~

13

1\

\

20
I

50I

12
1

1.1

Fig.11 R.F. SOAR (short-time operation during
mismatch); f = 175 MHz; Th = 70 oC;
Rth mb-h = 0,45 °C/W; VCEnom = 13,5 V or
12,5 V; Ps = PS nom at VCEnom and VSWR = 1.

Ps

The graph applies to the situation in which the
drive (PS/PSnoml increases linearly with supply
over-voltage ratio.

PSnom

1.2

., (

May 197B

7

_BLY_BBC_Jl__________
7Z68944 1

7Z68945 1

5
I- rj

Xi

1\

(n)

Xi

,

J

If

J
Il

15

1\..-

~

-

ri I--I--

~

RL

,

~

10

,/

I
I

1//
1

RL I--

-150

,

xi
I--

-;-5

1,.0~

II
II
"I

5

II
i-

-100

,.... .....

j

-2,5

CL
(pF)

1'... .1

II

-50

~

1\

V

o

o

./

I--I--

II"

1\

2,5

-

C L I--

~~

rj

o

100

200

300

f (MHz)
Fig. 12 Input impedance (series components).

o
o

~

CL
100

200

300

f (MHz)
Fig. 13 Load impedance (parallel components).

7Z68943 1

20

,\

Conditions for Figs 12,13 and 14:

I\.

Gp
(dB)

\

15

,

Typical values: VCE
Th = 25 °C.

\'

OPERATING NOTE

,

1\

~

10

Below 50 M Hz a base-emitter resistor of 10 n is
recommended to avoid oscillation. This resistor
must be effective for r.f. only ..

,
I'

f"

r.....

r..

5

o

o

100

200

300
f (MHz)

Fig. 14.

8

= 13,5 V; PL = 15 W;

Mav 1978! (

_ _ _ _ _ _ _Jl_BL_Y89_A_
V.H.F. POWER TRANSISTOR

N-P-N epitaxial planar transistor intended for use in class-A, Band C operated mobile, industrial and
military transmitters with a supply voltage of 13,5 V, The transistor is resistance stabilized. Every
transistor is tested under severe load mismatch conditions with a supply oiler-voltage to 16,5 V. It has
a %" capstan envelope with a moulded cap. All leads are isolated from the stud.
QUICK REFERENCE DATA
R.F. performance up to T mb = 25 °C in an unneutralized common-emitter class-B circuit
mode of operation

c.w.

VCE
V

f
MHz

13,5

175

Ps

PL

W

W

IC
A

<6,25

25

<2,64

-zi

YL

Gp
dB

1'/

%

n

mAN

>6

>70

1,6 + j1,4

213 + j5,5

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-56.

---

-.1 3,93,5 1__

I

~
1.- 95-.1

I

'

-+-F===P1
9,65
max

10-32UNF

- .-

1_-- max
27 _ _ _ -.1

3,00-.
2,85

i
7Z60000.4

~~

1,98max_l __

--

1

115
575
10:7 - - ~ax -

When locking is required an adhesive is preferred instead of a lock washer.
Torque on nut: min. 1,5 Nm
(15 kg cm)
ma~. 1,7 Nm
(17 kg cm)

Diameter of clearance hole in heatsink: max. 5,0 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do. not chamfer
or countersink either end of hole.

September 1978

--

II

BLY89A

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

max.

36

V

Collector-emitter voltage (open base)

VCEO

max.

18

V

Emitter -base voltage (open collector)

VEBO

max.

4

V

Collector current (average)

lC(AV)

max.

5

A

Collector current (peak value) f > 1 MHz

lCM

max.

10

A

Ptot

max.

70

W

Currents

Power dissipation
Total power dissipation up to T mb = 25
f> 1 MHz

°c

7Z60091

I

D.C. SOAR I

I

VCE~16.5V

-rf>1MHz

100

Ptot
(WI

7

..p
~

~~~s
'1.0

==~~~~~I ,I
(,s.,.

1\
~\

4

'.1.10

-r~ "/~,
-r-

r--.,Q.1.I'b 1

"

25

ITmb=25°C

Ic
(A I

6

75 shorttime
operation V.S.W.R.>3 --r;fl

50

7Z60090

/~.
i'..

normal
--r- operation

--r- V.S.W.R.<3
\

50

6

7

8 9 10

20

VCE (VI

Temperature

200

°c
°c

Storage temperature

Tstg

-30 to +200

Operating junction temperature

Tj

max.

THERMAL RESISTANCE
From

junct~on

to mounting base

Rth j-mb

2.5

°C/W

From mounting base to heatsink

Rth mb-h

0.3

°c/w

2

II

II

March 1971

II

BLY89A

II

Tj = 25 0 C unless otherwise specified

CHARACTERISTICS
Breakdown voltage s
Collector -base voltage
open emitter, IC = 50 mA

V(BR)CBO

>

36

V

Collector -emitter voltage
open base, IC = 50 rnA

V(BR)CEO

>

18

V

Emitter -base voltage
open collector; IE = 10 mA

V(BR)EBO

>

4

V

E
E

>
>

8
8

mWs
mWs

hFE

50
typo
10 to 120

fT

typo

650

Cc

typo
<

65
90

pF
pF

Cre

type

41

pF

C cs

type

2

pF

Transient energy
L = 25 mH; f = 50 Hz
open base
-VBE =1. 5 V; RBE =33 Q
D. C. current gain
IC

= 1 A;

VCE = 5 V

Transition frequency
IC

= 4 A;

VCE

= 10 V

Collector capacitance at f

= 1 MHz

IE = Ie = 0; VCB = 15 V
Feedback capacitance at f
IC

= 100 rnA;

VCE

= 1 MHz

= 15 V

Collector -stud capacitance

March 1971

II

MHz

II

3

-

----

BLY89A

II
7Z60094

1000

fr
(MHz I

VCE =10V

750

typ

~

r--. r-...

II

500

..... ~

" I,
1\

J
I

~

250

o
o

5

2.5

10

7.5

12.5 Ie (AI

15

7Z60093

300

IE=Ie=O

Cc
(pF )

f=1MHz '---

---,-

200

\
100

,
\
Nyp

. . . r- I-- '--

10

4

II

Vce(VI

20

II

March 1971

II

BLY89A

APPLICATION INFORMATION
R. F. performance in c. w. 0peration (unneutralised common -emitter class B circuit)
VCC

= 13.5

V; TmbUP to 25 0 C

YL (mA/V)

f(MHz)
175

213+j5.5

Test circuit
C7

+Vcc

C1
C2
C3
C5
C6
C7
C8
L1
L2
L4

=
=
=

C4

=

=
=
=
=
=

4 to 44
2 to 22
47
100
150
4 to 104
4 to 64

pF
pF
pF
pF
nF
pF
pF

film dielectric
film dielectric
ceramic
ceramic
polyester
film dielectric
film dielectric

trimmer (code number 2222 809 07008)
trimmer (code number 2222 809 07004)

trimmer (code number 2222 809 07015)
trimmer (code number 2222 809 07011)

0.5 turn enamelled Cu wire (1. 5 mm); into diam. 6 mm; leads 2 x 6 mm
choke (code number 4312 020 36640)
3.5 turns closely wound enamelled Cu wire (1.5 mm); int.diam. 6 mm;
leads 2x6 mm
1 turn enamelled Cu wire (1. 5 mm); int. diam. 6 mm; leads 2 x 6 mm

= L3 = ferroxcube
=

L5

=

R1

= 10 n

carbon

Component lay-out for 175 MHz see page 6.

May 1974

II

5

--

BLY89A

II

II

APPLICATION INFORMATION (continued)
Component lay-out and printed circuit board for 175 MHz test circuit.
....
\.I-----------106mm

----,---------.1
+Vcc

1
55mm

L-----------------------------~--------~7Z~60~5~25~

---

~

.::>

II

m

b

..

II ,," ~:.· :~.l :;.·'~: \~ .J:~. ~ t.:~ .·{~.l~.i~.l:~. :~. : .;il:

i:.~ :~. ': ~. : ~. ': .~ ;:, ~: \t\l ... : .:;. ~
•••
::
••
:::;:::.:.::.:1::
. ...

::~:~t~~~~m:~:~:~:~:rt~::

... .. .. . ..

W.l.l::.

..

.•

. . . :.\:. :.

:l.
..

7Z67868

The circuit and the components are situated on one side of the epoxy fibre -glass
board, the other side being fully metallised to serve as earth. Earth connections
are made by means of hollow rivets.

6

II

December 1973

II

BLY89A

7Z60092

f=175MHz
V =13.SV
40 cc
Tmb=25°C
~
see circuit above t-t- ~rL
~.

)

/

I typ

30

I

1/
20

10p

II

:rJ

J

(Ofo)

~·ll

10

5b

-

I'typ

1)t-t- t-

J

II
1/

J

I
1/

5

10 Ps (W)

15

=

-

The transistor has been developed for use with unstabilized supply voltages. As the
output power and drive power increase with the supply voltage, the nominal output
power must be derated in accordance with the graphs on page:S.'for safe operation at
supply voltages, other than the nominal. The graphs show the'- allowable output power under nominal conditions, as a function of the supply overvoltage ratio, with
V.S. W.R. as parameter
The upper graph applies to the situation in which the drive (PS/P Snom ) increases
linearly with supply overvoltage ratio.
The lower graph shows the derating factor to be applied when the drive (Ps/PS nom )
increases as the square of the supply overvoltage ratio (V ee/V eenom)'
Depending on the operating conditions, the appropriate derating factor maylie in the
region between the linear and the square-law functions.

March 1971

II

7

-===

BLY89A

35

II

II
7Z60096

RF. SOAR

f=175MHz
.Th=70oC
Rth mb-h=0.3 °C/W
Veenom=13.5V
PSnom=PS at"Vee =13.5V and V.S.W.R.=1
see page 5

PLnom
(WI
V.S.w.R.=1
~

25

~

....

-

....... ~

1.1
1.1

15
1.0

_V.S.W.R.=
10

-~O

Ps
PS nom

1.2
1.2

1.3
1.3

Vcc
VCCnom

35

7Z60095

R.F. SOAR

f=175MHz
Th=70oC
Rth mb-h=0.3°C /W
Vee nom =13.5 V
PSnom=PS at Vee =13.5V and V.S.w.R= 1
see page 5
1

P~nom
(W)

V.S.W.R.=1

....... 1-0...

r--.. .......

25

-.......
....... .......

1-00..

.......... ......
....... .......

V.S.~
~5

....... r-!,.O

...... .......50

..

......

I" ......

1.2
1.1

15
1.0

1.4
1.2

Ps
PS nom

~

1.6
1.3

Veenom

8

II

It

March 1971
-----.-..

-~--,

..•

II

BLY89A

II

OPERATING NOTE Below 50 MHz a base-emitter resistor of 10 Q is recommended to
This resistor must be effective for both d. c. and r. f.

avoid oscillation.

7Z67567

power gain versus frequency
(class B operation)
20

1\ \

Gp

Vee =13,5V t-~
PL=25W
Tmb=25 0 e ttypo values ~

~

(dB)

l\~

\

15

,

1\

I\,
~

10

",
""'too...

~

5

----

o
o

100

200

300
f (MHz)

7Z67569

input impedance (series components) versus frequency
(class B operation)

5

7Z67568

load impedance (parallel components) versus frequency
(class B operation)

10

Ie I
L
(pF)

RL

~xi r-- r-

"-

i"""

V

-

~'i r-- r-

~'f'"

./

o

Vee =13,5 V
PL=25W
Tmb=25 0 e
typo values

ttt-

- 1\
- ~ \.Ii L

,

5

/

-2,5

7,5

-

- ~ri

II

(Q)

-

~ i-"""

..

0

RL

J

Vee =13,5V
PL=25W
Tmb=25 0 e
typo values

I
r- r- 11

rrrr-

-5

I.

2,5

-250

v/

J
t- l[.eL
I I

o
'200

100

300
f (MHz)

December 1973

I-"'"

1/

I/x·

o

eL

..... """
/

V

I

250

II

o

100

200

300
f (MHz)

II

9

_______________Jl__

BL_Y89_C_

V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, Band e operated mobile, industrial
and military transmitters with a nominal supply voltage of 13,5 V. The transistor is resistance stabilized
and is guaranteed to withstand severe load mismatch conditions with a supply over-voltage to 16,5 V.
It has a 3/8" capstan envelope with a ceramic cap. All leads are isolated from the stud.
QUICK REFERENCE DATA

R.F. performance up to Th = 25 °e in an unneutralized common-emitter class-B circuit
mode of operation

C.w.

Vee
V

PL

Gp

1/

zi

MHz

W

dB

%

on

13,5

175

25

>6

>70

1,6

YL
mAN

+ jl,4

MECHANICAL DATA

210 + j5,5

Dimensions in mm

SOT-120

r-er

CIJ

8min (4x)

1

c

"

//1-,'

+

+--+--t-

28

26

(

,

,

, I /

'

I

~

j

b

$1_8,6J

•
•

+
3,15

5

+

fE-.

--II. . .

8-32UNC

,

..

-

9,8max

__ 4.
min

.....

28
26

Torque on nut: min

BeD
metal

min

2,6_
max

f-I I.
5,9
5,5

ceramic

__ 2 9 ..... 8,65-.,

e

-

--"-0,14

1,6 max

0,75 Nm
(7,5 kg cm)
max 0,85 Nm
(8,5 kg cm)

.

1..-

........... 11,8 ------- 7,0 max .....
7Z69881.'

Diameter of clearance hole in heatsink:
max 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not
chamfer or countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

_BL_Y89_C

_Jl_•_ __~____

RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC134)
Voltages
Collector-emitter voltage (VBE
peak value

=0)

Collector-emitter voltage (open base)
Emitter-base voltage (open collector)

VCESM

max

36 V

VCEO

max

18 V

VEBO

max

4 V

Currents
Collector current (average)

IC(AV)

max

6 A

Collector current (peak value); f> 1 MHz

ICM

max

12 A

Prf

max

73 W

Power dissipation
R.F. power dissipation (f> 1 MHz); T mb = 25 °C
7Z77106

7Z77107.1

80

(A )

,,I

7

III

ID.C. SOAR

IC

I\.

"

1

--

['I

6

',,-

5
4

"
" ,\z

3

~

"t~

"

['I

I'

" ....

60

~

t-t- ~t-~

~~r

~ ~t~

""" [,

'\

'" "

,....
I"

II

1'1

L

40

'-

2

['.

,

(\

~"

~

" ....

,~

~

"

I"

,>.

'~

~

"

-

1 l\¢;'"
~u>-t-t-r-

Ii

O'~r
I,

......o-r-

c-

-"oYo

.~.9

I

"z,/o

~

C

1";;

~~'1

1L
1
5

6

7

8 9 10

VCE (V)

20

20

o

R.F. power dissipation; VCE";;; 16,5 V; f> 1 MHz.
I Continuousd.c. operation
II Continuous r. f. operation
III Short-time operation duri'ng mismatch
---. THERMAL RESISTANCE (dissipation 20 W; T mb = 79 oC, i.e. Th

Rth j-mb(dc)

From junction to mounting base (r.f. dissipation)

Rth j-mb(rf)

From mounting base to heatsink

2

= 70 OC)

From junction to mounting base (d.c. dissipation)

~eptember 1978

(

Rth mb-h

3,1 °CIW
2,3 oCIW
0,45 0CIW

Jl

V.H.F. power transistor

CHARACTERISTICS

BLY89C

Tj = 25 0C
Breakdown voltage
Collector-emitter voltage
VBE = 0; IC = 25 mA

V(BR)CES

>

36 V

Collector-emitter voltage
open base; IC = 50 mA

V(BR)CEO

>

18 V

Emitter-base" voltage
open collector; IE

V(BR)EBO

>

4 V

ICES

<

10 mA

E
E

>
>

hFE

typ
50
10 to 80

VCEsat

typ

f-r
f-r

typ
typ

800 MHz
750 MHz

typ

<

65 pF
90 pF

Cre

typ

41 pF

Ccs

typ

2 pF

= 10 mA

Collector cut-off current
VBE = 0; VCE = 18 V
Transient energy
L = 25 mH; f = 50 Hz
open base
-VBE = 1,5 V; RBE = 33

n

8 mWs
8 mWs

D.C. current gain*
IC

= 2,5 A; VCE = 5 V

--

Collector-emitter saturation voltage*
IC= 7,5 A; IB= 1,5A

1,7 V

Transition frequency at f = 100 MHz*
IC = 2,5 A; VCE = 13,5 V
IC = 7,5 A; VCE = 13,5 V
Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 15 V

Cc

Feedback' capacitance at f = 1 MHz
IC = 100 mA; VCE = 15 V
Collector-stud capacitance

* Measured under pulse conditions: tp E;;; 200 JlS; l) E;;; 0,02.

'I (

May 1977

3

_B_LY8_9C

_Jl"---_______
7Z77108

100

7Z77111

300

IE=le=O

typ values
T = 2'5 °c
J

f = 1 MHz

Cc
(pF )

200

75

t-

1/

I\.

1"-"
....... t-.,.

50

r- r--.",

'V
,

\,

VCE =
13,5 V
I

\.

f'
100

"' 5V

~yp

"'r-....

25

-

o
o

-

5

10

IC(A)

o
o

15

--

~

10

20

7Z77112

1000

VCE = 13,5 V
f=100MHz
Tj = 25°C

typ
fT
(MHz)

!,....II"

-r- t-- .....

~

500

o

4

t-.....
....... ,...".

1/

o

l"-

5

'"

10

1\

"

~

IC(A)

15

Jl____

B_L_y_8_9_C____

__V_.H_.F_.p_ow_er_tr_an_sis_to_r____________________

APPLICATION INFORMATION
R.F. performance in C.w. operation (unneutralized common-emitter class-8 circuit)
Th

= 25 °c

f (MHz)
175
175

IC(A)
<2,64

17 (%)

YL(mA/v)

>

210 + j5,5

70
typ 75

Test circuit for 175 MHz

50 n

C8

o--+t-.~

--

7Z77104

List of components:
C1 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222 809 07004)
C2 = C8 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
C3a = C3b = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor
C5 = 100 n F polyester capacitor
C6a = C6b = 8,2 pF ceramic capacitor (500 V)
C7 = 5 to 60 pF film dielectric trimmer (cat. no. 2222 809 07011)
L1
L2
L3
L4
L6
L7

= 1 turn enamelled Cu wire (1,6 mm); into dia. 9,0 mm; leads 2 x 5 mm
== 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm; leads 2

= L8 = Ferroxcube choke coil

x 5 mm

(cat. no. 4312 020 36640)
= L5 = strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
= 2 turns enamelled Cu wire (1,6 mm); into dia. 5,0 mm; length 6,0 mm; leads 2 x 5 mm
= 2 turns enamelled Cu wire (1,6 mm); into dia. 4,5 mm; length 6,0 mm; leads 2 x 5 mm

L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
R1 = 10 n (± 10%) carbon resistor
R2 = 4,7 n (± 5%) carb.on resistor
Component layout and printed-circuit board for 175 MHz test circuit on page 6.

May 1977

5

_B_LY89_C

_J

l""---___________

APPLICATION INFORMATION (continued)

Component layout and printed-circuit board for 175 MHz test circuit.

72

7Z77102

---

7Z77103

The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are m~de by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets .

•

6

~y1977 ~

(

V'_H'_F._~_we_rt_ra_nSi_sto_r

___

jl____

B_L_Y_89_C____

____________________

7Z77110

40

~t-

PL

./

(W)

/

/

30

~",..

..

/

I.~'

T~J-

100

10

...

~

typical values
---Vee = 13,5 V
f=175MHz
---Vee
= 12,5 V
Th = 25 °e

25 0 e'-

/~ ~
,~

-I--G p •

Th = 70 °e

Gp

~.

r... ........
I"""

.... ....

(dB)

~

20

7Z77109

- - - Vee = 13,5 V
- - - Vee = 12,5 V

typical values
f= 175 MHz

'(,

..
"..

.....

/4
fI

........~

..... I"""i

i""'"

...

";"1-'

5

TJ

~"""

......

Tl_ (%)

....
I'

50

J.

Ii

10

I'

I

L
5

10

PS(W)15

--

o

40

20

7Z77105

R.F. SOAR

40

Conditions for R.F. SOAR

PLno m

(W )
VSWR = 1

30

VSWR -=10-I-- t--50- r- I--

-

r--.

20

10

~PSnom -

o
1,0

1,1

1,2

Vee

f= 175 MHz
Th = 70 °e
Rth mb-h = 0,45 °e/W
VeCnom = 13,5 V
Ps = PS nom at Veenom
see page 5

= 13,5 V and VSWR = 1

The transistor has been developed for use with
unstabilized supply voltages. As the output
power and drive power increase with the supply
voltage, the nominal output power must be
derated in accordance with the graph for safe
operation at supply voltages other than the
nominal. The graph,shows the permissible output
power under nominal conditions (VSWR = 1), as a
function of the expected supply over-voltage ratio
witb VSWR as parameter.
The graph applies to the situation in which the
drive (PS/PS nom ) increases linearly with supply
over-voltage ratio.

Veenom

I(

May 1977

7

_B_LY89_C

_Jl________

OPERATING NOTE Below 50 MHz a base-emitter resistor of 10 n is recommended to avoid
oscillation. This resistor must be effective for r. f. only.
7Z67567

power gain versus frequency
(class-B operation)

20

,

\

Gp
(dB)

\

1\

~

Measuring conditions for the graphs
on this page

\

15

\

Vee = 13,5 V
PL = 25 W

,

°e

Th = 25
typical values

L\
I\.

10

" ....

~

"- -

5

---

o
o

100

200

f (MHz)

300

7Z67569

7Z67568

input impedance (series components)
versus frequency (class- B operation)

load impedance (parallel components)
versus frequency (class- B operation)

5

(
f--

ilri

~ ~i- I--

\

-

V
~

o

'"

-

7,5

250

!

II

fi- I-- -

r- ~ RL

,

~

/

5

/

CL

~

j

V

250

fl

1

I-- t- II

8

o

L

2,5

I

o

....

1

'x·

-5

",' ...........
RL

1/

II/
-2,5

.....
/

- ~CL1
100

200

f (MHz)

300

o

0

100

200

f (MHz)

300

500

__________Jl__

B_LY90_

V.H.F. POWER TRANSISTOR

N-P-N epitaxial planar transistor intended for use in class-A, Band e operated mobile, industrial and
military transmitters with a supply voltage of 12,5 V. The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions with a supply over-voltage to 15 V. It has a
plastic encapsulated stripline package. All leads are isolated from the stud.
QUICK REFERENCE DATA
R.F. performance up to Th = 25 °e in an unneutralized common-emitter class-B circuit
mode of operation VeE
V
c.w.

12,5

f
MHz
175

Ps
W
< 15,8

PL
W
50

Ie
A

Gp

f/

dB

%

<5,33 >5,0 >75

-

Zi

YL
mAN

n
1,3 + j1,6

MECHANICAL DATA

270 + j170

Dimensions in mm

Fig. 1 SOT-55.

"

-

0.28_ _
0,23
11

16,1
max

~

5,5

+

(I JJ

1r
1

21
I

~

14

b

e

..
..

LS,2J
5,8
21
27,2
26,8

_13'5_l5~ __
12,5

max

0,25
max

7258786.2

When locking is required an adhesive is preferred instead of a lock washer.
Torque on nut: min. 2,3 Nm
(23 kg cm)
max. 2,7 Nm
(27 kg cm)

Diameter of clearance hole in heatsink: max. 6,5 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer
or countersink either end of hole.
September 1978

---

II

BLY90

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Collector -base voltage (open emitter)
peak value

VCBOM

max.

36

V

Collector-emitter voltage (open base)

VCEO

max.

18

V

Emitter -base voltage (open collector)

VEBO

max.

4

V

Collector current (average)

IC(AV)

max.

8

A

Collector current (peak value) f > 1 MHz

ICM

max.

20

A

Ptot

max.

130

w

Currents

Power dissipation
Total power dissipation up to T mb = 25 0 C
f> 1 MHz
7Z62040

150

'1ot

7Z620'42

VCE E15V
short time
~~
f >1MHz
- operation -I--l'i.l~ ~
V.S.W.R.> 3
~ ':'17..]$

~

(WI

~~~':'I1

7..]

100

D.C. SOAR

Th=25°C

Ic

I"o.~

(AI

I "/If;

10

""~",I
0.

36

V

Collector -emitter voltage
open ba se, IC = 100 rnA

V(BR)CEO >

18

V

Emitter -base voltage
open collector, IE = 25 rnA

V(BR)EBO

>

4

V

E
E

>
>

8
8

mWs
mWs

hFE

>
typo

10
50

fT

typo

550

MHz

Cc

typo
<

130
160

pF
pF

Cre

typo

82

pF

Ccs

typo

3.5

pF

Transient energy
L

= 25 mH; f = 50 Hz
open base
-VBE = 1.5V; RBE

= 33Q

D. C. current gain
IC

= 1 A;

VC E

=5 V

Transition frequency
IC

= 6 A;

VCE

= 10 V

Collector c~citance at f
IE

= 1 MHz

= Ie = 0; V CB = 15 V

Feedback capacitance
IC

= 200 rnA;

VCE

= 15 V

Collector -stud capacitance

Jtme 1971

II

II

3

---

BLY90

II
7Z62045

800

fr

VCE= 10V

(MHz)

600

typ
~~

I'

-r--

400

200

o
a

5

12.5

10

7.5

Ic (A) 15

, ,, ,

7Z62044

600

, I I ,

f=1 MHz
IE=I,,= 0

Cc

1-1--

(pF)

400 1
\

1

1\

\
\.

200

""-

~

~typ

r-i"-oo

oa

4

II

10

Vee (V)

20

II

JlIDe

1971

II

II

BLY90

APPLICATION INFORMATION
R. F. performance in c. w. operation (unneutralized common -emitter class-B circuit)
f::::: 175 MHz; Th up to 25 °C
v cc (V)

12,5

I
I

Ps (W)

50

< 15,8

IC (A)

Gp (dB)

< 5, 33

>5,0

zi (Q)
> 75

1, 3 + j 1, 6

1

YL 12 >65 1. 8+jO. 7

18- j20

Dimensions in mm

MECHANICAL DATA

SOT-48

_ _ 0,147
0,107

o
6,Smin(4x)

-1141,6 max

B-32UNC

1

I

.

, L

plastic

2Smin

j

~b

e

....13,71.-- 9,75 max
-2Smin

+-

-

Torque on nut: min. 7.5 kg cm
(0. 75 Newton metres)
max. 8.5 kg cm
(0.85 Newton metres)

Diameter of clearance hole in heats ink: max.
4.17 mm
Mounting hole to have no burrs ateither end
De-burring must leave surface flat; do not
chamfer or countersink either end of hole.

When locking is required, an adhesive instead of a lock washer is preferred.

May 1974

II

II

1

---

---

BlY91A

II

RATINGS Limiting values inaccordance:withtheAbsolute Maximum System (IEC 134)
Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

max.

65

V
V

Collector-emitter voltage (open base)

VCEO

max.

36

Emitter-base voltage (open collector)

VEBO

max.

4

V

Collector current (average)

lC(AV)

max.

0.75

A

Collector current (peak value) f> 1 MHz

lCM

max.

2.25

A

max.

17.5

w

Currents

Power dissipation
Total power dissipation up to Th

= 25 °c

f> 1 MHz
7Z60949

I Th= 25°C

D.C. SOAR I

Ic

7Z609S0

,

(A )

0.7

\

0.6

0.5

.
~ ~-+fVCEE28V
Ishort ~Ime- ~
f > 1MHz
operation - -.- ~ Y.9.1 I
V.S.W.~.>?
"IIiii '''1(0T

20

\

=~S-~

-I-

\

~~€

15

,~

'6/

~~~

\\

0.3

~ ~~I-I- I-

~'I';

\

0;4

"" '6''/0

I

~~

\

0.2

"'"

10

,

l - I-l -I--

normal operation
V.S.W.R.<3

5

20

30

40

VCE (VI

0
100 Th (OC) 150

50

0

Temperatures
Storage temperature

T stg

-30 to +200

°c

Operating junction temperature

Tj

max.

200

°c

TJ:lERMAL RESISTANCE
From junction to mounting base

Rth j-mb

9.4

°C/W

From mounting base to heats ink

Rth mb-h

0.6

°C/W

2

II

II

April 1971

BLY91A

II

II
Tj

CHARACfERISTICS

= 25°C unless otherwise specified

Collector cut-off current

= 0; VCE = 28 V

I CEO

<

5

Collector-base voltage
open emitter; IC = 1 rnA

V(BR)CBO

>

65

V

Collector-emitter voltage
open base, IC = 10 rnA

V(BR)CEO

>

36

V

Emitter-base voltage
open collector; IE = 1 rnA

V(BR)EBO

>

4

V

E
E

>
>

0 . .5
0.5

hFE

>

5

fT

typo

500

Cc

typo
<

10
15

pF
pF

IC = 50 rnA; VCE = 30 V

Cre

typo

7.5

pF

Collector-stud capacitance

C cs

typo

2

pF

IB

rnA

Breakdown voltages

Transient energy
L = 25 mH; f

= 50 Hz
open base
- VBE = 1. 5 V; R BE = 33 Q

D. C. current

~in

IC = 500 rnA; VCE = 5 V
Transition

mWs
mWs

--

frequenc~

Ie = 400 rnA; VCE

= 20 V

MHz

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB

= 30

V

Feedback capacitance at f = 1 MHz

April 1971

II

II

3

--

BLY91A

II
7Z60951

600

I I I I
J I J I

VCE =20V r -

f1
(MHz)

"",I"'"

~

400

typ

.....

"-

~

"-

~

~

,
.,
200

o
o

Ic(AI

1.5

0.5

2

7Z60946
\

\
20

IE=I.=O rf=1MHz

~

\

Cc

,

(pFI

~.

~

15

/

I'-

/

I"- typ
............
1""""
........... 1'-.

10

5

o

o

4

II

10

20 Vce(VI

30

II

April 1971

II

II

BLY91A

APPLICATION INFORMATION
R. F. performance in c. w. operation (unneutralised common -emitter class B circuit)
VCC

= 28 V; Tmb up to 25 °c

YL

f(MHz)

(rnA/V)

18- j20

175
Test circuit

50n

son
C7
C2

+vee

7Z60953

Cl
C2
C3
C4
C5
L1
L2

=
2.5 to 20 pF film dielectric trimmer (code number 2222 809 07004)
= C6 = C7 = 4 to 40 pF film dielectric trimmer (code number 2222 809 07008)
=
47 pF ceramic

=
=

100 pF ceramic
150 nF polyester

= 0.5 turn enamelled Cu wire

L3
L4
L5
L7

(1. 5 mm); into diam. 6 mm; leads 2 x 10 mm
turns closely wound enamelled Cu wire (0. 7 mm); into diam. 4 mm;
leads 2 x 5 mm
= L6 =ferroxcube choke (code number 4312 020 36640)
= 7.5 turns enamelled Cu wire (0. 7 mm); into diam. 4 mm; leads 2 x 5 mm
= 4.5 turns enamelled Cu wire (0.7 mm); into diam. 6 mm; leads 2 x 7 mm
= 3.5 turns enamelled Cu wire (0.7 mm); into diam. 6 mm; leads 2 x 7 mm

R1

= R2 = 10 Q

= 6.5

carbon

Component lay-out for 175 MHz test circuit see page 6.

May 1974

II

II

5

-----

II

BLY91A

APPLICATION INFORMATION

(continued)

Component lay-out and printed circuit board for 175 MHz test circuit.
1.....---~------106mm-------------~

c:=::::::>

L1

C2

c~
7Z60952

·:::j::~:::~:~~:~:~:~:l:~;~::~:::::

~ ~\~t\ I~\:

:.~ :.·, ~:·. 1 :.I·~: (~: :
..
::.:1:
....

..
::.:j.::.::.:I:.:·.:I:
..

II

W
:1111111

::,I:
..
..
::.:'::.::...
::.:.\:
1: ..
:::1:.:'...:::.:
\:

\lllll\::::: : : :

:.~ .~: \:~. :;.~ :·.~ : .~: ~.: ~.: ~. .:~ :.~ : ~.:
..::l. .

:·:1::..
:1......:1.::..:1..

...

<
::."
::::ftt::::::::

.

...:.:.:.:..

....

<::-

..:.:...::
.....:.1.:.:1
. ...: 1:.: \.:.:.:1: .:'.1.:.:'.\": .:1.:..:1::..::.

::.::

~I\ 1 1 \ \ ~

{I::::::::::::::::::::::::}.:· :. ·.: :. : .: :. :.'[ :; \.: .:' .

:'.1.: .: .: : : : ': :.:': ': :.:': .:.: :': .:.: : :.\

11

.lllliI111\11111\111\\\1111 11\\:

':::::::::"":':::':'

:;:;:
7267868

The circuit and the components are situated on one side of the epoxy fibre-glass
board, the other side being fully metallised t? serve as earth. Earth connections
are made by means of hollow rivets.

6

II

II

December 1973

II

II
ZlO947

15

BLY91A

7Z60948

1I

R.F SOAR

10

f=175MHz

ITh=25OC
I-

see page 5

Vee= 28V
f= 175MHz
Rth mb-h=o.SoC/W

/typ
/
~

7.5

10

'f'

Th =50oC

II' Vcc=28V

70°C

/

good ~

I

5

I

I

I-'2.5

5

J

I

o
o

o
0.25

0.50

Ps (WI 0.75

1

10 V.S.W.R. 50

For high voltage operation, a stabilized
power supply is generally used.
The graph shows the allowable output
power under nominal conditions as a
function of the V. S • W • R., with heatsink temperature as parameter.

April 1971

II

II

7

--

BLY91A

II

I

OPERATING NOTE Below 100 MHz a base-emitter resistor of 10 n is recommended to
avoid oscillation. This resistor must be effective for both d.c. and r.f.
7Z68946

30

power gain versus frequency
(class B operation)
J ILl I J

""'"

20

-~

Vee = 28 V r-tf-fPL = 8 W
f-tTmb = 25 °e - f typo values -I-

" ,1\

,
'\.
!I...

'"

10

I'.

" ...

....

-o

o

200
7Z68947

15

f(MHz)

7Z68948

150

load impedance (parallel components) versus frequency
(class B operation)

input impedance (series components) versus frequency
(class B operation)

,

,

t-t- Vee = 28 V
f-I- PL = 8 W .
10 f-f1-1- Tmb = 25 °e
f-I- typo values

~-:r-

i"""
JI~

:.,..1"'"

".

I/'

1\
\

,
\

0

,

-5

,
,

,

I
'I

50

I

I

1\

I

-10

....

~

e

I~

~i

,

o

200

II

f (MHz)

400

CL
(pF)

1,\11

J

,

-20

/

J
II

I

Li"

1\
x~\ ~
i\
1/
5

8

100

,~~,

L"oooi"""
i...oo"~

R~

(Q)

i.I"

o

"""""""5
xi

~~

1
I I

'xl-t-

~

~q

,

,,

I

I I I I

400

o

I
I
I I

o

" '"

I I

....

RL

...

-

-40
Vee = 28 V --PL = 8 W
Tmb = 25 °e f-typo values 1--

--

I I
I I

200

II

I I I I
I I JJ

f (MHz)

400

May 1974

______~_jl_BL_Y91_C_
V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated h.f. and v.h.f.
transmitters with a nominal supply voltage of 28 V. The transistor is resistance stabilized and is guaranteed to withstand severe load mismatch conditions.
It has a 3/8" capstan envelope with a ceramic cap. All leads are isolated from the stud.
QUICK REFERENCE DATA

R.F. performance up to Th = 25 °C in an unneutralized common-emitter class-B circuit.
mode of operation

VCE
V

zi

YL

W

Gp
dB

'T1

MHz

%

n

mAN

28

175

8

> 12

>65

1,8 + jO,7

18 - j20

c.w.

PL

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-120.

t

I

e
'8min (4x)
c

/,..-:--1-,
(

2B
26

,

. _~_

\

t--+--t,
'
I

~

, I /
~

b

I

j

•

3,15

5

~

4-

' I
8,6 __

+

-'1' -

8-32UNC

8:4
max

_

·~-+---+2-9+,,--8-'6-.5-_- +ln!
'

__ 4
min
~

Torque on nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kg cm)

BeQ

metal

2,6_
max

28
26

i

. min

5,9
5,5

9,8 max

ceramic

L

J I.

-

-'-4-0,14

1,6 max

e

4

--

• :EE-.

CIJ •
•
~'

r-----

---11,8 -

L-

7,0 max --

~

7Z69881.1

Diameter of clearance hole in heatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.

Ir

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

May 1975

_B_LY9_1C

_Jl_______

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-emitter voltage (VBE = 0)
peak value

V CESM

max.

65 V

Collector-emitter voltage (open base)

VCEO

max.

36 V

Emitter-base voltage (open collector)

VEBO

max.

4 V

Collector current (average)

IC(AV)

max.

Collector current (peak value); f> 1 MHz

ICM

max.

0,9 A
2,5 A

R.F. power dissipation (f> 1 MHz); T mb = 25 0C

max.

20 W

Storage temperature

Prf
T stg

Operating junction temperature

Tj

max.

7Z77741

-65 to + 150 °C
200 °C

7Z77723

30
Prf
(W)
I....

~

--

1\
\

\

IC
(A)

T b= 25
/m

°c

20

V

\

r-.

, 1\,

1\
/

0,5

Th = 70

"

YO

*

I....

CE

o

50

= 70 OC)

From junction to mounting base (d.c. dissipation)

Rth j-mb(dc)

From junction to mounting base (r.t. dissipation)

Rth j-mb(rt)

From mounting base to heatsink

Rthmb-h

19781 (

100

Fig. 3 R.F. power dissipation; V CE ~ 28 V;
f> 1 MHz.
I Continuous d.c operation
II Continuous r.f. operation
III Short-time operation during mismatch

THERMAL RESISTANCE (dissipation = 8 W; T mb = 73,6 oC, i.e. Th

May

I....

I'"

I

(V) 40

"

I""\"

.........

30 V

~

J
"<>
I!!o." q,
11.-/0 t - t-t"'I'~oc-~~ C' - t-t-

. 10

Fig. 2 D.C. SOAR.

2

~~'~6

I.....

~

o
20

"

O'~r

I'. l\

I....... ~

I"

I

r'

o
10

N

I'

[\.

~

~

II

A,\ 1\,

°c

......

III

10,7 oCIW

8,6 °C/W
0,45 oCIW

Jl

V.H.F. power transistor

CHARACTE RISTICS

BLY91C

Tj = 25 0C
Collector-emitter breakdown voltage
VBE = 0; Ie = 2 mA

V(BR)CES

>

65 V

Collector-emitter breakdown voltage
open base; IC = 10 mA

V(BR)CEO

>

36 V

Emitter-base breakdown voltage
open collector; IE = 1 mA

V(BR)EBO

>

4 V

Collector cut-off current
VBE = 0; VCE = 36 V

ICES

<

Second breakdown energy; L = 25 mH; f = 50 Hz
open base
RBE = 10 n

ESBO
ESBR

>
>

D.C. current gain *
IC = 0,4 A; VCE = 5 V

hFE

Collector-emitter saturation voltage*
IC = 1,25 A; IB = 0,25 A

VeEsat

typo

Transition frequency at f = 100 MHz*
-IE = 0,4 A; VCB = 28 V
-IE = 1,25 A; VCB = 28 V

fT
fT

typo
typo

600 MHz
525 MHz

Collector capacitance at f= 1 MHz
IE = Ie = 0; VCB = 28 V

Cc

typo

10 pF

Cre
Ccs

typo

7,1 pF

typo

2 pF

Feedback capacitance at f = 1 MHz
Ie = 50 mA; VCE = 28 V
Collector-stud capacitance

* Measured under pulse conditions: tp :s;;;; 200 IlS; [) :s;;;; 0,02.

mA

0,5 mJ
0,5 mJ

typo

50
10 to 100

I(

0,8 V

May 1978

--

3

Jl_________

_B_LY9_1C_____

7Z77742

7Z77743

100

40

Cc
(pF)

75

30

r- ~

i.oo"'"

1/
50

'I

.1

1
V CE =28V r- ~

r- r--.

""",,100"'"

J

-

l~

20

.... ~

"-

5V

.... ro-....

typ

-"'t"--~

--

o

l - I""'- t....

10

25

o

o

0,5

IC (A)

1,5

Fig.4 Typical values; Tj = 25 DC.

o

""'"

10

20 V
(V) 30
CB
Fig. 5 IE = Ie = 0; f = 1 MHz; Tj = 25 DC.
7Z77744

1000

fT
(MHz)

,;"
~"

500

..,..

~

r- ~ ~

/~~

VCB
28V
i""oiIO 20V -

h

l
/1

'I

I

o

o

Fig. 6 Typical values; f

4

1,5

0,5

May 1978 ' [ (

= 100 MHz; Tj = 2~ DC.

Jl- - BLY91C

V.H.F. power transistor

----------'
APPLICATION INFORMATION

R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25 °C

fIMH~CEIV)
175

PL (W)

28

8

Ps (W)
<0,5

Gp (dB)

IC (A)

1/(%)

Zj (n)

> 12

<0,44

>65

1,8 + jO,7

I
I

YL (mAN)
18 - j20

C6

L5

50n
C7

50n

C5

R2

~

7Z71761

----

Fig. 7 Test circuit; c.w. Class-B.
List of components:
Cl
C2
C3
C4
C5
C7

C6 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222809 07004)
5to 60 pF film dielectric trimmer (cat. no. 222280907011)
47 pF ceramic capacitor (500 V)
120 pF ceramic capacitor
= 100 nF polyester capacitor
= 4 to 40 pF film dielectric trimmer (cat. no. 222280907008)
=
=
=
=

L1 =
L2 =
L3 =
L4 =
L6 =
L7 =

1 turn Cu wire (1,6 mm); into dia. 8,4 mm; leads 2 x 5 mm
100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm
L8 = Ferroxcube choke coil (cat. no. 431202036640)
L5 = strip (12 mm x 6 mm); tap for C3 at 5 mm from transistor
6 turns enamelled Cu wire (1,0 mm); into dia. 9,0 mm; len!1th 9,2 mm; leads 2 x 5 mm
4 turns enamelled Cu wire (1,0 mm); into dia. 8,2 mm; length 5,0 mm; leads 2 x 5 mm

L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
R1 = 10 n carbon resistor
R2 = 4,7 n carbon resistor
Component layout and printed-circuit board for 175 MHz test circuit see Fig. 8.

I(

May 1978

5

---,J l"""---_ _ _- - -

_B_LY9_1C

7Z78434

--

7278435

Fig. 8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

6

M~1978~(

,J~_____

B_LY_9_1_C_____

___
v_.H_.F_.p_ow_e_rt_rn_nsl_.sro_r_______________________

7Z77745

15

7Z77746

15

'-I-G
-r-

p

~

-..;;;:

....

"

Gp
(dB )

~

.....
~
~

Th = -1'0. 250C -

Th=250C
1/

10

, "
V

70 °c

70°C 1---

10

100

~

1/

1/

1/

Th=

'f'
~~

11'

5

5

I'

--

T/ ~ ....

--

=

-f--

25°C

1/

(%)

70°C
50

IL

"

J
I

o

o
o

0,5

P

s (W)

Fig. 9 Typical values; VCE = 28 V;
f = 175 MHz.

o

o
10

--

20

Fig. 10 Typical values; VCE = 28 V;
f = 175 MHz.

7Z77747

11
I

PLn om
(W )
(VSW R=1)
10

"
'\

Th=
50 ° C

i'

'"

['.

70 ° C

'\..

":"

8

Fig. 11 R.F. SOAR; c.w. class-B operation;
f = 175 MHz; VCE = 28 V; Rth mb-h = 0,45 oCIw.
The graph shows the permissible output power
under nominal conditions (VSWR = 1) as a function of the expected VSWR during short-time
mismatch conditions with heatsink temperatures
as parameter.

... 90 ° C

7
1

10

VSWR

May 1978

7

_B_LY9_1C

_Jl",,---,_ _ _ _ _ __
7Z68947

15

7Z68948

150

I
CL

RL
(n)

(n)

10
1.;0

,""

,'"

Xi
i--'

i..-'

,

-5

,

........

-

"
20

J

i.-

1\

I
,,"II

I
1

50

"- .....

Ri..

-

~
~

I

-10

-

I"""

o

CL

ri
I

I

200

f (MHz)

o

400

Fig. 12 Input impedance (series components).

I
I
I

o

60
200

f (MHz)

400

Fig. 13 Load impedance (parallel ~omponents).

7Z68946

30

Gp

Conditions for Figs 12, 13 and 14.

(dB)

Typical values; VCE = 28 V; PL = 8 W;
Th = 25 °C.

20

1- ....

"'-

OPERATING NOTE

,\

,

Below 100 M Hz a base-emitter resistor of
10 n is recommended to avoid oscillation.
This resistor must be effective for r.f. only.

\.

'" ""

~

......

10

I ....

r--..
I'

o

o

200
Fig. 14.

8

40

I

~

o

\

'I

I} ,

\

---

/I'"

~

1/

.,.

x ~,

5

ioI'"

RL
1\

0

io"'"

1\

100

....

(n)

io""'"

ri

5
xi

o

May 1978

~

(

t (MHz)

.....

,

400

II

BLY92A

V.H.F. POWER TRANSISTOR
N-P-N epitaxial planar transistor intended for use in class A, Band C operated·
mobile, industrial and military transmitters with a supply voltage of 28 V. The
transistor is resistance stabilized. Every transistor is tested under severe load
mismatch conditions. It has a itt capstan envelope with a moulded cap. All leads
are isolated from the stud.

QUICK REFERENCE DATA
R. F. performance up to T mb

= 25

0C in an unneutralised c0IIl:mon -emitter
class B circuit

_ _ 0,147
\ 0,107
1,6 max

o6,5min (4x)

-11--

8-32UNC

1

I

+ '

L

.

plastic

L+=~~~I

25min'

j ~b

•

_;;'ol.~

--/3,71..-- 9,75 max --25min -

726660B

metal

.... 3,01
2,7
_ 5,75 _
max

When locking is required, an adhesive instead of a lock washer is preferred.
Torque on nut: min. 0.75 Nm
(7.5 kg cm)
max. 0.85 Nm
(8.5 kg cm)

May 1974

II

Diameter of clearance hole in heatsink: max.
4.17 mm.
Mountinghole to have no burrs at either end.
De-burring must leave surface flat: do not
chamfer or countersink either end of hole.

II

1

BLY92A

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Collector-base voltage (open emitter)
peak value

VCBOM

max.

65

V

Collector-emitter voltage (open base)

VCEO

max.

36

V

Emitter-base voltage (open collector)

VEBO

max.

4

V

Collector current (average)

IC(AV)

max.

1.5

A

Collector current (peak value) f > "1 MHz

ICM

max.

4.5

A

Ptot

max.

32

W

Currents

Power dissipation
Total power dissipation'up to Th

= 25 °c

f> 1 MHz
7Z60966

VCE~28V

-

--

40
Ptot
(WI

~

f >1MHz

short time ~/,. ,I
I
operation
~o/"
I
V.S.W.R.>3 r- ,.~:,.9'tlO
f-r--.p
~ '6'/0
~i-",l',,/,. ,
,
O'~
11~
I\. 11",9.

30

7Z60964

D.C. SOAR

Th=25°C

f-

Ie
(A)

10

"'" ·0

~.I0

~~
I'\.

20

,
\

operation
r- r- normal
V.S.W.R.<3

,

10

\

o
o

50

10

,
10 2

VeE (VI

Temperatures
Storage temperature

T stg

-30 to +200

°C

Operating junction temperature

Tj

max.

200

°c

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

4.9

°C/W

From mounting base to heats ink

Rth mb-h

0.6

°C/W

2

11

II

April 1971

II
CHARACTERISTICS

Tj = 25

°c

BLY92A

unless otherwise specified

Collector cut-off current
ICEO

<

10

rnA

Collector-base voltage
open emitter, IC = 3 rnA

V(BR)CBO

>

65

V

Collector-emitter voltage
open base, IC = 25 rnA

V(BR)CEO

>

36

V

Emitter-base voltage
open collector; IE = 3 rnA

V(BR)EBO

>

4

V

E
E

>
>

2.0
4.5

hFE

>

5

fT

typo

500

Cc

typo

<

20
30

pF
pF

Cre

typo

15

pF

Ccs

typo

2

pF

IB = 0; VCE = 28 V
Breakdown voltages

Transient energx
L = 25 mH; f =50 Hz
open base
-VBE = 1.5

V;RBE=33~

mWs
mWs

D. C. current gain

IC = 500 rnA; VCE = 5 V
Transition

fre9.uenc~

IC = 600 rnA; VCE = 20 V

MHz

Collector caEacitance at f = 1 MHz
IE = Ie = 0; VCB = 30 V
Feedback caEacitance at f = 1 MHz
IC = 100 rnA; VCE = 30 V
Collector-stud caEacitance

April 1971

II

II

3

--

BLY92A

II
7Z10917

600

I I I I
I I I I

VeE -20V

f1
(MHz)

,

....

~

~

typ

~

I""

J
II

400

I-

"

I"

200

--

0
2

0

3

lc(A)

4

7Z60963

50

lE=Ie=O
f=1MHz

1\

-

\
\

Cc
(pF)

l

40

,

1\

1\
30

\. typ

\.
~

i' ...
20

10

4

II

o

10

I'

r--. ....

20 Vce (V)

30

II

April 1971

Jl____

B_L_Y_92_A____

__V_.H_.F_.p_ow_er_tr_ans_irt_or_____________________

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
VCE = 28 V; T mb up to 25 °C
f (MHz)

I
I

175

Ps (W)

PL (W)

IC(A)

Gp (dB)

11 (%)

Ii (U)

YL (mAN)

< 1,5

15

<0,83

> 10

>65

1,4 + j1,85.

33 - j27,5

Test circuit: 175 MHz; C.w. class-B.

50050n

-C1 = 2,5 to 20 pF film dielectric trimmer (cat. no. 222280907004)
C2 = C6 = C7 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
C3 = 47 pF ceramic capacitor
C4 = 100 pf ceramic capacitor
C5 = 150 nF polyester capacitor
L 1 = 0,5 turn enamelled Cu wire (1,6 mm); into dia. 6 mm; leads 2 x 10 mm
L2 = 6,5 turns closely wound enamelled Cu wire (0,7 mm); into dia. 4 mm; leads 2 x 5 mm
L3 = L5 = Ferroxcube wide-band h. f. choke, grade 3B (cat. no. 4312 020 36640)
L4 = 2,5 turns enamelled Cu wire (0,7 mm); into dia. 6 mm; leads 2 x 7 mm
L6 = 4,5 turns enamelled Cu wire (0,7 mm); into dia. 6 mm; leads 2· x 7 mm
R 1 = R2

= 1Q n carbon resistor

Component layout and printed-circuit board for 175 MHz test circuit see page 6.

September 1978

5

BLY92A

II

APPLICATION INFORMATION

(continued)

Component lay-out and printed circuit board for 175 MHz test circuit.
,.....I - - - - - - - - - - - ' 1 0 6 m m - - - - - - - - - - .

E3
L5
C6
7Z60952

--=
-

::~:~~~;~~~~~~:~:ft~;t~::

~:.~.:;:':.~;.::.'.;:~ ..;~: ..:;:~' II w." 1-- :,.! :.( !:(.: ~.: ~: ~.: l ;.:
II
.
¥.&

.:.: .:

..
:l.:::.:l.::
..
:l:.:::I:.:.·.j...

W:: ·un

7Z67868

The circuit and the components are situated on one side of the epoxy fibre-glass
board, the other side being fully metallised to serve as earth. Earth connections
are made by means of hollow rivets.

6

II

II

December 1973

II
7Z60962

30

BLY92A

7Z60965

II

R.F. SOAR
20

~
~

f=175MHz
Th=25°e
see page 5

I

-~

Vee= 28V
f=175MHz
Rth mb-h=0.6°e/W

7 t~p

1/
15

J
If

V~c=28V

20

J

I-Th=50~e

r--- ,ooe

/
10

-

J
'I
5

90°C

I
10

I

o

o
o

2

Ps(W)

3

1

10 V.S.W.R. 50

For high voltage operation, a stabilized
power supply is generally used.
The graph shows the allowable output
power under nominal conditions as a
function of the V. S •W • R., with heatsink temperature as parameter.

April· 1971

II

II

7

-----

II

BLY92A

OPERATING NOTE Below 100 MHz a base-emitter resistor of 10 n is recommended to
avoid oscillation. This resistor must be effective for both d.c. and r.f.
7Z68949

30

power gain versus frequency
(class B operation)
I I
I I I I
I I
I I I

Vee = 28 V
PL = 15 W
Tmb = 25 °e

~

I'

20

typo values

"

I-t-

1-11-11-11-1-

\
~

"

10

"'" .....

"

-o

o

200
7Z689S0

input impedance (series components) versus frequency
(class B operation)

5

\

,

---',

I'

o

L

1/

RL

/

..... ~-

1

6L
(pF)
I L

II

I I

-50

II
1\11

40

--'-

"'

11

j

Vee = 28 V I-PL = 15 W I-Tmb = 25 °e I--

1/
'I

l
x. J

typo values

I
LI

200

II

f (MHz)

300

RL
.... 1-...

"""

-100

J'
20

100

I\.
~

J

I--

~I

8

~

II

\

If

o

....

Ll
I I

1\

1/

-5

values

I I

CL

~

ri

,J

-2,5

typo

60

I I

= 28 V

I-r- PL = 15 W
I-r- Tmb= 25 °e
-I-

L

\

vee

1-1-

/

I

7Z689S1

load impedance (parallel com·
ponents) versus frequency
(class B operation)

y
!

400

80

~" xi

r-ri

f (MHz)

l~

o

200

II

f (MHz)

400

May 1974

_______Jl__

BL_Y92_C_

V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated h.f. and v.h.f.
transmitters with a nominal supply voltage of 28 V. The transistor is resistance stabilized and is guaranteed to withstand severe load mismatch conditions.
It has a 3/8" capstan envelope with a ceramic cap. All leads are isolated from the stud.
QUICK REFERENCE DATA
R.F. performance up to Th = 25 °C in an unneutralized common-emitter class-B circuit
mode of operation

zi

MHz

W

Gp
dB

11

V

%

n

28

175

15

> 10

>65

1,4 + j1,85

PL

VCE

c.w.
MEeHAN ICAl DATA

YL
mAN
33- j27,5

Dimensions in mm

----

Fig. 1 SOT-120.

e

CIJ

t

8min (4x)

1

/---[-,,,

c
(

28
26

,

+

~

.-$

" I /
~

1-

-.----

~
,

\~

-t--+--r
,
I)

b

I
I__ 8,6' ---.

+
5

t-EG-

315
.--

•

--

---. --0,14
1,6 max

---I ,.-

8-32UNC

ceramic

~ L.-·,f=--+=F"1---l11

~;~ _1,5t_~,'t======1:,",,111

BeQ

---'29.- 8,65_
'
min

metal

e

f.1 I.
5,9
5,5

. ---

9,8 max

.-

28

26

Torque on nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kg cm)

-+-11,8- 7,0 max . II'

7l69BB1.1

Diameter of clearance hole in heatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.

Ir

CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

May 1978

_BL_Y92_C

_Jl'---_____________

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Col.lector-emitter voltage (VSE = 0)
peak value

VCESM

max.

65 V

Collector-emitter voltage (open base)

VCEO

max.

36 V

Emitter-base voltage (open collector)

VEBO

max.

4 V

Collector current (average)

IC(AV)

max.

1,75 A
5,0 A

Collector current (peak value);

f> 1 MHz

ICM

max.
max.

Storage temperature

Prf
T stg

Operating junction temperature

Tj

max.

R.F. power dissipation (f> 1 MHz); T mb = 25 0C

7Z77748

2

+ 150

0c

200

0C

7Z77734

60

Prf

(WI

IC

I(A) Ir ~

---

W

36

-65 to

,

'T m b=2S o C

1\

l,S

1\

,
/

'"

1--1--I--

I--t-t-

1-1-

,\

Th=70 o "C

I"

....

i"'"
i"'"

l"'"

O'et:

I'
0

/oC

r!0c

"6*

I'"

20

L\

~

II r-~~qle 6
~Yo
1~<11t
I"'"

"~

O,S

r'"

III

..... "'"

II
\

1\

I"""

40

,

~

~

I'"

[\.

1-'--

"'"

I"'"
~

I

'"

........

r-...

o

o

10

20

30 VCE (V) 40

Fig. 2 D.C. SOAR.

o

so

Fig.3 R.F. power dissipation; VCE ~ 28 V;

f> 1 MHz.

I Continuous d.c. operation
II Continuous r. f. operation
III Short-time operation during mismatch

THERMAL RESIST~NCE (dissipation = 15 W; T mb = 77 oC, i.e. Th = 70 OC)
From junction to mounting base (d.c. dissipation)
From junction to mounting base (r.f. dissipation)
From mounting base to heatsink

2

May

19781 (

Rth j-mb(dc)

6,55

°c/w

Rth j-mb(rf)

4,95

Rthmb-h

0,45

°C/W
°CIW

Jl

V.H.F. power transistor

CHARACTE R ISTICS

BLY92C

Tj = 25 0C
Collector-emitter breakdown voltage
VBE = 0; IC = 5 mA

V(BR)CES

>

65 V

Collector-emitter breakdown voltage
open base; IC ::::: 25 mA

V(BR)CEO

>

36 V

Emitter-base breakdown voltage
open collector; IE = 2 mA

V(BR)EBO

>

4 V

Collector cut-off current
VBE = 0; VCE = 36 V

ICES

<

2 mA

Second breakdown energy; L::::: 25 mH; f = 50 Hz
open base
RBE = 10 n

ESBO
ESBR

>
>

D.C. current gain*
IC = 0,7 A; VCE = 5 V

hFE

Collector-emitter saturation voltage*
IC ::::: 2 A; I B = 0,4 A

VCEsat

typo

0,65 V

fT

fT

typo
typo

650 MHz
625 MHz

Cc

typo

18 pF

Cre
Ccs

typo
typo

12,8 pF
2 pF

Transition frequency at f::::: 100 MHz*
-IE = 0,7 A; VCB = 28 V
-IE = 2 A; VCB = 28 V
Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB::::: 28 V
Feedback capacitance at f::::: 1 MHz
IC = 100 mA; VCE = 28 V
Collector-stud capacitance

2,5 mJ
2,5 mJ

50
10 to 100

typo

--

--

* Measured under pulse conditions: tp ~ 200 fJ.S; l) ~ 0,02.

3

_B_LY92_C

_J l"""---_ _-.,...-_ __
7Z77749

150

7Z77750

60

Cc
(pF)

,

40

100

\

\

VCE=
_ 28V

. 'J

.... 1-'"

I'

l'

-

50

1""" ....

"'

20

""" .........

typ

..... "",5 V

..... """

r- __

"- I\..

--

o

o

o

'c (A)

2

4

Fig. 4 Typical values; Tj = 25°C.

o

20

Fig. 5 'E

VCB(V)

= Ie = 0; f = 1 MHz; Tj = 25°C.
1Z77751

750
fT
(MHz)

r-I'-"""

".

r"'"1'-_

~
~

- .... -t-......... ...

1'--

~

".

1/

~

i""" ..... i""oo
,,~

500

ro-;;~

II

~~

..... ~

I

~

250

o

o

r

2

Fig. 6 Typical values; f

4

40

May

19781

3

= 100 MHz; Tj = 250C.

4

VCB = -28 V -20V --

_____

,J~

___V_._H._F_.p_ow_e_r_tra_n_sis_to_r_________________________

B_L_Y_9_2_C_____

APPLICATION INFORMATION
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25 °C
f(MHz)
175

VCE (V)

PL (W)

Ps (W)

G p (dB)

IC (A)

1](%)

15

< 1,5

> 10

<0,83

> 65

28

YL(mAN)
1,4 + jl,85

33 - j27,5

C6

L5

'---~H-........_O

50 n

C7

50 n D--+t-........--'

----

Fig. 7 Test circuit; C.w. class-B.
List of components:
Cl = C6 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222 809 07004)
C2 = 5 to 60 pF film dielectric trimmer (cat. no. 2222 80907011)
C3 = 47 pF ceramic capacitor (500 V)
C4 =: 120 pF ceramic capacitor
C5 = 100 nF polyester capacitor
C7 = 4 to 40 pF film dielectric trimmer (cat. no. 222280907008)
Ll
L2
L3
L4
L6
L7

= 1 turn Cu wire (1,6 mm); into dia. 8,4 mm; leads 2 x 5 mm

= 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm
= L8 = Ferroxcube choke coil (cat. no. 4312 020 36640)
== L5 = strip (12 mm x 6 mm); tap for C3 at 5 mm from transistor
== 6 turns enamelled Cu wire (1,0 mm); into dia. 9,0 mm; length 9,2 mm; leads 2 x 5 mm
== 4 turns enamelled Cu wire (1,0 mm); into dia. 8,2 mm; length 5,0 mm; leads 2 x 5 mm

L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
R1 = 10 n carbon resistor
R2 = 4,7 n carbon resistor
Component layout and printed-circuit board for 175 MHz test circuit see Fig. 8.

5

'j l"""-----_ _ _ _ __

_B_LY92_C______

7Z78434

----

7218435

Fig.8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metallized to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.

6

Mav19781 (

~~

___
V_.H_.F_._po_w_er_t_rn_ns_ist_o_r__________________________

7Z77752

30

7Z77753

15

L
I'
J.". ..... 1'00..
Gp f"""o~

Gp
Th=250e

20

1/
I.J'

1./

-l"-

(dB)

f""
f"""o~

II"

V'

T/

1/11'
r/

10
ILi

.....

" ...

70 e

10

;I"

~

f""

"

0

70 0 e

""

1/

I
I

.... ~~
j,..ool'"'"'"

L
LL
1
L
Th=
25 0 e

.....

j...ol I

[.,.01
;I"
I

B_L_Y_9_2_C______

_____

'-

... ........

- t - r-t-

70 0 e

100
Th=
25 0 e
t-t-t-

~

10-1-""1""'"

5

11
(%)

50

II
r/

r~

L

L
I

o

oL

o

P

s

2

(W)

Fig. 9 Typical values; VeE = 28 V;
f= 175 MHz.

5

o

15

--

25

Fig. 10 Typical values; VeE = 28 V;
f= 175 MHz.

1Z77754

20 I
PLnom
(W)
(VSW R = 1)
I.........

r-

Th=
50 0 e

111

,~

.........

I II

70

0

e

IIIII

15

'"

!'-...

J II

i""

IIIII
90 0 e

Fig. 11 R.F. SOAR; c.w. c1ass-B operation;
f = 175 MHz; VCE = 28 V; Rth mb-h = 0,45 °C/w.
The graph shows the permissible output power
under nominal conditions (VSWR = 1) as a function
of the expected VSWR during short-time mismatch
conditions with heatsink temperatures as parameter.

10
1

10

VSWR

September 1978

7

__
BLY_92----""Cj

l---._______
7Z68950

7Z68951

80

I
xi

5

o

V

q

..,V

II

_ C l r+... 1-

/

L\
\

/

,

/

I'

I'-"

ri

Rl
11

r-

/

/

o

[..ooio"'"

60

1/

\

If

1\

V
40

j

II

IT
II

xii

-5

II

II

1

----

-50

II\,

II
J

-2,5

If
J

II

I{

II

20

o

100

200 f (MHz) 300

Fig. 12 Input impedance (series components).

"

,-I-I-

RL - t-t-

CL

a

200

f (MHz)

400

Fig. 13 Load impedance (parallel components).

7Z68949

30

Gp
(dB)

Conditions for Figs 12, 13 and 14.
Typical values; VCE ==28 V; PL = 15 W;
Th == 25 °C.

~

I\,

20

1\

OPERATING NOTE

I'

Below 100 MHz a base-emitter resistor of
10 n is recommended to avoid oscillation.
This resistor must be effective tor r.t. only.

,

~

I\.
10

r-...

"
o

o

200

r

Fig. 14.

8

MaV1978]

r'"

f (MHz)

400

-100

_______________________________Jl____

B_L_Y_93_A____

V.H.F. POWER TRANSISTOR

N-P-N epitaxial planar transistor intended for use in class-A, Band e operated mobile, industrial and
military transmitters with a supply voltage of 28 V. The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions. It has a %" capstan envelope with a moulded
cap. All leads are isolated from the stud.

QUICK REFERENCE DATA

R.F. performance up to T mb = 25 °e in an unneutralized common-emitter class-B circuit
mode of operation

C.w.

VeE
V

f
MHz

28

175

Ps
W

<3,1

PL

-

W

Ie
A

Gp
dB

11
%

25

< 1,5

>9

>60

YL

Zi

n

mAN

1,0 + jl,2

58,8 - j53,8

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT-56.

-.~.

t
9,65
max

10-32UNF·

1.- -.1
9,5

3,00-..

2,85
-4---.----

27 ____ .....
max

7Z600004

-

~6'~-

When locking is required an adhesive is preferred instead of a lock washer.
Torque on nut: min. 1,5 Nm
(15 kg cm)
max. 1,7 Nm
(17 kg cm)

Diameter of clearance hole in heatsink: max. 5,0 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer
or countersink either end of hole.

September 1978

BLY93A

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Collector-base voltage (open emitter)
peak value

max.

65

V

Collector'-emitter voltage (open base)

VCBOM
VCEO

max.

36

V

Emitter-base voltage (open collector)

VEBO

max.

4

V

Collector current (average)

IC(AV)

max.

3

A

Collector current (peak value) f > 1 ry,n-Iz

ICM

max.

9

A

70

W

Currents

Power dissipation
Total power dissipation up to T nib

= 25 °c
max.

f> 1 MHz
7Z60028

7260030

ITmb=25OC

D.C. SOAR

I I
VCE lit 28V
1-1f>1MHz

-100

Ptot

IC
(A I

(WI

75 shorttime
operation V.S.W.R.>3 -

;p
~

I-r-t-~

50

I=!='P ~I./'I)~/,I
<$

4

~ ~~s
'1.0
..1.10

~ C7~"

r-r-I-

'\,

r....: ['.;'';>.1
..."
0

'$'~

f\:

~

normal
25 ! - - !- operation
!- V.S.W.R.<3

\

--

\.

\

20

50

30
40
VcEIVI

Temperature
Storage temperature

T stg

-30 to +200

°c

Operating junction temperature

Tj

max.

200

°c

Rth j-mb

2.5

°C/W

Rth mb-h

0.3

°C!W

THERMAL RESISTANCE
From junction to mounting base
From mounting base to heatsink

2

II

J

February 1971

I

JI

BLY93A

T j = 25 °c unless otherwise specified

CHARACTERISTICS

Breakdown voltages
Collector -base voltage
open emitter, IC = 50 rnA

V(BR)CBO

>

65 V

Collector -emitter voltage
open base, IC = 50 rnA

V(BR)CEO

>

36 V

Emitter-base voltage
open collector; IE = 10 rnA

V(BR)EBO

>

4 V

E
E

>
:>

8 roWs
8 mWs

Transient energy
L

= 25

mH; f

= 50 Hz
open base
-VBE = 1. 5 V; RBE =33 Q

D. C. current gain
IC

= 1 A;

VCE

=5 V

typo
50
10 to 120

hFE

Transition frequency
IC

= 3 A;

VCE

= 20 V

Collector capacitance at f
IE

= Ie = 0;

VCB

IC

= 100 rnA; VCE

II

500 MHz

Cc

typo
<

50 pF
65 pF

Cre

typo

31 pF

C cs

typo

2 pF

= 1 MHz

=30 V

Collector -stud capacitance

February 1971

typo

= 1 MHz

= 30 V

Feedback capacitance at f

fT

II

3

----

BLY93A

II

.1
7Z60031

600

IIII
I I I I

VCE =20V 1-1-

fr
(MHz )

1""100.

typ

1..00,",,"'"
I....

too.

1.1

"

II

400

1"1
I"

IL

I"",

1"1

I'.

IJ

"- ~

200

--

4

2

Ic (AI

6

8

7Z6002.6

100

Cc
(pF I

75

\

IE=Ie=O '--f--

,

f=1MHz

1\

~

~

"
50

typ

""

t--.Ioo..

,..... ........

25

10

4

II

20 Vea (V)

30

II

February 1971

II

II

BLY93A

APPLICATION INFORMATION
R. F. performance in c. w. operation (unneutralisedcommon-emitter class B circuit)
VCC

= 28 V;

Tmb

= 25 0 C
YL (mA/V)

f(MHz)
175
Test circuit

Cl
C2
C3
C5
C6
C7
C8

C7

=

4 to 44
2 to 22
47
= C4 =
100
=
150
=
4 to 104
=
4 to 64
=
=

pF
pF
pF
pF
nF
pF
pF

film dielectric
film dielectric
ceramic
ceramic
polyester
film dielectric
film dielectric

-

trimmer (code number 2222 809 07008)
trimmer (code number 2222 809 07004)

trimmer (code number 2222 809 07015)
trimmer (code number 2222 809 07011)

Ll = 0.5 turn enamelled Cu wire (1.5 mm); int.diam.6 mm; leads 2x6 mm
L2 = 6 turns closely wound enamelled Cu wire (0.7 mm); int.diam.4 mm;
leads 2x4 mm
L3 = L4 = ferroxcube choke (code number 4312 020 36640)
L5 = 3.5 turns enamelled Cu wire (1. 5 mm); into diam. 6 mm; leads 2 x 6 mm
L6 = 1. 5 turns enamelled Cu wire (1. 5 mm); into diam. 6 mm; leads 2 x 6 mm
Rl

=

R2

=

10

n

carbon

Component lay-out for 175 MHz see page 6.

May 1974

II

II

5

II

BLY93A

APPLICATION INFORMATION (continued)

Component lay -out and printed circui~ board for 175 MHz test circuit.

·1

,......- - - - - - - - - - 1 0 6 m m - - - - - - - - - -...

l3

--c::::::>- R2

C5 .

+Vcc

55mm

7Z60526

--

::~:~:i!.l:. ::.:r.::.::.•::.::.::.::.:~:~:.:·..:::

iD

:~t~~li;~~~;~~~~ill;i~lIl;

I. !.i;l: .~· :I.\,~i':l ·";:.~ :.'!~\:., ·i~: .I ·:~' .i·:\,~.;:·i~.1:"il.;~:\ ·.: \ : rnW:1\ \ \ \~

': :' .:",:.:~. .: :. .: .: .: .: :' :.,.::.: ¥.:.

.

.•:.:.:.:.;.:.:.:.:.~........

=.J

'S &

....

::.:::.

'::':::'.::.::::::::'::.:::..:'.:.::.::.:'.:::

..:·.\: :.:\:.:.:..::.\:
\: ..:.I:..: .\:.:.:.\:.: ..:.\:

.. ..: .....::.::.: .: .:.:.i..::.:::.::·:::.l::
: :.·: ..

..

.:.::::::.·::
....

..

-::>

..:\::·..:\.:'.:.\:...:.1::\:
...

,l%!)

:::::

,':',

.:.:.:.:.:.:.:.:.

7Z67868

The circuit and the components are situated on one side of the epoxy fibre -glass
board, the other side being fully metallised to serve as earth. Earth connections
are made by means of hollow rivets.

6

II

II

December 1973

BLY93A

II

7Z60 0 2.7

1Z600:t9

35
RF. SOAR

f=17SMH'!:
Vcc=28V
40 T b=2S0C
m
see circuit above

....

~'

pJ--

f=17SMHz
Vcc=28V
Rth mb_h=0.3'oC/W
see circuit above

I
.R:1)

/

JI

~r

1/
j typ

30

30

0'
Th= SO e

I

10

N°Y'
l"
,
gOOe ~~3~
.....

70°C

I
I

Jl
(O/i)

N:t

,

IL
20 10P

Ptot =

25
Il~"

1"'''11

typ

sd

2.5

5

Ps (W)

7.5

10

V.S.w.R.

For high voltage operation, a stabilized
power supply is generally used.
The graph shows the allowable output
power under nominal conditions as a
function of the V. S. W • R., with heatsink temperature as parameter.

July 1971

II

II

7

---

BlY93AII
OPERATING NOTE Below 70 MHz a base-emitter resistor of 10 Q is recommended to
avoid oscillation. This resistor must be effective for both d. c. and r. f.
7Z67561

power gain versus frequency
(class B operation)

40
Gp
(dB)

VCC=28V '-PL=25W
r-Tmb=25 0 C I-typo values r--

30

"20

"

~\

\.

"- I"' .....

10

---

...........

.....I'-

o

o

100

200

300
f (MHz)

5
ri
xi

7Z67562

7Z67563

input impedance (series components) versus frequency
(class B operation)

load impedance (parallel components) versus frequency
(class B operation)

RL
~l_

\

1'0

o

\

~

-

~,

i--' ~
~

V

/

\

!J-

II

VCC=28V
PL=25W
Tmb=25 0 C
typo values

I

I

t-- ~Xi
I
-5

r--

-

~160

J

I

J

20

I
II
t--

15
200

100

300

o

\

-150

I\..

""

I

II

.RIL I--

~

rlCL
200

100

f (MHz)

8

I

,,,'J

J

o

-50
CL
(pF)

If

~

V

~

/

1\
\

25

CL_
-+-i

~

/
-2,5

VCC=28V
PL=25W
T m b=25 DC
typo values

t--rrt--

30

~~

I-Ji
\

~

(Q) I-RL-

X·

(Q)

2,5

35

300
f (MHz)

II

December 1973

_______Jl__

BL_Y93_C_

V.H.F. POWER TRANSISTOR

N-P-N silicon planar epitaxial transistor intended for use in class-A, Band C operated h.f. and v.h.f.
transmitters with a nominal supply voltage of 28 V. The transistor is resistance stabilized and is
guaranteed to withstand severe load mismatch conditions.
It has a 3/8" capstan envelope with a ceramic cap. All leads are isolated from the stud.
QUICK REFERENCE DATA
R.F. performance up to Th = 25 0C in an unneutralized common-emitter class-B circuit
mode of operation

VCE
V

Pl
W

Gp
dB

T/
%

zi

MHz

n

Yl
mAN

28

175

25

>9

>60

1,0 + j1,2

59-j54

c.w.

Dimensions in mm

MECHAN ICAl DATA
Fig. '1 SOT-120.

r-er

I

+-

8min (4x)

/"'1-,

c
(

28
26

\

•

I

+
,4

+--+---t~

, I /

ax

~

-'1

8 -32UNC

+

.

--. "'-·0,1 4
1,6 max
1"-

b

+

L.
15-~~---1' -!--

/

r-

.t

2,6_
max

e

..

-

J I.
5,9
5,5

9,8 max

--.

..-

28
26

Torque on nut: min. 0,75 Nm
(7,5 kg cm)
max. 0,85 Nm
(8,5 kg cm)

-- -

L~

I

8,65-..
--. 29..,
min

j

ceramic

-

-

-

-8 eO
- metal

I...

4 1...min

- 1 1 8 - 70max-II

7Z69SS1.1

Diameter of clearance hole in heatsink: max. 4,2 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer or
countersink either end of hole.

When locking is required an adhesive is preferred instead of a lock washer.
CAUTION This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely
safe provided that the BeO disc is not damaged.

I ,JUlY

1978

Jl

BLY93C

-------------------'
RATINGS

'----------------------------------------------------

Limiting values in accordance with the Absolute Maximum System (I EC 134)
Collector-emitter voltage (VBE = 0)
peak value

max.

VCEO

max.

Emitter-base voltage (open collector)

VEBO

max.

4 V

Collector current (average)

IC(AV)

max.

3 A

Collector current (peak value); f> 1 MHz

ICM

9 A
70 W
-65 to + 150 0C

R.F. power dissipation (f > 1 MHz); T mb = 25 0 C
Operating junction temperature
7Z77823

3

I I
I I

\

1\
1\

IC
(A)

,
,

\

max.

200 °C
7Z77822

150

Prf

",..>

(W)

\ d'o

\

2

max.

">'1

~

1\

max.

Prf
T stg
Tj

Storage temperature

--

65 V
36 V

V CESM

Collector-emitter voltage (open base)

(l

\.

..>.

I\.

,-1"

100

\

~

I\, 0 0

,

(l

1\

.........

,

I'\.

'- r\.

i"""
..... 1'-0,

I\.

"

......

I'

50

~

-

i"""10...

. II .
.I..

r-.~te6 yo

o
20

VCE (V)

40

Fig. 2 D.C. SOAR.

o

........

....,...., I.·.:JaW/0

-1 .. Q'?9W

I
I

o

....

~der

I

,

o

~.

III
I
.,....

_l-

C-r-

I'" JOC """I;;;;
1-1"

50

100

Fig. 3 R.F. power dissipation;VCE ~ 28 V;
1 MHz.
I Continuous d.c. operation
II Continuous r.f. operation
III Short-time operation during mismatch

f~

THERMAL RESISTANCE (dissipation = 20 W; T mb = 79 oC, i.e. Th = 70 OC)

2

From junction to mounting base (d.c. dissipation)

Rth j-mb (dc)

From junction to mounting base (r.f. dissipation)

Rth j-mb (rf)

From mounting base to heatsink

Rth mb-h

July 1978

r
1

3,1 0C/W
2,3 °C/W
0,45 °C/W

Jl

V. H. F. power transistor

CHARACTER ISTICS

BLY93C

Tj:::: 25 °C
Collector-emitter breakdown voltage
VBE:::: 0; IC:::: 10 mA

V(BR)CES

>

65 V

Collector-emitter breakdown voltage
open base; I C :::: 50 mA

V(BR)CEO

>

36 V

Emitter-base breakdown voltage
open collector; IE = 10 mA

V(BR)EBO

>

4 V

Collector cut-off current
VBE = 0; VCE = 36 V

ICES

<

4 mA

Second breakdown energy; L = 25 m H; f :::: 50 Hz
open base
RBE = 10 n

ESBO
ESBR

>
>

8 mJ
8 mJ

D.C. current gain *
IC:::: 1,25 A; VCE

hFE

typo
45
10 to 100

Collector-emitter saturation voltage *
IC = 3,75 A; IB = 0,75 A

VCEsat

typo

Transition frequency at f = 100 MHz *
-IE = 1,25 A; VCB = 28 V
-IE = 3,75 A; VCB = 28 V

fT
fT

typo
typo

625 MHz
625 MHz

Collector capacitance at f = 1 MHz
IE:::: Ie:::: 0; VCB:::: 28 V

Cc

typo

45 pF

Cre
Ccs

typo

28 pF

typo

2 pF

=5 V

. Feedback capacitance at f:::: 1 MHz
IC:::: 100 mA; VCE = 28 V
Collector-stud capacitance

* Measured under pulse conditions: tp < 200 JlS;

[j

< 0,02.

I (JUlY

1,5 V

1978

---

3

)l__
~ ___

_ B L Y_
93C _

7Z77523

60
I-'"

"""

--

I'

"

Cc
(pF)

I\.

"" , I'.

40

7277524

150

"

\ VCE =28V
\

,

I'-

100

\

\.

\

\.

~

,

1\

\
\

20

---

o

~

\

r-r5V= r-r-

5

IC (A)

typ

-1'-0

-

r--~

o

o

......

50

10

Fig.4 Typical values; Tj = 250C.

o

20

V

CB

40

(V)

Fig. 5 IE=l e =0;f=1MHz;Tj=250C.
7Z77527

750

fT
(MHz)

~
~

....

I"""!-

r--.
-!-

-~

I,
[I

500

I"'-

I""'o~

..... ~

..... """ I"
~

I"

......
:"0.

1\.. .....

"

~

~

..... ,Vca=28V

"

250

:"0.
~

I'

\..
~

....

~

I'
15 V
I
I
I

o

J

o

2

4

6

Fig. 6 Typical values; f = 100 MHz; Tj = 25°C.

4

July 1978

~

(

8

Jl

V.H.F. power transistor

,---------------------

--------------------------------------------------------~
APPLICATION INFORMATION

BLY93C

R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit)
Th = 25 °C
f (MHz)
175

VCE (V)

PL (W)

Ps (W)

Gp (dB)

IC (A)

f/ (%)

Zi (n)

YL (mAN)

28

25

< 3,15

>9

< 1,5

> 60

1,0 + j 1,2

59-j54

C8

50 n 0--1+--+--1

----Fig. 7 Test circuit; c.w. class-B.
List of components
C1 = C7 = 2,5 to 20 pF film dielectric trimmer (cat. no. 2222 809 07004)
C2 = 5 to 60 pF film dielectric trimmer (cat. no. 222280907011)
C3a = C3b = 47 pF ceramic capacitor (500 V)
C4 = 120 pF ceramic capacitor
C5 = 100 n F polyester capacitor
C6a = 2,2 pF ceramic capacitor (500 V)
C6b = 1,8 pF ceramic capacitQr (500 V)
C8 = 4 to 40 pF film dielectric trimmer (cat. no. 2222 809 07008)
L1
L2
L3
L4
L6
L7

= 14 nH; 1 turn Cu wire (1,6 mm); into dia. 7,7 mm; leads 2 x 5 mm
= 100 nH; 7 turns closely wound enamelled Cu wire (0,5 mm); into dia. 3 mm; leads 2 x 5 mm

= L8 = Ferroxcube wide-band

h.f. choke, grade 3B (cat. no. 4312 02036640)

= L5 = strip (12 mm x 6 mm); taps for C3a and C3b at 5 mm from transistor
= 80 nH; 3 turns Cu wire (1,6 mm); into dia. 9,0 mm; length 8,0 mm; leads 2 x 5 mm
= 62 nH; 3 turns Cu wire (1,6 mm); into dia. 7,5 mm; length 9,\1 mm; leads 2 x 5 mm

L4 and L5 are strips on a double Cu-clad printed-circuit board with epoxy fibre-glass dielectric,
thickness 1/16".
R 1 = R2

= 10 n

carbon resistor (0,25 W)

Component layout and printed-circuit board for 175 MHz test circuit see Fig. 8.

~ (JUlY

1978

5

_BLY_93C_Jt_·~_ _ _ __

72

7Z77102

--

7Z77103

Fig.8 Component layout and printed-circuit board for 175 MHz test circuit.
The circuit and the components are situated on one side of the epoxy fibre-glass board, the other side
being fully metalliz-ed to serve as earth. Earth connections are made by means of hollow rivets, whilst
under the emitter leads Cu straps are used for a direct contact between upper and lower sheets.
To minimize the dielectric losses, the ground plane under the interconnection of L7 and C7 has been
removed.

6

July

19781 (

V_'H_'F._po_w_~r_tra_nS_in_or

___

,Jl___

-B-L_Y_9_3C____

_____________________

7Z77525

60

I I
I I
I I
I I
Th = 25°C f--f-....
I
"

. ~

I/
1/
~

j

7Z77526

I
Gp~
~

Gp

~

(dB)

11
~

(%)

r-.;;I ...

70°C

;~

40

15

f'"..

t.....

""

i-

~~

10

1.0-

"

i

~

I,
~

I\.

roo

,

100

....

1\

J

1111'
'J.

........

IIJ
1/

20

....

~

1;r.1

5

!J

50

~i.o'"

,"

ry~

i"'~

:..

II

,J
o
o

o
5

, P

s (W)

10

Fig. 9 VCE == 28 V; f = 175 MHz; typical values.

o

--

o
25

50

Fig. 10 VCE == 28 V; f = 175 MHz; typicar values;
- - - T h == 25 oC; - - T h == 70 °C.

7Z77824

35
I

P Lno m

(W )
VSWR = 1

30

"-f't'.

11111

I"

"

25

Th=
50°C

......

r-... r-.

~

'r-...

"" r-.

II "

70°C

II /I
/I II
900C

111I

111I

20

1

10

VSWR

Fig. 11 R.F. SOAR; c.w. class-S operation;
f = 175 MHz; VCE == 28 V; Rth mb-h =0,45 °C/W.
The graph shows the permissible output power
under nominal conditions (VSWR == 1) as a
function of the expected VSWR during shorttime mismatch conditions with heatsink
temperatures as parameter.

July 1978

7

Jl________. :-. -__

_____
BL_Y93_C__

-

7Z77<'29

7277530

a

+5
r·I

xi
X·I

(S2 )

1/

+2,5

rj

\

\

a

/"

"'....., -,

/'

'"

-

lr'

-50

-100

I
I~

V" '\.

J

20

I--

15

100

200

300

-150

I

II

'X i

--

CL
(pF)

/

V

a

-

./

\
\

25

I
I

-5

'-

-

/

rj

II

-2,5

,...

'R L

\
\

~

V

,

-

30

CL

a

"'

I

-7 CL
100

f (MHz)

Fig. 12 Input impedance (series components).

RL -

.... r-...,

-200
300

200
f (MHz)

Fig. 13 Load impedance (parallel components).

7Z77531

40

Gp

OPERATING NOTE

(dB)

Below 70 MHz a base-emitter resistor of 10 n
is recommended to avoid oscillation. This
resistor must be effective for r.f. only.

30

Conditions for Figs 12, 13 and 14:

I,

r\.

20

~,

Typical values; VCE = 28 V; PL = 25 W;
Th=25 0 C.

,
~

.........

....... ""-.

10

o

o

100

.......

" ---

I-

200

Ir

300
f (MHz)

Fig. 14 Power gain versus frequency.

8

July 1978

__--Jl--BLY94
V.H.F. POWER TRANSISTOR

N-P-N planar epitaxial transistor intended for use in class-A, 8 and e operated mobile, industrial and
military transmitters with a supply voltage of 28 V. The transistor is resistance stabilized. Every transistor is tested under severe load mismatch conditions. It has a plastic encapsulated stripline package.
All leads are isolated from the stud.
QUICK REFERENCE DATA
R.F. performance up to T mb = 25 0e in an unneutralized common-emitter class-8 circuit
mode of operation

VeE
V

f
MHz

Ps
W

PL
W

28

175

<10

50

c.w.

Ie
A

<2,75

-Zi

Gp
dB

11

%

n

mAN

>7

>65

0,8 + j1,45

125 - j66

YL

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOT·55.

0,28_ _
0,23
11

I

21

j

5,5

~

r
14
1

•

1{~>

-$-

b

21
27.2
26,8

~13'5_l5~ ~
12,5

max

(I J)

7260777.1

Y4"x28UNF

_o,25

max

7258786.2

When locking is required an adhesive is preferred instead of a lock washer.
Torque on nut: min. 2,3 Nm
(23 kg cm)
max. 2,7 Nm
(27 kg cm)

Diameter of clearance hole in heatsink: max. 6,5 mm.
Mounting hole to have no burrs at either end.
De-burring must leave surface flat; do not chamfer
or countersink either end of hole.

September 1978

~

BLY94

II

II

RATINGS Limiting values in accordance with the Absolute MaximuinSystem (IEC 134)

Voltages
Collector -base voltage (open emitter)
peak value

VCBOM

max.

6S

V

Collector-emitter voltage (open base)

VCEO

max.

36

V

Emitter-base voltage (open collector)

VEBO

max.

4

V

Collector current (average)

IC(AV)

max.

6

A

Collector current (peak value) f > 1 MHz

ICM

max.

12

A

Ptot

max.

130

W

Currents

Power dissipation
Total power dissipation up to T mb

= 25 °c

f> 1 MHz
7Z60421

150

7Z60647

D.C. SOAR

VeE E 28V

--

short ~ime
~~
r-operatlon -r-(.~
(W)

~~./

(AI

I <')ee

""~·f1..1$

100

Th=25OC

Ic

'((a$'~

V.s.w.R.·,

I\ot

f >1MHz

;::..

~

. . . ,,~QJ

.

10

.~)

,~If.

~
normal operation
V.S.W.R.<3

"'\

."'"

i\,

50

,
50

100

10

VCE (V.)

Temperature
Storage temperature
Operating junction temperature

Tstg
Tj

-65 to +200
max. 200

°c
°c

THERMAL RESISTANCE

From junction to mo~ting base
From mounting base to heatsink

2

II

Rthj-mb
Rthmb-h

1.35
0.2

°C/W.
°C/W

April 1971

BLY94

II

II
T j = 25 0 C unless otherwise specified

CHARACfERISTICS

Breakdown voltages
Collector -base voltage
open emitter, IC = 100 rnA

V(BR)CBO

>

65

V

Collector -emitter voltage
open base, IC = 100 rnA

V(BR)CEO

>

36

V

Emitter -base voltage
open collector; IE = 25 rnA

V(BR)EBO

>

4

V

E
E

>
>

8
8

mWs
mWs

hFE

10 to 120

Transient ener81
L = 25 mH; f = 50 Hz

open base
-VBE= 1. 5 V; RBE = 33

Q

D. C. current gain

IC = 1 A; VCE = 5 V
Transition frequency
IC = 6 A; VCE = 20 V

typo

500

MHz

type

75
130

pF
pF

Collector capacitance at f = 1 MHz

= Ie = 0; V CB

Cc

<

IC = 100 rnA; VCE =30 V

Cre

typo

47

pF

Collector -stud capacitance

Ccs

typo

3.5

pF

IE

= 30 V

Feedback capacitance

April 1971

II

11

3

----

BLY94

II
7Z6042.3

1000

VCE =20V
fT
(MHzl

500

~~

-r-....... "-

typ

I

/

"",

"""

10

5

Ic (AI

15

7Z60419

f=1MHz

200

IE=Ie=O

Cc

1-1-

II

,

IpFI

1

15Q

\

\
~

100

""-""" ~yp

I""'-r--.

1-1-

-

50

o

o

4

II

10

20

Vee ,(VI

30

II

April 1971

II

BLY94

II

APPLICATION INFORMATION
R. F. performance in c. w. operation (unneutralised common-emitter class B circuit)
f = 175 MHz; Tmb up to 25 0 C
VCC (V)

YL(mA/V)

28

125- j66

Test circuit for 175 MHz:

C7

L7

son
son

C8

J----Si?r~
R2

L4

7Z60424

I LS
+Vcc

--

List of components:
C1 =
2to
C2 =
4to
C3 =G4 =
CS=

C6=
C7=
C8=
C9=

20 pF
40 pF
56 pF
100 pF
100 nF
4 to 60 pF
4 to 100 pF
6. 8 pF

film dielectric
film dielectric
ceramic
ceramic
polyester
film dielectric
film dielectric
ceramic

trimmer (code number 2222 809 07004)
trimmer (code number 2222 809 07008)

trimmer (code number 2222 809 07011)
trimmer (code number 2222 809 07015)

. L1 =

36nH; 2 turns enamelled Cuwire (1.5 mm); into diam. Tmm; length 5 mm;
lead length 2x 5 mm
formed by the metallization on the p. c. board; see component lay-out
L2=
L3=
100nH; 7 turns closely wound enamelledCuwire(0.5mm);int.diam3mm;
lead length 2x5mm
L4 = L5 =ferroxcube choke (code number 4312 020 36640)
L6
53 nH; 2 turns enamelled Cu wire (1. 5 mm); into diam. 10 mm; length 5.2
mm; lead length 2x5mm
46nH; 2 turns enamelledCuwire (1. Smm); into diam. 9mm; lengthS. 4mm;
L7=
lead length 2 x 5 mm

R1 =R2 = 10 Q carbon
Component lay-out see page 6

May 1974

II

II

5

BLY94

II

APPLICATION INFORMATION (continued)

Component lay-out and printed circuit board for 175 MHz test circuit.
~14~----------------------123mm----------------------~·~1

----..,...
R2

~
C6

fl

L5

A·:\:]::i'::!]. \·::\\·]·]\:.·r + Vee
C5

C8

IL" ~

1""""L~~55mm

C9

~fi-------l
L7 :
I

I

7Z60425

[§JC::J i
I
I

i

C7:

:

I

ground plane removed

--

I

I

7Z67867

The circuit and the components are situated on one side of the epoxy fibre -glass
board, the other side being fully metallised to serve as earth. Earth connections
are made by means of hollow rivets"

6

II

JL.

December 1973

BLY94

II

II
7Z60420

1Z60411

75

~,.

. f=175MHz

PL

.R.=1 )

","

I-- Vcc=28V

V

Tmb=2SoC

f - - - t--Th=SOoC

V

so

J

(%1

l/'

SO

~

--

11

ro-1-- ~ij"

A'
'I

90°C.

50

\

1\
\

~

l

\

70°C

/
ty!_

~

60

v i

1\

25

II

~yp

100

f= 175MHz;Vcc=28V
Rth mb-h=Q.2 'C/W
see page 5

I R.F. SOAR

Ptot =

~5f

."

\

J

I

1~5~

,~

'~110W

Ii-

If
o
o

10

Ps (WI

20

40

1

10

V.S.W.R.

For high voltage operation, a stabilized
power supply is generally used.
The graph shows the allowable output
power under nominal conditions as a
function of the V. S. W . R., with heatsink temperature as parameter.

II

II

7

---

-

BLY94

Il'

I

OPERATING NOTE Below 50 MHz a base-emitter resistor of 10 Q is recommended to
This resistor must be effective for both d. c. and r. f.

avoid oscillation.

7Z67560

power gain versus frequency
(class B operation)

40
Gp
(dB)

Vee =28V PL=50W
Tmb=25 0 e typo values i--

30

,

;\
20

"\.
f\.

"'10

---

o
o

100

.......

....... ......

-- .....
200

i'-oo.

300
f (MHz)·

7Z67558

5
q

Xi

t-r--

(Q)
/

f-

q

I ...

ct:~

10

/

I

!;II Ie:
/~

J

/
5

"'RL_
I

I

~2bo

'I

f-

o
200

100

300
f (MHz)

8

--r-

II/
I-

o

eL- 0

1'0

f-xi.

-5

1

250

,

I
If
-2,5

Ie I
L
(pF)

Vee =28V
PL=50W
Tmb=25 0 e
typo values

'\

I-

/

o

15

/~

/'"

I-q

""Xi

load impedance (parallel components) versus frequency
(class B operation)

20
RL

Vee =28V
PL=50W
Tmb=25 0 e
typo values

t--

(Q) r--

2,5

7Z67559

input impedance (series components) versus frequency
(class B operation)

II

o

~CL
I I
100

200

300
f (MHz)

December 1973

2N3375
2N3553
2N3632

__- - J

SILICON EPITAXIAL PLANAR OVERLAY TRANSISTORS

The 2N3553 is an n-p-n overlay transistor in a TO-39 metal envelope with the collector connected to the case.
The 2N3375 and the 2N3632 are n-p-n overlay transistors in TO-60 metal envelopes with the electrodes
insulated from the studs.
The 2N3553 and the 2N3375 are intended for v.h.f.!u.h.f. and the 2N3632 for v.h.f. transmitting
applications.
QUICK REFERENCE DATA
2N3553 2N3375

2N3632

Collector-em itter voltage
-VBE = 1,5 V

VCEX

max.

65

65

65

V

Collector-emitter voltage (open base)

VCEO

max.

40

40

40

V

Collector current (peak value)

ICM

max.

1,0

1,5

3,0

A

Total power dissipation
up to T mb = 25 °C

Ptot

max.

7

11,6

23

W

Tj

max.

200

200

200

°C

fT
fT

typo
typo

500

500
400

MHz
MHz

Junction temperature
Transition frequency
IC = 125 rnA; VCE
IC = 250 rnA; VCE

= 28 V
= 28 V

R.F. performance at VCE

----

= 28 V

type number

f (MHz)

Po(W)

Pi(W)

71(%)

2N3553
2N3375
2N3375
2N3632

175
100
400
175

2,5
7,5
> 3
> 13,5

<0,25
<1
1
3,5

>50
>65
>40
>70

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39; collector connected to case.

-0=
t

b

2N3553

~~

•

- [ 6,6
max
_

==0,51

~

=

-.1_ min
12,7

_I

+max

+

7Z593L2.1

9,4_
max

Maximum lead diameter is guaranteed only for 12,7 mm.
Accessories: 56218 (package); 56245 (distance disc).

I

September 1978

--

--

2N3375
2N3553
2N3632
MECHANICAL DATA (continued)
Dimensions in mm
8 cm kg
max. 17 cm kg

2N3375
2N3632

Torque on nut: min.

TO-60
The top pins should not be bent

Diameter of hole in heats ink: 4.8 to 5.2 mm

~l

(I ] I

1.9Smax

K;t@

.@-.

e b

10-32UNF

7l0870f

RATINGS (Limiting values) 1)
Voltages 2)
Collector-base voltage (open emitter)

VCBO

max.

65

V

Collector-emitter voltage
IC up to 200 rnA; -VBE = 1.5 V

VCEX

max.

65

V

Collector-emitter voltage (open base)
IC up to 200 rnA

VCEO

max.

40

V

Emitter-base voltage (open collector)

VEBO

max.

4

V

Currents 2)

2N3553

Collector current (d. c.)
Collector current (peak value)

..-

2N3375 2N3632

IC

max . 0.35

0.5

ICM

max.

1.0

1.5

3

A

Ptot

max.

7

11.6

23

W

A

Power dissipation 2)
Total power dissipation
up to T mb == 25 °C
Temperatures
Storage temperature
Junction temperature

+ 200 °c
max.
200 0c
-65 to

1) Limiting values according to the Absolute Maximum System as defined in IEC
publication 134.
.
2) See also areas of permissible operation at pages 10 and 11.

2

II

II

June 1968

2N3375

2N3553
2N3632

II
2N3553

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

From mounting base to heats ink

Rth mb-h

From mounting base to heats ink
mounted with
top clamping washer of 56218

Rth mb-h

top clamping washer of 56218
and a boron nitride washer
for electrical insulation

7.5

°C/W

0.6

0.6

°C/W

Rth mb-h =, 2.5

°C/W

Tj = 25 °C unless otherwise specified
2N3375

2N3632

< 100

100

250

pA

V(BR)CBO >

65

65

65

V

V(BR)CEX>
V(BR)CEO>

65
40

65
40

65
40

V
V

V(BR)EBO >

4

4

4

V

2N3553

IB = 0; VCE = 30 V

ICEO

volta~es

IE = 0; IC

= 250 pA

IC up to 200 rnA
-VBE = 1.5 V; RB
IB = 0

= 33 n 1)

IC = 0; IE= 250 pA
Base -emitter

1)

volta~e

IC = 250 rnA; VCE = 5 V

VBE

< 1.5

IC = 500 rnA; VCE = 5 V

VBE

<

VBE

<

VCEsat

< 1.0

VCEsat

<

VCEsat

<

= 1000 rnA;

Saturation

15

°C/W

Collector cut -off current

IC

2N3632

1.0

CHARACTERISTICS

Breakdown

25

2N3375

VCE = 5 V

V
V

1.5
1.5

V

volta~e

IC = 250 rnA; IB = 50 rnA
IC

=

IC

= 1000

500 rnA; IB' = 100 rnA
rnA; IB = 200 rnA

V
1.0

V
1.0

V

1) Pulsed through an inductor of 25 mH; {) = 0.5; f = 50 Hz

September 197Q

II

II

3

---

---

2N3375
2N3553
2N3632

II

CHARACTERISTICS (continued)

Tj

= 25

D •C. current s:ain

0C unless otherwise
2N3553 2N3375

IC

=

125 rnA; VCE

=5 V

hFE

>
<

15
200

15
200

IC

=

250 rnA; VCE

=5

V

hFE

>
<

10
100

10
100

IC =1000rnA;V CE =5V

hFE

>
<

Cc

<

Collector capacitance at f

=1

specif~ed

2N3632

10
150
5
110

MHz

IE = Ie = 0; VCB = 28 V
Collector-case capacitance

10

<

10

20

pF

6

6

pF

Transition frequency
IC

= 125 rnA;

VCE

Ic= 250 rnA; VCE

= 28
= 28

V

fT

typo

V

fT

typo

500

MHz

500
400

MHz

Real part of input impedance at f = 200 MHz
IC

= 125

rnA; VCE

IC = 250 rnA; VCE

= 28
= 28

V

Re (hie) <

V

Re (hie) <

20

20
20

n
n

R. F • performance at VCE = 28 V

2N3553
2N3375
2N3375
2N3632

f
(MHz)

Po

Pi

(W)

(W)

IC
(rnA)

175
100
400
175

2.5
7.5
> 3
> 13.5

< 0.25
< 1
1
3.5

< 180
<410
270
690

Test circuit
at page

r)

%
>
>
>
>

50
65
40
70

5
6
7
5

NOTE
The transistors can withstand an output V • S. W • R. of 3: 1 varied through all phases
under conditions mentioned in the table above.

4

II

II

June 1968

2N3375
2N3553
2N3632

II
CHARACTERISTICS (continued)
Test circuit with the 2N3553 or the 2N3632 at f

= 175

MHz

*) The length of the external emitter wire of the 2N3553 is 1.6 mm.

The emitter of the 2N3632 should be connected to the case as short as possible.

---

Components

C6

= C2 = C3
=
=

L1

=

Cl
C5

=

C4 = 4 to 29 pF

air trimmer

10 nF

polyester

100 pF

ceramic

1 turn Cu wire (1.0 mm); into di.am. 10 mm; leads 2 x 10 mm

L2= Ferroxcube choke coil. Z (at f
L3

= 175

MHz) = 550

n ± 20%
(code number 4312 020 36640)

= 15 turns closely wound enamelled Cu wire (0.7 mm); int. diam. 4 mm

L4 = 3 turns closely wound enamelled Cu wire (1.5 mm); into diam. 12 mm; leads
2 x 20 mm
R

0 for the 2N3553

R

0 to 2

n for the 2N3632

September 1970

II

II

5

--

-

2N3375
2N3553
2N3632

II

CHARACTERISTICS (continued)

Test circuit with the 2N3375 at f == 100 MHz

RS=50.n

+
Components
C1 ;: C2 == 3.,5 to 61.5 pF

air trimmer

C3 ;:

10 nF

polyester

29 pF

.air trimmer

4 to

C4 == C5 ==
C6 ==

330 pF

C7==

10 nF

ceramic
polyester

L1 == 2 turns closely wound enamelled Cu wire (1.5 mm); int. diam. 10 mm; leads
2 x 10 mm
L2 == Ferroxcube choke coil. Z (at f == 100 MHz) ;: 700

n ± 20%
(code number 4312 020 36640)

L3 == 23 turns closely wound enamelled Cu wire (0. 7 mm); int. diam.

6 mm

L4= 5 turns closely wound enamelled Cu wire (1.5 mm); into diam. 12 mm; leads
2 x 10mm
Rl = 1.35

n

carbon

=

n

carbon

R2

10

6

II

II

September 1970

2N3375

2N3553
2N3632

II
CHARACTERISTICS (continued)
Test circuit with the 2N3375 at f

=400

MHz

RS=50.n.

'tc

+

.) The emitter. should be connected to the case as short as possible.
Components

= C2 = 0.7 to 6.7 pF
C3 =
0 .5 to 3. 5 pF
C4 = C5 = 3 to 19 pF
15 pF
C6 = C7 =
4700
pF
C8 =
Cl

----

ceramic trimmer
ceramic trimmer
air trimmer
ceramic
ceramic

Ll =20 mm straight Cu wire; diam. 1.5 mm; spaced 8 mm from chassis

L4

= 17 turns closely wound enamelled Cu wire (0 .. 5 mm.); int. diam.
= 7 turns closely wound enamelled Cu wire (0.5 mIll); int. diam.
= 1 turn Cu wire (l.5 mm); into diam. 10 mm; leads 2 x 5 mm

R

=

L2
L3

0 to 5

3 mm
3 mm

n

September 1970

II

II

7

---

2N33,75
2N'3553
2N3632
APPLICATION INFORMATION
The 2N3553 used in a frequency doubler circuit 87.5 - 175 MHz

fo=175MHz
RL=50.n.

fj=87.5MHz
RS=50.n.

Components
Cl
C4
C5
C6
(;7
C8
C9
L1

= C2 = C3
=
=

=
=

=
=

:; 4 to 29
3.5 to 61.5
56
680
150
100
10

pF
pF
pF
pF
pF
pF
nF

air trimmer
air trimmer
ceramic
ceramic
ceramic
ceramic
polyester

Rl = 0 to 50 Q
10 n
R2 =

carbon

=

5 turns Cu wire (1 mm); winding pitch 1.5 mm; into diam. 6 mm; leads
2 x 12 mm
L2 = Ferroxcube choke coil; Z (at f = 87.5 MHz) :; 750 n ± 20%
(code number 4312 020 36640)
L3 :; 15 turns closely wound enamelled Cu wire (0. 7 mm); int. diam. 4 mm
L4:; 6 turns Cu wire (1 mm); winding pitch 1.5 mm; into diam. 6 mm; leads
2 x 12 mm
7Z 7

-Vse:=750mV adjusted with Rl
Po Ve e· 28V

Po =Q.5W
Vee = lev

,

2

,

Gp

dB)

(W )

Gp
10

100

Po

11.

Q5

50

8

II

11.

50

Pi (mW~ 100 0

8

250

II

September 1970

2N3375
2N3553
2N3632
APPLICATION INFORMATION (continued)
The 2N3553 used in a parametric frequency tripler 156.7 - 470 MHz

fo=470MHz

RL=SO.n.

fi=156.7MHz
Rs=SOA

*) C3 tuned to second harmonic frequency

Components
C1 := C2 := C3 := C4 := 4 to 29 pF
C5 := C6 := C7 :=
4 to 10.4 pF
C8 :=
1.0 pF
12 pF
C9 =
ClO =
100 pF
1000 pF
Cll =
C12 =
15 nF
L1
L2

air trimmer
air trimmer
ceramic
ceramic; feed through
ceramic; feed through
ceramic
polyester

R1 := 2.2 n
R2 := IOn

carbon
carbon

-

= 35

mm straight Cu wire; diam. 1 mm; spaced 5.5 mm from chassis
Z (at f = 156.7 MHz) := 600 n ± 20%
(code number 4312 020 36640)
L3 = 18 mm straight Cu wire; diam. 1 mm; spaced 5.5. mm from chassis
L4:= 7 turns closely wound enamelled Cu wire (0.5 mm); int. diam. 3.5 mm
L5 = 3 turns Cu wire (1 mm); winding pitch 1. 7 mm; into diam. 8.5 mm; leads
2 x 10 mm
L6 = 2 turns Cu wire (1 mm);winding pitch 1.7 mm; into diam.
7 mm; leads
2 X; 10 mm
L7 = 40 mm straight Cu wire; diam. 1.5 mm; spaced 5.5 mm from chassis
L8 = 1 turn Cu wire; into diam. 7 mm; leads 2 x 5 mm

= Ferroxcube choke coil;

Typical performance at V CC := 28 V

September 1970

Po

Pi

(W)

Gp
(dB)

IC
(mA)

11

(W)
1.5
2.0

0.27
0.39

7.5
7.1

125
156

43
46

11

--

%

II

9

--

2N3375
2N3553
2N3632
.J."

7Z07890

maximum allowable to- 2N3553
tal power dissipation J Lli
Ptot versus mounting base temp.f-_
(W)

see aLso U-L_

7Zl0617

10

t--- r- 2N3553

see also
adjacent graph

Ie
(A )

adjacent grapt1-

10

n

'\.

......

"

5

1\

1

m

I

I'.
["'00.

=F\ot=Pd.c.+Pi -Po

1'0..

I'.

I'

......

o

I'.

o

veE (V)

10

100

7Z07909

15

maximum allowabLe to- 2N3375
Ptot tat power dissipation L 1
versus mounting base temp.H(W)
see also LLL 1adjacent graph

?ZI061.

10

t--- _ 2N3375

see also
adjacent graph

Ie
"(A )

I'\.

10

I\.

]I

,,

"-

\.

'\.
1\

"

"\

I\.

5
t-

Ptot=Pd.c.+Pi-Po

1

,

I

m

\.

"

I\.

o

I'

o

10

100

II

Tmb COC)

200

10

VCE(V)

II

July 1969

2N3375
2N3553
2N3632
7Z07900

30

maximum allowable to- 2N3632
Ptot tal power dissipat ion I I I 1
versus molrtting base temp+-~
(W)
seeals..J I I I
adjacent graph'-

"

f--

_ 2N3632

adjacent graph

Ie

(A ).

II

l"-

20

7ZI061.

see also

1

\.

"

,y

'-I

'-

\.

\

I'\,

,

I\.

10
: Ptot=Pd.c.+ Pi -Po

i\
m

I

I' I\.

"

~

o

o

I'

100

Tmb (OC)

200

----

10

Region of permissible operation under all base -emitter conditions and at all frequencies, including d. c •
II Additional region of operation at f 2: 1 MHz.
Care must be taken to reduce the d. c. adjustment to region I before removing
the a. c. signal. This may be achieved by an appropriate bias in class A, B or C.
III Operating during switching off in this region is allowed, provided the transistor
is cut-off with -VBB :s 1. 5 V and RBE 2: 33 n, IC :5 200 rnA and the transient
energy does not exceed 0.5 mWs.

July 1969

II

II

11

-----

2N3375
2N3553
2N3632

'I

7Z07911

typical values
VCE=28V
Tmb=25°C

7Z07908

typical values
VCE=28V
Tmb=25°C
J 1

2N3553

~

Po

I I
II
I I

(W)

(W)

10

10 r-Pj =2~\
1-1- 1.5W

"
, ~"'"

1-'-,1 w 'I'
~,

I~,\

--( .75':.,

.,

\1\ 1\

I

I\~I"

\

,"

-I-

,

I"

5

2N3375

-l-

"",
" A
""I' ....."" ~,1!
~J/S
~~

,,

"

\.' 1'-1'

""

,

.....

f"

100

"'"

'" ..... ,.....
.....
~

I\.

I"

..."

f£45
>50

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39; collector connected to case.

b

-[1=
t

=-0,51

8,5

+max
=' +

L

=

max

L ~I_
6.6

max

12,7 _ _
min

I

7Z5931.U

Maximum lead diameter is guaranteed only for 12,7 mm.
Accessories: 56218 (package); 56245 (distance disc).

September 1978

--

---=

2N,3866
2N4427

I

I

RAT1NGSLimiting values in a~cordance with the Absolute Maximum System (IECI34)
Voltages 1)

2N3866

2N4427

Collector-base voltage (open emitter)

VCBO

max.

55

40

V

Collector-emitter voltage
RBE = 10 n

VCER

max.

55

40

V

Collector-emitter voltage (open base)

VCEO

max.

30

20

V

Emitter-base voltage (open collector)

VEBO

max. 3.5

2.0

V

Collector current (d.c. or averaged
over any 20 ms period)

max. 0.4

0.4

A

Collector current (peak value)

max. 0.4

0.4

A

max.

3.5

W

Currents 1)

Power dissipation 1)
Total power dissipation up to T mb

= 25

OC

5

Temperatures
Storage temperature

-65 to + 200

oC

Junction temperature

max.

200

oC

200

0C/W

THERMAL RESISTANCE

From junction to ambient in free air

Rth j-a

From junction to mounting base

Rm

j-mb

35

0C/W

From mounting base to heatsink
mounted with
top clamping washer of 56218

Rth mb-h

1.0

°C/W

top clamping washer of 56218
and a boron nitride washer
.. for electrical insulation

Rth mb-h

2.5 °C/W

1) See also areas of permissible operation on page 6 •

2

II

11

. Septe~r 1970

2N3866
2N4427

II
CHARACTERISTICS

Tj

= 25

oC unless otherwise specified
2N3866

Collector cut-off current
IB
IB

= 0;
= 0;

VCE
VCE

= 28 V
= 12 V

2N4427

20

ICEO

<

ICEO

<

V (BR)CBO

>

55

V(BR)CER

>

55

40

V

V(BR)CEO

>

30

20

V

V(BR)EBO

>

3.5

2

V

VCEsat

<

1.0

0.5

V

hFE

10 to 200

/J.A
20

/J.A

40

V

Breakdown voltages
IE
IC
IB
IC

= 0; IC = 100/J.A
= 5 rnA; RBE = 10 n
= 0; IC = 5 rnA
= 0; IE = 100 /J.A

Collector-emitter saturation voltage
IC

= 100

= 20

rnA; IB

rnA

D • C. current gain
IC

=

IC

= 100 rnA;

IC

= 360

.= 5 V
VCE = 5 V
VCE = 5 V

50 rnA; VCE

rnA;

10 to 200

hFE
hFE

>

MHz

fT

typo 700

MHz.

fT

typo

Cc

<

Cc

<

5

5

Transition frequencl
IC
IC

= 25
= 25

rnA; VCE
rnA; VCE

= 15 V; f = 100
= 10 V; f = 100

MHz

700

MHz

Collector capacitance
VCB
VCB

= 28 V;
= 12 V;

IE
IE

= Ie = 0; f = 1 MHz
= Ie =0; f = 1 MHz

R • F •. performance at T mb

2N3866
2N3866
2N3866
2N4427
2N4427

=25

3

pF
pF

4

oC

f (MHz)

VCE (V)

Po (W)

Pi (W)

IC (rnA)

100
250
40Q
175
470

28
28
28
12
12

1.8
1.5
1.0
1.0
0.4

0.05
0.1
<0.1
<0.1
0.1

< 107
<107
< 79
< 167
67

r1<%)
>
>
>
>

60
50
45
50
50

Test circuit
on page

..

4
5

*

*) The transistor can withstand an output V.S. W .R. of 3: 1 varied through all phases
for conditions. mentioned in the table above.

June 1968

II

II

3

-----

---

"2N3866
2N4427
CHARACTERISTICS (continued)
Test circuit with the 2N3866 at f = 400 MHz

7zoa"a

VEE

Cl
C4
C5
C6
C7

= C2 = C3 = 4 to

29 pF
4 to 14 pF
"1 nF
12 pF
12 nF

=
=
=
=

RI =
R2 =

5.6
10

=-28V

air trimmer
air trimmer
feed through

n

n

LI = 2 turns Cu wire (l mm); into diam. 6 mm; winding pitch 3 mm
L2 = Ferroxcube choke coil; Z (at f = 250 MHz) = 450 51 (code number 4312 020 36690)
L3 = L4 = 6 turns enamelled Cu wire (0.5 mm); into diam. 3.5 mm (l00 nH)
L5 = 2 turnsCu wire (I mm); into diam. 7 mm; winding pitch 2.5 mm;
leads 2xl5 mm.

4

II

II

September 1970

2N3866
2N4427

II
CHARACTERISTICS (continued)

Test circuit with the 2N4427 at f

= 175

MHz

Vee= +12V

7208869

*) The length of the external emitter wire is 1.6 mm

C1
C5

= C2

:: C3 :: C4

=4

=

C6::

R =

to 29 pF
1 nF
12 nF

air trimmer
feed through

IOn

L1 :: 2 turns eu wire (I mm); into diam. 6 mm; winding pitch 2 mm; leads 2x10 mm
L2 :: Ferroxcube choke coil; Z (at f:: 175 MHz) =550 n (code number 4312 020 36640)
L3 = 2 turns eu wire (1 mm); into diam. 5 mm; winding pitch 2 mm; leads 2xlO mm
L4:: 3 turns eu wire(1.5mm);int.diam.10mm; winding pitch 2mm; leads 2x15mm'

September 1970

II

II

5

---

2N3866
2N4427

6
P
tot

"
7Z08866.1

2N3866

adjacent graph

(A)

-...

,

,

I\..

,,

~,

.

~

I'-

"

~

"- IT

~<9
~
1'w6'0
•

'--r-I I'\: 0
\
see also
~~ o~
adjacent graph t\..~ ,u'~~--r-_
~

I 1
I 1

I

11
1 1-

I"

1
1 I
I 1 1

" , Cf-

,,~:~

100

m

I

=

~"

I I I I I I I

I 1 11 I
I 1 I II I

~

1

0-1--

Ptot = Pd.c. +Pj-Po

---

t-- -

see aLso

Ie

I'-

2

7Z10620

10

2N3B66

(W)

4

I"

~

1
1

"

Tamb{OC) 200

?l0886?

6

10-2
1

7Z10624

10

t-- -ZN4427

see aLso

_
adjacent graph

2N4427

Ptot

10

Ie

(W)

(A)

4
--~

2

""

"

~

,~

~?

W,

1 "Q ~

see also
. ~~6'o
adjacent graph f-r-',\

C

1 11
1 11

Ptot

I 1
I 1

1 -I
11

I 1
J 1
I 1

11I

=Pd.c. + Pi -Po

11
11
1 I

I I I I
I I I I

"

1

" ......~

-f- - f -

m

I

I'-

"

i'

""
"
10

6

II

September 197Q

2N3866
2N4427

II
I

Region of permissible operation under all base-emitter conditions and at all fre":
quencies, including d. c.

II Additional region of operation at f 2 1 MHz.
Care must be taken to reduce the d. c. adjustment to region I before removing
the a. c. signal. This may be achieved by an appropriate bias in class A, B or C.
III Operating during switching off in this region is allowed, provided the transistor
is cut-off with ;""VBB ::51. 5 V and RBE ~ 33 n, IC.:S 100 rnA and the transient energy does not exceed 0.125 mWs.

--

n08861

7Z08860

VCE= 2eV

N lEU

. N442

VCE =12V
Tmb 25°C
typical values

15
R =o.lW .
I

0.5

0.5

200

March 1968

75W
0.05W
0.04W

II

400 f(MHz)600

II

7

2N3866
2N4427

a

8

7Z0BB63

IE =le
f =1MHz
1J= 25°C

7Z0B864

1000

Cc

VCE=15V
f =10Ot-1Hz
Tj = 25°C

fT

(pF)

(MHz)

6

800

tf.o
4

600
typ

2

---

400

20 Vcs(V) 30

10

8

II

2000

100

200 Ic(mA) 300

II

March 1968

2N3866
2N4427
OPERATING NOTE Below 2RO MHz a base-emitter resistor of 10 Q is recommended to
avoid oscillation. This resistor must be effective for both d. c. and r. f.
7Z68952

30

power gain versus frequency
(class B operation)
I I I J
Gp
L1 I 1
Ll L~
f-~ 2N3866
(dB)
Vee = 28 V r-rI-~
PL = 1 W
---rTmb = 25 °e r-r20
typo values "'"t-

,

l/

,

\.

I,)

,

1\

II"

II"

1\

.J

~

"
"

10

r-...

I"

"

without f-tr-temitter ~~
tuning r r

o
o

250
7Z689S3

20

input impedance (series components) versus frequency
(class B operation)
-f-

----

II

I I I I

I

2N3866

xi

f(~z)

500
7Z689S4

1500

load impedance (parallel components) versus frequency
(class B operation)
I I I I

2N3866

~r-

I

10 r.1

1\

\

,

,

\

~
~,...

1'0

,

o
xi
l/

\
\

,"

~

~

q

.)

""~

-{pF)

.....

~
L~

~

If

500

I"""

II

I
I

250

II

1...

~

"""

o

May 1974

L.,..or".
1/

Vee = 28 V
PL = 1 W
Tmb = 25 °e
typo values

J

-10

.\
I\.

,

eL Io.!'i"'" .A"'"J
~~
.... i"'"~
eL

I"\.

J

1\

1\
\

-1'

1000 RL

11

I I
I I I
f (MHz)

f-~

r-rf-f~r

I
1
I

f-f-

I

rCL
500

Vee = 28 V
PL = 1 W 0
Tmb::: 25 e
typo values
I I
~~

-12.-

r- ....

RL rl-

I I I
LL~~

250

II

f (MHz)

500

9

2N3866
2N4427
OPERATING NOTE Below 100 MHz a base-emitter resistor of 22 0 is recommended to
avoid oscillation. This resistor must be effective for both d. c. and r. f.
7Z6B9SS

power gain versus frequency
(class B operation)

20

2N4427

~

Gp
(dB)

1-

-~

15

"

~

.......

"

~

~

i'
~

10

I'

Vee = 12 V
PL =1 W 0
Tmb = 25 e
typo values

5

---

o

o

tt-

tt-

200

100

300
f (MHz)

7Z68956

7268957

input impedance (series components) versus frequency
(class B operation)

20

I- r i\

\

i'

200
RL

2N4427

,

load impedance (parallel components) versus frequency
(class B operation)

2N4427

(0)

-iL

,

150

"

"..

\

-10

-20

~x.

1

V

o

10

~

./

V

I

-

r1
-10
.1

eL
l,pF)

~

1"

~"!t.

100

./

t-Xi

,

~

~

-~

.L~

1\

ri

o

~'r""""

-20

r--..

i
..I

'""'"

.'1

elL

RL

/

1/

vee = 12 V
PL = 1 W 0
Tmb = 25 e
typo values

100

200

II

t-

50

tt-t-

f (MHz)

300

o

I

Vee = 12 V
PL = 1 W 0
r-eL I-- -c--- Tmb = 25 e
I
typo values

II

o

200

100

II

I--t -

-30

300

f(MHz) .

May 1974

_ _ _J

2N3924
2N3926
2N3927

SILICON PLANAR EPITAXIAL OVERLAY TRANSISTORS
The 2N3924 is an n-p-n overlay transistor in a TO-39 metal envelope with the co" ecto r connected to the case.
The 2N3926 and the 2N3927 are n-p-n overlay transistors in TO-60 metal envelopes with the emitter
connected to the case.
The transistors are intended for v.h.f. transmitting applications.
QUICK REFERENCE DATA
2N3924 2N3926 2N3927

Collector-emitter voltage
-VBE = 1,5 V

VCEX

max.

36

36

36

V

Collector-emitter voltage (open base)

VCEO

max.

18

18

18

V

Co "ector current (peak value)

ICM

max.

1,5

3,0

4,5,

A

Ptot
Tj

max.

7

11,6

23

W

max.

200

200

200

°C

fT
fT

>
>

250

250
200

MHz
MHz

Total power dissipation
up to T mb = 25 °C
Junction temperature
Transition frequency
Ie = 100 rnA; VeE
Ie = 200 rnA; VeE

= 13,5 V
= 13,5 V

R.F. performance at VeE = 13,5 V; f = 175 MHz
type number

Po (W)

Pi (W)

2N3924
2N3926
2N3927

4
7

<1

12

<4

>70
>70
>80

<2

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-39; collector connected to case.

-[1=
t

2N3924

==0,51
,max

L

L

6,6
max

_

+

=

8.5
max

=

---.1_ min
12.7

_I

7Z5932.2.1

9.4_
max

Maximum lead diameter is guaranteed only for 12,7 mm.
Accessories: 56218 (package); 56245 (distance disc).

September 1978

---

2N3924
2N3926
2N3927
MECHANICAL, DATA (continued)

Dimensions in mm

2N3926
2 N3927

Diameter of hole in heatsink: 4.8 to 5.2 mm
TO -60
The <;levice is supplied with nut and lock washer
The emitter connected to the case
The top pins should not be bent
Torque on nut: min. 8 cm kg
max. 17 cm kg

~t

l I I I

II

1.9S max

KW-@

e b

.fij.

10-32UNF
o
E

r--fF*==Mln

(Y')

~I-.jI;===4-An

10-32UNF

11.50
10.72

11.5 max
1108101

RATINGS (Limiting values) 1)
Voltages 2)
Collector-base voltage (open emitter)

VCBO

max.

36

V

Collector-emitter voltage
IC up to 400 rnA; -VBE

VCEX

max.

36

V

Collector-emitter voltage (open base)
IC up to 400 rnA

VCEO

max.

18

V

Emitter-base voltage (open collector)

VEBO

max.

4

V

= 1.5

V

Currents 2)

2N3924

Collector current (d. c. )
Collector current (peak value)

2N3926

2N3927

IC

max.

0.5

1.0

1.5

A

ICM

max.

1.5

3.0

4.5

A

Ptot

max.

7

11.6

23

W

Power dissipation 2)
Total power dissipation
up to T mb = 25 °C
Temperatures
Storage temperature

T stg

-65 to +200

Junction temperature

Tj

max.

200

°c
°c

1) Limiting values according to _the Absolute Maximum System as d.efined in IEC
publication 134.
2) See also areas of permissible operation at pages 8 and 9.

2

II

II

June 1968

2N3924

2N3926
.2N3927

II
THERMAL RESISTANCE

2N3924
25

2N3926

2N3927

15

7.5

°C/W

0.6

0.6

°C/W

From junction to mounting base

Rth j-mb

From mounting base to heats ink

Rth mb-h

From mounting base to heats ink
mounted with
top clamping washer of 56218

Rth rnb-h

1.0

°C/W

top clamping washer of 56218
and a boron nitride washer
for electrical insulation

Rth rnb-h

2.5

°C/W

T j = 25°C unless otherwise specified

CHARACTERISTICS

2N3924

Collector cut-off current

2N3926

2N3927

IE = 0; V CB = 15 V

ICBO

<

100

100

250

IE = 0; VCB = 15 V; Tj = 150°C

ICBO

<

5

5

10

rnA

V(BR)CBO

>

36

36

36

V

V(BR)CEX
V(BR)CEO

>
>

36
18

36
18

36
18

V
V

V(BR)EBO

>

4

4

4

V

VBE

<

1.5

VBE

<

VBE

<

IC = 250 rnA; IB = 50 rnA

VCEsat

< 0.75

IC = 500 rnA; IB = 100 rnA

VCEsat

<

VCEsat

<

~A

Breakdown voltages
IE = 0; IC = 250

~A

IC up to 400 rnA
-VBE = 1.5 V; RB
IB
=a
IC = 0; IE

= 33 n 1)
1)

= 250 ~A

Base-emitter voltage
IC = 250 rnA; VCE = 5 V
IC = 500 rnA; VCE
IC = 1000 rnA; VCE

=5 V
=5 V

V
1.5

V
1.5

V

Saturation voltage

IC ::= 1000 rnA; IB

= 200

rnA

1) Pulsed through an inductor. of 25 mH; ()

August 1972

II

=0.5;

f

V
V

0.75
1.0

V

= 50 Hz

II

3

----

2N3924

2N3926
2N3927

II
T j : 25 °c unless otherwise specified

CHARACTERISTICS (continued)

2N3924

D. C. current gain
IC: 250 rnA; VCE: 5 V

hFE

=5 V

hFE

IC : 1000 rnA; VCE : 5 V

hFE

IC: 500 rnA; VCE

>
<

2N3926

2N3927

10
150
5
150

>
<

>

5
150

<

Collector capacitance at f : 1 MHz

= Ie =0;

= 13.5 V

Cc

<

20

20

= 13.5 V

fT

>

250

250

Ic = 200 rnA; VCE = 13.5 V

fT

>

IE

VCB

45

pF

Transition frequency
IC

--

-

= 100 rnA;

VCE

MHz

200

MHz

Real part of input impedance at f = 200 MHz

= 13.5 V

Re (hie)

<

IC = 200 rnA; VCE : 13.5 V

Re (hie)

<

IC : 100 rnA; VCE

R.F. performance at VCE

2N3924
2N3926
2N3927

20

20
20

n
n

= 13.5 V; f = 175 MHz

Po

Pi

(W)

(W)

4
7
12

< 1
<2
<4

Ie
(rnA)

<:: 420
< 740
< 1100

%

n

Test circuit
at page

> 70
> 70
> 80

5
6
6

NOTE
The transistors can withstand an output V . s. W . R. of 3: 1 varied through all phases
under conditions mentioned in the table above.

4

II

__1

August 1972
---_ ..

--~---------.---

2N3924
2N3926
2N3927--

II
CHARACTERISTICS (continued)
Test circuit with the 2N3924 at f

= 175

MHz

*) The length of the external emitter wire of the 2N3924 is 1.6 mm.

Components
C1
C5

= C2 = C3 = C4 = 4 to
=

L1;::

29 pF

air trimmer

10 nF

polyester

1 turn Cu wire (1.0 mm);-int. d,iam. 10 mm; leads 2 x 10 mm

L2

= Ferroxcube choke coil.

L3

= 15
= 3

L4

---

Z (at f = J 75 MHz) = 550

n ± 20%
(code number 4312 020 36640)

turns closely wound enamelled Cu wire (0.7 mm); into diam.

4 mm

turns closely wound enamelled Cu wire (1 ~5 mm); into diam. 12 mm; leads

2 x 20 mm

September 1970

II

5

---

2N3924
2N3926
2N392:7

II

CHARACTERISTICS

(continued)

Test circuit with the 2N3926 or 2N3927 at f = 175 MHz

Components
C1
C5
C6

= C2 =C3 = C4 = 4 to 29 pF
=
100 pF
10 nF
=

air trimmer
ceramic
polyester

Ll = 1 turn Cu wire (1.0 mm)l into diam. 10 mm; leads 2 x 10 mm
L2

= Ferroxcube

L3

= 15

ch,oke coil. Z (at f

= 175

MHz)

= 550 n ±

20%
(code number 4312 020 36640)

turns closely wound enamelled Cu wire (0.7 mm); into diam.

4mm

L4 = 2 turns closely wound enamelled Cu wire (1.5 mm); int. diam. 8.5 mm; leads
2 x 20 mm

R

= 10 n

6

carbon

II

II

September 1970

2N3924
2N3926
2N3927

II
7Z08181

typical values
VCE=13.5V
B Tmt =25°C

7Z08183

2.N3924

2.N3926

B

Po

Po

(W)

(W)

6

6

~L

,.

\~

~

~t

~,

?~Ie=

4

I~

,.

'tt.,.,

ty pical values
Vc E =13.5V
2 Tm b = 25°C

~w

2.

~
~

4

"N"r

O$.T
·W

o.~
100

100

200 f(MHz}300

7Z08182

typical valuest+++-t++12.N392.7
VCE =13.5V
2.0 TI It = 25°C

60

7Z08188
I-

Cc

typ

IE =Ie =0 t-t-tt-t-tf= 1MHz t-t-tTj=25OC t-t-t-

,,

(pF)

Po

200 f(MHz) 300

(W)

l

15

1\

40

~

f--

10

I"

,ty ....

.....
I'
~

20

"

5

100

June 1968

II

200f(MHz}300

00

2.N3927
1 1

I....

I"-

I I I I

-to-"'""

r-I"'" 2N392.4
2N3926

Vce (V)

20

II

40

7

---

---

2N3924
2N3926
'2N3927

7Z08l96

maximum allowable to .. 2N3924
tal power dissipation' J 1 J I
Ptot Ver'5US mounting base temp't-_
(W)
,
see also LLL_
adjacent grapt1-

?ZI0623

10

i-o- r- 2N3924

see aLso
adjacent graph

Ie
(A )

1

10

I\..

"'"

5

\.,
.....

....

1

~ptot=Pd.c.+Pi - Po

-

I

.....

m

'"
.....
I. . . .

'"1'0.

o

o

10

100

7Z08l97

15

max imum allowable to- 2N3926
Ptot tal power dissipation I I I L
versus mounting base temp.H(W)
see also LlJ_I_
adjacent graph

VeE (V)

7ZI0621

10

see also

~

~

2N3926

adjacent graph

Ie
(A )

U

I"

10

,
\.

\.

\

,
I\.

1

5
- Ptot=Pd.c.+Pj-Po

I'

I
I\.

"\.
o
o

8

100

II

,

Tmb (OC) 200

10

VCE(V)

II

July 1969

2N3924
2N3926
2N3927

II
7Z08198'

30

maximum allowable to- 2N3927
tal power dissipat ion I I
flot v.rsus mounting bosetemPr(W)

seeals""" I
adjacent gmph-

,

".... ,
"

20

7ZI0622

10

r- f- 2N3927

see also
adjacent graph

Ic
(A )

n

,,
\

I\.

"

,

I\.

10

~ .!\ot=Pd .c.+ Pi -Po

1

I

""

-

m

"I\.
a
a

I

100

Tmb (OC)

"200

10

VCE (V),

10 2

Region of permissible operation under all base -emitter conditions and at all frequencies, including d. c .

II Additional region of operation at f 2: 1 MHz.
Care must be taken to reduce the d. c. adjustment to region I before removing
the a.c. signal. This may be achieved by an appropriate bias in class A,. B or C.
III Operating during switching off in this region is allowed, provided the transistor
is cut-off with -VBB ~ 1.5 V and RBE 2: 33 n, IC ~ 400 rnA and the transient
energy does not exceed 2 m W s .

July 1969

II

II

9

----

2N3924
2N3926
2N3927

II
7208187

Ie

Ie

7Z08193

Ie =250 mA ~~I-+-I-I-+-I-I-+-I-I~

.
:: 5

le=

400

50 mA

Tj =2.5°e
veE sat

VCEsat

(mY)

(mV)

300

300 t:ttttt:lm:t±tttttttt:t±j::tti±tttj

)(,~~
-lOI"r

~~Q

2.00
?,,'J>.fO
~"5

\)r'~

......

~~'l>.
'l>~1

100

I!

i:l~-: 9

100

~~

~~~ ~"5

---

2.00

400 Ie {mA)600

0

0

50

100 Tj (OC) 150

7208195

7208194.

~E=5V

2N3924
2N392.6

400 I!r=25°C

Ie

2N39 7

VCE =5V

800
IC
(mA)

(mA)

300

600

typ
200

400

100

200

o
o

10

O'
0.5

11

VSE (V)

o

0.5

1 VSE (V)

II

June 1968

II

I
7Z08189

2N3924
2N3926

Ve E=5V
r =25°e

2N3924
2N3926
2N3927

typ

7208191

Ve E = 5 V t-++-H++++++++-t 2 N3927

80

typ

hFE

60

60

40

40

20

200

500

400 rc
Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:31 09:15:59-08:00
Modify Date                     : 2017:07:31 11:34:07-07:00
Metadata Date                   : 2017:07:31 11:34:07-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:0529bbb4-013a-7843-b83e-975f42865b28
Instance ID                     : uuid:cd8aa7cd-6300-b24c-9621-da6df586a84c
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 735
EXIF Metadata provided by EXIF.tools

Navigation menu