1978_Westinghouse_Power_Semiconductor_Users_Manual_and_Data_Book 1978 Westinghouse Power Semiconductor Users Manual And Data Book

User Manual: 1978_Westinghouse_Power_Semiconductor_Users_Manual_and_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 432

Download1978_Westinghouse_Power_Semiconductor_Users_Manual_and_Data_Book 1978 Westinghouse Power Semiconductor Users Manual And Data Book
Open PDF In BrowserView PDF
Westinghouse Power Semiconductor
User's Manual and Data Book
Assemblies/Rectifiers/Thyristors/Transistors

@
POWER SEMICONDUCTOR
USER'S MANUAL
AND
DATA BOOK
Editor: Woodson J. Savage III

WESTINGHOUSE ELECTRIC CORPORATION
SEMICONDUCTOR DIVISION
YOUNGWOOD, PENNSYLVANIA 15697

ACKNOWLEDGEMENTS
This book is the result of the efforts of a number of dedicated individuals. Contributing authors include:
J.D.
R.L.
R.F.
P.J.
J.F.

Balenovich
Bonkowski
Chick
DeIPalazzo
Donlon

T.B. Geary
W.H. Karstaedt
R.J. Lambie
K.G. Longenecker
M. Morozowich

W.S. Przybocki
D.E. Rieth
G. M. Sherbondy
J.E. Steiner
K.S. Tarneja

It is hoped that the @Power Semiconductor User's Manual and Data Book will enable anyone using power
semiconductors to do so more effectively. Any suggestions on how future editions of this book can be improved to better serve your needs will be greatly appreciated.

Westinghouse Electric Corporation
Semiconductor Division
Youngwood,Pa.15697

January 1978

COPYRIGHT@ 1978 BY
WESTINGHOUSE ELECTRIC CORPORATION
All Rights Reserved
Information furnished in this book is believed to be accurate and reliable. However, Westinghouse can assume
no responsibility for its use, nor any infringements of patents, or other rights of third parties which may result
from its use. No license is granted by implication or other use under any patent or patent rights of
Westinghouse.

®

POWER SEMICONDUCTOR
USER'S MANUAL
Authors
R.S. Harm
H.R. Emerick
W.J. Savage

WESTI NGHOUSE ELECTRI C CORPORATION
SEMICONDUCTOR DIVISION
YOUNGWOOD, PENNSYLVANIA 15697

@ POWER SEMICONDUCTOR

USER'S MANUAL
TABLE OF CONTENTS
CHAPTER 1
1.
2.
3.
4.
5.

INTRODUCTION
Purpose.................................................................... 9
Power Semiconductor Overview ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9
@Power Semiconductor Product Line ...........•............................ 10
Importance of Power Semiconductors •....•............•..................... 11
Manufacturer/OEM/End User Relationship ................................... 12

CHAPTER 2

SELECTING THE PROPER POWER SEMICONDUCTOR FOR YOUR APPLICATION

1.
2.
3.
4.

Basic Semiconductor Parameters Defined .................................... 15
Confusing Terminology - Manufacturer Versus User Interpretation ..........• 18
How To Use The Westinghouse Data Book ................................... 19
Know Your Application Requirements .......................................• 19

CHAPTER 3
1.
2.
3.
4.
5.
6.

CHAPTER 4
1.
2.
3.
4.
5.
6.
7.
8.
9.

SEMICONDUCTOR PROCUREMENT
Spend Semiconductor Dollars Wisely ....•................................... 27
Evaluating A Power Semiconductor Supplier ................................. 28
Buyer's Checklist .•......................................................... 31
Entering An Order ...•...................................................... 31
In-Process Order Information ....•........................................... 32
Shipping Methods and Insurance ...........•................................ 38

STANDARD OPERATING PROCEDURES
FOR THE POWER SEMICONDUCTOR USER
Receiving ..•.................•.............................................. 41
Incoming Inspection ........................................................ 41
Claims ..........•............•............................................. 41
Installation, Mounting, and Cooling Considerations ........................... 42
Operating Power Semiconductor Equipment ................................. 43
Preventative Maintenance .......•............•.............................. 46
Trouble Shooting and Servicing ............................................. 47
Identification and Replacement .............................................. 52
Safety .........................•............................................ 55

7

CHAPTER 5

RELIABILITY

1. Understanding Semiconductor Reliability .................................... 57
2. Quality Control ............................................................. 63
3. Responsibilities .....................................•....................... 65

CHAPTER 6
1.
2.
3.
4.

APPENDIX

MANUFACTURING @ POWER
SEMI CONDUCTORS
Facilities ................................................................... 67
Product Breakthroughs ......•............................................... 68
Key Manufacturing Innovations .............................................. 72
Technology Leadership ..................................................... 75

SEMICONDUCTOR GLOSSARY
Begins on page ............•..............•.................................... 77

INDEX
Begins on page ................................................................ 79

Jill'

1

INTRODUCTION

1. PURPOSE
The purpose of this book is to enable persons in any job function (Le. Purchasing, Design, Production,
Engineering, Plant operation and maintenance, Quality Control, Marketing, etc.) to deal with power semi conductors more effectively, regardless of his or her technical background or experience level. Every effort has
been made to present this material ina straightforward, easy-to-use format so that the reader can readily apply
many of these practical suggestions and ideas directly to his or her job. The reader should note that, although
Westinghouse forms and procedures are highlighted in the User's Manual, the information being presented is
generally applicable to any manufacturer of power semiconductors.
The term "user" in this book refers to both the Original Equipment Manufacturer (OEM) who manufactures equipment utilizing power semiconductors and the End User who purchases, uses, and maintains this
equipment.
Engineering terms and other "jargon" perculiar to power semiconductors are used only when needed in
the User's Manual and are usually defined within the text or in the appendix. Note: No effort is made in this book
to "educate" the reader on how a power semiconductor "operates" in a circuit or how a power semiconductor
"works". There are many fine texts on these subjects for those persons interested in these engineering and
physics phenomena.
The User's Manual and Data Book is actually two books in one! A brief description of howthesetwo books
are organized:
The User's Manual is arranged in a somewhat natural sequence of events-Selecting the Proper Power
Semiconductor, Semiconductor Procurement, Incoming Inspection, Testing, Device Installation, Equipment
Operation, Preventative Maintenance, Troubleshooting, Replacements, Safety, Reliability and Quality Control
plus a special section on the manufacture of @ Power Semiconductors. Sections can be read independently
or in any desired sequence depending upon the reader's interest and need.
The Data Book offers detailed specifications on the complete line of Westinghouse Power Semiconductors. The General section includes a master cross reference type number index by JEDEC 1N, 2N, and 3N part
numbers and industry alpha and numeric part numbers. Using this index, the reader can rapidly locate any
power semiconductor part number for which Westinghouse offers an exact or suggested replacement along
with the page number of the data sheet for the recommended Westinghouse device. I n addition, this section
contains the@Selling Policy, Warranty I nformation, Delivery Lead Time Guide Lines, Military/Hi-Rei Product
Capabilities, General Application Data Sheets, a Quick Service Directory listing key contacts for special
assistance, and a complete listing of@Semiconductor Sales Offices and Authorized@Semiconductor Distributors. The remaining four product sections-Assemblies, Rectifiers Thyristors (SCR's and RBDT), and
Transistors each are subdivided into their respective major product subgroups. Easy-ta-use Product Capability Graphs and Product Selector Guides are provided at the beginning of each product section to enable the
reader to quickly locate technical data for any given product.

2. POWER SEMICONDUCTOR OVERVIEW
Westinghouse is a world leader in the manufacture of high power semiconductors. In 1952, Westi nghouse
introduced the first silicon rectifier; in 1957, the first high voltage rectifier stack assemblies were introduced; in
1958, silicon transistors were added, followed by a line of SCR's in 1959. Fromthis infancy, the semiconductor
market has mushroomed into virtually every industrial, military, and consumer market. These markets include
steel mill drives, space vehicles, and calculators, to name just a few. Even though Westinghouse was a pioneer
in many areas of semiconductor development and currently holds basic patents used today by almost every
semiconductor manufacturer, the strategic decision was made to concentrate efforts in the power segment (1
ampere and above) of the semiconductor spectrum (see figure 1.1) with primary emphasis on the 40 ampere
and above market.
The semiconductor industry's business spectrum is not as homogeneous as one might expect. Each of
these power segments represent different technologies, industries, applications, and markets. One popular

9

Industry/Applications Spectrum
-----Power Semiconductors--------

o

1 Amp

40 Amp

100 Amp

3000 Amp

Figure 1.1 Semiconductor Business Spectrum
misconception about the semiconductor industry involves pricing. Integrated circuits, for example, have
generally exhibited tremendous price declines-often tenfold or more. People usually assume that since integrated circuits exhibit this type of falling price phenomenon so should all other semiconductors. A little
analysis wi II show why this theory does not hold. I ntegrated circuit prices, as well as all discrete product prices,
fluctuate with volume-not with time as many people mistakenly observe. Integrated circuits serve very high
volume markets and are made and tested with highly automated equipment. The power semiconductor market
(especially the higher power areas), by comparison, is a much smaller, lower volume market serving primarily
industry and military needs. These products are more custom made and tested to a customer's specification
than to common generic type number. Historically, power semiconductor prices did show modest declines as
new products were brought on the market initially at premium prices so the semiconductor manufacturers
could attempt to recoup the substantial R&D expenses necessary to develop these products. Now, however,
many new products-especially higher current and/or voltage extensions of existing products are priced more
consistent with prevailing market prices. Today, many power semiconductor types are in the mature stage of
their product life cycles. As a result, there are less cost reduction possi bilities to offsetthe ever increasing inflation caused by higher material, labor, and factory expense costs. Therefore, price trends on many power
semiconductors now and in the future will be upward instead of downward.

3. @ POWER SEMICONDUCTOR PRODUCT LINE
Westinghouse offers a comprehensive line of power semiconductors including rectifiers, thyristorsSCR's (silicon controlled rectifiers) and RBDT (reverse blocking diode thyristor), transistors, and assemblies.
• General Purpose Rectifiers

1-2200 Amperes
Up to 4KV

• Fast Recovery Rectifiers

6-1400 Amperes
Up to 3.2 KV
.2-5JLS

• Phase Control SCR's

10-1400 Amperes
Up to 3 KV
10

40-900 Amperes
Up to 2.2KV

• Fast Switching SCR's

10-80,us

• Reverse Blocking Diode Thyristor (RBDT)

22-80 Amperes
Up to 1 KV
2,000-4,000A/,us

• General Purpose Transistors

.5-15 Amperes
3D-150V

• High S.O.A. Transistors

1.5-25 Amperes
30-250V

• High Power Switching Transistors

50 Amperes
400-500V

Many of these products are available in a variety of packages including axial lead mount, diamond mount,
flat base, stud less, stud mount, and disc mount. All of these products are available mounted on air, oil, or water
cooled heat sinks in a variety of circuit configurations; these assemblies offer average current ratings from .5
amperes to 10,000 amperes or more with voltage capabilities as high as 688 KV for some high voltage stack
designs.
The @ Data Book covers the vast majority of products and assemblies currently available; however, increased current ratings, voltage ratings, and/or improved turn-off and reverse recovery times will continueto
evolve as a result 6f new product developments and improved production yields. Therefore, the reader is encouraged to contact a Westinghouse sales representative regarding any application(s) that might fall into
any of these "fringe" areas.

4. IMPORTANCE OF POWER SEMICONDUCTORS
Power semiconductors have grown from laboratory curiosities to brute-force industrial components
which have become competitive necessities in the marketplace. The potential advantages of solid-state power
electronics over electromechanical equipment are well known: increased reliability and service life, reduced
size and maintenance. In some cases, there is a sizeable cost advantage, while in other cases the performance
capabilities can be achieved in no other way. Table 1.1 shows a complete matrix of industrial applications that
can use Westinghouse Power Semiconductors (See page 13).
At least three current trends indicate that power semiconductors will become even more important to the
user:
1. The growing shortage of oil and gas and the growing environmental concern will stimulate the utilization of clean electrical power in countless new areas now predominantly served by other forms of energy.
2. Efficiency in the manipulation and control of electrical power will have increasing priority as the rising
cost of power forces the abandonment of techniques which are "short-term cheap but long-term wasteful."
3. The evolution of present applications and the creation of new applications will cause increasing
demands for speed, precision, and reliability in power control that can be satisfied by no other technology.
For these reasons, power semiconductors are penetrating many new application areas and outmoding
many traditional design approaches. Product engineering departments accustomed to well established
design procedures involving Ward-Leonard drives, relay logic, or selenium rectifiers are faced with extinction overnight if they cannot adapt to the higher levels of complexity and analytical sophistication made possible and made necessary by solid-state electronics. While many technologies evolve over a period of decadesleaving adequate reaction time for business planning-this is not usually the case with power electronics.
Solid state technology typically moves from an insignificant share of a market to a dominant share in a period
of only 2 to 4 years. The universal S-curve showing the capture of a market by a product which takes advantage
of power electron ics is shown in Figure 1.2. Thus, a company which does not keep up-to-date in this new
technology can easily lose a secure market position because of inadequate reaction time.
11

" of Annual Market
1~

ICompetitive •
Necessity

Laboratory
2~

Curio.~i;.;.otY~_---I

Time
Maximum Time Allowable
To Defend Your Share of the Market
(Typically 2-4 Years)
Figure 1.2 Universal s-curve showing market penetration by a product which
takes advantage of power electronics.

5. MANUFACTURER IOEMI END USER RELATIONSHIP
Historically, this relationship has tended to be split into two independent relationships: (1) The semiconductor manufacturer and the customer, the original equipment manufacturer (OEM). (2) The OEM and the
customer, the end user., With the growth and acceptance of power semiconductors into virtually every market
segment, as well as the emergence of trends brought on by energy, environmental, and safety considerations,

Semiconductor
Manufacturer

I
OEM

....

l..
I~

\
End User

Figure 1.3 Semiconductor M/ianufacturer, OEM, En,d User Relationship.

12

the manufacturer, OEM, and end user relationship has become much more dynamic and comprehensive
(shown by the diagram in Figure 1.3). The semiconductor manufacturer has come to recognize that both the
OEM and the end user are "Users" of power semiconductors, whether directly or indirectly. The end user is
really the ulti mate customer-the one who purchases, uses, and maintains the equipment that was built and
sold by the OEM who, in turn, purchased power semiconductors from the component manufacturer. The end
user wants reliable, efficient, easy-to-maintain equipment that will meet the necessary environmental and
safety standards while providing maximum performance at minimum cost. Not until the semiconductor
manufacturer, the OEM, and the end user collectively work together can a semiconductor be produced and a
piece of equipment be designed that will fulfill all of the end user's needs. This is a shared relationship that, if
properly performed, will be mutually rewarding for all concerned.

....,.

,

ftl:"urlUD

1==
, ...... EQUIPMENT
Fusion Energy Research

.v.
uc ear Fission
,Oil

Supplies

(uFfs~wer

Wind
TRANSPORTATION SYSTEMS
Electric Vehicle
: Stairway
Mass rranslt
People Movers
INDUSTRIA<. CONTROLS
AC Motor Controls
AC Motor starters
1\lr
conveyor
gr~lIe Il Holst
DC Io1otor Control

EI~

~~h~~c:~~~M)

Elec trlc SDace Heatlnll
. Fumace
Heating Il Melting
Lin rruckS
_l,ilIhting.
Machine T()ol
Off Road Vehicles

!'

•

Off~~If;~~ Oil Wen

. ,,_.....

Aircr,
Alum num Heauctlon
Anod izing
Arc eaters
latte
'gers
ompUler
onSU/ll8r
ielE ctrlC Heating

lac tron

~eam.weldil1g

=

Radio &
lreatment
,ArC

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

est

..,~

•

_.·

Inauctlon Heating
Ulser
Military
MIning I"'Ower Qlntars

rv

•
•
•
•
•
•

·

General HIgh HIgh .....
RBDT I'urpo8e SOA Swltcltlng Modu....

·• · ·
•
•

·•
•

•
•
•
•
•
•

·
!

•
•
•
•

•
-".
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•

..•

•
•
•
•
•
. !.
•
•
•
•
•
•
•

..•

· ·

•
•

·• ·•
•
·• ·• ••
•
·• ·•• ·•• ••
·
•
•
•
•
•
•
·•• •• •
•
•
·• •
•
•
•
·•• •
•
•
•
•
•

power Factor
Pum & I"'lpellne
IOlie State
ilee MIIIRrive~.
Vele ng, capaCitor Discharge
Ville InJl.

,

•
•
•
•
•
•

F••t
Ph...
Fut
Recove'Y Control Swltchlnll

'.

•

•
•

•

•

•

•

•

•

•

•
•

·

•
•

•

•

..•
•

•

·•

•

•
•
•
•
•

•

•

•

..

•
•
•

DIec

DlIC

H.Y.
StIIc:U

•

•

•

•
•
•

•
•

•
•

•

•
•
•
•

•
•
•
•
•

•

•
•
•
•
•

•

•
•

It

•

•
•
•
•

•

•
•
•

·••
•
•

•
•

•
•
•

•
•
•
•

•

..•• ...•

•
•
•

Table 1.1 APPLICATIONS FOR@POWER SEMICONDUCTORS

•
•
•

· ·
..

•

-

It

..•

•

•
•
•

·

•
•
•

•

•
•
•

·•

•

o.

13

•
•
•
•

•
.!

•
•

Air

•

•

•
•

•

·

LIquid

~:.':.'

· · ·•• ·•
·• ·•
•
•
•
•

•

•
•
•
•

--_....

•
•

•

•

•
•
•
•
•
•

•

14

2
SELECTING THE PROPER POWER
SEMICONDUCTOR FOR YOUR APPLICATION
1. BASIC SEMICONDUCTOR PARAMETERS DEFINED
The pri mary tool for selecting the proper semiconductor to meet a given requirement is the technical data
sheet. In order to use the data sheets effectively, one must first understand the significance of some of the more
important parameters used in rating these semiconductors. The following apply to all types of semiconductors:
TJIMAX) -Maximum allowable junction temperature. This is a very critical parameter upon which all device
ratings are based. Typically, most SCR's have an upper operating junction temperature limit of 1250 C(with
some high temperature series up to 150°C capability); most transistors have an upper operating junction
temperature limit in the range of 150°C to 175°C; and most rectifiers have an upper operating junction
temperature limit in the range of 175°C to 20OOC. If these respective values are exceeded, the device
becomes vulnerable to rapid failure. Of course, proper derating below these maximum limits is necessary
in the actual application to assure reliable performance.
TciMAX I-Maximum allowable case temperature. Since the user of semiconductors has no way of actually
measuring the junction temperature inside of a device package, the case temperature becomes a practical, useful value which can be measured and monitored. As a result, data sheets usually showthe current
carrying capability of a device as a function of its case temperature. The case temperature is directly
, related to the junction temperature by the device characteristic, R8JC (thermal impedance).
RaJc -Thermal impedance, junction to case. RaJc is measured in degrees centigrade per watt and is
determined by the device construction and materials used. This parameter indicates the ability of the
device to transfer heat away from the junction and out through the device case-the lower the value, the
better.
Other basic device parameters by family type that are essential for the semiconductor user to know in the
selection effort are as follows:

Family
Type

InpuV
Control

RECTIFIERS

NONE

SCR's

I GT (6)

(1)
(2)
IF (av) V RRM
I

T(av),

Overload

Losses

Output

(1)V RRM (2)

(5)

TRANSISTORS

B

(6)

I FSM

(3)
(4)
V TM , 'RRM

(5) di/dt, (7) dv/dt, (8)
I TSM
ton, (9) t q (10)

(4)
V BE (SAT),

t rr

SOA, (7) ton, (8)

VCE (SAT),

I C, (1) V CE (2)

(6)

V (3) I
(4)
FM, RRM

(3)
I

Other Special

(5)
' CEO

NONE
t

off,

(9) h FE (10)

Table 2.1 BASIC SEMICONDUCTOR DEVICE PARAMETERS

The following expansion of the items in the table explain their importance:
RECTIFIERS

(1) IF(avl-Maximum full cycle average forward current (measured with an average reading meter) at
15

a

specified case temperature. This is the maximum amount of current that can be controlled or rectified by
any given device.
(2) V RRM -Maximum repetitive peak reverse voltage. This is the maximum allowable voltage that a device
will block in the reverse direction. An associated parameter, V RSM ,defines the device capability to
withstand non-.repetitive reverse voltage peaks of less than-.five millisecond duration. This parameter
typically ranges from zero to 25% above the repetitive values.
(3) V FM -Maximum forward voltage drop at a specified forward current and device case temperature. The
large majority of the losses in a rectifier are due to the forward voltage drop. Therefore, low forward
drops are very desirable in high power devices because less power is dissipated (P=VfM X IFlav)'
(4) IUM -Maximum reverse leakage current at V RRM

. Low reverse leakage currents are desirable forthe
same reason as a low VFM ,less power (watts) to be dissipated (P=VRRM X I RRM ).
(5) I FSM -Maximum one-half cycle (60H z ) peak surge current (under load). Ability to withstand current
surges in excess of the rated operating current extends the application capability of a rectifier. This
characteristic is non-repetitive in nature and, by definition, may occur only 100times within the life ofthe
device. An associated parameter, 12 t, is used to coordinate sub-cycle fuse clearing time with sub-cycle
fault rating of a rectifier.
(6) trr -Maxi mum reverse recovery time relates to the time required forthe reverse current spike to dissipate
after a rectifier stops conducting forward current. This characteristic is especially important on a class of
rectifiers called "fast recovery" devices. Because all rectifiers are essentially "self-operated" switches,
they have finite switching times. This characteristic becomes important when one wishes to rectify (or
switch) at high frequencies.

seR's
(1) IT (av) -Maximum allowable average forward current at a specified conduction angle and case
temperature. If a conduction angle of 1800 is specified, this parameter wouid bethe same as IF (av ) in a rectifier. However, unlike a rectifier, the conduction angle of an SCR can be controlled from 0 to 1800 (typicalIy, a data sheet lists five or six of these angles). The conduction angle defines that part of the sine wave during which the device is conducting current.
(2) V RR M -Maximum repetitive reverse blocking voltage. The same comments apply here as for V RRM of a
rectifier. The SCR in addition to having reverse blocking capability will also block voltage in the forward
direction. V DRM is the designation for the maximum value of repetitive forward blocking voltage. Most
SCR designs are symmetrical in nature-that is, the forward and reverse repetitive blocking voltage
capabilities for a given device are equal (V DRM =V RRM ). Both repetitive voltage ratings (V UM
V DRM ) have corresponding non-repetitive voltage ratings, V RSM and V DSM
(3) V TM -Maximum forward voltage drop at a specified forward current and device case temperature. The
same comments apply here as for V FM in a rectifier.
(4) IUM -Maximum reverse leakage current at VRRM . Again, as with a rectifier, low leakage currents,
IUM , are desirable as less power will be dissipated in the blocking (off-state) mode. In addition, as an
SCR has repetitive forward voltage capability, V DR M ,it also has a forward leakage current, I DR M
(5) I TSM -Maximum peak surge current for a given number of cycles at 60Hz. As with a rectifier, this
characteristic is by definition non-repetitive and may occur only 100 times within the life of the device. In
addition, following this current surge, the repetitive forward blocking voltage, V DRM ,is not guaranteed.
This subject is treated in more detail in the @ Thyristor Surge Suppression Ratings Application Data
Sheet in the General section ofthe Data Book. An associated parameter, 12 t, is used forfuse coordination.
(6) IGT -Minimum DC gate current to trigger (turn-on) an SCR at stated conditions of temperature and
forward blocking voltage. This characteristic specifies the absolute minimum amount of current that must
be provided from a logic source to switch an SCR from blocking voltage (off-state) to conducting current
(on-state). For more information, see the SCR Gate Turn-on Characteristics Application Data Sheet in the
General section of the Data Book.
(7) di/dt-Maximum rate of rise of peak current allowable with respect to time during SCR turn-on. Because

an SCR requires a finite time to turn on, only a very small area of the junction is conducting current at the
instant the deyice is triggered on. If the current is building up very quickly, it must all go through this very
small area. When the specified di/dt limit is exceeded, the device can develop a hot spot which can destroy
the unit. This is generally not a problem in60H z phase control applications but becomes a problem in DC
switching applications (e.g. inverters) or in capacitor discharge circuits. When comparing di/dt ratings of
different manufacturers be sure the ratings are both repetitive or non repetitive and that the ratings are based on the same set of test conditions.
16

(8) dv/dt-Minimum rate of rise of peak voltage with respect to time which will cause switching from the offstate to the on-state. When the dv/dt limit is exceeded, the potential danger exists of turning the SCR back
on when it should remain off. As with di/dt this is generally only a problem in square wave or stepfuilction
applications. Review all test conditions when comparing dv/dt ratings of different manufacturers-dv/dt
can be expressed as either a linear or an exponential function.
(9) ton -Time required for the forward current to reach 90 percent of its final (or maximum) value when
switching from the off-state to the on-state under specified conditions. Switching times are important for
two reasons-they affect the upper frequency at which the device may be operated and to some degree
they determine the system efficiency. When considering frequency of operation (or i n pulse applications,
the desired pulse width), it becomes simply a matter of whether or not the device can be turned on and off
fast enough to satisfy the requirements. Power losses when switching from blocking voltage to conducting current can be a significant consideration for determining system efficiency.
(10) tq. -Turn-off time relates to the time required for an SCR to switch from conducting current to blocking
forward voltage. Turn-off ti me is important for essentially the same reasons as turn-on time. Turn-off ti me
is not critical in most 60 cycle phase control applications; however, a special class of SCR's called "fast
switching" devices are used in inverters, choppers, and other high frequency circuits. In these types of
applications, the designer must be careful to select a device offering the optimum combination of current
handli ng capability, voltage blocking capability, and turn-off time capability. Due tothe wide variety of fast
switching applications, data sheet turn-off conditions do not necessarily reflect actual circuit operating
conditions. Contact ® if help is needed in selecting the proper device.

TRANSISTORS
(1) Ic -Collector current. In most applications, this is the current that is manipulated to perform some desired
function. In a series regulator, for example, the collector current can be increased or decreased by base
current control, depending upon what the load requires.
(2) VCE -Collector-to-emitter voltage. This is similar to V RRM
in rectifiers and SCR's in that it represents
the device blocking capability in the off-state. There are many related designations: Vc EO ,Vc ES '
V CER ,etc. They differ only in the third subscription letter which indicates the condition of the base: 0open, R-resistor, S-shorted, etc.
(3) V CE (SAT)
-Collector-emitter saturation voltage. When driving the base of a transistor, a point is reached where increased base current no longer results in decreased collector-emitter voltage. This is saturation. VCE (SAT) is a measure of the voltage across that junction under saturation and is comparable to
forward voltage drop in rectifiers and SCR's. VCE (SAT) and Ic lead to power losses in the transistor during saturated operation and therefore, are important considerations.
(4) VB E (SA T\ -Base-emitter saturation voltage. The same general comments apply here as for
V CEI SA T) except the comments now refer to a base-emitter rather than a collector-emitter condition.
High V Be (SAT) or large variations in VBE (SAT) will cause corresponding changes in VCEISATl
(5) I Ceo -Collector-to-emitter leakage current with the base open. This is usually the pri mary leakage loss
in a transistor. This characteristic is comparable to I RRM
in rectifiers or SCR's. While low values of
leakage are desirable to minimize power losses, low leakage is not necessarily synonymous with reliability.
(6) IB -Base current. The function of the base current ina transistor is similar to that of the gate current in an
SCA. However, in a transistor, current must be provided into the base as long as the transistor is to be kept
on, whereas, the SCR only requires an initial pulse of current to turn it on.
(7) SOA-Safe Operating Area. SOA is a voltage-current plot which describes an area in which the transistor
can operate safely. A time limit is given for the collector voltage and collector current that can occur
simultaneously in the transistor. Forward bias SOA ratings require the base-emitter to be forward-biased
throughout the time that the peak power condition exists and is usually measured in a resistive circuit. A
related term is forward current stability, denoted by the symbol I SB . Safe operation of a transistor during
inductive switching when a transistor in series with an inductor is turning off necessitates consideration of
additional characteristics. The inductance will keep current flowing for some period of time. During this
time, the voltage is increasing across the transistor creating a Vxl product or power dissipation. Because
the base-emitter is reverse-biased, the transistor cannot dissi pate as much power. The energy that a transistor can support is denoted by the abbreviation E SB . Inductive switching ratings can be used as a guide
to compare transistor capabilities, but actual capabilities must be verified in the actual circuit.
(8) & (9) ton & toff -Turn-on time and turn-off time. These are important parameters in transistors for essentially the same reasons given in the SCR remarks.

17

(10) hF£ -DC current gain under.specified conditions of collector current and collector-emitter voltage.
This transistor characteristic is the ratio of DC collector current to DC base current. This amplification
factor determines the amount of output (I e ) that is generated by a given input (I B ). For example, if hfE
is 20 at I B =1 ampere, then Ie is 20 amperes.

2. CONFUSING TERMINOLOGY-MANUFACTURER VERSUS USER
INTERPRETATION
Many users and designers have either been lucky or have learned the hard way howto properly interpret a
semiconductor manufacturer's data sheet. Unfortunately, many conventional semiconductor terms and
definitions can have double meanings, depending upon whether they are being interpreted from the manufac-·
turer's or the user/designer's point of view. What a semiconductor manufacturer might define as a maximum
(minimum) value on a data sheet could well be a minimum (maxi mum) value for the designer and user. A few
examples utilizing SCR terminology will illustrate this dilemma:

Data Sheet
Terminology

User or Designer's
Interpretation Might Be

Semiconductor Mfgr's
Actual Meaning

(1) MaximumlGT=150
ma

Does this mean that no
more than 150 ma is
needed to turn-on
these SCR's?

All SCR's supplied will
have gate currents less
than or equal to 150 mao
User must supply more
than 150 ma to assure
proper SCR turn-on. In
fact, 3 to 5 ti mes as Max.
IGT is desirable for
SCR turn-on in certain
applications.

Here, a value defined as
maximum by the
manufacturer is for the
user or designer, an absolute minimum design
limit.

(2) Maximum blocking
or off-state voltage
V DIM ,VRRM
=1200
volts.

Does this mean that
some devices received
will block or support
less than 1200 volts?

All devices supplied will
support at least 1200
volts; however, this
limit cannot be exceeded in the application.

In this case,the
manufacturer's maximum is also, the
deSigner's or user's
maximum limit.

(3) Minimum di/dt - 200
Alp.s

Does this mean that
200 A/p.s can be exceeded ina given
application? .

All devices supplied
will withstand a rate of
current rise (di/dt) of at
least
20 0 AI p. s ;
however, this limit cannot be exceeded in the
application.

Here, the manufacturer's minimum value
becomes the user's or
designer's maximum
design limit.

(4) Typical turn
time t q =40p.s

Can this typical turnoff time be relied on in a
given application?

This 40p.s turn-off time
only represents an
average value for the
product family and is
not a guaranteed limit.

Typical values should
not be relied upon by
the designer or user as
guaranteed values.

off

Table 2.2 Confusing Data Sheet Terminology

18

Remarks

Realistically, data sheets should be written from the user and designer's view point rather than the
manufacturer's device-oriented point of view-however, since most users and designers have been "weaned"
on this existing terminology, a change in philosophy would create only more confusion. To help those who
have yet to conquer data sheet terminology, the following suggestions are offered:
The safest way to interpret a maximum or minimum data sheet limit is to recognize that (1) they both represent worst case designer or user conditions, (2) they both are guaranteed by the semiconductor manufacturer.
As for "typical" values, don't rely on them as maximum or mini mum design limits in an application. If a "worst
case" limit rather than a "typical" value is needed for a particular application, have the semiconductor
manufacturer guarantee the design limit needed either by actual testing or written certification. If still in doubt
about how to interpret a given data sheet parameter, call the semiconductor manufacturer for clarification.

3. HOW TO USE THE WESTINGHOUSE DATA BOOK
There are four easy ways to locate technical data in the Westinghouse Data Book:
Device Type Number Search

(1) IF ONLY THE PRODUCT TYPE NUMBER IS KNOWN:
Go to the Master Cross Reference Type Number Index in the GENERAL section of the Data Book. Using
this JEDEC and alpha/numeric industry index, the reader can rapidly locate any power semiconductor
product type number for which Westinghouse offers an exact or suggested replacement along with the page
number of the recommended Westinghouse product data.
(2) IF BOTH THE PRODUCT FAMILY AND THE PRODUCT TYPE NUMBER ARE KNOWN:
Go the the alpha/numeric Product Type Number index at the beginning of the approprate generic
PRODUCT section (Assemblies, Rectifier, Thyristor-SCR's and RBDT, or Transistors). Using this index, the
reader can turn directly to the page location of a given product type number.
General Application Search
(3) IF A SPECIFIC PRODUCT APPLICATION REQUIREMENT IS KNOWN:
Go to the appropriate PRODUCT section (Assemblies, Rectifier, Thyristor-SCR's and RBDT, or Transistors), look under the appropriate product subgroup (Le. General Purpose or Fast Recovery for Rectifiers).
and scan the Product Capability Graphs and Product Selector Guides. These graphs and guides are presented
in order of increasing average current so the reader can quickly locate a suitable Westinghouse product type
and corresponding page number data location.

(4) IF BOTH A SPECIFIC PRODUCT APPLICATION REQUIREMENT AND THE DESIRED PRODUCT
PACKAGE IS KNOWN:
Go to the @ Data Book Table of Contents forthe location of the appropriate PRODUCT section, product
subgroup, and package type. The page number shown marks the beginning of the desired data section; the
data for a given package type is listed in order of increasing average current rating to simplify the reader's
search.

4. KNOW YOUR APPLICATION REQUIREMENTS
Many applications using general purpose rectifiers or transistors and phase control SCR's require the user
only to consider such basic parameters as current, voltage, and temperature when developing a new design,
working on a conversion or an equipment upgrade, or looking for a replacement device. However, there can be
many secondary parameters which can adversely affect desired equipment operation-especially if devices
are used in series and/or parallel combinations. Most fast recovery rectifiers, high power switchi ng transistors,
and fast switching SCR's require close scrutiny by the user on essentially all device parameters to assure
proper equipment operation.
To assist the user in selecting the proper power semiconductor for a given application, Westinghouse has
developed a series of Appl ication Checklist/Work Sheets in the following areas: (1) General Purpose and Fast
Recovery Rectifiers (2) Phase Control SCR's (3) Fast Switching SCR's (4) Power Transistors (5) Assemblies.
To use a particular form, simply make a xerox copy and fill it out. With your application requirements down on
paper in a logical order, it will be easier to locate a suitable device by self-selection or by calling or writing the
semiconductor manufacturer for a device recommendation.

19

P.S. Even if you have already selected a device yourself, it might be worthwhile getting a confirmation from the
manufacturer.
To assist the user in searching for replacement devices, a ha:ndy Device Identification Checklist has been
developed. A copy of this form is presented on page 54.

20

@ GENERAL PURPOSE AND FAST RECOVERY
RECTIFIER APPLICATION CHECKLIST
(Make copy for each use)
1. APPLICATION: _ _ _ _ _ _ _ _ _ _ _ _ __

o LEAD MOUNT

1

STANDARD POLARITY
OR
o REVERSE POLARITY
0

o STUD MOUNT o DISC MOUNT

2. CIRCUIT:

o OTHER

Sketch circuit
(showing all
component values
including
inductences) or
attech drawing

o NO PREFERENCE
• Special size, weight, or other restrictions _ _ _ _ _ __

3. CIRCUIT VOLTAGE:

FOR APPLICATIONS REQUIRING FAST RECOVERY CHARACTERISTICS, COMPLETE THE FOLLOWING SECTION -

• Maximum reverse voltage across
rectifier

v

• Maximum expected transient
voltage

7. RECOVERY CHARACTERISTICS: (If required, sketch waveform(s) on back of page)

___v

• Maximum reverse recovery time allowable, t r r - - - -

• Desired voltage safety factor

• Recovery time, to _ __
• Preferred rectifier device voltage
rating

___
v

• Recovery time, t b _ _ __

• Other _ _ _ _ _ _ _ __

• Maximum overshoot current, IR(REC}---./!,A

4. CIRCUIT CURRENT: (sketch waveform(s) on back of page)

• Peak current, IFM _ _ _
A

A

• Average forward current"

• Pulse width, tp _ __
• Rate of current fall,d;R/dt ~

- Waveform and frequency

--"-

- Duty cycle

• Waveform _ _ _ __

___
A

• Overload peak current (waveform)

• Maximum junction temperature ~

---"

- Duty cycle
- Pulse width
- Resume operation following
overload

DYES

• Peak surge current (waveform)

oNO

_ _ _A_
TIME

- Pu lse width

', ___011\ i

~EC)
~R(REC)-:r-I~~' .. -

- Number of cycles
• Other _ _ _ _ _ _ __
*If paralleling is required, state method of current sharing __
5. THERMAL:

8. PROJECT REQUIREMENTS: Quotetlon Due Date _ _ __

• Cooling Medium (check one) o AIR -

0

• Quantity Required__

Natural Convection, altitude _ _ feetor

o Forced' _ _ _ LFM _ _ _ CFM**

**Duct cross-sectional area _ _

Person Requesting Information

• Timeteble _ _ _ __

Name _ _ _ _ _ _ __

Long-range Potential _ _

Phone _ _ _ _ _ _ X __

• Other Remarks _ _ _

Job Function - - - - - Company _ _ _ _ _ __

o WATER - _ _ _ GPM flow rate

Address _ _ _ _ _ _ __

o OIL (Immersed) - Type _ _ Manufacturer _ _ __
o Special screen ing and/or
h igll reliability test requirements are attached.
o Also quote on this
app licat ion
using @ assemblies.

o OTHER _ _ _ _ _ _ _ __
• Cooling medium maximum temperature, 'C _ __
• If heat sink Is known, specify R9sA _ _ _ 'CIW.
• Other thermal considerations

City _ _ _ _ _ Stete_
Bldg. _ _ _ __ Zip __

Please complete a copy of this form foreach different application.
Forward this form to Westinghouse Electric Corporation,
Semiconductor Division, Attention: Sales Department,
Youngwood, Pa. 15697 for complete quotation. If you need faster
service, please call (412) 925-7272 for a quote.

6. MECHANICAL:
• Desired package type (check one) -

21

@ PHASE CONTROL SCRAPPLICATION CHECKLIST
(Make copy for each use)
6. THERMAL:

1. APPLICATION:

• Cooling Medium (check one) -

[] AIR - [] Natural Convection, altitude_ _feet or
[] Forced ___ LFM _ _ _ CFM * *

2. CIRCUIT:
Sketch circu it
(showing all
component values
including
inductances) or
attach drawing

**Duct cross-sectional area _ __
o Water - _ _ _ GPM flow rate
o OIL (immersed) - Type _ _ _ Manufacturer
o OTHER-

3. CIRCUIT VOLTAGE:

• Cooling medium maximum temperature, 'C _ __

• Maximum peak forward and/or reverse voltage across SCR

___v

• Maximum expectad transient
voltage

___v

• If heat sink is known, specify Re SA _ _ _ ooIW.
• Other thermal considerations _ _ _ _ _ _ _ _ __

• Desired voltage safety factor

7. MECHANICAL:

___v_

• Preferred SCR voltage rating

• Desired package type (check one) -

• Other _ _ _ _ _ _ _ _ __
o STUD MOUNT

4. CIRCUIT CURRENT: (sketch waveform(s) on baCk of page)
o DISC MOUNT
• Maximum continuous SCRcurrent"DOC, oAVERAGE, or oRMS

___
A

o INTEGRAL HEAT SINK

• Phase - 014>.03<1>, 061/>, or oOTHER _ _ _ _ _ __

o FLAT BASE

• Conduction angle - oSlne or
oSquare, degrees

o OTHER _ _ _ _ _ __
o NO PREFERENCE

• Current waveform, frequency, and duty cycle _ _ _ __
• SpeCial size, weight, or other restrictions _ _ _ _ __
• Overload peak current (waveform)

--"-

- Duty Cycle

8. PROJECT REQUIREMENTS: Quotation Due Date - - -

- Pulse Width
- Resume Operation Following
Overload

DYES

oNO

• Quantity Required__

Person Requesting Information

• Timetable _ _ _ __

Name

Long-range Potential _ _

Phone _ _ _ _ _ _ X __

• Other Remarks _ _ _

Job Function - - - - - -

_ _ _A_

• Peak surge current (waveform)
- Pulse Width
- Number of Cycles

Company _ _ _ _ _ __

- Assymetry (LIR ratiO)

Addr~s

• Other _ _ _ _ _ _ _ _ __

o Special screening and/or
high reliability t~t requirements are attached.
o Also quote on this
application
using @ aasemblies.

"If paralleling is required, state method
of current sharing:
5. GATE DRIVE AVAILABLE:
• IG2---------~A
• tGR
u,
• IGT (maXI 2500

I

I

I
I

--~--'l~--------_t
I
I

I

I

I

I

,

Bldg. - - - - - - Zip_

Please complete a copy ofthls form for each differentapplication.
Forward this form to Westinghouse ElectriC Corporation,
Semiconductor Division, Attention: Sales Department,
Youngwood, Pa. 15697 for complete quotation. If you need faster
service, please call (412) 925-7272 for a quote.

I
I

I
I

State __

• tGP _ _ _ _ _ _~u=.
tGS _ _ _ _ _ _--''''"..
ma

------

IGT(maxI,.. __

-----

•

• Forward gate source voltage _ _ _ _ _ _ _ _ _ _-'-v
'G2

City

_ _ _ _ _ _ __

I

22

@ FAST SWITCHING SCR APPLICATION CHECKLIST
(Make copy for each use)

1. APPLICATION:

5. SWITCHING:
•

2. CIRCUIT:

[J

Soft Commutation or

Hard Commutation

[J

• Maximum available tum-off time, tq-lAs@TJ _ _ _ DC

Sketch circu it
(showing all
component
values
Including
Inductances)
or attach
drawing

vi",.

• Reapplied dv/dt

• Maximum operating frequency _ _ _ or duty cycle ___%_
•. GATE DRIVE AVAILABLE:
• IG2 _ _ _ _ _ _ _0..1.
• tGR

•

tGP _ _ _ _ _ _ _-"fJ.=S

II-S •

tGS ________ ....!:fJ.=S
ma

• IGT (maXI @ 25 DC

3. CIRCUIT VOLTAGE:
• Peak forward blocking voltage, VO RM
• Peak reverse blocking voltage, V RRM
• Maximum expected transient voltage

___v

___v
___v

• Forward gate sou rcevoltage _ _ _ _ _ _ _ _ _ _-'-v
7. THERMAL:
• Cooling Medium (check one) [J

• Desired voltage safety factor

___v

• Preferred SCR voltage rating

AIR -

[J

Natural Convection, altitude _ _ feetor

[J

Forced

_ _ _ LFM

_ _ _ CFM

**

• Other _ _ _ _ _ _ _ _ _ _ _ __

* * Duct cross-sectional area _ __

~=,(1!j~ xgt-~E~~:r

VDRM

MINIMUM CIRCUIT TlJRN-llfF T I 7 f
REAPPLIED dvldt

[J
[J

\

[J

WATER - _ _ _ GPM flow rate
OIL (immersed)- Type _ _ _ Menufacturer
OTHER - ______________________________

• Cooling medium maximum temperature, DC _ __
• If heat sink is known, specify R eSA _ _ _ DC/W.
• Other thermal considerations _ _ _ _ _ _ _ _ ___
•• MECHANICAL:

r--

• Desired package type (check one) tp ----+/Y""JJ:-IR (REC)

to-l

i [...."tb

[J

STUD MOUNT

[J

DISC MOUNT

[J

INTEGRAL HEAT SINK

[J

FLAT BASE

4. CIRCUIT CURRENT": (if required, sketch waveform(s)
on back of page)
Worst Ceae Pullewldth CondlUona
• Maximum peak current, I TM
- Pulsewidth, tp

_ _ _A_

---"'-'

- Waveshape

OTHER - - - - - - - - - -

[J

NO PREFERENCE

• Special size, weight, or other restrictions _ _ _ _ __
9. PROJECT REQUIREMENTS: Quotation Due Date _ __

• In itial rate of current rise, d i /dt
• Rate of current fall, diR/dt
• Reverse recovered charge,QRR
- Max, overshoot current I R(RECI

[J

• Quantity Required__

Person Requesting Information

• Timetable ______

Name

Long-range Potential _ _

Phone _______ X __

• Other Remarks _ _ _

Job Function - - - - - - -

_ _ _A_

- Recovery time, ta

Company _ _ _ _ _ _ __

- Recovery time t b

Address ___________

• Peak surge current (waveform)

___
A

[J Special screen ing and/or
high reliability test requlrements are attached.
[J
Also quote on this
application
using @ assemblies.

- Pu Isewidth
- Number of cycles
- Assymetry (L/R ratio)

City - - - - - State Bldg. - - - - - - - Zip_

Please complete a copy ofthis form foreach different application.
Forward this form to Westinghouse Electric Corporation, Semiconductor Division, Attention: Sales Department, Youngwood, Pa.
15697 for complete quotation. If you need faster service, please
call (412) 925-7272 for a quote.

• Other _ _ _ _ _ _ _ _ _ _ _ __
'If paralleling is required, state method of current
sharing:

23

@ TRANSISTOR APPLICATION CHECKLIST
(Make copy for each use)

• Turn-off storage time, t,

1. APPLICATION:

2. CIRCUIT:
Sketch circuit
(show all
component
values
including
inductances)
or attach
drawing

• Turn-off fall time, tf

--_1.1._,

• Maximum junction temperature

___oc_

6. THERMAL:
• Cooling Medium (check one) o AIR - 0 Natural Convection,altitude _ _ feetor
oForced _ _ LFM _ _ CFM**

3. CIRCUIT VOLTAGE:

** Duct cross-sectional area _ __

v

• Source voltage
• Maximum circuitvottageacross transistor
o clamped or

0

o WATER - _ _ _ GPM flow rate

___v

o OIL (immersed) - Type _ _ _ Manufacturer _ _ __

unclamped

• Maximum expected transient voltage

oOTHER- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __

___
v
• Cooling medium maximum temperature,·C _ __

• Maximum emitter base reverse

• If heat sink is known, specify Re SA _ _ _ ·CIW.

___v

voltage during operation

• Other thermal considerations ______________

• Desired voltage safety factor
• Preferred transistor voltage rating

___
v
7. MECHANICAL:

• Other

• Desired package type (check one) o DIAMOND MOUNT (TO-66/TO-3)

4. CIRCUIT CURRENT: (Include load line sketch w/unclamped

o STUD MOUNT

inductances specified)

o DISC MOUNT

_ _ _A_

• Maximum collector current'

o OTHER

• Collector current duty cycle __% and Irequency _ _ Hz

o NO PREFERENCE

• Current gain

• Special size, weight, or other restrictions _ _ _ _ __
• Other

'11 paralleling is required, state method of current sharing __
5. SWITCHING:

8. PROGRAM REQUIREMENTS: Quotation Due Date_ __
• Quantity Required__

Person Requesting Information

• Timetable

Name

Long-range Potential _ _

Phone _ _ _ _ _ _ X __

• Other Remarks _ _ _

Job Function - - - - - Company _________
Address _ _ _ _ _ _ __

90o;;--Zo

o Special screening and/or
high reliability test requirements are attached.
o Also quote on this
application
using @ assemblies.

10'.
t

,

TURN ON TIME

• Maximum base current, I a{ON)
• Maximum base current, I a {OFF)
• Turn-off base supply voltage

TURN OFF TIME

City
Bldg.

State __
Zip - -

Please comp lete a copy of th is form 10 reach different application.
Forward this form to Westinghouse Electric Corporation,
Semiconductor Division, Attention: Sales Department,
Youngwood, Pa. 15697 for complete quotation. If you need faster
service, please call (412) 925-7272 lor a quote.

A
___
A

___v_

• Turn-on delay time, td
• Turn-on rise time, tr

24

@ASSEMBLY APPLICATION CHECKLIST
(Make copy for each use)
1. APPLICATION: _ _ _ _ _ _ _ _ _ _ _ _ _ __

o WATER - _ _ _ GPM flow rate
o OIL (immersed) - Type _ _ _ Manufacturer
OOTHER- _ _ _ _ _ _ _ _ _ _ _ _ _ __
• Cooling medium maximum temperature, DC _ __

2. CIRCUIT:
Sketch circuit
(showing all
component
values includ ing
inductances) or
attach drawing

• Other thermal considerations _ _ _ _ _ _ _ _ __

6. MECHANICAL:
• Special semiconductor device package requirements
oYESo NO

3. CIRCUIT VOLTAGE:

If YES, specify desired package type _ _ _ _ _ _ __

• Maximum forward and/or reverse voltage across

• List any size, weight, mounting, or other requirements _

assembly

---y-

___
v

• Maximum expected transient voltage
• Desired voltage safety factor

___v

• Preferred assembly voltage rating

7. PROJECT REQUIREMENTS: Quotation Due Date _ __

• Other
• Quantity Required__

4. CIRCUIT CURRENT: (sketch waveform(s) on back of page)

• Timetable

A

• Maximumoutputcurrent*-

Long-range Potential _ _

oAVG., 0 RMS, or 0 PEAK

• Other Remarks _ _ _

- Waveform and frequency

Person Requesting Information
Name _ _ _ _ _ _ _ __
Phone _ _ _ _ _ _ X __
Job Function
Company _ _ _ _ _ __

- Duty cycle
• Overload peak current (waveform)

___
A

Address _ _ _ _ _ _ __

%

o Special screening and/or City
State __
high reliability test re-----quirements are attached.
Bldg. _ _ _ _ _ _ Zip __

- Duty cycle
- Pulse width
- Resume operation following overload

DYES

• Peak surge current (waveform)

oNO

___
A

- Pulse width

Please complete a copy ofthis form foreach different application.
Forward this form to Westinghouse Electric Corporation,
Semiconductor Division, Attention: Sales Department,
Youngwood, Pa. 15697 for complete quotation. If you need faster
service, please Clili (412) 925-7272 for a quote.

- Number of cycles
• Transformer KVA and percent impedance
• Other _ _ _ _ _ _ _ _ _ _ _ __
'Ifparalleling is required ,state method of
currentsharing:
5. THERMAL:
• Cooling Medium (check one) o AIR - 0 Natural Convection, altitude _ _ feetor
o Forced _ _ _ LFM ___ CFM
*'*

**Duct cross-sectional area _ _-

25

MONEY

" Opportunity
Costs"

Wise Semiconductor Procurement Means Good Resource Management and That Involves Everyonel

26

3

SEMICONDUCTOR PROCUREMENT

1. SPEND SEMICONDUCTOR DOLLARS WISELY.
Each user must consider several facets of device and supplier capability in order to make intelligent
procurement decisions concerni ng power semiconductors. Suggestions for eval uation of the "total" value of a
power semiconductor supplier are provided in Section 2. Section 1 deals briefly with other suggestions for
consideration prior to selecting a device and placing an order: (1) "total" cost, including costs over and above
the price of the device and (2) engineering-related financial considerations, such as efficiency, reliability, and
device availability versus electrical capability.
Total Cost. The price of a power semiconductor is certainLy one of the major items for consideration prior
to selection of a device to satisfy the user's needs. However, a user must also consider other costs in order to
optimize "total" cost. Packaging, transportation, insurance charges, and hardware requirements associated
with a device are easily measurable, although often disregarded. Other total cost considerations are not
measured as easily, but can prove to be very significant alternatives. For example, blanket contracts, blanket
orders, letters of intent, and other types of purchase agreements are generally vehicles used to obtain lower
device prices, however, these agreements help to reduce other cost factors. When a power semiconductor
manufacturer has advance knowledge of on-going user requirements, better planning is possible. The net
resu It is improved reproducibility, reduced delivery lead time which helps to mini mize user safety stock, and
better on-time shipping performance.
.
Often when a user buys several different semiconductor type numbers in the same product family, a
savings can be obtained by ordering only the best rated unit (current, voltage, etc.) for all needs, thus qualifying for a larger volume price discount. Combining purchases for device types of different voltage ratings is
usually the most practical way to achieve a higher volume price discount (this is especially true for the lower
voltage ratings of a given product type); sometimes combining various current ratings of the same package
type will also result in savings. If in doubt, ask the manufacturer to review your semiconductor procurement list
and reco mmend the most economical purchase option. The manufacturer will be glad to help since it is easier
to fill one large order for a single device type than many small orders for different part numbers. In addition, the
user saves ti me and money in i ncomi ng inspection, inventory costs, improved delivery performance, and standardization of parts.
Another frequently overlooked cost factor relates to special handling. Costly set-up charges can be avoided and better price stability and shorter delivery lead times can be realized if the user limits the number of
releases and maximizes release quantities for each device. A d.ecision to enter an order through an authorized
distributor to avoid the generally higher minimum release of a manufacturer can often be a reduction in total
cost even though the individual device price may be higher; however, beware of counterfeit rebranded devices.
Deal only with authorized distributors. Trying to save a few dollars on a unit price basis can add significantly to
total costs if the devices are determi ned to be defective at a later date. Extra i nspecti on steps, such as a req u i rement for government source inspection, also can cause delayed shipments and increased costs because of
delays incurred while waiting for arrival of inspectors.
Engineering Related Financial Considerations. Efficiency of equipment, cost of maintenance, reliability.
and the cost of auxi Iiary and protective circuitry are significant items for review in order to obtai n a true picture
of the cost of a particular power semiconductor. It is often difficult to determine a dollar value for each of these
factors, but each item must be considered. nonetheless, ifan intelligent procurement decision isto be made.
In a field of rapid technological improvement such as power semiconductors, new devices are introduced
at frequent intervals. Asingle new device often replaces two or more existing device types and/or procurement
of new completely tested assemblies of devices on heat sinks (where semiconductor purchase dollars may
rise, but total equipment costs decline) is often more economical for the user than handling individual parts.
Review of the latest available devices is, therefore, an essential ingredient in wise power semiconductor
procurement.
The user must also determine the optimum trade-off between electrical parameters as these parameters
relate to the ability of the device manufacturer to reproduce devices consistently. For example, selection of a
fast switching SCR often requires trade-offs among blocking voltage. current rating, and turn-off time to
assure availability in large quantities.

27

Adequate safety factors on device ratings are another significant cost-related design consideration.
Manufacturers of power semiconductors normally warrant products to meet specific electrical parameters.
The designer must apply safety factors to assure the integrity~of the application, but application of excessive
safety factors can be costly.
Power semiconductor manufacturers spend considerable time and rrloneyto develop device families with
useful, user-acceptable, ratings. When possible, users should attemptto incorporate these "standard" devices
into applications to assure themselves of the best price and product availability. Special electrical test requirements and/or mechanical modifications normally add to cost and delivery lead times.

2. EVALUATING A POWER SEMICONDUCTOR SUPPl.IER
,

.

The traditional method for evaluating the value of a supplier-price, delivery, service (P,D,S)-is a gross
oversimplification of the measurement criteria. The P,D,S rule could cause one to "short change" oneself and
prevent the company from realizing the total value of capabilities and services offered by truly good suppliers.
Eighteen key items to be used for comparing suppliers have peen identified and discussed below under four
major categories-General Support, Pre-Order Period, Order Period, and Post-Order Period (see Table 3.1).
Each of the categories (or each of the individual items) must be weighted according to the needs or requirements of each user organization. That user must then eval uate each available supplierfor the most important categories (or items). The manufacturer(s) scoring the, highest total rating represents the best "total
value" supplier to the user.
This method for evalution is presented as a tool to aid in the selection of a supplier. The method is not
simply a means of reducingthevalues ofasuppliertoa numerical score; the purpose isto identify and quantify
the key areas where potential power semiconductor supplier(s) can represent real value to a user.

GENERAL SUPPORT
-Sales coverage
-Distributor support
-Technological leadership
-Product reproducibility:
PRE-ORDER PERIOD
-Technical information support
-Application engineering assistance
-Sample/prototype service
-Quotation response
,
-Competitive price and delivery
ORDER PERIOD
-Order acknowledgement
-Customer information service
-On-ti me shipments
-Advance warning of shipping delays
-Condition of shipments
POST-ORDER PERIOD
-Reliability
-Settlement of claims
-Warranty
-Replacement of obsolete device types
Table 3.1 Supplier Evaluation Checklist

28

GENERAL SUPPORT
Sales coverage is the primary link between a power semiconductor manufacturer and the user. A good

factory salesperson or manufacturer's representative is a problem solver, not merely an "order taker". A good
salesperson is knowledgeable about the total product offering and service capability of the manufacturer and
can therefore resolve pre-order, order, or post-order problems or obtain anwers to questions that might arise
during these periods.
Distributor support is an important factor in complete service support. Authorized distributors supply
local, reliable service for production as well as emergency requirements by providing ample inventories and
many value-added features. In addition, these distributors offer a broad spectrum of complimentary products.
Technological leadership assures the user that product which is purchased is manufactured with modern
techniques and exhibits state-of-the-art electrical parameters and mechanical configurations. Power
semiconductor manufacturers invest millions of dollars annually to keep products and processes up-ta-date.
New generations of devices or redesigned, upgraded versions of existing products can drastically affect the
competitive market position of the user. New power semiconductors can lower or at least maintain equipment
costs, offer improved energy utilization, support a cleaner, quieter environment, provide greater system
reliability, reduce equipment size and weight, provide increased safety to equipment operators and
employees, and can offer new and expanded operating capabilities. Since successful users must incorporate
new technologies in equipment in order to remain competitive, they must be extremely conscious of the
technological leadership qualities of their power semiconductors suppliers.
Product reproducibility is an often overlooked, but extremely important term for evaluation of power
semiconductor manufacturers. Many design engineers have experienced the unfortunate situation of designing a system which incorporates a new state-of-the-art device sample produced under laboratory conditions
and then be unable to obtain the device in sufficient volume and/or at a reasonable price. The yield-dependent
nature of power semiconductor production dictates the necessity for a manufacturer to maintain a wellcontrolled production process in order to provide adequate quantities at acceptable price levels. A total value
power semiconductor supplier must combine those controls with a full understanding of user requirementsdevice specifications, required quantities, production timetables.
PRE-ORDER PERIOD
Technical in'ormatlon support includes such items as product data sheets, application data sheets,

seminars, technical papers, application handbooks, product newsletters, price lists, cross reference guides,
and other semiconductor information. These written communications are the user's most reliable and most
comprehensive source of information regarding a given manufacturer's products, services, and capabilities.
The completeness and accuracy of the material presented, its perti nence to the user's application, and the rate
of response in supplying the requested information are all important factors in providing meaningful, technical
information.
Application engineering assistance can be a valuable resource if properly used. While application
engineers cannot be expected to design a customer's circuit, they can help a customer avoid misapplication of
devices or can assist in solving many different product-related application problems. Frequently, special
ratings and other data can be generated for particular customer applications. Failed semiconductors can be
examined to determine the cause of failure so that corrective action(s) can be taken. Good application
assistance means easy access to engineers who possess a high level of expertise and a willingness to help
solve a problem for the customer.
Sample/prototype service relates to the semiconductor manufacturer's willi ngness to provide samples for
qualification for new designs as well as for second source approval. The delivery of the sample(s) must be
prompt, with test data when appropriate. Prompt sales follow-up to assure satisfactory performance in the
application is required for "total-value" service.
Quotation response refers to such items as speed, accuracy, and completeness of quotation information.
Good performance at this phase of a negotiation is essential to prevent serious errors in the order processing
and post-order periods.
Competitive price and delivery are treated as a single entity because both items usually must fall within
some pre-determined maximum allowable user limit in order to be considered as a valid quotation. The price
quoted must fairly reflect the product and services being provided by the semiconductor manufacturer. The
delivery time quoted must be realistic; and when a fast delivery is required, the delivery time quoted must truly
reflect a best effort from the manufacturer.
ORDER PERIOD
Order acknowledgement must be prompt and accurate to assure timely shipment. Delays atthis point are

29

totally unnecessary and are completely avoidable if the items in the General Support and Pre-Order Periods
.
have been treated properly by the power semiconductor manufacturer.
Customer Information service reduces user cost when provided promptly in a complete and accurate
r:nanne.r. Little or no effort on the part of the user should be required to determinethestatus of most orders.
On-time shipments are a true measure of the stated capability of a power semiconductor manufacturer.
Historical on-ti me shipment performance becomes a benchmark for determination of supplier "believability"
in all facets of service. Willingness to recognize and discuss reasons for missed delivery promises is another
item to consider when evaluating a power semiconductor supplier.
. Advance warning of shipping delays is essential if a user is to have time to adjust equipment production
schedu les to accommodate the delay. Major causes of late semiconductor deliveries are usually the result of
shifts in production yields, testcorrelation problems, production and/or equipment through-put limitations,
and/or out-of-spec incoming material component parts. Knowledge of an impending delay must be
transmitted to the user immediately.
Condition of shipments when received at the user's plant, to a great extent, depends upon how the product
was packaged for shipment and the quality control procedures observed prior to and during shipment. Experienced packers using specially designed cartons and packing material for power semiconductors can
make the difference as to whether or not a shipment of product will survive the trip from supplier to user.
However, condition of shipments is also a function of the freight carrier employed to move the product and the
types of carriers available from the supplier's facility to the user's facility is an important conSideration.
POST-ORDER PERIOD
Reliability generally refers to long term product performance - actual field service experience. Reliability
is a shared responsibility among the semiconductor manufacturer, the original equipment manufacturer, and
the end user and is often regarded as the single most important item by all three groups.
Settlement of claims is often not considered as being very important; however, one only needs to have a
single bad experience to really appreciate its value. Settlement of claims includes such things as shipment
shortages, incorrect pricing and invoicing, rejected material, transportation charges, customer rework orders;
and cancellation charges. There can be a wide discrepancy among various semiconductor manufacturers as
to how promptly, effiCiently, and fairly such claims are handled.
/
Warranty is like insurance - no one ever needs it until it is too late. If nothing else, a warranty is at least an
indication of the confidence a manufacturer has in the products and services provided. A warranty should
define the extent of coverage and the time span of the guarantee. The size of a semiconductor manufacturer
and more importantly, the ability to financially hand Ie a large clai m must be consi dered - especially on certai n
jobs where a high percentage of the equipment cost is due to the power semiconductors.
Replacement of obsolete device types is a continuous problem forthe user - both the original equipment
manufacturer and the end user of the equipment. Although a fairly high degree of standardization exists within
the power semiconductor industry, new designs are evolving constantly, often with slightly different
mechanical dimensions and configurations and more often with improved electrical ratings. A "total value"
manufacturer provides information and, whenever possible, product as replacement for old or obsolete
designs. Since the end user of equipment is usually attempting to procure a few spare parts to get equipment
back into operation, it is important for the OEM to maintain a small inventory of replacement semiconductors
to support renewal parts business or to support orders for old equipment designs without expensive and
lengthy engineering redesign. The ability of the power semiconductor manufacturer to support those needs is
another significant criteria for selecting a supplier.
Several precautions must be taken when evaluating suppliers using this or any other method. The person
(s) responsible for evaluating suppliers must recognize that within the organization different departmental
functions (purchasing, engineering, production, maintenance, general management, research and development, etc.) will place a different degree of importance on each of the items under consideraton. Therefore, an
attempt should be made to at least subjectively provide a composite weighting for each of the items that
reflects the needs of the total organization. One should also recognize that the type of product or services being sought (commodity-type device versus special device type) as well astheamount of business to be placed
(quantity required, lead time, second source requirements) can significantly alter the choice of suppliers.
Thus, the best supplier choice under one set of conditions may not be the best choice under a different set of
conditions. Finally, nothing is really ever stagnant. User needs change ... Supplier's products, services, and
capab iI ities also change over time. Therefore, a user must periodically (every 18 months to 2 years) re-eval uate
.or review the situation to determine whether or not the existing lineup of suppliers is still the besttotal value.

30

3. BUYER'S CHECKLIST
PRE-ORDER
Having selected the product required for a given application and having chosen the supplier, the following
checklist will help to make the buyer's job easier and to minimize errors and delays:

• If a new customer, establish credit with the supplier prior to placing the purchase order.
• Identify the required device by describing with a single term, either drawing number pll,Js revision, JEDEC
number, or manufacturer part number.
• Establish total quantity required.
• Optimize total cost and delivery by conSidering available purchase agreements, minimum releases,
authorized distributors, hardware, packaging and data requirements, standard catalog items versus
specials.
• Specify requested shipping date or in-plant date.
• Provide complete and accurate "Ship To" and "Bill To" information.
• Specify shipping method (consider cost, transmit time, traceability, insurance cost.)
• Reference negotiation number or quotation number, if applicable.
• Specify tax exemption status.
• Send purchase order directly to manufacturer or authorized distributor.
ORDER
• Proofread acknowledgment.
• Contact supplier directly concerning order status.
POST-ORDER
• Contact the Returned Material Coordinator at the manufacturer concerning administrative errors, such as
discrepancies on packing lists or invoices.
• Contact the Returned Material Coordinator at the manufacturer for authorization and specific return instructions prior to returning any material.

4. ENTERING AN ORDER
After selecting a device and a supplier, speed and accuracy are primary factors to consider when placing a
purchase order. If a power semiconductor manufacturer can translate the information on the purchase order
into factory working language quickly and accurately, the user has a much greater chance to receive the required parts in a timely manner. Chances for production line shutdowns and/or decreased production rates
due to parts shortages are greatly reduced.
A concise, but complete, description of the following information on each purchase order will mini mize
supplier translation time and enhance translation accuracy. Remember that too much information can create
as many translation errors as too little information.
1. "Ship To" address. Be sure to include company name, street, plant, department or building number, if
applicable, city, state, and zip code.
2. "Charge To" or "Bill To" address. Provide the same information as in (1) above.
3. Purchase order number in a conspicuous location.
4. Note any special marks required on order acknowledgements. packing lists, or invoices.
5. Tax information concerning exemption from state and local taxes. Taxes must be charged ifexemption
information does not appear on the purchase order or if an exemption certificate, resale certificate. or direct
pay permit is not on file with the supplier. Remember that state taxes are based on the "Ship To" address.
6. Description of parts required. In order of preference the best method for part description is (1) user part
number or drawing number; specifying most recent revision, (2) JEDEC number, (3) manufacturer part
number. Only one of the methods should be used for a single item on a purchase order. Use of more than one
method of description (e.g. XYZ Corp. part number 378A94 Revision Cor 1N1203) requires order entry personnel to cross check to assure that both descriptions identify exactly the same device. Avoid listing deviations
to the device specified on the purchase order. If a JEDEC or supplier part number does not adequately
31

describe the required part, agree upon the deviations and assign a part number prior to entering the purchase
order.
7. Quantity of parts required.
8. Unit price of parts required.
9. Special charges. List charges for environmental testing, special tooling, and/or service charges as
separate items if pre-order quotation specified them in that manner.
10. Shipment method preferred. Remember that "best way" or "cheapest way" for the supplier may not be
the best or cheapest method for the user.
11. Requested shipping date or in-plant date. Be certain to explain which date is being specified.
12. Negotiation or quotation number. If the supplier has assigned a numbertothe pre-order discussions, it
is always good practice to repeat the number on the purchase order.
13. Special insurance charges, if applicable.
If accurate information is supplied in each of the categories above, entering the order and shipping
product will be handled more smoothly. However, the user must consciously make an effort to reducethetime
required to transmit an order to the supplier, while minimizing the possibility of interpretation and transmission errors. The best solution is obviously to eliminate extra steps in the order entry process. Time delays and
the possibility of errors are automatically inserted when a purchase order is routed through a sales office or
through some other intermediate mail stop. Transmission of order information via wire or telephone introduces additional possibilities for interpretation and transmission errors and legally, a manufacturer cannot
begin work on an order without the confirming order document. Therefore, for most accurate and efficient
order processing, a user should send the purchase-order directly to the manufacturer or authorized distributor,
when possible.

5. IN-PROCESS ORDER INFORMATION
Significant time intervals occur between the time a user generates a purchase order and the timethe user
receives the parts against that order. During that period of time it becomes the responsibility of the power
semiconductor manufacturer or authorized distributor to keep the user advised of the status of the purchase
order. Presentation of order status information by the manufacturer minimizes the ti me and expense that the
user must incur to determine "what's happening."
Order Acknowledgement. The first step the supplier must take is to properly acknowledge receipt of a
purchase order and advise the user of a shipping schedule. Although the manufacturer generally checks for
accuracy, the user, upon receipt of the acknowledgement, should compare the information to the original
order to determine if the order entry process was correct. Many production, shipping, receiving, and incoming
inspection problems can be avoided by careful review of documents at this stage of the order.
Order Status. Information to the user does not stop at the order acknowledgement stage. In order to
reduce expediting time and expense the manufacturer must continually reconfirm shipping schedules and
provide advance warning for shipping delays that may occur. .
The manufacturer must also establish a contact point at the factory so that schedule changes and/or
questions that do arise can be handled quickly and effectively. The responsible salesperson is a good contact
point, however, travel schedules often make that individual difficult to reach and a designated contact at the
supplier is most often more convenient for the user.
Invoicing. The invoiCing process differs slightly from supplier to supplier, however, a few key items must
be presented:
• Invoices must be traceable to the original purchase order of the user. User purchase order number, device
type, and unit price are normally considered critical criteria.
• Specific payment terms and address to which payment is to be remitted .
• Delineation of charges not specifically covered by the original purchase order such as transportation
charges, insurance charges, special handling fees, etc.
• Date of invoice and date of shipment. These dates normally coincide, however, deviations do occur and
must be presented clearly in order to prevent problems with terms of payment.
Test Data. User specifications sometimes specifically require the manufacturer to serialize devices and
record test results on a sample basis or for 100% of the devices shipped. Additional requirements, such as a
mercury exclusion clause or a certificate of compliance, are often specified. The manufacturer must present
such information clearly and include the data with each sh ipment to reduce receiving and incomi ng inspection
delays at the user's facility.

32

@ Order Acknowledgement. After a purchase order has been entered at the factory, a computergenerated order acknowledgement (yellow) for each item is sent to the customer.
(A sample acknowledgement is shown in Figure 3.1). f?; terms and conditions of sale are printed on the
reverse side of the form. Orders generally are acknowledged within twenty-four hours after receipt at the factory.
( 1)
( 2)
( 3)
( 4)
( 5)
( 6)
( 7)
( 8)
( 9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

Date that order was entered at the factory by ®.
Customer purchase order number.
"Charge To" address.
"Ship To" address.
Special remarks required on shipping or invoice documents.
Shipment method if specified on purchase order.
Item number.
Quantity for specified item.
Product type, part number.
Unit price.
Total value of specified item.
Administrative notes.
Requested ship date.
@ scheduled ship date.
Customer Services Representative responsible for this order.
® telephone number.

Any inquiries conceming an open purchase order should be directed to the designated Customer Services Representative at the factory.
@ Purchase Order Status Report. ~ publ ishes an open purchase order status report to each customer
on a weekly basis. The report has been designed to reduce expediting time and expense by providing timely
order information and is mailed each Friday (with an identical copy to the responsible ® sales representative).
A sample of the order status report appears in Figure 3.2.
(1) Customer purchase order number.
(2) Quantity of parts on open order on the date of the report.
(3) JEDEC number, ® type, or customer drawing number and revision as specified on the purchase
order.
(4) Date that the order was entered at the ® factory and the requested ship date.
(5) Original ® scheduled ship date and advance warning for revised schedule date, if required.
(6) Quantity of parts shipped by item since previous report, date of shipment, and shipment method.
(7) Pertinent product and/or planning information.
(8) Name of Customer Services Representative responsible for these orders. Any inquiries concerning an
open purchase order should be directed to the designated Customer Services Representative.
In addition to the order status information, this report enables each customer to quickly identify any errors
which may have occurred in the order entry process. Early detection of such errors can reduce postshipment problems.
Each ® authorized distributor receives a copy of the order status report for purchase orders which they
have placed with the factory so that the ultimate customer can receive quick order status information about
® power semiconductors whether the order is placed directly with ® or through an authorized ® distributor.

33

W8&tinghouse EIKtric Corporation
ACKNOWLEDGEMEN';"
. ORDER IS ACCEPTED SUB,lECT TO THE
CONDITIONS OF SALE NOTED ON THE REVIllE

IZ~~~~~~~~~~~~~__~r-____~~~S~I~~O~F~TH~I~S~k)~RM~.____~________~

i.'"=
II

.

ccar.
rwrr 1

. ~.X!Z

, 1268; IflU S'f.

~

(';\4
\;!J

CIIlCAGO. lLLD'OlS 68609
c

pm

ccu.

, 1234

lam

r.t\

\!J

ft.
: C'IIlClGO. lLLDOlS 60609

o

CD3

75

COV'T. SOO1lCl DSPICTICil DQ'D.
@
12" AT lWD.

...

. ,
,';;",'"''

(6. ..,..
.
~<.

.

,J'

WESTINGHOUSE CUSTOMER.

~ECEipT

THIS FORM IS, ISSUED ..td':CKNi:iirIlDGE
OF THe' A8QVESTED ORDER AND TO
PROVIDE YOU WITH A COpy OIiPUR WRITEUP WHICH INCLUD
RICE" HIPPING PROMISES,
PRODUCT DESCRIPTIO!;,!S AND OT~ATA .... " /
.
IF -ANY PART OF OCl'NTERPRETATION APPEARS TO
INCORRECT
1M', DIATE CLARIFICAT!2tI, FROM THE~'PERSON WHO
BELOW. (PHONE 41
25-7272)
~1'
1.,'-

t;;\ Pl!ASE OBTAIN

\!I

THANK YOU FOR TH

,

®

WILLSIiIP
CON'T ON PAGE_

R QUESTIONABLE,
NAME IS SHOWN

11116

U976H

Figure 3.1 @ Order Acknowledgement

34

1"(.&0A1li

'0
."

'0-02-123
'l-Ol-l~S

1113294

'1-01-155
'7-06-J.43

1.S4tHi
'lSJ.006'007AO

,~.,.
,,,-'r:"
,
.". ,..

SBlIICONDUC'lOR PLAN'l

IIIPOllrAN'l R1lIlINDIIR:

8IR1'.rIK1R l1I/IC. 23
'lBRI1 DBC. 31
n.aaP.UJr~
,

I

"

.,

CURRENT OPEN PURCHASE ORDER STATUS

xrz

CORP.

•

1234 IlAIN S'l.
CHICAGO, ILLINOIS

60609

Westinghouse Electric Corporation
Semiconductor Division
Youngwood, Pennsylvania 15697
PREPARED BY BOB BAftBELS
CUSTOMER SERVICE REPRESENTATIVE
PHONE 412-295-7272

L

TWX

51o-.t68-2840

DATE OF REPORT

FORM l03A

®

10/2'/76

Figure 3.2 @ Current Open Order Status Report

@ Packing List. The sample packing list in Figure 3.3 accompanies each shipment of @ power
Semiconductors, This document serves as the shipping label and provides the following information.
( 1) Shipping date.
( 2) Customer purchase order number,
( 3) "Ship To" address.
( 4) "Charge To" address.
( 5) Special remarks required on shipping or invoice documents.
( 6) Shipment method if specified on purchase order.
( 7) Freight charges.
( 8) Gross shipping weight.
( 9) Carrier.
(10) Item number.
(11) Quantity of specified item in this shipment.
(12) Product type, part number.
(13) Administrative notes.
(14) Certificate of Compliance signed by a @ Quality Investigator.
Note: A Certificate of Compliance accompanies each shipment. No special request for this information is
necessary!

35

westinghouse Electric Corporation

CD

SHIPPING DATE

28 OC'I '76

SHIPMENT NUMlER

721t8

1A

@3

00v 'T.SOURCBDfSPlC'llClfUQ'D.
AT YWD.

WESTINGHOUSE CUSTOMER RECEIVING NOTE:
PLEASE EXAMINE THIS SHIPMENT IMMEDIATE~Y TO BE
SURE THERE ARE NO DISCREPANCIES. WESTINGHOUSE
WILL NOT BE RESPONSIBLE FOR SHORTAGES OR OTHER
RECEIVING CLAIMS WHICH ARE ENTERED AFTER 30
DAYS FROM DATE OF SHIPMENT.

IF THIS SHIPMENT SHOWS ANY EVIDENCE OF CARRIER
DAMAGE, YOU SHOULD IMMEDIATELY FILE A CLAIM
AGAINST THE CARRIER. WESTINGHOUSE DOES NOT
ACCEPT RESPONSIBILITY FOR FILING. DAMAGE CLAIMS
OF THIS NATURE.

Figure 3.3 @ Packing List

36

@ Invoice. Three copies of each invoice are sent to the customer at the time of shipment. A sample invoice is shown in Figure 3.4.

INVOICE

®

fORM 33275C

westinghouse Electric Corporation·

.ACCOUNTS

REMIT TO P.O. BOX 146, PITTSBURGH, PA., 15230

~ECEIVABLE ·4

DUNS 4· 174-2040

:J

INVOICE NO. & DATE

+

EB-57364

81-01-155

SEE ITBHS
CHARGED TO

I

006870

I

10/28/76

SHIPPED TO

PAGE 1

XYZ CT

;-1'-

-,~",'---;f-':C"",,:--+-"'~--'-;+"'~'~:=-:+'7~;'+--r---+---+----1
"u~

u/(

'/.7

" Zv

,~,

Symbol

G'i'

--+--I--+---+--t---t--I-- f--

Spec,QI

EJ

o

o

Te.t.

0

E1 He(lumlea~

X-Ray

lOO%Elact"cal
Group AlCoS!

S~ec

0

Cerro/rcal" of Compl'Mce

DOIller

Bum-In

0

0

[3

8

0

GronLeak

Group S!Cust Sp« HI Temp Baka

0

0

PhYS,e8lo,m

Temp Cycle

Group Cleu.t Spec

M1'(
1I3Z3
(0.022) (0.015) I
6681
4452
(0.031) (0.018) I
5327
7994
(0.037) (0.025)
6181
9275
(0.042) (0.028)
7019
10533
(0.047) (0.031)
7845
11771
(0.051) (0.034)
12995
8660
(0.054) (0.036)

(~:::4) (~.lg:7) (~g:7) (~~~g~)

(g.l:io) (J::O)
5546
(0.12)
5936
(0.13)
6321
(0.134)
6716
(0.138)

(~~::5) (~.lf21)

102~~_

~~07

(0.060) (0.040)
8319
11092
16638
(0.083) 1(0. 062) {0.042)
11872
17808
8904
(0.086) (0.065) (0.043)
18964
9482
12643
(0.089) (0.067) (0.045)
10073
20146
13431
(0.092) (0.069) (0.046)
1061.>2
(0.094)
(~~~~;)

(~~~~~>"

(i:i~l) (~.4i~) (~~~~ (~~~;~ (~~:~)
4728
(0.246)
4956
(0.251)
51~~

(0.256)
5410
(0.260)
6518
(0.269)

7880
(0.148)
8260
(0.151)
8638
(0.153)
9017
(0.156)
10863
(0.161)

11819
(0.098)
12~90

(0.100)
12957
(0.102)
13526
(0.104)
16295
(0.108)

15759
(0.074)
16520
(0.075)
17276
(0.077)
18034
_(0.078)
21726
(0.081)

23639
(0.049)
24780
(0.050)
25!j~4

(0.051)
27051
(0.052)
32589
(0.054)

-

TABLE 5.1 LTPD sampling plans 11 21
Minimum size of sample to be tested to assure, with a 90 percent con- Poisson exponential binomial limit. 21 The minimum quality (apfldence, that a lot having percent-defective equal to the specified LTPD prOXimate AQL) required to accept (on the average) 19 of 20 lots Is
will not be accepted (Single sample). 1/ Sample sizes are based upon the. shown In parenthes" for Information only.

the sole purpose of cost reduction; then the change is made on an "as good as" basis, and only a similar history
of successful usage will convince a user. In this respect, the market is often fickle because it forces many
reliable manufacturers to compete with "junk dealers" on price alone, and then it pays a high price to have
reliability processed into the device.
In spite of this resistance to changing an established product, it is necessary for a manufacturer to keep
abreast of the state-of-the-art and, as is usually the case, an old (and proven) line of devices must be discontinued in favor of the new before enough data has been accumulated to call it equivalent. In these instances,
one has to use a "projected" failure rate rather than an actual failure rate. As an example, if wetakethefactual
LTPD of 3.7 as determined above and go back to the Table (by extrapolation), we find that we may expect one
failure in 111 units; if the test is a 1000-hour operation life test, we may now say that the product has an established MTBF of 110,000 hours. For the new product, we claim the same MTBF, on the basis of starting with
the same test level and including enough processing to give a reasonable assurance that the succeeding lots
will pass operating life test. This is considered a projected MTBF. When the LTPD figure is applied to 1000hour life tests or LTPD per thousand hours, it becomes the life test failure rate, (Lambda), which is expressed
as percent defective per 1000-hour operation.
To sum up what is meant by reliability in semiconductors, we find that:
• The degree of reliability must be defined; the term "hi-rei" device is meaningless by itself.
• Degree or level is definecf(usually) by a Mean Time Between Failure figure, along with a given confidence
level.
• There is a distinction between High Reliability and Established Reliability. A device may be designed for
High Reliability, but Established Reliability is achieved only from actual data covering hundreds of
thousands of device hours of actual use.
• A good yardstickforestimating a "projected reliability" is the LTPD figure to which the device lot is tested, as
set forth in the Table of Mil-S-19500 with a 90% confidence level.
Why is so much emphasis being placed on reliability? As semiconductors are being designed into more
complex and sophisticated equipment, it becomes more and more essential to avoid "down" time or malfunctions. Also, in the missile and space program, "expected" failures cannot be tolerated. Although the greatest
Hi-Rei requirements are found in such applications as aircraft, military and space projects, the equipment
manufacturers and industrial users are beginning to demand more reliability in the semiconductors which they
use. Here again, the cost of replacing a component must be weighed against the cost of procuring a sufficiently
high reliability device to minimize or eliminate the need for replacement. This becomes our when of reliability;
when the cost of processing a manufactured lot of semiconductors is attractive when compared to a possible
malfunction of a standard device, or when the added reliability of a piece of equi pment enhances the manufacturer's reputation for dependability.
Where is reliability introduced into a device-from beginning to end. It starts with the choice of suppliers
of component parts and continues with incoming inspection, in-line processes and controls, processing after
construction, end of line screening and testing, quality assurance testing, storage and marking methods and
controls, and shipping tests and it ends with the user's incoming inspection and application with special
emphasis on conformance to the parameters as set forth for the device.
Th is method of using actual test failures, together with a history of (accumulated data) similar devices, to
obtain a projected MTBF is probably an over-simplification, but it does provide a ball park figure which, if
anything, would be conservative. No matter what complicated and time consuming system is used, the results
will still be an approximation.

How to achieve reliability.
How is this "extra" reliability to be obtained? We have often heard it stated that one cannot test quality into
a product. This is very true; however, we can process non-quality out. First, let us consider some of the possible
causes of semiconductor failure, not necessarily in order of importance:
•
•
•
•
•
•
•

Excessive junction temperature
Thermal fatigue
Aging
Poor construction, misalignment of parts
Foreign particles
Mechan ical stress
Lack of hermeticity
59

• Inconsistencies in crystal, doping, element
• Improper curing of junction coating
• Improper use-nonconformance to limiting parameters assigned to the device
No doubt there are many other causes of fallures,but these are the ten most obvious. Many of these
"faults" can be. greatly minimized by rigid incoming inspections and constant monitoring of fusion furnace
temperatures, etching processes, assembly practices, soldering temperature, junction coating and curing,
and visual inspection up to encapsulation. This in-line control is essential for good reliability in a product and
is a "must" if we are to "aintain a reasonable confidence level. However, even the best controls cannot enable
one to predict the effect of electrical, mechanical, andemiironmental stresses upon a device. For this reason,
various conditioning procedures have been developed to simulate some ofthe above listed causes of failure. It
is an attemptto prevent and/or weed out devices which may be subjectto "i nfant mortality"-that is, failure in the
first week or two of operation. It has been found ~rom experience and many thousands of hours of operation
that once a semiconductor survives the first w~ek or two of operation,its chance of reaching the expected
lifetime is more than doubled.
Normally, one would believe that with exacting in-line controls,such faults as misalignment, foreign particles, hermeticity, and improper .curing would be eliminated, but this is not so. Many things can happen to a
device during the encapsulation procedure which usually involves heat stresses from welding and soldering
temperatures and mechanical stresses from pressures on the internal lead and pinch-off and crimping
operations. Also, the amount of in-line controls must be dictated by the quality and cost required to meet competition in the volume market. Once this criterion is met, we start considering the various procedures for
producing a high reliability product. There are three major contributing factors in planning a Hi-Rei program:
(a) Level of reliability required; (b) Cost of achieving the required level of reliability and (c) Volume-number of
units to be processed. Naturally, the customer wants the most reliability for the least cost and the customer
must decide what level can be tolerated. Before going into the various levels of reliability, it would be wise to
look into the various tests and procedures that are available to achieve these levels and to consider the good
.
and bad features of each.
1. Temperature Cycling: Cycles from minimum to maxi mum rated junction temperatures and back again
in a specified time. This operation is done on a batch basis and is relatively inexpensive.lt is designed to weed
out those devices that may have a tendency to fail due to expansion and contraction of the various materials in
the device package which could crack an element or break a solder connection.
2. Stabilization Bake: A bake at the maximum rated temperature. The purpose of this step is to stabilize the
device by further curing of the junction coating. This is also an inexpensive procedure. These first two steps
are essential before proceeding with further processing. In many instances, especially in the case of military
products, it is included in the standard procedure.
3. X-Ray Examination: A very expensive operation, made more so because of the elaborate requirements
of some semiconductor X-ray specifications which require that all devices be serialized. Film must be process. ed and examined and careful lot control maintained so that corresponding units and film are shipped together..
The equipment is expensive and the operators must be well~trained. This is the only way, however, by which
faulty construction or the presence of foreign particles can be detected after encapsulation. The test becomes
much more effective if performed after shock and/orvibration te~ts. Needless to say, the sooner this procedure'·
can be changed from a 1000/0 basis to a sample basis withou.t jeopardizi ng the confidence level, the happier all
concemed will be.
4. Operating Life: Perhaps the best single process for improving the reliability of a device. This process
consists of actually operating the unit at stated parameters for a specific period oftime. Usually, the operating
conditons are the maximum rated forward current, reverse voltage, and case temperature. Times vary depending on need. This operation is expensive because every device must be handled separately, it ties up life test
equipment for long periods, and scheduling times are often prohibitive. The cost of building special equipment
for any particular order is also prohibitive. For this reason, volume and delivery requirements are important
conSiderations in using this procedure.
The reason Operating Life is so highly regarded is graphically illustrated by"a Failure Rate versus
Operating Ti me Cu rve, Figure 5.1. This curve falls very steeply during the initial operati ng ti me, then gradually
levels out to the inherent value for the device.
5. Blocking Life: This process has the rated peak reverse voltage (either full or half wave rectified) applied
to the un its whi Ie in an ambient equal to the maximum rated j unction temperature for a determi ned time period.
This is often done in conjunction with Stabilization Bake with a moderate increase in cost because a connec-

60

CD

Standard Product
--

ta

One Week Bum-in

~

! --__ ...1
~

= II II
If
---t-T-I

Two Week Bum-in
.Inherent Failure Rate

I

Operating Time
Figure 5.1 Effect of operating life burn-In on semiconductor failure rate over time.

tion must be made to each device, which then limits the number of devices that can be handled at one time. It is
no longer a "batch" operation. Blocking Life is a very good alternative for Operating Life.
6. Power Cycling (Thermal Fatigue): The Power Cycling test may also be used as a substitute for
Operating Life. However, care must be taken as to the number of cycles specified for conditioning because this
is a severe test and probably reduces the actual lifetime of the device. The test consists of heating the device up
to its operating case temperature by the application of forward current and then force-cooling it back to approximately room temperature. The device under test is ,subjected to a continuous expansion and contraction
of materials which sets up stresses in the soldered and brazed connection within the device package and
simulates, in an accelerated manner, the effects of actual usage. Reverse voltage is usually not applied during
this test. Here again, a great deal of equipment is involved, depending on the quantities (and size) of units to be
conditioned. The equipmentis not very complicated and should be relatively inexpensive when compared to
operating life test equipment.
7. Monitored Shock and Vibration: Used to determ ine the mechanical stability of the device. The units are
subjected to specified vibrations and lor shocks while in an operating state. The current, either forward or
reve rse, is mon ito red to detect instantaneous opens or shorts or electrical "noise". This is a slow, therefore expensive,. test since only a few units can be process.ed at a time. When this procedure is called for, it should be
done before X-Ray and Hermeticity tests.
8. Hermeticity Test: This test is used to determine the effectiveness of the package seal which protects the
element. The entranoe of damaging contaminants will reduce the effective life of a semiconductor, hence, a
good package seal is imperative in a high reliability device. This is afairly expensive test when done on a 100%
basis. It requires a good commercial tester and is not a batch operation.
Of these procedures, you will note that 1,2,4,5, and 6 are conditioning processes, while 3, 7, and [~'~re
selection or "weeding out" type of tests. Naturally, any conditioning should be done before the select; .,;: ;.:"IS.
The monitored shock and vibration tests can be considered as both conditioning and selecting, and!':; IQwd be
performed before hermeticity tests or X-Ray.
All of these procedures become more effective when accompanied by limitations on changes in
characteristics, that is, maximum allowable AVFand AIR. This assures a more stable end product but may
also eliminate a lot of good devices and prove quite expensive.
After a lot of semiconductors has been stabilized and most of the "weak sisters" removed by some combination of the above mentioned procedures, there is a final process which will enhance reliability tremendously and that is "derating" the device in some (or all) of its parameters. For instance, an 800 volt, 12 amp at
Tc =1500 C rectifier will be more rei iable if rated as a 600 volt device and even more rei iable as a 600 volt, 6 amp
at Tc =125°C device. The intended application of the rectifier wouid dictate which parameters should be
derated for the best results. If the unit may be subjected to high transient voltages, then the voltage should be
derated. If the unit is to be used in a circuit with frequent on-off operations or subjected to many temperature
excursions, then the current andlor temperature should be derated.
To illustrate to the semiconductor equipment designer and user the value of derating as a reliability tool,
graphs of the failure rates per 1000 hours for thyristors, transistors, and rectifiers are shown in figures 5.2, 5.3,
and 5.4.
61

Failure Rate
(% per 1000 hours)

% V DRM
and/orVRRM

3r---~----------~

Failure Rate
(% per 1000 hours)
10

% VeE

Failure Rate
(%pe!1000hours)

3~'--------------~~~

5

3
2

0.5

0.5

0.1

0.3
0.2

0.05

0.5

0.1

0.1
0.05
0.04
0.03
0.02
0.01 '--:.':~------==-----:-:'-:-----,-J
SO
. 75
100
125
Junction Temperature, 0 C

Figure 5.2 Estimated degradation failure rate for thyristors at
less than 50 amps per j.tsec. For
catastrophic failures, use 10%
of these values.

0.01
0.05
0.005
0.004
0.003
0.002

0.03
0.02
0.01 '---:':SO:-L----::!::---~--:7=---:-:'.
junction Temperab,lre, 0

c

Figure 5.3 Estimated failure
rate for transistors. For
catastrophic failures, use 10%
of these values.

0.001 '--'SO----"71.5 -1-'-00--'125--1SO'--1.....75
Junction Temperature, 0 C '

Figure 5.4 Estimated failure
rate for rectifiers. For
catastrophic failures, use 10%'
of these values.
'

These graphs show that one key to enhancing reliability is derating. Derate any of the reliability sensitive
parameters, such as the temperature and the voltage to which the semiconductor is subjected, and derate the
related parameters of current, power, thermal impedance; and time, and the reliability will be increased. A
study ofthederating curves shows that a reduction of the junction temperature gives a larger reduction inthe
failure rate than a similar reduction in applied voltage.Also;a largerpercentageoffailures is expected at 100%
of rated voltage than at a lower (derated) voltage. Using figure 5.2, the failure rate for 125°C and 100% rated
voltage is 3%. If the voltage is lowered to 75% of rated value and the junction temperature is decreased to 75°C,
the failure rate is 0.15%, or 20 times lower.
Th is discussion has endeavored to reduce the complicated business of semiconductor reliability, whether
achieving, proving, calculating or projecting, to a few undeniable truths, as follows:
'
• The chief reasons for unreliability must be recognized and dealt with.
• There are only a certain number of processes or procedures that can be applied to a semiconductor device
to enhance its quality, once manufacturing is completed.
• There are so many variables in both the manufacture and use ofthese devices that each type has an inherent
degree of reliability which cannot be improved upon with any amount of processing.
• Because cf economic and practical considerations, one must sample test to determine and project reliability.Use of Table 5.1 provides a good method for this.· .
• Expense must be balanced with need in specifying a degree of reliability. Reliability can be a practical1hing;
i~ does not have to be a tool for statisticians, nor doeS it require exotic computer programming.
,
,
So let us keep in mind, whether buying or selling reliability, that a Hi-Rei product is a good thing, but the
degree of reliability must be hand.led intelligently. We do not want to waste money, but we dowant a device we
can depend on-a reliable device.

62

2. QUALITY CONTROL
To insure reliability, the Westinghouse Semiconductor Division uses a quality control program, a
statistical method that monitors the manufacture and testing of semiconductors. The quality of a semiconductor is determined by quality controls, such as incoming materials inspections, control ofthe silicon processing
and chemical purity, electrical tests, environmental tests, packaging and many other controls used in the
manufacturing process. These controls are inserted to insure uniform quality.
Teltlng for reliability
During the design of a semiconductor, and particularly before final manufacturing approval is given,
operating, storage, and environmental tests are conducted to determine the integrity and reliability of the
semiconductor. The tests can be operated at accelerated stress levels to help determine margins in the device
design and to predict the reliability at low application stress levels. A partial list of these tests follows:

• Centrifuge, shock, and thermal shock are evaluated to determine the mechanical features of a design .•
• Operating and storage life tests are used to evaluate the physical and chemical stability of the semiconductor design.
• Current surge data is gathered to verify the semiconductor current handling capability and the short, high
current capability of the internal connections,
• Thermal fatigue data is used for checking element mounting integrity.
• Thermal impedance measurements are made to insure proper junction temperature during operation.
• Blocking life tests are used to determine if reliability is affected by junction temperature and voltage.
• Step stress testing can be run to show the threshold of failure and the accelerated stress areas such asjunction temperature, voltage or environment.
During the manufactured I ife, a family plan oftesting determines if the reliability test results are still valid.
The goal of the family plan is to achieve maximum device yield economy consistent with sufficient assurance
that end-of-life I imits will not be exceeded during the semiconductor equipment lifeti me. These results can be
used as an interpretation of the reliability of similar device families. Other voltage and current parameters can
be extrapolated from similar device characteristics.
Improved reliability is achieved through many corrective actions involving the design, process, fabrication, material, and device assembly inspections. Before any of these are changed, the reliability impact is
stud ied and appropriate testing is instituted. Over the years, there have been improvements in the element surfaces, the element material, and the packaging that have resulted in generally lower failure rates.
Testing to determine the quality of the semiconductors is done on various parameters. This testing is
repeated many times as the semiconductor element continues through the manufacturing cycle and is
repeated again when the element is assembled in a package. Reliability testing, such as blocking life, is done
on a sampling basis in the element state, as well as in the completed package. Surge capability and thermal i mpedance are used as reliabil ity measurement tools.
Types of failures
Quality is closely related to reliability, which in turn, is dependent on failure rate. There are three types of
semiconductor failures: the early or freak failures, the chance failures, and the wearoutfaiI ures. These fail ures
are shown in Fig. 5.5 in relation to semiconductor lifetime.
Early failures result when semiconductors have some production defect, material defect, or other
deficiency. Even with good quality control, semiconductors will always have a small percentage of early
failures, but these can be eliminated by doing quality conformance testi ng on all the units or by sample testing.
One or more of the following tests, which could take from 2 hours to 168 hours or more, could be chosen:
stabilization bake, operation life, or blocking life. Tests that are nottime dependent could include temperature
cycling, salt spray and hermeticity.
Wearout failures are practically non-existent in properly applied semiconductors during the normal life of
a system. Where they do occur, wearout mechanisms exist both in structural flaws and in internal encapsulated contaminants. Because semiconductors cannot be made completely free of these flaws or contaminants, early failures can happen. But in well-designed, properly applied semiconductors, the wearout
should occur long after the useful life of the system itself.
Chance failures occur between the early failures and the much later wearout period. This is the long period
of useful life of a semiconductor during which there is small expectation of failures. The failures that do occur
are time, temperature, current, and voltage dependent.

63

Figure 5.5 The probability of failure as a function of semiconductor lifetime.
Quality and reliability testing defined
Testing for quality and reliability is usually divided into four catagories; Group A, Group B, Group C, and
Special.
• Group A includes all the standard electrical tests requ ired to assure that a semiconductor meets the voltage,
current, switching times, control functions, etc. as stated in the device specification. Group A is performed
on every lot.
• Group B testing provides assurance that the semiconductor is properly constructed, durable, and will
operate under extreme environmental conditions. These tests include operating life tests, stabilization
bake, hermeticity tests, humidity, shock and vibration, etc. Once a manufacturer has established a consistent parts supplier and fabrication cycle, group Btesting (which is expensive) may be performed on combined lots or alternate lots.
• Group C testing, in essence, checks whether or not the semiconductor is properly designed to meet certain
special criteria. These tests include such things as high altitude test, salt atmosphere test, and thermal
resistance tests. Usually, these tests are necessary only when there is a change of material, design, or
process in the manufacturing cycle.
• Special testing. In some instances, a customer application puts unique stresses on semiconductors so that
extra testing of certain parameters, or even specially designed testing, is required to assure that the
semiconductor will perform as required.
Table 5.2 on page 65 illustrates a typical test plan and preferred order of grouping as recommended in
Mil-S-19500.

3. RESPONSIBILITIES
User responsibility: The user has the responsibility of insuring proper operation of the equipment. The
maximum rating of the equipment must never be exceeded. The voltage and current must never be raised
above maximum ratings to increase production. The cooling system must be monitored periodically to insure
proper cooling at all times. The semiconductors and associated equipment must be kept clean. It is imperative
to reliable operation that a schedule be set up for cleaning, tightening connections, etc. I n short, exercise good
operating and maintenance procedures.

64

Shared responsibility: Semiconductor reliability is a shared responsibility among the semiconductor
manufacturer, the original equipment manufacturer (OEM), and the end user oftheequipment. The manufacturer must design and build a reliable semiconductor, the OEM must use good engineering practices when
designing the equipment, and the user must operate the equipment within its ratings and in a clean environment. If these conditions are met, power semiconductors will be reliable.
Failure analysis as a reliability tool: Failure analysis involves the gathering and analyzing of all possible information about the cause of a failed semiconductor. Knowing the reason for failure, the user can modify the
circuit to eliminate any repetitions of this failure mode, or the manufacturer can take corrective action in device
fabrication or testing. Proper analysis may determine if a failure is due to voltage, current, over-temperature or
surge. However, a failed semiconductor may show more than one mode of failure; a history ofthe use ofthe
device is then necessary. For instance, if the installation was trouble-free until a certain point in time, when new
or different equipment was added or a new operator was being trained, the problem may be easily resolved.
Thus, failure analysis can often be specific and give the actual failure mode but, just as often, the actual cause
of failure is masked, and help in the form of historical data is needed. A "burn-out" of a semiconductor is often
violent enough to mask out much, if not all, of the original cause of failu reo So, the more background furnished,
the more meaningful the analysis. A good failure analysis will determine the reason for failure and corrective
action can then be taken.

• Group A Inspection
Visual & mechanical examination
Electrical performance tests
• Group B Inspection
Subgroup 1
Physical dimensions
Subgroup 2
Solderability
Terminal strength
Temperature cycling
Hermetic Seal
Thermal shock
Misture resistance
Subgroup 3
Shock
Vibration fatigue

Vibration, variable frequency
Constant acceleration

Subgroup 4
Terminal strength
Subgroup 5
High temperature life, non-operating
Subgroup 6
Operating life
• Group C Inspection
Barometric pressure (altitude)
Salt atmosphere
Other periodic tests

Table 5.2 Typical Test Plan

65

slicing ...

From silicon rod ...
"

'~

'~~-'-

... ,:. . . . ',-.~
.:.

,~.

diffusion ...

element testing ...

.
'

package assembly ...

to finished devices.

66

6::~:MANUFACTURING @POWER SEMICONDUCTORS
1. FACILITIES
The Westinghouse Semiconductor Divi$ion facility (Figure 6.1) in Youngwood, Pa. is the most modern
high power semiconductor manufacturing plant in the world. At the Youngwood facility, nestled in the foothills
of the Allegheny Mountains, the silicon elements whic.h house all the electrical characteristics of the power
semiconductor component are made. This single location for element production extends its capability for
supplying superior high power semiconductor devices to identical assembly facilities in Le Mans, France
(Figure 6.2) and San Juan, Puerto Rico (Figure 6.3) with a new facility opening in Brazil to serve the Latin
American market.

Figure 6.2 Westinghouse, LeMans, France-power
semiconductor manufacturing in Europe.

Figure 6.3 Westinghouse, Puerto Rico-power
semiconductor assembly in Gurabo (San Juan).

Figure 6.1 Westinghouse-Youngwood, Paemploying the most modem, up-to-date techniques
In high power semiconductor manufacturing.

67

2. PRODUCT BREAKTHROUGHS
Several product breakthroughs have been instrumental in making the@manufacturingconceptareality.
One key to success is theabiJ~tyto manufacture, test, and sforethesemiconductorelement independent ofthe
device package. First, element sizes have been standardized forrectifiers, SeR's and transistors. Comparable
semiconductor element sizes for@high power rectifiers and SeR's are shown in Figure 6.4. The early process-

Figure 6A Westinghouse Power Semiconductor

68

Element~

ing stages for slicing and diffusing the silicon are identifical for rectifiers and SeR's. An all-diffused process
for making rectifiers and SeR's offers good reproducibility and process precision. All Westinghouse high
power SeR designs feature center-fired, di/namic gate structures forfast turn-on capability,high repetitive
di/dt capability, and low switching losses. This gate structure is comparable to a device built with a pilot SeR to
turn on a main SeR (Figure 6.5). Westinghouse developed a special di/namic mid-gate SeR for high peak

ANODE

G

CATHODE
Figure 6.5 Equivalent electrical circuit for the dl/namlc gate design.
current and narrow pulse width fast switching applications. By using an irradiation process (see Figure 6.6) to
produce fast recovery rectifiers and fast switching SeR's, Westinghouse has the advantage of being able to

Figure 6.6 Exclusive @ Irradiation procell for manufacturing Fast Switching SCA's and Fast Recovery
Rectifiers.

69

apply this technique after the semiconductor element has completed its processing cycle. This process
promotes greater manufacturing flexibility and better control in producing fast switching and fast recovery
characteristics. Westinghouse's special emitter shunt designs make possible dv/dt capabilities of 300 to 1000
volts per microsecond-the highest available in the industry. Exclusive@processesfor passivating semiconductor elements, enabling sealing and stabilization of the elements with no danger of degradation, complete
the element breakthroughs necessary to establish a World Element Bank (Figure 6.7)-an inventory center for
storing completely tested and passivated elements.

Figure 6.7 The World Element Bank, an inventory center for storing completely tested, passivated semiconductor elements, ready for assembly anywhere In the world.

70

Originally, power semiconductors were offered only in stud mount packages. Later, by placing the same
element in an integral heat sink package, (Figure 6.S), a 40% improvement in current rating was obtained

',

..

,

Figure 6.8 An integral heat sink package offers up to a 40% Improvement In current rating over the
same element size in a stud mount package.

because one thermal interface (case to sink) was eliminated. However, the real innovation in packaging was
the disc; with double-sided cooling (Figure 6.9), the same element offers uptoan SO% improvement in current
rating over the same element in a stud mount package. An additional benefit is that it is easy to stack these disc
devices in a series arrangement or a back-to-back arrangement and devices can simply be "flipped over" for
reversing polarity. Initially low power semiconductor elements were bonded to the device package with a low
temperature or soft solder. Later, hard solder or high temperature soldering techniques were used, and they improved device thermal cycling capabilities by an order of magnitude. However, as element sizes increased
and applications became more severe, a more fatigue-free construction was required and compression
bonded encapsulation (CBE) was developed. This CBE technique completely eliminates solder connections

71

.Flgure 6.9 Disc packages offer up to 80% improvement In current rating over the same element size .In
a stud mount package.

between the element and the package. The metallic bond is replaced by a constant-pressure spring washer
system (Figure 6.10) which supplies a constant load force to the element. Today, this technique is used to
manufacture thermal fatigue free SCR's, rectifiers, and transistors that are magnitudes better than hard solder
devices. CBE simplifies the manufacturing process and improves semiconductor reliability. Thissame design
philosophy is employed in the disc package except that the spring clamp system is supplied externally by the
user. The Westinghouse worldwide assembly concept owes its success to this patented CBE product
breakthrough.

3~

KEY MANUFACTURING INNOVATIONS

At the Westinghouse Semiconductor plant, innovative manufacturing procedures are the cornerstone of a
large scale manufacturing concept, wherein power semiconductor elements, the heart of the semiconductor
device, are the common denominator among worldwide manufacturing plants. This concept is being used to
serve the power semiconductor user by guaranteed element availability from an element bank, independent of
package requirements. By making package commitment at the last moment, faster delivery, at the required
ratings. is made, and an inventory reduction on the part of the user can be realized. Applications, today, require
a wide variety of electrical needs. In addition, regional demands require these ratings in an even wider range of

72

Figure 6.10 Compression Bonded Encapsulation (CBE)

packages or assemblies. This function is well served by the Westinghouse element-oriented manufacturing
system wherein the optimum application charcteristics are ensured in processing, test, and package
assembly.
Several basic techniques (Figure 6.11) support this element manufacturing system. The spreading
resistance probe, developed to predict a product's characteristics instantly, weeks before the product is completed, means better visibility of design characteristics early in the manufacturing cycle. A Westinghouse 2500
process control computer plays an important role in the diffusion cycle by monitoring furnace temperature
cycles and cool-down rate to indicate when a deviation from profile occurs. Through the effective use of the
computer, the various process cycles are more controllable and predictable, providing a distri bution and yield
of products to match requirements. A high volume paced conveyor element test line is used to fully
characterize an element before committing it to a device package. All standard and special hot or cold tests can
be performed on various size elements simultaneously on this test line. After testing, these passivated
elements are .quality checked and bubble-packed for storage in the World Element Bank until needed. Fundamental to the element system is Compression Bonded Encapsulation (CBE)-a pressure-mounted contacting means for assembling semiconductor elements into a variety of packages-stud, disc, integral heat
sink, or flat base. CBEensures reliability and flexibility in assembly while eliminating thermal fatigue problems
inherent in conventional solder construction designs. Accurate and sophisticated testing have made
Westinghouse high power semiconductors among the most reliable to be found anywhere. All this adds up to
the advantages of predictable, reproducible element characteristics, World Bank stocking, guaranteed
emergency delivery, and reduced inventory and cash flow for users of Westinghouse power semiconductors.

73

Spreading resistance probe.

High power conveyor.

Paced element test line.

In-line product marking.

Patented compression bonded encapsulation.

Bubble-packed elements completely identified,
quality checked and ready for World Bank.

Figure 6.11 Key manufacturing Innovations.

- 74

4. TECHNOLOGY LEADERSHIP
Indicative of Westinghouse's leadership role in manufacturing high power semiconductors, UNITRA of
Poland selected Westinghouse from among suppliers worldwide to provide them with semiconductor
technology, facilities, and training. This agreement, for Westinghouse the largest sale oftechnology ever, was
the first of its type by a U.S. manufacturer.
The Semiconductor Division also enjoys the support of the Westinghouse Research and Development
Center (Figure 6.12) located in Churchill, Pennsylvania, only twenty-five miles from Youngwood. Thus, a continuous program to provide long range product development and the latest technology and manufacturing
techn iques is carried on from year to year. Westinghouse invests millions of dollars each year to provide the
user with products which offer more efficient energy utilization, promote a cleaner environment, result in
greater reliability, reduce size and weight, provide for increased safety, and offer new and expanded
capabilities at the lowest possible cost.

Figure 6.12 Westinghouse Research and Development Center located in nearby Churchill, Pa.

@ Westinghouse
A powerful part of your life.
75

76

User's Manual
SEMICONDUCTOR GLOSSARY
End User-Refers to individuals andlor companies who
purchase, use, and maintain equipment utilizing
power semiconductors.
Failure-Termination of ability of a device to perform its
required function. Also see failure mode.
Failure Mode-Refers to type of failure rather than to
cause of failure. Component failures are generally
either catastrophiC (sudden and complete) failures or
degradation (parameter drift) failures. Short- and
open-circuit failures are ca~~strophic and usually occur - at - random. OegradatiOillailures resuh in
deviations from acceptable limits without complete
cessation of the function required.
Fast Recovery Rectifier-Term used to describe rectifiers
characterized for fast operating response. This class
of devices is used for free wheeling diodes and a variety of high frequency applications.
Fast SWitching SCRs-Term used to describe SCRs
characterized for turn-off time capability and other
speed characteristics. This class of devices is used in
choppers, inverters, and other high frequency
applications.
Flag Lead-Term used to describe top terminal on some
stud mount devices. Terminal is a rigid, metal, flagshaped connection.
Flat Base-Commonly used to describe a studless (clamp
down) or a square base (bolt down) device package.
Flex Lead-Term used to describe top terminal on some
stud mount devices. Terminal is made from flexible
stranded cable.
Forward Direction-The direction of current flow in a
semiconductor.
Forward Polarity-See standard polarity rectifier.
Free Wheeling Rectifier (Dlode)-Rectifier that is used to
bypass the current due to the stored energy in the inductance.
Full Control-Circuit utilizing all SCR's for controlling
both half-cycles in an A.C. circuit.
Fusion-See element.
GPM-Gallons per minute. Water flow rate through liquid
cooled heat sink.
Gain-The ratio of output to input. Normally used to
characterize amplification properties of a transistor.
Gate-Control terminal of an SCA.
General Purpose Rectifier-Term used to describe rectifiers for conventional power control applications
where operating speed is not a prime consideration.
Half Control-An arrangement of rectifiers and SCRs that
controls only half the cycle in A.C. circuits.
Hard Solder-A high temperature solder having an expansion coefficient very compatible to the element and
package base material.
High Voltage Stack-An assembly of a number of
semiconductors connected in series to obtain extra
high voltage ratings.
HI-Rel-Abbreviated version of high reliability. Denotes a
device having an established level of reliability above
that of standard production line product.

AQL-Acceptance Quality Level.
Ambient Temperature-Medium or free air temperature in
which device is being operated.
Anode-One of two high current terminals of rectifier or
SCR; other terminal is cathode.
Assemblies-Combination of discrete devices on heat
sinks connected in various circuit configurations.
Average Current-Current integrated over a full cycle.
Current measured on DC ammeter.
Base-Control terminal of a transistor.
Beta-See gain.
Blocking Voltage-Ability of a semiconductor to withstand a specific voltage stress without conducting
current.
Breakdown Voltage-Maximum voltage a semiconductor
can support in its nonconducting direction.
Bridge-Combination of discrete devices on heat sinks;
generally in circuit configurations to change A.C.
current to D.C. current.
CBE-Encapsulation technique which replaces conventional solder, metallic bonds with a constantpressure, spring, washer system. This technique
eliminates thermal fatigue due to solder jOints.
CFM-Cubic feet per minute - amount of air being moved
(CFM = LFM x cross-sectional area of heat sink).
Case Temperature-Temperature of package measured
at a specific location. Indirect method for determining
junction temperature. For stud devices, proper thermocouple location is center of any hex flat - for disc
devices, mount thermocouple on rim (radial edge) of
pole face.
Cathode-One of two high current termi nals of rectifier or
SCR; other terminal is anode. In electronic symbol for
rectifier or SCR, arrow points toward cathode.
Chip-Smail semiconductor element, usually for one to
forty amp discrete device ratings.
Collector-One of high current terminals of a transistor;
other terminal is emitter.
Commutation-Transfer of current flow from one circuit
element to another.
Conduction Angle-Number of electrical degrees that
current flows. A full cycle of A.C. voltage or current is
360 electrical degrees.
Creepage Distance-Shortest distance across surface of
an insulator between positive and negative terminals.
Dice-See chip.
Diode-See rectifier.
Disc-Semiconductor package that can be cooled from
both sides.' Various industry names include Pow-RDisc, Press Pak, Hockey Puck, etc.
Duty Cycle-Ratio of operating time to total operating
plus nonoperating time.
Element-Sil icon wafer that has been processed to create
a semiconductor junction(s), passivated, tested and
ready for assembly into a device package.
Emitter-One of high current terminals of a transistor;
other terl'l1inal is collector.
Encapsulation-Refers to process of assembling a
semiconductor element into device package.

77

Reverse Polarity Rectifier-Denotes the direction of
current flow where stud mount base is the anode and
the top terminal is the cathode.
SCR-Silicon Controlled Rectifier-Principal memb~r of
the thyristor family - is basically a rectitierwith a
control feature added. This three-terminal device
(anode, cathode, and gate) is a controllable on-off
switch.
Soft Solder-Any solder that is not "hard solder". USlJally
has a melting pOint of approximately 230DC, as compared to the melting pOint of hard solder which is in
excess of 4000C.
Solid State-An electrical device or circuit using semiconductor devices. (Uses no tubes and has no moving
parts.) Mechanical relays, switches, rotaries, m-g
sets, thyratrons, ignitrons, and vacuum tubes are
replaced by semiconductors.
'
Spike-An unintended flow of electrical energy of short
duration. Graphically displayed on a scope as a very
high voltage or current having a very short durationusually in the microsecond range.
Standard Polarity Rectifier-Denotes direction of curr~nt
flow where stud mount base is the cathode and the top
terminal is the anode.
Strike Distance-The shortest distance in air between
points of opposite potential. It is the distance through
which arcing might o,ccur.
Stud Top-Term used to describe top terminal on some
stud mount devices. Terminal is a threaded stud.,
Supplier-Power semiconductor manufacturer or
authorized distributor.
Thennal Fatigue-The mechanical stress placed on
semiconductor interfaces due to the different expansion rates of the various metals being joined ..
Thennallmpedance (Resistance)-The resistance to heat
flow through a material or from one material to
another. The unit is DC/W, which means the centig rade degrees of temperature rise of the material per
each watt of power dissipated at the source. ,
Thennal Shock-Mechanical stresses placed on ,mat~rial
or, more expressly, where two different materials are
joined together, due to a sudden large change in
temperature. Can be destructive.
Thyristor-One of three primary gro.ups of solid state
power devices - rectifiers, transistors, and thyristors.
Principal members of the thyristor family includes
SCR, triac, RBDT, GATT, GCS, GTO, etc.
TranSient (Surge) Suppressor-An electrical device used
to absorb the energy of extraneous high peaks of
voltage or current. Used to protect semiconductors
from ruinous overloads.
,
Transient VOltages-Extraneous spikes of high voltage
which appear across a device due to switching, commutating, interruptions, etc. in associated circuitry or
by natural forces such as lightning. Transients are of
very short duration, usually in the microsecond range.
Transistor-Three-tt)rminal (base, collector, emitter)
, device used primarily for switching and amplification
applications.
User-Refers to both the original equipment marlUfacturer (OEM) who manufactures eqUipment utilizing
power semiconductors and the end user who
purchases, uses, and maintains this equipment.
Vendor-See supplier.
Wafer-A very thi n disc of silicon that has been cut from a
silicon rod.

Hockey Puck-See disc.
Integral Heat Sink-Refers to a device package which incorporates its own heat sink. Package is very efficient
as the element is mounted directly to the heat sinkeliminating the case to sink thermalJesistance.
JAN-Refers to device specifications for military use, with
, Joint Army and Navy sponsorship.
JEDEC-Joint Electronic Device Engineering Council.
Sets parameters and specifications for a standard line
of devices throughout the industry.
Junctlon-A transition region between the positive and
negative layers of a semiconductor.
LFM-Linear feet per minute. Rate of air flow moving
across a cooling surface.
LTPD-Lot Tolerance Percent Defective.
Leakage Current-The small currents which get through
or around the blocking characteristic of a semiconductor device, capacitor, or insulator.
MRO-Term stands for Maintenance, Repair, and
Operations of a factory, plant, hospital, etc., and
refers to the industrial replacement and retrofit
market.
MTBF-Mean Time Between Failures.
OEM-Original Equipment Manufacturers who build and
sell equipment utilizing power semiconductors.
OSHA-Occupational Safety and Health Administration.
Establish and enforce national standards of safety
and health in industry.
Parameter-A value, condition, or characteristic that is a
measurable property of a device. It may be electrical,
mechanical, or thermal and can be expressed for a
given set of operational and environmental conditions.
Passivatlon-A process by which a semiconductor junction is protected against oxidation and contamination.
Pellet-See element.
Phase Control SCR's-Term used to descri be SCRs where
fast turn-off time is not a prime requirement.
Pole Face-Mounting surface on a disc device; each disc
has two pole faces.
Pow-R-Disc-See disc.
Press-Pak-See disc.
Procurement-Overall process of obtaining a semiconductor. Period between selection of required device
and receipt of that device.
Pulse-A flow of electrical energy of short duration which
is deliberately generated.
RBDT-Reverse Blocking Diode Thyristor. Two-terminal
thyristor, ideal for pulse applications because of its
high di/dt and fast switching capabilities.
RMS-Abbreviation stands for root-mean-square and
refers to the effective heating value of current.
Rating-The ulti mate or limiting condition stated for a
'given device parameter (either maximum or
minimum) beyond which the device will not operate
properly and/or is not guaranteed by the manufacturer.
Rectlfier-A two-terminal device where current can flow in
only one direction - from anode to cathode. Low
current rectifiers are frequently called diodes.
Reliability-The probability that a system or device will
operate for a given period of time and under given
operating conditions.
Reproducibility-The ability to produce a group of
semiconductors having the exact characteristics of
previously produced groups.
Reverse Direction-Describes the direction in which a
semiconductor is nonconducting.

78

SUBJECT INDEX
Distributors
27,29,53
(see Data Book G61, G62)
Expediting Orders
30,32-39
Failure
causes of
51,52
protection from
43-47
rates of
61,62
replacing
30,52-55
trouble shooting
47-52
types of
63,64
Failure Analysis
checklist
51,52
procedure
30,31,41,42,52
reliability tool
65
Firing Circuits, SCR
(see Data Book G51-G54)
Heat
15,41-46,48,51, 52,59-62
effects of
protection from
42-46, 52, 61, 62,65
(see Data Book G43-G49)
Incoming Inspection
41
Insurance
38, 39
Installation
mounting considerations
42, 55
cooling considerations
43.
(see Data Book G43-G49)
Invoicing
32,37,38
JEDEC
52, 53
LTPD
57-59
MTBF
57, 59
Maintenance
preventative
46, 47
replacement
52-55
servicing
47-52
testing
47-52
trouble shooting
47-55
Manufacturing
facilities
67
innovations
72-74
product breakthroughs
68-72
technology leadership
75
Military
57-59,65
(see Data Book G42)
Mounting
42,43,51,55
(see Data Back G43-G49)
Overload
current
46, 51, 52
equipment
44
motor
44, 45
voltage transient
44,46,51,52
(see Data Book G55-G60)
Packing List
35, 36
Parameters
basic
15-18
confusing terminology
18, 19
cost trade-ofts
27,28,52,53

Acceptance Quality Level (AQL)
57,58
Applications
19-25
checklists
engineering assistance
19-25,29
uses
13
Assemblies
advantages
27
application checklist
25
product line
10, 11
uses
13
(see Data Book A1-A80)
Checklist
assembly applications
25
buyer's
31
device identification
54
failure analysis
51,52
rectifier application
21
replacement device
54
scr application, fast switching
23
scr application, phase control
22
supplier evaluation
28-30
transistor application
24
trouble shooting
47, 48
Claims
30,31,41,42
Cleaning
46,47,51
Cooling
cost
42,43
need for
42-46,48,51,52,65
reiiability
52, 59-62, 65
types of
42-44
(see Data Book G43-G49)
Cost
cooling
42-44
engineering
27, 28
expediting
30,32-39
insurance
38, 39
parameter trade-off
27,28,52,53
procurement
26-42
reliability
59-62
safety factor
28,53,62
shipping
38,39
testing
28, 41,47-51, 60-65
total
27
Cross Reference Guide
9, 19, 53
(see Data Book G3-G37)
Damage
see shipments
Data
product
9, 10, 19
technical
9, 10, 15-19
test
32, 38
(see Data Book)
Delivery
27-39
(see Data Book G41, G61)
Diode
see rectifier
79

Pricing
(see Data Book G61, G62)
Procurement
Protection
see overload
Prototype
Purchase Order
acknowledgement
entering
expediting
status
Quality Control
Quotation Response
(see Data Book G61, G62)
RBDT
(see Data Book S1, S95-S98)
Receiving
Rectifier (diode)
application checklist
parameters
product line
testing
uses
(see Data Book R1-R78)
Reliability
cost
definition
responsibility
testing
(see Data Book G42)
Repair
see replacements
Replacements
checklist
procedures
(see Data Book G43-G49)
Reproducibility
Returned Material
SCR
application checklists
parameters
product line
testing
uses
(see Data Book 81-S94)
Safety
Safety Factor
Sales Coverage
(see Data Book G62)
Samples
Shipments
advance warning of delays
condition
cost
damage
methods
on-time
receipt of
return of

9,10,27-29

Standardization
JEDEC
manufacturing
value of
Supplier Evaluation
Table
appl ications
cleaning solvents
group A, B, and C. testing
LTPD sampling plans
motor overloads
parameters, basic
shipping method
supplier evaluation
terminology, confusing
Terminology
basic
confusing
glossary
rectifier (diode)
scr
transistor
Test
cost
data
equipment
incoming inspection
rectifier (diode)
reliability
scr
transistor
Thyristor
see SCR
Traceability
Transistor
application checklist
parameters
product line
testing
uses
(see Data Book T1-T34)
Trouble Shooting
checklist
equipment
procedures
Vendor Evaluation
see supplier evaluation
Warranty
(see Data Book G39, G40,
A2, R2, S1, T1)
Weights
(see Data Book)

26-42
29
29, 30, 32-35
31,32
30,32-39
29, 30, 32-35
41, 63-65, 73
29
11
30,41
21
15, 16
10,11
48, 49
13
59-62
57, 59
52,65
59-65

54
42,43,51-55
29,68-70, 72-75
30,31,41,42
22, 23
15-17
10,11
48,49
13
55
28, 51-53, 62
29
29
30,32,33,35
30,41
38, 39
30,41,42
38,39
30,33-39
30,41
30,31,41,42
80

52,53
68-7027,28, 62, 53'
28-30
13
47

65
58
45
15
39
28
18
15-18
18, 19
77, 78
15, 16
15-17
15,17,18
28,41,47-51,~

32,38
47-51
41
48,49
57.;es
48, 49
49-51
38, 39
24
15, 17, 18
11
49-51
13
47,48
47-51
47-55
28,30,41,42,56
38,39

, ,t-.

•

POWER SEMICONDUCTOR DATA BOOK
Assemblies, Rectifiers, Thyristors, and Transistors

How To Use This Book
DEVICE TYPE NUMBER SEARCH
• If only a JEDEC or Industry Type Number is known:
Go to the Master Cross Reference Type Number Index (GENERAL section Page G3). Using this index, the reader can rapidly locate any power semiconductor JEDEC or industry type number for which Westinghouse offers an
exact or suggested replacement along with the page number of the
referenced technical data.
or
• If both the Product Family and the JEDEC or ® Type Number are known:
Go to the Type Number Index at the beginning of the appropriate PRODUCT
section. Using this index, the reader can turn directly to the page location
for any JEDEC or ® type number that is listed.
GENERAL APPLICATION SEARCH
• If a Specific Product Application Requirement is known:
Go to the appropriate PRODUCT section and scan the Product Capability
Graphs and Product Selector Guides under the appropriate product subgroup.
These graphs and guides are presented in order of increasing current rating
so the reader can quickly locate a suitable Westinghouse product type along
with the page number of the referenced technical data.
or
• If both a Specific Product Application Requirement and the Desired Device
Package are known:
Go to the Table of Contents (GENERAL section - Page G2) for the location of
the appropriate PRODUCT section, product subgroup, and device package
type. The page number reference marks the beginning of the desired data
section; the data for a given device package type is presented in order of
increasing current rating to simplify the reader's search.
The @ Power Semiconductor Data Book supersedes all loose-leaf technical data issued prior to
January 2, 1978. This technical data is applicable for all @ power semiconductors manufactured
in Youngwood, Pennsylvania.
The semiconductor devices and arrangements disclosed herein may be covered by patents of
Westinghouse Electric Corporation or others. Neither the disclosure of any information herein
nor the sale of semiconductor devices by Westinghouse Electric Corporation conveys any license
under patent claims covering combinations of semiconductor devices with other devices or
elements. In the absence of an express, written agreement to the contrary, Westinghouse
Electric Corporation assumes no liability for patent infringement arising out of any use of the
semiconductor devices with other devices or elements by any purchaser of semiconductor
devices or others .

TABI,.E O,F, CONTE~TS
GENERAL
• Master Cross Reference Type Number Index
- JEDEC 1 N, 2N, 3N Part Numbers
- Alpha Industry Part Numbers
- Numeric Industry Part Numbers

G2

G3

G4
G6
G22

• Westinghouse Selling PolicylWarranty

G39

• Delivery Lead Time Guidelines

G41

• Military and High Reliability Products

G42

• Application Data
- Mounting Power Semiconductors
- SCR Gate Turn-On Characteristics
- Thyristor Surge Suppression Ratings

G43
G51
G55

• Westinghouse Quick Service Directory

G61

ASSEMBLIES
Introduction. Product Family Index. Selector Guide
• Modular Rectifier Bridges
• Gold Line, Stud Mount Devices
• Air and Liquid Cooled Disc
• Manifold AC Switch, Liquid Cooled
• Kits and Sinks
• High Voltage Rectifier Stacks

A1

Introduction. Type Number Index. Selector Guides
RECTIFIER
• General Purpose
- Axial Lead Mount
- Stud Mount
- Disc Mount
• Fast Recovery
- Stud Mount
- Disc Mount

R1

A3
A5
A37
A52
A65
A69

R9
R13
R39
R55
, R67

THYRISTOR
Introduction. Type Number Index. Selector Guides
• Phase Control SCR's
- Stud Mount
- Disc Mount
- Integral Heat Sink
- Flat Base
• Fast Switching SCR's
- Stud Mount
- Disc Mount
• Reverse Blocking Diode Thyristor (RBDT)
- Stud Mount
- Disc Mount

$1

TRANSISTOR
Introduction. Type Number Index. Selector Guides
• NPN Power
- General Purpose (TO-66/TO-3)
- High S.O.A. (Stud Mount)
- High Power Fast Switching (Stud and Disc Mount)

T1

S9

541
S71
S73

S77
S83
S95
S97

T5
T15
T33

MANUFACTURER'S CODES
ATS-Atlantic Semiconductor IOiodes, Inc. PSI-Power Semiconductors, Inc.
DEL-Delco Electronics
RCA-RCA
EDI-Electronic Devices, Inc.
SAR-Sarkes Tarzian
EDL-Edal Industries
SET-Semtech
GE-General Electric
SOL-Solitron
GI-General Instrument
SSD-Solid State Devices
IR-International Rectifier
SYN-Syntron (FMC)
JAN-JAN (Military)
TUN-Tungsol
JED-JEDEC (E.I.A. PIN)
UNI-Unitrode
MOT-Motorola
VAR-Varo
NAT-National Electronics
WCE-Westcode
WES-Westinghouse Electric
PPC-Power Physics Corp.

The@replacements represent what we believe to be equivalents for the products listed.
Emphasis has been placed on providing the user with a replacement device of the same
current and voltage rating when possible. The user must determine the substitution
acceptability by reviewing the electrical mechanical. and thermal characteristics
presented in the referenced technical data sheets. Westinghouse assumes no responsibility for guaranteeing the acceptability of any suggested replacement in this master
cross reference type number index.

PRODUCT TYPE NOTES
A-Assembly
D-Drawing (Consult Factory)
R-Rectifier
S-SCR
T-Transistor

REPLACEMENT NOTES
CF-Consult Factory
SO-Special Order-limited availability
XX(5th & 6th digits of @ Product Description
Number)-Replace with appropriate twodigit numeric voltage code.

G3

Part Number

Type Mfgr,

$1IlIr,elted@
RaJ> .cement

Suggested@
Pege

Part Number

IN248A
IN248B
IN248C
IN249A
IN248B

R
R
R
R
R

JED 1N248A
JED IN248B
JED 1N248C
'JED IN249A
JED IN249B

CF
CF
CF
'CF
CF

INI281
INI282
INI283
INI284
INI285

IN249C
IN260A
IN260B
IN260C

R
R
R
R

JED IN249C
JED IN260A
JED IN260B
JED IN260C

CF
CF
CF
CF

INI286
INI287
INI291
INI292
INI293

l~m:A

R
R
R
R

JED
JED
JED
JED
JED

IN1t24
INII24A
INI126
1N1125A
IN112S

CF
CF
CF
CF,
CF

INI294
INI296
INI296
INI297
IN1330

R
R

:lEg

IN1128A
INI127
INII27A
INII28
IN1128A

CF
CF
CF
CF
CF

INI331
INI332

:lE8
JED
JED
JED

INII83
IN1183A
IN1184
INII84A
IN1185

INII25
IN1126A)
INII28

Type Mfgr,

Replacement

R JED CF
R 'JED CF
R JED CF
,R ' JED CF
R JED CF

Suggelted@
Page
CF
CF
Cf
CF
CF

INI676
IN2054
IN2054R
IN2055
IN2965R

Type
R
R
R
R
R

Part Number

Page

Mfgr,
JED
JED
JED
,JED
JED

IN3169
IN2054
11112054R
IN2055
IN2055R

CF
CF
CF
CF
CF

Replacement

R
R
R
R
R

JED
JED
JED
JED
JED,

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

IN2056
IN2056R
IN20S7
IN2057R
IN2058

R
R
R
R

R

JED
JED
JED
JED
JED

IN2066
IN2066R
IN2067
IN2067R
IN2058

CF
CF
CF
CF
CF

R
R
R
R

JED
JED
JED
JED
JED

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

IN2068R
IN2059
IN2059R
IN2060
' -,"IN2060R

R
R
R
R
R

JED
JED
JED
JED
JED

IN2068R
IN2059
IN2069R
IN2060
IN2060R

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

IN2061
IN2061R

:~a3~

JED
JED
JED
JED
JED

CF

INI3~3

R
R
R
R
R

JED
JED
JED
JED
JED

IN2061
IN2081R
IN2063
IN2083R
IN2064

CF
CF
CF
CF
CF

RI5
RI5
RI6
RI5
RI5

INI336
INI341
INI341A
INI3418
INI342

R
R,
R
R
R

JED
JED
JED
,JED
JED

CF
INI341
INI34IA
INI34IB
INI342

R

CF

IN2084

R
R
R
R
R

!:F

R'13
RI3
RI3
RI3

IN2064R
IN2066
IN2065R
IN2086
IN2086R

R
R
R
R
R

JED
JED
JED
JED
JED

IN2064R
IN2065
IN2085R
IN2086
IN2086R

CF
CF
CF
CF
CF

JED 'INI342A
JED INI342B
JED INI343
JED INI343A
JED INI343B

RI3
RI3
RI3
RI3
AI3

IN2087
IN2087R
IN2088
IN2088R
IN2128

R
R
R
R
R

JED
JED
JEb
JED
JED

IN2087
IN2087R
A4040060

CF
CF
CF
CF
R17

R
R
R
R
R

JED
JED
JED
JED
JED

INI344
INI344A
INI344B
INI345
INI346A

RI3
RI3
RI3
RI3
RI3

IN2129
IN2130
IN2131
IN2132
IN2133

R
R
R
R
R

JED
JED
JED
JED
JED

R4040160
R4040260
R4040260
R4040380
A4040360

AI7
RI7
R17
R17
1117

INI345B
INI346
INI346A
INI346B
INI347

R
A
R
R
R

JED
JED
JED
JED
JED

INI345B
IN I 346
INI346A
INI346B
INI347

RI3
RI3
RI3
RI3
RI3

IN2135
IN2137
IN213B
IN2154
IN2155

R
R
R
R
R

JED R4D40480
JED R4040580
JED R4040860
JED IN2164
JED IN2155

RI7
RI7
R17
RI5
RI5

Rt'!;
RI6
RI5
RI5
RI5,

INI347A
INI347B
INI34B
INI348A
INI348B

R
R
R
R
R

JED
JEd
JED
JED
JED

INI347A
INI347B
INI34B
INI348A
INI348B

RI3
RI3
RI3
RI3
RI3

IN2166
IN2167
IN2168
IN2169
IN2180

R
R
R
R
R

JED
JED
JED
JED
JED

IN2156
IN2157
IN216B
IN2159
IN2160

RI6
RI6
RI6
RI5
RI6

JED IN1195A
JED IN1196
JED INII96A
JED IN1197
JED IN1197A

RI5
RI6
RI5
AI5
AI5

INI376
INI377
IN1378
INI379
INI380

R
R
R
R
R

JED
JED
JED

~~g

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

IN3OB5
IN3065R
IN3OB8
IN3066R
IN3OB7

R
R
R
R
R

JED
JED
JED
JED
JED

A5OOO115
A5DI0115
R5000215
R5Dl0215
R5OOO316

R23
R23
R23
R23
R23

R
R
R
A

JED
JED
JED
JED

IN1198
INII9BA
IN1199
INII99A

RI5
RI5
RI3
RI3

INI3BI
INI382
INI396
INI397
INI39B

R
R
R
R
R

JED
JED
JED
JED
JED

CF
CF
R51000l0
R51OOll0
R510+Il0

CF
CF
R23
R23
R23

IN3OB7R
IN3OB8
IN3OB8R
IN3OB9
IN3OB9R

R
R
R
R
R

JED
JED
JED
JEI)
JED

R6D1.0315
R5000415
R6DI0416
R6D00616
R5DI0615

R23
R23
R23
R23
R23

INII99B
INl200
INl200A
INl200B
INI201

R
R
R
R
R

:l~g

JED

IN1199S

JED
JED

I=U88A
INl200B
INI201

RI3
RI3
RI3
RI3
RI3

INI399
INI400
INI401
INI402
INI403

R
R
R
R
R

JED
JED
JED
JED
JED

R51OO210
R51oo310
R6100410
R51oo610
R6100610

R23
R23
R23
A23
R23

IN3090
IN3090R
IN3091
IN3091R
IN3092

R
R
R
R
R

JED
JED
JED
JED
JED

R5000815
R5DI0815
R6DOOBI6
R6DIOSl5
R6DOI015

R23
R23
R23
R23
R23

INI20lA
INI20lB
INI202
INI202A

A
R
R
R

JED INI20lA
JED INI2DI8
JED INI202
JED INI202A

RI3
' RI3
RI3
RI3

INI581
INI582
INI583
INI584
INI585

R
R
R
R
R

JED
JED
JED
JED
JED

INI581
INI6S2
INI583
INI584
INI686

CF
CF
CF
CF
CF

IN3092R
IN31"
R
IN3161R

l=ml

R
R

n

R5DIIOl5
R5DOOOl5

R

JED
JED
JED
JED
JED

rrr:ft1
JED

JAN IN3174
JAN IN3174R
IN3274
IN3274R
IN3275

G42
G42
R27
R27
R27

IN3889
IN3890
IN3891
IN3892
IN3893

R
R
R
R
A

JED
JED
JED
JED
JED

IN3889
IN3890
IN3881
IN3892
IN3893

R55
R55
R66
A65

IN6053
IN6D54
IN5162
IN5162A
IN5331

R
R
R
R
R

JED
JED
JED
JED
JED

IN5053
IN5054
R6C01216
R5C11216
IN5331

R9
R9
CF
CF
CF

IN3275R
IN3276
IN3276R
IN3288A
IN3288AR

R
R
R
R
II

JED
JED
JED
JED
JED

IN3276R
IN3276
IN3276R
IN3286A
IN32B8AR

R27
R27
R27
R27
R19

IN3899
1N3900
IN3901
IN3902
IN3903

R
R
R
A
A

JED
JED
JED
JED
JED

IN3899
IN3900.
1N3901
IN3902
IN3903

A67
R67
R57
R57
R57

IN5332
IN5391
IN6392
IN6393
In5394

R
R
A
R
R

JED
JED
JED
JED
JED

IN5332
IN5391
IN6392
IN5392
IN6394

CF
R9
R9
R9
R9

IN3289A
IN3289AR
JAN IN3289
JAN IN3289R
IN3290A

R
R
A
R
A

JED
JED
JAN
JAN
JED

IN3289A
IN32B9AR
JAN IN3289
JAN IN3289R
IN3290A

R19
R19
G42
G42
R19

IN3909
IN391 0
IN3911
IN3912
IN3913

R
A
R
R
A

JED
JED
JED
JED
JED

IN3909
IN3910
IN3911
IN3912
IN3913

R57
A57
R57
R57
R57

IN5395
IN5396
IN5397
IN5398
IN5399

R
R
A
R
R

JED
JED
JED
JED
JED

IN6395
IN5396
IN5397
IN5398
IN5399

A9
R9
R9
R9
R9

IN3290AR
IN3291A
IN3291AR
JAN IN3291
JAN IN3291R

R
R
R
R
R

JED
JED
JED
JAN
JAN

IN3290AR
IN3291 A
IN3291AR
JAN IN3291
JAN IN3291 R

R19
R19
R19
G42
G42

IN3987
IN3988
IN3989
IN3990
IN4001

R
R
R
R
R

JED
JED
JED
JED
JED

IN3987
IN3988
IN39B9
IN3990
IN4001

1113
R13
R13
R13
R9

IN5400
IN5401
IN5402
IN5403
IN6404

R
R
R
R
R

JED
JED
JED
JED
JED

IN5400
IN5401
IN5402
IN5403
IN5404

R9
R9
A9
A9
A9

IN3292B
IN3292BR
IN3293A
IN3293AR
JAN IN3293

R
R
R
R
R

JED IN3292B
JED IN3292BR
JED IN3293A
JED IN3293AR
JAN JAN IN3293

R19
R19
A19
R19
G42

IN4002
IN4003
IN4004
IN4005
IN4006

A
R
R
R
A

JED
JED
JED
JED
JED

IN4002
IN4003
IN4004
IN4005
IN4006

R9
R9
A9
R9
R9

IN6405
IN5406
IN5407
IN5408
2N681

R
R
R
R
S

JED
JED
JED
JED
JED

IN5405
IN6406
IN5407
IN6408
2N681

R9
R9
A9
A9

R15
R15
R15
R15

AIlS

Sll

Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page,G3
G5

Suggested@
Part Number

Type Mfgr.

Replacement

Page

Part Number

Suggested@

Type Mfgr.

Replacement

Page

2N682
2N683
2N686
2N687
2N688

S
S
5
5
5

JED
JeD
JED
JED
JeD

2N882
2N883
2N686
2N687
2N688

SII
511
SII
SII
SII

2N2113
2N2114
2N2116

T
T
T

JED
JED
JED

CF
CF
CF

CF
CF
CF

~~m~

f

~~8 8~

2N689
2N690
2N691
2N692
2Nl016

5
5
5
5
T

JED
JED.
JeD
JED
JeD

2N688
2N690
2N691
2N692
2Nl015

511
511
511
511
Tl9

2N2119
2N2120
2N2123
2N2124
2N212S

T
T
T
T
T

JED
JED
JED
JED
JED

2Nl016A
2Nl0158
2Nl015C
2Nl015D
2Nl016E

T
T
T
T
T

JED
JeD
JeD
JED
Jeo

2Nl015A
2Nl015B
2N1016C
2Nl01SD
CF

Ti9
Tl9
Tl9
Tl9
CF

2N2126
2N2130
2N2131
2N2132
2N2133

T
T
T

2Nl016
2Nl016A
2Nl016B
2Nl016C
2Nl016D

T
T
T
T
T

JeD
JeD
JED
JeD
JED

2Nl016
2Nl016A
2Nl016B
2Nl016C
2Nl016D

Tl9
Tl9
Tl9
Tl9
Tl9

2N2226
2N2227
2N2228
2N2229
2N2230

T

2Nl016E
2N1792
2N1793
2N1794
2N1795

T
5
5
5
5

JED
JED
JED
JED
JED

CF
2N1792
2N1793
2N1794
2N1795

CF
519
S19
S19
519

2N1796
2N1797
2N179B
2N1799
2N1BOO

5
5
5
5
5

JeD
JED
JED
JED
JED,

2Nj796
2N1797
2N1798
2N1799
2NI600

2NI601
2NI602
2NI603
2N1804
2N1805

5
5
5
5

JED
JED
JED
JED
JED

Sugguted@
Part Number

8~

2N3772
2N3773
2N3884
2N3885
2N3886

T
S

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

2N3887
2N3888
2N3889
2N3890
2N3891

JED
JED
JED
JED
JED

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

T

JED
JED
JED
JED
JED

2N2226
2N2227
2N2228
2N2229
2N2230

2N2231
2N2232
2N2233
2N2739
2N2740

T
T
T
T
T

JED
JED
JED
JED
JED

519
519
519
S19
519

2N2741
2N2742
2N274S
2N2746
2N2747

T
T
T

2N1BOl
2N1802
2NI603
2N1B04
2NI605

519
519
519
519
519

2N27S1
2N27S2
2N2753

~~m1

T

JED
JED
JED
JEO
JED

2N1806
2NI607
CF
CF
CF

519
519
CF
CF
CF

2N1812
2N1813
2N1814
2N1816
2N1817

T
T
T
T
T

JED
JED
JED
JED
JED

CF
CF
CF
CF
CF

2N1818
2N1819
2N1820
2N1823
2N1824

T
T
T
T
T

JED
JED
JED
JED
JED

2N1825
2N1826
2N1830
2N1831
2N1832

T
T
T
T,
T

2N1833
2NI842A
2N1843A
2NI844A
2N1845A

T

Page

2N3772
2N3773
2N3884
2N3885
2N3886

S

5
S

JED
JED
JeD
JED
JED

2N3887
2N3888
2N3889
2N3890
2N3881

531
531
531
531
531

2N3B92
2N3B93
2N3894
2N3895
2N3896

S
S
S
5
5

JED
JED
JED
JED
JED

2N3892
2N3893
2N3894
2N3895
2N3896

531
531
531
531
531

T25
T25
T26
T25
T26

2N3B96
2N3897
2N3898
2N3899
2N4347

S
5
5
5
T

JED
JED
JED
JeD
JED

T4OOO12208
T4OOO22208
T400032208
T400042208
2N4347

513
513
513
513
CF

2N2231
2N2232
2N2233
CF
CF

T25
T25
T25
CF
CF

2N4348
2N4361
2N4362
2N4363
2N4384

T

5
5
5

JED
JED
JED
JED
JED

2N4348
2N4361
2N4362
2N4363
2N4364

CF
521
521
521
521

T

JeD
JED
JED
JeD
JED

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

2N4365
2N4366
2N4367
2N4388
2N4371

S
5
5
S
S

JED
JED
JeD
JED
JED

2N4366
2N4366
2N4367
2N4368
2N4371

521
521
521
521
521

T
T
T
T
T

JED
JED
JED
JED
JED

CF
CF
CF
CF
2N2767

CF
CF
CF
CF
T29

2N4372
2N4373
2N4374
2N4375
2N4376

5
S
5
5
5

JED
JED
JED
JED
JED

2N4372
2N4373
2N4374
2N4376
2N4376

521
521
521

2N2758
2N2759
2N2760
2N2761
2N2763

T

JED
JED
JED
JeD
JED

2N2768
2N2759
2N2760
2N2761
2N2763

T29
T29
T29
T29
T29

2N4377
2N4378
2N5168
2N5169
2N5170

5
5
5
5
5

JED
JED
JeD
JED
JED

2N4377
2N4378
T400001608
T4OOO21608
T400041608

521

T
T
T
T

CF
CF
CF
CF
CF

2N2764
2N2765
2N2766
2N2769
2N2770

T
T
T
T
T

JED
JED
JED
JED
JED

2N2764
2N2765
2N2766
2N2769
2N2770

T29
T29
T29
T29
T29

2N5171
2N5204
2N5205
2N5206
2N5207

S
5
5
5
5

JED
JED
JED
JED
JED

T4OOO61608
2N5204
2N5206
2N5205
2N5207

513
513
513
513
513

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

2N2771
2N2772
2N2776
2N2776
2N2777

T
T
T
T
T

JED
JED
JED
JED
JED

2N2771
2N2772
2N2776
2N2776
2N2777

T29
T29
T29
T29

T
T
T
T
T

JED
JED
JED
JED
JED

2N3056
2N6254
2N3771
2N6262
2N3441

. TIl

129

2N6253
2N6254
2N6257
2N6262
2N6263

JED
JED
JED
JED
JED

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

2N2778
2N3064
2N3065
2N3232
2N3233

T
T
T
T
T

JED
JeD
JED
JED
JED

2N2778
2N3064
2N3055
2N3232
2N3233

T29
T5
T7
CF
CF

2N6371
3N221
3N222
A28A
A28B

T
A
A
R
R

JED
JED
JED
GE
GE

2N6264
3N221
3N222
IN3890
IN3891

T9
A52
AS2
R5S
R56

JED
JED
JED
JED
JED

CF
2NI842A
2NI843A
2NI844A
2NI846A

CF
59
59
59
59

2N3234
2N3236
2N3429
2N3430
2N3431

T
T
T
T
T

JED
JED
JED
JED
JED

2N6262
2N3236
2N3429
2N3430
2N3431

T9
CF
T21
T21
T21

A28C
A28D
A28F
A29A
A29B

R

5
5
S
S

GE
GE
GE
GE
GE

IN3892
IN3893
IN3898
IN3890R
IN3891R

R56
R5S
R5S
.RSS
R5S

2N1846A
2N1847A
2NI848A
2N1849A
2N1850A

5
5
S
S
5

JED
JED
JED
JED
JED

2NI846A
2NI847A
2NI848A
2N1849A
2N1850A

59
59
59
59
59

2N3432
2N3433
2N3441
2N3442
2N3470

T
T
T
T
T

JED
JED
JED
JED
JED

2N3432
2N3433
2N3441
2N3442
2N3470

T21
CF
T6
T7
T27

A29C
A29D
A29F
A40A

GE
GE
GE
GE

IN3892R
IN3893R
IN3889R
IN3209

RS6
RS6
R5S
RIS

2NI909
2N1910
2N1911
2N1912
2N1913

S
5
S
5
5

JED
JED
JED
JED
JED

2NI909
2N1910
2N1911
2N1912
2N1913

519
519
519
519
519

2N3471
2N3472
2N3473
2N3474
2N3475

T
T
T
T
T

JED
JED
JED
JED
JED

2N3471
2N3472
2N3473
2N3474
2N3475

T27
T27
T27
T27
T27

A40B
A40C
A40D
A40E
A40F

GE
GE
GE
GE
GE

IN3210
IN3211
IN3212
IN3213
IN3208

RI6
RI6
RI6
RI6
R15

2N1914
2N1915
2N1916
2N2023
2N2024

S

5

JED
JED
JED
JED
JED

2N1914
2N1915
2N1916
2N2023
2N2024

519
519
519
CF
CF

2N3476
2N3477
2N3630
2N3631
2N3532

T
T
S
5
5

JED
JED
JED
JED
JED

2N3476
2N3477
2N3530
2N3631
2N3632

T27
T27
CF
CF
CF

A40M
A41A
A41B
A41C
A41D

R

GE
GE
GE
GE
GE

IN3214
IN3209R
IN3210R
IN3211R
IN3212R

RI5
R16
R15
R15
R15

2N2025
2N2026
2N2027
2N2028
2N2029

5
S
5
S
5

JED
JED
JED
JED
JED

2N2025
2N2026
2N2027
2N2028
2N2029

CF
CF
CF
CF
CF

2N3533
2N3634
2N3536
2N3636
2N3537

5
S
S
5
S

JED
JED
JED
JED
JED

2N3633
2N3534
2N3535
2N3536
2N3537

CF
CF
CF
CF
CF

A41 E
A41 F
A41 M
A50HXX0210
A50HXX0510

R
R
R
T
T

GE
GE
GE
WE5
WE5

IN3213R
IN3208R
IN3214R
A50HXX0210
A60HXX0610

R15
RIS
RIS
CF
CF

2N2030
2N2109
2N2110
2N2111
2N2112

5
T
T
T
T

JED
JED
JED
JED
JED

2N2030
CF
CF
CF
CF

CF
CF
CF
CF
CF

2N363B
2N3539
2N3540
2N3541
2N3771

5
S
S
5
T

JED
JED
JED
JED
JED

2N3538
2N3539
2N3540
2N3541
2N3771

CF
CF
CF
CF
TIl'

A51 HXX051 0
A6OGXX1010
A6OGXX1040
A60HXX10l0
A60HXX1510

T
T
T
T
T

WE5
WE5
WE5
WE5
We5

A61HXX0610
A6OGXX1010
A60GXX1040
CF
CF

CF
CF
CF
CF
CF

5
5

,~
T

5
5

5

T

T

T
T
T

T

Note: Manufacturer's Codes, Product Type Note5 and@Replacement Notes are listed on pageG3

T

Replacement

JED
JED
JED
JED
JED

2N1806
2NI607
2NI809
2N1810
2N1811

G6

Type Mfgr.

5
5

5
5

S

R

R

R

R

R

R

R

R
R
R
R

R

R
R

R
R

R

TIl

TIl
531
531
531

521

521

521
513
513
513

T7
T9

T9
T6

Pert Numbat'

Tvpe Mfg..

SU99ested@
Replacement

Page

Part Number

A60HXX2010
A61 HXXI 010
A61HXX1610
A61HXX2010
A61HXX2610

T
T
T
T
T

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

Al800
Al60E
Al80M
Al80N
Al80P

A67GXX10l0
A67GXX1040
A67HXX1010
A67HXX1610
A67HXX2010

T
T
T
T
T

WES
WES
WES
WES
WES

A67GXX10l0
A67GXX1040
A67HXX1010
A67HXX1610
A67HXX2010

CF
CF
CF
CF
CF

Al80PA
.A180PB

A67HXX2510
A70A
A70B
A70C
A700

T
R
R
R
R

WES
GE
GE
GE
GE

A67HXX2510
R5100110
R5100210
R5100310
R5100410

A70E.
A70M
A70N
A70P
A70PB

R
R
R
R
R

GE
GE
GE
GE
GE

A70S
A7ar
A71A
.A71B
A71C

R
R
R
R
R

A710
A71E
A71M
A71N
A71P
A71PB
A71S

Tvpe Mlgr.
A

SUggasted@
Replacement

Page

Part Number

Tvpe Mfgr.

Suggested@
Replacement Page

GE
GE
GE
GE
GE

A5100415
R5100B15
A5100B16
R5100815
R6101015

A23
R23
A23
A23
R23

A197B
A197C
A1970
A197E
A191M

R
R
A
A
R

GE
GE
GE
GE
GE

A6020225FJ
A6020326FJ
A6020425FJ
A6020626FJ
R6020625FJ

AB3
R63
RB3
RB3
A63

!l:g~g

R
A
A
A

A

GE
GE
GE
GE
GE

R5001115
A5001215
A5001315
A5001415
SO

R23
A23
A23
R23
A23

A197N
A197P
A197PA
A197PB
A197PC

R
A
A
R
R

GE
GE
GE
GE
GE

A6020825FJ
A6021026FJ
R6021125FJ
A6021226FJ
A6021325FJ

R63
R63
AB3
A63
A63

CF
R23
R23
R23
R23

Al80RA
A180RB
A180RC
A180RO
A180RE

R
A
A
A
A

GE
GE
GE
GE
GE

A6110115
R5110215
A5110315
A5110415
R5110515

A23
R23
R23
R23
R23

A197PO
A197PE
A197AA
A197RB
A197RC

R
R
A
R
R

GE
GE
GE
GE
GE

R8021425FJ
R8021526FJ
A6030125FJ
R6030226FJ
A8030325FJ

RB3
A63
RB3
R63
RB3

R6100510
R&1 OOBI 0
R6100Bl0
R5101010
R5001210

R23
R23
R23
R23
R23

Al80AM
A180RN
A180RP
A180RPA
A180APB

A
A
A
A
A

GE
GE
GE
GE
GE

A6110815
A5110615
A5111015
A5011115
R5011215

R23
A23
R23
R23
A23

A197AO
A197AE
A197AM
A191AN
A197AP

R
R
R
R
R

GE
GE
GE
GE
GE

R6030425FJ
R6030525FJ
R6030825FJ
R6030825FJ
R6031025FJ

A63
R63
A63
RB3
R63

GE
GE
GE
GE
GE

R5100710
R6100910
R5110110
R6110210
R5110310

R23
R23
R23
R23
R23

A180RPC
A180RPO
A180APE
Al80RS
Al80RT

A
R
R
A
R

GE
GE
GE
GE
GE

R5011315
R5011415
SO
A5110715
R5110915

A23
R23
A23
R23
A23

A197RPA
A197APB
A197APC
A191RPO
A197APE

R
R
R
R
R

GE
GE
GE
GE
GE

R6031125FJ
R6031225FJ
R8031325FJ
R8031425FJ
R6031525FJ

R63
R63
R63
A63
R63

R
R
R
R
R

GE
GE
GE
GE
GE

R5110410
R5110510
R6110610
R511OB10
R5111010

R23
R23
R23
R23

Al80S
Al8ar
A187A
A187B
A187C

R

GE
GE
GE
GE
GE

R5100715
R5100915
A6020110FJ
R6020210FJ
R5020310FJ

A23
R23
R59
A59
R59

A197AS
A197RT
A197S
A197T
A291 PC

R
R
R
R
R

GE
GE
GE
GE
GE

R6030725FJ
R6030925FJ
A8020725FJ
R6020925FJ
R6011325

A63
R63
A63
A63
R31

ABOA
A90B
A90C

R
R
R
R
R
R

6GE R5111210
GE
R5110710
GE
R5110910
GE
R6100125
GE
R6100226
GE
R6100326

R23
R23
R23
R31
R31
R31

A1870
A187E
A187M
A187N
A187P

GE
GE
GE
GE
Ge

R5020410FJ
A5020510FJ
R5020610FJ
R502OB1OFJ
R5021010FJ

A69
R59
A69
R69
A69

A291PO
A291PE
A291 PM
A291PN
A291PS

R
R
R
R
R

GE
GE
GE
GE
GE

R8011425
R8011525
A6011625
R6011825
R6011725

A31
A31
R31
A31
R31

ABOO
ABOE
A90M
ABON
ABOP

R
R
R
R
R

GE
GE
GE
GE
GE

R6100425
R6100525
R6100626
R6100826
R6101025

R31
R31
R31
R31
A31

A187PA
A187PB
A187PC
A187PO
A187PE

GE
GE
GE
GE
GE

A5021110FJ
R6021210FJ
R5021310FJ
A5021410FJ
SO

A59
A59
R59
A69
A59

A295B
A296C
A2950
A295E
A295M

R
R
R
R
R

GE
GE
GE
GE
GE

R7010206
A7010305
R7010405
R7010506
R7010605

R35
A35
A35
A30
A35

ABOPA
ABOPB
A90S
ABOT
A91A

A
A
R
R
A

GE
GE
GE
GE
GE

A8001125
R8001226
R6100725
A6100925
A6110125

R31
R31
R31
R31
R31

A91B
A91C
A910
A91E
A91M

A
R
A
R
A

GE
GE
Ge
GE
GE

A6110226
R6110326
R6110425
R6110525
A6110625

A31
A31
R31
A31
R31

A91N
A91P
A91PA
A91PB
A91S

A
R
R
R
R

GE
GE
GE
GE
GE

R611OB25
R6111025
R6011125
R6011225
R6110726

R31
R31
R31
R31
R31

A9H
A96A
A96B
A96C
A960

R
R
R
R
R

GE
GE
GE
GE
GE

R6110925
R6020125FJ
R6020225FJ
R6020325FJ
A6020425FJ

R31
R63
A63
R63
R63

A96E
A96M
A96N
AS6P
A96S

R
A
A
A
A

GE
GE
GE
GE
GE

A6020525FJ
A6020625FJ
A6020825FJ
A6021025FJ
A6020725FJ

A63
R63
A63
A63
A63

A

GE
GE
GE
GE
GE

R6020925FJ
A6030125FJ
A6030225FJ
A6030325FJ
R6030425FJ

R63
A63
A63
A63
A63

GE
GE
GE
GE
GE

R6030526FJ
R6030625FJ
R6030825FJ
R6031025FJ
R6030725FJ

R63
A63
A63
R63

Ril3

GE
GE
GE
GE
GE

R6030925FJ
A5001310
A5001410
SO
A5011310

A63
A23
R23
A23
A23

A7H

A96T
A97A
A97B
A97C
A970
A97E
A97M
A97N
A97P
A97S
A97T
A170PC
A170PO
A170PE
A170RPC
A170APO
A 170APE
Al80A
Al80B
A180C

A

A
A

A
A
R

A
R
A

A
R

A
A
A
A
A
A
R
R

GE
GE
GE
GE
GE

R5011410

SO

A5100115
R5100215
A5100316

A23
R23
R23
R23
R23

A180PE

A

A
A

A

A187RA
A187RB
A187RC
A187RO
A187AE

R
A
R
A
A

GE
GE
GE
GE
GE

R5030110FJ
A5030210FJ
R5030310FJ
R5030410FJ
A5030610FJ

A69
A59
R59
R59
A59

A296N
A295P
A295PA
A295PB
A295PC

R
R
R
R
R

GE
GE
GE
GE
GE

R7010806
A7011005
R7011106
R7011205
A7011305

A35
A35
A35
A35
A35

A187RM
A187RN
A187RP
A187RPA
A187RPB

R
A
R
R
A

GE
GE
GE
GE
GE

R5030610FJ
R5030810FJ
R5031010FJ
A5031110FJ
A5031210FJ

A59
A69
A59
R59
A59

A295PO
A295PE
A296PM
A295PN
A295PS

R
A
A
A
R

GE
GE
GE
GE
GE

R7011405
A701160b
A7011805
R7011705

A35
A35
A35
A35
A35.

A187RPC
A187APO
A187APE
A187RS
A187RT

R
A
R
R

GE
GE
GE
GE
GE

R5031310FJ
A5031410FJ
SO
R5030710FJ
A5030910FJ

A59
A69
A69
A59
A59

A295S
A295T
A296S
A296C
A2960

R
R
R
R
R

GE
GE
GE
GE
GE

R7010705
R7010905
CF
CF
CF

R35
A35
CF
CF
CF

A187S
A187T
Al90C

A
A
A

GE
GE
GE

A5020710FJ
R5020910FJ
A6100325

A296E
A296M
A296N
A296P

R

~tlggm

A69
A59
A31
A31
A31

GE
GE
GE
GE

CF
CF
CF
CF

CF
CF
CF
CF

GE
GE
GE
GE
GE

A6100625
R6100825
R6101025
R6001125
A6001225

R31
A31
A31
A31
A31

A296PA
A296PB
A296PC
A296PO

R

R
R
R

GE
GE
GE
GE

CF
CF
CF
CF

CF
CF
CF
CF

R8001325
A8001425
A8001525
R6110326

R31
R31
A31
R31

A296PE
A296PM
A296PN
A296PS

R

GE

8~

CF
CF
CF
CF

mg~
Al90M
A190N
A190P
A190PA
A190PB

A

~

A

R
A
A

A

g~

R
R

R

A7011&~5

A190PC
A190PO
AI90PE
Al90RC

R

GE
GE
GE
GE

R

GE

CF
CF
CF
CF

Al90RO
Al90AE
AI90AM
A190AN
A190AP

R
A
A
A
A

GE
GE
GE
GE
GE

A6110425
A6110525
A6110625
A6110825
R6111025

A31
R31
R31
R31
R31

A296S
A296T
A390A
A390B
A390C

R

GE
GE
GE
GE
GE

CF
CF
R6200140
R6200240
R6200340

CF
CF
A39
A39
A39

A190APA
Al90APB
A190APC
A190APO
A190APE

A

GE
GE
GE
GE
GE

A6011125
A6011225
R6011325
A6011425
A6011525

A31
R31
R31
A31
R31

A3900
A390E
A390M
A390N
A390P

R
R
R

GE
GE
GE
GE
GE

R6200440
R6200540
A6200640
R6200840
A6201040

A39
A39
A39
R39
R39

A190AS
Al90AT
Al90S
AI90T
A197A

A
R
R

GE
GE
GE
GE
GE

RB110725
R6110925
R6100725
RB 100925
R6020125FJ

R31
R31
R31
A31
R63

A390PA
A390PB
A390S
A390r
A39BA

GE
GE
GE
GE
GE

R6201140
R6201240
R6200740
R6200940
RB220140FJ

R39
R39
R39
R39
RB7

A
A
A

R

A
A

R

R

A

~

R
A
R
R

R

A
R

R
R
R
R

Note: Manufacturer's Codes, Product Type Notes 8nd@ Replacement Notes are listed on page G3

G7

Part Number
A396B
A396C
A3960
A396E
A396M

Type Mfg,.

5ugge.ted@
Replacement

Page

Part Number

R
R
R
R
R

GE
GE
GE
GE
GE

R6220240FJ
R6220340FJ
R6220440FJ
R6220540FJ
R6220640FJ

R67
R67
R67
R67
R67

AS40LA
A540lB
A540lC
A540l0
A540M

R
R

GE
GE
GE
GE
GE

R622OB40FJ
R6221040FJ
R6220740FJ
R6220940FJ
R6220140FJ

R67
R67
R67
R67_
R67

A540N
A540P
A540PA
A540PB
A540PC

A397B
A397C
A3970
A397E
A397M

GE
GE
GE
GE
GE

R6220240FJ
R6220340FJ
R6220440FJ
R6220540FJ
R6220640FJ

R67
R67
R67
R67
R67

A540PO
A540PE
A540PM
A540PN
A540PS

A397N
A397P
A397PA
A397PB
A397PC

GE
GE
GE
GE
GE

R6220840FJ
R6221040FJ
R6221140FJ
R6221240FJ
R6221340FJ

R67
R67
R67
R67
R67

A397PO
A397PE
A3975
A397T
A430A

GE
GE
GE
GE
GE

R6221440FJ
R6221540FJ
R6220740FJ
R6220940FJ
R72oo112

A430B
A430C
A4300
A430E
A430M

GE
GE
GE
GE
GE

A430N
A430P
A430PA
A430PB
A430PC

Type Mfg,.
R
R

SUggestad@
Replacement

Page

Part Number

GE
GE
GE
GE
GE

CF
CF
CF
CF
R7200612

CF
CF
CF
CF
R43

B500
BSOF
B50Z
855-14
Bl10-14

GE
GE
GE
GE
GE

R72oo812
R7201012
R7201112
R7201212
R7201312

R43
R43
R43
R43
R43

GE
GE
GE
GE
.GE

R7201412
SO
SO
SO
SO

A540PT
A5405
A540T
A570A
A570B

GE
GE.
GE
GE
GE

R67
R67
R67
R67
R43

A570C
A5700
A570E
A570M
A570N

R72oo212
R7200312
R7200412
R72oo512
R7200612

R43
R43
R43
R43
R43

GE
GE
GE
GE
GE

R72oo812
R7201012
R7201112
R7201212
R7201312

A430PO
A430PE
A4305
A430T
A437A

GE
GE
GE
GE
GE

A437B
A437C
A4370
A437E
A437M

A3
A3
A3
523
523

B0125-01
B0125-02
B0126-04
B0125-06
B0125-08

PSI
PSI
PSI
PSI
PSI

R51OO110
R51oo210
R5100410
R5100610
R51oo810

R23
R23
R23
R23
R23

R43
R43
R43
R43
R43

B0125-10
B0125-12
B0125-14
B0150-01
B0150-02

PSI
PSI
PSI
PSI
PSI

R5101010
R5OO1210
R5OO1410
R51oo115
A51OO215

R23
R23
R23
R23
R23

50
R72OO712
R7200912
R92OO111
R92oo211

R43
R43
R43
R47
R47

B0150-04
B0150-06
B0150-08
B0150·10
B0150-12

PSI
PSI
PSI
PSI
P51

R5100415
R51OO615
R51oo815
R5101015
R5OO1215

R23
R23
R23
R23
R23

GE
GE
GE
GE
GE

R92oo311
R9200411
R92oo511
R9200611
R92OO811

R47
R47
R47
R47
R47

B0150-14
C30A
C30B
C30C
C300

PSI
GE
GE
GE
GE

R5OO1415
T4OO011608
T4ooo21608
T4ooo31608
T400041608

R23
513
513
513
S13

A570P
A5705
A570T
A596N
A596P

GE
GE
GE
GE
GE

R9201011
R92oo711
R9200911
R722OB08EJ
R722100BEJ

R47
R47
R47
R71
A71

C30F
C35A
C35B
C35C
C350

GE
GE
GE
GE
GE

T4oooo1608
T4ooo12208
T4ooo22208
T4ooo32208
T400042208

513
513
513
513
513

R43
R43
R43
R43
R43

A596PA
A596PB
A596T
A640l
A640LA

GE
GE
GE
GE
GE

R7221108EJ
R7221208EJ
R7220908EJ
R9202016
R9202116

R71
R71
A71
R47
R47

C35E
C35F
C35M
C35N
C355

GE
GE
GE
GE
GE

T4ooo52208
T4oooo2208
T40008220B
T4ooo82208
T4ooo72208

513
513
513
513
513

R7201412
50
R7200712
R7200912
R722010BEJ

R43
R43
R43
R43
R71

A640N
A640P
A640PA
A640PB
A640PC

GE
GE
GE
GE
GE

R92oo816
R9201016
R9201116
R9201216
R9201316

A47
A47
R47
R47
A47

C36A
C36B
C36C
C360
C36E

GE
GE
GE
GE
GE

T4ooo11008
T4ooo21008
T4ooo31 008
T4ooo41 008
T4ooo51008

513
513
513
513
513

GE
GE
GE
GE
GE

R7220208EJ
R7220308EJ
R7220408EJ
R722050BEJ
R722060BEJ

R71
R71
R71
R71
R71

A640PO
A640PE
A640PM
A640PN
A640P5

GE
GE
GE
GE
GE

Rsio1416
R9201516
R9201616
R9201816
R9201716

R47
R47
R47
R47
R47

C36F
C36M
C36N
C36S
C37A

GE
GE
GE
GE
GE

T40000 1008
T4OO061 008
T4ooo81 008
T4OO071OO8
T4ooo11608

513
513
513
513
513

A437N
A437P
A437PA
A437PB
A437PC

GE
GE
GE
GE
GE

R722OBOBEJ
R722100BEJ
R722110BEJ
R722120BEJ
R722130BEJ

R71
R71
R71
R71
R71

A640PT
A6405
A640T
A670XX0515
A670XX0525

GE
GE
GE
WES
WES

R9201916
R92oo716
R92OO916
A670XX0515
A670XX0525

R47
R47
R47
CF
CF

C37B
C37C
C370
C37E
C37F

GE
GE
GE
GE
GE

T4ooo21608
T4ooo31608
T4oo041608
T4ooo51608
T4oooo1608

513
513
513
513
513

A437PO
'A437PE
A4375
A437T
A500l

GE
GE
GE
GE
GE

50
R7221508EJ
R722070BEJ
-R7220908EJ
R7202009

R71
R71
R71
R71
R43

A045-01
A045-02
A045-04
A045-06
A045-OB

PSI
PSI
PSI
PSI
PSI

IN1184A
IN1186A
IN11B8A
IN1190A
R41oo840

R15
R15
R15
R15
R15

C37M
C37N
C37S
C38A
C38B

GE
GE
GE
GE
GE

T4oo081608
T4OO08160B
T4OOO71608
CF
CF

"513
513
513
CF
CF

A500LA
A500lB
A500lC
A5OOl0
A500lE

GE
GE
GE
GE
GE

R7202109
R7202209
R7202309
R7202409
R7202509

R43
R43
R43
R43
R43

A045-10
A045-12
A065-01
A065-02
A065-04

PSI
PSI
PSI
PSI
P51

R4101040
R4101240
R4040170
R4040270
R4040470

R15
R15

C38C
C380
C38E
C38M
C45A

GE
GE
GE
GE
GE

CF
CF
CF
CF
T51OO15004AB

CF
CF
CF
CF
527

A500lM
A500LN
A500lP
A5OOl5
A500lT

GE
GE
GE
GE
GE

R7202609
R7202809
R7203009
R7202709
R7202909

R43
R43
R43
R43
R43

A065-06
A065-OB
A065-10
A065-12
Al-l0-5

PSI
PSI
PSI
PSI
EOl

R4040870
R4048070
R4041070
R4041270
MB12A25V05

R17
A3

C45B
C45C
C450
C45E
C45F

GE
GE
GE
GE
GE

T51OO25004AB
T51oo35004AB
T510045004AB
T51oo55004AB
T51ooo5004AB

527
527
527
527
527

ASOOP
A500PA
A500PB
A500PC
A5OOPO

GE
GE
GE
GE
GE

R7201OO9
R7201109
R7201209
R7201309
R7201409

R43
R43
R43
R43
R43

Al-l0-l0
Al-l0-20
Al-l0-30
Al-10-40
Al-iO-so

EOl
EOl
EOl
EOl
EOl

MB12A25Vl0
MB12A25V20
MB12A25V30
MB12A25V40
MB12A25V50

A3
A3
A3
A3
A3

C45G
C45H
C45M
C45N
C45P

GE
GE
GE
GE
GE

T51OO25004AB
T51 oo35004AB
T51OO65004AB
T5OO084004AA
T5OO104004AA

527
527
527
523
523

ASOOPE
A500PM
A500PN
A500PS
A500PT

GE
GE
GE
GE
GE

R7201509
R7201609
R7201809
R7201709
R7201909

R43
R43
R43
R43
R43

Al-l0-60
Al·25-5
Al-25-10
Al-25-20
Al-25-30

EOl
EOl
EOl
EOl
EOl

MB12A25V60
MB12A25V05
MB12A25Vl0
MB12A25V20
MB12A25V30

A3
A3
A3
A3

C45PA
C45PB
C45S
C45T
C45U

GE
Ge
GE
GE
GE

T5OO114004AA
T5OO124004AA
T5OO074004AA
T5OOO94004AA
T51ooo5004AB

523
523
523
523
527

A5OOXXOlll
A500XXOl18
A510XXOl15
A510XX0125
A540A

WE5
WE5
WE5
WE5
GE

A6OOXXOlll
A5OOXX0118
A510XXOl15
A510XX0125
R72oo112

CF
CF
CF
CF
R43

Al-25-40
Al-25-SO
Al-2.5-60
Bl0A
BlOB

EOl
EOl
EOl
TUN
TUN

MB12A25V40
MB12A25V50
MB12A25V60
MB12A25Vl0
MB12A25V20

A3
A3
A3
A3
A3

C46A
C46B
C46C
C460
C46E

GE
GE
GE
GE
GE

T51 00 15004AO
T51OO25004AO
T51oo36004AO
T510045004AO
T51OO55004AO

527
527
527
527
527

GE
GE
GE
GE
GE

R72oo212
R72oo312
R7200412
R72oo512
CF

R43
R43
R43
R43
CF

Bl00
Bl0F
Bl0Z
B50A
B50B

TUN
TUN
TUN
TUN
TUN

MB12A25V40
MB12A25V60
MB12A25V05
MB12Al0Vl0
MB12A1OV20

A3
A3
A3
A3
A3

C46F
C46G
C48H
C46M
C46N

GE
GE
GE
GE
GE

T51ooo5004AO
T51oo25004AO
T51OO35OO4AO
T510085004AO
T5OOO84004AO

527
f:27
527
527
523

A540B
A540C
A5400
A540E
A540l

R
R

R

R
R
R
R
R

R
R
R

R
R

R
R
R
R
R
R

R
R

A
A
A
A
A

R17
R17

R17
R17

R17

R17

A3

Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are-listed on page·G3

A
A
A
S
5

Suggested @
Replacement Page

TUN MB12Al0V40
TUN MB12A1OV60
TUN MB12Al0V05
PSI T5OO144003AO
PSI T5OO148004AO

A396N
A396P
A3965
A396T
A397A

G8

Type Mfg,.

5
S
5
5
5

Part Number

Type Mfg.,

Suggested@
Replacement

Pege

Part Number

C152P
C152PA
C152PB

S
5
5

GE
GE
GE

Type Mfg.,

Suggested@
Replacement

Suggested@
Replacement Page

Page

Part Number

T500108004AA
T500118004AA
T50012OO04AA

523
523
523

ClOOA
ClOOB
C180C
ClOOD
ClOOE

5
5
5
5
5

GE
GE
GE
GE
GE

T610011504BT
T610021504BT
T61003f504BT
T610041504BT
T610051504BT

533
533
533
533
533

Type Mfg.,

C46P
C46PA
C46PB
C465
C46T

5
5
5
5
5

GE
GE
GE
GE
GE

T500104004AO
T500114004AO
T500124004A(
T5OOO74004AO
T5OOO94004AO

S23
523
523
523
523

C46U
C50A
C50B
C50C
C50D

5
5

5

5
5

GE
GE
GE
GE
GE

T51ooo5004A
T510018004AO
T510028004AO
T510038004AO
T510048D04AO

527
527
527
527
527

C152PC
C1525
C152T
C153E
C153M
C153N
C153P

5
5
5
5
5
5
5

GE
GE
GE
GE
GE
GE
GE

T500138004AA
T5OOO78004AA
T600D98004AA
T507058054AA
T507068054AA
T507088054AA
T507108D54AA

523
523
523
577
577
577
577

ClOOM
ClOON
C180P
C180PA
ClOOP8

5
5
5
5
5

GE
GE
GE
GE
GE

T610061504BT
T600081504BT
T800101504BT
T800 111504BT
T600121504BT

533
533
533
533
533

C50E
C50F
C50G
C50H
C50M

5
5
5
5
5

GE
GE
GE
GE
GE

T51 0058004AO
T51ooo8004AO
T510028004AO
T51003OO04AO
T510068004AO

527
527
527
527
527

C153PA
C1535
C153T
C154A
C154B

5
5
5
5
5

GE
GE
GE
GE
GE

T60711OO54AA
T507078054AA
T50709OO54AA
T50701OO84AO
T50702OO84AO

577
577
577
577
577

C180PC
ClOO5
C180T
C185A
C185B

5
5
5
5
5

GE
GE
GE
GE
GE

T800131504BT
T6ooo71504BT
T600091504BT
T6D7011864BT
T607021864BT

533
533
533
579
579

C50N
C50P
C50PA
C50PB
C505

5
5
5
5
5

GE
GE
GE
GE
GE

T500088004AO
T500108004AO
T500118004AO
T500128004AO
T500078004AO

523
523
523
523
523

C154C
C154D
Cl54E
C154M
C155A

5
5
5
5
5

GE
GE
GE
GE
GE

T50703OO84AO 577
T507048084AO 577
577
U8~8~i8Wa 577
T50701OO64AO 577

C185C
C185D
C185E
C185M
C185N

5
5
5
5
5

GE
GE
GE
GE
GE

T607031864BT
T6070418648T
TOO7051864BT
T607061864BT
T607081864BT

579
579
579
579
579

C50T
C50U
C5lA
C52B
C52C

5
5
5
5
5

GE
GE
GE
GE
GE

T500098004AO
T51ooo8004AO
T510018004AB
T510028004AB
T510038004AB

523
527
527
527

C155B
C155C
C155D
C155E
C155M

5
5
5
5
5

GE
GE
GE
GE
GE

T507028064AO
T5070311064AO
T50704OO64AO
T50705OO64AO
T50706OO64AO

C1855
C186N-30
CI86N-40
CI86P-30
CI86P-40

5
5
5
5
5

GE
GE
GE
GE
GE

T6D7071864BT
T607081554BT
T607081544BT
T6071015548T
T667101544BT

579
579
579
579'
579

C52D
C52E
C52F
C52G
C52H

5
5
5
5
5

GE
GE
GE
GE
GE

T510018D04AB
T510058004AB
T51ooo8004A8
T51002OO04AB
T510038004AB

527
527
527
527
527

C156A
C156B
C156C
C156D
C156E

5
5
5
5
5

GE
GE
GE
GE
GE

T50701OO84AA 577
T50702OO84AA 577
T50703OO84AA 577
T507048084AA 577
T507058084AA 577

C186PA-30
CI86PA-40
C186PB-30
CI86PB-40
C1865-30

5
5
5
5
5

GE
GE
GE
GE
GE

T607111554BT
T6071115448T
T607121554BT
T607121544BT
T607071554BT

579
579
579
579
579

C52M
C52N
C52P
C52PA
C52PB

5
5
5
5
5

GE
GE
GE
GE
GE

T510068004AB 527
T5OOO88004AA 523
T500108004AA 523
T500 l1OO04AA 523
T500 12OO04AA 523

C156M
C157A
C167B
C157C
C157D

5
5
5
5
5

GE
GE
GE
GE
GE

T60708OO84AA 577
T50701OO64AA 577
T50702OO64AA 577
T507038064AA 577
T50704OO64AA 577

C1865-40
C186T-30
C186T-40
C220A
C220B

5
5
5
5
5

GE
GE
GE
GE
GE

T607071544BT
T607091554BT
T607091544BT
T4ooo11 008
T400021008

579
579
579
513
513

C525
C52T
C52U
C60A
C608
C60C
C60D
C60E

5
5
5
5
5
5
5
5

GE
GE
GE
GE
GE
GE
GE
GE

T5OOO78004AA
T50009OO04AA
T51 0008004AB
T515018004AO
T51 502OO04AO
T51503OO04AO
T515048004AO
T51505OO04AO

523
523
527
CF
CF
CF
CF
CF

C157E
C157M
C158E
C158M
C168N

5
5
5
5
5

GE
GE
GE
GE
GE

T5D7058084AA
T507068064AA
T507058054AO
T507068054AO
T507088054AO

577
577
577
577
577

C220C
C220D
C220E
C220F
C220M

5
5
5
5
5

GE
GE
GE
GE
GE

T400031008
T400041008
T4OOO51 008
T4oooo1008
T4ooo61008

513
513
513
513
513

C60F
C60G
C60H
C60U
C62A

5
5
5
5
5

GE
GE
GE
GE
GE

T515008004AO
T515Q2OO04AO
T51503OO04AO
T515008004AO
T515018004AB

CF
CF
CF
CF
CF

C158P
C158PA
C168PB
C158S
C158T

5
5
5
5
5

GE
GE
GE
GE
GE

T50710OO54AO
T507118054AO
T507128054AO
T507078054AO
T507098054AO

577
577
577
577
577

C235-15
C280N
C200P
C280PA
C200PB

5
5
5
5
5

P51
GE
GE
GE
GE

T6001515038T
T700082504BY
T700102504BY
T700112504BY
T700122504BY

533
537
537
537
537

C159E
C159M
C159N
C159P
C159PA

5
5
5
5
5

GE
GE
GE
GE
GE

T50705OO54AA 577
T50706OO54AA 577
T507088054AA 577
T507108054AA 577
T507118054AA 577

C200PC
C 80PE
C200PM
C200PN

5
5
5
5
5

GE
GE
GE
GE
GE

T700132504BY
T700142504BY
T700152504BY
T700162504BY
T700182504BY

537
537
537
537
537

0159PB
CI595
C169T
CI60-15
C164A

5
5
5
5
5

GE
GE
GE
P51
GE

T5071'28054AA
T507078054AA
T507098054A."
T600151303BT
T507017084AO

577
577
577
533
577

C280P5
C2805
C280T
C281N
C281P

5
5
5
5
5

GE
GE
GE
GE
GE

T700172504BY
T7000725048Y
T700092504BY
T680083504BY
T780103504BY

537
537
537
575
575

CI648
C164C
CI84D
CI84E
CI64M

5
5
5
5
5

GE
GE
GE
GE
GE

T507027084AO
T507037084AO
T507047084AO
T507057084AO
T507067084AO

577
577
577
577
577

C281PA
C281PB
C281 PC
C281PD
C281PE

5
5
5
5
5

GE
GE
GE
GE
GE

T780113504BY
T780123504BY
T780133504BY
T780143504BY
T7801535C48Y

575
575
575
575
575

C165A
C1658
C165C
C165D
C165E

5
5
5
5
5

GE
GE
GE
GE
GE

T507017064AO
T507027064AO
T507037064AO
T507047064AO
T507057064~O

577
577
577
577
577

C281 PM
C281 PN
C281P5
C2815
C281T

5
5
5
5
5

GE
GE
GE
GE
GE

T780163504BY
T780183504BY
T780173504BY
T780073504BY
T780093504BY

575
575
575
575
575

C165M
0165N
C1655
C178A
CI78B

5
5
5
5
5

GE
GE
GE
GE
GE

T507067064AO
T507087064AO
T507077064AO
T6100115048T
T61D0215048T

577
577
577
533
533

C282N
C282P
C282PA
C282PB
C282PC

5
5
5
5
5

GE
GE
GE
GE
GE

T7000825048Y
T700102504BY
T700112504BY
T700122504BY
T700132504BY

537
537
537
537
537

C178C
C178D
CI78E
CI78M
C178N

5
5
5
5
5

GE
GE
GE
GE
GE

T6100315048T
T610041504BT
T610051504BT
T610061504BT
T600081504BT

533
533
533
533
533

C282PD
C282PE
C282PM
C282PN
C282P5

5
5
5
5
5

GE
GE
GE
GE
GE

T700142504BY
T700152504BY
T700162504B't
T7001825048Y
T700172504BY

537
537
537
537
537

C178P

5
5
5
5
5

GE
GE
GE
GE
GE

T600101504BT
T600 111504BT
T600 121504BT
T600071504BT

533
533
533
533
533

C2825
C282T
C283N
C283P
C283PA

5
5
5
5
5

GE
GE
GE
GE
GE

T7000725C48Y
T70009025048Y
T7800835048Y
T780103504BY
T7OOl13504BY

537
537
575
575
575

C283PB
C283PC
C283PD

5
5
5
5
5

GE
GE
GE
GE
GE

T7801 i35048Y
T7801335048Y
T7OO143504BY

575
575
575
575
575

SiP

C628
C62C
C62D
C62E
C62F

5
5
5
5
5

GE
GE
GE
GE
GE

T515028004AB
T515038004AB
T515048004AB
T51 5058004AB
T515008004AB

CF
CF
CF
CF
CF

C62G
C62H
C62U
C702LC
C702LD

5
5
5
5
5

GE
GE
GE
GE
GE

T51 5028004AB
T51503OO04AB
T515008004AB
T9G0231003DH
T9G0241003DH

CF
CF
CF
561
561

C137E
C137M
C137N
CI37P
C137PB

5
5
5
5
5

GE
GE
GE
GE
GE

T4ooo62208
T400062208
T400082208
T400102208
T400122208

513
513
513
513
513

C1375
C137T
C150E
C150M
C150N

5
5
5
5
5

GE
GE
GE
GE
GE

T4ooo72208
T400D92208
T51 D058D04AO
T510068004AO
T5OOO88004AO

513
513
527
527
523

CI50P
C150PA
C150PB
C150PC
C1505

5
5
5
5
5

GE
GE
GE
GE
GE

T500108004AO
T500118004AO
T500,128004AO
T500138OO4AO
T5OOO78004AO

523
523
523
523
523

C150T
CI51E
CI51M
C151N
C151P

5
5
5
S
5

GE
GE
GE
GE
GE

T500098004AO
T507058054AO
T50706OO54AO
T50708OO54AO
T:;0710OO54AO

523
577
577
S77
577

CI51PA
CI51PB
CI515
C151T
CI52E

5
5
5
5

GE
GE
GE
GE
GE

T50711OO54AO
T50712OO54AO
T507078054AO
T507098054AO
T510058004AB

577
577
577
577
527

CI52M
CI52N

S
5

GE
GE

T510068004AB
T500D88004AA

527
523

S

'/

~178PA

C178PB
CI785
C178T

T6ooo91504~T

577
577
577
577
577

C~OOPD

C28~PE

C283PM

T~01535048Y

T

0163504BY

Note: Manufacturer's Codes, Product Type Notes and® Replacement Notes are listed on pageG3

G9

Part Number
C283PN
C283P5
C2835
C283T
C286N

Sugge.tod@

Suggo.ted@
Type Mfgr.
S

Replacement

Page

Part Number

Type Mfgr.

Suggested @

Replacement

Page

T6270220840N
T6270320840N
T627042084DN
T6270520840N
T6270620840N

587
587
587
587
587

C393A
C393B
C393C
C3930
C393E

GE
GE
GE
GE
GE

T7270140740N
T7270240740N
T7270340740N
T7270440740N
T7270540740N

591
591
591
591
591

Part Number

Replacement

Page

5
5
5
5

GE
GE
GE
GE
GE

T780183504BY
T780173504BY
T7BD073504BY
T78OO93504BY
T7DOO825C4BY

575
575
575
575
537

C364B
C364C
C3640
C364E
C364M

5

5
5
5
5

GE
GE
GE
GE
GE

C286P
C286PA
C286PB
C286PC
C286PD

5
5
5
5
5

GE
GE
GE
GE
GE

T700102504BY
T7oo112504BY
T7oo122504BY
T700132504BY
T7oo142504BY

537
537
537
537
537

C365A
C3658
C365C
C365D
C365E

5
5
5
5
5

GE
GE
GE
GE
GE

T627012054DN
T627022064DN
T6270320640N
T627042064DN
T627052064DN

587
587
587
587
587

C393M
C394A
C394B
C394C
C3940

GE
GE
GE
GE
GE

T7270640740N
T7270148840N
T7270248840N
T7270348840N
T727044884DN

591
591
591
591
591

C286PE
C286PM
C286S
C286T
C287N

5

5
5
5
5

GE
GE
GE
GE
.GE

T700152504BY
T700162504BY
T7DOO72504BY
T700092504BY
T780083504BY

537
537
537
537
575

C365M
C380A
C3808
C380C
C3800

5
5
5
5
5

GE
GE
GE
GE
GE

T627062064DN
T620013OO4DN
T62oo23004oN
T6200330040N
T62oo430040N

587
543
543
543
543

C394E
C394M
C395A
C395B
C395C

GE
GE
GE
GE
GE

T727054884DN
T7270648840N
T727014874DN
T727024874DN
T7270348740N

591
591
591
591
591

C287P
C287PA
C287PB
C287PC
C2B7Po

5
5
5
5
5

GE
GE
GE
GE
GE

T780103504BY
T780113504BY
T7BD123504BY
T780133504BY
T780143504BY

575
575
575
574
575

C380E
C380M
C380N
C380P
C380PA

5
5
5
5
5

GE
GE
GE
GE
GE

T620053OO40N
T62oo63004oN
T6200830040N
T6201030040N
T6201130040N

543
543
543
543
543

C3950
C395E
C395M
C397E
C397M

GE
GE
GE
GE
GE

T7270448740N
T727054874DN
T727064874DN
T727054544DN
T727064544DN

591
591
59'591
591

C287PE
C287PM
C2875
C287T
C290A

5
5
5
5

T7BD153504BY
T780163504BY
T780073504BY
T780093504BY
T7oo013504BY

575
575
575
575
537

C380PB
C380PC
C3805
C380T
C384A

5
.5

S

GE
GE
GE
GE
GE

C290B
C290C
C290D

5
GE
5
GE
55 GE

T7oo023504BY
T100033504BY
T700043504BY

537
537
537

C290E
C290F
C290M
C290N
C290P

5
5
5
5
5

GE
GE
GE
GE
GE

T7DOO53504BY
T7DOO13504BY
T700063504BY
T700083504BY
T7oo103504BY

537
537
537
537
537

C290PA
C290PB
C2905
C290T
C291A

5
5
5
5

5

GE
GE
GE
GE
GE

T700113504BY
T7oo123504BY
T7oo073504BY
T7oo093504BY
T7800135C4BY

537
537
537
537
575

C291 B
C291C
C291D
C291E
C291M

5
5
5
5
5

GE
GE
GE
GE
GE

T78oo23504BY
T780033504BY
T780043504BY
T7B0053504BY
T780063504BY

575
575
575
575
575

C291N
C291P
C291PA
C291PB
C2915

5
5
5
5
5

GE
GE
GE
GE
GE

T780083504BY
T780103504BY
T780113504BY
T780123504BY
T78oo73504BY

575
575
575
575
575

.C291T
C350A
C350B
C350C
C350D

5
5
5

5
5

GE
GE
GE
GE
GE

T78oo93504BY
T520012004DN
T5200213040N
T5200313040N
T520041304DN

575
541
$41
541
541

C350E
C350M
C350N
C350P
C350PA

S
5
5
5
5

GE
GE
GE
GE
GE

T520051304DN
T52(!061304DN
T5200813040N
T5201013040N
T520111304DN

541
541
541
5'11
541

C350PB
C350PC
C3505
C350T
C354A

5
5
5
5
5

GE
GE
GE
GE
GE

T5201213040N
T5201313040N
T520071304DN
T5200913040N
T5270113840N

541
541
541
541
583

C354B
C354C
C354D
C354E
C354M

5
5
5
5
5

GE
GE
GE
GE
GE

T5270213840N
T527031384DN
T527041384DN
T527051384DN
T527051384DN

583
583
583
583
583

C355A
C355B
C355C
C355D
C355E

5
5
5
5

GE
GE
GE
GE
GE

T527011364DN
T527021364DN
T5270313640N
T527041364DN
T5270513640N

583
583
5B3
583
583

C355M
C35BE
C35BM
C358N
C358P

5
5
5
5
5

GE
GE
GE
GE
GE

T527051364DN
T5270513540N
T5270613540N
T527051354DN
T527101354DN

583
SB3
583
583
583

C358PA
C358P8
C3585
C358T
C364A

5

GE
GE
GE
GE
GE

T527111354DN
T527121354DN
T527071354DN
T527091354oN
T627012084DN

583
583
583
583
587

5

5
S
5
5

GE
GE
GE
GE
GE

T620123OO40N
T620133OO40N
T6200730040N
T62oo93004oN
T6270125840N

543
543
543
543
587

C397N
C397P
C397PA
C397PB
C3975

GE
GE
GE
GE
GE

T727084544DN
T727104544DN
T727114544DN
T727124544DN
T727074544DN

591
591
591
591
591

C384B
C384C
C384D
C384E
C384M

5
5
5
5
5
5
5
5

GE
GE
GE
GE
GE

T6270225840N
T627032584DN
T6270425840N
T6270525840N
T6270625840N

587
587
587
587
587

C397T
C39BE
C398M
C398N
C398P

GE
GE
GE
GE
GE

T7270945440N
T7270545540N
T7270645540N
T7270845540N
T7271045540N

591
591
591
591
591

C385A
C385B
C385C
C3850
C385E

5
5
5
5
5

GE
GE
GE
GE
GE

T6270125640N
T6270225640N
T6270325640N
T6270425640N
T6270525640N

587
587
587
587
587

C398PA
C398PB
C3985
C39ST
C400

GE
GE
GE
GE
GE

T7271145540N
T7271245540N
T7270745540N
T7270945540N
CF

S91
591
591
591
CF

C385M
C385N
C3855
C386N·30
C386N·40

5

GE
GE
GE
GE
GE

T6270625640N
T6270825640N
T6270725640N
T6270825540N
T6270825440N

587
587
587
587
587

C440
C441
C445
C448
C501N

GE
GE
GE
GE
GE

CF
CF
CF
CF
T7200555040N

CF
CF
CF
CF
551

GE
GE
GE
GE
GE

T6271025540N
T6271025440N
T6271125540N
T6271125440N
T6271225540N

587
587
587
587
587

C501P
C501PA
C501PB
C501PO

GE
GE
GE
GE
GE

T7201055040N
T7201155040N
T7201255040N
T7201355040N
T7201455040N

551
551
551
551
551

C386P·30
C386P·40
C386PA·30
C386PA·40
C386PB·30

5
5

.5

5
5

5
5
5
5

C~OlPC

C386PB·40
C3865·30
C3865-40
C386T·30
C386T·40

5
5
5

GE
GE
GE
GE
GE

T6270725440N
T6270725540N
T6270725440N
T6270925540N
T6270925440N

587
587
587
587
587

C501PE
C501PM
C5015
C50H
C502PE

GE
GE
GE
GE
GE

T72015550401\!
T7201655040N
T72oo755040N
T72oo95504oN
T7201555040N

551
551
551
.551
551

C387E
C387M
C387N
C387P
C387PA

5
5
5
5
5

GE
GE
GE
GE
GE

T7270535540N
T7270635540N
T7270835540N
T7271035540N
T7271135540N

591
591
591
591
591

C502PM
C509
C520A
C520B
C520C

GE
GE
GE
GE
GE

T7201655040N
CF
T72oo155040N
T72OO255040N
T7200355040N

551
CF
551
551
551

C387PB
C3875
C387T
C388E
C388M

5
5
5
5
5

GE
GE
GE
GE
GE

T7271235540N
T727073554DN
T727093554DN
T7270540640N
T727054064DN

591
591
591
591
591

C520D
C530A
C530B
C530C
C5300

GE
GE
GE
GE
GE

T7200455040N
T72oo155040N
T72OO255040N
T72OO355040N
T7200455040N

551
551
551
551
551

C388N
C388P
C388PA
C388PB
C3885

5
5
5

5
5

GE
GE
GE
GE
GE

T7270840640N
T727103564DN
T727113564DN
T7271235640N
T727074064DN

591
591
591
591
591

C530E
C530M
C600
C601
C602

GE
GE
GE
GE
GE

T720055504No
T72oo655040N
CF
CF
CF

551
551
CF
CF
CF

C388T
C390E
C390M
C390N
C390P

5
5
5
5
5

GE
GE
GE
GE
GE

T727093564DN
T7200555040N
T720065504DN
T720085504DN
T720105504DN

591
551
551
551
551

C609
C612
C701PA
C701 PB
C701 PC

GE
GE
GE
GE
GE

CF
CF
T9G01112030H
T9G01212030H
T9G01312030H

CF
CF
561
561
561

C390PA
C390PB
C390PC
C3905
C390T

5
5
5
5
5

GE
GE
GE
GE
GE

T720115504DN
T7201255040N
T720135504DN
T720075504DN
T72oo95504 DN

551
551
551
551
551

C701PD
C701PE
C701PM
C702l
C702LA

GE
GE
GE
GE
GE

T9G01412030H
T9G01512030H
T9G01612030H
T9G0201OO30H
T9G02110030H

561
561
561
561
561

C391 PC
C391PD
C391PE
C391 PM
C392A

5
5
5
5

GE
GE
GE
GE
GE

T720135504DN
T7201455040N
T720155504DN
T7201 655040 N
T727014084DN

551
551
551
551
591

C702lB
C712l
C712PE
C712PM
C712PN

GE
GE
GE
GE
GE

T9G0221OO30H
CF
CF
CF
CF

561
CF
CF
CF
CF

C392B
C382C
C392D
C392E
C392M

5
5
5
5
5

GE
GE
GE
GE
GE

T727024084DN
T727034084DN
T727044084DN
T727054084DN
T727064084DN

591
591
591
591
591

C712P5
C712PT
C0160-01
C0160-02
CD160·04

GE
GE
PSI
P51
P51

CF
CF
IN3261
IN3263
IN3267

CF
CF
R27
R27
R27

5
5

5

Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on pageG3
G10

Type Mfgr.

Part Numbe,

Type Mfg,.

Suggested@
Replacement

Page

Part Number

Type Mfg,.

Suggested@
Replacement

Page

Part Number

Type Mfg,.

Suggested @
Replacement

Page

COl SO-OS
COleO-OB
COl60-10
COl60-12
C01S0-14

R
R
R
R
R

PSI
PSI
PSI
PSI
PSI

IN3269
IN3271
IN3273
IN3274
IN3275

R27
R27
R27
R27
R27

0470
0480XX0320
0480XX0420
0480XX0520
0480XX0815

S
T
T
T
T

PSI
WES
WES
WES
WES

T7oo-3004BT
0480XX0320
0480XX0420
0480XX0520
0480XXOB16

S37
CF
CF
CF
CF

ESP05Bl
ESP181
ESP281
ESP481
ESPS81

A
A
A
A
A

SYN
SYN
SYN
SYN
SYN

MBllA02V05
M811A02Vl0
M811A02V20
MBllA02V40
MBllA02VSO

A3
A3
A3
A3
A3

COI60-1S
C0250-01
C0250-02
C0250-04
C0250-06

R
R
R
R
R

PSI
PSI
PSI
PSI
PSI

IN327S
R6100125
RS100225
RS100425
R6100625

R27
R31
R31
R31
R31

0480XXl015
01197
01245
0240SA
·0240SAR

T
S
S
R
R

WES
WCE
WCE
RCA
RCA

0480XX1015
T9GHXXOB-4
CF
IN3880
IN3880R

CF
S39
CF
R55
R55

ESP8Bl
ESP1081
Fl80
F220
F300

A
A
S
S
S

SYN
SYN
PSI
PSI
PSI

MBllA02V80
MBllA02Wl0
CF
CF
CF

A3
A3
CF
CF
CF

C0250-OB
C0250-10
C0250-12
C0250-14
C0250-16

R
R
R
R
R

PSI
PSI
PSI
PSI
PSI

R61OO825
R6101025
R6001225
R6001425
R6oo1625

R31
R31
R31
R31
R31

02406B
02406BR
02406C
02406CR
0240S0

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3881
IN3881R
IN3882
IN3882R
IN3883

R55
R55
R55
R55
R55

F400
F500
F600
FOSoo-05
FOSoo-l0

5
S
S
R
R

PSI
PSI
PSI
PSI
PSI

CF
CF
CF
R7200S0S
R720100S

CF
CF
CF
R43
R43

C03OO-01
C03OO-02
C03OO-04
C0300-06
C03OO-OB

R
R
R
R
R

PSI
PSI
PSI
PSI
PSI

RS100130
RS100230
R6100430
RS100630
R6100630

R31
R31
R31
R31
R31

0240S0R
0240SF
0240SFR
0240SM
0240SMR

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3883R
IN3879
IN3879R
R3020S0S
R3030S06

R65
R55
R55
R55
R65

F0600-12
F0600-16
F0600-18
FOSOO-20
F06oo-22

R
R
R
R
R

PSI
PSI
PSI
PSI
PSI

R720120S
R7201S0S
R720180S
R7202oo6
R720220S

R43
R43
R43
R43
R43

C03OO-10
C03OO-12
C03OO-14
C03OO-16
CH119A

R
R
R
R
R

PSI
PSI
PSI
PSI
TUN

R6101030
RSoo1230
R6001430
R6001630
R5100115

R31
R31
R31
R31
~23

02412A
02412AR
024128
024128R
02412C

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3890
IN3890R
IN3891
IN3891R
IN3892

R55
R55
R55
R65
R55

FOSoo-24
F0600-30
F0900-06
F0900-10
F09OO-12

R
R
R
R
R

PSI
PSI
PSI
PSI
PSI

R7202406
R7203006
R7200610
R7201010
R7201210

R43
R43
R43
R43
R43

CH119AR
CHl19AZ
CHl19AZR
CHl19B
CHl198R

R
R
R
R
R

TUN
TUN
TUN
TUN
TUN

R5110115
R5,0.,15
R5".,,6
R5100215
R5110215

R23
R23
R23
R23
R23

02412CR
024120
024120R
02412F
02412FR

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3892R
IN3893
IN3893R
IN3889
IN3889R

R55
R55
R55
R55
R55

F0900-16
F09OO-18
F0900-20
G3OO-1
G300-2

R
R
R
S
5

PSI
PSI
PSI
PSI
PSI

R7201610
R7201810
R7202010
T72oo135040N
T72oo235040N

R43
R43
R43
551
551

CHl19C
CH119CR
CHl190
CHl190R
CHl19E

R
R
R
R
R

TUN
TUN
TUN
TUN
TUN

R5100315
R5110315
R5100415
R5110415
R51OO515

R23
R23
R23
R23
R23

02412M
02412MR
02520A
02520AR
02520B

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

R3020612
R3030S12
IN3900
IN3900R
IN3901

R55
R55
R57
R57
R57

G300-3
G3OO-4
G3OO-5
G300-S
G3OO-7

5
5
5
5
5

PSI
PSI
PSI
PSI
PSI

T72oo335040N 551
T7200435040N 551
T7200535040N 551
T7200635040N S51
T72oo735040N 551

CH119ER
CHl19F
CH119FR
CHl19Z
CHl19ZR

R
R
R
R
R

TUN
TUN
TUN
TUN
TUN

R5110515
R5100S15
R5110S15
R5100015
R5110015

R23
R23
R23
R23
R2l

02520BR
02520C
02520CR
025200
025200R

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3901R
IN3902
IN3902R
IN3903
IN3903R

R57
R57
R57
R57
R57

G3OO-8
G3OO-9
G3OO-10
G3OO-12
G3OO-14

5
5
S
S
5

PSI
PSI
PSI
PSI
PSI

T7200835040N
T72oo935040N
T7201035040N
T7201235040N
T7201435040N

551
551
S51
S5.1
551

CH10912A
CH1OB12AR
CH10912AZ
CH10912AZR
CH109128

R
R
R
R
R

TUN
TUN
TUN
TUN
TUN

R5100115
R5110115
R5,0.,,5
R511+115
R5100215

R23
R23
R23
R23
R23

02520F
02520FR
02520M
02520MR
02540A

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3899
IN3899R
R4020S20
R4030S20
IN3910

R57
R57
R57
R57
R57

G3OO-1S
G3OO-18
G3OO-20
G300-22
G4oo-1

5
S
5
S
5

PSI
PSI
PSI
PSI
PSI

T7201635040N
T7201835040N
T7202035040N
T7202235040N
T7200135040N

551
S51
551
S51
S51

CH10912BR
CH10912C
CH10912CR
CH109120
CH10912DR

R
R
R
R
R

TUN
TUN
TUN
TUN
TUN

R5110215
R5100315
R5110315
R5100415
R5110415

R23
R23
R23
R23
R23

02540AR
02540B
025408R
D2540D
D2540DR

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3910R
IN3911
IN3911R
IN3913
IN3913R

R57
R57
R57
R57
R57

G400-2
G400-3
G400-4
G400-5
G400-S

5
5
S
S
5

PSI
PSI
PSI
PSI
PSI

T72oo235040N
T72oo335040N
T7200435040N
T72oo53504DN
T72ooS3504DN

551
551
551
S51
S51

CH10912E
CH10912ER
CH10912F
CH10912FR·
CH10912Z

R
R
R
R
R

TUN
TUN
TUN
TUN
TUN

R510P515
R5110515
R51OOS15
R5110S15
R5100015

R23
R23
R23
R23
R23

D2540F
D2540FR
D2540M
D2540MR
D3S10

R
R
R
R
R

RCA
RCA
RCA
RCA
SYN

IN3909
IN3909R
R4020630
R4030630
R4040160

R57
R57
R57
R57
R17

G400-7
G4oo-8
G4oo-9
G4oo-10
G400-12

S
S
S
S
5

PSI
PSI
PSI
PSI
PSI

T72oo73504DN
T72oo83504DN
T7200935040N
T7201035040N
T7201235040N

551
S51
S51
S5l
S51

CH10912ZR
CS131A
CS131AR
CS131AZ
CS131AZR

R
R
R
R
R

TUN
TUN
TUN
TUN
TUN

R5110015
IN4045
IN4046R
IN4046
IN404SR

R23
R29
R29
R29
R29

DRS·250
ORS·250R
ORS·251
DRS·251 R
DRS·252

R
R
R
R
R

DEL
DEL
DEL
DEL
DEL

RSloo825
RSll0825
R6101025
RSlll025
R6001225

R31
R31
R31
R31
R31

G400-14
G400-1S
G400-18
G400-20
G400-22

5
S
5
S
5

PSI
PSI
PSI
PSI
PSI

T7201435040N
T7201635040N
T7201835040N
T7202035040N
T7202235040N

551
551
551
551
S51

CS131B
CS131BR
CS131C
CS131CR
CS1310

R
R
R
R
R

TUN
TUN
TUN
TUN
TUN

IN4047
IN4047R
IN4049
IN4049R
IN4050

R29
R29
R29
R29
R29

DRS·252R
ORS·253
DRS·253R
DRS·254
DRS·254R

R
R
R
R
R

DEL
DEL
DEL
DEL
DEL

RSOl1225
RSoo1425
R6011426
R6001625
RSOllS25

.R31
R31
R31
R31
R31

G500-1
G5OO-2
G5OO-3
G5OO-4
G500-5

S
S
5
5
5

PSI
PSI
PSI
PSI
PSI

T72oo136040N
T720023504DN
T7200335040N
T720043504DN
T7200535040N

551
S51
551
551
551

CS1310R
CS131E
CS131ER
CS131F
CS131FR

R
R
R
R
R

TUN
TUN
TUN
TUN
TUN

IN4050R
IN4051
IN4051R
IN4052
IN4052R

R29
R29
R29
R29
R29

EI80
E220
E300
E400
E500

5
S
S
S
5

PSI
PSI
PSI
PSI
PSI

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

G500-S
G500-7
G5OO-8
G5OO-9
G500-10

S
5
5
S
S

PSI
PSI
PSI
PSI
PSI

T72oo63504DN
T7200735040N
T72oo835040N
T720093504DN
T7201035040N

S61
551
551
551
551

CS131Z
CS131ZR
080T405010
0601455010
060T505010

R
R
T
T
T

TUN
TUN
WES
WES
WES

IN4044
IN4044R
OSOT405010
060T455010
OSOT505010

R29
R29
T33
T33
T33

EHF1BI
EHF2Bl
EHF3Bl
EHF4Bl
EHF581

A
A
A
A
A

SYN
SYN
SYN
SYN
SYN

MB12A1OV10
MB12A1OV20
MB12A1OV30
MB12A1OV4O
M812A1OV50

A3
A3
A3
A3
A3

G5OO-12
G5OO-14
G5OO-IS
G500-18
G600-20

S
5
S
S
S

PSI
PSI
PSI
PSI
PSI

T720123504DN
T7201435040N
T720163504DN
T7201835040N
T7202035040N

S51
S51
S51
551
551

0235
0350
0390XX0520
0390XX0525
0400

S
S
T
T
S

PSI
PSI
WES
WES
PSI

T600-1804BT
T6oo-1804BT
0390XX0520
0390XX0525
TSoo--18048T

S33
S33
CF
CF
S33

EHFSBI
EMF1Bl
EMF281
EMF481
EMF681

A
A
A
A
A

SYN
SYN
SYN
SYN
SYN

M812A1OVSO
MB12A25Vl0
M812A25V20
M812A25V40
M812A25V60

A3
A3
A3
A3
A3

GS50-1
GS50-2
G650-3
G660-4
G650-5

S
S
S
S
S

PSI
PSI
PSI
PSI
PSI

T7200145040N
T7200245040N
T7200345040N
T7200445040N
T7200645040N

S61
S51
S51
S51
S51

Note: Manufacturer's Codes, Product Type Notes and® Replacement Notes are listed on page·G3

G11

Part Number

Type Mfgr.

Suggested@
Replacement

Pege

Part Number

Type Mfgr.

Suggested@
Replacement

Page

Part Number

Sugge.ted@
Replacement Pege

G650-6
G650-7
G650-8
G650-9
G650-1D

5
S
5
S
S

PSI
PSI
PSI
PSI
PSI

T72oo645040N
T72oo746040N
T7200646040N
T7200946040N
T72D1046040N

561
S51
551
S51
S51

HIIDD·12
H8DD·14
H80D 16
H8oo·18
H8oo·2D

S
S
S
S
S

PSI
PSI
PSI
PSI
Pi?l

T92D12D6D20W
T92D1406D20W
T92D1606D20W
T92D1806D20W
T92O'2006D20W

S55
S55
555
S55
S55

KBH25OO5
KBPC1D2
K8PC104
K8PC1D6
K8PC1D8

A
A
A
A
A

GI
GI
GI
GI
GI

MB12A26VD5
MB11AD2V2D
MB11AD2V4D
MB11AD2V6D
M811AO'2V8D

A3
A3
A3
A3
A3

G650-12
G650-14
G650-16
G65O'-18
G850-1

S

S

'5
5

PSI
PSI
PSI
PSI
PSI

T72D1245040N S51
T72DI445040N 561
T72O'I645040N 561
T72D1845040N ·551
T72oo155040N 551

H8oo·22
H8oo·24
H800·26
H80D·28
H8DD·3D

S
5
5
5
5

PSI
PSI
PSI
PSI
PSI

T92O'2206D20W
T92O'2408020W
T92O'26D6D20W
T92O'2806D20W
T92O'3OO6D20W

S55
S55
565
555
S55

K8PCllD
KBPC810'
KBPC 10'0'5
KBPC8oo5
KBPC8D25

A
A
A
A
A

GI
GI
GI
GI
GI

M811AD2W1D
MB11AD6W1D
MB11AD2VD5
MB11A06VD5
MBllA06V2O'

A3
A3
A3
A3
A3

G85D-2
G85D-3
G850-4
G85D-5
G850-6

5
5
5
5
S

PSI
PSI
PSI
PSI
PSI

T72oo255040N
T72oo355040N
T7200455040N
T72oo555040N
T72oo655040N

551
551
551
551
551

Hl0oo·6
Hl000 12
Hl000·18
Hl000 20'
Hl000 22

5
5
5
5
5

PSI
PSI
PSI
PSI
PSI

T92oo6D7D20W
T92O' 120'70'2 OW
T92D18D7D20W
T92O'2O'D7O'20W
T92O'22D7D20W

555
555
555
555
555

KBPC8045
KBPC8D65
KBPC8D85
KD6000·2
KD60oo-4

A
A
A
R
R

GI
GI
GI
PSI
PSI

MBllA06V40
MB11AO'6V6D
MB11AO'6V8D
CF
CF

A3
A3
A3
CF
CF

G85D-7
G85D-8
G85D-9
G85D-ID
G85D-12

,5
'5
5
.5
is

PSI
PSI
PSI
PSI
PSI

T72oo755040N 551
T72oo855040N 551
T72oo955040N 551
T72D1D55040N 551
T72D1255040N '551

H12oo·6
H12oo·10
H1200 12
H1200 14
H1200 16

S
5
5
S
5

PSI
PSI
PSI
PSI
PSI

T92O'0609D20W
T92O'loo9D20W
T92O'12O'9D20W
T92O'14D9D20W
T92D16D9D20W

S55
555
555
555
555

KD60oo-6
MB11AO'2VXX
MB11A06VXX
MB12A1DVXX
MB12A25VXX

R
A
A
A
A

PSI
WES
WES
WES
WES

CF
MB11AO'2VXX
MB11AD6VXX
MB12A1DVXX
M812A25VXX

CF
A3
A3
A3
A3

G85D-14
G85D·16
G85D-18
G85D-2D

.5
'5
5
'5
5

PSI
PSI
PSI
PSI
PSI

T72D1455040N
T72D1655040N
T72D1855040N
T72D2D5504DN
T72DD1S5040N

551
551
551
551
551

H14oo·6
H1400 8
H1400 10'
H1400 12
H1400 14

5
5
5
5
5

PSI
PSI
PSI
PSI
PSI

T920061OO20W
T92oo81oo20W
T92O'I0'1 OO20W
T92O'121oo20W
T92O'141oo20W

555
555
555
555
555

MB13A1O'VOS
MB13A1DV1D
MB13A1DV2D
MB13A1DV3D
MB13A1DV40

A
A
A
A
A

WES
WES
WES
WES
WES

MB12A1DVD5
MB12A1DV1D
MB12A1DV2D
MB12A1DV3D
MB12A1O'V4D

A3
A3
A3
A3
A3

5
5

T72DD255040N
T72DD35504DN
T72D045604DN
T72oo55504DN
T72D0655040N

551·
551
551
S51
561

H14oo·16
H1600 6
H16oo·8
H16DD 10'
><1600 12

5
S
5
5
5

PSI
PSI
PSI
PSI
PSI

T92O'161DO'20W
T92oo61oo20W
T920061oo20W
T92O'I 0'1 DD20W
T92O'121DD20W

555
S55
555
555
555

MB13A1DV5D
MB13A1DV6D
MB13A15Vl0
MB13A15V20
MB13A15V3D

A
A
A
A
A

WES
WES
WES
WES
WES

MB12A1DV6D
MB12A1DV6D
MB12A25V1D
MB12A25V2D
MB12A25V3O'

A3
A3
A3
A3
A3

PSI
PSI
PSI
PSI
PSI

T92O'141DD20W
CF
R92oo611
R92D1Dll
R92D1211

555
CF
R47
R47
R47

MB13A15V4D
M813A15V5D
MB13A15V6D
MB13A2DVID
MB13A2DV2D

A
A
A
A
A

WES
WES
WES
WES
WES

MB12A25V40
MB12A25V6D
MB12A25V60
MB12A25V1D
MB12A25V2D

A3
A3
A3
A3
A3

G95D·l

S

G95O'-2
G95D-3
G95D-4
G95D-5
G950-6

I~.5

PSI
PSI
PSI
PSI
PSI

G950-7
G95D-8
G95D-9
G95D-ID
G95D-12

5
5
5
S
5

PSI
PSI
PSI
PSI
PSI

T72oo755040N
T72D065504DN
T72D0955040N
T72D1D55040N
T72D1255040N

551
551
551
551
551

H1600 14
H1800
HD150012

5
5
R
R
R

G950-14
G95D-16
G95D-18
GA2 ......
GA3 ......

5
5
5
A
A

PSI
PSI
PSI
WES
WES

T72D145504DN
T72D1655040N
T72D1855040N
GA2 ........
GA3 ........

551
551
551
A19
A28

HD15OO-16
H015OO-18
HD15OO-2D
H015OO-22
H01500-24

R
R
R
R
R

PSI
PSI
PSI
PSI
PSI

R92D1611
R92O'1811
R92O'2Dll
R92D2211
R92O'2411

R47
R47
R47
R47
R47

MB13A2DV30
MB13A2DV4D
MB13A2DV5D
MB13A2DV6D
MCR39-35

A
A
A
A
5

WES
WES
WES
WES
MOT

MB12A25V3D
MB12A25V4D
MB12A2SV60
MBl2A25V60
T4oooo22D8

A3
A3
A3
A3
513

GBI
GB2
GB3
GC1
G01

......
......
......
......
......

A
A
A
A
A

WES
WES
WES
WES
WES

GB1
GB2
GB3
GCl
G01

........
........
........
........
........

A12
A2D
A29
AID
A9

HD15DD-30
H021 00-6
HD21oo-1D
H021DD-12
H021oo-16

R
R
R
R
R

PSI
PSI
PSI
PSI
PSI

R92D3Dll
R920062D
R92O'1D2D
R92O'122D
R92D162D

R47
R47
R47
R47
R47

MCR45-DS
MCK45-1D
MCR45-15
MCR45·2D
MCR45-25

5
5
5
5
5

MOT
MOT
MOT
MOT
MO'T

T51 0'0050'0'7 AB
T51DD15OO7AB
T51 0'0'250'0'7AB
T51 0'0'250'0'7AB
T51DD35DD7AB

527
527
527
527
527

G02 ......
G03 ......
GG8oo-D6
G080D-ID
G08DD-12

A
A
,R
,R
R

WES
WES
PSI
PSI
PSI

GD2 ........
G03 ........
R7200609
R72Dl009
R72DI2D9

A18
A27
R43
R43
R43

H021oo-18
H021oo-2D
HD25OO-2
H025OO-4
H025OO-6

R
R
R
R
R

PSI
PSI
PSI
PSI
PSI

R92O'182D
R92O'2D2D
R92O'D22O'
R92O'042D
R92O'062D

R47
R47
R47
R47
R47

MCR45-3D
MCR45-4D
MCR45-5D
MCR45-60
MCR45·70

5
5
5
5
5

MOT
MOT
MOT
MOT
MO'T

T51 0'0'350'0'7AB
T51 0'0450'0'7AB
T51DD55DD7AB
T51 0'0'650'0'7AB
T5OOD74004AA

527
527
527
527
523

'R
R
R
'R
:R

PSI
PSI
PSI
PSI
PSI

R72DI6D9
R72DI8D9
R72D2009
R72D22D9
R72D2409

R43
R43
R43
R43
R43

H025OO-8
H025OO-1D
H025OO-12
H03000-1
HD3DOO-2

R
R
R
R
R

PSI
PSI
PSI
PSI
PSI

R920062D
R92O'1D2O'
R920122D
CF
CF

R47
R47
R47
CF
CF

MCR45-8D
MCR45-9D
,MCR4S·1oo
MCR45-11D
MCR4S-12D

5
5
S
5
5

MOT
MOT
MOT
MOT
MOT

T5OOD84004AA.
T5OOD940D4AA
TSoolD40D4AA
TSoo 114DD4AA
TSoo1240D4AA

523
523
523
523
523

G08oo-3D
GO 1400-0'6
G014oo-1D
G014oo-12
G014oo·16

R
R
R
R
R

PSI
PSI
PSI
PSI
PSI

SO
R72oo612
R72D1D12
R72D1212
SO

R43
R43
R43
R43
R43

HI;l3OOD-4
H03OOD-6
HH .......
J3OOD-2
J3OOD-4

R
R
A
5
S

PSI
PSI
WES
PSI
PSI

CF
CF
HH ........
CF
CF

CF
CF
A76
CF
CF

MCR46-DS
MCR46·1D
MCR46-1S
MCR46-2D
MCR46-2S

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T51 0'0050'0'7AO
T51DD15DD7AO
T51 DD2SDD7AO
TSI 00250'0'7AO
T51 DD3Soo7AO

527
527
527
527
527

GD14oo-18
G014oo·20
GEl .......
GE2 ........
GE3 ........

R
:R
A
A
A

PSI
PSI
WES
WES
WES

SO
SO
GEl .........
GE2 .........
GE3.. .......

R43
R43
A13
A21
A3D

.J3OOD-6
J3000-8
J3000-1D
J3000-12
JD45OO-2

5
5
5
5
R

PSI
PSI
PSI
PSI
PSI

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MCR46-3D
MCR46-35
MCR46-40
MCR46-SD
MCR46·60

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TSI OD3SD07 AO
TSI 0'045007AO
T51 0'045007AO'
T51 0'0'550'0'7AO
TSI 0'0'650'0'7AO

527
527
527
527
527

G0800-16
.G08OD-18
G0800-2D
G0800-22
G0800-24

HD150Q 6

HD150D 10

GEB10D
GEB101
GEB1D2
GEB1D4
GEB1D6

A
A
A
A
A

GE
GE
GE
GE
GE

MB11A02VD5
MB11AD2V1D
MB11AD2V2D
MB11AD2V4D
MBllAD2V6D

A3
A3
A3
A3
A3

J046oo-4
J045OO-6
J045OO-8
J045OO-1D
J045OO-12

R
R
R
R
R

PSI
PSI
PSI
PSI
PSI

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MCR46·7D
MCR46-8D
MCR46-9D
MCR46-1oo
MCR46·11D

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T5OOD740D4AO
T5OOD84DD4AO
T5OOD940D4AO
T5OO1D40D4AO
T5OO114DD4AO

523
523
523
S23
523

GEB1D8
GEB11D
GF2
GF3 .......
GNI

A
A
A
A
A

GE
GE
WES
WES
WES

MBllAD2V8D
MBllAD2W1D
GF2 .........
GF3 .........
GNI

A3
A3
A22
A31
All

J06000-2
J06000-4
JD6000-6
KBHD2
KBH04

R
R
R
A
A

PSI
PSI
PSI
GI
GI

CF
CF
CF
MB12A1DV2D
MB12A1DV4D

CF
CF
CF
A3
A3

MCR46·12D
MCR5D-DS
MCR5D·1D
MCRSD-IS
MCRSD-2D

S
5
5
S
5

MOT
MOT
MOT
MOT
MOT

TSoo1240D4AO
TSI 0'0080'0'7AB
TSI 0'0'180'0'7 AB
TSI 0'0'280'0'7 AB
T51DD280D7AB

523
S27
527
S27
527

GRI
G51
GT3
GYI.
HBOO-6

A
A
A
A
S

WES
WES
WES
WES
PSI

GRI .......
GSI ........
GT3 .........
GY1 .........
T92oo606D2DW

AS
A14
A26
A15
555

KBH06
KBH005
KBH2502
KBH2504
KBH2506

A
A
A
A
A

GI
GI
GI
GI
GI

MB12A1DV6D
MB12A1DBD5
MB12A2SV20
MB12A2SV40
MB12A2SV6D

A3
A3
A3
A3
A3

MCRSD-2S
MCR5D-30
MCR5D-35
MCRSD-4D
MCR50-50

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TSI 0'0'3800'7 AB
T51 OD3BD07 AB
T51 00'48007 AB
T51 00'480'07 AB
T51 00580'07 AB

527
527
S27
527
527

NDte: Manufacturer's Codes, Product Type Notes and@ Replacement NDtes are listed on page G3

G12

Type Mfgr.

5uggested@
Part Number

Type Mfg •.

Page

Replacament

Part Number

Type Mfg •.

5uggested@
Replacament

Page

Part Number

Type Mfg••

Sugr,ested@

Rep ........nt

Pag.

MCRSO-60
MCR50-70
MCR50-80
MCR50-90
MCRS2-10

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T510066007AB
T500076007AA
T500086007AA
T5000116007AA
TS07017044AA

527
523
523
523
577

MCR157-20
MCR157-30
MCR157-40
MCR1S7-50
MCR157-60

5
5
5
5
5

MOT
MOT
MOT
MOT
iIIIOT

T507027064AA 577
TS07037064AA 577
TS07047064AA 577
TS070S7064AA 577
TS07067064AA 577

:;:g:Ug::g8
MCR2S08-130
MCR2508-140
MCR250B-150

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T500118OO6AQ
T50012B005AQ
T500138OO6AQ
T500148OO6AQ
T500158OO6AQ

523
523
523
523
523

MCR52-20
MCRS2-30
MCR52-40
MCR52-S0
MCRS2-60

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS07027044AA
TS07037044AA
TS07047044AA
T507057044AA
T507067044AA

577
577
577
577
577

MCR158-10
MCR158-20
MCR1S8-30
MCR158-40
MCR168-50

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS070170S4AQ
TS070270S4AQ
TS07037054AQ
TS070470S4AQ
TS07057054AQ

577
577
577
577
577

MCR25Ol-10
MCft250L-20
MCR250L-30
MCR25OL-40
MCR2SOL-50

5
5
5
5
5

MOT
MOT
MOT
MOt
MOT

1510018OO6AB
T51002800SAB
T510038OO6AB
TSl004600SAB
T510011B005AB

527
527
527
527
527

MCRS2-70
MCRS2-BO
MCRS2-90
MCR60·0S
MCR60-10

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS07077044AA
TS07087044AA
TS07097044AA
TS10008007AQ
TS10016007AQ

·577
577
577
527
527

MCR158-60
MCR1S8-70
MCR1S8-BO
MCR1S8-90
MCR1S8-100

5
5
5
5
5

MOT'
MOT
MOT
MOT
MOT

TS07067054AQ
TS07077054AQ
TS070870S4AQ
TS070970S4AQ
TS07107054AQ

577
577
577
577
577

MCR250L-60
MCR250L-70
MCR250L-BO
MCR250L-SO
MCR250L-l00

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T5 I OOII800SAB 527
T500078OO4AA 523
T500088OO5AA 523
T5000118OO5AA 523
TSOO108006AA 523

MCR60-1S
MCR60-20
MCR60-25
MCR60-30
MCR60-40

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS10028007AQ
TS10026007AQ
TS10036007AO
TS10038007AO
TS10048007AO

527
527
527
527
527

MCR158-110
MCR1S8-120
MCR158-130
MCR159-10
MCR159-20

.s
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS07117054AQ
TS071270S4AO
TS071370S4AO
TS07017054AA
TS070270S4AA

577
577
577
577
577

MCR2S0L-ll0
MCR250L-120
MCR250L-130
MCR250L-140
MCR250L-1S0

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

rsool I BOO5AA
T50012B005AA
T50013B005AA
TSOOl4600SAA
T50015B005AA

523
523
523
523

MCR60-50
MCR62-0S
MCR62-10
MCR62-1S
MCR62-20

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS100S8007AO
TS10008007AB
TS10018007AB
TS10028007AB
TS10026007AB

527
527
527
527
527

MCR159-30
MCR159-40
MCR1S9-50
MCR159-60
MCR1S9-70

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS07037054AA 577
TS070470S4AA 577
TS070S7054AA 577
TS07067054AA 577
TS07077054AA 577

MCR2S1B-l0'
MCR251B-20
MCR2S1B-30
MCR2S1B-40
MCR251B-50

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T510015005AO
T510025005AO
TS10035005AO
TSl0045005AO
TSl00S5005AO

527
527
527
527
527

MCR62-2S
MCR62-30
MCR62-40
MCR62-S0
MCR1S0-05

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS10038007AB
TS10038007AB
TS10048007AB
TS100S8007AB
TS1000BOOSAO

527
527
527
527
527

MCR159-BO
MCR159-90
MCR159-100
MCR159-110
MCR159-120

5
5
5

5
5

MOT
MOT
MOT
MOT
MOT

TS07087054AA
TS070970S4AA
TS07107054AA
TS071170S4AA
T507127054AA

577
577
577
577
577

MCR251B-60
MCR2S1B-70
MCR2S1B-BO
MCR2S1B-SO
MCR251B-l00

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS'100115005AO
TSOOO7400SAO
TSOOOII4005AO
T500011400SAQ
TS00104006AO

527
523
523
523
523

MCR1S0-l0
MCR150-20
MCR150-30
MCR150-40
MCR1S0-S0

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS1001800SAO
T51002600SAO
TS1003BOO5AO
:rSl004800SAO
T5100S600SAO

527
'527
527
527
527

MCR1S9-130
MCR23S-10
MCR23S-20
MCR235-30
MCR23S-40

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS071370S4AA
T620012004DN
T620022004DN
T620032004DN
T620042004DN

577
543
543
543
543

MCR2S1B-l10
MCR251B-120
MCR251B-130
MCR2S1B-140
MCR2S1B-1S0

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T500114005AO
T500124005AO
T500134005AO
TSOOl4400SAO
T500154005AO

523
523
523
523
523

MCR1S0-60
MCR1S0-70
MCR150-BO
MCR15D-SO
MCR150-100

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS10011BOOSAO
TSOOO78004AO
T5000118004AO
T500098004AO
T500108004AO

527
523
523
523
523

MCR235-50
MCR235-60
MCR235-70
MCR_235-BO
MCR23S-90

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T620052004DN
T620062004DN
T620072004DN
T620082004DN
T620092004DN

543
543
543
543
543

MCR2S1L-l0
MCR2S1L-20
MCR251L-30
MCR251L-40
MCR251L-50

S

5
5
5
5

MOT
MOT
MOT
MOT
MOT

T510015005AB
T510025005AB
T510035005AB
T510045005AB
T510055005AB

527
527
527
527
527

MCR15D-110
MCR15D-120
MCR150-130
MCR1S0-140
MCR150-150

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TSOOll8004AO
T500128004AO
TSOO138004AO
T500148004AO
T500158004AO

523
523
523
523
523

MCR235-100
MCR235-110
MCR235-120
MCR23S-130
MCR23S-140

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T620102004DN
T620112004DN
T620122004DN
T620132004DN
T620142004DN

S43
543
543
543
543

MCR2S1L-60
MCR2S1L-70
MCR251L-BO
MCR251L-SO
MCR251 L-l00

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T5100115005AB
TSOOO74005AA
T500084005AA
T500094005AA
T500104005AA

527
523
523
523
523

MCR152-OS
MCR1S2-10
MCR152-20
MCR152-30
MCR152-40

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS10008004AB
T51001B004AB
T510028004AB
T510038004AB
TS1004B004AB

527
527
527
527
527

MCR235-1S0
MCR23SA-l0
MCR235A-20
MCR235A-30
MCR235A-40

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T620152004DN
T627011584DN
T627021584DN
T627031S84DN
T627041584DN

543
587
587
587
587

MCR251L-ll0
MCR251L-120
MCR251L-130
MCR251·L-140
MCR251L-150

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T500114005AA
T500124005AA
T500134005AA
T500144005AA
T500154005AA

523
523
523
523
523

MCR1S2-S0
MCR1S2-60
MCR152-70
MCR1S2-BO
MCR152-SO

5
5

5
5
5

MOT
MOT
MOT
MOT
MOT

TS100S8004AB
T51006800fAB
T500078004AA
TS00088004AA
TS000II8004AA

527
527
523
523
523

MCR235A-50
MCR235A-60
MCR23SB-l0
MCR23SB-20
MCR23SB-30

5
5
5
5
S

MOT
MOT
MOT
MOT
MOT

T6270S1584DN
T627061584DN
T627011574DN
T627021S74DN
T627031574DN

587
587
587
587
587

MCR3BO-l0
MCR380-20
MCR38D-30
MCR380-40
MCR38D-50

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T620013004DN
T620023004DN
T620033004DN
T620D43004DN
T620053004DN

543
543
543
543
543

MCR1S2-100
MCR1S2-110
MCR1S2-120
MCR152-130
MCR152-140

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

TS00108004AA
T500118004AA
TSOO12B004AA
T500138004AA
T500148004AA

523
523
523
523
523

MCR23SB-40
MCR23SB-SO
MCR23SB-60
MCR235B-70
MCR23S8-BO

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T627041S74DN
T6270S1S74DN
T627061S74DN
T627071574DN
T627OB1574DN

587
587
587
S87
587

MCR380-BO
MCR380-70
MCR3BO-BO
MCR3BO-SO
MCR380-100

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T820063004DN
T820073004DN
T820083004IJN
T8200930040N
T620103004DN

543
543
543
543
543

MCR1S2-150
MCR1S4-10
MCR1S4-20
MCR1S4-30
MCR1S4-40

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T5001S8004AA
T507017084AO
TS07027084AO
T507037084AO
T507047084AO

523
577
577
577
577

MCR23SC-l0
MCR23SC-20
MCR235C-30
MCR235C-40
MCR23SC-SO

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T627011S84DN
T627021584DN
T627031564DN
T627041564DN
T627051564DN

587
587
587
587
587

MCR380-110
MCR3BO-120
MCR380-130
MCR380-140
MCR380-150

5
5
5
5
5

MOT
MOT
MDT
MOT
MDT

T620113004DN 543
T620123004DN 543
T620133004DN 543
T62D143004DN 543
T6201S3D04DN 543

MCR1S4-50
MCR154-60
MCR155-10
MCR155-20
MCR155-30

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T507057084AO
T507067084AO
TS07017064AO
T507027064AO
T507037064AO

5n

577
577
577
577

MCR235C-60
MCR235C-70
MCR235C-BO
MCR235C-90
MCR235C-l00

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T627OB1564DN
T627071564DN
T627081564DN
T627091564DN
T627101564DN

587
587
587
587
587

MCR3BOB-l0
MCR38OB-20
MCR3B08-30
MCR3808-40
MCR3BOB-5D

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T627012574DN .587
T627022674DN 587
T627032674DN 587
T627042574DN 587
T627052S74DN 587

MCR1S5-40
MCR1S5-50
MCR1S5-60
MCR1S6-10
MCR1S6-20

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T507047064AO
TS070S7064AO
T507067064AO
TS07017084AA
TS07027084AA

577
577
577
577
577

MCR2508-10
MC$2S0B-20
MCR250B-30
MCR2S08-40
MCR2SOB-50

5
5
5
5

S

MOT
MOT
MOT
MOT
MOT

TS1001800SAO
TS10028005AO
TS10038005AO
TS1004800SAO
TS10058005AO

527
527
527
527
527

MCR38OB-BO
MCR38OB-70
MCR380B-80
MCR38DC-l0
MCR3BOC-20

5
5
5
5
.5

MDT
MOT
MOT
MOT
MOT

T627062S74DN 587
T627072574DN 587
T827082574DN 587
T827012564DN 587
T627022564DN 587

MCR1S6-30
MCR1S6-40
MCR1S6-50
MCR156-60
MCR157-10

5
5

MOT
MOT
MOT
MOT
MOT

TS07037084AA
TS07047084AA
T5070S7084AA
TS07067084AA
TS07017084AA

577
577
577
577
577

MCR25OB-60
MCR25OB-70
MCR25OB-BO
MCR2SOB-SO
MCR2S08-100

5
5
S
5
5

MOT
MOT
MOT
MOT
MOT

TS10068005AO
TSOOO78005AO
T500088005AO
TSOOOII8005AO
TSOO10800SAO

527
523
523
523
523

MCR38DC-30
MCR380C-40
MCR38DC-50
MCR38DC-60
MCR380C-70

.~

5
5

MOT
MOT
MOT
MOT
MOT

T621032564DN
T627042S64DN
T637052564DN
T627062S64DN
T627072564DN

S
5
5

.

5
5

587
587
S87
587
587

Note: Manufacturer'5 Codes, Product Type Note5 and@Replacement-Note5 are listed on page'G3

G13

Part Number

Type Mfgr,

Sugge.t~d@

Replacement ':Page

Part Number

Type Mfgr,

'Suggested@
Replacement

Pege

Part Number

Suggested @
Replacemant

Page

MCR5500·110
MCR5500·120
MCR800-10
MCR800-20
MCR800-30

S
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T72711 35540N
T7271235540N
T720016604DN
T7200265040N
T72OC355040N

591
591
551
55!
551

MPOllBBH
MPOII8BK
MP0118BM
MPOllBBP
MPOllBB5

A
A
A
A
A

WE5
WE5
WE5
WE5
WE5

MBllA02V4O
MBllA02V60
MBllA02V80
MB11A02V80
MBllA02V80

A3
A3
A3
A3
A3,

T6270326540N 587
T6270425540N '587
T6270525540N 587
T6270625540N 587
T6270725540N 587

MCR800·4O
MCR800-60
MCR800-60
MCR800-70
MCR800-80

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T7200455040N
T720065604DN
T7200655040N
T7200755040N
T7200B55040N

561
561
561
561
551

MP011BBV
MP011BBZ
MP012JBA
MP012JBB
MP012JBO

A
A
A
A
A

WE5
WE5
WE5
WE5
WE5

MBllA02Wl0
MBllA02Wl0
MBI2Al0v06
MB12A1OV10'
MB12Al0V20

A3
A3
A3
A3
A3,

MOT
MOT
MOT
MOT
MOT

T6270825540N
T6270925540N
T6271025540N
T6271125540N
T6271225540N

587
587
587
587
587

MCR800·90
MCR8oo·1oo
MCR8oo·110
MCR800·120
MCR800·130

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T7200985040N 561
T7201055040N 551
17201155040N 551
T7201256040N 561
T7201355040N 551

MP012JBF
MP012JBH
MP012JBK
MP012JBM
MP013MBB

A
A
A
A
A

WE5
WE5
WE5
WE5
WE5

MB12Al0V30
MB12A1OV40
MB12A1OV60
MB12Al0V60
MB12A25Vl0

A3
A3
A3
A3
A3

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T6270525540N 587
T6270625540N 587
T6270725540N 587
T627P825540N 587
T6270925540N 587

MCRBOO·'40
MCR800·150
MCRlSI8-1
MCR2918-2
MCR2918·3

5 ' MOT T7201466040N
MOT T7201555040N
5
MOT T4OOOD1608
5
MOT T4OOOD1608
5
MOT T4OO011608
5

561
551
513
513
513

MP013MBO
MP013M8F
MP013MBH
MP013MBK
MP013MBM

A
A
A
A
A

WE5
WE5
WE5
WE5
WE5

MB12A25V20
MB12A25V30
MBI2A25V40
MB12A25V60
MBI2A25V60

A3
A3
A3
A3
A3

MCR4200·100
MCR470·10
MCR470·20
MCR470·30
MCR470·4O

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T6271025540N
T620013OO40N
T62oo230040N
T62oo33OO40N
T6200430040N

587
543
543
543
543

MCR2918-4
MCR2918-5
MCR2918-6
MCR2918·7
MCR29'8-8

MOT T4ooo21608
5
5 , MOT T4OOO31608
MOT T400041608
5
5
MOT T400051608
MOT T4ooo81608
5

513
513
513
S13
513

MP013RBB
MP013RBO
MP013RBF
MP013RBH
MP013RBK

A
A
A
A
A

WE5
WE5
WES
WE5
WE5

MB12A25Vl0
MB12A25V20
MB12A26V30
MB12A25V4O
MB12A25V60

A3
A3
A3
A3
A3

MCR470·60
MCR470·60
MCR470·70
MCR470-80
MCR470·90

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T6200530040N
T62oo630040N
T6200730040N
T6200830040N
T62oo930040N

543
543
543
543
543

MCR3918-1
MCR3918-2
MCR3918-3
MCR3918-4
MCR3918-5

5
5
5,
5
5

MOT
MOT
MOT
MOT
MOT

T4OO001608
T4OO001608
1400011608
T4OO021608
T4ooo31608

513
'513
513
513
513

MP013R8M
MR681
MR860
MR860R
MR861R

A
R
R
R
R

WE5
MOT
MbT
MOT
MOT

MBI2A25V60
IN3910
IN3909
IN3909R
IN3910R

A3
R57
R57
A57
R57

MCR470·1oo
MCR470·110
MCR470·120
MCR470·130
MCR470·140

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T6201030040N
T6201130040N
T6201230040N
T6201330040N
T6201430040N

543
543
543
543
543

MCR3918-6
MCR3918-7
MCR3918·8
MCR3935·2
MCR3935·3

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T4OO041608
T400051608
T400061608
T4OO002208
T400012208

513
513
513
513
513

MR862
MR862R
MR864
MR864R
MR866

R
R
R
R
R

MOT
MOT
MOT
~OT
MOT

IN3911
IN3911R
IN3913
IN3913R
R4020630

R57
R67
R57,

MCR470·150
MCR470C-l0
MCR470C-20
MCR470C·30
MCR470C-4O

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T6201530040N
T6270125640N
T6270225640N
T6270325640N
T6270425640N

543
587
587
587
587

MCR3935·4
MCR3935·5
MCR3935-6
MCR3935-7
MCR3935·8

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

1"400022208
T4OOO32208
T400042208
T4OOO62208
T4OO082208

513
513
513
S13
513

MR866R
MR1120
MR1120R
MR1121
MR1121R

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R4030630
IN1199A
IN1199AR
IN1200A
IN1200AR

R67
:R13
R13
R13'
R13

MCR470C·60
MCR470C·60
MCR470C·70
MCR470C·80
MCR4700·10

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T6270525640N
T6270625640N
T6270725640N
T6270825640N
T6270125540N

587
587
587
587
587

MOA922·2
MOA922-3
MOA922-4
MOA922-5
MOA922·6

A
A
A
A
A

MOT
MOT
MOT
MOT
MOT

MBllA02V06
MBllA03Vl0
MBllA02V20
MBllA02V30
MBllA02V40

A3
A3

A3
A3
A3

MR1122
MR1122R
MR1124
MRl124R
MR1126

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

IN1202A
IN1202AR
IN1204A
IN1204AR
IN1206A

R13
R13
R13
R13
R13

MCR4700·20
MCR4700·30
MCR4700·4O
MCR470E-l0
MCR470E-20

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T6270225540N
T6270325540N
T6270425540N
T6270125440N
T6270225440N

587
587
587
587
587

MOA922-7
MOA922·B
MOA922·9
MOA952·1
MOA952·2

A
A
A
A
A

MOT
MOT
MOT
MOT
MOT

MBllA02V60
MBllA02V80
MBllA02Wl0
MBllA06V05
MBllA06Vl0

A3
A3
A3
A3
A3

MRl126R
MRl128
MR1130
MR12105B
MR12105L

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

IN1206AR
IN3671A
IN3673A
CF
CF

R13
R13
RIS
CF
CF

MCR470E·30
MCR470E·4O
MCR470E-50
MCR470E-60
MCR470E-70

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T6270325440N
T6270425440N
T6270525440N
T6270625440N
T6270725440N

587
587
587
587
587

MOA952·3
MOA952·4
MOA952·5
MOA980·1
MOA980-2

A
A
A
A
A

MOT
MOT
MOT
MOT
MOT

MBllA06V20
M811A06V30
M811A06V4O
MB12Al0V05
MB12Al0Vl0

A3
A3
A3
A3
'A3

MR12105LR
MR12115B
MR12115BR
MR12115L
MR12115LR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF'
CF
CF
CF
CF

MCR470E-80
MCR470E-90
MCR470E·l00
MCR470E·l10
MCR470E·120

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T6270825440N
T6270925440N
T6271025440N
T6271125440N
T6271225440N

587
587
587
587
587

MOA980·3
MOA980-4
MOA980-5
MOA980·6
MOA990-1

A
A
A
A
A

MOT
MOT
MOT
MOT
MOT

MB12Al0V20
MB12Al0V30
MBI2Al0V40
MB12Al0V60
MB12A25V05

A3
A3
A3
A3
A3

MR12125B
MR121258R
MR12125L
MR12125LR
MR12135B

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MCR550C-l0
MCR550C-20
MCR550C-30
MCR550C·4O
MCR550C·50

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T7271040640N
T6270240640N
T7270340640N
T7270440640N
T7270540640N

591
591
591
591
591

MOA990·2
MOA990·3
MOA990-4
MOA990-5
MOA990-6

A
A
A
A
A

MOT
MOT
MOT
MOT
MOT

MB12A25Vl0
MB12A25V20
MB12A251130
MB12A25V4O
MB12A25V60

A3
A3
A3
A3
A3

MR12135BR
MR12135L
MR1213SLR
MR12145B
MR12145BR

R • MOT CF
R MOT CF
R MOT CF
R MOT CF
R MOT CF

CF
CF
CF',
CF

MCR550C-60
MCR550C-70
MCR550C-80
MCR550C·90
MCR550C-l00

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T7270640640N
T7270740640N
T7270840640N
T7270935540N
T7271036640N

591
591
591
591
591

MP010ABA
MP010ABB
MP010A80
MP010ABF
MP010ABH

A
A
A
A
A

WE5
WE5
WE5
WE5
WES

MBllA02V05
MBllA02Vl0
MBllA02V20
MBllA02V30
MB11A02V40

A3
A3
A3
A3
A3

MR12145L
MR12145LR
MR1215SB
MR12155BR
MR12155L

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MCR5500:,0
MCR5500·20
MCR5500·30
MCR5500·40
MCR6500·50

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T7270140540N
T7270240540N
T7270340540N
T7270440540N
T7270540540N

591
591
591
591
591

MP010ABK
MP010ABM
MP010ABP
MP010AB5
MP010ABV

A
A
A
A
A

WE5
WE5
WE5
WES
WE5

MBllA02V60
MBllA02V60
MBllA02V80
MBllA02V80
MBllA02Wl0

A3
A3
A3

,MR12155LR
MR12165B
MR12165BR
MR12165L
MR12165LR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
"CF
CF

MCR5500·60
MCR5500-70
MCR550D-80
MCR5500·90
MCR5500·100

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

T7270640540N
T7270740540N
T727084054DN
T7270935540N
T727103554!lN

591
591
591
591
591

MP010ABZ
MP011BBA
MPOllBBB
MPOllBBO
MPOllBBF

A
A
A
A
A

WE5
WE5
WES
WE5
WE5

MB11A02Wl0
MBllA02V05
MB11A02Vl0
MBllA02V20
MBllA02V30

A3
A3
A3
A3
A3

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MCR3BOC-80
MCR3BOC·90
MCR3BOC·loo
MCR38oo-10
MCR3800-20

S
S
5
5
5

MOT
MOT
'MOT
MOT
MOT

MCR3BOO-30
MCR3800-4O
MCR3800-4O
MCR3800-60
MCR3800·70

5
5
5
5
5

MOT
MOT
MOT
MOT
MOT

MCR3800·80
MCR3800-90
MCR3BOO·loo
MCR3800·110
MCR3800·120

5
5
5
5
5

MCR4200-50
MCR4200·60
MCR4200·70
MCR4200·80
MCR4200·90

T6270826640N
T6270826640N
T6271025640N
T6270125540N
T6270225540N

S87
587
587
587
587

AS
AS

Note: Manufacturer'5 Codes, Product Type Notes and@ Replacement Notes are listed on page G3

G l..t

Type Mfgr.

MRI2175B
MR12175BR
MR12175L
MRI12175LR
MR12185B

~~~

tF

Part Number

Type Mfgr.

Sugge.ted@
Replacement

Pege

Part Number

Type Mfgr.

Suggested@
Replacement

Page

Part Number

Type Mfgr.

Sugg_@
Replacement P -

MR1218S8R
MR1218SL
MR1218SLR
MR1219SB
MA1219SBR

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1231SL
MR1231SLR
MR1232FB
MR1232FBR
MR1232FL

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1245FLR
MR1245SB
MR1245SBR
MR1245SL
MR1245SLR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
R7ooo304
R7010304
CF
CF

CF
R35
R35
CF
CF

MR1219SL
MR1319SLR
MR1220FB
MR1220FB
MR1220FBR

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1232FLR
MR1232SB
MR1232SBR
MR1232SL
MR1232SLR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
R610+130
R611+130
CF
CF

CF
R31
R31
CF
CF

MRi247FB
MR1248FBR
MR1247FL .
MR1247FLR
MR1247SB

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
R7000404

CF
CF
CF
CF
R35

MR1220FL
MR1220FLR
MR1220SB
MR1220SBR
MR1220SL

MOT
MOT
MOT
MOT
MOT

CF
CF
R610oo20
R611oo20
CF

CF
CF
R31
R31
CF

MR1233FB
MR1233FBR
MR1233FL
MR1233FLR
MR1233SB

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
R6100230

CF
CF
CF
CF
R31

MR1247SBR
MR1247SL
MR1247SLR
MR1248FB
MR1811SBR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R7010404
CF
CF
CF
CF

R35
CF
CF
CF
CF

MR1220SLR
MR1221FB
MR1221FBR
MR1221FL
MR1221FlR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1233SBR
MR1233SL
MR1233SLR
MR1235FB
MR1236FBR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R6110230
CF
CF
CF
CF

R31
CF
CF
CF
CF

MR1248FL
MR1248FLR
MR124BSB
MR1248SBR
MR1248SL

R
R
R
R
R

MOT CF
MOT CF
MOT R7ooo504
MOT R7010504
6MOTCF

CF
CF
R35
R35
CF

MR1221SB
MR1221SBR
MR1221SL
MR1221SLR
MR1222F8

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R6100120
R6110120
CF
CF
CF

R31
R31
CF
CF
CF

MR1235FL
MR1235FLR
MR1235SB
MR1235SBR
MR1235SL

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
R6100330
R6110330
CF

CF
CF
R31
R31
CF

MR1248SLR
MR1249FB
MR1249FBR
MR1249FL
MR1249FLR

R
R
R
R
R

6MOTCF
6MOTCF
MOT CF
MOT CF
MOT CF

CF
CF
CF
CF
CF

1IIIR1222FBR
MR1222FL
MR1222FLR
MR1222SB
MR1222SBR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
R610+120
R611+120

CF
CF
CF
R31
R31

MR1235SLR
MR1237FB
MR1237FBR
MR1237FL
MR1237FLR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1249SB
MR1249SBR
MR1249SL
MR1249SLR
MR1260FL

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R7000604
R7010604
CF
CF
CF

R35
R35
CF
CF
CF

MR1222SL
MR1222SLR
MR1223FB
MR1223FBR
MR1223FL

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1237SB
MR1237SBR
MR1237SL
MR1237SLR
MR1238FB

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R6100430
R6110430
CF
CF
CF

R31
R31
CF
CF
CF

MR1260FLR
MR1261FL
MR1261FLR
MR1262FL
MR1262FLR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1223FLR
MR1223SB
MR1223SBR
MR1223SL
MR1223SLR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
R6100220
R6110220
CF
CF

Cf.
R31
R31
CF
CF

MR1238FBR
MR1238FL
MR1238FLR
MR1238SB
MR1238SBR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
R6100530
R6110530

CF
CF
CF
R31
R31

MR1263FL
MR1263FLR
MR1265FL
MR1265FLR
MR1267FL

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1225FB
MR1225FBR
MR1225FL
MR1225FLR
MR1225SB

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
R6100320

CF
CF
CF
CF
R31

MR1238SL
MR1238SLR
MR1239F8
MR1239FBR
MR1239FL

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1267FLR
MR1268FL
MR1268FLR
MR1269FL
MR1269FLR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1225SBR
MR1225SL
MR1225SLR
MR1227FBR
MA1227FL

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R6110320
CF
CF
CF
CF

R31
CF
CF
CF
CF

MR1239FLR
MR1239SB
MR1239SBR
MR1239SL
MR1239SLR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
R6100630
R6110630
CF
CF

CF
R31
R31
CF
CF

MRf810SB
MR1810S8R
MR1810SL
MR1810SLR
MR1811SB

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R510oo10
R5110010
CF
CF
R5100110

R23
R23
CF
CF
R23

MR1227FLR
MR1227SB
MRt227S8R
MR1227SL
MR1227SLR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
R6100420
R6110420
CF
CF

CF
R31
R31
CF
CF

MR1240FB
MR1240FBR
MR1240FL
MR1240FLR
MR1240SB

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
R7ooOOO4

CF
CF
CF
CF
R35

MR1811SBR
MR1811SL
MR1811SLR
MR1812SB
MR1812SBR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R5110110
CF
CF
R510+110
R511+110

R23
CF
CF
R23
R23

MR1228FB
MR1228FBR
MR1228FL
MR1228FLR
MR1228S8

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
R6100520

CF
CF
CF
CF
R31

MR1240SBR
MR1240SL
MR1240SLR
MR1241FB
MR1241FBR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R701ooo4
CF
CF
CF
CF

R35
CF
CF
CF
CF

MR1812SL
MR1812SLR
MR1813SB
MR1813SBR
MR1813SL

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
R5100210
R5110210
CF

CF
CF
R23
R23
CF

MR1228S8R
MR1228SL
MR1228SLR
MR1229FB
MR1229FBR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R6110520
CF
CF
CF
CF

R31
CF
CF
CF
CF

MR1241FL
MR1241FLR
MR1241SB
MR1241SBR
MR1241SL

R

R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
R7oo0104
R7010104
CF

CF
CF
R35

~~5

MR1813SLR
MR1814SB
MR1814S8R
MR1814SL
MR1814SLR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
R510+210
R51 I +210
CF
CF

CF
R23
R23
CF
CF

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1815S8
MR1815SBR
MR1815SL
MR1815SLR
MR1816SB

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R5100310
R5110310
CF
CF
R510+310

R23
R23
CF
CF
R23

MR1229FL
MR1229FLR
MR1229SB
MR1229SBR
MR1229SL

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
R6100620
R6110620
CF

CF
CF
R31
R31
CF

MR1241SLR
MR1242FB
MR1242FBR
MR1242FL
MR1242FLR

MR1229SLR
MR1230FB
MR1230FBR
MR1230F8R
MR1230FL

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1242S8
MR1242SBR
MR1242SL
MR1242SLR
MR1243FB

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R7oo+104
R701+104
CF
CF
CF

R35
R35
CF
CF
CF

MR1816SBR
MR1816SL
MR1816SLR
MR1817SB
MR1817S8R

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R511+310
CF
CF
R5100410
R5)10410

R23
CF
CF
R23R23

MR1230SB
MR1230SBR
MR1230SL
MR1230SLR
MR1231FB

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

R61ooo30
R6110030
CF
CF
CF

R31
R31
CF
CF
CF

MR1243FBR
MR1243FL
MR1243FLR
MR1243SB
MR1243SBR

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
R7oo0204
R7010204

CF
CF
CF
R35
R35

MR1817SL
MR1817SLB
MR1818S8
MR1818SBR
MR1818SL

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
R5100510
R5110510
CF

CF
CF
R23
R23
CF

CF
CF'
CF
R31
R31

MR1243SL
MR1243SLR
MR1245FB '
MR1245FBR
MR1245FL

R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

MR1818SLR
MR1819SB
MR181SSBR
MR181SSL
MR1819SLR

R
R
R
R

MOT
MOT
MOT
MOT
MOT

CF
R51oo610
R5110610
CF
CF

CF
R23
R23
CF
CF

MR1231FBR
MR1231FL .
MR1231FLR
MR1231SB
MR1231SBR

R
MOT CF
. R .' MOT 'CF' .,
R
MOT CF
R
MOT R6100130
R
MOT R6110130

R

Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page G3

R

G15

5uggested@
Part Number

~=~~?

R
R
R
R
R

MOT
MOT
MOT
MOT
MOT

N5082A
N50828
N5082C
N50820
N5082E

R
R
R
R
R

N5082F
N5082G
N5082H
NK511-3
NL36N

R

?

Replacement

R3400006
R3400106
R3400206

Page

Part Number

Type Mfg •.

5uggested@
Replacement

Page

Suggested
Part Number

Type Mfgr.

@

Replacement

Page

R3400606

R9
R9
R9
R9
R9

NL-C50G
NL-C50H
Nl-C50M
NL-C50N
NL-C505

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T510028OO7AO
T510038007AO
T510068007AO
T500088007AO
T5OOO78007AO

527
527
527
523
523

NL·C154A
NL-C1548
NL-C154C
NL-C1540
NL-C154E

S
5
5
5
5

NAT
NAT
NAT
NAT
NAT

WE5
WE5
WE5
WE5
WE5

N5082A
N50828
N5082C
N50820
N5082E

CF
CF
CF
CF
CF

NL-C50T
NL-C52A
NL-C52S
NL-C52C
NL-C52D

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T5OOO98007AO 523
T51 001 8007A8 527
T510028007AB 527
T510038007A8 527
T510048007AB 527

NL·C154M
NL-C156A
NL-C1568
NL-C156C
NL-C1560

5
S
S
5

S

NAT T507068083AO
NA r T507018083AA
NAT T507028083AA
NAT T610011302BT
NAT T507048083AA

R
R
5
5

WE5
WE5
WE5
NAT
NAT

N5082F
N5082G
N5082H
T4OO082008
T400082008

CF
CF
CF
513
513

NL-C52E
NLC52G
NL-C52H
NL-C52N
NL-C525

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T510058007A8 527
T51 0028007AB 527
T510038007AB 527
T500088007AA 523
T500078007AA 523

NL-C156E
NL-C156M
NL-C157A
NL-C157S
NL-C157C

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T507058083AA 577
T507068083AA 577
T507018063AA 577
T507028063AA 577
T507038063AA 577

NLC365
NL511-4
NL511-S
NL570A
NL5708

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T400072008
T400102008
T400121008
CF
CF

513
513
513
CF
CF

NL-C52T
NL-C55A
NL-C55B
NL-C55C
NL-C550

S
5
5
5

NAT
NAT
NAT
NAT
NAT

T5OOO98007 AA
T507018067 AO
T507028067AO
T507038067AO
T507048067AO

523
577
577
577
577

NL-C1570
NL-C157E
NL-C157M
NL-C178A
NL-C1788

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T507048063AA
T507058063AA
T507068063AA
T610011302BT
T610011302BT

577
577
577
533
533

NL570C
NL5700
NL570E
NL570M
NLC35A

5
5
5
5
5

NAT CF
NAT CF
NAT CF
NAT CF
NAT T4ooo12208

CF
CF
CF
CF
513

NL-C55E
NL-C55G
NL-C55H
NL-C55M
NL-C56A

NAT
NAT
NAT
NAT
NAT

T507058067AO
T507028067AO
T507038067 AO
T507068067AO
T507018067AA

577
577
577
577
577

NL-C178C
NL-C178D
NL-C178E
NL-C178M
NL-C178N

5
5
5
5
S

NAT
NAT
NAT
NAT
NAT

T610031302BT
T610041302BT
T610051302BT
T610061302BT
T6ooo813028T

533
533
533
533
533

NLC35B
NLC35C
NLC350
NLC35E
NLC35F

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T400022208
T4OO032208
T400042208
T400052208
T400002208

513
513
513
513
513

NL-C56B
NL-C56C
NL-C56D
NL-C56E
NL-C56G

NAT
NAT
NAT
NAT
NAT

TS07028067AA
T507038067AA
T507048067AA
T507058067AA
T507028067Aa

577
577
577
577
577

NL-C178P
NL-C178PA
NL-C178P8
NL-C1785
NL-C178T

S

5
5
5

5
5
5
5

NAT
NAT
NAT
NAT
NAT

T600101302BT
T6001113028T
T600121302BT
T600071302BT
T6000913028T

533
533
533
533
533

NLC35M
NLC35N
NLC35P
NLC35T
NLC3SA

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T400062208
T400082208
T400072208
T400092208
T4ooo12008

513
513
513
513
513

NL-C5SH
NL-C5SM
NL-CSOA
NL-C60S
Nt-C60C

5
5
5
5

NAT
NAT
NAT
NAT
NAT

T507038067AA
T507068067AA
T515018007AO
T515028OO7AO
T515038007AO

577
577
CF
CF
CF

NL-CIBOA
NL-C1808
NL-C180C
NL-CIBOD
NLC180E

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T6100115048T
T610021504BT
T610031504BT
T610041504BT
T610051504BT

533
533
533
533
533

NLC3SB
NLC3SC
NLC360
NLC36E
NLC36F

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T4OOO22008
T400032008
T400042008
T4OO052008
T400001008

513
513
513
513
513

NL-C60D
NL-C6DE
NL-C6DG
NL-C60H
NL-CSOI

5

5

NAT
NAT
NAT
NAT
NAT

151 5048007 AO
T5 I 5058007 AQ
T515028007AO
T515038007AO
CF

CF
CF
CF
CF
CF

NL-C180M
. NL-CIBON
NL-CIBOP
NL-CIBOPA
NL-C180PB

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T6100615048T
T6ooo815048T
T600101504BT
T60011 15048T
T8OO1215049T

533
533
533
533
533

NLC36M
NLC36N
NLC365
NLC37A
NLC37B

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T400062008
T400082008
T400072008
T4ooo11608
T400021608

513
S13
513
513
513

NL-C62A
NL-C62B
NL-C62C
NL-CS2D
NL-CS2E

5
5
S
5
5

NAT
NAT
NAT
NAT
NAT

T515018007A8
T5 I 5028007 AB
T515038007AB
T515048007 AB
T515058007AB

CF
CF
CF
CF
CF

NL-CIBOPC
NL-C1805
NL-C180T
NL-C181A
NL-C1818

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T6001315048T
T600071504BT
T600091504BT
T6100115029T
T6100215028T

533
533
533
533
533

NLC37C
NLC370
NLC37E
NLC37F
NLC37M

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T400031608
T400041608
T4OO051S08
T400001608
T400061608

513
513
513
513
513

NL-C62G
NL-C62H
NLC137E
NLC137M
NLC137N

S
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T515028007A8
T515038007A8
T400062208
T400062208
T4oooB2208

CF
CF'
513
513
513

NL-C181C
NL-C181D
NL-C181E
NL-C181M
NL-C181N

5

5
5
5
5

NAT
NAT
NAT
NAT
NAT

T6100315028T
T61004150281
T610051502BT
T6100615028T
T6ooo815028T

533
533
533
533
533

NLC37N
NLC375
NLC38A
NLC38B
NLC38C

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T4ooo81608
T400071608
CF
CF
CF

513
513
CF
CF
CF

NLC137P
NLC137PB
NLC1375
NLC137T
NL-Cl50E

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T400102208
T400122208
T400072208
T400092208
T510058004AO

513
513
513
513
527

NL-C181P
NL-C1815
NL-C181T
NL-C185A
NL-C1858

5
S
5
5
5

NAT
NAT
NAT
NAT
NAT

T600101502BT 533
T6000715028T $33
T600091502BT 533
T607011564BT 579
T607021564BT 579

NLC380
NLC38E
NLC38M
NL-C45A
NL-C458

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

CF
CF
CF
T510015007AB
T510025007AB

CF
CF
CF
527
527

NL-C150M
NL-C150N
NL-0150P
NL-Cl50PA
NL-C150P8

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T510068004AO
T500088004AO
T500108OO4AO
T500118004AO
T500128004AO

527
523
523
523
523

NL-C185C
NL-V286F
NL-C185E
NL-C185M
NL-C2BOA

S
S
S
S

NAT
NAT
NAT
NAT
NAT

T6070315648T
T6070415648T
T607051564BT
T60706 I 5548T
T700013004BY

579
579
579
579
537

NL-C45C
NL-C450
NL-C45E
NL-C45G
NL-C45H

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T510035007A8
T510045007AB
T510055007AB
T510025007AB
T510035007AB

527
527
527
527
527

NL-C150PC
NL-C1505
NL-C150T
NL-C151 E
NL-C151M

5
5
5

NAT
NAT
NAT
NAT
NAT

T500 138004AO
T5OO078004AO
T500098004AQ
T507058034AQ
T507068034AO

523
523
523
577
577

NL-C2908
NL-C2BOC
NL-C2900
NL-C290E
NL-C290M

S
5
S
5
S

NAT
NAT
NAT
NAT
NAT

T7oo0230048Y
T7ooo33004BY
T7ooo43004BY
T7OOO530048Y
T7OO0630048Y

537
537
537
537
537

NL-C45M
NL-C45N
NL-C455
NL-C45T
NL-C46A

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T51 0065007 AB 527
T5OOO84007AA 523
T5OOO7 4007AA 523
T5OOO94OO7 AA 523
T510015007AO 527

NL-C151N
NL-C151 P
NL-C1515
NL-C151T
NL-C1520

5

5
5
5
5

NAT
NAT
NAT
NAT
NAT

T507088034AQ 577
T507108034AO 577
T507078034AO 577
T507098034AO 577
T510048004AB 527

NL-C290N
NL-C290P
NL-C290PA
NL-C290P8
NLC290S

5
S
5
S
5

NAT
NAT
NAT
NAT
NAT

T7ooo83004BY
T700103004BY
T700113004BY
T7001230049Y
T7ooo73004BY

537
537
537
537
537

NL-C468
NL-C46C
NL-C460
NL-C46E
NL-C46G

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T510026007AO
T510035007AO
T510045007AO
T510055007AO
T510025007AO

527
527
527
527
527

NL-C152E
NL-C152M
NL-C152N
NL-C152P
NL-C152PA

5
5
5
5
5

NATT510058004AB
NAT T510068004A8
NAT T500088OQ4AA
NAT T500108004AA
NAT T5OO118004AA

NL-C290T
NL-C291A
NL-C2918
NL-C291C
NL-C2910

5
5
S
S

NAT
NAT
NAT
NAT
NAT

T700093004BY
T7800135048Y
T780023504BY
T7800335049Y
T7800435049Y

537
575
575
575
575

NL-C46H
NL-C46M
NL-C46N
NL-C465
NL-C4ST

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T510035007AO
T510065007AO
T5OOO84007AO
T5OOO74007AO
T5OOO94007AO

527
527
523
523
523

NL-C152P8
NL-C152PC
NL-C1525
NI.-C152T
NL-C153E

5
5
S

NAT
NAT
NAT
NAT
NAT

T5OO128004AA 523
T500138004AA 523
T500078004AA 523
T5OO098004AA 523
T5070G8034AA 577

NL-C291E
NL-C291M
NL-C291N
NL-C291 P
NL-C291PA

S

NAT
NAT
NAT
NAT
NAT

T7800535048Y
T780063504BY
T780083504BY
T780103504BY
T780113504BY

575
575
575
575
575

NL-C50A
NL-C508
NL-C50C
NL-C500
NL-C50E

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T510018007AO
T510028007AO
T51 0038007 AO
T51 0048007AO
T510058007AO

527
527
527
527
527

NL-C153M
NL-C153N
NL-C153P
NL-C1535
NL-C153T

5
5
5
8

NAT
NAT
NAT
NAT
NAT

T507068034AA
T507088034AA
T507108034AA
T507078034AA
T507098034AA

NL-C291P8
NL-C2915
NL-C291T
NL-C295A
NL-C2958

NAT
NAT
NAT
NAT
NAT

T780123504BY
T780073504BY
T780093504BY
T707013364BY
T707023364BY

575
575
575
581
581

MR752
MR754
MR756

G16

Type Mfgr.

R3~00406

S
5
5
5

S
S
5

S

5

5

5
5

~

S

5

5

527
527
523
523
523

577
577
577
577
577

Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on page G3

S

S

S
5
S
S
5

5
5
5
S

T507018083AQ 577
T507028083AQ 577
T507038083AO 577
T507048083AO 877
T507058083AO 577
577
577
577
577
577

Part Number

Type Mfgr.

5uggested@
Replacement

Page

Part Number

Type Mfgr.

SUggested@
Replacement

Page

Part Number

Type Mfgr.

5uggested@
Replacement Page

Nl-C296C
Nl-C2950
Nl-C296E
Nl-C296M

5
5
5
5

NAT T707033364BY
NAT T707043364BY
NAT T707053364BY
NAT T707063364BY

581
581
581
581

Nl·C16805
Nl·C158o:r
NL·FI60B
Nl·FI50C
Nl·F1600

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T72oo745040N
T72oo945040N
T51oo28004AO
T51OO38004AO
T510048OO4AO

551
551
527
527
527

Nl·F1BOE
Nl·F1BOM
Nl·F1BON
Nl·F1BOP
Nl·FI905

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T6000515048T
T80006 I 504BT
T600081504BT
T600101504BT
T6ooo71504BT

533
533
533
533
533

Nl-C297A
Nl-C2978
Nl-C297C
Nl-C2970
Nl-C297E

5
5
5
5
5

NAT
NAT
iliAT
NAT
NAT

T787013064BY
T787023064BY
T787033064BY
T787043064BY
T787053064BY

CF
CF
CF
CF
CF

NL·FI50E
Nl·FI50M
Nl·F150N
Nl-FI50P
Nl·F1505

5
NAT
5
NAT
5
NAT
5
NAT
5' . NAT

T61oo58004AO
T510068OO4AO
T500088004AO
T5OO108OO4AO
T5OOO78004AO

527
527
523
523
523

Nl·F18,OT
Nl·F1B5A
Nl·FI85B
Nl·F185C
Nl·F1850

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T6000915048T
T607011 564BT
T607021564BT
T6070315648T
T60704 I 564BT

533
579
579
579
579

Nl-C297M
Nl-C35OA
Nl-C360B
Nl-C36DC
Nl-C3600

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T7870630648Y
T52oo113040N
T6200213040N
T5200313040N
T5200413040N

CF
541
541
541
541

Nl·FI50T
Nl·F1518
Nl·FI51C
Nl·F1510
Nl·FI51E

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T500098OO4AO
T507028034AO
T507038034AO
T507048034AO
T607058034AO

523
577
577
577
577

Nl·F185E
Nl·F185M
Nl·F290A
Nl·2OOB
Nl·F2OOC

5
S
5
5
S

NAT
NAT
NAT
NAT
NAT

TB07051564BT
T607061564BT
T7000130048T
T7ooo23004BY
T7ooo33004BY

579
579
537
537
537

Nl·C360E
Nl·C360M
Nl·C360N
Nl·C350P
Nl'C360PA

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T5200613040N
T5200613040N
T6200613040N
T5101013040N
T5201113040N

541
541
541
541
541

Nl·FI51M
Nl·FI51N
Nl·F151P
Nl·F1515
Nl·F15tT

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T50706B034AO
T607088034AO
T50710B0341<0
T507078034AO
T50709B034AO

577
577
577
577
577

Nl·F2OO0
NL·F2OOE
Nl·F290M
Nl·F290N
Nl·F2OOP

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T700043004BY
T700053OO4BY
T7ooo63004BY
T7ooo83004BY
T7oo103004BY

537
537
537
537
537

Nl·C360PB
Nl·C360PC
Nl·C3505
Nl·C360T
Nl·C354A

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T5201213040N'
T5201313040N
T52oo713040N
T5200913040N
T5270113840N

541
541
541
541
583

Nl·F1528
Nl·FI52C
Nl·FI52E
Nl·FI52M
Nl·FI52N

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T51oo28004A8
T510038004AB
T51oo58OO4AB
T51006BOO4AB
T50008BOO4AA

527
527
527
527
523

Nl·F2905
Nl·F290T
Nl·F291A
Nl·F291S
Nl·F291C

5
5
S
5
5

NAT
NAT
NAT
NAT
NAT

T7ooo73004BY
T7OO0930048Y
T78oo13504BY
T780023504BY
T7800335048Y

537
537
575
575
575

Nl'C3648
Nl·C364C
Nl-C3640
Nl·C354E
Nl·C364M

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T5270213840N
T6270313840N
T5270413840N
T5270513840N
T5270613840N

583
583
583
583
583

Nl·FI52P
Nl·F1525
Nl·FI52T
Nl·F1538
Nl·F163C

5
5
5
5
5

NAT
NAT
NAT
NAT
NAT

T500l08OO4""
TS0007BOO4AA
T5OOO98004""
T50702B034""
T60703803411
2130
213051
213E

5
5
5
5
5

WES
WES
WES
WES
WES

213C
213C51
2130
213051
213E

CF
CF
CF
CF
CF

220M
2205

201l

CF
CF
CF
CF
CF

nop
nov

220Z

5
5
5
5
5

WES
WES
WES
WES
WES

220M
220P
220S
220V
220Z

CF
CF
CF
CF
CF

20120
202A
202B
2020
202F

R
R
R
R
R

WES
WES
WE5
WES
WES

20120
202A
2028
2020
202F

CF
CF
CF
CF
CF

213E51
213F
213F51
213H
213H51

5
S
5
5
S

WES
WES
WES
WES
WES

213E51
213F
213F51
213H
213H51

CF
CF
CF
CF
CF

220ZB
220Z0
220ZF
220ZH
220ZK

5
5
S
S
S

WES
WES
WES
WES
WE5

220ZB
22OZ0
220ZF
220ZH
220ZK

CF
CF
CF
CF

CF
CF
CF
CF
CF

213K
213K51
213M
213M51
213P

S
S
S
S
5

WES
WES
WES
WES
WES

213K
213K51
213M
213M51
213P

CF
CF
CF
CF
CF

220ZM
221ZB
2212F
221ZH
221ZK

5
S
5
S
S

WES
WES
WES
WES
WES

220ZM
CF
CF
CF
CF

CF
CF
CF
CF
CF

202H
202K
202M
202P
202S

R

R
R
R
R

T62Q03~ON

WE5
WES
WES
WES
WES

202H
202K
202M
202P
202S

S43

S43
543

S43
S43

543

R
R

2191851

Note: Manufacturer"s Codes, Product Type Notes and@Replacement Notes are listed on page G3

G26

Type Mfg'.

21918

CF

Sugge.ted@

Sugge.ted@

Part Number
221ZM
222A
222B
222C
2220

Type Mfgr.

Replacement

Page

Part Number

Type Mfgr.

Replacement

Suggested@

Page

Part Number

Type Mfgr.

Replacement

Page

S
5
S
5
S

WES
WE5
WES
WES
WES

CF
222A
222B
222C
2220

CF
CF
CF
CF
CF

229E
229F
229H
229K
229M

S
S
5
S
S

WES
WE5
WE5
WES
WE5

229E
229F
229H
229K
229M

CF
CF
CF
CF
CF

242T
244T
250A
250A51
250B

S
5
5
S
S

WCE
WCE
WE5
WES
WES

CF
CF
250A
250A51
250B

CF
CF
CF
CF
CF

222F
222H
222K
222M
222P

S
5
S
5
S

WES
WES
WES
WES
WES

222F
222H
222K
222M
222P

CF
CF
CF
CF
CF

229P
2295
229V
2292
2292B

5
5
5
5
5

WE5
WE5
WE5
WES
WE5

229P
2295
229V
229Z
229ZB

CF
CF
CF
CF
CF

250B51
250C
25OC51
2500
250051

S
S
5
S
S

WE5
WES
WE5
WES
WES

250851
250C
250C51
2500
250051

CF
CF
CF
CF
CF

222S
222V
2222
2222B
222Z0

S
S
S
5
5

WES
WES'
WES
WES
WES

222S
222V
222Z
222ZB
222Z0

CF
CF
CF
CF
CF

229Z0
229ZF
2292H
229ZK
229ZM

5
5
S
5
S

WES
WE5
WE5
WE5
WE5

229Z0
229ZF
229ZH
229ZK
229ZM

CF
CF
CF
CF

r.F

250E
250E51
250F
250F51
25OJB1P

S
S
S
S
A

WES
WES
WES
WES
IR

250E
250E51
250F
250F51
MB12A25Vl0

CF
CF
CF
CF
A3

222ZF
222ZH
222ZK
222ZM
2230

S
S
S
S
5

WES
WES
WES
WES
WES

222ZF
222ZH
222ZK
222ZM
2230

CF
CF
CF
CF
CF

231T
233T
234T
240A
2408

5
5
5
5
S

WCE
WCE
WCE
WE5
WES

CF
CF
CF
T4OOoo22
T4OO0122

CF
CF
CF
513
S13

25OJB2P
25OJB3P
25OJB4P
25OJB5P
25OJB6P

A
A
A
A
A

IR
IR
IR
IR
IR

MB12A25V20
MBl2A25V30
MB12A25V40
MB12A25V50
MBI2A25V60

A3
A3

223F
223H
223K
223M
223P

5
S
S
S
5

WES
WE5
WES
WES
WE5

223F
223H
223K
223M
223P

CF
CF
CF
CF
CF

2400
240F
240H
240M
240P

S
S
S
5
5

WES
WE5
WE5
WE5
WE5

T4oo0222
T4oo0322
T4000422
T4000622
T4ooo722

S13
S13
S13
513
513

25OJB05P
250K
250K51
250M
250M 51

A
5
5
5
S

IR
WES
WE5
WE5
"",E5

MB12A25V05
250K
250K51
250M
250M51

A3
CF
CF
CF
CF

223S
223V
223Z
223ZB
223Z0

5
S
5
S
S

WES
WES
WES
WES
WES

223S
223V
223Z
223ZB
223Z0

CF
CF
CF
CF
CF

240PAL10
240PAL20
240PAL30
24OPAL4O
24OPAL50

5
5
S
S
5

IR
IR
IR
IR
IR

T6270125640N 587
T6270225640N 587
T6270325640N 587
T6270425640N 587
T6270525640N S87

250P
250P51
250PA50
250PA60
250PA80

5
5
5
5
5

WE5
WES
IR
IR
IR

250P
250P51
T62oo530040N
T6200630040N
T6200830040N

CF
CF
S43
543
S43

223ZF
223ZH
223ZK
223ZM
224B

S
5
S
S
S

WE5
WES
WES
WES
WES

223ZF
223ZH
223ZK
223ZM
224B

CF
CF
CF
CF
CF

24OPAL60
24OPAL80
24OPALloo
240PAM10
24OPAM20

5
S
5
5
S

IR
IR
IR
IR
IR

T6270625640N
T6270825640N
T6271025640N
T6270125840N
T6270225840N

SB7
5B7
587
587
587

250PAloo
250PAll0
250PA120
250PA130
250PA14O

5
5
5
5
5

IR
IR
IR
IR
IR

T6201030040N
T620113OO40N
T6201230040N
T6201330040N
T6201430040N

S43
543
543
543
543

2240
224F
224H
224K
224M

5
S
S
5
5

WES
WES
WES
WES
WES

2240
224F
224H
224K
224M

CF
CF
CF
CF
CF

240PAM30
24OPAM40
24OPAM50
24OPAM60
24OPAM80

5
S
5
5
5

IR
IR
IR
IR
IR

T6270325840N
T6270425B40N
T6270525B40N
T6270625840N
T6270825840N

587
587
S87
587
S87

250PA150
250PA160
250PAC10
250PAC20
250PAC30

5
S
S
5
S

IR
IR
IR
IR
IR

T6201530040N
T6201630040N
T6200130040N
T6200230040N
T6200330040N

543
S43
S43
S43
543

224P
224S
224V
224Z
224Z0

5
S
5
5
5

WES
WES
WE5
WE5
WE5

224P
224S
224V
224Z
224Z0

CF
CF
CF
CF
CF

2405
240V
240M
240Z
240ZB

5
5
5
5
5

WE5
WE5
WES
WES
WES

T4000822
T4ooo922
T4oo0622
T4oo1022
T4oo1122

513
S13
S13
513
513

250PAC4O
250PAC50
250PAC60
250PAL10
250PAL20

S
S
S
5
5

IR
IR
IR
IR
IR

T6200430040N
T6200530040N
T6200630040N
T6270125540N
T6270225540N

543
S43
543
587
S87

224ZH
224ZM
227A
2278
227C

S
S
S
S
5

WE5
WES
WE5
WE5
WE5

224ZH
224ZM
227A
227B
227C

CF
CF
CF
CF
CF

24OZ0
241Cl0
241Cl0B
241C15
241C15B

5
5
5
5
S

WE5
5YN 5YN
5YN
SYN

T4oo1222
T62oo130040N
T62oo130040N
T6200230040N
T6200230040N

513
543
S43
543
543

250PAL30
250PAL4O
250PAL50
250PAL60
250PAM10

5
5
5
S
S

IR
IR
IR
IR
IR

T6270325540N
T6270425540N
T6270525540N
T6270625540N
T6270125B40N

587
587
587
587
S87

2270
227E
227F
227H
227K

5
5
S
S
5

WE5
WE5
WE5
WE5
WES

2270
227E
227F
227H
227K

CF
CF
CF
CF
CF

241C20
241C20B
241C25
241C25B
241C30

5
5
S
5
5

5YN T62OO230040N 543
5YN T62oo230040N 543
5YN T62oo330040N 543
5YN T62oo330040N 543
SYN T62oo330040N 543

250PAM20
250PAM30
250PAM40
250PAM50
250PAM60

S
S
5
5
5

IR
IR
IR
IR
IR

T6270225B40N
T6270325B40N
T6270425B4DN
T6270525B40N
T6270625B40N

587
587
587
587
587

227M
227P
2275
227V
227Z

S
S
5
S
S

WE5
WE5
WES
WE5
WE5

227M
227P
2275
227V
227Z

CF
CF
CF
CF
CF

241C30B
241C35
241C35B
241C4O
241C4OB

5
S
S
5
S

SYN
5YN
5YN
SYN
SYN

T62OO330040N
T6200430040N
T6200430040N
T6200430040N
T6200430040N

543
543
S43
S43
S43

250RA10
250RA20
250RA30
250RA40
250RA50

5
5
S
S
S

IR
IR
IR
IR
IR

T7ooo12504BY
T7oo022504BY
T7ooo32504BY
T7oo042504BY
T700052504BY

537
537
S37
S37
S37

227ZB
227Z0
227ZF
227ZH
227ZK

5
S
S
5
S

WE5
WES
WE5
WE5
WES

227ZB
227Z0
227ZF
227ZH
227ZK

CF
CF
CF
CF
CF

241C45
241C45B
241C50
241C50B
241C60

S
S
5
5
5

5YN T62OO530040N
SYN T62OO530040N
5YN T6200530040N
5YN T6200530040N
5YN T62oo630040N

543
S43
543
543
S43

250RA60
250RA80
250RA100
250RAll0
250RA120

S
5
S
5
5

IR
IR
IR
IR
IR

T700062504BY
T7oo082504BY
T7oo102504BY
T7oo112504BY
T7oo122504BY

S37
537
537
537
S37

228A
2288
2280
228F
228H

5
S
S
5
5

WE5
WE5
WE5
WE5
WE5

228A
228B
2280
22SF
228H

CF
CF
CF
CF
CF

241C60B
241C70
241C70B
241C80
241C80B

5
5
5
5
5

5YN T6200630040N
5YN T6200730040N
5YN T6200730040N
5YN T6200830040N
5YN T6200830040N

543
S43
543
543
543

250RAl30
250RA14O
250RA150
250RAl60
250RA170

5
S
5
5
5

IR
IR
IR
IR
IR

T700132504BY
T7oo142504BY
T7oo152504BY
T7oo162504BY
T7oo172504BY

S37
S37
537
S37
537

228K
228M
228P
228S
228V

S
S
5
5
5

WE5
WE5
WE5
WE5
WES

228K
228M
228P
2285
228V

CF
CF
CF
CF
CF

241C90
241C90B
241Cl00
241ClOOB
241Cl10

S
5
S
S
S

5YN T62oo930040N
5YN T62oo930040N
5YN T6201030040N
5YN T620 1030040N
SYN T620113OO40N

543
543
543
S43
543

250RL60
250RL80
250RLloo
250RL 110
250RL120

S
5
S
5
S

IR
IR
IR
IR
IR

T707063024BY
T707083024BY
T707103024BY
T707113024BY
T707123024BY

581
SBI
S81
SBI
581

228Z
228ZB
228Z0
228ZF
228ZH

5
5
5
5
5

WE5
WE5
WES
WE5
WE5

228Z
228ZB
228Z0
228ZF
228ZH

CF
CF
CF
CF
CF

241Cl10B
241C120
241C1208
241C130
241C130B

5
S
S

SYN
5YN
SYN
SYN
SYN

T6201130040N
T6201230040N
T6201230040N
T6201330040N
T6201330040N

S43
S43
543
S43
543

250S
250551
250V
250V51
250Z

S
S
5
S

S

WES
WE5
WES
WES
WES

250S
250S51
250V
250V51
250Z

CF
CF
CF
CF
CF

228ZK
228ZM
229A
229B
2290

5

WES
WE5
WE5
WE5
WE5

228ZK
228ZM
229A
229B
2290

CF
CF
CF
CF
CF

241C14O
241C140B
241C150
241C150B
241T

S
5

SYN
SYN
SYN
SYN
WCE

T6201430040N
T620143004DN
T6201530040N
T6201530040N
CF

543
S43
543
S43
CF

250Z51
250ZB
25OZB51
250Z0
25OZ051

S
S
S
S
5

WES
WES
WES
WES
WES

25OZ51
250ZB
250ZB51
25OZ0
25OZ051

CF
CF
CF
CF
CF

S
5
5
5

i"

\'

1

S
S

S
S

S

A3
A3
A3

Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are li5ted on pageG3

G27

Suggested@
Replacement

Type Mfg,.

Suggested@
Replacement

Part Number

Type Mfg,.

254851
254C
254C51
2540
254051

CF
CF
CF
CF
CF

263V
263Z
263Z8
263Z0
263ZF

S
S
S
S
5

WES
WES
WE5
WE5
WES

263V
263Z'
263Z8
263Z0
263ZF

CF
CF
CF
CF
CF

WES
WE5
WES
WES
WES

254E
254E51
254F
254F51
254H

CF
CF
CF
CF
CF

263ZH
263ZK
263ZM
270A
2708

5
S
5
5
5

WES
WES
WE5
WES
WES

263ZH
263ZK
263ZM
270A
2708

CF
CF
CF
CF
CF

5
S
S
S
S

WES
WES
WES
WES
WES

254H51
254K
254K51
254P
254P51

CF
CF
CF
CF
CF

270C
270P
270S
270V
270Y30860

5'
S
S
S
S

WES
WES
WES
WES
WES

270C
270P
270S
270V
270Y30860

CF
CF
CF
CF
CF

254V
254V51
254Z
254Z51
254Z8

5
S
S
S
S

WES
WES
WES
WES
WES

254V
254V51
254Z
264Z51
254Z8

CF
CF
CF
CF
CF

270Y30870
270Y30880
270Y30890
270Y3OC10
270Y30Cl1

S
S
S
S
S

WES
WES
WES
WES
WES

270Y30870
270Y30880
270Y308go
270Y3OC10
270Y30Cl1

Cf
CF
CF
CF
CF

CF
CF
CF
CF
CF

254Z851
254ZF
254ZF51
254ZH
254ZH51

S
S
5
5
S

WES
WES
WES
WE5
WE5

254Z851
264ZF
254ZF61
254ZH
254ZH61

CF
CF
CF
CF
CF

270Y3OC12
270Y30C13
270Y30C14
270Y3OC15
270Y3OC16

S
S
S
S
5

WES
WES
WE5
WE5
WE5

270Y30C12
270Y30C13
270Y3OC14
270Y30C16
270Y30C16

CF
CF
CF
CF
CF

251M51
251P
251P51
251S
251551

CF
CF
CF
CF
CF

254ZK
254ZK51
Z56T
258T
280A

S
S
S
5
S

WE5
WE5
WCE
WCE
WE5

254ZK
254ZK51
CF
CF
260A

CF
CF
CF
CF
CF

270Y30C17
270Y30C18
270Y30C19
270Y30C20
270Z

S
S
5
S
5

WES
WE5
WES
WES
WE5

270Y3OC17
270Y3OC18
270Y3OC19
270Y30C20
270l

CF
CF
CF
CF
CF

IR
IR
IR
IR
IR

R6020425FJ
R6020425EJ
R6020425CJ
R6020625FJ
R6020625EJ

R63
R63
R63
R63
R63

2808
2600
280F
260H
260K

S
S
S
S
S

WE5
WE5
WES
WES
WES

2608
2600
280F
260H
280K

CF
CF
CF
CF
CF

27Ol8
27Ol0
270lF
270ZH
270ZK

5
5
5
5
S

WE5
WE5
WE5
WES
WES

270Z8
27Ol0
270ZF
270ZH
270ZK

CF
CF
CF
CF
CF

R
R
R
R
R

IR
IR
IR
IR
IR

R6020625CJ
R6020825FJ
R6020825EJ
R6020825CJ
R6021025FJ

R63
R63
R63
R63
R63

280M
260P
280RL10
280RL20
260RL3O

5
S
S
S
S

WES
WES
IR
IR
IR

280M
280P
T7070133648Y
T7070233648Y
T7070333648Y

CF
CF
581
581
581

i71A
2718
271C
2710
271F

S
5
S
S
S

WES
WES
WES
WE5
WE5

271A
2718
271C
2710
271F

CF
CF
CF
CF
CF

251 UL100S20
251 UL100S3O
251UL120520
251UL12OS3O
251 UL130530

R
R
R
R
R

IR
IR
IR
IR
IR

R6021025EJ
R6021025CJ
R8021225EJ
R8021225CJ
R6021325CJ

R63
R63
R63
R63
R63

280RL4D
260RL60
280RL80
280RM10
280RM20

S
S
5
5
5

IR
IR
IR
IR
IR

T7070433648Y
T7070633648Y
T7070633648Y
T7070133848Y
T7070233848Y

S81
581
581
581
S81

271H
271K
271M
271P
2715

S
S
5
S
5

WES
WE5
WE5
WE5
WE5

271H
271K
271M
271P
2715

CF
CF
CF
CF
CF

261 UL140530
251 UL150S3O
251UL 160530
251 ULR40S16
261ULR40S20

R
R
R
'R
R

IR
IR
IR
IR
IR

R8021425CJ
R8021525CJ
R6021625CJ
R6030425FJ
R8030425EJ

R63
R63
R63
R63
R63

260RM30
260RM40
260RM50
260RM60
260V

5
5
5
S
5

IR
IR
IR
IR
WE5

T7070333648Y
T7070433848Y
T7070633848Y
T7070633648Y
260V

581
581
S81
581
CF

271V
271Z
271Z8
271Z0
271ZF

5
5
5
S
5

WES
WE5
WE5
WE5
WE5

271V
271Z
271Z8
271Z0
271ZF

CF
CF
CF
CF
CF

251 ULR40S30
251 ULR60S15
251 ULR60S20
251 ULR60S30
251 ULR60S15

R
R
R
R
R

IR
IR
IR
IR
IR

R8030426CJ
R6030625FJ
R6030625EJ
R6030625CJ
R8030825FJ

R63
R63
R63
R63
R63

260Z
260Z8
260Z0
260ZF
260lH

5
5
5
5
S

WES
WES
WES
WES
WES

260Z
26Ol8
26Ol0
260ZF
260ZH

CF
CF
CF
CF
CF

271ZH
272 ..............
272A
2728
272C

5
5
S
5
5

WES
WES
WE5
WES
WES

271ZH
CF
272A
2728
272C

CF
CF
CF
CF
CF

251 ULR60S20
251 ULR80530
251ULR100516
251ULR100S20
251ULR100S30

R
R
R
R
R

IR
IR
IR
IR
IR

R6030825EJ
R6030625CJ
R8031025FJ
R6031025EJ
R6031025CJ

R63
R63
R63
R63
R63

260lK
260ZM
261 •......•...•.•
261A
2618

S
S
5
5
5

WES
WES
WES
WES
WES

260ZK
260ZM
CF
261A
2618

CF
CF
CF
CF
CF

2720
272F
272H
272K
272M

S
S
5
5
S

WES
WE5
WES
WE5
WE5

2720
272F
272H
272K
272M

CF
CF
CF
CF
CF

251ULR 120520
251 ULR12OS30
261 ULR 130530
261ULRl40S30
251ULR160S30

R
R
R
R
R

IR
IR
IR
IR
IR

R8031225EJ
R6031225CJ
R6031325CJ
R6031425CJ
R6031525CJ

R63
R63
R63
R63
R63

2610
261F
261H
261K
261M

5
5
5
5
5

WES
WES
WES
WES
WES

2610
261F
261H
261K
261M

CF
CF
CF
CF
CF

272P
272S
272V
272Z
272Z8

S
5
5
S
5

WES
WE5
WES
WE5
WES

272P
2725
272V
272Z
272Z8

CF
CF
CF
CF
CF

261 ULR 160530
261V
261V51
261Z
261Z61

R
5
5
5
5

IR
WES
WES
WES
WES

R6031625CJ
251V
251V51
251Z
261Z51

R63
R63
CF
CF
CF

261P
2615
261V
261Z
261Z8

S
S
S
S
5

WES
WES
WES
WES
WES

261P
2615
261V
261Z
261Z8

CF
CF
CF
CF
CF

272Z0
272ZF
272ZH
273 ..............
273A

5
S
5
5
5

WE5
WE5
WES
WES
WE5

272Z0
272ZF
272ZH
CF
273A

CF
CF
CF
CF
CF

251Z8
251Z851
251Z0
251Z061
261ZF

S
5
5
5
5

WE5
WE5
WE5
WE5
WE5

251Z8
261Z861
251Z0
251Z051
251ZF

CF
CF
CF
CF
CF

261Z0
261ZF
261ZH
261ZK
261ZM

S
S
S
5
5

WES
WES
WES
WES
WES

261Z0
261ZF
261ZH
261ZK
261ZM

CF
CF
CF
CF
CF

2738
2730
273F
273H
273K

5
5
5
5
5

WE5
WES
WE5
WE5
WE5

2738
2730
273F
273H
273K

CF
CF
CF
CF
CF

261ZF61
261ZH
261ZH61
251ZK
251ZK51

5
S
5.
5
5

WE5 251ZF51
WE5 251ZH
wes 261ZH51
WE5 251ZK
WE5 251ZK51

CF
CF
CF
CF
CF

263A
2638
263C
263E
263F

S
5
S
S
5

WES
WES
WES
WES
WES

263A
2638
263C
263E
263F

CF
CF
CF
CF
CF

273M
273P
2735
273V
273Z

5
S
5
5
5

WES
WES
WE5
WE5'
WES

273M
273P
2735
273V
273Z

CF
CF
CF
CF
CF

261ZM
251ZM51
254A
254A51
2548

S
5
S
S
5

WE5
WES
WES
WES
WE5

CF
CF
CF
CF
CF

263H
263K
263M
263P
2635

S
5
S
5
5

WES
WES
WES
WES
WES

263H
263K
263M
263P
2635

CF
CF
CF
CF
CF

273Z8
273Z0
273ZF
273ZH
273ZK

S
S
S
S
S

WES
WE5
WES
WES
WES

273Z8
273Z0
273ZF
273ZH
273ZK

CF
CF
CF
CF
CF

Type Mfg,.

250ZF
25OlF51
250ZH
250ZH61
250lK

S
S
S
5
S

WES
WES
WES
WE5
WES

250ZF
250ZF61
250lH
250ZH51
250lK

CF
CF
CF
CF
CF

254851
254C
254C51
2540
254051

S
S
5
5
S

WES
WES
WES
WE5
WE5

250ZK51
250ZM
250ZM51
251A
251A51

S
S
S
S
S

WES
WES
WES
WES
WES

250ZK61
250ZM
250ZM51
251A
251A51

CF
CF
CF
CF
CF

254E
254E51
254F
254F51
254H

S
5
S
S
S

2518
251861
251C
251C51
2510

S
S
S
S
S

WE5
WES
WES
WES
WES

2518
251861
251C
251C51
2510

CF
CF
CF
CF
CF

254H51
254K
254K51
254P
254P51

251051
251E
251E51
261F
251F51

S
S
S
S
S

WES
WES
WES
WES
WES

251051
251E
251E51
251F
251F51

CF
CF
CF
CF
CF

251H
251H51
251K
261K61
251M

S
S
S
5
5.

WES
WES
WES
WES
WES

251H
261H61
261K
261K51
251M

251M51
251P
251P51
251S
251561

S'
S
5
5
S

WES
WE5
WE5
WE5
WE5

251UL40515
251UL40520
251UL40S30
251UL80515
251UL80520

S
R
R
R
R

251UL6OS30
251UL80515
251UL80S20
251UL80S30
251UL100515

251ZM
251ZM51
254A
254A51
2548

Page

Note: Manufacturer's Codes, Product Tvpe Notes·.and@ Replacement Notes are listed on page G3

G28

Sugge.ted @
Replacement

Page

Part Number

Part Number

Pege

Suggested@

Suggested@
Part Number

Type Mfgr.

Replacement

Page

Part Number

Type Mfg •.

Replacement

Page

Part Number

273ZM
275U5A
275Ul0A
275U15A
275U20A

S
R
R
R
R

WE5
IR
IR
IR
IR

2732M
IN4044
IN4045
IN4046
IN4047

CF
R29
R29
R29
R29

283Z0
283ZF
283ZH
2868
2860

S
S
5
S
5

WE5
WES
WES 2832H
WES 2868
WES 2860

~:~~

CF
CF
CF
CF
CF

3OORAI30
3OORAl40
3OORAl50
3OORAl60
3OORA170

275U25A
275U30A
275U40A
275U5OA
275U60A

R
R
R
R
R

IR
IR
IR
IR
IR

IN4048
IN4049
IN4050
IN4051
IN4052

R29
R29
R29
R29
R29

286F
286H
286K
286M
286P

S
S
S
S
5

WE5
WES
WE5
WE5
WE5

286F
286H
286K
286M
286P

CF
CF
CF
CF
CF

3OORB10
3OORB20
300RB30
3OORB40
3OORB50

275U70A
275U8OA
275U9OA
275UlOOA
275Ul lOA

R
R
R
R
R

IR
IR
IR
IR
IR

IN4053
IN4054
IN4055
IN4056
R6oo1 I 28

R29
R29
R29
R29
CF

286S
286V
286Y30860
286Y30B70
286Y30880

S
5
5
5
5

WES
WE5
WE5
WE5
WE5

2865
286V
286Y30B60
286Y30B70
286Y308BO

CF
CF
CF
CF
CF

300RB60
3OORBBO
300RBIOO
300RB110
3OORB120

275U120A
275UR5A
275UR10A
275UR15A
275UR20A

R
R
R
R
R

IR
IR
IR
IR
IR

R6oo1228
IN4044R
IN4045R
IN4046R
IN4047R

CF
R29
R29
R29
R29

286Y3OB90
286Y30Cl0
286Y3OCI I
286Y3OC12
286Y3OC13

5
5
5
5
5

WE5
WE5
WE5
WE5
WE5

286Y30B90
286Y3OC10
286Y3OC11
286Y3OCl2
286Y30C13

CF
CF
CF
CF
CF

3OORB130
300RBl40
300RB150
300RBI60
300RB170

275UR25A
275UR3OA
275UR4OA
275UR50A
275UR6OA

R
R
R
R
R

IR
IR
IR
IR
IR

IN4048R
IN4049R
IN4050R
IN4051R
IN4052R

R29
R29
R29
R29
R29

286Y3OC14
286Y3OC15
286Y3OC16
286Y3OC17
286Y3OC18

5
5
5
5
5

WE5
WE5
WE5
WE5
WE5

286Y30C14
286Y30C15
286Y30C16
286Y30C17
286Y30C18

CF
CF
CF
CF
CF

275UR70A
275UR8OA
275UR9OA
275URlooA
275URI lOA

R
R
R
R
R

IR
IR
IR
IR
IR

IN4053R
IN4054R
IN4055R
IN4056R
R601 I I 28

R29
R29
R29
R29
CF

286Y30C19
286Y3OC20
286Z
286Z0
286ZH

5
5
5
5
S

WE5
WE5
WE5
WES
WE5

286Y30C 19
286Y3OC20
2862
286Z0
286ZH

275UR120A
276A
2768
2760
276F

R
5
5
S
S

IR
WES
WES
WE5
WES

R601 I 228
276A
2768
2760
276F

CF
CF
CF
CF
CF

286ZM
286ZP
2888
2880
288F

5
5
S
5
S

WE5
WE5
WE5
WE5
WE5

276H
276K
276M
276P
276S

S
S
5
5
5

WES
WE5
WE5
WE5
WES

276H
276K
276M
276P
2765

CF
CF
CF
CF
CF

288H
288K
288M
288P
288S

S
S
S
5
5

276V
276Z
276ZB
276ZF
2762H

S
5
5
S
S

WES
WES
WES
WE5
WES

276V
276Z
27628
276ZF
2762H

CF
CF
CF
CF
CF

288V
286Z
286Z0
288ZH
286ZM

276ZK
276ZM
2788
2780
278F

S
S
5
S
5

WE5
WE5
WES
WES
WES

276ZK
276ZM
2788
2780
278F

CF
CF
CF
CF
CF

278H
278K
278M
278P
278S

S
S
S
S
5

WE5
WE5
WES
WE5
WES

278H
2781(
278M
278P
2785

278V
276Z
278ZH
276ZM
282A

S
S
5
5
S

WE5
WE5
WE5
WES
WES

2828
2820
282H
282K
282M

S
S
5
S
5

282P
2825
282V
282Z
282Z8

Type Mfg ••
5

Suggested@
Replacement Peg.

IR
IR
IR
IR
IR

T7oo133004BY
T700143004BY
T7oo153004BY
T7oo183004BY
T7oo173004BY

537
537
537
537
S37

IR
IR
IR
IR
IR

T700013004BY
T700023004BY
T700033004BY
T700043004BY
T700053004BY

537
537
537
537
537

IR
IR
IR
IR
IR

T700063004BY
T700083004BY
T700103004BY
T700113004BY
T7oo123004BY

537
537
537
537
537

5
5
5

IR
IR
IR
IR
IR

T7001330048Y
T7oo143004BY'
T7oo153004BY
T700163004BY
T7OO1730048Y

537
537
537
537
537

3OOU1OA
3OOU15A
300U20A
3OOU25A
3OOU30A

R

IR
IR
IR
IR
IR

R8100130
R610+130
R6100230
R610+230
R6100330

R31
R31
R31
R31
R31

CF
CF
CF
CF
CF

3OOU40A
3OOU5OA
3OOU6OA
300U7OA
3OOU80A

R

IR
IR
IR
IR
IR

R6100430
R6l00530
R6loo630
R61oo730
R6100B30

R31
R31
R31
R31
R31

286ZM
286ZP
2888
2880
288F

CF
CF
CF
CF
CF

300U9OA
3OOUlOOA
3OOU120A
3OOURl0A
3OOURI5A

R

IR
IR
IR
IR
IR

R6100930
R6101030
R6001230
R6ll0130
R611+130

R31
R31
R31
R31
R31

WE5
WE5
WE5
WE5
WE5

288H
288K
288M
288P
2885

CF
CF
CF
CF
CF

3OOUR2OA
3OOUR25A
300UR3OA
3OOUR40A
3OOUR5OA

R
R
R

IR
IR
IR
IR
IR

'R6l10230
R611+230
R6110330
R6110430
R6110530

R31
R31
R31
R31
R31

S
S
S
5
S

WES
WES
WE5
WE5
WE5

288V
286Z
286Z0
286ZH
286ZM

CF
CF
CF
CF
CF

300UR60A
300UR7OA
300UR8OA
3OOUR9OA
300URlooA

R
R
R
R
R

IR
IR
IR
IR
IR

R611OB30
R6110730
R611OB30
R6110930
R6111030

R31
R31
R31
R31
R31

300A
300AR
300B
3OO8R
300C

R
R

R

R
R

WE5
WE5
WE5
WE5
WE5

R5100010
R6110010
R5100110
R5110110
R510+110

R23
R23
R23
R23
R23

3OOUR12OA
30lCIO
301CIOB
30lCI5
301CI5B

R
5
5
5
5

IR
5YN
5YN
5YN
5YN

R6011230
T62oo130040N
T6200130040N
T6200230040N
T6200230040N

R31
S43
543
543
543

CF
CF
CF
CF
CF

300cR
3000
3OO0R
300E
300ER

R
R
R
R
R

WE5'
WE5
WE5
WE5
WE5

R511+110
R5100210
R5.110210
R510+210
R511 +210

R23
R23
R23
R23
R23

301C20
301C20B
301C25
301C25B
30lC30

5
5
5
5
5

5YN
5YN
5YN
5YN
5YN

T62oo230040N
T6200230040N
T6200330040N
T62oo330040N
T620033004PN

543
543
543

278V
278Z
276ZH
276ZM
282A

CF
CF
CF
CF
CF

300F
300FR
300G
300GR
300H

R
R
R
R
R

WE5
WE5
WE5
WE5
WE5

R5100310
R5110310
R510+310
R511+310
R5100410

R23
R23
R23
R23
R23

301C3OB
301C35
301C35B
301C40
301C40B

5
5
5
5
5

SYN
5YN
5YN
5YN
5YN

T62oo330040N
T6200430040N
T6200430040N
T6200430040N
T6200430040N

543
S43
543
543
543

WES
WES
WES
WE5
WES

2828
2820
282H
282K
282M

CF
CF
CF
CF
CF

300HR
300K
300KR
3OOPA50
3OOPA60

R
R
R
5
5

WE5
WE5
WE5
IR
IR

R5110410
R51oo510
R5110510
T6200530040N
T62oo63!1040N

R23
R23
R23
543
543

301C45
301C45B
301C50
301C5OB
301C60

5
5
S
5
5

5YN
5YN
5YN
5YN
5YN

T6200630040N
T6200530040N
T6200630040N
T6200530040N
T6200630040N

543
543
543
543
543

S
S
5
5
5

WE5
WE5
WE5
WES
WES

282P
282S
282V
282Z
28228

CF
CF
CF
CF
CF

3OOPA60
·3OOPAloo
3OOPAl10
3OOPA120
3OOPAC10

S
5
5
5
5

IR
IR
IR
IR
IR

T6200B30040N
T6201030040N
T6201130040N
T6201230040N
T62oo130040N

S43
543
543
543
543

30lC6OB
301C70
30lC7OB
301CBO
301C8OB

5
5
5
5
5

5YN
5YN
5YN
5YN
5YN

T6200630040N
T62oo730040N
T62oo730040N
T6200B30040N
T6200B30040N

543
543
543
543
543

282Z0
282Zf
282ZH
282ZK
283A

S
S
5
5
5

WE5
WES
WE5
WES
WE5

282Z0
282ZF
282ZH
282ZK
283A

CF
CF
CF
CF
CF

3OOPAC20
3OOPAC30
3OOPAC40
3OOPAC50
3OOPAC60

5
5
5
5
5

IR
IR
IR
IR
IR

T6200230040N 543
T6200330040N 543
T6200430040N 543
T6200530040N 543
T6200630040N 543

301C90
301C90B
301Cloo
301(:,ooB
30lCll0

5
5
5
5
5

5YN
5YN
5YN
5YN
5YN

T8200B30040N
T62oo930040N
T6201030040N
T6201030040N
T620113OOA0N

543
543
543
543
543

2838
283C
2830
283H
283M

S
5
S
5
S

WE5
WES
WES
WES
WES

2838
283C
2830
283H
283M

CF
CF
CF
CF
CF

300RA10
3OORA20
3OORA30
3OORA40
3OORA50

5
5
5
5
5

IR
IR
IR
IR
IR

T700013004BY
T7000230048Y
T700033004BY
T700043004BY
T700053004BY

537
537
537
537
S37

301Cl10B
301C120
301C120B
301CI30
301C130B

5
5
5
5
5

5YN
5YN
5YN
5YN
5YN

T8200930040N
T6201230040N
T6201230040N
T6201330040N
T8201330040N

543
543
543
543
543

283P
2835
283V
2832
283Z8

S
S
5
5
5

WES
WES
WES
WE5
WE5

283P
283S
283V
283Z
283Z8

CF
CF
CF
CF
CF

3OORA60
300RABO
3OORA100
3OORAl10
300RA120

S
S
S
5
S

IR
IR
IR
IR
IR

T700063004BY
T700063004BY
T7oo103004BY
T700113004BY
T700123004BY

S37
S37
S37
S37
S37

301CI40
301Cl4OB
301Cl50
301C15OB
301U80

5
5
5
5
R

5YN
5YN
5YN
5YN
IR

T8201430040N
T6201430040N
T8201530040N
T8201530040N
R6100B30

543
543
543
543
R31

5

5
S

5

5

5

5
5
5

5

5
5
5

5

5
S

R
R
R
R
R

R

R
R

R
R

R
R
R

R

S43

543

Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on pageG3

G29

Suggested@
Part Number

Replacement

Page

Part Number

Type Mfgr.

Suggested@
Replacement

Page

Part Number

Type Mfgr.

Suggested @
Replacement

Page

301Uloo
301U120
301UI40
301U160
301U160

R
R
R
R
R

IR
IR
IR
IR
IR

R6101030
R6oo1230
R6oo1430
R6001630
R6oo183O

R31
R31
R31
R31
R31

327E
327F
327G
327H
327K

R
R
R
R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

339A
3398
339C
3390
339E

R
R
R
R
R

WES
WES
WES
WES
WES

IN3161
IN3162
IN3163
IN3164
IN3166

R31
R31.
R31
R31
R31

301U2OO
301U210
301U220
301U240
301U250

R
R
R
R
R

IR
IR
IR
IR
IR

R6oo203O
R6002130
R6002230
R6oo243O
R6002530

R31
R31
R31
R31
R31

32BA
3288
328C
3280
328E

R
R
R
R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

339F
339G
339H
339K
341A

R
R
R
R
R

WES
WES
WES
WES
WES

IN3166
IN3167
IN3168
IN3169
IN1199A

R31
R31
R31
R31
R13

301UR80
301URloo
301UR120
301URI40
301URI60

R
R
R
R
R

IR
IR
IR
IR
IR

R6110830
R6111030
R6011230
R6011430
R6011630

R31
R31
R31
R31
R31

328F
328G
328H
328K
329A

R
R
R
R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
IN3260

CF
CF
CF
CF
R27

3418
3410
341F
341H
341M

R
R
R
R
R

WES
WES
WES
WES
WES

IN1200A
IN1202A
IN1204A
IN1204A
IN1206A

R13
R13
R13
R13
R13

301URI80
301UR2oo
301UR210
301UR220
301UR240

R
R
R
R
R

IR
IR
IR
IR
IR

R6011830
R6012030
R6012130
R6012230
R6012430

R31
R31
R31
R31
R31

3298
329C
3290
329E
329F

R
R
R
R
R

WES
WES
WES
WES
WES

IN3261
IN3262
IN3263
IN3264
IN3265

R27
R27
R27
R27
R27

344T
346A
3468
3460
346F

S
R
R
R
R

WCE
WES
WES
WES
WES

T620XX30040N 543
IN1199A
R13
INI200AR
R13
INI202AR
R13
IN1204AR
R13

301UR250
302A
3028
302C
3020

R
R
R
R
R

IR
WES
WES
WES
WES

R6012530
IN1184A
IN1184A
IN118BA
IN1186A

R31
R15
R15
R15
R15

329G
329H
329K
331A
3318

R
R
R
R
R

WES
WES
WES
WES
WES

IN3266
IN3267
IN3268
CF
CF

R27
R27
R27
CF
CF

346H
346M
350PL50
350PL60
350PL80

R
R
S
5
5

WES
WES
IR
IR
IR

IN1204AR
INI208AR
T7270535440N
T7270635440N
T7270835440N

R13
R13
S91
S91
591

302E
302F
302G
302H
302K

R
R
R
R
R

WES
WES
WES
WES
WES

IN1188A
IN1188A
IN118BA
IN118BA
IN1190A

R15
R15
R15
R15
R15

331C
3310
331F
331H
331K

R
R
R
R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

360Pl1OO
350PL110
350PL120
350PM50
350PM60

S
5
S

IR
IR
IR
IR
IR

T7271035440N
T7271135440N
T7271235440N
T7270535540N
T7270636540N

S91
591
591
S91
591

302M
302P
3025

R
R
R
R
R

WES
WES
WES
WES
WES

IN1190A
R4100840
R4100840
R4101040
IN1184A

R15
R15
R15
R15
R15

331M

R
5
R
R
R

WES
WCE
WES
WES
WES

CF
T620XX20040N
CF
CF
CF

CF
543
CF
CF
CF

350PM80
350PMloo
350PM110
360PM120
350RA10

IR
IR
IR
IR
IR

T7270835540N
T7271036640N
T7271135540N
T7271236540N
T700013504BY

591
591
591
S91
S37

WES
WES
WES
WES
WES

IN1184A
IN1186A
IN118BA
IN118BA
IN1190A

R15
R15
R15
R15
R15

3320
332F
332H
332K
332M

R

R
R
R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

350RA20
350RAJO
360RA40'
360RA50
350RA60

S

303F
303H
303M

R
R
R
R
R

S
5
S
5

IR
IR
IR
IR
IR

T700023504BY
T700033504BY
T700043604BY
T7oo053504BY
T700063504BY

537
537
S37
S37
537

3035
303Z
304A
3048
3040

R
R
R
R
R

WES
WES
WES
WES
WES

R4100840
R4101040
INI200A
INI200A
IN1202A

R15
R15
R13
R13
R13

332T
333A
3338
333C
3330

5
R
R
R
R

WCE
WES
WES
WES
WES

T620XX20040N
CF
CF
CF
CF

543
CF
CF
CF
CF

350RABO
350RAloo
350RA110
350RA120
350RA13O

5
S
S
5
S

IR
IR
IR
IR
IR

T700083604BY
T7oo103504BY
T7oo113504BY
T7oo123604BY
T700 133504BY

537
S37
537
537
537

304F
304H
304M
3045
304Z

R
R
R
R
R

WES
WES
WES
WES
WES

IN1204A
INI204A
IN1206A
IN3671A
IN3673A

R13
R13
R13
R13
R13

333F
333H
333K
333M
333T

R
R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
T620XX20040N

CF
CF
CF
CF
543

350RAI40
350RAl50
350RAl60
350RA170

36H

S
S
5
S
5

IR
IR
IR
IR
WCE

T7oo143604BY
T7oo163604BY
T700 163504BY
T7oo173604BY
T627XX25440N

537
537
537
S37
587

3Oi;"
318
319A
3198
319C

R
R
R
R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

334A
3348
334C

R wCe
R
R
R
R

WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

352T
353T
356A
3568
356C

S
S
R
R
R

WCE
WCE
WES
WES
WES

T627XX16840N
T627XX15B40N
IN3260R
IN3261 R
IN3262R

S87
587
R27
R27
R27

3190
319E
319F'
319G
319H

R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

R
R
R
5
R

WES
WES
WES
WCE
WES

CF
CF
CF
T620XX30040N
INI184AR

CF
CF
CF
543
R15

3560
356F
356H
356K
356M

R
R
R
R
R

WES
WES
WES
WES
WES

1N3263R
IN3265R
IN3267R
IN3268R
IN3269R

R27
R27
R27
R27
R27

319K
320C ....••.•..•.•
322A
3228
322C

R WES
OWES
R WES
R WES
R WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

3358
3350
335F
335H
335M

R

IN1184AR
IN118BAR
IN118BAR
IN118BAR
IN1190AR

R15
R15
R15
R15
R15

357A
3578
357C
3570
357F

R
R

R

WES
WES
WES
WES
WES

WES
WES
WES
WES
WES

IN3161R
IN3162R
IN3163R
IN3164R
IN3166R

R27
R27
R27
R27
R27

3220
322E
322F
322G
322H

R
R
R
R
II

WES
WES
WES
WES
WES

.CF
CF
CF
CF
CF

CF
CF
CF
CF
CF
CF
CF
CF
CF
CF

CF
R15
R15
R15
R16
R15

R27
R27
R27
R9
R9

CF
CF
CF
CF
CF

CF
INI184AR
IN1184AR
IN1186AR
IN118BAR
IN118BAR

IN3168R
IN3169R
IN3170R
IN4816
IN4817

WES
WES
WES
WES
WES

WES
WES
WES
WES
WES
WES

WES
WES
WES
WES
WES

R
R
R
R
R

0
R
R
R
R
R

357H
357K
357M
359A
3598

322K
325
326A
3268
326C

336..............
336A
3368
3360
336F
336H

WES
WES
WES
WES
WES

IN4818
IN4819
IN4820
IN4821
IN4822

R9
R9
R9
R9
R9

3260
326E
326F
326G
326H

R
R
R
R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

R
R

WES
WES
WES
WES
WES

IN5052
IN5053
IN5054
INl199A
IN1200A

R9
R9
R9
R13
R13

326K
327A
3278
327C
3270

R
R
R
R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF ..

R
R
R
R
R

WES
WES
WES
WES
WES

IN1202A
IN1204A
IN1204A
IN1206A
IN1206A

R13
R13
R13
R13
R13

302Z

303A
3038

3030

G30

Type Mfgr.

R

R
R

33H

332A
3328
332C

3340
334F

334H

334K

334M
334T
335A

336M
337A
3378
3370
337F

R

R

R

R

R

R
R
R
R
R

WES
WES
WES
WES
WES

IN1190AR
IN1199AR
INI200AR
IN1202AR
IN1204AR

R15
R15
R15
R16
R16

INI204AR
IN120BAR
CF
CF
CF

R15
R15
CF
CF
CF

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

337H
337M
336A
3388
338C

R
R
R

WES
WES
WES
WES
WES

3380
338F
338H
338K
338M

R
R
R
R
R

WES
WES
WES
WES
WES

R
R

Note: Manufac1Urer's Codes, Product Type Notes and@ Replacement Notes are listed on page'G3

3590
359F
359H
359K
359M
359P
3595
359Z
366A
3668
3660
366F
366H
366K

366M

S
S
S

S
S
5
S

R
R
R
R

R
R

R

R
R
R

R
R
R
R
R
R

Part Number

Type Mfg,.

Suggeated@
Replacement

Page

Part Number

Type Mfg,.

Suggeated@
Replacement

Page

p...rt Numbe,

Type Mfg,.

Suggelted @
Replacament

Page

367A
367B
3670
367F
367H

R
R
R
R
R

WES
WES
WES
WES
WES

INl200A
INl200A
IN1202A
INI204A
INI204A

RI3
RI3
RI3
RI3
RI3

400G
400H
400K
400M
400P

R
R
R
R
R

WES
WES
WES
WES
WES

400G
400H
400K
400M
400P

CF
CF
CF
CF
CF

406M
409A
409B
4090
409F

R
R
R
R
R

WES
WES
WES
WES
WES

INI206A
IN1199A
INl200A
IN1202A
INI203A

RI3
RI3
R13
RI3
RI3

367M
368A
368AR
3688
368BR

R
R
R
R
R

WES
WES
WES
WES
WES

INI206A
IN3615
IN3615R
IN3616
IN3616R

RI3
RI3
RI3
RI3
RI3

400S
400V
400Z
40lA
4018

R
R
R
R
R

WES
WES
WES
WES
WES

400S
400V
400z
40IA
401B

CF
CF
CF
CF
CF

409H
40BK
409M
410A
410AR

R
R
R
R
R

WES
WES
WES
WES
WES

INI204A
INI205A
IN120BA
410A
410AR

RI3
R13
R13
CF
CF

3680
3680R
368F
368FR
368BR

R
R
R
R
R

WES
WES
WES
WES
WES

IN3618.
IN3618R
IN3619
IN3619R
IN3620

RI3
RI3
RI3
RI3
RI3

40IC
4010
40IE
40lF
40lG

R
R
R
R
R

WES
WES
WES
WES
WES

401C
4010
401E
40IF
401G

CF
CF
CF
CF
CF

410B
410BR
410C
410CR
4100

R
R
R
R
R

WES
WES
WES
WES
WES

410B
410BR
410C
410CR
4100

CF
CF
CF
CF
CF

368HR
368K
368KR
368M
368MR

R
R
R

R
R

WES
WES
WES
WES
WES

IN3820R
IN3821
IN3621R
IN3622
IN3622R

RI3
RI3
RI3
RI3
RI3

40lH
40lK
40IM
40lP
401 POA40L15

R
R
R
R
R

WES
WES
WES
WES
IR

401H
401K
401M
401P
R6220440FJ

CF
CF
CF
CF
R67

4100R
410F
410FR
410H
410HR

R
R
R
R

R

WES
WES
WES
WES
WES

4100R
410F
41DFR
410H
410HR

CF
CF
CF
CF
CF

374A
374B
374C
3740
374F

R
R
R
R
R

WES
WES
WES
WES
WES

R510ool0XXZT
R51OO110XXZT
R510+110XXZT
R51oo210XXZT
R51OO310XXZT

R23
R23
R23
R23
R23

401 POA4OL20
401 POA4OL30
401 POA60LI 5
401 POA60L20
401 POA60L30

R
R
R
R

R

IR
IR
IR
IR
IR

R6220440EJ
R6220440CJ
R6220640FJ
R6220B40EJ
R6220640CJ

RB7
R67
R67
R67
R67

410K
410M
410MR
410S
410SR

R
R
R
R
R

WES
WES
WES
WES
WES

410K
410M
410MR
410S
410SR

CF
CF
CF
CF
CF

374H
374K
374M
376A
376B

R
R
R
R
R

WES
WES
WES
WES
WES

R5100410XXZT
R6100610XXZT
R5100610XXZT
376A
376B

R23
R23
R23
CF
CF

401 POA80L15
401 POA80L20
401 P0A90L30
401 POA I OOL20
401 POA I ooL30

R
R
R
R
R

IR
IR
IR
IR
IR

R6220840FJ
R6220640EJ
R6220640CJ
R6221040EJ
R6221040CJ

R67
R67
R67
R67
R67

410Z
410ZR
411 A
411AR
411B

R
R
R
R
R

WES
WES
WES
WES
WES

410Z
410ZR
411A
411AR
411B

CF
CF
CF
CF
CF

376C
3760
376F
376H
376K

R
R
R
R
R

WES
WES
WES
WES
WES

376C
3760
376F
376H
376K

CF
CF
CF
CF
CF

401 POAI 20L20
401 POAI20L30
401 POA130L30
401 POA 14OL30
40'1 POA I 6OL30

R
R
R
R
R

IR
IR
IR
IR
IR

R6221240EJ
R6221240CJ
R6221340CJ
R6221440CJ
R6221640CJ

R67
R67
R67
R67
R67

411BR
411C
411CR
4110
411F

R
R
R
R
R

WES
WES
WES
WES
WES

411BR
411C
411CR
4110
411F

CF
CF
CF
CF
CF

376M
371A
371B
371C
3770

R
R
R
R
R

WES
WES
WES
WES
WES

376M
371A
371B
377C
3770

CF
CF
CF
CF
CF

R

IR
IR
IR
IR
IR

R6220440FJ
R6220440EJ
R6220440CJ
R6220640FJ
R6220640EJ

R67
R67
R67
R67
R67

411FR
411H
411HR
411K
411KR

R
R
R
R
R

WES
WES
WES
WES
WES

411FR
411H
411HR
411K
411KR

CF
CF
CF
CF
CF

377F
371H
371K
377M
384A

R
R
R
R
R

WES
WES
WES
WES
WES

377F
371H
371K
377M
IN5391

CF
CF
CF
CF
R9

401 POL60S30
401 POL80S 15
401 POL80S20
401 POL80S30
401 POll OOS20

R .IR
R IR
R IR
R IR
R IR

R6220640CJ
R6220640FJ
R6220640EJ
R6220840CJ
R6221040FJ

R67
R67
R67
R67
R67

411M
411MR
411S
411SR
411Z

R
R
R
R
R

WES
WES
WES
WES
WES

411M
411MR
411S
411SR
411Z

CF
CF
CF
CF
CF

384B
3840
394F
384H
384K

R
R
R
R
R

WES
WES
WES
WES
WES

IN5392
IN5393
IN5394
IN5395
IN5396

R9
R9
R9
R9
R9

401 POL looS30
401 POL 120S20
401 POL 120S30
401 POL 130530
401S

R

R
R
R

IR
IR
IR
IR
IR

R6221040CJ
R6221240EJ
R6221240CJ
R6221340CJ
401S

R67
R67
RS7
R67
CF

411ZR
412A.
412B
4120
412H

R
R
R
R
R

WES
WES
WES
WES
WES

411ZR
IN11B4A
IN1184A
IN1186A
IN1188A

CF
RI5
RI5
R15
R15

384M
384S
384Z
387A
387AR

R
R

WES
WES
WES
WES
WES

IN5397
IN5398
IN5399
IN3899
IN3899R

R9
R9
R9
RS7
R57

401V
401Z
402A
402B
4020

R
R
R
R
R

WES
WES
WES
WES
WES

401V
401Z
R4040070
R4040170
R4040270

CF
CF
R17
R17
R17

412M
413A
413B
4130
413H

R
R
R
R

WES
WES
WES
WES
WES

INI190A
IN1184A
IN1184A
INII86A
IN1I88A

RI5
RI5
RI5
RIS
RI6

R
R
R
R
R

WES
WES
WES
WES
WES

R4040370
R4040670
R4040770
R4040670
R4040970

R17
R17
R17
RI7
R17

413M
416A
416B
416H
416K

R
R
R
R
R

WES
WES
WES
WES
WES

INI190A
R404oo70
R4040170
R4040470
R4040570

RI5
R17
R17
RI7
RI7

R

R
R

. 401 POL4OS15
401 POL4OS20
401 POL4OS30
401 POL60S 15
401 POL60S20

R
R
R
R

R

R

387B
387BR
3870
3870R
387F

R
R
R
R
R

WES
WES
WES
WES
WES

IN3900
IN3900R
IN3901
IN3901 R
IN3902

R57
R57
R57
RS7
RS7

402F
402M
402P
402S
402V

387H
387M
389A
389AR
3898

R
R
R
R
R

WES
WES
WES
WES
WES

IN3903
CF
IN3909
IN3909R
IN3910

R57
R57
R57
R57
R57

402Z
402Z0
403A
403B
4030

R
R
R
R
R

WES
WES
WES
WES
WES

R4041070
R4041270
R41oo14O
R41oo14O
R41OO24O

R17
R17
CF
CF
CF

416M
416P
416S
416V
416Z

R
R
R
R
R

WES
WES
WES
WES
WES

R4040670
R4040770
R4040870
R4040970
R4041070

RI7
R17
RI7
RI7
RI7

389BR
3890
3890R
389H
389M

R
R
R
R
R

WES
WES
WES
WES
WES

IN3910R
IN3911
IN3911 R
IN3912
CF

R57
R57
R57
R57
R57

403H
403M
404A
404B
4040

R
R
R
R
R

WES
WES
WES
WES
WES

R4100440
R4100640
INI19SA
INl200A
IN1202A

CF
CF
R13
R13
R13

417A
417B
4170
417H
417M

R
R
R
R
R

WES
WES
WES
WES
WES

INI184A
IN1184A
IN1186A
IN118BA
IN1190A

R16
RI5
RI5
RI5
RI5

398A
3988
398C
398F
398H

R
R
R
R
R

WES
WES
WES
WES
WES

IN5400
IN5401
IN5402
IN5403
IN5404

R9
R9
R9
R9
R9

404F
404H
404K
404M
407A

R
R
R
R
R

WES
WES
WES
WES
WES

IN1203A
IN1204A
IN1205A
IN1206A
IN1199A

RI3
R13
R13
R13
R13

418A
418B
4180
418H
418M

R
R
R
R
R

WES
WES
WES
WES
WES

IN1184A
IN1184A
IN1186A
IN1188A
IN1190A

RI5
RI5
RI5
RI5
RI5

39aK
398M
398S
398Z
400A

R
R
R
R
R

WES
WES
WES
.WES
WES

IN5405
IN5406
IN5407
IN5408
400A

R9
R9
R9
R9
CF

407B
4070
407F
407H
407K

R
R
R
R
R

WES
WES
WES
WES
WES

IN1200A
INI202A
INI203A
INI204A
INI206A

R13
R13
RI3
R13
RI3

R
R
R
R'
R

R
R
R
R
R

WES
WES
WES
WES
WES

400B
4DOC
4000
400E
400F

CF
CF
CF
CF
CF

407M
408A
406B
4060
406H

R
R
R
R
R

WES
WES
WES
WES
WES

INI20BA
INI199A
IN1200A
IN1202A
INI204A

RI3
RI3
RI3
R13
RI3

S

WES
WES
WES
WES
WES
IR

IN1184A
IN1184A
IN118BA
INI18BA
IN1190A
T72OO545040N

RI5
RI5
RI5
RI5
R15
S51

400B
400C
4000
400E
400F

419A
419B
4190
419H
419M
420PA50
420PA60
420PA80
420PAloo
420PAI10
420PA120

S
5
S
S
S

IR
IR
IR
IR
IR

T72oo645040N
T7200645040N
T7201045040N
T7201145e40N
T7201245040N

S51
S51
S51
S51
551

Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page,G3

G3l

5uggeated@
Replacement

Part Number

Type Mfgr.

420PA13O
420PA14O
420PAI50
420PAI60
420PA170

S
S
S
5
5

IR
IR
IR
IR
IR

T7201345040N
T7201445040N
T720154504DN
T720164604DN
T7201745040N

S51
'S51
S51
S51
551

43sM
435P
4355
435V
436Z

R
R
R
R

420PB50
420PB60
420PB80
420PB100
420P8110

S
S
5
S
5

IR
IR
IR
IR
IR

T720064504DN
T720064604DN
T720064504DN
.T7201 04504DN
T720114604DN

S61
551
561
S61
S51

435ZD
439A
439AR
4398
,,39BR

420PB120
420PB130
420PB140
420PB150
420PB160

S
5
5
S
S

IR
IR
IR
IR
IR

T720124504DN
T720134504DN
T7201445040N
T720164504DN
T720184504DN

S51
561
551
561
S51

420PB170
420PBL50
420PBl60
420PBl80
420PBll00

S
S
5
5
5

IR
IR
IR
IR
IR

T7201745040N
T727054524DN
T7270645240N
T727064524DN
T7271046240N

420PBlll0
420PBl120
420PBM50
420PBM60
420PBMBO

5
S
5
5
5

IR
IR
IR
IR
IR

420PBM100
420PBM110
420PBM120
420PL60
420PL80

5
5
5
5
5

420Pll00
420PL110
420Pl120
420PM60
420PM80

Page

Pert4!Aumber

Type Mfg,.

R,

5uggeated@
Replacement

• We~ .A"40&w7O

Page

:

Pai1 Number

s:::r.=~
Rep
,
t

P-

WeS'R4050770
WES ,R4050870
WE5 R4050970
WES R4051070

471PD180
471PD200
471PDA120
471PDA14O
471PDAI60

R
R
R
R
R

IR
IR
IR
IR
IR

~ro~8~

R6201250
R6201450
R6201650

R39
R3e
R39
R39
R39

R
R
R
R
R

WE5
WE5
WES
WES
WES

R17
CF
CF
CF
CF

471 PDAI BO
471PDA200
471T
472T
473T

R
R
5
S
S

IR
IR
wee
wee
wee

R8201850
R6202050
CF
T727XX4064ON
T727XX48740N

R39
R39
CF
S91
891

439C
439CR
4390
439DR
439E

R
R
R
R
R

WES 439C
WES 439CR
WE5439D
WES 439DR
WES 4391:

CF
CF
CF
CF
CF

474T
476T
477T
478A
478AR

5
S
S
R
R

WCE
WCE
wee
WE5
WES

T727XX4554DN
T727XX4534DN
T727XX36340N
IN3979
IN3979R

891
S91
S91
R6S
R66

561
591
591
591
591

439ER
439F
439FR
439G
439GR

R
R
R
R
R

WES 439ER
WE5 439F
WE5 439FR
WE5439G
WES 439GR

CF
CF
CF
CF
CF

478B
478BR
4780
47BDR
478F

R WES IN3980
R WE5 IN3880R
R 'WES IN3981
R WES IN398IR
R WES IN3882

T7271145240N
T727124524DN
T7270646440N
T727064644DN
T7270646440N

S91
591
591
591
591

439H
439HR
439K
439KR
439M

R
R
R
R
R

WE5
WE5
WE5
WE5
WES

439H
439HR
439K
439KR
439M

CF
CF
CF
CF
CF

478H
47BT
479A
479B
4790

R
S
R
R
R

WE5
WCE
WES
WES
WES

IN3883
T720XX3S04DN
IN3989
IN3880
IN3S91

R66
561 ,
RS7
RS7
R67

IR
IR
IR
IR
IR

T727104544DN
T7271145440N
T727124544DN
T727064524DN
T727064524DN

591
S91
591
591
591

439MR
441 A
441B
4410
,44,1F.,

R
R
R
R
,R

WE5
WE5
WE5
WE5
III!E5

439MR
R3100012
R3100112
R3100212

479F
479H
489A
489B
4890

R
R
R
R
R

WES
WES
WES
WES
WES

IN3892
IN3893
IN3909
IN3910

R~100312

CF
CF
CF
CF
.c~

IN~911

R67
R57
RS7
R57
,,57

5
5
5
5
5

IR
IR
IR
IR
IR

T7271045240N 591
T727114524DN 591
T727124524DN 591
T727064544DN 591
T727064644DN 591

441H
441K
441M
441P
4415

R
R
R

WE5
WE5
WE5
WE5
WE5

R3100412
R3100512
R3100612
R3100712
R3100612

CF
CF
CF
CF
CF

489F
489H
5OOPA5
500PA10
600PA20

R
R
5

WES
WES
IR
IR
IR

IN3912
IN3913
T7200156040N
T7200156040N
T7200266Q40N

RS7
R57
551
561
551

420PM100
420PM110
420PM120
424A

5
5
5
R

IR
IR
IR
WE5

T727104544DN
T727114544DN
T7211245440N
IN3909

591
591
591
R57

441V
4411

R

R
S
5
R

WES
WE5
WCE
'WCE
WES

R3100912
R3101012
T720XX65040N
CF
IN1199AR

CF
CF
561
CF
R13

5OOPA30
500PA40

5OOPABO

5

600PABO
500PB050

5

IR
IR
IR
IR
IR

4248
4240
424F
424H
425A

T72003S604ON 561
T7200455D40N 561
T72006S604ON 561
T7200865040N 561
T727064644DN 591

R
R
R
R
R

WE5
WE5
WE5
WE5
WE5

IN3910
IN3911
IN3912
IN3913
IN3909

R57
R57
'R57
R57
R57

146K

R
R
R
R
R

WE5
WE5
WE5
WE5
WES

INI200AR
IN1202AR
IN1203AR
INI204AR
IN 1206AR

R13
R13
R13
RI3
R13

600PB060
500PB08O
500PBOIOO
500PBOll0
600PB0120

5
5
5
S

IR
IR
IR
IR
IR

T727064544DN
T7270845440N
T727104544DN
T7271145440N
T7271245440N

591
891
S91
591
S91

425B
4260
425H
429A
429AR

R
R
R
R
R

WES
WES
WES
WES
WES

IN3910
IN3911
IN3913
429A
429AR

R51
R51
R51
CF
CF

-l46M
446P
4465
446V
4462

WE5
WES
WES
WES
WES

IN120sAR
IN3670AR
IN3S11AR
IN3672AR
IN3673AR

R13
R13
R13
R13
R13

600v5A
SOOVl0A
5OOV2OA
60!lV30A
5OOV4OA

III
IR
IR
IR
IR

R7000006
R7000106
R7000206
R7000306
R7000406

429B
429BR
429C
429CR
4290

II
R
R
R
R

R36
R36
R36
R36
R36

R
WE5 429B
R , WE5 429BR
R
WE5 429C
R WE5 429CR
R
WE5 4290

CF
CF
CF
CF
CF

5
S
5
S

T727014884DN
T7270148B4DN
T7270248B4DN
T727034884DN
T7270648B4ON

591
591
591
S91
S91

IR
IR
IR
III
IR

R7000606
R7000606
R1010106
R1010206
111010306

R
R
R
R
R

R36
R36
R36
R36
R36

WES
WES
WES
WES
WE5

429DR
429E
429ER
429F
429FR

S

IR
IR
IR
IR
IR

SOOV6OA
5OOVBOA
5OOVR10A
500VR20A
500VR3OA

429DR
429E
429ER
429F
429FR

450PF5
450PF10
450PF20
450PF30
45DPF50

CF
CF
CF
CF
CF

S
5
5
5
5

IR
WCE
WCE
WCE
WCE

T7210648B40N
T720XX56040N
T720XX5504DN
CF
T920XX0903OW

S91
S61
551
CF
555

500VR4OA
500VR5A
500VR6OA
500VRBOA
601PB050

429G
429GR
429H
429HR
429K

450PF60
456T
458T
482T
464T

IR
IR
IR
IR
IR

R1010406
R7010006
R7010&06.
R7010806
T7270546540N

R36
R36
R3S
R36
591

R
R
R
R
R

WE5429G
WES 429GR
WES 429H
WES 429HR
WES 429K

CF
CF
CF
CF
CF

466T
470PA50
470PA60
470PABO
470PA100

WCE
IR
IR
IR
IR

CF
T120065504DN
T720065504DN
T7200665040N ,
T7201055040N

CF
S51
551
S61
551

601PBQ60
501PB08O\
601 PBOI 00
601PB0110
501PBa120

8

429KR
429M
429MR
429RC70
430PL10

S
S
5
5
5

R
1'1
R
R
S

WES
WES
WESc
WES
IR

429KR
429M
429MR
CF
T127014864DN

S

IR
IR
IR
IR
IR

T7270845640N
T727D84654ON
T7271046640N
T7211146540N
T727124664DN

CF
CF
CF
CF
591

sel
591
S91
591
591

470PAll0
410PA120
470PA130
470PA14O
410PA160

5
S
S
5
5

IR
IR

IR
IR
IR

T7201155040N
T720122504DN
T720136504DN
T720145504DN
T1201556040N

551
551
551
551
551

501VBOB
601VBOB
601Vl00B
501V120
501V12OB

430PL20
430PL30
43OPl4O
430Pl50
43OPl60

R
R
II
R
R

III
IR
IR
IR
IR

R7000606
R7000806
R7001D06
R7001204
R7001206

1135
R36
R3S
R36
R3S'

5
5
5
5
5

IR
IR
IR
IR
IR

T7270248640N
T1210348640N
T727044864DN
T727054864DN
T721064864DN

591
591
S91
591
591

470PA160
470PB50
470PB60
470PB80,
410PB100

IR
IR
IR
IR
IR

T120165504DN
T7200655040N
T720065504DN
T720065504DN
T7201055040N

S61
561
S61
S51
561

601V140
601V14OB
5OlV160
601V1BO
501V200

R

430PM10
43OPM20
430PM30
430PM40
430PM50

5
5
5
S
S

IR
IR
IR
IR
IR

R7001404
R7001406
R7001604
R7001804
R7002004

5
5
5
5
S

IR
IR
IR
IR
IR

1135
R35
R35
R3S
R3S

T721014B84DN
T7270248840N
T721034884DN
T727044864DN
T721064864DN

591
591
S91
S91
S91

430PM60
435B
435D
435F
435H

410PB110
410PB120
410PB130
470PBl40
410PB150

III
IR
IR
IR
IR

551
551
551
551
S51

601V210
501V220
601V230'
501V24O
501VRBOB

IR
WES
WES
WES
WES

T720115504DN
T720125504DN
T720135504DN
T120146504DN
T720165504DN'

IR
IR
JR
IR
IR

5
R
R
R
R

5
S
5
5
S

R70021 04
R7002204
R7002304
R7002404
R7010806'

T727064B940N
R4050170
R4050210
R4050370
R4050410

S91
Rl1
R17
R17
R17

R35
R36
R35
R36
R36

470PBI60
410T
411PD120
411PD14O
471PDI60

,8

IR
wee
IR
IR,
IR

T720165504DN'
T727XX45240N
R6201250
R6201450
R6201650

551
591
R39
R39
R39

501VRBOB
50tVR 1OOB ,
501VR120
501VR120B
501VR14O

IR
IR
IR
IR
IR

117010806
R7011006
R7011204
117011206
R7011404

R36
R3S
R35
R36
1136

R
R

1-17T

144T
~4flA

146B
.. 460
!46F
~46H

S
R
R
R

R4061270
439A
439AR
439B
439BR

Note: Manufacturer's Codes, ProductTv~Notes and@ Rep1aC8ntf!rtt NOtes ,are listed. onpiJge G3"
.

G32

Type Mfgr•

R17
R17
R17
R17
R17

.".

".-

• . . •"

~i~~

-.

8

5
5

8
8
8

II
R

5

8
8

II

R6S
R66
R66
RS6
RS6

Pert Number

Type Mfgr.

Suggested@
Replacement

Page

Part Number

Type Mfgr.

Suggested@
Repllcement

Plge

501VRI40B
501VR160
501VRIBO
501VR2oo
501VR210

R
R
R
R
R

IR
IR
IR
IR
IR

R7011405
R7011604
R7011B04
R7012004
R7012104

R35
R35
R35
R35
R35

67g·4
679·6
680·1
680·2
6BO·4

A
A
A
A
A

UNI
UNI
UNI
UNI
UNI

MBI2A25V40
MB12A25Y60
MB12A1OV10
MB12Al0V20
MBI2A1OV40

501VR220
501VR230
501VR240
507C .............
506C .............

R
R
R
0
D

IR
IR
IR
WES
WES

R7012204
R7012304
R7012404
CF
CF

R35
R35
R35
CF
CF

6BO·6
697·1
697·2
697·3
697·4

A
A
A
A
A

UNI
UNI
UNI
UNI
UNI

MB12A1OV60
MBllA06Vl0
MBllA06V20
MBllA06V30
M811A06V40

A3

550PA5
550PA10
550PA20
550PA30
550PA40

S
S
S
S
5

IR
IR
IR
IR
IR

T720015504DN
T7200155040N
T7200255040N
T7200356040N
T7200455040N

551
551
S51
S51
551

697·5
697·6
7ooPA50
7ooPA60
700PABO

A
A
S
S
5

UNI
UNI
IR
IR
IR

550PA50
550PA60
560PB60
550PB60
550PBBO

S
5
S
S
S

IR
IR
IR
IR
IR

T7200555040N
T7200655040N
T7200555040N
T7200655040N
T7200B55040N

S51
S51
S51
S51
S51

700PAloo
7ooPA110
700PA120
7ooPAI30
7ooPAI40

S
5
S
S
S

550PBloo
550PBll0
550PB120
550PB13O
550PB14O

S
5
S
5
5

IR
IR
IR
IR
IR

T7201055040N
T7201155040N
T7201265040N
T7201355040N
T7201455040N

S51
S51
S51
S51
551

7ooPAl50
7ooPAI60
7ooPA170
7ooPK50
7ooPK60

550PBl50
550PBl60
560PB010
560PB020
550PB030

5
5
5
5
5

IR
IR
IR
IR
IR

T7201555040N
T7201655040N
CF
CF
CF

S51
S51
CF
CF
CF

550PB040
550PB050
550PB06O
6OOPB170
6ooPBl80

5
S

li .
S
S

IR
IR
IR
IR
IR

CF
CF
CF
T920170604DW
T9201B0604DW

6ooPBI90
6ooPB2oo
6OOPB21 0
8OOPB22O
8OOPB23O

5
S
5
5
5

IR
IR
IR
IR
IR

6ooPB240
6ooPB250
651 POB50l20
851POB50l30
651 POB50l25

5
5
R
R
R

IR
IR
IR
IR
IR

651 POB60l20
651 POB60l25
651 PDB60l20
851 POB60l25
851 POB6OL3O

PIn Number
750PB14O
750PBI50
750PBI80
750P811O
750PBI80

Type Mfgr.

Sugge.ted@
Replacement Pege

S
S
5
S
5

IR
IR
IR
IR
IR

T920140B040W
T920150B040W
T920160B040W
T920170604DW
T9201BOB040W

555
555
555
555
555

A3
A3

780P
780S
760V
760Z
760ZB

R
R
R
R
R

WES
WES
WES
WES
WES

760P
780S
760Y
760Z
760ZB

CF
CF
CF
CF
CF

MBllA06V50
MB11A06V60
T9200507040W
T9200607040W
T9200B0704DW

A3
A3
S55
555
S55

760Z0
760ZF
760ZH
760ZK
760ZM

R
R
R
R
R

WES
WE5
WES
WE5
WES

760Z0
760ZF
760lH
760ZK
760lM

CF
CF
CF
CF
CF

IR
IR
IR
IR
IR

,T9201OO704DW
T9201107040W
T920120704DW
T920130704DW
T920140704DW

S55
S55
555
S65
S55

761P
761S
761V
761Z
7B1ZB

R
R
R
R
R

WES
WES
WES
WES
WES

761P
761S
761V
761Z
761ZB

CF
CF
CF
CF
CF

S
S
5
5
5

IR
IR
IR
IR
IR

T920160704DW
T920160704DW
T9201707040W
T9200507040W
T9200607040W

S55
S55
S66
555
S55

7B1Z0
761ZF
761ZH
761ZK
761ZM

R
R
R
R
R

WES
WES
WES
WES
WES

7B1Z0
761ZF
761ZH
761ZK
761ZM

CF
CF
CF
CF
CF

7ooPKBO
700PKloo
7ooPK110
700PK120
7ooPK)30 '

S
5
S
S
S

IR
IR
IR
IR
IR

T920OB0704DW
T9201OO704DW
T920110704DW
T920120704DW
,~2Ql ;l(>7Q4Dy\(

S55
S55
S55
S55
555.

770A
710B
770C
7700
770F

R
R
R
R
R

WES
WES
WES
WES
WES

770A
770B
770C
7700
770F

CF
CF
CF
CF
CF

CF
CF
CF
S55
S55

7ooPK14O
700PKl50
7ooPKl60
7ooPK170
710A

S
S
S
S
R

IR
IR
IR
IR
WES

T920140704DW
T920150704DW
T9201507040W
T920170704DW
710A

555
S55
S55
S55
CF

770H
7701(
770M
770S
770l

R
R
R
R
R

WES
WES
WES
WES
WES

770H
770K
770M
7705
770l

CF
CF
CF
CF
CF

T920190604DW
T920200604DW
T9202106040W
T920220604DW
T9202306040W

S55
S55
S55
555
S55

710AR
710B
710BR
710C
710CR

R
R
R
R

WES
WE5
WE5
WES
WE5

710AR
7106
710BR
710C
710CR

CF
CF
CF
CF
CF

770lD
770ZH
771 A
771B
771C

R
R
R
R
R

WES
WES
WES
WES
WES

770lD
770lH
771A
771B
771C

CF
CF
CF
CF
CF

T920240604DW
T920250604DW
R722050BEJ
R72205OBOJ
R7220506CJ

555
S55
R71
R71
R71

710D
710DR
710E
710ER
710F

R
R
R
R
R

WE5 7100
WES 710DR
WI;S 710E
WES 710ER
WE5 710F

CF
CF
CF
CF
CF

7710
771F
771H
771K
771M

R

WES
WES
WES
WES
WES

771D
771F
771H
771K
771M

CF
CF
CF
CF
CF

R IR
R IR
R 'IR
R
IR
R
IR

R7220606EJ
R72206060J
R722060BEJ
R7220506CJ
R72206080J

R71
R71
R71
R71
A71

710FR
710H
710HR
710K
710KA

R
R
R
R
R

WE5
WE5
WES
WES
WES

710FR
710H
710HR
710K
710KR

CF
CF
CF
CF

771S
771Z
771Z0
771ZH
7BlA

WE5
WES
WES
WE5
WES

7715
771Z
771ZD
771ZH
R6200030

CF
CF
CF
CF
R39

651POBlool25
651 POB 1OOl3O
651 PDB 120L25
651 POB 120L30

A
R
R
R

IR
IR
IR
IR

R7221006DJ
R7221006CJ
R7221208DJ
A7220606CJ

R71
R71
R71
R71

710M
710MR
710P
710PR
7105

R
R
R
R
R

WES
WES
WES
WES
WES

'710M
710MR
710P
710PR
710S

CF
CF
CF
CF
CF

7B2B
7B2C
7B20
782F
7B2H

R

WES
WES
WES
WE5
WES

R6200130
R620+130
R6200230
R62oo330
R6200430

651 POB 130L30
661POBI40l30
651 POBI60L30
651 POL50S20
651 POL50S25

R
R
R
R
R

IR
IR
IR
IR
IR

R7221306CJ
R7220506CJ
R7221606CJ
R722050BEJ
R722050BDJ

R71
R71
R71
R71
R71

R39
R39
R39
R39
R39

710SR
710V
710VR
710l
710ZD

R
R
R
R

WES
WES
WES
WES
WES

710SR
710V
710VR
710l
710Z0

CF
CF
CF
CF
CF

782K
7B2M
783A
7B3B
783D

R
R
R
R
R

WES
WES
WES
WES
WES

R6200530
R6200630
7B3A
7B3B
7B3D

R39
R39
CF
CF
CF

651 POL50S30
651 PDL60S20
651 POL60S25
661 POL60S20
651 PDL60S25

R
R
A
R
R

IR
IR
IR
IR
IR

R722050BCJ
A7220606EJ
R722060BOJ
R7220606EJ
A72206060J

R71
R71
R71
A71
A71

710ZDR
710ZR
720A
720AA
7206

R
R
A
R
A

WES
WES
WES
WES
WES

71Ol0R
710lR
720A
720AA
7208

CF
CF
CF
CF
CF

R
R
R
A
A

WES
WES
WES
WES
WES

651 PDL60S30
651 PDL looS26
651 PDL l00S30
651POL110S25
651 POLll 0530

A
A
A
R
R

783F
7B3H
783K
783M
7B3S

IR
IR
IR
IR
IR

A7220606CJ
R72210OBOJ
A7221006CJ
R722110BDJ
R722110BCJ

7B3F
783H
783K
783M
783S

CF
CF
CF
CF
CF

A71
A71
A71
R71
R71

~208A
20C
720CR
7200
7200R

R
A
R
R
R

WES
WES
WES
WES
WES

720BR
720C
720CR
720D
1200R

CF
CF
CF
CF
CF

661 PDL 120S25
B51 POL 120S30
661T
662T
666T

R
R
S
S
S

IR
IR
WCE
WCE
WCE

R122120BDJ
R7221206CJ
T920XX0503DW
T920XX0703DW
T920XX1003DW

R71
R71
S65
S55
S55

783Z
7B3ZD
7B3ZH
7B3ZK
7B3ZM

R
R
R
R
R

WES
WES
WES
WES
WES

783Z
7B3ZD
7B3ZH
7B3ZK
7B3ZM

CF
CF
CF
CF
CF

720F
720FR
720H
720HR
120K

R
R
R
R
R

WES
WES
WES
WES
WES

720F
720FR
720H
720HR
720K

CF
CF
CF
CF

66BT
869T
673-1
673·2
673·3

S
S
A
A
A

WCE
WCE
UNI
UNI
UNI

T920XX1003DW
T920XX1003DW
MB11A02Vl0
MB11A02V20
MBl1A02V30

S56
S55

7B4A
7B4B
7B4C
7B40
7B4F

R
R
R
R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

720KR
720M
720MR
720S
720SR

R
R
R
R
R

WES 720KR
WES 120M
WES 720MR

673-4
673·5
673·6
B79·1
679·2

A
A
A
A
A

UNI
UNI
UNI
UNI
UNI

MBl1A02V40
MBllA02V50
MB11A02V60
MBI2A25Vl0
MB12A25V20

~g'~~R

CF
CF
CF
CF
CF

7B4H
7B4K
7B4M
7B4S
7B4Z

R
R
R
A
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

720l
720lR
750PBll0
750PB12O
750PBI30

R
R
S
S
S

WES
WES
IR
IR
IR

CF
CF
S56
S55
S55

7BeA
7858
7B5C
7B6D
785F

R
R
R
R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

A3
A3
A3

A3
A3
A3
A3
A3

R

'R

720l
720lR
T920110B04DW
T920120B04DW
T920130B040W

A3

A3
A3

A3
A3
A3
A3

.

",'

CF

CF

Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page G3

G33

Suggestad@
Port Numbe,

Typo Mfg,.

Replacement

Pege

Part Numbe,

Type Mfg,.

Sugg.stad@
Replacement

Pege

Type Mfg,.

Suggestad@
Replacement

Page

786H
785K
785M
786S
786Z

R
R
R
R
R

WES
WES
WES
WES
WES

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

790ZK
790ZM
790ZS
790ZZ
790ZZ0

R
R
R
R
R

WES
WES
WES
WES
WE5

790ZK
790ZM
790ZS
790ZZ
790ZZ0

CF
CF
CF
CF
CF

809ZM61
850PA50
850PA80
850PA80
850PA100

S
S
S
S
5

WES
IR'
IR
IR
IR

809ZM61
T9200509040W
T920060904DW
T92DD809040W
T9201D09040W

CF
S66
556
565
556

788A
788AR
788B
7B8BR
7B8C

R
R
R
R
R

WE5
WE5
WE5
WE5
WES

788A
788AR
788B
788BR
788C

CF
CF
CF
CF
CF

790ZZK
791A
791B
791C
7910

R

WE5
WES
WES
WES
WES

790ZZK
IN3161R
IN3162R
IN3163R
IN3164R

CF
R31
R31
R31
R31

860PAll0
850PA120
850PAl30
850PA14O
85OPAl50

5
S
S
S
5

IR
IR
IR
IR
IR

T9201109040W
T9201209040W
T9201309040W
T920140904DW
T9201609040W

556
566
565
565
565

788CR
78BO
7B80R
788F
788FR

R
R
R
R
R

WE5
WE5
WES
WES
WES

788CR
7880
7880R
788F
788FR

CF
CF
CF
CF
CF

WE5
WES
WES
WES
WES
WES

R31
R31
R31
R31
R31
R31

S
5
5
S
S

IR
IR
IR
IR
IR

T9201609040W
T9200509040W
T92DD809040W
T9200809040W
T9201009040W

S66
565
555
S66
566

R
R
R
R
R

WES
WES
WES
WES
WES

788H
788HR
788K
788KR
788M

CF
CF
CF
CF
CF

IN3166R
IN3168R
IN3169R
IN3170R
IN3172R
IN3174R

85OPAl80
85OPK50
850PK80
850PK80
850PK100

7B8H
7B8HR
788K
788KR
788M

791F
791H
791K
791M
791S
791Z
791Z0
791lH
791ZK
791ZM

WE5
WE5
WE5
WE5

R8011224
R8011424
R8011524
R8011624

CF
CF
CF
CF

850PKll0
850PK120
85OPKI30
860PK14O
860PKI60

5
S
S
5
5

IR
IR
IR
IR
IR

T9201109040W
T9201209040W
T9201309040W
T9201409040W
T9201609040W

565
566
565
555
'555

788MR
788S
7885R
788Z
788Z0

R
R
R
R
R

WES
WES
WES
WE5
WES

788MR
788S
788SR
788Z
788Z0

CF
CF
CF
CF
CF

791Z5
791ZZ
791ZZK
791ZZ0'
801PD80B

R
R
R

WE5
WES
WES
WE5
IR

R8011824
R6012024
791ZZK
791ZZ0
R7200612

CF
CF
CF
CF
R43

850PKl80
9OOPB60
900PB60
9OOPBSO
900P81 00

S
5
S
S
S

IR
IR
IR
IR
IR

T920160904DW
T920050904DW
T92DD809040W
T92DD809040W
T9201D09040W

555
566
S65
565
555

788Z0R
788ZH
788ZHR
788ZK
788ZKR

R
R
R
R
R

WE5
WE5
WES
WES
WE5

788Z0R
788ZH
788ZHR
788ZK
788ZKR

CF
CF
CF
CF
CF

801P0808
801P01008
801P0120
801P01208
801P014O

R
R
R
R
R

IR
IR
IR
IR
IR

R72D0912
R7201012
R7201209
R7201212
R7201409

R43
R43
R43
R43

R43

9OOP8110
900PB120
l000PA50
l000PA80
1OOOPAI 00

5
S
5
5
5

IR
IR
IR
IR
IR

T9201109040W
T9201209040W
T9200610040W
T9200610040W
T9201010040W

S66
555
S65
S65
S66

788ZM
788ZMR
788ZR
788ZS
788Z5R

R
R
R
R
R

WE5
WE5
WE5
WE5
WES

788ZM
788ZMR
788ZR
788ZS
788ZSR

CF
CF
CF
CF
CF

801POI408
801P0160
801POI80
801P0200
801P08608

R
R
R
R
R

IR
IR
IR
IR
IR

R7201412
R7201609
R7201809
R7202D09
R7200612

R43
R43
R43
R43
R43

l000PAll0
l000PAI20
l000PAI30
l000PAI4O
l000PAI50

S
S
S
S
S

IR
IR
IR
IR
IR

T9201110040W
T9201210040W
T9201310040W
T9201410040W
T9201510040W

S56
565
S55
S65
S56

788ZZ
788ZZ0
788ZZ0R
7B8ZZR
789A

R
R
R
R
R

WES
WES
WES
WES
WE5

788ZZ
7B8ZZ0
788ZZ0R
788ZZR
789A

CF
CF
CF
CF
CF

801P08808
801 P081 008
801P08120
801P081208
801P0814O

R
R
R
R
R

IR
IR
IR
IR
IR

R7200912
R7201012
R7201209
R7201212
R7201409

R43
R43
R43
R43
R43

l000PAl80
l000PK50'
l000PK60
l000PK80
l000PK100

S
S
S
S
S

IR
IR
IR
IR
IR

T920161004DW
T9200510040W
T9200610040W
T920061004DW
T9201010040W

555
566
566
555
S66

789AR
7898
7898R
789C
789CR

R
R
R
R
R

WES
WES
WE5
WES
WES

789AR
7898
789BR
789C
789CR

CF
CF
CF
CF
CF

801P081408
801P08180
801P08180
801P08200
801P08210

R
R
R
R
R

IR
IR
IR
IR
IR

R7201412
R7201609
R7201609
R7202009
R72021 09

R43
R43
R43
R43
R43

l000PK110
l000PK120
l000PK130
l000PK140
l000PK160

S
5
S
5
5

IR
IR
IR
IR
IR

T9201110040W
T920121004DW
T9201310040W
T9201410040W
T9201610040W

566
S55
S56
S56
555

7890
7890R
789F
789FR
789H

R
R
R
R
R

WES
WES
WE5
WE5
WE5

7890
7890R
789F
789FR
789H

CF
CF
CF
CF
CF

801P08220
801P08230
801P0824O
809A
809A51

R .IR
R IR
R IR
WES
S
S WES

R7202209
R7202309
R7202409
609A
809A51

R43
R43
R43
CF
CF

l000PKI80
1200PN120
1200PN130
1200PN14O
1200PNl50

S
S
S
5
S

IR
IR
IR
IR
IR

T9201610040W
TA201212040Y
TA201312040Y
TA201412040Y
TA201612040Y

S56
S67
567
S67
5.67

789HR
789K
789KR
789M
789MR

R
R
R
R
R

WES
WES
WES
WES
WES

789HR
789K
789KR
789M
789MR

CF
CF
CF
CF
CF

8098
809861
809C
609C61
8090

S
S
S
S
S

WES
WES
WES
WES
WES

8098
609851
809C
809C51
8090

CF
CF
CF
CF
CF

1200PNI80
1200PN170
1200PNI80
1200PNl90
1200PN200

5
S
5
5
5

IR
IR
IR
IR
IR

TA201612040Y
TA201712040Y
TA201812040Y
TA201912040Y
TA202012040Y

567
567
567
S67
·567

789S
.789SR
788Z
789Z0
789Z0R

R
R
R
R
R

WES
WES
WES
WES
WES

7895
7895R
789Z
789Z0
788Z0R

CF
CF
CF
CF
CF

609061
809E
609E51
809F
809F51

S
S
S
S

WES
WES
WES
WES
WES

809051
809E
809E51
809F
609F61

CF
CF
CF
CF
CF

1200PN210
1200PN220
1561·XX03
1561·XX04
1561·XX09

S
S
T
T
T

IR
IR
WES
WE5
WES

TA202112040Y
TA202212040Y
1661·XX03
1561·XX04
1661·XX09

S67
S67
CF
CF
CF

789ZH
789ZHR
789ZK
789ZKR
789ZM

R
R
R
R

WES
WES
WE5
WES
WES

789ZH
789ZHR
789ZK
789ZKR
789ZM

CF
CF
CF
CF
CF

809H
609H51
809K
809K61
809M

S
S
S
S
5

WES
WES
WES
WES
WES

609H
809H61
809K
809K51
809M

CF
CF
CF
CF
CF

1561·XX10
1561·XXI5
1671·XX20
1571·XX26
18OOPN120

T
T
T
T
S

WES
WES
WES
WES
IR

1561·XX10
1561·XXI5
1571·XX20
1671·XX26
CF

CF
CF
CF
CF
CF

789ZMR
789ZS
789ZSR
789ZR
789ZZ

WES
WES
WES
WES
WES

789ZMR
789ZS
789ZSR
789ZR
789ZZ

CF
CF
CF
CF
CF

809M51
809P
809P61
809S
809S51

S
S
S
5
S

WES
WES
WES
WES
WE5

809M51
809P
809P51
8095
809S61

CF
CF
CF
CF
CF

16OOPN130
16OOPN14O
16OOPNI50
18OOPNI80
1801POK120

S
S
S
S
R

IR
IR
IR
IR
IR

CF
CF
CF
CF
R9201216

CF
CF
CF
CF
.R47

789ZZ0
789ZZOR
789ZZR
790A
7908

WES 789Z20
WES 789ZZ0R
WE5 789ZZR
\IllES 790A
WES 7908

CF
CF
CF
CF
CF

809V
809V51
809Z
809Z51
809Z8

S
S
S
S
S

WES
WES
WE5
WES
WES

809V
809V61
809Z
809Z61
809ZB

CF
CF
CF
CF
CF

1801POK14O
1801POKI80
1801POKI80
1801POK200
1801POK220

R
R
R
R
R

IR
IR
IR
IR
IR

R9201416
R9201616
R9201816
R9202016
R9202216

R47
R47
R47
R47
R47

S

790C
7900
790F
790H
790K

R
R
R

WE5
WES
WES
WE5
WES

790C
7900
790F
790H
790K

CF
CF
CF
CF
CF

809Z851
809Z0
809Z061
809ZF
809ZF51

S
S
S
5
S

WES
WES
WES
WES
WES

809Z861
809Z0
809Z051
809ZF
809ZF61

CF
CF
CF
CF
CF

1601POK24O
1601PDK260
2001P060
2001P080
2001P0100

R
R
R
R
R

IR
IR
IR
IR
IR

SO
SO
R9200620
R9200920
R9201020

CF
CF
R47
R47
R47

790M
7905
790Z
790Z0
790ZH

R
R
R
R
R

WE5
WES
WES
WE5
WES

790M
7905
790Z
790Z0
790ZH

CF
CF
CF
CF
CF

809ZH
809ZH51
809ZK
809ZK51
809ZM

5
S
5
5
S

WES
WES
WES
WES
WES

809ZH
809ZH61
809ZK
809ZK51
809ZM

CF
CF
CF
CF
CF

2oo1P0120
2001P014O
2001POI50
2001POK60
2001POK80

R
R
R
R
R

IR
IR
IR
IR
IR

R9201220
R9201420
R9201620
R9200620
R9200920

. R47
R47
R47
R47
R47

Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page G3
G34

Part Numbe,

Suggested@
Part Numbat'

Type Mfgr.

Replacement

Page

Part Number

Type Mfgr.

Suggested@
Replacement

Page

Part Numbat'

Type Mfgr.

Suggested@
Replacement Page

S
S
S
S
5

WES
WES
WE5
WE5
WE5

2201K
2201M
2201P
22015
2201V

CF
CF
CF
CF
CF

2271P
2271S
2271V
2271Z
22728

S
S
5
S
5

We5
WES
WE5
WES
WE5

2271P
2271S
2271V
2271Z
22728

CF
CF
CF
CF
CF

2001 PDKI 00
2001POK120
2001POKI40
2001POKI80
21818

R
R
R
R
S

IR
IR
IR
IR
WES

R9201020
R9201220
R9201420
R9201620
21818

R47
R47
R47
R47
CF

2201K
2201M
2201P
2201S
2201V

21810
2181F
2181H
2181K
2181M

S
S
S
S
S

WES
WES
WES
WES
WES

21810
2181F
2181H
2181K
2181M

CF
CF
CF
CF
CF

2201Z
2201Z8
2201Z0
2202A
22028

5
5
5
S
5

WE5
WES
WES
WES
WES

2201Z
2201ZB
2201Z0
2202A
22028

CF
CF
CF
CF
CF

22720
2272F
2272H
2272K
2272M

5
WES
5
WES
S WES
S . WES
S WES

22720
2272F
2272H
2272K
2272M

'CF
CF
CF
CF
CF

2181P
2181S
2181V
2181Z
21828

S
5
5
5
5

WES
WE5
WES
WES
WES

2181P
21815
2181V
2181Z
21828

CF
CF
CF
CF
CF

22020
2202F
2202H
2202K
2202M

5
5
S
5
5

WE5
WE5
WE5
WE5
WE5

22020
2202F
2202H
2202K
2202M

CF
CF
CF
CF
CF

2272P
2272S
2272V
2272Z
2272Z0

S
5
S
5
S

WES
WE5
WE5
WES
WES

2272P
2272S
2272V
2272Z
2272Z0

CF
CF
CF
CF
CF

21820
2182F
2182H
2182K
2182M

5
5
5
5
5

WES
WES
WE5
WES
WE5

21820
2182F
2182H
2182K
2182M

CF
CF
CF
CF
CF

2202P
2202S
2202V
2202Z
2202Z8

5
5
S
5
S

WE5
WE5
WE5
WES
WES

2202P
22025
2202V
2202Z
2202ZB

CF
CF
CF
CF
CF

22918
22910
2291F
2291H
2291K

5
S
S
5
S

WES
WES
WE5
WES
WE5

22918
22910
2291F
2291H
2291K

CF
CF
CF
CF
CF

2182P
2182S
2182V
2182Z
2182Z0

5
5
5
5
5

WES
WES
WE5
WE5
WES

2182P
21825
2182V
21B2Z
2182Z0

CF
CF
CF
CF
CF

2202Z0
2231A
22318
22310
2231F

S
S
S
S
S

WES
WES
WES
WES
WES

2202Z0
2231A
22318
22310
2231F

CF
CF
CF
CF
CF

2291M
2291P
2291S
2291V
2291Z

S
S
S
S
S

WE5
WES
WES
WES
WES

2291M
2291P
22915
2291V
2291Z

CF
CF
CF
CF
CF

2191A
2191A51
21918
2191861
21910

5
S
5
5
5

WES
WE5
WE5
WES
WES

2191A
2191A51
21918
219851
21910

CF
CF
CF
CF
CF

2231H
2231K
2231M
2231P
2231S

5
S
S
S
S

WES
WES
WES
WES
WES

2231H
2231K
2231M
2231P
2231S

CF
CF
CF
CF
CF

2292B
22920
2292F
2292H
2292K

5
5
5
S
S

WE5
WES
WES
WES
WE5

22928
22920
2292F
2292H
2292K

CF
CF
CF
CF
CF

2191061
2191F
2191F61
2191H
2191H61

5
S
5
S
S

WES
WES
WES
WES
WES

2191051
2191F
2191F51
2191H
2191H51

CF
CF
CF
CF
CF

2231V
2231Z
2231Z8
2231Z0
2232A

S
S
S
S
S

WES
WES
WES
WES
WE5

2231V
2231Z
2231Z8
2231Z0
2232A

CF
CF
CF
CF
CF

2292M
2292P
2292S
2292V
2292Z

5
5
S
S
S

WE5
WES
WES
WES
WES

2292M
2292P
2292S
2292V
2292Z

CF
CF
CF
CF
CF

2191K
2191K61
2191M
2191M6l
2191P

5
5
5
5
5

WE5
WE5
WE5
WE5
WE5

2191K
2191K51
2191M
2191M51
2191P

CF
CF
CF
CF
CF

22328
22320
2232F
2232H
2232K

5
5
S
5
S

WES
WES
WES
WE5
WES

22328
22320
2232F
2232H
2232K

CF
CF
CF
CF
CF

2292Z0
25018
25010
2601F
2501H

S
S
S
S
S

WES
WES
WES
WES
WES

2292Z0
25018
25010
250lF
2501H

CF
CF
CF
CF
CF

2191P61
2191S
2191S51
2191V
2191V51

5
5
5
5
5

WE5
WE5
WE5
WES
WE5

2191P61
21915
2191551
2191V
2191V51

CF
CF
CF
CF
CF

2232M
2232P
2232S
2232V
2232Z

S
S
S
S
S

WES
WES
WES
WE5
WES

2232M
2232P
2232S
2232V
2232Z

CF
CF
CF
CF
CF

2501K
2501M
2502B
25020
2502F

S
S
S
S
S

WES
WES
WES
WES
WES

250IK
2501M
25028
25020
2502F

CF
CF
CF
CF
CF

2191Z
2191Z51
2192A
2192A61
21928

5
5
5
5
S

WE5
WES
WES
WES
WES

2191Z
2191Z51
2192A
2192A51
21928

CF
CF
CF
CF
CF

2232Z8
2232Z0
22418
22410
2241F

S
S
S
5
S

WES
WES
WES
WES
WES

2232Z8
2232Z0
22418
22410
2241F

CF
CF
CF
CF
CF

2502H
2502K
2502M
2502P
2502S

S
S
S
S
S

WES
WES
WES
WES
WES

2502H
2502K
2502M
2502P
26025

CF
CF
CF
CF
CF

2192851
21920
2192051
2192F
2192F51

S
S
S
S
S

WES
WES
WES
WE5
WE5

2192851
21920
2192051
2192F
2192F51

CF
CF
CF
CF
CF

2241H
2241K
2241M
2241P
22415

5
S
S
S
S

WES
WES
WES
WES
WES

2241H
2241K
2241M
2241P
2241S

CF
CF
CF
CF
CF

25038
25030
2503F
2503H
2503K

5
S
S
S
S

WES
WES
WES
WES
WES

25038
25030
2503F
2503H
2503K

CF
CF
CF
CF
CF

2192H
2192H51
2192K
2192K51
2192M

S
S
S
S
S

WES
WES
WES
WES
WES

2192H
2192H61
2192K
2192K61
2192M

CF
CF
CF
CF
CF

2241V
2241Z
22428
22420
2242F

5
S
5
S
S

WES
WE5
WES
WES
WES

2241V
2241Z
22428
22420
2242F

CF
CF
CF
CF
CF

2503M
2503P
2503S
2603V
2503Z

S
S
S
S
S

WES
WES
WES
WES
WES

2503M
2503P
2503S
2503V
2503Z

CF
CF
CF
CF
CF

2192M51
2192P
2192P61
2192S
2192851

S
5
S
5
5

WE5
WES
WE5
WE5
WES

2192M51
2192P
2192P51
21925
2192S61

CF
CF
CF
CF
CF

2242H
2242K
2242M
2242P
2242S

S
S
S
S
S

WES
WES
WES
WE5
WES

2242H
2242K
2242M
2242P
2242S

CF
CF
CF
CF
CF

2503Z0
2503ZH
2506B
25060
2505F

5
S
S
S
S

WES
WES
WES
WES
WES

2503Z0
2603ZH
25058
25050
2505F

CF
CF
CF
CF
CF

2192V
2192V51
2192Z
2192Z51
2193A

S
S
S
S
S

WES
WES
WE5
WES
WES

2192V
2192V61
2192Z
2192Z51
2193A

CF
CF
CF
CF
CF

2242V
2242Z
2242Z0
22488
22480

S
5
5
5
S

WES
WE5
WE5
WE5
WES

2242V
2242Z
2242Z0
22488
22480

CF
CF
CF
CF
CF

2505H
2506K
2506M
2505P
2505S

S
S
S
S
S

WES
WES
WES
WES
WES

2505H
2506K
2505M
2505P
2506S

CF
CF
CF
CF
CF

21938
21930
2193F
2193H
2193K

S
S
S
S
S

WE5
WE5
WES
WES
WES

21938
21930
2193F
2193H
2193K

CF
CF
CF
CF
CF

2248F
2248H
2248K
2248M
2248P

S
5
S
S
5

WES
WES
WE5
WES
WES

2248F
2248H
2248K
2248M
2248P

CF
CF
CF
CF
CF

2505V
2505Z
2611B
25110
2611F

S
S
S
S
S

WES
WES
WES
WE5
WES

2505V
2505Z
26118
25110
2511F

CF
CF
CF
CF
CF

2193M
2193P
2193S
2193V
2193Z

S
S
5
S
S

WES
WES
WES
WES
WES

2193M
2193P
2193S
2193V
2193Z

CF
CF
CF
CF
CF

22485
2248V
2248Z
2248Z0
22718

S
S
S
S
S

WES
WES
WES
WE5
WES

2248S
2248V
2248Z
224BZO
22718

CF
CF
CF
CF
CF

2611H
2611K
2511M
2511P
2511S

S
S
S
S
S

WES
WES
WES
WES
WES

2511H
.2511K
2611M
2511P
2511S

CF
CF
CF
CF
CF

2201 A
22018
22010
2201F
2201H

S
S
S
S
S

WES
WES
WES
WES
WES

2201A
22018
22010
2201F
2201H

CF
CF
CF
CF
CF

22710
2271F
2271H
2271K.
2271M

S
S
5
S
S

WE5
WES
WES
WES
WES

22710
2271F
2271H
2271K
2271M

CF
CF
CF
CF
CF

2511V
2511Z
2512A
25128
25120

S
S
S
S
S

WES
WES
WES
WES
WES

2511V
26"Z
2612A
25128
25120

CF
CF
CF
CF
CF

Note: Manufacturer's Codes, Product Type Notes and

® Replacement Notes are listed on page G3
G35

Sugge.ted@

Sugge.ted@
Part Number

Type Mfg •.

Replacement

PagL

Part Numbe.

Type Mfg •.

Replacement

Page

S"IIII_@
Part N'umber

R.~I8c_

P-

CF
CF
CF
CF
CF

S
S
S
S
S

WES
WES
WE5
WES
WES

2643M
2543M61
2543P
2543P61
2543S

CF
CF
CF
CF
CF

2832F
2832H
2832K
2832M
2832p

S
S
5
S
S

WES
WES
WES
WES
WES

2832F
2832H
2832K
2832M
2832P

CF
CF
CF
CF
CF

2512S
2512V
2512Z
2513B
25130

CF
CF
CF
CF
CF

2543551
2601B
26010
2601F
2601H

S
S
5
S
5

WES
WE5
WES
WE5
WES

2543S51
2601B
26010
2601F
2601H

CF
CF
CF
CF
CF

28325
2832V
2721A
2721B
27210

5
S
5
5
.S

WE5
WES
WE5
WES
WE5

2832S
2832V
2721A
2721B
27210

CF
CF
CF
CF
CF

WE5
WES
WES
WE5
WES

2513F
2513H
2513K
2513M
2513P

CF
CF
CF
CF
CF

2601K
2601M
2601P
,2601PDN120
2601PONl40

S
S
S
R
R

WES
WES
WES
IR
IR

2601K
2601M
2601P
CF
CF

CF
CF
CF
CF
CF

2721F
2721H
2721K
2721M
2721P

5
S
5
S
5

WE5
WES
WES
WE5
WE5

2721F
2721H
2721K
2721M
2721P

CF
CF
CF
CF
CF

5
S
5
5
S

WES
WES
WE5
WES
WES

26135
2513V
2513Z
2513ZB
251320

CF
CF
CF
CF
CF

2601PDN180
2601PONl80
2601PDN200
2601PDN220
2601PDN240

R
R
R
R
R

IR
IR
IR
IR
IR

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

27215
2721V
27212
2722A
2722B

S
5
S
5
S

WE5
WE5
WE5
WE5
WES

2721S
2721V
2721Z
2722A
2722B

CF
CF
CF
CF
CF

2515B
25150
2515H
2515K
2515M

S
S
S
5
5

WE5
WES
WES
WE5
WE5

2615B
25150
2515H
2515K
2615M

CF
CF
CF.
CF
CF

2801PON250
26015
2601 V
26012
2602B

R
S
S
5
S

IR
WES
WES
WE5
WE5

CF
2601S
2601 V
2601Z
2602B

CF
CF
CF
CF
CF

27220
2722F
2722H
2722K
2722M

S
S
S
5
5

WES
WES
WE5
WE5
WES

27220
2722F
2722H
2722K
2722M

CF
CF
CF
CF
CF

2515P
25155
2515V
2615Z
2541A

5
5
5
5
S

WE5
WE5
WE5
WE5
WES

2515P
25165
2515V
2615Z
2541A

CF
CF
CF
CF
CF

26020
2802F
2602H
2802K
2802M

5
5
5
5
S

WE5
WE5
WE5
WE5
WES

26020
2602F
2602H
2602K
2602M

CF
CF
CF
CF
CF

2722P
27225
2722V
2722Z
2722Z0

5
5
5
5
S

WES
WE5
WE5
WES
WES

2722P
27225
2722V
2722Z
2722Z0

CF
CF
CF
CF
CF

2541A51
2541B
2541B51
25410
2541051

S
S
S
S
S

WES
WES
WES
WES
WES

2541A51
2641B
2541B61
26410
2641051

CF
CF
CF
CF
CF

2602P
2602S
2602V
2802Z
26058

S
S
S
S
S

WES
WES
WES
WES
WES

2602P
2602S
2602V
2602Z
2605B

CF
CF
CF
CF
CF

2731A
2731B
27310
2731F
2731H

S
S
S
S
S

WES
WES
WES
WES
WE5

2731A
2731B
27310
2731F
2731H

CF
CF
CF
CF
CF

2541F
2641F51
2541H
2541H51
2541K

S
S
S
S
S

WES
WES
WES
WES
WES

2541F
2541F61
2541H
2641H61
2541K

CF
CF
CF
CF
CF

26050
2605F
2805H
2605K
2605M

S
S
S
S
S

WES
WES
WES
WES
WES

26050
2606F
2606H
2805K
2805M

CF
CF
CF
CF
CF

2731K
2731M
2731P
2731S
2731V

S
S
S
S
S

WES
WES
WES
WES
WES

2731K
2731M
2731P
2731S
2731V

CF
CF
CF
CF
CF

2541K51
2541M
2541M51
2541P
2641 PSI

S
S
S
S
S

WES
WES
WES
WES
WES

2541K51
2641M
2641MSI
2641P
2541P51

CF
CF
CF
CF
CF

2605P
2605S
260SV
2605Z
2811B

S
S
S
S
S

WES
WES
WES
WES
WES

2805P
2805S
2605V
2806Z
2811B

CF
CF
CF
CF
CF

27312
2731Z0
2732A
2732B
27320

S
S
S
S
S

WES 27312
WES 273120
WES 2732A
WES 2732B
WES.27320

CF
CF
CF
CF
CF

2541S
2541S51
2541V
2541V51
2641Z

S
S
S
S
S

WES
WES
WES
WES
WES

2541S
2641S51
2541V
2641V51
25412

CF
CF
CF
CF
CF

26118
28110
2811F
2811H
2611K
2611M

S
S
S
5
S
S

WES
WES
WES
WES
WES
WES

26118
28110
2611F
2811H
2611K
2611M

CF
CF
CF
CF
CF
CF

2732F
2732H
2732K
2732M
2732P

S
S
S
S
S

WES
WES
WES
WES
WES

2732F
2732H
2732K
2732M
2732P

CF
CF
CF
CF
CF

2541251
2542A
2542A51
25428
2642851

5
S
S
5
S

WES
WES
WES
WES
WES

2541Z51
2542A
2542A51
2642B
2542B51

CF
CF
CF
CF
CF

2811P
2611S
2611V
26112
26128

S
5
5
S
S

WES
WE5
WES
WES
WES

2611P
26115
2611V
26112
26128

CF
CF
CF
CF
CF

2732S
2732V
2732Z
273220
2761B

S
S
S
S
S

WES
WES
WES
WES
WES

2732S
2732V
2732Z
2732Z0
2781B

CF
CF
CF.
CF
CF

25420
2542051
2542F
2542F51
2542H

5
S
S
S
S

WES
WES
WES
WES
WES

26420
2642051
2642F
2642F51
2542H

CF
CF
CF
CF
CF

26120
2612F
2612H
2612K
2812M

S
S
5
S
5 '

WES
WES
WES
WES
WES

28120
2612F
2612H
2612K
2612M

CF
CF
. CF
CF
CF

27810
2781F
2761H
2761K
2781M

S
S
5
5
5

WE5
WES
WES
WES
WES

27610
2761F
2781H
2761K
2761M

CF
CF
CF
CF
CF

2542H51
2542K
2542K51
2542M
2542M51

5
S
S
S
5

WES
WES
WES
WE5
WE5

2542H51
2542K
2542K51
2542M
2642M51

CF
CF
CF
CF
CF

2812P
2612S
2612V
2612Z
2612Z0

5
S
S
5
S

WES
WES
WES
WES
WES

2612P
2612S
2612V
2612Z
2612ZD

CF
CF
CF
CF
CF

2781P
2761S
2761V
27612
2762A

S
S
5
S
S

WES
WES
WES
WE5
WES

2761P
2761S
2761V
2781Z
2782A

CF
CF
CF
CF
CF

2542P
2542P51
2542S
2542551
2542V

S
S
S
S
S

WES
WES
WES
WES
WES

2542P
2642P51
2642S
2542551
2542V

CF
CF
CF
CF
CF

28158
26150
2615F
2615H
, 2616K

S
S
5
5
S

WES
WE5
WES
WES
WES

26158
26150
2616F
2616H
2616K

CF
CF
CF
CF
CF

27828
27820
2762F
2762H
2782K

S
5
S
5
5

WES
WES
WES
WES
WES

27628
27820
2782F
2762H
2782K

CF
CF
CF
CF
CF

2642V61
2542Z
2542251
2543A
2543A51

S
5
S
S
S

WES
WES
WE5
WES
WES

2642V61
2542Z
2642251
2543A
2643A51

CF
CF
CF
CF
CF

2615M
2615P
2615S
2615V
2815Z

5
5
5
S
S

WES
WES
WES
WES
WES

2616M
2615P
26155
2615V
26152

CF
CF
CF
CF
CF

2762M
2782P
2762S
2762V
2762Z

S
S
S
5
S

WES
WE5
WES
WE5
WES

2762M
2782P
2762S
2762V
2762Z

CF
CF
CF
CF
CF

26438
2543851
26430
2543051
2543F

S
S
5
S
S

WE5
WE5
WES
WES
WE5

25438
2643851
25430
2643051
2643F

CF
CF
CF
CF
CF

28318
26310
2631F
2631H
2631K

S
5
S
5
5

WES
WES
WES
WES
WES

26318
28310
2831F
2631H
2631K

CF
CF
CF
CF
CF

2762Z0
2781A
2781B
27810
2781F

S
5
5
S
S

WES
WES
WE5
WE5
WES

2762Z0
2781A
2781B
27810
2781F

CF
CF
CF
CF
CF

2643F51
2543H
2543H51
2543K
2543K51

S
5
S
S
S

WES
WES
WES
WES
WES

2543F51
2543H
2643H51
2643K
2543K51

CF
CF
CF
CF
CF

2831M
2631P
2831S
2632B
26320

5
S
5
S
5

WES
WES
WE5
WES
WES

2831M
2831P
2631S
26328
28320

CF
CF
CF
CF
CF

2781H
2781K
2781M
2781P
27815

5
S
5
S
S

WES
WES
WE5
WES
WE5

2781H
2781K
2781M
2781P
27815

CF
CF
CF
CF
CF

S
S
S
S
S

WES
WE5
WE5
WES
WE5

2512F
2512H
2512K
2512M
2512P

2512S
2512V
25122
2513B
25130

S
S
S
S
5

WES
WES
WES
WES
WE5

2513F
2513H
2513K
2513M
2513P

S
S
5
S
S

2513S
2513V
25132
25132B
2513Z0

Note: Manufacturer's Codes, Product Type Notes and@ Replacement Notes are listed on page G3
G36

Type Mfg •.

2543M
2543M51
2543P
2543P61
2543S

2612F
2512H
2512K
2512M
2512P

Suggestod@
Replacement

Page

Type Mfgr.

Page

Part Number

27B1V
2781Z
27B2A
27B2B
27820

S
S
S
S
S

WES
WES
WES
WES
WES

27B1V
27B1Z
27B2A
27B28
27B20

CF
CF
CF
CF
CF

43892
43B92R
43893
43893R
43B94

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3892
IN3B92R
IN3B93
IN3893R
R3D2OB12

R55
R55
R55
R55
R55

27B2F
27B2H
27B2K
27B2M
27B2P

S
S
S
S
S

WES
WES
WES
WES
WES

27B2F
27B2H
27B2K
27B2M
27B2P

CF
CF
CF
CF
CF

43B94R
43B99
43899R
43900
43900R

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

R3D30612
IN3B99
IN3B99R
IN3900
IN3900R

R55
R57
R57
R67
R57

27B2S
27B2V
27B2Z
27B2Z0
3001PON80

S
S
S
S
R

WES
WES
WES
WES
IR

27B2S
27B2V
27B2Z
27B2Z0
CF

CF
CF
CF
CF
CF

43901
43901R
43902
43902R
43903

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3901
IN3901R
IN3902
IN3902R
IN3903

R57
R57
R67
R57
R57

3001PON80
3001 PDNI 00
3001PDN120
3001PDN14O
3001PDNI80

R
R
R
R
R

IR
IR
IR
IR
IR

CF
CF
CF
CF
CF

CF
CF
CF
CF
CF

43903R
43904
43904R

R
R
R

RCA IN3903R
RCA R402OB20
RCA R4030620

40108
40108R
40109
40109R
40110

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN1199A
IN1199AR
INI200A
IN1200AR
IN1202A

R13
R13
R13
R13
R13

40110R
40111
40111R
40112
40112R

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

INI202AR
IN1203A
INI203AR
IN1204A
IN1204AR

R13
R13
R13
R13
R13

40113
40113R
40114
40114R
40115

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN1205A
INI205AR
IN1206A
INI206AR
IN3671A

R13
R13
R13
R13
R13

40115R
40208
4020BR
40209
40209R

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3671AR
IN1191
IN1191R
IN1192
IN1192R

R15
R15
R15
R15

40210
40210R
40211
40211R
40212

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN1194
IN1194R
IN1195
IN1195R
IN119S

R15
R15
R15
R16
R15

40212R
40213
40213R
40214
40214R

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN119SR
INl197
IN1197R
INl19B
INl19BR

R15
R15
R15
R15
R15

40741
40742
40743
40754
40755

S
S
5
S
5

RCA
RCA
RCA
RCA
RCA

T40001100B
T40002100B
T40003100B
T400011608
T40002160B

S13
513
S13
S13
S13

40756
407E/7
40956
40956R
40967

5
5
R
R
R

RCA
RCA
RCA
RCA
RCA

T40006160B
T400041608
INllB3A
INllB3AR
INllB4A

513
513
R16
R15
R15

40967R
40958
4095BR
40959
40959R

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

INllB4AR
INl186A
INllB6AR
INllBBA
INl18BAR

R15
R15
R16
R15
R15

40980
40980R
43879
43B79R
43880

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

INl190A
INl190AR
IN3879
IN3879R
IN3880

R15
R15
R55
R55
R55

438BOR
43B81
43BBIR
43882
43BB2R

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3B80R
IN38Bl
IN3B81R
IN3882
IN388ZR

R55
R55
R55
R55
R55

438B3
43883R
43884
43884R
43889

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3B83
IN3B83R
R3020S06
R3030806
IN3889

R55
R55
R55
R55
R55

438a9R
43890
43890R
43B91
43B91R

R
R
R
R
R

RCA
RCA
RCA
RCA
RCA

IN3889R
IN3890
IN3890R
IN3891
IN3891R

R55
R55
R55
R55
R55

Part Number

Typo Mfgr.

R67
R57
R57

"1.$

Note: Manufacturer's Codes, Product Type Notes and@Replacement Notes are listed on pageG3

G37

.

"

Designed with YOU in Mind
Ideal for all users of power semiconductors regardless of
job'function, technical background, and experience level.
.

-,~

."",

•

...

--

"---.

.

~s-

•

<

:

•
•
•
•

0::-..
.'

".tVeJ'=~
.......
.'

Two books in one
8Y2 x 11 format
Easy to read
Fully indexed

tlMfa. .

:

' , .

:'.

:

':

-""',

•

",

.

• Master cross reference
• Complete product data
• 432 Pages

U..S. $6.50 • Book Rate Postage Included. Elsewhere $7.50
This valuable reference book will save you
time and money when specifying, buying,
installing, testing, maintaining, troubleshooting, servicing, identifying, and
replacing power semiconductors. Order your
copy today.

Send check or money order (payable in U.S.
funds) to:
Westinghouse Electric Corporation
Book Order
Semiconductor Division
Youngwood, Pa. 15697

Acceptance of Orders
The conditions stated below shall take precedence over any conditions which may
appear oli your standard form, and no provisions or conditions of such form, except as
expressly stated herein shall be binding on Westinghouse. Notice of objection ·to any
additional or different terms is hereby given.©

may develop under proper or normal use
during the period of one year from the
date of shipment. by repair or replacement
f.o.b. factory. of the defective part or parts.
or. at its option. issue credit at the original
purchase price.

Order Entry
Send all orders for quantities shown in PL 54~020 to our authorized full line Westinghouse
distributor. Orders for larger quantities may go to:
Westinghouse Electric Corporation
Semiconductor Division
Youngwood, Pennsylvania 15697
Telephone: 412-925-7272
TVVX:
510-468-2840

Standard Conditions of Sale
Price Policy
Prices are firm for orders specifying
delivery within six months from acceptance of order by Westinghouse. Shipments scheduled beyond six months
from order acceptance. or held or postponed beyond such six months at the
request of buyer. are subject to price
adjustment to price in effect at time of
shipment. Such adjustment will not apply
to products scheduled for shipment within
thirty days of the date of notification to
bUY81 of the price adjustment.
Minimum Billing
The minimum order shall be $250.00 plus
transportation charges.
Taxes
The prices do not include any Federal.
State or Local property. license. privilege.
sales. use. excise. gross receipts or other
like taxes which may now or hereafter be
applicable to. measured. by or imposed
upon or with respect to the transaction.
the property. its sale. its value or its use.
or any services performed in connection
therewith. Purchaser agrees to payor reimburse any such taxes which Westinghouse or Westinghouse's subcontractors
or suppliers are required to pay.
Terms of Payment
Terms of payment are net within 30 days
from date of shipment.
Payments
If, in the judgment of Westinghouse. the
financial condition of the purchaser. at any
time during the manufacturing period. or at
any time product is ready for shipment.
does not justify the terms of payment specified. Westinghouse may require full or
partial payment in advance.

© Changed since previous issue.

Delivery
F.O.B.-P.S.-Frt./Coli. (Transportation
charges. not allowed). This product is
delivered Free on Board. Point of Shipment. Freight Collect (Transportation
Charges not allowed).

Loss. Damage, or Delay
Westinghouse shall not be liable for failure
to perform or for delay in performance due
to fire. flood. strike or other labor diffiCUlty. act of any governmental authority
or of the purchaser. riot. embargo. car
shortage. wrecks or delay in transportation,
inability to obtain necessary labor. materials.
or manufacturing facilities from usual
sources or due to any other cause beyond
its reasonable control.
In the event of delay in performance due
to any such cause. the date of delivery or
time for completion will be postponed by
such length of time as may be reasonably
necessary to compensate for the delay.
Warranty
Lifetime Guarantee
Westinghouse warrants to the original
purchaser that it will correct any defects in
workmanship or material. by repair or replacement. F.O.B. factory or. at its option.
issue credit at the original purchase price.
for any silicon power semiconductor
bearing this symbol + during the life of
the equipment in which it is originally
installed. provided said device is used
within manufacturer's published ratings
and applied in accordance with good
engineering practice.
Other Semiconductor Products
Westinghouse. in connection with products
sold. agrees to correct any defect or defects in workmanship or material which

Developmental Products
Westinghouse semiconductor products
designated at the time of sale to be developmental are warranted to meet the applicable preliminary specifications in effect
at time of order entry. If any failure to comply with such preliminary specifications
appears within 12 months from date of
shipment. Westinghouse will correct such
non-compliance by repair or replacement
f.o.b. factory. or. at its option. issue credit
at the original purchase price.
The foregoing warranties are exclusive and
in lieu of all other warranties of quality
whether written, oral, or implied (including
any warranty of merchantability or fitness
for purpose).
Correction of non-conformities in the
manner and for the periods of time specified above shall constitute fulfillment of all
liabilities of Westinghouse to the purchaser
whether based on contract. negligence or
otherwise in respect to such products.
Limitation of Liability
Neither party shall be liable for special.
indirect. incidental or consequential damages. The remedies of the purchaser set
forth herein are exclusive and the liability
of Westinghouse with respect to any contract or sale or anything done in connection therewith. whether in contract. or in
tort (including negligence) shall not
exceed the price of the equipment or part
on which such liability is based.
Patents
Westinghouse shall at its own expense.
defend any suits or proceedings brought
against the purchaser. and/or its vendees.
mediate and immediate. so far as based on
an allegation that any goods. material.
equipment. device or article (hereinafter
referred to as product) or any part thereof
furnished hereunder constitutes an infringement of any claim of any patent of the
United States, other than a claim covering
a process performed by said product or
another product produced by said product.
provided that such product is not supplied
according to purchaser's design. and is
used as sold by Westinghouse. if purchaser
January 2. 1978
Supersedes Selling Policy 54-000. pages 1 and 2.
Dated February 26. 1976

G39

The purchaser should immediately inspect
Patents. Continued
each shipment. and if there is evidence of
shall have made all payments then due
loss or damage during transit. should file
hereunder. and if Westinghouse is notified
a claim against the carrier. Westinghouse
promptly in writing and given authority.
may assist with such claims. but will not
information and assistance for the defense
accept any responsibility for the claims.
of said suit or proceeding. and WestingAny adjustments in such cases are behouse shall pay all damages and costs
tween the purchaser and the carrier.
awarded in any suit or proceeding so defended. provided that this indemnity shall
License Notice
not extend to any infringement based upon
The sale of any product hereunder does
the combination of said pro<;tuct or any
not convey any license. express or implied.
part or parts thereof with another product
under any patent claims on circuits. sysor things not furnished hereunder unless
tems or processes. or on any combination
Westinghouse is a contributory infringer.
of the product with other devices. eleWestinghouse shall not be responsible for
ments or things.
any settlement of such suit or proceeding
made without its written (:onsent. In case
Termination©
the product or any part thereof furnished
Any order may be terminated by the
hereunder is in any suit or proceeding' so
purchaser only upon'payment of reasondefended held to constitute infringement.
able cancellation charges which will be
and its use is enjoined. Westinghouse
determined by Westinghouse in
shall. at its own option and its own exconjunction with expenses and
pense. either procure for the purchaser the
, !)ommitme.nts,incurred.
right to continue using said product ,0(.'
,part thereof; or replace it with a non-in';,.
fringing product; or modify it so'it b;;-'"'' " ,'. The iri'inimum charge for an order which is
cancelled after Engineering has been
comes non-infringing; or remove it and
completed prior to release to Production
refund the purchase price and the transwill be $250,00. or 2% of the selling price.
portation and installation costs thereof.
whichever is greater. If an order is
The foregoing states the entire liability of
cancelled after it has been released to
Westinghouse with respect of patent inProduction. an additional charge will be
fringement by said product or any part
made in proportion to the percentage of
thereof.
completion of the order. The additional
charge will be based on material. labor.
To the extent that said product. or any
and overhead costs plus a 15% markup to
part thereof. is supplied according to
compensate for disruption in scheduling.
purchaser's design or instructions. or is
disruption in planned production. lost
modified by purchaser. or combined by
profit. and other indirect costs.
purchaser with another product or things
not furnished hereunder except to the exReturning Product
tent that Westinghouse is a contributory
Authorization and shipping instructions for
infringer. or is used by Pllrchaser to per~
the return of any product must be obtained
form a process. or produce another prodby the purchaser from Westinghouse beuct. and. by reason of said design,instrucfore returning the product. Product must
tion. modification. combination. performbe returned with complete identification in
ance. or production. a suit or proceeding
accordance with Westinghouse instrucis brought against Westinghouse. purtions or it will not be accepted. Where a
chaser agrees to indemnity Westinghouse
purchaser requests authorization to return
in the manner and to the extent Westinghouse indemnifies purchaser in the preced- product for reasons of his own. he will be
.charged for placing the returned goods
ing paragraph insofar as the terms thereof
in salable condition (restocking charge)
are appropriate.
and for any outgoing and incoming transportation paid by Westinghouse.
Title - Risk of Loss
The product shall remain the personal
In no event will Westinghouse be responproperty of Westinghouse until fully paid
sible for product returned without proper
for in cash. and the purchaser agrees to
authorization and identification.
perform all acts which may be necessary
to perfect and assure the retention of title
to such property by Westinghouse. Risk of
loss of·the product. 'or any part of the
same. shall pass to the purchaser upon
delivery of such product or pert.F.O.B .•
point of, shipment.
© Changed since previous issue.

..

G40

This schedule is to be used for
general planning guidelines only.
These typical factory lead times
'Iisted do not include order transmittal time to the semiconductor
factory or shipping time to the
user's plant. Please contact Westinghouse for specific requirements.
Check with the local authorized
distributor for off-the-shelf delivery
on most rectifier, SCR, transistor,
and modular rectifier assembly
products.
There are several points worth
noting about power semiconductors when planning for volume
purchases. Semiconductors are yield
dependent devices - once manufactured, if they don't meet the
desired specification, they usually
cannot be altered or modified. Also,
ordering the highest current rating,
highest voltage rating, and fastest
turn-off time device in a given
product family usually results in a
longer lead time due to lower
production yield. As with most any
type of manufactured product, unforeseen delays in shipping product
due to late parts delivery, parts
shortages, receipt of inferior or Ol,ltof-spec component parts, can occur. The actual quantity required by
the user of a given semiconductor
type as well as the general market
demand for the device can also
affect the product's lead time.
Therefore, the user should work
closely with the manufacturer to
assure on-time delivery of the
needed semiconductors.
The best way to assure a steady
flow of semiconductors into your
pia nt is to enter a pu rchase order on
the manufacturer with scheduled
monthly releases. An alternate
approach would be a purchase
agreement to buy a certain number
of power semiconductors (particular type) in a specified period of
time. The purpose of either of these
approaches is to provide the semiconductor manufacturer with better
planning visibility so that the factory
can match its production schedule
to your actual requirements.

TYPICAL FACTORY LEAD TIMES
Typical
Factory
Lead Time

Shipping
Quantity

(Am......l

Voltage
Range
(Volte)

2-25
12-1650
197-8700
588-13,580
900-2200(RMS)

50-1000
100-2000
100-4000
100-4000
1200-3000

.5-325
6-450

1K-688K
2K-72K

500
100
100
100
100
50
50
50

1-2
4-8
4-8
4-8
4-8
4-12
6-8
6-10

General Purpo.e
1-6
3-16
15-70
100-150
160-550
300-2200

50-1000
50-1000
50-1200
100-1400
50-4000
l00-4pOO

1000
500
500
100
100
100

2-4
1-2
1-2
2-4
2-4
4-6

50-600 _
50-1600
100-32.00

100
100
100

2-6
4-6
4-8

Currant
Rangea

Product
Type

Data Book
Location
(Page Numbers)

(Weakll

ASSEMBLIES
A3,A4
A5-A36
A39-A44
A45-A51
A52-A55
A65-A66
A69-A75
A76-A79

Modular Rectifier
Gold Line
Air Cooled Disc
Liquid Cooled Disc
Liquid Cooled Manifold
Sinks and Kits
H.V. Stacks, Channel
H.Y. Stacks, Plate

RECTIFIERS
R9-R12
R13,R14
R15-R18
R19-R26
R27-R38
R39-R54

Axial Lead Mount
Stud Mount
Stud Mount
Stud Mount
Stud Mount
Disc Mount

R55-R58
R59-R66
R67-R78
THYRISTORS
59-518
S19-530
531-540
541-554
555-570
571,572
573-576

Stud Mount
Stud Mount
Disc Mount

Fast Recovery
6-30
80-250
350-1400

Stud Mount
Stud Mount
Stud Mount
Disc Mount
Disc Mount
Integral H.S.
Flat 8ase

Pha8e Control SCR'.
10-22
25-1200
40-80
25-1500
125-350
50-2200
125-550
100-2200
600-1400
100-3000
300
100-2000
175-350
100-1600

100
100
100
100
100
50
50

2-4
4-6
4-6
4-6
6-8
4-6
4-6

577-582
583-594

Stud Mount
Disc Mount

Fast Switching SCR'.
40-325
100-1200
60-900
100-2200

100
100

4-8
6-10

595,596
597,598

Stud Mount
Disc Mount

600-1000
600-1000

100
100

6-8
6-10

40-150

1000

4-6

30-250

100

4-6

50
50

8-12
8-12

TRANSISTORS
T5-T14
T15-T32
T33,T34
T33,T34

TO-66/TO-3
Stud Mount
Stud Mount
Disc Mount

RBDT'.
22
125
General Purpose
.5-15"
High S.O.A.
1.5-25"

High Power Fast Switching
50'
400-500
50"
400-500

"Gain Rated Current

For volume users of high power
semiconductors, Westinghouse offers a program that can help save
you and your company time and
money. Westinghouse will carry
your safety stock, at no cost to you,
in the form of a bonded element
inventory selected to your specifications and with guaranteed delivery
time for encapsulating these elements into any device package you
desire. In addition, this program will

allow Westinghouse to respond
more rapidly to sudden increases in
your production levels. Therefore,
by letting Westinyhouse carry your
safety stock, you not only get a
guaranteed delivery lead time, but
your company realizes an improvement i.n its cash flow as a result of
the reduction in committed captial.
For fast delivery and prompt service,
specify Westinghouse power semiconductors.

G41

Westinghouse has been a pioneer in the manufacture of reliable power semiconductors for both
commercial and military applications worldwide. From simple conditioning tests to a full-scale high
reliability test program, Westinghouse can deliver a product to meet any required level of reliability.
A complete line of high power military rectifiers are available in both standard and reverse polarity.
The JAN type numbers and their respective ratings are as follows:
100 Ampere/DO-8 Package
MIL-S-19500/246
VOLTAGE
RATING

240 Ampere/DO-9 Package
MIL-S-19500/211

TYPE NUMBER

TYPE NUMBER
JAN 1 N3164, R

400V

JAN 1 N3289, R
JAN 1 N3291 , R

600V

JAN 1 N3293, R

JAN 1 N3170, R

800V

JAN 1 N3294, R

JAN 1 N3172, R

1,QOOV

JAN 1 N3295, R

JAN 1 N3174, R

200V

JAN 1 N3168, R

For copies of the military specifications, contact the Commanding Officer, Naval Publications and Forms
Center, 5801 Tabor Avenue, Philadelphia, Pa. 15120.
Westinghouse power semiconductors have been selected for use in a
-NAVY NUCLEAR (SVFC)

v~riety

of high reliability programs.

-APOLLO

- SEA SPARROW
- AIR LAUNCH CRUISE MISSILE

-SATURN MISSILE

-'F15, F16

-NIKE X
-Baa SONAR

- KC 135
-ARSR-3

-SHILLELAGH

-TPS-43

- AIRBORNE CAMERA SYSTEM

-D2W

-MARK 46/48

-SST

- MOL PROGRAM
-AWG10

-50556

- A.A.F.S.S.

- SIRDIPS

- LEM PROJECT
- PHASE ARRAY RADAR

- TRC-170

- SPRINT/SPARTAN (A.B.M.)

- DE1160

- LORAN C
- TRIDENT SUBMARINE

-C5A
- E2C RADAR
For the utmost in reliability, specify Westinghouse power semiconductors.

G42

Introduction
Semiconductor devices control large amounts
of power with high efficiency and reliability.
With ever-increasing circuit and device
power levels, the requirement for adequate
cooling of semiconductors is mandatory. The
problem for the user is to properly assemble
the devices into equipment without reducing
thei~ capability. Regardless of whether the
device is a lead mount, stud type, flat base or
disc, certain mounting procedures must be
adhered to in order to get the most reliable
device "peration. The amount of heat involved requires proper mounting to prevent
unwanted temperature rise or damage to the
semiconductor. This AD sheet discusses
proper mounting methods and surface preparation required for successfully applying
semiconductors.

Equivalent Electrical
Schematic
,. ~Analogof
DeVice Power

Heat

-lj

I

>"'---Devlce and
Encapsulation
-TC

-TS
ReSA

j.\1

Mechanical
Analog
Parameter
T
- Temperature v -Voltage
AT -Temperature AV -Voltage
Difference
Difference
*Re -Thermal
Resistance
P

R -Electrical
Resistance

-Heat Source
-Current Source
*Re -Units of °CIWatt
P -Units of Watts

Thermal losses at the junction and in device
resistance must be conducted through device
and package to the ambient. Under stable
operating conditions, the resulting AT,
between the junction and the ambient is
expressed as
A TJA
P x R9JA

=

For stud and disc types Re is made up of three
quantities so the thermal equation may be
written:
A TJA = P(ReJc + Recs + ResA)

Source of
Thermal
Resistance

_ _ Heat Sink and Coolant

e--TA

-TA

Fig. 1: Mechanical-Electrical Analog of Stud Mounted Device.

Thermal Resistance Analogs
Semiconductor heat flow is conveniently
depicted by the thermal-electrical analog
illustrated in Figures 1 and 2. These figures
show the heat flow paths for the stud and disc
type devices, respectively. The discussion will
cover one heat flow path as in Figure 1, but
apply equally to Figure 2. In the diagrams, the
following quantities are analogs.

'.,
6;

~r--- Contact Resistance

Recs

Equivalent Schematic
-TA
ReSA

...--- Sink Resistance

Recs

....--- Contact Resistance

ReJC

ReJC

....--- Device Resistance
Cathode
- TJ
Anode
....--- Device Resistance

Recs

.....--Contact ReSistance

ReSA

...--- Sink Resistance

-TS(K)
Cathode
Side

-TC(K)
TCIKl
TC(A)

r

Heat

1

A)

Anode
Side

t

-

Source of
Thermal
Resistance

-TC(A)

-TS(A)

-TA

Fig. 2: Mechanical-Electrical Analog of Oisc Mounted Device with Double Sided Cooling.

properties for this double side cooled device
responds in the same manner described for
stud type dey-ices.

Stud type thermal resistance (ReJc) is determined by device design. The heat sink
thermal resistance, (ResA), is similarly fixedby the dissipator selected and the amount of
coolant used. The remaining thermal resistance quantity, Recs, is the variable which
should be reduced to lowest practical levels
by proper mounting procedures. These
procedures include preparation and treatment of the mating surfaces, use of joint
compounds, and applying the required force
to the mating surfaces.

These lead mount devices are not affected by
load force, and surface finish as are the
higher power devices mentioned previously.

When using disc devices the ReJC value is
effected by how well the recommended
mounting force is applied. The case to sink

Surface Requirements
The condition of the sink mounting surface is
one of the most important mounting details.

Lead mount semiconductors have their
internal resistance predetermined by how
well they are soldered together. The axial
lead, bonded directly onto the wafer takes
heat out of the body and radiates it to the
surrounding ambient. A detailed thermal
analysis is provided in the lead mount data
sheet.

The following sections describe what limits
should be met on flatness and surface finish
to minimize mounting resistance due to
surface problems.
a. Surface Flatness
Surface flatness is specified as a total
,indicator reading (TIR), measuring the
maximum distance between the crests
and valleys of the mounting surface. The
flatness of the mounting plane is referenced to the maximum deviation measured in the device mounting area.
For satisfactory mounting, the device
seating area should be held from .0005 to
.001 nR. Commercial extruded heat sinks
do not have comparable flatness values. In
addition, cast sinks, rough plates, etc. will
require additional treatment.

G4~

-------

b. Surface Finish
A second sink condition of importance is
surface finish. All surfaces have a roughness factor. This value is expressed in
microinches and is the average of the
deviations above and below mean value of
the deviations.
In general, the surface finish should be
approximately 30-60 microinches, which
is the equivalent finish supplied on Westinghouse semiconductor devices. Finer
finishes add undue cost and, in general,
do not result in lower contact drop at the
mounting interfaces.
Table 1 shows the approximate surface
roughness obtainable with various production methods. Generally speaking, mill
finish or machined surfaces on copper or
aluminum will be satisfactory if they are
flat and free from deep scratches. Castings or rough extrusions should be spotfaced to insure flatness and finish. A
suitable procedure is to measure a sample
surface on a production run, and if satisfactory, proceed with production based on
machining techniques. Periodic sample
testing will assure that tool wear, etc., is
not affecting the desired values.

trical and thermal insulator which offers
resistance to heat flow. Therefore, it must
be removed from' the mounting area. Another treated aluminum finish is irridite, or
chromate acid dip, which offers low resistances because of its thin surface. But, for
optimum performance, the device seating
area should be spotfaced to remove the
irridite finish. For economy, paint is sometimes used for sinks. When this finish is
used, cleaning is mandatory, because of high
thermal and electrical resistance.
Thermal Compounds
Following all the prescribed procedures
previously listed, it is still possible to have air
voids between mating surfaces. To optimize
contacts, thermal joint compounds are used.

Other approved thermal compounds are Dow
Corning 342 available from Dow Corning
Corporation in Midland, Michigan or Silicone
Oil SF 1154 available from the General
Electric Company.
Mounting Pressures
Optimum m-ounting pressures for -device
types have been determined by empirical
tests. Based on the results of these experiments, the device tabulations were generated
for Table 2. Lower than recommended torques
or forces can result in overheating and higher
values may result in cracked silicon or internal
contact problems. For higher or lower torque
and force values, contact Westinghouse.

The formula for thermal resistance of any
substance is:
Re

="t/A

----

Pal Nut
Hex Nut

where Re=thermal resistance of the film in
DC/Watt

p = specific thermal resistance of the
film

Fig. 3-A: Typical Non-insulating Hardware Kit.

.

t = average film thickness of the film
in inches

Hex Tenznut

A=film area in square inches
Table 1 Surface Texture vs. Process
All Values are in Micro-inch Average Deviation
Process
Polish
Hone
Grind
Electrolytic Grind
Barrel Finish
Bore, Turn
Die Cast
'Broach, Ream
Mill

Normal Range (Min.)
Average Tooling
4 to 16
4 to 32
4 to 63
8 to 32
8 to 32
16 to 250
32 to 63
32 to 125
32 to 250

Treated Mounting Surfaces
To produce a reliably low electrical and
thermal resistance between the contacting
surfaces it is necessary that they be free of
all foreign material, oxides, andfilms. Freshly
machined surfaces are generally free of
these contaminants if used immediately.
Bear in mind that freshly bared aluminum
forms an oxide film in a matter of seconds.
Other types of metals, such as copper and
steel, oxidize more slowly.
As a precautionary measure, all mating surfaces, and particularly aluminum, should be
used immediately after machining. If they
are stored, a cleaning operation is good
practice. A satisfactory cleaning technique is
to polish the mounting area with No. 000 fine
steel wool, followed by an alcohol or warm
soap and water wipe.
Many aluminum heat sinks are black anodized for appearance, durability, and performance; however, anodizing is an elec-

The values of p will vary from .10°C inches
per watt for copper film to 12000C inches
per watt for air, whereas a satisfactory joint
compound will have a resistivity of approximately 60°C inches/watt. Therefore, the
voids, deep scratches, and imperfections
which are filled with joint compound, will
have a thermal resistance of about 1 /2Oth of
the original value.
Westinghouse recommends the use of Alcoa
#2 electrical joint compound to fill these
voids. This compound contains an active
chemical in a grease type medium that dissolves the oxide film, present on most heatsink mounting surfaces, and seals the joint
against moisture. Some compounds attack
the surface, with localized action going relatively deep. With this compound, however,
the surface is lightly etched with no deep
localized attack; it attacks the oxide and not
the metal.
All heat exchanging surfaces should be
cleaned as mentioned previously. Apply
Alcoa #2 compound to all heat exchanging
surfaces sparingly with the use of a spatula or
lintless brush. Another method is to place a
predetermined minimal amount at or around
the center of the contact area and then rotate
the device back and forth while pressing it
into the heat sink. In this fashion, excess compound will be forced out and may be wiped
clean. Prolonged skin contact with the
compound should be avoided since it does
contain a fluoride ·base. It is recommended
that after using the compound, any skin areas
which were in contact with the compound
should be washed clean ..

Fig. 3-B: Alternate Non-insulating Hardware.

Fig. 3-C: Typical Insulating Hardware Kit Assembly.

Standard mounting hardware for stud devices
includes a nut and locking washer, or a pal
nut. With either combination, the nutshould
be carefully tightened applying the torque
indicated for the type of device shown in
Table 2.
An illustration of standard mounting hardware for stud devices is shown in Figure 3.
Standard hardware kits are available to
accomodate mounting all semiconductor
types. The appropriate kit is identified by a
code number as shown in the last three
colu mns ofT able 2. These codes are explained
in Table 3 as to what components cot:ne. in
each kit.
Alcoa #2 Joint Compound is available from .•. Alcoa
Conduct8 Products Company. Division of Aluminum
Company of America, Pittsburgh, Pennsylvania.

G44
1

!'

Table II

Semiconductor Mounting Torque. Force. and Hardware

. Pack8ge
Description
Stud Mount
Stud Size
.190-32

.250-28

Package
Outline

00-4

® IApplicable JEDEC Series Types

Insulating

Tenz
Nut

20 (2.22)

31

32

25

30 (3.33)

14

34

37

50 (5.56)

56

17

19

R500/R501/R502/R503/R510/R5111

120 (13.35)

99

-

98

IN3288A/IN4587
Rectifier
R500/R501

130 (14.46)

02

-

01

360 (40.06)

03

-

04

10(1.11)
10(1.11)

-

22*
20*

-

Rectifier
R302lR303/R31 0/R311 IIN1199. A.B
IN 1341. A. B/IN 16121IN3615/IN3670. A
IN3987/1N4458
Rectifier

R402/R403/R404/R405/R410/R4111

00-5

IN248. A.B. C/IN1183. AlIN1191. A
IN2154/1N3208/1N3765
RBDT
T40R
SCR
T400/2N681/2N1842.A
Transistor

MT-52

Mounting Hardware Codes
Non-insulating

00-5

TO-48

Mounting
Torque
Lb-In (N-M)

153/15412N3429
Transistor

.312-24

MT-1
MT-33

.375-24

00-8

151/152/2N1015/2N1016/2N2226
163/164/2N2757/2N3470
Rectifier

.500-20

00-30

SCR

.750-16

Diamond
Base Mount
Axial Lead
Mount

Flat Base
Mount

TO-941

T500/T507/T510/2N1792/2N19091

TO-83

2N2023/2N4361/2N4371
Rectifier

00-9

R600/R601/R602/R603/R610/R611

R70

IN2054/1N3161/1N3260/1N3735/1N4044
R700/R701
SCR

TO-93
T70

T600/T607/T610/2N3884
1700/T707

060

Transistor
060T

TO-66
TO-3
00-41
00-27
00-15
rvOO-27
R34
T68
T78

Integral HeatSink Mount

176

2N305412N3441

2N3055/2N3232-33/2N3236/2N34421
2N3771.2. 3/2N4347-48
IN4001-07
IN4816-22/IN5052-54
IN5391-99
IN5400-08
R340
T680 (2.4" Square Base)
T780 (Stud less)

17601T767

-

None Required

Solder Leads
to Terminals

25 (2.78) Per 80lt

Four .312-24 bolts supplied by Customer

Spring flat and
parallel to
mounting plane

26**

Bolt used for
electrical connection only.

-

-

.5-20 Bolt supplied by customer.

• *(2) .138-40 Bolts required per device. Bolts supplied by customer.
**(2) .312-24 Bolts required per device. Bolts supplied by customer.

G41S

Semiconductor Mounting Torque. Force. and Hardware (Continued)
Package
Description

Package
Outline

Mounting
Force
LB iKN)

. @/APPlicable JEDEC Series Types

Mounting Hardware Codes

Disc Mount
Interface Oia.
In. (mm)
.75 (19.05)

R62

Rectifier
R620/R622
RBDT
T62R
SCR

1400 (6.2)

1000/4.5

T52
T62

T520/T527
T620/T625/T627

1400 (6.2)

062

Transistor
062T

1400 (6.2)

Rectifier
1.34 (34.04)

R72

2400 (10.7)

R720/R722
SCR

T72

Clamp Purchased Separately

T720/T7271T72H
Rectifier

1.75 (44.45)

RS2

RS20

5500 (24.5)

SCR
TS2
1.S0 (48.26)

RSG

TS20
RSGO/RSG2

6000 (26.7)

SCR
TSG

TSGOITSGH
Rectifier

2.48 (62.SS)

RA2

RA20

1

~600 (53.4)

SCR
TA2

TA20

Device - - - - - - - - - - - - - - . 0 0 ;
Suitable Thermal Joint Compound
Applied.
Heat Sink Mounting Plate

Mounting Surface
Finish:
30 to 60 Microinches per
Inch Clear of all Oxides,
Paints and Foreign Particles.
Flatness:
Flat to .001 TIR Min.

Chamfer Edge .01" Radius
to Remove Burrs
fastening Hardware:
a) Hex Nut plus Pal Nut or Lockwasher
-orb) Hex Tenznut (Alternative)

Flat Bearing Surface

Fig. 4: Recommended Mounting Practices and Finishes for Stud Mount Devices.

G46

Mounting of Stud Type Devices
Figure 4 presents an exploded view of a studtype device and shows the various recommendations of surface flatness and finish. It
should be noted that the diameter of the
mounting hole should not exceed the diameter of the stud by more than '164" and that
the edge of the hole should have a chamfer
not exceeding .01" radius.
The fastening hardware shown consists of a
nut and a locking feature, either pal nut or
lock washer. Either type will work as .long as
proper torque is applied. It is very importantto
apply the torque with a good torque wrench
such as those sold by P.A. Sturtevant Co. and
Snap-On Tools Corporation or other reputable
firms.
It should be noted that Westinghouse does
not recommend as standard practice drilling
and tapping holes for mounting stud type
devices. This is due to the need for 'Ito of a
degree perpendicularity necessary between
the hole and mounting surface.
Mounting Flat-Base Devices
In mounting flat-base devices the required
pressure is obtained by fastening tne device
corners or edges with bolts. The pressure
should be applied in a staggered fashion such
as tightening opposite corners to one half the

recommended torque as per Table 2 and then
finally apply the necessary remaining torque
in the same staggered fashion. Special "studless" devices are mounted by mounting
springs as shown in Figure 5. Proper
mounting pressure is applied when the
spring is flat and parallel to the heat sink
surface.
Mounting Discs
Disc's achieve higher current ratings due to
improved heat transfer capabilities. This is
made possible by two heat paths and greater
heat cc.nduction area. Since these devices
are fabricated without mounting features.
such as studs. plates or retainer assemblies.
the devices must be mounted with external
force.
The required clamping force must be applied
perpendicular to the disc surfaces and should
be uniformly distributed over the total contact
areas. To achieve this. the clamping system
must assure sink-device parallelism via
appropriate clamp construction and mounting
technique.
Westinghouse offers a clamp which provides
uniform distribution of the required pressure.
This distribution of pressure is accomplished
by a ball and socket type gimbaling mechanism. The force is applied via a spring bar or
bars depending on the magnitude of the force
to be delivered. This clamp is available with
a mechanical force gauge to acknowledge
what force is applied. The stud length is
variable to accomodate different lengths of
clamping columns.
An exploded view of an assembly consisting
of a disc type semiconductor with double side
cooling and the Westinghouse clamp is
shown in Figure 6.

Table III

Semiconductor Mounting Hardware

CODE NUMBER

TYPE

HARDWARE DESCRIPTION

01

Tenz nut

.5-20 Nut-washer combination

02

Non-insulating

.5-20 Hex nut and pal nut

03

Non-insulating

.75-16 Hex nut and pal nut

04

Tenz nut

14

Non-insulating

17

Insulating

.312-24 Nut. mica washer.
glass sleeve. solder lug. pal nut
and shoulder bushing

.75-16 Nut-washer combination
.25-28 Hex nut and pal nut

19

Tenz nut

.312-24 Nut washer combination

20

Insulating

Mica sheet and (2) bushings

22

Insulating

Mica sheet and (2) bushings

25

Tenz nut

.190-32 Nut-washer combination

26

Spring bracket

Spring. spacer and safety bracket.
Bolts supplied by customer

31

Non-insulating

.190-32 Nut and lock washer

32

Insulating

.190-32 Nut. shoulder bushing.
mica washer. lockwasher and
solder lug

34

Insulating

.25-28 Nut. shoulder bushing.
mica washer. lockwasher and
solder lug

37

Tenz nut

.25-28 Nut-washer combination

98
99

Tenz nut
Non-insulating

.375-24 Nut-washer combination
.375-24 Hex nut and pal nut

Note: Semiconductor DeVice Hardware IS supphed upon request only. Most
standard non-insulating hardware kits are available free of charge if specifically
requested when ordering devices. Insulating kits, tenz nuts. and other special
hardware kits are available at extra cost-consult factory.

A recommended procedure for mounting disc
types is as follows:
1. Check mounting surfaces of semiconductor and heat exchanger to insure no
large scratches. nicks or irregularities are
present.
2. Mounting surfaces should be free of
oxides. films or foreign materials in order
to have good heat exchanging properties.
Surfaces should be rubbed lightly with
000 steel wool and swabbed with alcohol
immediately prior to assembly. Surfaces
should not be touched after cleaning.
Parts may be placed on a lint free surface
until final assembly.
3. Pre-assemble any roll locating pins to be
used with a light hammer into the center
dowel hole in each heat sink if necessary.
A gauge block is useful to prevent excessive length of this pin.
4. Polarity of the device should be checked
prior to assembly to insure the device is
installed in the desired direction.

Spacer
Device - - - - - - - - - } -.........

Finish:
Surface to be 30 to 60 Microinches.
Flatnass: Flat to .001 TIR Min.

Safety Bracket
Spring
Suitable Thermal Joint Compound
Applied.

Heat Sink - - - - -....

Fig. 5: Mounting Procedures for Studless Device.

5. For assembly the contact surfaces of the
semiconductor and heat sink should be

G47

Clamp
(Epoxy Coated)
Finish: Surface to be 30 to 60 Microinches.
F1.tn.ss: Flat to .001 TIR.
Suitable' Joint Compound Applied.

Fig. 6: Mounting Procedure For Disc Mounted Devices (Exploded Viewl.

lightly coated with Alcoa #2 (or suitable
substitute). The device should then be
centered on the heat sink. If dowel pin
locators are used the device should be
placed with its locator holes over the projections. The device should then be rotated
through 1800 to distribute the compound.

1. Removing the Device
Disassembly should be made by loosening
the clalTlP nuts in a staggered fashion, i.e.,
one half turn from one nut, one halfturn
from the other, etc., until the nuts can be
removed by hand.

6. The appropriate clamp may now be
inserted through the heat sink. The clamp
force bar with mechanical force gauge
must be initially adjusted to give a zero
force reading. The spring bar may now be
placed over the studs and the centering
pin located in the hole provided. The nuts
may now be finger tightened, in an even
fashion such that approximately the same
number of threads show above each nut.

2. Re-Zeroing Clamp Gauge
Make sure that the gauge is set to zero
before using again. This is done simply by
bending the indicator until a zero force is
indicated.

7. To achieve the correct mounting force
apply either half or quarter turns per nut in
a staggered fashion until the gauge indicates the correct force.
Remounting Disc Devices
In some instances devices must be replaced
in the field. The procedure to be used is
similar to the mounting procedure just outlined with the following additions:

G48

3. Clllaning and Coating of Clamp Threads
While the clamp is disassembled. clean
th., threads with a light brushing and then
wiPII with a cloth. Prior to using the clamp
a coating of Anti-Seize or Never-Seez nongalling compound should be applied to the
threads.
WARNING:
Due to the high load forces placed on these
clamps' breakage could occur when torsional force is being applied to the threads
resulting in the broken bolt becoming a
flying projectile. Safety precautions must
be taken to prevent bodily harm.

As indicated earlier. proper device loading is
necessary to guarantee good thermal performance. With disc devices power dissipating properties are also affected by loading
effectiveness. Figures 7a and 7b illustrate the
typical effect of mounting force on thermal
performance and device forward voltage drop
for discs.
Parallel Mounting of Disc Devices
For applications requiring greater current
output than can be obtained from one device.
two or more devices can be readily paralleled.
It is necessary. however. to take simple precautions to allow for possible variations in
height of the devices. A rigid heat sink may be
used and will serve as a base for the units
to be paralleled. but the other side of the
devices should be cooled by individual heat
sinks. Individual clamps are required for each
device to provide the required pressure.
Stack Mounting of Disc Devices
The flat symmetrical design of the disc
package permits stacking the devices to
obtain a number of circuit configurations. A
single clamping device can be used with the
length of bolt adjusted to clamp thE! total

wherein insulated spacers may replace
devices in the mechanical assembly.
Heat Sink Considerations
The previous discussion referred indiscriminately in the various sections to either platetype or to extruded heat sinks. The plate-type
is the simplest to' use and may be of copper,
aluminum or any thermally conductive material. The aluminum extrusions are the most
common heat sinks presently used and
furnish a greater exposed surface for heat
transfer to the ambient atmosphere.

.....

~------

Mounting Force _

Mounting Force _

Fig.7A: Typical Junction-Case Thermal
Impedance Varietion as a Function of
Mounting Force for Disc Type Devices.

Fig. 7B: Typical Forward Voltaga Drop
Variation as a Function of Mounting Force
For Disc Type Devices.

length of the stack. The limit of stacking, of
'course, depends on the rigidity of the assembly and the amount of expansion and contraction which can be tolerated during operation.
Both problems can be solved by proper fixture
design for assembly and by selection of
springs with suitable load-deflection characteristics. When stacking devices in one
clamped column it is necessary to keep sink
mounting surfaces parallel to within .0005
inch if devices are to be mounted on both

sides of the sink such as in many plate
designs,

a) Parallel

Figure 8 shows the basic configurations
which may be obtained in a single stack.
These include parallel, series, center tap,
doubler and three-phase, full wave circuits.
Many others are possible. The diagrams use
diode circuits for simplicity of illustration.
They are applicable to SCR's connected in
series and to complete isolated circuits'

b) Series

The heat-transfer characteristics of any heat
sink, under normal convection ,conditions,
can be greatly enhanced by using either
forced air or some liquid coolant. The use of a
liquid coolant is considerably more efficient.
Liquid cooled sinks are generally cast or
machined. Either is highly efficient but cast
heat sinks have very little waste in fabrication
and have very low pressure drop. The flow of
coolant through the sinks is usually controlled
to hold the semiconductor temperature to the
designed maximum level.
A complete line of air and liquid cooled heat
sinks are available to accommodate all disc
type semiconductors. In addition, Westinghouse offers a full line of air and Ifquid cooled
assemblies fbr all power semiconductors.

c) Doubler

Ac

Ac

Ac

(+)
(-)

d) Center Tap

e) 3 Phase. Full Wave

Fig. 8: Stack Mounted Disc Assemblies.

G4~

Designed;'with"YOU· in Min~
Ideal for all users of power 'semiconductors reg ard I;ess ,of'
job function, technical background, and experience le"el.·

•
•
•
•

Two books in one
8% x 11 format
Easy to read
Fully indexed

u.s. $~.50

• Book Rate Postage Included. Elsewhere $7.50

This valuable reference book will save you
time and money when specifying, buying,
installing, testing, maintaining, troubleshooting, servicing, identifying, and
replacing power semiconductors. Order your
copy today.
G50

• Master cross reference
• Complete product data
• 432 Pages

Send check or money order (payable in U.S.
funds) to:
Westinghouse Electric Corporation
Book Order
Semiconductor Division
Youngwood, Pa. 15697

Introduction
The Silicon Controlled Rectifier (SCR) is a
thyristor which attains its power control
function by gate turn-on. The gate signal
causes the SCR to revert from a forward
blocking or off-state condition to a current
conducting or on-state condition. Turning on
an SCR should be simple, but circuit considerations and device trade-ofts add some
complexity. With an understanding of gate
terminology, trade-offs and requirements of
an SCR, a designer will have better guidelines for specifying gate turn-on requirements.

Without a gate control signal, the thyristor
blocks voltages in both directions, so that
power flow is inhibited. To initiate power
flow, the SCR is gated only when it is in the
forward blocking (VORM) off state. Increasing the gate signal IG from 0 to IGT shows
that the SCR's ability to block voltage decreases until it turns on. The reverse blocking
voltage characteristic (VRRM) is like a rectifier
diode. If one were to leave on a gate signal
while the SCR becomes reverse biased, it is
possible that the SCR would fail due to
increased leakage current.

V II Characteristics of an SCR
The SCR is a three terminal thyristor, properly defined as a Reverse Blockir'lg Triode
Thyristor. The V II characteristics relationship
is shown in Figure 1.

The SCR can be turned on by three methods;
viz.,
• The recommended application of a gate
current and voltage to the gate cathode
potential leads.

Off State or Forward Blocking Voltage
IG=O
V ORM
n---IG=IGNT

• Two-terminal turn-on by exceeding the
non-repetitive forward blocking (off-state)
voltage rating, referred to at times as Veo
turn-on.

1I"\....---IG=IG2

"'\14---- IG= IG3

• dv Idt turn-on due to high dv /dt causing
capacitive current triggering action.

,

The last two methods are not recommended
for repetitively turning on an SCR because of
restricted anode current rise time (di /dt)
and magnitude.

t
V

Forward
Current

Reverse Blocking Voltage
Figure 1. Voltage Current Characteristics Using
Gate Control.

To turn off an SCR in an AC phase control
circuit is relatively easy. Suppress the gate
signal and the reversal of the AC line voltage
causes commutation from the conduction
state back to the off state. Of course, there
are circuits which require sophisticated
methods to achieve turn-off commutation
such as choppers and inverters. These are
available in the literature.

causes the SCR to latch into conduction
and remain "on" (hold); referred to as gate
trigger voltage.
• IGNT is a dc gate current which, when
applied to the gate cathode terminal, will
still permit the SCR to block rated VORM;
referred to as non-trigger gate current.
• VGNT is a dc gate voltage which, when
applied to the gate cathode terminal, will
still permit the SCR to block rated VORM;
rEiferred to as non-trigger gate voltage.

6n

12v

-=-

Figure 2. OC Gate Characteristics Test Circuit.

There are other gate parameters which must
also be considered and are subsequently
covered. They include peak gate trigger current for pulse operation, IGTM; peak and
average gate power, PGM and PG(AV); and
peak reverse gate voltage, VGRM. The rated
values are given in the data sheets.
The maximum gate triggering characteristics
for Westinghouse di/namic gate SCA's is
given in Figure 3. The di/namic or amplifying gate SCR consists of a pilot and main

r

Maximum Instantaneous Gate
Trigger Voltage VGTM • Volts

Gate Parameters and Characteristics
Because of the myriad of SCR applications,
a dc gate test condition (Figure 2) with a
resistive load was chosen to permit both the
manufacturer and the user to ascertain basic
gate parameters. It was not intended to reflect
operational application requirements. These
dc gate trigger requirements are normally
given on SCR data sheets.
• IGT is a dc gate current which causes the
SCR to latch into conduction and remain
"on" (hold); referred to as gate trigger
current.
• VGT is the dc gate cathode voltage which

.15

2

3

Maximum Instantaneous
Gate Trigger Current IGTM Amperes -

4
A

Figure 3. Maximum Gate Triggering Characteristics
for Westinghouse di/namic Gate SeR·s.

G51

SC~ on the same element; this new gating
structure provides improved characteristics
over previous designs. N9te that the ratings
are at 25°C and that a recommended load
line for moderate di/dt applications is given.

The characteristic effect of junction temperature versus gate trigger current Ivoltage is
depicted in Figure 4 with an SCR IGT= 150 rna.
Note that as an SCR is heated to 125°C,
the required gate current to trigger typically is
one-half the 25°C value, and that the --40°C
value is approximately twice the 25°C value.
.

on concept (q = 5 IGT dtp) described in the
referenced literature. The minimum gate
trigger requirements versus pulse widths are
given with respect to junction temperature.
This.insures that the SeR will latch on and
remain on (if provided in circuit) but is not
the optimum gate drive requirements.
Gate Drive Requirements
The present di/namic gate SCR may be
triggered with either Soft Gate Drive or Hard
Gate Drive. Predecessor devices with center
firing and edge firing gates required hard
gate drive to achieve uniform..current conduction and I.ow switching losses. However,
even with the di Inamic gate and newer mterdigitated geometries, applications still exist
which 'equire hard gate drive.

firing circuitry. providing a cost reduction. If
a snubtier network is always available to
discharge upon signal initiation, soft gate
drive may be adequate even for some high
di Idt applications, but further assistance is
advised from an application engineer.
IG

~

IGTM=3 to 5XIGT
diG>1 A//Jos

Cit

diG

0.l/Jos.5A//Jos
circuits of capacitive type, loads where high
dt
repetitive di/dt is evident; heavy industrial·'
t,~1/Jos
phase control operation with inductivo load
(or power factor control) and.systems where
I
electrical rioise is troublesome requiring noiseIGTM~r'----------------~~--~
150
o 10 75
225
300 375 immune thyristors and gate signal suppresl't,1
:
sioncircuitry (up to IGT). Figure 6 is the
IGNT
1--20l's to Anode Current..,..
Minimum Required Gate Current, IGT,"" mA. suggested ,Hard Gate Drive for an individual
Conduction Time
Figure4. Typical Gat. Triggering Range for Various SCR. The cases of anode current conduction
Time (Not to Scale)
interval:::; 20 pS or picket fence gate firing
Junction Temperatures·.
Flg'ure 7. Soft Gate Drive.
are not shown. Reference must be made to
To relate the measured value of dc gate
the Minimum Pulsed Gate Trigger Requiretrigger current to pulsed gate operation rements (Figure 5) to obtain the proper value
Example: A Westinghouse T920 has a data
quired in some applications, the following
of IGT. This value of IGT is then used for the
sheet IGT=200 ma @ 25°C. The recominformation is needed and is shown in
mended gate drive, to cover all types of load
Hard Gate Drive IGTM determination.
Figure 5. Whether the SCR design is a convariations @ TJ=--40°C start-up is as
ventional center fire gate, di Inamic gate, or
Soft Gate Drive shown in Figure 7 is perfollows:
other, it is necessary to increase the gate
fectly adequate for resistive and inductive
iGT @--40oC=2xIGT@25°C (from Figure4)
drive amplitude for,pulse widths less than 20
load applications. In general, a gate drive
IGT@--40°C=400ma
microseconds. This is due to the charge turntransistor can be eliminated from the gate
Hard Gate Drive-IGT=3.3to 5x IGT@--40oC
Answer
IGT= 1.3A peak (Min. value)

1000
Gate Trigger
Current, IGTM, 800
Milliamperes

,"-

'\
\. ~ .......
1'1...

600
400

.~
t"-...

200

............

['0,.

"~

.......

r-.....
........

I"-

o

I
. I 'SdR
I
I.
Minimum Gate Turl'l-On Characteristics6.
Westinghouse di/namic Gate Designs
SCR IGT";150ma, 25°C
5.5
@ Vp=12V
IGTM vs tp, TJl
5.
VGTM VS tp, TJ I
4.5

-.....r-.......

--

-- ---

VG1 1@ -400C- 4.
3.5

3.

__ VGT@25°C

~

---

-

""-

IGT@

40°C

IGT @ 125°C

2,5

VGT@125°

1.5
I
IGT@:.!5°C

G52

o

I
500.

Recommended Gating Practices
A di/namic gate SCR is optimized to provide
fast turn-on and low switching losses with a
Gate Trigger soft gate drive signal. Recognition of situaVoltage,
tions where di/namic gate action is limited
VGTM, Volts along with a number of recommended design
practices are given below.
• Gate the SCR when the anode voltage is
positive. Allowing a positive gate while the
SCR becomes reverse biased limits device
reliability .

1.

.5

1.
2.
5.
10. 20.
50. 100. 200.
Square Wave Pulsewidth, tp, Microseconds
Figure 5. Minimum Pulsed Gate Trigger Requirements.

2.

The conduction period of the anode current
"back porch" must have a gate current no
lower than the IGT @ --40°C; i.e., 400 ma to
ensure conduction for low power factor loads.

• Design the gate firing sequence such that
the snubber network across the SCR is
charged prior to gate sign,!1. This gives
good di Inamic gate action.
• If a de gate signal is used in a multi-phase
system a soft gate drive signal does not

give good di /namic gate action. No
snubber discharge is possible after time
zero which results in poor di/namic gate
action. In addition, Westinghouse SCR's
have high noise-immune characteristics
(IGNT) meaning they do not false trigger
at very low gate currents. For this particular
application hard gate drive is required.

from the same source. Generally, 10 to
250 is used to diminish input gate cathode
impedance variations.
• Use single point triggering if gating rhore
than one device from the same source.

capability, redundancy is required or because
reduced junction temperature operation is
desired. It is understood that the required
type of gate drive circuit is dependent upon
the particular circuit and load characteristics.

A specific gate firing problem is encountered
with parallel operation of devices. In situations where anode reactors are employed, as
shown in Figure 10, care should be exercised
• The gate drive circuitry should have a 1 to
because as device "a" turns on, its voltage is
2A average 100V diode in series with thtl
supported by the reactor. Until the slow
gate and across the gate cathode terminals
device "b" turns on, no current, except magas shown in Figure 8. These will eliminate
Series Operation
netizing current, flows. Therefore, device "a"
two possible failure modes of an SCR.
The diodes in series with the gate will
Present application techniques are such that, in has low turn-on losses. Device "b" on the
other hand has the circuit voltage plus the
many designs, circuit applications exceed
prevent negative gate current flow while
device blocking capabilities. For this reason,
transformed voltage across it while switching
the diode across the gate cathode limits
series connected SCR applications have been, half the load current, and so is stressed harder
the reverse gate voltage, VGRM, to'" 2V
and are prevalent. Figure 9 shows a typical
due to delay variations. Therefore, in this
by diode clamping.
instance the designer should consider the
A circuit connection, including the compensating components required for proper operation. delay variations in gate pulse amplifier design,
I n such a series connection the last device
assuming single point trigg'ering. It must be
recognized that with a di/namic gate device
to turn on may be subject to an overvoltage
G
and dissipates the most energy. A high drive
and low magnetizing current (~IL), di/namic
gate signal from a single source is required to gate action may not be achieved and high
1 N 4817
gate drive is recommended.
minimize delay times and switching losses.
1N 4817
Gate
The resistors Rs are for static voltage balancCircuit
ing due to blocking voltage, leakage current
The necessity for economy sometimes dictates
- - - - - - - - ' - - - - - - - - -.. K differences. The snubber capacitor C is not
the operation of thyristors without balancing
Figure 8. Protected Gate Cathode
components, as illustrated in Figure 10(b).
only for dv /dt but also.for ORR variations.
Unlike the previously described situation,
Source
with balancing reactors, device "a" turns
• Provide open circuit gate voltage>20V to
prevent gate drive extinction. The instanon first and ,is more severely stressed as it
taneous gate cathode voltage can exceed the
must switch both the R-C network energy
source voltage in high di /dt applications.
and the load current. If the load is capacitive
or resistive a di /dt problem may exist. The
Rs
combination of di/dt, device "b" turn-on
• Inductive loads can be troublesome if the
with very low anode voltages, and long delay
gate drive is insufficient in amplitude or
width. Existing recommended practice is
times, dictates hard gate drive.
the use of the "picket fence" or hard gate
Vsource
Ac Input
drive. A picket fence is a high frequency
gate signal varying from 1 to 15KHz, 200",s
Rs
to 50",s wide within a 60Hz envelope such
that the SCR is continuously gated. The
R
average gate current rating is maintained.
In hard gate drive circuits, the "back porch"
C
anticipates worse-case power factor; making
Load
Load
the gate pulse width wide enough to enFigure 9. Typical Series Connection with Single
(a) Reactor Current Balancing
sure SCR latching and holding.
Point Triggering.
• If highest total circuit reliability is desired,
a power burn-in of the complete gate firing
board at rated temperatures and power will
eliminate weak components and infant
mortality.

----+

• To prevent noise pickup in the gate
potential connections, twist together th'e
gate cathode potential leads of the SCR
and use either a twisted wire pair from the
gate pulse amplifiers circuit or a coax-type
shielded cable. Locate the wires as close
as possible to the SCR but away from
magnetics or high current carrying members in the circuit. Of course, the gate
cathode lead lengths should be as short
as possible.

It should also be noted that the gate circuitry
employs individual resistors. To neglect this
point is dangerous, since one low impedance
gate consumes an excess of the available
energy by voltage clamping of the transformer,
thus reducing the energy available to the
other devices and possibly causing overvoltage destruction of the device with the
maximum delay. In such applications, a good
overdrive gate signal is recommended.

One should specify matched D. delay times
• To minimize D. delay time variations between and D. ORR (if not diode clamped) fqr each
SCR's, use hard gate drive with as high a
series connected group of SCR's to optimize
voltage sharing.
gate current risefime (diG /dt) as possible;
ref. Figure 6.
Parallel Operation
Discrete SCR's must be paralleled because
• Always use a resistor in series with each
gate lead if triggering more than one SCR
they lack the required current handling

-=+

Ac Input
(a)

R

(b)

C

Load
(b) No External Balancing
Figure 10. Parallel Operation of Thyristors.

It is also wise in this type of operation to
select device characteristics which provide
matching voltage drops and turn-on times.
In inverter or commutating SCR applications,
the di/namic forward lIoltage drop matching
permits current sharing while steady state
voltage drop matching is not necessary.
G53

Gate Firing Circuits
A gate trJgger circuit can become quite
sophisticated such as in an inverter application. Trigger logic circuits have been designed to do many things-

Circuits

Gate Signals

• Trigger the proper SCR's.
• Suppress the gate at overtemperature
conditions,
• Crowbar (trigger) or suppress at fault
conditions or overvoltage.
• Not trigger at low gate signal levels or
predetermined pulse widths.
These type of circuits require design time and
in many cases practical experience. If your
experience or time is limited, consider the
commercial gate firing circuit manufacturers
to implement your required SCR circuit.
Shown in Figure 11 are three examples of an
SCR's hard gate firing circuit for phase control operation.
In the first circuit, a Shockley diode (4E20-B)
provides the trigger pulse by voltage breakover, with AC line synchronization on the
primary. In the second circuit, the Westinghouse T507 or other fast turn-on SCR is the
trigger pulse, which can be gated within
any point of the positive AC voltage. The
negative AC voltage causes the SCR to line
commutate off. The DC circuit uses a transistor to trigger, since an SCR in this circuit
would not naturally commutate off. In all
three circuits, the negative gate voltage is
clamped by the diode across the gate cathode
terminals. Other gate firing circuits are available in the Westinghouse SCR Designer's
Handbook and those of other manufacturers.
Summary
The information provided herein will allow
the designer or user to assess the merits of a
gate trigger circuit. It is important that the
gate drive circuit provide a signal which
compensates for temperature and circuit
effects. The reliability of a circuit is dependent
upon every item within it. A proper gate drive
signal will not guarantee improved circuit
reliability but certainly is a proper step in
achieving total reliability.

G54

.75-1A
Igt
I
. - .150 Amps
c -..j 101- t2 < 1psec
Gate Current

Input Signal

::::Olts D 1 C , r r . : G
T-64525

___
;r;;;,

t, = :0 1pSec.
t2=Cond. Angle

~BK

______ 1.5A

~

L::::::::!- - - 0.2A
0.5 ufd

1--_--.... Input

IG

TR=:01 psec. .
Gate Current
I

,VGT .7v-3.Ov
1

VGR
1.0v
Gate Voltage (With SCR Connected)
Figure 11. Examples of High Drive Circuitry.

References
1. Rice, L. R., "Westinghouse Silicon Controlled Rectifier Designers Handbook,"
Second Edition, Westinghouse Electric
Corporation, 1970.
2. Gentry, F. E., Gutzwiller, F. W., Holonyak,
N. and Von Zastrow, E. E. "Semiconductor Controlled Rectifiers," Prentice-Hall,
1964.
3. Dewan, S. B., and Straughen, A., "Power
Semiconductor Circuits," John Wiley &
Sons, 1975.
4. Gyugyi, L., and Pelly, B. R., "Static
Power Frequency Changers," John Wiley
& Sons, 1976.
5. Bedford, B: D., and Hoft, R. G. "Principles
of Inverter Circuits," John Wiley & Sons,
1964.
6. Schaefer, J., "Rectifier Circuits, Theory and
Design," John Wiley & Sons, 1965.
7. Pelly, B. R., "Thyristor Phase Controlled
Converter and Cycloconverters:' John
Wiley & Sons, 1971 .

B. Grafham, D. R.and Hey, J. C., "General
Electric SCR Manual." Fifth Edition,
General Electric Company, 1972.
9. Hoft, R. G., "International Rectifier SCR
Applications Handbook:' First Printing,
International Rectifier Corporation, 1974.
10. Kusko, A., "Solid State DC Motor Drives,"
The M.I.T. Press, 1969.
11. McMurray, W., 'The Theory and Design
of Cycloconverters," The M.I.T. PresS,
1972.
12. Ramshaw, R. S., "Power Electronics:'
Chapman and Hall, 1973.
13. Mazda, F. F., "Thyristor Control:' John
Wiley and Sons, 1973.
14. Murphy, J. M. D., "Thyristor Control of
AC Motors," Pergamon Press, 1973.
15. Davis, R. M., "Power Diode and Thyristor Circuits," Cambridge University
Press, 1971.

During the design of any power circuit
incorporating thyristors, the designer is faced
with choosing between several techniques
for protecting the thyristors from load
induced faults which would subject them to
Inordinately high levels of forward current.
Many of these faults are of short duration
and self-clearing. Conventional fault clearing
techniques employing breakers or fuses are
costly to maintain as they require varying
periods of "downtime" either to reset the
breakers or replace blown fuses. A better
approach to limiting faults of this nature is
surge suppression.
Thyristor Surge Suppression
Surge suppression is a fault clearing technique utilized in AC circuits in which the
thyristor "rides thru" the first half cycle of
surge current. The gate drive is inhibited at
this point and the thyristor recovers to the
blocking state isolating the load fault. Gate
drive can be re-instituted following the---succes$ful clearing of the fault allowing
continued use of the equipment with essentially zero downtime due to the load induced
fault.
Design of circuits employing surge suppression is more difficult than conventional
designs for several reasons. Fault sensing
logic must be employed to sense and clear
the fault and then perhaps automatically
re-institute circuit operation. The exact
magnitude of the worst case current fault
must be known to properly coordinate the
thyristors. Of prime importance, a definitive
set of surge suppression ratings must be
available for the thyristors to facilitate prop'er
derating for reliable operation.
To aid in your design of a surge suppression
circuit, a number of graphs have been
developed. The first graph A has been designed to facilitate the determination of the
magnitude and width of a fault current pulse
given the ratio of resistance (R) to inductive
reactance (XL) of the circuit during a fault.
Graphs B-1 through B-17 for Westinghouse
phase control thyristors give the maximum
permissible single cycle surge current that
cen be reliably utilized in a surge suppression
circuit. These current levels are presented as
functions of the base width and initial peak
junction temperature as the figure illustrates.
Graph C gives the voltage rating factor
applicable to all Westinghouse phase control
devices. Their use is outlined and an illustrative example is as follows:

ITSM

Procedural Outline
1. Determination of fault current magnitude
and pulse width.
Determine the equivalent resistance
a. (R) and inductive reactance (XL> from
detailed analysis of voltage source and
circuit loop impedances.
b. Determine the offset factor, K, from
.
R
the graph A, given the value of XL.
Then IT(asm)= KXIT(Sm) where:
IT(asm) is the peak value of
asymmetric surge current
IT(sm) is the peak value of
symmetric surge current given by:

(1) Calculate or estimate the peak
junction temperature of the
thyristor prior to the anticipated
surge. Worst case will be 125°C.
(2) On the Surge Suppression Rating
graph B-1 through B-17, locate
the specific ordinate scale pertaining to the anticipated surge
current pulse width.
(3) Locate the specific magnitude
of surge current on this scale.
(4) Move horizontally on this value
of surge current until you intersect
the peak initial junction temperature curve as determined in 2.b.1.
(5) Read the peak junction temperature from the abscissa scale.
(6) Refer to Graph C for the Voltage
Rating Factor. Find the value of
the maximum junction temperature following surge given in
2.b.5 on the abscissa scale. Follow
this value of temperature vertically
until you intersect the "standard"
curve. The value of the Voltage
Rating Factor, F, corresponding
to this intersection is the minimum
F factor which can be used to
establish the device voltage rating
by the following expression.
VRating= FXVp

Where: V is the peak open circuit
voltage.
R is the value of circuit
resistance.
XL is the value of circuit
inductive reactance.
c. Determine the asymmetric surge current base width from Graph A given
R
the value of XL.
2. Selection of proper thyristor for an
anticipated surge.
a. Select tne proper family of thyristors
suited to the specified operating current-voltage-mechanical configuration and cooling requirements of the
equipment. Refer to the Westinghouse
Short Form Catalog (54 .. 000) or
specific data sheets for this information.
b. Refer to the appropriate Surge
Suppression Rating Graph 8-1 through
B-17 for the specific thyristor selected
in 2a.

Where:
• VRating is the minimum rated
voltage for the thyristor,
VORM and VRRM.
.• F is the voltage rating factor.
• Vp is the peak forward voltage
seen by the thyristor following a surge.

3. If the voltage rating derived above is
greater than that attainable for the device
in question there are several options open:
a. Repeat 6 using the ··selected" curve.
If an acceptable rating is attained, a
device may be specially selected and
tested by the manufacturer to perform
at the specified operating levels.
Contact your Westinghouse Applications engin.per for details if you require
a specially selected device.
b. A higher current rated thyristor can
be specified and the calculations outlined in 2b-1 thru 2b-6 repeated.
c. Two thyristors can be operated in
series to attain the specified voltage
rating.

G5!

• Calculate magnitude of'asymmetric surge
current IT(aam)'

Design Example
Given:
• Maximum junction temperature prior to
surge, Tji= 110°C.
• Circuit equivalent resistance, R = .01 ohms.
• Circuit equivalent inductive reactance,
XL=.025 ohms.
• Peak .open circuit voltage, Vp-400V.
• Assume a 1000V, T920 type thyristor will
be used for this application for steady
state current and reliable voltage derating
requirements.

12 msec. ordinate scale-19,000A using peak
Tji = 110°C curve.

IT(aam) = K. IT(am) == 1.28. 14,860= 19,000A
• Find asymmetric surge current pulse width
from Graph A for~== 40
XL . •
Pulse base width -11.9 msec.
Initial device selection T920, 900 ampere
device.
Initial junction temperature given as 110°C.
From surge suppression rating curve for
T920-09 (Graph 8-16).
12 msec. ordinate scale-19000A peak
using Tji curve for 110°C.
Peak Tj=173°C from graph.
Examining the Voltage Rating Factor curve
for a standard device at 173"C, NO F factor
is available in the standard rating. The 900
ampere standard device cannot be used
under the stated conditions.
First Option:
Evaluate the T92G-1000 ampere device.

Find:
Magnitude and width of fault current pulse.
Acceptable device rating for this application.
Procedure:
R
.
.01
XL ratlo=.025=0.40
From Graph A find the offset factor. K=1.28
• Calculate magnitude of symmetric surge
current IT(am)'

Using the Voltage Rating Factor curve for a
standard device at Peak Tj = 163°C,
F=3.2
VRating=F. Vp-3.2. 400=1280 volts
A standard 1300 volt-1000 ampere T920
thyristor fulfills the minimum requirement for
this application.
Second Option:
Using the special selection curve of Graph C
for Tj-173°C; F-2.6.
VRating= 2.6X400= 1040 V.
A specially selected 1100 volt-900 ampere
T920thyristor may also be used.

Tji=1100C

V
400
IT(am)" (R2+XL2)',.= [(.01 )2+ (.025)2]1{2

from surge suppression curve for T920-10
(Graph B-17).

= 14,855A

Surge Current Offset Factor- Pulse Width-Graph A

--r-...

16.7
16

...... 1'....

MdI f...

fsir ul- Fvcle Sur

"- '\

15
rei
Off et Fil tor

14

r-- t......

1\

\

11

\ rnSi

i

..

~
IT'••,

10

11M
;

1.8

i\

,

1\

12

<3
~

2.0

1\
........ f',

13

_

,
I\.

~

...

\

·IT,~~

9

is
1.4 t;

...

1\

1\

IV

i
1.2 ~
0

1\

~

\

E

.3.5.7 10. 3

.3.5.7 10. 2

.3.5.7 10. 1
R
XL

.3

~

i\~ I'.

i

8.3

10. 4

GS6

'"

1\ \
L

en
"

'j

1.6

\

.5.7 1

3

."

1.0 u

""

5 710

Peak Tj=163°C

~

:0

U)

Surge Suppression Rating for Phase Control SCR's-STUD MOUNT
Asymmetric and Symmetric Surge Currents VB. Junction Temperature
1100

900

1200

1200

1100

1000

1000

800

900

600

1400 1600

1000

800

800
1600 1

900
700

800
800

1000 1200

«
:::i 4OO
~

1400 1:::F!'ttt±iFH:R:

800 1000

1200

600

800

1000

400

600

800

200

400

600

E200

700

~

800

600

"

u

800
700

400

I:'R:ffiffiffl+t:!::I-:li!'-F.::I't'

500
OJ

..

::!II

24
II

~200

E300 E

o

N

ii

e"

9-200 9130

e

140

Junction Temperature Prior to Reapplied VOSM. TJ. °C

5

8

9

7

8

6

7

5

6

4

5

3

4

2

3

7
4

3

5
6
4

5

3

2

7

4_

4

3

3

2
2

2

2

~

~
o

"

2

'"

aI

"

"

Ii}

9-

9-

3

~

~
o

'"aI

ii

6

9-

Junction Temperature Prior to Reapplied VOSM. TJ. °C

5

9

8

8

7

7

10

8

6

8
5

4

9

7

6

6

11

9

7

6

4

9
8

7

8

10

9

8

7

10

6

7

5

6

4

5

5

4

3

4

3

2

3

3
2

~
N
~

"

9-

~
o

"

9-

3

.!

~

2

~rh ~

1

I~ 9

'"aI

"

9-

.. '"

100 110

120

130

140

150

160

170

180

Junction Temperature Prior to Reapplied VOSM. TJ. °C

N

2

~
o 2

e"

4

~

'"aI

3

"
e2.5~~~~~~~~~~DE~~~~]i~~~
100 110 120 130 140 150 160 170 180
Junction Temperature Prior to Reapplied VOSM. TJ. °C

G57

Surge Suppression Rating for Phase Control SCR's-DISC MOUNT
Asymmetric and Symmetric Surge Currents vs. Junction Temperature
10

9

7

8

6

7

6

6

4

!5

:::E 3

4

i

3

:s
~
~

2

.."

u

8

9

7

8

~

."

8

7

!5

8

5
6

:s

3

4

4

6

3

4

2

3

2

3

~

i

~E
.!'"

E

E

N

0

c "
en&

e"

"'~

4

::IE 2

.. . .

'U ..

6

3

~

..~"

u

2

<

10

8

u"

.

~ 2

u"

"~
"
"

'"
E

..
E

~~ 2

~ 4

o

M

en So

So

~4

"

~

22

22

18

20

16

18

18

14

16

16

12

14

20

20

18
16

~

16

14

P

14

12

12

10

10

8

12

~

10

"

u

8

en"

c::: II

14

16

12

14

10

12

H +':-!-H-

8

.

E6

II

20

18

8

..

E

'"E

6

~ 4

~

M

9-

94

~

E



a: ::J
;;: d::::i :E12
5, fl(':;

I
.

Repetitive Peak Reverse Voltage (PRV)
Average DC Output Current* at 50"C
Peak One Cycle (Non-repetitive. 60Hz) Surge Current
Forward Voltage Drop per cell at 25°C
Reverse Leakage per cell at rated PRY at 25°C
Thermal Resistance-Junction to Case (typical)
Operating Temperature Range
Storage Tempereture Range

,'H'11A,I,
c.;

I

',~BI2'"
S(

fI'

50-1000V
2A
50A
1_0 V at 1.0 A DC
10"A

50-1000V
6A
125A
1.0 V at 3.0 A DC
10I'A

-55°C to +125°C
-55°C to +l60°C

-55°C to +125°C
-55°C to +150°C

1

I

III:::;

Mel
)

'J>~C

'It',

50-600V
25A

50-600V
lOA
200A
1.2 Vat 5 A DC
10"A
1.5°C/W
-55°C to +150°C
-55°C to +150o C

300A

1.2 V at 12.5 A DC
10I'A
1.5°C/W
-55°C to +150'C
-55°C to +150oC

*NOTE: 60Hz, resistive or inductive load; for capacitive load. derate current by 20%.

Mechanical Characteristics

11V121"\'"

IMBllA02
SUIt'S

Electrically Isolated
Case
Any
10 in.-Ib. Max.
(#6 Screw)
3.5 grams
.030· Dia. Leads
Positive Output: Color dot
Negative Output: Diagonally opposite
positive output

Case
Mounting Position
Mounting Torque
Weight
Terminals/Leads
Polarity Marking

30

25

!

'~Bl',\,
S

rl

Electrically Isolated
Metal Case
Any
20 in.-Ib. Max.
(#8 Screw)
31 grams
.25" Universal Faston
Inputs:
AC
Posithle Output: +
Negative Ou~put: -

300r-----~-------+----

I
MB12~25 Seri

Electrically Isolated
Metal Case
Any
20 in.-Ib. Max.
(#8 Screw)
31 grams
.25" Universal Faston
Inputs:
AC
Positive Output: +
Negative Output: -

I

Non-Repetitive Surge Current Versus Time

I
I

.+
I

s

'\

20

~I
'\

I
I

I

MBP ~10 Seri s
MB11 ~06 Seri s

MB11 iA02 Seri s

I

"' ~
......

.........

~

'\

i

~

E

'\

<
to
CD
0-

f 50~~::::j:====~B11A~!S~~~~--"-r:;~;:::::~::::::j

u

CD

2'

100..

A4

I SI lies

Electrically-Isolated
Case
Any
10 in.-Ib. Max.
(#6 Screw)
6 grams
.050" Dia. Leads
Positive Output: Color dot
l\Iegative Output: Diagonally opposite
positive output

Bridge Output Current Versus Temperature
35

iMB12AIO

':.,(>rll c;

160

~

O~----~---------~------~------~--------~------~
1
2
5
10
20
50
10"_
Cycles at 60 Hertz

How to Select an Assembly
I. Circuit Funtion
A. Rectifier (contains rectifiers only)Go to Page A6
B. Half Control (contains both rectifiers
ar1 SCR's) - Go to Page A16
C. Full Contrc>' 'contains SCR's only) Go to Pagl .24
II. Circuit Configuration - Select the configuration desired and then turn to the
page number referenced.
III. Current Rating - The assemblies are
listed in order of increasing current
rating on each page. Select the one that
best meets your requirements. Each
'assembly has a table of current ratings
as a function of various ambient temperatures, air flow velocity and conduction or delay angles for half and full
control assemblies.
IV. Mounting - Select the type number for
either floor or wall mounting. Most assemblies offer both types of mounting.
V. Vc.:tage Rating - Now from the range of
voltage ratings shown. select the voltage rating you require from the voltage
code suffix table.
NOTE: Additional electrical and mechanical
data on the assembly you have
chosen can be found by referring to
the respective key numbers.
For information on current and voltage
ratings not shown or' for any special
electric... and/or mechanical requirements
as well as additional information on any
of the Gold-Line Assemblies listed. contact
your nearest Westinghouse Sales Office.

Features
• Pre-engineered Design

• Low Cost

• Fully Tested Assemblies

• Full Range of Current and Voltage
Ratings

• Guaranteed Assembly Ratings
• Easy to Read Rating Charts
• General Recommendations for Fuses.
Voltraps. Gate Drives. R-C Networks
• Complete Information for Assembly
Application
• Value Engineered Design
• Compact Size
• Light Weight

• All Standard Circuit Configurations
Available
• Most Assemblies Built from Stock
• Gold Chromate Finish
• Insulated Mounting
• JEDEC and MIL Approved Devices
Available for Most Designs
• Resistor/Capacitor Networks and other
Special Frame Modifications Available.

100
" 200
300
400,

600

800

1000
1200
1400
1.600
2000

:w.r+;;

";~~Jl~:

A5

Rectifier Assemblies
This section describes the circuit configura~
tions available for Rectifier Assemblies.
(assemblies using rectifiers only). The chart
below shows the schematics, waveform,
recommended diode voltage ratings, the
basic current ratings available, and the page
number where specific rating information
for each assembly can be found.

On each page the as!lemblias for a given circuit configuration are listed in order of increasing current rating. The tabulated current ratings for each assembly type number
are given as a function of ambient temperature and as a function of air velocity
(linear. feet per minutll- LFM).
Refer to the mechanical and electrical keys
specified for the assembly you have selected
to obtain assembly wei.ghfand dimensions

and other electrical data and recommendations.

Assembly Output

Ripple (%)

Wave Form

.45 ERMS

.707 ERMS

121

(See Single Phase Bridge "B" or Three Phase "E").

A6

.900 ERMS

1.0 ERMS

48

.900 ERMS

1.0 ERMS

48

.900E RMS

1.0 ERMS

48

1.350 ERMS

1.351 ERMS

4

%ID

1.350 ERMS

1.351 ERMS

4

%ID

1.170E RMs

1.171 ERMS

4

Description of Rectifier Assemblies Pictured on the Right
I. Westinghouse GE11A61, 3t/> Bridge, 35-61 Amps, 100-800 Volts on 3 x 3 plates.
II. Westinghouse GE15B30, 3t/> Bridge, 100-300 Amps, 100-1600 Volts on 114 x 4 x 5
heat sinks.

III. Westinghouse GE16B45, 3t/> Bridge, 225-450 Amps, 100-1600 Volts on 4 x 4 x 5
heat sinks.

IV. Westinghouse GE19B53, 3t/> Bridge, 280-530 Amps, 100-2000 Volts on 5 x 5 x 6
heat sinks.

V. Westinghouse GE19B83, 3t/> Bridge, 520-830 Amps, 100-2000 Volts on 5 x 5 x 6
heat sinks.

.. ,",
Available A...mbll_ " .',
~

Actual
Diode
Peak
Reverse
Voltage

Recommended
Rectifier
Diode
Repetitive
Voltage
Rating

1.41 ERMS
or 7r ED

2.8 ERMS
or 6.28 ED

Output Current Ratimfs
(Amperes) AVG
'~:-'
'"

"
,'"

>

foroed ! ,~
ConveRtioti '
(i4O"C &

Natural
' Convection

@40°C

:

For Specific
Rating Info
See Page

' "QC:)(UJiM,

,
2.2 to 300 ,

,12t0190

'

"

-

~

AS

... ,' .

"

i1.2to 120

A9

45t6'61{)
"

i

I
I

II

••
2.828 ERMS
or 7r ED

45 to 610>' (

26 to 380

5.7 ERMS
or 6.28 ED

A11

JII
2.828 ERMS
or 7r Eo

5.7 ERMS
or 6.28 Eo

,',

26 to 380

45 to 610

A10

,.

"

,.
,

1.414 ERMS
or 1.57 Eo

2.8 ERMS
or 3.2 Eo

26 to 380

':"

A12

"~'

..

~!.

2.8 ERMs
or 2.1 ED

• ".j

45 to 610.

:'c.

1.414 ERMs
or 1.05 ED

,~

.

,

"

61 to 830

'35 to 520

.,

.

.. ::.

A13

..
,!':

.'

2.828 ERMs
or2.1E o

5.7 ERMs
or 4.2 Eo

57 to 860

2.45 ERMs
or 2.1 Eo

4.9 ERMs
or 4.2 Eo

70 to 1050

100 to 1360'

!

A14

, <=

I
I
I

120 to 1670

A15

,~,<

A7

- - - _ . _ - - ------

n

Single Rectifier

R

Current Rating
Voltage Ratings

12-22 Amps
100-800 Volts
Type
Number

Mounting

Mech. Data
Pg. A34-35

40 Amps
100-1000Volts

20-38 Amps
100-1000Volts
Elec. Data
Pg. A33

Type

Mach. Data
Pg. A34-35

Number

Elac. Data
Pg. A33

Type
Number

Mech. Data
Pg. A34-35

Elec. Data
Pg. A33

Floor

Wall

Air Velocity (LFM)+
40'C
Maximum
Ambient
60'C
Temperature
80'C

Output Current (Ayg. Amps.)
1000
150
N.C.
400
250
15 +:~~;'':
17
"'"1. ii1 19
19
17
15
14
11
16
11
9
14
13

Output Current (Ayg. Amps.)
400
250
150
34
30
26
32
29
25
22
17
22
20
15
28
25

Output Current (Ayg. Amps.)
1000
400
250
150
N.C.
40
40 t:(~7~
·::I.~l1 40
40
40
40
40
40
40
40
40
34
40

Current Rating
Voltage Ratings

70-140 Amps
100-1600 Volts

110-150 Amps
100-1600 Volts

190-300 Amps
100-2000 Volts

Type

Type

Type

Number

Number

Number

Mounting

Mach. Data
Pg. A34-35

Elec. Data
Pg. A33

Floor

Wall

Air Velocity (LFM)"
40'C
Maximum
Ambient
60'C
Temperature
80'C

AS

Output Current (Ayg. Amps.)
1000
N.C.
400
250
150
90 r'~::
::;:,WdJ 110 99
125
101
90
80
55
103
85
47
65
75

Output Current (Ayg. Amps.)

150
126

400
146
127
108

250
136

118
99

150
126
110
92

93
78

Output Current (Ayg. Amps.)
400
250
150
281
266
247
256
237
224
160
208
216
200
189
175
135

Doubler

D

Current Rating
Voltage Ratings

Type

Meeh. Data
Pg. A34-35

Number

Mounting

18-32 Amps
100-1000Volts

12-20 Amps
100- 800 Volts
Elee. Data
Pg. A33

Meeh. Data
Pg. A34-35

Number

Elee. Data
Pg. A33

Type
Number

Floor

Wan

Output Current (Avg. Amps.)
400
18
15
13

Air Velocity (LFM) +
4O'C
Maximum
Ambient
60'C
Temperature
80'C

Current Rating
Voltage Ratings

250
16
14
12

Meeh. Data
Pg. A34-35

Number

Output Current (Avg. Amps.)

150
15
13
11

45-135 Amps
100-1600 Volts
Type

Mounting

Type

19-40 Amps
100-1000Volts

400
31
27
23

250
28
24
21

400
36
32
24

75-150 Amps
100-1600 Volts
Elee. Data
Pg. A33

Type

Mech. Data
Pg. A34-35

Number

Output Current (Avg. Amps.)

150
24
21
18

250
33
27
20

150
30
25
19

190-300 Amps
100-2000 Volts
Elec. Data
Pg. A33

Floor

Type
Number

r-----

Mech. Data
Pg. A34-35

Elee. Data
Pg. A33

Wan

Output Current (Avg. Amps.)
Air Velocity (LFM)+
4O'C
Maximum
Ambient
6O'C
Temperature
80'C

400
104
85
65

250
92
75
58

150
81
66
51

Output Current (Avg. Amps.)
400
124

250
110

100
76

88
68

150
93
75
57

46

Output Current (Avg. Amps.)
400
270
240
204

250
253
222
188

150
228
201
170

N.C.

A9

Po•. Center Tap

C

Current Rating
Voltage Ratings

Mounting

26-45 Amps
100-800 Volts

40-76 Amps
1oo-1000Volts

Type

Mech. Data

Elec. Data

Type

Mecb. Data

Elec. Data

Type

Mech. Data

Elec. Data

Number

Pg.A34·35

Pg.A33

Number

Pg. A34·35

Pg. A33

Number

Pg. A34·35

Pg. A33

Floor

~-

Wall

..

Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O'C
Ambient
60'C
Temperature
80'C

Current Rating
Voltage Ratings

Mounting

1000

I

38
31

400
40
34
28

250
36
31
25

150
33
28
23

..
1·:NC
22
18

90-270 Amps
100-1600 Volts

1000

'7t:'~1
65
55

400
76
57
49

250
68
52
44

150

NC

59
45
38

~~

···1

E2

Output Current (Avg. Amps,)

155-300 Amps
100-1600 Volts

270-510 Amps
100-2000 Volts

Mech. Data

Elec. Data

Type

Type

Mech. Data

Elec. Data

Number

Pg. A34·35

Pg. A33

Number

Number

Pg. A34·35

Pg. A33

F-34

. .

220 .
150

400
207
170
115

250
185
152
103

150
162
133
90

74
50

380-610 Amps
100-2000 Volts
Type

Mech. Data

Elec. Data

Number

Pg. A34·35

Pg. A33

Floor

Wall

Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O'C
Ambient
6O'C
Temperature
80'C

W.10

34
29

Wall

Current Rating
Voltage Ratings

~

Type

Output Current (Avg. Amps.)

A10

Output Current (Avg. Amps.)

Floor

Air Velocity (LFM).
4O'C
Maximum
Ambient
60'C
Temperature
80'C

Mounting

60-80 Amps
1oo-1000Volts

1000

'ttl"'i
520
426

400
564
460
393

250
532
455
371

150
490
418
342

NC

ElW:ti
325
265

Output Current (Avg. Amps.)

265
212

400
279
225
180

250
248
200
160

150
209
169
135

-~--1

E 4

W-34

Output Current (Avg. Amps.)

Neg. Center Tap

N

Current Rating
Voltage Ratings

Type

Mach. Data
Pg. A34-35

Number

Mounting

40-76 Amps
100-1000Volts

26-45 Amps
100- 800 Volts
Elac. Data
Pg. A33

Type

Mach. Data
Pg. A34-35

Number

60-80 Amps
100-1000Volts
Elac. Data
Pg. A33

Type

Mach. Data
Pg. A34-35

Number

Elac. Data
Pg. A33

Floor

Wan

I.

Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O·C
Ambient
6O·C
Temperature
80.C

Current Rating
Voltage Ratings

1000

400

250

150

r';;.f'l

40

36

33

38

34

31

28

31

28

25

23

22
18

90-270 Amps
100-1600 Volts
Type

Mach. Data
Pg. A34-35

Number

Mounting

N.C.

1000

400

250

150

68

65

76
57

59
45

55

49

.71 I

52
44

38

,

NC
34
29

Type

Mach. Data
Pg. A34-35

Number

1000

400

250

150

,.(i_L,s!

80

80
80

80

80
80

80
75

74

68

61

N.C.

Pih.',:;,
50
41

270-510 Amps
100-2000 Volts

155-300 Amps
100-1600 Volts
Elec. Data
Pg. A33

Output Current (Avg. Amps.)

Elac. Data
Pg. A33

Type

Mach. Data
Pg. A34-35

Number

Elac. Data
Pg. A33

Floor

, Wan

Output Current (Avg. Amps.)
Air Velocity (LFM).
4O·C
Maximum
Ambient
60·C
Temperature
80·C

Current Rating
Voltage Ratings

Output Current (Avg. Amps.)

400

250

150

N.C.

1000

400

250

150

207

185

162

JIO:

.;;.• ':t

279

248

N.C.

220

170

152

133

74

265

225

200

209 •.::,'tiJ;;;
169
125

150

115

103

90

50

212

180

160

135

100

Output Current (Avg. Amps.)
1000

400

250

150

NC

~_;i

454

426

378

I·:.·'

496

395
321

370

330

235

302

266

190

360

380-610 Amps
100-2000 Volts
Type
Number

Mounting

.'

Output Current (Avg. Amps.)

Mech. Data
Pg. A34-35

Elec. Data
Pg. A33

Floor

Wan

Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O·C
Ambient
6O"C
Temperature
80·C

A11

1 cP Bridge
B

Current Rating
Voltage Ratings

26-45 Amps
100- 800 Volts
Type

Mach. Data
Pg. A34-35

Number

Mounting

Elec. Data
Pg. A33

Floor

Wall

Output Current (Avg. Amps.)

=Type

Number

FW9

250
68
62
44

400
76
67
49

90-270 Amps
100-1600 Volts
Type

Elac. Data
Pg. A33
I

Elec:Data
Pg. A33

Type

Mach. Data
Pg. A34-35

Number

Floor

Type
Number

E2

Output Current (Avg. Amps.)

160
69
45·
38

155-300 Amps
100-1600 Volts

Mach. Datil
Pg. A34-35

Number

Mounting

Mech. Data
Pg. A34-35

Output Current (Avg. Amps.)

Air Velocity (LFM).
Maximum
4O'C
Ambient
60'C
Temperature
80'C

Current Rating
Voltage Ratings

60-80 Amps
100-1 000 Volts

45-76 Amps
1oo-1000Volts

270-510 Amps
100-2000 Volts
Elec. Data
Pg. A33

Type

Mech. Data

Number
Pg. A34-35
,-----

Elec. Data
Pg. A33

I

Wall

Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O'C
Ambient
6O'C
Temperature
80'C

Current Rating
Voltage Ratings

400
207
170
116

Number
Floor

160
162
133
90

_

Mach. Data
Pg. A34-35
F-41

Elac. Data
Pg. A33

i

E-4

Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
4O'C
Ambient
60'C
Temperature
80'C

A12

Output Current (Avg. Amps.)
400
279
225
180

380-610 Amps
100-2000 Volts
Type

Mounting

250
186
162
103

250
248
200
160

160
209
169
136

Output Current (Avg. Amps.)

3

q, Bridge
E

Current Rating
Voltage Ratings

35-61 Amps
100- 800 Volts
Type

Mech. Data
Pg. A34-35

Number

Mounting

55-100 Amps
1 00-1 OOOVolts
Elec. Data
Pg. A33

Type

70-120 Amps
100-1000Volts

Mecn. Data
Pg. A34-35

Number

Elec. Data
Pg. A33

Type

Mech. Data
Pg. 'A34-35

Number

Elec. Data
Pg. A33

Floor

Wall

Output Current (Avg. Amps.)
Air Velocity (LFM).
Maximum
40'C
Ambient
60'C
Temperature
80'C

Current Rating
Voltage Ratings

400
54
52

46

45

40

Type
Number

Mounting

Floor

150

1000

400

250

150

N.C.

45

fi,;~J

92

84

73

"'.'elk;:

42
36

38
33

30

91

81

73

26

78

69

62

63
54

48
41

100-300 Amps
100-1600 Volts

r-----

Output Current (Avg. Amps.)

250
49

Mech. Data
Pg. A34-35

Elec. Data
Pg. A33

Output Current (Avg. Amps.)
400

250

150

';-~ 120

1000

116

107

.,.

NC
[

116

115

96

87

58

94

85

72

70

47

180-380 Amps
100-1600 Volts

225-450 Amps
100-1600 Volts

Type

Type

Number

Number

Mech. Data
Pg. A34-35

.'

Elec. Data
Pg. A33

Wall

Output Current (Avg. Amps.)
Air Velocity (LFM).
4O'C
Maximum
Ambient
60'C
Temperature
80'C

Current Rating
Voltage Ratings

Mounting

246
189

Output Current (Avg. Amps.)

Output Current (Avg. Amps.)

400

250

150

400

250

150

1000

400

230

205

180

288

405

250
361

168

148

82

307

243
196

;JL_~

189
145

323
261

145

393

333

290

130

113

63

234

198

149

110

297

252

224

232
1.76

150

NC

303

tal',

249
188

185
140

280-530 Amps
100-2000 Volts

370-700 Amps
100-2000 Volts j

520-830 Amps
100-2000 Volts

Type

Type

Type

Number

Number

Number

Mech. Data
Pg. A34-35

Elec. Data
Pg. A33

GE19B83

F·43

EA

Floor

Wall

Output Current (Avg. Amps.)
Air Velocity (LFM).
40'C
Maximum
Ambient
60'C
Temperature
80'C

Output Current (Avg. Amps.)

Output Current (Avg. Amps.)

..

1000

400

250
730

150

NC

672

Is.zo

325

730

770
675

638

588

455

275

617

570

540

600

385

400

250

150

1000

400

250

150

NC

470

443

393

~i] 628

581

l<~

456

405

382

336

240

611

552

510

526
461

360

321

302

266

190

517

468

432

391

•. :J

A13

6 

',to ,,' Waveform , A'...... ~ AiCfawttch " Pb... 'ridge ~';. ',' ,;.. t'hrf!ItPhasa AC .SWitch " 1 ~ !RL , L CR, '" ~. R ~ 'Bi ~ ·Iw ~ L Maximum Voltage Ed=Avg. E.=RMS Maximum SCR Voltage Maximum Diode Voltage (See: Single Phase Bridge "B" or Three Phase Bridge "E") °lw 1 CR, Er'~1 A16 ",' ;'t':., E.=ERMS 1.4 ERMS 1.4 ERMS Ed =.90 ERMS 1.4 ERMS 1.4 ERMS Ed=1.35 ERMS 2.45 ERMS 2.45 ERMS E.=E RMS 1.4 ERMS 1.4 ERMS ,Description of Half Control Assemblies Pictured on the Right I Westinghouse GA28B32, 141 AC Switch 180-320 Amps, 100-1600 Volts on 4 x 4 x 9 II III IV V heat sinks. Westinghouse heat sinks. Westinghouse heat sinks. Westinghouse heat sinks. Westinghouse heat sinks. Recommended SCR &. Diode Voltage Rating 2.8 ERMS 2.8 ERMS or 3.9 Ed GB28B29, 141 Bridge, 161-290 Amps, 100-1600 Volts on 4 x 4 x 9 GE28B42, 341 Bridge, 232-420 Amps, 100-1600 Volts on 4 x 4 x 9 GE24B 11, 341 Bridge 54-11 0 Amps, 100-1000 Volts on 1% x 4 x 5 GF24A89, 3lP AC Switch 42-89 Amps, 100-1000Volts on 1% x 4 x 5 Output Current Ratings (Amperea) Forted Natural CCltWeCtiOn aUO·C &. Convection at40·C '1000 I.FM· 12 tl.l71 19ta 140 ja'RMSto "180RMS Bridge. 34-44 Amps. 100-1200 Volts on 1% x VIII. IX. X. XI. heat sinks. Westinghouse heat sinks. Westinghouse heat sinks. Westinghouse heat sinks. Westinghouse heat sinks. Recommended SeR Repetitive V.oltage Rating 2.8 ERMS 6.2 Ed or 4 x 3 GB36B14. 11/> Bridge. 93-140 Amps. 100-1200 Volts on 4 x 4 x 5 GB39B31. 11/> Bridge. 196-310 Amps. 100-1600 Volts on 5 x 5 x 6 GE36B20. 31/> Bridge. 135-200 Amps. 100-1200 Volts on 4 x 4 x 5 GE39B44. 31/> Bridge. 285-440 Amps. 100-1600 Volts on 5 x 5 x 6 VII ~----------------------~ For Specific Rating Info See Page A26 VIII A27 2.8 ERMS A28 IX 2.8 ERMS or 3.1 Ed A29 4.9 ERMS or 2.1 Ed A30 2.8 ERMS A31 X XI A25 Single SCR T Current Rating Voltage Ratings Mounting 17-22 Amps 100-1200 Volts 36-40 Amps 100-1200 Volts Type Numb!!r Type Number Mech. Data Pg. A34-35 47-71 Amps 100-1200 Volts Elec. Data Pg. A33 Floor Type Number ,----- Mech. Data Pg. A34-35 Elec. Data Pg. A33 Wall Maximum Air ..,Ambient Velocity Temperature (LFM). I 4O'C Conduction Angle 60'C L I 80'C 1000 400 250 180 J2 21 19 18 120 19 18 17 16 16 15 14 14 13 13 12 11 30 8 8 8 8 . 180 19 17 16 15 13 40 40 39 37 28 57 54 51 48 37 120 16 15 14 13 12 33 33 33 33 26 52 49 46 43 33 Conduction Angle L 90 14 13 12 11 10 28 28 28 28 23 47 44 42 39 30 60 11 ,9 9 8 22 22 22 22 20 41 39 ,36 35 27 30 7 10 7' 7 6, 6 16' 16 16 16, 16 32 30 29 27 21 180 1.5 13 12 11 10 34 32 30 28 21 43 41 38 36 27 120 13 12 II 10 8 30 28 27 25 19 39 37 34 32 24 90 11 10 9 8 7 27 26 24 23 17 36 33 32 30 22 60 8 8 7 7 6 22 21 20 19 14 31 29 28 26 20 30 6 6 5 5 5 16 16 15 14 11 24 23 22 21 16 Current Rating Voltage Ratings 77-120 Amps 100-1600 Volts Type Number Mech. Data Pg. A34-35 98-150 Amps 100-1600 Volts Elec. Data Pg. A33 Type Number Mech. Data PII' A34-35 Elec. Data Pg. A33 Floor Wall Maximum Air ..,Ambient Velocity Temperature (LFMl. Output Current (Avg. Amps.) 1000 400 250 150 NC 1000 400 250 150 I ',120'1 112 106 96 ~ F'n::~ ~ 144 134 121 • 40'C L r- 60'C L r- 80'C A26 L Output Current (Avg. Amps.) 90 Conduction Angle Mounting Output Current (Avg. Am,ps.) 150 60 L I Output Current (Avg. Amps.) 180 Conduction Angle .. Output Current (Avg. Amps.) NC 120 105 103' 96 88 73 142 132 124 112, 92 90 89 89 89 81 67 124 119 113 102 85 60 71 71 71 71 59 99 99 97 90 74 30 50 50 50 50 47 70 70 70 70 60 180 98 91 85 78 60 124 115 108 97 76 Conduction 120 Angle 90 89 83 78 71 57 115 107 99 91 73 82 76 72 66 53 105 98 92 83 67 60 71 66 62 58 47 90 85 79 73 59 30 .,50 50 50 46 38 70 67 64 59 48 180 72 68 63 57 43 92 86 80 72 53 Conduction 120 Angle 90 67 62 58 52 41 86 79 74 68 53 62 58 55 50 39 80 74 68 62 48 60 54 50 47 44 35 69 64 60 55 43 30 42 40 38 35 28 55 54 49 45 36 Doubler D Current Rating Voltage Ratings Mounting 15-20 Amps 100-1200 Volts 34-36 Amps 45-68 Amps 100-1200 Volts 100-1200 Volts Type Number Type Number Type Number Floor Wall Maximum Air +Ambient Velocity Temperature (LFM). I 4O'C L I 60'C L I 80'C L Delay Angle Delay Angle 1000 400 0 ~,;:R"J 60 18 19 16 90 13 12 250 18 16 11 17 NC Output Current (Avg. Amps.) 1000 llK4fu: {;.Thi Output Current (Avg. Amps.) 400 250 150 N C. 1000 400 250 36 36 36 ~;.It.'~.' '~~.~~i 64 60 150 56 15 12 32 32 32 32 31 62 58 55 52 41 11 10 22 22 22 22 22 45 45 45 42 34 0 17 16 16 14 12 36 36 36 35 31 55 52 49 46 35 15 11 14 13 12 10 32 32 32 32 26 50 47 45 10 10 9 8 22 22 22 22 20 41 39 38 42 36 32 28 0 13 12 11 10 9 32 42 10 10 8 29 24 18 37 34 34 32 25 23 8 6 22 21 20 19 15 38 31 39 35 8 9 7 29 26 20 11 9 30 27 27 60 29 28 26 19 90 Current Rating Voltage Ratings 75-114 Amps Floor 95-150 Amps 100-1600 Volts 100-1600 Volts Type Number Mounting 150 60 90 Delay Angle Output Current (Avg. Amps.) ,.----., Mech. Data Pg. A34-35 Elec. Data Pg. A33 Type Number Wall Maximum Air +Ambient Velocity Temperature (LFM). I 40'C L I 60'C L I 80'C L ,,0\ \' 400 109 60 101 101 96 86 90 71 71 71 69 0 Delay Angle Delay Angle Delay Angle Output Current (Avg, Amps.) 1000 .. 260 150 NC 101 92 1':;:' ~;.1:c 72 58 Output Current (Avg. Amps.) 1000 400 250 150 ''''.':.\ 138 129 118 r ..,;· 137 98 128 98 120 108 90 88 74 98 NC 0 94 87 81 74 68 120 112 104 95 79 60 88 82 70 55 113 105 97 88 69 90 69 65 77 63 57 46 90 86 80 74 59 0 60 70 66 65 60 57 65 52 41 90 84 78 62 40 78 ~o 70 64 48 90 53 50 47 43 34 83 69 64 60 64 43 53 A27 1 q, AC Switch A Current Rating Voltage Ratings 34-49 Amps 100-1200 Volts Type Mach. Data Pg. A34-35 Number Mounting 80-89 Amps 100-1200 Volts Elec. Data Pg. A33 ~ Air Velocity Output Current (RMS Amps.) t-:":~::: L Elec. Data Pg. A33 1000 400 250 150 E6 W22 Output Current (RMS Amps.) Output Current (RMS Amps.) 42 39 47 44 41 90 50 48 45 42 60 50 49 46 44 30 50 50 48 46 180 40 37 35 32 28 89 89 88 83 64 129 121 114 107 80 Conduction 120 Angle 90 42 38 36 34 29 89 89 89 89 68 140 132 124 115 88 43 40 37 35 31 89 89 89 89 72 148 140 132 124 96 60 44 41 39 37 32 89 89 89 89 76 160 153 144 136 105 40 38 34 89 89 89 89 86 178 168 160 150 118 Angle L 30 45 42 180 31 28 26 25 21 76 71 67 64 47 97 91 86 80 67 Conduction 120 Ang}e : 33 30 28 27 22 81 76 70 66 49 107 100 94 86 62 30 Current Rating Voltage Ratings 33 31 29 27 24 85 80 76 72 63 112 106 100 93 68 34 32 30 29 25 88 84 80 76 58 121 115 108 103 75 35 33 31 30 26 89 89 86 81 62 133 127 121 115 86 174-223 Amps 100-1600 Volts Type Mech. Data Pg. A34-35 Number Mounting 222-340 Amps 100-1600 Volts Elec. Data Pg. A33 Type Number Floor Wall Maximum Air .Ambient Velocity Temperature (LFM)+ r l.c L r ~o.c L A28 Number 44 r Jo.c r Jo.c Type 50 L r Jo.c Mech. Data Pg. A34-35 Number ~ F20-li ~--- Floor Wall Maximum .Ambient Type 104-160 Amps 100-1200 Volts L Output Current (RMS Amps.) - Output Current (RMS Amps.) 400 250 320 300 377 350 328 298 390 378 355 323 265 390 390 382 355 290 390 390 390 390 333 175 1000 180 Conduction 120 Angle 90 60 30 180 160 N.C. 272 _ 244 280 260 245 220 Conduction 120 Angle 90 223 222 208 190 150 305 285 267 242 190 223 223 223 207 164 327 305 287 263 206 60 223 223 223 223 182 355 330 314 292 230 30 223 223 223 223 211 390 376 357 330 267 160 149 139 126 95 208 192 160 162 125 178 165 155 141 106 228 200 180 135 192 179 168 154 118 247 210 '230 215 197 147 208 196 185 170 152 275 267 247 230 172 223 223 212 186 154 306 286 270 250 195 180 Conduction 120 Angle 90 60 30 I 1. Bridge B Current Rating Voltage Ratings 34-44 Amps 100-1200 Volts Type Number Mounting 73-80 Amps 100-1200 Volts Meeh. Data Elee. Data Pg. A34-35 Pg. A33 Type Number Mech. Data 93-140 Amps 100-1200 Volts Pg. A34-35 Else. Data Pg. A33 Type Number Mech. Data Elee. Data Pg. A34-35 Pg. A33 Floor Wall Maximum Air +Ambient Velocity Temperature (LFM)+ I 4O"C L I 60°C L rL 60°C O~tPut Current (Avg. Amps.) 180 Conduction 120 Angle 90 60 30 180 Conduction 120 Angle 90 60 30 180 Conduction 120 Angle 90 60 30 Current Rating Voltage Ratings 37 32 27 22 15 34 30 25 20 14 32 28 24 19 14 30 26 22 18 13 29 26 21 26 23 20 16 12 24 22 18 15 22 20 17 14 II II 17 12 Mounting Floor Maximum Air +Ambient Velocity Tempereture (LFM)+ I ,L 4O"C 60°C L " 8O"C L 13 80 66 67 45 32 80 66 57 45 32 79 66 57 45 32 74 66 57 45 32 57 62 47 40 32 114 104 94 82 63 108 98 88 78 60 102 92 83 72 51 95 86 78 69 54 74 66 60 54 42 19 17 16 13 10 68 60 54 45 32 64 57 51 43 32 60 54 48 41 30 56 51 46 39 29 42 38 35 29 23 86 18 81 13 66 58 45 16 68 63 55 43 72 64 59 62 41 54 48 43 40 31 26 23 20 17 154-240 Amps 100-1600 Volts Type Number Mech. Data Output Current (Avg. Amps.) 1000 400 250 150 N.C. 80 80 J!II!I ~ 80 66 66 66 66 65 57 57 57 57 57 45 45 45 45 45 32 32 32 32 32 11 62 48 196-310 Amps 100-1600 Volts Elee. Data Type Pg. A34-35 Pg. A33 Number "10-B-3-9-B-24--:_ _ IOB39B31 Output Current (Avg. Amps.) --' Mech. Data Elee. Data Pg. A34-35 Pg A33 Output Current (Avg. Amps.) 180 Conduction 120 . 90 Angle 60 30 60 30 196 178 163 142 99 182 166 162 132 99 170 156 144 124 99 156 142 131 116 92 120 114 106 94 76 248' 230 210 180 140 230 214 196 169 134 216 198 184 168 127 194 182 166 146 118 152 146 134 118 96 180 120 Conduction 90 Ang'e 60 30 144 133 123 107 84 136 124 116 100 80 126 116 109 94 76 114 104 99 87 70 86 82 78 69 66 184 172 160 137 110 172 158 148 128 103 160 148 136 120 97 144 135 124 110 90 106 105 96 86 180 Conduction 120 Angle 90 ·" A29 ,·il •• '----'-"---=--~. -----~ ----.-.-,-~---.- ~ 3 cp Bridge E Current Rating Voltage Ratings Mech. Data Pg. A34-35 Type Number Mounting'" 103-110 Amps 100-1200 Volts 45-60 Amps 100-1200 Volts Elee. Data Pg. A33 Type Number Mech. Data Pg. A34-35 1,35-200 Amps 100-1200 Volts Elec. Data Pg. A33 Type Number Mech. Data Pg. A34-35 Elec. Data Pg.A33 Floor W~II Maximum Air Velocity "Ambient Temperature (LFM). I L I 60'C L 4O'C I 80'C L Delay Angle Delay Angle 250 150 400 250 150 N.C. 1000 400 250 150 10 57 54 51 110 110 110 ,03 '• .2IItt::: 192 180 168 60 54 49 46 44 37 96 96 96 96 94 186 174 166 156 123 90 38 37 34 33 30 66 66 66 66 66 135 135 135 126 102 105 0 52 48 45 42 36 109 109 109 105 82 165 156 147 138 60 45 41 39 37 31 96 96 96 96 75 150 141 135 126 96 90 34 31 30 28 25 66 66 66 66 60 123 117 109 103 79 0 40 36 33 31 27 97 91 87 81 60 126 117 111 102 79 60 34 31 30 28 24 87 82 78 73 54 114 106 102 96 69 90 26 24 23 22 19 66 64 61 57 45 93 88 84 78 57 I 60'C L I 80'C L A30 Delay Angle Delay Angle Delay Angle 225-340 Amps 100-1600 Volts 285-440 Amps 100-1600 Volts Type Number Type Number Mech. Data Pg. A34-35 Elec. Data Pg. A33 Floor Maximum Air Velocity "Ambient Temperature (LFM). I 4O'C L Output Current (Avg. Amps.) 400 Current Rating Voltage Ratings Mounting Output Current (Avg. Amps.) 1000 0 Delay Angle OutPllt Current (Avg. Amps.) Output Current (Avg. Amps.) 1000 400 250 150 N C. 3401 321 303 276 lti!! 60 303 303 288 258 216 90 213 213 213 207 174 o Output Current (Avg. Amps.) , 1000 400 250 150 N C 414 388 f'Y• . 411 384 360 354 324 294 294 294 270 -.1 264 222 o 282 261 243 222 174 360 336 312 285 222 60 264 246 231 210 165 336 315 291 264 207 90 207 196 186 171 138 270 255 240 222 179 159 ... o 210 195 180 165 123 270 252 234 210 60 198 186 171 156 120 249 234 210 192 144 90 159 150 141 129 102 207 192 180 168 129 3 q, AC Switch F Current Rating Voltage Ratings 34-49 Amps 100-1200 Volts Type Number ,----- Floor Mounting 104-160 Amps 100-1200 Volts 80-88 Amps 100-1200 Volts Mech. Data Pg. A34-35 Elec. Data Pg. A33 Type Mech. Data Pg. A34-35 Number Elec. Data Pg. A33 Type Number Wall Maximum "Ambient Temperature I 40'C L I 60'C L I 80'C L Air Velocity (lFM)+ Delay Angle Delay Angle Delay Angle 1000 400 250 150 N C 1000 400 250 150 0 ["~'l 44 42 39 !ii:M" ~}J8f'1 88 88 88 90 49 46 43 41 36 88 88 88 88 .. 120 49 48 46 43 39 88 88 88 88 40'C L I 60'C L I 80'C L Delay Angle 1000 400 250 150 N C. :::fM:] 149 140 132 F~ 87 172 162 153 143 114 88 177 177 176 165 133 80 40 37 35 32 28 88 88 88 84 64 128 120 114 106 38 36 34 30 88 88 88 88 70 140 132 124 116 90 120 43 40 38 36 32 88 88 88 88 78 160 153 142 135 104 0 31 28 26 25 21 76 72 67 64 48 98 91 86 81 58 90 33 30 29 27 23 81 76 72 68 51 106 100 94 88 65 120 34 32 30 28 25 88 84 80 76 58 122 116 110 103 76 174-270 Amps 100-1600 Volts 222-340 Amps 100-1600 Volts Type Type Number Number Mech. Data Pg. A34-35 Elec. Data Pg. A33 Floor Output Current (RMS Amps.) 1000 400 250 150 ~J 251 235 215 90 285 280 260 240 120 285 285 285 280 f;._' N.C. Output Current (R MS Amps.) , W'"J 1000 400 250 150 320 298 271~i' N.C. 198 379 350 330 303 248 235 390 390 383 352 293 173 0 217 203 189 172 135 278 258 240 218 90 242 227 212 195 157 310 285 268 247 193 279 288 250 230 187 353 333 313 288 232 123 120 Delay Angle I Output Current (RMS Amps.) 42 0 Delay Angle .. N C 0 Maximum Air Velocity "Ambient Temperature (lFM)+ I Output Current (RMS Amps.) 90 Current Rating Voltage Ratings Mounting Output Current (RMS Amps.) -- 0 160 150 139 126 95 208 192 180 162 90 182 170 160 147 112 238 217 202 186 138 120 212 200 190 172 136 272 253 238 220 170 A31 Electrical Data Tables I and II provide General Recommendations for Transient Voltage Protection. Tables III and IV must be, used in conjunction with the electrical key specified with each of the assembly type numbers. These tables cover non-repetitive surge ratings, 12t ratings, general fuse recommendations, recommended gate drive requirements, and recommended RC dv/dt net- works for the devices used in the Gold Line Assemblies. Circuit conditions and economics will dictate which protective devices, if any, are necessary for reliable operation. Table I General Recommendations for Voltrap1ll Transient Voltage Suppression for Gold-Line Assemblies _ This table can be used as a general guide can obtain the size of the Voltrap® required, the selection and application of Westingwith any Gold Line Assembly. Knowing the The Voltraps® should be connected across house Voltraps@, send for T.D. 16-435, pp. Assembly Input Power Transformer KVA each device with the shortest lead lengths 1-14 - Westinghouse Electric ,Co., General and the Secondary Line to Line Voltage, one practical. For more information regarding Control Division, Buffalo, N. Y. 14240. 24 60 120 240 480 S03 S04 S05 S05 S06 S01 S02 S03 S04 S04 S05 S01 S01 S02 S03 503 S04 S05 S01 S01 S01 S01 S02 S03 S04 S05 S01 S01 S01 S01 501 S01 S03, S04 S05 Table II General Recommendations for RC Transient Voltage Suppression Across for Gold-Line Assemblies This table can be used as a general guide work with the shortest lead lengths possible with any'Gold Line Assembly. R-C networks should be connected across the DC Output are generally used when Voltraps@ are not Terminals of the Rectifier Assembly. considered economical. Only carbon or non-' R = Resistor (ohms) inductive wound power resistors and exP = Power Rating of Resistor (watts) tended foil or computer grade electrolytic C = Capacitor (microfarads) caoal;It(,,',S should be used. The R-C netV = Voltage Rating of Capacitor (volts) the DC Output Terminals General recommendations assume that the transformer and line inductance are lesS' than R2C/4. ~~~~~~~========~ A32 Table III Electrical Data and General Fuse Recommendations for Rectifier Gold-Line Assemblies This chart lists the non-repetitive 1-3-5-10 Amp-Trap '''. Equivalent fuse types are avail3. English Electric Co., Limited cycle'surge current ratings and I2t ratings able from several companies. A partial listing Fusegear Division for the rectifiers used in the Gold Line of these companies include: Liverpool, England Assemblies. In addition, general fuse recom1. Bussmann Mfg. Div. mendations are presented, Fuses must be McGraw Edison Co. mounted in series with each device. The St. Louis, Missouri 63107 numbers listed in the table are Chase2. The Carbone Corporation Shawmut (Newburyport, Mass,) Form 101 Boonton, New Jersey 07005 12t (Amp2-Sec) 5 500 Line Voltage Fuse 10 155 130 260 120 240 480 A13 x 30 180 365 310 245 1000 120 240 480 A13 x 50 04.25 x 50 04.60 x 30 2150 1800 37,200 120 240 480 A13x250' 2400 .A&o x 101': 120 240 480 'A13 x 400 A2S.x 40() . A601( 4500 4100 3500 125,000 AZ5 x30 ASOx30, ~26x300 Table IV Electrical Data and General Gate Drive, Fuse, and RC dv/dt Network Recommendations for Half and Full Control Gold Line Assemblies This table lists the non-repetitive 1-3-5-10 Norwalk, Conn. 06852). Vectrol, Inc, (Rockonly extended foil AC voltage rated capacicycle, surge current ratings, I2t ratings and ville, Md.) and others. For additional infor- tors should be used. general fuse recommendations for Half Conmation on selecting gate triggering requireR = Resistor (ohms) trol and Full Control Gold Line Assemblies. ments and designing gate drive circuitry P = Power Rating of Resistor (watts) refer to the Westinghouse SCR Gate Turn on The fuse types shown' are Chase-Shawmut C=Capacitor (microfarads) Form 101 AmpoTrap®. Their address and Characteristics. V=Voltage Rating of Capacitor (volts) the addresses of other fuse manufacturers are listed under Table III. The fuses must be Also, listed in this table are RC dv/dt netmounted in series with each device. works for dv/dt suppression. These RC In addition this chart lists the general gate dv/dt networks must be placed with short requirements for the SCR's used in these 'lead lengths across each device (rectifiers and SCR's) in the assembly, Only carbon or assemblies. Commercial gate firing packages non-inductive wound power resistors and are available from Firing Circuits, Inc. 12 t (Amp2-sec) 100 rna 3.0 Volts 350 rna 100 rna 3.0 Volts 350 rna 150 rna 3.0 Volts 500 rna 90 800 6,000 120 240 480 1w .25 2w .25 5w .25 300 600 1000 i 1150 11080 10,700 I I I I 2400 1 2200 : 2000 120 240 480 1w .25 2w .25 5w .25 300 600 1000 45,000 120 240 480 100,000 120 240 480 950 870 I I I 1 1 150 rna 3.0 Volts 1600 : 1250 I 500 rna 300 600 1000 90 1200 3300 Line Volt- I 5000 1 3600 : I I 3350 I 3100 .5 .5 .5 300 600 1000 300 600 1000 A33 .;. Mechanical Data Tables V, VI and VII list the length, width and height, drill plan, mounting hole dimensions ahd approximate weight for each assembly. These tables are divided into "floor-type" mounting, "wall-type mounting", and "floor and wall type mounting", and must be used in conjunction with the mechanical key specified with each of the assembly type numbers. Color coding for terminal identification is in accordance with NEMA standards. Color Code: Yellow - A.C. terminals (input) Red - Positive terminal (output) Black - Negative terminal (output) The material for Westinghouse Gold Line heat sinks is aluminum with gold chromate finish. Mounting feet and other mechanical support materials are of flame retardant, non-tracking, NEMA Class B (130·C continuous operation) insulation. Table V n A34 Assembly Weight (Lbs.) Length L .8 1.6 1.6 2.4 2.4 3.4 .7 .8 1.2 1.4 2.0 2.2 2.4 2.8 2.8 3.3 3.3 3.6 2.7 5.6 5.6 5.9 8.2 8.2 10.8 16.2 4.8 5.0 9.6 10.0 14.4 15.1 4.4 4.6 8.0 9.0 9.0 10.2 10.2 13.5 15.5 15.8 23.4 23.6 4.125 8.750 8.750 13.375 8.750 13.375 4.125 4.125 4.125 4.125 8.750 8.750 8.750 8.750 8.750 8.750 8.750 13.375 4.125 8.750 8.750 8.750 13.375 13.375 9.250 13.875 4.125 4.125 8.750 8.750 13.375 1 5.125 5.125 10.750 10.750 10.750 10.750 10.750 16.375 10.750 11.250 16.375 16.815 D 3.875 3.875 3.875 3.875 6.125 6.125 3.875 3.875 4.375 3.875 3.875 3.875 4.625 3.875 4.125 4.125 4.125 4.625 6.625 6.625 6.625 6.625 6.625 6.625 11.625 11.625 6.625 7.375 6:625 7.250 6.625 7 7.875 7.625 7.625 7.625 7.625 7.625 7.625 7.625 12.625 14.000 12.625 14.000 3.875 3.875 4.125 3.875 4.375 4.375 3.875 5.750 5.875 5.750 5.875 6.062 5.875 5.750 5.750 5.750 6.062 5.875 5.750 6.250 5.750 6.062 5.750 6.062 6.250 9.562 9.562. 9.562 9.562 9.562 9.562 6.750 6.750 7.125 7.250 6.750 6.750 7.125 6.750 6.750 7.250 6.750 7.250· 3.00 7.62 7.62 12.25 7.62 12.25 3.00 3.00 3.00 3.00 7.62 7.62 7.62 7.62. 7.62 7.62 7.62 12.25 3.00 7.62 7.62 7.62 12.25 12.25 7.62 12.25 3.00 3.00 1.62' . E Hole Diameter .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 7.~2 2.75 2.75 2.75 2.75 4.94 4.94 2.75 2.75 2.75 2.75 2.75 2.75 2.15 2.75 2.75 2.75 2.75 2.15 5.50 5,50 5.50 5.50 5.50 5.50 10.50 1 5.50 5.50 5.50 5.50 12.25 1 4.00 4.00 9.62 9.62 9.62 9.62 9.62 15.25 9.62 9.62 15.25 15.25 6.50 6.50 6.50 6.50 6.50 6.50 6.50 6.50 11.50 12.50 11.50 12.50 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 Table VI Length L .8 1.6 1.6 1.6 2.4 2.4 2.4 3.4 .7 .8 1.2 1.4 2.0 2.2 2.4 2.8 2.8 3.3 3.3 3.6 2.7 5.6 5.6 5.9 8.2 8.2 4.8 5.0 9.6 10.0 14.4 15.1 4.4 4.6 8.0 9.0 9.0 10.2 10.2 13.5 5.062 10.000 10.000 10.000 14.625 14.625 10.000 14.625 5.062 5.062 5.062 5.062 10.000 10.000 10.000 10.000 10.000 10.000 10.000 14.625 5.375 10.000 10.000 10.000 14.620 14.620 5.375 5.375 10.000 10.000 14.625 14.625 6.375 6.375 12.000 12.000 12.000 12.000 12.000 17.625 Dimensions in Inches Height Width H W 3.500 3.750 3.000 3.000 3.750 3.000 5.750 5.750 3.380 3.380 4.500 4.500 3.250 3.000 4.250 3.250 4.000 4.000 4.000 4.250 6.125 6.125 5.880 5.880 5.880 5.880 6.125 7.000 6.125 7.000 6.125 7.000 7.625 6.750 6.7,50 7.625 6.750 6.750 6.750 6.750 3.062 4.688 3.125 4.688 4.688 4.688 4.688 4.688 3.380 5.062 5.062 5.062 5.125 5.626 5.125 5.125 5.125 5.125 5.625 5.125 5.062 5.125 5.125 5.625 5.125 5.625 9.125 9.125 9.125 9.125 9.125 9.125 6.062 6.062 6.625 6.125 6.125 6.125 6.625 6.125 Drill Plan 0 E 4.69 9.25 9.25 9.25 13.88 13.88 9.25 13.88 4.69 4.69 4.69 4.69 9.25 9.25 9.25 9.25 9.25 9.25 9.25 13.88 4.62 9.25 9.25 9.25 13.88 13.88 4.62 4.62 9.25 9.25 13.88 13.88 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 3.75 5.62 5.62 11.25 11.25 11.25 11.25 11.25 6.50 Mounting Hole Diameter .28 slots .34 .34 .34 .34 .34 .34 .34 .28 slots .28 slots .28 slots .28 slots .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 .34 Table VII Approximate Assembly Weight (Ibs.) Length Dimensions in Inches Width Drill Plan Height L W H 0 .2 .3 .4 .5 .7 .6 3.125 3.560 4.000 4.438 5.750 3.500 3.062 3.062 3.062 3.062 3.062 5.062 4.500 4.500 4.500 4.500 4.500 6.500 2.25 2.69 3.12 3.56 4.88 2.62 .7 4.060 5.062 6.500 3.19 .8 4.625 5.062 6.500 3.75 1.0 5.188 5.062 6.500 4.31 1.5 6.875 5.062 6.500 6.00 E 1.00 1.00 1.00 1.00 1.00 2.50 and 1.00 2.50 and 1.00 2.50 and 1.00 2.50 and 1.00 2.50 and 1.00 Mounting Hole Slots .22 x .47 .22 x .47 .22 x .47 .22 x .47 .22 x .47 .28 x .56 .22 x .47 .28 x .56 .22 x .47 .28 x :56 .22 x .47 .28 x .56 .22 x .47 .28 x .56 .22 x .47 A35 Thermal Data Forced Air Cooling The rating charts presented in this brochure cover natural convection and four forced air conditions: 150. 250. 400. and 1000 linear feet per minute (LFM). The air velocity is measured in LFM as it approaches the sink. From the rating charts. it can be seen that the current ratings of a given assembly can be increased considerably by using forced air. All air flow velocity measurements are per JEDEC RS-282. SEC 7-13. The following is a partial listing of Manufacturers of blowers and fans: 1. W. W. Grainger. Inc. 3812 Penn Ave. Pittsburgh. Pennsylvania 15201 2. Rotron. Inc. Woodstock. New York 12498 3. Rotating Components 1560 5th Ave. Bay Shore. New York 11706 4. Pamotor. Inc. 770 Airport Blvd. Burlingame. California 5. IMC Magnetics Corporation Eastern Division 507 Main Street Westbury. New York Oil Cooling Current ratings for assemblies which are immersed in natural convected oil are approximately equivalent to the 1000 LFM air flow ratings listed in this catalog. A36 INTRODUCTION Q.de.;",lnfonn,,;o" J Voltage Code Available Circuits Parallel Circuits Series Circuits Liquid Cooled RIC Tabs Kits and Sinks Air Cooled Assembly Modules. ASSEMBLY RATINGS Rectifier Single Rectifier Series Rectifier 1(6 Bridge 3(6 Bridge 3(6 WYE 6(6 Star * Half Control 1(6 Bridge 3(6 Bridge Full Control Single SCR Series SCR 10 Bridge 3(6 Bridge AC Switch. 1 f/J JEDEC. Manifold AC Switch * New High Current Air Cooled Module. SUPPORTING DATA Electrical Data Mechanical Data Kits and Sinks Thermal Data Air Cooled Assembly Page Liquid Cooled Assembly Page A38 A38 A39 A39 A39 A40 A41 A40 A4S A48 A4S A46 A47 A46 A42 A42 A49 A49 A43 A43 A43 A44 A44 ASO A48 ASO AS1 AS1 AS2 AS6 AS9. A64 A6S. A66 A68 AS6 AS7. AS8. A60-A63 A66 A67 *Also see Page A38. Series Circuit. Liquid Cooled Assembly Modules. A37 New High Current Water Cooled Module. .. -~- ......- - - - - . . --~ Liquid Cooled Manifold AC·Switch . Ordering Information All assemblies in this section are keyed to a standard twelve digit part number which describes the assembly frame, heat sink, and device type. Simply insert the two digit voltage code for the desired assembly voltage rating. more devices, to obtain higher voltage ratings than available in a single device. This type of circuit 'generally requires special ORR matching and other test matching to assure proper voltage sharing across each device in the application. Voltage Code Make sure the desired assembly voltage rating does I)ot exc;:eed the Maximum Voltage Available for the assembly under consideration. Then, using Table I, select the appropriate two digit voltage code. Inserting this two digit voltage code into the 9th and 10th positions of the assembly part number completes the required ordering information for all standard designs. Standard air cooled assembly modules are only available for two devices in series. To order, simply specify PS frame connection. For current ratings, refer to the appropriate PR on PT circuit frame data; for assembly outline drawings, refer to the PO frame mechanical data. Available Circuits Table II lists the standard circuits available from Westinghouse. A complete index by circuit type is given on page A37. The shaded areas of Table II denote circuits with ratings published in this section. PC (positive center tap - common cathode connection) is available; use the corresponding single phase bridge data for the appropriate current rating. Likewise, the PN (negative centertap - common anode connection) is available; use the corresponding single phase bridge data for the appropriate current rating. Series and parallel circuits are also available. Parallel Circuits This type of circuit is usually specified when paralleling ·two or more devices to obtain higher current ratings than available in a single device. Two common techniques for paralleling devices are direct and forced sharing; both techniques usually require specially factory matched test selection to assure proper device performance in the application. The standard Westinghouse PP circuit is provided with common anode connection; common cathode parallel circuit connections can be provided on request. Series Circuit This type of circuit is usually specified when seriesing two or A38 Liquid cooled assembly ratings for two and three devices in series are presented in this section along with their outline drawings. For applications requiring four or more devices in series, consult Westinghouse for a custom module. Liquid Cooled R/C Tabs Tab type, .250 push-on terminals are an option available on Westinghouse liquid cooled heat sinks. This option makes the connection of resistors, capacitors,and/ or voltage protection devices directly across the semiconductor device an easy task. To order this feature, add suffix "RC" to the standard twelve digit type number- i.e. PDW6T6201230RC. Kits and Sinks Standard air and liquid cooled disc assembly kits are available to the user who needs design flexibi1ity on small quantity custom designs that might require non-standard factory configurations. Air cooled heat sink extrusions, designed by Westinghouse to optimize the cooling of large area power semiconductors. are available in mill lengths or cut-to-order lengths. See pages A65 and A66 for more information on Westinghouse kits and sinks. ............ FRAME AND SINK TYPE I DEVICE TYPE VOLTAGE CODE DEVICE CURRENT ' «ti',4'lfIJIJIIDDDemmm TABLE I Voltage Code AssemblY Device Voltage Rating Voltage 100 200 400 600 800 01 02 1000 10 12 14 16 18 20 22 24 26 28 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 4000 04 06 08 30 40 TABLE II STANDARD AVAILABLE CIRCUITS Circuit Schematic Configuration n Voltage 1 Code , PRA8R820 30 377 401 368 391 338 30 355 378 342 363 314 341 30 313 333 297 316 276 300 PRA6R820 40 414 448 396 431' 379 411 40 387 419 367 399 347 376 PRA6R820 50 444 482 424 459 403 436 PRA7R720 06 484 537 464 518 444 494 06 448 497 429 479 405 451 06 389 431 362 404 335 373 PRA7R720 09 564 623 536 592 512 567 09 521 576 494 546 465 515 12 755 842 721 802 682 762 Rectifier R ONE ASSEMBLY PRA7R720 PRA9R920 11 1033 1183 990 1150 947 1110 11 970 1128 930 1080 878 1030 REQUIREO PRA9R920 11 860 1000 16 1104 1280 945 1010 875 1025 1192 1020 1135 1220 920 1090 1340 1608 1277 1537 1635 1222 1440 PRA9R9GO 13 1087 1305 1040 1230 995 1170 13 1020 1200 970 1140 915 1085 845 990 780 930 PRA9R9GO 1B 1100 1308 1B 1020 1216 965 1150 PRA9R9GO 22 1371 1658 1297 1570 1048 1248 PDA8R820 30 754 802 736 782 676 736 30 710 756 684 726 628 682 30 626 666 594 632 55'2 600 PDA8R820 40 828 896 792 862 758 822 40 774 838 734 798 694 752 PDA6R820 60 888 964 848 918 806 872 968 1074 928 1036 888 988 06 896 994 858 958 810 902 06 778 862 724 808 670 746 PDA7R720 09 1128 1246 1072 1184 1024 1134 09 988 1092 930 1030 PDA7R720 -12 1441 1604 1364 1524 PDA9R920 11 1980 2300 1894 2220 11 1860 2160 1756 2060 11 1620 1890 1490 1750 PDA9R920 16 2110 2450 2000 2150 ASSEMBLIES REQUIRED 745 1000 1075 16 PDA7R720 06 TWO 810 1055 1225 1300 PRA9R920 20 13 1 Bridge 321 368 16 2040 2270 1840 2180 PDA9R920 20 2554 3074 2444 2880 PDA9R9GO 13 2080 2460 1990 2340 13 1940 2280 1830 2170 13 1690 1980 1560 1860 PDA9R9GO 18 2200 2616 2096 2496 18 2040 2432 1930 2300 PDA9R9GO 22 2742 3316 2594 3140 A39 Schematic This Number) Configura~ Voltage '- tion Code 3~ Bridge THliEE ASSEMBLIES REQUIRED 6~ Star , PDA6R620 •• 30 1032 '097 30 959 '0'9 887 955 30 834 779 839 85' PDA6R620•• 40 '207 40 '033 '1'8 976 1058 1137 '23' 1067 '156 PDA6R 620••50 '252 '360 "94 '295 PDA7R720 ••06 '38' '5'5 '32' '462 1259 1401. 06 '274 '402 '222 '352 '154 1284 06 1106 '2'7 '03' "4' 954 1061 PD"'7R720••09 '596 1766 '5'9 '676 '456 1604 09 '475 '632 '400 '545 1324 1458 PDA7R720 • .12 240' 2038 2282 1933 2'63 -1-------11--PDA9R920 •.11 2790 3234 2676 3105 11 2475 3000 2496 2880 11 2259 2625 2085 2460 PDA9R920 ••16 2925 3396 2772 3270 16 2688 3'74 2520 2985 PDA9R920•. 20 3645 4290 3495 4'34 IPI)A5IR9GO. _13 3360 2700 32'6 13 2655 3'35 2505 2970 13 2265 2700 2115 2520 PDA9R9GO-.18 3060 3627 2910 3450 18 2838 3366 2685 3189 PDA9R9GO••22 3825 4590 3636 4350 PRA6R620• ..30 '553 '636 1500 1579 30 '45' 1528 1392 1464 30 '265 '332 1206 1269 PRA6R620 ••40 '723 1850 1648 1769 40 '609 '727 1529 1641 PRA6R620._50 '884 2027 1793 1939 2045 2249 1957 2144 PRA7R720• ..o6 06 2002 2'99 '906 2096 1810 1983 06 '759 '932 1653 1818 1547 1695 2288 2518 PRA7T720 ••09 25'9 2760 2403 2651 SIX 09 2356 2582 2235 2466 2115 2327 ASSEM8LIES 12 383' 3332 3687 3183 3514 PRA9R920••11 4302 5010 4080 4788 11 3978 4650 3780 4422 '1 3480 4050 3210 3768 PRA9R920.36 4500 5682 4320 5000 REQUIRED A40 886 954 1028 16 4170 4968 3960 4650 PRA9R920•• 20 5870 6888 5520 6480 PRA9R9GO• .13 44'0 5250 4200 4980 13 4050 4860 3840 4590 13 3468 4'70 3180 3870 PRA9R9GO• .1 8 48'8 5700 4566 5448 18 4470 53'6 4200 5040 PRA9R9GO••22 6210 7398 5916 7038 Schematic Configura· tion mJn 3 WV· Transformer) SIX ASSEMBLIES REQUIRED Voltage Code • PRA6R620 30 2064 2194 1908 2056 2084 30 1918 2038 1774 1910 1936 30 1754 1868 1668 1772 1558 1678 1702 PRA6R620 40 2232 2414 2134 2312 2360 40 2066 2236 1952 2116 2180 PRA6R620 50 2388 2590 2274 2462 2510 PRA7R720 06 2762 2642 2924 2518 2602 2864 08 2548 2444 2704 2306 2568 2628 06 2212 2082 2282 1908 2122 2172 PRA7R720 09 3192 3038 3352 2912 3208 3284 09 2800 3090 2648 2916 2986 PRA7R720 12 4564 3866 4326 4448 PRA9R920 II 5580 8510 5362 6210 6600 11 4960 6000 4992 5760 6120 11 4518 6250 4170 4920 5250 PRA9R920 16 6850 6792 5544 6640 6990' 16 6376 6348 6040 6970 6400 PRA9R920 20 7290 8680 6990 8268 8730 PRA9R9GO 13 5670 6720 5400 6432 6840 13 5310 6270 6660 6010 5940 6330 13 5400 4230 6040 6370 PRA9R9GO 18 6120 7254 6820 6900 7360 18 5676 6732 6370 6378 6768 7660 7272 8700 9294 PRA9R9GO 22 A41 Schematic Configuration, This Number} Voltage Code • PDA6T6R6 R4 1 t/J Bridge PDA6T6R6 rPDA7T7R7 PDA9T9R9 TWO REQUIRED PDA9T9R9 PDA6T6R6 ~ 3 ¢ Bridge 334 356 304 334 278 306 383 418 349 381 315 343 30 433 474 395 431 356 388 25 408 441 378 412 350 382 34 462 500 430 468 398 434 40 606 650 558 614 528 564 411 456 36 504 560 459 508 45 558 615 508 562 454 504 66 639 712 576 645 514 573 06 872 1028 790 932 707 831 07 962 11,32 876 1026 782 919 OB 1051 1234 957 1119 852 1004 09 1185 1402 1075 1267 10 1322 1661 1201 PDA9T9R9 ASS"EMBlIES REQUIRED PDA9T9R9 521 1412 1521 954 1131 1060 1263 Gil 930 1090 1G 1140 1360 1040 1244 940 1124 12 1450 1760 1316 1590 1180 1424 840 994 760 900 16 473 503 430 472 393 432 20 545 694 497 643 449 489 30 616 673 561 613 507 552 677 625 634 5~3 496 640 614 PDA6T6R6 PDAn7R7 THREE 16 20 34 654 707 608 662 563 40 857 920 790 869 747 798 655 727 590 652 36 46 729 801 661 725 56 832 928 741 827 06 1140 1347 1020 1203 07 1257 1476 1131 1322 OB, 1375 1611 1231 1444 09 1552 1836 1382 1636 10 1746 2055 1557 183B GB 1316 1542 1188 1406 1075 1273 1G 1613 1924 1471 1760 1332 1590 12 2052 1862 2250 1670 2015 Circuit Schematic Configuration n Single SCR (Order BV This Numberl Voltage Code PTA6T620 PTA6T625 t 15 152 167 139 153 20 175 190 158 172 30 197 215 178 192 25 189 206 175 191 T 279 308 254 281 66 319 356 288 322 ONE 06 436 514 395 466 ASSEMBLY 07 481 566 438 513 REQUIRED OB 525 617 478 559 09 593 701 538 633 10 661 781 601 706 530 631 OB 465 545 420 497 335 380 450 10 570 680 520 622 412 470 562 12 725 880 658 795 510 590 712 PTA9T9GO F11 1 Bridge PDA6T620 PDA6T625 PDA7T720 PDA9T920 TWO ASSEMBLIES REQUIRED 15 334 356 304 334 278 306 20 383 418 349 381 315 343 30 433 474 395 431 356 388 25 408 441 378 412 350 382 30 462 500 430 468 398 434 40 606 650 558 614 528 564 35 504 560 459 508 411 456 45 558 615 508 562 454 504 55 ,639 712 576 645 514 573 06 872 1028 790 932 707 831 07 962 1132 876 1026 08 1051 1234 957 1119 09 1185 1402 1075 1267 1201 1412 10 1322 1561 PDA9T9GO 18 930 1090 10 1140 1360 1040 1244 940 1124 12 1450 1760 1316 1590 1180 1424 B40 994 1060 1263 760 900 PDAATA20 A43 Schematic Configuration This Number} Voltage Code PDA6T620 ~ 34> Bridge THREE PDA6T626 PDA9T920 ASSEMBLIES REQUIRED ~ 15 473 503 430 472 393 432 20 546 594 497 543 449 489 30 616 673 661 613 507 662 211 577 625 534 5113 495 540 46 795 875 801 '651 725 56 921 1023 832 928 741 827 08 1483 1140 1347 07 1382 1628 1257 1476 1131 1322 08 1375 1611 1231 1444 09 1552 1836 1981 1382 1636 10 1746 2055 1557 1838 1188 1406 PDA9T9GO. 08 ~ , Switch A ~AC PAA6T820 PAA6T6211 AMPS RMS PAA7T720 TWO ASSEMBLIES REQUIRED PAA9T920 1316 10 1471 1760 1075 1273 1332 1590 12 1862 2250 1670 2015 2151 111 367 391 334 367 306 336 20 420 459 384 419 347 377 30 475 521 434 474 392 427 211 448 486 415 453 385 420 30 508 560 437 477 40 666 715 580 620 311 654 616 463 502 45 614 677 558 618 499 565 66 703 78.3 634 709 666 630 869 1025 778 9'5 963 1129 860 1011 08 07 969 1130 1058 08 1063 1231 938 1104 09 1642 1183 1393 1049 1245 10 '1717 1321 1553 1166 '389 PAA9T9GO 09 1023 '199 924 ,1093 836 990 10 1254 1144 1368 1034 '236 12 "696 '448 1749 1298 1666 PAAATA20 12 A44 1020 1203 (Orde, By This Number) Voltage Cod. n Single Rectifier R SINGLE ASSEMBLY PRW6R620 30 1200 594 601 618 548 554 30 2000 559 565 581 523 529 545 30 3000 498 504 518 459 464 478 PRW6R620 40 1200 604 610 626 567 574 589 40 2000 567 573 588 530 536 550 PRW6R620 50 1200 687 695 715 645 653 672 823 570 PRW7R720 06 1200 830 846 878 777 790 06 2000 .781 796 826 726 739 770 06 4000 692 705 732 636 647 674 PRW7R720 09 1200 971 988 1030 910 926 964 09 2000 1533 REQU IRED 1-!~~~.!!....!:12~-.!.12~0~0!... 14> Bridge. TWO REQUIRED PRW9R920 I I 1200 II 2000 1462 II 3000 1308 1370 PRW9R920 16 1200 1675 1767 16 2000 1572 1650 PRW9R920 20 1200 2170 2280 PRW9R9GO 13 1200 1654 1693 1788 13 2000 1563 1600 1685 1498 1580 13 3000 1397 1430 1510 1288 1320 1398 PRW9R9GO 18 1200 1793 1841 1940 1680 1726 1830 18 2000 1680 1726 1830 1563 1602 1702 PRW9R9GO 22 1200 2376 2517 2175 2228 2363 PDW6R620 30 1200 1188 1202 1236 1096 1108 1140 30 2000 1118 1130 1162 1046 1058 1090 30 3000 996 1008 1036 918 928 956 PDW6R620 40 1200 1208 1220 1252 1134 1148 1178 40 2000 1134 1146 1176 1060 1072 1100 PDW6R620 50 1200 1374 1390 1430 1290 1306 1344 PDW7R720 06 1200 1660 1692 1756 1554 1580 1646 06 2000 1562 1592 1652 1452 1478 1540 1348 06 4000 1384 1410 1464 1272 1294 PDW7R720 09 1200 1942 1976 2060 1820 1852 1928 09 2000 1824 1856 1934 1702 1730 1802 PDW7R720 12 1200 2403 2438 2523 2256 2292 2382 PDW9R920 II 1200 3044 3106 3256 2864 2924 3066 II 2000 2864 2924 3066 2684 2540 2870 II 3000 2560 2616 2740 2354 2400 2534 PDW9R920 16 1200 3280 3350 3534 3070 3144 3300 16 2000 3070 3144 3300 2860 2930 3080 PDW9R920 20 1200 4280 4340 4560 3965 4056 4280 PDW9R9GO 13 1200 3308 3386 3576 3126 3200 3370 13 2000 3126 3200 3370 2934 2996 3160 13 3000 2794 2860 3010 2576 2640 2796 PDW9R9GO 18 1200 3586 3682 3880 3360 3452 3660 18 2000 3360 3452 3660 3126 3204 3404 PDW9R9GO 22 1200 4634 4752 5034 4350 4456 4726 A45 Voltage Code ~ PDW6R820 30 1676 1724 1584 30 1576 1621 1480 1521 30 1406 1445 1298 1334 PDW6R820 40 1701 1743 1602 1644 40 1597 1637 1497 1536 PDW6R820 60 1942 ll195 1806 1827 1881 PDW7A720 06 2364 2468 2141 2177 2269 06 2224 2312 2037 2072 2160 1970 2048 1784 1814 1891 2770 2877 2596 2703 3t/> Bridge 06 1939 PDW7R720 09 09 2425 2526 ASSEMBLIES PDW7R720 12 3269 3381 REQUIRED PDW9R920 11 3924 4005 4200 11 3660 3744 3930 11 3210 3279 3450 PDW9R920 16 4245 4320 4536 2241 2302 THREE rmTI 30 2347 2387 2441 30 2111 2147 2195 1956 1978 2032 PRW6R620 40 2533 2559 2625 2400 2423 2482 6t/>Star 40 2396 2421 2483 2251 2273 2328 PRW6R620 50 2928 2961 3041 2768 2798 2871 PRW7R720 06 3513 3568 3702 3222 3270 3394 06 3319 3372 3498 3136 3183 3304 2977 3024 3137 2756 2797 2903 4146 4210 4372 394Q., 3999 4146 PRW7R720 3919 3979 4132 3686 37i11 ' 3878 SIX PRW7R720 507i 5145 5312 4811 4874 5027 ASSEMBLIES PRW9R920 6390 6540 6828 6018 6150 6456 6018 6150 6456 5640 5760 6186 11 5496 5760 4962 5058 5328 PRW9R920 16 7116 7422 6612 6726 7026 6726 7026 6210 6312 6618 9420 9900 8652 8832 9.300 PRW9R9GO 13 7122 7512 6737 7080 13 6737 7080 6300 6660 13 6006 6342 5418 5550 5868 PRW9R9GO 18 7668 8070 7122 7272 7632 7272 7632 6708 6846 7200 10302 10842 9456 9678 10248 11 REQUIRED 16 PRW9R920 20 PRW9A9GO A46 1627 9216 (Order By This Number) Voltage Coda PRW6R620 PRW6R620 SIX ASSEMBLIES 3314 3352 3448 3490 3130 3168 3254 3294 3116 3152 3242 3282 2926 2960 3042 3078 2778 2810 2890 2925 2566 .2596 2668 2700 3362 3402 3486 3526 3168 3204 3288 3224 3106 3156 3194 3274 3310 2960 2994 3072 PRW6R620 3842 3884 3990 4040 3612 3654 3762 3812 PRW7R720 4654 2728 4916 6006 4282 4354 4538 4620 4378 4448 4624 4710 4074 4144 4320 4396 3878 3940 4096 4172 3568 2628 3782 3850 5446 5540 5754 5858 5106 5190 5406 5512 PRW7R720 PRW9R920 REQUIRED 5114 5202 5402 5500 4772 4850 5052 5152 6812 6912 7138 7276 6434 6538 6762 6858 8340 8520 8910 9180 7848 8010 8400 8640 7848 8010 8400 8640 7320 7488 7860 8100 6972 7128 7488 7722 6420' 6558 6900 7092 PRW9R920 8970 9180 9642 9900 8490 4640 9072 9312 8490 4640 9072 9312 7920 8082 8496 8724 PRW9R920 11700 11982 12618 13032 10920 11160 11808 13230 9090 9300 9840 10140 8568 8778 9252 9582 8568. 8778 9252 9582 8028 8208 8664 8958 PRW9R9GO 7632 7812 8264 8556 7032 7212 7632 7878 PRW9R9GO 9774 9996 10578 10932 9204 9432 9954 10302 9030 9204 9432 10302 8618 8820 9112 9630 PRW9R9GO 12852 13200 13974 14448 12012 12348 13080 13584 A47 Circuit Configura· tion r1 PSW6R620 30 594 601 618 548 554 570 30 559 565 581 523 529 545 30 498 504 518 459 464 478 PSW6R620 40 604 610 626 567 574 589 530 536 550 PSW6R620 645 653 672 PSW7R720 777 790 823 726 739 770 636 647 674 910 926 964 OR ! tl1tlltl1 SERIES RECTIFIER SINGLE ASSEMBLY REQUIRED Avail. (VI Voltage Code PSW7R720 PSW7R720 PSW9R920 11 1462 11 1308 1370 PSW9R920 16 1675 1767 16 1572 1650 PSW9R920 20 2170 2280 PSW9R9GO 13 1693 1788 13 1600 1685 1498 1580 13 1430 151q 1288 1320 1398 PSW9R920 18 1841 1940 1680 1726 1830 1680 1726 1830 1563 1602 1702 2317 2376 2517 2175 2228 2363 PSW9R920 M r1 PSW6T620 OR SERIES THYRISTOR 1533 PSW6T625 272 280 285 242 249 253 20 313 323 327 278 286 290 30 355 367 372 314 324 329 25 325 333 336 295 303 306 370 380 384 PSW7T720 436 451 459 45 486 503 512 56 572 593 603 PSW9T920 06 721 158 779 07 SINGLE BlY 08 REQUIRED 09 10 PSW9T9GO 08 PSWATA20 14 *Consult factory for exact type number before ordering. A<\S Vohage Code FP1 1. Bridge PDWITIR8 16 536 544 560 , 476 484 498 20 618 626 645 548 556 573 30 701 711 733 621 629 648 PDWITIRI 26 636 650 666 578 590 606 3H 728 740 760 660 674 692 926 948 960 844 864 884 859) 872 903 766 777 806 957 971 1007 851 864 898 1128 1145 1186 999 1015 1056 55 PDWBT9R9 08 1419 1442 1517 1250 1271 1338 TWO 07 .1545 1568 1651 1368 1391 1462 REQUIRED 08 1681 1708 1797 1488 151 I 1591 09 1936 1967 2075 1704 1733 1828 10 3161 2196 2316 1903 1934 2040 1330 1360 1440 ·DUTPUT CURRENT AMPS RMS PDWBTBRB 08 1494 1530 1620 10 1860 1920 2010 12 2440 2500 2660 ~ PDWIT8R8 11 750 761 784 20 881 892 919 30 998 1010 1044 PDW8TIR8 26 890 910 932 1388 1442 3. Brldgo PDW7T7R7 PDWBTBRB THREE ASSEMBLIES REQUIRED 1618 1642 1701 2047 2079 2190 2223 2260 2376 2463 2583 2846 3002 3181 3369 2142 2268 2798 PDW9TBRB A49 .- . ---~ .---- 'Circuit Configura· tion n Slngl.SeR . T 10rder By This Number) Voltage Code PTW6T620 PTW6T6.25 272 280 286 242 249 313 323 327 278 286 356 367 372 314 324 326 333 336 295 303 PTW7T720 PTW9T920 SINGLE SEMBLV REQUIRED PTW9T9GO 14 F14 1 "'Bridge POW6T620 16 1500 1500 618 626 645 548 556 573 30 1500 701 711 733 621 629 648 PDW6T626 25 1200 636 650 666 578 590 606 30 1200 728 740 760 660 674 692 40 1200 926 946 960 844 864 884 PDW7T720 35 2200 869i 872 803 766 777 806 45 2200 957 971 1007 851 864 898 1145 1186 999 1015 1056 20 55 1600 TWO PDW9T920 06 3000 1442 1517 1271 1338 07 2200 1568 1651 1391 1462 08 1708 1797 1511 1591 1600 1967 2075 1704 1733 1828 10 1600 2196 2316 1903 1934 2040 1440 REQUIRED 09 PDW9T9GO A50 1494 1530 1620 1330 1360 1860 1920 2010 1660 1710 1800 2500 2660 2220 2340 253 329 Circuit fOrder By Thl. Number, Configuration ~ ----3q, Bridge Voltage Code PDW8T820 1 PDW8T825 750 761 784 666 677 881 892 919 780 790 815 998 1010 1044 885 896 924 809 826 848 532 547 890 PDW7T720 932 1064 1327 1344 1238 1283 1365 1388 1442 1618 1642 1701 PDW9T920 THREE ASSEM8L1ES REQUIRED 910 1036 2798 PDW9T9GO 2079 2190 2260 2376 2453 2583 2846 3002 3181 3369 2142 2268 2674 2614 3500 3724 697 PDWATA20 1 ~ PAW8T620 ~ PAW6T625 AC .Switch ONE ASSEM8LY REQUIRED ·OUTPUT CU1'RENT AMPS RMS PAW9T9GO 616 688 710 603 611 630 771 782 806 683 692 713 636 649 666 699 715 732 800 814 836 1016 1042 1056 945 959 992 46 1053 1068 1108 55 1241 PAW7T720 PAW9920 598 679 1259 1305 06 1586 1668 07 1725 1816 08 1878 1977 09 2164 2282 2415 2647 1643 1683 1782 2101 2211 PAWATA20 PAWATA20 AS1 • Eleven current ratings available • Manifold base providing easy mounting and 18" isolating liquid path • 3N221 and 3N222 types available • %-18 N.P.T. (2) brass fitting supplied with grounding wire • Water temperature sensing thermostats available for assembly protection The Westinghouse AC manifold switch provides a fast-access, high performance assembly that has been rated for continuous or duty cycle applications. All mounting and electrical 'connections meet the JEDEC outlines. Water connections can be made (V) verti.cal. or (H) horizontal. The electrical connections may be supplied either (5) short tangs or (L) tangs. Refer to @ outlines M-16 under mechanic.al data, this section. AVAILABLE. DE.SIGNS FRAME Storage Temperature" ..•••••.••••••••••• -40°C to 66°C Ma)(imum Ambient Temperature •••••••••••••••• " •• 66° PAM7 Ma)(imum Water Pressure (INLET) ..••.. " .••.... 60 psig Maximum Water Temperature (INLEn ...••..•...•.• 60"C Maximum Pressure Drop, 1.26 GPM ••••••••••• : 10 PSIG "Manifold must be purged of water to avoid freeze up at low temperatures. PAM9 PAM9 EXAMPLE: Obtain optimum device performance for your application by selecting proper order ·code PAM7 with T7201255 SCR's rated at 1240A RMS with 1.25 GPM twater =40.oC and vertical H20 connection, short tang electrical connectiohs. ............_-_........ FRAME AND SINK TYPE I DEVICE TYPE I VOLTAGE CODE I DEVICE CURRENT I I H2 0 TANG IB III E1I. .II1l1l......III1II. . . . .fI A52 HANDLING PRECAUTIONS: When the switch is to be placed in operation, all surface moisture must be eliminated before power is applied, otherwise catastrophic electrochemical failure can be induced. Coordination between cooling water temperature and the prevailing humidity is necessary to avoid condensation on water cooled metallic surfaces and electrical insulation. Ordinarily, this is no problem with 40°C cooling water. With lower temperature water, humidity control may be necessary to completely stop condensation. MOUNTING POSITIONS: No restrictions WATER QUALITY: The cooling water shall have the following quality: A neutral or slightly alkaline reaction, i,e, a pH between 7.0 and 9.0. A chloride content of not more than 20 parts per million; a nitrate content of not more than 10 parts per million; and a sulphate content of not more than 100 parts per million. A total solids content of not more than 250 parts per million. A total hardness, as calcium carbonate, of not more than 250 parts per million. No chemial additives to be used. MOUNTING Visually examine the switch before it is mounted to see that it has not been damaged during handling. When mounting the insulating base, the following precautions should be taken to avoid distorting the plastic part, a cause of . breakage and/or leakage. The mounting surface is to be flat within .030". Bolts or nuts which are used to hold the switch into the equipment shall be used with a flat washer against the plastic base. Torque values shall not be exceeded. (Sft-Ibs. max. for 1.4" screw). For pipe connections, a sealing agent, joint compound, shall be used in order to limit the torque needed and in order to get a water -tight joint. A53 RMS DEMAND CURRENT.,AMPS 3200 I- zw a: a: :::l u 2800 --..... " - --!. f.,.." k..,." "- , ::! w (/) 20 50 2000 !z3000 Il! a NUMBER OF CONDUCTING CYCLES I 1600 1200 2600 ~~ -100 0 ::! a: ' 10 0 «z , ,:2200V 5 2400 3600 3400 'PAM7T72o....35 ' II- MAX, VOLTAGE AVAILABE ~ ~ ~~ -..;;: ~ ;::::s ~ z ,~ ~ 10 I- zw 4000 - 1 :::l U 0 5 1 -f., 3000 z « ::!: w 0 2000 (/) ::!: a: 10 I 20_ -50_ -100 - .~ .. ~ ,I NUMBER OF 1000 -CONDUCTING ~YCLiS .~ I o I r-L.!. 3600 2' I- zw a: a: :::l U 0 «z ::!: w 0 (/) ~ a: ......;"". 3200 3000 ' 2oJ50 2400 • 100 . NUMBER OF 2000 CONDUCTING ~ I CYCLES 1600 1 % DUTY I I I I I '1 r-.... I I " 10 4000 ....---- ~mill 100 .... ~ W IIIIII 100 10 PAM9T92o....oe I II' MAX. vqLTAGE AVAILAB LE 2200V I 2 5 ao lO_ 20 1--50 z "- ~ I I I I w 3000 , -....;::::: i'-...~ ~ ~ -r-- r-.'_ 1-1- ~ t--... t-- -=- ~~ 100 I « III I I- f f'..:. -.;.;;,:. "'....... '~ ~ i-- z .~ ~ ~ ;s .... 1 % DUTY 100 ~" ,"" .:-..: r-..."\ m PAM9T92o....06 MAX. VOLTAGE AVAILABLE 3000V NUMBER OF CONDUCTING . CYCLES I 1400 ~~ 100 _ 1 0 0 _ 50, . 1800 - ~ ~ m -20 ~ '" ~ ................ ....... ...;"" i'... ~ 5000 ":""1 1200 A54 I --- .I r-L' (/) ~ - 10 10 2200 '";::::::; s I 5 ~ PAM9T92o....o7 MAX. VOLTAGE AVAILABLE 2200V 5 10-r-. 2800 .-- !z % DUTY 4000 ~ - 3600 3400 ~ o ...... .......... ':'" .;.."" I I 1000 10 1 I u 02600 , ,"'- 0....... ~ ~ ~ 1 % DUTY :::l . ~' 5 NUMBER OF CONDUCTING CYCLES 1000 Il! .. - 1~ ., 1400 a: '-.:. . 2 PAM7T72o..-451 I II MAX, VOLTAGE AVAILABLE 2200V _100· 100 -f., 21 a: a: 'l.' 20 -:-f., ~ PAM7T72o....55 MAX. AVAILAB,"E VOLTAGE l.100V I 50 o % DUTY I - 2200 (/)1800 If 5000 TWATER = 4()°C. 1 :25 GPM o « ~ 800 1 --- "'S. PERCENT'DUTY ~ ~ 2000 """':""NUMBER OF CONDUCTING o ,.CYCLEs. ~ ~ a: 1000 .< o 1 % DUTY 10 100 RMS DEMAND CURRENT. AMPS VS, PERCENT DUTY TWATER II 6000 ....z w -~"" 5000 2 5r-i- a: a: ::l u 0 z<{ :::!l w 10 4000 3000 F--- 1100 en :::!l a: ~ ~ 20'50 0 PAM9T92o. ..()9 I MAX. VOLTAGE AVAILABL 1700V I I NUMBER OF CONDUCTING I CYCLES I 2000 .... iria:: ~ w a:: a:: 5000 0 ~ 4000 w 0 3000 :::!l en :::!l a: ~ 2000 -NUMBEROF CONDUCTING 1000 - I C Y C rS, ~ 100 % DUTY -1 .... zw a: a: ::l u 0 z<{ :::!l w 2 5 10 20 5000 6000 5000 4000 r........ ~~~ ....~ I :::!l 2000 r- NUMBER OF a: 1000 - CONDUCTING CYCLES o1 I I % DUTY 10 100 ',III I I 1 PAM9T9Go._12 MAX. AVAILABLE VOLTAGE 1700V ....... 7000 0 en :::!l a: 1 o 10 8000 !Z en II 0 1 100 II 2- f-5 ~4000 020 50 ~ ~ 3000 I - - - 00 ~ 20 10 50 1 1001 ~ PAM9T9Ga.._l0 MAX. AVAILABLE VOLTAGE 2000V 6000 ::l 5 t'..... ~~ ~ 10 ~ 6000 a: 1 2 ~ % DUTY MAX. VOLTAGE AVAILABLE 3000V ::l U I--. I 01 100 PAM9T~G~kl I II ....z I R .~ 2000 I- NUMBER OF CONDUCTING a:: CYCLES 1000 10 % DUTY 3000 o PAM9T92a.._10 MAX. VOLTAGE AVAILAB LE 1700V 2 6 lO20 60 1uv a: w 'I t-l-~ ::l 1000 01 - 5000 ~4000 z ~ = 40°C. 1.25 GPM ~ NUMBER OF CONDUCTING 3000 I - rCLjS ""II- ~ ~~ ~ ~ ~. ""'""ll I 2000 1 10 ~ ~ rr 100 OPTIONAL THERMOSTAT % DUTY A5! seR *Typical - 300 V I~s minimum. **Non-repetitive velue A56 .-, .-4 W~8 OI•• n,lon W-7 mm Inc.... 209.8 rna •. 156.4 S.76 rna •. .82 506 max IIICIIII. 8.26 rna •• 6.12 508 rna •. 6.00 max. 1.26 12B.5 max 127.0 rna •. 31.7 15.7 13.5 ref 3.17 11.10 33.32 76.2 ref. .82 .53 ref. wldB X K lone: ,101 (21 ... .125 1.31 300 ref .,prox. lb• WI. 168.2 1285ma. 1270 max 317 157 135 ref. 317 500 max 12. 62 63 ref. 126 44 131 TT 10 33.32 78.2 ref a.OOrel. tI, In tl' 1.26 27. •• 222.3 max. 3.26 148 .-7 DlnltnlllNl W-9 Inches mm 9.11 max. 705 662 max. 6.38 max. 200 2314 max . W.III I ' IInI sloll!} .,. DIIllnIIOll Inc"" 9.70 max. (·14 "pIDI. W.. ... 6.00 max. 127.0 max. 500 max 12. 269.5 max 2182 85' 506 max. 128.5 max. 1270 max. .2 31.8 15.7 .82 53 ref. .125 13.5 ref 3.18 1.312 3.00 ref 33.32 16.2 ref Ibs ... W-7 Iocb" 7." 5.06 max 3.25 tiS 318 .-5 .1061 max ... 101.6 ref 700 246.4 max. 191.5 128.6 max. 1.25 635 11.10 3889 Ib, .-2 W-8 508 22.4 13.5 ref 53 ref. .250 .44 153 4.00 ref tpprOl . (14 1791 1656 rna)!; 1367 max 11.10 318 " 7 13.5 ref 318 63 ref 12. 44 1.312 til 300 lb. 1.48 425 1110 3332 76.2 ref tIS 193 .-1 W.. DlIMns ..n iocII.. 11.08m.... 280.9 m.... 228.8 8.52 ma... 6.38 max. 186.8 m .... 138.7 ma... ... ... 2.00 r~ (1-1 .,111 X K 11111( alai 121 .63 ref. .250 .. ... 9.00 1.531 4.00 ref. 1,lIfOl. ,., w.. 8.76 50.• 22.4 13.6 8.36 11.10 38.89 101.S ref. .... tp A57 M-3 Dnlllim W-8 mm I..... 246.4 max. 9.70 max. 7.64 191.6 5.88 max 5.00 max. 1494 max. 127.0 max. 31.8 15.7 13.66 ref . 1.25 .&2 .53 J ..... 11( r·~ r·~ 3.18 .125 Iant 11.10 33.32 .44 1.312 300 ref. 2.38 Sial (21 M 76.2 ref. 60." 953 .375 1.00 • ,prlll. WI. 25.4 .p lb• 32. 1.60 .-8 Dlmlnslon r·~ r·~ M W-7 mm IIIchls 1061 max 86 269.6 max. 218.2 5.B8 max. 149.4 max S.OO max. t27.0mex. 31.B 125 .62 .53 ref. 15.7 13.56 ref. .126 .44 1312 1110 3332 3.18 3.00 ref. 76.2 ref 2.38 60.5 9.63 375 25.4 1.00 • pprox. WI. lb• kl' 7.00 3.17 M-9 Olln..o". 1--==--,W::,.-..:.9--:::::---1 bleb. mm 11.06 max. 900 280.9 max. 228.6 8.66 max. 6.38 max. 1367 max. 2.00 .88 63 faf. .260 willlxK _ 0101 (21 A5S 60.8 22.4 13.5 ref. 635 .44 11.10 t.53t 38.89 1016 ref. 4.00ref. M 2t7.4max. 3.00 1.00 .375 762 26.4 9.53 2.00 508 'ppra•. liII WI. 9.26 kl' 4.22 M-10 hDI ': ----w---~- Inches L_*_J! r---- " 1 G dtl. (2lholestDpslnk (2) ItaIIs ba1tom sink I , I. .312·18 hu. tid. boll 13018 max 5125 melt '3018maK t01.9Tet 425 ref 12.7 ref 50 ref 1079 ref. 127 ref 674 3 •• 67. 402 ref. 1021 ref. 452 ref. ',48 ref klS Ibs 'IS WI. ~70 "". 3.2 ~62 Plrsink .312-18 loch.. 13125 max 256 5.75 max. 5125 max. 4.26 ref. 60 ref. 344 4.02 ref. 350 ref. 1H r - . Ibs • pprOl. WI. ,• ( 1 I 3334 65.0 256 625 max 1588 malt 5125 max. t301Bmax 107.9Tef 425 ref 1079 ref 12.7 ref. .60 ref 8.75 1148 88" 3.S0ret 88S lb. kI' 71 sQ.lnCftIS SQ. em !:>i: 6.2 40.0 .0:::6.2 .1 20638 max 636 6.44 max 163.6 max 9938 max 25243 max 225 ref 57.2 ref 100 25.4 apprOI. lb' wI. 16.5 SCI. Inches sect. •• Ii·· - I 9.53 19.1 ref 800 ref. .g. 75 sq. em 677 ""'105 ~J~~; ha;~~~d." M-15 Dimension J A-9 1--:--,-_.--___ _ Inches mm 17125 max. 434.28 max 250 l f I. -, '-----Itl-:- ,IJ I .... 8.125 max. 375 75 ref 315 ref .. . I!~bol1 1 - . . ' .,-.--:t t A-9 Incites: 250 J ----W-:-Ol -.)Ik- .40.0 M-14 DlmenslDn - '--- -- - kg• 1575 .rea -- --'" 875 4.52 ref. per sink : ~ 127 ref. .344 1021 arGSS 1"1- 650 1460 max 130.18 max 1 - ___ I 3334 13125 67 ~". • .250-2. "'.IId. bI111 J !I mm Inchls sq. em Ilea . A-7 mm sq.lnclles ~-w-·rr _. • . _ l i--~ -~I f -, '-----~---:- -L .. -I" M-13 14.75 crou_1. perslilk sq em ~400 "'62 A-B •• .P. lid. bOil ~400 Dimension ~T-.l~ "....~mod.l. ~i I ~34 "" 7.5 sq. Inches M-ll ---1 __ 1588 max Ibs sq. em SCI. Inches H . J9l ' 650 SOrel 344 L_*_J r r·-·- '" 1 \ 256 625 max area hDI .: .--w.--~- 155.78 max 1460 max crosssecf. .1 . 66.0 6125 max 575 mall. 5125 max 426 ret appro!. __ mm Inches 155.78 malt. 2.56 'M' ~T-~l~ acc~m'd'to ~ ._ A-7 mm 6.125 malt ---1 \ M-12 A-B DImension 1636 max 9938 max. 25243 max 2250 ref. 6715 ref 1.00 254 315 ref. 9.53 1905 ref. 800 ref 4.50 ref .578 ref. 114.3 ret. 1468 ref .375 750 ref. ~J .pproll. WI. cro~'r:a.ct. ";·,In. 63.5 644 max. Ibs 350 • sq.lniCh" -106 tl' 15.9 s~ em 677 A59 HS I VS ARRANGEMENT M-16 1lItII...lo' 1--:--:-...:H:::S:,:'r-:VS=-_ _-l Iocb.. M.. 1094,.f. MANIFOLD SWITCH 1748 1.38 4.50 max 3•• 1143 max 25.4 185.1 76.2 78.2 216.9 82.0 82.6 '.00 6.50 .25 200 72 150 37 60 56 • N ~ R V 277.9 ref, 688 300 300 850 244 32. 6.0 508 .83 38. 94 12.7 142 166 __ ~ __ 396 __ _ ~_I!!.".+_--:-77'=.6-"m= ••'___l ~ __ ~.!..~ _ 1~.~.07m •• ~. --.~~---.-t--~~-~ 1 _ _ ...L0~ _ _ _ ~ 1--._ I---ii-- '•.0~8 NPT --:-:-::--- .--7~~---~~~1--~2·6·~~~9~ . I--~ ___ ,'~0~6__-t__~~__~ ~I------'---r------~ ~ -------+------~ .0 H" 112 2159 850 HL , VL ARRANGEMENT DlmlnslDn ~. HL & VL mm IIIC". 12.50 ref 317.5 ref 1748 688 ... 300 762 .' -300_ _ 78.2 215-.850 '00 138 4.50 max L --"- ~EE WICtlI "-. FF lonl stII. (4) V ,~ W I ~ 1 ~ 1 : II CC DD I II FF i. AEiO AI ......... wiler IRIlt 10"6---- --.-- 351 114.3 mex. 100 2.' 6.50 18S.1 2. 200 .72 50.8 1.50 38.1 37 .50 56 1.58 300 ma. SSm ... .50 1.00 'A·'8 NPT 64 18.2 •.. 12.7 14.2 39.8 7.emu. 14.0mBx. 12.7 26.4 1.00 .375 .7. 25.4 8.50 215.9 9.5 19.1 au HH w-e DlmenslDII A B C D E F G H J K L Inches mm 11.15 max. 283.2 max. 8.98 228.1 ,5.06 max. 128.5 max. 6.00 max. 127.0 max. 1.25 31.8 .62 15.7 .53 ref. 13.5 ref. .125 3.18 .44 11.10 1.312 33.32 3.00 ref. 76.2 ref. Ibs 4.6 approx. wI. klS 2.1 M-18 W-7 Dimension'H----,----,.------1 mm Inche. J wide. K 10111 $1ot(2) H 12.55 max. 318.8 max. 10.54 267.7 5.06 max. 128.5 max. 5.00 max. 127.0 max. 1.25 31.8 .62 15.7 .53 ref. 13.5 ref. .125 3.18 .44 11.10 1.312 33.32 3.00 ref. 76.20 ref. klS Ibs approx. WI. 2.36 5.19 M-19 Dimension W-9 , Inches mm 330.7 max. J wi• • llooK B 13.02 max. 10.95 Ilot(2) C 6.52 max. 165.2 max. D E F 6 5.38 max. 2.00 136.7 max. A 50.8 .88 .53 ref. H . 250 J .44 K 1.531 L 4.00 ref. 22.4 13.5 ref . 6.35 11.10 38.89 101.6 ref. lb. IPprox. WI. 278.1 : kiS 12.3 5.61 M-20 OIIIIenslon A B C D E Wide x K lone slot (2) W-6 inches 11.12 max. mm 282.4 max. 9.06 230.1 5.88 max. 5.00 max. 127.0 max. 149.4 max. 1.25 31.8 F .62 15.7 6 H J .53 ref. 13.46 reI. .125 3.18 11.10 33.32 .44 K 1.312 L M N 3.00 ref. 76.2 ref. 2.38 60.5 P R approx. WI. .375 1.00 IbS 4.91 9.53 25.4 klS 2.23 A61 W-7 DImension A I C D E F G H J K L M N 12.82 mIX. '10.68 P .375 R 1.00 " 9.63 25.4 lit. klS 4.09 W-9 I mm a 13.03 max. J 10.94 C D 8.56 max. 331.0 ma•. 277.9 217.4 max. 5.38 max. 136.7 max. E 2.00 .88 .63 ref. F G H J K L M N 4.00 ref. 3.00 1.00 .375 2.00 P approx. Ibs WI. 13.26 'pprn. WI. A62 W-8 W-7. Inches mm 6.00 max. 1.20 4.95m... 127.0 ma•. 30.5 Ibs 3.0 klS 8.02 M-24 M-23 ~38 50.8 22.4 13.48 ref. 8.36 11.10 38.89 101.6 ref. 76.2 26.4 9.53 50.8 .250 .44 1.531 R 1.00 78.2 ref. 60.5 Inches A 6.00mox. 1.92 ref. 2.38 .63 ..1. 31.86 16.7 13.46 ref. 3.18 11.10 33.32 9.00 Dlmenllon J dla. each Sink 127.0 max. .44 1.'12 3.00rol. 2.38 WI. A I C D E F 6 K J K 320.6 ma•. 288.2 149.4 max. 6.88 max. 6.00 max.. 1.26 .82 .53 rei. . 125 approx. DImension mm Inches 126.7 max. 127.0 max. 46.8 ref. 60.6 13.6 ref. 9.63 25.4 klS 1.38 Inches 5.50 mex. 1.70 4.95 max. 6.00 max. 1.92 ref. 2.38 ,53 ref. mm 139.7 max. 43.2 126.7 max. 127.0 ma•. 48.8 ref. 60.5 13.5 ref. .38 1.00 9.53 . 25.4 Ibs kgS 3.18 7.0 Ic-----D----~ ---. ~--i F +-+H++++-- t M-25 Dimension Inches mm A B 6.91 max. 1.70 150.1 max, 43.2 C 7.16 max. 181.9 max. D E F G H J K 5.38 max. 136.7 max. 'pprol. 1 W-9 WI. 2.41 ref. 3.00 .53 ref. 61.2 ref. 76.2 13.5 ref. 1.00 .38 2.00 25.40 9.63 50.8 IbS klS 4.22 9.25 M-26 Dimension R die. (2) hOles elch Sink W-A Inches mm A B 9.25 max. 235.0 max. C 9.31 max. 236.5 max. D 7.06 max. 179.3 max E 2.B2 F G 2.1B .42 ref. .31 H J 6.00 1.00 K l M N P R S 2.00 .pprox. WI. 554 716 107 ref 7.9 152.4 25.4 50.B 22° B2.6 22° 3.25 .50 1.00 375 .62 ref. 1'2.7 25.4 9.53 ·'5.7 ref. Ibs kgs 6.79 14.94 M-27 l1 ~~ !=f r- - Dba,nslon + R dll. (2) hOles nCh sink H T~~ K ~~~ A B C D E F 6 H J K l M N P R S IPprOl. WI. W-A inChes mm 11.50 max. I.B7 292.1 max. 47.5 9.31 max. 236.5 max. 7.06 max. 179.3 max. 71.6 10.7 ref. 7.9 2.82 .42 ref. .31 6.00 1.00 2.00 22° 3.25 .50 1.00 .376 .62 ref. Ibs 20.76 152.4 25.4 50.B 22° 82.6 12.7 25.4 9.53 15.7 ref. kgs 9.43 A63 101-28 ----- LillJ'T-~"'I0"''''¥r''''''' ----~1·312-"h".".,," F ~ j DllJJIDslon A-A Inches mm 1012 max 2S7.1 max. 1269 max 784 max. 322.3 max. 199.1 mall:. 12.7 ref, 70.6 50 ref 2.78 .578 approx. wt. cross sect. Irea per sink ~ .1 ' 14.88 Ibs ~44. k&o ...... 20.2 sq. em Sq. Inches ,..... 1829 . . . . ',8.0 ,I 101-29 m¥"'.te. " -••tsto .... ...11 ~.31H.h"." jF ~ ----- LillJ ----- Dimension A-A incites 2112 max. 1269 max 7.84 max 50 ret 278 .678 approx. wI. .1, A64 ; .1 cross sect. aria per sink ~91 lb. 0 sq. Inches 18.29 1111 5384 max. 322.3 max. 199.1 max. 12.7 ref. 70.S . 14.88 klS 41.3 sq. em 118.0 • One piece aluminum extrusion' EXTRUSION NO. A9. V2 SCALE • Cooling for 50 mm75mm disc devices • A9 available in 3 or 6 foot lengths c A • AA available in 7 foot lengths • Cut to length sections also available T 1 r~------B--------~~ EXTRUSION NO. AA. V2 SCALE I 1 A ~----------------B----------------~~~ • Fully rated and proven designs • Includes all necessary hardware for mounting, clamping • Machine finished mounting surfaces • Gate terminals provided with air cooled designs • Complete thermal characteristic curves provided • Clamps/sinks optimized for each device package C-F - Consult Factorv PRW6M010KT Single Reetifier R62 Ml PRW6M230KT Single Reetifer R62 M23 PTW6M010KT Single SCR T62 M1 PTW6M230KT Single SCr T62 M23 PAW6M030KT AC Switch R621T62 PDW6M030KT Doubler - Bridge Leg R62/T62 M3 PSW6M020KT PSW6M170KT Series - two Series - three R621T62 R621T62 M2 M17 PRW7M04OKT Single Rectifier R72 M4 PRW7M240KT PTW7M04OKT Single Reetifier R72 M24 Single - SCR T72 M4 PTW7M240KT Single -SCR T72 M24 PAW7M060KT AC Switch external connection required R72/T72 M6 PDVII'7M060KT Doubler - Bridge Leg R72/T72 M6 PSW7M050KT R721T72 M5 PSW7M180KT Series - two Series - three R72IT72 M18 PRW9M070KT PRW9M250KT Single Rectifier Single Reetifier R92 R92 M7 M25 PTW9M070KT Single SCR T92 M7 PTW9M250KT PAW9M090KT Single SCR T92 M25 AC Switch external Connection Required R92/T92 M9 PDW9M090KT Doubler - Bridge Leg R921T92 M9 PSW9M080KT Series - two R921T92 ~8 PSW9Ml90KT Series - three Single SCR AC Switch External Connection Required R92/T92 M19 TA2 M26 TA2 M27 Doubler - Bridge Leg TA2 M27 Series. Contact Factory TA2 PTWAM260KT PAWAM270KT PDWAM270KT PSWAM __ KT ASS R62 Ml0 Ml0 AC Switch T62 R62/T62 PRA6Ml00KT Single Rectifier PTA6Ml00KT PAA6Mll0KT Single SCR T-2 T-3 C-F T-4 Mll PDA6Ml10KT Doubler-Bridge Leg R62/T62 Mll PRA7M120Kl Single Rectifier R72 M12 PTA7M120KT Single SCR T72 M12 PAA7M130KT R721T72 PDA7M130KT ACSwitch Doubler-Bridge Leg M13 M13 PRA9Ml40KT Single Reetifier R92 M14 PTA9M140KT Single SCR T92 M14 PAA9M150KT AC Switch R921T92 M15 PDA9M150KT Doubler-Bridge Leg R921T92 M15 PRAAM280KT Single Reetifier PTAAM280KT Single SeR TA2 M28 PAAAM290KT AC Switch TA2 M29 PDAAM290KT Doubler-Bridge Leg TA2 M29 R72/T72 T-l M3 T-4 T-5 M28 CF T-1. T-2. W6 AND W7 SINKS I .070 0 I- ...c: .050 !i .040 ~ .030 \ 8 " '- 0.3: .5 " .020 _u .. °~..010 E .. o r-.. 6 234 6 .025 ~ Cii ., ...,." .020 0. til .015 - m I I I I I I I( I I I I Transient Thermal Impedance Vs. Time I-" ~ ~ ~~ " iii u E •. 010 ° iii .s= l- E E ::J ~ ~ ~ .005 . ~! :!; ~ ~!!! 0 .1 I-" ~ ~ ~ ~::: "" ~ 7 I III 1.0GPM ~ 1.2 GPM .1.5 GPM I III 3.0 GPM 5.0GPM ~ ~~ ~. 'j( J I""" c: .5 3: " II' / 3 4 5 6 2 o Water Flow Rate, Gallons Per Minute 7 Water Flow Rate, Gallons Per Minute ...c: '(" 0 8 6 4 2 0 Douj'e sile cotng In 0 ...... L 4 2 "- .......r-.. ~ , 1 6 Single Side Cooling Cii ;: ~ .~ -Pr~ssur~ Drop :"s. w!ter FI~W Ra~e-j- Zasw VS. Water Flo;" Rate \ .060 10 100 Time, t, seconds T-3. W9 SINK i ~ .05 .04 .040 ~ Cii • .03 5 .030 20 I I I I .1 ~. I ., 18 Pressure Drop Vs. Water Flow Rate ...c: ..g 16 Cii<;' 14 ~--\ '-Z!SW is, ~ater flOW ~at~ f-- ~ ~ iO al .§~ I\"Single Side Cooling .02 5 .02 0 \ ~ "' ....... ...... ..... g 0 ""'- isme~ 8 i&. 4 eli 2 :9 0 a: 8.=.. E i ~ .010 - E ~ ~~ ~...:. §~ .005 ..., ~~'" ~ ~ ~~ .~ ~ ~ ~ ./ ~ 1.,..000" o .e,: .015 ., ;:1 / T~a~si~~ I;Jermal I!ped!nc~ Js.' T!!! Cii ~ It' .. 2 345 6 7 8 9 Water Flow Rate· Gallons Per Minute 2345678 Water Flow Rate, Gallons Per Minute .020 j ~~ 6 o ~ 8c: g12 ~~10 .01 5 iii EOu•. 01 0 iii ~.oo 5 -Double Side Cooling ;:~ / ~.s= &. I- I-' ..... .... ...~ ~ ..... ~ ... GP~ 1.0 1.2GPM 1.5 GPM- I 3.0GPM ~ 10- 5.0GPM ~ 0 .1 10 100 Time, t, seconds A67 T-4, A6 AND A7 SINKS I E m j.....oo" .,/ ,/ / . _.50 r:: .45 iii .350 r:: .250 .200 .300 iii ~ --§- 888 I I ~ ~ ZeSA Vs. Air Flow Rate: ,I..' • • • • • • • • • N~~ra! C~m~e.~tio,n ~at!n~, ~Sf' '\. Single Side Cooled = .98°C/W Double Side Cooled = .49°C/W 1\ ~ .050 -' ~~ Double Side Cooling I I I I I 1.1 I 8. 8 8 8 §- 8 0 0 Steady State Thermal Resistance II III .A1111 JI / .40 r:: , i til .35 ~~ .. 30 _0 a; ,. o •. 25 (3. ~ .15 ~ 1::' .10 E m- .~ ~ .05 « Natura'l:.L Convection / EE ~ « .. 20 :i 0 1 - IS Air Flow Rate, Linear Feet Per Minute (3. Transient Thermal Impedance Vs. Time 8 crH- .....~Ing:e ~id~ 1' ... .100 : I I I I I I I ...... ~ .150 ~ Air Flow Rate, Linear Feet Per Minute g ~g . / ·iii 8 8-88 .400 :.;s I I -±t .500 .450 Pressure Drop VS. Air Flow Rate l..& .... IIIII - , 150LFM 300 LFM 500 LFM 1000 LFM 1500 LFM I 100 10 I I ILl ~ III1 I 1000 10,000 Time, t, seconds T-5, A9 SINK .5 Pre~sur~ Dro~ vs.IAir JIO"; tte. .4 / .3 J .2 ~ " . .1 e II> a.. V o ,,/ l/ ~ a:~ .06 E·- .04 -.. r:: m i;;~ (3.« Vi;. Air Flow Rate Double Side Cooled " .22°C/W at 275 W I I I I I I ..... Single Side Cooling '\ " .02 r-N..J. ... II I' I Double 0 Si~e Cooling 1-1-. 8 8 8 8 ~ 0 Air Flow Rate, Linear Feet Per Minute 0 Steady State Thermal Resistance ./ ./ , .04 .02 1 10 ~ 100 Time, t. seconds Col 8 I I 11111 !.A"T 1III II II Tral)sient Thermal Impedance Vs. Ti me .10 .08 I .06 If: Natural Convection Rating, ZeSA: 1\.,;". , .. Coo,,,, ....= 1\ II III .22 .20 .18 .16 .14 .12 A6S .18 .16 -I:E~ UlO .14 •° ~~ .12 ~~ .10 ZeSA m« air Flow Rate, Linear Feet Per Minute o 0 t- .~ .~ .08 - -- °S888§88 V .20 1000 Nateral Convection 275W I I I III I I I III _150 LFM300 LFM500LFMl000LFM 1500LFM 10,000 Features and Benefits • Fully compensated modules for high reliability • All terminations supplied for ease of installation • Eight standard modules for wide range of current capability • Vari-Iength channels for Package standardization • High density packaging for compact designs • Ratings for oil and air cooling • Internal wiring available for complex circuit configurations • Increased ratings by seriesing and/or paralleling individual channels • Expert application assistance • Special custom designs available on request Applications • RF generators • Radio and TV transmitters • Radar modulators • Industrial precipitators • Fusion and l1igh voltage research • Dielectric heating • Voltage multipliers • Electron Beam Welding Standard Available Circuit Configurations SH1 Half Wave (Single Leg) SD1 AC ~ Doubler (Two Legs) SB5 AC AC Single Phase SE5 AC AC AC Three Phase OOimensions in I!,!ches (Millimeters) L .190-32 UNFx.5 (No. 10 Hardware Included) SB5 1 Bridge [Note: 205" Spacing Available on Request) *Obtain the Channel Length L From Table III Using the Channel Number (11th and 12th Digits of Product Description Number) 2.35 (59.69) SE5 3 Bridge A69 Thesemodules, consisting of silicon diodes and compl!ns8ting ne~ork, provide the opii,muri1 iii steady'state and transient volfage division. The design of the stacks provides for cooling by free convection air, forced convection air, or oil. Design Modules 2AOl 3/\0:) 4/\OS I SA09 8A36 I 9B11 ** Volts/Cell Voltdl]( Co(/p Surge60Hl *Oil Only *OilOnly 6AI4 I 7AI2 I Volts/Cell Volt HJf" Codp Notes: • Mounting: Any position for oil cooling or forced convection; horizontal for free air convection. • Max, ambient operating temperature for free air convection iii based upon compensating network A70 maximum ratings. • JAN/military qualified Rectifiers are available on • Storage temperature: -55°C to 100°C. 9811 modules. ' • Surge ratings are par JEDEC and for non-repetitive , applications. For repetitive faults. consult Westinghouse. * * This Design is also available with 6A Lead MOllnt Rectifiers - See next section, Module Electrical Characteristics Current Output vs Ambient Temperature/Max. PRV CooirlHJ Conditions An FI()w i Tf flq} C J I , 2AOl I lA03 .65 .6 .5 .iI Natural Convection 40 50 60 150 LFM 40 50 60 .9 .83 .76 I I 4A05 I 5A09 I 6A14 I 7A12 I 8A36 I 9611 2.6 2.4 1.75 2.4 2.25 2.15 4.0 3.75 3.5 12.0 11.5 7.2 15.0 12.0 8.0 33.0 32.0 30.0 1.1 1.0 0.9 3.2 3.0 2.8 4.2 3.9 3.6 6.8 6.3 5.8 12.0 12.0 12.0 22.0 20.8 19.3 47.0 44.0 41.0 .65 .55 300 LFM 40 50 60 1.1 1.0 0.9 1.35 1.25 1.15 3.7 3.5 3.3 5.6 5.15 4.75 8.8 8.1 7.4 12.0 12.0 12.0 28.5 27.0 25.0 69.0 64.0 60.0 500 LFM 40 50 60 1.3 1.2 1.1 2.3 2.15 2.0 4.1 3.9 3.65 7.2 6.65 6.1 10.8 9.9 9.1 12.0 12.0 12.0 32.0 30.0 28.0 82.0 78.0 73.0 1000 LFM 40 60 60 1.5 1.5 1.35 2.7 2.6 2.3 4.5 4.2 3.8 8.8 8.3 7.8 14.0 13.0 12.0 12.0 12.0 12.0 36.5 35.0 33.0 108.0 101.0 96.0 Oil 40 60 85 1.5 1.5 1.1 3.0 3.0 1.8 5.0 5.0 3.6 10.3 8.4 5.8 19.5 15.7 11.0 12.0 12.0 12.0 36.5 35.0 28.0 108.0 96.0 80.0 Circuit SHl i Half Wave (Single Leg) SOl Doubler (Two Legs) CircUIt I 5Hl Module [ 501 585 5E5 I Cell 2AOl 3A03 4A05 5A09 6A14 7A12 8A36 9811 01 through 43 P (.7 Kv) • Check Table I below for maximum voltage allowed per leg vs. circuit configuration. • Check Table II A below for maximum number of modules allowed for each circuit configuration. Formula for Channel Number Channel Number=(Nx5)+C N = Total numberof modules in channel 5=Module spacing factor, Table II 8 C= Channel circuit factor, Table II C 5 (.8 Kv) Z (1.0 Kv) , Cooi,ng- I MaXlIllUnl : Module I 2AOl 2AOl 3A03 3A03 4A05 5A09 6A14 7A12 8A36 9811 Voltagp Oil or Air 16 Kv 11.2 Kv 16 Kv 11,2 Kv 8.0 Kv 4.0 Kv 4.0 Kv 1.0 Kv 1.0 Kv 1.0 Kv Oil Air Oil Air Air or Oil Air or Oil Air or Oil Air or Oil Air or Oil Air or Oil Example Required is a single phase bridge rated (with safety factor) at 15 KV per leg, I DC output of 12 amps at 40°C ambient natural convection, and non-repetitive single cycle surge rating of 140 amps. Circuit Conflquratlon , SHl I I 688 Kv 313.6 Kv 688 Kv 313.6 Kv 168 Kv 172 Kv 84 Kv 43 Kv 43 Kv 21 Kv r SOl 336 Kv 156.8 Kv 336 Kv 156.8 Kv 80 Kv 84 Kv, 40 Kv 21 Kv 21 Kv - 58::' . . . Select -[ 160 Kv 67.2 Kv 160 Kv 67.2 Kv 40 Kv 40,Kv 20 Kv 10 Kv 10 Kv - SE5 96 Kv 44.8 Kv 96 Kv 44.8 Kv 24 Kv 24 Kv 12 Kv 6 Kv 6 Kv - Table II-A, B, C , B A I Mi:::Ix Allowed TotLlI : I Modules vs CircUIt I Confl~urdtlon I Module : - CircUit 43 43 28 21 21 42 42 28 20 40 40 24 20 I Spat 36 36 24 18 I C I C S I C ChdfltHl Module CircUit Factor IrlCJ I SH1'I SOl I 56S I SEb 'I F d ct 0 r 2A01,3A03 (Oil Only) 5A09, 7A12 &.8A36 2A01, 3A03 (Air) 4A05,6A14 9811 I CircUIt ' -- ~ ,SHl i SOli SB5 1.0 1.0 1.5 2.0 2.0 0 0 0 0 1 1 1 1 1 I SE5 3 3 3 3 5 5 5 5 Table III Channel No 01 02 03 04 05 06 07 08 09 10 11 12 13 14 16 16 17 18 19 20 21 22 A72 I Lenqth Inches (mill) 4.25 5.00 5.75 6.50 7.25 8.00 8.75 9,60 10.25 11.00 11.75 12.50 13.25 14.00 14.76 15.50 16.26 17.00 17.75 18.50 19.25 20.00 Chdnnel Number 01 through 43 Table I-Maximum Stack Voltage per Leg vs. Circuit Configuration Module I Number of Modules pl::.r Leg M (.6 Kv) 108 127 146 165 184 203 222 241 260 279 298 318 337 356 375 394 413 432 461 470 489 508 II Chdnnel No 23 24 25 26 27 28, 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 I Length Inc hes (mill) 20.75 21.50 22.25 23.00 23.75 24.60 26.26 26.00 26.76 '27.60 28.25 29.00 29.75 30.60 31.26 32.00 32.75 33.60 34.25 35,00 36.75 527 546 565 584 603 622 641 660 679 698 717 737 756 776 794 813 832 851 870 889 908 Module for current and surge from information, Result 7A12, this number is inserted as the 4 through 7 digits in the product description number. Cell voltage letter code from information. "select Note, highest voltage available would give most compact deSign but may affect delivery at times; also, the higher voltage cells operate the snubber components and diodes closer to maximum ratings. Z (1.0 KV), this letter code is Result inserted as the\8th digit in the product description number. Number of modules required per leg by "'Obtain dividing required voltage per leg (with safety factor) by module voltage (number of cells per module times cell voltage) . 15 KV 1 Celi/ModuleX1 KV/Cell 15 modules 15 (9th and 10th digits of product description Result number). Circuit configuration available for your • Select (Trial I) requIrement; check -. Ta-tiles rand Ilfor'feasibility. This case, a SB5 7 A 1215, would not be feasible because 60 modules exceed the maximum channel length. Select By dividing assembly into next standard (Trial II) circuit configuration, a doubler design (S01 can be considered as indicated in Trial 1. SD1 works (1st, 2nd, and 3rd digit of the Result product description number). Two assemblies are now required for a complete single phase bridge, Note: This assembly could have been reduced to single leg components by using the SH1 circuit (four assemblies would then be required). The added cost for this is minimal and may be desired should parts or spares standardization be practical. Calculate Channel number using total number of modules per stack channel (N) and multiplying by module spacing factor (5) per Table II B, then adding the channel circuit factor (C) per Table II C. N=15 modules/legX2legs = 30 modules. Channel number= (N XS)+C =(30X1)+1=31. 31 (11 th and 12th digits of product descripResult tion number). , Answer S 017 A 12Z1531 (Two doubler assemblies will be required for this single phase bridge example). l1li Product Description Number 5 Circuit 0 1 112 1,3 7 4 Module A 1 I 151 61 2 7 Cell Z 8 Module! Leg 1 5 9 I 10 Channel Number 3 1 11112 Electrical Characteristics Average Power Dissipation per Module 60 55 1. and 3. ~ 50 .. 45 '8 40 :; ::! Ii c. .. = , /I ~ , ~ ./' )1' ,/ I' ./ 35 // ~ 30 V ./ C .2 10 c. 25 :~ i ~V 10 o V / 15 0.. 5 V / 20 Q A / ..... V 2AOl / ./ V o 3 / 90 60 ~ 50 C 40 '= 30 ~ 0 20 C Ii 0.. /" / ..,.. V / V 10 0 ./ ./V / 0 [ / , ,,/ ".,. V 6A14 V ~A09 / --- i...- - 5 V~A1J & ~A1J / 70 jg 4 / 80 8. V V 1. and 3. ::! V ~ /'V 100 '8" I' 4A05 ." 2 Forward Current, Average Amperes per Module .!! ~V 3A03 ~ 7A12 o 2 .3 4 5 6 7 8 9 10 15 20 Forward Current. Average Amperes per Module .!! '8" 140 8. 120 ::! I a. 100 g 80 .~ 60 [ C 1 40 r:JIII" ....- 20 o - 8A36 o 20 30 ~ -- 40 / .,,::: roo- 50 60 ....... ~ ...- 70 :::: 80 ..,.. ~ ~ "i:'" 90 - ..,..... ~ ~ ......... 98 1 100 110 Forward Current, Average Amperes per Module A73 I BA10 CA10 Design Modules These modules. consisting of silicon diodes and compensating network. provide the optimum in steady state and transient voltage division. The design of the stacks provides for cooling by free convection air. forced convection air. or oil. 6.0 Amp Lead Mount 6.0 Amp Lead Mount Ordering Information See previous section. High Voltage Stack Channel Design for ordering details in conjunction with tables below. CIfCUlt SHl I Module I BAlD Cell M(.6Kv) SDl CA10 SB5 5(.8Kv) SE5 I Module MaxlI1ll1ln Module Voltage I Cooling Od or A" Channel Number 01 through 43 • Check Table 1 below for maximum voltage allowd per leg vs. circuit configuration. Formula for Channel Number Channel Number = (NxS)+C • Check Table II A below for maximum number of modules allowed for each circuit configuration. N=Total number of modules in channel S=Module spacing factor. Table II B C=Channel circuit factor. Table II C Table I - Maximum Stack Voltage per Leg vs. Circuit Configuration I I Number of Modules per Leg 01 through 21 ~ BAlD 6.4KV Oil or Air 134KV 64KV 32KV 19KV CA10 4.8KV Oil or Air l00KV 48KV 24KV 14KV Table II - A. B. C B A Module SHl SDl SB5 SE5 BAlD or CA10 A74 I C C Channel ClfClllt Factor S Module Spacing 21 20 2q 18 Factor 2.0 CircUit SHl SDl SB5 SE5 0 1 3 5 Coolmg Conditions Air Flow Temp "C BA 10 CA 10 Features and Benefits: • Fully Compensated Modules For High Reliability . • Vari-l...ength Design For Circuit and . Mounting Flexibility • High Density Packaging For Compact Designs • Ratings For Air and Oil Cooling • Expert Applications Assistance • Special Designs Available on Request • High Repetitive Surge Ratings • Compression Bonded Encapsulation For Thermal Cycling Capability , • Availability, Present High Volume Device Production Applications: • • • • Fusion and High Voltage Research. High Voltage Free-Wheeling Rectifiers' Laser Supply Charging Diodes . Magnetic Metal Forming Supplies Circuits DIMENSION IN INCHES (MILLIMETERS) HB1 1" HC1 _t 110 3.00 (31.10) (76.20) ""I 1__ HD1 HH1 I - - - - - - - ' - - - l ' --~_---_I u,1IIIII HN1 -1 IT7.L 8.50 mix. 3.18 (88.55) . . 112-11 ... A76 ~.j ~i~} 118r) IIIX. (190.6) 1 Design Modules Type 76A,B,C,D Type B6,A,B,C,D Heatsink Plate Only Added Heatsink Module Cell Types Average Power Dissipation Per Module (2400 Volts applied per module) 4oowr-----------r---------~~--------~----------~;_--------_,--------;_~ II> t: co 300w 3:: c0 ~ ... 'iii II> 200w i5 a; it 0 a. 100w O,~O----------2~5----------5~0----------~7~5----------10~O----------1~2-5---------1~50 Forward Current, Average Amperes A77 50 60, 40 50 60 40 50 60 40 50 60 40 50 60 40 60 85 Natural Convection 150 LFM 300 LFM 500 LFM 1000 LFM Oil '~"VoIta;Q'e :;,' , r, '~in9.ht ~fJI' PRV, .(Air,orOit) Convection 40 50 60 40 150LFM 50 Natural 60 40 50 60 40 50 60 40 50 60 40 60 85 300 LFM 500 LFM 1000 LFM Oil Muimum Voltage Rating P4!, Module PRY (AIr or 011) 23 20 19 33 30 24 111 92 64 35 32 29 42 39 35 47 42 38 50 46 41 121 100 70 SKY , BKV 28 26 23 32 27 23 13 8 47 44 39 56 52 47 1~ 8 -54 4~ 46 8' 6 3 29 24 20 44 37 31 9 7 4 46 41 36' ,12, 8 5 ,63 58 40 62 56 50 80 76 69 93 88 82 114 106 99 146 128 98 62 58 54 68 64 60 73 69 64 134 110 76 58 54 49 130 108 82 138 118 90 51a! ,. 4:11t(V SKV, ,SKY,' 28 24 14 36 26 16 70 64 58 94 88 78 112 104 94 124 114 106 134 124 116 36 26 16 108 98 92 124 116 108 126 128 120 16 12 6 58 48 40 88 74 62 106 88 76 116 108 98 260 216 164 18 14 8 92 82 62 57 53 67 62 58 131 108 76 53 72 44 66 60 38 86 80 74 12 Ii 5 70 Circu;t 40 89 83 71 103 98 91 Half Wave (Single Leg) HOI 126 120 116 150 131 100 )AC ~ 24 22 12 43 40 38 56 52 46 64 34 46 66 60 48 222 184 128 B4 78 70 94 84 76 100 92 82 242 200 140 262 216 152 146 138 128 268 220 152 72 124 112 100 144 132 120 172 160 148 276 236 180 Doubler (Two Legs) .ltv 4.6tQ( 24 16 10 126 116 80 160 150 138 186 176 164 24 16 10 140 120 80 178 166 142 228 212 198 206 196 182 252 240 232 292 256 196 300 262 200 .. () ! i ! HHI 60 Circuit 0 HBI ~r OAC t ( ~ ( AC , Single Phase External Wiring Required) , 150 LFM 300 LFM 500 LFM 1000 LFM Oil ~muni~ , Rating Per Modi!Ie l"fW A78 1 7 (Open Negative - Natural ConvectIon (AA«Oil) 11 6 ,1IKV 1IKY 5KV 4.6KV 40 50 60 40 50 60 40 50 60 40 50 60 36 33 18 69 60 57 84 78 69 54 39 24 141 132 117 54 39 24 162 147 138 96 81 69 42 36 21 105 96 87 126 117 105 141 126 114 168 156 141 186 171 159 186 1711 162 204 192 180 60 132 111 93 159 132 116 40 50 60 40 60 85 99 90 150 138 72 123 201 186 174 219 207 192 174 162 147 333 276 192 363 300 210 392 324 228 402 33p 228 390 324 246 258 240 222 414 '354 270 6KV IIKY ·&KV, 5KV SKY ~, '" 1IKV SKV SKY 4.6KV 24 18 27 36 24 15 189 174 120 36 24 15 210 180 120 267 249 213 9 87 72 150 216 198 180 240 225 207 279 264 246 309 294 273 342 318 297 378 360 348 438 384 294 450 393 300 SKY ".1IKV .- .' 4.6KV 21 12 138 123 108 186 168 Circuit ~ --------3 Bridge THREE HOI REQUIRED OR SIX HHI REQUIRED Ordering Information HCl HDI B HHI 6500A 28 Factory 30 Assigned Dimension HBI 9.80 HCl 6.60 HDl 6.60 HHI 5.00 HNl 6.60 Tolerance i..080 Plus Module Code Dimension Tolerance 01 2.09 02 4.19 03 6.28 04 8.38 05 10.47 +.013 06 12.56 -.003 07 14.66 Per 08, 16.75 Module 09 18.85 10 20.94 11 23.03 12 25.13 ... .. .. ... EXAMPLE: Frame Code Thru 22 23 25 HNI Table II Dimension In Inches Thru 12 5500A 6000A Required is a single phase bridge rated (with safety factor) at 60Kv per leg, IDe output 'of 250 amps and a non-repetitive 3 cycle surge rating of 4500 amps (consult @' for repetitive surge applications)., SELECT Module for current and surge from module electrical characteristics tables. RESULT B6C Module B6C, This number will be inserted as the 4 through 6 digits in product description number. SELECT Call voltage code from design module cell types. RESULT 25 (2.5KV), This number code is inserted as 7 through 8 digits. OBTAIN Number of modules required per leg by dividing required voltage per leg (with safety factor) by module voltage (2 times cell voltage).' 60KV (Total 5KV (Per Module) = 12 RESULT 12 Modules, This number code is inserted as 9 through 10 digits. SELECT Circuit configuration available for your requirement by checking maximum allowed modules from Table II. RESULT HH 1 configuration is the only available design .. Four assetnblies are ;equired, HHl is the 1 through 3 digits. OBTAIN High voltage stack length from Table II frame adder and module dimension adder. .RESULT (HH1) 5.00"+ .080" plus (12 modules) 25.13 = 30 13 +.093 . -.083 STEP I 4 I 1 I 2 I 3 1 5 (make copy for each use) Name________________________________________________________ Company_______________________________________ Phone________________________________________--JX~__________~Address __________________~-------------------Job Function _____________________________Sectipn______________ City___________________________ State'___________ Zip _______ Bldg. Please complete a copy of this form for each different application. Forward this form to Westinghouse Electric Corporatio'n, Semiconductor Division, Attention: Sales Department, Youngwood, Pa. 15697 for complete quotation. If you need faster service, please call (412) 925-7272 for a quote. Circuit Cooling 0 0 0 0 0 0 0 Application 3"', 12 Pulse Bridge 0 Transmitter 0 Clipper Charger De-Queing Doubler I Bridge 3 q, Bridge 0 Air o Oil Type, ______________ Mfg. _________amb. temp. °C_ _ __ o o Other, explain o R F Generator o Precipitator o Accelerator o Hi-Voltage Test Equipment o Voltage Multiplier o Other Natural Convection, Altitude ______________ ft., ambo temp. °C._______ Forced Air, LFM , ambo temp. °C ________ Current Max. Output Current, IDe 0 RMS 0 Average Waveform _____________________________ Duty Cycle, Time On ____________________Time Off___________________ Every_____________________________ Cycling (Number of cycles required this application) ____________________________________________________________ Fau It Surge 1'" ______________ Ti me,_______________ ms 3'" 10'" Time ms Time ms .Percent Impedance______________________ Transformer KVA Number of faults expected/lifetime,________________ Note: JEDEC surge is a non-repetitive value. Westinghouse will advise device for requirement. Voltage Input Voltage Supply _______________ KV ACO DCO Safety Factor Required: Voltage_____________, Current______________ Circuit Protection: 0 0 Fuse Circuit Breaker 0 Other, explain Distance from ground plane (stacks) mounted from: Bottom Top,_____________________ Sides,_________________ Other Considerations._______________________________________________________________________________________ Problems experienced in the pastL_________________________________________________________________________________ o o o New Design Conversion Replacement Number /System _______________________________ MFG/Type No. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ Budgetary cost for this system ____________________________________ Number of systems required _________________________ Timetable Long ra nge potentia 1_________________________________ Westinghouse Assembly Recommended ____________________________________________________.____________________ ABO Negotiation Number_____________________ Recommended by _ _ _ _-,-_ _ _ _ _ _ _ _ Date _ _ _ _ _ _ _ _ _ _ ____ INTRODUCTION Westinghouse introduced the first silicon rectifier in 1952. Today, Westinghouse offers a complete line of General Purpose and Fast Recovery rectifiers. AII~ rectifier elements use N-type silicon providing soft recovery characteristics which minimize rectifier spike voltages and reduce transient protection requirements. Westinghouse uses an exclusive irradiation process to manufacture fast recovery rectifiers. This process provides precise control for better availability, soft recovery characteristics for less circuit ringing and reduced transient protection, high voltage capabilities up to 3200 volts with low reverse leakage currents, and fast recoverytimes-200 nanoseconds for low current (6-30 ampere) rectifiers and 1.5 to 5.0 microseconds for high current (80-1400 ampere) rectifiers. RECTIFIER PRODUCT INDEX Page 1 Nl183,R-90,R lNl183A,AR-90A,AR lNl191, R-98, R lNl191A, AR-98A, AR lNl199, R-1206, R lN1199A,AR-1206A,AR 1 N 1199B, BR-1206B, BR lN1341, R-48, R lN1341A AR-48A AR 1 N 1341 B, BR~48B, BR lN1612, R-16, R 1 N2154, R-60, R R15 R15 R15 R15 R13 R13 R13 R13 R13 R13 R13 R15 1N3208, R-14, R 1 N3260, R-76, R lN3288A AR-97A, AR 1 N3615, R-24, R 1 N3670, R-73, R 1 N3670A AR-73A AR 1 N3765, R-68, R 1 N3879, R-83, R 1 N3889, R-93, R 1 N3899, R-3903, R 1N3909, R-13, R 1N3987, R-90, R R15 R27 R19 R13 R13 R13 R15 R55 R55 R57 R57 R13 1N4001-07 1 N4044, R-56, R 1 N4458, R-59, R 1 N4587, R-96, R 1 N4816-22 R9 R29 R13 R21 R9 lN5052-54 1N5391-99 lN5400-08 R9 R9 R9 Type Number Page R5DO R5Dl R9GO R9G2 R23 R23 R51 R75 R302 R303 R310 R311 R340 R55 R55 R13 R13 R9 R402 R403 R404 R405 R410 R411 R57 R57 R17 R17 R15 R15 R500 R501 R502 R503 R510 R511 R23 R23 R59 R59 R23 R23 R600 R60l R602 R603 R610 R61l R620 R622 R31 R3l R63 R63 R31 R31 R39 R67 R700 R70l R720 R722 R35 R35 R43 R71 R920 R47 R1 --~-'--- ------ -"---- • _________ ~ Type Number _ _ -==",-I_", - ..... ----""----~="- ".....-;;=; The axial lead mount package is the most popular 'for one to six ampere general purpose rectifier (diode) applications. The axial lead mount design features silver plated copper leads offering excellent heat conduction, solderability, and corrosion resistance. Several axial lead mount types are available with a chamfered body on the cathode end to insure proper polarity identification and correct assembly. Tape and reeling capability is available for those customers using automatir. insertion equipment. All stud mount rectifiers are available in both standard and reverse polarity. Color-coded glass or ceramic seals on all stud mount rectifiers make polarity identification easy and minimize the possibility of installing a device of the wrong polarity. Stud mount rectifiers (80 amperes and above) feature compression bonded encapsulation (CBE). This CBE package encapsulation technique reduces thermal fatigue inherent in conventional solder construction devices by eliminating solder joints. @disc mount rectifiers offer more amperes per dollar than any other package type. These devices feature doublesided cooling and have reversible mounting polarity. These all-copper non-magnetic packages are ideal in high frequency applications where magnetic noise can be a problem. In addition, the disc glazed ceramic seals are convoluted for long creepage paths which are especially important in applications where dirt, humidity and other contaminants can accumulate and cause arc-over. Milita,y rectifiers are available in both polarities in the popular stud mount 00-8 and 00-9 packages: JAN IN328995 series and JAN IN3164-74 series. Complete test facilities are available for matching devices' for series and/or parallel operation,' for special test parameter selection, and for full-scale high reliability requirements.@offers a Lifetime Guaramee on all rectifiers bearing this symbol +. Specify Westing" house Rectifiers. R2 GENERAL PURPOSE RECTIFIERS 1 - 150 Amperes 2000 140CI~------------------------------------------------~-r~~~r ~ 120C)~------------------------------------------------TlrT-r; Z ~a: w ~ !:i ~ 400 200 50~~~~~~~~~-e~~~~~~~~~~~~~~-c~~-c~~~~ 1 1.5 1.5 3 5 6 6 12 15 16 18 22 25 35 40 60 70 100 100 150 150 AVERAGE CURRENT RATING ~AXIAL LEAD MOUNT DSTUDMOUNT GENERAL PURPOSE RECTIFIERS 160 - 2200 A mperes 4000 3000 ~ 2000 ' - - - ~a: 1600 z w~ ·C !:i g r-r- "t 800 400 200 - "t a: a: CD CD ... .CD a: "0... ".-0 0 a: a: CD "... CD a: CD 10 N CD r- r- 10 ... .,...cD "0 "0 '" 0 a: a: .; '" "00 8" § C') 50 0 r- ..!-~ -.r- ... CD 10 1200 ~ 1000 600 r- CD "...0 CD a: "8 CD r- III- - r- I - ~ I~ r- I r II I r II C') q-, .11) a: a: ...,...0 ...,..., ",...00 8",... " ,... I a: - q ...,...0 <=! r- 0 0 0 ~ ~ a: a: a: ! a: a: a: 160 200250275 300 300300400 450 500 5506009001100120013001600180020002200 ! -- AVERAGE CURRENT RATING DSTUD MOUNT ~DISC R3 FAST RECOVERY RECTIFIERS 6 - 1400 Ampere. 3000 2500 2400 2000 C) z 1800 a: ~ 1200 w C) CC !:i g 1000 800 800 400 200 50 8 12 o 20 30 80 100 200 2150 360 400 600 800 AVERAGE CURRENT RATING STUD MOUNT ~DISC Note: Reverse recovery times shown represent fastest currently available at given voltage rating. R4 800 900 GENERAL PURPOSE RECTIFIERS 1 - 15 Amperes JEDEC/, TYPE AVERAGE CURRENT ONE CYCLE SURGE VOLTAGE 50 100 150 200 IN4816-22 IN6062-54 IN6400-08 1.5 50 3 200 6 150 IN4816 IN4817 IN5400 IN5401 IN4818 IN4819 IN4820 IN4B21 IN4822 IN5052 IN5053 IN5402 IN5403 IN 5404 IN5405 IN5406 IN1341.A. IN1348.A.8 IN3987-90 IN5054 IN5408 IN1341,A,B IN1342.A.8 IN1343.A.B IN1344.A.B IN1345.A.8 IN1346.A.B IN1347,A,B IN 1348.A.B IN3987 IN39B8 IN3989 IN3990 PACKAGE TYPE 00-27 "'00-27 00-4 PAGE NUMBER R9 300 400 500 600 700 800 900 1000 IN5407 R9 • 00-41 , > 00-27 _ I ,, , R13 "For JEDEC Reverse Polarity Units - add suffix "R"_ 00-" GENERAL PURPOSE RECTIFIERS 16 - 70 Amperes */*. JEDEC/TYPE AVERAGE CURRENT ONE CYCLE SURGE VOLTAGE 50 100 150 200 300 400 500 600 18 220 IN1191 IN1192 IN1193 INl194 IN1195 IN1196 IN1197 IN1198 700 800 900 1000 1200 25 IN 1183A-90A R410-40 R404-70 40 70 1200 ~00-27 400 800 IN2154 IN2155 INl183A INl184A IN1185A INl186A IN1187A INl188A INl189A IN1190A R4040270 R4040370 R4040470 R4040570 R4040670 R4100840 R4040870 R4101040 R4101240 R4041 070 . R4041270 IN2156 IN2157 IN2158 IN2159 IN2160 R4040070 R4040170 PACKAGE TYPE 00-5 00-5 PAGE NUMBER R1S R17 "For JEDEC Reverse Polarity Units - add suffix "R" ""For Reve... Polarity Unit. R410-R41' R404-R405 , iR34 +00-_ .i 00-5 (R4041'r R5 GENERAL PURPOSE RECTIFIERS. 100 - 300 Amperes 150 -3000 R600• ...20 R810-...20 200 5500 IN3288A IN4587 RSloo120. IN3289A IN4588 RSloo220 IN3290A IN4589 R61oo320 IN3291A IN32928 IN3293A IN4590 IN4591 IN4592 IN3294A IN4593 IN3295A IN3296A IN3297A IN4594 IN4595 IN4596 R6100420 RS100520 R61ooS20 R61oo720 RS100820 R6100920 R6101020 R6001220 R6oo1420 R6oo1620 R6oo2020 R6oo2520 R6oo3020 IN4050 IN4051 IN4062 IN4053 IN4054 IN4055 IN4056 PACKAGE TYPE 00-8 00-8 00-9 00-9 PAGE NUMBER R19 R21 R31' R29 4VER4GE CURRENT ONE CYCLE SURGE r VOLT4GE 00-8 .. , " ~a II 00-9 i . ~'~ ~ R70 ,, 50 100 150 200 250 300 350 400 500 600 700 800 900 1000 1200 1400 1600 2000 2500 3000 'For JEOEC Reverse Polarity Unit. - add suffix "R", "For Reverse Polarity Units - R600 - RSOl R6l0- RSll R600-R60l R6l0-R6l1 GENERAL PURPOSE RECTIFIERS 300 - 600 Amperes 1',-. f' aII R700• ..o4 R700_..oS 450 8500 550 10000 R7000103 R7000203 R7000303 R7000403 R7000503 R7000603 R7000803 R7oo1003 R7oo1203 R7oo1403 R7oo1603 R7oo2oo3 R7oo2203 R7oo2503 R7oo2803 R7oo3003 R7003503 R7004003 R7000104 R7ooo204 R7000304 R7000404 R7ooo604 R7000604 R7ooo804 R7oo1004 R7oo1204 R7oo1404 R7oo1604 R7oo2004 R7000105 R7000205 R7000305 R7000405 R7ooo505 R7ooo605 R7ooo806 R7oo1oo5 R7oo1205 R70 R70 R70 R35 R35 TYPE 300 6000 VOLTAGE R62 ,~ ~ 100 200 300 400 500 600 R72 ~ ~ . ~ " 800 1000 1200 1400 1600 2000 2200 2600 2800 3000 3500 4000 PACKAGE TYPE •• For Reverse R6 IN4044-66 IN3288A97A 100 2300 JEDEC/TVPE R70l 275 5000 IN4044 IN4045 IN4046 IN4047 IN4048 IN4049 GENERAL PURPOSE RECTIFIERS 900 - 2200 Amperes R920 __11 R9GO__13 R9GO_...J8 R9GO __ 22 AVERAGE CURRENT ONE CYCLE SURGE 1100 16,200 1300 16,200 1800 21,500 2200 30,000 VOLTAGE 100 200 300 400 500 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 R9200111 R9200211 R9200311 R9200411 R9200511 R92oo611 R9200811 R9201011 R9201211 R9201411 R9201611 R92018;1 R9202011 R9202211 R9202411 R9202611 R9202811 R9203011 R9GOOl13 R9G00213 R9G00313 R9G00413 R9G00513 R9G00613 R9G00813 R9G01013 R9G01213 R9G01413 R9G01613 R9G01813 R9G02013 R9G02213 R9G02413 R9G02613 R9G02813 R9G03013 R9GOOl18 R9G00218 R9G00318 R9G00418 R9G00518 R9G00618 R9G00818 R9G01018 R9G01218 R9G01418 R9G01618 R9G01818 R9G02018 R9GOO122 R9G00222 R9G00322 R9G00422 R9G00522 R9G00622 R9G00822 R9G01022 R9G01222 PACKAGE TYPE R92 R9G R9G R9G PAGE NUM8ER R47 R51 R51 R51 TYPE tS 'R72 ~' R9G "i~.fN R7 t 00-4 + FAST RECOVERY RECTIFIERS 6 - 250 Amperes * /** IN3889-93 R302.._12 */** 12 150 .. R502 __10 ~61l2,-;,25 30 300 100 2500 250 '5000 IN3889 IN3890 IN3891 IN3892 IN3893 R3020512 R3020612 IN3909 IN3910 IN3911 IN3912 IN3913 R4020530 R4020630 R5020010 R5020110 R5020210 R5020310 R5020410 R5020510 R5020610 R5020610 R5021010 R5021210 R8020025 R6020125 R$020225 ' R6020325 R6020425 R6020525 R8020625 R6020625 R6021025 R6021225 R602i425 .R!I021625 REVERSE RECOVERY TIME, 200 n. 200 ns 1,5 )Js '-5-2}'s PACKAGE TYPE 00-4 00-5 00-8 00-9 PAGE NUM8ER R55 RS7 JEOECI'TYPE 00-5 AVERAGE CURRENT ONE CYCLE SURGE 50 VOLTAGE 100 200 300 400 500 600 800 1000 1200 1400 1600 00-8 00-9 R62 R622...40 R722_.DS R9G2 __09 R9G2 __14 AVERAGE CURRENT ONE CYCLE SURGE 400 5000 600 9500 900 12000 1400 25000 VOLTAGE 100' 200 300 R6220140 R6220240 R6220340 R6220440. R6220540 R6220640 R6220640 R6221 040 R6221240 R6221440 R6221640 R7220106 R7220206 R7220306 R7220406 R'7220506 R7220606 R7220806 R7221 006 R7221206 R7221606 R7221606 R9G20109 R9G20209 R9G20309 R9G20409 R9G20509 R9G20609 R9G20809 R9G21009 R9G21209 R9G21409 R9G21609 R9G22009 R9G22409 R9G22509 R9G22609 R9G23009 R9G23209 R9G20114 R9G20214 R9G20314 R9G20414 R9G20514 R9G20614 R9G20814 R9G21014 R9G21214 2-31's 3-5jJs 31's R72 R9G R9G R71 R75 R75 TYPE 4()(j R9G 500 600 800 1000 ,1200 t400 1600 2000 2400 2500 2600 3000 3200 REVERSE RECOVERY TIME PACKAGE TYPE PAGE NUMBER R8 R63 R302-R303 R 402'--- R 403 R602-R503 RS02-RS03 FAST RECOVERY RECTIFIERS 350 - 1400 Amperes S R72 R59 "For Reverse Polarity Units - 'For JEDEC R~rsa Polarity Units add suffix .. R" ,'L5-2I's R62 R67 , .I I / l,1 co' j ;;-' I "" '6' ~ // ""i Symbol b .,.0 G L Symbol .;b .;0 G L Conforms to 00-41 1N4001 Series Millimeters Inches Min. Max. Min. Max. .028 .034 .712 .863 2.04 2.71 .080 .107 .160 .205 4.07 5.20 1.10 28.0 Conforms to 00-15 1N5391 Series Inches Millimeters Min. Max. Min. Max. .027 .035 .686 .889 .104 .140 2.65 3.55 .230 .300 5.85 7.62 1.00 25.40 - Conforms tolV 00-27 1N5400 Series Millimeters Inches Min. Max. Min. Max. .046 .056 .712 .914 4.83 5.33 .190 .210 .285 .375 7.24 9.52 1.125 28.58 - R34 Outline R340 Inches Min. Max. .046 .056 .360 .390 .250 .350 1.250 ~ - Millimeters Min. Max. .712 .914 9.14 9.91 6.35 8.89 31.75 - Conforms to 00-27 1N4816 & 1N5052 Series Inches Millimeters Min. Max. Min. Max. .712 .914 .028 .036 .190 .210 4.83 5.33 .285 .375 7.24 9.52 1.125 28.58 Features: • All diffused design • Low forward voltage drops • Standard JEDEC outlines • Lifetime Guarantee Applications: • Phase control • Motor control • Power supplies • Light dimmers R! Ordering Information VRRM (V) Forward Currant, IF(av) V 1 Amp 1.5 Amp 1.6 Amp 3 Amp lAmp 50 100 200 300 400 500 600 700 800 900 1000 1N4001 1N4002 1N4003 1N6391 1N5392 1N6393 1N6394 1N6395 1N6396 lN6397 1N5400 1N5401 1N5402 1N6403 1N6404 1N'6406 1N6406 R3400006 R3400106 R3400206 R3400306 R3400406 R34OO506 R3400606 1N4006 1N4816 1N4817 1N4818 1 N4819 1N4820 1N4821 1N4822 1N5062 1N6063 1N5398 1N6407 R3400806 1N4007 1N6064 1N6399 1N6408 R3401oo6 1N4004 1N4006 Ratings and Characteristics All Types Symbol Repetitive peak reverse voltage. V •••••••••••• Non-repetitive transient peak reverse voltage. If the lead temperature is measured at the maximum operating ambient temperature, the formula for calculating the junction temperature reduces to: TJ = TL + (ReJL x PI R12 rr; iij i .r:. I- 10 0 .2(5.08) .4(10.16) I,.ead length Inches (Millimeters) .6(15.24) .8 (20.32) 1 (25.40) Symbol Inches Min. A D E F .424 .075 Max. .405 .424 .437 .175 J .BOO M N T W .250 .422 .453 .060 .105 10-32 UNF-2A Millimeters Min. Max. 10.29 10.77 10.77 11.10 1.91 4.45 20.32 6.35 10.72 11.51 1.52 2.67 Glass to Metal SealCreepage & Strike Distance = .07 in. min. (1.75 mm) (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-.2 oz (6g) R310-Standard Polarity-Gray Glass R311-Reverse Polarity-Yellow Glass. Conforms to DO-4 Outline Matrix Key Letter ABC 0 E F G H I Features: • Diffused junction • Low leakage current • Lifetime Guarantee Applications: • Power Supplies • DC to DC Conveners • Battery Chargers • Machine Tool Controls NOTES: 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of this terminal is undefined. 3. 10-32 UNF-2A maximum pitch diameter of plated threads shall be basic pitch diameter (.1697', 4.29 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 Pl. 150 1N1343 1 N1343A 1 N1343B 1 N1201 1 N1201A 1 N1201 B lN3617 1N1345 1N1345A 1N1345B lN1203 lN1203A 1N1203B lN3619 lN3670 lN3670A lN1583 300 lN1584 1111111B11 500 :::t 1N1Q7 II: II: ~ 700 0) ....as '0 > ilN1586 1 N3987 1N44!i8 900 1N4459 ~---------------------------------3Ma------------------------------~ R13 16~----~-----,------~----~-----,------, 200 14 ~-----+---~-+ lj=2t iO"C 12~----~----~~---+----~~----+-----~ ISO ~CD.EFGHI-; L I 1 Phase Or 3 Phase ~ ~ 4~----4-~~~~~~~r---~~~k4----~ .3 2 ~ A-, - L____ ~ ____ 140 ~ 1/ y ~/ / V 1---+-J-~c-...3o,.,....--f-......;:~+=~p..,.".pOO&,---i J O~____~____~______~~__ J / / v o V ~ o Maximum Allowable CaseTemperalure,Tc,"C 10 40 20 70 GO SO Forward Current ,[FIAV) ,Amperes Per Diode Non Repetitive S"rge Current Versus Time JEDEC Circuit 300 1250 ~ ~2OO ;~ u D.U:r. 150 !o ...JI 100 I J .OUI. RDI SCR I Scope I 50 0 1 2 C)'CIesAt EO Hertz 5 10 20 30 40 EO Tvpical Recoverv Time Ranges Westinghouse Device Family R310. R311 .251 rec. Recovery Time Waveform R14 JEDEC Circuit Test Conditions IIFM =36 A. diR/dt=25 A/jl.s Typical trr 1-2 jl.S Symbol Inches Min. A B <1>0 E F .667 .060 J M N Max. .450 .080 .667 .687 .200 1.000 .375 .453 .175 .422 .140 .156 %-28 UNF-2A T Z Millimeters Min. Max. 16.94 1.52 10.72 3.56 3.96 11.43 2.03 16.94 17.45 5.08 25.40 9.53 11.51 4.45 W Glass To Metal SealCreepage 8< Strike Distance = .09 in. min. (2.46 mm) (In accordance with NEMA standards.) Finish-Nickel Plate. A'pprox. Weight-.6 oz (18g) R410-Standard PolarityGray Glass R411-Reverse PolarityYellow Conforms to 00-5 Outline Matrix Key Letter ABC D E F G H NOTES: I. Complete threads to extend to within 211.t threads of seating plane. 2. Angular orientation of this terminal is undefined. 3. 14-28 UNF-2A. Maximum pitch diameter of plated threads shall be basic pitch diameter (.2268', 5.74 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 1957 Pl. I Features: • Diffused Junction • Low Leakage Current • LOWVF • Lifetime Guarantee Applications: • Power Supplies • DC to DC Converters • Battery Chargers • Magnetic Amplifiers 150 :E a: a: lNl185 lN1185A lN3210 300 lN3211 lNl195 lNl196A lN2167 lNl187 lNl187A 400 lN3212 1 N1196 1MitllA 1K2'isa . 1";'. :ufli_ 500 lN3213 lNl197 lN1197A lN2159 600 1N3214 1 Nll1!8 ~ Cl III 800 '0 900 > 1 N1193A 200 700 .. lNl193 ·1N1tUA "N2!80,. tN1189A lN1189 lllli'_'-1it1'~'J . ,;". :" .. ;, ", ~ " For JEDEC Reverse Polarity Add Suffix R, i.e"IN1191AR. lN3765 ft4100822 ' lN3767 1000 IRRM@ 25° IRRM@ 190°C ~-------------------------l00~A --------------------------~~ I: IE-------------------------- 5.0 rnA --------------------------41 R1 200 TJ = 200 0 C V 1 Phase / Or 3 Phase"- ~ ~ ~ 150 160 10 170 ..... --' 20 IY A,B,C,D,E F,G,Hil I-"" 40 30 I." / 60 50 70 Forward Current, IF(AVI, Amperes Per Diode Maximum Allowable Case Temperature, Te, °C ~ ., JEDEC Circuit Q. Non Repetitive Surge Current Versus Time 900 E 0( ::t Jg i 600 ~ :; u ., o.u:r. E' ::> E ';( Ro1 SCR Scope ::i! 10 ·5 co .01n. 20 30 40 Cycles At 60 Hertz I Typical Recovery Time Ranges .25I,ee. Recovery Time Waveform R16 Westinghouse Device Family Test conditions R410, R411 IFM = 100 A. diR/dt Typical trr = 25 Alps 2-4ps 60 Symbol Inches Min. A E .667 .060 J M N U II 1/ ~~ - 2.5 2 1.5 .5 10 5 o Maximum Forward Voltage Drop. VFM• Peak Volts 180 "' '40 Ij '20 S~gle J I/' 80 :t U 80 1• 40 r l"- . ~L. ....... . o 100 120 AI;1 11n !R5' 110 " ""-, , "'" '" "" ~~ ......, ~ ~r: !! ~ ~"'I ~!&..!' 180 ~ 160 J l·-- 1-.•. i--- ! 200 300 I-- 1-- .. ::E 100 I - 220 o I...o ,... lI. J 1/ ~ r---+- ~ ~ r~ I 200 If .... 11 3 ha e.IU ;'as ~-. v ith nt rp as Ii ~ Maximum Case Temperature, TC(MAX)'C 200 6Ph se ~ta ~. Q I i 160 2.5 2 1/ ~ 2 lii 9rn ~- _. 140 I. 3 ~ V. "- ~- I in, e +ha e " 'i"- ~ i" c r- ~tttI - I I 200 r-- I I II~, -f-,p , '--Ii I 100 .. _1-- i~ ~ ~ V' ~" l/ , " ~~ ,'J If' "J 300 400 500 300 400 500 Average Forward Current, IFIAy) 240~m 1 1.5 ;c 400 - i ~ ~ ~ i I .5 500 J ", "- ~~ -! Maximum Forward Voltage Drop, VFM' Peak Volts "\. 20 J ~ IPhal It ~, I i Dc m _. I I I\. If" 600 ,/ 100 - . ", = . :&IE ... 3 ..... 50 20 0 . .~ 100 ~ ~ J...Io ~ IS ~. E )1/ _. ill!: l- RS10-1B. RB"_'S 1- l-- !II 500 rI - -- .. ~- 600~== 1 t ,'20 a 1 80 f40 l 120 140 Maximum Case Temperature, TdMAX) 'C 160 180 200 100 200 Average Forward Current, IF (AV), Amperes R25 ... 200 190 ~ i ~ 320 Type R5OCL.10. R501 -- HIO 170 i SINGLE PHASE t""oiO:"'" ~ ~ ~~ lJ' ";;:::: SIX PHASE.I 160 ~ i 240 11- 200 "'iii ,!!l THREE PHASE / . C m 120 II 11- E ::J ~ ,~., 100 90 E ::J E ';c ::!; . o 20 40 80 100 80 120 140 190 u 0 170 ~ 160 oj :; ta ..... r-.;;:: i.I SINGLE PHASE THREE PHASE ~ ~ ~ ~V lJ' ~ 1"'= ~ "'......." SIX PHASE 1/ ~~ 150 . 120 80 40 0 i > ~ ....... C ,2 Oi In 110 11- E ::> E ';c ::!; 100 ., 80 Average forward Current, IF (AV!. Amperes ~ 20 40 l' SINGLE PHASE 80 60 120 100 140 100. 120 140 ~ TH~EE ~HA~E , 160 E 60 ~~ SIX PHASE \ 80 40 V ..-.! 200 i -" ~ ~ P' 240 120 20 P" ~ V ~~ 1/ TYPE R5OCL.15. R501_15 C 90 ... ,..... ~ ~ ~ L ;; V 280 130 ., , , 120 E ';c ::!; ~ TH~EE ~HA~E 160 m II ::J ~ 320 "'iii I- R26 15 & 140 E ~ Average Forward current. IF IAV!. Amperes TYPE R5OCL.15. R501 180 ~ ~ .... .... V SIX PHASE, Average Forward Current. IF (AV!. Amperes 200 V ./ ~ 110 ::!; J 0 .~ 130 I- ~PE ~5~16, R5hl~1O 280 C V 140 ¥l ~ ~ / ~ ::J 150 E 10 40 0 '" ~ ...-- jiijIP k!: ~ ~ P"" V ~ V ~ ~ ~ .... .....Vk:::: ~ ~ V V [7 .., ~~ I"S:NG~E P7AS~ 100 40 20 60 80 Average Forward Current, IF (AV), Amperes 120 140 Symbol A B r/>O E F J M N Q r/>T Z r/>W Symbol Maximum Ratings and Characteristics Blocking State (TJ =190"C) Volts * Millimeters Min. Max. 135.13 152.40 1.60 4.37 24.89 27.05 30.78 31.75 6.35 16.00 82.55 13.46 19.18 16.76 19.02 57.15 8.38 8.89 11.18 Creep & Strike Distance: .49 in. min. (12.52 mm) .• Ceramic .13 in. min. (3.43 mm). _. Glass (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (226g) Standard Polarity-White Ceramic .Reverse Polarity-Pink Ceramic· Standard Polarity-Gray Glass Reverse Polarity-Yellow Glass 1. Complete threads to extend to within 2'1.. threads of seating plane. 2. Angular orientation of terminal is undefined. 3. Pitch diameter of %-16 UNF-2A (coated) threads (ASA 81.1-1960). 4. Dimension "J" denotes seated height with lead bent at right angle. Conforms to 00-9 Outline * Repetitive Peak Reverse Inches Min. Max. 5.32 6.00 .063 .172 .980 1.065 1.212 1.250 .250 .630 3.250 .530 .755 .660 .749 2.250 .330 .350 .440 %-16 UNF-2A JEDEC Number 0!CD 0 N M N N N M M ...co rco co ex> en co 0 ...r- on r- ~ N M N M N M Z Z Z ~ ~ ~ 800 900 1000 1200 1400 1600 100 200 250 300 350 400 450 525 650 800 925 1050 1175 1300 1600 1800 2000 720 800 960 1120 1280 co N M z CD z co z ~ co M z ~ N co '" N M M N M ~ ~ z ~ co co N N M M Z ~ ~ ~ r- r- N M N N M M Z Z ~ ~ r- r- .N M Z N M Z .~ r- . N M Z ~ Voltage ............. ,VRRM 50 100 150 200 250 300 350 400 500 600 700 Non-repetitive Transient Peak Reverse Voltage. Volts. V RSM * Allowable doc blocking voltage. Volts ........ V R 40 80 120 160 200 240 280 320 400 480 560 640 * Max. (fca) CD. reverse current at rated VRRM (rep); 160 amperes avg. forward current, single phase @ Tc=125°C. ma ...... IR(AV) Conducting State (TJ = 190°C) *. Max. (fca) ®. Forward Current at Tc = 130°C. amps .... 12 Symbol I F(AV) RMS Forward Current. Amps . . . . . . . . . . . . . . . . . . . . . I F(RMS) All Types • Ceramic seal supplied. 160 250 • JEDEC registered parameters. * Max. Peak '/2 Cycle Surge Current (at 60 Hz) . (Under Load),Amps . . . . . . . . . . . . . '. . . . . . . . . . . . . I FSM 12t for Fusing (at 60 Hz Half-Wave). Amps2-Sec ...... 12t 2,000 16.700 * Max. Forward Voltage Drop ® @ 160 amperes average, Tc=125°C, peak volts V FM Mounting: Recommended stud mounting torque; 360 in.-Ibs. lubricated. 1.6 Thermal Characteristics * Oper. Junction Temp. Range, °C . . . . . . . . . . . . . . . . . . TJ * Storage Temperature Range, °C . . . . . . . . . . . . . . . . . . T stg -65 to +190 -65 to +175 Max. Thermal Resistance, °C/Watt * Junction to Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . ReJC Case to Sink, Lubricated Mounting Surface ... . . . .. R ecs 'CD Order reverse polarity units by designating R. CD Full cycle average measured with DC meter. '0 Ceramic package available. 0.30 .15 R27 Electrical Characteristics 2000 p::~=rn:r:r+:[;J~~+r++=1rrT-lr-:::q1000 I I I I __- -~~ ~ '//$'" . ... -- t::::::::: ~-i- 500 ~ -t··I--:":: ... :--;i--:::: J: ; ·-; -1 ;~- I~ /-I· ·iI5d;~1+;;;allllll·I--I~-I-; 10111111111111 S! 0.. __ _ 50 - - j -- ~ ~ 20 c-"'-j-'-+-.I-f-+-+- I-i--Ir-~ 5 8~~t:::::b ~ 3 F::":' 0 2 3 4 5 ~ 2400 I i I r! j'600 t--t--~-+I--t""+-~..,C:t+-'-I-+--:-1'-1-+++-H+++I ~- 81200 ~~ . :-- -I- 1++H-+1H-l I--+-~~+I-++i-H-h:"';':-+-+'''-.~~I::!-+++-+++.J ~ en 800 I--'---+-+-I-++f++ .>I. I !:-- ... . T " ... ~t· ., ; = .. i. rI ~ ,'! § 400 I---f-H--i.+H-tHf-++-+--i-f-+-i-++I-H-H-+-I I .~ + ~ 2 t II f I i 1""- 3. 5 7 10 20 Overload Operating Time. CVcles at 60 Hz 6 Maximum Forward Voltage Drop. VFRM • Peak Volts Figure 1_ Forward current vs_ forward voltage. r--,.......,.--r-1r-l')""T" .. :.,.....~.,..,.Ii""T"l.,....,i""T"l-...,.-.,..-,-...,..,...,...,..,.,.I...-.-...!....... 8. : ~ 2000 i""'~ 30 :itt 50 70100 Figure 2. MaJ ~ ~ lliillllilllillliilllllil r tl-tt 1200 ~-++H+I*+2i .{ 400 i ] ,-t-t-l-t u. 100 E :::l I 100 200 300 400 500 600 Average Forward Current. IF(AV)' Amperes Figure 3. Power dissipation VS. average forw8.rd current. 120 f 140 160 Maximum Case Temperatuie. TC(MAX)'·C Figure 4_ Forward current vs. case temperature . .4rT~~mrTT~~~~~~~~~~0 E F J M N Q T Z W Applications • Welders • Battery Chargers :. Electrochemical Refining • Metal Reduction ., General Industrial High Current Rectification Inches Min. Max. 5.32 6.00 .063 .172 .980 1.066 1.212 1.260 .260 .630 3.260 .630 .766 .660 .749 2.260 .330 .360 .440 %-16 UNF-2A Millimeters Min. Max. 136.13 162.40 1.60 4.37 24.89 27.06 30.78 31.76 6.36 16.00 82.66 13.46 19.18 16.76 19.02 67.16 8.38 8.89 11.18 Creep & Strike Distance: R600.601-.49 in. min. (12.52 mm). R6'0.61'-.13 In. min. (3.43 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Welght-8 oz. (226g) R600-Standard Polarity-White Ceramic R601-Reverse Polarity-Pink Ceramic R810-8tandard Polarity-Gray Glass R6"-Reverse Polarity-YellOW Glass 1. Complete threads to extend to within 2% threads of seating piane. 2. Angular orientation of terminal is undefined. 3. Pitch diameter of %-16 UNF-2A (coated) threads (ASA Bl.I-1960). 4. Dimension "J" denotes seated height with lead bent at right angle. Features • Standard and Reverse Polarities • Flag Lead and Stud Top Terminals Available • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection for Parallel and Series Operation ---, ~ ;.I: ~, ~' .~ t ~' ,,,., ' '\ \\ __ ' ~ R610! R611 ~ R600!~ R60~ • Glazed Ceramic Seal Gives High Voltage Creepage and Strike Paths • Compression Bonded Encapsulation • JAN Types Available • Lifetime Guarantee Ord_ering Information. Example Obtain optimum device performance for your application by selecting proper Order Code. Type R610 rated at 250A average with V RRM and standard flexible lead - order as: = 300V, Example Obtain optimum device performance for your application by selecting proper Order Code. Type R600 rated at 300A average with VRRM = 1200V, and standard flexible lead - order as: R31 Voltage Blocking State Maximums CD Symbol Repetitive peak reverse voltage ,V....... VRRM Non-repetitive transient peak reverse voltage, V:S 5.0 msec ...................... VRSM 100 200 400 600 800 1000 1200 1400 1600 1800 200 22002400260028003000 200 300 500 700 1000 1200 1400 1600 18002000220 2400 2600 2800 3000 3200 1+----- R600 __ 20 ----i-~*-R600 __ 20-+t~-- 1 + - - - - R600 __ 25 . 1+---,-- R600 __ 30 --"";---cH ~-- Min., Max. oper. junction temp., °C . . . . .. Min., Max. storage temp., °C . . . . . . . . . .. TJ Tstg Typical Reverse Recovery Time I FM = 785A, tp = 1001's diR/dt = 25A/l's, Tc = 25°C, 1'8 . .. . . . . trr Reverse leakage current, mA peak ........ , I RRM Current Conducting State Maximums RMS forward current, A ........ . Ave. forward current. A ........ . One-half cycle surge current®, A .. 3 cycle surge current®, A ..... . 10 cycle surge current®, A .... . I't for fusing (for times 8.3 ms) A2 sec. Forward voltage drop at I FM = 800 A and TJ = 25°C, V ..... . Forward voltage drop at rated single phase average current and R610 (All types) ---.,~ -65.to 190 -65 to 190 -65 to 175 -65 to 190 9 11 -65 to 150 -65 to 190 13 ~---------------50-------------~ R600 __25 R610 __25 R601_.25 R61L.25 R600_...30 R610_..30 R601_...30 R611_...30 Symbol IF(rms) IF(av) IFSM IFSM IFSM 315 200 5500 4300 3300 400 250 6000 4700 3600 470 300 6500 5050 3900 125,000 150,000 175,000 1.7 1.5 1.4 1.45 1.45 1.45 12 t Thermal and Mechanical Symbol 360 Recs CD At maximum TJ CD Per JEDEC RS-282, 4.01 F.3. CD Consult recommended mounting procedures. R32 ----~~- R600 __ 20 R610 __ 20 R601 __ 20 R611 __20 case temperature, V ......... . Max. mounting torque, in lb. ® ......... . Thermal resistance ® Case to sink, lubricated, °C/Watl . . . . .. R600 __ 20 R600 __ 25 .10 190 I~ Type RSOO & R60l. _ 180 R6l0 & R6l1 _ ~ 170 VRRMS1000V ~ ~ 160 Single Phase ...... ~ 150 V""""':: ~ R600.....20. R61D.....20 / "" 140 '/'-....;: .fj130 R60l_...20. R6ll_...20 / ........ / ~ 120 110 I - - R6OD.....25. R61D.....25 / / 100 I - - R60l_...25. R6ll_...25 ' - g i l ...... • / I 90 R600..~O ~ ~ R6ll_..30 I o 150 100 200 50 Average FoIward Current. IFIAV). Amperes 190~ 180 ,u , 300 ....... ~ ~ --... ~ 1~ R610&R611_ VRRM:51000V Three Phase __ ~ I E 120 R600.....26. R61D.....26 / 110 ~ R60l_...26. R611_...25 ~+--+-+--7L'+-+-+--I 100 1--..:..:.::..:..r=:..:...:..:.:..:r=:....--+--+-1VI--7<~H-t--I ~ 9Or-----+------r--R-600..--~~-O---+~~--~~--~~ ! U E .~ ~ 80 70 60 I----t---+_ R61D..~O / R6ll_~O --IH----+-t--t----I R60l_.:aO ~~-----I-+-+---I 5Or----I-----+-----+-1--~----~__I--__I 4OU---r--~---r-1-~-__I_r~___I O~ o 250 50 100 150 200 Average Forward Current, 'FIAV). Amperes 190 ~ 180 ~ 170 ~ 160 ~150 R6OD.._20. R61D.._20 R60L...20. R6ll_...20 ! Six Phase .......... ~ _ - ~ l:'" 1/ 1)1' / 1/ '" R600..~O R61D..~O R6ll __30 R60l_..30 / R600.._25 R61D.._25 R6ll_...25 R60l __25 ~ ~ J o..o ~ ~ ~ t-: S I!? 8. E ~ ~ E ~ 'x ~ "?' 0 o 50 100 150 250 200 300 175 17O~ Type RBOO & RBOl 160 ..... ~ 2000V _ l200V~VRRM 150 Three Phase ~ 140 V' --...........;: ~ 130 o I RBOO_...20 / 12 ?"o... ...... RBOL...20 / 110 / 100 R6OD.....25 90 RB01_...25 80 - - .... 70 60 50 40 . 0 ~ o 50 100 150 250 200 300 175 170 Type RBOO & RBOl _ 160 l200V~VRRM 2000V L"'-..... ~ 150 Six Phase ~---... I-.. ~ 140 / ~ ~ 130 /RBOD.....20' to.... t-: 120 -RBOL...20 ~ 110 ::--.... -.........: IE E j 200 250 - - / 100 90 ~ 80 ~ I I 50 100 150 Average FoIward Current. 'FIAV). Amperes 70 60 50 40 Average Forward Current,IFIAV). Amperes R6l0&R6ll VRRMSi l000V .............. ~ ~ 300 Type R600 & R60l. _ ~ .c 140 .§130 £!! 120 110 a. 100 ~ 90 60 50 40 .. ............. Average Forward Current.IF(AV). Amperes _-+'.:=!II ... I ........ l ~ 350 ~ 150 / ""'- ~ "" 140 R600.....20. R61D.....20 ,.LC~~~ --jI-----1 .fj 130 I- R601_...20. R6l1_...20/ ~ ... . / R6OD...25 / R60l_...25 a. 100 Type R600 & R601._ ..... ~ 170 160 250 - 2000V _ I-..~ R6OD...20 ./ R60L...20 111 j I o~ l200VSVRRM Single Phase ~--...... 140 _ - 130 ~ 120 0 E R60l_~O Type R600 & R60l -...;:::... .... ~ ~ R6la.~O / 60 50 40 175 170 160 ~ 150 RBOO• ...25 IR60L...25 70 60 50 40 c~ 00 100 50 Average Forward Current. IFIAV). Amperes 150 200 R33 - 150 140 I .~ ~ 130 ~ ~~ toY 0 ....... 0 :::l ~ ~ ~ § .~ ~ ~ """'----.......-::::::: ~ 100 - S i x Phase ~ 1§ Type R600-20 _ R601-20 / / I 90 ~ ..".... Th~ee Phase/ 80 "" 70 Single Phase 60 l:lIammmmmmmmamm ~ ~ • 800 ~ .... Type R600-30 m~~~Rt'.l6~0~1-3m~0~fi!fl~mEf Type R610-30 :. 700 ~ ~ R611-30 .~ 600 .~ 500 / ~400 j~ / / E 200 50 40;,;~ 0 o 50 00 250 200 150 100 50 100 150 209 250 ~ 350 400 450 500 Average Forward .Current.IF(AV), Amperes Average Forward Current. IF(AV), Amperes 10,000 1000 5000 ~~ ". ~ / IA' R610-20,R611-20 ~ R600L-20,R601-20 C- /. ..,-~ "- "'- i'-... I Tli 15rC I R610-25,R611-25 R600-25,R601-25 1) = 175°C '" " If Type R600-25 R601-25 Type R610-25 R611-25 ~800 - == -- -C I - r 5.0 2.0 3.0 4.0 Maximum FOlWard Voltage Drop, VFM , Volts 1.0 6.0 ~ Six Phase c:600 R610-30, R611-30 R60CL-30,R601-30 I Tlr 9 « ~700 Three Phase '!500 § 200 .~ 100 7.0 ~ 00 50 100 150 200 250 ~ 350 400 Average Forward Current.IFIAV), Amperes ~ .2 8OOr-r=~~IIJn~~TT~"--~~-'';' 700 ~I"'" f--- . ..,-1 .1 V ...- ~ o .001 .005 .01 Time, t. Seconds R34 .05 .1 .5 5 10 200 150 50 Average Forward Current.IFIAV), Amperes 250 300 ", , Symbol ",.1': I Min. Max. 9.76 .063 10.00 .172 1.490 247.90 1.60 254.00 4.37 37.85 1.750 .810 41.15 10.92 101.60 44.45 20.57 J 1.620 .430 4.000 M N .530 1.04 .755 1.08 3.100 13.46 26.42 19.18 27.43 78.74 .330 .440 .350 8.38 11.18 8.89 D E j F I " Q T Z , i ,I ! I " R7 Outline Featu ....: • Standard and Reverse Polarities • Flag Lead and Stud Top Terminals Available • Flat Base, Flange Mounted Design Available • High Surge Current Ratings • High Rated Blocking Voltages Millimeters Max. A B 'i Inches Min. , ~, W %-16 UNF-2A Creep Distance-2.12 in. min. (53.98 mm). Strike Distance-1.20 in. min. (30.48 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-16 oz. (454g). R700-Standard Polarity-White Ceramic R701-Reverse Polarity-Pink Ceramic 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminal is uhdefined. 3. Pitch diameter of %-16 UNF-2A (coated) threads (ASA 61.1-1960). 4. Dimension "J" denotes seated height with lead bent at right angle. • Electrical Selection for Parallel And Series Operation • Color Coded Seals • High Voltage Creepage and Strike Paths • Compression Bonded Encapsulation • Lifetime Guarantee Applications: • Welders. • Battery Chargers. • Electrochemical Refining. .' Metal Reduction. • General Industrial High Current Rectification. Example Obtain optimum device performance for you'r application by selecting proper Order Code. Type R700 rated at 450 A average with VRRM = 1000V, and standard flexible lead-order as: R35 Voltage Blocking State MaximumsCD Symbol Repetitive peak reverse voltage, V ..... VRRM Non·repetitive transient peak reverse voltage, tS5.0 m sec, V ..••.••••• VRSM 800 1800 200012:z00 12400 126(1012:8001 500 700 1000 4nrl11 Flnn.11800 2000 2201012~400 2600128(101310001 400 600 Reverse leakage current, mA peak. . . . . IRRM Switching Typical Reverse Recovery Time IFM= 1500A, tp=190,.s diR/dt=25A/,.s, Tc=25°C,,.s........ trr Thermal and Mechanical Min., Max. oper.junction temp., ·C...... TJ Min., Max. storage temp., ·C........... Tstg Max. mounting torque, in Ib.@ .........• Thermal resistance@ Junction to case, °CfWatt. . . . . . . . . . • R6JC Case to sink, lubricated, °C/Watt. . . . . . R8CS Current Conducting State MlI'Ximums RMS forward current, A ......... ,' .... . Ave. forward current, A •.............. One-half cycle surge current@, A ....... . 3 cycle surge current, A .......•.. 10 cycle surge current. A. . . . ..... . 12t for fusing (for times= 8.3 ms) A'see........................... Forward voltage drop at IFM=1500 A and TJ=25°C, V ..•••••.•.•••••••• Forward voltage drop at rated single phase average current and case temperature, V .••...•.......•..... R700--03 R700--04 R700--05 R701--03 R701--04 R701--05 470 300 7000 '5250 4200 700 450 8500 6400 5100 865 550 10,000 7500 6000 204,000 266,000 416,500 VFM 2.15 1.6 1.4 VFM 1.45 1.45 1.1 IF(rms) IF(av) IFSM IFSM IFSM I't 1 At maximum TJ 2 Per JEDEC RS-282, 4.01 F.3. 3 Consult Westinghouse recommended mounting procedures. R36 -----l" 1IE------65 to 200 ----~1E--,-165 to 175 -...,.tE--------65 to 150 -65 to 200 -65 to 200 to 200 ---"""';M ~----36C1-----~;:---360 360 -----~ I l!l 1200 I Type R700/R701 u 200 o ~ I R700-03 <{ <{ :; 160 ~ Q) 2~ ~ E ~ 6 900 o..<{ 800 > Single Phase 140 c:" I"'" ~ b.. .... ~ Ii' 100 Six ~ 120 Phase r-- 60 0 700 '" 600 -., ""'" 80 1100 ~1000 VRRM~4000V 180 ~ 0- ;;::.~::: ,';: .~:l~:-.~­ _'Bt-OOi.R -Qt-:-04 7-; -:- ,.I ,., - c - :. ,•'. ;.' r-:-:-;~:..;+~. ~, ri-- . . ,Y:j':: ----'-I::~!:~: .~ 0 500 /1"" ~ ~ ~ Ql ;!: Thr:a Phase 400 0 0.. 300 E 200 ::: 40 -~x 20 o o '" :2' 100 200 300 400 500 0 600 Average Forward Current, I F(AV), Amperes '"~ Q) 0- E « :2' LL ... c: ~ " u 'E ~ o u.. o~---~~~ Maximum Forward Voltage Drop, Vfm, Volts o 100 ___ 200 ~~~_~~_~~~~ 300 400 500 600 700 800 Average Forward Current, I F(AV) , Amperes \Ii u'" B c: ..,0 .12 "c: ....," .10 Q) " c: al0-'" c: .08 '.o, '" E 0- .~ o E E Time, t, Seconds Transient Thermal Impedance vs. Time " x '" :2' Average Forward Current, I F(AV)' Amperes R37 220 u o 200 ~ 180 -05 VRRM:S12ooV Three Phase 1,/ '............ ~ ~ ~ - R70-03 / Six Phase R70C>-05 ~ ...... ~ .....- R70-04 160 20 u D. " ............ I.L ~ 180 " .S 'x :;; 3 """'" ~ Type R7oo/T701 - I- "' "" /' R70C>-03 80 x 180 -03 Average Forward Current, I F(AV)' Amperes u -" 80 E I- Type R7oo/R701 _ :~ I- R70C>-04 II I :... 180 40 60 ::J - u 0 '" '"'" U E E Single Phase 80 ttl U ?to R70C>-03 120 VRRM:! 1200V ~ ......... .............. r--..... ....... 140 I Type R7oo/R701 - R70C>-05 ~ -....... ~ t-...... l/ 15. 100 E ~ I 1 Six Phase ~ R70C>-03 80 .S"x 20 ~ 0 ttl 700 800 - . 150 300 450 Average Forward Current, IF(AV), Amperes 600 Gene~~1 Purpose Rectifiers • R620 Symbol <1>0 <1>0, <1>0, H J J, N Inches Min, 1.610 .745 1.420 .500 .135 .072 .030 Max, 1,650 .755 1.460 .560 .145 .082 300-500 A. Avg. Up to 3000 Volts Millimeters Min, Max. 41,91 40,89 18.92 19.18 37.08 36.07 12.70 14.22 3.68 3.43 2.08 1.83 .76 Creep Distance-.49 in. min. (12.60 mm). Strike Distance-.52 in. min. (13.21 mm), (In accordance with NEMA standards). Finish-Nickel Plate. Approx. Weight-2.3 oz (66g). 1. Dimension "H" is clamped dimension. , R62 Outline Applications: Features: • • • • • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection For Parallel and Series Operation • Available in Factory Assembled Water or Air Heat Exchangers • Single or double-sided cooling • Long creepage & strike paths • Hermetic seal • Lifetime Guarantee Rectification Free Wheeling Battery Chargers Resistance Welding Example Obtain optimum device performance for your application by selecting proper Order Code. Type R620 rated at 400A average with V RRM Order as: = 1000V, R39 Voltage Blocking State Maximums E 200 50 j =l= ~1000 ;G11O ~ ~~ o( 120 t .. 'x ~ 00 50 100 150 20U 250 Average Forward Current.'F(AVI. Amperes 300 350 400 l! 0 250 150 200 100 0 50 Average Forward Current. 'F(AVI. Amperes 300 350 40( 1600 ~1400 (2000 ~1OOOFi33~:::3~cj~~~~~5:::i -~ £500 u 1~~~~~~~~~~~~~ to 2.0 3.0 4.0 5.0 6.0 7.0 Maximum Forward Voltage Drop. VFM • VOlts .10 H-++!I-!1#-I-i-HtIII--l--J..tIl.ilI-l~ .OOH~~~+W~-H~-l­ <:r .OOH-++!~-r~tIII-~~ilI-l- ~ ~!! .071-1-!-HlH1-I-1+l+!-4~~1-++ t~·06 ~ B.05I-H~-+H#hlI--4+!~t+ ~ .04 .I'~ .: ~ l03I-+++T+II~..f.+W~~I+III-,;f-l...J..J4tHllf--+-HJ+!ltI-+-1:+lt H++f.IHlI-++H+!!I--I- ~ ~ oU~Iiit::t:rWillU .0001 .001 TIIIlB t. Seconds .01 .1 1.0 10.0 100.0 50 100 150 ~ 250 300 350 400 450 500 550 600 Average Forward Current. 'F(AVI. Amperes R41 175 170 160 ~ 150 ~ 140 ~ ~ 150 t.Y130 ~ 130 ~ 120 ~ 110 a. 100 ~ 140 1 ~ : 5 ~ 120 110 100 E ~ 90 3l 80 70 E 60 50 8. a E 70 .1 : ~ ~ 500 550 600 50 100 150 200 250 300 350 400 450 500 Average Forward Current.IF(AV). Amperes 50 100 150 200 250 300 350 400 450 500 550 600 Average Forward Current,IF(AV). Amperes ~ .:. ~ ~ 50 100 150 200 250 300 350 400 450 500 Average Forward Current.IF(AV). Amperes 190 180 170 160 150 140 ~ 130 ~ 120 ~ 110 8. 100 E ~ 90 5 80 § ·xE ~ 50 100 150 200 250 300 350 400 450 500 550 600 Average Forward Current.IF(AVI. Amperes 100 150 200 250 300 350 400 Average Forward Current. IF(AV). Amperes 450 500 Symbol Millimeters Min. Max. Min. Max. ",0 ",0, ",0, 2.250 1.333 2.030 2.290 1.343 2.090 57.15 33.86 51.56 58.17 34.11 53.09 H ",J 1.020 .135 .075 1.060 .145 .090 25.91 3.43 1.91 26.92 3.68 2.29 J, N .040 1.02 Creep Distance-1.15 in. min. (29.36 mm). Strike Distance-1.02 in. min. (2591 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (227g). 1. Dimension "H" is clamped dimension. Features: • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection For Parallel and Series Operation • Available in Factory Assembled Water or Air Heat Exchangers Ii 'Lifetime Guarantee Application.: • • • • Rectification Free Wheeling Battery Chargers Resistance Welding • Single or double-sided cooling • Long creepage & strike paths • Hermetic seal Example Obtain optimum device performance for your application by selecting proper Order Code. Type R720 rated at 900A average wit/l VRRM "" 1OOOV, Order as: R43 Voltage Blocking State Maximums CD Symbol 1~12~14~1600 180~rOO~r200 '4~116d~I'80~12000 22~124~1260~128~13000 2400 2600 2800 3000 3200 RepetitIve peak reverse voltage • V ....... VRRM Non-repetitive transient peak reverse voltage. t ~ 5.0 msec ..................... VRSM Reverse leakage current. mA peak ......... IRRM 2.00 300 500 700 1000 1200 1400 1600 1800 2000 2200 I..I' I..r'" I.. I' I..- R720__06 R720__ 09 R720... _12 50 I' .. . ~ I' I' ... I' R720__06 . R720__ 06. -, R720__ 09~ 50 --" LL 50 Switching Typical Reverse Recovery Time IFM lS00tp 190ps dlR/dt 25A/p.s. Tc 25'C. ps ... · .... = = = = " trr " .. 1 ... ... .. 13 Thermal and Mechanical Min .• Max. oper. junction temp .• 'c ...... Min .• Max. storage temp .• 'c ........... Min .. Max. mounting force. Ib® ......... Thermal resistance® with double sided cooling Junction to case. 'C/Watt ........... Case to sink. lubricated 'C/Watt ...... TJ Tstg ReJC Recs c.- C; Conducting State Maximums IF(rms) IF(av) 'FSM' IFSM IFSM Max '2t of package (t=8.3 ms). A"sec Forward voltage drop at I FM 1S00A and TJ 25'C. V ..... Forward voltage drop at rated single phase average current and case temperature. V .......... '2t = lOt ~ r"" ::: .... . ...... ... 65 to "75 "6 to 200 2000 t6 2400 .065 .02 R720 __ 09 . :;: c;: I' , I"! ,. 65 to 150 .65 to 200 2000 to 2400 ~ .056 .02 -,.... R720 __ 12 945 600 7000 5250 4350 1415 900 8500 /1350 5300 1886 1200 12500 9400 7800 204.000 80x10· 301.000 80x 10. 660.700 80x10' VFM 1.8 1.6 1.2 VFM 2.1 2.1 1.6 =' !! t E ~ ~ il 50 E E • 40 ~ 100 200 300 400 500 soo 700 aoo 200 300 400 500 600 700 Average Forward Current. IF (AV). Amperes Average Forward Current, IF (AV). Amperes Maximum ForwardVo!tage Drop, V FM • Volts Average Forward Current. ~ .06 .9 .05 , IF (AV). Amperes u c °B .,c ".c " .E ~ .04 (J "C .03 Co ;; .L. .02 ;:: .c", >-;: E, .01 ~u EO. 'S( s ~J". 0 .1 .001 .01 Time, t.'Seconds Transient Thermal Impedance vs. Time \ 10 .! 100 J ___ o .00 200 300 400 500 600 100 800 900 1000 1100 1200 [300 Average Forward Current, IF CAV). Amperes R45 .:~i:t~2:~';~~~~-~i! 160 SIINGLE ;PHAS¢ 120 110 ;-,-;-1<72ib::::o;!t=<"k- ;.:i ' ! 100 ~ !i 90 aE 80 E 70 5 60 !l ~ .. , ~'-'M _ _ ": ".j E 50 J 40 ' = ' r:k~H 130 I-' ~ : 0 0 Average Forward Current, IF (AV), Amperes 200 175 170 190 160 180 150 130 140 120 I-' 130 120 100 110 ~ 100 a !i 90 E 80 E 80 ~ 70 E ~ t ~ i!. ~E 60 § 80 :. .~ 70 60 50 , " .• j :; 100 200 300 400 !IOO 6()0 700 100 800 900 1000 1100 1200 1300 200 300 Average Forward Current. Average Forward Current, If ("VI. Amperes 400 IF (AV), 500 190 150 160 140 150 130 140 I-' ~ ~ !i 120 5 70 E ::! TyFjE R720 " • I 100 90 ~ 90 !l ~ ~ 80 60 80 i 40 0 •.•• Average Forward Current, IF (AV). Amperes ""i.~ •. • .•.• ~ .. ~ ... ". -- .. ..: .,. 80 ... , 60 E 50 ~ :; 40 ~ 1000 I o f' ""'f , L, • ..... r. 0 R46 900 ~.:-!-:. 110 !! ~ 110 t 800 120 I-' 130 100 700 1200V -< VAAM r'200ElV .SJitQPHASE. ':' __1-'_' 160 180 170 600 Amperes 200 ·1 '_'H'_'~_' .~ :; E j:" .,..... ~~ ... i, ~ E ~ 200011 ; 110 t 90 !i $. T~f!~!o f'l:lAA.Elr":"'-; __ "~ 140 160 ! ~ 1200V ~ VAA~ 150 170 I-' ~ .JPER-ko,-L-:~-·:-~J 100 . - ~j~- .. -- 200 300 400 500 Average Forward Current. If lAY). Amperes 600 700 80Q 900 1000 Symbol <1>0 <1>0, <1>0, H J J, N Millimeters Min. Max. Min. Max. 2.880 1.744 2.580 1.020 1.35 .075 .060 2.920 1.755 2.700 1.060 .145 .090 73.15 44.30 65.53 25.91 3.43 1.91 1.27 74.17 44.58 68.58 26.92 3.68 2.29 Creep Distance-.SO in. min. (20.32 mm). Strike Distance-1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-16 oz. (454g.) 1. Dimension "H" is clamped dimension. Features: • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection For Parallel and Series Operation • Available in Factory Assembled Water or Air Heat Exchangers • Single or double-sided cooling • Long creepage & strike paths • Hermetic seal • Lifetime guarantee ", it · )~\ ~) /. Applications: • Rectification • Free Wheeling • Battery Chargers • Resistance Welding Example Obtain optimum device performance for your application by selecting proper Order Code. Type R920 rated at 1600A average with VRRM order as: = 1000V, R47 Voltage Blocking State Maximums 8.3 msl A2 sec. Max l't of package (t=8.3 msJ, A'sec = Forward voltage drop at I FM 1500A and TJ 25·C, V ...•• Forward voltage drop at rated single phase average current and case -temperature, V .......... = IFlrms) IF(av) IFSM IFSM IFSM 12t l't VFM VFM CD At maximum TJ CD Per JEDEC RS-2B2, 4.01 F.3. CD Consult recommended mounting procedures. R48 1725 1100 16,000 12,000 10,000 1,100,000 90x10' R920 __ 16 2500 1600 21,500 16,000 13,300 1,925,000 90x10' R920 __ 20 3140 2000 30,000 22,000 18,500 3,700,000 90x10' 1.45 1.20 1.05 1.55 ,1.50 1.45 -::: 200 lr 180 i 180 ~ 140 I! 120 !I 100 § 40 ! u E I r--.... Type R920 VRRM.s1200 v Single Phase .... ~ ~ ~ f'} ~ ~ TypeR92Q._11/ ~~ "" 80 80 ~ A TypeR92o.._18/ 20 600 1000 1600 2000 i " 3000 2600 180 180 ~ 140 ; 120 ! 100 ! " "- ~" Type R92o.._20 / 200 u o I tj E ::J E I 200 I 180 140 I! 120 ~ I """'IIIIi 180 ~ i ~ ~ ~~ ~" ~ 100 Type R92o.. _11 / 80 Type R92o.. _18 ' 80 u E 40 80 E 20 20 o 600 1000 1600 200 180 180 "' "" " 2600 2000 100 Type R92Q. _11 " 80 TypeR92o.._18' Type R92o.. .20 40 20 o o '" /' ~ ') .... ~ 3000 ~ ~~ / Type R92o.. -20 ' 3000 ,, 1600 1000 600 "", "- /~ , } I ' """/ ~ Type R92o.. _18 ' 2000 ~ 2600 "' 3000 Averllge Forwllrd Current. IF (AV). Amperes - ~ 120 2600 ThraePhase Type R92o.. _11 ~, 140 80 ~ ~ Type R920 VRRM::! 1200 v Six Phase ~~ '" Type R920 1200 V< VRRM$ 2000 V 200 ~ 180 2000 1600 1000 200 lr Average 50rward Currem. IF IAVI. Amperes lr 600 .......... "" ~'" Type R92o....20 o o ......... ~ 40 ~"\/ }\.'\ o '" ~ ~/ Type R92o.. _18 / '"~" "- ::J I ~ TypeR92o.._11 / Average Forward Current. IF (AV). Amperes Type R920VRRMS1200v Three Phase - Type R92o..-20 ~ ~~ 80 Average Forward Currem. IF IAV). Amperes lr ~ Type R920 1200 V< VRRMS2000VSingle Phase _ "" /\.\ \ ~, 1000 1600 600 Average Forward Current. IF IAV). Amperes lr i 140 ; 120 1 100 : tj E ::J E "' "x ~ 2000 2600 180 ~ E ~ ~ 180 ............... Type R920 1200 V< VRRM:S 2000 V SixPhasa ~ ~ ~-..... ~ ~ "" >.... /~ 80 Type R92o.. _11 80 AV I' Type R92o.._18" 40 Type R92Q...20 / 20 o o 600 1000 ,\ ~ 1600 " ,,,- " 2000 2600 Average Forward Currem. IF IAVI. Amperes R4 200 u o Type R92Q.. _ 2000 V <: 180 i VRRMS3000 V 160 r............ ~ 140 ~ 8. 100 E ~ 80 Single Phase / ! 60 E 40 'j( . 20 ::! o u ::l E ~ ~ ~~ / ............ ~ / '" Six Phase I' 500 250 ~ 700 .2 5000 to 0. 'iii 4000 .!l C ., ~ ~ a.. "' 1250 1000 750 6000 c: Three Phase o 8 ~ -.........;::: Tvpe R92Q.._ll .,'" ;: ~ e> ....... 120 E - 3000 2000 E E 1000 ::l 1500 'x., ::! 0 ~ Average Forward Current. IF IAVI. Amperes ~ g g 8 .... ~ N g.... Averalle Forward Forward Current. IF IAV). Amperes 8000r---~~~---'----r---~---r---'---' r 3 ~ 2 ~ Type R92o.. _11 TJ = 150°C Ii f:! c .. ""~ '" ~ -' 0 ; o IIIII 100 i 6000~-+--~--+-~---+~~--~-; ~ a.. Type R92Q..-20 TJ=190oC "E ...!5 ~ TvpeR92Q.. _16 TJ = 175°C e::'" > Tvpe R92Q.._16 ~ 7000~---4----~----+---~-----t----~~--t----i I II ~ 'i ~ 1000 II 10.000 Average Forward Current.IFM. Peak. Amperes 5i B {}. Average Forward Currnt. IFIAV). Amepres 111111111 lll1lllW .03 H+I-HHl+HH-tttHitHtlll-ttttltlttffitH-ttHftH1ffHtttllttnm i i~H+~~H*~~~~~~~~~ffim~ l~ .en ~JH....++.l..HjIJ.IH.-+H+H#-HHH+tttIIltHitH+ttlttHttH §SJ: ~ .~ ~ ~~OLW~~~~~~WW~~~~~~ .001 .en .1 Tame. t. Seconds Transient Thermal Impedance vs. Time R50 1. 10. 100. i :::~--~---+----~--+----+--~~~+-~~~-; J c 3000 § 2ooo~--+---+---~~~~~~-t---t---i---1 ..:eE 'j( O~~ o __-L__~__~~~-L__~~~~. 300 600 900 1200 1600 1800 2100 Average Forward Current. IF IAVI. Amperes 2400 2700 Symbol 4>0 4>0, 4>0, H 4>J J, N Inches Min. 2.850 1.845 2.560 1.020 .135 .075 .050 Max. 2.900 1.855 2.640 1.060 .145 .090 Millimeters Max. Min. 72.39 73.66 46.86 47.12 65.02 67.06 26.92 25.91 3.68 3.43 2.29 1.91 1.27 Creep Distance-l.15 in. min. (29.36 mm). Strike Distance-l.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-l lb. (454g.) 1. Dimension ""H"" is Clamped Dimension. R9G Outline Features: • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection For Parallel and Series Operation • Available in Factory Assembled Water or Air Heat Exchangers • Low Thermal Impedance • Single or double-sided cooling • Long creepage & strike paths Applications: • Rectification • Free Wheeling • Battery Chargers • Resistance Welding • Cathodic Protection Example Obtain optimum device performance for your application by selecting proper Order Code. Type R9GO rated at 1800A average with VRRM order as: = 1000V. R51 Voltage Blocking State Maximums 110 Co E 100 f-'" !II " u 90 E ::l E 80 " 70 ·x ~ "" '" "'f\. G> i'.. .._ I'\.. "Single Phase 8 ~ 8000 i 7000 ) .~f r-.." ~\ ~hr~Ph~eI ...... Co 5000 .~ 4000 j 3000 ~ 2000 ./ ::l ..; E 1000 ·x o ~~ " ~ '" Type ~ 7000 ~ 6000 ~ 5000 ::;; 8 a Thre~ -.l 3000 0 / 1/..;1~ V ~~ V ~~ V" ~~ E 1000 10,000 Phase Singl~ Phase J " :ii I Six prase, -"'"300~600 i"'" ·x o 900 1200 1500 1800 2100 2400 Average Forward Currn!, IRAV), Amepres Forward Current. IFM, Peak Amperes .03 ~8000 ~ 3lCD u c: i'~ .02 > ~ ~ ::l -, o ~I' tl c: CD 7000 r--t---+----ir--t----+ i 6OOO~~--r_~--r__r--~-r~r_~ g 6000~-~-_+-~~-+---+-_4-_7~~~--~ .~ :~ 8. o .5 J~ eo ::l " e= 'jj( U ~~ 8 V 2000 E Single Phase R9GQ.~18 E iii ~ ~V Co .~ Type R9GQ._13 TJ = 150°C c: ./ ~ f""'" c:" .2 16 4000 0 .ij / Average Forward Forward Current. IF IAV), Amperes l 1000 / I Three Phase '" 8000 100 V V./ ~ E Average Forward Currn!, IFIAV), AmpeJ"es 0 V J' V / / Six Phase 16 8 '" I ~. a "'~ I o I TYPE R9GQ. _13 !II > 6000 ~ SiXPh::~ 60 I I Type R9GQ. _13 f - - 2000VD E F J 4>T Max. 10.77 10.29 10.77 11.10 .075 .175 .800 .250 1.91 4.45 20.32 6.35 .422 .060 .453 .105 10.72 1.52 11.51 2.67 M N Min. ",w 10-32 UNF-2A Glass to Metal SealCreepage & Strike Distance = .07 in. min. (1.75 mm) (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-.2 oz (6g) Standard Polarity-Green Glass II Reverse Polarity- Brown Glass NOTES: 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of this terminal is undefined. 3. 10-32 UNF-2A maximum pitch diameter of plated threads shall be basic pitch diameter (.1697",4.29 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 Pl. Conforms to DO-4 Outline Features: • • • • Applications: • • • • ·Diffused Construction Fast Recovery Reverse Polarity Available LowVF Ordering Information Volfdqe Rdtlnq I,. Computer Power Supplies Control Circuits Free Wheeling Applications By-Pass Rectifiers Electrical Characteristics "CDCe ·1 "'"CO" R302 R303 I R302 R303 PardIT1(>ters I I 50 IN3879 IN3889 100 IN3880 IN3890 200 IN3881 IN3891 300 IN3882 IN3892 I2t for Fusing 400 IN3883 IN3893 VFM @IFIAV) & 25°C 500 R3020506 R3020512 600 R3020606 R3020612 R302 - Standard R303 - Reverse For JEDEC Reverse Polarity add suffice R, i.e., IN3879R cD!see JEDEC Circuit IN3879 R To IN3883 R IN3889 R To IN3893 R " 6A "12A @100 @ 100 " 75A "15OA .25 90 1.5V 1.5V " 3.0 MA "3.0 MA 3.0oC/W 3.0 oC/W TJ IOPER) Range " -65 to 150o.C " -65 to 150°C Tstg Range " -65 to 175°C " -65 to 175°C Current IFIAV) @TC,oC IFSM !fiR CD " 200 r$ "200 ns " JEDEC Registered Parameters R55 Current Versus Temperature 30r-------,--------.--------~------~ 300, ., 200' -g 15 100 ., ~ III. Q. ., II! 50 u 'E 20~------1--------+--------+-------~ .,II! Co IN3879 Series 'EOJ ~ u. 0 1.5 1.0 0;5 . 2,5 2.0 0~80~-~~~-----~~----~~~~--~160 Maximum Allowable Case Temperature, Tc, °C Maximum forward voltage, VFM, Peak Volts Non Repetitive Surge Current Versus Time Power Versus Current 8or----.-----.----~--~_r----_r----~ 300r-----,-------,-----,-----,---r-,---, ~ 15 ~ 250 60~--4---_+--~~ m a. .i. j ~ s g 401---+---+>~-1 Phase_+_---I-_ _-I .., (3 (TJ ,; 1500 C) e- 15 j 20t---+~---t--"O'--1f__'_--+-,---+_--~ ~ ...O! .I! J E ::> E 'x 'i IE Or:3 Phase .~ 200 O~'--~--~~-~~--~--~---~ 10 20 30 '40 60 50 0 2 Forward Current,IF(AV), Amperes Per Diode 5 10 30 40 20 60 Cycles At 60 Hertz JEDEC Circuit Normalized Rectifier Efficiency Versus Frequenc lOO D.ur. ] 80 h 70 ~ 60 in I .01n. RDI SCR Scope Reverse Recovery Time IN3879 and IN3889 Series IFM=36A, diR/dt=25A/usec trr=200 NS I'R302 50 40 J: o lK R56 ......... 90 lOOn. Kilohertz I 10 100 Inches Min. Symbol A B 0 .667 .060 E F J M N Max, .450 ,080 .667 .687 .200 1.000 .375 .453 .175 .422 .140 .156 %-28 UNF-2A 1 Z W Millimeters Min, Max. 11.43 2.03 16.94 16.94 17,45 5.08 1.52 25.40 9,53 10.72 11.51 4.45 3.56 3.96 Glass To Metal SealCreepage & Strike Distance = .09 in. min. (2.46 mm) , (In accordance with NEMA standards.) Finish-Nickel Plate. A'pprox. Weight-.6 oz (18g) Standard Polaritv-Green Glass Reverse Polarity-Brown Glass NOTES: I. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of this terminal is undefined. 3. ~-28 UNF-2A. Maximum pitch diameter of plated threads shall be basic pitch diameter (.2268", 5.74 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 1957 Pl. Conforms to 00-5 Outline Features: • Diffused Construction • Fast Recovery • Reverse Polarity available • low Profi Ie Package • low VF ELECTRICAL CHARACTERISTICS QRDERING INFORMATION VOLTAGE RATING 'OA "wec I 30A JEDEC PARAMETERS R402lR403 R402,R403 - ./~ (l ~ I I I I II o 20· 30 40 50 2 5 10 ::::r-r- -- ... ... 20 30 40 Forward Current. IF(AV). Amperes Per Diode Cycles At 60 Hertz JEDEC Circuit Normalized Rectifier Efficiency Versus Frequency 60 IN3899 and IN3909 Series 100 1000. ., E u D.ur. lK .OUt .E .,c:~ ·u 80 70 60 iil 50 10 40 ~III 30 c: .2 ~ 90 .11 RDl SCR Scope a: 20 10 Reverse Recovery Time IN3899 and IN3909 Series IFM = 100 A. diR/dt = 25 Alus R58 Kilohertz 100 Symbol A B D E F J M' N Q T Z W Conforms to DO-8 Outline Features: • Fast Recovery Times • Standard and Reverse Polarities • Flag Lead and Stud Top Terminals Available • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection for Parallel and Series Operation • Glazed Ceramic Seal Gives High Voltage Creepage and Strike Paths • Compression Bonded Encapsulation for Thermal Cycling Capability in Excess of 100, 000 Thermal Cycles • Lifetime Guarantee Inches Min. 4.18 .050 .8~0 1.031 .255 2.50 A37 .605 Max. 4.62 .100 1.000 1.063 AOO ,.650 .645 1.675 .291 .250 .310 %-24 UNF-2A Millimeters Min. Max. 106.17 117.35 1.27 2.54 25AO 21.84 27.00 26.19 10.16 6.48 63.50 11.10 16.51 15.37 16.38 42.54 6.35 7.39 7.87 Creep & Strike--Distance: .66 in. min. (16.94 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Welght-3.5 az (99g) Standard Polarity-White Ceramic Reverse Polarity-Pink Ceramic 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular Orientation of terminal is undefined. 3. Pitch diameter of %·24 UNF·2A (coated) threads (ASA B1.1-1960). 4. Dimension "J" denotes seated height with lead bent at right angle. MIII Applications: • Inverters • Choppers • Transmitters • Free Wheeling Ordering Information Example Obtain optimum device performance for your application by selecting proper Order Code. Type R502rated at 100A average with VRRM:;:: 1000V, recovery time = 1.5 !,sec, and standard flexible lead-order as R59 Voltage 0 Blocking State Maximums , A .. 3 cycle surge current, A ..... . 10 cycle surge current@, A ..... . 12t for fusing (for timesi = 8.3 ms) A2 sec. Forward voltage drop at I FM 314 A and TJ = 25·C, V ..... . Forward voltage drop at rated single phase average current and case temperature, V ......... . = IFlrms) IFlav) IFSM IFSM IFSM R502 __ 10 R503 __ 10 125 80 3000 2500 1800 157 100 3500 2900 2150 37,500 51,000 ! 12t VFM VFM u" E "E " :2 TJ - 25°C C/l 250 " ~ 230 I 1== R502.._1 ~ 'iii 130 II> I-- ~ ~ 90 t-- '"E E 70 'j( 50 " :2 3.0 " Three Phase (120 0 Square) 10 o Single Phase (180 0 Sine) "...x: ....... " .>< ./ ./ / ./ ./ ./ ./ :7 ./ -/ ./ ./ 150 c. 0 IL. ./ "Ec. V ~'000 ~ "2 f7 ~ ,3 ." ./ J--" ~TJ ~ t::I-' I--- " A 100 "0 '~5°C I u.. ::;..-' 20 1-10 F-R502.._1O ~ R503.._10 ~ i """ ./ J' 10'0 140 80 '60 20 Average Forward Current. IF (AV), Amperes ~ ~ Six Phase, (60 0 Square) C C 110 110 ~ 21 Ot-- R502.._10 190 > ~ 170 0 12 100, 0 3 2 Forward Voltage Drop, VFM, Volts ! '16 130 'j( I o '~ " I- / II 10 ::: 160 'iii l: u :=.,; R502.._10 R503.._10 :; 150 " ~" ~ ! I"J 1\ TI = 2rCI 100 80 40 60 Average Forward Current, IF(AV), Amperes 120 o 2 Forward Voltage Drop, VFM, Volts 3 R61 ~------,tp------~ tp=~YCC (,.sec) IFM'=Ec/VLtC RD, SCR, To Oscilloscope JEDEC Recovery TIme Circuit Recovery Time Waveform 5 ¥ .a S ,.; E i= ., 8., a:., .,Ie,. ., a: 3 ~ I @ r-S;;~ V -<:: - .2 ie'= 175 LFM =3\ 4A 0 ./ ~ ~ /. V ./ /' , trr @Tel= 25°C "I:'s @,Te = 25°C IFM = 314A . IR I R I r I I I VPICS everse ecovery Ime and Overshoot Current Vs. -Ratj of Revj'se Current for ;2.0 usefR502 atd R50: T o R62 t 4 20 30' 40 Rate of Reverse Current, diR/dt (Amps/usee) 50 o Recovery Time Comparison for Fast Switch and Conventional Rectifiers Symbol A B .. D E F J M N Inches Min. 5.32 .063 .980 1.212 .250 3.250 .530 .660 Q ..T Z ..W Conforms to DO-9 Outline Max. 6.00 .172 1.065 1.250 .630 .755 .749 2.250 .350 .330 .440 0/4-16 UNF-2A Millimeters Max. Min. 135.13 152.40 1.60 4.37 24.89 27.05 30.78 31.75 6.35 16.00 82.55 13.46 19.18 16.76 19.02 57.15 8.38 8.89 11.18 Creep & Strike Distance: .49 in. min. (12.62 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (226g) Standard Polarity-White Ceramic Reverse Polarity-Pink Ceramic 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminal is undefined. 3. Pitch diameter of %-16 UNF·2A (coated) threads (ASA 61.1·1960). 4. Dimension "J" denotes seated height with lead bent at right angle, Features: • Fast Recovery Times • Standard and Reverse Polarities • Flag Lead and Stud Top Terminals Available • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection for Parallel and Series Oper.ation • Glazed Ceramic Seal Gives High Voltage Creepage and Strike Paths • Compression Bonded Encapsulation for Thermal Cycling Capability in Excess of 100,000 Thermal Cycles • Lifetime Guarantee Example Applications: • • • • Inverters Choppers Transmitters Free Wheeling * For higher voltages, consult factory. Obtain optimum device performance for your application by selecting proper Order Code. Type R602 rated at 250A average with V RRM Recovery time = 1.5 I'sec, and standard flexible lead - order as: = 1000V. R63 Blocking State Maximums 8.3 ms) A2 sec. Forward voltage drop at I FM = 800 A and TJ = 25°C, V ..... . Forward voltage drop at rated single phase average current and case temperature, V ..... '..... VRRM:S 1200V IF(rms) IF(av) IFSM IFSM IFSM 315 200 4500 400 250 5000 3500 2700 3900 3000 85,000 104,000 1.85 1.65 1.65 1.58 2.0 & 3.0 ---l 70 H-··..;-..l±E:::Ff 60 .. ~ ~~~t O~~·_·~~·~·~~~~~~~==~~~i.~ o Average Forward Current. IF(AV). Amperes 100 50 50 100 150 150 150 100 50 ~r-~~-~""~"--'..'.~~~~-r~~~~ f' 2000 f" i'~ ~3500 ; - :l u ~~ 300 250 300 I: • I I '",- '~ :l REb< Rtp;: m2500 a. i i! i -I ~tl I CJl -'" I: fi+ /~~ ~~ ~~ ! .~.:. H· Iii I"..... JI i 1 " !'- b:tt'-o~1 E ~2000 I- _ .~ 2.5 3.0 3.5 i I :E1500 1.5 2.0 Forward Voltage Drop. VFM. Volts 200 II I f-- I'i'~ I i 1.0 250 Average Forward Current.IF(AV). Amperes Average Forward Current.IF(AV). Amperes .5 200 Average Forward Current. IF(AV). Amperes 1 2 3 5 10 20 I 30 ' SE 50 I 100 Surge Cycles At 60 Hertz R65 10n UJ ~-----tp.------~ RD, R~O.25 tp=nVLC ("sec) LD D, .. D, H J J, N Min. 1.610 .745 1.420 .500 .135 .072 .030 Max. 1.650 .755 1.460 . ',560 .145 .082 Min. 40.89 18.92 36.07 12.70 3.43 1.83 .76 Max. 41.91 19.18 37.08 14.22 3.68 2.08 Creep Distance-.49 in. min. (12.60 mm). Strike Distance-.52 in. min. (13.21 mm). (In accordance with NEMA standards). Finish-Nickel Plate. Approx. Weight-2.3 oz (66g). 1. Dimension "H" is clamped dimension. R62 Outline Features: Applications: • • • • • • • • Fast Recovery Times High Surge Current Ratings High Rated Blocking Voltages Special Electrical Selection For Parallel and Series Operation • Non Magnetic Package • Single or double-sided cooling • Long creepage 8< strike paths • Hermetic seal .' Lifetime Guarantee Inverters Choppers Transmitters Free Wheeling *for higher voltages, consult factory Example Obtain optimum device performance for your application by selecting proper Order Code. Type R622 rated at 400A average with VRRM and 1.5 /Lsec recovery time order as: = 1200V, R67 Voltage Blocking State Maximums (j) Repetitive peak reverse voltage ,V ....... Non-repetitive transient peak reverse voltage, V:S 5.0msec ...................... Symbol VRRM 100 200 400 600 600 1000 1200 1400 1600 VRSM 200 300 500 700 1000 1200 1400 1600 1800 I Reverse leakage current, mA peak ......... IRRM I *= 50 I' 50 ----? Switching Symbol Max. Reverse Recovery Time I FM 785A, tp 1001'S diR/dt 25A/ps, Tc 25°C, ps ....... = = = = trr I; ... 1.5, 2.0, 3.0 Thermal and Mechanical Symbol Min., Max. oper. junction temp., °c ..•.•. Min., Max. storage temp., °c ..•..•••••. Min .. Max. mounting force, Ib Thermal resistance with double sided cooling Junction to case. ·C/Watt ........... Case to sink, lubricated ·C/Watt •..... ......... TJ Tstg -40 to 175 -40 to 175 -40 to 200 1000 to 1400 .095 .02 ReJC Recs Current Conducting State Maximums Symbol RMS forward current. A .•.••......•. Ave. forward current, A ............• One-half cycle surge current~, A •..•. 3 cycle surge current~, A ........ . 10 cycle surge currel)t~, A •....... 12t for fusing (for times = 8.3 ms) A2 sec...•...••....••••••...... Max 12t of package (t=8.3 ms). A2 sec.•••........•.•..•....•. Forward voltage drop at I.M = . 800 A and TJ = 25"C, V ••.......• Forward voltage drop at rated single phase average current and case temperature, V ••..••..•.•.•. CD At maximum TJ CD At 60 Hertz R6S I'(,ml) 1.(••) I.SM IFSM I fSM R622 __ 35 R622 __ 40 650 350 4500 3500 2700 626 400 5000 3900 3000 86,000 104,000 20 x 10. 20xl0· 1.86 1.65 2.25 2.00 2.0,3.0--7 ~150 • • • • • • • ..... 140 jm• • • • • t ~ ~ J 50 100 150 200 250 300 350 400 450 500 Average Forward Current. IF(AV). Amperes 50 100 150 200 250 300 350 400 450 500 550 600 Average Forward Current. IF(AV). Amperes 11_ ~1400 21600 i 1200 ~1000 ~600 j400 E ::::J .~ 50 100 150 200 250 300 350 400 450 500 Average Forward Current.IF(AV). Amperes ~ 200 50 100 150 200 250 300 350 400 450 500 550 600 Average Forward Current.IF(AV). Amperes J 1 .5 1.0 1.5 2.0 Forward Voltage Drop. V FM . Volts 2.5 3.0 3.5 5 Surge Cycles At 60 Hertz 10 20 30 50 100 R69 ,J:ln UJ i----tp,----i R:O;;O.25 tp=n.yLC (I'sec) l0 4>0, 4>0, H .pJ J, N Inches Min. Max. 2.250 2.290 1.333 1.343 2.030 2.090 1.020 1.060 .135 .145 .075 .090 .040 Millimeters Max. Min. 57.15 58.17 33.86 34.11 51.56 53.09 26.92 25.91 3.68 3.43 2.29 1.91 1.02 Creep Distance-1.15 in. min. (29.36 mm). Strike Distance-1.02 in. min. (2591 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Appro •. Weight-8 oz. (227g). 1. Dimension "H" is clamped dimension. R72 Outline F..tures: • Fast Recovery Times • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection For Parallel and Series Operation • Non Magnetic Package • Lifetime Guarantee Applications: • Inverters • Choppers .. Transmitters • Free Wheeling Example Obtain optimum device performance for your application by selecting proper Order Code. Type R722 rated at 800A average withV RRM and recovery time 3.0 psec. = = 1200V R71 Blocking State Maximums 'x.. >« :i! E .." :::E Average Forward Current, IF (AV), Amperes r:' o 'iii 120~.';;·":+*:+:"1: ... Co en Ci en ~ ~ 800'~~~~~~~~~~~~~~~nma~~~~ ~ ;=, .§ Average Forward Current, IF (A V), Amperes Average Forward Current, IF(AV), Amperes R73 500-800 A. Avg. Up to 2500 Volts 2.0 - 5.0 Jlsec 6.0- 11 Fast Recovery 2.8 .. • -: ••• " " " ; 1 " T 5.5: 2.6; 5.0' 2.4-- 4.5·· 2.2' ~_ 4.0- !l 2.0 :!: ~ :!l; 3.5 g. 3.0 o 2.5· !! '" 2.0"" ~1.4 g 1.2- o 1.0", ...~_~ :..-.-:::=....- 1.5 _ _ 'E 1.0' ~ .f 1.8 ~-1.6' (I) ~ • Rectifiers R722 ...g, ~ 'EIII 0.5- 0: 500 100 200 1000 Forward Current, IFM, Peak Amperes 2000 0.8 5000 0.6e 0.4' S 0.2' 0 0 lL 500 1000 100 200 Forward Current, IFM, Peak Amperes 2.8 2000 5000 2.6 5 2.4. u ...'" 2.0 c: .; > 1.8 1lc: :i 1.6· > 1.4 '0 0 0 "'" ~ ..... E:!: = U .03 0. III 1.2· , 1110 E ...: ... ~ 1.0 ~ 0.02 1-" EN 0.8 '0 > 0.6 'Eco 0.4· S 0.2· lL 0 0 .05; ~ ~ .04 lL • • • • Reye-rse Rate of Current' for- 3.O;.tSec-· 6.0 R;>22· -_ •• - : .• - 480 ! !'" ! ["440 5.0' t ~; 400 lrl CJ) ~ :. 4.0 E ~ ... « ~ oj E 3.0' :' 0 I- , 200 c: :1~.:@tJ''';.2i;''c.iFM';'1oodA: 160 ~ i .. ,. 10aol<~ ..'11@li' os. , . ~l :12'5"C . : . ~. F.M , . -: • r-'~ 120 t ~ 2.0 o u Q) ...14>~: , @It·· '75'C 1 _ .... 'fQaoA' .l"!' .-.',F.M~~-''':-''80 a:: ~ ii" a:: 0 · · · · t , l t . , · .. - .. I.... j-;-. o .. I .I 20 40 60 80 100 120 Reverse Rate of Current, di R/dt, A/p.Sec R74 _ . . -"40 ! 1" • 140 t • '"; 160 : j"t ~ [I' '0 180 200 a I"'......- - - t p , - - - - - - l tp = n'\,fLC (/Lsec) ~Y:M'=Ec/# 1) 0 ~ CD c3 Recovery TIme Waveform 10 100 Symbol <1>0 <1>0, <1>0, H Inches Min. 2.850 1.845 2.560 1.020 .135 .075 .050 Millimeters Max. Min. Max. 2.900 1.855 2.640 1.060 .145 .090 72.39 46.86 65.02 25.91 3.43 1.91 1.27 73.66 47.12 67.06 26.92 3.68 2.29 J J, N Creep Distance-1.15 in. min. (29.36 mm). Strike Distance-1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-l lb. 1454 g.) 1. Dimension "H" is Clamped Dimension. Features: • Fast Recovery Times • High Surge Current Ratings • High Rated Blocking Voltages • Special Electrical Selection For Parallel and Series Operation • Non Magnetic Package Example Applications: • Chopper • DC to AC Inverters • Transmitters • High Frequency Rectification . Obtain optimum device performance for your application by selecting proper Order Code. Type R9G2 rated ar 1400 A average with VRRM = 1200V and recovery time = 3.0,usee. R75 Voltage Blocking State Maximums 160 u 0 ~ 140 ~ "'i; ! pO f:I 100 GiQ. E 60 ~ ~ .. 60 - 'K Three Phase (120 0 Square) co 40 Six Phase 0 20 f-- (60 Square) I :E o o ~ 3000 c:: .~ Q. ,~ ;;! / ~ :: 0 D- 1500 /# E 1000 :I E 'x 500 A~ . I :E 1500 2000 o U a ~ ! := 140 , Q) Q. 120 80 . :g Si~Phase I u E 60 r-- (60 0 Square) I\, / - I ., I ~ RSG2.._11 - ~ ::. (180 0 Sine) 0 E ~ ~ b. ~~ Three Phase A (120 Square) ~ / ~ 100 f- ! I I Single Phase :> . I "" I (120 Square) 0 I i" Single Phase I (180 0 Sine) I " 500 1000 Average Forward Current, IFIAV), Amperes I 1500 2000 1500 2000 4500 4000 RSG2._11 3500 c:: ""~ Q. 2500 ., 'iii 0 2000 Gi ~ 1500 D- 40 E 1000 :I • 'x 20 to o :E o 1000 500 Average Forward Current, IFIAV), Amperes 1500 1000 500 Average Forward Current, IFIAV), Amperes 2000 160r---~--~----r---'---~----~--~---' o Six Phase 0 Square) i" (60 ~ I" Three Phase n 'i :E u ~ ~ 3000 :I E 'K J o , Average Forward Current, IFIAVI, Amperes 160 / IX f' VI liLt /,W 0'" 2000 ., 'L RSG 2. ..oS / 2500 'iii ~ /'" \ r--- I 0 r\'" ~ co u E :I E / I 4000 3500 :> SinglePhaL (180 0 Sine) 4500 x ::. « '\ ~ 10 CD ICD ~ RSG2...QS +-_ 140 1-....;::.....I111:~+__ ~ ! '" ~ x 4500 4000 « ::. 3500 :> ~ ~ c:: .g to c. 'iii 80 60~---r----r-~~---4~--4---~~--+---~ 2500 0'" 2000 ~ Q) ::0 1500 D- 40 20 3000 1----+----~--4_---4----4_--_4----+_--~ o ~--~--~--~--~--~----~--~~ o 500 1000 1500 2000 Average Forward Current, IFIAV), Amperes E 1000 :I E 'xco 500 :E 2000 Average Forward Current, IFIAV), Amperes R77 10000 II> V ~ ~ ~ 1000 i :; g TJ = 150°C c: - .~ .02 I/~ 8c: . 'iQ. // rl 100 ~~ ..," -=-==~t$>. ~ ~ 0 .- ?/ V/ V !V ~ i ~ ~'lJG'J,-' ~9G'}...',II. ~ .03 :. .E ~ u 'E ~ ....o '" io-~ 10 o 2 3 Forward Voltage Drop, VF;"', Volts 4 S .001 7 6 .01 .1 10 Time. t. Seconds Transient Thermal Impedance Vs. Time L 2.5"H IFMl ,DJl rn ~ 0 tp R~O.25 tp=Tr.yLC ("sec) L< 0.01 "H IFM'=Ec/VOC SCR, RD, To Oscilloscope JEDEC Recovery Time Circuit Recovery Time Waveform 10 .," II> ::> ); iii 'S~ 6 Typical Reverse Recovery Time and Overshoot Current I VS I Reverse Rate of Current For 5.0 usee R9G2 ~ I I I 400 ~trr @TJ= 150°C ~@TJ= 1500C, IFM = 1500A---' ~ .-100-""" ~ 300 E 4 ["'-... to-- 8 .... ...... .,> 0 .,"~ ., !!! ~ a:: V 2 0 ~ V ./ V ./' V - ....- V I-........ ~ ",.. « j V 200 100 o 50 75 100 g" ~> V l o s @.Tj = .25.o C"IFM = 1500A 25 i., ~ trr @ Tj = 25°C, 1'25 Reverse Rate of Current, diR/dt, Amps/usee R78 8. ~ V Fast Switch Rectifier Recovery Time = 3.0 J,lS8C 150 o Recovery Time Comparison for Fast Switch and Conwntional Rectifiers --lOS 100 INTRODUCTION Westinghouse thyristors are designed, manufactured, and tested to insure the circuit designer' "state-of-the-art" flexibility in design a:1d dependability in operation. Westinghouse high power 5CR's feature all-diffused elements and are available in a variety of packages: stud, disc, integral heat sink, and flat base. These 5CR's offer high surge current capability with optimized forward voltage drops, soft firing and high di/dt capability with center-fired dil namic gate designs, and the industry's highest guaranteed dv/dt capability with shorted-emitter designs. All high power Westinghouse stud mount devices utilize compression bonded encapsulation (CBE) construction which reduces thermal fatigue by eliminating solder joints. Westinghouse disc devices feature non-magnetic packages and are cold-welded to avoid thermal stresses on the semiconductor elements during encapsulation. Westinghouse Phase Control 5CR's offer package 12 t or explosion ratings for most ceramic packages; in addition, surge suppression ratings are available which enable the designer to better utilize the full capability of Westinghouse 5CR's. The Westinghouse T625 now offers the designer of a 1500 C operating junction temperature 5CR; this device features higher current ratings and better overload characteristics for motor control applications. Westinghouse Fast 5witching 5CR's offer turn-off times as low 10 microseconds as a result of an exclusive irradiation process. These center-fired di/namic gate designs all feature low switching losses, high di/dt, low IGT, high current, high voltage,low recovered charges, and fast turn-off times. The Westinghouse mid-gate structure (available only as a T72H or T9GH) is interdigitated gate design which optimizes the device for higher peak currents and narrower pulse widths while provic1ing low switching losses and faster turn-on and turn-off capability. The Westiinghouse Reverse Blocking Diode Thyristor (RBDT) offers the control of an 5CR without the complex firing circuitry. This device blocks vol- THYRISTOR (SCR/RBDT) PRODUCT INDEX Type Number Page 2N681-92 2N1792-1809 2N1842,A-50,A 2N1909-16 2N3884-96 2N4361-68 2N4371-78 2N5204-07 511 519 59 519 531 521 521 513 T527 T600 T607 T610 T620 T625 T627 T680 583 533 579 533 543 547 587 573 T9GO T9GH T40R T62R T72H T400 T500 T507 T510 T520 561 593 595 597 589 513 523 577 527 541 T700 T707 T720 T727 T760 T780 537 581 551 591 571 575 T920 555 TA20 567 tage in the forward direction until the appropriate dv/dt pulse is applied. The RBDT offers excellent di/dt capability up to 3,OOOA/us, and seriesing is easily accomplished for high voltage applications. Westinghouse offers extensive testing capability for series and/or parallel matching, special parameter selection, Type Number Page or full high reliability screening. Westingoffers a Lifetime Guarantee on all 5CR's bearing the symbol +. In addition, all Westinghouse thyristors are available on factory assembled and tested air or water cooled heat exchangers in a variety of circuit configurations. 5pecify Westinghouse Power Thyristors. 51 PHASE CONTROL SCR'S 10 - 250 Amperes 1500 CJ z i 800 III CJ ...~ g 400 200 50 50 o AVERAGE CURRENT RATING BDISC STUD ~FLAT BASE 150°C JUNCTION TEMPERATURE * PHASE CONTROL SCR'S 250 - 1400 Amperes 3000 2200 2000 CJ Z i III 18001500 I------t:;:; - 1200- I-- CJ 1000 ... 800 > 800- ~ 0 ./ * r- -'- - ~%- ~ 4OO1tl "I 2:~l~ '- L..... :oo~~ ~ I"! , -1 ~ _~ ~ ~,~ 250 300 300 300 300 350 350 350'-400-450~550 800 700 800 800 900 1000 1000 1200 1200 1400 o AVERAGE CURRENT RATING STUD MOUNT II DISC ~ STUDLESS QINTEGRAL HEATSINK * 150°C JUNCTION TEMPERATURE S2 FAST SWITCHING SCR'S & RBDT'S 22 - 250 Amperes 1200 1000 (!) Z i= c( II: 800 600 w (!) c( !3 ~ 400 200 50 22 40 60 70 115 80 126 126 125 150 160 176 200 260 AVERAGE CURRENT RATING OSTUD MOUNT NOTE: BDiSC 'REVERSE BLOCKING DIODE THYRISTOR (RBDT) Turn off times shown represent fastest currently available at given voltage rating. FAST SWITCHING SCR'S 250 - 900 Amperes 2000 1BOO~------------------------------------------------------------~~--~rw~- 1200~~~~~~~~~~----~~~~.---- 1000 BOO 600 400 200 50 L--_ _ __ 250 250 275 300 325 350 350 400 450 450 475 800 900 AVERAGE CURRENT RATING DSTUD MOUNT f:j DISC • di/namic Midgate design NOTE: Turn off times shown represent fastest currently available at given voltage rating. S3 + PHASE CONTROL SCR'S TO-~ TO-83 T400__16 10 150 16 250 14000010 14000110 14000016 14000116 14000210 14000216 14000310 14000410 14000510 14000610 14000710 14000810 14000910 14001010 14001210 14000316 14000416 14000516 14000616 14000716 14000616 14000916 14001016 14001216 PACKAGE TYPE 10-48 10-48 PAGE NUMBER 513 513 AVERAGE CURRENt ONE CYCLE 5URGE ~ VOL1AGE 100 160 200 250 300 400 500 600 700 600 TO-94 70 1000 2NI909 2,N1792/2N191 0 2N1793/2N1911 2N179412N1912 2N179512N1913 2N179612N1914 2N1797/2N1915 2N1798/2N1916 26 50 1 " ., T4OO__10 JEDECI TYPE 900 1000 1200 1400 1500 2N1803 2NI804 10-83110-94 519 PHASE CONTROL SCR'S 70 - 176 Amperes T620-_13 1620__16 1600-_18 T610 __18 80 1800 125 1600 150 3300 175 5500 15100080 15100180 16100280 16100380 T6100480 T6100680 T5100680 T5000780 T5000880 T5000980 T6001080 T5001280 T6001580 15200013 16200113 16200213 15200313 T6200413 T6200613 T6200613 T6200713 T&200813 T&200913 T6201013 T6201213 T5201513 16200015 16200116 16200216 16200316 T6200415 T6200616 T8200616 T620071& T620061& • T6200916 TII201016 T6201215 T6201615 16100018 16100118 16100218 T6100318 T6100418 T6100618 T6100618 T8000718 T6000618 T6000918 T6001018 T6001218 T6001618 T52 T62 TO:93 541 543 533 JEDEC/1:YPE VOL1AGE T521T62 ~ ""~ 50 100 200 300 400 500 600 700 600 900 1000 1200 1500 PACKAGE TYPE PAGE NUMBER 54 523/527 . • THYRISTOR SELECTOR GUIDE PHASE CONTROL SCR'S 175 - 300 Amperes T820 __ 20 TYPE * T700__ 2& * T820 __ 30 T700__ 30 AVERAGE CURRENT ONE CYCLE SURGE 200 4000 250 7000 300 5500 300 8400 VOLTAGE 100 200 300 400 500 T6200120 T6200220 T6200320 T6200420 T6200520 T6200620 T6200720 T6200820 T6200920 T6201020 T6201220 T6201420 T6201520 T7000125 T7000225 T7000325 T7000425 T7000525 T7000625 T7000725 T7000825 T7000925 T7001025 T7001225 T700.1425 T7001525 T7001625 T7001825 T7oo2025 T7oo2225 T6200130 T6200230 T6200330 T6200430 T6200530 T6200630 T6200730 T6200830 T6200930 T6201030 T6201230 T6201430 T6201530 T7000130 T7000230 T7000330 T7000430 T7000530 T7000630 T7000730 T7000830 T7000930 T7001030 T7001230 T7001430 T7001530 T7001630 T7oo1830 T7oo2030 T7oo2230 600 700 800 900 1000 1200 1400 1500 1600 1800 2000 2200 PACKAGE TYPE T62 T70 T62 T70 PAGE NUMBER 543 S37 S43 S37 T68 . ~---' ... T70 a • \-,,~ T76 * HIGH TEMPERATURE· 150°C > PHASE CONTROL 350 - 700 Amperes * ' ~ T780__ 35 T&25__40 T720 __ 55 T920__ 07 AVERAGE CURRENT ONE CYCLE SURGE 350 10,000 400 5000 550 10,000 700 15,000 VOLTAGE 100 200 300 400 500 T78oo135 T78oo235 T78oo335 T7800435 T7800535 T7800635 T7800735 T7800835 T7800935 T7801035 T7801235 T7801435 T7801635 T6250140 T6250240 T6250340 T6250440 T6250540 T6250640 T6250740 T6250840 T6250940 T6251040 T6251240 T72oo155 T72oo25S T72oo355 T7200455 T72oo555 T7200655 T72oo755 T72oo855 T72oo955 T7201055 T7201255 T7201455 T7201655 TYPE 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 2500 2800 3000 " T78 T9200607 T92oo707 T9200807 T9200907 T9201007 T9201207 T9201407 T9201607 T9201807 T9202007 T9202207 PACKAGE TYPE T78 T62 T72 T92 PAGE NUMBER S75 S47 S51 555 * HIGH TEMPERATURE· 1500C j~ .".....,., ~",~ T72 T92 55 PHASE CONTROL SCR'S 800 - 1400 Amperes T90G..._08 T820__ 10 T9GO __12 TA20 __ 14 AVERAGE CURRENT ONE CYCLE SURGE 800 13,000 1000 27,000 1200 27,000 1400 35,000 VOLTAGE 800 700 800 900 1000 1200 1400 1800 1800 2000 2200 2400 2600 2800 3000 T9GOO808 T9G00708 T9GOO808 T9GOO808 T9G01008 T9GOI208 T9GOI408 T9GOI808 T9GOI808 T9G02008 T9G02208 T9G02408 T9G02808 T9G02808 T9G03008 T9200810 T92oo710 T9200810 19200910 T9201010 19201210 19201410 T9201810 T9G00812 T9G00712 T9G00812 T9G00912 T9G01012 T9G01212 T9G01412 T9G01612 TA200814 TA2oo714 TA200814 TA200914 TA201014 TA201214 TA201414 TA201814 TA201814 TA202014 TA202214 PACKAGE TYPE T9G T92 T9G TA2 PAGE NUM8ER 561 555 S61 567 TYPE T92 T9G TA2 S6 FAST SWITCHING SCR'S and RBDT'S 22 - 125 Amperes * T607__40 T60'2-_70 T627__12 AVERAGE CURRENT ONE CYCLE 5URGE 40 1000 70 1200 115 1200 VOLTAGE 100 200 300 400 500 600 700 900 1000 1200 T5070140 -T507024O T5070340 T5070440 T5070540 T5070640 T5070740 T5070840 T5070940 T5071040 T5071240 T5070170 T5070270 T5070370 T5070470 - 15070570 T5070670 T5070770 T5070870 T5070970 T5071 070 T5071270 T5270112 T5270212 T5270312 T6270412 T5270612 T5270612 T5270712 T5270812 T6270912 T5271 012 T5271212 TURN OFF TIME 10-501'5 10-501'5 10-50 IJS PACKAGE TYPE TO-83/TO-94 PAGE NUMBER 577 TYPE 800 * +? 00-5 (T40R) ~ TO-83 -, ~ \' T52 577 TO-94 583 'RBDT - Rever.e Blocking Diode Thyristor I I \ - .~ FAST SWITCHING SCR'S 125 - 250 Amperes ,, TO-93 l:L TB07__ 13 T627__16 T62'2-_20 AVERAGE CURRENT ONE CYCLE 5URGE 125 3500 150 3500 200 4000 I VOLTAGE 100 200 300 400 T6270115 T6270215 T6270315 T6270415 T6270515 T6270615 T6270715 T6270815 T6270915 T6271015 T6271215 T6270120 T6270220 T6270320 T6270420 T6270520 T6270620 T6270720 T6270820 T6278920 T6271 020 T6271220 T521T62 900 1000 1200 T6070113 T6070213 T6070313 T6070413 T6070513 T6070613 T6070713 T6070813 T6070913 T6071013 T6071213 TURN OFF TIME 10-50 1'. 10-501'. 10-50 ps PACKAGE TYPE TO-93 T62 T62 PAGE NUMBER 579 587 587 TYPE 500 600 700 BOO T62R ~ 57 FAST SWITCHING SCR'S 250 - 350 Amperes * T72H __ 25 T70'Z...._30 T727__ 35 AVERAGE CURRENT ONE CYCLE SURGE 250 6000 300 8000 360 7000 VOLTAGE 100 200 300 T72HOI25 T72H0225 T72H0325 T72H0425 T72H0525 T72H0625·· T72H0725 T72H0825 T72H0925 T72Hl025 T72H1225 T7070630 T7070730 T7070830 T7070930 T7071 030 T7071230 T7270635 T7270735 T7270835 T7270935 T7271 035 T7271235 25-50 iJS 20-50 }-IS 15-50l's TYPE T70 400 500 600 700 800 900 1000 1200 TURN OFF TIME T72 PACKAGE TYPE T72 T70 T72 PAGE NUMBER 589 581 591 * di/namic mid-gate deSign FAST SWITCHING SCR'S 400 - 900 Amperes T9G T727_A5 TYPE AVERAGE CURRENT ONE CYCLE SURGE 450 8000 VOLTAGE 100 200 300 400 500 600 700 800 900 1000 1200 1400 1600 1800 2000 2200 T7270645 T7270745 T7270845 T7270945 T7271 045 T7271245 * T9GH_-D9 475 900 13,000 8000 T7270148 T7270248 T7270348 T7270448 T7270548 T7270648 T7270748 T7270848 T9GH0609 T9GH0709 T9GHOB09 T9GH0909 T9GH1009 T9GHI209 T9GHI409 T9GHI609 T9GHI609 TURN OFF TIME 20-50 }Js 10-50 }Js 30-80 }Js PACKAGE TYPE T72 T72 T9G PAGE NUMBER 591 591 593 :lD E F J M N rJ>T rJ>T, Inches Min. .330 Max. .505 .880 .544 .562 .152 1.193 .300 .453 .165 .075 .544 .113 Millimeters Min. Max. 12.83 8.38 22.35 13.82 13.82 14.27 2.87 3.86 30.30 5.33 7.62 10.72 11.51 4.19 3.18 1.52 1.91 3.05 .210 .422 .125 .060 Z .120 %-28 UNF-2A W Approx. Weight-.33 oz. (10 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch diameter of 14-28 UNF-2A (coated) threads (ASA 81.1-1960). Conforms to TO-48 Maximum Ratings and Characteristics JEDEC Types: 2N1842, TJ=100'C; 2N1842A, TJ=125'C Blocking State Symbol <: NN '--r' ..... " .t?/Jl ... ((It ~ConQuctlon Angle. I . _···-15··_···· _.1 20 Average Forward Current. IT(AV). Amperes Figure 1. Power dissipation vs forward current. rectangular wave. 20 Figure 2. Case temperature va forward current. rectangular wava. 125100 i 2 . '·~~i/~.. :0 , o~ ! -'- ·-i~· 2 ; 8 0 -' .IC~lion 11800 --.;.JAnglei& "10 t-:- '12 2" ' c. 9570· •. E ~ E E o " " :;: 0 Average Forward Current. ITIAV). Amperes Figure 3. Power dissipation VB A'IO" T·A~ ---1 ~ 8560· 6 4 2 6 --. forward current. half-wave sinusoid. '0. 1.2;·-- , .-. U - "., p ." . . . . . - 0··"'·-'-' .. 30~ , .8~' ~- i 20; ; ,,.- . ! 10f .2; ,. . - ·~--IO ----16cf Forward Current. ITM. Peak Amperes Figure 5. Forward voltage va forward currant. 510 '10 12 Figure 4. Case temperature vs forward current. half-wave sinusoid. IA 40. "" ! .~.. Average Forward Current. ITIAV). Amperes '1000 o~-6i--·---" :61 .1 Time, t, Seconds Figura 6. Transient tharmal impedance va time. Symbol A A, D E F J M N T T, Inches Min. .330 .544 .113 Max. .505 .880 .544 .562 .152 1.193 .300 .453 .165 .075 Millimeters Min. Max. 8.38 12.83 22.35 13.82 13.82 14.27 2.87 3.86 30.30 5.33 7.62 10.72 11.51 3.18 4.19 1.52 1.91 3.05 .210 .422 .125 .060 Z .120 ":4-28 UNF-2A W Creep &. Strike Distance. .27 in. min. (6.96 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-.33 oz. (10 g). 1. Complete threads to extend to within 2}1 threads of seating plane. 2. Contour and angular orientatIon of terminals is undefined. 3. Pitch diameter of %-28 UNF-2A (coated) threads (ASA B1.1 -1960). Comforms to TO-48 Outline Maximum Ratings and Characteristics Blocking State (TJ=125'C) Symbol JEDEC Type co co z N volts .... VORM VRRM "Non-repetitive Transient Peak Forward and Reverse Voltage. VRSM t :::; 5.0 msec 'Forward and Reverse Leakage Current. (full cycle average)mA to(av) tR(av) N M o:t co co co z N z N z N co co co L() co co z N co co co z N "coco z N co co co z N en co co z N 0 en co z N a; co z N N en co Z N 'Repetitive Peak Forward and Reverse Voltage. ,v. .............................. Conducting State (TJ =125'C) RMS Forward Current. amps .......... • Ave. Forward Current (180' Conduction) amps. . . . . . . . . . . . . . . . . . . . . . . . . .. Surge Current (at 60 Hz): *1t.i Cycle. amps. 3Cycles.amps. 1 0 Cycles, am ps . 12t for Fusing (at 60 Hz half-wave), amps2 sec.. . . . . . . . . . . . . . . . . . . . . .. Forward Voltage Drop at TJ =25'C IF=16 Adc, volts ................. Symbol hlrms} Ir lav} hSM IrsM IrSM 12t VrM Thermal Characteristics ·Oper. Junction Temp. Range. ·C ....... TJ 'Storage Temperature Range. ·C ........ T.1g Max. Thermal Impedance, 'C/Watt: Junction to Case ................. ROJC Max. Thread Torque, Lubricated, in. Ibs .. All Types 25 16 150 110 90 90 1.7 65 to +125 -65 to +150 1.3 30 25 50 100 150 200 250 300 400 500 600 700 800 35 75 150 225 300 350 400 500 600 780 840 960 6.5 6.5 6.5 6.5 6.0 5.5 5.0 4.0 3.0 2.5 2.25 2.0 Gate Paramet.ers (TJ=25'C) Symbol Gate Current to Trigger (VFB -12V), ma. IGT Gate Voltage to Trigger Over Temperature Range (VFB =12V), volts ....... VGT "Non-Triggering Gate Voltage at TJ= . 125'C (Rated VFB). volts ........... VGNT 'Peak Forward Gate Current, amps ...... IGFM "Peak Reverse Gate Voltage, volts ...... , VGRM 'Peak Gate Power, watts... . . . . . . . . . .. PGM • Average Gate Power, watts. . . . . . . . . .. PG(AV) Switching State Typical Turn-On Time, 1r-10 A, 10-90%, VORM=10 volts, TJ=25'C, !'sec ..... ton Min. di/dt, Linear to 5.0 ITlaVi amps/ !,sec ..................... , di/dt Typical Turn-Off Time, Ir=10 A, TJ= 125°C, diR/dt=1 0 Ah,sec., dv/dt= 20V / !,sec. Linear to .8 VORM !,sec. . . .. tq Typ. dv/dt, Exp. to \lORM volts/!,sec .... , dv/dt All Types 40 3.0 .25 5 5 5 .5 3 25 50 100 " J EOEC Registered Parameters. S11 u o i ~ ~ ::> ~ 1I0f.:..:-J-l\~~~~.:-l'--+-'-+--+--.Jf"''+-'''''''''4o<---' 100 90~--+---+-\-~~~~~~~~-h--~--~---t--~---1 Q) Co E ~ 80 .-, -,+-+--tt,--\;-."ot~--f"" '!, 25 Average Forward Current. ITIAVI. Amperes Figure 1. Power disaipation va forward current, rectangular weve. 30 Average Forward Current. ITIAVI. Amperes Figure 2. Ca.e temperature va forward current, rectangular wave. 40; - - , o~ Average Forward Current. I.TIAVI. Amperes Figure 3. Power dissipation va forward current, half-wave ainusold. Average Forward Current. I TIAVI. Amperes Figure 4. Ca.e temperature va forward current. half-wave ainusold. ,01 Forward Current, ITM Peak Amperes Figure 6. Forward voltage va forwaro current. S12 Time. t. Seconds Figure 8. Transiant thermal impadance va time. . Symbol A A, cl>D E F Inches Min. cl>T cl>T, Z Min. Max. .330 .505 .880 .544 8.38 12.83 22.35 13.82 .'544 .113 .562 .152 1.193 13.82 2.87 14.27 3.86 30.30 .210 .422 .125 .300 .453 .165 5.33 10.72 3.18 7.62 11.51 4.19 .060 .120 .075 1.52 3.05. 1.91 J M N Millimeters Max. cl>W )1.1-28 UNF-2A Finish-Nickel Plate. Approx. Weight-.33 oz. (10 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch diameter of 14-28 UNF-2A (coated) threads (ASA 61.1-1960). Conforms to TO-48 Outli'ne . Ordering Information 22 Amperes 75I'n~..r""".t""""'!-:---tAngle t) i o. , I i j--'H-1 80 'i , ---j-- 70 Z I i 60 ~ 50H---+-+--+-+t---tt- --t-lr--!+ ~ 4O,+-+--+--t-+-r----n--H- I :,+-~-r-+~~~~ 0246810 24~ Averoge Forward Current,IT(Av),Amperes Figure 8. Case temperature vs. forward currant. ractangular wava. Vo 2 4 6 8 ~ ~ ~ ~ ~ ro ~ ~ ~ Average Forward Current,irlAV),Amperes Figure 9. Power dissipation vs. forward cunent. half wave sinusoid. Figure 10. Ca •• temperature vs. forward current. half wave sinusoid. 2.0 i I ,.~ l 0 t) ~ 1.6 c :!u .,c :> 12 tIc 0 1 ! a ~= 2· ~'~~~~~F±~T~t-·~·~~-~~~r !i~ ii :u; 0,.f=::!:t!'I:I:Jf..::.i:..l±lI;l4-,.i:.:.lJili4-.i...:Wi4·.....;..;.......;;~+-..:....::.:.;.:iliI 0+-~-+~~'~~~Y-~-4~~~~~~--~~~ o ~ ro Forward Current,lTM ,Peak Amperes 2 5 Figure 11. Forward voltage vs. forward current. 516 ~ ~ roo N .0001 Time,t,Seconds Figure 12. Transient thermal impedance vs. time. 70 120' T400-22 -..- -_. -t-------+----- 60 t ! .. -j.-_. _.. _.1 .._- ---··t.-· , - 50 I ~ ....j ~40' ~ c0 I ~ .. ~ ~ E E " 'M J ~ ! 0' ! ~ e ----. .1--. I .-.. 10 0 4 60· i ... L r- 360°-j ~ ~ 1.-..-.-1--. Conduction Angle 8 12 ... I ~ Conduction Angle ! ~---v~...... ~+--·--t-----+I t!! 40' . Jl I . -·- --~T~---" ------~---- .... ! 8 E 20 E " ~ , 32 28 36 20 24 Average Forward Current, tr(AV),Amperes Figure 13. Power dissipation vs. forward current. rectangular wave. <'> .--..--l---n I E I 20 ! 8. i _ .... _ ....•. _-j-.. 30 I----~ 801 ~. .+ r- 360°-j ooL 16 o· 4 0 12 16 20 8 Average Forward Current ,1T(Av),Amperel 24 28 36 Figure 14. Case temperature va. forward current. rectangular wave. 120 "-.;::--...---,---r----r----,-----,,---,.---.--.., T400-22 ..______1.. .. ___ .. -1.--.. --- 60' --Li ! .1 .~- i -j- ,. ! .~ 0° o. o 4 8 12 ...! ConduCtion i!20 ° Angle. 16 20 24 28 36 Average Forward Current, IT(AV),Amperes Figure 15. Power dissipation va. forward current. half wave sinusoid. 20 24 28 36 Average Forward Current ,IT (Av),Amperes Figure 16. Ca.e temperature ve. forwerd current. half weve sinusoid. 7'-~--~~~~~~~~--r--r'-rr--r--r~M Forward Current,lTM ,Peak Amperes Figure 17. Forward voltage vs. forward current. llme,t,Seconds Figure 18. Transient thermal impedanca VB. time. 517 60~--~----'-----r---~----r---~----, 2N5204-07 II ~ 50 ~ ~ 40~----~--~~--­ > ~ 8 16 12 20 24 28 4 Average Forward Current, ITIAV), Amperes Figure 19. Power dissipation vs. forward current, rectangular wave. 70 16 20 24 28 32 36 2N5204-07 z;: 60' 110 ~ ~ 12 DC 2N5204-07 . 8 Average Forward Current, ITIAV), Amperes Figura 20. Case temperatu're VB. forward current, rectangular wave. u ° 50 ~ > ~ 40 .: ..,0 '" Q. 'iii 30 til i5 .. I;; 20 30 CD ~ E ::> E u E ::> 10' E '" ~ Q. .. 'x .0;C ~ 00 36 Averaga Forward Current, ITIAV), Amperes Figure 21. Power dissipation vs. forward current, half wave sinusoid. 4 8 12 16 20 24 28 32 36 Average Forward Current, IT(AV), Amperes Figure 22. Case te, ""erature vs. forward current, half wave sinusoid. 10 1000 2N5204-07 2N5204-07 TJ =25°C ~ ~ :g 100 ~ E TJ =125°C ,1.0 " ,0.4 I;' ...« / l.'" If i iCD .-::: ~ ~ I Q. I:: '"'- 10 iii Ez;: ,CD CD 518 V • Eu , ::>0 .§.,; ::> U U- V V """""" ./ ~~ 0';04 I: "E '~" 0 .,4.0 t- 125°C 0 ~ I- 25°C ~ ~ ~ j 2 3 4 Maximum Forward Voltage Drop, VTM, Peak Volts Figure 23. Forward voltage vs. forward current. 5 6 2 , 0 .01 0.001 0.004 0.01 0.04 0.1 0.4 1.0 4.0 10 Time, t, Seconds Figure 24. Transient thermal impedance vs. time. 40 100 Symbol A A, B 6 i >Ii 5 u'" TJ = 125°C e c: .S! U II 0 !!! '"'" 4 (5 > . "E 3 ~ u. ~ E 2 :::I E - . I----" 'j( :::1! 2 5 ~ V c: ..,., .30 :::I . 1/ "c: .,,,, "0 Q.~ Elii .20 / =~ ....... Eu 10' 50 100 200 10 20 .40 g ~o ~-:: .10 ... ~ l/ g~ 500 1 K 2k o 5K 10K .0001 0-.J~;~K)n 10 100 1000 -1----+---_+---.1'1-----1 u '0; 0. I :::I ~ ~ 60~----~~~~~~~4_------~----4_----~ ~ is 100~----_+----_R, 80~----~ l00~--_\~~~~--~d_----.~----_+----_4----~ ~ '~" E ~ .1 140r---~----~---,----,-----r_--~--__, .L20 ~ ~----~----~----- 'j( .01 Maximum Case Temperature VS. Forward Current Maximum Power Dissipation VS. Forward Current 18or-----~----~----~~----~----_r----~ ~t: .001 Time, t, Seconds Forward Current, ITM, Peak Amperes 160 ~ ~ 140 V I 40~----~~~~~------~-----+------~----~ 801------1--t III ~ d·c 20 60 40 100 80 4OL----L~--L-~~~__~__~~--L---~ o 120 Average Forward Current, Amperes 20 40 60 80 100. 120 140 Average Forward Current, Amperes Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 140~~~~~~--~---r--~~--,_--~--~ 140'~--~----r---~----r_--_r----~--_r--~ 120~--_+----~--_+----~--_+--__+ ~ r-360~ ~ 100 ~ ~---I-+- l..........1-COr>d~ClII,IIl r:o Angle" .~ 80~--+---~--~-~~~~~~~_+--_+--~ :;o ~ 1E :::I u ° ~ 100 1---+-----'~~~~3Ioo.,~'40::--+--+--_+--__l ~ ., Q. 60'~--~----_+~~~~~~~--~--_+----~--~ 4O'r----r--~~~~---+----~---r--_4--~ E E ~ ..III 80~--_+----~----~--~~~~~~~~--4_--~ u 6O~--+--_4----+l--_I__+--lf__1__I_-I "f: :::1! 10 20 30 40 Average Forward Current, Amperes S20 50 60 70 80 4O~---ILO--~2LO----30LL--~40~L--5LO~--6LO--~~~~80 Average Forward Current, Amperes Inches Min. Symbol A A, Max. 5.775 6.265 6.850 7.500 .055 .075 .860 1.000 1.031 .. 1.063 .255 .400 2.50 .437 .650 .796 .827 1.675 .260 .291 .250 %-20 UNF-2A B t/>D E F J M N a t/>T Z t/>W Millimeters Min. Max. 146.69 159.13 173.99 190.50 1..40 1.91 21.84 25.40 26.19 27.00 6.48 10.16 63.50 11.10 16.51 20.24 21.01 42.55 6.60 7.39 6.36 Creep & Strike Distance • .50 in. min. (12.85 mm) . .10 in. min. (2.S4 mm). ** (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-S oz. (142 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of %-20 UNF·2A (coated) threads (ASA 81.1-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. Conforms to TO-94 Outline Features: • All diffused design • Low gate current f * For TO-83 Outline, see page 523. Applications: • Phase control • Power supplies • Motor control • Light ~!mmers • LOWVTM • Compression Bonded Encapsulation • Low Thermal Impedance Voltage 2N4361 2N4371 2N4362 2N4372 2N4363 2N4373 2N4364 2N4374 2N4366 2N4376 2N4366 2N4376 2N4367 2N4377 VDRM VRRM 100 100 200 200 400 400 600 800 800 1000 1000 1200 1200 1400 1400 VRSM IDRM IRRM 200 ( 300 500 700 950 10 10 1200 1450 1700 Blocking State Maximums 0 (TJ = 12soq Symbol Repetitive peak forward blocking voltage, V •........••...•... . •• . . • . . . • • . . Repetive peak reverse voltage ,'V •. . . . . .•. . . Non·repetitive transient peak reverse voltage, t~ msec, V .................... Forward leakage current, rnA peak . . . . . . . . . . Reverse leakage current, rnA peak ...•..••.• 600 ( > ~ Thermal and Mechanical Current Conducting State Maximums (TJ = 125°C) Symbol Symbol RMS forward current. A .......•...•.........•. Ave. forward current. A .....•.............•.••. One·half cycle surge current. AC!) 3 cycle surge current. A 0 .................. . 10 cycle surge current. AC!) .................• I't for fUSing (for times 8.3 ms) A'sec .......... . Forward voltage drop at ITM = 500AandTJ = 25°C.v Switching ITCrms) ITCav) 1T5M ITSM 1T5M I't ITM Min., Max. oper. junction temp .. °C .............. TJ Min .• Max. storage temp., °C T$'g Max. mounting torque, C!) in Ib .................. . Max. Thermal reslstance(i) Junction to case, °C/Watl ............. ReJc Case to sink, lubricated °C/Watt .... . . . . . . . . . .. Recs 110 70 1600 1250 1080 10,700 2.5 -40 to +125 -40 to +150 130 .28 .12 Gate Symbol Typical turn-oil time, IT = 50A TJ = 125°C. diR/d' =5 Alpsec, reapplied dvldt = 20V Ipsec linear to 0.8 VDRM, psec ....... Typ. turn·on-time, IT = l00A Vo = 1OOV, ).Isec ............... Min CritiC'. II rlv eft exponential to VORM T' 125 r.. V Jlsec CD .... Mm eft dt Il'ln rp!lt'tltlve A jJSf~C. 2N436S* 2N437S Maximum Parameters (T.J tq ton 100 4 75 C) Symbol Gr al VO IGT 12V ",A Gatl' volta~w '0 tr IgqE~r at VD 12V V . ............ VGT 250 3 Non-tnggennq gate voltage. TJ dvldt dt'dt 100 800 . 125 C. and rated VORM. V. . Peak forward gate current, A ..... Peak reverse gate voltage, V ...... Peak gate power. Watts .......... Average gate power. Watts ....... VGDM IGTM VGRM PGM PG(avl 015 4 5 15 Consult recommended mounting procedures. Applies for zero or negative gate bias . Per JEDEC RS-397, 5.2.2.1. With recommended gate drive. CD Higher dv/dt ratings available, consult factory. (i). Per JEDEC standard RS-397, 5.2.2.6. *2N4361 Series in TO-94 PKG. 2N4371 Series in TO-83 PKG. **Glass-to-metal seal package. (i) C!) C!) (i) 521 Maximum Forward Voltage VS. Forward Current 2 4 6 10 20 4060 100 200 400600lK 2K 4K6K 10K Forward Current, ITM, Peak Amperes Maximum Case Temperature VS. Forward Current Time in Seconds Maximum Power Dissipation VS. Forward Current 200~Tr~~n7~~~c--n~-n--~--~--~--~-r~~-' A 00 j Conduction ~Oo Angle, 120 Average Forward Current, Amperes Maximum Power DiSSipation VS. Forward Current u o ~ 60~--~--+---~---ri--r-t-ti--+--if--~--~r---~~ ;a. ~ 40r-~t----r-~H-~r;~r4~~~--;;--~---f---i---1 3:OJ u Average Forward Current, Amperes 522 Average Forward Current, Amperes Conforms to TO-83 Outline Conforms to TO-94 Outline Symbol A A, B q,D E F J M N Q q,T Z q,W Inches Min. 5.775 6.850 .055 .860 1.031 .255 2.50 .437 .796 Millimeters Max. Max. Min. 6.265 7.500 .075 1.000 1.063 .400 146.69 159.13 173.99 190.50 1-.40 1.91 21.84 25.40 26.19 27.00 6.48 10.16 63.50 11.10 16.51 20.24 21.01 42.55 7.39 6.60 6.35 .650 .827 1.675 .291 .260 .250 %-20 UNF-2A Min. A, Max. .070 L, L, M, .420 .180 .360 .470 .190 .235 .080 .060 .180 'h-20 UNF-2A q,W Max. Min. 1.810 .110 .650 .520 C L q,T, q,T, Z, Features: • Center fired, di/namic gate • All diffused design • LowVTM • Compression Bonded Encapsulation • Low Thermal Impedance • High Surge Current Capability • Low gate current • Lifetime Guarantee Millimeters Inches Symbol 45.97 2.79 16.51 13.21 1.78 10.67 4.57 9.14 4.83 1.52 4.57 11.94 5.97 2.03 Applications: • Phase control. Motor control • Power supplies. Light dimmers Approx. Weight-4 oz. (114 g). 1. Basic dimensions of TO-94 and TO-83 are same except as noted. Creep & Strike Distance. T500-.50 in. min. (12.85 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-5 oz. (142 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of %-20 UNF-2A (coated) threads (ASA B1.1-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. Ordering Information Type I Voltaqe I Current I Turn off Code and Code IT(av) Code tq ,usee (A) Code * for 600 volts and below, see T510 " *·For lower I GT consult factory. 07 08 09 10 11 12 13 14 15 40 40 100 (typ) Type I 1a 80 10 ~J ~ I a a .. 100. 'fI() Example Obtain optimum device performance for your application by selecting proper Order Code. T IGT' (~; (V) 700 800 900 1000 1100 1200 1300 1400 1500 I edds I ~.'"~ VRRM 1600 -; Gdte Current VORM , .. Case Code r .• .',', .. ":. TO-94 AQ TO-83 AA 4 ' Type T500 rated at BOA average with VORM = 1000 volts IGT= 150 rna, and standard flexible lead order as: Voltage 8 3!t"'t",,'tNi" ,SIM1"""m 823 Voltage Blocking State MaximumsiCD (TJ=125°C) Symbol Repetitive peak lorward blocking voltage, V ...........••...... Repetitive peak reverse voltage ,V. VORM VRRM 700 700 800 800 900 900 1000 1000 1100 1100 1200 1200 1300 1300 1400 1400 1500 1500 VRSM IORM IRRM 850 950 1100 1200 1300 10 10 1450 1550 1700 1800 Non-repetitive transient peak reverse voltage, t<5.0 msec,V........• Forward leakage current, mA peak •• Reverse leakage current, mA peak .. • • ... Current Conducting State Maximums (TJ=125°C) Symbol RMS lorward current, A ......•.•........••..... Ave. lorward current, A ••..••...........•...... One-half cycle surge current@, A 3 cycle surge current@, A ....•••...•••....... 10 cycle surge current@, A ......•...•.......• I't lor lusing (lor times~8.3 ms) A' sec...........• Forward voltage drop at ITM=500A and TJ=25°C, V. IT(rms) IT(av) ITSM ITSM ITSM Switching TSOO __ 40 TSOO __ 80 63 40 1200 950 800 6000 3.7 l"t VTM 125 80 1800 1300 1170 13,500 2.2 Gate Thermal and Mechanical (TJ=25°C) Symbol Typical turn-off time, IT=50A TJ=125°C, diR/dt=5 A/p.sec, reapplied dv/dt=20V/p.sec linear to 0.8 VORM, p.sec.. . .. . .. .. . .. • Typ. turn-on-time, IT=100A VO=100V®,p.sec ............... Min. critical dv/dt, exponential to VORM TJ=125°C, V/p.sec@@. .... Min. di/dt non-repetitive(j)00 A/p.sec Symbol Maximum Parameters ~=2rq ~mb~ -40 to +125 -40to+150 Gate current to trigger at Vo =12V,mA ••.....••..•.• ·• IGT 130 Gate voltage to trigger at Vo =12V, V .............•.•. Non-triggering gate voltage, TJ =125°C, and rated VORM, V. Peak lorward gate curre'nt, A •.• Peak reverse gate voltage, V ... Peak gate power, Watts ..••.•. Average gate power, Watts ...• Min., Max. oper. junction tq 100 ton dv/dt di/dt 4 300 800 temp., °C. . • . . • . . . . . • . Min., Max. storage temp., °C Max. mounting torque, in Ib. E ~ .15 C:I ;:>, ... . .20 UI u, 500 lK 21< 5K 10K .1 o. .0001 .001 Time.t, Seconds .01 .1 10 100 Maximum Case Temperature VS, Forward Current Maximum Power Dissipation VS, Forward Current 130 100 .180· 120 :'. f.) 0 !::I 1 . 110 E . m ! , I- ~ 100 • E ::I E f.) . 40 'j( ~ 90 20 ~~'< 0 <1 " 0 10 20 30 40 50 0 10 20 40 30 50 Average Forward Current, Amperes Average Forward Current, Amperes Maximum Power Dissipation VS, Forward Current Maximum Case Temperature VS, Forward Current 180, T6oo __ 80 1 '50 .180· .~ i 120 o 0= 1 90 E ::I E 60' 'j( to ~ 30. o 100 Average Forward Current, Amperes o 20 40 60 Average Forward Current, Amperes 80 100 525 Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current Jfft~ng{t~~ 130 o 20 40 Average Forward Current, Amperes Maximum Case Temperature VS. Forward Current Average Forward Current, Amperes 526 60 80 20 40 Average Forward Current, Amperes Maximum Power Dissipation Vs. Forward Current Average Forward Current, Amperes 60 80 Conforms to TO-94 Outline Symbol A At B .pO E F J M N Inches Min. 5.775 6.850 .055 .860 1.031 .255 2.50 .437 .796 Q .pT Z q,W Max. 6.265 7.500 .075 1.000 1.063 .400 .650 .827 1.675 .291 .260 .250 11..-20 UNF-2A Millimeters Max. Min. 146.69 159.13 173.99 190.50 1.91 1-.40 21.84 25.40 27.00 26.19 6.48 10.16 63.50 11.10 16.51 20.24 21.01 42.55 7.39 6.60 6.35 Creep & Strike Distance. T500-.50 in. min. (12.85 mm). T510-.10 in. min. (2.54 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Appro •. Weight-5 oz. (142 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of %·20 UNF-2A (coated) threads (ASA B1.1·1960). 4. Dimension "J" denotes seated height with leads bent at right angles. Symbol Inches Min. A, Max. 1.810 .110 .650 .520 C .070 L L, L, M, q,T, q,T, Zt q,W .420 .1BO .360 .470 .190 .235 .060 .OBO .1BO 11..-20 UNF-2A Millimeters Min. Max. 45.97 1.78 2.79 16.51 10.67 13.21 4.57 9.14 11.94 4.B3 5.97 1.52 2.03 4.57 Approx. Weight-4 oz. (114 g) . 1. Basic dimensions of TO-94 and TO-83 Features: • Center fired di/namic gate • All diffused design • LowVTM • Compression Bonded Encapsulation' • Hermetic glass to metal seal • Low gate current • Lifetime Guarantee Applications: • Phase control • Power supplies • Light dimmers • Motor control are same except as noted. Ordering Information *for 700 volts and above see T500 Example Obtain optimum device performance for your application by selecting proper Order Code. Type T51 0 rated at 80A average with V ORM = 300 volts I GT =70ma. and standard flexible lead order as: 527 Voltage Sumbol Blocking Stata Maximurws (1) IT· '" , :i5'Cl . V DRM V RRM Repetitive peak forward blockinCi voltage. V Repetitive peak reverse vollag. .V Non-repetitive transient peak reverse voltage. t:S; 5.0 msec. V Forward leakagecurrent. rnA peak Reverse leakage current, rnA peak 50 100 100 200 200 300 300 100 200 300 400 50 V RSM IDRM IRRM ~ ~ 400 400 600 500 600 600 600 600 700 ~ ~ 10 10 Current Conducting Stata Maximums (TJ = 125'C) RMS forward current, A Ave. forward current, A One-half cycle surge current@.A 3 cycle surge current@.A 10 cycle surge current@.A 12t for fusing (for times ~ 8.3 ms) A2 sec. Forward voltage drop at ITM 500A and TJ = Symbol 125 80 50 1200 960 1800 1250 1080 10.700 1.8 600 12t. 6000 2.6 VTM Switching T510 _ _ 80 80 IT(rms) IT(av) ITSM ITSM ITSM = 26'C. V T610 _ _ 60 Gate Symbol (TJ - 25'C) Msxlmum Parametars (TJ = 26'C) = Typical turn-off time, IT 50A TJ 125'C, diR/dt = 5 A/p.sec, reapplied dv/di = 20V/ p.sec linear to 0.8 V DR M. P. sec Typ. turn-on-time, IT 100A V D = l00V@, p.sec Min. critical dv/dt, exponential to V DRM Tu 125·C. V/p.sec~~ Min. di/dt non,(soetitive. AI p.sec Q) 'E 2!'''~'--1- ,~,...j"'''':-+''-14-<''i-' ! ; --I' _:J ~~~, :~~~l;'~' 1...: :.~~ in •.: l;;T..~i ;,. ~ "~11!ilit; ... - -r.~..<.1""'~i1·-·· I' 'i:P ..j.o~,.j~1 ~B?j -r-"'r' I' ,-.1'1 I,:: !Jti;:;~i:;1r~i~~~;':~tl1lIili 01---- 2 5 10 2.0 Forward Current, IrM. Peak Amperes 828 50 100 200 -500 IK 2K Tlme,t_ Maximum C_ Temperature VS. Forwerd Current 13O{II.~mmmm~~~ 120 ~ 110 l,oOP'#ft#HM~~~~~~~~+f+H ~ 90~P#lli4H+9H4W¥{~~~~ 10 20 30 40 50 Average Forwerd Current. Amperes Maximum Case Temperature VS. Forward Currant Maximum Power Dissipation VS. Forward Current Average Forwara Currant. Amparall 829 Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 130 120 : t--J"'--j I?}J (TiJ . 120 • o t--J60--j 100 ~ III !-..L-cufOl1ull,on t) T510_50 li Anqle6 (TiJ •. !-..L-conducllOn Angle" ~ 110 r:0 80 ~ .~ " ".0; f . !IOO III i5 60 i 40 ." 20 I- m90 Q. ~ E E 80 ·K DC 20 40 60 ::E 80 0 0 140 20 40 80 60 Average Forward Current, Amperes Average Forward Current, Amperes Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 150 120 20 40 60 80 Average Forward Current, Amperes 530 100 120 140 140 160 Average Forward Current, Amperes 160 Millimeters Inches Symbol A A, B q,D E F J M N Min. Max. Min. 7.750 7.750 .063 8.100 8.100 .172 196.85 205.74 196.85 205.74 1.60 4.37 .980 1.212 .250 1.090 1.250 .630 24.89 30.78 6.35 27.69 31.75 16.00 3.25 .530 1.040 .755 1.077 82.55 13.46 26.42 19.18 27.36 Q q,T .260 .340 Z 2.250 .290 Max. 6.60 8.64 r----' \\ ; I 57.15 7.37 q,W %-16 UNF-2A Creep & Strike Distance: .69 in. min. (17.60 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (227 g). 1. Complete threads to extend to within 2)(, threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of %-16 UNF-2A (coated) threads (ASA Bl.I-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. Features: • Center fired dilnamic gate • All diffused design -. Guaranteed dvldt (300 vips) • Low gate current • LOWVTM • Low thermal Impedance • High surge current capability • Compression Bonded Encapsulation Lifetime Guarantee • ot III CD CD CD CD Voltage CD Blocking State Maximums (TJ = 125°C) CO) Repetitive peak forward blocking voltage, V ,. Repetitive peak reverse voltage, V ..... , ..... Non-repetitive transient peak reverse voltage, t!:'5.0 msec,.V ..............••........... Forward leakage current, mA peak .......... Reverse leakage current, mA peak ..•....... C"l Z Z 10 CD CD CO) Z " 10 10 CD CD CD C"l CO) N N Z Z GI CD CD C"l Z • • • • .. GI GI N GI CO) M M N N 0 CD CD Z Z CO) GI CIO Z Z VDRM VRRM 50 200 200 300 400 500 600 700 800 50 100 200 300 400 500 600 700 800 VRSM IORM IRRM N N N ot CO) N N Phase Control Power Supplies Motor Control Light Dimmers CD Symbol N eoo 900 III GI GI CIO C"l N N N Z 150 200 300 400 500 600 720 850 960 1080 25 ~ 25 ~ Current CD Z 1000 1000 1200 1200 1200 1320 ... ) Thermal and Mechanical Conducting State Maximums (TJ = 125°C) Symbol RMS forward Current, A ..........•.... Ave. forward current. A ..........•...•. One-half cycle surge current, A0 ....... IT,rms) IT ,av) ITSM I't for fusing (for times 8.3)A' sec .•.... Forward voltage drop at ITM = 625A and TJ = 25°C, V ........................ Pt Symbol 275 175 4500 84,000 Min., Max. oper, junction temp.,oC .....•..•...•. Min., Max. storage temp.,oC Max. mounting torque, in lb. CD Max. Thermal resistance CD Junction to case, 1.55 VTM °C/Watt ............... Switching TJ Tstg -40 to+125 -40 to + 150 360 ReJc .13 RecS .075 Case to sink, lubricated, CD °C/Watt ............... Gate Maximum Parameters Symbol Typical turn-off time, IT = 150A TJ = 125°C, dirRI dt = 12.5A/JJsec, reapplied dv/dt = 20V/"sec linear to 0.8 VORM, )Jsec . ... .. . . . . .. . . . Typ. turn-an-time, IT = l00A VD = 1OOVCD, "sec.. . .. . .. . .. .. . . Min. critical dv/dt, exponential to VORM TJ = 125°C, V/"sec00.... Min. di/dt non-repetitive, A/,usecCDCD(j)............. Applications: (TJ = 25°C) tq ton 100 5 dv/dt 300 di/dt 800 Gate current to trigger at Vo = 12V, mA Gate voltage to triggeratVO = 12V,V Non-triggering gate voltage,TJ = 125°C, and rated VORM,V .... Peak forward gate current. A ..•.. Peak reverse gate voltage, V ....•. Peak gate power, Watts .... , .••.. Average gate power, Watts ...••.. Symbol IGT VGT VGOM IGTM VGRM PGM PG,av) 150 3 0.15 4 5 15 3 CD Consult recommended mounting procedures. o Applies for zero or negative gate bias. o Per JEDEC RS-397, 5.2.2.1. o With recommended gate drive. o Higher dv/dt ratings available, consult factory. CD Per JEDEC standard RS-397, 5.2.2.6. S31 Maximum Forward Voltage VS. Forward Current Transient Thermal Impedance VS. Time s.o~ 20 !!l 4.5~ lB :i 4.0~ .16 ~ ~ II >ri a.5~ ~ .12 := E ~ @ '; a.o~ ~. 10 ~ 2.5 '0 TJ" 126·C .14 .OB .. ! ~ 1.5~ iii !: " P .~ I.O~ ~ .06 .04 -",!,.-..--: 0 ... · __ E o Forward Current, ITM, Peak Amperes .!l I aoo i ~ 200 Je ~ 75 100 I DC o so ISO 100 . Average Forward Current, Amperes 200 100 180~ .~ .oonductio,n anQle o 10 .1 Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 65 .01 .001 0001 Time,t, Seconds JO 2150 150 100 SO Average Forward Current, Amperes 300 200 Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current ~ 400 ~ 60 c· (.) .2 0 1 !!::l :; ; 30 Q ..e ... Q. Je 200 I- (.) ::l .e 'M 100 . .,.conduction anQle. :E 0 0 Average Forward Current, Amperes 532 150 100 ISO Average Forward Current, Amperes 200 Symbol A A, B D E F J M N Inches Min. 7.750 7.750 .063 .980 1.212 .250 3.25 .530 1.040 Max. 8.100 8.100 .172 1.090 1.250 .630 .755 1.077 2.250 .290 Q T Z W Conforms to TO-93 Outline Features: • Center fired di/namic gate • All diffused design • Low gate current • LowVTM • Low Thermal Impedance • High surge current capability • Compression Bonded Encapsulation • Lifetime Guarantee * for lower IGT consult factory .260 .340 %-16 UNF-2A , Millimeters Max. Min. 196.85 205.74 196.85 205.74 1.60 4.37 27.69 24.89 30.78 31.75 6.35 16.00 82.55 13.46 19.18 27.36 26.42 57.15 7.37 6.60 8.64 Creep & Stnke Distance: T600-.69 in. min. (17.60 mm). T610-.12 in. min. (3.05 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (227 g). 1. Complete threads to extend to within 21> threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of %-16 UNF·2A (coated) threads (ASA 81.1-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. T600 T610 Ceramic Package Pt (case rupture) rating: 20 x 10· A'sec. Applications: • Phase Control • Motor Control • Power Supplies • Welders • Light Dimmers Example Obtain optimum device performance for your application by selecting proper Order Code. _ ,iJii ITre _ 0 Type T600 rated at 175A average with VDRM = 1000V, IGT= 150 ma, and standard flexible lead-order as: ._"m.Fii,."'.• ~ 1 I U 1 _ 8 I '''"C.''••••''''''"•••• 0 I 4 I 8 ~S33 Voltage ----------------,@.~-------------------------------------,~---------------------------------Blocking State Maximums Symbol J=125°C) Repetitive peak forward blocking voltage. V .•••. Repetitive peak reverse voltage~ V ..•••••.... ,Non-repetitive transient peak reverse voltage. t ~5.0 msec. V ........................ . Forward leakage current rnA peak •••••••..... Reverse leakage current. rnA peak .•••••••.•... T610 T600 VORM VRRM 100 100 200 200 300 300 400 400 500 500 600 600 700 700 80d 800 900 900 1000 1000 1100 1100 1200 1200 1300 1300 1400 1400 1600 1600 VRSM IORM IRRM 200 300 400 500 600 700 • 850 950 1100 25 25 1200 1300 1450 1650 1700 1800 •• • • Current Conducting Stata Maximums {TJ=125°C} RMS forward current A ••.••••••...•••. Ave. forward current. A ..•••••••....••• One-half cycle surge current@. A ....••••• 3 cycle surge current@, A ....••..••.• 10 cycle surge current@, A ...•.•••••• l"t for fusing {fortimes>8.3 ms} A" sec...•• Forward voltage drop at ITM=625A and TJ=25°C. V .••••••••..•.••...•.•.• Symbol T600 __ 13 T610 __ 13 T600 __ 15 T610 __ 15 T600 __ 18 T610 __ 18 IT(rms} IT(av} ITSM ITSM ITSM l"t 200 125 3300 2400 2000 45,000 235 150 4000 3000 2400 66,000 275 175 5500 3900 3400 120,000 2.05 1.8 1.55 VTM Switching Gate (TJ=25°C) Maximum Parameters Typical turn-off time, IT=150A TJ=125°C, diR/dt=12:5 A/p.sec, reapplied dv/dt=20V/J.&sec linear' to 0.8 VORM, J.&sec •••• : ••••••• Typ •.turn-on-time, IT=l OOA . VO=100V@.p.sec ............. .v1in. critical dv/dt. exponential to VORM TJ=125°C. V/p.sec(V I(£) .•• Min. di/dl non-repetitive. A/J.&sec 0200 150 0.:"- co u "s .2- !? is E E =: o " E ... j (!. ::J .... 100 50 E .~ ~ ~ 40 60 80 100 160 Average Forwar.d Current. iT CAY). Amperes Average Forward Current. iT CAY). Amperes Meximum Case Temperatura VS. Forward Current 140 300 i' i 250 200 o..~ C 150 o ·s 0. .~ is 100 l" E 50 ::J E 'j( III o ::!: 50 100 150 200 50 100 150 200 835 Maximum Case Temperature VS. Forward Current Maximum Power Diuipation VS. Forward Current ~Effm~a:ail 300 !!! -250 ~ ~ 200 ,.~ ..... C 150 0 's ,2- u '"'" 100 C 0 ~ to ;" . c. ...~ 'E .CD lCD E ';( U :::ii E 50 " . IV 40 80 160 120 0 0 200 '40 120 80 160 200 160 200 • 250 300 Average Forward Current. IT (Ayj. Amperes Average Forward" Current. IT (AY). Amperes ' Maximum Power Diuipation VS~ Forward Current Mllximum Case ,Temperature VS. Forward Current 300 UI 250 t· ..k 200 ,.~ ~ C 150 ,2 liiQ. 'in u 0 UI C 100 ''; 5 to c. to 1ii ~ ... 0 E E ."E ~ . ';(,,- CD In IV u :::ii 0 40 80 Average Forward Current. IT(AII). 160 120 100 ,0 0 150 40 80 120 Average Forward Current, IT lAY). Amperes Maximum Power Diuipation VS. Forward Current i Maximum Case Temperature VS. Forward Current 50 200 Ampe~es, 400 140 836 50 200 ,250 o 50 100 . 150 200 Symbol A A, B D E F J M N Q T Z W Inches Min. Max. 9.76 10.00 10.18 10.42 .172 .063 1'.490 1.620 1.750 .430 .810 4.000 .530 .755 1:04 1.08 3.100 .330 .350 .440 %.-.16 UNF.-2A Millimeters Min. Max. 247.90 254.00 258.57 264.67 1.60 4.37 37.85 41.15 44.45 10.92 20.57 101.60 13.46 19.18 27.43 26.42 78.74 . 8.38 8.89 11.18 Creep Distance-l.76 in. min. (44.91 mm). Strike Distance- .81 in. min. (20.70 mm). (In accordance with r4 EMA standards.)' Finish-Nickel Plate. Approx. Weight-16 oz. (454 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminals is undefined. . 3. Pitch di.ameter of *-16 UNF-2A (coated) threads (ASA 81.1-1960). 4. Dimension "J" denotes seated height . with leads bent at right angles. i Features: • Center fired di/namic gate • All diffused design • LowTTM • Compression Bonded Encapsulation • Guaranteed dv/dt (300 vi ,us) • l'Iigh surge capability • Long'creep and strike· • Westinghouse Lifetime Guarantee' Package Ilt (case rupture) rating: . 1 5 x 10 6 A 2 sec. Applications: • • • '. Phase Control Welding Power Supplies Motor Control Ordering Information I Type Voltage VDRM and VRRM (V) Code .T700 ~ , 100 200 400 600 800 1000 1200 1300 1400 1500 1600 1700 1800 2000 2200 Current I I Code I T(av) (A) Code 01 Q2 04 06 08 10 12 250 26 300 30 350 36 Turn off tq p'sec 150 .(typical) I Gate current Code IGT (ma) Code 0 150 4 * Leads I Case Code BY T70 - 13 14 16 16 17 18 20 22 .• For lower IGT consult factory Example Obtain optimum device performance for your application by selecting proper Order Code. Type T700 rated at 350 A ave~age with VDRM = 1000V. IGT = 150 rna, and standard flexible lead-order as: 537 Voltage CD Blocking State Maximums ITJ =125·C} Repetitive peak forward blocking voltage ,V Repetitive peak reverse voltage ,V ......... . Non-repetitive transient peak reverse voltage, 5.0 msec,V ................•....... Symbol VORM t.:s 1000 1200 1300 1400 1500 1600 1700 1800 2000 2200 1000 1200 1300 1400 1500 1600 1700 1800 2000 2200 VRRM 100 100 200 200 400 400 600 600 800 800 VRSM 200 300 500 700 950 1200 1450 1550 1700 1800 1900 2050 2150 2400 2600 Forward leakage current, mA peak ......... . Reverse leakage current, mA peak .......... . IORM I RRM 1~<--------------------------30------------------------+)1 < 30 ------------------------+) Current Conducting State Maximums (TJ == 125·C) RMS forward current, A ........ . Ave. forward current, A ........ . One-half cycle surge current®, A .. 3 cycle surge current®, A ..... . 10 cycle surge current®, A .... . 12 t for fusing (for times> 8.3 ms) A? sec. Forward voltage drop at ITM == 3000 and TJ == 25·C, V ......... . Symbol T700 __ 26 T700 __ 30 IT(rms) I nav ) I TSM ITSM I TSM -400 250 7000 5040 4340 470 300 8400 6050 5200 550 350 10,000 7200 6200 205,000 295,000 416,000 3.30 2.75 2.15 \2t. V TM Switching (TJ == 25·C) Typical turn-off time. IT == 250A, TJ == 125·C, diRldt == 25 A/llsec, reapplied dvldt == 20V/Ilsec linear to 0.8 VORM,l'sec ... Typ. turn-an-time, IT == 100A VO== 100Ve!), Ilsec ............... . Min. critical dv/d\, exponential to VORM' T J == 125·C, V Illsec0 m . .......... . Min. dildt non-repetitive, A/llsec CDCD0 .............. . Thermal and Mechanical Symbol Symbol tq 150 ton 7 dvldt 300 di/dt 800 Min., Max. oper. junction temp .. °C ......... . Min" Max. storage temp .. ·C .............. . Max. mounting torque. In lb. CD lubricated .... . TJ Tstg Gate Maximum Parameters (T J == 25·C) Gate current to trigger at Vo == 12V, mA Gate voltage to trigger at Vo == 12V, V ... Non-triggering gate voltage, TJ == 125°C, and rated VORM ' V . '.............. . Peak forward gate current, A .......... . Peak reverse gate voltage, V ..........• Peak gate power, Watts .•............. Average gate power, Watts ........... . Per JEOEC standard RS-397, 5.2.2.6. 360 .10 .05 Symbol IGT V GT VGOM I GTM VGRM PGM PG(av) Transient Thermal Impedance VS. Time Maximum Forward Voltage VS. Forward Current .1 3.5 c::::==="" 10K Forward Current, ITM' Amperes 538 -40 to +125 -40 to +150 Thermal resistance CD Junction to case. ·C/Watt ............ . Case to sink. lubricated. ·C/Watt. ........ . CD Consult recommended mounting procedures. CD Applies for zero or negative gate bias. CD Per JEOEC RS397, 5.2.2.1. CD With recommended gate drive. 0. Higher dvldt ratings available, consult factory. o T700 __ 36 Time, t. Seconds 150 3 0.15 4 5 16 3 Maximum Case Temperature VS. Forward Current 125 u o Average Forward Current, AmperE.'s Maximum Case Temperature VS. Forward Current u o ~ ::l 1ii ~ !'" . u"' Average Forward Current. Amperes Maximum Case Temperature VS. Forward Current Average Forward Current, Amperes Average Forward Current. Amperes S39 Maximum Power Dissipation Vs, Forward Current Average Forward Current, Amperes Average Forward Current, Amperes Maximum Case Temperature VS. Forward Current 125~~'~-n~~~Tr~~r--'- ~ .ij$ : -O-'~:~~~ • ~, " r::: ~ i-.j-.,..!I<-~.i'...' .~'.ol:r~~:~: 'l ~ilLUj ,: :'! ::!j '~$'" u Average Forward Current, Amperes 540 , 1 , ~ ~ "+~ ~ .. 'f· >.o._ .... '-+ ...... ~ ""'r t - +") Inches Symbol cpO cpO, cpO, Millimeters Min. Max. 1.610 .745 1.420 1.650 .755 1.460 40.89 18.92 36.07 41.91 19.18 37.08 .500 .135 .072 .560 .145 .082 12.70 3.43 1.83 14.22 3.68 2.08 196.85 .76 215.90 H cpJ J, L N 7.75 .030 8.50 Min. Max. Creep Oistance-.34 in. min. (8.64 mm). Strike Oistance-.52 in. min. (13.21 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. We,ght-2.3 oz. (66 g). 1. DimensIOn "H" is clamped dimension. T52 Outline Package I2t (case rupture) Voltage rating: Blocking State Maximums @1(TJ=125°C) Symbol Repetitive peak forward blocking voltage, V . ... . Repetitive peak reverse voltage ,V .......... . Non-repetitive transient peak reverse voltage, t <5.0 msec, V .......................... . Forward leakage current, rnA peak ........... . Reverse leakage current, rnA peak ............ . VORM VRRM 100 100 VRSM IORM IRRM 200 .... RMS forward current, A ........•..•.... Ave. forward current. A ........ , ...... . One-half cycle surge current@, A ........ . 3 cycle surge current@, A ....•.....•. 10 cycle surge current@, A .....•..... 1'1 for fusing (for times>8.3 ms) A' sec..... Forward voltage drop at ITM = 50DA and TJ=25°C,V ....... ............... . x 106 A 2 sec. 200 200 300 300 400 400 500 500 600 600 700 700 800 800 900 900 1000 1000 1100 1100 1200 1200 1300 1300 1400 1400 1500 1500 300 400 500 600 700 850 950 1100 25 25 1200 1300 1450 1550 1700 1800 • • Switching Current Conducting State Maximums (TJ=125°C) 20 Symbol (TJ=25°C) T520 --13 IT(rms) 200 125 1600 1250 1080 IT(av) ITSM ITSM ITSM I't 10,700 2.2 VTM Gate 8.3 ms) .A2 sec. -, Forward voltage drop at ITM = 825A and TJ = 25°C, V ..•...• ',' . 3400 45,000 64,400 120,000 2.6 2.05 1.55 1l! Typ. turn-an-time, l't = 100A VO= 100V(i), p.sec ................ . M in. critical dv / dt, exponen~ial to VORM ' TJ = 125·C, V/p.sec@(j):......•..... Min. di/ dt, non-repetitive. ,A/p,sec (j),@,(i) .............. . :::!i tq 100 ton 5 dv/dt 300 di/dt 800 >" Forward Voltage vs. Forward Current 3.5 II' 3.0 2.5 f T62a._16 L.o' 1.5 """ 15 I"" 1.0 Symbol Gate current'to trigger at Vo = 12V, mA . 'Gate voltage to trigger at Vo = 12V. V ... Non-triggering gate voltage, TJ = 125·C, and rated VORM ' V ..•......•....•. Peak forward gate current, A .......... . Peak reverse gate voltage, V .......... . Peak gate power, Watts .............. . Average gate power, Watts ........... . Thermal and Mechanical °c ..... . Min .. Max. storage temp., ·C .......•... Min., Max. mounting force, Ib.G) •..•.•.. Thermal resistance with double sided cooling G) Junction to case, ·C/Watt ...•..... Case to sink. lubricated. DC/Watt •.•... 0.5 IGT VGT 150 3 VGOM IGTM VGRM PGM PG(av) 0.15 4 .~ o ~ 1 2 5 10 20 50 100 200 500 1K 2K Forward Current, ITM • Peak Amperes 5 16 3 Transient Thermal Imp8dance VS. Time .10 § Symbol TJ Tstg --40 to +125 -40 to +150 1000 to 1400 r- $I .08 -I- I - :I '") ReJC Recs Consultlrecommended mounting procedures. Applies for ,ero or negative gate bias. Per JEOEC RS-397. 6.2.2.1. . A ...••..•• 3 cycle surge current@. A .........••• 10 cycle surge currenta>. A ..••••••••• l't for fusing (for times>B.3 ms) A' sec ...• Forward voltage drop at ITM=625A and TJ=25·C, V ••.••..••••.•....•••.•• Symbol T626--26 T626--30 T625--40 IT(rms) IT(av) ITSM ITSM ITSM l't 390 250 2BOO 2000 1700 32,500 470 300 3600 2600 2250 54,000 625 400 5000 3500 3000 100,000 2.60 2.05 1.55 VTM Gate Switching (TJ=25·C) Symbol Typical turn-off time. IT=150A TJ=150·C. diR/dt=12.5 A/J.'Sec. reapplied dv/dt=20V/JIosec linear to O.B VORM, J.'Sec. • • . . . . • • . • .. tq Typ. turn-on-time. IT=100A VO=500V@.l'Sec ....••••..•••. ton ~Min. critical dv/dt, exponential to VORM TJ=150·C, V/JIosec00 .•• dv/dt Min.'di/dt repetitive, A/IJ.sec CD CD 0 .. , .... di/dt Min. di/dt non-repetitive. A/psec CD CD 0 di/dt CD Thermal and Mechanical Maximum Parameters (TJ= 25·C) 150 3 300 200 800 Symbol Symbol Gate currentto trigger at Vo =12V, rnA IGT 150 Min. Gate Current to trigge. at VO=12V, rnA ...•••••......•••.. IGT(min) 25 Gate voltage to trigger at VO=12V, V. VGT 3 Non-triggering gate voltage, TJ 0.25 =150·C, and rated VORM, V .•.• VGOM Peak forward gate current, A ..••••. IGTM 4 Peak reverse gate voltage. V ...•••• VGRM 5 Peak gate power. Watts ...•.••.••• PGM 16 Average gate power. Watts .••••••• PG(av) 3 Min .. Max. oper. junction temp., ·C .......••••.• TJ -40to+150 Min .. Max. storage temp.,·C Tstg -40to+150 Min., Max. Mounting Force, Ib(D .. 1000 to 1400 Thermal resistance with double sided cooling(D Junction to case, ·C/Watt .•.....••••••• R8JC .08 Case to sink. lubricated. CD ·C/Watt .............. R8CS .02 Consult recommended mounting procedures. o Applies for zero or negative gate bias. o Per JEOEC RS-397. 5.2.2.1. CD With recommended gate drive. Higher dv/dt ratings available. consult factory. ,0 Per JEDEC standard RS-397, 5.2.2.6. o Maximum Forward Voltage VS. Forward Current TranSient Thermal Impedance VS. Time 10· 09 60 5 ~ '0 > >i 50 g >: 1 tl c 40 g> of' 06 05 8. '" 04 iii <::: 03 ~.:=. 02 .E ~ 20 E 1;' ,E E ~ ..," g .g 30 'E ~ 07 .§ ~ g 08 gi 10 01 ,01 Forward Current. ITM. Peak Amperes S48 Time. t. Seconds 10 100 Maximum Casa Temperature VS. Forward Current 150 140 , ~ ~ l!... 120 , , 90 80 J 0-1~;~onl: ~ 80 " 120 1800 60 90 I I J I 120 160 200 240 30 40 J '\ I"l'. ~ \ \ 1\ '" ~ ~ i\. 0 \ 0 '\ 0 I\. "0 \ 100 J , I\. ~ ~ i'.. A.- '\ 110 T625-2& 720 ~-t---1I---t---t--+-t--+--+--+--+--f 1200 f---+-+--+--+-+- 90 0 -M~i--"o~--I T625--25 C": ~ ~ \ ~~~ 130 Maximum Power Dissipation VS. Forward Current 800r-~-r~~~-r~--~'--r~--~'-~-' 160~+--+""'7I': 80~~"~~;--+--~;--+-'r-;--+--~;--i J 40 280 ~ 140 130 120 u o T625-30 "~ ~ ~ t:-.. ~ ~ I" t': ~ , 1\ \ I' i\., "r'\, ~ ~ 120 720 J 0...J=~H)nt.: "- ~ 'I\. \. "\ 60 0 _I 160 J A.--- ~ "'- '- ~ ..... ~ I 80 I J ,, I\. 300 40 200 240 280 800r-~~~-r~~~-,~r-~'-'--r~~-' ~~ 110 160 Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 150 120 80 Average Forward Current, Amperes Average Forward Current, Amperes 90 0 I 200 , T625-30 +-+--~-r-t--+--r-t--+--r--r1800 ~+-+--11-t-~-+--t-+-+--tr-t--t1200 r+-~Y 640 560 480 ~:j~:~::~::t::t-~30~0~~~~~~~::t::t::~~~ 400~ 320~+-~-+~r-~~~~~t-+--r-+~r-+-;--i ~ 240t-+-+-~~~~~~+-~-+-4--r-+-+-~-t ~ f' J J 1200 1800 1 240 280 I 320 40 80 120 160 200 240 Average Forward Current, Amperes Average Forward Current, Amperes Maximum Case Temparature VS. Forward Current Maximum Power Dissipation VS. Forward Current 280 320 160r-~--~--'---~--~~--~--'---~-' T625-40 u l00~--+---ir--~~~~~~~---r---r---+--~ o ~ ~ . ~ ! 5l ~ 80~--+---+-\-+-~rt-~~~~~~---r---+--~ 60 I---+--OL-__~__~_L~__&-__~_L~~_L___L__~__~ o 60 120 180 240 300 360 420 480 540 600 Average Forward Current, Amperes 60 120 180 240 300 360 420 480 540 600 Average Forward Current, Amperes 549 Maximum Power Dissipation Vs. Forward Current Maximum Case Temperature VS. Forward Current 150 ~~~ ~ ~~ ~~ 140 ~t::: s: , I' 130 i\ ~ ~ ~ o 100 ~ 90 ~ 80 ;; c- 3l ~ i\ "\~ 110 ~ ~b- , i\ ,r\ r" 120 u T625J5 I I I I I 40 80 , ~ f" ~ ~~ c· .S! ;; c·u), i"oo... ""[\"i\ '" ~ I\. ~ a l-L...:i=~K!fI :.... ~ ...... i"oo... II> :::. :J::'" "- ," II> 400 ~ 300 0 lii 1'0.. ~ 0 0.. ~. E ~ 300 1600 90 0 1200 1800 2700 DC I I I I I I I I II I 120 160 200 240 280 320 360 400 "E 'j( ::!:'" 40 w~ ~::-.. I 40..... ~ ~, \ ~ 80 r\. , ", \ j\\ \ 90 0 31)0 I o 40 I I I Bfo _ 240 280 320 360 400 l--J,....i=~D'I - ~ .; 0 .~ .!II 400 ! 300 0 "\ "O"~"" ~" ~ 500 c.;; i'." "- 9110 l~OO I II> .... lr ; rr DIC 0.. E 200 E 100 .~ " ::!: 0 0 40 80 120 160 200 240 280 320 360 400 440 ~veragelorllV~rd Average Forward Current, Ampere.$ \is. 200 ::: 80 120 160 200 240 280 320 360 400 480 Maximum Case Temperature 160 I ~~ ~ '~~~,i'.~" 10 I r--'Ol---j ~j\~~r-.~, i'. 20 120 Maximum Power Dissipation VS. Forwa·rd Current 900~-r'-~~~'-~-r~~rT~~r---~~ Maximum Case Temperature VS. Forward Current 30 80 Average Forward-Current, Amperes Average Forward Current, Amperes Forward Current Current, Amperes Maxf;num Power Dissipation VS. Forward Current 1200r---r-~~~~~--~--~--~--~--~---. 160r-~--~---r--~--'---~--r-~~~---' T625-40 T625-40 II> 1000 DC r-- 36" ---j ::: ~~ ~ l--J,.... Conduc!on .; 800 Angle" .S! ;; .~ 600~--+---1-~-h~~~~~~'-~--+---4---~--~ ..!II o DC CD II> co U 80 160 240 320 400 480 560640 720 890 Average Forward Current, Amperes 5E 2OOJ--~M ::!:'" o~~~~--~--~--~--~--~--~~--~ o 80 160 240 320 400 Average Forward Current, Amperes " 550 4oo~--+-~~iS~~~~~----t---+---~--~--~ 'j( o~~--~~~~~~~~~~~~--~~ o J .~ . 480 560 640 720 800 Inches Millimeters Min. Max. Min. Max. .pD 2.250 2.290 57.15 58.17 .pD, 1.333 1.343 34.11 33.86 .pD, 2.030 2.090 51.56 53.09 H 1.020 1.060 25.91 26.92 q,J .135 .145 3.43 3.68 J, .075 .090 1.91 2.29 8.50 196.85 215.90 L 7.75 N .040 1.02 Creep Distance-l.00 in. min. (25.40 mm). Strike Distance-l.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (227 g). 1. Dimension ··H'" is a clamped dimension. Symbol " T72 Outline Features: • Center fired di/namic gate • All diffused design • Low gate current • LowVTM • Low Thermal Impedance • High surge current capability • Lifetime Guarantee Package J2t (case rupture) rating: 80 x 106 A 2 sec. Applications: • Phase Control • .Motor Control • Power Supplies • Welding Ordering Information Code T72DN Example Obtain optimum device performance for your application by selecting proper order code. Type T720 rated at 550A average with VDRM = 1000V, IGT 150 rna, and standard flexible lead-order as: = 551 Voltage (j) BlocklnllStateMaxlmums ITJ = 125°C) Repetitive peak forward blocking voltage ,V . Repetitive peak reverse voltage', V ••.•.•..•• Non-repetitive transient peak reverse voltage, tS; 5.0 msec. V··· .....•.•...••...... Symbol VORM \fRRM 100 100 200 200 400 400 600 600 800 1000 1200 1300 1400 1500 1600 1700 HIOO 2000 2200 800 1000 1200 1300 1400 1500 1600 1700 1800 2000 2200 VRSM 200 300 500 700 950 1;Z00 1450 1550 1700 18001900 2050 ;2150 2400 2600 T720 __ 55 T720 __ 35, T720 __ 45 Forward leakage current, mA peak •••••....• Reverse leakage current, mA peak .•....•.... ~I ~I ~ ~ 30 IORM IRRM 30 Current Conductin!! Stata Maximums (TJ == 125 C) RMS forward current, A •...•.... Ave. forward current, A .•..•.•.. One-half cycle surge current@, A .• 3 cycle surge current@, A .••••• 10 cycle surge current@, A ..... 12t for fusing (for times> 8.3 ms) A2 sec. Forward voltage drop at'ITM ==3000 A and TJ == 25°C, V •••••..... Symbol T720 __ 35 IT(rms) IT(av) I TSM I TSM I TSM 12t VTM TY~Cal 850 550 10,000 7200 6200 205,000 295,000 416,000 3.30 2.75 2.15 Gate Maximum Parameters (T J ==' 25°C) Symbol turn-off time, IT == 250A, A7 ~e2r~:'i;pft~~/3~idt2! 20ft l!lsec linear to O.B VORM,I' sec .•. Typ. turn-on-time, IT == 100A VO== 100V@, !lsec ............... . Min. c~tical ~V/dt, exponential to VO RM ' TJ - 125 C, V/I'seco(lJ® ......... .. Min. di/dt non-repetitive, A/!lsec (j)(j)(l)....•..... Thermal and Mechanical Min., Max. oper. junction temp .. ·C ••.... Min., Max. storage temp., ·C ......••.•. Min .. Max. mountIng force, Ib.(j) ••.•••.. Max. Thermal resistance(j) With double sided cooling Junction to case, ·C/Watt .......... . Case to sink, lubricated, ·C/Watt : .... . tq 150 ton 7 dv/dt 300 di/dt 600 Symbol TJ Tstg Maximum Forward Voltage VS. Forward Current -40 to +125 -40 to +150 2000 to 2400 Gate current to trigger at Vo '== 12 V, mA Gate voltage to trigger at Vo == 12V, V ... Non-triggering gate voltage, TJ == 125°C, and rated VORM ' V ............... . Peak forward gate current, A .......•... Peak reverse gate voltage, V ..••.•..... Peak gate power, Watts ............... . Average gate power, Watts ........... . Consult recommended mounting procedures. Applies for zero or negative gate bias. Per JEOEC RS-397, 5.2.2.1. With recommended gate drive. D rJ>D, rJ>D. H Inches Min. 2.880 1.744 2.580 1.020 .135 .075 Millimeters Max. 2.920 1.755 2.700 Min. 73.15 44.30 65.53 Max. 74.17 44.58 68.58 26.92 3.68 2.29 1.060 25.91 .145 3.43 .090 1.91 12.50 292.10 317.50 11.50 L .060 1.27 N Creep Distance-.SO in. min. (20.32 mm). Strike Distance-1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-16 oz. (454 g). 1. Dimension "H" is a clamped dimension. rJ>J J, T92 Outline Features: • Center fired dilnamic gate • All diffused design • Guaranteed dvldt (300 vips) • Low gate current with soft gate control • Low 1"f'rM: . . • Low Tfiermallmpedance • High surge current capability • Westinghouse Lifetime Guarantee Applications: • Phase Control • Motor Control • Power ,Supplies Package I2t (Case rupture) rating: 90 x 106 A 2see. Ordering Information Note: Lower voltage devices available. Consult factory representative. Example Obtain optimum device performance for your application by selecting proper order code. Type T920 rated at 600 A average with VDRM = 2600V. IGT= 200 mao and standard 12 inch leads-order as: S55 Voltage@ Blocking Stata Maxlmuma tTJ = 125°C) Repetitive peak forward blocking voltage ,V •. Repetitive peak reverse voltage ,V .........• Non-repetitive transient peak reverse voltage, t 5.0 msec, V ....... ", ..................... : ' Voltage vs. Type No. AvailabilitY Symbol VORM VRRM 600 800 1000 1200 1400 1600 1800 2000 600 800 1000 1200 1400 1600 1800 2000 !2200 2400 2600 2800" 3000 VRSM 700 900 1100 1300 1500 1700 1900 2100 2600 3000 3200 2200 2400 2600 '2800 3000 I ~T92(l...()9 2300 3400 T920-10~ T920......08~ T920......07 T92a......oB Forward leakage current, mA. p,at< ...•.....• Reverse leakage current, mA peak .......... . Current Conducting State Maximum. (TJ = 125°C) RMS forward current, A ......••• Ave. forward current, A ....••••• One-half cycle surge current@, A .. 3 cycle surge current@, A .••••• 10 cycle surge current@, A ...•. 12 t for fusing (t=8.3 ms),A's~c Max 12 t of package (t=8,3 ms). A'sec Forward voltage drop at I TM = 3000 and TJ = 25°<:, V .......... . Switching (T j=25°C) Turn-off time, IT=250A Tj=125°C. diR/dt=50. A/p.sec reapplied dv/dt= 20V/p.sec linear to 0.8 VDRM. p.sec ... Turn-On and Delay Time ITM=1000A(l), tp=450 p.sec ....... , psec ,................ Critical dv/dt expoll.!'ntial to VORM Tj=125°C. V/P.sec®®I ........... · di/dt@non-repetitive. ............... Q)@@Al'sec Latching Current VO=75V. rnA ................... . Holding Current VO=75V. rnA ................... Gate (Tj=25°C) Gate current to trigger at Vo =12V, rnA .. Gate voltage to trigger at Vo = 12V, V.... Non-triggering gate voltage, TJ=125°C, and rated VORM, V.............•.. Non-triggering Gate Current at VO=12V, rnA .....•.............. Peak forward gate current, A .......... , Peak reverse gate voltage, V........... Peak gate power, Watts .............. Average gate power, Watts ............ Thermal and Mechanical 60 60 T920.....oe Symbol Symbol Min 3.5 1.5 ton td 300 600 13,000 9,750 8,000 700,000 90 xl0' 1415 900 . 25,000 18,700 15,400 2,600,000 90 x 10· 3.0 2.55 2.10 1.90 Max Min Max Min VD 3.5 1.5 = ll00V 300 "' Typ 1:70 Max 150 2.5 ':0 'VO=600'Y VD = 600V 300 1000 800 1570 1000 27,0.00 20,200 16,700 3,040,000 90 x 10· 1000 800 800 IL 160 500 400 1000 300 500 IH 150 500 150 500 150 ,500 Typ ·Max Symbol Min 100 1.5 IGT VGT 20 IGNT IGTM VGRM PGM PG(av>' Symbol 200 3.0 .15 VGOM Oper. junction temp., °c ............... TJ Storage temp., °c. , .................. Tstg Mounting force, Ib.(i) ................. 4 5 16 3 Min Typ -40 -40 5000 Max 125 150 5500 Thermal resistance with double sided cooling@ .......... Junction to case, °C/Watt ........... 'RIIJC Case to sink, lubricated, °C/Walt ........ RIICS 856 Typ 250 1000 di/dt T920-09 T92()-'-10 1255 800 17,000 12,200 10.200 1,203.000 90 x 10' 400, tq dv/dt Typ T920-07 T920-08 1100 700 15,000 10,800 9000 937,000 90 x 10· 940 IT(rms) ITlav ) I TSM ITSM I TSM 12 t 12t .028 .008 .03 .01 Q) Consultlrecommended mounting procedures. ® Applies tor zero or negative gata bias. ® Per JEOEC RS-397, 5.2.2.1. o With\recommended gate drive. (j) Higher dv/dt ratln"s available, consult factory. (l) Per JEOEC standard RS-397, 5.2.2.6. Maximum Forward Voltage VS. Forward Current 7.0 I 6.0 ~ 4.0 j 3.0 ~ II ~J ~'gfotlll ~ I. ~ 6.0 IT9fO~6 I T920__(17...... 11111 II III I II II ~ .... _I T92 0-10 ~~ 2.0 ~ Ij ~"'T92<>-09 11'920-08 ... 1 ,,~ - 1.0 'j( :; J I I 'I Q E I I o 100 ~ ~ 10,000 1000 Forward Current, ITM, (Amperes) Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Currant 1800 ~.'" 1: . ; rT' ~ 70 ".~., 66 0 .. ;.~ t:~:, .:Ie ,..~ 'Ti' ~, .,..~~ t~ 200 : Fe f-T.:!';': . r-i"!: ",- ~-'-+ 400 :.:;c- :ji,""'·'1 :+,d '-:. 600 800 J 450~~~~1H~~~~~~~44~~~~fT~~ 300~~~~~~~~~~~~~~~~~rlrl E '" E 150 ': ~ 200 Average Forward Current, Amperes 110 115 105 100 95 ~ • 11 9OHij~~~IIII~~~~~~Ii~~~~ ~ u 85 J:: ~~~~~1±ff~~~~~~~~tE~~~li a 70~tt~~~~~~~~~~ ~ Average Forward Current, Amperes 600 800 Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 2400'r:-1'7:"T:-:--::-r:-r."""''''''''~r.--r.-rr~:-r--r.--'-'-'-'-....,.., 125~~~~~nET2~rt7TnT:D~~~~ 120 400 Avarage Forward Current, Amperas 2200 r-:-jf,.pM-~"""':"': 2000~~~~~~~~~~~~~~~~~ 1800 i---+-'-++-'-'-o-H-'-++-'- -:--':+-r-:-~!E:.:+,-y;.."Fo'-t"=-t-..:...j 1600~~~~~~-':+~~~~~~~~~~~ S .~ -1,000 F'c.,...;=:=':'-:-f~r,..:.:~r-E'h.-E,~~.:-~r--:-::...;:.:+c::.....-=-4 is J E E '" 'j( CD ::! 600 400 200 0 0 300 600 900 1200 Average Forward Current, Amperes 857 Maximum Power Dissipation VS. Forward Current Average Forward Current. Amperes Average Forward Current. Amperes Maximum Case Temperature VS. Forward Current a?t Maximum Power Dissipation VS. Forward Current 70 ;.; :. 1 65 I:,: :: t o 100 200 300 400 500 600 700 800 900 1 000 Average Forward Current. Amperes Maximum Case Teml?erature VS, F"rward C~~rent Maximum Power Dissipation VS. Forward Current 1200,,_ 500 Average Forward Current. Amperes 858 Maximum Case Temperature VS. Forward Current J E .'" E 'j( :IE Average Forward Current. Amperes Average Forward Current. Amperes Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 25 20 1 1 • ' :: Imr '~F:t·;: :t:::'E ~, ., .. ~~; t·, . [;1£': :~ 'a.' ::: ~ .. %. ~ l' ~i~ 1)0 20 5( 100 0 Average Forward Current. Amperes 0 :,' !I;: :t.!"'t; I··.. ~: ~". )0 800 )Q Average Forward Current. Amperes Maximum Power Dissipation VS. Forward Current Maximum Case Temperatur!l VS. Forward Current J '" I E Avera.ge Forward Current, Amperes S59 1350 1200~~~e';:':-:-: ~1050 , 3:. 900 .~ ! :; u 0 e:s ; 0- E CD I- ..31 75 70 u Average Forward Current, Amperes Maximum Case Temperature VS. Forward Current Maximum Power Dissipation VS. Forward Current 120 115 110 105 ,100 95 u 0 90 ~ 85 :s ; 80 0- E 75 CD I- . CD OJ U Average Forward Current, Amperes Average Forward Current, Amperes S60 Symbol q,D q,D, q,D, H q,J J, L N Inches Min. Millimeters Max. Min. Max. 2.850 2.900 72.39 73.66 1.845 1.855 46.86 47.12 2.560 2.640 65.02 67.06 26.92 1.020 1.060 25.91 .145 3.43 3.68 .135 1.91 2.29 .075 .090 11.50 12.50 292.10 317.50 .050 1.27 Creep Distance-1.00 in. min. (25.40 mm). Strike Distance-1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Appro •. Weight- 1 lb. (454g). 1. Dimension "H" is a clamped dimension. Features: Applications: • • • • • • • • • Phase Control • Motor Control • Power Supplies Center fired dilnamic gate All diffused design Guaranteed dvldt (300 vips) Low gate current with soft gate control LowVrM • Strain Buffer Low Thermal Impedance High surge current capability Westinghouse Lifetime Guarantee Package I2t (case rupture) rating: 90 x 106 A 2sec. Note; Lower voltage devices available. Consult factory reprasentative. Example Obtain optimum device performance for your application by selecting proper order code. Tvpe T9GO rated at 800 A average with VDRM = 26ooV. IGT = 200 mao and standard' 2 inch leads-order as: Voltage I Current "Note: For voltage Vs. Current Availability see next page. 561 Voltage CD TJ = 125°C Symbol Repetitive peak forward blocking, V ....••••• Repetitive peak reverse, V . • • • . . • • • . . . . • • • . • Non-repetitive transient peak reverse voltage, 1 ~ 5.0 msec, V _....................... _.. VDRM VRRM 600 BOO 1000 600 800 1000 VRSM 700 900 1100 1300 T9GO-12 Voltage vs. Type No. Availability Blocking State Maximums Forward leakage current, mA peak. . . • • . • . . . Reverse leakage current, mA peak •.••..•..• 1200 1400 1600 1200 1400 1600 1500 2000 2000 2200 2200 2400 2400 2600 2600 1900 2100 2300 2500 2700 2900 1BOO 1BOO 1700 2BOO 3000 2BOO 3000 T9GO-l0 T9GO-OB 60 60 IDRM IRRM Current Conducting State Maximums Symbol RMS forward current, A •.•..•..•.• Ave. forward current, A ..•••.•••.•• One-half cycle surge current,A CD .. . 3 cycle surge current, A CD ...... . 10 cycle surge current, A CD ..... . I2t for fusing (t = 8.3 ms) A 2 sec Max. I2t of package t = 8.3 ms), A 2 sec Forward voltage drop at ITM = 3000A and TJ = 25°C, V .............. .. ITlrms) rnayl ITSM ITSM ITSM I2t I2t T9GO-DB 1250 800 13,000 9,750 B,OOO 700,000 90 x 10· VTM T9GO_l0 T9GO_12 1590 1000 17,000 12,200 10.200 1,203.000 90 x 10· 1880 1200 27,000 20,200 16.700 3,040,000 90 x 10· 2.10 3.0 1.70 Switching (TJ = 25°C) Symbol Turn-off time. IT - 250A TJ = 125°C, diR/dl = 50 A/psec reapplied dv/dt = 20V/~sec linear to 0.8 VDRM,,.sec Turn-On and Delay Time CD ITM = 1000A. tp = 450 fJ sec .••.•.. VD = 1500V, psec ............... Critical dv/dt exponential to VDRM TJ = 125°C, V IfJsec CD CD di/dt non-repetitive, A/psec CD(i)(i) .. Latching Current VD = 75V, mA ................... Holding Current VD = 75V, mA ................... ........ Min. Typ. Max. Min. Max. Min. Typ. tq 400 250 150 ton td 3.5 1.5 3.5 1.5 2.5 1.0 dv/dt di/dt 300 1000 300 1000 800 300 Max. 1000 800 800 IL 500 1250 400 1000 300 500 IH 150 500 150 500 150 500 Gate (TJ = 25°C) Symbol Gate currentto trigger atVD = 12V,mA Gate voltage to trigger at VD = 12V,V Non-triggering gate voltage, TJ = 125°C, and rated VDRM, V ....•.• IGT VGT Min. Typ. Max. 30 100 1.5 200 3.0 VGDM .15 VD = 12V, mA ................... Peak forward gate current,A ..•.... Peak reverse gate voltage, V .•..... Peak gate power, Watts ............ Average gate power, Watts ...•..•. IGNT IGTM VGRM PGM PG(ay) 20 4 5 16 3 Thermal and Mechanical Symbol Min. Oper. junction temp., °C •.•••••••.. Storage temp., °C •..•..•...•...... Mounting force, IbCD ••..•...•....•. Thermal resistance CD with double sided cooling Junction to case. °C/Watt ....... Case to sink, lubricated, °C/Watt ... TJ TOl9 -40 Non-tnggring Gate Current at Typ, ReJc Recs Max. 125 150 5500 -40 5000 CD Consult recommended mounting procedures. CD Appl ies for zero or negative gate bias. eD Per JEDEC RS-397. 5.2.2.1. (i) With recommended gate drive. o Higher dv/dt ratings available. consult factory. (i) Per JEDEC standard RS-397. 5.2.2.6. 562 Typ. .006 .023 .0075 3100 Maximum Forward Voltage VS, Forward Current 7 .l!J ~ i > I 1I1111J1 6 Transient Thermal Impedance VS. Time .03 E - CD N ~ OJ~ E~ .01 cpU ~ ,.... U o 1---'''- ~/-' 1000 100 Forward Current. ITM, Peak Amperes o 10,000 .001 \ 110 100 90 " " \ \ " \ \ ," " 0-.J~~~~ 200 300 90 0 60 0 400 l: - ~ \ 30 0 1800 I I 600 500 700 ~ 1600 C 1400 Q. 1 600 E 400 .." E 'i( :! 900 1000 ~ ...... o ~100 o 200 / 100 V~ 90 0 1'200 180), V ' / / / / / I/~ / / / "/ / / / V./ / / ~ ..... i 800 / I / Z 0...J~~~~",n ~ o '~ 1200 ~ 1 ~A r- '~ 1000 1800 800 ~ i5 '\ 12'00 l!J 600 30 0 2000 t- T~GO_-!l8 A- ~ \ I\. 100 I I \ '\ ~. 10 Maximum Power Dissipation VS. Forward Current I ~~ \ \ .1 2200 T9GO_08 \" r\.~ ~ .01 Time, t. seconds Maximum Case Temperature VS. Forward Current 125 120 ~ ,/ g V- / ~V P' 200 300 400 500 600 700 800 900 Average Forward Cu~rent, Amperes Average Forward Current, Amperes Maximum Power Dissipation VS, Forward Current 3200 . - - -......- - - . - - -......--"'T"""--.;---..----. Maximum Case Temperature VS. Forward Current 125 120 T9GO--08 110 iii"' 100 2400 3: 90 .~. 2000 80 :~ 1600 70 o :;; 1200 0 D- 800 E ::J E 400 t;j (,J 0 ~ ; Q. E ~ 60 ...., 50 U 40 II> .. . 'x :! 0 200 800 Average Forward Current, Amperes 1000 1200 1400 Average Forward Current, Amperes 563 Maximum Case Temperature ':'5. F~~td Current Maximum Power DiSSipation VS. Forward Current 125~----~--~-r----~~--~~----~-----' 2400 120. .....\r"'ii!~:1---+----+--~--+- T9GO_10 2200 _I 1 1 2000 ~~ 1SOO - 0-1~~~UC~01 I I I T9GO_10 i j 90.0 ~oo If 30.0 l So.~--+-~-~--~-~~~~_4--~ .. / / I. V) f / Vj ~V / c( I 60. & e ~ i u 600 ~ u o / ;j ~ VA ~~ 1! ~ 5o.~--+--~;_---_r~~~--~---; 400 : J~ tl II = ~~----~----~----~----~---~----~ ~ 0. 200 400 600' 800 1000 1200 / If /,1/; I J II 1000 a. E 800 I / //// 1400 1200 I 120.0 l: 1600 lsclo 200 ~ 0. 100 300 500 700 900 1100 A~erage Forward Current. Ampere. Average Forward Current. Amperas Maximum Power Dissipation Vs. Forward Current Maximum Case Temperature VS; Forward Current 3200r---r---~--~-~--~---r--~--~--~ 125~--~---r--~--~~--~--~---r--~---' T9GO_10 120. 2Soo 110. ~~ L.-.-l.-. ."' . COnductIOn 24OOr--r--T--+--;_--r--r-~~_4-~ 100 90 So. ~ ~ g 1200r---_r--~~~~~f+~~+_--_+----t_--_r--_i 70. I u = 0 r? ,0 60 J :> 1ii a; a. E E 50. .,.. . E 'K 40. 0. 200 400 600 SOO 1000" 1200 1400 1600 lS00 ,., Average Forward Current. Amperes 564 4OO~_,~~~-;_-;_-_r-_+-_4-_4-~ :> ~ u soo~-+_~~~~~-4--~-+_-~-_r--_i :I ~ 400 800 8001000 Average Forward Currant. Ampere. 1~14OO18OO18OO Maximum Case Temperature VS. Forward Current Maximum Power DiSSipation VS. Forward Current 125~--r---~--~--~---r--~--~--~---' 2400 120 , I J 180° I 2200, - T9GO_12 I 2000 110 I lJOO J i-~ 1800, - 90° 0..J~-I:: 6QO 100 1600 90 300 1400 !! ~1ooo ~ I )800 70 u 0 ! !" •Ea. ~ Q600 60 :# } 50 300 •• U 60° 90° 1200 ~ 200 400 600 800 1000 / /1 / ~ 200 i ID o 400 E 180° IJ I / '1/)' / IIJ 'l /~ 0' J//A V 1200 80 J JI(/ 200 Average Forward Current, Amperes 400 600 800 1000 1200 1400 1600 Average Forwerd Current, Amperes Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current T9GO_12 2800~-r--+--+--+--;--~~r--r--r-OT~T--; 110 2400 100 2000,1--+--+--+--+--4 90 80 .~ 1200 1--4--+-*"+-I-J~~~f--+-+-+-+--f---I 70 i u ~ 0 ! 60 E 50 I ~ J 300 60° 90° 120° 180° 2700 DC : 'j ID u E "E :I! 40 0 400 Avarage Forward Current, Amperes 2400 o 800 1200 1600 2000 2400 Average Forward Current, Amperes S65 Now ',AvailBble",From ·W·;··,};;···;"'·"··· . ·:·· '·h· · ·: . . '. .' _iff. n''g",. 0 '.",1 .'. . use Introduction to Solid State Power Electronic:s • 8112 X 11 Format -144 Pages • $6.00 U.S. (Includes Book Rate Postage) - $6.50 Elsewhere (Includes Book Rate Postage) With. the growing importance of power electronics, persons with a basic knowledge of electrical er'!gineering, both in industry and at the university, should find . this text a worthwhile inv~stment. Approved text for IEEE short course in Solid State Power Electronics ana numerous college and univers.ity courses. Volume educational and quantity discounts are available. Book describes device char.acteristics and ....# .• '.' '. . ' . fundamental circuit principl~~ .needed. to .fullycomprehend the fiel~~'6f:poVver elec- tronics. Included are numerous references for more detailed research and example problems which illustrate the essential mathematical relationships in power . electronics. To order your copy, send check or money order (payable to Westinghouse Semiconduotor in U.S. funds) to: Westinghouse Electric Corporation Book Order Semiconductor Divis.ion Youngwood, Pa. 15697 Symbol .pD .pD, .pD, H .pJ J, L N Inches Min. 3.910 2.470 3.440 1.260 .135 .075 11.50 .050 Max. 3.950 2.480 3.560 1.300 .145 .090 12.50 Millimeters Min. Max. 99.31 100.33 62.74 63.00 87.38 90.42 32.00 33.02 3.43 3.68 1.91 2.29 292.10 317.50 1.27 ~ Creep Distance-1.82 in. min. (46.23 mm.) Strike Distance-1.26 in. min. (32.00mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-2.1 lb. (950 g). 1. Dimension "H" is a clamped dimension. TA20utiine Features: Aplications: • • • • • • • • Steel Mill Drives • Crane Controls • Motor Controls di/namic Gate design All diffused design Guaranteed dv/dt (300 v/J.ls) Low gate current with soft gate control LowVTM Low Thermal Impedance High surge current capability • 12t package rating . • Lifetime Guarantee Package I2t (Case Rupture) Rating: 125 x 106 A' sec. Ordering Information NOTE: LOWER VOLTAGE DEVICES AVAILABLE CONSULT FACTORY REPRESENTATIVE Example Obtain optimum device performance for your application by selecting proper order code. TVpe TA20 rated 1200 A Average with VDRM=2000v, IGT=200 ma, and standard 12 inch leads-order as: 567 Voltage Blocking State Maximums 0 tTJ = 125'C) Repetitive peak forward blocking voltage • V Repetitive peak reverse voltage. V Non-repetitive transient peak reverse voltage. t:of: 5.0 msec. V •........•..•.•.•.•.•...•.•. Forward leakage current. mA peak ......... . Reverse leakage current. mA peak Symbol VORM 600 VRRM 600 VRSM 700 1000 1200 1400 1500 1600 1700 '1800 1900 2000 2100 2200 800 1000 1200 1400 1500 1600 1700 1800 1900 2000 2100 2200 900 1100 1300 1500 1600 1700 1800 1900 2000 2100 2200 2300 800 75 75 IORM IRRM Current Gate Conducting State Maximums tTJ = 125'C) Symbol TA20-12 TA20-14 (TJ=25°C) RMS forward current. A ......... Ave. forward current. A .......•. One-half cycle surge current®. A .. 3 cycle surge current®. A ...... 10 cycle surge current®, A ..... I't for fusing (t=8.3 ms) Nsec Max I't of package (t=8.3 ms). A'sec IT(rms) IT(av) I TSM I TSM I TSM I't 1900 1200 30.000 25.000 18.000 3.75 X 106 125 X 10· 2.200 1400 35.000 30.000 22.000 5.1 X lOS 125 x lOS Gate current to trigger at Vo = 12V. mA .. IGT Gate voltage to trigger at VO=1 2V. V .... VGT Non-triggering gate voltage. TJ=125°C. and rated VORM. V ................ VGNT Peak forward gate current, A .......... IGTM Peak reverse gate voltage, V ........... VGRM Peak gate power, Watts ......•...•••. PGM Average gate power. Watts .........•.. PG(av) 2.40 2.00 12 t Forward voltage drop at I TM = 6000A and TJ = 25'C, V ........... V TM Switching (TJ = 25°C) Symbol Turn-ofhme.IT=250A TJ =125°C. diR/dt=50 A/"sec reapplied dv/dt= 20V/"sec linear to 0.8 VDRM. "sec. Turn-On and Delay Trme ITM = 1000A0. tp = 450 "sec ....... VD=1100V. "sec. .............. Crrtrcal dv/dt exponentral to VDRM TJ=125°C. V/"sec®® ............ dr/dt non-repetItive, Ap.sec ............... ®®®I Latching Current VD=75V. mA ................... Holding Current VD=75V. rnA ......... ,' ......... Typ Min tq 250 4.5 2.5 ton td dv/dt 300 dr/dt 400 1000 IH 150 500 I 5 -iluO_14 4 568 ® ® ® ® 1,000 .018 .016 .015 .02 .0075 j Q. ~ - .012 II> .,uc .010 ;: .E ~ iii 'E u0 :;; 100,000 11.000 .006 ~ .014 .r:. £ 10.000 Max 125 150 ROJC Rlics .020 S l- ., 0 N u 100 8500 Typ Per JEDEC RS·397, 5.2.~.1. With recommended gate drive. Higher dv/dt ratings available; consult factory. Per JEDEC standard RS·397, 5.2.2.6. u :::I ~ ::::~ 200 3.0 o Consult recommended mounting procedures. o Applies for zero ornegative gate bias. .., I Forward Current. ITM. Peak Amperes -40 -40 c .2 t; c 2 o TJ Tstg oj 1/ 3 Oper. junction temp., °C ............. : . Storage temp., °C ............•....•.. Mounting force, Ib.(i) ................. Thermal resistance with double sided cooling0 .......... Junction to case, °C/Watt ........... Case to sink, lubricated, °C/Watt ........ !II III Max 4 5 16 3 Min ., ll~ TA2CL.12 I I 1111 150 1.5 .15 Transient Thermal Impedance VS. Time , ~ I" 6 Typ 30 Symbol 800 IL Min Thermal and Mechanical 1000 Maximum Forward Voltage VS. Forward Current 7 Max Symbol e,) V" .008 .006 .004 ~ .002 0 .001' .01 Time. t. seconds .1 10 100 Maximum Case Temperature VS, Forward Current 125 115 ~ u o I ~ 65 ~ ~o L =: 200 400 I 2600 I-- 0-1~~V)I\l: ~ ~ \ 1\ i\,1\ " ~ ~- 2800 I-- I 2400 I-- . iii u 0 ~looo .. Q. 'iii 0 IL 1\ e::J -,- 400 . E 200 'j( ::i; " .,e .,. I . u 55 :T~~I~ 1 ~- 3000 0--1~:~~n 200 400 600 , , ," I j V/ I J V / V 400 600 800 1000 1200 1400 1600 iA2D J Max. Min. Max. 9.00 .063 2.980 10.00 .172 3.020 228.60 1.60 75.69 254.00 4.37 76.71 1.490 3.750 .272 K M .530 2.030 .500 N p Q R 3.937 4.937 .330 S q,T U .970 .470 .440 V Z .292 .755 2.150 37.85 95.25 6.91 7.42 13.46 51.56 12.70 19.18 54.61 2.670. 4.063 100.00 5.063 125.40 .350 . 8.38 67.81 103.20 128.60 8.89 24.64 11.94 11.18 26.16 13.46 1.030 .530 Creep Distance-l.76 in. min. (44.91 mm). Strike Distance-.Sl in. min. (~0.70 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-5 lb. (2.3 kg.,. 1. Angular orientation of terminals ar~ undefined. 2. Pitch diameter of *-20 UNF-2A (coated) threads (ASA Bl.1-1 ~60). 3. Oimension "J" denotes seated height with leads bent at right angles. T76 Outline Voltage Millimeters Min. ® Blocking State Maximums ITJ "- 125'CI Repetitive peak forward blocking voltage • V Repetitive peak reverse voltage • V ...... , . , . Package J2 (case rupture) rating: 15 x 106 A 2 sec. Symbol VORM VRRM 100 100 200 200 400 400 600 600 SOO 800 VRSM 200 300 500 700 950 1200 1450 1550 1700 1800 1900 2050 2150 2400 2600 1000 1200 1300 1400 1500 1600 1700 lS00 2000 2200 1000 1200 1300 1400 1500 1600 1700 lS00 2000 2200 Non-repetitive transient peak reverse voltage, ~~ 5,Omsec, Vi ...... , .. , .. ,.· .. · .... . I: ~I 1-+--(- - T I 6 0 __ 30 Forward leakage current, mA peak '" ......• Reverse, leakage current, mA peak .......... . :~=~ !~I-------------t Gate Current Conducting State Maximums (TJ = 125'C) • RMS forward current, A .. , ..... . Ave. forward current, A ........ . One-half cycle surge current@, A .. 3 cycle surge current@, A ..... . 10 cycle surge current@, A .... . 12t for fusing (for times> S.3 ms) A2 sec. Forward voltage drop at I TM = 3000A and TJ = 25'C, V .......... . Symbol T760 __ 30 'T(rms) 'T(av) I,TSM 'TSM 470 300 8400 6050 5200 ' TSM 12t. 295,000 3.30 V TM Typical turn-off time. IT = 250A, TJ = 125'C, diR/dt = 25 A7p.sec, reapplied dv/dt = 20V/lJsec linear to O.S VORM,/L sec ... Typ. turn-on-time, 'T = 100A VO= 100V@, /Lsec . , .......... , .. . Min. critical dv/dt, exponential to VO RM ' TJ = 125'C, V/p.sec®(f), •.......... Min. di/dt non-repetitive, A/lJsec 000. , Symbol Gate current to trigger at Vo = 12V, mA Gate voltage to trigger at Vo = 12V, V ... Non-triggering gate voltage, TJ = 125'C, and rated VORM ' V ............... . Peak forward gate current, A .......... . Peak reverse gate voltage, V ...... , ... . Peak gate power, Watts .......... , ... . Average gate power, Watts ...... , , ... . 'GT V GT VGOM I GTM VGRM PGM PG(av) 150 3 0.15 4 5 16 3 Thermal and Mechanical Switching (TJ = 25'C) Maximum Parameters (TJ ;:: 25"C) Symbol Symbol tq 150 ton 7 dv/dt 300 di/dt 800 Example Min .. Max. aper. junction temp .• ·C ......... . Min .. Max, storage temp.'. ·C .............. . Max. mounting torque. In lb. TJ Tstg -40 to +125 -40 to +150 300 Max. Thermal Impedance, 0C/Walt Junction to Ambient @ 1000 LFM airflow ............ (JJA 0.18 o Consult recommended mounting procedures. o Applies for zero or negative gate bias. CD S.3 ms) A' sec..... Forward voltage drop at ITM=625A and TJ=25 c C, V ....••....••........... IT(rms) IT(av) ITSM ITSM ITSM I't T680__18 275 175 5500 3900 3400 120,000 1.55 VTM (TJ=25 c C) Symbol Typical turn-off time, IT=150A TJ=125 c C. diR/dt=12.5 A/p.sec. reapplied dv/dt=20V/p.sec linear to O.S VORM, p.sec ............ Typ. turn-on-time.IT=100A VO=100V@.p.sec ............. tq ton 150 5 Min. critical dv/dt, exponential to VORM TJ=125 c C, V/p.sec(J)(J) •. dv/dt 300 Min. di/dt non-repetitive, A/p.sec (f) (j)(J) di/dt 800 Thermal and Mechanical Gate CD • Symbol Maximum Parameters Consult recommended mounting procedures. (J) Applies for zero or negative gate bias. CD Per JEDEC RS-397, 5.~ 2.1. (j) With recommended, e drive. (J) Higher dv/dt ratings av"ilable, consult factory. (j) Per JEDEC standard RS-397, 5.2.2.6. (TJ=25"C) Symbol Gate currenttotrigger atVo=12V, mA Gate voltage to trigger at VO=12V, V. Non-triggering gate voltage. TJ =125°C, and rated VORM, V .... Peak forward gate current, A .•••... Peak reverse gate voltage, V ....... Peak gate power, Watts ........... Average gate power, Watts ........ IGT VGT 150 3 VGOM IGTM VGRM PGM PG(av) 0.15 4 5 16 3 Min., Max. oper. junction temp .. "C .•.........•. Min., Max. storage temp .. °C Max. mounting torque each bolt, in-lb. (f) ..... Thermal resistance(j) TJ Tstg -40 to +125 -40 to +150 25 Junction to case, °C/Watt ....•...•••... Case to sink, lubricated, °C/Watt .......••..... Example Obtain optimum device performance for your application by selecting proper Order Code. ROJC .155 ROCS .05 , Type T680 rated at 175A average with VDRM l000V, IGT = 150 ma, and standard flexible lead-order as: = 573 4.C 3.5 I 1111 3.0 III " I 111111 TJ ! = 12&°C u S .§ 2.5 t> ~ 2.0 ..,§ ~ 1.5 i lii .Eu, ..... "" 1.0 E =~ ~~ 0.5 o g~ 1 2 10 20 50 1()() 200 5 Forward Current. 1TM, Peak Amneres' 500 lK 2K 51< 10K. .001 Time,l, Seconds Maximum Case Temp.erature VS. Forward Current .01 .1 10 100 Maximum Power Dissipation VS. Forward Current 300~~ ~"i~~ ~ ~l_~~~~~];' 250 ~ .~ 200; .1 .;o Io Il. . 100 E· .::l E 'j( ~ 50 o 100 50 150 200 Average forward Current. Amperes Average Forward Current. Amperes Maximum Power Dissipation VS. Forward Current Maximum Case Temperature VS. Forward Current 50 100 150 Average Forward .Current. Amperes 874 200 250 300 o 50 100 150 Average Forward Current. Amperes 200 250 300 Inches Symbol A A, B C q,D Millimeters Min. Max. Min. Max. 9.76 10.18 .063 10.00 10.42 .172 247.90 258.57 1.60 254.00 264.67 4.37 2.52 1.490 1.750 62.99 41.15 64.00 37.85 44.45 2.48 E F J q,K 1.620 .430 4.00 .360 M Q 5.30 q,S q,T .810 .400 .755 3.10 1.610 1.590 .330 .440 Z 10.92 101.60 9.14 13.46 40.39 .350 8.38 11.18 20.57 10.16 19.18 78.74 40.89 8.89 Creep Distance-1.76 in min. (44.91 mm). Strike Distance-.S1 In min. (20.70 mm) (In accordance with NEMA standards.) FInish-Nickel Plate. Approx. Weight-16 oz. (454 g). 1. Angular orientation of terminals are undefined. T78 2. Dimension "J" denotes seated height with leads bent at right angles. Outline I Voltage (j) Blocking State Maximums IT J -- 125°C I Repetitive peak forward blocking voltage ,V Repetitive peak reverse voltage V ......... . Non-repetitive transient peak reverse voltage, t~ 5.0 msec,V ................... ·.··· Symbol VDRM Package I2t (case rupture) rating: 15 x 1()6 A~sec. VRRM 100 100 200 200 400 400 600 600 800 800 1000 1200 1300 1400 1500 1600 1000 1200 1300 1400 1500 1600 V RSM 200 300 500 700 950 1200 1450 1550 1700 1800 1900 T780 __ 35 Forward leakage current. mA peak ......... . Reverse leakage current, mA peak 'DRM 'RRM + Symbol RMS forward current, A ........ . Ave. forward current, A .......•. One-half cycle surge current@, A .. 3 cycle surge current@. A ..... . 10 cycle surge current@, A .... . 12t for fusing (for times> 8.3 ms) A2 sec. Forward voltage drop at I TM = 3000A and TJ = 25°C, V .....•..... ) ) 30 Current Conducting State Maximums (TJ = 125°C) ) 30 < T780 __ 35 550 350 10,000 7200 6200 ' Tlrms ) 'T(av) ' TSM ' TSM ' TSM 12t V TM Switching (TJ = 25°C) Symbol Typical turn·off time, IT = 250A, TJ = 125°C, diR/dt = 25 A~JJsec, reapplied dv/dt = 20V/,..sec linear to 0.8 VORM,JJ sec ... Typ. turn·on·time, IT = 100A VO= 100V0. JJsec ............... . Min. critical dv/dt, exponential to VORM' TJ = 125°C, V /JJsec@:D ........... . Min. di/dt non-repetitive, JEDEC Std. #7, A/,..ser. CDCDCD .............. . 416,000 2.15 I tq 150 ton 7 dv/dt 300 di/dt 800 Gate Thermal and Mechanical Maximum Parameters (T J =25°C) Symbol Min. Max. oper. junction temp, °c ......... . Min. Max. storage temp .. °c .............. . Max. Thermal resistance Q) JunctIOn to case. °C/Watt. . ........ . Case to sink. lubricated. °C/Watt. TJ Tstg ROJC ROCS CD Consult recommended mounting procedures. (j) Applies for zero or negative gate bias. (j) Per JEOEC RS397, 5.2.2.1. CD With recommended gate drive. (j) Higher dv/dt ratings available, consult factory. CD Per JEOEC standard RS·397, 5.2.2.6. Symbol Gate current to trigger at Vo = 12V, rnA -40to+125 -40 to +150 Gate voltage to trigger at Vo = 12V, V ... Non-triggering gate voltage, TJ = 125°C, and rated VORM ' V ............... . Peak forward gate current, A .......... . . 10 .05 Peak reverse gate voltage, V .......... . Peak gate power, Watts .............. . Average gate power, Watts ........... . Example Obtain optimum dev.ice performance for your application by selecting proper Order Code. 'GT VGT 150 VGDM I GTM V GRM PGM PG(av) 0.15 4 5 16 3 3 Type T780rated at ,50A average with VORM= 1000V, IGT= 150 ma, and standard leadorder as: _.lla'14I,i.••_*,,,,,i=M;ii,,,';W.,,,,,,."'&.i;ii,,,".*.., CO=I j D I IT""] 7 8 3 5 0 [ 4 L'BY _ 575 Transient Thermal Impedance VS. Time N ~ "E ~ E ~ 1.5 i--~~-+~+--..i..-.,.-.~"T""-'-' 1.0 !-·..;.-.,.-+-++thl-·--t·--+---'--;-:;::.;;.:i.-""f' C-·..·-H...;--. 0.5 f-_'';''+'';r-';''';'+H1--+-+-t-c' .~ :E Forward Current. ITM. Amperes lime. t. Seconds Maximum Case Temperature VS. Forward Current Average Forward Current. Amperes 576 Average Forward Current. Amperes Conforms to TO-83 Outline Conforms to TO-94 Outline Symbol A A, B q,D E F J M N Inches Min. 5.775 6.850 .055 .860 1.031 .255 2.50 .437 .796 Q q,T Z q,W .260 .250 ~-20 Max. 6.265 7.500 .075 1.000 1.063 .400 .650 .827 1.675 .291 Millimeters Min. Max. 146.69 159.13 173.99 190.50 '1-.40 1.91 21.84 25.40 26.19 27.00 6.48 10.16 63.50 11.10 16.51 20.24 21.01 42.55 6.60 7.39 6.35 UNF-2A Symbol A, C L L, L, M, q,T, q,T, Z, q,W Inches Min. .070 .420 .180 .360 .190 .060 .180 ~-20 Millimeters Min. Max. 45.97 1.78 2.79 16.51 13.21 10.67 4.57 11.94 9.14 4.83 5.97 1.52 2.03 4.57 !'0ax, 1.810 .110 .650 .520 .470 .235 .080 UNF-2A Approx, Weight-4 oz. (114 g). 1. Basic dimensions of TO-94 and TO-83 Creep & Strike Distance. T500-.50 in. mm. (12.85 mm). (In accordance with NEMA standards.) Finish-Nickel Plate, Approx. Weight-5 oz. (142 g). 1. Complete threads to extend to w'thin 2% threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of %·20 UNF-2A (coated) threads (ASA B1.1-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. no? Cod. 100 200 300 400 500 600 700 800 900 1000 1100 1200 01 02 03 04 05 06 07 os I T{avl (Al Features: • Center fired dilnamic • High di/dt with soft gate control • High frequency operation • Sinusoidal waveform operation to 20 KHz • Rectangular waveform operation to 20 KHz • Low dynamic forward voltage drop • Low switching losses at high frequency • Lifetime Guarantee Applications: • Inverters for UPS Induction Heating AC Motor Control • Switching power supplies • Cycloconverters • Choppers • Crowbars are same except as noted. Code Note: High frequency sine and square wave data available. consu It factory. Code - 40 40 to 70 70 15 20 80 so 25 30 40 50 09 10 11 Example Obtain optimum device performance for your application by selecting proper Order Code. Type T 507 rated at 80 A average with VORM = 1000V. IGT =.150 ma, tq = 30 p,sec max. and flex leads-order as: S77 Voltage Blocking State Maximums. ® ITJ = , 25·C) Repetitive peak forward blotking voltage • V .: Repemive peak reverse, voltagll; V ........ . Non-repetitive tranSient peak reverse voltage. t ~ 6.0 msec. V .......................... . Symbol VORM Forward lea~age' current. mA peak .•..•.•... Reverse leakage current. mA peak .....•..... IiRRM 100 100 200 200 300 300 400 '400 500 500 SOO 600 700 700 800 800 900 900 1000 1100 1200 1000 1100 1200 VRSM 200 300 400 500. 600 700 800 900 1000 1100 1200 1300 IORM 'R.RM ~ ~ 15 . 15 ) ) Current Conducting State Maxim'ums (TJ = 125·C) Symbol RMS forward current. A ........ . Ave. forward current. A ....••.•. One-half cycle surge current(!). A .. ,'ifor fusing '(for times> 8.3 ms) A'sec. Forward voltage drop at 'TM = 500A and TJ = 25·C. V .......•.. Min. repetitive di/dl (])'CDCD A/p.aec ... T507 __ 40 T507 __ 70 T507 __ 80 63 40 1000 110 70 1200 125 80 1400 4000 6000 8150 4.2 100 3.5 100 3.2 150 iT(rms) 'T(av) ' TSM I't. VTM di/dt (TJ = 25·C) ~ ... Symbol Max. turn-off time. IT =50A. TJ = 125·C. diR/dt = 5 "7p.sec. reapplied dv/dt == D E F J M N Q 4>T Z 4>W Features: • Center fire, di/namic gate • High di/dt with soft gate control • High frequency operation • Sinusoidal waveform operation to 20 KHz • Rectangular waveform operation to 20 KHz • Low dynamic forward voltage drop • Low switching losses at high frequency • Westinghouse Lifetime Guarantee Inches Min. Max. 7.750 8.100 7.750 8.100 .063 .172 .980 1.090 1.212 1.250 .250 .630 3.25 .530 .755 1.040 1.077 2.250 .260 .290 .340 %-16 UNF-2A Millimeters Min. Max. 196.85 205.74 196.85 205.74 1.60 4.37 24.89 27.69 30.78 31.75 6.35 16.00 82.55 13.46 19.18 26.42 27.36 57.15 6.60 7.37 8.64 Creep & Strike Distance: .69 in. min. (17.60 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-8 oz. (227 g). 1. Complete threads to extend to within 211.. threads of seating plane. 2. Angular orientation of terminals IS undefined. 3. Pitch diameter of %·16 UNF·2A (coated) threads (AS A B1.1-1960). 4. Dimension "J" denotes seated height with leads bent at right angles. Note: High frequency sine and square wave data available, consult factory. Applications: • I nverters for UPS AC motor control Induction heating • Cycloconverters • Choppers Ordering Information 100 200 300 400 I Tlav) (Al Code tq p'sec 125 13 10 '03 150 16 05 06 175 18 01 02 , 04 07 ~O, 08,' 1~ \1', ' Example Obtain optimum device performance for your application by selecting proper Order Code. Type T607 rated at175A average wjth VDRM = 1000V, IGT 150 ma, tq 30 !,sec and standard flex lead - order as = = 579 Voltage Blocking State MaximumsQ) (TJ = 125°Cl Repetitive peak forward ,blocking voltage ,V Repetitive peak reverse voltage ,V, ..•...... Non-repetitive transient peak reverse voltage. t ~ 5.0 m sec, V ........................ , •• Symbol VORM Forward leakage current, mA peak .........• Reverse leakage current. mA peak .......... . VRRM 100 100 200 200 300 300 400 400 500 500 600 600 VRSM 200 300 400 500 600 700 IORM IRRM < < 700 700 SOO SOO 900 900 1000 1100 1200 1000 1100 1200 SOO 900 1000 1100 1200 1300 ~ ) 25 25 Current Conductin'l State Maximums (TJ = 125 C) RMS forward current. A .....•.•. Ave. forward current, A ....•.•.. One-half cycle surge current®. A .. 12t for fusing (for times> S.3 ms), A2·sec. Forward voltage drop at ITM = 625·A and TJ = 25°C. V ... , ..... . Min. repetitive di/ dt CD CD@ ,A/usee Symbol T607 __ 13 T607 __ 15 T607 __ 18 IT(rms) IT(av) I TSM 200 125 3500. 235 150 4000 275 175 4500 65,000 S4,000 2.1 250 I.S5 300 lOt • 50,000 2.35 200 VTM di/dt Switching Maximum Forward Voltage VS. Forward Current (TJ = 25°C) Symbol Max. turn-off time. IT -·150A. TJ = 125°C, diR/dt =12.5 A7usec, reapplied dv/dt = 20V /,. sec linear to .SV ORM, ,.sec CD CD ' Typ, turn-on-time, IT = 100A VO= 100V@, usee . ......... , .... . Min. critical dv/dt. exponential to VORM ' TJ = 125°C, V/usec®(J) ........ , .. . Min. di/dt non-repetitive, CDQ)@,A/lI-sec .............. . !!! '0 > tq 10t060 3.5 ton dv/dt 300 di/dt 800 ~ ~. . f ~o· ... Gate Symbol = Gate current to trigger at Vi> 12V. mA Gate voltage to trigger at Vo = 12V, V ... Non-triggering gate voltage, TJ = 125°C. and rated VORM ' V ........ : ....... . Peak forward gate current, A .........•. Peak reverse gate voltage,. V .....•....• Peak gate power, Watts .............. . Average gate power. Watts ........... . IGT V GT 150 3 6 5 4 {60~ ~~ i j--•• 3 1S T607__ 2 ~ ~ .... 7' ..:::!:" 'x 0.15 4 1000 100 10.000 Forward Current. ITM, Peak Amperes Transient Thermal Impedance VS. Time 5 16 3 I/. 71 I E E 10 VGOM I GTM VGRM PGM PG(av) 'I. T607__13 I • I. Q 'E Maximum Parameters (T J = 25°C) 7 20 18 Thermal and Mechanical Symbol Min., Max. oper. junction temp., Min., Max. storage temp., °c ..... . °c .......... . Max. mounting torque. in lb. CD ........ . Max. Thermal resistance (J) Junction to case. °C/Watt .. , ..... . Case to sink, lubricated. ·C/Watt ..... . CD CD CD @ @ @ CD S80 TJ Tstg -40 to +125 -40 to +150 300 ReJC Recs Consult recommended mounting procedures. Applies for zero or negative gate bias. Per JEDEC RS-397, 5.2.2.1. With recommended gate drivEi. . Higher dv/d! ratings available. consult factory. Per JEOEC standard RS-397. 5.2.2.6. For operation with antiparallel diode, consult factory. .13 .08 oJooi...~~~~0001 .001 .01 Time.t. Seconds .1 10 100 Symbol A A, B q,D E F N Q q,T Z q,W Millimeters Min. Max. Creep Distance-1.76 in. min. (44.91 mm). Strike Distance- .81 in. min. (20.70 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-16 oz. (454 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of *-16 UNF-2A (coated) threads (ASA B 1.1 -1960). 4. Dimension "J" denotes seated height with leads bent at right angles. T70 Outline Features: Center fired di/namic gate High di/dt with soft gate control High frequency operation Sinusoidal waveform operation to 20 KHz Rectangular waveform operation to 20 KHz Low dynamic forward voltage drop Low switching losses at high frequency Westinghouse Lifetime Guarantee I Applications: UPS I nduction heating AC motor drives • Cycloconverters • Choppers • Crowbar I Voltage Note: High frequency sine and square wave,data available. consult factory. • Inverters for Ordering Information Type Max. 9.76 10.00 247.90 254.00 10.18 10.42 258.57 264.67 .063 .172 1.60 4.37 1.490 37.85 1.620 1.750 41.15 44.45 .430 .810 10.92 20.57 4.000 101.60 .530 .755 13.46 19.18 1.04 1.08 26.42 27.43 3.100 78.74 .330 .350 8.38 8.89 .440 11.18 %-16 UNF-2A J M • • • • • • • • Min. I Current Turn off I Gatp current I Leads , VDRM Code T707 and VRRM (V) 100 200 300 400 500 600 700 1000 1100 1200 Code 01 02 03 04 06 06 07 I T(av) (A) Code IGT (ma) 150 Case 4 T70 275 325 250 300 Example Obtain optimum device performance for your application by selecting proper Order Code. = Type T 707 .rated at 300A average with VORM 1000V. IGT = 150 ma.tq = 30 psec and standard flex lead - order· as 581 Voltage Blocking State Maximums0 (TJ 7_ 125"C! Symbol VORM Repetitive peak forward blocking voltage • V Repetitive peak reverse voltage V ......... . VRRM 100 100 200 200 VRS M 200 300 300 300 400 400 500 500 SOO SOO 700 700 ,400 500 SOO 700 800 . Boo 1000' 1100 1200 1000 1100 1200 800 900 900 900 1000 1100 1200 1300 Non-repetitive transient peak reverse voltage, t ::; 5.0 msec,v ....................... . Type designation vs. Voltage availability T707_.28;T707_-33 T707_.25;T707_-30 Forward leakage current, mA peak ......... . Reverse leakage current. mA peak ~ IORM IRRM 30 30 < Current Conducting State Maximums (TJ == 125"CI RMS forward current, A ........ . Ave. forward current. A ........ . One-half cycle surge currentCD, A .. 12t for fusing (for times> B.3 msl A2 sec. Forward voltage drop at ITM == 3000A and TJ == 25"C, V .......... . Min. repetitive di/dt • A/p.sec (i)@0 Symbol T707 __ 28 ITlrms) ITlavl I TSM T707 __ 33 430 275 7000 500 325 8000 I2t • 20&000 2S&000 V TM di/dt 250 300 T707 __ 25 T707 __ 30 400 ,250 7000 475 300 8000 205,000 265,000 2.30 2:90 2:S0 400 300 400 Switching ITJ == 25"CI Max. turn-off time, IT ==400A, TJ == 125"C, diR/dt =25 A7p.sec, reapplied dv/dt = 20V / p,sec. linear to .8V DRM. p,secCD0, Typ. turn-an-time. IT = l000A VD= 3OOV@. p.sec ..... , .... , , .... Min. critical dv/dt. exponential to VORM ' TJ = 125"C, V/p.secCDCD ........... . Min. di/dt, non-repetitive.CD0CD A//olsec , , . , , .. " .... , , . Maximum Forward Voltage Drop. Vs. Forward Current Symbol !!l tq 10 to 60 ton dv/dt di/dt 3.0 >ci e 5 300 4 800 '" !!l "E ., 3 Gate current to trigger at Vo = 12V, mA Gate voltage to trigger at Vo = 12V, V , .. Non-triggering gate voltage, TJ = 125"C. and rated VORM • V ......... , , .... . Peak forward gate current. A .... , . , . , .. Peak reverse gate voltage, V .... , , : , , .. Symbol IGT V GT Average gate power, Watts ........... . Thermal and Mechanical Symbol, Min., Max. oper. junction temp., QC ..... . Min .. Max. storage temp., "C .......... . Max. mounting torque, in Ib, CD . , . , .••.• Max. Thermal resistance (i) Junction to case, "C/Watt , .... , , , . Case to sink. lubricated, "C/Watt . , , , , . ~ ~ "E E 3 :J 0.15 4 :! 'j( VGOM I GTM V GRM PGM PG(avl Peak gate power, Watts . . . . . . . . . . . . . . . 150 ., TJ Tstg 6 1.6 co 1111\ II 6 c Gate Maximum Parameters IT J == 25"C) ~ i 7 H~~:~~o I III I I I I T707':"_~~ 2 ;JIIII' [j ~ T707__ 33 II IIII 10 100 1,000 Forward Current, ITM. Peak Amperes 10,000 3 Transient Thermal Impedance VS. Time -40 to +125 -40 to +150 360 .10 .05 (i) Consult recommended mounting procedures, o Applies for zero or negative gate bias. Per JEOEC RS-397. 5.2.2.1. With recommended gate drive. CD Higher dv/dt ratings available, consult factory. Per JEOEC standard RS-397. 5.2.2.S, For operation with antiparaliel diode, consult factory. o o o o lime. t. Seconds S82 h 1'111 t I I gb~~~45 100,000 Inches Millimeters Min. Max. Min. Max. 1.610 1.650 40.89 41.91 D .745 D, .755 18.92 19.18 D, 1.420 1.460 36.07 37.08 H .500 .560 12.70 14.22 .135 .145 3.43 3.68 J J, .072 .082 1.83 2.08 L 7.75 8.50 196.85 215.90 N .030 .76 Creep Distance-.34 in. min. (8.64 mm). Strike Distance-.52 in. min. (13.21 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-2.3 oz. (66 g). Symbol 1. DImension "H" is clamped dimension. T52 Outline Features: • Center fired di/namic gate • High dil dt with soft gate control • High frequency operation • Sinusoidal waveform operation to 20 KHz • Rectangular waveform operation to 20 KHz • Low dynamic forward voltage drop • Low switching losses at high frequency • Lifetime Guarantee Note: High frequency sine and square wave data available, consult factory. Applications: • I nveners for UPS Induction Heating Motor Control • Choppers • Crowbars Orde.ring Information 'Cod. TS27 Code 100 200 300 400 500 600 700 800 900 1000 1100 1200 01 02 03 04 05 06 07 08 I T(av) (A) 10 15 20 30 40 50 60 115 125 ( GT ,,'COde, (rna) Code Case Code 8 150 4 T62 DN 1. <.~, 6 4' .3 ",:, 09 10 11 12 Example Obtain optimum device performance for your application by selecting proper Order Code. = Type T527 rated at 115 A average with VDRM 800V, IGT 150 rna, tq 20l'sec max. and flex leads-order as: = = 583 Voltage CD Blocking State Maximums ITJ _" 125"C} Repetitive peak forward blocking voltage ,V Repetitive peak reverse voltage ,V ......... . Symbol VORM 1000 1100 1200 1000 1100 1200 VRRM 100 100 200 200 300 300 400 400 500 500 600 600 700 700 800 800 900 900 50 msec, V ........................... . V RSM 200 300 400 500 600 700 800 900 1000 1100 1200 1300 Forward leakage current, rnA peak ......... . Reverse leakage current. rnA peak IORM IRRM ~ ~ Non-repetitive transient peak reverse voltage. t 25 25 Current Conducting State Maximums ITJ = 125"C) Symbol T527 __ 60 T527 __ 12 T527 __ 13 IT(rms) I Tlav ) I TSM 95 60 1000 180 115 1200 200 125 1400 4000 6000 8150 4.2 100 3.5 100 3.2 150 RMS forward current. A ........ . Ave. forward current, A ........ . One-half cycle surge current(i), A .. 12t for fusing (for times> 8.3 ms) A2 sec. Forward voltage drop at ITM = 500A and TJ = 25°C, V •......... VTM Min. repetitive di/dt ,A/p.sec CD0CD di/dt 12 t Maximum Forward Voltage VS. Forward Current Switching (TJ = 25°C) >r:i. Symbol IJ/p.~e~,2r~:~'p~~~ 3~/dt5= tq 10 to 50 3.5 ton dv/dt 300 di/dt 400 = Vo = 12V, rnA Gate voltage to trigger at Vo = 12V, V ... Non-triggering gate voltage, TJ = 125"C, and rated VORM ' V .... -........... . Peak forward gate current, A .......... . Peak reverse gate voltage, V .......... . Peak gate power, Watts .............. . Average gate power, Watts ........... . IGT V GT 150 VGOM I GTM V GRM PGM PG(av) 0.15 4 5 16 3 3 Min., Max. oper. junction temp., "C ..... . Min., Max. storage temp., °C .......... . Ma J(. mounting force, lb. leD ........ . Max Thermal resistance doubled side cooled JunctIon to case, 0 ClWatt ............ . Case to sink, lubricated, °C/Watt ..... . 584' -40 to +125 -40 to +150 800 to 1000 RaJC Racs Consult recommended mounting procedures. Applies for zero or negative gate bias. Per JEOEC RS-397, 5.2.2.1. With recommended gate drive. Higher dv/dt ratings available, consult factory. Per JEOEC standard RS-397, 5.2.2.6. For operation with antiparallel diode, consult factory. ~~ 2 ~ 0 10,000 1000 100 10 Forward Current, ITM, Peak Amps c: o Transient Thermal Impedance VS Time 'ilc: ..,., .14 ~ .10 :l ~ .12 .,g ,/ ~~ TJ Tstg T527__ 12 T527__13 /y 3 LI- / II" :;ij ~ Symbol eD 'E ., ~ 0 ~ Thermal and Mechanical CD > .> Symbol T527_..60 4 ';( Maximum Parameters (T J 25"C) I/J ,,~ VV 5 E :l E Gate CD CD CD CD ., !'l '" '0 0 20VI/l.sec I.inear to 0.8 VORM,/L secCD0 Typ. turn-an-tIme, IT = 100A VO= 100VeD, p.sec ............... . Min. critical dv/dt. exponential to VORM ' TJ = 125°C, VI/Lsec®IJ) .......... __ Min. di/dt non-repetitive, A//l.sec 0'0CD ........... _ .. . eD 6 e Max. turn-off time, IJ -50A, Gate current to trigger at 7 ~ .1135 .02 .09 EU .. 0 ~ ; .06 L 1-- E~ .!!! ~ .04 ~ cD ~ .02 a U 0 01-0.00 ~ .001 .01 Time, t, sec. .1 10 100 Case Temperature vs, FOtWard Current - Double Sided Cooling 1~rrn~~~~~Tr:nT~"~'~'~'~~0~~~~ Average Forward Current,IT(AV),Amperes 1000 ~ x ~750 ~ 0..: ,~ ~500 '(jj is ~~ ~ 250 E ::J E ~ Average Forward Current. IT(AV). Amperes 1000 P ~ i x ~ 750 ~ ~ ~ 120 ~~Iib~1+·"':"""~·L 100 80 ~ F-!:+~~"""':~~"';;:{-· 0..: R-~"+';:::':"~'h-,l\,,''-. ~ ~ 60 p.-.:.::+:::...j•• ::......:.. ,-'\ j ~ I--db;:;C-!'·.~·+":'':::+ ~~~~~~~-~~~ o 50 100 Average Forward Current, iT(AV). Amperes 150 200 50 100 150 200 250 300 Average Forward Current. ITfAV). Amperes 585 Power loss vs. Forward Current 600~ ¥l ~ 5OO1::l:~+-~ ~ ~400Fi4*m~ ~ c: :1 300 .!!l 0200 ~ c.. 100 § j o o 50 Average Forward Current,IT(AV). Amperes o -==:.;u;_u_r:.....":l;,;;;;:.-:.•. o w..:;...r..;;;;..~.c;;;;..;-.:L;..;;..;~""'_ 100 200 Average Forward Current.IT(AV). Amperes Average Forward Current. IT(AV). Amperes 686 Inches Millimeters Min. Max. Max. Min. 1.610 1.650 40.89 41.91 cl>D cl>D, .745 .755 18.92 19.18 1.420 1.460 cl>D, 37.08 36.07 H .500 .560 12.70 14.22 .135 .145 3.43 3.68 cl>J J, .072 .082 2.08 1.83 L 7.75 8.50 196.85 215.90 N .030 .76 Creep Distance-.34 in. min. (8.64 mm). Strike Distance-.52 in. min. (13.21 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-2.3 oz. (66 g). Symbol 1. Dimension "H" is clamped dimension. T62 Outline Features: • • • • • • • Note: High frequency sine and square wave data available. consult factory. Applications: Center fired dilnamic gate High di/dt with soft gate control High frequency operation Sinusoidal waveform operation to 20 KHz Rectangular waveform operation to 20 KHz Low dynamic forward voltage drop Low switching losses at high frequency • Inverters for Ups Induction Heating Motor Control • Choppers • Crowbars Ordering Information Code Code T-827 100 200 300 400 500 600 700 800 900 1000 1100 1200 01 02 03 04 06 08 07 08 09 10 11 I T(av) (A) Code 150 200 250 16 2G 26 tq (usee) 10 15 20 30 40 50 ~. 8 7 I GT (ma) 150 e I 4 3 12 Example Obtain optimum device performance for your application by selecting proper Order Code. = Type T627 rated at 200 A average with VORM 1000V. IGT = 150 rna. tq = 20 psec max. and flex leads-order as: 587 Voltage Blocking Stata Maximums CD ITJ _0 125°CI Repetitive peak forward blocking voltage • V Repetitive peak reverse voltage • V ......... . Non-repetitive transient peak reverse voltage. t:S 5.0 msec. V ...................... . Symbol VORM Forward leakage current. mA peak ...•...... Reverse leakage current. mA peak .......... . VRRM 100 100 200 200 300 300 400 400 500 500 600 600 700 700 800 800 900 900 1000 1100 1200 1000 1100 1200 VRSM 200 300 400 500 600 700 800 900 1000 1100 1200 1300 IORM IRRM ~ ~ + > 25 25 Current Conducting State Maximums (TJ = 125°C) T627 __ 25 Symbol T627 __ 15 T627 __ 20 IT(rms) 235 150 3500 315 200 4000 400 250 4500 50.000 65.000 84.000 2.35 200 2.1 250 1.85 300 RMS forward current. A ........ . Ave. forward current. A ........ . One-half cycle surge current®. A .. 12t for fusing (for times> 8.3 msl A2 sec. Fe, ,.ard voltage drop at 'TM = 625A and TJ = 25°C. V ......... . V TM Min. repetitive di/dt@. A/J.lsecQ)@® di/dt ' nav ) I TSM Switching (TJ = 25°C) Max. turn-off time. IT = 150A. TJ = 125°C. diR/dt =12.50 A7J.1sec. reapplied dv/dt == 20V/J.lsec ® linear to 0.8 VORM,!, sec. Typ. turn-on-time. IT = 100A VO= 100V@. J.lsec . " ............ . Min. critical dv/dt. exponential to VORM' TJ = 125°C. V/J.lsec®® ........... . Min.di/dt A/J.lsec0®® ..........•. Symbol Maximum Forward Voltage VS Forward Current tq 10 to 50 l!l "0 7 i 6 t 5 > ton 3.5 dv/dt 300 di/dt 800 > CD 0> l!! Gate Maximum Parameters (TJ = 25°C) Gate current to trigger at Vo = 12V. mA Gate voltage to trigger at Vo = 12V. V ... Non-triggering gate voltage. TJ = 125°C. and rated VORM ' V ............... . Peak forward gate current. A .......... . Peak reverse gate voltage. V .......... . Peak gate power. Watts .............. . Average gate power. Watts ........... . '''1111 T621~20 IGT V GT VGOM IGTM V GRM PGM PG(av) "E 150 3 1~dt!..25 - 0.15 4 5 16 3 ReJC R aCS ~ 2 ~ 10 100 Forward Current. ITM. Peak Amperes -40 to +125 -40 to +150 1000 to 1400 .08 .02 Q) Consult recommended mounting procedures: CD Applies for zero or negative gate bias. eD Per JEOEC RS-397. 5.2.2.1. ® With'recommended gate drive. ® Higher dv/dt ratings available, consult factory. ® Par JEOEC standard RS-397. 5.2.2.6. For operation with antiparallel diode. consult factory. o Time. t. Seconds S88 ~ ~lI V .~ Transient Thermal Impedance vs. Time .10,.....,...,....M'TT!'I'....,... Symbol TJ Tstg ./ 3 '" .....~ E "E 1/11 IIIII 4 "0 > Symbol . Thermal and Mechanical Min., Max. oper. junction temp., °C ..... . Min .. Max. storage temp .. °C .......... . Min .• Max. Mounting Force. Ib.0 ... . Max. thermal resistance. Double side cO"led Junction to case. °C/Watt ........ . Case to sink. lubricated. °C/Watt ..... . IIIII ~JH:15 1000 10.000 Symbol rj>D rj>D, rj>D, H q,J J, L N Inches Min. 2.250 1.333 2.030 1.020 .135 .075 7.75 .040 Max. 2.290 1.343 2.090 1.060 .145 .090 8.50 Millimeters Min. Max. 57.15 58.17 33.86 34.11 51.56 53.09 25.91 26.92 3.43 3.68 1.91 2.29 196.85 215.90 1.02 Creep Distance-1.00 in. min. (25.40 mm). Strike Distance-1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plale. Approx. Weight-8 oz: (227 g). 1. Dimension "H" is a clamped dimension. T72 Outline Features: • Midway, di/namic Gate structure • Hard Commutation Turn-Off • Forward Blocking Capabilities to 1200 Volts • 'Low Switching Losses at High Frequency • Soft Commutation (Feedback Diode) Testing Available Applications: • Induction Heating • Transportation • Inverters Note: High frequency sine and square wave data available, consult factory. Ordering Information Example Obtain optimum device performance for your application by selecting proper Order Code. Type T72H rated at 450 A average with VORM = 1000V, I GT = 150 ma, 19 = 30 !lsec max. and flex leads -order as: S89 Voltage 0 BlocklngStateMaximums (TJ = 125°CI Symbol VORM Repetitive peak forward blocking voltage • V Repetitive peak reverse voltage. V ......... . Non-repetitive transient peak reverse voltage. t ~ 5.0 msec. V _........................ _• Forward leakage current. mA peak ......... . Reverse leakage current. mA peak .......... . VRRM 100 100 200 200 300 300 400 400 500 500 600 600 VRSM 200 300 400 500 600 700 IORM 'RRM ~ ~ 1000 1100 1200 1000 1100 1200 700 700 800 800 900 900 800 900 1000 1100 1200 1300 + 35 35 Current Conducting State Maximums ITJ = 125°C) T72H_..35 Symbol RMS forward current. A ........ . Ave. forward current. A ........ . One-half cycle surge current®. A .. 3 cycle surge current®. A ..... . 10 cycle surge current®. A .... . I't for fusing (for times> 8.3 ms) A2 sec. Forward voltage drop at 11M = 3000A and TJ = 25°C. V .......... . Min. repetitive di/dtCD0 57.15 58.17 0, 1.333 1.343 33.86 34.11 2.030 2.090 0. 51.56 53.09 H 1.020 1.060 25.91 26.92 ¢J .135 .145 3.43 3.68 J, .075 .090 1.91 2.29 L 7.75 8.50 196.85 215.90 N .040 1.02 Creep Distance-1.00 in. min. (25.40 mm). Strike Distance-1.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-a oz. (227 g). 1. Dimension "H" is a clamped dimension. Symbol D2 Outline Features: • Center fired di/namic gate • High di/dt with soft gate control • High frequency operation • Sinusoidal waveform operation to 20KHz • Rectangular waveform operation to 20KHz • Low dynamic forward voltage drop • Low switching losses at high frequency • Lifetime Guarantee Note: High frquency sine and square wave data available. consult factory. Applications: • Inverters UPS Induction heating AC motor drives • Cycloconverters • Choppers • Crowbars Ordering Information Example Obtain optimum device performance for your application by selecting proper Order Code. Type T727 rated at 450 A average wjth VDRM = 1000V. IGT 150 ma.tg 30 J.lsec max. and flex leads-order as: = = 891 Voltage ® Blocking State Maximums ITJ = 125°C) Symbol VORM Repetitive peak forward blocking voltage ,V Repetitive peak reverse voltage ,V ......... . Non~repetitive VRRM transient peak reverse voltage. t::; 5.0 msec, V VRSM ...................... . type designation vs. voltage availability Forward leakage current, mA peak ......... . Reverse leakage current, mA peak .......... . 100 100 200 200 200 ~ 300 300 400 400 500 500 600 600 700 700 800 800 900 900 300 400 500 600 T727_..4D-T727_..4B 700 800 900 1000 1100 1200 1300 IORM IRRM 1000 1100 1200 1000 1100 1200 T727_-36--T727_..45 30 30 . Current Conducting State Maximums (TJ = 125°C) Symbol T727--40 RMS forward current, A ........ . Ave. forward current, A ........ . One-half cycle surge current@, A .. IT(rms) I Ttav ) I TSM 625 400 750 475 7000 205,000 2.50 300 8000 265,000 2.30 I2t for fusing (for times> 8.3 ms) A2 sec. Forward voltage drop at I TM == 3000A and TJ = 25°C, V .......... . Min. repetitive di/dt A/!,sec (i) 3.0 > ton Gate current to trigger at Vo == 12V, mA Gate voltage to trigger at Vo == 1'2V, V ... Non-triggering gate voltage, TJ == 125°C, and rated VORM ' V ............... . Peak forward gate current, A .......... . Peak reverse gate voltage, V ..........• Peak gate power, Watts .............. . Average gate power, Watts ........... . ~ >- 6 ci. 5 0 dv/dt 300 0 di/dt 800 01 Q) !!l ill~72L1J ~127'li T727• ..40 4 T727• ..48 '0 > Gate Maximum Parameters (T J == 25°C) 7 'E'III ~0 Symbol IGT VGT VGOM I GTM VGRM PGM PG(av) 150 3 u.. 0.15 4 5 16 3 'xIII 3 ~ ~~ 2 p E E " ~ 10 100 1,000 Forward Current, ITM, Peak Amperes I Thermal and Mechanical Symbol Min" Max. oper: junction temp., °C ..... . Min" Max. storage temp., °C .......... . Max. mounting torque, in lb. CD ........ . Max. Thermal resistance (i) Double side cooled Junction to case, °C/Watt ... . Case to sink, lubricated, °C/Watt ..... . TJ Tstg TranSient Thermal Impedance VS. Time -40 to +125 -40 to +150 2000 to 2400 ,; '" III U RSJC Recs .06 .02 0 l- e 0 (j) Consult recommended mounting procedures. "ne ..," .04 0 0, 0, H J J, Inches Min. Millimeters Max. Min. Max. 2.850 2.900 72.39 73.66 1.845 1.855 46.86 47.12 2.560 2.640 65.02 67.06 1.020 1.060 25.91 26.92 .135 .145 3.43 3.68 .075 .090 1.91 2.29 11.50 12.50 292.10 317.50 .050 1.27 L N Creep Distance-l.00 in. min. (25.40 mm). Strike Distance-l.02 in. min. (25.91 mm). (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-2 lb. (908 g). 1. Dimension "H" is a clamped dimension. T9G Outline Features: • Midway, di/namic Gate Structure • Hard Commutation Turn-Off • Forward Blocking Capabilities to 2200V • Low Switching Losses at High Frequency • Soft Commutation (Feedback Diode) Testing Available Applications: • Induction Heating • Transportation • Inverters Note: High frequency Sine and Square wave data available, consu It factory. Ordering Information Example Obtain optimum device performance for your application by selecting proper order code. Type T9GH rated at 800A average with VORM = 1aOOv tq = 50 usee. IGr = 300 rna, and standard 12 inch leads -- order as: *for lower voltages consult factory 893 Voltage (l) Blocking State Maximums (TJ = 125° C) Repetitive peak forward blocking voltage ,V Repetitive peak reverse voltage, V Non-repetitive transient peak reverse voltage, t ~ 5.0 msee, V ..... , .................... . Symbol VORM VRRM 600 800 1000 1200 1400 1500 1600 1700 1800 1900 2000 2100 2200 600 800 1000 1200 1400 1500 1600 1700 1800 1900 2000 2100 2200 VRSM 700 900 1100 1300 1500 1600 1700 1800 1900 2000 2100 2200 2300 (TJ=25°C) Symbol Min Gate current to trigger at Vo =12V, mA .. Gate voltage to trigger at Vo = 12V, V .... Non-triggering gate voltage. TJ=125°C, and rated VORM, V ................ Non-triggering Gate Current at VO=12V, rnA .................... Peak forward gate current, A .......... Peak reverse gate voltage, V ........... Peak gate power, Watts .............. Average gate power, Watts ............ IGT VGT Forward leakage current, rnA peak ......... . Reverse leakage current, rnA peak .......... . 60 IORM IRRM 60 Current Conducting State Maximums (TJ= 125°C) . RMS forward current, A ........ . Ave. forward current, A .......•• One-half cycle surge current®, A .. 3 cycle surge current®, A ..... . 10 cycle surge current®, A .... . I't for fusing (t=8.3 ms) A'sec Max I't of package (t=8.3 ms). A'sec Forward voltage drop at ITM = 3000A and TJ = 25°C, V .......... . Min. Repetitive di/dt Gate Symbol IT(rms) .1T(av) I TSM I TSM I TSM I't J2 t T9GH_.o9 1250 1400 800 900 10,000 7,500 6,200 416,000 90 x 10· 13,000 9,750 8,000 700,000 90 x 10· 2.95 2.50 300 400 A/usec. CD CD· CD di/dt Switching (Tj=25'C) Symbol Min Typ 7 40 ton dv/dt ./ ~ 400 IL 500 1000 IH 300 800 II J ~/ ~T9GH_.09 Min Oper. junction temp., ·C ............... Storage temp., ·C .................... Mounting force, Ib.(i) ................ . Thermal resistance with double sided cooling(i) Junction to case, ·C/Watt ........... Case to sink, lubricated, ·C/Watt ........ TJ Tstg -40 -40 5000 125 150 5500 .006 .023 .0075 Typ o 1000 Forward Current, ITM, Peak Amperes 10,000 Consult;recommended mounting procedures. Applies for z'ero or negative gate bias. Per JEDEC RS-397, 5.2.2.1. With recommended gate drive. . Higher dv/dt ratings availabla, consult factory: Per JEDEC standard RS-397, 5.2.2.6. For operation with antiparallel diode, consult factory. 100,000 Transient Thermal Impedance VS. Time Max .03 ~ Q)~• u .02 ~ ~~ ~cD E :: -u ~ S '/ .01 _.. ,~.~ uC: c~ ~ .... o .0001 .001 Time, t, Seconds S94 60 3 ;;.; 100 Symbol T Conforms to 00-5 Outline Futures • • • • • di/dt of 2000 to 4000 A/us compression Bonded Enespsulation All Diffused Design LowVrM JEDEC 00-6 Package Min. .450 .080 .667 B 0 F J M N Millimeters Max. .667 .060 .422 .140 .687 .200 1.000 .375 .453 .175 z .156 W %-28 UNF-2A Max• 11.43 2.30 16.94 16.94 1.52 10.72 3.56 17.45 5.08 25.40 9.53 11.51 4.45 3.96 Glass To Metal SealCreepage & Strike Distance = .09 in. min. (2.46 mm) (In accordance with NEMA standards.) Finish-Nickel Plate. Approx. Weight-.6 oz (18g) NOTES: 1. Complete threads to extend to within 2Y.i threads of seating plane. 2. Angular orientation of this terminal is undefined. 3. }4-28 UNF-2A. Maximum pitch diameter of plated threads shall be basic pitch diameter (.2268", 5.74 mm) Ref. (Screw thread standards for federal services 1957) Handbook H28 1957 P1. Appllcetlonl: • Radar Modulators • Laser Pulsers Application The reverse blocking diode thyristor is a twoterminal, four-layer PNPN switch. In the forward direction, the device will initially block voltage to its rated V DRM • However, upon application of a trigger voltage, it switches to a low impedance state where it remains until the anode current is reduced below the holding current. The T40R· employs an all diffused design and is packaged in the standard 00-6 outline case. The exclusive Westinghouse CBE (compression bonded encapsulation) construction technique is employed to eliminate solder joints and, thereby, failures caused by thermal fatique. Example Obtain optimum device performance for your application by selecting proper Order Code. Type T40R rated at 22A average with V DRM 800V, and di/dt = 2000A/us - order as. = These deviess are ideal for pulse work because of their high di/dt and fast switching capabilities. Radar modulators and laser pulsers are two prime examples of the kinds of applications particularly suited to the Westinghouse L-_'--_ _..L.._ _..L.._ _..L.._ _......._ _...._ _......_ _ _ _ _---'_ _ _ _......_ _- - I T4OR. S95 Voltage Blocking State Symbol Repetitive Peak Forward Blocking Voltaga V ORM Repetitive Peak Forward Leakage Current at V ORM Holding Current TJ ('C) 25 to 125 Max. IH Symbol TJ ('C) IT{rmo) IT{oY) ITIM I"t 125 125 125 125 Units V V V 600 800 1000 25 125 25 IORM Typ. Min. 300 3 15 500 5 100 1'8 ma ma Current CDnducting Stete RMS Forward Current at Tc .. 4O'C CD Average Forward Current at Tc 4O'C CD Ofl1l-half Cycle Surge Current at T c .. 4O'C I~t For Fusing (For Times ~ 8.3 mil Forward Voltage Drop at ITM = 1oo0A. Pul.. Width .. 3001'8. Duty Cycle = 2% = CD VTM Typ. Min. Max. 35 22 300 370 25 Unit. A A A A"sac. V 4 6 Typ. Max. Units 20 40 A/I'8 A/I'8 A/I'8 V 1050 1500 Switching Symbol Rate of Rise of Current. Sine Wave CD at Pulse Width/2 0.51'8 to 800A at Pul.. Width/2 = 0.51'8 to 1200A at Pulse Width/2 .. 0.251'8 to 800A Dynamic Forward Voltage Drop at ITM = 1000A Sine Wave. Pulse Width/2 .. 41'8. Duty Cycle ...25% Pulse Trigger Voltage at dv/dt ii; 5000 V/I'8. Pulaa Width iI; 200 ns Pulse Trigger Current at VT (Circuit dependant value) Trigger Response Time at VT• IT for 90% to 10% of V ORM Turn-Off Time at ITM = 300A Sine Wave. Pulse Width .. 81'8 dv/dt = 20 V/I'8 to 800V Rate of Change of Voltege Exponential to VORM = TJ ('C) Min. di/dt di/dt di/dt VTM (OYN) 25 25 25 25 2000 3000 4000 VT 25 to 125 VORM + 50 IT 25 to 125 t •• 25 100 10 25 50 dv/dt 100 25 100 10 A 200 ns I's 100 200 20 V 1'8 V/I'8 V/I'8 400 100 Thermal and Mechanical Symbol Operating Junction Temperature Storage Temp_ure Mounting Torque CD Thermal Resiatance, CD Junction to Case Ca.. to Sink, Lubricated ()) At 60 Hertz. CD Consult recommended mounting procedures. 896 TJ T.... RaJc Reel Min. -40 -40 Typ. Max. Units 125 150 30 'C 'C in.lb. 1.25 .25 'C/W 'C/W Symbol 0 0, 0, H J J, Inches Millimeters Min. Max. Min. Max. 1.6iO .745 1.420 1.650 .755 1.460 40.89 18.92 36.07 41.91 19.18 37.08 .500 .135 .072 .560 .145 .082 12.70 3.43 1.83 ,76 14.22 3.68 2.08 N .030 Creep Dlstance-.49 In, min. (12.60 mm). Stnke Dlstance-.52 In. min. (13.21 mm). (In accordance with NEMA standards). Finish-Nickel Plate. Approx. Welght-2.3 oz (66g). 1. Dimension "H" IS clamped dimension. T62R Outline Features: • • • • di/dt of 2000 to 3000 A/}Jsec All diffused Design Low VTM High peak switching currents Application The reverse blocking diode thyristor is a twoterminal, four-layer PNPN switch. In the forward direction, the device will initially block voltage to its rated V DRM' However, upon application of a trigger voltage, it switches to a low impedance state where it remains until the anode current is reduced below the holding current. These devices are ideal for pulse work because of their high di/dt and fast switching capabilities. Radar modulators and laser pulsers are two prime examples of the kinds of applications particularly suited to the Westinghouse T62R. Ordering Information "Average current rating assigned for ordering information only. Example Obtain optimum device performance for your applicetion by selecting proper Order Code. Type T62R rated at 125 A average, with VDRM = 800V, order as: 897 Blocking State Repetitive Peak Forward Blocking Voltage Symbol VDRM T~ (OC) Min. 26 to 126 Typ. Max. UnlW V V V 600 600 1000 Repetitive Peak Reverse Blocking Voltage Repetitive Peak Forward Leakage Current at VORM Repetitive Peak Reverse Leakage Current VRRM Holding Current VRRM IORM IRRM IH 26 to 176 26 126 26 126 26 100 3 V ma ma ma ma ma 6 10 10 16 16 7 16 16 26 100 Current Conducting Stat. Peak Forward Pulse Current CD RMS Forward Current One·half Cycle Surge Current (For Times:s8.3 ms) I't For Fusing (For Times:s8.3 ms) I't of package (For Times = 8.3 ms) Symbol ITM IT{RMS) ITSM 12t I"t T~ Max. ("C) 126 125 126 125 126 2600 200 3000 37,500 20 x 10' UnlW A A A A"sec. A2sec. Switching Symbol Current Rate of Rise Code 2, 2000 A @ 1 psec Code 3, 2000 A @ .667 JAsec Energy per Pulse at ITM = 2500A Square Wave Pulse Width = 3 ps Pulse Trigger Voltage at dv/dt..tt 5000 V/JJs, Pulse Width ~. 200 ns Pulse Trigger Currant at VT (Circuit dependent value) Peak Dynamic Forward Voltage Drop at ITM = 2500A Turn-Off Time at ITM = 2500A Square Wave Pulse Width = 3.os, dv/dt = 20 VII's to 600V Critical Rate of Change of Voltage Exponential to VORM T~ (OC) Min. Typ. Max, UnlW .30 .19 W.S/Pulse W.S.lPulse AlPS AlPS di/dt di/dt W.S.I Pulse 25 25 126 25 2000 3000 VT 25 to 125 VDRM + 150 IT 25 to 125 70 VTM IOYN) 25 8 10 V tq 25 100 50 100 250 200 ps ps dv/dt 125 20 100 1050 1600 V A VIps Thermal and Mechanical Symbol Operating Junction Temperature Storage Temperature Mounting ForceCD Thermal Resistance, double-sided cooling, CD Junction to Case Case to Sink, Lubricated 1) Tstg. 598 -40 -40 1000 R9JC R9CS CD This value is for·a 3 JJsec, 400 Hz pulse, 2500 A peak. Consult factory for other pulse ratings. CD Consult recommended mounting procedures. Min. MIx. UnlW 125 150 1400 °C °C lb. .095 .02 °C/W °C/W INTRODUCTION @offers a wide range of power transistors designed to match the equipment manufacturer's technical and economic requirements. The designer can choose from various processes, ratings, and package styles to optimize an application: general purpose singlediffused types for economical ruggedness; high S.O.A. alloy types for the ultimate in reliability; and high power, fast switching tripled-diffused types for "state-of-the-art" voltage and power capability. For linear applications (amplifiers and regulators), general purpose transistors in TO-66 and TO-3 packages offer the most "watts per dollar" value. Excellent Safe Operating Area (SOA) make these types ideal for inductive loads such as DC motor controls or 60 and 400 hertz inverters. High S.O.A. alloy process transistors from@have been used in numerous critical aerospace and defense programs. Alloy construction, hard solder / moly bondi ng, and hermetic,copper stud, cases have generated a record of superb performance and reliability. For inductive load switching, the forward and reverse bias Safe Operating Areas (SOA) of these devices make alloy the clear choice over other processes. The newest addition to the@transistor line is the super-powered family of triple-diffused switching types. Up to 500 volts of sustaining voltage capability is coupled with a gain rating at 50 amperes; but brute power is not the only feature of the D60Tfamily- switching times under a microsecond and Compression Bonded Encapsulation (CBE) open a new area of application for designers of high speed inverters, switching regulators, AC motor drives and VLF radio transmitters. Complete test facilities are available for matching, special selection, or high reliability screening.@offers a Lifetime Guarantee on all transistors bearing this symbol+. Specify Westinghouse Power Transistors. TRANSISTOR PRODUCT INDEX Type Number Page 151 152 153 154 163 164 T15 T15 T17 T17 T23 T23 2Nl 015, A,B,C,D 2N1 016, A,B,C,D T19 T19 2N2226-29 2N2230-33 2N2757-61 2N2763-66 2N2769-72 2N2775-78 T25 T25 T29 T29 T29 T29 2N3054 2N3055 2N3429-32 2N3441 2N3442 2N3470-73 2N3474-77 2N3771 2N3772 2N3773 T5 T7 T21 T5 T7 T27 T27 Ttl Tt1 Tt1 2N6254 2N6262 T9 T9 D60T D62T T33 T33 T1 GENERAL PURPOSE NPN POWER TRANSISTORS .5 - 15 Amperes (Gain Rated) C'l I' I' 0 Z ~u: C'l 'z 150 140 N w 120 0 c[ 100 or III N ~ 0 or > 80. ...0 60 u: (,) III III III C'l C'l N N CD Z Z • 4 5 N 0 0 Z w ::j 0 40i (,) 20' .5 .5 3 3 10 8 15 GAIN RATED COLLECTOR CURRENT • DIAMOND PACKAGE TO-3/TO-66 HIGH S.O.A. &. HIGH POWER SWITCHING NPN POWER TRANSISTORS 460 o z ~u: 1 .5 - t - - 200 I- u: 100 e ui ui ... III C'l III N III or III cj .9 ~ ; ~. '\~ ~ ~" -q, ~.. \ I I II '\;\: \ """"".,.;'"'"' 2 140 ··rl\ ~~kl)L1~ ~\ '\~'\ \~ ~ 2N3441 ~ 10 E ..!1 '0 u .1 ". 4 6 10 Collector Emitter Voltage, VCE, Volts T6 2N344f Min Max 2N3054 Max Min Test Conditions Symbol 50 100 140 Symbol A b Inches Min. .250 .038 Max. .450 .043 .875 .440 .225 .135 D e e, F L P q .420 .205 .312 .151 1.177 R, R, S .655 .161 1.197 .525 .188 .675 Millimeters Max. Min. 11.43 1.09 22.23 11.18 5.72 3.43 6.35 .97 10.67 5.21 7.92 3.84 29.90 4.09 30.40 13.34 4.78 17.15 16.64 Finish-Nickel Plate. Approx. Weight-.58 oz. (16.5 g). Conforms to TO-3 Outline F..tu....: Application. • High raverse bias S.O.A. for inductive loads • Low thermal resistance • Hermetically sealed TO-3 type package • 117 watt dissipation • 100% Power tested • Lifetime guarantee • • • • Series and shunt regulators High-fidelity amplifiers Power switching circuits Solenoid drivers Voltage Matrix Maximum Ratings and Characteristics Tc=25°C unless specified * * * * Syrnbol Operating and storage temperature Collector-emitter sustaining voltage Vceo(sus) I 2N3055 I 2N3442 I Units °C -65TO 200 -65 TO 200 60 140 Volts Collector-base voltage VCBO 100 160 Volts Emitter-base voltage VeBO 7 7 Volts Collector-emitter voltage VBe = -1.5V Vcev 100 160 Ie 15 10 I. 7 7 * Continuous collector current * Continuous base current Linear power derating factor from Tc =25°C * Thermal resistance * Power dissipation Power dissipation Tc = 100°C R&Jc Volts Amperes Amperes W/oC .67 .67 1.5 1.5 °CIW Pr 115 117 Watts Pr 67 67 Watts • JEDEC Registered Parameters T7 CHARACTERISTIC SYMBOL DC DC COLLECTOR EMlnER OR BASE VOLTAGE VOLTAGE V V VICE * Collector-Cutoff Curent: With base open ICED With base-emitter junction reverse-biased * Emitter-Cutoff Current DC Forward Current Transfer Ratio -1.5 -1 5 I CEV 140 100 -1.6 -1.6 lEBO Base-to-Emitter Voltage Collector-to-Emitter . Saturation Voltage hFE 4 MIN. MAX. - 5 - 10 - mA 30 30 - 6 6 - -- 20 70 0.4 0.3 4 3 V CE MAX. -- - 3 4 4 MIN. 0.7 3 4 b c/>D e e, F L c/>P .420 .205 .312 .151 1.177 q R, 'R, S .655 Millimeters Max. Min. 6.35 11.43 .97 1.09 22.23 11.18 10.67 5.72 5.21 3.43 7.92 4.09 3.84 29.90 30.40 13.34 4.78 16.64 17.15 Max. .450 .043 .875 .440 .225 .135 .161 1.197 .525 .188 .675 Finish-Nickel Plate. Approx. Weight-.58 Oz. (16.5 g). Conforms to TO-3 Outline Features: • No forward bias secondary breakdown to 100 volts:o;C, • High reverse bias S.O.A. for inductive loads • Low thermal resistance • Hermetically sealed TO-3 type package • 150 watt dissipation • 100% Power tested • Lifetime Guarantee Applications: • Series and shunt regulators • High-fidelity amplifiers • Power switching circuits • Solenoid drivers Maximum Ratings and Characteristics Tc=25°C unless specified Symbol Collector-base voltage 2N3771 ·.:.65 to 200' Operating and storage temperature Collector-emitter sustaining voltage I I 2N3772 I 2N3773 *-65 to 200 *-65 to 200 I Units °C Vceollllsl '40 . *60 *140 Volts V eBo '50 ' *100 '160 Volts V EIO '5 *7 *7 Volts V e,. *50 *100 *160 Volts Continuous collector current Ie *30 *20 Continuous base current I, *7.5 * .855 Emitter-base voltage Collector-emitter voltage V" = -1.5V Linear power derating factor from Tc = 25°C . *.16 Amperes '5 '4 Amperes *.855 ".855 wrC I, Thermal resistance RSJC 1.17 1.17 1.17 °C/W Power dissipation Pr *150 "150 *150 Watts Pr 86 86 86 Watts Power dissipation Tc = 100'C ... Qt:loistered Parameters T11 ELECTRICAL CHARACTERISTICS (Tcl =26°C LIMITS TEST CONDITIONS Characteriltic Symbol DC Collector Voltage (V) Vca • DC Forward Current Transfer Ratio • Collector- Cutoff Current: With emitter open Second-Breakdown Energy With base reverse biased & L =40 mH, RBE =100 ElYb u cB 5 7 4 4 4 Min. Max. -5 -15 - -- -- -- -- 60 - Units 5 - 15 -- 60 2 mA --2 mA --- mA -- mA -- - mA -- - -5 ---- -- -- - 10 5 -- 15 10 B - 60 40 ----- -2.5 5 2.6 30 10 r---r---t-----t----+---±;111-..... . !! 500 500 -- 2.2 V - -1.4 V 1.5 - - 3.75 -1.5 -4.0 5 2.2 1.4 - 2 100 10 5 2.7 1.5 1 O.B 10 10 - 0 0 15. 10 B .5t---t---::::;i;--+~~r-+----t ~ Max. 10 0 0 0 30 50 120 Maximum Transient --+----+----4---~ Thermal Impedance (All types) u 1.0 5 - --15 60-- -- Min. 10 10~--T-----'-----'------r-----r----~ 5 Max. 2 VCE(..,) ISlb 2N3773 5" -1.5 -1.5 -1.5 Second-Breakdown Collector Current With base forward-biased & 1-s, non repetitive pulse 2N3772 2" 30 30 140 " Collector-to-Emitter Saturation Voltage Min. I. Rated VCEO ICEV VBE Ie 30 20 16 15 10 B With base-emitter junction reverse- biased & Tc =150° C • Base-to-Emitter Voltage °E VSE -1.5 -1.5 -1.5 lEBO ~ VEa 50 100 140 " Emitter- Cutoff Current = VeE IcEV ICEO 2N3771 (V) With base-emitter junction reverse-biased With base open DC Current (A) 4 4 4 4 4 4 HFE ICBO DC Emitter or 8 _ Voltage, - - - 125 10 30 A mJ 6 3 ! c ~ 1 .§ 1-• . Maximum Forward Bias Safe Operating Area Single Non-repetitive Pulse Tc = 25°C These forward Bias Curves may be used for all Transistors except the maximum collector-emitter voltage ca nnot be exceeded 5i ~ 01~---i----+---~---~---~--~ ~.OO6~---i~---+---~---~---+---~ ~ " u ~ 1; .!! ·1 i.OO1~----~----~~--~~----~~----~-----' 101 10 1()-6 T12 ~ Time, t, Seconds 15 u .1 1 3 5 Collector-Emitter Voltage, VeE, Volts 50 100 140 Typical Characteristics 2N3771 20 100 \\ \ 60 ~ " 1\ \ \ f\.' 40 Te = c' '" ... - ----- VeE=4Volt. ~ t ,e=2S"C ~ ....... ~ :::-o 15 10 S V I 1 j,/J c.i o 20 Collector Current. Ie. Amperes char.ct.).tiC. VeE = 4 Volts l/ ~ / o - 6 '~ 8 "- 5 Typical VCE(satl Versus Ie le/I!I= 10 / I I J \ 6 "- ./ ---- - ./ ..-- /' 4 I I 1.1 I I " "" ~ P- I 15 10 o 20 Collector Current. Ie. Amperes 3 Typical Switching Characteristics - = = le/IBlonl 10 le/IBloffl 10 Vee 30 Volts = ........ r-..... ./ ......... r-...... If ,,/ V I, V ./ ................ ........ Te-160'~ Tr =-6S·C ........ Te=~ 2.5 1.5 .S Base Emitter Voltage, VeE. Volts 10 ~ Tc- 16O' C / IIV - il t ] 0 V 1/ V Typical hFE Versus Ie 1: 20 ci 1/ v1 J 15 i/ e=~6S":/ ./ -6S'~"",~ ~ /' J Te=2S"C/ r-e= lS0'C \~ 80 w J ,_w.¥_ ....... ~ o 4 8 Collector Current, Ie. Amperes ~ --;><:"'12 .. ........ r-.... 16 .......... 20 r--.... 24 Typical Characteristics 2N3772 20r---~-'--r--'~----~---~ j ~ c' ~ ! 20 r----+----4---~~~~----4---~~--_+--~ c.i 0L-__ o ~ __- L__ ~ ____4 -__J -___L__ 5 Collector Current, Ie. Amperes 10 lS ~L_~ 20 f-----i----i- 5 ~ u J u ci ~ 10 "0 u 0 L..._.Jt!:.._.u~..L_.L..._L-_L-_..L_._J......._J......._J o .S Base Emitter Voltage, VeE. Volts 1 l.S 2.5 T13 Typical Characteristics 2N3772 4 i" 8 Typical VCE(sat! Versus Ie lellB = 10 -f-'-- Te=150~ ~ I I I \ ['... -..!f 6 I i'-- ...... o - o ~ I-- ---'--- 5 10 o 15 Collector Current. Ie. Amperes - 4 V ,- ..,...V ~ ~'...-I I-CC i I o i--""" ~ f-- -- 5'C I I -I............ V~~ I Vee ,= 301"118 Te=~ ~ ~P"'"Te= le/lB(onl = 10 le/lBloffl = 10 ......... I "- ,",'..... 4 , ..... \ I Typical Switching Characteristics _ _ - 6 10 12 Coliector CUrrent. Ie. Amperes Typical Characteristics 2N3773 .- 80 20 I~ 60 , ~e=25'C Vce=4Volts I~ ..... Te= ~ 5'C "~ ~ ~ w 1- '" Te = 150'C"'- i u u o o 4 Collector Current, Ie;:. Amperes 8 10 r-- - fi? ~ .~ 20 ci Te=-65'» ~ 40 "/ 15 Typical hFE Versus Ie /' /J'I / VI u j ;3 .... Te= 25'C VCE = 4 Volts i ---- ~V Characteristics / /~ ' " Tc = 150'C o 12 /1 I o • 1.5 1 2,5 2 Base Emitter Voltage, VaE. Volts 4 r---~----~----r----'-----r--'-' Typical Switching Characteristics 6 1-"-11----'1--1--+ lellBlonl = 10 le/IB(oftl = 10 Vee = 30 Volts Typical VCE(sat) Versus Ie +_+_+_+_+_., lellB = 10 4 ~u I g t, ~ ,; E i= 4 T14 Collector Current. Ie. Amperes 8 12 0 0 2 4 Collector Current. Ie. Amperes 6 8 10 12 Symbol Inches Millimeters Min. Max . .500 .045 .140 .560 .060 .170 12.70 1.14 3.56 14.22 1.52 4.32 1.240 .730 1.280 .770 1.125 31.QO 18.54 32.51 19.56 28.58 e e, H .360 .180 .014 .400 .200 .025 9.14 4.57 .36 10.16 5.08 .64 j .140 .130 .550 .170 .190 .590 3.56 3.30 13.97 4.32 4.83 14.99 Q .550 .810 .105 .590 .850 .140 13.97 20.57 2.67 14.99 21.59 3.56 S ~. ...... ~~ ~ ~ \r\ ,~~'§.~ " "\ 30 \.. 151 1.0 10 II00 1 2 Collector Current, Ie, Amperes 3 4 5 6 Typical dc gain versus collector current at Tc =25'C, I(II I'! 0.5 f~ IE « _si I- i ~,,,~~ "q,~-t;~ ...... 4""~ '1 ", ~ Maximum Forward bias Safe Operating Area Singe Non-repetitive Pulse TC = eooc These forward Bias Curves may be used for all t ra nsistors except the maximum collecor-emitter voltage ca nnot be exceeded. "- \. ~ ~::I 5 ow ~ U ~ 4 :au 151 and 152 ~ o. 1 ::!l 10 3 50 Collector Voltage VCE, Volts Tc = BO°C 2 00 .25 .5 .75 Bose Voltage, VBE,Volts Typical base voltage vs. collctor current Characteristics at Tc = 2.5°C 116 1.0 1.25 1.5 "- "'- " 100 2.00 Millimeters Min. Max. 8.64 10.31 10.16 11.18 4.83 4.06 2.03 2.41 13.82 14.27 2.54 3.56 18.03 10.72 11.51 1.02 1.40 Inches Min. .340 .400 .160 .080 .544 .100 Symbol Max. .406 .440 .190 .095 .562 .140 .710 .422 .453 .040 .055 %-28 UNF-2A A .pO e e, E F J N .pT .pW Finish-Nickel Plate. Approx. Weight-.25 oz. (7 g). 1. Complete threads to extend to within 2'1.. threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch dia. of %-28 UNF-2A (coated) threads (ASA B1.1-1960). Conforms to MT-S2 Outline Features: • Gold Alloy Process • No forward bias secondary breakdown to 150 volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance with copper base • 150 watt dissipation • Protection from thermal fatigue with hard solder and molybdenum construction • 25 volt V ESO • Low VeE (sat) • Lifetime Guarantee Maximum Ratings and Characteristics Tc = 25° C unless specified Maximum Ratings Applications • High Power SWitching • Amplifiers • Servo Systems • Regulators • Modulators Voltage Type 153 - Low Gain Series 154 - High Gain Series Symbol I Type 153 154 -65 To 175 - Operating and storage temperature 40 To 240 I VCEO (BUB) 153-04 153-06 153-08 153-10 154-04 154-06 154-08 154-10 65 85 105 125 40 60 80 100 153-12 153-14 153-16 153-18 154-12 154-14 154-16 154-18 145 165 185 205 120 140 160 180 153-20 153-22 153-24 154-20 154-22 154-24 225 245 265 200 220 240 u or., 5 °C Collector-emitter sustaining voltage VCEO (sus) Collector-base voltage VCBO VCEO (SU8' + 25 Volts Emitter-base voltage VEBO 25 Volts Continuous collector current Ie 7.5 Amps Continuous base current IB 3. Amps Linear power derating factor from Te = 25°C VCBO Volts 1.33 W/oC .75 °C/W Thermal resistance ROJC Power dissipation Pr 200 Watts Power dissipation Tc = 100°C Pr 100 Watts T17 Electrical Characteristics Tc = 25° C unless otherwise specified All Types Test Test Conditions Symbol D.C. Current Gain (153 types) hFE VCE =4;lc = 1.5A 15 D.C. Current Gain (154 types) hFE VCE = 4, Ie = 1.5A 25 Units Max. Min. Collector-Emitter Saturation Voltage (153) VCE (sat) Ic = 1.5A, Is = 250 mA 13 V COllector-Emitter Saturation Voltage (154) VCE (sat) Ic = 1.5A, Is = 250 mA 1.25 V V Base-Emitter Saturation Voltage (153) VBE (sat) Ic = 1.5A, Is = 250 mA 2.5 Base-Emitter Saturation Voltage (154) VBE Ie = 1.5A, Is = 250 mA 2.0 V Emitter Cutoff Current lEBO VES = 25V, Tc = 175°C 20 mA Turn-On Time ton Ic = 1.5A 5 I'sec Storage Time Is Vcc = 12V, 5 I'sec Fall Time tI Is (ON) 5 ).(sec Output Capacitance Cob Vcs = 10V.f = 1 MHz fT =10V, I c =0.5A =1.5A VCE = BOV., t =1.0 second Tc =25°C L =ImH, Vss =- V, Rs =200 ' Ie = 5.6A . Gain-Bandwidth Beta Cutoff Frequency fhle Second Breakdown Forward Biased, ISB (sat) Collector Current Second Breakdown, Reversed Biased =I s rOFF) =0.3A pF 750 VCE 250 KHz VCE = 12V,Ic 14 KHz A 2.5 mJ 15.5 Typical Characteristics 10 MAJI. Ie ~ ""r'\. 5 40 ""- "", ~ :!l ;;; 153 E £i I 2 3 Collector Current,Ie,Amperes 4 7 6 8 Typical dc gain versus collector current Tc = 25°C. E \~t,,~ 1.0 ~ \. " u 5 11 \. 0.5 '5 _ - u 6 , 1+ ~o~'\." \\ Co « 00 - /~ "".I.~.r ~o~.r - - r530nd 154 \ Maximum Forward Bias Safe Operating Area Single Non-repetitive Pulse Tc = 25°C These forward Bias Curves may be used for all Transistors except the maximum collector-emitter voltage cannot be exceeded \ w U > x « :e 0.1 r 10 50 100 VeE + .+ T18 H °0 ~ ·f +:1 .5 Base 10 Emitter Voltage, VeE ,Volts .~ 1.5 it Collector Emitter Voltage, VCE, Volts Inches Min. .500 .045 .140 1.240 .730 Symbol A cpS d cpD cpD, cpD, e e, .360 .180 .014 .140 .130 .550 .550 .810 .105 .480 .050 0/,6-24 H j K L N q Q S cpT cpw Conforms to TO-82 Outline Features: • Gold Alloy Process • No forward bias secondary breakdown to 100 Volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance with copper base • 150 watt dissipation • Protection from thermal fatigue with hard solder and molydenum construction • 25 volt V EBO • Low V CE (satl • Lifetime Guarantee Max. .560 .060 .170 1.280 .770 1.125 .400 .200 .025 .170 .190 .590 .590 .850 .140 .520 .070 UNF-2A Millimeters Min. Max. 12.70 14.22 1.14 1.52 3.56 4.32 31.&0 32.51 18.54 19.56 28.58 9.14 10.16 4.57 5.08 .36 .64 3.56 4.32 3.30 4.83 13.97 14.99 13.97 14.99 20.57 21.59 2.67 3.56 12.19 13.21 1.27 1.78 Finish-Nickel Plate. Approx. Weight-.9 oz. (25 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch diameter of 0/..·24 UNF·2A (coated) threads (ASA 61.1·1960). Maximum Ratings Voltage JEDEC 2N1015 + 2Nl015A+ 2Nl015B+ 2Nl015C+ 2N10150+ 2Nl0l5E+ Applications: • High Power Switching • Amplifiers • Servo Systems • Regulators • Modulators VCEO(SOSI 2Nl0l6 + ............ 30 2N1016A+ .1 ••••••••••• 60 2Nl016B+ .•.......... 100 2Nl016C+ ............ 150 2N10l60+ ...........• 200 2Nl 016E + .\........... 250 Maximum Ratings and Characteristics T c =25°C unless specified Symbol * Operating and storage temperature Collector-emitter sustaining voltage * Emitter-base voltage * Continous collector current . * Continous base current * Thermal resistance =45°C Power dissipation. Tc =100°C * Power dissipation Te \JEDEC 2N1015.1 2N1016 I - 65 TO 150 VCEO(suSI VeBO Ic IB Re.Jc Pr Pr UnIts °C 30 TO 250 Volts 25 Volts 7.5 Amps 5 Amps .87 °C/W 150 87 Watts Watts • JEDEC Registered Parameters T19 Electrical Characteristics Tc=25·C unless otherwise specified Symbol 2N1015/2N1016 Collector current at VCEX=VCE (from max.' ratings), TJ =150·C, VBE= -1.5 Vdc ..... . ICEX Emitter current at VEB = 25' Vdc, Ic =0, TJ = 150·C .. ' •..................•....... lEBO Switching time, delay pills rise time ..' ...•..•..••..................•.••...•.. td+tr Storage plus fall time ................................................... '.• ts+tf Second breakdown, Collector Current, VCE = 100 V., Tc = 45°C (one second test), forward bias. Amperes ' IS/8 Second breakdown energy. base reverse biased, L = 250 mh .• ES/8 RB = 50 ohms. V8E =-6.0 volts. Ic = 2.0 Amperes. Joules Gain-bandwidth. VCE = 10 volts. Ic = 0.5 Amps. Kilohertz ft 2N1016 Dc current gain at VCE =4 Vdc, Ic =2 Adc .....•....•.•..•...•......•...••.•.. hFE Base voltage, at Ic=2 Adc, 18=300 mAdc .......•............•.•...•.••...... VBE (S8t) Beta cut-off frequency ...........•.....••..............•.......•.••..•... fhfe 2N1016 Dc current gain at VCE=4 Vdc, Ic=5 Adc ...................•.....•..•.•..... hFE Base voltage, at Ic=5 Adc, 18=750 mAdc ................•.........•..•.•...• VBE (S8t) Beta cut-off frequency ..........•..•........•.....••.......•.. " ....•....• fhfe Max. Minimum Typical 2 3 3 7 Units mAdc mAdo I'sec I'seo *20 *20 Adc Joule 1.5 0.5 250 Khz. *10 *10 14 1.15 25 Vdc kHz 18 1.25 30 Vdc kHz *J EDC registered parameters. Typical Characteristics SAFE OPERATING AREA 10 80 MAX. Ie ...... 2N1016- 60 ~~t---'--Series 5 , I" ~q, 30 /J._s_ ...... "'"~'" I"" """~ 1)0" u:.~~f(1i.s> "'" ~ .c ~I" ~q, ~.s>~ ~ 40 .e ~ I"~" ~ ~ 2NI015 Q. ~ l=I=Series 00 I 2 3 4 6 5 7 Collector Current.ie.Amperes Typical dc gain versus collector current at Tc = 25°C. 8 sf , 1.0 i i!! ~ u 0 .. 'a t; 5 u 4 J l'\: ~~ '" I' "I> 3 2 \. - Maximum Forward Bias Safe Operating Area - Single Non-repetitive Pulse Tc = 45°C _ These forward Bias Curves may be used for aII Transistors except the maximum collector-emitter voltage cannot be exceeded. I I I I I O. 1 10 50 w ~ >< 0( ~ 100 Collector Emitter Voltage. VeE, Volts 00 .25 .5 .75 1.0 Bose Voltage. VeE.Volts Typical base voltage vs. Collector Current characteristics at Tc = 25°C. T20 1.25 1.5 , \. 0.5 200 Millimeters Max. Max. Min. 8.64 10.31 .406 A .pO .440 10.16 11.18 4.06 .190 4.83 e e, .095 2.03 2.41 E .562 13.82 14.27 3.56 .140 2.54 F .710 18.03 J .453 10.72 11.51 N .422 .pT .055 1.02 1.40 .040 .pW %-28 UNF-2A Finish-Nickel Plate. Approx. Weight-.25 oz. (7 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch dia. of 14-28 UNF-2A (coated) threads (ASA B1.1-1960). Symbol Feature.: Conforms to MT-52 Outline Test I Inches Min. .340 .400 .160 .080 .544 .100 • Gold Alloy Process • No forward bias secondary breakdown to 150 volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance with copper base • 150 watt dissipation • Protection from thermal fatique with hard solder and molybdenum construction • 25 volt B EBO • Low V CE (sa') • Lifetime Guarantee SYI11'lOi I C nne 1"1Itr()IlS «t *Collector- Emitter Sustaining Voltage VCEO(sus) Base Open L=1H Ic=200mA *Collector Cutoff Voltage VCEV ICEv=2mA VEB=,1.5V *Collector Cutoff Voltage VCEV ICEv=10mA VEB=1.5V Tc=175°C I 7N3429 I 2N3430 50 I nJ3431 SYlllbol "Operating and storage temperature I 2N3432 I 200 150 100 Maximum Ratings and Characteristics* Tc=25°C unless specified Application.: • High Power Switching • Amplifiers • Servo Systems • Regulators • Modulators I 2N3433 250 All Types -65°C to 175°C .. Collector-emitter sustaining voltage VCEO(sus) 50 volts to 250 volts * Emitter-base voltage VEBO 25 volts .. Collector-emitter voltage,VEs=1.5V, Tc=175°C VCEV '50 * Continuous collector current Ic 7.5 amperes * Continuous base current Is 3 amperes vol~ to 250 volts 1.33 W 1°C • Linear power derating factor from Tc=60°C .. Thermal resistance R6 JC P,.75°C/W • Power dissipation ,Tc=60°C Pr 150 watts *JEDEC registered parameters T21 All Types Test Test Conditions Symbol *D,C, Current Gain' Min. Max. 10 35 Units" hFE VCE=2V, Ic=5A *Collector- Emitter Saturation Voltage VCE(sa!) Ic=5A,IB=750mA 1,0 V * Base- Emitter Saturation Voltage VBE(sa!) It=5A, IB=750mA 2.0 V *Emitter Cutoff Current lEBO VEB=25V, Tc=175°C *Turn-On Timei ton Ic=5A, *Storage Time ts Vcc=12V, 4 "sec *Fall Time' tf IB{on)=IB{off)=1,5A 8 ,usee 10 mA 5 ,usee " Output Capacitance Cob VCB=10V,f=1 MHz Gain- Bandwidth fr VCE=10V,lc=O,5A *Beta Cutoff Frequency 750 fhfe VCE=12V,lc=5A Second Breakdown forward Biased, collector current I,I"SB' Vce=30V, Ic=5A t= I second, TC == 25°C ' Second Breakdown reversed biased E'SB L=lmH, VBs=-2V, Rs= 201l, Ic=5,6A pF 250 KHz 20 KHz A 1.5 15.5 mJ *JEDEC registered data. 12 10 .. ,. .. -+:: -r: .. . ,. 7.5 • 5 4 ~ 3 2 ef tO .8 C[ .S •. s U ...-t...4 1: I 10~s~ .. .~~ - .\ ,t~ ~........ -~~ r- -f- .0 - - I- , 2 3 4 • !\ 1\~ .. f~ .. .-" 111 . 1 20 8 10 Collector Emitter Vollao~,VCE,VolI. ... - f--; ., _0 ~ . I .1:- _.11 rTl III! i I I rL. 80 I '\. ~ .._. These Sofe 0g::ratin~ Area Curves may be used r 2N 429-33 transistors except the minimum collector-emitter voltQge ratinos cannot be exceeded ._. m ~ "~~ .1' - Tc=25OC --- t-LJJ·~ , !\,Q(' ! I ~ SinOIe Nonrep"itive Pulse - ~.-: ,!'. 1 .'.J... .. ".~ Maximum Forward Bios Safe Operatino Area == = U .2 .. , l i-H -+-. - r- ~. 3 " ~.!! • .' .w •• , 30 40 I eo I 80 100 200250 Collector Current,Ic, Amperes 10' 1.5,··-,-'· 60- i Tc=150oC I I.ol--~ I ' 1 ITc. Tc" slIoe I ~ r·-II .Ty~n~t j !'r : ~+ . I oL ___ L..-L_--L-.: e . u. o .5 1.0 f"t ""'T..· 1.5 2.0 2. 3.0 Base-Emitter Voltaoe,VSE ,Volts T22 i . ...r .... .j. 40;.... 250C C[ ~ ... . :~1:~ ~ '11"\11 VealHt) . 20·I ,.: "• I VC[{ •• tl.Voll. ~ r' . ~ .,. 1· ..... L,,+"" Symbol A D e, e E F J N T T, W Inches Min. Max. .600 .650 .650 .700 .185 .205 .390 .410 .855 .875 .25Q .156 1.016 1.076 .560 .600 .090 .100 .060 .080 0/,.-24 UNF-2A Millimeter Min. Max. 15.24 16.51 . 16.51 17.78 4.70 5.21 9.91 10.41 21.72 22.23 3.96 6.35 25.81 27.33 14.22 15.24 2.29 2.54 1.52 2.03 Finish-Nickel Plate. Appro •• Weight-1 oz (28 g). 1. Complete threads to extend to within 2* threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch dia. of 0/,.·24 UNF-2A (coated) threads (ASA 81.1-1960). Conforms to MT-33 Outline Features: • Gold Alloy Process • No forward bias secondary breakdown to 67 volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance with copper base • 160 watt disSipation • Protection from thermal fatigue with hard solder and molybdenum construction • 26 volt VEBO • Low VCE (8811 • Lifetime Guarantee Applications: Maximum Ratings • • • • • Voltage Type High Power Switching Amplifiers Servo Systems Regulators Modulators 163 - Low Gain Series 164 - High Gain Series Maximum Ratings and Characteristics Tc = 2&OC unl... specified Symbol Operating and storage temperature I Type 163 164 I VeBO VCEO (SUI) 163-04 163-06 163-08 163-10 164-04 164-06 164-08 164-10 55 75 95 115 40 60 80 100 163-12 163-14 163-16 163-18 164-12 164-14 164-16 164-18 135 155 175 195 120 140 160 180 163·20 164-20 215 200 Unots -66TO 176 °C 40 TO 200 Volts Collector-emitter sustaining voltage VCEq(sUS) Collector-base voltage VCBO VCEO (suo) + 16 Volts Emitter-base voltage VEBO 16 Volts Continuous collector current Ic 30 AMPS Continuous base current Ie 7.6 AMPS Thermal resistance ReJc .5 °C/W Power dissipation Tc = 76°C Pr 200 Watts Power dissipation Tc = 100°C Pr 160 Watts T23 Electrical Specifications Tc=25°C unless otherwise specified 16i3- Teat Symbol Teat Conditions D.C. Current Gain hFE VCE=4V. Ic=5A Collector-Emitter Saturation Voltage VkElsat) Ic=5A. la=O.5A Base-Emitter Saturation Voltage VaEI"') Emitter Cutoff Currl!nt Turn-On Time Min. 16['4 Max. 15 , Min. 25 1.1 1.0 V Ic=5A. la=O.5A 2.2 2.0 V lEW VEBr 15V. Tc=175°C 25 25 mA t.on 1c=5A 6 6 Storage Time to Vcc=12V. 5 5 posec. Fall Time tf IB(on)=IB(off)=O.6A. 7 7 l'lIec. '" Qutput Capacitance l'lIec. Cob VCB F1 OV.f=1 MHZ Gain-Bandwidth h VCE=1Ov. 1c=1.0A 250 ~eta f'hfe VlCEI=12V. 1c=5A 10 I S8 "'cEF67V. 1 second Tc=75°C 3 3 A Es/b Vcc=30V L=.4H 1 1 J Cutoff FreQuencV Second Breakdown Forward Biased. Collector Current Second Breakdown Energy Revers8lBiased 1500 1c=5A Tc= 25°C 1500 10 60 164 40 163 00 5 10 15 20 Collector Current,Ie.Amperes Maximum Forward Bias Safe Operating Area Single Non-repetitive Pulse 15 Tc=75°C , VCE=4Volts f !. 10 I 163 and 164 E E ~ ! !. E « 2N2230'33 Squore Wove Pulse 60 Cps Repetition Rote 1.75% Duty Cycle 4 1000 Tc =25'C :; 700 VcE =6Volts <: 8 2 500 Tc =150'C i _ 300 2N2226·29 U 00 5 10 Bose Current. lB' Milliamperes Forward current transfer characteristics. 15 20 I' o 200 o 2 4 1IIIIIIIlllilii rIIIIITI 6 e Dc gain versus collector current. 40 "S 2N2226-29 TC=150·C B TC=25OC 6 Square Wave Pulse 60 Cps Repetition Rate 1.75% Duly Cycle 4 VCE =6Volts 2 % T26 5 D Bose Current. lB. Milliamperes Forward current transfer characteristics. 2N2230-33 10 Collector Current, Ic. Amperes 15 20 COl lector to Emitter Voltage, veE. Volts 12 Symbol A T T, W Millimeter Min. Max. 15.24 16.51 16.51 17.78 4.70 5.21 10.41 9.91 21.72 22.23 3.96 6.35 25.81 27.33 14.22 15.24 2.29 2.54 1.52 2.03 Max. .650 .250 1.076 .600 .100 .560 .090 .060 .080 0/,.-24 UNF-2A Finish-Nickel Plate. Approx. Weight-I oz (28 g). 1. Complete threads to extend to within 211. threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch dia. of '/,.-24 UNF-2A (coated) . threads (ASA B1.1·1960). Conforms to MT-33 Outline F.ature.: Application.: • Gold Alloy Process • No forward bias secondary breakdown to 100 volts • High reverse bias S.O.A. for inductlve loads • Low thermal resistance with copper base • 150 watt dissipation • Protection from thermal fatigue with hard solder and molybdenum construction • 25 volt VEBO • Low VCE lsat) • Lifetime Guarantee • • • • • Voltage Matrix Test Collector * Voltage Isustaining) = 25°C Tc I 2N3470 12N3471 2N3475 Symbol 1 2N3474 VCEO lsus) Maximum Ratings and Characteristics Tc 25°C unless specified = * Operating and storage I * 2N3474 2N3475 2N3476 2N3477 200 150 Symbol t~mperature Collector-emitter sustaining voltage High Gain Series 2N3472/2N3473 2N3476 2N3477 100 50 Low Gain Series 2N3470 2N3471 2N3472 2N3473 High Power Switching Amplifiers Servo Systems Regulators Modulators I JEDEC 2N3470-77 - 65 TO 150 VCEO Isus) I Units °C 50 TO 200 Volts * Emitter-base voltage VEBO 15 Volts * Continuous collector current Ic 10 AMPS * Continous base current * Thermal resistance I. R&Jc 1 .5 AMPS °C/W * Power dissipation Tc = 75°C PT 150 Watts * P.ower dissipation Tc = 100°C PT 100 Watts *Jedec Registered Parameters T27 Electrical Characteristics 2N3470-73 Tc =25'C unless otherwise specified Symbol Collector current at Vcex=Vce (from max. ratings), Tc=150'C, VBE= -1.5 Vdc ... Emitter current at VBe = -15 Vdc, Ic =0. . . . . . . . . . . . . . . . . . . . . . . • . • . . . . . . . .. Emitter current at VBE=-15 Vdc, Ic=O, Tc=150'C ...............•......... Gain bandwidth product at Ic = 10 Adc. . . . . . . . . . • • . . . . . . . . . . . . . . . . . . . . . .• Saturation voltage at Ic==10 Adc, le=150m Adc ...... , ................... Dc current gain at Vce=6 Vdc, Ic=10 Adc .............................•.. Base voltage, at Ic=10 Adc, 18=150 mAdc ................................ Beta cut-off frequency at Vce=12 Vdc, Ic=7 Adc .......................... Turn-on time at Ic=10 Adc, Ie on=400 mAdc, Vce=12 Vdc .................. Turn-off time at Ic=1 0 Ado, Ie off= -400 mAdc, Vce=12 Vdc, VBe off = -15 Vdc. Electrical Characteristics Minimum Icex leBO leBO fT VCE(sat) hFe VeE (sat) fhfe td+ t, t.+tf Tc = 25'C unless otherwise specified Symbol 2N3474-77 Collector current at Vcex=Vce (from max. ratings), Tc=150'C, Vee=-1.5 Vdc ... Emitter current at VeE=-15 Vdc, Ic=O ..................••............... Emitter current at VBe=-15 Vdc, Ic=O, Tc=150'C .......•............•..•. Gain bandwidth product at Ic = 10 Adc. . . . . . • . • . . . . . . . . . . . . . . . • . • • . . . . . .. Saturation voltage at Ic=10 Adc, le"'150m Adc .......................... Dc current gain at Vce=6 Vdc, Ic=10 Adc .....•..............•........... Base voltage, at Ic=10 Adc, le=40 mAdc .........•....••.....•.....•..... Beta cut-off frequency at Vce=12 Vdc, Ic=7 Adc ...............••....•...• Turn-on time at Ic=10 Adc, Ie on=200 mAde, Vce=12 Vdc .................. Turn-off time at Ic=10Ade, IB off=-200 mAdc, Vce=12 Vde, VBe off=-15 Vdc. 10 500 2.2 360 3.0 10 4.5 25 ... 100 Minimum ICEX leBO leeo fT VCE(sat) hFe Vee (sat) fhfe td+t, ts+tf Typical Max. Units 20 15 30 mAdc m'Ade mAdc kc Vdc 3.5 4.0 Vdc kc #,sec #,sec VCE::6 Volts 5000 Tc=15O"C Vdc kc #,sec #,se,c Square Wave Pulse 60 Cps Repetition Rate 1.75% Duty Cycle 7000 a 4.0 Typical 10.000 Tc=25"C Units mAdc mAdc mAdc kc Vdc 3.5 500 2.2 660 3.0 7 5 29 400 Max. 20 15 30 TC"5O"C 3000 2000 Tc '25'C 6 ! 2N3474-77· 8E oCt i> i!! 5 I.> 2N3470-73 4 1000 2 2 ~ 500 a~ 300 TC '5O'C 2N3470-73 I' j 8 TC 25'C '$700 Square Wave Pulse 60 Cps Repetition Rate 1.75% Duty Cycle' ' Vce=6Volts o 00 20 Base Cu,rent. lB' Milliamperes 10 40 30 50 2000 2 4 1111111111111111111111 Forwerd current transfer characteristics. 40 j..LS Tc=1500C 8 TC'25"C 6 2N3474-77 Square Wave Pulse 60Cps Repetition Rate 1.75 % Duty Cycle VCE =6 Volts 4 2 00 5 10 Base Currant. lB' Milliamperes T28 Forward currant transfar characteristics. 10 Collector Current. Ie. Amperes Figure 10. Dc gain versus collector current. 15 20 1 ColleClor 10 EmItter Voltage, VeE, volts 12 Symbol A .pD e, e E F J N .pT .pT, .pW Inches Min. Max. .600 .650 .650 .700 .185 .205 .390 .410 .855 .875 .156 .250 1.016 1.076 .560 .600 .100 .090 .060 .080 710-24 UNF-2A Millimeter Min. Max. 15.24 16.51 16.51 17.78 4.70 5.21 9.91 10.41 21.72 22.23 3.96 6.35 25.81 27.33 14.22 15.24 2.29 2.54 1.52 2.03 Finish-Nickel Plate. Approx. Weight-1 oz (28 g). 1. Complete threads to extend to within 2% threads of seating plane. 2. Contour and angular orientation of terminals is undefined. 3. Pitch dia. of '/.,-24 UNF-2A (coated) threads (ASA 81.1-1960). Conforms to MT -33 Outline Features: • Gold Alloy Process • No forward bias secondary breakdown to 67 volts • High reverse bias S.O.A. for inductive loads • Low thermal resistance with copper base • 150 watt dissipation • Protection from thermal fatigue with hard solder and molybdenum construction • 25 volt VEBO • Low VeE (saIl • Lifetime Guarantee Maximum Ratings and Characteristics Tc = 25°C unless specified Applications: • High Power Switching • Amplifiers • Servo Systems • Regulators • Modulators Symbol * Operating and storage temperature Collector-emitter sustaining voltage VCEO Isusl I JEDEC 2N2757-78+ Maximum Ratings Voltage JEDEC 2N2757 2N2763 2N2769 2N2775... 50 2N2758 2N2764 2N2770 2N2776 ... 100 2N2759 2N2765 2N2771 2N2777 ... 150 2N2760 2N2766 2N2772 2N2778 .. 200 2N2761 ........................... 250 I Units - 65 to 175 °C 50 to 250 Volts * Emitter-base voltage VEBO 15 Volts * Continuous collector current Ie 30 AMPS * Continuous base current IS 7.5 AMPS * Thermal resistance Reue .5 °C/W * Power dissipation Te = 75°e Pr 200 Watts Pr 150 Watts Power dissipation Te = 100°C VCED Isusl • JEDEC Registered parameters T29 Electrical Characteristics, 2N2757-61 Series TC=25'C unless otherwise specified Minimum Symbol Min. collector-emitter sustaining voltage at Ic=200 ma, le=O ................ Collector current at VCEX=VCE (Ref. voltage ratings), Tc=175'C, VeE=-1.5 Vdc. Emitter current at VeE=-15 Vdc, Ic=O, Tc=175'C ........................ Saturation voltage at Ic=10 Adc, le=2 Adc ........................... Dc current gain at VCE=4 Vdc, Ic=10 Adc .............................. Base voltage, at Ic=10 Adc, IB=2 Adc .................................. Beta cut-off frequency at Vce=12 Vdc, Ic=2.5 Adc ........................ Turn-on time at Ic=10 Adc, IB on=.3 Adc, Vce=12 Vdc ..................... Turn-off time at Ic=10 Adc, Ie off=-3 Adc, Vce=12 Vdc, VBE off=-15 Vdc .... Typical Max. Refer voltage ratings VCEO(5U5) 30 8 ICEX 4 25 IEeo 0.4 1.5 VCE (sat) 10 14.0 hFE 1.35 2.5 VBE(sat) 14.0 fhle 3.0 td+ t, 9.0 t.+tl Units mAdc mAdc Vdc Vdc kHz !,sec !,sec Typical Characteristics, 2N2757-61 Series TC=-65°C 100 Tc=25°C \ 70 50 " '"' 30 25 Te=J5"C VeC4VoltsDc \ 20 too... 20 --- 2N275t;;;-- 10 7 5 15 ..... r-- 3 5 .. TC=25'C, .' 2 . 1 o 5 15 10 20 25 00 .5 1.0 Base to Emiller Voltage. VBE , Volts 30 Collector Current, Ie. Amperes Electrical Characteristics, 2N2763-66 Series Tc =-65OC 1.5 2.0 2.5 T C= 25'C unless otherwise specified Symbol Min. collector-emitter sustaining voltage at Ic=200 ma, IB=O ................ . Collector current at VCEX=VCE (Ref. voltage ratings), Tc=175'C, VBE=-1.5 Vdc. Emitter current at VBe=-16 Vdc, Ic=O, TC=175'C ......................... . Saturation voltage at Ic=15 Adc, IB=3 Adc .......................... .. Dc current gain at VCE=4 Vdc, Ic=15 Adc' .............................. . Base voltage, at Ic=15 Adc,IB=3 Adc ................................. . Beta cut-off frequency at VCE=12 Vdc, Ic=3.75 Adc ....................... . Turn-on time at Ic=15 Adc, leon=4.5 Adc, Vce=12 Vdc ................... . Turn-off time at Ic=15 Adc, IB off = -4.5 Adc, Vce =12 Vdc, VBE off = -15 Vdc .. . VCeO(5US) ICEX leeo VCE (sat) hFE VBe (sat) fhls td+1, 1.+tl Minimum Typical Max. Units 30 25 1.5 mAdc mAdc Vdc Refer voltage ratings 8 4 0.63 13.5 1.50 14.5 3.8 10 10 25 Vdc kHz !,sec !,sec Typical Characteristics, 2N2763-66 Series 100 70 - Te =-65°C '\ " 50 I 30 Te=~5"C " 10 25 VCE =4 Volt. Dc Vce=4 Volts 1---2N276~ ............... 20 --- t'--- 7 3 ! ...... ! 15 E C( ~ 'i 10 ~ " u 2 Su TC=I75°C 5 o 5 10 Collector Current, I c , Amperes 15 20 25 30 Tc=-~5° TC=25°C .!! 1 Te=175OC 20 5 1'30 Te=25OC 15 u 00 .5 Base to Emiller Voltage, _. -------- 1.0 VeE. Volts 1.5 2.0 2.5 Electrical Characteristics, 2N2769-72 Series Tc=25"C unless otherwise specified Min. collector-emitter sustaining voltage at Ic=200 rna, Is=O ............... . Collector current atVcEX=VCE (Ref. voltage ratings), Tc=175"C, VSE=-1.5Vdc .. Emitter current at VSE=-15 Vdc, Ic=O, Tc=175"C ....................... . Saturation voltage at Ic=20 Adc, Is=4 Adc .......................... .. Dc current gain at VCE=4 Vdc, Ic=20 Adc .............................. . Base voltage, at Ic=20 Adc, Is=4Adc ................................. . Beta cut-off frequency at VCE=12 Vdc, Ic=5 Al'c ..................... : .. . Turn-on time at Ic=20 Adc, Is on=6 Adc, VCE=12 Vdc .................... . Turn-off time at Ic=20 Adc, Is 011=-6 Adc, VCE=12 Vdc, VSE 011=-15 Vdc ... . Symbol Minimum VCEO(SUS) ICEX IESO VCE (sat) hFE VSE (sat) fhfe Refer voltage ratings Typical 8 4 0.74 12.5 1.8 16.0 4.0 10.0 10 td+t~ ts+tf Max. Units 30 25 1.5 mAdc mAdc Vdc 2.5 Vdc kHz ILsec ILsec Typical Characteristics, 2N2769-72 Series t \ 100 70 " ......... 50 30 20 Tc '25"C VcC4"Volts Dc \. ""'- , .......... /0 Ii " -r---. 2N2769-72 ""'- r---- 7 5! 3 2 '0 5 /0 15 Collector Current. Ie. Amperes 25 20 30 Electrical Characteristics, 2N2775..:78 Series TC=25"C unless otherwise specified Min. collector-emitter sustaining voltage at Ic=200 ma, IB=O .... , ......... . Collector current at VCEX=VCE (Ref. voltage ratings), TC=175"C,VSE= -1.5 Vdc. " Emitter current at VBE= -15 Vdc. Ic=O. Tc=175°C, ..............•......... Saturation voltage at Ic=25 Adc. IB=5 Adc ............................ . Dc current gain at VCE=4 Vdc.lc=25 Adc .............................. . Base voltage. at Ic=25 Adc. IB=5 Adc ................................ . Beta cut-off frequency at VCE=12 Vdc. Ic=5 Adc ......................... . Turn-on time at Ic=25 Adc. IB on=7.5 Adc. VCE=12 Vdc .......•........... Turn-off time at Ic=25 Adc. IB off=-7.5 Adc. VCE=12 Vdc. VBE off=-15 Vdc .. Typical Symbol Minimum Max. VCEO(SUS) ICEX lEBO VCE (sat) hFE VBE (sat) fhle 1d+t, ts+tf Refer voltage ratings 8 30 4 25 0.87 1.50 12.0 10 1.9 2.5 14.0 4,5 10.0 Units mAdc mAdc Vdc Vdc kHz ILsec ILsec Typical Characteristics, 2N2775-2778 Series \. /00 TC'-65"C "- 70 50I ! 30 "~ 20 TC' 25"C . 2~2775-78. f - - Te=15"C VCE=4VoIIS --- f""'...- 10I 7' 15 r-- ,TC=175"C 10 ~ TC=I75°C 5 3 TC'-65°C 2 10 5 10 Collector Current,Ic,Amperes 15 20 25 30 00 .5 Bose to Emili" Volla\le, VBE' Valls 1.0 /.5 2.0 T31 Safe Operating Information. 2N2767 through 2N2778 Second Breakdown. forward bias. collector current ••••••..••••••••••••••••• (VCE =67V.• One Second. Tc 75°C) Second Breakdown. reverse bias. energy .••••••••••••••••••....•••••••••••. (VeE = 30V.• Ie = 5.0A., L = 0.4 mH .• Te = 25°C) = ES/B Maximum 3:0 Units Amperes 1.0 Joule Maximum ForWard Bias Safe Operating Area Single Non-repetitive Pulse Tc = 75°C All types These forward Bias Curves may be used for all Transistors except the maximum collector-emitter voltage cannot be exceeded .7 .5r---_.~~--_.~--T-----+---+_--;_----~ .3~__~7- .7 10 ______~__~~____~__~__~~____~~ 20 '30 Collector to Emitter Voltage, VCE' Volts T32 50 70 lOO 200 Inches Symbol Min. A, C L .110 L, L, M, .500 .250 .440 .260 .145 .640 T, T, Z, w Millimeters Max. Min. Max. 2.500 63.50 .140 2.79 3.55 .812 20.62 .600 12.70 15.24 6.35 .560 11.17 14.22 .290 6.60 7.36 .160 4.06 3.68 16.25 %-16 UNF-2A Creep 8t Strike Dilllance. D6OT· .690 in. min. (17.80 mm). (In accordance with NEMA lllandards.) Finish-Nickel Plate. Approx. Weight-8 oz. (227 g). 1. Complete threads to extend to within 2Y.o threads of seating plana. 2. Angular orientation of terminals is undefined. 3. Pitch diameter of 3/4-16 UNF-2A (COATED) threads (ASA Bl.I-1960). Maximum Ratings Collector Current (peak): 200 Amperes Collector Current (continuous): 100 Amperes Base Current (continuous): 20 Amperes Power Dissipation: 625 Watts at Tc = 75°C Operating and Storage Temperature: -500 C to +2oo·C Applications • High Frequency Inverters • Motor Controls • Switching Regulators • VLF Transmitters Features • Triple Diffused Design • CBE Construction • 625 Watt Power Capability *Note: Disc package (D62T) available. consult factory. Example: Obtain device performance for your application by selecting proper Order Code. DEVELOPMENTAL PRODUCT These devices are developmental types intended for engineering evaluation. Specifications and data are subject to change without prior notice. Westinghouse assumes no obligation for notice of change o~ future manufacture of these products. The above number describes a stud mount transistor. rated at 400 volts, with a gain of 10 at 60 amperes. T33 Electrical Charactaristics· (TeASE =26°C un Ie•• otherWise specHled) Min. Test Conditions VCEO (SUS) Collector-Emitter Sustaining Voltage IC = 200mA IB = 0 3OO~s Pulse See Page T33 Collector Cutoff Current (Base Emitter. Reverse Biased) At RatedVcE VBE (OFF) = -1.5V, 10 100 ICEV Collector Cutoff Current (Base Emitter Reverse Biased) .B 3 mA lEBO Emitter Cutoff Current At Rated VCE VBE(OFF) = -1.5V, Tc = 150°C VEB -7V 1 mA HFE DC Current Gain Ie = 5OA, VCE = 2.5V hFE DC Current Gain Ic VCE (SAT) Collector-Emitter Saturation Voltage IC = 50A, IB = 6A .75 1.25 : IC = 50A, IB = 6A 1.0 1.5 \ VBE(SAT) Base-Emitter Saturation Voltage Output Capacitance frEST = 1 MHZ, VCB Gain-Bandwidth Product frEST R9JC Thermal Resistance Junction to Case VCE 1\) Turn-On Delay VCC = 200v, Ie = 50A Rise Time , ~ ; ___I 7 = 20V = looJls 2% Fall Time IITn 30 20 ~ - ......... .... ~ 10 100 25°C 1000 C 1: ~ " U ci " i1 10 Collector Current. Ie. Amperes Ji! Typical Input 4--A--4--I---I Maximum Forward Bias Safe Operating Area One Second Non-Repetitive Pulse i\ 100 0." 10 ," " '" "'-, 100 10 Collector-Emitter Voltage. VeE. Volts c~:~e:,:~cs-l-~~_-I-_~_~ ~--r--r--r-4-~4--4--+-~ "j!' 6~-+--~--~-+f-~--~-+--~ E ~ ~ u J 2~-+--~--~~--~--~-+--~ 0~~---.·5~~--~--~--'~.5--~--~2 Ba.. Emitter Voltage. VBE. Volts T34 Consult factory for additional pulsed S.O A. capability curves. ~A I \ .. .. Volts Volts ppf 10 MHZ \ 0.2 Duty Cycle < Typical hFEIIS. Ie VCE = 2.5V TC = 25°C i 2500 = 1 MHZ, IC = SA, VCE = lOV IBI = IB2 = SA, tp Resistive Load Switch Times Storage Time 15 5 = 10V COB i 10 = gOA. VCE = 2.5V fr ~r w Units Characteristic ICEV Typ. Mex. Symbol I °C/W 100 ns 0.5 ps 2.5· Jls 0.5 ~s • DB 54-000 A8 PRINTED IN U.S.A.


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:06:27 10:14:04-08:00
Modify Date                     : 2017:06:27 12:06:46-07:00
Metadata Date                   : 2017:06:27 12:06:46-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:0a0afe32-df76-6a49-bf0a-0ea34c21396c
Instance ID                     : uuid:362daf28-dd9f-0642-9987-217f3daaa0dd
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 432
EXIF Metadata provided by
EXIF.tools

Navigation menu