1979_Fairchild_Linear_Op Amp_Data_Book 1979 Fairchild Linear Op Amp Data Book

User Manual: 1979_Fairchild_Linear_Op-Amp_Data_Book

Open the PDF directly: View PDF PDF.
Page Count: 450

Download1979_Fairchild_Linear_Op-Amp_Data_Book 1979 Fairchild Linear Op-Amp Data Book
Open PDF In BrowserView PDF
F=AIRCHIL..C
©1979 Fairchild Camera and Instrument Corporation/464 Ellis Street, Mountain View, California 94042/(415) 962-5011/TWX 910-379-6435

INTRODUCTION

The increase in complexity and diversity of Linear Integrated Circuits
over the last few years has necessitated a change in format in the
Fairchild Linear data books. In this data book we have included our
complete line of operational amplifiers and comparators, together with
other selected special purpose circuits of primary interest to the industrial market. Other Fairchild Linear data books will cover voltage regulators, consumer, and interface devices.
Fairchild continues to be a pioneer in Linear operational amplifiers. The
J.l.A709, J.l.A741 , and J.l.A747 are still industry standards a decade after their
introduction by Fairchild. These have been followed by many single,
dual, and quad devices intended to meet the increasing needs of our
customers.
Today Fairchild's state-of-the-art technology is providing devices like
the J.l.A714, precision op amp; the J.l.AF771 12/4, the industry's first set of
single, dual, and quad BIFET op amps; the J.l.A759 and J.l.A791 power op
amps; and the J.l.A7391 and J.l.A7392, precision DC motor speed control
circuits.
This data book presents complete technical data on Fairchild's I ine of
industrial linear integrated circuits. To expedite the designer's search
for the right devices to meet various system requirements, several
helpful aids are provided-selection guides by function, an LlC cross
reference identifying competitive devices with their Fairchild direct
replacements or nearest equivalents, and a package cross reference
for determining equivalent packaging within the industry. For the Hi
Rei customer, descriptions of Fairchild's Hi Rei processing and Matrix
VI are given in a separate section.

TABLE OF CONTENTS

Chapter 1.

Alpha-Numeric Index of Devices ........................................... 1-3

Chapter 2.

Selection Guides .......................................................... 2-3

Chapter 3.

Linear Industry Cross Reference Guide ..................................... 3-3

Chapter 4.

Quality, Reliability and Hi Rei Processing .................................. .4-3

Chapter 5.

Operational Amplifiers ..................................................... 5-5

Chapter 6.

Comparators .............................................................. 6-3

Chapter 7.

Timers and Special Functions .............................................. 7-3

Chapter 8.

Application and Testing Information ........................................ 8-3
Testing Operational Amplifiers ............................................. 8-3
Op Amp Parameters and Applications .......................... : ......... 8-13
Use of Op Amp Parameters in Design Steps .............................. 8-25

Chapter 9.

Order Information, Dice Policy and Package Outlines ....................... 9-3

Chapter 1.0.

Fairchild Field Sales Offices, Representatives and Distributors ............. 10-3

I
!

ALPHA NUMERIC INDEX OF DEVICES

ALPHA-NUMERIC INDEX OF DEVICES
Alpha-Numeric Index of Devices ........................................................ 1-3

ALPHA-NUMERIC INDEX OF DEVICES

DEVICE

DESCRIPTION

PAGE

IlAF111
IlAF155
IlAF156
IlAF311
IlAF355
IlAF356
IlAF771
IlAF772
IlAF774
IlA 101
IlA101A
IlA 102
IlA 107
IlA108
IlA108A
IlA110
IlA 111
IlA124
IlA 139
IlA139A
IlA148
IlA149
IlA201
IlA201A
IlA207
IlA208
IlA208A
IlA224
IlA239
IlA239A
IlA248
IlA249
IlA301 A
IlA302
IlA307
IlA308
IlA308A
IlA310
IlA311
IlA318
IlA324
IlA339
IlA339A
IlA348
IlA349

FET-Input Voltage Comparator ....................................... 6-3
Low-Supply Current Monolithic JFET Input Operational Amplifier ...... 5-5
Wideband Monolithic JFET Input Operational Amplifier ................ 5-5
FET -Input Voltage Comparator ....................................... 6-3
Low-Supply Current Monolithic JFET Input Operational Amplifier ...... 5-5
Wideband Monolithic JFET Input Operational Amplifier ................ 5-5
Single BIFET Operational Amplifier ................................. 5-11
Dual BIFET Operational Amplifier .................................. 5-11
Quad BI FET Operational Amplifier .................................. 5-11
General-Purpose Operational Amplifier .............................. 5-16
General-Pu rpose Operational Amplifier .............................. 5-19
Voltage Follower ................................................... 5-26
General-Purpose Operational Amplifier .............................. 5-31
Super Beta Operational Amplifier ................................... 5-36
Super Beta Operational Amplifier ................................... 5-36
Voltage Follower ................................................... 5-26
Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
Quad Operational Amplifier ......................................... 5-43
Low-Power Low-Offset Quad Voltage Comparator ................... 6-13
Low-Power Low-Offset Quad Voltage Comparator ................... 6-13
Quad Operational Amplifier ......................................... 5-48
Quad Operational Amplifier ......................................... 5-48
General-Purpose Operational Amplifier .............................. 5-16
General-Purpose Operational Amplifier .............................. 5-19
General-Purpose Operational Amplifier .............................. 5-31
Super Beta Operational Amplifier ................................... 5-36
Super Beta Operational Amplifier ................................... 5-36
Quad Operational Amplifier ......................................... 5-43
Low-Power Low-Offset Quad Voltage Comparator ................... 6-13
Low-Power Low-Offset Quad Voltage Comparator ................... 6-13
Quad Operational Amplifier ......................................... 5-48
Quad Operational Amplifier ......................................... 5-48
General-Purpose Operational Amplifier .............................. 5-19
Voltage Follower ................................................... 5-26
General-Purpose Operational Amplifier .............................. 5-31
Super Beta Operational Amplifier ................................... 5-36
Super Beta Operational Amplifier, .................................. 5-36
Voltage Follower ................................................... 5-26
Voltage Comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-8
High-Speed Operational Amplifier .................................. 5-55
Quad Operational Amplifier ......................................... 5-43
Low-Power, Low-Offset Quad Voltage Comparator ................... 6-13
Low-Power, Low-Offset Quad Voltage Comparator ................... 6-13
Quad Operational Amplifier ......................................... 5-48
Quad Operational Amplifier ......................................... 5-48

1-3

ALPHA-NUMERIC INDEX OF DEVICES
PAGE

DEVICE

DESCRIPTION

MA555
MA556
MA702
MA703
MA706
MA709
MA710
MA711
MA714
MA715
MA725
MA726
MA727
MA730
MA733
MA734
MA739
MA740
MA741
MA742
MA747
MA748
MA749
MA757
MA759
MA760
MA776
MA777
MA791
MA798
MA1458
MA1458C
MA1558
MA2240
MA2901
MA2902
MA3301
MA3302
MA3303
MA3401
MA3403
MA3503
MA4136
MA4558
MA7391
MA7392

Single Timing Circuit. ................................................ 7-3
Dual Timing Circuit .................................................. 7-8
Wideband DC Amplifier ............................................ 5-61
RF-IF Amplifier .................................................... 7-25
5-Watt Audio Amplifier ............................................. 7-28
High-Performance Operational Amplifier ............................ 5-68
High-Speed Differential Comparator ................................ 6-21
Dual Comparator .................................................. 6-25
Low-Offset Voltage Operational Amplifier ........................... 5-75
High-Speed Operational Amplifier .................................. 5-83
Instrumentation Operational Amplifier ............................... 5-89
Temperature-Controlled Differential Pair ............................ 7-33
Temperature-Controlled Differential Preamplifier .................... 7-36
Differential Amplifier ............................................... 5-99
Differential Video Amplifier ......................................... 7-40
Precision Voltage Comparator ...................................... 6-29
Dual Low-Noise Audio Preamplifier/Operational Amplifier ........... 5-105
FET Input Operational Amplifier ................................... 5-109
Frequency Compensated Operational Amplifier ..................... 5-113
Zero Crossing AC Trigger-Trigac ................................... 7-46
Dual Frequency Compensated Operational Amplifier ................ 5-122
Operational Amplifier ............................................. ,5-132
Dual Audio Operational Amplifier/Preamplifier ...................... 5-140
Gain Controlled IF Amplifier ........................................ 7-52
Power Operational Amplifier ....................................... 5-148
High-Speed Differential Comparator ................................ 6-36
Multi-Purpose Programmable Operational Amplifier ................. 5-156
Precision Operational Amplifier .................................... 5-165
Power Operational Amplifier ....................................... 5-171
Dual Operational Amplifier ........................................ 5-177
Dual Internally Compensated Operational Amplifier ................. 5-183
Dual Internally Compensated Operational Amplifier ................. 5-183
Dual Internally Compensated Operational Amplifier ................. 5-183
Programmable Timer/Counter ...................................... 7-13
Low-Power, Low-Offset Quad Voltage Comparator ................... 6-13
Quad Operational Amplifier ......................................... 5-43
Quad Single Supply Amplifier ..................................... 5-189
Quad Comparator .................................................. 6-13
Quad Operational Amplifier ........................................ 5-196
Quad Single Supply Amplifier ..................................... 5-189
Quad Operational Amplifier ........................................ 5-196
Quad Operational Amplifier ........................................ 5-196
Quad Operational Amplifier ........................................ 5-203
Dual Operational Amplifier ........................................ 5-212
DC Motor Speed Control Circuit .................................... 7-58
DC Motor Speed Control Circuit .................................... 7-68

1-4

ALPHA NUMERIC INDEX OF DEVICES

SELECTION GUIDES

SELECTION GUIDES
Selection Guides .•.•...••.•.•.•..•..••...., ..•....•.••••..•.•..•.•..•.•..••.•..•...••... 2-3

VOLTAGE COMPARATOR SELECTION GUIDE

u

c
E
~

c

C

o

.

z

.

">

EU

.:

::J

::J

«J


::s

'6
>

~

c

.

-'~ ::s
~

,

-'

~

c

c0

...

a:

~

::s

'i

~

E
~

a:

'"

..i.
..
u

~

M

5S.6A

2

e

5S.6A

S

M

5S

e

5S

1300

M

6A

1300

M

6A

1300

A

6A.9A

::!.1 to ::!.18 or from
2 to 36 and gnd

1300

A

6A.9A

:±'1 to ±18 or from

1300

e

6A.9A

± 1 to ::!. 18 or from
2 to 36 and gnd

1300

e

6A.9A

.,12. -6

40

M.e

SS. 3F. 6A. 9A

12, -6

40

M.e

3F. SF. 6A. 9A

40

200K

+36

200

0000075

10

200K

-+36

200

004

07

200K

~15

200

006

2.0

200K

~15

200

5

0025

5.0

200K

:±. 1 to ::!.18 or from

0.000025

"AF311

Fet-l nput Voltage Comparator

015

"A111

Voltage Comparator Strobed Inputs.
Single Supply. Low 18

01

"A311

Voltage Comparator Strobed Inputs.
Single Supply. Low 18

025

"A139

Quad Comparator Single Supply.
CMRR incl. gnd

01

Quad Comparator Single Supply.
CMRR incl. gnd

01

Quad Comparator Single Supply.
CMRR incl. gnd

025

"A239A

Quad Comparator Single Supply.
CMRR incl. gnd

025

005

20

200K

"A339

Quad Comparator Single Supply.
CMRR incl. gnd

025

005

5.0

200K

"A339A

Quad Comparator Single Supply.
CMRR incl. gnd

025

005

20

200K

"A710/C

High Speed Differential

2025

3050

20/50

175K

75 100

10 15

3 SIS 0

1.5K

-t

"A239

=~..
c
o -

>~

-'"
c

t=c:

~Q:

Cl-

.

..E

.

:

c
"ii

005

"A139A
I\)
I

~~~Il)

=
c 'E

.!! r:::

a;~

Fet-lnput Voltage Comparator

"AF111

c.>

.~

a;

~

2

2 to 36 and gnd

0025

20

200K

±1 to ::!.18 or from

2 to 36 and gnd

005

50

200K

:+ 1 to :+ 18 or from
2 to 36 and gnd

2 to 36 and gnd

Voltage Comparator

"A711/C

Dual High Speed
Differential Comparator

"A734

Precision Comparator
Low Drift -3.5 "vrc

015

0025 005

5030

2SK

~5

"A760

High Speed Differential Comparator

60

75

60

5K

~4.5

"A2901

Quad Comparator Single Supply.
CMRR incl. gnd

025

005

70

200K

:±'1 to j.l18 or from
2 to 36 and gnd

"A3302

Quad Comparator Single Supply.
CMRR incl. gnd

05

01

200

200K

::!. 1

to ::!. 18 or from

~.-----.-

to

to

~15

~6.5

200

2

M.C

SN.6A

25

2

M.C

5S.6A

1300

A

6A.9A

1300

C

6A.9A

2 to 36 and gnd

I

TIMERS
Device
Number

Function

Time
Delay
Hours

Free Running
Frequency
(kHz)

Output
Compatibility

I'A555

Single Timer

1.0

100

TTL

I'A556

Dual Timer

1.0

100

I'A2240

Programmable Timer-Counter

120

-

Supply
Voltage
V (Max)

Timing
Error
%

200

+18

1.0

55, ST, 9T, SA

TTL

200

+18

1.0

6A,9A

TTL

5.0

+18

0.5

7B,9B

Output
Current
(mA)

I\)
I

01

•

Package(s)

OPERATIONAL AMPLIFIERS SELECTION GUIDE
OPERATIONAL AMPLIFIERS-COMMERCIAL (O°C TO +70° C) 1

'E

QI

Cl

0

Z
w

0

E

!

:>
w

S
o~
>)(
_IV
QI::E
III ....
=>

I:

.!:!
Q.
.t:

°E
"SCo

u

III

QI

1

°
J.lA1458C

°
High Performance Dual Op Amp

2

J.lA301A

General Purpose Op Amp

3

J.lA302

Voltage Follower

4
5

Il A307
Il A308

6

IlA308A

7

IlA31 0

Voltage Follower

8
9

Il A318
Il A324

Quad Op Amp

10

IlA3401

Quad Single Supply Amp

11

IlA3403

13

..5

f!
...

'EQI

0)(
_IV

0=
III::E

01:

iDee

:::I~

--~
CD::: )(
III ... IV

=0::E

OQl ....
_ ClO

a~~

1: 0

- >

>

:t

QI::E
III ....
=ee

"SCo

..5

......

:::I~

IV ....

_I:
:::I
Co

..5

6.0

-

200

500

7.5

30

50

250

15

-

-

30

General Purpose Op Amp

7.5

30

50

250

Super Beta Op Amp

7.5

30

1.0

7.0

Super Beta Op Amp

0.5

5.0

1.0

7.0

7.5

-

-

7.0
500

10

-

200

7.0

-

50

250

-

-

-

300

Quad Op Amp

8.0

-500

Il A348
Il A349

6.0

50

200

Quad Op Amp
(Compensated for Av 2: 5)

6.0

-

50

Quad Op Amp

50

200

14

IlAF355

FET Input.Op Amp

10

-

0.05

0.2

15

IlAF356

FET Input Op Amp

10

-

0.05

0.2

16

IlA41 36

Quad Op Amp

6.0

-

200

500

17

IlA4558

Dual Op Amp

6.0

-

200

500

18

Wide Band dc Amp

5.0

20

2000

7500

19

IlA702C
J.lA709C

High Performance Op Amp

7.5

-

500

1500

20

IlA714C

High Performance Op Amp

0.15

1.8

6.0

7.0

21

IlA714E

High Performance Op Amp

0.075

1.3

3.8

4.0

22

0.25

3.0

20

30

23

7.5

-

250

1500

12

High Speed Op Amp

High Performance Op Amp
IlA714L
High Speed Op Amp
IlA715 C
1. Military, automotive and industrial range devices are available.

2-6

Supply Voltage
III ......

'tic::
0·-

Min

:E!.

c:: _
'"
0
;::c

Max

ftI III

"'C::

c::>
0 111
Eel
E c::

o

c::

Eo

ftI

80

o a::

±30
±36
±36

20K
25K
0.9985
25K
25K
80K
0.999
25K
25K
1K
20K
25K
25K

1.0
1.0
10
1.0
1.0
1.0
20
15
1.0
5.0
1.0
1.0
4.0

±30
±30
±30
±30
±5
±5
±30
±30
±30
±15

50K
50K
20K
20K
2K
15K
120K
200K
100K
10K

2.5
5.0
3.0
3.0
20
1.0
0.6
0.6
0.6
65

±11
±12
±10
±12
±13.5
±13.5
±10
±11.5
. +13.5. -Vs

±30
±30

+13. -Vs
±12
±12
±10
±10
±12
±12
-4. +0.5
±8
±13
±13
±13
±10

0

ilia.
a.E

±30
±1
±1
±15
±32

2.9
3.0
5.5
3.0
0.8
0.8
5.5
10
2.0
10
7.0
4.5
4.5

o

±5
±5

±18
±18
±18
±18
±18
±20
±18
±18
+32
±9
+18
±18
±18

±5
±5
±5
±5
-til. -3
±9
±3
±3
±3
±6

±18
±18
±18
±18
+14. -7
±18
±22
±22
±18
±18

4.0
10
10
5.0
6.7
2.9
5.0
4.0
6.0
10

o
o

5.5
5.0
1.0
5.0
1.3
1.3
1.0
6.0
13
10
5.0
5.0
5.0

0.8
0.5
10
0.5
0.3
0.3
30
50
0.5
0.6
0.6
0.5
2.0

±5
±3
±12
±3
±5
±2
±5
±5
+3
+5
+5

5.0
5.0
.35
5.0
5.5
10.5
5.5
5.0

5.0
12
1.0
1.0
3.5
0.3
0.17
0.17
0.17
100

2-7

o
o

o
o
o
o
o
o
o

o
o
2

o
o
o
o
3

•

OPERATIONAL AMPLIFIERS SELECTION GUIDE
OPERATIONAL AMPLIFIERS-COMMERCIAL (O°C TO +70° C)1
c»

C
c»

CI

.l!

ei

:;

c
.2
Q.
.;:
l;l

0

0

Z

w

0

E

!

w

0_
>M
_ca
c»::::E
(II .....
=>

°E
"S
0.
.5

c»

--CII:::
ca


::t

.

C

::

::::1-

OM
_ca
c»::::E
(II .....
=et
Oc

"S
0.
.5

c»

::::l-

0:
(II::::E

ca .....
iiiet
_ c
::::I

0.

.5

24

foLA725C

Instrumentation Op Amp

2.5

-

35

125

25

foLA725E

Instrumentation Op Amp

0.5

2.0

5.0

75

26

foLA727C

Temperature Controlled
Differential Amp

10

1.5

25

75

27

foLA730C

Differential Amp

5.0

3.0

16

28

foL A74OE

FET Input Op Amp

100

0.3

2.0

200

500

29

foLA741C

General Purpose Op Amp

6.0

-

30

foLA741E

General Purpose Op Amp

3.0

15

30

80

31

foLA747C

Dual General Purpose Op Amp

6.0

-

200

500

32

foLA747E

Dual General Purpose Op Amp

3.0

15

30

80

33

foLA748C

High Performance Op Amp

6.0

200

500

34

foLA759

Power Op Amp

6.0

35

foLAF771/2/4A

BIFETOp Amp

2.0

36

foLAF771/2/4B

BIFET Op Amp

5.0

37

foLAF771 12/4

BIFETOp Amp

10.0

38

foLAF771/2/4L

BIFET Op Amp

15.0

-

39

foLA 776C

Multi-Purpose Programmable
Op Amp (ISET = 15 foLA)

6.0

40

foL A776C

Multi-Purpose Programmable
Op Amp (ISET = 1.5 foLA)

41
42

foL A777C
foLA791C

43

foLA798C

50

500

.05

.10

.05

.10

.10

.20

.10

.20

-

25

50

6.0

-

6.0

10

Precision Op Amp

5.0

20

100

Power Op Amp

6.0

-

200

500

Dual Op Amp

6.0

-

50

250

1. Military, automotive and industrial range devices are available.

2-8

Supply Voltage
QI~

'tI I:

Min

~!

I:

0_
t:
." QI



o QI
Eel
E I:

Qlc,

C,E

E0

8u

0'"

u

lX

±13.5
±13.5

±22
±22

250K
1000K

±12

±15

0.06K

±3.5

±5
±30

0.1K
25K

I
I

1.0
1.0
1.0

5.0
5.0

.01

±3

±22

3.0

4

.01

±3
±9

±22

3.0
5.7

4

o
o
o
o
o

0.001

5.0

+6

+14

13

±5

±22

8.0

±5

±18

0.7

±5
±5

±22
±18

2.8
3.75

±5
±5

±18

±12
±12
±12

±30

20K

±30
±30

50K
25K

1.5
1.0

5.0
5.0

±15
±12

30

50K

1.5

5.0

0.5
0.7

±30

20K

1.0

5.0

0.5

25K
50K
SDK

1.0
3.0
3.0

200
5.0

0.5
13.0

±11

±30
±30
±30

S.O

±11
±11

±30
±30

SDK
50K

3.0
3.0

S.O
S.O

13.0
13.0
13.0

±10

±30

SDK

1.0

2.0

0.8

±10

±30

SDK

0.2

0.16

±12
±12

±30
±30

25K
20K

1.0
1.0

+13, -Vs

±30

20K

1.0

6.0

+13, -Vs
±11

5.0

±18

6.0
0.5

1.5
1.0
1.0

±10


Die integrity
High-temperature storage
Die-attach integ.rity
Temperature cycling
Bond integrity
Thermal shock
Autoclave"
• Applied to plastic devices only.
85% R.H./85° C biased"
Extended Reliability Tests
In conjunction with the weekly line-monitor program, Fairchild employs an extended reliability test program which is designed to reflect the long-term stability of Fairchild's Linear products. A summary of
these reliability tests is shown in Table 4-1.
Quality and Reliability Data
Supplemental brochures are published on an annual basis which provide detailed failure rate data.
Please contact Fairchild Sales Offices for additional reliability and quality information.
EXTENDED RELIABILITY TESTS

METAL CAN

PLASTIC

x

x

x

x

x
x

x
x

x

x
Table 4-1 Reliability Test Summary

4-8

HI REL PROCESSING - MIL-M-38510/MIL STD-883
A unique "company", within Fairchild Linear, is totally dedicated to the processing of high reliability
products and to serving the special needs of the HI REL community. It consists of marketing, engineering, production control, manufacturing and quality assurance. Fairchild's HI REL processing facilities
are among the most modern and sophisticated in the semiconductor industry. Screening procedures are
set up to conform to the most recent version of MIL-STO-883" in conjunction with MIL-M-38510, which
establishes standardized requirements for design, material, performance, control and documentation
needed to achieve prescribed levels of device quality and reliability.
HI REL Unique" Program
Fairchild's Unique II program fills a longstanding need for a definite and comprehensive program
covering HI REL semiconductor products ... a program offering users a selection among multi-level
screening flows and reliability requirements ... a program providing clear and precise definitions on all
areas of contractual performance ... a program designed to reduce the high costs and delivery delays
normally associated with HI REL. The objectives and benefits of the'Unique II program for integrated
circuits are these:
•
•
•
•
•
•

Offers a- full spectrum of processing options, including full compliance JAN and 883 Classes S, B,
and C.
Offers full compliance with JAN MIL-M-38510 and emphasizes the importance of this program.
Accommodates the special needs of users' source control and specification control drawings.
Offers models to aid users in development of source control drawings.
Takes the mystery out of in-house processing to MIL-STD-883 and to MIL-M-38510 detail specifications. The Unique II program is definitive as to the similarities and differences in these requirements.
Provides users with alternatives that may be used when JAN slash sheets or QPLs are unavailable, or
for programs that demand the highest level of quality and reliability.

Fairchild offers a complete processing capability to fulfill requirements ranging from the least demanding to the most complex, including the following:
•
•
•
•
•
•

Scanning Electron Microscope (SEM) Inspection
Level A Visual
Bond Pull and Die Shear Testing
Read and Record and Ii Drift Parameters
Particle Impact Noise Detection (Pin-D) Testing
Group A, B, C and D Qualification Testing.

Standard Unique II processing flows are given on the following pages; special flows will be quoted on an
individual basis.

MATRIX VI- COMMERCIAL AND INDUSTRIAL RELIABILITY PROGRAM
Commercial and industrial users increasingly demand optimized quality and reliability for the semiconductor integrated circuits purchased for their systems. Specific factors - increased integrated circuit
usage per board, high costs for receiving inspection, pc board and systems repair, and the frequently
immeasurable cost associated with field failures - require the user to attain high quality and reliability
coupled with total cost. Matrix VI is designed to meet these user requirements.
Fairchild's Matrix VI Program offers a broad spectrum of screens and high technology/high volume
integrated circuit products to meet the user's quality and reliability requirements typically associated
with the commercial and industrial marketplace. There are two screening options for each package type,
each with a separate degree of reliability and cost level. To simplify a cost-effective analysis, reliability
factors have been assigned to each screening level. (See following pagesJ
It is the goal of Matrix VI to achieve the highest possible reliability consistent with the user's needs and to
avoid "over-buying". Cost-effective reliability is the essence of Matrix VI, the most comprehensive
program of its kind now offered to the industrial/commercial marketplace.

4:9

•

JAN PART NUMBERING SYSTEM

J M 38510/ 101 01 B G C
-r-

~

.~

-~

T

JAN DESIGNATOR

Cannot be marked with "J"
unless qualified on Part I
or Pait II of QLP-38510

~

LEAD FINISH

A
B
C
X

Defines
Device
Tvpe

Hot Solder DIP
Tin Plate
Gold Plate
Any of the above

I

General Procurement Spec.
PACKAGE TYPE
A
B
C
D
E
F
G
H
I
J
K
L
X
Y
Z

I
REFERS TO DETAIL SPEC
101
102
103
104
105
106
107
108
109
110

Op Amps
Voltage Regulators
Comparators
Interface
733
Voltage Followers
3-Terminal Voltage Regulators
Transistor Arrays
Timers
Quad OpAmps

14-pin '/4 x '/4 Flatpak
14-pin '/4 x '/8 Flatpak
14-pin '/4 x 'I. DIP14-pin '/4 x % Flatpak
16-pin '/4 x 'I. DIP
16-pin '/4 x % Flatpak
8-pin Can
10-pin '/4 x '/4 Flatpak
10-pin Can
24-pin '/2 x 1'/4 DIP
24-pin % x
Flatpak
24-pin 'Is x
Flatpak
3-pin TO-5 Can
2-pin ~0-3 Can
24-pin '/4 x % Flatpak

'I,
'I,

PROCESSING LEVEL
S
B
C

LINEAR JAN GENERIC
PART NUMBERS - EXAMPLES
JM385101

01

02

03

04

05

06

07

101

741

747

lOlA

108A

2101

2108

118

102

723

08

09

103

710

711

106

111

2111

104

55107

55108

9614

9615

55113

7831

7832

7820

7830

105

733

7805

7812

7815

7824

106

102

110

2110

107

109

78M05

78M12

78M15

78M24

108

3018

3045

109

555

556

110

148

149

4741

4136

124

Note: Dated material. Please contact Fairchild for latest revisions.

4-10

10

HI REL PROCESS SCREENING REQUIREMENTS
JAN M38510
MIL-STD-883B
TEST METHODS

DESCRIPTION

Preseal Visual

Condo A Maximum Visual Criteria

MTD.2010

Condo B. Optimum Visual Criteria

Bond Strength
MTD 2011

Bond strength is monitored on a sample
basis three times per shift per machine

Seal

Devices are hermetically sealed for

compliance to MIL-STD-883 requirements

High Temp Storage
MTD 1008

Condo C Tstg

Temperature Cycle
MTD 1010

Condo C -65°/150°C 10 cycles

Constant Acceler
ation
MTD 2001 (Notel)

Condo E 30000 G's Xl' X2, Yl' Y2

= 150°C

TEMP CYCLE
CONDo C

Hermetic Seal

Condo A Fine-Helium 5x10 8 cc/sec

MTD 1014 (Note 1)

Condo B Flne-Radillo 5.10- 8 cclsec
Condo C Gross-FC43/Hot 10-3 cclsec or
Gross-FC78/Vacuum 10-5 cclsec

Pre Burn-In
Electrical

MTD 5004
Burn-In Screen

MTD1015
Post Burn-in
Electrical

MTD 5004

TEMP CYCLE
CONDo C

CENTRIFUGE
CONDo E
Y1 ONLY
HERMETICITY
CONDo A/B
CONDo C

25°C de electrIcal testrng
to remove rejects prior to
submIssion to burn-in screen

Cond A, Cond B, Condo C
Cond D, Condo E, Condo F
Post Burn-In electncal screening to cull
out devices which failed as a result of
burn-in. Test Parameters may include

25°C dc, 125°C dc, -55°C dc, 25°C dc,

PST B/I ELECT
25°C dc
+125°Cdc
-55°C dc

ELECTRICAL
25°C dc
25°C FUNCTIONAL

25°C ae and 25°C Functional tests

25°C ac
10% PDA

Quality Conformance
Inspection

Group A: Electrical CharacteristiCS
Group B. Package oriented Tests

MTD 5005

Group C· Life Tests

QUALITY
CONFORMANCE
Gp A, B, C

QUALITY
CONFORMANCE
Gp A, B, C

and 0

and D

EXTERNAL
VISUAL
100%

EXTERNAL
VISUAL
100%

Group 0: Environm.ental Tests

External Visual

MTD 2009

3X. lOX magnification: Verify dimensions,
configuration, lead structure, marking
and workmanshIp

RELIABI LlTY
ORDERING

Figure of Merit
Part Number
Part Marking

15

2

JM38510/
10101BCB

JM38510j
10101CCB

JM38510/
10101BCB

JM3B510/
10101CCB

NOTE: RELIABI LlTY Figure of Merit is the Reliability Improvement Factor from RADC Reliability Notebook,
Vol, II, RADC-TR-67-10B, Table X 11-6, page 419,
1. Not Applicable for TO-3 Cans
"Time Temperature Curve (method 1015) may be used.

4-11

•

UNIQUE II

CLASS

CLASS
OB

(BB3S)

(8838)

as

CLASS
OC
(B83e)

"""
~
I\:)

TEMP CYCLE
COND.C

1010

.,nn'l

CENTRIFUGE
CONDo E
Y10NLY

TEMP CYCLE
CONDo C

1010

.,nn,

CENTRIFUGE
CONDo E
Y10NLY

HtHMt: 11(.;11 Y

Ht:HMt: llell Y

nt::nIYIt:1 I\"'I I T

CONDo AlB
CONDo C

CONDo AlB
CONDo C

CONDo AlB
CONDo C

1014

1014

POST BII ELECT
25'C DC
125'C DC
-55'C DC
25'C AC
25'C FUNCTIONAL
5004

POST BII ELECT
25'C DC
125'C DC
-55'C DC
25'C AC
25'C FUNCTIONAL
5004

5004

OUALITY
CONFORMANCE
5005 GPA, B,C& 0

OUALITY
CONFORMANCE
5005 GP A, B, C & 0

ELECTRICAL
25'C DC
25'C FUNCTIONAL

!c..>

EXTERNAL VISUAL

2009

100%

jLA7410MOS

EXTERNAL VISUAL

2009

100%

I

EXTERNAL VISUAL
100%

2009

jLA7410MOS

jLA7410MOC

•

MATRIX VI PROCESS FLOW OPTIONS & COST EFFECTIVENESS

KEY
[

-'~OPERATlON~

li(l,\I~~~LfI.

f'

~

PLASTIC MOLDED DEVICES
IPC. TC. UCI

.j>.

r-

EL 1,
(PC)

HERMETIC PACKAGED DEVICES
IDC. HC. KC. RCI

I
LEVEL 2,
(PCOM)

5.
(PCOR)

6.
(DCOR)

,

,

THERMAL SHOCK
LlQUID-TO-LiQUID
OOC TO + 1 ooDe

THERMAL SHOCK
lIQUID-IO-L1QUID
ODC TO + 1OODC

883/1011/A

883/1011/A

I

•

I
BURN-IN 883/1015
160 HRS. +125°C 111

DC. +25°C

BURN-IN 883/1015

160 HAS, +125°C

(1)

.J.
DC, +25°C

I

FUNCTIONAL, +l00oC
("HOT RAIL"}

~

PACK

I

1

I

1% PDA LOT REJECTION

1 % PDA LOT REJECTION

CRITERIA APPLIED TO
LOTS EXHIBITING MORE
THAN 1 % INTERMITIENTS
THROUGH HOT RAIL TEST

THAN 1 % INTERMITIENTS

:: ... :: ...:-.-..:.<: .. ::.:.-:-:.-.::;::-:~~

THROUGH HOT RAIL TEST

.'.QA ACCEPTANCE
.' FINE LEAK. 883/1014/B.
1% AOL; GROSS LEAK.
.' 883/1014/C. 0.4% AOL;
FUNCTIONAL +25° C.
0.15% AOL; DC. 0° C.
1% AOL. DC. +25° C.
0.25% AOL; DC. +70°C. 1%
AOL; AC. -t25°C. 1% AOL

·FUNCTIONAL. +25°C. 0.15% AOL
:··:DC. O°C. 1% AOL
:•.• DC. +25° C. 0.25% AOL
••.. DC. -+70° C. 1% AOL
AC o ~25° C •.1% AOL

,

J

CRITERIA APPLIED TO

-

20VS
15 Vs

~ 100

10VS

~

.,"

"

(J

10

~

.5

-56

3.

-2'

6'

••

40

RLI=

>

"
"~

20

>-

10

"
~

(J

40

~

.."

30

V

V

~AF166
FREEAIR~

20

-

10

- -r

.J-I--~

o-10

126

V

f.-~

-J5
....;

0

TC == 125 cc

. . .V
/

/

20

"

10

,.
"
.,"ii:
"~
w

,..AF155. ,..AF156
LIMIT
NEGATIVE CURRENT
._---

10

>
I

0

>

w

""!:;

Vs == 16 V

I

56 c C

"1\
10

\

5

+25°C

::
0"
w
E
.,

>
>=

ro

~

15

20

25

30

~

>

"iil
z
10

1\

0

+125~

~

>-

"0w

....

35

10

OUTPUT CURRENT SINK - rnA

16

20

c

\

25

30

OUTPUT SOURCE CURRENT - rnA

5-8

35

40

1

/ ' Tc = +125°C

/./

1.

I'AF155. ,..AF156
POSITIVE
_. - - CURRENT LIMIT

Z

55'cl
\ .", +br\

+c =1+2.lc

1/1

V
V
V
./
10

".,;;

~ ~ "-....1'-..

/tt.t

SUPPLY VOLTAGE - +v

,.

Vs =116V

V

V

25

20

"

SUPPLY VOLTAGE - +v

~ :::--

'i'

10

C

V
10

.,/

IlAF155 WITH
HEAT SINK

,..AF156 SUPPLY VOLTAGE
AS A FUNCTION OF
SUPPLY CURRENT

./

SUPPLY VOLTAGE - +V

-

~

-5

~
f.-- I.---~+125CC

/

"-

..> /'

COMMON MODE VOLTAGE - V

pAF155 SUPPLY VOLTAGE AS
A FUNCTION OF
SUPPLY CURRENT
=

.,/

t:> V

;7 IlA7,~: HEAT SINK

CASE TEMPERATURE - cC

TC

30

.6

65

2kb

I--TA == +25 c C

I

3.

-2'

-J~AFj5.

FREEtlR

.,"
!

0.1
-'6

12'

,..AF155. I'AF156 MAXIMUM
VOLTAGE SWING AS A
FUNCTION OF SUPPLY CURRENT

0

60

>-

~

CASE TEMPERATURE - °C

0

10

/'

RLI='Or
60

!
0.1

Z

a:
a:

~ 100

.,"

!

"
.,ii:
>::"

~

I

>-

:i

(J

iii

I

1k

r- TA = +26 c C

20

2.

FAIRCHILD • p.AF155 SERIES
DC TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

p.AF155. p.AF156
POSITIVE COMMON MODE
INPUT VOLTAGE AS A
FUNCTION OF SUPPLY
>, 20

..
0

~
w
0

,S

0

:;
:; '0
0
0

E
.
~

sy

'S

TA - ·-S5"C-...
+2S'oC_

r---- T~
TA

a
0

:;

/

z

'OM

A

0

/

w

W
S~

iiiz

0

0
0

~

,S

'0

20

S

POSITIVE SUPPLY VOLTS - V

Vs·= 15V

/

TA == 25"C

24

~

.

:0

0

~

..

,

...a

J:

20

.r\.

~

a
z
~
z

26

/

'2
8

4

;;

"~

f:?

~

P

z

/

."
~

V

,.

'0

'Ok

·20

>,

IJJ

~

~

/ys~'ov

~~

10jV

.

~ t(

•

2.

w

,Jmv

"~
...>

z
;;

6

z

4

"~

-r--:

:0

S

0

10 0 . 1

~

,

~Z

80

>'

60

w

40

~

~a:
a

'\

'OV

~- I--

6S

I\.

I\.

0

Z

0

:;
:;

I\..
I\..

20

r\.

'\

0

0

0
'0

'00

'k

,0 k

100 k

FREQUENCY - Hz

5-9

45

Vs - 15 V
RL'" 2 kO
TA == 25"C

I\.

0

'0

26

5

p.AF155. p.AF156 COMMON
MODE REJECTION RAllO
,00

,
0

SETTLING TIME - J1S

~~

8S 105 125

CASE TEMPERATURE - "C

~

IL

~

I........ f::::::

3
-65 -35-15

:;

:=:0

~

20V

8S 105 125

.

Vs == 15 V

TA == 25"C

0

:0

6S

't\

~

l/Vs ""'20 V

4S

~

6

z

'~ ~

Ilf

0

I\,

i:a

rVS"'V

6

"zj;

V

,l\

,
::;
J:

0

:;

20

'S

'0

SUPPLY VOLTAGE

pAF156 GAIN BANDWIDTH
~
:;

/lAF156 INVERTER
SETTLING TIME

>

•

V

CASE TEMPERATURE - "C

OUTPUT LOAD RL - kQ

,0

TA"=' t125"C

100 k

8

-55-35 -15

'0

25~C

0

3

2

'.0

TA

L

0

9

:0

40

/'

'M

z
;;

I~
:;

-55°C

TA

c,

pAF155 GAIN BANDWIDTH

Z

...~

~

6

28

"

~

A

~~

NEGATIVE SUPPLY VOLTS

p.AF155. p.AF156
VOLTAGE SWING AS A
FUNCTION OF LOAD
RESISTANCE
>,

~125OC2

'0

z

:;
:;

RL - 2 kO
RS ··50 0

A

~
w

/

0

:;

w

...>

;r

p.AF155. p.AF156
LOOP GAIN AS A FUNCTION
OF SUPPLY VOLTAGE

20

~
0

/

>

~

>,

/

TA == -55"C
to +235°C

:;

p.AF155. p.AF156
NEGATIVE COMMON MODE
INPUT VOLTAGE AS A
FUNCTION OF SUPPLY

I\.

'M

'OM

~AF155

FAIRCHILD •

SERIES

DC TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd)

MAXIMUM UNDISTORTED
SWING AS A FUNCTION OF
FREQUENCY

pAF156 SUPPLY REJECTION
AS A FUNCTION OF FREQUENCY
120

100~--'---~----r----r---'

,

80r---~~_+~~+_--~--~

I

100

~

"-

80

~

.or---~--_+~~~

Z
0

~ 401---+--

;::

60

(J

~

~

~

~

~
~ 20r---~--_+----+_--_p~~

.,

40

i.,

"

~

20

W

16

"~

f

0

10M

>-

100 k

10 k

110

10M

~

~

J.lAF166

"

0

pAF1S6

10

OPEN LOOP
FREQUENCY RESPONSE

pAF155 GAIN AS A FUNCTION
OF FREQUENCY

I
I

r-...'\.

~

~JlAF166

70

tlAF155

60

"

-~

~ -10

1;
iii

~

30

"
100

, k

-25

~

~

10k 100k 1M
FREQUENCY - Hz

-20

S

--..::

10

15

7.

10

"

10M

-30
-35

=$

~

r-I~ 1 '-"~'ll' -

1

10

-2'

"

I-

FREQUeNCY - MHz

5-10

10.

1M

.

~~'I

-50

-. -Ft
I I

Z -1

~

1 2.

I I II

5
-20

100

~HASE

~ -10

I,\-

I -15

1

hv.:/ ~

pAF156 GAIN AS A FUNCTION
OF FREQUENCY

100

2.

-5

:E

T'~

/

/ /Av-/

20

100

50

I

~

/

40

o

Z

~

60

FREQUENCY - Hz

... pUS~
~ ,I'

.

10M

~~

80

100 k

"

FREQUENCY - Hz

--..:: .¥

10

20

;:;
"iil o

~

"i!:
"

FREQUENCY - Hz

~
~
80

!1i

1M

j'!

\

~

0

..iii
Z

~

0

1 MHz

"AF155. "AF156 OUTPUT
RESISTANCE AS A FUNCTION
OF FREQUENCY

(J

40

100 kHz

10 kHz

FREQUENCY - Hz

60

\
\\.
\.

IJAF156

"

C

~

-10

'"

1M

\

.uA F166

I
W

z6

5"

9
z
II!
0

"'

80

.,>w

>.

0

>-

0

100

0

tlAF155

12

0

"".

>

i!:"

I

--

16
12

0-

Z

Z

100k

0

I'...

100

I

I

10k

""~

20

~

)
w

w

"-

TA'" 25°e
AV'·'

EQUIVALENT INPUT NOISE
VOLTAGE AS A FUNCTION
OF FREQUENCY

24

""~

'"- " "'"'

..

FREQUENCY - Hz

Vs - 15 V
Rl'" 2 krl
TA "" 25 0 C

pAF166

......

Vs = 16 V
RL = 2 kQ

2.

I

"iz

"-

"1k

>

POSITIVE SUPPLY

20

MAXIMUM OUTPUT SWING
AS A FUNCTION OF FREQUENCY

.,"i

" "-

Hz

28

I

NEGATIVE SUPPLY",

°'00
FREQUENCY

281----

TA - 25 0 C

""-

I

0

o

~~

!i

r--.

pAF155 POWER SUPPLY
REJECTION

I I
I

I

7.
50
25

~

2.

-[7>L

~

-2 5 - .
-76

-30

6-1~ I IIIIIII

-100

-3

126

-40

100

I I II IIII
1

10
FREQUENCY - MHz

2.
50
-76
100
126
-150
100

JLAF771 SINGLE • JLAF772 DUAL
JLAF774 QUAD BIFET
OPERATIONAL AMPLIFIER FAMILY
FAIRCHILD LINEAR INTEGRATED CIRCUITS
GENERAL DESCRIPTION - These monolithic JFET input operational amplifiers incorporate well matched ion
implanted JFETS on the same chip with standard bipolar transistors. The key features of these op amps are low
input bias currents in the sub nanoamp range plus high slew rate (13 V//LS typically) and wide bandwidth (3.0
MHz typically).
•
•
•
•

LOW INPUT BIAS CURRENT - 200 pA FOR p.AF77X
LOW INPUT OFFSET CURRENT - 100 pA FOR p.AF77X
HIGH SLEW RATE - 13 V/p.s TYPICALLY
WIDE BANDWIDTH - 3.0 MHz TYPICALLY

ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Internal Power Dissipation (Note 1)
DIP Package (9A) (6A)
Molded Mini DIP Package (6T) (9T)
Hermetic Package (55)
Differential Input Voltage
Input Voltage Range (Note 2)
Output Short Circuit Duration
Storage Temperature Range
(55) (6A)
(9A) (9T)
Operating Temperature Range
Commercial (/LAF77XA, /LAF77XB, /LAF77X, /LAF77XL)
Military (/LAF77XAM, /LAF77XBM)
Pin Temperature
Molded Package (9T, 9A) Soldering 10 s
Hermetic Package (55, 6A, 6T) Soldering 60 s

±18 V
670 mW
310 mW
500 mW
±30 V

±16 V
continuous
- 65°C to + 150°C
-55°C to +125°C
O°C to +70°C
-55°C to +125°C

SCHEMATIC DIAGRAM (Typical Channel)
r-------------4r--------~~~------~------------------_.----~--~~vcc
R1

R2

R3

R4

~~----~----~~~~~----~~--~~------+---------------~----~~-+~ycc

5-11

•

FAIRCHILD • fJ-AF771 SINGLE • fJ-AF772 DUAL • fJ-AF774 QUAD BIFET
DC ELECTRICAL CHARACTERISTICS - COMMERCIAL GRADE DEVICES
SYMBOL

,.AF77XA

CHARACTERISTICS

MIN

TYP

,.AF77XB

,.AF77X

p.AF77XL

MAX

MIN

TYP

MAX

MIN

TYP

MAX

MIN

TYP

MAX

UNITS

The Following Specifications Apply for Vs = ±15 V, TA = 2S'C
Vos

Input Ollset Voltage

Note 3
Rs = 10 kO

-

-

2.0

-

-

5.0

-

-

10.0

-

-

15.0

mV

los

Input Ollset
Current

Notes 3, 4
Tj = 25'C

-

-

50

-

-

50

-

-

100

-

-

100

pA

Is

Input Bias Current

Notes 3, 4
TJ = 25'C

100

200

-

50

200

pA

-

1012

-

-

50

1012

-

50

Input Resistance

-

100

RIN

1012

-

-

1012

-

0

AVOL

Large Signal
Voltage Gain

50

100

-

50

100

-

50

100

-

50

100

-

VlmV

ISC

Short Circuit
Current

-

25

-

-

25

-

-

25

-

-

25

-

mA

Supply Current

-

-

2.8

-

-

2.8

-

-

2.8

-

-

2.8

mA

13

-

-

20

mV

~

-

10

-

Is

Vo =

~

10 V

RL = 2 kO

Per Amplifier

50

The Following Specifications Apply for Vs = ±lS V, O'C '" TA '" 70'C
Vos

Input Ollset
Voltage

Note 3
Rs = 10 kO

-

-

4.0

-

-

7.0

-

-

/),.Vosi/),.T

Average TC
of Input
Ollset Voltage

Rs = 10kO

-

10

-

-

10

-

-

10

lOS

Input Ollset
Current

Notes 3, 4

-

-

2.0

-

-

2.0

-

-

4.0

-

-

4.0

nA

Is

Input Bias Current

Notes 3, 4

-

-

4.0

-

-

4.0

-

-

8.0

-

-

8.0

nA

AVOL

Large Signal
Voltage Gain

Vo = ± 10V
RL = 2 kO

25

-

-

25

-

-

25

-

-

25

-

-

Output
Voltage Swing

RL= 10kO

±12

-

±12

-

V

-

-

±10

-

±10

-

-

±10'

-

±12

±10

-

-

RL = 2 kG

-

±12

Vo

-

V

VCM

Input
Common Mode
Voltage Range

+15
-12

-

±11

+15
-12

-

±11

+15
-12

-

±11

+15
-12

-

CMRR

Common Mode
Rejection Ratio

Rs = 10 kO

80

-

-

80

-

-

70

-

-

70

-

-

dB

PSRR

Supply Voltage
Rejection Ratio

Rs = 10 kO

80

-

-

80

-

-

70

-

-

70

-

-

dB

IS

Supply Current

Per Amplifier

-

-

3.0

-

-

3.0

-

-

3.0

-

-

3.0

mA

±11

INPUT OFFSET VOLTAGE NULL CIRCUITS

v-

(,.AF771 and ,.AF772 - 14 pin)

5-12

,.V/'C

V/mV

V

FAIRCHILD • p.AF771 SINGLE • p.AF772 DUAL • p.AF774 QUAD BIFET
DC ELECTRICAL CHARACTERISTICS - MILITARY GRADE DEVICES
SYMBOL

CHARACTERISTICS

IJ.AF77XAM

CONDITIONS

MIN

IJ-AF77XBM

UNITS

TYP

MAX

MIN

TYP

MAX

2.0

-

-

S.O

mV

50

-

-

50

pA

100

-

50

100

pA

1012

-

0

-

V/mV

The Following Specifications Apply for Vs = ±15 V. TA = 25°C
Vas

Input Offset Voltage

Rs = 10 kO

-

-

los

Input Offset Current

Notes 3, 4 T j = 25°C

-

-

18

Input Bias Current

Notes 3, 4 T j = 25°C

-

50

-

1012

-

-

SO

-

-

50

-

RL = 10 kO

±12

-

-

±12

-

-

V

RL = 2 kO

±10

-

-

±10

-

-

V

±11

+15
-12

-

±11

+15
-12

80

Note 3

RIN

Input Resistance

AVOL

Large Signal Voltage Gain

Va

Output Voltage Swing

V CM

Input Common Mode
Voltage Range

CMRR

Common Mode Rejection Ratio

Rs = 10 kO

80

-

-

PSRR

Supply Voltage Rejection Ratio

Rs = 10 kO

80

-

-

Per Amplifier

-

-

-

Supply Current

Is

Va = 10 V, RL = 2 kO

V

-

-

dB

SO

-

-

dB

2.S

-

-

2.S

mA

-

5.0

-

-

S.O

mV

-

The Following Specifications Apply for Vs = ±15 V. -55°C,.; TA ,.; 125°C
Vos

Input Offset Voltage

Rs = 10 kO

!!NosIIH

Average TC of
Input Offset Voltage

Rs = 10 kO

-

10

-

-

10

Note 3

IJ.vrc

los

Input Offset Current

Notes 3, 4

-

-

20

-

-

20

nA

18

Input Bias Current

Notes 3, 4

-

-

50

-

-

SO

nA

AVOL

Large Signal Voltage Gain

Vo = ±10V, RL =2kO

25

-

-

25

-

-

RL = 10 kG

±12

-

±12

-

-

RL = 2 kG

±10

-

-

±10

-

-

V/mV

Vo

Output Voltage Swing

CMRR

Common Mode Rejection Ratio

Rs = 10 kG

-

SO

-

-

SO

-

PSRR

Supply Voltage Rejection Ratio

Rs = 10 kG

-

80

-

-

SO

-

dB

Is

Supply Current

Per Amplifier

-

-

3.4

-

-

3.4

mA

V
dB

COMMERCIAL AND MILITARY
AC ELECTRICAL CHARACTERISTICS Vs = ±15 V. TA = 25"C
CONDITIONS

IJ.AF77XNAM

IJ.AF77XBtBM

IJ.AF77XL

IJ.AF77X

UNITS

SYMBOL

CHARACTERISTICS

SR

Slew Rate

(Fig. 1)

13

13

13

13

V/IJ.S

GBW

Gain Bandwidth
Product

(Fig. 2)

3.0

3.0

3.0

3.0

MHz

en

Equivalent Input
Noise Voltage

Rs = 1000,
1= 1000 Hz

16

16

16

16

nWv'Hz"

in

Equivalent Input
Noise Current

1= 1000 Hz

0.01

0.Q1

0.01

0.01

pNVHz

MIN

TYP

MAX

MIN

TYP

MAX

MIN

TYP

MAX

MIN

TYP

MAX

NOTES:
1. Rating applies to ambienllemperatures up to 70°C above TA = 70°C. Derate linearly 6.3 mW/"C forthe metal can, 5.6 mWIOClorthe mini DIPand 8.3 mW/"C
lor the DIP.
2. Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.

3. 18 and los are measured at VCM = O. •
4. The input bias currents are junction leakage currents which approximately double for every 10°C imease in the junction temperature, Tj. Due to limited
production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the

ambienttemperature as a result 01 internal power dissipation, PD' Tj = TA = ajA PD where ajA is the thermal resistance from junction to ambient. Use of a
heat sink is recommended if input bias current is to be kept to a minimum.
5. Supply voltage rejection ratio is measured for both supply magnitudes increasing or decreasing simultaneously in accordance with common practice.

5-13

•

I

FAIRCHILD • f.LAF771 SINGLE ·uAF772 DUAL • J.LAF774 QUAD BIFET
AC CHARACTERISTICS MEASUREMENT INFORMATION

10kO

C,
100 pF

R,
2kO

Fig. 1. Unity Gain Amplifier

Fig. 2. Galn·of·10 Inverting Amplifier.

CONNECTION DIAGRAMS AND ORDERING INFORMATION
I£AF771
a·PIN METAL CAN
(TOP VIEW)
PACKAGE OUTLINE 5B
PACKAGE CODE
H

a·PIN MINI DIP
(TOP VIEW)
PACKAGE OUTLINES 6T
PACKAGE CODES R

5S
H

9T
T

NC
OFFSET
NULL

NC

-IN

v+

+IN

OUT

v-

OFFSET
NULL

vNote: Pin 4 connected to case.

ORDER INFORMATION
TYPE
I£AF771AM
1LAF771BM
I£AF771 A
I£AF771B
I£AF771
I£AF771L

ORDER INFORMATION

PART NO.
I£AF771AHM
I£AF771BHM
I£AF771AHC
I£AF771BHC
I£AF771HC
I£AF771LHC

TYPE
I'AF771AM
I'AF771BM
I'AF771A
I'AF771B
I'AF771
I'AF771L
I'AF771A
I'AF771B
I'AF771
I'AF771L

5-14

PART NO.
I'AF771ARM
I'AF771BRM
I'AF771ARC
I'AF771BRC
I'AF771RC
I'AF771LRC
I'AF771ATC
I'AF771BTC
I'AF771TC
I'AF771 LTC

FAIRCHILD • p,AF771 SINGLE • p,AF772 DUAL • p,AF774 QUAD BIFET
CONNECTION DIAGRAMS AND ORDERING INFORMATION (Cont.)
p,AF772
8·PIN METAL CAN
(TOP VIEW)

8·PIN MINI DIP
(TOP VIEW)

PACKAGE OUTLINE 5S 58
PACKAGE CODE H H

14·PIN DIP
(TOP VIEW)

PACKAGE OUTLINES 6T
PACKAGE CODES R

9T
T

PACKAGE OUTLINE 6A
PACKAGE CODE D

9A
P

V+
OUT A
-INA

OFFSET
NULLA

+IN A

V+A

OUTB

+IN A

-IN B

V-

+IN B

OFFSET
NULL A
VOFFSET
NULL B

V-

ORDER INFORMATION
TYPE
p,AF772AM
p,AF772BM
p,AF772A
p,AF772B
",AF772
p,AF772L

-INA
v+

PART NO.
p,AF772AHM
p,AF772BHM
p,AF772AHC
p,AF772BHC
p,AF772HC
p,AF772LHC

ORDER INFORMATION
TYPE
p,AF772AM
p,AF772BM
p,AF772A
p,AF772B
p,AF772
p,AF772L
p,AF772A
p,AF772B
p,AF772
p,AF772L

V+ B

-INB

OFFSET
NULL B

TYPE
I'AF772AM
I'AF772BM
I'AF772A
I'AF772B
I'AF772
I'AF772L
I'AF772A
I'AF772B
I'AF772
I'AF772L

9A
P
ORDER INFORMATION

OUTO

-INA

-IN 0

+IN A

+IN D

TYPE
I'AF774AM
I'AF774BM
I'AF774A
I'AF774B
I'AF774
I'AF774L
I'AF774A
I'AF774B
",AF774
I'AF774L

V+

+IN B

+IN C

-IN B

-IN C

OUT B

OUT C

5·15

OUTB

+IN B

14·PIN DIP
(TOP VIEW)

OUTA

NC

ORDER INFORMATION

PART NO.
p,AF772ARM
p,AF772BRM
p,AF772ARC
p,AF772BRC
p,AF772RC
p,AF772LRC
p,AF772ATC
p,AF772BTC
p,AF772TC
p,AF772LTC

PACKAGE OUTLINE 6A
PACKAGE CODE D

OUTA

PART NO.
I'AF774ADM
I'AF774BDM
I'AF774ADC
I'AF774BDC
I'AF774DC
I'AF774LDC
I'AF774APC
I'AF774BPC
I'AF774PC
I'AF774LPC

PART NO.
I'AF772ADM
I'AF772BDM
I'AF772ADC
I'AF772BDC
I'AF772DC
I'AF772LDC
I'AF772APC
I'AF772BPC
I'AF772PC
I'AF772LPC

•

... AIOl· ... A201
GENERAL PURPOSE OPERATIONAL AMPLIFIERS
FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The ,..Al0l and ,..A201 are General Purpose monolithic Operational Amplifiers
constructed using the Fairchild Planar' epitaxial process. Thev are intended for a wide range of analog
applications where tailoring offrequency characteristics is desirable. The ,..Al0l and ,..A201 compensate
easily with a single external component. High common mode voltage range and absence of "Iatch-up"
make the ,..AI 01 and ,..A201 ideal for use as voltage followers. The high gain and wide range of operating
voltages provide superior performance in integrator, summing amplifier, and general feedback applications. The ,..Al0l and ,..A201 are short-circuit protected and have the same pin configuration as the
popular ,..A741 , ,..A748 and ,..A709.

•
•
•
•
•

CONNECTION DIAGRAMS
a·PIN METAL CAN
(TOP VIEW)
PACKAGE OUTLINE 5S
PACKAGE CODE H

SHORT'CIRCUIT PROTECTION
OFFSET VOLTAGE NULL CAPABILITY
LARGE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES
LOW POWER CONSUMPTION
NO LATCH-UP

ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Internal Power Dissipation (Note 1)
Metal Can
DIP
Differential Input Voltage
Input Voltage (Note 2)
Storage Temperature Range
Metal Can, DIP
Operating Temperature Range (Note 3)
Military (jlAl0,)
Commercial (jlA201)
Pin Temperature (Soldering, 60 .)

">---:!60UT

±22V

NOTE: Pin 4 connected to case.

500mW
670mW
±30V
±'5V

ORDER INFORMATION
TYPE
PART NO.
jlAl01HM
!lAl0l
jlA201
!lA201HC

_55°C to +125°C
O°C to +70°C
300°C·

(TOP VIEW)
PACKAGE OUTLINE 6A
PACKAGE CODE D

14·PIN DIP

EQUIVALENT CIRCUIT
NC

NC
COMP.·NULL

COMP

y'

NULL
(COMP)

OUTPUT

y-

Notes on following pages

NC

NC

OFFSET

3

FREQ
COMP

-IN

v+

+IN

OUT

v-

OFFSET
NULL

NC

NC

ORDER INFORMATION
TYPE
PART NO.
jlAl01DM
!lAl0l
jlA201DC
!lA201
*Planar is a patented Fairchild process.

5-16

FAIRCHILD· ILA101 • ILA201
/LA 101
ELECTRICAL CHARACTERISTICS: ±5.0 V", Vs '" ±20 V. TA = 25°C. Cl = 30 pF unless otherwise specified.
CHARACTER ISTICS

CONDITIONS

TYP

MAX

UNITS

1.0

5.0

mV

Input Offset Current

40

200

nA

Input Bias Current

120

500

Input Offset Voltage

MIN

RS'; 10kU

Input Resistance
Supply Current
Large Signal Voltage Gain

300
Vs = ±20V

BOO
1.B

nA
kU

3.0

mA

Vs = ±15V
VOUT = ±10V. RL;' 2kU

50

160

Vim V

The following specifications apply for -55°C'; T A'; +125°C:
Input Offset Voltage

RS';10kU

Average Temperature Coefficient
of Input Offset Voltage

RS'; 50U

3.0

RS';10kU

6.0

6.0

mV

jJ.V/oC
jJ.V/oC

TA =+125°C

10

200

TA - -55°C

100

500

nA

Average Temperature Coefficient
of Input Offset Current

+25°C'; TA'; +125°C
-55°C'; TA'; +25°C

0.01
0.02

0.1
0.2

nA/oC
nA/oC

Input Bias Current

TA - -55°C

0.2B

1.5

jJ.A

Supply Current

TA - +125°C. Vs = ±20V

1.2

2.5

mA

Input Offset Current

Large Signal Voltage Gain
Output Voltage Swing

Vs - ±15V. VOUT = ±10V
RL;' 2kU

25

nA

V/mV

IRL=10kU
VS=±15V IRL-2kU

±12

±14

V

±10

±13

V

Input Voltage Range

Vs = ±15V

±12

Common Mode Rejection Ratio

RS'; 10kU

70

90

dB

Supply Voltage Rejection Ratio

RS'; 10kU

70

90

dB

V

NOTES
1.

Rating applies to ambient temperature up to 70°C.

Above 70°C ambient derate linearly at 6.3mW/oC for the Metal Can and a.3mW/oC

for the DIP.
2. For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage.
3. Short circuit may be to,ground or either suPply,; The 101 ratings apply to +12SoC case temperature or +75°C ambient temperature. The
201 ratings apply to case temperatures up to +70 C.

5-17

•

FAIRCHILD· I'A101· ~01
JLA201
ELECTRICAL CHARACTERISTICS: ±S.O V '" Vs '" ±.15 V, TA = 25'C, Cl = 30 pF unless otherwise specified.

CHARACTER ISTICS
Input Offset Voltage

CONDITIONS

MIN

TYP

MAX

UNITS
mV

2.0

7.5

Input Offset Current

100

500

nA

Input Bias Current

0.25

1.5

P.A

3.0

mA

RS"l0k!l

Input Resistance
Supply Current

100
VS=±15V

400
1.8

VS-±15V
VOUT = ±10V, RL;;' 2k!l
..
The following speCifications apply for 0° C .. T A .. 70° C:

Large Signal Voltage Gain

20

k!l

150

Vim V

Input Offset Voltage

RS"l0k!l

Average Temperature Coefficient
of Input Offset Voltage

RS" 5O!l
RS"l0k!l
TA = 70°C
TA =O°C

6.0
10.0
50
150

400
750

nA
nA

25°C .. TA" 70°C
O°C" TA" 25°C
TA = O°C

0.01
0.02

0.3
0.6

nA/oC
nA/oC

0.32

2.0

p.A

Input Offset Current
Average Temperature Coefficient
of Input Offset Current
Input Bias Current

10

Large Signal Voltage Gain

Vs = ±15V, VOUT = tl0V
RL;;' 2k!l

Output Voltage Swing

I RL = 10k!}
VS=±15V IRL=2k!l

±12
±10

mV
p.V/oC
p.V/oC

Vim V

15
±14
±13

V
V

Input Voltage Range

VS=±15V

±12

Common Mode Rejection Ratio

RS" 10k!l

65

90

dB

Supply Voltage Rejection Ratio

RS"l0k!l

70

90

dB

5-18

V

~AI0IA·~A201A·~A301A
GENERAL PURPOSE OPERATIONAL AMPLIFIERS
FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The I£A101A, I£A201A and I£A301A are General Purpose monolithic Operational Amplifiers constructed using the fairchild Planar'" epitaxial process. These integrated circuits are
intended for applications requiring low input offset voltage or low input offset current. The accuracy of
long interval integrators, timers and sample and hold circuits is improved dueto the low drift and low bias
currents ofthe I£A 101 A, I£A201 A, or I£A301 A. Frequency response may be matched to the individual circuit
need with one external capacitor. The absence of "latch-up" coupled with internal short circuit protection
make the I£A101A, I£A201A and 1£A301A virtually foolproof.
•
•
•
•
•

CONNECTION DIAGRAMS
8·PIN METAL CAN
(TOP VIEW)
PACKAGE OUTLINE
PACKAGE CODE

LOW OFFSET CURRENT AND VOLTAGE
LOW OFFSET CURRENT DRIFT
LOW BIAS CURRENT
SHORT CIRCUIT PROTECTED
LOW POWER CONSUMPTION

SS
H

>--"10 OUT

ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Military and Instrument (IIA101A and IIA201A)
Commercial (IIA301 AI
Internal Power Dissipation (Note 11
Metal Can
DIP
Flatpak
Mini DIP
Differential Input Voltage
Input Voltage (Note 21
Storage Temperature Range
Metal Can, DIP, and Flatpak
Mini DIP

v-

±22V
±18V
500mW
670mW
570mW
310mW
±30V
±15V
_65° C to +150° C
-55°C to +12SoC

NOTE: Pin Connected to Case.

ORDER INFORMATION
TYPE
PART NO.
IIA1D1AHM
IIA101A
1lA201AHM
IIA201A
IIA301AHC
IIA301A

Operating Temperature Range
Military (IIA101AI
Instrument (IIA201AI
Commercial (IIA301AI
Pin Temperature (Soldering)
Metal Can, DIP and Flatpak (60 s)
Mini DIP (105)
Output Short Circuit Duration (Note 31

-SSoC to +12SoC
- 2SoC to +8So C
O°C to +70°C
300°C
260°C
Indefinite

14-PINDIP
(TOP VIEW)
PACKAGE OUTLINE 6A
PACKAGE CODE 0

NC

NC

CONNECTION DIAGRAMS
NC

8-PIN MINI DIP

10-PIN FLATPAK

(TOP VIEW)
PACKAGE OUTLINE
PACKAGE CODE

(TOP VIEW)
PACKAGE OUTLINE 3F
PACKAGE CODE F

9T
T
NC

-fN

8 FREO

COMP

COMP
v+

'--I:::=:::J OUT

+IN
OUT

v-

5 OFFSET
NULL

NC
FREQ

COMP

-fN

v+

+fN

OUT

v-

OFFSET
NULL

NC

NC

FREQ

NULL
FREQCOMP
-fN

v+

+fN

NULL
(COMP)

NC

OFfSET
OFfSET NULL 1
(COMP~ 2

OFFSET

OFFSET

v-

NULL

Available on special request.

ORDER INFORMATION
TYPE
PART NO,
IIA301A
IIA301ATC

ORDER INFORMATION
TYPE
PART NO.
1lA101AFM
IIA101A
11201AFM
IIA201A

ORDER INFORMATION
TYPE
PART_!'J!l~
IIA101A
IIA101ADM
IIA201A
IIA201ADM
IIA301A
IIA301ADC
';-P-Ianar i-s a patented Fairchild process.

Notes on page 3

5-19

•

FAIRCHILD • JLA101A· JLA201A· JLA301A
""A101A and 1LA201A
ELECTRICAL CHARACTERlsncs: ±6.0 V .. Vs .. ±20 V. TA = 26°C. Cl = 30 pF unless otherwise sDecified.
CHARACTER ISTI CS

MIN

CONDITIONS

Input Offset Voltage

TYP

MAX

UNITS

0.7

2.0

mV

1.5

10

nA

30

75

RS" 10kO

Input Offset Current
Input Bias Current
Input Resistance

1.5

Supply Current
Large Signal Voltage Gain

Vs

= ±20V

Vs

= ±15V
= ±10V. RL d>

MO

1.8

VOUT

50

2kO

nA

4.0
3.0

mA

160

V/mV

The following specifications apply for -55°C .. TA .. +125°C: (Note 4)
Input Offset Voltage

RS .. 10kO

Average Temperature Coefficient
of Input Offset Voltage

3.0

Input Offset Current
Average Temperature Coefficient
of I nput Offset Current

Large Signal Voltage Gain

mV

15

JJ,V/oC

20

nA

+25°C" TJ>," +125°C

0.01

0.1

nAloC

-55°C .. TA" +25°C

0.02

0.2

nAloC

Input Bias Current
Supply Current

3.0

TA

= +125°C. Vs = ±20V

Vs

= ±15V. VOUT = ±10V

1.2

100

nA

2.5

mA

25

RLd> 2kO

V/mV

Output Voltage Swing

_
.IRL = 10kO
Vs - ±15V 1RL = 2kO

±12

±14

V

tID

±13

V

Input Voltage Range

Vs = ±20V

±15

Common Mode Rejection Ratio

RS .. l0kO

80

96

dB

Supply Voltage Rejection Ratio

RS .. l0kO

80

96

dB

V

GUARANTEED PERFORMANCE CURVES FOR jJ.A 101A AND jJ.A201A
INPUT VOL TAGE RANGE
AS A FUNCTION OF
SUPPLY VOLTAGE
2<1

10

,

,
fF"
''==
,
50

75

100

0

125

20

5

15

-~

-

80

CURRENT LIMITING

~~

'\

0

I--" ~ -TA~25°C

VS':!:15V

r--.

"\
I"'"
,. ; - ~.~
~ :\~

~-

0

'"

40
TEMPfRATURE-QC

TEMPERATURE-oC

SUPPLY CURRENT
AS A FUNCTION OF
SUPPL Y VOL TAGE

5

-t--

•

-

25

tv

'.0

-=

0
8

,
20

SUPPLY VOLTAGE -

~

40

0

l I

-

'" I-- -

~

20

-,

10

5

........

10

I 1

I

80

20

ITA '''''1

-;::.---

INPUT CURRENT
AS A FUNCTION OF
TEMPERATURE
,.A301A

5

o. 5
0

10

0

20

15

10

INPUT NOISE VOLTAGE
AS A FUNCTION OF
FREQUENCY

15

20

25

30

OUTPUT CURRENT -rnA

SUPPLY VOLTAGE- ±V

INPUT NOISE CURRENT
AS A FUNCTION OF
FREQUENCY
IJ,A 101A AND IJ,A201A

,

INPUT NOISE CURRENT
AS A FUNCTION OF
FREQUENCY
IJ,A301A

,'\

"-

"

[\

5

~'25'

6

'"

100

lonk

10k

120

RS' JkQ

TA -2S°C

=

0

40

20

10

100

100

"-

'"

i"-...

"-

'"

"'"

100

~IOV-

10k

FREQUENCY-Hz

40

lOOk

1M

'\~~

"-

f-~~ f - -

r- CO~::N~!~ON

1"-

100

lk

10k

lOOk

FREQUENCY-Hz

5-22

1M

10M

AV"}

1/
'---"

10-310

100

/'

AV'looo

lrfl

,
"-

V

1'--"

1

Or--TA"ZSoC
10

lOOk

CLOSED LOOP OUTPUT IMPEDANCE
AS A FUNCTION OF
FREQUENCY
103

10 1

I"""~~ ~

SINGlEPOLf

10k

10'

" ,,"Ii;.?
~J-

20

v'M,L>-

"-

'"

FREQUENCY-Hz

POWER SUPPLY REJECTION
AS A FUNCTION OF
FREQUENCY

0

"'"

80

lOOk

FREQUENCY-Hz

COMMON MODE REJECTION
AS A FUNCTION OF
FREQUENCY

100

10k

'"

100

FREQUENCY-Hz

V

V
SINGLE POLE

COMPE~SATION

~l:~~
A

,_
IOUTj -+-SmA

'"

10<

FREQUENCY-Hz

lOOk

1M

FAIRCHILD • p;A101A· p;A201A· p;A301A
TYPICAL PERFORMANCE CURVES FOR J.IA101A, J.IA201A AND !lA301A
OPEN LOOP FREQUENCY
RESPONSE
120

~

100

'"

so
0
0

TA
VS"+lSV- 215

~~,
\-,.~

I

PHi'~

-Iii""- ",-y
K~

110

110

.',,·c

-....

/

I

TWO POll
100
80

"

'"

r

SINGL POLE

0
-1 0

10

100

H

10k

lOOk

FREQUENCY-Hz

1\

r\

GAIN

10

TA "25°C
Vs "tl'V

C1 "3DpF
C2 "300pF

\

HIM

~

-10
1

10

100

lk

10k

J 13,

'"

60

"

I'"~

lOOk

1M

16

16

I

rv

"

'"

~

1
-10

10M

10

100

lk

10k

lOOk

1M

10M

100M

fREQUENCY-Hz

LARGE SIGNAL FREQUENCY
RESPONSE
16

VS "±.15V

VS"+lSV
TA ~ 25°C

\

C2 "300pF
1

'"
I

FEEDF1RWARDI.

6~:~O~_

11

Vs"±l5V

"IN)..

10

LARGE SIGNAL FREQUENCY
RESPONSE

IA -25 C
VS "±15V

TA "25°C

j,).

40

FREQUENCY-Hz

LARGE SIGNAL FREQUENCY
RESPONSE

I
I
""1\

I--

100

180

\~

"

80

1M

'"

1\ PHt"

GAIN -c::::::

0

OPEN LOOP FREQUENCY
RESPONSE

OPEN LOOP FREQUENCY
RESPONSE

11

\

1\

\ CI · , (

1\

1\

C1 "30pF

III

II

III

o
lk

lOOk

1M

10M

P--_,....,---'W'_--,

.::>"-'--<> OUTPUT

Power Bandwidth: 15 kHz

Slew Rate: 1 V IllS

MULTIPLE APERTURE
WINDOW DISCRIMINATOR

OUTPUT

t May be zero or equal to parallel combination
of R1 and R2 for minimum offset.

FAST SUMMING AMPLIFIER

BILATERAL CURRENT SOURCE

C2
3pF
R3
50kll
0.1%

R5

50011
1%

r"Mr......--W..--+.--oIOUT

C,
150pF

P·ower Bandwidth: 250 kHz
Small Signal Bandwidth: 3.5 MHz

R3 V,N
'OUT =

Slew Rate: 10VIIls
R3 = R3
Rl

= R2

EaUIVALENT CIRCUIT
COMP.-NUll

COMPo

v'

OUTPUT

5-24

Rl RS
RS

+

FAIRCHILD e/LA101A e/LA201A e/LA301A
TYPICAL APPLICATIONS (Cont'd)
(All pin numbers shown refer to a-Pin TO-5 package)
DOUBLE ENDED LIMIT DETECTOR

LOW FREQUENCY SQUARE WAVE
GENERATOR

v'

~_ _I - _ 6~~pl~rEDANCE

r-+--Wv....-4- g~~0iD
DI,6.2V
D2,6.2V
VOUT=4.6V FOR

"'Adjust C, for frequency

VOUT = OV FOR

PRACTICAL DIFFERENTIATOR

f

VL';;;;; VIN ';;;;;VU
VIN

< VL

OR VIN

CIRCUIT FOR OPERATING
WITHOUT A NEGATIVE SUPPLY

.-'-

e

,

21rR2C,

fh""----:--

21TR, C,

=-'211'A2 C2
fc .......~:OOUT
v-

±18 V
500 mW
±15 V
Indefinite
_65°C to +150°C
-55°C to +125°C
O°C to +70°C
300°C

ORDER INFORMATION
TYPE
PART NO.
IlA 102
IlA 102HM
IlA302
IlA302HC
IlAll0
IlA110HM
IlA3l 0
IlA3l0HC

EQUIVALENT CIRCUIT
OFFSET NULL

OFFSET NULL

7

R2

1k

R1

R4

500

500

v+

R3

1k

Q1Jr--------~--------;:

R13
3 k

~--------''-O BOOSTER

R12
1.5 k

R11
L-----~--------

__

~--------------

__

~--------

See notes on following pages

__________

200
+_----------~~v-

... Planar is a patented Fairchild process.

5-26

FAIRCHILD· JLA102· JLA110 JLA302· JLA310
tl Al02
ELECTRICAL CHARACTERISTICS: Vs

~

± 15 V. T A

~

25°C. CL '" 100 pF. unless otherwise specified.
TYP

MAX

Offset Voltage

2.0

5.0

Average Temperature Coefficient of Offset Voltage

6.0

CHARACTERISTICS

CONDITIONS

MIN

3.0

I nput Current
Input Resistance

Voltage Gain

RL;;>10kn

10 10

10 12

0.999

0.9996

±10

±13

0.8

Output Resistance
Output Voltage Swing (Note 4)

RL;;> 8 kn

3.5

Supply Current
Positive Supply Rejection

60

Negative Supply Rejection

70

nA

n
2.5

n

5.5

mA

V

3.0

pF

7.5

mV

TA = 125°C

3.0

10

nA

TA=-55°C

30

100

nA

2.6

4.0

mA

UNITS

_55°C <; TA'; 125°C

Voltage Gain

10

dB

_55°C <; TA <; 125°C

I nput Current

mV
"v;oC

d8

I nput Capacitance

Offset Voltage

UNITS

RL;;>10kn

Output Voltage Swing

RL;;> 10 kn

Supply Current

TA - 125°C

0.999
V

±10

tlA302
ELECTRICAL CHARACTERISTICS: Vs

~

±15 V. TA

~

25°C. CL '" 100 pF. unless otherwise specified.
TYP

MAX

Offset Voltage

CONDITIONS

5.0

15

Average Temperature Coefficient of Offset Voltage

20

CHARACTER ISTICS

MIN

Input Current
I nput Resistance
Voltage Gain

10'
RL

>8

0.9985

kn

Output Resistance
Output Voltage Swing (Note 4)
Supply Current
Positive Supply Rejection

60

Negative Supply Rejection

70

I nput Capacitance
Offset Voltage
I nput Current

nA

10

30

10 12
0.9995

1.000

0.8

2.5

n

3.5

5.5

mA

n

±10

RL;;> 8 kn

mV
"V;OC

V
dB
dB
pF

3.0
DoC <; TA <; 70°C

2Cl

mV

TA -70°C

3.0

15

nA

TA = DoC

20

50

nA

5-27

•

FAIRCHILD -/LA102 -/LA110 /LA302 -/LA310
,uA110
ELECTRICAL CHARACTERISTICS: :t5.0 V .. Vs .. :t18 V. -55·C < TA .. +125·C. unless otherwise specified.
TYP

MAX

UNITS

Input Offset Voltage

CHARACTERISTICS

TA=25G C

1.5

4.0

mV

Input Bias Current

TA = 25·C

3.0

nA

I nput Resistance

TA =25G C

1.0
1012

CONDITIONS

MIN

10'·

I nput Capacitance
Large Signal Voltage Gain

n
pF

1.5
TA=25G C.VS=±15V
VOUT = ±10 V. RL = 8 kn

0.999

0.9999

Output Resistance

TA = 25°C

0.75

2.5

n

Supply Current

TA=25°C

3.9

5.5

mA

-55°C'; TA'; 85G C

6.0

TA = 125°C

12

6.0

Input Offset Voltage
Offset Voltage Temperature Drift
Input Bias Current
Large Signal Voltage Gain

Vs = ±15 V. VOUT = ±10 V
RL = 10 kn

Output Voltage Swing (Note 4)

Vs - ±15 V. RL - 10 kn

Supply Current

TA -125°C

Supply Voltage Rejection Ratio

±5V';VS';±18V

mV
/lv/of;
/lV/oC

,10

nA

4.0

mA

0.999
±10

V
2.0

70

80

dB

,uA31 0
ELECTRICAL CHARACTERISTICS: :t5.0V .. VS" :t18 V. O·C .. TA" +70·C. unless otherwise specified.
TYP

MAX

UNITS

I nput Offset Voltage

TA = 25°C

2.5

7.5

mV

Input Bias Current

TA = 25°C

2.0

7.0

nA

Input Resistance

TA = 25·C

CHARACTERISTICS

CONDITIONS

MIN

10'·

I nput Capacitance
Large Signal Voltage Gain

TA = 25°C. Vs = ±15 V
VOUT = ±10 V. RL = 8 kn

0.999

n

10"
1.5

pF

0.9999

Output Resistance

TA = 25°C

0.75

2.5

n

Supply Current

TA=25°C

3.9

5.5

mA

10

Input Offset Voltage

10

Input Bias Current

Large Signal Voltage Gain

Vs = ±15 V. VOUT = ±10 V
RL = 10 kn

Output Voltage Swing (Note 4)

VS=±15V.RL=10kn

Supply Voltage Rejection Ratio

±5V';Vg';±18V

mV
/lV/oC

10

Offset Voltage Temperature Drift

nA

0.999
±10
70

V
80

dB

NOTES:
1.' Rating applies to ambient temperatures up to + 70ClC. Above + 70Q C ambient, derate linearly at 6.3 mW/C.
2. For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.
3. For 102 and 110 continuous short circuit is allowed for case temperature of + 125 0 C and ambient temperature to +700 C. For 302 and 310
continuous short circuit is allowed for case temperature to +70o C and ambient temperature to +5SoC. It is necessary to insert a resistor
greater than ~ kn in series with the input when the amplifier is driven from low impedance sources to prevent damage when the output is
shorted.
4. Increased output swing under load can be obtained by connecting an external resistor between the booster and V- terminals (see curve).

5-28

FAIRCHILD· J,LA102· J,LA110 J,LA302· J,LA310
TYPICAL PER FORMANCE CURVES FOR .uA 102 • .uA302 • .uA 110 • .uA31 0
VOL TAGE GAIN
AS A FUNCTION OF
FREQUENCY

VOLTAGE GAIN
AS A FUNCTION OF
FREQUENCY

1fi11mJ1

0.99999§l"l'1~

POSITIVE OUTPUT SWING
AS A FUNCTION OF
CURRENT

.-1--

OUTPUT NOISE VOLTAGE
AS A FUNCTION OF
FREQUENCY

r--- - r--r-- - r--

-

_ .. +--1+---/-..,--1
I

o

v,

'A

LARGE SIGNAL
FREQUENCY RESPONSE
AS A FUNCTION OF
FREQUENCY

,'1--- 1\

v,

'1~ V
2!,C

POWER SUPPLY REJECTION
AS A FUNCTION OF
FREQUENCY

Vs - '15V
TA 25 C
DISTORTION· S<

I

\ I

I

,
,

111111

OUTPUT RESISTANCE
AS A FUNCTION OF
FREQUENCY

LARGE SIGNAL
PULSE RESPONSE

,

1111111

I

•

0

I

,

1\

I

- TA

6

125"C

,

1.0=TA -25"C

1\

0

,

~A-

55"C

2

...............

II IIII

0.'

0

TIME_I"

TYPICAL PERFORMANCE CURVES FOR .uA102 • .uA110
INPUT CURRENT
AS A FUNCTION OF
TEMPERATURE
10
SYMMETRICAL
OUTPUT SWING 099999
\"OUT 'lQV

:::::'S._~15V=~ ~
- - .. --f-.- ·----.

Vs

~~5200H'

r-

,-/

./

'f-

f- r--

TEMPERATURE

~~~~T~E~M~PrE~RtA~T~U~R~E~m

>1SV

,

0.' L.55-.~",--_L,,,-',-~...L-,=--.JL-..L-'

SUPPL Y CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE

VOLTAGE GAIN
AS A FUNCTION OF

I---'"

,

-55 -35

-15

o:r
25

45

/'

/'

~VS~'15V
~I

:&~

9

,

VV

":

ts t:-"

,
O.999L.,,-',--L--L-L-,L-.l,,_,L,-',,"'",-',,,

65

TEMPERATURE _

,~

,

,,~/ V
w~

5

C

V

r--

6

TEMPERATURE

C

C

0
-5535

·15

85105125

5
TEMPERATURE -

C

TYPICAL PERFORMANCE CURVES FOR .uA302 •. I.IA310
INPUT CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE

SYMMETRICAL OUTPUT SWING
0

Vs

~

+15 V

V

'IOV

TEMPERATURE-"C

,

s - J.15V

,

,-

I-

,

VOL TAGE GAIN
AS A FUNCTION OF
SUPPLY VOLTAGE

6
_~OUT

-I--

SUPPLY CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE

f--

-

j j ---

=*
30

40

,:::::"

Vs

,

,

t--

50

70

;;::::::::::~ tSV::: p:::::V~5V

9

0

80

10

20

30

40

50

TEMPERATURE_oC

TEMPERATURE-"C

5-29

60

70

0999,:-_-'-_~_-L_-!:--_-'----:!,

I

FAIRCHILD· /LA102· /LA110 /LA302· /LA31 0
TYPICAL APPLICATIONS
HIGH INPUT IMPEDANCE
AC AMPLIFIER

DIFFERENTIAL INPUT
INSTRUMENTATION AMPLIFIER

HIGH Q NOTCH FILTER

,------._OUTPUT

Your

A"

lOOk

C,
2.0,llF

OUTPUT

INPUTS

,

A,
lOOk

R4~~
R2
R3

fo=---

21TR, C,

C,

C2

270pF

270pF

R,~R2~2R3

R4

AV ~ R2

C,

BANDPASS FILTER

FAST INTEGRATOR
WITH LOW INPUT CURRENT

~

C3

C2

~2

SIMULATED INDUCTOR

r -_ _ _ _ _~~C~f------,

C,

INPUT

10pF

C,

OUTPUT

O.I1'F

A,
10M

"

LOW PASS ACTIVE FILTER

L

~

R, R2 C,

RS

~

R2

Rp

~

R,

FAST INVERTING AMPLIFIER
WITH HIGH INPUT IMPEDANCE

HIGH PASS ACTIVE FILTER

c,'

OUTPUT

OUTPUT

II<

Values are for 10kHz cutoff. Use silvered mica
capacitors for good temperature stabBify.

BUFFERED REFERENCE SOURCE
r-'W~-'-V+ ±15 V

A,

'" Values are 1 00 Hz cutoff. Use
metalized polycarbonate capacitors
for good temperature stability

LOW DRIFT SAMPLE AND HOLD"

SAMPLE AND HOLD

SAMPLE:----;:---,--,

3.6k

,--+-_'-OUTPUT
OUTPUT

A,
0,
lN4611

,.

-:!

OUHUT

INPUT~'__ _

7.5k

A,

3k

A,

,.

27k

c,
O.l/JF

'" Use capacitor with polycarbonate teflon or
polyethylene dielectric.

"'Teflon, polyethylene or polycarbonate
dielectric capacitor

'" ·Worst case drift less than 3 mV/s

5-30

~AI07·~A207·~A307
GENERAL-PURPOSE OPERATIONAL AMPLIFIERS
FAIRCHILD LINEAR INTEGRATED CIRCU ITS

GENERAL DESCRIPTION - The ,.Al07 General Purpose Operational Amplifier series is constructed
using the Fairchild Planar'" epitaxial process. Advanced processing techniques have reduced the 107

input current an order of magnitude below industry standards such as the ,.A709 while still replacing,
pin-for-pin, ,.A709, ,.AIOI, ,.AIOIA, and ,.A741. The ,.AI07, ,.A207, and ,.A307 offer better accuracy,
internal compensation, and lower noise for high impedance circuit applications while providing features similar to the ,.AIOIA. The low input currents allow the device to be used in slow-charge applications such as long period integrators, slow ramps, and sample-and-hold circuits. The JJ.A207 is identical to the ,.A 107 except that the ,.A207 performance is guaranteed from -25·C to +85·C while the
~A107 performance is guaranteed over a -55°C to +125°C temperature range. The IJ.A307 is available
in both TO-99 and 8-pin mini DIP packages and is guaranteed over a O·C to + 70C temperature range.

CONNECTION DIAGRAMS
8-PIN METAL CAN
(TOP VIEW)
PACKAGE OUTLINE
PACKAGE CODE
NC

-IN

•

LOW OFFSET VOLTAGE

•

LOW INPUT CURRENT

5S
H

>---''0 OUT

v-

•

LOW OFFSET CURRENT

•

GUARANTEED DRIFT CHARACTERISTICS

•

GUARANTEED OFFSETS OVER COMMON MODE RANGE

Note: Pin 4 connected to case.

EQUIVALENT CIRCUIT

ORDER INFORMATION
TYPE
PART NO.
,.Al07
,.Al07HM
p-A207
p-A207HM
p-A307
,.A307HC

8-PIN MINI DIP
(TOP VIEW)
PACKAGE OUTLINE 9T
PACKAGE CODE T

R9
25~ !

OUTPUT

NC

NC

IN

V,

OUT

'IN
RlO

NC

301(!!

°20

ORDER INFORMATION
TYPE
PART NO.
p-A307TC

Dual In-line Package
and Flatpak Available
By Special Request

Pin connections shown are for metal can.

*Planar is patented Fairchild process.

5-31

•

FAIRCHILD e p,A107 e p,A207 ep,A307
ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Military and Instrument ("Al07 and "A207)
Commercial ("A307)
Internal Power Dissipation (Note 1)
Metal Can
Mini DIP
Differential I nput Voltage
Input Voltage (Note 2)
Storage Temperature Range
Metal Can
Mini DIP

±22 V
±18 V
500 mW
310mW
±30 V
±15 V
-S5°C to +150°C
_55°C to +125°C

Operating Temperature Range

Military ("Al07)
Instrument ("A207)
Commercial ("A307)
Pin Temperature (Soldering)
Metal Can (SO s)
Mini DIP (10 s)
Output Short Circuit Duration I"A 107 and "A207)
I"A307, Note 3)

_55°C to +125°C
_25°C to +85°C
O°C to +70°C
300°C
260°C
Indefinite

Indefinite

NOTES:
1.

Rating applies to ambient temperatures up to 70 o e. Above 70 0
mini DIP.

2.

For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.
Continuous short circuit is allowed for case temperatures to 700 e and ambient temperatures to 5SoC.

3.

e

ambient derate linearly at 6.3 mW/C for metal can and 5.6 mW/oC for the

fJ.A 107 and fJ.A207
ELECTRICAL CHARACTERISTICS: ±5.0 V '" Vs '" ±20 V, T A

CHARACTERISTICS
Input Offset Voltage

= 25"C for "A 107 and ,.A207 unless otherwise specified.
MIN

CONDITIONS
RS';; 50 kD

Input Offset Current
I nput Bias Current

1.5

I nput Resistance

Supply Current
Large Signal Voltage Gain

VS=±20V

TYP

MAX

0.7

2.0

1.5

10

nA

30

75

nA

4.0
1.8

Vs = ±15 V

50

UNITS
mV

MD
3.0

160

mA
V/mV

VOUT = ±10 V, RL;;' 2 kD

The following applies for 55°C';; T A';; 125°C unless otherwise specified
Input Offset Voltage

RS';; 50 kD

3.0

mV

3.0

15

"V/oC

20

nA

25°C <;TA ,;; 125°C

0.01

0.1

nA/oC

-55°C';; T A';; 25°C

0.02

0.2

nA/oC

Average Temperature Coefficient of

I nput Offset Voltage
Input Offset Current
Average Temperature Coefficient of

Input Offset Current
Input Bias Current

Supply Current
Large Signal Voltage Gain

TA ~ +125°C, Vs = ±20 V
Vs = ±15 V, VOUT

~

±10 V

1.2
25

100

nA

2.5

mA
V/mV

RL;;' 2 kD
Output Voltage Swing

VS=±15V

Input Voltage Range

Vs = ±20 V

Common Mode Rejection Ratio

RS';; 50 kD

Supply Voltage Rejection Ratio

RS'; 50 kD

IRL - 10 kD

±12

±14

V

IRL = 2 kD

±10

±13

V

80

96

dB

80

96

dB

±15

5-32

V

FAIRCHILD· JLA107· JLA207 • JLA307
J.l.A307
~

ELECTRICAL CHARACTERISTICS: ±5.0 V", Vs '" ±15 V, TA
CHARACTERISTICS

25'C unless otherwise specified.

CONDITIONS

I nput Offset Voltage

MIN

TYP

MAX

2.0

7.5

3.0

50

nA

70

250

nA

RS .; 50 kil

Input Offset Current
Input Bias Current

I nput Resistance

0.5

Supply Current
Large Signal Voltage Gain

VOUT

~

Mil

1.8

3.0

mA

160

25

±10 V. RL;> 2 kil

mV

2.0

Vs - ±15 V
VS~±15V

UNITS

V/mV

..

The following speCIfIcatIons apply for O'C .; TA .; 70'C
Input Offset Voltage

10

mV

6.0

30

p.V/'C

70

nA

0.01

0.3

nA/'C

0.6

nA/'C

RS'; 50 kil

Average Temperature Coefficient of
Input Offset Voltage
I nput Offset Current

Average Temperature Coefficient of

25'C'; TA'; 70'C

I nput Offset Current

I

O'C.; TA';; 25'C

0.02

Input Bias Current

300
Vs

Large Signal Voltage Gain

~

±15 V, VOUT

~

±10 V

nA
V/mV

15

RL;>2kil

Output Voltage Swing

VS~±15VI RL~10kil

±12

RL-2kil.

± 10

I nput Voltage Range

VS-±15V

Common Mode Rejection Ratio

RS'; 50 kil

70

90

dB

Supply Voltage Rejection Ratio

RS'; 50 kil

70

96

dB

I

±14

V

±13

V

±12

V

GUARANTEED PERFORMANCE CURVES FOR J.l.A107 AND J.l.A207
VOL TAGE GAIN
AS A FUNCTION OF
SUPPL Y VOLTAGE

OUTPUT SWING
AS A FUNCTION OF
SUPPLY VOLTAGE

INPUT VOL TAGE. RANGE
AS A FUNCTION OF
SUPPLY VOL TAGE
20

/'

V

L

./

t::J\.(,,!Y

y,\\'.J.f.v/ ,

~W

~ V0"f:
./

94f--f--f--1--1--1--j

. /' /
-"
~~ , /

~ ~~I
~
107:I_S5"C?

./
./

"I

V .....

.J

O

I

I

.... pC';;TA';;70°C

1

SUf'PL Y VOLTAGE - ±V

1

1

. / ,.i.
".t!.
./
./

1./ ~

--

i\"'~('"

-

o

,

",
SUPPLYVOLTAGE-±V

5-33

\'101>~

--

~

fC0

TYPICAL PERFORMANCE CURVES FOR J,lA307
INPUT CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE

VOLTAGE GAIN
AS A FUNCTION OF
SUPPLY VOL TAGE

1
BIAS

,. .Ilocl

,..- I-~

-

FFST

"

so

5
SUPPLY VOLTAGE

'V

.

CURRENT LIMITING

INPUT NOISE CURRENT
AS A FUNCTION OF
FREQUENCY

>0'

r""'=:::: ~

"\
-

r-

",1'250
1,\

A
T ''''\-

r-

10 25

VS -'15V

I'

1

>0' 0
20

lOOk

25

OUTPUT CURRENT _ tmA

FREOUENCY- Hz

5-34

FAIRCHILD • p,A 107 • p,A207 • p,A307
TYPICAL PERFORMANCE CURVES

INPUT NOISE VOLTAGE
AS A FUNCTION OF
FREQUENCY
10

OPEN LOOP
FREQUENCY RESPONSE
,>0

10

'VsA - 25C
'lSV

i
'>

lOOr--.....

~

80

I""

60

t--

40
20

I"

0
10

Hj

""1"'-

·20

;0

100

;oOk

'"

"

1

;00

10

FREOUENCY -Ht

lOOK

~

VS~

6

"

I

:0. ..... -

I~PUTI

4-{

:

, :\
0

6

\
i....·.....

-4
-6

r'-.

-10
10K

lOOK

0

FREQUENCY -H,

r-

/
OUTPUT

I

I

I

I
I

-6

0

'{

1\

-,

1\
1K

•

I

2SoC
±15V

6

4

;OM

VOLTAGE FOLLOWER
PULSE RESPONSE
;0

TA

\.

, M

",

FREQUENCY

LARGE SIGNAL
FREQUENCY RESPONSE

"

;OK

1K

T A ~ 25"C

10

20

30

40

00

60

Vy"r
"
80

TIME -I'S

TYPICAL APPLICATIONS
(All pin numbers shown refer to 8-pin TO-5 package)
NON-INVERTING AMPLIFIER

NON-INVERTING AC AMPLIFIER

",

R2 10 M

'~

",
':'

INVERTING AMPLIFIER

3V

"3 9 'OK

-==

V,N

R, + R2

VOUT~---

R,

'~

~~

VOUT

6

t

3~6

1

e, '

V,N

R, + R2

VIN

VOUT~---

R,

RIN ~ R3
R3 ~ R, R2

5-35

",

V OUT

VIN

1 , ",

r'~'
R2

VIN

VOUT~ -

R,

RIN ~ R,

VIN

1

V OUT

pAI08A.pA208A.pA308A
~AI08·~A208·~A308
SUPER BETA OPERATIONAL AMPLIFIERS
FAIRCHILD LINEAR. INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The jLA10S Super Beta Operational Amplifier series is constructed using

the Fairchild Planar* epitaxial process. High input impedance, low noise, low input offsets, and
temperature drift are made possible through use of super beta processing, making the device suitable
for applications requiring high accuracy and low drift performance. The jLA10SA series is specially

selected for extremely low offset voltage and drift, and high common mode rejection, giving superior
performance in applications where offset nulling is undesirable. Increased slew rate without
performance compromise is available through use of feedforward compensation techniques,
maximizing performance in high speed sample-and-hold circuits and precision high speed summing
amplifiers. The wide supply range and excellent supply voltage rejection assure maximum flexibility in
voltage follower, summing, and general feedback applications.
•
•
•
•
•

GUARANTEED LOW INPUT OFFSET CHARACTERISTICS
HIGH INPUT IMPEDANCE
LOW OFFSET CURRENT
LOW BIAS CURRENT
OPERATION OVER WIDE SUPPLY RANGE

CDMP

±20 V
±lS V
500mW
600mW
570mW
310mW
±10mA
±15 V
_65°C to +150°C

GUARD

-55°C to +125°C
-25°C to +S5°C
O°C to +70°C
•
300°C

10-PIN FlATPAK··

(TOP VIEW)
PACKAGE OUTLINE 6A
PACKAGE CODE D

(TOP VIEW)
PACKAGE OUTLINE 3F
PACKAGE CODE F

COMP

-IN

V.

"N

OUT

GUARD

NC

v-

NC

ORDER INFORMATION
TYPE
PART NO.
jLA10SA
jLA108ADM
jLA108
jLA10SDM
jLA208A
jLA208ADM
jLA20S
jL208DM
jLA308A
jLA30SADC
jLA30S
jLA308DC

ORDER INFORMATION
TYPE
PART NO.
jLA10SA
p.Al08AHM
jLA108
jLA108HM
jLA208AHM
I'A208A
jLA208
jLA208HM
jLA308AHC
jLA30SA
jLA308
jLA308HC

CONNECTION DIAGRAMS
8-PIN MINI DIP
(TOP VIEW)
PACKAGE OUTLINE ~\
PACKAGE CODE T

Indefinite

l4-PIN DIP'·

NC

OUT

v-

Storage Temperature Range
Operating Temperature Range
Military (jLA10SA,jLA10S)
Industrial (jLA20SA, jLA20S)
Commercial (jLA30SA, jLA3OS)
Pin Temperature (Soldering, 60 s)
Output Short·Circuit Duration (Note 4)

NC

(TOP VIEW)
PACKAGE OUTLINE 5S
PACKAGE CODE H

-IN

ABSOLUTE MAXIMUM RATINGS
Supply Voltage
JLA 1OSA, JLA lOS, jLA20SA, jLA20S
jLA30SA, jLA30S
Internal Power Dissipation (Note 1)
Metal Can
Dip
Flatpak
Mini DIP
Differential I nput Current (Note 2)
Input Voltage (Note 3)

NC

CONNECTION DIAGRAMS
a-PIN METAL CAN

CaMP

NC

caMP

GUARD

COM'

-IN

v.

.,N

OUT

CaMP

-IN

V+

+IN

OUT

v-

NC

v-

GUARD

ORDER INFORMATION
TYPE
PART NO.
jLA108A
jLA108AFM'
jLA10S
jLA108FM
jLA20SAFM
jLA208A
jLA20SFM
jLA20S

ORDER INFORMATION
TYPE
PART NO.
jLA30SA
jLA308ATC
jLA30S
jLA308TC

'" '" Available on special order
See notes on following pages.

"'Planar is a patented Fairchild process.

5-36

FAIRCHILD eILA108A elLA208A eILA308A eILA108 elLA208 eILA308
EQUIVALENT CIRCUIT

COMPENSATION

COMPENSATION

V+
7

6

•
3
NONINVERTING
INPUT

VR19
6.4kQ
Pin numbers are for metal can only

5-37

Rl7
500Q

4

FAIRCHILD· JLA108A· JLA208A· JLA308A· JLA108· JLA208· JLA308
/LA108A and /LA208A
ELECTRICAL CHARACTERISTICS: ±5.0 V", Vs '" ±20 V, TA = 25'C, Cc = 30 pF unless otherwise specified.
CHARACTERISTICS

TYP

MIN

CONDITIONS

MAX

UNITS

Input Offset Voltage

0.3

0.5

mV

I nput Offset Current

0.05

0.2

nA

0.8

2.0

Input Bias Current

Input Resistance
Supply Current

70

30
VS=±15V

0.3

nA
Mn

0.6

rnA

VS=±15V,RL;;'10kn,
Large Signal Voltage Gain

80,000

VOUT = ±10 V

300,000

V/V

The following specifications apply for -55°C .. TA .. +125°C (Note 5)
Input Offset Voltage
Average I nput Offset Voltage Drift

1.0

I nput Offset Current
Average Input Offset Current Drift

0.5

I nput Bias Current

Supply Current

TA=+125°C

InputVoltage Range

VS=±15V

Supply Voltage Rejection Ratio

Output Voltage Swing

mV
/lV/oC

0.4

nA

2.5

pA/oC

0.8

3.0

nA

0.15

0.4

rnA

±13.5

Common Mode Rejection Ratio

Large Signal Voltage Gain

1.0
5.0

VS=±15V,RL;;'10kn
VOUT = ±10 V
VS=±15V,RL;;'10kn

V

96

110

dB

96

110

dB

40,000

V/V

±13

±14

V

/LA308A
ELECTRICAL CHARACTERISTICS: ±5.0 V", Vs '" ±15 V, TA = 25'C, Cc = 30 pF unless otherwise specified.
CHARACTERISTICS

CONDITIONS

MIN

TYP

MAX

UNITS

Input Offset Voltage

0.3

0.5

I nput Offset Current

0.2

1.0

nA

Input Bias Current

1.5

7.0

nA

Input Resistance
Supply Current

10
VS=±15V

40
0.3

mV

Mn
0.8

rnA

VS-±15V,RL;;'10kn,
Large Signal Voltage Gain

80,000

VOUT = ±10 V

300,000

V/V

The following specifications apply for DoC .. TA" +70°C
I nput Offset Voltage

0.73

Average Input Offset Voltage Drift

1.0

Input Offset Current
Average Input Offset Current Drift

2.0

Input Bias Current
Input Voltage Range

VS=±15V

±13.5

Common Mode Rejection Ratio
Supply Voltage Rejection Ratio

5.0

mV
/lV/oC

1.5

nA

10

pAtC

10

nA
V

96

110

dB

96

110

dB

VS= ±15V, RL;;'10 kn,
Large Signal Voltage Gain
Output Voltage Swing
1.
2.
3.
4.
5.

60,000

VOUT = ±10 V
VS-±15V,RL;;'10kn

±13

V/v
±14

V

Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/oC for metal can, 8.3 mW/oC for the
DIP, 5.6 mW/QC for the mini DIP and 7.1 mW/oC for the flatpak.
The inputs are shunted with back~to-back dio.des for overvoltage protection. Therefore, excessive current will flow if a differential input
voltage in excess of 1 V is applied between the inputs unless adequate limiting resistance is used.
For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.
Short circuit may be to either supply or ground. Rating applies to operation up to the maximum operating temperature range.
For the p.A208A/208, all temperature specifications apply over _25°C ~ TA .,.;; 8SoC.

5-38

FAIRCHILD • JLA108A • JLA208A • JLA308A • JLA108 • JLA208 • JLA308
!LA 108 and !LA208
ELECTRICAL CHARACTERISTICS: ±5.0 V '" Vs '" ±20 V, TA ~ 25'C, Cc
CHARACTERISTICS

~

30 pF unless otherwise specified.
MAX

UNITS

I nput Offset Voltage

CONDITIONS

0.7

2.0

mV

Input Offset Current

0.05

0.2

nA

0.8

2.0

TYP

MIN

Input Bias Current

I nput Resistance
Supply Current
Large Signal Voltage Gain

70

30
VS~±15V

0.3

RL;;' 10 k!1, VOUT
Vs

~

~

nA
M!1

0.6

mA

±10 V
50,000

±15 V

300,000

V/V

The following specifications apply for -55°C';; T A';; 125'C (Note 5)
Input Offset Voltage
Average I nput Offset Voltage Drift

3.0

I nput Offset Current
Average I nput Offset Current Drift

0.5

Input Bias Current

Supply Current

TA~+125°C

I nput Voltage Range

VS~±15V

0.15

Supply Voltage Rejection Ratio

Output Voltage Swing

VS~±15V,RL;;'10k!1,

VOUT

~

mV

15

/lVrC

0.4

nA

2.5

pArC

3.0

nA

0.4

mA

±13.5

Common Mode Rejection Ratio

Large Signal Voltage Gain

3.0

V

85

100

80

96

dB
dB

25,000

±10 V

VS~±15V,RL-l0k!1

V/V
±14

±13

V

!L A308
ELECTRICAL CHARACTERISTICS: ±5.0 V", Vs '" ±15 V, TA

~

25'C, Cc

~

30 pF unless otherwise specified.
TYP

MAX

UNITS

I nput Offset Voltage

2.0

7.5

mV

Input Offset Current

0.2

1.0

nA

I nput Bias Current

1.5

7.0

CHARACTERISTICS

MIN

CONDITIONS

10

Input Resistance

Supply Current
Large Signal Voltage Gain

VS~±15V

Vs

~

0.3

±15 V, RL;;' 10 k!1,

VOUT

~

±10 V

25,000

nA
M!1

40
0.8

300,000

mA
V/V

The following specifications apply for 0' C .;; T A .;; +70° C
I nput Offset Voltage
Average I nput Offset Voltage Drift

6.0

I nput Offset Current
2.0

Average I nput Offset Current Drift
Input Bias Current

Input Voltage Range

VS~±15V

±13.5

Common Mode Rejection Ratio
Supply Voltage Rejection Ratio
Large Signal Voltage Gain
Output Voltage Swing

Vs

~

±15 V, RL;;' 10 k!1,

VOUT ~ ±10 V
Vs

~

±15 V, RL

~

10 k!1

5-39

mV
/lVrC

1.5

nA

10

pA/oC

10

nA
V

80

100

80

96

dB
dB
V/V

15,000
±13

10
30

±14

V

•

I

FAIRCHILD -/LA108A -/LA208A -/LA308A -/LA108 - /LA208 -/LA308
TYPICAL PERFORMANCE CURVES FOR J,lAl08 SERIES
INPUT NOISE VOLTAGE
AS A FUNCTION OF
FREQUENCY
-

1Il00

POWER SUPPLY REJECTION
AS A FUNCTION OF
FREQUENCY

OPEN LOOP
FREQUENCY RESPONSE

120,--,--,--,-----,------,

110

1001"";
400

"!""i0

~

RS·O

III I
10

10

III

10k

103

1\1 ):

100

TA •

12

/

C,"30pl'

lOOk

1M

INPUT

i

/OUTPUT

10M

1\

N

10UT"1 mA

10k

25~C

1\

VS • t 15V

lk

~

C,"3pF

T),,'e-

I

...J
100

~ ~

VOLTAGE FOLLOWER
PULSE RESPONSE

i\

C, -OpF
I'Av • ~ooo, Cf J30 pF
AV -11XXl,

10-2
10

90

VS"d5V

\

!,--AV "l\C,"30PF

/

2:;

16

1/

"'(
10'

",...

FREQUENCY-Hz

LARGE SIGNAL
FREQUENCY RESPONSE

R?

.....

.~ /\

10

FREQUENCY-Hz

CLOSED LOOP
OUTPUT IMPEDANCE
/

"

135

f

"

40

W=

,/

lOOk

FREQUENCY-Hz

If

C,"30pF

'I

III

100

r-- e
oar-- ~~~.>

~

RS"IOOk

180

C,-3pF

CS"lOOpF

"- ~.t-

.,

-

!, ,

RS'lM

r-."

r-

II

o

lk

FREQUENCY- HZ

-10. ZO
''::--'-0-=20-=40:--"'=--O--:'=-0--:1=00-=120:--:C
:-:-16C:140
0 -7.'80

'"

lOOk

10k

FREQUENCY-Hz

TlME-lJs

TYPICAL PERFORMANCE CURVES FOR J,lAl08A - J,lA208A - J,lAl08 - J,lA208 (Unless Otherwise Specified)
INPUT CURRENTS
AS A FUNCTION OF
AMBIENT TEMPERATURE
100

,
)'-.,

0

1'-!'rL" 'IAi 2OB~""

.5

--:

10

f--H--t+-t-j+t+-+-+-bI'I-T
V

0.25
1081208

III

0.20
1.0

1081108A,

t--

1I)!AlIOSOFFS£T208A1208

~

~

-15

5

~

25

~

~

~

W

1M

lOOk

AMBIENT TEMPERATURE·oC

-

120

1

TA l5 C

~

90

/

,

---

11>\\

e

.......
\

1M

20

o

-..,

,,

600

[

r-

1

500

l'l

OUTf>UTCURRENT- fmA

5-40

100M

SUPPL Y CURRENT AS A
FUNCTION OF SUPPLY VOLTAGE

TA " 25°C __

o

10M

"A108

1\

Cf ~ 0
f ~ 100 Hz

t--

1112081208A: -25°C ~ TA s 85°C

INPUT RESISTANCE- Q

300

"

I

lOOk

TA "I25 C-.

SUPPLY VOLTAGE- tV

~bfitt--t---t-t-tt--j

t-- ~11B11D8A: -5SoC ~ TA:Sl25°C
1.0

100M

vS· :t15V

10

-;-;:l'Z5QC

10

ssoe -

t-

"A108

.......

- --- y'r

1081208

10

< 1A < 125"C-

OUTPUT SWING AS A
FUNCTION OF OUTPUT CURRENT

1lA108

100

~

INPUT RESISTANCE-Q

VOLTAGE GAIN AS A
FUNCTION OF SUPPLY VOL T AGE

O

-55~C

,.
t;:

2081208A, -25"C ~ 1A ~

III

0.1

0

~ l00r-++tr-r-rTHr-r-~~~-j
e:i

V

"HIIAl200A

B

0.1 0

llO

MAXIMUM DRIFT ERROR

MAXIMUM OFFSET ERROR

2. 0

200

r-

100

0

11p.~_Tl/C

, / ' r-

l•.. ".el

---Ifr,,,.J
f

-1
-

r-- T•

10
B
SUPPLY VOLTAGE - tV

20

FAIRCHILD· M-A108A· M-A208A· M-A308A· M-A108. M-A208· M-A308
TYPICAL PERFORMANCE CURVES FOR pA308A AND pA308 (Unless Otherwise Specified)
INPUT CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE

MAXIMUM OFFSET ERROR
IlA308

MAXIMUM DRIFT ERROR
IlA308

1000 r-~~-'-'-"TT-'-;-~---'

I

-

r-

BIAs

---- r---.

0.20

- r-

0.1 5

100 1---i-'-t-i-i----H++,.Ll-H--I.I'---i

10

~T

0,10

o

o

20

30

40

TEMPERATURE

50

60

70

80

'c

liliPUTRESISTANC(

It\PUT RE5ISTAN(£ - \I

VOLTAGE GAIN
AS A FUNCTION OF
SUPPL Y VOL TAGE

OUTPUT SWING
AS A FUNCTION OF
OUTPUT CURRENT

-, 1!:r~
I

f-------+-

il

),

400
,IIOY

f--f

lOO

~ 70 'c _--

-

'25'C-

<'O'C~

150
I

I

200
150

5

I

o
SUPPLY VOLTAGE

350

I

I

o

+V

..-..--

TA~OC_

I

1

f--T

0

•

lA';"C
TA';OC

1

i

I
I

I

100

0

i

II

SUPPLY CURRENT
AS A FUNCTION OF
SUPPL Y VOLTAGE

I

I

I

I
10

SUPPlYVOLTAG£-

OUTPUT CURRENT

STANDARD COMPENSATION CIRCUITS

FEEDFORWARD COMPENSATION
HIGHER SLEW RATES AND WIDER BANDWIDTH

OPEN LOOP VOLTAGE GAIN

STANDARDFEEDFORWARD

FEEDFORWARD COMPENSATION
FOR DECOUPLING LOAD
CAPACITANCE

R,

C,

+-+----4-+-+----4180

5pf

lOOkn

INPUT --'WY--~--'H-----,

OUTPUT

80

i-----+---"+--'k-yf'~+_,!'--I135

60

f---+--i-~cf---"kC7+--f--I

40 f---+,--i--f---+-'';j--f--I

>'-4---4M-~-+-OUTPUT

- __ --4-

-20

L..---L_--'---_L..---'-_--'---_L..---'
I

10

100

FREQUU,/CY-Hz

5-41

'C2>~PF
R,

I

FAIRCHILD· JLA108A· JLA208A· JLA308A· JLA108. JLA208· JLA308
GUARDING
Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the I£Al0B amplifier. Boards
must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or
silicon" rubber to prevent contamination.
Even with properly cleaned and coated boards, leakage currents may cause trouble at 125°C, particularly since the input pins are adjacent to
pins that aro at supply potontials. This leakago can bo significantly reducod by using guarding to lowor the voltago differonce between the
inputs and adjacent metal runs. Input guarding of the B-pin TO-99 packago is accomplished by using a 10-pin pin circle, with the leads of the
device formod so that the holes adjacent to the inputs are ompty when it is insortod in tho board. Tho guard, which is a conductive ring
surrounding tho inputs, Is connected to a low impedance point that is at approximately the same voltago as the inputs. Leakage currents from
high voltago pins aro thon absorbod by tho guard.
.
The pin configuration of the dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is
different from tho standard I£A741 and I£Al01A pin configuration).

CONNECTION OF INPUT GUARDS
INVERTING AMPLIFIER

FOLLOWER

NON-INVERTING AMPLIFIER

BOARD LAYOUT FOR
INPUT GUARDING WITH
TO-99 PACI(AGE
(BOTTOM VIEW)
COMPENSATION

R,

R,

V'

INPUT ---.M.-.......- - - ' l M . - - - - - ,

~7

.'

OUTPUT . . . . .

OUTPUT
OUTPUT

,--8

I

v_I
BOTTOM VIEW

R1 R2
NOTE:--R1 + R2

"Use to compensate for
large source resistances.

Must be low
impedance

TYPICAL APPLICATIONS

.-AST t SUMMING AMPLIFIER WITH LOW INPUT CURRENT

SAMPLE AND HOLD

C5*

"s

INPUT -'lMr---.-------~~-~f_-,

INPUT

"4
"1

OUTPUT

150k

OUTPUT

*In addition to increasing speed,
the I£Al01A raisos high and low
frequency gain, increases output
drive capability and eliminatos
thermal foedback.

t Power Bandwidth: 250 kHz
Small Signal Bandwidth: 3.5 MHz
Slow Rate: 10 V Ills

.. Worst case drift less than
2.5 mV'/s
t Teflon, Polyethylene or

Polycarbonate Dielectric
Capacitor

*C5~6Xl0-8
R1

5-42

]LA 124 • ]LA224 • ]LA324 • ]LA2902
QUAD OPERATIONAL AMPLIFIERS
FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The J.LA 124 series of Quad Operational Amplifiers consists
of four independent high gain, internally frequency compensated operational amplifiers
designed to operate from a single power supply or dual power supplies over a wide range
of voltages. The common mode input range includes the negative supply, thereby
eliminating the necessity for external biasing components in many applications. The output
voltage range also includes the negative power supply voltage. They are constructed
using the Fairchild Planar' epitaxial proc~ss.
• INPUT COMMON MODE VOLTAGE RANGE INCLUDES GROUND OR NEGATIVE SUPPLY
• OUTPUT VOLTAGE CAN SWING TO GROUND OR NEGATIVE SUPPLY
• FOUR INTERNALLY COMPENSATED OPERATIONAL AMPLIFIERS IN A SINGLE
PACKAGE
• WIDE POWER SUPPLY RANGE: SINGLE OF 3.0 V TO 30 V
DUAL SUPPLY OF ±1.S V to ±16 V
• POWER DRAIN SUITABLE FOR BATTERY OPERATION

ABSOLUTE MAXIMUM RATINGS
Supply Voltage Between V+ and VDifferential Input Voltage (Note 1)
Input Voltage (V-) (Note 1)
Internal Power Dissipation (Note 2)
Operating Temperature Range - J.LA124
J.LA224
J.LA324
J.LA2902
Storage Temperature Range
Molded Package
Hermetic Package
Pin Temperature
Molded Package (Soldering, 10 s)
Hermetic Package (Soldering, 60 s)

32
32
-0.3V (V-) to V+
670mW
-55°C to +125°C
-25°C to +85°C
O°C to +70°C
-40°C to +85°C
-55°C to +125°C
- 65°C to + 150°C

CONNECTION DIAGRAM
14·P1N DIP
(TOPVIEWj
PACKAGE OUTLINES
PACKAGE CODES

6A
D

OUT A

OUT D

-IN A

-IN D

+IN A

+IN 0

v+

V-OR GNO

+IN 8

+IN C

-IN B

-IN C

OUTB

OUTe

ORDER INFORMATION
TYPE
"A124
"A224
"A324
"A324
"A2902

PART NO.
"A124DM
"A224DM
"A324DC
"A324PC
"A2902PC

1/4 EQUIVALENT CIRCUIT
OUTPUT

r-------._-----._--~----._--_+~---~-~

v+

010J-...."-_ _- - ,

INPUTS

04

:1-+-......--1

(GROUND)

5·43

9A
P

v-

•

FAIRCHILD -/LA124 -/LA224 -/LA324 -/LA2902
JLA 124· JLA224
ELECTRICAL CHARACTERISTICS: V + = 5.0 Vdc, T A = 25°C unless otherwise specified.
CHARACTERISTICS
Input Offset Voltage

CONDITIONS

MIN

(Note 5)

Input Offset Current
Input Bias Current
Input Common Mode Voltage Range

MAX

2.0

5.0

mV

3.0

30

nA

-45

-150

nA

V+ -1.5 V

0

Common Mode Rejection Ratio

Rs",10kG

Large Signal Open Loop Voltage Gain

V+

Output Current

TYP

= +15 V, RL = 2 kG

UNITS

V

70

85

dB

50

100

V/mV

Source

V IN + = +1 Vdc,
VIN- = 0
V+ = +15V

20

40

mA

Sink

VIN- = +1 Vdc
VIN+ = 0
V+ = +15 Vdc

10

20

mA

Sink

V IN VIN+
VOUT

= +1 Vdc,
=0
= 200 mV

12

50

/LA

100

dB

Power Supply Rejection Ratio

65

= 1 kHz to 20 kHz

Channel Separation

f

Short Circuit Current

To ground

-120
40

dB
60

mA

7

mV

The following specifications apply for -55°C", TA "'+125°C for /LA124 and -25°C to +85°C for /LA224
Input Offset Voltage

(Note 5)

Average Temperature Coefficient of
Input Offset Voltage

Rs

=0

±100

Input Offset Current
Average Temperature Coefficient of
Input Offset Current

-40

VOH
VOH
VOL
Input Common Mode Voltage Range
Source
Output Current
Sink

= 2 kG, V+ = +15 V
V+ = +30 Vdc, RL = 2 kG
V+ = +30 Vdc, RL '" 10 kG
V+ = 5 Vdc, RL '" 10 kG
V+ = +30 Vdc
VIN+ = +1 V
VIN- = 0, V+ = 15 V
VIN- = +1 V
VIN+ = 0, V+ = 15 V
RL

26

V
28
5

V
20
V+ -2.0

0

mV
V

10

20

mA

5

8

mA
V+

= "", Vee = 30 V
RL = "",Vee = +5 V

RL

nA
V/mV

Differenliallnpui Voltage
Supply Current

-300

25

27

nA

pN°C

10

Input Bias Current
Large Signal Open Loop Voltage Gain

Output Voltage Range

/LV/oC

7

V

1.5

3.0

mA

0.7

1.2

mA

NOTES:

1.
2.
3.
4.
5.

For· supply voltage less than 30 V between V+ and V-, the absolute maximum input voltage is equal to the supply voltage.
Rating applies to ambient temperature up to 70°C. Above TA = 70°C, derate linearly at 8.3 mWre.
Not to exceed maximum package power dissipation.
Output will swing to ground.
VOUT = 1.4 Vdc, RS = 0 n with V+ from 5 Vdc to +30 Vdc; and over the full input common" mode range (0 to V+ - 2.0 Vdc) except at 25°C, where
common mode range is 0 Vdc to V+ - 1.5 Vdc.

5-44

FAIRCHILD· JLA124. JLA224. JLA324· JLA2902
ILA324
ELECTRICAL CHARACTERISTICS: V + = 5.0 Vdc, TA = 25'C unless otherwise specified.
CHARACTERISTICS
Input Offset Voltage

CONDITIONS

MIN

(Note 5)

Input Offset Current
Input Bias Current
Input Common Mode Voltage Range
Common Mode Rejection Ratio
Large Signal Open Loop Voltage Gain

Output Current

TYP

MAX

UNITS

2.0

7.0

mV

5.0

50

nA

-45

-250

nA

0

V+ -1.5 V

V

Rs"" 10 kO

65

70

dB

V+ = +15 V, RL = 2 kO

25

100

V/mV

Source

VIN+ = +1 Vdc,
VIN- = 0
V+ = +15V

20

40

mA

Sink

VIN- = +1 Vdc
VIN+ = 0
V+ = +15 Vdc

10

20

mA

Sink

V 1N - = +1 Vdc,
VIN+ = 0
VOUT = 200mV

12

50

".A

100

dB

Power Supply Rejection Ratio

65

Channel Separation

f= 1 kHz to 20 kHz

Short Circuit Current

To ground

-120
40

dB
60

mA

9

mV

The following specifications apply for O'C to + 70'C
Input Offset Voltage

(Note 5)

Average Temperature Coefficient of
Input Offset Voltage

Rs = 0

7

Input Offset Current

±100

Average Temperature Coefficient of
Input Offset Current

Output Voltage Range

-40
RL = 2 kO, V+ = +15 V

15

VOH

V+ = +30 Vdc, RL = 2 kO

26

VOH

V+ = +30 Vdc, RL "" 10 kO

27

VOL

V+ = 5Vdc, RL "" 10kO

Input Common Mode VoHage Range

V+ = +30Vdc

nA
pArC

-500

nA
V/mV
V

28
5

V
20
V+ -2.0

0

mV
V

Source

VIN+ = +1 V
VIN- = 0, V+ = 15 V

10

20

mA

Sink

VIN- = +1 V
VIN+ = 0, V+ = 15 V

5

8

mA

Output Current

Differential Input Voltage
Supply Current

±150

10

Input Bias Current
Large Signal Open Loop Voltage Gain

".VI'C

V+
RL =

00,

Vce = 30 V

1.5

RL =

00,

Vcc = +5 V

0.7

V

3.0

mA

1.2

mA

NOTES:
I. For supply voltage less Ihan 30 V be1ween V + and V -, Ihe absoluta maximum inpUl vollage is equal 10 Ihe supply vollage.
2. Rating applies to ambient tamperature up 10 70·C. Above T A = 7O'C, derata linearly a18.3 mWrc.
3. Not to exceed maximum peckage power dissipation.
4. Output will swing to ground.
5. VOUT = 1.4 Vdc, RS = 00 with V+ from 5 Vdc 10 +30 Vdc; and over the full inpUl common mode range (0 to V+ - 2.0 Vdc) except 8125'C, where common
,,!ode range is 0 Vdc 10 V + - 1.5 Vdc.

5-45

•

FAIRCHILD eILA124 eILA224 eILA324 eILA2902
p.A2902
ELECTRICAL CHARACTERISTICS: V+ = 5.0 Vdc, TA = 25°C unless otherwise specified.

CHARACTERISTICS

MIN

UNITS

TYP

MAX

2.0

7.0

mV

Input Offset Current

5.0

50

nA

Input Bias Current

-45

-250

nA

Input Offset Voltage

CONDITIONS
(Note 5)

Input Common Mode Voltage Range

V+-l.5V

0

Common Mode Rejection Ratio

Rs"l0kO

Large Signal Open Loop Voltage Gain

V+ = +15V, RL = 2kO

50

V

70

dB

100

V/mV

Source

VIN+ = +1 Vdc,
VIN- = 0
V+ = +15V

20

40

mA

Sink

VIN- = +1 Vdc
VIN+ = 0
V+ = +15 Vdc

10

20

mA

50

100

Output Current

Power Supply Current

RL =

00

Power Supply Rejection Ratio
Short Circuit Current

To ground

40

Channel Separation

f = 1 kHz to 20 kHz

3.0

mA

60

mA

dB

-120

dB

The following specifications apply for -40°C to +85°C
Input Offset Voltage

(Note 5)

Average Temperature Coefficient
of Input Offset Voltage

Rs = 0

10

Input Offset Current

±45

Output Voltage Range

-40
RL = 2 kO, V+ = +15 V

15

VOH

V+ = +30 Vdc, RL = 2 kO

22

VOH

V+ = +30 Vdc, RL ;;.10 kO

23

VOL

V+ = 5 Vdc, RL" 10 kO

Input Common Mode Voltage Range

±200

10

Input Bias Current
Large Signal Open Loop Voltage Gain

/LV/oC

7

Average Temperature Coefficient
of Input Offset Current

V+ = +30 Vdc

mV

nA
pN°C

-500

nA
V/mV
V

24
5

V
100
V+ -2.0

0

mV
V

Source

VIN+ = +1 V
VIN- = 0, V+ = 15 V

10

20

mA

Sink

V IN - = +1 V
VIN+ = 0, V+ = 15 V

5

8

mA

Output Current

Differential Input Voltage

V+

V

NOTES:
1.
2.
3.
4.
5.

For supply voltage less than 30 V between V + and V -, the absolute maximum input voltage is equal to the supply voltage.
Rating applies to ambient temperature up to 70°C. Above TA = 70·C, derate linearly at 8.3 mW'·C.
Not to exceed maximum package power dissipation.
Output will swing to ground.
VOUT = t.4 Vdc, RS = 0 n with V+ from 5 Vdc to +30 Vdc; and over the full input common mode range (0 to V+ - 2.0 Vdc) except at 2S·C, where
common mode range is 0 Vdc to V + - 1.5 Vdc.

5-46

FAIRCHILD· J-tA124. J-tA224. J-tA324. J-tA2902
TYPICAL PERFORMANCE CURVES

LARGE SIGNAL OPEN LOOP
VOLTAGE GAIN AS A
FUNCTION OF FREQUENCY
~

120'-""-'--rTTr-,-,-rn--r-r",-.--rTTr-.-.-,,,--.

~

130

I

v~J,~lv­

~

r-+-+++=I--t-+++-+--++H---+-++++--++++I-+-TA '" 2S"C_

~ 8Dr-+-+++~__t-+++-+-f~~+-++++--++++I-+-+rH~
~

'Dt-+-+++~--t-+++-+--++~~~~+++--++++I-+-+~~

~ ~t-+-+++~--t-+++-+--++H---+-+++~~~~~~-+~-+H--1

o 2Dt-+1~~--~++-+-+-rH--r-+~+-+-r++~~+~~
~

~ Ot-+-+++~--t-+++-+--++H---+-++++--++++I-+-+~~~
~

~-~1·~.D-L~~~'D~LL~~'~DD~-LUL~,.D~k-L~l-'~D7k-LLL~'OO~k~LU~1.0M
FREQUENCY _ Hz

OUTPUT CHARACTERISTICS
CURRENT SINKING

OUTPUT CHARACTERISTICS
CURRENT SOURCING

U

1O.~
V+ +5 Voe
Y+ - +lSVoC
Y+ - +30V oc

i '~~mr~IIII~'~II~'~
s

!D·'_'·"~--:,o
~K1
g

'0.001

D.'

0.01

10

'00

v+

D.D1 D~.OO'O':-'<'-D~.D::-'J...J..uo":.,..JI_lwllc;T,"-:.;.;2:;:'..;;·,~:-LI.J.~TJ..LlOD
Il

10+ - OUTPUT SOURCE CURRENT (mADe)

OUTPUT SWING AS A FUNCTION
OF SUPPLY VOLTAGE
I-+-+-+-+-+~

I
>

__I-TA = 2S'C

w

~
~

5

~

INPUT BIAS CURRENT AS A
FUNCTION OF TEMPERATURE
4DD

3D

1\

v; :I,l10 ~k11

251---H-++~+H++-+-RL =
TA = 2S"C

! 2°t--H~~~H++-+---+~-1
I

w

~
g

"I---H-++~~H++--+--t-+~-1

10t--H~~~~++-+---+~-1

I 50 1---H-++~--H*'--+I--~-+~-1

Dr-t+~~~rH~~~H-~

-5·~.';;;Dk:-'-..J..J-'-::1O:;::k--'-.J..J..L....;'=DD:;:k--'-~~1.0

INPUT BIAS CURRENT AS A
FUNCTION OF SUPPLY VOLTAGE

',.-,-,--,-,--r-r-,-,---,
t-+-+-r-+~--Hvs I: .\, V

300 r-+-++-+~--I-+--+-+-1

'70 r-t-+-++-+~--t--+-+-1

2Dt-+-+-+-+-+~--t-+-+~

200 1---+-"""'9"""1-....1_:--1-+--+-+-1

160 t-+-+-++-+~--i'<-+-+-1

100 t-+-++-+~--I--+--+-+-1

150 t-+-+-++-+~--I-+-+-1

/

10 1--t-t-/-7f--+-+-+-+-+-+~
DD~2~.D~4.D--,.~D~8~.D~1O~12~,L4-'~'~18~2D
v+

ANDV_, POWER SUPPLY VOLTAGES _ V

M

FREQUENCY - Hz

3DI-+-+-+-+-+~--I-+-+~

I

I

10- - OUTPUT SINK CURRENT (mAce)

•

OUTPUT VOLTAGE AS A
FUNCTION OF FREQUENCY

--

"',",--:!:,,:-7lO::-'-:-!125

~ 7~'-_-OS:-S_..J3::'-_':-15:-,~.D:-:!:25~4':-'

TEMPERATURE _ C

5-47

DD~2~.D~4.D~6.~D~.~.D~1O~12~'~4-'~'~18~2·D
V+ AND V-, POWER SUPPLY VOLTAGES - V

J.LA 148 • J.LA248 • J.LA348
J.LA 149 • J.LA249 • J.LA349
QUAD OPERATIONAL AMPLIFIERS
FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The .uA 148 series is a true quad .uA741. It consists of four
independent, high gain, internally compensated, low power operational amplifiers which
have been designed to provide functional characteristics identical to those of the familiar
.uA741 operational amplifier. In addition, the total supply current for all four amplifiers is
comparable to the supply current of a single .uA741 type op amp.

CONNECTION DIAGRAM
14·PIN DIP
{TOP VI EW}
PACKAGE OUTLINES 6A
PACKAGE CODES
D

9A

Other features include input offset currents and input bias current which are much less
than those of a standard .uA741. Also, excellent isolation between amplifiers has been
achieved by independently biasing each amplifier and using layout techniques which mini·
mize thermal coupling. The .uA 149 series has the same features as the.uA 148 except that
it is decompensated to give a gain bandwidth product of 4 MHz typical at a gain greater
than 5.

•
•
•
•
•
•
•
•

•
•

I"A741 OP AMP OPERATING CHARACTERISTICS
LOW SUPPLY CURRENT DRAIN
CLASS'AB OUTPUT STAGE - NO CROSSOVER DISTORTION
PIN COMPATIBLE WITH THE IlA324 & I"A3403
LOW INPUT OFFSET VOLTAGE-1 mV TYP
LOW INPUT OFFSET CURRENT-4 nA TYP
LOW INPUT BIAS CURRENT-30 nA TYP
GAIN BANDWIDTH PRODUCT
IlA148 (UNITY GAIN)-1.0 MHz TYP
IlA149 (AV>5)-4 MHz TYP
HIGH DEGREE OF ISOLATION BETWEEN AMPLIFIERS -120 dB
OVERLOAD PROTECTION FOR INPUTS AND OUTPUTS

ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Differential Input Voltage
Input Voltage
Output Short Circuit Duration (Note 1)
Power Dissipation (PD at 25°C) and
Thermal Resistance (8JA), (Note 2)
Plastic DIP
Po

OUT B

ORDER INFORMATION
TYPE
IlA148
Il A248
Il A248
IlA348
Il A348
Il A149
IlA249
Il A249
I"A349
I"A349
I"A148/I"A149

IlA248/ IlA249

I"A348/I"A349

±22 V
±44 V
±22 V
continuous

±18 V
±36 V
±18 V
continuous

±18 V
±36 V
±18 V
continuous

700 mW
150°C/W

liJA

Ceramic DIP

PART NO.
IlA148DM
I"A248DC
MA248PC
IlA348DC
I"A348PC
IlA149DM
IlA249DC
IlA249PC
IlA349DC
IlA349PC

Po

~OmW

~OmW

~OmW

100°C/W
100°C/W
100°C/W
-55°C2 kn
f = 1 Hz to 20 kHz

Coupling

(I nput Referred)

50

mV

4

25

nA

30

100

nA

3.6

mA

Mn

2.5
160

V/mV

-120

dB

25

Output Short Circuit Current

UNITS

5.0

2.4

Amplifier to Amplifier

MAX

1.0

mA

The following specification apply for _55° C';; T A';; +125 °c
Input Offset Voltage

Rs';;10kn

6.0

Input Offset Current
Input Bias Current

Large Signal Voltage Gain

RL;;;>2 kn, VOUT = ±10 V

Output Voltage Swing

RL - 10 kn

±12

±13

RL = 2 kn

±10

±12

Input Voltage Range
Common~Mode

Rejection Ratio

Supply Voltage Rejection

25

mV

75

nA

325

nA
V/mV

±12

V
V
V

Rs';;10 kn

70

90

dB

Rs.;;10kn

77

96

dB

AC CHARACTERISTICS: Vs =± 15 V, TA = 25°C unless otherwise noted
Small Signal Bandwidth
Phase Margin
Slew Rate

pA148

1.0

MHz

pA149

4.0

MHz

pA148 (Av = 1)

60

degrees

pA149 (Av = 5)

60

degrees

pA148 (Av-1)

0.5

Vips

pA149 (Av = 5)

2.0

Vips

NOTES:
1. Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction
temperature will be exceeded.
2. The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated byTJ (MAX). 8JA. and the ambient temperature,
TA. The maximum available power dissipalion al any lemperalure is PD = (TJ (MAX) - TA)/9JA or Ihe 25°C PD (MAX), whichever is less.
3. ~A148, 248, 348 are capable of driving 100 pF capacilive load. ~A149, 249, 349 are capable of driving 50 pF capacilive load.

5-49

•

FAIRCHILD. JLA1481JLA149 SERIES
DC ELECTRICAL CHARACTERISTICS: Vs = ±15 V, TA = 25°C unless otherwise noted

CHARACTERI STI C

CONDITIONS

Input Offset Voltage

Rs<10k[!

J.A248i /.lA249
MIN

Input Offset Current
Input Bias Current

Input Resistance

TYP

mV

4

50

nA

30

200

2.5

25

160

2.4

Large Signal Voltage Gain

VOUT= ±10V,RL>2k[!

Amplifier to Amplifier

f = 1 Hz to 20 kHz

Coupling

(I nput Referred)

nA
M[!

4.5

mA
VimV

-120

dB

mA

25

Output Short Circuit Current

UNITS

6.0

0.8

Supply Current All Amplifiers

MAX

1.0

The following specification apply for _25°C2 kQ, VOUT = ±10 V

Output Voltage Swing

RL-10k[!

±12

±13

V

RL=2k[!

±10

±12

V

Input Voltage Range

15

±12

V

Common-Mode Rejection Ratio

Rs< 10 k[!

70

90

dB

Supply Voltage Rejection

Rs<1O k[!

77

96

dB

MHz

AC CHARACTERISTICS: Vs = ±15 V, TA = 25°C unless otherwise noted
Small Signal Bandwidth

I1 A248

1.0
4.0

MHz

Phase Margin

I1 A249
I1A248 (Av = 1)

60

degrees

I1A249 (Av = 5)

60

degrees

I1A248 (Av = 1)

0.5

ViMs

I1A249 (Av = 5)

2.0

Vil1s

Slew Rate

NOTES:
1. Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction
temperature will be exceeded.
2. The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated byT J (MAX), 8JA, and the ambient temperature,
TA. The maximum available power dissipation at any temperature is Po:::: (TJ (MAX) - TA)/8JA or the 25°C Po (MAX), whichever is less.

3. "A148, 248, 348 are capable of driving 100 pF capacitive load. "A149, 249, 349 are capable of driving 50 pF capacitive load.

5-50

FAIRCHILD. JLA148/JLA149 SERIES
DC ELECTRICAL CHARACTERISTICS: Vs = ±15 V, TA = 25°C unless otherwise noted

CHARACTERISTIC

CONDITIONS

Input Offset Voltage

Rs';;lOkrl

I'A348/!lA349
MIN

Input Offset Current
Input 8ias Current
Input Resistance

Amplifier to Amplifier

6.0

mV

50

nA

30

200

2.5

25

160

f = 1 Hz to 20 kHz

UNITS

4

2.4
VOUT =±10 V, RL>2 krl

MAX

1.0

0.8

Supply Current All Amplifiers
large Signal Voltage Gain

TYP

nA
MO

4.5

mA
V/mV

-120

dB

25

mA

(Input Referred)
Output Short Circuit Current
The following specification apply for O°C';;T A';; 70°C
Input Offset Voltage

Rs"<10 krl

7.5

mV

Input Offset Current

100

nA

Input Bias Current

400

large Signal Voltage Gain
Output Voltage Swing

RL>2 k ,VOUT = ±10 V
RL=10krl

±12

±13

V

RL=2krl

±10

±12

V

Input Voltage Range
Common~Mode

Rejection Ratio

Supply Voltage Rejection

nA
V/mV

15

±12

V

Rs';; 10 krl

70

90

dB

Rs';;10krl

77

96

dB

I'A348

1.0

MHz

I'A349

4.0

MHz

60

degrees

I'A349 (Av = 5)

60

degrees

!lA348 (Av = 1)

0.5

I'A349 (Av = 5)

2.0

VII'S
VII'S

AC CHARACTERISTICS: Vs = ±15 V, T A = 25°C unless otherwise noted
Small Signal Bandwidth
Phase Margin
Slew Rate

I'A348 (Av = 1)

NOTES:
1. Any of the amplifier outputs can be shorted to ground indefinitely; however, more than one should not be simultaneously shorted as the maximum junction
temperature will be exceeded.
2. The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated byTJ (MAX), OJA,andtheambienttemperature,
TA. The maximum available power dissipation at any temperature is PD = (TJ (MAX) - TA)/8JA or the 25°C Po (MAX), whichever is less.

3. I'A148, 248, 348 are capable of driving 100 pF capacitive load. I'A149, 249,349 are capable of driving 50 pF capacitive load.

5-51

FAIRCHILD •

~A148/~A149

SERIES

r--------------------1-----------------------------1~O+vcc

14 EQUIVALENT CIRCUIT

25

40k
OUT

25

lOOk

75k

*,

340

pFonthe~A149

TYPICAL PERFORMANCE CURVES
POSITIVE COMMON MODE INPUT
VOLTAGE LIMIT AS A FUNCTION
OF SUPPLY VOLTAGE

NEGATIVE COMMON MODE INPUT
VOLTAGE LIMIT AS A FUNCTION
OF SUPPLY VOLTAGE

160

20

-lOC";TAI"+126o

J

1/

>,

t

•

~

5
5

/

/

/

/

/

~

>,

i,

-15

w

~

~

~
~

0

~

>
w

!:;

~

~

-10

~

•
10

15

I

0
>,

"~
g

\

SO

50

1
0

~

MEAN NOISE VOLTAGE

I
I

\
\

20

1111111

o

1111111

100

III
III

0.2
0
10k

RL=2k

I

0
w

~

""',...

/

~~:;5~C-

\
\

!:;

g

\

II

- 10

...

"'"

1

0
-2

0

v~."L

Vo

,

...

IlA148

1k

>

- 10

1.01-+-Ir-+-1-+-I-+---"1--I

0

MEAN NOISE CURRENT

40

10 V

RL=2k
AV"'-l
TA=25°C

.0

°c

1

100 1\

INVERTING LARGE SIGNAL PULSE
RESPONSE (/LA148)

vi="L

Vo

10

VS"''''15V

TEMPERATURE _

120

.4

TA=2SQ C

FREQUENCY - Hz

INVERTING LARGE SIGNAL PULSE
RESPONSE (),A149)

•.01--+-1--+-1-+-1-+--1--1

~~5~-3=5---,=5-5~~2=5~.~.~~~~8~5~,~~~,25

vsUJJ ,

NEGATIVE SUPPLY VOLTS - V

SLEW RATE AS A
FUNCTION OF
TEMPERATURE

..

1

140

10

20

POSITIVE SUPPL Y VOLTS - V

3.01-+-11--+-1-+-1-+1--1---1

INPUT NOISE VOLTAGE
AND NOISE CURRENT AS
A FUNCTION OF FREQUENCY

0
V,N

.0
o

10

20

30

40

V'N

10
50

60

TIME- Pi

5-52

70

80

90

100.

o

20

40

60

80

100

120

TlME- /.II

140 160 180

200

FAIRCHILD •

~A148hLA149

SERIES

TYPICAL PERFORMANCE CURVES (Cont'd)

INPUT BIAS
CURRENT ASA
FUNCTION OF
AMBIENT TEMPERATURE

SUPPLY CURRENT AS A
FUNCTION OF POWER
SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING
AS A FUNCTION OF
SUPPLY VOLTAGE
60

6
80

TA"25"C
5

70

V

60

4

,,,o~,,

3

1

~

. . . ..........-

~ ....>
~

8

--

~ ~vs
~5VS
"~ t30

40

20

--..:::::::- =::;,

r- t-.L
r-jVS

......

10

o

0

o

10

20

15

-55 -35

-15

25

45

vsJ

0

85

105

125

10

-1 5

t----

15V

-10

Vs

+25 C"'\

0

10

15

'r
20

+12S"C

C
\

0

"

10

30

COMMON MODE
REJECTION RATIO AS
A FUNCTION OF FREQUENCY

OUTPUT IMPEDANCE
AS A FUNCTION OF
FREQUENCY

30

OPEN LOOP FREQUENCY
RESPONSE AS A FUNCTION
OF FREQUENCY

VS;'5V
TA"'2S"C

r:-.....

100

90

~

80

m
I

25

110

120

~

20

15

OUTPUT SINK CURRENT - rnA

OUTPUT SOURCE CURRENT - rnA

60

"~

~
40

20

10

100

VS= 15V
TA=25"C

"

lk

100

FREQUENCY - Hz

5-53

"-

50

'" '~"

10k

jJA149

jJA148

","jJAl49

I\.. "-

30

~

o

I

I":

70

,~~

~

FREQUENCY - Hz

""

-5

\\

",1'5 V

r'\ ~ . . . . . --Ioc
0

1\ \-"OC
+125"1

•

OUTPUT VOLTAGE AS
A FUNCTION OF
SINK CURRENT

'1\
5

"

20

15

SUPPLVVOLTAGE - V

I\'f\

0

V

/

~c

I

~

0

~ i:==='

>
Z

V

[-

OUTPUT VOLTAGE
AS A FUNCTION
OF SOURCE CURRENT
15

/

0

10VS-

-

65

TEMPERATURE -

SUPPLY VOLTAGE - V

o

V

50

"-

'" :'\. I\..

10

"

1M

10M

-10

10

100

1k

10k

lOOk

FREQUENCY - Hz

1M

10M

FAIRCHILD. I'A148/1'A149 SERIES
TYPICAL PERFORMANCE CURVES (Cont'd)

GAIN AS A FUNCTION
OF FREQUENCY ("A149)

GAIN AS A FUNCTION
OF FREQUENCY (",,148)

-...,--....,-1'".,.1.,-,L:-:--'---'-"r"!"T"'!,"T'T1 100
vs·"v
90
- _
III
TA=25'C
80

20 ["
....
15

10

~~

-10

40

"

\'

GAIN

7'

0

~

"

•

I

Z

0

~

-5

30

-1 0

•

20

-1

10

-20

-25

•

-3

tPr
'"

":'

-30

-:

30

I

"

0

/

>
I

~ - ,....

~

V

"

AV=l
VS=±15V
RL;.,2k
TA = 25°C

:.oj.-

-15

V,N

10

30
-45

PHASE

-60

-=-

7.

I
10

10

-90

80

40

SMALL SIGNAL PULSE
RESPONSE luA148)

LARGE SIGNAL PULSE
RESPONSE ("A149)

A~=l

Vo

Vo

00

AV"'S
VS=±15V
TA"'25C C
RL)02k

1\

0

\

\

...

10

...

I

VS-±15V
TA"25°C

I

/
1/

120

TIME- /.IS

FREQUENC'( - MHz

,.

I

1\

I

\

00

"'1""

"'1'"

V,N

V,N

2

100

-2

-1 00

0

20

eo

40

80

100
TIME- j.L1

TIME- loLl

GAIN BANDWIDTH
AS A FUNCTION OF
TEMPERATURE

SMALL SIGNAL PULSE
RESPONSE ("A149)
Vo

AV=5
VS=±15V
T =26°C

100

1
I

0
I
w
~ -100

~

4D

1\
'--

II

~

f'

VS"'±15V

r--....

l!

r'--

2

I

"

3.0

,IIAl49

t"-

!;

~

~

1""

2.0

Z

20

~

V'N

1.0

0

Al ..

-20

o

-55

-36

-15

5

25

46

85

TEMPERATURE _ °C

TlME- j.lS

5-54

1\

g

• illgj

GAIN

0.1

FREQUENCY - MHz

0

0

:~
'\

~

/

90

0

.0
50

Vo

10

105

It:,..

•
•

70

120

TA=25°C

30

PHASE

~r-~~-+++Bf~-+~-rrH~

VS=±15V

35

LARGE SIGNAL PULSE
RESPONSE ("A148)

13.

40

85

105

125

"0

200

JLA318
HIGH-SPEED OPERATIONAL AMPLIFIER
FAIRCHILD LINEAR INTEGRATED CIRCUITS

iENERAL DESCRIPTION - The !LA318 is a precision high-speed operational amplifier
esigned for applications requiring wide bandwidth and high slew rate. It features a factor
f ten increase in speed over general purpose devices without sacrificing DC performance.

he !LA318 has internal unity gain frequency compensation. This simpli1ies its application
ince no external components are necessary for operation. However, unlike most interally compensated amplifiers, external frequency compensation may be added for opmum performance. For inverting applications, feedforward compensation will boost the
lew rate to over 150 VII'S and almost double the bandwidth. Overcompensation can be
sed with the amplifier for greater stability when maximum bandwidth is not needed.
urther, a Single capacitor can be added to reduce the 0.1 % settling time to under 1 !Ls.

CONNECTION DIAGRAM
T0-3 PACKAGE
(TOPVIEWl
PACKAGE OUTLINE
55
PACKAGE CODE
H

COMPENSATlON-2

he high speed and fast settling time of this op amp makes it useful in NO converters,
sCiliators, active filters, sample and hold circuits or general purpose amplifiers. This deIce is easy to apply and offers a better AC performance than industry standards such as
Ie !LA709.

15 MHz SMALL SIGNAL BANDWIDTH
GUARANTEED 50 V//LS SLEW RATE
MAXIMUM BIAS CURRENT OF 500 nA
OPERATES FROM SUPPLIES OF ±5 V TO ±20 V
INTERNAL FREQUENCY COMPENSATION
INPUT AND OUTPUT OVERLOAD PROTECTED
PIN COMPATIBLE WITH GENERAL PURPOSE OP AMPS

v_

ORDER INFORMATION

TYPE
/LA318

BSOLUTE MAXIMUM RATINGS
upply Voltage
ower Dissipation (Note 1)
ifferential Input Current (Note 2)
Iput Voltage (Note 3)
utput Short-Circuit Duration
perating Temperature Range
lorage Temperature Range
in Temperature (Soldering, 10 s)

PART NO.
/LA318HC

±20V
500mW
±10mA
±15 V
Indefinite
O°C to +70°C
- 65°C to + 150°C
300°C

5-55

•

EQUIVALENT CIRCUIT

7

~C3

('

\,

c---

t--\

~~

Q1~J
SE

~)

RS
22k

R,O
140k

2.2 k

/j..L

OC2
R'2
7.Sk

~

..::::
:~
30k

~ 0"

Q'SrJ;7
30k

~

w~
T

-2SpF

Q17:)-3.SE

'---

-10pF

v-

Q,o/l..l

'T

R2•

r

Q.

~

~~*~K~
Q.~

3

~

R,
Uk

R2
Uk

Q,

...-

~~

p-

~PF

r:s.-

~
""l'-.

2

5k

C,

Q"IA

4 E J Q37
~8E
4E

7P~~

R"
7.Sk

I,.M' Q,.
' " 3.S E

R2S
3O11

~Q32

~

R,
30 II

R2,
3k

~

~Q33
4.SE

:::D

Q30~

-10pFI

Q7(*-

R23
3011

o

".......

0:-

:::t

F

c

Q 24 )

lIE

R22
4511

lE
R3
37k

Rs

~Q.

R.
8k

:~

....tCD

..... Q3'
"
42E

~

~Q'2

1E

•

1:

rt
'-.J

Q22

1E

L

r-.

Q23

R14

1.5k

~~
"?- '

FEll

2E

~

"'-.J

R,.
14.5k_

Q20·

K

Q2.

.......
Q2. ,..,.,.,

~~v

~6~'v

r

R,.
1.5k

~~

Roo

lDOll

4

FAIRCHILD • ILA318
ELECTRICAL CHARACTERISTICS: ±5 V .. VS .. ±20 V, TA = +25"C

TYP

MAX

Input Offset Voltage

4

10

mV

Input Offset Current

30

200

nA

150

500

CHARACTERISTICS

CONDITIONS

MIN

Input Bias Current
Input Resistance

0.5

M!1

5
Vs

Slew Rate

= ±15 V, VOUT = ±10 V, RL '" 2 k!1
Vs = ±15 V, A" = 1

The following specifications apply for O"C

mA

10

25

200

VlmV

50

70

V/p.s

15

MHz

Vs = ±15 V

Small Signal Bandwidth

nA

3

Supply Current
Large Signal Voltage Gain

UNITS

< TA < + 70"C

Input Offset Voltage

15

mV

Input Offset Current

300

nA

Input Bias Current

750

Large Signal Voltage Gain

Vs = ±15 V, VOUT = ±10 V, RL'" 2 k!1

Output Voltage Swing

Vs

= ±15 V,

RL

= 2 k!1

V/mV

±12

Vs = ±15 V

Input Voltage Range

nA

20

V

±13

V

±11.5

Common-Mode Rejection Ratio

70

100

dB

Supply Voltage Rejection Ratio

65

80

dB

NOTES:
I. The maximum junction temperature of the 1-'A318 is 150"C for operating at elevated temperatures. The TO-5 peckage must be derated besed on a thermal
resistance of lSO"C/W, junction to ambient or 45"C/W, junction to case.
2. The inputs are shunted w~h back-to-back diodes for overvoltage protection. Therefore, excessive current will flow H a differential input voltage in excess of 1 V
is applied between the inputs unless some lim~ing resistance is used.
3. For supply voltages less than ±15 V, the absolute maximum input VOltage is equal to the supply voltage.

TYPICAL PERFORMANCE CHARACTERISTICS
INPUT CURRENT

POWER SUPPLY
REJECTION

VOLTAGE GAIN

200

'50""'"

.

BrAS

100

~

~

i

0

~ "f-_-t"_~--,,:.~~~~_-OS,-lnv_EJ+.U_PP_L_Y+_-/

l05m~~

~

:---.1

1 50
>-

4D

\

30

OFFSET

1001--f---+--I--+-+--l

,.
••

10

20

3D

40

50

TEMPERATURE lOCI

.

70

~L.--L-~1O~-L-~'5~~--,J20·
SUPPLY VOLTAGE(+Y)

INPUT NOISE VOLTAGE

COMMON MODE REJECTION

120,--r--,..--,---,---,

3000

TA = 25°C
Vs'" :!:16V

1000

~

110 f--f---ff--f--+-+--I

RS=2kO

1O.t-~01:::::=+--+-T:;.A-t=_""'--i

-"

~

i

~f\n-+--4
~"

40 -NEGATIVE SJpPLY

20

\

~.
-2~OO~~-1:"':k--,::!.7k--::1O=':-k-:"':,M::--:-:"O M
FREQUENCY (Hz)

SUPPLY CURRENT

'.5,---,--,-....,-,..-,.---,

~A = ..J

~f---+--+~~--4--4

501--41--11--1[\.'""""-1'---4

4D1---t---+--+---'lr-\-l
10 I-Wtl-+-l-tt,1::::f:::jI:#II~
11F=f#:::l
100

1k

FREQUENCY (Hz)

10k

lOOk

2D1---t---+--+--+-~-"d
~OO~-~lk-~l.Lk-~lOO~k-~l~M-~"M
FREQUENCY (Hz)

5-57

4.0 5'-----'--':1O--L-~,5c....~--,J20
SUPPLY VOLTAGE (+V)

•

I

FAIRCHILD· J.£A318
TYPICAL PERFORMANCE CHARACTERISTICS (Cont'd.)

CLOSED LOOP OUTPUT
IMPEPANCE
'0

Vs - ±16V

TA '"

,0'

e-

i
I

'0

~

'0-

'0

I!

o

'0-

AJ .. 1000

1

........

D

V

"-\J /

we

--..

.:t

Av=y

-

-

3

'0

100

BOO

...

'2 F-=:::r--+-~_::::I=----i
so ,of---+-+--+-H+-I

i
~

5

1

TA = 7O"C8r--+--+--~-r,;-~

V
10k

~

r-.

\

-400

/'

lk

200

Ii-...

.r--+--+--~-r,;-~

~ .r---~--r---r_~H_~

1

'0-,

INPUT CURRENT

CURRENT LIMITING

'4.--..,.---...,-----r---,---,

3

tOOk

00

1M

4

10

16

20

-BOO

25

a

-0.8 -0.6 -0.4 -0.2

0.2

\

D..

0.4

\
0.&

FREQUENCY (Hz)

OUTPUT CURRENT (rnA)

DIFFERENTlAL INPUT (V)

UNIT GAIN BANDWIDTH

VOLTAGE FOLLOWER
SLEW RATE

INVERTER SETTUNG TIME

'20

I
~

l'DO

S

l,IY

vs""
Rs,.,R,.10kO_
C,=6pF

S ..

I=
CO

. ......

~

70

,~1~

r--

POSInVE SLEW

"0

o

-.

NEGAnVE SLEW

t--

1020304051)

10

TEMPERATURE rc)

LARGE SIGNAL
FREQUENCY RESPONSE

'4

'20

TA='
...I:
Vs= ±11Y

12

VOLTAGE FOLLOWER
PULSE RESPONSE

OPEN LOOP FREQUENCY
RESPONSE

L..lc

r---'00

\

~-'r- ,
PHA~EL ,

'r--.

\

"-

\

20

K' f.-..-'

0
0.511 1M

211

511

1011 20M

&oM

lk

FREQueNCY (Hz)

i
~

i!

10
8

'00 --...

T A ",2rC

Va. ±1&Y

.
.
""

,\

{
z

.
o

~

"'

'M

~

311

10M

FREQUENCY (Hz)

INPUT

30M

ii

Vs"±rv-

1""'-

'r--.

..

~

l- V

20

'00.

-20

to

100

1k

10k

-8

~!::~v

-20
_0.2

o~

5-58

1.0
nilE (,.,..)

,
,

J

16
12

€

!i!
~

- r - ~-

4

~

~ -4

Ii!

-8

h

;-t-

8

INPUT

Gi"\

I

1\
\
\

1/

,- I-. -

1M

10M 100M

FEEDFORWARD

TA" 25"C

VSj "i"

-16
-20

_0.1

0.1

\f-I-

/OUTPUT

-12

FREQUENCY (Hz)

_

1A

0.8

20

...

~

tOOk

/OUTPUT

INVERTER PULSE
RESPONSE

PHASY

FFEDFO,"WA"r

.-IV- -

II

_4

-'8

10M 100M

t=,.!..,

FEEDFORWARD

"-

/

-12

120

........-

5 •

~

1M

0

1\
\

OPEN LOOP FREQUENCY
RESPONSE

14

[

tOOk

~

h

H

I-

FREQUENCY (Hz)

LARGE SIGNAL
FREQUENCY RESPONSE
12

10k

8

~
!:i

G'1'N,\
0

12

€
..

\

2

"

225

Cl.3

0.5

nME~)

0.1

0.0

FAIRCHILD e/LA318
AUXILIARY CIRCUITS
FEEDFORWARD COMPENSATION FOR
GREATER INVERTING SLEW RATEt

COMPENSATION FOR MINIMUM
SETTLlNGt TIME
5 pF

5k
3k

INPUT

10 k

5k
---'VV'v---4I-'---I
10 k

OUTPUT

INPUT

---'VV'v--e_-i
OUTPUT

5k

tSlew and settling time
to 0.1%fora 10 V
step change is 800 ns.

tSlew rate typically 150 V//Ls.
'Balance circuit necessary for
increased slew.

OFFSET BALANCING

ISOLATING LARGE CAPACITIVE LOADS

OVERCOMPENSATION

v+
r----'VV'v---1~-p-- OUTPUT

200 k
10 pF
RS

INPUT

--"I\rv-_-I

TYPICAL APPLICATIONS

FAST VOLTAGE FOLLOWER

FAST SUMMING AMPLIFIER

5pF

5pF

10k

10 k

DIFFERENTIAL AMPLIFIER

10 k

10 k
INPUT

5k

10 k

INPUT

INPUT

10 k

5-59

•

FAIRCHILD. ,uA318
TYPICAL APPLICATIONS (Conl'd,)

FAST SAMPLE AND HOLD

FAST SUMMING AMPLIFIER WITH
LOW INPUT CURRENT

10pF

RS

INPUT

--'V"""......- - - -....----"M~--t_ OUTPUT

5k

.002 "F

150 k
>~+-- OUTPUT

5k

INPUT-_--..,

SAMPLE

v+
D/A CONVERTER USING BINARY
WEIGHTED NETWORK

D/A CONVERTER USING LADDER NETWORK

5pF

5k

5k

5k
OUTPUT

OUTPUT

40k

10 k

10 k

20k

10k

5k
FROM SWITCHES

FROM SWITCHES

'Optional - Reduces settling time.

'Optional - Reduces settling time.

WEIN BRIDGE SINE WAVE OSCILLATOR
Rl
750

>'-'-..,....- OUTPUT
Ll'
R2

20k
1%

'L1 - 10 V - 14 mA bulb ELDEMA 1869
R1 = R2
C1 = C2
1= __
1__
2". R2C1

5-60

uA702
WIDEBAND DC AMPLIFIER
FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The IlA 702 is a monolithic DC Amplifier constructed using the Fairchild
Planar" epitaxial process. It is intended for use as an operational amplifier in analog computers, as a
precision instrumentation amplifier, or in other applications requiring a feedback amplifier useful from
dc to 30 MHz.

CONNECTION DIAGRAMS
8-PIN METAL CAN
(TOPVIEWI
PACKAGE OUTLlNt: 5S
PACKAGE CODE H
V+

•
•
•
•

LOW OFFSET VOLTAGE
LOW OFFSET VOLTAGE DRIFT
WIDE BANDWIDTH - 20 MHz TYP
HIGH SLEW RATE - S V/IlS TYP

ABSOLUTE MAXIMUM RATINGS
Voltage Selween V+ and V- Terminals
Peak Output Current
Differential Input Voltage
Input Voltage
Internal Power Dissipation (Notel
Metal Can
DIP
Flatpak
Operating Temperature Range
Military {IlA7021
Commercial (IlA702CI
Storage Temperature Range
Pin Temperature (Soldering, 60 sl

21 V
SOmA
±5.0 V
+1.5 V to -6.0 V

vNOTE: Pin~~~:m~~cted to~

ORDER INFORMATION
TYPE
PART NO.
IlA702
p.A702HM
IlA702C
p.A702HC

500mW
670mW
570mW

14-PIN DIP
(TOP VIEW)

_55°C to +125°C
O°C to +70°C
_65° C to +150° C
300°C

'P;;;A-;;C;;;Kc;;A"'G~E"'OUTLfNE6A
PACKAG.E CODE
NC

NC

v+

NOTE

Rating applies to ambient temperature up to 70o e. Above 700

OUTPUT

GND

e ambient derate linearly at 6.3mW/oC

D

NC

for Metal Can, B.3mW/oC for DIP and 7.1 mW/oC for the Flatpak.
-1N

NC

+IN

LAG

v-

LEAD

NC

NC

EQUIVALENT CIRCUIT
a

V.

ORDER INFORMATION

R,

2kn

TYPE
IlA 702
p.A702C

+---+--'-0 LEAD

PART NO.
IlA 702DM
IlA702DC

EXTERNAL

10-PIN FLATPAK
(TOP VIEW)
PACKAGE OUTLINE 3F
PACKAGE CODE F

FREOUENCY

COMPENSATION
1

GROUND

0---+---......---+--------4

+---+---".0

LAG

INVERTING 2
INPUT

OUTPUT

NON.INVE7~~~~ ,,'------Ir-------'

NC
NC

GND
-1N

.'N t:::=:::J-_....

>--l==:::J0UTPUT

v-

LAG
LEAD

R,

2.4kn

ORDER INFORMATION
TYPE
PART NO.
IlA702
IlA702FM

Pin numbers are shown for metal can only.

·Planar is a patented Fairchild process.

5-61

FAIRCHILD • ILA702
/lA702
ELECTRICAL CHARACTERISTICS: TA = 2S"C unle.s otherwise specified.

Input Offset Voltage
Input Offset Current
Input Bias Current
Input Resistance
Input Voltage Range
Common Mode Rejection Ratio
Large Signal Voltage Gain
Output Resistance
Supply Current
Power Consumption
Transient Response
(unity-gain)

Rise Time'
Overshoot

V+ = 12.0V, V- = -6.0V

CONDITIONS

CHARACTER ISTICS

MIN

TYP

MAX

0.5
lBO
2.0
40

2.0
500
5.0

RS"; 2 kn

16
4.0
80
2500

RS"; 2 kn, f ..; 1 kHz
RL'" 100 kn, VOUT ±5.0V
RL'" 100 kn, VOUT = ±2.5 V

Input Offset Current
Average Temperature Coefficient
of Input Offset Current
Input Bias Current
Input Resistance
Common Mode Rejection Ratio
Supply Voltage Rejection Ratio
Large Signal Voltage Gain
Output Voltage Swing
Supply Current
Power Consumption

MAX

0.7
120
1.2
67

3.0
500
3.5

mV
nA
p.A
kn
V
dB

+0.5

80

100

600

900
300
2.1
19

200
5.0
90

500
6.7
120

25
10

120
50

ns

10
20

30
40

ns

RS"; 2 kn
RS 50n,
TA =25°Cto+125°C
RS 50n,
TA = 25°C to -55°C
TA - +125 C
TA--55C
TA - 25 C to +125°C
TA 25 eto 55 C
TA - -55°C

1500
700
3.3
30

n
mA
mW

%

%

3.0

RS";2 kn,f"; 1 kHz
V+ - 12 V, V- - -6.0 V to
V+ = 6.0 V, V- = -3.0 V
Rs...; 2 kn
RL ",100 kn, VOUT - ±5.0 V
RL'" 100 kn, VOUT - ±2.5 V
RL ",100 kn
RL"'10kn
TA - +125°C, VOUT - 0
TA - -55 C, VOUT-O
TA-+125 C,VOUT-O
T A - _55°C, VOUT - 0

UNITS

6000

Rise Time
C3 = 50pF, RL '" 100 kn,
Overshoot
V 11\1. = 1 ,:,V
..
The follOWing speCifications apply for -55 C ..; T A"; +125° C:

of I nput Offset Voltage

TYP

100
3600

Transient Response
(xl00 gain)

Average Temperature Coefficient

22
1.5

+0.5

VOUT-O
VOUT 0
CI = O.D1p.F, RI - 20n,
RL'" 100 kn, VIN = 10 mV
Cl"; 100pF

Input Offset Voltage

V+ = 6.0V, V- = -3.0V
MIN

4.0

mV

2.5

10

3.5

15

p.V/oC

2.0
BO
400
1.0
3.0
4.3

10
500
1500
5.!)
16
10

3.0
50
2BO.
0.7
2.0
2.6

15
500
1500
4.0
13
7.5

p.V/oC
nA
nA
nA/oC
nA/oC
p.A
kn
dB

200

p.V/V

6.0
70

B.O
70

95
75

2000

95

200

75

7000

±5.0
+3.5

±5.3
+4.0
4.4
5:0
80
90

500
±2.5
±1.5

1750
±2.7
+2.0
1.7
2.1
15
19

6.7
7.5
120
135

V
V
mA
mA
mW
mW

3.3
3.9
30
35

TYPICAL PERFORMANCE CURVE FOR /lA702

VOLTAGE TRANSFER
CHARACTERISTIC

VOLTAGE GAIN
AS A FUNCTION OF
AMBIENT TEMPERATURE

VOLTAGE TRANSFER
CHARACTERISTIC
4200

2.0 1--+--+-T4A_'-.:,":..'.:.'t-"';"~A-d--d.c=-i

liZ

TA'I25"

IJ

'BOO

--

"1+;+12"1_

V-·-6V

i'-.
I........

~

"'

i 3400
~
w

~ 3000

+-+-+-+-+--1

g

-2 r--l---'H-tfl
/./

18

R ; IOta

~RLf":~~k':~.~1==t=t=t=t=i~
-6!,-5

-3

-1

INPUT VOLTAGE - mV

-2.0

-3.0

!.
.

"1+; +61,1-

-RL '100k~ I-c'r--r- V-, -'V4
10

~

~

INPUT VOLTAGE -my

5-62

2600

2200
-60

20

20

60

TEMPERATURE -"C

100

140

FAIRCHILD • /LA702
IlA702C
ELECTRICAL CHARACTERISnCS: TA = 25"C unless otherwise specified.

CONDITIONS

CHAAACTEAISTICS
I nput Offset Voltage
I nput Offset Current
Input Bias Current
Input Resistance
I nput Voltage Aange
Common Mode Rejection Ratio

Aise Time
Overshoot

VOUT = 0
VOUT 0
Cl - 0.01 J.LF. AI - 20 n
AL';;; 100 kn. VIN = 10 mV
CL .;;; 100 pF

AiseTime
Overshoot

C3 = 50 pF. AL;;' 100 kn.
VIN = 1 mV

Power Consumption

Transient Response
(xl00 gain)

MIN

10
4.0
70
2000

AS'; 2 kn. f .; 1 kHz
AL;;' 100 kn. VOUT - ±5.0 V
AL;;' 100 kn. VOUT ±2.5V

Output Resistance
SupplV Current

(unity gain)

V+ = 6.0V. V- = -3.0V

MIN

AS'; 2kn

Large Signal Voltage Gain

Transient Response

V+ = 12.0V. V- = -6.0V

The following specifications applv
Input Offset Voltage
Average Temperature Coefficient
of Input Offset Voltage
Input Offset Current
Average Temperature Coefficient
of Input Offset Current
Input Bias Current

Input Resistance
Common Mode Rejection Ratio

Large Signal Voltage Gain
Output Voltage Swing
Supplv Current
Power Consumption

MAX

1.5
0.5
2.5
32

5.0
2.0
7.5

TYP

16
1.5
70

+0.5

6.0
2.0
5.0

mV
J.LA
J.LA
kn
V
dB

+0.5

200
5.0
90

600
6.7
120

25
10

120
50

ns

10
20

30
40

ns

5.0

6.5
20

4.0
6.0
4.0
18
86

6.0
65

1.7
0.3
1.5
55

6000

for O"C.; TA';;; +70"C:
AS'; 2 kn
AS - 50 n.
TA = +70"C to O"C
TA - 25 C to +70 C
T.A = 25°C to O"C
TA -O"C

UNITS

MAX

92
3400

500

RS'; 2 kn. f .; 1 kHz
V+-12 V. V-- -6.0 V to
V+ = 6.0 V. V- = -3.0 V
A.s'; 2 kn
AL;;' 100 kn. VOUT - ±5.0 V
AL;;' 100 kn. VOUT ±2.5 V
AL;;' 100 kn
Rt ;;. 10 kn
VOUT - 0
VOUT 0

SupplV Voltage Rejection Ratio

TYP

90
1500

92
800
300
2.1
19

1500
800
3.3
30

n
mA
mW

%

%

2.5
10
20
12
9.0
65
300

mV

7.5
25

7.5

3.0
5.5
2.7
27
86
90

J.LV/"C

2.5
8.0
18
8

J.LA
nAI C
nAfC
J.LA
kn
dB

300

J.LV/V

7000

±5.0
±3.5

±5.3
±4.0
5.0
90

400
±2.5
±1.5
7.0
125

1750
±2.7
±2.0
2.1
19

V
V
mA
mW

3.9
35

TYPICAL PERFORMANCE CURVES FOR IlA702C

VOLTAGE TRANSFER
CHARACTERISTIC

VOLTAGE TRANSFER
CHARACTERISTIC

3.0 r-:~~'-~=-'--717--r'--'
v+ • 6.0 V t- TA • rfC-+-f1/N\j;':-+-l-l
2.0
vO' -3.0V
lj'["..,

'.0 "''-~'''''''''='''''-77r7--r-'---'
v+· IZV

: 1f....

TA

TA •

O"C-+!Ioil1k--Y+-+--J

380

0

~~: ~~.6v-

Ii't----f:'>'-:::H
4.0I-'-'·t-·-·'t·0.,:.'+-+"-J'''''[ililt..
~TA'70"C

I

~ Tooe

...........

~ 2.0f--+-+-+-+--J,'1ft-I!> ~.q­

......

~ 0r-t--+-+-+-~-r-r-+-+--l
·1.0 r-r-r-r-hi/!Y--+-+-+-+--l

~

§

320

0

".0 l=
f--t--.......
+;fII-+-r-r-+-+--l
',"IOOkO i)

300

0

-6.0
-5.0

2800

'2.0 f--+-+-+-+l'+-r-r-+-+--l
Rl"lOkO

-2.0 _R L ' lOOkQ

'3.0
-10

IlL

-;-;-'
-6,0

-2.0

2,0

INPUT VOLTAGE - mV

'.0

10

~t::t=f:~1:::t::t1=t~
-3.0

-l.0
1.0
INPUT VOlTAGE - mV

5-63

3.0

5.0

VOLTAGE GAIN
AS A FUNCTION OF
AMBIENT TEMPERATURE

o

"
2lI

30
40
TEMPERATURE-oC

""
so

"

10

•

i

FAIRCHILD • p,A702
TYPICAL PERFORMANCE CURVES FOR !1A702
VOLTAGE GAIN
AS A FUNCTION OF
AMBIENT TEMPERATURE

INPUT BIAS CURRENT
AS A FUNCTION OF
SUPPLY VOLTAGES

..0

'.0

k-I--+-+-+-++--l-~::::~~

INPUT OFFSET CURRENT
AS A FUNCTION OF
SUPPLY VOLTAGES

TA'2S0C

TAl, 2ioc

2.5
4

~

1-1-

\;

900 I--I--H""--"I..-.:--+---+---+--+--+-J

~ 2.0

800 f-+-+-+-++--t'-cl--t-fr-

o
~ 1.5

700 f-+-+-+-++-+-+--f'dr-

~ '.0

60~6"0---'--_-"'20,-l---,l20,---J---'6'o-0---'--',-"'00,-l---,l'40
TEMPERA.TURE

-,

INPUT BIAS CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE

f- r-

,

ff-

~

H-t-+,;v -+ l-Ll
I

V· I,
V-: -6V

~
+8

+10

-4

-5

50

-,

'12

SUPPLY VOLTAGE REJECTION RATIO
AS A FUNCTION OF
AMBIENT TEMPERATURE

500

100

RS:52kn

'

0

0

-20

r---

I--t-

0

100

60

V

0

I-- r--t-

20

140

20

20

TEMPERATURE-OC

TEMPERATURE-OC

60

TEMPERATURE _·C

COMMON MODE REJECTION RATIO
AS A FUNCTION OF
AMBIENT TEMPERATURE

POWER SUPPLY CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE

10 5
Rs:52k,Q

~ 100

~

z

~

9

5

r-

/}-

1"'-

11

iil
~

9

0

o

!li
8

85

:1

80
-60

-20

20

~,oo

-

r-r-

J6J

/

/

/

V

;;tV

/

/

500

,/'

1

i
20

ttl-60

100

160

\

1

r-

'00

~

~ r--:'-, -,v

400

1

V+: +6V

""
'" "- 1
1

/y+2+12V
V-'-6V

200

r- -

V+=+12V

v-=

6V

100

'/
10
-60

20

OUTPUT RESISTANCE
AS A FUNCTION OF
AMBIENT TEMPERATURE

~ 40

20

-60

140

INPUT RESISTANCE
AS A FUNCTION OF
AMBIENT TEMPERATURE

:;; 50

30

100

TEMPERATURE-OC

z

~

60

TEMPERATURE _oC

200

1

I
20

...... r-

/f-"

0

o

-6

INPUT OFFSET CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE

f'-< f-

If- V+:+6~t----..
V-: -3V

.12

+10
-5

SUPPLY VOLTAGES-V

,

I" I'"

+8
-4

'6

-6

SUPPLY VOLTAGES-V

-tr

t -f-'-

"-

-60

lI--

0.5
'6

--c

I-

~

1l

20

60

lOa

o
- 60

140

1

20

20

60

TEMPERATURE _·c

TEMPERATURE _·C

5-64

100

,140

'00

140

FAIRCHILD • ILA702
TYPICAL PERFORMANCE CURVES FOR J1A702C
VOLTAGE GAIN
AS A FUNCTION OF
AMBIENT TEMPERATURE

,.0
,.,

900

~~ .~;~~850

..........

b---

750

f"'--..

"-.....
O.

20

30

50

4{1

60

70

TEMP€RATURE~oC

INPUT BIAS CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE
--

-~

'.0

"-

1

V- ·-6.0V

I'---L
~

I.,
1.0

V+.1 2V

"-

2.5

o

-

V+-6.0V
V"--3.0V

............

.I

10

20

V
V

-

30
40
50
TEMPERATURE _oC

V

200

,.,
.,

'000

+8
-4

'00.,

-,,"

+10
-5

-,

SUPPLY VOLTAGE REJECTION RATIO
AS A FUNCTION OF
AMBIENT TEMPERATURE
'00
RS 5 2.0 kQ

V+.112V

-

.....-

f--- f---

V+·6.0V

-----

V-·-3.0V

10

ZO

)0
40
TEMPERATURE ~

50

60

7' I)

70

~

r---

'"

r---

'.0 f="'I"-t---y+'--=l:::-=+t-~+f------1
V+·J2·V

4.0r------ V-·-6.0V+~t----t--i

I

"'~
.. -

'.01--+-t---t-V+·6.0V r-i-V-·'3.0V

r---

r------1--+-/7r-i~1---I
2.0

86 0"-----',00 ~20o----"c30~.L40~-':50:--J60,----!70
TEMPERATURE -

'00

1=+=I=~,b,,+--+_kd

1.0 OL----'IOL----,,,'o----,,o-O-",o---+'50-"'611--!70

°c

TEMPERATURE

INPUT RESISTANCE
AS A FUNCTION OF
AMBIENT TEMPERATURE

~"c

OUTPUT RESISTANCE
AS A FUNCTION OF
AMBIENT TEMPERATURE
500

4001--+~+--+vt"~.OV
V"·-3.0V

2OO1--+~t---t-~t---t~t---I

1

!

0
loOk

."

~r--r-rrr--~~-rTT--'
V+'l2V

1. 0

'0

1

SLEW RATE
AS A FUNCTION OF
CLOSED LOOP VOLTAGE GAIN
(LEAD-LAG COMPENSATION)

10

~

""~-

,

V-

.;,
'?p-

~

SUPPLY VOLTAGES - V

SLEW RATE
AS A FUNCTION OF
CLOSED LOOP VOLTAGE GAIN
(LAG COMPENSATION)

~ 2. 0

~

80

TA=+25'C_

100

25°C

I I\.~ .J-

1\

1/

~/I

r-

0

I

'"

V

TA

TIME

CLOSED-LOOP VOLTAGE GAIN

TRANSIENT RESPONSE TEST CIRCUITS
UNITY-GAIN AMPLIFIER
(LAG COMPENSATION)

X100 AMPLIFIER
(LEAD COMPENSATION)

2kfl

SERIES RESISTANCE LIMITING"

'2

5kfl

>-'+~--""'t'<>

"
VOUT

VOUT

'3

'L

OUTPUT RISE TIME LIMITING"

LOGIC COMPATIBILITY

"
'2

"

0,

'------""TO LOGIC + SUPPLY

• Peak current limiting with capacitive loads.

Pin numbers are shown for metal can only.

5-66

FAIRCHILD • f,LA702
TYPICAL PERFORMANCE CURVES FOR J1.A702 AND J1.A702C
OUTPUT VOLTAGE SWING
AS A FUNCTION OF
SUPPLY VOLTAGES

INPUT VOLTAGE RANGE
AS A FUNCTION OF
SUPPLY VOL TAGES

VOLTAGE GAIN
AS A FUNCTION OF
SUPPLY VOLTAGES
5Il00

12

PSITIVE

TA '25°C

liT

450 0
10
Rl'lOOkQ

"

0

I-"

~ 6.

~

°v

I-"

V

Rl'lOkQ

J

.,-,

r-

1000
500

+8

60
~

I 40

~

11.11 I

60

"""

Cl=lOOOpF. Rl=200n

'\

IIII I
-20
lOOk

--..

I

TA =+25°C
Cl = O.l ... F
RI = 0

iz

40

~

LOOP'T'h..

-20
50.

10M

1M

C2

c

C2=lOOOpF, R2=200n

III

IIII

C2= 1000 pF, R2=200Q

III

ill

III

IIII
Ik

10k

lOOk

1M

-20
lOOk

10M

111

FREQUENCY - Hz

OUTPUT VOLTAGE SWING
AS A FUNCTION OF
FREQUENCY FOR VARIOUS
LAG COMPENSATION NETWORKS

'.0
4.0
2.0

o
100

(l~

\\II
II

Ik

t

2
0

l~
r.
i----I~
(l

100'

~

-

,.

10M

50M

¥+= +12V
y-= -6V
TA = +25°C

r---1\

8

6

l'~\
l~'\
~
'% 1i~\
'Hl i+l WW
10k
FREQUENC'!'

~

FREQUENCY -Hz

V---fl,OV

(l

II
IL

4

Vt-12V

~

II

OUTPUT VOLTAGE SWING
AS A FUNCTION OF FREQUENCY
WITH LEAD-LAG COMPENSATION

TA '2Sc C RL '100kQ

8.0

•

"

0

III

IIII

100

10

TA; +25°C

C3= 50pF
~Rf;10kn

III

FREQUENCY - Hz

14

-V-·-SV

111

Xl CLOSEDJfOP

IIII I

V+= +12V

1

X10 CL SED LOOP

C1 2 0.01I'F, RI; 20n

IIII

4E~ IL60p, l2. 0
i l l r-..
60

V-=-6V

Nll
~CggED

'12

FREQUENCY RESPONSE FOR
VARIOUS CLOSED-LOOP GAINS
(LEAD-LAG COMPENSATION)

v+= +12Y

OPEN LOOP

-,

8
+10
-4
-5
SUPPLY VOlTAGES-V

80

IIII
IIII

Cl ;100pF, Rl=2k

IIII I

'12

-5

SUPPLY VOLTAGES - V

80
V+=+12V
V-=-6V
TA =+25°C

I I I i"i----.

.,-,

0

-,

+\0

-4

FREQUENCY RESPONSE
WITH CONSERVATIVE
COMPENSATION NETWORK

80

,,-

1500

C-

SUPPLY VOLTAGES-V

OPEN LOOP,Cl=O

200 0

I

2. O

FREQUENCY RESPONSE FOR
VARIOUS CLOSED-LOOP GAINS
(LAG COMPENSATION)

/'

2500

I-"

4. 0

c-

JOOJ

I-"

V-

\

l\

2

o

lOOk

1M

1M

Hz

10M

100M

FREQUENCY - Hz

FREQUENCY COMPENSATION CIRCUITS
LAG COMPENSATION

LEAD-LAG COMPENSATION

C2

R2

I

C
'

"
Pin numbers are shown for metal can only.

5-67

~A709
HIGH-PERFORMANCE OPERATIONAL AMPLIFIER
FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The p.A709 is a monolithic High Gain Operational Amplifier constructed using the Fairchild Planar· epitaxial process. It features low offset, high input impedance,
large input common mode range, high output swing under load and low power consumption. The
device displays exceptional temperature stability and will operate over a wide range of supply voltages
with little performance degradation. The amplifier is intended for use in dc servo systems, high

impedance analog computers, low level instrumentation applications and for the generation of special

CONNECTION DIAGRAMS
8-PIN METAL CAN
(TOP VIEW)
PACKAGE OUTLINE 5S
PACKAGE CODE H

linear and nonlinear transfer functions.
IN FREQ CQMP

ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Internal Power Dissipation (Note)
Metal Can
Mini DIP
DIP
Flatpak
Differential I nput Voltage
I nput Voltage

±18 V
500mW
310mW
670mW
570mW
±5.0 V
±10V

Storage Temperature Range
Metal, Hermetic DIP, and Flatpak
Molded DIP and Mini DIP
Operating Temperature Range
Military (p.A709A and p.A709)
Commercial (p.A709C)
Pin Temperature
Metal Can, Hermetic DIP, and Flatpak (Soldering 60 s)
Molded DIP and Mini DIP
Output Short·Circuit Duration

v-

NOTE: Pin 4 connected to case

-65°C to +150°C
-55°C to +125°C
-55°C to +125°C
O°C to +70°C

NOTE:

Rating applies to ambient temperature up to 70°C. Above 70°C ambient derate linearly at 6.3mW/C
for Metal Can, 8.3mW/oC for DIP, 7.1mW/oC for the Flatpak and 5.6mW/oC for the Mini DIP.

ORDER INFORMATION
TYPE
PART NO.
p.A709AHM
p.A709A
p.A709
p.A709HM
p.A709HC
p.A709C

14·PIN DIP
(TOP VIEW)
PACKAGE OUTLINE
PACKAGE CODE

6A
D

9A
P

CONNECTION DIAGRAMS
NC

8-PIN MINI DIP
(TOP VIEW)
PACKAGE OUTLINE 9T
PACKAGE CODE T

10·PIN FLATPAK

NC
IN FREQ
COMP

8 IN FREQ
COMP

-IN

v+

+IN

OUT

v-

OUT FREO
COMP

ORDER INFORMATION
TYPE
PART NO.
p.A709C
p.A71l9TC

NC

(TOP VIEW)
PACKAGE OUTLINE 3F
PACKAGE CODE F

INCOMP

-IN
+IN

COMP

NC

IN COMP

NC

IN FRED 3

-IN

v+

+IN

OUT

v-

OUT FREQ

NC

NC

CQMP

v+

'---t==::::JOUT
OUT FREQ
COMP

v-

ORDER INFORMATION
TYPE
PART NO.
p.A709A
p.A709AFM
p.A709
p.A709FM

ORDER INFORMATION
TYPE
PART NO.
p.A709A
p.A709ADM
p.A709
p.A709DM
p.A709C
p.A709DC
p.A709C
p.A709PC

*Planar is a patented Fairchild process.

5-68

FAIRCHILD. p.A709
JlA709A
ELECTRICAL CHARACTERISTICS: T A = +25°C, ±9 V .. VS" ±15 V unless otherwise specified.
CHARACTER ISTICS
(see definitions)

CONDITIONS

Input Offset Voltage

RS~

TYP

MIN

MAX

UNITS

0.6

2.0

mV

I nput Offset Current

10

50

nA

Input Bias Current

100

200

10kn

Input Resistance

350

700

Output Resistance

nA
kn

150

n

Supply Current

VS=±15V

2.5

3.6

mA

Power Consumption

VS=±15V

75

108

mW

Transient Response

Vs = ±15 V, VIN = 20 mV, RL = 2 kn, Cl = 5 nF,
Rl = 1.5 kn, C2 = 200 pF, R2 = 50.11
CL~ l00pF

1.5

"S

30

%

Overshoot

The following specifications apply for _55°C ~ T A ~ +125°C:
Input Offset Voltage

RS~

3.0

mV

Average Temperature Coefficient
of Input Offset Voltage

RS = 50n, T A = +25°C to +125°C
RS - 50n, T A - +25 C to -55 C
RS 10kn, TA +25 C to +125 C
RS-l0kn,TA-+25 Cto-55 C·

1.8
1.8
2.0
4.8

10
10
15
25

"vtc
"vtc
"vtc
"vtc

Input Offset Current

TA = +125°C
TA=-55°C

3.5
40

50
250

nA
nA

Average Temperature Coefficient
of I nput Offset Current

TA = +25°C to +125°C
T A - +25°C to -55°C

0.08
0.45

0.5
2.8

nAtC
nAtC

300

600

10 kn

Input Bias Current

TA = _55°C

Input Resistance

TA=-55°C

Input Voltage Range

VS- ±15 V

±8.0

Common Mode Rejection Ratio

RS~10kn

80

85

Supply Voltage Rejection Ratio

RS~

Large Signal Voltage Gain

Vs = ±15 V, RL~2 kn, VOUT = ±10V

25,000

> 10 kn

±12
±10

Output Voltage Swing

kn

110

dB

V

40

10 kn

Vs = ±15 V, RL

VS-±15V,RL~2kn

nA

170

100

"V/V

70,000

V/V

±14
±13

V
V

Supply Current

TA=+125°C,VS=±15V
TA=-55 C,VS-±15V

2.1
2.7

3.0
4.5

rnA
mA

Power Consumption

TA=+125°C,VS=±15V
TA--55 C,VS-±15V

63
81

90
135

rnW
rnW

PERFORMANCE CURVES FOR jlA709A
VOLTAGE GAIN
AS A FUNCTION OF
SUPPL Y VOLTAGE

INPUT COMMON MODE
VOLTAGE RANGE
AS A FUNCTION OF
SUPPLY VOLTAGE

OUTPUT VOLTAGE SWING
AS A FUNCTION OF
SUPPLY VOLTAGE

POWER CONSUMPTION
AS A FUNCTION OF
SUPPLY VOLTAGE

'" ,~"""-"'~-r-r""""-'--T?I
~is~c2;~A::; +125°C -t-H--I---t7"!'-I

B" I-;--H--I-+-+-++7i"++--1
5"

",.
",.

I

" 1--1----1--1-+-+-+-++++-1

~

, 10

-

~

~"

;280

I

~

~I'-"/-\r

"'i-(~

IOHH-+-+-+-++++++-I

-

-i-

-

6.0

8
:<4.0

_._.

5.01--1----1--1-+-+-+-++++-1 8~ 2.0
'" ~9-""~'C--'--+,,,--'--,",,---L"""'3-"--:O",--'--:!"
SUPPLY VOLTAGE - ±V

O"'9..J.-~IO,--'-~,,-L-,",,---L"""'3-"-~"~~·
SUPPLY VOLTAGE - ±V

"

5-69

lIo\~\J\lt 10k!1
RL >2 k!1

Output Voltage Swing
Input Voltage Range
Common Mode Rejection Ratio
Supply Voltage Rejection Ratio

RS~

RS

<

15,000
±12
±10
±S.O
65

10k!1
10 k!1

V,N 20 mV, RL 2 k!1,
Cl =5000pF, Rl = 1.5 k!1,
C2 = 200 pF, R2 = 50!1
CL~ lOOpF

Rise time

Overshoot

MAX

UNITS

2.0
100
0.3
250
150
45,000
±14
±13

7.5
500
1.5

mV
nA
IlA
k!1
!1
V/V
V
V

±10
90
25
SO

Power Consumption

Transient Response

TYP

V
dB
IlV /V
mW

200
200

0.3

IlS

10

%

The following specifications apply for O°C ~ T A -< +70°C:
Input
I nput
Input
Large
I nput

Offset Voltage
Offset Current
Bias Current
Signal Voltage Gain
Resistance

RS

< 10 k!1, ±9 V < Vs < ±15 V

RLL2 k!1, VOUT-±10V

10
750
2.0

mV
nA
IlA
V/V
k!1

12,000
35

PERFORMANCE CURVES FOR p.A709C

,

VOLTAGE GAIN
AS A FUNCTION OF
SUPPLY VOLTAGE
RLI:?:2Ln

,

JC<~Al'7JC

,
V

!"

OUTPUT VOLTAGE SWING
AS A FUNCTION OF
SUPPLY VOLTAGE

"~;...--

"'~

INPUT COMMON MODE
VOLTAGE RANGE
AS A FUNCTION OF
SUPPLY VOLTAGE

O'i<'!A<~70'b

,,\. . t\<.~-=p..
",;~ ~~

I

'c·

0

~

5

lJI\\'I.\".utll

-

, V
-

-~

1- --

1-- -~~ ,--

~

~- -~~I-

~ ~

:--

o

0

9
SUPPLY VOLTAGE -

±v

SUPPLY VOLTAGE - tV

FREQUENCY COMPENSATION CURVES FOR ALL TYPES
OPEN-LOOP FREQUENCY
RESPONSE FOR VARIOUS
VALUES OF COMPENSATION

FREQUENCY RESPONSE
FOR VARIOUS
CLOSED LOOP GAINS

5-71

OUTPUT VOLTAGE SWING AS A
FUNCTION OF FREQUENCY
FOR VARIOUS
COMPENSATION NETWORKS

•

FAIRCHILD. IlA709
TYPICAL PERFORMANCE CURVES FOR IlA709A
VOLTAGE GAIN AS A
FUNCTION OF
AMBI ENT TEMPERATURE

VOLTAGE TRANSFER
CHARACTERISTIC

~ ~~:±15V
I 1/
f5~+=++~R

·
·
·.1- --tte--

RL-l0kQ

~

~

"

TA~-66°C.-...,/~TA"'125·C

-- -- - - - -~

, _ TA"2S'C -

,.of--l--l--+-+--+I+
JI--I--r--r--l

~

k

0

I

I\,

H-

--+-,

'"

I

0

I---

t-+-

+-

I

I

:

I

,

1

0

1

I

1

1

80

0

I

INPUT RESISTANCE AS A
FUNCTION OF
AMBIENT TEMPERATURE

1

,

----- .":-

i

0

,
... +-- r_ l -

I

POWER CONSUMPTION AS A
FUNCTION OF
AMBIENT TEMPERATURE

~-.:t=

i

I

i

I

~

I
ov-r-h
II
/ !
VIN
VS"':t15V
TA- 25°C

liSE TIMEI

0

20

2.'

t--t--t--t--T-T-T-T-t--r-

20

TRANSIENT RESPONSE
TEST CIRCUIT

I

;t15V

I

TEMPERATURE_oC

TRANSIENT RESPONSE

I

.J--1

I
I

TEMPERATURE-'C

I I

-j--

+- ~-

~
--

,
,
o. 1

11---:-

J

Vs~

,

V~ Vf-I

I

I"

RS:5:~

-50

0

I

1

TEMPERATURE-OC

2

2

J.
\

I

4

,

1\
0

i

i

,

,

1
i

1\

I

~

2

8

0.2

-- r-

COMMON MODE REJECTION
RATIO AS A FUNCTION OF
AMBIENT TEMPERATURE

2

0.1

INPUT OFFSET CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE

TEMPERATURE -'C

0

:

---t---t-H-t-----1

1/
V

TA" 2S'C

..0

4

"

~ 14

INPUT BIAS CURRENT AS A
FUNCTION OF
SUPPLY VOLTAGE

9

r--

~'Bt---+,-+~r_-+--4-~,-HI--~

~ 16~i,L

!

o

0

1

LOAD RESISTANCE - kO

i

,

'"

0

-t--

1

20

1

,

0

-4--

"0

"

INP.UT BIAS CURRENT AS A
FUNCTION OF
AMBIENT TEMPERATURE

~
'I
L
1
~
i /
ii t---t_
+-,-Hr--/--t---j--t-~+-t------i
I

TEMPERATURE -'C

INPUT VOLTAGE - mV

l.-

-t--r

--

j--

I,

t:-:: i= r-

lH----t---t--t........
-±=F--I

~26r__t_t~r__t~~~-L--t-t_~
~24
1
I
/'
22

l"- f-

r--;t." t72v

~~~~~/~=t~~~t=t=~
-"-1.0-0.8-0.6-0.40.20
0.20.4

!

e--

--- -

-- I -

TA~25°C

B

r_ ~ :-- ::::-J

o -5.of---+-+-+---hH-j--f--+-+--+
WI

,

or-vs-_r,,-,vr,l-r--~-'-'-~rT--'

RL"'10kn

......... vs~

~

.

OUTPUT VOLTAGE SWING
AS A FUNCTION OF
LOAD RESISTANCE

Pin numbers on this and all
succeeding circuits apply to
metal can or mini DIP package.

TlME-jJs

5-72

TEMPERATURE _ °C

SLEW RATE AS A FUNCTION
OF CLOSED-LOOP GAIN
USING RECOMMENDED
COMPENSATION NETWORKS

FAIRCHILD. jJ.A709
TYPICAL PERFORMANCE CURVES FOR p.A709 AND JJ.A709C
INPUT BIAS CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE

VOLTAGE TRANSFER
CHARACTERISTIC

INPUT OFFSET CURRENT
AS A FUNCTION OF
AMBIENT TEMPERATURE
0

VS·+15V

Vs~

t15V

VS~

0

~ 0.4 f--l"ofVsE

:=

5

f--

l~O,.I'Ij::: r~~ap..\'I.{)'H
SLE'H R....rE

s

7

f-t-

0.5

1.0
TlME-I'S

FREQUENCY CHARACTERISTICS
AS A FUNCTION OF
AMBIENT TEMPERATURE

TA-2S"C

t-

en

II
I I I I
I I i I
TEMPERATURE

5-73

25·C

I
0

FREQUENCY CHARACTERISTICS
AS A FUNCTION OF
SUPPLY VOLTAGE

~

0

capacitive loading.

0.'

VS"!15V
TA

- / - - RISE TIMi

when the

_·c

"

20

2.5

FAIRCHILD. p.A709
PROTECTION CIRCUITS

INPUT
BR EAKDOWN·PROTECTION

OUTPUT
SHORT-CIRCUIT PROTECTION

SUPPLY
OVERVOLTAGE·PROTECTION

LATCH·UP PROTECTION

v·
0,

>-....~DEOUT
EIN O--JVV"V---I

v-

Pin numbers apply to metal can or mini DIP package only.

EQUIVALENT CIRCUIT
INPUT FREQUENCY

COMPENSATION

;----~--+-------+---~---~----~----1_-ov·

A,

a,

'kn
A15

'akn
Qg

OUTPUT

A,

,,,,n

A,

a.6kn

OUTPUT
FREQUENCY
COMPENSATION

0,
INVERTING
INPUT

A10
16kn

0---------1::'0,

0"

NON-INVERTING

INPUT

0"

,,,,n
A"

A"

"n

5-74

JLA714
PRECISION OPERATIONAL AMPLIFIER
FAIRCHILD LINEAR INTEGRATED CIRCUITS

DESCRIPTION - The /LA714 is a Monolithic Instrumentation Operational Amplifier constructed using the Fairchild Planar' epitaxial process. It is intended for precise, low level
signal amplification applications where low noise, low drift and accurate closed loop gain
are required. The offset null capability, low power consumption, very high voltage gain
as well as wide power supply voltage range provide superior performance for a wide
range of instrumentation applications.
•
•
•
•
•
•
•
•

CONNECTION DIAGRAM
8-PIN METAL CAN
(TOP VIEW)
PACKAGE OUTLINE
PACKAGE CODE

58
H

LOW OFFSET VOLTAGE ... 75 J.l.V for J.l.A714
LOW OFFSET VOLTAGE DRIFT ... 1.3 J.l.V/·C for J.l.A714
LOW BIAS CURRENT ... ±3.0 nA for J.l.A714
LOW INPUT NOISE CURRENT ... 0.17 pA/v'Hz @1.0 kHz max
HIGH OPEN LOOP GAIN ... 500,000 typically
LOW INPUT OFFSET CURRENT ... 2.8 nA max for J.l.A714
HIGH COMMON MODE REJECTION ... 110 dB min for J.l.A714
WIDE POWER SUPPLY RANGE ... ±3.0 TO ±22 V

ABSOLUTE MAXIMUM RATINGS
Notes on following pages

Supply Voltage
Internal Power Dissipation (Note 1)
Metal Can
Differential Input Voltage
Input Voltage (Note 2)
Storage Temperature Range
Metal Can
Operating Temperature Range
Military
Commercial
Pin Temperature
Metal Can (Soldering, 60 s)

v-

/L A714
/LA714E, /LA714C

/LA714L

±22 V

±18 V

500mW
±30 V
±22 V

500mW
±30V
±18 V

-65°C to +150°C

- 65·C to + 150·C

- 55·C to + 125°C
O°C to +70·C

O·C to +70·C

300°C

300·C

EQUIVALEN T CIRCUIT
;,~

."

"-

.

TYPE
714
714E
714C
714L

PART NO.
/LA714HM
I'A714EHC
/LA714HC
I'A714LHC

/
R2A'

''-

I

,,,.,~ ~
"

L-

"

..

.'"

.~.:.~ .. ~."

.

.)."'

ru

A2B'

~

.,." ."J."
.,,~
.,,~

."

.

."'

..
>---<>

."
.>0

."

..,
...
--'---<>

•

FAIRCHILD. JLA714
~A714

ELECTRICAL CHARACTERISTICS

These specifications apply for Vs = ± 15 V, T A = 25·C.
TYP

MAX

Input Offset Voltage

Note 3, RS = 500., VCM = O.OV

30

75

/LV

Long Term Input Offset Voltage Stability

Note 4, RS = 500., VCM = O.OV

0.2

1.0

/LV/mo.

Input Offset Current

VCM = 0.0 V

0.4

2.8

nA

Input Bias Current

VCM = 0.0 V

±1.0

±3.0

Input Noise Voltage

0.1 Hz to 10 Hz (Note 5)

0.35

0.6

/LV p _p

Input Noise Voltage Density

fo = 10 Hz (Note 5)
fo = 100 Hz (Note 5)
fo = 1000 Hz (Note 5)

10.3
10.0
9.6

18.0
13.0
11.0

nvtv'Hz

CHARACTERISTICS

TEST CONDITIONS

Input Noise Current

0.1 Hz to 10 Hz (Note 5)

Input Noise Current Density

fo = 10 Hz (Note 5)
fo = 100 Hz (Note 5)
fo = 1000 Hz (Note 5)

Input Resistance - Differential Mode

MIN

20

Input Resistance - Common Mode
Input Voltage Range

14

30

0.32
0.14
0.12

0.80
0.23
0.17

UNITS

nA

pA p-p
pAlv'HZ

60

Mo.

200

Go.

±IS.0

±14.0

V

110

126

dB

Common Mode Rejection Ratio

VCM = ±13 V, Rs = 500.

Power Supply Rejection Ratio

Vs = ±3.0 V to ±18 V, Rs = 500.

100

110

dB

Large Signal Voltage Gain

RL ;;. 2.0 ko., Vo = -10 V to +10 V
RL;;' 5000., Vo = -0.5 V to +0.5 V
Vs = ±3.0 V

200
150

500
500

V/mV

Maximum Output Voltage Swing

RL;;' 10 ko.
RL;;' 2.0 ko.
RL;;' 1.0 ko.

±12.5
±12.0
±10.5

±13.0
±12.8
±12.0

V

Slewing Rate

RL;;' 2.0 ko.

0.17

VI/Ls

Closed Loop Bandwidth

AVCL = +1.0

0.6

MHz

Open Loop Output Resistance

Vo = 0 V, 10 = 0 A

Power Consumption

Vo = 0 V
Vs = ±3.0 V, Vo = 0 V

Offset Adjustment Range

Rp = 20 ko.

0.

60
75
4.0

120
6.0

±4.0

mW
mV

The following specifications apply for Vs = ±15 V, -55·C .. TA" +125·C.
Input Offset Voltage

Note 3, RS = 500., VCM = O.OV

60

200

/LV

Average Input Offset Voltage Drift
Without External Trim
With External Trim

Rs = 500., VCM = 0.0 V
Note 5, Rp = 20 ko., Rs = 50 0.

0.3
0.3

1.3
1.3

/LVrC

Input Offset Current

VCM = 0.0 V

1.2

5.6

nA

Average Input Offset Current Drift

VCM = 0.0 V

8.0

50

pAl·C

Input Bias Current

VCM = 0.0 V

±2.0

±6.0

Average Input Bias Current Drift

VCM = 0.0 V

13

50

Input Voltage Range
Common Mode Rejection Ratio

VCM = ±13 V, Rs = 500.

Power Supply Rejection Ratio

Vs =±3.0 V to ±18 V, Rs = 500.

Large Signal Voltage Gain

RL;;' 2.0 ko., Vo = -10 V to +10 V

Maximum Output Voltage Swing

RL;;' 2.0 ko.

nA
pAl·C

±13.0

±13.5

V

106

123

dB

94

106

dB

150

400

V/mV

±12.0

±12.6

V

Rallngs applies to ambient temperature to 70·C. Above TA = 70·C derate linearly 6.3 ,"W/·C.
For supply voltage less than ±22 volts, the absolute maximum input voltage Is equal to the supply voltage.
Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds alter application of power.
Long term input offset voltage stability refers to the averaged trend of VOS versus time over extended periods alter the first 30 days of
operation. Parameter is not 100% tested. 90% of the units meet this specification.
5. Parameter is not 100% tested; 90% of the units meet this specification.

NOTES: 1.
2.
3.
4.

5-76

FAIRCHILD. JLA714
p,A714E

ELECTRICAL CHARACTERISTICS

These specifications apply for Vs = :t15 V, TA = 25°C.
CHARACTERISTICS

TEST CONDITIONS

MIN

TYP

MAX

UNITS

0.5

3.8

nA

Input Bias Current

= 500, VCM = 0.0 V
Note 4, Rs = 500, VCM = 0.0 V
VCM = 0.0 V
VCM = 0.0 V

:tl.2

:t4.0

nA

Input Noise Voltage

0.1 Hz to 10 Hz (Note 5)

0.35

0.6

10.3

Input Noise Voltage Density

= 10 Hz (Note 5)
fa = 100 Hz (Note 5)
fa = 1000 Hz (Note 5)

18.0
13.0
11.0

Input Noise Current

0.1 Hz to 10 Hz (Note 5)

Input Noise Current Density

fa
fa

Input Offset Voltage
Long Term Input Offset Voltage Stability
Input Offset Current

Note 3, Rs

fa

fa

= 100 Hz (Note 5)
= 1000 Hz (Note 5)
15

= :t13 V, Rs = 500

Common Mode Rejection Ratio

VCM

Power Supply Rejection Ratio

Vs

Large Signal Voltage Gain

RL ;;, 2.0 kO, Va = -10 V to +10 V
RL ;;, 5000, Va = -0.5 V to +0.5 V
Vs = :t3.0V

= :t3.0Vto :t18 V, Rs = 500

Maximum Output Voltage Swing

RL;;' 10 kO
R L ;;, 2.0 kO

Slewing Rate

RL;;' 2.0 kO

Closed Loop Bandwidth

AVCL

Open Loop Output Resistance

Va

= 0.0 V, 10 = O.OA

Power Consumption

Va
Vs

Offset Adjustment Range

Rp

= O.OV
= :t3.0 V,
= 20 kO

/LV/mo.

14

30

0.32
0.14

0.80
0.23
0.17

/LV p _p
nV/YHZ
pA pop
pA/v'HZ

50

MO

160

GO

:t14.0

V

106

123

dB

94

107

dB

200

500
500

V/mV

150

= +1.0

Va

1.5

:t13.0

:t12.5
:t12.0
:tl0.5

R L ;;, 1.0 kO

/LV

0.3

0.12

Input Resistance - Common Mode
Input Voltage Range

75

10.0
9.6

= 10 Hz (Note 5)

Input Resistance - Differential Mode

30

:t13.0
:t12.8

V

:t12.0
0.17

V//LS

0.6

MHz
0

60
75
4.0

= 0.0 V

120
6.0

:t4.0

mW
mV

The following specifications apply for Vs = +
- 15 V, O°C .. T A .. + 70°C.

= 500, VCM = 0.0 V

Input Offset Voltage

Note 3, Rs

Average Input Offset Voltage Drift
Without External Trim
With External Trim

Rs = 500, VCM = 0.0 V
Note 5, Rp = 20 kO, Rs = 50 0

45

130

/LV

0.3
0.3

1.3
1.3

/LV/oC

Input Offset Current

VCM

= 0.0 V

0.9

5.3

nA

Average Input Offset Current Drift

VCM

= 0.0 V

8.0

35

pN°C

Input Bias Current

VCM

:t5.5

VCM

= 0.0 V
= O.OV

:tl.5

Average Input Bias Current Drift

13

35

Common Mode Rejection Ratio

VCM

= :t13 V, Rs = 500

Input Voltage Range

= :t3.0 V to :t18 V, Rs = 500
= -10 V to +10 V

Power Supply Rejection Ratio

Vs

Large Signal Voltage Gain

RL;;' 2.0 kO, Va

Maximum Output Voltage Swing

RL;;' 2.0 kO

NOTES: 1.
2.
3.
4.

nA
pN°C

:t13.0

:t13.5

V

103

123

dB

90

104

dB

180

450

V/mV

:t12.0

:t12.6

V

Ratings applies to ambient temperature to 70°C. Above TA = 70°C derate linearly 6.3 mWI"C.
For supply voltage less than :t22 volts, the absolute maximum input vottage is equal to the supply voltage.
Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.
Long term input offset voltage stability refers to the averaged trend of Vos versus time over extended periods after the first 30 days of
operation. Parameter is not 100% tested. 90% of the units meet this specification.
5. Parameter is not 100% tested; 90% of the units meet this specification.

5-77

•

FAIRCHILD. JLA714
ELECTRICAL CHARACTERISTICS
These specifications apply for Vs

ILA714C

= ±15 V, TA = 25°C.

CHARACTERISTICS

TEST CONDITIONS

Long Term Input Offset Voltage Stability

= 500, VCM = O.OV
Note 4, Rs = 500, VCM = O.OV

Input Offset Voltage

nA
/LV p _p

= 10 Hz (Note 5)
= 100 Hz (Note 5)
= 1000 Hz (Note 5)

10.5

20.0
13.5

nV/YHz

fo
fo

10.2
9.8

0.1 Hz to 10 Hz (Note 5)

= 10 Hz (Note 5)
fo = 100 Hz (Note 5)
fo = 1000 Hz (Note 5)
8.0

Input Resistance - Common Mode
Input Voltage Range
VCM

= ±13, Rs = 500

= ±3.0Vto ±18V, Rs = 500
2.0 kO, Vo = -10 V to +10 V
RL ~ 5000, Vo = -0.5 V to +0.5 V
Vs = ±3.0 V
Vs

RL

~

RL~10kO

15

35

0.35

0.90

0.15

0.27

0.13

0.18

pA p-p
pA/YHz

33

MO

120

GO

±13.0

±14.0

V

100

120

dB
dB

90

104

120

400

100

400

±12.0

±13.0

±11.5

±12.8

V/mV

V

~

2.0 kO

RL

~

1.0 kO

±12.0

~

2.0 kO

0.17

V//LS

0.6

MHz

Slewing Rate

RL

AVCL

Open Loop Output Resistance

Vo

Offset Adjustment Range

11.5

RL

Closed Loop Bandwidth

Power Consumption

nA

0.65

Input Resistance - Differential Mode

Maximum Output Voltage Swing

/LV/mo.

0.38

fo

Large Signal Voltage Gain

2.0

0.1 Hz to 10 Hz (Note 5)
fo

Power Supply Rejection Ratio

/LV

0.4

6.0

Input Noise Voltage

Common Mode Rejection Ratio

150

±7.0

VCM

Input Noise Current Density

MAX

60

0.8

VCM

Input Noise Current

= 0.0 V
= 0.0 V

UNITS

TYP

±1.8

Input Offset Current
Input Bias Current

Input Noise Voltage Density

MIN

Note 3, Rs

= +1.0

= 0 V, 10 = 0 A
Vo = 0.0 V
Vs - ±3.0 V, Vo = 0.0 V
Rp = 20 kO

0

60
80

150

4.0

8.0

mW
mV

±4.0

The following specifications apply for Vs = +- 15 V, O°C ,,;; TA ,,;; + 70°C.
Input Offset Voltage

Note 3, Rs = 50 0, V CM = O.OV

Average Input Offset Voltage Drift
Without External Trim
With External Trim

Note 5, Rp = 20 kO, Rs = 500

Note 5, Rs = 500, VCM

Input Offset Current

VCM = 0.0 V

Average Input Offset Current Drift

Note 5, VCM

Input Bias Current

VCM

Average Input Bias Current Drift

Note 5, VCM

= 0.0 V

= 0.0 V

= 0.0 V
= 0.0 V

Input Voltage Range

= ±13 V, Rs = 500

Common Mode Rejection Ratio

V CM

Power Supply Rejection Ratio

Vi;

= ±3.0Vto ±18V, Rs = 500

Large Signal Voltage Gain

RL

~

2.0 kO, Vo = -10 V to +10 V

Maximum Output Voltage Swing

RL

~

2.0 kO

NOTES: 1.
2.
3.
4.

85

250

/LV

0.5
0.4

1.8
1.6

/LVrC

1.6

8.0

nA

12

50

pA/oC

±2.2

±9.0

18

50

nA
pArC

±13.0

±13.5

V

97

120

dB

86

100

dB

100

400

V/mV

±11.0

±12.6

V

Ratings applies to ambient temperature to 70"C. Above TA = 70°C derate linearly 6.3 mW/"C.
For supply voltage less than ±22 volts, the absolute maximum input voltage is equal to the supply voltage.
Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.
Long term input offset voltage stability refers to the averaged trend of VOS versus time over extended periods after the first 30 days of
operation. Parameter is not 100% tested. 90% of the units meet this specification.
5. Parameter is not 100% tested; 90% of the units meet this specification.

5-78

)

FAIRCHILD. MA714
p.A714L

ELECTRICAL CHARACTERISTICS

These specifications apply for V s

= ± 15 V, TA = 25'C.

CHARACTERISTICS
Input Offset Voltage

TEST CONDITIONS
Note 3, RS

= 500,
= 500,

VCM
VCM

MIN

= O.OV
= O.OV

TYP

MAX

UNITS

100

250

p.V

Long Term Input Offset Voltage Stability

Note 4, Rs

0.5

3.0

p.V/mo.

Input Offset Current

VCM = O.OV

5.0

20

nA

Input Bias Current

VCM = O.OV

6.0

±30

nA

Input Noise Voltage Density

fo
fo
fo

Input Noise Current

0.1 Hz to 10 Hz (Note 5)

Input Noise Current Density

fo
fo
fo

= 10 Hz (Note 5)
= 100 Hz (Note 5)
= 1000 Hz (Note 5)

10.5
10.2
9.8

= 10 Hz (Note 5)
= 100 Hz (Note 5)
= 1000 Hz (Note 5)

0.35
0.15
0.13

Input Resistance - Differential Mode

8.0

Input Resistance - Common Mode
Input Voltage Range
Common Mode Rejection Ratio

VCM=±13V,Rs=500

= ±3.0Vto

pA pop

15

= 500

Power Supply Rejection Ratio

Vs

Large Signal Voltage Gain

RL ", 2.0 kO, Vo = -10 V to +10 V
RL ", 5000, Vo = -0.5 V to +0.5 V
Vs = ±3.0 V

Maximum Output Voltage Swing

RL "'10kO
RL ", 2.0 kO
RL'" 1.0 kO

±18V, Rs

33

MO

120

GO

±13.0

±14.0

V

100

120

dB

90

104

dB

100
50

300
150

V/mV

±12.0
±11.0

±13.0
±12.8
±12.0

V

Slewing Rate

RL'" 2.0 kO

0.17

V/p.s

Closed Loop Bandwidth

AVCL = +1.0

0.6

MHz

Open Loop Output Resistance

Vo = 0.0 V, 10

Power Consumption

Vo = O.OV
Vs = ±3.0V, Vo = O.OV

Offset Adjustment Range

Rp = 20 kO

=0A

0

60
100
5.0

180
12

±4.0

mW
mV

The following specifications apply for Vs = ±15 V, O'C ... TA'" +70'C.

= 500,
= 500,

Input Offset Voltage

Note 3, Rs

Average Input Offset Voltage Drift
Without External Trim

Note 5, Rs

VCM

Input Offset Current

VCM=O.OV

Average Input Offset Current Drift

Note 5, VCM

Input Bias Current

VCM

Average Input Bias Current Drift

Note 5, VCM = 0.0 V

VCM

= O.OV
= 0.0 V

= 0.0 V

= O.OV

Input Voltage Range

= 500

400

p.V

1.0

3.{)

p.V/'C

8.0

40

nA

20

100

pAl'C

±15

±60

nA

35

150

pA/'C

±13.0

±13.5

V

94

120

dB

Common Mode Rejection Ratio

VCM = ±13 V, Rs

Power Supply Rejection Ratio

Vs = ±3.0 V to ±18 V, Rs

= 500

83

100

dB

Large Signal Voltage Gain

RL'"2.0 kO,Vo= -10Vto+l0V

80

400

V/mV

Maximum Output Voltage Swing

RL'" 2.0 kO

±10.0

±12.6

NOTES: 1.
2.
3.
4.

V

Ratings applies to ambient temperature to 70'C. Above TA = 70'C derate linearly 6.3 mW/'C.
For supply voltage less than ±22 volts, the absolute maximum input voltage is equal to the supply voltage.
Input offset voltage measurements are performed by automated test equipment approximately 0.5 seconds after application of power.
Long term input offset voltage stability refers to the averaged trend of VOS versus time over extended periods after the first 30 days of
operation. Parameter is not 100% tested. 90% of the units meet this specification.
5. Parameter is not 100% tested; 90% of the units meet this specification.

5-79

FAIRCHILD. JLA714
TYPICAL PERFORMANCE CURVES
90

~

,

~

±lS V
Vs
R =- 10011

70

g

80

i

50

~

0

~

40

0

3

30

§

20

~

- 50

NULLING P,oT "" ~O kn

~
g

/

/

20

~
~

10

TEMPERATURE _ 'C

I

w

2.

~

~,

g

~

~

9

400

.-

z
~

--

r-

TA

=

20

i

15 '----

i

10

'----

w

200

~

..
:e

~

U

o

192

D••

,

-I'A714E

$ :~~~:C

I

/

0.8

0.'

~~

0.2

..e.~

o

0.1

1.0

100

10

RESPONSE BAND

~

'11
20

~A71:~

,M :;;.--

I
40

60

80

MAXIMUM ERROR
VERSUS SOURCE RESISTANCE
1.2
DOC". TA .;; 70°C
Vs'" :!:15V

1.0

fa o.6

j

I

'" o. 4

/

0.8

o.

_/

,...A714

•

0.'
,uA714C

0.2

0
0.1

1.0

MATCHED OR UNMATCHED SOURCE RESISTANCE -

INPUT OFFSET CURRENT
VERSUS TEMPERATURE

0.1

kf}

-30
Vs = ±15 V
TA = 25"C

Vs'" ±15 Y

ffi

10

,

1-

0

-

60

~

"71~ ~
50

TEMPERATURE - ·C

If

,/

100

IYD'F~I
.. 1.~ V
Ilel ,.. 3.0 nA (p,A714)

I

,...A714

1.0

~

~
:! o.5
0

"-

. '"

\
~~

o

p.A714E

T
50

TEMPERATURE _ ·C

5-80

V

-10

,/
-20

100

-30
-30

/

... 7.0 nA (/J-A7,14C)

1. 5

~

100

INPUT BIAS CURRENT
VERSUS
DIFFERENTIAL INPUT VOLTAGE

~ 2. 0

a

10

1.0

MATCHED OR UNMATCHED SOURCE RESISTANCE - kU

20

Ii

--

/L A714E

0

100

10

2.'

.........

I
I
II
.---/
/

i!;

!

p.A714

TIME AFTER POWER SUPPLY TURN·ON - MINUTES

Ys'" ±15 V

'"" ±1S V

- -

'-

r

100

Ii!

o.2

2S'C

I'A71~E

0

DEVICE IMMERSED
~'N rC O~\ BATHJ

~ o.8

I

=

VS'" ±15V

-55'C"" TA '" 125°C

INPUT BIAS CURRENT
VERSUS TEMPERATURE

2

TA

•

THERMAL SHOCK

,

MATCHED OR UNMATCHED SOURCE RESISTANCE - kO

Y

WARM-UP DRIFT

25'C TC = 70"C

1.0

=e

.
0

MAXIMUM ERROR
VERSUS SOURCE RESISTANCE

Ii!

:Ii

,

>

Vs = :!:15 V

MAXIMUM ERROR
VERSUS SOURCE RESISTANCE
VS=±lSV

I

TIME - MONTHS

TIME - SECONDS

TA =- 25"C

i

t

-20

100

1.0

fa

-18t:~~~=!=!=t=t=t::;t::;t;~.
1 2 3 4 5 6 7 8 9 10 11 12

100

TEMPERATURE - 'C

,

~

f---

Z

.

50
TEMPERATURE - 'C

. I .I

~

o

'\l VI'

DUE TO THERMAL SHOCK

> 800

~

"

30

~

I'A714

!!;

II

O~FSET VOLTAGE CHANGE

OPEN LOOP GAIN
VERSUS TEMPERATURE
1000

z 600

V

I

II

I. ..

100

50

=

[\ .~ ® /(J)
(J)~\ ~

0

~

~~714E
pA714
·,..11.c

~

~

0

~V

10

~

i

Vos TRIMMED TO < 5.0,..,V

~

p.A714':/:. ~A714

.........

w

~

,

w

p.A714C

f--"

30

~

L

80

~

OFFSET VOLTAGE
STABILITY VERSUS TIME

TRIMMED OFFSET VOLTAGE
VERSUS TEMPERATURE

UNTRIMMED OFFSET VOLTAGE
VERSUS TEMPERATURE

/

V

/.
1

"
-20

-10

10

20

DIFFERENTIAL INPUT VOLTAGE

FAIRCHILD. p.A714
TYPICAL PERFORMANCE CURVES
INPUT WIDEBAND NOISE
VERSUS BANDWIDTH
(0.1 Hz TO FREQUENCY INDICATED)

INPUT SPOT NOISE
VOLTAGE VERSUS FREQUENCY

1,..

Ii,! l~" l20l !1,M~
.0_
r::::-

"""'~

THERMAl. NOISE OF SOURCE
RESISTORS INCLUD

f-1XCLUD.D

..u

w

~
""0

1.0

Rs = 0

~

--

... A714 :-::Vs
+15 V
TA -= 2S'C

1.0
1.0

10

f---+-I-H----t-H+t:A---t+t+--1

o

1000

100

FREQUENCY - Hz

BANDWIDTH

~
o ...

12

Iv~ J,Ijjt

12

TA

11 0

A714C

=

JHJ.

o

2S"C

11 0

!g

.

1:\

0

... A714

.0

~A714C

1:\

~

0

•

0
1.0

100

10

1k

10k

100k

-

0
1.0

10

...... .......
I'-...

0

,

0
0.1

2S'C

0

~

0

r'\

=

0

/

0

0

rTA

0

0

~

70

1000

~,U~,d

100

m
~
,

100

OPEN LOOP GAIN
VERSUS
POWER SUPPLY VOLTAGE

PSRR VERSUS FREQUENCY

CMRR VERSUS FREQUENCY
130

kHz

1k

100

,5

10k

,,10

-0:20

FRECUENCY - Hz

FREQUENCY - Hz

POWER SUPPLY VOLTAGE - V

OPEN LOOP FREQUENCY RESPONSE

CLOSED LOOP RESPONSE
FOR VARIOUS GAIN CONFIGURATIONS

MAXIMUM UNDISTORTED
OUTPUT VERSUS FREQUENCY

120

m
~
,

t-- r-....

90

,1714 I
Vs = :!:15V
TA = 2S·C

~

'"

~

15"
9

100

40

i

0

1.0

10

100

~

'\..

1k

Vs

"-

'1,l
60

15 •0

"-

9
Q

:::

,

9

10k 100k 1M

,

0

10M

0
10

OUTPUT VOLTAGE
VERSUS
LOAD RESISTANCE
/L A714

r-'Ys

=

:!:15 V

TA = 2S'C
YIN = :!:10 mY

,

~

••

15

IIIII
ttl jj,ll

±15 V

100

~

g

"-i"'\.

1K

10k

~

2D
16

w
~
~

Ci

g

100k

"'

1M

1\

~

0

o
FREQUENCY - kHz

POWER CONSUMPTION
VERSUS POWER SUPPLY

OUTPUT SHORT CIRCUIT
CURRENT VERSUS TIME
35

=~:71~5·C

f-3D

,../

10

~

~~

25

........

/

/

2D

0

0.1

10

lOAD RESISTOR TO GROUND - kG

::-

20

40

TOTAL SUPPLY VOLTAGE, V+ to V- - V

5-81

60

15

®

-

-'®
f--

o

"Ai" I

Vs = :,-15 V
TA =' 2S'C

,\

NEGATIVE SWING

o

1000

100

'10

1

10M

FREQUENCY - Hz

1000

/

J71~1111I
Vs = :d5V
TA = 2S'C

~

25·C

=

I-

,

I\.
-,

FREQUENCY - HI

20

TA

u

-40
0.1

28

I-tA7J
=

~~IN

Vr

1 "15

(PIN 3) = -10 mY, Vo = +15 V

(P'i 3)

=1 +10 TV'

=

V

o

TIME FROM OUTPUT BEING SHORTED - MINUTES

•

FAIRCHILD. /LA714
TYPICAL APPLICATIONS

+15V
200 kO

1000
1000

Vos

=.:!.E...
4000

(-10 Hz

2.5MO

Input Referred Noise

OFFSET VOLTAGE TEST CIRCUIT

= ~ = 5 mV/cm = 200 nV/cm
25,000

25,000

LOW FREQUENCY NOISE TEST CIRCUIT

+18V

ro.....- - V+
OUTPUT

INPUT ( :

FI~er)

-lav

V-

OPTIONAL OFFSET NULLING CIRCUIT

BURN·IN CIRCUIT

5-82

IJA715
HIGH-SPEED OPERATIONAL AMPLIFIER
FAIRCHILD LINEAR INTEGRATED CIRCUITS

GENERAL DESCRIPTION - The ,..A715 is a High Speed, High Gain, monolithic Operational
Amplifier constructed using the Fairchild Planar* epitaxial process. It is intended for use in a wide
range of applications where fast signal acquisition or wide bandwidth is required. The,..A 715 features
fast settling time, high slew rate, low offsets and high output swing for large signal applications. In
addition, the device displays excellent temperature stability and will operate over a wide range of
supply voltages. The ,..A715 is ideally suited for use in AID and DIA converters, active filters,
deflection amplifiers, video amplifiers, phase locked-loops, multiplexed analog gates, precision comparators, sample and holds and general feedback applications requiring dc wide bandwidth operation.

CONNECTION DIAGRAMS
10-PIN METAL CAN
(TOP VIEW)
PACKAGE OUTLINE 5N
PACKAGE CODE H

COMP lA

•
•
•
•
•

HIGH SLEW RATE - 100 V/,..s
FAST SETTLING TIME - 800 ns
WIDE BANDWIDTH - 65 MHz
WIDE OPERATING SUPPLY RANGE
WIDE INPUT VOLTAGE RANGES

•

v-

ABSOLUTE MAXIMUM RATINGS
Supply Voltage
Internal Power Dissipation (Note 1)
Metal Can
DIP
Differential Input Voltage
Input Voltage (Note 2)

±18 V
500 mW
670mW
±15 V
±15 V

Storage Temperature Range
Metal Can, DIP
Operating Temperature Range
Military (,..A715)
Commercial (,..A715C)
Pin Temperature (Soldering, 60 s)
Metal Can, DIP

ORDER INFORMATION
TYPE
PART NO.
,..A715
,..A715HM
,..A715C
.,A715HC

_65" C to +150" C
-55"C to +125"C
O"C to +70"C
300"C

l4-PIN DIP
(TOP VIEW)
PACKAGE OUTLINE 6A
PACKAGE CODE D

EQUIVALENT CIRCUIT
CQMP lA

CQMP 28

COMP 1B

v+

CASCODE

-IN

+IN

v-

NC

NC

NC

NC

ORDER INFORMATION
TYPE
PART NO.
,..A715DM
/.tA715DC
All pin numbers shown refer to 1O-pin TO-5 package.
Notes on following pages.

"'Planar is a patented Fairchild process.

5-83

FAIRCHILD • ILA715
J.LA715
ELECTRICAL CHARACTERISTICS: Vs =

i: 15 V,

TA = 25"C unless otherwise specified.

CHARACTERISTICS

MIN

CONDITIONS

I nput Offset Voltage
Input Offset Current

TYP

RS .. 10 kn

2.0
70
400
1.0
±12

Input Bias Current

I nput Resistance
Input Voltage Range
Large Signal Voltage Gain
Output Resistance
Supply Current
Power Consumption
Settling Time (Unity Gain)

±10
15,000

RL;>2 kn, VOUT - ±10 V

30,000
75
5.5
165
800

VOUT -+5 V

Transient Responsel,
(Unity Gain)
Rise Time
1Overshoot
Slew Rate

VIN =400 mV

Av = 100
Av-l0
Slew Rate
Av - 1 (non-inverting)
Av - 1 (inverting)
The following apply for -55°C .. TA" +125°C:
Input Offset Voltage
RS .. 10kn

I nput Bias Current
Common Mode Rejection Ratio
Supply Voltage Rejection Ratio
Large Signal Voltage Gain
Output Voltage Swing

mV
nA
nA
Mn
V

60
40

7.5
250
800
750
4.0

TA -+125°C
TA =-55°C
TA -+125°C
TA--55°C

I nput Offset Current

UNITS

5.0
250
750

7.0
210

30
25
70
38
18
100

15

MAX

74

RS .. 10 kn
RS .. 10 kn
RL;>2 kn, VOUT - ±10 V
RL;>2 kn

92
45

300

10,000
±13

±10

TYPICAL PERFORMANCE CURVES FOR J.LA715
SUPPLY VOLTAGE REJECTION RATIO
AS A FUNCTION OF
AMBIENT TEMPERATURE

OPEN LOOP GAIN AS A FUNCTION
OF AMBIENT TEMPERATURE

"•

.
•
.

200

Vs ·,±15V

Rl"2kQ

Rs·HOk,Q_
Vs "±15V

180

~

·160

o

S
,......

I-I-"""

~

~

100

~

80

g

60

[

40

i;l

20

~

•

10

0

80

l«l

"" 1\
"-

r-....

.,

0

120

lEMPERATURf-OC

"

-

Vs "±15V
Rl"lOkQ-

:~~~~100

t-

......

i'-

I'--

40

TEMPERATURE-

OJ

"c

f"..

c---- ,L. --

r--40

120

COMMON MODE REJECTION RATIO
AS A FUNCTION OF
AMBIENT TEMPERATURE
no

SLEW RATE AS A FUNCTION
OF TEMPERATURE

20

80

TEMPERATUR£-~C

"

""
5-84

-

40
TEMPERATURE·"C

80

""

n
mA
mW
ns
ns

%
V//LS
V//LS
V//LS
V/jls
mV
nA
nA
nA
/LA
dB
/LV/V

FAIRCHILD -/-tA715
IlA 715C
ELECTRICAL CHARACTERISTICS: Vs

~

:t15 V, TA

CHARACTER ISTICS

~

25·C unless otherwise specified.

CONDITIONS

Input Offset Voltage

TYP

MIN

RS <;10 kn

mV

70

250
1.5

nA

0.4
1.0
±10

±12

74

92

RS <;10 kn
RS <;10 kn

10,000

Settling Time (Unity Gain)

II

Transient Response
(Unity Gain)
Rise Time

VIN

dB
400

n
10

mA

165

300

mW
ns

800

~400mV

AV -100
AV-l0
AV ~ 1 (non-inverting)
AV - 1 (inverting)

!'V/V

5.5

IOvershoot

Slew Rate

Mn

30,000
75

VOUT - +5V

!,A
V

45

RL;;>2 kn, VOUT - ±10 V

UNITS

7.5

Input Offset Current

Input Bias Current
Input Resistance
Input Voltage Range
Common Mode Rejection Ratio
Supply Voltage Rejection Ratio
Large Signal Voltage Gain
Output Resistance
Supply Cu rrent
Power Consumption

MAX

2.0

10

30

75

25
70

50

ns

%
V II'S

38

V/!'s

18

V/!'s
V/!'s

100

The following apply for OoC <; TA <; +70°C:
Input Offset Voltage
I nput Offset Current

RS <;10 kn
TA-+70oC

10

mV

250

nA

TA - O°C

750

nA

1.5

!'A

7.5

!'A

TA - +70°C

I nput Bias Current

TA - O°C

Large Signal Voltage Gain

RL;;>2 kn, VOUT - ±10 V

Output Voltage Swing

RL;;>2 kn

8,000
±10

±13

V

TYPICAL PERFORMANCE CURVES FOR IlA715C
SUPPLY VOLTAGE REJECTION RATIO
AS A FUNCTION OF
AMBIENT TEMPERATURE

OPEN LOOP GAIN AS A FUNCTION
OF AMBIENT TEMPERATURE

~

100,--.--,--,--,--,--,--,
1---+__+--+__+--+ RSS ~OkQ
VS "±15V

80

__

~kr--r--t--t--t--+==~~

I~r-_r--t_-t--t--+--+-~

- --f--.--+-'-----'f"=-l
[ 201---+--+--+--+----l--+---l
5!
r---

DD~~ID~~2IJ~~~~-~~~~--~M~ro

DD~~I~D--20=-~~--~~--~,"~~~~~7D
lEMPERATURE~OC

T£MPfRATURE~"C

COMMON MODE REJECTION RATIO
AS A FUNCTION OF
AMBIENT TEMPERATURE

SLEW RATE AS A FUNCTION
OF TEMPERATURE
5
VS·I±15V

D

100 1---+---+---+--+--+---;----1

RL "IDle!)

15

.,-

D

r-- r-...

5

801---+---+---+--+--+--+---1

D

7D 1---+--+--+--+----1--+--1

5

D

ill

ro

~

~

TEMPERATURE

~

ro

~D~~ID~~2IJ~-~~-~=-~~--~M--~7D

ro

··c

TEMPfRATURE-oC

5-85

•

!

FAIRCHILD· ~A715
TYPICAL PERFORMANCE CURVES FOR /lA715 AND /lA715C

OPEN LOOP RESPONSE WITH
COMPENSATION NECESSARY FOR
VARIOUS CLOSED LOOP
GAIN CONFIGURATIONS

""

CLOSED LOOP FREQUENCY
RESPONSE FOR VARIOUS
GAIN CONFIGURATIONS

Vs ~:15 v
TA ~ 25°C

100

OPEN LOOP GAIN AS A
FUNCTION OF FREQUENCY
100 rrnr'-rTTl'""TTTrrrrnr-"rrn-,

80

Vs· ~15 V
TA"ZSoC

611

III

80

~~

G'

~

I o o I I I 0 3.0 Z,O I ."" 1200 SLEW RATE AS A FUNCTION OF THE CLOSED LOOP GAIN TA '25"C ~ . " ~ 40 ~ Rl -10kO 600 800 1000 1200 1400 1600 -I,D \ o ~ 400 ~ m 800 1200 ~1600 TlME-ns SLEW RATE AS A FUNCTION OF SUPPLY VOLTAGE +-_+_+-+-+-*- TA • zsoc / 'l-'''O J--t-+-+-++-b'-tNO COMPo / VOLTAGE OFFSET NULL CIRCUIT I" 50kn i /' ., 400 " J--t-+-+-+~V<-J--t-+-+--j / ./ 200 '.0 TIME-ns 20 I 2.0 \ \ -.. 0 D VS';!:lSV 80 VS' iJ.5V TA·25·C 5.0 3.0 0 .00 '.0 4., I .. -.. 0 ~ ~ I '.0 S ~ \ \ I Vs ' ! ISV TA"ZSoC "'s'':!: I LARGE SIGNAL PULSE RESPONSE FOR GAIN 100 I v 20 0 • 10 CLOSED LOOP GAIN '00 10 14 " SUPPLYVOtTAGE-V 5-87 " Pin numbers apply to metal can. • FAIRCHILD • ~A715 TYPICAL APPLICATIONS WIDE BAND VIDEO AMPLIFIER WITH 75 DRIVE CAPABILITY n COAX CABLE 10 VIDEO OUTPUT TO 7SQ&OAX '2GV -10 OdB' 255 rnVpk-pkouT 5JJApk-pk "' -20 7500 10kO )sO 5(JOQ \ \ -30 NOISE OUT ~ 2mVRMS :. pk-pk 51 G/RMS N01 Sf: • 42 dB -~ 0.001 O,O[ 0,1 100 I-= ,IP' FREQUENCY - MHz 1500 10kO 500n -20V HIGH SPEED 10-BIT DIGITAL TO ANALOG CONVERTER ANALOG OUTPUT 0 TO +5.0 V +6.0V 200pF -S.OV Conversion Rate 6 bits - 300 ns 8 bits - 600 ns 10 bits - 1000 ns IlA722/IJ.A715 op amp switching ON, as it should with typical logic voltage on least significant bits. Note complete absence of ringing. NOTE: Contact Fairch ild for additional information including how to increase conversion speed by clamping LSB's and how tG obtain bipolar outputs. HIGH SPEED SAMPLE AND HOLD 15k~7[fJlA",~:",~_w-:~",: "~u,; os",P:"-:_1 5_V HIGH SPEED INTEGRATOR -=C-,=l::::~ t--'l3:1I:lIkn r -..... " 250kn +15V 10 SAMPLING -= ~~~~~~ 15-60pF lkfl 6 OUTPUT /'NPUT J '\ '\ I \ Il V / 0 INPUT -00 -" o lOGIC INPUT rv'~OUTPUT 1,0 2,0 TtME"1I5 5-88 \ 3.0 >.0 UA725 INSTRUMENTATION OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The j.tA725 is a monolithic Instrumentation Operational Amplifier constructed using the Fairchild Planar" epitaxial process. It is intended for precise, low level signal amplification applications where low noise, low drift and accurate closed loop gain are required. The offset null capability, low power consumption, very high voltage gain as well as wide power supply voltage range provide superior performance for a wide range of instrumentation applications. The j.tA725 is pin compatible with the popular I'A741 operational amplifier. • • • • • • • • CONNECTION DIAGRAM 8-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 5S PACKAGE CODE H LOW INPUT NOISE CURRENT - 0.15 pA/YHz HIGH OPEN LOOP GAIN - 3,000,000 LOW INPUT OFFSET CURRENT - 2 nA LOW INPUT VOLTAGE DRIFT - 0.6I'V/"C HIGH COMMON MODE REJECTION - 120 dB HIGH INPUT VOLTAGE RANGE - ±14 V WIDE POWER SUPPLY RANGE - ±3 V TO ±22 V OFFSET NULL CAPABILITY vORDER INFORMATION TYPE PART NO. I'A725A ).tA725AHM j.tA725 j.tA725HM j.tA725C j.tA725HC j.tA725E j.tA725EHC ABSOLUTE MAXIMUM RATINGS Supply Voltage Internal Power Dissipation (Note 1) Metal Can Mini Dip Differential Input Voltage Input Voltage (Note 2) Voltage Between Offset Null and V+ Storage Temperature Range Metal Can Mini Dip Operating Temperature Range Military (j.tA725A,j.tA725) Commercial (j.tA725E,j.tA725C) Pin Temperature Metal Can (Soldering, 60 s) ±22 500mW 310mW ±5 V ±22 V ±0.5 V PACKAGE OUTLINE 6T PACKAGE CODE R OFFSET NULL _65°C to +150°C _55°C to +125°C 1 8 FREQ CDMP v+ -IN -55°C to +125°C O°C to +70°C +IN OUT v- 5 OFFSET NULL ORDER INFORMATION TYPE PART NO. ).tA725ARM j.tA725A j.tA725 j.tA725RM j.tA725C j.tA725RC j.tA725E j.tA725ERC 300°C EQUIVALENT CIRCUIT v+ r---~----~----~----~----~r_------,_------~------,_------~------~--------~----~7 R2A 10Hl 1 '" 10kH R3 29kn 05~-4r-+-----~E-~-------r----~ '16 20n OUT 6 t---------1:::: 0,. INVERTING INPUT 03 ....----t:O:--:::..--t:::_='--_1'::__:=_t--------+__I::..017 .:l------~ " 2.7kll R6 5.1kf! ~--------------~~----4-----~-- R8 24kll R17 Rl8 R12 R13 2.4kn 5.1kn 1Ul lson '14 3000 v· __""-------+--~~--4-----------~---4-----+--------+-----O' Notes on following pages *Planar is a patented Fairchild process. 5-89 • " FAIRCHILD • p,A725 jJ.A725A ELECTRICAL CHARACTERISTICS: Vs = ± 16 V, TA = 26'C unless otherwise specified. CHARACTER ISTICS I nput Offset Voltage (Without external trim) TEST CONDITIONS MIN TYP MAX RS .. l0kO I.nput Offset Current Input Bias Current Input Noise Voltage Input..Noise Current UNITS 0.5 mV 5.0 nA 75 nA fa = 10 Hz 15 nV/.JHz fa = 100 Hz 12 nV/.,j Hz fa = 1 kHz 12 nV/.,jHz fo=10Hz 1.2 pA/.jHz 0.6 pA/.jHz fa = 100 Hz fa = 1 kHz pA/.jHz 0.25 I nput Resistance MO 1.5 Input Voltage,Range RL;;> 2 kO, VOUT =±10V Large Signal Voltage Gain RL;;> 500 0, VOUT = ±0.5 V, ±13.5 ±14 1,000,000 3,000,000 V V/V V/V 100,000 Vs = ±3 V Common Mode Rejection Ratio RS" 10 kO Power Supply Rejection Ratio RS .. l0kO 120 dB 2.0 RL;;>10kO Output Voltage Swing 130 5.0 p.V/V V ±12.5 RL;;> 2 kO ±10 V Output Resistance 150 0 80 Power Consumption 120 mW 6.0 mW 0.75 mV Vs = ±3 V The following specifications apply for -55°C .. TA" +125°C unless otherwise specified: I nput Offset Voltage (Without External trim) Average Input Offset Voltage Drift (Without external trim) Average Input Offset Voltage Drift (With external trim) RS" 10 kO RS = 50 0 RS = 50 0 0.6 TA =+125°C I nput Offset Current 5.0 1.0 p.V/"C nA 18 90 nA pA/oC TA=+125°C 70 nA TA =_55°C 180 nA Average I nput Offset Current Drift RL;;>2 kO, TA -+125°C Large Signal Voltage Gain p.V/"C 4.0 TA =_55°C I nput Bias Current 2.0 RL;;> 2 kO, TA - -55'C Common Mode Rejection Ratio RS .. 10 kO Power Supply Rejection Ratio RS .. 10 kO Output Voltage Swing RL;;> 2 kO 1,000,000 V/V 500,000 V/V 110 dB p.V/V 8.0 ±10 V TYPICAL PERFORMANCE CURVES FOR jJ.A725A AND jJ.A725 OPEN LOOP VOL TAGE GAIN AS A FUNCTION OF TEMPERATURE FOR VARIOUS SUPPLY VOL TAGES 140 ~ ~ "I.t?;ll'lr--1 .... 120 1--1-- l-::::" vs' ±I5V NULLED INPUT OFFSET VOLTAGE AS A FUNCTION OF TEMPERATURE 100 Vs' ±lOV UNNULLED INPUT OFFSET VOLTAGE AS A FUNCTION OF TEMPERATURE 1.0 Vs· ±l5V VOS:S5\lVBt25°C ./ V • ±5V I-f-- ~ Vs "±15V 0.8 ./ ~ g IOOr-r-r-r-r-r-r-r-r-~ ---- § ~ ., r-r-r-I-I-I--t--t--t-+-I V V ...... ...... -- I ...... -100 60 TEMPf.RATURE-"C TEMPfRATURf·DC 5-90 100 140 o -60 '" TEMpfRATUR(·"C 100 '" FAIRCHILD • /-LA725 J.LA725 ELECTRICAL CHARACTERISTICS: Vs = :t15 V, TA = 25"C unless otherwise specified. CHARACTERISTICS Input Offset Voltage (Without external trim) TEST CONDITIONS MIN TYP UNITS MAX 0.5 1.0 mV I nput Offset Current 2.0 20 nA Input Bias Current 42 100 nA RS< 10 kn Input Noise Voltage fo = 10 Hz fo = 100 Hz fo - 1 kHz 15 9.0 8.0 nV/" Hz Input Noise Current fo = 10 Hz fo - 100 Hz fo - 1 kHz 1.0 0.3 0.15 pAl" Hz pAl Hz pA/y'Hz I nput Resistance Input Voltage Range ±13.5 Large Signal Voltage Gain RL> 2kn,VOUT=±lOV Common Mode Rejection Ratio RS ~ 10 kn Power Supply Rejection Ratio RS ~ 10 kn Output Voltage Swing RL L 10kn RLL 2kn 1,000,000 110 1.5 Mn ±14 V 3,000,000 V/V 120 2.0 ±12 ±10 nV/" Hz nV/-"" Hz dB 10 ±13.5 ±13.5 JJ,V/V V V Output Resistance 150 Power Consumption 80 105 1.5 mV 5.0 JJ,V/oC n mW The following specifications apply for _55°C ~ T A ~ +125°C unless otherwise specified: Input Offset Voltage (Without external trim) RS~ Average Input Offset Voltage Drift (Without external trim) RS =50n 2.0 Average Input Offset Voltage Drift (With external trim) RS= 50n 0.6 TA =+125°C TA - --55°C 1.2 7.5 20 40 nA nA 35 150 pArC 20 80 100 200 nA nA I nput Offset Current 10kn Average I nput Offset Current Drift Input Bias Current TA = +125°C TA --55 C Large Signal Voltage Gain RL > 2 kn, TA = +125°C RLL2 kn, TA -55 C Common Mode Rejection Ratio RS~ Power Supply Rejection Ratio RS~ 10 kn Output Voltage Swing ~LL 2 kn JJ,vrc 1,000,000 250,000 V/V V/V 100 10 kn dB 20 ±10 JJ,V/V V NOTES: 1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/C for metal can and hermetic mini dip. 2. For supply voltages less than ±22 V. the absolute maximum input voltage is equal to the supply voltage. 5-91 • FAIRCHILD • p,A725 !lA725E ELECTRICAL CHARACTERISTICS: Vs = ± 15 V, TA = 25"C unless otherwise specified. CHARACTERISTICS TEST CONDITIONS Input Offset Voltage (Without external trim) TVP MIN MAX mV 5.0 nA 75 nA f a -10Hz 15 nV,--{ Hz f a -100Hz 12 nV/"; Hz nVI...; Hz I nput Offset Current Input Bias Current Input Noise Voltage fa - 1 kHz Input Noise Current UNITS 0.5 RS';; 10 kn fa = 10 Hz 12 1.2 pAl"; Hz fa = 100 Hz 0.6 pAl"; Hz 0.25 pAl"; Hz fo= 1 kHz 1.5 I nput Resistance Input Voltage Range RL;;' 2 kn,vOUT - ±10 V Large Signal Voltage Gain RL:;> 500.11, VOUT - ±0.5 V RS';; 10kn Power Supply Rejection Ratio RS';;10kn 1,000,000 3,000,000 Mn V V/V 100,000 V/V 120 dB 2.0 JjV/V 5.0 V ±12.5 RL:;>10kn Output Voltage Swing ±14 ) Vs =±3V Common Mode Rejection Ratio ±13.5 ±10 RL :;> 2 kn V Output Resistance .11 150 80 Power Consumption Vs =±3 V 150 mW 6.0 mW The following specifications apply for O·C .;; T A';; +70°C unless otherwise specified: Input Offset Voltage (Without external trim) Average Input Offset Voltage Drift (Without external trim) Average Input Offset Voltage Drift RS';; 10 kn mV 0.75 RS=50n 2.0 JjVI·C RS = 50 .11 1.0 /J.V/"C (With external trim) I nput Offset Current TA =+70°C 1.2 4.0 nA TA - O·C 4.0 18 nA 10 90 pA/"C 70 nA Average Input Offset Current Drift TA=+70°C I nput Bias Current TA = O°C 180 RL:;> 2 kn, TA -+70·C Large Signal Voltage RL:;>2kn,TA-0 C Common Mode Rejection Ratio RS';; 10 kn Power Supply Rejection Ratio RS';; 10 kn Output Voltage Swing RL:;> 2 kn nA V/V V/V 1,000,000 500,000 110 dB 8.0 /J.V/V ±10 V TYPICAL PERFORMANCE CURVES FOR !lA725E AND !lA725C OPEN LOOP VOL TAGE GAIN AS A FUNCTION OF TEMPERATURE FOR VARIOUS SUPPL V VOLTAGES UNNULLED INPUT OFFSET VOLTAGE AS A FUNCTION OF TEMPERATURE NULLED INPUT OFFSET VOLTAGE AS A FUNCTION OF TEMPERATURE Vs· tl5V 100 1.0 I Vs":t15V Vos,:S5IlV at 25°C 0 - - • l - I-- I-- I-- 0.2 -10 0 ~~~--~~--~~--~~ (} 10 20 30 40 TEMPERATUR[-OC 50 60 7!1 10 2£1 30 40 lEMPERATURE·oC 5-92 50 60 70 o o ill 2£1 ~ ~ TEMPERATlJRE-oC 50 60 ro FAIRCHILD • f.LA725 pA725C ELECTRICAL CHARACTERISTICS: Vs ~ ±15 V, TA ~ 25·C unless otherwise specified. CHARACTERISTICS Input Offset Voltage (Without external trim) TEST CONDITIONS MIN RS";'10kU TYP MAX UNITS 0.5 2.5 I nput Offset Current 2.0 35 nA Input Bias Current 42 125 nA fo ~ 1 kHz fo ~ 10 Hz 1.0 100Hz 0.3 1 kHz 0.15 nV/..jHZ nV/..jHZ nV/..jHZ pA/..jHZ pAl -1Hz pA/..jHZ 1.5 MU ±14 V fo Input Noise Voltage Input Noise Cufrent mV ~ 10 Hz 15 fo~100Hz fo·~ fo ~ 9.0 8.0 Input Resistance Input Voltage Range ±13.5 Large Signal Voltage Gain RL2.2 kU, VOUT~±10V Common Mode Rejection Ratio RS";'10kU 250,000 3,000,000 V/V dB 94 120 RL>10kU ±12 ±13.5 RL2.2 kn ±10 ±13.5 V Output Resistance 150 n Power Consumption 80 Power Supply Rejection Ratio Output Voltage Swing RS";'10kU 2.0 35 ".VIV V 150 mW 3.5 mV The following specifications apply for O°C,,;. T A";' +70°C unless otherwise specified: Input Offset Voltage (Without external trim) RS";'10kU Average Input Offset Voltage Drift (Without external trim) RS~ 50n 2.0 jJ.vtc Average Input Offset Voltage Drift (With external trim) RS ~ 50U 0.6 ".vtc TA~+70°C 1.2 35 TA-O°C 4.0 50 Input Bias Current Large Signal Voltage TA~+70°C 125 TA =O°C 250 RL2. 2kn,TA=+70° 125,000 RL2.2kn,TA-0°C 125,000 nA pAtC 10 Average Input Offset Current Drift nA nA nA V/V V/V Common Mode Rejection Ratio RS";'10 kU 115 dB Power Supply Rejection Ratio RS";' 10 kn 20 ".VIV Output Voltage Swing RL2.2 kU ±10 5-93 V • FAIRCHILD • p.A725 TYPICAL PERFORMANCE CURVES FOR ALL TYPES (Unless Otherwise Specified) INPUT OFFSET CURRENT AS A FUNCTION OF TEMPERATURE p.A725A AND p.A725 INPUT OFFSET CURRENT AS A FUNCTION OF TEMPERATURE p.A725C AND p.A725E VS "±15V 1\ Vs' :t15V \ \ \ ......... "- r-- 1 o.., 0 -20 60 100 140 0 - r--.. 10 20 TEMPERATURE·OC INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE p.A725A AND p.A725 I~ 70 60 " ~ ~ i VS -±2OV ~ VS"±lSV- ~ kG ~ ~ r-..:: ~::::,. f- r- _ vS~~~o~5V 60 -60 -20 60 100 - ~ ,;::::: :§ ~ Vs"t20V ,,--:::: ~ :::::6 ZO I o 0 140 Vs·:tlOV 0 10 ZO 40 30 SUPPLY VOLTAGE REJECTION RATIO AS A FUNCTION OF TEMPERATURE 50 60 70 OUTPUT VOLTAGE SWING AS A FUNCTION OF er-'-rT~ErM~PcE~R~A~TrU~RrE~-" 10 r-r-~~---'---'---Cl--r--r-' f- f- - - - I iEMPERATURE-"C COMMON MODE REJECTION RATIO AS A FUNCTION OF TEMPERATURE 140 Vs"t15V rVS ·t5V TEMPERATURE-OC I VS"±15V VS"±~V ~~~~~~V~S-~I±=W~~~~~ ~ ~~+-+-+-+-+-+-~~1-~ lZO ~ ~ f- 50 100 1 \. 20 40 INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE p.A725C AND p.A725E 100 so 30 TEMPERATURE-'C ~ ~~~~*=~~~-±~~V~~~~~ f-- 100 g~ ~f-T-+-+-+-+-+-+-+-+-~ so g u~f=f=f=t=+=~~~~~ ~ 2Of--t-t-Hvs':!:lOVt-t-t-t-I j ~ uf--+-+-+-+-+-+-~1-1-~ i 60 ~ vs·;tSv 8~~~+-~~~+-+-+-~ 1 I '" -60 -20 20 60 100 140 20 60 TEMPERATURE-OC TEMPfRATURE-·C TEMPfRATURf-OC COMMON MODE REJECTION RATIO AS A FUNCTION OF SUPPLY VOLTAGE DC CLOSED LOOP VOLTAGE GAIN ERROR AS A FUNCTION OF SOURCE RESISTANCE COMMON MODE INPUT VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE 1.0 110 TA'25°C "vel • i==J;=+-r--i-""i"'=j " ~1XXXl J 1 100 f---t--+--j--__t--+__l AVCL" -- 8Of---t--~-t-__t--+__l 1 / ~ODO 0.001 10 100 I U /' 10k SQURCERESISTANCE- 5-94 /: / I AVCL"loo SUPPLY VOLTAGE-tV V TA"25"C Q lOOk 1M I i I V 0 SUPPLYVOLTAGf-tV " FAIRCHILD • /LA725 TYPICAL PERFORMANCE CURVES FOR ALL TYPES (Unless Otherwise Specified) " ~~:~~vat~.o 40 lO TA·"O'j:J_ I ~~~fo~~-;~s ~ ~~~ _ TA "40°C 40 CHANGE IN INPUT OFFSET VOLTAGE DUE TO THERMAL SHOCK AS A FUNCTION OF TIME STABILIZATION TIME OF INPUT OFFSET VOLTAGE FROM POWER TURN ON INPUT OFFSET VOLTAGE DRIFT ASA FUNCTION OF TIME Iif, '50 I I I lO ~. 10 f - -LR~E o /' o Ir . 600 TlME-HRS II "---...;. _IAPPLY I I -10 -20 1" 20 TIME fROM POWER APPLICATION - MIN 40 so 60 100 TlMEfRDMHEATAPPLICATION-S INPUT NOISE CURRENT AS A FUNCTION OFFREQUENCV INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCV VS·tlSV PREVIOUS QUIESCENT VOS'slI.N BROAD BAND NOISE FOR VARIOUS BANDWIDTHS f- Vs'±15V ~TA''''L I -1 ~ H'"kH - 10k lk 100 0.1 100 lOOt 1k FREQUENCY - Hz 100 k 14 ~ VS'±I5V TA '25°C ['\ ~ lilt n EQUIVALENT INPUT NOISE VOLTAGE DUE TO EXTERNAL COMMON MODE NOISE AS A FUNCTION OFFREQUENCV VS"±15 TA'25°C f"lkHz " I I,OdB m: '" I-" SOURCE RESISTANCE - NOISE FIGURE AS A FUNCTION OF SOURCE RESISTANCE NARROW BAND SPOT NOISE FIGURE CONTOURS • :..-- H -1 10 2.Sd8 \ 1\ 5.0dB ...... ~dB ::", 100 l' 10 ~ IIUl= Itt 102 r--... lJ II 10' 10' o 100 fREQUENCY- Hz SOURCE RESISfANCE - EQUIVALENT INPUT RIPPLE VOLTAGE DUE TO POWER SUPPL V RIPPLE AS A FUNCTION OF FREQUENCV 10' Vs ·:!:.15V TA '25°C FREQUENCY -Hz POWER CONSUMPTION AS A FUNCTION OF TEMPERATURE 160 FRE COMPENSATION / 400 ~ ~~ ~ / 10 100 FREQUENCY-Hz -i ·f -- T -1 ~ ~ lk o '" 45 "- "7- 1+- __L ~ I " " TEMPERATURE'OC 5-95 ~ 120 ---- I-- I ~ -~ 725A and 725 I ~+- " "" .~- "- 725E and 125C f- r 100 J,r / -+~ 100 RIPPLE VOLTAGE i 1 AVCL"! PEAK TO PEAK POWER SUPPLY 1 I. . Q ABSOLUTE MAXIMUM POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE '00 1 r-r-- lilt lk 100 OJ L, "" '" ... * - vsl.tJv- - vi·nt= - 20 o I I R,'~ -4:.:"'" I I -20 20 OJ TEMPERATURE-'"C 100 "" FAIRCHILD • p.A725 TYPICAL PERFORMANCE CURVES FOR ALL TYPES OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY USING RECOMMENDED COMPENSATION NETWORKS .. , ! t------+~, a, ~ ~ w 9 ~ 30 ill f---+-+-N lOOk k~ F{ 10 I It , Rl"410C1 "·Clljlf 100 I .c2F-+ " " R1 "Z1DC 1 ",151lf R , :i- I" 10 CLOSfDl.OOPGAIN-VN FREQUENCY - Hz -~ K =2700C2~'OO~J.If "- I III I f1i.... I III I III I I Trt---... I I I"---. RI'lon c1 " ,l!iIlF RZ"39C c 2 ' ,021lf I ,I ufl '" Iff ·20 10' , FREQUENCY-Hz OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY FOR RECOMMENDED COMPENSATION NETWORKS " I III RI =4100 C1 ".0011# C, 10 -311 1 TA"25°C Vs ~ ±15V RI·IOIIJ2CI·'~ IOk 10 ~ FREQUENCY RESPONSE FOR VARIOUS CLOSED LOOP GAINS USING RECOMMENDED COMPENSATION NETWORKS VALUES FOR SUGGESTED COMPENSATION NETWORKS FOR VARIOUS CLOSED LOOP VOLTAGE GAINS SLEW RATE AS A FUNCTION OF CLOSED LOOP GAIN USING RECOMMENDED COMPENSATION NETWORKS 1\ III J}.'l.'l 1~,"v-'1Xll ! "v-I I Av -10 'I II11 Av -100 ~O"lIm i\ I ! 0.01 TA -25°C VS·±I~V o 10 ,,, ,0' 0.001 III' liP IrI' 1 10 -r 100 11m 10000 CLOSED LOOPGAIN-VN FREQUENCY-Hz VOLTAGE OFFSET NULL CIRCUIT FREQUENCY COMPENSATION CIRCUIT COMPENSATION COMPONENT VALUES Rl AV (n) 10,000 1,000 100 10 1 10 k 470 47 27 10 Cl ("F) 50pF ~OOl .01 .05 .05 TRANSIENT RESPONSE TEST CIRCUIT R2 ~ In) ("F) - - 270 39 .0015 .3' e'., I .02 *Use R3 = 51n when the amplifier is operated with capacitive load. TRANSIENT RESPONSE 50k.U I I ... rf >-,'-+---.,...-0 VOUT / lS0pF I .. I- i I ~F I vs' ~1.5V ~~:!~c,·!lqf_ "vcl' IOO I Pin numbers are shown for metal can only, TIME-liS 5-96 FAIRCHILD • fLA725 TYPICAL APPLICATIONS PRECISION AMPLIFIER - AVCL 10kU 50 M""11-""',..--0 OUTPUT REFERENCE THERMOCOUPLE INPUTS 100pF R1 R3 for best CMRR R4 R6 DC GAIN· 1000 BANDWIDTH = DC TO 540 Hz 50kn >'-'''''------0 2 l02 05 "-..I ,¥1 2 krl 2 krl 2.1 krl 1.3 kn GND 5-99 LOWZ OUTPUT 2 • FAIRCHILD • ILA730 JlA730 ELECTRICAL CHARACTERISTICS (TA = 25°C, V+ = 12.0 V,and V CM = 3.5 V unless otherwise specified) TYP MAX UNITS 1.0 2.5 mV I nput Offset Current 0.5 1.5 !LA Input Bias Current 3.5 7.5 !LA kn CONDITIONS PARAMETER Input Offset Voltage MIN RS';; 50n Input Resistance Differential Voltage Gain RL;;' 100 kn Differential Distortion RL;;'100kn Bandwidth 5.0 20 100 145 160 80 300 1.0 1.5 5.0 8.0 Single-Ended Output Resistance 70 mVpk_pk MHz 500 n Output Voltage Swiog RL;;' 100 kn Supply Current RL;;' 100 kn 9.5 13 mA Power Consumption RL;;' 100 kn 114 156 mW .. 0 Vpk_pk 0 The follOWing specIfIcatIOns apply for -55 C .;; T A';; 125 C: Input Offset Voltage 3.5 mV TA -+125 C 0.2 1.5 !LA T A --55°C 1.0 3.0 !LA T A --55C 6.5 15 !LA 5.2 V RS';; 50n Input Offset Current Input Bias Current Input Resistance 0.9 Input Voltage Range 3.5 RS';; 50n f';; 1.0 kHz, Common Mode Rejection Ratio kn 70 85 dB +3.5V';; V CM ';; +5.2V Differential Voltage Gain 175 90 RL;;' 100 kn Common Mode Output Voltage 7.0 5.5 Output Resistance 4.5 Output Voltage Swing Power Consumption V 600 n Vpk-pk 6.8 T A =-55°C Supply Current 7.75 10 mA 15 T A -125°C 8.0 11 mA T A --55°C 120 180 mW TA = 125°C 96 121 mW TYPICAL PERFORMANCE CURVES FOR JlA730 INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 2.0 INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 10 1.0 V+·12V T :2S'C V+:12V ~1.6 ~ 8.0 ~ :;; ~o.8 "- ,/ r--.... ~ ~O.4 o !< ./ ~ 1.2 60 -20 ...... 20 -r-. 60 TEMPERATURE -'C 100 V 140 o 5.0 7.0 ~ 6.0 V '.0 5-100 ['-., " ~ 4.0 ~ 2.0 V" 11 13 SUPPLY VOLT.GEwV I, a o 15 .0 - 20 i'- 20 ...... 60 TEMPERATURE -'C 100 140 FAIRCHILD • MA730 IlA730C ELECTRICAL CHARACTERISTICS (T A = 25°C, V+ = 12.0 V, and V CM = 3.5 V unless otherwise specified) PARAMETER CONDITIONS TYP MAX UNITS 2.0 5.0 mV Input Offset Current 0.7 3.0 I nput Bias Current 4.5 16.0 ;LA ;LA Input Offset Voltage MIN RS';; 50n Input Resistan ';8 Differential Voltage Gain RL> 100 kn Differential Distortion RL >100 kn Bandwidth kn 2.5 15 100 135 160 85 300 1.0 1.5 Single-Ended Output Resistance mVp-p MHz 70 500 n Vpk_pk Output Voltage Swing RL> 100 kn Supply Current RL>100kn 9.5 13 mA RL>100kn 114 156 mW 7.5 mV Power Consumption .. 0 5.0 8.0 0 The following speclfocatlons apply for 0 C.;; T A .;; +70 C I nput Offset Voltage RS';; 50n Input Offset Current TA -+70 o C TA _OoC Input Bias Current TA -O°C Input Resistance 0.5 3.0 ;LA 0.8 5.0 J.!A 5.0 20 J.!A kn 1.8 I nput Voltage Range +3.5 RS';; 50n f.;; 1.0 kHz, Common Mode Rejection Ratio 60 +5.2 dB 80 +3.5V .;; V CM .;; +5.2V Differential Voltage Gain RL>100kn 190 80 5.0 Common Mode Output Voltage 7.0 Output Resistance Output Voltage Swing Power Consumption V n Vpk_pk 7.5 4.5 Supply Current 8.0 600 TA _OoC TA =+70 o C TA =OoC TA -+70°C 106 15 mA 8.8 13 mA 120 180 mW 156 mW 10 TYPICAL PERFORMANCE CURVES FOR IlA730C INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 2.0 INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGE INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 0 0 V+=12V 6 2 - -- - o 010203040506070 TEMPERATURE-·C V+·1Z V TA;ZS-C V V IL' -- 0 2 o 5.0 V f-- r--- 2.0 7.0 ao SUPPLY VOlTAGE-V 5-101 o 13 15 010203040506070 TEMPERATURE--c • FAIRCHILD • JlA730 TYPICAL PERFORMANCE CURVES FOR /.IA730 INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE INPUT BIAS CURRENT AS A FUNCTION OF SUPPLY VOLTAGE VOLTAGE TRANSFER CHARACTERISTICS '.0 100 5.0 TA : 25-C y+ '12V .....- 7.0 5.0 9.0 11 o 15 13 ~ 60 -20 SUPPLY VOLTAGE-V ~ ~ V V 20 o 190 "';;. :o-::~ 20 60 TEMPERATURE _·c 100 140 200 V -r--. g j'-.. ~ ...... 140 DIFFERENTIAL DISTORTION AS A FUNCTION OF AMBIENT TEMPERATURE i!i ii 600 !j; V 80 " II ~400 ~ i:! !t 200 40 V " o 7.0 5.0 9.0 -20 - 15 11 SUPPLY VOLTAGE-V ~ z I'- V...... -- ~ "- / 8.0 V -20 20 60 TEMPERATURE ··C 100 140 4.' -60 OUTPUT VOLTAGE SWI NG AS A FUNCTION OF LOAD RESISTANCE -20 f 10 ~ 9.0 7.0 ~ I I 2 0.5 1.0 2.0 LOAD RESISTANCE - 5.0 ~A 10 9.0 11 13 SUPPLY VOLTAGE - V -- 20 6.0 -60 15 SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 1A=25"C ,/ t--.. ....... i'-.. /' 8.0 "" 6.0 / ,/ 4. 0 7.0 0.2 7.0 10 8.0 '.0 4.0 0.1 10 140 y. -12V Y+=12V I ~O 100 11 lA"25·C >Q.8.0 V V 2.0 20 60 TEMPERATURE ··C SUPPLY CURRENT ASA FUNCTION OF AMBIENT TEMPERATURE 9.0 V / 40 20 -60 140 T -25"C !'O "- 100 12 v+= 12Y 100 g &.0 20 60 TEMPERATURE ··C OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE OUTPUT VOLT AGE SWI NG AS A FUNCTION OF AMBIENT TEMPERATURE v· ~ 12V "I 50 I: / OUTPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE I 30 :; 800 i:! it2i 120 10 y+. 12Y· V I!< 100 -10 1000 ~ 120 20 60 TEMPERATURE .oC -30 A II' TA ~ 2S"C ~ 170 -20 -5.0 -50 II" INPUT VOLTAGE -mY V+.12V 90 -60 '.I i-tO 8 V .....- ~ lA"125"C 1.0 DI FFERENTIAL VOLTAGE GAIN AS A FUNCTION OF SUPPL Y VOL TAGE DIFFERENTIAL VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE I- t--- T.--55' C1 > r V r '.0 80 ITA' 25'C..(. I A"'f= Y+'12Y .. 0 -20 20 60 TEMPERATURE ··C 5-102 100 140 '.0 7.0 9.0 11 SUPPLY VOLTAGE-V 13 15 FAIRCHILD. J.LA730 TYPICAL PERFORMANCE CURVES FOR .uA730C INPUT BIAS CURRENT AS A FUNCTION OF SUPPLY VOLTAGE LO INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE '0 T-2S·C VOLTAGE TRANSFER CHARACTERISTICS 0 V-+',2V Y+'12"1 40 ...... f-'" I ~ V 1/ ~ V ....... f-- f-- ,.a .0 010203040506070 TEMPERATURE _·C DIFFERENTIAL VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE DIFFERENTIAL VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOL TAGE ,. 0 0 0 0 0 r- t- o o 0 • 0 0 V 7•• '.0 " , TEMPERATURE-·e OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE 12 , 0 ,V T • 25"C -- ...- • ~ ~ 6,0 l"- t- ~ 4~ TEMPERATURE-·C 010203040506010 TEMPERATURE-"e OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE SUPPLY CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 50 60 70 •.O,.--r--nn--r--r-TT'--"'---' , f--++-I+--+-+-I-tt::.~~ ~C •.0 f--+-+++--+,,.-~---±"""+--t--1 , ; 6.01-7',++-1+--+-+-1++-+-1 4.0 2.0 '0 It: ..• " 13 15 SUPPLY VOLTAGE - V SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 12 - lA-25"C ,. t- I-- - •.0 5.0 1--1-+++---+-+--1-+1--1----1 7•• 4.0 4.00'=-.,---='O.'=",..L..lo='.,,.-,,='.oC-O,"=.o-L'=,.'=o-"0:-7'0' La 010203040506070 TEMPERATURf -"C 5-103 V ,c ••0 e.o LOAD RFSISTANCE - k.o. '.0 '.0 V+;12V ~ 7.01-+-bl'+----+-t--I-+I-+---1 I V V 1--" V V !; 40 V JL. V+'12V V+·12V 30 f-"" IL 010203040506070 5 >~ ..- • '5 13 OUTPUT VOLTAGE SWING AS A FUNCTION OF AMBIENT TEMPERATURE 20 • / 1/ 0 1: Y+·12V 0 OUTPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE 0 50 50 0 SUPPLY VOLTAGE-V 10 ,. -10 • IL TEMPERATURE -"C t-- -30 0 0 0 ,Ii" --"",,'- DIFFERENTIAL DISTORTION AS A FUNCTION OF AMBIENT TEMPERATURE TA:2'·C 010203040506070 '00 IL INPUT VOLTAGE-mY 0 t- .L 50 '00 V+'12V , -,.0-50 o 15 13 " 9.0 • -3.0 SUPPLY VOLTAGE-V 7.0 I.0 k-'" '0 ,.0 .i~'+7<1'C > ....... .1 L'"'"' T.""C 1A"O"C 0 2 .• 5.0 V / 7.0 "" '.0 " SUPPLY VOLTAGE - V '3 15 FAIRCHILD. #LA730 TYPICAL PERFORMANCE CURVES FOR p.A730 AND p.A730C COMMON MODE REJECTION RATIO AS A FUNCTION OF AMBIENT TEMPERATURE 105 ~± COMMON MODE OUTPUT VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE COMMON MODE OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE 0 10 fA· 25-C Y·.'2 V V+"l2v +3.5 VSVCMH5.2 V 0 • /'""'" • • •• -60 r- ./ r-- -20 20 60 TEMPERATURE - ·C 100 V ",,""" 0 140 '.0-60 -- 0 "" 0 0 -20 20 60 TEMPERATUR£ _·C 5-104 100 140 5.0 7.0 9.0 SUPPLY VOLTAGE-V " " IJA739 DUAL LOW-NOISE AUDIO PREAMPLIFIER/OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The )1A 739 consists of two identical monolithic Operational Amplifiers using the Fairchild Planar* epitaxial process. These low noise, high gain amplifiers exhibit extremely CONNECTION DIAGRAM 14·PIN DIP (TOP VIEW) stable operating characteristics over a wide range of supply voltages and temperatures. The device is intended for a variety of applications requiring two high performance operational amplifiers. • • • • • • • PACKAGE OUTLINES 6A 9A PACKAGE CODES D P SINGLE OR DUAL SUPPLY OPERATION LOW NOISE FIGURE, 2.0 dB HIGH GAIN, 20,000 V/V LARGE COMMON MODE RANGE, ±11 V EXCELLENT GAIN STABILITY VS. SUPPLY VOLTAGE NO LATCH· UP OUTPUT SHORT CIRCUIT PROTECTED OUT A • OUT LAG A IN { LAG A ABSOLUTE MAXIMUM RATINGS Supply Voltage Internal Power Dissipation (Note 1) Differential Input Voltage Input Voltage (Note 2) Storage Temperature Range Hermetic Molded Operating Temperature Range Pin Temperature Hermetic DIP (Soldering, 60 s) Molded DIP (Soldering, 10 s) Output Short·Circuit Duration, TA = 25°C (Note 3) ±18 V 670mW +IN A ±5 V ±15 V -IN A v-65°C to +150°C -55°C to +125°C O°C to +70°C ORDER INFORMATION TYPE PART NO. )1A739C )1A739DC )1A739C )1A739PC 300°C 260°C 30 seconds v,y, EQUIVALENT CIR CUlT 14 ~8on R, 9kn I a,)t-.- R, R, fdkn 10k!"! 15kfl ~~~~ ,'< ,'< R" J R" 9W t-rKa" R" 10k(l: 10kf2 ","-J .".. OUTPUT A Ka" U 02- V a, ......" 0,........ ".. R, 5kn 2 OUTPUT LAG A i'68n R, R, 1.7kn 3W 3 :57 D, 4 ---- INPUT LAG A 5 NON· INVERTING INPUT A ~ '" ~ :57 D, 6 .¥ v- ~ OUTPUT B Va" '" R24 3kn 8 INVERTING INPUT A a" R" INVERTINq INPUTS Notes on following page ~ R" 1.7kn 10 11 ~ 9 INPUT LAG S NON-INVERTING INPUT B 5W 12 OUTPUT LAG B *Planar is a patented Fairchild process. 5·105 FAIRCHILD. p,A739 IlA739C ELECTRICAL CHARACTERISTICS: Vs = ±15V, RL = 50 kO to Pin 7, TA = 25°C unless otherwise specified CHARACTER ISTICS CONDITIONS I n put Offset Voltege TYP MIN RS <:2000 I nput Resistance Large Signal Voltege Gain VOUT =±5.0V Positive Output Voltege Swing Negative Output Voltege Swing 50 1000 nA 300 2000 nA 37 150 6500 20,000 +12 -14 +13 -15 f = 1.0kHz Output Resistence ±10 Common Mode Rejection Ratio RS <: 10kO RS <:10kO Power Consumption VOUT -0 Supply Current V/V V V kO ±11 gO 70 mV kO 5.0 Input Voltege Range Supply Voltege Rejection Ratio UNITS 6.0 Input Offset Current Input Bias Current MAX 1.0 V dB 50 270 420 p.V/V 9.0 14 Broadband Noise Figure VOUT - 0 RS - 5.0kO, BW - 10Hz to 10kHz Turn On Delay (See Figure 1) Open Loop, VIN - ±20mV 0.2 p.s Turn Off Delay (See Figure 1) Open Loop, VIN = ±20mV 0.3 Slew Rate (unity gain) [See Figure 2] Cl = 0.1 p.F, Rl = 4.70 1.0 Ils Vlp.s Channel Sepsration (See Figure 3) RS <:10kO, f = 10kHz 140 2.0 mW mA dB dB The following specifications apply for Vs = ±4.0V, T A = 25 0 C I nput Offset Voltage RS <:2000 1.0 6.0 50 1000 I nput Offset Current Input Bias Current Supply Current VOUT =0 Power Consumption VOUT -0 VOUT -±1.0V Large Signal Voltege Gain- 2500 mV nA 300 nA 2.5 mA 20 mW 15,000 V/V Positive Output Voltage Swing +2.5 +2.8 V Negative Output Voltege Swing -3.6 -4.0 V NOTES: 1. Aating applies at ambient temperature below 70 o C. 2. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage. 3. Short circuit may be to ground or either supplv. FREQUENCY RESPONSE TEST CIRCUIT PULSE RESPONSE WAVEFORMS .~" +"'mv~ OV--- -20mV- - , -+- '~-, av r + ---~N(t! --- ' --1 r"" 3 ~ ~- -~-~u, CHANNEL SEPARATION TEST CIRCUIT lkn ~ :r- 'K I'P+ lkn 3 , I ----------lkfl I,~"""""·· 13 %J.':ll; , ~«'1- i' "l-ttlt'1-rnn'TiTi'-HtIt--k:\N-H 'SIC! ~~ K' i' C,,,,300pF,R, " 470n C 1""1000pF, R1 "150n ~::~:~~~\~~-4j~n 0 III IIIIIII Vs"±15V I (I m,FIGURE2 "400 TA"'2r\~ >oM FREQUENCY - Hz FREQUENCY COMPENSATION NETWORK CHANNEL SEPARATION AS A FUNCTION OF FREQUENCY OPEN LOOP PHASE SHI FT WITHOUT COMPENSATION CHANGEOFAC CHARACTERISTICS WITH TEMPERATURE '.0 r-r-,.--r--r-,.--r-' \Is =±15V "6~-+-+-~-+-+-~-I -120 I-tttl-+-Hi1I-+-t+tHl-+ttI-+l-tt1-1 ''''' ,,. TEMPERATURE -'C TYPICAL APPLICATION STEREO PHONO PREAMPLIFIER - RIAA EQUALIZED +30V O.0022/JF 470kf2 150kn . OUTPUT A ,Mn +-7~50f-PF_-.._.OO-l'~ 5,FI'5V i'2kU 270kn OUTPUT B 56kn 1 5 'Fl25V INPUT A TYPICAL PERFORMANCE Gain 40dB at 1 kHz, AIAA equalized Input overload point, 80mV rms Noise level, 2IJ.V referred to input Signal to noise ratio, 74dB below 10mV Channel ~paration @ 1 k Hz, BOdS 5-108 p-A740 FET INPUT OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The jLA740 is a high performance monolithic FET Input Operational Amplifier constructed using the Fairchild Planar* epitaxial process. It is intended for a wide range of analog applications where very high input impedance ;s required and features very low input offset current and very low input bias current. High slew rate, high common mode voltage range and absence of latch-up make the jLA740 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in active filters, integrators, summing amplifiers, sample-and-hold circuits, transducer amplifiers, and other general feedback applications. The jLA740 is short circuit protected and has the same pin configuration as the popular jLA741 operational amplifier. No external components for frequency compensation are required as the internal 6 dB/octave roll-off insures stability in closed loop applications. • • • • • • CONNECTION DIAGRAM B-LEADMETAL CAN (TOP VIEW) PACKAGE OUTLINE 5S PACKAGE CODE H • NC HIGH INPUT IMPEDANCE .•• 1,000,000 Mrl NO FREQUENCY COMPENSATION REQUIRED SHORT-CIRCUIT PROTECTION OFFSET VOLTAGE NULL CAPABILITY LARGE COMMON-MODE AND DIFFERENTIAL VOLTAGE RANGES NO LATCH UP ABSOLUTE MAXIMUM RATINGS Supply Voltage Internal Power Dissipation (Note 1) Differential Input Voltage I nput Voltage (Note 2) Voltage between Offset Null and V+ Storage Temperature Range Operating Temperature Range Military (jLA740) Commercial (jLA740C) Lead Temperature (Soldering, 60 seconds) Output Short-Circuit Duration (Note 3) ±22V 500mW ±30V ±15V ±o.5V -65°C to +150 o C -55°C to +125 0 C OOC to +70 o C 300°C Indefinite NU I E: hn 4. ~onnec"Cea 'to Case. ORDER INFORMATION TYPE PART NO. jLA740HM jLA740 jLA740HC jLA740C OFFSET NULL l-~--t:=- a" OUTPUT ·Planar is a patented Fairchild process. Notes on following pages. 5-109 FAIRCHILD • p.A740 JlA740 ELECTRICAL CHARACTERISTICS (VS = ±15V, T C = 250 C unless otherwise specified) CONDITIONS PARAMETER I nput Offset Voltage MIN TYP RS .s;;; 100 kn Input Offset Current [Note 4] Input Current (either input) [Note 4] Input Resistance Large Signal Voltage Gain 50,000 RL ;;;'2kn, VOUT = ±10V MAX UNITS 10 20 mV 40 150 pA 100 200 pA 1,000,000 Mn 1,000,000 V/V Output Resistance 75 n Output Short Circuit Current 20 mA Common Mode Rejection Ratio 64 80 Supply Voltage Rejection Ratio dB 70 Supply Current Power Consumption 300 !-'V/V 4.2 5.2 mA 126 156 mW Slew Rate 6.0 V/!-'s Unity Gain Bandwidth 3.0 MHz Transient Response (Unity Gain) IRise Time 110 10 CL .s;;;100pF, RL = 2kn, VIN = 100mV I Overshoot ns 20 % The following specifications apply for TC = -55°C to +85"C: ±1O Input Voltage Range Large Signal Voltage Gain RL;;' 2 kn, VOUT = ±10 V RL ;;;'10kn Output Voltage Swing RL;;;' 2kn Input Offset Voltage Input Offset Current ±14 ±10 ±13 RS.s;;; 100kn 15 TA =-55 O C 30 TA =+85 O C 185 V 30 pA K V 5 200 pA 4.0 nA TRANSIENT RESPONSE TEST CIRCUIT r+ • + OVIN -=- 5-110 :». t ~ -=- mV pA 2.5 TA = +85 OC VOLTAGE OFFSET NULL CIRCUIT 3 ±12 V V/V V TA=-55O C I nput Current (either input) 2 ±12 25,000 VOUT Rl . FAIRCHILD • ~A740 J,lA740C ELECTRICAL CHARACTERISTICS (VS = ±15V, TC = 25 0 C unless otherwise specified) PARAMETER CONDITIONS Input Offset Voltage MIN RS<100kil Input Offset Current (Note 4) Input Current (either input! [Note 41 I nput Resistance Large Signal Voltage Gain RL#2kil, VOUT = ±10V 20,000 Output Resistance TYP MAX 30 110 mV 60 300 pA 0.1 2.0 nA 1,000,000 Mil 1,000,000 V/V il 75 Output Short Circuit Current UNITS mA 20 Supply Current 4.2 8.0 Power Consumption 126 240 Slew Rate 6.0 V/p,s Unity Gain Bandwidth 1.0 MHz Transient Response (Unity Gain) Rise Time Overshoot CL <100pF, RL = 2kil, VIN = 100mV .. mA mW 300 ns 10 % The follOWing specIfIcatIons apply for OOC 2kn, VOUT = ±10V 500 ±12 ±14 RL#2kil ±10 ±13 V V mV 30 I nput Offset Current 60 I nput Current (either input! 1.1 pA 10 NOTES: 1. 2. 3. 4. Rating applies for ambient temperature to +70o C; derate linearly at 6.3mW/oC for ambient temperatures above +70o C. For supply voltages less than ±15V. the absolute maxi'mum input voltage is equal to the supply voltage. Short circuit may be to ground or either supply. Rating applies to +126 o C case temperature or +7SoC ambient temperature. Typically doubles for every 100 C increase In ambient temperature. 5-111 p,V/V V/V 500,000 RL#10kil I nput Offset Voltage V dB nA • FAIRCHILD. p.A740 TYPICAL PERFORMANCE CURVES FOR MA740 AND t.tA740C INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY 4",--,--.,..--r--r-.,..--r--, 3.5 ~ :~~~~+-+---+-+-+---1 " ·· '" · " "'1--+-+-1--+-+-11--1 f--+-+-t--+-+-,f--l 1.' f--+-+-t--+-+-+;t--l , 1.5 , 0 1 -1·°75 -50 \Is " '" '" 25 TA - AMBIENT TEMPERATURE _ 'c OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY ~±15V TA -26"C '" I'" INPUT NOISE VOLTAGE ASA FUNCTION OF FREQUENCY f _ FREQUENCY - Hz OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE 0 ~_~:s~\v 6 1\ - 4 , \~ 1\ \ .......... OUTPUT 0 ." 2 INPU~/ 6r~ 1 0 \Is =tlSV TA =2S'C , , 1\ 1-- -I. ~ - 1 -180, 4 f _ FREQUENCY - Hz TIME -p.s 5-112 IJA741 FREQUENCY-COMPENSATED OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The I'A741 is a high performance monolithic Operational Amplifier constructed using the Fairchild Planar" epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of latch-up tendencies make the I'A741 ideal for use as a voltage follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications. CONNECTION DIAGRAMS 8-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 58 PACKAGE CODE H NC • • • • • • NO FREQUENCY COMPENSATION REQUIRED SHORT CIRCUIT PROTECTION OFFSET VOLTAGE NULL CAPABILITY LARGE COMMON MODE AND DIFFERENTIAL VOLTAGE RANGES LOW POWER CONSUMPTION NO LATCH-UP ABSOLUTE MAXIMUM RATINGS Supply Voltage I'A741A,I'A741,I'A741E I'A741C Internal Power Dissipation (Note 1) Metal Can Molded and Hermetic DIP Mini DIP Flatpak Differential Input Voltage Input Voltage (Note 2) Storage Temperature Range Metal Can, Hermetic DIP, and Flatpak Mini DIP, Molded DIP Operating Temperature Range Military (I'A741A,I'A741) Commercial (I'A741 E,I'A741C) Pin Temperature (Soldering) Metal Can, Hermetic DIPs, and Flatpak (SO sl Molded DIPs (10 s) Output Short Circuit Duration (Note 3) NC NULL 500mW S70mW 310mW 570mW ±30 V ±15 V -S5°C to +150°C _55°C to +125°C _55°C to +125°C O°C to +70°C 300°C 2S0°C Indefinite 10-PIN FLATPAK (TOP VIEW) PACKAGE OUTLINE 3F PACKAGE CODE F v+ OUT + OFFSET v- NULL ORDER INFORMATION TYPE PART NO. I'A741C I'A741TC I'A741C I'A741RC 14-PIN DIP (TOP VIEW) PACKAGE OUTLINES SA, 9A PACKAGE CODES D P NC NC 'NC NC -OFFSET NC NULL v+ -IN +IN ORDER INFORMATION TYPE PART NO. I'A741 A I'A741AHM I'A741 I'A741HM I'A741E I'A741EHC I'A741C I'A741HC NULL NC -IN v+ +IN OUT NC NC -OFFSET -IN >---''0 OUT Note: Pin 4 connected to case ±22 V ±18 V 8-PIN MINI DIP (TOP VIEW) PACKAGE OUTLINES ST 9T PACKAGE CODES R T -OF=FSET -IN '---IC=:::J +IN v- NC NC OUT + OFFSET v- NULL ORDER INFORMATION TYPE PART NO. I'A741 A I'A741AFM I'A741 I'A741FM ORDER INFORMATION TYPE PART NO. I'A741A I'A741ADM I'A741 I'A741DM I'A741E I'A741EDC I'A741C I'A741DC I'A741C I'A741PC * Planar is a patented Fairchild process. Notes on following pages, 5-113 • FAIRCHILD. MA741 /lA741A ELECTRICAL CHARACTERISTICS: Vs = ±15 V, TA = 25°C unless otherwise specified. CHARACTERISTICS (see definitions) CONDITIONS Input Offset Voltage RS" 50.11 MIN TYP MAX 0.8 3.0 mV 15 /jV/oC Average Input Offset Voltage Drift Input Offset Current 3.0 Average Input Offset Current Drift Input Bias Current Power Supply Rejection Ratio Vs = +20, -20; Vs = -20, +10V, RS = 50.11 Output Short Circuit Current Power Dissipation I~put 10 = ±20V Vs = ±20V Vs = ±20V, RL = 2k.l1, Vs Impedance Large Signal Voltage Gain 1.0 VOUT = ±15V 30 nA 0.5 nA/oC 30 80 nA 15 50 /jV/V 25 40 mA 80 150 6.0 V/mV 50 l Rise Time 0.25 0.8 (Unity Gain) I Overshoot 6.0 20 Slew Rate (Unity Gain) VIN = ±10V mW M.I1 Transient Response Bandwidth (Note 4) UNITS /jS % .437 1.5 MHz 0.3 0.7 V//j' The following specifications apply for _55° C .. T A .. +125°C Input Offset Voltage 4.0 mV Input Offset Current 70 nA Input Bias Current Common Mode Rejection Ratio Adjustment For Input Offset Voltage 210 = ±20V, VIN = ±15V, RS = 50.11 Vs = ±20V Vs Output Short Circuit Current Power Dissipation Input Impedance Vs Large Signal Voltage Gain I = ±20V I RL = 10k.l1 Vs = ±20V'1 RL = 2k.l1 = ±20V, RL = 2k.l1, VOUT = ±15V Vs = ±5V, RL = 2k.l1, VOUT = ±2 V Vs nA dB 95 10 10 [-55°C Vs = ±20V +125°C Output Voltage Swing 80 mV 40 mA 165 mW 135 mW 0.5 M.I1 ±16 V ±15 V 32 V/mV 10 V/mV NOTES 1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3mWJOC for the metal can, 8.3mWfOC for 2. the DIP and 7.1mW/OC for the Flatpak. For supply voltages less than ± 15V, the absolute maximum input voltage is equal to the supply voltage. 3. Short circuit may be to ground or either supply, Rating applies to +125°C case temperature or 75°C ambient temperature. 4. Calculated value from: BW(MHz) = 0.35 Rise Time (~s) 5-114 FAIRCHILD. JLA741 J,lA741 ELECTRICAL CHARACTERISTICS: Vs = ±15 V, TA = 25°C unless otherwise specified. CHARACTER ISTICS (see definitions) CONDITIONS I nput Offset Voltage TYP MIN RS .;; 10 kil UNITS MAX 1.0 5.0 mV I nput Offset Current 20 200 nA Input Bias Current 80 500 Input Resistance 0.3 I nput Capacitance Offset Voltage Adjustment Range Large Signal Voltage Gain RL>2kil,VOUT-±10V nA 2.0 50,000 Mil 1.4 pF ±15 mV 200,000 il Output Resistance 75 Output Short Circuit Current 25 Supply Current 1.7 2.8 mA Power Consumption 50 85 mW I Transient Response (Unity Gain) Rise time 0.3 V,N = 20 mV, RL = 2 kil,CL';; 100 pF I Overshoot Slew Rate mA RL > 2 kil 1" 5.0 % 0.5 VII'S The following specifications apply for _55° C .;; T A .;; +125°C: I nput Offset Voltage I nput Offset Current RS';; 10 kil 1.0 6.0 mV TA =+125°C 7.0 200 nA TA = _55°C 85 500 nA 0.03 0.5 /LA 0.3 1.5 /LA TA =+125°C Input Bias Current TA = -55"C I nput Voltage Range Common Mode Rejection Ratio RS';;10kil Supply Voltage Rejection Ratio RS';;10kil Large Signal Voltage Gain RL > 2 kil, VOUT=±10V Output Voltage Swing Supply Current Power Consumption H2 ±13 70 90 V dB 30 150 /LV/V 25,000 Rt. >10kil ±12 ±14 RL > 2 kil ±10 ±13 V V TA =+125°C 1.5 2.5 mA TA=-55"C 2.0 3.3 mA TA -+125°C 45 75 mW TA = -55°C 60 100 mW TYPICAL PERFORMANCE CURVES FOR J,lA741A AND J,lA741 OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE '" TA·25"C llO I 105 V- 100 ----rI / " " " 16 -55"c ST{,,+I25"c RL:?2tg " " " " " 12 16 " o +ltfc /"" /' L V ./ 5 L / / /' SUPPLY VOLTAGE-tV -Y;"CSTA~ /' L " l,/ INPUT COMMON MODE VOLTAGE RANGE ASA FUNCTION OF SUPPLY VOLTAGE OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE ro SUPPLYVIl.TAGE-:!:.V 5-115 " '/ o, ro SUPPLYV2 kn, VOUT = ±10 V 25,000 MAX 6.0 mV 20 200 nA 80 500 Mn 1.4 pF ±15 mV 200,000 V/V n mA Output Short-Circuit Current 25 Supply Current 1.7 2.8 Power Consumption 50 85 Transient Response (Unity Gain) I Rise time I Overshoot Slew Rate nA 2.0 75 Output Resistance UNITS 1.0 mA mW VIN = 20 mV, RL = 2 kn, CL <;; 100 pF 0.3 RL >2 kn 0.5 V/J1.s 120 dB J1.S % 5.0 Channel Separation The following specifications apply for O°C <;; TA <;; +70°C. Input Offset Voltage RS <;; 10 kn Input Offset Current Input Bias Current Input Voltage Range Common Mode Rejection Ratio RS <;;10 kn Supply Voltage Rejection Ratio RS <;;10 kn Large Signal Voltage Gain RL >2 kn, VOUT = ±10 V Output Voltage Swing 1.0 7.5 7.0 300 nA 0.03 0.8 J1.A ±12 ±13 V 70 90 dB 30 ±12 ±14 ±10 ±13 5-125 J1.V/V V/V RL >2 kn Power Consumption 150 15,000 RL >10 kn :)uppiy Current mV V V ?O 3.3 mA 60 100 mW • FAIRCHILD. /lA747 J.1.A747E ELECTRICAL CHARACTERISTICS: ±5 V.;; VS';; ±20 V, T A = 25°C unless otherwise specified. CHARACTERISTICS (see definitions) CONDITIONS Input Offset Voltage RS';; 50n MIN TYP MAX 0.8 3.0 3 30 UNITS mV Average Input Offset Voltage Drift 15 I nput Offset Current Average Input Offset TA = 25°C to 70°C Current Drift TA=0°Cto25°C Input Bias Current Vs = +10, -20; Vs = +20 V, -10 V Power Supply Rejection Ratio RS = 50n Vs = ±20 V, VIN = ±15 V Common Mode Rejection Ratio 80 RS =50 n Adjustment for Input Offset Voltage VS=±20V VS=±20V I nput Impedance VS=±20V 1.0 Vs = ±20 V, RL = 2 kn, VOUT = ±15 V 50 Large Signal Voltage Gain I I Transient Response (Unity Gain) nArC nArC 30 80 nA 15 50 jLV/V dB 95 mV 10 Power Dissipation 25 35 80 150 0.8 Overshoot 6 20 VIN=±10V mW V/mV 0.25 Slew Rate (Unity Gain) mA Mn 6 Rise Time Bandwidth (Note 4) nA 0.2 0.5 10 Output Short Circuit Current jLV/oC jLS % 0.437 1.5 MHz 0.3 0.7 V/jLS The following specifications apply for O°C .;; T A';; 70°C Input Offset Voltage 4.0 mV Input Offset Current 70 nA 210 nA 40 mA I nput Bias Current Output Short Circuit Current 10 Power Dissipation VS=±20V I nput Impedance VS=±20V Output Voltage Swing Large Signal Voltage Gain Channel Separation 165 Vs = ±20 V, RL = 10 kn ±16 V RL= 2kn ±15 V Vs = ±20 V, RL = 2 kn, VOUT = ±15 V 32 VS-± 5V,RL-2kn,VOUT=± 2V 10 VS=±20V tt ~+ 1 V/mV dB TRANSIENT RESPONSE TEST CIRCUIT ~~ 6 5 10kn 3 6 Vel -F 1 V,N -= V- I V/mV 100 VOLTAGE OFFSET NULL CIRCUIT 0---2.~ mW Mn 0.5 5-126 J. VOUT Rl FAIRCHILD. J.l-A747 TYPICAL PERFORMANCE CURVES FOR IlA747A AND IlA747 INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE 0 v! 'l~V 0 OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 5 I C-- 0 I' -- I--- I--- 0 0 ~ 0 p.. f-- ; - - '-. f- - - - -- -- I-- - I-- ./ t- - i'- 5 ...... 1--- 0 f-- 0 0 '" TEMPERATURE·· C INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 4 , V~ POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE 4 VS· <1SV ! "ISV 0_+,6, ~ 0 0-.1. ''\ , 4 FREQUENCY CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE I I :-- 0 ~ f-- -'"" ,--- i-- f-- -,1 --- --- --- r- t--... 0 "'- 0 r- t-- t-- t-- --- . , 0 0 --1- ~~ r- • ~~\'i:.'" ~SLIEWR~TE ,/ DWIO,.~,-~ , 1 I I "I -1-- I-- 0 1 ~ P' C~II -- , 1 II , 0_ 1 -60 TEMPERATURE _. C TYPICAL PERFORMANCE CURVES FOR IlA747E AND IlA747C INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE INPUT OFFseT CURHt:N I AS A FUNCTION OF AMBI ENT TEMPERATURE 5 ----1--- ---- 4 1---- -1--- ........... 3 - r-... , - , Vs ~ Vs ~ i·1SV >15V 0 0 POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE Vs 1'2oV -~ OUTPUT SHORT CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE " 20 30 50 " 0 FREQUENCY CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE 0 ._- --L--r-- Vs ~ L '15V 1 ---- Z 5-........, .......... "-.... ........ .......... , 0 r---... " - 5 0 5-127 70 ~ ~~J l' SLEWiAATE '-roJ 3'&0 I ),J ~. ~ I - K FAIRCHILD • p,A747 TYPICAL PERFORMANCE CURVES .FOR JlA747A. JlA747C. JlA747 AND pA747E POWER CONSUMPTION AS A FUNCTION OF SUPPLY VOLTAGE , V / , ./ / OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY , / TA. 125"C , OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY V 0 ,r----, VS' !""1"'- , , 2 Y TA INPUT OFFSET CURRENT AS A FUNCTION OF SUPPL Y VOLTAGE .I,sv +25 C , 1\ VS· '\'5V TA ·+25 C \ 1"'- '" , , ,, ,Y ~ "- '" , \ -180, INPUT RESISTANCE AND INPUT CAPACITANCE AS A FUNCTION OF FREQUENCY OUTPUT RESISTANCE AS A FUNCTION OF FREQUENCY TA- 25"C '.0 ..-- f--f---jf---I---I--+---j LO L,--'---'---'--,L---'--=' SUPPLY VOLTAGE - t-V OUTPUT VOLTAGE SWI NG AS A FUNCTION OF LOAD RESISTANCE OUTPUT VOLTAGE SWING AS A FUNCTION OF FREOUENCY Vs ~ !;16V H-t+H--I+H--I-++++-+'rA - 25 C I § 22 f----i-++Y-/-+-f-H+---I f----i-+++-+---I-+++t---j ~ 16\--1-14-+---I-+++t---j g 14 f----i-lt-++--i-+++t---j ~ 12 f----i+I+t+-+-t-H+---I 18 RL - 101d~ ~ 32 l@ 28 ~ 24 § 20 ~ H-+tH-++t1--+-++tt-++Ht-l H-+tH-++t1-1-++tt-++++I--I H-t+HH+H-lH-+++-++I-I+-I H-ttH-t+H--I-tTttt-t-t-Ht---l :,::i: 16 H-t+H4+H--I4+++-++I-I+-I ~ / INPUT NOISE VOLTAGE DENSITY AS A FUNCTION OF FREQUENCY ""II- INPUT NOISE CURRENT DENSITY AS A FUNCTION OF FREOUENCY BROADBAND NOISE FOR VARIOUS BANDWIDTHS VS' '1SV ! TA -25 C '6" I , ","gm~m I ii/ ~- "~is!IE lO100kHl 16 15 1010kHt 1024 H-++-+-+ffi"",-++++-++H+--j ,,~,JH; J ./ 'F=~~=+~~~--t--t-tt~ 5-128 FAIRCHILD. p.A747 TYPICAL PERFORMANCE CURVES (Each Amplifier) FOR j.lA747 AND j.lA747C COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY '00 90 V 25°C ~15 T, '\. 80 TRANSIENT RESPONSE 28 v, 24 20 70 90% \. 60 ~ I I c 50 ~ \. 40 0 30 \. 20 12 , , I 0_ 10 0 16 , 100 10 'k 10k lOOk 1M 10M ~ RISE 0 I'ME- I-5 1.0 v, T, R, C, 15 <15 V 25°C 2k!;100pF 20 25 TlME- ,,5 FREQUENCY - Hz FREQUENCY CHARACTERISTICS AS A FUNCTION OF SUPPLY VOLTAGE VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE 10 14 , VS- ~15 V T, 25"C TA"" 25°C , ...... , 12~ fjNSIl:tv.,. OUTPUT 2 -, i 1\ \ -,- ........ .. \.. I- - L 0 INPUT -, AesPONSE 10 "IE.~ \'l.p-"'ie. \'10'1'1 10' 1"\ ~oo ,0° •• ' 08 C .... b:= r- 0" -, -10 -10 0 10 20 3040 TlME- 50 60 06 708090 "s 5 10 15 SUPPLY VOLTAGE - 'V 5-129 20 • I FAIRCHILD. p.A747 TYPICAL APPLICATIONS ANALOG MUL TIPLIER QUADRATURE OSCILLATOR +15V e2 SINE OUTPUT e, 820pF 1% CURRENT SOURCE 820pF R2 2Dkn 1% 1% R2 180kn four COSINE OUTPUT 1% AS "n 1% R1 R' 190kn 190kQ 1% R' R' 1SkU 2Qkn 1% 1% f:= 1 (R1C1 2nJc2R2C3R3 := A2C2) I e1 820pF 1% • Matched to 0.1% EOUT"" 100 EIN1 X EIN2 COMPRESSOR/EXPANDER AMPLIFIERS -15V ZEAOADJUST +15V TRACKING POSITIVE AND NEGATIVE VOLTAGE REFERENCES R4 12kn R2 lOW 02 R5 COMPRESSOR NEGATIVE R3 INPUT REGULATED OUTPUT ISOk!! EXPANDER OUTPUT ~12V 'L .. SmA SOURCE OR v- SINK R1 10Hl 11k£! EXPANDER COMPRESSOR MAXIMUM COMPRESSION EXPANSION RATIO = R1/R (10 kn >R ~O) NOTE: DIODES 01 THROUGH 04 AA-E MATCHED F06S6 OR EQUIVALENT POSITIVE OUTPUT"" VOl X R1:2 R2 NEGATIVE OUTPUT:= -POSITIVE OUTPUT X NOTCH FILTER USING THE p.A747 AS A GYRATOR R2 NOTCH FREQUENCY AS A FUNCTION OF C1 INPUT OUTPUT TRIM R3 SUCH THAT R1 r-- R3 R2 = '2R4 " R. R4 7.Sk!l 1" 0.1111 7.51<.[1. 0.01 CAPACITORCf-IIF 5-130 0.1 .0 ~~ FAIRCHILD. p.A747 TYPICAL APPLICATIONS NON·INVERTING AMPLIFIER UNITY·GAIN VOL TAGE FOLLOWER A, ~ 'NPUT~ l~ 1 A, ~ DU,"UT V INPUT Rl R2 R0R2 RIN ~ OUTPUT 400Mn CIN ~ 1 pF ROUT< < 1 n BW ~ I 1 MHz 1 GAIN 10 100 1000 INVERTING AMPLIFIER I I R, ~~ R,+R2 I~ B.W. I I R'N J RI R, INPUT I WEIGHTED AVERAGING AMPLIFIER A, A, R, 1 kll 1 9 kll 1100kHZ 1 400 Mil 9.9 kll 10 kHz 280 Mil 1 100 Il 100!l 99.9 kll 1 kHz 80 Mil EIN1 R, 1 EIN2 R3 EIN3 OUTPUT r- [:;> OUTPUT RfIlA,IIR21IR3 -::- GAIN 1 10 100 1000 R, 10 kll 1 kll 1 kll 100 Il R, BW 10 kU 1 MHz 10 kll 100 kll 100 kll 100 kHz 10 kHz 1 kHz R'N 10 kll 1 kll 1 kll 1001l -EOUT 5-131 ~ EIN1 C:)+E1N2C:) + EIN3 C:) • I IJA748 OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The ",A748 is a High Performance Monolithic Operational Amplifier constructed using the Fairchild Planar* epitaxial process. It is intended for a high wide range of analog applications where tailoring of frequency characteristics is desirable. High common mode voltage range and absence of latch-up make the ",A 748 ideal for use as a voltage follower. The high gain and wide range of operating voltages provide superior performance in integrator, summing amplifier, and general feedback applications. The ",A 748 is short·circuit protected and has the same pin configuration as the popular ",A741 operational amplifier. Unity gain frequency compensation is achieved by means of a single 30 pF capacitor. For superior performance, see ",A 777 data sheet. • • • • • CONNECTION DIAGRAMS 8·PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 5S PACKAGE CODE H SHORT-CI RCUIT PROTECTION OFFSET VOL TAGE NULL CAPABILITY LARGE COMMON·MOOE AND DIFFERENTIAL VOLTAGE RANGES LOW POWER CONSUMPTION NO LATCH UP ABSOLUTE MAXIMUM RATINGS Supply Voltage I nternal Power Dissipation (Note 1) Metal Can DIP Mini DIP Flatpak Differential Input Voltage Input Voltage (Note 2) ±22 V v500mW 670 mW 310mW 570mW ±30V ±15 V Storage Temperature Range -65°C ta +150°C -55°C ta +125°C Metal Can, DIP, and Flatpak Mini DIP Operating Temperature Range Military (",A748) Commercial (",A748C) Pin Temperature (Soldering 60 s) Metal Can, Flatpak, and Hermetic DIPs Molded Mini DIP Output Shart·Circuit Duration (Note 3) NOTE: Pin 4 connected to case ORDER INFORMATION TYPE PART NO. ",A748 ",A748HM ",A748A ",A748AHM !'A748C ILA748HC -55°C ta +125°C O°C to +70°C 300°C 260°C Indefinite CONNECOON DIAGRAMS 8·PIN MINI DIP (TOP VIEW) PACKAGE OUTLINE 9T PACKAGE CODE T 10·PIN FLATPAK· (TOP VIEW) 14·PIN DIP (TOP VIEW) PACKAGE OUTLINE 6A PACKAGE CODE D NC NC PACKAGE OUTLINE 3F PACKAGE CODE F OFFSET NULL (COMP) NC FAEQCOMP NC OFFSEl NULL FREO COMP -IN C:=:::::JI--l +INC=:::::JI--l NC NC FREO COMP -IN v+ +IN OUT v+ '--I===:JO UT v- OFFSET NC NC NULL OFFSET v- NULL ·Available on special request. ORDER INFORMATION TYPE PART NO. ",A748C "A748TC OROER INFORMATION TYPE PART NO. ",A748 "A748FM ,uA748A ",A748AFM ORDER INFORMATION TYPE PART NO. ",A748 ",A748DM ,uA748A ,uA748ADM ,uA748C ,uA748DC ·Planar Is a patented Fairchild process. Notes and equivalent circuit on following pages. 5·132 FAIRCHILD • fLA748 J.lA748A ELECTRICAL CHARACTERISTICS: Vs = ±15 V, TA = 25'C, Cc = 30pF unless otherwise specified. CHARACTER ISTICS Input Offset Voltage CONDITIONS MIN RS';; 50 kn TYP MAX UNITS 0.5 2.0 mV Input Offset Current 2.0 10 nA Input Bias Current 20 75 Input Resistance 2.0 nA 10.0 Mn Input Capacitance 3.0 pF Offset Voltage Adjustment Range ±25 mV Large Signal Voltage Gain RL;' 2 kn, VOUT= ±10V 50,000 250,000 Output Resistance 100 Output Short Circuit Current ±25 VN n mA Supply Current 1.9 2.8 mA Power Consumption 60 85 mW TransIent Response (Voltage Follower, Gain of 1) VIN = 20mV, CC= 30pF, Rise Time R L = 2 kn, CL .;; 100 pF Overshoot Slew Rate RL;' 2kn 0.3 /lS 5.0 % 0.5 VI/ls (Voltage Follower, Gain of 1) Transient Response (Voltage Follower, Gain of 10) VIN = 20 mY, Cc = 3.5 pF, Rise Time RL = 2 kn, CL';; 100 pF Overshoot Slew Rate RL;' 2 kn, Cc = 3.5 pF 0.2 /lS 5.0 % 5.5 VI/ls (Voltage Follower, Gain of 10) The followina soecifications apply for -55°C';; TA';; +125°C: , Input Offset Voltage RS';; 50 kn 0.5 3.0 Average Input Offset Voltage Drift RS';; 50 kn 2.5 15 25 nA 25°C';;TA';; +125°C 2.5 30 pArC _55°C';; TA .;; 25°C 6.5 150 pArC Input Offset Current Average I nput Offset Current Drift Input Bias Current 100 Input Voltage Range Common Mode Rejection Ratio RS';; 50 kn Supply Voltage Rejection Ratio RS';; 50 kn Large Signal Voltage Gain RL;' 2 kn, VOUT= ±10 V Output Voltage Swing Supply Current Power Consumption ±12 ±13 80 95 13 mV /lVrC nA V dB 100 25,000 /lVN V/V RL;' 10 kn ±12 ±14 RL;' 2 kn ±10 ±13 V V TA = +125°C 1.5 2.5 mA TA = _55°C 2.0 3.3 mA TA = +125°C 40 75 mW TA = _55°C 60 100 mW NOTES ,. 2. 3. Rating applies to ambient temperatures up to 70o e. Above 70° C ambient derate linearly at 6.3 mW/C for metal can, 8.3 mW/o C for the 01 P 5.6 mW/oC for the mini DIP and 7.1 mwtC for the flatpak. For supply voltages less than ± 15 V, the absolute maximum input voltage is equal to the supply voltage. Short circuit may be to ground or either supply. Rating applies to +125°C case temperature or +75°C ambient temperature. 5-t33 • I FAIRCHILD • ILA748 .uA748 ELECTRICALCHAIIACTERISTICS: Vs ~ ±16 V, TA ~ ~ 25"C, Cc CHARACTER ISTICS(see definitions) 30pF unless otherwise specified. CONDITIONS MIN TYP MAX UNITS I nput Offset Voltage 1.0 5.0 mV I nput Offset Current 20 200 nA Input Bias Current 80 500 Input Resistance 0.3 Input Capacitance 50,000 RL;;'2 kn, VOUT = ±10 V Mn 2.0 pF ±15 mV 150,000 V/V Offset Voltage Adjustment Range Large Signal Voltage Gain nA 2.0 Output Resistance 75 Output Short·Circuit Current 25 Supply Current 1.9 2.8 rnA 60 85 mW Power Consumption rnA Transient Response VIN = 20 mV, Cc CL <100 pF (Voltage Follower, Gain of 1) Rise Time Overshoot = 30 pF, RL = 2 kn, 0.3 5.0 Slew Rate (Voltage Follower, Gain of 1) IlS % 0.5 Transient Response V I N = 20 mV, Cc CL <100 pF (Voltage Follower, Gain of 10) Rise Time Overshoot Slew Rate (Voltage Follower, Gain of 10) = 3.5 pF, R L = 2 kn, 0.2 5.0 RL;;'2 kn, Cc = 3.5 pF IlS % 5.5 The following specifications apply for -55°C 2 kn, VOUT = ±10 V 20,000 Output Resistance Output Short~Circuit Current Supply Current 75 n 25 mA 2.8 1.9 Power Consumption 85 . 60 mA mW Transient Response (Voltage Follower, Gainofl) VIN = 20 mV, Cc = 30 pF, RL = 2 kt!, CL <;100 pF Rise Time Overshoot Slew Rate (Voltage Follower, Gain of 1) RL;>2 kn 0.3 5.0 /JS 0.5 V//Js 0.2 5.0 /JS 5.5 V//Js % Transient Response (Voltage Follower, Gain of 10) VIN = 20 mV, Cc = 3.5 pF, RL = 2 kn, CL <;100 pF Rise Time Overshoot Slew Rate (Voltage Follower, Gain of 10) RL;>2 kn, Cc = 3.5 pF % The following specifications apply for 0 0 C <; T A <; +70 0 C: Input Offset Voltage RS <; 10 kn 7.5 I nput Offset Current illtJui. i3it:t::. CUIIt:lli. Input Voltage Range Common Mode Rejection Ratio RS <;10 kn Supply Vpltage Rejection Ratio RS <; 10 kn Large Sig~al Voltage Gain ±13 V 70 90 dB ±12 ±10 150 V V 100 EQUIVALENT CIRCUIT COMPo OFFSET NULL COMPo r----------r~~~----~----_+--~_.----------------._-oV+ RI IkO R3 SOkO R2 IkQ V- 5-135 /JV/V V/V ±14 ±13 60 Power Consumption INVERTING INPUT ~.Il." ±12 30 RL;>10kn RL;>2 kn Output Voltage Swing nA 800 15,000 RL;>2 kn, VOUT - ±10 V mV 300 mW • FAIRCHILD • ILA748 TYPICAL PERFORMANCE CURVES FOR IlA748 INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE vs • t Vs· ±15V 15V OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE " ,/ Vs· :l:l~V I"- 5.0 1\ '.0 1\ / "- V \ 100 i' I"-- ...... 20 "" 5 ........ 0 ·20 f',. , o. 1 100 60 100 -20 -((I 10 1<0 -60 -20 60 " TEMPERATURE-QC 100 140 TEMPERATURE-OC INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGE INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE " POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE 0 vs • t 15V VS":tlSV r-r- RL"'" 70 3Of---t--+-+-+--f---t 1-- ........ 20 ...... b...-+=F==I==+=::::j:=j 101--l--!--+--\--I--1 -- t--........ I-- I"-- 0 10 o -20 ·60 2!) SUPPLYVOLTAGE-iV 100 JO -60 1411 ·20 20 100 60 140 TEMPERATURE-QC TEMPERATURE-OC TYPICAL PERFORMANCE CURVES FOR IlA748C INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 0 200 Vs • t 15V 7. 160 " VS"+15V 0 28 - r-- t-- 80 40 00 10 ./ 4.0 r-. ./ 0 2. " V 0 /' 30 40 TEMPERATURE °c " 60 "" I'--. 30 CI 50 60 10 10 20 30 40 sO 60 70 TEMPERATURE ·C POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE " ~v5-l~v TA • 25 ~c 70f--+-+--+-+--+-+--+ 40 30 20 ro 10 10 SUPPlYVOLTAGE-iV 20 o o 10 - 60 " '" 10 5 '-.... 8 20 INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 40 '" 20 TEMPERATURE·oC INPUT OFFSET CURRENT ASA FUNCTION OF SUPPLY VOLTAGE 0 -....... 22 V 10 70 '-.... 24 0 20 Vs ·!15V 3D 5.0 120 OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATU1'lE INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE 20 30 40 TEMPERATURE 5-136 50 °c 60 70 30 0 10 20 :--- I-- 30 40 TEMPERATURE ·C " 60 70 FAIRCHILD • JLA748 TYPICAL PERFORMANCE CURVES FOR IlA748 AND IlA748C OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE 115 " TA "25°C Rl"2k!'1 no ~ 105 ./ 100 V I- I V ~ ., ~ • 4 0 zo 16 12 ~ g V / 10 ~ ~ ~ / • , i '[L /' • " 0 /' V Z 0 zo 10 5 !5 SUPPLYVOLTAGE-tV , OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE POWER CONSUMPTION AS A FUNCTION OF SUPPLY VOLTAGE lZU " TA"25°C Rl • ... ~ ~ " ~ 60 § i 4D " .-/ a _~sqI5V TA -25°C ~ ./ , V 10 V / / Z4 / • " 16 I 12 • zo " 0,1 SUPPLYVOLTAGE-t.V / O,Z 0,' Z,O 1.0 10 ',0 LOAD RESISTANCE-kl1 748C FREQUENCY CHARACTERISTICS AS A !lA748 FREQUENCY CHARACTERISTICS AS A FUNCTION OF AMBIENT TEMPERATURE FREQUENCY CHARACTERISTICS AS A FUNCTION OF SUPPLY VOL TAGE FUNCTIUN 01- AMBIENT TEMPERATURE LIO l4 L' VS",iISV TA"ZPC I / VS"f !5V - - -LZ LZ~ -: La I\'s fNrIltSPOk--;;-- /--- '~--- - -- ., , ... I~ .- ,. " 10 .. ., .- -- ._- t'"-- I'--.. La r-- ~ ~~'O\.,v~~~- •• -00 ~ INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY .,. "ro VS".:tlSV 11\"25"C LOO ~, m '" r- 100 l4l ." .'" """- -- ~ ~ SIEWJAlt ~~~~ I ~~l ~ :::::::-- I 0 - ,.,¢> 10 ZU 311 '" so ""- BROAD BAND NOISE FOR VARIOUS BANDWIDTHS 100 VS"1 UV Vs·z lSV TI\"25'C TI\"25·C i; ~m23 ~1015 g 10 ~1016 V 111-,",,' '~roz4 " ~ ro 00 TEMPERATURE-'C ...:WZ2 ~ lO-IDkHZ ~ tn-1kHz 1 V , ~"" j7 '18 10 10 SLEW RATE "'''0:; INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY N> 10 )1P LIlS lEMPERATURE·'C NW14 t p "~ ~ / SUPPLYVOLTAGE-±V "a '" !5 10 sUPP\.YVQ..TAGE-tV SUPPLVVOLTAGE-±V 100 / 12 ~ V "....- " ., ./ 16 < 80 TA"25°C /' 14 ~ V 16 TA '25"C Rl" 2kQ 32 ~ INPUT COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE 100 • FREQUENCY· Hz lOt "'" ul' 10 100 • FREQIJ[NCY-Hz 5-137 ,I lOt lOOk 100 lk "'" SOURCE RESISTANCE-II lOOk FAIRCHILD • p,A748 TYPICAL PERFORMANCE CURVES FOR ILA748 AND ILA748C OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY 120 100 OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY -,---; ~~ ~~ 80 RL "ZkQ r-- rCc''''' r-... -20 " lrf o :-........ Vs ·±15V ~~::~c_ """'= k RL 'ZkQ Cc "3pF ''"" '"-" 10' 104 It? FREQUENCY ~ Hz RL "ZtO ~ CC·3~F ~~120 VS"tI5V VS":!:15V TA '25"C Rl'lD!cQ TA "o\oZ5°C RS "5(JQ 1""\ > -210 ,,7 1 " ", 10' 104 FREQUENCY ~ Hz . ,'' uP 'lO" 0 ,,7 " ~ "" \ ~~;:;k~- 100 80 CC'lp.'" 00 CC!,,, 4lJ , 1 10 100 '" 10k lOOk 1M 10 ~ '5 5•1l ~ ~ CC~3~ CC·,,,--.J ~\ -20 -20 ''--:-'''-''''OO'--''!....k---,'--:-'-_-'-.>1J INPUT RESISTANCE AND INPUT CAPACITANCE AS A FUNCTION OF FREQUENCY I 10 ZO :---..::: 30 ~ ....., 40 50 100 VsOjl5V lOOk 1.0 IIlk lOOk 1M TA":ZS"C "- 0.1 CL·30pF. ~ "" 1-++tt-+-H-tt+-t+iH--t--t1rtH \. :;; ~ 300 H-t+1-t+fft-+-+t-tt-H-H-H \. ~ .. H-ttt-f-++tH-H'+f--+--CH-Hf-1 ~ °mLJ~~lk-!""u!""~~-L~-:-~~~~~ 10 100 FREQUENCY-Hz FREQUENCY-Hz VOLTAGE FOLLOWER TRANSIENT RESPONSE (GAIN OF 11 70 COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY 100 " ~ 60 ClOSEOlOOPVOlTAGEGAIN·dB TA"Z,"C= C1N - lk lOll 1M 101»; 10M FREQUENCY-Hz VOLTAGE FOLLOWER LARGE·SIGNAL PULSE RESPONSE TRANSIENT RESPONSE TEST CIRCUIT " f-l-+-+--+-+-+-+-j!: ~~~­ • 20 ~~;i: - ir- VOUT 'DO O~ 'I"" 1C1 VS • t 15V 'IN • ,NOOVERSHO(IT (CLSlOOpFI ~OVE~OO~ 2,0 1.0 . OUTPUT RESISTANCE AS A FUNCTION OF FREQUENCY 1M , • 1,,\ \ 0.5 0 10M VS ·:t.l5V TA"25"C Rl '2kO FREQUENCY-Hz FREQUENCY-Hz lk "" ~ ~ cC""~~ " 10M 1M lOOk 10k COMPENSATION CAPACITANCE AS A FUNCTION OF CLOSED LOOP VOLTAGE GAIN vS·nsv f---''''I-,"",,~-+_+--+TtL;I~~C II l"lk FREQUENCY-Hz 120 III II '\.L B FREQUENCY RESPONSE FOR VARIOUS CLOSED LOOP GAINS Vs:.......~>---OVOUT NOTES 1. Rating applies to ambient temperature up to 70D e. Above 70D e ambient derate linearly at 6.3 mW/C for the metal can, 8.3 rnW/C for the DIP, 5.6 mW/oC for the mini DIP and 7.1 mW/oC for the flatpak. 2. For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage. 3. ShOft circuit may be to ground or either supply. Rating applies to +125°C case temperature or +75°C case temperature or +75°C ambient temperatu reo 5-139 IJA749 DUAL AUDIO OPERATIONAL AM PLI FI ER/ PREAM PLI FI ER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The I'A749 consists of Two Identical High Gain Operational Amplifiers constructed on a single silicon chip using the Fairchild Planar* epitaxial process. These 3~stage amplifiers use Class A PNP transistor output stages with uncommitted collectors. This enables a variety of loads to be employed for general purpose applications from dc to 10 MHz, where two high performance operational amplifiers are required. In addition, the outputs may be wired-OR for use as a dual comparator or they may function as diodes in low threshold rectifying circuits such as absolute value amplifiers, peak detectors, etc. • • • • • • • I CONNECTION DIAGRAMS 8-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 5S PACKAGE CODE H v+ SINGLE OR DUAL SUPPLY OPERATION LOW POWER CONSUMPTION HIGH GAIN, 25,000 VIV LARGE COMMON MODE RANGE, +11 V, -13 V EXCELLENT GAIN STABILITY VS. SUPPLY VOLTAGE NO LA TCH·UP OUTPUT SHORT CIRCUIT PROTECTED ABSOLUTE MAXIMUM RATINGS Supply Voltage (I'A749 and I'A749C) (I'A749D) Internal Power Dissipation (Note 1) Metal Can DIP Differential Input Voltage Input Voltage (Note 2) (I'A749 and I'A749C) (I'A749D) Storage Temperature Range Metal Can, Hermetic DIP Molded DIP (I'A749PC) Operating Temperature Range Military (I'A749) Commercial (I'A749C and I'A749D) Pin Temperature Metal Can, Hermetic DIP (Soldering, 60 s) Molded DIP (Soldering, 10 s) Output Short-Circuit Duration, T A = 25°C (Note 3) ±18 V ±12 V 500mW 650mW ±5 V ±15V ±12V -65°C to +150°C -55°C to +125°C v- Note: Pin 4 is connected to case. ORDER INFORMATION TYPE PART NO. I'A749D I'A749DHC -55°C to +125°C O°C to +70°C 300°C 260°C 30 seconds 14-PIN DIP (TOP VIEW) PACKAGE OUTLINES 6A PACKAGE CODES D 9A P EQUIVALENT CIRCUIT R6 R5 200n 9kO R25 9kCl A1 10kO R26 200n OUTA v+ OUT LAG A OUTB IN{ R2 10kO 05.~-t--~-----1---' OUTPUT B A R3 3 ill 1.7 kfl R2' 1.7 kCl R23 3 kO 10 INPUr lAGA OUTPUT LAG A 5 NON-INVERTING INPUT A +IN A }'N -INA +IN B v- -IN B LAG B OUTPUT R' OUT LAG B LAG A vINVERTING INPUT A 9 INVERTING INPUT B 11 INPUT LAG B NON-INVERTING INPUT B Notes on following pages. 12 ORDER INFORMATION TYPE PART NO. jlA749 I'A749DM I'A749C I'A749DC I'A749C I'A749PC OUTPUT LAG B ·Planar is a patented Fairchild process. 5-140 FAIRCHILD • f.LA749 IlA749 ELECTRICAL CHARACTERISTICS: V+ = ±15 V, RL = 5 kn to Pin 7, TA = 25'C unless otherwise specified CHARACTERISTICS Input Offset Voltage Input Offset Current CONDITIONS Input Bias Current Input Resistance Large Signal Voltage Gain Positive Output Voltage Swing Negative Output Voltage Swing Output Resistance Common Mode Rejection Ratio Positive Supply Voltage Rejection Ratio Negative Supply Voltage Rejection Ratio Input Voltage Range Internal Power Dissipation Supply Current Broadband Noise Figure Turn On Delay (See Fig. 3) Turn Off Delay (See Fig. 3) Slew Rate (unity gain) (See Fig. 2) Channel Separation (See Fig. 4) MIN RS = 200 n 100 20,000 +12 -14 VOUT- ±10 V f RS RS RS 1.0 kHz - 200 n, VIN - +11.5 V to -13.5 V - 200 n - 200 n 70 TYP MAX UNITS 1.0 50 0.30 150 50,000 +13 -15 5.0 90 50 50 3.0 400 0.75 mV nA p.A kn V/V V V kn dB p.V/V p.V/V V mW mA dB p.s p.s V/p.s dB -13 180 9.0 2.5 0.2 0.3 2.0 140 VOUT - 0 VOUT -0 RS 10 kn, BW 10 Hz to 10 kHz Open Loop, VIN - ±20 mV Open Loop, VIN - ±20 mV Cl-0.02p.F,Rl-33n,c2-10pF RS 1 kn f 10 kHz 200 200 +11 220 10.4 The following specifications apply for V+ = ±4.0 V, RL = 10 kn to Pin 7, T A = 25'C Input Offset Voltage Input Offset Current RS = 200 n I nput Bias Current Supply Current Internal Power Dissipation Large Signal Voltage Gain Positive Output Voltage Swing Negative Output Voltage Swing VOUT-O VOUT -0 VOUT ±2.0V 20,000 +2.5 -3.6 1.0 50 0.15 2.5 20 60,000 +2.8 -4.0 3.0 300 0.75 4.8 36 mV nA p.A mA mW V/V V V The following specifications apply for -55'C';; TA';; +125'C, V+ = ±15 V, RL = 5 kn to Pin 7: i...arge Signai Voilagt: Gain Positive Output Voltage Swing Negative Output Voltage Swing Input Offset Voltage Input Offset Current Input Bias Current Input Offset Voltage Drift Input Offset Current Drift Input Bias Current Drift Supply Current Internal Power Dissipation VOUT - ±10 V, TA -55 C 20,000 +12 -14 RS - 200 n TA +125 C TA--55'C TA +125 C TA - -55 C RS - 200 n, +25'C';; TA';; +125'C RS - 200 n, _55°C ';;TA';; +25°C +25 C .;; T A';; +125 C -55°C';; TA';; +25°C -55°C';; TA';; +125°C VOUT-O,TA-+125C VOUT - 0, T A - -55 C VOUT - 0, TA - +125°C VOUT - 0, TA - _55°C 20000 30,000 +13 -15 1.0 0.05 0.05 0.15 0.3 3.0 3.0 0.5 2.0 5.0 V/V vrv· 6.0 1.0 1.5 0.75 3.0 9.7 13 200 300 V V mV p.A p.A p.A p.A p.V/'C p.V/oC nA/'C nArC nA/oC mA mA mW mW The following specifications apply for -55°C';; T A .;; +125' C, V+ = ±4.5 V, R L = 10 kn to Pin 7: Input Offset Voltage Input Offset Current Large Signal Voltage Gain RS = 200 n 1.5 50 VOUT = ±2.0 V, T A = +125°C VOUT - ±2.0 V, TA - _55°C Positive Output Voltage Swing Negative Output Voltage Swing 5,000 20,000 +2.5 -3.6 +2.8 -4.0 NOTES: 1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 8.3 mW/oC for the DIP. 2. For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage. 3. Short circuit may be to ground or either supply. 5-141 6.0 750 mV nA V/V V/V V V • I, FAIRCHILD • IlA749 ,uA749C ELECTRICAL CHARACTERISTICS: V+ = ±15 V, RL = 5 kn to Pin 7, TA = 25'C unless otherwise specified CONDITIONS CHARACTER ISTICS Input Offset Voltage MIN RS = 200 n Input Off.et Current Input Bias Current Input Resistance Large Signal Voltage Gain VOUT =±10 V TYP MAX UNITS 1.0 6.0 50 750 nA 0.30 1.5 p.A 50 150 15,000 50,000 mV kn V/V Positive Output Voltage Swing +12 +13 V Negative Output Voltage Swing -14 -15 V Output Resistance f = 1.0 kHz Common Mode Rejection Ratio RS = 200 n, VIN = +11.5 V to -13.5 V 70 5.0 kn 90 dB Positive Supply Voltage Rejection Ratio RS = 200 n 50 350 p.V/v Negative Supply Voltage Rejection Ratio RS = 200n 50 200 p.V/v Input Voltage Range -13 +11 V Internal Power Dissipation VOUT = 0 180 330 mW Supply Current 9.0 14 Broadband Noise Figure VOUT - 0 RS-l0 kn, BW= 10 Hzto 10 kHz 2.5 dB Turn On Delay (See Fig. 3) Open Loop, VIN - ±20 mV 0.2 p.s Turn Off Delay (See Fig. 3) Open Loop, VIN - ±20 mV 0.3 p.s Slew Rate (unity gain) (See Fig. 2) Cl =0.02p.F,Rl =33n,c2=10pF 1.0 V/p.s Channel Separation (See Fig. 4) RS - 1 kn, f - 10kHz 140 dB rnA The following specifications apply for V+ = ±4.0 V, RL = 10 kn to Pin 7, TA = 25'C: Input Offset Voltage RS = 200n Input Off.et Current Input Bias Current 1.0 6.0 SO 600 mV nA 0.3 I.S p.A Supply Current VOUT = 0 2.5 rnA Internal Power Dissipation VOUT-O 20 mW Large Signal Voltage Gain VOUT- ±2.0V V/V 15,000 60,000 Positive Output Voltage Swing +2.5 +2.8 V Negative Output Voltage Swing -3.6 -4.0 V The following specification. apply for O°C.; TA'; +70'C, V+ = ±15 V, RL = 5 kn to Pin 7: VOUT = ±10 V, TA = +70'C 8,000 40,000 V/V 15,000 50,000 V/V Positive Output Voltage Swing +12 +13 Negative Output Voltage Swing -14 -15 Large Signal Voltage Gain Input Offset Voltage VOUT=±10V,TA=0°C RS- 200 n Input Offset Current Input Bias Current Input Offset Voltage Drift I nput Offset Current Drift I nput Bias Current Drift RS = 200 n, +25'e.; TA'; +70'C V V 1.0 9.0 mV 0.05 1.5 p.A 0.3 3.0 p.A 3.0 p.VrC RS - 200 n, O°C.;; TA';; +2S'C 3.0 p.vl'c +25'e .; TA .;; +70°C 0.5 nArC oOe.;; TA';; +2S'C 2.0 nArC O°C.; TA';; +70°C 4.0 nA/'C The following specifications apply for O'C .; TA .; +70°C, V+ = ±4 V, RL = 10 kn to Pin 7: I nput Offset Voltage RS= 200n Input Offset Current Large Signal Voltage Gain VOUT = ±2.0 V, TA = 70°C 8,000 Large Signal Voltage Gain VOUT = ±2.0 V, TA = O'C 15,000 1.5 9.0 mV O.OS 1.0 p.A V/V V/V Positive Output Voltage Swing +2.5 +2.8 V Negative Output Voltage Swing -3.6 -4.0 V 5-142 FAIRCHILD. jJ.A749 pA749D ELECTRICAL CHARACTERISTICS: V+ = ±6 V, RL = 10 k!1 to Pin 4, TA = 25°C unless otherwise specified CHARACTER ISTICS CONDITIONS I nput Offset Voltage MIN TYP RS"; 200!1 Input Offset Current Input Bias Current I nput Resistance Large Signal Voltage Gain VOUT = ±4.0 V MAX UNITS 1.0 10 50 600 nA 300 1500 nA 50 150 10,000 20,000 mV k!1 V/V Positive Output Voltage Swing +4.5 +5.0 V Negative Output Voltage Swing -5.5 -6.0 V Output Resistance f - 1.0 kHz k!1 10 Input Voltage Range -4.0 +2.5 V Common Mode Rejection Ratio RS"; 10 k!1 Supply Voltage Rejection Ratio RS";10 k!1 Power Consumption (including loadl VOUT= 0 Supply Current (including loadl VOUT - 0 Turn On Delay (See Figure 51 Open Loop, VIN = ±20 mV, RL = 5 k!1 0.2 Turn Off Delay (See Figure 51 Open Loop, VIN = ±20 mV, RL = 5 k!1 0.3 jJ.s Channel Separation (See Figure 7) RS ,,; 10 k!1, f = 10 kHz 140 dB 70 90 dB 100 24 36 54 mW 2.0 3.0 4.5 mA jJ.s TYPICAL PERFORMANCE CURVES FOR pA749 AND pA749C CLOSED LOOP GAIN AS A FUNCTION OF FREQUENCY OPEN LOOP FREQUENCY RESPONSE USING RECOMMENDED COMPENSATION NETWOHKS OUTPUT CAPABILITY AS A FUNCTION OF FREQUENCY ANU (;ulvii"'~i'4SAliuN 100 r"TTTT-'TTTr"T"TTTT"rTTTT-r-TITl"'l lOH+++++++H-1'IH-H'Itf'O-filtH 30 I-H-It-t-tllllHt-lll++ 111Ht-1111Httt-'1r1rf+H cUU[,I"U,I,I" 10 I-H-It-t-tllllHt-lllt--h I I 1Ht-11 I t-hHt-HM-i AV 05 c:Ji!U,Jllh -l~.!::oo.1lJ.L.f,I,:-,-,II..I.IIL1,:!:ol""II..I.llJ1111-;;"",~,.1lJ~,M'>u~1OM OPE N LOOP PHASE SH I FT WITHOUT COMPENSATION o~~~~~~-rTTIrv::',-.~.,,~v~ TA-25 C RL-Skn -60 w",'ri".,,'-1 H+tt-+HtI-t+ttt-t+Nt--i AV ~ ~ C, -0.001 iJF. RT -470150n 60dB, C, "300 pF, R, 40dB, ~ Q AV=20dB,C, -O.Q1JJF. Rl-33H Av-OdB.C, ~O.lI1F. RT -47H 0·:.!::oo..l.lJ111J..:-' 1,....J1u. ; 1,-,-;; 111O:,.,.w.11,:-1,~;!,;::"I.w.~,M:-'-'"":::'1OM CHANNEL SEPARATION AS A FUNCTION OF FREQUENCY CHANGE OF AC CHARACTERISTICS WITH TEMPERATURE '"0 r-rnr-rT"TTrT-rnr--r:c v,-."':.,",v::"1 f-I-Ht-H-++H-++++-+ ~~: ~5kg 'so I-I-Hf-H-++H-++++-+.:.;TO;:"H'''i-'-1 -"0 H++++H+H+ttt-I-++tr-lI\.-H+H "21-t--t-"~.-+-t-t--+--+--+---I -180 H+tt-+H+I-t+ttt-t+Ht-+f1tH-1 0.' 1-+-+--+-+--+"""1'-"" ...J==j=+---l -240 H+tt-+HtI-t+ttt-t+Ht-+-f-ItIr---'I -3o~!::oo.llLW,:-,LllL,,!-o,-!,.J.ll-::"!::-,,J..I.l~,M",wJJ..,:!"M I'> .... ~LEWRATE 401-1-Hf-H-++H-++++-++1f+f--1 0.41-+-++-+---I-:~"Ft-=t'-- 0'~0-L~-::"~0~~~,,-..I.L..I.~'~0,-L~~10·Ok FREQUENCY- H2 5-143 jJ.V/V 50 TEMPERATURE - c • FAIRCHILD. JLA749 TYPICAL PERFORMANCE CURVES FOR J.l.A749 AND J.l.A749C INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY v+ ~ ~15 INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY V+-±15V ! V ABSOLUTE MAXIMUM POWER DISSIPATION AS A FUNCTION OF TEMPERATURE Rs-lOon RS-HXHl 2SoC TA-25°C TA~ 1\ 749C 71 0 80 20 100 1 AMBIENTTEMPEAATURE -'C OPEN LOOP 1800 PHASE SHIFT FREQUENCY AS A FUNCTION OF SUPPLY VOLTAGE COMMON MODE RANGE AS A FUNCTION OF SUPPLY VOLTAGE TYPICAL OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE 2 L. ;/' /. ;/' TA 25 C RL TQPIN7 1-+-++-+--j__I-+~~: ~5kl~_ TQPIN7 '" , l,,/- V /t-'!>'+~' '1:-" 6 V·' d 8~ 2 SUPPLY VOLTAGE - ±V OPEN LOOPVOLTAGE GAIN AS A FUNCTION OF LOAD RESISTANCE TOTAL SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 0 VOUT-05Vrms HiO ~~I~k~;oC RL TaPIN7 +-+--+----:71"'--- :Yf.' V VI I ./ 8 V /' V , J....- r-- OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE "" ~ ~ ~ I I I I p0 LOAD RESISTANCE - kG TOTAL POWER DISSIPATION AS A FUNCTION OF SUPPLY VOLTAGE AND LOAD 1 1 VOUT~ 0 TA=2S"C RL TOPIN7 6 2 SUPPL Y VOLTAGE - 'V SUPf'LYVOLTAGE-tV SUPPLY VOLTAGE _'V OPEN LOOP GAIN AS A FUNCTION OF TEMPERATURE INPUT OFFSET CURRENT AND BIAS CURRENT AS FUNCTIONS OF TEMPERATURE 5~ , 1 V+- "':15 V VIN ~ 0 RL=5Hl TO PIN 7 ~ 3 ~ L "- 11"- 2 r-- '" ',,0 SUPPLY VOLTAGE -'V 5-144 749C 1- r-t .r-tl- 814S ;UARENJ- n- OFFSET CURRENT ~ FAIRCHILD • MA749 TYPICAL PERFORMANCE CURVES FOR J.lA749D OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE Vo-O.SV RMS OPEN LOOP VOL TAGE GAIN AS A FUNCTION OF LOAD RESISTANCE ~~~ l-lkHl TA -25"C RL TOPIN4 k"" ° V f 1 kH2 25'C RL TOPIN4 I z "" ~ /V ° V / 'V / " ~ I ~ - °0 ~ 20 16 12 g I ~ 1 1 1/ ~ \";- - ~ 'l-~¥. ~V ~ ~ ~ ~ .c " 1; ~i1-- - ...'1....... RL TOPIN4 24 5 1/ /' AL =)4k,n ~f.--r- '~ , '" I J.-. .- 5.1 kll 0/ /.1- T A -25"C > 1 1 / 1 RL O,~V ....... f.--° /' 1 1 ,;' 1 )(_ - VO-O.5V RMS TA TYPICAL OUTPUT VOL TAGE AS A FUNCTION OF SUPPLY VOLTAGE ~ 0 ~?.~~ - f-"'" 4 SUPPLY VOLTAGE - tV OPEN LOOP GAIN AS A FUNCTION OF TEMPERATURE TOTAL SUPPL Y CURRENT AS A FUNCTION OF SUPPLY VOLTAGE , vo-o 4 RL TOPIN4 2 - ,',......... 2 ° ° I I I I TA=25'C ° , TOTAL POWER DISSIPATION AS A FUNCTION OF SUPPL Y VOLTAGE AND LOAD RL TQPIN4 ____ TA -25 C Vo 'OV ~~ f-- L~~~ f- ,/ ...... :-- ~.,~ f-- ....... .'7 r-- / - /' /I"o~ ~\.,,'OI 2 ~.\:"?) ~~~ ~;- 'f;';';;";;e ~~~:& ;;:??: .:;;; j: ° ~ ,,;> -" :-:: >;; :;- :;;['".; ~~*~ -2 ~~ c~~/ ~~~j ~~~:;;,,-~~ FREQUENCY-Hz SUPPLY VOLTAGE _ tV 5-145 ,...." ~,..... V I.-:::: t;:::::::; ;::::::: po- f\L~'ZOI<~~- RL~ SUPPLY VOLTAGE - W TEMPERATURE -"C c-- L*~ Vl'1 ,......... --;I - f-- --- 'v FAIRCHILD • JLA749 OFFSET NULL' NETWORK IJA749 AND IJA749C FREQUENCY RESPONSE" TEST CIRCUIT IJA749 AND IJA749C PULSE RESPONSE WAVEFORMS 1J,A749 AND IJA749C V+ F- +20mv==\ ov - - - - - -20mV OV ~ - --_ r- ----i VIN(t) itOff -----f------t VOUT 5 kn V- Fig. 1 Fig. 3 Fig. 2 CHANNEL SEPARATION' TEST CI RCUIT 1J,A749 AND IJA749C PULSE RESPONSE WAVEFORMS IJA749D >,:",,~-oVOA F- 5kn +20mv==\ OV - - - - - -20mV ~----------------~A-' ":" SEPARATION" Voe -100 OV Hn ~ - r- ----i - - - VIN(t) i'off -----f------t VOUT 1kn 5kn V- Fig. 4 Fig. 5 FREQUENCY RESPONSE TEST CI RCUIT "A749D CHANNEL SEPARATION TEST CIRCUIT IJA749D 10kO V- I--------~~--------:--- -= SEPARATION '" ~ '"' - 'VOB 1000 1kn Ikn >~I-"""--"""1r-O va. 10kn vFig. 6 Fig. 7 ·Pln numbers refer to Dual .. 1n-l!na Package 5-146 FAIRCHILD • p.A749 TYPICAL APPLICATIONS VOLTAGE TO FREQUENCY CONVERTER +15 V R. R1 100n 51 k V,N a TO +15 V o-JVlIV---+-"! L-------~--------t_-oVOUT R6 R2 1.3kll 5.1 kG -15V RAMP GENERATOR R* = R pin 1 + R9 OUTPUT/RESET COMPARATOR + ACE Q1 + R6 output stage. • WAVEFORMS RAMP GENERATOR OUTPUT (PIN 1) VOUT (COMPARATOR INPUT) (PIN 9) t = t1 + t2 R1 C1 4 V,N + 4R' C1 15 STEREO TAPE PREAMPLIFIER 80 ""'9 V v+ = V 12 V 1.2kn r'OO,uF/15 v 1.5M 70 TAPE HEAD r-... r--.r-.. '" I ~ 60 5f,J.F/9 v 1--0 '"" '"~ 50 f'... . . . . ~ 10kn 750k!l 15kSl 4000 pF 40 30 5000 pF 20 100 10,000 20,000 1000 FREQUENCY - kHz 1.2 Mf2 TYPICAL PERFORMANCE TO SIDE B OPTIONAL FEEDBACK TONE COMPENSATION Gain at 1 kHz Output Voltage Swing Power Consumption 5-147 60 dB 2.B V rms 30mW IJA759 POWER OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The JLA759 is a high performance monolithic operational amplifier CONNECTION DIAGRAMS constructed using the Fairchild Planar* Epitaxial process. The amplifier provides 325 mA output current and features small signal characteristics belter than the JLA741. The amplifier is designed to operate from a single or dual power supply and the input common mode range includes the negative supply. The high gain and high output power provide superior performance whenever an operational amplifier is needed. The JLA759 employs internal current limiting, thermal shutdown and safe area compensation making it essentially indestructable. It is intended for a wide range of applications including voltage regulators, audio amplifiers, servo amplifiers and power drivers. POWER WAn PACKAGE (TOP VIEW) PACKAGE OUTLINE 8Z PACKAGE CODE U1 !L • • • • • • OUTPUT CURRENT - 325 mA MINIMUM INTERNAL SHORT CIRCUIT CURRENT LIMITING INTERNAL THERMAL OVERLOAD PROTECTION INTERNAL OUTPUT TRANSISTORS SAFE AREA PROTECTION INPUT COMMON MODE VOLTAGE RANGE INCLUDES GROUND OR NEGATIVE SUPPLY AVAILABLE IN THREE PACKAGE STYLES ~ 0 v v+ 4 :::: ::> OUTPU!:, 3 _+IN 2 ir J ~ ORDER INFORMATION TYPE PART NO. f.lA759C f.lA759U1C EQUIVALENT CIRCUIT a-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 55 PACKAGE CODE H NC vNote: Pin 4 connected to case ORDER INFORMATION TYPE PART NO. I'A759 f.lA759HM I'A759C f.lA759HC 'Planar is a patented Fairchild process. 5-148 FAIRCHILD. JJ.A759 ABSOLUTE MAXIMUM RATINGS Supply Voltage Between V+ and VDifferential Input Voltage (Note 1) Input Vottage (Note 1) Internal Power Dissipation (Note 2) Operating Junction Temperature Range Military (!LA759) Commercial (",A759C) Storage Temperature Range 4-Pin Power Watt (Ul) 8-Pin TO-99 (H) Pin Temperature 4-Pin Power Watt (Ul) (Soldering, 10 s) 8-Pin TO-99 (H) (Soldering, 60 s) 36 V 30 V (V- -0.3 V) to V+ Internally Limited - 55°C to + 150°C O°C to +125°C -55°C to +150°C -65°C to +150°C 260°C 300°C NOTES: 1. For a supply voltage less than 30 V between V+ and V-, the absOlute maximum input voltage is equal to the supply voltage. 2. Although the internal power dissipation is limited, the iunction temperature must be kept below the maximum specified temperature in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the thermal resistance values on following page. J.lA759 ELECTRICAL CHARACTERISTICS: Vs = ±15 V, TJ = 25°C unless otherwise specified CHARACTERISTICS Input Offset Voltage CONDITIONS MIN Rs"'i 10 kO Input Offset Current Input Bias Current Input Resistance 0.25 inpul Voilage Range : 13 tc Large Signal Voltage Gain RL ;;. 500, VOUT = ±10 V 50 k Supply Current Peak Output Current (Unity Gain) MAX UNITS 1.0 3.0 mV 5.0 30 nA 50 150 nA 1.5 ±325 3 V "'iIVS-VOUTI< 10 V I Risetime I Overshoot Slew Rate I Vs-VouTI = 30 V MO +13.5!o -\}s V 200k V/V 12 Short Circuit Current Transient Response .. \f TYP 18 mA ±500 rnA ±200 mA ns RL ;;. 50 0 300 RL ;;. 500 5.0 % RL ;;. 500 0.6 VII's 1.0 MHz Unity Gain Bandwidth The following specifications apply for -55°C "'i TJ "'i 150°C Input Offset Voltage Rs"'i 10 kO Input Offset Current Inpu1 Bias Current Common Mode Rejection Ratio 4.5 mV 60 nA 300 Rs"'i 10 kO 80 100 nA dB Power Supply Rejection Ratio Rs"'i 10 kO 80 100 dB Large Signal Voltage Gain RL ;;. 500, VOUT = ±10V 25 k 200 k V/V Output Vottage Swing RL ;;. 50 0 ±10 ±12.5 V 5-149 • FAIRCHILD. iJ.A759 J,lA759C ELECTRICAL CHARACTERISTICS: Vs = ±15 V, TJ = 25°C unless otherwise specified CHARACTERISTICS CONDITIONS Input Offset Vottage MIN Rs'" 10 kO Input Offset Current Input Bias Current Input Resistance 0.25 Input Voltage Range Large Signal Voltage Gain RL "" 50 0, VOUT = ±10 V TYP MAX UNITS 1.0 6.0 mV 5.0 50 nA 50 250 +13 to -Vs +13.5 to -Vs V 25 k 200 k V/V ±325 ±500 mA ±200 mA ns Supply Current 18 12 Peak Output Current 3 V "'IVS-VOUTI'" 10 V Short Circuit Current Transient Response IVS-VOUTI= 30 V I Risetime nA MO 1.5 mA RL "" 50 0 300 RL "" 500 10 % Slew Rate 0.5 VII's Unity Gain Bandwidth 1.0 MHz I Overshoot (Unity Gain) The following specifications apply for O°C '" TJ '" 125°C Input Offset Voltage Rs'" 10 kO Input Offset Current Input Bias Current 7.5 mV 100 nA 400 nA Common Mode Rejection Ratio Rs'" 10 kO 70 100 dB Power Supply Rejection Ratio Rs'" 10 kO 80 100 dB Large Signal Voltage Gain RL 25 k 200 k V/V Output Voltage Swing RL ",,500 ±10 ±12.5 V "" 50 0, VOUT = ±10V PACKAGE TYP MAX TYP MAX IiJe IiJe IiJ• IiJ• Power Watt (U1) 8.D"C/w 12°C/W 75°C/W 8O°C/W Metal Can (H) 30°C/W 40°C/W 120°C/W 185°C/W Po (MAX) = TJ (MAX) - T. IiJe -t: lie. TJ (MAX) - T. or IiJ • (Without a heat sink) lie. = lies + lis. Solving for TJ: TJ = T. + Po (IiJe + lie.) or T. + PoIiJ' (Without heat sink) Where: TJ = Junction Temperature IiJe T. = Ambient Temperature lie. Po = Power Dissipation lies IiJ• = Junction to ambient thermal resistance lis. 5-150 = Junction to case thermal resistance = Case to ambient .thermal resistance = Case to heat sink thermal resistance = Heat sink to ambient thermal resistance FAIRCHILD • IlA759 TYPICAL PERFORMANCE CURVES FREQUENCY RESPONSE AT VARIOUS CLOSED LOOP GAIN SETTINGS OPEN LOOP GAIN AND PHASE RESPONSE AS A FUNCTION OF FREQUENCY ~ ~ 90 0 0 0 . '" .. ~ I'. ~ SO 0 w ~ ~ ::-- oC . . '" 30 0 0 0 2 80 \. '\ 70 1so '\. 0 \. v 10 2 ' 10 3 10 5 II. IV "/ 100 10 1000 Vs = :!:15 V I-+-+-+--+-I-~~: ~DI~F sof--+-+-Ir-+........ ~+-+_T-iA:..=_2S-t·_C-l ~I-+-H+-+--+-I-+-+~ / 20 30 40 50 RISETIME 0.22 J.<.S 2Or-1-/H+~1-1-~~~ 10f---tl-+i-+-+-f--+-+-I o 60 0.2 0.4 0.6 0.8 1.0 1.2 TIME-~II TIME-,u.. TOTAL HARMONIC DISTORTION AS A TOTAL HARMONIC DISTORTION AS A FUNCTION OF FREQUENCY INPUT NOISE VOLTAGE AS A FUNCTION OF puW':" uuTPuT 10 J. U\~v ±18V(32n) tVs = 1= kHz Vs =:!: 12V(161l,all) ~L,;,~r 20 Y VOLTAGE FOLLOWER TRANSIENT RESPONSE , n 10· 10 5 FREQUENCY· Hz '1\ ', \\ / -. 0 10 4 , UTPIT / -4 0 I" ..... 10 7 ~TA='5'C INPUT 0 " s Vs"" ±15V RL = 50 n ~ -, T J =160"C LOAD RESISTANCE· 10 6 '" ±15 V , 10 ° 0 VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE ~ I. 10 4 / T J -25"'C 1\ -40 25 20 s '0 30 15 ° 40 FREQUENCY - Hz POp OUTPUT VOLTAGE AS A FUNCTION OF LOAD RESISTANCE ~ SO 20 \ \. FREQUENCY. Hz 5 80 _\. 10 n s 100 ~ 50 10 0 ! RL '" 50 1 20 A J lUlv T:'" 25'C 30 140 I\, 0 ~ 30 g 20 0 0 -1 0 :'\. OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY s 180 100 100 P ta~~~~ 1.0 f-A..:V+=-t'-t+-t-+-t1-l+--+++++H ~ 1 00.1 y. , .01 ~ dB ~J L0dB ." 10' 10 4 10' RL t:= r-- .Il 16!l / 32n .ao~DL'-.O:'"...u.OS:':--cO:-l.''''0:".,,...w::'0.5:-:"'.0''--''~~'''''''''''1O· 10' FREQUENCY· Hz POWER OUTPUT· W FREQUENCY - Hz INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY OUTPUT SHORT CIRCUIT CURRENT AS A FUNCTION OF JUNCTION TEMPERATURE PEAK OUTPUT CURRENT AS A FUNCTION OF OUTPUT VOLTAGE 10 1 800 ~~ - TA 0, 1 Power supply - IIlngle 38 Vf-JH-t-+-1 500 Temperaturll -TJ = 25· C 700 C , ~ 600 i'-.. i~ "" ....... , ~ 400 ....... r-.... B ~ 300 i i ""i'-.. u ~ ........ 2DD 100 , 10- 10' ;I:1!1V 10' 10' FREQUENCY· Hz 104 -50 so 100 JUNCTION TEMPERATURE· 'C 5-151 150 V 4OO H -t---(;""I--+++++-+-H 300H-7I"'-t-+-+++++-+-H /' § 'OOr+-r+-r+-r+-r+-r~ ~ 100H-t--+-+-+-++++-+-H 12 18 24 OUTPUT VOLTAGE - V 30 38 FAIRCHILD • p,A7S9 MOUNTING HINTS Metal Can Package (!,A759HC/!,A759HM) The !,A759 in the 8-PinTO-99 metal can package must be used with a heat sink. With ±15 V power supplies, the !,A759 can dissipate up to 540 mW in its quiescent (no load) state. This would result in a 100°C rise in chip temperature to 125°C (assuming a 25°C ambient temperature). In order to avoid this problem, it is advisable to use either a slip on or stud mount heat sink with this package. II a stud mount heat sink is used, it may be necessary to use insulating washers between the stud and the chassis because the case olthe !----...,.-.,...-o+VOUT OND O-~""'+---' 1.' Uk '" Ok Uk 1% 0--<>-". -V'N -7YIO -3liY 71MG 2B' OUTI-......- - 4 -.......-O -YOUT + 11il£F J,Ci125Y ." 0.030 YOUT '" 12Y ,., FEATURES • Wide Output Voltage Range (± 2.2 to ± 30 V) • Excellent Load Regulation AVouT< ±5 mV for AlouT = ± 0.2 A • Excellent Line Regulation AoUT< ±2 mV for A Y'N = 10 V .1 '.1 k .1 3k FEATURES • Excellent Load and Line Regulation • Excellent Temperat~re Coefficient-Depends Largely on Tempco of the Reference Zener 5-154 FAIRCHILD. p,A759 PRECISION ADJUSTABLE VOLTAGE REGULATOR DUAL TRACKING REGULATOR POSITIVE OUTPUT VOl.TAGE R3 R1 NEGATIVE OUTPUT VOLTAGE FEATURES FEATURES • Positive & Negative Outputs "Track" • Inexpensive • 500 mA Positive Output • 325 mA Negative Output • Any 78M Voltage Can be Used +5, +6, +8, +12, • Low Temperature Coefficient -Depends primarily on tempco of reference zener • Excellent Load and Line Regulation --<:urrent through reference zener is independent of load and line • Up to 325 mA Output Current +15, +20, +24 DESIGN CONSIDERATIONS DESIGN CONSIDERATIONS • V'N(-) must not exceed -36 V • V'N(-) must be at least 3 V more negative than • V'N '" 36 V Vour (-) IREF = VOUT 5-155 ' - VREF R3 Your = VR" •. (Rl + R2) --R-2-- ~. JlA776 MULTI-PURPOSE PROGRAMMABLE OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS DESCRIPTION - The IJA776 Programmable Operational Amplifier is constructed using the Fairchild Planar' epitaxial process. High input impedance, low supply currents, and low input noise over a wide range of operating supply voltages coupled with programmable electrical characteristics result in an extremely versatile amplifier for use in high accuracy, low power consumption analog applications. Input noise voltage and cJJrrent, power consumption, and input current can be optimized by a single resistor or current source that sets the chip quiescent current for nana-watt power consumption or for characteristics similar to the IJA741. Internal frequency compensation, absence of latch·up, high slew CONNECTION DIAGRAMS a-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 5S PACKAGE CODE H ISET rate and short circuit current protection assure ease of use in long time integrators, active filters, and sample and hold circuits. • • • • • MICROPOWER CONSUMPTION ±l.2V to ±lav OPERATION NO FREQUENCY COMPENSATION REQUIRED LOW INPUT BIAS CURRENTS WIDE PROGRAMMING RANGE ABSOLUTE MAXIMUM RATINGS Supply Voltage Internal Power Dissipation (Note 1) Metal Can DIP Mini DIP Differential Input Voltage Input Voltage (Note 2) Voltage Between Offset Null and VISET (Maximum Current at ISET) VSET (Maximum Voltage to Ground at ISET) Storage Temperature Range Metal Can, DIP Mini DIP Operating Temperature Range Military (/LA776) Commercial (IJA776C) Pin Temperature (Soldering, 60 s) Metal Can, DIP Mini DIP Output Short Circuit Duration (Note 3) • • • • • HIGH SLEW RATE LOW NOISE SHORT CIRCUIT PROTECTION OFFSET NULL CAPABILITY NO LATCH-UP ±18 V SOOmW 670mW 310mW ±30V ±1SV ±O.S V SOOIJA (V+ -2.0 V) .. VSET .. V+ -6S0C to +1S0°C -SSoC to +12SoC -SSoC to +12SoC O°C to +70°C 300°C 260°C Indefinite EQUIVALENT CIRCUIT v+ a" -IN >--"{) OUT vORDER INFORMATION TYPE PART NO. iJ.A776HM iJ.A776 iJ.A776HC iJ.A776C 14-PIN DIP (TOP VIEW) PACKAGE OUTLINE 6A PACKAGE CODE D NC NC NC NC OFFSET NULL 'SET -IN v+ +IN OUT v- OFFSET NULL NC NC ORDER INFORMATION TYPE PART NO. iJ.A776 iJ.A776DM /LA776 IJA776DC a·PIN MINI DIP (TOP VIEW) A. PACKAGE OUTLINE 9T PACKAGE CODE T soo A, loon OUTPUT A, lOon "6 loon OFFSET NULL 'SET -IN v+ +IN OUT v- OFFSET NULL As soo 0,. 010 v- ORDER INFORMATION TYPE PART NO. IJA776C IJA776TC "Planar is a patented Fairchild process. 5-156 FAIRCHILD • JLA776 ±15 V OPERATION FOR Jl.Ana ELECTRICAL CHARACTERISTICS: TA = 25'C, unless otherwise specified. ISET = 1.5"A CHARACTERISTICS CONDITIONS ISET = 15"A UNITS TYP MAX Input Offset Voltage RS';10k!1 2.0 5.0 2.0 5.0 mV Input Offset Current R~10k!1 0.7 3.0 2.0 15 nA Input Bias Current 2.0 7.5 15 50 Input Resistance 50 5.0 M!1 I nput Capacitance 2.0 2.0 pF Offset Voltage Adjustment Range 9.0 18 Large Signal Voltage Gain MIN 200k RL;;>75k!1, VOUT =±10V TYP MAX MIN nA mV 400k V/V 100k RL;;>5k!1, VOUT =±10V 400k V/V 5.0k 1.0k !1 Output Short-Circuit Current 3.0 12 mA Supply Current 20 Output Resistance Transient Response (unity gain) 25 160 0.75 Power Consumption VIN = 20mV, RL;;> 5kH, Rise Time CL = 100pF Overshoot Slew Rate Output Voltage SWing RL;;>5k!1 ±12 RL;;>75k!1 180 "A 5.4 mW 1.6 0.35 ItS 0 10 % 0.1 0.8 V/"s ±14 V ±10 RL;;>5k!1 ±13 V The following specifications apply -55°C';T A'; +125°C Input Offset Voltage I nput Offset Current Input Bias Current RS';10k!1 6.0 6.0 mV TA = +125°C 5.0 15 nA T.". = _55°C 10 40 nA TA=+125°C 7.5 50 nA 120 nA TA = _55°C 20 Input Voltage Range ±10 Common Mode Rejection Ratio RS';10k!1 70 Supply Voltage Rejection Ratio RS';10k!1 Large Signal Voltage Gain RL;;>75k!1, VOUT=±10V 100k Output Voltage Swing RL;;>75k!1 ±10 ±10 90 25 70 150 V 90 25 dB 150 75k "V/V V/V ±10 V Supply Current 30 200 "A Power Consumption 0.9 6.0 mW 5-157 • FAIRCHILD • /LA776 ±3 V OPERATION FOR !lA776 ELECTRICAL CHARACTERISnCS: TA = 25°C. unless otherwise specified. ISET = 1.5/lA CHARACTERISTICS Input Offset Voltage CONDITIONS MIN TYP ISET = 15"A MAX MIN TYP MAX UNITS 2.0 5.0 2.0 5.0 mV Input Offset Current 0.7 3.0 2.0 15 nA Input Bias Current 2.0 7.5 15 50 Input Resistance 50 5.0 M.fl Input Capacitance 2.0 2.0 pF Offset Voltage Adjustment Range 9.0 18 mV RS .. l0k.fl Large Signal Voltage Gain 50k RL"75k.fl. VOUT=±lV 200k V/V 50k RL"5k.fl. VOUT=±lV Output Resistance 5k nA 200k V/V lk .fl Output Short-Circuit Current 3.0 Supply Current 13 20 130 160 "A Power Consumption 78 120 780 960 "W Transient Response (unity gain) Rise Time VIN = 20mV. RL " 5k.fl. CL" 100pF Overshoot Slew Rate .. RL"5k.fl 5.0 rnA 3.0 0.6 ILS 0 5 % 0.03 0.35 V/"s 0 The follOWIng specIfIcatIons apply for -55 ° C .. T A" +125 C I nput Offset Voltage Input Offset Current I nput Bias Current RS .. l0k.fl 6.0 6.0 mV TA = +125°C 5.0 15 nA TA=-55°C 10 40 nA TA =+125°C 7.5 50 nA TA=-55°C 20 120 nA Input Voltage Range ±1.0 Common Mode Rejection Ratio RS .. l0k.fl Supply Voltage Rejection Ratio RS .. l0k.fl Large Signal Voltage Gain RL"75k.fl. VOUT=±lV 70 ±1.0 86 25 70 150 Output Voltage Swing 25 dB 150 25k 25k ±2.0 "V/V V/V RL"5k.fl. VOUT=±lV RL"75k.fl V 86 V/V ±2.4 V ±1.9 RL"5k.fl ±2.1 V Supply Current 25 180 "A Power Consumption 150 1080 "W NOTES: 1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/C for Metal Can, 8.3 rnW/C for the DIP, and 5.6 mW/C for the Mini DIP. 2. For supply voltages less than ± 15 V. the absolute maximum input voltage is equal to the supply voltage. 3. Short Circuit may be to ground or either supply. Rating applies to +125°C case temperature or +7SoC ambient temperature for ISET .. 30 "A. 5-158 FAIRCHILD • ILA776 ±15 V OPERATION FOR /lA776e ELECTRICAL CHARACTERISTICS: TA = 25"C, unless otherwise specified. ISET = 1.5/LA CONDITIONS CHARACTER ISTICS MIN TYP ISET= 15/LA MAX MIN TYP MAX UNITS 2.0 6.0 2.0 6.0 mV Input Offset Current 0.7 6.0 2.0 25 nA Input Bias Current 2.0 10 15 50 Input Offset Voltage RS';10kil Input Resistance nA 50 5.0 Mil Input capacitance 2.0 2.0 pF Offset Voltage Adjustment Range 9.0 18 Large Signal Voltage Gain 50k RL;;>75kil, VOUT-±10V mV 400k VIV 50k RL;;>5kil, VOUT=±10V 400k VIV Output Resistance 5.0 1.0 kil Output Short-Circuit Current 3.0 12 mA Supply Current 20 Power Consumption Transient Response (unity gain) 30 160 0.9 Y,N = 20mV, RL;;> 5kil, Rise Time CL'; 100pF Overshoot Slew Rate RL;;>5kil ±12 RL;;>75kil Output Voltage Swing 190 !LA 5.7 mW 1.6 0.35 !JS 0 10 % 0.1 0.8 V/!Js V ±14 ±10 RL;;>5kil V ±13 The following specifications apply to O°C.;TA'; +70°C Input Offset Voltage I nput Offset Current RS<10kil 7.5 7.5 mV TA=+70°C 6.0 25 nA 'u 40 r:.I1.~ 10 50 nA 100 nA .... ....0 .... IA -v v Input Bias Current TA =+70°C 20 TA = O°C ±10 Input Voltage Range 70 ±10 90 70 V dB 90 Common Mode Rejection Ratio RS.;10kil Supply Voltage Rejection Ratio RS<10kil Large Signal Voltage Gain RL;;>75kil, VOUT-±10V 50k 50k VIV Output Voltage Swing RL;;>75kil ±10 ±10 V 25 25 200 200 /LVN Supply Current 35 200 !LA Power Consumption 1.05 6.0 mW 5-159 • FAIRCHILD • /LA776 ±3 V OPERATION FOR /lA776e ELECTRICAL CHARACTERISTICS: TA = 25°C, unless otherwise specified. ISET = 1.5/tA CHARACTERISTICS MIN CONDITIONS TYP ISET = 15/tA MAX MIN TYP MAX UNITS 2.0 6.0 2.0 6.0 mV Input Offset Current 0.7 6.0 2.0 25 nA Input Bias Current 2.0 10 15 50 Input Resistance 50 5.0 Mn Input Capacitance 2.0 2.0 pF Offset Voltage Adjustment Range 9.0 18 mV Input Offset Voltage RS';10kn Large Signal Voltage Gain 25k RL>75kn, VOUT=±lV 200k nA V/V 25 k RL>5kn, VOUT=±lV 200k V/V kn Output Resistance 5.0 Output Short-Circuit Current 3.0 Supply Current 13 20 130 170 p.A Power Consumption 78 120 780 1020 p.W Transient Response (unity gain) Rise Time VIN = 20mV, RL > 5kn, CL= 100pF Overshoot Slew Rate RL>5kn 1.0 mA 5.0 3.0 0.6 p.s 0 5 % 0.03 0.35 V/p.s The following specifications apply for O°C';T A';+70°C Input Offset Voltage I nput Offset Current I nput Bias Current RS';10kn 7.5 7.5 mV TA=+70°C 6.0 25 nA TA = O°C 10 40 nA TA=+70°C 10 50 nA 100 nA TA = OOC 20 Common Mode Rejection Ratio RS.;10kn Supply Voltage Rejection Ratio RS';10kn Large Signal Voltage Gain ±1.0 ±1.0 Input Voltage Range 70 70 86 25 200 25 200 25k RL>75kn,VOUT=±lV ±2.0 RL>75kn V/V ±2.4 V ±2.0 RL>5kn Supply Current 25 Power Consumption 150 5-160 p.V/v V/v 25k RL>5kn, VOUT=±lV Output Voltage Swing V dB 86 ±2.1 V 180 p.A 1080 p.W FAIRCHILD • JLA776 TYPICAL PERFORMANCE CURVES FOR MA77S AND MA77SC INPUT BIAS CUR RENT AS A FUNCTION OF SET CURRENT INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 0 zsoc '3,OV ~5 ~ -1tA 18 - r - - - - - - R "75kQ l 10 l' -,t ISfT-SETCURRENT1JA OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOL TAGE - I Y"'J'''lii 1- LOAD RESISTANCE- I;' 0.01 I SET -SETCURRENT-IlA 32 v~.m~+ r- 2 0 It 140 15ET-SETCURRENT-~ -+-t ISfT·1.51l~_ 100 I NPIIT NOI!':F CIIRRFNT OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE A, """".~ 100. 10. - + __ IO-151---_--+_ _ ;E 1O-16 f------t--+-_+-_---1 -20 FREQUENCY -Hz TA"25°C ~ TEMPERATURE·OC !'JQ!SE VOl "!"_~G~ A!':!~ CURRENT AS A FUNCTION OF FREQUENCY '" • ~ '0" -60 !~~!.!T " f------t----"'''i 1M -VS· ~]V'-'+-+CrB...-1"'"N:H--l 1.5/iA 15/iA ±1.5 V 1.7M>! 170k>! ±3.0V 3.6M>! 360k>! ±6.0V 7.5M>! 750k>! ±15 V 20M>! 2.0M>! Note: The JlA 776 may be operated with ASET connected to ground or V-. 5-163 ISET = V+ -0.7 - VRSET where RSET is connected to V- ISET = V+ -0.7 RSET where RSET is connected to ground. FAIRCHILD • J.tA776 TYPICAL APPLICATIONS HIGH ACCURACY SAMPLE AND HOLD SAMPLE~ +15V ,lOTI SAMPLE -15V HOLD 300krL l000pF • HOLD CAPACITOR NANO-WATT AMPLIFIER MUL TIPLEXING AND SIGNAL CONDITIONING WITHOUT FETs +15V O--""IV-----+ +lSV o-W'r-----+ VOUT -15V HIGH INPUT IMPEDANCE AMPLIFIER s, o-W'r->---Y" f15V o-'v.IV----.... -t5V 5-164 ~A777 PRECISION OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The p.A777C is a monolithic Precision Operational Amplifier constructed using a low-noise Fairchild Planar* epitaxial process. It is an excellent choice when performance versus cost trade-ofts are possible between super beta or FET input operational amplifiers and low-cost gen,ual purpose operational amplifiers. Low offset and bias currents improve system accuracy when used in applications such as long-term integrators, sample and hold circuits and high-source impedance summing amplifiers. Even though the input bias current is extremely low, the p.A777C maintains full ±30 V differential voltage range. The internal construction utilizes isothermal layout and special electrical design to maintain system performance despite variations in temperature or output load. High common mode input voltage range, latch-up protection, short-circuit protection and simple frequency compensation make the device versatile and easily used. • • • • • LOW OFFSET VOLTAGE AND OFFSET CURRENT LOW OFFSET VOLTAGE AND CURRENT DRIFT LOW INPUT BIAS CURRENT LOW INPUT NOISE VOLTAGE LARGE COMMON MODE AND DIFFERENTIAL VOLTAGE RANGES CONNECTION DIAGRAMS a-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 55 PACKAGE CODE H vNOTE: Pin 4 connected to case ORDER INFORMATION TYPE PART NO. p.A777HC p.A777C ABSOLUTE MAXIMUM RATINGS Supply Voltage Internal Power Dissipation Metal Can DIP Mini DIP uifferenti~i input 'v'ultClgt: Input Voltage (Note 1) Storage Temperature Range Metal Can and Hermetic DIP Mini DIP Operating Temperature Range Pin Temperature Metal Can and Hermetic DIP (Soldering, 60 s) Mini DIP (Soldering, 10 s) Output Short Circuit Duration (Note 2) ±22V 500mW 670mW 310mW ±15 V COMPo OFFSET NULL NC ~ Y 2 I-J NC '" NC OFFSET -65° C to +150° C _55° C to +125° C 0° Cto 70° C 300° C 260° C Indefinite EQUIVALENT CIRCUIT INVERTING INPUT 14-PIN DIP (TOP VIEW) PACKAGE OUTLINE 6A 9A PACKAGE CODE D P COMPo r----------t-t~~------~----+__.--,_--------------~--ov+ NC FREQ COMP NULL (COMP) v+ -IN +IN OUT v- OFFSET NC NC NULL ORDER INFORMATION PART NO. TYPE p.A777DC p.A777C p.A777PC p.A777C a-PIN MINI DIP (TOP VIEW) PACKAGE OUTLINE 9T PACKAGE CODE T OFFSET NULL /COMP) IkO 50kO V- Notes on following pages. FREG CQMP -ON v+ +IN OUT v- NULL OFFSET ORDER INFORMATION PART NO. TYPE p.A777TC p.A777C ·Planar Is a patented F:=airchild process. 5-165 FAIRCHILD • p.,A777 pA777 ELECTRICALCHARACTERISnCS: Vs = ±15 V, TA = 26"C, Cc = 30 pF unless otherwise specified. CHARACTER ISTICS Input Offset Voltage CONDITIONS MIN RS';;; 50 kn Input Offset Current Input Bias Current Input Resistance 1.0 TYP MAX UNITS 0.7 5.0 mV 0.7 20.0 nA 25 100 nA 2.0 Mn Input Capacitance 3.0 pF Offset Voltage Adjustment Range ±25 Large Signal Voltage Gain RL;;.2 kn, VOUT= ±10V 25,000 mV 250,000 V/V Output Resistance 100 n Output Short Circuit Current ±25 mA Supply Current 1.9 2.8 mA Power Consumption 60 85 mW Transient Response (Voltage Follower, Gain of 1) VIN = 20 mY, Cc = 30 pF, Rise Time RL = 2 kn, CL';;; 100 pF Overshoot Slew Rate RL;;' 2 kO 0.3 MS 5.0 % 0.5 V/MS 0.2 MS 5.0 % 5.5 V/MS (Voltage Follower, Gain of 11 Transient Response (Voltage Follower, Gain of 101 VIN = 20 mY, Cc = 3.5 pF, Rise Time RL = 2 kn, CL';;; 100pF Overshoot Slew Rate RL';;; 2 kO, Cc = 3.5 pF (Voltage Follower, Gain of 10) .. The follOWing specifications apply for O°C.;;; TA';;; +70°C Input Offset Voltage RS';;; 50 kn 0.8 5.0 mV Average Input Offset Voltage Drift RS';;; 50 kn 4.0 30 MVrC 25°C';;; TA ';;;+70°C 0.01 0.3 0°C';;;TA';;;+25°C 0.02 Input Offset Current Average Input Offset Current Drift 40 I nput Bias Current Input Voltage Range Common Mode R.ejection Ratio RS';;; 50 kn Supply Voltage Rejection Ratio RS';;; 50 kn Large Signal Voltage Gain RL;;' 2kn,VOUT=±10V Output Voltage Swing 0.6 200 nArC nA ±12 ±13 V 70 95 dB 15 150 15,000 RL;;'10kn ±12 ±14 RL;;' 2 kO ±10 ±13 Power Consumption nA nArC 60 MV/V V/V V V 100 mW NOTES: 1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/oC Metal Can, 8.3 mW/oC for the DIP, and 5.6 mW/oC for the Mini DIP. 2. For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage. 3. Short circuit may .be to ground or either supply, Rating applies to +125 0 C Case Temperature or +7SoC Ambient Temperature. 5-166 FAIRCHILD • f-tA777 TYPICAL PERFORMANCE CURVES 120 16,------;-,----,-------, r-----;---r----r--r-~___, O°C< 70"c l 1 , J1 I A I 24 v / 90 INPUT COMMON MODE VOL TAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE OUTPUT VOLTAGE SWING AS A FUNCTION OF SUPPLY VOLTAGE OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE 80 5L ---"---:-:----'---Co---!--:!. o SUPPLYVOLTAGE-±V POWER CONSUMPTION AS A FUNCTION OF SUPPLY VOLTAGE 100 I 0 ! i I ----t--- I -I ! 0 1 10 5 OC<'A' 12 i '/ /f f--i---+--+-+- 14 / A 20 10 5 SIJPPL Y VOLTAGE - ~ V SUPPLY VOLTAGE J:V INPUT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE INPUT RESISTANCE AS A FUNCTION OF AMBIENT TEMPERATURE .L-H-f )0 +r- • lA'25"C_ V 20 1// 0 ~ ~ 10 / i 5 I 5.0 ~ f--+------+--- -+ ~ 2.0 ~ I I 1.0 OFFSET -- 0.5 i 2 0.2 1 1 I I I ! 0.1 10 20 L.-_-'-~-'-_-'-~----' o 40 60 __ 80 0.1 TEMPERATURE POWER CONSUMPTION AS A FUNCTION OF AMBIENT INPUT OFFSET CURRENT AS A FUNCTION OF SUPPLY VOLTAGE OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE 6 4 TA "25'C 20 0 100 TEiVlPERATURE-"C SUPPLYVOLTAGE--.:V 8 ! 1 , I ~ 2-'· 1;;:'n5J 1 24 II / 1 0------8 6 ---;--- I ! I ! 0 1 6 ~ , 1 4r---C- 1 , / 2 I i 0 10 SUPPLY VOLTAGE ±v / 8 20 0.1 1 0.2 0.5 TEMPERAlURE ·"C 1.0 iO 5.0 2.0 LOAORESISTANCE-kll OUTPUT SHORT-CIRCUIT CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE INPUT NOISE VOLTAGE AND CURRENT AS A FUNCTION OF FREQUENCY 35 1 V,I"150_ 1"- )0 5 1"- 1""- 1 ;:::::-- -I '0 2 i "~ 0 1 in2 1 I 5 10 -60 -20 20 I"- 60 ,"- 100 _V 140 10 TEMPERATURE-OC -""' J 100 I lk FREQUENCY-Hz 5-167 10"26 10k lOOk FAIRCHILD- /LA777 TYPICAL PERFORMANCE CURVES OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY 120 100 ~ OJ 40 r-- ~::~C._ '" '"r.... "~ ~ 'lD RL "2kO . 10 Irl 10' 10' ,," TA "25"C 's'''0 Rl"lOkQ \C \ .", C"301f \ill I I'll I -210 I 10 Irl FREQUENCY-Hz 10' 10' ,," I" o 107 OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY FOR VARIOUS GAIN/COMPENSATION OPTIONS " VS -±15V f--~--+----1--+--+~~: ~k~C- "'f--~--+----1c-+--+--j---j CC"lpF CC!,~ 40 Cc 10 ""',~~ -10 I 10 100 FREQUENCY-HZ lk 10k lOOk " 1M ;c ~ 10 5~ 5,0 Ei~ ~ 'IN I I il Iii III 10 I 100 .j- I, 10k lk Vs":t15V 7Of--+--t--+~~+--+--+--j .,~+--+--j-~~--~-j--j lOf---j-~---j--1--~-+~ 2O~+--+-+--1--+-'~~ 1Of--~--+----1--+--+----1~-j 'r~·lc lOOk lM FREQUENCY-Hz 10 lOCI lk 10k jCtSlOOpFf ~OV[RS:O~ I 2,0 ICl'I~) 1.0 10 COMMON MODE REJECTION RATIO AS A FUNCTION OF FREQUENCY ~f--~--+----1--+~~---1---j i I 'OUT /NOOVERSHOOT I'" ~ 20 30 40 50 60 70 CLOSED LOOP VOLTAGE GAIN-dB 5O~+--+-+--P~,--~ 10k lk 1"'- \ ---="""" 90 f--+--"~--+--I--+~!: ~~ OJ f--~--+-_"J--+--+-CC . 30tf lOOk 100 \ 10M INPUT OFFSET VOLTAGE DRIFT AS A FUNCTION OF TIME 100 r--,--,--,----r--,--,--, 100M clN RL -2kO _ 20 FREQUENCY-Hz INPUT RESISTANCE, OUTPUT RESISTANCE, AND INPUT CAPACITANCE AS A fUNCTION Of FREQUENCY 1M VS ·±15V- 'A"25'C- is ~\ CC·,~_J CC !30PF 10M COMPENSATION CAPACITANCE AS A FUNCTION OF CLOSED LOOP VOLTAGE GAIN 120 r - - r - - , - - , - - - , - - , - - , - - - - , OJ 1M lOOk FRfQUENCY-Hz FREQUENCY RESPONSE FOR VARIOUS CLOSED· LOOP GAINS 100 10M 1111""- II. lk FREQUENCY-Hz 120r--r--,--,r--,--,--,--, .", 1\ .", 107 I" VS·±ISV TA -if5°C 1'\ ·120 "- ~ r\ "- 1'\ 0 Vs "±15V I--- Cc -3D1f" Rl :2kQ 20 ~i""O 40 Cc "3pF._ {,.;... ~ ., CC"lli' !-cc'lOpf OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY 0 vs ·±15V """","I- 80 OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY lOOk 1M 100 l' ~ iii i!i ~ ! VSI-ilTA=l25"C_ 80 OJ ., TRENDLIf r If 10 o 10M o 100 OJ) FREQUENCY-Hz . 800 I" TlME-HRS, VOLTAGE FOLLOWER TRANSIENT RESPONSE (GAIN OF 1) VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE TRANSIENT RESPONSE TEST CI RCUIT 10 28 4 10 '" 1 • 4 .~ > ~ I I I 1l f!! RISETlj ., CC'30pF Rl -2krl _ CL:5 ~00pF r -OUTPUT INPUT 0 ·1 TA'25"C_ i!:~~~- 1 i.- VS'!15V- I I h- i:\ ,I CC- 30 pf f- il :.,.C·' pF f:: f:: ~~~ "ii -- Rl"ZkQ- CL"1OO!f 1.0 1.5 2.0 .10 L-L-L-L--,---,---,-I-L--L-.L...J o W W 30 ~ ~ ~ ro w ~ 2,5 nME-1iS TIME-lIS 5-168 FAI~CHILD • p,A777 TYPICAL PERFORMANCE CURVES THERMAL RESPONSE OF INPUT OFFSET VOLTAGE TO STEP CHANGE OF CASE TEMPERATURE STABILIZATION TIME OF INPUT OFFSET VOLTAGE FROM POWER TURN-ON ~1~ ....... V 1-1- / 100 H---!-I'+-+-+-Hr-l-+-+-+--l I f-H+--Ir-lr-lr-l-vs· ±ISV , +-- l - I TA "25°C- I- VS "U5V f--f---- INT'Ii""lvo'l'GEiiIN INITIAL OFFSfT VOLTAGE V· SUGGESTED ALTERNATE 5-169 FAIRCHILD • IJ-A777 TYPICAL APPLICATIONS SAMPLE AND HOLD BIAS COMPENSATED LONG TIME INTEGRATOR V+ 2.2MQ INPUT >"""--0 OUTPUT JOpF *Adjust R3 for minimum integrator drift ----------------------------------------------------AMPLIFIER FOR CAPACITANCE TRANSDUCERS CAPACITANCE MULTIPLIER IOMO Low Frequency Cutoff Rl x C 1 HIGH SLEW RATE POWER AMPLIFIER BILATERAL CURRENT SOURCE ,---~p-o+1SV INPUT INPUT 100kll OUTPUT ± 100 V COMMON MODE RANGE INSTRUMENTATION AMPLIFIER WITH HIGH COMMON MODE REJECTION INSTRUMENTATION AMPLIFIER RJ R2 R6 IOkll IOOkll Rl OUTPUT RJ R4 RS IOkll lOpF 5-170 lOpF R2 RS = RS for best CMRR R7 R1 ~ R~ R) lOOkll R2 = RS Gain = RS (1 R2 + 2R1 R3 ) IJA791 POWER OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUIT GENERAL DESCRIPTION - The IlA791 is a high performance monolithic Operational Amplifier constructed using the Fairchild Planar* Epitaxial process with input characteristics similar to the ,uA741 operational amplifier and 1A available output current. It is intended for use in a wide variety of applications including audio amplifiers, servo amplifiers, and power supplies. The high gain and high output power capability provide superior performance wherever an operational amplifier/power CONNECTION DIAGRAMS 10-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 5H PACKAGE CODE K booster combination is required. The IJA791 is thermal overload and short circuit protected. • CURRENT OUTPUT TO 1 A • SHORT CIRCUIT PROTECTION • OFFSET VOL TAGE NULL CAPABILITY • NO LATCH UP • LARGE COMMON MODE AND DIFFERENTIAL MODE RANGES • THERMAL OVERLOAD PROTECTION I CURRENT SENSE EQUIVALENT CIRCUIT V' COMPENSATION 2 ORDER INFORMATION TYPE PART NO. IlA 791KC IlA791KM 12-PIN DIP (TOP VIEW) PACKAGE OUTLINE 9W PACKAGE CODE P5 ORDER INFORMATION TYPE PART NO. IlA791C IlA791P5 NOTES: The heat sink wings on the P-package are internally connected to V-. Both pin 1 and pin 2 must be connected externally to V-. NOTE: Pin connections shown are for metal can. 'Planar is a patented Fairchild process. 5-171 FAIRCHILD • JLA791 ABSOLUTE MAXIMUM RATINGS Supply Voltage Military (jlA791) ±22 V Commercial (jlA791 C) Peak Output Current Continuous Internal Power Dissipation (Total Package) (Note 1) ±18 V 1.25A Internally Limited Peak Internal Power Dissipation (Per Output Transistor for t';; 5 s, Note 2) Differential Input Voltage Input Voltage (Note 3) ±3O V ±15 V Voltages between offset Null and V- ±0.5 V 15W Operating Junction Temperature Military (jlA791) Commercial (jlA791C) Storage Temperature Range Metal Can _55° C to +150° C 0° C to +125° C _65° C to +150° C -55° C to +125° C Molded Power DIP Pin Temperatures Metal Can (Soldering, 60 s max.) Molded Power DIP (Soldering, 10 s max.) 280° C 260° C NOTES: 1. Thermal resistance of the packages (without a heat sink) Junction to Case Package TO-3 Type Dualln~Line 2. 3. (SH) Power (9W) Typ 4 8 J I Junction to Ambient Max 6 Typ 35 12 50 I I Max 40 Unit °eIW 55 Under short circuit conditions, the safe operating area and de power dissipation limitations must be observed. For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage. J.lA791C ELECTRICAL CHARACTERISTICS: Vs = ± 15 V, TJ = 25°C unless otherwise specified. CHARACTERISTICS MIN CONDITIONS TYP MAX UNITS 2.0 6.0 Input Offset Current 20 200 nA Input 8ias Current 80 500 nA Input Offset Voltage RS';10kU I nput Resistance 0.3 Offset Voltage Adjustment Range ±12 Input Voltage Range 1.0 mV ±13 V d8 150 Power Supply Rejection Ratio Large Signal Voltage Gain Output Voltage Swi ng Output Short Circuit Current MU t15 70 Common Mode Rejection Ratio RL - 1 kn, V OUT - ±10 V RL - 10 n, V OUT - ±10 V 20k ±11.5 R se -0,RL=10U ±10 V/V V ±14 ±12.2 Rse = 0.7U 1000 Rse -1.5U 500 Supply Current (Zero Signal) jlVN V/v 20k R se =O,R L =lkU mV V mA mA 30 mA 7.5 mV The following specifications apply for D· C .; TJ .; 125 0 C Input Offset Voltage Rs';; 10 kU I nput Offset Current 300 nA Input 8ias Current 800 nA 150 jlVN Large Signal Voltage Gain dB 70 Common Mode Rejection Ratio Power Supply Rejection Ratio RL = 1 kU, V OUT - ±10 V 15k RI,. - 10 U, V OUT - ±10 V 15k V/V V/V V ±10 Rse = 0, RL = 1 kU Output Voltage Swing V ±10 30 Supply Current (Zero signal) 5-172 mA FAIRCHILD • JLA791 FRE"QUENCY COMPENSATION +15 V r i 10 IJF r--..... NON-INVERTING 5 OPTIONAL OUTPUT COMPENSATION (SEE NOTE 4) 2 4n {51 (8) 0033:F INPUT 1 RSC /lA791 {4 Cc 100pF 5 pF 10 OUTPUT {61 INVERTING INPUT GAIN 1 6 (7) (9) {,2 3 4 -~~' (10j 8 10 7 eel 20 k l±lOIJF I OFFSET ADJUST (OPTIONAL) ":" -15 v 100 Not Req. RSC ISC 0.6n 1.0 A 1.5n 500mA 3.0n 250mA NOTES 1. Power supply decDupling capacitors and compensation network components must have short leads and they must be located at the amplifier pins. 2. When short circuit limiting is not required, connect terminals one and three together. 3. Pin connections in parentheses are for plastic packages. • 4. Output compensation may be required for some loads. IlA791 ELECTRICAL CHARACTERISTICS: Vs = :!:15 V, TJ = 25·C unless otherwise specified. CHARACTERISTICS Input Offset Voltage CONDITIONS MIN Rs'; 10 kn TYP MAX UNITS 1.0 5.0 mV Input Offset Current 20 200 nA I nput Bias Current BO SOO Input Resistance 0.3 Offset Voltage Adjustment Range Input Voltage Range ±12 ±15 mV ±13 V dB 70 Common Mode Rejection Ratio Power Supply Rejection Ratio Large Signal Voltage Gain Output Voltage Swing Output Short Circuit Current 150 RL = 1 kn 50,000 RL -10n 50,000 jjV/V V/V V/V Rse -O,R L -lkn ±12 ±14 Rse-O,R L -10n ±10 ±12.2 Rse -0.7n 1000 Rse -l.Sn 500 Supply Current (Zero Signal) nA Mn 2.0 V V rnA mA 25 mA The following specifications apply for -55· C .; T J .; 1500 C I nput Offset Voltage Rs'; 10kn 6 I nput Offset Current 500 I nput Bias Current 1.5 Common Mode Rejection Ratio Large Signal Voltage Gain Output Voltage Swing jjA dB 70 150 Power Supply Rejection Ratio mV nA jjV/V RL = 1 kn 25,000 RL -10n 25,000 V/V Rse-O,R L -1 kn ±10 V Rse-O,R L =10n ±10 V Supply Current (Zero Signal) V/V 30 S-173 rnA I I , iI FAIRCHILD • J£A.791 TYPICAL PERFORMANCE CURVES FOR ~A791 AND ~A791C "" .,., 150 v V:±lt5 V .. 115 12.5 V c:, 2"\ 100 , 1\ \ 150 100 50 - , 110-23 ~ Ia ~ ;'0-24 ~ ~ . RMS V'±15V~~ ~A 791 f-- 12 f-=!::::=.-GAIN=10 FILTER 20Hz-20kHz ~ • ~ • GAIN-l000 GAIN: 100 GAIN = 10 S § ,. FREOUENCY _ Hz 10k lOOk 15.0 , ~ 12.5 V 1-10.0 fl lt -l000 R:ot=lkO ~ R",'" 10 1:0 ~ ~10-25 lOOk --,... v5=115 > g I 10k H~ OUTPUT VOLTAGE SWING AS A FUNCTION OF OUTPUT CURRENT 17.5 ~ 16rt±: lk 100 FREOUENCY - TQTAL NOISE (20 Hz-20 kHzl AS A FUNCTION OF JUNCTION TEMPERATURE V" 1. 15 V 100 10- 16 10 1M fREQUENCY - Hz 10-22 10 t5 ~ ·10 INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY 10-26 I~ ';L{~Y ~10-14 " 30 10M TJ '"'25'C " " " " V 1 M i POWER SUPPLY VOLTAGE -1. V ~ 10- " 10 1k 13 :l;15V T =2S"C TJ "'25'C V 0 100 '" 80 ~. lOUT >0 POWER SUPPLY REJECTION RATIO AS A FUNCTION OF FREQUENCY ~C VOLTAGE GAIN AS A FUNCTION OF POWER SUPPLY VOLTAGE IIII 2.' III I '" 100' FREQUENCY - Hz --20 -60 180 11111 TJ - JUNCTION TEMPERATURE _oC 0 eo lOUT < 0 5.0 R t- TJ - JUNCTION TEMPERATURE - II 10.0 I .. 1 \ 1\ '" ". OUTPUT RESISTANCE AS A FUNCTION OF FREQUENCY (OPEN LOOPI INPUT OFFSET CURRENT AS A FUNCTION OF JUNCTION TEMPERATURE INPUT BIAS CURRENT AS A FUNCTION OF JUNCTION TEMPERATURE ~ GAIN-IOO '.5 '.0 ~C-':60 ~SC"'3.0 I'Rsc-O.62 Q Q GAIN-l000 0 " 20 " eo TJ - JUNCTION TEMPERATURE 5-174 100 _·c 140 2.' 0 "" '" ,,, 1000 lOUT - OUTPUT CURRENT - 1250 ± mA 15'" FAIRCHILD • /LA791 TYPICAL PERFORMANCE CURVES FOR IlA791 and IlA791C (Cant'd) SHORT CIRCUIT CURRENT AS A FUNCTION OF CURRENT SENSE RESISTOR, RSC OUTPUT SAFE OPERATING AREA PER OUTPUT TRANSISTOR SHORT CIRCUIT CURRENT AS A FUNCTION OF CASE TEMPERATURE r--.. II 0 I I , "'1::--:1 IL I Ir- II , - \ 75 0 II d, 0 I 0 0.5. 750 "" 0 1:cI<201 '-.... " lOUT - OUTPUT CURRENT - A 2.0 ~~ :~~5nV 2.5 ....... ~ R'!'"oJ- - I 50 75 T J -JUNCTION TEMPERATURE 0 _·c VOLTAGE GAl N AS A FUNCTION OF OPEN LOOP FREQUENCY RESPONSE IJU,U Js·I,,15~= TJ- 2S" C - TJ -2S'C_ ~~ "<. I 25 " '00 ........... -- 3.0 SLEW RATE AS A 'FUNCTION OF CLOSED LOOP GAIN == I I - r---..... RSC - CURRENT SENSE RESISTOR - POWER BANDWIDTtI AS A FUNCTION OF CLOSED LOOP GAIN ......... 1000 td<2E.,:. RL-lln TJ =215·C ~ ,12 0 z 0 ./ ~ V 100 /' '1./ v ~ :I: FREQUENCY RESPONSE FOR CLOSED LOOP GAINS !.I!l IIII 15V T m2S'C ~ ~~1·0 ~ 40 IIII b.lJl" 20 llli I lIJiool" IIIII -'00 10 100 10k , M v- ;/:15V RL-l1n TJ -2S·C hol!l z Cc "':l!ID pF .. " '00 '00' FREQUENCY - Hz FREQUENCY - Hz 5-175 r, FREQUENCY - Hz RL~lHl III -, IIIII J Cc"5p 0 Cc· 1OO pF CLOSED LOOP GAIN III, Cc"SpF ~ I OPEN LOOP PHASE RESPONSE AS A FUNCTION OF FREQUENCY 0 ~ ,,- , CLOSED LOOP GAIN 0 Cc=o t::: 80 '00' • FAIRCHILD • JLA791 TYPICAL APPLICATIONS DC SERVO AMPLIFIER POSITIVE VOLTAGE REGULATOR '30 V ,.k 2.k 20k SlZE80R912Vdc SERVOMOTOR NOTES AC SERVO AMPLIFIER BRIDGE TYPE 3.0 V to 27 V regulator 500 rnA output current 5kOOk VINo---jf--'II"""--.....--~M~---.., +28 V 10 k r---;;;c;;,.---~-'I/"""--1 I. k 5-176 o SERVOMOTOR IJA798 DUAL OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The IlA798 is a monolithic pair of independent, high gain, internally frequency compensated operational amplifiers designed to operate from a single power supply or dual power supplies over a wide range of voltages. The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage. They are constructed using the Fairchild Planar' epitaxial process. CONNECTION DIAGRAMS 8-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE SS PACKAGE CODE H V+ • • • • • • • • • • INPUT COMMON MODE VOLTAGE RANGE INCLUDES GROUND OR NEGATIVE SUPPLY OUTPUT VOLTAGE CAN SWING NEAR GROUND OR NEGATIVE SUPPLY INTERNALLY COMPENSATED W!!)E pnlllll'R !:lJPPLV RANGE: SINGLE SUPPLY OF 3.0 TO 36 V DUAL SUPPLY OF ±1.5 TO ±18 V CLASS AB OUTPUT STAGE FOR MINIMAL CROSSOVER DISTORTION SHORT CIRCUIT PROTECTED OUTPUT HIGH OPEN LOOP GAIN - 200 k EXCEEDS 1458 TYPE PERFORMANCE OPERATION SPECIFIED AT ±15 V AND +5 V POWER SUPPLIES HIGH OUTPUT CURRENT SINK CAPABI LlTY 0.8 rnA AT VOUT = 400 rnV ORDER INFORMATION TYPE PART NO. IlA 798HM IlA7 98HC 8-PIN MINI DIP (TOP VIEW) PACKAGE OUTLINE 6T 9T PACKAGE CODE ABSOLUTE MAXIMUM RATINGS Supply Voltage Between V+ and VDifferential Input Voltage (Note 1) Input Voltage (V-) (Note 1) Internal Power Dissipation (Note 2) Metal Can, Hermetic Mini DIP Molded Mini DIP Operating Temperature Range Commercial (C) Military(M) Storage Temperature Range Molded Package (9T) Hermetic Package (SS, 6T) 36V ±30 V -0.3 V (V-) to V+ SOOmW 310mW R T OUTA V+ -INA OUTB +INA -IN B V- LJr - - - +IN B O°C to +70°C -SSoC to +12SoC -SS'C to +12SoC -6S'C to +lS0'C Pin Temperature MOlded Package (Soldering, lOs) Hermetic Package (Soldering, 60 s) Output Short·Circuit Duration ORDER INFORMATION TYPE PART NO. IlA798 IlA798RM IlA798C IlA798RC IlA798C IlA 798TC *Planar is a patented Fairchild prOcess. 5-177 • FAIRCHILD • ILA798 J.lA798 ELECTRICAL CHARACTERISTICS: Vs ~ ±16 V, TA = 26'C unless otherwise noted. CHARACTERISTICS TYP MAX UNITS Input Offset Voltage CONOITION 2.0 5.0 mV Input Offset Current 10 26 nA -50 -100 MIN Input Bias Current Input Impedance f - 20 Hz 0.3 Input Common Mode Voltege Range 1.0 nA MSl +13to-VS +13.5to:"VS V Common Mode Rejection Ratio RS <10 kSl 70 90 dB 50 200 V/mV Large Signal Open Loop Voltage Gain VOUT = ±10 V, RL = 2kSl Power Bandwidth AV = I, RL = 2 kSl, VOUT= 20 V pk-pk 9.0 kHz Small Signal Bandwidth AV = I, RL = 10 kSl, VOUT=50mV 1.0 MHz Slew Rate AV = I, VIN = -10 V to +10 V 0.6 V/p.s Rise Time AV = I, RL = 10 kSl, VOUT = 50 mV 0.3 p.s Fall Time AV-l, RL = 10 kSl, VOUT=50mV 0.3 p.s Overshoot AV= I, RL= 10 kSl, VOUT- 50mV 20 % Phase Margin AV - I, RL = 2k Sl, CL = 200 pF 60 Degree Crossover Distortion. VIN = 30 mV pk-pk, VOUT = 2 V pk-pk 0.1 % Output Voltage Range RL=10kSl ±13 ±14 V RL = 2 kSl ±12 ±13.5 V Individual Output Short Circuit Current (Notes 3 and 5) ±20 ±30 mA Output Impedance f = 20 Hz Power Supply Rejection Ratio Positive Sl 800 Negative Power Supply Current VOUT = 0, RL - C!'annel Separation f = 1 kHz to 20 kHz (Input Referenced) 00 30 150 p.V/V 30 150 p.V/V 2.0 3.0 mA -120 dB The follOWIng specifIcation apply for -55°C < T A < +125°C Input Offset Voltage 6.0 Average Temperature Coefficient of Input 10 Offset Voltage Input Offset Current 200 Average Temperature Coefficient of Input 50 mV p.V/oC nA pArC Offset Current Input Bias Current -300 Large Signal Open Loop Voltage Gain RL =2 kSl, VOUT = ±10 V Output Voltage Range RL - 2 kSl 25 nA V/mV 300 ±10 V ELECTRICAL CHARACTERISnCS: Vs = +5.0 V and Ground, TA = 26'C unless otherwise noted. TYP MAX UNITS I nput Offset Vol tage 2.0 5.0 mV Input Offset Current 10 30 nA -70 -150 CHARACTERISTICS CONDITION MIN Input Bias Current Large Signal Open Loop Voltage Gain 20 RL = 2 kSl 200 150 Power Supply Rejection Ratio Output Voltage Range (Note 4) RL-l0kSl RL = 10 kSl, 5.0 V < Vs < 30 V Output Sink Current VIN - 1.0 V, VOUT - 200 mV p.V/V V pk-pk V pk-pk 4.0 (V+)-1.5 mA 0.35' 2.0 Power Supply Current nA V/mV 3.0 mA NOTES: 1. For supply voltage I••• than 30 V between V+ and V-, the absolute maximum input voltage is equal to the supply voltage. 2. ,Rating applies to ambient temperature up to ?OOC. Above TA = 70°C, derate linearly 6.3 mWt>C for the Metal Can (59) and Hermetic 'MIni DIP (6T), 5.6 mwl"C for the Molded Mini DIP (9T). 3. 'Not to exceed maximum package power dissipation. 4. Output will s.. ing to ground. S. Indefinite on shorts to ground or V- supplV. Shorts to V+ supply may result In power dissipation exceeding the absolute maximum rating. 5-178 FAIRCHILD • p,A798 IlA798C - ELECTRICALCHARACTERlsncs· Vs = +15 TA = 25"C unless otherwise noted CHARACTERISTICS TYP MAX UNITS Input Offset Voltage 2.0 6.0 mV Input Offset Current 10 50 nA CONDITION MIN -50 Input Bias Current Input Impedance f = 20 Hz 0.3 +13 to-VS Input Common Mode Voltage Range -250 +13.5to-VS Common Mode Rejection Ratio RS .. l0kil 70 90 20 200 nA Mil 1.0 V dB large Signal Open Loop Voltage Gain VOUT = ±10 V, RL = 2 kil Power Bandwidth AV -1, RL - 2 kil, VOUT - 20 V pk·pk 9.0 kHz Small Signal Bandwidth AV = 1, RL = 10 kil, VOUT= 50 mV 1.0 MHz Slew Rate AV = 1, VIN = -10 V to +10 V 0.6 V/lLs Rise Time AV = 1, RL = 10 kil, VOUT = 50 mV 0.3 ILS Fall Time AV= 1, RL = 10 kil, VOUT= 50mV 0.3 ILS Overshoot AV -1, RL = 10 kil, VOUT= SOmV 20 % Phase Margin AV = 1, RL = 2 kil, CL = 200 pF 60 Degree Crossover Distortion VIN = 30 mV pk·pk, VOUT = 2 Vpk·pk . f = 10 kHz 0.1 % Output Voltage Range RL = 10 kil ±13 ±14 V RL = 2 kil ±12 ±13.S (Notes 3 and S) ±10 ±30 Individual Output Short Circuit Current V/mV V mA Output Impedance f = 20 Hz 800 Power Supply Rejection Ratio Positive Negative 30 30 150 ILVN lS0 ILVN Power Supply Current VOUT = 0, RL = ~ 2.0 4.0 mA Channel Separation f = 1 kHz to 20 kHz (Input Referenced) .. il dB -120 The following speCification apply for O·C .. TA .. 70·C 7.S Input Offset Voltage !!"!PIJ! 10 Average Temperature Coefficient of Input SO A ....c:-:::gc Tcmpc:"::!t~re C~eff~de!"!! ~f Offset Voltage Input Offset Current ! mV ILV/"C 200 nA pA/"C Offset Current Input Bias Cu rrent -400 large Signal Open Loop Voltage Gain RL = 2 kil, VOUT = ±10 V Output Voltage Range RL - 2 kil 15 nA V/mV ±10 V - . ELECTRICAL CHARACTERISTICS' Vs = +50 V and Ground TA = 25"C unless otherwise noted CHARACTERISTICS TYP MAX UNITS Input Offset Voltage 2.0 7.5 mV I nput Offset Current 10 50 nA -80 -2S0 CONDITION MIN I nput Bias Current Large Signal Open Loop Voltage Gain 20 RL - 2 kil Power Supply Rejection Ratio lS0 Output Voltage Range RL = 10 kil Output Sink Current VIN = 1.0 V, VOUT = 200 mV RL = 10 kil, 5.0 V .. VS" 30 V Power Supply Current ILVN 4.0 V pk·pk (V+)-l.S V pk·pk 0.35 2.0 S-179 nA V/mV 200 4.0 mA mA • FAIRCHILD • p,A798 1/2 OF EQUIVALENT CIRCUIT v+O-------------------------~----------------------------~--------_1~--------t_----------_, 8 INVERTING INPUT 2(6) v-o-~ __~__--~~----~~----~--~------+-~-------------+------~--~------~--~~~ 3(5) NON·INVERTING INPUT TYPICAL PERFORMANCE CURVES SINEWAVE RESPONSE AV- 1OO TA=2S'C 1\ " II 25 I ~V~ = I±Jsly--+--t-t-H---t----t-ti-j--j RL = 10kO \ .J IV ........ LARGE SIGNAL OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY r ......; h Iv 1\, \l r- NOTE: Class AS output S\a9I! produces distortionless linev.a~e FREQUENCY _ Hz OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE FREQUENCY - Hz INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE 0 vs~ ."Iv _ T1·"lc -- / INPUT BIAS CURRENT AS A FUNCTION OF SUPPLY VOLTAGE r- / 0 o ~ U U M 10 12 14 ,e 30 18 V+ /!ND V-, POWER SUPPLY VOLTAGES - V -155.0254565 TEMPERATURE _ 5-180 C '--'--'--'---'-....J.--l__'--'--'--' o M ~O 6,0 M 10 12 14 16 18 V+ AND V-, POWER SUPPLY VOLTAGES _ V W FAIRCHILD • fJ-A798 TYPICAL APPLICATIONS MULTIPLE FEEDBACK BANDPASS FI LTER WEIN BRIDGE OSCILLATOR 50 k r----v"""--~~_O VOUT ~~-V~~~R~3 Rl C2 R2 10k VREF=+ 0. V+ fa == center frequency 6 BW = Bandwidth Design example: R in k!1 given: Q == 5, fa = 1 kHz C.in JJF LetRl ~ R2 ~ 10 k!1 Q=~<10 BW Cl ~ C2 ~ 9. then R3 ~ 9(5)2 R3~ 10 for fa 215 k!1 C~%~1.6nF 3 C Rl~R2~1 R3 ~ 9Q2 - 1 = 1 kHz R ~ 16 k!1 ~ 0.01 p.F Use scaling factors in these expressions. • If source impedance is high or varies, filter may be preceeded with voltage follower buffer to stabilize filter parameters. COMPARATOR WITH HYSTERESIS HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER Your R3 VOUT = C (1 + a + b)(V2 - V1) R4 ~ == ill! for R5 R5 Rl R2 best CM R R R7 ~ R7 Gain Rl VINH = Rl + R2 R4 R5 ~ ~~(1 R2 Rl H ~ ~ (VOH- VOL) + 2Rl) =C (1 +a+ b) R3 FUNCTION GENERATOR PULSE GENERATOR TRIANGLE WAVE OUTPUT VOUT R3 lOOk R5 100 k • OR iJA799 0+ r1 (VOH - IlREF) + VREF rI --I L.J L. f~~ 4CRfRl 5-181 if R3 = R2Rl R2+ Rl SQUARE WAVE OUTPUT FAIRCHILD • p.A798 TYPICAL APPLICATIONS (Cont'd) GROUND REFERENCING A DIFFERENTIAL INPUT SIGNAL VOLTAGE REFERENCE v+ R2 10k VOUT VOUT Rl 10k V OUT = __ R_1_ = V+ R1 - R2 2 VOLTAGE CONTROLLED OSCILLATOR O.05pF OUTPUT t OUTPUT 2 10k *Wide Control Voltage Range: OVOC'; VC'; 2(V+ - AC COUPLED INVERTING AMPLIFIER AC COUPLED NON-INVERTING AMPLIFIER Rl lOOk 1.5VOC) Rf R2 R2 1M AV = 1 100 k + R1 AV = 11 (as shown) C'N "J C1°VOUT RB RL 6.2 k R4 lOOk + C2 P 1 -=lO F-::--::- R5 tOOk V+ o -= - -1 - ¥ V+ Rf Av= 2V,k.,k T Rl 10k Co Cl 10 PF.J, R1 Av = 10 (as shown) 5-182 '·1 6.2k R2 lOOk -=- 10k -= -=1 A~ 2V,k.,k T ~A1458.~A1458C.~A1558 DUAL INTERNALLY-COM PENSATED OPERATIONAL AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The I'A1458h,A1558 are a monolithic pair of Internally Compensated High Performance Amplifiers constructed using the Fairchild Planar* epitaxial process. They are intended for a wide range of analog applications where board space or weight are important. High common mode voltage range and absence of "latch-up" make the I'A1458/I'A1558 ideal for use as voltage followers. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier and general feedback applications. CONNECTION DIAGRAMS 8-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 5S PACKAGE CODE H The I'A1458/I'A1558 are short-circuit protected and require no external components for frequency compensation. The internal 6 dB/octave roll-off insures stability in closed loop applications. For single amplifier performance, see the I'A741 data sheet. V cc+ • • • • • • NO FREQUENCY COMPENSATION REQUIRED SHORT-CI RCUIT PROTECTION LARGE COMMON-MODE AND DIFFERENTIAL VOL TAGE RANGES LOW POWER CONSUMPTION NO LATCH-UP MINI DIP PACKAGE ABSOLUTE MAXIMUM RATINGS Supply Voltage Military (I'A1558) Commercial (I'A1458 and I'A1458C) • ±22 V ±18 V I nternal Power Dissipation (Note 1) Metal Can Mini DIP Differential I nout Voltaoe (Note 2) Common-Mode Input Swing (Note 2) Output Short Circuit Duration (Note 3) Storage Temperature Range 500mW 310mW ±30 V ±15 V Indefinite _65°C to +150°C Operating Temperature Range Military (I'A1558) Commercial (I'A 1458 and I'A 1458C) Pin Temperature Metal Can (Soldering, 60 s) Mini DIP (Soldering, 10 s) -55°C to +125°C O°C to 70°C 300°C 260°C ORDER INFORMATION TYPE PART NO. uA1458 uA1458HC I'A1458C I'A1458CHC I'A1558 I'A1558HM 8-PIN MINI DIP (TOP VIEW) PACKAGE OUTLINE 9T PACKAGE CODE T 6T R EQUIVALENT CIRCUIT (EACH SIDE) r--t------,----,----,r-"1"--------"1"-Q+vcc OUTPUT ORDER INFORMATION TYPE PART NO. I'A1458 I'A1458TC I'A1458C I'A1458CTC I'A1458 I'A1458RC I'A1458C I'A1458CRC I'A1558 I'A1558RM Notes on following page. "'Planar is a patented Fairchild process, 5-183 FAIRCHILD • JLA1458 • JLA1458C • JLA1558 IlA1458 ELECTRICAL CHARACTERlsncs: Vs = ± 16 V, TA = 26"C unless otherwise specified. CHARACTER ISTICS CONDITIONS MIN TYP MAX UNITS 2.0 6.0 mV I nput Offset Current .03 0.2 IlA Input Bias Current 0.2 0.5 IlA Input Offset Voltage Rs";10kU Differential Input Impedance 1.0 Mn 6.0 pF 200 Mn ±13 V 45 nViJHz 70 90 dB 20k 100k V/V 14 kHz 0.3 Parallel Input Resistance 1=20 Hz, Open Loop Parallel Input Capacitance Common-Mode Input Impedance 1=20Hz ±12 Common-Mode Input Voltage Swing Av=100, Rs =10kU, 1=1.0kHz, Equivalent (nput Noise Voltage BW=1.0Hz Common-Mode Rejection Ratio Open-Loop Voltage Gain 1=100Hz VOUT = ±10 V, RL = 2.0 kU Av = 1, RL =2.0 kU, THD ";5%, Power Bandwidth VOUT = 20 Vpk-pk Unity Gain Crossover Frequency (Open-Loop) 1.1 MHz Phase Margin (Open Loop) 65 Degrees ~ 0.8 1 Slew Rate AV Output Impedance 1=20 Hz Short-Circuit Output Current Output Voltage Swing dB 11 Gain Margin ±12 RL=10kU V/IlS 75 n 20 rnA ±14 V Power Supply Sensitivity VCC- = Constant Rs";10kU 150 IlV/V 30 150 IlV/V 1+ 2.3 5.6 rnA L 2.3 5.6 mA 70 170 mW V CC + = Constant Power Supply Current Power Dissipation 30 VOUT ~ 0 The Following Specifications Apply For O°C..; T A .. 70° C Input Offset Voltage Rs";10kU Input Offset Current Input Bias Current Open Loop Voltage Gain VOUT = ±10 V, RL = 2.0 kU Output Voltage Swing RL = 2.0 kU Average Temperature Coefficient of I nput Offset Voltage Rs =50 U ±13 15 5-184 mV IlA 0.8 IlA V/V 15k ±10 7.5 0.3 V Ilvtc FAIRCHILD e p,A1458 ep,A1458C ep,A1558 IlA1458C ELECTRICALCHARACTERlsncs: Vs ~ ±15 v, TA ~ 25·C unless otherwise specified. CONDITIONS I CHARACTERISTICS Input Offset Voltage MIN TYP MAX UNITS 2.0 10 mV Input Offset Current .03 0.3 /.LA Input Bias Current 0.2 0.7 /.LA Rs,,; 10 kn Differential Input Impedance Parallel Input Resistance f Parallel Input Capacitance Common-Mode Input Impedance f = 20 Hz, Open Loop ~ 20 Hz Common·Mode Input Voltage Swing ±11 Av Equivalent Input Noise Voltage BW Common-Mode Rejection Ratio Open·Loop Voltage Gain = 100, Rs = 10 kn, f = 1.0 kHz, = 1.0 Hz = 100 Hz VOUT = ±10 V, RL = 10 kn Av = I, RL = 2.0 kn, THD,,; 5%, f 1.0 Mn 6.0 pF 200 Mr! ±13 V 45 nV/JHi' 60 90 dB 20k lOOk V/V 14 kHz 1.1 MHz 65 Degrees Power Bandwidth VOUT ~ 20 Vpk-pk Unity Gain Crossover Frequency IOpen·Loop) Phase Margin IOp;m Loop) Gain Margin 11 Slew Rate AV = 1 Output Impedance f = 20 Hz Short-CIrcuit Uutput Current Output Voltage Swing RL dB V//.Ls 0.8 = 10 kn tIl 75 n <.v -" ±14 V Power Supply Sensitivity VCCV CC + ~ ~ Constant 30 /.LV/V 30 /.LV/V Rs,,; 10 kn Constant Power Supply Current Power Dissipation 1+ 2.3 8.0 mA '- 2.3 8.0 mA 70 240 mW VOUT =0 The Following Specifications Apply For O·C .;; T A';; +70°C Input Offset Voltage Rs = 10 kn Input Offset Current Input Bias Current = ±10 V, Open Loop Voltage Gai n VOUT Output Voltage Swing RL = 2.0 kn Average Temperature Coefficient RS = 50 n RL = 10 kn 15k ±9.0 5-185 mV /.LA 1.0 /.LA V/V ±13 15 of I nput Offset Voltage 12 0.4 V /.LV/oC • FAIRCHILD e/LA1458 e/LA1458C e/LA1558 ~A1558 ELECTRICAL CHARACTERISTICS: Vs = ±15 V. TA = 25"C unless otherwise specified. CONDITIONS CHARACTERISTICS Input Offset Voltage MIN Rs:510kfl Input Offset Current Input Bias Current TYP MAX UNITS 1.0 5.0 mV 0.03 0.2 p.A 0.2 0.5 p.A Differential Input Impedance 0.3 Parallel Input Resistance 1.0 Mil 6.0 pF 1 = 20Hz. Open Loop Parallel Input Capacitance Common·Mode Input Impedance 1=20Hz ±12 Common·Mode Input Voltage Swing Equivalent Input Noise Voltage Av=100, Rs=10 kfl, 1=1.0kHz. 200 Mil ±13 V 45 nViJHz 70 90 dB 50k 200k V/V 14 kHz BW=1.0Hz Common-Mode Rejection Ratio 1=100Hz Open-Loop Voltage Gain VOUT=±10V. RL=2.0kfl Av = 1, RL = 2.0 kfl. THO :5 5%, Power Bandwidth VOUT = 20 Vpk-pk Unity Gain Crossover Frequency (Open Loop) 1.1 MHz Phase Margin (Open Loop) 65 Degrees 11 Gain Margin AV Output Impedance 1=20 Hz = Short·Circuit Output Current Output Voltage Swing dB V/p.s 0.8 1 Slew Rate ±12 RL=10kfl 75 il 20 mA ±14 V Power Supply Sensitivity V CC - = Constant 30 150 p.VN 30 150 p.VN 1+ 2.3 5.0 mA L 2.3 5.0 mA 70 150 mW Rs:510kfl VCC+ = Constant Power Supply Current Power Dissipation VOUT =0 The Following Specifications Apply For -55°C ... TA ... +125°C Input Offset Voltage Rs:510kfl Input Offset Current Input Bias Current Open-Loop Voltage Gain VOUT =±10 V, RL =2.0 kfl 25k Output Voltage Swing RL=2 kfl ±10 Average Temperature Coefficient Rs=50fl 6.0 mV 0.5 p.A 1.5 p.A V/V ±13 15 V p.V/"C of I nput Offset Voltage NOTES: 1. Rating applies to ambient temperatures up to ?OoC. Above 70°C ambient derate linearly at 6.3 mW/oC for the metal can and 5.6 mW/oC 2. 3. for the mini DIP. For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage. Short circuit may be to ground or either supply. Rating applies to + 1250 Cease te'!1perature or 700 C ambient temperature. 5-186 FAIRCHILD -ILA1458 -ILA1458C-ILA1568 TYPICAL PERFORMANCE CURVES FOR IlA1458. IlA14!'18C AND IlA1558 (VCC+ ~ +15 V, VCC- ~ -15 V, TA ~ 25°C unless otherwise noted) OPEN·LOOP VOL TAGE GAIN AS A FUNCTION OF POWE R SUPPL Y VOLTAGES ,/ OPEN·LOOP FREQUENCY RESPONSE """"1"'- V V "-1"- 80 30 HlO POWER SUPPL Y VOLTAGE V U)'" 10k ~ lOOk FREQUENCY - Hz Fig. 1 Fig. 2 POWER BANDWIDTH (LARGE SIGNAL SWING AS A FUNCTION OF FREQUENCY) POWER DISSIPATION AS A FUNCTION OF POWER SUPPL Y VOL TAGE 28 vo-a r-- so 40 / ,/ V 1\ ;0 RL ~ '.0 '2 k 3.0 VOLTAGE FOLLOWER !15VOLTSUPPLiES I II o THO III 1:11 10 < 5% i' 1.0 1.0 " 2.0 FREQUENCY - Hz POWER SUPPLY VOLTAGE - V Fig. 3 Fig. 4 OUTPUT VOL TAGE SWING AS A FUNCTION OF LOAD RESISTANCE OUTPUT NOISE AS A FUNCTION OF . SOURCE R.ESISTANCE. 0.8 0.6 o~~~~~llL~~~-U~ 100 200 500 1.0k LOAD RESISTANCE SOURCE RESISTANCE OHMS Fig. 5 Fig. 6 5-187 OHMS FAIRCHILD • ~A1458 • ~A1458C • ~A1558 QUADRATURE OSCILLATOR HIGH·IMPEDANCE. HIGH·GAIN INVERTING AMPLIFIER C, C3 820pF SINE OUTPUT 1% 820pF 1% ", 180k,Q ,% -15V "1 190kS1 1% Fig. 7 "f = R2C2) (R,C, 2rr J C2R2C3R3 I C, 820PF 1% Fig. 8 ANALOG MULTIPLIER +15V CURRENT SOURCE AMPLIFIER ", 20kn 1% "s S k" 1% -15V "3 10k" 1% R4 15kU 1% "Matched to 0.1% EOUT = 100 EINl X EIN2 -15 V +15V ZERO ADJUST Fig. 9 COMPRESSOR/EXPANDER AMPLIFIERS R, 10kn ", +15 V COMPR~~~~~ o--'V'lI...-+-t kSl COMPRESSOR EXPANDER "4 10kn INPUT OUTPUT ~------~-o~-------<~+-~~--~-+~ 1I2,ttA1558 >-~-o ~~~~~EA 1/2 p.A1558 "3 10kS1 COMPRESSOR EXPANDER MAXIMUM COMPRESSION EXPANSION RATIO = R,/R ('0 kil > R" 0) NOTE: DIODES 0, THROUGH 04 ARE MATCHED FD6666 OR EQUIVALENT. Fig.10 5-188 IJA3301- IJA3401 QUAD SINGLE-SUPPLY AMPLIFIERS FAIRCHILD INTEGRATED CIRCUITS GENERAL DESCRIPTION - The "A3301/"A3401 are monolithic Ouad Amplifiers consisting of four independent. dual input. internally compensated amplifiers. They are constructed using the Fairchild Planar· epitaxial process. They were designed specifically to operate from a single power supply voltage and to provide a large output voltage swing. The non-inverting input function is achieved by using a current mirror. Applications for the MA33011 J,LA3401 are ae amplifiers, Fe active filters, low frequency triangle. squarewave and pulse waveform generation circuits. tachometers and low speed. high voltage digital logic gates. • SINGLE SUPPLY OPERATION - +4.0 Vdc to +28 Vdc • • • • INTERNALLY COMPENSATED WIDE UNITY GAIN BANDWIDTH - 5.0 MHz LOW INPUT BIAS CURRENT - 50 nA TYPICAL HIGH OPEN LOOP GAIN - 1000 VN MINIMUM ABSOLUTE MAXIMUM RATINGS Supply Voltage /LA3301 +28 V +IRV 5.0 mA 50mA 50 mA 670mW J.l.A34Gi Non~lnverting Input Current Sink Current Source Current Internal Power Dissipation (Note 11 Operating Temperature Range _40° C to +85° C O°C to +70°C _55°C to +125°C 260°C /LA3301 /LA3401 Storage Temperature Range Pin Temperature (Soldering. 10 sl CONNECTION DIAGRAM 14·PIN DIP (TOP VIEW) PACKAGE OUTLINE 9A PACKAGE CODE P + IN B V. + IN A + IN C - IN 8 + IN 0 QUT A --IN D OUT B OUT D - IN B OUT C GND - IN C • I ORDER INFORMATION TYPE PART NO. /LA3301 /LA3401 /LA3301PC "A3401PC EQUIVALENT CIRCUIT 5 8 3 INVERTING 911 OUTPUT - INPUT OUTPUT - INPUT v. 014~~~______-,____~~'N~PU~T__________1-0U_T~PU~T~~~__________1-~~-+ ____________~--1-r;-------------,--, 10k 10 CR> CRa CR' 13 NON·INVERTING NON·INVERTING INPUT INPUT MULTIPLE EMITTER (8) TRANSISTOR - ONE EMITTER CONNECTED TO EACH INPUT "Planar is a patented Fairchild process. 5·189 NON·INVERTING INPUT FAIRCHILD • 1£A3301 • I£A3401 .uA3301 ELECTRICAL CHARACTERISnCS: Vs = +15 Vdc, RL = 5.0 kG, TA = +25"C, each amplifier, unle•• otherwise noted. CHARACTERISTICS CONDITION Open Loop Voltage Gain (Note 2) Inverting Input Input Bias Current (Note 3) RL =~, TYP 2000 Inverting Input I nput Resistance Current Mirror Gain (Note 4) MIN 1000 (lMirror = 200 /JAdc) 50 0.1 1.0 0.80 0.98 MAX UNITS V/V 300 nA Mfl. 1.16 AlA Output Current VOH = 0.4 Vdc Source 3.0 VOH -9.0Vdc Sink (Note 5) VOL = 0.4 Vdc 0.5 10 mA 7.0 mA 0.87 mA Output Voltage (Note 6) HIGH 13.5 LOW 14.2 0.03 Slew Rate CL = 100 pF, RL ':' 5.0 kfl. V 0.1 Unity Gain Bandwidth (Note·7) Phase Margin (Note 7) V V/",s 0.6 5.0 MHz 70 Degrees Quiescent Power Supply Current (Note 8) Non-Inverting Inputs Open Total for Four Amplifiers 6.9 10 mA Non-Inverting Inputs Grounded Total for Four Amplifiers 7.8 14 mA Power Supply Rejection (Note 9) (f = 100 Hz) 75 dB Channel Separation (f - 1.0 kHz) 85 dB The following specifications apply for -40°C <;;TA <;;+85°C Open Loop Voltage Gain (RL = 10 kfl.) I nverting Input Input Bias Current RL 1600 -~ V/V 500 Output Voltage (Note 10) Undistorted Output Swing 10 13.5 nA Vpk-pk .uA3401 ELECTRICAL CHARACTERISnCS: Vs = +15 Vdc, RL = 5.0 kG, TA = CHARACTERISTICS +25"C, each amplifier, unless otherwise noted. CONDITION Open Loop Voltage Gain (Note 2) Inverting Input Input Bias Current (Note 3) RL =~, MIN TYP 1000 2000 Inverting Input Input Resistance 50 0.1 MAX UNITS V/V 300 nA 1.0 Mfl. Output Current Source 5.0 10 mA Sink (Note 5) 0.5 1.0 mA Output Voltage (Note 6) 13.5 HIGH Slew Rete V 14.2 0.03 LOW 0.1 V/",s 0.6 CL = 100 pF, RL = 5.0 kfl. Unity Gain Bandwidth (Note 7) Phase Margin (Note 7) V 5.0 MHz 70 Degrees Quiescent Power Supply Current (Note 8) Non-Inverting Inputs Open Total for Four Amplifiers 6.9 10 mA Non-Inverting Inputs Grounded Total for Four Amplifiers 7.8 14 mA Power Supply Rejection (Note 9) (f = 100 Hz) 75 dB Channel Separation (f - 1.0 kHz) 85 dB .. The follOWing specIfIcatIons apply for 0 C ';;TA <;;70° C. Open Loop Voltage Gain (RL = 10 kn) Inverting Input Input Bias Current RL-~ Output Voltage (Note 10) Undistorted Output Swing 800 10 5-190 V/V 500 13.5 nA Vpk-pk FAIRCHILD • ILA3301 • ILA3401 TYPICAL PERFORMANCE CURVES OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE OUTPUT RESISTANCE AS A FUNCTION OF FREQUENCY 0 0 / 1\ V 0 V 0 1\ 0 1\ V . / ;\ 0 1\ 0 ,,. 0 ,"0 o 100k 1.0M 5.0M o '" 6.0 I,OM SUPPLY VOLTAGE - V SUPPLY CURRENT AS A FUNCTION OF SUPPL Y VOLTAGE 0 GRO",O'OYi 0 r ~ 0 /' :/V LINEAR SOURCE CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 4 VOL -O.4V ~ 2 6 ./ ~ 100 IPOSITIVE INPUTS ,/ LINEAR SINK CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 0 ~ lOG IPOSITIVE INPUTS r- r- FREQUENCY-H, ,/ GROUNDED) 2 ,/' ./ 0 0 0 ~ / 6 1/ f- f- .-- B /'/ 4. 0 • 0 4 o.2 0 " 6.0 0 30 0 " SUPf>LVVOLTAGE-V SUPPLY VOLTAGE _ V NOTES: "I. 2. 3, 4. 5. 6. 7. 8. 9. 10. Hatmgappiies"[o TA UP"lU l~tC. AOOVt.1IA -7r/C,Ul:lfi:li.t:: iillde:ui y ai.o.3111'V·V','°C. Open loop voltage gain is defined as the voltage gain from the inverting input to the output, Input bias current can be defined only for the inverting input. The non-inverting input is not a true "differential input" - as with a conventional Ie operational amplifier. As such this input does not have a requirement for input bias current. Current mirror gain is defined as the current demanded at the inverting input divided by the current into the non~inverting input. Sink current is specified for linear operation. When the device is used as a gate or a comparator (non~linear operation), the sink capability of the device is approximately 5.0 milliamperes. When used as a non~inverting amplifier, the minimum output voltage is the VSE of the inverting input transistor. Bandwidth and phase margin are defined with respect to the voltage gain from the inverting input to the output. The quiescent current will increase approximately 0.3 mA for each non~inverting input which is grounded. Leaving the non~inverting input open causes the apparent input bias current to increase slightly (100 nA) at high temperatures. Power supply rejection is specified at closed loop unity gain, and therefore indicates the supply rejection of both the biasing circuitry and the feedback amplifier. Peak-to-peak restrictions are due to the variations of the quiescent dc output voltage. in the standard configuration as shown in the peak-to-peak output voltage test circuit. TEST CIRCUITS SMALL SIGNAL TRANSIENT RESPONSE o. I ~F v'N >-t-1"--o INVERTING AMPLIFIER NON-INVERTING AMPLIFIER Af 510k Af 510k A, <>--l!----\M-4--1 5.01'F 1.0 ~ F >-'>--,*-~<> VOUT VOUT '1 O.lI'F V IN <>--If-''VII'<---r--I '" A, 1.0M R, 1.0M VOUT +15V Rf ~ 0..--- 1 for- Ai Fig_ 1 Fig_ 2 5-191 we BW = 250 kHz «R j 26 1,(mA) Fig_ 3 FAIRCHILD • JLA3301 • JLA3401 TEST CIRCUITS (Cont'd) INVERTING AMPLIFIER WITH Av 100 AND Vr =V+ INVERTING AMPLIFIER WITH ARBITRARY REFERENCE = 51Qk C' VIN O.l.,F Ai o----il-'NY-~-__l V,N T 5,lk <>----1f--'VIIV----<>---I 01pF >-...- - - - o V O U T V, Rf Rf +(1--) Rr 10k tf> Rr Rf Av=-- Vr =+15V R, v, vaUT Av = 100 '-Select for low frequency response. Fig. 4 Fig. 5 OPEN LOOP GAIN AND INPUT RESISTANCE (INPUT BIAS CURRENT, OUTPUT CURRENT) QUIESCENT POWER SUPPLY CURRENT I" .2:k V,N - > - - 4 - - 0 VOUT VOUT 150urce f" -:- RL • 10k --~--~-<>VOUT V'N o-----ll--""Iv--+----l Ci >-+-oVOUT RL=5.0k R, 1.0M v+ '"+t5V VOL measured with inverting input biased as shown. V OH measured with-inverting input grounded. Rf V OUT '" V+ R, V+ '" - - fo, R, '" 2 Rf 2 Fig. 9 Fig. 8 5-192 FAIRCHILD • ILA3301 • ILA3401 NORMAL DESIGN PROCEDURE Output Q-Point Biasing A number of techniques may be devised to bias the quiescent output voltage to an acceptable level. However, in terms of loop gain considerations it is usually desirable to use the non-inverting input to effect the biasing as shown in Figures 2 and 3. The high impedance of the collector of the non-inverting "current mirror" transistor helps to achieve the maximum loop gain for any particular configuration. It is desirable that the non-inverting input current be in the 5.0 p.A to 100 p.A range. V+ Reference Voltage (Figures 2 and 3) The non-inverting input is normally returned to the V+ voltage (which should be well filtered) through a resistor, R r , allowing the input current, Ir, to be within the range of 5.0 p.A to 100 p.A. Choosing the feedback resistor, Rf, to be equal to 1/2 Rr will now bias the amplifier output de level to approximately: V+ 2 This allows for maximum dynamic range of the output voltage. Reference Voltage Other Than V+ (Figure 4) The biasing resistor Rr may be returned to a voltage (V r ) other than V+. By setting Rf = R r, (still keeping Ir between 5.0 p.A and 100 p.A) the output de level will be equal to V r . Neglecting error terms, the expression for determining VOde is: (Vrl (Rf) VOUT = Rr where rjJ is the VBE drop of the input transistors (approximately 0.7 V@ +25°CI. The error terms not appearing in the above equation can cause the de operating point to vary up to 20% from the expected value. Error terms are minimized by setting the input current within the range of 5.0 /J-A to 100 p.A. Gain Determination - Inverting Amplifier The amplifier is normally used in the inverting mode. The input may be capacitively coupled to avoid upsetting the de bias and the output is normally capacitively coupled to eliminate the de voltage across the load. Note that when the output is capacitively coupled to the load, the value of 'sink becomes a limitation with respect to the load driving capabilities of the device. The limitation is less severe if the device is direct coupled. In this configuration, the ae gain is determined by the ratio of At to Ri, in the same manner as for a conventional operational amplifier: Av Rf = Ri The lower corner frequency is determined by the coupling capacitors to the input and load resistors. The upper corner frequency will usually be determined by the amplifier internal compensation. The amplifier unity gain bandwidth is typically 5.0 MHz and with the gain roll-off at 20 dB per decade, bandwidth will typically be 500 kHz with 20 dB of closed loop gain or 50 kHz with 40 dB of closed loop gain. The exception to this occurs at low gains where the inp!Jt resistor selected is large. The pole formed by the amplifier input capacitance, stray capacitance and the input resistor may occur before the closed loop gain intercepts the open loop response curve. The inverting input capacity is typically 3.0 pF. Non-Inverting Amplifier Although recommended as an inverting amplifier, the 3301/3401 may be used in the non-inverting mode (Figure 3). The amplifier gain in this configuration is subject to the same error terms that affects the output Q point biasing so the gain may deviate as much as ±20 % from that expected. In addition, the resistance of the input diode must be included in the value of the input resistor. This resistance is approximately: 26 I; n, where Ir is input current in rnA. The non-inverting gain expression is given,by: Av = Rf 26 ±20%. Ri + Ir(mA) The bandwidth of the non-inverting configuration for a given Rf value is essentially independent of the gain chosen. For Rf = 510 kn the bandwidth will be in excess of 200 kHz for non-inverting gains of 1, 10, or 100. This is a result of the loop gain remaining constant for these gains since the input resistor is effectively isolated from the feedback loop. 5-193 • FAIRCHILD • ILA3301 • ILA3401 TYPICAL APPLICATIONS TACHOMETER CIRCUIT V+=+12V II---;A~~P~U-;---I! 1'I I -I HYSTERJSISAMPLIFIER I, 130 100" , , 1-----;o-;;;;-STAB~~'VIBRATO-;----l I I I Rl 100 k MAGNETIC 10k Cl 4.7k 0.Q1 /IF PICKUP >--l---+--o I ,I II , 10k HYSTERISISV~~~~GE FOR SWITCHING L _ _ ~= Rt , INTERVAL "0.7_ Rtel __ _ _t _ L _ _ _ _TIMING I (~~ _ _ --1 OUTPUT ~ I ! _ _ _ ..J LOGIC OR GATE 150k V+ .. + 15 V o---~"""'------i 75' 751<: 75k LOGIC NANO GATE (Large Fan In) LOGIC NOR GATE V+m+15Vclc VS-+15Vdc f ~ ABCDE R-S FLIP-FLOP v+ STABLE MULTIVIBRATOR V+-=+15V V+ >----+---0 5-194 VO UT FAIRCHILD • JLA3301 • JLA3401 NEGATIVE EDGE DIFFERENTIATOR POSITIVE EDGE DIFFERENTIATOR O.OOIj1F O.OOl~F ~OOO2" T 0002pF o---jl----"M~---j >--4---<>VOUT ~~--~--~ VOUTldc) '" 7.0V OUTPUT RISE TIME'" 0.22 ms OUTPUT RISE TIME'" 0.22 ms INPUT CHANGE TIME VS ·+15V INPUT CHANGE TIME CONSTANT'" 1.0 ms CONSTANT'" 1.0 ms ZERO CROSSING DETECTOR V+=+1SV f'o. /"\ A ov INPUT~~ OUTPUT MAGNETIC PICKUP I U n Your '610k AMPLIFIER AND DRIVER FOR 50 n LINE 51k V,N o---jl-"",,""'4----i O.lJJF 10 1.2M 'TvauT 2N4403 AV-10 VOUT - 6.0 p k_Pk +15V BASIC BANDPASS AND NOTCH FILTER c ~ 10 " TBP VINo--i T BP = Center Frequency Gain TN = Passband Notch Gain wO _..2.. R1 -OR R2 R3 RC R1 T BP -TN R2 5-195 50 U n I UOV J,LA3303 • J,LA3403 • J,LA3503 QUAD OPERATIONAL AMPLIFIERS FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The "A3303, "A3403 and "A3503 are monolithic Quad Operational Amplifiers consisting of four independent high-gain, internally frequency-compensated operational amplifiers designed to operate from a single power supply or dual power supplies over a wide range of voltages_ The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. They are constructed using the Fairchild Planar' epitaxial process_ • • • • • • • • INPUT COMMON MODE VOLTAGE RANGE INCLUDES GROUND OR NEGATIVE SUPPLY OUTPUT VOLTAGE CAN SWING TO GROUND OR NEGATIVE SUPPLY FOUR INTERNALLY COMPENSATED OPERATIONAL AMPLIFIERS IN ASINGLE PACKAGE WIDE POWER SUPPLY RANGE: SINGLE SUPPLY OF 3_0 TO 36 V DUAL SUPPLY OF ± 1_5 TO ± 18 V CLASS AB OUTPUT STAGE FOR MINIMAL CROSSOVER DISTORTION SHORT CIRCUIT PROTECTED OUTPUTS HIGH OPEN LOOP GAIN - 200 k "A741 OPERATIONAL AMPLIFIER TYPE PERFORMANCE ABSOLUTE MAXIMUM RATINGS Supply Voltage Between V+ and VDifferential Input Voltage (Note 1) Input Voltage (V-) (Note 1), Internal Power Dissipation (Note 2) Operating Temperature Range 36V ±30V -0.3 V(V-) to V+ 670mW -40°C ,to +85°C O°C to +70°C -55°C to +125°C "A3303 "A3403 j.tA3503 Storage Temperature Range Molded Package Hermetic Package _55°C to +125°C -65°C to +150°C Pin Temperature Molded Package (Soldering, 10 s) Hermetic Package (Soldering, 60 s) 1/4 OF EQUIVALENT CIRCUIT CONNECTION DIAGRAM 14·PIN DIP (TOP VIEW) PACKAGE OUTLINES 6A PACKAGE CODES D DUTA QUTO -INA -IN D +IN A + IN 0 v+ 9A P V- OR GND +tN B + IN C -INB -INC OUT B CUTe ORDER INFORMATION TYPE PART NO. j.tA3303 j.tA3303PC j.tA3403 j.tA3403PC "A3403 "A3503 "A3403DC j.tA3503DC OUTPUT r---------------_t~----------_t------t_-t--------t_------+_~------_t--~Ov+ (GROUND) ~~-+----~-+--~--~~~--~~-+---+--~----~--~-+-o ·Planar is a patented Fairchild process. 5·196 v- FAIRCHILD • JLA3303 • JLA3403 • JLA3503 J.lA3303 ELECTRICAL CHARACTERISTICS: V+ = +14 V, V- = Gnd, TA = 25·C unless otherwise noted. CHARACTERISTICS CONDITION TYP MAX UNITS Input Offset Voltage MIN 2.0 8.0 mV I nput Offset Current 30 75 nA 200 -500 Input Bias Current Input Impedance f = 20 Hz 0.3 Input Common Mode Voltage Range Common Mode Rejection Ratio Large Signal Op,;~-Loop Voltage Gain Power Bandwidth nA M!1 1.0 +12 to Gnd +12.5 toGnd V RS';;; 10 k!1 70 90 dB RL-2k!1 20 200 V/mV 18 kHz AV = I, RL = 2 k!1, VOUT = 10 V pk-pk THD = 5% Small Signal Bandwidth AV = 1, RL = 10 k!1, VOUT= 50 mV 1.0 MHz Slew Rate AV=1 0.6 V/lls Rise Time AV= 1, RL = 10 k!1, VOUT=50mV 0.3 IlS Fall Time AV = 1, RL = 10 k!1, VOUT = 50 mV 0.3 JLS Overshoot AV = 1, RL = 10 k!1, VOUT= 50 mV 5.0 % Phase Margin AV= 1, RL =2 k!1,CL =200pF 60 Degree VIN = 30 mV pk-pk, VOUT = 2 V pk-pk 1.0 % V Crossover Distortion f = 10 kHz Output Voltage Range RL=10k!1 12 12.5 RL = 2 k!1 10 12 ±10 ±30 Individual Output Short Circuit Current Output Impedance f = 20 Hz .. mA 30 150 jLV/V 2.8 7.0 mA 10 mV !1 800 Power Supply Rejection Ratio Power Supply Current V ±45 VOUT=O, RL = 00 The follOWing speCification apply for -40·C .;;; T A';;; 85·C Input Offset Voltage Average Temperature Coefficient of Input Offset Voltage .uvre 10 Input Offset Current 250 nA Average Temperature Coefficient of Input Offset Current 50 Input Bias Current pAtC -1000 nA Large Signal Open Loop Voltage Gain Rl = 2 k!1 15 Vim V Output Voltage Range RL - 2 k!1 +10 V ELECTRICAL CHARACTERISTICS: Vs+ = +5.0 V, Vs- = G, TA = 25·C CHARACTERISTICS unless otherwise noted. CONDITION MIN TYP MAX UNITS Input Offset Voltage 10 mV I nput Offset Current 7'5 nA Input Bias Current Large Signal Open Loop Voltage Gain -500 RL = 2 k!1 20 RL = 10 k!1 3.5 Power Supply Rejection Ratio Output Voltage Range 150 RL = 10 k!1, 5.0 V.;;; VS';;; 30 V Power Supply Current Channel Separation 5-197 jLV/V V pk-pk V pk-pk (V+}-1.7 2.5 f = 1 kHz to 20 kHzOnput Referenced) nA V/mV 200 -120 7.0 mA dB FAIRCHILD· tLA3303 • tLA3403 • tLA3503 ,uA3403 ELECTRICAL CHARACTERISTICS: Vs = ±15 V, TA = 25°C unless otherwise noted. CONDITION CHARACTERISTICS MIN TYP MAX UNITS I nput Offset Voltage 2.0 8.0 mV I nput Offset Current 30 50 nA -200 -500 Input Bias Current Input Impedance f = 20 Hz 0.3 +13 to-VS Input Common Mode Voltage Range 1.0 nA Mil +13.5 to -VS V Common Mode Rejection Ratio RS'; 10 kil 70 90 Large Signal Open Loop Voltage Gain VOUT=±10V,RL=2kil 20 200 V/mV Power Bandwidth AV = 1, RL = 2 kil, VOUT = 20 V pk-pk 9.0 kHz dB THD = 5% Small Signal Bandwidth AV = 1, RL = 10 kil, VOUT= 50mV 1.0 MHz Slew Rate AV = 1, VIN = -10 V to +10 V 0.6 VIMS Rise Time AV = 1, RL = 10 kil, VOUT = 50 mV 0.3 IlS Fall Time AV= 1, RL = 10 kil, VOUT= 50mV 0.3 Overshoot AV - 1, RL = 10 kil, VOUT - 50 mV 5.0 IlS % Phase Margin AV = 1, RL = 2 kil, CL = 200 pF 60 Degree Crossover Distortion VIN = 30 mV pk-pk, VOUT = 2 V pk-pk 1.0 % f = 10 kHz Output Voltage Range RL = 10 kil ±12 ±13.5 RL = 2 kil ±10 ±13 ±10 ±30 ±45 mA 80 '30 150 IlVN 30 150 IlVN 2.8 7.0 mA 10 mV IlV/oC Individual Output Short Circuit Current Output Impedance f = 20 Hz Power Supply Rejection Ratio Positive Power Supply Current VOUT = 0, RL - = Negative V V il The following specification apply for O°C.; TA .; 70°C I nput Offset Voltage 10 Average Temperature Coefficient of Input Offset Voltage Input Offset Current 200 Average Temperature Coefficient of Input 50 nA pArC Offset Current Input Bias Current -800 Large Signal Open Loop Voltage Gain RL =2 kil, VOUT= ±10V Output Voltage Range RL - 2 kil ELECTRICAL CHARACTERISTICS: Vs+ = +5.0 V, Vs- 15 ±10 = G, CHARACTERISTICS TA = 25°C nA V/mV V unless otherwise noted. MIN TYP MAX UNITS Input Offset Voltage 2.0 10 mV I nput Offset Current 30 50 nA -200 -500 CONDITION Input Bias Current Large Signal Open Loop Voltage Gain RL = 2 kil 20 Power Supply Rejection Ratio Output Voltage Range 150 RL=10kil RL = 10 kil, 5.0 V .; Vs <:; 30 V Channel Separation (V+)-1.7 V pk-pk 2.5 f = 1 kHz to 20 kHz (Input Referenced) 5-198 MVN V pk-pk 3.5 Power Supply Current nA V/mV 200 -120 7.0 mA dB FAIRCHILD • JLA3303 • JLA3403 • JLA3503 pA3503 ELECTRICAL CHARACTERISTICS: Vs = ±1S V, TA = 2SoC unless otherwise noted. TYP MAX UNITS Input Offset Voltage CHARACTERISTICS 2.0 5.0 mV Input Dffset Current 30 50 nA -200 -500 CONDITION MIN I nput Bias Current Input Impedance f - 20 Hz 0.3 1.0 +13to-VS +13.5to-VS Input Common Mode Voltage Range nA Mn V Common Mode Rejection Ratio RS .. 10kn 70 90 dB 50 200 V/mV Large Signal Open Loop Voltage Gain VDUT = ±10 V, RL = 2kn Power Bandwidth AV - 1, RL = 2 kn, VOUT = 20 V pk-pk 9.0 kHz Small Signal Bandwidth AV = 1, RL = 10 kn, VOUT=50mV 1.0 MHz Slew Rate AV = 1, VIN =-10 Vto+10 V 0.6 V/,"s Rise Time AV = 1, RL = 10 kn, VOUT= 50 mV 0.3 ,"S Fall Time AV = 1, RL - 10 kn, VOUT - 50 mV 0.3 ,"S Overshoot AV = 1, RL - 10 kn, VOUT - 50 mV 5.0 % Phase Margin AV -1, RL = 2kn, CL = 200pF Degre. Crossover Distortion at f = 10kHz VIN - 30 mV pk-pk, VOUT = 2 V pk-pk Output Voltage Range RL -10 kn ±12 60 1.0 ±13.5 RL = 2 kn ±10 ±13 Individual Output Short Circuit Current (Note 3) ±20 ±30 Output Impedance f = 20 Hz BO Power Supply Rejection Ratio Positive Negative Power Supply Current VOUT = 0, RL = co % V V ±45 mA 30 150 ,"V/V 30 150 ,"V/V 2.B 4.0 mA 6_0 mV ,"V/oC n The following specification apply for -55°C .. TA .. +125°C Input Offset Voltage Average Temperature Coefficient of Input 10 Offset Voltage Input Offset Current Aven:tge TI1HlPtfl~i.UIl: Cutfiii",icwi. 200 vi illfJui. nA pAre ~n Offset Current Input Bias Current -300 Large Signal Open Loop Voltage Gain RL = 2 kn, VOUT = ±10 V Output Voltage Range RL - 2 kn ELECTRICAL CHARACTERISTICS: Vs = +5.0 V, Vs- 25 -1500 300 nA V/mV ±10 V = G, TA = 25°C unless otherwise noted. CHARACTER ISTICS TYP MAX UNITS Input Offset Voltage 2.0 5_0 mV Input Offset Current 30 50 nA -200 -500 CONDITION MIN I nput Bias Current Large Signal Open Loop Voltage Gain 20 RL = 2 kn 200 Power Supply Rejection Ratio Output Voltage Range (Note 4) RL = 10 kn RL = 10 kn,5.0V "VS .. 30 V 150 ,"V/V V pk-pk V pk-pk 4.0 mA 3.5 (V+)-1.7 2.5 Power Supply Current Channel Separation f - 1 kHz to 20 kHz (Input Referenced) -120 NOTES: 1. For supply voltage less than 30 V between V+ and V-, the absolute maximum input voltage is equal to the supply voltage. 2. Rating applies to ambient temperature up to 70°C. Above T A := 70°C, derate linearly at 8.3 mW/J C. 3. Not to exceed maximum package power dissipation. 4. Output will swing to ground. 5-199 nA V/mV dB • FAIRCHILD • JLA3303 • JLA3403 • JLA3503 TYPICAL PERFORMANCE CURVES LARGE SIGNAL OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY ~~~-+-++++-+-~4+-+-+-H~~~~Vi",() ~ 100 t-H#..::;!_=-H-+t--+--++It-+-+-ttt-It-+l+I-TA= 2S C r-o OUTPUT VOLTAGE AS A FUNCTION OF FREQUENCY SINE WAVE RESPONSE AV=l00 TA"2S'C 1\ If\ II \ I t " :-V~.,I±~5IV RL= 10ka 20 \ , > ~ Iv \ .I IV "- g 5 I!: ....... r.. r..; r 10 5.0 '" is r- NOTE; ClassAB outpu!ltageproduce$ diS1orllonlesssinewave -5.0 I.Ok SO"s/DIV. OUTPUT SWING AS A FUNCTION OF SUPPLY VOLTAGE 10k I--- lOOk 1.0M FReQUENCY - Hz INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE INPUT BIAS CURRENT AS A FUNCTION OF SUPPLY VOLTAGE VS~'15IV- Tl·"lc 300 0 / 10 l"- t- 0 / / o o o 20 u aD M 10 12 I. 16 18 V+ AND V-, POWER SUPPLY VOLTAGES _ V ~ -75 -55 -35 -15 5.0 25 45 , TEMPERATURE -'C 5-200 85 85 105 125 150 o'--"'--'---'-....... ---J.--''-"'--'---'-..... W ao aD 10 12 14 16 18 ~o V+ AND V-, POWER SUPPLY VOLTAGES _ V ~ FAIRCHILD • ILA3303 • ILA3403 • ILA3503 TYPICAL APPLICATIONS MULTIPLE FEEDBACK BANDPASS FILTER WEIN BRIDGE OSCILLATOR 50kH ~1n Rl C2 R3 R2 , E '=" center frequency BW '=" Bandwidth fa 10llF Design example: R in kn given: Q = 5, fo = 1 kHz C in,uF Let R 1 ~ R2 ~ 10 kn Q=~<10 BW C1 ~ C2 ~ £ then R3 ~ 9(5)2 - 10 for fo R3 ~ 215 kn C 3 ~%~ C R1~R2~1 R3 ~ 90 2 - 1 = 1 kHz R ~ 16 kn 1.6 nF ~ 0.01 I'F • Use scaling factors in these expressions. If source impedance is high or varies, filter may be preceeded with voltage follower buffer to stabilize filter parameters. HIGH IMPEDANCE DIFFERENTIAL AMPLIFIER COMPARATOR WITH HYSTERESIS R6 R2 R1 VOUT V,N------t HYSTERESIS vo::"Lt:J ffit VOL ' " , VINL I VINH I R3 VOUT~C R4 ~ == f!..§ R5 R5 R1 R2 R7 VRef (1 +a + b)(V2- V1) V1NL ~ R1 R1 + R2 (VOL - VRef) + VRef for best CMRR R7 ~ ~ Gain R4 R5 VINH ~ R1 ~ ~(1 +~) ~ C R2 R3 R1 + R2 (VOH - VRef) + VRef ( 1 + a + b) BI-QUAD FILTER where TBP TN C1 = Center Frequency Gain = Bandpass Notch Gain 1 R2 fo V,N o---j 1-.....-'lJy.,.--4-1 R1 = ;:;;:RC ~ OR R1 R2~-­ TBP R1 R3~TNR2 Example: fo ~ 1000 Hz BW~100Hz TBP ~ 1 TN ~ 1 R ~ 160 kn R1~1.6Mn R2 f--O C1 NOTCH OUTPUT ~ 10C R2~1.6Mn R3~1.6Mn C 5-201 ~ 0.001 I'F FAIRCHILD • ILA3303 • ILA3403 • ILA3503 TYPICAL APPLICATIONS (Cont'd) FUNCTION GENERATOR PULSE GENERATOR TRIANGLE WAVE OUTPUT R3 lDOkn n., L.J + A5 R, 1- 1cokna.....l SQUARE WAVE OUTPUT f = Rl + R~2 4CRfRl R2Rl if R3= R2 + Rl GROUND REFERENCING A DIFFERENTIAL INPUT SIGNAL VOLTAGE REFERENCE V+ R2 10kO VOUT _--"VOUT R, 10kn V OUT = _ _ R_l_ (=~ as shown) Rl + R2 2 1 -=- V OUT =2'" V CC VOLTAGE CONTROLLED OSCILLATOR R' 1DOkn 51 kn OUTPUT 1 R2 50kn '----------+-0 OUTPUT 2 51 kn 10lcO "Wide Control Voltage Range: OVOC';;; VC';;; 2(V+ - AC COUPLED NON-INVERTING AMPLIFIER . AV = 1 R2 Rl , M" '.DOkO AV' ° AB 6.2kn R4 100 kn v+ c~ -=- ,O,F1-=- R5 100kO AC COUPLED INVERTING AMPLIFIER R2 A1 Rf 1COkO = 11 (as shown), 1 c + + Rl 10kn vOUT VINf'V R2 -=- VO+I-'''I°1l0 II'......... ' RL -- -1 ° '\I" 2 1.5 VOC) c, 10#FJ + Vp,~p' Rf AV = Rl 1" AV 5-202 = 10 (as shown) IJA4136 QUAD OPERATIONAL AMPLIFIERS FAIRCH ILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The "A4136 monolithic Quad Operational Amplifiers consists of four independent high gain, internally frequency compensated operational amplifiers. The specifically designed low noise input transistors allow the "A4136 to be used in low noise signal processing applications such as audio preamplifiers and signal conditioners. They are constructed using the Fairchild Planar' Epitaxial process. The simplified output stage completely eliminates crossover distortion under any load conditions, has large source and sink capacity. and is short-circuit protected. CONNECTION DIAGRAM 14-PIN DIP (TOP VIEW) PACKAGE OUTLINE 6A 9A PACKAGE CODE 0 P A novel current source stabilizes output parameters over a wide power supply voltage range. • • • • • • • • UNITY GAIN BANDWIDTH 3 MHz CONTINUOUS SHORT CI RCUIT PROTECTION NO FREQUENCY COMPENSATION REQUIRED NO LATCH-UP LARGE COMMON MODE AND DIFFERENTIAL VOLTAGE RANGES "A741 OPERATIONAL AMPLIFIER TYPE PERFORMANCE PARAMETER TRACKING OVER TEMPERATURE RANGE GAIN AND PHASE MATCH BETWEEN AMPLIFIERS ABSOLUTE MAXIMUM RATINGS Supply Voltage "A4136 "A4136C Differential Input Voltage (Note 1) Input Voltage (Note 1) Internal Power Dissipation (Note 2) Output Short Circuit Duration (Note 3) Operating Temperature Range "A4136 "A4136C Storage Temperature Range RR " .... ±22 V ±18 V ±30 V ±15 V 670mW Indefinite -55°C to +125°C oOe to +70°C -55°C to I IVIUJUt:U rdt,.;I't.ayt: -IN 0 +INA +IND OUT A aUTO QUTB +VS +IN B QUTe -IN B +IN C -VS -INC ORDER INFORMATION PART NO. TYPE "A4136DM "A4136 "A4136DC "A4136C "A4136PC "A4136C +~ 25°C -65°C to +150°C Hermetic Package Pin Temperature Molded Package (Soldering, lOs) Hermetic Package (Soldering, 60 s) -INA 260°C 300°C 1/4 OF EQUIVALENT CIRCUIT V+O-----------~--------------~----~------------------1r--------~----, Rl 8.7k Q5:.------------1---~~Q~6------------------~~~--~ R6 50 RS 100 +---'VII'r--+----+--------oO OUTPUT INPUTS { R, c~>----'~---------1~----' 50 ~_1f--~--~----~--~1( Q14 R. 6.B k R2 5k R3 5k R5 50k V-O-----~--_4----~------_4----------------_+----~------~~--~--~ ·Planar is a patented Fairchild process. 5-203 • FAIRCHILD • JLA4136 ELECTRICAL CHARACTERISTICS: TA = 25°C, Vs = ±15V unless otherwise specified CHARACTERISTICS CONDITIONS "A4136 MIN "A4136C TYP MAX UNITS 0.5 5.0 0.5 6.0 mV Input Offset Current 5.0 200 5.0 200 nA Input Bias Current 40 500 40 500 Input Offset Voltage RS"; 10 kil Input Resistance Large Signal Voltage Gain Output Voltage Swing TYP 0.3 5.0 0.3 5.0 300,000 20,000 300,000 ±12 ±14· ±12 ±14 V RL;;;' 2 kil ±10 ±13 ±10 ±13 V ±12 ±14 ±12 ±14 V 70 90 70 90 dB RS"; 10 kil Supply Volte)e Rejection Ratio RS"; 10 kil Power Consumption Transient Response (Unity Gain) Overshoot nA Mil 50,000 Common Mode Rejection Ratio Risetime MIN RL ;;;'10 kil RL;;;' 2 kil, VOUT = ± 10 V Input Voltage Range Transient Response (Unity Gain) MAX VIN = 20 mV, RL = 2 kil, CL"; 100 pF VIN = 20 mV, RL = 2 kil, CL"; 100 pF Unity Gain Bandwidth 30 150 30 150 210 340 210 340 "V/V mW 0.13 0.13 "S 5.0 5.0 % 3.0 3.0 MHz 1.5 1.0 Slew Rate (Unity Gain) RL;;;' 2 kil Channel Separation (Open Loop) f - 10 kHz, RS - 1 kil 105 105 V/"s dB f - 10kHz, RS = 1 kil 105 105 dB (Gain = 100) The following specifications apply for -55°C"; TA ..; +125°C for jLA4136; O°C ..; TA ..; +70°C for jLA4136C. Input Offset Voltage RS"; 10 kil Input Offset Current Input Bias Current Large Signal Voltage Gain RL;;;' 2 kil, VOUT - ± 10 V Output Voltage Swing RL;;;' 2 kil VS=±15V Power Consumption 6.0 7.5 mV 500 300 nA 1500 BOO nA 25,000 15,000 ±12 ±10 V TA - High 180 300 180 300 TA = Low 240 400 240 400 NOTES: 1. For supply voltage less than ±15 V, the absolute maximum input voltage is equal to the supply voltage. 2. Rating applies to ambient temperature up to 70° C. Above T A = 70° C, derate linearly at 8.3 mW/ o C. 3. Short-circuit may be to ground, one amplifier only. ISC = 45 rnA (Typical). 5-204 mW FAIRCHILD • JlA4136 TYPICAL PERFORMANCE CURVES INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE J '00 COMMON MODE RANGE AS A FUNCTION OF SUPPLY VOLTAGE INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE ....-Vs - t15 V+----j-+-t---+--j --- - O~O-~~~~-4~O-~~60~~' TEMPERATURE -'C OPEN LOOP VOLTAGE GAIN AS A FUNCTION OF FREQUENCY 0 -" TEMPERATURE -'C SUPPLY VOLTAGE tV OPEN LOOP GAIN AS A FUNCTION OF TEMPERATURE POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE 0 VS -)±15V -- r-.. 'I'-, 0 0 "'- 0 "''' • i""- t-- t-J::t:t':"-e"::"t=~ 0 70 TEMPERATURE _'C TYPICAL OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE TEMPERATURE -'C OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE OUTPUT VOLTAGE SWING AS A FUNCTION OFFREaUENCY I- TA B 2S'C VS~±15V / 1\ II , ./ SUPPLY VOLTAGE ~ QUIESENT CURRENT AS A FUNCTION OF SUPPLY VOL TAGE TA " V TRANSIENT RESPONSE ~125·C ~-- -r- "r--r-tH---t---t----t---j 10% RISE TA~25·C ~.~25~~-~.,75~O~.W~~~C~l~;11~.:O~'-'~ SUPPLY VOLTAGE ± V ,, II : :I il r-_t---t_T_'M_E-r--j- ~~:; ~~V o o VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE VS -±15V 1 I I II'I- FREQUENCY - Hl TA -2S"C I r- 1\ TIME-I's 5-205 -i' - ~ : ,, : \ : I. ___ I I TIME-lis ~L "-,..- " FAIRCHILD. jLA4136 TYPICAL PERFORMANCE CURVES (Cant'd) INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY 100 FREQUENCY-Hz CHANNEL SEPARATION 0 , ,.... TOTAL HARMONIC DISTORTION AS A FUNCTION OF OUTPUT VOLTAGE f = 1 kHz VS~~15V I 6 r - - RL=2k AV=40dB !--. ......... sf-- f"'lkHz I RS"'lkO , 0 / 3 2 0 =I±15( 0 T A "'2S·C 1 VS 0 2.0 6.0 OUTPUT VOLTAGE DISTORTION AS A FUNCTION OF FREQUENCY VOUT= 1 Vrms 0.' r-~~~~--;---r-rT"T--r-r-rT-r-r--'--'--rr--' V "±30V S RIAACOMPENSATION ",I--+-\J-+j\--+-+-+-++--+--+++f-+-+-H-+----l 0.21--+-+-Pk--+-++t+-+-+-H+-+--+:--+++---l 1"'- 5-206 -/ V FAIRCHILD • J.lA4136 RIAA PREAMPLIFIER TRIANGULAR·WAVE GENERATOR Vee ~ INTEGRATOR ± 15 V e1 0.1 pF VOAo-..,......,._Ci 100 k VOUT =1 1.2 k r n 1.2 k • 8.2 k 100 k LOW FREQUENCY SINE WAVE GENERATOR WITH QUADRATURE OUTPUT SINE OUTPUT 0.02pF· 0.01 pF COSINE OUTPUT 22M 50 k 6.3V 6.3V LAMP DRIVER VOLTAGE FOLLOWER V+ 5-208 FAIRCHILD- J..tA4136 SQUAREWAVE OSCILLATOR COMPARATOR WITH HYSTERESIS V+ 100 k VOUT 100 k V+O---"'<'V'V'-+ 100 k 100k POWER AMPLIFIER AC COUPLED NON-INVERTING AMPLIFIER V+ 1M V+ 910 k VOUT 1M 100 k -=- 100k t-?--'V'oA--+-o V+ 100k 0.1 JlF 10 k +VIN AC COUPLED INVERTING AMPLIFIER DC COUPLED 1 kHz LOW-PASS ACTIVE FI L TER V+ 16 k 100k VOUT 10 k VINe--) 0.01 pF VIN 16 k VOUT r 0.01 pF 100k V+ 100k 5-209 • FAIRCHILD. MA4136 1 kHz BANDPASS ACTIVE FILTER v+ V+ O.OII1F 390 k 120 k 39 k 100 k 620 k 100 k v+ MULTIPLE APERTURE WINDOW DISCRIMINATOR VIN FULL·WAVE RECTIFIER AND AVERAGING FILTER V4 Ql 20k 1% DC DUTPUT 4.7pF INP~o-±l H 1-'+-+-'\"""---1>---.A/'./V-----, 4.711F V3 Q2 Vzo-+--=-t· VI NOTCH FILTER USING THE I'A4136 AS A GYRATOR 0---...., R2 30 k NOTCH FREQUENCY AS A FUNCTION OF C1 10 • INPUT ~ • iroo " "- u 10 0.0001 0.001 0,01 0.1 C1 - CAPACITOR - pf 5-210 1.0 FAIRCHILD • ~A4136 DIFFERENTIAL INPUT INSTRUMENTATION AMPLIFIER WITH HIGH COMMON MODE REJECTION OUTPUT Rl = R4 R2 = RS R6 = R7 j 'MATCHING OETERMINES CMRR R3 10 k T + 1% AV=R6(1 R2\ R4 45 k ==~) R3 1% RS' 10 k 0.1% R7j 100 k 0.1% • ANALOG MULTIPLIER/DIVIDER I 0-15 V '0 k 10 k 10 k 10 k 10 k 5-211 E3 pA4558 DUAL OPERATIONAL AMPLIFIER FAIRCH ILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The J.lA4558 Monolithic Dual Operational Amplifiers consist of two independent high gain. internally frequency compensated operational amplifiers. The specially designed low noise input transistors allow the J.lA4558 to be used in low noise signal processing applications such as audio preamplifiers and signal conditioners. They are constructed using the Fairchild Planar* Epitaxial process. Thp. simplified output stage completely eliminates crossover distortion under any load conditions. has large source and sink capacity. and is short-circuit protected. A novel current source stabilizes output parameters over a wide power supply voltage range. • • • • • • • UNITY GAIN BANDWIDTH 3 MHz CONTINUOUS SHORT CIRCUIT PROTECTION NO FREQUENCY COMPENSATION REQUIRED NO LATCH-UP LARGE COMMON MODE AND DIFFERENTIAL VOlTAGE RANGES PARAMETER TRACKING OVER TEMPERATURE RANGE GAIN AND PHASE MATCH BETWEEN AMPLIFIERS ABSOLUTE MAXIMUM RATINGS Supply Voltage J.lA4558C J.lA4558 v+ v- ORDER INFORMATION ±18V ±22 V ±30V ±15 V 670mW 500mW 310mW Indefinite Differential Input Voltage (Note 1) Input Voltage (Note 1) Internal Power Dissipation (Note 2) Metal Can Mini DIP Output Short Circuit Duration (Note 3) Operating Temperature Range CONNECTION DIAGRAM 8-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 58 PACKAGE CODE H TYPE IIA4558C IIA4558 8-PIN MINI DIP (TOP VIEW) PACKAGE OUTLINE 9T PACKAGE CODE T OUT A J.lA4558 -55°C to +125°C OOC to +70 o C J.lA4558C Storage Temperature Range Molded Package Hermetic Package Pin Temperature Molded Package (Soldering. lOs) Hermetic Package (Soldering. 60 s) PART NO. IIA4558HC IIA4558HM -INA V cc + OUTB -INS -55°C to +125°C -65°C to +150°C vcc- TYPE IIA4558C 1/2 OF EQUIVALENT CIRCUIT PART NO. IIA4558TC 8-PIN MINI CER DIP (TOP VIEW) PACKAGE OUTLINE 6T PACKAGE CODE R OUT A Vcc+ -INA OUT B +INA -IN B Vcc- +IN 8 TYPE IIA4558C IIA4558 PART NO. IIA4558RC IIA4558RM *Planar is a patented FairChild process. 5-212 FAIRCHILD • MA4558 ELECTRICAL CHARACTERISTICS: TA = 25°C, Vs = ±15 V unless otherwise specified CHARACTER ISTICS CONDITIONS Input Offset Voltage RS';;10kCl 1LA4558 TYP ILA4558C TYP MAX UNITS 1.0 5.0 2.0 6.0 mV Input Offset Current 30 200 30 200 nA Input Bias Current 200 500 200 500 nA MIN Input Resistance Large Signal Voltage Gain MIN 0.3 1.0 0.3 1.0 MCl 50,000 200,000 20,000 100,000 RL;;'10kCl ±12 ±14 ±12 ±14 V RL;;' 2 kCl ±10 ±13 ±10 ±13 V ±12 ±13 ±12 ±13 V 70 90 70 90 RL ;;. 2 kCl, VOUT = ±1 0 V Output Voltage Swing MAX Input Voltage Range Common Mode Rejection Ratio RS';; 10 kCl Supply Voltage Rejection Ratio RS';;10kCl Power Consumption dB 30 150 30 150 pV/V 100 170 100 170 mW Transient Response (unity Gain) Risetime VIN = 20 mV, RL = 2 kCl, CL';; 100 pF 0.13 0.13 ps Transient Response (Unity Gain) Overshoot VIN = 20 mV, RL = 2 kCl, CL';; 100 pF 5.0 5.0 % Unity Gain Bandwidth 3.0 3.0 MHz Slew Rate (Unity Gain) RL;;' 2 kCl 1.5 1.0 Vips Channel Separation (Open Loop) f = 10kHz, RS = 1 kCl 105 105 dB f = 10kHz, RS = 1 kCl 105 105 dB The following specifications apply for -55°C';; TA .;; +125°C for !lA4558; OOC .;; TA .;; + 70°C for !lA4558C. Input Offset Voltage RS';; 10 kCl Input Offset Current Input Bias Current Large Signal Voltage Gain RL;;' 2 kCl, VOUT = ±10 V Output Voltage Swing RL;;' 2 kCl Vs = ±15 V Power Consumption 6.0 7.5 mV 500 300 nA 1500 800 nA 25,000 15,000 ±12 ±10 V TA = High 90 150 90 150 TA = Low 120 200 120 200 mW NOTES: 1. For supply voltage less than ±15 V, the absolute maximum input voltage is equal to the supply voltage. Rating applies to ambient temperature up to 70"C. Above TA = 70°C, derate linearly at 6.3°C/W for the hermetic package (55) and 5.6°C/W for the molded package (9T). 3. Short circuit may be to ground. one amplifier only. ISC = 45 rnA (Typical). 2. TYPICAL PERFORMANCE CURVES INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE COMMON MODE RANGE AS A FUNCTION OF SUPPLY VOLTAGE 5 vs·Lsv 0 5 ~ 0 ~ - ~ 5 0 0 TEMPERATURE _·c " '" TEMPERATURE_OC 5-213 0 ;8 -" 1--+--+---= SUPPlVVOlTAGEiV • I FAIRCHILD • p.A4558 TYPICAL PERFORMANCE CURVES (Cont'd) OPEN LOOP VOLTAGE GAIN AS A FUNCTION '" r--r=0.:...F,:-F.:...R,E~Q",U,::E.:...N:..:;C:..;Y--,--, ,oor- Vs~ Ls v+---t-+-t---+--t '\ ~,t---+-+---t-+-t---+--t OJ ",,- 60 - 40 "- -'" , ~,t---+-+---t-+-t---+--t "- 0 " '00 " '" '00' 'M FReQUENCY-Hz . 7 2W~~-t--+-+---t-+--t --r-- o 4." t---+-+---t-+-t---+--t '" POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE OPEN LOOP GAIN AS A FUNCTION ~'r-,O_F-rTE~M~P_ETRA-.TU __ RTE-, ~ ~ 1-+--1-+---1f---'=1--+--l § ~ l00t---t-t--t-+---t-+--t ,.,I--t-t--+-+---t-+--1 ". °OL_~"_~"~~30~~4~0~60~-6*0-~70 TYPICAL OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE o 10 20 30 40 50 60 70 TEMPERATURE-'C TEMPERATURE-'C OUTPUT VOLTAGE SWING AS A FUNCTION OF LOAD RESISTANCE OUTPUT VOLTAGE SWING AS A FUNCTION OF FREQUENCY " r--'--'-"--'---'-"'-'r--="" 40 TA-250e 36 Vs· 115 v ~~::~:~++--t.......7"'F-H+---I 241-++-f-h /4--1--+-+1--1 1 " t---+-+-+~-+--+-+-1+--t ~ 32f-"-iL--j"--j"t-"+f-I-fl-H-++H-t++l--l ~ 28 H-H+-I+I#-+-+rt-++-+l-+J+--j "t---+--+-~--+--+-+-1+--t ~ 24 g H-H+-1++++-l-+V-++-+++1t-I 2OH-H+-1++++-l-+-t~+++1t-I 26 " t---+--+'fH--+--+-+-1+--t " t---+--++r--+-+-+-1+--t ~ ~ ~ ~ H-t+H-t+++-++-t*-I 16H-H+-1++++-l-+-t-¥-+++lt--t H-H+-I-t-+++-l-+-t-li'l:-t-Htt--t 12 ~ '~-H+-I+~-++-t-++-I\~1-+H-1 " t---+-+-+,--+-+-+-1+--t ,/ ..0 " LOAD RESISTANCE - kU QUIESENT CURRENT AS A FUNCTION OF SUPPLY VOLTAGE ~, ~ o ~ ~ TRANSIENT RESPONSE ," , " 4~-~-+--t-+-+---1 § , il 4 0 3 , I- ~ TA ~25'C VS --15V 10% RISE TIME RL -2kG CL -100pF -4 9 " SUPPLYVQLTAGE±V " _0.25 " INPUT NOISE VOLTAGE AS A FUNCTION OF FREQUENCY 0 0.25 0.60 0.75 '.0 _2 II -4 II· -8 I I RS ~ _,H -'0 AV ~W '10V 100k 00 dB -:l. '0 : I I ~ I I .. -~~ 40 " '.0 CHANNEL SEPARATION '40 r-rn-r-r-rn-r-.-rrn-'-TTn 120 F=~+-+--H1+-::p.i-.l:I+-+-l-+tI " '00 t--f-I-fl-+-f-I-fl-+-++lt--Pof+J.I 80 t--f-I-fl-t-f-I-+-+-++lt-+-++J.I 60 t--f-I-+-t-f-I-+-+-t+lt-+-++ti 40 t--!:-H-t=±-f-I-+-+-t+lt-+-++ti TA - 2S"C Vs = ;!:15V 20 O. ~ "'.0.!..J..1.L7"o:-'-l.U.:-,o"o,w-ll-;',7k.!..J..1":,"'07kw..u,~oo k FREQUENCY - Hz II 1.25 INPUT NOISE CURRENT AS A FUNCTION OF FREQUENCY TAl Vs ~ Q:mS1 ~!mIlm ~ 1ol-+ftI-+-IfI1~++fH-+ftI-+-I+H~ I 0 TIME-JlI '00 ~ 100 I I 2 TlME_,IIs " ~ ~-- 4 ,~ I I TA=25"C Vs -t15V , "I--I---t+......-I--+-+-' ~ B , 24~-~-+--+-+-+---I '~-1--t-+-~~-+-~ i-"'" VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE FREQUENCY 5-214 Hz f---t=tt1t-t-I-++fH-+lH+-H+tl ~'~o-L~~,o~o~LU~,~,-LLli~'~O~k~'~Ok FREQUENCV - Hz FAIRCHILD • JlA4558 TYPICAL PERFORMANCE CURVES (Cont'd) TOTAL HARMONIC DISTORTION AS A FUNCTION OF OUTPUT VOLTAGE f = 1 kHz 0.7 DISTORTION AS A FUNCTION OF FREQUENCY VOUT = 1 Vrms 0.7 ,....,...".r-,-,rrrr-,-rT1,.--r-~ '--"--"""-'--'-"-T---,-r-r-,.-n VS-±1SV RL= 2k O.Sl- AV = 40 dB t= 1 kHz VS=±30V -t-J-t-t--+-+H z O··HR'' IAAHfC0:c.MfP-,!ENr:SrfATf'°:c.r+t+t-++t+l ~ O.SHtttt-HI+tt-t-ff-r-t-ft+l RS'" 1 kCl 0.' t--F--++-+-+-J-t-t--+l-l 0.4 t-+-++-+-+-I-t-t--++-l c~ .O.4H'V-It--HH-ft--t--H1+-t--H-H 0.31-+-++-+-+-J-t-t---1f--l ~ 0.3 H-N-t--HH-ft--t--H1+-t--H-H ~ 0.2 H-+t\-HH-ft--t--H1+-t--H-H u ~ 0.' I-+-++-+-+-J-r---..V,-J v 0.1 ;\ ~~0~~~~~~'~k~~~'~07k~'~Ok fREQUENCY - Hz OUTPUT VOLTAGE - V • 5-215 · ALPHA NUMERIC INDEX OF DEVICES SELECTION .GUIDeS COMPARATORS COMPARATORS DEVICE DESCRIPTION ~AF111 FET-Input Voltage Comparator ....................................... 6-3 FET-Input Voltage Comparator ....................................... 6-3 Voltage Comparator .................................................. 6-8 Low-Power, Low-Offset Voltage Quad Comparator ................... 6-13 Low-Power, Low-Offset Voltage Quad Comparator ................... 6-13 Low-Power, Low-Offset Voltage Quad Comparator .................. , 6-13 Low-Power, Low-Offset Voltage Quad Comparator ................... 6-13 Voltage Comparator .................................................. 6-8 Low-Power, Low-Offset Voltage Quad Comparator ................... 6-13 Low-Power, Low-Offset Voltage Quad Comparator ................... 6-13 High-Speed Differential Comparator ............................... , 6-21 Dual High-Speed Differential Comparator ........................... 6-25 Precision Voltage Comparator ...................................... 6-29 High-Speed Differential Comparator ................................ 6-36 Low-Power, Low-Offset Voltage Quad Comparator ................... 6-13 Low-Power, Low-Offset Voltage Quad Comparator ................... 6-13 ~AF311 ~A111 ~A139 ~A139A ~A239 ~A239A ~A311 ~A339 ~A339A ~A710 ~A711 ~A734 ~A760 ~A2901 ~A3302 PAGE ~AFlll • ~AF311 FET INPUT VOLTAGE COMPARATORS FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The IlAF111 and IlAF311 are monolithic, FET input Voltage Comparetors, constructed using the Fairchild Planar* epitaxial process. The ,uAF111 series operates from the single 5 V integraetd circuit logic supply to the standard ±15 V operational amplifier supplies. The CONNECTION DIAGRAMS a·PIN METAL CAN .uAF111 series is intended for a wide range of applications including driving lamps or relays and (TOP VIEW) switching voltages up to 50 Vat currents as high as 50 mAo The output stage is compatible with RTL, PACKAGE OUTLINE 5S PACKAGE CODE H DTL, TTL and MOS logic. The input stage current can be raised to increase input slew rate. • • • • • • EXTREMELY LOW INPUT BIAS CURRENT ... 50 pA MAX (IlAF111l, 150 pA MAX (IlAF311) EXTREMELY LOW INPUT OFFSET CURRENT ... 25 pA MAX (I'AF11 1),75 pA MAX (I'AF31 1) DIFFERENTIAL INPUT VOLTAGE ... ±30 V POWER SUPPLY VOLTAGE SINGLE 5.0 V SUPPLY TO ± 15 V OFFSET VOLTAGE NULL CAPABI LlTY STROBE CAPABILITY ABSOLUTE MAXIMUM RATINGS Voltage Between V+ and V- Terminals Output to V- (IlAF111) (IlAF311) Ground to VDifferential Input Voltage Input Voltage (Note 1) Internal Power Dissipation (Note 2) Metal Can DIP 36V 50 V 40V 30V ±30V ±15 V 500 !,!,!~A! 670mW lOs Output Short Circuit Duration V· V- J ORDER INFORMATION TYPE PART NO. !J.AFlllHM .'.!A~~1"! IlAF311 IlAF311HC NOTE: Pin 4 connected to case. Storage Temperature Range (Metal Can) Metal Can Hermetic DIP _65°C to +150o C -55°C to +125°C Operating Temperature Range -55°C to +125°C O°C to +70°C Military (I'AF 111) Commercial (IlAF311) Pin Temperature CONNECTION DIAGRAM 14-PIN DIP (TOP VIEW) PACKAGE OUTLINE 6A PACKAGE CODE D 300°C Metal Can, Hermetic DIP (Soldering, 60 s) EQUIV ALENT CI RCUIT 14 NC ", '000 GROUND 6-3 NC GROUND NC +INPUT NC -INPUT V' NC NC V- OUT BALANCE • BALANCE/ STROBE ORDER INFORMATION TYPE PART NO. /lAF111 /lAFll1 OM /lAF311 /lAF311DC FAIRCHILD • J£AF111 • J£AF311 ~AFlll ELECTRICAL CHARACTERISTICS: Vs = :t15 v, TA = -S5°C to +12SoC unless otherwise specified, Note 3. CHARACTERISTICS MIN CONDITIONS TYP MAX UNITS Input Offset Voltage (Note 41 TA = 25°C, RS"; 50 kSl 0.7 4.0 mV Input Offset CurrElnt (Note 41 T A = 25°C, VCM = 0 (Note 61 5.0 25 pA Input Bias Current TA - 25 C, VCM - 0 (Note 61 20 50 Voltage Gain TA -25°C 200 V/mV Response Time (Note 51 TA = 25°C 200 ns Saturation Voltage Strobe On Current Output Leakage Current VIN .;; -5 mV, lOUT - 50 mA 0.75 TA = 25°C 1.5 3.0 TA - 25°C VIN <> 5 mV, VOUT - 35 V 0.2 TA = 25°C pA V rnA 10 nA Input Offset Voltage (Note 41 RS ";50 kSl 6.0 mV Input Offset Current (Note 41 Vs - ±15 V, VCM - 0 (Note 61 2.0 3.0 nA Input Bias Current Vs - ±15 V, VCM - 0 (Note 61 5.0 7.0 nA Input Voltage Range Saturation Voltage Output Leakage Current V+ <>4.5 V, V =0 VIN ..; -6 mV, ISINK .;; 8 mA VIN <> 5 mV, VOUT - 35 V +14 V -13.5 V 0.23 0.4 V 0.1 0.5 Positive Supply Current TA = 25°C 5.1 6.0 I'A mA Negative Supply Current TA-25°C 4.1 5.0 mA MAX UNITS ~AF311 ELECTRICAL CHARACTERISTICS: VS CHARACTERISTICS = :t 15 V, TA = O°C to + 70·C unless otherwise specified, Note 3. CONDITIONS MIN TYP Input Offset Voltage (Note 41 T A = 25°C, RS .;; 50 kSl 2.0 10 mV Input Offset Current (Note 41 T A - 25°C, V CM = 0 (Note 61 5.0 75 pA Input Bias Current TA = 25°C, VCM = 0 (Note 6) 25 150 Voltage Gain TA - 25°C 200 V/mV Response Time (Note 51 TA = 25°C 200 ns Saturation Voltage Strobe On Current Output Leakage Current Y,N .;; -10 mV, lOUT - 50 mA TA=25°C TA-25°C 0.75 1.5 3.0 Y,N <> 10 mV, VOUT = 35 V TA = 25°C 0.2 pA V mA 10 nA 15 mV Input Offset Voltage (Note 4) RS"; 50 kSl Input Offset Current (Note 41 Vs = ±15V, VCM = 0 (Note 61 1.0 nA Input Bias Current Vs - ±15 V, VCM - 0 (Note 61 3.0 +14 nA Input Voltage Range Saturation Voltage V -13.5 V+ <>4.5 V, V =0 Positive Supply Current V,N';; -10 mV, 'S'NK';; 8 mA TA = 25°C Negative Supply Current TA - 25°C V 0.4 V 5.1 7.5 mA 4.1 5.0 mA 0.23 NOTES: 1. This rating applies for ±15 V supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less. 2. Rating applies to ambient temperatures up to 10°C. Above 70°C ambient derate linearly at 6.3 mW/oC for metal can; 8.3 mW/oC for DIP. 3. 4. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to ±15 V supplies. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take in·to account the worst case effects of voltage gain and input impedance. 5. ,The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive. 6. For input voltages greater than 15 V above the negative supply the bias and offset currents will increase - see typical performance curves. 6-4 FAIRCHILD • JLAF111 • JLAF311 TYPICAL PERFORMANCE CURVES INPUT BIAS CURRENT AS A FUNCTION OF COMMON MODE VOLTAGE INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE TRANSFER FUNCTION ~T,:~~~~~~~~~~~ 10,000 J=VS""1SV =-~CM-"O ~- / 1,000::::.::= --1-- -- =---'---f::::-- f f-- r--NdRMAL'oUTP~T r-:~.=~';O V I I J. ,. ,oo_~_ U II 20 v I-!'\ t-~~~~6e:ER t-~UTPUT RL '"600 1.. 1.0'V~::--:'4.0:---::'-':-.0-'::'2.'::-0-':':'.-::-0-:::20O-:.0:-:C24--::.0-= 55 35 15 5.0 RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES I '.0 1// r/ i'.o.. '/ 5.0mV J / o ~ g 4_0 '_0 I 2.0 II 2!omv lfJ '.0 r;, 0 .. VS"±15V Tr";C- 20mV .. ,.. r-- I I I 'OIl - 7 5.ymv 1.. 2+ Your 7- \ \ 20mV 2.• I ptoo_ VIN I'AF111 0 7--t- ~ ,• 2Omy""j ; 5 5..mVJ I .. g ~ V Lfo. -5 _0 ,• ~ • §! =e -I I -, r~, 2.0mV - 1 VOUT 2. I I ,.• 2.• 2OmV." l\ 5.0mV p....1 TA=125°C- \ \. /' • • 20 • / ~~ '""- v;. ,,:v - 1 Your ,........ , 2. r-... V- 4 I I • I 1.. ""7 ",~ t-- ._, ¢•. 4 .., 2.• ,I.. 4 •• POSITIVE SUPPLY-_ "NPUTWl ["'-b., ~ . ,- TA •. 2 POSITIVE SUPPLYOUTPUT LOW ".,...... 4 .• ,.. / 10 OUTPUT VOLTAGE - V IS • ,.. ,,1 25•· C I '.0 . • / V V ..-- t-- j----- t--- j - - t-lpOSI~'~ 1'""" NEGATIVE SUPPLY2 t--- j - t-j OU1UT GH j - t-- j----- r-- 1 • 55 25 35 45 ~r-- 65 85105125 TEMPERATURE - "C SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 2.• Sl101t I 5.0 j.lAF111 ,. , t¥ F 50 .., rCIRICUIT CURRENT / VIN \ SUPPLY CURRENT A:) A fUNCTiOili 0;: TEMPERATURE TtMES-l's '40 so ..- I--h"!--:;.~ ...;f---+----jl-t---t--t-t--t ._, ~!:;~~~- t-- I I I VS'''~~+ TA =25°C 4_. OUTPUT LIMITING CHARACTERISTICS '00 2 1\ TIMES-liS '20 •. , OUTPUT CURRENT - rnA 2.0mV • V- ~-100 \:-\. 1\ -, , "AF1!! -50 -?-" v· ·• -,.. VIN~ ~ ~!:;~:~ - t-- , • ,. V· / .... H~:)l'uiIi:)~ IIM~ FOi< VAHIOU:) I I. • 1-+--+--+-+-+--1A '12'OC~t?<' INPUT OVERDRIVES I •., OUTPUT SATURATION VOLTAGE TIMES-:-lIs I • g 1 1 I l •. 2 ,"UH VAHIUUli I'- + • INPUT OVERDRIVES I J -0.5 -1.0 7 '00 I I J. o DIFFERENTIAL INPUT VOLTAGE - mV - ~?-" TIME-In ,, 105125 ~ I '\ "Af1!1 2.0mV 0_2 HEliI'UNli~IIM~ 85 ~,oo 2 Your Y,N 50 50 > 65 "c 5.0V \ 5.0V -;,.- 45 RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES I I > 25 TEMPERATURE INPUT COMMON MODE VOLTAGE - V VS~30V_ TA '=25 C_ ---- OUTPUT LEAKAGE CURRENT AS A FUNCTION OF TEMPERATURE lO-'~~ ,·-a_!!/m ~ ~ ~ / " OUTPUT VOUT = SOV 1O-9~_ POStTlVE AND NEGATIVE SUPPLYOUTPUT HIGH 5.0 20 SUPPLY VOLTAGE - V 6-5 25 JO 10- 11 =25,.----::---:'':-,----:,=-,---:::--~ TEMPERATURE _·C • FAIRCHILD eILAF111 eILAF311 TYPICAL APPLICATIONS 10 Hz TO 10 kHz VOLTAGE CONTROLLED OSCILLATOR RELAY DRIVER WITH STROBE C1 1000 pF t VH R1 10k 5.0 mV __ 5.0V 5.0 mV TRIANGULAR A2 WAVE t~N:~~ o-""__-1r-_~V22Vkv-_..,....., Q1 2N3972 OUTPUT Q2 2N5019 D1' V- R8 -= 20k* R1 -15V 1k -= R9 10k RlO R11 loOk '" Adjusts for symmetrical square wave time when VIN = 5.0 mV. TTL STROBE 1.0k -= tMinimum capacitance 20 pF. -15V Maximum frequency 50 kHz. '" Absorbs inductive kickback of relay and protects I C from severe voltage transients on V++ line. STROBING OFF BOTH INPUT* AND OUTPUT STAGES FREQUENCY DOUBLER v+ = 5.0V OUTPUT *Typical input current is Frequency range: Input - 5.0 kHz to 50 kHz Output - 10 kHz to 100 kHz ZERO CROSSING DETECTOR DRIVING MOS SWITCH 50 pA with inputs strobed off. ZERO CROSSING DETECTOR DRIVING MOS LOGIC DRIVING GROUND·REFERRED LOAD .-..,.---,-OV+ INPUT V+ = 5 V TO 1l)'--''..--O~85IC R3 10k ·Input polarity is reversed when v- -= = -10 V 6-6 using pin 1 as output. FAIRCHILD • /LAF111 • /LAF311 TYPICAL APPLICATIONS (Cont'd) POSITIVE PEAK DETECTOR COMPARATOR AND SOLENOID DRIVER D1 lN4QOl H-~--c ~~TPUT *Solid tantalum NEGATIVE PEAK DETECTOR USING CLAMP DIODES TO IMPROVE RESPONSE +15 V PRECISION PHOTODIODE COMPARATOR *Solid tantalum R1 3.9 k TTL INTERFACE WITH HIGH LEVEL LOGIC DIGITAL TRANSMISSION ISOLATOR R3 1k R1 240k I NPur o--A./W..--~-+;-l TO TTL LOGIC ·Values shown are for a o to 30 V logic swing and a 15 V threshold. R1 100 R2 50k FROM Cl R4 0.01 lk TTL OUTPUT " TTL GATE • R2 sets the comparison level. At comparison, the photodiode has less than 5.0 mV across it, decreasing leakages by an order of magnitude. tMay be added to control speed and reduce susceptibility to noise spikes. DEFINITIONS: AVERAGE TEMPERATURE COEFFICIENT OF INPUT OFFSET CURRENT The change in input offset current over the operating temperature range divided by the operating temperature range. AVERAGE TEMPERATURE COEFFICIENT OF INPUT OFFSET VOLTAGE The change in input offset voltage over the operating temperature range divided by the operating temperature range. DIFFERENTIAL INPUT VOLTAGE RANGE - The range of voltage applied between the input terminals for which operation within specifications is assured. INPUT BIAS CURRENT - The average of the two input currents with no signal applied. INPUT COMMON MODE VOLTAGE RAI'JGE - The range of common mode input voltage over the device will operate within specifications. INPUT OFFSET CURRENT - The difference between the two input currents with the output at the logic threshold voltage. INPUT OFFSET VOLTAGE - The voltage which must be applied to the input terminals to give the logic threshold voltage at the output. INPUT VOLTAGE RANGE -- The range of voltage on either input terminal over which the device will operate as specified. NEGATIVE OUTPUT VOLTAGE LEVEL - The dc output voltage in the negative direction with the input voltage equal to, or greater than, a minimum specified value. RESPONSE TIME - The interval between the application of an input step function and the time when the output voltage crosses the logic threshold level. STROBE CURRENT - The ma,ximum current taken by the strobe terminal during activation. VOLTAGE GAIN - The ratio of the change in output voltage to the change in voltage between the input terminals producing it with the dc output in the vicinity of the logle threshold. 6-7 • !JAIIl- pA311 VOLTAGE COMPARATORS FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - the "A111 and "A311 are monolithic, low input current Voltage Comparators, each constructed using the Fairchild Planar· epitaxial process. The "A111 series operates from the single 5 V integrated circuit logic supplvto the standard ±15 V operational amplifier supplies. The "A111 series is intended for a wide range of applicatons including driving lamps or relavs and switching voltages up to 50 V at currents as high as 50 mAo The output stage is compatible with RTl, OTL, TTL and MOS logic. The input stage current can be raised to increase input slew rate. • • • • • • CONNECTION DIAGRAMS a-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 55 PACKAGE CODE H lOW INPUT BIAS CURRENT - 150 nA MAX (111),250 nA MAX (311) LOW INPUT OFFSET CURRENT - 20 nA MAX (111),50 nA MAX (311) DIFFERENTIAL INPUT VOLTAGE - ±30 V POWER SUPPLY VOLTAGE SINGLE 5.0 V SUPPLY TO ±15 V OFFSET VOLTAGE NULL CAPABILITY STROBE CAPABILITY ABSOLUTE MAXIMUM RATINGS Voltage Between V+ and V- Terminal. Output to V- ("A 111) ("A311) Ground to VDifferential Input Voltage I nput Voltage (Note 1) Internal Power Dissipation (Note 2) Output Short Circuit Duration Storage Temperature Range (Metal Can and Hermetic Mini DIP) (Molded Mini DIP) Operating Temperature Range Military (j1A I III Commercial (j1A31 I ) V+ 36V SOV 40V 30V ±30 V ±1SV SOOmW 10. -6S'C to·+150'C v- -55'C to +125°C ORDER INFORMATION TYPE PART NO. j1Al11 j1Al11HM j1A311HC "A311 _SSOC to +125°.C aOc to +70°C a-PIN MINI DIP (TOP VIEW) PACKAGE OUTLINE 9T 6T PACKAGE CODE T R EQUIVALENT CIRCUIT BALANCE GND V+ +IN OUT -IN STROBE v- BALANCE BALANCE/ ORDER INFORMATION TYPE PART NO. j1Al11 j1All1RM j1A311 j1A311RC j1A311 j1A311TC ·Planar is a patented Fairchild process 6-8 FAIRCHILD e1LA111 eILA311 ,uA 111 ELECTRICAL CHARACTERISTICS: Vs = ot15 V, TA = -55·C to +125·C unless otherwise specified, Note 3. CHARACTER ISTICS CONDITIONS MIN TYP MAX UNITS Input Offset Voltage INote 4) TA = 25°C, RS'; 50 kn 0.7 3.0 mV Input Offset Current INote 4) TA = 25°C 4.0 10 nA Input Bias Current T A = 25°C 60 100 nA Voltage Gain T A = 25°C 200 V/mV Response Time INote 5) TA - 25°C 200 ns Saturation Voltage Strobe On Current Output Leakage Current VIN .; -5 mY, lOUT - 50 mA TA = 25°C 0.75 TA=25°C 3.0 0.2 RS'; 50 kn Input Offset Current INote 4) Input Bias Current 10 nA 4.0 mV 20 nA 150 nA ±14 Input Voltage Range Saturation Voltage V mA VIN ;> 5 mY, VOUT - 35 V TA = 25°C Input Offset Voltage INote 4) 1.5 V V+ ;> 4.5 V, V- = 0 VIN .; -6 mY, ISINK'; 8 mA Output Leakage Current VIN ;> 5 mY, VOUT = 35 V Positive Supply Current TA - 25°C Negative Supply Current TA - 25°C 0.23 0.4 V '0.1 0.5 }J.A 5.1 6.0 mA 4.1 5.0 mA ,uA311 ELECTRICAL CHARACTERISTICS: Vs = ot15 V, TA = O·C to +70°C unless otherwise specified, Note 3. I CH/\R/\CTER!ST!C'S r.ONDITIONS TYP MAX Input Offset Voltage INote 4) TA = 25°C, RS'; 50 kn 2.0 7.5 mV Input Offset Current INote 4) TA - 25°C 6.0 50 nA 250 nA MIN UNITS I nput Bias Current TA = 25°C 100 Voltage Gain TA = 25°C 200 V/mV Response Time INote 5) TA = 25°C 200 ns Saturation Voltage VIN .; -10 mY, lOUT - 50 mA TA = 25°C 0.75 Strobe On Current TA - 25°C 3.0 Output Leakage Current VIN;> 10 mY, VOUT - 35 V TA = 25°C Input Offset Voltage INote 4) 0.2 RS'; 50 kn Input Offset Current INote 4) Jnput 8 ias Current Input Voltage Range 1.5 V mA 50 nA 10 mV 70 nA 300 nA ±14 V Saturation Voltage y+;> 4.5 V, V 0.23 0.4 Positive Supply Current TA = 25°C 5.1 7.5 mA Negative Supply Current TA = 25°C 4.1 5.0 mA -0 VIN'; -10 mY, ISINK'; 8 mA V NOTES: 1. 2. 3. 4. 5. This rating applies for ± 15 V supplies. The positive input voltage limit is 30 V above the negative supply. The negative input voltage limit is equal to the negative supply voltage or 30 V below the positive supply, whichever is less. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/oC for metal can; 8.3 mW/oC for mini DIP. The offset voltage, offset current and bias current specifications apply for any supply voltage from a single 5 V supply up to ±15 V supplies. The offset voltages and offset currents given are the maximum values required to drive the output within a volt of either supply with a 1 mA load. Thus, these parameters define an error band and take into account the worst case effects of voltage gain and input impedance. The response time specified (see definitions) is for a 100 mV input step with 5 mV overdrive. 6-9 • FAIRCHILD· {LA111 • JLA311 TYPICAL PER FORMANCE CURVES FOR J.lA 111 INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE INPUT OFFSET CURRENT AS A FUNCTION OF TEMPERATURE 1--+-+---1-+-+-+~vs ~ OFFSET VOLTAGE AS A FUNCTION OF INPUT RESISTANCE ±15 V ~TA"25'C ~ , i MAXIMUM 20 I-~I__ ,t-+-t-t--t--t-H 0 TYPICAL t;; ~ , ~ 5 25 45 TEMPERATURE _ -- ~S~S-=~~~~2S--4~'-=6S~8~'--1O=S~'2S 65 'c TEMPERATURE _ o V lilliiVOrri'ii' ,,,, °c INPUT RESISTANCE-a ·Pins 5,6 and 8 are shorted. INPUT BIAS CURRENT AS A FUNCTION OF DIFFERENTIAL INPUT VOLTAGE COMMON MODE LIMITS AS A FUNCTION OF TEMPERATURE v'r-~-r-r-'--r-'--r-'-' r-=~:;~yReg~ToA'-;;G;;ES!-+-+-f---+--l 1-+--+---1-+-+--+-t-+--1 -0.5 OUTPUT VOLTAGE AS A FUNCTION OF DIFFERENTIAL INPUT VOLTAGE 60 _NJRMALIOUTP~T."t--+_t-+---1 50 _~;+=g';Oe V~5LS-_.135--!-...L-,L2S--4L,--:',,~':--:"::-.,-J DIFFERENTIAL INPUT VOLTAGE - V TEMPERATURE -'C DIFFERENTIAL INPUT VOLTAGE - mV OUTPUT SATURATION VOLTAGE AS A FUNCTION OF OUTPUT CURRENT SUPPLY CURRENT AS A FUNCTION OF TEMPERATURE LEAKAGE CURRENTS AS A FUNCTION OF TEMPERATURE VS~±I~V ~ ~ ~TlVE SUPPLY-_ DjPUTtOW I ......,...,J~ 4 I POS1~\V~ I-- I-- r- NEGATIVE SUPPLY- - r- - t- F 2r- t-- I- I OUTrUT H(GH 1- - r- I o 55 OUTPUT CURRENT - mA 5 25 45 as TEMPERATURE -'C 6-10 FAIRCHILD e/LA111 e/LA311 TYPICAL PERFORMANCE CURVES FOR J.lA311 INPUT BIAS CURRENT AS A FUNCTION OF TEMPERATURE OFFSET VOLTAGE AS A FUNCTION OF INPUT RESISTANCE INPUT OFFSET CURRENT AS A FUNCTION OF TEMPERATURE AAIS;O;-- _ _ / "ll'i U " O~. ~TYPICAL 1--+--+----- 1--1-NORMAL INPUT RESISTANCE -,Q * Pins 5, 6 and 8 are shorted. INPUT BIAS CURRENT AS A FUNCTION OF DIFFERENTIAL INPUT VOLTAGE ~+4~++~r+1-~'vs~,isJT A =25"C COMMON MODE LIMITS AS A FUNCTION OF TEMPERATURE ~ ~~~:~A~g~~A·-CG~"C--+-+---+--1 -0.5 f--+-+-f-+-+---+--1 OUTPUT VOL TAGE AS A FUNCTION OF DIFFERENTIAL INPUT VOLTAGE VS~30V 50 -+--+-+--+--t---I TA -25Q C , _ + - - + _ f-+--+-+--+- RL ~ lk r EMITTER FOLLOWER 20 ~~~p~ n f -p.."o+-I-+--+--I I\. ~,L._o_""..1-.....1....I.L.....I~""'..J.--,J ~'~6~,,~~~~-t-L7~~~~­ c TEMPERATURE DIFFERENTIAL INPUT VOLTAGE - V DIFFERENTIAL INPUT VOLTAGE -mY . . . . . . . . . . . . . . . . . . . . . . . . . . . . l . f " , . . . . . . . . . . . ... ... _ I un_ I 'V'" Y V ... l,....t.:IIL.. AS A FUNCTION OF CURRENT AS A FUNCTION OF TEMPERATURE AS A FUNCTION OF TEMPERATURE t--VS1~t15V ~ ...... f-- I- POSITIVE SUPPLY I-t- r--r-- po~ I-- r-- OUTPrHIGI NEGATIVE SUPPLY °o~~~~~~~~~~~~~ OUTPUT CURRENT - mA o f-- - OUTPUT LOW I r-- - I o TF.MPERATURE-·"C TYPICAL APPLICATIONS OFFSET NULL CIRCUIT STROBE CIRCUIT TEMPERATURE -'C INCREASING INPUT STAGE CURRENT* HH--Ov. 1kQ OFFSET BALANCING STROBING -=,. Increases typical common mode slew rate from 7.0 V/lJs to 18 V/J,ls. 6-11 • I FAIRCHILD· f,LA111 • f,LA311 TYPICAL APPLICATIONS (Cent'd) ADJUSTABLE LOW VOL TAGE REFERENCE SUPPLY POSITIVE PEAK DETECTOR ·Solid tantalum ·Solid tantalum ZERO CROSSING DETECTOR DRIVING MOS LOGIC STROBING OF BOTH INPUT AND OUTPUT STAGES DIGITAL TRANSMISSION ISOLATOR NEGATIVE PEAK DETECTOR ·Solid tantalum -Typical input current is 50 pA with inputs strobed off. PRECISION PHOTODIODE COMPARATOR RELAY DRIVER WITH STROBE e A1 >5V 3.9k SWITCHING POWER AMPLIFIER "'10 k R4 Cl 47 O.II'F • A2 sets the comparison level. At comparison, the photodiode has • Absorbs inductive kickback of relay and protects I C from severe voltage transients on V++ line. less than 5 mV across it, decreasing leakages by an order of magnitude. SWITCHING POWER AMPLIFIER v. R1 .)Q, R12 Q2l..- 2N6125 2N6125 620 620 , R2 620 OUTPUT I Rll 620 /J.Al~ 1" Q' Q3 R3 620 l 2N6121 300k R6 39k ~ltAl11 r N6121 R4 R5 610 h 6 3 6 1 RlO 620 R13 3 'r- lOOk R9 39k R14 510 R6 16k INPUT ti' O.221olF R7 REFERENCE 15k 6-12 MA139/239/339 • MA139A/239A/339A MA2901 • MA3302 LOW-POWER, LOW-OFFSET VOLTAGE QUAD COMPARATORS FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The I"A 139 series consists of four independent precision voltage comparators designed specifically to operate from a single power supply. Operation from split power supplies is also possible and the low power supply current drain is independent of the supply voltage range. Darlington connected PNP input stage allows the input common-mode voltage to include ground. • • • • • • • • SINGLE SUPPLY OPERATION-+2.0 V TO +36 V DUAL SUPPLY OPERATION -±1.0 V TO ±18 V ALLOW COMPARISON OF VOLTAGES NEAR GROUND POTENTIAL LOW CURRENT DRAIN-800 I"A TYP COMPATIBLE WITH ALL FORMS OF LOGIC LOW INPUT BIAS CURRENT - 25 nA TYP LOW INPUT OFFSET CURRENT - ±5 nA TYP LOW OFFSET VOLTAGE - ±2 mV CONNECTION DIAGRAM 14-PIN DIP PACKAGE OUTLINES 6A 9A PACKAGE CODES D P OUTPUT 2 1 SCHEMATIC DIAGRAM OUTPUT 1 2 INPUT 1- 4 INPUT 2+ 8 INPUT 3~L.-_._ _ _:-f!1_-......I v, ORDER INFORMATION +INPUT O----oI>-----1r- OUTPUT -INPUTo-------------~----------+_----------~ t--------------I:. Q7 -= 6-13 TYPE I'A139A I'A139 I'A239A I'A239A I'A239 I'A239 I'A339A I'A339A I'A339 I'A339 I'A2901 I'A2901 I'A3302 I'A3302 PART NO. I'A139ADM I'A139DM I'A239ADC I'A239APC I'A239DC I'A239PC I'A339ADC I'A339APC I'A339DC I'A339PC I'A2901DC I'A2901PC I'A3302DC I'A3302PC ELECTRICAL CHARACTERISTICS IV+ ~ 5 V, Note 4) )lA139A MIN TA Input Bias Current liN!') 6r IINH with Output in Linear Range, TA ~ 25°C, ,Note 5, Input Offset Current I'N(+)- I'N(-),.TA ~ 25°C Input Common-Mode TA Voltage Range Voltage Gain RL RL ~ 25°C, ,Note 9, TYP 25°C, ,Note 6, TYP MAX Il A139 IlA239, Il A339 IlA2901 IlA3302 UNITS MIN ±1.0 ±2.0 TYP MAX MIN TYP MAX MIN TYP ±2.0 ±7.0 MAX MIN TYP MAX ±2.0 ±5.0 ±2.0 ±5.0 ±3.0 ±20 mV 25 100 25 250 25 100 25 250 25 250 25 500 nA ±5.0 ±25 ±5.0 ±50 ±5.0 ±25 ±5.0 ±50 ±5.0 ±50 ±5.0 ±100 nA V+-1.5 V "T1 V+-1.5 0 V+-1.5 0 0 V'-1.5 0 V'-1.5 0 V'-1.5 0 (') J: r C ~ ro ~ on all Comparators, TA ro, V+ ~ 30 V, T A ~ 25° C RL:> 15 k!l, V+ ~ 15 V ,To Support Large Vo Swing" TA ~ 25° C 0.8 50 ~ 2.0 200 0.8 50 2.0 0.8 200 2.0 0.8 200 2.0 200 0.8 1.0 25 1.0 2.5 100 0.8 2 2.0 mA V/mV 30 25°C VRL = 5.0 V, RL = 5.1 k!l, T A = 25° C, ,Note 7, 1.3 Output Sink Current V,N(-) :> 1.0 V, VIN(+) = 0, Vo <; 1.5 V, TA = 25°C Saturation Voltage V,N(-) :> 1.0 V, V'N(+) "0, Isink S; 4,0 mA, T A = 25° C Output Leakage Current V'N(+) 21.0 V, V,NI-i = 0, Vo =30 V, TA = 25°C Input Offset Voltage I Input Offset Current liNI') - I,N(-) Input Bias Current IIN{+) or IIN(-) with Output in 300 300 300 300 300 ns Co) N Co) Co) Co) 1.3 1.3 1.3 1.3 1.3 IlS CO • 1:: 6.0 16 6.0 16 6.0 16 6.0 16 6.0 16 2.0 16 mA l> ..... Co) 250 400 250 400 250 400 250 400 400 250 CO 500 mV 200 200 nA 15 40 mV Co) Co) ~ l> ........ N Co) 200 200 200 200 4.0 4.0 9.0 9.0 ±100 ±150 ±100 ±150 50 200 300 nA 300 400 300 400 200 500 1000 nA CO l> ........ 9.0 Linear Range • 1:: l> 0 V'N(-) > 1.0 V, V'N(') = 0, l> CO ........ Note 91 Input Common-Mode Voltage Range • .... 1:: CO ........ Response Ti me Saturation Voltage l> :tJ 300 Response Time MAX MIN ±1.0 ±2.0 Y,N ~ TTL Logic Swing, Vie! = 1.4 V, VRL = 5.0 V, RL = 5.1 k!l, TA=25°C Large Signal 'f.... ~ Input Offset Voltage Supply Current )lA239A, )lA339A CONDITIONS CHARACTERISTICS V+-2.0 700 0 V+-2.0 700 0 V+-2.0 700 0 V'-2.0 0 700 V'-2.0 400 700 0 V'-2.0 V 700 mV N CO o..... • 1:: Islnk:::; 4 mA l> Output Leakage Current V'N(') ? 1.0 V, V'N(-) = 0, Vo ~ 30 V 1.0 Differential Input Voltage Keep all V,N's:> 0 V (or V-, if used), (Note 8) V, 1.0 1.0 1.0 1.0 1.0 Il A Co) Co) o V, 36 36 0 V, N Vee V FAIRCHILD. J,lA139/239/339. J,lA139A/239A/339A. J,lA2901· J,lA3302 ABSOLUTE MAXIMUM RATINGS Supply Voltage, V+ Differential Input Voltage Input Voltage Range Power Dissipation (Note 1) 9A,6A Output Short-Circuit to Gnd, (Note 2) Input Current (VIN < -0.3 V), (Note 3) Operating Temperature Range /lA339, /lA339A /lA239, /lA239A /lA139, /lA139A /lA2901, I'A3302 Storage Temperature Range Pin Temperature (Soldering, 10 s) /lA 139//lA239/ /lA339 /lA 139A//lA239A//lA339A /lA2901 /lA3302 36Vor±18V 36 V -0.3 V to +36 V 28 V or ±14V 28 V -0.3 V to +28 V 1W Continuous 50 mA 1W Continuous 50 mA O°C to +70°C -25° C to +85° C -55° C to +125° C _40° C to +85° C -65° C to +150° C 300°C -65°C to +150°C 300°C NOTES: 1. For operating at high temperatures, the ~A339/~A339A, "A2901 ~A3302 must be derated based on a 125° maximum junction temperature and a thermal resistance of 125°C/W which applies for the device soldered in a printed circuit board, operating in a still air ambient. The ~A13g and ~A139A~ must be derated based on a 1500 C maximum junction temperature. The low bias dissipation and the "ON-OFF" characteristic of the outputs keeps thechip dissipation very small (Po:5 100 mWl, provided the output transistors are allowed to saturate. 2. Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately 20 rnA independent of the magnitude of V+. 3. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition tiode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V+ voltage levellorto ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will reestablish when the input voltage, which negative, again returns to a value greater than -0.3 V. 4. These specifications apply for V+ = 5.0 V and -55°C:::; TA:::; +125°C, unless otherwise stated. With the .uA239/.uA239A,all temperature specifications are limited to -25° e:s TA:S +85° e, the ~A339/ ~A339A temperature specifications are limited to 0° e:s TA:S +70 0 e, and the :,A290t, ~A3302temperature range is _40° C :::; T A :::; +85° C. 5. The direction of the input current is out of the Ie due to the Pr RIN (GM)"" 1()9Jl 1 TA 00 YIN (eM) "" 0 ,v kI.L TA - +7rC ,..,.- 10 0 I j 1 0 .. / OUTPUT SATURATION VOLTAGE INPUT CURRENT J...- l- t- TA == ~ +2~f- ; 0.00 40 30 -55"C ~V 'l; V " TA ~ +125oe ,~ 1.0 0.1 0.01 '0 - y. - SUPPLY VOLTAGE - V RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES - NEGATIVE TRANSITION ~ ~ V"\A- I -:[OOC 20 TA=-+125°~ I~ ~ 10 OUTPUT SINK CURRENT - 100 rnA RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES - POSITIVE TRANSITION 5. 0 .0 5.0 mY = INPUT OVERDRIVE .0 V .0 ~"= 20mY .0 .0 ~~ 2. 0 ~~ 1. 0 0." SO ++~- 1.0 1.5 0 I 1 20mV I I T 0 i!:o rr rl I .1 ::l~ I I I 0 TIME 3.0 INPUT OVERDRIVE = 100 mY ~~ 10; I I I 0.5 4•0 :> I Iw - 0 !-'";;" z> Your- + 10DmY .0 5.0 » 15mY II I I I +5.0 V _ "~IT' Yi -Your f- 50e T I 0.5 2.0 1.0 1.5 2.0 TIME-~s -J.. ~ - 20 ; I V' - .0 .0 I '0 - RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES - POSITIVE TRANSITION I .0 0 0 I ~'~ +. 100 mV » Iw g~ I I I· ~I!: 0." !:o J~A-125~_I 0 1 -100 0.5 1.0 1.5 3 .0 ~5 I I I 0 :> I ~~ - \. 4 .0 z> VOUT- 5. 0 S'";;" INPUT OVERDRIVE == 100 mY l 120mv III .0 I 2 1.0 0 0 r "~IT' e f-f- VOUT - I I I 1.0 TlME-J,.<5 6-16 T+ 5.0V _ + f- TI~ 0.5 2.0 TIME-J,. I 0 w ".. 40 iii " 1 3 j-40 C_ r - f-1 a: a: u I SUPPLY VOLTAGE - TA ~60 1: +25°C - 20 10 ~ 1 .....- .....- ,/ '"TA'" -400C -.1000 .....- L OUTPUT SATURATION VOLTAGE INPUT CURRENT 80 V 00 2.0 100 rnA FAIRCHILD. p,A139/239/339. p,A139A/239A/339A. p,A2901. p,A3302 APPLICATION HINTS The fJ.A 139 series are high-gain, wide-bandwidth devices which, like most comparators, can easily oscillate if the output lead is inadvertently allowed to capacitively couple to the inputs via stray capacitance. This shows up only during the output voltage transition intervals as the comparator changes states. Power supply bypassing is not required to solve this problem. Standard PC board layout is helpful as it reduces stray input-output coupling. Reducing the input resistors to < 10 kn reduces the feedback signal levels and finally, adding even a small amount (1.0to 10 mVI of positive feedback (hysteresis I causes such a rapid transition that oscillations due to stray feedback are not possible. Simply socketing the IC and attaching resistors to the pins will cause input-output oscillations during the small transition intervals unless hysteresis is used. If the input signal is a pulse waveform, with relatively fast rise and fall times, hysteresis is not required. All pins of any unused comparators should be grounded. The bias network of the fJ.A 139 series establishes a drain current which is independent of the magnitude of the power supply voltage over the range of from 2 V to 30 V. It is usually unnecessary to use a bypass capacitor across the power supply line. The differential input voltage may be larger than V+ without damaging the device. Protection should be provided to prevent the input voltages from going negative more than -0.3 V lat 25° CI. An input clamp diode can be used as shown in the applications section. The output of the fJ.A139 series is the uncommitted collector of a grounded-emitter npn output transistor. Many collectors can be tied together to provide an output ORing function. An output pull-up resistor can be connected to any available power supply voltage within the permitted supply voltage range and there is no restriction on this voltage due to the magnitude of the voltage which is applied to the V+ terminal of the fJ.A139 package. The output can also be used as a simple SPSTswitch to ground (when a pull-up resistor is not used I. The amount of current which the output device can sink is limited by the drive available (which is independent of V+I and the f3 of this device. When the maximum current limit is reached (approximately 16 mAl, the output transistor will come out of saturation and the output voltage will rise very rapidly. The output saturation voltage is limited by the approximately 60 n saturation resistance of the output transistor. The low offset voltage of the output transistor (1 mVI allows the output to clamp essentially to ground level for small load currents. TYPICAL APPLICATIONS (V+ = 15 V) ONE-SHOT MULTIVIBRATOR AND GATE 39 k ol 3.0 k t tok 100pF ~~~__~~; v" lOOk lN914 lOOk 100k Co-"""",..--' 0.001 F v~:r "0" "1" 1.0M OR GATE BI-STABLE MUL TIVIBRATOR 200k 3.0k 15k lOOk 51k V>=rL o 6-17 lOOk Ro-¥A........- - - ; • FAIRCHILD· IlA139/239/339. IlA139A/239A/339A. IlA2901. IlA3302 TYPICAL APPLICATIONS (V+ = 15 V) (Cont.) LARGE FAN-IN AND GATE ONE-SHOT MUL TIVIBRATOR WITH INPUT LOCK OUT V+ V+ 10M --IE .. 15. 560k 100 • 40",S~-+ V 1", to I, ° c 240k 62. D ALL DIODES 1N914 TIME DELAY GENERATOR V+ ORING THE OUTPUTS 10 • 15. V+ 3.0k 200 k 10M '0' v;=r V, I" 13 3.0 k 51. 10 M INPUT GATING SIGNAL V~:rl.. 10 14 3.0k 51 k y+ t 10 M ----------,.-;a- V, V" I 51. PULSE GENERATOR SQUAREWAVE OSCILLATOR V' V' V.o-...' ·.;. O,. ,M....-I V, 1.0 M *FOR LARGE RATIOS OF R1/R2. D1 CAN BE OMITTED 6-18 FAIRCHILD. MA139/239/339. MA139A/239A1339A. MA2901. MA3302 TYPICAL APPLICATIONS (V+ = 15 V) (Cont.) NON-INVERTING COMPARATOR WITH HYSTERESIS INVERTING COMPARATOR WITH HYSTERESIS v+ v+ ·yINo----i 1.0 M v+O-"M.......-t vo 1.0M 1.0M COMPARING INPUT VOLTAGES OF OPPOSITE POLARITY OUTPUT STROBING BASIC COMPARATOR v+ STROBE INPUT ·OR LOGIC GATE WITHOUT PULLwUP RESISTOR • TWO-DECADE HIGH-FREQUENCY VCO v+ lOOk 3.0k ·v, FREQUENCY CONTROL VOLTAGE INPUT ..I1.I" OUTPUT 1 0.1 IJF OUTPUT 2 20 k ~-----------------+-o 50 k y+ +30 V +250mV' Yc +50V 700 Hz' f o ' 100 kHz CRYSTAL CONTROLLED OSCILLATOR LIMIT COMPARATOR v+ v+ (12 V) 2.0 k 200 k 100 k 10 k 6-19 FAIRCHILD- MA139/239/339- MA139A/239A/339A- MA2901- MA3302 TYPICAL APPLICATIONS (V+ LOW FREQUENCY OP AMP = 15 V) (Cont.) LOW FREQUENCY OP AMP (Vo = 0 V FOR VIN = 0 V) TRANSDUCER AMPLIFIER v+ v+ v+ 15k 10k >_......ov" 3.0k MAGNETICii PICKUP 1.0k 1.".0.5 Av v, ",F Av 1.0k 100 100 10k ZERO CROSSING DETECTOR (SINGLE POWER SUPPLY) LOW FREQUENCY OP AMP WITH OFFSET ADJUST Y+ Y+ v" +---_IW---__+_-ov, R. 10k 1.0k SPLIT-SUPPLY APPLICATIONS V+ = +15V and V- = -15V ZERO CROSSING DETECTOR MOS CLOCK DRIVER Y+ v+ 3.9k 2.4 k 2.4 k 51k COMPARATOR WITH A NEGATIVE REFERENCE 5.1 k Y+ 50 pF v- 6-20 IJA710 HIGH-SPEED DIFFERENTIAL COMPARATOR FAIRCH ILD L IN EAR INTEGRATED CIRCU ITS GENERAL DESCRIPTION - The I"A710 is a Differential Voltage Comparator intended for applications requiring high accuracy and fast response times. It is constructed on a single silicon chip using the Fairchild Planar* epitaxial process. The device is useful as a variable threshold Schmitt CONNECTION DIAGRAMS a·PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 5S PACKAGE CODE H v+ trigger, a pulse height discriminator, a voltage comparator in high speed AID converters, a memory sense amplifier or a high noise immunity line receiver. The output of the comparator is compatible with all integrated logic forms. • • • • 5 mV MAXIMUM OFFSET VOLTAGE 51"A MAXIMUM OFFSET CURRENT 1000 MINIMUM VOLTAGE GAIN 20 I"VrC MAXIMUM OFFSET VOLTAGE DRI FT v- ABSOLUTE MAXIMUM RATINGS NOTE: Pin 4 connected to case. Positive Supply Voltage Negative Supply Voltage +14.0 V -7.0V 10mA ±5.0 V ±7.0 V Peak Ouput Current Differential Input Voltage Input Voltage ORDER INFORMATION TYPE PART NO. I"A710HM I"A710HC • Internal Power Dissipation (Note 1) Metal Can DIP Flatpak 14-PIN DIP (TOP VIEW) PACKAGE OUTLINES 6A 9A PACKAGE CODES D P 500mW 670 mW 570mW Storage Temperature Range -65"C to +150°C -55 Q C to +125°C Metal Can, Hermetic DIP and Flatpak Molded DIP NC GND Operating Temperature Range Military (I"A710) Commercial (I"A710C) -55"C to +125"C O"C to +70"C Pin Temperature Metal Can, Hermetic DIP and Flatpak (Soldering, 60 s) Molded DIP (Soldering, 10 s) +IN 300"C 260"C EOUIVALENT CI RCUIT v+ R1 500n R4 RS 2.8 k.\1 3.9 kn NC -IN NC NC v- OUT NC NC ORDER INFORMATION PART NO. TYPE I"A710DM I"A710 I"A710DC I"A710C I"A710PC I"A710C 10-PIN FLATPAK (TOP VIEW) PACKAGE OUTLINE 3F PACKAGE CODE F R2 soon 10 NON· INVERTING INPUT 0---+---------1: D2 6.2 V OUTPUT R6 1.7kn. R7 Qg R8 100 68 " n QlO v- GND NC -+;IN NC -IN v+ NC NC v- OUT ORDER INFORMATION TYPE PART NO. I"A710 I"A710FM "Planar is a patented Fairchild process. Notes on following pages, 6-21 FAIRCHILD. fJA710 fJ A710 ELECTRICAL CHARACTERISTICS: T A = 25°C, V+ = 12.0 V, V- = -6.0 V unless otherwise specified. CHARACTER ISTICS CONDITIONS (Note 2) I nput Offset Voltage Input Offset Current Input Bias Current Voltage Gai n Output Resistance Output Sink Current Response Time (Note 3) RS';; 200 MIN n 1250 2.0 ' 500 " 60 V"·-6.0V ~ /' 1" .......... llOO 5,0 INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE " /' \ 1400 INPUT VOLTAGE - mV ~ ./ 1\ --- --- -''-r .,,', I I "00 I '--1-1-1-1-1 " f-t-t-HI-i;fj'IJ, 1.0 -iA·,,1, v+ '12V v'· -6.0\1 "- 1700 ~ I I - I--- NEGATIVE oUTPUT LEVEL I-60 ." " 60 TEMPERATURE .oC 100 1<" RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES r-r...,-,-"-,...,--,-".-,-,-,, 4.0 > '.0 ~ 2.0 20mV g I 20 60 TEMPERATURE'OC lOmV V 1.0 20mV 2.0mV 100 SO 50 ~ 20 40 60 TI!YE-ns OJ 1\ J2.omv 1'l I I 100 I 100 141 V+' +12V V--·6V TA ,'noc 0 t-- 0 \f~.omV 01-- ~~ l - ft-- 'c. _25°C 100 I " 60 TEMPERATURE'OC 20 COMMON MODE PULSE RESPONSE -1.0 \1+'+12\1 V':"6:0\l T '" 0 r-... 2.0 ·1.0 100 -l, 5.0rnV IOmV g " . 60 RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES 4.0 '.0 {II 1.0 ~ ~ ·60 ~A7I va.' r- t-- 01- r-J.~ \I+-+12V v-' -6,OV "ii" .0 120 6-23 0 0 I I . OJ TlME- n5 120 160 ~A710 FAIRCHILD • TYPICAL PERFORMANCE CURVES FOR tLA710C VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE VOLTAGE TRANSFER CHARACTERISTIC r-r-r-,-,--,---r-r,--,----, 4.0 " • 12 I\ -I- 3.0 ~ 't1 _t--1t--t-HH-I V"·~5· ,.c~ T, ·,,·c ":/ -:: :-- --- 4: r-+-+--t--t--1-1lj j,'f;/c '.0 ~ '",-.T:i:;,.;::-Ct--l T 11.0 r-+-+-+-+-fjlA/'--'f-+-+-t--l . . , , 1100 .. IV+' 12V , V"'-6.0V -- '500 . , '200 r---.. o 10 20 30 ~ 40 60 70 TEMPERATURE- °c ,.0 ,,- I " %r--+--+--+--+--+--4---1 i"'---. 0 0 ~ 10 lO 40 TEMPERATURE _oe , ~ ~ g~ 1i 60 70 3.0 * ro ~ ~ w ro LOGIC 1.51--+-+--+-+--+-+--+ 0 1.0 0'--''''0-''''~-~"--'-40-..L50-..L60---.J7O .,.0 RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES 0 0 I-+--t-j l-k=tI==l;:zl:::j::::j::::;:'*"'1F1=l V 2.0mV f-f-f-f-+--+-H--+.::+-H \1+'+121,1 .1.0 H-"-f-I<: -L 0 0 0 .1. 0 \ t'-- Az.omv 1'J. 10mV \ IvI· om, t'-- 20m' 5OH++-H-+-+-+-H-+++-1 I 20 40 60 TlMf- 80 ns 100 120 V+·12V Y··-(J.OY I I I I ~HRfSHbLD - VOLTAGE I I I I NEGATIVE OUTPUT LEVEL I 10 20 I I 30 40 50 TEMPERATURE - °c 60 70 COMMON MODE PULSE RESPONSE Y+· +12V Y-· -6V 0 0 0 TA .·~oC o~ ':~ -- r-. H++-H-+-+-+-tv-· -6:0V ,00H-++H-t-++-~T~'·~·"r·c-+-t-1 0 0 RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES 3.0 0 '.0 t--+-t--t-+--+-+-+ TEMPERATURE _·C 2.0 H-"mt--,-\.fbJI-1-tft-'1'.0i"m'"","H-++t-1 lOm 1.0 H-t--'IHHI-+'7'lVl f-+-+-+-H-+-1 I I POSITIVE OUTPUT L£VEl ,. TEMPERATURE _·C 4.0 OUTPUT VOLTAGE LEVELS AS A FUNCTION OF AMBIENT TEMPERATURE 0 r--+-+--+-+--+--t--+ --I--- ill ~!:-O--'::-O--~:':--:O~--~40--~50--~60---.JTO TEMPERATURE·oC 3.' j, 7 0 50 OUTPUT SINK CURRENT AS A FUNCTION OF AMBIENT TEMPER~TURE OJ - -I-- "- POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE ~~:~.~v-- 1 ). 12,1 r--+-+--+--s.o II:S vCM'S. +5.0V t\. TEMPERATURE _GC '00 14 I) V-'-1.0Y ~ t--t--I--+--II----1r--=T""-i O!:-o-"::-0-,~:':--lO:':--:O~--:''',.--:'60---:TO ~ 12 I--+--+-+'00 !< . "10 I- '~r--r-r--.-'--.--,--' ~r--+-+--+-+--+-+--+ -- ~ . /1 V>12V _ V·-6.0V ~ ~p.~-+--+-+--+-+--+ m - COMMON MODE REJECTION RATIO AS A FUNCTION OF AMBIENT TEMPERATURE 3.0 ~ ~r--+-+--+-+--+-+--+ -V POSITIVE SUPPtYIJOllAGE-V INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE r--+-+--+-+- ~~: ~:.~ v- 10 1200 V INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE ~ .'yV V~ ....... I'-... INPUT VOLTAGE - mV ~ T, .I,,·c /'" '300 -1.0 '--'--'-..L...L..L...L.-L-L-'--l -5.0 -3,0 -1.0 1.0 3.11 '.0 VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGES 500 "AJ10C Yo", -- - -- -- 'CM .0-- -~ '00 V+-+12V 0 0 .0 0 V-"-6.0V \'rC 20 00 00 TlME-ns 6-24 W ~ 120 ~ so TIME" ns '" '60 p,A711 DUAL HIGH-SPEED DIFFERENTIAL COMPARATOR FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The /LA711 is a Dual. Differential Voltage Comparator intended CONNECTION DIAGRAMS 10-PIN METAL CAN primarily for core-memory sense amplifier applications. The device features high accuracy. fast response times, large input voltage range, low powe~ consumption and compatibility with practically all (TOP VIEWS) integrated logic forms. When used as a sense amplifier. the threshold voltage can be adjusted over a wide range. almost independent of the integrated circuit characteristics. Independent strobing of each comparator channel is provided, and pulse stretching on the output is easily accomplished. Other applications of the dual comparator include a window discriminator in pulse height detectors and a double·ended limit detector for automatic Go/No·Go test equipment. The /LA711. which is similar to the IJA710 differential comparator, is constructed using the Fairchild Planar* epitaxial process. • • • • PACKAGE OUTLINES 5F 5N PACKAGE CODES H H v+ FAST RESPONSE TIME . . . 40 ns TYPICAL 5 mV MAXIMUM OFFSET VOLTAGE 10/LA MAXIMUM OFFSET CURRENT INDEPENDENT STROBING OF EACH COMPARATOR V- NOTE: Pin 5 connected to case. ABSOLUTE MAXIMUM RATINGS Positive Supply Voltage Negative Supply Voltage Peak Output Current Differential Input Voltage Input Voltage Strobe Voltage Internal Power Dissipation (Note 1 I Metal Can DIP Flatpak Operating Temperature Range Military (/LA 711 I Commercial (/LA711CI Storage Temperature Range Pin ·Temperature Metal Can. Hermetic DIP and Flatpak (Soldering. 60 sl Molded DIP (Soldering, 10 sl ORDER INFORMATION TYPE PART NO. "A711HM /LA711HC +14V -7.0 V 50mA ±5.0V ±7.0V o to +6.0 V 14-PIN DIP PACKAGE OUTLINES SA 9A PACKAGE CODES D P 500mW 670mW 570mW NC NC -INA _55°C to +125°C O°C to +70°C -65°C to +150°C +INA GND v+ IN B OUT -IN B STROBE B NC NC EQUIVALENT CIRCUIT STROBE A STROBE B ORDER INFORMATION TYPE PART NO. /LA7110M /LA711 /LA711DC /LA711C /LA711PC /LA711C r---~------------~---+--~----+---~------------~--~---oV+ 10-PIN FLATPAK PACKAGE OUTLINE 3F PACKAGE CODE F -IN Ac::=:J:=i;;;;:===l===JSTROBE A +IN Ac::=::r-ty GND v+IN B C=:t---F........ t-"""i==JOUT -IN Bc::==t:::!~~==:j==JSTROBE B ORDER INFORMATION TYPE PART NO. /LA711 /LA711FM Notes on following page. ·Planar is a patented Fairchild process. 6-25 • FAIRCHILD • f-LA711 tlA711 ELECTRICAL CHARACTERISTICS: TA= 25"1::, V+= 12 V, V-= -6.0 V unless otherwise specified CONDITIONS CHARACTERISTICS Input Offset· Voltage Input Offset Current MIN TYP UNITS VOUT = +1.4 V, RS "200.n, VCM = 0 1.0 3.5 mV VOUT = +1.4 V, RS .. 200.n 1.0 5.0 mV VOUT = 1.4 V 0.5 10.0 ,..A 25 75 ,..A Input Bias Current 750 Voltage Gain 1500 Response Time (Note 2) 40 Strobe Release Time 12 Input Voltage Range MAX V ns ns ±5.0 =-7.0 V V ±5.0 Differential Input Voltage Range V .n 200 Output Resistance Output HIGH Voltage Loaded Output HIGH Voltage V,N ;;'IOmV Output LOW Voltage Strobed Output Level 4.5 2.5 3.5 V,N ;;'10mV -1.0 -0.5 VSTROBE .. 0.3 V V,N ;;'10 mV, V out ;;'0 -1.0 Output Sink Current V,N ;;.10 mV, 10 = 5mA 0.5 V 0 V V 0 Strobe Current VSTROBE = 100 mV 1.2 VOUT = Gnd, Inverting Input = +5mV 8.6. Negative Supply Current VOUT = Gnd, Inverting Input = +5mV 3.9 130 V mA 0.8 Positive Supply Current Power Consumption 5.0 2.5 mA mA mA 200 mW The fol/owing specifications ·apply for _55° C .. TA .. +125°C: Input Offset Voltage (Note 3) RS .. 200 .n, VCM = 0 4.5 mV RS .. 200.n 6.0 mV Input Offset Current (Note 3) Input Bias Current 20 ,..A 150 ,..A Temperature Coefficient of 5.0 Input Offset Voltage ,..VrC 500 Voltage Gain NOTES: 1. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/oC for the Metal Can, 8.3 mW/oC for the DIP, and 7.1 mW/oC for the Flatpak. 2. The response time specified (see definitions) is for a 100 mV step input with 5 mV overdrive. 3. The input offset voltage is specified for a logic threshold as follows: 711: 1.8Vat-55°C".4Vat+25°C,'.OVat+125°C 711C: 1.5 V at O°C, 1.4 V at +25°C, 1.2 V at +700 C 6-26 FAIRCHILD • f.LA711 ILA711C ELECTRICAL CHARACTERISTICS: T A = 25"C, V+= 12 V, V-= -6.0 V unless otherwise specified CONDITIONS CHARACTERISTICS Input Offset Voltage Input Offset Current VOUT = +1.4 V, RS ,;;200 VOUT = +1.4 V, RS ';;200 MIN n, VCM n =0 VOUT = +1.4 V Input Bias Current Voltage Gain 700 TYP MAX UNITS 1.0 5.0 mV 1.0 7.5 mV 0.5 15 I'A 25 100 I'A 1500 Response Time (Note 21 40 ns Strobe Release Time 12 ns Input Voltage Range V = -7.0 V ±5.0 Differential I nput Voltage Range V ±5.0 Output Resistance V n 200 Output HI GH Voltage VIN .. 10mV Loaded Output HIGH Voltage VIN .. 10 mV, 10 = 5 mA Output LOW Voltage 4.5 2.5 3.5 VIN "lOmV -1.0 -0.5 Strobed Output Level VSTROBE ';;0.3 V -1.0 Output Sink Current VIN .. lOmV, VOUT"O Strobe Current VSTROBE = 100 mV 1.2 Positive Supply Current VOUT Gnd, Inverting Input = +10mV 8.6 Negative Supply Current VOUTGnd, Inverting Input = +10mV 3.9 0.5 Power Consumption 5.0 V 0 0 0.8 130 V V V mA 2.5 mA mA mA 230 mW 6.0 mV 10 mV 25 I'A 150 I'A The following specifications apply for 0' C ,;; T A .;; +70' C: Input Offset Voltage (Note 31 RS ,;; 200 n, VCM RS ,;; 200 n =0 Input Offset Current (Note 31 .r------. Input Bias Current Temperature Coefficient of Input Offset Voltage 5.0 Voltage Gain 500 6-27 I'vl"c • FAIRCHILD • /LA711 TYPICAL PERFORMANCE CURVES FOR /lA711 AND /lA711C VOLTAGE TRANSFER CHARACTERISTIC VOLTAGE TRANSFER CHARACTERISTIC I'A711C I'A711 5.0 5.0 IJ+- +12V V···6.0V ~ 4.0 > ~ ~ I, : ~ I' ~ 2.01 ~ 1.0 I ~ 0 g 'I 3.0 il: -1.0 -5.0 - -T-3.0 1700 " , ~ '.0 ~ ~ 1.0 ""-"·C 3.0 ITA' .f7O"C I r! , ~ l.tID F --- 1300 ---- -- --- -3.0 -1.0 .ZOO 1.0 3.0 .~ "'" V "~ .600 V I:Y1 , COMMON MODE PULSE RESPONSE VV «Xl" ~ \1' z>ll I~ e> I-- fi II ~=:- " 13 01- '" ~ 1 1 0 0 ., Voul t - r--- ." .01 ~ I -v 1 1 1 1 1 . TllYl-ns RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES 5.0 > IJ·_·6.DV r! ~ \ I 4.0 ~ 3.0 ~ ~ ~ It1 UmV "mV '.0 1.0 ....... 2.0mV IOmV V II -1.00 ,...... " J 0 ,.o~ 14 V+- +12IJ l"- .1 VO- -6.0V '.. r- ~ o~ "1\ '" J V+- +12IJ 1 TA -2S°C INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE 50 1 $r! '.0 POSITlVfSUPPLVVOlTAGE ., 1 3.0 l!I> '.0 I-V ~ j.--' l- '" ..., ..00 TEMPERATUREOC V I-- V ~ .., ." -ro -OJ 5.0 INPUTIJOLTAGE- mV ZOOO "00 "I" "'i TA '2S°C ,.., "" ~lSOO ~ VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGES "'" V+- +12V V·--6.0V .600 TA • O"c , -1.0 -5.0 5.0 r~ 't TA • -e;QC 0 -1.0 +1.0 INPUTVOLTAGf '-mV +12V -6.ov 3.0 liV +25°C +125 Q C v+· V· • 4.0 / ' VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE Y+' +12V V- -·6,OV TA -25°C ~ r---t--. I! 100 i EO 0 -00 -ro ." '00 TEMPERATLR£ _·C "00 ..., STROBE RELEASE TIME FOR VARIOUS INPUT OVERDRIVES ~ ~ '.0 I 0 > V+- +12V V--'6.0V - ICL V :.: - '.0 $ 0 n;~ l~::V:1 . f 5.'mV- ' / c..'mv ~ -'.0 -[4" , o OmV l.a "... .Jmv- " " TIME - ns 30 . 0 " ., ., 50 ~ I f= .;,~...... -~ 1 1 0 '00 ZOO 3IlO TIME - ns 6-28 '00 '" POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE v.l- «Xl 500 .,,~ V'-'6.DV TA'25°C ~\~~'(", -2.0 II TIME - n5 ... ~-':~' '.0 TA -25°C 2.0 ~ ~ /'" '.0 0 OUTPUT PULSE STRETCHING WITH CAPACITIVE LOADING 3.0 > 50 ~ 1... .... - '"-., -" Ii 50 ~ -..... ~ 1"- ." .., TEMPERATURE - '.00 "c ..., ~A734 PRECISION VOLTAGE COMPARATOR FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The "A734 is a Precision Voltage Comparator constructed on a single silicon chip using the Fairchild Planar* epitaxial proces~. It is specifically designed for high accuracy level sensing and measuring applications. The "A734 is extremely useful for analog·to-digital converters with twelve bit accuracies and one mega-bit conversion rates. Maximum resotution is obtained by high gain, low input offset current, and low input offset voltage. Its superior temperature stability can be improved by offset nulling which further reduces offset voltage drift. Balanced or unbalanced supply operation and standard TTL logic compatibility enhance the "A734's versatility. CONNEGnON DIAGRAMS 10-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE 5N PACKAGE CODE H + IN • CONSTANT INPUT IMPEDANCE OVER DIFFERENTIAL INPUT RANGE • HIGH INPUT IMPEDANCE - 55 Mn • LOW DRIFT - 3.5 • HIGH GAIN - 60 k • BALANCED OFFSET NULL CAPABILITY • \ WIDE SUPPLY VOLTAGE RANGE - ±5 V to ±18 V • TTL COMPATIBLE "vrc ABSOLUTE MAXIMUM RATINGS Supply Voltage Peak Output Current Differential Input Voltage Input Voltage Range (Note 1) Voltage Between Offset Null and VInternal Power Dissipation (Note 2) Metal Can DIP Operating Temperature Range Military ("A734) Commercial ("A734C) Storage Temperature Range Metal Can, DIP Pin Temperature (Soldering,60 s Max) 500 mW 670 mW -550 C to +125° C DoC to +70°C ORDFR INFORMATION TYPE PART NO. "A734HM "A734HC l4.pIN DIP -65°C to +150·C 30il"c EQUIVALENT CIRCUIT • v- ±18 V 10mA ±10 V ±13V ±0.5 V (TOP VIEW) PACKAGE OUTLINE 6A PACKAGE CODE D r---~~--~~--~----------------~----------------~--~~V+ " " 400 200 a11 '10 740 NC " 10k NC aUT a" '11 14 PULL-UP 13 RESISTOR OUT V+ NC V- +IN '" NC 19k -IN NC S OFFSET NULL '13 I+IG---+---------t---------t----' a,. '18 3.6k OFFSET NULL '18 '15 3.6k ',. 110 a13 ORDER INFORMATION TYPE PART NO. p.A734 "A734DM "A734C "A734DC OFFSET NULL Notes on following pages. ·Planar is a patented Fairchild process. 6-29 FAIRCHILD • /LA734 ±15 VOLT OPERATION FOR ~A734C ELECTRICAL CHARACTERISnCS: TA = 25"C, Pin 8 tied to +15 V, unless otherwise specified, Note 3: CHARACTER ISTICS I nput Offset Voltage CONDITIONS MIN RS';; 50 kn Input Offset Current Input Bias Current Input Resistance 7.0 Inpu:t Capacitance Offset Voltage Adjustment Range Large Signal Voltage Gain R L = 1 .5 kn to +5.0 V 35 k TYP mV 3.5 25 nA 30 100 nA 55 Mn 3.0 pF 8.5 mV 60 k V/V 4.0 Negative Supply Current - Output LOW Power Consumption - Output LOW R L = 1 .5 kn to +5.0 V UNITS 5.0 Positive Supply Current - Output LOW Transient Response MAX 1.1 5.0 mA 1.5 2.0 mA 82 105 mW ns 200 5 mV Overdrive, 100 mV Pulse The following specifications apply for o°c.;; TA';; +70°C Input Offset Voltage RS';; 50 kn 1.2 7.5 mV 4.0 45 nA 3.5 20 jJ.V/oC TA = +25°C to +70°C 0.02 0.3 nA/oC TA = +25°C to O°C 0.05 0.75 nArC I nput Offset Current Average I nput Offset Voltage Drift RS';; 50 n Without External Trim Average Input Offset Current Drift Input 8ias Current 150 Large Signal Voltage Gain Input Common Mode Voltage R L = 1.5 kn to +5.0 V R~nge Differential Input Voltage Range Common Mode Rejection Ratio RS';; 50 kn Supply Voltage Rejection Ratio RS';; 50 kn 25 k nA V/V ±10 V ±10 V 70 100 6.0 d8 100 jJ.V/V Vs = ±5 V to ±18 V lOUT = 0.080 mA 7.0 lOUT = 0.080 mA, V8 = +5.0 V 2.4 V Output HIGH Voltage Output LOW Voltage ISINK = 3.2 mA Positive Supply Current - Output LOW 5.0 V 0.4 V 7.0 mA Negative Supply Current - Output LOW 2.5 mA Power Dissipation - Output LOW 145 mW 6-30 FAIRCHILD • J.tA734 ±15 VOLT OPERATION FOR IlA734 ELECTRICAL CHARACTERISTICS: TA ~ 25·C, Pin 8 tied to +15 V, unless otherwise specified, Note 3. CHARACTERISTICS I nput Offset Voltage MIN CONDITIONS TYP I nput Offset Current Input Bias Current UNITS 3.0 mV 1.5 10 nA 28 50 nA 0.9 RS'; 50 kf! MAX 60 Mf! Input Capacitance 3.0 pF Offset Voltage Adjustment Range 8.5 mV 20 I nput Resistance Large Signal Voltage Gain RL ~ 35 k 1.5 kn to +5.0 V 70 k V/V Positive !'upply Current - Output LOW 4.0 5.0 mA Negative Supply Current - Output LOW 1.5 2.0 mA Power Consumption - Output LOW 82 105 mW Transient Response RL ~ 1.5 kn to +5.0 V ns 200 5 mV Overdrive, 100 mV Pulse The following specifications apply for -55· C .; T A .; +125· C I nput Offset Voltage RS'; 50kn Input Offset Current Average Input Offset Voltage Drift 1.1 4.0 mV 3.0 20 nA I-IV/oC nA/oC RS'; 50 kn 2.5 15 TA ~ +25°C to +125°C 0.01 0.1 TA ~ +25°C to _55°C 0.05 Without External Trim Average I nput Offset Current Drift Input Bias Current Large Signal Voltage Gain RL ~ 1.5 kn to +5.0 V 0.4 nA/oC 150 nA 25 k V/V Input Common Mode Voltage Range ±10 V Differential I nput Voltage Range ±10 V Common Mode Rejection Ratio RS'; 50 kn Supply Voltage Rejection Ratio RS'; 50 kn Vs ~ 70 100 5.0 dB 100 I-IV/V ±5 V to ±18 V lOUT ~ 0.080 mA lOUT ~ 0.080 mA, V8 V 7.0 Output HI G H Voltage ~ 5.0 V 0.4 V 7.0 mA Negative Supply Current - Output LOW 2.5 mA Power Dissipation - Output LOW 145 mW Output LOW Voltage +5.0 V 2.4 ISINK ~ 3.2 mA Positive Supply Current - Output LOW NOTES: 1. Rating applies for ±15 V supplies. For other supply voltages the rating is within 2 V of either supply. 2. Rating applies to ambient temperatures up to 70°C. Above 70°C ambient derate linearly at 6.3 mW/C for metal can, B.3 mW/C for DIP. 3. Pin numbers refar to metal can package. 6-31 • FAIRCHILD • JLA734 TYPICAL PERFORMANCE CURVES FOR IlA734 AND IlA734C (Note 2) UN-NULLED INPUT OFFSET VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE TRANSFER CHARACTERISTICS 8.0 Vs ·±lSV PIN 8 TIED TO +15V RL • 1.5 tQTIED TO +5V '.0 \ / INVERTINGINPlJT ," NOO-:~~~ o ..roo -:m -200 -100 ~S'lOOkQ 0 - 100 V- I-- , - O. 300 INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE I~V~VS$.±l5V I I " 40 - 1 -ro ro ~ 10 ~ , ~8.l 5 ~8.i "~ g ~ "" ! r-~15V+- -' -_v::r °H_ . > . . . . 8.05 i 4.20:= I """i--... / ~~ 8.00 .60 " '" 175 "'- l'--. . . 60 I-- ~ V ,SV " 100 140 -ro -60 ro 60 100 10 140 AMBIENTTEMPERATURE-OC SINK CURRENT -rnA POSITIVE AND NEGATIVE SUPPL V CURRENTS AS A FUNCTION OF AMBIENT TEMPERATURE VOLTAGE GAIN AS A FUNCTION OF SUPPL V VOLTAGE -- -t-- --- "RL • ,,·c l.5kQTIEDTO+5V ,0< ro ""- ro ---60 AMBIENTTEMPERATURE-OC 100 5.5 .., ,5 " I I I I VS·±l5V VOUylDN l-+---r I-- I- ISIPIN8TIEDYO+15VI - ....... '" 140 t::: V Vsl.:d5V TA·2S0C VIN > lOmV 100 115 60k -....... I-- t::: ~80PIN ,/ 1"\ "'- 60. ./ ~ VOLTAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE ."" PIN8T1EOTO+15V ±ISV- r-.... AMBIENTTEMPERATURE-OC VS"tI5V RL,UQTlEOTO+5V_ c-- .. OUTPUT VOLTAGE LOW VS SINK CURRENT r--.. 4 i 60 1"" AMBIENTTEMPERATURI-"C OUTPUT LOW VOLTAGE AS A FUNCTION OF SUPPL V VOLTAGE AND AMBIENT TEMPERATURE 4 ~r-- f-t-t-t-P-k::tt-----t-t-H -v 4.40 10·80IlA f---t--t---+"-d--++++--L--1 1.0 10 DlffIRENTIAL INPUT VOLTAGE f- PIN 8 TlEOTOV+ 4.0 ~ -I' -re OUTPUT HIGH VOLTAGE AS A FUNCTION OF SUPPLV VOLTAGE AND AMBIENT TEMPERATURE I--\t--t--+--+--+++++-i ~ VS"±15V 140 8.0 i 6.0 f-+'<---t----t----t----t---t--t--t--t--i 10 1 100 140 u AMB1ENTTEMPERATURE·OC 8.:0 ~ ;-- ~l- 60 100 INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE ~ ro i RS'lOll AMBlfNTTEMPERATURE-OC 15 ~ ~ ., ro 140 l - I-- r- 15 ,~~ ro -60 100 ~v" e.- /- '/ 1OtT-t--t--t----t----t---t--t--t--t--i 3S 1Il , 10 60 RS·lOOkQ ISV 40 ! J"--., I" '\ 45 i i "'- IS-i INPUT BIAS CURRENT AS A FUNCTION OF DIFFERENTIAL INPUT VOLTAGE 1 , 50 \ AMBIENTTEMPERATURE-OC INPUTVOLTAG[-IlV 60 I" i RS'5OQ- -ro -60 400 J. J.J \ , ~.SOQ : 8 200 -- II-- V- 0---1 "- ./ VS'H" VO·I.4V INITIAL OFfSETVOLTAGE11 >ll >15 I-"'"'" 1 1 J...-r 1.5 .., 0.5 .A..... I- ISlPIN80PENI 1 I; 1 ., I 1 -lil ro 1 1 SUPPLY VOlTAGE-V AMBIENTTEMPERATURE-"C 6-32 100 140 FAIRCHILD • f.LA734 TYPICAL PERFORMANCE CURVES FOR /J.A734 AND /J.A734C (Note 2) RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES -ttVIi< + PIN 8 OI>£N 1.5kQTILOTO+ 5V 25 c C tl5V I~t!-~ ~':~'z. H-+-++-+-+RL ·UH'l1IEDTO+15V lA·25°C VS INPUT OFFSET VOLTAGE DRIFT AS A FUNCTION OF TIME 5 PIN80PEN r-- RL TA Vs RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES ~ VS·±15V TA,I25°C " ±\5V RS·51ID I - 'SmV I I/ V 5 / - looH'-i-+-+-+-+--t-+++-t--i -so f---- -100 80 160 240 f(l;'l - 320 400 TRENDUNE 10 g I-I-HH-+-+-+++++--1 ~ O~-i~~~~~~~~ 50 80 160 240 320 400 0 5 L 0 RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES .. , 800 600 100 TIME -m n~ TIME-HOURS RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES STABILIZATION TIME OF INPUT OFFSET VOLTAGE FROM POWER TURN-ON 0 \ , ~~ Tl· b"C Vi":t15V 0 I- ImV 5mV 10mV IOmV i--"' l- , V -10 -so H'-i'-i-+-+-++++~+-1 HL--JL--J-t-t-+--++++-t--i -100 l40 320 ~ 0 ~ 100 ~ ~ 0 1 iO RESPOIllSE TIM!; FOR VARIOUS INPUT OVERDRIVES 40 . 1.0 11 ~~ ~ ~;o~\HI[DTO+5V II I Vs' ±15V Y H--+---:'::,-Om.cv+-~Htf--l--.l-t--fr+--+--+-1 .. 300 ~ 4.0 f--H-c"c-Im,,"vc-If-'-\I\.\r-\f-4+~,e,mv++-1 1.0 lOmV I\-- -5mV f--H-'-'--t-'---t-+\-\--\-t-++++-1 -so H--+-+-+-+++---,-+++-1 -100 H--+-t-t-t--+--t---r-++-t--i 160 2«1 320 i 100 Or--t~-t-r-r--j-t-~~-+~ 80 400 160 240 )20 400 TIME - ns TIME -ns COMMON MODE REJECTION RATIO AS A FUNCTION OF AMBIENT TEMPERATURE OFFSET NULL CIRCUIT (NOTE 2) Fe ~! / 100 PIN8T1EDTO+15V RL ·1.5kQTlEDTO+,v+----H-+--4 f~~ : ~~~. ~ ~HH~~-+-t--r--t-+++-1 ~ 80 r- ~ 160 '10 RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES 1=f=j=t"",,,,,=l-ti-+--jLH--+--+ § " THERMAL RESPONSE OF INPUT OFFSET VOLTAGE TO STEP CHANGE OF CASE TEMPERATURE 6.0 ~ '" TIME mOM POWER APPLICATION-SECONDS 1 f----- -- IINITItLOTETtLTAIGE ...... --"'VOUT RS = R1 R2 FOR MINIMUM OFFSET R, + R2 * 1/2 9944 V HYS '"' HIGH POWER OUTPUT CIRCUITS R, [V OMAX - VOMIN] PRECISION DUAL LIMIT GO-NO GO TESTER >''-----,r-oVOUT VOLTAGE CONTROLLED OSCILLATOR FREE RUNNING OSCILLATOR FREQUENCY DIVIDER & STAIRCASE GENERATOR PULSE WIDTH DISCRIMINATOR IVREFI" 2Vo + N [3.ST + 2Vo - c, VINI C2 VOUT Pul .. Appears T In Seconds Vo for FJT,toOO :=t:::O.31V Whenever T 6-34 > RI ~ ~12 FAIRCHILD • JLA734 TYPICAL APPLICATIONS (Note 2) ~~~~~ '>0 21T V AVG 4> = V OUT , PEAK 12-BIT AID CONVERTER • NO, OF BITS 8 12-BIT AID CONVERTER CLOCK 'NPUT 6-35 R VALUE 12.5k.H 10 25kn 50k!l 12 2QOkn J,lA760 HIGH-SPEED DIFFERENTIAL COMPARATOR FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The p.A760 is a Differential Voltage Comparator offering considerable speed improvement over the ",A710 family and operation from symmetric supplies of from ±4.5 V to ±6.5 V. The p,A760 can be used in high speed analog to digital conversion systems and as a zero crossing detector in disc file and tape amplifiers. The p,A 760 output features balanced rise and fall times CONNECTION DIAGRAMS a·PIN METAL CAN (TOP VIEW) for minimum skew and close matching between the complementary outputs. The outputs are TTL compatible with a minimum sink capability of two gate loads. PACKAGE OUTLINE 5S PACKAGE CODE H • • • • • GUARANTEED HIGH SPEED - 25 ns MAX GUARANTEED DELAY MATCHING ON BOTH OUTPUTS COMPLEMENTARY TTL COMPATIBLE OUTPUTS HIGH SENSITIVITY USES STANDARD SUPPLY VOLTAGES v+ IP2 ABSOLUTE MAXIMUM RATINGS Positive Supply Voltage Negative Supply Voltage +8 V -8 V 10mA ±5 V V+;;,VIN ;;'V- Peak Output Current Differential Input Voltage Input Voltage Internal Power Dissipation (Note 1) Metal Can DIP Operating Temperature Range Military (p.A760) Commercial (p.A760C) 500mW 670mW _55°C to 125°C O°C to 70°C vNOTE: Pin 4 connected to case. ORDER INFORMATION TYPE PART NO. p.A760HM p.A760HC Storage Temperature Range Metal Can and DIP 14·PIN DIP (TOP VIEW) EQUIVALENT CIRCUIT PACKAGE OUTLINE 6A PACKAGE CODE D NC NC NC IP2 IP1 v- ORDER INFORMATION TYPE PART NO. p.A760 p.A760DM p.A760C p.A760DC Notes on following page. 6-36 FAIRCHILD • ILA760 IlA760 ELECTRICALCHARACTERISTICS:VS = ±4.5 V to CHARACTERISTICS I nput Offset Voltage ±6.5 v, TA = -55°C to +125°C, TA TEST CONDITIONS = 25°C for typical MIN figures unless otherwise specified. TYP MAX UNITS 1.0 6.0 mV Input Offset Current 0.5 7.5 J. 2';i"C I RESPONSE TIME AS A FUNCTION OF INPUT VOLTAGE 1-+-++-+-'i5~~~~INE WAVE INPUTS I-+-++-+-'T A~ 2S"C ~ 21-+-I-+~1r~7"m~v-t-+-~ ~ ~~~~_'4o~mv~~~*==f==t=9 ~+ l- ~ I ~,ool-+-II--+-t_+-t_+-~ ~l00I-~~--+--+--+--+--+-~ , ~ ~ o~+-II--+-t-+-t-+-~ " 20 25 30 I- 501-+-1-+--+-+---+-+---1 Ir ~ 35 INPUT VOLTAGE - mV peak to-peak TIME-ns RESPONSE TIME AS A FUNCTION OF INPUT VOLTAGE VOLTAGE TRANSFER CHARACTERISTIC VOLTAGE TRANSFER CHARACTERISTIC 1---I-f-H-t--~g~;!~,IN: WAV: INPU~S I-++-I+--+- TA- 25°C / .it' Wi .... I INPUT VOLTAG - mV peak·to-peak VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE INPUT BIAS CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE VOL TAGE GAIN AS A FUNCTION OF AMBIENT TEMPERATURE 9,00 0 - TA "'25'C 4,000 8,000 ~ 7,00 0 ,/ 6,000 , ; ,/ 4,00 ° °v ° 3,00 "- z I'\. ~ 3,00 // ° " ~ / 2,00 2,000 ? 20 _6.51 60 TEMPERATURE '00 _·c '" RESPONSE TIME AS A FUNCTION OF AMBIENT TEMPERATURE INPUT OFFSET CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE \ VS-±6.5V VS -±5V ........ Vs -tB.5V I\. OUTPUT VOLTAGE lEVELS AS A FUNCTION OF AMBIENT TEMPERATURE . , 20 ........ t-==::=-- OH V S ·j:5V Ilou~"'50'mA I '.pd+ 151--- I J 1---- 2 tpdl--++-+--+-I--t-I I I- I- ~GICrH~£SH , r~ I VOL ISINK = 3.2 rnA o -60 '00 60 TEMPERATURE-"C AMBIENT TEMPERATURE - 6-39 "c ~ ,00 AMBIENT TEMPERATURE -"C • FAIRCHILD • p,A760 TYPICAL PERFORMANCE CURVES FOR IlA760 AND IlA760C (Cont'd) , RISE TIME AS A FUNCTION OF CAPACITIVE LOAD vS-±5~i m TA , 5 , VS"i5V TA ~25°C 25'C 5 I fI- , VV , 4 >-- 2 ,, CAPACITIVE LOAD - pF CAPACITIVE LOAD - pF T~f:-:: 2 ,'K , , , COMMON MODE RANGE AS A FUNCTION OF SUPPLY VOLTAGE V; "".15v 5 - INPUT BIAS CURRENT AS A FUNCTION OF DIFFERENTIAL INPUT VOLTAGE 4 I II II 5 , FALL TIME AS A FUNCTION OF CAPACITIVE LOAD lSI ./ " ...... 1'--."2 ...... r- 1-- " " " " " " " " 00 100 DIFFERENTIAL INPUT VOLTAGE - mV APPLICATIONS Pin numbers shown are only for Metal Can FAST POSITIVE PEAK DETECTOR ~ LEVEL DETECTOR WITH HYSTERESIS 7FD'" OUTPUTj: "A760 JL 2 EOUl -JSOnsI- .-WV---- ORDER INFORMATION TYPE PART NO. I'A555TC IlA555 8-PIN To-l00 (TOP VIEW) PACKAGE OUTLINE 5T +Vcc DISCHARGE FlIp·FLOP S Q RESET INHIBIT! RESET TRIGGER '--o!D-----, e •2 V :i 0 V f- f-- f-25~ 5 HIGH OUTPUT VOL TAGE AS A FUNCTION OF OUTPUT SOURCE CURRENT TOTAL SUPPLY CURRENT AS A FUNCTION OF SUPPL Y VOLTAGE o o f-Ticcir '.0 50 LOWEST VOLTAGE LEVEL OF TRIGGER PULSE - X Vee LOW OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT SINK CURRENT LOW OUTPUT VOL TAGE AS A FUNCTION OF OUTPUT SINK CURRENT 0 0 I Vcc- 5V f0 ,,"0 Vee-IOV Vcc- 15V ....... 0 I V , ) .. 25'CV V 0.0 LOW OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT SINK CURRENT I 25"C/ V· . . 0.0 0.0 0.0 5 5 0 0 \ 1\ I-- ,...... f.-- f.-- -- ,"0 -~I-- t-t- I- 5 5 0 0 0\ ~ 75 AMBIENT TEMPERATURE 7-5 _·c 100 J o~~ ~ ~ I- 50 SUPPLY VOLTAGE - V V of-- 5 5 PROPAGATION DELAY AS A FUNCTION OF VOL TAGE LEVEL OF TRIGGER PULSE DELAY TIME AS A FUNCTION OF AMBIENT TEMPERATURE DELAY TIME AS A FUNCTION OF SUPPLY VOLTAGE 0 rsc o. LOWEST VOLTAGE LEVEL OF TRIGGER PULSE - X Vee FAIRCHILD. ILA555 EQUIVALENT CIRCUIT FM Vcc~--1-------~----------~~~-------,~-----+--~------~---t----1-----' THRESHOLD OUTPUT TAIGGER o-!'----------I~----_l:: 0-:'-------1::', 0-:---, RESET DISCHARGE GND~------~--~~------4---&---~------~----~~~~----~ TYPICAL APPLICATIONS MONOSTABLE OPERATION In the monostable mode, the timer functions as a one-shot. Referring until the set time has elapsed, everi if it is triggered again during this interval. The duration of the output HIGH state is given by t = 1.1 R1 C1 and is easily determined by Figure 3. Notice that since the charge rate and the threshold level of the comparator are both directly proportional to supply voltage, the timing interval is independent of supply. Applying a negative pulse simultaneously to the Reset terminal (lead 4) and the Trigger terminal (lead 2) during the timing cycle discharges the external capacitor and causes the cycle to start over. The timing cycle now starts on the positive edge of the reset pulse. During the time the reset pulse is applied, the output is driven to its LOW state. to Figure 1 the external capacitor is initially held discharged by a transistor inside the timer. When a negative trigger pulse is applied to lead 2, the flip-flop is set, releasing the short circuit across the external capacitor and drives the outputHIGH.The voltage across the capacitor, increases exponentially with the time constant T = R1C1. When the voltage across the capacitor equals 2/3 VCC, the comparator resets the flip-flop which then discharges the capacitor rapidly and drives the output to its LOW state. Figure 2 shows the actual waveforms generated in this mode of operation. The circuit triggers on a negative..going input signal when the level reaches 1/3 Vee. Once triggered, the circuit remains in this state +Vcc-5 TO When Reset is not used, it should be tied high to avoid any possibility of false triggering. 15Vo----------t------, Fig. 1 TIME DELAY AS A FUNCTION OF R1 ANDC1 - 1-01 ms/DIV INPUT - 2.0V/DIV I I I I I r- I OUTPUT VOLTAGE - 5.0 V!DIV I / V I o CAPACITOR V LTAGE I I V / I 2.0 V IDIV R1 "'9.1kn.C1-0.01}1F.RL~1.0kn Fig_ 2 Fig. 3 7-6 FAIRCHILD. ILA555 TYPICAL APPLICATIONS (Cant'd) ASTABLE OPERATION When the circuit is connected as shown in Figure 4 (leads 2 and 6 and. the discharge time (output LOW) by: connected) it triggers itself and free runs as a multivibrator. The external capacitor charges through R 1 and R2 and discharges t2 through R2 only. Thus the duty cycle may be precisely set by the ratio of these two resistors. Thus the total period T is given by: T In the astable mode of operation, C1 charges and discharges between 1/3 VCC and 2/3 Vcc. As in the triggered mode, the charge and discharge times and therefore frequency are independent of the = t1 + t2 = 0.693 (R1 + 2R2) C1 1 1.44 f = T = "'(R'"'1-+-:C =-2""')-'C'"" 2R Figure 5 shows actual waveforms generated in this mode of operation. and may be easily found by Figure 6. The duty cycle is given by: R2 D=--R1 + 2R2 The charge time (output HIGH) is given by: = 0.693 0.693 (R2) C1 The frequency of oscillation is then: supply voltage. t1 = (R 1 + R2) C1 +Vcc '5TO 15Vo----------~----~--<: OUTPUT 0>------001 , 71<>----4 ~A555 ~ r; CONTROL VOLTAGE O.01JJF I r 1 ~ • r Fig. 4 FREE RUNNING FREQUENCY AS A FUNCTION OF R1, R2 AND C1 I-O.Smo/DIV ouJUT VOLJAGE - 61 j V/DIV I I CAPACITOR VOLTAGE I 1.0 V!DIV Rl"A2=4.Bkll,Cl-0.1!lF,RL"lkl! Fig. 5 Fig. 6 7-7 JLA556 DUAL TIMING CIRCUIT FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The jlA556 Timing Circuits are very stable controllers for producing accurate time delays or oscillations. In the time delay mode, the delay time is precisely controlled by one external resistor and one capacitor; in the oscillator mode, the frequency and duty cycle are both accurately controlled with two external resistors and one capacitor. By applying a trigger signal, the timing cycle is started and an internal flip-flop is set, immunizing the circuit from any further trigger signals. To interrupt the timing cycle a reset signal is applied, ending the time-out. CONNECT1ON DIAGRAM 14-PIN DIP (TOP VIEW) PACKAGE OUTLINES 6A 9A PACKAGE CODES D P The output, which is capable of sinking or sourcing 200 mA, is compatible with TTL circuits and can drive relays or indicator lamps. The jlA556 Dual Timing Circuit is a pair of 555s for use in sequential timing or applications requiring multiple timers. I. DISCHARGE Vee 13 DISCHARGE THRESHOLD • • • • • • • MICROSECONDS THROUGH HOURS TIMING CONTROL ASTABLE OR MONOSTABLE OPERATING MODES ADJUSTABLE DUTY CYCLE 200 mA SINK OR SOURCE OUTPUT CURRENT CAPABILITY TTL OUTPUT DRIVE CAPABILITY TEMPERATURE STABILITY OF 0_005% PER °c NORMALLY ON OR NORMALLY OFF OUTPUT CONTROL 3 12 THRESHOLD VOLTAGE 11 CONTROL VOLTAGE 10 RESET RESET OUTPUT TRIGGER TRIGGER GND ABSOLUTE MAXIMUM RATINGS Supply Voltage Power Dissipation Operating Temperature Ranges jlA556 DC/PC "A556DM Storage Temperature Range Pin Temperature (Soldering) (105) Plastic DIP (9A) (60 s) Ceramic DIP (6A) +1BV 600mW ORDER INFORMATION TYPE PART NO. jlA556 jlA556DC jlA556DM jlA556 jlA556PC jlA556 O°C to +'70°C -55°C to +125°C -65°C to +150°C 260°C 300°C BLOCK DIAGRAM i------T------~vce DISCHARGE ---<>--------------, THRESHOLD ---<:>----1 CONTROL VOLTAGE ----<:>---...--1 RESET ---<>---1-----, OUTPUT ---<>----1-----J TRIGGER ----<:>----1 GND~ ______ I I I I I I I I I ~ 7-8 . - - - - - - - - - - - - - - ( ) - - DISCHARGE t-----<>-- THRESHOLD t--~--<>-- CONTROL VOLTAGE ,.---t--:)-- RESET '---+--_:>-- OUTPUT 1-_ _-<;>--_ TRIGGER ______ ~ FAIRCHILD • ILA556 ELECTRICAL CHARACTERISTICS: TA= 25°C, VCC= +5.0 V to +15 V, unless otherwise specified I'A556DM CHARACTER ISTICS TEST CONDITIONS MIN Supply Voltage 4.5 VCC = 5.0 V, RL = Supply Current (Total) TYP ~ I'A556DC/PC MAX MIN 18 4.5 TYP UNITS MAX 16 V 6.0 10 6.0 12 mA 20 22 20 28 mA 0.5 1.5 0.75 30 100 50 ppmtC 0.05 0.2 0.1 %V VCC=15V,RL=~ LOW State (Note 1) Timing Error (Monostable) Initial Accuracy RA = 2 kU to 100 kU Drift with Temperature C = 0.1 I'F (Note2) Drift with Supply Voltage % Timing Error (Astable) Initial Accuracy RA,RB = 2 kU to 100kU 1.5 2.25 % Drift with Temperature C = O.II'F (Note 2) 90 150 ppmtC Drift with Supply Voltage Threshold Voltage Threshold Current Trigger Voltage 0.15 0.3 %V 2/3 2/3 X VCC nA 30 100 30 VCC=15V 4.8 5.0 5.2 5.0 V VCC= 5.0 V 1.45 1.67 1.9 1.67 V Note 3 Trigger Current 0.5 Reset Voltage 0.4 Reset Current 0.7 100 0.5 1.0 0.4 0.7 I'A 1.0 V mA 0.1 0.1 VCC-15V 9.6 10 10.4 9.0 10 11 V VCC=5.0V 2.9 3.33 3.8 2.6 3.33 4.0 V ISINK = 10mA 0.1 0.15 ISINK = 50 mA 0.4 0.5 ISINK = 100 mA 2.0 2.25 ISINK = 200 mA 2.5 Control Voltage Level VCC=15V Output Voltage (LOW) 0.1 0.25 V 0.4' 0.75 V 2.0 2.75 V V 2.5 VCC=5.0V 0.1 ISINK = 8.0 mA 0.25 V 0.25 ISINK = 5.0 mA 0.35 V ISOURCE = 200 mA VCC=15V Output Voltage IHIGH) 12.5 12.5 V V ISOURCE = 100 mA VCC=15V 13.0 13.3 12.75 13.3 VCC = 5.0V 3.0 3.3 2.75 3.3 V 100 ns Rise Time of Output 100 Fall Time of Output 100 Discharge Leakage Current 100 20 100 Initial Timing Accuracy 0.05 0.1 Timing Drift with Temperature ±10 ns 20 100 0.1 0.2 nA Matching Characteristics (Note 4) Drift with Supply Voltage 0.1 ±10 0.2 NOTES: 1. Supply current when output is HIGH is typically 1.0 rnA less. 2. Tested at Vee == 5 V and Vee = 15 V. 3. This will determine the maximum value of RA + RS for 15 V operation. The maximum total R ::: 20 Mil; 4. Matching characteristics refer to the difference between performance characteristics of each timer section. 7-9 0.2 % ppmtC 0.5 %V • FAIRCHILD • JLA556 TYPICAL PERFORMANCE CURVES TOTAL SUPPLY CURRENT AS A FUNCTION OF SUPPL Y VOLTAGE MINIMUM PULSE WIDTH REQUIRED FOR TRIGGERING , 160 , , , I--" ~ 01--" i--"P" k::::: ~ , - - f-""/ / / tt ~~ C W '/ ., .0 / ./ I 5v ,,"C , I- I V 0.4 0 o Vce· ISV >, 1.0 ~ ~ V 1.0 '00 , J ~ ~ § , 0.' LOW OUTPUT VOL TAGE AS A FUNCTION OF OUTPUT SINK CURRENT , Vee- IOV >I 2S'C o. 1 §~ / V V , 0.01 0,0 1,' 1.0 '0 1.010 1.005 I."'" 0.... \ \ ~ --- - -- • PROPAGATION DELAY AS A FUNCTION OF VOLTAGE LEVEL OF TRIGGER PULSE 1.016 300 1.010 0 1,006 --I- . 1.000 .09 0,,",, 0." SINK CURRENT - rnA DELAY TIME AS A FUNCTION OF AMBIENT TEMPERATURE DELAY TIME AS A FUNCTION OF SUPPLY VOL TAGE - -- - 0.990 20 I J ~\ ~'1 o=~ :::::: ~ - ~C - , 0,965 10 SUPPLY VOLTAGE - v. ./ 2S"C o. 1 SINK CURRENT - rnA , ,,0 SOURCE CURRENT - rnA SUPPLY VOLTAGE - V ~ , r-TiCCir I., LOW OUTPUT VOL TAGE AS A FUNCTION OF OUTPUT SINK CURRENT - 2S"C I.' 0 LOW OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT SINK CURRENT ~ ,., / / LOWEST VOLTAGE LEVEL OF TRIGGER PULSE ~ X Vee , Yce / HIGH OUTPUT VOLTAGE AS A FUNCTION OF OUTPUT SOURCE CURRENT -60 -26 0 211 50 16 AMBIENT TEMPERATURE -."C 7-10 100 126 0,' 0,' .. LOWEST VOLTAGE LEveL OF TRIGGER PUL$E- X Vce FAIRCHILD • I£A556 TYPICAL APPLICATIONS (Cont'd) ASTABLE OPERATION When the circuit is connected as shown in Figure 4 (leads 2 and 6 connected) it triggers itself and free runs as a multivibrator. The external capacitor charges through R 1 and R2 and discharges through R2 only. Thus the duty cycle may be precisely set by the ratio of these two resistors. and the discharge time (output LOW) by: t2 = 0.693 (R2) Cl Thus the total period T is given by: T = tl + t2 = 0.693 (Rl + 2R2) Cl In the astable mode of operation, Cl charges and discharges between 1/3 VCC and 2/3 VCC. As in the triggered mode, the charge and discharge times and therefore frequency are independent of the supply voltage. The frequency of oscillation is then: 1 f Figure 5 shows actual waveforms generated in this mode of operation. =1'" =(Rl 1.44 + 2R2) Cl and may be easily found by Figure 6. The duty cycle is given by: R2 The charge time (output HIGH) is given by: D=--- Rl + 2R2 tl = 0.693 (Rl + R2) Cl +VCC"'STO 15 V 0----------"",----_..--0 ., r 14 4 5 OUTPUT 1/2556 J~3 CONTROL VOLTAGE O.Ol,.F I 1 7 , .2 tJ r Fig. 4 FREE RUNNING FREQUENCY AS A FUNCTION OF Rl, R2ANDCl t= 0.5 ms/DIV J J J J o.o~~ ,",-,-:,..J.o",,----:,"',,"-,--::,,""o... "--,-,,.0,..'..."-:":""""....,-:'='00kHz CAPACITOR VOLTAGE -1.0VfDIV Rl = R2 = 4.8 k.n, Cl = 0.1 p.F, RL =1 k.n Fig. 6 Fig. 5 7-12 JLA2240 PROGRAMMABLE TIMER/COUNTER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The /lA2240 Programmable Timer/Counter is a monolithic controller capable of producing accurate microsecond to five day time delays. Long delays, up to three years, can easily be generated by cascading two timers. The timer consists of a time-t>ase oscillator, programmable 8-bit counter and control flip-flop. An external resistor capacitor (RC) network sets the oscillator frequency and allows delay times from 1 RC to 255 RC to be selected. In the astable mode of operation, 255 frequencies or pulse patterns can be generated from a single RC network. These frequencies or pulse patterns can also easily be synchronized to an external signal. The trigger, reset and outputs are all TIL and DTL compatible for easy interface with digital system. The timer's high accuracy and versatility in producing a wide range of time delays makes it ideal as a direct replacement for mechanical or electromechanical devices. • • • • • • • • CONNECTION DIAGRAM 16-PIN DIP (TOP VIEW) PACKAGE OUTLINES 7B, 98 PACKAGE CODE D P ,. Vee REGULATOR OUTPUT ACCURATE TIMING FROM MICROSECONDS TO DAYS PROGRAMMABLE DELAYS FROM 1 RC TO 255 RC TIL, DTL AND CMOS COMPATIBLE OUTPUTS TIMING DIRECTLY PROPORTIONAL TO RC TIME CONSTANT HIGH ACCURACY - 0.5% EXTERNAL SYNC AND MODULATION CAPABILITY WIDE SUPPLY VOLTAGE RANGE EXCELLENT SUPPLY VOLTAGE REJECTION ABSOLUTE MAXIMUM RATINGS Supply Voltage Output Current Output Voltage Regulator Output Current Maximum Power Dissipation, Note 1 Package Code D (Ceramic) Code P (Plastic) Operating Temperature Range Package Military (J.IA2240) Commercial (J.IA2240C) TIME-8ASE OUTPUT RESISTOR CAPACITOR INPUT MODULATION INPUT TRIGGER INPUT RESET GND 18 V 10mA 18V 5 mA ORDER INFORMATION TYPE PART NO. /lA2240 /lA2240DM /lA2240C /lA2240DC /lA2240C /lA2240PC 750mW 650mW -55°C to + 125°C O°C to 70°C BLOCK DIAGRAM r----------------~---------------T---l 11 I I I II " ., •• n I I I I I I I I I I ..,I_...., ____ ~ I """1r--_---,,--. _ _I" :..:.o~~~~TOA I 0128 If.o.t--------~A~~ ____=OU:.:T-'-PU:.:Tc,·-tI..• _____ C~~~~:R -------<.-tli"".-----I.l~~~~~g~ NOTE 1: Above 25°C ambient derate linearly at 6.2 mW;oC for Package Code 0 and at 5.3 mW;oC for Package Code P. 7-13 • FAIRCHILD. pA2240 ELECTRICA.L CHARACTERISTICS: See Test Circuit Fig. 28, VCC - 5 V, T A - 25°C, R -10 kn, C - 0.1 /IF, unless otherwise noted UNITS CONDITIONS CHARACTERISTICS GENERAL CHARACTERISTICS Supply Voltage For VCC';; 4.5 V, Short Pin 15 to Pin 16 15 4.0 4.0 15 V Supply Current Total Circuit VCC - 5 V, VTR - 0, V RS - 5 V VCC = 15 V, VTR = 0, VRS = 5 V Counter Only Regulator Output, V Reg See Test Circuit, Figure 29 3.5 6.0 4.0 7.0 mA 12 16 13 18 mA 1 Measured at Pin 15, Vec = 5 V 4.1 4.4 VCC = 15 V, See Test Circuit, Figure 30 6.0 6.3 1.5 6.6 mA 3.9 4.4 5.8 6.3 6.8 5.0 V V TIME BASE SECTION Timing Accuracy (Note 2) VRS = 0, VTR = 5 V 0.5 2.0 0.5 150 300 200 Temperature Drift V = 5V CC ' DoC';; TJ ';; 75°C VCC=15VI Supply Drift VCC;;' 8 V, See Figure 23 0.2 0.08 Max Frequency R = 1 kCl, C = 0.007 p.F Modulation Voltage Level Measured at Pin 12 VCC = 5 V I 80 0.05 100 130 3.00 3.50 Recommended Range of Timing Components ppm/oC 80 0.3 130 4.0 2.80 10.5 VCC=15V 3.50 % ppm;oC %/V kHz 4.20 10.5 V V See Figure 20 Timing Resistor, R 0.001 10 0.001 10 MQ Timing Capacitor, C 0.007 1000 0.01 1000 p.F TRIGGER/RESET CONTROLS Trigger Measured at Pin II, VRS = 0 Trigger Threshold Trigger Current 1.4 2.0 1.4 8.0 VRS = 0, VTR = 2 V 2.0 V 10 p.A Impedance 25 25 ill Response Time (Note 3) 1.0 1.0 ps Reset Measured at Pin 10, VTR = 0 Reset Threshold Reset Current 1.4 Impedance See Test Circuit Figure 30 Max Toggle Rate VRS = 0, VTR = 5 V Measured at Pin 14 V pA 25 kQ 0.8 p.s 0.8 1.5 1.5 MHz 1.0 1.4 20 kQ 1.4 V 180 180 ns 180 180 ns 4.0 mA 20 Input Threshold 2.0 10 25 Input Impedance Output: Rise Time 1.4 0.8 Response Time (Note 3) COUNTER SECTION 2.0 8.0 VTR = 0, VRS = 2 V 1.0 Measured at Pins 1 through 8 RL = 3 kQ, CL = 10 pF Fall Time Sink Current VOL ';;0.4 V Leakage Current VO H = 15 V 3.0 5.0 0.01 2.0 8.0 NOTES: 2. Timing error solely introduced by /lA2240. measured as % of ideal time base period of T - 1.00 RC. 3. Propagation delay from application of trigger (or reset) input to corresponding state change in counter output at Pin 1. 7-14 0.01 15 pA FAIRCHILD. pA2240 FUNCTIONAL DESCRIPTION (Figure 1 and Block Diagram. page 1) When power is applied to the pA2240 with no trigger or reset inputs. the circuit starts with all outputs HIGH. Application of a positive-going trigger pulse to TRIG. pin 11. initiates the timing cycle. The Trigger input activates the time-base oscillator. enables the counter section and sets the counter outputs LOW. The time-base oscillator generates timing pulses with a period T = 1 RC. These clock pulses are counted by the binary counter section. The timing sequence is completed when a positive-going reset pulse is applied to R. pin 10. outputs are connected back to the Reset terminal (switch 81 open). the circuit operates in an astable or free-running mode. following to a trigger input. Important Operating Information • Once triggered. the circuit is immune from additional trigger inputs until the timing cycle is completed or a reset input is applied. If both the reset and trigger are activated simultaneously. the trigger takes precedence. Ground connection is pin 9. • Reset R (pin 10) sets all outputs HIGH. • Trigger TRIG (pin 11) sets all outputs LOW. • Time-base TBO (pin 14) can be disabled by bringing thl RC input (pin 13) LOW via a 1 k resistor. • Normal Time-base Output TBO (pin 14) is a negativegoing pulse greater than 500 ns. Note: Under the conditions of high supply voltages (Vce > 7 V) and low values of timing capacitor (C < 0.1 pF. the Figure 2 gives the timing sequence of output waveforms at various circuit terminals. subsequent to a trigger input. When the circuit is in a Reset state. both the time-base and the counter sections are disabled and all the counter outputs are HIGH. pulse width of TBO may be too narrow to trigger the counter section. This can be corrected by connecting a 300 pF capacitor from TBO (pin 14) to ground (pin 9). In most timing applications. one or more of the counter outputs are connected to the Reset terminal with 81 closed (Figure 3). The circuit starts timing when a trigger is applied and automatically resets itself to complete the timing cycle when a programmed count is completed. If none of the counter • Reset (pin 10) stops the time-base oscillator. • Outputs 00 ... 0128 (pins 1-8) sink 2 mA current with VOL ';;;0.4 V. • For use with external clock. minimum clock pulse amplitude should be 3 V. with greater than 1 ps pulse duration. '2 '3 '1 • TRIG JlA2240 VREG 16 '0 vee = Pin 16 GND = Pin 9 14 1 2 Fig. 1. 3 4 5 6 7 8 Logic Diagram r---------r--vcc TRIGGER RL 10 k I n _ _ _ _ _ _ _ _ _ _ _ - t (PIN INPUT 111 ~UL. TIME BASE ~~~~~~ 1111111111111111111111111 ---+- t h n.nnnn...r_ h'---LO_-'-_LO_-'----'O'----' _ h COUNTER OUTPUTS PIN 1 c .01 pF J TRIGGER ...n... 13 11 TRIG RC 12 MOO vee = Pin 16 t PIN2 GND = Pin 9 RESET t PIN 3 ...n... 20k 47k TRIGGER l_tPIN4 --Il.- h_..L.._______L._ _ ~t PIN 6 L....,CY'"o-+...............+-~~.......I---~I---OUTPUT --"""rSI 1T 7 V) and a smallvalue timing capacitor (C < 0.1 pF), the pulse width of the time-base output at pin 14 may be too narrow to trigger the counter section. This can be corrected by connecting a 300 pF capacitor from pin 14 to ground. T = RC = (Ts/m) ±20 ~ IE w ±16 ;:: ±12 .." .~ en Tp o -I I- 0.3T < Tp < 0.8T 0 JLJ[~}vpp --1. I- T5-1 ~ ui "a: " ±8 Z "~ .. ±" . \ ~ """" ......... 1-0... ..... :> 00 10 12 RATIO OF TIME-BASE PERIOD TO SYNC-PULSE PERIOD - (TfTs) Fig. 4. Fig. 5. Operation with External Sync. Signal 7-16 Typical Pull-in Range for Harmonic Synchronization FAIRCHILD • pA2240 Counter-Output Programming The binary-counter outputs, 00 ... 0128' pins 1 through 8 are open-collector type stages and can be shorted together to a common pull-up resistor to form a wired-OR connection; the combined output will be LOW as long as anyone of the outputs is LOW. The time delays associated with each counter output can be added together. This is done by simply shorting the outputs together to form a common output bus as shown in Figure 3. For example, if only pin 6 is connected to the output and the rest left open, the total duration of the timing cycle, TO, is 32 T. Similarly, if pins 1, 5, and 6 are shorted to the output bus, the total time delay is TO = (1 + 16 + 32) T = 49 T. In this manner, by proper choice of counter terminals connected to the output bus, the timing cycle can be programmed to be 1 T .;;; TO .;;; 255 T. cuit connection of Figure 7. In this case, the VCC terminal (pin 16) of Unit 2 is left open, and the second unit is powered from the regulator output of Unit 1 by connecting the VREG (pins 15) of both units together. Ultra Long Time-Delay Application Two tlA2240 units can be cascaded as shown in Figure 6 to generate extremely long time delays. Total timing cycle of two cascaded units can be programmed from TO = 256 RC to TO = 65,536 RC in 256 discrete steps by selectively shorting one or more of the counter outputs from Unit 2 to the output bus. In this application, the Reset and the Trigger terminals of both units are tied together and the Unit 2 time base is disabled. Normally, the output is HIGH when the system is reset. On triggering, the output goes LOW where itremains for a total of (256)2 or 65,536 cycles of the time-base oscillator. The circuit of Figure 9 is designed for continuous operation. It self-triggers automatically when the power supply is turned on, and continues to operate in its free-running mode indefinitely. in astable or free-running operation, each of the counter outputs can be used individually as synchronized oscillators, or they can be interconnected to generate complex pulse patterns. ASTABLE OPERATION The tlA2240 can be operated in its astable or free-running mode by disconnecting the Reset terminal (pin 10) from the counter outputs. Two typical circuits are shown in Figures 8 and 9. The circuit in Figure 8 operates in its free-running mode with external trigger and reset signals. It starts counting and timing following a trigger input until an external reset pulse is applied. Upon application of a positive-going reset signal to pin 10, the circuit reverts back to its Reset state. This circuit is essentially the same as that of Figure 3 with the feedback switch Sl open. Binary Pattern Generation In astable operation, as shown in Figure 8, the output of the pA2240 appears as a complex pulse pattern. The waveform of the output pulse train can be determined directly from the timing diagram of Figure 2 which shows the phase relations between the counter outputs. Figures 10 and 11 show some In cascaded operation, the time-base section of Unit 2 can be powered down to reduce power consumption by using the cir- Vee r---------------~-----Vee RL R 10 k 10 • • Vee .0111F TRIGGER It. Vee = Pin 16 GND = Pin 9 TRIG ~A2240 .uA2240 .047 "F RESET vee = Pin 16 MOD GND = Pin 9 TRIG VREG 20k 20k It. '-I......~....--+--+......--....-+-OUTPUT ...............~--4---4-............----4--+-0UTPUT ~--------~JILILJL- Fig. 8. Operation with External Trigger and Reset Inputs Fig. 9. Free-Running or Continuous Operation A. 2 PIN PATTERNS JUUUUl~ ~TI- H3T T~Re --ITI- j--8T--t--7T-+j PINS 1 AND 2 SHORTED B. 3 PIN PATTERN 1ID-Jm~==~==~~~_ 3T/-f..5T~ 1_21T '1 PINS 1, 3, AND 6 SHORTED C. 4 PIN PATTERN ~~ 3T/-f..5T Fig. 10. _1"1_ 21T -I ~:I' 5HI~~I' 85T- Binary Pulse Patterns Obtained by Shorting Various Counter Outputs 7-17 FAIRCHILD • pA2240 Vee Vee Vee RL 10 k 47 k e Vee = Pin 16 GND = Pin 9 RESET --~__--r------------------+--~~~_+-+-+~~~~+-----~--OUTPUT Fig. 6. Vee Cascaded Operation for Long Delavs Vee Vee 47 k R RL 30 k NO Vee CONNECTION REQUIRED ON pA2240 #2 e TRIGGER'-----,__----+----------------+-+...., J1.. TRIG Re Vee = Pin ~A2240 16 GND = Pin 9 #1 RESET J1... '-------------------------_+~Nv~~~-+~~~~---~- OUTPUT 150 k "I-..I" -l Fig. 7. TO I- Low Power Operation of Cascaded Timers connection for this application is shown in Figure 3. The output is normally HIGH and goes LOW following a trigger input. It remains LOW for the time duration. TO. and then returns to the HIGH state. The duration ·of the timing cycle TO is given as: Regulator Output (VREG' pin 15) The regulator output VREG is used internally to drive the binary counter and the control logic. This terminal can also be used as a supply to additional pA2240 circuits when several timer circuits are cascaded (see Figure 7) to minimize power dissipation. For circuit operation with an external clock. VREG can be used as the VCC input terminal to power down the internal time base and reduce power dissipation. When supply voltages less than 4.5 Vare used with the internal time-base. pin 15 should be shorted to pin 16. TO = NT= NRC where T = RC is the time-base period as set by the choice of timing components at RC pin 13 (see Figure 21) and N is an integer in the range of 1 ~ N ~ 255 as determined by the combination of counter outputs 00' .. 0128. pins 1 through 8. connected to the output bus. MONOSTABLE OPERATION Preci8ion Timing In precision timing applications. the pA2240 is used in its monostable or self-resetting mode. The generalized circuit 7-18 FAIRCHILD • pA2240 Vee Vee Vee; Pin 16 RC MOD GND; Pin 9 -li!ll- RC WAVEFORM TIME·BASE OUTPUT 0, OUTPUT 1'YYYYYY1/ /fYYYYYYY1 If/ I I I I I I I I rLrLJ1.J// I...f1..JU1S IIIIII II-_ '---I---'---+-~~ Jl__ -I i!l\I_ ___rL- 26. RC .1 J1ILj!-_----Jrul. I. 256 RC .1 j'"'rl'"tj/-1<~256RC _I FL/j~ I.--- Fig. 11. 266 RC Continuous Free-run Operation Examples of Output 7-19 .1 FAIRCHILD • J,tA2240 of the complex pulse patterns that can be generated. The pulse pattern repeats itself at a rate equal to the period of the highest counter bit connected to the common output bus. The minimum pulse width contained in the pulse train is determined by the lowest counter bit connected to the output. For low power operation with supply voltages of 6 V or less, the internal time base section can be powered down by connecting VCC to pin 15 and leaving pin 16 open. In this configuration, the internal time base does not draw any current and the overall current drain is reduced by "" 3 mA. OPERATION WITH EXTERNAL CLOCK The pA2240 can be operated with an external clock or time base by disabling the internal time-base oscillator and applying the external clock input to TBO, pin 14. The recommended circuit connection for this application is shown in Figure 12. The internal time base is de-activated by connecting a 1 kCl resistor from RC, pin 13, to ground. The counters are triggered on the negative-going edges of the external clock pulse. For proper operation, a minimum clock pulse amplitude of 3 V is required. Minimum external clock pulse width must be ;;;. 1 ps. FREQUENCY SYNTHESIZER The programmable counter section of the pA2240 can be used to generate 255 discrete frequencies from a given timebase output setting using the circuit connection of Figure 13. The circuit output is a pOSitive pulse train with a pulse width equal to T, and a period equal to (N + 1) T where N is the programmed count in the counter. The modulus N is the total count corresponding to the counter outputs connected to the output bus. For example, if pins 1, 3 and 4 are connected together to the output bus, the total count is N = 1 + 4 + 8 = 13; and the period of the output waveform is equal to (N + 1) T or 14 T. In this manner, 255 different frequencies can be synthesized from a given time-base setting. Vee Vee R Vee RL vee = Pin 4.7 k 16 GND = Pin 9 3k RC TRIGGER ..n.. ..n.. TRIG MOD ...----/TRIG #A2240 J,lA2240 1k RESET 500 pF EXTERNAL VREG J. vee = Pin 16 GND = Pin 9 CLOCK INPUT rl.I1JL OUTPUT 81 OPEN: ASTABLE OPERATION S1 CLOSED: MONOSTABLE 10k T=Re 1:S;;;N :S:;;;256 Fig. 12. Operetion with Extarnal Clock Fig. 13. Frequency Synthesis from Internal Time-Base Vee 3k ...-----1 TRIG tlA2240 1k VREG 20k 1 vee = Pin 16 GND = Pin 9 500PF OUTPUT Fig. 14. Frequency Synthesis by Harmonic Locking to an External Reference 7-20 J"1.J1.. ~ T (N+1) FAIRCHILD. pA2240 SYNTHESIS WITH HARMONIC LOCKING The harmonic synchronization feature of the ttA2240 time base can be used to generate a wide number of discrete frequencies from a given input reference frequency. The circuit connection for this application is shown in Figure 14 (see Figures 4 and 5 for external sync waveform and harmonic capture range). If the time base is synchronized to (m)th harmonic of input frequency where 1 ~ m ~ 10, the frequency fO of the output waveform in Figure 14 is related to the input reference frequency fR as The circuit of Figure 14 can be used to generate frequencies which are not harmonically related to a reference input. For example, by selecting the external RC to set m = 10 and setting N = 5, a 100Hz output frequency synchronized to 60 Hz power line frequency can be obtained. STAIRCASE GENERATOR The ttA2240 timer/counter can be interconnected with an external operational amplifier and a precision resistor ladder to form a staircase generator as shown in Figure 15. Under Reset condition, the output is LOW. When a trigger is applied, the op amp output goes HIGH and generates a negative-going staircase of 256 equal steps. The time duration of each step is equal to the time-base period T. The staircase can be stopped at any level by applying a disable signal to pin 14, through a steering diode, as shown in Figure 15. The count is stopped when pin 14 is clamped at a voltage level';;;; 1.0 V. m (N + 1) where m is the harmonic number, and N is the programmed counter modulus. For a range of 1 ~ N ~ 255, the circuit of Figure 14 can produce 2550 different frequencies from a single fixed reference. Vee R e TRIGGER ...n... ...n... Re MOD TRIG pA2240 RESET 20k Fig. 15. vee ~ Pin 16 GND~ Pin 9 Staircase Generator Vee R e Re J1.. MOD ,LIA2240 STROBE 20 k INPUT VIN ANAI,OG I N P U T - - + - - - - - - - - - I BISTABLE LATCH Fig. 16. Digital Sample and Hold Circuit 7-21 vcc ~ Pin 16 GND~ Pin 9 FAIRCHILD. pA2240 DIGITAL SAMPLE AND HOLD Figure 16 shows a digital sample and hold circuit using the pA2240. Circuit operation is similar to the staircase generator described in the previous section. When a strobe input is applied, the RC low-pass network between the Reset and the Trigger inputs resets the timer, then triggers it. This strobe input also sets the outputof the bistable latch to a HIGH state and activates the counter. ANALOG-TO-DIGITAL CONVERTER Figure 17 shows a simple a-bit AID converter system using the pA2240. Circuit operation is very similar to that of the digital sample and hold. system of Figure 16. In the case of AID conversion, the digital output is obtained in parallel format from the binary-counter outputs with the output at pin a corresponding to the most significant bit (MSB). Recycle time is "'" 6 ms. The circuit generates a staircase voltage at the op amp output. When the level of the staircase reaches that of the analog input to be sampled, the comparator changes state, activates the bistable latch and stops the count. At this point, the voltage level at the op amp output corresponds to the sampled analog input. Once the input is sampled, it is held until the next strobe signal. Minimum recycle time of the system is"'" 6 ms. DIGITAL TACHOMETER TIME BASE A digital tachometer requires a time-base generator to supply two pulse outputs at specific intervals, e.g., every second. The first pulse is a command (load) to transfer the accumulated counts in the counter section into latches (memory); the second resets the counter to zero. A simple adjustable time base, accurate to approximately ±O.5%, can be implemented using the circuit in Figure 18. Vee ~~ C =: .01IJF ~rI MOD RC TRIG JlA2240 #1 STROBE INPUT VREG RrBo 0 0 02 0 4 Os O'fb32064012 20k '!''!''!' 128R 64 R I 1 32R 18R 8R VSCALE ADJUST ~.~::J5 OPAMP ANALOG INPUT - + DIGITAL OUTPUTS 4R 2R R - Vee S BISTABLE LATCH R - GND P--- = Pin 16 = Pin 9 Fig. 17. Analog-to-Digital Converter +5V +5V +6V TIMING DIAGRAM 1·1 Ibl lei r---- ~~:~~:ER Vee = Pin 16 GND = Pin 9 RESET 7410 Fig. 18. Simple Time Generator for a Digital Tachometer 7-22 FAIRCHILD • pA2240 TYPICAL ELECTRICAL CHARACTERISTICS SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE IN RESET CONDITION 16 10M U 12 V: I / /j i I / V TIME BASE PERIOD AS A FUNCTION OF EXTERNAL RC RECOMMENDED RANGE OF TIMING COMPONENT VALUES lOOk I I I I I ; I o o 10 12 I 14 16 18 SUPPLYVQLTAGE-V TIMING CAPACITOR - ~F TIME BASE PERIOD Fig. 19 Fig. 20 Fig. 21 MINIMUM TRIGGER PULSE WIDTH AS A FUNCTION OF TRIGGER AND RESET AMPLITUDE TIME BASE PERIOD DRIFT AS A FUNCTION OF SUPPLY VOLTAGE MINIMUM TRIGGER/RETRIGGER TIMING AS A FUNCTION OF TIMING CAPACITOR 0 '3. 0 t75'C +26"'C ., ~ .. 2. 0 5 O'C ~ 5 \ ~ ......... +25"C- c -,. C=O.l"F R= lO'kn ........... 0 2.0 2.5 3.0 r--12 10 TRIGGER OR RESET AMPLITUDE - V , -- -2. 0 ,.S '.0 0 +75'C O'C 0 • ~tl 0 \ c c 0 SUPPLY VOLTAGE - V TIMING CAPACITOR -IJF Fig. 22 Fig. 23 Fig. 24 NORMALIZED CHANGE IN TIME BASE PERIOD AS A FUNCTION OF MODULATION VOLTAGE TIME BASE PERIOD AS A FUNCTION OF TEMPERATURE TIME BASE PERIOD AS A FUNCTION OF TEMPERATURE +2.0 '2. 0 Vee 0---- f--- -I 0 51---- V 5V .,. VCC· 15V C~O.hF ~+1.0 0 VCC=5V , ~ C=O.II'F 7 ./ lI- 0 g r--- ............... -,. Fig. 26 ~ ~ Rn! kn -2. 0 76 TEMPERATURE _ 'C Fig. 26 7-23 ~~ 0 A=10Mn' ~ """ ~ z '\. 25 - 01--- •i=-1. ... 0 R""OMi"'- 0 -3. 0 MODULATION VOl::TAGE - V • ~ 01'-......... 100 5- 2.0 -3. 0 " " TEMPERATURE -"C Fig. 27 76 100 FAIRCHILD. pA2240 TEST CIRCUITS Vee R lo.01PF Vee = Pin 16 Gnd = Pin 9 ±- VTR MOD Re Trig IlA2240 Fig. 28. Vee = Pin 16 Gnd = Pin 9 VTR ±- Vreg :-- Generalized Test Circuit I I MOO Re Trig /JA2240 VRS ! - f 'Okl! Fig. 29. Vreg r--- vee = 4 V RT • O 0°02040.0''1,320640,2. - ,_ - .. __ ,Okl! Test Circuit for Low Power Operation (Time Base Powered Down) Vce = Pin 16 Gnd = Pin 9 I MOD RC VTR~ - Trig INPUT SIGNAL J1...I1...fl... +3 V Vee Fig. 30. Test Circuit for Counter Section 7-24 fJ,A703 RF-IF AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The I'A703 is a monolithic RF-IF Amplifier constructed using the CONNECTION DIAGRAM ~-PIN METAL CAN (TOPVIEWI PACKAGE OUTLINE SC PACKAGE CODE H Fairchild Planar* epitaxial process and is intended for use as a limiting or non-limiting amplifier, harmonic mixer, or oscillator to 150 MHz. The low internal feedback of the device insures a higher stability-limited gain than that available from conventional circuitry. Including the biasing network in the same package reduces the number of external components required, thereby increasing the reliability and versatility of the device. V+ • • • 29 mmho MINIMUM FORWARD TRANSADMITTANCE 1.0 mmho/O.OS mmho MAXIMUM INPUT/OUTPUT CONDUCTANCE 18 pF/4.0 pF MAXIMUM INPUT/OUTPUT CAPACITANCE ABSOLUTE MAXIMUM RATINGS Supply Voltage Output Collector Voltage Voltage Between Input Terminals Internal Power Dissipation Operating Temperature Range (IlA 703) Operating Temperature'Range (IlA 703C) Storage Temperature Range Pin Temperature (Soldering, 10 s) GND 20V 24V ±S.OV 200mW -SSoC to +12SoC O°C to +70°C -6SoC to +1S0°C 300°C ORDER INFORMATION TYPE PART NO. IlA703 I'A703HM IlA703C IlA703HC EQUIVALENT CIRCUIT 8 , R, 500 V+ R2 2.5 kn OUTPUT 3 7 V ...... 03 INPUT 5 I~ 1 ......... 0, V ...... 05 ~~ 4 GROUND "'Planar 7-25 IS a patented Fairchild process. FAIRCHILD • p,A703 p.A703 ELECTRICAL CHARACTERISTICS : T A= 25°C V = 12 V un ess 0 th erWlse speci'f"d Ie CHARACTERISTICS CONDITIONS MIN Power Consumption 81N =0 Quiescent Output Current elN =0 2.1 Peak-to-Peak Output Current elN = 400 mV rms, f = 1 kHz 4.0 TYP MAX UNITS 110 170 mW 2.5 3.1 mA mA Output Saturation Voltage Forward Transadmittance eIN=10mVrmsfS.l kHz Input Conductance elN Input Capacitance elN Output Capacitance f Output Conductance eO::::' 100mV rms, f::::' 5 MHz Peak-to-Peak Output Current Output Satur~tion 29 < 10 mV rms, f::::' 5 MHz < 10 mV rms, f::::' 5 MHz < 5 MHz The following specifications apply for -55°C Quiescent Output Current V 1.7 35 mmbo 0.30 0.43 mmbo 7.0 16.0 pF 2.0 3.0 pF 0.02 0.04 mmbo 3.1 mA < TA < +125°C elN -0 elN = 400 mV rms, f = 1 kHz 1.7 mA 3.2 Voltage 1.8 Forward Transadmittance elN = 10mV rms,f< 1 kHz Input Conductance elN < 10 mV rms, f Output Conductance eO V mmbo 21 < 5 MHz < 100 mV rms, f < 5 MHz 1.2 mmbo 0.05 mmbo MAX. UNITS "A703C ELECTRICAL CHARACTERISTICS: TA = 25°C, V+ = 12 V unless otherwise specified) CHARACTERISTICS CONDITIONS MIN. TYP. Supply Current elN - 0 9.0 14 mA Power Consumption 81N = 0 110 170 mW Quiescent Output Current elN = 0 1.5 2.5 3.3 mA Peak-to-Peak Output Current elN = 400 mV rms, f = 1 kHz 3.0 Output Saturation Voltage 17 - 2.5 mA Forward Transadmittance Input Conductance elN = 10 mV rms , f = 1 kHz elN < 10 mV rms , f = 10.7 MHz Input Capacitance elN Output Conductance mA 1.7 29 V mmho 33 0.35 1.0 9.0 18 eOUT = 100 mV rms , f = 10.7 MHz 0.03 0.05 Output Capacitance eOUT = 100 mV rms , f = 10.7 MHz 2.0 4.0 Noise Figure f = 10.7 MHz, RS = 500 .n 6.0 dB f - 100 MHz, RS - 500.n 8.0 dB < 10 mV rms , f = 10.7 MHz 7-26 mmho pF mmho pF FAIRCHILD • IlA703 TYPICAL PERFORMANCE CURVES FOR IlA703 INPUT RESISTANCE AND CAPACITANCE AS A FUNCTION OF INPUT VOL TAGE , l- I10 20 t7,~ TA 25"C l- t- t - I SMHz l- I-- --- _. 0" 5 v' I-- TA ' ~."# ~-- "j"·_qfACt~~i 0 100 300 --r 400 k' o V+·IZV TA '2S'C - f-:- '---- I-::- 100 0.05 40 0.04 - ) 2 3 1/ 2 I I -"""'~ 0 0 I"" 100 FREQUENCY-MHz I"" MAXIMUM REVERSE TRANSADMITTANCE AS A FUNCTION OF FREQUENCY - V"I1V TA·"·C f~ I I I ~SU~[~TlJC[ 4 2 11 4 CONDUCTANCE ~ FREQU£NCY- MHz 0 -- 'f--- 0 I FORWARD TRANSADMITTANCE AS A FUNCTION OF FREQUENCY I II I I II I II • ) CONDUCTANCE 0 '00 INPUT VOLTAGE-m'Jrms 50 fI II j-- , III III I • • Vi ~ I-- "f< 100 0 \f_~~EPTA~ 1:5~l 1 --1 1-- V OUTPUT ADMITTANCE AS A FUNCTION OF FREQUENCY 4j-- I 5 ~- INPUT AOMITTANCE AS A FUNCTION OF FREQUENCY OUTPUT CURRENT AS A FUNCTION OF INPUT VOL TAGE I " v"'2V1 V+olZV f--- fA _25°C \ TA"ZSoC MAGNITUDE 30 0.03 ~f.120 0 0 r--PHAS£ o I I-- ./ -- 10 100 FREQUENCY-MHz 100 i I 200 1000 '\ '\ 0.02 I 0.0I 0 I--100 FREQUENCY -MHz 7-27 '-... o I,," -250 -150 -50 50 INPUT VOLTAGE - mV 150 250 • jlA706 5-WATT AUDIO AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The "A70S monolithic 5.0 W Audio Amplifier is constructed using the Fairchild Planar' epitaxial process. It is ideally suited as an audio amplifier in automobile radios. Provided with adequate heat sinking, the circuit is optimized to provide 5.5 W (continuous output) into a 4.0 n speaker using a single 14 V supply. The circuit operates over the full automobile battery range of S.O V to 1S V. The "A70S incorporates such special features as self-centering bias, direct coupling to the input, low quiescent current, high input impedance and low distortion. Operation as a 5.0 W audio amplifier is achieved with minimal external components. Other applications for the "A 70S are home audio equipment, TV receivers and many industrial applications. CONNECTION DIAGRAM 14-PIN DIP (TOP VIEW) PACKAGE OUTLINES 9H PACAKGE CODES AP 9J SP OUT"---"~- NC GND NC • • • • • • • • 10 OUTPUT POWER 5.5 W (14 V - 4 n) LOW DISTORTION LOW QUIESCENT CURRENT SELF CENTERING BIAS HIGH INPUT IMPEDANCE HIGH PEAK OUTPUT CURRENT HIGH IMMUNITY TO DAMAGE FROM SHORT·CIRCUITED LOADt PIN-FOR-PIN REPLACEMENT FOR TBA641B RIPPLE BY-PASS GND COMPENSATION NC GAIN CONTROL IN ORDER INFORMATION TYPE PART NO. "A706AC "A706APC "A706BC "A706BPC tThe device will withstand repetitive short circuits across the speaker load if the absolute maximum junction temperature Is not exceeded. EQUIVALENT CIRCUIT 14 r--~-----------------------------------------'---oV+ A, 10kH 10 RIPPLE BY-PASS 12 r-------...------.-------...--------+---o 0--------------\---; BOOTSTRAP A5 4kH GAl N CONT RO l o-----JWIr-----...----\----t-----------, OUTPUT INPUT COMPENSATION A, A, 100 H IOOH 71dl 0-------+---+--------+---+---' __--~--------~ GROUND 0-------4---~-------- 0= Pin Numbers GROUND ·Planar is a patented Fairchild process. 7-28 FAIRCHILD. j.tA706 ABSOLUTE MAXIMUM RATINGS Supply Voltage (No Signal) Supply Voltage Input Voltage Peak Output Current 25V 16V -0.5 V to V+ 2.5 A _30° C to +85° C -55°C to +125°C 150°C 5W Operating Temperature Range Storage Temperature Maximum Junction Temperature Power Dissipation (T C ,;; 85° C) Power Dissipation (T A';; 25°C) Package Type AP Package Type BP Power Dissipation (T A';; 85°C) Package Type AP Package Type BP 1.7W 2.3W 0.9W 1.2W PACKAGE THERMAL RESISTANCE Thermal Resistance, Junction to Ambient Package Type AP Package Type BP Thermal Resistance, Junction to Case Package Type AP Package Type BP JlA706C ELECTRICAL CHARACTERISTICS: V+ = 14V, RL = 4 n, TA = 25°C, 6C-A = 13°CIW, Test Circuit 1, unless otherwise specified CHARACTER ISTICS CONDITlctNS MIN TYP UNITS MAX Total Supply Current POUT = 0 10 18 30 rnA Quiescent Current in Output Transistors POUT -0 7 15 27 rnA 200 950 nA 6.55 7.0 7.45 49 Input Bias Current DC Output Level RS = 22 kn Voltage Gain, AV RB -on 43 46 Output Power, POUT THD - 10%, f - 1 kHz, Av = 46 dB 4.5 5.5 W Total Harmonic Distortion f = 1 kHz, AV = 46 dB 0.3 0.5 3.0 % % % POUT =50 rnW POUT = 2.0W POUT =4.5W Equivalent Input Noise Voltage RS = 22 kn, B.W. Total Supply Current POUT = 4.5W Input Impedance AV - 46 dB, f - 1 kHz 10 kHz V dB 3.5 p.V 510 rnA 3.0 Mn TYPICAL PERFORMANCE CURVES FOR JlA706C (T A = 25°C, 6C-A = 13°CIW, Test Circuit 1, AV = 46 dB) MAXIMUM ALLOWABLE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (FOR PACKAGE TYPE AP) MAXIMUM ALLOWABLE POWER DISSIPATION AS A FUNCTION OF AMBIENT TEMPERATURE (FOR PACKAGE TYPE BP) OUTPUT POWER AS A FUNCTION OF SUPPLY VOLTAGE THO ~ 1(1'll. I - 1 kH~ 1 1 1 INFINITE HEAT SINK 7 RL" 411 +-+-+-+-+~r--h'9 HEAT SINK OF 35°C/W i'... FREE AlA '" HEATSINKOF 13"C/W I, 1/ /' _FREEAIR 2 PACKAGE TYPE A o -30 ,~ PACKAGE TYPE B 1 1 1 TO 70 T A - AMBIENT TEMPERATURE _ °c 30 20 10 30 50 TA - AMBIENT TEMPERATURE 7-29 70 -:C .,/ FAIRCHILD • J.1.A706 TYPICAL PERFORMANCE CURVES FOR IlA706C (Cant'd) TOTAL HARMONIC DISTORTION AS A FUNCTION OF OUTPUT POWER 12 -t-f-++t-t----1I-+ttr----j V+·'4V RELATIVE VOLTAGE GAIN AS A FUNCTION OF FREQUENCY TOTAL HARMONIC OISTORTION AS A FUNCTION OF FREQUENCY v+ -,,, V ~ I 4 RL'i411 AV ~ 34 dB ~ ~:: ~~v -++H--+-+-+++-+-+-tH--I -f-++H--++Hc-f-++H-I -ttH-t-+tH-t-+tH-l AV-~dB~~-Ht--H-Ht-H-++~ ~ 3~-++H-+tH-t-+tH-+-+~---j c '.0 OUTPUT POWER - WATTS OUTPUT POWER AS A FUNCTION OF INPUT VOLTAGE '~~=r-v~'~',~,~vl=4=4=4=+=+=+=~ 0 5 0 r-- r- :~: !sl1dst--t--t--t-t-Hlf-1rl 1- 1 kHz t--t--t-t-t-I7"Hrl ~, '~~~----1----1--+--+-tI/Lt-+-+--l MAXIMUM POWER DISSIPATION BY THE INTEGRATED CIRCUIT AS A FUNCTION OF SUPPLY VOLTAGE SUPPLY CURRENT AS A FUNCTION OF OUTPUT POWER 4 V.j.~14V RL -4n Rl- 4n V ,/ 0 ~ / V / , ~ 2HHHHI~/'-+'-+'-+--+-+-+-f ,/ , V 100 / lI' / , ./ 0 INPUT VOLTAGE - mV OUTPUT POWER -WATTS POWER DISSIPATION AND EFFICIENCY AS A FUNCTION OF OUTPUT POWER , , ~. : 14~ RL '" 4n , , , , 4 0 POUT a2 .OW POUT-3.0W'/ ,I / II ~ 1/ ,/ ./ "./ V 0 k::=-' , V ./ , k?: ~T-l.OW o • '0 0 ~ ,, ~15 ,o ~ , :;a ',..--: ,./ ,0 5 / 0 / y /" , " ./ V ,o 1 , ~ , , RL '" 40 , V I- '0 ....- / , TOTAL SUPPLY CURRENT AND QUIESCENT CURRENT OF OUTPUT TRANSISTOR ASA FUNCTION OF SUPPLY VOLTAGE POWER DISSIPATION AS A FUNCTION OF SUPPLY VOLTAGE ~ ,.o g , 0 OUTPUT POWER - WATTS DC OUTPUT LEVEL AS A FUNCTION OF AMBIENT TEMPERATURE TOTAL SUPPLY CURRENT AND QUIESCENT CURRENT OF OUTPUT TRANSISTOR AS A FUNCTION OF AMBIENT TEMPERATURE , v.I. ,:v POUT~O ~ 7., , ~ , V I'- 1-1- ~ e.9 g , - l- f-'" I'- 7.0 , / V+"'14V Pour- 0 ~ DC OUTPUT LEVEL AS A FUNCTION OF SUPPLY VOLTAGE f- , " f-'" 'of-'" 4 10 30 70 T A - AMBIENT TEMPERATURE -'C ,, / 50 -30 TA - AMBIENT TEMPERATURE 7-30 7 , , , , , , ,, ,/ 90 _·c ,/ V / 1/ V / V SUPPLY VOLTAGE - VOLTS 1/ FAIRCHILD • J-tA706 TEST CIRCUIT 1 (AV = 46 dB, RB = 0 n, Cc = 1.5 nF, CF = 150 pF) r----r------~---,---oV. INPUTo--~-'l 100IJF 25V TYPICAL AUDIO APPLICATIONS 5 WATT AUDIO AMPLIFIER WITH MINIMUM COMPONENT COUNT r---~-------'~--~--oV. 34 dB AV 46 dB BW 10 kHz 20 kHz 10 kHz 20 kHz RB lOon loon on on Cc 10 nF 6.8 nF 2.7 nF 1.5 nF CF 1 nF 470 pF 330 pF 150 pF 100f,lF INPUT 25V 5 WATT AUDIO AMPLIFIER WITH LOAD CONNECTED TO GROUND r-----~----------~--Ov. INPUT VOLUME CONTROL 101<&1 AV 34dB 46 dB Cs 27 nF 5.6 nF Note: Cs selected for 3 dB at 4 kHz. 7-31 • FAIRCHILD. J.LA706 A PC BOARD LAYOUT FOR THE 5 WATT AUDIO AMPLIFIER UA706 PHOTOGRAPH OF THE I'A706 IN A TYPICAL APPLICATION 7-32 J.LA726 TEMPERATURE-CONTROLLED DIFFERENTIAL PAIR FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The jJ,A 726 is a Monolithic Transistor Pair in a high thermal-resistance CONNECTION DIAGRAM 10-PIN METAL CAN (TOP VIEW) PACKAGE OUTLINE SU PACKAGE CODE H package, held at a constant temperature by active temperature regulator circuitry. The transistor pair displays the excellent matching, close thermal coupling and fast thermal response inherent in monolithic construction. The high gain and low standby dissipation of the regulator circuit permits tight temperature control over a wide range of ambient temperatures. It is intended for use as an input stage in very-low-drift de amplifiers, replacing complex chopper-.stabilized amplifiers. It is also useful as the nonlinear element in logarithmic amplifiers and multipliers where the highly predictable exponential relation between emitter-base voltage and collector current is employed. The device is constructed on a single silicon chip using the Fairchild Planar* process. E2 ABSOLUTE MAXIMUM RATINGS Operating Temperature Range -55'C to +12S'C DoC to +8SoC Military (jJ,A726) Commercial (jJ,A726C) -6So C to +1 SO' C 300°C ±18V SOOmW Storage Temperature Range Pin Temperature (Soldering, 60 seconds) Supply Voltage Internal Power Dissipation ., V+ E' NC v- MAXIMUM RATINGS FOR EACH TRANSISTOR ORDER INFORMATION TYPE PN!T NO, jJ,A726 jJ,A726HM jJ,A726C jJ,A726HC 30V 40V Collector-to-Emitter Voltage, VCEO Collector-to-Base Voltage, VCBO Collector-to-Substrate Voltage, VCIO Emitter-to-Base Voltage, VEBO Collector Current, I C 40V SV SmA EaUIVALENT CIRCUIT r------.---------Dv+ TEMP ADJ cl3 Bl 2 EI 3 C23 82 1 '2 10 "2 "I 21ka Ika DI 6.2V Ql ", D2 6.2V "3 4.8ka 2ka Q. Q2 ~ __________ ". 10 n ~~----~--------------~~~.v- "Planar is a patented Fairchild process. 7-33 FAIRCHILD • ILA726 p.A726 ELECTRICAL CHARACTERISTICS: -55°C" TA" +125°C, Vs = ±15V, Radj = 62kn unless otherwise specified. TYP MAX UNITS 1.0 2.5 mV 10 50 nA IC - 100ILA, VCE - 5V 50 200 nA Ic - 10ILA, VCE - 5V 50 150 nA IC - 100ILA, VCE - 5V 250 500 nA IC -101LA, 5V" VCE" 25V, RS" 100kn 0.3 6.0 mV IC - IOOILA, 5V" VCE" 25V, RS" 10kn 0.3 6.0 mV 0.2 1.0 ILvrc 0.2 1.0 ILV/oC CONDITIONS CHARACTER ISTICS Input Offset Voltage Input Offset Current Average Input Bias Current Offset Voltage Change Input Offset Voltage Drift Input Offset Voltage Drift Input Offset Current Drift Supply Voltage Rejection Ratio Low Frequency Noise 101LA" IC" 100ILA, VCE IC MIN = 5V, RS" 50n = 10ILA, VCE = 5V 101LA" IC" 100ILA, VCE - 5V, RS " 50n, +25° C " T A " +125° C 101LA" IC" 100ILA, VeE - 5V, RS" 50n, _55°C "TA" +25°C IC 10ILA, VCE - 5V IC IOOILA, VCE = 5V 101LA" IC " 100ILA, RS " 50n, IC - 10ILA, VCE 5V, RS" 50n BW = .001 Hz to 0.1 Hz Broadband Noise IC - 10ILA, VCE =5V, RS" 50n BW =0.1 Hz to 10kHz Long-term Drift 101LA" IC" 100ILA, VCE = 5V, RS" 50n, TA = 25°C 10 pA/oC 30 pArc 25 ILV/V 4.0 ILVp-P 10 ILVp-P 5.0 ILV/week High Frequency Current Gain f - 20MHz, IC - 100ILA, VCE - 5V Output Capacitance IE - 0, VCB - 5V 1.0 Emitter Transition Capacitance IE - 100ILA 1.0 Collector Saturation Voltage IB - 100ILA, IC - 1 mA 0.5 1.0 V TYP MAX UNITS 1.0 3.0 mV Ie -101LA, VCE 10 100 nA IC - 50 400 nA Ic - 10ILA, VCE - 5V 50 300 nA = 100ILA, VCE = 5V Ic = 10ILA, 5V" VCE" 25V, RS" 100kn 250 1000 nA 0.3 6.0 mV IC - 100ILA, 5V" VCE" 25V, RS" 10kn 0.3 6.0 mV IC = 100ILA, VCE = 5V, RS" 50n Ie = 10ILA, VCE = SV 0.2 2.0 10 ILvre pA/oC IC - 100ILA, VCE - SV 30 pArC Supply Voltage Rejection Ratio IC - 100ILA, RS - 50n 2S ILV/V Low Frequency Noise IC - 10ILA, VCE - 5V, RS" 50n, BW =0.001 Hz to 0.1 Hz 4.0 ILVp-P Broadband Noise Ie - 10ILA, VCE - SV, RS" 50n, BW = 0.1 Hz to 10kHz 10 ILVp-P 5.0 ILV/week 1.5 3.5 pF pF p.A726C ELECTRICAL CHARACTERISTICS: OOC" TA" +85°C, Vs CHARACTERISTICS Input Offset Voltage I nput Offset Current Average Input Bias Current Offset Voltage Change Input Offset Voltage Drift Input Offset Current Drift = ±15V, Radj = 75kn unless otherwise specified. CONDITIONS 101LA" IC" 100ILA, VCE MIN = 5V, RS" 50n = 5V 100ILA, VCE = 5V IC = 100ILA, VCE = 5V, RS" 50n, TA = 25°C Long-Term Drift IC High Frequency Current Gain f - 20MHz, IC - 100ILA, VCE- SV Output Capacitance IE - 0, VCB - 5V 1.0 Emitter Transition Capacitance IE - 100ILA 1.0 Collector Saturation Voltage IS - 100ILA, IC - 1 mA 0.5 7-34 1.5 3.S pF pF 1.0 V FAIRCHILD. fJ.A726 TYPICAL PERFORMANCE CURVES FOR IlA726 .. CURRENT GAIN AS A FUNCTION OF COLLECTOR CURRENT SUPPLY CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE , . . veE ·5.OV "s":!:l5V '" - ~~j~~~:~+125°C ~ f-- ' 1\ VS':!:15V Rac!j'6ZkQ t-- 16 i r---- ~ " "-., 8 l. . . . ~ ,.,/ I' 4 b" 0 I,,", 'rnA '""A 0 lOrnA -20 -<0 COLlECTOR CURRENT 20 OJ TEMPERATURE_OC " '00 '40 TYPICAL PERFORMANCE CURVES FOR IlA726C .. .. CURRENT GAIN AS A FUNCTION OF COLLECTOR CURRENT SUPPLY CURRENT AS A FUNCTION OF AMBIENT TEMPERATURE , 10 r---Ralj·m o r---O"CHA~85·cr---- Rajj Vs '!15V 800 ! 10-16 HH-i-+-+++++-++++-H+t-H 10k 'i: ~ ~ ~ ~ ~ 10 HH-i-+-+++++-++++-H+t-H OdB 1:-J.ll-'-I"::OOJ.LLL-":lk--l.J.J...L-;I:'Ok..w~IOO'k 10"26 L..J.J..J...J--'--ll.w...-L.llJ.-'--:L.l.LW-:', 10 100 lk FREQUENCY-Hz 10k lOOk RELATIVE CHIP TEMPERATURE AS A FUNCTION OF AMBIENT TEMPERATURE 20 \ \ 0 1\ ~~ -- -60 130 20 -20 - ,..J- +100 11 n 1,6 !:i '" "~ +140 H--+-+-++++-+-+-H--+ uH--+-+-++++-+-+-H-i I" i 0,6 H--+-+-++++-+-+-H--+ 0.4 H----f-+-++++-+-+-H-i I" 15 • 10 11 n U M 15 O'~~IO~-Lll-L~u~~n-L-;~~-JB SUPPLY VOLTAGE -tV SUPPLY VOlTAGE-:t V OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF COMPENSATION REQUIRED RADJ FOR CONSTANT IADJ AS A FUNCTION OF SUPPLY VOLTAGE 2.4 60 I I I II 2. 0 I- } i(fC,\- \~\'I I llJ,_1- 2 l-O.l15jJF,Rl"ZOkQ 20 111111 111111 d~IO.05fJf,Rl·O I-" "'" lAOt 681JA IMAX T~ .125·CI;- 1-- 'tl. 5\l~ ~·'a~tr.) 6 ,",,\ 'I O. 4 ..... 0 40 ~ \ 6 SUPPLY VOLTAGE-tV +100 IAO j"681lA ~ SUPPLY VOLTAGE-tV DIFFERENTIAL VOLTAGE GAIN AS A FUNCTION OF SUPPL Y VOLTAGE ifiO AMPLIFIER CURRENT AS A FUNCTION OF SUPPLY VOLTAGE -10 U -20 OUTPUT COMMON MODE VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE ~ U -60 " AMBIENTTEMPERATURE-·C ~ 10 o +140 ~ ~ • '" "'-"- AMBIENTTEMPERATURE·CC '10 16 '0 ~ 400 IAO J" 68IlA > i 000 VS' :!:.lSV no 70 - r- -20 INPUT COMMON MODE VOLTAGE RANGE AS A FUNCTION OF SUPPLY VOLTAGE 12 800 .,; ~~~~ MAXIMUM AMBIENT TEMPERATURE -'C ~" I-~ 200 I" § POWER CONSUMPTION AS A FUNCTION OF AMBIENT TEMPERATURE 0 O. 2 lOOk 10k Vs":t.15V RAOJ" 330kO '" ,,' " " -'" I-Jj~ 0 \ 50 lk 1000 Vs· i15V 6 100 10 FREQUENCY·"Hz 2,2 I.B 100 FREQUENCY-Hz RECOMMENDED RADJ AS A FUNCTION OF MAXIMUM AMBIENT TEMPERATURE ~ 8~6lOdB 10-17 10- 18 10 i dB 1\ 10 11 12 13 SUPPlYVOLTAGE-±.V 7-38 1111111111 -20 14 15 -., 1111111111 ~li'tr 10 100 1111111111 lk 10k FREQUENCY-Hz lOOk 1M FAIRCHILD • IlA727 FREQUENCY COMPENSATION CIRCUIT C1 • TYPICAL X1000 CIRCUIT +15V 50kn +15V 50n 50n -15V -15V 50kn 7-39 I jjA733 DIFFERENTIAL VIDEO AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The I'A733 is a monolithic two-stage Differential Input, Differential Output Video Amplifier constructed using the Fairchild Planar* epitaxial process. Internal series-shunt feedback is used to obtain wide bandwidth, low phase distortion, and excellent gain stability. Emitter follower outputs enable the device to drive capacitive loads and all stages are current-source biased to obtain high power supply and common mode rejection ratios. It offers fixed gains of 10, 100 or 400 without external components, and adjustable gains from 10 to 400 by the use of a single external resistor. No external frequency compensation components are required for any gain option. The device is particularly useful in magnetic tape or disc file systems using phase or NRZ encoding and in high speed thin film or plated wire memories. Other applications include general purpose video and pulse amplifiers where wide bandwidth, low phase shift, and excellent gain stability are required. • • CONNECTION DIAGRAMS 10-LEAD METAL CAN (TOP VIEW) PACKAGE OUTLINE 5N PACKAGE CODE H "2A GAIN SELECT 120 MHz BANDWIDTH 250 kn INPUT RESISTANCE SELECTABLE GAINS OF 10, 100, AND 400 NO FREQUENCY COMPENSATION REQUIRED v- ABSOLUTE MAXIMUM RATINGS Supply Voltage Differential Input Voltage Common Mode Input Voltage Output Current lriternal Power Dissipation (Note 1) Metal Can Flatpak DIP Operating Temperature Range Military (I'A733) Commercial (.uA733C) Storage Temperature Range Lead Temperature (Soldering, 60 second time limit) ±8V Note: Pin 5 connected to case. ±5 V ORDER INFORMATION TYPE PART NO. I'A733 I'A733HM I'A733C I'A733HC ±6V 10mA 500mW 570mW 670mW _55° C to +125° C OoC to +70° C _65° C to +1 50° C 300° C 10-LEAD FLATPAK (TOP VIEW) PACKAGE OUTLINE 3F PACKAGE CODE F IN 2 IN 1 "'B v- EQUIVALENT CIRCUIT OUT2C:::=i::::~~:::::j:::::JOUT1 ORDER INFORMATION TYPE PART NO. I'A733 I'A733FM 14-LEAD DIP (TOP VIEW) PACKAGE OUTLINE 6A PACKAGE CODE D OUTPUT 1 OUTPUT 2 IN 2 N.C. "2B "'B vN.C. OUT2 v+ N.C. OUT 1 ORDER INFORMATION TYPE PART NO. I'A733 I'A733DM I'A733C I'A733DC "Planar is a patented Fairchild process. Notes on following pages. 7-40 FAIRCHILD • JJ.A733 f.lA733 ELECTRICAL CHARACTERISTICS (TA = 25°C, Vs = ±6.0 V unless otherwise specified) PARAMETER (see definitions) CONDITIONS MIN TYP MAX UNITS Differential Voltage Gain Gain 1 (Note 2) 300 400 500 Gain 2 (Note 3) 90 100 110 Gain 3 (Note 4) 9.0 10 11 Bandwidth RS = 50n Gain 1 40 MHz Gain 2 90 MHz Gain 3 120 MHz Risetime RS = 50n, VOUT = 1 V p .p Gain 1 10.5 Gain 2 4.5 Gain 3 ns 10 2.5 Propagation Delay ns ns RS = 50n, VOUT = 1 V p .p Gain 1 7.5 Gain 2 6.0 Gain 3 3.6 ns 4.0 kn 30 kn ns 10 ns Input Resistance Gain 1 Gain 2 20 Gain 3 Gain 2 Input Capacitance 250 kn 2.0 p" Input Offset Current 0.4 3.0 Input Bias Current 9.0 20 Input Noise Voltage RS = 50n, BW = 1 kHz to 10 MHz Input Voltage Range )LA )LA )LVrms 12 ±1.0 V Common Mode Rejection Ratio Gain 2 VCM = ±1 V, f';; 100 kHz Gain 2 VCM = ±1 V, f = 5 MHz 60 Supply Voltage Rejection Ratio Gain 2 AvS= ±0.5V 50 dB 86 60 dB -".-.- dB 70 Output Offset Voltage Gain 1 Gain 2 and Gain 3 0.6 1.5 V 0.35 1.0 V 3.4 Output Common Mode Voltage 2.4 2.9 Output Voltage Swing 3.0 4.0 V p. p Output Sink Current 2.5 3.6 mA Output Resistance 20 Power Supply Current 18 .. V n 24 rnA The followrng speCifications apply for -55°C ';;TA ';;+1250 C Differential Voltage Gain Gain 1 (Note 2) 200 600 Gain 2 (Note 3) 80 120 Gain 3 (Note 4) 8.0 12 Input Resistance Gain 2 kn 8.0 Input Offset Current Input Bias Current 5.0 )LA 40 )LA V ±1.0 Input Voltage Range Common Mode Rejection"Ratio 50 dB Supply Voltage Rejection Ratio 50 dB Output Offset Voltage Gain 1 1.5 V Gain 2 and Gain 3 1.2 V V p _p Output Swing 2.5 Output Sink Current 2.2 mA 27 Positive Supply Current 7-41 mA • FAIRCHILD. MA733 tLA733C ELECTRICAL CHARACTERISTICS (TA = 25°C, Vs = ±S.O V unless otherwise specified) CONDITIONS MIN TYP MAX Gain 1 (Note 2) 250 400 600 Gain 2 (Note 3) BO 100 120 Gain 3 (Note 4) B.O 10 12 PARAMETER (see definitions) UNITS Differential Voltage Gain Bandwidth RS =50n Gain 1 40 MHz Gain 2 90 MHz Gain 3 120 MHz Risetime RS - 50n, VOUT· 1 Vp-p Gain 1 10.5 Gain 2 4.5 Gain 3 2.5 Propagation Delay ns 12 ns ns RS = 50n, VOUT· 1 V p•p Gain 1 7.5 Gain 2 6.0 Gain 3 3.6 ns 4.0 kn 30 kn 250 kn ns 10 ns Input Resistance Gain 1 Gain 2 10 Gain 3 Input Capacitance Input Offset Current I nput Bias Current Input Noise Voltage pF 2.0 Gain 2 RS = 50n, BW = 1 kHz to 10 MHz 0.4 5.0 fJA 9.0 30 fJA 12 fJVrms V ±1.0 Input Voltage Range Common Mode Rejection Ratio Gain 2 VCM = ±1 V, fo;;; 100 kHz Gain 2 VCM = ±1 V,f=5MHz 60 B6 dB 60 dB 70 dB Supply Voltage Rejection Ratio Avs = ±O.5 V Gain 2 50 Output Offset Voltage Gain 1 Gain 2 and Gain 3 0.6 1.5 V 0.35 1.5 V 3.4 Output Common Mode Voltage 2.4 2.9 Output Voltage Swing 3.0 4.0 V V p_p Output Sink Current 2.5 3.6 mA 20 Output Resistance Power Supply Current 18 .. 24 n mA The follOWing specIfIcatIons apply for OoC 0;;; TA 0;;; ±70oC Differential Voltage Gain Gain 1 (Note 2) 250 600 Gain 2 (Note 3) 80 120 Gain 3 (Note 4) 8.0 12 8.0 Input Resistance-Gain 2 I nput Offset Current Input Bias Current 6.0 kn jJA 40 jJA V ±1.0 Input Voltage Range Common MOd.e Rejection Ratio Gain 2 VCM = ±1 V, fo;;; 100 kHz 50 Avs= ±O.5 V 50 dB Supply Voltage Rejection Ratio Gain 2 dB 1.5 Output Offset Voltage (All Gain) Output Voltage Swing 2.8 Output Sink Current 2.5 rnA 27 Power Supply Cu rrent 7-42 V Vp _p rnA FAIRCHILD • p,A733 TYPICAL PERFORMANCE CURVES FOR J1A733 AND J1A733C PHASE SHIFT AS A FUNCTION OF FREQUENCY '" PHASE SHIFT AS A FUNCTION OF FREQUENCY GAfNl VS ·:l:6V TA "25"C , "- "- " 5 6 1 8 9 10 , w o ~~~~~~~-i--H1~-T4A,"n"~·'~ ~ 70 ~~~~~P'i-d--H1~-+--H1---1 ! ~H-+tHH-+tHH~k4-+--H1H ~ 50 H-+tHH-+tHH--H1H-"I-.t:HH i 30 H-ttt-+-1-+++-+-+++t-+-Htt---1 ~~~~~~+'~4-~~ 10M i-+i-ttH-C+tt--+-+-tit--I 0 ~ '.0 f--+-t--H1-i"""""H-++--+-++++-~ 1.0 i-+i-ttH-C+'kt--+-+-tit--I i-+i-ttH-C+tt--t--+-tit--I o !-,--L...LL-!-,--!:W,--LLL,':-O--:,!::OO---'...LL';!:";-;-!lO.OO > V • ~ ~ ~ m ~ 1.0 ........ 1,i \ !;!O.95 ~O.90 GArro l - ~ r---H ~ -lkQr_ C- -- 0 TA;Q"C I 4 2 ~X 7A."'''·'''- fC-~A""·C f- -0_ • -is -00 ~ 0 5 ill is ~ 25 ~ » f- ,• , VOLTAGE GAIN AS A FUNCTION OF SUPPLY VOLTAGE TA" 25 D C , /' I- ,~ V ~ • 7-43 C- -0. 2 7 FREQUENCY-MHz » ~ I 0 , 1<, 25 '/TA"10o e ,/ '00 TEMPERATURE'·C ro 8 \ -ro f----- 6- TA "-5S·C,-==' o~\., "r--.. 15 RL "lkQ 8- , \ 0." 0.80 -l-~-f----r: MEMORY 50 mV 110 -2 mA, negative half cycles, 7.2 V 15 p.A 23 200 1.9 2.2 p.A V -2.2 -1.9 V 4.5 5.8 V VH Input - V(+) Input> 50 mV Beginning of positive half cycles -7.0 -4.5 V 180 410 500 p.A Beginning of negative half cycles -500 -280 -180 p.A Beginning of positive half cycles 2.0 2.7 4.0 V Beginning of negative half cycles -4.0 -3.3 -2.0 V DEFINITIONS VOLTAGE RANGE: The range of voltage on the (+) or (-) input terminals, which, if exceeded, could cause the TR IGAC to cease functioning. BIAS CURRENT: The average of the two currents into the (+) and (-) input terminals. NOTES: (1) The maximum voltage should not exceed the instantaneous supply voltage of the p,A 742. (2) Rating applies for an external storage capacitor having a value of not more than 21JF. 7-47 • FAIRCHILD • fJ,A742 TYPICAL PERFORMANCE CURVES FOR ~A742C (TEST CIRCUIT 1 UNLESS OTHERWISE SPECIFIED) . TRIGGER OUTPUT PULSE WIDTH AS A FUNCTION OF STORAGE CAPACITOR TRIGGER OUTPUT PULSE WAVE FORMS _~l-DC, BEGINNING OF POSITIVE HALF CYCLES C- 4 Tl"25lc O~ ~ , ~ i!5 I., § 1. 8 ~ 101-+-+-+-+--+-f-7-FV-tr--j I\, .. ~'J i).... ~ ......... OF POSITIVE HALF CYCLES 6 r-.. -..... 4 PULSE WIDTH MEASURED AT 37% AMPLITUDE 0 ·O~~~~~~~~~~I.'~~' " TIME-pS . ~, ~ / ON STATE 1--\,"-+---+-+-+-1--+-_1 , i'--..... - ~lTIVE HALF CYCLES r- ......... i'-... 0 i'--..... TEMPERATURE -'C " TEMPERATURE _·C TEMPERATURE -"C SWITCHING CURRENT AT SWITCH TERMINAL AS A FUNCTION OF TEMPERATURE HOLDING CURRENT AT SWITCH TERMINAL AS A FUNCTION OF TEMPERATURE -- r-- l- t-- t- R5~~ 10k I"- r-- I-- t-- ~ i"-'f' - R5.~ - R5.8" SOk r- r-- r-- 10 r-- 0 30 TEMPERATURE _·C TEMPERATURE _·C TEST CIRCUIT 1 17mA OC BRIDGE 20kG 1-1 13 "0 -1 10 ~ROUTPUT 3 20'" 10TURN - 4 , , II 11 7 8 II '7 <;2 RSYN 10kn,'ZW fJ.A742 INPUT (HlOWATT INCANDESCENT LAMP) 10 2 ,., RL ~ISUPPLY -, INPUT RDR10k.Q. 2W _1 ~1-SUPPLY SELECTOR VSUPPLY 10 TURN ...... NEGAj'VE HtF Cyres-- 200 o 0 -.... r-- I'"'- , O~-,',-:':---!,,':--:L-:':--:l:--:' I'- ~ATIVE HALF CYCLES POSiTIVE HIALF CVrLES -,,~.-,,~,-,-;;+"'-,.-"'-1'"'-,,-,,-..~"-"-'''~'"-"''-,,+,,--1 r- ~:.T:,~r~~~~~,~~~~\:L:£~M~rW'~;w~;:::SING -24 - -.... I V 0'- ,r--r-.. VV -32 SYNC INPUT THRESHOLD CURRENT AS A FUNCTION OF TEMPERATURE , 9 ~I--+-+V--~-I--+-+---+ ~ SUPPLY CURRENT -mA SYNC INPUT THRESHOLD VOL T AGE AS A FUNCTION OF TEMPERATURE _401--+_0_"+ST_A_TE+_I-7fV'-----+_--+ ~ 1 "Ic 0 STORAGE CAPACITOR-I'F INPUT THRESHOLD VOLTAGE AS A FUNCTION OF TEMPERATURE ~ , , ~ 41-+/-,11/"+-+-+-+--+--+--4-1 " -,...... BEGINN~ 'II ! 81-+---+-+-+V~~I-+---+-+-1 /~r:~G~~~~ ~~~~N~~~~ES 5, AC, .1. 0 ./ 121-+---+-+-+--+-1-+---174_1 ~ ~ o.4 0 SUPPLY VOLTAGE AS A FUNCTION OF SUPPLY CURRENT " 50kn 9 470 12 CST '7 ~ 110VAC 6OH, 33 ~ TRIAC WITH HIGH GATE SENSITIVITY IRCA 40526 OR EQUIVALENT) ;Fg~"F \ ROUT 3.00 SPRAGUE PART NO. 5C023474X025OB3 OR EQUIVALENT 7-48 - II~ r-- - FAIRCHILD • J.l.A742 TYPICAL APPLICATIONS FOR /lA742C NOTES "'Recommended Values AC Supply Voltage 60Hz RDR R SYN CST Volts - RMS III. Necessary with inductive loads. 24 LOkn 2.i!kn 0.47,..F/25V 110 10kn 10kn 0.47,..F/25V '" II 220 22 kn 22 kn 0.47,..F/25V bridge resistors. For the values of RDA shown, the total current into the bridge should not exceed 5 rnA at 20 V. "'The" sensor resistance will determine the values of the FOR SUPPLY VOLTAGE FREQUENCY OF 400Hz REDUCE CST TO .047,..F/25 V. ZERO CROSSING CIRCUIT WITH DC SUPPLY 17mA 13 ---, ,u.A742 10kO ~100W* 1 I I I 10k.l1 +0.,., .. 100.11 HYSTERESIS RESISTOR Fig. 1 ZERO CROSSING CIRCUIT tOkO 10kn 13 ,u.A742 10kn 10kn toon HYSTERESIS*" RESISTOR Fig. 2 7-49 AC INPUT • FAIRCHILD • f..lA742 TYPICAL APPLICATIONS FOR J.1A742 (Cont'd) SCR - HALF WAVE RDR 10kfl. lQkn 5 Do33'>E== 10kn 25V ~ 13 2 RSYN" 'D ,~_",t}" ! 4 J.lA742 3 7 8 9 : loon 10kn HYSTERESIS RESISTOR I I I 12 Do"'"4- AC INP UT CST' : +00' " .. I SENSOR BRIDGE"'·'" Fig. 3 INVERSE PARALLEL SCR PAIR FIRING WITH A PULSE TRANSFORMER 10kn 10kn 13 O.33J.1F 25V 10kH AC INPUT pA742 SPRAGUE llZ12 DR EQUIVALENT " 12 CST' 10kn SENSOR BRIDGE"'''''' Fig. 4 INVERSE PARALLEL SCR PAIR FIRING WITH A THIROSCR lOU/. 10k.l1 ---l 13 1Or---~~------~ I I I 10kn AC INPUT I iJ.A742 10kn ~IODW' I loon ~Oo"''' HYSTERESIS RESISTOR SENSOR BRIDGE'" Fig. 5 7-50 FAIRCHILD • fJ.A742 TYPICAL APPLICATIONS FOR IlA742 (Cont'd) ZERO CROSSING WITH PROPORTIONAL CONTROL 10kH lOOk!! 10kH 13 ---, T0 10k!! 1!J F " I I I 20QkH ~roo" .. 100~~ 10kn AC INPUT HYSTERESIS RESISTOR SENSOR BRIDGE'" Fig. 6 ZERO CROSSING CONTROL CIRCUIT WITHOUT HYSTERESIS lQk!l I 10kS1 RDR' RL 13 RSYN* ro 2 3 11 10kn 10k.n I AC IN PUT p.A/4;;. 8 12 1 fesT' SENSOR BRIDGE'" Fig. 7 7-51 7- ~ • IJA757 GAIN-CONTROLLED IF AMPLIFIER FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The j.LA757 is a monolithic high performance, Gain Controlled IF Amplifier constructed using the Fairchild Planar* epitaxial process. The amplifier contains two sections which may be operated independently, or in cascade, from audio frequencies to 25 MHz. The jl.A757 is intended primarily as a gain controlled, intermediate frequency amplifier in AM and FM communications receivers. It also has excellent performance when operated in FM receivers as a limiting amplifier. • • • • • CONNECTION DIAGRAM 14-PIN DIP (TOPVIEWI PACKAGE OUTLINE 6A PACKAGE CODE D 70dBGAINAT10.7MHz 70 dB AGC RANGE AT 10.7 MHz 300 mV SIGNAL HANDLING CAPABILITY AT INPUT CONSTANT INPUT AND OUTPUT IMPEDANCE WITH AGC +IN A DECOUPLE STABLE GAIN WITH SUPPLY VOLTAGE AND TEMPERATURE AT ALL LEVELS OF GAIN REDUCTION. ABSOLUTE MAXIMUM RATINGS Supply Voltage Voltage at any Output Terminal Voltage at either AGC Terminal (Note 1) Differential Voltage at either Input (Pins 1 and 14, Pins 2 and 10) Internal Power Dissipation (Note 2) Storage Temperature Range Hermetic DIP (j.LA757, jl.A757CI +15V +24V ±12V ±5V INPUT A { H i+} v+ INPUT B 12 11 10 DECOUPLE I 700n i ~"" 5 kU '" ....... .Lv -v r-R 300 3kU 5k" 2 3 AGe 1 3kn -J 1 200n 11 kU +OUT B !, d:J , ~ SkU n 13 '" n 2.Skn 200n 2.5 kU 3kn 11 kn AGe 2 k ......... 5kn 3.5 kn 200n(-1- 4000 300 ,.....- SkU - 300 n SHIELD -OUT B ORDER INFORMATION TYPE PART NO. j.LA757DM jl.A757 j.LA757DC j.LA757C 90051 p(Ji n DECOUPLE SHIELD 9 14 300 v+ OUTPUT B OUTPUT A 13 SkU AGe 2 C to +150 0 C -55°C to +125 0 C OOC to +700 C y ~ OUT A GND EQUIVALENT CIRCUIT 5kU AGe 1 670mW -65 0 Operating Temperature Range Military (jl.A757) Commercial (j.LA757C) Pin Temperature Hermetic DIP (Soldering, 60 sl j.LA757 DECOUPLE DECOUPLE ~Jf DECOUPLE ~ 200n 400n r 6'" 4kU 1500 GROUND Notes on following pages, "'Planar is a patented FaJrchii process. 7-52 FAIRCHILD. p.A757 p.A757 ELECTRICAL CHARACTERISTICS: V+ = +12 V, TA = 25°C, unless otherwise specified CHARACTER ISTICS Supply Current CONDITIONS Internal Power Dissipation Voltage Gain at no Gain Reduction V AGC 1,2 = +3.0 V VAGC 1,2 +0.8 V, f - 500 kHz Voltage Gain at Partial Gain Reduction VAGC 1,2 =+0.8V,f = 10.7 MHz VAGC 1,2 +1.7 V, f - 500 kHz Voltage Gain at Full Gain Reduction V AGC 1,2 = +1.7 V, f = 10.7 MHz V AGC 1,2 - +3.0 V, f 500 kHz 1 VAGC 1,2 = +3.0 V, f = 10.7 MHz Gain Reduction Sensitivity Input Voltage for 3 dB Limiting at Output I ntermodulation Products MIN 1 VAGC 1,2 = +0.8V V AGC 1,2 = +3.0 V V AGC 1,2 - +0.8 V Current into either AGe Terminal TEST CIRCUIT V AGC 1,2 - +3.0 V VAGC 1,2 -+1.7 V,f-500kHz VAGC 1,2 +0.8 V, f - 500 kHz Two-tone signal 2 2 2 2 2 2 1 2 2 2 65 60 20 TYP 13 17 170 200 74 70 39 37 2.0 1.0 15 50 0.5 -50 MAX 17 20 210 240 46 10 8 50 UNITS mA mA mW mW dB dB dB dB dB dB p.A dBN mV dB fl = 500 kHz, el = 100 mV f2 = 510 kHz, e2 = 100 mV lOUT = 1 mA p-p SECTION 1 Input Resistance at either Input Terminal Input Capacitance at either Input Terminal Output Resistance Output Capacitance Forward Transadmittance V AGC V AGC VAGC V AGC V AGC V AGC VAGC VAGC V AGC V AGe 1 = +0.8 V, 1 = +3.0 V, 1 -+0.8 V, 1 = +3.0 V, 1 - +0.8 V, 1 = +3.0 V, 1 = +0.8V, 1 = +3.0 V, 1 - +0.8 V, 1 = +0.8 V, f f f f f f f f f f - 10.7 MHz = 10.7 MHz = 10.7 MHz = 10.7 MHz - 10.7 MHz = 10.7 MHz = 10.7 MHz = 10.7 MHz - 500 kHz = 10.7 MHz Peak-to-Peak Output Current VAGC 1 - +3.0 V, f - 500 kHz Output in full limiting Output Saturation Voltage Noise Figure lOUT - 0.1 mA, V AGC 1 - +3.0 V RS - 1.0 kU, f - 10.7 MHz RS = 1.0 kU, f = 500 kHz I nterfering Signal Voltage at Input for 1.0% Cross Modulation Carrier signal, fc - 500 kHz Interfering signal, fi = 510 kHz 3.0 0.25 5.0 4.5 2.5 2.2 100 100 2.6 2.2 14 13 0.4 8.0 8.0 8.0 15 kU kU pF pF kU kU pF pF mmho mmho mA 9.0 V dB dB mV lOUT = 0.5 mA p-p, V AGC 1 = +0.8 V SECTION 2 Input Resistance Input Capacitance Output Resistance at either Output Terminal Output Capacitance at either Output Terminal Forward Transadmittance Quiescent Output Current at either Output Terminal Peak-ta-Peak Current at either Output Terminal Output Saturation Voltage at either Output Terminal Power Supply Sensitivity VAGC 2 = +0.8 V, f = 10.7 MHz V AGC 2 = +3.0 V, f = 10.7 MHz V AGC 2 = +0.8 V, f = 10.7 MHz VAGC 2 = +3.0 V, f = 10.7 MHz V AGC 2 = +0.8 V, f - 10.7 MHz VAGC 2 = +3.0 V, f = 10.7 MHz V AGC 2 = +0.8 V, f - 10.7 MHz VAGC 2 = +3.0 V, f = 10.7 MHz V AGC 2 - +0.8 V, f - 500 kHz VAGC 2= +0.8V,f= 10.7 MHz VAGC 2 - +3.0 V VAGC 2 -+3.0 V,f - 500 kHz Output in full limiting 3.0 kU kU pF 5.0 4.5 2.5 pF 2.2 26 20 2.2 2.5 440 280 2.4 4.8 3.5 7.0 lOUT = 1.0 mA, V AGC 2 = +3.0 V 5.0 6.0 VS-12Vto 15 V o dB Gain Reduction 30 dB Gain Redl,lction 60 dB Gain Reduction 0.5 0.8 1.0 7-53 1.7 3.8 kU kU pF pF mmho mmho mA mA dBN d'BN dBN FAIRCHILD • J.l.A757 /lA757 ELECTRICAL CHARACTERISTICS: V+ '" +12 V, TA '" +125°C, unless otherwise specified CHARACTER ISTICS Supply Current Internal Power Dissipation Voltage Gain at no Gain Reduction Voltage Gain at Partial Gain Reduction Voltage Gain at Full Gain Reduction Current into either AGC Terminal TEST CONDITIONS VAGC V AGC V AGC V AGC V AGC VAGC VAGC V AGC V AGC 1,2'" +0.8 1,2 '" +3.0 1,2 - +0.8 1,2 = +3.0 1,2 - +0.8 1,2 = +0.8 1,2 - +1.7 1,2 - +3.0 1,2 = +3.0 V V V V V, V, V, V, V, CIRCUIT MIN 1 1 f f f f f = = 2 2 2 2 2 1 500 kHz 10.7 MHz 500 kHz 500 kHz 10.7 MHz V AGC 1,2 - +3.0 V 55 TYP MAX 14 17 170 200 71 62 35 2.0 -1.0 15 17 20 210 240 15 50 UNITS mA mA mW mW dB dB dB dB dB jiA SECTION 1 Peak-to-Peak Output Current Output Saturation Voltage 0.2 V AGC 1 - +3.0 V, f - 500 kHz Output in full limiting I lOUT = 0.1 mA, VAGC 1 = +3.0 V I mA 0.4 8.0 9.4 V 2.8 5.6 3.5 7.0 mA mA 6.0 7.0 V SECTION 2 Quiescent Output Current at either Output Terminal Peak-to-Peak Current at either Output Terminal VAGC2 +3.0 V V AGC 2 - +3.0 V, f - 500 kHz Output in full limiting Output Saturation Voltage at either Output Terminal lOUT - 1.0 mA, V AGC 2 - +3.0 V 1.7 3.8 /lA757 ELECTRICAL CHARACTERISTICS; V+ = +12 V, TA = -55°C, unless otherwise specified CHARACTERISTICS Supply Current CONDITIONS Internal Power Dissipation Voltage Gain at no Gain Reduction V AGC 1,2 = +3.0 V VAGC 1,2 +0.8 V, f Voltage Gain at Partial Gain Reduction Voltage Gain at Full Gain Reduction Current into either AGe Terminal 1,2 1,2 1,2 1,2 1,2 = +0.8 V, - +1.7 V, - +3.0 V, = +3.0 V, - +3.0 V MIN 1 VAGC 1,2 = +0.8 V V AGC 1,2 = +3.0 V VAGC 1,2 +0.8V VAGC VAGC VAGC VAGC V AGC TEST CIRCUIT 1 f f f f 500 kHz 2 = 10.7 MHz -500 kHz - 500 kHz = 10.7 MHz .2 55 2 2 2 1 TYP MAX 10 14 120 170 68 64 28 2.0 -3.0 30 17 20 210 240 15 70 UNITS mA mA mW mW dB dB dB dB dB "A SECTION 1 Peak-to-Peak Output Current VAGCl =+3.0V,f-500kHz Output in full jimiting Output Saturation Voltage lOUT = 0.1 mA, VAGC 1 = +3.0 V 0.2 mA 0.4 8.0 9.0 V 1.7 3.4 3.5 7.0 mA mA 4.0 6.0 V SECTION 2 Quiescent Output Current at either Output 'Terminal Peak-to-Peak Current at either Output Terminal V AGC 2 - +3.0 V V AGC 2 - +3.0 V, f - 500 kHz Output in full limiting Output Saturation Voltage at either Output Terminal lOUT = 1.0 mA, V AGC 2 = +3.0 V 7-54 1.0 2.3 FAIRCHILD • f.lA757 f..I A7 57C ELECTRICAL CHARACTERISTICS: V+ = +12V, TA = +25'C, unless otherwise specilied CHARACTERISTICS Supply Current Internal Power Dissipation Voltage Gain at no Gain Reduction Voltage Gain at Partial Gain Reduction Voltage Gain at Full Gain Reduction Current into either AGe Terminal Gain Reduction Sensitivity Input Voltage lor -3 dB Limiting at Output Intermodulation Products CONDITIONS V AGC 1,2 = +0.8 V V AGC 1,2 = +3.0 V VAGC 1,2 +0.8V V AGC V AGC V AGC V AGC VAGC 12 1,2 12 1.2 1,2 = +3.0 V - +0.8V • I = 500 kHz = +0.8 V, I = 10.7 MHz = +1 .7 V, I = 500 kHz =+1.7 V,I= 10.7 MHz VAGC 1,2 - +3.0 V, I 500 kHz V AGC 1,2 = +3.0 V, I = 10.7 MHz VAGC 1,2 +3.0 V VAGC 1,2 - +1.7 V, I - 500 kHz VAGC 1,2 = +0.8 V, I - 500 kHz Two-tone signal TEST CIRCUIT MIN 1 1 2 2 2 2 2 2 1 2 2 2 65 60 20 TYP 14 18 170 220 74 70 39 37 2.0 1.0 15 50 0.5 -50 MAX 17 22 210 270 46 10 8 50 UNITS mA mA mW mW dB dB dB dB dB dB /LA dBN mV dB 11 = 500 kHz, e1 = 100 mV 12 = 510 kHz, e2 = 100 mV lOUT = 1 mA pop SECTION 1 Input Resistance at either Input Terminal Input Capacitance at either Input Terminal Output Resistance Output Capacitance Forward Transadmittance Peak-to-Peak Output Current Output Saturation Voltage Noise Figure Interfering Signal Voltage at Input lor 1.0% Cross Modulation VAGC 1 = +0.8 V, f = 10.7 MHz V AGC 1 = +3.0 V, f = 10.7 MHz V AGC 1 = +0.8 V, f - 10.7 MHz V AGC 1 = +3.0 V, f = 10.7 MHz V AGC 1 - +0.8 V, f - 10.7 MHz V AGC 1 = +3.0 V, f = 10.7 MHz VAGC1-+0.8V,f-10.7MHz VAGC 1 = +3.0 V, f = 10.7 MHz VAGC1-+0.8V ,f-500kHz V AGC 1 = +0.3 V, f = 10.7 MHz V AGC 1 - +3.0 V, f - 500 kHz Output in full limiting 3.0 0_25 5.0 4.5 k'()' k'()' 2.5 2.2 100 100 2.6 2.2 14 13 0.4 pF pF k'()' k'()' 8.0 8.0 8.0 15 lOUT = 0.1 rnA, VAGC 1 = +3.0 V RS - 1.0 k'()', f = 10.7 MHz RS = 1.0 k'()', f = 500 kHz Carrier signal, fc - 500 kHz Interfering signal, fi = 510kHz pF pF mmho mmho rnA 9.0 V dB dB mV lOUT = 0.5 rnA pop, V AGC 1 = +0.8 V SECTION 2 Input Resistance Input Capacitance Output Resistance at either Output Terminal Output Capacitance at either Output Terminal Forward Transadmittance V AGC 2 = +0.8 V, f - 10.7 MHz V AGC 2 = +3.0 V, f = 10.7 MHz V AGC 2 - +0.8 V, 1- 10.7 MHz 3.0 VAGC 2 = +3.0 V, f = 10.7 MHz V AGC 2 - +0.8 V, f - 10.7 MHz V AGC 2 = +3.0 V, f = 10.7 MHz VAGC2-+0.8V f-10.7MHz V AGC 2 = +3.0 V, f = 10.7 MHz V AGC 2 - +0.8 V, I = 500 kHz V AGC 2 = +0.8 V, 1= 10.7 MHz Quiescent Output Current at either Output Terminal Peak-to-Peak Current at either Output Terminal V AGC 2 - +3_0 V V AGC 2 - +3.0 V, f - 500 kHz Output in full limiting Output Saturation Voltage at either Output Terminal Power Supply SensitivitY 5.0 4.5 2.5 2.2 26 20 2.2 2.5 k'()' k'()' 440 280 mmho mmho pF pF k'()' k.(). pF pF 2.4 4.8 3.5 7.0 mA mA lOUT = 1.0 mA, VAGC 2 = +3.0 V 5.0 6.0 V Vs -12 V to 15 V dB Gain Reduction 30 dB Gain Reduction 60 dB Gain Reduction 0.5 0.8 1.0 o 7-55 1.7 3.8 dBN dBN dBN • FAIRCHILD • J.tA757 TYPICAL PERFORMANCE CURVES FOR p.A757 AND p.A757C PRODUCT OF SECTIONS 1 AND 2 FORWARD TRANSADMITTANCE AS A FUNCTION OF FREQUENCY ; ; SECTION 1 FORWARD TRANSADMITTANCE AS A FUNCTION OF FREQUENCY SECTION 2 FORWARD TRANSADMITTANCE AS A FUNCTION OF FREQUENCY o dB '~~~~~+--+-+++--1 wr--t-t+1--~~+-~+--1 GLN RIE~t;l~~ERENCE' 440 mmhCl lOdS dAIN 2OdBdAIN ~EJuclno~ '" ",'\ iREJudTION 1'--." I'--. "- 30dBL1N 1REJUJTION I ~ rTA-lzsocl V'"I,12V, 6D 1.0 S.O 2.0 10 i \"'''' 20 " FREQUENCY· MHz SECTION 1 AND 2 INPUT RESISTANCE AND CAPACITANCE AS A FUNCTION OF GAIN REDUCTION RES!STANC~ s.Ot S4.5k -r--. l I !i! cAp1AcnJcE •., l5' ~ , , r-- ~~ !! , ," ,0 .:.. - r- ! I I 2.0 IA"25°C , l.', Vt'+IZV '.Ok 2.Sk "r"r o 10 2D w uA757 30 40 SO 60 GAWRUUCTIDN-d"B 10 80 0 QdBGAINREDUCTlONAT'25°C 0 20 It It . JOdB GAIN REDUCTION AT +25°C 4D 0 1JA7,)7 ~6D 2D TEMPERATURE +100 \\ \~ 0 ~oC 0.5 1.0 1.5 2.0 2.5 I- I \;!j :;; . /1/ II 3.5 L A' v,t./ ~ ~ 20 10 I W 11 12 ./ 'o"3.0mAPP lo··12.olm~~ 1.1 ., 14 1S 1.0 POWER SUPPlY VOLTAGE - VOLts 7-56 II I 5.0 rl V 'O"l.OmA pp !'A7S7 10 v • +12V ~ @ 50 60 GAIN REDUCTION-dB .,).",,1- ..- TA "25°C 1,''''C t RS'lkQ TWO TONE 1M DISTORTION PRODUCTS AS A FUNCTION OF INPUT SIGNAL LEVEL ,/ 10 ,L.. --- f-~ t-r-_~MHf' ~A757- 0 4.0 / 11 'Z"SlOkliZ v+· +12V TA --t25°C ,,/ ---tk. -- ....-? --- _ . . o V ~ VAGC "3.0/ ._- -- --- +l25°C 3.0 _. 10 I I SO -- VAGC -VOlTS 22 • t-- 1-- ~ ~I !JA757 "'0 14D 70 SIGNAL TO NOISE RATIO IMPROVEMENT AND NOISE FIGURE AS A FUNCTION OF GAIN REDUCTION I I \ POWER SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 2D 30 40 50 60 GAIN REDUCTION-dB TEST CIRCU llT2 0 +25 c C V "..,,2V I lOOk!" .., 20 '"500kHz -55~C I I II '" , ,., 1° 1O•71lA757 ,MHz V+·12V 6D I- i 10 TA -25°C V+-+l2V I --55°C 0 60d B GAIN RfDUCTlON AT +25°C - 1 0 I I II I I II 3D A\,,;oc_ f-\ +l~oC- 0 IOdBGAlNREDUCTIONAT+25°C 0 1.0 cALclTAlCE I- I--r- GAIN REDUCTION AS A FUNCTION OF GAIN CONTROL VOLTAGE VOL TAGE GAIN AS A FUNCTION OF TEMPERATURE " .., ", r---- 100 SECTION 2 OUTPUT RESISTANCE AND CAPACITANCE AS A FUNCTION OF GAIN REDUCTION " 100 INPUTLEVEL-mV "'~' .. 70 8D FAIRCHILD • fJ.A757 TEST CIRCUIT 1 (NOTE 3) nn O.l/.1F 0.1 ~F " TEST CI RCUIT 2 (NOTE 2) In 0.11-'1= +12V 10kO ·O.l"F _J ---1 ,, " 14 ,, 10 kO ~ , ___ J IO. 1PF O.I;!F ~PUT v AGC NOTES 1. 2. For supply voltages less than +12 V, the absolute maximum voltage at either AGe terminal is equal to the supply voltage. Rating applies to ambient temperatures up to 70 o e. Above 700 e ambient derate linearly at 8.3 mW/oC. For 10.7 MHz met:lsurements, interstage capacitance and Section 2 output capacitance are tuned out. Pin 9 should be connected to GN D. 7-57 • ~A7391 DC MOTOR SPEED CONTROL CIRCUIT FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION - The pA7391 is designed for precision, closed-loop, motor speed control systems. It regulates the speed of capstan drive motors in automotive and portable tape players and is useful in a variety of industrial control applications, e.g., floppy disc drive systems, data cartridge drive systems. The device is constructed using the Fairchild Planar* epitaxial process. CONNECTION DIAGRAM 12-PIN POWER PACKAGE (TOP VIEW) PACKAGE OUTLINE 9W PACKAGE CODE P6 The pA7391 compares actual motor speed to an externally presettable reference voltage. The motor speed is determined by frequency to voltage conversion of the input signal provided by tachometer generator. The result of the comparison controls the duty cycle of the pulse width modulated switching motor drive output stage to close the system's negative feedback loop. TACH INPUT I-j Thermal and over-voltage shutdown are included for self-protection, and a "stall-timer" feature allows the motor to be protected from burn-out during extended mechanical jams. TACH INPUT (+) (-I MOTOR STALL TIMER DRIVER (+1 INPUTS DRIVER MOTOR DRIVE OUTPUT GND MOTOR DRIVE OUTPUT v+ PULSE TIMING • • • • • • • PRECISION PERFORMANCE - FREQUENCY-TO-VOLTAGE CONVERSION STABILITY TYPICALLY 0.1% FOR V+ FROM 10 V TO 16 V; 0.3% FOR CASE TEMPERATURE FROM -40°C TO +85°C HIGH CURRENT PERFORMANCE - 3.5 A STARTING SURGE CURRENT AND 2 A RUNNING CURRENT TO A DC MOTOR WIDE RANGE TACHOMETER INPUT - 100 mVp-p TO 1.0 Vp-p LOW EXTERNAL PARTS COUNT THERMAL SHUTDOWN, OVER-VOLTAGE AND STALL PROTECTION INTERNAL REGULATOR WIDE SUPPLY VOLTAGE RANGE - 6.3 V TO 16 V REGULATOR OUTPUT PULSE OUTPUT ORDER INFORMATION PART NO. TYPE IJ IlA7391 BLOCK DIAGRAM IlA7391PC .------.---r----.,.--o SUPPLY -b . 8« -10 MOTOR LOAD: TORQUE = 0.1 oz-in (72 gram-em) . Q w COMPONENT VALUES (TYPICAL APPLICATION CIRCUIT): en -14 CF = 1IJF RF=100kO w II: ~ Cp = .0151JF Rp=100kCl RS = 330 ItO Cs = 1 pF :; -18 -22 o I I I I I II J 4 8 12 16 SUPPLY VOLTAGE - V 7-62 20 24 FAIRCHILD • MA7391 REGULATOR OUTPUT VOLTAGE AS A FUCTION OF SUPPLY VOLTAGE SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE 12 > 10 .... I I o .... > Z w a: a: I ::J U ~ I '~" V / I ... I W L > E 5.3 / I w 5.2 ..!5.... 5.0 a: 4.9 ::J /' 5.1 V 0 0 5 ::J 4.8 I V ....w / w 52 . 50 a: 48 :!! 46 .... ::J !!: ....w w V+=14,5V ./ .... ......V V V V+=14.5V l: u 4.7 4.6 ~~ ~ 0 ~ U n 1U1~ 100 44 42 50 25 0 25 50 DRIVER ON CURRENT AS A FUNCTION OF DRIVER ON VOLTAGE DRIVER ON VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE 150 2.3 2.2 > I II I ~ ~ a: 200 I z 1.9 a: 1.8 111 == 175 mA i""'-- ....... -....... 0 a: w 100 100 125 JUNCTION TEMPERATURE - °C l: // 56 rtJ iii 54 w a: I / w Is ~110 ~ r-..... 2: V+ = 14.5 V TJ = 25°C 10111 a: Q 1.7 ........ - r---.... 1.6 II 2 3 1.5 ~ 4 DRIVER ON VOLTAGE - V ~ a U ~ n 100 1U1~ JUNCTION TEMPERATURE - 'C 7-63 • FAIRCHILD • JLA7391 MOTOR DRIVE OUTPUT ON CURRENT AS A FUNCTION OF MOTOR DRIVE OUTPUT ON VOLTAGE MOTOR DRIVE OUTPUT ON VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE 0.68 4 0 w 2: c a: I a: 0 I0 :; 01/ 0 '" 0.2 0.4 V ./ g " 0.62 0 ,/ I- ~O.60 10mA l- /' ~O.64 mA " "- I 0.66 w to III - 200 mA :::> :::> > 10JmA I I- ... V I- :::> ~O.58 2: ./ a: C 0.56 V+ -14.5 V TJ = 25°C a: V+= 14.5 V ~O.54 Is +110 ~ 2 :; 0.6 0.8 1.0 1.2 1.4 0.62 -60 -25 1.6 A I " i175rmA 0 25 75 50 100 125 150 MOTOR DRIVE OUTPUT ON VOLTAGE - V JUNCTION TEMPERATURE - °C FLYBACK DIODE (03) CURRENT AS A FUNCTION OF FLYBACK DIODE VOLTAGE OVERVOLTAGE SHUTDOWN VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE 2 25 > II I :::> 0 0 I " 22 I- 21 ~ 0 0 I :::> :J: Q en ".." a: w > I 17 I 2 ~ 0 > c 3.2 3.0 "'- "- "a: " 150 , C 0 :J: en >= ..J 2.2 0 25 50 0.5 0.4 \ '\ w a: :J: " :; 2.4. v+l~ 14.~ V 1\ ..J ..... -25 0.7 w a: 0.6 :::> "- 2.6 2.0 -50 I l- V+= 14.SV W I- 125 0.8 ~ a: "en 100 STALL TIMER THRESHOLD CURRENT AS A FUNCTION OF JUNCTION TEMPERATURE w a: .... 75 50 STALL TIMER THRESHOLD VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE en 2.8 :J: 25 0 JUNCTION TEMPERATURE - °C c5:J: I- 50 -25 FLYBACK DIODE VOLTAGE - V 3.4 w to 18 0 3.6 > r-- ' - = ::l '" 100 I z T .. 1 0 L 0 i= 6.0 \.. ~ 0. iii CI) a: 4.0 ~ 0 0. - I--- CI) iii -........ ~A 40 I -t- - POiA~ t-- 2.0 ~ t- POITA o o II 10 = 76 I 20 I 20 o 30 40 Z n m o C) COPPER DIMENSION - mm(LJ 7-67 ... 80 50 -f? :< J.LA7392 DC MOTOR SPEED CONTROL CIRCUIT FAIRCHILD LINEAR INTEGRATED CIRCUITS GENERAL DESCRIPTION-The ",A7392 is designed for precision, closed-loop, motor speed control systems. It regulates the speed of capstan drive motors in automotive and portable tape players and is useful in a variety of industrial and military control applications, e.g., floppy disc drive systems and data cartridge drive systems. The device is constructed using the Fairchild Planar' epitaxial process. The ",A7392 compares actual motor speed to an externally presettable reference voltage. The motor speed is determined by frequency to voltage conversion of the input signal provided by the tachometer generator. The result of the comparison controls the duty cycle of the pulse width modulated switching motor drive output stage to close the system's negative feedback loop. CONNECTION DIAGRAM 14-PIN DIP (TOP VIEW) PACKAGE OUTLINE 6A, 9A PACKAGE CODES D P Thermal and over-voltage shutdown are included for self-protection, and a "stalltimer" feature allows the motor to be protected from burn-out during extended mechanical jams. The ",A7392 is a low current compliment to the ",A7391 for those applications requiring less current and also to drive high current output stages for very high current applications. MOTOR (.)r DRIVER 'L... INPUTS (IC ~hSTALl TIMER ~. 2 TACH INPUT ( ) C 3 GNC[ 4 TACH INPUT (0)[ 5 PULSETIMING[S • PRECISION PERFORMANCE-FREQUENCY-TO-VOLTAGE CONVERSION STABILITY TYPICALLY 0.1% FOR V+ FROM 10 V TO 16 V; 0.3% FOR CASE TEMPERATURE FROM -40°C TO +85°C PULSE OUTPUT [ 7 13 PN/C 12 POUTPUT EMITTER 11 P~3~~~TORIVE 10 PCLAMPING DIODE 9pV8 P~~~~b;TOR • HIGH CURRENT PERFORMANCE-l.0 A STARTING SURGE CURRENT AND 300 mA RUNNING CURRENT TO A DC MOTOR • WIDE RANGE TACHOMETER INPUT-l00 mVp-p TO 1.0 Vp-p • LOW EXTERNAL PARTS COUNT • THERMAL SHUTDOWN, OVER-VOLTAGE AND STALL PROTECTION • INTERNAL REGULATOR • WIDE SUPPLY VOLTAGE RANGE-6.3 V TO 16 V • EMITTER OF OUTPUT STAGE AVAILABLE FOR EASE IN DRIVING POWER TRANSISTOR OUTPUT STAGES • CLAMPING DIODE AVAILABLE ON SEPARATE PIN ABSOLUTE MAXIMUM RATINGS Supply Voltage (V+), Vg, V1Q, V11 Regulator Output Current, Is Voltage Applied to Pin 6 (Tachometer Pulse Timing) Voltage Applied Between Pins 3 and 5 (Tachometer Inputs) Continuous Current through Pins 11 and 12 Motor Drive Output ON Repetitive Surge Current through Pins 11 and 12 (Motor Drive ON) Repetitive Surge Current through Pins 10 and 11 (Motor Drive OFF) Power Dissipation Storage Temperature Range Operating Temperature Range (",A7392) Operating Temperature Range (",A7392C) Pin Temperature (Soldering 10 s I "Planar is a patented Fairchild process 7-68 ORDER INFORMATION TYPE PART NO. J.lA7392 J.lA7392C J.lA7392C J.lA7392DM ILA7392DC ",A7392PC 24 V 15 mA 7 V ±6 V 0.3 A 1.0 A 0.3 A Internally Limited -55°C to +150°C -55° C to +125° C -40° C to +85° C 260°C FAIRCHILD • 1lA7392 J.lA7392 and J.lA7392C ELECTRICAL CHARACTERISTICS: V+ = 14.5 V, TA = 25°C, unless otherwise noted VOLTAGE REGULATOR SECTION: (TEST CIRCUIT 1) CHARACTERISTICS CONDITIONS Power Supply Current Excluding Current into Pin 11 MIN Regulator Output Voltage 4.5 Regulator Output Line Regulation (Ll. Vs) V+ from 10 V to 16 V V+ from 6.3 V to 16 V Regulator Output Load Regulation (Ll.Vs) Is from 10 mA to 0 TYP MAX 7.5 10 5.0 5.5 V 6.0 12 20 50 mV mV 40 UNITS mA mV ELECTRICAL CHARACTERISTICS: V+ = 14.5 V, TA = 25°C, unless otherwise noted FREQUENCY TO VOLTAGE CONVERTER SECTION: (TEST CIRCUIT 2) CONDITIONS CHARACTERISTICS MIN Tachometer (-) Input Bias Voltage TYP MAX 2.4 = V3 Tachometer (+) Input Bias Current Vs Tachometer input Positive Threshold (Vs - V3) 1.0 Tachometer Input Hysteresis Pulse Timing ON Resistance VB V 10 p.A 10 25 50 mVpk 20 50 100 mVpk-pk 300 500 50 55 =1V Pulse Timing Switch Threshold UNITS 45 Output Pulse Rise Time 0.3 Output Pulse Fall Time 0.1 !l. %Vs p's p's Pulse Output LOW Saturation (V7) 0.13 0.25 V Pulse Output HIGH Saturation (Va - V7) 0.12 0.2 V -260 -180 =1 -340 Pulse Output HIGH Source Current V7 Frequency-to-Voltage Conversion Supply Voltllge VFV = n.?S VB (Note ?) V+ from 10 V to 16 V 0.1 % VFv = 0.25 Va (Note 2) TA from -40°C to +85°C 0.3 % Stability (Note 1) Frequency-to-Voltage Conversion Temperature Stability (Note 3) ELECTRICAL CHARACTERISTICS: V+ = 14.5 V, TA = 25°C, V p.A unless otherwise noted MOTOR DRIVE SECTION: (TEST CIRCUIT 3) CHARACTERISTICS CONDITIONS MIN TYP Input Offset Voltage 0.1 Input Bias Current 0.8 Common Mode Range Motor Drive Output Saturation Motor Drive Output Leakage Flyback Diode Leakage Flyback Diode Clamp Voltage = 300mA V11 = V10 = 16 V V10 = 16 V, V11 = 0 111 = 300mA 111 1.3 V Motor Drive Output Off 7-69 1.1 MAX UNITS ±20 mV 10 p.A 2.5 V 1.6 V 5 p.A 30 p.A 1.3 V FAIRCHILD • pA7392 ~A7392,. ~7392C ELECTRICAL CHARACTERISTICS: V+ = 14.5 V, TA = 25°C unless otherwise noted PROTECTIVE CIRCUITS: (TEST CIRCUIT 4) CHARACTERISTICS CONDITIONS Thermal Shutdown Junction Temperature Note 4 Overvoltage Shutdown Note 4 18 21 24 V Stall Timer Threshold Voltage Note 5 2.5 2.9 3.5 V Stall Timer Threshold Current Note 5 0.3 3.0 p.A TYP MAX UNITS 7.5 12 rnA 5.0 6.0 V 6.0 12 20 50 mV mV 40 100 mV TYP MAX UNITS MIN TYP MAX 160 ~7392 UNITS °C ONLY ELECTRICAL CHARACTERISTICS: V+ = 14.5 V, -55°C";; TA";; +125°C, unless otherwise noted VOLTAGE REGULATOR SECTION: (TEST CIRCUIT 1) CHARACTERISTICS CONDITIONS Power Supply Current Excluding Current into Pin 11 Regulator Output Voltage MIN 4.5 Regulator Output Line Regulation (cNs) V+ from 10 V to 16 V V+ from 6.3 V to 16 V Regulator Output Load Regulation (6Vs) Is from 10 mA to 0 FREQUENCY TO VOLTAGE CONVERTER SECTION: (TEST CIRCUIT 2) CHARACTERISTICS CONDITIONS MIN Tachometer (-) Input Bias Voltage 2.4 Tachometer (+) Input Bias Current V5 = V3 Tachometer Input Positive Threshold (V5 - V3) 1.0 Tachometer Input Hysteresis Pulse Timing ON Resistance p.A 10 25 50 mVpk 20 50 100 mVp-p 300 670 n 50 55 %Vs Va = 1 V 45 Pulse Timing Switch Threshold V 15 Output Pulse Rise Time 0.3 p's Pulse Fall Time 0.1 p's Pulse Output LOW Saturation (V7) 0.13 0.25 Pulse Output HIGH Saturation (Vs - V7) 0.12 0.2 V -260 -150 p.A Pulse Output HIGH Source Current V7 = 1 V Frequency-to-Voltage Conversion Supply Voltage FFV = 0.25 Vs (Note 2) V+ from 10 V to 16 V 0.1 % VFv = 0.25 Vs (Note 2) TA from -40°C to +85°C 0.3 % Stability (Note 1) Frequency-to-Voltage Conversion Temperature Stability (Note 3) 7-70 -370 V FAIRCHILD • ~7392 J.LA7392 ONLY ELECTRICAL CHARACTERISTICS ConI. : V+; 14.5 V, -55°C ~ TA,,; +125°C, unless otherwise noted. MOTOR DRIVE SECTION: (TEST CIRCUIT 3) CHARACTERISTICS CONDITIONS MIN TYP Input Offset Voltage 0.1 Input Bias Current Common Mode Range 0.8 MAX UNITS ±30 mV 10 p.A 2.5 V Motor Drive Output Saturation 111; 300mA 1.6 V Motor Drive Output Leakage V11 ; V10 ; 16 V 10 p.A Flyback Diode Leakage V10 ; 16 V, V11 ; 0 V 30 p.A Flyback Diode Clamp Voltage 111; 300mA Motor Drive Output Off 1.1 1.3 V TYP MAX 1.3 PROTECTIVE CIRCUITS: (TEST CIRCUIT 4) CHARACTERISTICS CONDITIONS Thermal Shutdown Junction Temperature Note 4 Overvoltage Shutdown Note 4 18 21 24 Stall Timer Threshold Voltage Note 5 1.8 2.9 4.0 V Stall Timer Threshold Current Note 5 0.3 4.0 p.A MIN 160 UNITS °C V NOTES: 1. Frequency-to-Voltage Conversion, Supply Voltage Stability is deli ned as: • 100% 2. Wv is the integrated dc output voltage lrom the pulse generator IPin 71 3. ~requency~to-Voltage Conversion T~r(lperature Stability is defined as: W V I8S 0CI] _ [VFVI-40 0 Cll"- [WVI2S0 Cll X 100% VaIBS' CI. Val-40° CI Val2S o CI 4. "Motor Drive" circuitry is disabled when these limits are exceeded. If the condition continues forthe duration set by the external stall timer components, ihe circuit is latched all until reset by temporarily opening the power supply input line. 5. II stall timer protection is not required, Pin 14 should be grounded. THERMAL DATA TYP MAX 70 100 80 120 OJA THERMAL RESISTANCE, JUNCTION TO AMBIENT PLASTIC (9A) CERAMIC (6A) 7-71 °C/W °C/W FAIRCHILD • pA7392 BLOCK DIAGRAM SUPPLY ,.--.....- . - - - -....-0 VOLTAGE v+ 1 PULSE TIMING 8 PULSE OUTPUT 7 ~~~~~ J :2(-) ill ~ : (Ci)313--"'IM--T-~~==J -= CLAMPING 9 ;D3 . 1 COMPARATOR I-~ 11 r 1 8'=!;:' I REGgM~~ I VOLTAGE REGULATOR _ _ _ _ _ _ _ 12.b _ -= I I I I I I I I I I I : I ____ I 1 tp' '1 OUTPUTS MOTOR DRIVE ________ : f\ D~;~;R I V"'v vot::8~~~~~~TER: ~E~I~N I ____S~CT~N_ I v' (+)1 I 1,;~(+~)~5~-~w...:-rv""::~-II"""G-E:~~:::~:S::~O-R"1 1_ rM-O::-T-O-R""""''''''-·~ ~~~5~T ,1 A TACHOMETER INPUTS yIS-. rf-= V+ VOLTA~~tT~g~LATOR EMITTER I I I OVER VOLTAGEL SENSOR - , I I I I STALL TIMINGl_ THRESHOLD AND LATCH I 14 : I ITHERMALL SENSOR, I I I : OUTPUT £TALL TIMER PROTECTIVE CIRCUITS I I I 14 : L _______________________________________ ~ TYPICAL PERFORMANCE CURVES OVERVOLTAGE SHUTDOVI,N VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE STALL TIMER THRESHOLD CURRENT AS A FUNCTION OF JUNCTION TEMPERATURE STALL TIMER THRESHOLD VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE 3.6 > ~ 24r_-+-+--+-+-~-_r--r_~ >, ~ 23~-t--t--+--+-~--_r--~~ '" ~ ~ 90 5 22r_-+--+--+--+-~--_r--r_~ 21 -I-- :I: ~ 20r_-+--+--+--+-~--_r--r_~ ~ 19~-t--t--+--+-~--_r--~~ ~ 18 17'5!~O~2~5-0~~2~5~5~O~7=6~'~O~O::-'~2~.-'~50 JUNCTION TEMPERATURE - °C w 3.' 3.2 0 > :I: 3.0 2.8 .:::i= 2.6 0.8 r----r-~-r-.,---,--,--,......._, 1. "'" V+=14.5V "- ~ 0.7 \ ~ 0.6 f-lrl-\--t--+-+-~--_r--~~ (J 0.6 r_-i".-+--+--+-~--_r--t--I 9 ~ 0.4 '\ ..i= 0.3 '"w :; V+=14.6V ~ -- r_-+--+-~,.--+---1--+--t--I ;: 2.' ffi ::! 0.2 ~-t--t--+--+'~=+-t--i .... ~ ;: 0.1 ~-t--t--+--+-Ir-+--t--i 2.2 ::j 2·~5L.0-_2-':5,-.J.0--2='5,-='60,-""7=-6-,:-:O~0-,,'2:,5~'50 JUNCTION TEMPERATURE - 7-72 ac ~ 60 26 0 26 50 75 100 JUNCTION TEMPERATURE - 125 150 ac I FAIRCHILD • J,tA7392 I' TYPICAL PERFORMANCE CURVES (Cont'd.) REGULATOR OUTPUT VOLTAGE AS A FUNCTION OF SUPPLY VOLTAGE SUPPLY CURRENT AS A FUNCTION OF SUPPLY VOLTAGE REGULATOR OUTPUT VOLTAGE AS A FUNCTION OF JUNCTION TEMPERATURE 5.4 12 > 5.3 > 10 "E >~ I II a: " 0 5o ~ I ~ TJ - 25°C I I I I o/ o 12 16 "~ 20 / 5. 1 ir 5o 5.0 V a: 4.9 ~ I I I 16 V+=14.6V 20 4.7 4 .•_ _ 24 SUPPLY VOLTAGE - V SUPPLY VOLTAGE" V V ;:) 4.8 TJ = 25°C 12 V ~ / V >- 1 o I o 24 g I II a: ."t ~ 5.2 I II g >- illa: I w ~" v I I w 0 ~ ~ ~ 100 1~1~ JUNCTION TEMPERATURE - °C TACHOMETER INPUT HYSTERESIS AS A FUNCTION OF JUNCTION TEMPERATURE FLYBACK DIODE (03) CURRENT AS A FUNCTION OF FLYBACK DIODE VOLTAGE 68 800 66 700 > E I ~ !!l III a: 54 ~ !I!l: 52 >- ~ 50 a: 48 :; 46 "~ /' - j:! >Z ~ 500 ../ v+ = 400 / C C (5 300 14.5 V " ~ 44 42 / a: "~ V 0 l: 0 ../ I 600 ./' v+ = 25 25 50 76 100 125 o 150 l/ o JUNCTION TEMPERATURE - "C FLYBACK DIODE VOLTAGE - MOTOR DRIVE OUTPUT ON CURRENT AS A FUNCTION OF MOTOR DRIVE OUTPUT ON VOLTAGE f I 1 100 50 14.SV TJ =TA = 25°C 200 V MOTOR DRIVE OUTPUT ON VOLTAGE AS A FUNCTION OF AMBIENT TEMPERATURE 1.46 E ~ 11400 !Z ~ 1.42 § !5! ~ 1000 ~ 1.40 o / ~ BOO I!: "o 600 fi 400 ~ 200 ~ / / / 1.38 ~~ 1.36 / !!i 00 1.44 ~ ~ 1200 "' / C 1.34 ~~ v+ = 14.5V TJ=TA=2SgC I MOTOR DRrvE OUTPUT ON VOLTAGE - r / ,// 1.32 V+ = 14.5V h1:300mA_ ../ 1.30 -SO -25 / V TJ 25 50 75 iTA 1 100 AMBIENT TEMPERATURE _ °C V 7-73 125 150 • FAIRCHILD • J.LA7392 TYPICAL APPLICATION USING MAGNETIC TACHOMETER 330 krl RS CQ.. 9.1 krl SPEED ADJUST 100 krl 10 krl .01pF t 1 13 3 12 .,r-4 11 r--- 5 10 2 krl ':' 14- 2 ':' r- 6 RF 100 krl 1 9 sf-- 7 Rp I I I I I f-ich lCF 1lfs ':' 100 kO 10VT018V pF I I b ~ 1. • TACHOMETER If= NOMIN AL TACHOMETER FREQUE NCYI TYPICAL COMPONENT VALUES: Cp~ CI Cs ~ ~ __ 4 Rpl 10 Cp to 1000 Cp depending on system requirements 2 X stall time-out RS RMator ;;:: 5 n TEST CIRCUIT 1 TEST CIRCUIT 2 20 krl TACH INPUT VOLTAGES I-I 1+1 14 13 100rl 14 12 13 * 11 0.1 pF 12 100rl 10 + REGULATOR VOLTAGE V+ 11 TACH INPUT VOLTAGE ADJUST V = 0.3 Vp _p fNOM AC = 1000 Hz DC 10 TACH INPUT 100 krl ':' VFV (INTEGRATED FREQ-TO-VOLTAGE CONVERTER OUTPUT VOLTAGEI PULSE OUTPUT VOLTAGE 7-74 o-TWrTit..._.!l J_ 1 pF 0-----' 100 krl ~------"--O J .0026pF + -=- 14.5 V J- PULSE TIMING VOLTAGE I. FAIRCHILD • ILA7392 I TEST CIRCUIT 3 20 kO MOTOR ORIVER MOTOR DRIVE INPUT VOLTAGES (+1 1000 + 10V + -=- 1000 FLYBACK ~IODETEST OUTPUT VOLTAGE H ~15V 14 + 13 10 kO FLYBACK INPUT 12 VOLTAGE ADJUST 43 n lOw 100kO MOTOR G-L 11 ":" + 10 MOTOR DRIVER OUTPUT LEAKAGE FLYBACK DIODE LEAKAGE I L---------------------~C~O~M7.M~O~N-+·~10kO MODE VOLTAGE ADJUST TEST CIRCUIT 4 STALL TIMER VOLTAGE 111--------, 5. 1 kO 10 ~----------------_+V+ + 7-75 5pF MOTOR DRIVE OUTPUT TEST ·INDEX OF D.EVfCES APPLICATION AND TESTING INFORMATION Testing Operational Amplifiers .......................................................... 8-3 Op Amp Parameters and Applications ................................................ " 8-13 Use of Op Amp Parameters in Design Steps ............................................ 8-25 TESTING OPERATIONAL AMPLIFIERS WHAT IS AN OP AMP? An operational amplifier is a direct-coupled high-gain amplifier, often powered by both a positive and a negative supply so that the output can swing both above and below ground. By itself, because of the high gain (80 dB or much higher), op amp usefulness is limited due to saturation, with the output swung as far as possible toward one of the supplies. With feedback applied, in a closed-loop configuration, the op amp becomes a useful device. Since the properties of the closed-loop circuit depend primarily on characteristics of the feedback components ratherthan the op amp, and since typical feedback components, i.e. resistors and capacitors, have high precision and low drift, closed-loop op amp circuits can be very accurate and stable. The name operational amplifier is derived from one of the original uses of closed-loop op amp circuits, performing mathematical operations in analog computers. Early op amps used a single, ground-referenced inverting input, where a positive voltage change at the input caused a negative change at the output. The more versati Ie, modern op amps have two floating inputs - one inverting and one non-inverting. Since an op amp responds equally to the two inputs, the output depends on the difference between the inputs, known as differential inputs. A common-mode signal, applied equally to both inputs, is ignored since there is no difference between inputs. By grounding one of the inputs, the differential amplifier becomes a ground-referenced amplifier. With negative feedback applied to an inverting input, the op amp continually adjusts the output to minimize (or null) the differential input voltage. Because the gain of the op amp is so high, the nulled input voltage is always small, regardless of the output voltage. For example, if the gain is 100,000 and the output is at 10 V, the differential input is only 100 J.1.V, a negligible voltage. Thus, it can be said that the op amp with negative feedback is continually adjusting the outputs to keep the inputs at the same voltage. MAJOR DC PARAMETERS There are seven important parameters that are tested and guaranteed on all modern Ie op amps. In the following discussions, input voltage refers to the differential voltage at zero common-mode voltage. Input Offset Voltage Vas Ideally, the output voltage should be zero when the input voltage is zero, but practically, there will always be small mismatches in the amplifier components. Input offset voltage is the input voltage required to zero the output, typically a millivolt or two. Vas, usually caused by mismatches in the base-emitter voltages of the amplifier input transistors, is undesirable in a direct-coupled circuit because the circuit will usually amplify it, causing a large dc error, which is temperature-dependent. To avoid the effects of input currents, Vas should ideally be measured at zero source impedance (resistance from each input to ground). For testing purposes, some low impedance, usually 50 ohms, is used. Input Bias Current 18 Although op amp inputs ideally draw no current, practically, some bias current must flow into each input. For op amps with bipolar transistors at the input, 18 is the base current of the input transistor, typically 100 nA. Where source impedance is low, 18 has no effect; but in highimpedance circuits, a voltage (18 X source resistance) will appear at the amplifier input. This error is similar to Vas and is also temperature-dependent. 8-3 • i Because of the design of differential stages, the two Iss of an op amp vary with the input voltage, but their sum remains constant. The parameter usually tested is the total input bias current IS(Total) = ( IS(inverting) + IS(non-inverting)). The average input bias current specified on data sheets is just IS(Total)/2. Occasionally, it is necessary to measure the two input currents separately. To make IS(Total) divide evenly between the two inputs and not in a random way, dependent on Vas, the standard convention is to null the op amp in a feedback loop. Input Offset Current los Because an op amp has differential inputs, many of the effects of the two input currents can be eliminated if both currents are equal, since equal effects at both inputs would cancel. Practically, the two input currents cannot be made exactly equal, so the difference between them is specified. The input offset current is the difference between the two input currents when the op amp is nulled. In applications where the inputs are operated from equal source impedance, los is the parameter of interest. In op amps with a simple input stage, like the }J.A709 or }J.A749, los is dependent on the beta match of the input transistors. In more complicated devices, like the }J.A741, los also depends on matching the current sources that supply the input transistors. High-Impedance Composite Input Offset Voltage Vas 10 k The input offsets of an op amp are fully specified by either: Vas, IS(inv), IS(ninv) or Vas, los, IS(Total) In either case, common-mode and differential input voltages can be calculated for any source resistances, equal or unequal. In applications with equal source resistors, Vas dominates at low impedances and los dominates at high impedances. At some intermediate resistance, Vas and los effects are about equal and may add or cancel, depending on their signs which are statistically uncorrelated. If they add, the composite offset will be greater than Vas and may even be greater than the data sheet limit for Vas. To guard against this possibility, a highimpedance composite input offset voltage at a specified source resistance, usually 10 k, is tested and guaranteed. Vas 10 k is not an independent parameter of an op amp; it is a calculated number, determined by the interaction of the independent parameters Vas and los with external source resistors. Voltage Gain The gain of an op amp, as with any other amplifier, is the ratio of a change in the output voltage to a change in the input voltage. Gain can be specified in V/V or in dB. The symbol AVOL is used to indicate open-loop voltage gain, the gain of the amplifier without feedback. Common Mode Rejection Ratio CMRR Ideally, an op amp ignores common-mode signals. Practically, there will always be some small response. The standard convention for measuring this response is to null the amplifier, then measure the change in Vas when large common-mode voltages are applied. The common mode rejection ratio CMRR is the ratio of change in Vas to the change in commonmode voltage, specified in dB. To avoid a minus sign (-100 dB, -70 dB), CMRR is often specified "upside-down" as the change in common-mode voltage over the change in Vas. Typical op amps have 80 to 100 dB CMRR. 8-4 Power Supply Rejection Ratio PSRR Power supply rejection ratio is a measure of the abi1ity of the op amp to ignore changes in the power supply voltages. The change in Vas is measured as the supplies are varied. Power supply rejection ratio PSRR is the ratio of the change in Vas to the total change in power supply voltage. For example, if the supplies vary from ±5 V to±20 V, the total change is 40 - 10 = 30 V. PSRR is usually specified in p.VIV or sometimes in dB, in which case the "upside-down" form is used. Typical op amps have 30 p.V IV (90 dB) PSRR. MINOR DC PARAMETERS USUALLY SPECIFIED Output Swing Ideally, the output voltage of an op amp should be able to swing all the way to either supply. However, real op amps saturate within a volt or two of the supplies, depending on how many base-emitter junctions and/or saturated transistors are involved. Op amp output stages are usually complementary-symmetry emitter followers, so output impedance is low, whether the op amp is si nking or sourcing output current. To ensure that both the npn and pnp are operating, both positive and negative swing are tested, with an external resistor connected to load the output. Output Short-Circuit Current Isc Most recent op amps have a protective current limit built into the output. If the output is short circuited or otherwise overloaded, the output current limits at some safe value, typically 25 mA. The current limit circuits for each direction of current (sourcing and sinking) are independent and must be tested separately, although they are designed to limit at the same value. Isc is generally tested under worst-case conditions. For example, an input voltage is applied to cause the output to swing to positive saturation, but the output is then shorted to the negative supply and held there while Isc is read. This causes maximum power dissipation in the output transistor. Supply Current Is or Isup The standby current of the amplifier is measured when the output is at zero. In modern op amps that have no ground terminal, the standby current into the V+ lead is equal to the standby current out of the V-lead and could be measured at either terminal. In older op amps, such as the p.A702, that do have a ground terminal, the currents must be measured separately. Power Consumption Power consumption is determined by multiplying the supply current times the total supply voltage. This parameter is guaranteed by the Is test. Offset Adjust VaS(adj) Some op amps have a pair of offset adjust terminals. Zero offset voltage can be obtained by adjusting a potentiometer connected between these terminals. Test each VaS(adj) terminal by measuring Vas while the terminal is shorted to V-. This indicates the maximum effect of the terminal on Vas. DC STRESS TESTS Data sheets always include "absolute maximum" limits on common-mode input voltage, differential input voltage, and supply voltage. To guarantee these ranges, any of several tests can be performed. Sometimes a measurement is taken during the test if there is some measurable indication of a failure. Other times, certain voltages are simply applied and removed before the main test sequence. 8-5 Common-Mode Stress This is not usually tested. The inputs are moved over a large common-mode voltage range during GMRR; since the absolute maximum range is only slightly larger, a separate test is usually unnecessary. Differential Stress (Input Leakage - IL) In this test, the inputs are subjected to absolute maximum differential input voltage. All of IB(Total) will flow in the more positive input and the more negative input should see nothing but leakage. Breakdown occurs if the input stage is defective. Input leakage is often measured during the test. Supply Stress Supply current is measured under absolute maximum supply voltages. Internal MOS Capacitor Test - Cap Stress Many modern op amps include a small MOS capacitor on the chip to set the amplifier frequency response. The silicon dioxide dielectric of the cap is made only thick enough to withstand the absolute maximum total supply voltage. To test the dielectric, maximum supplies are applied and the circuit is swung to whichever state puts the full voltage across the cap. The output is often measured. Typically, if the dielectric ruptures, the amplifier will latch up in an improper state; the output will go negative when it should be positive. AC PARAMETERS Since ac parameters are not usually tested in production, only typical values are shown on the data sheet. However, three common ac parameters should be recognized. Risetime and Overshoot The small-signal step response is a simple test that indicates both the bandwidth and stability of an amplifier under specified conditions. The risetime is related to the bandwidth, and the overshoot is a measure of stability. Slew Rate Slew rate is a large-signal phenomenon resulting from the capacitor connected to adjust the smallsignal frequency response. So that the capacitors can be small, they are usually connected to highimpedance nodes in the circuit, that receive dc bias from current sources. If the amplifier is to reproduce a large signal, such as a 10 V step, the circuit no longer behaves accordi ng to its smallsignal model. The current source at the compensation node cannot pump enough current into the cap to move the output far enough, fast enough. If current I is provided to the cap G, the output will slew toward the final value at a slew rate dV/dt = I/G. Slew rate limiting (or rate limiting) occurs with all large, fast signals when current to the capacitor is insufficient. THE BASIC OP AMP TEST LOOP All op amps are basically alike, high-gain differential amplifiers. The reason there are so manydifferent op amps is that no one circuit design can possibly optimize all the dc and ac parameters. Op amps are designed to optimize a parameter (high gain, low power consumption, etc.) for particular applications. Fortunately for test engineers, however, the similarities of all op amps are so great that a single test Circuit can be used to perform all standard dc tests. This circuit, shown in Fig'ure 8-1, is the basic op amp test loop. 8-6 50 k INPUT NODE 9 "'2:.. t 20 V 3 K4 K1A ~ 8 I ~ K1B 4 5 6 7 -20 V LOOP CONTROL TERMINAL Fig. 8-1 Basic Op Amp Test Loop Performing all tests requires five power supplies: the V+ and V- supplies for the device under test (OUT), a control voltage Vc applied at the loop control terminal, and supplies to run the nulling amplifier, usually ±15 V or ±20 V. Operation of the test loop, with all relays closed, is as follows: • The inverting input of the nulling amplifier is the control terminal of the loop. The OUT output is connected to the non-inverting input of the null amplifier. • The null amplifier output controls the OUT input through the feedback divider. • There is one inversion in the loop, provided by the OUT. Therefore, the null amplifier operates with negative feedback. • With negative feedback, the null amplifier continually adjusts its output to keep its input voltages equal. • Therefore, the null amplifier adjusts the loop output so that the OUT output follows the control terminal. The input node voltage, VN in Figure 8-1, is always 1/1 OOOth of the loop output voltage (actually it is 1/1 001th, but it is common to neglect the 0.1 % error). Thinking in reverse, the circuit has a closedloop gain of 1000 and any voltage VN appears 1000 times larger at the loop output. Since the input voltages to the nulled op amp are always very small, the gain simplifies measurements. Equations for VN Figure 8-2 shows the OUT portion of the test loop, leaving out the 50 .n resistors since their effect is negligible in this analysis. Vas is represented as a small voltage source moved outside the op amp. Current flows into both inputs of the op amp. With VN adj usted by feedback to produce a OUT output of zero, and with Vas accounted for externally, no voltage exists between the op amp inputs; zero in means zero out. VN equations can now be written for the various settings of K2 and K3. K2 closed, K3 closed: VN1 = Vas The input bias currents have no effect because there is no source resistance. K2 closed, K3 open: VN2 = Vas - IB(ninv) x 10k With only K3 open, VN is a composite voltage involving Vas and IB(ninv). To test IB(ninv), measure VN2, then subtract it from VN1 (equal to Vas). 8-7 • K2 OUTPUT HELD AT Ov BY FEEDBACK, WHICH ADJUSTS VN. Fig. 8-2 K2 open, K3 closed: VN3 = Vos Simplified Input Circuit For Calculating VN + IB(inv) X 10 k To measure IB(inv), subtract Vos from VN3. K2 open, K3 open: VN4 = -IB(ninv) (10 k) + Vos + IB(inv) (10 k) = Vos + (IB(inv) - IB(ninv))( 10 k) = Vos + los (10 k) = Vos 10 k VN4 is the high-impedance composite input offset voltage. To measure los, subtract Vos from VN4. Each relay setting combination provides an easy way to measure some important parameter of the op amp. For a measurement of I B(tolal), measure VN3 and subtract it from VN2. ~VN=VOS + IB(inv) (10 k) + IB(ninv) (10 k) - Vos = (IB(inv) + IB(ninv~(10 k) = 18(total) (10k) Testing Using the Op Amp Test Loop For the following tests of op amp parameters, refer to the test loop schematic, Figure 8-1, whenever necessary. All relays are normally closed. Input Offset Voltage Vas Set the loop control voltage Vc to zero. The nulling amplifier immediately adjusts the loop output to zero the OUT output. By definition, the input node voltage VN equals Vas; therefore, the loop output is 1000 Vas. For example, if the loop output reads 1,0 V, Vas is 1.0 mV. Input Currents (Separately) Measure Vas. Then open K2 and K3 alternately and compute the changes in VN as previously described. Because 1000 VN is always read at the loop output, a voltage change t1VN = 1000X IB X 10k will be measured. Thus, if IB is 100 nA, the measured change will be 1.0 V. Total Input Bias Current IB(lotal) This was explained in the previous section. Measure VN2; then measure VN3 and subtract. The measured change at the loop output is 1000 X IB(IOlal) X 10 k. An alternate method to test IB(lolal) is to open K1 and K4, tie pins 1 and 2 together, and use a current meter to read IB(tolal). The industry trend is for dynamic testing, however, since there is some small inaccuracy associated with the latter method. 8-8 High-Impedance Composite Input Offset Voltage Vas 10 k Measure VN4 as previously described. Input Offset Current los Measure Vas. Then measure Vas 10 k and subtract. I1V = (1000) (los) (10 k). Gain In testing low-gain ac amplifiers, such as audio amplifiers, the normal procedure is to apply a small, known input and measure the large ac output. When testing high-gain dc amplifiers, such as op amps, the reverse procedure is used. The test loop is used to vary the output over a large, known range, and the dc change at the input is measured. A normal test for a OUT using ±15 V supplies is to measure the average dc gain over the output range -10 V to +10 V. Since gain is always specified with a load resistor, pin 6 should be grounded. Set Vc = -10 V; the null amplifier brings the OUT output to -1 0 V. Measure VN. Then set Vc to +1 OV; the null amplifier brings the OUT output to +10 V. Measure the change in VN. For example, if the gain is 100,000 and the total output change is 20 V (-1 OV to +10 V), the loop output change should be (1000) (20/100,000) = 200 mV. Note that the OUT is tested at the inverting input; therefore, if the output goes from -10 V to +10 V (a positive change), a small negative change should be seen at the input. As mentioned previously, gain is always tested with an external load resistor, often 2 k O. Since the op amp output stage must provide current to this resistor, the output stage must dissipate power. If the op amp is an IC, a thermal signal will then travel across the chip tothe input stage, where it mixes with the true, circuit-related input signal. Depending on the relative sizes of the circuit and thermal components, this may cause peculiar readings to occur during a gain test. If the thermal component partially cancels the circuit component, the change in VN will be smallerthan normal, indicating a larger gain. If the two components cancel, no change in VN will be read, indicating an effective gain of infinity. If the thermal component is larger than the circuit component, a wrong-polarity change in VN will occur, indicating a "negative gain." There is no general agreement in industry about the significance or seriousness of "negative gain." Devices that show negative gain in a test circuit usually behave normally in customer applications. Nevertheless, a device exhibiting a large negative gain may bequestionable. Fairchild's policy is to allow a wrong-polarity reading of 20-100% of the right-polarity limit.1 To check the linearity of the op amp transfer function, gain is sometimes tested over two different parts of the output range. That is, instead of performing a single test as the output swings from -10 V to +10 V, gain is tested as the output swings from 0 Vto +10 V, and then from OV to -10 V. Such testing will identify units that have very high gain over part of the output range and very low gain over the other part of the range. Common Mode Rejection Ratio CMRR The definition of CMRR might imply that testing involves holding Vc at zero and opening K1, tying pins 1 and 2 together to a voltage VCM, then varying VCM and reading the change in VN at the loop output. However, this method does not provide accurate results. Because of the 50 0/50 k 0 feedback divider, only 99.9% of VCM appears at the inverting input of the OUT. Since there is no divider at the non-inverting input, 100% of VCM appears there, causing a 0.1 % differential signal injected by the unbalanced test circuit. This error, only 60 dB below VCM, is disastrous, for devices typically have 80 to 100 dB CMRR. 1 For a more complete discussion of thermal effects, see Solomon, J. E. "The Monolithic Op Amp: A Tutorial Study," IEEE Journal of Solid State Circuits, Vol. SC-9, NO.6 (Dec, 1974). 8-9 • The obvious solution is to add another 50 kfl resistor from the non-inverting input to ground, which should attenuate VCM equally at both inputs to eliminate the differential error signal. The problem now becomes one of accurately matching the dividers. Advanced analysis of the four resistors as a bridge circuit indicates that, with careful matching, quite high CMRRs can be measured. An easier solution eliminates the need for precisely matched pairs of precision resistors. Instead of holding V+, V- and Vc constant and moving pins 1 and 2, perform the inverse procedure. For example, to apply a VCM of +10 V, leave K1 closed and change V+from +15 V to +5 V. Then change V- from -15 V to -25 V and change VC from 0 V to -10 V. From the poi nt of view of the OUT, this is equivalent to the original method. The total supply voltage is still 30 V, the OUT output is still held at the midpoint between the supplies, and both inputs are 10 V above that midpoint, which makes VCM = +10 V. However, from the point of view of the bridge, no VCM has been applied, pins 1 and 2 are at ground as always, and VN is the routine differential input voltage of the OUT. This method permits accurate measurement of any CMRR without matched resistors. There is no need for a 50 k fl resistor at the non-inverting input, since it would only shunt the 50 fl resistor on all tests. In summary, to measure CMRR, raise V+, V- and Vc to VCM volts above nominal, and measure VN. Then lower V+, V- and Vc to VCM volts below nominal and measure the change in VN. Sometimes CMRR is tested with 10 k fl source impedances (K2 and K3 open). In this case, any changes in los contribute to the total change in VN. A test with 10 k sources is not necessarily a more rigid test than with 50 fl; the change in VN may be larger or smaller, depending on how the Vas ahd los components interact. Power Supply Rejection Ratio PSRR The PSRR test is very direct and simple, with none of the problems that occur with CMRR testing. Hold Vc at zero, set both supplies to minimum values, and measure VN. Then set both supplies to maximum values and measure the change in VN. PSRR may also be tested with 10 kfl source impedance. Output Voltage Swings Measure at pin 5, saturating the OUT output by applying a large differential input voltage. There are three possible ways to saturate the OUT. The most direct way is to open K1 and K4 and apply the voltage directly across pins 1 and 2. Anotherway is to open K4 only and apply a voltage at pin 9. This voltage is divided 1000:1, so 20 V at pin 9 will apply 20 mV to the OUT input, sufficient drive for almost any op amp. The third way is similar to the second except that all relays are closed and the null amplifier applies the 20 V to pin 9. Set Vc to 15 V; the null amplifier will immediately try to bring the OUT output to 15 V, but the OUT cannot swing all the way to V+. The null amplifier output eventually saturates around 18 V and the OUT output also saturates as desired. Since output swings are always specified with a load resistor, pin 6 should be grounded. Output Short-Circuit Current Isc This test involves the same procedure as in measuring voltage swing, except that instead of using load resistor on pin 6, connect a current meter from pin 5 to ground or to the worst-case opposite supply. When the OUT attempts to swing in response to the input, the current meter shorts the output and measures Isc. 8-10 Supply Current Is Specifications usually indicate the OUT output should be zero, so set Vc to 0 and measure the current into pin 3. The state of the output has little effect on the Is reading of recent op amps, biased internally by current sources. However, in earlier devices like the MA709, Is is heavily dependent on the output state, even with nothing connected to the output. Offset Adjust VaS(adj) The OUT of Figure 8-1 has no offset adjust pins. Devices with offset adjust pins have relays to connect them alternately, usually to V-. Vc should be set to zero and a measurement taken at the loop output. At the least, the measurement should guarantee that the adjust range is sufficient to eliminate the Vas of the particular device being tested. A more rigid test might require enough range to eliminate the worst possible Vas, even though the OUT has a lower Vas. Common-Mode Stress Open K1 and K4. Apply VCM directly to pins 1 and 2. Differential Stress (lL) Open K1 and K4. Apply voltage directly across pins 1 and 2. Measure leakage at more-negative input. Supply Stress Perform supply current test at specified supplies. Cap Stress Test like output voltage swings, using specified supplies and swinging output to specified state. Common Variations of the Basic Test Loop The test loop is never used in the exact simplified form shown in Figure 8-1. Each op amp has quirks that require some variations on the basic theme. The following are some common variations . A C Compensation Capacitors While ac stabilization of the test loop is a complex topic, in general, each type of op amp has its own frequency response which mayor may not be externally adjustable. When preparing a test loop for a particular device, it is necessary to use the frequency-response curves of the DUT and the null amplifier to determine which stabilization scheme to use and to predict which capacitors will be required. Loop Output Noise Filter A small RC noise filter with time constant around 1 ms is usually attached to the loop output and all measurements taken through this filter. The waveforms at the filtered output often prove to be much cleaner than the unfiltered version. Source Resistors Most general-purpose op amps are tested with 10 kn source resistors. However, op amps with very low input currents may use 50 k, 100 k, 1 M, or even 10 M resistors for improved resolution. Test Loop Gain The most common form of the test loop, with 50 k!1/50 n resistor combination, gives a gain of 1000. For certain tests, usually Vas (adj), the 50 kn is split into a 45 kn and a 5 kn resistor, and the 45 kn resistor can be shorted with a relay to reduce the gain to 100. For devices with very low Vas, a feedback resistor of 500 kn can be used to give a gain of 10,000. 8-11 • MOSFETs in Place of K2 and K3 Some premium devices, such as the MA108, MA156, and MA725, have extremely low IBIAS and/or Vas. When testing these units, if reed relays are used for K2 and K3, difficulty may arise with the low-level properties of the reeds. Typical problems include thermally-generated EMFs, leakage current, and flexing of the reeds after closing. MOSFETs are usually a good substitute when reeds prove unsatisfactory. The high contact resistance of FETs (1000) is not detrimental if the current passing through them is small, i.e. 1 nA. Benefits include clean switching, no thermal offsets, no leakage, no bounce, no microphonics, and no mechanical wear. CONCLUSION Because it works so well on the bench or in conjunction with high-speed automatic testers, the basic op amp test loop circuit is used universally by manufacturers and others who must test operational amplifiers. The test loop is so accurate and easy to use that it benefits even those who test only a few units on the bench. 8-12 OP AMP PARAMETERS AND APPLICATIONS The selection of an operational amplifier for a given application requires a good understanding of op amp specifications and parameters, and their significance in applications. INPUT BIAS AND INPUT OFFSET CURRENT Input bias current affects almost all applications of operational amplifiers, especially in high impedance circuits. Although op amp inputs ideally draw no current, for op amps to operate properly, it is necessary for some dc current (typically from pA to IlAI to flow into each input (Figure 8-3). The input stage of the op amp is ordinarily a differential amplifier with a dc current sourcethat sinks current from the emitters (Figure 8-41. The op amp inputs are the base currents for the differential amplifier transistors. Because of the differential stage design, the two base currents vary with the input voltage, but the sum remains constant. The parameter usually tested is the total input current, Is (Total) = IS1 + IS2. The input bias current ISlAS specified on the data sheets, is the average of the two input currents (Figure 8-3), and is primarily a function of the large signal current gain hfe of the input stage. Since, in reality, the two input currents cannot be made exactly equal, input offset current los specifies the difference between these two currents (Figure 8-3). los is usually caused by mismatch of the differential amplifier, which results in different input currents for the two bases. In an op amp with a simple input stage, los is dependent on the beta match of the input transistors. In more complicated cases, los also depends on matching the current sources of the input transistors. Effects of Input Bias Current on Applications The output offset voltage (Va 1 due to bias current is the same for both inverting and non-inverting amplifiers (Figure 8-5). Equation 1 shows the formula for Va as a function of bias current (also see Figure 8-6). (1) Va = IS1 R2 -IS2 R3 (1 + :~ ) For inverting and non-inverting operation, R3 is selected to minimize output offset without affecting gain. When R3 equals R2 in parallel with R1, R3 = R1 R2 R1 +R2 Substituting for R3 for Equation 1 Va = (lS1 - IS2) (R21 Va = los R2 When R3 = 0 Va = ISlAS R2 11911 + I 1921 2 Fig. 8-3 Fig. 8-4 Input Bias Current 8-13 Differential Amplifier • INVERTING I IB2 R3 - 1B l - -R NON·INVERTING R2 R2 R2 Rl V . - - - - -.......,---1 Vin o-.J\I\I\r--e--t t >--+--O Vo IB2 R3 R1 R3 R3 Rl Fig. 8-5 Amplifier Configurations Fig. 8-6 Output Offset Voltage R2 SAMPLE AND HOLD CONTROL 0----. >---oVout Vin R3 Fig.8-7 AC Amplifier Fig. 8-8 Sample and Hold NOTES: • For the inverting configuration, it is usually simple to make R3 equal to R1 in parallel with R2, which reduces the output offset voltage to only los R2. However, if the application does not require very low output offset voltage, or if the input bias current IBIAS is very low, make R3 = 0 and the output offset is simply IBIAS R2. Therefore, it is wise first to calculate the output offset voltage produced by the op amp assuming R3 = 0, (I BIAS R2). If this offset is low enough for the application, the use of one resistor is saved. Ifthe offset is too high, add R3 to the circuit and then calculate offset (los R2) to see if it meets the specification. • In the non-inverting configuration, R3 is part of the signal source impedance, and, in some cases, that source impedance is not well known, which complicates the minimizing of the output offset. If the source impedance is known to be very low, then a known series resistor can be added to make R3 = R1/R2. The limiting factor for increasing the value of this resistor is the op amp input impedance. If a high value of resistor is used, say 1 MIl, and the amplifier input impedance is around 9 MIl in the frequency range of interest, the result is a 10% drop in signal gain. • Never forget the need for a dc current path to the op amp inputs. If the op amp is used in an ac amplifier as shown in Figure 8-7, notice that R3 is required to provide a dc current path to the non-inverting input. Without R3, the circuit just does not work! R3 is also necessary if the source cannot supply the bias current. • A fixed offset is not usually much of a problem and extra input circuitry may be added to cancel it. It is usually the drift of the offset with temperature, time, etc., which causes problems. Therefore, once an op amp with acceptable output offset voltage is found, it is necessary to investigate the offset change as a function of temperature, supply voltage, time, etc., and assure that it will not cause problems in a particular application. Most data sheets give input bias current and offset current as functions of temperature, supply voltage, and time, and also provide temperature dependence curves. 8-14 R >----oVOUT Fig. 8-9 Fig. 8-10 Staircase Generator Current-to-Voltage Conversion Other Applications Input bias current comes into effect in circuits where op amps act as buffers or amplifiers with a charged capacitor as a source. Because of input bias current, the charge across the capacitor starts draining even if the op amp input impedance is very high. Two examples are shown in Figures 8-8 and 8-9. The sample and hold circuit shown in Figure 8-8 consists of a voltage Vin which charges a holding capacitor C. When the electronic switch opens, the capacitor is expected to hold the voltage Vin and the op amp simply acts as a buffer. The output of the op amp, therefore, should hold the value of Vin at the level it was when the switch opened for as long as the switch remains open. Because of bias current and other leakage, however, the held voltage gradually changes. This voltage changes at the following rate: IlV Ilt = (2) C where I is input bias current plus the capacitor leakage. Equation 2 determines how long a held voltage remains within specified accuracy of its original value. In this sample and hold application, the effect of input bias current shows in the holding time. For example, if the capacitor C = 1 ,uF, and the maximum permissible change of voltage IlV is 10 mV, using a ,uA741 C (IBIAS =0.5 ,uA) and neglecting other leakages, the holding time is expressed as follows: CIlV 1 X 10-6 X 10 X 10-3 Ilt = - - = = 20 ms I 0.5 X 10-6 With a ,uAF771 A (IBIAS = 100 pAl, a better holding time results. CIlV Ilt = - - = I 10-6 X 10 X 10-3 100 X 10-12 = 100 s Low input bias current is not the only criterion for sample and hold buffers; offset voltage drift is another important parameter. Equation 2 also applies in circuits where the voltage held is across a capacitor in a feedback loop (Figure 8-9). Another application where input bias current plays a role is in current-to-voltage conversion (Figure 8-10). 8-15 • INPUT OFFSET VOLTAGE Ideally, when the input voltage of an op amp is zero, the output voltage should be zero. However, even with no signal applied across the inputs of the op amp, a dc voltage difference exists between the inputs, which is amplified, causing the output to be at a non-zero value. Input offset voltage Vas is the input voltage required to zero the output. This applied voltage is the same magnitude as the original offset from zero, but of the opposite polarity. Essentially every mismatch between the signal flow of the inverting inputs and the non-inverting input contributes to input offset voltage. The major contributor, however, is the VSE mismatch of the differential input stage. Vas is generally in the 1 to 10 mV range for non-FET input op amps. Vas is undesirable in a direct-coupled circuit, because it is usually amplified by the circuit, causing a large dc error which is also temperature-dependent. Effects of Offset Voltage on Applications For inverting and non-inverting amplifier applications (Figure 8-5), the output voltage has a dc output level due to Vas. Output offset voltage is given by Va = Vas (1 + :~ ) (3) ?nd derived from the followi ng (see Figure 8-11): Input bias current = 0 11 = Vas R1 Va = 12 R2 + 11 R1 Va = 11 (R2 + R1) Vas R2- ) Va = - (R2+R1)=Vas (1 + R1 R1 The output offset voltage given by Equation 3 is caused only by the input offset voltage Vas. The output offset voltage caused by the input bias and offset current was described previously (Equation 1 ). The total output offset voltage is thus given by the sum of the two offsets. Total dc output offset, (4) For R3 = R1 R2 R1 + R2 Va= Vas (1 + :~) + las R2 where las is the input offset current. For R3 = 0 Va= Vas (1 + :~) + ISlAS R2 8-16 R2 AANDBARE DESIGNATED DFFSET NULL '>----0 Va =b - A+ B t V+ OR VDEPENDING ON THE DEVICE Figure 8-11 Figure 8-12 Here are some examples that will give an idea of the range of values discussed. For a gain of 10 in an inverting configuration, R2 = 100 k!l, R1 = 10 kfl, R3 = 9 kfl Using J.LA741C, Vas (max) = 6 mV las(max) = 200 nA Output Offset = 86 mV max Using J.LA714E, VaS(max) = .075J.LV laS(max) = 3.8 nA Output Offset = .38 mV Using J.LAF771A, VaS(max) = 2.0 mV laS(max) = 50 pA Output Offset = 22 mV The most objectionable factor of the input offset voltage and current is that they vary with temperature. Most op amp data sheets give input offset voltage values and temperature dependence curves. Offset Voltage Nulling In some op amps, offset voltage may be nulled with only an external potentiometer to two device leads (Figure 8-12). Usually what is happening internally is that oneside of the input stage differential amplifier gets more or less current than the other side and thus causes a VSE difference to null the initial VSE mismatch. Other Applications If Vas is considered as a small dc voltage source connected to an ideal op amp (Figure 8-13), its effect can be analyzed in almost every application. From Figure 8-13 it is apparent that, in comparator applications, the output does not change state until the inverting input is at least a Vas different from the non-inverting input. That is, if a zero crossing detector is being designed and the noninverting input is connected to ground, the output would change state when the input reaches Vas volts instead of zero volts. High-Impedance Composite Input Offset Voltage Common mode and differential input voltages can be calculated for any source resistances, equal or unequal. In the case of equal source resistors, at low impedances, Vas dominates and at high 8-17 • impedances, los dominates. At some intermediate resistance, Vos and los effects are about equal and may add or cancel, depending on polarities. Ifthey add, the composite offset will be larger than Vos alone, maybe even larger than the data sheet limit for Vos. To guard against this possibility, a high-impedance composite input offset voltage is tested and guaranteed at some specified source resistance, usually 10k. Thus, it is common practice on data sheets to say that Vos is guaranteed for all source resistances:s 10 k. Sometimes written Vos 10 k, this is not an independent op amp parameter, but a calculated number determined by the interaction ofthetrue independent parameters Vos and los with external source resistors. OPEN LOOP VOLTAGE GAIN (AS A FUNCTION OF FREQUENCY) As with any amplifier, the gain of an op amp is defined as the ratio of the change in output voltage to the change in input voltage causing it. AVOL is used to indicate open-loop voltage gain, the gain of the amplifier without feedback. See Figure 8-14. A _IVOUTI VOL - IVINI (51 Effects of Open Loop Voltage Gain on Applications In a typical inverting application (Figure 8-15), VOUT VIN R2 R1 (6) This is true only if the op amp has infinite or very high open loop gain. However, in practical op amps, the AVOL decreases with frequency until it becomes even less than one. The question is, to what frequency does Equation 6 hold true for a particular op amp? If the derivation from Equation 6 R2 VOUT = - VIN R1 is assumed, an error arises due to. neglecting AVOL given by the equation: Closed loop gain error = 100 --..:...:..=---AVOL R1 1 + (7) ---=";;"='--- R1 + R2 VIN~ + _ - VOUT VOUT AVOL=-vmI Figure 8-14 Figure 8-13 R2 R2 >-·-OVOUT NON-INVERTING INVERTING Figure 8-15 8-18 It is important to take Equation 7 into consideration when high accuracy de operation is required and when considering frequency response. For instance, if the op amp is a J.tA741 , connected in the inverting configuration (Figure 8-15) with R2/R1 == 100, AVOL == 104 at 100 Hz as determined from the curve of Figure 8-16. From Equation 7, the error in assuming VourlVlN == 100 at 100 Hz is given by: _ _--l.1.l:!.00lo!.-___ == 1% 1 + 104 X 1 101 At 10 kHz, the AVOL of the J.tA741 is equal to 100, and the 1% error from Equation 7 becomes substantial. 100 -~-=---- 1+~ == 50% ! 101 Note that when the open loop voltage gain is equal to the reciprocal of the feedback ratio (R2 + R1 )/R1, the amplifier gain drops by 6. dB. Choosing the Right Op Amp AVOL Use the following simple rule. For a dc closed loop gain y and a decrease in gain of no more than x per cent at a given maximum signal frequency f max. an op amp is needed with an AVOL at f max given by: AVOL2 100(1 + y) -(y+1) (8) x For example, to achieve a dc closed loop gain of 100 with a decrease in gain of only 10% at 10 kHz, an operational amplifier is required with an AVOL at 10kHz of at least 100 (1 + 100) _ 100 + 1 == 911 10 One possibility is the J.tA725 which has an AVOL of 1000 at 10 kHz with the proper compensation. The graph in Figure 8-17 is also helpful in choosing the right op amp and can be used for inverting or non-inverting configurations. The horizontal axis is the reciprocal of the feedback ratio 106 ~ 105 z « C!l 104 UJ C!l a.. 0 0 102 ..J Z UJ a.. 10 ~l741 "'" III "C I z « C!l UJ ~ C!l 10 100 lK / / 70 ~ a.. > 40 ..J 30 "" 0 0 a.. 0 10K FREQUENCY - lOOK 1M ~7 20 ~ o 10 ( Hz Figure 8·16 ~ 20 30 40 50 60 1 ) FEEDBACK RATIO 70 80 90 100 dB R2 + Rl -R-l- Figure 8-17 8-19 10dB_ / :/ ~ ~ lL L U V' 10 10M /-: I ~/ / / Z UJ I 6dB- / / V; / 60 50 -1 4B -3 dB / / 80 0 1\ 1 / 90 Vs =±15V_ TA = 25°C 0 10-1 100 _I - (R2 + R1 )/R1 in dB. Thevertical axis is the minimum Avouequired to be within 1, 3, 60r 10 dB ofthe dc or ideal closed loop gain, VourlVlN. For example, if R2 = 9 kfl and R1 = 1 kfl, (R2 + R1 )/R1 = 20 dB. At the frequency where the AVOL of the op amp is 28 dB, the closed loop gain will be 3 dB down from its dc value R2/R1. Therefore, to insure that amplifier gain does not fall off by more than 3 dB at f max, choose an op amp with AVOL > 28 dB at f max. Open loop voltage gain is not the only parameter that affects high frequency operation, however. Slew rate must also be considered. SLEW RATE Slew rate is the maximum rate of change of output voltage with respect to time, usually specified in volts per microsecond. For example, a 0.5 V/p.s slew rate means that the output rises or falls no faster than 0.5 V every microsecond. Slew rate is also sometimes specified indirectly in data sheets as output voltage swing as a function of frequency or as voltage follower large-signal pulse response. Causes of Slew Rate Slew rate is a large-signal phenomenon caused by current limiting and saturation of an op amp internal stage. That limited current is the maximum current available to charge the compensation capacitance network, the capacitor connected to high-impedance nodes in the circuit to adjust small-signal frequency response. The voltage across the capacitor rises at a rate, ;).V I ;)'t C (9) This capacitor charging rate is reflected at the output and causes slew rate limiting. Slew rate limiting therefore occurs with large input signals that saturate the internal stages. Effect of Slew Rate on Applications In a simple application using a p.A741 as a comparator (Figure 8-18), the output will go to about -14 V and then to +14 Veach time the input signal crosses zero volts. The p.A741 has a typical slew rate of 0.7 VI p's, determined under electrical specifications or calculated from the slope of the output curve in Figure 8-19. Therefore, the p.A741 output will go to +14 V from -14 V in 28 V = 40 p's 0.7 VI P.s If the full 28 Voutput swing is desired, the input signal must have at least 40 P.s between zero crossings. That is, the maximum input signal frequency should be 1/(2 x 40 p.S) or 12.5 kHz assuming 50% duty cycle. Even at that frequency, the output is triangular instead of square wave. For higher frequencies or a more square wave output, an op amp with a faster slew rate is needed. As another example of the effect of slew rate, consider the simple amplifier with a gain of two in Figure 8-20. Again, the p.A741 is used. Its open loop voltage gain as a function of frequency curve (Figure 8-16) indicates that the amplifier circuit will operate with a gain of two up to about 80 kHz. What is the maximum input signal voltage that may be used up to 80 kHz? If the output is to be an undistorted sine wave, A sin wt, then the rate of change of the output is ~ A sin ;).t wt = Aw cos wt 8-20 (10) VOUT +14 V OYr.~---+~-r----~ -14 V I 1-40 ~s Figure 8-18 10 Vc TA 8 > 6 I 4 w (!j 10 k 2 ~ 0 ~ I- => -2 I- -4 I Jf-OUTPUT n. INPUT => 0 -6 =+15 V_ =25°C I- I' I I \ '1 L 5k \ >-~-<>VOUT " -8 -10 o 10 20 30 40 50 60 70 80 90 TIME - ~s Figure 8-19 Figure 8-20 and the maximum rate of change of the output is Aw. The minimum slew rate of the operational amplifier, therefore, must be equal to Aw. Thus, with w = 2rr(80 x 103 ) = 503000 and the slew rate of the MA741 typically 0.7 V/MS, the maximum output swing A of the sine wave without distortion is slew rate w 0.7 V/J+s = 1.4 Vpk 503000 or 2.8 Vpk-pk The maximum input signal should, therefore, be less than 2.8/2Vpk-pk. The maximum output swing can also be easily read from the output voltage swing as a function of frequency curve on the data sheet (Figure 8-21). From this curve, the maximum output swing without distortion can be determined for different frequencies. Summary In applications where square wave outputs (comparators, oscillators, limiters, etc.) are expected, it is important to remember that the op amp output takes some time to change from one value to another. That time, which usually limits the maximum frequency of operation, is determined by the change of output voltage divided by the slew rate. In applications where the output should be free of distortion, the slew rate determi nes the maximum frequency of operation for a desired output swing. The required slew rate can be determined by a simple formula. For a desired undistorted output voltage swing Vpk at a maximum frequency f max , an op amp is needed with a slew rate given by slew rate> 2rr f max V pk 8-21 (11 ) • 40 > I 36 (!) 32 z ~ 28 :::> 24 :::> 20 ~ 16 I0.. I- 0 « w 0.. 6>;~ « w 0.. Vs = ±15 V TA = 25°C RL = 10 kn "" ~ >0I 1\ \ W ~ z 12 iii 8 4 o 100 1k 10 k FREQUENCY - "...... 100 k 1M Hz SLEW RATE - Figure 8-21 V/~s Figure 8-22 R2 INVERTING INPUT NON-INVERTING INPUT (NON-INVERTING) Figure 8-24 Figure 8-23 Figure 8-22 gives the slew rate req ui red for different output swi ngs at different freq uencies. Another easy way to choose the right op amp is to check the data sheet curves of output voltage swing as a function of frequency (Figure 8-21). However, these curves are typical and slew rate varies as a function of supply voltage. Slew rates at different supply voltages are usually shown on the data sheet. In some applications such as DIA or AID converters, slew rate is not the only criterion for fast response. The settling time is another parameter to consider. High slew rate op amps sometimes have associated overshoot and ringing which may cause the output to take longerto reach asteady state than with slower slew rate op amps. INPUT IMPEDANCE The major factors in op amp input impedance are input resistance and input capacitance. Input resistance, or differential input resistance, usually specified in the data sheets, is the small signal resistance measured between the inverting and non-inverting inputs of the op amp. Input capacitance is the capacitance seen between the same two inputs (see Figure 8-23). Effects of Input Impedance on Applications The input impedance of an amplifier circuit with feedback is not only dependent on theop amp, but also on the circuit configuration. 8-22 Non-Inverting Configuration (Figure 8-24) Input impedance of an amplifier in the non-inverting configuration is expressed as follows: ZIN = Z AVOLZ + 1 + or Z IN R2 R1 =z(+ 1+- ( 121 AVOL) R2 R1 where AVOL (wi is the open loop gain of the op amp and Z is the op amp input impedance. (See paragraph on Open Loop Voltage Gain as a Function of Frequency. I As seen in Equation 12, the amplifier input impedance is equal to at least the op amp impedance and is usually much higher, due to high open loop gain. For an op amp to operate properly, it is necessary to supply a certain dc current at the inputs. That current is given in the data sheets as input bias current and ranges in value from pA to!J.A depending on the op amp. In the non-inverting configuration of Figure 8-24, if VIN has a series resistance of 1 Mfl and the input bias current of the op amp is 0.5 !J.A, there is a dc drop across the 1 Mil series resistance of 0.5!J.A X 1 Mfl = 0.5 V. This is independent of the signal (VIN) amplitude. IfVIN is 1 V, there is 1 - 0.5 = 0.5 V at the non-inverting input. However, it is erroneous to assume that the op amp input impedance is 1 Mfl just because there is a straight voltage division. The drop is caused by input bias current and not by input impedance. If an ac signal is riding on the 1 V dcvalue of VIN, the ac amplitude is not halved and only a 0.5 V offset is there constantly due to bias current. The signal amplitude is affected by the 1 Mfl series resistance and the op amp input impedance. However, dc characteristics are usually more important to consider than input impedance. Inverting Configuration (Figure 8-26) Input impedance of an amplifier in the inverting configuration is -,--R=2~(Z~+~R.;.:..I Z IN= R 1 +- (131 AVOL Z ZIN "" R1 10M ~A741 100 R2 RIN c: I w u LA. Co f"1'" 1M 10 Z I w U Z vlN U ZIN ~ ~ en Ui w <{ 0.. <{ CIN a: 1-100 k 1 ~ - Rl RIN CIN u + I~ 0.. 0.. ~ ~ R 10k 100 1k 10 k FREQUENCY - lOOk -= 0.1 1M (INVERTING CONFIGURATION) Hz Figure 8-25 Figure 8-26 8-23 • In this configuration, the effect of the op amp input impedance is minimal. The input impedance is at least R1; at high frequencies, as AVOL decreases, the input impedance increases and the value of R2 (Z + R)/AvOL Z becomes comparable to that of R1. For all practical applications, however, it is safe to assume that the input impedance is just R1. Again, remember that a constant dc bias current is required at the inverting input to operate the op amp. The dc bias current limits the increase in value of R1. The higher the value of R1, the greater the magnitude of the dc offset voltage occurring at the output. Another interesting point concerning Equation 13 is that the effect of increased input impedance at higher frequencies (AVOL decreases in the denominator) is very similar to an inductance effect, usually referred to as Miller inductance. See Fairchild Application Note 321, "Operational Amplifiers as Inductors," for more detail. ') 8-24 USE OF OP AMP PARAMETERS IN DESIGN STEPS The most important operational amplifier parameters have been presented and defined. These parameters are available on the data sheets for individual op amps and are useful in circuit design as well as determining which op amp to use for a specific application. Data sheet information can be used to determine circuit stability and, through a few simple steps, op amp selection for inverting and non-inverting configurations. CIRCUIT STABILITY Circuit stability can easily be determined by following one simple rule and referring to the phase response and open loop voltage gain curves on the op amp data sheets. One consideration in determining circuit stability is the open loop voltage gain AVOL (W) of the op amp, the ratio of the change in output voltage to the change in input voltage. Open loop voltage gain versus frequency is readily available from the data sheets (Figure 8-16). It is next necessary to consider the transfer functions for the inverting and non-inverting configurations shown in Figures 8-27 and 8-28. They can be expressed by the following equations: ij Inverting VOUT y;;-= ( Z2 ~ (-AVOL (w) Z2 + Z1) 1 +(AVOL (W)) 1 + Z2/Z1 (14) Non-inverting VOUT v;:;- = ( ~ ( 15) AVOL (w) 1 + (AVOL (w) :) 1 +Z2/Z1: From these transfer functions, as well as from feedback theory, the stability of the inverting and non-inverting configurations can be determined by following this simple rule. The circuits will be stable if the magnitude of the term AVOL 1 + (w) Z2 Z1 Z2 Z2 Zl >-~-oVOUT ~---oVOUT Figure 8-27 Figure 8-28 8-25 • i is less than unity when its phase angle reaches 1800 • Stated another way, the phase angle of the above term must be less than 1800 when its magnitude reaches unity. This rule is illustrated in the following example. Amplifier and Voltage Follower Stability In amplifiers where Z2 and Z1 are resistive, the circuit stability depends mainly on AVOL (W) because there is no phase shift in 1 + (Z2/Z1). For example, in the circuit of Figure 8-29, for R2 = R1, 1 + ~ = 2 L 00 Z1 When AVOL (w) = 2, AVOL (w) = 1 1 + Z2 Z1 From the open loop voltage gain curve (Figure 8-30), it is apparent that Avo L (w) = 2 at about 500 kHz with C c= 30 pF. In Figure 8-31, note that the phase shift of the Avo L (w) is close to 180 0 at 5 MHz; therefore the circuit is potentially unstable or oscillatory. The phase is close to 110 0 at 500 kHz. Therefore the compensation, Cc= 30 pF, wouldbe used instead of Cc= 3 pF since with Cc= 3 pF, AVOL (W) 1 (5 MHz) = 1 L 1800 (unstable) +1 and with Cc = 30 pF, AVOL (W) 1 (500 kHz) = 1 L 110 0 (stable) +1 Summary To determine stability for a resistive feedback circuit, the frequency at which AVOL (W) is equal to 1 + (R2/R1) is found on the open loop voltage gain curve. At that frequency, the ratio AVOL (w) = 1 1 +-Z2 Z1 120 ~A777 In 100 ...... ...... "0 R2 z 80 UJ (.!) VIN 60 ~ ...J VOUT 0 40 0 20 > co R1 R2 Rl + R2 ...J '" ........... ~ (.!) Rl ..... r-- RL=2kH/ Cc = 30 pF Vs = ±15 v TA=+25°C RS = 50n ~ >-....... o -=- Cc = 3 pF '" "'-1\ '. ......... .... '..•.. zUJ c- f-~L = 2 kn 0 -20 1 10 100 lk 10k FREQUENCY - Figure 8-29 Figure 8-30 8-26 lOOk Hz .... \ 1M 10M o w ........... '. W II: (!) ". -30 w RL = 2 k \2 YCC=3 PF \ o l -60 en o e; -90 II: "0 Z VS=±15V TA = 25°C RL ~10 k\2 100 80 - (!) w (!) « >- "r\ RL=2k\2 Cc = 30 pF w tIl « /f········. . ~.. z ~A777 ~A777 VS=±15V TA = +25°C RS = 5011 lli -120 « I 0 > Q. 0 0 -' \. Q. @; -150 o Cc = 1 pF 60 -' 0 Cc 40 2 pF CC=3 I 20 en 0 15 -180 -' u Q. PF~ I J 0 Cc = 30 pF o -210 1 10 100 1k 10 k FREQUENCY - 100 k 1M -20 10 M ~ C~ = 5 pt ---.J' ~"'" w -' ~ J I 1 10 100 lk 10k FREQUENCY - Hz " lOOk Hz 1M 10M Figure 8-32 Figure 8-31 The phase shift at that frequency is then read on the op amp phase response curve, If the phase shift is less than 180 0 , the configuration is stable; if it is more than 1800 , the configu ration is unstable. Often the results of these computations are given in the data sheet as frequency response for various closed loop gains using recommended compensation networks (Figure 8-32). When Z2/Z1 is non-resistive as in integrators and differentiators, the same rule holds but the phase response of both AVOL (W) and 1 + (Z2/Z1) must be considered. For more information on stability rules for integrators and differentiators, see Fairchild Application Note 289, "Applications of the /-LA741 Operational Amplifier." DESIGN STEPS FOR INVERTING AMPLIFIERS The first step in op amp selection is to establish circuit specifications necessary for the application . For the purpose of discussion, the following specs are assumed: Gain = A =-9 Minimum 3 dB down frequency fc = 10 kHz Maximum input signal amplitude V1 = 2 Vpk-pk Maximum dc output offset voltage Vo (max) = ± 25 mV Input resistance RIN = 10 kfl DC drift from 0 to 70 0 ~ Vo (max) :5: 15 mV Step 1: Circuit Configuration Using the inverting circuit of Figure 8-33, from Equation 6: VOUT = -R2 =A=-9' R2 = 9 VIN R1 ' R1 Step 2: Frequency Response The first op amp specification to check is the minimum open loop voltage gain, AVOL, needed to meet the amplifier frequency response requirement. This is easy to do by using the graph in Figure 8-17. Since R2/R1 = 9, then (R2 + R1 )/R1 = 10; locate the 10 ratio (20 dB) on the (R2 + R1 )/R1 axis. Go up to the 3 dB line and read, on the vertical axis, the minimum AVOL required, 28 dB. Therefore, 8-27 • R2 -" ~Co > I UJ ~ S UJ Z u; R3 SLEW RATE - Figure 8-33 V!~s Figure 8-34 to insure that amplifier gain does not fall off by more than 3 dB at fe, the op amp must have an open loop gain of: (First Requirement) AvaL 2': 28 dB at fe (10 kHz) Step 3: Output Swing Since the maximum input signal amplitude is 2 Vpk-pk, the maximum output swing will be 18 Vpk-pk. Therefore, an op amp is needed with a slew rate fast enough to give 18 Vpk-pk up to 10kHz. By checking Figure 8-34, it is apparent that an op amp is required with: (Second Requirement) slew rate 2': 0.8 V/J.l.S Step 4: Maximum DC Output Offset Voltage Va The dc output offset voltage, Va, for the circuit in Figure 8-33 is given by the following derivations from Equation 4: For R3 = 0 Va = (1 + :~) Vas + ISlAS R2 (16) For R3 =(R1 in parallel with R2) Va = (1 where Vas + :~)vas + R21as ( 17) = input offset voltage ISlAS = input bias current los = input offset current Unless the output offset voltage spec is very wide, it is usually more economical to add R3 than to use a very low input bias current op amp. For the example in this discussion, R3 = (R1 in parallel with R2). From Equation 16 it can be seen that the Va value will be low when R2 is small; therefore, the smallest possible value should be chosen for R2. 8-28 For the inverting configuration, the input resistance RIN is at least R1. Therefore, choose R1 so that R1 ;:::: RIN ;:::: 10k!1 From the above and Step 1, R2/R1 = 9 and R1 ;:::: 10 k!1; therefore when R1 is 10 k!l, R2 = 90 k!l, and R3 = 9 k!1. Equation 16 becomes Va = (1 + 9) Vas + (90 x 103) los Thus, an op amp is needed such that Vas and los give: (Third Requirement) 10 Vas + (90 x 103) los = VO(max):5 25 mV To simplify the search for an op amp to meet this requirement, look first for one that has the following specifications: Vas < los < Step 5: VO(max} 10 = 2.5 mV VO(max) = 270 nA 90 X 103 Drift Drift is given by: (Fourth Requirement) !:No = 10 A Vas + (90 x 103) Alos:5 AVO(max} (15 mY) where AVOS and Alas are the changes in input offset voltage and input offset current over the 0 to 70 0 temperature range. DESIGN STEPS FOR NON-INVERTING AMPLIFIERS The design steps for nori-inverting amplifiers are similar to those for inverting amplifiers. For this example, the following specifications are assumed: Gain=A=10 Minimum 3 dB down frequency fc = 10 kHz Maximum input signal amplitude V1 = 2 Vpk-pk Input resistance RIN = 5 M!l minimum Maximum dc output offset voltage VO(max) = ± 25 mV DC drift from 0 to 70 0 AVO(max):5 15 mV Step 1: Circuit Configuration For the non-inverting circuit of Figure 8-35, the equation for the gain is VOUT = R2 + R1 = A = 10 VIN R1 Step 2: Frequency Response As with inverting amplifier design, the first op amp specification to check is the minimum open loop voltage gain, AVOL, needed to meet the amplifier frequency response requirement. This is easy to do from the graph in Figure 8-17. Since (R2 + R1 }/R1 = 10, locate the 10 ratio (20 dB) on the (R2 + R1 }/R1 axis. Go up to the 3 dB line and read, on the vertical axis, the minimum AVOL required, 8-29 I II I R2 .>-.....-oVOUT Figure 8-35 120 ~A777 '" 190 ~ "0 I 80 z « (!l w 60 (!l « :; Vs = ±15 v TA = +25°C RS = son ~ '" "- RL=2kn~ CC=30pF g 40 D- o 0 20 .J Z W D- o 0 -20 1 10 100 lK 10K FREOUENCY - '" " lOOK Hz 1M 10M SLEW RATE - Figure 8-36 V/~s Figure 8-37 28 dB. Therefore, to insure that amplifier gain does not fall off by more than 3 dB at fe, the op amp must have an open loop gain of: (First Requirement) AVOL 2': 28 dB at fe (10 kHz) Examination of the open loop voltage gain versus frequency curves on various op amp data sheets will quickly determine which devices will meet this requirement. Figure 8-36 is a good example. An op amp with a gain bandwidth product of 250,000 (28 dB X 10kHz) will do the job, assuming the op amp has just one pole. Step 3: Output Swing Since the maximum input signal amplitude is 2 Vpk-pk, the maximum output swing will be 20 Vpk-pk. Therefore, an op amp is needed with a slew rate fast enough to give 20 Vpk-pk up·to 10kHz. From Figure 8-37, it is apparent that an op amp is required with: (Second Requirement) Step 4: slew rate 2': 0.85 V/p.s Input Resistance The input impedance for the non-inverting configuration is given by Equation 13: liN =l~ + AVOL 1+~ ) R1 8-30 where Z is the op amp input impedance and R3 « Z. The op amp for this design must satisfy the amplifier input impedance requirement of 5 M!1 up to at least 10kHz. In step 2, it was determined that the op amp must also have an AvaL of no less than 28 dB (or 25 VIV) at 10 kHz. Therefore, the required op amp must have an imput impedance (Z) at 10 kHz of at least the following: ZIN(min) =~= -~+AvaL(10kHZ)) 1+~ (Third Requirement) Z > \ Z ~ (1 + :~) 5 M!l 3.5 10 1.4 M!l From curves,such as Figure 8-25, of input resistance and input capacitance as a function of frequency, it is easy to select an op amp to meet the input impedance requirement. Step 5: Maximum DC Output Offset Voltage, Va The dc output offset voltage, Va, for the circuit in Figure 8-35 is again given by following Equa16 and 17. For R3 = 0 Va = ~ + :~) Vas + IBIAS R2 (16) For R3 =(R1 in parallel with R2) Va =(1 +:~) Vas + R21as ( 17) where Vas = input offset voltage I BIAS = input bias current las = input offset current Unless the output offset voltage spec is very wide, it is usually more economical to add R3 than to use a very low input bias current op amp. For the example in this discussion, R3 = R111 R2. From Equation 16, it can be seen that the Va value will be low when R2 is small; therefore the smallest possible value should be chosen for R2. The minimum limit to this value is dependent on the capability of the op amp to drive R2. Since op amp parameters usually specify a load resistor of 2 k!l or 10 k!l, R2 should be larger than 10 k!1. From steps 1 and 4: R1 + R2 = 10 and R3 « R1 Z 8-31 • i Therefore, choose R1 = 10 k!l; then R2 = 90 k!l and R3 = 9 k!l and Equation 18 becomes Vo = (1 + 9) Vos + (100 X 103) los Thus, an op amp is needed such that Vos and los give: (Fourth Requirement) 10 Vos + (100 X 103) los::; 25 mV ::; VO(max) To simplify the search for an op amp to meet this requirement, look first for one that has the following specifications: Vos < VO(max) 10 25 mV or < - - 10 VO(max) los < 100 X 103 or < 250 nA Step 6: Drift Drift is given by: (Fifth Requirement) !Wo = 11 I1Vos + (100 X 103) I110s::; I1VO(max)(15 mY) where 11 Vos and I110s are the changes in input offset voltage and input offset current over the 0 to 70° temperature range. FINAL HINTS IN CHOOSING THE RIGHT OP AMP It is usually best to start by finding the op amps that meetthefirst andsecond requirements; this will eliminate many. Then check the good ones against the remaining requirements starting with the lowest cost op amp. There are usually other specifications such as supply voltage and current, supply rejection, load current, common mode rejection, etc., that should be considered. However, the op amps that meet the above requirements will narrow down the field of choice to only a few, which can then be checked further to see if they meet the rest of the specifications. 8-32 ALPHA NUMERIC INDEX OF DEVICES SELECTION GUIDES AMPLIFIERS "·TIMER& . AND • .. " ~ " "~<,,, .".':: ", " . AL FUNCTIONS ORDER INFORMATION, DICE POLICY AND PACKAGE OUTLINES Order Information ............................................. ;...................... 9-3 Dice Policy ...................... ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-4 Package Outlines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9-6 9-2 ORDER INFORMATION Three basic units of information are contained in the code. J.lA741 T Device Type Package Type C Temperature Range DEVICE TYPE This group of alpha numeric characters defines the data sheet which specifies the device functional and electrical characteristics. PACKAGE TYPE One letter represents the basic package style. D F H J Dual In·line Package (Hermetic, Ceramic) Flatpak (Hermetic) Metal Can Package Metal Power Package (TO-66 Outline) K P R T U Metal Power Package (TO-3 Outline) Dual In·line Package (Molded) Mini DIP (Hermetic, Ceramic)' Mini DIP (Molded) Power Package (Molded, TO-220 Outline) *Refer to individual data sheets for details. For special requirements, contact factory. Different outlines exist within each package style to accommodate various die sizes and number of leads. Specific dimensions for each package can be found in the PACKAGE OUTLINES section of this catalog. TEMPERATURE RANGE Three basic temperature grades are in common use: C = Commercial O°C to +70175°C M = Military -55°C to +125°C -55°C to + 85°C v= Industrial -20° C to +85° C -40°C to +85°C Exact values and conditions are indicated on the individual data sheets. EXAMPLES 1. MA710FM This number code indicates a MA710 Voltage Comparator in a flatpak with military temperature rating capability. 2. MA725EHC This number code indicates a MA725 Instrumentation Operational Amplifier, electrical option E, in a metal can with a commercial temperature rating capability. DEVICE IDENTIFICATION/MARKING All Fairchild standard catalog linear circuits will be marked as the following example: I'A710DC F Date Code UNIOUE 38510 PROCESSING Additional processing to Fairchild Unique 38510 specifications is indicated by noting the appropriate requirements (08, OC) after the standard order code. Detailed ordering procedures are provided in the OEM price list. MATRIX VI PROGRAM Additional screening to the Fairchild Matrix VI program is indicated by the OM or OR suffix to the standard order code. OLD ORDER CODES Devices may continue to be purchased against old order codes (Example: U5R7723393; now 723HC). However, all products will be marked with new order codes unless otherwise specified. 9-3 • DICE POLICY GENERAL INFORMATION Fairchild linear integrated circuits, constructed using the Fairchild Planar· epitaxial process, are available in dice form incorporating these features: • • • • • Commercial or Military Selection (Military Limits Probed at 25°C) MIL-STD-883, Method 2010.2, Condition B Visual Gold Backing Glass Passivation Protective Packaging ELECTRICAL CHARACTERISTICS Each die electrically tested at 25°C to guarantee commercial dc parameters. Military grade dice are guardband tested at. 25°C dc to guarantee military temperature range operation. QUALITY ASSURANCE All Fairchild linear dice are 100% visually inspected and conform to MIL-STD-883, Method 2010.2, Condition B. In addition, quality control visually inspects the dice to a given sampling plan. Each die is gold backed to aid die attach. Most diec are available with glass passivation coating with only the bonding pads exposed. SHIPPING PACKAGES Linear dice are packaged in containers with an anti-static sheet inserted between the lid and the dice. This sheet guards against electrostatic damage during shipment and storage. The clear plastic carrier allows visual inspection of all the packaged dice. Each carrier is heat sealed within a transparent bag. A small piece of dehydrator paper with humidity indicating color is inserted in each bag prior to sealing. ORDER INFORMATION Each linear integrated circuit die has a unique order code which describes the device type, the dice designation and type of electrical tests performed. The dice designation is denoted by a "c" and wafer designation is denoted by a "W." Examples follow: Generic Type Dice Order Code Wafer Order Code J,lA741 C·· J,lA3045 75450B J,lA101A J,lA796C J,lA741CC J,lA3045CC 75450BCC J,lA101ACC J,lA796CC J,lA741WC J,lA3045WC 75450BWC J,lA101AWC J,lA796WC ··Some device types imply a military or commercial range by the generic type. Where this does not occur the suffix should be: XM Military Grade Die or XC Commercial Grade Die 9-4 SPECIAL CHIP PROCESSING If there is a need for additional testing or processing, Fairchild will negotiate with the customer to meet his requirements. PRODUCT AVAILABLE IN DICE FORM Please refer to FSC OEM Price List for product available in die form. ·Planar is a patented Fairchild process. 9-5 FAIRCHILD PACKAGE OUTLINES In Accordance with JEDEC (TO-39) OUTLINE .370 (9.40) '335IS'86)M~ '31~1~:)~ .040 (1.02) MAX. ! BF -+ .~6016.60) .l SEATING PLANE DIA. --r . 40 16.09) ... 3 PINS .019(0.483) .016(0.406) DIA. NOTES: Pins are gold-plated kovar Pin 3 connected to case 50 mil kovar header Package weight is 1.23 grams .500 (12.70) n n n MIN. U U U-==r- PIN NO.2 .200 (5.08)!J' . . 100 (2.54)T.P. METAL In Accordance with JEDEC (TO-220) OUTLINE .600115.24) .12013.05) .100 (2.54) 1~'575 1 I (14'611~~'r::::::::::::;::~:5;:i0r' r- ,-'_500 (12.70) MIN. .060 (1.52) .040 11.02) $- t f..-"Lr .410 .385 .395 .365 110.41)@2Z! 110.03) 19.27) .320 .300 (S.13) - + (7:62j ~::J V--: .141 b.5sl DIA. li.s3)L I' 3 2 ---. t-r=::::::=::::=:::3-__, 1.2.10 15.33) .19014.S3) I- --.-t- 1 f;-:~g~ !~~~: 50 16.35) M A X . L J '1 ktJ .055 .045(1.14) .26516.73) .235(5.97) .g;g L- A .g~g (.7~H- :g;g !~6:1 . (.3S11 NOTES: Package is silicone plastic with boron nickel-plated copper tab and pins Mechanically interchangable with TO-66 Center pin is electrical contact with the mounting tab Package weight is 2.1 grams GH q:1=:;:===xX=d+=~ :J .190 ~ SEATIN.",G'--_ _-...L,_.,.-- L....i!.'_';......;.''"--_ _ _- ' PLANE + (1.40) .11012.791 . (.50S) .09012.281 EC SECTIONX·X NOTES: Package is silicone plastic with nickelplated copper tab and pins Center pin is electrical contact with the mounting tab Package weight is 2.1 grams 'Mechanically interchangable with TO-66 All dimensions in inches (bold) and millimeters (parentheses) 9-6 FAIRCHILD PACKAGE OUTLINES In Accordance with JEDEC TO-92 OUTLINE r· JEDEC TO-3 OUTLlNE* 2 05 15.2011 .17614.451 .32518.13) .20515.21) DIA. I MAX DlA. ~ ! -r MAX. m-r.L.---------'o-+-r-o~ E T I N : P~AN~ t SEATING .312 (7.92) MIN. PLANE .500112.701 ~ ~ MIN. ~ .135 (3.431 ~ ,210""--1 15, 3 3 1 - 0 .170 14.321 I 1_.875122.291-1 [ 0 3 PINS .01910.483) .016 10.4061 1.197 130.40) -1.177129.90) DIA. PINNO 2 .225(571) .205(520) 1--_ _-+-_.13513.431 MIN. I~ ~~ /<:ll--'<",,- l-+----/'I::-t--/~ .440 (11 18) .050 (1.271 r:f:\-'-- \ ~~'+' j ", T.P. 1.m g~ ~~: 161(409) \ " 21~U~~~) \ :------; i / COLLECTOR .188 (4.78) MAX. 2 PLACES .525 (13.34) MAX. GLASS BASE COMMON PIN NO.1 GJ NOTES: Pins are gold-plated or solder dipped alloy 52 Pins 1 and 2 electrically isolated from case Case is third electrical connection Aluminum package with copper slug. pins are soldered in Package weight is 7.4 grams Aluminum cap (may be dome-type. depending prod. line) "Except pin diamater EI NOTES: Pins are tin-plated copper Package material is transfer molded thermosetting plastic ECB configuration Package weight is 0.25 gram In Accordance with JEDEC (TO-3) OUTLINE-4-PIN 1.500 (38.11 _ 1.480 (37.59) • .325 (8.13) .205 15.21) I GK NOTES: Pins are gold-plated or solder dipped alloy 52 All pins electrically isolated from case Package weight is 7.4 grams "Except number of pins and pin diameter PIN NO. 1 2 HOLES .15113.84) .16114.09) .470111.94) DIA. PIN CIRCLE .18814.781 2 PLACES PIN NO.3 All dimensions in inches (bold) and millimeters (parentheses) 9-7 I FAIRCHILD PACKAGE OUTLINES In Accordance with JEDEC (TO-91) OUTLINE 10-PIN CERPAK JEDEC TO-39 OUTLlNE* ~ I• 33518509J 315(80011 fJ1.------1 370 350 (9398) (8 890) DIA I DIA 040(1016)~~ 029 ( 737) 185 (4 699) -+ -:::L I 150(3810) SEATING PLANE ~ - - ~I 3 PINS .019 (.483) .016 (.406) DIA. ~ ~ 70 1 .250 I ~~500 (12.70) MIN. _~u (9.39) (6.35) __ -I TYP. i .260 (6.601 I .240 16.101 ~ t .085 (0.2161 .075 (0.1911 NOTES: Pins are tin plated 42 alloy Hermetically sealed alumina package Cavity size is .130 diamater Package weight is 0.26 grams METAL V ~~---~ .~/ .034 L.040 (1.016) .028 j I -L .0351.889) L .370 (9.391 .250 16.351 3F PIN NO.3 1-- I ~00-4 (.6§2) PIN NO.2 45° T.P, L--~.~- -----* .0061.1521 .200 (5.08) T.P. PIN NO.1 ·----+-1·1 'r' .029 ( 737) He NOTES: Pins are gold-plated kovar Pin 3 connected to case Package weight is 1.23 grams 50 mil kovar header 'Dimensions same as JEDEC TO-39 except for can height In Accordance with JEDEC (TO-aS) OUTLINE 14-PIN CERPAK , .... • 1 14 ..L .260 (6. 604) .240 (6. 096) ,olo (1270) TYP. ~l~ .019 (0.483) .015 (0.381) TYP. 1 I - 7 ~~ 8 I .370 (9.398) .250 (6.350) .006 (0.152) .004 (0.102) j I I .370 (9.398) .250 (6.350) 31 NOTES: Pins are tin-plated 42 alloy Hermetically sealed alumina package Pin 1 orientation may be either tab or dot Cavity size is .130 Package weight is 0.26 gram ~j~~~~{:~~~~~~:~~~~==~ t=T1'" I .260 (6.604) I I .025 (0635) r-.240 (6.096) ----I ,065(1.651) TYP. .050 (1.270) All dimensions in inches (bold) and millimeters (parentheses) 9-8 FAIRCHILD PACKAGE OUTLINES 24-PIN FLATPAK 16-PIN CERPAK 1 _. .475112.06) .425110.80) 1. 16 ! .050 (0.12 7) ! TYP. .409 (1.039) .3 71 (0.942) i .019 (0.048) .015 (0.038) TYP. ~ ~~.35°srl .250 .050 (1.27)--.j TYP. I-- (0.48) --1'I-- .019 .015 (0.381 .006 (0.015) .004(0.010) 8 (0.889) (0.635) ~1350J 91= lYP. -L.-===4 ~ .:: .005(0.13) .004 10.10) ~------~ I .283(0.719) J :~~~: ~.247(0.627)1 ~. .250 (0.889) (0.635) .075 (0.191) TYP. ~.Or(0.152) , .024 (0.061) TYP . =f=-t10 000000o~ .02810.71) .025 (0.64) .380 (9.65) I I--- .370 (9.40)----1 , 4L NOTES: Pins are alloy 42 Package weight is 0.4 gram Hermetically sealed beryllia package 3M NOTES: Pins are gold-plated kovar Package material is kovar Cavity size is .120 x .235 (3.05 x 5.97) Package weight is 0.8 gram .. I All dimensions in inches (bold) and millimeters (parentheses) 9-9 FAIRCHILD PACKAGE OUTLINES In Accordance with JEDEC (TO-99) OUTLINE .370 (9.398) .335 (8.509)--DIA. L _.335 (8.509) I 58 1·305D(~747)- r----,- NOTES: Pins are gold-plated kovar Seven pins thru leads No.4 connected to case 15 mil kovar header Package weight is 1.22 grams .040 (1.016) I ~ SEATING~ PLANE - 8 PINS .019 (0.483) .016 (0.406) DIA. . .165(4.191) t nn n nn·04~~X016) .500 (12.70) UU U UU - - - - MIN. 5S NOTES: Pins are solder dipped to seating plane. Seven pins thru, pin No.4 connected to case. Package weight is 1.22 grams . '}.100 (2.540) T.P. INSULATING STANDOFF SHAPE MAV VARV .045 (1.143) .029 (0.737) JEDEC TO-101 OUTLINE .37019.40) .335 18.51) DIA. 50 NOTES: Pins are solder dipped to the seating plane. Twelve pins thru ·Similar to JEDEC TO-101 Package weight is 1.4 grams 12 PINS .02010.51) .01610.41) .115 12.92) T.P. 5G GLASS NOTES: Pins are gold-plated kovar. Twelve pins thru ·Similar to JEDEC TO-101 Package weight is 1.08 grams. All dimensions in inches (bold) and millimeters (parentheses) 9-10 FAIRCHILD PACKAGE OUTLINES In Accordance with JEDEC (TO-100) OUTLINE SN .370 (9.398) .335 (8.509) -+i;;,====:::::::~+-..:.:.3:..:3:;5 (8.509) .305 (7.747) 1 NOTES: Pins are solder dipped to the seating plane. Nine pins thru pin No.5 is connected to case. 15 mil kovar header Package weight is 1.32 grams . .040 (1.016~_ MAX. ...--- 10 PINS .019 (0.482) .016 (0.406) DIA . . 230 (5.842)_>----1 T.P. SF GLASS NOTES: Pins are gold-plated kovar Nine pins through, pin 5 connected to case 15 mil kovar header Package weight is 1.32 ...----1 \ 36° T.P. 10 7 0~~ V .034 (0.864) 8 INSULATING STANDOFFSHAPE MAY VARY .045 (1.143) .029 (0.737) .028 (0.711) JEDEC TO-3 OUTLINE· .100 (2.54) .085 (2.16) .375 (9.53) ..1 f .350 (8.90) t --_[It~~~~~~ItIJ:~~S~E~A~T~IN~G PLANE . 280 (7.11) SH .2~r (6.6_0)_~ ~ ~ ~~ NOTES: Package material is nickel-plated eRS Pin material is alloy 52 Glass material is corning 9010 Pin, post and base gold-plated 'Except height and number of pins II .030 (0.76) DIA. TYP. -+I j.-- 10 PINS .600 (15. 24r-)-t----+I .585(14.86) .159 (4.04) .154 (3.91) DIA. 2 PLACES ~76(4.47) R MAX. 2 PLACES All dimensions in inches (bold) and millimeters (parentheses) 9-11 • FAIRCHILD PACKAGE OUTLINES In Accordance with JEDEC (TO-100) OUTLINE In Accordance with JEDEC (TO-S9) OUTLINE .370 (9.398) .336 (8.609) 1-_ _ _ _ _-1-_. 370 (9.40) DIA .335 (8.51) .040 (1.016~tt::;;;;;:;;;;;:;;;;::;:l~L:':~~ MAX . . - -r----- 10 PINS .020 (0.511 .016 (0.41) DIA. m~~~~[lli .230 (5.842)---+---+1 T.P. . 335 (8.509) .04~~:;::;47) l SEATING --PLANE , MAX. .040 (1.016) .500 (12.70) MAX. MIN. T SEATING PLANE .115 (2.921) T.P. IQ lJ II .I . SPINS .020 10.51)... .01610.41) DIA. GLASS 6 ~~ ~ .~~ .185 • ~4.699) I .165 (4.191) t t --r.040(1.02) MAX. i .50~\~~70) I ! 1 \10 36° T.P. '0~9 V .034 (0.864) .02B (0.711) 8 7 INSULATING STANDOFF SHAPE MAY VARY .045 (1.143) .029 (0.737) .100 (2.54) T.P. GLASS INSULATING STANDOFFSHAPE MAY VARY 51 NOTES: Pins are solder dipped to the seating plane Ten pins thru High RTH package 15 mil kovar header Package weight is 1.32 grams 5M NOTES: Pins are solder dipped to seating plane Eight pins thru 15 mil kovar header Package weight is 1.22 grams 5E NOTES: Pins are gold-plated kovar Ten pins thru 15 mil kovar header Package weight is 1.32 grams 5T NOTES: Pins are gold-plated kovar. Eight pins thru 'Dimensions similar to JEDEC TO-100 except for 8 pins spaced 45° apart. Package weight is 1.22 grams. 50 NOTES: Pins are solder dipped to the seating plane Ten pins thru 15 mil kovar header Package weight is 1.32 grams 5U NOTES: Pins are gold-plated kovar Ten pins through High RTH package 15 mil kovar header Package weight is 1.32 grams All dimensions in inches (bold) and millimeters (parentheses) 9-12 FAIRCHILD PACKAGE OUTLINES In Accordance with JEDEC TO-78 OUTLINE ~:·Rr-~ I .305 (7.75) DIA. DIA. '040(1'916)~~ MAX. .185 (4.69) L SEATING PLANE 6 PINS .020 (0.508) .' . t . 01~~~406) J :T65(4l9j ._:L 5Z :r NOTES: Pins are gold plated kovar . Six pins thru. Pins 2 and 6 are omitted. Package weight is 0.95 gram. __ t .50.0 (12.70) ~~ ~ ~~ _ _ All dimensions in inches (bold) and millimeters (parentheses) 9-13 PACKAGE OUTLINES In Accordance with JEDEC (TO-116) 14-PIN HERMETIC DUAL IN-LINE 1--.781119.9391----j I (\ (\ ,.780 119.05) , A A I 17 .271 .0211.635) R 18.883\ NOM. L .241iS 6A NOTES: Pins are intended for insertion in hole rows on .300" 17.6201 centers They are purpos!lly shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020" 10.508) diameter pin Pins are alloy 42 Package weight is 2.0 grams L.-.,M""T""T""T"",...,....,.."T""T"lr"T..,.:..:,....J .110 .090 (H941 I . 86) TVP. 16-PIN HERMETIC DUAL IN-LINE \---.786(19.939)---\ A /,.766 119.1771(\ A I" t 111 8 68 1 16:~~~1 .026 1.6351 R NOM. 16.223) .241 1--~9~""T""~~~~"T"Ir"T"~ NOTES: Pins are tin-plated 42 alloy Pins are intended for insertion in hole rows on .300" centers 17.62) They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020 inch diameter pin (0.51) Hermetically sealed alumina package Cavity size is .110 x .140 (2.79 x 3.56) Package weight is 2.0 grams 'The .037-.027 dimension does not apply to the corner pins .11012.794) .090 12.286) TVP All dimensions in inches (bold) and millimeters (parentheses) 9-14 FAIRCHILD PACKAGE OUTLINES 24-PIN DUAL IN-LINE t-----1.290 (32.7661 ~ 11\1\1\11.235 (31.3691 V\I\I\ I 1 1211109 8 7 6 5 4 3 2 1 .570114.4781 .515 (13.081 I L~~~~ .190 (4.8261 .140 (3.5561 6N NOTES: Pins are tin-plated 42 alloy Package material is alumina Pins are intended for insertion in hole rows on .600 (15.24) centers They are purposely shipped with "positive" misalignment to facilitate insertion Cavity size is .230 x .230 (5.84 x 5.84) Package weight is 6.5 grams .063 (1.5441 LEiffmmmf' """ += ~~ -4~~:~:G i II .200 (5.0801 I .10012.5401---j .11012.7941 .090 12.2861 TYP. .03710.9401 .02010.5081 .02710.686df-- .01610.4061 STANDOFF WIDTH r- I-PIN DUAL IN-LINE ,.384(9.754) I IA .376(9.550)- f4 .025 R (0.635) .271 (6.883) .245 (6.223) 6T Lfr"5........-.,.....,.-,....-r'-r' .005(0.127) II MIN. - - - II I .. I NOM. L.065 (1.651) .0~(0.508).045(1.143) - - --:016 (0.406) -t-' .200 (5.08)!r=;:::r=;::='i::i=d .011 (0.279) .009 (0.229) MAX. ~ NOTES: Pins are tin-plated kovar Pins are intended for insertion in hole rows on .300" centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020 inch diameter pin Hermetically sealed alumina package Cavity size is .110 x .140 Package weight is 1.0 grams .165(4.191) .125(3.175) .210 (5.334) .190 (4.826) All dimensions in inches (bold) and millimeters (parentheses) 9-15 FAIRCHILD PACKAGE OUTLINES In Accordance with 14-PIN DUAL IN-LINE (JEDEC TO-116 OUTLINE) -------j .785 (19.9391 .755(19.1771, !\!\ I ""J:~I L : : : : : : : ,m:&~"" 7A .265 (6.7311 . I ---1 .16514.1il) .10012.541 .065(16511 -.045(11431 I ,h " .110 (2.7941 .090 (22861 NOTES: Pins are tin-plated 42 alloy Pins are intended for insertion in hole rows on .300" (7.62) centers. They are purposely shipped with "positive" misalignment to facilitate insertion. Board-drilling dimensions should equal your practice for a conventional .020" (0.51) diameter pin. Hermetically sealed alumina package. Cavity size is .130 x .250 (3.30 x 6.35) "Similar to JEDEC TO-116 except for package width . Package weight is 2.2 grams . .037 (.9401 .027 (.686) STANDOFF WIDTH .020 (.50BI :016 (.4061 16-PIN DUAL IN-LINE .785(1.9941 -_..- -.755(1.91BI~-·· - I I m::1"( : : : : : : },,,.~~"",, - 7B .065(01651 I I-.045(0.1141 t~,,,,·o;"FI~,~~~:~ -.l r=. .219(05561 . 170 (0 4321 i ~I I I I .165(041911---1. 110 (0279) _ .100 (02541 .090 (02291 TYP. Il ' MIN . +-'l~t-=:-=:::..c::..cIEc.:..NGgb~ 199~~: NOTES: Pins are tin-plated 42 alloy Pins are intended for insertion in hole rows on .300" (7.62) centers. They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020 inch diameter pin (0.51) Hermetically sealed alumina package Cavity size is .130 x .230 "The .037-.027 (0.94-0.69) dimension does not apply to the corner pi ns Package weight is 2.2 grams .045(01141 -III-~ 020(0 .015(003BI~ I 0511 .375 (0.9531--1 .037(00941~ .027(0.0691 STANDOFF WIDTH :016(0:0411 NOM. All dimensions in inches (bold) and millimeters (parentheses) 9-16 FAIRCHILD PACKAGE OUTLINES 14-PIN DUAL IN-LINE (METAL CAP) --------:~:~:~~::g:--------I I .470111.941---1 .440111.181 1 0 1_ .29517.491 .27817.061 7N .320 10.811 RADIUS '--=-"-~~~~ .06511.65IJ .045 (1.141 L .31017.B71 .290 17.371 .095(2411 .075 (1 901 .28517241 ~I + - - m m . 0 2 5 (0641 L :omT141 t- ' I I L .12~i~ H 181 . .11012.791 .090 (2.291 -II-- ---I .03410.861 .030 (0.761 H ~ t:~:~I:G ~ .020 (0511 .016 10.411 NOTES: Pins are gold-plated kovar Package material is alumina Pins are intended for insertion in hole rows on .300" centers (7.62) They are purposely shipped "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020 (0.51) inch diameter pin Low temperature seal Cavity size is .170 x .215 (4.32 x 5.46) Package weight is 1.3 grams . L·375 19521--1 ~ STANDOFF WIDTH 3-PIN SINGLE SIDE POWER PLASTIC MINIDIP n r=". 13.81 .150 I .125 13.181 t "I .125 DIA. HOLE 13181 ---7-__----.------'-----fr--+-----il I -I.4\---.---.L.--- ~r;::TfiT? INDICATING MARK, NO.1 PIN BY (U-1) NOTES: Pins are tin plated copper Package weight is 0.6 gram Package material is plastic Tab is electrically insulated from pins This package is intended to be mounted with the tab flush with the top of the P.C. board or heat sink. A No.4 screw may be used to secure the package. Thermal compound is recommended. All dimensions nominal. .03210.811 All dimensions in inches (bold) and millimeters (parentheses) 9-17 FAIRCHILD PACKAGE OUTLINES 3-PIN SINGLE SIDE POWER PLASTIC MINIDIP -1 .11012.791 ---. ~ .270": -.345 18.76 1 16.861 1-.1-.02610.661 L)=:::::::::::::;:; - - - I I INDICATING MARK. NO.1 PIN •• .050 11.271 -.J i 1.10012.541 \-.405110.291---1 1.33018.381--1 .135 I 1 :It ,_ .015 (3trE~~50~ • I (6.351 =:!::j4:= r-1'~----'.385 8Y (U-2) NOTES: Pins are tin plated copper Package weight is 0.6 grams Package material is plastic Center pin is electrical contact with mounting tab For detailed package configuration. refer to FSB-90717 All dimensions nominal .020 )F==~t.1 (25.021------1 4-PIN SINGLE SIDE POWER PLASTIC MINI DIP 8Z (U-1) NOTES: Package is plastic with tin-plated copper pins Board-drilling dimensions should equal .your practice for .033 (0.84) inch diameter pins Package weight is 0.6 gram Tab is electrically insulated from pins This package is intended to be mounted with the tab flush with the top of the PC board or heat sink. A No.4 screw may be used to secure the package. Thermal compound is recommended. All dimensions in inches (bold) and millimeters (parentheses) 9-18 FAIRCHILD PACKAGE OUTLINES 4-PIN SINGLE SIDE POWER PLASTIC MINIDIP ~p .125 13.18) '015 10.38) .150 13.81) 8Z (U-2) NOTES: Package is plastic with tin-plated pins Board-drilling dimensions should equal your practice for .033 (0.84) inch diameter pin Package weight is 0.6 gram Tab is electrically insulated from pins .400 110.16) 1"-"'-----y_'J ----'1----bJLl...:.J I 1 .250 16.35) ~"'11"""'--...,--INDICATING MARK, NO.1 PIN .530 .021 iO.53) 1.180 129.97) --r .411 I1TS) (1044) In Accordance with 14-PIN ·PLASTIC DUAL IN-LINE (JEDEC TO-116 OUTLINE) .02510.64) '02OIO'51~ ~ T-- .770119.56)~ .740 118.80) 7 ~: :~:~g: 10 0 300 .012 (0.30) •008 10.20) R .04511.14)** .. :~ :~:~~: := 03510.89) I L 9A I I .085 11.65) .3'0 .290 17.87) 17.37l ~ _--.r ~= 015 10 3 8 R '- "f f .2~~i~8) SEATING ~ * !! PLANE .15013.81)~" I .100 (2.54) .110 12.80) .090 12.29) TYP. l the product line Pins are intended for insertion in hole rows on .300" (7.62) centers They are purposely shipped with "positive" misalignment to facilitate insertion Board-drilling dimensions should equal . f or. 020 (. 0 508' .020 10.51) your practice ) inC h .01010.25) diameter pin "Notch or ejector hole varies depending on the product line Package weight is 0.9 gram • NOM. ~ ~ ~~ I . -r---1 I ST:O~~FF ::~ !g:~~: .020 10.51) .01810.41) ~~~~:~:;i~~;:~~a~ ~~~:: depending on n:~~: r.J h .04511.14) NOTES: .01110.28) .00910.23) ~ .37519.52) NOM. ~ All dimensions in inches (bold) and millimeters (parentheses) 9-19 • FAIRCHILD PACKAGE OUTLINES 16-PIN PLASTIC· DUAL IN-LINE .025 (0.635) .020 (0'508)~ r------... .760 (19.304) 740 (18.796)-··-----1 , .012 (0.305) l:gJ~:i~ : : ~ : :~:i~~:~~~ilii~ ~ ,1(1·905) I II .065 11.651) .045 (1.143)-1 -j I- I'--mnw~ jl .200 (5 080) MAX Seating Plane I .025 (0.635) NOM. ~ .020 (0.508) .010 (0.254) (0381) .015 NOM. .......i.. -r *O~~ II I r-- --I r .016 (0406) .150 (3 810)1 .110 100 (2 540)r-r 090 (2.794) (2.286) '300 (7 620) .290 (7 366) .020 (0508) .027 (0.940) (0.686) .375 NOM (9525) .011 .009 (0.279) (0.229) I ---1 98 NOTES: Pins are tin-plated kovar or alloy 42 dickel". Pins are intended for insertion in hole rows on .300" (7.62) centers Pins purposely have a "positive" misalignment to facilitate insertion Board-drilling dimensions should equal your practice for .020 inch (0.51) diameter pin Package weight is 0.9 gram 'Package material varies depending on the product line '''The .037-.027 (0.94-0.69) dimension does not apply to the corner pins "Notch or ejector hole varies depending on the product line STANOOFF WIDTH 8-PIN PLASTIC DUAL IN-LINE I -4- 393 (9 982) 363 19 220) "1 '1 I '256~CI LJ 5 .065 (1651) .055 (1 397) _.375(9 525)~ 8 ~ ~ NOM. ~ .15013.810) .10012.540) .11012.794) .090 12.286) TYP. --, t - :~~g:~ ~b~\ M~tLX_ _ _..,..-_",.i:.......!='"-1 t t · r TIl-I .197(5004) +. .190 (4.826) .03~6~889) II --Il NOTES: Pins are tin or gold-plated kovar 3 10 17 874)l Package material is plastic .29017366) P" d df . lOS are IOten e or IOsertion in hole rows on .300" (7.62) centers ~ [ 1 0 NOM. lYP. They are purposely shipped with "positive" 2 PLACES misalignment to facilitate insertion Board-drilling dimensions should equal :-1 7 NOM lYP your practice for .020 (0.51) inch "'-I 6 PLACES diamater pin .011 10279) ____ Package weight is 0.6 gram NOM. TYP. 4 PLACES __ 9T .30R. NOM. 17620) .236 (5 994) 0 0 -.03910.991) .00910:229) I NOM. TYP. 4 PLACES .020 (0.508) .01610.406) All dimensions in inches (bold) and millimeters (parentheses) 9-20 FAIRCHILD PACKAGE OUTLINES 4-PIN POWER MINIDIP rLEAD NO.1 I .040 11Q?1 ~......... ___- - R. 9V (T1) i NOTES: Package is plastic with tin-plated copper pins For detailed package configuration refer to FSD-90669 Package weight is 0.6 gram T -1 package can be soldered to the PC board through .0230" x .020 (0.584 x 0.51) slots. Double or single-sided boards may be used . .25016.351 .300 ----17.621----., I .J .680117.271 4-PIN POWER MINI DIP .109 12.771 DIA. ~LEAD 9V (T2) NO.1 NOTES: Package is plastic with tin-plated copper pins and wings For detailed package configuration refer to FSD-90670. Package weight is 0.6 gram T-2 package is intended to be mounted with the tabs flush with the top of the PC board. Either No.2-56 screws or No.2 rivets may be used to secure the package. Single or double-sided PC boards may be used. Thermal compound is recommended. 1 .040 R 11.021 .25016.351 l'r=r=r==r==rr'l----1 ~ l m .375 19521 ;r : 1 I 10" 1 1._1 -I~-~-~I-M-I-N.-Jo ----.1....... t .030 10.761 ~=JF=::;l~.lo~ t I I I 1........- .018 10.461 1- ~ .15013811 .11012541 .115 12.921 ~ 10" 13561 1 5". ~ .020 10.511' _I i----11·~67061----~· 12.54' 1.125 13181 : L------ 12~~07)--..i All dimensions in inches (bold) and millimeters (parentheses) 9-21 • FAIRCHILD PACKAGE OUTLINES 4-PIN POWER MINIDIP 9V (T3) NOTES: Package is plastic with tin-plated copper pins and wings Package weight is 0.6 gram T-3 package is intended for applications with an external heat sink. A No.2 mounting hole is provided for case of mounting. The tab may be bent to any convenient angle. . 375 -----I 19521 ,,\ I j 1~_10'-------'_ I 12-PIN POWER PLASTIC DUAL IN-LINE ~-------.75011901----I , .250 --L .250 r16.351 -1--IS.351 .100 12541 ~.093(2361 9W (P3) r- ,050 11.271 116"~) :.- - (73~~1 ---i .02010,511 .14013561 .020 (0.511 .~.--__ __ . . _ . - ",---,-,-,"_:_~ MIN. ;-, j'li'- MIN. ~ .:-~ .___ .056 !1.421 '106~91 I~~:~_~ .:I'W64 1 I " ,- I 1 l' ___ _ .02010 511 I (21~~1-- ! ~ __ . ~~·I\---.400~~~,..j~ 1 2':~' _"~6:" NOTES: Package is plastic with tin plated copper pins and wings For detailed package configuration refer to FSB-90698 Package weight is 0.9 gram (10.21~ .677 117.21 All dimensions in inches (bold) and millimeters (parentheses) 9-22 FAIRCHILD PACKAGE OUTLINES 12-PIN POWER PLASTIC DUAL IN-LINE .750 (1g.05) r .093 (2361 DIA. -/-1 .035 (0891 I . 9W (P4) 1.000 (254) .05D!1 271 .i Koenigsworther strasse 23 3000 Hannover W-Germany Tel: 0511 17844 Telex: 09 22922 Fairchild Camera and Instrument lDeutschland> Postrstrasse 37 7251 Leonberg W-Germany Tel: 07152 41026 Telex: 07 245711 Fairchild Camera and Instrument (Deutschland) Waldluststrasse 1 8500 Nuernberg W-Germany Tel: 0911407005 Telex: 06 23665 Fairchild Semikor Ltd. K2 219-6 Gari Bong Dong Young Dung Po-Ku Seoul 150-06, Korea Te!' 85-0067 Telex: FAIRKOR 22705 (mailing address) Central P.O. Box 2806 Mexico Fairchild Mexicana S.A. Blvd. Adolofo Lopez Mateos No. 163 Mexico 19, D.F. Tel: 905-563-5411 Telex: 017-71-038 Scandinavia Fairchild Semiconductor AB svartengsgatan 6 5-11620 Stockholm Sweden Tel: 8-449255 Telex: 17759 Slngepore Fairchild Semiconductor Pty Ltd. No. 11. Lorong 3 Toa Payoh Singapore 12 Tel: 531-066 Telex: FAIRsIN-RS 21376 Telwen Fairchild Semiconductor (Taiwan) Ltd. Hsietsu Bldg., Room 502 47 Chung Shan North Road Sec. 3 Taipei, Taiwan Tel: 573205 thru 573207 10-4 Fairchild Semiconductor Paradijslaan 39 Eindhoven, Holland Tel: 00-31-40-446909 Telex: 00-1451024 United Kingdom Fairchild Camera and Instrument (UK) ltd. Semiconductor Division 230 High Street Potters Bar Hertfordshire EN6 5BU England Tel: 0707 51111 Telex: 262835 Fairchild Semiconductor Ltd. 17 Victoria Street Craigshill Livingston West Lothian. Scotland - EH54 5SG Tel: livingston 0506 32891 Telex' 72629 Fairchild Semiconductor m. AI• • Cartwright & Bean, Inc. 2400 Bob Wallace Ave .• Suite 201 Huntsville, Alabama 35805 Tel: 205-533-3509 Sales Representatives United States and Canada M •••ChuHttI Spectrum Associates. Inc. Oregon Magna Sales, Inc. 8285 S.W. Nimbus Ave., Suite 138 Beaverton, Oregon 97005 Tel; 503-641-7045 TWX: 910-467-8742 888 Worcester Street Wellesley, Massachusetts 02181 Tel: 617-237-2796 TWX: 710-348-0424 Callfornl. Mlnnelot. Cellec Company PSI Company 720 W. 94th. Street Minneapolis, Minnesota 55420 18009 Sky Park Circle Suite B Irvine, California 92715 Tel: 714-557-5021 TWX: 910-595-2512 Tel: 612-884-1777 TWX; 910-576-3483 Celtec Company 7867 Convoy Court. Suite 312 San Diego. California 92111 Tel: 714-279-7961 TWX: 910-335-1512 Mlillulppl Cartwright & Bean. Inc. P.O. Box 16728 5150 Keele Street Jackson. Mississippi 39206 Tel: 601-981-1368 TWX: 810-751-3220 Magna Sales. Inc. 3333 Sowers Avenue Suite 295 Santa Clara. California 95051 Tel: 408-985-1750 TWX: 910-338-0241 Colorado Simpson Associates. Inc. 2.552 Ridge Road Littleton. Colorado 80120 Tel: 303-794-8381 TWX: 910-935-0719 Connecticut Phoenix Sales Company 389 Main Street Ridgefield, Connecticut 06877 Tel: 203-438-9644 TWX: 710-467-0662 Florid. Lectromech. Inc. 399 Whooping Loop Altamonte Springs. Florida 32701 Tel: 305-831-1577 TWX: 810-853-0262 Lectromech. Inc. 2280 U.S. Highway 19 North Suite 119 Bldg. L Clearwater. Florida 33515 Tel: 813-126-0541 TWX: 810-866-0884 MI••ourl B.C. Electronic Sales. Inc. 300 Brookes Drive. Suite 206 Hazelwood. Missouri 63042 Tel: 314-731-1255 TWX: 910-762-0600 Nev.d. Magna Sales 4560 Wagon Wheel Road Carson City. Nevada 89701 Tel: 702-883-0860 N•• J.,.ey Lorac Sales. Inc. 580 Valley Road Wayne. New Jersey 07470 Tel: 201-696-8875 TWX: 710-988-5846 N.w York Lorac Sales. Inc. 550 Old Country Road. Room 410 Hicksville. New York 11801 Tel: 516-681-8746 TWX: 510-224-6480 Tri-Tech ElectroniCS. Inc. 3215 E. Main Street Endwell. New York 13760 Tel: 607-754-1094 TWX: 510-252-0891 Lectromech. Inc. 17 E. Hibiscus Blvd. Suite A Melbourne. Florida 32901 Tel: 305-725-1950 TWX: 810-853-0262 Tri-Tech Electronics, Inc. 590 Perinton Hills Office Park Fairport. New York 14450 Tel: 716-223-5120 TWX: 510-253-6356 Lectromech. Inc. 1350 S. Powerline Road. Suite 104 Pompano Beach. Florida 33060 Tel: 305-974-6780 TWX: 510-954-9793 Tri-Tech ElectroniCS. Inc. 6836 E. Genesee Street Fayetteville. New York 13066 Tel: 315-446-2881 TWX: 710-541-0604 Georgia Cartwright & 8ean. Inc. P.O. Box 52846 (Zip Code 30355) 90 W. Wieuca Square. Suite 155 Atlanta. Georgia 30342 Tel: 404-255-5262 TWX: 810-751-3220 Tri-Tech Electronics. Inc. 19 Davis Avenue Poughkeepsie. New York 12603 Tel: 914-473-3880 TWX: 510-253-6356 Inlnol. Micro Sales. Inc. 2258-8 landmelr Road Elk Grove Village. Illinois 60007 Tel: 312-956-1000 TWX: 910-222-1833 Kan ••• B.C. Electronic Sales. Inc. P.O. Box 12485. Zip 66212 8190 Nieman Road Shawnee Mission. Kansas 66214 Tel: 913-888-6680 TWX: 910-749-6414 B.C. Electronic Sales. Inc. 640S E. Kellogg Suite 14 Wichita. Kansas 67207 Tel: 316-684-0051 Maryland Delta III Associates 1000 Century Plaza Suite 224 Columbia, Maryland 21044 Tel: 301-730-4700 TWX: 710-826-9654 North Carolina Cartwright & Bean, Inc. 1165 Commercial Ave. Charlotte, North Carolina 28205 Tel: 104-377-5673 Cartwright & Bean. Inc. P.O. Box 18465 3948 Browning Place Raleigh, North Carolina 27619 Tel: 919-781-6560 Ohio The Lyons Corporation 4812 Frederick Road. Suite 101 Dayton, Ohio 45414 Tel: 513-218-0714 TWX: 810-459-1803 The Lyons Corporation 6151 Wilson Mills Road. Suite 101 Highland Heights. Ohio 44143 Tel: 216-461-8288 TWX: 810-459-1803 Okl.homa Technical Marketing 9717 E. 42nd Street. Suite 221 Tulsa, Oklahoma 74101 Tel: 918-622-5984 10-5 Penn.ylnnl. BGR Associates 2500 Office Center 2500 Maryland Road Willow Grove, Pennsylvania 19090 Tel: 215-657-3301 TWX: 510-665-5685 The Lyons Corporation 187 Mary Avenue Pittsburgh. Pennsylvania 15209 Tel: 412-821-6795 Tenn••••• Cartwright & Bean. Inc. P.O. Box 4760 560 S. Cooper Street Memphis. Tennessee 38104 Tel: 901-276-4442 TWX: 810-751-3220 Cartwright & Bean. Inc. 870S Unicorn Drive Suite B120 Knoxville. Tennessee 37919 Tel: 615-693-7450 TWX: 810-751-3220 T.... Technical Marketin9 3320 Wiley Post Road Carrollton. Texas 15006 Tel: 214-387-3601 TWX: 910-860-5158 Technical Marketing 6430 Hillcrott. Suite 104 Houston. Texas 17036 Tel: 113-777-9228 Utah Simpson Associates. Inc. P.O. Box 151430 Salt Lake City. Utah 84115 Tel: 801-571-7877 TWX: 910-935-0719 Wuhlngton Magna Sales. Inc. Benaroya Business Park Building 3. Suite 1'5 300-120th Avenue. N.E. Bellevue. Washington 98004 Tel: 206-455-3190 Wlscon.ln Larsen Associates 10855 West Potter Road Wauwatosa. Wisconsin 53226 Tel: 414-258-0529 TWX: 910-262-3160 Can.da R.N. Longman Sales. Inc. (L.S.U 1715 Meyerside Drive Suite 1 Mississau9a. Ontario. L5T lC5 Canada Tel: 416-677-8100 TWX: 610-492-8976 R.N. Longman Sales. Inc. (L.S.I.I 16891 Hymus Blvd. Kirkland. Quebec H9H 3L4 Canada Tel: 514-694-3911 TWX: 610-422-3028 Franchised Distributors United States and Canada Alabema Color.do Hallmark Electronics 4739 Commercial Drive Bell Industries 8155 West 48th Avenue Wheatridge, Colorado 80033 IllInol, Hallmark ElectroniCS, Inc. 1177 Industrial Drive Bensenville, IllinoiS 60106 Fairchild Semiconductor Huntsville, Alabama 3S8OS Tel: 205-837-8700 TWX: 810-72&-2187 Tel: 303-424-1985 TWX: 910-938-0393 Tel: 312-860-3800 Hamilton/Avnst Electronics 4692 Commercial Drive Arrow Electronics 5465 East Evans Place at Hudson Huntsville. 'Alabama 35805 Tel: 205-837-7210 Denver, Colorado 80222 Tel: 303-758-2100 Hamilton/Av".t Electronics 3901 N. 25th Avenue Schiller Park, Illinois 60176 Telex: None - use HAMAVLECB CAL 73-0511 lRegional Hq, in Dallas, Texasl Elmar Electronics -- Tel: 312-678-6310 TWX: 910-227-0060 Hamllton/Avn't Electronics 2615 S. 2181 Street Tel: 303-287-9611 TWX: 910-938-0770 Kierulff Electronics 1536 Landmeier Aoad Elk Grove Village, Illinois 60007 Tel: 312-640-0200 TWX: 910-227-3166 Phoenix, Arizona 85034 Hamilton/Avnet Electronics 5921 N. Broadway Denver, Colorado 80216 Schweber ElectroniCS, Inc. 1275 Bummel Avenue Elk Grove Village, Illinois 60007 6777 e. 50th Avenue Commerce Clly, Colorado 80022 Tel: 602-275-7851 TWX: 910-951-1535 Tel: 303-534-1212 TWX: 910-931-0510 Tel: 312-593-2740 TWX: 910-222-3453 Uberty Electronics Connecticut Cramer Electronics 12 Beaumont Road Wallingford, Connecticut 06492 8155 North 241h Ave. Tel: 203-265-7741 Semiconductor SpeCialists, Inc. imailing address) O'Hare International Airport P,O. Box 66125 Chicago, Illinois 60666 (shipping address) 195 Spangler Avenue Elmhurst Industrial Park Elmhurst, Illinois 60126 Kierulff Electronics 4134 East Wood Street Phoenix, Arizona 85040 Tel: 602-243-4101 Phoenix, Arizona 85021 Tel: 602-249-2232 TWX: 910-951-4282 Callfornll . Avnet Electronics 350 McCormick Avenue Costa Mesa, California 92626 Tal: 714-754-6111 (Orange Countyl 213-556-2345 ILos Angelesl TWX: 910-595-1928 Bell Industries Electronic Distributor Division 1161 N, Fair Oaks Avenue Sunnyvale, California 94086 Tel: 409-734-8570 TWX: 910-339-9378 Elmar Electronics 3000 Bowers Avenue Santa Clara, California 95051 Tel: 409-727-2500 TWX: 910-338-0541 Hamilton Electro Sales 10912 W. Washington Blvd. Culver City, California 90230 Hamllton/Avnet Electronics 643 Danbury Road Georgetown, Connecticut 06829 Tel: 203-782-0361 TWX: None-use 710-897-1405 Tel: 312-279-1000 TWX: 910-254-0169 (Regional Hq. in Mt. Laurel, N,J.l Indiana Graham Electronics Supply, Inc. 133 S. Pennsylvania SI. Indianapolis, Indiana 46204 Tel: 317-634-8486 TWX: 810-341-3481 Harvey Electronics 112 Main Street Norwalk, Connecticut 06851 Tel: 203-653-1515 Schweber Electronics Finance Drive Commerce Industrial Park Danbury, Connecticut 06810 Tel: 203-792-3500 florid. Arrow Electronics 1001 Northwest 62nd Street Suite 402 Ft. Lauderdale, Florida 33309 Tel: 305-776-7790 Tel: 213-558-2121 TWX: 910-340-8384 Hamilton/Avnet Electronics 1175 Bordeaux Drive Sunnyvale, California 94086 Arrow Electronics 115 Palm Bay Road N.W. Sulle 10 Bldg. #200 Pioneer Indiana Electro.niCs, Inc. 6408 Castle Place Drive Indianapolis, indiana 46250 Tel: 317-848-7300 TWX: 610-260-1794 Kan ••• Hallmark ElectroniCS. Inc. 11870 W. 91st Street Shawnee Mission, Kansas 66214 Tel: 913-888-4746 Hamilton/Avnet Electronics 9219 Guivira Road Overland Park, Kansas 88215 Tel: 913-888-8900 Telex: None-use HAMAVLEC8 DAl 73 OS11 tRegional Hq. in Oallas, Texas) w Tel: 409-743-3355 TWX: 910-379-6486 Palm Bay, Florida 32905 Tel: 305-725~1408 Hamilton/Avnet Electronics 8917 Complex Drive San Diego, California 92123 Hallmark Electronics 1302 W. McNab Road Ft. Lauderdale, Florida 33309 Tel: 714-279-2421 Telex: HAMAVELEC SOG 69-5415 Tel: 305-971-9280 TWX: 510-958-3092 Telex: STERLE LEC MAlE 58-328 Hallmark Electronics 7233 Lake Ellenor Drive Orlando, Florida 32809 Tel; 305-855-4020 TWX: 810-85D-0183 Maryland Hallmark Electronics, Inc. 6655 Amberton Drive Baltimore, Maryland 21227 Intermark Electronics, Inc. 4040 SOrrento Valley Blvd. San· Diego, California 92121 Tel: 714-279-5200. Intermark fZlectronics, Inc. 1802 East Carnegie Avenue Santa Ana, california 92705 Tel: 213-322-8100 TWX: 910-348-7111 Liberty Elsc,ronics/San Diego 8248 Mercury Court San Diego, California 92111 Tel: 714-565-9171 TWX: 910-335-1590 Tel: 305-971-2900 TWX: 510-954-9808 Hamilton/Avnst Electronics 3197 Tech Drive. North SI. Petersburg, Florida 33702 2120 Main Slreel, Sulle 190 Huntington Beach. CaUfornla 92647 Tel: 301-798-5000 TWX: 710-662-1861 Telex: HAMAVLECA HNVE 87-988 Tel: 305-927-0511 TWX: 510-954-0304 Pioneer Washington Electronics, Inc, 9100 Gaither Road Gaithersburg, Maryland 20760 Giorgia Tel: 301-948-0710 TWX: 710-826-9764 3409 Oak Cliff Road Doravill•• Georgia 30340 Tel: 404-455-4054 Tal: 714-980-1403 Wyle Distribution Group 9525 Cheaapeake San ~iogo, California 92123 Tel: 7101-585-9171 TWX: 910-335-1590 Hamilton/Avent Electronics (mailing address) Friendship International Airport P,O, Box 8847 Baltimore, Maryland 21240 (shipping addressl 7235 Standard Drive Hanover, Maryland 21076 Schwaber Electronics 2830 North 28th Terrace Hollywood, Florida 33020 Arrow Electronics "Sertach Laboratorll. Tel: 504-687-7610 Tel: 301-798-9300 Hamilton/Avnet Electronics 6800 N,W, 20th Avenue Ft. Lauderdale. Florida 33309 Tel: 714-540-1322 Uberty Electron-ies 124 Maryland Street EI Segundo, California 90245 Loul.lana Sterling Electronics Corp. 4613 Fairfield Metairie, Louisiana 70002 Hamilton/Avnet Electronics 8700 Interstate 85 Acells Road, Suile 1E Norcross, Georgia 30071 Tel: 404-448-0800 Telex: None-u.e HAMAVLECB OAL 73-0511 (Regional Hq, in Dallas, Texa81 "'Thls distributor carrie. Fairchild die products only. 10-6 Schwaber Electronics 9218 Gaither Road Gaithersburg, Maryland 20760 Tel: 301-840-5900 TWX: ~10-828-0536 Fairchild Semiconductor Franchised Distributors United States and Canada M••~.chu ..tt. Cramer Electronics 85 Wells Avenue Newton Centre, Massachusetts 02159 Tel: 617 964-4000 New Jersey Hamilton/Avnet Electronics 10 Industrial Road Fairfield, New Jersey 07006 Tel: 201-575-3390 TWX: 710-994-5787 Hamilton/Avnet Electronics 70 State Street Westbury, lol., New York 11590 M Tel: 516-333-5800 TWX: 510-222-8237 Rochester Radio Supply Co .• Inc. Gerber Electronics 852 Providence Highway U.S. Route 1 Dedham, Massachusetts 02026 Tel: 617-329-2400 Hamilton/Avnet Electronics 100 E. Commerce Way Woburn, Massachusetts 01801 Tel: 617-933-8000 TWX: 710-332-1201 Harvey Electronics 44 Hartwell Avenue lexington, Massachusetts 02173 Tel: 617-861-9200 TWX: 710-326-6617 Schweber Electronics 25 Wiggins Avenue Bedford, Massachusetts 01730 Tel: 617-275-5100 "Sertech Laboratories 1 Peabody Street Salem, Massachusetts 01970 Tel: 617-745-2450 Michigan Hamitton/Avnet Electronics 32487 Schoolcraft Livonia, Michigan 48150 Tel: 313-522-4700 TWX: 810-242-8775 Pioneer/Detroit 13485 Stamford Livonia, Michigan 48150 Tel: 313-525-1800 R-M Electronics 4310 Roger B. Chaffee Wyoming, Michigan 49508 Tel: 616-531-9300 Schweber Electronics 33540 Schoolcraft Livonia, MiChigan 48150 Tel: 313-525-8100 Arrow Electronics 3921 Varsity Drive Ann Arbor, Michigan 48104 Tel: 313-572-1040 Mlnne.ota Arrow Electronics 5251 West 73rd Street Edina, Minnesota 55435 Tel: 612-830-1800 HamUton/Avnet Electronics 7449 Cahill Road Edina. Minnesota 55435 Tel: 612-941-3801 TWX: None-use 910-227-0060 (RegIonal Hq. in Chicago, III.) Hamilton/Avnet Electronics #1 Keystone Avenue Cherry Hill. New Jersey 08003 140 W. Main Street (P.O. Box 1971 I Rochester, New York 14603 Tel: 609-424-0100 TWX: 710-940-0262 Tel: 716-454-7800 Schweber Electronics 18 Madison Road Fairfield, New Jersey 07006 Tel: 201-227-7880 TWX: 710-480-4733 Schweber Electronics Jericho Turnpike Westbury, L.I., New York 11590 Tel: 516-334-7474 TWX: 510-222-3660 Sterling Electronics 774 Pfeiffer Blvd. Perth Amboy, N.J. 08861 Tel: 201-442-8000 Telex: 138-679 Jaco Electronics, Inc. 145 Oser Avenue Hauppauge, L.I., New York 11787 Tel: 516-273-1234 TWX: 510-227-6232 Wilshire Electronics 102 Gaither Drive Mt. Laurel, N.J. 08057 Tel: 215-627-1920 Summit Distributors, Inc. 916 Main Street Buffalo, New York 14202 Tel: 716-884-3450 TWX: 710-522-1692 Wilshire Electronics 1111 Paulison Avenue Clifton, N.J. 07011 Tel: 201-365-2600 TWX: 710-989-7052 North Carolina Cramer Electronics 938 Burke Street Winston Salem, North Carolina 27102 Tel: 919-725-8711 New Mexico Bell Industries 11728 Linn Avenue Albuquerque, New Mexico 87123 Tel: 505-292-2700 TWX: 910-989-0625 Hamitton/Avnet Electronics 2450 Byalor Drive S.E. Albuquerque, New Mexico 87119 Tel: 505-765-1500 TWX: None - use 910-379-6486 (Regional Hq. in Mt. View, Ca.1 New York Arrow Electronics 900 Broadhollow Road Farmingdale, New York 11735 Tel: 516-694-6800 ·Cadence Electronics 40-17 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-6722 Cramer Electronics 129 Oser Avenue Hauppauge, New York 11787 Tel: 516-231-5682 Cramer Electronics P.O. Box 370 7705 Maltlage Liverpool, New York 13088 Tel: 315-652-1000 TWX: 710-545-2030 Components Plus, Inc. 40 Oser Avenue Hauppauge, LI., New York 11787 Hamilton/Avnet 2803 Industrial Drive Raleigh, North Carolina 27609 Tel: 919-829-8030 Hallmark Electronics 1208 Front Street, Bldg. K Raleigh, North Carolina 27609 Tel: 919-823-4465 TWX: 510-928-1831 Resco Highway 70 West Rural Route 8, P.O. Box 116-B Raleigh, North Carolina 27612 Tel: 919-781-5700 Pioneer/Carolina Electronics 103 I ndustrial Drive Greensboro, North Carolina 27406 Tel: 919-273-4441 Ohio Arrow Electronics 3100 Plainfield Road Dayton, Ohio 45432 Tel: 513-253-9176 H.amilton/Avnet Electronics 4588 Emery Industrial Parkway Cleveland, Ohio 44128 Tel: 216-831-3500 TWX: None-use 910~227~0060 (Regional Hq. in Chicago. 11/.1 Hamilton/Avnet Electronics 954 Senate Drive Dayton, Ohio 45459 Tel: 513-433-0810 TWX: 810-450-2531 Tel: 516-231-9200 TWX: 510-227-9889 Schweber Electronics 7402 Washington Avenue S. Eden Prairie, Minnesota 55344 Tel: 812-941-5280 MlalOurl Hallmark ElectroniCS, Inc. 13789 Rider Trail Earth City, Missouri 63045 Harvey Electronics (mailing address) P.O. Box 1208 Binghampton, New York 13902 (shipping address) Vestal Parkway East Vestal, New York 13902 Pioneer/Cleveland 4800 E. 131s1 Street Cleveland, Ohio 44105 Tel: 216-587-3600 Pioneer/Dayton 1900 Troy Street Dayton, Ohio 45404 Tel: 607-748-8211 TWX: 510-252-0893 Tel: 513-236-9900 TWX: 810-459-1622 Hamilton/Avnet Electronics 167 Clay Road Rochester, New York 14623 Tel: 716-442·7820 TWX: None -use 710-332-1201 (Regional Hq. in Burlington. Ma.) SchwAber Electronics 23880 Commerce Park Road Beachwood, Ohio 44122 Tel: 314-291-S350 Hamllton/Avnet Electronics 396 Brookes Lane HazelWOOd. Missouri 63042 Tet: 314-731-1144 TWX: 910-782-0608 Hamilton/Avnet Electronics 16 Corporate Circle E. Syracuse, New York 13057 Tel: 315-437-2842 TWX: 710-541-0959 -Minority Distributor --This distributor carrl.. Fairchild dIe products only, 10-7 Tel: 216-464-2970 TWX: 810-427-9441 Arrow Electronics 6238 Cochran Road Solon, Ohio 44139 Tel: 216-248-3990 TWX: 810-427-9409 Fairchild Semiconductor Franchised Distributors United States and Canada Arrow Electronics (mailing address) P.O. Box 37826 Cincinnati, Ohio 45222 (shipping address I 10 Knollcrest Drive Reading, Ohio 45237 Tel: 513-761-5432 TWX: 810-461-2670 Schweber Electronics, Inc. 7420 Harwin Drive Houston, Texas 77036 Tel: 713-784-3600 TWX: 910-881-1109 Cam Gard Supply Ltd. 1501 Ontario Avenue Saskatoon, Saskatchewan, S7K 1S7, Canada Tel: 306-652-6424 Telex: 07-42825 Sterling Electronics 4201 Southwest Freeway Houston, Texas 77027 Tel: 713-627-9800 TWX: 901-881-5042 Telex: STELECO HQUA 77-5299 Electro Sonic Industrial Sales ITorontol Ltd. 1100 Gordon Baker Rd Willowdale, Ontario, M2H 3B3, Canada Tel: 416-494-1666 Telex: ESSCO TOR 06-22030 Oklahoma Hallmark ElectroniCS 4846 S. 83rd East Avenue Tulsa. Oklahoma 74145 Tel: 918-835-8458 TWX: 910-845-2290 Radio Inc. Industrial Electronics 1000 S. Main Tulsa, Oklahoma 74119 Tel. 918-587-9123 Pennlylvanla Hallmark Electronics, Inc. 458 Pike Road Huntingdon Valley, Pennsylvania 19006 Tel: 215-355-7300 TWX: 510-667-1727 Pioneer/Delaware Valley Electronics 141 Gibraltar Road Horsham, Pennsylvania 19044 Tel: 215-674-4000 TWX: 510-665-6778 Pioneer Electronics, Inc. 560 Alpha Drive Pittsburgh, Pennsylvania 15238 Tel' 412-782-2300 TWX: 710-795-3122 Schweber Electrontcs 101 Rock Road Horsham, Pennsylvania 19044 Tel: 215-441-0600 Utah Bell Industries 3639 W. 2150 South Salt lake City, Utah 84120 Tel: 801-972-6969 TWX: 910-925-5686 Hamilton/Avnet Electronics 1585 W. 2100 South Salt lake City, Utah 84119 Tel: 801-972-2800 TWX: None -use 910-379-6486 (Regional Hq. in Mt. View, Ca.1 Washington Hamilton/Avnet Electronics 14212 N.E. 21st'Street BelJevue, Washington 98005 Tel: 206-746-8750 TWX: 910-443-2449 liberty Electronics 1750 132nd Avenue N.E. Bellevue, Washington 98005 Tel: 206-453-8300 TWX: 910-444-1379 Radar Electronic Co., Inc. 168 Western Avenue W Seattle, Washington 98119 Tel: 206-282-2511 TWX: 910-444-2052 Wllconsln Arrow Electronics 4297 Greensburgn Pike Suite 3114 Pittsburgh, Pennsylvania 15221 Tel 412-351-4000 South Carolina Dixie Electronics, Inc P.O. Box 408 (Zip Code 292021 1900 Barnwell Street Columbia, South Carolina 29201 Tel' 803-779-5332 Texas Allied ElectronICS 401 E 6th Street Fort Worth, Texas 76102 Tel: 817-336-5401 Cramer Electronics 13715 Gamma Road Dallas, Texas 75234 Tel' 214-386-7500 TWX: 910-860-5377 Hallmark Electronics Corp 10109 McKalia Place SUite F Austin, Texas 78758 Tel 512-837-2814 Hallmark Electronics 11333 Page mill Drive Dallas. Texas 75243 Tel' 214-234-7300 TWX. 910-867-4721 Hallmark Electronics, Inc. 8000 Westglen Houston, Texas 77063 Tel 713-781-6100 Hamilton/Avnet Electronics 4445 Sigma Road Dallas, Texas 75240 Tel 214-661-8661 Telex HAMAVlECB DAl 73-0511 Hamilton/Avnet Electronics 2975 Moorland Road New Berlin, Wisconsin 53151 Tel: 414-784-4510 TWX: 910-262-1182 Marsh Electronics, Inc. 1563 S. 100 Street Milwaukee, WisconSin 53214 Tel: 414-475-6000 TWX: 910-262-3321 Future Electronics Inc Baxter Center 1050 Baxter Road Ottawa, Ontario, K2C 3P2, Canada Tel: 613-820-9471 Future Electronics Inc. 4800 Dufferin Street Downsview, Ontario, M3H 5S8, Canada Tel: 416-663-5563 Future Electronics Corporation 5647 Ferrier Street Montreal, Quebec, H4P 2K5, Canada Tel: 514-731-7441 Hamilton/Avnet International (Canada) Ltd. 3688 Nashua Drive, Units 6 & H Mississauga, Ontario, l4V lM5, Canada Tel: 416-677-7432 TWX: 610-492-8867 Hamilton/Avnet International (Canada) Ltd 1735 Courtwood Crescent Ottawa, Ontario, K1Z 5l9, Canada Tel: 613-226-1700 Hamilton/Avnet Internaitonal (Canadal Ltd 2670 Paulus Street St. laurent, Quebec, H4S lG2, Canada Tel: 514-331-6443 TWX: 610-421-3731 R.A E. Industrial Electronics, LId 3455 Gardner Court Burnaby. British Columbia Z5G 4J7 Tel: 604-291-8866 TWX: 610-929-3065 Telex: RAE-VCR 04-54550 Canada Cam Gard Supply Ltd 640 42nd Avenue S.E. Calgary, Alberta, T2G lY6, Canada Tel: 403-287-0520 Telex: 03-821811 Semad Electronics Ltd 620 Meloche Avenue Dorval, Quebec, H9P 2PY, Canada Tel: 604-2998-866 TWX: 610-422-3048 Cam Gard Supply Ltd 16236 116th Avenue Edmonton. Alberta T5M 3V4, Canada Tel: 403-453-6691 Telex: 03-72960 Semad Electronics Ltd 105 8nbane Avenue Downsvlew, Ontario, M3J 2K6, Canada Tel: 416-663-5670 TWX: 610-492-2510 Cam Gard Supply Ltd 4910 52nd Street Red Deer, Alberta, T4N 2C8, Canada Tel: 403-346-2088 Semad Electronics Ltd 1485 laperriere Avenue Ottawa, Ontario, K1Z 7S8. Canada Tel: 613-722-6571 TWX: 610-562-8966 Cam Gard Supply Ltd. 825 Notre Dame Drive Kamloops, British Columbia. V2C 5N8, Canada Tel: 604-372-3338 Cam Gard Supply Ltd. 1777 Ellice Avenue Wlnnepeg, Manitoba, R3H OW5. Canada Tel' 204-786-8401 Telex' 07-57622 Cam Gard Supply Ltd ROOK wood Avenue Fredencton, New BrunSWICK E3B 4Y9. Canada Tel' 506-455-8891 Cam Gard Supply Ltd 15 Mount Royal Blvd Moncton. New BrunSWick, E1C 8N6, Canada Tel' 506-855-2200 Hamilton/Avnet Electronics 3939 Ann Arbor Houston. Texas 77042 Tel 713-780-1771 Telex HAMAVlECB HOU 76-2589 Cam Gard Supply Ltd 3065 Roble Street Halifax, Nova Scotia. B3K 4P6. Canada Tel: 902-454-8581 Telex: 01-921528 Schweber ElectroniCS, Inc 14177 Proton Road Dallas, Texas 75240 Tel' 214-661-5010 TWX 910-860-5493 Cam Gard Supply Ltd 1303 Scarth Street Regina, Saskatchewan. S4R 2E7 Canada Tel' 306-525-1317 Telex. 07-12667 10-8 F=AIRCHIL.C Fairchild reserves the right to make changes In the circuitry or specfications in this book at any time without notic Manufactured under one of the following U.S. Patents: 2981877, 3015048, 3064167 , 3108359, 3117260, other patents pending. Foairchild cannot assume responsibility for use of any circuitry described other than circuitry enllrely embodied in a Fairchild product No other circuit pate licenses are implied . Pl'inted in U.S . .1232-12-0003=058 35M A I~gust 1979


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:17 08:49:28-08:00
Modify Date                     : 2017:07:17 09:29:06-07:00
Metadata Date                   : 2017:07:17 09:29:06-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:5a62985e-e01f-734f-a216-50ca8018d47a
Instance ID                     : uuid:d7e7342d-ee8f-3f44-8ea2-7432c39b168d
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 450
EXIF Metadata provided by
EXIF.tools

Navigation menu