1979_Philips_Semiconductors_and_Integrated_Circuits_Part_2_Low Frequency_Power_Transistors 1979 Philips Semiconductors And Integrated Circuits Part 2 Low Frequency Power Transistors
User Manual: 1979_Philips_Semiconductors_and_Integrated_Circuits_Part_2_Low-Frequency_Power_Transistors
Open the PDF directly: View PDF
.
Page Count: 739
| Download | |
| Open PDF In Browser | View PDF |
Semiconductors and
integrated circuits
Part 2
June 1979
Low-frequency power transistors
Low-frequency power hybrid modules
'.
•
f.~ ~
•
~.
-
~
I
.'
\
•
~ ~
.
•
SEMICONDUCTORS AND INTEGRATED CIRCUITS
PART 2 - JUNE 1979
LOW:'FREQUENCY POWER TRANSISTORS
DA TA HANDBOOK SYSTEM
SEM ICONDUCTOR INDEX
MAINTENANCE TYPE LIST
TYPE NUMBER SURVEY
SELECTION GUIDE
--
GENERAL
TRANSISTOR DATA
=
MOUNTING INSTRUCTIONS
ACCESSORIES
HYBRID MODULES
----
__- - J l - DATA HANDBOOK SYSTEM
Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.
BLUE
ELECTRON TUBES
RED
SEMICONDUCTORS AND INTEGRATED CIRCUITS
GREEN
COMPONENTS AND MATERIALS
The several parts contain all pertinent data available at the time of publication, and each is revised and
reissued periodically.
'
Where ratings or specifications differ from those published in the preceding edition they are pointed
out by arrows. Where application information is given it is advisory and does not form part of the
product specification.
If you need confirmation that the published data about any of our products are the latest available,
please contact our representative. Heis at your service and will be glad to answer your inquiries.
This information is furnished for guidance, and with no guarantee as to its accuracy or completenes!t; its publication conveys no licence
under any patent or'other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of
goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the
written consent of the publisher.
I(
October 1977
Jl_·_ __ _
I_ _
ELECTRON TUBES (BLUE SERIES)
Part 1a December 1975
ET1a 12-75
Transmitting tubes for communication, tubes for r.f. heating
Types PE05/25 to TBW15/25
Part 1b August 1977
ET1b 08-77
Transmitting tubes for communication, tubes forr.f. heating,
amplifier circuit assemblies
Part 2a November 1977
ET2a 11-77
Microwave tubes
Communication magnetrons, magnetrons for microwave
heating, klystrons, travelling-wave tubes, diodes, triodes
T-R switches
Part 2b May 1978
ET2b 05-78
Microwave semiconductors and components
Gunn, Impatt and noise diodes, mixer and detector diodes,
backward diodes, varactor diodes, Gunn oscillators, subassemblies, circulators and isolators
Part 3
January 1975
ET301-75
Special Quality tubes, miscellaneous devices
Part 4
March 1975
ET403-75
Receiving tubes
Part 5a March 1978
ET5a 03-78
Cathode-ray tubes
Instrument tubes, monitor and display tubes, C.R. tubes
for special applications
Part 5b December 1978
ET5b 12-78
Camera tubes and accessories, image intensifiers
Part 6
ET601-77
Products for nuclear technology
Channel electron multipliers, neutron tubes, Geiger-Muller
tubes
Part 7a March 1977
ET7a 03-77
Gas-filled tubes
Thyratrons, industrial rectifying tubes, ignitrons,
high-voltage rectif.ying tubes
Part 7b May 1979
ET7b 05-79
Gas-filled tubes
Segment indicator tubes, indicator tubes, switching diodes,
dry reed contact units
Part 8
May 1977
ET805-77
TV picture tubes
Part 9'
March 1978
ET903-78
Photomultiplier tubes; phototubes
I
~
January 1977
r
1
Mareh 1979
_____Jl__
SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)
Part 1a August 1978
SC1a 08-78
Rectifier, diodes, thyristors, triacs
Rectifier diodes, voltage regulator diodes (> 1,5 W),
transient suppressor diodes, rectifier stacks, thyristors, triacs
Part 1b May 1977
SC1b 05-77
Diodes
Small signal germanium diodes, small signal silicon diodes,
special diodes, voltage regulator diodes « 1,5 W), voltage
reference diodes, tuner diodes
Part 2
November_1977
SC2 11-77
Low-frequency and dual transistors*
Part 2
June 1979
SC2 06-79
Low-frequency power transistors
Part 3 - January 1978
SC301-78
High-frequency, switching and field-effect transistors
Part 4a December 1978
SC4a 12-78
Transmitting transistors and modules
Part 4b September 1978
SC4b 09-78
Devices for optoelectronics
Photosensitive diodes and transistors, light emitting diodes,
photocouplers, infrared sensitive devices,
photoconductive devices
Part 4c July 1978
SC4c 07-78
Discrete semiconductors for hybrid thick and thin-film circuits
Part 5a November 1978
SC5a 11-76
Professional analogue integrated circuits
Part 5b March 1977
SC5b 03-77
Consumer integrated circuits
Radio-audio, television
Part 6
SC610-77
Digital integrated circuits
LOCMOS HE4000B family
October 1977
Signetics integrated circuits 1978
Bipolar and MOS memories
Bipolar and MOS microprocessors
Analogue circuits
Logic - TTL
* Low-frequency general purpose transistors will be transferred to SC3 later in 1979. The old book
SC2 11-77 should be kept until then.
I(Ma~h
1979
--
COMPONENTS AND MATERIALS ,(GREEN SERIES)
Part 1
June 1977
CM106-77
Assemblies for industrial use
High noise immunity logic FZ/30-series, counter modules
50-series, NORbits 50-series, 51-series, circuit blocks
gO-series, circuit block CSA70(L), PLC modules, input/
output devices, hybrid circuits, peripheral devices, ferrite
core memory products
Part 2a
October 1977
CM2a 10-77
Resistors
Fixed resistors, variable resistors, voltage dependent resistors
(VOR), light dependent resistors (LOR), negative temperature coefficient thermistors (NTC), positive temperature
coefficient thermistors (PTC), test switches
Part 2b
February 1978
CM2b 02-78
Capacitors
Electrolytic and solid capacitors, film capacitors, ceramic
capacitors, variable capacitors
Part 3
January 1977
CM301-77
Radio, audio, television
Components for black and white television, components
for colour television
Part 3a
September 1978 CM3a 09-78
FM tuners, television tuners, surface acoustic wave filters
Part 3b
October 1978
Loudspeakers
Part 4a
November 1978 CM4a 11-78
Soft ferrites
Ferrites for radio, audio and television, beads and chokes,
Ferroxcube potcores and square cores, Ferrocube transformer cores
Part 4b
February 1979
CM4b02-79
Piezoelectric ceramics, permanent magnet materials
Part 5'
April 1977
CM504-77
Electric motors and accessories
Small synchonous motors, stepper motors, miniature
direct current motors
Part 7
September 1971 CM709-71
Circuit blocks
Circuit blocks 100 kHz-series, circuit blocks 1-series, circuit
blocks 1O-series, circuit blocks for ferrite core memory drive
Part 7a
January 1979
CM7a 01-79
Assemblies
Circuit blocks 40~series andCSA70 (L), counter modules
50-series, input/output devices
Part 8
June 1979
CM806-79
Variable mains transformers
Part 9
March 1976
CM903-76
Piezoelectric quartz d~vices
Part 10
April 1978
Ma~h
1979
~
CM3b 10-78
r
CM1004-78
Connectors
INDEX
--
I
I
.
,
Jl
INDEX
---------------------
----------~-------------------------------------------
INDEX OF TYPE NUMBERS
Data Handbooks SC1a to SC4c
The inclusion of a'type number in this publication does not necessarily imply it~ availability.
I
I
type no.
part
section
type no.
part
section
type no.
part
section
AA119
AAZ15
AAZ17
AAZ18
AC125
1b
1b
1b
1b
2
PC
GB
GB
GB
LF
BA243
BA244
BA280
BA314
BA314A
1b
1b
1b
1b
1b
T
T
T
Vrg
Vrg
BAX15
BAX16
BAX17
BAX18
BAX18A
1b
1b
1b
1b
1b
WD
WD
WD
WD
WD
AC126
AC127
AC128
AC128/01
AC132
2
2
2
2
2
LF
LF
LF
LF
LF
BA315
BA316
BA317
BA318
BA379
1b
1b
1b
1b
1b
Vrg
BB105A
BB105B
BB105G
BB106
BB110B
1b
1b
1b
1b
1b
T
T
T
T
T
AC187
AC187/01
AC188
AC188/01
AF367 c
2
2
2
2
3
LF
LF
LF
LF
HFSW
BAS16
BAT17
BAT18
BAV10
BAV18
4c
4c
4c
1b
1b
Mm
Mill
Mill
WD
BB110G
BB117
BB119
BB204B
BB204G
1b
.1b
1b
1b
1b
T
T
T
T
T
BA100
BA102
BA145
BA148
BA157
1b
1b
1a
1a
1a
AD
T
BAV19
BAV20
BAV21
BAV45
BAV70
1b
1b
1b
1b
4c
WD
WD
WD
BB205A
BB205B
BB205G
BBY31
BC107
1b
1b
1b
4c
2
T
T
T
Mill
LF
BA158
BA159
BA182
BA216
BA217
1a
1a
1b
1b
1b
R
R
BAV99
BAW21A
BAW21B
BAW56
BAW62
4c
1b
1b
4c
1b
MIn
BC108
BC109
BC140
BC141
BC146
2
2
2
2
2
LF
LF
LF
LF
LF
BA218
BA219
BA220
BA221
BA222
1b
1b
1b
1b
1b
WD
WD
WD
BAX12
BAX12A
BAX13
BAX14
BAX14A
1b
1b
1b
1b
1b
WD
WD
WD
WD
WD
BC147
BC148
BC149
BC157
BC158
2
2
2
2
2
LF
LF
LF
LF
LF
AD
GB
HFSW
LF
Mm
R
R
R
T
WD
WD
WD
WD
= Silicon alloyed diodes
= Germanium gold bonded diodes
= High-frequency and switching transistors
= Low-frequency transistors (SC2 11-77)
= Discrete semiconductors for hybrid
thick and thin-film circuits
WD
WD
WD
T
WD
Sp
Mill
WD
WD
Mill
WD
PC
R
Sp
T
Vrg
WD
,
= Germanium point contact diodes
= Rectifier diodes
=
Special diodes
= Tuner diodes
= Voltage regulator diodes
= Silicon whiskerless diodes
'I
(APrH 1979
--
jl_~~
_IND_EX
----
type no.
part
section
type no.
part
section
type no.
part
section
BC159
BC160
BC161
BC177
BC178
2
2
2
2
2
LF
LF
LF
LF
LF
BCW71 ;R
BCW72;R
BCX17;R
BCX18;R
BCX19;R
46
4c
4c
4c
4c
MIn
MIn
MIn
MIn
MIn
BD182
BD183
BD201
BD202
BD203
2
2
2
2
2
P
p
P
P
p
BC179
BC200
BC264A
BC264B
BC264C
2
2
3
3
3
LF
LF
FET
FET
FET
BCX20;R
BCX51
BCX52
BCX53
BCX54~
4c
4c
4c
4c
4c
MIn
MIn
MIn
MIn
MIn
BD204
BD226
BD227
BD228
BD229
2
2
2
2
2
p
P
p
P
p
BC264D
BC327
BC328
BC337
BC338
3
2
2
2
2
FET
LF
LF
LF
LF
BCX55
BCX56
BCY30A.
BCY31A
BCY32A
4c
4c
2
2
2
MIn
MIn
BD230
BD231
BD232
BD233
BD234
2
2
2
2
2
p
P
P
p
p
BC368
BC369
BC546
BC547
BC548
2
2
2
2
2
LF
BCY33A
BCY34A
BCY55
BCY56
BCY57
2
2
2
2
2
LF
LF
BD235
BD236
BD237
BD238
BD291
2
2
2
2
2
p
P
p
P
P
BC549
BC550
BC556
BC557
BC558
2
2
2
2
2
LF
LF
LF
2
2
2
2
2
LF
LF
LF
BCY58
BCY59
BCY70
BCY71
BCY72
LF
LF
BD292
BD293
BD294
BD295
BD296
2
2
2
2
2
P
p
p
p
p
BC559
BC560
BC635
BC636
BC637
2
2
2
2
2
LF
LF
LF
LF
LF
BCY78
BCY79
BCY87
BCY88
BCY89
2
2
2
2
2
LF
LF
DT
DT
DT
BD329
BD330
' BD331
BD332
BD333
2
2
2
2
2
p
p
P
P
p
BC638
BC639
BC640
BCW29;R
BCW30;R
2
2
2
4c
4c
LF
2
2
2
2
2.
P
P
p
p
p
BD334
BD335
BD336
BD337
BD338
2
2
2
2
2;
p
p
p
p
MIn
BD131
BD132
BD133
BD135
BD136
BCW31;R
BCW32;R
BCW33;R
BCW69;R
BCW70;R
4c
4c
4c
4c
4c
MIn
MIn
MIn
MIn
MIn
BD137
BD138
BD139
BD140
BD181
2
2
2
2
2
p
P
p
p
P
BD433
BD434
BD435
BD436
BD437
2
2
2
2
2
P
p
p
P
p
LF
LF
LF
LF
LF
LF
LF
Mm
t
DT = Dual transistors (SC2 11-77)
F ET = Field-effect transistors
LF = Low-frequency transistors (SC2 11-77)
2
April19~
I(
LF
LF
LF
D'l'
LF
LF
LF
p
Mm = Discrete semiconductors for hybrid
thick and thin-film circuits
= Low-frequency power transistors (SC2 06-79)
P
_ _ _Jl__
IND_EX
type no.
part
section
type no.
part
section
type no.
part
section
BD438
BD645
BD646
BD647
BD648
2
2
2
2
2
P
P
P
P
P
BD954
BD955
BD956
BDT62
BDT62A
2
P
p
P
P
P
BDX64
BDX64A
BDX64B
BDX64C
BDX65
2
2
2
2
2
p
P
P
p
p
BD649
BD650
BD651
BD652
BD675
2
2
2
2
2
p
p
P
P
p
BDT62B
BDT62C
BDT63
BDT63A
BDT63B
2
2
2
2
2
P
P
p
P
P
BDX65A
BDX65B
BDX65C
BDX66
BDX66A
2
2
2
2
2
P
P
p
P
P
BD676
BD677
BD678
BD679
BD680
.2
2
2
2
2
P
P
P
p
P
BDT63C
BDT91
BDT92
BDT93
BDT94
2
2
2
2
2
p
P
P
p
P
BDX66B
BDX66C
BDX67
BDX67A
BDX67B
2
2
2
2
2
P
P
p
P
P
BD681
BD682
BD683
BD684
BD933
2
2
2
2
2
P
P
p
p
p
BDT95
BDT96
BDV64
BDV64A
BDV64B
2
2
2
2
2
P
P
P
P
P
BDX67C
BDX77
BDX78
BDX91
BDX92
2
2
2
2
2
P
P
P
P
P
BD934
BD935
BD936
BD937
BD938
2
2
2
2.
2
P
p
P
P
P
BDV65
BDV65A
BDV65B
BDX35
BDX36
BDX93
BDX94
BDX95
BDX96
BDY20
2
2
2
2
P
P
P
P
P
2
2
p
p
P
P
P
BD939
BD940
BD941
BD942
BD943
2
2
2
2
2
P
P
P
P
p
BDX37
BDX42
BDX43
BDX44
BDX45
2
2
2
2
2
P
P
p
P
p
BDY90
BDY91
BDY92
BDY93
BDY94
2
2
2
2
2
P
P
P
p
P
BD944
BD945
BD946
BD947
BD948
2
2
2
2
2
P
p
P
p
p
BDX46
BDX47
BDX62
BDX62A
BDX62B
2
2
2
2
2
P
2
2
3
3
3
P
P
P
P
P
BDY96
BDY97
BF115
BF167
BF173
BD949
BD950
BD951
BD952
BD953
2
2
2
2
2
p
BDX62C
BDX6:5
BDX63A
BDX63B
BDX63C
2
2
2
2
2
P
p
P
P
p
BFt77
BF178
BF179
BF180
BF181
:5
3
p
P
P
p
2
2
2
2
2
2
2
p
2
3
:5
:5
--
HFSW
HFSW
HFSW
HFSW
HFSW
HFSW
HFSW
HFSW
HFSW = High-frequency and switching transistors
P
= Low-frequency power transistors (SC2 06-79)
April 1979
3
INDEX
Jl
--------------------'
§
-=
I
type no.
part
BF182
BF183
BF184
BF185
BF194
'---~-----------------------------------------------
section
type no.
part
section
type no.
part
section
3
3
3
3
3
HFSW
HFSW
HFSW
HFSW
HFSW
BF495
BF550;R
BF622
BF623
BFQ10
3
4c
4c
4c
3
HFSW
Mm
Mm
Mm
3
4a
4a
FET
BFS21-A
BFS22A
BFS23A
BFS28
BFT24
FET
Tra
Tra
FET
HFSW
BF195
BF196
BF197
BF198
BF199
3
3
3
3
3
HFSW
HFSW
HFSW
HFSW
HFSW
BFQ11
BFQ12
BFQ13
BFQ14
BFQ15
3
3
3
3
3
FET
FET
FET
FET
FET
BFT25;R
BFT44
BFT45
BFT46
BFT92;R
4c
3
3
4c
4c
Mm
BF200
BF240
BF24t
BF245A
BF245B
3
3
3
3
3
HFSW
HFSW
HFSW
FET
FET
BFQ16
BFQ17
BFQ18A .
BFQ19
BFQ23
3
4c
4c
4c
3
FET
HFSW
BFT93;R
BFW10
BFW11
BFW12
BFW13
4c
3
3
3
3
Mm
Mm
MID.
Mm
BF245C
BF256A
BF256B
BF256C
BF324
3
3
3
3
3
FET
FET
FET
FET
HFSW
BFQ24
BFQ32
BFQ34
BFQ42
BFQ43
3
HFSW
HFSW
HFSW
Tra
Tra
BFW16A
BFW17A
BFW30
BFW45
BFW61
3
3
3
3
HFSW
HFSW
HFSW
HFSW
FET
BF327
BF336
BF337
BF338
BF362
3
3
3
3
.3
FET
HFSW
HFSW
HFSW
HFSW
BFR29
BFR30
BFR31
BFR49
BFR53;R
3
4c
4c
3
4c
FET
BFW92
BFW93
BFX34
BFX89
BFY50
3
3
3
3
3
HFSW
HFSW
HFSW
HFSW
HFSW
BF363
BF419
BF422
BF423
BF450
3
2
3
3
3
HFSW
BFR64
BFR65
BFR84
BFR90
BFR91
3
3
3
3
3
HFSW
HFSW
FET
HFSW
HFSW
3
3
3
HFSW
HFSW
HFSW
HFSW
BF451
BF457
BF458
BF459
BF469
3
2
2
2
2
BFR92;R
BFR93;R
BFR94
BFR95
BFR96
4c
4c
3
3
3
Mm
Mm
BFY51
BFY52
BFY55
BFY90
BG1895
-541
-641
1a
1a
R
R
BF470
BF471
BF472
BF480
BF494
2
2
2
3
3
BFS17;R
BF.818;R
BFS19;R
BFS20;R
BFS21
4c
4c
4c
4c
3
Mm
BG1897
-541
-542
-641
. -642
1a
1a
1a
1a
R
R
R
R
BG1898
-541
-641
1a
1a
R
R
p
HFSW
HFSW
HFSW
HFSW
p
P
p
p
p
P
p
HFSW
HFSW
FET = Field-effect transistors
HFSW = High-frequency and switching transistors
Mm
= Discrete semiconductors for hybrid
. thick and thi~-film circuits
4
AP'il1979
r
1
3
3
4a
4a
Mm
MIn
HFSW
MID.
HFSW
HFSW
HFSW
)
3
3
3
HFSW
HFSW
Mm
Mm
FET
FET
FET
FET
MIn
Mm
MIn
FET
P = Low-fr:equency power transistors (SC2 06c79)
R = Rectifie~ dIodes
Tra = Transmitting transistors and modules
_ _ _ _Jl_IND_EX
~no.
part
sect'ion
type no.
part
section
type no.
part
section
BGY22
BGY22A
BGY23
BGY23A
BGY32
4a
Tra
Tra
Tra
Tra
Tra
BLX39
BLX65
BLX66
BLX67
BLX68
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BPX95B
BR100
BR101
BRY39(Th)
(SCS)
(PUT)
4b
1a
3
1a
3
3
PDT
Th
HFSW
Th
HFSW
HFSW
BGY33
BGY35
BGY36
BGY37
BLV10
4a
4a
4a
3
4a
Tra
Tra
Tra
HFSW
Tra
BLX69A
BLX91 A
BLX92A
BLX93A
BLX94A
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BRY61
BSR12;R
BSR30
BSR31
4c
4c
4c
4c
Mm
Mm
Mm
Mm
BLV11
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BLX95
BLX96
BLX97
BLX98
BLY87A
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BSR32
BSR33
BSR40
BSR41
BSR42
4c
4c
4c
4c
4c
MIn
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BLY87C
BLY88A
BLY88C
BLY89A
BLY89C
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BSR43
BSR56
BSR57
BSR58
BSS38
4c
4c
4c
4c
3
Mm
Mm
Mm
Mm
BLW64
BLW75
'BLW76
BLW77
BLW78
4a
4a
4a
4a
BLY90
BLY91A
BLY91C
BLY92A
BLY92C
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
4a
Tra
Tra
Tra
Tra
Tra
BSS50
B'SS51
BSS52
BSS60
BSS61
3
3
3
3
3
HFSW
HFSW
HFSW
HFSW
HFSW
BLW79
BLWOO
BLW81
BLW82
BLW83
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BLY93A
BLY93C
BLY94
BPW22
BPW34
4a
4a
4a
4b
4b
Tra
Tra
Tra
PDT
PDT
BSS63;R
BSS64;R
BSS68
BSV15
BSV16
4c
4c
3
3
3
Mm
Mm
BLW84
BLW85
BLW86
Tra
Tra
Tra
Tra
Tra
BPX25
BPX29
BPX40
BPX41
BPX42
4b
4b
4b
4b
4b
PDT
PDT
PDT
PDT
PDT
BSV17
BSV52;R
BSV64
BSV78
BSV79
3
4c
3
3
3
HFSW
BLW95
4a
4a
4a
4a
4a
BLW98
BLX13
BLX13C
BLX14
BLX15
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BPX47A
BPX70
BPX71
BPX72
BPX94
4b
4b
4b
4b
4b
PDT
PDT
PDT
PDT
PDT
BSV80
BSV81
BSW41 A
BSW66
BSW67
5
FET
FET
HFSW
HFSW
HFSW
II BLV20
BLV21
BLW29
BLW31
4a
4a
4a
4a
-
Mm
Mm
Mm
Mm
~
I
BLW32
BLW33
BLW34
BLW60
BLW60C
BLW87
FET = Field·effect transistors
HFSW = High-frequency and switching transistors
Mm = Discrete semiconductors for hybrid
thick and thin-film circuits
3
3
3
3
HFSW
HFSW
HFSW
HFSW
Mm
HFSW
FET
FET
PDT = Photodiodes or transistors
Th = Thyristors
Tra = Transmitting transistors and modules
April 1979
5
_I_NDE_X
--
_J
l""---_ _ _ _ _ ______
type no.
part
section
type no.
part
section
type no.
part
section
BSW68
BSX19
BSX20
BSX21
BSX45
3
3
3
3
3
HFSW
HFSW
HFSW
HFSW
HFSW
BU206
BU207A
BU208A
BU209A
BU326
2
2
2
2
2
P
BY409
BY409A
BY476
BY476A
BY477
1a
1a
1a
1a
1a
R
R
R
R
R
BSX46
BSX47
BSX59
BSX60
BSX61
3
3
3,
3
3
HFSW
HFSW
lfFSW
HFSW
HFSW
BU326A
BU426 '
BU426A
BU433
BUW84
2
2
2
2
2
P
*
*
*
*
1a
1a
1a
1a
1a
R
R
R
R
R
BYW54
BYW55
BYW56
BYW92 *
BYX10
1a
la
1a
1a
1a
R
R
R
R
R
*
*
*
*
*
1a
1a
1a
1a
1a
R
R
R
R
R
p
P
p
P
p
BY478
BYW19
BYW29
BYW30
BYW31'
BT126
BT128
BT129
BT137
BT138
*
*
*
*
1a
1a
1a
1a
1a
Th
Th
Th
Tri
Tri
BUW85
BUX80
BUX81
BUX82
BUX83
2
2
2
2
2
BT139
BT151
BTW23
BTW24
BTW30
*
*
*
*
*
1a
1a
1a
1a
1a
Tri
BUX84
BUX85
BUX86
BUX87
BY126
2
2
2
2
1a
P
p
R
BYX22
BYX25
BYX29
BYX30
BYX32
BlJ.'W31
BTW33
BTW34
BTW38
BTW40
*
*
*
*
*
1a
1a
1a
1a
1a
Th
Th
Tri
Th
Th
BY127
BY164
BY176
BY179
BY184
1a
1a
1a
1a
1a
R
R
R
R
R
BYX35
BYX36
BYX38
BYX39
BYX42
*
*
*
*
1a
1a
1a
1a
1a
R
R
R
R
R
BTW41
BTW42
BTW43
BTW45
BTW47
*
*
*
*
*
1a
1a
1a
1a
1a
Tri
Th
Tri
Th
Th
BY187
BY188 *
BY206
BY207
BY208 *
1a
1a
1a
1a
1a
R
R
R
R
R
BYX45
BYX46
BYX49
BYX50
BYX52
*
*
*
*
*
1a
1a
1a
1a
1a
R
R
R
R
R
BTW92
BTX18
BTX94
BTY79
BTY87
*
*
*
*
*
1a
1a
1a
1a
1a
Th
BY209
BY223 ,
BY224 *
BY225 *.
BY226
1a
1a
1a
1a
1a
R
R
R
R
R
BYX55 *
BYX56 *
BYX71 *
BYX90
BYX91 *
1a
1a
1a
1a
1a
R
R
R
R
R
BTY91 *
. BU126
BU133
BU204
BU205
1a
2
2
2
2
BY227
BY228
BY277 *
BY406
BY407
1a
1a
1a
1a
1a
R
R
R
R
R
BYX96
BYX97
BYX98
BYX99
BZV10
*
*
*
*
1a
1a
1a
1a
1b
R
R
R
R
Th
Th
Th
Th
Th
Tri
Th
Th
Th
P
p
P
p
HFSW = High-frequency and switching transistors
P
= Low-frequency power transistors (SC2 06-79)
R
= Rectifier diodes
6
P
P
P
P
April 1979
~
(
P
P
P
P
P
p
Vrf
Th' = Thyristors
Tri = Triacs
Vrf = Voltage reference diodes
INDEX
type no.
part
section
type no.
part
section
type no.
part
section
BZV11
BZV12
BZV13
BZV14
BZV15
lb
1b
lb
1b
la
Vrf
Vrf
Vrf
Vrf
Vrg
BZZ24
BZZ25
BZZ26
BZZ27
BZZ28
la
la
1a
1a
1a
Vrg
Vrg
Vrg
Vrg
Vrg
ORPto
ORP13
ORP23
ORP52
ORP60
4b
4b
4b
4b
4b
I
I
Ph
Ph
Ph
lb
la
la
1a
la
Vrf
TS
TS
TS
TS
BZZ29
CNY22
CNY23
CNY42
CNY43
la
4b
4b
4b
4b
Vrg
PhC
PhC
PhC
PhC
ORP61
ORP62
ORP66
ORP68
ORP69
4b
4b
4b
4b
4b
Ph
Ph
Ph
Ph
Ph
la
la
la
lb
lb
TS
TS
TS
Vrg
Vrg
CNY44
CNY46
CNY47
CNY47A
CNY48
4b
4b
4b
4b
4b
PhC
PhC
PhC
PhC
PhC
OSB9110
OSB9210
OSB9310
OSB9410
OSM9110
1a
1a
la
la
1a
St
St
St
St
St
la
1b
1b
4c
lb
Vrg
Vrg
Vrg
Vrg
CQY11B
CQY11C
CQY24A
CQY46A
CQY47A
4b
4b
4b
4b
4b
LED
LED
LED
LED
LED
OSM9210
OSM9310
OSM9410
OSS9110
OSS9210
1a
la
1a
1a
la
St
St
St
St
St
lb
1b
lb
lb
lb
Vrf
Vrf
Vrf
Vrf
Vrf
CQY49B
CQY49C
CQY50
CQY52
CQY54
4b
4b
4b
4b
4b
LED
LED
LED
LED
LED
OSS9310
OSS9410
RPY58A
RPY71
RPY76A
la
1a
4b
4b
4b
St
St
Ph
Ph
I
1b
la
1"a
la
la
Vrg
Vrg
Vrg
Vrg
Vrg
CQY58
CQY88
CQY89
CQY94
CQY95
4b
4b
4b
4b
4b
LED
LED
. LED
LED
LED
RPY82
RPY84
RPY85
RPY86
RPY87
4b
4b
4b
4b
4b
Ph
Ph
Ph
I
I
BZZ14
BZZ15
BZZ16
BZZ17
BZZ18
la
la
la
1a
la
Vrg
Vrg
Vrg
Vrg
Vrg
CQY96
CQY97
OA47
4b
4b
lb
1b
lb
LED
LED
GB
PC
PC
RPY88
RPY89
1N821.
1N823
1N825
4b
4b
1b
1b
1b
I
I
Vrf
Vrf
Vrf
BZZ19
BZZ20
BZZ21
BZZ22
BZZ23
la
la
la
la
1a
Vrg
Vrg
Vrg
Vrg
Vrg
OA95
OA200
OA202
OM931
OM961
lb
lb
1b
2
PC
AD
AD
P
P
1N827
1N829
1N914
1N914A
lN916
1b
1b
Vrf
Vrf
WD
WD
WD
BZV38
BZW'10
BZW70
BZW86
BZW91
BZW93
BZW95
BZW96
BZX55
BZX61
BZX70
BZX75
BZX79
BZX84
BZX87
*
*
*
*
*
*
*
*
*
*
*
*
*
*
BZXga
BZX91
BZX92
BZX93
BZY78
BZY88
BZY91
BZY93
BZY95
BZY96
*
*
*
*
*
Mm
OAga
OA91
AD = Silicon alloyed diodes
GB = Germanium gold bonded diodes
I
= Infrared devices
LED = Light-emitting diodes
Mm = Discrete semiconductors for hybrid
thick and thin-film circuits
P
= Low-frequency power transistors (SC2 06-79)
PC = Germanium point contact diodes
2
Ph
PhC
St
TS
Vrf
Vrg
WD
1b
1b
lb
= Photoconductive devices
= Photocouplers
= Rectifier stacks
=
=
=
=
Transient suppressor diodes
Voltage reference diodes
Voltage regulator diodes
Silicon whiskerless diodes
April 1979
7
INDEX
L " , , - - - '_
type no.
part
section
type no.
part
section
type no.
part
1N916A
1N916B
1N:3879
1N:3880
1N3881
1b
1b
1a
1a
1a
WD
WD
R
R
R
1N5749B
1N5750B
1N5751B
1N5752B
1N5753B
1b
1b
1b
1b
1b
Vrg
Vrg
Vrg
Vrg
Vrg
2N:3020
2N:3055
2N:3:375
2N:3442
2N:3553
:3
2
4a
2
4a
1N3882
1N3889
1N3890
1N3891
1N3892
1a
1a
1a
1a
1a
R
R
R
R
R
1N5754B
1N5755B
1N5756B
1N5757B
2N918
1b
1b
1b
1b
3
Vrg
Vrg
Vrg
Vrg
HFSW
2N3632
2N3823
2N3866
2N3924
2N3926
4a
3
4a
4a
4a
Tra
FET
Tra
Tra
Tra
1N4009
1N4148
1N4150
1N4151
1N4154
1b
1b
1b
1b
1b
WD
2N929
2N930
2N1613
2N1711
2N1893
2
2
3
3
3
LF
WD
WD
WD
WD
LF
HFSW
HFSW
HFSW
2N3927
2N3966
2N4030
2N40:31
2N40:32
4a
3
3
3
3
Tra
FET
HFSW
HFSW
HFSW
1N4446
1N4448
1N5060
1N5061
1N5062
1b
1b
1a
1a
1a
WD
WD
R
R
R
2N2218
:3
2N2218A ' 3
2N2219
:3
2N2219A
3
2N2221
:3
HFSW
HFSW
HFSW
HFSW
HFSW
2N40:3:3
2N4036
2N4091
2N4092
2N4093
:3
:3
:3
:3
3
HFSW
HFSW
FET
FET
FET
1N5729B
1N5730B
1N57:31B
1N57:32B
1N5733B
1b
1b
1b
1b
1b
Vrg
Vrg
Vrg
Vrg
Vrg
2N2221A
2N2222
2N2222A
2N2297
2N2368
3
:3
3
:3
3
HFSW
HFSW
HFSW
HFSW
HFSW
2N4347
2N4:391 ,
2N4:392
2N4393
2N4427
2
:3
3
3
4a
FET
FET
FET
Tra
1N5734B
1N5735B
1N5736B
1N5737B
1N5738B
1b
1b
11>
1b
1b
Vrg
Vrg
Vrg
Vrg
Vrg
2N2369
2N2369A
2N248:3
2N2484
2N2894
:3
3
2
2
3
HFSW
HFSW
LF
LF
HFSW
2N4856
2N4857
2N4858
2N4859
2N4860
3
:3
3
:3
:3
FET
FET
FET
FET
' FET
1N5739B
1N5740B
1N5741B
1N5742B
1N5743B
1b
1b
1b
1b
1b
Vrg
Vrg
Vrg
Vrg
Vrg
2N2894A
2N2904
2N2904A
2N2905
2N2905A
3
3
:3
3
3
HFSW
HFSW
HFSW
HFSW
HFSW'
2N4861
2N5415
2N5416
61SV
40820
3
3
:3
4b
3
FET
HFSW
HFSW
1N5744B
1N5745B
1N5746B
1N5747B
1N5748B
lb
1b
1b
1b
1b
Vrg
Vrg
Vrg
Vrg
Vrg
2N2906
2N2906A
2N2907
2N2907A
2N:3019
3
3
HFSW
HFSW
HFSW
HFSW
HFSW
40835
40838
56200
56201c
56201d
3
3
3,4a
2
HFSW
HFSW
A
A
2
A
A
== Accessories FET = Field-effect transistors
HFSW = High-frequency and switching transistors
I
= I nfrared devices
LF
= Low-frequen'cy transistors (SC2 11-77)
8
__
April 1979
r
3
3
3
P
R
Tra
Vrg
WD
I
section,
HFSW
P
Tra
P
Tra
p
I
HFSW
= Low-frequency power transistors (SC2 06-79)
= Rectifier diodes
= Transmitting transistors and modules
= Voltage regulator diodes
= Silicon whiskerless diodes
----
-----
---
----
INDEX
type no.
part
section
type no.
part
section
type no.
part
section
56201j
56218
56230
56231
56233
2
3,4a
1a
1a
1a
A
A
1a
1a
1a
1a
1a
HE
HE
A
56290
56293
56295
56299
56309B
A
A
A
56350
56352
56353
56354
56356
1a
2
2
2
3
DR
A
A
A
A
56234
56245
56246
1a A
3,4a A
1a to
4a A
DH
1a
56309R
56312
56313
56314
56315
1a
1a
1a
1a
1a
A
DH
DR
DH
DH
56358
56359b
56359c
56359d
56360a
1a
2
2
2
2
A
A
A
A
A
56256
56261a
56262A
56263
1a
DH
2
A
1a A
1a to
4a A
56316
56318
56319
56326
56333
1a A
1a DH
DR
1a
2,3 A
2,3 A
56363
56364
56366
56367
56368a
1a,2
1a,2
1a
2
2
A
A
A
A
A
56264A
56268
56271
56278
56280
1a
1a
1a
1a
1a
56334
56337
56339
56348
56349
1a
1a
2
1a
1a
DR
A
A
DH
DR
56368b
56369
56378
56379
2
2
2
2
A
A
A
A
56253
A
DH
HE
HE
HE
A
DH
DR
DH
DH
= Accessories
= Diecast heatsinks
= Heatsink extrusions
April 1979
9
-------'------.-.-----,----'-----
MAINTENANCE
TYPES
MAINTENANCE TYPE LIST
The types listed below are included in this handbook only for the first page of the publication.
Detailed information will be supplied on request.
B0133
B01B1
B0182
B0183
B0232
BOY93/94
BOY96/97
BU126
BU133
2N3055
2N3442
2N4347
I(Ma~h
1979
TYPE NUMBER SURVEY
SELECTION GU IDE
_ _ _J
TYPE NUMBER,
SURVEY
In this alphanumeric list we present all low-frequency power transistors mentioned in this h,andbook.
type number
envelope
Ptot
W
NPN
PNP
B0136
B0138
B0140
TO-126
TO-126
TO-126
TO-126
TO-126
15
15
8
8
8
B0681
B0683
B0933
B0935
B0937
B0202
B0204
TO-3
TO-3
TO-3
TO-220
TO-220
78
117
117
60
60
NPN
PNP
B0131
B0133
B0135
B0137
B0139
B0132
B0181
B0182
B0183
B0201
B0203
B0226
B0228
B0230
B0232
B0233
B0227
B0229
B0231
type number
envelope
Ptot
W
B0682
B0684
B0934
B0936
B0938
TO-126
TO-126
TO-220
TO-220
TO-220
40
40
30
30
30
B0939
B0941
B0943
B0945
B0947
B0940
B0942
B0944
B094()
B0948
TO-220
TO-220
TO-220
TO-220
TO-220
30
,30
40
40
40
B0234
TO-126
TO-126
TO-126
TO-126
TO-126
12,5
12,5
12,5
15
25
B0949
B0951
B0953
B0955
BOT63
B0950
B0952
B0954
B0956
BOT62
TO-220
TO-220
TO-220
TO-220
TO-220
40
40
40
40
90
B0235
B0237
B0291
B0293
B0295
B0236
B0238
B0292
B0294
B0296
TO-126
TO-126
SOT-82
SOT-82
SOT-82
25
25
60
60
60
BOT63A
BOT63B
BOT63C
BOT91
BOT93
BOT62A
BOT62B
BOT62C
BOT92
BOT94
TO-220
TO-220
TO-220
TO-220
TO-220
90
90
90
90
90
B0329
B0331
B0333
B0335
B0337
B0330
B0332
B0334
B0336
B0338
TO-126
SOT-82
SOT-82
SOT-82
SOT-82
15
60
60
60
60
BOT95
BDV65
BOV65A
BOV65B
BOX35
BOT96
BOV64
BOV64A
BOV64B
TO-220
SOT-93
SOT-93
SOT-93
TO-126
90
125
125
125
15
B0433
B0435
B0437
B0645
B0647
B0434
B0436
B0438
B0646
B0648
TO-126
TO-126
TO-126
TO-220
TO-220
36
36
36
62,5
62,5
BOX36
BOX37
BOX42
BOX43
BOX44
BOX45
BOX46
BOX47
TO-126
TO-126
TO-126
TO-126
TO-126
15
15
5
5
5
B0649
B0651
B0675
B0677
B0679
B0650
B0652
B0676
B0678
B0680
TO-220
TO-220
TO-126
TO-126
TO-126
62,5
62,5
40
40
40
BOX63
BOX63A
BOX63B
BOX63C
BOX65
BOX62
BOX62A
BOX62B
BOX62C
BOX64
TO-3
TO-3
TO-3
TO-3
TO-3
f
I(
April 1979
90
90
90
90
117
l
TYPE NUMBER
SURVEY
'----------------------------------------------type number
envelope
Ptot
W
NPN
TO-3
TO-3
TO-3
TO-3
TO-3
117
117
117
150
150
BU207A
BU208A
BU209A
BU326
BU326A
TO-3
TO-3
TO-3
TO-3
TO-3
12,5
80
12,5
60
60
. 150
150
60
90
90
BU426
BU426A
BU433
BUW84
BUW85
SOT-93
SOT-93
SOT-93
SOT-82
SOT-82
70
70
70
50
50
90
115
40
40
40
BUX80
BUX81
BUX82
BUX83
BUX84
TO-3
TO-3
TO-3
TO-3
TO-220
100
100
60
60
40
30
30
40
40
6
BUX85
BUX86
BUX87
2N3055
2N3442
TO-220
TO-126
TO-126
TO-3
TO-3
40
20
20
115
117
2N4347.
TO-3
117
NPN
PNP
BDX65A
BDX65B
BDX65C
BDX67
BDX67A
BDX64A
BDX64B
BDX64C
BDX66
BDX66A
BDX67B
BDX67C
BDX77
BDX91
BDX93
BDX66B
BDX66C
BDX78
BDX92
BDX94
TO-3
TO-3
TO-220
TO-3
TO-3
BDX95
BDY20
BDY90
BDY91
BDY92
BDX96
TO-3
TO-3
TO-3
T.Q-3
TO-3
I
type number
PNP
envelope
Ptot
W
,.
BDY93
BDY94
BDY96
BDY97
BF419
TO-3
TO-3
TO-3
TO-3
TO-126
BF457
BF458
BF459
BF469
BF471
TO-126
TO-126
TO-126
TO-126
TO-126
BF470
BF472
BU126
BU133
BU204
BU205
BU206
2
TO-3 '
TO-3 ..
TO-3
TO-3
TO-3
AP'il1979
(
1
6
6
6
1,8
1,8
30
30
10
10
10
HIGH·VOL TAGE TRANSISTORS
video output - deflection - SMPS
IC
A
10
6
case
pol.
TO-3
N
TO-3
SOT-93
SOT-93
TO-3
N
N
N
N
collector-emitter_ voltage (open base) = V CEO (V)
160
250
300
375
BU326
BU426
BU433
400
450
BUX80
BUX81
BUX82
800
BUX83
TO-3
' N
4
TO-3
N
2,5
TO-3
N
2
SOT-82
TO-220
N
N
BUW84
BUX84
BUW85
BUX85
0,5
TO-126
N
BUX86
BUX87
0,1
'TO-126
TO-126
N
N
TO-126
TO-126
N
P
700
BU326A
BU426A
5
0,05
600
BU207A
BU208A
BU209A
BU204
BF457
BF419
BF458
BF459
BF469
BF470
BF471*
BF472*
»
BU205
BU206
(J)
2:....
m
r
m
to
to
-....J
()
-I
o
Z
* VeER·
G)
C
1111111
o
m
Jllml
N
CJ)
m
r
m
o
-I
LOW-VOLTAGE TRANSISTORS
o
audio - general purpose - switching
Z
»
~
.....
to
......
to
IC
A
G)
collector-emitter voltage (open base) V CEO (V)
case
16
TO-3
12
SOT-93
pol.
20
22
32
45
60
80
C
100
120V
remarks
BDX67C
BDX66C
Darlington
Darlington
N
BDX67
BDX66
BDX67A
BDX66A
BDX67B
BDX66B
N
BDV65
BDV64
BDV65A
BDV64A
BDV65B
BDV64B
BDX65
BDX64
BDX65A
BDX64A
BDX65B
BDX64B
BDX65C
BDX64C
BDT63
BDT62
BDT63A
BDT62A
BDT63B
BDT62B
BDT63C
BDT62C
BDT91
BDT92
BDT93
BDT94
BDT95
BDT96
BDY92
BDY91
BDY90
BD203
BD204
BDXn
BDX78
BD645
BD646
BD647
BD648
BD649
BD650
BD651
BD652
Darlington
Darlington
BDX63
BDX62
BDX63A
BDX62A
BDX63B
BDX62B
BDX63C
BDX62C
Darlington
Darlington
BDX91
BDX92
BDX93
BDX94
BDX95
BDX96
BD293
BD294
BD295
BD296
BD331
BD332
BD333
BD334
BD337
BD338
Darlington
Darlington
o
m
I
p
TO-3
N
p
10
TO-220
N
P
TO-220
N
P
8
TO-3
N
TO-220
N
BD201
BD202
p
. TO-220
N
p
TO-3
N
p
TO-3
N
P
6
SOT-82
N
BD291
BD292
P
SOT-82
N
p
-
-
,~---
BD335
BD336
Darlington
Darlington
Darlington
Darlington
I
LOW-VOLTAGE TRANSISTORS
audio - general purpose - switching
IC
A
5
case
TO-220
pol.
collector-emitter voltage (open base) VCEO (V)
20
N
p
TO-126
4
TO-126
32
45
60
80
100
120 V
BD943
BD944
BD945
BD946
BD947
BD948
BD949
BD950
BD951
BD952
BD953
BD954
BD955
BD956
BDX35
BDX36
BDX37
BD677
BD678
BD679
BD680
BD681
BD682
BD683
BD684
BD933
BD934
BD935
BD936
BD937
BD938
BD939
BD940
BD941
BD942
BD233
BD234
BD235
BD236
BD237
BD238
BD226
BD227
BD228
BD229
BD230
BD231
BD135
BD136
BD137
BD138
BD139
BD140
BDX42
BDX45
BDX43
BDX46
BDX44
BDX47
N
N
N
BD433
BD434
P
TO-126
22
BD435
8D436
N
3
TO-126
N
N
p
TO-220
BD329
BD330
N
p
2
TO-126
N
p
1,5
TO-126
N
P
1
TO-126
N
p
»
~
TO-126
N
P
-~
Darlington
Darlington
BD131
BD132
P
TO-126
BD437
BD438
BD675
8D676
p
remarks
------_.-
,
..
(J)
m
r
m
o--i
co
co
-...J
oz
G>
c
o
Co)
1111111
m
TO-126 (SOT-32)
type number
SOT-82
Ptat
NPN
PNP
BF469
BF471
BF470
BF472
1;8
BOX42
BOX43
BOX45
BF457 .
BF458
BF459
BOX45
BOX46
BOX47
5
B0135
B0137
B0139
W
NPN
250
300
BUW84
BUW85
45
60
80
6
160
250
300
B0136
B0138
B0140
8
45
60
80
B0226
B0228
B0230
B0227
B0229
B0231
12,5
45
60
80
B0131
B0329
BOX35
BOX36
BOX37
B0132
B0330
15
45
20
60
60
80
20
400
450
.45
60
80
II
I
I
I
--=
--
BUX86
BUX87
4
B0233
B0235
B0237
B0234
B0236
B0238
25
B0433
BD435
80437
B0434
80436
B0438
36
22
32
45
B0675
B0677
B0679
B0681
B0683
B0676
B0678
B0680,
B0682
B0684
40
45
60
80
100
120
April 1979
r
Ptat
type number
VCEO
V
PNP
W
VCEO
V
50
400
450
B0291
B0293
B0295
B0292
B0294
B0296
60
45
60
80
B0331
B0333
B0335
B0337
B0332
B0334
B0336
B0338
60
60
80
100
120
I
--
TO-220 (SOT-78)
type number
I
i
I
Ptat
VCEO
V
NPN
PNP
W
B0933
B0935
B0937
B0939
B0934
B0936
B0938
B0940
30
45
60
80
100
B0943
B0945
B0947
B0949
B0951
B0953
B0944
B0946
B0948
80950
B0952
B0954
40
22
32
45
60
80
100
40
400
450
45
60
80
BUX84
BUX85
B0201
B0203
BOX77
B0202
B0204
BOX78
60
B0645
B0647
B0649
B0651
B0646
B0648
B0650
B0652
62,5
60
'80
100
120
j
SELECTION GUIDE
-------------------------------------------------'
TO-220 (SOT-78) continued
type number
TO-3 (SOT-3)
Ptot
W
NPN
PNP
BDT91
BDT93
BDT95
BDT92
BDT94
BDT96
90
BDT63
BDT62
90
BDT63A I BDT62A
BDT62B
BDT63B
BDT63C
BDT62C
I
type number
Ptot
W
VCEO
V
BU204
BU205
BU206
10
600
700
800
60
BU207A
12,5
600
80
100
120
BU209A
VCEO
V
NPN
60
80
100
PNP
800
BDY90
BDY91
BDY92
40
100
80
60
BU326
BU326A
60
375
400
BUX82
BUX83
60
400
450
BU208A
BDX63
BDX63A
BDX63B
BDX63C
SOT-93
type number
. NPN
PNP
BU426
BU426A
BU433
BDV65
BDV65A
BDV65B
BDV65C
BDV64
BDV64A
BDV64B
BDV64C
Ptot
W
VCEO
V
BDX62
BDX62A
BDX62B
BDX62C
BUX80
BUX81
80
700
90
60
80
100
120
100
400
450
375
400
375
BDX65
BDX65A
BDX65B
BDX65C
BDX64
BDX64A
BDX64B
BDX64C
117
70
60
80
100
120·
125
60
80
100
120
BDX67
BDX67A
BDX67B
BDX67C
BDX66
BDX66A
BDX66B
BDX66C
150
60
80
100
--
~?O
Ir
April 1979
5
j
ACCESSORIES
----------------------------------------------TYPE NUMBER SURVEY ACCESSORIES
type n!Jmber
description
envelope
56201c
insulating bushes (up to 500 V)
TO-3
56201d
mica washer (up to 500 V)
TO-3
56201j
insulating bushes (up to 500 V)
TO-3
56261a
insulating bushes (up to 500 V)
TO-3
56326
metal washer
SOT-32
56333
metal washer
mica washer
insulating bush
SOT-32
56339
mica washer (500 to 2000 V)
TO-3
56352
insulating mounting support
56353
spring clip
SOT-32/S0T-S2
56354
mica insulator
SOT-32/S0T -S2
56359b
mica washer (up to SOO V)
TO-220
56359c
insulating bush (up to SOO V)
TO-220
56359d
rectangular insulating washer (up to 1000 V)
TO-220
56360a
rectangular washer (brass)
TO-220
56363
spring clip (direct mounting)
TO-220
56364
spring clip (insulated mounting)
TO-220
56367
alumina insulator
TO-220
5636Sa
mica insulator
SOT-93
5636Sb
insulating bush
SOT-93
56369
mica insulator (up to 2 kV)
TO-220
56378
mica insulator
SOT-93
56379
spring clip
SOT-93
IrM.~h
1979
-
l- - - - - - - - -
ACCESSORIES
Selection guide
CLIP MOUNTING
insulated mounting
direct mounting
envelope
clip
mica
clip
TO-126
(SOT-32)
56353
56354
56353
SOT-82
56353
56354
56353
TO-220
(SOT-78)
56363
56369
56364
SOT-93
56379
56378
56379
SCREW MOUNTING
direct mounting
envelope
~-
metal washer
TO-126
(SOT-32)
TO-220
(SOT-78)
up to 800 V
mounting
material
56326
M3
56360a
M3
'up to 1000 V
SOT-93
TO-3
(SOT-3)
up to 500 V
-
M4
insulated mounting
mica washer
56333
mounting
material
M2,5
56359b
56359c
56360a
M3
56359b
56359d
56360a
M3
56368a
56368b
M3
56201d
56201c;
56201j or
56261a
M3
56339
56352
M3
The accessories mentioned can be supplied on request.
See also chapter Mounting Instructions.
M.~h1979 ~
metal washer
M4
up to 2000 V
'2
insul. bush
(
GENERAL
Type designation
Rating systems·
Transistor ratings
Letter symbols
SOAR curves
--
\,
_ _--.....-J
TYPE
DESIGNATION
. PRO ELECTRON TYPE DESIGNATION CODE
FOR SEMICONDUCTOR DEVICES
This type designation code applies to discrete semiconductor devices - as opposed to integrated
circuits -, mUltiples of such devices and semiconductor chips.
A basic type number consists of:
TWO LETTERS FOLLOWED BY A SERIAL NUMBER
FI RST LETTER
The first letter gives information about the material used for the active part of the devices.
A.
B.
C.
R.
GERMANIUM or other material with band gap of 0,6 to 1,0 eV.
SI LI CON or other material with band gap of 1,0 to 1,3 eV.
GALLIUM-ARSENIDE or other material with band gap of 1,3 eV or more.
COMPOUND MATERIALS (e.g. Cadmium-Sulphide).
SECONO LETTER
The second letter indicates the function for which the device is primarily designed.
A.
B.
C.
D.
E.
F.
G.
H.
L.
N.
P.
Q.
R.
S.
T.
U.
X.
Y.
Z.
DIODE; signal, low power
DIODE; variable capacitance
TRANSISTOR; low power, audio frequency (Rth j-mp > 15 °C/W)
TRANSISTOR; power, audio frequency (Rthj-mb ~ 15 °C/W)
DIODE; tunnel
TRANSISTOR; low power, high frequency (Rth j-mb> 15 °C/W)
MULTIPLE OF DISSIMI LAR DEVICES - MISCELLANEOUS; e.g. Qscillator
DIODE; magnetic sensitive
TRANSISTO R; power, high frequency (Rth j-mb ~ 15 °C/W)
PHOTO-COUPLER
RADIATION DETECTOR; e.g. high sensitivity phototransistor
RADIATION GENERATOR; e.g'. light-emitting diode (LED)
CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power (Rthj-mb > 15 °C/W)
TRANSI STO R; low power, switching (Rth j-mb > 15 °C/W)
CONTROL AND SWITCHING DEVICE; e.g. thyristor, power (Rth j-mb ~ 15 °C/w)
TRANSISTOR; power, switching (Rth j-mb ~ 15 OCIW)
DIODE: mUltiplier, e.g. varactor, step recovery
DIODE; rectifying, booster
DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)
-'-
-
TYPE
: DESIGNATION
l
_---.-_ _ _ _ _ _ _ _ _ _ _ _ _ __
SERIAL NUMBER
Three figure:;, running from 100 to 999, for devices primarily intended for consumer equipment.
One letter (Z, Y, X, etc.) and two figures, running from 10 to 99, for devices primarily intended for
industrial/professional equipment. '
This letter has no fixed meaning except W, which is used for transient suppressor diodes.
VERSION LETTER
It indicates a minor variant of the basic type either electrically or mechanically. The 'letter never has a
fixed meaning, except letter R, indicating reverse voltage, e.g. collector to case or anode to stud.
SUFFIX
Sub-classification can be used for devices supplied in a wide range of variants called associated types.
'
Following sub-coding suffixes are in use:
1. VOLTAGE REFERENCE and VOLTAGE REGULATOR DIODES: ONE LETTtR and ONE
NUMBER
The LETTER indicates the nominal tolerance of the Zener (regulation, working or reference) voltage
A. 1% (according to lEe 63: series E96)
B. ?% (according to I EC 63: series E48)
C. 5% (according to I EC 63: series E24)
D. 10% (according to IEC 63: series E12)
E. 20% (according to I EC 63: series E6)
The number denotes the typical operating (Zener) voltage related to the nominal current rating for
the whole range.
The letter 'V' is used instead of the decimal point.
--
2. TRANSIENT SUPPRESSOR DIODES: ONE NUMBER
The NUMBER indicates the maximum recommended continuous reversed (stand-off) voltage VR' The
letter 'V' is used as above.
3. CONVENTIONAL arid CONTROLLED AVALANCHE RECTIFIER DIODES and THYRISTORS:
ONE NUMBER
.
The NUMBER indicates the rated maximum repetitive peak reverse voltage (VRRM) or the. rated
repetitive peak off-state voltage (VDRM), whichever is the lower. Reversed polarity is indicated by
letter R, immediately after the number.
4. RADIATION DETECTORS: ONE NUMBER, preceded by atiyphen (-)
The NUMBER indicates the depletion layer in ~m. The resolution is indicated by a version LETTER.
5. ARRAY OF RADIATION DETECTORS and GENERATORS: ONE NUMBER, preceded by a stroke
(/).
.
The NUMBER indicates how many basic devices are assembled into the array.
2
Ma~ 19781r
_ _ _J
TRANSISTOR
RATINGS
TRANSISTOR RATINGS
The ratings are presented as voltage, current, power and temperature ratings. The list of these ratings
and their definitions is given as follows:
Transistor voltage ratings
Collector to base voltage ratings
VCBmax
Themaximum permissible instantaneous voltage between collector and base
terminals. The collector voltage is negative with respect to base in PNP transistors and positive with respect to base in NPN types.
VCBmax (IE = 0)
The maximum permissible instantaneous voltage between collector and base
terminals, when the emitter terminal is open circuited.
Emitter to base voltage ratings
VEBmax
The maximum permissible instantaneous reverse voltage between emitter and
base terminal. The emitter voltage is negative with respect to base for PNP
transistor and positive with respect to base for NPN types.
VEBmax (IC = 0)
The maximum permissible instantaneous reverse voltage between emitter and
base terminals when the collector terminal is open circuited.
Collector to emitter voltage ratings
VCEmax
The maximum permissible instantaneous voltage between collector and emitter
terminals. The collector voltage is negative with respect to emitter 'in PNP
transistors and positive with respect to emitter in NPN types. This rating is
very dependent on circuit conditions and collector current and it is necessary
to refer to the curve of VCE versus IC for the appropriate circuit condition
in order to obtain the correct rating.
VCEmax (Cut-off)
The maximum permissible instantaneous voltage between collector and emitter
terminals when the emitter current is reduced to zero by means of a reverse
emitter base voltage, i.e. the base voltage is normally positive with respect to
emitter for PNP transistor and negative with respect to emitter for NPN types,
NOTE: The term "cut-off" is sometimes replaced by VBE
> x volts, or RB ,.,;;; y which are equivalent
RE
conditions under which the device may be cut-off.
VCEmax (IC = x mAl The maximum permissible instantaneous voltage between collector and emitter
terminals when the collector current is at a high value, often the max. rated
value.
VCEmax (lB = 0)
The maximum permissible instantaneous voltage between cpllector and emitter
terminals when the base terminal is open circuited or when a very high resistance
is in series with the base terminal. Special care must be taken to ensure that
thermal runaway due to excessive collector leakage current does not occur in
this condition.
Due to the current dependency of VCE it is usual to present this information as a voltage rating chart
which is a curve of collector current versus collector to emitter voltage (see Fig. 1).
if
March 1979
--
TRANSISTOR
RATINGS
l
, ....._ _ _ _- - - - - - - - - - - - - -
This curve is divided into two areas:
A permissible area'of operation under all conditions of base drive provided the dissipation rating is not'
exceeded (area 1) and an area where operation is allowable under certain specified conditions (area 2).
To assist in determining the rating in this second area, further curves are provided relating the voltage
rating to external circuit conditions, for example:
'
RB
VBB
- , RB, 2Bg, VBE, IB or - "
RE
RB
An example of this type of curve is given in Fig. 2 as V CE versus RB for two different values of
collector current.
RE
7Z75910
7Z75911
IC'--_ _ _~
r-
--,
I
IC
I
area 1
--
\
\
area 2
--
= ICmax
\
\
\
\
Fig. 1.
Fig. 2.
It should be noted that when RE is shunted by a capacitor, the collector voltage VCE during switching
must be restricted toa value which does not rely on the effect of RE'
In the case of an inductive load and when an energy rating is given, it may be permissible to operate
outside the rated area provided the spcified energy rating is not exceeded. ,
Transistor current ratings
Collector current ratings
ICmax
The maximum permissible collector current. Without further qualification, the
d.c. value is implied.
The maximum permissible average value of the total collector current
IC(AV)max
The maximum permissible instantaneous value of the total collector current.
ICM
Emitter current ratings
IEmax
The maximum permissible emitter current. Without further qualification, the
d.c. valu~ is implied.
IE(AV)max
The maximum permissible average value of the total emitter current.
IER(AV)max '
The maximum permissible average value of the total emitter current when
operating in the reverse emitter-base breakdown region.
IERM
The maximum permissible instantaneous value of the total reverse emitter
current allowable in the reverse breakdown region.
The maximum permissible instantaneous value of the total emitter current.
2
~~1979~(
_ _ _J
TRANSISTOR
RATINGS
Base current ratings
IBmax
The maximum permissible base current. Without further qualification, the d.c.
value is implied.
IB(AVlmax
The maximum permissible average value of the total base current.
IBR(AVlmax
The maximum permissible average value of the total reverse base current allowable in the reverse breakdown region.
The maximum permissible instantaneous value of the total base current. The
rating also includes the switch off current.
The maximum permissible instantaneous value of the total reverse current
allowable in the reverse breakdown region.
Transistor power ratings
Ptot max: The total maximum permissible continuous power dissipation in the transistor and includes
both the collector-base dissipation and the emitter-base dissipation. Under steady state conditions the
total power is given by the expression:
Ptot = VCE x IC + VBE x lB'
In order to distinguish between "steady state" and "pulse" conditions the terms "steady state power
(Psl" and "pulse power (Ppl" are often used. The permissible total power dissipation is dependent
upon temperature and its relationship is shown by means of a chart as shown in Fig. 3.
----
7Z75912
temperature
Fig. 3.
The temperature may be ambient, case or mounting base temperatures. Where a cooling clip or a
heatsink is attached to the device, the allowable power dissipation is also dependent on the efficiency
.of the heatsink.
The efficiency of this clip or heatsink is measured in terms of its thermal resistance (Rth hl normally
expressed in degrees centigrade per watt (OClWl. For mounting base rated device, the added effect of
the contact resistance (Rth il must be taken into account.
The effect of heatsinks of various thermal resistance and contact resistance is often included in the
above chart.
I(
March 1979
3
TRANSISTOR
RATINGS.
L"----__- -
Thus for any heatsink of known thermal resistance and any given ambient temperature, the maximum
permissible power dissipation can be established. Alternatively, knowing the power dissipation which
will occur and the ambient temperature; the necessary heatsink thermal resistance can be calculated.
A general expression from which the total permissible steady state power dissipation can be calculated
is:
Tj - Tamb
Ptot = -=---Rthj-a
. where Rth j-a is the thermal resistance. from the transistor junction to the ambient. For case rated or
mounting base rated devices, the thermal resistance Rth j-a is made up of the thermal resistance junction
to case or mounting base (Rth j-mb), the contact thermal resistance (Rth i) and the heatsink thermal
resistance Rth h·
For the calculation of pulse power operation Pp , the maximum pulse power is obtained by the aid of
a chart as shown in Fig. 4. I
Ztht~______~__~~__~_______
Id (duty factor)
t
=T
pulse width
T -,
t., __
JUl
7Z75913
Fig. 4.
The general expression from which the maximum pulse power dissipation can be calculated is:
Tj - Tamb - Ps x Rth j-a
Pp= Ztht+ d (Rthc-a)
where Zth t and d are given in the above chart and Rth c-a is the thermal resistance between case and
ambient for case rated device. For mounting base rated device, itis equal to Rth h + Rth i and is zero
for free air rated device because the effect of the temperature rise of the case over the ambient for a
pulse train is already included in Zth t.
Temperature ratings
4
Tjmax
The maximum permissible junction temperature which is used as the basis for
the calculation of power ratings. Unless otherwise stated, the continuous value
is implied.
Tjmax (continous
operation)
The maximum permissible continuous value.
Tjmax (intermittent
operation)
The maximum permissible instantaneous junction temperature usually. allowed
for a total duration of 200 hours.
Tmb
The temperature of the surface making contact with a heatsink. This is confined
to devices where a flange or stud for fixing onto a heatsink forms an integral
part of the envelope.
Tease
The temperature of the envelope. This is confined to devices to which may be
attached a clip-on cooling fin.
___----Jl__
GEN_ERA_L---.
RATING SYSTEMS
The rating systems described are those recommended by the International Electrotechnical Commission
(I EC) in its Publication 134.
DEFINITIONS OF TERMS USED
Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note
This definition excludes inductors, capacitors, resistors and similar components.
Characteristic. A characteristic is an inherent and measurable property of a device. Such a property
may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed
as a value for stated or recognized conditions. A characteristic may also be a set of related values,
usually shown in graphical form.
Bogey electronic device. An electronic device whose characteristics have the published nominal values
for the type. A bogey electronic device for any particular application can be obtained by considering
only those characteristics which are directly related to the application.
-=
-
Rating: A value which establishes either a limiting capability or a limiting condition for an electronic
device. It is determined for specified values of environment and operation, and may be stated in any
suitable terms.
Note
Limiting conditions may be either maxima or minima.
Rating system. The set of principles upon which ratings are established and which determine their
interpretation.
Note
The rating system indicates the division of responsibility between the device manufacturer and the
circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.
ABSOLUTE MAXIMUM RATING SYSTEM
Absolute maximum ratings are limiting values of operating and environmental conditions applicable to
any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device,
taking no responsibility for equipment variations, environmental variations, and the effects of changes
in operating conditions due to variations in the characteristics of the device under consideration and
. of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and throughout life, no absolute maximum
value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control
adjustment, load variations, signal variation, environmental conditions, and variations in characteristics
of the device under consideration and of all other electronic devices in the equipment.
~ (octOber
1977
5
GENERAL
l
DESIGN MAXIMUM RATING SYSTEM
Design maximum ratings are limiting values of operating and environmental conditions applicable to a
bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device,
taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.
The equipment manufacturer should design so that, initially and throughout life, no design maximum
value for the intended service is exceeded with a bogey device under the worst probable operating
conditions with respect to supply voltage variation, equipment component'variation, variation in
characteristics of all other devices in the equipment, equipment control adjustment, load variation,
signal variation and environmental conditions.
DESIGN CENTRE RATING SYSTEM
Design centre ratings are limiting values of operating and environmental conditions applicable to a
bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device
in average applications, taking responsibility for normal changes in operating conditions due to rated
supply voltage variation, ,equipment component variation, equipment control adjustment, load variation,
signal variation, environmental conditions, and variations in the characteristics of all electronic devices.
--
--
The equipment manufacturer should design so that, initially, no design centre value for the intended
service is exceeded with a bogey electronic device in equipment operating at the stated normal supply
voltage.
6
October
19771 (
LETTER SYMBOLS
LETTER SYMBOLS FOR TRANSISTORS AND SIGNAL DIODES
. based on lEe Publication 148
LETTER SYMBOLS FOR CURRENTS, VOLTAGES AND POWERS
Basic letters
Th,e basic letters to be used are:
I, i = current
V, v = voltage
P, p = power.
Lower-case basic letters shall be used for the representation of instantaneous values
which vary with time.
In all other instances upper-case basic letters shall be used.
Subscripts
A, a
(A V) ,(av)
n, b
(BR)
C, c
D,d
E,e
F, f
G,g
K, k
M,m
0,0
R, r
(RMS) , (rms)
S, s
x,x
Z, z
Anode terminal
Average value
Base terminal, for MOS devices: Substrate
Breakdown
Collector terminal
Drain terminal
Emitter terminal
Forward
Gate terminal
Cathode terminal
Peak value
As third subscript: The terminal not mentioned is open circuited
As first subscript: Reverse. As second subscript: Repetitive.
As third subscript: With a specified resistance between the terminal
not mentioned and the reference terminal.
R. M. S. value
As first or second subscript: Source terminal (for FETS only)
As second subscript: Non-repetitive (not for FETS)
As third subscript: Short circuit between the terminal not mentioned
and the reference terminal
Specified circuit
Replaces R to indicate the actual working voltage, current or power
of voltage reference and voltage regulator diodes.
I
Note: No additional subscript is used for d. c. values.
February 1974
II
1
=
=
-=
r
LETTER SYMBOLS
II
Upper-case subscripts' shall be used for the indication of:
a) continuous (d. c.) values (without signal)
Example IB
b) instantaneous total values
·Example iB
c) average total values
. .Example I B(A V)
d) peak total values
Example IBM
e) root-mean-square total values
Example IB(RMS)
Lower-case subscripts shall be used for the indication of values applying to the varying
component alone:
a) instantaneous values
Example ib
b) root':'mean-square values
--
Example Ib(rms)
c) peak values
Example Ibm
d) average values
Example Ib(av)
Note: If more than one subscript is used, subscript for which both styles exist shah
either be .a11 upper-case or all lower-case.
Additional rules for subscripts
Subscripts for currents
Transistors: If it is necessary to indicate the terminal carrying the current, this should
be done by the first subscript (conventional current flow from the external
circuit into the terminal is positive).
Diodes:
Examples: I B, iB. ib' Ibm
To indicate a forward current (conventional current flow into the anode
terminal) the subscript F or f should be used; for a reverse current
(copventional current flow out of the anode terminal) the subscript R or r
should be used.
Examples: IF. IR' iF. If(rm s)
February 197.4
2
II
LETTER SY MBOLS
II
Subscripts for voltages
Transistors: If it is necess.ary to indicate the points between which a voltage is measured, this should be done by the first two subscripts. The first subscript
indicates the terminal at which the voltage is measured and the second the
reference terminal or the circuit node. Where there is no possibility of
confusion, the second subscript may be omitted.
Examples: V , v ' v be ' Vbem
BE BE
Diodes:
To indicate a forward voltage (anode positive with respect to cathode), the
subscript F or f should be used; for a reverse voltage (anode negative with
respect to cathode) the subscript R or r should be used.
Examples: V F , VR , v ' Vrm
F
Subscripts for supply voltages or supply currents
,
.
Supply voltages or supply currents shall be indicated by repeating the appropriate term.inal subscript.
Examples:~CC' lEE
Note: If it is necessary to intlicate a reference terminal, this should be done by a third
subscript
Example: VCCE
Subscripts for devices having more than one terminal of the same kind
If a device has more than one terminal of the same kind, the subscript is formed by the
appr,Jpriate letter for the terminal followed by a number.; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.
Examples: ~2
= continuous
(d. c.) current flowing
into the second base terminal
V - = continuous (d. c.) voltage between
B2 E
the terminals of second base and
emitter
Subscripts for mUltiple devices
For multiple unit devices, the subscripts are modified by a number preceding the letter
subscript; in the case of mUltiple subscripts, hyphens may be necessary to avoid misunderstanding.
Examples: 12C
=
continuous (d. c.) current flowing
into the collector terminal of the
second unit
V 1C-2C = continuous (d. c.) voltage between
the collector terminals of the
first and the second unit.
February 1974
II
3
· LETTER SYMBOLS
II
Application of the rules
The figure below represents a transistor collector current as a function of time. It consists of a continuous (d. c. ) current and a varying component.
collector
current
Ic(av)
r
Ie
o~_(n_o_s~r_n_a_I) ~ ~
____
__
______
~
____________________
time
--
---
~~_
7Z65988
LETTER SYMBOLS FOR ELECTRICAL PARAMETERS
Definition
For the purpose of this Publication, the term "electrical parameter" applies to fourpole matrix parameters, elements of electrical equivalent circuits, electrical impedances and admittances, inductances and capacitances.
Basic letters
The following is a list of the most important basic letters used for electrical parameters
of semiconductor devices.
.
\
(
4
B,b
susceptance; imaginary part of an admittance
C
capacitance
G,g
conductance; real part of an admittance
H,h
hybrid parameter
L
inductance
R,r
resistance; real part of an impedance
X,x
reactance; imaginary part of an impedance
Y,y
admittance;
Z,Z
impedance;
II
Febr'uary 1974
II
II
LETTER SYMBOLS
Upper-case letters shall be used for the representation of:
a) electrical parameters of external circuits and of circuits in which the device forms
only a part;
b) all inductances and capacitances.
Lower-case letters shall be used for the representation of electrical parameters inherent in the device (with the exception of inductances and capacitances).
Subscripts
General subscripts
The following is a list of the most important general subscripts used for electrical parameters of semiconductor devices:
F, f
forward; forward trilllsfer
input
I, i (or 1)
L,l
load
0, a (or 2) = output
reverse; reverse transfer
R,r
source
S, s
The upper-case variant of a subscript shall be used for the designation of static (d. c. )
values.
Examples: hPE
static value of forward current transfer ratio in commonemitter configuration (d. c. current gain)
d. c. value of the external emitter resistance.
Note: The static value is the slope of the line from the origin to the operating point on
the appropriate characteristic curve, i. e. the quotient of the appropriate electrical quantities at the operating point.
The lower-case variant of a subscript shall be used for the designation of small- signal
values.
Examples: h
fe
Ze
small-signal value of the short-circuit forward
current transfer ratio in common -emitter configuration
=
Re
+ jXe =
small-signal value of the external impedance
Note: If more than one subscript is used, subscripts for which both styles exist shall
either be all upper-case or all lower-case
Examples: h pE ' YRE' hfe
February 1974
II
5
LETTERSY MBOLS
II
Subscripts for four-pole matrix parameters
The fir.st letter subscript (or double numeric subscript) indicates input, output, forward
transfer or reverse transfer
Examples: hi (or h )
ll
h (or li )
22
(or
)
21
hr (or fl 12 )
h; h
A further subscript is used for the identification of the circuit configuration. When no
confusion is possible, this further subscript may be omitted.
Examples: h (or h
), hFE (or h
)
fe
21E
21e
Distinction between real and imaginary parts
If it is necessary to distinguish between real and imaginary parts of electrical parame~
ters, no additional.subscripts should be used. If basiC symbols for the real and imaginary parts exist, these may be used.
Examples: Zi
-.-.
-
= Ri + jX i
Yfe = gfe+ jbfe
If such symbols do not exist or if they are not suitable, the following notation shall be
used:
Examples: Re (h ) etc. for the real part of hib
ib
1m (h ) etc. for the imaginary part of h
ib
ib
'"""
6
February 1974
SOAR
II
II
SAFE OPERATING AREA CURVES
1. D.C. SOAR
The d. c. safe operating area (SOAR) of a transistoris limited on the current axisby IC max
and on the voltage axis by VCEOmax' Intersecting these two isa third limit defined by
Ptot max' These limits can be superimposed on the normal IC-VCE curve as in' Fig. 1,
but are better shown on a double logarithmic scale as in Fig. 2; the Ptot max limit then
appears as a straight line at 45 0 to the axes~
7Z62413
IC
(A)
IC
1-1 ~IC max
H
~~
7Z62417
(A)
IB = constant
.,..
-
....
-ICmax
"
'P
tot max
~
,
- -~ '-P tot max
..
VCEOmax
~l-'
.... 10....
I
VCEOmax
r--,....
I I I I
I
11
I I I Tl1
.~
VCE (V)
VCE (V)
Fig. 1
Fig. 2. D.C. SOAR curve
For steady state conditions there is a linear relation between the power dissipated at the
junction and the temperature difference between junction and mounting base:
where C
= Rth
j-mb' .i. e. the thermal resistance from junction to mounting base.
(1)
In terms of maximum allowable junction temperature eq. (1) can be written as:
(la)
_Jan_ua_ry_l_97_2_ _
II
II
1
---
II
II
The data sheets give an upper limit for Ptot max which applies up to a temperature T 1•
These relations are shown in Fig. 3 where the upper limit for Ptotmax has been chosen
as 100%.
7Z62449
150'
.
1\
,
Ptot max
(%)
.: eq, (la)
\
\
100
\
:\
\
,
50
\
I
I
,
\
---
\
\
--
",Tj max= --
o
o
Fig. 3
So far we have discussed only d. c. conditions; it will be obvious that under pulse conditions a higher Ptot max ca~ be permitted.
2. Extension of the SOAR for pulse power
When pulse power is applied to a transistor the junction temperature will rise in a series
of steps until a steady state condition is reached. See Fig. 4.
For this steady state, eg. (1) can be modified to:
T j peak -Tmb
= Pp~.
(2)
Zth j~mb
where Zth j -mb is the transient thermal impedance from junction to mounting base and is
dependent not only on Rth j -rob' but also on pulse width (tp) and period (T). Zth j -mb is
generally published in the form of Fig. 5.
In terms of maximum allowable junction temperature eq. (2) can be written as:
(2a)
2
II
II
January 1972,
SOAR
II
II
''':jO!O DDD
I
I
Tj
TIP'Qk
I
I
I
I
I
I
I
I
::
::
:
I
:
I
I
,
I
I
i
t-:--:-~-t-~------=-.-..;~..".;;;~"'"
I I
I I
I
steady state
I
I
I
I
Tamb -
Fig. 4
1262098
J1JL
-'ltp'''-
Zthj-mb
(OC/W)
--T-. I 5 =!£:
T
10
-=
-
Rthj-mb
/
6= 1
I
I
0.75
0.5
0.33
0.2
0.1
O.OS I-~""
--
-
~~
~
t:::~""
0.02
0.01
10
Fig. 5
Dividing eq. (2a) by eq. (la), leads to:
Rth j-mb
p
peak max
=p
=p
tot max
tot max
(3)
.M.
p
Zth j-mb
This means that the Ptat max curve can be shifted by the factor Mp' see the sloping part
of the thick dashed line of Fig. 6. Mp is known as the 'power muluplying factor'.
The horizontal part of the dashed line of Fig. 6 is the rating ICMmax; it is the upper limit
. of the SOAR for pulse conditions.
In addition to the limits set by the SOAR the average current IC(AV) with an averaging
time tav of 50 ms should not exceed the maximum permissible d. c. current ICmax'
Averaging is not necessary when SOAR limits lower than the rated ICMmax are indicated
for different pulRe durations.
April 1974
II
3
SOAR
II
m
7Z62414
d.c. SOAR curve '
--- extended SOAR curve
IC
I
(A)
I I I
T m b:5Tl
ICMmax
~~
I
ICmax
..",.
Ito
Ppeakmax
"
'\
Ptotmax
I'~
-,
VfElin
--
VCE' (V)
3. Second Breakdown
Fig. 6
~:!_~~~_~~~~~~~~9~_
Primary breakdown is a sudden increase in IC as a result of. avalanche action within the
. crystal. If the collector current is increased further a critical condition can be reached
at which the voltage across the crystal drops to a very low level. This phenomenon is
known as second breakdown. It is initiated by a cur;rentconcentration that leads to local
heating within the crystal. The higher the voltage (before second breakdown) the lower the
power at which the concentration occurs. If a single point on the crystal exceeds T j max.
the transisto'r characteristics may be permanently affected; furthel;' current concentration
will lead to increased temperature and consequent second breakdown, which will destroy
the transistor.
The SOAR curve must define an area that only precludes second breakdown but also the
current concentration that precedes it.
3.2 Second breakdown and the d. c. SOAR
------------~--------------------~---
A transistor's susceptibility to second breakdown i~ investigated by d. c. loading up to
current concentration. With different combinations lof IC and VCE. points are plotted at
which current concentration is observed. A limit is then defined that precludes current
concentration. This line lowers the original SOAR curve (see Fig. 7). The final d. c.
SOAR curve is that shown in Fig. 8. In general the second breakdown limit is independent
of the mounting base temperature
Th~, thermal resistan~e Rth j-mb is guaranteed for all IC-VCEcombinations within the
d.c.\ SOAR.
I·
\
4
II
December 1975
SOAR
II
II
7Z62418
7Z624191
Tmb:S Tl
Tmb:S Tl
IC
IC
(A)
(A)
measured d.c. second
breakdown points
ICmax
.. .'.
I II
"
I-IC max
'-- p
N°l
I It~ltl max ~", ...
..
Iplill
..
manufacturer's; ~'.'
.
limit
-
.
max
t= second breakdown l(d'7')I~~
J I I
J
I I
VIC EO max
VtEfiii
VCE (V)
VCE (V)
I I I I
--
Fi~ 7
Fi~ 8
e
h
e
~ ~ ~ X ~}!.lg..t.. __~~~9!.lP_~~~~!.. !~§ _~n_ ~~s_ ~pp!~c_a..t!~l!
4.3.1
Plot the power curve obtained by multiplying the two curves of Fig. 12· and construct an
equivalent rectangular power pulse with the same peak value and area as the original pulse. The result is given in Fig. 18.
20
~tp-
1Z62447
r-
Ppeak
II
P
(W)
-.\
I
1\
II
10
.\
I
I
'\.
I
L
I
--
a
-
,
,
I\.
:
',,"
o
0.1
t
(ms)
0.2
Fig. 18
4.3.2
Ascertain t p , T, {)
~
T
= tP/T. and P peak. . The
results are:
= 75 \ls
1 .
= 750 = 1. 33 ms
{) = 0.056
Ppeak = 17. 5 W
'
4.3.3
.....
Refer to Fig. 14 and determine the derating factor for Ptot max at 85°C. The result is
0.6.Refer to Fig. 15 and determine M
p
Rth j-mb
=Z
th j-mb
for
~
= 75 \l~ and {) = 0.056.
= 10 oC/W
.
o
Zth j-mb = 2.7S C/W
~h j-mb
10
Mp = 2. 75
12
= 3.64
II
II
June 1972
II
SOAR
II
4.3.4
Refer to Fig. 16 - and 17, and ascertain the MSB factors for t = 75 Ils and
results are:
p
My
MI
= 0.056.
{j
The
= 3.6
= 2.8
4.3.5
Refer to Fig., 13. and construct the pulse extension of the d.c. SOAR for
= 0.056 according to the following rules (see Fig. 19 ).
~
= 75 Ils and 6
- Multiply the value of the voltage at point A by the derating factor obtained from Fig. 14
(0.6) and by ~. = 3.64 to obtain A'.
YA = 13 Y
,
YA' = 13 Y x 0.6 x 3.64
= 28.4 Y
- Through point A' construct a line of constant power (45 0 )
Ppeak max
= 28.4 x
IC max= 14.2 W.
- Mukip1y the value of YCE at point C by My = 3.6 (see 4.3.4), to obtain C'.
- Multiply the value of IC at point D by MI = 2.8 (see 4.3.4), to obtain D'.
- Construct a new limit for second breakdown by drawing a line through point C' and D'.
- The SOAR for this particular case is formed by the ICM max line, the maximum peak
dissipation line through A', thesecond breakdown limit line C' - D' and the YCEO line.
4.3.6
Plot the IC - YCE excursion as found from Fig. 12a and b in Fig. 19 and check if every
point of this excursion is .inside the SOAR.
In this particular e~ample the Ppeak max limit is exceeded, while the SB-limit is not exceeded. A solution for this case is to decrease the mounting base temperature, Tmb' by
enlarging the heats ink.
4.3.7
The new permissible mounting base temperature, Tmb max' can be calculated' as follows
= T j max - Ppeak • Zth j-mb
Ppeak = 17.5 W (see 4.3.2)
Tmb max
Zth j-mb
= 2.75
°C(W
= 125
- 17.5 x 2.75 = 77 C
Therefore:
Tmb max
March 1979
o
II
II
13
---
SOAR
I
II
7Z62422
10
-IC
(A)
I'x-
T mb=85 0 C
II
1
'-
~
. -,,"
--
...
--
-- -- --~
-
AC- ~l'- -c'-r-
~~~
Tmb::: 60 OC'
~
~-- ~
1\,
"~' i
~
1\ ,
I
II
D'
I
I
~
l' D
II
I
II
I
I:
J
10
. -VCE (V)
Fig. 19
Region of permissible operation up to Tmb = 60
°c
II Permi~sible extension for tp = 75 j.ls, 0 = 0.056 and Tmb = 85
14
II
°c
J~::"~972
_-'--"II_____
II
SOAR
4.3.8
For calculation of the heatsink the power maybe averaged provided the period T does
not exceed the thermal time constant of the transistor.
Then Tmb - Tamb =
o. Ppeak
• Rth mb-a·
If Tmb max and Ppeak are known, the max. allowable Rth mb-a may be calculated with
Tmb max - Tamb
{) . Ppeak
Rth mb -a max =
77 - 25
0
In our example Rth mb-a max = 0.056 x 17.5 = 53 C/W
----
January 1972
II
II
15
TRANSISTOR DATA
---
-
_ _ _jl___
BD1_31
SILICON PLANAR EPITAXIAL POWER TRANSISTOR
N-P-N transistor in a SOT-32 plastic envelope for general purpose, medium power applications. P-N-P
complement is BD132.
QUICK REFERENCE DATA
Collector-base voltage (open emitter)
VCBO
max.
70 V
Collector-emitter voltage (open base)
VCEO
max.
45 V
Collector current (peak value)
'CM
Ptot
max.
6 A
Total power dissipation up to T mb = 60 °C
max.
15 W
Junction temperature
Tj
max.
150 °C
D.C. current gain
IC = 0,5 A; VCE
hFE
>
40
fT
>
60 MHz
= 12 V
Transition frequency at f = 35 MHz
'C = 0,25 A; VCE = 5 V
MECHANICAL DATA
Dimensions in mm
Fig. 1 TO-126 (SOT-32).
-----
Collector connected
to metal part of
mounting surface.
'1--
7 8max ....1
!
!'
I
I
• -~~
~
3,2
3,0
+
+
11,1
I
max
~_l
r
15,3
min
e
-.II....
0,5
C
~
b'l"----!.
0,88-..11... , ,
max
~
I....
~
7ZS9324.2
See also chapters Mounting instructions and Accessories.
(1) Within this region the cross-section of the leads is uncontrolled.
'I (APril
1979
Jl_______-· · ·- --_._- -'"
_BD~131
RATINGS
limiting values in accordance
~ith
the Absolute Maximum System (I EC 134)
Collector-base voltage (open emitter)
VCBO
max.
70 V
Collector-emitter voltage (open base)
V CEO
max.
45 V
Emitter-base voltage (open collector)
VEBO
max.
6 V
Collector current (d.c.)
IC
max.
3 A
Collector cu'rrent (peak value)
ICM
max.
6A
Base current (peak value)
IBM
max.
0,5 A
Reverse base current (peak value)
-IBM
max.
0,5 A
15 W
Total power dissipation up to T mb = 60 °C
Ptot '
max.
Storage temperature
T stg
-65 to + 150 oC
Junction temperature
Tj
max.
150 oC
THERMAL RESISTANCE
From junction to mounting base
----
2
AP'il19791 (
Rth j-mb
6 oC/W
l
Silicon planar epitaxial power transistor
CHARACTERISTICS
8D131
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE=0;VCS=50V
IE = 0; VCS = 50 V; Tj = 150 oC
Emitter cut-off current
IC=0;VEB=5V
Saturation voltages
IC=0,5A; IB=50mA
I C = 2 A; IS = 200 mA
ICBO
<
<
500 p.A
lEBO
<
5 p.A
VCEsat
VSEsat
<
<
<
<
ICBO
5 p.A
/
VCEsat
VBEsat
0,3 V
1,2 V
0,7 V
1,5 V
D.C. current gain
IC = 0,5 A; VCE = 12 V
hFE
IC=2A;VCE=lV
hFE
>
>
20
Collector capacitance at f = 1 MHz
IE=l e =O;VCB=5V
Cc
<
60 pF
Transition frequency at f = 35 MHz
IC = 0,25 A; VCE = 5 V; Tamb = 25 °C
fT
>
60 MHz
D.C. current gain ratio of the
complementary pairs
IC = 0,5 A; VCE =12 V
hFE1/hFE2
<
1,2
'I (
40
April 1979
---
3
80131
t - - - - - - - - . . , ; . . . ._
_
D5110A
10
Tmb ~60·C
d~O.Ol
"
ICM
(AI
f'~
Icmax "
Pulse
II
width=
"
'"~
10}Js
1\.."
", "- "
~, ~"-,, 1\
16d}}sl
,~
(1 )
1.0
,, "'- '"'-
I
,
500J.ls
I I I
\ \. \.
(2) \
\ ,\
l
1.0ms
21.01~SI
~ol~sl
~
\
UJ.I
0.1
0.01
1.0
10
45
100
Vce(Vl
Fig. 2 Safe Operating ARea with the transistor forward biased.
I
Region of permissible d.c. operation.
II
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines."
(2) Second breakdown limits (independent of temperature).
4
AP'il19791(
_
8D131
Silicon planar epitaxial power transistor
,VCER
max r-
"'
(V)
80
,
"
,
, 'II'
Ic~10mA
RS~10kn
01687
When the emitter is common, a value of 1ft
should be used in calculation of R sf RE
e---
-- -
f--
....... .....
70
-1--
-c-,--
--
------
I
~--
-
--
"'......
60
""""""'" 1"'000.
""'"
50
100.
40
30
3
5
7
3
5
7
3
5
---
7
5
3
7
Fig. 3 Maximum allowable collector-emitter voltage as a function of base-emitter resistance.
---
7Z72003
~
-ltpl_1
-T-
10
5=~
T
=5=1
-0,5
-'oj
-
===
0,1
-
0,01
-
1--'--
~
::::
;;..-
1-' ....
,.joo"
10
\
Fig. 4 Pulse power rating chart.
"I (
April 1979
5
80131
7Z72004 1
5
I
8 = 0,01
4
"-"\.
""
\
\
\
"
r\.
.
I\.
"
~
-
,
\
1\ 0,1
3
2
\
\
\
~
I\..
\
"\.
'\
r\.
I'-~
~
0,2
rtr-.....
I
'"" r-.
I'
.....
f""""-.
""""
II
0,5
~
t'"
1
10- 5
~ t--......
10- 3
Fig. 5 S.B. voltage mUltiplying factor at the IC'max level.
7Z72005 1
--
--
>-
8 = 0,01
"'1'-0
0,1
0,2
r- ... t"'oi-
10
r - - - 0,5
~
"
~ .....
~
1""0.. ......
~
" l"'-
i'"
~f'-oo i'"
I"'-..
t-......'"" I"-..
-
~ ~ 1::" ....
~
. 1
10- 5
Fig. 6 S.B. current multiplying factor at the VCEOmax level.
6
AP'il19791 (
80131
Silicon planar epitaxial power transistor
ICBO
05113
7
VCB=50V
5
3
mAt 1.0
}JA +1000
i
7
5
~
i
V
!
3
;
'I~
I
I
I",
i'
I
I
100
7
O-\~
~,.J
5
3
,
,
'
: I ~
~"
I
10
~
II
I
Ii
7
~
5
3
}J A
t
I~'"
1.0
I.J
nA ~1000
--
I
I'"
i
7
5
I
3
",\q~'V
J.I~
100
If
"
~,
I
7
5
3
10
o
!
I
50
100
150
Tj (oC)
200
Fig. 7 Collector-base current (open emitter) as a function of the junction temperature.
II
APrii
7
1979
l_______
80131
05114
90131
Tj
40
I~
""
I'
30
= 2S'C
~
~~
'1/
IJ
..... ~
-. ....
~
i"
....
...... "-
1"'1 !II...
""'lliIooo.
1""1 !II...
'" ~"-
Minim
-,..."
~'"""
............
urn h
F"~ Qt V
...... ~1Ooo.
i""'I~
20
C~::: '2V
:-~"""
i""'I!II...
"""""""
-r-~
r-o"""
r-o"""
"""iIooo. r'i.
r-~1Ooo.
=1V
r-- 1-0 ....
=2V t-t-
10
o
o
3.0
2.0
1.0
-.-...
=
-
5.0
4.0
6.0
Fig. 8.
90131 ComplefT!entary
paIr
90132
01694
...... r-
Tj=2S'e
100
75
,
~-~
~
"50
~
-"""- l""',....
L
""in' .
I"
~-"",,-
~~~
..... ~
"
'~/J
"
"
~"'"
r-;;;;;;:~"",,-
rn" f:~ CIt
jolt.
.... V. c~(l3D
C~(l3D
r--......
""""'1'-00
--"iiii:~~
2.5
.
131)
132)~121;
-1""'0""",
-~ ~r-
-r-
........
.....
1""","""
r-r- ~=2V '-r-cr-~
o
o
1.0
3.0
2.0.
4.0
5.0
for 80131 +Ie(A), f.or 80132 -lelA)
Fig. 9.
8
April 1979
(
~=1V -i-r6.0
7.0
l___
Silicon planar epitaxial power transistor
300
f-f- -f-
f-t--
r-- -Ic f-f(mAl
B_D_13_1_ _
07547
t-Ht-t+--
I
VCE =2V
r-t--f--'L
-+-
Tj
f-- - f-- f-- -
=25'C
f-I1-11-1-
200
lmax
I
II
II
min
I
J
100
II
r
I
I
II
j
if
J
.I
~
o
iI"'"
0.2
0.4
"
J...;
r""
"
0.6
0.8
Fig. 10.
=
=
07548
6
1/
I
,
I
,
~
Tj =25'C
~
IC
J
I
(A)
I
I)
I-fI-fI-f-
)
)
J
4
,
II J I I
VCE =2V
II
II'
II
II'max
min
IJ
II
II'
II
I)
j
II'
II
II
2
~
II
'I
~
J
II
II
0.5
I""
~
--"
j
o
If'
I""
J.oo'
1.0
1.5
2.0
Fig. 11.
April 1979
9
____________~-Jl--~BD1-~;-SILICON PLANAR EPITAXIAL POWER TRANSISTOR
P-N-P transistor in a SOT-32 plastic envelope for general purpose, medium power applications. N-P-N
complement is 80131.
QUICK REFERENCE DATA
Collector-base voltage (open emitter)
-VCBO
max.
45 V
Collector-emitter voltage (open base)
-VCEO
max.
45 V
Collector current (peak value)
-ICM
max;
6 A
Total power dissipation up to T mb = 60 oC
Ptot
max.
15 W
Junction temperature
Tj
max.
150 °C
hFE
>
40
fT
>
60 MHz
D.C. current gain
-IC = 0,5 A; -VCE
= 12 V
Transition frequency at f = 35 MHz
-IC = 0,25 A; -VCE = 5 V
MECHANICAL DATA
Dimensions in mm
Fig. 1 TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface.
1-- 7,8 max.....1
]k~
3,2
~
3,0
11,1
max
i
+
:1
-1
15,3
min
e
JI.0,5
'II
c
max
--'-1
b'l" _ _
0,88____ .
~
,
7ZS9324.2
1__
~
See also chapters Mounting instructions and Accessories.
(1) Within this region the cross-section of the leads is uncontrolled.
April 1979
80132
l""----_____
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-base voltage (open emitter)
--VCBO
max.
45 V
Collector-emitter voltage (open base)
~VCEO
max.
45 V
Emitter-base voltage (open collector)
-VEBO
max.
4 V
Collector current (d.c.) :
-IC
max.
3 A
Collector current (peak value)
-ICM
max.
6
Base current (peak value)
-IBM
max.
0,5 A
Reverse base current (peak value)
+ IBM
max.
0,5 A
Total power dissipation 'up to Tmb = 60 0C
max.
Storage temperature
Ptot
T stg
Junction temperature
Tj
max.
A
15 W,
-65 to + 150 0C
150 0C
THERMAL RESISTANCE
From junction to mounting base
6 0C/W
Rth j-mb
CHARACTE R ISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE=0;-'-VCB=40V
IE = O;-VCB = 40 V; Tj
--....
-
Emitter cut-off current
IC = 0; -VEB = 3 V
Saturation voltages
-Ie =0,5 A; -IB = 50 mA
-Ie = 2 A; -IB::: 200 mA
500 fJ.A
-lEBO
<
5 fJ.A
-VCEsat
-VBEsat
<
<
<
<
Transition frequency at f = 35 MHz
-IC = 0,25 A; -VeE = 5 V; Tamb
D.C. current gain ratio
of the complementary pairs
..:..Ie = 500 mA; -:cVCE = 12 V
= 25 °C
5 fJ.A
0,3 V
1,2 V
0,7 V
1,5 V
hFE
>
>
20
fT
>
60 MHz
hFE1/hFE2
<
1,2
hFE
-le=2A;-VCE= 1 V
April 197,9
<
<
-VCEsat
-VBEsat
D.C. current gain
-IC = 0,5 A; -VCE = 12 V
2
-ICBO
-ICBO
= 150 0C
40
8D132
Silicon planar epitaxial power transistor
D5224A
10 ~====+===~~~'T~m~b~~~6610Qt·~C:-~~~+=+=~~
t--_---l_--+--+-+--,--,r-..=d,.,~r_'0:;,:;...O;;..:.l-+____t-t__i Pulse
~----~--~~~~~~----~r-~~~~width=
~
-1 CM
(Al
~
10,us
~==~~~~~~~L~~I~'=I~S~~,~olJ~JJIS~1
. -ICma)!
"',~~ ~r\.
~\.\.
~--+---+--+-+-+-+-+-+-I--- (2)~ ~ j
\\
\
0.01
1.0
10
45
Fig. 2 Safe Operating ARea with the transistor forward biased.
I
Region of permissible d.c. operation.
II
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second breakdown limits (independent of temperature).
Ir
April 1979
3
l______________
80132
72720041
5
J
6 = 0,01
My
\
~
4
""
\
\'
'\..
"
3
\.
1\ 0,1
r...
'\
2
-
I--
\
\
\
\
,
~
~
~
\
\ ..
\
"I\.
r- ","""", 0,2
"
I"
Tt r--'~ l"'r---.. r--. I"'"
iII
I'"
0,5
f',..
~ r---.....
1
10- 5
10- 2
Fig. 3 S.B. voltage multiplying factor at the -ICmax level.
----
7272005.1
r6
=0,01
r--
r"'o~
0,1
0,2
10
~
0,5
-""'~
"0
'"
~
r-...
~
1"--"""
''''
I'
r""'-i"o
i""..
~,
--
r--...
~ ~ ~ "'""r"'o
10 - 2
tp ( S )
Fig. 4 S.B. current mUltiplying factor at the -YCEOmax level.
4
April 1979
80132
Silicon planar epitaxial power transistor
7Z72003
JUL
-ltpl_1
10
-T-
~l5:1
I----
0,5
1----10.1
-
r:::=
0,1
I----
0,01
5=~
T
~~
I-- .... f-
V
p-
1--"' .....
V
10
Fig. 5 Pulse power rating chart.
Ir
April 1979
5
l_______- -
80132
05229
B0132
o~~~~~~~~~~~~~~~~~~~~~~~~~~~
o
2·0
6·0
4'0
-lelA)
Fig. 6 D.C. current gain.
--
B0131 { eomplel1)entary f--rB0132
pair
---1
01830
..
100
Tj
75
I~
.....-~--"""""~~ .....
50 ,"~
~
~'"
~
.....
=25 ,~e
,
I"
~""il)it-n(Jtn
[""II"""
i"""~~
..... ~I'oo.
..... """'
hF:~ Qt ... VC~( S
013 1)
-v.
..... ~ ~!-... 1""-"""
...... ~ i::l'-o r--""", r""'-C:'.'SOI32) ~ 1<'1
r- ..."""""""
25
i"""~
......... ~-
1"'"0 ...
'2 V
..:n-,..
,~
a
a
2'0
6
AP'il1979
(
1
6'0
4'0
for B0131
+
le(A) for BD132 -Ie (A)
Fig. 7 D.C. current gain ratio.
l_____
Silicon planar epitaxial power transistor
B_D_13_2_ _
05228
leBO
7
5 '
I
t-t-
3t-
mA 1
)JA 1000
I·
I
-Vee = 40V
I
I
I
i
I
:
-;
7
,
5
I
I
I
3
~"
i
II ~/'
~~
I
'I
IJ
I
I
I
I
,
100
I I
I
i
7
i
5
IJ
I~"
I
I
3
"
I
I
I : :~'I
, lf~
~~
10
!
I
I
I
i
I
i
I
II
I I
I
'
I
r
I
I
I
I
II
:
iI
I
I
I I
I
: I
11
I
I
I
11
1Tiii
!
7
,5
I
3
I,
I
J.lA
nA
1
1000
I~
I
I
I
i I
i i
!
!
I
I.
i
II
--
I
I
I
r
I
I
7
5
: I)
I
;
I
.~
IIi!
100
7
I
i
'~~
3
I
I
I
I
I! ,
I
II I
I
I
III
I
i
:\'!
I I I
I
i
II
5
3
I)"
I~
10
o
50
"
II
~IJ
I
I
100
150
I
200
Fig. 8 Collector-base current (open emitter) as a function of the junction temperature.
April 1979
7
80132
01549
300
I I I I I
-VcE=2V 1-Tj = 25·C 1-11-1-
-Ic
(rnA)
200
I max
min
I
II
II
I
100
II
J
I
I
II
I
'I
I
J
o
f'
0.4
0.2
'"
~
0.6
0.8
: 1.0 -Vse(V)
Fig. 9.
--
01550
6
J
I
J
,I
1/
-Vce=2V
Tj = 25·C
'f'
-Ic
~
I
(A)
J
II
1/
~
I
4
I
".
,
min
I
11
max
IJ
'f
~
I
II
J
,
II
II'
I
I
1/
,
IJ
o
II
0.5
8
"
'f
2
"'"
April 1979
II'
~
,
"
1.0
r
1.5
2.0
Fig. 10.
I I I II
--
1--
1--
MAINTENANCE TYPE
II
B0133
II
SILICON PLANAR EPITAXIAL POWER TRANSISTOR
N-P-N transistor in a SOT-32 plastic envelope for general purpose, medium power applications.
QUICK REFERENCE DATA
Collector-base voltage (open emitter)
VCBO
max.
90
V
Collector-emitter voltage (open base)
VCEO
max.
60
V
Collector current (peak value)
ICM
max.
6
A
Ptot
max.
15
W
Junction temperature
Tj
max.
150
°C
D. C. current gain
IC = 0, 5 A; VCE = 12 V
hPE
>
40
Transition frequency at f = 35 MHz
IC = 0,25 A; VCE = 5 V
fT
>
60
Total power dissipation up to T mb
=
60 °c
MECHANICAL DATA
TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface
MHz
Dimensions in mm
1"-7,8 max
a
.~.~
~
+
3,2
3,0
+
L-n---rr--nr--l--'
~~~(11
--I
11,1
max
i
~-j
r
--t
15,3
min
JI.0,5
e
0,88__
c
max
~
1
b ,+,'-----,-
11_, ,
nS9324.2
1__
~
For mounting instructions see section Accessories type 56326 for non-insulated mounting
and set 56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.
February 1979
1
--
B0135
B0137
B0139
II
SILICON PLA'NAR EPITAXIAL POWER TRANSISTORS
General purpose n-p-n transistors in SOT-32 plastic envelope, recommended for driver
stages in hi-fi amplifiers and television circuits.
The BD136, BD138 and BD140 are complementary to the BD135, BD137 and BD139 respective1y.
QUICK REFERENCE DATA
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
Collector-emitter voltage (RBE = 1 kQ)
Collector current (peak value)
Total power dissipation up to T rnb = 70 oC
Junction temperature
D. C. current gain
IC = 150 rnA; V CE = 2 V
Transition frequency
IC == 50 rnA; V CE = 5 V
VCBO
VCEO
VCER
ICM
Ptot
Tj
BD135
BD137
BD139
45
45
45
1,5
8
150
60
60
60
1,5
8
150
100
80
100
1,5
8
150
<
40
250
40
250
40
250
typo
250
250
250 MHz
max.
max.
max.
max.
,max.
max.
>
hFE
fT
MECHANICAL DATA
V
V
V
A
W
oc
Dimensions in mm
TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface
1
2,7
max
I+-
,
I+- 7,8 --I
max
.rh.~
W
3,2
3,0
+
11,1
i
max
'--rr-*--rr'_l
o ~) [) ~~;(1l
-- - -- r---t
r
15,3
min
Ji__
0,5
e
c
----,-1
b'l"_
, II+-' ,
max
~
I+-0,88--.
7Z59324.2
~
For mounting instructions see section Accessories type 56326 for non-insulated mounting
and set 56333 for insulated mounting.
1) Within this region the cross:"section of the leads is uncontrolled.
February 1979
II
1
B013S
'B0137
B013,9
II
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
Collector-base voltage (open emitter)
BDI35
BDl37
BD139
VCBO
max.
45
60
100 V
Collector-emitter voltage (open base)
VCEO
max.
45
60
80 V
Collector-emitter voltage (RBE = 1 kQ)
VCER
max.
45
60
100 V
Emitter-base voltage (open collector)
VEBO
max.
5
5
5 V
Collector current (d. c. )
IC
max.
1, Q
1,0
1,0 A
Collector current (peak value)
rCM
max.
1,5
1,5
1,5 A
Currents
Power dissipation
Total power dissipation up to T mb = 70 °c
Ptot
max.
T stg
-65 to +150
oC
Tj
max.
°C
8
W
Temperatures
. Storage temperature
Junction temperature
150
THERMAL RESISTANCE
--
-
From junction to ambient in free air
From junction toniounting base
2
II
Rth j-a
Rth j-mb
JL~
100
°C/W
10
oC/W
August 1975
80135
80137
80139
Silicon planar epitaxial power transistors
CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE=0;VCB=30V
<
<
100 nA
ICBO
Emitter cut-off current
I C = Oi V EB = 5 V
lEBO
<
10 p.A
Base-emitter voltage
I C = 500 mA; V CE = 2 V
VBE
<
1 V
Saturatidn voltage
IC = 500 mA; IB = 50 mA
VCEsat
<
0,5 V
O.C. current gain
IC =
5 mA; V CE = 2 V
hFE
>
25
IC = 150 mA; VCE = 2 V
hFE
I C = 500 mA; V CE = 2 V
hFE
>
fT
typ
hFE1/hFE2
~p
IE = 0; V CB = 30 V; Tj = 125 °C
Transition frequency at f = 35 MHz
I C =50 mA; V CE = 5 V
ICBO
10 p.A
40 to 250.
25
250 MHz
O.C. current gain ratio of matched pairs
B0135/B0136; B0137/B0138; B0139/B0140
IICI =150 mA; IVCEI = 2 V
1,3
1,6
-.-....
-
I (June
1977
3
BD135
BD137
B0139 '
7Z621141
10
BD135
BD137
IC
(A)
Tmb:::70oC
I
0=0,01
ICMmax
1
~\\ \
ICmax
Ptot max
'\'\
III
'", \\ \ \
~
1\
'\ 1,\
\.\. \. \.
\.
\.\.
1\
\
IP.\.~\I\
(')°0'\
\.
1\
~"\\' 1\ \
~Q'~~~ 1\
.~~~ i\i\
~
\
\
o~
~
~~ ~
"
,
I
-----
tp=
2Ol1S
If')
M
.--I
~I
100
II
200
II
500
lints
d.c.
I"'-
~
~ ~
10- 2
10
. VCE (V)
Safe Operating Area with the transistor forward biased
I Region of permis sible d. c. operation
II Permissible extension for repetitive pulst;!
1
opera~ion
.
) Independent of temperature
4
II
September 1972
\
B013S
B0137
B0139
7Z621261
10
BD139
I
I
I
T m b:570
IC
°c
(A)
o=o,L
ICMmax
~\\ \
ICmax
l"l."
Pt,ot max
~
'\
II
\ \ \ 1\
I' \\ \ \
"\.
\.\.
\.
"
\.
\.\ \.
\. ~~ ~ ~
Q1~ ~~'I\ \
I
\
tp
I' 20'
1\
0~~~\
( ) ' \ !\' 1\1\
IC
10- 1
0%,
~(mA)
f~
4
I
-----
II
~ 20 a
~
,
50 a
I I
1 ms
~ d.~
2
ff-
~r'\
,- ~~
)
y
f-
I-
J0I
[\f\ 11
%~~
~e l'\ 1\10
a
1
III
a
60
80
100
l-
10- 2 ,-,
1
I I rrlTI
0\
C'f';)
....-l
0
i:Q
10
VCE (V)
Safe Operating Area with the 'transistor forw'ard biased
Region of permissible d.c. operation
II Permissible extension for repetitive pulsed operation
III Repetit'ive pulse' operation in this region is allowable,
provided RBE :s I, H2
1) Independent of temperature
September 1972
II
5
B0135
B0137
80139
7Z668191
100
1\
\
Ptot max
,
(%)
1\
75
1\
\
,
1\
50
~
\.
\
25
,
~
\
,
1\
°
°
I.,..-" ~
.."" .
100
50
150
Tmb (oC)
0,05
0,.02
0,01
llill
10- 1
l't(-6
6
10-: 5
II
10- 4
10- 3
10- 2
10- 1 tp (s)
1
September 1972
B01~~
B0137',
B0139
II
7Z62965
S.B. voltage multiplying factor at the IC max level
MSB(I)
0,10
10
0,05 0,02 {) =0,01
r--.~ ~
...
,
~
".........
~'"
-0,20
~
........ &
........;
. r-t-
---
r-...........
0,33
0,50
0,75
.......
~
~
b:' ~~ ~I:::
-r- r-r-- -l-
t--
1
10- 6
7Z62966
S .B. current multiplying factor at the VCE 0 max level (45 V)
t - - t--
BDl35
MSB(V)
0,05
0,10
10
i""
0,02 {) =0,01
r- ~~~
.....
--
f--0,20
1---0,133
0,50
0,'75
1
10- 6
September 1972
10- 5
II
~,
...... ..... ~
........... iIIIIo
---r--- ~i""S
I"- i-oo-!"", f'"
~
t:::;::
r--:::
r---...: ~"""
10- 4
10- 3
tp (8)
II
10- 2
7
---
B0135
BO"137
B0139
7Z62967
S.B. current multiplying factor at the VCEOmax level (60V)
r-- r-- BD137
MSB(V)
0,05
.. r-. .... 0,~,0,01
0,10
10
-
-0,20
I
0,33
.......
"",,-L'
....... 1.....:
r-...
I"'.N
........ ~
r- ""
r-",,",
0,50
~"" ~
t;:::
~
bolo-.
---....;
I--
0,75
1
Ii==
10- 6
10 - 2
tp (S )
1Z62968
S.B. current multiplying factor at the VCEO ma)( level (80 V)
r-- t - BD139
MSB(V)
0,02 () =0,01
~ I""-r-. ~~rooroo
10 _0,10
r-.i"oo
r-
~.
....
rO,20
:""00.
....."
~
--
0,33
0,50
0,75
~~
~
I""r-
~~
I"'r-; St:l
~
-"""'
I'-t-
~
-~
r--""-
~
10- 5
September 1972
8
II
B013S
B0137
B0139
7Z I 0445
Ic
(rnA )
VCE =2V
Tj =25°C
rnax Is
~
~
.,.1.00'
II
10
V
1 10 3
10 - 2
10
/
10
I
---
7Z10441
150
typical behaviour of d.c. current gain. versus collector current
VcE =2V
Tj =25 O C
100
I--""
~
..........
"'"
~"'"
.-'
"
1\
"
50
"
'"'"
o
September 1972
Ic (rnA)
10
1
II
II
10 4
9
80135
80137
80139
II
7ZI06 46
600
7Z72439
400
Ic
VeE = 5 V
f =35MHz
lj = 25°C
fr
(MHz)
(mA )
VCE =2V 1-1-
Tj = 25°C t-+-
300
~
400
typ
-~
~ax VSE
I-
II
"
tyP)
200
1\
n
/
200
7
100
~
I
",/
I;
Ii
V
j
o
o
IJ
o
VSE (V)
7Zt04-37
6
I
I I
Tj=25°C
VCEsat
10 2 l~ (mA)
10
7Zt0446
1,5
I I
IT
lj=25°C
VBEsat
typical
values
(V)
1
2
typical
vaLues
(V)
L...
.
4
j
1,..00
Ie /I B=20
L.,.~ L,..I-"
II
1/
j,..o'c..
"""~
L,.. ....
1j,..
I e /lB=5-
lQ_ 1-1-120
"""I-"""
~~~
L... ~~
I .
II
~t:'
, I
II
II
2
0,5
II
II
)
1/ 10-1-1-1-
.....
I/'
V
j"..o
o
o
10
10""
"""
.... 1-'
51-1-1-1-
Ie (A)
II
2
Ie(A)
II
2
August 1975
B0136'
B0138
B0140
II
SILICON PLANAR EPITAXIAL POWER TRANSISTORS
General purpose p-n-p transistors in SOT-32 plastic envelope, recommended for driver
stages in hi-fi amplifiers and television circuits.
TheBD135, BD137 and BD139 are complementary to the BD136, BD138 and BD140respectively.
QUICK REFERENCE DATA
BD136 BD138 BD140
max.
45
60
100
V
-VCEO
max.
45
60
80
V
Collector-emitter voltage(RBE :: 1 kQ)
-VCER
max.
45
60
100
V
Collector current (peak value)
-ICM
max. 1,5
1,5
1,5
A
Collector-base voltage (open emitter)
Collector - emitter voltage (open. base)
-VCBO
Total power dissipationuptoTmb :: 70 0 C
Ptot
max.
8
8
Junction temperature
Tj
max. 150
150
150
D. C. current gain
-IC:: 150 mA;-VCE :: 2 V
hFE
>
<
40
250
40
250
40
250
Transition frequency
~IC :: 50 rnA; -VCE
rr
typo
75
75
75
=5 V
MECHANICAL DATA
,
TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface
°c
MHz
Dimensions in mm
1.... 7.8max--1
_7h_~
3.2
3,0
+
8 W
~
11,1
max
i
~_J
r
15.3
min
e
-.II....
0,5
1
bljl'---,-
C
0,88...11. . '
,max
~
7ZS9324,2
I....
~
For mounting instructions see section Accessories type 56326 for non-insulated mounting
and set 56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.
February 1979
II
II
1
--
--
8Dl36
80138
80140'
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
BD136 BD138 BD140
Collector-base voltage (open emitter)
-VCBO
max.
45
60
100
V
Collector-emitter voltage (open base)
-VCEO
max.
45
60
80
V
Collector-emitter voltage (RBE = l,kQ)
-VCER
max.
45
60
100
V
-VEBO
max.
5
5
5
V
Collector current (d. c.)
-IC
max.
1,0
1,0
1,0
A
Collector current (peak value)
-ICM
max.
1,5
1,5
1,5
A
Emitter-base voltage (open collector)
Currents
Power dissipation
Total power dissipation up to T mb
= 70 oC
Ptot
max.
8
W
Temperatures
,Storage temperature
, T stg
Junction temperature
Tj
-65 to +150
oC
.max.
°c
150
THERMAL RESISTANCE
From junction to ambient in free air
From junction to mounting base
2
II
Rth j-a
Rth j-mb
II
100
°C/W
10
OCM.
August 1975
80136
8D138
8D140
Silicon planar epitaxial power transistors
CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE=:=0;-VCB=30V
<
<
100 nA
-ICBO
Emitter cut-off current
IC=0;-VEB=5V
-lEBO
<"
10 tJA
Base-emitter voltage
-IC = 500 mA; -VCE = 2 V
-VEB
<
1 V
Saturation voltage
-Ie = 500 mA; -IB = 50 mA
IE = 0; -VCB = 30 V; Tj = 125 oC
-ICBO
10 p.A
-VCEsat
<
0,5 V
O.C. current gain
-IC=
5mA;-VCE=2V
hFE
>
25
-IC = 150 mA; -VCE = 2 V
hFE
-IC = 500 mA; -VCE = 2 V
hFE
>
25
fT
typ
75 MHz
typ
hFE1/hFE2
<
1,3
1,6
Transition frequency at f = 35 MHz
-IC = 50 mA; -VCE:= 5 V
O.C. current gain ratio of matched pairs
B0135/B0136; B0137/B0138; B0139/B0140
IICI = 150 mA; IVCEI = 2 V
40 to 250
I(June
1977
3
BD136
BD138
B'D140
II
7Z6 2114.1 A
10
i
, -IC
, BD136
BD138
11
(A)
Tmb~70
oc
I
c5 =O,O~
,
-ICMmax
~\\ \
-ICmax
1
'1.'1.'1.
Ptot max
"'
~
\.\. \.
\.\.
1'1
1\
1'1.
\.
\.
\. \.\ \.\
t p-20lls
\.
\
'\. \~ \ r\ 1\
~~00" .\\'1\ \ r\
,
~~~~ ~
~~, ,,,\
9Q~ ~
I
----=
~v"
J
~
5f
100
I I
1\ 200
~ ~ 500
I
I\.
I
1,IIJ-sd.c.
\0
00
.-4
.-4
~
~
@@
10- 2
1
10
-VCE (V)
Safe Operating Area with the transistor forward biased
I
Region of permissible d. c. operation
extensi~n for repetitive pulse operathm
II Permissible
1) Independent of temperature
4
II
September
1~72
80136
B0138
80140
7Z621261A
10
BD140
I
I
I
I
I
I I I
I I
Tmbs700C
-IC
(A)
0=0.61
-ICMmax
.
~\\ \
I
-iCmax
Ptot max
~
\.'\.
\.
\.\. \. \.
"\. \.\ \.\
\.\.
\.
f\
II
\.
I\. \.
I\,
\.
\
~\. I\,
I\,
1\ 1\ 20 J..1s
0~~~\
1/
Q' I\' r\ 1\\
1\1\ !IOI
~~~
~Q: l'\ ~ I OP
- -IC
o%\~ ~r\
\.
:::,(mA)
4
2
I
---
I
20'0
, °
I'\. \.
I\.
50
Itp s
1\ Q.C
II
~
°
~
tp
~;~\\\. \
I
I-
\
III
60
80 100
-VCE (V)
0
~
.-I
I I IIIII
10- 2
Ea
10
1
-VCE (V)
Safe Operating Area with the transistor forward biased
Region of permissible d.c. operation
II Permissible extension for repetitive pulse' operation '
III Repetitive pulse operation in this region is allowable,
provided RBE ::s' 1 kn.
1) Independent of temperature
September 1972
II
II
5
8D136
:g~~~
I
.
7Z668191
100
~
.\
Ptot max
,
(%)
1\
75
1\
\
,
1\
50
\
\
,
1\
25
\
\
,
1\
o
o
50
100
150
Tmb (oC)
1
6
II
September 1972
B0136
B0138
B0140
II
7Z62965
S.B. voltage mUltiplying factor at the IC max level
MSB(l)
0,05
0,10
10
t-O,20
0,33
0,02 0=0,01
t"--r-.
r-.
1"-
~
.......
,
..................:
- ....
'&
~ ........:: ~
-.......
0,50
r - - r- ~ ~~ t::~
0,75
I- I-r- ~t-
-
l"'" t"'"
ts!!Io.
I'---
1
10- 6
10 - 3
tp ( S )
7Z62966A
S.B. current mUltiplying factor at the -VCEOmax level (45V)
j---- t -
BD136
MSB(V)
0,05
0,10
10
-0,20
-0,133
0,50
0,75
i""
0,02 0 =0,01
,~~
......
--
......
~,
,~
......
-"'~
-~ ..... r"r-.
r- t-
~
-~
r-
~
t--:::
r---.: S
~~
1
10- 6
September 1972
II
7
---
---
80136
BD138
B·D140
I
II
7Z62967A
S.B. current inultiplying factor at the -VCEOmax level (60V)
r--- -
BD138
MSB(V)
\
I
0,05
0,10
10
..... r--~ 0,~,=0,01
- "I'
- - r--.
....... I.....
,,~
-0,20
r....~
........ ~
~
r-- r-I'-o "'1"-
0,33
0,50
0,75
I
1
10- 6
~
--
r-.::-- .;:::0-
_.
-~
10 - 3
tp ( S )
7Z62968 A
S.B~ current mUltiplying factor at the -VCEOmax level (80V)
-
r-- BD140
MSB(V)
'r-O,OS
~
10
~0,1O
0,02 0=0,01
~r--.
r-..~,
,~
r-..~
~
....
f-0,20
.......
--- -
0,50
0,7S
-
10- 6
8
....... ~~
'"
........ .... ~ :;::~
0,33
1
....... :.......
.........
10- 5
II
-
~
-"",
.
~
~
--..;;::: ~ ~
~~
10- 4
I
September 1972
B0136
B0138
B0140
7Z10644
-Ic
(rnA)
-VcE=2V
Tj =25°C
max I:\
.JI'
V
/
~i'"
'I
10
/
V
1
10
3
10
10- 1
2
10
---
7Z10451
150
,typical behaviour of d.c. current gain versus collector current
I
~
I
-VCE =2V
Tj =25°C
100
~
--
i""'..
"-
"-
"-'\.
'\.
'\
"
50
"'\.'\.
o
1
September 1972
-Ic (rnA)
10
II
10 4
9
80136
B0138
B0140
1Z1D6u7
60 0
7Z72440
200
-VeE = 5V
f =35MHz
Tj = 25°C
-Ic
(mA )
)
-VCE=2 V
1j = 25°C
f--f-I-f-
150
40 0
typ
!max-VSE
100
.......
typ L,,10-
200
~
j""
""
50
'/
./
Ii
o
o
o
/
6
I
I I
-VSE (V)
7210447
-V
typical
values
(V)
1210454
1,5
lj =25°C
-VCEsat
, 10
1
2
I I
I r
I
T
lj=25°C
BEsa t
typical
values
(V)
L....
~
4
L,.oo
IclIs =20
..... ~ ~t::=~
,-"'" ...
~t::::. ~
I e /I B=5-
,d~ 20-
f-I-I~~~
...... ~ [:::::~
I
1/
~~
Iii
II
J
1/
2
0,5
J
IJ
J
~'O- f-f-I-
I/'
1/
~
I-~
1/
....
I-""
...
10'
1/
1--5 f----I- I-f----
-Ie (A)
10
II
2
-Ie (A)
II
2
August 1975
I
-II
MAINTENANCE TYPES
80181 to 183
SILICON DIFFUSED POWER TRANSISTORS
N.,P-N transistors in a TO-3 metal envelope for use in hi-fi audio equipment.
The BDl81 is intended for 20 W into 4Q as well as 15 Winto 8Q.
The BDl82 is intended for 40 W into 4Q.
The BDl83 is intended for 40 W into 8Q.
The transistors are also available as matched pairs under the type numbers 2 -BDI81,
2-BD182 and 2-BD183.
QUICK REFERENCE DATA
Collector-emitter voltage (open base)
Collector-emitter voltage (RBE =100 Q)
Collector current (peak value)
Total power dissipation
up to T mb = 25 °c
up to T mb == 83 °c
Junction temperature
D. C. current gain
IC = 3 A; VCE = 4 V
IC = 4 A; VCE = 4 V
Cut-off frequency
IC = 0,3 A; VCE = 4 V
VCEO max.
VCER max.
max.
ICM
P tot
P tot
Tj
max.
max.
max.
BD182
60
70
15
-
117
78
200
200
>
BD183
80 V
85 V
15 A
117W
- W
200 °c
-
-
20 to 70
hFE
hFE
fhfe
BD181
45
55
15
-
20to 70
15
15
MECHANICAL DATA
20to 70
15 kHz
Dimensions in mm
Collector connec ted to envelope
TO-3
-26,6max-
111
39,5 301
max
_r _
1"-
8 '63 max
...., .... 1,6
J
.
+
-4,2
_4,0
1
20,3
max
1_
!
1=====+=+1
+
7268064.31 ....
12,8-.
11,2
For mounting instructions and accessories, see section Accessories.
February 1979
II
1
II
B0201'
B0203
II
SILICON EPITAXIAL-BASE POWER TRANSISTORS
N-P-N transistors in a plastic envelope. With their p-n-p complements BD202 and BD204
they are primarily intended for use in hi-fi equipment delivering an output of 15 to 25 W
into a 4 Q or 8 Q load.
QUICK REFERENCE DATA
Collector-emitter voltage (open base)
Collector current (d. c.)
Total power dissipation up to T mb = 25
°c
Cut-off frequency
IC = 0,3 A; V CE = 3 V
BD201
BD203
VCEO
max.
45
60
IC
max.
8
8
A
Ptot
max.
60
60
W
fhfe
>
25
25
kHz
MECHANICAL DATA
V
Dimensions in mm
TO-220
Collector connected
to mounting base
2,8
+
._Ib~~~
3,5 max
not tinned
~-I
max""
+ 15,8
.
max
J
-I
5,1
max
_I
--t
12,7
min
( 2x)
bee
....i
'+'------'
"'i:-o,9max (3x)
2,54 2,54
1
0,6
--2,4
. .1 - -
..
7Z65872.3
F or mounting instructions and accessories see section Accessories.
June 1977
II·
1
80201
80203
II
II
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)·
Voltages
BD201
BD203
VCBO
max.
60
60
V
Collector-emitter voltage (open base)
VCEO
m.ax.
45
60
V
Emitter-base voltage (open collector)
\rEBO
max.
5
5
V
IC
max.
8
A
ICM
max.
12
A
ICSM
max.
25
A
Ptot
max.
60
W
Storage temperature
T stg
-65 to +150
°C
Junction temperature
Tj
max.
oC
Collector-base voltage (open emitter)
Currents
Collector current (d. c.)
Collector current (peak value, tp
~
10 ms)
Collector current (non - repetitive peak
value, tp ~ 2 ms)
Power dissipation
Total power dissipation up fo Tmb
= 25
0C
Temperatures
---
150
THERMAL RESIST ANCE
From junction to mounting base
Rth j-mb
From jUnction to ambient in free air
Rth j-a
2
II
2,08
°CjW
70
°C/W
II
80201
80203
II
CHARACTERISTICS
= 250C
Tj
unless otherwise specified
Collector cut-off current
IB
IE
= 0;
= 0;
VCE
VCB
= 30 V
= 40 V; Tj = 150°C
rnA
ICEO
<
ICBO
<
1
rnA
lEBO
<
5
rnA
VBE
<
1,5
V
VCEK
typo
1
V
VCEsat
<
1
V
Emitter cut- off current
IC
= 0;
VEB
=5 V
Base-emitter voltage 1)
IC
= 3 A; VCE = 2 V
Knee voltage 1)
IC = 3 A; IB = value for which
IC
= 3,3 A at VeE = 2 V
Saturation voltage 1)
IC = 3 A; IB = 0,3 A
D. C. current gain 1)
BD201; Ie = 3 A; VCE = 2 V
hFE
>
30
BD203; Ie = 2 A; VCE = 2 V
hFE
>
30
IC = 1 A; VCE = 2 V
hFE
>
30
fhfe
>
25
>
3
Cut- off frequency
IC = 0, 3 A; V CE = 3 V
Transition frequency at f
= 1 MHz
IC = 0,3 A; VCE = 3 V
1) Mea~ured under pulse conditions: tp < 300 iJS, a <
February 1979
kHz
MHz
2%.
3
8D:201
II
BD~203
7Z62023 Z
Tmb::5 25 oC.
IC
(A)
[) =0,01
ICMmax
10 ICmax
"-
......
~
~
'-
'\.
'\
......
\
"-
\
\
\
Ptot max ' " \
tp=
< 2O lls
I·
\.
\
\
\
100
-IT
\II
\ \
".\~ \\
\
I
second
breakdown 1)
1
--=.......
~
\
~\ \
1\
266
1\ 500
II
\.
\
"\
Ims-
,
~1O
\
.-I
0
C"I
1
d.c.
~
0
C"I
Cl Cl
I:Q
10- 1
1
10
I:Q
VCE (V)
Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation
For Ptot max versus Tmb see page 8.
1) Independent of temperature.
4
.1
September 1972
80201
80203
II
II
7Z67034
3
-.lLfL
t!;j
15=1
2
-
--
0,7 _to-
I-""""'"
"","
...
1
l--""'
0,5
~
:,...
I"""'"
".
-~
".."""
~ [....00'
~
I
I--'
..... "'"
..... t:::;~
~~
~
10-'
0:;. ......
-~
-_I"'"
I""'"L ~
:...-'
"",I-
.....,.
.....
.....
tp
0=T
I'
~~
......-:: ft,....] ...
~~
~
........
"
"'"
too-
°10- 5
-
""'I"--
0,1
0,05
0111
Ijlll
1
tp (s)
1Z62857
S.B. voltage multiplying factor at the
Ie ll1.ax level
MSB(I)
10
~OiOl
-
~
~?,102'
I".
~0,05 ....... i"-o..
- 0 , 1 _ ........
~0;2
~
-r--rI
=0,5
,,
...... r-..,
::::t"--I"to' r--.r--""
-
~I:::~ ~
1-1"-
~~~
- I - t'-I- _ _ _ _
1
10- 5
September 1972
10- 4
1
~ ~~
r-- ~ ~~ t::---
--
1==1=
1-000
tp (s)
II
5
10
---
8D2.01
II
8D203
7Z62858
S.B. cur.rent multiplying factor at the VCEOmax level
.........
MSB(V)
-.........
1
..........
0=0,01
"t:{j
r---- r-- J,62' 1"-1"r-
--
r-
10
b.~ I"-~
'" ~
r-tf~ ~~~ ~,
---
I I
"
"
........
~
--- -
0,2
'"
.....
"""'-.........
"""'r--...
'"
~ l'
r'" t.;::~
t'" ~ .... f' ~~!I.
"'I"'-
0,5
r--~
~ .....
-
~
1"-1- t-r-
1
10- 5
--MSB(V)
-
~ .........
10- 2
7Z62859
S.B. current multiplying factor at the VCEOmax level
..........
~
I~I
1
1
0 =0 00 I..... i'.
i I
-I"---
BD203
0~02
~
Tt ...........
0,05
0~1
10
--
.... 1'"
"
="~ ,
~
.......
0~2
~
.........
- r--....
0,5
.......
-~
......."
...... ~~
~~
..... r....
.....
....
1:iI~
.... ...
~-........
~ rr--- r-r-
'.
1
10- 5
6
r-r- r-r-
tp (s)
--
_Ll
BD201
10- 4
II
10- 3
tp (s)
--
t--
10- 2
September 1972
II
80201
80203
II
7Z62391
10
I
I
I I
VCE=2.V
Tj =25 °c
IC
I;"'"
~
1..".00'
~
~io"
(A)
l/
1
~
~
I""""
/l:
/
If'
~
V
1/
/11'
V
102
10
103
IB (rnA)
--
7Z62403
150
T
I
-
T T
I
T
I I I
V CE =2V
Tj =25 °c
100
L,....-o ....
~ 1000- ....
typ ............
50
.JIll"
.,,;
./
"
""
i""'o....
'"
~
----
~
~
"I"\:
.,,;'
. I'
0
10- 2
September 1972
10- 1
1
IC (A)
10
II
7
80201
80203
II
I
15
7Z62395
I I I I
I I I
7Z6703S
I
I
r-rVCE=2V r-rT j =25 0 C H-
IC
(A)
,
100
Ptot
I\,
max
(%)
10
"
l\
75
\
,
~
~
tyP.J
~
50
,
1\
1/
5
1\
I)
IL
II
.\
25
"
,
~
Il\
IJ
o
---
~
o
1
VBE (V)
o
2
?ZU393
1.5
~
o
50
7Z62397
3
I I I I I
I I I I
IC
-=10
IB .
Tj =25 0c
VCEsat r (V)
t--
VBEsat
1
~
I
0.5
/
1-
IC
-=10
IB
Tj =25 oc
I
I
(V)
I
V
t-rt-rI-tt-rt-r-
2
1
/
~
1/
~
I
~
1
1/
~
"..
typ
"""
~"
L
/
I
0
0
0
5
8
II
IC (A)
·10
0
5
I
IC(A)
10
September 1972
B0201
B0203
II
"
7Z62399
t=
100
VCB=OV
IB
(rnA)
VCB 40V
f-f-
~
max
10'
y
~
'-
7Z 62 38 7.
"'"
-
75
1/
v
1\
50
I"
L.,..o
"
"",typ
" f'bJ,......
~
25
t-
"""
1/
~
1/
10
-IE=3A- I--
typ
/
V
-
2A- -
V
1/
1
.....
,J
10- 1
o
o
-100
100 Tj(OC) 200
50
0
---
7Z62406
20
fT
(MHz)
VCB=3V
I--- I---
Tj =25 0C
I--- I---
15
,
"-
J"""oo. ~
1"'-0.10...
10
I"""'"
r---typ
. I""'-
r---Io..
-I'-- I'--
~
-l"'- I--
I--I-
5
o
o
September 1972
1
2
3
5 -IE (A)
4
II
6
9
B0202
B0204
II
SILICON EPITAXIAL-BASE POWER TRANSISTORS
P-N-P transistors in a plastic envelope. With their n-p-n complements BD201 and BD203
they are primarily intended for use in hi-fi equipment delivering an output of 15 to 25 W
into a 4 Q or 8 Q load.
QUICK REFERENCE DATA
BD202
BD204
Collector-emitter voltage (open base)
-VCEO
max.
45
60
V
Collector current (d. c.)
-IC
max.
8
8
A
Ptot
max.
60
60
W
fhfe
>
25
25
kHz
Total power dissipation up to T mb = 25 °C
Cut-off frequency
- IC
= 0, 3 A ; -V CE = 3 V
Dimensions in mm
MECHANICAL DATA
TO-220
-I~~'
1,3-- , -
Collector connected
to mounting base
.-
~-
---
5,9
min
15,8
max
I
I
I
I
J
+-Il::<~F;::::::;=;~--+-f
3,5 max
not tinned
. ';;x
\;~I.\
--t
max
-
......
I
J
12,7
min
I
(2x)
bee
-.i -.li:-o
~
,9max (3x)
2,54 2,54
.
----
-1
1
..-
0,6
"-2,4
7265872.3
For mounting instructions and accessories see section Accessories.
June 1977
II
1
'80202
80204
II
RATINGS Limiting values in accordance with the Absolute Maximum System (lEe 134)
Voltages
BD202
Collector-base voltage (open emitter)
BD204
":'VCBO
max.
60
60
Collector-emitter voltage (open base)
-VCEO
max.
45
60 \ V
E mitter- base voltage' (open collector)
-VEBO
max.
5
5
V
V
-.-~
Currents
Collector current (d. c.)
-IC
max.
8
A
Collector current (peak value, tp $10 ms)
-ICM
max.
12
A
Collector current (non-repetitive peak
value, tp $ 2 ms)
-ICSM
,max.
25
A
Ptot
max.
60
W
PowerdissipatiQn
Total power dissipation, up to T mb = 25
~
°c
Temperatures
--
Storage temperature
Tstg
Junction temperature
Tj
-65 to +150
max.
150
°c
°c
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
From junction to ambient in free air
Rth j-a
2
II
II
2,08
°C/W
70
°C/W
August 1975
80202
80204
II
CHARACTERISTICS
T j == 25 oc unless otherwise specified
Collector cut-off current
IB = 0; -VCE = 30 V
-ICEO
<
1
rnA
IE=O; -VCB =40V;Tj=150 oC
-ICBO
<
1
rnA
-lEBO
<
5
rnA
-VBE
<
1,5
V
-VCEK
typo
1
V
-V CEsat
<
1
V
>
30
Emitter cut- off current
IC =0; -VEB = 5 V
Base-emitter voltage. 1)
- IC = 3 A; -V CE == 2 V
Knee voltage 1)
-IC = 3 A; -IB = value at which
-IC = 3,3 A at -VCE = 2 V
Saturation voltage 1)
-IC = 3 A; -IB = 0,3 A
D.C. current gain 1)
BD202; -IC = 3 A; -.vCE = 2 V
hPE
I
BD204; -IC = 2 A; -VCE = 2 V
....:IC = 1 A; -V CE == 2 V
hPE
>
30
hPE
>
30
fhfe
>
25
kHz
>
3
MHz
-
Cut-off frequency
- IC = 0, 3 A; -V CE = 3 V
Transition frequency at f == 1 MHz
- IC
= 0,3 A;
-V CE
=3 V
1) Measured under pulse conditions: tp < 300 J.lS, 0 < 2%.
Pebruary 1979
II
II
3
80202"
80204
II
I
7Z620232A
Tmb
:5
250C
-IC
(A)
0=0,01
-:-ICMmax
1
10 -ICmax
'\.
,
'\. I'\. 1'\
'\.
"
\
1/'\
Ptot max ~ \
1\
\
"\
second
\
100
'\ \
\
~
breakdown 1) .
1
rt+
'\
\ [\11
"f\~
I
tp=
.:::;20\-1s
266
\1\
1\
~
1\
,
\\
\
----
-1\
\
"
1\ 5p~
\
1ms-
~
~1Od.c.
N
0
N
Cl
ttl
10
-.:t'
0
N
EE
-VCE (V)
Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation
For Ptot max versus Tmb see page 8.
1) Independent of temperature.
4
II
II
September 1972
80202
80204
II
7167034
3
~
t!;j T
tp
0=-
0=1
2
I
0,7
1
~
~
~
-
"
--
....
~
0,2
-
-I-
0,5
~
°
-
Il Jt
10- 1-- ;"..-
,""
~
_I-"
--,
....... 1"""1
\..io~
..,,~
!
~ ,/
I
~
,
.....-..".......-: V
/'
" "~c::;
-
0,1
0,05
0111
[[III
lO-2
1
tp (s)
7Z62857A
S .B. voltage multiplying factor at the -Ie max level
MSB(I)
~OiOl
-
,..,
~o,02'
t---... I'....
~~05'"
' ......
r-..... .............
-0,1
=0,2
["0...
r-...
~ ~ ........ i' r--i' I'"
-r--rI
~
r--.; f:::~
-r- I"-
September 1972
t'-~
r-r-. I'-~
=0,5
1
lO-5
'
, / /~
10- 5
lO
I
I
1-:::--
........-:: ~~
f.-"""~ i""'1'--
.....-
~
_I-
~
~~
~
""
i-"""
........
OT'lr
--
~~
~~
...........
---
lO-4
~
~ ~'::::::: t:::::---
f--.
tp (s)
II
5
10
---
80202
80204
7Z62858A
S.B. current multiplying factor at the ",VCEOmax level
r-....
I I II
...........
~
MSB(V)
10
BD202
~NJI
r--- r-.. r--.. b62'" ~i"o
--
~'il
r--
b,bt ~""
rtf~ 1--1J
I I
0,2
~
~
-- ~ "
---
.......
~
..
..... I'!o.
"
...... ,.......
I'~ ~
r....,.... ~l'
- r--
r--
r-..; ts~
r'~l'
I'-
1'1'""
0,5
- I"'-r-
1-1-
1
10- 5
~
...............
-
~~
~r-
r"-i-'I'"
tp (s)
I
~,
--
7Zii2859A
~
I
I~
I
I III
1
0 = 010i"
i1
MSB(V)
S.B. current multiplying factor at the -VCEOmax level
BD204
1'.
- --It ~
1-- .... ~i'.:.
r.............. ~
I
1.....
1',
0 ,02
...........
0,05
,
...
10
-
O,~
0~2
-
.......
,-...;
......... ="'~
....... .:"'~
r--.
~~
"'"'
--r--..r-..
~~
1""' ...
0,5
~........
'
r--- ~r- r- ....r1
10- 5
6
10- 4
II
10- 3
tp (s)
II
r"- t-
10- 2
September. 1972
80202
80204
II
7Z62392
10
I
I
-Ie
-""""
-
-IB (rnA)
.
I I
':'VeE=2V
Tj=25 0 e
""",
~
(A)
.
1
/'
.........
...... "
,,'"
"."."",
/typ
"
~v
~V
~/
V
10
10 3 .
4
150
I I
I
I
I
I
-VCE=2V
Tj=25 0 e
".
100
1.,.000
,.,.
.JI'"
----
~
typ
...... '"
I'
.""-
"-
.",
,
"-
.",
\.
""
50
o
10- 1
10- 2
September 1972
II
1
""
"."
-Ie (A)
II
\.
10
7
---
8D202
8D204
II
15
7Z62396
7Z67035
11 1 1 1
I I
I I
-VCE =2V t-tT j =25 0C t-tI-r-
-IC
(A)
,
100
I\,
Ptot max
(%)
10
_\
1\
75
I
~
,
1\
I"
1.
I\,
50
li
1\
typ - t - - -
III"
5
\
\
"
If
\
25
,
~
IL
~
I
o
I'
o
1
-VBE (V)
o
2
\
o
50
I
~
7Z62394
1.5
7Z62398
3
IC
I
1
/
I
I
t-ft-rt-r-f-t-
L
V
IL
IL
typ 1/
~
~
io"""
/
i.;o'
~
1
J
io""
1/
~v
I
V
J
I/'
V
o
o
8
I
2
If
I .....
~
I
-=10
IB
Tj =25 °c
-VBEsat
(V)
L
W;
o
1
IC
-VCEsat t---- - = 10
IB
(V)
-T j =25 0C
0.5
1
5
I
-Ic (A)
10
o
5
II
-IC (A)
10
September 1972,
80202
80204
103
7Z62400
100
I-- I--
7Z62387b
-ICBO ~-VCB 40V
(\-1A)
-VC.a=OV
".
-IB
(rnA)
V
,
1\
75
j
I\.
\
"",typ
,...
17
V
V
max I'"
...... ~
--
10'"
~
I E =3A-
17
1/
)1
10
1/
typ
50
~
"
I"
25
-
typ
r--
~
2A I-~
1/
~""
/V
1
I....
~
10- 1
o
o
-100
100 Tj (0C) 200
50
0
---
--
7Z62405
20
fT
.(MHz)
-VCB =3V I---I--Tj =25 0C r-- f--
15
~
.......
"'" i"
i'..
1'100..
t'-.
10
f'~
~'"
f"""
<
>
40
250
25
40
160
25
40
160
25
fT
typo
125
125
125 MHz
Dimensions in mm
MECHANICAL DATA
TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface
V
V
V
A
W
oC
...,2.7,_
1- 7•8
max
--
1
max ....
-3jSj
_~.
3.2
3,0
~
+
11.1
I
max
~-I
15.3
min
e
...11.0,5
C
1
bljl'-----,-
0.88-.11_,
,
max
~
7ZS9321..2
1__
~
F or mounting instructions see section Access ories, type 56326 for non -insulated mounting
and type 56333 for insulated mounting.
.
1) Within this region the cross-section of the leads is uncontrolled.
February 1979
II
II
1
----
I
8D226 80228
8D230'
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
B0226 B0228 B0230
Collector-base voltage (open emitter)
VCBO
max.
45
60
100
V
Collector-emitter voltage (open base)
VCEO
max.
45
60
80
V
Collector-emitter voltage (RBE ,= 1 kQ)
VCER
max.
45
60
100
V
Emitter-base voltage (open collector)
VEBO
max.
5
5
5
V
Currents
Collector current (d. c.)
IC
Collector current (peak vqlue)
ICM
/
max.
1,5
A
max.
3
A
Power dissipatio:p
Total power dissipation up to T mb= 62 oc
Ptot
max.
12,5
W
Temperatures
Storage temperature
T stg
-65 to +150
oC
Junction temperature
Tj
max'.
150
oc
100
°C/W
7
°C/W
THERMAL RESISTANCE
From junction to ambient in free air
Rth j-a
From junction to mounting base
Rth j-mb
2
II
II
August 1975
80226 80228
80230
II
CHARACTERISTICS
Tj ::: 2S
°c
unless otherwise specified
Collector cut-off current
IE ::: 0; VCB ::: 30 V
I CBO
<
100
nA
IE ::: 0; VCB::: 30 V; T j ::: 125°C
I CBO
<
10
J.lA
lEBO
<
10
J.lA
VBE
<
1,3
V
VCEsat
<
0,8
V
Emitter cut-off current
IC ::: 0; VEB ::: 5 V
Base-emitter voltage 1)
IC ::: 1 A; VCE ::: 2 V
Saturation voltage
IC ::: 1 A; IB ::: 0.1 A .
D. C. current gain
IC :::
IC
!::
IC =
BD226 BD228 BD230
5rnA;VC E=2V
hPE
150 rnA; VCE = 2 V
>
>
hPE
hPE
<
>
fT
typo
125
typo
<
1,3
1,6
lA
;VC E=2V
25
40
250
25
25
40
160
25
25
40
160
25
Transition freguency atf = 3S MHz
IC = 50 rnA; VCE = S V
MHz
D. C. current ~in ratio of
matched pairs
BD226/BD227; BD228/BD229;
BD230/BD231
IIeI = 150 rnA; IVCEI ::: 2 V
hPEI/hpE2
1) VBE decreases by about 2,3 mV /oC with increasing temperature.
November 1972
II
II
3
-----
-
80226 80228
80230
7Z62121 2
10
Tmb
IC
62. 0c
c-
0::: 0,01
lCMmax
(A)
:5
II
lCmax
tp
r\'" \
Ptotm!~'"'"'" \\
~~i'\ ~\'\
'\
~I\
I'
'~~
'\
1
"-
\.
'" '" '"
I-
20
--I-
~q
~
"'~\\'\
\
~<;»~\~ \
I
~~0..~I\
(Il~ ~~
% \
\
i-
\
~J~ ~
~
I
s
\
'-\.\. \. \.'\ _\.
'\.'\'\ '\'\
'\
~~\\\
1P(Il0
- I - 10
Il
II
I--fI-fI-I-
1.......
I"
I .......
-\0
N
N
.
1101o
11
20 o
50 o
1 ms
;~
10
d.c
00
N
N
0 0
r:o ~
10- 2
1
10
VCE (V)
Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II
Permissible extension. for repetitive pulse
operation
1) Independent of temperature
4
II
II
November 1972
80226 8D228
80230
·11
7Z62123 2
10
BD230
I
I
Tmb :s 62
t
°c
IC
(A)
0=0,01
ICMmax
\::i~
~ ~~
II
r"
ICmax
~
Ptat rna::
1
~\" r\" '\.
"""1\
~ \\ \ \
\
"'-\.\.\.
\
'\.\.\.
\
\
\. \
\
\.\.
1\
\
\.'\ ,\\\ \
"\~\\'
\ \
~ ~\\" \
I
\
('J0~~~~\\ \
\
20
1\
~~~~[\1\
~",'1~~ l\ \.
0% t\\ ~\
~~ ~~
2
10-:- 1
f-f--
IC
f--
(rnA)
r--
\
\'\
~
~'\'.\.
,~'
-1
~!"
1
f--
-
I-- -
1
100
200
500
Ims
2
5
10
d.c.
-
80 100
VCE (V)
60
10- 2
-III- I
50
~
J
I
I I I II
10
VCE (V)
Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II
Permissible extension for repetitive pulse, operation
III Repetitive pulse oper'ation in this region is allowable,
provided RBE.:S. 1 kQ
1) Independent of temperature
Noverriber 1972
II
II
5
,0226 80228
80230
7Z62125
SLJL
1:t-'--J
Zthj-mb
1
T
(Oc/W)
10
5=1
--
0,75
a,s
0,33 r- I-
~~
t-
~ p-
tp
6=T
@
~=
r
~~
~ ...
0.1
0,05
0,02
0,01
_I-"" "
V
10-2
10- 3
-:--:::
10
7Z62106 2
S.B. voltage mUltiplying factor at the Ie max level
-
- ,MSB(I)
10 2
~°..:J°I
I
i"'-...... .......Ol.~
, ~~
~,
-
O,O~ .... t~~
10
I
I
1"'00. ".,
0,1 I
0,2 1-0,33
........
~
,
........
............""'" ~
---.... ........ r" I:::::S::~r--
- --
0,5
0,75
-I"--
-Jo....
~
~
~~
r---..:
1
10- 6
10- 5
6
II
~ t- ...
&
. 10- 4
tp (s)
II
November 1972
80226 80228
80230
7Z623421
-
S.B. current multiplying factor at the V CEOmax level (45 V)
-
B0226
5B(V)
0,05
10
0,02"
o~ 1d
~
0,20
-
0~3j
0=0,01
~~,r,
.......
,,~
.......
r-...
''''
""",f'o
i""-~
r-- r- ~~
0,50
~
i'"
...
0,75
~
~
---.... ~I!!.o.
- ~ t::-t-
::-- r--
1
10- 6
7Z623431
S.B. current multiplying factor at the VCEOmax level (60V)
t---- r-
B0228
5B(V)
0,02 \.\_ 0,01
0,05
~~
. 0!1O
--
10
1--0,20
........
,
10..,
- I--. "'" .....
f--0~33
l'11li
~~
i""-~
0~50
i'"
r- ~~ ~Ioo
0,75
1
10- 6
November 1972
.....
II
~
~~
--....
r--- r--
II
7
--
80226 80228
'80230
7Z62107 2
-
-
S.B. current multiplying factor at the VCEOmax level (80V)
BD230
.,-
MSB(V)
_ 0 =0,01
~
0,05, ..... ......
I
10
~0,1
1--:---0,2
-
"""
::::
... ::::::
......
~
....... ......
......
--
r--.....
1--0,33
......." .....
......
,
~
~r--.
-------
0,5
0,75
........ ...... ~t'
~~
r--"",
.... ....
~~
~ ~ [;:;:: ~'i....
~
10- 4
7Z67045
,
100
1\
Ptot max
I
VCE=2V
Tj =25°C
Ic
f--f-I-f-
(A)
\
(%)
7Z62100 1
1.5
\
I\.
75
\
J
II
J
\
\
50'
tYPj 1(.....1-
,
If
J
~
/
\
0.5
1/
1\
f
\
25
\
,
J
,
/
1/
/
1\
°
'0
a
800
600
50
8
~
~~
II
II
V SE (mV)
1000
November 1972
80226 80228
80230
II
7Z62101
Vce =2V
: Tj = 25°C
Ie
(mAl
max Ie
,
I
~
10
1
V
10
---
.,Lbl'1U
150
1
1 1 1
Vce= 2V
Tj = 25°C
100
---
I,...- ~
...
i~~
typ ........
I"
"-
I'
,
1\
'"'"
'"'"
50
o
10
November 1972
'""'
Ie (mAl
II
II
9
-
-
80226 80228
80230
7Z62l04
6
I I I I I
I I
I
7111101
1,2
I
I
I I I I I TI
typical values I-fTj=25°C ,
VeEsat
I
(V)
4
Tj= 25°C
III
I I
I I I
I I
I e =1000m'A
VBEsat
tv)
"
II
"I" I III
I
Ie = 250mA
I1-1-
1-1-
I-
typical valu.1
f-f-
1\
ft
,
5QO
750
1000
1..1-I .....
1-1-
~
,
1/
1\
2
,, --
500
I I
1.001-1-
~510
I
.. --
0.8
\
7ll 1-1-
1.001-'
l."oo
I'
1-11-1-
1..1-
f
1\
1\
1\
,,
\
\
~
.... "'"
I'
1""0
20
'"
1""'"", ... 1...
100
40
Ie (rnA)
Ie (rnA)
200
?Z1Z111
300
I I I I
f=35MHz
VeE = 5V
Tj=25OC
fT
(MHz)
.
200
-'---
--""typ
~
~
'"
r"\:
'"
V
100
./
100"
./
./
--~
o1
10
,l."oo
-~
II
10
10 2
Ie (mAl
II
November 1972
B0227 B0229
B0231
II
SILICON PLANAR EPITAXIAL POWER TRANSISTORS
General purpose p-n-p transistors in a SOT-32 plastic envelope especially recommended
for television circuits. Their complements are BD226, BD228 and BD230.
QUICK REFERENCE DATA
BD227 BD229 BD231
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
Collector-emitter voltage (RBE = 1 kQ)
Collector current (peak value)
Total power dissipation up to T mb = 62 °c
Junction temperature
D. C. current gain
-IC = 150 rnA; -VCE = 2 V
- IC = 1 A; -V CE = 2 V
Transition frequency
-IC = 50 mA:; -VCE = 5 V
-VCBO
-VCEO
-VCER
-rCM
Ptot
Tj
max.
45
45
max.
max.
45
max.
3
max. 12,5
max. 150
hFE
>
<
>
fT
typo
hFE
60
60
60
3
12,5
150
100
80
100
3
12,5
150
40
250
25
40
160
25
40
160
25
50
50
MECHANICAL DATA
50 MHz
Dimensions in mm
TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface
V
V
V
A
W
oC
a,
[ ]
-
(~ [~
~~~(11
1-- I--~
-'1£xl'-
1--7,8 max
--I
.Th.~
~
3,2
3,0
11,1
+
~J
i
-..
1..1,2
r
15,3
min
-.11.0,5
e
0,88__
max
1
b 'f"-------'-
C
11.-, ,
~
7ZS932<'.2
1__
~
For mounting instructions see section Accessories, type 56326 for nondnsulated mounting
and type 56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.
February 1979
1
80227 80229
80231
II
RATINGS Limiting values in accordance with the Absolute Maximum System (lEe 134)
,
I
Voltages
B0227 B0229 B0231
Collector-base voltage (open emitter)
-V CBO
max.
45
60
Collector-emitter voltage (open base)
-V CEO
max.
45
60
100
V
80 V
Collector-emitter voltage (RBE.= 1 kQ)
-VCER
max.
45
60
100
V
Emitter-base voltage (open collector)
-VEBO
max.
5
5
5
V
-IC
max.
1,5
A
-ICM
max.
3
A
Currents
Collector current (d. c.) .
Collector current (peak value)
Power dissipatiort
Total power dissipation up to T mb == 62
°c
Ptot
max.
12,5
W
Storage temperature
T stg
-65 to +150
Junction temperature
Tj
max.
150
°c
°c
100
oC!W
7
oC!W
Temperatures
THERMAL RESISTANCE
-
From junction to ambient in free air
Rth j-a
From junction to mounting base
Rth j-mb
2
II
II
August 1975
~2~~:~'~~9
II
CHARACTERISTICS
Tj
= 25 °c unless otherwise specified
Collector cut-off current
IE=0;-VCB=30V
IE
= 0; -VCB::: 30 V; Tj ::: 125°C
-ICBO
<
100
nA
-ICBO
<
10
flA
-lEBO
<
10
flA
-VBE
<
1,3
V
-VCEsat <
0,8
V
Emitter cut-off current
Base-emitter voltage 1)
-IC ::: 1 A; -V CE ::: 2 V
Saturation voltage
-IC = 1 A; -IB = 0.1 A
D. C. current gain
BD227 BD229 BD231
5 rnA; -VCE ::: 2V
hPE
-IC = 150 rnA; -VCE ::: 2 V
hPE
-IC=
hPE
>
>
<
>
fT
typo
50
typo
1,3
1,6
-IC =
lA
;-VCE:::2V
25
40
160
25
25
40
250
25
25
40
160
25
Transition frequency at f = 35 :MHz
-IC= 50rnA;-VCE =5V
MHz
D. C. current gain ratio of
matched pairs
BD226/BD227; BD228/BD229;
BD230/BD231
IIeI = 150 rnA; IV CEI = 2 V
<
1) -VBE decreases by about 2,3 mV 1°C with increasing temperature.
November 1972
II
3
8D2278D229
II
""80231
Tmb s 62 0C
'-\.\. . \. \.'
\.
Il
--
Safe
Oper~ting
Area with the transistor forward biased
Region of permissible d.c. operation
II
Permissible extension for repetitive pulse operation
1) Independent of temperature
4
II
II
November 1972
80227 80229
80231
II
7Z62123 2A
10
B0231
I
I
I
I
Trnb ~ 62
°c
-IC
(A)
6 =0,01
-ICMmax
~~~ ~
II
-ICrnax
Ptot rna:
1
\" "\ ""'t\
~l\\ \ \
~\"
\
" '\.\.\.\.
'\.\\.
\
'\
\. \.
\.\.
\.
'
_\
\.\\ l\ \\ \
II
\
'\~\
I
U\(\l
\' \ \
~\\\\ \
20
\
00~~0.~ l\ \ ~
~Q'~;~ \ \~
~
~0!'1~~ \
0% ~ ~I\
~
--
-IC
(rnA)
t--
I-
2
f'-
5
f\. 10
d.c.
I
t--
10- 2
'\:
r-- r-- -III- -
l-
200
500
lms
\.\.'
r-i
I
l-
100
~~
2
t--.
50
80 100
-VCE (V)
60
1
[
11~1I1I
10
-VCE (V)
Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II
Permissible extension for repetitive pulse operation
III Repetitivepulse operation in this region is allowable,
provided RBE
~
1 kQ
1) Independent of temperature
November 1972
5
B0227 B0229
8D231
II
7Z62125
JUL
~~~
Zthj-mb
(OC/W)
10
6 =tp
T
6=1
0,75
0,5
0,33 ~ 1-1-
~P
~ ~ ~~
~"'"
--
~
.....,
I--""
P""
0,1
0,05
0,02
0,01
Io-""~
t:--
10
-E...
7Z62106 21>.
...
S.B. voltage multiplying factor at the -Ie max level
~
MSB(I)
~o~Ot
~ ~01D1" ........
'1):05~ ........ ~t-.
10
........
0;11-00.
I
0,2 t-""0,33
0,5
-....
........
r--...
................
................ ~
r---. r-...; ::S:::~
- - -~ I'--
0,75
..... ~ r-;~
....
:--
~
~~
I'--.
~"""'
1
1O-?
10- 5
6
II
10- 4
10- 3
II
tp (s)
10- 2
November 1972
'80227 8D229
80231
II
7Z623£.2 1 A
S.B. current multiplying factor at the -V CEOmax level (45 V)
r-- r- BD227
iSB(V)
0,05
. o~ Id
10
r"'"
0,02"
~
--
0,20
-
0~3j
15 =0,01
~~
........
l'
'I'
.....
I"'---
I"-~
I'o.~
"",....
r--r-- r-
r- I- r-I"'-
0,50
0,75
~'"
~
~ ~~
---
~ t- r-I-
~~
1
10- 6
-
7Z623£.31A
S.B. current multiplying factor at the -V CEOmax level (60 V)
t----- r-
BD229
SB(V)
0,02 ~=0,01
0,05
~~
-
0!1O
10
-0,20
r--0~33
..........
--
,"
........
~
~
""' .... .... "'"
.... 1"'-
... ""
- I"- -I"'- ...
0:50
0,75
1
10- 6
November 1972
......
II
~
~~
~ ......
--II
7.
--
8022.7 80229
80231
II
7Z62107 2 A
S.B. current multiplying factor at the -VCEOmax level (80 V.)
f - - I--
BD231
MSB(V)
0=0,01
~
~0,02 .....
0,05, ..... r...~ ~~
I
10 ~=:::::O,1
~~
~
~i"o
,...
"" I'...""""'" roo...
........ ........
t==O,2
"'" "'.........-. ........
-" ~r--.
f----O,33
---
0,5
0,75
""
~~ ~~
I'--r- 1-"",,
~
~~
:::-.::
~
10....
1
=""'" .... ~
..;;;:::
......
~
;:::~
..
-~
r--...
1O~6
tp (s)
7Z67045
100
\
Ptot max
,
\
(%)
7Z62101 1
1.5
I
, I
-VeE ,= 2V r-ITj=25°C r-I-
-Ie
(AI
\
~
75
\
j
"
rr
j
1\
j
,
'T
1\
50
typ,j
IJ
1\
\
0.5
~
II
,
1\
25
1/
J
,
1\
,
f7 ,
[/
~
°
°
, 8
~
a
,600
, 50
II
rr
~
""",,,,,,,
800
I
-VSE (mY) 1000
November -1972
8D22780229
8D231
II
,... 1.
7Z6210
IU
-VCE =2V
T = 25°C
-1 C
(m AI
n\oIC
10~
-'
~
10 2
10
I
/
1
10
7ZUIU
150
I
I
I
-VCE= 2 V
Tj = 25°C
100
---
typ- .......
..........
"
'" , ,
i'.
" ."
50
""
""
"
o
10
. November 1972
""-
-Ic (mAl
II
II
9
----
80227 80229
80231
\
II
7Z62105
6
typical values
Tj=2SoC
-VCESQt
(VI
I
I
I
I
,,
4
-
7znl03
1,2
I I I LLLl
I I I I I I I
I I I I I ( I
( I 1,( I
typical values, I-fTj=25OC' I-f-
~-
--
-VSESQt
I I I I I
II I I
I I I I
I I
I
,
,
(VI
II
750
"
,,
)-
If' "
/
./
\
,
~
\
~
,......
....
0,8
\
\
~~
I-~
L
.... -S9°
I
rL"
_Jr/
,/
....
.... 7~1"'" ........
~
f'
/
2
...........
-Ic =100~mI""'A....
,/ ,
l1\-1- 1000
_
I I
, -I C=250mA_
-- ....
500
....,r~
r-
1...-1"'"
.-.250
I,;'
J
,\
,
."'
"
00
~
20
"
......
-
....
-Ie (mAl
40
-Is (mAl
100
200
7262113
150
I
I I (
1: 35MHz
-VCE- 5V
TJ a 25°C
fT
MHzl
100
,.
50
-tYP
i"oo..
~
,.".
,.-
./
... i""'"
............-
-~
o
10
1
10
II
-Ic (mAl
II
November 1972
80232
MAINTENANCE TYPE
II
II
SILICON DIFFUSED POWER TRANSISTOR
High -voltage n -p-n transistor in a SOT - 32 plastic envelope intended for use as line driver
in television receivers.
QUICK REFERENCE DATA
Collector-emitter voltage (RBE
~
1 kQ) peak value
Collector-emitter voltage (open base)
Collector current (d. c.)
Collector current (peak value, tp
~
Total power dissipation up to T mb
1 ms)
= 57,5 °c
Junction. temperature
D. C. current gain·
IC = 150 rnA; VCE
max.
VCERM
=5 V
Transition frequency
,IC = 50 rnA; VCE = 10 V
500
V
VCEO
max.
300
V
IC
max.
0,25
A
ICM
max.
Ptot
max.
15
W
Tj
max.
125
°c
hFE
>
20
fT
typo
20
MECHANICAL DATA
A
MHz
Dimensions in mm
TO-I26 (SOT-32)
I'"
Collector' connected
to metal part of
mounting surface
+
o [ ] [)1---;~~;111
11,1
I
max
'-Tr---tIr--rr---1
1"1,2
~-
--I
.~.~
~
+
3,2
3,0
-- -
7,8 max
15,3
min
e
-.II...
0,5
c
1
b'
't'---~
11_ ' ,
7ZS9324.2
0,88__
max
~
I...
~
For mounting instructions see section Accessories in handbook SC2, set 56333 for
insulated mounting and type 56326 for non-insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.
February 1979
II
1
B0233; B0235;
BO-237
II
SILICON EPITAXIAL-BASE POWER TRANS'ISTORS
N - P- N transistors in a SOT - 32 plastic envelope intended for use in television and audio
amplifier circuits where high peak powers can occur. P-N-P complements are BD234,
BD236 and BD238. Matched pairs can be supplied.
QUICK REFERENCE DATA
BD233 BD235 BD237
Collector-base voltage (open emitter)
V CBO
max.
45
60
100
V
Collector-emitter voltage (open base)
VCEO
max.
45
60
80
V
Collector-emitter vOltage (RBE= 1 kQ)
VCER
max.
45
60
100
V
Collector current (peak value)
ICM
max.
6
A
Total power dissipation up to T mb =25 °c
Ptot
max.
25
W
Junction temperature
Tj
max.
150
oc
D. C. current gain
IC = 1 A; V CE = 2 V
hFE
>
25
Transition frequency
IC = 250 rnA; VCE = 10 V
fT
>
3
Dimensions in mm
MECHANICAL DATA
TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface
MHz
1
2,7
--
max
a
1
,
1--
--I
~
.?t,.
3,2
3,0
+
7,8 max
WI
11,1
max
~-I
15,3
min
e
-.II...
0,5
c
0,88__ 11. . ,
max
~
b'l"~1
,
1__
~
For mounting instructions see sectionAccessories, type 56326 for direct mounting and set
56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.
February 1979
II
1
II
80233;80235;
80237
_.
II
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
B0233
B0235
B0237
100
V
Collector-base voltage (open emitter)
VCBO
max.
45
60
Collector-emitter voltage (open base)
VCEO
max.
45
60
80
V
Collector-emitter voltage (RBE = 1 kQ)
VCER
max.
45
60
100
V
Emitter-base voltage (open collector)
VEBO
max.
5
5
5
V
Currents
Collector current (d. c.)
IC
max.
2
A
Collector current (peak value)
ICM
max.
6
A
Ptot
max.
25
W
Storage temperature
T stg
-65 to +150
°C
Junction temperature
Tj
max.
150
oC
100
oC/W
5
°C/W
Power dissipation
Total power dissipation up to T mb =25 °c
Temperatures
THERMAL RESISTANCE
From junction to ambient in free air
Rth j-a
From junction to mounting base
Rth j-mb
CHARACTERISTICS
Tj:::: 25 °c unless otherwise specified
Collector cut-off current
IE :::: 0; VCB = VCBOmax
IE
= 0;
VCB
= VCBOmax; Tj
= 150 °c
ICBO
<
100
ICBO
<
3
rnA
lEBO
<
1
rnA
fJA
Emitter cut-off current
IC
= 0;
2
VEB ~ 5 V
II
II
August 1975·
80233;80235
80237
Silicon epitaxial-base power transistors
CHARACTERISTICS (continued)
Tj = 25 0C
Base-emitter voltage
IC=lA;VCE=2V
VBE
<
1,3 V
Saturation voltage
I C = 1 A; I B = 0,1 A
VCEsat
<
0,6 V
O.C. current gain
I C = 150 rnA; V CE = 2 V
hFE
IC=lA;VCE=2V
Transition frequency at f = 1 MHz
IC = 250 mA; VCE = 10 V
40 to 250
hFE
>
fT
>
hFE1/hFE2
<
1,6
ton
typ
0,3 JLS
toff
typ
1,1 JLS
25
3 MHz
O.C. current gain ratio of matched pairs
B0233/BD234; B0235/B0236; B0237/B0238
IICI = 150 mA; IVCEI = 2 V
Switching times
ICon = 1 A; IBon = -IBoft = 0,1 A
turn-on time
turn-off time
Test circuit
r - - - - - - - -6,4V
Is
+20,3V
- Is off
+16~-n
-1 V
o ~~~___~+-_~_t__
==f--l::-
Ie
o 1--1--...1-+----+---'-"-;....::...1'---7Z6258~.1
7Z62583
Input pulse:
tr = tf = 15 ns
tp
= 10 JLS
T
= 500 JLS
I
(JUlY
1977
3
80233; 80235;
80237
II
7Z625SIA
10
.J
I
ICMmaxIC
-
repetitive pulse operation; 5 =0.01 j
r-. . .
t
i'r\."
"
'- ~I'
'-" ~
''''''''~,
II
(A)
I'
ICmax
~' ""-
'" ""
~~
"
-"'-
J.~
O. 05
~
r'\
?'\~
~ ~~ ~
Ptot max (d.c.)
1
op02ms
i'
i\
~:..2
,,\~
'\
.~
'"'I'
0.1
1"0..
.. ~
,'~ ~
~I' l\~
second
I' ~
breakdown
~I\
1)
(d.c. )
r\ ~I\
~~
J.J
d
~
...1....
ij
" 20
I
---.-..
Tmh:525 0 C
et:).
et:)
N
If)
ct:)
10
l'
C'I",)
N
N
!XI
!XI
0 0
. !XI
0
VCE (V)
Safe Operating Area with the transistor forward biased
Region of. permissible d. c. opeJ;ation
II
Permissible extension for repetitive pulse operation
1) Independent of temperature
4
II
II
August 1974
I
II
BD233; BD235;
BD237
7Z62567
SLJL
t!;j
10
~o
1
_...
~ 0,75
~ 0,50
I--- 0.33
1 I--- 0.20
~
°1~ .~
- --
tp
0=T
....1M
0,05
0,02
~ ~
~r-.,
q~r1
1
10
1Z62572
S.B. voltage mUltiplying factor at the Ie max level
MSB(I)
'10
!---o =0,01
~0.05
....
,
0,10
~
~
=0,33
;::.2.50
.... °..1.1 5
100.
--... r-;:::
--
1--- ...
1
10- 1
August 1974
~
r-... ..... r"'"~ ~'"
1'00", ~
-1'001-
r---::::::
1
II
--
10
tp (ms)
II
5
----
B0233; B0235;
B0237
,I
7Z62S71A
~ultiplying
S.B. current
BD?,.33
factor at the VCEO max level
I
MSB(V)
10
0,20: r-O,10 <5 = 0,01
to--.
"'!!Ii...
0,33 ....
...... ~
0,50
0,75
1
r--t'-- r-~ I"'~ t:---......
- -- Ioio.""
i"" ...
~~ i""-
10- 1
----
----
I'" I"'"---
.....:::: ~ ~
1
~
10
tp
(ms)
7Z82561A
BD235
S.B. current mUltiplying factor at the VCEO max level
MSB(V)
10
0,20
0,10
.......
t--O,33
<5
...
r--....
=0,01
~"
"",.
r---.~ ~
~ r-.... r"'-r--- ~~
t--- ~
1-- 0 ,50
..........
0,75
-
r--- t--- r--r-o ...
~
r---:: ~ I=:::::
1
6
II
b...
10
tp (ms)
II
August 1974
80233; 80235;
8C237
II
7Z 82570A
BD237
S .B. current mUltiplying factor at the V CEO max level
MSB(V)
10
"
~
~~
~
0.01
/0,05
VO t1O
-
t:--' ~ ~
~ ....
.....2.. 33
~
r-- ......
r-- '-t:"0,50
i'-- r--..~
I'--~ :~~
r-~
-
~ ~~
0,75
... ~........::::::: F=:::::: ~
I
r--
1
.10- 1
10
tp (ms)
7Z62575
7Z62576
2
Ic
--I
---'
,
VCE =2V
T j =25 0C
typical values T j =25 °c
4
VCEsat
(V)
(A)
.1
3
1,5
IC =0,5A
1A
2A
e-- f--f-i--,-3A
'-..->--
lI-
typ
I
I
2
\
I
\
I
0,5
\
1
I
II
°°
\.
August 1974
I
0,5
1 VBE (V) 1,5
II
'-
\
'I
I
,
°°
"
......
-
'200
100
300
IB (rnA)
II
7
----
8D233; 80235;'1
80237
.
II
7Z6ZS74
200
II
typical behaviour
VeE =2V
T j =25 oe
150
100
.,.,. ~~
~
--'
~
_no.
-r-....
r"'-r--.,
I.... ,...
""'
50
~
o
Ie
10
(rnA)
---
8
II
II
August 1974
B0234; B0236;
B0238
II
SILICON EPITAXIAL-BASE POWER TRANSISTORS
P- N - P transistors in a SOT - 32 plastic envelope intended for use in television and audio
amplifier circuits where high peak powers can occur. N-P-N complements are BD233,
BD235 and BD237. Matched pairs can be supplied.
QUICK REFERENCE DATA
BD234
BD236
BD238
-VCBO
max.
45
60
100
V
Collector-emitter voltage (open base)
-VCEO
max.
45
60
80
V
Collector-emitter voltage (RBE = 1 kQ)
-VCER
max.
45
60
100
V
Collector current (peak value)
Collector-base voltage (open emitter)
-ICM
max.
Total power dissipation up to
Tmb = 25 °C
6
A
Ptot
Junction temperature
Tj
max.
25
W
max.
150
°c
D. C. current gain
-IC = lA; -VCE =2 V
hPE
>
25
Transition frequency
-IC = 250 rnA; _-VCE = 10 V
fT
>
3
MECHANICAL DATA
Dimensions L'1 mm
1-- 7,8 max--I
TO-126 (SOT-32)
MHz
Js
1
=$.L
Collector connected
to metal part of
mounting surface
,2
,0
11,1
ma x
i
j
[ ~ [ ] [ ]
I
15, 3
m; n
I
e
JI.0,5
•
b'
c
11_, ,
7Z59324_2
0.88__
max
~
1___
~
Por mounting instructions see sectionAccessories, type 56326 for direct mounting and set
56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.
Pebruary 1979
II
II
1
80234; 80236;
80238
I
RATINGS Limiting values in accordance with the Absolute Maximum System ~IEC 134)
Voltages
Collector-base voltage (open ~mitter:)
BD234
BD236
BD~3S
100
V
max.
45
60
Collector-emitter voltage (open base) , -,-/-VCEO
max.
45
60
sO
V
Collector-emitter voltage (RBE = 1 kQ)
-VCER
max.
45
60
100
V
-VEBO
max.
5
5
5
V
-VCBO
\
\
Emitter-base voltage (open collector)
\
Currents
\
Collector current (d. c.)
-IC
max.
2
A
Collector current (peak value)
-ICM
max.
6
A
Ptot
max.
25
W
Storage temperature
Tstg
-65 to +150
oC
Junction temperature
Tj
max.
150
°C
100
°C/W
5
°C/W
Power dissipation
Total power dissipation up to T mb =25 oc
Temperatures
THERMAL RESISTANCE
From junction to ambient in free air
Rth j-a
From junction to mounting base
Rth j-mb
Tj = 25 oc Wl1ess otherwise specified
CHARACTERISTICS
Collector cut-off current
IE == 0; -VCB = -VCBOmax
-ICBO
o
IE = 0; -VCB = -VCBOmax;Tj =150 C -ICBO
<
100
<
3
Emitter cut-off current
IC = 0; - VEB = 5 V
2
II
rnA
<
II
August 1975
80234;8D236
80238
Silicon epitaxial-base power transistors
CHARACTERISTICS (continued)
Tj = 25 oC
Base-emitter voltage ,
-IC = 1 A; -VCE = 2 V
-VBE
<
1,3 V
Saturation voltage
-IC= 1 A;-IB=O,l A
-VCEsat
<
0,6 V
D.C. current gain
-IC = 150 mA; -VCE = 2 V
hFE
-IC= 1 A;-VCE=2V
Transition frequency at f = 1 MHz
-IC = 250 mA; -VCE = 10 V
40 to 250
hFE
>
fT
>
hFE1/hFE2
<
1,6
ton
typ
0,3 JIS
toff
typ
0,7 JIS
25
3 MHz
D.C. current gain ratio of matched pairs
B0233/B0234; B0235/B0236; B0237/BD238
IICI = 150 mA; IVCEI = 2 V
Switching times
-I Con = 1 A; -I Bon = I Boff = 0,1 A
turn-on time
turn-off time
Test circuit
...-------+6,4V
-20,3V
-I B
--
o ~r=~______-++-__~_t__
I Boff
+1~tl
-Ie
-16V-
o I--I--...I_+-_ _-+-~=_l'---..;;..t7Z62586.1
7Z62585
Input pulse:
tr = tf = 15 ns
tp
= 10 JIS
T
= 500JIs
I (JUlY
1977
3
80234; 80236;
80238
7Z62 56 8
10
I
-ICMmax-
~
_ repetitive pulse operation; {)
,I'.... r'\.. " "
I"'\: ,I\.
-IC
II
(A)
-ICmax
P'o' max
1
....
"'"'
"'
~"-"
"-
t
"'
~
,~
1'\ '\ 0,9 5
~ ~
~~
=0.01 j
"
\
P 2ms
~ ~.~
,
,
'01
(d.C.)~ ~
~ ~\ ~
""- "\.
q'r
\.
I
\.\
1'-\ 1\ ,\~ J l
~ " l\r-.. ~I?
second
breakdown 1)
(d.c. )
f'
~ :\\
r\ \.\
~\
iJ
,20
I
---
Tmb::525 0 C
\0
00
C")
C")
CV)
N
N
N
'
30
Transition frequency
IC = 300 mA; VCE = 3 V
fT
>
3
MECHANICAL DATA
MHz
Dimensions in mm
Fig. 1 SOT-S2.
1_
Collector connected
to metal part of
mounting surface
7
,6_
max
1~
3,75
3,2
3,0
1
11,1
max
+
2;54(1)
max
t
-
_J
1"'1,2
r
15,3
min
b
0,5
See also chapters Mounting instructions and Accessories.
c'
e,_l
' ,
II ..b,2 9 i.1-$-lo.2541®ro,88
7ZSS778.2
max
(1) Within this region the cross-section of the leads is uncontrolled.
February 1979
80291
80293
80295
l " , , - - - - ._ _ _
RATINGS
Limiting values in accordance with the Absolute M.aximum System (IEC 134)
BD291
BD293
Collector-base voltage (open emitter)
VCBO
max.
45
60
80
V
Collector-emitter voltage (open base)
VCEO
max.
45
60
80
V
5
5
5
'v
Emitter-base voltage
VEBO
max.
Collector current (d.c.)
IC
max.
Collector current (peak value)
tp < lams; [) < 0,1
ICM
Base current (d.c.)
IB
Emitter current (d.c.)
Total power dissipation up to T mb = 25 °C
BD295
6
A
max.
10
A
max.
2,5
A
-IE
max.
6
A
max.
60
W
Storage temperature
Ptot
T stg
Junction temperature
Tj
max.
-65 to
150
+ 150
°C
oC
THERMAL RESISTANCE
From junction to ambient in free air
Rth j-a
From junction to mounting base
Rth j-mb
---
2
February 1979
(
100
°C/W
2,08
oCIW
80291
80293
80295
Silicon epitaxial-base power transistors
CHARACTERISTICS
Tj = 250C unless otherwise specified
Collector cut-off current
IE = 0; V CB = 40 V; T j = 150°C
IB=0;VCE=30V
ICBO
ICEO
<
<
mA
mA
Emitter cut-off current
IC = 0; VEB = 5 V
lEBO
<
5 mA
Collector-emitter saturation voltage
IC = 3 A; I B = 0,3 A
VCEsat
<
1 V
Base-emitter voltage*
IC = 3 A; VCE = 3 V
VBE
<
1,5 V
hFE
>
30
Transition frequency at f = 1 MHz
IC = 300 mA; VCE = 3 V
fT
>
D.C. current gain ratio of
matched complementary pairs
IC = 1 A; VCE = 2 V
hFE1/hFE2
<
D.C. current gain**
IC = 1 A; VCE = 2 V
Ie = 2 A; VCE = 2 V : BD293 : BD295
IC=3A;VCE=2V: BD291
typo
3 MHz
1,3
2,5
* VBE decreases by about 1,8 mV/oC with increasing temperature.
** Measured under pulse conditions; tp < 300 J1.S; 6 < 2%.
February 1979
3
80291
80293
80295
t"'----___
7Z679621
IC
(A)
ICMmax
,
10
t-
8 = 0,01
.,
~~
I"
"""-"'- .'\." "- "
''''~''-
ICmax
I
"-
"' I,
"" ~"
"\. '\ \ 1\" "
"
l~ \ 10
I'...
~
~ 1\ 1\
I
0,05 ms
0,1
~
(1"
tp=
0,2
1\
\
1\
\
(~ ~\ 1\ \
0,5
.1\
,
\.
n
\
\
l\ \
l'\
1\
2
~&
5
\~
80291
80293
80295
10"" 1
10
I'
10
d.c.
r-
VCE(V)
Fig. 2 Safe Operating Area with the transistor forward biased, T mb';;;;; 25 0C.
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second breakdown limits (independent of temperature).
I
II
4
February
19791 (
80291
80293
80295
Silicon epitaxial-base power transistors
7Z67Z571
100
P tot max
(%)
'\
\
\
75
",1\
\
'\
~
50
\
\
,
\
25
\.
'\
\
'\
50
100
150
Tmb(OC)
Fig. 3 Power derating curve.
7267949
SLJL
1:l.1
10
----
tp
0=T
0=
~
I-- - I -
V
1,0
0,75
05
0.33
0,2
01 !..-- I0'05- 1-1-"
~~
~
.....-: .......
~
ioo"'.
0,02
0,01
0
10
Fig. 4 Pulse power rating chart.
February 1979
5
l"'---_ _~
8D291
80293
80295
7Z67950
s. B.
voltage multiplying factor at the ICmax level
MV
0=
10
./
/'
r--......~
£
/
~~
0,01
0,02
0,05
0,1
r---.. ~ ~
~
r----- ~ .....~ r--.
~~~
~
"'I"- r:-- r-r--1-1~~ ~~
0,5
rot'-
~t'-
0.75
1,0
10
Fig. 5 Second breakdown voltage multiplying factor at the
--
Ie max level.
7Z67951
S.B. current multiplying factor at the VCEOmax level
r-
0=
~
10
0,01
r-o,02
r--- ~ ~
0,1
-
........
r.....,
"'
!o....'....:
0,2
....... ~~
~~
l"- t---. ....
0,33
r-0,5
--..:"'"
i'
~
~~ b....
r-=:::: ~
~ t:;::
0,75
1,0
t::::- ~
10
tp {ms}
Fig. 6 Second breakdown current mUltiplying factor at the V CEO max level.
6
February 1979
r
Silicon epitaxial·base power transistors
80293
80295
7267958
10
I
=2 V
= 25°C
VeE
1j
~
10"
~I""
I. . . .
/
~
,/
/typ
1
/
V
V
1/
/v
V
10
IS (rnA)
Fig. 7 Typical collector current.
7Z67960
150
I I I
=2 V
=25°C
VeE
1j
I
100
,...,.,...
'-' .... ,...
~
~
I,...j.oo
50
i--'"
typ ..........
..........
"'",
I'\.
./
.........
/
-'"
J'\.
o
10-2
Ie (A)
10
Fig. 8 Typical d.c. current gain.
February 1979
7
l_ _ __
~u£~:n
80293
80295
7Z62387Q
rr-- VCB 40V
max """"
15
r--t--
IC
..... 1--'"
~~
I !
!
:
I I I
VCE = 2 V
1j = 25°C r-r-
I......::
(A)
~
I
-f--L r-r--
I
r--4-+~
10
JL:
)1
10
i
l/
L
I
:
:
i
I
typ
i
-/
L/
II
-fl T-;
J
I./!
o
50
VCB=OV
I-- +-
IB
(rnA)
75
"
,
./
..... '" typ t- ~
-~
I.......
February 1979
r
_....2A- r-
I '"-
o
"
~
-IE=3A- r--
iypI
25
-100
I
i
Fig. 10 Collector current.
100
o
ti
I
VSE (V)
7Z62399
50
1
100 Tj (OC) 200
Fig. 11 Base current.
I
1-"'1
o
o
Fig. 9 Collector-base current.
8
I
L
,
10- 1
r
typ ~.
V
1
..J..J-
2
80293
80295
Silicon epitaxial-base power transistors
7Z67954
--t-----'---L-.-f----- ---
--t------
-
I I
II
Ie
f--
-.t1
- t - - - ---
-~-+-+--- -,--I-I-t--f--I---
t---,---.,---+------- ---j--+--+--+----1
I
--
-
/
~t-- +-
J
I-f--
V
f.--l--I__
1 -t-----j--+--+-+----l--+--1 -=10
I---f-BEsot H-+-+--I--++-H-+~ IB
I-f-TJ = 25°C I---f-(V)
~+_
- - f----t----t-------- f-----+-----~
--- --t---
I
j _
;i
I
r-~~-+typ~~4--+--I---+-~
V
1 f--
0,5 I--+-+-+-V-A---+--+--+----+----+----f
I---f.-- __
1
t
I---p
t typ....... ~
t--- -
f-- _ --I-+----i---+--+----l
-- --'
:
~........
+-f--+~+--f--+--l
/
+--1-----+-----
f--f--
0
O~~--~~~--~~--L-.~--~~
a
5
10
Ie (AI
r-
-
--
-
~-r--
5
0
Fig. 12 Collector-emitter
saturation voltage.
-
1---\-
r
f--I---
f--
10
Ie (A)
Fig. 13 Base-emitter
saturation voltage.
1Z62406
20
fT
(MHz)
VCI3=3V
T j =25 0C
15
......
"
10
f""'oo ~
-t'-- ,....."
--
I-- I--I---- I---
typ
t"-io-..
r-- ,...... +-
~ l"- t--
f-- +---- --I----
--
-~ t- t-- l -
5
--I--
-
- f - --
-.
o
o
~~-1--1-
-
.-~
+-
"-
-
i
2
-I----
1-
,j
-1-
-
5 -IE (A)
6
Fig. 14 Transition frequency.
February 1979
9
8D291
80293
80295
l______________
APPLICATION INFORMATION
10 kn
1,2SA
180 kll
2,21JF
--f
+
-1,3kn
7Z67513 2
Fig. 15 Basic circuit diagram of a 20 W hi-fi amplifier.
Performance at Vs = 32,4 V; R L
=4 n
(unloaded supply voltage
typo
IS
typo
Input impedance
Zj
typo
Output impedance
Zo
typo
50 mn
Output power at f=1 kHz; d tot = 1%
Input voltage for Po = 20 W; f = 1 kHz
Po
typo
24- W
Vj(rms)
typo
375 mV
Total current drain at Po
10
= 38 V)
Ilcol
Collector qujescent current of 8D291 and 8D292
February 1979
= 20 W; f = 1 kHz
r
20 mA
1 A
175 kn
80291
80293
80295
Silicon epitaxial-base power transistors
Total harmonic distortion at Po = 20 W
dtot
typo
0,06 %
Intermodulation distortion at Po = 20 W
dim
typo
0,5 %
Voltage feedback factor
typo
52 dB
Unweighted signal to noise ratio, (ref. to Po = 50 mW)
typo
75 dB
Frequency response (-1 dB)
typ.20 Hz to 75 kHz
Thermal resistance required per output transistor
<
Rth j-a
8,65 °CIW
Stable continuous operation is ensured up to an ambient temperature of 50 0C.
7Z675121
:1
--40Hz
---1kHz
---12,5 kHz
d tot
(0101
I--
o10-1
--
1-
I-"- 1 - -
-~~
-10
Fig. 16 Total harmonic distortion.
February 1979
11
l_____________
80291
80293
80295
APPLICATION INFORMATION (continued)
7Z67511
40
I
Po
. dtot = 1 %
-
(W)
--
30
,,~
20
)"
---
V
10
-=
I
o
f (Hz)
10
~
=
12
Fig. 17 Typical value of output power as a function of the frequency.
February 1979
r
_ _ _ _J
80292
80294
8D296
SILICON EPITAXIAL-BASE POWER TRANSISTORS
General purpose p-n-p transistors in plastic SOT-82 envelopes for clip mounting; can also be soldered
or adhesive mounted into a hybrid circuit. Recommended for use with n-p-n complements 8D291, 293
and 295 in class-B output stages. In a hi-fi circuit the combinations can deliver 20 W into 4 nor 8 n
load. Matched pairs can be supplied.
QUICK REFERENCE DATA
Collector-base voltage (open emitter)
-VCBO
-VCEO
max.
Collector-emitter voltage (open base)
Collector-current (d.c.)
-Ie
max.
Collector-current (peak)
tp < 10 ms; l) <0,1
-leM
Base current (d.c.)
-18
Total power dissipation
up to T mb = 25°C
D.C. current gain
-Ie = 1 A; -VeE = 2 V
Transition frequency
-Ie = 300 rnA; -VeE = 3 V
max.
80292
8D294
8D296
45
45
60
80 V
60
80 V
'----.-----'
6
A
max.
10
A
max.
2,5
A
Ptot
max.
60
w
hFE
>
30
fT
>
3
MECHANICAL DATA
MHz
Dimensions in mm
Fig. 1 SOT-82.
Collector connected
to metal part of
mounting surface.
I
1----....,--+-
-~~x-I
3,75
3,2
3,0
r
+ max
11,1
~-j
r
15,3
min
bee
1. 4,58"[
_1
1.lo,2541@~II.. .i2.29~
7Z65778.2
0,88
max
See also chapters Mounting instructions and Accessories.
(1) Within this region the cross-section of the leads is uncontrolled.
February 1979
t:SU~~~
80294
80296
l_~_ _
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BD292
BD294
BD296
Collector-base voltage (open emitter)
-VCBO
max.
45
60
80 V
Collector-emitter voltage (open base)
-VCEO
max.
45
60
80 V
Emitter-base voltage
-VEBO
max.
5
5
5 V
Collector current (d.c.)
-IC
max.
6
A
Collector current (peak value)
tp < 10 ms; ~ <0,1
-ICM
max.
10
A
Base current (d.c.)
-IB
max.
2,5
A
Emitter current (d.c.)
max.
6
A
max.
60
W
Storage temperature
IE
Ptot
T stg .
-65 to + 150
°C
Junction temperature
Tr
max.
150
°C
Total power dissipation up to T mb = 25 °C
THERMAL RESISTANCE
From junction to ambient in free air
Rth j-a
From junction to mounting·base
Rth j'-mb
-----
2
February 1979
100
°C/W
2,08 '
°C/W
80292
80294
80296
Silicon epitaxial-base power transistors
CHARACTERISTICS
Tj == 25 0C unless otherwise specified
Collector cut-off current
IE = 0; -VCB = 40 V; Tj = 150°C
-iCED
<
<
mA
Emitter cut-off current
IC=0;-VEB=5V
-lEBO
<
5 mA
Collector-emitter saturation voltage
-IC = 3 A; -IB = 0,3 A
-VCEsat
<
1 V
Base-em itter voltage '"
-IC=3A;-VCE=2V
-VBE
<
1,5 V
D.C. current gain"''''
-IC = 1 A; -VCE = 2 V
hFE
30
IB=0;-VCE=30V
-ICBO
hFE
>
>
>
Transition frequency at f = 1 MHz
-IC = 300 mA: -VCE == 3 V
fT
>
D.C. current gain ratio of
matched complementary pairs
-IC = 1 A; -VCE = 2 V
hFE1/hFE2
<
...
-IC';: 2 A; -VCE = 2 V: BD294; BD296
hFE
-IC = 3 A; -VCE = 2 V: BD292
typo
mA
30
30
3 MHz
1,3
2,5
VBE decreases by about 1,8 mV/oC with increasing temperature.
Measured under pulse conditions; tp < 300 ps, 8 < 2%.
February 1979
3
l____
80292
8.0294
80296
1Z61963.1
-IC
(Al
-ICMmax
0=9,01
,
10
'".....
,,"-
" "
,, ,
.
"'"
,,~
(1~
'"
~ ~ ~
1'\ \ 10
~ ~ 1\
I
(~
\
~"
1\
"~
----
~
0,1
1'\
0,2
1'-. I'
1\
\
~
~
~
-.J
l'\
1
10
.....
~
~
2
f\~ . . .
5
!\~
80292
80294
80296
0,5
1\
~
l\
10- 1
tp =
O,05ms
~
" ~\'I,"" \\
t--ICmax
,
I'
10
d.c.
;--
-VCE(Vl
Fig. 2 Safe Operating Area with the transistor forward biased; T mb ~ ?5 oC.
I
Region of permissible d.c. operation.
11
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second breakdown limits (independent of temperature).
4
February 1979
r
80292
80294
80296
Silicon epitaxial-base power transistors
7Z672571
100
P tot max
"I\.
(%)
\
,
[\
75
\
1\
"1\
50
-~
,
~
1\
25
~
"
~
1\
~
50
Fig. 3 Power derating curve.
7Z67949
JUL
I~I
10
5=~
T
0=
1,0
0,75
05 1
0,33
0.2
OJ
,-.
~~
/
V
I-~
j...-
....
O.O~- i"'1--o-"
t""~ iOI!""
~
~~
0,02
0.01
0
10
Fig. 4 Pulse power rating chart.
February 1979
5
l__________
80292
80294
80296
7Z67950
S. B. voltage multiplying factor at the ICmax level
Mv
5=
10
0,01
/ ' vO,02
/'
""'.~
/'
0,05
~ /0,1
--.....::: ~
~ .
~~
.........
t----- ~ j"---.. ~ ~~!=::
a,s
0.75
1,0
1
-
r--I'-- ,...~
r-- I- 1-1'-l"- ~~
~ t-10
Fig. 5 Second breakdown voltage mUltiplying factor at the ICmax level.
7267951
S.B. current multiplying factor at the VCEOmax level
.......
5=
~
10
0,01
0,02
---...... ~
--
0,1
0,2
0,33
0,5
~
..........
,
.......... 'I'...
~
--
r--.~
,,~
r-r-.
r-r- I--r-
~~
~ t'--...
r-=::::~
~ t;:::
t::-..:: ~ :::::~
0,75
1,0
10
tp (ms)
Fig. 6 Second breakdown current multiplying factor at the VCEOmax level.
6
February 1979
(
80292
80294
80296
Silicon epitaxial-base power transistors
7Z67959
10
f--'----f----------- - -------
-
--
I
=2 V
= 25°C
-VeE
1j
"..~
r---
V
V
/
10' .....
~
~
:,...-'
fo
~v
/V
/
1/
V
i
10
-IS (rnA)
Fig. 7 Typical collector current.
7Z67961
150
1 1 1
1 1 1
-VeE = 2 V
Tj = 25°C
r--
100
~
"."
f-----
~
V
./
....
---
typ
.......
......
"......
I"
""-'\.
'\.
\..
'\.
_'\.
,
50
'\.
'\.
'\.
f--------- t---
'\.
o
10- 2
-Ie (A)
10
Fig.8 Typical d.c. current gain.
February 1979
l_________
80292
80294
80296
10 3
1511-r,,-r~-.'-,,'-,,-rT7,Z_67r95~3~
7Z62387b
t--
-leBO r- -Vell 40V
-- -maxi-""'"
(flA)
...... 1--""
""
~
~
-
=I i
=
,-.
_.. 1--.- - --+-+-+--+-+-l-V
2 V 1--+
CE
- Ic 1-+-+-+-+-+--+--1-+-+---1-+---1 lj
25°C r - -
(A) -- ~~~-4-~.~-~~+-l-++-'"
",
r---
-
. 1-.
-·--r- - t-- - -
-+-+~-+-+--.I--
t- t--
- t----
- - ._-
101-+-+-+-+-+--+--1-+-+---I-+-+-r+-+-+-+~+--1
~
l/
",V
10
+ --
~-+.
typ
t
/
-
/
-1- -
f-+- __
-
.
i
t
+-+-t--t-+-~-l
---+-1
.-
.
-t~H-
I
-+--t-+-
51-+-+-+-+-+--+--f-+-·+typ~r+-+-+-+-r-+---I
- --{'._- - r- _.- - t--
//
-. ..- --t--f-t-4-t--+
- -
-
---1
- 1-.1----. - ----I-
V- -- - --
....
- t-- -
-
'""
10- 1
o
50
Fig. 9 Collector-base current.
--
Fig. 10 Collector current.
7262£.00
100
-
-
-Vell= OV
-IB
(rnA)
75
/
\
/ I E =3A-
\
~
\
,typ
r-
'/
V
/
50
\
25
o
-100
8
February 1979
r
/
i'
typ
r-- '"-"
~
",
V
a
Fig. 11 Base current.
2A
-
- _.- ._-
80292
80294
80296
Silicon epitaxial-base power transistors
7
7Z67955
.++++f-rt
1,5 r---,--,---r---r-...---r-"_r-!7Z_6,79_5..,
-+-----'--'---t-~-------_t~t_
-VeEsat
-
=10
-Ie
; - - -I B
(V)
---
-Ie 10
-I B
f- -- .-- f-.--t--r--f---- . -VBEsat
~-f-~
f--.._-1-
0
(V)
-t--- --- --
lj=25C
I
-+I
J
tY7c--
~-
--
J--
f--
l-
v
/
t
=25°C
f---
- f--
-~ ~I--f--
+-+-
f-- --
- 1--1--
I--f-- f--.--f-f--
iI""
V
ty~
P
0,5 r----+---I----+----lIf---+--+-+----+--I----i
v
.. f-- f - f -
---
1----t--+---t--~II--F-+---l-- ---
/
Tj
f-·- f--f-- -
+
f--f--
jfl'"
J
I
J
V
1/
I .....
o
a
Fig_ 12 Collector-emitter saturation voltage.
5
10
-Ie (A)
Fig. 13 Base-emitter saturation/voltage.
7162405
20
--
fT
(MHz)
15
;I'
-
I'-.....
-VeB = 3V
T j =25 0 C
........
~ f.--
f.-- f.--
r-....
l'r-...
1"-"
10
~t~
l"- t......
J""'. r--...
5
'"
1'---0 ....
-~ t-- t--
()
o
2
3
4
5
IE (A)
6
Fig. 14 Transition frequency as a func;tion of emitter current.
FOR APPLICATION INFORMATION SEE B0291, B0293 ANO B0295.
February 1979
9
II
80329
SILICON PLANAR EPITAXIAL POWER TRANSISTOR
N-P-N transistor in a SOT-32 plastic envelope intended for car-radio output stages.
P-N-P complement is BD330. Matched pairs can be supplied.
QUICK REFERENCE DATA
= 0)
VCES
max.
32
V
Collector-emitter voltage (open base)
VCEO
max.
20
V
Collector current (pe~k value)
ICM
max.
3
A
P tot
max.
15
W
Junction temperature
Tj
max.
150
oC
D. C. current gain
IC = 0,5 A; V CE
hFE
Collector-emitter voltage (VBE
Total power dissipation up to T mb
= 45
oC
=1 V
Transition frequency
IC = 50 mA;VCE = 5 V
85 to 375
130
typo
fT
MECHANICAL DATA
MHz
Dimensions in mm
TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface
a
__/2,7/_
max
,
/- 7,8 max
--
--I
.Th.~
~
3,2
3.0
+
-,
11,1
i
max
J
15,3
min
e
...11.0,5
0,88__
max
c
1
b",'----,-
11_, ,
~
7ZS9324.2
I.-
~
For mounting instructions see section Accessories, type 56326 for non-insulated mounting
and set 56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.
February 1979
II
II
l
80329
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
I
Voltages
Collector- base voltage (open emitter)
VCBO
max.
32
V
Collector-emitter voltage (VBE = 0)
VCES
max.
32
V
Collector-emitter voltage (open base)
VCEO
max.
20
V
VEBO
max.
5
V
Emitter-base voltage (open collector)
Currents
Collector current (d. c.)
IC
max.
3
A
Collector current (peak value)
ICM
max.
3
A-
Base current (d. c. )
IB
max.
-IE
max.
3
A
max.
15
W
Emitter current (d. c.)
A
Power dissipation
Total power dissipation up to T mb = 45 oC
Ptot
Temperatures
Storage temperature
Junction temperature
T stg
Tj
- 65 to +150
max.
150
°c
°c
THERMAL RESISTANCE
From junction to mounting base
From junction to ambient in free air
2
II
Rth j-mb
Rth j-a
II
7
°C/W
100
°C/W
August 1975
II
Tj
CHARACTERISTICS
= 250C
80329
unless otherwise specified
Collector cut-off current
IE
IE
= 0; V CB = 32
= 0; V CB = 32
V
V; T j
= 150 °c
ICBO
<
ICBO
<
lEBO
<
VBE
typo
0,6
V
VBE
<
1,2
V
VCEsat
<
0,5
V
hpE
>
50
10
f-1A
rnA
Emitter cut-off current
IC
= 0; VEB = 5 V
10
f-1A
Base-emitter voltage
IC
IC
= 5 rnA; VCE = 10 V
= 2 A; VCE = 1 V
Collector-emitter saturation voltage
IC=2A;IB=0,2A
D. C. current gain
IC
IC
= 5 rnA; VCE = 10 V
= 0, 5 A; V CE = 1 V
IC = 2 A; VCE = 1 V
85 to 375
hpE
40
hpE
>
fT
typo
130
hPE1/hpE2
<
1,6
Transition frequency at f = 35 MHz
IC =:' 50 rnA; VCE = 5 V
MHz
D. C. current gain ratio of
matched pairs
BD329/BD330
IIC I
= 0,5 A;
July 1977
IVCEI
II
=1 V
3
~
B0329
II
7Z72273
10
Tmb~4S0C
0= 0,01
~
~
I
t\~
r-,
i'
~ \ \\
~\
,\\
\
tp =
50 jJs
100
200
\\\ \ \
2)m\
500
1ms
\~ 2
~ 10
d.c.
\\\\
10- 2
1
10
VeE (V)
Safe Operating ARea with the transistor forward biased
I Region of permissible· d. c. operation
II Permissible extension for repetive pulse operation
1) Ptot max and Ppeak max lines.
2) Second-breakdown limits (independent of temperature).
4
II
II
August 1975
II
80329
II
7Z67895 2
100
\
.,
\.
Ptot
max
~.
(%)
\
,
.~
,
~
I~
so
\
\
\
\.
\
,
~
so
--
7Z62125
JUL
~~-J
Zthj-mb
T
(OC/W)
10
tp
6=T
6=1
0.75
0,5
~
0,33 I-- ...
1-
~ I::: ~~
_10-""1.-'
V
10- 2
10- 3
AUgUst 1975
L.---
:::4 po
p
L..'
,
0.1
0.05
0.02
0.01
10~2
II
10~1
10 2
10
II
tp (ms) 10 3
5
80329
II
I
7Z72269
S.B. voltage muJtiplying factor at the ICmax level
10
~r01
,/,0,05
0,1
~
&0,33 -
r---_ r-== iialt::l!00
- t:~ :~ ~
~I-
0,5
0,75
--
~
7Z72270
S.B. current multiplying factor at the VCEOmax le\lel
MSB1V)
10
0,05
0,1
O/~,01
.... ..: 9,02
-....
~
~33
0,5
...... "
r- .... ~r-:-
0,75
:
~
~
-
-....... ~ ~ .....
-
~
r-- I-- f::::~
==
~
tp(S)
6
II
II
August 1975
II
80329
II
7Z72488
200
=1 V
=25°C
VeE
Tj
typ
150
L---
.....-r-
r---- ~
~
1"""-"
.........
'"
100
"II'\.
,
~
50
I
IT
1--.
10
Ie (A)
7Z72489
1,5
J
=1 V
=25°C
--
VeE
Tj
L
L
./
~
typ
.---
...~ I"""'"
0,5
o
10- 2
August 1975
Ie (A)
II
II
10
7
II
80329
,
I
VCESQt
7Z12487
typo values
Tj 25 °c
=
~
(V)
\
\
\.
,
'\.
,
\
I ...... "
~ .......
!'I'
""
r---..
~
""'"
-
Ic
=
3A
2A
1A
a,s A
2
10 3
10
Is (rnA)
-APPLICATION INFORMATION
8
II
See next page.
II
. August 1975
80329
II
II
APPLICATION INFORMATION
Basic circuit diagram of a 5,5 W car-radio audio amplifier.
1,4mH
1S.kil
O,SA
'---t---;-
= 1 kHz unless
Output power at ~ot = lO%
Input voltage for Po = 5, 5 W
Performance at f
+ 14 V
otherwise specified
Po
typo
5,5
W
Vi(rms)
typo
20
mV
Input impedance
zi
typo
20
kQ
Collector quiescent current of output transistors
II CQ /
typo
10
rnA
typo
28
rnA
Collector current of Be5S8
-IC
.collector current of BC548 (pre-amplifier)
IC
typo
0,5
rnA
Total current drain at P0= 5,5 W
~
typo
540
rnA
75 Hz to 11
kHz
Frequency range (-3 dB)
o
With a heatsink thermal resistance for each output transistor of 40 C/W the maximum
permissible ambient temperature is 60°C.
August 1975
II
II
9
80329
II
II
10
7Z72271
-
Po
Pref
Pref =1,5W
Vi = C
(dB)
5
o
/i""'"
.... ~
V
-
"1"\
I
-5
-10
1
f (Hz)
7Z72272
10
f
= 1 kHz
7,5
5
,
,
I
I
/
/
2,5
.---V
0
0,1
10
./
",
10
Po (W)
II
II
August 19]5
II
80330
II
SILICON PLANAR EPITAXIAL POWER TRANSISTOR
P-N-P transistor in a SOT-32 plastic envelope intended for car-radio output stages.
N-P-N complement is BD329. Matched pairs can be supplied.
QUICK REFERENCE DA_T_A_ _ _ _ _ _ _ _ _ _ _- t
Collector-emitter voltage (V BE
= 0)
'Collector-emitter voltage (open base)
Collector current (peak value)
Total power dissipation up to T mb := 45
°c
Junction temperature
D. C. current gain
-IC :=0,5A;-VCE:= IV
Transition frequency
-IC := 50 rnA; -V CE := 5 V
MECHANICAL DATA
TO-126 (SOT-32)
'c ollector connected
to metal part of
mounting surface
I'" 7,8
1
max .......
.rh.
3,2
3,0
~
t,
Tsj
11,1
max
i
~_l
r
15,3
min
e
.......il...
0,5
c'
0,88-.11.. ,
, max
~
1
bLjl'-----,-
,
7ZS932l..2
I...
~
F or mounting instructions see section Accessories, type 56326 for non -insulated mounting
and set 56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.
February 1979
II
1
B0330
II
II
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
Collector-base voltage (open emitter)
-V CBO
max.
32
V
Collector-emitter voltage (VBE = 0)
-VCES
max.
32
V
Collector-emitter voltage (open base)
-VCEO
max.
20
V
-VEBO
max.
5
V
Collector current (d. c.)
-IC
max.
3
A
Collector current (peak value)
-I CM
max.
3
A
Base current (d. c.)
-IB
max.
1
A
IE
max.
3
A
Ptot
max.
15
W
- 65 to +150
°C
150
°c
Emitter-base voltage (open collector)
Currents
Emitter current (d. c.)
Power dissipation
Total power dissipation up to T nib =·45 °c
Temperatures
Storage temperature
-"
--
T stg
Junction temperature
Tj
max.
THERMAL RESISTANCE
From junction to mounting base
Rth J-mb
From junction to ambient in free air
Rth j-a
2
II
II
7
°C/W
100
oc/w
August-1975
II
CHARACTERISTICS
B0330
T j = 25°c unless otherwise specified
Collector cut-off current
IE =0; -VCB=32V
-ICBO
<
IE = 0; -VCB = 32 V; Tj = 150 °C
-ICBO
<
-lEBO
<
~
10
rnA
Emitter cut-off current
IC = 0; -VEB = 5 V
~
10
Base-emitter voltage
-IC = 5 rnA; -VCE = lOY
-IC = 2 A; -VCE = 1 V
-VBE
typo
0,6
V
-VBE
<
1,2
V
-VCEsat
<
0,5
V
>
50
Collector-emitter saturation voltage
-IC = 2 A; -IB = 0,2 A
D. C. current gain
-IC = 5 rnA; -VCE = lOY
hPE
-IC = O,SA; -VCE = 1 V
hpE
-IC = 2 A; -VCE = 1 V
hpE
>
fT
typo
100
h pEl /hpE2
<
1,6
85 to 375
40
Transition frequency at f ,,; 35 MHz
-IC =SOrnA; -VCE =SV
MHz
D. C. current gain ratio of
matched pairs
BD329/BD330
IIel =O,SA; IVCEI = 1 V
July 1977
II
3
---
-
80330
I
7Z72274
10
T~b ~ 45°C
0= 0,01
~
~
.)
I
[',1'\
I',
"-
tp
=
~ \ \\ 50 IJS
~\
'\\\
100
200
\.\\ \ \
2)\\\ \ \
~'U 500
\\\\ 1 ms
\~ 2
~ 10
d.c.
10- 2
1
10
-VeE (V)
Safe Operating ARea with the transistor forward biased
I Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation
1
) Ptot max and Ppeak max lines.
2) Second- breakd~wn limits (independent of temperature).
4
II
II
August 1975
II
B0330
II
7Z67895 2
100
\
~
"\
Ptot max
~
(%)
"\
,
1\
,
1\
11\
50
1\
1\
1\
1\
\
1\
a
\
a
50
7Z62125
JUL
t~-J
Zthj-mb
(Oc/w 1,
T
10
tp
6=T
6=1
0,75
0,5
0,33 t-
~ ~ t::~
r-
_+-Io--
V
I-~ ~.
P'
0.1
0,05
0,02
0,01
10~2
10- 3
August 1975
10- 2
II
10-1
10 2 tp (ms) 10 3
10
II
5
80330
II
II
7Z72269
S.B. voltage multiplying factor at the ICmax level
10
0,1
~
0,33 0,5
0,75
~,~,01
/.0,05
~
r--
~-==
---r-r-.
~~~ ~
0::::::
~
r-I-
~~
7Z72270
S.B. current multiplying factor at the VCEOmax level
MSB(V)
5~,01
10
0,05
-
0,1
£
0,33
0,5
....." p,02
r"III
i""oo
~Ioo.
"'1"-
r-- 1--r-
~
~
-......
r--- ~ ~~
---
f""oi
~;;: ::::~
0,75
1
10- 5
6
10- 4
II
==10-3
10- 2
tp (5)
II
10- 1
August 1975
II
B0330
II
7Z72491
200
-VeE::: 1 V
1j = 25°C
150
-
typ
100
r"r-.,
"
....
50
o
10-2
~
"
10- 1
~
10
-Ie (Al
7Z72492
1,5
-VeE::: 1 V
Tj
=25°C
L
./
./'
typ
.----
...
I.,....oo--~
L
-'"
0,5
o
10-2
August 1975
10- 1
II
.1
-Ie (Al
10
7
B0330
II
II
7Z724<90
10
typo values
Tj =25
l
1\
°c
\
-VCESQt
(V)
\
\
I
\
,
\
~.
..
\
1\"
10- 1
~
"- ~
-'.
~~
..... 1' ~~
,
Ic =
3A
2A
1A
\
~
10
1
"
'-
O,SA
-Is (mA)
FOR APPLICATION INFORMATION SEE BD329.
8
II
J,__
AUgust 1975
____J
80331; 333
80335;337
SILICON DARLINGTON POWER TRANSISTORS
N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; plastic SOT-82 envelope for clip mounting; can also be soldered
or adhesive mounted into a hybrid circuit. P-N-P complements are 80332, 80334, 80336 and 80338.
QUICK REFERENCE DATA
80331 333 335 337
Collector-base voltage (open emitter)
VCBO
max.
Collector-emitter voltage (open base)
VCEO
max.
60 80 100 120 V
60 80 100 120 V
Collector-current (d.c.)
Ie
max.
6
A
Ptat
Tj
max.
60
150
W
max.
Total power dissipation up to
Tmb= 25°C
Junction temperature
aC
D.C. current gain
IC=O,5A;VCE=3V
IC=3,OA;VCE=3V
Transition frequency
IC=3A;VCE=3V
,hFE
typo
hFE
>
fT
typo
1500
750
7
MECHANICAL DATA
MHz
Dimensions in mm
Fig. 1 SOT-82.
Collector connected
to metal part of
mounting surface
15,3
,min
b
c
e,_l
1.lo.2S41@~II88 j2,29~
7Z65778.2
max
See also chapters Mounting instructions and Accessories.
(1) Within this region the cross-section of the leads is uncontrolled.
March 1979
l'
80331; 333
80335; 337
'---------------~~---------------------------------
I
!L ________
R1
R1 typo
4 kS'l
R2 typo 100n
R2
I
7Z6645.2
_
.
e
Fig. 2
Circui~
diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
B0331 333 335 337
VCBO
max.
~O
80 100 120 V
Collector-emitter voltage (open base)
VCEO
max.
60
80 100 120 V
Emitter-base voltage (open collector)
VEBO
max.
Collector current (d.c.)
Collector-base voltage (open emitter)
--
----
IC
max.
Collector current (peak value)
tp ~ 10 ms; 5 ~ 0,1
ICM
Base current (d.c.)
18
Total power dissipation up to
Tmb= 25 oC
Ptot
max.
Storage temperature
Tstg
Junction temperature *
Tj
5
5
5
5 V
--..6
A
max.
10
A
max.
150
mA
60
-65 to + 150
W
oC
150
°C
max.
THERMAL RESISTANCE *
From junction to mounting base
Rth j-mb
From junction to ambient in free air
Rth j-a
--.*
2
2,08
°C/W
100
°C/W
Based on rmaximum average junction temperature :~ line with common industrial practice. The
resulting higher junction temperature of the output transistor .part is taken into account.
M.~h
1979
r
1
80331; 333
80335;337
Silicon Darlington power transistors
CHARACTERISTICS
Tj ", 25
0c unless otherwise specified
Collector cut-off current
'E'" 0; VCB'" VCBOmax
IE'" 0; VCB'" VCBOmax; Tj'" 150 oC
'B'" 0; VCE'" % VCEOmax
Emitter cut-off current
'C",0;VEB"'5V
0,2 mA
'CEO
<
<
<
5 mA
'CBO
'CBO
'EBO
<
D.C. current gain *
'C"'O,5A;VCE"'3V
hFE
typo
IC"'3A;VCE=3V
hFE
>
2 mA
0,5 mA
1500
750
IC = 6 A;VCE = 3 V
hFE
typo
Base-emittervoltage **
'C=3A;VCE=3V
VBE
<
2,5 V
Collector-emitter saturation voltage
'C = 3 A; IB'" 12 mA
VCEsat
<
2 V
Transition frequency
IC=3A;VCE=3V
fT
typo
7 MHz
Cut-off frequency
IC=3A;VCE=3V
fhfe
typo
60 kHz
1500
Turn-off breakdown energy with inductive load (see Fig. 12)
-IBoff = 0; ICon = 4,5 A
Diode forward voltage
IF=3A
E(BR)
>
50 mJ
VF
typo
1,8 V
D.C. current gain ratio of complementary
matched pairs
IC=3A;VCE=3V
hFE1/hFE2
<
2,5
*
Measured under pulse conditions: tp < 300 IJ.S, [j < 2%.
VBE decreases by about 3,8 mV/oC with increasing temperature.
r
~ Ma~h
1979
-
3
l___~~
8D331; 333
8D335;337
7Z72220.1
IC
(A)
0= 0,01
ICMmax
10
ICmax
"-
I' '\.
"I"1'\"-." ."'\1'\II
t
(1 )\. \ 1\ 1\1'
1\
=
- t-t- t-t-
\
'\\\
\
1
r -'
P
I" 0,1 ms
\
\
1 \
0,5
(2)\1\
I
" 1\
~
1
1\
1
1\ 2
,
--
l\
1\ 10
80331;80333
80335;80337;-
1,Q-2
1
d.c.
I-
10
VCE(V)
Fig. 3 Safe Operating Area with the transistor forward biased; T mb ~ 25 0C.
I
II
Region of permissible d.c operation
Permissible extension forrepetitive pulse operation
(1) Ptot max and Ppeakmax lines.
(2) Second breakdown limits (independent of temperature).
4
Mareh
1979l (
80331; 333
80335;337
Silicon Darlington power transistors
7Z672571
100
P tot max
(0/0)
75
,
\.
\
,
\.
:\.
~
"
\.
50
\
\
,
,\.
25
,
~
\.
\
50
100
150
T mb(OC)
Fig. 4 Power derating curve.
7Z72226
10
J1SL
-Itpl-I
I_T_
10
O=~
T
0=1
0,75
0,50-1'"""
0,33
0,20
.... 1:,...~
-~
~~
'?
~I
1"0,10
0,05
1'0,02
0,01
tp
(5)
10
Fig. 5 Pulse power rating chart.
March 1979
5
80331; 333
80335; 337
7Z72225
S.B. vOltage multiplying factor at the
ICmax
level
MV
10
~:,01
0,02
0,05
'-~ b.
1-- 0,10"
1"---0,20
0,33
F::::::: ~
......
r--- r-.
~ ~~
~
r- r-~ I-o~
0,50
0,75
:~ I!!!:=...
....
10
tp (ms)
Fig. 6 Second breakdown voltage mUltiplying factor at ICmax level.
I
5
==
.-7Z67856
~0,O2
...............
0 =0,01
'"
~~~
10
~0,1
i'.N,
~ ~
........... "
--- -
- 0 , 12
0,33
-
I
0,5
I
,
1'1 .
....
~
~,
--~ .........
"'to-
. r-
~
- ... ~~~ ~
~
~ t'-~~
r- ~~ ~ ..
"""
0,75
r
10
tp (ms)
Fig. 7 Second breakdown current multiplying factor at V CEOmax level.
6
Mareh1979l
8D331; 333
8D335; 337
Silicon Darlington power transistors
7 Z67317
7Z67321
6
I
10
VCE=3V
Tj =25 0C
IC
-
I I I
IC/ IB=250
Tj'==25 0 C
V CEsat
(V)
f--
r-f--
(A)
I
7,5
4
J
II
I
5
I
2
!typ
I
2,5
)
o
typ
'I
.... .--
........
J
1/
~
1,5
2
2,5
o
o
5
.---
i-""
IC (A)
10
VBE (V)
Fig. 8 Collector current.
Fig. 9 Collector-emitter saturation voltage.
"7Z67320
VCE=3V
T j =25 °C
.- -....
. / typ '\.
1\
/
/'
~
~
./
./
""
IC (A)
10
Fig. 10 D.C. current gain.
March 1979
7
7Z67129
Ie 3A
r--r~-~~~~--+-~~H~-4-+++HHI~~-~~~~~H--+-~+~H~VeE=3V
~
-_.
--
1--
r---t---f--t--+ t-l-H!----+--+-+
. 1----- - I - - --
------ -t-t-Hllr---i'-+-+
,---+++++H+~,\
--
-----
-t+~·~tllr-,--
:-::: \ : - - -
--t--":=-r-I---H-H 1If-- ~-: .:::-
--
== ~
~f----
10 8
-==
f (Hz) 10 9
Fig. 11 Small signal current gain at IC = 3 A; VCE = 3 V.
==
vert.
oscilloscope
+
Vee
hor.
osci lIoscope
7Z73863.1
Fig. 12 Test circuit for turn-off breakdown energy. VIM
8
March 1979
r
= 12 V; RS = 270 n.
80331; 333
80335; 337
Silicon Darlington power transistors
APPLICATION INFORMATION
27 k!l.
1A
~----~---------------------~--~~--~~~---+VB
4,7
~F
+
;J;
180kQ
330.
1,2kfi
1,5ko.
7Z72219
Fig. 13 Basic circuit diagram of a 20 W hi-fi amplifier.
Performance at VB
= 43 V (unloaded supply voltage = 51 V):
Collector quiescent current of BD331 and BD332
Total current drain at Po
= 20 W; f = 1 kHz
Ilcol
IB
typo
20 mA
typo
710 mA
180 kr2
Input impedance
zi
typo
Output impedance
Zo
typo
80
= 1 kHz; dtot = 1%
Input voltage for Po = 20 W; f = 1 kHz
Total harmonic distortion at Po = 20 W
Po
typo
24 W
Vj(rms)
typo
dtot
typo
Output power at f
Intermodulation distortion at Po
Heatsink thermal
r~sistance
= 20 W
per output transistor
dim
Rth h-a
Stable continuous operation is ensured up to an ambient'temperature of 50 0C.
mn
375 mY
0,08 %
typo
0,2 %
~
6,4 OC!W
March 1979
9
8D331; 333
8D335; 337
l________~
7Z72224
10
II
Po
Vi =C; Pref = 6 dB below 20 W
Pref
(dB)
5
o
-5
-10
'10 1
f (Hz)
Fig. 14 Output power in relation to reference power.
I
e:
I
7Z72223
10
E
I-
d tot
Po
Pref
fref
(dB)
= Po
=10/0
at 1 kHz
5
-
o
-5
-10
10 1
f (Hz)
Fig. 15 Output power in relation to reference power.
10
March 1979
r
8D331; 333
8D335; 337
Silicon Darlington power transistors
7Z72222
II
d
1 kHz
t------
tot
(%) t - - -
------40 Hz
-·_·-12,5 kHz
0,5r--~~-+-r+++H---+--+-r~HHH+----r-~~+++++r---++-+-~~~
----. ---._-
1-----1-- --I-
.
~.--.1-
.
---1---. -.
--7
Fig. 16 Total harmonic distortion.
11
/
---)
BD332;334
BQ336;338
SILICON DARLINGTON POWER TRANSISTORS
P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; plastic SOT-82 envelope for clip mounting; can also be soldered
or adhesive mounteq into a hybrid circuit. N-P-N complements are 80331, 8"0333, 8D335 and BD~37.
QUICK REFERENCE DATA'
BD332 334 336 338
Collector-base voltage (open emitter)
-VC80
max.
60
80 100 120 V
Collector-emitter voltage (open base)
-VCEO
max.
60
80 100 120 V
Collector-current (d.c.)
-IC
max.
6
A
Total power dissipation up to
Tmb= 25 0 C
max.
60
W
Junction temperature
max.
150
ac.
D.C. current gain
-IC = 0,5 A; -VeE == 3 V
typo
1500
>
-IC = 3,0 A; -VCE = 3 V
Transition frequency
-IC=3A;-VCE=3V
750
typo
7
MECHANICAL DATA
MHz
Dimensions in mm
Fig. 1 SOT-82.
Collector connected
to metal part of
mounting surface.
I-;;'~x-I
i------i-+3,75
+
r
111
max
~_J
r
15,3
min
bee
--1-II
0,5.
II
_1
1"lo,2541®~
• J229
=.0,88.
. i..
L - .- ' - .- - ' - ' .
7Z6S776.2
max
See also chapters Mounting instructions and Accessories.
(1) Within this region the cross-section of the leads is uncontrolled.
I
(MarCh 1979
8D332; 334
8D336; 338
l
'---------------------------------------------------r----------------------;
~---------~~~---+--c
I
I
I
I
b ~~~--'-__I
Rl typo 4 k51
R2 typo 8051
I
R1
R2
L _________
_ __ .J
I
7Z66446.2
e
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
BD332 334 336 338
Collector-base voltage (open emitter)
-VCBO
max.
60
80 100 120 V
Collector-emitter, voltage (open base)
-VCEO
max.
60
80 100 120'V
Emitter-base voltage (open collector)
-VEBO
max.
5
Collector current (d.c.)
-IC
max.
Collector current (peak value)
tp ~ 10 ms; 5 ~ 0,1
-ICM
Base current (d.c.)
-IB
Ptot
T stg
max.
Tj
max.
Total power dissipation up to
T mb = 25 °C
Storage temperature
Junction temperature *
5
5
5 V
6
A
max.
10
A
max.
150
60
-65 to
mA
W
+ 150
oC
150
°C
THERMAL RESISTANCE *
From junction to mounting base
Rth j-mb
From junction to ambient in free air
Rth j-a
2,08
OC!W
100
°C!W
* Based on maximum average junction temperature in line with common industrial practice. The
I
2
resulting higher junction temperature of the output transistor part is taken into account.
Mareh1979I (
80332; 334
80336; 338
Silicon Darlington power transistors
CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE = 0; -VCB = -VCBOmax
0,2 mA
-ICED
<
<
<
Emitter cut-off current
IC=0;-VEB=5V
-lEBO
<
5 mA
D.C. current gain *
-IC = 0,5 A; -VCE = 3 V
hFE
typo
-IC = 3 A; -VCE == 3 V
hFE
>
-IC = 6 A; -VCE = 3 V
hFE
typo
Base-em itter voltage * *
-IC=3A;-:-VCE=3V
-VBE
<
2,5 V
Collector-emitter saturation voltage
-IC = 3 A; -IB = 12 mA
-VCEsat
<
2 V
Transition frequency
-IC=3A;-VCE=3V
fT
typo
7 MHz
Cut-off frequency
-IC=3A;-VCE=3V
fhfe
typo
60
Diode, forward voltage
IF=3A
VF
typo
1,.8 V
D;C. current gain ratio of
complementary matched pairs
-IC = 3 A; -VCE = 3 V
hFE1/hFE2
<
2,5
*
-ICBO
IE = 0; -VCB = -VCBOmax; Tj = 150 °C
-ICBO
IB = 0; -VCE = -Y:! VCEO
Measured under pulse conditions: tp < 300 p.s, l) < 2%.
VBE decreases by about 3,8 mV/oC with increasing temperature.
I(
2 mA
0,5 mA
1500
750
1500
Mareh 1979
kHz
3
8D332; 334
80336; 338
7Z72221.1
-IC
(A)
[) =
-ICMmax
10
"'"'"
ICmax
0,01
~
~'"
" -""-"""'\~~11
"
(10
.."1.
t
"\ [\ [\.r"-
~
\
Il
p
=
0,1 ms
""
..
- -r-
- -r-
'~ 1\ '1\
, 0,5
1\
1\
1\
(2)\/\
I
"1\
~
10- 1
~
1
~
2
1\
1\ 10
1,
B0332+B0334
80336;B0338 ;-1-
10- 2
1
d.c.
I-
10
Fig. 3 Safe Operating Area with the transistor forward biased; T mb = 25 0C.
I
II
Region of permissible d.c. ~peration
Permissible extension for repetitive pulse operation
(1) Ptot max and Ppeak 'max lines.
..
(2) Second breakdown limits (independent of temperature).
4
Mareh
197~
I(
J
Silicon Darlington power transistors
8D332; 334
8D336; 338
- _ .
7Z672571
100
"\
P tot max
(%)
\
\
75
,
\
,
1\
\
50
\
\
,
.\
25
,
~
\
1\
o
o
\
50
150'
100
T mb(OC)
Fig. 4 Power derating curve.
7Z72226
10
JUL
_T_ o=~
-ltpl_1
T
10
0=1
0,75
0,50 -r:10,33
0,20
11"'~
~I-
_10- ~~
-;:::::. ~~
~I
1"0,10
0,05
['0,02
0,01
10
Fig. 5 Pulse power rating chart.
I(
March 1979
5
l_____________- -
80332; 334
80336; 338
7Z72225
S.B. voltage multiplying factor at the ICmax level
MV
10
~o~'
0,02
0,05
"""~ ~
--0,10 ...
~O,20
1--°,33
, .• 1
~~
r-- r.::: ~
-~~ -
0,50
!!!Ill!!
r-r-. ....
~
I"-
0,75
~~ !tII:I..
-r---::
10
Fig. 6 Second breakdown voltage multiplying factor at the ICmax level.
----
7Z67856
:0,02
."",""
() =0,01
"
rJ=='\
~. .J~~
\
10 F="-0,1
r - - O,1 2
'''"~I'
-
.....
i'"
,,,-
...... 1000.
"'~I'o
0,33
r-~
I'-~I-
~
-=:::::; ~
----
0,'75
1
10- 1
I'
~, ,~
-
O~S
~~
(
1
~
~
~ ~~ ...
10
. tp (ms)
Fig. 7 Second breakdown current multiplying factor at the VCEOmax level.
6
Mamh 1979
10 2
8D332;334
8D336;338
Silicon Darlington power transistors
7Z67316
-VCE=3V rTj =25 0c r-
10
-IC
7Z673ZZ
6
I I
I
I
I I
I
I
-IC/-IS=2S0 1-11-1Tj=25 0 C
1-1-
-VCEsat
(V)
(A)
J
7,5
4
1/
"
J
'/
L
5
'{
/typ
2
/
typ
If
2,5
j
1/
o
-
.... 1--
-"'"
.... "'"
,.
1,,000 ....
I[
,/
o
1,5
2
2,5
-VBE (V)
Fig. 8 Collector current.
o
5
-IC (A)
10
Fig. 9 Collector-emitter saturation voltage.
7Z67319
10 5
-VCE = 3V
Tj =25 0c
'----
,
~yp . . . . 1\
V'~
~
V
r---"
/
/
~
-Ie (A)
10
Fig. 10 D.C. current gain. ,
7
803'32; 334 .
80336; 338
7Z67332
-
-
-- r-r--
-
- flt:::=t=t:ttt
IC 3A
-VCE =3V
i"""~
-
r-
'--
~-
~
f-
r---
,
-
I,
r - - r-
typ "
~-
:
--
f-
r-r
\
10
\
\.
~
"
10 8
Fig. 11
----
Smal~
signal current gain.
FOR APPLICATION INFORMATION SEE 80331,80333,80335 ANO 8D337.
8
March
19791 (
f (Hz)
10 9
B0433; B0435;
B0437
II
SILICON EPITAXIAL-BASE POWER TRANSISTORS
N-P-N transistors in a SOT-32 plastic envelope, intended for use in complementary output
stages of audio amplifiers up to 15 W.
The complementary pairs are BD433/BD434, BD435/BD436 and BD437/BD438.
QUICK REFERENCE DATA
BD433
BD435
BD437
Collector-emitter voltage (VBE = 0)
VCES
max.
22
32
45
V
Collector-emitter voltage (open base)
VCEO
max.
22
32
45
V
Collector current (peak value)
ICM
max.
7
7
7
A
Total power dissipation uptoT mb =25 °C
Ptot
max.
36
36
36
W
D. C. current gain
IC = 2 A; V CE = 1 V
hFE
>
50
50
40
Transition frequency
IC = 250 rnA; VCE = 1 V
fT
>
3
3
3
MHz
Dimensions in mm
MECHANICAL DATA
TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface
....,2,7,
...
max
1'-7,8 max
--I
.~.~
~
+
3,2
3,0
11,1
+
I
max
~_l
--
I
15,3
min
e
....0,511.-
c'
1
b ...' - - - - , -
0,88--.11...~' ,
max
7ZS9324.2
1__
~
F or mounting instructions see section Accessories, set 56333 for insulated mounting
and type 56326 for non-insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.
February 1979
II
1
-
B0433; B0435;
. B0437
--
-
I
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
Collector-base voltage (open emitter)
SD433
BD435
BD437
VCBO
max.
22
32
45
V
Collector-emitter voltage (VBE = 0)
VCES
max.
22
32
45
V
Collector-emitter voltage (open base)
VCEO
max.
22
32
45
V
VEBO
max.
5
5
5
V
Emitter-base voltage (open collector)
Currents
Collector current (d. c.)
IC
max.
4
Collector current (peak value)
ICM
max.
7
A
IB
max.
1
A
Ptot
max.
36
W
Storage temperature
T stg
-65 to +150
Junction temperature
Tj
max.
Base current (d. c. )
A
Power dissipation
Total power dissipation uptoT mb =25 oc
Temperatures
150
°e
°e
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
3,5
From junction to ambient in free air
Rth j-a
100
2
II
II
°e/W
°e/W
August 1975
~
II
CHARACTERISTICS
Tj
= 25
80433; 80435;
80437
0C unless otherwise specified'
Collector cut- off current
IE = 0; VCB = VCBOmax
IE
IE
= 0; VCB = lOY; Tj = 150 °c
= 0; VCB = VCBOmax; Tj = 150
°c
ICBO
<
ICBO
<
I CBO
<
3
rnA
lEBO
<
1
rnA
100
fJA
rnA
Emitter cut- off current
IC
= 0;
VEB == 5 V
Knee voltage
IC
IC
BD433 BD435 BD437
= 2 A; IB = value for which
= 2, 2 A at VCE = 1 V
VCEK
<
0,8
V
Base-emitter voltage 1)
= 10 rnA;
=5 V
VBE
typo
580
580
IC = 2 A; VCE = 1 V
VBE
<
1,1
1,1
=1 V
VBE
<
VCEsat
<
V CEsat'
<
=5 V
hFE
IC = 500 rnA; VCE = 1 V
hFE
IC
VCE
IC = 3 A; VCE
mV
580
V
1,3
V
Collector-emitter saturation voltage
IC = 2 A; IB = 0,2 A
IC
= 3 A;
IB = 0,3 A
0,5
0,5
V
V
0, 7
D. C. current gain
= 1V
hFE
>
>
<
>
= 1V
hFE
>
fT
>
3
BD433/BD434 and BD435/BD436
hFE I/hFE2 <
1,4
BD437/BD438
hFEl/hFE2 <
1,8
IC = 10 rnA; V CE
IC
IC
= 2 A; VCE
= 3 A; VCE
Transition frequencl at f
25
85
475
50
25
85
475
50
25
85
375
40
30.
= 1 MHz
IC =250 rnA; VCE = 1 V
MHz
D. C. current gain ratio of the complementary pairs
IIcl= 500 rnA; IVCEI= 1 V
1) VBE decreases by
August 19,75
typ~
II
2,3 mV IOC with
incre~sing temperature.
II
3
-
7Z62582A
10
c5 =0,01
ICMmax
\
f0.\\\
1 -t-I'I
IC
ICmax
(A)
\ \
\\\ \
~"\\
P
\
\
\
Illl
,~
second
breakdown 1)
I
f-
r-
?,~ ms
i\ \
I
\~ ~
trliT
t
I PI
?'T
~ ~ ~J',--"
21\
1---
'\ ,\
\\
\\
\
--
--
510
d.c.
I
10- 1
T m b:525
0
C
10- 2
10
CVj
CVj
If)
CVj
~
~
~
SS
SS
SS
I'
CVj
VCE (V)
Safe Operating ARea with the transistor forward biased
I Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation
1) Independent of temperature.
4
II
II
August 1975
80433; 80435;
80437
II
10
Zth j-mb
(Oe/W)
7Z62659
~t:++
f-O
~m
~
0.75
f-:-:-
--.=-
~ foO'.50'
~ 0.33
-
~ ;;00:2,0,
f----
f--
10- 1
.
_....
--
;......0:
-~ ? --
~
__
._-
M
.-
~ F==f-"
.-
_.-
0.10
f--
-
- r-
--
~ ;:::~
0.02.
~ ~Ol'"
10- 2
JlJL
~j
10- 2
10- 3
tp
0=T
10 - 1 tp ( S )
--
7Z62581
S.B. voltage mUltiplying factor at the
_
Ie max level
MSB(I)
10
Fri~O.lO
0.02
-r-."'r-.
0=0.01
~~
-...
1----0.20
I
......
ii:Io..
r-...
1""'1
i"""
i"""~
-I-- r---I-
0.33
0.50
0.75
i'"
~
~ ....
---...
~~
-
-
I--
1:::::"",
r- ~I-
I'"
~
....
i'"
1
10- 5
10- 6
May 1972
II
10- 4
10- 3
II
tp (s)
5
10- 2
80433; 80435;
80437
BD433;BD435
7Z62580
. S.B. current multiplying factor at the VCEOmax level
MSB(V)
0.02 .....
0.05
r--- r--
b.~J
10
<5
I....
r--~
=0 ..01
""~I'
~
""'I"-
f""'ooo.
0.20
.,
,
........ ......
-
-b.33
0.50
~
.... ~~
-r-- I'- i""r--"",
t"'o~
r- ~I-t-
0.75
-
N
~
~~
r---~
1
10- 5
10- 6
----
10- 4
10- 3
10- 2
tp (8) .
BD437
..
7Z62579
S.B. current multiplying factor at the V CEO max level
MSB(V)
0.05
b~~o
10
0:20
--
..... 0.0 2
.... r-. ...
<5
=0.01
~
-""
........... .......
1"'0..
-
0.33
~
~ ...
-r-- I'- .......
~~
b.50
b.75
l
1
~
~
r---I-.:
I I
1
10- 6
6
~
r-...... "'~..... I'--~
III
10- 4
II
10- 3
tp (8)
II
10- 2
May 1972.
80433; 80435;
80437
7Z62654A
rr-
IC
rnA)
f-f--
VCE = 1 V
Tj =25 °c
,
/
7Z 62651
6
I I
V CEsat
V
I
1
typo values rrTj=25 0 C t-
(V)
4
I
I
II
II
typ
,.
I
2
\
f
) IC=4A- rrt-
I'
;/
r
10
a
j
a
0.5
1.5
I
~
!"""~
rlA\.1
oj
"
~3A
!'o.
r- t2A
I""""""
r-r-
I"...
a
50
IB (rnA)
100
VBE (V)
---
7Z62661
300
VCE = 1 V
Tj = 25°C
200
100
I"
---
.-.---
_......
...
---
typ
I"""
1"'0..
~
"
~
""
",
_'\
a
10- 2
May 1972
1
II
IC (A)
II
10
7
80433; 80435;
80437
7Z62662
30
L .1 I 1
f= 1 MHz·
VCE = 1 V
T j =25 °c
20
typ
I-~
.-i--""'"
10
~
I"""
-~
~
'"
~
-'"
\.
~
~
"\.
"
o
10- 2
10- 1
IC (A)
10
7Z62954
,
100
\.
Ptot max
,
~
(%)
\.
,
~
"-
50
,
"
I\,
~
o
o
I.
8'
II
100
,
Tmb (OC) 200
_JL
July 1972
B0433; B0435;
B0437
II
APPLICATION INFORMATION
Basic circuit diagram of a 6 W car -radio audio amplifier.
1,L..mH
18kfl.
1,25A
RL(L..!l or 2n.)
Typical performance:
Output power at
~ot
Output power at dtot
= 10% and R L = 4
= 10% and
RL
Q
=2 Q
?:
Po
Po
6
W
8
W
Input voltage for Po = 5 W; RL = 4 Q
Po =5W;R L =2Q
Vi(rms)
Vi(rms)
20
15
mV
mV
Input impedance
zi
20
kQ
Collector quiescent current of output transistors
Collector current of BC328 1)
Total current consumption at Po = 6 W
IICG I
rnA
rnA
580
rnA
0, 1 to 12
kHz
-IC
l tot
Frequency response (-3 dB)
Total thermal resistance per output transistor
10
50
Rth j-a max. 26,5
°C/W
Stable continuous operation is ell-sured up to an ambient temperature of 60 °c
The amplifier is overdrive proof and short circuit proof,
1) Area of printed wiring copper around collector lead:::: 1 cm 2 .
May 1973
II
1
9
----
B0433; B0435;
. B0437
II
APPLICATION INFORMATION (continued)
iZ62653
60
BD433
BD434
7Z62655
15
II
f= 1 kHz
'IICQI
(rnA)
10
40
'I·
5
20
I'
·1/
\
.........
........
R=)Y L1I
typ
r-....
r-- ....
/
V
"'4
o
o
-25
--
o
10- 1
Po (W)
10
7Z62656
5
I I
I I
I I
I I
PO=0.5W
Po
Po
(dB)
o
L
"
/
/
V
""'"
.....
~
\
,
-5
-10
f (Hz)
10
10
II
II
May 1972
80433; 8D435;
80437
II
APPLICATION INFORMATION
(continued)
Basic circuit diagram of a 15 W high quality amplifier.
47k1l.
1-.....-
O,8A
=36 V
Vs unloaded =42
.....- -........- - - - -.....-+-+--<> Vs loaded
V
7Z62760
Typical performance:
Output power at dtot = 1 %
Po
Input voltage for Po = 10 W
?:
15
W
V i(rms)
360
mV
Input impedance
zi
100
kQ
Output impedance
Zo
0,15
IIcd
Q
10
rnA
Collector current of BD136
-IC
72
rnA
Collector current of BC149
IC
1,6
rnA
~otal
~ot
710
rnA
30 Hz to 30
kHz
Collector quiescent current of output transistors
current consumption at Po = 15 W
Frequency response (-3 dB)
Total thermal resistance per output transistor
Total' thermal resistance of the BD136
Rth j-a
max.
18
°C/W
Rth j-a
max.
44
°C/W
Stable, continuous operation is ensured up to an ambient temperature of 45 °C.
May 1973
II
11
80433;80435; II·
80437
II
APPLICAnON INFORMATION (continued)
7Z62742
,1
I
1111
t--f----
I
-f=1kHz
--- f = 12,5 kHz
-'-f=40Hz
!
II
0,75
j!
!I
I
I
0,5
I
lL
II
0,25
~
"
10- 1
-"- ~ ". f-
i-"
.
./
10
10 2
Po (W)
7262657
5
JLL
1
I
.J
I
1
_II
III
Po=6dBbelow 15W
o
~
.........
~
V'
"-
/
,
'\.
I{
-5
-10
10~
10
12
II
f (Hz)
II
May 1972
B0434; 80436;
B0438
II
SILICON EPITAXIAL-BASE POWER TRANSISTORS
P-N-P transistors in a SOT-32 plastic envelope, intended for use in complementary output stages of audio amplifiers up to ·15 W.
The complementary pairs are BD433/BD434, BD435/BD436 and BD437/BD438.
QUICK REFERENCE DATA
BD434 BD436 BD438
Collector-emitter voltage (-VBE
= 0)
max.
22
32
45
22
32
45
V
7
7
7
A
max.
36
36
36
W
hFE
>
50
50
40
fT
>
3
3
3
-VCES
Collector-emitter voltage (open base)
-VCEO max.
Collector current (peak value)
-I eM
max.
Total power dissipation up to T mb = 25 °e
Ptot
D. C. current gain
-IC = 2 A; -VCE
=1 V
Transition frequency
-Ie = 250 rnA; -VCE = 1 V
V
MHz
Dimensions in mm
MECHANICAL DATA
TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface
,--7,8max--,
3,2
3,0
+
.rh.~
~
11,1
1
max
~_l
r
15,3
min
-.11 __
0,5
1
e c b 't"-------'7ZS9nlo.2
0,88--.11_,
,
max
~
1__
~
For mounting instructions see section Accessories, set 56333 for insulated mounting
and 56326 for non-insulated mounting.
.
1) Within this region the cross-section of the leads is uncontrolled.
February 1979
B0434;B0436;
B0438
RATINGS Limiting values in accordance withthe Absolute Maximum'System (lEC 134)
Voltages
BD434 BD436 BD438
Collector-base voltage (open emitter)
-V CBO
max.
22
32
45
V
= 0)
-V CES
max.
22
32
45
V
Collector-emitter voltage (open base)
-VCEO
max.
22
32
405
V
-VEBO
max.
5
5
5
V
Collector-emitter voltage (-VBE
Emitter-base voltage (open collector)
Currents
Collector current (d. c. )
-IC
max.
4
A
Collector current (peak value)
-rCM
max.
7
A
Base current (d. c.)
-IB
max.
1
A
max.
36
W
Power dissipation
Total power dissipation uptoT mb=25 0C
Ptot
Temperatures
• Storage temperature
Junction temperature
-65 to +150
T stg
Tj
max.
oC
150
°C
3,5
°C/W
100
°C/W
THERMAL RESISTANCE
--
From junction to mounting base
Rth j-mb
From junction to ambient in free air
Rth j-a
2 ,
II
-
II
August 1975
80434; 80436;
80438
II
CHARACfERISTICS
T j = 25°C unless otherwise specified
Collector cut-off current
IE = 0; -VCB
-VCBOmax
==
IE = 0; -VCB'= 10 V; Tj
IE = 0; -V CB
=
= 150 °C
-V CBOmax; T j
=
150 °C
-I CBO
<
-ICBO
<
-ICBO
<
-lEBO
<
100
jJA
rnA
rnA
3
Emitter cut-off current
IC
= 0;
- VEB
=5 V
Knee voltage
rnA
BD434 BD436 BD438
-IC = 2 A; -IB = value for which
- IC = 2,2 A at -V CE = 1 V
-VCEK
<
0,8
-VBE
typo
580
580
-V CE = 1 V
-VBE
<
1, 1
1,1
=1 V
-VBE
<
- Ie = 2 A; -I B = 0, 2 A
-VCEsat
<
-IC =3A; -IB=0,3A
-VCEsat
<
V
Base-emitter voltage 1)
-IC = 10 rnA; -VCE
- IC
-IC
=2 A;
= 3 A;
-V CE
=5 V
580
mV
V
1,3
V
Collector-emitter saturation voltage
0,5
0,5
V
0,7
V
D. C. current gain
hFE
>
~5
25
25
hFE
>
<
85
475
85
475
85
375
-IC = 2 A; -V CE = 1 V
hFE
>
SO
50
40
=1 V
hFE
>
fT
>
3
BD433/BD434 and BD435/BD436
hFE/hFE2 <
1,4
BD437/BD438
hPE I/hpE2 <
1,8
-IC = 10 rnA; -VCE = 5 V
-IC = 500 rnA; -VCE
- IC = 3 A; -V CE
=1 V
= 1 MHz
=1 V
30
Transition frequency at f
-IC
= 250 rnA;
-VCE
MHz
D. C. current g:ain ratio of the complementary pairs
IIc 1= 500 rnA; IVCEI
=1V
1) -VBE decreases by typo 2,3 mV 1°C with increasing temperature.
August 1975
II
3
80434; 80436;
80438
II
7Z62582
10
-ICMmax
0-0,01
1
I
\. \. \.
~\ \ \
1 - -III
-IC -ICmax
(A)
\
\\\ \
\~ \\
Illl .
second
~
1 1
?'f ms
_\ \
P
"~~\
tr naj
tPI:tt
\
\.
~
?'T
~ \ ~ iJ
breakdown 1)
1\
1
'-1-"1-1-_
1--
~
'\.
\
2-
\. 1.\
\\
~\ ~
5- t-r-
\ ~1O
I'd.c.
I
10- 1
Tmb:S250C
\Q
""'M"'
""'"'
~
10- 2
10
00
M
M
""'~"'
""'~"'
1-
-VCE (V)
Safe Operating ARefl: with the transistor forward biased
. I Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation
1) Independent of temperature.
4
Ii
II
August 1975
80434; 80436;
80438
II
7262659
10
Zth j-mb
(Oc/W)
~o
1
~ 0.75
~ - 0'.50'
~ 0'.33
~ ",0 .. 2,0,
r---r-- 0.10
r--
'- ... f-
~
~?,2,
10- 1
~ fOO.Ol
-:::;:..---
~ ~ :::F-'
~
_I"""
.....-:: ~;...
10- 2
JLJL
~j
tp
0=-
T
10- 3
--
7262581
--
S.B. voltage multiplying factor at the IC max level
MSB(I)
10 2
~ r-. ....r-.r-
0.02
10 _==::0.10
0=0.01
-~
-
-0.20
I
0.33
0.50
I
~
.....
-
r-
.... l"1li
I"""
I"""r--
1"-00
-I"r-
~
~
I
0.75
1
10- 6
10- 5
10- 4
",
May 1972
11
...
r--: F::::: ~
""-
-
I-
;:::~
r- :::r-.
~ b10- 3
.,..
II
10- 2
tp (s)
5
B0434; B0436;
B0438
80434; 80436
7Z62580
S.B. current multiplying factor at the VCEOmax level
MSB(V)
0.02 '" c5 =0.01
0.05
10
f---'-"
r- r--.
b.~J
1"-1"-
t'''
~"""" ~
i""'oo."
0.20
.....
"'
,N
........... .........
--
-6.33
0.50
0.75
r--..... ....... ~~
r-- I"'- I"""I"-~
~
--
r-
~
r---
1
----
10- 6
10- 5
10- 4 .
-
r--.:::::""" ~
10- 3
10- 2
tp (8)
80438
7162579
S.B. current multiplying factor at the V CEO max level
MSB(V)
0.05
bl.~o
10
0.20
-
l"'- i'- 0.0
r-. ... !'-
2 c5 =0.01
~
...........
III
-- -...
"""
. b.50
l
r-
0'.75
6
II
"--'
-r--....... '" to::::...... :-.,['11
0.33
I I
10- 5
~
I'..
10- 4
1"-1"-
~
r--- r-10- 3
II
tp (8)
10- 2
80434; 80436;
80438
II
7Z62654
6~~~~'~~~~~1~~lr~Z6~1~52~
1--I--+++-+-IH'tI-+--+-+-II\~ typo values IfT T· =25 0c I-
t--
r- -VCE = 1 V
-IC I-Tj = 250C
I--
- V CE sat
V
(rnA)
V
,
(V)
V
J
I--I-++I--+-If-+-+--+-+-+-+l--l,
I-
1
,
l\
ITI-+--+-+-+-+-I--I--+--I
4 1-I--+-JI.-+-+-+'\+-t-+-+---I-1
1
\
I
I
II
1\
I{
1\
\
,,
typ
1\
2 1--II-+-fH-+-++-fIH-+-++-+-4'f-I---I--I--I-H
J
1-+-+-+~~~I\~~~~I\--IC=4A
I
10
a
I
a
1
0.5
1'""11- f
1
a
1.5
50
- IB (rnA)
100
-VBE (V)
---
7Z62660
300
1
T
1
I
--
1
-VCE =1 V
Tj =25 °c
200
l,..o000o
~
.-""
typ
~
........
~
'"
~
""'
"'".""'""-
100
"
a
10- 2
May 1972
-IC (A)
II
10
7
II
80434; 80436;
8D438
II
7Z62663
30
, , ,,
f= 1 MHz
VeE =1 V
T j =25 °e
---
20
J.ooj..
I,..;
~
I..."...-'
"
typ
"
I"'
"' "'\.
~
~
'\
t\.
'\
\
10
\
\
o
10- 2
-Ie (A)
---
10
7Z62954
-
100
,
I\.
Ptot max
(%)
,
1\
I"
50
,
'" ,
I\.
1,\
1,\
100
,
T mb (Oe) 200
APPLICATION INFORMATION
For information on a 6 W car-radio amplifier and on a 15 W high quality amplifier see
B0433;B0435;B0437.
8
II
July 1972
_ _ _J
80645; 647
80649; 651
SILICON DARLINGTON POWER TRANSISTORS
N-P-N epitaxial base transistors in monolithic Darlingtoncircuit for audio output stages and general
amplifier and switching applications; TO-220 plastic envelope. P-N-P complements are 8D646, 8D648,
8D650 and 8D652. Matched complementary pairs can be supplied.
QUICK REFERENCE DATA
8D645
647
649
651
Collector-base voltage (open emitter)
VC80
max.
80
100
120
140 V
Collector-emitter voltage (open base)
VCEO
max.
60
80
100
120 V
--------~---~.
Collector current (peak value)
max.
12
Total power dissipation up to T mb == 25 °C
max.
62,5
W
Junction temperature
max.
150
°C
D.C. current gain:
IC=0,5A;VCE=3V
IC=3,OA;VCE=3V
typo
>
1500
750
Cut-off frequency: IC = 3 A; VCE = 3 V
typo
50
MECHANICAL DATA
A
kHz
Dimensions in mm
Fig. 1 TO-220AB.
Collector connected
to mounting base.
2,8
+
15,8
max
J
.-~r=;:::::;:~;:::111--+-
3,5 max
not tinned
5,1
max
~
1.1 --t
max--'
r
12,7
min
( 2x)
bee
~-------'
---.i
_1
-li:o,9max (3x)
2,54 2,54
--.
1__
0 ,6
-- 2,4
7265872.3
See also chapters Mounting Instructions and Accessories.
I
February 1979
80645; 647
80649; 651
l
'-------------------------------------------------------
CIRCUIT DIAGRAM
~------------~~~----+--c
b -+-.....---------1
I
Fig. 2
Rl typo
4 kn
R2 typo 100 n
! ________
R1
.
R2
L
_ .-.-1
7Z66445.2
e
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
---
-
647
649
Collector-base voltage (open emitter)
VCBO
max.
80
100
120
140 V
VCEO
max.
60
80
100
120 V
Emitter-base voltage (open collector)
VEBO
max.
5
5
5
5 V
Collector current (d.c.)
IC
max.
8
A
Collector current (peak value)
ICM
max.
12
A
Base current (d.c.)
1
8
max.
150
max.
62,5
Storage temperature
Ptot
T stg
Junction temperature *
Tj
max.
THERMAL RESISTANCE
*
= 25 oC
oC
150
°C
,
From junction to mounting base
Rth j-mb
From junction to ambient in free air
Rth j-a
2
°C/W
70
°C/W
* Based on maximum average junction temperature in line with common industrial practice. The
February 1979
mA
W
-65 to + 150
resulting higher junction temperature of the output transistor part is taken into account.
2
651
Collector-emitter voltage (open base)
Total power dissipation up to T mb
~
B0645
r
80645;647
80649; 651
Silicon Darlington power transistors
CHARACTERISTICS
Tj
= 250C unless otherwise specified
Collector cut-off current
'E = 0; VCBO = VCEOmax
'B = 0; VCE = % VCEOmax
Emitter cut-off current
IC = 0; VEB = 5 V
'CEO
<
<
<
'EBO
<
D.C. current gain (note 1)
'c = 0,5 A; VCE = 3 V
'E = 0; VCB = % VCBOmax; Tj = 150 °C
'eBO
'CBO
0,2 mA
5 mA
2 mA
0,5 mA
hFE
typo
3A;VCE=3V
hFE
>
750
'C= 8 A; VCE = 3 V
Base-emitter voltage (notes 1 and 2)
'C = 3 A; V CE = 3 V
hFE
typo
500
IC =
1500
VBE
<
2,5 V
Collector-emitter saturation voltage (note 1)
I C = 3 A; I B = 12 mA
VCEsat
<
2 V
Collector capacitance at f = 1 MHz
'E = Ie = 0; VCB = 10 V
Cc
typo
75 pF
Cut-off frequency
IC = 3 A; VCE = 3 V
fhfe
typo
50 kHz
E(BR)
>
50 mJ
hFE1/hFE2
<
2,5
typo
50
Turn-off breakdown energy with inductive load
-IB6ff = 0; ICM = 4,5 A; tp = 1 ms;
T = 100 ms; see Fig. 4
D;C. current gain ratio of matched
complementary pairs
'C=3A;VCE=3V
Small signal current gain
'C=3A;VCE=3V;f= 1 MHz
I hfe I
~
--
Notes
1. Measured under pulse conditions: tp < 300 J).S, 8 < 2%.
2. VBE decreases by about 3,6 mV/oC with in"creasing temperature.
February 1979
3
80645; 647
80649; 651
l
'------------------------------------------------------
CHARACTERISTICS
Tj = 25 0e unless otherwise specified
Switching times (between 10% and 90% levels)
ICon = 3 A; IBon = -IBoft = 12 mA; Vce = 10 V
Turn-on time
typo
0,5 JlS
Turn-off time
typ.'
2,5 JlS
typo
1,2 V
VIM = 10 V
tr = tf = 15 ns
tp
= 10 Jls
T
= 500 JlS
R1
R2
R3
56 n
=410n
= 560 n
=
R4
3n
-VBB=
4V
V~:rLJL
___ 11 __
tp
I
--T-7Z78131
--
Fig. 3 Test circuit switching times.
Diode, forward voltage
IF = 3 A
vert.
oscilloscope
--
+
Vee
hor..
oscilloscope
1Z73863.1
Fig. 4 Test circuit for turn-off breakdown energy. V 1M = 12 V; RB = 270.Q; T = 100 ms; tp = 1 ms.
4
February 1979
r
8D645; 647
8D649; 651
Silicon Darlington power transistors
7Z82093
IC
(A)
<5 =
ICMmax
0,01
10
tp
ICmax
~
1",""-"'
~
~
"-
1Ir-~
~I'\.
100llS
IIII
~~
'\.
(1 )
~
~'
1 ms
(2)
d.c.
"" ~ ~J
I
10- 1
In
.".
750
Cut-off fr~uency:
-IC = 3 A; -VCE =3 V
fhfe
typo
100
MECHANICAL DATA
A
kHz
Dimensions in mm
Imo, .....
__ 45
Fig. 1 TO-220A~.
,--
Collector connected
to mounting base.
~
I-
min
-.
I"""
I
I
+_
t_It:;r=;:::::rIi::::;=;~ _ _
t
I
~~x
~I I --t
max'" ..
......
12,7
min
(2x)··
1
bee
--.i
1
+ m15ax,8
- j
I
J
3~max
not tinned
+
5,~
.1 i!:o,g max
•
(3x)
2,54 2,54
.1
1. - 0 ,6
.-24
?Z65872.3
See also chapters Mounting Instructions and Accessories.
February 1979
1
,------------------;
i
I
c
b~~~-~
I
I
I
Rl typo 4 kn
R2 typo 80
I'
I
n
L ___________ _ __ .J
R1
I
I
R2
7Z66446.2
e
Fig. 2 Darlington circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
BD646
Collector·base voltage (open emitter)
-VCBO
max.
60
. 652
648
650
80
.100
120 V
Collector·emitter voltage (open base)
-VCEO
max.
60
80
100
120 V
Emitter",base vO.ltage (open collector)
-VEBO
max.
5
5
5
5 V
Collector current (d.c.)
-IC
max ..
8
A
Collector current (peak value) .
-ICM
max.
12
A
Base current (d.c.)
-IB
max.
150
max.
62,5
Storage temperature
Ptot
T stg
-65 to + 150
°c
Junction temperature *
Tj
150
°c
From junction to mountirig base
Rth j·mb
Rth j-a
2
. 70
°C/W
From junction to ambient in free air
Total power dissipation up to
r mb = 25 oc
mA
W
THERMAL RESISTANCE *
Based on maximum average junction temperature in line with common. industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.
2
February
19791------"--'------(_ _ _ _ __
°C/W
8D646; 648
8D650; 652
Silicon Darlington power transistors
CHARACTERISTICS
Tj = 25 °C unless otherwise specified
Collector cut-off current
IE = 0; -VCB = -VCBOmax
-ICBO
<
0,2 mA
-ICBO
<
2 mA
-ICEO
<
0,5 mA
-lEBO
<
5 mA
B0646: -VCB = 40 V
I = o· B0648: -VCB = 50 V . T· = 150 0C
E
' B0650: -VCB = 60 V' J
B0652: -VCB = 70 V
'B = 0; -VCE = % VCEOmax
Emitter cut-off current
IC = 0; -VEB = 5 V
O.C. current gain (note 1)
-IC = 0,5 A; -VCE = 3 V
-IC=
3A;-VCE=3V
-IC=
8A;-VCE=3V
hFE
typo
hFE
>
750
500
1500
hFE
typo
Base-emitter voltage (notes 1 and 2)
-IC=3A;-VCE=3V
-VBE
<
2,5 V
Collector-emitter saturation voltage (note 1)
-I C = 3 A; -I B = 12 mA
-VCEsat
<
2 V
Cc
typo
75 pF
fhfe
typo
100 kHz
Ihfel
typo
150
max.
2,5
Collector capacitance at f = 1 MHz
'E= 'e,:,O;-VCB= 10V
Cut-off frequency
-IC = 3 A; -VCE = 3 V
Small-signal current gain
-IC=3A;-VCE=3V;f=1 MHz
O;C. current gain ratio of matched
complementary pairs
-IC = 3 A; -VCE = 3 V
hFE1/hFE2
-
Notes
1. Measured under pulse conditions: t < 300 J1.s, 8 < 2%.
2. -VBE decreases by about 3,6 mV/8C with increasing temperature.
February 1979
3
80646; 648
80650; 652
l·
'----------------------------------------------------
CHARACTERISTICS (continued)
Tj = 25 °e unless otherwise specified
Switching times (between 10% and 90% levels)
-leon = 3 A; -IBon = IBoff= 12 mA; Vee = -10 V
Turn-on time
typo
0,2
J,LS
Turn-off time
typo
1,5
·J,LS
. -VIM
tr = tf
tp
T
.Rl
R2
R3
R4=
= 10 V
= 15 ns
= 10 IlS
= 500 J,LS
Vee
= 56n
= 410 n
= 560 n
3n
V~1JL
4V
__1' __ tp
1
--T-7Z78131
Fig. 3 Test circuit.
-
Diode, forward voltage
IF = 3A
4
February 1979
typo
(
1,8 V
Silicon Darlington power transistors
------------------~--------------/
8D646; 648
8D650; 652
7Z724471
-IC
(A)
b =0,01
-ICMmax
r----~.r-
"'
10
"
ICmax
"
,
l"-
"(1 )"" l'"~"
tp_
III- ~ 100/1s
" 1,,\ ~~
t\.
"-
~ 1\
I
~
'
1 ms
l\
(2) 1\\1\
\ \
l\' ~
N1'0
--
II
d:c.
co
o::t
co
0
en
10- 2
1
10
Fig. 4 Safe Operating ARea. T mb = 25 °C.
I
II
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second-breakdown limits (independent of temperature).
February 1979
5
80646; 648
80650; 652
7Z72451.2
-IC
(A)
[) =.P,Ol
-ICMmax
'-
10
, "'"
ICmax
~
(1 )"
I
'-
,
~
"\:
,
II
" '\
tp=
100J.ls
:'\ \\ ,
~~
'\~
-f'--f-
\i\'
(2)
\
~,\
,
\
-=
--
1\
\ 1 ms
10- 1
l\
5
M 10
, r1.c.
OOON
-=:t\.01l)
(0(0(0
.000
co co co
10- 2
1'111 I
1
10
Fig. 5 Safe Operating ARea. T mb = 25 °C
I
II
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second-breakdown limits (independent of temperature).
6
February 1979
(
80646; 648
B0650; 652
Silicon Darlington power transistors
7Z672571
,
100
~
P tot max
(0/0)
\
75
,
~
_\
,
~
~
50
\
,
~
~
25
,
\.
I\,
a
\
a
50
Fig. 6.
---
7Z72445.2
3
JLIL
I
tp
_\tpl_
--Tc5
0=-
T
=,
2
'-"".
-0,7 ....
~6
, ....
~5
'-I-"
-
,'"
...-
,~
...-
-I-"
_10-
-,,-
~
.,...
.",.,.
./'
~
...... ,
....
~~
~
....
i-"
/.. r..-'"
V'
""
~
//
..,.,
-o,~ ~
1
1'-0" .. ~
..
,
~
V"./
.."
/I~
../' /
./
1-0,01
°
10- 5
tp (s)
Fig. 7 Pulse power rating chart.
'I (
10
February 1979
7
l~___
80646; 648
80650; 652
7Z67854 1
S.B. voltage multiplying factor at the ICmax level
,
10
-
5 = 0,01- 0,05
""X
-............ 10~
---- ~...."
1'00..
'-
......
~ i""'--o .......
~~
~IO,33.
....... r--,I"-"
~~ !III ....
1°,5_ r-075
--
r--~ I'-i- ~
I-~ l"-
:::::;::::... ~ ...
i- --.::::::::
1
10- 1
10
tp(ms)
Fig. 8.
B0646
-
7Z67855
S.B. current multiplying factor at the 60 V level
0=001 \.
0,02
10
----
\
I, ~\.
~ ........ ~
..2L
~
-
- --
","'
~~
...
0,2
0,33
0,5
1-00.
ro...
,
1" ...
"
'-"
r-.....' ~
- ....
- .. r-...:::: ~ ~ ~
....
0,75
1
10- 1
---------
February
~~
10
Fig. 9.
8
~
~ ==::~
I'--- .........
19791 ( .
tp (ms)
80646; 648
80650; 652
Silicon Darlington power transistors
BD648; BD650
7Z67856
S.B. current multiplying factor at the 100 V level
0,02
0=
"'" "-\,
---- "'"~~~
-"
0,01
0,05
..............
10 ~1
.....
-
0,2
0,33
i""'"
....... 1-0..
'"
~
~
I'
. . . r-.
~i"o
r"""1- r--~I'-
0,5
~
"~
~~
----
0,75
1
10- 1
~
..............
~~~
~'10
tp (ms)
Fig. 10.
BD652
7Z77026 1
S.B. current multiplying factor at the 120 V level
,
I
,,0,01
~2
"\.
"~
~
~
-
10 =0,1
~
~,5
1
10- 1
"...........
,
\
....
1'0
.............
- ---
r-
~
~,
.........
r-- .::::::
-. ~ ~~
I--
10
10 2
tp (ms)
10 3
Fig. 11.
I
February 1979
9
l
80646; 648
80650;652
._~____~__________________________
7Z67316
7Z77025
6
-IC / -IS
-VCE= 3V
Tj =2S0C
,
10
=
250
Tj=250C
- VCEsat
-I C
(V)
(A)
J
7,5
4
II
II
/
5
/
t yp/
1/
1/
1..;1
2
typ/
/
/
2,5
~
.~
J
L..oo
1/
... 1--1"""
""
J
-~
o
1
If
1,5
2 -VSE (V) 2,5
Fig. 12.
---
Fig. 13.
7Z724431
10 5
typo values
-VCE=3V
hFE
10 4
....
J,.o
00 V
/
~~
GY ~~o
_
~
'"
1\
.....
V
0
i\1\ ~ 1\
"
1\
<01\;)
/
./
./
"
/
/
"
-IC (A)·
Fig. 14.
10
Februarv 1979
~(
5
10
"-IC (A)
10
8D646; 648
8D650; 652
Silicon Darlington power transistors
7Z67332 2
IC 3A
VCE - 3 V
hfe
r-......
'\",
~
~yp
\
\
10
.
1
1
10
Fig. 15.
February 1979
11
jl
80675;677
________________________________ ', __8_0_6_7_9;_68_1_;6_8_3_
SILICON DARLINGTON POWER TRANSISTORS
N-P-N epitaxial-base transistors in monolithic Darlington circuit for audio and video applications;
SOT·32 plastic envelope. P-N-P complements are B0676, B0678, B0680, B0682 and 80684.
QUICK REFERENCE DATA
B0675 677 679 681 683
Collector-base voltage (open emitter)
VCBO
max.
60
80 100 120 140 V
Collector-emitter voltage (open base)
VCEO
max.
45
60
Collector current (peak value)
ICM
max.
Total power dissipation
up to T mb = 25 °c
Ptot
Junction temperature
Tj
D.C. current gain
IC=0,5A;VCE=3V
IC= 1,5A;VCE=3V
hFE
hFE
>
Cut-off frequency
IC=1,5A;VCE=3V
fhfe
typo
80 100 120 V
6
A
max.
40
w
max.
150
°C
typo
1000
750
60
MECHANICAL DATA
kHz
Dimensions in mm
Fig. 1 TO-126 (SOT-32).
"1~7XI-
Collector connected to
mounting base.
I·
1-4-7,8maXl
-7h-~
~
+
3,2
3.0
+
+
[) () [)
--
~~~(1J
1_1,2
- r- r--t
11,1
max
i
~---1
15,3
min
e
..11.0,5
c
t
b ",' ------.--...
11... . "
0,88...
max
7ZS9324.2
:J 1.:~
(1) Within this region the cross-section of the leads is uncontrolled.
Accessories: 56326. (washer) or 56353 (clip) for direct mounting.
56333 (washer· + mica) or 56353 + 56354 (clip + mica) for insulated mounting.
February 1979
80675;617
80679;681;683
CIRCUIT DIAGRAM
~------~--~~-c
I
I,
b--l~~---I
I
!L._._._. __
I
I,
R1
Rl typo
3kO
R2 typo 1200
I
I
R2
.-'
1ZSSt.S.2
e
Fig. 2 Darlington circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BD675 677. 679 681 683
--
80, 100 120 140 V
60: 80 100 120 V
Collector-base voltage (open emitter)
VCBO
max.
60
Collector-emitter voltage (open base)
VCEO
max.
45
Emitter-base voltage (ope!1 collector)
VEBO
max.
5
Collector current (d.c.)
IC
max.
4
A
ICM
max.
6
A
IB
max.
100
mA
Ptot
T stg
Tj
max.
40
-65 to + 150
W
oC
150
oC
Collector current ("peak value)
Base current (d.c.)
Total power dissipation up to
Tmb= 25 0 C
Storage temperature
Junction temperature
max.
~
5
5
5 V
THERMAL RESISTANCE
From junction to mounting base
From junction to ambient in free air
2
February 1979
Rth j-mb
Rth'j-a
3,12
OC!W
100
oCIW
80675;677
80679;681;80683
Silicon Darlington power transistors
CHARACTERISTICS
Tj = 25 oC, unless otherwise specified; where IC = 1,5 A for BD675 read IC = 2 A.
Collector cut-off current
IE == 0; VCB = VCEOmax
IE = 0; VCB = % VCBOmax; T mb = 150 °C
'B = 0; VCE = % VCEOmax
Emitter cut-off current
IC == 0; VEB = 5 V
'CEO
<
<
<
0,5 mA
5 mA
'CBO
ICBO
'EBO
<
D.C. current gain (note 1)
IC = 0,5 A; V CE = 3 V
hFE
typo
IC=1,5A;VCE=3V
0,2 mA
2 mA
1000
hFE
>
750
4A;VCE=3V
hFE
typo
500
Base-emitter voltage (notes 1 and 2)
IC=1,5A;VCE=3V
VBE
<
2,5 V
Collector-emitter saturation voltage (note 1)
IC== 1,5A; IB=6mA
VCEsat
<
2,5 V
IC=
Small signal current gain
IC == 1,5 A; VCE == 3 V; f = 1 MHz
Ihfel
typo
50
Cut-off frequency
IC==1,5A;VCE=3V
fhfe
typo
60 kHz
Turn-off breakdown energy with inductive load
-IBoft = 0; ICM = 3,5 A;
. L = 5 mH; see Fig. 3
E(BR)
>
30 mJ
D.C. current gain ratio of matched
complementary pairs
le= 1,5 A; VCE =3V
hFE1/hFE2
<
2,5
Diode forward voltage
IF == 1,5 A
VF
typo
1,5 V
-----------
Notes
1. Measured under pulse conditions: t < 300 J.!S; 5 < 2%.
2. VBE decreases by about 3,6 mV
with increasing temperature.
lOt,
February 1979
3
80675;677
8.0679;681;683
,l-"
'----------------------------------------------------
CHARACTE RISTICS (continued)
vert.
oscilloscope
+
Vee
hor.
oscilloscope
7Z73B63,1
Fig. 3 Test circuit for turn-off breakdown energy. VIM
----
4
February 1979
f
= 12 V; RB =270.Q.
·80675;677
80679;681;683
Slicon Darlington power transistors
7272078.2
10 2
'c
(A)
10
0,01
[)
,
'CMmax
,\
\ \ 1\
I
"
/Cm~x
\
\
\
1\\
'(11'\1\\ 1\" 1\ I'
~~
1\
1\
(2)
..
I
t
P
=-
50J./s=
I'
1\
r=F
1\ 100
1\
~
1\ 500- r-r-
l\ 1 ms
~ 10 '
d.c.
80675
80677
80679
80681
80683
10- 2
I
1
I--
1-.....
I
10
VCE(V)
Fig. 4 Safe Operating ARea. T mb = 25 °C.
I
II
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max line.
(2) Second-breakdown limits (independent of temperature).
February 1979
5
80675;677
80679;681;683
7Z67263.1
S.B. voltage ,multiplying factor at the ICmax level
MV
10
{) =0,01
0,02
0,05
V/
1/ / 0,1
/
I---. /
r---.::2 ~
- t-- t:=:: -..
~ ~ r-::::
~ ~~~
~ r--....
1-1- 1-102, I
--- --
0"
~
!::::;~
~
1
10- 5
10- 4
10-3
10- 2
tp (s)
Fig. 5 S.B. voltage multiplying factor at the ICmax level.
7Z67262.2
--
-
S.B. current multiplying factor at the VCEOmax levels
r-!.:0"Ol
O~
10
~l;s
-'
=0,1
I
f------0,2
"
~ ,~
--
...... .....
......
~~
~
...
-I-- I"-~
I
1=0-
~
~~
t"'~~ ~
--..........
~~~
0 ,5
--!1111 ~.~
~
r--
1
10- 5
10- 3
tp (s)
Fig. 6 S.B. current multiplying factor at the VCEOmax levels ..
6
FebrU.~19791-"---'-r__
80675;677
80679;681;683
Silicon Darlington power transistors
7Z82096
3
7Z82097
6
Ie
VCEsat
(VI
(AI
2
4
I
I
II
1".00"
tv!! ....
..
I
I
"
typ I
1".0001-'"
2
" .... ""
1
II
I
:I
J
II
o
o
o
2
4
Ie (AI
1,,11'
o
Fig. 8.
Fig. 7.
7Z67254
7Z67257~
,
100
2
VBE(VI
VCE=3V
typo values
\.
Ptot max
(0/0)
\
75
,
~
I\,
~
~
"
'~
50
V
\
~
\
\.
25
.......
". ...... 1-'"
~
,
""~
"'"
\.
~
~
Tj=
\150I I 0 C
" 100
25
-'
/
1\
"
"\
\.
o
o
\
50
IC (A)
Fig. 9.
10
Fig. 10.
February 1979
7
~_ _
80675;677
.80679;681;683
l_"
7Zn017
4
,
6=1
--
3
0,7
-","",I'""
,,-
y
~
--
h
~
1.00'''''
L
0,2
L.o
I--I-1-1I-- 1-1'""
r--- !--
I'-"'"
""'l-
~ ~""
Io-O,o~.. ~
10-'°,°11
'"
./: ~
~~
~
'-""'" ~ i""':~
'~ ~
V
I"
~
05
2
..
... ~
~ ~~
~
V
Io!"~
SLJL
~""
-t:l-J
T
llllll
llllll
°10- 5
t
/) =.J?
'T
1
1
tp(S)
10
. Fig. 11 Pulse power rating chart.
--
7Z82099
hfe
'""~ typ
,
\.
\
,
\.
10
I'
1
1
10
Fig. 12 Small signal current gain. I C = 1,5 A; V CE = 3 V.
8
February 1979
r
Jl
80676; 678
80680; 682; 684
---------------------
-------------------------------------------------------
SILICON DARLINGTON POWER TRANSISTORS
P-N-P epitaxial-base transistors in monolithic Darlington circuit for audio and'video applications;
SOT-32 plastic envelope. N-P-N complements are BD675, BD677, BD679, BD681 and BD683.
QUICK REFERENCE DATA
BD676 678 680 682 684
Collector-base voltage (open emitter)
-VCBO
max.
45
60
80 100 120 V
Collector-emitter voltage (open basel
'-VCEO
max.
45
60
80 100 120 V
Collector-current (peak value)
-ICM
max.
6
A
Total power dissipation up to T mb = 25 0C
Ptot
max.
40
W
Junction temperature
Tj
,max.
150 '
oC
D.C. current gain
-IC = 0,5 A; -VCE = 3 V
-IC = 1,5 A; -VCE = 3 V
hFE
hFE
typo
Cut-off frequency
-IC = 1,5 A; -VCE = 3 V
fhfe
typo
1000
750
>
60
MECHANICAL DATA
kHz
Dimensions in mm
Fig. 1 TO-126 (SOT-32).
2,7 _
_1 max
1
Collector connected to
mounting base.
'+1
, 1--~~.~
7,8 max
3,2
3.0
~
+
[) 0 0
--
-
'--
~~~(1)
I----
t
11,1
I
max
'--rr-lIr-Tr-'_1
tI
I
1"12
15,3
min
e
-.11.0,5
-2.l
c· b'l"_
II ~
0,88___ '
,
max
I_
7ZS9324..2
~
(1) Within this region the cross-section of the leads is uncontrolled.
See also chapters Mounting Instructions and Accessories.
February 1979
8D676; 678
80680; 682; 684
l
....._ _ _- - - - - - - - - - - - -
r---------------·--;
.j
I
I
b-~~-__I
I
I
Rl typo 3 kn
R2 typo 80n
L _______
· _ __ .J
R1
I
R2
7Z66446.2
-
e
Fig. 2 Darlington circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BD676 678 680 682 684
--
Collector-base voltage (open emitter)
-VCBO
max.
45
60
80 100 120 V
Collector-emitter voltage (open base)
-VCEO
max.
45
60
Emitter-base voltage (open collector)
-VEBO
max.
5
5
80 100 120 V
5,V
5
5
Collector current (d.c.)
-IC
max.
4
A
Collector current (peak value)
-ICM
max.
6
A
Base current (d.c.)
-IB
Ptot
max.
100
max.
40
W
-65 to + 150
°C
150
°C
Total power dissipation up to T mb
= 25 °C
Storage temperature
Tstg
Junction temperature
Tj
max.
mA
THERMAL RESISTANCE
2
From junction to mounting base
Rth j-mb
From junction to ambient in free air
Rth j-a
February 1979
(
3,12
°C/W
100
°C/W
80676; 678
80680; 682; 684
Silicon Darlington power transistors
CHARACTE R ISTICS
Tj = 25 oC unless otherwise specified; where -IC = 1,5 A for BD676 read -IC = 2 A.
Collector cut-off current
IE = 0; -VCB = -VCBOmax
0,2 mA
-ICEO
<
<
<
-lEBO
<
5 mA
-ICBO
IE = 0; -VCB = -% VCBOmax; T mb = 150 oC
IB = 0; -VCE = -% VCEOmax
Emitter cut-off current
IC=0;-VEB=5V
-ICBO
2 mA
0,5 mA
D.C. current gain (note 1)
-IC = 0,5 A; -VCE = 3 V
hFE
typo
-IC= 1,5A;-VCE =3V
hFE
>
750
-IC=
hFE
typo
500
Base-emitter v.oltage (notes 1 and 2)
-IC = 1,5 A; -VCE = 3 V
-VBE
<
2,5 V
Collector-emitter saturation voltage (note 1)
-I C = 1,5 A; -I B = 6 mA
-VCEsat
<
2,5 V
4A;-VCE=3V
Small-signal current gain
-IC= 1,5A;-VCE=3V;f=1 MHz
1000
Ihfe I
typo
50
Cut-off frequency
-IC= 1,5A;-VCE=3V
fhfe
typo
60 kHz
D.C. current gain ratio of matched
complementary pairs
-IC = 1,5 A; -VCE = 3 V
hFE1/hFE2
<
2,5
Diode, forward voltage
IF = 1,5 A
VF
typo
1,5 V
-------
--
Notes
1. Measured under pulse conditions: t < 300 /lS, 1) < 2%.
2. VBE decreases by about 3,6 mV
with increasing temperature.
IOC
February 1979
3
80676; 678
80680; 682; 684
7Z72079.2
-I C
(A)
~
10
0,01
0
'CMmax
\. \
I
\
\
\
~\ \\
-ICmax
(1~
,
\\ r\" "
~~
1\
\
(2)
t
,
==
1\ 100
I
\
~
r\ 500- --
r\
......
==
-
=
P
50ps - ~.
~
10- 1
--
I
1 ms
10
d.c .
80676
·80678
80680
80682
8p6~4
10- 2
1
f-I'"
10-
f--
10
Fig. 3 Safe Operating ARea. T mb = 25 °C.
I
II
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max line.
(2) Second-breakdown limits (independent of temperature).
4
February 1979
r
8D676; 678.
8D680; 682; 684
Silicon Darlington power transistors
7Z67263.1A
S.B. voltage multiplying factor at the -ICmax level
MV
10
6 =0,01
0,02
0,05
//
VV 0,1
//
!--- /
:---.:z ~
~ .,c ..;::::
---
,
::::: :::-r::::::~
r- ..
02-1--r- ..
'i
-1"'"-
0"
10- 5
~ ........
r----
---
.;::::: ~
10- 4
10-3
10- 2
tp (s)
Fig. 4 S.B. voltage multiplying factor at the -ICmax level.
7Z67262.2A
S.B. current multiplying factor at the
-vCEO max levels
---!..: 01'°1
r;::;....
~
'--"
~
10 ::::::: 0, OS
~0,1
-0,2
-
t'~
.......
!'"-..
:-.. "'~ ~~
~~
~r-.
I
"=--
0,5
~I"-
~ ..... ~ ~
...............
~~~
I""""l
=-~ i!!!!~
~ ::::::::-~
1
10- 5
tp (s)
10- 2
F,ig. 5 S.B. current multiplying factor at the -V CEOmax levels.
5
8D676; 678
8D680; 682; 684
Silicon Darlington power transistors
?lnG77
4
0=1
3
-
0,7
-0,2
I-
--
I-- _I-
o
........
05
2
I-I--
10- 5
I-"'"
~ ~-
~""
,...... io""""
-
.... ~
~
,
.",...,..
:::; .... ~
~~
-
~;
~ ~~
lh ~
...
, .... '"
. / .... "~
~ .... ~
~
V
JUL
. / ~ /~
-t'-J
~"
,,"O,O~ .......
T
~O,~
5=2.
t
T
II III
II III
10- 1
tp(S)
10
Fig. 10 Pulse power rating chart.
7Z82098
hfe
i"'I.
"""
,yp
"
,
\
,
10
"
1
1
10
Fig. 11 Small signal current gain. -IC = 1,5 A; -V CE = 3 V'.
February 1979
7
____J
B0933;935
B0937; 939
B0941
SILICON EPITAXIAL BASE POWER TRANSISTORS
N-P-N silicon transistors in a plastic envelope intended for use in output stages of audio and television
amplifier circuits where high peak powers can occur.
P-N-P complements are 80934; 936; 938; 940 and 942.
QUICK REFERENCE DATA
80933 935 937 939 941
Collector-base voltage
Collector-emitter voltage
VC80
max.
45
60 100 120 140 V
VCEO
max.
45
60
80 100 120 V
Collector current (d.c.)
Ie
max.
3
A
Total power dissipation up to T mb = 25 oC
Ptot
max.
30
W
Junction temperature
Tj
max.
150
°e
D.C. current gain
IC = 150 rnA; V CE = 2 V
IC= 1 A;VCE=2V
>
Transition frequency
IC = 250 mA; VCE = 10 V
>
40 to 250
25
3
MECHANICAL DATA
MHz
Dimensions in mm
Fig. 1 TO-220AB.
Collector connected
to mounting base.
--
__ 45
1'3~ ,--
max --
r:
+
5,9
min
t-
-
I
I
I
1
8
+ 15,
m ax
J
3,5
i
J
.-It:<~~~~
max
~~x
not tinned
~~I.I
max
--t
bee
-.i
12,7
min
I
(2x)
~li:-o,9max
+
(3x)
2,54 2,54
-,1'--24
--0,6
7Z65872.3
See also chapters Mounting instructions and Accessories.
I(
Mareh 1979
l
- 80933; 935
80937; 939
80941
RATINGS
limiting values in accordance with the Absolute Maximum System (lEC 134)
BD933 935 937 939 941
Collector-base voltage (open emitter)
VCBO
max.
45,
60 100 120 140 V
Collector-emitter voltage (open base)
VCEO
max.
45
60
Emitter-base voltage (open collector)
VEBO
max.
5
V
Collector current (d.c.)
IC
max.
3
A
Collector current (peak value)
ICM
max.
7
A
IB
Ptot
T stg
max.
0,5
A
max.
30
W
-65 to + 150
°c
Tj
max.
150
°c
Base current (d.c.)
Total power dissipation up to T mb= 25 oc
Storage temperature
- . Junction temperature
80 100 120 V
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
From junction to ambient in free air
Rth j-a
4,17
°C/W
70
°C/W
0,1
mA
3
mA
0,5
mA
CHARACTER ISTICS
Tj = 25 0c unless otherwise specified
Collector cut-off current
IE = 0; VCB = VCBOmax
--
=
---
--
IE = 0; VCE,= VCEOmax
Emitter cut-off current
IC = 0; VEB = 5 V
ICEO
<
<
<
lEBO
<
D.C. current gain *
IC = 150 mA; VCE = 2 V
hFE
ICBO
IE = 0; VCB = VCBOmax; Tj = 150 °c
ICBO
40 to 250
iC = 1 A; VCE = 2 V
hFE
>
25
Base-emitter voltage **
I C = 1 A; V CE = 2 V
VBE
<
1,3
V
Collector-emitter saturation voltage *'
IC= 1 A; IB=0,1 A
VCEsat
<
0,6
V
Transition frequency at f = 1 MHz
IC = 250 mA; VCE = 10 V
fT
>
3
Switching times
ICon = 1 A; IBon
turn-on time
= -IBoft = 0,1
Turn-off time
Ma~hlg791 (
MHz
A
ton
typo
toft
typo
* Measured under pulse conditions: tp ~ 300 J.l.S; ~'< 2%.
* * VB E decreases by about 2,3 m V 10C with increasing temperature.
2
mA
0,3
J.l.S
J.l.S
80933;.935
80937; 939
80941
Silicon epitaxial base power transistors
7Z77850 1
IC
(A)
10
ICMmax
fJ -0,01
,
r!".
ICmax
""-""
,
~
.....
II
I\.
"-' "I~" .\ 1'\
\ 1\
~\
I.....
r\
~
(2)
I
I'.
1\
1\
f\
~ t
\
~
1\
p-
r--r-
0,1 ms r-r0,5
1
10
---
d.c.
80933
80935
80937
80939
-80941
10- 2
1
II
-
~
~
II-
10
Fig. 2 Safe Operating ARea; T mb
I
~
i-
I-
VCE(V)
= 25 oC;
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second breakdown limits, independent of temperature.
~ (M.~ 1979
3
---........
8D933;935
80937;93.9
80941
7Z82178
I
0=
10
./
.................
r--.... ......... /
,
~~
~
0,01
0,05
0,1
-- r'--::::
~ t-..
0,33
t-0,50
-
~ ....
r--.
to-
1"""1 ","""
r---"""
~~
""'~ ~~ ~
I""~
t:'- I"-
I-rr-----: r- t- 1-1r--- r-It:::--I--
1-...22.5
1
10- 1
~~
10
tp (ms)
Fig. 3 Second breakdown voltage ml\ltiplying factor at the ICmax level and second breakdown current
multiplying factor at the VCEOrnax I.evel.
7Z82150
6
. ..--0=1
.........
4 -0,75
--r
-~2
--
...
, ,
f-O..J,.
~
~
...
~
........:;
.,.
~
~
/'
./,
~
~
./
....
W
1//
r/
./
~
i""'"
~
;'
I-
0,2
I..-
.--I"'"
/
1.1
I
JLSL
I'
./
~
.-9,:l
f-
l/
- I t p ' - 'I
f-~","
o
-T-
I
10- 2
Ma~h
10
1979
j(
'Fig. 4 Pulse power rating chart.
tp
0=T
B0933;935
80937; 939
Silicon epitaxial base power transistors
80941
7Z82161
I'\
1\
\
VCEsat
(mV)
\
~
,
I'
\.
1\
~
\
~
,
,
\ \
\
\
\
\
"
i'.
......
"""~ ~I-o
~
Ie
" -
~
4A
3A
2A
1A
0,5A
10
1.
10
18 (mA)
Fig. 5 Typical collector-emitter saturation voltage as a function of base current with collector current
as·a parameter.
7Z82153
-
-
2
I
I
Ie
I
II
(AI
typ
1
II
II
j
I
I
1/
j
o
1/
o
0,5
1,5
VBE(V)
Fig. 6 Typical collector current as a function of base-emitter voltage.
I rMa~h1979
VeE = 2 V; Tj = 25 °e.
5
l,
8D933; 935
80937; 939
80941
'-----------------------------------------------7Z82166
---
~
I-"
,
...........
......
r--..,
"
,
"
'\
~
10
1
10- 2
----
,10- 1
10
IC(A)
Fig. 7 Typical static forward current transfer ratio as a function of the, collector current. V CE
Tj
6
= 25 °C.
Mareh 1979
, .
~
r
= 2 V;
____~J
B0934;936
B0938;940
B0942
SILICON EPITAXIAL BASE POWER TRANSISTORS
P-N-P silicon transistors in a plastic envelope intended for use in output stages of audio and television
amplifier circuits where high peak powers can occur.
N-P-N complements are BD933; 935; 937; 939 and 941.
QUICK REFERENCE DATA
BD934 936 938 940 942
Collector-base voltage
-VCBO
max.
45
60 100 120 140 V
Collector-emitter voltage
-VCEO
max.
45
60
Collector current (d.c.)
-IC
Ptot ·
max.
3
A
Total power dissipation up to T mb = 25- o C
max.
30
W
Junction temperature
Tj
max.
150
°C
D.C. current gain
-IC = 150 mA; ~VCE = 2 V
-IC = 1 A; -VCE = 2 V
>
Transition frequency
-IC = 250 mA; -VCE
>
= 10 V
80 100 120 V
40 to 250
25
3
MECHANICAL DATA
MHz
Dimensions in mm
----
Fig. 1· TO-220AB.
Collector connected
to mounting base.
__ 45
I~-.
1,3--
-
I
I
I
-
5,9
min
j
J
•
3,5 max
1l::;=;::::::;t:::;:::;:::Y~
5,1
r
--t
12.,7
not tinned
+1,3 .
max
I
max"
(2x)
bee
...i
""i:-
1
8
+ 15,
max
---
min
l
0,9max (3x)
2,542,54
...1,... 0,6
-24
7Z65872.3
See also chapters Mounting instructions and Accessories.
I(
Maroh 1979
l
80934;936
80938;940
80942
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
BD934 936 938 940 942
Collector-base voltage (~pen emitter)
-VCBO
max.
45
60 100 120 140 V
Collector-emitter voltage (open base)
-VCEO
max.
45
60
E~itter-base
voltage (open collector)
80 100 120 V
-VEBO
max.
5
V
Collector current (d.c.) .
-IC
max.
3
A
Collector current (peak value)
.,-ICM
max.
7
A
Base current (d.c.)
-IB
max.
0,5
A
. PtotT stg
max.
30
W
-65 to + 150
°C
150
°C
Total power dissipation up to T mb = 25 oC
Storage temperature
--+ Junction temperature
Tj
max.
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
From junction to ambient in free air
Rth j-a
4,17
°C/W
70
°C/W
CHARACTERISTICS
Tj = 25 °C unless otherwise specified
Collector cut-off current
-IE = 0; -VCB = -VCBOmax
--
-=
~
~
-IE = 0; -VCB = -VCBOmax; Tj = 150 °C
IB = 0; -VCE = -VCEOmax
Emitter cut-off current
IC = 0; -VEB = 5 V
D.C. current gain (note 1)
-IC = 150 rnA; -VCE = 2 V
-ICEO
<
<
<
-lEBO
<
-ICBO
-ICBO
0,1
rnA
3
rnA
0,5
rnA
rnA
40 to 250
hFE
hFE
>
25
Base-emitter voltage (notes 1 and 2)
-IC=1A;-VCE=2V
-VBE
<
1,3
V
Collector-emitter saturation voltage (note 1)
-IC = 1 A; -IB =0,1 A
-VCEsat
.<
0,6
V
Transition frequency at f = 1 MHz
-IC = 250 mA;-VCE = 10 V
·fT
>
3
Switching times
-ICon 1 A; -IBon = IBoff = 0,1 A
turn-on time
ton
typo
0,3
IJS
toff
typo
0,7
Jl.S
-IC = 1 A; -VCE = 2 V
=
turn-off time
Notes
1. Measured under pulse conditions: tp ~ 300 IJS; 6 < 2%.
2. -VBE decreases by about 2,3 mV/oC with incre~sing temperature.
2
1979
Mareh
1r
MHz
80934;936
80938;940
80942
Silicon epitaxial base power transistors
7Z77851 1
-IC
(A)
10
5 =0,01
,
ICMmax r-'
"' ""'
-I Cmax
,
,
"-
!'..
I\..
,",," '\
n
~~ \
~
\
I'
'\
\.
1\
.~
(2)
I
\.
1\
1\
~
\ tp=
0,1 ms
~
1\
10- 1
-r--I-
0,5
1
10
---==
d.c.
B0934
B0936
B093B
B0940
B0942
10- 2
1
----
,.,.-
f-
10
Fig.2 Safe Operating ARea; T mb = 25 °C.
I
II
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second breakdown limits independent of temperature.
3
80934;936
80938;-940
80942
l " , - - - - ._ _ _ _
7Z82178
b=
10
0,01
.........
0.05
~."""/ ~ 0.1
~
,
./
~
-
,
........
-......;;..
""-
0.33
~ ~ .....
........ r--
....:: ...
--0.50
~
-
~
... ~
~ :::"""'--
"'1-0
--...; ~
r--- i"':-- r-
......
-~ ~I- ~
-~
10
tp (ms)
Fig. 3 Second breakdown voltage multiplying factor at the ICmax level and second breakdown current
mUltiplying .factor at the V CEOmax-level.
7Z82150
6
\
r-b=l
...
4 ~0.75
---r
r-:.~~
...
10--"'"
~
~
./
~
I--"'"
~
~~
10"
./
l.,;
I
r-O~
-
V
~
~
J
~
".
U
"
If/
r/
~
2 I'"
~
I
r- 0.2
L..o
--r
~
"
./
1.1
JL.JL
I
./ i
,
~
./
-Itpl-
t-~,...
o
--T-
I
10- 2
10
Fig. 4 Pulse power rating chart.
4
Mareh 1979
~(
10
3
tp
b=-
T
.4
tp (ms) 10
80934;936
80938; 940
80942
Silicon epitaxial base power transistors
7Z82l62
, ,
~
-VCEsat
(mV)
1
\
_\
\
\
\
\
"
.......
.......
~
i\ \
""'"
"-
'\..
\
,
IC4A
~
.....
3A
2A
~
lA
r-.. ... ~
0,5A
10
10
1
Fig. 5 Typical collector-emitter saturation voltage as a function of base current with collector current
as· a parameter.
7Z82l S4
2
I
I
1
I
-IC
(A)
I
I
typ
I
II
f
I
I
I
o
'/
o
0,5
1
1,5
-VSE(V)
Fig. 6 Typical collector current as a function of base-emitter voltage. -VCE
= 2 V; Tj = 25 °G·
~{
Mareh 1 9 7 9 5
--
l
80934;·936
80938; 940
80942
'-----------------------------------------------7Z82165
typ
roo.
"'
"\
10
1
10- 2
10
-IC(A)
Fig. 7 Typical static forward current transfer ratio as a function of the collector current. -V CE
Tj~250C.
6
.
Marm 1979
I(
= 2 V;
____J
B0943
B0945·
B0947
SILICON EPITAXIAL BASE POWER TRANSISTORS
N-P-N silicon transistors in a plastic envelope intended for use in audio output stages and general
purpose amplifier applications. P-N-P complements are BD944; 946 and 948.
QUICK REFERENCE DATA
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
BD943
945
VCBO
max.
22
32
947
45 V
22
32
45 V
VCEO
max.
Collector current (d.c.)
IC
max.
5
A
Total power dissipation up to T mb = 25 °C
Ptot
max.
40
W
Junction temperature
Tj
max.
150
°C
D.C. current gain
IC= 10mA;VCE=5V
hFE
>
= 500 mA; VCE = 1 V
IC = 2 A; VCE = 1 V
IC
25
85 to 475
hFE
Transition frequency at f = 1 MHz
IC = 250 mA; VCE = 1 V
hFE
>
fT
>
I
50
50
40
3
MECHANICAL DATA
MHz
Dimensions in mm
Fig. 1 TO-220AB.
.... 45
1,3~ ,--
max --
Collector connected
to mounting base.
-
+
5,9
min
r
•
I
I
I
1
15,8
m ax
J
J
I
LICr=i:::::;fi:::~---L3,5 max
not tinned
5,1
max
I _,'. --t
+1,3 max""
12,7
min
(2x)
,
bee
-.i
"'i:-
o,9max
+
(3x)
2,542,54
..\, .... 0,6
.... 24
7Z65872.3
See also chapters Mounting instructions and Accessories.
I(
Mireh1979
--
Notes
1. Measured under. pulse conditions; t .~ 300 IlS; 6 < 2%.
2. VSE decreases by about 2,3 mV/O~ with increasing temperature.
2
80943
80945
8D947
Silicon epitaxial base power transistors
B0943
Knee voltage *
IC = 2 A; 'B value for which
'C = 2,2 A and VCE = 1 V
VCEK
<
0,8
Transition frequency af f = 1 MHz
'C = 250 rnA; VCE = 1 V
t,-
>
3
945
947
3
V
3 MHz
7Z67257~
100
Ptot max
(0/0 )
75
~
~
\
,
~
I\,
,
\.
I\.
50
\
\
,
\.
25
,
\.
I\,
\
50
Fig. 2 Power derating curve.
* Measured under pulse conditions; tp .;;;; 300 JlS; ~
< 2%.
March 1979
3
l_______
80943
60945
80947
7Z77801 :1
'c
(A)
10 - 'CMmax
6 - 0,01
\.
'Cmax
, ,\
I\,
\.
\.
\.
\.
\ \
'" \\"
I I
(1 )
I
\
\\ 1\
t\ \
,
tp= _
0,1 ms
' 0,2
(2')\
--
1 -
'\.
~
-
J
I
\.
\.
I
10
\ d.c.
\'
10- 1
10
1
It)
e'?
.;t-
.;t-
O)
0)
0
0
a::l
a::l
".;t-
0)
0
a::l
VCE(V)
Fig. 3 Safe Operating ARea, T mb = 25 0C.
I
II
Region ol permissible d.c. operation.
Permissible ext~nsion for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second-breakdown limits (independent of temperature).
4
Ma~1979l(
80943
80945
8D947
Silicon epitaxial base power transistors
7Z82140
4
thj-mb
)C/W)
r<5=l
~,
3
.--- ~-
I·
~
_I
I-
0,5
I
r
_
--
---
0,31_
".
0,2
-I-'-
---
0,1
=40
V
,
V
.....
.,
".....
~
i-"'" ~ ~
~
V ~I"
".~'"
"
~~
0
y~
V
"'~
..,;v~
~/~
"".",
~""'
"/
~/
~ ~io"
...... -I-
r- 0,75
2
~
.......
io"
"""
JLJL
I
tp
-Itpl-
-~~
--T-
-"1
8=T
10- 5
Fig. 4 Pulse power rating chart.
7Z82145
MV
<5=
~
10
~,05
~
~
-
0,1
~
........ ""'"
.........
..........
,
~
~
I. . . . . . .
"' .....
-- -...... r-.;
I"-
0,5
....
:::
.~
... ~ ~
----r--.:
L" ~ ;:::
,
r-.;
~t--r-
1
10- 5
10- 4
r--10- 3
...,
tp (s)
10- 2
Fig. 5 S.B. vol~age multiplying factor at the 'Cmax level.
~------------------~
March 1979
5
l___________- -
8D943
80945
. 80947
7Z82147
/)=
~r-- ..........
0,1
10
I-
0,01
,
r--.. .........
- .....
0,2
-
--
......
~
I'-...
--
"" ........" '"
~.
i"'...
..........
.....~
f"".....
------
0,5
~
......
["...
,
i'"" .
--.... ......
......
r-.~
-
r...~ r-. ~
~
r-- I-o~ ~r--- ~ :::::= ~ ~
1
10- 5
---.......
;0- 3
10"-4
----
~
~- -~~'
tp (5)
Fig. 6 S.B. current multiplying factor at the VCEOmax level for B0943 and B0945.
7Z82146
-
b=
~ i""--:
10
0,1
0,01
-- '
r-
.... ......
r--_
~
"'"""!o..
I000o.
'. r-O,2
........
-...... "-'", '" ......
f"""...........
"
--- -
~ ...... ~
r-- r--
0,5
1
10- 5
r
1
10- 4
.......
~~ ~~.
r-.
i'r-. ~~
r-~
r-...r-,
r--::: ::::::: ~
~
~ ::::--
tp (s)
Fig. 7 S.B. current mUltiplying factor at the VCEOmaxlevel fOrB0947.
6,
, Maroh 1979
.... "'r::~
80943
80945
80947
Silicon epitaxial base power transistors
1Z82138
----
~
-
-~
~
"-
'\
10
10- 2
10- 1
Fig. 8 Typical d.c. current gain at VCE
10
IC(A)
--
= 1 V; Tj = 25°C.
Ir
Ma~
1979
7
_____J
80944
80946
B0948
SILICON EPITAXIAL BASE POWER TRANSISTORS
P-N-P silicon transistors in a plastic envelope intended for use in audio output stages and general
purpose amplifiers. N-P-N complements are BD943; 945 and 947.
QUICK REFERENCE DATA
BD944
946
948
Collector-base voltage (open emitter)
-VCBO
max.
22
32
45 V
Collector-emitter voltage (open base)
-VCEO
max.
22
32
45 V
Collector current (d.c.)
-IC
max.
5
A
Total power dissipation up to Tmb = 25 °C
max.
40
W
Junction temperature
Ptot
T·"
max.
150
oC
D.C. current gain
-IC= 10mA;-VCE=5V
hFE
>
J
hFE
-IC=
hFE
>
fT
>
2A;-VCE = 1 V
Transition frequency at f = 1 MHz
-IC = 250 mA; -VCE = 1 V
25
85 to 475
-IC = 500 mA; -VCE = 1 V
I
50
50
I
40
3
MECHANICAL DATA
MHz
Dimensions in mm
Fi"g. 1 TO-220AB.
__ 45
I~:
Collector connected
to mounting base.
r:
5,9
I-
-
I
I
I
.-IC.j~~~--+~~x
not tinned
~~I.I
max
--t
1
,8
+ 15
max
.....
12,7
min
1
(2x)
bee
-.i ...
t
I
min
- j
J
3,5 max
-,
li:o,9mox
(3x)
2,54 2,54
-1
1 0
.... ,6
.... 24
7Z65872,3
See also chapters Mounting instructions and Accessories.
If~reh
1979
--
80944,
130946
80948
L
RATINGS
Limiting values in accordance with the Absolute Maxin1um:,~ystem (I EC 134)
B0944
946
948
Collector-base voltage (open emitter) ,
-VCBO
max.
22
32
45 \I
Collector-emitter voltage (open base)
-VCEO
max.
22
32
45 V
Emitter-base voltage (open collector)
-VEBO
-IC
max.
5
V
Collector current (d.c.)
max.
5
A
Collector current (peak value)
-ICM
max.
8
A
Base current (d.c.)
-IB
max.
Total power dissipation up to T mb = 25 0c
max.
40
W
Storage temperature
Ptot
Tstg
-65 to +150
°c
Junction temperature
Tj
max.
150
°e
A
THERMAL RESISTANCE
From junction to mounting base
3,12
Rth j-mb
From junction to ambient (in free air)
°C/W
oCIW
70
Rth j-a
CHARACTERISTICS
Ti, =25' °c unless otherwise specified
Collector cut-oft current
IE = 0; -VCB = -VCBOmax
-...."""""-
--
<
<
0,1
mA
-ICBO
3
mA
-ICEO
<
0,5
mA
...;.IEBO
<
hFE
>
-ICBO
IE =,0; -VCB = -VCBOmax; Tj = 150 °c
IB = 0; -Vee = 15 V; B0944
-VCE = 20 V; B0946
-VCE = 25 V; B0948
Emitter cut-off current
-Ie = 0; -VEB = 5 V
D.C. current gain (note 1)
-IC= 10 mA; -VCE =5 V
)
-Ie = 500 mA; -VCE = 1 V
hFE
-IC = 2 A; -VCE = 1 V
hFE
-IC=3A;-VCE = 1 V
hFE
Base-emitter voltage (notes 1 and 2)
-IC = 2 A;-VCE = 1 V
-IC=3A;-VCE= 1 V
Collector-em itter saturation voltage (note 1)
-IC = 2 A; -IB = 0,2 A
-IC=3A;-IB=0,3V
'-VBE.
-VBE
-VCE'sat
-VCEsat
25
85 to 475
>
>
50
<
<
1,1
<
<
0,5
"
Notes
1. Measured under pulse conditions; tp ~ 300 p.s; ~ < 2%'.
.
2. VBE decreases by about 2,3 mV10C with increasing tem'p~rature..
2
mA
50
40
30
1,1
-
V
1,3 V
0,5
- V
0,7 V
8D944
80946
80948
Siiicon epitaxial base power transistors
80944
~nee
voltage *
-IC = 2 A; -18 = value for which
-IC = 2,2 A and .... VCE = 1 V
Transition frequency at f = 1 MHz
:-IC = 250 rnA; -VCE = 1 V
-VCEK
<
0,8
tr
>
3
946
948
-
3
V
3 MHz
7Z67257.1
100
P tot max
(%)
75
,
\.
\
~
I\,
,
\.
~
50
\
--
,
~
\.
25
\
,
\.
\
50
Fig. 2 Power derating curve.
* Measured under pulse conditions; tp:E;;; 300 IlS; ~ < 2%.
3
80944
8D946
80948
l"'----__- 7Z77802 1
-IC
(A)
10
5 = 9,01
-ICMmax
I
I\,
\.
-ICm~x
\.
\
(1 )
\
,
\.
\
\.
tp=
"~ 0,1
ms
I
1,\\11
\
I
\\ 1\
(i\ 1\
l\
I
---
0,2
"\.'\.
--
co
~
~
~
en
en
Ol
Ol
0
10
0
I
1 r-rI
\.
I
~
~
d
10
, d.c.
00
~
en
0
Ol
-VCE(V)
Fig. 3 .Safe Operating ARea, T mb = 25 °C.
I
II
Region of permissible d.c operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
,
(2) Second-breakdown limits (independent of temperature).
4
Mareh 1979
~
r
80944
80946
80948
Silicon epitaxial base power transistors
7Z82140
4
~thj-mb
[oC/W)
- 8- 1
3
"..,. ~
"
~
J
0,5
l/
"",,"
I
- 0,33 I-~
°
V
---I"""
~I"""
_ 0,2
1..--
0,1
~ ~-
=fo
- I
-~..... ~
....-
1/ .....
~
'"/ ' ~
~~
h'f'
~
~~
..... V"~
VL~
.....
JUL
-Itpl- I
:.,... ...
"..... ~
_I--'"'"
10- 6
..
.... 10"
.... "'"
"/
~ 1"""",
!,...0- f-'-
-0,75
2 -
r / ' l "'"
-"'" ~-
I
tp
8=-
T
--T-
10- 3
10- 5
10-
1
t
p
(5)
Fig. 4 .Pulse power rating chart.
7Z82145
MV
8=
~
10
-.,£,05
-
;:;::- 0,1
~
0,5
1
10- 5
~
1"00.
........
~
....
.........
.......
.....
r-..... ~................. , ....
-r-- r-
--
:--
..
~
... ~ ~
---
10- 4
~ ~ t:- ....
~ -...;
-tp (5)
10- 2
Fig. 5 S.B. voltage multiplying factor at the -ICmax level.
March 1979
5
80944
,80946
'80948
7Z82147
6=
~ r-0,1
~
0,2
~
-"
10
0,01
......
I'
,~
r--r-. ...
......
r-~
"""
"
.......
.............
'"
""-".......!iIII..
f"-...
-r-~
-............. r---....
0,5
""III",
i ' i't'.
I'- r-.t' r-r'"
r-- i"'o~
~
""
-r- 1-1-1-
~
I~
~~ ~
r--:- r0t--
Ii:::!
~
~r-
tp (5)
, Fig. 6 S.B. current mUltiplying factorafthe -VCEOmax level for B0944/946.
=
--
--
7Z82146
5=
~~
10
0,1
0,01
r-. r-.. .........
.......
~
~
1'"'"00 ...
~
, '-0,2
0,5
~
~
-...... ,r..... ......"- ....
~,
---. r-- ~
.... f ' ;;:::~~
.:"o!.
--
~r-.
!"-
.... ~
~
r-~ ~ ~ ;;:: r--"",
r-F=I=~
1
, 10- 5
tp (5)
Fig. 7 S.B. current multiplying factor at the ,,;,VCEOmax level for B09'48.
6
~~h19791(
80944
80946
80948
Silicon epitaxial base power transistors
7Z82139
typ
,.......
r-t-- tool-
'"
10
10- 2
"-
"
,
~
,
~
10
-'CiA)
Fig. 8 Typical d.c. current gain at -VCE = 1 V; Tj
=25 oc.
--
I(
Mareh
19~
7
I
I
I
~
~--j
B0949; 951
B0953;955
SILICON EPITAXIAL BASE POWER TRANSISTORS
N-P-N transistors in a plastic TO-220 envelope. With their p-n-p,complements BD95O; 952; 954 and
956 they are intended for use in a wide range of power amplifiers and for switching applications.
QUICK REFERENCE DATA
BD949 BD951
Collector-base voltage (open emitter)
Collector-emitter voltage (open base) .
BD953 BD955
VCBO
max.
60
80
100
120 V
VCEO
max.
60
80
100
120 V
Collector current (d.c.)
Ie
max.
5
Collector currenr (peak value)
ICM
max.
8
A
Total power dissipation up to T mb = 25 oC
Ptot
max.
40
W
Junction temperaturp
Tj
max.
150
°C
D.C. current gain
IC = 0,5 A; V CE = 4 V
IC=2A;VCE=4V
hFE
hFE
>
>
A
40
20
MECHANICAL DATA
Fig. 1 TO-220AB.
Dimensions in mm
45
max ~
Collector connected to
mounting base.
'.3~ I2,8
+
;
f
5,9
t-
I
I
-
min
I
I
J
'-Lt:;;:::::;:::::::;Ii::i=~
3,5 max
not tinned
-+
1
B
+ 15,
m ax
-I'
~~x-(2x)
bee
See also chapters
Mounting instructions
and Accessories.
___I ~li:o,9max (3x)
2,542,54
--
,,1.-24
1. - 0,6
7265872.3
February 1979
----
80949;951
80953;955
RATINGS
l
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BD949 951
953
955
VCBO
max.
60
80
100
120 V
Collector-emitter voltage (open base)
VCEO
max.
60
80
100
120 V
Emitter-base voltage (open collector) •
VEBO
max.
5
V
Colle,9tor current (d.c.)
IC
max.
5
A
ICM
Ptot
T stg
max.
8
A
max.
40
W
Tj
max.
. Collector-base voltage (open emitter)
Collector current (peak value)
Total power dissipation up toTmb = 25 oC
Storage temperature
Junction temperature
-65 to 150
oC
150
oC
THERMAL RESISTANCE
from junction to mounting base
Rthj-mb
from junction to ambient (in free air)
Rthj-a
3,12
70
oCIW
oCIW
CHARACTERISTICS
Tj = 25 °C unless otherwise specified
-------
Collector cut-off current
IE = 0; VCB = VCBO max
IE = 0; VCB = % VCBO max; Tj = 150 oC
IB = 0; VCE = % VCEO max
ICBO
ICBO
ICEO
<
<
<
Emitter cut-off current
IC=0;VEB=5V
lEBO
<
D.C. current gain (note 1)
IC = 0,5 A; V CE =4 V
IC = 2 A; VCE = 4 V
hFE
hFE
>
>
40
20
Base-emitter voltage (notes 1 and 2)
IC= 2 A; VCE = 4 V
VBE
<
1,4
ColleCtor-emitter saturation voltage (note 1)
IC == 2 A; IB = 0,2 A
VCEsat
<
Transition frequency at f = 1 MHz
IC = 0,5 A; VCE =4 V
for
>
.'
(1) Measured under pulse conditions: t EO; 300 #lS, ~ < 2%.
(2) VEB decreases by about 2,3 mV
with increasing temperature.
/0'8
2
0,1
2
0,5
mA
mA
mA
mA
V
V
3
MHz
8D949; 951
8D953;955
Silicon epitaxial base power transistors
CHARACTERISTICS (continued)
Switching times
(between 10% and 90% levels)
leon = 1 A; IBon == -IBoff = 0,1 A
Turn-on time
Turn-off time
90
---
is (Ofo )
10
---
90
---
ton
toff
.,
7Z77499.A
L1-I~'
------
Icon
-
.~
ic
o
0,3 p.s
1,5 p.s
ISon
(Ofo)
10
typo
typo
- - - --
-....:-- )) ------- 1-ton
-t-
-tf
t
-=....==
t off
"""""
Fig. 2 Switching times waveforms.
Vee
= 30 V
VIM
Vee == 20 V
VBB =-3,5 V
R1
82
R2
150
R3
39
R4
.20
tr = tf os:;; 15 ns
10 p.s
= 500 p.s
n
n
n
n
1>
Fig. 3 Switching times test circuit.
February 197~
3
l
80949; 951
80953; 955
.'-_ _ _ _ _ _~
10 F 'CMmax
r-
I.Cmax
r-,...I""" '
=0,01
.
,
,
7Z77852 1
I"-
'" " "
,'"
'"
IC
~" l'\. II
(1~ "\ ~
(A)
____- - - - - - - -
~
.~
tp=
~ "\ l\
~
1
~ I--t-
" 0,1 ms
I\r\
0,2
I\,
(2) ,
,
I
~ 1
10
10- 1
d.c.
=
1-1---
-V 80949tV
t;
80951t80953
80955 t-
II
10- 3
1
10
VCE(V)
Fig. 4 Safe Operating ARea; T mb ~ 25 0C.
I
II
Region of permissible/d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptotmax and Ppeak max lines.
(2) Second-breakdown limit (independent of temperature).
4
February 1979
r
80949; _951
80953;955
Silicon epitaxial base power transistors
7Z672571 '
100
P tot max
,
\.
(%)
\
,
~
75
\.
,
I\.
~
50
~
,
~
I\,
25
,
l\.
~
50
100
"
150
T mb(OC)
Fig. 5 Power derating curve.
7Z82140
4
I- 15
=1
3
0,33
~
I-
--
0,2
0,1
...
,--
~
........"","
,,/
... ~
~..... ~
io"
~
~~
L-- I-~
~ I-"
"/
~
~
V, ~~
lh'"
V
,,~
~
V',/'f'"
V'
~
V"
~tp
I
;-Itpl- --T-
I.- "",I-
10- 5
~
.......
~V~
...... 1--"'"
~
~O
I
10- 6
...
",......-
0,5
I
°
......... ~
,I
2 -
~
"",'"'
- 0,75
I-
....... ...... ~
-
,I
10- 3
10-
1
~=-
T
tp (5)
Fig. 6 Pulse power rating chart.
February 1979
5
l""----_ __ _
80949;, ,951
80953; "9.55
7Z82147
10 2
/)=
~ r-f-O,2
I'
r-..
--
0,1
10
0,01
""""
t"'-or--
i""'t""
~:
~
r-"",
--
.....
~
~
~
~~
~
,
'-
....
.....
.....
l"'- i"" ....
U,5
.
1
~
~'
-.... r--...
...... 1"'- ........
~~
-
- I - ~~
~
~ ~~
r--- r--r-- r-ro~
~
10- 3
10- 5
~i""~
10- 2
tp (5)
Fig. 7 S. B. current multiplying factor at the V CEO max level for B 0949/951.
...====
1Z82146
::
"
/)=
.~
r--.
0,1
10
"
,
0,01
--- ......
"I"'- i""'~
~
1'-1'000
f--
"'"
0,2
"""'"
'~
.~
..
.....
"
~,
" ..... ~"
""~
t--.. ~ "..... ~r:: ~~
r--f-. i""'~r-,~
"
,
0,5
r-=:::~ E§:
~ t-r-.
rt'"F~
10- 4
Fig. 8 S.B. current multiplying factor at the V CEO max level for B0953/955.
6
February ,1979
r
80949; 951
80953; 955
Silicon epitaxial base power transistors
7Z82145
.
MV
b=
K
10
-'""" -.....
~,05
~
0,1
........
to......
~
" ....... ......
..........
.....
i'oo.r-...
--I'oo..~
t-- t-
r-r--.
0,5
1
10- 5
,
~ ,....,.
----
t::: t;:: I::::t--i'oo.
r--: r-.:
C'"
-r--I-
-r-
r----
r""'
10- 3
10- 4
10- 2
tp (s)
Fig. 9 S.B. voltage multiplying factor at the Ie max level.
---
:::::::
7Z82141 1
I - - T·
J
- 125 °e
--t--
I"""
.Y
~
I-~
~~
~
- --
r"'"'
~-
~
"
........
'
~50e
.....
.......
...
.......
~
" f'~ f' r-....~
./
'1\
Ie (A)
1\
10
Fig. 10 Typical d.c. current gain at VeE = 4 V.
February 1979
7
80949: 951
80953; 955
7Z82143
VCE
(mV)
,
~
1\
1\
,
-'
,
"-
~
I\.
\
~
"'" ~~
IC7A
SA
3A
1"0.
i'"
'\
I\-
I'
~
.........
....... i"'o....
t-- ....
-
2A
·1 A
O,SA
10
1
10
IS(mA)
Fig. 11 Collector-emitter voltage as a function of base current.
-=
--
8
February 1979
(
_______J
80950;952
80954;956
SILICON EPITAXIAL BASE POWER TRANSISTORS
P-N-P transistors in a plastic TO-220 envelope. With their n-p-n complements BD949; 951; 953 and
955 they are intended for use in a wide range of power amplifiers and for switching applications.
aUICK REFERENCE DATA
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
CoUector current (d.c.)
BD950
952
954
956
-VCBO
max.
60
80
100
120 V
-VCEO
max.
60
80
100
120 V
-IC
max.
Collector current (peak value)
-ICM
max.
8
A
A
Total power dissipation up to T mb = 25 °C
max.
40
W
Junction temperature
Ptot
Tj
max.
150
°c
D.C. current gain
-IC = 0,5 A; -VCE = 4 V
-IC=2A;-VCE=4V
hFE
hFE
>
>
5
40
20
MECHANICAL DATA
Dimensions in mm
Fig. 1 TO-220AB.
45
Collector connected
to mounting base.
1,3
~~-+
,..:
5,9
~
min
I
I
I
J
.-~r=;::::;j;:::::;=;~
......
3,5 max
not tinned
+1,3 -
....
I
max~
12x)
bee
-.i
"'i:-
2,542,54
o,9max
_1'.-0,6
13x)
--
.-24
7Z65872_3
See also chapters
Mounting instructions
and Accessories.
r
+ 15,
max
1
-
80950;952
80954;956
RATINGS
l
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BD950
952
Collector-base voltage (open emitter)
-VCBO
max.
60
80
Collector-emitter voltage (open base)
-VCEO
max.
60
80
Emitter-base voltage (open collector)
-VEBO
max.
5
Collector current (d.c.)
-IC
max.
5
A
Collectorcurrent (peak value)
max.
8
A
40
W
Total power dissipation up to T mb = 25 °C
-ICM
Ptot
Storage temperature
T stg
Junction temperature
Tj
max.
max.
954
956
100, 120 V
100
120 V
V
-65 to 150
oC
150
°C
THERMAL RESISTANCE
from junction to mounting base
from junction to ambient (in free air)
70
oCIW
oCIW
0,1
2
0,5
mA
mA
mA
3,12
Rth-j-mb
Rthj-a
CHARACTE R ISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off cu rrent
IE =0; -VCB = -VCBO max.
IE = 0; -VCB = -% VCBO max; Tj = 150 oC
IB = 0; :-VCE == -% VCEO max
Emitter cut-off current
IC =~; -VEB = 5 V
----
<
<
-ICBO
-ICBO
-ICEO
<
-lEBO
<
D.C. current gain (note 1)
-IC = 0,5 A; -VCE =4 V
-IC = 2 A; -VCE = 4 V
hFE
hFE
>
>
40
20 '
Base-emitter voltage (notes 1 and 2)
-IC = 2 A; -VCE = 4 V
-VBE
<
1,4
Collector-emitter saturation voltage (note 1)
-IC = 2 A; -IB = 0,2 A
-VCEsat
<
Transition frequency at f = 1 MHz
-IC = 0,5 A; -VCE =4 V
tr
>
(1) Measured under pulse conditions: tp ~ 300ps, 8 < 2~.
(2) VEB decreases by about 2,3 mV IOC with increasing temperature.
2
February 1979
(
mA
V
V
3
MHz
8D950;952
8D954; 956
Silicon epitaxial base power transistors
CHARACTERISTICS (continued)
Switching times
(between 10% and 90% levels)
ICon = 1 A; -IBon = I Boff = 0,1 A
Turn-on time
Turn-off time
90
-i s (%)
10
ton
toff
----,
---
7Z77491.A
-ISon
o
-Icon
------ -
-ic
(%1
10
0,1 f.LS
0,4 p.s
Li,,~,
---
90
typo
typo
---- J ------- e--
i\
- - - -ton
t
-tf
t
toff
Fig. 2 Switching times waveforms.
Vee
-V,M
=
30 V
-Vce = 20 V
VBB
3,5 V
R1
82 0
R2
150 0
R3
39 0
20,0
R4
tr
tp
T
=tf ~ 15
ns
10 p.s
=500p.s
Fig. 3 Switching times test circuit.
February 1979
3
l.
80950; 952
80954;956
'--------------------------------------------lj
10 ~
~ICmax
-IC
=0,01
7Z778531
'CMmax r-~
'"" , '
" t,
I'- " 0- I~
(1~ '\ ~ r"I"
"
(A)
1\I\~
~
~
~
,
tp=
0,1 ms
0,2
(2) 1\
~
I
~
~ 1
1\
10
Id.c.
-=
.....
-.--
VB0950
B0952
B0954
Il-
V
~B0956r-
Jl
10- 3
1
10
Fig. 4. Safe Operating ARea; T mb ~ 25 oC,
Region of permissible d.c. operation.
II Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second-breakdown limit (independent of temperature).
4
February 1979
80950;952
80954; 956
Silicon epitaxial base power transistors
7Z672S7~
100
P tot max
(%)
,
\.
'\
\
75
,
\.
,
!\
\.
50
.\
\
,
I\,
25
,
\.
\
I\.
50
100 '
"
150
T mb(OC)
Fig. 5 Power derating curve.
--
7Z82140
4
1-0
1
3
-
I
~i"'
0,75
I-
--~
_I
2 ~ 0,5
V
I
0,33 ....
I--
o
~O'
V
~
.... -I-
0,2
0,1
~
~
~
1-"-
... ~
....... 1-'
io""'.1
........ ""
.... ""
...... "/
~
... ""
,/
",.
1./ ....
i-'
~
",....~
'"
,/
",,/
""
V ~I
lfi
V
~""
/""~
....
",,/
....
SLfL
I
I-"'
......, i-""" ..... ""
-Itpl--T-
_I-" -I-
T
10- 2
10- 6
10- 1
tp
T
1)=-
tp (5)
Fig. 6 Pulse power rating chart.
February 1979
5
80950; 952
l"'------!--_ __ _
80954; 956
7Z82147
~ f""--..
0,1
10
~
0,2
fJ=
0,01
r--. f""'o-
--
I'
I""-r--
r-I'"
I'~
"
....... ........
r~
r--....,
.......~
...............
--:0-
f"'......
-----...r-- .......... ' .....
r--.
"""l1lI""
~
.........
0,5
r--
1
........
,~ ......
-....
..:,
~
~
~ ~ I=:=:
r---- r-I-- ... r-r--
10- 5
i""t'-~
tp (s)
Fig. 7 S.B. current multiplying factor at the -VCEO max level for B0950 and B0952.
----==
7Z82146
~
0,1
10
fJ=
0,01
-- ~".""
""'"'- ......
1""- .....
-~
~0,2
........
~
r-
0,5
---
"'
"
.........
i"".......... "-
" t-....,
~
r--. to-
:--.... f:::~ ~~
--I""-
r-.r-~
~
--=:::: ~- s::; S;
~
1
10- 5
~r---t-I'""" FI=~
tp (s)
Fig. 8 S.B. current multiplying factor at the,-VCEO max level for B0954 and B0956.
February 1979 -
(
80950;952
80954;956
Silicon epitaxial base power transistors
7Z82145
0=
10
K~
~,05
-"
I;;;::- 0,1
1-00.
~
0,5
........
"
.......
" .....
........... t-..............
--
~
..... r--; ~~
~ -~iooo
~
~~
----
t::::: ~ :::-1'-~ r-..::
i--.
1
10- 4
10- 5
10- 3
10- 2
tp (5)
Fig. 9 S.B. voltage multiplying factor at the -IC max level.
7Z821421
-
--
Tj = 125°C
- -...
25°C
r- t-....
"'"
" ... ",
""""" ..............
,
'"
10
10- 2
"
l"'- i'.
~". I'
"- ~~
-IC(A)
10
Fig. 10 Typical d.c. current gain at -VCE = 4 V.
February 1979
7
80950;952
80954; 956
l " , , - - - :_ _ _ _
7Z82144
,
,
....L
-VCE
\
1\
~,
',:
(mV)
,
\
1\
1\
J
. •,
Ll
~
~
\
\
~
1\
\
,
, "
\
\
,,~
I'...
~
...... i'oo
"-
C-
7A
5A
I
3A
2A
-.
... 1 A
0,5A
;
:;
;;
:,
10
10
1
--=-
Fig. 11
February
Collector-~mitter
1r
1979
voltage as a function of base current.
_____J
BDT62; 62A
BDT62B; 62C
SILICON DARLINGTON POWER TRANSISTORS
P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications. TO-220 plastic envelope. N-P-N complements are BDT63,
BDT63A, BDT63B and BDT63C.
QUICK REFERENCE DATA
BDT62
A
B
-VCBO
max.
60
80
100
120 V
Collector-emitter voltage (open base)
-VCEO
max.
60
80
100
120 V
Collector current (d.c.)
-IC
max.
-ICM
Ptot
max.
15
A
max.
90
W
Junction temperature
Tj
max.
150
°C
D.C. current gain
-IC=3A;-VCE=3V
hFE
>
Collector-base voltage (open emitter)
Collector current (peak value)
tp = 0,3 ms; l) = 10%
= 25 0C
Total power dissipation up to Tmb
10
C
A
1000
---
MECHANICAL DATA
Fig. 1 TO-220AB.
,-
.... 45
1'3~
Collector connected
to mounting base.
max ...
2,8
~
+
I
I
I
J
I
+-IC:n:::r~~-----L3,5 max
not tinned
+1,3 -
I
max.....
5,1
max
--t
....
-
+
5,9
min
1
+ m15,ax8
-
J
12..7
min
(2x)
bee
-.1 ..li:-o,9max (3x)
2,542,54
,,1..-240,6
1..-
7Z65812.3
See also chapters
Mounting instructions
and Accessories.
I
February 1979
l
BDT62; 62A
BDT62B; 62C
"""---_ _ _ _ _ _ _ _ _ _ _ _ _ _ __
r-------·-----,-----;
,
~------------~~~----+__c
I
I
I
b -1--1~---t
R1 typo 4 kn
R2 typo 60 n
I
__ .J
e
Fig. 2 Circuit diagram.
RATINGS
Limiting valu~s in accordance with the Absolute Maximum System (lEC 134)
Collector-base voltage (open emitt~r)
--
--
-VCBO
BDT62
A
B
C
max.
60
80
100
120 V
60
80
100
120 V
Collector-emitter voltage (open base)
-VCEO
max.
Emitter-base voltage (open collector)
-VEBO
max.
5
V
Collector current (d.c.)
-IC
max.
10
A
Collector current (peak value)
tp=0,3ms;Ii=10%
-ICM
max.
15
Base current (d.c.)
-IB
max.
250
Total power dissipation ~p to T mb = 25 °C
Ptot
T stg
Tj
max.
Storage temperature
Junction temperature*
W
90
-65 to
max.
A
mA
+ 150
150
°C
°C
THERMAL RESISTANCE*
From junction to mounting base
Rthj-mb
From junction to ambient (in free air)
Rthj-a
1,39
oCIW
70
oCIW
* Base on maximum average junction temperature in line with common industrial practice. The.
resulting higher junction temperature of the output transistor part is taken into account.
2
February
19791 (
80T62; .62A
80T628; 62C
Silicon Darlington power transistors
CHARACTER ISTICS
Tj = 25 0C unless otherwise specified.
Collector cut-off current
IE = 0; -Vca = -VCaOmax
IE = 0; -Vca = -YNCaOmax; Tj == 150 °c
IB = 0; -VCE =: -%VCEOmax
-ICBO
-ICBO
-ICEO
Emitter cut-off current
IC = 0; -VEB '" 5 V
<
<
<
0,2 mA
2 mA
0,5 mA
<
5 mA
Forward bias second-breakdown collector current
-VCE = 40 V; t == 0,1 s; non-repetitive
(without heatsink)
BDT62
BDT62A, Band C
I(SB)
I(SB)
>
>
D.C. current gain*
-IC = 3 A; ~VCE = 3 V
-IC = 10 A; -VCE = 3 V
hFE
hFE
>
Base-emitter voltage*
-IC = 3 A; -VCE = 3 V
-VBE
<
·2,5 V
Collector-emitter saturation voltage*
-IC = 3 A; -IB = 12 mA
-IC = 8 A; -Ia = 80 mA
-VCEsat
-VCEsat
<
<
2 V
2,5 V
Cut-off frequency
-I C = 3 A; -V CE = 3 V
fhfe
typo 100 kHz
Collector capacitance
-VCB = 10 V; f= 1 MHz
Cob
typo 100 pF
D.C. current gain ratio of matched
complementary pairs
-IC = 3 A; -VCE = 3 V
hFE1/hFE2
<
2,5
Small-signal current gain at f = 1 Ml-:lz
-IC=3A;-VCE=3V
hfe
>
25
*Measured under pulse conditions; tp
0,45 A
1,4 A
1000
typo 200
< 300 fJ.S; 8. < 2%.
February 1979
3
BDT62; 62A
BDT62B;62C
CH,ARACTERISTICS (continued)
Diode, forward voltage
IF=3A
.<
Switching times
(between 10% and 90% levels)
-ICon = 3 A; -ISon = ISoff == 12 mA
turn-on time
turn-off time
typo 0,5 p.s
typo 2,5' p.s
--
10
----:--t
---
90
---
90
-i e (% )
7Z77491,1
-
-lson
LLIB~'
------
-ic
o
-Icon
-
i\
(%)
10
2V
---
------- 1---
-1.1
ton
- -t
-tf
toff
t
Fig. 3 Switching times waveforms.
-VIM ..:
VCC
R3
= 5600
R4
30
15 ns
= 10 p.s
= 500 ps
tr =tf
!p
T
Fig. 4 Switching times test circuit.
4
February 1979
r
10 V
-Vee = 10 V
+Vaa = 4 V
R1
560
R2
= 410 0
=
BDT62;62A
BDT628; 62C
Silicon Darlington power transistors
7Z672S7~
100
P tot max
toto)
7S
,
~
",
1\
1\
,
I\.
~
50
\
~
~
I\,
2S
,
1\
~
,
oo
so
1\
Fig. 5 Power derating curve.
February 1979
5
l_______
BDT62;62A
BDr62B'; 62C
7Z82169
[) =0,01 t-- -r-
-ICMmax
~
10
ICmax
(1~
'I'\.
tp =
0,1 ms
III
~
0,5
I
~ 1\ II \
\ \
\,1\, '
(2)
1\\1\
, , 10
,,100
I
--5:
I
1
1\ 1\
~ d.c.
III
10- 1
N
co
I0
co
10- 2
1
10
. Fig. 6 Safe Operating ARea BDT62; T mb = 25 °C.
I
II
(1)
(2)
6
February 1979
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
Ptot max and Ppeak max lines.
Second-breakdown limits (independent of temperature).
r
BDT62;62A
BDT62B; 62C
Silicon Darlington power transistors
7Z77520 1
-IC
(A)
0=0,01
-ICMmax
10
--
-
~
,
"1\
",
'"
" '" "
"~ \\
II
ICmax
"
(1 )
\
-I-I-
0,1 ms
I'
"- I'\.
1"\:,
\
r- tp
-r-
.... 0,5
\
\1'
1
(2)
\
I
1
,
10
\
---
100
\
d.c.
BDT62A
BDT62B
BDITj2f
10- 2
1
10
10 2
-VCE (V)
Fig. 7 Safe Operating ARea BDT62A; 628 and 62C; T mb
I
II
(1)
(2)
= 25 °C.
Region of permissible d.c. operation.
Permissible extension for repetiti~e pulse operation.
Ptot max and Ppeak max lines.
Second-breakdown limits (independent of temperature).
February 1979
7
L'---__'------
BDT62;62A
BDT62B;62C
7Z82148
1,5
&=1
,,
I
1.."...0'
L..,..o
./
~
0,7
-
--
1/
-'
/
L..oo
'"
1/
-"
I""""
/
I/'
O~
/
~
'"
""""
1/
"""'" L".
.;.~
'"
l/
/
V
~
,."
~
0,2
/
ioo""
0,5
II
/
./
/
L".
",.,.1"""
-
JLrL
I
O,O!..~
."",.
,
.,-
-Itpl-
-T-
tp
6=-
T
tp (s)
10
Fig. 8 Pulse power rating chart.
---
7Z82163
10 4
hFE
'"
~
10 3
~/
I
.
/
~ ....
l/
~
'
....
I'\.
"""
,
. \~1
~Tj 125°C
/
25°C
/
~
\
10
10- 2
10
Fig. 9 Typical d.c. current gain at -VCE
8
February 1979
-IC(A)
=3 V.
BDT62; 62A
BDT62B; 62C
Silicon Darlington power transistors
7Z82171
10
6 =0,01
~,1 "
....... '-"'I
~
"- "........
~ i'.
~ f'
-:::'
..... ....
' ' ' ' .... r-.
.... r-.
0,5
-I"'-
-~ "I-
~ I--...
r::::::~
I---.
~
~
:: ::~
1
10- 1
10
tp (ms)
Fig. 10 S.B. voltage multiplying factor at the IC max level.
---
7Z82172
/j
=0,01
\
0,02
....
0,05
,,
'" r...r.... "
r---r....
-r-- r...
10
0,1
~""
~
.......
..........
~O,2
- I - ",,"I-
0,5
.....
.......
........
~
.............
~
~
..........
""""" :......-;
-r--...
r--...
......
'"
r-.. !',,~
i""ot--
I-~
...........,;;:
~~
'""I-
r-----
-
1
10- 1 .
10
r--. I"- I--t-- 10.1r-- I-- r- 1-01'""I~
I"'ii
1-01-
tp (ms)
Fig. 11 S.B. current multiplying factor at the VCEO max level.
February 1979
9
l
BDT62;·62A
BDT62B;62C
'---------------------------------------------~--7Z82159
-VCEsat
(mV)
r-
2A
-le=lA
6A
4A
,
,
SA
\.
"-
\
\
r\
"
""
~
1\
\~
\
'\..
I"'-...
.....
10
Fig. 12 Typical collector-emitter saturation voltage.
7Z82151
10
-Ie
(A)
I
7,5
II
I
I
/
5
/
/
If
J
I{
I
If
o
/
1
1,5
2
2,5
-VBE(V)
10
February 1979
(
Fig. 13 Typical base emitter voltage
as a function of the collector current.
_ _ _J
BDT63; 63A
BDT63B; 63C
SILICON DARLINGTON POWER TRANSISTORS
N-P-N epitaxial base transistors in monoJithic Darlington circuit for audio output stages and general
amplifier and switching applications; TO-220 plastic envelope. P-N"P complements are BDT62,
BDT62A; BDT62B and,BDT62C.
QUICK REFERENCE DATA
BDT63
A
B
C
Collector-base voltage (open emitter)
VCBO
max.
60
80
100
120 V
Collector-emitter voltage (open base)
VCEO
max.
60
80
100
120 V
Collector current (d.c.)
IC
max.
ICM
Ptot
max.
15
A
Total power dissipation up to T mb = 25 0C
max.
90
W
Junction temperature
Tj
max.
150
°C
D.C. current gain
IC=3A;VCE=3V
hFE
>
Collector current (peak value) .
tp=0,3ms;<,> = 10%
10
A
1000
MECHANICAL DATA
Fig. 1 TO-220AB.
Collector connected
to mounting base.
5,9
min
~--=r~
1
15,8
max
j
-.i ..Ii:- ,9
O max 13x)
See also chapters
Mounting instructions
and Accessories.
2,542,54
..
"1,,,,0,6
'-2,4
7165872.3
February 1979
BDT63;63A
BDT63B;63C
.L.
'---------------------------------------------------I'
I
I
I
b-H~-__t
I
R1 typ.8 kO
R2 typo 100 n
I
!L.________
.
_
R1
R2
7Z8tl~4S.2
I
.-.J
e
Fig. 2. Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
---
Collector-base voltage (open emitter)
Collector·emitter voltage (open base)
BOT63
A
B
C
VCBO
max.
60
80
100
120 V
60
80
100
120 V
VCEO
max.
Emitter·base voltage (open collector)
VEBO
max.
5
V
Collector current (d.c.)
IC
max.
10
A
Collector current (peak value)
tp = 0,3 ms; ~ = 10% .
ICM
max.
15
A
IB
max.
250
mA
Ptot
T stg
max.
90
W
oC
Tj
max.
Base current (d.c.)
Total power dissipation up to T mb
=25 °C
Storage tempetatu re
. Junctiontemper8ture*
-65 to + 150
150
oC
THERMAL RESISTANCE *
From junction to mounting base
Rthj-mb
Fromjunction to ambient (in free air)
Rthj-a
1,39
oCIW
70
oCIW
* Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken· into account.
2
February 1979
r
BDT63; 63A
BDT63B; 63C
Silicon Darlington power transistors
CHARACTERISTICS
Tj = 25 0C unless otherwise specified.
Collector cut-off current
IE = 0; VCS = VCBOmax
"IE = 0; VCS = Y2VCBOmax; Tj = 150 oc
IS = 0; VCE = Y2VCEOmax
Emitter cut-off current
IC=0;VES=5V
ICBO
ICBO
ICEO
<
<
<
0,2 mA
2 mA
0,5 mA
lEBO
<
5 mA
Forward-bias second-breakdown collector current
V CE = 40 V; t = 0,1 s; non-repetitive
(without heatsink)
'(S8)
>
D.C. current gain*
IC = 3 A; V CE = 3 V
IC= 10A;VCE=3V
hFE
hFE
>
Base-emitter voltage*
IC = 3 A; V CE = 3 V
VSE
<
2,5 V
Collector-emitter saturation voltage*
IC = 3 A; IS = 12 mA
IC=8A; IS=80mA
VCEsat
VCEsat
<
<
2 V
2,5 V
Diode, forward voltage
IF=3A
VF
<
2 V
Turn-off breakdown energy with inductive load (Fig. 6)
-ISoff = 0; L = 5 mH
E(BR)
>
Small-signal current gain at f = 1 MHz
IC=3A;VCE=3V
hfe
>
25
Cut-off frequency
IC=3A;VCE=3V
fhfe
typo
50 kHz
Collector capacitance
VCB=10V;f=1 MHz
Cob
typo
100 pF
D.C. current gain ratio of matched
complementary pairs
IC = 3 A; VCE = 3 V
hFE1/hFE2
<
2,5
* Measured under pulse conditions; tp
typo
2,25 A
1000
3000
100 mJ
--
~
I
< 300 IJ.S; 6 < 2%.
February 1979
3
BDT63; 63A
BDT63B;63C
l
....._ _ _ _ _~-_--------~-~
CHARACTERISTICS (continued)
Switching times
(between 10% and 90% levels)
ICon = 3 A; 'Bon = -IBoff = 12 mA
turn-on time
turn-off time
ton
toff
-
tr
90
------- -
typo
typo
0,5 P.S
2,5 /,lS
'Z7?499.1
lson
ls(%)
_________~__~____
10~~~
90
iC
(%)
10
--
o ~--~-~------+--r+----ton
----
Fig. 3 Switching times waveforms.
V,M
Vce
10
10
=
4 V
=
=
56 0
410 0
560 0
30
= tf =
=
15 ns
10"p.s
-VBB
R1
R2
R3
R4
tr
tp
T
Fig. 4 Switching times test circuit.
4
February 1979
r
V
V
= 500 p.s
BDT63; 63A
BDT63B; 63C
Silicon Darlington power transistors
7Z672571
,
100
~
P tot max
(0/0)
,
,
1\
75
I\,
1\
"
I\,
50
\
r\.
~
25
,
1\
1\
o
o
,
50
Fig. 5 Power derating cunie.
vert.
osCilloscope
+
Vee
hor.
oscilloscope
7Z73863.1
Fig. 6 Turn-off breakdown energy with inductive load.
VIM
t
= 12 V; RB = 270 n; 6 =--E. x
T
100% = 1%; ICC
= 6,3 A.
February 1979
5
BDT63;63A
BDT63B; 63C)
7Z775191
IC
(A)
5 =~,01
ICMmax
." "
10
:: ICmax
1\
,'- 'II~"
"'
~
I--~
I--~
~~
I'
'" I""
(1 )
tp-
0,1 ms
" 1,\
~ ~
~~
~1
(2)
I
\
- 1
\
\' 10
----
~,
~ 10~
d.c.= ~~
BDT63
BDT63A
BDT63B
BDT63C -
I
10- 2
1
10
-
I I
'
Vce(V)
Fig. 7 Sa~e ?perating ARea; T mb = 25 °C.
Region of permissible d.c. operatiOh.
Permissible extension for repetitive pulse operation.
(1) Ptotmax and Ppeakmax lines.
.
'(2) Second-breakdown limits (independent of temperature).
II
6
February 1979
BDT63;63A
BDT63B; 63C
Silicon Darlington power transistors
7Z82148
1,5
8 =1
I
I
I
..........
0,7
...........
-
"'"
1.00'
./
""""
V
1/
1.00'.
V
'"
~
/
/
1..00-""
V
I-
v
l.,.....oo"
./
I)
Ii
0,210'
10'
0,5
v
II
O~
l/
./
1.00-"
"
t..,....
~
~
1/
17
/
./
L..o
.-....iI'"
.~
O,OL"""
...........
......
--o
I
I-
-Itpl-T10- 3
10- 5
10- 1
10- 2
tp
T
6=-
tp (s)
10
Fig. 8 Pulse power rating chart.
7Z82164
.;'
".
~.~
/
.
/
/
.....
./
;
./
./
c=...
"
~. i\
~
v~
;
V//
-
V
----
VV
1\
1\
\ \T-=25 0 C
,
/
JI
'125°C
1/
/
V
/
10
Fig. 9 Typical d.c. current gain at VCE
IC(A)
=3 V.
February 1979
7
l" '- -"'-~,
80T63; 63A
80T638; 63C
_ __ _ . _ 7Z82173
10
0=
~0,01
"-
"
~1
,"- ",
~'
...........0,2......
...........
_ 0,5
......... r"-r"-o
~ r--.... ........ 1'"",
1'""
- r- -r-"""rr-r-r-
~
~
-100.
10
tp (ms)
Fig. 10 S.B. voltage multiplying factor at the IC max level.
7Z82174
--
10 0
0,1
-0,2
0=0,01
- ......
~
i""'-
.......
r""!!Io
r-
"-
.............
K.
~ l"'" ~
.........
r-..;;:
0,5
-
1
10- 1
r-.... r-.. ,....,t'
f:::~ ~~
r- r- I'-t-
r-,...
~ ~ t'-"""
r---...
""t-
10
Fig. 11 S.B. current multiplying factor at VCEO level
8
February 1979
r
tp (ms)
= 60 V and 100 V.
BDT63; 63A
BDT63B; 63C
Silicon Darlington power transistors
7Z82160
VeEsat
(mV)
_'e=lA 2 A 4A6A8Al0A
\
11
\
Il
\
\
\
\ \
\ \
.....'-.... ...
~
,
\
,
1'0..
10
-'B (mA)
Fig. 12 Typical collector-emitter saturation voltage.
--
7Z82152
10
Ie
(A)
IJ
7,5
~
II
I
fl
5
j
!7
j
rJ
j
2,5
II
J
Fig. 13 Typical base-emitter
voltage as a function of the
collector current.
V
IJ
V
o
1
1,5
2 VBE(V) 2,5
February 1979
9
_ _ _ _J
BDT91
BDT93
BDT95
SILICON EPITAXIAL BASE POWER TRANSISTORS·
N-P-N transistors in a plastic envelope intended for use in audio output stages and general amplifier and
switching applications.
P-N-P complements are BDT92, BDT94 and BDT96.
QUICK REFERENCE DATA
BDT91
BDT93
BDT95
VCBO
max.
60
80
100 V
VCEO
max.
60
80
100 V
IC
max.
10
A
20
A
Total power dissipation up to T mb:: 25 oC
ICM
Ptot
max.
max.
90
W
Junction temperature
Tj
max.
150
°C
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
Collector current (d.c.)
Collector current (peak value)
D.C. current gain
I C = 4 A; V CE
I C = 10 A; V CE
=4 V
=4 V
>
Transition frequency
IC = 0,5 A; VCE = 10 V
20 to 200
5
>
4
Dimensions in mm
MECHANICAL DATA
Fig. 1 TO-220AB.
__ 45
I~-I
Collector connected
to mounting base.
1,3--
2,8
I
I
.,
5,9
....
t
min
1
8
+ 15,
m ax
I
I
I
L--l-J
J
+-~r=;::::::t:I;:::r;~--+-
3,5 max
not tinned
top view
MHz
5,1
max
\,"
I
max'"
I
-
....
J
12,7
min
(2x)
bee
See also chapters
Mounting instructions and Accessories.
i:
__i ..I
2,542,54
O,9 max (3x)
_1
1. - 0,6
.-24
Ir 19~
7Z65872.3
Mareh
---
l
BDT,91
BDT93
BDT95
RATINGS'
Limiting values in accordance with the Absolute Maximum Sy!!tem (lEC 134)
BDT91
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
BDT93
BDT95
VCBO
max.
60
80
100 V
60
80
100 V
VCEO
max.
Emitter-base voltage (open collector)
VEBO
max.
7
V
Collector current (d.c.)
IC
max.
10
A
Collector current (p~ak value)
ICM
max.
20
A
Base current (d.c.)
IB
,max.
4
A
Total power dissipation up to T mb = 25 °C
max.
90
W
Storage temperature
Ptot
Tstg
Junction temperature
Tj
max.
-65 to +150
150
°C
°C
THERMAL RESISTANCE
From junction to mounting base
Rthj-mb
From junction to ambient (in free air)
Rthj-a
1,39
oC/W
70
°C/W
0,1
5
1
rnA
rnA
rnA
CHARACTERISTICS
Tj = 25 oC unless otherwise specified
---=
=
Collector cut-off current
IE = 0; VCB == VCBOmax
IE = 0; VCB = YzVCBOmax; Tj = 150 °V
IB = 0; VCE = VCEOmax
Emitter cut-off current
IC=0;VEB=7V
D.C., current gain (note 1)
I C = 4 A; V CE = 4 V
I C = 10 A; V CE = 4 V
Base-emitter voltage (notes 1 and 2)
IC = 4 A; VCE = 4 V
<
<
ICBO
ICBO
ICEO
<
lEBO
<
hFE
hFE
>
20 to 200
5
' VBE
<
1,6
V
Collector-emitter saturation voltage (note 1)
I C = 4 A; I B = 0,4 A
IC=10A;IB=3,3A
VCEsat
VCEsat
<
<'
1
3
V
V
Transition frequency at f = 1 MHz
IC = 0,5 A;VCE = 10 V
fT
>
4
MHz
Cut-off frequency
I C = 0,5 A; V CE = 10 V
fhfe
>
20
kHz
Notes
1. Measured under pulse conditions: t ";;300 JlS; l) ..;; 2%.
2. VBE decreases by about 2,3 mV /o(! with increasing temperature.
2
rnA
~
Mareh 1919
(
BDT91
BDT93
BDT95
Silicon epitaxial base power transistors
Second-breakdown collector current
VCE = 60 V; tp = 0,1 s
'(SB)
Switching times
(between 10% and 90% levels)
ICon = 4 A; IBon = -IBoff = 0,4 A
Turn-on time
Turn-off time
tr
typo
typo
0,3 f.1s
1,5 f.1S
----It~---....j-- ISon
II
is (%)
10
1,5 A
-:'Z774991
--*1 :<4---
90
<
1----1-------1\---_--
LC_
:,
1ao
90
1\
ic
1\
(%)
19 -- - -~ - - -,- - - - - - t
-ton
Fig. 2 Switching times waveforms.
VIM
= 45 V
VCC = 20V
-VBB = 3,5 V
V~:JLJL
.... 1 1__
tp
1
R1
R2
R3
R4
=210n
56n
10st
5st
15 ns
10 f.1S
= 500 JLS
--T-7278131
Fig. 3 Switching times test circuit.
March 1979
3
l
BDT91
BDT93
BDT95
..
'--------------------------------------------------10 2
1Z785022
IC
( A)
I---+--+--'+-IH-I+I-I--
ICMmax
6 =0,01
-f-f-+-++++--+--f--+--4
A
++++;+--+--+--+(2)+-+1.....--+---1-+-1
d.c .
......
-
-----
~--+-~~+444~__~BDT91~~+_--~_+~~
BDT93
BDT95 ~I--
10-2~__~~~~~__~~I_~I~UL__~~~
1
10
VCE(V)
Fig. 4 Safe Operating·ARea; T mb = 25 oC.
I Region of permissible d.c. operation.
II. Permissible extension for repetitive pulse operation.
(1) Ptotmaxand Ppeakmax lines•.
(2) Second-breakdown limits (independent of temperature).
4
Mareh
19791 (
BDT91
BDT93
BDT95
Silicon epitaxial base power transistors
7Z67257.1
100
"
I\.
P tot max
(%)
\
,
~
75
\.
1\
"
I\,
50
~
~
\.
25
,
~
~
\
50
100
150
T mb(OC)
Fig. 5 Power derating curve.
----
7Z82149
1.5
0=1
./
-- --- --
O.z. . .
1
-
~
o~
10- 5
,
//
1/
/.
L
/.
,/
1/
- ..-..,.,
~
/~
/.'/.
I
/.
1/
'//
/
JLrL
'f'/
'f'/
I"
~
"
1:::OOi~
fl,
///
0.21'11
0.5
/
/
.......
~~
---
Z~
0.5
'I.
I
~
,
,"
..............-
!LO.l
0.05
0.01
-Itpl- I
--T-
I
10- 3
10- 2
Fig. 6 Pulse power rating chart.
10- 1
r
tp
T
l)=-
tp (s)
M.reh1979
10
5
l___--------
80T91
80193
80T95
7Z82157
{) ~ 0;01 ........"'"
.~
1
I
I--
0,02
r-
-
1--1"-
~ ............
I
0,05
r-l"-- 1--1"-
0,1
10
,
""--........,
-
r-
0,2
I\..
..
~
,
~
~
~
........... to.....
~
"
1\1\r\
"
......
"""
---
.......
-r- t"---
~~..)
I"-
1\1'
" f',,1'
1"'-01-0.
0,5
~
I"-~
.....
~~
r--- r-1
10- 5
tp (s)
Fig. 7 S.B. current mUltiplying factor at the VCEOmax level.
--
7Z82158
MV
0=
~
10
vO,01
vO,02
vO,05
r- r-.
//
...:
~
0,2
I
--
1000..
Iooo...~
~~~
~ ~~
- .
r--
t---
0,5
~~
'""'" b.... r-.... f:::r-.
r-....
r- r-. i't:: ~~
I"'-or---
-
~
I"-~
~
~
r--~r-
"
1
10- 5
6
10- 4
10- 3
tp (s)
Fig. 8 S.B. voltage multiplying factor at the ICmax level.
/
I"'-~
r-
10- 2
80T91
80T93
80T95
Silicon epitaxial base power transistors
1Z185542
-
-
1--
~
V
~
T·=1250C
..1-+- .....-
-I-~
1-1...
~
...... r-.....
~
j..- ~~
~"'" ~
T j == 25°C
"-
" ~~
~
~
" '"
I\.
10
10- 2
'c (A)
10- 1
10
Fig. 9 Typical d.c. current gain at VCE = 4 V.
7 Z 78556
,
~1
Ho,5
V CEsat
2---1
3-;4; 5-
Ie
7r
9A
(mV)
\
'\.
\
1\
,
1\
\
f'..
~
~b-
1\
'\
'"
f'
~
1'.
I"'t"-o
1"-
"
\
I"-or-t--
'\.
""' "
I'....
~ r,.-...-.
t-t--
"
----
~
~
I'-....
-I"--....
10
1
10
Fig. 10 Typical collector-emitter saturation voltage. T mb = 25 oC.
March 1979
7
I .
I
.
_ _ _J
BDT92
BDT94
BDT96
SILICON EPITAXIAL BASE POWER TRANSISTORS
P-N-P transistors in a plastic envelope intended for use in audio output stages and general amplifier and
switching applications.
N-P-N complements are BDT91, BDT93 and BDT95.
QUICK REFERENCE DATA
BDT94
BDT92
BDT96
Collector-base voltage (open emitter)
-VCBO
max.
60
80
100 V
, Collector-emitter voltage (open base)
-VCEO
max.
60
80
100 V
Collector current (d.c.)
-IC
max.
'10
A
Collector current (peak value)
-ICM
max.
20
A
Total power dissipation up to T mb = 25 °C
Ptot
max.
90
W
Junction temperature
Tj
,max.
150
oC
D.C. current gain
-IC=4A;-VCE=4V
-IC= 10A;-VCE=4V
>
5
Transition frequency
-IC = 0,5 A; -VCE = 10 V
>
4
20 to 200
MHz
Dimensions in mm
MECHANICAL DATA
Fig. 1 TO-220AB.
-I~'"I-+-
.-
1,3--
~- )
2,8
5,9
min
+
I
15,8
max
I
I
I
.J
top view
--
.-Il:::ir==;:::::r;Fi=i=;~--+t
~~x I
3,5 max
not tinned
\,~I.I
--t
max
12,7
min
(2x)
See also chapters
Mounting instructions and Accessories.
1
bee
--.1
~ji:-o,9max
2,54 2,54
•
_1
(3x)
--
I
1__ 0,6
--2,4
7Z65872.3
March 1979
BDT92
BDT94
BDT96
RATINGS
l
Limiting values in accordance with the Absolute Maximum System (IEC 134)
BDT92
Collector-base voltage (open emitter)
BDT94
BDT96
-VCBO
max.
60
80
100 V
60
80
100 V
-VCEO
max.
Emitter-base voltage (open collector)
-VEBO
max.
7
V
Collector curr:ent (d.c.)
-IC
max.
10
A
Collector current (peak value)
-ICM
max.
20
A
Base cur~ent (d.c.)
-IB
max.
4
A
Total power dissipation up to T mb = 25 oC
max.
90
W
Storage temperature
Ptot
T stg
-65 to +150
Junction temperature
Tj
max.
°C
oC
Collector-emitter voltage (open base)
150
THERMAL RESISTANCE
From junction to mounting base
Rthj-mb
From junction to ambient (in free air)
Rthj-a
1,39
°C/W
70
°C/W
0,1
5
1
mA
rnA
rnA
CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE = 0; -VCB = -VCBOmax
IE == 0; -VCB = -%VCBOmax; Tj:: 150 °C
IB == 0; -VCE = -VCEOmax
Emitter cut-off current
IC=0;-VEB=7V
--
-ICBO
-ICBO
-ICEO
<
<
<
-lEBO
<
D.C. current gain (note 1)
-IC=4A;-VCE=4V
-IC = 10 A; -VCE = 4 V
hFE
hFE
>
20 to 200
5
Base-emitter voltage (notes 1 and 2)
-IC=4A;-VCE=4V
,-VBE
<
1,6
V
Collector-emitter saturation voltage (note 1)
-IC = 4 A; -IS = 0,4 A
-IC= 10A;-IB=3,3A
-VCEsat
-VCEsat
<
<
1
3
V
V
Transition frequency at f = 1 MHz
-IC = 0,5 A; -VCE = 10 V
fT
>
4
MHz
Cut-off frequency
-IC = 0,5 A; -VCE = 10 V
fhfe
>
20
kHz
Notes
1: Measured under pulse conditions: t ~ 300 f.lS; l) ~ 2%.
2. VBE decreases by about 2,3 mV /0'8 with increasing temperature.
2
MarCh19791
r.
mA
BDT92
BDT94
BDT96
Silicon epitaxial base power transistors
Second-breakdown collector current
-VCE=60V;tp=O,1 s
-1(58)
<
0,6 'A
Switching times
(between 10% and 90% levels)
-ICon = 4 A; -18on = +18off = 0,4 A
Turn-on time
Turn-off time
ton
toff
typo
typo
0,3
1,5
90
-i s (% )
10
-1[----i1
"
J1,S
J,lS
''''491.1
-Is on
---
-- -
lila.:,
90
---
------
---
j------- f--
-iC
(Ofo)
10
o
-ton
-ICon
-
\
t
-tf
---+
toff
--
t
Fig.2 Switching times waveforms.
-VCC
-VIM = 45 V
-VCC = 20 V
V88 = 3,5 V
= 210 [2
R1
56[2
10[2
5[2
R2
R3
R4
tr = tf
tp
T
=
15 ns
10 J1,S
500 J,lS
7Z78130
Fig. 3 Switching times test circuit.
I(
March 1979
3
l
BDT92
BDT94
BDT96
\
\
7Z78501 1
-IC
(Al
&= 0,01
"""CMmax
, ,I
-
10
I\r--
Cmax
~
" ~t'""
," !", , " 1-""
(1 )' ."\.
tp
"j\\" f\
~
-
-
~I-
1--1-
0,1 ms- ~I-
'" ~
0,5
,~ ~
(2~ 1\
1
I'
I
~
1.0
d.c.
10- 1
BDT92
BDT94
BDT96 1-1I
10- 2
1
I
10
Fig. 4 Safe Operating ARea; T mb = 25 °C. .
I
/I
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1)
Ptotmax and Ppeakmax lines.
Second-breakdown limits (independent of temperature).
(2)
4
Mareh
19791 (
BDT92
BDT94
BDT96
Silicon epitaxial base power transistors
1Z672571
100
"""\
\.
P tot max
. (Ofo)
\.
75
,
-f--
~
""
-
\
50
\.
\
,
i\.
\.
25
",
\.
I
1\
\
100
150
Tmb(OC)
Fig. 5 Power derating curve.
7Z82149
1,5
0=1
----
~~
~
I--f-
-
---
./
V
1::00-
""
/1/.
'/.~
0;5
./ rh
'/A/
1///
r//
I
l-
0,2)1
'('
1
./
~
~
0,5
./
-I
VI
1
.....
---
tV'
0,2,1-I
,...
.-"" .... !!III
~
/./1
'//
./ /'
1/
-
I--""
----
-~
°10-
5
~
....
JLJL
I
"/
't'/
'LO,1
0,05
0,01
-Itpl---T-
1
10- 3
-10- 2
Fig. 6 Pulse power rating chart.
tp
T
0=-
10- 1
10
I(
Mareh 1979
5
l_______
'BDT92
BDT94
BDT96
.7Z82157
&= 0,01 ..............
I
r---- 0,02
I
,0,05
--
~
-r- ...
.............
--
~
0,1
10
,
"'
r""
..
~
'\..
i\.
'"
'\
" ,,
I"'--... .............
....
-
....
r\
\
.... ~ \
.......
........
"'
- --- -
0,2
............
..... '\'
r-
....
0,5
~
... ~
.......
r--- ~ :::::::
~
~
1
10- 5
-
tp (5)
Fig. 7 S.B. current multiplyingfactor at the VCEOmax level.
---
7Z82158
b=
.L/
10
//
/0,01
/0,02
/0,05
--,-
..::
--
....
-I"-
0,1
::--+--0,2
I
0,5
1000.
..............
~
--.;;::o~
-........... ~
-r- "r-........... ~ ~
.......
r"'"-......... ........ ~r--.
r----
-
--- -
::::~ ...~ ....:::~~
~
~
- r--- ~ ........ ~-
1
10- 5
10- 3
Fig. 8 S.B. voltage multiplying factor at the ICmax level.
6
March
19791 ( ____~__~
tp (5)
r""
10- 2
--
--------------.r---~ ,----~~-
BDT92
BDT94
BDT96
Silicon epitaxial base power transistors
7Z785531
1--- 1--
-
l- i- i- ..
T· = 125 0 e
H_L __, Tj
25
0
-
I--
!-'''r-.
I ...
e
r....
....
..........
......
......
'r-.. ...
.........
"
"
. ~I'
'~ 1\
~~,
1",..."I'
10
10- 2
-IC(A)
Fig.9 Typical d.c. current gain at -VCE = 4 V.
7Z78558 1
0,5
-VCEsat
(mV)
1\
,
,
r\1- t-- r\2
\
Ie
t-~ 31\4-\5-17 ...; 9A
C\
[\
\ \
\
\
\
\
~
\ 1\
" ~
1\
I'
"r-...
'"
t'.. r--."",I'-
"" "
"]'..
......... !o..
r...
"-
I"'ii
~
~
----
L...--
10
1
10
Fig. i 0 Typical collector-emitter saturation voltage. T mb = 25 DC.
March 1979
7
---J[
BDV64
BDV64A
BDV64S'
--------------------SILICON DARLINGTON POWER TRANSISTORS
P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and gen~ral
amplifier and switching applications. N-P-N complements are BDV65, BDV65A and BDV65B. Matched
complementary pairs can be supplied.
QUICK REFERENCE DATA
BDV64
BDV64A
Collector-base voltage (open emitter)
-VCBO
max.
60
80
100V
Collector-emitter voltage (open base)
-VCEO
max.
60
80
100V
Collector current (peak value)
max.
20
A
Total power dissipation up to T mb ~ 25 oC
-ICM
Ptot
max.
125
W
Junction temperature
Tj
max.
150
°C
D.C. current gain
-IC= 1 f',;-VCE =4V
-IC=5A;-VCE=4V
hFE
hFE
>
Cut-off frequency
-IC = 5 A; -VCE = 4 V
fhfe
typo
typo
BDV64B
04-
1500
1000
kHz
100
MECHANICAL DATA
Dimensions in mm
15,2_
Fig. 1 SOT"93.
l4,S-
max
Collector connected
to mounting base.
max
+
-'2j
4,4
t
t
j
21
max
12,7
max
!
LI.!::;:;::=;#====r?l
Wit~
--i
I
dimensions
this zone are
uncontrolled
b'
13,6
min
cl e,~
- ~ I.. _1.1--i-$lo,5 ®I
'
Lrm--!
1,'.5
0,95
11
I
11
.- 0,4
...1,6....
7Z75220
Accessories supplied on request: 56368 (see also data sheet Mounting instructions SOT-93J.
April 1979
l~
BDV64
BDV64A
BDV64B
_________
CI RCUIT DIAGRAM
,-----.-------------;
I
I
b - -....- - - I
.,
I
,
I
I
I
R1
I
R2
L ______ _ __.J
I.
Fig. 2
. R 1 typical 5 k.Q
R2 typical 80 n.
7Z66446.2
e
.RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
BDV64
----
BDV64A
BDV64B
Collector-base voltage (open emitter)
-VCBO
max.
60
80
100 V
Collector-emitter voltage (open base)
-VCEO
max.
60
80
100 V
Emitter-base voltage (open collector)
-VEBO
max.
5
5
5 V
- - Collector current (d.c.)
-IC
max.
12
A'
__ Collector current (peak value)
-ICM
max.
20
A
Base current (d.c:)
-IB
max.
0,5
A
Total power dissipation up to T mb = 25 °C
max.
125
W
Storage temperature
Ptot
T stg
- 65 to + 15.0
°C
Junction temperature
Tj
max.
150
°C:'
THERMAL RESISTANCE
From junction to mounting base
Rthj-mb
* Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction tern'perature of the output transistor part is taken into account.
2
April 1979
~r
°C/W*
BDV64
BDV64A
BDV64B
Silicon Darlington power transistors
CHARACTERISTICS
Tj = 25 °C unless otherwise specified.
Collector cut-off currents
IE = 0; -VCB = -VCBOmax
IE = 0; -VCB = -% VCBOmax; Tj = 150 °C
IB = 0; -VCE = -% VCEOmax
Emitter cut-off current
IC = 0; -VEB = 5 V
-ICBO
-ICBO
-ICEO
<
<
<
<
D.C. current gain*
-IC = 1 A; -VCE = 4 V
-IC=5A;-VCE=4V
-IC= 10A;-VCE=4V
typo
>
typo
~OO /lA
2 mA
mA
5 mA
1500
1000
1000
Base-emitter voltage*
-IC=5A;-VCE=4V
-VBE
<
2,5 V**
Collector-emitter saturation voltage*
-IC= 5 A; -IB = 20 mA
-VCEsat
<
2 V
Collector capacitance at f = 1 MHz
IE= Ie =O;-VCB'" lOV
Cc
typo
200
Cut-off frequency
-IC=5A;-VCE"'4V
fhfe
typo
100 kHz
Diode, forward voltage
IF'" 5 A
VF
typo
1,8 V
Switching times (see also Fig. 4)
-ICon = 5 A; -IBon = IBoff = 20 mA;VCC= -16 V
Turn-on time
Fall time
Turn-off time
ton
tf
toff
typo
typo
typo
0,5 /lS
1,0 /lS
2,0 /lS
pF
* Measured under pulse conditions: t < 300 /lS; 0 < 2%.
** -VBE decreases by about 3,6 mV/8C with increasing temperature.
7Z77491
90
-i s (%)
--\r
10
---
90
---
-I son
..
LiIB~'
------
-ic
(%)
10
o
---- Ij --.----- --
-ton
-Icon
-
~
-tf
-+
toff
\-
--
t
Fig. 3 Waveforms showing ton; ts + tf = toff.
January 1978
3
BDV64
BDV64A
BDV64B
l_._ __
Vee
v;]J
o•
t
--+--1
Fig. 4 Switching times test circuit; Vee = -16 V;
VIM = 16,5 V; tr = tf = 11;) ns; tp = 10 p.s; T = 500 p.s.
-
4
January 1978
(
BDV64
BDV64A
BDV64B
Silicon Darlington power transistors
7Z77496 1
-Ie
(A)
{) '" 0,01
-ICMmax
-I
I
~"
,~
, ,
I
KI
Cmax
,
"
f"
", "
r-
1'\
l'" "
, , I""
'" "'" r-...,
'\1\ \ '"
r\.
(1~
10
I'
"
t P '"
0,05 ms
0,1
\\ \ \ \1\ !\
""I\~.\\ ,\ \ \1\
1\
I
0,2
\~rll\ ~I\
1
(~~~
1\1\
0,5
1\
~~
2
l\
'1\ 1\
~
5
10
20
.--
d.c.
BDV64 _ l BDV64A ;-1BDV64B ;-.1-
10- 1
1
10
-VCE(V)
Fig. 5 Safe Operating ARea; T mb ~ 25 0C.
I
II
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
.
(2) Second breakdown limits (independent of temperature).
I
(APril 1979
5
BDV64
BDV64A
BDV64B
l""-----________
n6725H
100
P tot max
,
\.
(010)
\
75
,
~
I\,
~.
"
1\
50
\
,
\.
~
25
\
,
\..
100
50
"
150
Tmb(OC)
Fig. 6.
---
7Z77494
10
8=1
~
~.75
0,5
===...........
;::::::: ~
.....- r-
10- 1
-
'\.
0,33
0,20
11
10 1
r-'
~
0 . ~ ~ .......... 10-
--
--
Ii
~
~ ~~
~
.,...
"'" ~~,05
~
10- 2 F= ~:,02
0,01
f::::=
t--- =0
JlSL
_I
1
tp
tpl ___
10- 3
10- 3
--T10- 2
10- 1
10
Fig. 7 Heating-up curve.
6
January 1978
10
2
t
8=-
p (ms)
T
10
3
BDV64
BDV64A
BDV64B
Silicon Darlington power transistors
7 Z7 7493
MSB(I)
10
~
-
I/0 =0
1/0,01
1/0,02
blO,05
vO,l
~~
/
r-...~
~ t:=:=§t::-
r------ ~
r
033
---..::
0,50
0,75
f----
1
10- 2
~ ~b
-I-- I-t-r-.
-I--
-
~
10- 1
1
10
Fig. 8 S.B. voltage multiplying factor atthe -ICmax level.
102
tp (ms)
7Z77495
I
~
~0,02
~
I
d05
r---:~
r-
r-.
~
f--
~
i'"'--
""t0,1
10
f--
f--
0,2
0,33
0,5
0,75
1
10- 2
'"
-
~
r---.....
'"
~"
"
I'"
""-
r-t-I"'- I-t-
~
..........",.
'"
~ t::::: ~ t:1'--~
-
l""-
t-- I -II-t-
~
---§~
10
tp (ms)
Fig. 9 S.B. current mUltiplying factor at the -VCEOmax level (100 V).
January 1978
7
'l
BDV64
·BDV64A
BDV64B
'-----------------------------------~---------7Z77497
10
7Z77498
2
I
/
If
-Ie
1/
(V)
I
I
/
-VCEsat
·1/
(A)
,I
,
J
V
V
If
. typ
5
typ
/
/
j
I/'
II
/
lL
/
1/
/
,/
1/
/
~
o
2
1,5
1
o
2,5
-VBE (V)
-
Fig. 10 - VeE = 4 V; Tj = 250C.
o
5
Fig. 11 -Ie/-IB
10. -Ie (A) 15
= 250; Tj = 25°C.
7Z77492
10 4
,.
V
y'-"
/
V
/
-r--...
~
"
~
--
......
V
,""
"\
'r\
Tj=150oe
~
25°C
/
/
V
/
/
./
v
/
L
/
10'
Fig. 12 Typical values; -VCE
8
= 4 V.
-Ie (A)
_ _ _J
BDV65
BDV65A
BDV65B
SILICON DARLINGTON POWER TRANSISTORS
N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications. P-N-P complements are BDV64, BDV64A and BDV64B. Matched
complementary pairs can be supplied.
QUICK REFERENCE DATA
BDV65
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
BDV65A
BDV65B
VCBO
max.
60
80
100 V
VCEO
max.
60
80
100 V
Collector current (peak value)
ICM
max.
20
A
Total power dissipation up to T mb = 25 °C
Ptot
max.
125
W
Junction temperature
Tj
max.
150
°C
typo
1500
1000
D.C. current gain
I C = 1 A; V CE = 4 V
IC=5A;VCE=4V
>
Cut-off frequency
. IC = 5 A; V CE = 4 V
typo
--
kHz
70
Dimensions in mm
MECHANICAL DATA
_15,2_
Fig. 1 SOT-93.
l,6-
max
Col lector connected
to mounting-base.
max
-- 2,--
4,4
t1
21
max
12,7
max
-~
LIC;::;:=:;t===;:?I
Wit~
dimensions
this zone are
uncontrolled
j
.
--i
I
13,6
min
cie,
~
.. '~ 1-- _1,1--l~lo.s®1
b .
'.
L \ill----
',15
0,95
I
Accessories supplied on request: 56368 (see also data sheet Mounting instructions SOT-93J.
April 1979
1
l_________
BDV65
BDV65A
BDV658
CIRCUIT DIAGRAM
.------~......--I--c
b-~p-----f
I
I
! ________
R1
R2
L
_
Fig. 2.
Rl typical 5 kn
R2 typical 80 n.
7Z66 ....S.2
e
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
BDV65
Collector-base voltage (open emitter)
BDV65B
VCBO
max.
60
80
100 V
Collector-emitter voltage (open base)
VCEO
max.
60
80
100 V
Emitter-base voltage (open collector)
VEBO
max.
5
5
5 V
.IC
max.
12
A
ICM
max.
20
A
Base current (d.c.)
IB
max.
0,5
A
Total power dissipation up to T mb = 25 °C
max.
125
W
Storage teinperawre
Ptot
Tstg
Junction temperature
Tj
max.
-.. Collector current (d.c.)
-.. Collector current (peak value)
--
BDV65A
- 65 to
+ 150
150
°C
oC*
THERMAL RESISTANCE
From junction to mounting base
Rthj-mb
* Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.
2
April
1979)(
°C/W*
BDV65
BDV65A
BDV65B
Silicon Darlington power transistors
CHARACTERISTICS
Tj = 25 0C unless otherwise specified.
Collector cut-off currents
IE = 0; VCB = VCBOmax
IE = 0; VCB = %VCBOmax; Tj = 150 °c
IB = 0; VCE = %VCEOmax
Emitter cut-off current
IC=0;VEB=5V
ICBO
ICBO
ICEO
D.C. current gain*
IC= 1 A; VCE = 4 V
IC= 5 A; VCE = 4 V
IC=10A;VCE=4V
<
<
<
400 /lA
2 mA
mA
<
5 mA
typo
>
typo
Base-emitter voltage*
IC= 5 A; VCE = 4 V
Collector-emitter saturation voltage*
IC = 5 A; IB = 20 mA
. VCEsat
1500
1000
1750
<
2,5 V**
<
2 V
Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 10 V
Cc
typo
Cut-off frequency
IC= 5 A; V CE = 4 V
fhfe
typo
70 kHz
Diode, forward voltage
IF = 5A
VF
typo
1,2 V
Switching times (see also Fig. 4)
ICon = 5 A; IBon = -IBoff = 20 mA; VCC = 16 V
Turn-on time
Fall time
Turn-off time
ton
tf
toff
typo
typo
typo
0,5 /lS
1,5 /lS
2,5 /lS
150 pF
* Measured under pulse conditions: tp < 300 /lS; /) < 2%.
** VBE decreases by about 3,6 mV/oC with increasing temperature.
90
i s (%)
- -
~- r_-._-_-_-_-_-_-I-- Ison
7Z77499
\
10 ~--_i---------~~~~----
90
ic
(%)
10
--
o ~--~~------_+--~~---ton
I(
Fig. 3 Waveforms showing ton; ts + tf == toff'
January
1978
3
l'----___
BDV65
BDV65A
BDV65B
Vee
;r
+vJ7;
6,5 V
7Z76906
Fig. 4 Switching times test circuit; VCC = 16 V;
V I M = 16,5 V;tr = tf = 15 ns; tp = 10 IlS; T = 500 IlS.
Turn-off breakdown energy with inductive load (see also Fig. 5).
ICon = 6,3 A; .,...1 Boff = 0; tp = 1 ms; T = 1QO ms
E(BR)
vert.
oscilloscope
-0hor.
osci lIoscope
7Z73170
Fig. 5 Test'circuit;,V1 = 12 V; RB = 270 n.
4
Janua~
1978
If
>
100 mJ
BDV65
BDV65A
BDV65B
Silicon Darlington power transistors
7Z77500 1
IC
(A)
,
0=0,01
ICMmax
I
~~
"-
ICmax
X l"-"\:
10
""
"" ,
II
,
"\
r-..
~ t\ i\
"-
1'..,1'.. ,
"'" "" "" '\..
( 11'
,,,,t'\.t\.
'\..
"""'"r\\'"
"
I
1\
"
0,1
t....
1\
tp=
0,05ms
~
S 1\ '\
1\~l\ 1\1\
(~ ~~"
"
1\ \
,\1\
0,2
0,5
2
5
10
r\
20
-
d.c.
\
10- 1
1
10
BDV65-BDV65A - I BDV65B- - I VCE(V)
Fig. 6 Safe Operating ARea; T mb .;;;; 25°C.
I
II
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation
(1) Pto t max and Ppeak max lines.
(2) Second breakdown limits (independent of temperature).
5
l'
BDV6S
BDV65A
BDV65B
'-~--------~----------------------------------7Z67257l
100
P tot max
,
~
(0/0)
\
'" \.
75
,
~
\.
50
~
\
,
~.
\.
25
,
1\
I\,
\
50
Fig. 7.
7Z77494
10
--
cS =
1
~ ~,75
0,5
-== =0,33
:::::::::
10- 1
--
-
0'10
,
-
I---
~~
~
?::?'
....... t:: "'fo'
...
t
•
k-'"
K?,05
§~~,02
'""""
10- 2
t"""_0,20
~
0,01
1==~'O
---'LJL
-Itpl-
--T-
10- 3
10- 3
10- 2 .
10- 1
10
Fig. 8 Heating-up curve.
6
~
January 1978
(
I
tp
[)=-
T
--~~-----------.---.--------------
BDV65
BDV65A
BDV658
Silicon Darlington power transistors
7 Z77493
MSB(I)
10
~
-
°
;8 =
~,01
1/0,02
vO,05
;to,1
~~
/ ~~
~ :::::::§;:t;::
r-
~ ...Qd.
-=----
;::-....
~
---:: ~ ~~
033
0,50
0,75
-r-r-
1
--r-._
~
'-
10- 1
10
Fig. 9 S.B. voltage multiplying factor at the IC max level.
10- 2
tp (ms)
7Z77495
I
rq:
~O,02
.,......."
.......
r--.
d05
I---.-.:~
~
c--
r-.
t--
0,1
10
t------
r-
0,2
0,33
0,5
0,75
1
10- 2
~
~
~ r--..... ,~
i"oo.
-
..... .....
r-.
r-
- .... t--
~.
".................
r-.....
- --I- .::::::::~ ;::::f:::t-.
- r---
-
:::: ..... t--
~::I-
~
~
10
tp (ms)
Fig. 10 S.B. current mUltiplying factor at the VCEOmax level (100 V).
January 1978
7
l
BDV65
BDV65A
BDV658
..
'---------------------------------------~---7Z77502
7Z77503
10
2
I
7
,
J
Ie
veEsat
II
(V)
J
(AI
7
/'
1
/1"
7
/
typ ·1
l
5
I"
J
Vtyp
./
II
1/
1/
II
II
o
1/
1
o
1,5
2 V
BE
(V) 2,5
Fig. 11 VeE=4V;Tj=~50e.
o
5
, 10
Fig. 12 lellB = 250; Tj
It (A)
=25°C.
7Z77501
--l/~
i.o'~
,........1'"
V
~)...
./
--V
.~
~
;/
I-""""
~ ~t...
~
T j =250C
~
150°C
~
./
,/
./
/
/
V
10
Fig. 13 Typical values; VeE = 4 V.
J.nua~19781 (
le(A)
15
BDX35
BDX36
BDX37
J
----------------------------------------------------'
SILICON PLANAR EPITAXIAL POWER TRANSISTORS
N-P-N transistors in TO-126 plastic envelopes intended for high current switching applications, e.g.
inverters, and switching regulator circuits.
QUICK REFERENCE DATA
BDX35
BDX36
BDX37
Collector-base voltage (open emitter)
VCBO
max.
100
120
120
V
Collector-emitter voltage (open base)
VCEO
max.
60
60
80
V
Collector current (peak value)
ICM
max.
10
10
10
A
Total power dissipation
up to T mb = 75 °C
Ptat
max.
15
15
15
W
D.C. current gain
IC = 0,5 A; VCE = 10 V
hFE
>
45
45
45
Collector-emitter saturation voltage
IC=5A;IB=0,5A
VCEsat
<
0,9
0,7
0,9
V
toff
typo
350
350
350
ns
. Turn-off time
ICon = 5 A; IBon = -IBoft = 0,5 A
MECHANICAL DATA
Dimensions in mm
Fig. 1 TO-120 (SOT-32)
Collector connected
to the metal part of
the mounting surface
1""7,8 max
a
--I
-7h.~
~
+
3,2
3,0
+
11,1
i
max
'--n---IIr--Tr-_1
r-
15,3
min
e
....II0,5....
max
7ZS9324.2
I....
~
~
(1) Within this region the cross-section of the leads is uncontrolled.
also chapters Mounting instructions and Accessorie.s.
Se~
1
b 'f"-----'-
C
II.. , ,
0,8s...
I(
Mareh 1979
---
l______- - -
BDX35
BPX36
BDX37
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
BDX35
BDX36
Collector-base voltage (open emitter)
VCBO
max.
100
120
120 V
Collector-emitter voltage (VBE = 0)
VCES
max.
100
120
120 V
Collector-emitter voltage (open base)
VCEO
max .
60
60
80 V
. Emitter-base voltage (open collector)
VEBO
max.
5
V
IC
max.
5
A
Collector current (peak value)
ICM
max.
10
Base current (d.c.)
IB
max.
A
A
Base current (peak value)
IBM
max.
2
A
Reverse base current (peak value)
-IBM
max.
2
A
Total power dissipation
uptoTmb=75 0 C
up to Tamb = 25 °C
Ptot
Ptot
max.
max.
15
1,25
W
W
Storage temperature
T stg
Collector current (d.c.)
Junction temperature
. T·J
-65 to
max .
BDX37
+ 150
150
°C
°C
THERMAL RESISTANCE
--
From junction to mounting base
Rthj-mb
From junction to ambient in free air
Rthj-a
5
oC/W
100
oC/W
/'
2
Maroh
1979
1r
.
..... ~...I-L'"~~",J,.I,....J.'_
BDX35
BDX36
BDX37
Silicon planar epitaxial power transistors
I
CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
'E=0;VCB=80V
'E = 0; VCB = 80 V; Tj = 100 0 C
'E = 0; VeB = 100 V
'E = 0; VeB = 100 V; Tj = 100 °C
BDX35
BDX35
BDX36/37
BDX36/37
Emitter cut-off current
'e=0;VEB=4V
IC = 0; VEB = 5 V
D.C. current gain
IC = 0,5 A; VCE = 10 V
Collector-emitter saturation voltage
IC=5A; 'B =0,5A
IC = 7 A; 'B = 0,7 A
IC = 10 A; '8 = 1 A
Base-emitter saturation voltage
IC=5A;IB=0,5A
IC = 7 A; 'B = 0,7 A
'C= lOA; '8= 1 A
Collector capacitance at f = 1 MHz
-IE = Ie = 0; VCB == 10 V
Transition frequency at f::: 35 MHz
IC = 0,5 A; VCE = 5 V; Tamb = 25 °C
Turn-off time
Ie = 5 A; 'Bon = -IBoff = 0,5 A
ICBO
'CBO
'eBO
'eBO
<
<
<
<
10
50
10
50
'EBO
typo
<
<
5 nA
10 p.A
'EBO
hFE
JlA
JlA
JlA
JlA
1 mA
BDX35/36
BDX37
hFE
45 to 450
typo
130
typo
80
BDX35/37
BDX36
BDX35/37
BDX36
VCEsat
VCEsat
VCEsat
VCEsat
<
<
<
<
0,9
0,7
1,2
1,5
BDX35/37
BDX36
VBEsat
VBEsat
VBEsat
<
<
<
1,6 V
1,8 V
2,2 V
Cc
typo
<
40 pF
60 pF
1,-
typo
100 MHz
toff
typo
<
350 ns
800 ns
~FE
'J.i
~
(
Maroh 1979
V
V
V
V
3
l
BDX35
BDX36
BDX37
'rl'
~--
I,
7Z67998'
0= 0,01
10 I CMmax ,
A
'\.
'\.
'\.
~
~
I'\.
ICmax
'\
......
~
"r\.
Ptot max-
~
..:'I.
~
['.. ,~
"
I'.
-"-'
~
'''I
~
~
"' ~"I
~
'\ '\..
:-.~ ~ 1\ f'\,
"
~~ ":--.
~""\
"
\
,
R\\~
I
~
-~
.~
~
second
breakdown 1)
\ f\
\ r'\
100 ~s
~
~~
J
,
~~
\ l\\
\
\
!\ _\
I'
~ 1\
~
-=
--
~
\.
~
1\
~
Tmb ~ 7S
BDX35
BDX36- r- ~
°c
I
BD~37
I
10-2
1
20 o ~s
~\
\ 1\',1\,f\1\
\
f\ 1\
1
n
\
~ ~
\
tp
......
:II
~
-.l
'\
\
1\
10
1\ 50 o jJs
1\
II
1m S
jJ
-1
2 ms
5 ms
1\
~ 1.~
~
Fig. 2 Safe Operating Area with the transistor forward biased.
I Region of permissible d.c. operation
II Permissible extension for repetitive pulse operation.
1) Independent of temperature .
.4
•
BDX35
BDX36
BDX37
Silicon planar epitaxial power transistors
7Z78885
100
Ptat max
(%)
75
,
..,
~
~
\
,
\.
i
\
\
1\
.
11
1\
Tamb \
~
50
,
Tmb'- I--
~
~
,
~
J
I\,
25
I~
~
,.
~11
~~
~
j
50
Fig. 3 Power derating curve.
.-
----
7Z72461
J1Sl
-lt~I-1
_T_
6=!£.
T
10
6=1
~
I
....
0,5
J,2
1
I
0,1
ioo'
1..00' ... 1-'1-'
10-"",,1-'
~
t'"
I""""
~...-
--
~~
~~
"
0,01
1
10
Fig. 4 Pulse power rating chart.
If
Mareh1979_
5
-
l
BDX35
.'BDX36
'BDX37
----
'--'-~
7Z72462
S.B. voltage multiplying factor at the Icmax level
MV
10
5=0,01 '"
I
"
p,2 ..... "'1-
p" - ........ ... ""
~
~~
~
~ ~ ~ -.110.
--
hs
I"'" f=~
1-1"'- i""r-
~ ~ t-,-.......:::::
-
1
10- 2
~
10
tp (ms)
Fig."5 S.B. voltage multiplying factor at the ICmax level.
----
7Z72463
S. B. current multiplying factor at the VCEOmax level
5= 0,011~
0"1
",
-,
~
O'f~
0,5,),(
""
"
,
10
~ ~ "-
<,
-"-
,
'" '"
~
.......
~
~~
~
""'""
I
"-
~~"
~~
~
'"
.....
~~
.... r-...
-
1
10-2
tp (ms)
Fig. 6 S.B. current multiplying factoranhe VCEOmax level.
6
~Mar_Ch1&:J(
.,
10
BDX35
BDX36
BDX37 '
Silicon planar epitaxial power transistors
07539
07538
10
10
Ie lie =10
.1
Tj =25 °C
le/le =10
5
5
Tj =25 °C
veE sat
VBe sat
IV)
IV)
J
MaxJor
eDX36
only
~~.~
~II
~
-'
"1
~\"i" ~ Ii
_,~i-'S'L L
'i""
~
I""
I--- ~
- ---
,,'
~"i-"
100-"'"
~ \'19
-~'
~C>
~~y !(
V
,,11
1;'
,~~~~~ ,I
;'~ ~
,':~~
~
2
V
0.1
I
0.1
1
10
lelA)
Fig. 7 Collector-emitter saturation voltage as
a function of the collector current.
1
10
lelA)
Fig. 8 Base-emitter saturation voltage as
a function of the collector current.
0753&
1000
Vee = 80V BOX35
~~
Vee =100V BOX 36137 tt---
5
leBO
(jJAI
/
2
ft
V
100
maxl£
1.
"I"
'- ~
10
',11
I
~
typ II~
~
~
,2
0.1
..... ~
o
~
l/
Fig. 9 Collector-base current with an open
as a function of junction temperature.
emi~ter
50
March 1979
7
BDX35
BDX36
BDX37
07537
I
I
I
VeE =2V
Tj = 25·C
typo BDX3~/36
100
-
I I IT
~~
typ BDX37
I
100.
I
,I
...... "'"
min
~
"
...........
~
~
~
~
.............
~
""- ~"'" "'~
I'~ 1'1"
~
""
"
......
Above 7A min. ~I'"
for BDX36 only- r-~ ~I~
10
1
I
1
1
7
1.0
0.1
10
Fig. 10 D.C. current gain as a function of collector current.
8
Ma~h 1979,(
Ie (A)
_ _ _J
BDX42
BDX43
BDX44
N-P-N SILICON PLANAR DARLINGTON TRANSISTORS
Silicon n-p-n planar Darlington transistors for industrial switching applications, e.g. print hammer,
solenoid, relay and lamp driving. Encapsulated in a TO-126 plastic envelope with collector connected
to the heatsink.
P-N-P complements are BDX45, BDX46 and BDX47 respectively.
QUICK REFERENCE DATA
Collector-base voltage (open emitter)
VCBO
max.
Collector-emitter voltage
VCER
max.
Collector current
IC
max.
Total power dissipation
up to Tamb = 25 °C
up to T mb = 100 °C
Ptot
Ptot
max.
max.
D.C. current gain
IC == 500 mA; VCE = 10 V
hFE
IC == 1 A; IB = 1 mA
VCEsat
IC == 1 A; IB = 4. mA
BDX42
BDX43
60
80
100 V
45
60
80 V
BDX44
1 A
1,25
5
1,25
5
>
2000
2000
VCEsat
<
<
1,6
toff
typo
1,25 W
5W
2000
Collector-emitter saturation voltage
. Turn-off time
IC == 500 mA; IBon =-IBoff=0,5mA
1,6
1500
Collector connected to the
metal part of mounting
surface.
1500 ns
1500
MECHANICAL DATA
Fig. 1 TO-126.
V
1,6 V
Dimensions in mm
27
. 1
...1 max
....
,
'.... 7.amax ...'
.~.~
~
3.2.
3.0
+
11.1
i
. max
'--rT---1Ir--rr_J
r
15.3
min
...0.511.(1) Dimensions within this zone are uncontrolled.
e
0.88__
C
max
!
b,+,'-------,-
11.... . ,
1.-
~
12.291
I7ZS9324.21
08276
See also chaptersMounting Instructions and Accessories.
March 1979
l____________
BDX42
BDX43
BDX44
r---....:......----,c
I
L_____
7Z64481.1
e
_J
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BDX42
-
BDX43
Collector-base voltage (open emitter)
VCBO
max.
60
80
Collector-emitter voltage *
VCER
max.
45
60
Emitter-base voltage (open collector)
BDX44
100 V
80
V
VEBO
max.
5
V
Collector current (d.c.)
IC
max.
1
A
Collector current (peak)
'CM
IB
max. ,
2
A
max.
0,1
A
max.
max.
1,25
5
W
W
Storage temperature
Ptot
Ptot
T stg
-65 to + 150
oC
Junction temperature **
Tj
max.
150
oC
100
°C/W
10
°C/W
Base current (d.c.)
Total power dissipation
up to Tamb = 25 °C
up to T mb = 100 °C
THERMAL RESISTANCE **
From junction to ambient
Rthj-a
From junction to mounting base
Rth j-mb
External RBE not to exceed value shown in Fig. 12.
Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.
2
(
1
~a~h 1979
BDX42
BDX43
BDX44
N-P-N silicon planar Darlington transistors
CHARACTERISTICS
Tj = 25 0c unless otherwise specified
Collector cut-off current
VBE=0;VCE=45V
BDX42
ICES
VBE = 0; VCE = 60 V
BDX43
ICES
VBE=0;VCE=80V
BDX44
ICES
<
<
<
Emitter cut-off current
IC = a'; VEB = 4 V
lEBO
<
D.C. current gain
IC = 150 mA; VCE == 10 V
hFE
>
>
IC
= 500 mA; VCE = 10 V
hFE
Collector-emitter saturation voltage
IC = 500 mA; IB = 0,5 mA
VCEsat
I C = 1 A; I B ,,; 1 mA
BDX43
VCEsat
IC = 1 A; IB = 4 mA
BDX42,44
VCEsat
= 500 mA; IB = 0,5 mA; Tj = 150 oC
IC = 1 A; IB = 1 mA; Tj = 150 oc
IC = 1 A; IB = 4 mA; Tj = 150 oc
Ie
VCEsat
<
<
<
<
<
<
10 J1A
10 J1A
10 J1A
10 J1A
1000
2000
1,3 V
1,6 V
1,6 V
1,3 V
BDX43
VCEsat
BDX42,44
VCEsat
BDX43
VBEsat
BDX42,44
VBEsat
<
<
<
hfe
typo
Turn-on time
ton
typo
400 ns
Turn-off time
toff
typo
1500 ns
Turn-on time
ton
typo
40.0 ns
Turn-off time
toff
typo
1500 ns
Base-emitter saturation voltage
IC = 500 mA; IB = 0,5mA
I C = 1 A; I B = 1 mA
-IC = -1 A; I B = 4 mA
Small signal current gain
IC = 500 mA; VCE = 5 V; f
= 35 MHz
VBEsat
1,8 V
1,6 V
1,9 V
2,2 V
-
2,2 V
10
Switching times (see also Fig. 3 and Fig. 4)
IC = 500 mA; IBon = -IBoff = 0,5 mA
IC = 1 A; IBon = -IBoff = 1 mA
Jf~reh
1979
3
l
BDX42
BDX43
BDX44
-2,2 V
+10V
6IJs
S
+3
TI
1"'---1
ICon
ISon
=SOOmA
= -I S0ff = O,SmA
7Z7206S.2
Fig. 3 Test circuit for 500 mA switching.
-E-
,-~------
-
ton
I-
1
OUTPUT
- --
..
t
1
1
1
1
1
I
1
90 %
~10% ~
----
i
1-- I
td
tr
I-
Fig. 4 Switching waveforms.
4
-
toff
ts
-t f
t
7Z72064
BDX42
BDX43
BDX44
N-P-N silicon planar Darlington transistors
06021
7Z67586 1
Ptot
max
(W)
I
5.0
~1-
f-ff-f-
Ic
I--
VeE = 10 V
(rnA)
I--
lj = 25 °c
I
II
J
I'~. ~ f--f-' f-f-
,%-
4.0
II
f-fo'-f1\ .-f1\
1\
n
\ £-~
3.0
typl
i\
\
1
2.0
~I)
II
10
,
\
.-
7
1/
/
...... """ J-q"'b">lo.
1.0
....
o
o
-50
50
""O·e
f--~
;;-"", f-f-I\-
1I 'I "
\
I r.... """
...... ~
1 1 II
100 T("C) 150
_/
1
VV
V
0,5
1,5
7Z67585 1
i--i---
2
Fig. 6.
Fig. 5.
i---
VSE (V)
7Z72907
60
VeE = 10V
1j = 25 °c
-f-
1
1
I
I
VCE =10V
-f-f- typo values
typ
40
~
./
,- VI-"
V
r-,
min ...
./
/
V
V
Ic =,5~0,m,~
20
I J;"l
~
.J.oo1' 1 1
J..,. ...
..... "'"
I
150 rnA
L.,...
J..,.o
J..,.oi-"'
"",i-"'
10
10- 2
1 Ie (A) 5
Fig. 7.
o
o
100
200
Fig. 8.
jf~reh
1979
5
l____
BDX42
BDX43
BDX44
06620
06619
Ie
I-:-
(rnA )~
B DX42,43, 44
---BDX43
Ie
(rnA)
f-- f-f-- I-:t-- t--
t-t--
Tj
1000
I--
51-- I-:-
2
100 I-- t)'P
t--
5
rnA) ~. mAj
Irt
j
1/
~
7 t--
IS=4 ~"=0."4l:
1/
--=
~ Is= 0.5 r-. ~-:4
rnA
rnA
t-t--
.1
lell 8=1000 I-- I-:-
~tYJ J
max
5
5
-0.5
i
max'
1
J
1.5
1.0
1.5 VeE(sat) (V)
-'-
Ii
10
1.0
Fig. 9.
2.0
Fig. 10.
--
7Z72061
VeE
=5
V
f = 35 MHz
lj = 25°C
-
typ
10
L
V
~ ... i"'
1
10
~
'r\.
Ie (rnA)
Fig. 11.
-
lei 18 =1000 -
U
'I
2
~
1/-
~
.l
I
I
.L
1~
IVt pV
typ
100
7
~1 -r--:;"
~J
2
If
7
2
6
t--
;-- t-I-:-I-:-
Tj = 2S·C
=.25·C
1000
10
-
2
2
7
B DX42,43, 44
---BDX43
I-:-
VSE(sat) (V)
BDX42
BDX43
BDX44
N-P-N silicon planar Darlington transistors
7Z72903
max. external RBEvs T j for thermal stability
.....
""'"
r'-'-'--"c
......
"- ........
.......
"-
~I
~~dll._._. J
.
", ,
"
.....
-
I
,~
.
I
e .
~
1"00.
""
......
......
.......
........
100
50
" '"~
.....
,,
~ .......
150
Fig. 12.
March 1979
7
________________________________Jl__~-i-g-~-!~----P-N-P SILICON PLANAR DARLINGTON TRANSISTORS
Silicon p-n-p planar Darlington transistors for industrial switching applications, e.g. print hammer,
solenoid, relay and lamp driving. Encapsulated in a TO-126 plastic envelope with collector connected
to the heatsink.
N-P-N complements are BDX42, BDX43 and BDX44 respectively.
QUICK REFERENCE DATA
BDX45
BDX46
Collector-base voltage (open emitter)
-VC80
max.
60
80
Collector-emitter voltage
-VCER
max.
45
60
Collector current
-IC
max.
Total power dissipation
up to Tamb = 25 oC
uptoT mb=100 0C
Ptot
Ptot
max.
max.
D.C. current gain
-IC = 500 mA;-VCE = 10 V
-VCEsat
-VCEsat
<
Turn-off time
-IC = 500 mA; -IBon = 180ff = 0,5 mA
toff
typo
100 V
80
V
. 1 A
>
Collector-emitter saturation voltage
·-IC = 1 A; -18 = 1 mA
-IC= 1 A;-18=4mA
BDX47
1,25
5
1,25
5
2000
2000
<
2000
1,6
V
1,6 V
1500
1500n5
1,6
1500
1,25 W
5W
MECHANICAL DATA
Dimensions if! mm
Fig. 1 TO-126.
,
Collector connected to
the metal part of mounting
surface.
1--7.8maxl
-~.~
~
3.2
3.0
11.1
IT
-r
+
' ' 1.2·
15.3
min
JI...
0.5
e
0.88__
max
C
---:.1
bljl' _ _
11_ . .
=.l I...
17ZS9324.21
08276
~
(1) Dimensions within this zone are uncontrolled
See also chapters Mounting Instructions and Accessories.
March 1979
"SOX45
BDX46
BDX47
"r - - - - -.- .; ..,
C
I
e
1Z72904
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
---
Collector-base voltage (open emitter)
--
Collector-emitter voltage *
BDX45
BDX45
-VCBO
max.
60
80
BDX47
100'V
-VCER
max.
45
50
80 V
V
Emitter-base voltage (open collector)
-VEBO
max.
5
Colleetorcurrent Cd.c.)
-:-IC
max.
1
A
COllector current"'Cpeak)
-ICM
max.
2
A
Base current (d.c.)
-18
max.
0,1
A
Ptot
Ptot
T stg
max.
max.
1,25
5
W
W
-65 to + 150
Tj
max.
°C
'oC
Total power dissipation
up to Tamb =25 0 C
up to tmb = 100 0C'
Storage tempetature
Junction temperature**
150
THERMAL "RESISTANCE **'
From junction to ambient
Rth j-a
From junction to mounting base
Rth j-mb
100'
19
* External RSE not to exceed value shown in Fig. 12.
** Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part istakeninto account.
2
March 1979
r
°C/W
OC!W
BDX45
BDX46
BDX47
P-N-P silicon planar Darlington transistors
CHARACTE R ISTICS
Tj = 25 oC unless otherwise specified
Collector cut-off current
VBE = 0; -VCE =45 V
BDX45
-ICES
VBE=0;-VCE=60V
BDX46
-ICES
VBE =0;-VCE=80V
BDX47
-ICES
<
<
<
10 IlA
Emitter cut-off current
IC = 0; VEB = 4 V
-lEBO
<
10 J.l.A
D.C. current gain
-IC = 150 mA; -VCE = 10 V
hFE
-IC = 500 mA; -VCE = 10 V
hFE
>
>
Collector-emitter saturation voltage
-IC = 500 mA; -IB = 0,5 mA
~VCEsat
-IC = 1 A; -IB = 1 mA
BDX46
-VCEsat
-IC= 1 A;-IB=4mA
8DX45,47
-VCEsat
-IC = 500 mA; -18 = 0,5 mA; Tj
= 150 0C
= 1 mA;Tj = 150 0c
-IC = 1 A; -IB";; 4 mA; Tj = 150· o c
-IC =1 A; -IB
"':"VCEsat
8DX46
-VCEsat
BDX45,47
-VCEsat
Base-emitter saturation voltage
-IC = 500 mA; -IB =0,5 mA
-IC = 1 A;-IB =1 mA
= 4 mA
<
<
<
<
<
<
10 IlA
10 J.l.A
1000
2000
1,3 V
1,6 V
1,6 V
1,3 V
1,8 V
1,6 V
-VBEsat
<
1,9 V
BDX46
-VBEsat
<
2,2 V
BDX45,47
2,2 V
-VBEsat
<
Small signal current gain
-IC = 500 mA;-VCE = 5 V, f = 35 MHz
hfe
typo
Switching times (see also Fig. 3 and Fig. 4)
-IC =500 mA; -IBon =.IBoff = 0,5 mA
Turn-on time
ton
typo
400 ns
. toff
typo
1500 ns
-IC = 1 A; -IBon = I Boff = 1 rnA
Turn-on time
ton
typo
400 ns
Turn-off time
toff
typo
1500 ns
.-IC = 1 A; -IB
Turn-off time
10
March 1979
3
l_________
BDX45
BDX46
BDX47
+2,2V
-10V
9kU
T.U.T.
r-------,.-
---'1
!
!
I
.i
i
i
____ J
-ICon = 500 mA
-I Bon = I Boff = 0,5 mA
7Z72905
Fig. 3 Test circuit for 500 mA switching.
-
toff .
,10%t
90%
7Z72906
Fig. 4 Switching waveforms.
4
March 1979
r
BDX45
BDX46
BDX47
P-N-P silicon planar Darlington transistors
7Z675861A
06021
Ptot
max
(W)
L
-IC
5.0
t--
t--
{mAl
;n'- 1-1-
1
=10 V
1j =25°C
-VCE
II
j
\~"
-= I-t\'
t-t-
~
4.0
I
1-11-1-
II
O"-t-
\ Q-I-
\, z
,
-,
tt-
3.0
typl
l
,
1\
\
2.0
If
1\
"
r"""
1
\
til i.
~ Q06""0.
1.0
/
VoC
t-t-l-
Ij~
I-I-t
r-,...
~11t
,
1 1 I ---"
r""1oJ
1I I
:
o
o
-50
50
II
10
1\
100 T(OC) 150
1 1..".00'
0,5
~
vV"
V
1,5 -VBE (V)
Fig. 5.
~
I---
2
Fig. 6.
7Z67585.1A
I---
IL
7Z72907A
60
~
~
I 1 I 1
-VCE -10V
lj= 25°C
t-t- -V
CE =10V
t-t-
t-t- typo values
typ
,
40
/
~;""
-"
,
",
min
,
/
~
-1 = 500 mA
C I i i J..o'
20
/
r
~
Yr I
... i"'"
... 1-'"
10-' ....
10
10- 2
10- 1
Fig. 7.
150 mA ""'"
""'' ' '
0
1 -I (A)
c
5
0
100
""'"
lj
(oC)
200
Fig. 8.
I
March 1979
5
BDX45
BDX46
BDX47
l'----____08268
08267
-IC (mA
1=
B DX45.46. 47
---BDX46
Tj
--
-IC
--
I-I-I-- -
(rnA)
~
2.
= 25°C
1000
1000
I-- I-5 I-- I--
-le=4
mAl
1
~
J1 i
2
0.5
r- ~ -Is= mA
r-
;=1=
s
-
{jty~ J
max
t p
·100
7
s
-=
=
==
11
L
I
V
2
J
10
1.0
1.0
1.5 -VCE(SQtJ (V)
I.S
Fig. 9.
2.0
Fig. 10.
7Z72061A
-VCE = 5 V
f = 35 ,MHz
lj= 2S °c
- f"1"
typ
~io"
10
1
10
. /"'"""
10 2
Fig. 11.
6
1.
1- -leI-Ie =1000 r-
, ,•
!>
0.5
mA c,..L
I~t p~ mal
J
10
'r(,,=4
Ij
2
7
2
~.L
LI
lc /-I e =1000 l - I--
if
100 I-- hp
Tj ~ 25°C
7-
~;,O. :,
mA~
1
I-BDX4S.46. 47 rr - rr-r---'BDX46,
r--.
-Ic (rnA)
-VeElsatJ (V)
BDX45
BDX46
BDX47
P-N-P silicon planar Darlington transistors
7Z72979
r....
max. external RaE vs T j for thermal stability
.......
.......
r-------'
.......
~
RaE
(U)
I'
"-
[~I
i
i
.......
~x;~
~
"I'
I'
c
I' ~
.
I
", I
L._._.~.j
.......
"
"
I'
"- .......
~
"I'
i'
I' ~
100
50
150
Fig. 12.
March 1979
7
BDX62; 62A
BDX62B;62C
SILICON DARLINGTON POWER TRANSISTORS
P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications: TO-3 envelope, N-P-N complements are BDX63, BDX63A,
BDX63B and BDX63C. Matched complementary pairs can be supplied.
QUICK REFERENCE DATA
BDX62
62A
62B
62C
Collector-base voltage (open emitter)
-VCBO
max.
60
80
100
120 V
Collector-emitter voltage (open base)
-VCEO
max.
60
80
100
120 V
Collector current (peak value)
-ICM
max.
Total power dissipation up to
Tmb= 25 0C
12
A
Ptot
max.
90
W
Junction temperature
Tj
max.
200
°C
D.C. current gain
-IC=0,5A;-VCE=3V
-IC = 3,0 A; -VCE = 3V
hFE
hFE
typo
>
1500
1000
Cut-off frequency
-IC=3A;-VCE=3V
fhfe
typo
kHz
100
Dimensions in mm
MECHANICAL DATA
Fig. 1 TO-3.
Collector connected to case.
-26,6max-
p.1
J
--I j.... 1,6
+
-4,2
_4,0
1
20,3
max
39,S 301
ma'
B,63max ....
1_
J_' _
.... 10,9--
!
t====~+1
+
7Z68064.3! ....
12,B __
11,2
1
See also chapters Mounting instructions and Accessories.
March 1979
BDX62;62A
BDX62B; 62C
l
~----------------------------------------------------
1--------------------:
~---~~~_r-c
I
I
b-~~-__I
I
I
I
Rl typ~ 6 kn
R2typ·80n
I
__ .J
e
Fig. 2 Circuit diagram.
RATINGS
Limiting-values in accordance with the Absolute Maximum System (IEC 134)
==
5:
BDX62
62A
62B
62C
Collector-baSe voltage (open emitter)
-VCBO
max.
60
80
100
120 V
Collector-emitter voltage (open base)
-VCEO
max.
60
80
100
120 V'
Emitter-base voltage (open collector)
-VEBO
max.
5
5
5
Collector current (d.c.)
-IC
max.
8
Collector current (peak value)
-leM
max.
12
Base current (d.c.)
-IB
max.
150
Ptot
T stg
Tj
max.
Total power dissipation up to
Tmb= 25 oC
-
Storage 'temperature
Junction temperature*
max.
5 V
A'
A
mA
90
W
-65 to +200
°C
200
°C
1,94
°C/W
THERMAL RESISTANCE*
From junction to mounting base
~thj-mb
* Based on maximum average junctton temperature in iine with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.
2
Mareh 1979\ (
BDX62; 62A
BDX62B;62C
Silicon Darlington power transistors
CHARACTERISTICS
Tj = 25 0C unless otherwise specified .
. Collector cut-off current
IE = 0; -VCB = -VCBOmax
IE = 0; -VCB = 40 V; Tj = 200 °C; BDX62
IE = 0; -v CB = 50 V; Tj = 200 oC; BDX62A
IE = 0; -VCB = 60 V; Tj = 200 oC; BDX62B
-ICBO
<
0,2 mA
-ICBO-
<
2 mA
1
I
IE = 0; -VCB = 70 V; Tj = 200 oC; BDX62C
-ICEO
<
0,5 mA
Emitter cut-off current
IC = 0; -VEB = 5 V
-lEBO
<
5 mA
D.C. current gain (note 1)
-IC = 0,5 A; -VCE = 3 V
IB = 0; -VCE = -%VCEO
hFE
typo
1500
-IC=
3A;-VCE=3V
hFE
>
1000
-IC=
8A;-VCE=3V
hFE
typo
750
Base-emitter voltage (notes 1 and 2)
-IC = 3 A; -VCE = 3 V
-VBE
<
2,5 V
Collector-emitter saturation voltage (note 1)
-IC=3A;-IB= 12mA
-VCEsat
<
2 V
Collector capacitance at f = 1 MHz
IE= le=O;-VCB= 10V
Cc
typo
100 pF
Cut-off frequency
-IC=3A;-VCE=3V
fhfe
typo
100 kHz
Small-signal current gain
-IC=3A;-VCE=3V;f= 1 MHz
hfe .
typo
100
D.C. current gain ratio of complementary
matched pairs
-IC=3A;-VCE=3V
hFE1/hFE2
<
2,5
--
Notes
1. Measured under pulse conditions: tp < 300 JlS, 6 < 2%.
2. -VBE decreases by about 3,6 mV/oC with increasing temperature.
~ Ma~h
(
1979
3
BDX62; 62A
BDX62B; 62C
l
__________________________________
CHARACTERISTICS (continued)
Switching times
(between 10% and 90% levels)
-ICon = 3 A; -IBon = IBoft = 12 mA
tu rn-on ti me
tu rn-off ti me
ton
toff
tr
7Z77491.1
-+-
90
------- -
typo 0,5 p.s
typo 2,5 p.s
-Is on
- is (Ofo)
10 t - - - - 1 - - - - - - t t - - . , . - - -
90
-ic
(%)
10
--
o ~-~-r_---+-_r+--ton
Fig.3 Switching times waveforms.
---
Vee
-V1M =
-Vee
=
+VBB =
R1
R2
R3
R4
tr = tf
tp
T
10 V
10 V
2,2 V
56
410
560
3
n
n
n
n
15 ns
10 p.s
500 p.s
Fig. 4 Switching times test circuit.
Diode forward voltage .
IF =3 A
4
Ma~h1979l (
typo 1,8 V
BDX62;62A
BDX62B; 62C
Silicon Darlington power transistors
7Z82170
-IC
(A)
0=0,01
-ICMmax
~
""'
10
""-
" "
(1)
~~
ICmax
"'
"
~ \\
tp =
1 ms
(2\1~\
1\
10
\
I
1
'1\
100
!\ WI
---
N
<0
X
0
m
10- 2
I
1
10
10 2
-VCE (V)
Fig. 5 Safe Operating ARea; T mb = 25 oC.
I
II
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptotmax and Ppeakmax lines.
(2) Second-breakdown limits (independent of temperature).
I(
March 1979
5
BDX62; 62A
BDX62B;62C
l _ ._ _ _ _
727-70841
-IC
(A)
b =:0,01
-ICMmax
I
~,
10
"'
" '" "
(1'""
)' ""
'Cmax
""
II
"r'\
" l\
~
tp
~ 0,1 ms
t:::l=
1--11--1-
1\
\1\1\
1\
1\
I
1
(2)\
I'
--
'\ 10
\
-
100-1--1~
BDX62A~
BDX62B I-BDX62C I--
10- 2
1
, d.c.
I-
10
Fig. 6 Safe Operating ARea; T mb = 25 oC.
I·
II
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
.
(2) Second-breakdown limits (independent of temperatur~).
6
Ma~h 19791 (
BDX62; 62A
BDX62B; 62C
Silicon Darlington power transistors
7Z67325
7Z72.448
typo values
VCE - 3V
Pto t max
(%1
100
i"l
I'
- Tj =150oC
""-
........
.JII~"
""
50
~".
/
"
,
I'-
"-
"~
V
~5°C
~~
f
/
"I'
o
o
"
200
100
10
-I C (A)
Fig. 7 Power derating curve.
Fig. 8 D.C. current gain.
----
7Z673331
3
J1IL
•.
-I~~J
6=~
T
6=1
2
--
0,7
~
-
.........-:.:
""
"
... '"
~
~..,.
..
~
~
~:;ii'
~I"'"
i""'"
~
./
--- ....
/
""""
0,2
-
----
O.~
,.",.-
... ""... ~~""
........ ~ ...
.... -
.... 1-
~
illll!1I'
A~
~
'"0,1
0,05
0,01
I
I
10
Fig. 9 Pulse power rating chart.
'I (
March 1979
7
BDX62; 62A
BDX62B;62C
l " , - - - ,_ _ _ _
7Z82175
"'1'
MV
10
0=0,01
~0,1
..........
......
"
"
~ "- "- :".
" ...."
...... ~
0,5
~r-.r-I'-~ r--r--
~~ r--
i'r-r"-I'- ~
-::::::::::: ~ ...::: ::
~
-
::~-
1
10- 1
10
-
tp (ms)
Fig. 10 S.B. voltage mUltiplying factor at the ICmax level.
7Z82176
0=0,01
\
0,02
r---. .............
0,05
~
10
0,1
,
-... r-....
\.
,
""
....
......... ......
'~
......
..........
-0,2
r-
0,5
:---
l"Oo.
........ I"
......
...... ~
............ .......
........
,.....",.
............
-
"
.....
....... ......r--, "'r-t"--I'-o I'-o~~
r-......... t-......
i"'--r-.
I'-or-.~
..............: ----.;:::
~ :;:::
r---
t;::
--- -- --
.......,;; ~ ::::~
~
1
10- 1
10
tp (ms)
Fig. 11 S.B. current multiplying factor at the VCEO 100 V and 60 V level.
8
r--.
...
... ......
~ ::~ ...
::
BDX62; 62A
BDX62B; 62C
Silicon Darlington power transistors
7 Z67316
7267322
6
i
I
I
I I
-IC/-IB=250 r-t1-1Tj = 250C . 1-1-
-VCEsat
(V)
10
-VCE = 3V ITj =25 °c I--
-IC
(A)
4
j
7,5
rT
J
11
7
5
/
if typ
2
1.,.00
j....oo ....
typ
--
.... ~
/
2,5
j....o ....
/
j
I
J
o
_I/'
o
o
5
-IC (A)
V
2
1,5
10
2,5
-VBE (V)
Fig. 13.
Fig. 12.
7Z82155
.......
~
typ
,
\.
\.
\
10
1
1
10
I(
Fig. 14 Small signal current gain at -IC = 3 A; -VCE = 3 V.
Mareh 1979
9
____
', _ _J
-BDX63; 63A
BDX63B; 63C
SILICON DARLINGTON POWER TRANSISTORS
N-P~N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; TO-3 envelope, P-N-P complements are BDX62, BDX62A,
BDX62B and BDX62C. Matched complementary pairs can be supplied.
QUICK REFERENCE DATA
BDX63
63A
63B
Collector-base voltage (open emitter)
VCBO
max.
80
100
120
63C
140 V
Collector-emitter voltage (open base)
VCEO
max.
60
80
100
120 V
Collector current (peak value)
ICM
max.
Total power dissipation up to
T mb = 25°C
Ptot
max.
90
W
Junction temperature
Tj
max.
200
°C
D.C. current gain
IC = 0,5 A; VCE = 3 V
hFE
typo
1500
IC=3,OA;VCE=3V
hFE
>
1000
fhfe
typo
Cut-off frequency
IC = 3 A; VCE = 3 V,
12
A
100
kHz
Dimensions in mm
MECHANICAL DATA
Fig. 1 TO-3.
Collector connected to case.
-26,6max~
Ip,
39,S 301
max
1
_I' _
8'63max
J
1
"-
,
-+[..-1,6
1
-42
4'0
+'
20,3
max
1_
7Z68064,31. . . 12,8
--.
11,2
See also chapters Mounting instructions and Accessories.
I (~~h1979
---
l
BDX63; 63A
BDX63B; 63C
~
'---------------------------------------------------b - . j - -.......- - - I
I·
I
I
I
I
I
!L ________
R1
R2
_
R1 typo
8 kn
R2 typo 100 n
I
7Z66445.2
e
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Collector-base voltage (open emitter)
Collector-emitter voltage (open-base)
63A
63B
63C
VCBO
80
100
120
140 V
60
80
100
120 V
5
5
5
5 V
VCEO
max.
Emitter-base voltage (open collector)
VEBO
max.
Collector current (d.c.)
IC
max.
8
A
Collector current (peak value)
ICM
max.
12
A
Base current (d.c.)
IB
max.
150
Ptot
T stg
max.
Tj
max.
Total power dissipation up to
T mb = 25 °C
--
BDX63
max.
Storage temperature
Junction temperature*
90
mA
W
-65 to +200
oC
200
°C
THERMAL RESISTANCE *
From junction to mounting base
Rthj-mb
1,94
* Based on maximum average junction temperature in line with common industrial practice. The
-resulting higher junction temperature of the output transistor part is taken into account.
2
~
March 1979
(
°C/W
BDX63; 63A
BDX63B; 63C
Silicon Darlington power transistors
CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE = 0; VCB = VCEOmax
ICEO
<
<
<
0,5 mA
Emitter cut-off current
IC = 0; VEB = 5 V
lEBO
<
5 mA
D.C. current gain (note 1)
I C = 0,5 A; V CE = 3 V
ICBO
IE = 0; VCB = Y2VCBOmax; Tj = 200 °c
ICBO
18 = 0; VCE = Y2VCEOmax
0,2 mA
2 mA
hFE
typo
IC=
3A;VCE=3V
hFE
>
1000
IC=
8 A; VCE= 3 V
hFE
typo
2000
Base-emitter voltage (notes 1 and 2)
IC=3A;VCE=3V
VBE
<
2,5 V
Collector-emitter saturation voltage (note 1)
I C = 3 A; I B = 12 mA
VCEsat
<
2 V
Collector capacitance at f = 1 MHz
IE= le=O;VCB= 10V
Cc
typo
100 pF
Cut-off frequency
IC = 3 A; VCE = 3 V
fhfe
typo
100 kHz
Turn-off breakdown energy with inductive load (Fig. 4)
-IBoff = 0; ICon = 4,5 A; tp = 1 ms;
T= 100 ms
E(BR)
>
50 mJ
D.C. current gain ratio of complementary
matched pairs
I C = 3 A; V CE = 3 V
hFE1/hFE2
<
2,5
Notes
1. Measured under pulse conditions: tp < 300 IlS, [) < 2%.
2. VBE decreases by about 3,6 mV IOC with increasing temperature.
I
1500
(MarCh 1979
---
3
BDX63;63A
BDX63B; 63C
l·
'----------------------------------------------------
CHARACTERISTICS (continued)
Switching times
(between 10% and 90% levels)
leon = 3 A; IBon = -IBoff = 12 mA
turn-on time
turn-off time
ton typo
toff typo
----,
---+
90
is!%l
10
0,5 ps
2,5 ps
7Z77499.1
[Ison
---
U-lB.:'
90
iC
!%l
10
o
---
-----"-
\
- - - --
---- ~ ------- -ton
--
ICon
-
t
-tf
t off
t
Ftg.3 Switching time waveforms.
Vee
VIM
Vee
VBB
R1
R2
R3
R4
tr = tf ..;;;
1>
Fig. 4 Switching times test circuit.
4
Ma~h 1979~(
10 V
10 V
-2,2 V
56
410
560
3
n
n
n
n
15 ns
10 ps
500 IlS
~ilicon
BDX63; 63A
BDX63B; 63C
Darlington power transistors
Diode, forward voltage
IF=3 A
typo 1,2 V
vert. '
oscilloscope
+
Vee
hor.
oscilloscope
7Z73863.1
Fig. 5 Test circuit for turn-off breakdown energy.
VIM= 12V; RB=270!2; IC=4,5A;tp = 1 ms;5 = 1%.
-
--
March 1979
5
l___- -
BDX63; 63A
BDX63B;63C
7Z673271
IC
(A)
0=0,01
ICMmax
tp=
0,1 ms
" "
10
~ ICmax
.'-"
'" ."\." r'\."
"II
I"
1
(11'
r\"
io
II
(2)
100
I
III
d.c.
I
----
10- 1
M
(0
X
0
aJ
10
VCE(V)
Fig. 6 Safe Operating ARea, T mb :s;;;; 25 °C.
6
I
II
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1)
(2)
Ptotmax and Ppeakmax lines;
Second-breakdown limits (independent of temperature).
BDX63;63A
BDX63B;63C
Silicon Darlington power transistors
7Z77085 1
IC
(A)
,
ICMmax
8 = 0,01
ICmax
,
~
"
""
"- "
10
'"
"
(1)
II
I'
'\
tp
~ 0,1 ms f--ff--~
f--f-
r\.1'\
~ r\ 1\
1\ 1
'~I\
~
(2)
I
n 10
1\
100- f--fd.c.
--
10- 1
BDX63A
BDX63B
BDX63Cl-
I--
I I I
10- 2
1
10
Fig. 7 Safe Operating ARea, T mb ~ 25 °C.
I
II
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1)
(2)
Ptotmax and Ppeakmax lines.
Second-breakdown limits (independent of temperature).
March 1979
7
l
BDX63; 63A
BDX63B;63C
~______________________~________
7Z67325
7Z72449
typo values
VeE 3 V
=
Ptot max
=25 °c
lj
(%1
Tj
=150 °cV- ~
100
~
I'r\
'\..
I\.
V
~
50
0
/
-
2S °c./
~
"-
i'o
"-
-~ ..... ro-..
tI~
./
L
'"
V'
"
~
o
100
200
10
Ie (Al
Fig. 8 Power derating curve.
--
V
~
Fig. 9 D.C. current gain.
7Z673331
3
JUl.
-1-T-I o=!J:
tpl
-
T
0=1
2
-
--
-I-
0,7
~
~
....
O,~ ~
....
0,2
I"""
""""
~
""'"
...- """",a..
~~
V
~:;..
..",.~'"
I""'"~I""'"
~",.
~
III!lIl"
./
~~
~
L..o""
~""'"
..... ioo"
-'"'"
,/
V
0,1
0,05
0,01
I
:;"'t;..
",
....-
....
I
8
(
1
March 1979
.
10-3
10-2
Fig. 10 Pulse power rating chart.
10- 1
10
BDX63; 63A'
BDX63B;63C
Silicon Darlington power transistors
7Z82177
MV
--
-
0=
10 ~0,01
.......
"'
~1
~,
......
--
0 ,5
io-
"
~ ~
~ r--.....
t---
"~
~ t~
r-- '"
~
......
l - t- "t--.I"I-f-.t-
I"-~ E:;:::
I::::- t-_
t--:::
1
10- 1
10
tp (ms)
Fig. 11 S.B. voltage mUltiplying factor at the ICmax level.
7Z770861
10
--
0=0,01
0,1
""'0,2
I"-
-="
""""... r--....,
i'-...
-t- ~
""2'
~
........
0,5
-
~
r--..;::
r--.... :-.....
~~
1'-0..1' ~r-
1--- t-- r- t-
!"ii fo-jo.
+-t-- H .. ~ ~
t----:
1
10- 1
10
t---~
tp (ms)
Fig. 12 S.B. current mUltiplying factor at the VCEO 100 V and 60V level.
I(
Mareh 1919
9
BDX63; 63A
BDX63B; 63C
7Z82156
hfe
~
:\
,
\
10
1
10
1
Fig. 13 Small-signal current gain at lC = 3 A; VCE
--
= 3 V.
7267321
6
7267317
VCE = 3 V
Tj = 25°C
Ic /1 e=250
Tj = 25°C
10
VCEsat
IC
(A)
(V)
'4,
II
7,5
J
II
II
5
I
t yp/
2
v
typ
.......
~
.... i"""
"""
2,5
I
J
5
Fig~
10
March 19791 (
14.
IC(A)
10
o
1
I
/
/
1.,..00'
1,5
2 VeE (V)
Fig. 15.
2,5
____J
BDX64;64A
BDX64B; 64C
SILICON DARLINGTON POWER TRANSISTORS
P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; TO-3 envelope. N-P-N complements are BDX65, BDX65A,
BDX65B and BDX65C. Matched complementary pairs can be supplied.
QUICK REFERENCE DATA
BDX64
64A
64B
64C
Collector-base voltage (open emitter)
-VCBO
max.
60
80
100
120 V
Collector-emitter voltage (open base)
-VCEO
max.
60
80
100
120 V
-ICM
max.
Junction temperature
Ptot
Tj
D.C. current gain
-IC= 1 A;-VCE =3V
-IC=5A;-VCE=3V
hFE
hFE
>
Cut-off frequency
-IC = 5 A; ~VCE = 3 V
fhfe
typo
Collector current (peak value)
Total power dissipation up to
T mb = 25 °C
16
A
max.
117
W
max.
200
°C
typo
1500
1000
kHz
80
MECHANICAL DATA
Dimensions in mm
Fig. 1 TO-3.
Collector connected to case.
-26,6max--
11,l,1
20,3
39,5 301
max
1_
ma'l_' ,
--10,9--
See also chapters Mounting instructions and Accessories.
F===~+1
+
7168064.31 __
12,8 __
11,2
I (Ma~h
1979
----
BDX64; 64A
BDX64B;·64C
l·
....._ _ _ _ _ _ _ _ _---~----
,---------------------;
~------------~~~----+__c
I
I
I
I
b-~~-__t
R1 typo 5 kn
R2 typo 80 n
I
R1
R2
L ___________
_ __ .J
I
.
7Z66446.2
e
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
-=-=
=
BDX64
64A
64B
64C
Collector-base voltage (open emitter)
-VCBO
max.
60
80
100
120 V
Collector-emitter voltage (open base)
-VCEO
max.
60
80
100
120 V
Emitter-base voltage (open collector)
-VEBO
max.
5
5
5
5 V
Collector current (d.c.)
-IC
max.
12
Collector current (peak value)
-ICM
max.
16
Base current (d.c.)
-IB
max.
200
Ptot
T stg
max.
Storage temperature
Junction temperature*
Tj
max.
Total power dissipation up to
T mb = 25 °C
----
A
A
mA
w
117
-65 to
+ 200
200
°C
°C
THERMAL RESISTANCE*
From junction to mounting base
Rthj-mb
1,5
* Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.
2
Ma~h 19791 (
oCIW
BDX64;64A
BDX64B; 64C
Silicon Darlington power transistors
CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE = 0; -VCB = -VCBOmax
IE
IE
IE
IE
=
=
=
=
0;
0;
0;
0;
-VCB = 40 V; Tj = 200 oc: BDX64
-VCB = 50 V; Tj = 200 oc: BDX64A
-VCB = 60 V; Tj = 200 oc: BDX64B
-VCB = 70 V; Tj = 200 oc: BDX64C
-ICBO
<
0,4 mA
-ICBO
<
3 mA
-ICEO
<
mA
Emitter cut-off current
IC = 0; -VEB = 5 V
-lEBO
<
5 mA
D.C. current gain (note 1)
-IC = 1 A; -VCE = 3 V
-IC = 5 A; -VCE = 3 V
-IC = 12 A; -VCE = 3 V
hFE
hFE
hFE
>
Base-emitter voltage (notes 1. and 2)
-IC=5A;-VCE=3V
-VBE
<
2,5 V
Collector-emitter saturation voltage (note 1)
-IC = 5 A; -IB = 20 mA
-VCEsat
<
2 V
Collector capacitance at f = 1 MHz
IE = Ie = 0; -VCB = 10 V
Cc
typo
Cut-off frequency
-IC = 5 A; -VCE = 3 V
fhfe
typo
80 kHz
Small-signal current gain
-IC = 5 A; -VCE = 3 V; f = 1 MHz
hfe
typo
30
D.C. current gain ratio of
complementary matched pairs
-IC = 5 A; -VCE = 3 V
hFE1/hFE2
<
2,5
IB = 0; -VCE = -% VCEOmax
typo
typo
1500
1000
750
200 pF
Notes
1. Measured under pulse conditions: tp < 300 J.I.S, [j < 2%.
2. -VBE decreases by about 3,6 mV/oC with increasing temperature.
March 1979
3
BDX64; 64A
BDX64B;64C
l
~_________________________________
CHARACTERISTICS (continued)
Diode, forward voltage
IF == 5 A
<
Switching times
(between 10% and 90% levels)
-leon = 5 A; -IBon = IBoff = 20 mA
turn-on time
turn-off time
typo
1 IlS
typo 2,5 IlS
-
1,8 V
tr
90
- --- --- -
-I son
-i s (%)
10 ~--i-----*--,---
90
-ic
(%)
10
o
---
--
r--~-+----+--r+--ton
--
Fig~
3 Switching times waveforms.
-VIM
= 16,5
-Vee
Vee
+VBB
=
R1
=
56
R2
R3
=
410
Fig.4 Switching times test circuit.
4
Mareh
19791 ( .
6,5 V
= 560
n
n
n
3fl
R4
tr = tf
V
16 V
~
15 ns
tp
10 IlS
T
= 500 IlS
BDX64; 64A
BDX64B; 64C
Silicon Darlington power transistors
7267927.1
-IC
(AI
-ICMmax
10
ICmax
8 =0,01
r--;--'~
"
~,
"-
~ ~~
(1 i' I'\.
"''\ \
I'-
I'
"-
~
"'r\
\
'
_\
I
tp=
1 ms
(21'
l\\
\
-.1ll 10
10- 1
q
~
100
1\
Wi
I
.;r
<0
x
0
co
10- 2
1
1
10
Fig. 5 Safe Operating ARea; T mb ~ 25 °C.
I
II
(1)
{2)
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
Ptat max and Ppeak max lines.
Second-breakdown limits (independent of temperature).
March 1979
5
BDX64; 64A
BDX64B; 64C
l""----_ __
7Z67928.1
-IC
(A)
-
-ICMmax
10
-I Cmax
= 0,01
<5
I
I~'\ \,.
,
(1)'
'\
,
,
"-
"-
"-
tp=
II
0,1 ms= =~
I"-
["\
'\
!\
\
1\
'\\
I
\ \ 1\
(2)
1\
1
\
~
1\
---
-
10
100
BDX64A
BDX64B fBDX64C f-
10- 2
1
1\
d.c.
10
Fig. 6 Safe Operating ARea; T mb .;;;; 25 °C.
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second-breakdown .limits (indepenedent of temperature).
I
II
6
March 1979'
r
BDX64; 64A
BDX64B;64C
Silicon Darlington power transistors
7Z67325
Ptot max
(%1
100
"' "'
"
~
I\.
"I"'
50
L'
"
I\.
"'
a
a
100
L"
200
Fig. 7 Power derating curve.
7Z67844
3
JUL
-I~;-J
6=~
T
2
-- -
6=1
-
0;7
~
-
-I--"
o10- 5
10- 4
....
-I-
- -05
~
~
-/
-~-
.......
~ :::;;.~
IijIP"""
~
~~
~
!!::I[jII
~ Ii#IP'
~
0,1
0,05
0,01
10- 3
10-2
10- 1
tp (s)
10
Fig. 8 Pulse power rating chart.
l
March 1979
7
BDX64; 64A
BDX64B; 64C
7Z678471
0=0,01
10
~,1
,
I'-
"
.......
~
"..........
0,5
"
~ .......
.....
"
.
.
.
.
r--" r--r"~I'
I"'-
~~~
r- 1-1"""-1-1"-
r-r=:::::
-F==:r=::t:=
'---
~
~t 1'-1~
~
1
10- 1
10
--
tp (ms)
Fig.9 S.B. voltage multiplying factor at the -IC max level.
7Z67848.1
0=0,01
~
,
0,02
.......
-
0,05
.......... ........
0,1
10
......
,
...........
,,
""
.... ~
~
:~
..........
r-O,2
r-I- r-
0,5
""'
.......... .............
-....
"
.................
........:~
~ 1-....... ' "
.............
....... 1"'-.. t"- ..... 1'1"-
-r--I"'"--
i"""~~
r---r-. I"-r-
~
--.;;;::::
~ rr--- r=:::::: r--
-
~,...
r-,,","
1
10- 1
10
Jr
tp (ms)
Fig. 10 S.B. current multiplying factor at -VCEO 100 V and 60 V level.
8
March 1979
rl'"
r-
BDX64; 64A
BDX64B;64C
Siticon Darlington power transistors
7Z72714
typo values
-VCE = 3V
L--.
~
~
1\
V
./
[7
1/
I/V
~
~Ioo'
I'
--
V
i""'oto-.
~
1~;OC
" i\~T-
./
./
-\ 25 °c
~
i;""
1/
V
/
V
/
10 2
10- 1
10
-Ic (A)
Fig. 11 D.C. current gain.
7267330 1
. Ic - SA
-VCE
Tj
"
=3V
= 25 °c
~
r\
I'
t yp
1\
10
\ ."
,
\
1'1
IrMa~h
f (Hz)
Fig. 12 Small-signal current gain.
1979
9
l
BDX64; 64A
BD~64B;64C
~______________~~~_____________
\
7Z67318
VCE = 3 V
1j = 25°C
10
Il
-I C
7Z67323 1
6
-Ie
-=250
-IB
ToJ == 25°C
'
-VCEsat
(V)
I
(A)
II
7,5
4
I
II
typl
I
5
1
I
2
I
lL
2,5
..... 1-'-
...
-
typ_
...
....
.... ""..
""..
~
J
Il_
o
1
l/'
1,5
2 -VBE (V) 2,5
Fig. 13 Typical collector current.
10
Mareh 1979
If
o
o
5
-Ie (A)
10,
Fig. 14 Typical collector-emitter saturation
voltage.
_ _ _ _J
BDX65; 65A
BDX65B; 65C
SILICON DARLINGTON POWER TRANSISTORS
N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; TO-3 envelope. P-N-P complements are BDX64, BDX64A,
BDX64B and BDX64C. Matched complementary pairs can be supplied.
QUICK REFERENCE DATA
BDX65'
65A
65B
65C
. Collector-base voltage (open emitter)
VCBO
max.
80
100
120
140 V
Collector-emitter voltage (open base)
VCEO
max.
60
80
100
120 V
,Collector current (peak value)
max.
Total power dissipation up to
T mb = 25 °C
Junction temperature
D.C. current gain
'C=lA;VCE=3V
'C=5A;VCE=:=3V
Cut-oft frequency
IC=5A;VCE=3V
16
A
max.
117
w
max.
200
°C
typo
1500
>
1000
typo
50
MECHANICAL DATA
kHz
Dimensions in mm
Fig. 1 TO-3.
Collector connected to case.
-4-;----
111
26,6 max - -
c
39,5 301
max
_I .
,
20,3
max
1_
-1
7268064.31 __
12,8 __
11,2
See also chapters Mounting instructions and Accessories.
April 1979
BOX65; 65A
BOX65B; 65C
l'
'---------------------------------------------------r------~~~--+__c
b-~..._-__I
I
I
Rl typo 5 kn
R2 typo 80 n
R1
R2
L ________
_
I
7Z6644S.2
e
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
==
=
65A
65B
65G
Collector-base voltage (open emitter)
VCBO
max.
80
100
120
140 V
Collector-emitter voltage (open base)
VCEO
max.
60
80
100
120 V
Emitter-base voltage (open collector)
VEBO
max.
5
5
5
5 V
Collector current (d.c.)
.IC
max.
12
A
ICM
max.
16
A
IB
max.
200
mA
Ptot
T stg
Tj
max.
117
W
Collector current (peak value)
~
BDX65
Base current (d.c.)
Total power dissipation up to
T mb = 25 oC
Storage temperature
Junction temperature*
max.
-65 to + 200
°C
200
°C
THERMAL RESISTANCE *
From junction to mounting base
Rth j-mb
1,5
* Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.
2
April
19791 (
°C/W
BDX65;65A
BDX658; 65e
Silicon Darlington power transistors
CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE == 0; VCB = VCEOmax
0,4 mA
ICED
<
<
<
lEBO
<
5 mA
hFE
hFE
typo
typo
1500
1250
hFE
>
1000
hFE
hFE
typo
typo
1250
600
Base-emitter voltage (notes 1 and 2)
IC=5A;VCE=3V
VBE
<
2,5 V
Collector-emitter saturation voltage (note 1)
IC = 5 A; IB = 20 mA
VCEsat
<
2 V
Collector capacitance at f = 1 MHz
IE= le=O;VCB= 10V
Cc
typo
Cut-off frequency
IC=5A;VCE=3V
fhfe
typo
Turn-off breakdown energy with inductive load (Fig. 5)
-IBoff = 0; ICon = 6,3 A
E(BR)
>
100 mJ
D.C. current gain ratio of
complementary matched pairs
IC=5A;VCE=3V
hFE1/hFE2
<
2,5
ICBO
IE = 0; VCB = Yz VCBOmax; Tj = 200 oC
ICBO
IB = 0; VCE = Yz VCEOmax
Emitter cut-off current
IC:: 0; VEB :: 5 V
D.C. current gain (note 1)
IC= 1 A; VCE = 3 V
BDX65; 65A; 65B
BDX65C
IC= 5 A; VCE = 3 V
IC = 12 A; VCE = 3 V
BDX65; 65A; 65B
BDX65C
3 mA
1 mA
200 pF
50 kHz
Notes
1. Measured under pulse conditions: tp < 300 J.1.S, /) < 2%.
2. VBE decreases by about 3,6 mV 10C with increasing temperature.
April 1979
3
l
BDX65; .65A
BDX65B; 65C
'---------------------------------------------------CHARACTERISTICS (continued)
Diode, forward voltage
IF= 5A
typo
Switching times
(between 10% and 90% levels)
ICon = 5 A; 'Son = -ISoff =20 mA
Turn-on time
Turn-off time
-tr
90
1,2 V
ton
typo
1 J.l.S
toff
typo
2,5 IlS
7Z77499.1
- - - - - - - - I Bon
iB (Ofol
10 r---4---------~--~----
90
ic
(%l
10
--
o ~--~-+_------+_~+~----
---
ton
Fig. 3 Switching times waveforms.
VIM
Vce
=
=
-VSS=
- __ 11 __
tp
1
--T-7Z78131
Fig. 4 Switching times test circuit.
4
April
19791 (
R3
R4
tr = tf ~
t p'
T
6,5 V
n
n
n
3 n
56
410
560
R1
R2
V~:JLrL
16,5 V
16 V
15
10
= 500
ns
IlS
IlS
J
Silicon Darlington power transistors
---:...-----
BDX65; 65A
BDX65B; 65C
CHARACTERISTICS (continued)
vert.
oscilloscope
+
Vee
hor.
oscilloscope
7Z73863.1
= 12 V;
Fig.. 5 Test circuit for turn-off breakdown energy. VIM
RB
= 270 Q; Ie = 6,3 A; li.=
1%.
7Z67325
Ptot max
(%)
100
-
"'I'
1,\
"
50
r\.
I\.
....
,
~
"'"
,
o
o
100
Fig.6 Power derating curve.
'\
200
'I
(APril 1979
5
l_______________
BDX65; 65A
BDX65B; 65G
7Z67929 1
Ie
(A)
10
fJ =0,01
ICMmax
~~
lemax
~"\ ~ ~
,~
~
""
(1)~
~f= tp =
1 ms
~
" 165
!'l\
~
.,,~
II
I
r2~
100
III
d.c.
-\.0.
co
X
0
co
10- 2
10
1
veE (V)
Fig. 7 Safe Operating ARea at T mb .;;;;; 25 oe of BDX65.
I
Region of permissible d.c. operation.
II
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ptot peak. max lines.
(2) Second-breakdown limits (independent of temperature).
6
April
19791 (
BDX65; 65A
BDX65B; 65C
Silicon Darlington power transistors
7Z67930 1
IC
(A)
ICMmax
10 t-ICmax
0=0,01
,
I
,
10"'\~ "- "
" ." ,I,
"'
tp =
0,1 ms ~f=
I"
~
'\~
'"
(1) ~ 1"- I'
1
1\1'11.[\
[\
I
(2)
~
IV 5
.\
10
11 100_ r-td.c.
10- 1
---BDX65AT-BDX65BrBDX65C r-
10- 2
1
10
Fig. 8 Safe Operating ARea at T mb
I-
VCE(V)
~
25 °C.
I
Region of permissible d.c. operation.
"
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ptot peak max lines.
(2) Second-breakdown limits (independent of temperature) .
.1r
April 1979
7
l_____~_
BDX65; 65A
BDX65B; 65C
7Z67e44
3
SLfL
-+~;J
Zthj..,mb
(OClWI
-
6=~
T
2
6=1
'-
0,7
0 5 -~
~
i-- ......
...
~
Ioo~
~
L
~
~
i""""'
~
....
-
.....'!!II ~r"'"
fIIIIII"""
"'"
~!'"
.....1-'
~ po !=Iii!
_.......
-
~0-5
~
P'"
L..oo
0,1
0,05
0,01
10-3
10- 4
10- 1
10-2
10
tp (5)
Fig. 9 Pulse power rating chart.
----
7Z67315
7Z67324
6
= 3V
0
1j =25 C .
VCI;
=
10
J
(V)
'I
(A)
I
7,5
Is
1j = 25°C
VCEsat
II
Ic
1.£=250
J
4
J
II
typ
I
II
5
I
I
2
~
2,5
typ
I
........ r-
'I
....
.... 1-"'1"""
.... -1"'"
I
o
1
.......
""
1,5
lr
2
VSE ( V) 2,5
Fig. 10 Typical collector current.
8
Ap,iI 1979
o
o
5
IC
(A)
Fig. 11 Typical collector-emitter
saturation voltage.
10
BDX65; 65A
BDX65B;65C
meon Darlington power transistors
7Z82177
/
0=
10 ~,01
......
"'
~
~.......
"-
['..
.... "- r-....
'--r-.... ........ I"--i"oo, r--.
~ I-- I"'r--. .... r-. ...
-- -
1
10- 1
r---.r-.,
r-I- -r-.Io.
~ ::::::-~
~
- -
10
tp (ms)
Fig. 12 S.B. voltage multiplying factor at the ICmax level.
7Z770861
f--f--
10
-
0=0,01
0,1
r-0,2
-
-r--.
r-I-....
"-
"'-.........::
",
........
--............. ~ ~
i"oo..
0,5
1
10- 1
-
.......
--
..........
~ ::::::~' ::::~
.....
...
r-- r- r-_ 1-1-0 ~ ~ ....
---..:r---
-
10
tp (ms)
l
Fig. 13 S.B. current multiplying factor at VCEO 100 V and 60 V level.
(APril 1979
9
l
BDX65; 65A
BDX65B; 65G
.",-
-
- "" ,
.......
~
,;
\
V
/
/'
/
V
./
,
~
~
-
7Z67336 1
typo values
VeE = 3 V
,
T=
1\1~0 °c
-~ .....
V
i'
.....
~25°C
./
/~
/'
V
/
10
Ie (A)
Fig. 14 Typical d.c. current gain BDX65; 65A and 65B.
7Z72715
VeE
3V
Tj = 25°C
-
typ
~
10 3
./
-'
~~
/
-r--..
i'~
~
\
\
V
/
/'
,/
10 2
10- 1
10
Fig. 15 Typical d.c. current gain for BDX65C.
10
April1979I (
Ie (A)
J
Silicon Darlington power transistors
BDX65; 65A
BDX65B;65C
'--------
7Z67331 1
Ic 5A
VCE - 3V
Tj 25°C
=
....
"
'\.
~
, typ
~.
"
\
10
I'.
\
10 8
f (Hz l
10
9
Fig. 16 Typical small-signal current gain for BDX65; 65A and 65B.
7Z72716
=5 A
VCE =3 V
Tj =25°C
Ic
-
I'-o~
",
~
\
\,
10
,
I~.
1
10 3
,
10 8
10 4
I(
f (Hz)
10 9
Fig. 17 Typical small-signal current gain for BDX65C.
April 1979
11
_ _ _J
BDX66; 66A
BDX66B;66C
SILICON DARLINGTON POWER TRANSISTORS
P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; TO-3 envelope. N-P-N complements are BDX67, BDX67 A,
BDX67B and BDX67C. Matched complementary pairs can be supplied.
QUICK REFERENCE DATA
66A
66B
66C
Collector-base voltage (open emitter)
-VCBO
max.
BDX66
60
80
100
120 V
Collector-emitter voltage (open base)
-VCEO
max.
60
80
100
120 V
Collector current (peak value)
-ICM
max.
20
A
Total power dissipation up to
T mb = 25 °C
max.
150
w
Junction temperature
max.
200
oC
D.C. current gain
-IC= 1A;-VCE=3V
-IC= 10A;-VCE=3V
typo
>
2000
1000
Cut-off frequency
~IC=5A;-VCE=3V
typo
MECHANICAL DATA
Fig. 1 TO-3.
-26,6max-
11
39, 5 301
1
rna, 1 _ ' _
J
60
Dimensions in mm
8,63 max
I....
,
-'1 .... 1,6
1
-4,2
_4,0
1
20,3
max
1_
7268064.3
I.... 12,8
.....
11,2
See also chapters Mounting instructions and Accessories.
kHz
I(
April 1979
----
BDX66; 66A
BDX66B; 66G
l
'-------------~-------------------------------------
r----------------;
I
'C
I
b-~~---I
I
R1 typo 3 kn
·typ. 80 n
R~
I
I
e
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
66A
66B
66C
-VCBO
max.
60
80
100
120 V
-VCEO
max.
60
80
100
120 V
-VEBO
max.
5
5
5
5 V
,-IC
max.
16
A
20
A
BOX66
Collector-base voltage (open emitter)
Collector-emitter voltage (open-base)
Emitter-base voltage (open collector)
Collector current (d.c.)
-ICM
max.
Base current
-IB
max.
250
rnA
Total power dissipation up to T mb = 25 °C
Ptot
Tstg
max.
150
W
-65 to +200
°C
Tj
max.
200
°C
1,17
oC/W
Collector current (peak value)
----==
~
Storage temperature
Junction temperature*
THERMAL RESISTANCE *
From junction to mounting base
Rthj-mb
* Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.
2
April
19791(
BDX66; 66A
BDX66B;66C
Silicon Darlington power transistors
CHARACTERISTICS
Tj = 25 °C unless otherwise specified.
Collector cLit~off current
IE = 0; -VCB = -VCBOmax
IE = 0; -VCB = 40 V; Tj = 200 oC; BDX66
IE = O;-VCB = 50 V; Tj = 200 °C; BDX66A
I
IE = 0; -VCB = 60 V; Tj = 200 oc; BDX66B
-ICBO
<
1 mA
-ICBO
<
5 mA
-ICED
<
3 mA
-lEBO
<
5 mA
IE = 0; ,-VCB = 70 V; Tj = 20 oc; BDX66C
IB = 0; -VCE = -%VCEOmax
Emitter cut-off current
IC = 0; -VEB = 5 V
D.C. current gain *
-IC= 1 A; -VCE = 3 V
hFE
typo
2000
-IC= 10A;-VCE=3V
hFE
>
1000
-Ie= 16 A; -VCE = 3 V
hFE
typo
1000
Base-emitter voltage *
-IC= 10 A; -VCE = 3 V
-VBE
<
2,5 V
Collector-emitter saturation voltage *
-IC= 10A;-IB=40mA
-VCEsat
<
2 V
Collector capacitance. at f = 1 MHz
IE= le=O;-VCB= 10V
Cc
typo
Cut-off frequency
-IC= 5 A; -VCE = 3 V
fhfe
typo
60 kHz
Small-signal current gain
-IC=5A;-VCE=3V;f= 1 MHz
hfe
typo
50
D.C. current gain ratio of complementary
matched pairs
-IC=10A;-VCE=3V
hFE1/hFE2
<,
Diode, forward voltage
IF = 10 A
VF
typo
* Measured under pulse conditions: tp < 300 /lS, ~
< 2%.
I(
300 pF
---==
2,5
April 1979
2 V
3
66A
BDX66B;66C
BDX66";
l
_
'----------------------------------------------------CHARACTERISTICS (continued)
Tj = 25 0C unless otherwise specified
(between 10% and 90% levels)
-ICon = 10 A; -IBon = I Boff = 40 mA;
turn-on time
ton
turn-off time
toff
tr
90
-is (Ofol
-1"-----111------1-- -Ison
typo
1 p.s
typo
3,Sp.s
7277491.1
1/
10 I - - -......- - - - - - - t t - - . . - - -
li
90
IB.:,
, , - - - - - t - - , - -ICon
-iC
(Ofol
8 -- - -) -- - - - - - -
1
-ton
,.....
--
=
Fig. 3 Switching times waveforms.
Vce
-VIM
-Vee
=
=
+VBB =
R1
R2
R3
R4
18 V
12 V
3 V
56
= 220
= 180
n
n
n
1n
tr = tf = 15 ns
tp
= 10 p.s
T
= 500 p.s
Fig.4 Switching times test circuit.
4
BDX66; 66A
BDX66B; 66G
Silicon Darlington power transistors
7Z67910
10 2
BDX66
~ 25°c
Tmb
0=0,01
-ICMmax
-I Cmax
I-
",. "
10
"
"
1\,
~ 1\
~""I
'" \ 1\
\
,
\
I
\
second~
breakdown (1)
~s
,,
,
""I
~'1
Pta"t max
tp =
II
1\ 500
\
' II'
1 ms
1\
,
1\ \
\
--
Sms
1\
, .11
d.c.
II
10
Fig. 5 Safe Operating ARea with the transistor forward biased.
I Region of permissible d.c. operation.
II Permissible extension for repetitive pulse operation.
(1) I ndependent of temperature.
I(~ril1979
5
l
BDX66; 66A
BDX66B; 66e
7Z770B7.1
-IC
(A)
{j
...;..ICMmax
-I Cmax
10
=0,01
,
I
~
(1 )
,
t
\ "r\
~
"-
~
"\ P
=
0,1 ms
Ii II L\
\ \
\
\1\
I
,
(2)
\
\
~\
\ 0,5
,
1
1\
\
~
,~
10- 1
--
5
d.c. -
BDX66A
BDX66B
BDX66C
10- 2
I
1
10
I
-
I
10 2
-VCE (V)
Fig. 6 Safe Operating ARea.
I Region of permissible d.c. operation.
II Permissible extension for repetitive pulse operation.
(1) Ptot ma~ and Ptot peak max lines.
(2) Second breakdown limits (independent of temperature).
6
April
19791 (
BDX66;66A
BDX66B; 66C
Silicon Darlington power transistors
7Z67325
Ptot max
(%1
100
"I'
1,\
\..
\.
,
I"
50
"":\.
\..
":\.
o
o
200
100
Fig. 7 Power derating curve.
7Z67917
1,5
.J1.Jl..-
Zthj-m b
--It l- I 5=~
(OC/W I
p
__
T__
1,25
5 -1
0,7
0,25
.- :;..
O,~
-
-
..-
0,4
"...
0,3
1,...00
I--
./
,.
"
~..,
~
~
t.,..
~t..~ 1';"-
..,
/'
/'
".
0,2
.....0,1
....."""'" .... ""
L.,...ooo
I..~
I-'"
..",.,...
!'"
~~
~
I~
V
. / l.."
~
i.-i-'
~
."
.....
:;.7 r.;.:::i:.o'
~
"...
0,75
0,5
-
1..-1-
- .....
T
V
...
"".,..
'0,01
°
I
10
Fig.8 Pulse power rating chart.
I(
April 1979
7
l
BDX66; 66A
BDX66B;66C
~______________~________________
7Z77090
S.B. voltage multiplying factor at the ICmax level
MV
t--'~=0,01
~
~
10
k-
=
v0,02
0,~5
~ -~
..... =::1::.-
0,2
~
:"'ill
............ ~
~ .......... ~~
--r....~~~-
I
-
,..0,5
1-1-
~~
1-0..
tp (5)
Fig. 9 S.B. voltage multiplying factor at the ICmax level.
-==-
7Z77089
S.B. current multiplying factor at the V CEOmax level
~~ = 0,01
MI
\
0,02
I\,
,
\.
"0,0~ \ I\.
r--....... ~ I"0,1
~ to... ~i'
10
0,2
"
~,
"""~
'~i'..
.....
~
0,5
~I'oo.
r...;:: ~ t~
r-- r- r--~
fOiiIf=j
1
10- 5
'I
Fig. 10 S.B. current multiplying factor at the VCEOmax level.
8
April19~
tp (5)
10- 1
BDX66; 66A
BDX66B;66C
Silicon Darlington power transistors
7Z67914
typical values I-
1j=150
~
V
/
~
1/
~
./
~~J......--'"
~~
~~
:c
I-
-VCE =3 V
.....
~~
~c
~
'\
~"
,
"
~
V
L
10
-IC (A)
Fig. 11 D.C. current gain.
7Z679051
6
I I I I I I
I I I I
I
-Ic
-=250
-Is
-VCEsot
(V)
Tomb =25°C
---'-r-
I I I
Tomb = 25°C
--4
2
2
typ..~ ....
typ
I I
T TTTT
-IC
-=250
-Is
'
-VSEsot
(V)
4
--
7Z679031
6
""" ...
---
---
t-i-'
1".0"'"
L.ooo"'"
1""''''''
~
o
o
""'' '"'
10
-I C (A)
20
Fig. 12 Collector-emitter saturation voltage.
10
-IC (A)
20
Fig. 13 Base-emitter saturation voltage.
I(
April 1979
9
BDX66; 66A
BDX66B; 66.C
l
'--------------------------------------------------7Z67901 1
2
r-
-- --
-I C=10A- r-
r-
~-
-VSE
(V)
....
......i" ....
...... r---..
r- -.2,5A- i" ......
typical values r-
I--:-
-VeE= 3V
o
o
50
100
..
150
Tj (oC)
Fig. 14 Typical base-emitter voltage.
---
7Z679111
-:-IC=S A .
-VCE =3 V
",
~
typ
,
\
\
10
rl
1
1
10
10'4
Fig. 15 Small-signal current gain.
10
10
5
f (kHz)
10
6
_ _ _J
BDX67; 67A
BDX67B; 67C
SILICON DARLINGTON POWER TRANSISTORS
N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; TO-3 envelope. P-N-P complements are BDX66, BDX66A,
BDX66B and BDX66C. Matched complementary pairs can be supplied.
QU1CK REFERENCE DATA
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
VCBO
VCEO
BDX67
67 A
67B
67C
max.
80
100
120
140 V
max.
60
80
100
120 V
Collector current (peak value)
max.
Total power dissipation
up to T mb = 25 °C
Junction temperature
D.C. current gain
IC = 1 A; V CE = 3 V
IC=10A;VCE=3V
Cut-off frequency
IC= 5A;VCE=3V
20
A
max.
150
w
max.
200
°C
typo
1350
>
1000
typo
50
MECHANICAL DATA
Dimensions in mm .
. Fig. 1 TO-3.
Collector connected to case.
-26,6max-
j,1"
39,5 301
ma'
kHz
1
j_' _
J
1'-
8.63 max
-., '-1,6
•
-4,2
_4,0
1
!
20,3
max
t_
7Z68064031 __
See also chapters Mounting instructions and Accessories.
12.8-.
11.2
I(
April 1979
--
l
BDX67; 67A
BDX67B;67C
,~________________________________
r-------------~~~----+__c
b-~~---t
R1 typo 3 kn
R2 typo 80 n
I,
!L ________
R1
R2
_
7Z6644S.2
.-.J
e
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
----
BDX67
67 A
67B·
67C
Collector-base voltage (open emitter)
VCBO
max.
80
100
120
140 V
Collector-emitter voltage (open base)
VCEO
max.
60
80
100
120 V
Emitter-base voltage (open collector)
VEBO
max.
5
5
5
5 V
Collector current (d.c.)
IC
max.
16
ICM
max.
20
IB
max.
250
mA
Ptot
T stg
Tj
max.
Collector current (peak value)
Base current (d.c.)
Total power dissipation
up to T mb = 25 °C
Storage temperature
Junction temperature *
max.
A
A
150
W
-65 to + 200
oC
200
oC
1,17
oCIW
THERMAL RESISTANCE *
From junction to mounting base
Rth j-mb
* Based on maximum average junction temperature in line with common industrial practice. The
I(
resulting higher junction temperature of the output transistor part is taken into account.
2
April 1979
j
Silicon Darlington power transistors
BDX67; 67A
BDX67B; 67C
CHARACTER ISTICS
Tj == 25 0C unless otherwise specified
Collector cut-off current
IE == 0; VCB= VCEOmax
IB == 0; VCE = % VCEOmax
Emitter-cut-off current
IC=0;VEB=5V
ICEO
<
<
<
lEBO
<
D.C. current gain *
IC= 1 A; VCE == 3 V
hFE
typo
1350
IC=10A;VCE==3V
1000
ICBO
IE = 0; VCB = % VCBOmax; Tj == 200 oC
ICBO
mA
5 mA
3 mA
5 mA
hFE
>
IC=16A;VCE=3V
hFE
typo
Base-emitter voltage *
IC = 10 A; VCE = 3 V
VBE
<
2,5 V
Collector-emitter saturation voltage *
IC= 10 A; IB==40mA
VCEsat
<
2 V
Collector capacitance at f == 1 MHz
IE == Ie == 0; VCB == 10 V
Cc
typo
Cut-off frequency
IC == 5 A; VCE == 3 V
fhfe
typo
Turn-off breakdown energy with inductive load
-IBoff == 0; ICon == 7,8 A; see Fig. 5
E(BR)
>
Small-signal current gain
I C == 5 A; V CE == 3 V; f == 1 MHz
hfe
typo
hFE1/hFE2
<
2,5
VF
typo
2,5 V
- D.C. current gain ratio of
complementary matched pairs
IC == 10A; VCE == 3 V
Diode, forward voltage
IF == 10 A
* Measured under pulse conditions: tp
850
300 pF
50 kHz
150 mJ
20
< 300 JlS, {) < 2%.
April 1979
3
l·
BDX67; 67A
BDX67B; 67C
~-------------------------------------------------CHARACTERISTICS (continued)
Tj
= 25 °Cunless otherwise specified
Switching times
(between 10% and 90% levels)
ICon = 10 A; IBon =-IBoft::: 40 mA;
turn-on time
turn-off time
tr
~--"r
90
- - -
ton
typo
toff
typo
1 p.s
3,5 p.s
7177499.1
1+-
-II 1-_-_-_-_-_-_-_--1-- Ison
is(%l
10 r----\------t\--,---
90
iC
(%1
10
--
o r----~-+_---+-_r+---
-----
ton
Fig. 3 Switching times waveforms.
VIM
Vec
VBB
R1
18 V
12 V
-3 V
56n
R2 = 220n
R3
= 180 n
R4
1n
tr = tf< 15 ns
tp
= 10p.s
T
= 500 p.s
4
1[
April19n
Fig. 4 Switching times test circuit.
BDX67; 67A
BDX67B;67C
Silicon Darlington power transistors
CHARACTERISTICS (continued)
vert.
oscilloscope
hor.
oscilloscope
7Z73663;1
Fig. 5 Te~t circuit for turn-off breakdown energy. V,M = 12 V; RS == 270!2; Ie = 7,8 A; tp = 1 ms;
1%.
[j =
April 1979
5
BDX67; 67A
·BDX67B; 67C
7Z67909.1
IC
(A)
{j
ICMmax
ICmax
10
=0,01
r.-----;-'~
~
(1)
~~ 0,5ms
'""
II
"'"
I"-
tp =
1
,,\
I
"-1
10
(2)\
I
------
100
d.c.
10- 1
-
r-..
co
X
0
en
10- 2
1
10
VCE(V)
Fig. 6 Safe Operating ARea at T mb = 25 oC of BDX67.
I
Region of permissible d.c. operation.
II
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ptot peak max lines.
(2) Second breakdown limits (independent of temperature).
6
April 1979
c
BDX67; 67A
BDX67B; 67C
Silicon Darlington power transistors
7Z71088.1
IC
(A)
ICMmax
I
ICmax
10
0=0,01
,
,
I.
~ l~ 1:'
I'
II 1'1'1'
"
(1)'
tp=
O,5ms
....
"
i"..
I"
I'\. 1'\ I'
~~
t--t-
1
[\.1'
I',,~
~
I
(2)
~
10
'\ 100-r-cd.c.
10- 1
BDX67A
BDX67B
BD~6?f ~
10- 2
1
10
~
VCE(V)
Fig. 7 Safe Operating ARea at T mb = 25 0C.
I
Region of permissible d.c. operation.
II
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ptot peak max lines.
(2) Second breakdown limits (independent of temperature).
April 1979
7
l",-----+--/_____
BDX67; 67A
BDX67B; 67C
7Z67125
Ptot max
(%)
100
"' I'
I"
I'I\.
I\.
50
." I',
r\.
"I'
a
a
"
200
100
Fig. 8 Power derating curve.
7Z67917
1,5
JLfLtp
-Itpl-I
Zthj-mb
(OC/W)
1,25
+-T----tr
0=1
-
0,75
0,5
-
...
0,7
r-
........
.........
l...,..oo
0,25
-
-
0,3
~I-
I-~
~
0,2 i."..ooo"'"
".0,1 l"..oo'
~
.... ~
....
",
i-""" 10"
"'"
~~
I'~
~
V
/'
10"
,..
~
....". ..".
~~
~IP""
~
i-"""
V /
/'
i,...ooo'"
~
~
L"
---
1.00""1"
I""
1-1""
_ 0,4 ...... 1""
0,5
--,...,...
10-1""
-'"
0=T
io"
~
V
i-"""
~,01
~
a
1
t~ (s)
Fig. 9 Pulse poyver rating chart.
8
April
19791 (
10
BDX67; 67A
BDX67B; 67C
Silicon Darlington power transistors
7Z82177
0=
10 ~0,01
"'"~
"
~'"
........... ~
.....
.....
............ r-...... r-.... r-...
------ r-"
r--.t i'
............
_0,5
I-
1
r-I- i'I- .... i'-i'-
~ :::~ r--:::
1---
10- 1
10
tp (ms)
Fig. 10 S.B. voltage multiplying factor at the ICmax level.
7Z770861
10
-
0=0,01
0:1
0,2
,.........
"'"-" ..................
r-- -1-1-
0,5
1
10- 1
"'" =-''"
-.............
~
- --..
~
...........I" ~
I"'-.. r--... ::::~~
i""'r--
I--I- r-I-
~~
----..: r--: I-10
tp (rns)
Fig. 11 S.B. current mUltiplying factor at the VCEOmax level.
1-
(APril .1979
9
BDX67; 67A
BDX67B; 67C
7Z679131
,...,,,,./
/
,
-- .....
~
.... ~
~
,~
;V
V
-
I000o-
typical values
VeE = 3 V
r--.,
.............
"i\'7°
Tj=
c
25°C
./
~
./
~
/"
/
10
Ie (AI
Fig. 12 D.C. current gain.
--
7Z67906
6
I
~
~j
Tomb
= 25°C
f--
i--
f---
VSEsot
i-i--
(V)
,"
4
Tomb
ty.!!~
2
ty2.fo-'
....
=25 °c
-f--
i-:---
1--
4
2
.... ....
.........
....
~
....
~~
..... ~
o
o
10
Ie (AI
20
Fig. 13 Collector-emitter saturation voltage.
10
I I I
I \ \
I I
I
I
Ie
- = 250
Is,
I I
Ie
- = 250
Is
veE sot
(VI
7Z67904
6
I I I I
April 1979
r
o
0'
10
It (A)
20
Fig. 14 Base-emitter saturation voltage. '
BDX67; 67A
BDX67B; 67C
Silicon Darlington power transistors
7Z67902
2
r--- I"- '-
IC=10A
r- r--Io...
I--
r- 1"-0-,-
...
-I'
-I"-...
'"
r-- ......
1"-...0,5 A
typical values
VCE = 3 V
°o
50
100
r.
-
-
(OC) 150
J
Fig. 15 Typical base-emitter voltage at Ie
= 10 A and
Ie = 0,5 A.
12679121
IC -5 A
VcE =3V
,
I\,
" typ
1\
10
,
\.
I'
1
1
10
10 4
f (kHz)
Fig. 16 Small-signal current gain.
April 1979
11
II
BDX77
II
SILICON EPITAXIAL-BASE POWER TRANSISTOR
N-P-N transistor in a plastic envelope, intended for industrial amplifier and switching
applications. P-N-P complement is BDX78.
QUICK REFERENCE DATA
Collector-emitter voltage (open base)
VCEO
max.
80
V
Collector current (d. c.)
IC
max.
8
A
Total power dissipation up to T mb = 25 oC
Ptot
max.
60
W
D. C. current gain
IC = 2 A; V CE = 2 V
hFE
>
30
Cut- off frequency
IC = 0,3 A; V CE
fhfe
>
25
=3 V
MECHANICAL DATA
kHz
Dimensions in mm
TO-220
_I ~,5, .--
Collector connected
to mounting base
1,3--
1-
~
5,9
min
I
15,8
max
I
I
I
J
.-It::;;=;::::;lF;::::r:;~
3,5 max
not tinned
~
~~x
\, -.1.1
--t
max
-
,
I
12,7
min
I
(2x)
bee
-.i
•
_lj:-0,9max (3x)
2,54 2,54
-1
1
--
0
,6
--2,4
7Z55872.3
F or moUnting instructions and accessories see section Accessories.
June 1977
II
1
BDX77
II
II
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltage
Collector -base voltage (open emitter)
VCBO
max.
100
V
Collector-emitter voltage (open base)
VCEO
max.
-80
V
VEBO
max.
5
V
IC
max.
8
A
ICM
max.
12
A
ICSM
max.
25
A
Emitter -base voltage (open collector)
Current
Collector current (d. c.)
Collector current (peak value, tp
$
10 ms)
Collector current (non -repetitive peak
value, tp :S 2 ms)
Temperature
Storage temperature
T stg
Junction temperature
Tj
max.
150
°c
°c
Ptot
max.
60
W
-65 to +150
Power dissipation
Total power dissipation up to T mb
---
==
25
°c
THERMAL RESISTANCE
From junction to mounting base
Rthj-mb
From junction to ambient in free air
Rthj-a
2
II
II
2,08
°C/W
70
°c/w
May 1974
BDX77
II
II
CHARACTERISTICS
Tj
= 25 °c
unless otherwise specified
Collector cut -off current
= 0; VCE = 30 V
IE = 0; VCB = 40 V;
IB
Tj
= 150 °c
ICEO
<
rnA
ICBO
<
rnA
lEBO
<
5
VBE
<
1,5
VCEK
typo
V
VCEsat
<
V
hPE
>
30
fhfe
>
25
kHz
fT
>
3
MHz
Emitter cut -off current
IC
= 0;
=5 V
V EB
rnA
Base -emitter voltage 1)
IC
= 3 A;
VCE
=2 V
V
Knee voltage 1)
IC
IC
= 3 A; IB = value for which
= 3, 3 A at VCE = 2 V
Saturation voltage 1)
IC
= 3 A;
= 0,3 A
IB
D. C. current gain 1)
IC
= 2 A;
VCE
=2 V
Cut -off frequency
IC
= 0, 3 A;
VCE
=3 V
Transition frequencl at f
-IE
= 0,3 A;
VCB
=3 V
= 1 MHz
1) Measured under pu'ise conditions: tp < 300 fls,
May 1974
II
I)
< 2%.
II
3
--
BDX77
I
I
7Z628SS 1 A
BDX77
I
I
I
Tmb:$ 25 oC -
IC
(A)
() =0,01
ICMmax
10
"-
I
"\
"' "' "\
ICmax
"-
'\
\
\
\
"", \
"'
\
\
1\
\ \
\
" ido
I\.
\
'"
I
"-"\
'\
\
\
Ptot max
tp
20 jJs
\
\
~
~ \ \ I\II \ 20o
second
1\
breakdown 1)- ~
~, ~ \
, ,
, ~Olo
\
\'
~\
\'
\
~
111ms
\~
'~ 10
1',
10- 1
10
VCE (V)
Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation
1) Independent of temperature.
4
II
II
April 1974
BDX77
II
II
7Z672571
,
100
P tot
~
max
(O/o)
\
,
f\
75
\.
~
"
~
50
\
,
~
1\
25
1\
"
I\,
~
\
50
----
7 Z67034A
3
JLJL
~J
5-1
1
2
_ ... 1-
-
1--....
-
0,2, 1-1-
I
0,5
I--'"
--
... io-l-'
/
~
~
~~ j.oo
O,~ 1-""',
;,...;.;;;;.;;
...-
~ r;;.-' [,;1<
~ ...... i""
f-- +-'
~ - ..... ""
I"'"
-'"
r---.
r--
...... ~
""'~
~
II
I-f-"'
i-"""
l'
~
I
~
J..oo
~
~
~V
"/
i""
~
~
10'
0,01
'Jif
10- 2
April 1974
~
J.,...oo ~1
./
~ ./
.-'"
~:,....
-
,I
T
0,1
0,05
-~
F--
t-"
I--
I-P-
tp
0=-
- 10- 1
tp (s)
II
5
10
BDX77
II
II
7Z62BS7
S.B. voltage multiplying factor at the Ie max level
"-..~. :..a........i01
-
10
~?,102'
'" r-.....r-....
~0,05 ....... t--....
1---0,1 ...
~0;2
~
...... r--,
r---..... ~ ~I' r-.r"- I'-
l -I-- 1-0.. r-. ~~ ~~
r-~
I
b==-0,5
~~~
~
--.. ~~
r-r--- t---LI¥ ~~ I==~ t:::-~~
1
10- 5
---
10- 4
--
tp (8)
7Z62856
.......
S.B. current multiplying factor at the VCEOmax 'level
6= 0,01 .......
I ......
l"~
i
MSB(V)
~ ......
t,os
10
t
i"'-i'oo
r- ,l-
"-
r"-, ' \
,~
---
b,2
0,5
~
..........
~
\..
,~
..........
I\.
-
~
"'",J"
r---. .... ~ ~~
~
~
r---:: ~
1
10- 5
6
--r---. ..... 1"- I-I-t-
10- 4
II
li
April 1974
-----_..._-_..._-----_ ... -
II
BDX77
7262403
150
I
I
I IT
I
I
VCE =2V
Tj =25 °c
I-
100
~
.... ~
50
i.o-"
./
.
-""""I"'"
----
typ ...........
.........
"
-----
I'-
"' I\.
'Ii\
./
"
./
./'
~
1
---
7262391
10
1
1
IC
10
IC (A)
1.."..00'
1 I"
VCE=2V
Tj = 25°C
V
(A)
l/
~
L.....
~
I./'
V
/t"
,/
I/'
/
II
~
"
II'
V
10
Anri! lQ74
II
IB (rnA)
II
7
II
BDxn
7Z62393
1,5
VeEsat
r-
(V)
I---'
IC
-=10
IB
Tj =25 0e
7162397
3
I I r r I
I
I I I I
f--'.IIe
1-1-=10
IB
'-Ir-ITj =25 0e 1-1-
VBEsat
(V)
/
V
1
~
2
J
V
i
IJ'
I~
i"
)
1
1/
~~
/
--
I
.J>"
~
l/'
/
o
o
o
---
tyP
i.""
V
Q,5
1.1
5
7Z62399
100
o
10
Ie (A)
---- -
VeB=O
IB
5
10
Ie (A)
7Z52395
15
I I
I I I
1 rIII I
HVCE =2V I-fTj=25 0 e H-
IC
(A)
(rnA)
75
10
V
'\
50
,
....... too..,typ
'-"" V
1/
v
-IE =3A-f-
tyP..,j
""'"
I\.
i' ....
25
1/
5
I'I'iyJ
ii
2A-f-
r7
'--
J
rJ
"
IJ
o
-100
o
o
100 Tj (OC) 200
II
L.;
o
VBE (V)
II
2
April 1974
BDX77
II
7Z62387
I-'--
VCS 40V
~
."
I-'"
max I"'" ",.
....... 1-"
/
~/
10
/
typ
/
~
/V
1
/
~
10- 1
o
50
---
7Z62 406
20
fT
(MHz)
VCS=3V - Tj=25 0 C '--- '---
15
, -
........ r-....
10
r.-.... ......
- -- -typ
r--..;~
..... -r--.
r- ~
--
~ I--
5
o
o
April 1974
1
2
II
3
5 -IE (A)
4
II
6
9
,I
BDX78
II
II
SILICON EPITAXIAL-BASE POWER TRANSISTOR
P-N-P transistor in a plastic envelope, intended for industrial amplifier and switching
applications. N-P-N complement BDX77.
QUICK REFERENCE DATA
-V
Collector.-emitter voltage (open base)
max.
80
V
max.
8
A
max.
60
W
CEO
-IC
Total power dissipation up to T mb = 25 °C
Ptot
D. C. current gain
- IC = 2 A; -V CE
hpi!;
>-
' 30
fhIe
>-
25
Collector current (d. c.)
=2 V
Cut- off frequency
-IC = 0,3 A; -V CE = 3 V
kHz
Dimensions in mm
MECHANICAL DATA
TO-220
Collector connected
to mounting base
-I~~'
.-
1,3-- , -
~-
5;9
min
,I
--
1
15,B
max
1
1
I
J
+-It:;n::::::;:I;::::r~--'-
3,5 max
not tinned
5,1
max
\,
-.1 _I --t
max
.....
r
-
J
12,7
min
(2x)
bee
~-------'-
___I
-.11:-°,9 max (3x)
2,54 2,54
-.1--2,40,6
1
--
-.
7l65872.3
Por mounting instructions and accessories see section Accessories.
June 1977
II
II
1
--
-
BDX78
II
II
RATINGS Limiting values in accordance with the Absolute Maximum System (IECI34)
Voltage
Collector -base voltage (open emitter)
-VCBO
max.
80
V
Collector-emitter voltage (open base)
-VCEO
max.
80
V
Emitter-base voltage (open collector)
-VEBO
max.
5
V
Collector current (d. c. )
-IC
max.
8
A
Collector current (peak value, tp ::: 10 ms)
-ICM
max.
12
A
Collector current (non -repetitive peak value,
tp :5 2 ms)
-I CSM
max.
25
A
Current
Temperature
Storage temperature
T stg
Junction temperature
Tj
max.
150
°c
°c
Ptot
max.
60
W
-65 to +150
Power diss ipation
Total power dissipation up to T mb = 25 0C
THERMAL RESISTANCE
From' junction to mounting base
Rthj-mb
From junction to mounting base in free air
Rth j-a
2
II
II
2,08
°C(W
70
°C(W
May 1974
II
II
CHARACTERISTICS
TJ = 25
°c unless
BDX78
otherwise specified
Collector cut -off current
IB = 0; -V CE = 30 V
IE = 0; -VCB = 40 V; T j = 150
°c
-I CEO
<
rnA
-I CBO
<
rnA
-lEBO
<
5
-VBE
<
1,5
-VCEK
typo
V
-VCEsat
<
V
Emitter cut -off current
IC ::: 0; -VEB = 5 V
rnA
Base -emitter voltage 1)
-IC = 3 A; -VCE = 2 V
V
Knee voltage 1)
-IC = 3 A; -IB = value at which
-IC = 3,3 A at ':"VCE = 2 V
Saturation voltage 1)
-IC = 3 A; -IB = 0,3 A
D.~. current gain 1)
-Ie =2 A; -VCE = 2 V
--
hFE
>
30
fhfe
>
25
kHz
fT
>
3
MHz
Cut -off frequency
-IC = 0,3 A; -VCE = 3 V
Transition frequency at f = 1 MHz
IE = 0,3 A; -V CB = 3 V
1) Measured under pulse conditions: tp < 300 \ls, 0 <
May 1974
II
2%~
II
3
-
BDX78
II
II
7Z628SS 1
BDX78
I
I I
Tmb!5 25 oC
-Ie
t-
(A)
5 =0,01
-ICMmax
I.
10 -ICmax
" -.l
\.
Ptot max
~
" '"
'\
..'1.
\.
\.
.-J
.-J
~
~
l'l
\ 1\
\
~\
"~
\ \
"
\
" id·o
~
1\
K\ 1\,
second
_
1\
breakdown 1) ~
1\
~
~
1\
I
,
tp
20 (Js
'
II
,,
,
50 o
~
...l.
1\\
----
~ 20 o
1J
\
_'\
~
1\
.II
1 ms
'~
'~
10- 1
10
10
1Jc.
-VCE(V)
Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation
1) Independent of temperature.
4
II
II
April 1974
BDX78
II
II
7Z672S71
,
100
\.
P tot max
(010)
\
,
~
75
\.
,
1\
~
50
~
,
~
25
,
,
~
[\
~
oo
~
50
7Z67034/1
3
JLfL
~j
0-1
2
-
0,2, bo- f-
--
--
0,2
.,
I--
i--'"
0,5
~
~
~
i-""'"
1--""
./
....
--
~
~ -J.,
T
I
.,. ..-
..-
i
~i"""
1/
i
i
~
~
Ll
./
~L ~
-I-'
l,...~
.... ~
1
:-r--
tp
0=-
'"
i
"/
~t;::i
i
~~
~
I"'"
I-"'"
~I""
~ I"-
~~
I-"'"
F--- I"""'"
o ~ '"""'"
......... 1'-..
Ilill
10- 5
April 1974
pte: 0,1
0,05
0,01
V ...... ~r--
~ l"-
I
1
II
tp (8)
5
10
BDX78
II
II
1Z62857A
S.B. voltage multiplying factor at the -Ie max level
MSB(l)
~0101
10
~
~?,OZ-
---.;;0,05
~O,l .. :=;;;-0,2
1"0..
r--... r--...
r--.... I '~r-..
r--.... ~ r-.,I'o ......... ...
..... 1'
1:::r- I-.. r""'o ...:::::::;: :::~
.....
I
=0,5
r---
.
1
10- 5
-----
.......
~
tp (s)
S.B. current multiplying factor at the -VCEOmax level
......
"
6,02
---r-- '"'"""
~,os
10
... .... 1"-
7Z62856
,
0=0,01
MSB(V)
----
~ ;;...,;;::: ==1- :::::--
10- 4
...........
==
~
...........::::
~
........ ~
t
b,2
I'-o~
.-
~
"
-:::~
~" '\
~I-
.........
..........
'" ".
'" r"""
- -,
~
0,5
~
.........
~
r-.~
~~.
~
~
---=:: --- ~~
6
II
11
~
April 1974
II
BDX78
II
150
7Z62404
r
I
-VCE =2V
Tj=25 0 C
100
.....,
",
.....
~",
....
l..o--
---
typ
.........
I'
"
'\..
'\..
"'\.
JII'"
\.
'\.
'\.
,
50
I'\.
'\.
'\.
'\.
\.
a
10- 2
10-1
1
10
-IC (A)
---
7Z62392
10
I
I
.,....- .-
-VCE=2V
Tj =25 0c
-IC
..,.
-
.......",
(A)
.... I-"'~
/
~""
/'::
1
~
i;""
~~
'"
//
//
/
10
April 1974
II
-IS (rnA)
II
7
BDX78
II
II
7Z62394
1.5
7Z6239a
3
i JI LLL
I I I /I
-IC
-VCEsat r - -=10
-IB
(V)
rT j =25 0c
-VBEsat
J
(V)
I
Tj =25
If
1
typ/
I
-IC
- ' =10
-IB
0.5
f-i-f-
2
/
:/
~
~
IL
IL'
jI""
II
1
/
..... 1'
"
V
II'
'j
I.....
I-~
°c
,
V
I
i-f-i-
"""I"'"
'"
"""
IL'
-.l
I
V
o
o
o
5
---
-IC (A)
o
10
5
-IC (A)
10
7Z62396
'15
1 1 I Ll
11I 1I
-VCE =2V
T j =25 0C
-IC
(A)
t-t-t-ti-t--
10
~
~
.L
'f'
5
,
J
L
1/
o
o
8
II
I'
1
'£
1
-VBE (V)
2
II
April 1974
I
·BDX78
II
7Z62400
7Z57556 .
~
100
I-- I--
-VCB=O
-VCB 40V
maxI""""
.... i--""
'(
-IB
,
,(rnA)
IL
1\
75
\
r-
V
V
~
10 2
J IE =3AI'..typ
~
I
~~
V
V
/
1I
10
50
~
""
25
typ
~,.",.
2A r-
typ
./
I
r-~
L
V
J
If'
10- 1
o
o
-100
100 Tj (OC) 200
/
)
0
50
---
7162405
20
fT
(MHz)
-VCB =3V r-- r-T j =25 0C - ,....-
-
15
,
........
r......
......... r-..."
f"".",
'!'oo.
10
~~ ,
" r" r--....
5
o
o
Apri11974
2
II
3
I""-- i""'-o
-r-. r- I--
4
5
II
IE (A)
6
9
BDX91
BDX93
BDX95
SILICON POWER TRANSISTORS
N -P-N transistors in TO -3 envelope for audio output stages and general amplifier and
switching applications. P-N -P complements are BDX92, BDX94 and BDX96.
QUICK REFERENCE DATA
BDX91 BDX93 BDX95
V
CBO
V
CEO
max.
60
80
100
V
max.
60
80
100
V
Collector current (peak value)
ICM
max.
Total power dissipation up to
T
= 25 °c
mb
Junction temperature
P
tot
Tj
,D. C. current gain
IC = 3 A; VCE
hFE
>
20
fT
>
4
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
=2 V
Transition frequency
IC = 1 A; VCE = 10 V
MECHANICAL DATA
TO-3
Collector connected to envelope
-26,6max-
j,1"
39,S 301
ma,
1
12
A
max.
90
W
max.
200
°c
'
IJ
Dimensions in mm
8,63 max ,--+-1 --1,6
~
4,2
_4,0
1_
--10,9-+
7Z68064.31-.-
For mounting instructions and accessories see section Accessories.
February 1979
II
I
20,3
max
J_' _
MHz
12,8 ......
11,2
BDX91
BDX93
BDX95
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
BDX91
BDX93
BDX95
Collector-base voltage (open emitter)
VCBO
max.
60
80
100
V
Collector-emitter voltage (open base)
VCEO
V
EBO
max.
60
80
100
V
max.
5
5
5
V
Emitter -base voltage (open collector)
Currents
Collector current (d. c.)
Collector current (peak value)
IC
max.
8
A
ICM
max.
12
A
Ptot
max.
90
W
Power dissipation
Total power dissipation up to
Tinb = 25 °c
Temperatures
Storage
~emperature
T
Junction temperature
---
-65 to +200
stg
Tj
max.
200
°c
°c
THERMAL RESISTANCE
From junction to mounting base
2
II
Rth j-mb =
1,94 .
II
°C(W
July 1977
·BDX91
BDX93
BDX95
II
Tj
CHARACTERISTICS
Collector cut- off current
I
==
25
°c unless
otherwise specified
ICBO
<
0,1
rnA
leBO
<
2
rnA
ICEO
<
1
rnA
lEBO
<
1
rnA
hFE
>
20
hFE
>
10
VBE
<
1,4
V
Ie:= 3 A; IB := 0,3 A
VCEsat
<
0,8
V
IC:= 5 A; IB :=
VCEsat
<
1
V
IE := 0; VCB := VeBOmax
IE := 0; V CB
:=
30 V; T j
= 200°C:
BDX91
IE := 0; VCB:= 40 V; Tj := 200 °C: BDX93
IE := 0; V CB := 50 V; T j := 200 °C: BDX95
IB := 0; VCE := VCEOmax
.
Emitter cut-off current
Ie:= 0;
VEB:= 5 V
1)
D. C. current gain
IC:= 3 A; VCE := 2 V
IC:= 5 A; VCE := 2 V
Base-emitter vOltage
1)
Ie:= 3 A; VCE := 2 V
Collector-emitter saturation voltage
lA
Base-emitter saturation voltage
Ie:= 3 A; IB
1)
1)
==
0,3 A
VBEsat
<
1,5
V
Ie:= 5 A; IB :=
lA
VBEsat
<
2
V
. hfe
>
40
fT
>
4
Small- signal current gain at f
Ie := 0,5 A; V CE := 10 V
==
1 kHz
Transition frequency
Ie
==
1 A; VCE := 10 V
MHz
1) Measured uhderpulse conditions: tp < 300 fls, 0 < 2%.
October 1975
II
3
BDX91
BDX93
BDX95
II
°c unless
T j = 25
CHARACTERISTICS (continued)
otherwise specified
Switching times (between 10% and 90% levels)
ICon = 3 A; I
Bon
= -I
Boff
= 0,3 A; VCC = 30 V
0,2 f.1s
1 f.1s
typo
~
Turn-on time
ton
<
~
Turn-off time
toff
<
1,2 f.1s
2 f.1s
typo
Test circuit
Vee
= 55 V
tr = tf = 15 ns
tp
= 10 f.1s
T
= 500 f.1s.
VIM
*
V~
ot
150n
+J;5V
7Z724-78.1
7Z82167
Tmb=
150 0 e
.----..-
~
-
I--1---
r--r-. r--I'-o
25°C
~
:....---
--
-50 o e I----
----
l...--I--
i-'
~'" '"
'"
--...... " '" "
.........
......
I--~
-
.........
.....
"-
.........
......
.........
'\~
"
~I\ '\~
"- .....!'-
i'
r--.~~
~,..
10
10- 2
10
Ie (A)
Typical small- signal current gain as a function of collector current; VCE = 2 V.
4
II
II
March 1979
BDX91
BDX93
BDX95
II
7Z72iJ.52
Tmb~25°C
c;:;
MLn
C1lC1l
xx
X
ICMmax
" " t-..."' "'
"'1 ) , 1\
I\.
Cmax
~
"-
i\\
2~\
"
~
'\
I
~
"'
\
I- I '
coco
co
0=0,01
10
00
0
\
1\
~
IT
'~
500f.JS
1\
"I \\
,I \
1\
~
1ms
,l\
1\)\
1'1'
I'
10
10ms
~ d.c.
10 2
Safe Operating ARea with the transistor forward biased
I Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation
1) Ptot max and Ppeak max lines.
2) Second-breakdown limits (independent of temperature).
October 1975
II
5
BDX91
BDX93
BDX95
II
7Z67325
Ptot max
(%)
100
"' I"
.""-
-
"
5a
"I'
'" "
~
a
I~
a
200
7Z724.S7
3
JUL
_T_
-ltpl_1
5 =1
2
0,7
i"""""'"
~
~
O~
......
,,-~
~
;;i'
~
5=.!£
T
~
1-"'........
.,,, """
1'" ..... 1'"
~
""""I"'"
1
0,2 ~
........:: '/
~
v.........
I-""'"
...,........:......
-10- i""
t-- r......
°
10- 5
6
0lo-I"
r
.... c;..
~
0,1
0,05
1"0,01
I
~
1
1
10- 4
II
10 3
10
2
0- 1
1
II
t pI s)
1o
October 1975
BDX91
BDX93
BDX95
II
7Z72456
S.B. voltage multiplying factor at the ICmax level
,..t=0,01
10
0,02
-005
-0,1
=0,2
- --
r- .......
-
-~
~-
i""'~
.........
......
~
............... ~I'o..
--- ----
............ ["":: ~
.............
0,5
1
10- 5
-
"'" .....
-I"-~
~ ~ ~'"
r- ...... ::::;::::~
"'1'-' ~
~
----...;
~
-...;:
1
t::
-
I--
,...
10- 3
10- 4
10-2
7Z72455
.......
S.B.current multiplying factor
at the VCEOmax level
~
0=0,01 '"
r--.....
1""-1"- ...
)
I""-~ ~~
10
1"'\.
~
...........
~
0,1
0,2
-
r\.,
"-I" \
,
r......
r\ 1\
~~
--I"-...
'"
- r-
'" "'"'...... 1""-"",
........
~
,
0,5
,...
1
1
10- 5
October 1975
10- 4
II
...
l\.
~
----
~ ::...... .......
-
~
~
10-3
7
BDX91
BDX93
BDX95
II
7Z72458
VCE - 2V
Tj = 25°C
typ
"..,
---
-
~
_I"""
I--"""
.........
"""
~
",
"-
10
10- 2
--
10
IC (AI
7Z724S4
IIc~d.5IAI
1A-
-ZA- rJA
VCEsat
(V)
4A SA SA 7A SAl
I
1\ \
\ \\
\ \ \\
_\
,
'\..
"'-
"'- ...........
r--. ... ~
"-r--. ...
!'ool'-
\
"- "
....
~
-....
I'
-'.
\
\..
typo values
Tj = 25°C
•
~
'\.
~
- ....
--
.10- 1
10- 2
1
8
10
II
18 (mAl
II
October 1975
BDX92
BDX94
BDX96
SILICON POWER TRANSISTORS
P -N -P transistors in TO -3 envelope for audio output stages and general amplifier and
switching applications. N -P-N complements· are BDX91, BDX93 and BDX95.
QUICK REFERENCE DATA
BDX92 BDX94 BDX96
Collector -base voltage (open emitter)
Collector-emitter voltage (open base)
Collector current (peak value)
Total power dissipation up to
T
= 25 °c
mb
Junction temperature
-V
max.
CBO
-V
max.
CEO
-I
max.
CM
P
tot
T ..
J
60
80
100
V
60
80
100
V
12
A
max.
90
W
max.
200
°c
D. C. current gain
-IC = 3 A; -VCE
=2 V
hFE
>
20
Transition frequency
-IC = 1 A; -VCE
= 10 V
fT
>
4
---
MHz
Dimensions in mm
MECHANICAL DATA
TO-3
Collector connected to envelope
-26,6max-
J
i
111
..... 1
--1,6
•
-4,2
_4,0
max
1_
J_' _
--10,9 ....
+
1Z68064.31 __
12,8 ....
11,2
For mounting instructions and accessories see section Accessories.
February 1979
II
--
1
20,3
39,5 301
ma'
8 '63 r:nax ,--
BDX92
BDX94
BDX96
I
II
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
\
Voltages
BDX92 BDX94 BDX96
Collector-base voltage (open emitter)
-VCBO max.
60
80
100
Collector-emitter voltage (open base)
:-VCEO max.
-V
max.
EBO
60
80
100
V
5
5
5
V
Emitter -base voltage (open collector)
V
Currents
Collector current (d. c. )
-IC
max.
8
A
Collector current (peak value)
-I
max.
12
A
max.
90
W
CM
Power dissipation
Total power dissipation up to
T
= 25 °c
mb
P
tot
Temperatures
Storage temperature
Junction temperature
T
stg
T.
J
-65 to +200·
°c
200
°C
max.
THERMAL RESISTANCE
-
From junction to mounting base
2
II
1,94
Rth j-mb
II
°C/W
October 1975
BDX92
BDX94
BDX96
CHARACTERISTICS
Tj = 25 °c unless otherwise specified
Collector cut-off current
IE = 0; -VCB = -VCBOmax
IE = 0; -VCB = 30 V; T j = 200
-ICBO
<
0,1
rnA
-ICBO
<
2
rnA
-ICEO
<
rnA
<
rnA
:C: BDX92)
IE = 0; -VCB = 40 V; T j = 200 C: BDX94
IE = 0; -VCB = 50 V; T j = 200 °C:. BDX96
IB=O; -VCE=-VCEOmax
Emitter cut-off current
IC
= 0;
-V EB
=5 V
D. C. current gain
1)
..,.I C = 3 A; -VCE = 2 V
>
20
- IC = 5 A; -V CE = 2 V
>
10
<
1,4
V
0,8
V·
Base-emitter voltage
1)
- IC = 3 A; -VCE = 2 V
Collector-emitter saturation voltage
1)
-I c =3A; -IB=0,3A
-VCEsat
<
- IC = 5 A; - IB =
-VCEsat
<
-VBEsa~
<
1,5
V
-VBEsat
<
2
V
>
40
>
4
1A
. Base-emitter saturation voltage
V
1)
-Ic =3A; -IB =0,3A
--.IC = 5 A; - IB = 1 A
Small- signal current gain at f == 1 kHz
~e
-IC = 0,5 A; -V CE = 10 V
Transition frequency
- IC
==
1 A; -V CE = 10 V
1) Measured under pulse conditions: tp < 300 \ls,
October 1975
II
<5
MHz
< 2%.
3
BDX92
BDX9,4
BDX96
CHARACTERISTICS (continued)
Tj = 25°C unless otherwise specified
Switching times (between 10% and 90% levels)
= 3 A;
-ICon
-IBon
= IBoff = 0,3 A;
VCC
= -30 V
---.
Turn-on time
ton
---.
Turn - off ti me
toff
typo
55
= 15
= 10
= 500
1 Ils
2 Ils
<
Test circuit
VIM
tr = tf
tp
T
0,2 Ils
1 Ils
typo
<
Vee
V
ns
Ils
IlS
o ~
v;ut
7Z82168
Tmb='
- -- I--
~
----
150°C
-r-. .......
~i"'"'
V
I--
.....
25°C
-50°C
-
r---I-o.,
. . . r-.
--r--I'
r-.~
~
r-."" ......
.......
_.........
~
~
~
i"'-..
"'~
...... 1"00."
~~
1'1"
i'~~
"
10
10- 2
Typical small-signal current gain as a function of collector current; -V CE
4
10
-IC(A)
II
II
= 2 V.
March 1979
BDX92
BDX94
BDX96
7Z72453
25°C
Tmb ::::
N
en
X
0
0=0,01
-I CMmax
"-
10
"-
-1Cmax
'\.
\
~\
\
,
2\\
xx
00
eDeD
"'-
"-
r"\.
"' "'\ "'"' "'
~
1)" \
I
eD
.;tID
en en
"~
I\.
II
\
\~
,
\
5001-1 5
\
\.
\
\
'\
\
1ms
\\
\\
,\
~I\ 1Oms
\d
10
Safe Operating ARea with the transistor forward biased
I Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation
1) P
and P
lines.
2 tot max
peak max
) Second-breakdown limits (independent of temperature).
October
1~75
II
5
BDX92
BDX94
BDX96
I
II
7Z67325
Ptot max
1%1
100
"I"
I'
"
I\.
"-
,
50
I'
I\.
~
l\..
"I'
a
a
~
200
n72t.S7
3
SLJL
-Itpl'-I
_T_ 6=!B
T
6 =1
2
0,7
I"""""
~-
r--
O~ i-"""
_r0,2 ~
1
~
-~
i-"""
""
-
~
.... 10-
-~
10-"
"""........
-
...... ~".
I"' ...... ~
~
~~
~~
~
io"
i-"""
-
to--'
v ......
I"""
....
17'
0,1
0,05
1"0,01
I
1
1
°
10- 5
6
~
...... "'" ...
~ ~I'
-~
I-- ~
~
10- 4
II
10- 3
10-2
10- 1
.
tpls)
II
10
October 1975
BDX92
BDX94
BD·X96
II
7Z72456
S.B. voltage multiplying factor at the ICmax level
~0,01
0,02 r-- rf----005
10
f----O,1
-
-~
- -
1'-00.
r--
0,2
'-
,I-
............
~~
............... ~
..
---
~
0,5
.............. :": ~
............. ~ ~ ...... ~
~
- ...... 1'-0..
t"'~
"""
roo.
~F=S ~
r- I-
1
~ ~ ......
r-----::
r--;::
-
1
10- 5
10-3
1"'"--
r-
r-
10-2
tp(S)
7Z72455
.......
S. B. current multiplying factor
at the VCEOmax level
~
0=0,01 ""
""- .....
)
-I"- 1'-1-
...........
--I"-
10
" r\.
'\.
~2
,
'"
\
r'\
~ ............. \ 1\
0,1
0,2
-
-r--...
-
r-
0,5
~r\
i'..
.......
"
~
-
\
......
:""'-~
1"-1-
I-
r--- ~ ~
1
1
10- 5
October 1975
"
" l\.
~
10- 4
II
10-3
--
r-
tp(S)
II
7
--
BDX92
BDX94
BDX96
II
7Z72460
-VCE = 2V
Tj - 25°C
typ
,---
-r- ~
1""-1"-,..
"
0
-VCEsat
(V)
10
J 1
U
-IcIOS~
r-.
1~1
.....
~
I.......,.
~
1
~
"'~
10
-I C (A)
iA- t-3'A
11
[
1\
1
.~~
,
7Z72459
, 1\ \
1\l\1\
Li
SA 6A 7A 8A
..1..l \
typo values
Tj = 25°C
,
"~ " ......."' ~
~
~
~
\.
~
I'
r\.
"I'
1
"l'- ""
~
1\
"""'"
'"
...............
...........
,.............
t"--...
1"'--1000
.....
r-
2
10
8
II
10 2
10 3
-Is (rnA)
II
October 1975
BDY20
II
II
SILICON DIFFUSED POWER TRANSISTORS
N -P-N transistor in a TO-3 metal envelope, intended for use in linear applications
such as hi-fi amplifiers and signal processing circuits.
QUICK REFERENCE DATA
Collector-base voltage (open emitter)
Collector -emitter voltage (ol?en base)
Collector current (peak value)
VCBO
max. 100
V
VCEO
max.
60
V
rCM
max.
15
A
Ptot
max. 115
W
Junction temperature
Tj
max. 200
°c
D. C. current gain
IC == 4 A; VCE == 4 V
hFE
20 to
fT
typo
Total power dissipation up to T mb
Transition frequency at f
IC == 1 A; VCE == 4 V
==
==
25 oc
1 MHz
MECHANICAL DATA
MHz
Dimensions in mm
Collector connected to envelope
TO-3
-26,6max-
,
J -"
8.63 max I-+.... , -+-1,6
-42
4'0
lJ.1
3.9,S 301
ma'l_' _
i
1_
20,3
max
1Z6B064.31-+-
12.8--.
11,2
For mounting instructions and accessories, see section Accessories.
February 1979
70
-
BDY20
-+
II
II
RATINGS Limitingvalues in accordance with the Absolute MaximumSystem (iEC'134)
Voltages
Collector -base voltage (open emitter)
VCBO
max.
100
Collector -emitter voltage (open base)
. VCEO
max.
60
VI)
VCER
max.
70
V 1)
VEBO
max.
7
IC
max.
15 A
ICM
max.
15 A
-IEM
max.
15 A
Ptot
max.
115 W
Storage temperature
T stg
-65 to +200
°c
Junction temperature
Tj
max.
°c
Collector-emitter voltage (RBE = 100 S1)
Emitter -base voltage (open collector)
V
V
Currents
Collector current (d. c.)
Collector current (peak value)
Emitter current (peak value)
Power dissipation
Total power dissipation up to T rob = 25
°c
Temperatures
--
200
THERMAL RESISTANCE
From junction to ambient in free air
Rth j-a
From junction to mounting base
Rth j-rob
40
°C/W
1,5 °C/W
l)Ic = 0.2 A
2
II
February 1979
II
BDY20
II
CHARACTERISTICS
T j = 25
°c
---
unless otherwise specified
Collector cut-off currents
l E O ; V CB = 100 V
ICBO
typo
<
3
5
pA
rnA
-VBE = 1.5 V; VCE ::; 100 V
ICEX
typo
<
4
5
pA
rnA
leE X
typo 0.3
<
10
rnA
rnA
lEBO
typo
<
nA
rnA
VBE
typo 1.1
<
1.8
V
V
VCEs~t
typo 0.4
<
1.1
V
V
VCEK
<
V
-VBE = 1.5 V; VCE =100 V: Tj
= 150°C
Emitter cut-off current
IC
0; VEB =
7V
1
5
Base -emitter voltage
IC
4 A; VCE=
4 V
Collector-emitter saturation voltage
IC
4 A; IB
= 0.4 A
Knee voltage
IC = 10 A; IB = value for which
IC = 11 A at VCE :: 5 V
o . C.
IC
3.0
-
current gain
4 A; V CE =
hPE
20 to 70
'C c
typo 250
pP
4 V
fT
tyPo
1
MHz
4 V
fhfe
typo
9
kHz
4 V
Collector capacitance at f = 1 MHz
IE
= .I e :: 0; V CB ::
20 V
Transition frequency at f = 1 MHz
Ie
1 A; V CE::
Cut -off frequency
IC
1 A; VCE =
February 1979
II
---
3
BDY2Q
II
11
CHARACTERISTICS (continued)
Tj
= 25 oe unless
otherwise specified
Switching times
Ie
= 4 A;
IB = -IBM
Delay time
Rise time
Storage time
Fall time
= 400
mA
td
tr
. ts
tf
typo 0.4 JJ,s
typo
2 JJ,s
typo
2 JJ,s
typo 2.5 JJ,s
Test circuit:
---
Pulse generator:
Pulse duration
t
>
10
JJ,S
Oscilloscope:
Rise time
tr
Rise time
tr
.::s
10
ns
Input resistance
Ri
4
II
II
~
10
ns
50
n
May 1969
BDY20
II
II
7Z59J21
~
111111
.111
JUL
I
"Itpl-
mb
--T-'
)
o:!E.
T
2
0=
1
1.5
0.75
- - -_
-~
..-
0.5 ~
~
....
........
~ I--~
0.5
0.2
...
~
~ f""'"
--
~
~
-
0.1
0.01
10
tp (s)
7209380
100
,
",,"'
maximum allowable collector-emitter voltage (with:
a resistance between base and emitter and
Ie =0.2 A) versus the base -emitter resistance applied.
VCER
(V)
Tj -25°C
80
60
40
~~E'
RaE
20
10-1
July 1970
10
II
5
BDY20
II
II
n09581
15
7Z09372
15
typical values
IC
1)=25°C
IC
(A)
I I I
\ \ I \
I I I
(A)
typical values
Ti
=25°C
,
I I '1fl..
~e~O.
10
.... Opt;.: \
-....
~<)~
10
~O~:
I0000-1'''''''
lft
1-1""0.4fl.
.~
... 0.3fl.
J
II. """
0.2A
5
0.1 At-t- rr
0.05Ar
0.5 A
0.5A
0.4 A
~r"
100'"
~
,
....
0:3A
...
-
_1..1
0.2A
1/ ""'"
I I
.... 1""
5
i'"
~
I
1/
V"
O.1A
I I
I""
(}J15A
ILl
0.01 A
J I
0.01 A
j
lJol"'"
JJ
111
JJ
I
20
VCE (V)
40
n09374
15
VCE=4V
n =25°C
IC
I-t-tI-t-t-
(A)
2
50
IC
(rnA)
7Z09582
VCE =4V
~.
=25O C
I I
...l1
typ
10
r-t- t-
max t--t-
40
I
J
typ/
-.I
"max- -r-r-
I
II
I
II
5
,
I
II
,
I
I'
)
II
il
20
II
I)
I
J
1/
J
II ....
'-"'II ~"
6
If
I
11
"
IJ'
2
II
VBE(V)
4
!1
i'
500
VBE (mV) 1000
II
August 1968
BDY20
II
7Z09S85
10
VCE :4V
25°C
Tj
IC
.,
(A)
typ
.... ~
V
V
1/
1
j
V
I
1/
11
I
10
10
1
---
7Z09584
150
VCE =4V
1] =25°C .
./
./
,/
,/
100
./
1/
....
~
'\typ
.~
\.
~
./
./
\
.J'
./
50
..---'"
..... ...
\
\
J
\.
\.
'-
,
I'
IC (A)
August 1968
II
II
10
7
II
BDY20
7Z09583
30
~.
fhfe
7Z09373
1.5
VCE=4V
=25°C
fr
,
(MHz)
(kHz)
VCE=4V 1-1-1f
=1MHz 1-1-1-
,
\.
"""
20
typ~
~
~
1) =25°C 1-1-11-1-1-
1
,
"'"
"""
1/
"
I.....
roo.
I'
l""'r-.,tYIJ 1-1I""'r-.,
~
I/"
10
""'' ' '
0.5
"
o0
I C~(A
2
0
o
4
2
IC (A)
4
7Z09376
'llle appropriate neatsink(s)
will be found in the section
Accessories and Heatsinks
)
-f-+-~ ~
100
-f-f-f-~
''''?6
-,,'Q
_
~
I'~
0,>.
I 1\.'
+~~
('~~I
f-I-I;- $(5i
f-I-I-f- ~O
50
.
:I
7~"
0,
~h~
~
~J}~~
--"I
"6~
C!'~
o0
- 8·
II
100
I\.
I'
"
I QC"~.~
~I-fI I I~.f
I I I-I' ~~fI 11-1
T;amb (OC) 200
"
II
August 1968
BDY20
II
7Z0937S
15
I
IC
I
(A )
m
f-~
10
rr~-
rf-f-f5 i-i-IlII-
-i-
r
I
0.2
I
m
Ic
~f-
0.1
"
(AI
\
\
II \"
0
5O'tEM'OO
I l I I i I I 1
o0
II I I l I I I
I I I
I I I
50
~CE V)
10o
--Region of permissible operation under all base-emitter conditions provided no
limitihg values are exceeded.
II Additional region of operation when the transistor is cut -off with - VBE !S 1. 5 V.
III Operation during switching off is allowed, provided the transistor is· cut-off with
-VBE::::: 1. 5 V and the transient energy does not exceed 75 mWs.
August 1968
II
II
9
BDY20
II
-
10
II
II
August 1968
I
BDY90 to 92
II
SILICON DIFFUSED POWER TRANSISTORS
High-speed switching n-p-n transistors in a Il!-etal envelope intended for use in converters, inverters, switching regulators and switching control amplifiers.
QUICK REFERENCE DATA
BDY90 BDY91 BDY92
Collector -base voltage (open emitter)
VCBO
max.
120
100
80 V
Collector-emitter voltage (open base)
VCEO
max.
100
80
60 V
ICM
max.
15
15
15 A
Total power dissipation up to T mb=75 C
Ptot
max.
40
40
40W
Collector -emitter saturation voltage
IC = 10 A; IB = 1 A
VCEsat
<
1.5
1.5
1.0V
:Fall time
IC = 5.0 A; IB
VCC = 30 V
tf
<
0.2
0.2
0.2 Ils
fT
typo
70
70
Collector current (peak value)
0
= -IBM = O.SA
Transition frequency at f = 5 MHz
IC = 0.5 A; VCE = 5 V
70 MHz
MECHANICAL DATA
F
Dimensions in mm
Collector connected to ,case
TO-3
--- 9,5 max
--I
-26,6max-
--3,15
r-1
•
- --4,2
...----+_--11-
r ,}g
39,S 301
-t 4,0
t
~
20,3
max
maXJ~
~
_1
--10,9-7Z69700
'-'1_12,8_
11,2
For mounting instructions and accessories, see section Accessories.
February 1979
II
1
--
BDY90 to 92
II
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages (See also pages 4, 5 and 6)
Collector-base voltage (open emitter)
BDY90
BDY:91
BDY92
VCBO
max. 120
100
80V
Collector -emitter voltage (V EB = 1. 5 V)
VCEX
max. 120
100
80V
Collector -emitter voltage (open base)
VCEO
max. 100
80
60V
Emitter'-base voltage (open collector)
VEBO
max.
6
6
6V
Currents
Collector current (d. c.)
Ie
max.
lOA
Collector current (peak value)
ICM
max.
15 A
Base current (d. c. )
IB
max.
2 A
IBM
max.
3A
Base current (peak value)
Emitter current (d. c.)
max.
llA
-IEM
max.
is
Ptot
max.
40 W
-IE
Emitter current (peak value)
A
Power dissipation
Total power dissipation up to Tmb=75 0 C
--
Temperatures
Storage temperature
T stg
Junction temperature
Tj
-65 to + 175 °c
175 °c
max.
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
CHARACTERISTICS
Tj = 25 0 C unless otherwi~e specified
2.5 °C/W
Collector cut -off current
VEB = 1.5 V; VCE = VCEXmax;
T m b=150oC
3 mA
<
Saturation vOltages
VCEsat
VBEsat
<
<
0.5 V
1.2 V
BDY90
BDY91
VCEsat
<
1.5 V
BDY92
veE sat
<
1.0 V
BDY90to92
VBEsat
<
1.5 V
IC = 5 A;IB = 0.5 A
IC = 10 A; IB = 1 A
2
II
II
October 1972
II
Tj
CHARACTERISTICS (continued)
= 25 °c
BDY90 fa 92
unless otherwise specified
D. C. current gain
IC =
>
1 A; VCE = 2 V
35
IC = 5 A; V CE = 5 V
30 to 120
IC = 10 A; VeE = 5 V
>
20
typo
70
Transition frequency at f = 5 :MHz
IC =0.5A;VeE=5V
MHz
Switching times
Turn on time
Ie
= 5 A; IB = -IBM = O. 5 A
Vee
=:
<
0.35 i-Ls
ts
<
1.3 i-Ls
tf
<
0.2 i-L s
30 V
Turn off time
Ie = 5 A; I B = - I BM = O. 5 A
Vee = 30 V storage time
fall time
Test circuit
input waveform
Ie
time
-IeM
VeE
30V
-Ves=-6V
time
7ZIO.1U
Pulse generator:
Rise time
tr
Fall time
tf
October 1972
II
<
<
50
50
ns
ns
output waveform
Pulse duration
Duty cycle
tp
{j
20
0.02
i-Ls
3
BDY90 to 92
II
7Z67086
Tmb!S 75 °C t:
IC
(A)
c5 -0,01
ICMmax
\
ICmax
10
\\ \
'\
,
\
\
II \ \ .\
\
~
\
\
\
\
\ 1\ \
\
\ \ 1\ \ \ \
~\
\
1\\ \ \1\1\
~~\\ ~I\ ~
I
~
~".'\
\
"
~\'\l\
~
,,'\
l~l\
\ \
l\
9O~'l\\ rd\ 1\
I
I
10- 1
IC
4
(rnA) 2
-
I
'":><
21
0-
:><
@
1
10
50
100
200
500
1ms
2
5
20
d.c.
~
:><
Cl
!Xl
80
120
VCE (V)
I I I I I I III
10- 2
20
to
III III III
<>-
0
40
i\ ~I\
I
I
I
\~
I J~ ~r\ \~
~~
,~
tp=
lOlls
r-- I-N
~
I
veE
.-!
~
0
~
><>< ><
~~ ~
(V)
Safe Operating Area (Regions I and II forward biased)
Region of permissible d. c. operation
II Permissible extension for repetitive pulse' operation
III Repetitive pulse operation in this region is allowable,
provided - VBE ?: 1, 5 V
For Ptot max versus Tmb see page 10.
1) Independent of temperature
4
II
II
October 1972
II
BDY90 to 92
7259947
JLJL
I
)
-Itpl..
--T--
10
--
,...,........ k
6=1
0)75
0,5
0.33
0)2
100"
01
~
~
~:.- ~
r",i-' 0,05
0.02
0= tp
T
~
...
~0,O1
10
-=
7Z67084
MsB(I) S.B. voltage multiplying factor at the ICmax level
S.B. current multiplying factor at the VCEOmax level (100 V) of BDY90
MsB(V)
0=0,01
1/ 0,02
l/ 0,05
10
~ ~ ~ ~Ioo..
i'---
I---
~
I----
f-O,2
"'"
0,5
0,75
I
.....:"':0....00
...;::~
"""I-" ~~
,....~I-
---
~ t--....
-I:::::::::.
r- ~~ t::b
10- 3
10- 5
October 1972
~
r--
t:=:=:- 1- 0,33
1
-----
-.
II
tp (s)
II
5
-=--
II
BDYIIJO to 92
7Z61083
S.B. current multiplying factor at the V CEOmax level (80 V)
t-- r--
BDY91
MSB(V)
~c5=0,01
~
"
"to,bi
I
"
~ "'0 OS ..... ~t"oor-'I ~
10
~
-,--
-====~
-0,1
........
....
::"'!!.
-.... ~ .~
---..
-
=0,12
1-
~
0 ,33
O,'S
....
i"'-..
I'~
r"--' I'--
1""0""
~
~
t:::::::-r~
0,7S
.
~ 1"'- ...
~
1
I'"
~
lO- S
7Z61085
S.B. current multiplying factor at the VCEOmax level (60V)
t-- t-
BDY92
MSB(V)
~c5
-0,01
'"
',",,-0,02
-'-
l"..... ...... ~
J
r--.~ "
10
~
-.0,1
i'
r--r-. ..
~
~
~
1--0,2
1--0,33
1"'0..
r....
r--1ooo.1'-
r- l"- i"-..
d,s'
~
t-.:::: ~ """
-
0,7S
~
1
lO- S
6
-....
r-..
10- 4
II
10- 3
-
~ ~ ~~~
10- 2
II
tp (s)
10- 1
October 1972
II
BDY90 to 92
II
7Z59944
7Z 599461
150
1
-- VCE=VCEXmax
~I--
VCE=5V
Tj=25 0 C
J
ICEX f-+- -VBE= 11SV
(~A)
1/
I
1/
typ
100
10
II
~
/"""
I)
~
typ
~
........
~
""l'I
50
1"1'
II
1/
II
200
100
7Z59945
typical values t-tf-I-t--tVce= SV
IB
(rnA)
o
1
0,1
10
IC (A)
---
7Z59943
150
VCE=SV
f=SMHz
lj=2SoC
fr
(MHz)
Ic=10A
I
100
SA
(
I
......
10
.
,/
I'-o!ooo.
i"""~
50
1A
...
~
V
/
~ .....
""
---...
typ
"'"
,
oSA
r-
0
1
0
October 1972
100
II
Tj (OC)
200
011
Ic (A)
10
7
BDY90 to 92
II
II
7Z59940
0,75
ITj:25°C
(V)
I I I I
I
I I I I
I
c-f- typical values
I ~~ :10
VeEsat
7Z59941
0,6
VeEsat '-I-
(V)
0,4
0,5
Ie
,.
I-f- =10
f-f- Ie
.
I
Ie=10A....
I-'"
.-j;Oi
II
....
~
~
~
~
....
.........
",.
0,2
>
L,..
L...olo""
SA
0,25
~
J.,.o
'I
//
1A
1- ......
0,5A
I I
Ie (A)
?Z59939
1,5
100
10
200
7Z59942.
1.5
I I
I I I
I I I I I I
ITj:2S0C
typical values
IkIe =10
VSEsat
(V)
VBEsat
Ie =10
Is
(V)
~loo-
j"".o ~~~
Ie=10A- f-II
......
typ_ ~~
I
I
SAI-f-I-
t-Ioo.
.... joo.loo.
..
io"""
I-t-.
...... i"" ....
~
-
I I I I
.......
1-100.
I
"'" """
1"'00
1"'00 ...
i'""Ojoo.
0.5
r-~
joo.
~A 1-1-1-
oJA
Ie(A)
8
II
10
----
100
II
E:+-f-
200
October 1972
BDY90 to 92
II
II
APPLICATION INFORMATION
Typical operation in a 250 W d. c. to d. c. converter with two BDY92 transistors
150.!l
-t
Vo
----------0
•
-~
Each transistor is mounted on a heats ink of Rth h-a = 15 0C/W
+ 28V
Performance at T amb = 55 °C
IS =10,5A
Vo = 240 V
Po = 250 W
n
84 %
f
= 28,5 kHz
B
-Losses at Po = 250 W
In transistors
In diodes
In transformers
Circuit losses
2 x 6W
2
A
x2W
8W
14W
Transformer data
start ing
circuit
c
Tl = Ferroxcube core E55 material 3E 1
Cat. No. 4332 020 34900
n 1 + n i is bifilarly wound
=
120pF
T2 = Ferroxcube core H16 material 3E2
Cat. No. 4322 020 33030
ns + n~ is bifilarly wound
9 turns, cjJ 1,4 mm
ns = n~ = 4 turns, cjJ 0, 7 mm
n2 = n2 = 85 turns, cjJ 0, 5 mm
24 turns, cjJ 0,3 mm
nl = ni
August 1975
II
7259831
9
BDY90'to 92
II
7Z59830
7Z59829
f
Vo
~
(kHz ) (°10) (V)
If
10
/
Is
LLi..L.Li
Lit J Lil
30
typical values
90 260
/
(A)
I
7.5
""" ~
80 250
1/
~
.~
if'
25
t~
II
70 240
/
I
60 230
1/
-
..1
I
~!~o
-~
1.
'I.
~
~
ILf_ .....
1,/
II
1/
""' ....
~
1/
I(
5
~'1.
:""!!!I.
j
/
1-1-
1.1
v
~
J
2.5
J
V
50 220
20
II
100
o
200 Po (W) 300
-=
100
Po(W)
300
7Z6111.Z
,
100
~
Ptot max
(%)
I'
\,
\.
l,
50
\,
1\
\,
o
10
II
\
I
o
100
T rub (OC)
200
October 1972
I
-II
MAINTENANCE TYPES
BDY93
BDY94
SILICON DIFFUSED POWER TRANSISTORS
High voltage, high speed switching n-p-n power transistors in a TO-3 envelope, intended
for use in converters, inverters, switching regulators and motor control systems.
QUICK REFERENCE DATA
Collector-emitter peak voltage (VBE = 0)
BDY93
BDY94
750
VCESM
max.
·750
Collector-emitter voltage (RBE = 100 Q)
VCER
max.
450
400
V
Collector-emitter voltage (open base)
VCEO
max.
350
300
V
Collector current (d. c.)
V
IC
max.
4
4
A
Collector current (peak value)
ICM
max.
7
7
A
Total power dissipation up to
Tmb = 75 °C
Ptot
max.
30
30
W
Collector-emitter saturation
voltage IC = 2 ,SA; IB = 0, 5 A
VCEsat
<
1,5
1,5
V
Fall time
IC = 2, 5 A; IS 1 = 0, 5 A; - IS2 = 1 A
tf
typo
0,4
0,5
fJS
MECHANICAL DATA
Dimensions in mm
Collector connected to case
TO-3
-- 9'5maXF
--I
-26,6 max-
.
--3,15
,.,
c
. - -42
-f 4:0
.-----t_--(I -
.
r
20,3
max
_l~
'-10,9-7Z69700
.
.-12,8_
11,2
For mounting instructions and accessories, see section Accessories.
February 1979
1
-II
MAINTENANCE TYPES
II
BDY96
BDY97
SILICON DIFFUSED POWER TRANSISTORS
High voltage, high speed switching n -p-n power transistors in a TO -3 envelope, intended
for use in converters, inverters, switching regulators and motor control systems.
QUICK REFERENCE DATA
BDY96
BDY97
Collector-emitter peak voltage (VBE = 0)
VCESM
max.
750
750
Collector-emitter voltage (RBE = 100 Q)
V
VCER
max.
450
400
V
Collector-emitter voltage (open base)
VCEO
max.
350
300
V
Collector current (d. c.)
IC
max.
10
10
A
Collector current (peak value)
ICM
max.
1~
15
A
Total power dissipation up to
Tmb = 90 °C
Ptot
max.
40
40
W
Collector-emitter saturation voltage
IC = 5 A; IB = 1 A
VCEsat
<
1,5
1,5
V
Fall time
IC = 5 A; IB 1 = 1 A; - IB2 = 2 A
tf
typo
0,3
0,4
fJS
Dimensions in mm
MECHANICAL DATA
TO-3
Collector connected to case
-- 9,5 max
-26,6 max-
-.,
.
--3,15
~
c
F
--42
......----+...._---11 -
-t 4:0
r
20,3
max
~
_1
-J!_12,8_
--10,9-7Z69700
11,2
For mounting instructions and accessories, see section Accessories
February 1979
I
--
HIGH-VOLTAGE TRANSISTOR
Silicon n-p-n transistor in TO-126 plastic envelope intended for use as a driver for line output transistors
in colour tv receivers.
QUICK REFERENCE DATA
Collector-base voltage (open emitter)
VCBO
max.
300
Collector-emitter voltC!ge (open base)
VCEO
max.
250
V
300
rnA
Total power dissipation up to T mb = 90 °C
ICM
Ptot
max.
max.
6
Junction temperature
Tj
max.
150
hFE
typo
45
ts
typo
0.5
Collector current (peak value)
D.C. current gain
IC = 20 rnA; VCE = 10 V
Storage time
MECHANICAL DATA
V
W
°C
jJ.s
Dimensions in mm
Fig.1 TO-126 (SOT-32)
Collector connected to
mounting base
7.8 max
--
·I~! 1
~
E
;:
I-'--~I~)~ -.: ~
L-.r.[r--1]
_.
--c-.j
J
iil
1.2
j
e
i. 4.58 .i
_ max
o.88
1-
c· b'
-4-
U
229
~I•
?Z59n4
(1) Within this region the cross-section of the leads is uncontrolled
See also chapters Mounting Instructions and Accessories.
March 1979
_B_F41_9
_)l_____________
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-base voltage (open emitter)
Collector-emitter voltage (RBE ~ 1 kU)
Collector-emitter voltage (opEm base)
. VCBO
max.
300
V
VCER
max.
300
V
250
V
VCEo.
max.
Emitter-base voltage (open collector)
VEBO
max.
5
Collector current (continuous)
IC
max.
100
Collector current (peak value) *
ICM
max.
300
Ptot
Ptot
max.
6
max.
0.8
Total power dissipation up to T mb =90 °c
up to T amb = 70 °c
Storage temperature
T stg
Operating junction temperature
Tj
-65 to +150
max.
150
V
mA
mA
W
W
oc
°c
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
From junction to ambient
Rth j-a
10
oCIW
100
°C/W
---
* Precautions should be taken during switch-on of the BF419 where an overshoot of current is likely
to occur. The amplitude of the overshoot depends on the relative magnitude of stray external
capacities to the transistor collector capacity. It is desirable to keep the stray capacities to a minimum
by short lead lengths etc. so as to minimise the area of the switching path.
2
Mareh 1979
~
r
~~
___H_i_9h_.V_o_lt_ag_e_tr_a_ns_is_to_r______________________________
_______B_F_4_1_9_______
CHARACTERISTICS
Tj = 25 0C
Collector cut-off current
IE=0;VCB=250V
ICBO
<
50
nA
Emitter cut-off current
IC = 0; VEB = 3 V
lEBO
<
50
nA
D.C. current gain
I C = 20 mA; V CE = 10 V
hFE
typo
45
Collector-emitter saturation voltage
Ie = 200 mA; I B = 20 mA *
VCEsat
<
11
V
Collector output capacitance at f =.1 MHz
IE = 0; V CB =30 V
CTc
<
4.5
pF
Storage time
(in the typical circuit belowl
ts
typo
0.5
J1.s
* The BF419 is controlled to V CEsat max. 11.0 V and is thermally stable under all operating
conditions where Tj max of 150 oC is not exceeded. For the typical circuit shown below, a heatsink
is not required for operation with T amb';;;; 70 °C.
- - - -.......---~,GOV
E
TBA920
TBA2S90
08248
Fig.2 Typical circuit.
RB is chosen so that the end-of~scan base current for the BU208A is 1.4 A under nominal
conditions. Typical value of RB is 0.5 n plus 0.1 n lead resistance.
March 1979
3
_)l"'---_______
__
BF41_9
08249
Ie
6
I "
ICM max
J II
-'-
Repetitive pulse operation
(mA)
=0.01
"- ~ ~ ,~
5ms
10.
" "-,
""
50
'"
200
~
~ ~~
i emax
~~
Second ~
breakdown
(independent of
temperature
tp =
5ps
~" r'~"
I'
Tmb ~ 90 °C
20
30
\Y\.I\
100
~~
~ 500
d.c.
10
"
1
1
10
F ig.3 Safe Operating. AReas with the transistor forward biased.
---
08250
J1SL
Zth j-mb
(Oe/W)
10
~-J
6 =1
I
~Oi75
--
----~
~0.5
~0.33-r-
f--O~2--
~0:1-
.......
....
... 1-
--- _
_r"
....
i=:::!
~~
~
....
~ :::;;r:~ ...
~
....
~
'"
I
r-
~
~
0.05
~,
.-'J,. ~ "~~ :"0...'-.
0.02
;/"
0.01
0
10
4
......
~
r
1
Mareh 1979
10 2
Fig. 4.
tp (jJs)
S=t
~llli
~~_~
___H_i9_h_.v_o_lta_ge_t_ra_n_si_u_or______________________________
____B_F_4_19
_______
08251
S.B. voltage multiplying factor at the Ie max level
;;~.01
0.02
~0.05
10
~0.1
" ~
Fl.::: r--.
~
~~
.........
.......
!-.....
~
~ r-- r-- r-... ~~ r=::~
-
t:::. 0.5
0.75
r-r-.
r- .... 1- !'-or-I'--r-I'-
1.0
1
~~
=-
F==:
10
Fig. 5.
08252
S.B.current multiplying factor at the VCEOmax level
~.Ol
0.02
~""'" bJ·05
0.1
10
-
~
-0.33
_0.5
0.75
1.0
1
10
~
~~
/
..........
-i"--....
~
""
...... ....... ~
--
~~
t--- r- ... ~ ~~
t-- t-
1' ...
I'-o-r-.
"""
,...
~~
~ t:::::::
~ r--::
,
~~
~
tp (lJs)
Fig. 6.
March 1979
5
_jl_______~___
__
BF41_9
08253
08254
I
100
~
~
P tot max
("!o)
\\
,
I
/
If'
(nAl r- VCB =250V
IE =0
.
1\
\
I
ICBO
V
V'"
\
75
\
~
\
L
~
,,
IL
'.. \
50
---Tmb(Oe)
~
-
-
-
/max
L
~
)1
-,1\
\
1\
\\\
.\
\1
Tomb (Oe)
25
II'
l/
1I
,
~
rl
a
a
100
50
T (Oe)
10
a
150
50
Fig. 7.
----
100
Tj (Oe)
150
Fig. 8.
08255
hFE
I
I
VCE =10V
Tj = 25 °e
50
,-- r.......
./
40
,
typo
~
" ,
~
I'
~
~
30
~
./
./
L
I'
'\.
20
~
-"
'\.
~
~
10
a
100
10
Fig. 9.
6
~~h1979~(
IC(mAl
j
BF457 to BF459
----------------------------------------------------~
SILICON PLANAR TRANSISTORS
for video output stages
N-P-N transistors in a SOT-32 plastic envelope intended for video output stages in black-and-white and
in' colou r television receivers.
QUICK REFERENCE DATA
BF457 BF458 BF459
Collector-base voltage (open emitter)
VCBO
max.
160
250
300
V
Collector-emitter voltage (open base)
VCEO
max.
160
250
300
V
300
max.
6
W
Junction temperature
ICM
Ptot
Tj
max.
max.
150
°C
D.C. current gain at Tj = 25 0C
Ic=30mA;VCE= 10V
hFE
>
26
Transition frequency
IC = 15 mA; VCE = 10 V
fT
typo
90
MHz
Feedback capacitance at f = 1 MHz
IE = 0; VCB = 30 V
Cre
<
3,5
pF
Collector current (peak value)
Total power dissipation up to T mb = 90 °C
MECHANICAL DATA
mA
Dimensions in mm
Collector connected to metal part of mounting surface
TO-126 (SOT-32)
1-
2,7 _
--'1 max
1
7,8max--'1
';5
3,2
3,0
1
11,1
+
max
I
-r
1S!3
min
e
JI.0,5
(1) Within this region the
cross-s~ction
c
---'.1
b'i"_
11_· .
0,88__
max
~
7ZS932<'.2
1__
~
of the leads is uncontrolled.
For mounting instructions see section Accessories type 56326 for non-insulated mounting and type
56333 for insulated mounting.
October 1977
BF457 to 459
·1
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltage
Collector -base I voltage (open e~itter)
Collector-emitter voltage (open base)
Emitter -base voltage (open collector)
VCBO
VCEO
VEBO.
BF457
BF458
BF459
160
250
300
max.
160
250
300
V
max.
5
5
5
V
max.
V
------~~----~
Current
Collector current (d. c. )
IC
max.
100
rnA
Collector current (peak value)
ICM
max.
300
rnA
Base cu:trent (d. c.)
IB
- max.
50
rnA
max.
6
W
-55 to +150
°c
150
°C
104
°C!W
10
°C/W
Power dissipation
Total po~er dissipation up to Tmb = 90°C
Ptot
Temperature
Storage temperature
T stg
Junction temperature
Tj
max.
THERMAL RESISTANCE
From junction to ambient
From junction to mounting base
2
II
Rth j-a
Rth j-mb
II
November 1972
BF457 to 459
CHARACTERISTICS
Tj
=
25
°c
unless otherwise specified
Collector cut -off current
. IE
= 0; VCB = 109 V for BF457
IE = 0; VCB
= 200 V for
IE = 0; V CB
= 250 V for BF459
BF458
<
50
nA
<
50
nA
>
26
Emitter cut -off current
IC = 0; VEB = 3 V
D. C. current gain
IC = 30 rnA; VC E = 10 V
Collector -emitter saturation
vol~age
<
IC = 30 rnA; IB = 6 rnA
High frequency knee voltage at Tj = 150
IC
= 50
rnA
V
°c
VCEK
typo
15
V
The hIgh frequency knee voltage of a transistor is that value of the collector-emitter
voltage at which the small signal gain, measured in a practical circuit, has dropped to
80% of the gain at VCE = 50 V. A further reduction of the collector -em itter volt:lge resuIts in a rapid increase of the distortion of the signal.
Transition frequency at f = 100 MHz
IC = 15 rnA; VCE = 10 V
90
fT
typo
MHz
Cre
<
:-3,5
pF
C oe
<
4,5
pF
Feedback capacitance at f = 1 MHz
IE = 0; VCB = 30 V
Output capacitance at f = 1 MHz
IE =O;VCB =30V
February 1974
---
II
BF457 to 459
II
7Z670681
I
I IL
ICMrnax
IC
I
I
16 = 0,01
I
I
I
tl~
I II
I.~ "-
IIIIIIIII
(rnA) r- repetitive pulse operation
i"I
J slrnls~ \1\
\\
I
.1
ICrnax
second
I.
breakdown
(independent of
temperature)
~I'\I" ~,
" 5 fJs
~0,
" '\ 19,
r'\~
\. '\ r'\ '\ 20
i\
I
0\
~ r--~
I/')
'
50
Transition frequency
. IC = 10 mA; VCE = 10 V
>
60
MHz
Feedback capacitance at f = 0,5 MHz
IE=0;VCB=30V'
<
1,8
pF
MECHANICAL DATA
Dimensions inmm
Fig. 1 TO-126 (SOT-32).
Collector connected
to mounting base
r-
a
-~~
+
3,2
3,0
Ts(
11,1
i
.+
-n--[ -[]r-,
7,smax--,
max
L..rr--tIr---Tr--1
~~~11l
15.3
min
For mounting instructions
see Handbook section Accessories
type 56326 for direct mounting
type 56333 for insulated mounting
types 56353 and 56354 for direct and insulated clip mounting.
e
JI.0,5
max
t
b'f"-----'-
C
0.8s-Jl_ ,. ,
=.l
7Z59324.2
I~
~
January 1979
-.:::z:
BF469
BF471
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BF469
BF471
Collector-base voltage (open emitter)
VCBO
max.
250
300 V
Collector-emitter voltage
RBE = 2,7 kn
open base
VCER
VCEO
max.
max.
250
300 V
V
Emitter-base voltage (open collector)
VEBO
max.
5
Collector current (d.c.)
IC
max.
50
Collector current (peak value)
ICM
Ptot
T stg
max.
100
mA
max.
1,8
W
Tj
max.
Total power dissipation up to T mb = 114 °C *
Storage temperatu re
Junction temperature
V
mA
-65 to + 150 °C
150
°C
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
From junction to ambient in free air *
Rth j-a
20
oC/W
100
°C/W
,* Transistor mounted on a printed-circuit board, maximum lead length 4 mm, mounting pad for
collector lead minimum 10 mm x 10 mm.
2
January 1979
(
BF469
BF471
Silicon planar epitaxial transistors
CHARACTE R ISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE = 0; V CB = 200 V
RBE = 2,7 kn; VCE = 200 V; Tj =150 °C
ICBO
ICER
<,
<
10
10
nA
p,A
Emitter cut-off current
IC= 0; VEB = 5V
lEBO
<
10
p,A
D.C. current gain
IC = 25 mA; VCE = 20 V
hFE
>
50
High-frequency knee voltage at Tj = 150 0C*
IC = 25 mA
.
VCEK
typo
20
V
Transistion frequency
IC = 10 mA; V CE = 10 V
fT
>
60
MHz
Feedback capacitance at f = 0,5 MHz
IE=0;VCB=30V
ere
<
1,~
pF
Feedback time constant at f = 10,7 MHz**
-IE = 10 mA; VeB = 20 V
rbb'Cb'c
<
90
ps
-----
* The high-frequency knee voltage of a transistor is that value of the collector-emitter voltage at
which the small-signal gain, measured in a practical circuit, has dropped to 80% of the gain at
VCE=50V.
A further reduction of the collector-emitter voltage results in a rapid increase of the distortion of
the signal.
**
rbb
-z;-.I
'e' -'hrb
bc-
'I (January
1979
3
BF469
BF471
7Z78609
IC
(mA)
0=0,01
ICMmax
/
"'
1'- '-
ICmax
"
""'-."'-"""
''\..
" I'\..
"'- "l2)
"~ - tp =
r\..'\..
""." ~ " """" J
"n_~",~-1O
~~
.
't'\"
~~
(1)
I
10
-1
10
511s
~
" ~'\" ,,~g
~ ~ :;~g
"
200
:\ ...... 500
1 ms
~
--5
"d.c.
VCE(V)
Fig. 2 Safe Operating ARea at T mb = 114 °C.
I
Region of permissible d.c. operation.
II
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second breakdown limits (independent of temperature).
4
Janua~
1979
~
r
BF469
BF471
Silicon planar expitaxial transistors
7Z78606
200
I I I I
18 =30mA
V
IC
(mA)
L..•••
I-"
-
~
I---" I---"
25mA
II'"
~
~
100
V-
-
II'"
-
20mA
-I--
I-" ......
-I---" I- ~"'"
l-o ~ ~
15mA
-~ l~
l -I-- 1--"'"
o
i""'"
~~
o
-10
I..-
lOmA
,...
L-
5mA
,...
I..- i -
-I---" ~
~
10
20
30
40
50
VCE (V)
Fig. 3 Tj = 25°C.
7Z78608
50
t
8 =1,0
20
10
t---
,th j-mb
°C/W)
-
~
0,5
0,2
~ l -I-....
"'"
--QI~ I--"~~
~F'
f---
-
el::<
~~
~
~ ~'02
0,01
0
JLJL
-Itpl- I tp
10- 1
10- 6
--T-
8=-
T
10- 4
Fig. 4.
i(
January 1979
5
BF469
BF471
7Z78599
150
II
,,
I
I
I
IC
(mA)
0,8
VBe
ty~1 ~t max
V BE
100
I
I
I
I'
II
7Z78596
(V)
"' '-
0,7
"
1
J
~
~
0,6
I
..... ~yp
I.
..........
I
50
,
,
1
....... .....
If
0,5
/
1/
J
'/
"
o
0,8
0,6
VBE(V)
1,0
Fig. 5 VCE = 20 V; Tj = 25°C.
0.4
o
50
100
150
Tamb (OC),
'Fig.6 IC
= 25 mA; VCE = 20 V.
Fig. 7 IE
= 0; f = 1MHz; Tj =25°C.
7Z78595
3
1\
1,
~
J
Cre
(pF)
\
\
1\
1
\
2
[\
~
"' max
I.......
"- - -
\
\
,
~ ~yp
...... r--.,
r-. .....
1
6
o
r--. .....
10
Janua~1979 ~
(
BF469
BF471
Silicon planar epitaxial transistors
7Z78603
200
7Z78601
fT
(MHz)
150
V CE =
)'"
V
/
V' V
100
typ
~20V
/
I"..ooroo"
\
...... ~
min
\
V
-
-, '
""'"
\
l't.
.
'\
~
.......
\
.....,./
i'o.
~\
10V\
~
10
,
50
i
o
1
10
Ie (mA)
Fig. 8 fM = 35 MHz; Tamb = 25
10
2
ac.
I
I
1
1
10
Fig. 9 V~E '" 20 V; Tamb = 25
ac.
72:78605
rCBa
~
1/
(nA)
I
max
I
t
V
~
)
I
,
,
10
IL
wry
1/
V
,
V
1
o
/
50
Fig. 10 VCB = 200 V._
100 T. (DC) 150
J
January 1979
7
_ _ _J
BF470
BF472
SILICON PLANAR EPITAXIAL TRANSISTORS
P-N-P transistors in a plastic envelope intended for class-B video output stages in television receivers
and for high-voltage Lt. output stages.
N-P-N complements are BF469 and BF471 respectively.
QUICK REFERENCE DATA
BF470
Collector-base voltage (open emitter)
Collector-emitter voltage
open base
RBE = 2,7 kn
. -VCBO
max. 250
-VCEO
max. 250
-VCER
max.
BF472
300 V
V
300 V
Collector current (peak value)
-ICM
max.
100
Total power di"ssipation up to T mb = 114 °C
Ptot
max.
1,8
W
Junction temperature
Tj
max.
150
°C
mA
D.C. current gain
-IC = 25 mA; -VCE = 20 V
>
50
Transition frequency
-IC = 10 mA; -VCE = 10 V
>
60
MHz
Feedback capacitance at f = 0,5 MHz
IE == 0; -VCB = 30 V
<
1,8
pF
MECHANICAL DATA
Dimensions in mm
Fig. 1 TO-126 (SOT-32).
1"-
2
-'1 max
,7 ,,1
Collector connected
to mounting base.
7,8 max
--I
_~. ~3j51
3,2
~
3,0
+
11,1
I
max
'--n--t!r--rr-'_l
r
15,3
min
e
For mounting instructions
see Handbook section Accessories
--I 14,581
type 56326 for direct mounting
type 56333 for insulated mounting
types 56353 and 56354 for direct and insulated clip mounting.
1
..-
-.11..0,5
0,88__
max
c
1
b ,+,' - - - - - - - - ' -
11..-, ,
~
7Z59324.2
1_ _
~
I
January 1979
-
BF470
BF472
l _ ._ - - : - - -
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
BF470
BF472
Collector-base voltage (open emitter)
-:-VCBO
max. 250
300 V
Collector-emitter voltage
RBE = 2,7 kn
open base
-VCER
-VCEO
max.
max. 250
300 V
V
Emitter-base voltage (open collector)
-VEBO
max.
5
Collector current (d.c.)
-IC
max.
50
-ICM
Ptot
max.
100
mA.
max.
1,8
W
T stg
Tj
max.
Collector current (peak value)
Total power dissipation up to T mb
= 114 oC
Storage temperature
Junction temperature
*
V
mA
-65 to + 150
°C
150
°C
20
100
oC/W
°C/W
THERMAL RESISTANCE
From junction to mounting base
From junction to ambient in free air *
Rthj-mb
Rth j-a
--
* Transistor mounted ona printed-circuit board, maximum lead length 4 mm; mounting pad for
(
1
collector lead minimum 10 mm x 10 mm.
2,
J.nua~ 1979
BF470
BF472
Silicon planar epitaxial transistors
CHARACTERISTICS
Tj = 25 °C unless otherwise specified
Collector cut-off current
IE=0;-VCB=200V
RBE = 2,7 k.Q; -VCE = 200 V; Tj = 150 °C
--ICBO
-ICER
<
<
10
10
nA
/-l-A
Emitter cut-off current
IC=0;-VEB=5V
-lEBO
<
10
/-l-A
D.C. current gain
-IC = 25 mA; -VCE = 20 V
hFE
>
50
High-frequency knee voltage at Tj = 150 °C*
-IC=25mA
-VCEK
typo
20
V
Transition frequency
-IC = 10 mA; -VCE = 10 V
fT
>
60
MHz
Feedback capacitance at f = 0,5 MHz
IE=0;-VCB=30V
Cre
<
1,8
pF
Feedback time constant at f = 10,7 MHz**
IE =10 mA; -VCB = 20 V
rbb,Cb,c
<
90
ps
--
--
*
*-K
The high-frequency knee voltage of a transistor is that value of the collector-emitter voltage at
which the small-signal gain, measured in a practical circuit, has dropped to 80% of the gain at
-VCE = 50 V. A further reduction of the collector-emitter voltage results in a rapid increase of
the distortion of the signal.
rbb
'c'
Jhrbl
bc--'
.
w
January 1979
3
l:________--------
BF470
BF472
7Z78609
_IC
(mA)
-
0=0,01
ICMmax
A
/
"'''" "'" "
~ICmax
"'""""",-""- :::....
"
'" I'- "" ""'"
'" ~ (~2)t-r- tp=
I'\.
~~
~
~
" II '"""
,~"
~~ ~
(1)
I
~ 5 IlS
J
"'"~~ -10
~",,<:::~g
~ " '1~~
200
~ /500
10
~
1 ms
--5
'q.c.
---1
10
_ VCE (V)
Fig. 2 Safe Operating AReaat T mb = 114 oC.
Regiol') of permissible d.c. operation.
II Permissible extension for repetitive pulse operation.
(1) Ptot max and Ptot peak max lines.
: (2) Second breakdown limits (independent of temperature).
4
Janua~
'979
I(
BF470
BF472
Silicon planar epitaxial transistors
7Z78607
200
-IC
.- .......
7' ....... .......
.......
r
_
100
if""
~
~
1/
,
o
~
-~
~~
I-
L..- I- ~
~~
-~
o
-10
~
~,......
~
~
~i""
- -----~
~
~
....-
-~ ~-
IS=30mA
25mA I-- --20mA :..- ~
-"",~I-
----------- ----------- -I - ~ I-
(mA)
;:;;;Ii""
1-I -~
10
L..- I - ~
20
~ I--
'5~
--
TT
~
I
5m~
' - .....
40
30
50
...... VCE(V)
Fig. 3 Tj = 25 °C.
7Z78608
50
--- -
0=1,0
20
0,5
10
f--f---
-
0,2
~ i-"'" ~ .... I---
()~ :;:::::1-::
~..
---
~I:I'<:
~~
~
./
~ ~,02
0,01
0
SLSL
-Itpl- I tp
---T-
10- 5
10- 4
10- 3
tp
[j=-
T
(5)
10- 2
Fig. 4.
I
January 1979
5
l
BF470
BF472
7Z78598
150
7Z78697
I
I
I
-IC
(rnA)
-'
II
II
,
I
0,8
VBE
(V)
I
0,7
100
I
If
......
I
~
tyPj r-- 7 max
VBe
J
v
1/
I"- ...!yp
-:--r-.~
0,6
~
r-.
J
50
I
v
If
Ii
1/
1/
1.,-
IJ
~.
-'
0,5
"
.~
a
0,4
0,6
0,8
-VBE (V)
1,0
a
50
100
150
Tamb (oC)
Fig. 5 -VCE = 20 V; Tj = 25°C.
--
Fig. 6 -VCE= 20 V; -IC = 25 rnA.
7Z78594
1\
4
,
I'
\ ~
\1\
,
Cre
,"
~
(pF)
\.
~. ..... max
"
2
...
....
~
-~
.......
ty~ .....
~
a
6
a
10
20
....
.-...... 1"'--
,-NCB (V)
30
BF470
BF472
Silicon planar epitaxial transistors
7Z78602
200
7Z78600
150
~
--
-VCE=
~OV
.".1--'"
100
./
'tI"
f'\.
L,...olo-'
~
,
\ \
/
10V\
\
\
,
50
o
1
10
Fig. 8 fM
\
....-
typ
r--..
min
~
ll.
1\
~,
I,~
,
10
\
10 2
-IC (mA)
= 35 MHz; Tamb = 25 oc.
1
1
10
-IC (mA)
10 2
Fig. 9 -VCE::; 20 V; Tamb::; 25 0C.
7Z78604
-ICBO
1/
(nA)
/
max
./
~
I
't
V
,
~
tyo/
I'
~
10
i'
l,.I
,
V
1
V
o
50
Fig. 10 -VCB
= 200 V.
100 T. (oC) 150
J
January 1979
7
I"
I
J[
MAINTENANCE TYPE
------------------------------------------------------
BU126
'---------------------
SILICON DIFFUSED POWER TRANSISTOR
High voltage, high speed switching n-p-n power transistor intended for use in the switched mode
power supply of 900 and 1100 colour television receivers.
QUICK REFERENCE DATA
Collector-emitter voltage (VBE = 0) (peak value)
VCESM
max.
750.V
Collector current (peak value)
'CM
max.
6 A
Total power dissipation up to
Tmb = 50 0 C·
Ptot
max.
30 W
VCEsat
<
10 V
tf
typo
Collector-emitter saturation voltage
'C= 2,5 A; 'B=0,25A
Fall time
'CM = 2,5 A; 'B(end) = 0,25 A
MECHANICAL DATA
0,15
jJ.S
Dimensions in mm
Collector connected to case.
TO-3
-26,6maxc
t
t 1,0
1_12,8_
'-10,9-7Z69700
4-
11,2
For mounting instructions and accessories, see section Accessories.
February 1979
-/I
MAINTENANCE TYPE
II
BU133
SILICON DIFFUSED POWER TRANSISTOR
High voltage n -p -n power transistor intended for general purpose applications.
QUICK REFERENCE DATA
Collector-emitter voltage (VBE = 0) (peak value)
VCESM
max.
750
V
Collector current (peak value)
ICM
max.
6
A
Total power dissipation up to
Tmb = 50 °C
Ptot
max.
30
W
Collector -emitter saturation voltage
IC = 2.5 A; IB = 0.25 A
VCE sat
<
10
V
tf
typo
0.5
Il s
Fall time
ICM = 2.5 A; IBI
= -IB2 = 0.5
A; VCC
= 125 V
Dimensions in mm
MECHANICAL DATA
F
--I
Collector connected to case
-- 9,5 max
TO-3
-26,6max-
-4--
;--,
c
39.5 301
--42
.---+_---tl -
r 1t
-t 4:0
t
~
20,3
max
~
_1
11-,--'
. --10.9--
7269700
.....JI_12.8_
11,2
For mounting instructions and accessories, see section Accessories.
February 1979
.
3.15
II
---
II
II
BU204 to 206
SILICON DIFFUSED POWER TRANSISTORS
High-voltage, high-speed switching n-p-n transistors in a metal envelope intended for use
in horizontal deflection circuits of television receivers.
QUICK REFERENCE DATA
BU204 BU205
Collector -emitter voltage (VBE = 0,
peak value)
BU206
VCESM max.
1300
1500
1700
V
IC
max.
2,5
2,5
2,5
A
Total power dissipation up to
Tmb = 90 6C
Ptot
max.
10
10
10
D. C. current gain
IC = 2 A; V CE = 5 V
hFE
>
2
2
1,8
Fall time
ICM = 2 A; IB(end) = 1 A
tf
typo
0,75
0,75
0, 75
Collector current (d. c. )
MECHANICAL DATA
TO-3
Collector connected
to case
--. 9,5 max
-26,6max~
. . . .1
.
39,5 301
max
---3,15
~
+
- -4.,2
.-----+_--11 -
r ,19
F
-t 4.,0
I
~
20,3
max
.!.---J
_ 1' -
--10,9-1269700
L.......J1_12,8_
11,2
For mounting instructions and accessories see section Accessories.
September 1975
W
\..Is
--
BU204 to' 206
II
"
RATINGS Limiting values in accordance witp the Absolute Maximum System (IECI34)
Voltage
BU204
BU205· BU206
Collector -emitter voltage
(VBE = 0, peak value)
VCESM
max.
1300
1500
1700
V
Collector -emitter voltage
(RBE ~ 100 Q, peak value)
VCERM
max.
1300
1500
1700
V
Collector -emitter voltage (open base)
VCEO
max.
600
700
800
V
Collector current (d. c.)
IC
max.
Collector current (peak value)
ICM
Current
2,5
A
max.
3
A
IBM
max.
2,5
A
Reverse base current (d. c. or
ave,rage over any 20 ms period)
-IB(AV)
max.
100
rnA
Reverse base current (peak value)1)
-IBM
max.
1,5
A
Ptot
max.
10
W
-65 to +115
Base current (peak value)
Power dissipation
Total power dissipation up to
Tmb = 90 °c
---
Temperature
max.
115
°c
°c
Rth j-mb max.
2,5
°c/w
Storage temperature
T stg
Junction temperature
Tj
THERMAL RESISTANCE
From junction to mounting base
1) Turn -off c urr ent.
2
II
II
June 1972
II
Tj
CHARACTERISTICS
= 25 °c
BU204 to 206
unless otherwise specified
Collector cut-off current
VBE
= 0;
<
VCE == VCESMmax
D. C. current gain
IC
= 2 A;
VCE
rnA
BU204
=5 V
BU205
BU206
>
2
2
1,8
Emitter -base voltage
= 0;
IE == 10 rnA
+VEBO
>
5
5
5
V
IC == 0; IE == 100 rnA
+V EBO
typo
7
7
7
V
VCEsat
<
5
5
VCEsat
<
VBEsat
<
VBEsat
<
IC
Saturation voltage
Ie = 2 A; IB = 1 A
IC == 2 A; 18
= 1, 1 A
IC == 2 A; 18 = 1 A
IC
= 2 A; 18 = 1, 1 A
1,5
V
5
V
1,5
V
800
V
1,5
Collector -emitter sustaining voltage
IB
= 0;
IC == 100 rnA; L
= 25 mH
VCEOsust>
600
700
I
+6V
250r-----________
200
Ie
[mAl
100
oscilloscope
vert ..
o ~----------------~~-V
IV)
CEO
7Z62340
30-60Hz
1n
7Z62752
Oscilloscope display for VCEO$ust
June 1972
II
Test circuit for VCEOsust
3
BU204 to 206
II
II
CHARACTERISTICS (continued)
Tj ::: 25
°c unless
otherwise specified
Transition frequency at f ::: 5 MHz
IC ::: 0,1 A; VCE
=5
V
typo
7,5
typo
65
pF
Fall time
typo
0, 75
f-ls
Storage time
typo
10
jJs
Collector capacitance at f :.::
IE
= Ie = 0;
VCB
r
MHz
MHz
= 10 V
Switching times (in horizontal deflection circuit)
ICM
= 2 A;
IB(end) ::: 1 A; LB
= 25
jJH
ic
----
4
II
September 1975
II
BU204 to 206
I
7Z62739
BU204
Tmb < 90 °c
~.
10
Ic~mlax
f--<5
0,01
~,
ICmax
~
-" ~"
" ~ f\ "'"r"- ~ ~ ~~
,
~
~~
(5)°0 ~t\
"-
,,"-
"'Ii' "-
~Q' '-t\
~"",
-6"'(5)"
~.f.
QQ
~¢ ~
""
I,
'!; ~"
. "'~
I
I'~
tp
/l\-ls
/21
5
10
20
50
1-100
f- 200
500
lms::
2
5
/ld
IL
V d .c .
I~~~ 1
10
10 3 V CE (V) 10 4
Safe Operation Area with the transistor forward biased.
I Region of permissible d. c. operation.
II Permissible extension for repetitive pulse operation.
III Repetitive pulse operation in this region is allowable,
provided RBE :;; 100 Q; tp_:;; 20 \-ls; <5 :;; 0,25.
Note
Information on picture tube arcing is available.
1) Independent of temperature.
September 1972
5
II
BU204 to 206
II
10 3
7Z62718
BU205
T'mb<'90 °C
IC
(A)
,
~
10
0
IClvfm~x
lCmax
1
0,01
~" ~
f\
~ '1\" ~ ~ ~~
'\.
"'"
,
"'"'r\.
'\.
~(':)0 ~t-.
'"
'\..~
I~ 1'-'"
r\r\
~'~
~Q'o"~
~(':)
~
%~'"
1
~,
~ '1~
~~
tp
V Ills
2 'I
5
10
20
f-.-50
100
f-.-200
500
1ms=
2
51
,/10
jd.c.,i-
Ilwl
lO
10 3 VCE (V) lO4
Safe Operation Area with the transistor forward biased.
I Region of permissible d. c. operation.
II Permissible extension for repetitive pulse operation.
III Repetitive pulse operation in this region is allowable,
provided RBE ~ 100 Q; tp ~ 20 !-Is; {j ~ 0, 25.
Note
Information on picure tube arcing is available.
1)
Indepen~ent
6
of temperature.
II
September 1972
II
II
BU204 to 206
7Z62737
BU206
Tmb < 90
°c
10
ICmax
1
0,01
{)
ICl'1m ,ax
~" ~ ~
"\. 1"\.1"
1\
~1\ ,
~ ~ ~~
"'\. '\.1'\
"'
~[\.
;'\. 11' r\
~0 ~~
~ ,,~
r\
Q'o ro...
<-~
'"'f\.
~
% ~
,
"-
~ ~ ~"
'I:~
I
"'~
tp r/1 fls
2
5
10
1--20
- 50
_100
_200
500
1ms=
2_
/ 5I
110
~d.C.
ulI! 1
10
10 3 V CE (V) 10 4
Safe Operating Area with the transistor forward biased.
I Region of permissible d. c. operation.
II Permissible extension-for repetitive pulse operation;
III Repetitive pulse operation in this region is allowable,
provided RBE $ 100 Q; tp $ 20 fls; 0 $ 0, 25.
Note
Information on picture tube arcing is available.
1) Independent of temperature.
September 1972
7
i
BU204 to 206
Ii
7Z 62409
10
Zthj-mb
(Oe/w)
-0 =1.0
;;;;::== ~O:~p
1
-
-==
-
~0:2h
f--
0;10
-
0.05
~
.-""
_1--'--
~
- -::::
..........
--=- 0.02
-
-I-
~
-
0.5
:;;;;;;;;;; ~0.33
.....
~
~:::
~01
JLJL
~j
tp
0=-
T
10
7Z62411
S.B. voltage multiplying factor at the
Ie max level
I I
MSB(l)
o =~~011
.....
r----:- 0.02
I
.........
I J
1
6.05
tlOl
10
I
0.33
0.75
I
~
~ ~.
.........
i---
I'
.....-:
.....
I"
..... r---r-.
~
"'1"-
~
~ ~ ~~
r-=:::: --.:
r-~
I
10
1
8
~
.... r-.
r- 1-1"-
0.50
1
r-.
--
-0.20
I
--......
I
II
II
June 1912
BU204 to 206
II
7262410
S.B. current mUltiplying factor at the VCEO max level
I I
MSB(V)
o
=~.Oll
"'""-
r--0.02
I
......
I
I I
-~ ......
~,
b.lol
r-......... ~ ~~
1
10
"
6.05
"
~
~0.20
r--b.33
-to-..
I"""
I'
1
r1""-1- -r-
0.50
I
~~
~ .....;;
§:: ;::~~
r--... -...::
6.75'
1
t'\..
~
I
10
1
7262736
--+
I
---
10
-~
... ~
-
typ
'"'
VCE=5V
Tj = 25°C
~
"
I\..
"
"
1
June 1972
II
10
IC (A)
9
II
BU204 to 206
II
7Z 62740
750
7Z62741
1250
II
I
VeEsat (mV)
I---
0
VBEsat r--- Tj=25 e
Ie
(mV)
I---- -=2
IB
Tj=25 0 e
Ie
-=2
IB
-
500
~
1000
/
-
".
typ
)1
J
yV
/
typ /
250
/
V
750
/
,., . . . V
I;
",,;
~
~
Ie (A)
10 .
500
10- 1
1
Ie (A)
10
--
'10
II
II
June 1972
_ _ _ _J
BU207A
BU209A
SILICON DIFFUSED POWER TRANSISTORS
High-voltage, high-speed switching n-p-n transistors in a metal envelope intended for use in horizontal
deflection circuits of colour television receivers.
QUICK REFERENCE DATA
Collector-emitter voltage (VBE = 0,
peak value)
BU207 A
BU209A
V CESM
max.
1500
1700
V
Collector current (d.c.)
IC
-max.
5
4
A
Total power dissipation up to
T mb=95 0 C
Ptot
max.
12,5
12,5
W
Collector-emitter saturation voltage
IC=4,5A; IB=2A
VCEsat
<
<
5
-,
V
5
V
IC =
3 A;
IB = 1,3 A
VCEsat
Fall time
ICM = 4,5 A; IB(end) = 1,8 A
typo
ICM = 3 A; IB(end) = 1,3 A
typo
0,9
jJ.s
0,7
MECHANICAL DATA
jJ.S
-
Dimensions in mm
TO-3
Collector connected to case.
-- 9,5 max ~
--I
I
~
c
I
.
-4-3,15
--42
-r---+.---II -
-t 4:0
i
16,9
1
20,3
max
39,S 301
lj~'
-----t 1,0
LL
'-'1..-12,8_
--10,9-7Z69700
11,2
See also chapters Mounting instructions and Accessories.
February 1979
1
BU207A
BU209A
l______
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Collector-emitter voltage
(VBE = 0, peak value)
VCESM
Collector-emitter voltage
(RBE";;; 100 n, peak value)
BU207A
BU209A
max.
1500
1700
V
VCERM
max.
1500
1700
V
Collector-emitter voltage (open base)
VCEO
max.
600
800
V
Collector current (d,c.)
IC
max.
5
4
A
Collector current (peak value)
ICM
max.
7,5
6
A
Base current (peak value)
4
4
A
IBM
max.
Reverse base current (d.C. or
average over any 20 ms period)
-IB(AV)
max.
100
mA
Reverse base current (peak value)*
-IBM
max.
3,5
A
Ptot
T stg
max.
Storage temperature
Junction temperature
Tj
max.
Total power dissipation up to
T mb = 95 °C
12,5
W
-65 to + 115
°C
115
°C
1,6
°C/W
THERMAL RESISTANCE
From junction to mounting base
---
* Turn-off current.
2
February 1979
(
Rth j-mb
BU207A
BU209A
Silicon diffused power transistors
CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
V8E = 0; VCE = VCESMmax
D.C. current gain
IC = 4,5 A; VCE
<
ICES
1,0
BU207A
mA
8U209A
=5 V
hFE
hFE
>
>
2,25
IC=3,OA;VCE=5V
+VE80
>
5
5
V
+VE80
typo
7
7
V
VCEsat
5
Emitter-base voltage
IC = 0; IE = 10 mA
IC=O; 'E
= 100mA
Saturation voltage
IC = 4,5 A; 18 = 2 A
IC=3,OA; 18= 1,3A
VCEsat
IC=4,5A;18=2A
V8Esat
IC=3,OA; 18= 1,3A
V8Esat
<
<
<
<
VCEOsust
>
Collector-emitter sustaining voltage
18=0; IC= 100mA; L=25mH
2,25
V
5
V
1,5
V
800
V
1,5
600
+6V
--9
2 5 0 , -_ _ _ __
200
Ic
(mAl
100
o ~--------~------~~VCEO (V)
Oscilloscope display for VCEOsust.
30-60Hz
7Z 62340
Test circuit for VCEOsust.
February 1979
3
l____
BU207A
BU209A
CHARACTER ISTICS (continued)
Tj = 25 °C unlessotherlivise specified
Transition ft:equency at f = 5 MHz
IC=0,1 A;VCE=5V
fT
typo
7.
Collector capacitance at f = 1 MHz
IE = le= 0; VCB = 10 V
Cc
typo
125
tf
typo
Switching times (in line deflection circuit)
LB=10pH
ICM = 4,5 A; IB(end) = 1,8 A
= 3,0 A;
IB(end) = 1,3 A
tf
typo
ICM = 4,5 A; IB(end) = 1,8 A
ts
typo
ICM = 3,0 A; IB(end) = 1,3 A
ts
typo
ICM
ic
4
BU207A
February 1979
r
MHz
pF
BU209A
ps
0,9
0,7
ps
10
ps
10
IJ.s
BU207A
BU209A
Silicon diffused power transistors
10 3
7Z62735
BU207A
Tmb< 95 oC
IC
(A)
10
ICMmax
0=0,01
......
\
~~
"'-"
I'"
"'"'-"
- I'..
l\. I\.: "r-I
ICmax
I I
I==Ptot max
....
~ "I~~
f'0 "
'"'\.
~
,,~
~ 1'\"
'\. 1,\
"~ 1\
,
°0
~Q'
%..
~
I\~
1111
20
50
100
~9°
.~~
1ms
~~
%'~I"\
~"l'\
I
tp
Ills
211
511
10
0~r'I
I'
~
----
511
10
d.c.
mj
10
10 3
V CE (V) 104
Safe Operating ARea with the transistor forward biased.
I
Region of permissible d.c. operation.
" Permissible extension for repetitive pulse operation.
III Repetitive pulse operation in this region is permissible,
provided RBE .;;;; 100 n; tp';;;; 20 IlS; 0';;;; 0,25.
Notes
Information on picture tube arcing is available.
(1) Independent of temperature.
February 1979
5
BU207A
BU209A
7Z62733
10 3
BU209A
Tmb < 95 °C
IC
(A)
ICMmax
10
I--j- I--
0=>0,01
, ",r-...
......
i' ,
~
I~
ICmax
I I
I =Ptot max
,'\.
~ r-...'
~ f\.I~~
,I\.
,
, .....,
""
::.....
"-
i'0 ~ "'1\
~O
I\.
20
50
100
200
,,\
'\. '\.
Q\~
°0~Q' ~
-6~
~
"
~Q:"
----
I
\
II500
lms
"\
0\''''
=
tp
11l s2
5
~,
~
5
10
d.c.
II
11
III
I
10
1
10 3
VCE (V) 104
Safe Operating ARea with the transistor forward biased.
I, Region of permissible d.c. operation.
II Permissible extension for repetitive pulse operation.
III Repetitive pulse operation in this region is permissible,
provided RBE ~ 100 n; tp ~ 20 JlS; [j ~ 0,25.
Notes
Information on picture tube arcing is available.
(1) Independent oftemperature.
6
BU207A
BU209A
Silicon diffused power transistors
7258626
J1SL
-12';=J 5=~
I
IW)
0-
-
-
"
1
......,
10
-
-1
_0
~
1
~
..,.
i-'
f;:=~
"'"
~ ;"
I,...-"
-2
~~
,1
;u,. ,A
~ .....
10
---=
7Z627J2
S.B. multiplying factor at the ICmax and V CEOmax levels
'"
ll~I,L
"
III
....
.........
"~~
0,05
...... ........
~I,~o
--....... r-...... ~ ~
III
10
-
0,02
I
-
~
""'~,
~
",
0,20
..........
-b','33
r......, .....
r--.-:: "........ .......~,
0,50
r---
0,75
III
10- 2
10- 1
1
I
--
;:::~ ~~
tp (ms)
r"""
10
February 1979
7
"
··l
BU207A
BU209A
'-----------------------~--------~----------7Z58620
750
7Z58619
1250
,Ie =2
Ie
Tj =25°C
Ic =2
Ie
VCEsat
VeESQt
(mV)
Tj =25°C
(mV)
/
~
I
. 500
I
1000
)
'f
I
/
/typ
I
250
tyV
-
....... ~
;;
750
V
~i,;'
""'"
/
itt
o0,1
Ic(A)
---
10
500
0,1
10
7Z62753
-
-,
-
10
,.......
~~
I--
--1--
~
VCE=5V
. Tj=25 °c
typ
1-1"-
~
'""-
" '\
~
1
8
February 1979
(
~
IC (A)
10
Jl
------------------------------------------------------
BU208A
----------~----------
SILICON DIFFUSED POWER TRANSISTOR
High-voltage, high-speed switching n-p-n transistor in a metal envelope intended for use in horizontal
deflection circuits of colour television receivers.
QUICK REFERENCE DATA
Collector-emitter voltage (VBE = 0, peak value)
VCESM
max. 1500 V
Collector current (d.c.)
IC
max.
Total power dissipation up to T mb = 25 °C
Ptot
max.
Collector-emitter saturation voltage
IC = 4,5 A; IB = 2 A
VCEsat
<
Fall time
ICM = 4,5 A; IB(end) = 1,4 A
tf
typo
5 A
80
W
1 V
0,7 I1S
MECHANICAL DATA
Fig. 1 TO-3.
Collector connected to case .
.- - - - 26,6 max -
7Z69700
1_12,8_
, 11,2
For mounting instructions and accessories see Handbook section Accessories.
February 1979
__
BU2_0BA_J
l__~. ____________
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-emitter voltage
(VBE ='O,.peak value)
VCESM
Collector-emitter voltage
(RBE";;; 100 S1, peak value)
max.
1500.V
1500 V
700 V
VCERM
max.
Collector-emitter voltage (open base)
VCEO
max.
Collector current (d.c:)
IC
max.
Collector current (peak value)
ICM
max.
5 A
7,5 A
Collector current (non-repetitive peak)
ICSM
max.
15 A
Base current (peak value)
IBM
max.
4 A
Reverse base current (d.c. or
average over any 20 ms period)
-IB(AV)
max.
100 mA
Reverse base current (peak value) *
-IBM
max.
4 A
Total power dissipation up to T mb = 25 °C
max.
Storage temperature .
Ptot
T stg
Junction temperature
Tj
80 W
-65 to + 115 oC
115 0C
max.
Rth j-mb
max.
THERMAL RESISTANCE
From junction to mounting base
=.-E
* Turn-off current.
2
February 1979
(
1,12 OC!W
l___
S.ilicon diffused power transistor
B_U_2_0_8_A_ _
CHARACTE R ISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
VSE = 0; VCE = VCESMmax
D.C. current gain
IC = 4,5 A; VCE = 5 V
ICES
<
1,0 mA
hFE
>
2,5
Emitter-base voltage
IC = 0; IE = 10 mA
+VESO
>
5 V
IC=O; IE = 100mA
+VESO
typo
7 V
Saturation voltage
IC=4,5A;IS=2A
VCEsat
IC = 4,5 A; IS = 2 A
VSEsat
<
<
1,5 V
VCEOsust
>
700 V
Collector-emitter sustaining voltage
IS=O; IC= 100mA; L=25mH
1 V
Lr+
250r-----________
6V
hor.
200
Ic
(mAl
100
o ~----------------~~V
(V)
CEO
7Z62340
Fig. 2 Oscilloscope display for V CEOsust.
Fig. 3 Test circuit for VCEOsust.
February 1979
3
_B_U20_8A
_Jl____________
CHARACTERISTICS (continued)
Transition frequency at f = 5 MHz
IC=0,1A;VCE=5V
typo
Collector capacitance at f = 1 MHz
IE= le=O;VCB= 10V
typo
125 pF
typo
typo
0,7 J.lS
6,5 IlS
Switching times (in line deflection circuit)
LB=6Il H;-VIM=4V;
ICM = 4,5 A; IB(end) = 1,4 A
(-dIB/dt = 0,6 A/IlS)
ic
Fig. 4 Switching times.
4
February 1979
(
7 MHz
l___
Silicon diffused power transistor
B_U_2_0_8_A_ _
7Z82058
II
I
10
ICM
I-- f-II'\.
IC
IC "-
[) =
0,01
I
II
"-
IV
,
I'\. \1\ !\
r\~ \1\
(A) 1----(1)
I
,,
~ I\~
tp
lOjJs
"
""
\\
\.
\. '\. I',r\
I\i"r-,
1\\I~
'\
'I.
1\
r"I
1-20
1---50
100
1/200
1
'\ 50~
\.\. I\, I\.
\\.\ \
I
t\. r\ ~
''''~
(2)\
~-
'\
,,\
10- 1
1---
1\
~ ~
'r\.
'\
1 ms
....... v2
5
10
..... 20
d.c.
I
IV
III
II
10- 3
10
1
VCE(V)
Fig. 5 Safe Operating ARea with the transistor forward biased. T mb
< 25 0C.
I Region of permissible d.c. operation.
II Permissible extension for repetitive pulse operation.
III Repetitive pulse operation in this region is permissible,
provided RBE < 100 n; tp < 20 jJS; 0 < 0,25.
IV Transient ICN CE limit, e.g. during picture tube flashover
(less than 10 line periods);
for V CE less than 700 V then tp less than or equal to 25 jJS
for VCE greater than 700 V then tp less than 5 jJS.
Notes
1. Ptot max and Ppeak max lines.
2. Second-breakdown limits (independent of temperature).
February 1979
5
)l"",,---~_ _ _- - - -
BU20SA
7Z58620.1
. 750
1250
7Z58619I
VCEsat
.!f.
=2
Ie
VSEsat
(mV )
Tj
(mV)
=25°C
.!£ =2
Ie
Tj =2SoC
.1
1000
500
~
j
[7
/
Vtyp
'I
25 0
tyV
./
-
750
V
~
-
.~
...
~
j"..o!-'
o0,1
Ie (A)
10
500
0,1
Ic(A)
10
Fig. 7 Base-emitter saturation voltage.
Fig. 6 Collector-emitter saturation voltage.
7Z627531
-typ
10
t-
11
-
I - -~
l - i--
1--'1- I-""~
"""""I-
""
111111111111111111.
10-2
10-'
February 1979
(
" 1\
.~
\
II
1
Fig. 8 D.C. current gain. VCE= 5 V; Tj = 25 0C.
6
"-
~
IC (A)
11111
10
l__
Silicon diffused power transistor
B_U_2_0B_A_ _
APPLICATION INFORMATION - HORIZONTAL DEFLECTION CIRCUIT WITH BU208A *
In designing horizontal deflection circuits, allowance has to be made for component and operating
spreads in order not to exceed any Absolute Maximum Rating. Extensive analysis has shown that, for
the peak collector current and the collector-emitter voltage of the output transistor, the total
allowance need not be higher than 25%, and the following recommended base-drive and heatsink
conditions are based on this figure.
To simplify the presentation, the design curves given refer to nominal conditions. Where'the collector
current will be modulated by the E-W correction circuit, the average value of the peak collector current
applies provided the modulation is less than ± 10%.
To obtain a short fall time and minimum turn-off dissipation with a high-voltage transistor, the storage
time must be sufficiently long and, during turn-off, the negative base-emitter voltage must be sufficiently high. Both requirements can easily be'realized by including a small coil in lieries with the base of the
output transistor. However, to reduce base current variations, a series base resistor is also added to
most designs. This has the disadvantage of reducing the energy in the base inductance during turn-off,
which in turn reduces the negative base-emitter voltage and with large resistor values may lead to an
insufficient negative voltage for correct device turn-off. This can be improved by shunting the base
resistor by a diode and/or a capacitor. Instead of giving various detailed base circuits based on these
consid.erations, it is a more direct approach to specify the recommended -diB/dt, see Fig. 11.
+
Rr
I[
BY223
l0,'
L
~•
01
I
..J
02
7Z?3468.1
TR1
driver
Fig. 9 Simplified horizontal deflection circuit.
* Detailed Application Information is available.
February 1979
7
__
BU2_0SA_Jl________
APPLICATION INFORMATION (continued)
The maximum transistor dissipation largely depends on the tolerances in the drive conditions. The
dissipation given, in Fig. 12 allows for base current and -dlB/dt tolerances in the order of ± 20%.
The curve applies for a limit-case transistor at. a mounting base temperature of 100 0C.
The thermal resistance for the heatsink can be calculated from Rth mb-a =
100 - Tamb max
in which
Ptot max
Tamb max is the maximum ambient temperature of the transistor. In order to assure a value' of
thermal resistance at which thermal stability is ascertained, the minimum value for T amb in the above
equation is 45 °C.
r-I
is
\
t.
i
I
- - ISlendJ
f~/
\
\;
-VSE
~-VI
.----------,
1-,
I
H-T
I
L ___
L__
t ....
-VIM
---
=
""\
-ic
V>(
--iE
I I
:I
~
VeE
m'
°1
-'
Fig. 10 Funda,mental waveforms.
8
February 1979
(
)
BU208A
Silicon diffused power transistor
7Z82056
3
I I
0,7
~
I I I
If
I I I
-dlB/dt I
'B(end)
(A)
-dlB/dt
(AljJs)
J
,
2
0,5
If
J
J
If
'B(end) r--
I
0,3
1
o
Fig. 11
Nominal end value of the base current and its
rate of fall during turn-off as a function of
nominal peak collector current to obtain, for
a typical transistor, the recommended storage
time of 6,5jJs. (During the storage time and
the decay time of the collector current the
negative turn-off drive voltage (-V 1M) must
be>4V.)
0,1
1
3
'CM (A)
5
7Z82057
15
Ptot
(W)
I
T=
48J.L5
I
10
'I
J
r-t
64J.L5
I I
I
'/ 1 64,.us
1/
'I
1/ J
If J I
5
V CEM
=
1200V
1200V ~
1000V
1200V
I
o
1
I
1/
V
/
~
~
...
1/
~
I' '( J
1/
1/
,
,,, "
~
~
64p5
" ., . "" "
Fig. 12
Continuous lines are maximum values;
T mb = 100 °C; 5 = 0,18; base tolerances
± 20%.
Total dissipation of a limit-case transistor
under maximum operating conditions for
625 and 819 lines (T mb = 100 OC).
The dashed line gives the total dissipation of
a typical transistor under nominal conditions
(T mb = 50 OC).
I
3
'CM (A)
5
February 1979
9
'\
______~____________--------_____Jl_____~_~_~2_2~_A
____
SILICON DIFFUSED POWER TRANSISTORS
High-voltage, high-speed switching n-p-n power transistors in TO-3 envelopes, intended for use in the
switched-mode power supply of 900 and 1100 colour television receivers.
QUICK REFERENCE DATA
. BU326
BU326A
Collector-emitter voltage (VBE ::: 0; peak value)
VCESM
max.
800
900
Collector-emitter voltage (open base)
VCEO
max.
375
400
Collector current (d.c.)
IC
max.
ICM
Ptot
max.
8
A
max.
60
W
Collector-emitter saturation voltage
IC = 2,5 A; IB = 0,5 A
VCEsat
<
1,5
V
Fall time
ICon = 2,5 A; IBon = 0,5 A; ...:...IBoff = 1 A
tf
typo
0,3
IlS
Collector current (peak value; tp
< 2 Q'ls)'
Total power dissipation up to T mb
=
50 oC
6
MECHANICAL DATA
V
V
A
Dimensions in mm
Fig. 1 TO-3.
Collector connected to case.
-- 9,smaXF
--I
-26,6 max-
--3,15
rI
c
•
--42
.,---+_-41-
-t 4:0
r
20,3
t
max
~
1,O
_1
'-10,9-7Z69700
...-12,8_
11,2
See al,so chapters Mounting instructions and Accessories.
March 1979
l_ _ __
BU326
: BU326A
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
BU326
Collector-emitter voltage (VBE = 0; peak value)
BU326A
VCESM
max.
Collector-emitter 'voltage (open base)
VCEO
max.
Collector current (d.c.)
IC
max.
6
A
ICM
max.
8
A
2
A
Collector current (peak value; tp
< 2 ms)
Base current (d.c.)
800
900
V
375
400
V
IB
max.
Base current (peak value)
IBM
max.
3
A
Reverse base current (d.c. or average
over any 20 ms period)
-IB(AV)
max.
0,1
A
-IBM
max.
3
A
max.
60
W
Storage temperature
Ptot
T stg
-65 to + 150
°C
Junction temperature
Tj
max.
Reverse, base current (peak value; turn-off current)
Total power dissipation up to T mb = 50 0 C
150
°C
1,65
°C/W
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
CHARACTE R ISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current *
VBE = 0; VCEM= VCESMmax
--
ICES
<
<
2
mA
lEBO
<
10
mA
VCEsat
VBEsat
1,5
1,4
V
V
VCEsat
VSEsat
<
<
<
<
3
1,6
V
V
Collector-emitter sustaining voltage (see Figs 2 and 3)
I Boff = 0; IC=0,1 A; L=25mH BU326
BU326A
VCEOsust
VCEOsust
>
>
375
400
V
V
D.C. current gain
IC=0,6A;VCE=5V
hFE
typo
30
Transition frequency at f = 1 MHz
IC = 0,2 A; VCE = 10 V
fT
typo
6
VBE = 0; VCEM = VCESMmax; Tj = 125 oC
Emitter cut-off current
IC=O;VEB= 10V
Saturation voltages
IC = 2,5 A; IB = 0,5
I C = 4 A; I B = 1,25 A
r
1
* Measured with a half sine-wave voltage (curve tracer).
2
Ma~h
1979
ICES
mA
MHz
BU326
BU326A
Silicon diffused power transistors
2 5 0 r -_ _ _~
200
Ie
(mA)
100
01...--------=4-V eEO (V)
7Z62340
Fig. 2 Oscilloscope display for VCEOsust.
Fig. 3 Test circuit for VCEOsust.
tr~30ns
90
iB(OfoI
--~
- - - - - - - ---IBon
10 t--""1-----it--~--
Switching times (see Figs 4 and 5l
ICon = 2,5 A; VCC = 250 V;
ISon = 0,5 A; -I Soft = 1 A
Turn-on time
---I Boff
typo 0,3 J.l.S
ton
< 0,5 IJS
Turn-oft time (toff = ts + tfl
Storage time
ts
<
Fall time
Fall time at T mb = 95 °C
tf
tf
typo 0,3 J.l.S
1 J.l.s.
<
typo
2 J.l.S
3,5 J.l.S
90
ie
(Ofol
10
0
Fig. 4 Waveforms.
+25V-------~----~__,
680
IJF
+ 100
~
IJF
IT_I
VI~JLJl
t.IL
tp
tp
T
VIM
= 20 J.l.S
= 2 ms
= 15 V
I
1
Vi
Pu Ise generator
Vee
250V
T.U.T.
680
IJF
I
Fig. 5 Test circuit.
7Z73191.1
l
March 1979
3
·l
BU326
BU326A
~--------------------------------------------------7Z72650.3
6 =001
10 r=ICMmax
"-
t--I Cmax
,
tp=
,1'1.
."' "'
"' "\:~""""
~
IC
(A)
(1)
~
~ [S
1\
t\
[\\I\t\
I'\~r\
~ I\l\
"'\
"\.
"'"
"'-
'"
".:'\.
10 f.lS
r'\
'"
,1\
2'0
~ \ 1\ i'i
\.
\.
\
\. \.
\. \.
,~~
\.
~
50
100 1\
200
\\ \ \1\
1\ \ \ ' r\ \. 5?OI
I
10- 1
(~\ ~\
",
!"
1:n~
2=
5110-
1\
d.c.
I
m
Tmb~50oC
BU326_
BU326AIY
I
10- 3
2
10
veE
(V)
Fig. 6 Safe Operating ARea.
I Region of permissible d.c. operation
II Permissible extension for repetitive pulse'operation
-III Area of permissible operation during turn-on in
single-transistor converters, providedRBE ~ 100 on and tp
IV Repetitive pulse operation in this region is permissible,
provided VBE < 0 and tp ~ 2 inS
(1) Ptot max and Ppeak max lines.
_
(2) Second-breakdown limits (independent of temperature).
.4
March
19791 (
~
0,6 p.s
BU326
BU326A
Silicon diffused power transistors
?Z72731
100
\
,
\
,
,
~
\
\
\
\
50
\
,
\
\
\
\
~
\
\
\
o
o
50
100
150
T mb (oe)
Fig. 7 Power derating curve.
7Z72653
JUL
--!tpl-I
I_T__
5=!£.
T
10
r-5 1
~0,75
~.o,3
F~,33
~O,2
I
,I
~IO'~I:
~,05
--
f..-'"
....... ,...
.....-- ~
~~
....-~
~~
~
~,0,O2
~~IO,OI1
10- 2
10- 6
10- 5
10-4
10-2
Fig. 8 Pulse power rating chart.
10-1
Ir
tp
(5)
Mamh 1979
5
BU326
BU326A
L , , - - - ._ _ _
7Z72652
S.B. voltage multiplying factor at the ICmQx level
MV
f----O=
~
":t::'
0,02
...
10
f::::
~ I-. ~~I' ~~
f----O,1
.~
......
~
-r--"
1---0,2
--
~0:33
0,5
0,75
.:-....
1'-0..' ~
~
~
~~
:-t-
t'"
r- .........
~
t-::::::
~ ~t--.
t--- ....
10-2
10-3
10- 4
tp (5)
10-1
Fig. 9 S.B. voltage mUltiplying factor at the ICmax level.
---
7Z72651
S.B. current multiplying factor at the VCEOmQx level
0=
0,01
---
-0,02
~
I"~
1"":--.,
0,05
r- r-r- ...
0,1
10
~
.........
~~
'""-... r--.....
- -"""
f-O,2
1"00.
i"'o
r- ...
033
~
~
-
~~
r-- ~ ~ ~~
05
0,75
-
r-r10- 4
Ir
10 - 3
~
10 - 2
tp (5)
Fig. 10 S.B. current multiplying factor at the VCEOmax level ..
6
Mareh 19ro
10- 1
BU326
BU326A
Silicon diffused power transistors
1272649
5V
VCE
typo values
Tj 25°C
=
=25°C
Tj
7Z72648
1,5
VSEsat
,
(V)
---
/
~
".,.-.pol~
f ./
~
po-
~
-4A
I--
3A
2A
1A
i/
'-tY P
"
10
--
I
Ic= _
"
0,5
1
10- 1
o
o
10
Ic (A)
Fig. 11 D.C. current gain.
2
Is (A)
Fig. 12 Base-emitter saturation voltage.
10.0~~:~~~I~I~~TT\~~-r-r-r~~~\~~~~~~____~__~7Z~72~6~41~1
~.
t\
It
Tj =25
VCEsat t-+hl,-+-~I-+-t-+--t-+--1\f.I--+--+-+--t-::-I+--4I-A-+--+-~\-+-.-t-+-+--I
( V)
V
l:rl---""
I
C
=
r---...
°c
- - - max. values
\
--typo values
-----.. . .
I
\
\
\
7,5 1--tIf-1:H+-+-H-,-+I--+--+--f+-\-M,+-+-+-+-+--I--I--+--+-\+--+--+--I--+-+-+-+-+-+--I--I
I
I
3A___..\
i
\
1\
\
\t-\.
I
\
1\
\
I; \
1\ \
\
5,0 1---it--t+-I,r+-A4-I-\H\-+--+-+-.-H\~~\-+-+-+-t----!--+--I--+-+---t-=..'\:+---+-+-t----!--+--I--+--I
2
\
\
\
\
\
\
\
\
~
"\
,
,
\ \
\1\
\
1',
2,5 t--III---+:\~\-+--+---T-\-.\+-I-+-+----tT\+-I....!.rl-,-+--+-+-+-+-+--+-+-+-+-+-.:..ot.I..,...-+-,-+-+-i
r-
~~~
\
\
",~
\
\
~
r\.
,.~
~
,.,
'
...
~---.,~-
ott~~~~~~EE~~EE~DCDCOCDD~
o
0,25
0,5
0,75
1,0
1,25
1
8
(A)
1,5
Fig. 13 Collector-emitter saturation voltage.
March 1979
7
L____
APPLICATION INFORMATION BU326A (detailed information on request)
I mportant factors in the design of SMPS circuits are the power losses and heatsink requirements of the
supply output transistor and the base drive conditions during turn-off. In SMPS circuits for CTV receivers the duty factor of the collector current generally varies between 0,35 and 0,6.
The operating frequency lies between 15 kHz and 35 kHz and the shape of the collector current varies
from rectangular in a forward converter to a sawtooth in a flyback circuit.
As the BU326A will mainly be used in flyback converters the information on optimum base drive and
device dissipation given in the graphs on page 10 is concentrated on this application. In these figures
ICM represents the highest repetitive peak collector current that can occur in the given circuit, e.g.
during ove~load.
The total power dissipation for a limit-case transistor is given in Fig. 18 which applies for a mounting
base temperature of 100 0C. The required thermal resistance for the heatsink can be calculated from
*
T mb max - T amb max
p
tot
Including additional thermal resistances resulting from mounting hardware.
Rth mb-a max
*
=
To ensure thermal stability the thermal resistance of the heatsink used must not exceed the values
plotted in Fig. 19.
A practical SMPS output circuit for an output power in the order of 180 W is given in Fig. 15.
At a collector current of 2,5 A and a base current of 0,25 A in this circuit the following turn-off times
can be expected.
Storage time
Fall time
ts
tf
Lrtll
I
I
leM :
~ 1
i!
I
le1
-
-r-
nlI
8
<'
I
VeE
1
1
<
typo
typo
<
<
1,4
0,15
i'
.l
<
== 100 0 C
,
,
Ie
T m b=25 0 C
_ _ _
<
1
1
I
1
1
__I
1
1
1
~
t
<
I
B
IB1
1
,,'
,
~
:
I
IB(en~l
-- i , t i
I
-vdrive
I
VBE~:
I
r
1
,
<
I
.cr
1
Fig. 14 Relevant waveforms of switching transistor.
8
March 1979
20 J.l.S
0,5 J.l.S
BU326
BU326A
Silicon diffused power transistors
+290V
BAX12
T1
BY208
15°1F22kn
"
Fig. 15 Practical SMPS output circuit.
TRl = BU326A
T1 (driver transformer): Core U20; n 1 = 400 turns; n2 = 25 turns
total inductance in base circuit·~ 4,5 tLH
T2 (output transformer): Lp = 6 mH
VCE(tl)
< 500 V (see Fig.
14)
Next page:
Fig. 16 Recommended nominal "end" valueof the base current versus maximum peak collector current.
Fig. 17 Minimum required base inductance and recommended negative drive voltage versus maximum
peak collector current.
Fig. 18 Maximum total power dissipation of a limit-case transistor if the base current is chosen in
accordance with Fig. 16.
Fig. 19 Maximum permissible thermal resistance of the heatsink versus maximum peak collector current
to ensure thermal stability.
Note: For all curves the duty factor {j = 0,5, as shown in Fig. 14.
March 1979
9
l
BU326
BU326A
.~______________________~_________
7Z77059
600
I C1 /I CM =OorO.4
~
I ~J
I I I I
I I I I
[
IB(end)
(mA)
,
1/
T;32 /-I~II
~
.....
10
4
I\,
~
/
1/
....
",
/
~
~
.....
~
200
~
."..~
./
5
"
2
r--~
r""'-(o..
,."..
..... 1-'"
o
1
2
3
ICM (A)
o
2
1
7Z77061
15
~IB(end) =
±. 20%
T=32/-1sor64J.Ls
\
\
T = 32 /-IS or 64 /-IS
(W)
3
7Z77062
35
T m b';;;;100oC
Ptot
ICM (A)
Fig. 17.
Fig. 16.
--
LB
r--.
r--.
..."
." 64/-1s
.".
~
.......
~
/
(V)
~
,r
I
Vdrive
..... 1""
.....
)
j
400
,
Vdrive
If
6
7Z77060
15
~
\
J
10
ICl IICM = O,~"
\.
/
~
5
"
/
017 ~r--
~
i-""
"
.....
"
"
1'\
1"11.
15
,;'
..... ~
,
\. 'C1 / 'CM=0 r-r-r-r-
1'\
/
I
~
I"
~
"
/I
V
\
25
/
'" ..... ......
I-'"
'"
~
i"
roo..
~
I'.
.....
..... 1""
1......
0 ,4 r-r- ~~
......
1
2
Fig. 18.
10
I
5
0
March 1979
r
ICM (A)
3
1
2
Fig. 19.
I"'"
'CM(A)
3
_ _ _J
BU426
BU426A
BU433
SILICON DIFFUSED POWER TRANSISTORS
High voltage, high speed switching n-p-n power transistor in plastic SOT-93 envelope, intended for use
in the switched-mode power supply of 900 and 1100 colour television receivers.
QUICK REFERENCE DATA
8U426
Collector-emitter voltage (V8E = 0; peak value)
426A
433
VCESM
max.
800
900
800 V
Collector-emitter voltage (open base)
VCEO
max.
375
400
375 V
Collector current (d.c.)
IC
max.
6
A
Collector current (peak value)
tp = 2 ms
ICM
max.
8
Total power dissipation up to T mb = 73 0C
Ptot
max.
70
W
Collector-emitter saturation voltage
IC = 2,5 A; 18 = 0,5 A
VCEsat
<
1,5
V
Fall time
ICon = 2,5 A; 180n
tf
typo
0,3
10,45 p.s
= 0,5 A; -180ff = 1 A
0,3
MECHANICAL DATA
A
Dimensions in mm
Fig. 1 SOT-93.
_15,2 _ _
Collector connected to
mounting base
max
~
.
__ 46
14-
Imax . -
4,25~
21'-
4,15
4,4
.
t
-.
~
:--
i~
1
ax
12,7
max
~
LIC;::;::=:;t==r?l
Wit~
--j
I
dimensions
this zone are
uncontrolled
j
13,6
min
b'
c Ie,
~
- f551 I~ _1.1:--1-$\0,5 ®\
.~
115
0:95
I-lTII---
~1~O,4
1Z75220
1
See also chapters Mounting instructions and Accessories.
March 1979
--
l
BU426
BU426A
BU433
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
BU426
Collector-emitter voltage (VBE = 0, peak value)
Collector~emitter
voltage (open base)
426A
433
VCESM
max.
800
900
BOO V
375
400
375 V
VCEO
max.
Collector current (d.c.)
IC
max.
6
A
Collector current (peak value)
tp < 2 ms
ICM
max.
8
A
2
A
A
Base current (d.c.)
IB
max.
Base current (peak value)
IBM
max.
3
Reverse base current (d.c. or average
over any 20 ms period)
-IB(AV)
max.
100
Reverse base current (peak value)*
-IBM
max.
3
A
max.
70
W
Storage temperature
Ptot
T stg
+ 150
°c
Junction temperature
Tj
max.
150
°C
1,1
°C/W
Total power dissipation up to T mb = 73 °C
-65 to
mA
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
CHARACTERISTICS
---
Tj = 25 °C unless otherwise specified
Collector cut-off current **
VCEM:= 900 V; VBE = 0
<
<
1
mA
2
mA
ICES
D.C. current gain
IC = 0,6 A; VCE = 5 V; BU426; BU426A
hFE
<
30
60
typo
hFE
typo
40
Emitter cut-off current
IC=0;VEB=10V
lEBO
<
10
mA
Transition frequency at f:: 1 MHz
IC = ?,2 A; VCE = 10 V
fT
typo
6
MHz
IC = 0,6 A; VCE = 5 V; BU433
*
2
ICES
VCEM = 900 V; VBE = 0; Tj = 125 °C
Turn-off currento
Measured with a half sine-wave voltage (curveuacer).
Maroh 1979
~
(
BU426
BU426A
BU433
Silicon diffused power transistors
CHARACTERISTICS (continued)
Tj = 25
°c unless otherwise specified
Emitter cut-off current
IC = 0; VE8 :::; 10 V
IE80
Saturation voltages
IC:::; 2,5 A; 18:::; 0,5 A
VCEsat
V8Esat
I C :::; 4 A; 18 :::; 1,25 A
VCEsat
V8Esat
Collector-emitter sustaining voltage
IC:::; 100 mA; 180ff:::; 0; L:::; 25 mH; 8U426; SU433
VCEOsust
Ie:::; 100 mA; ISoff:::; 0; L:::; 25 mH; 8U426A
VCEOsust
<:
<
<
<
<
>
>
10 mA
1,5 V
1,4 V
3 V
1,6 V
375 V
400 V
7Z75254
250 r-"--i....._ _
200
Ic
'
(rnA)
I
100
o ~----------------~r-----min VeE (VI
VCEOsust
Fig. 2 Oscilloscope display for VCEOSllSt.
Fig. 3 Test circuit for VCEOsust.
March 1979
3
l
BU426
BU426A
BU433
_
_
------------------~--------------------CHARACTERISTICS (continued)
Switching times (between 10% and 90% levels)
ICon = 2,5 A; VCC = 250 V
IBon
= 0,5 A; "':'IBoff = 1 A
Turn-on time
ton
Storage time
BU426; 426A
Fall time
Turn-off time (toff = ts + tf)
BU433
BU433
Fall time, Tmb = 9,5 oC
1BU426;426A
typo
typo
ts
<
tf
typo
typo
tf
<
tf
<
<
tf
0,5 IlS
0,6 IlS
<;:
2 IlS
3,5 IlS
0,3
typo
0,7 IlS
1,0 IlS
0,75 IlS
7Z77499
90
is (% )
10
--\r
---
I Son
---
U-
1B.:,
-----
90
ie
(%)
10
o
---
------
ICon
-
\
- - ---- --
---- IJ
--------
ton
t
-tf
t .
t off
Fig. 4 \iVaveforms.
+25V----~------~----~~~
• ,-T_I
Vee
250V
VI~JLJl t
T_iL
I
tp
I
Vi,
I
tp
= 20 IlS
= 2 ms
V I M = 15 V
T
4
~mh
-!--~----4---~---J
1979
1r
Fig. 5 Test circuit.
Il~
0,45 IlS
0,7 IlS
BU426
BU426A
BU433
Silicon diffused power transistors
[j
=0,01
,
10
ICMma x---
, " ,,',
"~ \
.....
..... ~
,"-~ ~
ICmax
I
1
I"
"
"''' "
......
~''''''I\
,~
tp
lOps
20
"- '""" "-
"-
IC
(A) r-(1) ~ ~
7Z77 412.1
"""" '"
e.-
50
~~ ~( ~ ~\
'\.
'\.
\. \.
\.
'\
\~ \
(21\
10- 1
200
'\.
~\.
\.
~\~\
100
\[\
~r\
500
-
1 ms
-
2
III
_I
5
10
20
d.c.
I\, -
10- 2
BU433}
BU426 '
I
BU426A Tmb ~73
°c
,:
IV I
10- 3
1·1
10
VCE (V)
Fig. 6 Safe Operating ARea.
I
Region of permissible d.c. operation.
II
Permissible extension for repetitive pulse operation.
III Area of permissible operation during turn-on in single-transistor converters, provided
RBE ~ 100 nand tp ~ 0,6 ps.
IV Repetitive pulse operation in this region is permissible; provided VBE ~ 0 and tp ~ 2 ms.
(1) Ptot max and Ppeak max lines.
(2) Second-breakdown limits (independent of temperature).
IrMa~h
1979
5
L
BU426
BU426A
BU433
'---------~---------------------------------------7Z77019
maximum power dissipation ~ersus
m
mA
1,5
3
1,1
BUW84
400
V
V
V
I BUW85
450
V
7Z75254
250.--""'-_ __
200
Ic
(mAl
100
o ~----------------~r-----min VCE (V)
VCEOsust
Fig. 2 Oscilloscope display for sustaining voltage.
--
oscilloscope
vert.
1.n.
7Z62283
Fig. 3 Test circuit for VCEOsust.
February 1979
3
l~_ _
BUW84
BUW85
CHARACTERISTICS (continued)
Tj = 25
be unless otherwise specified
Transition frequency at f = 1 MHz
Ie = 0,2 A; VeE = 10 V
fT
typo
Switching times
le~n = 1 A;Vce =250 V
IBon :::: 0,2 A; -IBoff = 0,4 A
Turn-on time
ton
<
'20 MHz
typo 0,2 /J.s
0,5 /J.s
typo
Fall time
tf
2 /J.S
3,5 /J.S
typo 0,4 /J.S
Fall time, T mb = 95 °e
tf
<
Turn-off: Storage time
ts
90
is(%l
--~-
<
1,4 /J.S
7Z77<.99
------- -
Ison
'\
10 ~;;;;..;;;;..;;r------a---_--
90
iC
(otol
10
o ~-~+------+-~+--Fig. 4 Waveforms.
+25V-----------~---1--~
+
L I-- 1 .
T
v~JLJl
t -J L
tp
100
T
/J.F
_.. _
•
I.U.I.
1
Vee
250V
II
I
Vi
I
7Z75253.1 "
Fig. 5 Test circuit.
4
February 1979
(
BUW84
BUW85
Silicon diffused power transistors
7Z77946
10
Icymax- I-- i-r-- b = 0,01
IC
J '
(A)
."(.0~ ~R~
r-..."
ICmax
'"
1:\1'1\
~
~
"-
'"
~\ \
'\
'-
-""
~
~
(2)
'\
~
f\.
~ 1--"0
"
tp=
20J,Ls
/I
50
I~
I\",
"\.
'\"\.
~\
I-j\100
l
\ 200'
~\ ,\1\
~
'"' "
II
500
1 ms
I
~\\
\., 1\
\,
2
'~
I
I
5
" 10
d.c.
III
~I-~
10- 3
IV
10
Fig. 6 Safe Operating ARea at T mb ...;; 25 °C of BUW84.
I Region of permissible d.c. operation
II Permissible extension for repetitive pulse operation
I I I Area of permissible operation during turn-on in single transistor
converters, provided RBE ...;; 100 nand tp"';; 0,6 J,LS .
IV Repetitive pulse operation in this region is permissible,
provided VBE ...;; 0 and tp ...;; 2 ms
(1) Ptot max line.
(2) Second-breakdown limits (independent of temperature).
February 1979
5
l""----_ __ _
BUW84
BUW85
7Z77947
10
,
LUI
Ie IC~'1ax r- ri(A)
, t p=
\
~ l',1"1\
~~ ~~ f\
ICmax (1
I III
b -0,01
.\1\
r-.
"
"I\.
,~ ~ 'i
I\..
"I
"\..
11.'\'
~
~
(2)
It
I\..
1\,\.
.'\ \
"
20
II
I
., 50'
I\..
-~
\\ \ 1,\
lOllS
100
\I~
'\..
'f-
200
~\l\ \ ~r--
500
w
I
" " " 1'(...'\
1 ms
~\
1\\\
~
-=
I
---
\
I
'.
2
5
10
d.c.
~I~
~~ ~
~
III
I
H--tIV
10- 3
10
Fig. 7 Safe Operating ARea at T mb ~ 25 oC of BUW85.
I Region of permissible d.c. operation
II Permissible extension for repetitive pulse operation
iii Area of permissible operation during turn-on in single transistor
converters, provided RBE ~ 100 nand tp ~ 0,61ls
IV Repetitive pulse operation in this region is permissible,
provided VBE ~ 0 and tp ~ 2 ms
(1) Ptot max line.
(2) Second-breakdown limits (independent of temperature).
6
Februa~1979l (
.
BUW84
BUW85
Silicon diffused power transistors
7Z672571
100
P tot max
(%)
75
~
1\
",
1\
1\
,
I\.
1\
50
"
t\.
25
I\,
,
t\.
i\
\
50
Fig. 8 ..
7Z77944
JlJL
I
_!tpl_
---T-
tp
0==-
T
10
t---
.5 = 1
0,75
~ 0,50
!;:= 0,33
t:::;;; 0,20
I--- 0,10
I
f--
t-
1~
~
~
~I
~ 0,05
~0,02
~ ~0,01
I--
o .
10
Fig. 9.
February. 1979
7
Jl
BUW84
_ _B_UW8_5_'
_ _ _ _ _ _ _ _ _ _ _ __ _
7Z77044A
S.B. current multiplying factor at the V CEOmax level
BUW84
I
0,01
~o
f-----
I
~
,
~
r--:
I
I"'--i'
~ r-
I-~
I
10
"
r--. ~r-...
0,10
--....
1--0,20
-
r- 1-1-
0,33
"-
~r-.
0,50
1
10- 2
~
r-- r-~"""
0,75
1
10
Fig.
JO.
7Z77043A
--
S. B. current multiplying factor at the V CEOmax level
BUW85
~=o
.~
~01
~
.......
_
t.0,02
--
0,05
10
........
r- ........
i"'
1'0
i'r-.
r---
0,10
~
~
---
I-~
r---..
-
-n,20
0,33
~
-
-r- ~I-
~
~II!.
0,50
r--- ~ ~
0,75
1
~
1
10- 2
10- 1
10
Fig. 11.
8
February 1979
(
~"'"
Silicon diffused power transistors
BUW84
BUW85
7Z77945
~
.0,02
10
""-.
~0,05
~ 0,10~
i'"'::: 0,20
.
0,33~
_"r-.,:
......
."t-..:r-..
i'~1'
I""'--
I"--r---t-r--=- 0,50_ t-- t-t-t--t-r--- 0,75 ~1
~
~ ~r-...
~~~
~
10
tp (ms)
Fig. 12 S.B. voltage multiplying factor at the ICmax level.
7Z77039
-
VCE 5V
Tj = 25 °c
-......
..........
~
"
~
10
I'r--.
~
~~
"......
~
1
10
'C(mA)
Fig. 13.
February 1979
9
l__~_
BUW84
BUW85
7277037
typo values
Tj =25 °c
.1
~
r-"
1
IC=~ 1 Al.- I- I- ~
0,5 A
0,3 A
1- .....
VBEsat ~~ ~r-"
~
(VI
0,5
o
o
200
100
300
'B (mAl
Fig. 14.
-
4
,
1
VCEsat
,
V
~
~
~
,
~
~
~I
i'
IL
1
1\
Tj
= 25°C
-
-
max. values
- - typo values
--- t-\,
,
l'
l~
~,
,
\
~
l!
\
2
\
l'
,\
1\\
\'
\\
,
... ~
\
~
\
\
1\\0,5
f-
\O,~~\
1\
A'
\l I' ~ rI~ t-
\,
"
~\
.~
1\
'\
~,
\
~
~
1"- "t-'
t- 1-1-
r-
-
0,1,
r
r"
..... r::.. ~ ~
1-
I-
0,2
Fig. 15;
February 1979
I"
R.:~
~- r-~
o
10
r-
0,7A
I
o
I---"'C= 1 A ....
~
J
3
I'
1
1
(V)
7Z77040.1
,
J
'B (A)
.0,3
Il
BUX80
BUX81
I
SILICON DIFFUSED POWER TRANSISTORS
High-voltage, high-speed switching n-p-n power transistors in TO-3 envelopes, intended
for use in converters, inverters, switching regulators and motor control systems.
QUICK REFERENCE DATA
BUX80 BUX81
Collector-emitter voltage (VBE = 0, peak value)
VCESM max.
800
1000
V
V
VCER
max.
500
500
Collector-emitter voltage (open base)
VCEO
max.
400
450
Collector current (d. c.)
IC
max.
Collector-emitter voltage (RBE = 50 Q)
10
A
max.
IS
A
max.
100
W
1,5
V
0,3
Il s
Collector current (peak value)
tp = 2 ms
ICM
Total power dissipation up to T mb = 40 oC
Ptot
Collector-emitter saturation voltage
IC = 5 A; IB = 1 A
VCEsat <
Fall time
ICon = 5 A; IBon
tf
= 1 A;
-IBoff
=2 A
V
typo
MECHANICAL DATA
Dimensions in mm
TO-3
Collector connected to case
~
1-26,6 m a x -
9,5 max
. . . .1
F
--3,15
"- - 4+2
c
.---t_---fl -
-t 4:0
r
20,3
max
LL
......
7Z69700
_12,8_
11,2
For mounting instructions and accessories see section Accessories in handbook SC2.
August 1976
II
1
BUX80
BUX81
II
II
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
BUX80 BUX81
Collector-emitter voltage
(VBE = 0, peak value)
VCESM
max.
Collector-emitter voltage
(RBE = 50 Q)
VCER
max.
500
500 V
Collector-emitter voltage (open base)
VCEO
max.
400
450 V
Collector current (d. c.)
IC
max.
10
A
Collector current (peak value)
tp = 2 ms
ICM
max.
15
A
Base current (d. c.)
IB
max.
4
A
Base current (peak value)
IBM
max.
6
A
-IB(AV)
max.
100
-IBM
max.
6.
A
P tot
max.
100
W
-65 to +150
°C
800
1000 V
Currents
Reverse base current (d. c. or average
over any 20 ms period)
Reverse base current (peak value) 1)
rnA
Power dissipation
-
Total power dissipation up to T mb = 40 oC
Temperatures
Storage temperature
T stg
Junction temperature
Tj
max.
150
oc
1,1
°C/W
mERMAL RESISTANCE
From junction to mounting base
Rth j-mb
CHARACTERISTICS
Tj = 25 0c unless otherwise specified
Collector cut-off current 2)
VCEM = VCESMmax; VBE = 0
VCEM = VCESMmax; VBE
= 0; Tj = 125
0
C
ICES
<
1
rnA
ICES
<
3
rnA
hPE
typo
D. C. current gain
lC=I,2A;VCE=5V
30
1) Tum-off current.
2) Measured with a half sine wave voltage (curve tracer).
2
II
II
August 1976
BUX80
BUX81
II
CHARACTERISTICS (continued)
T j = 25 oC unless otherwise specified
Emitter cut-off current
Ie = 0; VEB = 10 V
lEBO
<
10
VCEsat
<
1,5
V
VBE sat
<
1,4
V
VCEsat
<
3
V
VBE sat
<
1,8
V
rnA
Saturation voltages
Ie = 5 A; IB = 1 A
Ie =8A;IB=2,5A
Collector -emitter sustaining voltages
BUX80 BUX81
IC = 100 rnA; IBoff = 0; L = 25 mH
Ie = 100 rnA; RBE = 50 Q; L = 15 mH
VCEOsust
>
400
450
V
VCERsust
>
500
500
V
7Z72203
250 . ._ _ __
200
Ic
(rnA)
100
o ~--------------~~---T~----min
min
VCE (V)
VCEOsust VCERsust
Oscilloscope display for sustaining voltages
f----
her.
f----
vert.
3D-60Hz
nn304
Test circuit for VeEOsust
August 1976
II
Test circuit for VCERsust
I
3
BUX80
BUX81
I
II
I
CHARACTERISTICS (continued)
Tj
~
25 oG unless otherwise specified
Transition frequency at f = 1 MHz
IC
= 0,2
A; VCE
= 10 V
typo '
6
MHz
Switching times
ICon =5A;VCC =250V
IBon = 1 A; -IBoff = 2 A
Turn - on time
ton
typo
<
0,35
Turn -:off: Storage time
ts
typo
<
2,5
3,5
f.lS
f.lS
tf
typo
0,3
f.lS
tf
<
0,8
f.lS
Fall time
Fall time, T mb = 95
°c
0,5
fls
fls
7Z72640
- - - - - - - ---Is on
Waveform
=
90
iC
1%)
10
o ~-.......-+----+--t--+-'--
+25V - - - - - - - . . . - - -......----.
Test circuit
1
Vee
250V
LIT_I
vI~JL_JnL-)
t_ll.
I
tp
tp = 20 fJS
T
= 2 ms
VIM = .15 V
4
Vi
I
II
II
August 1976
1
BUX80
BUX81
BUX80
7Z72729 2
10 2
T mb E;;40oC
IC
(A)
."
r-ICMmax
IC'max
10
6= 0,01
~ r-....f'.
...
1\
tp=
101-1 5
-~""
t"-..~, ~
20
'\1'\ I' ~'\. '\ ~ ['\. 50
1'1'
~f- 100
1\
00
~
"1),,, '" ~ I'
"
I
~
~
l'..
l\\\~ l\
\ I---~
2)1\
~
~
~
JI\"' r\." t\
"
f-
~
~~"f\..
,,~
'\'\ '\
'\'\ '\
IC
~
(A)
\
~
~~:
'\
1ms
~~
,\ 1\
2t--
\ '\ 1\
m
10- 1
10- 3
I
VCE (V)
10
3
f\ i\
5
10
, d.c.
m-
10- 2
10
2
VCE (V)
Safe Operating ARea
Region of permissible d. c. operation
II
Permissible extension for repetitive pulse operation
III Area of permissible operation during turn-on in single-transistor
converters, provided RBE :S 100 Q and tp :S 0,6 f..LS
IV Repetitive pulse operation in this region is permissible,
provided VBE :S 0 and tp :S 2 ms
1) Ptot max and Ppeak max lines.
2) Second-breakdown limits (independent of temperature).
August 1976
II
5
BUX80
BUX81
I
II
BUX81
7Z72739 1
Tmb~40
°c
Ie
(A)
6=0,01
-ICMmax
r
ICmax
10
~
'",
'"1~,
I
r:
~"
'
....
~
\.\ 1\
\1\
I\. \1\
2)~ 1\
~
~ Ie
I-
"'" "
"-
'" '"
tp=
, " ~'\. ~II20
~"
\"' 1\.'\ ~ 50 .l
.............. :-....
\\
,
.....
"- 1O~i
.....
~\
~\
\
""
\ \ "\ "
II\. \.1\
(A)
l-
\.
I-
nz:
'- 10-3
=
IT
VCE (V) 10
~
1\ \
3
500
1ms
r-.,\. \,1
~
\ \\.
~
,
100
~ 200
~I
10
I',
d.c:1
m
10- 2
2
10
10 2
I
VeE (V)
103
Safe Operating ARea
Region of permissible d. c. operation
II
Permissible extension for repetitive pulse operation
III Area of permissible operation during.burn-on in Single-transistor
converters, provided RBE :::; 100 Q and tp :::; 0,6 IlS
IV Repetitive pulse. operation in this region is permissible,
provided VBE :::; a and tp :::; 2 ms
1) Ptot max andPpeak max lines.
2) Second-breakdown limits (independent of temperature).
6
II
II
August 1976
BUX80
BUX81
II
1272730
00
~
1\
\
x
,
,
~
,
~
50
\
1\
L-
\
-
,
\.
~
o
o
100
50
150
T mb (oC)
7Z72647
JUL
b
-ltpl_I' p
)
+---T_
0- t
- T
10
1 0-1
Ii;
~O,75
~0,5
~0,33
~0,2:--0,1'" ~
==-~0,05
...... Iiii"
:::;::::::;0 .....
..---:;...
~"
~'~,O2
..... 001
1 I
10- 2
10 5
II
August 1976
10- 4
II
10
3
10 -2
10
1
tp
(5)
10
7
BUX80
BUX81
II
II
1Z72646
S.B. voltage multiplying factor at the Icmax level
MSBIIl
I---
~~,01
/0,02
10
:2~5:::: ;:::t~
-
~
r--
'0,2
-- .-.::::"'
-
0,33
0,5
-
.....
~I:::~
:-.
r-.""
"-
~ S:: ~
-
-..:
-roo- r- -..L
6,75
110 - 5
10- 2
10-3
--
tp (5)
1Z72645
S.B. current multiplying factor at the VCEOmax level
MSB(Yl
0=
~001
r--.
~
O,O~
.
-
to....
.... "'"
r-- r-I-t-
0,1
10
~
~
~
~
.....
1'1'
:--I""'-- .....'.
r-..
.....
.........'-
.,-
1-0,2
.""~
"'
--
~
r--.;..... ~...... ~
r-- ~ ~~ 1--1--
0,33
6,5
0,75
1
10- 5
8
-
r-....
10-3
II
r-- t-~t-
~~
10 2
tp (5)
II
August 1976
BUX80
BUX81
II
7272543
7Z72642
1,5
VCE 5V
Tj = 25°C
I
. typo values
Ic =
Tj = 25°C
8A
VSEsat
~
(V)
10 3
1.,,00 ... -
r-c-
"
_1-"-
~! ~~
......
...
. ."
I
... -~
tt-
.,,-
2A
-~
U
10 2
typ
......
--~
0,5
"
10
"
1
10-1
10
(V)
,
I:
I
,
I
!
\
,,
"
~
II
I
I
r
I
I
II
i
\
~2A
\
\
\
""\
1\
,
~.
,
,
\ \.. .....
Al.lgust 1976
I\.
\
",......
\
1\ \
\
--
- - - max. values
--typo values
\
I
I
o
o
I c =8A \
/ ' i'--.-
\
\
SA
II
3 Is (A) 4
1j =25 °c
\
5
2
",
I
I
o
o
Ic (A)
7Z72741
I
I
VCEsat
10
1\. \
.... .....
'
..... ~
2
II
.....
.....
~
4
Is (A)
II
6
9
l____~_
BUX80
BUX81
APPLICATION INFORMATION ON BUX80 (detailed information on request)
Important factors in the design of SMPS circuits are the power losses and heatsink requirements of the
supply output transistor and the base drive conditions during turn-off. In SMPS circuits with mains
isolation the duty factor of the collector current generally varies between 0,25 and 0,5.
The operating frequency lies between 15 kHz and 50 kHz and the shape of the collector current varies
from rectangular in a forward converter to a sawtooth in a flyback circuit.
As the BUX80 will mainly be used in forward or push-pull converters the information on optimum
base drive and device dissipation given in the graphs on page 12 is concentrated on this application.
In these figures ICM represents the highest repetitive peak collector current that can occur in the given
circuit, e.g. during overload.
The total power dissipation for a limit-case transistor is given in Fig. 5 which applies for a mounting
base temperature of 100 0C. The required thermal resistance for the heatsink can be calculated from
100- T amb max
Rth mb-a =.
P
tot
To ensure thermal stability the minimum value of T amb in the above equation is 40 °C.
A practical SMPS output circuit for an output power in the order of 400 W is given in Fig. 2.
At a collector current of 5 A and a base current of 1 A in this circuit the following turn-off times can
be expected.
T mb = 25 °C
Storage ti me .
Fall time
--
typ
typ
Ie
2
0,18
1 LrI~M
_L:J
____Ll~
t
-v drive
V BE
-~--:-:
_
F[j=
......
=-t;==
7Z77362
Fig. 1 Relevant waveforms of switching transistor.
10
August 1977
(
100 0 C
2,7
0,5
ps
ps
BUX80
BUX81
Silicon diffused power transistors
+24 V
~--------------~~----~~O
330
.n
68
.n
-6V
=
Fig. 2 Practical SMPS output circuit.
T1 (output transformer): Core U64; n1 = n3 = 56 turns; n2 = 17 turns
T2 (base current transformer): Core U20; n1 = 5 turns; n2 = 25 turns
VCE(t1)
< 300 V
(see Fig. 1)
August 1977
11
l___-/-
BUX80
BUX81
7Z77364
1,5
j
J
I
!I
\
)
I
T= 2511s I
IJ
V
/I
Vdriv€
(V)
\
\.
J
,
/
4'\1
5Ol1SjT
/
Vdrive
"\
\
,
.....
J,
7
/
)
.....
7
I>
\
/
""-
JI'
\
~
1/
1/
/
1/
,
V
2
~
....
"
JI'
\
0,5
8
T
1
'S(end)
, (A)
7Z77365
6
L"..o~
L"..o
./
6
"'
.... -
La
-I-
'\
4
1/
~
\
\
"
\
\
o
o
2
4'
'CM (A)
6
~IB(end) = ± 20,%
T m b";;100 o C
Ptot
-,
I I
I I
(W)
6
~
~
/
I~
I'..
V
/
)
.
.~
)
.'
-.:: T= 50l1s
I I r I
I I I
-'---
! !
I
01111111111111111111
2
4
Fig. 5.
August 1977
Fig.3 Recommended nominal "end" value of
the base current versus maximum peak collector current.
Fig. 4 Minimum required base inductance and
recommended negative driye voltage versus
maximum peak collector current.
1/
~
II/'
I/'
.~
1/
I/'
)
v
J
j
I
J
10
J
7
T~ 2511s
12
,ICM (A)
7Z77363
15
5
4
Fig. 4.
Fig. 3.
-=
2
2
ICM (A)
6
Fig. 5 Maximum total power dissipation of a
limit-case transistor if the base current is
chosen in accordance with Fig. 3. Solid lines
for transformer drive and dotted lines for
collector-eoupled current drive.
II
BUX82
~3
SILICON DIFFUSED POWER TRANSISTORS
High-voltage, high-speed switching n-p-n power transistors in TO-3 envelopes, intended
for u"e in converters, inverters, switching regulators and motor control systems.
QUICK REFERENCE DATA
BUX82 BUX83
VCESM
max.
800
1000
V
Collector-emitter voltage (RBE = 100 Q)
VCER
max.
500
500
V
Collector-emitter voltage (open base)
VCEO
max.
400
450
V
Collector current (d. c.)
IC
max.
lCM
max.
8
A
60
W
Collector-emitter voltage (VBE = 0, peak value)
Collector current (peak value)
tp = 2 ms
°c
6
A
Ptot
max.
Collector-emitter saturation voltage
lC = 2,5 A; lB = 0,5 A
VCEsat
<
1,5
V
Fall time
ICon = 2,5 A; lBon = 0,5 A; -IBoff = 1 A
tf
typo
0,3
Ils
Total power dissipation up to T mb = 50
Dimensions in mm
MECHANICAL DATA
TO-3
Collector connected to case
-- 9,5 max !4-
--I
-26,6max-/
"-
c
11
t
...---+_--11 -
t
16,9.
20,3
39,5 301
max
LL
.
--3,15
--4,2
t
4,0
-'
1===~t1,0
l-L----f
'-10,9-7Z69700
For mounting instructions and accessories see section Accessories in handbook SC2.
August 1976
II
----
-
BUX82
BUX83
II
II
RATINGS Limiting values in accordance with the Absolute Maximum System (IEe 134)
1) Turn - off current.
2) Measured with a half sine wave voltage (curve tracer).
2
II
II
August 1976
BUX82
BUX83
CHARACTERISTICS (continued)
T j == 25 oC unless otherwise specified
Emitter cut - off current
IC == 0; VEB == 10 V
<
10
VCEsat
<
1,5
V
VBE sat
<'
1,4
V
lEBO
rnA
Saturation voltages
IC == 2, 5 A; IB == 0, 5 A
Ic ==
4 A; I B == 1, 25 A
VCEsat
<
3
V
VBE sat
<
1,6
V
Collector-emitter sustaining voltages
BUX82 BUX83
IC == 100 rnA; IBoff == 0; L == 25 mH
VCEOsust
>
400
450
V
IC == 100 rnA; RBE == 100Q; L == 15 mH
VCERsust
>
500
500
V
7Z72203
250
,-----I~_~
200
Ic
(rnA)
100
o ____________________
~----~L------
min
min
VCE (V)
VCEOsust VCERsust
Oscilloscope display for sustaining voltages
+ SOV
t - - - - - hor.
t - - - - vert.
30 -60 Hz
7Z722(}2.1
Test circuit for VCEOsust
August 1976
II
Test circuit for VERsust
3
II_.
BUX82
BUX83
'Tj
CHARACTERISTICS (continued)
Transition frequency at f
Ie
==
0,2 A; VeE
==
25
°e
unless otherwise specified
= 1 MHz
= 10 V
typo
6
MHz
Switching times
. leon = 2,5 A; Vee
lBon
==
= 250 V
0,5 A; -IBoff = 1 A
Turn-on time
ton
typo
<
0,3
0,5
fls
flS
TUrn-off: Storage time
Its
typo
<
2
3,5
fls
fls
tf
typo
0,3
flS
tf
<
Fall time
Fall time, Tmb = 95
°e
fJ-S
7212640
90
ie!OfoI
--~-t
- - Ison
'\,
10 I------....(-----~--_--
LL
Waveform
--
90
'-
i-
----~.....---- ICon
---
ie
!Ofol
10
I ••:,
\
-------1-- ~
--
----)
o ~-~+_----+_~~--ton
_
t- t_f -
t
+25V-------------1------~~
Test circuit
680
IJF
LiT_I
VI~JnLJL
t_l~
Vee
250V
I
1
I
tp
tp'
= 20 flS
Vi
I
T
= 2 ms
VIM == 15 V
680
IJF
~-+_-------+_----4-~
7.z73191.1
4
II
August 1976
BUX82
BUX83
BUX82
0=001
,
7Z72644.1
10 ~IeMmax
tp=
10 f.lS
i'-
"
'-~
"'
""1)1"\ 1'1.." " "' "' "- "- 2~
"1,\1\"' ~ " ~~\
I\l\1\
"-
t-1emax
Ie
(A)
~
'-
~
"""
1\
"'"
1\
1\
1\1\
1\
"'"
'" ,,'
~' 1\ i\I56
100
" \. " \. I"\. "
\. 200
l\ \
\
1\\\ \i\.
~ \\' i\. \.
I
5?01
~\ ~ ~
\ 11msI
-\ 2~
"\.
\. 5 f-
10-
\
~
\ d.c.
I
m
Tmb~ 50°C
rr
10- 3
10
2
Safe Operating ARea
Region of permissible d. c. operation
II
Permissible extension for repetitive pulse operation
III Area of permissible operation during turn-on in single-transistor
converters, provided RBE :s 100 Q and tp :s 0, 61ls
IV Repetitive pulse operation in this region is permissible,
provided VBE :s 0 and tp :s 2 ms
1) Ptotmax and Ppeakmax lines.
2) Second-breakdown limits (independent of temperature).
August 1976
II
II
5
BUX82
BUX83
BUX83
7Z72740
6=0,01
10 ~ICMmax
,
..."",.
-ICmax
Ic
(A)
" ""I""
~
" "
~
~~,
1)"'\
~
\\
"-
," "'
"
"-
"-
tp=
"-
'" lOtS
" "-""'r\ I
'"
20
'"
\
\
\ \~
\\
,\
\\
~ \
'\
\.
1\
'\
\.
\.
,\. \.
\
IJ
iOI
100'
.~
\
\\\ \ \ If?
~ \\ i\ \. '~do
\
~\ i\ I)1msI
~
I
'-
2-
"-
'\.
5-
"\ , 1°
I
d.c.
II
m
--
=
Tmb~50
°c
1f
10- 3
10
2
VCE (V)
Safe Operating ARea
Region of permissible d. c. operation
II
Permissible extension for repetitive pulse operation
III Ar:-ea of permissible operation during turn-on in single-transistor
converters, provided RBE S 100 Q and tp S 0, 6 Ils
IV Repetitive pulse operation in this region is permissible,
provided VBE S a and tp S 2 ms
1) Ptot max and Ppeak max lines.
2) Second-breakdown limits (independent of temperature).
II
II
August 1977
BUX82
BUX83
II
II
7Z 72731
100
\
,
\
,
,
~
\
,
\
50
,
,
~
\
,
\
,
\
--!-. ..
I
°°
50
\
-i-t- -~
100
150
T'dl (oe)
--"- -
--
7Z12653
JUL
-I~;J
o:!f.
T
10
0-1
-0,75
.... .0,3
F=;Q,33
~:==p,2
~
-
p,O,\
10- 1 ~,05
----
I- .......
I- ::::::
i,...--
.,
~
~
~,O,02
~E:O,01
I I
10- 2
10- 6
August 1976
10- 5
II
10-4
, 10-3
10-1 tp (5)
10-2
II
7
II_.
BUX82
BUX83
7Z72652
S.B. voltage multiplying factor at the ICmax level
MSBlIl
f--O=
~
~
0,02
~~
~ I-.. r--;:::::::~
10
-Q,1
~
~
~
-02
....... r--.-..... ~
r---"""
=033
0,5
:"""" I::::~
- r- --r---
0,75
110 - 5
10-4
~
r-::::: ~ ~~
~
10-3
10-2
tp (s)
10-1
7Z72651
=
. r--' S.B. current multiplying factor at the VCEOmax level
MSB1V )
i
0=
-.--.
l'
001
---0,02
1"-0.,
H
I"""
r- r---.~
~
0,05
r- I-r- ..
0,1
10
,
~ ....
~ i"'--..
'"
.
"""
. f-0,2
~
i'ooo...~
-
Ioo..~ ~
033
r-- ~ ~ ~~
0,5
0,75
r-
1
10-4
10- 5
8
II
10- 3
~
10
2
tp (s)
II
10- 1
August 1976
II
BUX82
BUX83
II
7272649
7Z72648
1,5
typo values
5V
25°C
VCE -
=
Tj
=25°C
Tj
1
Ie= _I--
VSEsat
---4A
(V)
/ .- ......
i.-- ~ 2A
j~ ~
I;'"
I
f t.,.....--
1/
""-tY P
'"~
10
1
0,5
o
o
10
Ie (A)
2
Is (A)
---
7Z726411
10,0
II I
1~
,
.
, ,
l,
i,
,. \
I
VCEsat
(V)
~
\
~
I
I
7,5
I
5,0
3~ ........
~
2A \
~ --- --\
1A \
V I~
\
\
0
August 1976
1\
\
r----
\
\
\
1\ \
,
\
\
\
I--
--typo values
.\ 1\
11'
\ 1\
- - - max. values
\
\'
\
2,5
Tj =25 °c
\.
Ie =4A r--..
1t-\,
1\
\
-'
\
\
~
I
0
~ ~ 1A
Y
--
1 10
3A
\
,
\
i'~
II
'\
1\
I\.
0,5
", 1',
......
r"....
~
,,
"
I\.
\1\
0,25
,
\
,\
" r\.
'\
\
1\
\1\
,
\
\
~
I ' I"0,75
... .....
....
'
.. 1,0
1,25
Is (A)
....
1,5
9
l____----------
BUX82
BUX83
APPLICATION INFORMATION ON BUX82 (detailed information on request)
I mportant factors in the design of SMPS circuits are the power losses and heatsink requirements of the
supply output transistor and the base drive conditions during turn-off. In SMPS circuits with mains
isolation the duty factor of the collector current generally varies between 0,25 and 0,5.
The'operating frequency lies between 15 kHz and 50 kHz and the shape of the collector current varies
from rectangular in a forward converter to a sawtooth in a flyback circuit.
Information onoptimuOl base drive and device dissipation of the BUX82 in a flyback converter is
given in Figs 3 to 5. Figs 6 to 8 apply to a forward converter. In these figures ICM represents the highest repetitive peak collector current that cim occur in the given circuit, e.g. during overload.
The total power dissipation for a limit-case transistor is given in Figs 5 and 8 which applies for a mounting base temperature of 100 0C. The required thermal resistance for the heatsink can be calculated from
100-T amb max'
Rth mb-a = - - ,- P - - tot
To ensure thermal stability the minimum value of Tamb in the above equation is 40 0C.
A practical forward converter output circuit for an output power in, the order of 200 W is given in
Fig. 2.
At a collector current of 2,5 A and a base current of 0,5 A in this circuit the following turn-off times
can be expected.
Storage time
Fall time
=
-.............
......
~
'e
T mb = 25 °C
100 °C
typ
typ
2,7
0,7
1,9
0,17
' t
Lr-J}
-
_
'e1
,
_'_
'eM
~
t
-Vdrive
L---,:..-----Jr==t=
c;==
7Z77367
Fig. '1 Relevant waveforms of switching transistor.
10
August 1977
(
IJ.s
IJ.S
Silicon diffused power transistors
BUX82
BUX83
+ 290 V - - - -......-~r--....---,
+24 V
+24V
2,1 V
6800
JJ.F
~---~--~--O
T =50JJ.s
0=0,33
Fig. 2 Practical forward converter S'MPS output circuit.
T1 (driver transformer): Core U20; n1 = 75 turns; n2 = 20 turns
T2 (output transformer): Core E55; n1 = n2 = 72 turns; n3 = 19 turns
VCE(t1)
< 300 V (see Fig. 1)
August 1977
11
l
BUX82
BUX83
7Z77371
600
7Z77370
15
I I
I
I I
-Vdrive
1/
j
IB(end)
(mA)
II
T
~
= 25p.Sj~
10 I\.
.....
1/
1./
I/'
1,/
i/
50p.s ~~ 1-+-
V
~
~
200
~
1..1
~
....
1..00'
(V)
L.,..J...-
"
4
.....
"
.....
I'"
" "..... LB
V
...
-VdrivE
'"'""'~
"'Ii
,
..,
~
t-~
I.".J...-
1/
400
.....
6
5
2
~
l..-'
.... to-. ...
1..00'
1.,; .....
o
2
1
3
ICM (A)
1
2
ICM (A)
3
o
Fig. 4.
Fig. 3.
-
o
7Z77372
15
AIB(end)
= ± 20%
Tint)";;; 100 °c
Ptot
(W)
Fig. 3 Recommended nominal "end" value of
the base current versus maximum peak collector current in a flyback converter.
j
10
V
IC1
ICM
V
5
....
I.".~
...
:.,..
.....
V
f-~ t-t-
= 0.4 lit- t-t-
II'
VI
LI I
V
I
Fig. 5 Maximum total power dissipation of a
limit-case transistor if the base current is
chosen in accordance with Fig. 3.
j
0.....
:,...
V
I;-
~
1.,;1'
L.,..I-'"
"
o
2
1
Fig. 5.
12
August 1977
r
ICM (A)
Fig. 4 Minimum required base inductance and
recommended negative drive voltage versus
maximum peak collector current.
3
BUX82
BUX83
Silicon diffused power transistors
7Z77368
700
I I
I I
I
I
T= 25J,.Ls
IB(end)
(mA)
7Z77369
10
I I
I I
I I
\
I
\
I
1/
I
,
LB
(J,.LH)
I
1,...0'
I
I
500
I
, .....
/'
"
.- .....
Vdrive
(V)
-'
.......... "
4
\
\
V
\.
j
II'
1/
,
I\.
6
/
II'
_.....
\
50J,.Ls
I
300
8
/
J
I
II
\
J
J
I
Vdrive
\
6
,/
2
I"
/
" ,
"
'- LB
~
V
......
~
100
i"' ....
4
2
1
3
leM (A)
1
2
leM (A)
a
3
Fig. 7.
Fig. 6.
7Z77373
15
~IB(end) = ± 20%
T mb';;;; 100 °e
Ptot
(W)
Fig. 6 Recommended nominal "end" value of
the base current versus maximum peak collector current in a forward converter.
I
10
T= 25J,.Ls
J
1/
V
/
/
7
Fig. 7 Minimum required base inductance and
recommended negative drive voltage versus
maximum peak collector current.
/
~
SOilS - -
1/
iI""
./
Fig.8 Maximum total power dissipation of a
limit-case transistor if the base current is
chosen in accordance with Fig. 6 .
./
5
10'
/
/
.".
./
;'
;'
~
a
1
2
leM (A)
3
Fig. 8.
August 1977
13
_____J
BUX84
BUX85
SILICON DIFFUSED POWER TRANSISTORS
High-voltage, high-speed, glass-passivated n-p-n power transistors in TO-220 envelopes, intended for use
in converters, inverters, switching regulators, motor control systems and switching applications.
QUICK REFERENCE DATA
BUX84 BUX85
Collector-emitter voltage (open base)
VCESM max
max
VCEO
Collector current (d.c.)
IC
Collector current (peak value)
tp = 2 ms
Collector-emitter voltage (VBE = 0, peak value)
800
1000
V
400
450
V
max
2
A
ICM
max
3
Total power dissipation up to T mb = 50 °C
Ptot
max
40
W
Collector-emitter saturation voltage
IC = 1 A; IB = 0,2 A
VCEsat
<
3
V
Fall time
ICon = 1, A; ISon = 0,2 A; -ISoft = 0,4 A
tf
typ
0,4
IlS
A
Dimensions in mm
MECHANICAL DATA
.-
TO-220
Collector connected
to mounting base
+
5,9
min
15,8
+ max
I
J
'-Il:;;:::,:::::;;~~--+-
3,5 max
not tinned
r'
13
5,1
max
m~x--
I - I --t
(2x)
12,7
min
,
bee
__ I
i:-
...1
2,54 2,54
•
O,9 max (3x)
...
_\'-.0,6
-'2,4
7Z65872.3
'I
For mounting instructions and accessories see section Accessories (Handbook SC2).
September 1977
BUX84
BUX85
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
BUX84 BUX85
Collector-emitter voltage
(VBE = 0, peak value)
Collector-emitter voltage (open base)
VCESM
max 800
1000
V
VCEO
max 400
450
V
max
Currents
Collector current (d.c.)
IC
Collector current (peak value)
tp = 2 ms
ICM
max
3
A
Base current (d.c.)
IB
max
0,75
A
Base current (peak value)
Reverse base current (peak value) *
2
A
IBM
max
A
-IBM
max
A
Ptot
max
Power dissipation
Total power dissipation up to T mb
= 50 °C
40
W
Temperatures
---=
Storage temperature
T stg
-65 to +150
°C
Junction temperature
Tj
max
150
°C
THERMAL RESISTANCE
Froll) junction to mounting base
Rth j-mb
2,5
°C/W
From junction to ambient in free air
Rth j-a
70
°C/W
Tj = 25 °C unless otherwise specified
CHARACTE R ISTleS
Collector cut-off current
**
VCEM = VCESMmax; VBE = 0
VCEM = VCESMmax; VBE
= 0; Tj = 125 °C
ICES
<
<
hFE
typ
ICES
200
IlA
1,5
rnA
D.C. current gain
IC=0,1A;VCE=5V
* Turn-off current.
** Measured with a half sine-wave voltage (curve tracer).
2
50
BUX84
BUX85
Silicon diffused power transistors
CHARACTERISTICS (conti'nued)
°c unless otherwise specified
Tj = 25
Emitter cut"offcurrent
IC=0;VEB=5V
lEBO
<
mA
Saturation voltages
I C = 0,3 A; I B = 30 mA
VCEsat
IC =
1 A; I B = 0,2 A
VCEsat
IC=
1 A; IB=0,2A
VB Esat
<
<
<
VCEOsust
>
Collector-emitter sustaining voltage
V
1,0
V
1,1
V
~
BUX84 BUX85
IC = 100 mA; IBoff = 0; L = 25 mH
250
0,8
,---t~
400
450
V
7Z75254
__
200
Ic
(mAl
100
o ~----------------~r-----min VeE (VI
VCEOsust
Oscilloscope display for sustaining voltage.
oscilloscope
~+
30~60HZ
6V
vert.
1!l.
7Z62283
Test circuit for VCEOsust.
February 1979
3
L____
, __- -
BUX84
BUX85
CHARACTERISTICS (continued)
Tj = 25
0c unless otherwise specified
Transition frequency at f = 1 MHz
Ie = 0,2 A; VeE = 10 V
fT
typ
Turn-on time
ton
<
Turn-off: Storage time
ts
<
20 MHz
Switching times
ICon=
1A;VCC=250V
IBon = 0,2 A; -IBoff= 0,4 A
typ 0,2 MS
0,5 MS
typ
2 MS
3,5' MS
Fall time
tf
typ 0,4 MS
Fall time, T mb = 95 °e
tf
<
1,4 MS
7Z72640
- - - - - - - ---Is on
90
is (Ofol
10 i - - - - \ - - - - - i t - - - : : . . . _ _ - -
Waveform
---
90
,
Ie
'(%1
1---
.,,----+--...;--- leon
10
o i----t"-+-----t------t-1~___:'-
+25V--------------~----~--~
Test circuit
+
v~J~L
t __11__
tp
100
TMF
T
I--+;\
\,--n
n
+
Vee
250V
I
T.U.T.
1
v'I
tp = 20 MS
T
= 2 ms
VIM = 15 V
4
August 1977
I
r
7Z75253.1
BUX84
BUX85
Silicon diffused power transistors
7Z77041 1
10
BUX84
1
ICMmax
I
tp -
0=0.01
10
/
(A)
ICma~ ~ 1'1' I'r-.
not~ ~ ~~
I"
2/15
r'\.""
~
"v
v
i'" ~ ~i'1"
5
~
10
.....-vI---
"\.. "" "" " -)
-1\
~ \. '"-'
\ \
1\"
1\'1
50
100
~
~
I\.
I
20
,\\ ~II v
~\ 1\ VV
"
l\
note 2
\:
200
500
1 ms
\.
't-.\.
1\\\ \
\~
2
v
'~
1---1--'
,,1--,11-;-
5
10
d.c.
III
T mb";; 50
°c
1-1-1-
10- 3
IV
10
Safe Operating ARea
I
Region of permissible d.c. operation
II Permissible extension for repetitive pulse operation
II'l Area of permissible operation during turn-on in single transistor
converters, provided RBE ~ 100.n and tp ~ 0,6 J.Ls
IV Repetitive pulse operation in this region is permissible,
,provided VBE ~ 0 and tp ~2 ms
Notes
1. Ptot max and Ppeak max lines.
2. Second-breakdown limits (independent of temperature).
August 1977
5
__~_~_~_~_~_~____jl~______________~________________
7Z77042
10
BUX85
I I
ICMmax
IC
~
/
(A)
II
~ '"
~" 1\
~
ICma~ t\ I'",~
I\.
~~ ~
not~ ~ ~~'"
~
tp=
2J.ls
5
= 0,01
1\
~
I'~
"'\ "
"
"
\. " "
I\. "
\\l\ \
note 2 ~~
10
20
v
50
100
~
200
I\.
.\'\ '\.11"
I
f..-f..i--'
i--'
500
~
1 ms
""- "
~"
I\.~ I\.
2
\,
,~
5
10
d.c.
~ i--'
ef-
---
III
T mb<50 oC
~-
IV
10- 3
10
Safe Operating ARea
I
Region of permissible d.c. operation
II Permissible extension for repetitive pulse operation
III Area of permissible operation during turn-on in single transistor
converters, provided RSE ~ 100 nand tp ~ 0,6p.s
IV Repetitive pulse operation in this region is permissible,
provided VBE ~ 0 and tp ~ 2 ms
Notes
1. Ptot max and Ppeak max lines.
• 2. Second-breakdown limits (independent of temperature).
6
March 1977
r
BUX84
BUX85
Silicon diffused power transistors
7Z72731
,
100
1\
,
~
,
1\
~
\
1\
\
50
~
\
1\
\
~
\
1\
\
~
o
o
\
50
7Z77046
JLSL
I
-Itpl---T-
tp
T
{j=-
10
r-- {j 1
i='= 0,75
r-- 0,50
~ 0,33
F==
~
p-~
0}9
0,10
~
--
.....
,.... .....
JII"' ......
~ ~O 01
0,02
r-- r<0'
10- 2
10- 3
10- 2
10
August 1977
7
BUX84
BUX85
l - . . . . . . . . . . . - ._
_- - - : -
7Z77044
S.B. current multiplying factor at the V CEOmax level
BUX84
)~ol=o
~1
I---
.1
~
~
~
I
1'-1"- I0Il
J
10
~
~
1'-1-
0,10
"I-
""
r--- ~r--..
~
-0,20
.1
--
"'"
r- t-I-
0,33
I-
0,50
1
10-- 2
-=
"
~
~
~ r--
0,75
1
~"""
10- 1
10
7Z77043
S.B. current multiplying factor at the V CEOmax level
BUX85
)~=o·
.~
~01
~,02
'"
L"o.
r--~
---
.......
r...
I"'-r--
~
0,05
10
t-- r-
0,10
t-t-t--
r-:--. ~ f'
~
~-.
1-0,20
August
"-
~
0,50
8
....
r"-I- I-
0,33
.0,75
1
1
10- 2
-
r--- ~ ~~
Ir.
1m
10
.t p (ms)
BUX84
BUX85
Silicon diffused power transistors
7Z77045
S.B. voltage multiplying factor at the.ICmax level
~l
0,02
10
~O,05~ ~
-°'1'° r-r--..:r-...... .....
~
F::~
--'0,20_
i""' ....
:---0,33-I -r-r-Ip===-o,'5u I_0,75
11
1
10- 2
10
~
----
~ ~r--..
r-1
-
;::,.~
10
7Z77039
VCE = 5V
Tj
= 25 °c
-.......
"" '" ~,
'" ....
10
~p
""
1
10
. 'C (rnA)
August 1977
9
l
BUX84
BUX85
~__________________~____________
7Z77037
typo values
Tj=25 0 C
_,
"""'"- I-"'"
~~
VSEsat
~
(V)
I
IC=I- 1 A-'_I--l - I-0,5 A
0,3A
1--1-"
.....
0,5
o
o
--
4
(V)
1
...-::~
V ...
I
I
J
\
\
I'+- t-
o
August 1977
--
1
t- ~ r-
~
,~
"
,
I"
~~
r"
--F=-o ~h-o
r"-."",
r--
0,1
r
i'
~
~
-.-~
\
'l\
~\O,5A'
\
r\,- r- ~
\O,~~\,
\l I'" ~
10
,
,
-\
l\\_
\'
\
1\
\
\
~\
I'
11
1\
\1
J
\
2
- - max. values
_ _ typo values
--- t-\,
~-
,
Tj = 25°C
1\
~'
II
I,
~
o
,
r---
I'
0,7 A
i
i.
r--
~IC=1 A_
~
I
7Z77040 1
I'
I
, I
3
300
IS (mA)
J
!I
,
VCEsat
200
100
r-
~
r--
I-
-
I-
0,2
IS (A)
0,3
BUX84
BUX85
Silicon diffused power transistors
APPLICATION INFORMATION ON BUX84 (detailed information on request)
Important factors in the design of SMPS circuits are the power losses and heatsink requirements of the
supply output transistor and the base drive conditions during turn-off. In most SMPS circuits with
mains isolation the duty factor of the collector current generally varies between 0,25 and 0,5.
The operating frequency lies between 15 kHz and 50 kHz and the shape of the collector current varies
from rectangular in a forward converter to a sawtooth in a flyback circuit.
Information on optimum base drive and device dissipation of the BUX84 in a flyback converter is
given in Figs 3 to 5. Figs 6 to 8 apply to a forward converter. In these figures ICM represents the highest repetitive peak collector current that can occur in the given circuit, e.g. during overload.
The total power dissipation for a limit-case transistor is given in Figs 5 and 8 which apply for a mounting
base temperature of 100 0C. The required thermal resistance for the heatsink can be calculated from
100-Tamb max
Rth mb-a = - - P - - - tot
To ensure thermal stability the minimum value of T amb in the above equation is 40 0C.
A practical SMPS output circuit for an output power in the order of 50 W is given in Fig. 2.
At a collector current of 0,7 A and a base current of 70 mA in this circuit the following turn-off times
can be expected.
T mb =25 °C
typ
typ
Storage time
Fall time
2,2
0,25
100 0 C
2,8
0,85
p.s
p.s
-Vdrive
-LJ==
7Z74469.2
Fig. 1 Relevant waveforms of switching transistor.
August 1977
11
l__________
BUX84
BUX85
+290V------~----------------~--~--~
100kH
22kH
___+-tI~Hr--.-- +24 V
22nF
~
' - . - - -....- - 0
BAX12
47°1~'
J1.Jl.
.
T=30}.ls
0"='0,5
1 kH
'
"
--
Fig. 2 Practical SMPS output circuit.
T1 (driver transformer): Core U15; n1 = 360 turns; n2 = 60 turns
, total inductance in base circuit~' 15 tlH
T2 (output transformer): Core E55; primary inductance Lp = 16 mH
n1 = 116 turns; n2 = 12 turns
VCE(t1)
12
< 30,0 V (see Fig.
August 1977
1)
('
7277374
BUX84
BUX85
Silicon diffused power transistors
7Z77376
7Z77380
150
T = 251's or SOl'S
I
II
IB(end)
(rnA)
II
LS
(I'H)
II
100
25
J
'I
6
30
Vdrive
,
(V)
~
La
~
5
,
1\
1/
)
50
1/
20
II'
o
0,5
1
ICM (A)
"
V
,...
~
'/
10
0,25
t7
V
.\
1/
."\ ........ i-""
... V
15
/
Vdrive
~
I/'
~
o
,
~
1/
.,/
"'"
4
V
3
1"",,.... r--, t-.
2
0,5
0,75 ICM (A) 1
Fig. 4.
Fig. 3.
7Z77378
fl.IS(end)
= ±. 20%
Tmb~1000C
10
Ptot
Fig.3 Recommended nominal "end" value of
the base current versus maximum peak collector current in a flyback converter.
(W)
7,5
)
~
T = 251's
5
~
~
~
\1\ 1/
-'~
...... 1'"
2,5
~
~ I--"
~
,......
\
I.)
~ ~ 10-""
...... 10'
~
~
~ I-'
--
~
I- ~
:~
I...... ' ..
"""
I.,...-
Fig. 4 Minimum required base inductance and
recommended negative drive voltage versus
maximum peak collector current.
Fig. 5 Maximum total power dissipation of a
limit-case transistor if the base current is
chosen in accordan~e with Fig. 3. Solid lines
-for IC11/CM = 0,4 and dotted lines for
IC1/1CM = O.
--
~ 1--1---~ SOps
I--
o
0,25
0,5
0,75 ICM (A) 1
Fig. 5.
August 1977
13 '
Jl
BUX84
_ _B_UX8_5_
~_ _ _ _ _ _ _ _ _ _ _ _ _
7277377
7277376
j
ICl /ICM = 0,9
1/
200
6
)
1/
IB(end
(mA)
)
J
T= 25/-ls
II
j
150
I
)
1/
V
V
V
Vdrive
~
/
'\
/
"""-
~~
15
V
r-.....
V
0,25
0,5
0,75 leM (A) 1
3
:'" i'-...
....t-
:2
0,5
0,75 ICM (A) 1
Fig. 7.
Fig. 6.
---
10
0,25
i...--'
..............
"""' ....
o
4
V
I\.
./
~
V
~
i/
~
50
,
~
20
'/
1/
5
1\
\
j
V
(V)
L8
I
II
/
V
-Vdrive
'/
/
If
100
1/ 5O /-ls
.
~
25
7Z77375
AIB(end) = ± 20%
Tmb ~ lOOoC
10
IC1 /l CM = 0,9
Fig. 6 Recommended nominal "end" value of
the base current versus maximur;n peak collector current in a forward converter.
7,5
Fig. 7 Minimum required base inductance and
recommended negative drive voltage versus
maximum peak collector current.
T = 25/-ls
5
j
50/-l~
V
1/
./
j/
/
1/
2,5
i-'
..... j...-'
j.....o I"
V
i.---'~
t:::: ~""'"
o
0,25
0,5
0,75 ICM (All
Fig. 8.
14
August 1977
r
Fig. 8 Maximum total power dissipation of a
limit-case transistor if the base current is
chosen in accordance with Fig. 6.
_ _ _J
BUX86
BUX87
SILICON DIFFUSED POWER TRANSISTORS
High-voltage, high-speed, glass-passivated n-p-n power transistors in SOT-32 envelopes, for use in converters, inverters, switching regulators, motor control systems and switching applications.
QUICK REFERENCE DATA
BUX86 BUX87
Collector-emitter voltage (open base)
VCESM max
max
VCEO
Collector current (d.c.)
IC
max
ICM
Ptot
max
VCEsat
<
tf
typ
Collector-emitter voltage (VBE
=
Collector current (peak value): tp
0, peak value)
=
2 ms
Total power dissipation up to T mb = 60 °C
Collector-emitter saturation voltage: IC = 0,2 A; 'B = 20 mA
Fall time: ICon
= 0,2 A;
'Bon
= 20 mA; -IBoft = 40 mA
800
1000
400
450
V
V
0,5
A
20
W
A
max
MECHANICAL DATA
3
V
0,4
p.s
Dimensions in mm
TO-126 (SOT-32)
-
Collector connected to metal part of mounting surface
1"'7.8 max
+
--I
,j5 1
-$
3.2
3,0
+
-,l
11,1
max
i
[ ] n [ ~~~(1)
- , - r- _of
15,3
min
e
..II...
0,5
1
c
b ...· - - - - - ' -
0.88....11... ·
max
~
7ZS9321.,2
"
I...
~
Accessories: 56326 (washer) or 56353 (clip) for direct mounting and 56353 + 56354 (package) for
insulated mounting.
* Within this region the cross-section of the leads is uncontrolled.
'I
February 1979
B,-»<86
BUX87
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC134)
Voltages
BUX86 BUX87
Collector-emitter voltage (VBE
= 0, peak value)
Collector-emitter voltage (open base)
VCESM
max
800
1000
V
VCEO
max
400
450
V
IC
max
0,5
1
A
Currents
Collector current (d.c.)
Collector current (peak value): tp
= 2 ms
A
ICM
max
Base current (d.c.)
IB
max
0,2
A
Base current (peak value)
IBM
max
0,3
A
-IBM
max
0,3
A
Ptot
max
20
W
Reverse base current (peak value) (note 1)
Power dissipation
Total power dissipation up to T mb
= 60 °C .
Temperatures
Storage temperature
Junction temperature
Tstg
-65 to +150
oC
150
°C
max
Tj
THERMAL RESISTANCE
-----
.....
.....
From junction to mounting base
Rth j-mb
4,5
°C/W
From junction to ambient in free air
Rth j-a
100
°C/W
CHARACTERISTICS
Tj
= 25 °C unless otlierwise specified
Collector cut-off current (note 2)
VCEM
VCEM
= VCESMmax; VSE = 0
= VCESMmax; VSE = 0; Tj = 125 °c
ICES
<
<
hFE
typ
ICES
100
mA
D.C. current gain
IC=50mA;VCE==5V
\
Notes
1. Turn-off current
2. Measured with a·half sine-wave voltage (curve tracer) .
2
• Mareh
19771 (
#LA
50
BUX86
BUX87
Silicon diffused power transistors
Tj = 25 0C unless otherwise specified
CHARACTERISTICS (continued)
Emitter
cut~off
current
lEBO
<
IC= 0,1 A; IB = 10 rnA
VCEsat
IC = 0,2 A; IB
= 20 rnA
VCEsat
IC = 0,2 A; IB = 20 rnA
VBEsat
<
<
<
IC = 0; VEB = 5 V
rnA
Saturation ~oltage
Collector-emitter sustaining voltages
1,5
V
3
1,0
V
V
BUX86 BUX87
IC = 100 rnA; IBoft = 0; L = 25 rnH
VCEOsust
400
450
V
7Z75254
250,-......_ __
200
Ic
(rnA)
100
o ------------------~r-----min VCE (VI
VCEOsust
Oscilloscope display. for sustaining voltage
Test circuit for, V CEOsust
March 1977
3
l""----___
BUX86
BUX87
/'
CHARACTERISTICS (continued)
Transitio? frequency at f
Tj = 25 °e unless otherwise specified
= 1 MHz
rov
20 MHz
fT
typ
Turn-on time
ton
<"
Turn-off: Storage time
ts
<
2 J.ls
3,5 J.lS
Ie = 50 mA; VeE =
Switching times
ICon
= 0,2 A; Vce = 250 V
IBon = 20 mA; -IBoff = 40 mA
typ
typ
Fall time
tf
typ
0,4 J.lS
Fall time, T mb = 95 °e
tf
<
1,3 J.lS
--~-
90
is (Ofo)
7Z726l.0
- - - - - - - ---Is on
'\
10 p.;;;..~~------tt--___- -
Waveform
90
ic
(%)
10
o r---r-T----~_r+'--~
+25V
------t---t---,
Test circuit
T
Lr 1
Vce
VIM~
CILtp
250V
+1
Vi
100
n
7Z77048
tp = 20 IlS
T
= 2 ms
VIM = 15 V
4
0,25 IlS
0,5 Ils
I
BUX86
BUX87
Silicon diffused power transistors
7Z77054
10
SUX86
T mb ~600C
IC
(A)
tp=
5J.Ls
8=0,01
,
ICMmax
-note 1
ICmax
'\
~
~
~~
I
note 2
10- 1
r'\.
""
"
"-
.
--
"'\. '\.\,
" " ---\
, \ "I\. I\~
~\
~
...,
~ i\
'\.~'\.
,,~'
,,~
'\ 1,\
\.\
~\ \.
--
l~ \
~~ ---\--
2
IC
(mA)
10- 2
---
1
-
-IV
-
10
20
50
100
200
500
1 ms
2
5
10
d.c.
--
- -III
0,5
400 800
VCE (V)
10- 3
10
Safe Operating ARea
I
Region of permissible d.c. operation
II Permissible extension for repetitive pulse operation
III Area of permissible operation during turn-on in single-transistor
converters, provided RSE ~ 100 nand tp ~ 0,6 J.LS
IV Repetitive pulse operation in this region is permissible,
provided VBE ~ a and tp ~ 2 ms
Notes
1. Ppeak max lines.
2. Second-breakdown limits (independent of temperature).
~r Ma~h
1917
5
l_ _~
BUX86,
BUX87
7Z77053
10
BUXfP
Tmb ~600C
I
IC
I
r---.-.
(A)
tp=
5ps
li =0,01
ICMmax
r--.-note 1
\.I\.
~
~
\
'~
I
note 2
"' "
\. \.,
\,
~\
\.'\.\.
\.'-
"
2
~
\.
r\
-
\. \
~\ !'I.
I
400
50
v
100
K
200
500
v
~ 1\\
f-IV
I I
0,5
20
v
,,
'~
IC
\
(mA) 1
-
10
"" ". "
\. "
.'- '-
ICmax
VV
v
1 ms
2
5
10
d.c.
III
'1000
VCE (V)
10- 3
10
Safe Operating ARea
I
Region of permissible d.c. operation
II Permissible extension for repetitive pulse operation
III Area of permissible operCltion during turn-on in single-transistor
converters, provided RBE ~ 100 n an tp ~ 0,6 ps
IV
Repetitiv~ pulse operation in this region is permissible,
provided VBE ~O and tp ~ 2 ms
Notes
1. Ppeak max lines.
2. 'Second-breakdown limits (independent of temperature).
6
Mareh 1977
~
r
BUX86
BUX87
Silicon diffused power transistors
7Z77049
100
~
.'\
Ptot max
1\
(%)
\
75
1\
\
,
~
50
\
1\
\
\
25
\
,
~
\
50
100
150
Tmb(OC)
7Z77058
~tp
-Itpl- I
---T-
5=-
T
10
== ~5 - 1
==
-==
-
:0,75
f-O,50
c- O,33
1-0,20
~ ~O,10
;:::::::;: FO,05
-
I-- I - i'"
V"
.....:
~
-~
10- 1
K"dd~
~ S?,Ol
--
10- 2
10- 3
"-
~: '
r- O
10- 2
10
March 1977
7
BUX86
BUX87
7Z770S6
S.B. current multiplying factor at the V CEOmax level
BUX86
MSB(V )
6='0
~.
~ ;;0,02
L?,01
~
......
-...... ........"......
r--.::~
./
~
~-
rt
~~~
~
~
10 to-== "",0,10
......... ......
t - - - 1-0,20
-"''''
[""0;.. ~
I"'--- I"~
033
r.'-r- r..~
0,50
-r- I-~
0,75
r
1
10- 2
.~ ~
10
7Z77055
S.B. current mUltiplying factor at the V CEOm~x level
BUX87
MSB(V )
~
~
./
-.........
6= 0
0,01
=0,02
~
! .........
""
........ r.......... I"':~
....... 1"-
r=-- [t1'-1"-
10 ~ 0,10
~~
'"
~
---
0,33
" ......
...........
~~
r--- ...... r--:~
0,50
...
t - - - r-O,20
-...
1
10- 2
8
---
....
0,75
1
Mareh 1977
.: 10- 1
~
(
r--~
~
10
BUX86
BUX87
Silicon diffused power transistors
7Z77057
S.B. voltage multiplying factor at the lemax level
~
0,02
10
~
~
~o,o~
~
r--....
010
~
~
-
====0,20
~0,133
......
'"""
""
1"-", ~t--" r--..
~
t- t-I--o
c::::.:: -.......
~
r-
,==-0:50
~
~
r - - t-- r- ~ ~f:: r--~
0~75
r- t--
1
1
~ .....
10- 2
4
,,
I
I
[I
(V)
,
Tj = 25 °e
- -max. values
--typ values
\
\
I
---
7Z77052
~ .
\
\
\
I
VeEsat
10
tp (ms)
I
3
I
I
i \
I
I
~
~
I
I
~l
50
mA
I
\
I',
...... ~ ~-t"
le=
\
\
\
0,2\
[
, ,
'.
1\
\
\
"'
~
"N
\V
[,
I
o
,
\
\
---1 f-O;-l ~
I
o
\
\
\
~
I
2
1
I
\
,
r - ' r-'"
\.
...... r--..,
'- -
20
1' ..
r-
40
60
'B(mA)
<
'I (Ma~h
1977
9
l_____
BUX86
BUX87
7Z77050
10 3
1277061
0,9
typo values
veE5V
Tj =25 0 e
Tj
V8Esat
(V)
10 2
.Ie= 1-10,2A f-f-
......
.........
~p
\~
10
1
10- 2
10- 1
----=
10
I
I I
I I
I
0,8
....... -
March 1977
r
Ie (A)
v
11:",..
0,7
=25 °e
"
L,,;
'"
"'~
-~....
---
_~t"'"
,...~
I--f-r'
O,lA f-~
I
.J.-.I..-~
50mA r-
",..
i.,.;'
10
18 (rnA)
20
BUX86
BUX87
Silicon diffused power transistors
APPLICATION INFORMATION ON BUX86 (detailed information on request)
Important factors in the design of SMPS circuits are the power losses and heatsink requirements of the
supply output transistor and the base drive conditions during turn-off. In SMPS circuits with mains
isolation the duty factor of the collector current generally varies between 0,25 to 0,5.
The operating frequency lies between 15 kHz and 50 kHz and the shape of the collector current varies
from rectangular in a forward converter to a sawtooth in a flyback circuit.
As the BUX86 will mainly be used in low-power flyback converters the information on optimum base
drive and device dissipation given in the graphs on page 13 is concentrated on this appl ication. I n these
figures ICM represents the highest repetitive peak collector current that can occur in the given circuit,
e.g. during overload.
The total power dissipation for a limit-case transistor is given in Fig. 5 which applies for a mounting
base temperatu re of 100 0C. The required thermal resistance for the heatsink can be calculated from
100-Tamb max
Rth mb-a =
P
,
tot
To ensure thermal stability the minimum value of Tamb in the above equation is 40 °C.
A practical SMPS output circuit for an output of power in the order of 15 W is given in Fig. 2.
At a collector current of 200 mA and a base current of 20 mA in this circuit the following turn-off
times can be expected.
T mb = 25 °C
Storage time
Fall time
typ
typ
1,3
0,2
100 0 C
1,8
0,8
Ils
IlS
-
j
's
'S(end)
-Vdrive
C;=='7Z744692
Fig. 1 Relevant waveforms of switching transistor.
August 1977
11
Jl
,BUX86
BUX87
+290 V
BY206
+24V
470
~F
0
to start
and
control
circuit
10
H~
JlJl._
T =30~s
b "='0,5
10kn
7Z77381
Fig. 2 Practical SMPS output circuit.
T1 (output transformer): Core U20; primary inductance Lp = 23 mH
n1 = 252 turns; n2 = 27 turns; n3 = 22 turns
VCE(t1)
12
< 300 V
(see ~ig. 1)
August 1977
(
BUX86
BUX87
Silicon diffused power transistors
7Z77382
7Z77383
LJ'
I
40
/
'B(end)
100
I
30
/
,,-
75
I--
4
Vdrive
(V)
...... V
3
\V
1\
'50
/
r-...
2
.......
......
,I
-~
~
10
-
V
~
V
V
20
~
/v
(pH)
/
I--
/'"
LB
J
V
(mA)
-Vdrive
V
-
LS
I-- I--
1---
25
V
o
200
100
300
400
'eM
o
o
100
200
400
'eM
(mA)
Fig .. 3.
300
(mA)
Fig. 4.
-
7Z77384
d'B(end) == ± 20%
Tmb';;;; 100 °c
4
Ptot
Fig. 3 Recommended nominal "end" value of
the base current versus maximum peak collector current.
(W)
3
--
J
/
V' "'- I7T== 25us
/
2
Li£
~
j
i.'
~~
./
V
,,,'"====:;ii""
",.
.....
_tfIIP
~~
"
.....
..........
V
"
t/50J.lS
. /
I;
_I .....
- ..
Fig. 4 Minimum required base inductance and
recommended negative drive voltage versus
maximum peak collector current.
Fig. 5 Maximum total power dissipation of a
limit-case transistor if the base current is
chosen in accordance with Fig. 3. Solid lines
for IC1/ICM = 0,4 and dotted lines for
IC1/ICM = O.
1-
o
100
200
300
400
'eM
(mA)
Fig. 5.
August 1977
13
2N30S5
MAINTENANCE TYPE
SILICON DIFFUSED POWER TRANSISTOR
N-P-N transistor in a TO-3 metal envelope, intended for use in linear applications
such as hi -fi amplifiers and signal processing circuits.
Matched pairs are available.
QUICK REFERENCE DATA
Collector-base voltage (open emitter)
V CBO
max. 100
V
Collector-emitter voltage (RBE = 100 n)
VCER
max. 70
V
Collector current (d. c. )
IC
max.
15
A
max. 115
W
Junction temperature
Ptot
Tj
max. 200
°C
D . C. current gain
IC = 4 A; VCE = 4 V
hFE
20 to 70
Transition frequency at f = 1 MHz
IC = 1 A; VCE = 4 V
fT
>
Total power dissipation up to T rob
= 25 oC
MECHANICAL DATA
0.8
Dimensions in mm
Collector connected to envelope
TO-3
-26,6max-
111
39,S 301
l-r.
J1
20,3
max
1_
8'63maxl~
+-1,6
,
-'1
-4,2
_4,0
'
1====~'1
+
7Z680,64.3! __
12,8 .......
11,2
For mounting instructions and accessories, see section Accessories.
February 1979
MHz
II
---
2N3442
2N4347
MAINTENANCE TYPES
SILICON DIFFUSED POWER TRANSISTORS
N -P-N transistors in a TO-3 metal envelope, intended for use in a wide variety of linear
power applications in audio amplifiers, converters, voltage regulators, power supplies,
etc.
QUICK REFERENCE DATA
2N3442
2N4347
VCBO
max.
160
140
V
Collector-emitter voltage (open base)
VCEO
max.
140
120
V
Collector current (d. c. )
IC
max.
10
A
Total power dissipation up to T mb =25 °c
Ptot
max.
117
'w
-Junction temperature
Tj .
max.
200
°c
Collector -base voltage (open emitter)
D. C. current gain
IC = 3 A; VCE = 4 V: 2N3442
IC = 2 A; VCE = 4 V: 2N4347
20 to 70
Dimensions in mm
MECHANICAL DATA
Collector connected to envelope
TO-3
--26,6max-
....18.63 max
I....
.... 1 .... 1,6
~42
Jt '
i
4'0
)J,
39,5 301
1
20,3
max
m~j_' _
1--10,9 ....
7Z68064.31 ....
12.8 ....
11,2
For mounting instructions and accessories, see section Accessories.
February 1979
II
II
-----
MOUNTING INSTRUCTIONS
GENERAL NOTE
II
GENERAL NOTE ON FLAT HEATSINKS
All ihlormation on thermal resistances of the accessories combined with flat heatsinks
is valid for square heatsinks of 1,5 mm blackened aluminium.
For a few variations the thermal resistance may be derived as follows:
a. Rectangularheatsinks (sides a and 2a)
When mounted with long side horizontal, multiply by 0, 95.
When mounted with short side horizontal, multiply by 1,10.
b. Unblackened or thinner heatsinks
Multiply by the factor B given below as a function of the heatsink size A.
7Z09250
B
1.4
1mm unblackened
:\.uminium
1.3
--
d ~umin'
1,5 mm unbtackene
1,2
lmm blackened Aluminium
1.1
5
0
II
10
15
20
3(}
25
ACcm 2) one side
II
May 1974
_ _ _J
MOUNTING'
INSTRUCTIONS
SOT -32/S0T -82
MOUNTING INSTRUCTIONS
FOR SOT -32 AND SOT -82 ENVELOPES
GENERAL DATA AND INSTRUCTIONS
General rules
1. First fasten the devices to the heatsink before soldering the leads.
2. Avoid axial stress to the leads.
3. Keep mounting tool (e.g. screwdriver) clear of the plastic body.
Heatsink requirements
Minimum thickness: 2 mm.
Flatness in the mounting area: 0,02 mm maximum per 10 mm.
Mounting holes must be deburred and should also be perpendicular to the plane of the heatsink, within
100 tolerance for M2,5 thread and within 2 0 tolerance for M3 thread. If the hole in the heatsink is
threaded, it should be counter-sunk and free of burrs.
Heatsink compound
Values of the thermal resistance from mounting base to heatsink (Rth mb-h) given for mounting with
heatsink compound refer to the use of a metallic oxide-loaded compound. Ordinary silicone grease is
not recommended.
For insulated mounting, the compound should be applied to the bottom of both device and insulator.
Mounting methods for power transistors
--
1. Clip mounting (SOT-32 and SOT-S2)
Mounting by means of spring clip offers:
a. A good thermal contact under the crystal area.
b. Safe insulation for mains and high voltage operation
2. M2,5 and M3 screw mounting. (SOT-32 only).
The spacing washer should be inserted between screw head and body.
Mounting torque for screw mounting:
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)
0,4 Nm (4 kgcm)
0,6 Nm (6 kgcm)
N.B. when the driven nut or screw is in direct contact with a toothed lock washer the torques are
as follows:
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)
0,55 Nm (5,5 kgcm)
O,SO Nm (S,O kgcm)
3. Body mounting (SOT-S2).
A SOT-S2 envelope can be adhesive mounted or soldered into a hybrid circuit.
For soldering a copper plate or an anodized aluminium plate with copper layer is recommended.
When adhesive mounting is applied also a ceramic substrate may be used.
'I
March 1979
MOUNTING
INSTRUCTIONS
SOT -32/S0T -82
l
.
'------------------------------------------------------Pre-heating
For good soldering and avoiding damage to the SOT-82 device pre-heating is recommended to a
temperature ~ 165 0C at a duration ~ 10 s.
Soldering
Recommended metal-alloy of solder paste (85% metal weight)
a. 62 Sn/36 Pb/2 Ag or b. 60 Sn/40 Pb.
Maximum soldering temperature ~ 250 0C (soldering plate)
Soldering cycle duration: a without pre~heating ~ 14 s.
b with pre-heating
~ 22. s.
Thermal data from mounting base to heatsink
Rth mb-h (OC/W)
clip mounting
direct insulated
SOT-32, with heatsink compound
SOT-32, without heatsink compound
1,0
3,0
3,0
6,0
SOT-82, with heatsink compound
SOT-82, without heatsink compound
0,4
2,0
2,0
5,0
screw mounting
direct insulated
0,5
1,0
3,0
6,0
Lead bending
Maximum permissible tensile force on the body, for 5 seconds is 20 N (2 kgf).
The leads can be bent through 90 0 maximum, twisted or straightened. To keep forces within the abovementioned limits, the leads are generally clamped near the body, using pliers. The leads should neither
be bent nor twisted less than 2,4 mm from the body.
Lead soldering
For devices with a maximum junction temperature ~ 150 0C.
---
a. Dip or wave soldering
Temperature ~ 260 0C at a distance from the body> 5 mm and for a total contact time with
soldering bath or waves < 7 s.
b. Hand soldering
Temperature at a distance from the body> 3 mm for a total contact time < 5 s is < 275 0C or
< 250 0C for a total contact time of < 10 s.
The body of the device must be kept clearof anything with a temperature> 200 0C.
Avoid any force on body and leads during or after soldering; do not correct the position of the device
or of its leads after soldering.
2
Ma~h
1979
1r
MOUNTING
INSTRUCTIONS
SOT -32/S0T -82
Mounting instructions for SOT-32 and SOT-82 envelopes
INSTRUCTIONS FOR CLIP MOUNTING
Direct mounting with clip 56353
1. Place the device on the heatsink, applying heatsink compound tothe mounting base.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
300 to the vertical (see Figs 1 and 2).
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on the plastic body (see Fig. 3).
_30 0
100~
,;"', 7
\ ! ---_
/
1
,
'
I \
, J
'/
2,0
1,5
~~*""''''"''''"~~....,....-.
-t
7Z78764
7276762
Fig. 1 Heatsink requirements.
Fig. 2 Mounting
spring clip.
Fig. 3 Position of
transistor (top view).
Insulated mounting with clip 56353 and mica 56354 (up to 1000 V insulation)
1.'Place the device with the insulator on the heatsink, applying heatsink compound to the bottom of
both device and insulator.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
300 to the vertical (see Figs 4 and 5).
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on the plastic body (Fig. 6). There should be minimum 3 mm
distance between the device and the edge of the insulator for adequate creepage.
-
I~t-=C=jl
"
U
-G
,---t-, , .
t
- - -H
,. -" -h-+{4\--1--- ., - 'i;~•
I I ~--. +----l 1 1__ 1,6..'
1,4
. 11,5
11,0
'..
1,~ _
min
7Z78765
Fig.4 Heatsink requirements.
Fig. 5 Mounting.
(1) spring cl ip 56353.
(2) insulator 56354.
Fig. 6 Position of
transistor (top view).
March 1979
3
l________
MOUNTING
INSTRUCTIONS
SOT -32/S0T-82
INSTRUCTIONS FOR SCREW MOUNTING
Dimensions in mm
Direct mounting with screw and spacing washer
I M3~lt
~
~====(=_rtt·liD'I
TO-126
I
+
a///m
56326
heatsink
ezv//&
atn
lock washer
nut
7Z65398
Fig. 7 Assembly through heatsink with nut.
1M3
-
~
====={=-illiD'I
-
tv/ml
bolt
56326
TO-126
IeVVM
heatsink
Fig. 9 Assembly into tapped heatsink.
4
March 1979
Fig.8 Heatsink requirements.
r
Fig. 10 Heatsink requirements.
MOUNTIN<;3
INSTRUCTIONS
SOT-32/S0T -82
Mounting instructions for SOT-32 and SOT-82 envelopes
INSTRUCTIONS FOR SCREW MOUNTING
Insulated mounting with 56333 (up to 250 V)
T
M2,S bolt
~
~
washer
insulating bush
====r----rLrb I
n,
!
k\\§"!
7265402.2
TO -126
mica washer
I !&,,§\'J
heatsink
~
lock washer
~
nut
Fig. 12 Heatsink requirements.
Fig. 11 Assembly through heatsink with nut.
T
M2,S bolt
~
~
===CIl!bIl'1
!
K\\§'J
4
washer
M 2,5
7Z78768
insulating bush
TO-126
Fig. 14 Heatsink requirements.
mica washer
I b\\\'§'/
he at sin k
Fig. 13 Assembly with tapped heatsink.
March 1979
5
_ _ _J
MOUNTING
INSTRUCTIONS
TO-220
MOUNTING INSTRUCTIONS FOR TO-220 ENVELOPES
GENERAL DATA AND ·INSTRUCTIONS
General ru les
1.
2.
3.
4.
First fasten the devices to the heatsink before soldering the leads.
Avoid axial stress to the leads.
Keep mounting tool (e.g. screwdriver) clear of the plastic body.
The rectangular washer may only touch the plastic part of the body; it should not exert any force on
that part (screw mounting).
Heatsink requirements
Flatness in the mounting area: 0,02 mm maximum per 10 mm.
Mounting holes must be deburred, see further mounting instructions.
Heatsink compound
Values of the thermal resistance from mounting base to heatsink (Rth mb-h) given for mounting with
heatsink compound refer to the use of a metallic oxide-loaded compound. Ordinary silicone grease is
not recommended.
For insulated mounting, the compound should be applied to the bottom of both device and insulator.
Mounting methods for power transistors
1. Clip mounting
Mounting by means of spring clip offers:
a. A good thermal contact under the crystal area, and slightly lower Rth mb-h values than screw
mounting.
b. Safe insulation for mains operation.
2. M3 screw mounting
It is recommended that the rectangular spacing washer is inserted between screw head and mounting
tab.
Mounting torque for screw mounting:
(For thread-forming screws these are final values. Do not use self-tapping screws.)
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)
0,55 Nm (5,5 kgcm)
0,80 Nm (8,0 kgcm)
N.B.: When a nut or screw is not driven direct against a curved spring washer or lock washer (not for
thread-forming screw), the torques are as follows:
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)
N.B.: Data on accessories are given in separate data sheets.
0,4 Nm (4 kgcm)
0,6 Nm (6 kgcm)
I
July 1977
tvtOlNrNG
INSTRUCTIONS
TO-220
l•_____
3. Rivet mounting non-insulated
The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet providing that eyelet rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab.
clip
screw
mou.nting mounting
Thermal data
From mounting base to heatsink
with heatsink compound, direct mounting
Rth mb-h
0,3
0,5
°C/W
without heatsink compound, direct-mounting
Rth mb-h
1,4
1,4
°C/W
with heatsink compound and 0,1 mm
maximum mica washer
Rth mb-h
2,2
°C/W
with heatsink compound and 0,25 mm
maximum alumina insulator
Rth mb-h
0,8
°C/W
with heatsink compound and 0,05 mm mica washer
insulated up to 5QO V
insulated up to 800 V/1000 V
Rth mb-h
Rth mb-h
without heatsink compound and 0,05 mm mica washer
insulated up to 500 V
insulated up to 800 V/1000 V
Rth mb-h
Rth mb-h
)
1,4
=.
1,6
°C/W
°C/W
-
3,0
4,5
°C/W
°C/W
Lead bending
Maximum permissible tensile force on the body, for 5 seconds is 20 N (2 kgf).
The leads can be bent through 900 maximum, twisted or straightened. To keep forces within the abovementioned limits, the leads are generally clamped near the body, using pliers. The leads should neither
be bent nor twisted less than 2,4 mm from the body.
SOldering
Lead soldering temperature at> 3 mm from the body; tsld
< 5 s:
Devices with Tj max";;;; 175 °C, soldering temperature Tsld max = 275 °C.
Devices with Tj max";;;; 110 °C, soldering temperature Tsld max = 240 °C.
Avoid any force on body and leads during or after soldering:. do not correct the position of the device
or of its leads after soldering.
It is not permitted to solder the metal tab of the device to a heatsink, otherwise its junction temperature
rating will be exceeded.
1\
2
_ _ _J
MOUNTNG
INSTRUCTIONS
TO-220
INSTRUCTIONS FOR CLIP MOUNTING
Direct mounting with clip 56363
1. Place the· device on the heatsink, applying heatsink compound to the mounting base.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
30 0 to the vertical (see Figs 1 and 2).
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on the plastic body, not on the tab (see Fig. 2a).
O
,
0
11_'211,5,0_J I..}s•
1,6 ....
1,4
(
,
,--)
min
'+2':0°
V/2ZI V2ZZZ7A vZ/?Jl
e
~II
. __,
-40
_3:S
... / 'I
JD
\_--
TO-220
7Z7543B
Fig. 1 Heatsink requirements.
Fig.2a Position of
transistor (top view).
Fig. 2 Mounting.
(1) spring clip.
Insulated mounting with clip 56364
With the insulators 56367 or 56369 insulation up to 2 kV is obtained.
1. Place the device with the insulator on the heatsink, applying heatsink compound to the bottom of
both device and insulator.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
300 to the vertical (see Figs 3 and 4).
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on the plastic body, not on the tab. There should be minimum 3 mm
distance between the device and the edge ofthe insulator for adequate creepage.
.
-,
4,0
O
0-3,S
',6 . . .11_'6,s_II
..}s• .
14
163
.
,
+
tz?2J VZZZZZZZZZl/1 f7ZJ
2,0
+
mm
1,0
7Z75437
Fig. 3 Heatsink requirements.
Fig. 4 Mounting.
(1) spring clip.
(2) insulator 56369 or 56367.
Fig. 4a Position of
transistor (top view).
July 1977
3
~
l- - - -
MOUNTING
INSTRUCTIONS
TO-220
Dimensions in mm
INSTRUCTIONS FOR SCREW MOUNTING
Direct mounting with screw and spacing washer
• through heatsink with nut
. 1_° 3,5-..,
max
+
1,5
min
+
7Z69.693.2
Fig. 5 Assembly.
--
(1)
(2)
(3)
(4)
(5)
(6)
Fig. 6 Heatsink requirements.
M3 screw.
rectangular washer (56360a).
toothed lock washer.
M3 nut.
heatsink.
plain washer.
• into tapped heatsink
Fig. 7 Assembly.
(1) M3 sc~ew.
(2) rectangular washer 56360a.
(5) heatsink.
4
February 1979
r
Fig. 8. Heatsink requirements.
j l IN_S_~_~U_~_~_~_N_S
MOUNTING
________________________------------------
____
____
Insulated mounting with screw and spacing washer (not recommended where mounting tab is on mains
voltage)
• through heatsink with nut
Dimensions in mm
Fig. 9 Assembly.
(1)
(2)
(3)
(4)
M3 screw.
rectangular washer 56360a.
toothed lock washer.
M3 nut.
(5)
(6)
(7)
(8)
heatsink.
mica insulator 56359b.
insulating bush 56359c.
plain washer.
Fig. 10 Heatsink requirements for 500 V insulation.
+
2,0
1-05,~±0,1-1
i
M
•
~
WM I r?C
+
~I fX3 6'+0,21
__
0
±0,1
IU,
1,O±O,1
+
7Z75433
Fig. 11 Heatsink requirements for 800 V insulation.
February 1979
5
MOUNTNG
INSTRUCTIONS
TO-220
l___
· _ __
• into tapped heatsink
1275019.1
Fig. 12 Assembly.
(1) M3 screw.
(2) rectangular washer 56360a.
(3) rectangular insulation bush 56359d.
(4) mica insulator 56359b.
(5) heatsink.
-=
--
5
min
i_~~~
1275435
Fig. 13 Heatsink requirements
for 500 V insulation.
6
February 1979
r
Fig. 14 Heatsink requirements
for 1000 V insulation.
_ _ _J
MOUNTING
INSTRUCTIONS
SOT-93
MOUNTING INSTRUCTIONS FOR SOT -93 ENVELOPES
GENERAL DATA AND INSTRUCTIONS
General rule
Avoid any sudden forces on leads and body; these forces, such as from falling on a hard surface, are
easily underestimated.
Heatsink requirements
Flatness in the mounting area: 0,02 mm maximum per 10 mm.
The mounting hole must be deburred.
Heatsink compound
The thermal resistance from mounting base to heatsink (Rth mb-h) can be reduced by applying a
metallic-oxide heatsink compound between the contact surfaces. For insulated mounting the compound
should be applied to the bottom of both device and insulator.
Maximum play
The bush or the washer may only just touch the plastic part of the body, but should not exert any
force on that part. Keep mounting tool (e.g. screwdriver) clear of the plastic body.
Mounting torques
For M3 screw (insulated mounting):
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)
0,4 Nm ( 4 kgcm)
0,6 Nm ( 6 kgcm)
For M4 screw (direct mounting only):
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)
0,4 Nm ( 4 kgcm)
1,0 Nm (10 kgcm)
Note: The M4 screw head should not touch the plastic part of the envelope.
Lead bending
Maximum permissible tehsile force on the body for 5 s
20 N (2 kgf)
No torsion is permitted at the emergence of the leads.
Bending or twisting is not permitted within a lead length of 0,3 mm.
The leads can be bent through 900 maximum, twisted or straightened; to keep forces within the abovementioned limits, the leads are generally clamped nearthe body.
N.B.: Dataon accessories are given in separate data sheets.
I
February 1979
MOUNTING
INSTRUCTIONS
SOT-93
l~___
Soldering
Recommendations for devices with
a maximum junction temperature rating';;;;; 175 oC:
a. Dip or wave soldering
Maximum permissible solder temperature is 260 0C at a distance from the body of> 5 mm and for
a total contact time with soldering bath or waves of < 7 s.
b. Hand soldering
Maximum permissible temperature is 275 0C at a distance from the body of> 3 mm and for a total
contact time with the soldering iron of < 5 s.
The body of the device must not touch anything with a temperature> 200 0C.
It is not perm itted to solder the metal tab of the device, to a heatsi nk, otherwise the junction temperature rating will be exceeded.
Avoid any force on body and leads during or after soldering; do not correct the position of the device
or of its leads after soldering.
Thermal data
clip
mounting
screw
mounting
Thermal resistance from mounting base to heatsink
direct mounting
with heatsink compound
without heatsink compound,
Rth mb-h
Rth mb-h
0,3
1,5
0,3 °C/W
0,8 oCIW
with 0,05 mm mica washer
with heatsink compound
without heatsink compound
Rthmb-h
Rth mb-h
0,8
3,0
0,8 0C/W
2,2 °CIW
INSTRUCTIONS FOR CLIP MOUNTING
Direct mounting with clip 56379
1. Place the device on the heatsink, applying heatsink compound to the mounting base.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
20 0 to the vertical (see Fig. 1b).
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on t~e plastic body, not on the tab (see Fig. 1(c)).
D
D
+
~6
7,4
3.1-.11_30,2_11.-3+
2·9
:2221
'smi
. 298
PZZZZZ22'ZZ2222J
P22a
Fjg.1a Heatsink requirements.
2
February 1979
(
n
•
2,1
+1,9
Fig. 1b Mounting.
(1) = spring cI ip 56379.
Fig. lc Position
of the device.
MOUNTING
INSTRUCTIONS
SOT-93
Mounting instructions for SOT-93 envelopes
Insulated mounting with clip 56379
With the mica of package 56368 insulation up to 1 kV is obtained.
1. Place the device with the insulator on the heatsink, applying heatsink compound to the bottom of
both device and insulator.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
20 0 to the vertical (see Figs 2a and 2b).
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on the plastic body, not on the tab (see Fig. 2cl. There should be
minimum 3 mm distance between the device and the edge of the insulator for adequate creepage.
-,
D ~:~
3,1J 1_30,2_11.-/
D
2,9
'smi
29,8
PZZd PZZZZZZZZZZZZZJ
ezza
n
t2~
+1,9
7Z75B4B
Fig. 2b Mounting.
Fig. 2a Heatsink requirements.
(1) = spring clip 56379
(2) = insulator 56378
Fig. 2c Position
of the device.
INSTRUCTIONS FOR SCREW MOUNTING
Direct mounting
Where vibrations are to be expected the use of a lock washer or of a curved spring washer is recommended, with a plain washer between aluminium heatsink and spring washer.
--
Insulated screw mounting with nut; up to 800 V.
I
!
insulator
I
l----L---J
Fig. 3 Mica insulator.
The axial deviation (a)
between SOT-93 and mica
should not exceed 50.
7Z75329
February 1979
3
MOUNTING
INSTRUCTIONS
SOT-93'
04±0,1
Fig. 4 Assembly.
See also Fig. 3.
7Z75326.1
Fig.5 Heatsink requirements
up to 800V insulation.
(1) M3 screw
plain washer
insulating bush (56368b)
mica insulator (56368a)
lock washer
(6) M3 nut
(2)
(3)
(4)
(5)
Insulated screw mounting with tapped hol~; up to 800 V.
-
--
Fig. 7 Heatsink requirements
up to 800 V insulation;
Fig. 6 Assembly.
See also Fig. 3.
4
February 1979
(1)
(2)
(3)
(4)
(5)
M3 screw
plain washer
insulating bush
mica insulator
lock washer
(56368b)
(56368a)
MOUNTING
INSTRUCTIONS
SOT-93
Mounting instructions for SOT-93 envelopes
Insulated screw mounting with insert nut; up to 500 V
1,Omin
I~~~~
2,5
t min
t
7Z75323.1
Fig. 8 Assembly and heatsink requirements
for 500 V insulation. See also Fig. 3.
(1)
(2)
(3)
(4)
(5)
M3 screw
plain washer
insulating bush
mica insulator
lock washer
(56368b)
(56368a)
---
February 1979.
5
,_ _ _J
MOUNTING
INSTRUCTIONS
TO-3
MOUNTING INSTRUCTIONS FOR TO-3 ENVELOPES
GENERAL DATA AND INSTRUCT.IONS
Instructions for direct mounting.
Mounting instructions for up to 500 V insulation.
Using insulating bushes 56201c and mica washer 56201d.
Using insulating bushes 56201j or 56261a and mica washer 56201d.
Mounting instructions for 500 to 2000 V insulation.
Using mounting support 56352 and mica washer 56339.
Heatsink requirements
Flatness in the mounting area: 0,05 mm per 40 mm
Mounting holes must be deburred.
Mounting torques
Minimum torque (for good heat transfer)
0,4 Nm (4 kgcm)
Maximum torque (to avoid damaging the transistor)
0,6 Nm (6 kgcm)
N.B.: When the driven nut or screw is in direct contact with a toothed lock washer (e.g. Fig. 10), the
torques are as follows:
Minimum torque
0,55 Nm (5,5 kgcm)
Maximum torque
0,8 Nm (8 kgcm)
Thermal data
The thermal resistance from mounting base to heatsink (Rth mb-h) can be reduced by applying a heat
conducting compound between transistor and heatsink. For insulated mounting the compound should
be applied to the bottom of both device and insulator.
Direct mounting
From mounting base to heatsink
without heatsink compound
with heatsink compound
Insulated mounting
500 V mica
2000 V mica
Rth mb-h
0,6
1,0
1,25
°C/W
Rth mb-h
0,1
0,3
0,5
°C/W
February 1979
MOUNTING
IN'STR'UCTIONS
TO-3
II
INSTRUCTIONS FOR.DIRECT MOUNTING
The transistors should be mounted with M4 screws, see Figs 1 and 2. Minimum heatsink
thickness (for good heat transfer) 1,5 mm. Hole. pattern: Fig. 3.
A heats ink with tapped holes or insert nuts caD. also beused, but a torque washer is necessary between metal washer and transistor. See Fig. 4.
CD
M4
00
®
1,5 •
fZZA
min.
I
I
I ezzzzzazzZZZZZZZZ4 I PZZ)
fZZA
I
I
I ez zzzz azzZZZZZZZZ4 I PZZ)·
(J)
®
(J)
+
®
®
CIlTI
M4
7Z70380
---
-
7Z70381
,
Figs 1 and 2. Direct mounting with nuts
Legend for all figures:
(1)
(2)
(2)(3)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
= screw
= TO-3 thick base (3,15 mm)
=TO - 3 thick or thin base
=
TO-3 thin base (1,6 mm)
= mica
= heatsink
= insulating bush
= metal washer
= soldering tag
= lock washer
= nut
= tapped hole
= insert nut
~:J'!._------:
W--.- ~ -$-. t
4 +g,2.'
- $ -~
+
i
--$--
10,9±O,1
i
+
i--16,9±O,1-1
I- 3 0 , 1 ± O , 1 -
7Z70376
Fig. 3. Hole pattern for direct
mounting with nuts
Dimensions in mm
2
II
It.
August 1975
J
CD
W W
M4
(J)
®
(J)
®
®®
®
MOUNTING
INSTRUCTIONS
TO-3
T
~
c:: =-
==-=--=r-....:::l
I
c::=t=
+
+
crUd bb
r
~,
Fig. 4 Direct mounting with tapped holes or insert nuts.
MOUNTING INSTRUCTIONS FOR UP TO 500 V INSULATION
Using insulating bushes 56201c and mica washer 56201d
For the comP9nent arrangement with minimum heatsink thickness see Figs 5 and 6. For hole pattern
and shape of holes see Figs 7 and 8.
The accessories can also be used for thinbase transistors on a 2,5 mm heatsink provided with M3
insert nuts in an arrangement like Figs 10 and 12.
Using insulati!lg bushes 56201j or 56261 a and mica washer 56201d
--
For an arrangement with M3 screws and nuts see Fig. 9, mounting holes are given in Figs 7 and 8.
The accessories can also be used in combination with M3 screws and heatsinks provided with tapped
holes or insert nuts. Lock washers are necessary between screw-head and metal washer, see Fig. 10.
For an assembly drawing with tapped holes see Fig. 11, with insert nuts see Fig. 12.
February 1979
3
MOUNTING
INSTRUcTIONS
TO-3
I
MOUNTING INSTRUCTIONS FOR UP TO 500 V INSULATION (continued)
,
CD M3
$
$
+i
I
+f
I
I
I
®®
• f
@ 56201d
f
--
~LW7////~
®
~
(j)
!
-+=
~
.+
lIjIl
+
®
@)
$
M3
------
I
I
I
=az::lj:::za'
®
(f)
JtL
.m.
Jt1
® 56201c
~/lIIZW~
7Z70383.i
+
+
i "" i
Figs 5 and 6. Insulated mounting (500 V) with 56201c and 56201d
Heatsink thickness: 1,5 to 2,5 mm for thick-base TO-3
2 to 2,5mm for thin-base TO-3
For legend see page 2.
5,O±O,1
-'I~I~
*tf
+
-----'--~t
4~-~$-~- =t'~9r'
.
7270377
Fig. 7. Hole pattern for 500 V
insulation, nut fastening
4
11
C:iJ6.5+~~I'"
1
,-.1
i.- 16,9±O,1-.1
-30,1±O,1-
.-.
120 0
I...
04±O,1
7Z70379
FiS"- 8.. Shape of hole for 500 V
insulation ,nut fastening
I
February 1979
_____J
CD
M3
(j)
1M3)
®
, ,
56261a
(j)or@*
(M4)
®
MOUNTING
INSTRUCTIONS
TO-3
a:::j::a
~
1!rI
1!r
®~
56261a
or
56201j
+=-_-:l.-::.::x.,
drQ ~
Fig. 9 Insulated mounting
(500 V) with nuts.
G)
I
I
®
I
®IM3)
M3
I
'Wff~
I
222223
$
'+
,
+
rz
®
@)
I
56201d
+
2min
C$
, 3 min (56261al
.2 min (56201j)
7270385.2,*
For legend 'see page 2.
®(M3)
, I
(J)
(M3)
a::::j:::.:a
®
56261 a
CD M3
~
I
t
(J)or@*
I
(M4)
Fig. 10 Insulated mounting (500 V)
with tapped holes or insert nuts.
drQ
®
®
I
56201d
I
+
+
1tr
oL
--®
6
56261a
or
56201j 4 -
(])
I
~ W~
,
@+@
+ . '
@+@
* Thickness approximately 0,6 mm,
outer diameter 7,5 mm.
~5~
+
,
t
~~6
IrFebru.~
7Z7038S.2
,
+
1979
5
MOUNTING
INSTRUCTIONS·
TO-3
l
.
'-~-----------------------------------------------MOUNTING INSTRUCTIONS FOR UP TO 500 V INSULATION (continued)
9,
1M3)
56261a
or 56201j
Q
+
-.
fZ)4±O,1
--
_06,5+8,2 --+-
7Z70387.2
Fig. 11 Assembly (partial) for Fig. 10-tapped holes.
Q minimum 2 mm for thick-base TO-3 (with 56261a).
Q minimum 3 mm for thin-base TO-3 (with 56261a).
Q minimum 2 mm for thin-base TO-3 (with 56201j).
9 . 1M3)
I
~
56261a
or 56201j
-,0,6 min
t Q•
+
Fig. 12 Assembly (partial) for Fig. 10 - insert nuts and thick-base TOc3.
Q minimum 2 mm for thick-base TO-3 (with 56261a).
Q minimum 3 mm for thin-base TO-3 (with 56261a).
Q
minimum 2 mm for thin-base TO-3 (with 56201j).
* Thickness approximately 0,6 mm, outer diameter 7,5 mm.
6
Fooru.~ 19791 (
_ _ _J
MOUNTING
INSTRUCTIONS
TO-3
Legend for all figures:
(1 )
(2)
(2) (3)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11 )
(12)
screw.
TO-3 thick base (3,15 mm).
TO-3 thick or thin base.
TO-3 thin base (1,6 mm).
mica.
heatsink.
insulating bush.
metal washer.
soldering tag.
lock washer.
nut.
tapped hole.
insert nut.
Dimensions in mm
MOUNT I NG I NSTRUCTIONS FOR 500 V TO 2000 V INSU LATION (Thick-base TO-3 only)
Using mounting support 56352 and mica washer 56339
The transistorshould be mounted with M3 screws. Forcomponent arrangement see Figs 13 and 14.
For hole pattern see Fig. 15. Thickness of heatsink 2,5 mm to 3 mm.
--
February 1979
7
MOUNTING
INSTRUCTIONS
TO-3
l
'-----~-------------------------------------
MOUNTING INSTRUCTIONS FOR 500 V TO 2000 V INSULATION (continued)
c$
+
-. @
c$
+
I
56339
®
__
56352
(j)
®
(j)
®
@M3
__ Figs 13 and 14 Insulated mounting (500 V - 2000 V, thick-base TO-3) with mica 56339 and mounting
support 56352.
For legend see page 2 or 7.
~w~
,
.
' -'f" -------'-,-----:
7, 5 ±n,'
~
ID, --,-.
4+. '.
-$---.~+-------,,----!
.0,+.0"
i-16,9±O,1_j
-30,1±O,1-
?Z70378
Fig. 15 Hole pattern for Figs 13 and 14.
8
February 1979
r
ACCESSORIES
---
j
ACCESSORIES
---------------------------------------------------TYPE NUMBER SURVEY ACCESSORIES
type number
description
envelope
56201c
insulati'lg bushes (up to 500 V)
TO-3
56201d
mica washer (up to 500 V)
TO-3
56201j
insulating bushes (up to 500 V)
TO-3
56261a
insulating bushes (up to 500 V)
TO-3
56326
metal washer
SOT-32
56333
metal washer
mica washer
insulating bush
SOT-32
56339
mica washer (500 to 2000 V)
TO-3
56352
insulating mounting support
56353
spring clip
SOT-32/S0T-82
56354
mica insulator
SOT-32/S0T -82
56359b
mica washer (up to 800 V)
TO-220
56359c
insulating bush (up to 800 V)
TO-220
56359d
rectangular insulating washer (up to 1000 V)
TO-220
56360a
rectangular washer (brass)
TO-220
56363
spring clip (direct mounting)
TO-220
56364
spring clip (insulated mounting)
TO-220
56367
alumina insulator
TO-220
56368a
mica insulator
SOT-93
56368b
insulating bush
SOT-93
56369
mica insulator (up to 2 kV)
TO-220
56378
mica insulator
SOT-93
56379
spring clip
SOT-93
I(
Mareh 1979
--
~, ~s_e_le_~_iO_n_g_U_id_e
ACCESSORIES
______
___________________________________
CLIP MOUNTING
direct mounting
envelope
insulated mounting
clip
mica
clip
TO-126
(SOT-32)
56353
56354
56353
SOT-82
56353
56354
56353
TO-220
(SOT-78)
56363
56369
56364
SOT-93
56379
56378
56379
SCREW MOUNTING
direct mounting
envelope
metal washer
TO-126
(SOT-32)
TO-220
(SOT-78)
up to 800 V
mounting
material
56326
M3
56360a
M3
·up to 1000 V
SOT-93
-
M4
TO-3
(SOT-3)
up to 500 V
-
M4
up to 2000 V
insulated mounting
mica wast1er
2
1r
1979
Mareh
metal washer
56333
mounting
material
M2,5
56359b
56359c
56360a
M3
56359b
56359d
56360a
M3
56368a
56368b
M3
56201d
56201c;
56201jor
56261a
M3
56339
56352
M3
The accessories mentioned can be supplied on request.
See also chapter Mounting Instructions.
insul. bush
J
ACCESSORIES
------------------------~-----------------------
56201c
2 INSULATING BUSHES
Two insulating bushes for up to 500 V insulation of TO-3 envelopes.
MECHANICAL DATA
Dimensions in mm
--I
03,8
1---
Jd:+
1_ ,5_1
07
7Z75445
TEMPERATURE
Maximum permissible temperature
T max
56201d
150 °C
MICA WASHER
Mica washer for up to 500 V insulation of TO-3 envelopes.
MECHANICAL DATA
••
43--~------
4
..
30,1
- - - - - - 1...1
March 1979
ACCESSORIES
l________
56201j
2 INSULA liNG BUSHES
Two insulating bushes for up to 500 V insulation of TO-3 envelopes.
MECHANICAL DATA
-,,03,1
r
Dimensions in mm
n----'
~~s
7Z75448
TEMPERATURE
Maximum permissible temperature
56261a
T max
150 °C
2 INSULAliNG BUSHES
Two insulating bushes for up to 500 V insulation of TO-3 envelopes.
MECHANICAL DATA
Dimensions in mm
-'1
03,8
1'-
-'1 1-03 1
,
gsJsilf
---
1-- 06,5-'
7Z7S449
TEMPERATURE
Maximum permissible temperature
·2
Ma~h 19791 (
T max
150 °C
Jl
ACCESSORIES
---------------------------------------------------56326
WASHER
Flat metal washer for direct mounting of envelope SOT-32 (TO-126).
MECHANICAL DATA
Dimensions in mm
..
E01
-.13,1
VA
+1,6
L7Z65!7
56333
Mounting accessories for insulated mounting of envelope SOT-32 (TO-126); the set consists of a metal
washer, a mica washer and an insulating bush.
MECHANICAL DATA
Dimensions in mm
-+
D~8
1%1 . 1%1
g
o
,
2,1
--1 2•61.- 1Z65~'
Metal washer.
+
2,6
__ 2,95
Mica washer.
1.-
1Z65399
Insulating bush.
TEMPERATURE
Maximum permissible temperature
Tmax
= 150 °C
March 1979
3
l
, ACCESSORIES
-----------------------------------------------
56339
MICA WASHER
Mica washer for 500 to 2000
mounting support 56352.
V insulation of TO-3 envelopes, for which
it should be combined with
MECHANICAL DATA
Dimensions in mm
..
.
46
30,1
•
•
-16,9--+-
t
+
1
4,3 32
10;9
+
+
j
--2.7Z70265,'
--
4
March 1979
r
!
0,075± 0,025
J[
ACCESSORIES
------------------------------------------------56352
MOUNTING SUPPORT
Mounting support for 500 to 2000 V insulation of thick-base TO-3 envelopes, for which it should be
combined with mica washer 56339.
MECHANICAL DATA
Dimensions in mm
-+-1 1- 4 ,85
il Ii 3,8
---'111
Iii 3,1
,
'--~~~I----~+r------£=l~I~1
~--__=_~
__~r-~t
~L'+-H~-;l=f-J-'----'-HI----I-L---.,
t
1 I
----
__ I ' I....
3
•
t
1,5
2,3
5,3
t
~4,85
--2 ....
1
t
21
10,9
•
J
..
..
.'
______
.1
7270266
TEMPERATURE
Maximum permissible temperature
Tmax
125 oC
March 1979
5
ACCESSORIES
l--.........-________
56353
CLIP
for SOT -32 and SOT -82 envelopes
MECHAN ICAl DATA
Dimensions inmm
t
4,83
+
---tt-~-~=-
..!.-.
2,03
t
4,45
•t
t
...13,18 1.-
-- 2,28 1. .1
. - - - - - 11,68 ---".1
7Z69101
Spring clip suitable for heatsink of 1,5 to 2 mm.
See mounting instructions SOT-32/S0T-82 envelopes.
56354
MICA INSULATOR
for SOT ";32 and SOT -82 envelopes
MECHANICAL DATA
Dimensions in mm
1~10---"1
I
14
1
7Z69103
See also chapter Mounting Instructions.
6
March 1979
r
J
ACCESSORIES
-------------------------------------------56359b
MICA WASHER
for TO-220 envelopes (up to 800 V)
...
MECHANICAL DATA
Dimensions in mm
....
3,6± 0,05
.
6:",---,-------
1 ~--o/19
j
7Z73142.1
56359c
1_ _1
15
INSULATING BUSH
for TO-220 envelopes (up to 800 V)
MECHANICAL DATA
Dimensions in mm
,
JJ: 2;7
TEMPERATURE
Maximum permissible
temperature
T max
=
--I 1__
150 °C
03,1
7Z73143.1
56359d
RECTANGULAR INSULATING WASHER
for TO-220 envelopes (up to 1000 V)
,_5,8_,
MECHANICAL DATA
1f
Dimensions in mm
@]
03,5
TEMPERATURE
Maximum permissible
temperature
t
T max = 150 oC
3,8
-Imaxl-
n
+
2,6
·-_1 1_ +
03,1
7Z7392.0.1
March 1979
7
ACCESSORIES
56360a
RECTANGULAR WASHER
for direct and insulated mounting of TO-220 envelopes
,-
MECHANICAL DATA
Dimensions in mm
-- 3,1 ..
material: brass.
10
~-~
1_ 5 ,8 ..1
56363
7Z7314.1
SPRING CLIP
for direct mounting of TO-220 envelopes
MECHANICAL DATA
material: steel, zinc-chromate passivated.
-,
Dimensions in mm
7,2
t
t
4,8
-5:
. ..---.
12,0 -----.~~I
56364
•
. .......1318
7Z75441
'
1--
SPRING CLIP
~.
.for insulated mounting of TO-220 envelopes
MECHANICAL DATA
Dimensions in mm
material: steel, sinc-chromate passivated.
-t
6,9
~
to be used in
conjunction with
t
4,8
Ir
r
I------17,0------t.~,--7-Z75442
... 2,3 ,......
'---8--Ma~-h19...........
7~
56367 or 56369.
.......13,18
L
j
ACCESSORIES
--------------------------------------------------'
56367
ALUMINA INSULATOR
for insulating mounting of TO-220 envelopes
MECHANICAL DATA
Dimensions in mm
0,25
-'11--
I
I
alumina insulator (up to 2 kV)
material: 96-alumina. *
21
7Z75440
* Because alumina is brittle, extreme care must be taken when mounting devices not to crack the
alumina, particularly when used without heatsink compound.
MICA INSULATOR
56368a
for insulated screw mounting of SOT -93 envelopes
MECHANICAL DATA
Dimensions in mm
4±0,05
t
r
r
28
~iJ
-25--.1
1."--11
+0,05
7Z75330
t±O,01
March 1979
9
l______- - -
ACCESSORIES
INSULATING· BUSH
56368b
for insulated screw mounting of SOT-93 envelopes
MECHANICAL DATA
Dimensions in mm
-'1
flJ3,85
±0,05
TEMPERATURE
T max = 150 °C
Maximum permissible temperature
56369
MICA INSULATOR
for insulated clip mounting of TO-220 envelopes (up to 2 kV)
MECHANICAL DATA
Dimensions in mm
----
1~16~1
0,10
0,05
--11'-
I
21
j
7Z75439
10
March 1979
r
Jl
ACCESSORIES
---------------------------------------------56378
MICA INSULATOR
for SOT-93 clip mounting
MECHANICAL DATA
Dimensions in mm
O,05±O,01
-'II~
1
28
7Z75B51
SPRING CLIP
56379
for direct and insu lated mounting of SOT -93 envelopes
MECHANICAL DATA
Dimensions in mm
t
8
~
.-----------30-----------.
7Z75850.1
material: CrNi steel NLN-939; thickness 0,4 ± 0,04.
March 1979
11
HYBRID MODULES
DEVELOPMENT SAMPLE 'DATA
OM931
OM961
This information is derived from development samples made available
for evaluation. It does not form part of our data handbook system and
does not necessarily imply that the device will go into production
HYBRID INTEGRATED CIRCUIT HI-FI AUDIO POWER AMPLIFIERS
The OM931 and OM961 are thin-film hybrid integrated circuit hi-fi audio amplifiers for sinusoidal
output power up to 60 W. The modules offer maximum design possibilities regarding amplification,
ripple rejection, stability for complex loads, etc. The amplifiers have built-in short-circuit protection
(SOAR protected), and are especially designed for low transient and harmonic distortion. All built-in
resistors are dynamically adjusted for optimum performance over a wide temperature range.
QUICK REFERENCE DATA
Sinusoidal output power for dtot
f = 20 Hz to 20 kHz
RL =4n
RL = 8n
> 30 W at ± 23 V > 60 W at ± 31 V
> 30 W at ± 26 V > 60 W at ± 35 V
Total harmonic distortion
Po = 1 W; f = 1 kHz
I
OM961
OM931
< 0,2 %
dtot
0,02 %
0,02
typo
-92--"1
-·~
~,-------
82
- - - - - - - 4..~1
t
4,5-
-t 15,5,
-t•
17
9
2,54--1
i_
t
_11--0,9
5,75-7Z75804
-
I-I'
--0,5
Fig. 1 Outline; dimensions in mm.
I
March 1979
---
OM931
OM961
l
~------------------------
,---------------,
8
----,
---------~
:--------,
1
I
I
I
I
1
19
I
I
I
I
I
_--.J I
I
1
--I
I
I
I
I
1
I
I
1
1
I
I
I
I
I
I12
1
I
1
3
I
I
I
1
.
I
4
---
L
I
~---------..:
I
I
-15----' ----,------------------7i7580j.~
Fig.2 Circuit diagram.
2
~roh 19791 (
OM931
OM961
Hybrid audio power amplifiers
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Symmetrical supply voltage
OM931
Vs
max.
±40 V
OM961
Vs
max.
±45 V
Operating mounting base temperature
T mb
Storage temperature
T stg
CHARACTERISTICS
max.
95 °C
-30 to +100 °C
l________
OM931
OM961
APPLICATION INFORMATION
C3
R4
+
R5
to other
channel
7Z75806
Fig. 3 Example of an amplifier with external components.
List of components:
Rl = 10
R2 =
4,7
R3 =300
R4 = 680
R5 = 10
R6 = 22
R7 =
2,2
R8 = 10
4
kn (0,25 W)
kn (0,25 W)
n
n
(0,25 W)
(0,25 W)
kn (0,25 W)
n
n
n
(0,5 W)
(0,25 W)
(0,5 W)
August 1978
(
Cl = 47 IlF
C2 = 270 pF
C3 = 120 pF
C4 = 100 IlF
C5 = 470 IlF
C6 = 100 nF
C7 = lOIlF
C8 = lOIlF
C9 =
1 IlF
(10V)
(10%)
(10%)
(63 V)
(63 V)
(63 V) .
L = 41lH
RL = 4 or 8
n
OM931
OM961
Hybrid audio power amplifiers
MOUNTING RECOMMENDATIONS
The modules are delivered with leads in 51 L (single in-line) but leads may also be bent to 01 L (dual inline).
Fig. 4:
a. Single in-line (51 L) leads.
b. Dual in-line (01 L) leads.
7Z75803
a
b
Thermal resistance values from
heatsink to ambient for various
heatsink lengths (a):
power modu Ie
Rth h-a = 1,4 oe/W: a = 50 mm
Rth h-a = 1,0 oe/W: a = 75 mm
Rth h-a = 0,8 °e/w: a = 90 mm
printed-circuit
board
heatsink
side view
,.......- - - - - - - 190,5 - - - - - - - - l...1
-,
r
50
L( . ., . ., . . . .,
I.-
I.-
I.-
I.-
I.-
......
I.-
I.-
I.-
I.-
....,
......
~5
-ri- power module
heatSlnk
(e.g. series KL-139
Seifert Electronic)
t
-
- r-- printed-circuit
board
top view
7Z75805
Fig. 5 Example of a heatsink to be used for the module; dimensions in mm.
I(
August 1978
5
OM931
OM961
l_____- - -
PRINTED-CIRCUIT BOARDS for OM931 and OM961
7Z75799
Fig. 6 Component side of SI L-version showing component layout.
---
~
7Z75800
Fig. 7 Component side of DI L-version; for co\nponent layout see Fig. 6.
6
Au~st 19781 (
OM931
OM961
Hybrid audio power amplifiers
Dimensions in mm
I. . .~---------- 83 - - - - - - - - - - - -
51
7275801
Fig.8 Track side of 51 L-version.
------'-------83-----------
.
51
7Z75802
Fig. 9 Track side of 01 L-version.
August 1978
7
I
LOW-FREQUENCY POWER TRANSISTORS
---
-----
-
TYPE NUMBER SURVEY
SELECTION GUIDE
GENERAL
TRANSISTOR DATA
MOUNTING INSTRUCTIONS
ACCESSORIES
HYBRID MODULES
Argentina: FAPESA l.y.C., Av. Crovara 2550, Tablada, Provo de BUENOS AIRES, Tel. 652-743817478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.w., Tel. 427 08 88.
Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-ll0l WIEN, Tel. 62 91 11.
Belgium: M.B.L.E., 80, rue des Deux Gares, B-l070 BRUXELLES, Tel. 5230000.
Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Fari Alima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B lM8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.
Colombia: SADAPES.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KC2lBENHAVN NV., Tel. (01) 691622.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 1 7271.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQijE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915311.
Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. NT 24 51 21.
India: PEICO ELECTRONICS & ELECTRICALS LTD., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457311-5.
Indonesia: P.T. PHILlPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, JI. Jen. Gatot Subroto, P.O. Box 220, JAKARTA, Tel. 44163.
Ireland: PHILIPS ELECTRICAL (IRELAND) L TD.,.Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.pA, Sezione Elcoma, Piazza IV Novembre 3,1-20124 MILANO, Tel. 2-6994.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN, LTD, TOKYO, Tel. (03)230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 794-4202.
Malaysia: PHILIPS MALAYSIA SON. BERHAD, Lot 2, Jalan 222, Section 14, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 77 44 11.
Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 533-11-80.
Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525,5600 PO EINDHOVEN, Tel. (040) 79 33 33.
New Zealand: PHILIPS ELECTRICAL IND. LTD., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867119.
Norway: NORSK A/S PHILIPS, Electronica, S0rkedalsveien 6, OSLO 3, Tel. 463890.
Peru: CADESA, Rocca de Vergallo 247, LIMA 17, Tel. 628599.
Philippines: PHILIPS INDUSTRIAL DEV.INC., 2246Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, TeL 86-89-51 to 59.
Portugal: PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LlSBOA 1, Tel. 6831 21.
Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., P.O.B. 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 538811.
South Africa: EDAC (Pty.) Ltd., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9.
Spain: COPRESA SA, Balmes 22, BARCELONA 7, T~f. JOj6312.
Sweden: A.B. ELCOMA, Lidingovagen 50, S-115 84 STOCKHOLM 27, Tel. 08/679780.
Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZORICH, Tel. 01/432211.
Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.
Turkey: TORK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 5910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WCl E 7HD, Tel. 01-5806633.
United States: (Active deviCeS & Materials)AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.
(Passive devices) MEPCO/ELECTRA ING., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.
Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 94321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, CARACAS, Tel. 360511.
A13
, 1979 NY Philips· Gloeilampenfabrieken
This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does
the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced
iri any way, in whole or in part, without the written consent of the publisher.
Printed in The Netherlands
9398 106 40011
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:31 16:14:49-08:00 Modify Date : 2017:07:31 19:19-07:00 Metadata Date : 2017:07:31 19:19-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:970e313e-222c-4745-acca-d0344a112e92 Instance ID : uuid:d2385478-6eb9-ca4d-ae66-3ece8cb3e51b Page Layout : SinglePage Page Mode : UseNone Page Count : 739EXIF Metadata provided by EXIF.tools