1979_Philips_Semiconductors_and_Integrated_Circuits_Part_2_Low Frequency_Power_Transistors 1979 Philips Semiconductors And Integrated Circuits Part 2 Low Frequency Power Transistors

User Manual: 1979_Philips_Semiconductors_and_Integrated_Circuits_Part_2_Low-Frequency_Power_Transistors

Open the PDF directly: View PDF PDF.
Page Count: 739

Download1979_Philips_Semiconductors_and_Integrated_Circuits_Part_2_Low-Frequency_Power_Transistors 1979 Philips Semiconductors And Integrated Circuits Part 2 Low-Frequency Power Transistors
Open PDF In BrowserView PDF
Semiconductors and
integrated circuits
Part 2

June 1979

Low-frequency power transistors
Low-frequency power hybrid modules

'.

•

f.~ ~

•

~.

-

~

I

.'

\

•

~ ~

.

•

SEMICONDUCTORS AND INTEGRATED CIRCUITS
PART 2 - JUNE 1979

LOW:'FREQUENCY POWER TRANSISTORS

DA TA HANDBOOK SYSTEM
SEM ICONDUCTOR INDEX
MAINTENANCE TYPE LIST
TYPE NUMBER SURVEY
SELECTION GUIDE

--

GENERAL

TRANSISTOR DATA

=

MOUNTING INSTRUCTIONS

ACCESSORIES

HYBRID MODULES

----

__- - J l - DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.

BLUE

ELECTRON TUBES

RED

SEMICONDUCTORS AND INTEGRATED CIRCUITS

GREEN

COMPONENTS AND MATERIALS

The several parts contain all pertinent data available at the time of publication, and each is revised and
reissued periodically.
'
Where ratings or specifications differ from those published in the preceding edition they are pointed
out by arrows. Where application information is given it is advisory and does not form part of the
product specification.
If you need confirmation that the published data about any of our products are the latest available,
please contact our representative. Heis at your service and will be glad to answer your inquiries.

This information is furnished for guidance, and with no guarantee as to its accuracy or completenes!t; its publication conveys no licence
under any patent or'other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of
goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the
written consent of the publisher.

I(

October 1977

Jl_·_ __ _

I_ _

ELECTRON TUBES (BLUE SERIES)

Part 1a December 1975

ET1a 12-75

Transmitting tubes for communication, tubes for r.f. heating
Types PE05/25 to TBW15/25

Part 1b August 1977

ET1b 08-77

Transmitting tubes for communication, tubes forr.f. heating,
amplifier circuit assemblies

Part 2a November 1977

ET2a 11-77

Microwave tubes
Communication magnetrons, magnetrons for microwave
heating, klystrons, travelling-wave tubes, diodes, triodes
T-R switches

Part 2b May 1978

ET2b 05-78

Microwave semiconductors and components
Gunn, Impatt and noise diodes, mixer and detector diodes,
backward diodes, varactor diodes, Gunn oscillators, subassemblies, circulators and isolators

Part 3

January 1975

ET301-75

Special Quality tubes, miscellaneous devices

Part 4

March 1975

ET403-75

Receiving tubes

Part 5a March 1978

ET5a 03-78

Cathode-ray tubes
Instrument tubes, monitor and display tubes, C.R. tubes
for special applications

Part 5b December 1978

ET5b 12-78

Camera tubes and accessories, image intensifiers

Part 6

ET601-77

Products for nuclear technology
Channel electron multipliers, neutron tubes, Geiger-Muller
tubes

Part 7a March 1977

ET7a 03-77

Gas-filled tubes
Thyratrons, industrial rectifying tubes, ignitrons,
high-voltage rectif.ying tubes

Part 7b May 1979

ET7b 05-79

Gas-filled tubes
Segment indicator tubes, indicator tubes, switching diodes,
dry reed contact units

Part 8

May 1977

ET805-77

TV picture tubes

Part 9'

March 1978

ET903-78

Photomultiplier tubes; phototubes

I

~

January 1977

r
1

Mareh 1979

_____Jl__
SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

Part 1a August 1978

SC1a 08-78

Rectifier, diodes, thyristors, triacs
Rectifier diodes, voltage regulator diodes (> 1,5 W),
transient suppressor diodes, rectifier stacks, thyristors, triacs

Part 1b May 1977

SC1b 05-77

Diodes
Small signal germanium diodes, small signal silicon diodes,
special diodes, voltage regulator diodes « 1,5 W), voltage
reference diodes, tuner diodes

Part 2

November_1977

SC2 11-77

Low-frequency and dual transistors*

Part 2

June 1979

SC2 06-79

Low-frequency power transistors

Part 3 - January 1978

SC301-78

High-frequency, switching and field-effect transistors

Part 4a December 1978

SC4a 12-78

Transmitting transistors and modules

Part 4b September 1978

SC4b 09-78

Devices for optoelectronics
Photosensitive diodes and transistors, light emitting diodes,
photocouplers, infrared sensitive devices,
photoconductive devices

Part 4c July 1978

SC4c 07-78

Discrete semiconductors for hybrid thick and thin-film circuits

Part 5a November 1978

SC5a 11-76

Professional analogue integrated circuits

Part 5b March 1977

SC5b 03-77

Consumer integrated circuits
Radio-audio, television

Part 6

SC610-77

Digital integrated circuits
LOCMOS HE4000B family

October 1977

Signetics integrated circuits 1978

Bipolar and MOS memories
Bipolar and MOS microprocessors
Analogue circuits
Logic - TTL

* Low-frequency general purpose transistors will be transferred to SC3 later in 1979. The old book
SC2 11-77 should be kept until then.

I(Ma~h

1979

--

COMPONENTS AND MATERIALS ,(GREEN SERIES)
Part 1

June 1977

CM106-77

Assemblies for industrial use
High noise immunity logic FZ/30-series, counter modules
50-series, NORbits 50-series, 51-series, circuit blocks
gO-series, circuit block CSA70(L), PLC modules, input/
output devices, hybrid circuits, peripheral devices, ferrite
core memory products

Part 2a

October 1977

CM2a 10-77

Resistors
Fixed resistors, variable resistors, voltage dependent resistors
(VOR), light dependent resistors (LOR), negative temperature coefficient thermistors (NTC), positive temperature
coefficient thermistors (PTC), test switches

Part 2b

February 1978

CM2b 02-78

Capacitors
Electrolytic and solid capacitors, film capacitors, ceramic
capacitors, variable capacitors

Part 3

January 1977

CM301-77

Radio, audio, television
Components for black and white television, components
for colour television

Part 3a

September 1978 CM3a 09-78

FM tuners, television tuners, surface acoustic wave filters

Part 3b

October 1978

Loudspeakers

Part 4a

November 1978 CM4a 11-78

Soft ferrites
Ferrites for radio, audio and television, beads and chokes,
Ferroxcube potcores and square cores, Ferrocube transformer cores

Part 4b

February 1979

CM4b02-79

Piezoelectric ceramics, permanent magnet materials

Part 5'

April 1977

CM504-77

Electric motors and accessories
Small synchonous motors, stepper motors, miniature
direct current motors

Part 7

September 1971 CM709-71

Circuit blocks
Circuit blocks 100 kHz-series, circuit blocks 1-series, circuit
blocks 1O-series, circuit blocks for ferrite core memory drive

Part 7a

January 1979

CM7a 01-79

Assemblies
Circuit blocks 40~series andCSA70 (L), counter modules
50-series, input/output devices

Part 8

June 1979

CM806-79

Variable mains transformers

Part 9

March 1976

CM903-76

Piezoelectric quartz d~vices

Part 10

April 1978

Ma~h

1979

~

CM3b 10-78

r

CM1004-78

Connectors

INDEX

--

I
I

.
,

Jl

INDEX

---------------------

----------~-------------------------------------------

INDEX OF TYPE NUMBERS
Data Handbooks SC1a to SC4c

The inclusion of a'type number in this publication does not necessarily imply it~ availability.

I

I

type no.

part

section

type no.

part

section

type no.

part

section

AA119
AAZ15
AAZ17
AAZ18
AC125

1b
1b
1b
1b
2

PC
GB
GB
GB
LF

BA243
BA244
BA280
BA314
BA314A

1b
1b
1b
1b
1b

T
T
T
Vrg
Vrg

BAX15
BAX16
BAX17
BAX18
BAX18A

1b
1b
1b
1b
1b

WD
WD
WD
WD
WD

AC126
AC127
AC128
AC128/01
AC132

2
2
2
2
2

LF
LF
LF
LF
LF

BA315
BA316
BA317
BA318
BA379

1b
1b
1b
1b
1b

Vrg

BB105A
BB105B
BB105G
BB106
BB110B

1b
1b
1b
1b
1b

T
T
T
T
T

AC187
AC187/01
AC188
AC188/01
AF367 c

2
2
2
2
3

LF
LF
LF
LF
HFSW

BAS16
BAT17
BAT18
BAV10
BAV18

4c
4c
4c
1b
1b

Mm
Mill
Mill
WD

BB110G
BB117
BB119
BB204B
BB204G

1b
.1b
1b
1b
1b

T
T
T
T
T

BA100
BA102
BA145
BA148
BA157

1b
1b
1a
1a
1a

AD
T

BAV19
BAV20
BAV21
BAV45
BAV70

1b
1b
1b
1b
4c

WD
WD
WD

BB205A
BB205B
BB205G
BBY31
BC107

1b
1b
1b
4c
2

T
T
T
Mill
LF

BA158
BA159
BA182
BA216
BA217

1a
1a
1b
1b
1b

R
R

BAV99
BAW21A
BAW21B
BAW56
BAW62

4c
1b
1b
4c
1b

MIn

BC108
BC109
BC140
BC141
BC146

2
2
2
2
2

LF
LF
LF
LF
LF

BA218
BA219
BA220
BA221
BA222

1b
1b
1b
1b
1b

WD
WD
WD

BAX12
BAX12A
BAX13
BAX14
BAX14A

1b
1b
1b
1b
1b

WD
WD
WD
WD
WD

BC147
BC148
BC149
BC157
BC158

2
2
2
2
2

LF
LF
LF
LF
LF

AD
GB
HFSW
LF
Mm

R
R
R

T
WD
WD

WD
WD

= Silicon alloyed diodes
= Germanium gold bonded diodes
= High-frequency and switching transistors

= Low-frequency transistors (SC2 11-77)
= Discrete semiconductors for hybrid
thick and thin-film circuits

WD
WD
WD

T

WD

Sp
Mill

WD
WD
Mill
WD

PC
R
Sp
T
Vrg
WD

,

= Germanium point contact diodes
= Rectifier diodes
=

Special diodes

= Tuner diodes
= Voltage regulator diodes
= Silicon whiskerless diodes

'I

(APrH 1979

--

jl_~~

_IND_EX

----

type no.

part

section

type no.

part

section

type no.

part

section

BC159
BC160
BC161
BC177
BC178

2
2
2
2
2

LF
LF
LF
LF
LF

BCW71 ;R
BCW72;R
BCX17;R
BCX18;R
BCX19;R

46
4c
4c
4c
4c

MIn
MIn
MIn
MIn
MIn

BD182
BD183
BD201
BD202
BD203

2
2
2
2
2

P
p
P
P
p

BC179
BC200
BC264A
BC264B
BC264C

2
2
3
3
3

LF
LF
FET
FET
FET

BCX20;R
BCX51
BCX52
BCX53
BCX54~

4c
4c
4c
4c
4c

MIn
MIn
MIn
MIn
MIn

BD204
BD226
BD227
BD228
BD229

2
2
2
2
2

p
P
p
P
p

BC264D
BC327
BC328
BC337
BC338

3
2
2
2
2

FET
LF
LF
LF
LF

BCX55
BCX56
BCY30A.
BCY31A
BCY32A

4c
4c
2
2
2

MIn
MIn

BD230
BD231
BD232
BD233
BD234

2
2
2
2
2

p
P
P
p
p

BC368
BC369
BC546
BC547
BC548

2
2
2
2
2

LF

BCY33A
BCY34A
BCY55
BCY56
BCY57

2
2
2
2
2

LF
LF

BD235
BD236
BD237
BD238
BD291

2
2
2
2
2

p
P
p
P
P

BC549
BC550
BC556
BC557
BC558

2
2
2
2
2

LF
LF
LF

2
2
2
2
2

LF
LF

LF

BCY58
BCY59
BCY70
BCY71
BCY72

LF
LF

BD292
BD293
BD294
BD295
BD296

2
2
2
2
2

P
p
p
p
p

BC559
BC560
BC635
BC636
BC637

2
2
2
2
2

LF
LF
LF
LF
LF

BCY78
BCY79
BCY87
BCY88
BCY89

2
2
2
2
2

LF
LF
DT
DT
DT

BD329
BD330
' BD331
BD332
BD333

2
2
2
2
2

p
p
P
P
p

BC638
BC639
BC640
BCW29;R
BCW30;R

2
2
2
4c
4c

LF

2
2
2
2
2.

P
P
p
p
p

BD334
BD335
BD336
BD337
BD338

2
2
2
2
2;

p
p
p
p

MIn

BD131
BD132
BD133
BD135
BD136

BCW31;R
BCW32;R
BCW33;R
BCW69;R
BCW70;R

4c
4c
4c
4c
4c

MIn
MIn
MIn
MIn
MIn

BD137
BD138
BD139
BD140
BD181

2
2
2
2
2

p
P
p
p
P

BD433
BD434
BD435
BD436
BD437

2
2
2
2
2

P
p
p
P
p

LF

LF
LF
LF

LF

LF
LF
Mm

t

DT = Dual transistors (SC2 11-77)
F ET = Field-effect transistors
LF = Low-frequency transistors (SC2 11-77)

2

April19~

I(

LF
LF
LF

D'l'

LF
LF

LF

p

Mm = Discrete semiconductors for hybrid
thick and thin-film circuits
= Low-frequency power transistors (SC2 06-79)
P

_ _ _Jl__

IND_EX

type no.

part

section

type no.

part

section

type no.

part

section

BD438
BD645
BD646
BD647
BD648

2
2
2
2
2

P
P
P
P
P

BD954
BD955
BD956
BDT62
BDT62A

2

P
p
P
P
P

BDX64
BDX64A
BDX64B
BDX64C
BDX65

2
2
2
2

2

p
P
P
p
p

BD649
BD650
BD651
BD652
BD675

2
2
2
2
2

p
p
P
P
p

BDT62B
BDT62C
BDT63
BDT63A
BDT63B

2
2
2
2

2

P
P
p
P
P

BDX65A
BDX65B
BDX65C
BDX66
BDX66A

2
2
2
2
2

P
P
p
P
P

BD676
BD677
BD678
BD679
BD680

.2
2
2
2
2

P
P
P
p
P

BDT63C
BDT91
BDT92
BDT93
BDT94

2
2
2
2
2

p
P
P
p
P

BDX66B
BDX66C
BDX67
BDX67A
BDX67B

2
2
2
2
2

P
P
p
P
P

BD681
BD682
BD683
BD684
BD933

2
2
2
2
2

P
P
p
p
p

BDT95
BDT96
BDV64
BDV64A
BDV64B

2
2
2
2
2

P
P
P
P
P

BDX67C
BDX77
BDX78
BDX91
BDX92

2
2
2
2
2

P
P
P
P
P

BD934
BD935
BD936
BD937
BD938

2
2
2
2.
2

P
p
P
P
P

BDV65
BDV65A
BDV65B
BDX35
BDX36

BDX93
BDX94
BDX95
BDX96
BDY20

2
2

2
2

P
P
P
P
P

2
2

p
p
P
P
P

BD939
BD940
BD941
BD942
BD943

2
2
2
2
2

P
P
P
P
p

BDX37
BDX42
BDX43
BDX44
BDX45

2
2
2
2
2

P
P
p
P
p

BDY90
BDY91
BDY92
BDY93
BDY94

2
2
2
2
2

P
P
P
p
P

BD944
BD945
BD946
BD947
BD948

2
2
2
2
2

P
p
P
p
p

BDX46
BDX47
BDX62
BDX62A
BDX62B

2
2
2
2
2

P

2
2
3
3
3

P
P

P
P
P

BDY96
BDY97
BF115
BF167
BF173

BD949
BD950
BD951
BD952
BD953

2
2
2
2
2

p

BDX62C
BDX6:5
BDX63A
BDX63B
BDX63C

2
2
2
2
2

P
p
P
P
p

BFt77
BF178
BF179
BF180
BF181

:5
3

p
P
P
p

2
2
2
2

2
2

2

p

2

3
:5
:5

--

HFSW
HFSW
HFSW
HFSW
HFSW
HFSW
HFSW
HFSW

HFSW = High-frequency and switching transistors
P
= Low-frequency power transistors (SC2 06-79)
April 1979

3

INDEX

Jl

--------------------'

§

-=
I

type no.

part

BF182
BF183
BF184
BF185
BF194

'---~-----------------------------------------------

section

type no.

part

section

type no.

part

section

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

BF495
BF550;R
BF622
BF623
BFQ10

3
4c
4c
4c
3

HFSW
Mm
Mm
Mm

3
4a
4a

FET

BFS21-A
BFS22A
BFS23A
BFS28
BFT24

FET
Tra
Tra
FET
HFSW

BF195
BF196
BF197
BF198
BF199

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

BFQ11
BFQ12
BFQ13
BFQ14
BFQ15

3
3
3
3
3

FET
FET
FET
FET
FET

BFT25;R
BFT44
BFT45
BFT46
BFT92;R

4c
3
3
4c
4c

Mm

BF200
BF240
BF24t
BF245A
BF245B

3
3
3
3
3

HFSW
HFSW
HFSW
FET
FET

BFQ16
BFQ17
BFQ18A .
BFQ19
BFQ23

3
4c
4c
4c
3

FET

HFSW

BFT93;R
BFW10
BFW11
BFW12
BFW13

4c
3
3
3
3

Mm

Mm
MID.
Mm

BF245C
BF256A
BF256B
BF256C
BF324

3
3
3
3
3

FET
FET
FET
FET
HFSW

BFQ24
BFQ32
BFQ34
BFQ42
BFQ43

3

HFSW
HFSW
HFSW
Tra
Tra

BFW16A
BFW17A
BFW30
BFW45
BFW61

3
3
3
3

HFSW
HFSW
HFSW
HFSW
FET

BF327
BF336
BF337
BF338
BF362

3
3
3
3
.3

FET
HFSW
HFSW
HFSW
HFSW

BFR29
BFR30
BFR31
BFR49
BFR53;R

3
4c
4c
3
4c

FET

BFW92
BFW93
BFX34
BFX89
BFY50

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

BF363
BF419
BF422
BF423
BF450

3
2
3
3
3

HFSW

BFR64
BFR65
BFR84
BFR90
BFR91

3
3
3
3
3

HFSW
HFSW
FET
HFSW
HFSW

3
3
3

HFSW
HFSW
HFSW
HFSW

BF451
BF457
BF458
BF459
BF469

3
2
2
2
2

BFR92;R
BFR93;R
BFR94
BFR95
BFR96

4c
4c
3
3
3

Mm
Mm

BFY51
BFY52
BFY55
BFY90
BG1895
-541
-641

1a
1a

R
R

BF470
BF471
BF472
BF480
BF494

2
2
2
3
3

BFS17;R
BF.818;R
BFS19;R
BFS20;R
BFS21

4c
4c
4c
4c
3

Mm

BG1897
-541
-542
-641
. -642

1a
1a
1a
1a

R
R
R
R

BG1898
-541
-641

1a
1a

R
R

p

HFSW
HFSW
HFSW
HFSW
p

P
p
p
p

P
p

HFSW
HFSW

FET = Field-effect transistors
HFSW = High-frequency and switching transistors
Mm
= Discrete semiconductors for hybrid
. thick and thi~-film circuits

4

AP'il1979

r
1

3

3
4a
4a

Mm

MIn

HFSW
MID.

HFSW
HFSW
HFSW

)

3

3

3

HFSW
HFSW
Mm
Mm

FET
FET
FET
FET

MIn
Mm

MIn

FET

P = Low-fr:equency power transistors (SC2 06c79)
R = Rectifie~ dIodes
Tra = Transmitting transistors and modules

_ _ _ _Jl_IND_EX
~no.

part

sect'ion

type no.

part

section

type no.

part

section

BGY22
BGY22A
BGY23
BGY23A
BGY32

4a

Tra
Tra
Tra
Tra
Tra

BLX39
BLX65
BLX66
BLX67
BLX68

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BPX95B
BR100
BR101
BRY39(Th)
(SCS)
(PUT)

4b
1a
3
1a
3
3

PDT
Th
HFSW
Th
HFSW
HFSW

BGY33
BGY35
BGY36
BGY37
BLV10

4a
4a
4a
3
4a

Tra
Tra
Tra
HFSW
Tra

BLX69A
BLX91 A
BLX92A
BLX93A
BLX94A

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BRY61
BSR12;R
BSR30
BSR31

4c
4c
4c
4c

Mm
Mm
Mm
Mm

BLV11

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BLX95
BLX96
BLX97
BLX98
BLY87A

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BSR32
BSR33
BSR40
BSR41
BSR42

4c
4c
4c
4c
4c

MIn

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BLY87C
BLY88A
BLY88C
BLY89A
BLY89C

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BSR43
BSR56
BSR57
BSR58
BSS38

4c
4c
4c
4c
3

Mm
Mm
Mm
Mm

BLW64
BLW75
'BLW76
BLW77
BLW78

4a
4a
4a
4a

BLY90
BLY91A
BLY91C
BLY92A
BLY92C

4a
4a
4a
4a

4a

Tra
Tra
Tra
Tra
Tra

4a

Tra
Tra
Tra
Tra
Tra

BSS50
B'SS51
BSS52
BSS60
BSS61

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

BLW79
BLWOO
BLW81
BLW82
BLW83

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BLY93A
BLY93C
BLY94
BPW22
BPW34

4a
4a
4a
4b
4b

Tra
Tra
Tra
PDT
PDT

BSS63;R
BSS64;R
BSS68
BSV15
BSV16

4c
4c
3
3
3

Mm
Mm

BLW84
BLW85
BLW86

Tra
Tra
Tra
Tra
Tra

BPX25
BPX29
BPX40
BPX41
BPX42

4b
4b
4b
4b
4b

PDT
PDT
PDT
PDT
PDT

BSV17
BSV52;R
BSV64
BSV78
BSV79

3
4c
3
3
3

HFSW

BLW95

4a
4a
4a
4a
4a

BLW98
BLX13
BLX13C
BLX14
BLX15

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BPX47A
BPX70
BPX71
BPX72
BPX94

4b
4b
4b
4b
4b

PDT
PDT
PDT
PDT
PDT

BSV80
BSV81
BSW41 A
BSW66
BSW67

5

FET
FET
HFSW
HFSW
HFSW

II BLV20
BLV21
BLW29
BLW31

4a

4a
4a
4a

-

Mm
Mm
Mm
Mm

~

I

BLW32
BLW33

BLW34
BLW60
BLW60C

BLW87

FET = Field·effect transistors
HFSW = High-frequency and switching transistors
Mm = Discrete semiconductors for hybrid
thick and thin-film circuits

3
3
3
3

HFSW

HFSW
HFSW
HFSW
Mm

HFSW
FET
FET

PDT = Photodiodes or transistors
Th = Thyristors
Tra = Transmitting transistors and modules

April 1979

5

_I_NDE_X

--

_J

l""---_ _ _ _ _ ______

type no.

part

section

type no.

part

section

type no.

part

section

BSW68
BSX19
BSX20
BSX21
BSX45

3
3
3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW

BU206
BU207A
BU208A
BU209A
BU326

2
2
2
2
2

P

BY409
BY409A
BY476
BY476A
BY477

1a
1a
1a
1a
1a

R
R
R
R
R

BSX46
BSX47
BSX59
BSX60
BSX61

3
3
3,
3
3

HFSW
HFSW
lfFSW
HFSW
HFSW

BU326A
BU426 '
BU426A
BU433
BUW84

2
2
2
2
2

P

*
*
*
*

1a
1a
1a
1a
1a

R
R
R
R
R

BYW54
BYW55
BYW56
BYW92 *
BYX10

1a
la
1a
1a
1a

R
R
R
R
R

*
*
*
*
*

1a
1a
1a
1a
1a

R
R
R
R
R

p
P

p
P

p

BY478
BYW19
BYW29
BYW30
BYW31'

BT126
BT128
BT129
BT137
BT138

*
*
*
*

1a
1a
1a
1a
1a

Th
Th
Th
Tri
Tri

BUW85
BUX80
BUX81
BUX82
BUX83

2
2
2
2
2

BT139
BT151
BTW23
BTW24
BTW30

*
*
*
*
*

1a
1a
1a
1a
1a

Tri

BUX84
BUX85
BUX86
BUX87
BY126

2
2
2
2
1a

P

p
R

BYX22
BYX25
BYX29
BYX30
BYX32

BlJ.'W31
BTW33
BTW34
BTW38
BTW40

*
*
*
*

*

1a
1a
1a
1a
1a

Th
Th
Tri
Th
Th

BY127
BY164
BY176
BY179
BY184

1a
1a
1a
1a
1a

R
R
R
R
R

BYX35
BYX36
BYX38
BYX39
BYX42

*
*
*
*

1a
1a
1a
1a
1a

R
R
R
R
R

BTW41
BTW42
BTW43
BTW45
BTW47

*
*
*
*
*

1a
1a
1a
1a
1a

Tri
Th
Tri
Th
Th

BY187
BY188 *
BY206
BY207
BY208 *

1a
1a
1a
1a
1a

R
R
R
R
R

BYX45
BYX46
BYX49
BYX50
BYX52

*
*
*
*
*

1a
1a
1a
1a
1a

R
R
R
R
R

BTW92
BTX18
BTX94
BTY79
BTY87

*
*
*
*
*

1a
1a
1a
1a
1a

Th

BY209
BY223 ,
BY224 *
BY225 *.
BY226

1a
1a
1a
1a
1a

R
R
R
R
R

BYX55 *
BYX56 *
BYX71 *
BYX90
BYX91 *

1a
1a
1a
1a
1a

R
R
R
R
R

BTY91 *
. BU126
BU133
BU204
BU205

1a
2
2
2
2

BY227
BY228
BY277 *
BY406
BY407

1a
1a
1a
1a
1a

R
R
R
R
R

BYX96
BYX97
BYX98
BYX99
BZV10

*
*
*
*

1a
1a
1a
1a
1b

R
R
R
R

Th
Th

Th
Th

Th

Tri
Th

Th
Th
P

p
P

p

HFSW = High-frequency and switching transistors
P
= Low-frequency power transistors (SC2 06-79)
R
= Rectifier diodes

6

P
P
P
P

April 1979

~

(

P
P
P
P
P

p

Vrf

Th' = Thyristors
Tri = Triacs
Vrf = Voltage reference diodes

INDEX

type no.

part

section

type no.

part

section

type no.

part

section

BZV11
BZV12
BZV13
BZV14
BZV15

lb
1b
lb
1b
la

Vrf
Vrf
Vrf
Vrf
Vrg

BZZ24
BZZ25
BZZ26
BZZ27
BZZ28

la
la
1a
1a
1a

Vrg
Vrg
Vrg
Vrg
Vrg

ORPto
ORP13
ORP23
ORP52
ORP60

4b
4b
4b
4b
4b

I
I
Ph
Ph
Ph

lb
la
la
1a
la

Vrf
TS
TS
TS
TS

BZZ29
CNY22
CNY23
CNY42
CNY43

la
4b
4b
4b
4b

Vrg
PhC
PhC
PhC
PhC

ORP61
ORP62
ORP66
ORP68
ORP69

4b
4b
4b
4b
4b

Ph
Ph
Ph
Ph
Ph

la
la
la
lb
lb

TS
TS
TS
Vrg
Vrg

CNY44
CNY46
CNY47
CNY47A
CNY48

4b
4b
4b
4b
4b

PhC
PhC
PhC
PhC
PhC

OSB9110
OSB9210
OSB9310
OSB9410
OSM9110

1a
1a
la
la
1a

St
St
St
St
St

la
1b
1b
4c
lb

Vrg
Vrg
Vrg
Vrg

CQY11B
CQY11C
CQY24A
CQY46A
CQY47A

4b
4b
4b
4b
4b

LED
LED
LED
LED
LED

OSM9210
OSM9310
OSM9410
OSS9110
OSS9210

1a
la
1a
1a
la

St
St
St
St
St

lb
1b
lb
lb
lb

Vrf
Vrf
Vrf
Vrf
Vrf

CQY49B
CQY49C
CQY50
CQY52
CQY54

4b
4b
4b
4b
4b

LED
LED
LED
LED
LED

OSS9310
OSS9410
RPY58A
RPY71
RPY76A

la
1a
4b
4b
4b

St
St
Ph
Ph
I

1b
la
1"a
la
la

Vrg
Vrg
Vrg
Vrg
Vrg

CQY58
CQY88
CQY89
CQY94
CQY95

4b
4b
4b
4b
4b

LED
LED
. LED
LED
LED

RPY82
RPY84
RPY85
RPY86
RPY87

4b
4b
4b
4b
4b

Ph
Ph
Ph
I
I

BZZ14
BZZ15
BZZ16
BZZ17
BZZ18

la
la
la
1a
la

Vrg
Vrg
Vrg
Vrg
Vrg

CQY96
CQY97
OA47

4b
4b
lb
1b
lb

LED
LED
GB
PC
PC

RPY88
RPY89
1N821.
1N823
1N825

4b
4b
1b
1b
1b

I
I
Vrf
Vrf
Vrf

BZZ19
BZZ20
BZZ21
BZZ22
BZZ23

la
la
la
la
1a

Vrg
Vrg
Vrg
Vrg
Vrg

OA95
OA200
OA202
OM931
OM961

lb
lb
1b
2

PC
AD
AD
P
P

1N827
1N829
1N914
1N914A
lN916

1b
1b

Vrf
Vrf
WD
WD
WD

BZV38
BZW'10
BZW70
BZW86
BZW91
BZW93
BZW95
BZW96
BZX55
BZX61
BZX70
BZX75
BZX79
BZX84
BZX87

*
*
*
*
*
*
*
*
*
*
*
*
*
*

BZXga
BZX91
BZX92
BZX93
BZY78
BZY88
BZY91
BZY93
BZY95
BZY96

*
*
*
*
*

Mm

OAga
OA91

AD = Silicon alloyed diodes
GB = Germanium gold bonded diodes
I
= Infrared devices
LED = Light-emitting diodes
Mm = Discrete semiconductors for hybrid
thick and thin-film circuits
P
= Low-frequency power transistors (SC2 06-79)
PC = Germanium point contact diodes

2

Ph
PhC
St
TS
Vrf
Vrg

WD

1b
1b
lb

= Photoconductive devices
= Photocouplers

= Rectifier stacks
=
=
=
=

Transient suppressor diodes
Voltage reference diodes
Voltage regulator diodes
Silicon whiskerless diodes

April 1979

7

INDEX
L " , , - - - '_

type no.

part

section

type no.

part

section

type no.

part

1N916A
1N916B
1N:3879
1N:3880
1N3881

1b
1b
1a
1a
1a

WD
WD
R
R
R

1N5749B
1N5750B
1N5751B
1N5752B
1N5753B

1b
1b
1b
1b
1b

Vrg
Vrg
Vrg
Vrg
Vrg

2N:3020
2N:3055
2N:3:375
2N:3442
2N:3553

:3
2
4a
2
4a

1N3882
1N3889
1N3890
1N3891
1N3892

1a
1a
1a
1a
1a

R
R
R
R
R

1N5754B
1N5755B
1N5756B
1N5757B
2N918

1b
1b
1b
1b
3

Vrg
Vrg
Vrg
Vrg
HFSW

2N3632
2N3823
2N3866
2N3924
2N3926

4a
3
4a
4a
4a

Tra
FET
Tra
Tra
Tra

1N4009
1N4148
1N4150
1N4151
1N4154

1b
1b
1b
1b
1b

WD

2N929
2N930
2N1613
2N1711
2N1893

2
2
3
3
3

LF

WD
WD
WD
WD

LF
HFSW
HFSW
HFSW

2N3927
2N3966
2N4030
2N40:31
2N40:32

4a
3
3
3
3

Tra
FET
HFSW
HFSW
HFSW

1N4446
1N4448
1N5060
1N5061
1N5062

1b
1b
1a
1a
1a

WD
WD
R
R
R

2N2218
:3
2N2218A ' 3
2N2219
:3
2N2219A
3
2N2221
:3

HFSW
HFSW
HFSW
HFSW
HFSW

2N40:3:3
2N4036
2N4091
2N4092
2N4093

:3
:3
:3
:3
3

HFSW
HFSW
FET
FET
FET

1N5729B
1N5730B
1N57:31B
1N57:32B
1N5733B

1b
1b
1b
1b
1b

Vrg
Vrg
Vrg
Vrg
Vrg

2N2221A
2N2222
2N2222A
2N2297
2N2368

3
:3
3
:3
3

HFSW
HFSW
HFSW
HFSW
HFSW

2N4347
2N4:391 ,
2N4:392
2N4393
2N4427

2
:3
3
3
4a

FET
FET
FET
Tra

1N5734B
1N5735B
1N5736B
1N5737B
1N5738B

1b
1b
11>
1b
1b

Vrg
Vrg
Vrg
Vrg
Vrg

2N2369
2N2369A
2N248:3
2N2484
2N2894

:3
3
2
2
3

HFSW
HFSW
LF
LF
HFSW

2N4856
2N4857
2N4858
2N4859
2N4860

3
:3
3
:3
:3

FET
FET
FET
FET
' FET

1N5739B
1N5740B
1N5741B
1N5742B
1N5743B

1b
1b
1b
1b
1b

Vrg
Vrg
Vrg
Vrg
Vrg

2N2894A
2N2904
2N2904A
2N2905
2N2905A

3
3
:3
3
3

HFSW
HFSW
HFSW
HFSW
HFSW'

2N4861
2N5415
2N5416
61SV
40820

3
3
:3
4b
3

FET
HFSW
HFSW

1N5744B
1N5745B
1N5746B
1N5747B
1N5748B

lb

1b
1b
1b
1b

Vrg
Vrg
Vrg
Vrg
Vrg

2N2906
2N2906A
2N2907
2N2907A
2N:3019

3
3

HFSW
HFSW
HFSW
HFSW
HFSW

40835
40838
56200
56201c
56201d

3
3
3,4a
2

HFSW
HFSW
A
A

2

A

A
== Accessories FET = Field-effect transistors
HFSW = High-frequency and switching transistors
I
= I nfrared devices
LF
= Low-frequen'cy transistors (SC2 11-77)

8

__

April 1979

r

3

3
3
P
R
Tra
Vrg
WD

I

section,

HFSW
P

Tra
P

Tra

p

I

HFSW

= Low-frequency power transistors (SC2 06-79)
= Rectifier diodes

= Transmitting transistors and modules
= Voltage regulator diodes
= Silicon whiskerless diodes

----

-----

---

----

INDEX

type no.

part

section

type no.

part

section

type no.

part

section

56201j
56218
56230
56231
56233

2
3,4a
1a
1a
1a

A
A

1a
1a
1a
1a
1a

HE
HE

A

56290
56293
56295
56299
56309B

A
A
A

56350
56352
56353
56354
56356

1a
2
2
2
3

DR
A
A
A
A

56234
56245
56246

1a A
3,4a A
1a to
4a A
DH
1a

56309R
56312
56313
56314
56315

1a
1a
1a
1a
1a

A
DH
DR
DH
DH

56358
56359b
56359c
56359d
56360a

1a
2
2
2
2

A
A
A
A
A

56256
56261a
56262A
56263

1a
DH
2
A
1a A
1a to
4a A

56316
56318
56319
56326
56333

1a A
1a DH
DR
1a
2,3 A
2,3 A

56363
56364
56366
56367
56368a

1a,2
1a,2
1a
2
2

A
A
A
A
A

56264A
56268
56271
56278
56280

1a
1a
1a
1a
1a

56334
56337
56339
56348
56349

1a
1a
2
1a
1a

DR
A
A
DH
DR

56368b
56369
56378
56379

2
2
2
2

A
A
A
A

56253

A
DH

HE

HE
HE

A
DH
DR
DH
DH

= Accessories
= Diecast heatsinks
= Heatsink extrusions

April 1979

9

-------'------.-.-----,----'-----

MAINTENANCE
TYPES

MAINTENANCE TYPE LIST

The types listed below are included in this handbook only for the first page of the publication.
Detailed information will be supplied on request.
B0133
B01B1
B0182
B0183

B0232
BOY93/94
BOY96/97
BU126

BU133
2N3055
2N3442
2N4347

I(Ma~h

1979

TYPE NUMBER SURVEY
SELECTION GU IDE

_ _ _J

TYPE NUMBER,
SURVEY

In this alphanumeric list we present all low-frequency power transistors mentioned in this h,andbook.
type number

envelope

Ptot
W

NPN

PNP

B0136
B0138
B0140

TO-126
TO-126
TO-126
TO-126
TO-126

15
15
8
8
8

B0681
B0683
B0933
B0935
B0937

B0202
B0204

TO-3
TO-3
TO-3
TO-220
TO-220

78
117
117
60
60

NPN

PNP

B0131
B0133
B0135
B0137
B0139

B0132

B0181
B0182
B0183
B0201
B0203
B0226
B0228
B0230
B0232
B0233

B0227
B0229
B0231

type number

envelope

Ptot
W

B0682
B0684
B0934
B0936
B0938

TO-126
TO-126
TO-220
TO-220
TO-220

40
40
30
30
30

B0939
B0941
B0943
B0945
B0947

B0940
B0942
B0944
B094()
B0948

TO-220
TO-220
TO-220
TO-220
TO-220

30
,30
40
40
40

B0234

TO-126
TO-126
TO-126
TO-126
TO-126

12,5
12,5
12,5
15
25

B0949
B0951
B0953
B0955
BOT63

B0950
B0952
B0954
B0956
BOT62

TO-220
TO-220
TO-220
TO-220
TO-220

40
40
40
40
90

B0235
B0237
B0291
B0293
B0295

B0236
B0238
B0292
B0294
B0296

TO-126
TO-126
SOT-82
SOT-82
SOT-82

25
25
60
60
60

BOT63A
BOT63B
BOT63C
BOT91
BOT93

BOT62A
BOT62B
BOT62C
BOT92
BOT94

TO-220
TO-220
TO-220
TO-220
TO-220

90
90
90
90
90

B0329
B0331
B0333
B0335
B0337

B0330
B0332
B0334
B0336
B0338

TO-126
SOT-82
SOT-82
SOT-82
SOT-82

15
60
60
60
60

BOT95
BDV65
BOV65A
BOV65B
BOX35

BOT96
BOV64
BOV64A
BOV64B

TO-220
SOT-93
SOT-93
SOT-93
TO-126

90
125
125
125
15

B0433
B0435
B0437
B0645
B0647

B0434
B0436
B0438
B0646
B0648

TO-126
TO-126
TO-126
TO-220
TO-220

36
36
36
62,5
62,5

BOX36
BOX37
BOX42
BOX43
BOX44

BOX45
BOX46
BOX47

TO-126
TO-126
TO-126
TO-126
TO-126

15
15
5
5
5

B0649
B0651
B0675
B0677
B0679

B0650
B0652
B0676
B0678
B0680

TO-220
TO-220
TO-126
TO-126
TO-126

62,5
62,5
40
40
40

BOX63
BOX63A
BOX63B
BOX63C
BOX65

BOX62
BOX62A
BOX62B
BOX62C
BOX64

TO-3
TO-3
TO-3
TO-3
TO-3

f

I(

April 1979

90
90
90
90
117

l

TYPE NUMBER
SURVEY

'----------------------------------------------type number

envelope

Ptot
W

NPN

TO-3
TO-3
TO-3
TO-3
TO-3

117
117
117
150
150

BU207A
BU208A
BU209A
BU326
BU326A

TO-3
TO-3
TO-3
TO-3
TO-3

12,5
80
12,5
60
60

. 150
150
60
90
90

BU426
BU426A
BU433
BUW84
BUW85

SOT-93
SOT-93
SOT-93
SOT-82
SOT-82

70
70
70
50
50

90
115
40
40
40

BUX80
BUX81
BUX82
BUX83
BUX84

TO-3
TO-3
TO-3
TO-3
TO-220

100
100
60
60
40

30
30
40
40
6

BUX85
BUX86
BUX87
2N3055
2N3442

TO-220
TO-126
TO-126
TO-3
TO-3

40
20
20
115

117

2N4347.

TO-3

117

NPN

PNP

BDX65A
BDX65B
BDX65C
BDX67
BDX67A

BDX64A
BDX64B
BDX64C
BDX66
BDX66A

BDX67B
BDX67C
BDX77
BDX91
BDX93

BDX66B
BDX66C
BDX78
BDX92
BDX94

TO-3
TO-3
TO-220
TO-3
TO-3

BDX95
BDY20
BDY90
BDY91
BDY92

BDX96

TO-3
TO-3
TO-3
T.Q-3
TO-3

I

type number
PNP

envelope

Ptot
W

,.

BDY93
BDY94
BDY96
BDY97
BF419

TO-3
TO-3
TO-3
TO-3
TO-126

BF457
BF458
BF459
BF469
BF471

TO-126
TO-126
TO-126
TO-126
TO-126

BF470
BF472

BU126
BU133
BU204
BU205
BU206

2

TO-3 '
TO-3 ..
TO-3
TO-3
TO-3

AP'il1979

(
1

6
6
6
1,8
1,8
30
30
10
10
10

HIGH·VOL TAGE TRANSISTORS
video output - deflection - SMPS
IC
A
10
6

case

pol.

TO-3

N

TO-3
SOT-93
SOT-93
TO-3

N
N
N
N

collector-emitter_ voltage (open base) = V CEO (V)
160

250

300

375

BU326
BU426
BU433

400

450

BUX80

BUX81

BUX82

800

BUX83

TO-3

' N

4

TO-3

N

2,5

TO-3

N

2

SOT-82
TO-220

N
N

BUW84
BUX84

BUW85
BUX85

0,5

TO-126

N

BUX86

BUX87

0,1

'TO-126
TO-126

N
N

TO-126
TO-126

N

P

700

BU326A
BU426A

5

0,05

600

BU207A

BU208A
BU209A

BU204

BF457

BF419
BF458

BF459

BF469
BF470

BF471*
BF472*

»

BU205

BU206

(J)

2:....

m
r
m

to
to

-....J

()

-I

o
Z

* VeER·

G)
C

1111111

o

m

Jllml

N

CJ)

m
r
m

o

-I

LOW-VOLTAGE TRANSISTORS

o

audio - general purpose - switching

Z

»

~
.....

to
......
to

IC
A

G)

collector-emitter voltage (open base) V CEO (V)
case

16

TO-3

12

SOT-93

pol.

20

22

32

45

60

80

C
100

120V

remarks

BDX67C
BDX66C

Darlington
Darlington

N

BDX67
BDX66

BDX67A
BDX66A

BDX67B
BDX66B

N

BDV65
BDV64

BDV65A
BDV64A

BDV65B
BDV64B

BDX65
BDX64

BDX65A
BDX64A

BDX65B
BDX64B

BDX65C
BDX64C

BDT63
BDT62

BDT63A
BDT62A

BDT63B
BDT62B

BDT63C
BDT62C

BDT91
BDT92

BDT93
BDT94

BDT95
BDT96

BDY92

BDY91

BDY90

BD203
BD204

BDXn
BDX78

BD645
BD646

BD647
BD648

BD649
BD650

BD651
BD652

Darlington
Darlington

BDX63
BDX62

BDX63A
BDX62A

BDX63B
BDX62B

BDX63C
BDX62C

Darlington
Darlington

BDX91
BDX92

BDX93
BDX94

BDX95
BDX96

BD293
BD294

BD295
BD296

BD331
BD332

BD333
BD334

BD337
BD338

Darlington
Darlington

o

m
I

p
TO-3

N

p
10

TO-220

N

P
TO-220

N

P
8

TO-3

N

TO-220

N

BD201
BD202

p
. TO-220

N

p
TO-3

N

p
TO-3

N

P
6

SOT-82

N

BD291
BD292

P
SOT-82

N

p
-

-

,~---

BD335
BD336

Darlington
Darlington
Darlington
Darlington

I

LOW-VOLTAGE TRANSISTORS
audio - general purpose - switching

IC

A
5

case
TO-220

pol.

collector-emitter voltage (open base) VCEO (V)
20

N

p
TO-126
4

TO-126

32

45

60

80

100

120 V

BD943
BD944

BD945
BD946

BD947
BD948

BD949
BD950

BD951
BD952

BD953
BD954

BD955
BD956

BDX35
BDX36

BDX37

BD677
BD678

BD679
BD680

BD681
BD682

BD683
BD684

BD933
BD934

BD935
BD936

BD937
BD938

BD939
BD940

BD941
BD942

BD233
BD234

BD235
BD236

BD237
BD238

BD226
BD227

BD228
BD229

BD230
BD231

BD135
BD136

BD137
BD138

BD139
BD140

BDX42
BDX45

BDX43
BDX46

BDX44
BDX47

N
N
N

BD433
BD434

P
TO-126

22

BD435
8D436

N

3

TO-126

N
N

p
TO-220

BD329
BD330

N

p
2

TO-126

N

p
1,5

TO-126

N

P
1

TO-126

N

p

»

~

TO-126

N

P
-~

Darlington
Darlington

BD131
BD132

P
TO-126

BD437
BD438
BD675
8D676

p

remarks

------_.-

,

..

(J)

m

r

m

o--i

co
co

-...J

oz

G>

c
o

Co)

1111111

m

TO-126 (SOT-32)
type number

SOT-82

Ptat

NPN

PNP

BF469
BF471

BF470
BF472

1;8

BOX42
BOX43
BOX45
BF457 .
BF458
BF459

BOX45
BOX46
BOX47

5

B0135
B0137
B0139

W

NPN

250
300

BUW84
BUW85

45
60
80

6

160
250
300

B0136
B0138
B0140

8

45
60
80

B0226
B0228
B0230

B0227
B0229
B0231

12,5

45
60
80

B0131
B0329
BOX35
BOX36
BOX37

B0132
B0330

15

45
20
60
60
80

20

400
450
.45
60
80

II
I

I

I

--=
--

BUX86
BUX87

4

B0233
B0235
B0237

B0234
B0236
B0238

25

B0433
BD435
80437

B0434
80436
B0438

36

22
32
45

B0675
B0677
B0679
B0681
B0683

B0676
B0678
B0680,
B0682
B0684

40

45
60
80
100
120

April 1979

r

Ptat

type number

VCEO
V

PNP

W

VCEO
V

50

400
450

B0291
B0293
B0295

B0292
B0294
B0296

60

45
60
80

B0331
B0333
B0335
B0337

B0332
B0334
B0336
B0338

60

60
80
100
120

I

--

TO-220 (SOT-78)
type number

I

i

I

Ptat

VCEO
V

NPN

PNP

W

B0933
B0935
B0937
B0939

B0934
B0936
B0938
B0940

30

45
60
80
100

B0943
B0945
B0947
B0949
B0951
B0953

B0944
B0946
B0948
80950
B0952
B0954

40

22
32
45
60
80
100

40

400
450
45
60
80

BUX84
BUX85
B0201
B0203
BOX77

B0202
B0204
BOX78

60

B0645
B0647
B0649
B0651

B0646
B0648
B0650
B0652

62,5

60
'80
100
120

j

SELECTION GUIDE

-------------------------------------------------'
TO-220 (SOT-78) continued
type number

TO-3 (SOT-3)
Ptot
W

NPN

PNP

BDT91
BDT93
BDT95

BDT92
BDT94
BDT96

90

BDT63

BDT62

90

BDT63A I BDT62A
BDT62B
BDT63B
BDT63C
BDT62C

I

type number

Ptot
W

VCEO
V

BU204
BU205
BU206

10

600
700
800

60

BU207A

12,5

600

80
100
120

BU209A

VCEO
V

NPN

60
80
100

PNP

800

BDY90
BDY91
BDY92

40

100
80
60

BU326
BU326A

60

375
400

BUX82
BUX83

60

400
450

BU208A
BDX63
BDX63A
BDX63B
BDX63C

SOT-93
type number
. NPN

PNP

BU426
BU426A
BU433
BDV65
BDV65A
BDV65B
BDV65C

BDV64
BDV64A
BDV64B
BDV64C

Ptot
W

VCEO
V

BDX62
BDX62A
BDX62B
BDX62C

BUX80
BUX81

80

700

90

60
80
100
120

100

400
450

375
400
375

BDX65
BDX65A
BDX65B
BDX65C

BDX64
BDX64A
BDX64B
BDX64C

117

70

60
80
100
120·

125

60
80
100
120

BDX67
BDX67A
BDX67B
BDX67C

BDX66
BDX66A
BDX66B
BDX66C

150

60
80
100

--

~?O

Ir

April 1979

5

j

ACCESSORIES

----------------------------------------------TYPE NUMBER SURVEY ACCESSORIES

type n!Jmber

description

envelope

56201c

insulating bushes (up to 500 V)

TO-3

56201d

mica washer (up to 500 V)

TO-3

56201j

insulating bushes (up to 500 V)

TO-3

56261a

insulating bushes (up to 500 V)

TO-3

56326

metal washer

SOT-32

56333

metal washer
mica washer
insulating bush

SOT-32

56339

mica washer (500 to 2000 V)

TO-3

56352

insulating mounting support

56353

spring clip

SOT-32/S0T-S2

56354

mica insulator

SOT-32/S0T -S2

56359b

mica washer (up to SOO V)

TO-220

56359c

insulating bush (up to SOO V)

TO-220

56359d

rectangular insulating washer (up to 1000 V)

TO-220

56360a

rectangular washer (brass)

TO-220

56363

spring clip (direct mounting)

TO-220

56364

spring clip (insulated mounting)

TO-220

56367

alumina insulator

TO-220

5636Sa

mica insulator

SOT-93

5636Sb

insulating bush

SOT-93

56369

mica insulator (up to 2 kV)

TO-220

56378

mica insulator

SOT-93

56379

spring clip

SOT-93

IrM.~h

1979

-

l- - - - - - - - -

ACCESSORIES

Selection guide

CLIP MOUNTING

insulated mounting

direct mounting

envelope
clip

mica

clip

TO-126
(SOT-32)

56353

56354

56353

SOT-82

56353

56354

56353

TO-220
(SOT-78)

56363

56369

56364

SOT-93

56379

56378

56379

SCREW MOUNTING
direct mounting
envelope

~-

metal washer
TO-126
(SOT-32)
TO-220
(SOT-78)
up to 800 V

mounting
material

56326

M3

56360a

M3

'up to 1000 V
SOT-93
TO-3
(SOT-3)
up to 500 V

-

M4

insulated mounting
mica washer

56333

mounting
material
M2,5

56359b

56359c

56360a

M3

56359b

56359d

56360a

M3

56368a

56368b

M3

56201d

56201c;
56201j or
56261a

M3

56339

56352

M3

The accessories mentioned can be supplied on request.
See also chapter Mounting Instructions.

M.~h1979 ~

metal washer

M4

up to 2000 V

'2

insul. bush

(

GENERAL
Type designation
Rating systems·
Transistor ratings
Letter symbols
SOAR curves

--

\,

_ _--.....-J

TYPE
DESIGNATION

. PRO ELECTRON TYPE DESIGNATION CODE
FOR SEMICONDUCTOR DEVICES

This type designation code applies to discrete semiconductor devices - as opposed to integrated
circuits -, mUltiples of such devices and semiconductor chips.
A basic type number consists of:
TWO LETTERS FOLLOWED BY A SERIAL NUMBER
FI RST LETTER
The first letter gives information about the material used for the active part of the devices.
A.
B.
C.
R.

GERMANIUM or other material with band gap of 0,6 to 1,0 eV.
SI LI CON or other material with band gap of 1,0 to 1,3 eV.
GALLIUM-ARSENIDE or other material with band gap of 1,3 eV or more.
COMPOUND MATERIALS (e.g. Cadmium-Sulphide).

SECONO LETTER
The second letter indicates the function for which the device is primarily designed.
A.
B.
C.
D.
E.
F.
G.
H.

L.
N.
P.
Q.

R.
S.
T.
U.
X.
Y.
Z.

DIODE; signal, low power
DIODE; variable capacitance
TRANSISTOR; low power, audio frequency (Rth j-mp > 15 °C/W)
TRANSISTOR; power, audio frequency (Rthj-mb ~ 15 °C/W)
DIODE; tunnel
TRANSISTOR; low power, high frequency (Rth j-mb> 15 °C/W)
MULTIPLE OF DISSIMI LAR DEVICES - MISCELLANEOUS; e.g. Qscillator
DIODE; magnetic sensitive
TRANSISTO R; power, high frequency (Rth j-mb ~ 15 °C/W)
PHOTO-COUPLER
RADIATION DETECTOR; e.g. high sensitivity phototransistor
RADIATION GENERATOR; e.g'. light-emitting diode (LED)
CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power (Rthj-mb > 15 °C/W)
TRANSI STO R; low power, switching (Rth j-mb > 15 °C/W)
CONTROL AND SWITCHING DEVICE; e.g. thyristor, power (Rth j-mb ~ 15 °C/w)
TRANSISTOR; power, switching (Rth j-mb ~ 15 OCIW)
DIODE: mUltiplier, e.g. varactor, step recovery
DIODE; rectifying, booster
DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)

-'-

-

TYPE
: DESIGNATION

l

_---.-_ _ _ _ _ _ _ _ _ _ _ _ _ __

SERIAL NUMBER
Three figure:;, running from 100 to 999, for devices primarily intended for consumer equipment.
One letter (Z, Y, X, etc.) and two figures, running from 10 to 99, for devices primarily intended for
industrial/professional equipment. '
This letter has no fixed meaning except W, which is used for transient suppressor diodes.
VERSION LETTER
It indicates a minor variant of the basic type either electrically or mechanically. The 'letter never has a
fixed meaning, except letter R, indicating reverse voltage, e.g. collector to case or anode to stud.
SUFFIX
Sub-classification can be used for devices supplied in a wide range of variants called associated types.
'
Following sub-coding suffixes are in use:
1. VOLTAGE REFERENCE and VOLTAGE REGULATOR DIODES: ONE LETTtR and ONE
NUMBER
The LETTER indicates the nominal tolerance of the Zener (regulation, working or reference) voltage
A. 1% (according to lEe 63: series E96)
B. ?% (according to I EC 63: series E48)
C. 5% (according to I EC 63: series E24)
D. 10% (according to IEC 63: series E12)
E. 20% (according to I EC 63: series E6)
The number denotes the typical operating (Zener) voltage related to the nominal current rating for
the whole range.
The letter 'V' is used instead of the decimal point.

--

2. TRANSIENT SUPPRESSOR DIODES: ONE NUMBER
The NUMBER indicates the maximum recommended continuous reversed (stand-off) voltage VR' The
letter 'V' is used as above.
3. CONVENTIONAL arid CONTROLLED AVALANCHE RECTIFIER DIODES and THYRISTORS:
ONE NUMBER
.
The NUMBER indicates the rated maximum repetitive peak reverse voltage (VRRM) or the. rated
repetitive peak off-state voltage (VDRM), whichever is the lower. Reversed polarity is indicated by
letter R, immediately after the number.
4. RADIATION DETECTORS: ONE NUMBER, preceded by atiyphen (-)
The NUMBER indicates the depletion layer in ~m. The resolution is indicated by a version LETTER.
5. ARRAY OF RADIATION DETECTORS and GENERATORS: ONE NUMBER, preceded by a stroke
(/).

.

The NUMBER indicates how many basic devices are assembled into the array.

2

Ma~ 19781r

_ _ _J

TRANSISTOR
RATINGS

TRANSISTOR RATINGS

The ratings are presented as voltage, current, power and temperature ratings. The list of these ratings
and their definitions is given as follows:
Transistor voltage ratings
Collector to base voltage ratings
VCBmax

Themaximum permissible instantaneous voltage between collector and base
terminals. The collector voltage is negative with respect to base in PNP transistors and positive with respect to base in NPN types.

VCBmax (IE = 0)

The maximum permissible instantaneous voltage between collector and base
terminals, when the emitter terminal is open circuited.

Emitter to base voltage ratings
VEBmax

The maximum permissible instantaneous reverse voltage between emitter and
base terminal. The emitter voltage is negative with respect to base for PNP
transistor and positive with respect to base for NPN types.

VEBmax (IC = 0)

The maximum permissible instantaneous reverse voltage between emitter and
base terminals when the collector terminal is open circuited.

Collector to emitter voltage ratings
VCEmax

The maximum permissible instantaneous voltage between collector and emitter
terminals. The collector voltage is negative with respect to emitter 'in PNP
transistors and positive with respect to emitter in NPN types. This rating is
very dependent on circuit conditions and collector current and it is necessary
to refer to the curve of VCE versus IC for the appropriate circuit condition
in order to obtain the correct rating.

VCEmax (Cut-off)

The maximum permissible instantaneous voltage between collector and emitter
terminals when the emitter current is reduced to zero by means of a reverse
emitter base voltage, i.e. the base voltage is normally positive with respect to
emitter for PNP transistor and negative with respect to emitter for NPN types,

NOTE: The term "cut-off" is sometimes replaced by VBE

> x volts, or RB ,.,;;; y which are equivalent
RE

conditions under which the device may be cut-off.
VCEmax (IC = x mAl The maximum permissible instantaneous voltage between collector and emitter
terminals when the collector current is at a high value, often the max. rated
value.
VCEmax (lB = 0)

The maximum permissible instantaneous voltage between cpllector and emitter
terminals when the base terminal is open circuited or when a very high resistance
is in series with the base terminal. Special care must be taken to ensure that
thermal runaway due to excessive collector leakage current does not occur in
this condition.

Due to the current dependency of VCE it is usual to present this information as a voltage rating chart
which is a curve of collector current versus collector to emitter voltage (see Fig. 1).

if

March 1979

--

TRANSISTOR
RATINGS

l

, ....._ _ _ _- - - - - - - - - - - - - -

This curve is divided into two areas:
A permissible area'of operation under all conditions of base drive provided the dissipation rating is not'
exceeded (area 1) and an area where operation is allowable under certain specified conditions (area 2).
To assist in determining the rating in this second area, further curves are provided relating the voltage
rating to external circuit conditions, for example:
'
RB
VBB
- , RB, 2Bg, VBE, IB or - "
RE
RB
An example of this type of curve is given in Fig. 2 as V CE versus RB for two different values of
collector current.
RE

7Z75910

7Z75911

IC'--_ _ _~
r-

--,

I
IC

I
area 1

--

\
\
area 2

--

= ICmax

\
\

\
\

Fig. 1.

Fig. 2.

It should be noted that when RE is shunted by a capacitor, the collector voltage VCE during switching
must be restricted toa value which does not rely on the effect of RE'
In the case of an inductive load and when an energy rating is given, it may be permissible to operate
outside the rated area provided the spcified energy rating is not exceeded. ,
Transistor current ratings
Collector current ratings
ICmax

The maximum permissible collector current. Without further qualification, the
d.c. value is implied.

The maximum permissible average value of the total collector current
IC(AV)max
The maximum permissible instantaneous value of the total collector current.
ICM
Emitter current ratings
IEmax

The maximum permissible emitter current. Without further qualification, the
d.c. valu~ is implied.

IE(AV)max

The maximum permissible average value of the total emitter current.

IER(AV)max '

The maximum permissible average value of the total emitter current when
operating in the reverse emitter-base breakdown region.

IERM

The maximum permissible instantaneous value of the total reverse emitter
current allowable in the reverse breakdown region.

The maximum permissible instantaneous value of the total emitter current.

2

~~1979~(

_ _ _J

TRANSISTOR
RATINGS

Base current ratings
IBmax

The maximum permissible base current. Without further qualification, the d.c.
value is implied.

IB(AVlmax

The maximum permissible average value of the total base current.

IBR(AVlmax

The maximum permissible average value of the total reverse base current allowable in the reverse breakdown region.
The maximum permissible instantaneous value of the total base current. The
rating also includes the switch off current.
The maximum permissible instantaneous value of the total reverse current
allowable in the reverse breakdown region.

Transistor power ratings
Ptot max: The total maximum permissible continuous power dissipation in the transistor and includes
both the collector-base dissipation and the emitter-base dissipation. Under steady state conditions the
total power is given by the expression:
Ptot = VCE x IC + VBE x lB'
In order to distinguish between "steady state" and "pulse" conditions the terms "steady state power
(Psl" and "pulse power (Ppl" are often used. The permissible total power dissipation is dependent
upon temperature and its relationship is shown by means of a chart as shown in Fig. 3.

----

7Z75912

temperature
Fig. 3.
The temperature may be ambient, case or mounting base temperatures. Where a cooling clip or a
heatsink is attached to the device, the allowable power dissipation is also dependent on the efficiency
.of the heatsink.
The efficiency of this clip or heatsink is measured in terms of its thermal resistance (Rth hl normally
expressed in degrees centigrade per watt (OClWl. For mounting base rated device, the added effect of
the contact resistance (Rth il must be taken into account.
The effect of heatsinks of various thermal resistance and contact resistance is often included in the
above chart.

I(

March 1979

3

TRANSISTOR
RATINGS.

L"----__- -

Thus for any heatsink of known thermal resistance and any given ambient temperature, the maximum
permissible power dissipation can be established. Alternatively, knowing the power dissipation which
will occur and the ambient temperature; the necessary heatsink thermal resistance can be calculated.

A general expression from which the total permissible steady state power dissipation can be calculated
is:
Tj - Tamb
Ptot = -=---Rthj-a
. where Rth j-a is the thermal resistance. from the transistor junction to the ambient. For case rated or
mounting base rated devices, the thermal resistance Rth j-a is made up of the thermal resistance junction
to case or mounting base (Rth j-mb), the contact thermal resistance (Rth i) and the heatsink thermal
resistance Rth h·
For the calculation of pulse power operation Pp , the maximum pulse power is obtained by the aid of
a chart as shown in Fig. 4. I
Ztht~______~__~~__~_______

Id (duty factor)

t

=T

pulse width

T -,

t., __

JUl

7Z75913

Fig. 4.
The general expression from which the maximum pulse power dissipation can be calculated is:
Tj - Tamb - Ps x Rth j-a
Pp= Ztht+ d (Rthc-a)
where Zth t and d are given in the above chart and Rth c-a is the thermal resistance between case and
ambient for case rated device. For mounting base rated device, itis equal to Rth h + Rth i and is zero
for free air rated device because the effect of the temperature rise of the case over the ambient for a
pulse train is already included in Zth t.
Temperature ratings

4

Tjmax

The maximum permissible junction temperature which is used as the basis for
the calculation of power ratings. Unless otherwise stated, the continuous value
is implied.

Tjmax (continous
operation)

The maximum permissible continuous value.

Tjmax (intermittent
operation)

The maximum permissible instantaneous junction temperature usually. allowed
for a total duration of 200 hours.

Tmb

The temperature of the surface making contact with a heatsink. This is confined
to devices where a flange or stud for fixing onto a heatsink forms an integral
part of the envelope.

Tease

The temperature of the envelope. This is confined to devices to which may be
attached a clip-on cooling fin.

___----Jl__

GEN_ERA_L---.

RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission
(I EC) in its Publication 134.

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note
This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property
may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed
as a value for stated or recognized conditions. A characteristic may also be a set of related values,
usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values
for the type. A bogey electronic device for any particular application can be obtained by considering
only those characteristics which are directly related to the application.

-=

-

Rating: A value which establishes either a limiting capability or a limiting condition for an electronic
device. It is determined for specified values of environment and operation, and may be stated in any
suitable terms.
Note
Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their
interpretation.
Note
The rating system indicates the division of responsibility between the device manufacturer and the
circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM
Absolute maximum ratings are limiting values of operating and environmental conditions applicable to
any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device,
taking no responsibility for equipment variations, environmental variations, and the effects of changes
in operating conditions due to variations in the characteristics of the device under consideration and
. of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and throughout life, no absolute maximum
value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control
adjustment, load variations, signal variation, environmental conditions, and variations in characteristics
of the device under consideration and of all other electronic devices in the equipment.

~ (octOber

1977

5

GENERAL

l

DESIGN MAXIMUM RATING SYSTEM
Design maximum ratings are limiting values of operating and environmental conditions applicable to a
bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device,
taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.
The equipment manufacturer should design so that, initially and throughout life, no design maximum
value for the intended service is exceeded with a bogey device under the worst probable operating
conditions with respect to supply voltage variation, equipment component'variation, variation in
characteristics of all other devices in the equipment, equipment control adjustment, load variation,
signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM
Design centre ratings are limiting values of operating and environmental conditions applicable to a
bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device
in average applications, taking responsibility for normal changes in operating conditions due to rated
supply voltage variation, ,equipment component variation, equipment control adjustment, load variation,
signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

--

--

The equipment manufacturer should design so that, initially, no design centre value for the intended
service is exceeded with a bogey electronic device in equipment operating at the stated normal supply
voltage.

6

October

19771 (

LETTER SYMBOLS

LETTER SYMBOLS FOR TRANSISTORS AND SIGNAL DIODES
. based on lEe Publication 148
LETTER SYMBOLS FOR CURRENTS, VOLTAGES AND POWERS
Basic letters

Th,e basic letters to be used are:
I, i = current
V, v = voltage
P, p = power.

Lower-case basic letters shall be used for the representation of instantaneous values
which vary with time.
In all other instances upper-case basic letters shall be used.
Subscripts

A, a
(A V) ,(av)

n, b
(BR)
C, c
D,d
E,e
F, f

G,g
K, k

M,m
0,0
R, r

(RMS) , (rms)
S, s

x,x
Z, z

Anode terminal
Average value
Base terminal, for MOS devices: Substrate
Breakdown
Collector terminal
Drain terminal
Emitter terminal
Forward
Gate terminal
Cathode terminal
Peak value
As third subscript: The terminal not mentioned is open circuited
As first subscript: Reverse. As second subscript: Repetitive.
As third subscript: With a specified resistance between the terminal
not mentioned and the reference terminal.
R. M. S. value
As first or second subscript: Source terminal (for FETS only)
As second subscript: Non-repetitive (not for FETS)
As third subscript: Short circuit between the terminal not mentioned
and the reference terminal
Specified circuit
Replaces R to indicate the actual working voltage, current or power
of voltage reference and voltage regulator diodes.

I

Note: No additional subscript is used for d. c. values.

February 1974

II

1

=
=
-=
r

LETTER SYMBOLS

II

Upper-case subscripts' shall be used for the indication of:
a) continuous (d. c.) values (without signal)
Example IB
b) instantaneous total values
·Example iB
c) average total values
. .Example I B(A V)
d) peak total values
Example IBM
e) root-mean-square total values
Example IB(RMS)
Lower-case subscripts shall be used for the indication of values applying to the varying
component alone:
a) instantaneous values
Example ib
b) root':'mean-square values

--

Example Ib(rms)
c) peak values
Example Ibm
d) average values
Example Ib(av)
Note: If more than one subscript is used, subscript for which both styles exist shah
either be .a11 upper-case or all lower-case.
Additional rules for subscripts

Subscripts for currents
Transistors: If it is necessary to indicate the terminal carrying the current, this should
be done by the first subscript (conventional current flow from the external
circuit into the terminal is positive).

Diodes:

Examples: I B, iB. ib' Ibm
To indicate a forward current (conventional current flow into the anode
terminal) the subscript F or f should be used; for a reverse current
(copventional current flow out of the anode terminal) the subscript R or r
should be used.
Examples: IF. IR' iF. If(rm s)

February 197.4

2

II

LETTER SY MBOLS

II
Subscripts for voltages

Transistors: If it is necess.ary to indicate the points between which a voltage is measured, this should be done by the first two subscripts. The first subscript
indicates the terminal at which the voltage is measured and the second the
reference terminal or the circuit node. Where there is no possibility of
confusion, the second subscript may be omitted.
Examples: V , v ' v be ' Vbem
BE BE
Diodes:

To indicate a forward voltage (anode positive with respect to cathode), the
subscript F or f should be used; for a reverse voltage (anode negative with
respect to cathode) the subscript R or r should be used.
Examples: V F , VR , v ' Vrm
F

Subscripts for supply voltages or supply currents
,

.

Supply voltages or supply currents shall be indicated by repeating the appropriate term.inal subscript.
Examples:~CC' lEE

Note: If it is necessary to intlicate a reference terminal, this should be done by a third
subscript
Example: VCCE
Subscripts for devices having more than one terminal of the same kind
If a device has more than one terminal of the same kind, the subscript is formed by the

appr,Jpriate letter for the terminal followed by a number.; in the case of multiple subscripts, hyphens may be necessary to avoid misunderstanding.
Examples: ~2

= continuous

(d. c.) current flowing
into the second base terminal

V - = continuous (d. c.) voltage between
B2 E
the terminals of second base and
emitter
Subscripts for mUltiple devices
For multiple unit devices, the subscripts are modified by a number preceding the letter
subscript; in the case of mUltiple subscripts, hyphens may be necessary to avoid misunderstanding.
Examples: 12C

=

continuous (d. c.) current flowing
into the collector terminal of the
second unit

V 1C-2C = continuous (d. c.) voltage between
the collector terminals of the
first and the second unit.

February 1974

II

3

· LETTER SYMBOLS

II

Application of the rules

The figure below represents a transistor collector current as a function of time. It consists of a continuous (d. c. ) current and a varying component.

collector
current

Ic(av)

r

Ie

o~_(n_o_s~r_n_a_I) ~ ~
____

__

______

~

____________________
time

--

---

~~_
7Z65988

LETTER SYMBOLS FOR ELECTRICAL PARAMETERS

Definition

For the purpose of this Publication, the term "electrical parameter" applies to fourpole matrix parameters, elements of electrical equivalent circuits, electrical impedances and admittances, inductances and capacitances.
Basic letters

The following is a list of the most important basic letters used for electrical parameters
of semiconductor devices.
.
\

(

4

B,b

susceptance; imaginary part of an admittance

C

capacitance

G,g

conductance; real part of an admittance

H,h

hybrid parameter

L

inductance

R,r

resistance; real part of an impedance

X,x

reactance; imaginary part of an impedance

Y,y

admittance;

Z,Z

impedance;

II

Febr'uary 1974

II

II

LETTER SYMBOLS

Upper-case letters shall be used for the representation of:
a) electrical parameters of external circuits and of circuits in which the device forms
only a part;
b) all inductances and capacitances.
Lower-case letters shall be used for the representation of electrical parameters inherent in the device (with the exception of inductances and capacitances).
Subscripts

General subscripts
The following is a list of the most important general subscripts used for electrical parameters of semiconductor devices:

F, f
forward; forward trilllsfer
input
I, i (or 1)
L,l
load
0, a (or 2) = output
reverse; reverse transfer
R,r
source
S, s

The upper-case variant of a subscript shall be used for the designation of static (d. c. )
values.
Examples: hPE

static value of forward current transfer ratio in commonemitter configuration (d. c. current gain)
d. c. value of the external emitter resistance.

Note: The static value is the slope of the line from the origin to the operating point on
the appropriate characteristic curve, i. e. the quotient of the appropriate electrical quantities at the operating point.
The lower-case variant of a subscript shall be used for the designation of small- signal
values.
Examples: h
fe

Ze

small-signal value of the short-circuit forward
current transfer ratio in common -emitter configuration

=

Re

+ jXe =

small-signal value of the external impedance

Note: If more than one subscript is used, subscripts for which both styles exist shall
either be all upper-case or all lower-case
Examples: h pE ' YRE' hfe

February 1974

II

5

LETTERSY MBOLS

II

Subscripts for four-pole matrix parameters
The fir.st letter subscript (or double numeric subscript) indicates input, output, forward
transfer or reverse transfer
Examples: hi (or h )
ll
h (or li )
22
(or
)
21
hr (or fl 12 )

h; h

A further subscript is used for the identification of the circuit configuration. When no
confusion is possible, this further subscript may be omitted.
Examples: h (or h
), hFE (or h
)
fe
21E
21e
Distinction between real and imaginary parts
If it is necessary to distinguish between real and imaginary parts of electrical parame~
ters, no additional.subscripts should be used. If basiC symbols for the real and imaginary parts exist, these may be used.

Examples: Zi

-.-.
-

= Ri + jX i

Yfe = gfe+ jbfe
If such symbols do not exist or if they are not suitable, the following notation shall be

used:
Examples: Re (h ) etc. for the real part of hib
ib
1m (h ) etc. for the imaginary part of h
ib
ib

'"""

6

February 1974

SOAR

II

II

SAFE OPERATING AREA CURVES
1. D.C. SOAR
The d. c. safe operating area (SOAR) of a transistoris limited on the current axisby IC max
and on the voltage axis by VCEOmax' Intersecting these two isa third limit defined by
Ptot max' These limits can be superimposed on the normal IC-VCE curve as in' Fig. 1,
but are better shown on a double logarithmic scale as in Fig. 2; the Ptot max limit then
appears as a straight line at 45 0 to the axes~
7Z62413

IC
(A)

IC

1-1 ~IC max
H

~~

7Z62417

(A)

IB = constant

.,..
-

....

-ICmax

"

'P

tot max

~

,

- -~ '-P tot max

..

VCEOmax

~l-'

.... 10....

I

VCEOmax

r--,....

I I I I

I

11
I I I Tl1
.~

VCE (V)

VCE (V)
Fig. 1

Fig. 2. D.C. SOAR curve

For steady state conditions there is a linear relation between the power dissipated at the
junction and the temperature difference between junction and mounting base:

where C

= Rth

j-mb' .i. e. the thermal resistance from junction to mounting base.
(1)

In terms of maximum allowable junction temperature eq. (1) can be written as:
(la)

_Jan_ua_ry_l_97_2_ _

II

II

1

---

II

II

The data sheets give an upper limit for Ptot max which applies up to a temperature T 1•
These relations are shown in Fig. 3 where the upper limit for Ptotmax has been chosen
as 100%.
7Z62449

150'

.

1\

,

Ptot max
(%)

.: eq, (la)
\

\

100
\

:\
\

,

50

\

I

I

,

\

---

\
\

--

",Tj max= --

o

o
Fig. 3

So far we have discussed only d. c. conditions; it will be obvious that under pulse conditions a higher Ptot max ca~ be permitted.
2. Extension of the SOAR for pulse power
When pulse power is applied to a transistor the junction temperature will rise in a series
of steps until a steady state condition is reached. See Fig. 4.
For this steady state, eg. (1) can be modified to:
T j peak -Tmb

= Pp~.

(2)

Zth j~mb

where Zth j -mb is the transient thermal impedance from junction to mounting base and is
dependent not only on Rth j -rob' but also on pulse width (tp) and period (T). Zth j -mb is
generally published in the form of Fig. 5.
In terms of maximum allowable junction temperature eq. (2) can be written as:
(2a)

2

II

II

January 1972,

SOAR

II

II

''':jO!O DDD
I

I

Tj
TIP'Qk

I

I

I

I

I

I

I

I

::

::

:

I
:

I

I

,

I

I

i

t-:--:-~-t-~------=-.-..;~..".;;;~"'"
I I
I I
I
steady state
I
I

I

I
Tamb -

Fig. 4
1262098

J1JL
-'ltp'''-

Zthj-mb

(OC/W)

--T-. I 5 =!£:
T

10

-=
-

Rthj-mb
/

6= 1

I

I

0.75
0.5
0.33
0.2
0.1
O.OS I-~""

--

-

~~

~

t:::~""

0.02
0.01

10

Fig. 5
Dividing eq. (2a) by eq. (la), leads to:
Rth j-mb
p

peak max

=p

=p

tot max

tot max

(3)

.M.
p

Zth j-mb
This means that the Ptat max curve can be shifted by the factor Mp' see the sloping part
of the thick dashed line of Fig. 6. Mp is known as the 'power muluplying factor'.
The horizontal part of the dashed line of Fig. 6 is the rating ICMmax; it is the upper limit
. of the SOAR for pulse conditions.
In addition to the limits set by the SOAR the average current IC(AV) with an averaging
time tav of 50 ms should not exceed the maximum permissible d. c. current ICmax'
Averaging is not necessary when SOAR limits lower than the rated ICMmax are indicated
for different pulRe durations.

April 1974

II

3

SOAR

II

m
7Z62414

d.c. SOAR curve '
--- extended SOAR curve
IC

I

(A)

I I I

T m b:5Tl

ICMmax

~~

I

ICmax
..",.

Ito

Ppeakmax

"

'\
Ptotmax

I'~

-,

VfElin

--

VCE' (V)

3. Second Breakdown

Fig. 6

~:!_~~~_~~~~~~~~9~_
Primary breakdown is a sudden increase in IC as a result of. avalanche action within the
. crystal. If the collector current is increased further a critical condition can be reached
at which the voltage across the crystal drops to a very low level. This phenomenon is
known as second breakdown. It is initiated by a cur;rentconcentration that leads to local
heating within the crystal. The higher the voltage (before second breakdown) the lower the
power at which the concentration occurs. If a single point on the crystal exceeds T j max.
the transisto'r characteristics may be permanently affected; furthel;' current concentration
will lead to increased temperature and consequent second breakdown, which will destroy
the transistor.
The SOAR curve must define an area that only precludes second breakdown but also the
current concentration that precedes it.

3.2 Second breakdown and the d. c. SOAR
------------~--------------------~---

A transistor's susceptibility to second breakdown i~ investigated by d. c. loading up to
current concentration. With different combinations lof IC and VCE. points are plotted at
which current concentration is observed. A limit is then defined that precludes current
concentration. This line lowers the original SOAR curve (see Fig. 7). The final d. c.
SOAR curve is that shown in Fig. 8. In general the second breakdown limit is independent
of the mounting base temperature
Th~, thermal resistan~e Rth j-mb is guaranteed for all IC-VCEcombinations within the
d.c.\ SOAR.
I·
\

4

II

December 1975

SOAR

II

II
7Z62418

7Z624191

Tmb:S Tl

Tmb:S Tl

IC

IC

(A)

(A)

measured d.c. second
breakdown points
ICmax

.. .'.

I II

"

I-IC max
'-- p

N°l

I It~ltl max ~", ...
..
Iplill

..

manufacturer's; ~'.'
.
limit
-

.

max

t= second breakdown l(d'7')I~~
J I I

J

I I
VIC EO max

VtEfiii

VCE (V)

VCE (V)

I I I I

--

Fi~ 7
Fi~ 8
e
h
e
~ ~ ~ X ~}!.lg..t.. __~~~9!.lP_~~~~!.. !~§ _~n_ ~~s_ ~pp!~c_a..t!~l!

4.3.1
Plot the power curve obtained by multiplying the two curves of Fig. 12· and construct an
equivalent rectangular power pulse with the same peak value and area as the original pulse. The result is given in Fig. 18.

20

~tp-

1Z62447

r-

Ppeak
II

P
(W)

-.\

I

1\

II

10

.\

I

I

'\.

I
L
I

--

a

-

,

,
I\.

:

',,"

o

0.1

t

(ms)

0.2

Fig. 18
4.3.2
Ascertain t p , T, {)
~

T

= tP/T. and P peak. . The

results are:

= 75 \ls
1 .
= 750 = 1. 33 ms

{) = 0.056
Ppeak = 17. 5 W
'

4.3.3
.....
Refer to Fig. 14 and determine the derating factor for Ptot max at 85°C. The result is
0.6.Refer to Fig. 15 and determine M

p

Rth j-mb

=Z

th j-mb

for

~

= 75 \l~ and {) = 0.056.

= 10 oC/W
.
o
Zth j-mb = 2.7S C/W

~h j-mb

10
Mp = 2. 75

12

= 3.64

II

II

June 1972

II

SOAR

II

4.3.4
Refer to Fig. 16 - and 17, and ascertain the MSB factors for t = 75 Ils and
results are:
p
My
MI

= 0.056.

{j

The

= 3.6
= 2.8

4.3.5
Refer to Fig., 13. and construct the pulse extension of the d.c. SOAR for
= 0.056 according to the following rules (see Fig. 19 ).

~

= 75 Ils and 6

- Multiply the value of the voltage at point A by the derating factor obtained from Fig. 14
(0.6) and by ~. = 3.64 to obtain A'.
YA = 13 Y
,
YA' = 13 Y x 0.6 x 3.64

= 28.4 Y

- Through point A' construct a line of constant power (45 0 )
Ppeak max

= 28.4 x

IC max= 14.2 W.

- Mukip1y the value of YCE at point C by My = 3.6 (see 4.3.4), to obtain C'.
- Multiply the value of IC at point D by MI = 2.8 (see 4.3.4), to obtain D'.
- Construct a new limit for second breakdown by drawing a line through point C' and D'.
- The SOAR for this particular case is formed by the ICM max line, the maximum peak
dissipation line through A', thesecond breakdown limit line C' - D' and the YCEO line.
4.3.6
Plot the IC - YCE excursion as found from Fig. 12a and b in Fig. 19 and check if every
point of this excursion is .inside the SOAR.
In this particular e~ample the Ppeak max limit is exceeded, while the SB-limit is not exceeded. A solution for this case is to decrease the mounting base temperature, Tmb' by
enlarging the heats ink.
4.3.7
The new permissible mounting base temperature, Tmb max' can be calculated' as follows

= T j max - Ppeak • Zth j-mb
Ppeak = 17.5 W (see 4.3.2)

Tmb max
Zth j-mb

= 2.75

°C(W

= 125

- 17.5 x 2.75 = 77 C

Therefore:
Tmb max

March 1979

o

II

II

13

---

SOAR

I

II
7Z62422

10

-IC
(A)

I'x-

T mb=85 0 C

II
1

'-

~

. -,,"

--

...

--

-- -- --~

-

AC- ~l'- -c'-r-

~~~

Tmb::: 60 OC'

~

~-- ~

1\,

"~' i

~

1\ ,

I

II

D'

I

I

~

l' D
II

I

II

I

I:

J
10

. -VCE (V)

Fig. 19

Region of permissible operation up to Tmb = 60

°c

II Permi~sible extension for tp = 75 j.ls, 0 = 0.056 and Tmb = 85

14

II

°c

J~::"~972

_-'--"II_____

II

SOAR

4.3.8
For calculation of the heatsink the power maybe averaged provided the period T does
not exceed the thermal time constant of the transistor.
Then Tmb - Tamb =

o. Ppeak

• Rth mb-a·

If Tmb max and Ppeak are known, the max. allowable Rth mb-a may be calculated with

Tmb max - Tamb
{) . Ppeak

Rth mb -a max =

77 - 25
0
In our example Rth mb-a max = 0.056 x 17.5 = 53 C/W

----

January 1972

II

II

15

TRANSISTOR DATA

---

-

_ _ _jl___

BD1_31

SILICON PLANAR EPITAXIAL POWER TRANSISTOR

N-P-N transistor in a SOT-32 plastic envelope for general purpose, medium power applications. P-N-P
complement is BD132.
QUICK REFERENCE DATA
Collector-base voltage (open emitter)

VCBO

max.

70 V

Collector-emitter voltage (open base)

VCEO

max.

45 V

Collector current (peak value)

'CM
Ptot

max.

6 A

Total power dissipation up to T mb = 60 °C

max.

15 W

Junction temperature

Tj

max.

150 °C

D.C. current gain
IC = 0,5 A; VCE

hFE

>

40

fT

>

60 MHz

= 12 V

Transition frequency at f = 35 MHz
'C = 0,25 A; VCE = 5 V
MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-126 (SOT-32).

-----

Collector connected
to metal part of
mounting surface.
'1--

7 8max ....1

!

!'

I

I

• -~~
~

3,2
3,0

+

+

11,1

I

max

~_l

r

15,3

min

e

-.II....
0,5

C

~

b'l"----!.

0,88-..11... , ,
max
~
I....
~

7ZS9324.2

See also chapters Mounting instructions and Accessories.
(1) Within this region the cross-section of the leads is uncontrolled.

'I (APril

1979

Jl_______-· · ·- --_._- -'"

_BD~131

RATINGS
limiting values in accordance

~ith

the Absolute Maximum System (I EC 134)

Collector-base voltage (open emitter)

VCBO

max.

70 V

Collector-emitter voltage (open base)

V CEO

max.

45 V

Emitter-base voltage (open collector)

VEBO

max.

6 V

Collector current (d.c.)

IC

max.

3 A

Collector cu'rrent (peak value)

ICM

max.

6A

Base current (peak value)

IBM

max.

0,5 A

Reverse base current (peak value)

-IBM

max.

0,5 A
15 W

Total power dissipation up to T mb = 60 °C

Ptot '

max.

Storage temperature

T stg

-65 to + 150 oC

Junction temperature

Tj

max.

150 oC

THERMAL RESISTANCE
From junction to mounting base

----

2

AP'il19791 (

Rth j-mb

6 oC/W

l

Silicon planar epitaxial power transistor

CHARACTERISTICS

8D131

Tj = 25 0C unless otherwise specified
Collector cut-off current
IE=0;VCS=50V
IE = 0; VCS = 50 V; Tj = 150 oC
Emitter cut-off current
IC=0;VEB=5V
Saturation voltages
IC=0,5A; IB=50mA
I C = 2 A; IS = 200 mA

ICBO

<
<

500 p.A

lEBO

<

5 p.A

VCEsat
VSEsat

<
<
<
<

ICBO

5 p.A

/

VCEsat
VBEsat

0,3 V
1,2 V
0,7 V
1,5 V

D.C. current gain
IC = 0,5 A; VCE = 12 V

hFE

IC=2A;VCE=lV

hFE

>
>

20

Collector capacitance at f = 1 MHz
IE=l e =O;VCB=5V

Cc

<

60 pF

Transition frequency at f = 35 MHz
IC = 0,25 A; VCE = 5 V; Tamb = 25 °C

fT

>

60 MHz

D.C. current gain ratio of the
complementary pairs
IC = 0,5 A; VCE =12 V

hFE1/hFE2

<

1,2

'I (

40

April 1979

---

3

80131
t - - - - - - - - . . , ; . . . ._

_

D5110A

10

Tmb ~60·C
d~O.Ol

"

ICM

(AI

f'~

Icmax "

Pulse

II

width=

"

'"~

10}Js

1\.."
", "- "
~, ~"-,, 1\

16d}}sl

,~

(1 )

1.0

,, "'- '"'-

I

,

500J.ls
I I I

\ \. \.

(2) \

\ ,\

l
1.0ms
21.01~SI

~ol~sl

~

\

UJ.I

0.1

0.01
1.0

10

45

100
Vce(Vl

Fig. 2 Safe Operating ARea with the transistor forward biased.
I

Region of permissible d.c. operation.

II

Permissible extension for repetitive pulse operation.

(1) Ptot max and Ppeak max lines."
(2) Second breakdown limits (independent of temperature).

4

AP'il19791(

_

8D131

Silicon planar epitaxial power transistor

,VCER
max r-

"'

(V)

80

,

"

,
, 'II'

Ic~10mA

RS~10kn

01687

When the emitter is common, a value of 1ft
should be used in calculation of R sf RE

e---

-- -

f--

....... .....

70

-1--

-c-,--

--

------

I
~--

-

--

"'......

60

""""""'" 1"'000.

""'"

50

100.

40
30

3

5

7

3

5

7

3

5

---

7

5

3

7

Fig. 3 Maximum allowable collector-emitter voltage as a function of base-emitter resistance.

---

7Z72003

~

-ltpl_1
-T-

10

5=~
T

=5=1
-0,5

-'oj
-

===

0,1

-

0,01

-

1--'--

~

::::

;;..-

1-' ....

,.joo"

10

\

Fig. 4 Pulse power rating chart.

"I (

April 1979

5

80131

7Z72004 1

5

I
8 = 0,01

4

"-"\.
""

\

\
\

"

r\.

.

I\.

"
~

-

,

\

1\ 0,1

3

2

\
\
\

~

I\..
\
"\.

'\

r\.

I'-~

~

0,2

rtr-.....
I

'"" r-.
I'

.....

f""""-.

""""

II

0,5

~

t'"

1
10- 5

~ t--......
10- 3

Fig. 5 S.B. voltage mUltiplying factor at the IC'max level.
7Z72005 1

--

--

>-

8 = 0,01

"'1'-0

0,1

0,2

r- ... t"'oi-

10
r - - - 0,5

~

"

~ .....

~

1""0.. ......

~

" l"'-

i'"

~f'-oo i'"

I"'-..

t-......'"" I"-..

-

~ ~ 1::" ....
~

. 1

10- 5
Fig. 6 S.B. current multiplying factor at the VCEOmax level.

6

AP'il19791 (

80131

Silicon planar epitaxial power transistor

ICBO

05113
7

VCB=50V

5

3

mAt 1.0
}JA +1000

i

7
5

~

i

V

!

3

;

'I~

I

I

I",

i'
I

I

100
7

O-\~

~,.J

5

3
,

,

'

: I ~

~"

I

10

~

II
I

Ii

7
~

5
3

}J A

t

I~'"

1.0

I.J

nA ~1000

--

I

I'"

i

7
5
I

3

",\q~'V
J.I~

100

If

"

~,

I

7

5
3

10

o

!

I

50

100

150

Tj (oC)

200

Fig. 7 Collector-base current (open emitter) as a function of the junction temperature.

II

APrii

7
1979

l_______

80131

05114

90131
Tj
40

I~

""

I'
30

= 2S'C

~

~~

'1/
IJ

..... ~

-. ....

~

i"
....

...... "-

1"'1 !II...

""'lliIooo.
1""1 !II...

'" ~"-

Minim

-,..."

~'"""

............

urn h

F"~ Qt V

...... ~1Ooo.

i""'I~

20

C~::: '2V

:-~"""

i""'I!II...
"""""""

-r-~

r-o"""

r-o"""

"""iIooo. r'i.

r-~1Ooo.

=1V

r-- 1-0 ....

=2V t-t-

10

o

o

3.0

2.0

1.0

-.-...
=
-

5.0

4.0

6.0

Fig. 8.

90131 ComplefT!entary
paIr
90132

01694
...... r-

Tj=2S'e
100

75

,

~-~

~

"50

~

-"""- l""',....

L

""in' .

I"

~-"",,-

~~~

..... ~

"

'~/J

"

"

~"'"
r-;;;;;;:~"",,-

rn" f:~ CIt

jolt.

.... V. c~(l3D

C~(l3D

r--......
""""'1'-00

--"iiii:~~

2.5

.
131)

132)~121;

-1""'0""",

-~ ~r-

-r-

........

.....

1""","""

r-r- ~=2V '-r-cr-~

o
o

1.0

3.0
2.0.
4.0
5.0
for 80131 +Ie(A), f.or 80132 -lelA)

Fig. 9.

8

April 1979

(

~=1V -i-r6.0

7.0

l___

Silicon planar epitaxial power transistor

300

f-f- -f-

f-t--

r-- -Ic f-f(mAl

B_D_13_1_ _
07547

t-Ht-t+--

I

VCE =2V

r-t--f--'L
-+-

Tj

f-- - f-- f-- -

=25'C

f-I1-11-1-

200

lmax
I
II
II

min

I

J

100

II

r

I
I
II

j

if

J
.I
~

o

iI"'"

0.2

0.4

"

J...;

r""

"

0.6

0.8

Fig. 10.

=
=

07548

6

1/

I

,

I

,

~

Tj =25'C

~

IC

J
I

(A)

I

I)

I-fI-fI-f-

)

)

J

4

,

II J I I
VCE =2V

II
II'

II

II'max

min
IJ

II
II'

II
I)

j

II'

II
II

2

~

II

'I
~

J
II
II

0.5

I""

~

--"

j

o

If'

I""

J.oo'

1.0

1.5

2.0
Fig. 11.

April 1979

9

____________~-Jl--~BD1-~;-SILICON PLANAR EPITAXIAL POWER TRANSISTOR

P-N-P transistor in a SOT-32 plastic envelope for general purpose, medium power applications. N-P-N
complement is 80131.

QUICK REFERENCE DATA
Collector-base voltage (open emitter)

-VCBO

max.

45 V

Collector-emitter voltage (open base)

-VCEO

max.

45 V

Collector current (peak value)

-ICM

max;

6 A

Total power dissipation up to T mb = 60 oC

Ptot

max.

15 W

Junction temperature

Tj

max.

150 °C

hFE

>

40

fT

>

60 MHz

D.C. current gain
-IC = 0,5 A; -VCE

= 12 V

Transition frequency at f = 35 MHz
-IC = 0,25 A; -VCE = 5 V

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface.

1-- 7,8 max.....1

]k~

3,2

~

3,0

11,1
max

i

+

:1

-1

15,3

min

e

JI.0,5

'II

c

max

--'-1

b'l" _ _

0,88____ .
~

,

7ZS9324.2

1__

~

See also chapters Mounting instructions and Accessories.
(1) Within this region the cross-section of the leads is uncontrolled.

April 1979

80132

l""----_____

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-base voltage (open emitter)

--VCBO

max.

45 V

Collector-emitter voltage (open base)

~VCEO

max.

45 V

Emitter-base voltage (open collector)

-VEBO

max.

4 V

Collector current (d.c.) :

-IC

max.

3 A

Collector current (peak value)

-ICM

max.

6

Base current (peak value)

-IBM

max.

0,5 A

Reverse base current (peak value)

+ IBM

max.

0,5 A

Total power dissipation 'up to Tmb = 60 0C

max.

Storage temperature

Ptot
T stg

Junction temperature

Tj

max.

A

15 W,

-65 to + 150 0C
150 0C

THERMAL RESISTANCE
From junction to mounting base

6 0C/W

Rth j-mb

CHARACTE R ISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE=0;-'-VCB=40V
IE = O;-VCB = 40 V; Tj

--....
-

Emitter cut-off current
IC = 0; -VEB = 3 V
Saturation voltages
-Ie =0,5 A; -IB = 50 mA
-Ie = 2 A; -IB::: 200 mA

500 fJ.A

-lEBO

<

5 fJ.A

-VCEsat
-VBEsat

<
<
<
<

Transition frequency at f = 35 MHz
-IC = 0,25 A; -VeE = 5 V; Tamb
D.C. current gain ratio
of the complementary pairs
..:..Ie = 500 mA; -:cVCE = 12 V

= 25 °C

5 fJ.A

0,3 V
1,2 V
0,7 V
1,5 V

hFE

>
>

20

fT

>

60 MHz

hFE1/hFE2

<

1,2

hFE

-le=2A;-VCE= 1 V

April 197,9

<
<

-VCEsat
-VBEsat

D.C. current gain
-IC = 0,5 A; -VCE = 12 V

2

-ICBO

-ICBO

= 150 0C

40

8D132

Silicon planar epitaxial power transistor

D5224A

10 ~====+===~~~'T~m~b~~~6610Qt·~C:-~~~+=+=~~
t--_---l_--+--+-+--,--,r-..=d,.,~r_'0:;,:;...O;;..:.l-+____t-t__i Pulse

~----~--~~~~~~----~r-~~~~width=
~

-1 CM
(Al

~

10,us

~==~~~~~~~L~~I~'=I~S~~,~olJ~JJIS~1
. -ICma)!

"',~~ ~r\.

~\.\.

~--+---+--+-+-+-+-+-+-I--- (2)~ ~ j

\\

\

0.01

1.0

10

45

Fig. 2 Safe Operating ARea with the transistor forward biased.
I

Region of permissible d.c. operation.

II

Permissible extension for repetitive pulse operation.

(1) Ptot max and Ppeak max lines.
(2) Second breakdown limits (independent of temperature).

Ir

April 1979

3

l______________

80132

72720041

5

J

6 = 0,01

My

\

~

4

""

\
\'

'\..

"
3

\.
1\ 0,1
r...

'\

2

-

I--

\
\
\
\

,

~
~

~

\

\ ..

\

"I\.

r- ","""", 0,2

"

I"

Tt r--'~ l"'r---.. r--. I"'"
iII
I'"

0,5

f',..

~ r---.....

1
10- 5

10- 2
Fig. 3 S.B. voltage multiplying factor at the -ICmax level.

----

7272005.1

r6

=0,01
r--

r"'o~

0,1
0,2
10
~

0,5

-""'~

"0

'"
~

r-...

~
1"--"""

''''

I'
r""'-i"o

i""..
~,

--

r--...

~ ~ ~ "'""r"'o

10 - 2

tp ( S )

Fig. 4 S.B. current mUltiplying factor at the -YCEOmax level.
4

April 1979

80132

Silicon planar epitaxial power transistor

7Z72003

JUL

-ltpl_1

10

-T-

~l5:1
I----

0,5

1----10.1

-

r:::=

0,1

I----

0,01

5=~
T

~~

I-- .... f-

V

p-

1--"' .....

V

10

Fig. 5 Pulse power rating chart.

Ir

April 1979

5

l_______- -

80132

05229

B0132

o~~~~~~~~~~~~~~~~~~~~~~~~~~~

o

2·0

6·0

4'0

-lelA)

Fig. 6 D.C. current gain.

--

B0131 { eomplel1)entary f--rB0132
pair

---1

01830

..

100
Tj
75

I~

.....-~--"""""~~ .....

50 ,"~
~

~'"

~

.....

=25 ,~e

,
I"

~""il)it-n(Jtn

[""II"""

i"""~~

..... ~I'oo.

..... """'

hF:~ Qt ... VC~( S

013 1)
-v.
..... ~ ~!-... 1""-"""
...... ~ i::l'-o r--""", r""'-C:'.'SOI32) ~ 1<'1
r- ..."""""""

25

i"""~

......... ~-

1"'"0 ...

'2 V

..:n-,..
,~

a

a

2'0

6

AP'il1979

(
1

6'0

4'0
for B0131

+

le(A) for BD132 -Ie (A)

Fig. 7 D.C. current gain ratio.

l_____

Silicon planar epitaxial power transistor

B_D_13_2_ _

05228

leBO

7
5 '

I
t-t-

3t-

mA 1
)JA 1000

I·

I

-Vee = 40V
I

I

I
i

I

:

-;

7
,

5

I

I

I

3

~"
i
II ~/'
~~

I

'I

IJ
I

I
I

I

,

100

I I

I

i

7

i

5

IJ
I~"

I

I

3

"

I
I

I : :~'I

, lf~

~~

10

!
I
I

I

i

I

i

I

II
I I

I

'

I

r
I

I

I

I

II

:

iI

I

I

I I

I
: I

11

I

I

I

11

1Tiii
!

7
,5

I

3

I,

I
J.lA

nA

1
1000

I~

I

I

I

i I

i i

!

!

I

I.

i

II

--

I

I

I

r

I
I

7
5

: I)

I

;

I

.~

IIi!
100
7

I

i

'~~

3

I

I

I

I

I! ,

I

II I
I

I

III

I

i

:\'!

I I I

I

i

II

5
3

I)"
I~

10

o

50

"

II

~IJ

I

I
100

150

I
200

Fig. 8 Collector-base current (open emitter) as a function of the junction temperature.

April 1979

7

80132

01549

300

I I I I I

-VcE=2V 1-Tj = 25·C 1-11-1-

-Ic
(rnA)

200
I max

min

I
II

II

I

100

II
J

I
I

II

I
'I

I

J

o

f'

0.4

0.2

'"

~

0.6

0.8

: 1.0 -Vse(V)

Fig. 9.

--

01550

6

J

I

J

,I

1/

-Vce=2V
Tj = 25·C

'f'

-Ic

~

I

(A)

J

II

1/
~

I

4

I
".

,

min

I
11

max

IJ

'f
~

I
II

J

,
II

II'

I
I

1/

,

IJ

o

II

0.5

8

"

'f

2

"'"

April 1979

II'

~

,

"

1.0

r

1.5

2.0

Fig. 10.

I I I II

--

1--

1--

MAINTENANCE TYPE

II

B0133

II

SILICON PLANAR EPITAXIAL POWER TRANSISTOR

N-P-N transistor in a SOT-32 plastic envelope for general purpose, medium power applications.
QUICK REFERENCE DATA

Collector-base voltage (open emitter)

VCBO

max.

90

V

Collector-emitter voltage (open base)

VCEO

max.

60

V

Collector current (peak value)

ICM

max.

6

A

Ptot

max.

15

W

Junction temperature

Tj

max.

150

°C

D. C. current gain
IC = 0, 5 A; VCE = 12 V

hPE

>

40

Transition frequency at f = 35 MHz
IC = 0,25 A; VCE = 5 V

fT

>

60

Total power dissipation up to T mb

=

60 °c

MECHANICAL DATA

TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface

MHz

Dimensions in mm

1"-7,8 max

a

.~.~
~

+

3,2
3,0

+

L-n---rr--nr--l--'

~~~(11

--I
11,1
max

i

~-j

r

--t

15,3
min

JI.0,5

e
0,88__

c

max

~

1

b ,+,'-----,-

11_, ,

nS9324.2

1__

~

For mounting instructions see section Accessories type 56326 for non-insulated mounting
and set 56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.

February 1979

1

--

B0135
B0137
B0139

II

SILICON PLA'NAR EPITAXIAL POWER TRANSISTORS

General purpose n-p-n transistors in SOT-32 plastic envelope, recommended for driver
stages in hi-fi amplifiers and television circuits.
The BD136, BD138 and BD140 are complementary to the BD135, BD137 and BD139 respective1y.
QUICK REFERENCE DATA

Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
Collector-emitter voltage (RBE = 1 kQ)
Collector current (peak value)
Total power dissipation up to T rnb = 70 oC
Junction temperature
D. C. current gain
IC = 150 rnA; V CE = 2 V
Transition frequency
IC == 50 rnA; V CE = 5 V

VCBO
VCEO
VCER
ICM
Ptot
Tj

BD135

BD137

BD139

45
45
45
1,5
8
150

60
60
60
1,5
8
150

100
80
100
1,5
8
150

<

40
250

40
250

40
250

typo

250

250

250 MHz

max.
max.
max.
max.
,max.
max.
>

hFE
fT

MECHANICAL DATA

V
V
V
A
W
oc

Dimensions in mm

TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface

1

2,7
max

I+-

,

I+- 7,8 --I
max

.rh.~
W

3,2
3,0

+

11,1

i

max

'--rr-*--rr'_l

o ~) [) ~~;(1l
-- - -- r---t

r

15,3

min

Ji__
0,5

e

c

----,-1

b'l"_

, II+-' ,
max
~
I+-0,88--.

7Z59324.2

~

For mounting instructions see section Accessories type 56326 for non-insulated mounting
and set 56333 for insulated mounting.
1) Within this region the cross:"section of the leads is uncontrolled.

February 1979

II

1

B013S
'B0137
B013,9

II

RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)

Voltages
Collector-base voltage (open emitter)

BDI35

BDl37

BD139

VCBO

max.

45

60

100 V

Collector-emitter voltage (open base)

VCEO

max.

45

60

80 V

Collector-emitter voltage (RBE = 1 kQ)

VCER

max.

45

60

100 V

Emitter-base voltage (open collector)

VEBO

max.

5

5

5 V

Collector current (d. c. )

IC

max.

1, Q

1,0

1,0 A

Collector current (peak value)

rCM

max.

1,5

1,5

1,5 A

Currents

Power dissipation
Total power dissipation up to T mb = 70 °c

Ptot

max.

T stg

-65 to +150

oC

Tj

max.

°C

8

W

Temperatures
. Storage temperature
Junction temperature

150

THERMAL RESISTANCE

--

-

From junction to ambient in free air
From junction toniounting base

2

II

Rth j-a
Rth j-mb

JL~

100

°C/W

10

oC/W

August 1975

80135
80137
80139

Silicon planar epitaxial power transistors

CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE=0;VCB=30V

<
<

100 nA

ICBO

Emitter cut-off current
I C = Oi V EB = 5 V

lEBO

<

10 p.A

Base-emitter voltage
I C = 500 mA; V CE = 2 V

VBE

<

1 V

Saturatidn voltage
IC = 500 mA; IB = 50 mA

VCEsat

<

0,5 V

O.C. current gain
IC =
5 mA; V CE = 2 V

hFE

>

25

IC = 150 mA; VCE = 2 V

hFE

I C = 500 mA; V CE = 2 V

hFE

>

fT

typ

hFE1/hFE2

~p

IE = 0; V CB = 30 V; Tj = 125 °C

Transition frequency at f = 35 MHz
I C =50 mA; V CE = 5 V

ICBO

10 p.A

40 to 250.
25
250 MHz

O.C. current gain ratio of matched pairs
B0135/B0136; B0137/B0138; B0139/B0140
IICI =150 mA; IVCEI = 2 V

1,3
1,6

-.-....
-

I (June

1977

3

BD135
BD137
B0139 '

7Z621141

10

BD135
BD137

IC
(A)

Tmb:::70oC

I

0=0,01

ICMmax
1

~\\ \

ICmax
Ptot max

'\'\

III

'", \\ \ \

~

1\

'\ 1,\

\.\. \. \.

\.

\.\.

1\

\

IP.\.~\I\
(')°0'\

\.
1\

~"\\' 1\ \

~Q'~~~ 1\

.~~~ i\i\

~
\

\
o~
~
~~ ~
"
,

I

-----

tp=
2Ol1S

If')

M
.--I

~I
100
II
200
II
500
lints
d.c.

I"'-

~

~ ~

10- 2
10

. VCE (V)

Safe Operating Area with the transistor forward biased
I Region of permis sible d. c. operation
II Permissible extension for repetitive pulst;!

1

opera~ion

.

) Independent of temperature

4

II

September 1972
\

B013S
B0137
B0139

7Z621261

10

BD139
I

I

I

T m b:570

IC

°c

(A)

o=o,L

ICMmax

~\\ \

ICmax

l"l."

Pt,ot max

~
'\

II

\ \ \ 1\
I' \\ \ \

"\.

\.\.

\.

"

\.

\.\ \.
\. ~~ ~ ~

Q1~ ~~'I\ \

I

\
tp

I' 20'

1\

0~~~\
( ) ' \ !\' 1\1\
IC

10- 1

0%,

~(mA)
f~

4

I

-----

II

~ 20 a
~

,

50 a
I I

1 ms

~ d.~

2

ff-

~r'\

,- ~~
)
y

f-

I-

J0I

[\f\ 11
%~~
~e l'\ 1\10
a
1

III

a
60

80

100

l-

10- 2 ,-,
1

I I rrlTI

0\
C'f';)

....-l

0
i:Q

10

VCE (V)

Safe Operating Area with the 'transistor forw'ard biased
Region of permissible d.c. operation
II Permissible extension for repetitive pulsed operation
III Repetit'ive pulse' operation in this region is allowable,
provided RBE :s I, H2

1) Independent of temperature

September 1972

II

5

B0135
B0137
80139
7Z668191

100

1\

\

Ptot max

,

(%)

1\
75

1\

\

,

1\
50

~

\.
\

25

,
~

\

,

1\

°
°

I.,..-" ~

.."" .

100

50

150
Tmb (oC)

0,05
0,.02
0,01

llill

10- 1

l't(-6

6

10-: 5

II

10- 4

10- 3

10- 2

10- 1 tp (s)

1

September 1972

B01~~

B0137',
B0139

II

7Z62965

S.B. voltage multiplying factor at the IC max level
MSB(I)

0,10

10

0,05 0,02 {) =0,01
r--.~ ~

...

,

~

".........
~'"

-0,20

~

........ &
........;

. r-t-

---

r-...........

0,33
0,50
0,75

.......
~

~

b:' ~~ ~I:::

-r- r-r-- -l-

t--

1

10- 6

7Z62966

S .B. current multiplying factor at the VCE 0 max level (45 V)

t - - t--

BDl35

MSB(V)

0,05
0,10

10

i""

0,02 {) =0,01

r- ~~~

.....

--

f--0,20
1---0,133
0,50
0,'75
1
10- 6

September 1972

10- 5

II

~,

...... ..... ~
........... iIIIIo

---r--- ~i""S
I"- i-oo-!"", f'"

~

t:::;::
r--:::
r---...: ~"""
10- 4

10- 3

tp (8)

II

10- 2

7

---

B0135
BO"137
B0139
7Z62967

S.B. current multiplying factor at the VCEOmax level (60V)

r-- r-- BD137

MSB(V)

0,05

.. r-. .... 0,~,0,01

0,10

10

-

-0,20
I

0,33

.......

"",,-L'

....... 1.....:

r-...

I"'.N

........ ~

r- ""
r-",,",

0,50

~"" ~

t;:::

~
bolo-.
---....;
I--

0,75
1

Ii==

10- 6

10 - 2

tp (S )

1Z62968

S.B. current multiplying factor at the VCEO ma)( level (80 V)

r-- t - BD139

MSB(V)

0,02 () =0,01

~ I""-r-. ~~rooroo

10 _0,10

r-.i"oo

r-

~.

....

rO,20

:""00.

....."

~

--

0,33
0,50
0,75

~~
~

I""r-

~~

I"'r-; St:l
~

-"""'

I'-t-

~

-~
r--""-

~

10- 5

September 1972

8

II

B013S
B0137
B0139

7Z I 0445

Ic
(rnA )

VCE =2V
Tj =25°C

rnax Is
~

~

.,.1.00'

II

10

V
1 10 3

10 - 2

10

/

10

I

---

7Z10441

150
typical behaviour of d.c. current gain. versus collector current

VcE =2V

Tj =25 O C

100
I--""
~

..........

"'"

~"'"

.-'

"

1\

"

50

"

'"'"
o

September 1972

Ic (rnA)

10

1

II

II

10 4

9

80135
80137
80139

II
7ZI06 46

600

7Z72439

400

Ic

VeE = 5 V
f =35MHz
lj = 25°C

fr
(MHz)

(mA )
VCE =2V 1-1-

Tj = 25°C t-+-

300

~

400
typ

-~

~ax VSE

I-

II

"

tyP)

200

1\

n

/

200

7

100
~

I

",/

I;
Ii

V

j

o
o

IJ

o
VSE (V)

7Zt04-37

6

I
I I
Tj=25°C

VCEsat

10 2 l~ (mA)

10

7Zt0446

1,5

I I
IT

lj=25°C

VBEsat

typical
values

(V)

1

2

typical
vaLues

(V)

L...

.

4

j

1,..00

Ie /I B=20

L.,.~ L,..I-"

II
1/

j,..o'c..

"""~

L,.. ....

1j,..

I e /lB=5-

lQ_ 1-1-120

"""I-"""

~~~

L... ~~

I .
II

~t:'

, I

II
II

2

0,5

II
II
)

1/ 10-1-1-1-

.....

I/'

V
j"..o

o
o

10

10""

"""

.... 1-'

51-1-1-1-

Ie (A)

II

2

Ie(A)

II

2

August 1975

B0136'
B0138
B0140

II

SILICON PLANAR EPITAXIAL POWER TRANSISTORS

General purpose p-n-p transistors in SOT-32 plastic envelope, recommended for driver
stages in hi-fi amplifiers and television circuits.
TheBD135, BD137 and BD139 are complementary to the BD136, BD138 and BD140respectively.
QUICK REFERENCE DATA
BD136 BD138 BD140
max.

45

60

100

V

-VCEO

max.

45

60

80

V

Collector-emitter voltage(RBE :: 1 kQ)

-VCER

max.

45

60

100

V

Collector current (peak value)

-ICM

max. 1,5

1,5

1,5

A

Collector-base voltage (open emitter)
Collector - emitter voltage (open. base)

-VCBO

Total power dissipationuptoTmb :: 70 0 C

Ptot

max.

8

8

Junction temperature

Tj

max. 150

150

150

D. C. current gain
-IC:: 150 mA;-VCE :: 2 V

hFE

>
<

40
250

40
250

40
250

Transition frequency
~IC :: 50 rnA; -VCE

rr

typo

75

75

75

=5 V

MECHANICAL DATA

,

TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface

°c

MHz

Dimensions in mm

1.... 7.8max--1

_7h_~

3.2
3,0

+

8 W

~

11,1
max

i

~_J

r

15.3

min

e

-.II....
0,5

1

bljl'---,-

C

0,88...11. . '
,max
~

7ZS9324,2

I....

~

For mounting instructions see section Accessories type 56326 for non-insulated mounting
and set 56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.

February 1979

II

II

1

--

--

8Dl36
80138
80140'
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages

BD136 BD138 BD140

Collector-base voltage (open emitter)

-VCBO

max.

45

60

100

V

Collector-emitter voltage (open base)

-VCEO

max.

45

60

80

V

Collector-emitter voltage (RBE = l,kQ)

-VCER

max.

45

60

100

V

-VEBO

max.

5

5

5

V

Collector current (d. c.)

-IC

max.

1,0

1,0

1,0

A

Collector current (peak value)

-ICM

max.

1,5

1,5

1,5

A

Emitter-base voltage (open collector)
Currents

Power dissipation
Total power dissipation up to T mb

= 70 oC

Ptot

max.

8

W

Temperatures
,Storage temperature

, T stg

Junction temperature

Tj

-65 to +150

oC

.max.

°c

150

THERMAL RESISTANCE
From junction to ambient in free air
From junction to mounting base

2

II

Rth j-a
Rth j-mb

II

100

°C/W

10

OCM.

August 1975

80136
8D138
8D140

Silicon planar epitaxial power transistors

CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE=:=0;-VCB=30V

<
<

100 nA

-ICBO

Emitter cut-off current
IC=0;-VEB=5V

-lEBO

<"

10 tJA

Base-emitter voltage
-IC = 500 mA; -VCE = 2 V

-VEB

<

1 V

Saturation voltage
-Ie = 500 mA; -IB = 50 mA

IE = 0; -VCB = 30 V; Tj = 125 oC

-ICBO

10 p.A

-VCEsat

<

0,5 V

O.C. current gain
-IC=
5mA;-VCE=2V

hFE

>

25

-IC = 150 mA; -VCE = 2 V

hFE

-IC = 500 mA; -VCE = 2 V

hFE

>

25

fT

typ

75 MHz

typ

hFE1/hFE2

<

1,3
1,6

Transition frequency at f = 35 MHz
-IC = 50 mA; -VCE:= 5 V
O.C. current gain ratio of matched pairs
B0135/B0136; B0137/B0138; B0139/B0140
IICI = 150 mA; IVCEI = 2 V

40 to 250

I(June

1977

3

BD136
BD138
B'D140

II
7Z6 2114.1 A

10

i
, -IC

, BD136
BD138

11

(A)

Tmb~70

oc

I

c5 =O,O~

,

-ICMmax

~\\ \

-ICmax

1

'1.'1.'1.

Ptot max

"'

~

\.\. \.

\.\.

1'1

1\

1'1.

\.

\.

\. \.\ \.\

t p-20lls

\.
\

'\. \~ \ r\ 1\
~~00" .\\'1\ \ r\

,

~~~~ ~
~~, ,,,\
9Q~ ~

I

----=

~v"
J

~

5f
100

I I
1\ 200

~ ~ 500
I

I\.

I

1,IIJ-sd.c.

\0

00

.-4

.-4

~

~

@@

10- 2
1

10

-VCE (V)

Safe Operating Area with the transistor forward biased
I

Region of permissible d. c. operation
extensi~n for repetitive pulse operathm

II Permissible

1) Independent of temperature

4

II

September

1~72

80136
B0138
80140

7Z621261A

10

BD140
I

I

I

I

I

I I I

I I

Tmbs700C

-IC
(A)

0=0.61

-ICMmax
.

~\\ \

I

-iCmax
Ptot max

~

\.'\.

\.

\.\. \. \.

"\. \.\ \.\
\.\.

\.

f\
II

\.

I\. \.

I\,

\.

\

~\. I\,

I\,

1\ 1\ 20 J..1s
0~~~\
1/
Q' I\' r\ 1\\

1\1\ !IOI
~~~
~Q: l'\ ~ I OP

- -IC

o%\~ ~r\
\.

:::,(mA)
4
2

I

---

I

20'0

, °

I'\. \.

I\.

50

Itp s

1\ Q.C
II

~

°

~

tp

~;~\\\. \

I

I-

\

III

60

80 100
-VCE (V)

0

~

.-I

I I IIIII

10- 2

Ea
10

1

-VCE (V)

Safe Operating Area with the transistor forward biased
Region of permissible d.c. operation
II Permissible extension for repetitive pulse' operation '
III Repetitive pulse operation in this region is allowable,
provided RBE ::s' 1 kn.

1) Independent of temperature

September 1972

II

II

5

8D136

:g~~~

I

.
7Z668191

100

~

.\

Ptot max

,

(%)

1\
75

1\

\

,

1\
50

\

\

,

1\
25

\

\

,

1\

o

o

50

100

150
Tmb (oC)

1

6

II

September 1972

B0136
B0138
B0140

II

7Z62965

S.B. voltage mUltiplying factor at the IC max level
MSB(l)

0,05
0,10

10

t-O,20
0,33

0,02 0=0,01

t"--r-.

r-.

1"-

~

.......

,

..................:

- ....

'&
~ ........:: ~
-.......

0,50

r - - r- ~ ~~ t::~

0,75

I- I-r- ~t-

-

l"'" t"'"

ts!!Io.
I'---

1

10- 6

10 - 3

tp ( S )

7Z62966A

S.B. current mUltiplying factor at the -VCEOmax level (45V)

j---- t -

BD136

MSB(V)

0,05
0,10

10

-0,20
-0,133
0,50
0,75

i""

0,02 0 =0,01

,~~
......

--

......

~,

,~

......

-"'~

-~ ..... r"r-.

r- t-

~

-~

r-

~
t--:::
r---.: S

~~

1
10- 6

September 1972

II

7

---

---

80136
BD138
B·D140

I

II
7Z62967A

S.B. current inultiplying factor at the -VCEOmax level (60V)

r--- -

BD138

MSB(V)
\

I

0,05
0,10

10

..... r--~ 0,~,=0,01

- "I'
- - r--.
....... I.....

,,~

-0,20

r....~

........ ~
~
r-- r-I'-o "'1"-

0,33
0,50
0,75
I

1

10- 6

~

--

r-.::-- .;:::0-

_.
-~
10 - 3

tp ( S )

7Z62968 A

S.B~ current mUltiplying factor at the -VCEOmax level (80V)

-

r-- BD140

MSB(V)

'r-O,OS

~

10

~0,1O

0,02 0=0,01

~r--.

r-..~,

,~

r-..~

~

....

f-0,20

.......

--- -

0,50
0,7S

-

10- 6

8

....... ~~
'"

........ .... ~ :;::~

0,33

1

....... :.......

.........

10- 5

II

-

~

-"",

.

~

~

--..;;::: ~ ~
~~

10- 4

I

September 1972

B0136
B0138
B0140
7Z10644

-Ic
(rnA)

-VcE=2V
Tj =25°C

max I:\
.JI'

V

/

~i'"

'I

10
/

V
1

10

3

10

10- 1

2

10

---

7Z10451

150
,typical behaviour of d.c. current gain versus collector current
I
~

I

-VCE =2V
Tj =25°C

100
~

--

i""'..

"-

"-

"-'\.
'\.
'\

"

50

"'\.'\.
o

1

September 1972

-Ic (rnA)

10

II

10 4

9

80136
B0138
B0140
1Z1D6u7

60 0

7Z72440

200

-VeE = 5V
f =35MHz
Tj = 25°C

-Ic
(mA )

)

-VCE=2 V
1j = 25°C

f--f-I-f-

150

40 0

typ

!max-VSE

100

.......

typ L,,10-

200

~

j""

""

50
'/

./
Ii

o

o
o

/

6

I
I I

-VSE (V)

7210447

-V

typical
values

(V)

1210454

1,5

lj =25°C

-VCEsat

, 10

1

2

I I
I r

I

T

lj=25°C

BEsa t

typical
values

(V)

L....

~

4

L,.oo

IclIs =20

..... ~ ~t::=~

,-"'" ...
~t::::. ~

I e /I B=5-

,d~ 20-

f-I-I~~~

...... ~ [:::::~

I
1/

~~

Iii
II
J
1/

2

0,5

J
IJ
J

~'O- f-f-I-

I/'

1/
~

I-~

1/

....

I-""

...

10'

1/
1--5 f----I- I-f----

-Ie (A)

10

II

2

-Ie (A)

II

2

August 1975

I

-II

MAINTENANCE TYPES

80181 to 183

SILICON DIFFUSED POWER TRANSISTORS

N.,P-N transistors in a TO-3 metal envelope for use in hi-fi audio equipment.
The BDl81 is intended for 20 W into 4Q as well as 15 Winto 8Q.
The BDl82 is intended for 40 W into 4Q.
The BDl83 is intended for 40 W into 8Q.
The transistors are also available as matched pairs under the type numbers 2 -BDI81,
2-BD182 and 2-BD183.

QUICK REFERENCE DATA
Collector-emitter voltage (open base)
Collector-emitter voltage (RBE =100 Q)
Collector current (peak value)
Total power dissipation
up to T mb = 25 °c
up to T mb == 83 °c
Junction temperature
D. C. current gain
IC = 3 A; VCE = 4 V
IC = 4 A; VCE = 4 V
Cut-off frequency
IC = 0,3 A; VCE = 4 V

VCEO max.
VCER max.
max.
ICM
P tot
P tot
Tj

max.
max.
max.

BD182
60
70
15

-

117

78
200

200

>

BD183
80 V
85 V
15 A
117W
- W
200 °c

-

-

20 to 70

hFE
hFE
fhfe

BD181
45
55
15

-

20to 70

15

15

MECHANICAL DATA

20to 70

15 kHz

Dimensions in mm

Collector connec ted to envelope
TO-3
-26,6max-

111

39,5 301

max

_r _

1"-

8 '63 max
...., .... 1,6

J
.

+

-4,2
_4,0

1
20,3
max

1_

!

1=====+=+1
+

7268064.31 ....

12,8-.
11,2

For mounting instructions and accessories, see section Accessories.

February 1979

II

1

II

B0201'
B0203

II

SILICON EPITAXIAL-BASE POWER TRANSISTORS

N-P-N transistors in a plastic envelope. With their p-n-p complements BD202 and BD204
they are primarily intended for use in hi-fi equipment delivering an output of 15 to 25 W
into a 4 Q or 8 Q load.
QUICK REFERENCE DATA

Collector-emitter voltage (open base)
Collector current (d. c.)
Total power dissipation up to T mb = 25

°c

Cut-off frequency
IC = 0,3 A; V CE = 3 V

BD201

BD203

VCEO

max.

45

60

IC

max.

8

8

A

Ptot

max.

60

60

W

fhfe

>

25

25

kHz

MECHANICAL DATA

V

Dimensions in mm

TO-220
Collector connected
to mounting base
2,8

+

._Ib~~~

3,5 max

not tinned

~-I
max""

+ 15,8

.

max

J

-I
5,1
max

_I

--t

12,7

min

( 2x)

bee

....i

'+'------'

"'i:-o,9max (3x)

2,54 2,54

1
0,6
--2,4

. .1 - -

..

7Z65872.3

F or mounting instructions and accessories see section Accessories.

June 1977

II·

1

80201
80203

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)·

Voltages

BD201

BD203

VCBO

max.

60

60

V

Collector-emitter voltage (open base)

VCEO

m.ax.

45

60

V

Emitter-base voltage (open collector)

\rEBO

max.

5

5

V

IC

max.

8

A

ICM

max.

12

A

ICSM

max.

25

A

Ptot

max.

60

W

Storage temperature

T stg

-65 to +150

°C

Junction temperature

Tj

max.

oC

Collector-base voltage (open emitter)

Currents
Collector current (d. c.)
Collector current (peak value, tp

~

10 ms)

Collector current (non - repetitive peak
value, tp ~ 2 ms)
Power dissipation
Total power dissipation up fo Tmb

= 25

0C

Temperatures

---

150

THERMAL RESIST ANCE

From junction to mounting base

Rth j-mb

From jUnction to ambient in free air

Rth j-a

2

II

2,08

°CjW

70

°C/W

II

80201
80203

II

CHARACTERISTICS

= 250C

Tj

unless otherwise specified

Collector cut-off current
IB
IE

= 0;
= 0;

VCE
VCB

= 30 V
= 40 V; Tj = 150°C

rnA

ICEO

<

ICBO

<

1

rnA

lEBO

<

5

rnA

VBE

<

1,5

V

VCEK

typo

1

V

VCEsat

<

1

V

Emitter cut- off current
IC

= 0;

VEB

=5 V

Base-emitter voltage 1)
IC

= 3 A; VCE = 2 V

Knee voltage 1)
IC = 3 A; IB = value for which
IC

= 3,3 A at VeE = 2 V

Saturation voltage 1)
IC = 3 A; IB = 0,3 A
D. C. current gain 1)
BD201; Ie = 3 A; VCE = 2 V

hFE

>

30

BD203; Ie = 2 A; VCE = 2 V

hFE

>

30

IC = 1 A; VCE = 2 V

hFE

>

30

fhfe

>

25

>

3

Cut- off frequency
IC = 0, 3 A; V CE = 3 V
Transition frequency at f

= 1 MHz

IC = 0,3 A; VCE = 3 V

1) Mea~ured under pulse conditions: tp < 300 iJS, a <

February 1979

kHz

MHz

2%.

3

8D:201

II

BD~203

7Z62023 Z

Tmb::5 25 oC.
IC
(A)

[) =0,01

ICMmax
10 ICmax

"-

......
~

~

'-

'\.

'\

......
\

"-

\

\

\
Ptot max ' " \

tp=
< 2O lls
I·

\.

\

\

\

100
-IT

\II

\ \

".\~ \\
\

I

second
breakdown 1)

1

--=.......

~

\

~\ \

1\

266

1\ 500
II

\.

\

"\

Ims-

,
~1O
\

.-I

0

C"I

1

d.c.

~

0

C"I

Cl Cl

I:Q

10- 1
1

10

I:Q

VCE (V)

Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation

For Ptot max versus Tmb see page 8.
1) Independent of temperature.

4

.1

September 1972

80201
80203

II

II

7Z67034

3

-.lLfL
t!;j

15=1
2

-

--

0,7 _to-

I-""""'"

"","

...

1

l--""'

0,5
~

:,...

I"""'"
".

-~

".."""

~ [....00'
~

I

I--'

..... "'"

..... t:::;~

~~
~

10-'

0:;. ......

-~

-_I"'"

I""'"L ~
:...-'

"",I-

.....,.

.....

.....

tp

0=T

I'
~~

......-:: ft,....] ...

~~
~

........

"

"'"

too-

°10- 5

-

""'I"--

0,1
0,05
0111
Ijlll

1

tp (s)

1Z62857

S.B. voltage multiplying factor at the

Ie ll1.ax level

MSB(I)

10

~OiOl

-

~

~?,102'

I".

~0,05 ....... i"-o..
- 0 , 1 _ ........

~0;2

~

-r--rI

=0,5

,,

...... r-..,

::::t"--I"to' r--.r--""

-

~I:::~ ~

1-1"-

~~~

- I - t'-I- _ _ _ _

1
10- 5

September 1972

10- 4

1

~ ~~
r-- ~ ~~ t::---

--

1==1=

1-000

tp (s)

II

5

10

---

8D2.01

II

8D203

7Z62858

S.B. cur.rent multiplying factor at the VCEOmax level

.........
MSB(V)

-.........

1

..........

0=0,01

"t:{j
r---- r-- J,62' 1"-1"r-

--

r-

10

b.~ I"-~

'" ~

r-tf~ ~~~ ~,

---

I I

"

"

........

~

--- -

0,2

'"

.....

"""'-.........

"""'r--...

'"

~ l'

r'" t.;::~

t'" ~ .... f' ~~!I.
"'I"'-

0,5

r--~

~ .....

-

~

1"-1- t-r-

1
10- 5

--MSB(V)

-

~ .........

10- 2

7Z62859

S.B. current multiplying factor at the VCEOmax level

..........

~

I~I
1
1

0 =0 00 I..... i'.
i I
-I"---

BD203

0~02

~

Tt ...........
0,05

0~1

10

--

.... 1'"

"

="~ ,

~

.......

0~2

~

.........

- r--....

0,5

.......

-~

......."

...... ~~
~~
..... r....

.....

....

1:iI~

.... ...

~-........

~ rr--- r-r-

'.

1

10- 5

6

r-r- r-r-

tp (s)

--

_Ll

BD201

10- 4

II

10- 3

tp (s)

--

t--

10- 2

September 1972

II

80201
80203

II

7Z62391

10
I

I

I I

VCE=2.V
Tj =25 °c

IC

I;"'"

~

1..".00'

~

~io"

(A)

l/
1

~

~

I""""

/l:

/

If'
~

V

1/

/11'

V

102

10

103

IB (rnA)

--

7Z62403

150

T
I

-

T T
I

T
I I I

V CE =2V
Tj =25 °c

100

L,....-o ....

~ 1000- ....

typ ............

50
.JIll"

.,,;

./

"

""

i""'o....

'"

~

----

~
~

"I"\:

.,,;'

. I'

0
10- 2

September 1972

10- 1

1

IC (A)

10

II

7

80201
80203

II

I

15

7Z62395

I I I I
I I I

7Z6703S

I

I

r-rVCE=2V r-rT j =25 0 C H-

IC
(A)

,

100
Ptot

I\,

max

(%)

10

"

l\

75

\

,

~

~

tyP.J

~

50

,

1\

1/

5

1\

I)

IL

II

.\

25

"

,

~

Il\

IJ

o

---

~

o

1

VBE (V)

o

2

?ZU393

1.5

~

o

50

7Z62397

3

I I I I I
I I I I

IC
-=10
IB .
Tj =25 0c

VCEsat r (V)

t--

VBEsat

1

~
I

0.5

/
1-

IC
-=10
IB
Tj =25 oc

I

I

(V)

I
V

t-rt-rI-tt-rt-r-

2
1

/
~

1/
~

I

~

1

1/

~

"..

typ

"""

~"

L

/

I

0

0
0

5

8

II

IC (A)

·10

0

5

I

IC(A)

10

September 1972

B0201
B0203

II

"

7Z62399

t=
100

VCB=OV

IB
(rnA)

VCB 40V

f-f-

~

max

10'

y
~

'-

7Z 62 38 7.

"'"

-

75

1/

v

1\
50
I"

L.,..o

"

"",typ

" f'bJ,......
~

25

t-

"""

1/

~

1/

10

-IE=3A- I--

typ
/

V

-

2A- -

V
1/

1

.....

,J

10- 1

o

o

-100

100 Tj(OC) 200

50

0

---

7Z62406

20
fT
(MHz)

VCB=3V

I--- I---

Tj =25 0C

I--- I---

15

,

"-

J"""oo. ~

1"'-0.10...

10

I"""'"

r---typ
. I""'-

r---Io..

-I'-- I'--

~

-l"'- I--

I--I-

5

o

o

September 1972

1

2

3

5 -IE (A)

4

II

6

9

B0202
B0204

II

SILICON EPITAXIAL-BASE POWER TRANSISTORS

P-N-P transistors in a plastic envelope. With their n-p-n complements BD201 and BD203
they are primarily intended for use in hi-fi equipment delivering an output of 15 to 25 W
into a 4 Q or 8 Q load.

QUICK REFERENCE DATA
BD202

BD204

Collector-emitter voltage (open base)

-VCEO

max.

45

60

V

Collector current (d. c.)

-IC

max.

8

8

A

Ptot

max.

60

60

W

fhfe

>

25

25

kHz

Total power dissipation up to T mb = 25 °C
Cut-off frequency
- IC

= 0, 3 A ; -V CE = 3 V

Dimensions in mm

MECHANICAL DATA
TO-220

-I~~'
1,3-- , -

Collector connected
to mounting base

.-

~-

---

5,9

min
15,8
max

I
I
I

I
J

+-Il::<~F;::::::;=;~--+-f

3,5 max
not tinned

. ';;x

\;~I.\
--t
max

-

......

I

J

12,7
min

I

(2x)

bee

-.i -.li:-o

~

,9max (3x)

2,54 2,54

.

----

-1

1
..-

0,6

"-2,4

7265872.3

For mounting instructions and accessories see section Accessories.

June 1977

II

1

'80202
80204

II

RATINGS Limiting values in accordance with the Absolute Maximum System (lEe 134)
Voltages

BD202

Collector-base voltage (open emitter)

BD204

":'VCBO

max.

60

60

Collector-emitter voltage (open base)

-VCEO

max.

45

60 \ V

E mitter- base voltage' (open collector)

-VEBO

max.

5

5

V

V

-.-~

Currents
Collector current (d. c.)

-IC

max.

8

A

Collector current (peak value, tp $10 ms)

-ICM

max.

12

A

Collector current (non-repetitive peak
value, tp $ 2 ms)

-ICSM

,max.

25

A

Ptot

max.

60

W

PowerdissipatiQn
Total power dissipation, up to T mb = 25
~

°c

Temperatures

--

Storage temperature

Tstg

Junction temperature

Tj

-65 to +150
max.

150

°c
°c

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

From junction to ambient in free air

Rth j-a

2

II

II

2,08

°C/W

70

°C/W

August 1975

80202
80204

II
CHARACTERISTICS

T j == 25 oc unless otherwise specified

Collector cut-off current
IB = 0; -VCE = 30 V

-ICEO

<

1

rnA

IE=O; -VCB =40V;Tj=150 oC

-ICBO

<

1

rnA

-lEBO

<

5

rnA

-VBE

<

1,5

V

-VCEK

typo

1

V

-V CEsat

<

1

V

>

30

Emitter cut- off current
IC =0; -VEB = 5 V
Base-emitter voltage. 1)
- IC = 3 A; -V CE == 2 V
Knee voltage 1)
-IC = 3 A; -IB = value at which
-IC = 3,3 A at -VCE = 2 V
Saturation voltage 1)
-IC = 3 A; -IB = 0,3 A
D.C. current gain 1)
BD202; -IC = 3 A; -.vCE = 2 V

hPE

I

BD204; -IC = 2 A; -VCE = 2 V
....:IC = 1 A; -V CE == 2 V

hPE

>

30

hPE

>

30

fhfe

>

25

kHz

>

3

MHz

-

Cut-off frequency
- IC = 0, 3 A; -V CE = 3 V
Transition frequency at f == 1 MHz
- IC

= 0,3 A;

-V CE

=3 V

1) Measured under pulse conditions: tp < 300 J.lS, 0 < 2%.

Pebruary 1979

II

II

3

80202"
80204

II

I

7Z620232A

Tmb

:5

250C

-IC
(A)

0=0,01

-:-ICMmax
1

10 -ICmax

'\.

,

'\. I'\. 1'\

'\.

"

\

1/'\
Ptot max ~ \

1\

\

"\

second

\

100

'\ \
\

~

breakdown 1) .

1

rt+

'\

\ [\11

"f\~

I

tp=
.:::;20\-1s

266

\1\

1\

~
1\

,

\\

\

----

-1\

\

"

1\ 5p~
\

1ms-

~

~1Od.c.

N
0
N

Cl

ttl

10

-.:t'
0
N

EE

-VCE (V)

Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation

For Ptot max versus Tmb see page 8.

1) Independent of temperature.

4

II

II

September 1972

80202
80204

II

7167034

3

~
t!;j T
tp

0=-

0=1
2
I

0,7

1

~
~

~

-

"

--

....

~

0,2

-

-I-

0,5

~

°

-

Il Jt

10- 1-- ;"..-

,""

~

_I-"

--,

....... 1"""1

\..io~

..,,~

!

~ ,/

I

~

,

.....-..".......-: V

/'

" "~c::;

-

0,1
0,05
0111

[[III

lO-2

1

tp (s)

7Z62857A

S .B. voltage multiplying factor at the -Ie max level

MSB(I)

~OiOl

-

,..,

~o,02'

t---... I'....
~~05'"
' ......
r-..... .............

-0,1
=0,2

["0...

r-...

~ ~ ........ i' r--i' I'"

-r--rI

~

r--.; f:::~

-r- I"-

September 1972

t'-~

r-r-. I'-~

=0,5

1
lO-5

'

, / /~

10- 5

lO

I

I

1-:::--

........-:: ~~
f.-"""~ i""'1'--

.....-

~

_I-

~

~~
~

""

i-"""

........

OT'lr

--

~~
~~
...........

---

lO-4

~

~ ~'::::::: t:::::---

f--.

tp (s)

II

5

10

---

80202
80204
7Z62858A

S.B. current multiplying factor at the ",VCEOmax level

r-....

I I II

...........
~

MSB(V)

10

BD202

~NJI

r--- r-.. r--.. b62'" ~i"o

--

~'il

r--

b,bt ~""

rtf~ 1--1J

I I

0,2

~

~
-- ~ "

---

.......

~

..

..... I'!o.

"
...... ,.......

I'~ ~

r....,.... ~l'

- r--

r--

r-..; ts~

r'~l'

I'-

1'1'""

0,5

- I"'-r-

1-1-

1
10- 5

~
...............

-

~~

~r-

r"-i-'I'"

tp (s)

I

~,

--

7Zii2859A
~

I

I~

I

I III

1

0 = 010i"

i1

MSB(V)

S.B. current multiplying factor at the -VCEOmax level
BD204

1'.

- --It ~
1-- .... ~i'.:.
r.............. ~
I

1.....

1',

0 ,02

...........

0,05

,

...

10

-

O,~

0~2

-

.......
,-...;
......... ="'~
....... .:"'~
r--.
~~

"'"'

--r--..r-..

~~
1""' ...

0,5

~........
'

r--- ~r- r- ....r1
10- 5

6

10- 4

II

10- 3

tp (s)

II

r"- t-

10- 2

September. 1972

80202
80204

II

7Z62392

10
I

I

-Ie

-""""

-

-IB (rnA)

.

I I

':'VeE=2V
Tj=25 0 e

""",

~

(A)

.

1

/'

.........

...... "

,,'"

"."."",

/typ

"

~v

~V

~/

V
10

10 3 .

4

150

I I

I
I

I

I

-VCE=2V
Tj=25 0 e

".

100

1.,.000

,.,.

.JI'"

----

~

typ

...... '"

I'

.""-

"-

.",

,

"-

.",

\.

""

50

o

10- 1

10- 2

September 1972

II

1

""

"."

-Ie (A)

II

\.

10

7

---

8D202
8D204

II

15

7Z62396

7Z67035

11 1 1 1
I I

I I

-VCE =2V t-tT j =25 0C t-tI-r-

-IC
(A)

,

100

I\,

Ptot max
(%)

10

_\
1\

75

I

~

,

1\

I"
1.

I\,

50

li

1\

typ - t - - -

III"

5

\
\

"

If

\

25

,

~

IL

~

I

o

I'

o

1

-VBE (V)

o

2

\

o

50

I

~

7Z62394

1.5

7Z62398

3

IC

I

1

/

I

I

t-ft-rt-r-f-t-

L

V

IL
IL

typ 1/

~

~

io"""

/

i.;o'
~

1

J

io""

1/

~v

I

V

J

I/'

V
o

o

8

I

2

If

I .....

~

I

-=10
IB
Tj =25 °c

-VBEsat
(V)

L

W;

o

1

IC

-VCEsat t---- - = 10
IB
(V)
-T j =25 0C

0.5

1

5

I

-Ic (A)

10

o

5

II

-IC (A)

10

September 1972,

80202
80204

103

7Z62400

100

I-- I--

7Z62387b

-ICBO ~-VCB 40V
(\-1A)

-VC.a=OV
".

-IB
(rnA)

V

,

1\

75

j

I\.

\

"",typ

,...

17

V

V

max I'"
...... ~

--

10'"
~

I E =3A-

17

1/

)1

10

1/

typ

50
~

"

I"

25

-

typ
r--

~

2A I-~

1/

~""

/V

1
I....
~

10- 1

o

o

-100

100 Tj (0C) 200

50

0

---

--

7Z62405

20

fT
.(MHz)

-VCB =3V I---I--Tj =25 0C r-- f--

15
~

.......

"'" i"

i'..

1'100..
t'-.

10

f'~

~'"

f"""
<
>

40
250
25

40
160
25

40
160
25

fT

typo

125

125

125 MHz

Dimensions in mm

MECHANICAL DATA

TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface

V
V
V
A
W
oC

...,2.7,_

1- 7•8

max

--

1

max ....

-3jSj

_~.

3.2
3,0

~

+

11.1

I

max

~-I

15.3

min

e

...11.0,5

C

1

bljl'-----,-

0.88-.11_,
,
max
~

7ZS9321..2

1__

~

F or mounting instructions see section Access ories, type 56326 for non -insulated mounting
and type 56333 for insulated mounting.
.
1) Within this region the cross-section of the leads is uncontrolled.

February 1979

II

II

1

----

I

8D226 80228
8D230'

RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages

B0226 B0228 B0230

Collector-base voltage (open emitter)

VCBO

max.

45

60

100

V

Collector-emitter voltage (open base)

VCEO

max.

45

60

80

V

Collector-emitter voltage (RBE ,= 1 kQ)

VCER

max.

45

60

100

V

Emitter-base voltage (open collector)

VEBO

max.

5

5

5

V

Currents
Collector current (d. c.)

IC

Collector current (peak vqlue)

ICM

/

max.

1,5

A

max.

3

A

Power dissipatio:p
Total power dissipation up to T mb= 62 oc

Ptot

max.

12,5

W

Temperatures
Storage temperature

T stg

-65 to +150

oC

Junction temperature

Tj

max'.

150

oc

100

°C/W

7

°C/W

THERMAL RESISTANCE
From junction to ambient in free air

Rth j-a

From junction to mounting base

Rth j-mb

2

II

II

August 1975

80226 80228
80230

II
CHARACTERISTICS

Tj ::: 2S

°c

unless otherwise specified

Collector cut-off current
IE ::: 0; VCB ::: 30 V

I CBO

<

100

nA

IE ::: 0; VCB::: 30 V; T j ::: 125°C

I CBO

<

10

J.lA

lEBO

<

10

J.lA

VBE

<

1,3

V

VCEsat

<

0,8

V

Emitter cut-off current
IC ::: 0; VEB ::: 5 V
Base-emitter voltage 1)
IC ::: 1 A; VCE ::: 2 V
Saturation voltage
IC ::: 1 A; IB ::: 0.1 A .
D. C. current gain
IC :::
IC

!::

IC =

BD226 BD228 BD230

5rnA;VC E=2V

hPE

150 rnA; VCE = 2 V

>
>

hPE
hPE

<
>

fT

typo

125

typo
<

1,3
1,6

lA

;VC E=2V

25
40
250
25

25
40
160
25

25
40
160
25

Transition freguency atf = 3S MHz
IC = 50 rnA; VCE = S V

MHz

D. C. current ~in ratio of
matched pairs
BD226/BD227; BD228/BD229;
BD230/BD231
IIeI = 150 rnA; IVCEI ::: 2 V

hPEI/hpE2

1) VBE decreases by about 2,3 mV /oC with increasing temperature.

November 1972

II

II

3

-----

-

80226 80228
80230
7Z62121 2

10
Tmb
IC

62. 0c

c-

0::: 0,01

lCMmax

(A)

:5

II

lCmax

tp

r\'" \
Ptotm!~'"'"'" \\
~~i'\ ~\'\
'\
~I\

I'

'~~

'\

1

"-

\.

'" '" '"

I-

20

--I-

~q

~

"'~\\'\

\

~<;»~\~ \
I

~~0..~I\

(Il~ ~~
% \

\

i-

\

~J~ ~

~

I

s

\

'-\.\. \. \.'\ _\.
'\.'\'\ '\'\
'\
~~\\\

1P(Il0

- I - 10
Il
II

I--fI-fI-I-

1.......
I"
I .......

-\0

N
N

.
1101o

11
20 o
50 o
1 ms

;~

10
d.c

00
N
N

0 0
r:o ~

10- 2
1

10

VCE (V)

Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II

Permissible extension. for repetitive pulse

operation

1) Independent of temperature

4

II

II

November 1972

80226 8D228
80230

·11
7Z62123 2

10

BD230
I

I

Tmb :s 62

t

°c

IC
(A)

0=0,01

ICMmax

\::i~

~ ~~

II

r"

ICmax

~

Ptat rna::

1

~\" r\" '\.

"""1\
~ \\ \ \
\

"'-\.\.\.
\

'\.\.\.

\

\

\. \

\

\.\.

1\

\

\.'\ ,\\\ \
"\~\\'

\ \

~ ~\\" \

I

\

('J0~~~~\\ \

\

20

1\

~~~~[\1\

~",'1~~ l\ \.
0% t\\ ~\

~~ ~~

2
10-:- 1

f-f--

IC

f--

(rnA)

r--

\

\'\

~

~'\'.\.
,~'

-1

~!"

1

f--

-

I-- -

1

100
200
500
Ims
2
5
10
d.c.

-

80 100
VCE (V)

60

10- 2

-III- I

50

~

J

I

I I I II

10

VCE (V)

Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II

Permissible extension for repetitive pulse, operation

III Repetitive pulse oper'ation in this region is allowable,
provided RBE.:S. 1 kQ

1) Independent of temperature

Noverriber 1972

II

II

5

,0226 80228
80230
7Z62125

SLJL
1:t-'--J

Zthj-mb

1

T

(Oc/W)

10

5=1

--

0,75

a,s

0,33 r- I-

~~

t-

~ p-

tp

6=T

@

~=

r

~~
~ ...

0.1
0,05
0,02
0,01

_I-"" "

V

10-2

10- 3

-:--:::

10
7Z62106 2

S.B. voltage mUltiplying factor at the Ie max level

-

- ,MSB(I)

10 2

~°..:J°I

I

i"'-...... .......Ol.~
, ~~
~,

-

O,O~ .... t~~

10

I
I

1"'00. ".,

0,1 I
0,2 1-0,33

........

~

,

........

............""'" ~

---.... ........ r" I:::::S::~r--

- --

0,5
0,75

-I"--

-Jo....

~

~
~~

r---..:

1

10- 6

10- 5

6

II

~ t- ...

&

. 10- 4

tp (s)

II

November 1972

80226 80228
80230
7Z623421

-

S.B. current multiplying factor at the V CEOmax level (45 V)

-

B0226

5B(V)

0,05
10

0,02"

o~ 1d

~

0,20

-

0~3j

0=0,01

~~,r,
.......

,,~

.......

r-...

''''

""",f'o
i""-~

r-- r- ~~

0,50

~

i'"

...

0,75

~

~
---.... ~I!!.o.

- ~ t::-t-

::-- r--

1

10- 6
7Z623431

S.B. current multiplying factor at the VCEOmax level (60V)

t---- r-

B0228

5B(V)

0,02 \.\_ 0,01
0,05

~~

. 0!1O

--

10
1--0,20

........

,

10..,

- I--. "'" .....

f--0~33

l'11li
~~

i""-~

0~50

i'"

r- ~~ ~Ioo

0,75
1

10- 6

November 1972

.....

II

~

~~
--....
r--- r--

II

7

--

80226 80228
'80230
7Z62107 2

-

-

S.B. current multiplying factor at the VCEOmax level (80V)

BD230

.,-

MSB(V)

_ 0 =0,01

~
0,05, ..... ......
I

10

~0,1

1--:---0,2

-

"""

::::

... ::::::
......

~
....... ......

......

--

r--.....

1--0,33

......." .....
......

,

~

~r--.

-------

0,5
0,75

........ ...... ~t'

~~
r--"",

.... ....

~~

~ ~ [;:;:: ~'i....

~

10- 4
7Z67045

,

100

1\

Ptot max

I
VCE=2V
Tj =25°C

Ic

f--f-I-f-

(A)

\

(%)

7Z62100 1

1.5

\
I\.

75

\

J

II
J

\

\

50'

tYPj 1(.....1-

,

If
J

~

/

\

0.5

1/

1\
f

\

25

\

,

J

,

/
1/
/

1\

°

'0

a

800

600

50

8

~

~~

II

II

V SE (mV)

1000

November 1972

80226 80228
80230

II

7Z62101

Vce =2V
: Tj = 25°C

Ie
(mAl

max Ie

,
I

~

10
1

V

10

---

.,Lbl'1U

150

1

1 1 1

Vce= 2V
Tj = 25°C

100

---

I,...- ~

...

i~~

typ ........

I"

"-

I'

,
1\

'"'"
'"'"

50

o

10

November 1972

'""'
Ie (mAl

II

II

9

-

-

80226 80228
80230
7Z62l04

6

I I I I I
I I
I

7111101

1,2

I
I

I I I I I TI

typical values I-fTj=25°C ,

VeEsat

I

(V)

4

Tj= 25°C
III
I I
I I I
I I
I e =1000m'A

VBEsat

tv)

"
II
"I" I III
I

Ie = 250mA

I1-1-

1-1-

I-

typical valu.1

f-f-

1\
ft

,

5QO
750
1000

1..1-I .....

1-1-

~

,

1/

1\

2

,, --

500
I I

1.001-1-

~510

I

.. --

0.8

\

7ll 1-1-

1.001-'

l."oo
I'

1-11-1-

1..1-

f

1\
1\
1\

,,

\

\
~

.... "'"

I'
1""0

20

'"

1""'"", ... 1...

100

40

Ie (rnA)

Ie (rnA)

200

?Z1Z111

300

I I I I
f=35MHz
VeE = 5V
Tj=25OC

fT
(MHz)

.

200
-'---

--""typ
~
~

'"
r"\:

'"

V

100

./
100"
./

./

--~

o1

10

,l."oo

-~

II

10

10 2

Ie (mAl

II

November 1972

B0227 B0229
B0231

II

SILICON PLANAR EPITAXIAL POWER TRANSISTORS

General purpose p-n-p transistors in a SOT-32 plastic envelope especially recommended
for television circuits. Their complements are BD226, BD228 and BD230.
QUICK REFERENCE DATA
BD227 BD229 BD231
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
Collector-emitter voltage (RBE = 1 kQ)
Collector current (peak value)
Total power dissipation up to T mb = 62 °c
Junction temperature
D. C. current gain
-IC = 150 rnA; -VCE = 2 V
- IC = 1 A; -V CE = 2 V
Transition frequency
-IC = 50 mA:; -VCE = 5 V

-VCBO
-VCEO
-VCER
-rCM
Ptot
Tj

max.
45
45
max.
max.
45
max.
3
max. 12,5
max. 150

hFE

>
<
>

fT

typo

hFE

60
60
60
3
12,5
150

100
80
100
3
12,5
150

40
250
25

40
160
25

40
160
25

50

50

MECHANICAL DATA

50 MHz

Dimensions in mm

TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface

V
V
V
A
W
oC

a,
[ ]
-

(~ [~

~~~(11

1-- I--~

-'1£xl'-

1--7,8 max

--I

.Th.~
~

3,2
3,0

11,1

+

~J

i
-..

1..1,2

r

15,3
min

-.11.0,5

e
0,88__
max

1

b 'f"-------'-

C

11.-, ,
~

7ZS932<'.2

1__

~

For mounting instructions see section Accessories, type 56326 for nondnsulated mounting
and type 56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.

February 1979

1

80227 80229
80231

II

RATINGS Limiting values in accordance with the Absolute Maximum System (lEe 134)
,

I

Voltages

B0227 B0229 B0231

Collector-base voltage (open emitter)

-V CBO

max.

45

60

Collector-emitter voltage (open base)

-V CEO

max.

45

60

100

V

80 V

Collector-emitter voltage (RBE.= 1 kQ)

-VCER

max.

45

60

100

V

Emitter-base voltage (open collector)

-VEBO

max.

5

5

5

V

-IC

max.

1,5

A

-ICM

max.

3

A

Currents
Collector current (d. c.) .
Collector current (peak value)
Power dissipatiort
Total power dissipation up to T mb == 62

°c

Ptot

max.

12,5

W

Storage temperature

T stg

-65 to +150

Junction temperature

Tj

max.

150

°c
°c

100

oC!W

7

oC!W

Temperatures

THERMAL RESISTANCE

-

From junction to ambient in free air

Rth j-a

From junction to mounting base

Rth j-mb

2

II

II

August 1975

~2~~:~'~~9

II
CHARACTERISTICS

Tj

= 25 °c unless otherwise specified

Collector cut-off current
IE=0;-VCB=30V
IE

= 0; -VCB::: 30 V; Tj ::: 125°C

-ICBO

<

100

nA

-ICBO

<

10

flA

-lEBO

<

10

flA

-VBE

<

1,3

V

-VCEsat <

0,8

V

Emitter cut-off current

Base-emitter voltage 1)
-IC ::: 1 A; -V CE ::: 2 V
Saturation voltage
-IC = 1 A; -IB = 0.1 A
D. C. current gain

BD227 BD229 BD231

5 rnA; -VCE ::: 2V

hPE

-IC = 150 rnA; -VCE ::: 2 V

hPE

-IC=

hPE

>
>
<
>

fT

typo

50

typo

1,3
1,6

-IC =

lA

;-VCE:::2V

25
40
160
25

25
40
250
25

25
40
160
25

Transition frequency at f = 35 :MHz
-IC= 50rnA;-VCE =5V

MHz

D. C. current gain ratio of
matched pairs
BD226/BD227; BD228/BD229;

BD230/BD231
IIeI = 150 rnA; IV CEI = 2 V

<

1) -VBE decreases by about 2,3 mV 1°C with increasing temperature.

November 1972

II

3

8D2278D229

II

""80231

Tmb s 62 0C

'-\.\. . \. \.'

\.

Il

--

Safe

Oper~ting

Area with the transistor forward biased

Region of permissible d.c. operation
II

Permissible extension for repetitive pulse operation

1) Independent of temperature

4

II

II

November 1972

80227 80229
80231

II

7Z62123 2A

10

B0231
I

I

I

I

Trnb ~ 62

°c

-IC
(A)

6 =0,01

-ICMmax

~~~ ~

II

-ICrnax

Ptot rna:

1

\" "\ ""'t\
~l\\ \ \
~\"

\

" '\.\.\.\.
'\.\\.

\

'\

\. \.

\.\.

\.

'

_\

\.\\ l\ \\ \

II

\

'\~\

I

U\(\l

\' \ \
~\\\\ \

20

\

00~~0.~ l\ \ ~

~Q'~;~ \ \~
~

~0!'1~~ \
0% ~ ~I\
~

--

-IC
(rnA)

t--

I-

2
f'-

5

f\. 10

d.c.

I

t--

10- 2

'\:

r-- r-- -III- -

l-

200
500
lms

\.\.'

r-i

I

l-

100

~~

2
t--.

50

80 100
-VCE (V)

60
1

[

11~1I1I

10

-VCE (V)

Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II

Permissible extension for repetitive pulse operation

III Repetitivepulse operation in this region is allowable,
provided RBE

~

1 kQ

1) Independent of temperature

November 1972

5

B0227 B0229
8D231

II
7Z62125

JUL
~~~

Zthj-mb

(OC/W)

10

6 =tp
T

6=1

0,75
0,5
0,33 ~ 1-1-

~P

~ ~ ~~
~"'"

--

~

.....,

I--""

P""

0,1
0,05
0,02
0,01

Io-""~

t:--

10

-E...

7Z62106 21>.

...

S.B. voltage multiplying factor at the -Ie max level

~

MSB(I)

~o~Ot
~ ~01D1" ........

'1):05~ ........ ~t-.

10

........

0;11-00.
I

0,2 t-""0,33
0,5

-....

........

r--...

................

................ ~
r---. r-...; ::S:::~

- - -~ I'--

0,75

..... ~ r-;~

....

:--

~

~~
I'--.

~"""'

1

1O-?

10- 5

6

II

10- 4

10- 3

II

tp (s)

10- 2

November 1972

'80227 8D229
80231

II

7Z623£.2 1 A

S.B. current multiplying factor at the -V CEOmax level (45 V)

r-- r- BD227

iSB(V)

0,05

. o~ Id

10

r"'"

0,02"

~

--

0,20

-

0~3j

15 =0,01

~~
........

l'

'I'

.....

I"'---

I"-~

I'o.~

"",....

r--r-- r-

r- I- r-I"'-

0,50
0,75

~'"

~

~ ~~

---

~ t- r-I-

~~

1

10- 6

-

7Z623£.31A

S.B. current multiplying factor at the -V CEOmax level (60 V)

t----- r-

BD229

SB(V)

0,02 ~=0,01
0,05

~~

-

0!1O

10

-0,20

r--0~33

..........

--

,"
........

~

~

""' .... .... "'"

.... 1"'-

... ""

- I"- -I"'- ...

0:50
0,75
1

10- 6

November 1972

......

II

~

~~
~ ......

--II

7.

--

8022.7 80229
80231

II
7Z62107 2 A

S.B. current multiplying factor at the -VCEOmax level (80 V.)

f - - I--

BD231

MSB(V)

0=0,01

~
~0,02 .....

0,05, ..... r...~ ~~
I

10 ~=:::::O,1

~~

~

~i"o

,...

"" I'...""""'" roo...
........ ........

t==O,2

"'" "'.........-. ........
-" ~r--.

f----O,33

---

0,5
0,75

""

~~ ~~

I'--r- 1-"",,

~

~~

:::-.::

~

10....

1

=""'" .... ~
..;;;:::
......
~

;:::~

..

-~

r--...

1O~6

tp (s)
7Z67045

100

\

Ptot max

,
\

(%)

7Z62101 1

1.5

I
, I
-VeE ,= 2V r-ITj=25°C r-I-

-Ie
(AI

\
~

75

\

j

"

rr
j

1\
j

,

'T

1\

50

typ,j

IJ

1\

\

0.5
~

II

,

1\

25

1/

J

,

1\

,

f7 ,
[/

~

°
°
, 8

~

a

,600

, 50

II

rr

~

""",,,,,,,
800

I

-VSE (mY) 1000

November -1972

8D22780229
8D231

II
,... 1.

7Z6210

IU

-VCE =2V
T = 25°C

-1 C
(m AI
n\oIC

10~
-'

~

10 2

10
I

/
1
10

7ZUIU

150

I

I

I

-VCE= 2 V
Tj = 25°C

100

---

typ- .......
..........

"

'" , ,
i'.

" ."

50

""
""

"

o

10

. November 1972

""-

-Ic (mAl

II

II

9

----

80227 80229
80231

\

II

7Z62105

6

typical values
Tj=2SoC

-VCESQt

(VI

I
I
I
I

,,
4

-

7znl03

1,2

I I I LLLl
I I I I I I I

I I I I I ( I
( I 1,( I

typical values, I-fTj=25OC' I-f-

~-

--

-VSESQt

I I I I I
II I I
I I I I
I I
I

,
,

(VI

II

750

"

,,

)-

If' "

/
./

\

,
~

\
~

,......

....

0,8

\

\

~~

I-~

L

.... -S9°
I

rL"

_Jr/

,/

....

.... 7~1"'" ........

~

f'

/

2

...........

-Ic =100~mI""'A....

,/ ,

l1\-1- 1000

_

I I

, -I C=250mA_
-- ....
500
....,r~

r-

1...-1"'"

.-.250

I,;'

J

,\

,

."'

"

00

~

20

"

......

-

....

-Ie (mAl

40

-Is (mAl

100

200

7262113

150

I

I I (

1: 35MHz
-VCE- 5V
TJ a 25°C

fT
MHzl

100

,.

50

-tYP

i"oo..

~

,.".

,.-

./

... i""'"

............-

-~

o

10

1

10

II

-Ic (mAl

II

November 1972

80232

MAINTENANCE TYPE

II

II

SILICON DIFFUSED POWER TRANSISTOR

High -voltage n -p-n transistor in a SOT - 32 plastic envelope intended for use as line driver
in television receivers.
QUICK REFERENCE DATA

Collector-emitter voltage (RBE

~

1 kQ) peak value

Collector-emitter voltage (open base)
Collector current (d. c.)
Collector current (peak value, tp

~

Total power dissipation up to T mb

1 ms)

= 57,5 °c

Junction. temperature
D. C. current gain·
IC = 150 rnA; VCE

max.

VCERM

=5 V

Transition frequency
,IC = 50 rnA; VCE = 10 V

500

V

VCEO

max.

300

V

IC

max.

0,25

A

ICM

max.

Ptot

max.

15

W

Tj

max.

125

°c

hFE

>

20

fT

typo

20

MECHANICAL DATA

A

MHz

Dimensions in mm

TO-I26 (SOT-32)

I'"

Collector' connected
to metal part of
mounting surface

+

o [ ] [)1---;~~;111

11,1

I

max

'-Tr---tIr--rr---1

1"1,2

~-

--I

.~.~
~

+

3,2
3,0

-- -

7,8 max

15,3

min

e

-.II...
0,5

c

1

b'

't'---~

11_ ' ,

7ZS9324.2

0,88__
max

~

I...

~

For mounting instructions see section Accessories in handbook SC2, set 56333 for
insulated mounting and type 56326 for non-insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.

February 1979

II

1

B0233; B0235;
BO-237

II

SILICON EPITAXIAL-BASE POWER TRANS'ISTORS
N - P- N transistors in a SOT - 32 plastic envelope intended for use in television and audio
amplifier circuits where high peak powers can occur. P-N-P complements are BD234,
BD236 and BD238. Matched pairs can be supplied.
QUICK REFERENCE DATA

BD233 BD235 BD237
Collector-base voltage (open emitter)

V CBO

max.

45

60

100

V

Collector-emitter voltage (open base)

VCEO

max.

45

60

80

V

Collector-emitter vOltage (RBE= 1 kQ)

VCER

max.

45

60

100

V

Collector current (peak value)

ICM

max.

6

A

Total power dissipation up to T mb =25 °c

Ptot

max.

25

W

Junction temperature

Tj

max.

150

oc

D. C. current gain
IC = 1 A; V CE = 2 V

hFE

>

25

Transition frequency
IC = 250 rnA; VCE = 10 V

fT

>

3

Dimensions in mm

MECHANICAL DATA

TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface

MHz

1

2,7

--

max

a

1

,

1--

--I

~

.?t,.

3,2
3,0

+

7,8 max

WI

11,1
max

~-I

15,3

min

e

-.II...
0,5

c

0,88__ 11. . ,
max
~

b'l"~1
,

1__

~

For mounting instructions see sectionAccessories, type 56326 for direct mounting and set
56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.

February 1979

II

1

II

80233;80235;
80237
_.

II

RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages

B0233

B0235

B0237
100

V

Collector-base voltage (open emitter)

VCBO

max.

45

60

Collector-emitter voltage (open base)

VCEO

max.

45

60

80

V

Collector-emitter voltage (RBE = 1 kQ)

VCER

max.

45

60

100

V

Emitter-base voltage (open collector)

VEBO

max.

5

5

5

V

Currents
Collector current (d. c.)

IC

max.

2

A

Collector current (peak value)

ICM

max.

6

A

Ptot

max.

25

W

Storage temperature

T stg

-65 to +150

°C

Junction temperature

Tj

max.

150

oC

100

oC/W

5

°C/W

Power dissipation
Total power dissipation up to T mb =25 °c
Temperatures

THERMAL RESISTANCE
From junction to ambient in free air

Rth j-a

From junction to mounting base

Rth j-mb

CHARACTERISTICS

Tj:::: 25 °c unless otherwise specified

Collector cut-off current
IE :::: 0; VCB = VCBOmax
IE

= 0;

VCB

= VCBOmax; Tj

= 150 °c

ICBO

<

100

ICBO

<

3

rnA

lEBO

<

1

rnA

fJA

Emitter cut-off current
IC

= 0;

2

VEB ~ 5 V

II

II

August 1975·

80233;80235
80237

Silicon epitaxial-base power transistors

CHARACTERISTICS (continued)
Tj = 25 0C
Base-emitter voltage
IC=lA;VCE=2V

VBE

<

1,3 V

Saturation voltage
I C = 1 A; I B = 0,1 A

VCEsat

<

0,6 V

O.C. current gain
I C = 150 rnA; V CE = 2 V

hFE

IC=lA;VCE=2V
Transition frequency at f = 1 MHz
IC = 250 mA; VCE = 10 V

40 to 250

hFE

>

fT

>

hFE1/hFE2

<

1,6

ton

typ

0,3 JLS

toff

typ

1,1 JLS

25
3 MHz

O.C. current gain ratio of matched pairs
B0233/BD234; B0235/B0236; B0237/B0238
IICI = 150 mA; IVCEI = 2 V
Switching times
ICon = 1 A; IBon = -IBoft = 0,1 A
turn-on time
turn-off time
Test circuit

r - - - - - - - -6,4V
Is
+20,3V

- Is off

+16~-n
-1 V

o ~~~___~+-_~_t__

==f--l::-

Ie

o 1--1--...1-+----+---'-"-;....::...1'---7Z6258~.1

7Z62583

Input pulse:
tr = tf = 15 ns
tp
= 10 JLS
T
= 500 JLS

I

(JUlY

1977

3

80233; 80235;
80237

II
7Z625SIA

10

.J

I

ICMmaxIC

-

repetitive pulse operation; 5 =0.01 j
r-. . .
t

i'r\."
"
'- ~I'
'-" ~
''''''''~,
II

(A)

I'

ICmax

~' ""-

'" ""

~~

"

-"'-

J.~
O. 05

~

r'\

?'\~
~ ~~ ~

Ptot max (d.c.)

1

op02ms

i'

i\
~:..2

,,\~

'\
.~

'"'I'

0.1

1"0..

.. ~

,'~ ~

~I' l\~
second
I' ~
breakdown
~I\
1)
(d.c. )
r\ ~I\
~~

J.J

d
~
...1....

ij

" 20

I

---.-..
Tmh:525 0 C
et:).
et:)
N

If)
ct:)

10

l'
C'I",)

N

N

!XI

!XI

0 0
. !XI

0

VCE (V)

Safe Operating Area with the transistor forward biased
Region of. permissible d. c. opeJ;ation
II

Permissible extension for repetitive pulse operation

1) Independent of temperature

4

II

II

August 1974

I

II

BD233; BD235;
BD237
7Z62567

SLJL
t!;j

10
~o

1

_...

~ 0,75

~ 0,50
I--- 0.33
1 I--- 0.20
~

°1~ .~

- --

tp
0=T

....1M

0,05
0,02

~ ~

~r-.,

q~r1
1

10

1Z62572

S.B. voltage mUltiplying factor at the Ie max level

MSB(I)

'10

!---o =0,01
~0.05

....

,

0,10

~

~
=0,33
;::.2.50
.... °..1.1 5

100.

--... r-;:::

--

1--- ...

1
10- 1

August 1974

~

r-... ..... r"'"~ ~'"

1'00", ~
-1'001-

r---::::::

1

II

--

10

tp (ms)

II

5

----

B0233; B0235;
B0237

,I
7Z62S71A

~ultiplying

S.B. current

BD?,.33

factor at the VCEO max level
I

MSB(V)

10

0,20: r-O,10 <5 = 0,01
to--.
"'!!Ii...

0,33 ....

...... ~

0,50
0,75
1

r--t'-- r-~ I"'~ t:---......

- -- Ioio.""

i"" ...

~~ i""-

10- 1

----

----

I'" I"'"---

.....:::: ~ ~

1

~

10

tp

(ms)

7Z82561A

BD235

S.B. current mUltiplying factor at the VCEO max level

MSB(V)

10

0,20

0,10

.......

t--O,33

<5

...

r--....

=0,01

~"
"",.

r---.~ ~

~ r-.... r"'-r--- ~~
t--- ~
1-- 0 ,50
..........
0,75

-

r--- t--- r--r-o ...

~

r---:: ~ I=:::::
1

6

II

b...

10

tp (ms)

II

August 1974

80233; 80235;
8C237

II

7Z 82570A

BD237

S .B. current mUltiplying factor at the V CEO max level

MSB(V)

10

"

~

~~

~

0.01
/0,05
VO t1O

-

t:--' ~ ~
~ ....
.....2.. 33

~

r-- ......

r-- '-t:"0,50

i'-- r--..~
I'--~ :~~
r-~

-

~ ~~

0,75

... ~........::::::: F=:::::: ~

I

r--

1

.10- 1

10

tp (ms)
7Z62575

7Z62576

2

Ic

--I
---'

,

VCE =2V
T j =25 0C

typical values T j =25 °c

4

VCEsat
(V)

(A)

.1

3

1,5

IC =0,5A
1A
2A
e-- f--f-i--,-3A
'-..->--

lI-

typ

I
I

2

\

I

\
I

0,5

\

1

I
II

°°

\.

August 1974

I

0,5

1 VBE (V) 1,5

II

'-

\

'I

I

,

°°

"

......

-

'200

100

300
IB (rnA)

II

7

----

8D233; 80235;'1
80237
.

II
7Z6ZS74

200

II
typical behaviour

VeE =2V
T j =25 oe

150

100

.,.,. ~~
~

--'

~

_no.

-r-....

r"'-r--.,
I.... ,...

""'

50

~

o

Ie

10

(rnA)

---

8

II

II

August 1974

B0234; B0236;
B0238

II

SILICON EPITAXIAL-BASE POWER TRANSISTORS
P- N - P transistors in a SOT - 32 plastic envelope intended for use in television and audio
amplifier circuits where high peak powers can occur. N-P-N complements are BD233,
BD235 and BD237. Matched pairs can be supplied.
QUICK REFERENCE DATA

BD234

BD236

BD238

-VCBO

max.

45

60

100

V

Collector-emitter voltage (open base)

-VCEO

max.

45

60

80

V

Collector-emitter voltage (RBE = 1 kQ)

-VCER

max.

45

60

100

V

Collector current (peak value)

Collector-base voltage (open emitter)

-ICM

max.

Total power dissipation up to
Tmb = 25 °C

6

A

Ptot

Junction temperature

Tj

max.

25

W

max.

150

°c

D. C. current gain
-IC = lA; -VCE =2 V

hPE

>

25

Transition frequency
-IC = 250 rnA; _-VCE = 10 V

fT

>

3

MECHANICAL DATA

Dimensions L'1 mm

1-- 7,8 max--I

TO-126 (SOT-32)

MHz

Js
1
=$.L

Collector connected
to metal part of
mounting surface

,2

,0

11,1
ma x

i

j

[ ~ [ ] [ ]

I

15, 3

m; n

I

e

JI.0,5

•

b'

c

11_, ,

7Z59324_2

0.88__

max

~

1___

~

Por mounting instructions see sectionAccessories, type 56326 for direct mounting and set
56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.

Pebruary 1979

II

II

1

80234; 80236;
80238

I

RATINGS Limiting values in accordance with the Absolute Maximum System ~IEC 134)
Voltages
Collector-base voltage (open ~mitter:)

BD234

BD236

BD~3S

100

V

max.

45

60

Collector-emitter voltage (open base) , -,-/-VCEO

max.

45

60

sO

V

Collector-emitter voltage (RBE = 1 kQ)

-VCER

max.

45

60

100

V

-VEBO

max.

5

5

5

V

-VCBO

\

\

Emitter-base voltage (open collector)

\

Currents

\

Collector current (d. c.)

-IC

max.

2

A

Collector current (peak value)

-ICM

max.

6

A

Ptot

max.

25

W

Storage temperature

Tstg

-65 to +150

oC

Junction temperature

Tj

max.

150

°C

100

°C/W

5

°C/W

Power dissipation
Total power dissipation up to T mb =25 oc
Temperatures

THERMAL RESISTANCE
From junction to ambient in free air

Rth j-a

From junction to mounting base

Rth j-mb

Tj = 25 oc Wl1ess otherwise specified

CHARACTERISTICS
Collector cut-off current
IE == 0; -VCB = -VCBOmax

-ICBO
o
IE = 0; -VCB = -VCBOmax;Tj =150 C -ICBO

<

100

<

3

Emitter cut-off current
IC = 0; - VEB = 5 V

2

II

rnA

<

II

August 1975

80234;8D236
80238

Silicon epitaxial-base power transistors

CHARACTERISTICS (continued)
Tj = 25 oC
Base-emitter voltage ,
-IC = 1 A; -VCE = 2 V

-VBE

<

1,3 V

Saturation voltage
-IC= 1 A;-IB=O,l A

-VCEsat

<

0,6 V

D.C. current gain
-IC = 150 mA; -VCE = 2 V

hFE

-IC= 1 A;-VCE=2V
Transition frequency at f = 1 MHz
-IC = 250 mA; -VCE = 10 V

40 to 250

hFE

>

fT

>

hFE1/hFE2

<

1,6

ton

typ

0,3 JIS

toff

typ

0,7 JIS

25
3 MHz

D.C. current gain ratio of matched pairs
B0233/B0234; B0235/B0236; B0237/BD238
IICI = 150 mA; IVCEI = 2 V
Switching times
-I Con = 1 A; -I Bon = I Boff = 0,1 A
turn-on time
turn-off time
Test circuit

...-------+6,4V

-20,3V

-I B

--

o ~r=~______-++-__~_t__

I Boff

+1~tl

-Ie

-16V-

o I--I--...I_+-_ _-+-~=_l'---..;;..t7Z62586.1

7Z62585

Input pulse:
tr = tf = 15 ns
tp
= 10 JIS
T
= 500JIs

I (JUlY

1977

3

80234; 80236;
80238
7Z62 56 8

10

I

-ICMmax-

~

_ repetitive pulse operation; {)

,I'.... r'\.. " "

I"'\: ,I\.

-IC

II

(A)

-ICmax

P'o' max
1

....

"'"'

"'

~"-"

"-

t

"'

~

,~

1'\ '\ 0,9 5

~ ~

~~

=0.01 j

"

\

P 2ms

~ ~.~

,

,

'01

(d.C.)~ ~
~ ~\ ~
""- "\.

q'r

\.

I

\.\

1'-\ 1\ ,\~ J l
~ " l\r-.. ~I?

second
breakdown 1)
(d.c. )

f'

~ :\\
r\ \.\
~\

iJ

,20
I

---

Tmb::525 0 C
\0

00

C")

C")

CV)

N

N

N

'

30

Transition frequency
IC = 300 mA; VCE = 3 V

fT

>

3

MECHANICAL DATA

MHz

Dimensions in mm

Fig. 1 SOT-S2.

1_

Collector connected
to metal part of
mounting surface

7

,6_
max

1~
3,75

3,2
3,0

1

11,1

max

+

2;54(1)
max

t

-

_J
1"'1,2

r

15,3
min

b

0,5

See also chapters Mounting instructions and Accessories.

c'

e,_l

' ,

II ..b,2 9 i.1-$-lo.2541®ro,88

7ZSS778.2

max

(1) Within this region the cross-section of the leads is uncontrolled.

February 1979

80291
80293
80295

l " , , - - - - ._ _ _

RATINGS
Limiting values in accordance with the Absolute M.aximum System (IEC 134)
BD291

BD293

Collector-base voltage (open emitter)

VCBO

max.

45

60

80

V

Collector-emitter voltage (open base)

VCEO

max.

45

60

80

V

5

5

5

'v

Emitter-base voltage

VEBO

max.

Collector current (d.c.)

IC

max.

Collector current (peak value)
tp < lams; [) < 0,1

ICM

Base current (d.c.)

IB

Emitter current (d.c.)
Total power dissipation up to T mb = 25 °C

BD295

6

A

max.

10

A

max.

2,5

A

-IE

max.

6

A

max.

60

W

Storage temperature

Ptot
T stg

Junction temperature

Tj

max.

-65 to
150

+ 150

°C
oC

THERMAL RESISTANCE
From junction to ambient in free air

Rth j-a

From junction to mounting base

Rth j-mb

---

2

February 1979

(

100

°C/W

2,08

oCIW

80291
80293
80295

Silicon epitaxial-base power transistors

CHARACTERISTICS
Tj = 250C unless otherwise specified

Collector cut-off current
IE = 0; V CB = 40 V; T j = 150°C
IB=0;VCE=30V

ICBO
ICEO

<
<

mA
mA

Emitter cut-off current
IC = 0; VEB = 5 V

lEBO

<

5 mA

Collector-emitter saturation voltage
IC = 3 A; I B = 0,3 A

VCEsat

<

1 V

Base-emitter voltage*
IC = 3 A; VCE = 3 V

VBE

<

1,5 V

hFE

>

30

Transition frequency at f = 1 MHz
IC = 300 mA; VCE = 3 V

fT

>

D.C. current gain ratio of
matched complementary pairs
IC = 1 A; VCE = 2 V

hFE1/hFE2

<

D.C. current gain**
IC = 1 A; VCE = 2 V
Ie = 2 A; VCE = 2 V : BD293 : BD295
IC=3A;VCE=2V: BD291

typo

3 MHz
1,3
2,5

* VBE decreases by about 1,8 mV/oC with increasing temperature.
** Measured under pulse conditions; tp < 300 J1.S; 6 < 2%.

February 1979

3

80291
80293
80295

t"'----___
7Z679621

IC
(A)

ICMmax

,

10
t-

8 = 0,01

.,

~~

I"

"""-"'- .'\." "- "

''''~''-

ICmax

I

"-

"' I,

"" ~"
"\. '\ \ 1\" "
"
l~ \ 10

I'...

~

~ 1\ 1\

I

0,05 ms
0,1

~

(1"

tp=

0,2

1\

\

1\

\

(~ ~\ 1\ \

0,5

.1\

,

\.

n

\

\

l\ \

l'\

1\

2

~&

5

\~

80291
80293
80295

10"" 1
10

I'

10
d.c.

r-

VCE(V)

Fig. 2 Safe Operating Area with the transistor forward biased, T mb';;;;; 25 0C.
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second breakdown limits (independent of temperature).
I

II

4

February

19791 (

80291
80293
80295

Silicon epitaxial-base power transistors

7Z67Z571

100

P tot max
(%)

'\

\
\

75

",1\
\

'\
~

50

\
\

,
\

25

\.

'\

\

'\
50

100

150

Tmb(OC)
Fig. 3 Power derating curve.
7267949

SLJL

1:l.1

10

----

tp
0=T

0=

~

I-- - I -

V

1,0
0,75
05
0.33
0,2
01 !..-- I0'05- 1-1-"

~~
~

.....-: .......

~

ioo"'.

0,02
0,01
0

10

Fig. 4 Pulse power rating chart.

February 1979

5

l"'---_ _~

8D291
80293
80295

7Z67950

s. B.

voltage multiplying factor at the ICmax level

MV

0=

10
./
/'

r--......~

£

/
~~

0,01
0,02
0,05
0,1

r---.. ~ ~

~
r----- ~ .....~ r--.
~~~

~

"'I"- r:-- r-r--1-1~~ ~~

0,5

rot'-

~t'-

0.75
1,0

10

Fig. 5 Second breakdown voltage multiplying factor at the

--

Ie max level.
7Z67951

S.B. current multiplying factor at the VCEOmax level

r-

0=

~

10

0,01
r-o,02

r--- ~ ~
0,1

-

........

r.....,
"'

!o....'....:

0,2

....... ~~
~~

l"- t---. ....

0,33

r-0,5

--..:"'"

i'

~

~~ b....

r-=:::: ~
~ t:;::

0,75

1,0

t::::- ~
10

tp {ms}

Fig. 6 Second breakdown current mUltiplying factor at the V CEO max level.

6

February 1979

r

Silicon epitaxial·base power transistors

80293
80295
7267958

10
I

=2 V
= 25°C

VeE

1j

~

10"
~I""
I. . . .

/

~

,/

/typ

1
/

V

V

1/

/v

V
10

IS (rnA)

Fig. 7 Typical collector current.
7Z67960

150

I I I

=2 V
=25°C

VeE

1j

I

100

,...,.,...

'-' .... ,...

~
~
I,...j.oo

50

i--'"

typ ..........

..........

"'",

I'\.

./

.........

/

-'"

J'\.

o

10-2

Ie (A)

10

Fig. 8 Typical d.c. current gain.

February 1979

7

l_ _ __

~u£~:n

80293
80295

7Z62387Q

rr-- VCB 40V
max """"

15

r--t--

IC

..... 1--'"

~~

I !
!
:
I I I
VCE = 2 V
1j = 25°C r-r-

I......::

(A)

~

I

-f--L r-r--

I

r--4-+~

10
JL:

)1

10

i

l/

L

I

:

:

i

I

typ

i
-/

L/
II

-fl T-;
J

I./!

o

50

VCB=OV

I-- +-

IB
(rnA)

75

"

,

./

..... '" typ t- ~

-~
I.......

February 1979

r

_....2A- r-

I '"-

o

"

~

-IE=3A- r--

iypI

25

-100

I

i

Fig. 10 Collector current.

100

o

ti

I

VSE (V)

7Z62399

50

1

100 Tj (OC) 200

Fig. 11 Base current.

I

1-"'1

o
o

Fig. 9 Collector-base current.

8

I

L

,
10- 1

r

typ ~.

V
1

..J..J-

2

80293
80295

Silicon epitaxial-base power transistors

7Z67954

--t-----'---L-.-f----- ---

--t------

-

I I
II
Ie

f--

-.t1

- t - - - ---

-~-+-+--- -,--I-I-t--f--I---

t---,---.,---+------- ---j--+--+--+----1

I

--

-

/

~t-- +-

J

I-f--

V
f.--l--I__
1 -t-----j--+--+-+----l--+--1 -=10
I---f-BEsot H-+-+--I--++-H-+~ IB
I-f-TJ = 25°C I---f-(V)
~+_

- - f----t----t-------- f-----+-----~
--- --t---

I

j _

;i

I

r-~~-+typ~~4--+--I---+-~

V

1 f--

0,5 I--+-+-+-V-A---+--+--+----+----+----f

I---f.-- __

1

t

I---p

t typ....... ~

t--- -

f-- _ --I-+----i---+--+----l

-- --'

:

~........

+-f--+~+--f--+--l

/
+--1-----+-----

f--f--

0

O~~--~~~--~~--L-.~--~~

a

5

10

Ie (AI

r-

-

--

-

~-r--

5

0

Fig. 12 Collector-emitter
saturation voltage.

-

1---\-

r

f--I---

f--

10

Ie (A)

Fig. 13 Base-emitter
saturation voltage.
1Z62406

20
fT

(MHz)

VCI3=3V
T j =25 0C

15

......

"
10

f""'oo ~

-t'-- ,....."

--

I-- I--I---- I---

typ

t"-io-..

r-- ,...... +-

~ l"- t--

f-- +---- --I----

--

-~ t- t-- l -

5
--I--

-

- f - --

-.

o
o

~~-1--1-

-

.-~

+-

"-

-

i
2

-I----

1-

,j

-1-

-

5 -IE (A)

6

Fig. 14 Transition frequency.
February 1979

9

8D291
80293
80295

l______________

APPLICATION INFORMATION
10 kn

1,2SA

180 kll

2,21JF

--f

+

-1,3kn
7Z67513 2

Fig. 15 Basic circuit diagram of a 20 W hi-fi amplifier.
Performance at Vs = 32,4 V; R L

=4 n

(unloaded supply voltage

typo

IS

typo

Input impedance

Zj

typo

Output impedance

Zo

typo

50 mn

Output power at f=1 kHz; d tot = 1%
Input voltage for Po = 20 W; f = 1 kHz

Po

typo

24- W

Vj(rms)

typo

375 mV

Total current drain at Po

10

= 38 V)
Ilcol

Collector qujescent current of 8D291 and 8D292

February 1979

= 20 W; f = 1 kHz

r

20 mA
1 A
175 kn

80291
80293
80295

Silicon epitaxial-base power transistors

Total harmonic distortion at Po = 20 W

dtot

typo

0,06 %

Intermodulation distortion at Po = 20 W

dim

typo

0,5 %

Voltage feedback factor

typo

52 dB

Unweighted signal to noise ratio, (ref. to Po = 50 mW)

typo

75 dB

Frequency response (-1 dB)

typ.20 Hz to 75 kHz

Thermal resistance required per output transistor

<

Rth j-a

8,65 °CIW

Stable continuous operation is ensured up to an ambient temperature of 50 0C.
7Z675121

:1
--40Hz
---1kHz
---12,5 kHz

d tot
(0101

I--

o10-1

--

1-

I-"- 1 - -

-~~

-10

Fig. 16 Total harmonic distortion.

February 1979

11

l_____________

80291
80293
80295

APPLICATION INFORMATION (continued)

7Z67511

40

I

Po

. dtot = 1 %
-

(W)

--

30

,,~

20

)"

---

V
10

-=

I

o
f (Hz)

10

~

=

12

Fig. 17 Typical value of output power as a function of the frequency.

February 1979

r

_ _ _ _J

80292
80294
8D296

SILICON EPITAXIAL-BASE POWER TRANSISTORS

General purpose p-n-p transistors in plastic SOT-82 envelopes for clip mounting; can also be soldered
or adhesive mounted into a hybrid circuit. Recommended for use with n-p-n complements 8D291, 293
and 295 in class-B output stages. In a hi-fi circuit the combinations can deliver 20 W into 4 nor 8 n
load. Matched pairs can be supplied.
QUICK REFERENCE DATA

Collector-base voltage (open emitter)

-VCBO
-VCEO

max.

Collector-emitter voltage (open base)
Collector-current (d.c.)

-Ie

max.

Collector-current (peak)
tp < 10 ms; l) <0,1

-leM

Base current (d.c.)

-18

Total power dissipation
up to T mb = 25°C

D.C. current gain
-Ie = 1 A; -VeE = 2 V
Transition frequency
-Ie = 300 rnA; -VeE = 3 V

max.

80292

8D294

8D296

45
45

60

80 V

60

80 V

'----.-----'

6

A

max.

10

A

max.

2,5

A

Ptot

max.

60

w

hFE

>

30

fT

>

3

MECHANICAL DATA

MHz

Dimensions in mm

Fig. 1 SOT-82.
Collector connected
to metal part of
mounting surface.

I
1----....,--+-

-~~x-I

3,75

3,2
3,0

r

+ max
11,1

~-j
r

15,3
min

bee

1. 4,58"[

_1

1.lo,2541@~II.. .i2.29~

7Z65778.2

0,88

max

See also chapters Mounting instructions and Accessories.
(1) Within this region the cross-section of the leads is uncontrolled.

February 1979

t:SU~~~

80294
80296

l_~_ _

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BD292

BD294

BD296

Collector-base voltage (open emitter)

-VCBO

max.

45

60

80 V

Collector-emitter voltage (open base)

-VCEO

max.

45

60

80 V

Emitter-base voltage

-VEBO

max.

5

5

5 V

Collector current (d.c.)

-IC

max.

6

A

Collector current (peak value)
tp < 10 ms; ~ <0,1

-ICM

max.

10

A

Base current (d.c.)

-IB

max.

2,5

A

Emitter current (d.c.)

max.

6

A

max.

60

W

Storage temperature

IE
Ptot
T stg .

-65 to + 150

°C

Junction temperature

Tr

max.

150

°C

Total power dissipation up to T mb = 25 °C

THERMAL RESISTANCE
From junction to ambient in free air

Rth j-a

From junction to mounting·base

Rth j'-mb

-----

2

February 1979

100

°C/W

2,08 '

°C/W

80292
80294
80296

Silicon epitaxial-base power transistors

CHARACTERISTICS
Tj == 25 0C unless otherwise specified
Collector cut-off current
IE = 0; -VCB = 40 V; Tj = 150°C

-iCED

<
<

mA

Emitter cut-off current
IC=0;-VEB=5V

-lEBO

<

5 mA

Collector-emitter saturation voltage
-IC = 3 A; -IB = 0,3 A

-VCEsat

<

1 V

Base-em itter voltage '"
-IC=3A;-VCE=2V

-VBE

<

1,5 V

D.C. current gain"''''
-IC = 1 A; -VCE = 2 V

hFE

30

IB=0;-VCE=30V

-ICBO

hFE

>
>
>

Transition frequency at f = 1 MHz
-IC = 300 mA: -VCE == 3 V

fT

>

D.C. current gain ratio of
matched complementary pairs
-IC = 1 A; -VCE = 2 V

hFE1/hFE2

<

...

-IC';: 2 A; -VCE = 2 V: BD294; BD296

hFE

-IC = 3 A; -VCE = 2 V: BD292

typo

mA

30
30
3 MHz

1,3
2,5

VBE decreases by about 1,8 mV/oC with increasing temperature.
Measured under pulse conditions; tp < 300 ps, 8 < 2%.

February 1979

3

l____

80292
8.0294
80296

1Z61963.1

-IC

(Al

-ICMmax

0=9,01

,

10

'".....

,,"-

" "

,, ,

.

"'"

,,~

(1~

'"

~ ~ ~

1'\ \ 10

~ ~ 1\

I

(~

\

~"

1\

"~

----

~

0,1

1'\

0,2

1'-. I'
1\
\
~

~

~

-.J

l'\

1

10

.....

~

~

2

f\~ . . .

5

!\~

80292
80294
80296

0,5

1\
~

l\

10- 1

tp =
O,05ms

~

" ~\'I,"" \\

t--ICmax

,

I'

10
d.c.

;--

-VCE(Vl

Fig. 2 Safe Operating Area with the transistor forward biased; T mb ~ ?5 oC.
I

Region of permissible d.c. operation.

11

Permissible extension for repetitive pulse operation.

(1) Ptot max and Ppeak max lines.
(2) Second breakdown limits (independent of temperature).

4

February 1979

r

80292
80294
80296

Silicon epitaxial-base power transistors

7Z672571

100
P tot max

"I\.

(%)

\

,

[\

75

\
1\

"1\

50

-~

,

~

1\

25

~

"

~
1\

~

50

Fig. 3 Power derating curve.
7Z67949

JUL
I~I

10

5=~
T

0=
1,0
0,75
05 1
0,33
0.2

OJ

,-.
~~

/

V

I-~

j...-

....

O.O~- i"'1--o-"

t""~ iOI!""

~

~~
0,02
0.01
0

10

Fig. 4 Pulse power rating chart.

February 1979

5

l__________

80292
80294
80296

7Z67950

S. B. voltage multiplying factor at the ICmax level

Mv

5=

10

0,01
/ ' vO,02
/'

""'.~

/'

0,05

~ /0,1

--.....::: ~

~ .
~~
.........

t----- ~ j"---.. ~ ~~!=::
a,s

0.75
1,0

1

-

r--I'-- ,...~
r-- I- 1-1'-l"- ~~

~ t-10

Fig. 5 Second breakdown voltage mUltiplying factor at the ICmax level.
7267951

S.B. current multiplying factor at the VCEOmax level

.......

5=

~

10

0,01
0,02

---...... ~

--

0,1

0,2
0,33
0,5

~
..........

,

.......... 'I'...
~

--

r--.~
,,~

r-r-.
r-r- I--r-

~~

~ t'--...

r-=::::~
~ t;:::

t::-..:: ~ :::::~

0,75
1,0

10

tp (ms)

Fig. 6 Second breakdown current multiplying factor at the VCEOmax level.

6

February 1979

(

80292
80294
80296

Silicon epitaxial-base power transistors

7Z67959

10

f--'----f----------- - -------

-

--

I

=2 V
= 25°C

-VeE

1j

"..~

r---

V

V

/

10' .....

~

~

:,...-'

fo
~v

/V
/

1/

V

i

10

-IS (rnA)

Fig. 7 Typical collector current.
7Z67961

150

1 1 1
1 1 1

-VeE = 2 V
Tj = 25°C

r--

100

~
"."

f-----

~

V

./

....

---

typ

.......
......

"......

I"

""-'\.
'\.

\..
'\.
_'\.

,

50

'\.
'\.
'\.

f--------- t---

'\.

o

10- 2

-Ie (A)

10

Fig.8 Typical d.c. current gain.

February 1979

l_________

80292
80294
80296
10 3

1511-r,,-r~-.'-,,'-,,-rT7,Z_67r95~3~

7Z62387b

t--

-leBO r- -Vell 40V

-- -maxi-""'"

(flA)

...... 1--""

""

~

~

-

=I i
=

,-.
_.. 1--.- - --+-+-+--+-+-l-V
2 V 1--+
CE
- Ic 1-+-+-+-+-+--+--1-+-+---1-+---1 lj
25°C r - -

(A) -- ~~~-4-~.~-~~+-l-++-'"

",

r---

-

. 1-.

-·--r- - t-- - -

-+-+~-+-+--.I--

t- t--

- t----

- - ._-

101-+-+-+-+-+--+--1-+-+---I-+-+-r+-+-+-+~+--1

~

l/

",V

10

+ --

~-+.

typ

t

/

-

/

-1- -

f-+- __
-

.

i

t

+-+-t--t-+-~-l

---+-1

.-

.

-t~H-

I

-+--t-+-

51-+-+-+-+-+--+--f-+-·+typ~r+-+-+-+-r-+---I
- --{'._- - r- _.- - t--

//

-. ..- --t--f-t-4-t--+
- -

-

---1

- 1-.1----. - ----I-

V- -- - --

....

- t-- -

-

'""
10- 1

o

50
Fig. 9 Collector-base current.

--

Fig. 10 Collector current.
7262£.00

100

-

-

-Vell= OV

-IB
(rnA)

75

/

\

/ I E =3A-

\
~

\

,typ
r-

'/

V

/

50

\
25

o
-100

8

February 1979

r

/

i'

typ
r-- '"-"

~

",

V

a
Fig. 11 Base current.

2A

-

- _.- ._-

80292
80294
80296

Silicon epitaxial-base power transistors

7

7Z67955

.++++f-rt

1,5 r---,--,---r---r-...---r-"_r-!7Z_6,79_5..,

-+-----'--'---t-~-------_t~t_
-VeEsat

-

=10

-Ie

; - - -I B

(V)

---

-Ie 10
-I B

f- -- .-- f-.--t--r--f---- . -VBEsat

~-f-~

f--.._-1-

0

(V)

-t--- --- --

lj=25C

I

-+I

J
tY7c--

~-

--

J--

f--

l-

v

/

t

=25°C

f---

- f--

-~ ~I--f--

+-+-

f-- --

- 1--1--

I--f-- f--.--f-f--

iI""

V

ty~

P

0,5 r----+---I----+----lIf---+--+-+----+--I----i

v

.. f-- f - f -

---

1----t--+---t--~II--F-+---l-- ---

/

Tj

f-·- f--f-- -

+

f--f--

jfl'"

J

I

J

V

1/

I .....

o

a

Fig_ 12 Collector-emitter saturation voltage.

5

10

-Ie (A)

Fig. 13 Base-emitter saturation/voltage.
7162405

20

--

fT

(MHz)
15
;I'

-

I'-.....

-VeB = 3V
T j =25 0 C

........

~ f.--

f.-- f.--

r-....
l'r-...

1"-"

10

~t~
l"- t......

J""'. r--...

5

'"

1'---0 ....

-~ t-- t--

()

o

2

3

4

5

IE (A)

6

Fig. 14 Transition frequency as a func;tion of emitter current.
FOR APPLICATION INFORMATION SEE B0291, B0293 ANO B0295.

February 1979

9

II

80329

SILICON PLANAR EPITAXIAL POWER TRANSISTOR
N-P-N transistor in a SOT-32 plastic envelope intended for car-radio output stages.
P-N-P complement is BD330. Matched pairs can be supplied.

QUICK REFERENCE DATA

= 0)

VCES

max.

32

V

Collector-emitter voltage (open base)

VCEO

max.

20

V

Collector current (pe~k value)

ICM

max.

3

A

P tot

max.

15

W

Junction temperature

Tj

max.

150

oC

D. C. current gain
IC = 0,5 A; V CE

hFE

Collector-emitter voltage (VBE

Total power dissipation up to T mb

= 45

oC

=1 V

Transition frequency
IC = 50 mA;VCE = 5 V

85 to 375
130

typo

fT

MECHANICAL DATA

MHz

Dimensions in mm

TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface

a

__/2,7/_
max

,

/- 7,8 max

--

--I

.Th.~
~

3,2
3.0

+

-,

11,1

i

max

J

15,3
min

e

...11.0,5

0,88__
max

c

1

b",'----,-

11_, ,
~

7ZS9324.2

I.-

~

For mounting instructions see section Accessories, type 56326 for non-insulated mounting
and set 56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.

February 1979

II

II

l

80329

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
I

Voltages
Collector- base voltage (open emitter)

VCBO

max.

32

V

Collector-emitter voltage (VBE = 0)

VCES

max.

32

V

Collector-emitter voltage (open base)

VCEO

max.

20

V

VEBO

max.

5

V

Emitter-base voltage (open collector)
Currents
Collector current (d. c.)

IC

max.

3

A

Collector current (peak value)

ICM

max.

3

A-

Base current (d. c. )

IB

max.

-IE

max.

3

A

max.

15

W

Emitter current (d. c.)

A

Power dissipation
Total power dissipation up to T mb = 45 oC

Ptot

Temperatures
Storage temperature
Junction temperature

T stg
Tj

- 65 to +150
max.

150

°c
°c

THERMAL RESISTANCE
From junction to mounting base
From junction to ambient in free air

2

II

Rth j-mb
Rth j-a

II

7

°C/W

100

°C/W

August 1975

II
Tj

CHARACTERISTICS

= 250C

80329

unless otherwise specified

Collector cut-off current
IE
IE

= 0; V CB = 32
= 0; V CB = 32

V
V; T j

= 150 °c

ICBO

<

ICBO

<

lEBO

<

VBE

typo

0,6

V

VBE

<

1,2

V

VCEsat

<

0,5

V

hpE

>

50

10

f-1A
rnA

Emitter cut-off current
IC

= 0; VEB = 5 V

10

f-1A

Base-emitter voltage
IC
IC

= 5 rnA; VCE = 10 V
= 2 A; VCE = 1 V

Collector-emitter saturation voltage
IC=2A;IB=0,2A
D. C. current gain
IC
IC

= 5 rnA; VCE = 10 V
= 0, 5 A; V CE = 1 V

IC = 2 A; VCE = 1 V

85 to 375

hpE

40

hpE

>

fT

typo

130

hPE1/hpE2

<

1,6

Transition frequency at f = 35 MHz
IC =:' 50 rnA; VCE = 5 V

MHz

D. C. current gain ratio of
matched pairs
BD329/BD330
IIC I

= 0,5 A;

July 1977

IVCEI

II

=1 V

3

~

B0329

II
7Z72273

10

Tmb~4S0C

0= 0,01
~

~
I

t\~

r-,

i'

~ \ \\

~\
,\\

\

tp =

50 jJs
100
200

\\\ \ \

2)m\

500
1ms
\~ 2
~ 10
d.c.

\\\\

10- 2

1

10

VeE (V)

Safe Operating ARea with the transistor forward biased
I Region of permissible· d. c. operation
II Permissible extension for repetive pulse operation

1) Ptot max and Ppeak max lines.

2) Second-breakdown limits (independent of temperature).

4

II

II

August 1975

II

80329

II
7Z67895 2

100

\

.,

\.

Ptot

max

~.

(%)

\

,

.~

,

~

I~

so

\
\
\
\.

\

,

~

so

--

7Z62125

JUL
~~-J

Zthj-mb

T

(OC/W)

10

tp

6=T

6=1
0.75
0,5
~
0,33 I-- ...
1-

~ I::: ~~
_10-""1.-'

V

10- 2
10- 3

AUgUst 1975

L.---

:::4 po

p

L..'

,

0.1
0.05
0.02
0.01

10~2

II

10~1

10 2

10

II

tp (ms) 10 3

5

80329

II

I
7Z72269

S.B. voltage muJtiplying factor at the ICmax level

10

~r01
,/,0,05

0,1

~

&0,33 -

r---_ r-== iialt::l!00

- t:~ :~ ~

~I-

0,5
0,75

--

~

7Z72270

S.B. current multiplying factor at the VCEOmax le\lel

MSB1V)

10

0,05
0,1

O/~,01
.... ..: 9,02

-....

~

~33

0,5

...... "
r- .... ~r-:-

0,75

:

~

~

-

-....... ~ ~ .....

-

~

r-- I-- f::::~

==

~

tp(S)

6

II

II

August 1975

II

80329

II

7Z72488

200

=1 V
=25°C

VeE

Tj

typ
150

L---

.....-r-

r---- ~

~

1"""-"
.........

'"

100

"II'\.

,

~

50

I

IT

1--.

10

Ie (A)

7Z72489

1,5

J

=1 V
=25°C

--

VeE

Tj

L

L

./
~

typ

.---

...~ I"""'"

0,5

o

10- 2

August 1975

Ie (A)

II

II

10

7

II

80329

,

I
VCESQt

7Z12487

typo values
Tj 25 °c

=

~

(V)

\

\

\.

,

'\.

,

\

I ...... "

~ .......

!'I'

""

r---..

~

""'"

-

Ic

=

3A
2A
1A

a,s A

2

10 3

10

Is (rnA)

-APPLICATION INFORMATION

8

II

See next page.

II

. August 1975

80329

II

II

APPLICATION INFORMATION

Basic circuit diagram of a 5,5 W car-radio audio amplifier.

1,4mH

1S.kil

O,SA
'---t---;-

= 1 kHz unless
Output power at ~ot = lO%
Input voltage for Po = 5, 5 W
Performance at f

+ 14 V

otherwise specified
Po

typo

5,5

W

Vi(rms)

typo

20

mV

Input impedance

zi

typo

20

kQ

Collector quiescent current of output transistors

II CQ /

typo

10

rnA

typo

28

rnA

Collector current of Be5S8

-IC

.collector current of BC548 (pre-amplifier)

IC

typo

0,5

rnA

Total current drain at P0= 5,5 W

~

typo

540

rnA

75 Hz to 11

kHz

Frequency range (-3 dB)

o
With a heatsink thermal resistance for each output transistor of 40 C/W the maximum
permissible ambient temperature is 60°C.

August 1975

II

II

9

80329

II

II

10

7Z72271

-

Po

Pref

Pref =1,5W
Vi = C

(dB)

5

o

/i""'"

.... ~

V

-

"1"\

I

-5

-10
1

f (Hz)

7Z72272

10

f

= 1 kHz

7,5

5

,

,

I
I
/
/

2,5

.---V
0

0,1

10

./

",

10

Po (W)

II

II

August 19]5

II

80330

II

SILICON PLANAR EPITAXIAL POWER TRANSISTOR
P-N-P transistor in a SOT-32 plastic envelope intended for car-radio output stages.
N-P-N complement is BD329. Matched pairs can be supplied.
QUICK REFERENCE DA_T_A_ _ _ _ _ _ _ _ _ _ _- t

Collector-emitter voltage (V BE

= 0)

'Collector-emitter voltage (open base)
Collector current (peak value)
Total power dissipation up to T mb := 45

°c

Junction temperature
D. C. current gain
-IC :=0,5A;-VCE:= IV
Transition frequency
-IC := 50 rnA; -V CE := 5 V
MECHANICAL DATA

TO-126 (SOT-32)

'c ollector connected
to metal part of
mounting surface

I'" 7,8

1

max .......

.rh.

3,2
3,0

~

t,

Tsj
11,1
max

i

~_l

r

15,3
min

e

.......il...
0,5

c'

0,88-.11.. ,
, max

~

1

bLjl'-----,-

,

7ZS932l..2

I...

~

F or mounting instructions see section Accessories, type 56326 for non -insulated mounting
and set 56333 for insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.

February 1979

II

1

B0330

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
Collector-base voltage (open emitter)

-V CBO

max.

32

V

Collector-emitter voltage (VBE = 0)

-VCES

max.

32

V

Collector-emitter voltage (open base)

-VCEO

max.

20

V

-VEBO

max.

5

V

Collector current (d. c.)

-IC

max.

3

A

Collector current (peak value)

-I CM

max.

3

A

Base current (d. c.)

-IB

max.

1

A

IE

max.

3

A

Ptot

max.

15

W

- 65 to +150

°C

150

°c

Emitter-base voltage (open collector)
Currents

Emitter current (d. c.)
Power dissipation
Total power dissipation up to T nib =·45 °c
Temperatures
Storage temperature

-"
--

T stg

Junction temperature

Tj

max.

THERMAL RESISTANCE
From junction to mounting base

Rth J-mb

From junction to ambient in free air

Rth j-a

2

II

II

7

°C/W

100

oc/w

August-1975

II
CHARACTERISTICS

B0330

T j = 25°c unless otherwise specified

Collector cut-off current
IE =0; -VCB=32V

-ICBO

<

IE = 0; -VCB = 32 V; Tj = 150 °C

-ICBO

<

-lEBO

<

~

10

rnA

Emitter cut-off current
IC = 0; -VEB = 5 V

~

10

Base-emitter voltage
-IC = 5 rnA; -VCE = lOY
-IC = 2 A; -VCE = 1 V

-VBE

typo

0,6

V

-VBE

<

1,2

V

-VCEsat

<

0,5

V

>

50

Collector-emitter saturation voltage
-IC = 2 A; -IB = 0,2 A
D. C. current gain

-IC = 5 rnA; -VCE = lOY

hPE

-IC = O,SA; -VCE = 1 V

hpE

-IC = 2 A; -VCE = 1 V

hpE

>

fT

typo

100

h pEl /hpE2

<

1,6

85 to 375
40

Transition frequency at f ,,; 35 MHz
-IC =SOrnA; -VCE =SV

MHz

D. C. current gain ratio of
matched pairs
BD329/BD330

IIel =O,SA; IVCEI = 1 V

July 1977

II

3

---

-

80330

I
7Z72274

10

T~b ~ 45°C

0= 0,01
~

~
.)

I

[',1'\
I',

"-

tp

=

~ \ \\ 50 IJS

~\
'\\\

100
200

\.\\ \ \

2)\\\ \ \
~'U 500
\\\\ 1 ms

\~ 2
~ 10

d.c.

10- 2

1

10

-VeE (V)

Safe Operating ARea with the transistor forward biased
I Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation

1

) Ptot max and Ppeak max lines.

2) Second- breakd~wn limits (independent of temperature).

4

II

II

August 1975

II

B0330

II
7Z67895 2

100

\
~

"\

Ptot max

~

(%)

"\

,

1\

,

1\

11\

50

1\
1\
1\

1\
\
1\

a

\

a

50

7Z62125

JUL
t~-J

Zthj-mb

(Oc/w 1,

T

10

tp

6=T

6=1
0,75
0,5
0,33 t-

~ ~ t::~

r-

_+-Io--

V

I-~ ~.

P'

0.1
0,05
0,02
0,01

10~2

10- 3

August 1975

10- 2

II

10-1

10 2 tp (ms) 10 3

10

II

5

80330
II

II

7Z72269

S.B. voltage multiplying factor at the ICmax level

10

0,1

~

0,33 0,5
0,75

~,~,01
/.0,05
~

r--

~-==
---r-r-.
~~~ ~
0::::::

~

r-I-

~~

7Z72270

S.B. current multiplying factor at the VCEOmax level
MSB(V)

5~,01

10

0,05

-

0,1

£

0,33
0,5

....." p,02
r"III

i""oo

~Ioo.

"'1"-

r-- 1--r-

~

~

-......
r--- ~ ~~

---

f""oi

~;;: ::::~

0,75
1

10- 5

6

10- 4

II

==10-3

10- 2

tp (5)

II

10- 1

August 1975

II

B0330

II

7Z72491

200

-VeE::: 1 V

1j = 25°C

150

-

typ

100

r"r-.,

"

....

50

o

10-2

~

"

10- 1

~

10

-Ie (Al

7Z72492

1,5

-VeE::: 1 V

Tj

=25°C

L
./

./'

typ

.----

...

I.,....oo--~

L

-'"

0,5

o

10-2

August 1975

10- 1

II

.1

-Ie (Al

10

7

B0330

II

II
7Z724<90

10

typo values

Tj =25

l
1\

°c

\

-VCESQt

(V)

\

\

I

\

,

\
~.

..

\
1\"
10- 1

~

"- ~

-'.

~~

..... 1' ~~

,

Ic =
3A
2A

1A
\

~

10

1

"

'-

O,SA

-Is (mA)

FOR APPLICATION INFORMATION SEE BD329.

8

II

J,__

AUgust 1975

____J

80331; 333
80335;337

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; plastic SOT-82 envelope for clip mounting; can also be soldered
or adhesive mounted into a hybrid circuit. P-N-P complements are 80332, 80334, 80336 and 80338.

QUICK REFERENCE DATA

80331 333 335 337
Collector-base voltage (open emitter)

VCBO

max.

Collector-emitter voltage (open base)

VCEO

max.

60 80 100 120 V
60 80 100 120 V

Collector-current (d.c.)

Ie

max.

6

A

Ptat
Tj

max.

60
150

W

max.

Total power dissipation up to

Tmb= 25°C
Junction temperature

aC

D.C. current gain
IC=O,5A;VCE=3V
IC=3,OA;VCE=3V
Transition frequency
IC=3A;VCE=3V

,hFE

typo

hFE

>

fT

typo

1500
750

7

MECHANICAL DATA

MHz

Dimensions in mm

Fig. 1 SOT-82.
Collector connected
to metal part of
mounting surface

15,3
,min

b

c

e,_l

1.lo.2S41@~II88 j2,29~

7Z65778.2

max

See also chapters Mounting instructions and Accessories.
(1) Within this region the cross-section of the leads is uncontrolled.

March 1979

l'

80331; 333
80335; 337

'---------------~~---------------------------------

I
!L ________
R1

R1 typo
4 kS'l
R2 typo 100n

R2

I

7Z6645.2

_

.

e
Fig. 2

Circui~

diagram.

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
B0331 333 335 337
VCBO

max.

~O

80 100 120 V

Collector-emitter voltage (open base)

VCEO

max.

60

80 100 120 V

Emitter-base voltage (open collector)

VEBO

max.

Collector current (d.c.)

Collector-base voltage (open emitter)

--

----

IC

max.

Collector current (peak value)
tp ~ 10 ms; 5 ~ 0,1

ICM

Base current (d.c.)

18

Total power dissipation up to
Tmb= 25 oC

Ptot

max.

Storage temperature

Tstg

Junction temperature *

Tj

5

5

5

5 V

--..6

A

max.

10

A

max.

150

mA

60
-65 to + 150

W
oC

150

°C

max.

THERMAL RESISTANCE *
From junction to mounting base

Rth j-mb

From junction to ambient in free air

Rth j-a

--.*

2

2,08

°C/W

100

°C/W

Based on rmaximum average junction temperature :~ line with common industrial practice. The
resulting higher junction temperature of the output transistor .part is taken into account.

M.~h

1979

r
1

80331; 333
80335;337

Silicon Darlington power transistors

CHARACTERISTICS
Tj ", 25

0c unless otherwise specified

Collector cut-off current
'E'" 0; VCB'" VCBOmax
IE'" 0; VCB'" VCBOmax; Tj'" 150 oC
'B'" 0; VCE'" % VCEOmax
Emitter cut-off current
'C",0;VEB"'5V

0,2 mA

'CEO

<
<
<

5 mA

'CBO
'CBO

'EBO

<

D.C. current gain *
'C"'O,5A;VCE"'3V

hFE

typo

IC"'3A;VCE=3V

hFE

>

2 mA
0,5 mA

1500
750

IC = 6 A;VCE = 3 V

hFE

typo

Base-emittervoltage **
'C=3A;VCE=3V

VBE

<

2,5 V

Collector-emitter saturation voltage
'C = 3 A; IB'" 12 mA

VCEsat

<

2 V

Transition frequency
IC=3A;VCE=3V

fT

typo

7 MHz

Cut-off frequency
IC=3A;VCE=3V

fhfe

typo

60 kHz

1500

Turn-off breakdown energy with inductive load (see Fig. 12)
-IBoff = 0; ICon = 4,5 A
Diode forward voltage
IF=3A

E(BR)

>

50 mJ

VF

typo

1,8 V

D.C. current gain ratio of complementary
matched pairs
IC=3A;VCE=3V

hFE1/hFE2

<

2,5

*

Measured under pulse conditions: tp < 300 IJ.S, [j < 2%.
VBE decreases by about 3,8 mV/oC with increasing temperature.

r

~ Ma~h

1979

-

3

l___~~

8D331; 333
8D335;337

7Z72220.1

IC
(A)

0= 0,01

ICMmax

10

ICmax

"-

I' '\.

"I"1'\"-." ."'\1'\II

t

(1 )\. \ 1\ 1\1'

1\

=

- t-t- t-t-

\

'\\\
\

1

r -'

P

I" 0,1 ms

\

\
1 \

0,5

(2)\1\

I

" 1\
~

1

1\
1

1\ 2

,

--

l\

1\ 10

80331;80333
80335;80337;-

1,Q-2

1

d.c.

I-

10

VCE(V)

Fig. 3 Safe Operating Area with the transistor forward biased; T mb ~ 25 0C.
I
II

Region of permissible d.c operation
Permissible extension forrepetitive pulse operation

(1) Ptot max and Ppeakmax lines.
(2) Second breakdown limits (independent of temperature).

4

Mareh

1979l (

80331; 333
80335;337

Silicon Darlington power transistors

7Z672571

100
P tot max
(0/0)

75

,
\.
\

,

\.

:\.
~
"

\.

50

\
\

,
,\.

25

,

~

\.
\
50

100

150
T mb(OC)

Fig. 4 Power derating curve.
7Z72226

10

J1SL
-Itpl-I
I_T_

10

O=~
T

0=1
0,75
0,50-1'"""
0,33
0,20
.... 1:,...~

-~
~~

'?

~I

1"0,10
0,05
1'0,02
0,01

tp

(5)

10

Fig. 5 Pulse power rating chart.

March 1979

5

80331; 333
80335; 337
7Z72225

S.B. vOltage multiplying factor at the

ICmax

level

MV

10

~:,01
0,02
0,05

'-~ b.

1-- 0,10"
1"---0,20
0,33

F::::::: ~
......
r--- r-.
~ ~~
~

r- r-~ I-o~

0,50
0,75

:~ I!!!:=...

....
10

tp (ms)

Fig. 6 Second breakdown voltage mUltiplying factor at ICmax level.
I

5
==

.-7Z67856

~0,O2
...............

0 =0,01

'"

~~~
10

~0,1

i'.N,

~ ~
........... "

--- -

- 0 , 12

0,33

-

I

0,5

I

,

1'1 .

....

~
~,

--~ .........
"'to-

. r-

~

- ... ~~~ ~

~
~ t'-~~

r- ~~ ~ ..
"""

0,75

r

10

tp (ms)

Fig. 7 Second breakdown current multiplying factor at V CEOmax level.

6

Mareh1979l

8D331; 333
8D335; 337

Silicon Darlington power transistors

7 Z67317

7Z67321

6
I

10

VCE=3V
Tj =25 0C

IC

-

I I I

IC/ IB=250
Tj'==25 0 C

V CEsat
(V)

f--

r-f--

(A)

I

7,5

4

J

II
I
5

I
2

!typ

I

2,5

)

o

typ

'I

.... .--

........

J
1/

~

1,5

2

2,5

o
o

5

.---

i-""

IC (A)

10

VBE (V)
Fig. 8 Collector current.

Fig. 9 Collector-emitter saturation voltage.
"7Z67320

VCE=3V
T j =25 °C

.- -....

. / typ '\.

1\
/

/'

~

~

./

./

""

IC (A)

10

Fig. 10 D.C. current gain.
March 1979

7

7Z67129

Ie 3A
r--r~-~~~~--+-~~H~-4-+++HHI~~-~~~~~H--+-~+~H~VeE=3V

~

-_.

--

1--

r---t---f--t--+ t-l-H!----+--+-+
. 1----- - I - - --

------ -t-t-Hllr---i'-+-+

,---+++++H+~,\

--

-----

-t+~·~tllr-,--

:-::: \ : - - -

--t--":=-r-I---H-H 1If-- ~-: .:::-

--

== ~

~f----

10 8

-==

f (Hz) 10 9

Fig. 11 Small signal current gain at IC = 3 A; VCE = 3 V.

==

vert.
oscilloscope

+
Vee

hor.
osci lIoscope
7Z73863.1

Fig. 12 Test circuit for turn-off breakdown energy. VIM
8

March 1979

r

= 12 V; RS = 270 n.

80331; 333
80335; 337

Silicon Darlington power transistors

APPLICATION INFORMATION

27 k!l.

1A

~----~---------------------~--~~--~~~---+VB

4,7

~F

+

;J;

180kQ

330.

1,2kfi

1,5ko.
7Z72219

Fig. 13 Basic circuit diagram of a 20 W hi-fi amplifier.
Performance at VB

= 43 V (unloaded supply voltage = 51 V):

Collector quiescent current of BD331 and BD332
Total current drain at Po

= 20 W; f = 1 kHz

Ilcol
IB

typo

20 mA

typo

710 mA
180 kr2

Input impedance

zi

typo

Output impedance

Zo

typo

80

= 1 kHz; dtot = 1%
Input voltage for Po = 20 W; f = 1 kHz
Total harmonic distortion at Po = 20 W

Po

typo

24 W

Vj(rms)

typo

dtot

typo

Output power at f

Intermodulation distortion at Po
Heatsink thermal

r~sistance

= 20 W

per output transistor

dim

Rth h-a
Stable continuous operation is ensured up to an ambient'temperature of 50 0C.

mn

375 mY
0,08 %

typo

0,2 %

~

6,4 OC!W

March 1979

9

8D331; 333
8D335; 337

l________~
7Z72224

10

II

Po

Vi =C; Pref = 6 dB below 20 W

Pref
(dB)
5

o

-5

-10

'10 1

f (Hz)
Fig. 14 Output power in relation to reference power.

I

e:
I

7Z72223

10

E
I-

d tot

Po
Pref

fref

(dB)

= Po

=10/0
at 1 kHz

5

-

o

-5

-10
10 1

f (Hz)
Fig. 15 Output power in relation to reference power.

10

March 1979

r

8D331; 333
8D335; 337

Silicon Darlington power transistors

7Z72222

II
d

1 kHz

t------

tot
(%) t - - -

------40 Hz
-·_·-12,5 kHz

0,5r--~~-+-r+++H---+--+-r~HHH+----r-~~+++++r---++-+-~~~

----. ---._-

1-----1-- --I-

.

~.--.1-

.

---1---. -.

--7

Fig. 16 Total harmonic distortion.

11

/

---)

BD332;334
BQ336;338

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; plastic SOT-82 envelope for clip mounting; can also be soldered
or adhesive mounteq into a hybrid circuit. N-P-N complements are 80331, 8"0333, 8D335 and BD~37.

QUICK REFERENCE DATA'
BD332 334 336 338
Collector-base voltage (open emitter)

-VC80

max.

60

80 100 120 V

Collector-emitter voltage (open base)

-VCEO

max.

60

80 100 120 V

Collector-current (d.c.)

-IC

max.

6

A

Total power dissipation up to
Tmb= 25 0 C

max.

60

W

Junction temperature

max.

150

ac.

D.C. current gain
-IC = 0,5 A; -VeE == 3 V

typo

1500

>

-IC = 3,0 A; -VCE = 3 V
Transition frequency
-IC=3A;-VCE=3V

750

typo

7

MECHANICAL DATA

MHz

Dimensions in mm

Fig. 1 SOT-82.
Collector connected
to metal part of
mounting surface.

I-;;'~x-I

i------i-+3,75

+

r

111
max

~_J

r

15,3
min

bee

--1-II
0,5.

II

_1

1"lo,2541®~
• J229
=.0,88.
. i..

L - .- ' - .- - ' - ' .

7Z6S776.2

max

See also chapters Mounting instructions and Accessories.
(1) Within this region the cross-section of the leads is uncontrolled.

I

(MarCh 1979

8D332; 334
8D336; 338

l
'---------------------------------------------------r----------------------;

~---------~~~---+--c

I

I
I
I

b ~~~--'-__I

Rl typo 4 k51
R2 typo 8051

I

R1
R2
L _________
_ __ .J
I

7Z66446.2

e
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
BD332 334 336 338
Collector-base voltage (open emitter)

-VCBO

max.

60

80 100 120 V

Collector-emitter, voltage (open base)

-VCEO

max.

60

80 100 120'V

Emitter-base voltage (open collector)

-VEBO

max.

5

Collector current (d.c.)

-IC

max.

Collector current (peak value)
tp ~ 10 ms; 5 ~ 0,1

-ICM

Base current (d.c.)

-IB
Ptot
T stg

max.

Tj

max.

Total power dissipation up to
T mb = 25 °C
Storage temperature
Junction temperature *

5

5

5 V

6

A

max.

10

A

max.

150
60
-65 to

mA
W

+ 150

oC

150

°C

THERMAL RESISTANCE *
From junction to mounting base

Rth j-mb

From junction to ambient in free air

Rth j-a

2,08

OC!W

100

°C!W

* Based on maximum average junction temperature in line with common industrial practice. The
I

2

resulting higher junction temperature of the output transistor part is taken into account.

Mareh1979I (

80332; 334
80336; 338

Silicon Darlington power transistors

CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE = 0; -VCB = -VCBOmax

0,2 mA

-ICED

<
<
<

Emitter cut-off current
IC=0;-VEB=5V

-lEBO

<

5 mA

D.C. current gain *
-IC = 0,5 A; -VCE = 3 V

hFE

typo

-IC = 3 A; -VCE == 3 V

hFE

>

-IC = 6 A; -VCE = 3 V

hFE

typo

Base-em itter voltage * *
-IC=3A;-:-VCE=3V

-VBE

<

2,5 V

Collector-emitter saturation voltage
-IC = 3 A; -IB = 12 mA

-VCEsat

<

2 V

Transition frequency
-IC=3A;-VCE=3V

fT

typo

7 MHz

Cut-off frequency
-IC=3A;-VCE=3V

fhfe

typo

60

Diode, forward voltage
IF=3A

VF

typo

1,.8 V

D;C. current gain ratio of
complementary matched pairs
-IC = 3 A; -VCE = 3 V

hFE1/hFE2

<

2,5

*

-ICBO

IE = 0; -VCB = -VCBOmax; Tj = 150 °C

-ICBO

IB = 0; -VCE = -Y:! VCEO

Measured under pulse conditions: tp < 300 p.s, l) < 2%.
VBE decreases by about 3,8 mV/oC with increasing temperature.

I(

2 mA
0,5 mA

1500
750
1500

Mareh 1979

kHz

3

8D332; 334
80336; 338
7Z72221.1

-IC
(A)

[) =

-ICMmax

10

"'"'"

ICmax

0,01
~

~'"

" -""-"""'\~~11

"

(10

.."1.

t

"\ [\ [\.r"-

~

\

Il

p

=

0,1 ms

""

..

- -r-

- -r-

'~ 1\ '1\
, 0,5

1\

1\

1\

(2)\/\

I

"1\
~

10- 1

~
1

~

2

1\

1\ 10

1,

B0332+B0334
80336;B0338 ;-1-

10- 2
1

d.c.

I-

10

Fig. 3 Safe Operating Area with the transistor forward biased; T mb = 25 0C.
I
II

Region of permissible d.c. ~peration
Permissible extension for repetitive pulse operation

(1) Ptot max and Ppeak 'max lines.
..
(2) Second breakdown limits (independent of temperature).

4

Mareh

197~

I(

J

Silicon Darlington power transistors

8D332; 334
8D336; 338

- _ .

7Z672571

100

"\

P tot max
(%)

\
\

75

,
\

,

1\

\

50

\
\

,
.\

25

,

~

\
1\

o

o

\
50

150'

100

T mb(OC)

Fig. 4 Power derating curve.
7Z72226

10

JUL
_T_ o=~
-ltpl_1
T

10

0=1
0,75
0,50 -r:10,33
0,20
11"'~

~I-

_10- ~~

-;:::::. ~~

~I

1"0,10
0,05
['0,02
0,01

10

Fig. 5 Pulse power rating chart.

I(

March 1979

5

l_____________- -

80332; 334
80336; 338

7Z72225

S.B. voltage multiplying factor at the ICmax level

MV

10

~o~'
0,02
0,05

"""~ ~

--0,10 ...
~O,20

1--°,33

, .• 1

~~
r-- r.::: ~

-~~ -

0,50

!!!Ill!!
r-r-. ....
~

I"-

0,75

~~ !tII:I..
-r---::
10

Fig. 6 Second breakdown voltage multiplying factor at the ICmax level.

----

7Z67856

:0,02
."",""

() =0,01

"
rJ=='\
~. .J~~
\

10 F="-0,1

r - - O,1 2

'''"~I'

-

.....

i'"

,,,-

...... 1000.

"'~I'o

0,33
r-~

I'-~I-

~

-=:::::; ~

----

0,'75
1

10- 1

I'
~, ,~

-

O~S

~~

(
1

~
~

~ ~~ ...
10

. tp (ms)

Fig. 7 Second breakdown current multiplying factor at the VCEOmax level.

6

Mamh 1979

10 2

8D332;334
8D336;338

Silicon Darlington power transistors

7Z67316

-VCE=3V rTj =25 0c r-

10
-IC

7Z673ZZ

6

I I
I

I
I I

I
I

-IC/-IS=2S0 1-11-1Tj=25 0 C
1-1-

-VCEsat
(V)

(A)

J

7,5

4

1/

"

J

'/

L

5

'{

/typ

2

/

typ

If

2,5

j

1/

o

-

.... 1--

-"'"

.... "'"

,.
1,,000 ....

I[

,/

o
1,5

2

2,5

-VBE (V)
Fig. 8 Collector current.

o

5

-IC (A)

10

Fig. 9 Collector-emitter saturation voltage.
7Z67319

10 5

-VCE = 3V
Tj =25 0c

'----

,

~yp . . . . 1\
V'~

~

V
r---"
/
/
~

-Ie (A)

10

Fig. 10 D.C. current gain. ,

7

803'32; 334 .
80336; 338
7Z67332

-

-

-- r-r--

-

- flt:::=t=t:ttt

IC 3A
-VCE =3V

i"""~

-

r-

'--

~-

~

f-

r---

,

-

I,

r - - r-

typ "
~-

:

--

f-

r-r

\
10

\
\.
~

"
10 8
Fig. 11

----

Smal~

signal current gain.

FOR APPLICATION INFORMATION SEE 80331,80333,80335 ANO 8D337.

8

March

19791 (

f (Hz)

10 9

B0433; B0435;
B0437

II

SILICON EPITAXIAL-BASE POWER TRANSISTORS
N-P-N transistors in a SOT-32 plastic envelope, intended for use in complementary output
stages of audio amplifiers up to 15 W.
The complementary pairs are BD433/BD434, BD435/BD436 and BD437/BD438.
QUICK REFERENCE DATA

BD433

BD435

BD437

Collector-emitter voltage (VBE = 0)

VCES

max.

22

32

45

V

Collector-emitter voltage (open base)

VCEO

max.

22

32

45

V

Collector current (peak value)

ICM

max.

7

7

7

A

Total power dissipation uptoT mb =25 °C

Ptot

max.

36

36

36

W

D. C. current gain
IC = 2 A; V CE = 1 V

hFE

>

50

50

40

Transition frequency
IC = 250 rnA; VCE = 1 V

fT

>

3

3

3

MHz

Dimensions in mm

MECHANICAL DATA

TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface

....,2,7,
...
max

1'-7,8 max

--I

.~.~
~

+

3,2
3,0

11,1

+

I

max

~_l

--

I

15,3

min

e

....0,511.-

c'

1

b ...' - - - - , -

0,88--.11...~' ,
max

7ZS9324.2

1__

~

F or mounting instructions see section Accessories, set 56333 for insulated mounting
and type 56326 for non-insulated mounting.
1) Within this region the cross-section of the leads is uncontrolled.

February 1979

II

1

-

B0433; B0435;
. B0437

--

-

I

RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
Collector-base voltage (open emitter)

SD433

BD435

BD437

VCBO

max.

22

32

45

V

Collector-emitter voltage (VBE = 0)

VCES

max.

22

32

45

V

Collector-emitter voltage (open base)

VCEO

max.

22

32

45

V

VEBO

max.

5

5

5

V

Emitter-base voltage (open collector)
Currents
Collector current (d. c.)

IC

max.

4

Collector current (peak value)

ICM

max.

7

A

IB

max.

1

A

Ptot

max.

36

W

Storage temperature

T stg

-65 to +150

Junction temperature

Tj

max.

Base current (d. c. )

A

Power dissipation
Total power dissipation uptoT mb =25 oc
Temperatures

150

°e
°e

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

3,5

From junction to ambient in free air

Rth j-a

100

2

II

II

°e/W
°e/W

August 1975

~

II
CHARACTERISTICS

Tj

= 25

80433; 80435;
80437

0C unless otherwise specified'

Collector cut- off current
IE = 0; VCB = VCBOmax
IE
IE

= 0; VCB = lOY; Tj = 150 °c
= 0; VCB = VCBOmax; Tj = 150

°c

ICBO

<

ICBO

<

I CBO

<

3

rnA

lEBO

<

1

rnA

100

fJA
rnA

Emitter cut- off current
IC

= 0;

VEB == 5 V

Knee voltage
IC
IC

BD433 BD435 BD437

= 2 A; IB = value for which
= 2, 2 A at VCE = 1 V

VCEK

<

0,8

V

Base-emitter voltage 1)

= 10 rnA;

=5 V

VBE

typo

580

580

IC = 2 A; VCE = 1 V

VBE

<

1,1

1,1

=1 V

VBE

<

VCEsat

<

V CEsat'

<

=5 V

hFE

IC = 500 rnA; VCE = 1 V

hFE

IC

VCE

IC = 3 A; VCE

mV

580

V
1,3

V

Collector-emitter saturation voltage
IC = 2 A; IB = 0,2 A
IC

= 3 A;

IB = 0,3 A

0,5

0,5

V
V

0, 7

D. C. current gain

= 1V

hFE

>
>
<
>

= 1V

hFE

>

fT

>

3

BD433/BD434 and BD435/BD436

hFE I/hFE2 <

1,4

BD437/BD438

hFEl/hFE2 <

1,8

IC = 10 rnA; V CE

IC
IC

= 2 A; VCE
= 3 A; VCE

Transition frequencl at f

25
85
475
50

25
85
475
50

25
85
375
40
30.

= 1 MHz

IC =250 rnA; VCE = 1 V

MHz

D. C. current gain ratio of the complementary pairs
IIcl= 500 rnA; IVCEI= 1 V

1) VBE decreases by

August 19,75

typ~

II

2,3 mV IOC with

incre~sing temperature.

II

3

-

7Z62582A

10
c5 =0,01

ICMmax
\

f0.\\\

1 -t-I'I

IC

ICmax

(A)

\ \

\\\ \

~"\\

P

\

\

\

Illl
,~
second
breakdown 1)

I

f-

r-

?,~ ms

i\ \

I

\~ ~

trliT

t

I PI

?'T

~ ~ ~J',--"
21\

1---

'\ ,\

\\

\\

\

--

--

510
d.c.

I
10- 1

T m b:525

0

C

10- 2
10

CVj
CVj

If)
CVj

~

~

~

SS

SS

SS

I'
CVj

VCE (V)

Safe Operating ARea with the transistor forward biased
I Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation

1) Independent of temperature.

4

II

II

August 1975

80433; 80435;
80437

II
10
Zth j-mb
(Oe/W)

7Z62659

~t:++

f-O

~m

~

0.75

f-:-:-

--.=-

~ foO'.50'
~ 0.33

-

~ ;;00:2,0,

f----

f--

10- 1

.

_....
--

;......0:

-~ ? --

~

__

._-

M

.-

~ F==f-"

.-

_.-

0.10

f--

-

- r-

--

~ ;:::~

0.02.
~ ~Ol'"

10- 2

JlJL
~j

10- 2

10- 3

tp
0=T

10 - 1 tp ( S )

--

7Z62581

S.B. voltage mUltiplying factor at the

_

Ie max level

MSB(I)

10

Fri~O.lO

0.02

-r-."'r-.

0=0.01

~~
-...

1----0.20
I

......

ii:Io..

r-...

1""'1
i"""
i"""~

-I-- r---I-

0.33
0.50

0.75

i'"
~

~ ....
---...
~~

-

-

I--

1:::::"",

r- ~I-

I'"

~
....

i'"

1

10- 5

10- 6

May 1972

II

10- 4

10- 3

II

tp (s)

5

10- 2

80433; 80435;
80437
BD433;BD435
7Z62580

. S.B. current multiplying factor at the VCEOmax level
MSB(V)

0.02 .....

0.05

r--- r--

b.~J

10

<5
I....

r--~

=0 ..01

""~I'

~

""'I"-

f""'ooo.

0.20

.,

,

........ ......

-

-b.33
0.50

~

.... ~~

-r-- I'- i""r--"",
t"'o~
r- ~I-t-

0.75

-

N

~

~~

r---~

1

10- 5

10- 6

----

10- 4

10- 3

10- 2

tp (8) .

BD437
..

7Z62579

S.B. current multiplying factor at the V CEO max level
MSB(V)

0.05

b~~o

10

0:20

--

..... 0.0 2

.... r-. ...

<5

=0.01

~

-""
........... .......
1"'0..

-

0.33

~

~ ...
-r-- I'- .......
~~

b.50
b.75
l

1

~
~

r---I-.:

I I

1
10- 6

6

~

r-...... "'~..... I'--~

III

10- 4

II

10- 3

tp (8)

II

10- 2

May 1972.

80433; 80435;
80437
7Z62654A

rr-

IC
rnA)

f-f--

VCE = 1 V
Tj =25 °c

,

/

7Z 62651

6

I I

V CEsat

V

I

1

typo values rrTj=25 0 C t-

(V)

4

I

I

II
II

typ

,.

I

2
\

f

) IC=4A- rrt-

I'
;/

r

10

a

j

a

0.5

1.5

I

~

!"""~

rlA\.1
oj

"

~3A
!'o.

r- t2A

I""""""

r-r-

I"...

a

50

IB (rnA)

100

VBE (V)

---

7Z62661

300

VCE = 1 V
Tj = 25°C

200

100

I"

---

.-.---

_......

...

---

typ

I"""

1"'0..
~

"

~

""
",
_'\

a

10- 2

May 1972

1

II

IC (A)

II

10

7

80433; 80435;
80437
7Z62662

30

L .1 I 1
f= 1 MHz·

VCE = 1 V
T j =25 °c

20

typ

I-~

.-i--""'"

10

~

I"""

-~

~

'"

~

-'"

\.
~
~

"\.
"
o

10- 2

10- 1

IC (A)

10

7Z62954

,

100

\.
Ptot max

,
~

(%)

\.

,

~

"-

50

,
"

I\,
~

o
o

I.
8'

II

100

,

Tmb (OC) 200

_JL

July 1972

B0433; B0435;
B0437

II
APPLICATION INFORMATION

Basic circuit diagram of a 6 W car -radio audio amplifier.
1,L..mH

18kfl.

1,25A

RL(L..!l or 2n.)

Typical performance:
Output power at

~ot

Output power at dtot

= 10% and R L = 4

= 10% and

RL

Q

=2 Q

?:

Po
Po

6

W

8

W

Input voltage for Po = 5 W; RL = 4 Q
Po =5W;R L =2Q

Vi(rms)
Vi(rms)

20
15

mV
mV

Input impedance

zi

20

kQ

Collector quiescent current of output transistors
Collector current of BC328 1)
Total current consumption at Po = 6 W

IICG I

rnA
rnA

580

rnA

0, 1 to 12

kHz

-IC
l tot

Frequency response (-3 dB)
Total thermal resistance per output transistor

10
50

Rth j-a max. 26,5

°C/W

Stable continuous operation is ell-sured up to an ambient temperature of 60 °c
The amplifier is overdrive proof and short circuit proof,

1) Area of printed wiring copper around collector lead:::: 1 cm 2 .

May 1973

II

1

9

----

B0433; B0435;
. B0437

II

APPLICATION INFORMATION (continued)
iZ62653

60

BD433
BD434

7Z62655

15

II
f= 1 kHz

'IICQI
(rnA)

10

40

'I·

5

20
I'

·1/

\

.........

........

R=)Y L1I

typ
r-....

r-- ....

/

V

"'4

o

o
-25

--

o

10- 1

Po (W)

10

7Z62656

5

I I
I I
I I
I I
PO=0.5W

Po

Po
(dB)

o
L

"

/

/

V

""'"

.....
~

\
,

-5

-10
f (Hz)

10

10

II

II

May 1972

80433; 8D435;
80437

II
APPLICATION INFORMATION

(continued)

Basic circuit diagram of a 15 W high quality amplifier.
47k1l.
1-.....-

O,8A

=36 V
Vs unloaded =42

.....- -........- - - - -.....-+-+--<> Vs loaded

V

7Z62760

Typical performance:
Output power at dtot = 1 %

Po

Input voltage for Po = 10 W

?:

15

W

V i(rms)

360

mV

Input impedance

zi

100

kQ

Output impedance

Zo

0,15

IIcd

Q

10

rnA

Collector current of BD136

-IC

72

rnA

Collector current of BC149

IC

1,6

rnA

~otal

~ot

710

rnA

30 Hz to 30

kHz

Collector quiescent current of output transistors

current consumption at Po = 15 W

Frequency response (-3 dB)
Total thermal resistance per output transistor
Total' thermal resistance of the BD136

Rth j-a

max.

18

°C/W

Rth j-a

max.

44

°C/W

Stable, continuous operation is ensured up to an ambient temperature of 45 °C.

May 1973

II

11

80433;80435; II·
80437

II

APPLICAnON INFORMATION (continued)
7Z62742

,1

I

1111
t--f----

I

-f=1kHz
--- f = 12,5 kHz
-'-f=40Hz

!

II

0,75

j!
!I
I

I
0,5

I

lL

II

0,25

~

"

10- 1

-"- ~ ". f-

i-"

.

./

10

10 2

Po (W)

7262657

5

JLL

1
I

.J
I

1

_II
III
Po=6dBbelow 15W

o

~

.........

~

V'

"-

/

,

'\.

I{

-5

-10

10~

10

12

II

f (Hz)

II

May 1972

B0434; 80436;
B0438

II

SILICON EPITAXIAL-BASE POWER TRANSISTORS
P-N-P transistors in a SOT-32 plastic envelope, intended for use in complementary output stages of audio amplifiers up to ·15 W.
The complementary pairs are BD433/BD434, BD435/BD436 and BD437/BD438.
QUICK REFERENCE DATA
BD434 BD436 BD438
Collector-emitter voltage (-VBE

= 0)

max.

22

32

45

22

32

45

V

7

7

7

A

max.

36

36

36

W

hFE

>

50

50

40

fT

>

3

3

3

-VCES

Collector-emitter voltage (open base)

-VCEO max.

Collector current (peak value)

-I eM

max.

Total power dissipation up to T mb = 25 °e

Ptot

D. C. current gain
-IC = 2 A; -VCE

=1 V

Transition frequency
-Ie = 250 rnA; -VCE = 1 V

V

MHz

Dimensions in mm

MECHANICAL DATA
TO-126 (SOT-32)
Collector connected
to metal part of
mounting surface

,--7,8max--,

3,2
3,0

+

.rh.~
~

11,1

1

max

~_l

r

15,3
min

-.11 __
0,5

1

e c b 't"-------'7ZS9nlo.2
0,88--.11_,
,
max
~
1__

~

For mounting instructions see section Accessories, set 56333 for insulated mounting
and 56326 for non-insulated mounting.
.
1) Within this region the cross-section of the leads is uncontrolled.

February 1979

B0434;B0436;
B0438
RATINGS Limiting values in accordance withthe Absolute Maximum'System (lEC 134)
Voltages

BD434 BD436 BD438

Collector-base voltage (open emitter)

-V CBO

max.

22

32

45

V

= 0)

-V CES

max.

22

32

45

V

Collector-emitter voltage (open base)

-VCEO

max.

22

32

405

V

-VEBO

max.

5

5

5

V

Collector-emitter voltage (-VBE

Emitter-base voltage (open collector)
Currents
Collector current (d. c. )

-IC

max.

4

A

Collector current (peak value)

-rCM

max.

7

A

Base current (d. c.)

-IB

max.

1

A

max.

36

W

Power dissipation
Total power dissipation uptoT mb=25 0C

Ptot

Temperatures
• Storage temperature
Junction temperature

-65 to +150

T stg
Tj

max.

oC

150

°C

3,5

°C/W

100

°C/W

THERMAL RESISTANCE

--

From junction to mounting base

Rth j-mb

From junction to ambient in free air

Rth j-a

2 ,

II

-

II

August 1975

80434; 80436;
80438

II
CHARACfERISTICS

T j = 25°C unless otherwise specified

Collector cut-off current
IE = 0; -VCB

-VCBOmax

==

IE = 0; -VCB'= 10 V; Tj
IE = 0; -V CB

=

= 150 °C

-V CBOmax; T j

=

150 °C

-I CBO

<

-ICBO

<

-ICBO

<

-lEBO

<

100

jJA
rnA
rnA

3

Emitter cut-off current
IC

= 0;

- VEB

=5 V

Knee voltage

rnA
BD434 BD436 BD438

-IC = 2 A; -IB = value for which
- IC = 2,2 A at -V CE = 1 V

-VCEK

<

0,8

-VBE

typo

580

580

-V CE = 1 V

-VBE

<

1, 1

1,1

=1 V

-VBE

<

- Ie = 2 A; -I B = 0, 2 A

-VCEsat

<

-IC =3A; -IB=0,3A

-VCEsat

<

V

Base-emitter voltage 1)
-IC = 10 rnA; -VCE
- IC
-IC

=2 A;
= 3 A;

-V CE

=5 V

580

mV
V

1,3

V

Collector-emitter saturation voltage
0,5

0,5

V
0,7

V

D. C. current gain
hFE

>

~5

25

25

hFE

>
<

85
475

85
475

85
375

-IC = 2 A; -V CE = 1 V

hFE

>

SO

50

40

=1 V

hFE

>

fT

>

3

BD433/BD434 and BD435/BD436

hFE/hFE2 <

1,4

BD437/BD438

hPE I/hpE2 <

1,8

-IC = 10 rnA; -VCE = 5 V
-IC = 500 rnA; -VCE

- IC = 3 A; -V CE

=1 V

= 1 MHz
=1 V

30

Transition frequency at f
-IC

= 250 rnA;

-VCE

MHz

D. C. current g:ain ratio of the complementary pairs
IIc 1= 500 rnA; IVCEI

=1V

1) -VBE decreases by typo 2,3 mV 1°C with increasing temperature.

August 1975

II

3

80434; 80436;
80438

II
7Z62582

10

-ICMmax

0-0,01

1

I

\. \. \.
~\ \ \

1 - -III

-IC -ICmax
(A)

\

\\\ \

\~ \\

Illl .
second

~

1 1

?'f ms

_\ \

P
"~~\
tr naj

tPI:tt

\

\.

~

?'T

~ \ ~ iJ

breakdown 1)

1\

1

'-1-"1-1-_
1--

~

'\.

\

2-

\. 1.\

\\
~\ ~

5- t-r-

\ ~1O

I'd.c.

I
10- 1

Tmb:S250C
\Q

""'M"'
""'"'
~

10- 2
10

00

M

M

""'~"'

""'~"'
1-

-VCE (V)

Safe Operating ARefl: with the transistor forward biased
. I Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation

1) Independent of temperature.

4

Ii

II

August 1975

80434; 80436;
80438

II

7262659

10

Zth j-mb
(Oc/W)

~o

1

~ 0.75
~ - 0'.50'
~ 0'.33
~ ",0 .. 2,0,
r---r-- 0.10

r--

'- ... f-

~

~?,2,
10- 1
~ fOO.Ol

-:::;:..---

~ ~ :::F-'

~

_I"""

.....-:: ~;...

10- 2

JLJL
~j

tp

0=-

T

10- 3

--

7262581

--

S.B. voltage multiplying factor at the IC max level
MSB(I)

10 2

~ r-. ....r-.r-

0.02

10 _==::0.10

0=0.01

-~

-

-0.20
I

0.33
0.50
I

~

.....

-

r-

.... l"1li
I"""

I"""r--

1"-00

-I"r-

~

~

I

0.75
1
10- 6

10- 5

10- 4

",

May 1972

11

...

r--: F::::: ~

""-

-

I-

;:::~

r- :::r-.

~ b10- 3

.,..

II

10- 2

tp (s)

5

B0434; B0436;
B0438
80434; 80436
7Z62580

S.B. current multiplying factor at the VCEOmax level
MSB(V)

0.02 '" c5 =0.01

0.05
10

f---'-"

r- r--.

b.~J

1"-1"-

t'''

~"""" ~
i""'oo."

0.20

.....

"'
,N

........... .........

--

-6.33
0.50
0.75

r--..... ....... ~~
r-- I"'- I"""I"-~
~

--

r-

~

r---

1

----

10- 6

10- 5

10- 4 .

-

r--.:::::""" ~

10- 3

10- 2

tp (8)

80438
7162579

S.B. current multiplying factor at the V CEO max level
MSB(V)

0.05

bl.~o

10

0.20

-

l"'- i'- 0.0

r-. ... !'-

2 c5 =0.01

~
...........

III

-- -...
"""

. b.50
l

r-

0'.75

6

II

"--'

-r--....... '" to::::...... :-.,['11

0.33

I I
10- 5

~

I'..

10- 4

1"-1"-

~
r--- r-10- 3

II

tp (8)

10- 2

80434; 80436;
80438

II
7Z62654

6~~~~'~~~~~1~~lr~Z6~1~52~

1--I--+++-+-IH'tI-+--+-+-II\~ typo values IfT T· =25 0c I-

t--

r- -VCE = 1 V
-IC I-Tj = 250C
I--

- V CE sat

V

(rnA)

V

,

(V)

V

J

I--I-++I--+-If-+-+--+-+-+-+l--l,

I-

1

,

l\

ITI-+--+-+-+-+-I--I--+--I
4 1-I--+-JI.-+-+-+'\+-t-+-+---I-1
1
\

I

I

II

1\

I{

1\

\

,,

typ

1\
2 1--II-+-fH-+-++-fIH-+-++-+-4'f-I---I--I--I-H

J

1-+-+-+~~~I\~~~~I\--IC=4A

I

10

a

I

a

1

0.5

1'""11- f

1

a

1.5

50

- IB (rnA)

100

-VBE (V)

---

7Z62660

300

1

T
1

I

--

1

-VCE =1 V
Tj =25 °c

200

l,..o000o

~

.-""

typ

~

........
~

'"

~

""'
"'".""'""-

100

"

a
10- 2

May 1972

-IC (A)

II

10

7

II

80434; 80436;
8D438

II
7Z62663

30

, , ,,
f= 1 MHz

VeE =1 V
T j =25 °e

---

20
J.ooj..

I,..;

~

I..."...-'

"

typ

"

I"'

"' "'\.

~
~

'\
t\.

'\
\

10

\

\

o
10- 2

-Ie (A)

---

10

7Z62954

-

100

,
I\.

Ptot max
(%)

,
1\

I"

50

,

'" ,
I\.
1,\

1,\

100

,

T mb (Oe) 200

APPLICATION INFORMATION
For information on a 6 W car-radio amplifier and on a 15 W high quality amplifier see

B0433;B0435;B0437.

8

II

July 1972

_ _ _J

80645; 647
80649; 651

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlingtoncircuit for audio output stages and general
amplifier and switching applications; TO-220 plastic envelope. P-N-P complements are 8D646, 8D648,
8D650 and 8D652. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA
8D645

647

649

651

Collector-base voltage (open emitter)

VC80

max.

80

100

120

140 V

Collector-emitter voltage (open base)

VCEO

max.

60

80

100

120 V

--------~---~.

Collector current (peak value)

max.

12

Total power dissipation up to T mb == 25 °C

max.

62,5

W

Junction temperature

max.

150

°C

D.C. current gain:
IC=0,5A;VCE=3V
IC=3,OA;VCE=3V

typo

>

1500
750

Cut-off frequency: IC = 3 A; VCE = 3 V

typo

50

MECHANICAL DATA

A

kHz

Dimensions in mm

Fig. 1 TO-220AB.
Collector connected
to mounting base.

2,8

+
15,8

max

J

.-~r=;:::::;:~;:::111--+-

3,5 max

not tinned

5,1

max

~
1.1 --t
max--'

r

12,7

min

( 2x)

bee
~-------'

---.i

_1

-li:o,9max (3x)

2,54 2,54

--.

1__

0 ,6

-- 2,4
7265872.3

See also chapters Mounting Instructions and Accessories.

I

February 1979

80645; 647
80649; 651

l
'-------------------------------------------------------

CIRCUIT DIAGRAM

~------------~~~----+--c

b -+-.....---------1

I

Fig. 2
Rl typo
4 kn
R2 typo 100 n

! ________
R1
.
R2
L
_ .-.-1
7Z66445.2

e
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)

---

-

647

649

Collector-base voltage (open emitter)

VCBO

max.

80

100

120

140 V

VCEO

max.

60

80

100

120 V

Emitter-base voltage (open collector)

VEBO

max.

5

5

5

5 V

Collector current (d.c.)

IC

max.

8

A

Collector current (peak value)

ICM

max.

12

A

Base current (d.c.)

1

8

max.

150

max.

62,5

Storage temperature

Ptot
T stg

Junction temperature *

Tj

max.

THERMAL RESISTANCE

*

= 25 oC

oC

150

°C

,

From junction to mounting base

Rth j-mb

From junction to ambient in free air

Rth j-a

2

°C/W

70

°C/W

* Based on maximum average junction temperature in line with common industrial practice. The

February 1979

mA
W

-65 to + 150

resulting higher junction temperature of the output transistor part is taken into account.

2

651

Collector-emitter voltage (open base)

Total power dissipation up to T mb

~

B0645

r

80645;647
80649; 651

Silicon Darlington power transistors

CHARACTERISTICS
Tj

= 250C unless otherwise specified

Collector cut-off current
'E = 0; VCBO = VCEOmax
'B = 0; VCE = % VCEOmax
Emitter cut-off current
IC = 0; VEB = 5 V

'CEO

<
<
<

'EBO

<

D.C. current gain (note 1)
'c = 0,5 A; VCE = 3 V

'E = 0; VCB = % VCBOmax; Tj = 150 °C

'eBO
'CBO

0,2 mA

5 mA

2 mA
0,5 mA

hFE

typo

3A;VCE=3V

hFE

>

750

'C= 8 A; VCE = 3 V
Base-emitter voltage (notes 1 and 2)
'C = 3 A; V CE = 3 V

hFE

typo

500

IC =

1500

VBE

<

2,5 V

Collector-emitter saturation voltage (note 1)
I C = 3 A; I B = 12 mA

VCEsat

<

2 V

Collector capacitance at f = 1 MHz
'E = Ie = 0; VCB = 10 V

Cc

typo

75 pF

Cut-off frequency
IC = 3 A; VCE = 3 V

fhfe

typo

50 kHz

E(BR)

>

50 mJ

hFE1/hFE2

<

2,5

typo

50

Turn-off breakdown energy with inductive load
-IB6ff = 0; ICM = 4,5 A; tp = 1 ms;
T = 100 ms; see Fig. 4
D;C. current gain ratio of matched
complementary pairs
'C=3A;VCE=3V
Small signal current gain
'C=3A;VCE=3V;f= 1 MHz

I hfe I

~

--

Notes
1. Measured under pulse conditions: tp < 300 J).S, 8 < 2%.
2. VBE decreases by about 3,6 mV/oC with in"creasing temperature.

February 1979

3

80645; 647
80649; 651

l
'------------------------------------------------------

CHARACTERISTICS
Tj = 25 0e unless otherwise specified
Switching times (between 10% and 90% levels)
ICon = 3 A; IBon = -IBoft = 12 mA; Vce = 10 V
Turn-on time

typo

0,5 JlS

Turn-off time

typ.'

2,5 JlS

typo

1,2 V

VIM = 10 V
tr = tf = 15 ns
tp
= 10 Jls
T
= 500 JlS

R1
R2
R3

56 n
=410n
= 560 n

=

R4

3n

-VBB=

4V

V~:rLJL
___ 11 __

tp

I

--T-7Z78131

--

Fig. 3 Test circuit switching times.
Diode, forward voltage
IF = 3 A

vert.
oscilloscope

--

+
Vee

hor..
oscilloscope
1Z73863.1

Fig. 4 Test circuit for turn-off breakdown energy. V 1M = 12 V; RB = 270.Q; T = 100 ms; tp = 1 ms.

4

February 1979

r

8D645; 647
8D649; 651

Silicon Darlington power transistors

7Z82093

IC
(A)
<5 =

ICMmax

0,01

10

tp
ICmax

~

1",""-"'
~

~

"-

1Ir-~

~I'\.

100llS
IIII

~~
'\.
(1 )
~

~'

1 ms

(2)

d.c.

"" ~ ~J

I

10- 1

In

.".


750

Cut-off fr~uency:
-IC = 3 A; -VCE =3 V

fhfe

typo

100

MECHANICAL DATA

A

kHz

Dimensions in mm

Imo, .....

__ 45

Fig. 1 TO-220A~.

,--

Collector connected
to mounting base.

~

I-

min

-.

I"""

I
I

+_

t_It:;r=;:::::rIi::::;=;~ _ _

t
I

~~x

~I I --t
max'" ..

......

12,7
min

(2x)··

1

bee

--.i

1

+ m15ax,8

- j

I
J

3~max
not tinned

+
5,~

.1 i!:o,g max

•
(3x)

2,54 2,54

.1

1. - 0 ,6

.-24

?Z65872.3

See also chapters Mounting Instructions and Accessories.

February 1979

1

,------------------;

i
I

c

b~~~-~

I
I

I

Rl typo 4 kn
R2 typo 80

I'

I

n

L ___________ _ __ .J
R1

I

I

R2

7Z66446.2

e
Fig. 2 Darlington circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
BD646
Collector·base voltage (open emitter)

-VCBO

max.

60

. 652

648

650

80

.100

120 V

Collector·emitter voltage (open base)

-VCEO

max.

60

80

100

120 V

Emitter",base vO.ltage (open collector)

-VEBO

max.

5

5

5

5 V

Collector current (d.c.)

-IC

max ..

8

A

Collector current (peak value) .

-ICM

max.

12

A

Base current (d.c.)

-IB

max.

150

max.

62,5

Storage temperature

Ptot
T stg

-65 to + 150

°c

Junction temperature *

Tj

150

°c

From junction to mountirig base

Rth j·mb
Rth j-a

2
. 70

°C/W

From junction to ambient in free air

Total power dissipation up to

r mb = 25 oc

mA
W

THERMAL RESISTANCE *

Based on maximum average junction temperature in line with common. industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.

2
February

19791------"--'------(_ _ _ _ __

°C/W

8D646; 648
8D650; 652

Silicon Darlington power transistors

CHARACTERISTICS
Tj = 25 °C unless otherwise specified
Collector cut-off current
IE = 0; -VCB = -VCBOmax

-ICBO

<

0,2 mA

-ICBO

<

2 mA

-ICEO

<

0,5 mA

-lEBO

<

5 mA

B0646: -VCB = 40 V
I = o· B0648: -VCB = 50 V . T· = 150 0C
E
' B0650: -VCB = 60 V' J
B0652: -VCB = 70 V
'B = 0; -VCE = % VCEOmax
Emitter cut-off current
IC = 0; -VEB = 5 V
O.C. current gain (note 1)
-IC = 0,5 A; -VCE = 3 V
-IC=

3A;-VCE=3V

-IC=

8A;-VCE=3V

hFE

typo

hFE

>

750
500

1500

hFE

typo

Base-emitter voltage (notes 1 and 2)
-IC=3A;-VCE=3V

-VBE

<

2,5 V

Collector-emitter saturation voltage (note 1)
-I C = 3 A; -I B = 12 mA

-VCEsat

<

2 V

Cc

typo

75 pF

fhfe

typo

100 kHz

Ihfel

typo

150

max.

2,5

Collector capacitance at f = 1 MHz
'E= 'e,:,O;-VCB= 10V
Cut-off frequency
-IC = 3 A; -VCE = 3 V
Small-signal current gain
-IC=3A;-VCE=3V;f=1 MHz
O;C. current gain ratio of matched
complementary pairs
-IC = 3 A; -VCE = 3 V

hFE1/hFE2

-

Notes
1. Measured under pulse conditions: t < 300 J1.s, 8 < 2%.
2. -VBE decreases by about 3,6 mV/8C with increasing temperature.
February 1979

3

80646; 648
80650; 652

l·
'----------------------------------------------------

CHARACTERISTICS (continued)
Tj = 25 °e unless otherwise specified
Switching times (between 10% and 90% levels)
-leon = 3 A; -IBon = IBoff= 12 mA; Vee = -10 V
Turn-on time

typo

0,2

J,LS

Turn-off time

typo

1,5

·J,LS

. -VIM
tr = tf
tp
T

.Rl
R2

R3
R4=

= 10 V
= 15 ns
= 10 IlS
= 500 J,LS

Vee

= 56n
= 410 n
= 560 n

3n

V~1JL

4V

__1' __ tp

1

--T-7Z78131

Fig. 3 Test circuit.

-

Diode, forward voltage
IF = 3A

4

February 1979

typo

(

1,8 V

Silicon Darlington power transistors

------------------~--------------/

8D646; 648
8D650; 652

7Z724471

-IC
(A)

b =0,01

-ICMmax

r----~.r-

"'

10

"

ICmax

"

,

l"-

"(1 )"" l'"~"

tp_
III- ~ 100/1s

" 1,,\ ~~
t\.

"-

~ 1\

I

~

'
1 ms

l\

(2) 1\\1\

\ \

l\' ~

N1'0

--

II

d:c.

co
o::t
co
0
en

10- 2
1

10

Fig. 4 Safe Operating ARea. T mb = 25 °C.
I
II

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.

(1) Ptot max and Ppeak max lines.
(2) Second-breakdown limits (independent of temperature).

February 1979

5

80646; 648
80650; 652
7Z72451.2

-IC
(A)

[) =.P,Ol

-ICMmax

'-

10

, "'"

ICmax

~

(1 )"

I

'-

,
~

"\:

,
II

" '\

tp=
100J.ls

:'\ \\ ,
~~
'\~

-f'--f-

\i\'

(2)

\
~,\

,
\

-=
--

1\

\ 1 ms

10- 1
l\

5

M 10
, r1.c.
OOON

-=:t\.01l)
(0(0(0

.000

co co co

10- 2

1'111 I

1

10

Fig. 5 Safe Operating ARea. T mb = 25 °C
I
II

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.

(1) Ptot max and Ppeak max lines.
(2) Second-breakdown limits (independent of temperature).

6

February 1979

(

80646; 648
B0650; 652

Silicon Darlington power transistors

7Z672571

,

100

~

P tot max
(0/0)

\

75

,

~

_\

,

~

~

50

\

,

~

~

25

,

\.

I\,

a

\

a

50

Fig. 6.

---

7Z72445.2

3

JLIL
I

tp

_\tpl_

--Tc5

0=-

T

=,

2

'-"".

-0,7 ....

~6
, ....
~5
'-I-"

-

,'"

...-

,~

...-

-I-"

_10-

-,,-

~

.,...
.",.,.

./'

~

...... ,

....

~~
~

....

i-"

/.. r..-'"
V'

""
~

//

..,.,

-o,~ ~

1

1'-0" .. ~

..

,

~

V"./

.."
/I~

../' /
./

1-0,01

°

10- 5

tp (s)
Fig. 7 Pulse power rating chart.

'I (

10

February 1979

7

l~___

80646; 648
80650; 652

7Z67854 1

S.B. voltage multiplying factor at the ICmax level

,

10

-

5 = 0,01- 0,05
""X

-............ 10~

---- ~...."
1'00..

'-

......

~ i""'--o .......
~~
~IO,33.
....... r--,I"-"
~~ !III ....
1°,5_ r-075

--

r--~ I'-i- ~
I-~ l"-

:::::;::::... ~ ...

i- --.::::::::

1
10- 1

10

tp(ms)

Fig. 8.

B0646

-

7Z67855

S.B. current multiplying factor at the 60 V level

0=001 \.
0,02

10

----

\

I, ~\.

~ ........ ~

..2L

~

-

- --

","'

~~

...

0,2

0,33
0,5

1-00.

ro...

,

1" ...

"
'-"
r-.....' ~

- ....

- .. r-...:::: ~ ~ ~
....

0,75

1
10- 1

---------

February

~~
10

Fig. 9.

8

~

~ ==::~

I'--- .........

19791 ( .

tp (ms)

80646; 648
80650; 652

Silicon Darlington power transistors

BD648; BD650

7Z67856

S.B. current multiplying factor at the 100 V level

0,02

0=

"'" "-\,
---- "'"~~~
-"
0,01

0,05

..............

10 ~1

.....

-

0,2

0,33

i""'"

....... 1-0..

'"

~

~

I'

. . . r-.

~i"o
r"""1- r--~I'-

0,5

~

"~

~~

----

0,75
1
10- 1

~

..............

~~~

~'10

tp (ms)

Fig. 10.

BD652

7Z77026 1

S.B. current multiplying factor at the 120 V level

,
I

,,0,01

~2

"\.

"~
~

~

-

10 =0,1

~
~,5

1
10- 1

"...........

,
\

....
1'0

.............

- ---

r-

~

~,
.........

r-- .::::::
-. ~ ~~
I--

10

10 2

tp (ms)

10 3

Fig. 11.

I

February 1979

9

l

80646; 648
80650;652

._~____~__________________________
7Z67316

7Z77025

6

-IC / -IS

-VCE= 3V
Tj =2S0C

,

10

=

250

Tj=250C

- VCEsat

-I C

(V)

(A)

J

7,5

4

II
II
/

5

/

t yp/

1/

1/

1..;1

2
typ/

/
/

2,5

~

.~

J

L..oo

1/

... 1--1"""

""

J

-~

o

1

If
1,5

2 -VSE (V) 2,5

Fig. 12.

---

Fig. 13.
7Z724431

10 5

typo values
-VCE=3V

hFE

10 4

....
J,.o

00 V

/

~~

GY ~~o

_

~

'"

1\

.....

V

0

i\1\ ~ 1\
"

1\

<01\;)

/

./

./

"

/

/

"

-IC (A)·

Fig. 14.

10

Februarv 1979

~(

5

10

"-IC (A)

10

8D646; 648
8D650; 652

Silicon Darlington power transistors

7Z67332 2

IC 3A
VCE - 3 V

hfe

r-......
'\",
~

~yp

\

\

10

.

1
1

10
Fig. 15.

February 1979

11

jl

80675;677

________________________________ ', __8_0_6_7_9;_68_1_;6_8_3_

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial-base transistors in monolithic Darlington circuit for audio and video applications;
SOT·32 plastic envelope. P-N-P complements are B0676, B0678, B0680, B0682 and 80684.
QUICK REFERENCE DATA
B0675 677 679 681 683
Collector-base voltage (open emitter)

VCBO

max.

60

80 100 120 140 V

Collector-emitter voltage (open base)

VCEO

max.

45

60

Collector current (peak value)

ICM

max.

Total power dissipation
up to T mb = 25 °c

Ptot

Junction temperature

Tj

D.C. current gain
IC=0,5A;VCE=3V
IC= 1,5A;VCE=3V

hFE
hFE

>

Cut-off frequency
IC=1,5A;VCE=3V

fhfe

typo

80 100 120 V
6

A

max.

40

w

max.

150

°C

typo

1000
750
60

MECHANICAL DATA

kHz

Dimensions in mm

Fig. 1 TO-126 (SOT-32).

"1~7XI-

Collector connected to
mounting base.

I·

1-4-7,8maXl

-7h-~
~

+

3,2
3.0

+
+

[) () [)

--

~~~(1J

1_1,2

- r- r--t

11,1
max

i

~---1

15,3

min

e

..11.0,5

c

t

b ",' ------.--...

11... . "

0,88...
max

7ZS9324.2

:J 1.:~

(1) Within this region the cross-section of the leads is uncontrolled.
Accessories: 56326. (washer) or 56353 (clip) for direct mounting.
56333 (washer· + mica) or 56353 + 56354 (clip + mica) for insulated mounting.

February 1979

80675;617
80679;681;683
CIRCUIT DIAGRAM

~------~--~~-c
I

I,

b--l~~---I

I
!L._._._. __

I
I,

R1

Rl typo
3kO
R2 typo 1200

I

I

R2

.-'

1ZSSt.S.2

e
Fig. 2 Darlington circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BD675 677. 679 681 683

--

80, 100 120 140 V
60: 80 100 120 V

Collector-base voltage (open emitter)

VCBO

max.

60

Collector-emitter voltage (open base)

VCEO

max.

45

Emitter-base voltage (ope!1 collector)

VEBO

max.

5

Collector current (d.c.)

IC

max.

4

A

ICM

max.

6

A

IB

max.

100

mA

Ptot
T stg
Tj

max.

40
-65 to + 150

W
oC

150

oC

Collector current ("peak value)
Base current (d.c.)
Total power dissipation up to
Tmb= 25 0 C
Storage temperature
Junction temperature

max.

~

5

5

5 V

THERMAL RESISTANCE
From junction to mounting base
From junction to ambient in free air

2

February 1979

Rth j-mb
Rth'j-a

3,12

OC!W

100

oCIW

80675;677
80679;681;80683

Silicon Darlington power transistors

CHARACTERISTICS
Tj = 25 oC, unless otherwise specified; where IC = 1,5 A for BD675 read IC = 2 A.
Collector cut-off current
IE == 0; VCB = VCEOmax
IE = 0; VCB = % VCBOmax; T mb = 150 °C
'B = 0; VCE = % VCEOmax
Emitter cut-off current
IC == 0; VEB = 5 V

'CEO

<
<
<

0,5 mA
5 mA

'CBO
ICBO

'EBO

<

D.C. current gain (note 1)
IC = 0,5 A; V CE = 3 V

hFE

typo

IC=1,5A;VCE=3V

0,2 mA
2 mA

1000

hFE

>

750

4A;VCE=3V

hFE

typo

500

Base-emitter voltage (notes 1 and 2)
IC=1,5A;VCE=3V

VBE

<

2,5 V

Collector-emitter saturation voltage (note 1)
IC== 1,5A; IB=6mA

VCEsat

<

2,5 V

IC=

Small signal current gain
IC == 1,5 A; VCE == 3 V; f = 1 MHz

Ihfel

typo

50

Cut-off frequency
IC==1,5A;VCE=3V

fhfe

typo

60 kHz

Turn-off breakdown energy with inductive load
-IBoft = 0; ICM = 3,5 A;
. L = 5 mH; see Fig. 3

E(BR)

>

30 mJ

D.C. current gain ratio of matched
complementary pairs
le= 1,5 A; VCE =3V

hFE1/hFE2

<

2,5

Diode forward voltage
IF == 1,5 A

VF

typo

1,5 V

-----------

Notes
1. Measured under pulse conditions: t < 300 J.!S; 5 < 2%.
2. VBE decreases by about 3,6 mV
with increasing temperature.

lOt,

February 1979

3

80675;677
8.0679;681;683

,l-"
'----------------------------------------------------

CHARACTE RISTICS (continued)

vert.
oscilloscope

+
Vee

hor.
oscilloscope
7Z73B63,1

Fig. 3 Test circuit for turn-off breakdown energy. VIM

----

4

February 1979

f

= 12 V; RB =270.Q.

·80675;677
80679;681;683

Slicon Darlington power transistors

7272078.2

10 2

'c
(A)

10

0,01

[)

,

'CMmax

,\

\ \ 1\
I

"

/Cm~x

\

\

\

1\\

'(11'\1\\ 1\" 1\ I'

~~

1\

1\

(2)
..

I

t

P

=-

50J./s=
I'
1\

r=F

1\ 100

1\
~

1\ 500- r-r-

l\ 1 ms
~ 10 '
d.c.

80675
80677
80679
80681
80683

10- 2

I

1

I--

1-.....

I

10

VCE(V)

Fig. 4 Safe Operating ARea. T mb = 25 °C.
I
II

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.

(1) Ptot max line.
(2) Second-breakdown limits (independent of temperature).

February 1979

5

80675;677
80679;681;683
7Z67263.1

S.B. voltage ,multiplying factor at the ICmax level

MV

10

{) =0,01
0,02
0,05
V/
1/ / 0,1
/

I---. /

r---.::2 ~

- t-- t:=:: -..

~ ~ r-::::

~ ~~~

~ r--....

1-1- 1-102, I

--- --

0"

~

!::::;~

~

1

10- 5

10- 4

10-3

10- 2

tp (s)

Fig. 5 S.B. voltage multiplying factor at the ICmax level.
7Z67262.2

--

-

S.B. current multiplying factor at the VCEOmax levels

r-!.:0"Ol

O~

10

~l;s
-'
=0,1
I

f------0,2

"

~ ,~

--

...... .....
......

~~

~

...

-I-- I"-~

I

1=0-

~
~~

t"'~~ ~
--..........

~~~

0 ,5

--!1111 ~.~

~

r--

1
10- 5

10- 3

tp (s)

Fig. 6 S.B. current multiplying factor at the VCEOmax levels ..

6

FebrU.~19791-"---'-r__

80675;677
80679;681;683

Silicon Darlington power transistors

7Z82096

3

7Z82097

6

Ie

VCEsat
(VI

(AI

2

4
I
I
II

1".00"

tv!! ....

..

I
I

"

typ I

1".0001-'"

2

" .... ""

1
II
I
:I
J
II

o
o

o
2

4

Ie (AI

1,,11'

o
Fig. 8.

Fig. 7.

7Z67254

7Z67257~

,

100

2

VBE(VI

VCE=3V
typo values

\.

Ptot max
(0/0)

\

75

,

~

I\,
~

~

"

'~

50

V

\

~

\

\.

25

.......

". ...... 1-'"

~

,

""~

"'"

\.

~

~

Tj=
\150I I 0 C
" 100
25

-'

/

1\

"

"\

\.

o

o

\
50

IC (A)
Fig. 9.

10

Fig. 10.
February 1979

7

~_ _

80675;677
.80679;681;683

l_"

7Zn017

4

,
6=1

--

3
0,7

-","",I'""

,,-

y
~

--

h

~

1.00'''''

L
0,2
L.o

I--I-1-1I-- 1-1'""

r--- !--

I'-"'"

""'l-

~ ~""
Io-O,o~.. ~
10-'°,°11

'"

./: ~

~~

~

'-""'" ~ i""':~

'~ ~

V
I"

~

05

2

..

... ~

~ ~~
~

V

Io!"~

SLJL

~""

-t:l-J
T

llllll
llllll

°10- 5

t
/) =.J?
'T

1
1
tp(S)

10

. Fig. 11 Pulse power rating chart.

--

7Z82099

hfe

'""~ typ
,
\.

\

,
\.

10

I'
1
1

10
Fig. 12 Small signal current gain. I C = 1,5 A; V CE = 3 V.

8

February 1979

r

Jl

80676; 678
80680; 682; 684

---------------------

-------------------------------------------------------

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial-base transistors in monolithic Darlington circuit for audio and'video applications;
SOT-32 plastic envelope. N-P-N complements are BD675, BD677, BD679, BD681 and BD683.
QUICK REFERENCE DATA
BD676 678 680 682 684
Collector-base voltage (open emitter)

-VCBO

max.

45

60

80 100 120 V

Collector-emitter voltage (open basel

'-VCEO

max.

45

60

80 100 120 V

Collector-current (peak value)

-ICM

max.

6

A

Total power dissipation up to T mb = 25 0C

Ptot

max.

40

W

Junction temperature

Tj

,max.

150 '

oC

D.C. current gain
-IC = 0,5 A; -VCE = 3 V
-IC = 1,5 A; -VCE = 3 V

hFE
hFE

typo

Cut-off frequency
-IC = 1,5 A; -VCE = 3 V

fhfe

typo

1000
750

>

60

MECHANICAL DATA

kHz

Dimensions in mm

Fig. 1 TO-126 (SOT-32).
2,7 _
_1 max
1

Collector connected to
mounting base.

'+1
, 1--~~.~
7,8 max

3,2
3.0

~

+

[) 0 0

--

-

'--

~~~(1)

I----

t

11,1

I

max

'--rr-lIr-Tr-'_1

tI

I

1"12

15,3
min

e

-.11.0,5

-2.l

c· b'l"_

II ~

0,88___ '

,

max

I_

7ZS9324..2

~

(1) Within this region the cross-section of the leads is uncontrolled.
See also chapters Mounting Instructions and Accessories.

February 1979

8D676; 678
80680; 682; 684

l

....._ _ _- - - - - - - - - - - - -

r---------------·--;

.j

I
I

b-~~-__I

I

I

Rl typo 3 kn
R2 typo 80n

L _______
· _ __ .J
R1

I

R2

7Z66446.2

-

e
Fig. 2 Darlington circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BD676 678 680 682 684

--

Collector-base voltage (open emitter)

-VCBO

max.

45

60

80 100 120 V

Collector-emitter voltage (open base)

-VCEO

max.

45

60

Emitter-base voltage (open collector)

-VEBO

max.

5

5

80 100 120 V
5,V
5
5

Collector current (d.c.)

-IC

max.

4

A

Collector current (peak value)

-ICM

max.

6

A

Base current (d.c.)

-IB
Ptot

max.

100

max.

40

W

-65 to + 150

°C

150

°C

Total power dissipation up to T mb

= 25 °C

Storage temperature

Tstg

Junction temperature

Tj

max.

mA

THERMAL RESISTANCE

2

From junction to mounting base

Rth j-mb

From junction to ambient in free air

Rth j-a

February 1979

(

3,12

°C/W

100

°C/W

80676; 678
80680; 682; 684

Silicon Darlington power transistors

CHARACTE R ISTICS

Tj = 25 oC unless otherwise specified; where -IC = 1,5 A for BD676 read -IC = 2 A.
Collector cut-off current
IE = 0; -VCB = -VCBOmax

0,2 mA

-ICEO

<
<
<

-lEBO

<

5 mA

-ICBO

IE = 0; -VCB = -% VCBOmax; T mb = 150 oC
IB = 0; -VCE = -% VCEOmax
Emitter cut-off current
IC=0;-VEB=5V

-ICBO

2 mA
0,5 mA

D.C. current gain (note 1)
-IC = 0,5 A; -VCE = 3 V

hFE

typo

-IC= 1,5A;-VCE =3V

hFE

>

750

-IC=

hFE

typo

500

Base-emitter v.oltage (notes 1 and 2)
-IC = 1,5 A; -VCE = 3 V

-VBE

<

2,5 V

Collector-emitter saturation voltage (note 1)
-I C = 1,5 A; -I B = 6 mA

-VCEsat

<

2,5 V

4A;-VCE=3V

Small-signal current gain
-IC= 1,5A;-VCE=3V;f=1 MHz

1000

Ihfe I

typo

50

Cut-off frequency
-IC= 1,5A;-VCE=3V

fhfe

typo

60 kHz

D.C. current gain ratio of matched
complementary pairs
-IC = 1,5 A; -VCE = 3 V

hFE1/hFE2

<

2,5

Diode, forward voltage
IF = 1,5 A

VF

typo

1,5 V

-------

--

Notes
1. Measured under pulse conditions: t < 300 /lS, 1) < 2%.
2. VBE decreases by about 3,6 mV
with increasing temperature.

IOC

February 1979

3

80676; 678
80680; 682; 684
7Z72079.2

-I C
(A)
~

10

0,01

0

'CMmax
\. \

I

\

\
\
~\ \\

-ICmax

(1~

,

\\ r\" "

~~

1\

\

(2)

t

,

==

1\ 100

I

\

~

r\ 500- --

r\

......
==
-

=

P
50ps - ~.

~

10- 1

--

I

1 ms
10
d.c .

80676
·80678
80680
80682
8p6~4

10- 2
1

f-I'"

10-

f--

10

Fig. 3 Safe Operating ARea. T mb = 25 °C.
I
II

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.

(1) Ptot max line.
(2) Second-breakdown limits (independent of temperature).

4

February 1979

r

8D676; 678.
8D680; 682; 684

Silicon Darlington power transistors

7Z67263.1A

S.B. voltage multiplying factor at the -ICmax level

MV

10

6 =0,01
0,02
0,05
//
VV 0,1
//

!--- /

:---.:z ~
~ .,c ..;::::

---

,

::::: :::-r::::::~

r- ..

02-1--r- ..
'i

-1"'"-

0"

10- 5

~ ........
r----

---

.;::::: ~

10- 4

10-3

10- 2

tp (s)

Fig. 4 S.B. voltage multiplying factor at the -ICmax level.
7Z67262.2A

S.B. current multiplying factor at the

-vCEO max levels

---!..: 01'°1

r;::;....

~

'--"

~
10 ::::::: 0, OS
~0,1

-0,2

-

t'~
.......

!'"-..

:-.. "'~ ~~
~~
~r-.

I

"=--

0,5

~I"-

~ ..... ~ ~
...............

~~~

I""""l

=-~ i!!!!~

~ ::::::::-~

1

10- 5

tp (s)

10- 2

F,ig. 5 S.B. current multiplying factor at the -V CEOmax levels.

5

8D676; 678
8D680; 682; 684

Silicon Darlington power transistors

?lnG77

4

0=1
3

-

0,7

-0,2
I-

--

I-- _I-

o

........

05

2

I-I--

10- 5

I-"'"

~ ~-

~""

,...... io""""

-

.... ~

~

,

.",...,..

:::; .... ~

~~

-

~;

~ ~~

lh ~

...

, .... '"
. / .... "~

~ .... ~

~

V

JUL

. / ~ /~

-t'-J

~"

,,"O,O~ .......

T

~O,~

5=2.
t
T

II III
II III
10- 1

tp(S)

10

Fig. 10 Pulse power rating chart.
7Z82098

hfe

i"'I.

"""

,yp

"
,
\

,

10

"
1
1

10
Fig. 11 Small signal current gain. -IC = 1,5 A; -V CE = 3 V'.

February 1979

7

____J

B0933;935
B0937; 939
B0941

SILICON EPITAXIAL BASE POWER TRANSISTORS
N-P-N silicon transistors in a plastic envelope intended for use in output stages of audio and television
amplifier circuits where high peak powers can occur.
P-N-P complements are 80934; 936; 938; 940 and 942.

QUICK REFERENCE DATA
80933 935 937 939 941
Collector-base voltage
Collector-emitter voltage

VC80

max.

45

60 100 120 140 V

VCEO

max.

45

60

80 100 120 V

Collector current (d.c.)

Ie

max.

3

A

Total power dissipation up to T mb = 25 oC

Ptot

max.

30

W

Junction temperature

Tj

max.

150

°e

D.C. current gain
IC = 150 rnA; V CE = 2 V
IC= 1 A;VCE=2V

>

Transition frequency
IC = 250 mA; VCE = 10 V

>

40 to 250
25
3

MECHANICAL DATA

MHz

Dimensions in mm

Fig. 1 TO-220AB.
Collector connected
to mounting base.

--

__ 45

1'3~ ,--

max --

r:

+
5,9
min

t-

-

I
I
I

1

8
+ 15,
m ax

J

3,5

i

J

.-It:<~~~~
max
~~x

not tinned

~~I.I
max

--t

bee

-.i

12,7
min

I

(2x)

~li:-o,9max

+
(3x)

2,54 2,54

-,1'--24
--0,6
7Z65872.3

See also chapters Mounting instructions and Accessories.

I(

Mareh 1979

l

- 80933; 935
80937; 939
80941
RATINGS

limiting values in accordance with the Absolute Maximum System (lEC 134)
BD933 935 937 939 941
Collector-base voltage (open emitter)

VCBO

max.

45,

60 100 120 140 V

Collector-emitter voltage (open base)

VCEO

max.

45

60

Emitter-base voltage (open collector)

VEBO

max.

5

V

Collector current (d.c.)

IC

max.

3

A

Collector current (peak value)

ICM

max.

7

A

IB
Ptot
T stg

max.

0,5

A

max.

30

W

-65 to + 150

°c

Tj

max.

150

°c

Base current (d.c.)
Total power dissipation up to T mb= 25 oc
Storage temperature
- . Junction temperature

80 100 120 V

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

From junction to ambient in free air

Rth j-a

4,17

°C/W

70

°C/W

0,1

mA

3

mA

0,5

mA

CHARACTER ISTICS
Tj = 25 0c unless otherwise specified
Collector cut-off current
IE = 0; VCB = VCBOmax

--

=
---

--

IE = 0; VCE,= VCEOmax
Emitter cut-off current
IC = 0; VEB = 5 V

ICEO

<
<
<

lEBO

<

D.C. current gain *
IC = 150 mA; VCE = 2 V

hFE

ICBO

IE = 0; VCB = VCBOmax; Tj = 150 °c

ICBO

40 to 250

iC = 1 A; VCE = 2 V

hFE

>

25

Base-emitter voltage **
I C = 1 A; V CE = 2 V

VBE

<

1,3

V

Collector-emitter saturation voltage *'
IC= 1 A; IB=0,1 A

VCEsat

<

0,6

V

Transition frequency at f = 1 MHz
IC = 250 mA; VCE = 10 V

fT

>

3

Switching times
ICon = 1 A; IBon
turn-on time

= -IBoft = 0,1

Turn-off time

Ma~hlg791 (

MHz

A
ton

typo

toft

typo

* Measured under pulse conditions: tp ~ 300 J.l.S; ~'< 2%.
* * VB E decreases by about 2,3 m V 10C with increasing temperature.
2

mA

0,3

J.l.S
J.l.S

80933;.935
80937; 939
80941

Silicon epitaxial base power transistors

7Z77850 1

IC
(A)

10

ICMmax

fJ -0,01
,

r!".

ICmax

""-""

,

~

.....

II

I\.

"-' "I~" .\ 1'\
\ 1\
~\

I.....

r\

~

(2)

I

I'.

1\

1\

f\

~ t

\

~

1\

p-

r--r-

0,1 ms r-r0,5
1
10

---

d.c.

80933
80935
80937
80939
-80941

10- 2
1

II

-

~
~

II-

10

Fig. 2 Safe Operating ARea; T mb

I

~

i-

I-

VCE(V)

= 25 oC;

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.

(1) Ptot max and Ppeak max lines.
(2) Second breakdown limits, independent of temperature.

~ (M.~ 1979

3

---........

8D933;935
80937;93.9
80941
7Z82178

I

0=

10
./

.................

r--.... ......... /

,

~~

~

0,01
0,05
0,1

-- r'--::::

~ t-..
0,33
t-0,50

-

~ ....

r--.
to-

1"""1 ","""

r---"""

~~

""'~ ~~ ~
I""~

t:'- I"-

I-rr-----: r- t- 1-1r--- r-It:::--I--

1-...22.5
1
10- 1

~~

10

tp (ms)

Fig. 3 Second breakdown voltage ml\ltiplying factor at the ICmax level and second breakdown current
multiplying factor at the VCEOrnax I.evel.
7Z82150

6

. ..--0=1

.........

4 -0,75

--r

-~2

--

...

, ,

f-O..J,.

~
~

...

~

........:;

.,.

~

~

/'
./,

~

~

./

....

W

1//

r/

./

~

i""'"

~

;'

I-

0,2

I..-

.--I"'"

/

1.1

I

JLSL

I'

./
~

.-9,:l

f-

l/

- I t p ' - 'I

f-~","

o

-T-

I

10- 2

Ma~h

10

1979

j(

'Fig. 4 Pulse power rating chart.

tp

0=T

B0933;935
80937; 939

Silicon epitaxial base power transistors

80941
7Z82161

I'\
1\

\

VCEsat
(mV)

\

~

,

I'

\.

1\

~

\

~

,

,

\ \

\

\

\

\

"

i'.

......

"""~ ~I-o

~

Ie

" -

~

4A
3A
2A

1A
0,5A

10
1.

10

18 (mA)

Fig. 5 Typical collector-emitter saturation voltage as a function of base current with collector current
as·a parameter.
7Z82153

-

-

2

I
I

Ie

I
II

(AI

typ

1

II

II
j

I
I
1/
j

o

1/

o

0,5

1,5
VBE(V)

Fig. 6 Typical collector current as a function of base-emitter voltage.

I rMa~h1979

VeE = 2 V; Tj = 25 °e.
5

l,

8D933; 935
80937; 939
80941

'-----------------------------------------------7Z82166

---

~

I-"

,

...........

......

r--..,

"
,

"

'\

~

10

1
10- 2

----

,10- 1

10

IC(A)

Fig. 7 Typical static forward current transfer ratio as a function of the, collector current. V CE

Tj

6

= 25 °C.

Mareh 1979

, .

~

r

= 2 V;

____~J

B0934;936
B0938;940
B0942

SILICON EPITAXIAL BASE POWER TRANSISTORS
P-N-P silicon transistors in a plastic envelope intended for use in output stages of audio and television
amplifier circuits where high peak powers can occur.
N-P-N complements are BD933; 935; 937; 939 and 941.

QUICK REFERENCE DATA
BD934 936 938 940 942
Collector-base voltage

-VCBO

max.

45

60 100 120 140 V

Collector-emitter voltage

-VCEO

max.

45

60

Collector current (d.c.)

-IC
Ptot ·

max.

3

A

Total power dissipation up to T mb = 25- o C

max.

30

W

Junction temperature

Tj

max.

150

°C

D.C. current gain
-IC = 150 mA; ~VCE = 2 V
-IC = 1 A; -VCE = 2 V

>

Transition frequency
-IC = 250 mA; -VCE

>

= 10 V

80 100 120 V

40 to 250
25
3

MECHANICAL DATA

MHz

Dimensions in mm

----

Fig. 1· TO-220AB.
Collector connected
to mounting base.

__ 45

I~-.

1,3--

-

I
I
I

-

5,9
min

j

J

•
3,5 max

1l::;=;::::::;t:::;:::;:::Y~
5,1

r

--t

12.,7

not tinned

+1,3 .

max

I

max"
(2x)

bee

...i

""i:-

1

8
+ 15,
max

---

min

l
0,9max (3x)

2,542,54

...1,... 0,6
-24
7Z65872.3

See also chapters Mounting instructions and Accessories.

I(

Maroh 1979

l

80934;936
80938;940
80942
RATINGS

Limiting values in accordance with the Absolute Maximum System (I EC 134)
BD934 936 938 940 942
Collector-base voltage (~pen emitter)

-VCBO

max.

45

60 100 120 140 V

Collector-emitter voltage (open base)

-VCEO

max.

45

60

E~itter-base

voltage (open collector)

80 100 120 V

-VEBO

max.

5

V

Collector current (d.c.) .

-IC

max.

3

A

Collector current (peak value)

.,-ICM

max.

7

A

Base current (d.c.)

-IB

max.

0,5

A

. PtotT stg

max.

30

W

-65 to + 150

°C

150

°C

Total power dissipation up to T mb = 25 oC
Storage temperature
--+ Junction temperature

Tj

max.

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

From junction to ambient in free air

Rth j-a

4,17

°C/W

70

°C/W

CHARACTERISTICS
Tj = 25 °C unless otherwise specified
Collector cut-off current
-IE = 0; -VCB = -VCBOmax

--

-=
~
~

-IE = 0; -VCB = -VCBOmax; Tj = 150 °C
IB = 0; -VCE = -VCEOmax
Emitter cut-off current
IC = 0; -VEB = 5 V
D.C. current gain (note 1)
-IC = 150 rnA; -VCE = 2 V

-ICEO

<
<
<

-lEBO

<

-ICBO
-ICBO

0,1

rnA

3

rnA

0,5

rnA
rnA

40 to 250

hFE
hFE

>

25

Base-emitter voltage (notes 1 and 2)
-IC=1A;-VCE=2V

-VBE

<

1,3

V

Collector-emitter saturation voltage (note 1)
-IC = 1 A; -IB =0,1 A

-VCEsat

.<

0,6

V

Transition frequency at f = 1 MHz
-IC = 250 mA;-VCE = 10 V

·fT

>

3

Switching times
-ICon 1 A; -IBon = IBoff = 0,1 A
turn-on time

ton

typo

0,3

IJS

toff

typo

0,7

Jl.S

-IC = 1 A; -VCE = 2 V

=

turn-off time

Notes
1. Measured under pulse conditions: tp ~ 300 IJS; 6 < 2%.
2. -VBE decreases by about 2,3 mV/oC with incre~sing temperature.
2

1979
Mareh

1r

MHz

80934;936
80938;940
80942

Silicon epitaxial base power transistors

7Z77851 1

-IC
(A)

10

5 =0,01
,

ICMmax r-'

"' ""'

-I Cmax

,

,

"-

!'..

I\..

,",," '\

n

~~ \
~
\

I'

'\

\.

1\

.~

(2)

I

\.

1\
1\

~

\ tp=
0,1 ms

~

1\

10- 1

-r--I-

0,5
1
10

---==

d.c.

B0934
B0936
B093B
B0940
B0942

10- 2
1

----

,.,.-

f-

10

Fig.2 Safe Operating ARea; T mb = 25 °C.
I
II

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.

(1) Ptot max and Ppeak max lines.
(2) Second breakdown limits independent of temperature.

3

80934;936
80938;-940
80942

l " , - - - - ._ _ _ _
7Z82178

b=

10

0,01
.........
0.05
~."""/ ~ 0.1
~

,

./

~

-

,

........

-......;;..

""-

0.33

~ ~ .....

........ r--

....:: ...

--0.50

~

-

~

... ~
~ :::"""'--

"'1-0

--...; ~

r--- i"':-- r-

......

-~ ~I- ~
-~

10

tp (ms)

Fig. 3 Second breakdown voltage multiplying factor at the ICmax level and second breakdown current
mUltiplying .factor at the V CEOmax-level.
7Z82150

6
\

r-b=l

...

4 ~0.75

---r

r-:.~~

...

10--"'"

~

~

./
~

I--"'"

~

~~

10"

./
l.,;

I
r-O~

-

V

~

~

J

~

".

U

"

If/

r/

~

2 I'"

~

I

r- 0.2

L..o

--r
~

"
./

1.1

JL.JL
I

./ i

,

~

./

-Itpl-

t-~,...

o

--T-

I

10- 2

10
Fig. 4 Pulse power rating chart.

4

Mareh 1979

~(

10

3

tp
b=-

T

.4

tp (ms) 10

80934;936
80938; 940
80942

Silicon epitaxial base power transistors

7Z82l62

, ,
~

-VCEsat
(mV)

1

\

_\

\

\

\

\

"

.......

.......

~

i\ \
""'"

"-

'\..

\

,
IC4A
~

.....

3A
2A

~

lA

r-.. ... ~

0,5A

10
10

1

Fig. 5 Typical collector-emitter saturation voltage as a function of base current with collector current
as· a parameter.
7Z82l S4

2

I
I
1
I

-IC
(A)

I

I

typ

I
II
f

I

I
I

o

'/

o

0,5

1

1,5
-VSE(V)
Fig. 6 Typical collector current as a function of base-emitter voltage. -VCE

= 2 V; Tj = 25 °G·

~{

Mareh 1 9 7 9 5

--

l

80934;·936
80938; 940
80942

'-----------------------------------------------7Z82165

typ
roo.

"'

"\

10

1
10- 2

10

-IC(A)

Fig. 7 Typical static forward current transfer ratio as a function of the collector current. -V CE
Tj~250C.

6

.

Marm 1979

I(

= 2 V;

____J

B0943
B0945·
B0947

SILICON EPITAXIAL BASE POWER TRANSISTORS
N-P-N silicon transistors in a plastic envelope intended for use in audio output stages and general
purpose amplifier applications. P-N-P complements are BD944; 946 and 948.
QUICK REFERENCE DATA

Collector-base voltage (open emitter)
Collector-emitter voltage (open base)

BD943

945

VCBO

max.

22

32

947
45 V

22

32

45 V

VCEO

max.

Collector current (d.c.)

IC

max.

5

A

Total power dissipation up to T mb = 25 °C

Ptot

max.

40

W

Junction temperature

Tj

max.

150

°C

D.C. current gain
IC= 10mA;VCE=5V

hFE

>

= 500 mA; VCE = 1 V
IC = 2 A; VCE = 1 V
IC

25
85 to 475

hFE

Transition frequency at f = 1 MHz
IC = 250 mA; VCE = 1 V

hFE

>

fT

>

I

50

50

40

3

MECHANICAL DATA

MHz

Dimensions in mm

Fig. 1 TO-220AB.

.... 45

1,3~ ,--

max --

Collector connected
to mounting base.

-

+
5,9
min

r

•

I
I
I

1

15,8
m ax

J

J

I

LICr=i:::::;fi:::~---L3,5 max
not tinned

5,1
max

I _,'. --t

+1,3 max""

12,7
min

(2x)

,

bee

-.i

"'i:-

o,9max

+
(3x)

2,542,54

..\, .... 0,6

.... 24
7Z65872.3

See also chapters Mounting instructions and Accessories.

I(

Mireh1979

--

Notes
1. Measured under. pulse conditions; t .~ 300 IlS; 6 < 2%.
2. VSE decreases by about 2,3 mV/O~ with increasing temperature.
2

80943
80945
8D947

Silicon epitaxial base power transistors

B0943
Knee voltage *
IC = 2 A; 'B value for which
'C = 2,2 A and VCE = 1 V

VCEK

<

0,8

Transition frequency af f = 1 MHz
'C = 250 rnA; VCE = 1 V

t,-

>

3

945

947

3

V

3 MHz

7Z67257~

100
Ptot max
(0/0 )

75

~

~

\

,

~

I\,

,

\.

I\.

50

\
\

,
\.

25

,

\.

I\,

\
50

Fig. 2 Power derating curve.

* Measured under pulse conditions; tp .;;;; 300 JlS; ~

< 2%.
March 1979

3

l_______

80943
60945
80947

7Z77801 :1

'c
(A)

10 - 'CMmax

6 - 0,01
\.

'Cmax

, ,\

I\,

\.

\.

\.

\.

\ \
'" \\"

I I

(1 )

I

\

\\ 1\
t\ \

,

tp= _

0,1 ms

' 0,2

(2')\

--

1 -

'\.

~

-

J

I

\.
\.

I
10
\ d.c.

\'

10- 1

10

1

It)

e'?
.;t-

.;t-

O)

0)

0

0

a::l

a::l

".;t-

0)

0
a::l

VCE(V)

Fig. 3 Safe Operating ARea, T mb = 25 0C.
I
II

Region ol permissible d.c. operation.
Permissible ext~nsion for repetitive pulse operation.

(1) Ptot max and Ppeak max lines.
(2) Second-breakdown limits (independent of temperature).

4

Ma~1979l(

80943
80945
8D947

Silicon epitaxial base power transistors

7Z82140

4

thj-mb

)C/W)

r<5=l
~,

3

.--- ~-

I·

~

_I

I-

0,5

I

r

_

--

---

0,31_

".

0,2

-I-'-

---

0,1

=40

V

,

V

.....

.,
".....

~

i-"'" ~ ~
~
V ~I"

".~'"

"

~~

0

y~

V

"'~

..,;v~

~/~

"".",

~""'

"/

~/

~ ~io"

...... -I-

r- 0,75

2

~
.......

io"

"""

JLJL
I

tp

-Itpl-

-~~

--T-

-"1

8=T

10- 5
Fig. 4 Pulse power rating chart.
7Z82145

MV

<5=

~
10

~,05
~

~

-

0,1

~

........ ""'"
.........
..........

,

~

~

I. . . . . . .

"' .....

-- -...... r-.;

I"-

0,5

....
:::

.~

... ~ ~

----r--.:

L" ~ ;:::

,

r-.;

~t--r-

1

10- 5

10- 4

r--10- 3

...,
tp (s)

10- 2

Fig. 5 S.B. vol~age multiplying factor at the 'Cmax level.

~------------------~
March 1979

5

l___________- -

8D943
80945
. 80947

7Z82147

/)=

~r-- ..........
0,1

10
I-

0,01

,

r--.. .........

- .....

0,2

-

--

......

~
I'-...

--

"" ........" '"
~.

i"'...
..........
.....~

f"".....

------

0,5

~

......
["...

,

i'"" .
--.... ......
......
r-.~

-

r...~ r-. ~

~

r-- I-o~ ~r--- ~ :::::= ~ ~

1

10- 5

---.......

;0- 3

10"-4

----

~

~- -~~'

tp (5)

Fig. 6 S.B. current multiplying factor at the VCEOmax level for B0943 and B0945.
7Z82146

-

b=

~ i""--:

10

0,1

0,01

-- '
r-

.... ......

r--_

~
"'"""!o..

I000o.

'. r-O,2

........
-...... "-'", '" ......

f"""...........

"

--- -

~ ...... ~

r-- r--

0,5

1

10- 5

r
1

10- 4

.......

~~ ~~.
r-.
i'r-. ~~
r-~

r-...r-,

r--::: ::::::: ~
~

~ ::::--

tp (s)

Fig. 7 S.B. current mUltiplying factor at the VCEOmaxlevel fOrB0947.

6,

, Maroh 1979

.... "'r::~

80943
80945
80947

Silicon epitaxial base power transistors

1Z82138

----

~

-

-~

~
"-

'\

10
10- 2

10- 1

Fig. 8 Typical d.c. current gain at VCE

10

IC(A)

--

= 1 V; Tj = 25°C.

Ir

Ma~

1979

7

_____J

80944
80946
B0948

SILICON EPITAXIAL BASE POWER TRANSISTORS
P-N-P silicon transistors in a plastic envelope intended for use in audio output stages and general
purpose amplifiers. N-P-N complements are BD943; 945 and 947.
QUICK REFERENCE DATA
BD944

946

948

Collector-base voltage (open emitter)

-VCBO

max.

22

32

45 V

Collector-emitter voltage (open base)

-VCEO

max.

22

32

45 V

Collector current (d.c.)

-IC

max.

5

A

Total power dissipation up to Tmb = 25 °C

max.

40

W

Junction temperature

Ptot
T·"

max.

150

oC

D.C. current gain
-IC= 10mA;-VCE=5V

hFE

>

J

hFE

-IC=

hFE

>

fT

>

2A;-VCE = 1 V

Transition frequency at f = 1 MHz
-IC = 250 mA; -VCE = 1 V

25
85 to 475

-IC = 500 mA; -VCE = 1 V

I

50

50

I

40

3

MECHANICAL DATA

MHz

Dimensions in mm

Fi"g. 1 TO-220AB.

__ 45

I~:

Collector connected
to mounting base.

r:

5,9

I-

-

I
I
I

.-IC.j~~~--+~~x

not tinned

~~I.I
max

--t

1

,8
+ 15
max

.....

12,7

min

1

(2x)

bee

-.i ...

t
I

min

- j

J

3,5 max

-,

li:o,9mox

(3x)

2,54 2,54

-1

1 0
.... ,6
.... 24

7Z65872,3

See also chapters Mounting instructions and Accessories.

If~reh

1979

--

80944,
130946

80948

L

RATINGS
Limiting values in accordance with the Absolute Maxin1um:,~ystem (I EC 134)
B0944

946

948

Collector-base voltage (open emitter) ,

-VCBO

max.

22

32

45 \I

Collector-emitter voltage (open base)

-VCEO

max.

22

32

45 V

Emitter-base voltage (open collector)

-VEBO
-IC

max.

5

V

Collector current (d.c.)

max.

5

A

Collector current (peak value)

-ICM

max.

8

A

Base current (d.c.)

-IB

max.

Total power dissipation up to T mb = 25 0c

max.

40

W

Storage temperature

Ptot
Tstg

-65 to +150

°c

Junction temperature

Tj

max.

150

°e

A

THERMAL RESISTANCE
From junction to mounting base

3,12

Rth j-mb

From junction to ambient (in free air)

°C/W
oCIW

70

Rth j-a

CHARACTERISTICS
Ti, =25' °c unless otherwise specified
Collector cut-oft current
IE = 0; -VCB = -VCBOmax

-...."""""-

--

<
<

0,1

mA

-ICBO

3

mA

-ICEO

<

0,5

mA

...;.IEBO

<

hFE

>

-ICBO

IE =,0; -VCB = -VCBOmax; Tj = 150 °c
IB = 0; -Vee = 15 V; B0944
-VCE = 20 V; B0946
-VCE = 25 V; B0948
Emitter cut-off current
-Ie = 0; -VEB = 5 V
D.C. current gain (note 1)
-IC= 10 mA; -VCE =5 V

)

-Ie = 500 mA; -VCE = 1 V

hFE

-IC = 2 A; -VCE = 1 V

hFE

-IC=3A;-VCE = 1 V

hFE

Base-emitter voltage (notes 1 and 2)
-IC = 2 A;-VCE = 1 V
-IC=3A;-VCE= 1 V
Collector-em itter saturation voltage (note 1)
-IC = 2 A; -IB = 0,2 A
-IC=3A;-IB=0,3V

'-VBE.
-VBE
-VCE'sat
-VCEsat

25
85 to 475

>
>

50

<
<

1,1

<
<

0,5

"
Notes
1. Measured under pulse conditions; tp ~ 300 p.s; ~ < 2%'.
.
2. VBE decreases by about 2,3 mV10C with increasing tem'p~rature..

2

mA

50

40
30

1,1

-

V

1,3 V
0,5

- V
0,7 V

8D944
80946
80948

Siiicon epitaxial base power transistors

80944

~nee

voltage *
-IC = 2 A; -18 = value for which
-IC = 2,2 A and .... VCE = 1 V

Transition frequency at f = 1 MHz
:-IC = 250 rnA; -VCE = 1 V

-VCEK

<

0,8

tr

>

3

946

948
-

3

V

3 MHz

7Z67257.1

100
P tot max
(%)

75

,
\.
\
~

I\,

,

\.

~

50

\

--

,

~

\.

25

\

,
\.
\

50

Fig. 2 Power derating curve.

* Measured under pulse conditions; tp:E;;; 300 IlS; ~ < 2%.
3

80944
8D946
80948

l"'----__- 7Z77802 1

-IC
(A)

10

5 = 9,01

-ICMmax
I

I\,

\.

-ICm~x

\.

\

(1 )

\

,

\.

\

\.

tp=
"~ 0,1
ms
I

1,\\11

\

I

\\ 1\
(i\ 1\
l\

I

---

0,2

"\.'\.

--

co

~
~

~

en

en

Ol

Ol

0

10

0

I

1 r-rI

\.

I

~
~

d
10
, d.c.

00
~

en

0

Ol

-VCE(V)

Fig. 3 .Safe Operating ARea, T mb = 25 °C.
I
II

Region of permissible d.c operation.
Permissible extension for repetitive pulse operation.

(1) Ptot max and Ppeak max lines.
,
(2) Second-breakdown limits (independent of temperature).

4

Mareh 1979

~

r

80944
80946
80948

Silicon epitaxial base power transistors

7Z82140

4
~thj-mb

[oC/W)

- 8- 1

3

"..,. ~
"
~

J

0,5

l/
"",,"

I

- 0,33 I-~

°

V

---I"""
~I"""

_ 0,2

1..--

0,1

~ ~-

=fo
- I

-~..... ~

....-

1/ .....

~

'"/ ' ~
~~
h'f'
~

~~

..... V"~

VL~

.....

JUL
-Itpl- I

:.,... ...

"..... ~

_I--'"'"

10- 6

..

.... 10"

.... "'"

"/

~ 1"""",

!,...0- f-'-

-0,75

2 -

r / ' l "'"

-"'" ~-

I

tp
8=-

T

--T-

10- 3

10- 5

10-

1

t

p

(5)

Fig. 4 .Pulse power rating chart.
7Z82145

MV

8=

~

10

-.,£,05

-

;:;::- 0,1

~
0,5

1

10- 5

~
1"00.

........

~

....
.........

.......

.....

r-..... ~................. , ....
-r-- r-

--

:--

..

~

... ~ ~

---

10- 4

~ ~ t:- ....
~ -...;

-tp (5)

10- 2

Fig. 5 S.B. voltage multiplying factor at the -ICmax level.
March 1979

5

80944
,80946
'80948
7Z82147

6=

~ r-0,1

~

0,2

~

-"

10

0,01

......

I'

,~

r--r-. ...

......

r-~

"""

"

.......
.............

'"
""-".......!iIII..
f"-...

-r-~

-............. r---....

0,5

""III",

i ' i't'.
I'- r-.t' r-r'"
r-- i"'o~
~

""

-r- 1-1-1-

~
I~

~~ ~
r--:- r0t--

Ii:::!

~

~r-

tp (5)
, Fig. 6 S.B. current mUltiplying factorafthe -VCEOmax level for B0944/946.

=
--

--

7Z82146

5=

~~
10

0,1

0,01

r-. r-.. .........

.......

~
~

1'"'"00 ...

~

, '-0,2

0,5

~
~

-...... ,r..... ......"- ....
~,
---. r-- ~
.... f ' ;;:::~~
.:"o!.

--

~r-.

!"-

.... ~

~

r-~ ~ ~ ;;:: r--"",
r-F=I=~

1
, 10- 5

tp (5)
Fig. 7 S.B. current multiplying factor at the ,,;,VCEOmax level for B09'48.

6

~~h19791(

80944
80946
80948

Silicon epitaxial base power transistors

7Z82139

typ

,.......

r-t-- tool-

'"

10
10- 2

"-

"

,

~

,

~

10

-'CiA)

Fig. 8 Typical d.c. current gain at -VCE = 1 V; Tj

=25 oc.

--

I(

Mareh

19~

7

I

I

I

~

~--j

B0949; 951
B0953;955

SILICON EPITAXIAL BASE POWER TRANSISTORS

N-P-N transistors in a plastic TO-220 envelope. With their p-n-p,complements BD95O; 952; 954 and
956 they are intended for use in a wide range of power amplifiers and for switching applications.
QUICK REFERENCE DATA
BD949 BD951
Collector-base voltage (open emitter)
Collector-emitter voltage (open base) .

BD953 BD955

VCBO

max.

60

80

100

120 V

VCEO

max.

60

80

100

120 V

Collector current (d.c.)

Ie

max.

5

Collector currenr (peak value)

ICM

max.

8

A

Total power dissipation up to T mb = 25 oC

Ptot

max.

40

W

Junction temperaturp

Tj

max.

150

°C

D.C. current gain
IC = 0,5 A; V CE = 4 V
IC=2A;VCE=4V

hFE
hFE

>
>

A

40
20

MECHANICAL DATA
Fig. 1 TO-220AB.

Dimensions in mm

45

max ~

Collector connected to
mounting base.

'.3~ I2,8

+

;

f
5,9

t-

I
I

-

min

I

I
J

'-Lt:;;:::::;:::::::;Ii::i=~

3,5 max
not tinned

-+

1

B
+ 15,
m ax

-I'

~~x-(2x)

bee

See also chapters
Mounting instructions
and Accessories.

___I ~li:o,9max (3x)
2,542,54

--

,,1.-24

1. - 0,6

7265872.3

February 1979

----

80949;951
80953;955
RATINGS

l

Limiting values in accordance with the Absolute Maximum System (lEC 134)
BD949 951

953

955

VCBO

max.

60

80

100

120 V

Collector-emitter voltage (open base)

VCEO

max.

60

80

100

120 V

Emitter-base voltage (open collector) •

VEBO

max.

5

V

Colle,9tor current (d.c.)

IC

max.

5

A

ICM
Ptot
T stg

max.

8

A

max.

40

W

Tj

max.

. Collector-base voltage (open emitter)

Collector current (peak value)
Total power dissipation up toTmb = 25 oC
Storage temperature
Junction temperature

-65 to 150

oC

150

oC

THERMAL RESISTANCE
from junction to mounting base

Rthj-mb

from junction to ambient (in free air)

Rthj-a

3,12
70

oCIW
oCIW

CHARACTERISTICS
Tj = 25 °C unless otherwise specified

-------

Collector cut-off current
IE = 0; VCB = VCBO max
IE = 0; VCB = % VCBO max; Tj = 150 oC
IB = 0; VCE = % VCEO max

ICBO
ICBO
ICEO

<
<
<

Emitter cut-off current
IC=0;VEB=5V

lEBO

<

D.C. current gain (note 1)
IC = 0,5 A; V CE =4 V
IC = 2 A; VCE = 4 V

hFE
hFE

>
>

40
20

Base-emitter voltage (notes 1 and 2)
IC= 2 A; VCE = 4 V

VBE

<

1,4

ColleCtor-emitter saturation voltage (note 1)
IC == 2 A; IB = 0,2 A

VCEsat

<

Transition frequency at f = 1 MHz
IC = 0,5 A; VCE =4 V

for

>

.'
(1) Measured under pulse conditions: t EO; 300 #lS, ~ < 2%.
(2) VEB decreases by about 2,3 mV
with increasing temperature.

/0'8

2

0,1
2
0,5

mA
mA
mA
mA

V
V

3

MHz

8D949; 951
8D953;955

Silicon epitaxial base power transistors

CHARACTERISTICS (continued)
Switching times
(between 10% and 90% levels)
leon = 1 A; IBon == -IBoff = 0,1 A
Turn-on time
Turn-off time

90

---

is (Ofo )

10

---

90

---

ton
toff

.,

7Z77499.A

L1-I~'
------

Icon

-

.~

ic

o

0,3 p.s
1,5 p.s

ISon

(Ofo)

10

typo
typo

- - - --

-....:-- )) ------- 1-ton

-t-

-tf

t

-=....==

t off

"""""

Fig. 2 Switching times waveforms.

Vee

= 30 V
VIM
Vee == 20 V
VBB =-3,5 V
R1
82
R2
150
R3
39
R4
.20
tr = tf os:;; 15 ns
10 p.s
= 500 p.s

n
n
n
n

1>

Fig. 3 Switching times test circuit.

February 197~

3

l

80949; 951
80953; 955

.'-_ _ _ _ _ _~

10 F 'CMmax

r-

I.Cmax

r-,...I""" '

=0,01
.
,

,

7Z77852 1

I"-

'" " "
,'"

'"

IC

~" l'\. II
(1~ "\ ~

(A)

____- - - - - - - -

~
.~

tp=

~ "\ l\
~

1

~ I--t-

" 0,1 ms

I\r\

0,2
I\,

(2) ,

,

I

~ 1

10

10- 1
d.c.

=

1-1---

-V 80949tV

t;

80951t80953
80955 t-

II

10- 3

1

10

VCE(V)

Fig. 4 Safe Operating ARea; T mb ~ 25 0C.

I
II

Region of permissible/d.c. operation.
Permissible extension for repetitive pulse operation.

(1) Ptotmax and Ppeak max lines.
(2) Second-breakdown limit (independent of temperature).

4

February 1979

r

80949; _951
80953;955

Silicon epitaxial base power transistors

7Z672571 '

100
P tot max

,
\.

(%)

\

,

~

75

\.

,

I\.

~

50

~

,

~

I\,

25

,

l\.

~

50

100

"

150

T mb(OC)

Fig. 5 Power derating curve.
7Z82140

4

I- 15

=1

3

0,33

~

I-

--

0,2
0,1

...

,--

~

........"","

,,/

... ~

~..... ~

io"

~

~~

L-- I-~

~ I-"

"/

~

~

V, ~~
lh'"
V

,,~

~

V',/'f'"
V'

~

V"

~tp
I

;-Itpl- --T-

I.- "",I-

10- 5

~
.......

~V~

...... 1--"'"
~

~O

I
10- 6

...

",......-

0,5

I

°

......... ~

,I

2 -

~

"",'"'

- 0,75

I-

....... ...... ~

-

,I

10- 3

10-

1

~=-

T

tp (5)

Fig. 6 Pulse power rating chart.

February 1979

5

l""----_ __ _

80949;, ,951
80953; "9.55

7Z82147

10 2

/)=

~ r-f-O,2

I'

r-..

--

0,1

10

0,01

""""

t"'-or--

i""'t""

~:
~

r-"",

--

.....

~

~

~

~~

~

,

'-

....

.....

.....

l"'- i"" ....

U,5

.
1

~

~'
-.... r--...
...... 1"'- ........

~~

-

- I - ~~

~

~ ~~
r--- r--r-- r-ro~

~

10- 3

10- 5

~i""~

10- 2

tp (5)

Fig. 7 S. B. current multiplying factor at the V CEO max level for B 0949/951.

...====

1Z82146

::
"

/)=

.~

r--.

0,1

10

"

,

0,01

--- ......

"I"'- i""'~

~

1'-1'000

f--

"'"

0,2

"""'"

'~

.~

..

.....

"

~,

" ..... ~"

""~
t--.. ~ "..... ~r:: ~~
r--f-. i""'~r-,~
"

,

0,5

r-=:::~ E§:

~ t-r-.
rt'"F~

10- 4
Fig. 8 S.B. current multiplying factor at the V CEO max level for B0953/955.

6

February ,1979

r

80949; 951
80953; 955

Silicon epitaxial base power transistors

7Z82145

.

MV
b=

K
10

-'""" -.....

~,05
~

0,1

........

to......

~

" ....... ......

..........

.....

i'oo.r-...

--I'oo..~

t-- t-

r-r--.

0,5

1
10- 5

,

~ ,....,.

----

t::: t;:: I::::t--i'oo.
r--: r-.:

C'"

-r--I-

-r-

r----

r""'

10- 3

10- 4

10- 2

tp (s)

Fig. 9 S.B. voltage multiplying factor at the Ie max level.

---

:::::::

7Z82141 1

I - - T·

J

- 125 °e
--t--

I"""

.Y

~

I-~

~~

~

- --

r"'"'

~-

~

"

........

'

~50e

.....

.......

...

.......

~

" f'~ f' r-....~

./

'1\
Ie (A)

1\
10

Fig. 10 Typical d.c. current gain at VeE = 4 V.

February 1979

7

80949: 951
80953; 955
7Z82143

VCE
(mV)

,

~

1\

1\
,

-'

,

"-

~

I\.

\

~

"'" ~~

IC7A
SA
3A

1"0.

i'"

'\

I\-

I'

~

.........

....... i"'o....

t-- ....
-

2A

·1 A
O,SA

10
1

10

IS(mA)

Fig. 11 Collector-emitter voltage as a function of base current.

-=

--

8

February 1979

(

_______J

80950;952
80954;956

SILICON EPITAXIAL BASE POWER TRANSISTORS

P-N-P transistors in a plastic TO-220 envelope. With their n-p-n complements BD949; 951; 953 and
955 they are intended for use in a wide range of power amplifiers and for switching applications.
aUICK REFERENCE DATA

Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
CoUector current (d.c.)

BD950

952

954

956

-VCBO

max.

60

80

100

120 V

-VCEO

max.

60

80

100

120 V

-IC

max.

Collector current (peak value)

-ICM

max.

8

A
A

Total power dissipation up to T mb = 25 °C

max.

40

W

Junction temperature

Ptot
Tj

max.

150

°c

D.C. current gain
-IC = 0,5 A; -VCE = 4 V
-IC=2A;-VCE=4V

hFE
hFE

>
>

5

40
20

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-220AB.

45

Collector connected
to mounting base.

1,3

~~-+
,..:

5,9

~

min

I
I
I
J

.-~r=;::::;j;:::::;=;~

......

3,5 max
not tinned

+1,3 -

....

I

max~

12x)

bee

-.i

"'i:-

2,542,54

o,9max

_1'.-0,6

13x)

--

.-24
7Z65872_3

See also chapters
Mounting instructions
and Accessories.

r

+ 15,
max

1

-

80950;952
80954;956
RATINGS

l

Limiting values in accordance with the Absolute Maximum System (lEC 134)
BD950

952

Collector-base voltage (open emitter)

-VCBO

max.

60

80

Collector-emitter voltage (open base)

-VCEO

max.

60

80

Emitter-base voltage (open collector)

-VEBO

max.

5

Collector current (d.c.)

-IC

max.

5

A

Collectorcurrent (peak value)

max.

8

A

40

W

Total power dissipation up to T mb = 25 °C

-ICM
Ptot

Storage temperature

T stg

Junction temperature

Tj

max.
max.

954

956
100, 120 V

100

120 V
V

-65 to 150

oC

150

°C

THERMAL RESISTANCE
from junction to mounting base
from junction to ambient (in free air)

70

oCIW
oCIW

0,1
2
0,5

mA
mA
mA

3,12

Rth-j-mb
Rthj-a

CHARACTE R ISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off cu rrent
IE =0; -VCB = -VCBO max.
IE = 0; -VCB = -% VCBO max; Tj = 150 oC
IB = 0; :-VCE == -% VCEO max
Emitter cut-off current
IC =~; -VEB = 5 V

----

<
<

-ICBO
-ICBO
-ICEO

<

-lEBO

<

D.C. current gain (note 1)
-IC = 0,5 A; -VCE =4 V
-IC = 2 A; -VCE = 4 V

hFE
hFE

>
>

40
20 '

Base-emitter voltage (notes 1 and 2)
-IC = 2 A; -VCE = 4 V

-VBE

<

1,4

Collector-emitter saturation voltage (note 1)
-IC = 2 A; -IB = 0,2 A

-VCEsat

<

Transition frequency at f = 1 MHz
-IC = 0,5 A; -VCE =4 V

tr

>

(1) Measured under pulse conditions: tp ~ 300ps, 8 < 2~.
(2) VEB decreases by about 2,3 mV IOC with increasing temperature.

2

February 1979

(

mA

V
V

3

MHz

8D950;952
8D954; 956

Silicon epitaxial base power transistors

CHARACTERISTICS (continued)
Switching times
(between 10% and 90% levels)
ICon = 1 A; -IBon = I Boff = 0,1 A
Turn-on time
Turn-off time

90
-i s (%)
10

ton
toff

----,
---

7Z77491.A

-ISon

o

-Icon

------ -

-ic
(%1
10

0,1 f.LS
0,4 p.s

Li,,~,

---

90

typo
typo

---- J ------- e--

i\

- - - -ton

t

-tf

t

toff

Fig. 2 Switching times waveforms.

Vee

-V,M

=

30 V

-Vce = 20 V
VBB

3,5 V

R1

82 0

R2

150 0

R3

39 0
20,0

R4
tr
tp
T

=tf ~ 15

ns
10 p.s
=500p.s

Fig. 3 Switching times test circuit.

February 1979

3

l.

80950; 952
80954;956

'--------------------------------------------lj

10 ~

~ICmax
-IC

=0,01

7Z778531

'CMmax r-~

'"" , '

" t,

I'- " 0- I~
(1~ '\ ~ r"I"

"

(A)

1\I\~
~

~

~

,

tp=

0,1 ms

0,2

(2) 1\

~
I

~

~ 1
1\

10
Id.c.

-=

.....
-.--

VB0950
B0952
B0954

Il-

V

~B0956r-

Jl

10- 3
1

10

Fig. 4. Safe Operating ARea; T mb ~ 25 oC,
Region of permissible d.c. operation.
II Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second-breakdown limit (independent of temperature).

4

February 1979

80950;952
80954; 956

Silicon epitaxial base power transistors

7Z672S7~

100
P tot max
(%)

,
\.
'\
\

75

,
\.

,

!\

\.

50

.\
\

,
I\,

25

,

\.

\
I\.

50

100 '

"

150

T mb(OC)

Fig. 5 Power derating curve.

--

7Z82140

4

1-0

1

3

-

I

~i"'

0,75

I-

--~

_I

2 ~ 0,5

V

I

0,33 ....

I--

o

~O'

V

~

.... -I-

0,2
0,1

~

~

~

1-"-

... ~
....... 1-'

io""'.1

........ ""
.... ""

...... "/

~

... ""
,/
",.

1./ ....

i-'

~

",....~

'"

,/

",,/

""

V ~I
lfi
V

~""

/""~
....

",,/

....

SLfL
I

I-"'

......, i-""" ..... ""

-Itpl--T-

_I-" -I-

T

10- 2

10- 6

10- 1

tp
T

1)=-

tp (5)

Fig. 6 Pulse power rating chart.
February 1979

5

80950; 952

l"'------!--_ __ _

80954; 956

7Z82147

~ f""--..
0,1

10
~

0,2

fJ=
0,01

r--. f""'o-

--

I'
I""-r--

r-I'"

I'~
"

....... ........

r~

r--....,
.......~

...............
--:0-

f"'......

-----...r-- .......... ' .....
r--.
"""l1lI""

~

.........

0,5

r--

1

........

,~ ......

-....

..:,

~

~

~ ~ I=:=:
r---- r-I-- ... r-r--

10- 5

i""t'-~

tp (s)

Fig. 7 S.B. current multiplying factor at the -VCEO max level for B0950 and B0952.

----==

7Z82146

~
0,1

10

fJ=
0,01

-- ~".""
""'"'- ......

1""- .....

-~

~0,2

........

~

r-

0,5

---

"'

"

.........

i"".......... "-

" t-....,

~

r--. to-

:--.... f:::~ ~~
--I""-

r-.r-~

~

--=:::: ~- s::; S;
~

1

10- 5

~r---t-I'""" FI=~

tp (s)

Fig. 8 S.B. current multiplying factor at the,-VCEO max level for B0954 and B0956.

February 1979 -

(

80950;952
80954;956

Silicon epitaxial base power transistors

7Z82145

0=

10

K~
~,05

-"

I;;;::- 0,1

1-00.

~
0,5

........

"

.......

" .....

........... t-..............

--

~

..... r--; ~~
~ -~iooo

~

~~

----

t::::: ~ :::-1'-~ r-..::
i--.

1

10- 4

10- 5

10- 3

10- 2

tp (5)

Fig. 9 S.B. voltage multiplying factor at the -IC max level.
7Z821421

-

--

Tj = 125°C

- -...

25°C

r- t-....

"'"

" ... ",

""""" ..............

,

'"
10
10- 2

"

l"'- i'.

~". I'

"- ~~

-IC(A)

10

Fig. 10 Typical d.c. current gain at -VCE = 4 V.

February 1979

7

80950;952
80954; 956

l " , , - - - :_ _ _ _
7Z82144

,

,

....L

-VCE

\

1\

~,

',:

(mV)

,

\

1\

1\
J

. •,

Ll

~

~

\

\
~

1\

\

,

, "

\

\

,,~

I'...

~
...... i'oo

"-

C-

7A
5A
I

3A
2A

-.

... 1 A
0,5A
;
:;

;;

:,

10
10

1

--=-

Fig. 11

February

Collector-~mitter

1r

1979

voltage as a function of base current.

_____J

BDT62; 62A
BDT62B; 62C

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications. TO-220 plastic envelope. N-P-N complements are BDT63,
BDT63A, BDT63B and BDT63C.
QUICK REFERENCE DATA
BDT62

A

B

-VCBO

max.

60

80

100

120 V

Collector-emitter voltage (open base)

-VCEO

max.

60

80

100

120 V

Collector current (d.c.)

-IC

max.

-ICM
Ptot

max.

15

A

max.

90

W

Junction temperature

Tj

max.

150

°C

D.C. current gain
-IC=3A;-VCE=3V

hFE

>

Collector-base voltage (open emitter)

Collector current (peak value)
tp = 0,3 ms; l) = 10%

= 25 0C

Total power dissipation up to Tmb

10

C

A

1000

---

MECHANICAL DATA
Fig. 1 TO-220AB.

,-

.... 45

1'3~

Collector connected
to mounting base.

max ...

2,8

~

+

I
I

I
J

I

+-IC:n:::r~~-----L3,5 max

not tinned

+1,3 -

I

max.....

5,1
max

--t

....

-

+
5,9
min

1

+ m15,ax8

-

J

12..7

min

(2x)

bee

-.1 ..li:-o,9max (3x)
2,542,54

,,1..-240,6
1..-

7Z65812.3

See also chapters
Mounting instructions
and Accessories.

I

February 1979

l

BDT62; 62A
BDT62B; 62C

"""---_ _ _ _ _ _ _ _ _ _ _ _ _ _ __

r-------·-----,-----;

,

~------------~~~----+__c

I
I
I

b -1--1~---t
R1 typo 4 kn
R2 typo 60 n

I

__ .J
e
Fig. 2 Circuit diagram.
RATINGS
Limiting valu~s in accordance with the Absolute Maximum System (lEC 134)

Collector-base voltage (open emitt~r)

--

--

-VCBO

BDT62

A

B

C

max.

60

80

100

120 V

60

80

100

120 V

Collector-emitter voltage (open base)

-VCEO

max.

Emitter-base voltage (open collector)

-VEBO

max.

5

V

Collector current (d.c.)

-IC

max.

10

A

Collector current (peak value)
tp=0,3ms;Ii=10%

-ICM

max.

15

Base current (d.c.)

-IB

max.

250

Total power dissipation ~p to T mb = 25 °C

Ptot
T stg
Tj

max.

Storage temperature
Junction temperature*

W

90
-65 to

max.

A
mA

+ 150

150

°C
°C

THERMAL RESISTANCE*
From junction to mounting base

Rthj-mb

From junction to ambient (in free air)

Rthj-a

1,39

oCIW

70

oCIW

* Base on maximum average junction temperature in line with common industrial practice. The.
resulting higher junction temperature of the output transistor part is taken into account.

2

February

19791 (

80T62; .62A
80T628; 62C

Silicon Darlington power transistors

CHARACTER ISTICS
Tj = 25 0C unless otherwise specified.
Collector cut-off current
IE = 0; -Vca = -VCaOmax
IE = 0; -Vca = -YNCaOmax; Tj == 150 °c
IB = 0; -VCE =: -%VCEOmax

-ICBO
-ICBO
-ICEO

Emitter cut-off current
IC = 0; -VEB '" 5 V

<
<
<

0,2 mA
2 mA
0,5 mA

<

5 mA

Forward bias second-breakdown collector current
-VCE = 40 V; t == 0,1 s; non-repetitive
(without heatsink)
BDT62
BDT62A, Band C

I(SB)
I(SB)

>
>

D.C. current gain*
-IC = 3 A; ~VCE = 3 V
-IC = 10 A; -VCE = 3 V

hFE
hFE

>

Base-emitter voltage*
-IC = 3 A; -VCE = 3 V

-VBE

<

·2,5 V

Collector-emitter saturation voltage*
-IC = 3 A; -IB = 12 mA
-IC = 8 A; -Ia = 80 mA

-VCEsat
-VCEsat

<
<

2 V
2,5 V

Cut-off frequency
-I C = 3 A; -V CE = 3 V

fhfe

typo 100 kHz

Collector capacitance
-VCB = 10 V; f= 1 MHz

Cob

typo 100 pF

D.C. current gain ratio of matched
complementary pairs
-IC = 3 A; -VCE = 3 V

hFE1/hFE2

<

2,5

Small-signal current gain at f = 1 Ml-:lz
-IC=3A;-VCE=3V

hfe

>

25

*Measured under pulse conditions; tp

0,45 A
1,4 A

1000
typo 200

< 300 fJ.S; 8. < 2%.
February 1979

3

BDT62; 62A
BDT62B;62C
CH,ARACTERISTICS (continued)

Diode, forward voltage
IF=3A

.<

Switching times
(between 10% and 90% levels)
-ICon = 3 A; -ISon = ISoff == 12 mA
turn-on time
turn-off time

typo 0,5 p.s
typo 2,5' p.s

--

10

----:--t
---

90

---

90
-i e (% )

7Z77491,1

-

-lson

LLIB~'
------

-ic

o

-Icon

-

i\

(%)

10

2V

---

------- 1---

-1.1

ton

- -t

-tf
toff

t

Fig. 3 Switching times waveforms.

-VIM ..:

VCC

R3

= 5600

R4

30
15 ns
= 10 p.s
= 500 ps

tr =tf

!p
T

Fig. 4 Switching times test circuit.

4

February 1979

r

10 V

-Vee = 10 V
+Vaa = 4 V
R1
560
R2
= 410 0
=

BDT62;62A
BDT628; 62C

Silicon Darlington power transistors

7Z672S7~

100

P tot max
toto)

7S

,
~

",
1\

1\

,

I\.

~

50

\

~

~

I\,

2S

,

1\

~

,

oo

so

1\

Fig. 5 Power derating curve.

February 1979

5

l_______

BDT62;62A
BDr62B'; 62C

7Z82169

[) =0,01 t-- -r-

-ICMmax

~

10
ICmax

(1~

'I'\.

tp =
0,1 ms
III

~

0,5
I

~ 1\ II \
\ \

\,1\, '
(2)
1\\1\

, , 10

,,100

I

--5:

I

1

1\ 1\

~ d.c.
III

10- 1

N

co

I0

co

10- 2
1

10

. Fig. 6 Safe Operating ARea BDT62; T mb = 25 °C.
I
II
(1)
(2)

6

February 1979

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
Ptot max and Ppeak max lines.
Second-breakdown limits (independent of temperature).

r

BDT62;62A
BDT62B; 62C

Silicon Darlington power transistors

7Z77520 1

-IC
(A)

0=0,01

-ICMmax
10

--

-

~

,

"1\

",
'"
" '" "
"~ \\

II

ICmax

"

(1 )

\

-I-I-

0,1 ms

I'

"- I'\.
1"\:,

\

r- tp

-r-

.... 0,5
\

\1'

1

(2)
\

I

1

,

10
\

---

100

\
d.c.

BDT62A
BDT62B
BDITj2f

10- 2
1

10

10 2

-VCE (V)

Fig. 7 Safe Operating ARea BDT62A; 628 and 62C; T mb
I
II
(1)
(2)

= 25 °C.

Region of permissible d.c. operation.
Permissible extension for repetiti~e pulse operation.
Ptot max and Ppeak max lines.
Second-breakdown limits (independent of temperature).

February 1979

7

L'---__'------

BDT62;62A
BDT62B;62C

7Z82148

1,5

&=1

,,
I

1.."...0'

L..,..o

./

~

0,7

-

--

1/

-'

/

L..oo

'"

1/

-"

I""""

/

I/'

O~

/

~

'"

""""
1/

"""'" L".
.;.~

'"

l/
/

V

~

,."

~

0,2

/

ioo""

0,5

II

/

./
/
L".
",.,.1"""

-

JLrL
I

O,O!..~
."",.

,

.,-

-Itpl-

-T-

tp

6=-

T

tp (s)

10

Fig. 8 Pulse power rating chart.

---

7Z82163

10 4

hFE

'"
~

10 3

~/

I

.

/

~ ....

l/

~

'

....
I'\.

"""

,

. \~1

~Tj 125°C
/

25°C

/

~
\

10

10- 2

10

Fig. 9 Typical d.c. current gain at -VCE

8

February 1979

-IC(A)

=3 V.

BDT62; 62A
BDT62B; 62C

Silicon Darlington power transistors

7Z82171

10

6 =0,01

~,1 "
....... '-"'I

~

"- "........

~ i'.
~ f'

-:::'

..... ....
' ' ' ' .... r-.
.... r-.

0,5
-I"'-

-~ "I-

~ I--...

r::::::~

I---.

~
~

:: ::~

1
10- 1

10

tp (ms)

Fig. 10 S.B. voltage multiplying factor at the IC max level.

---

7Z82172

/j

=0,01
\

0,02

....

0,05

,,

'" r...r.... "
r---r....

-r-- r...
10

0,1

~""

~
.......

..........
~O,2

- I - ",,"I-

0,5

.....

.......
........

~

.............
~

~

..........
""""" :......-;

-r--...

r--...

......

'"

r-.. !',,~
i""ot--

I-~
...........,;;:
~~

'""I-

r-----

-

1
10- 1 .

10

r--. I"- I--t-- 10.1r-- I-- r- 1-01'""I~

I"'ii

1-01-

tp (ms)

Fig. 11 S.B. current multiplying factor at the VCEO max level.
February 1979

9

l

BDT62;·62A

BDT62B;62C

'---------------------------------------------~--7Z82159

-VCEsat
(mV)
r-

2A

-le=lA

6A

4A

,

,

SA

\.

"-

\

\

r\

"

""

~

1\

\~

\

'\..

I"'-...

.....

10

Fig. 12 Typical collector-emitter saturation voltage.
7Z82151

10

-Ie
(A)

I

7,5

II
I

I

/

5

/
/
If

J
I{

I
If

o

/
1

1,5

2

2,5
-VBE(V)

10

February 1979

(

Fig. 13 Typical base emitter voltage
as a function of the collector current.

_ _ _J

BDT63; 63A
BDT63B; 63C

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monoJithic Darlington circuit for audio output stages and general
amplifier and switching applications; TO-220 plastic envelope. P-N"P complements are BDT62,
BDT62A; BDT62B and,BDT62C.
QUICK REFERENCE DATA
BDT63

A

B

C

Collector-base voltage (open emitter)

VCBO

max.

60

80

100

120 V

Collector-emitter voltage (open base)

VCEO

max.

60

80

100

120 V

Collector current (d.c.)

IC

max.

ICM
Ptot

max.

15

A

Total power dissipation up to T mb = 25 0C

max.

90

W

Junction temperature

Tj

max.

150

°C

D.C. current gain
IC=3A;VCE=3V

hFE

>

Collector current (peak value) .
tp=0,3ms;<,> = 10%

10

A

1000

MECHANICAL DATA
Fig. 1 TO-220AB.
Collector connected
to mounting base.
5,9

min
~--=r~

1
15,8
max

j
-.i ..Ii:- ,9

O max 13x)

See also chapters
Mounting instructions
and Accessories.

2,542,54

..

"1,,,,0,6
'-2,4
7165872.3

February 1979

BDT63;63A
BDT63B;63C

.L.

'---------------------------------------------------I'

I
I
I

b-H~-__t

I

R1 typ.8 kO
R2 typo 100 n

I

!L.________
.
_
R1

R2

7Z8tl~4S.2

I

.-.J

e
Fig. 2. Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

---

Collector-base voltage (open emitter)
Collector·emitter voltage (open base)

BOT63

A

B

C

VCBO

max.

60

80

100

120 V

60

80

100

120 V

VCEO

max.

Emitter·base voltage (open collector)

VEBO

max.

5

V

Collector current (d.c.)

IC

max.

10

A

Collector current (peak value)
tp = 0,3 ms; ~ = 10% .

ICM

max.

15

A

IB

max.

250

mA

Ptot
T stg

max.

90

W
oC

Tj

max.

Base current (d.c.)
Total power dissipation up to T mb

=25 °C

Storage tempetatu re
. Junctiontemper8ture*

-65 to + 150
150

oC

THERMAL RESISTANCE *
From junction to mounting base

Rthj-mb

Fromjunction to ambient (in free air)

Rthj-a

1,39

oCIW

70

oCIW

* Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken· into account.

2

February 1979

r

BDT63; 63A
BDT63B; 63C

Silicon Darlington power transistors

CHARACTERISTICS
Tj = 25 0C unless otherwise specified.
Collector cut-off current
IE = 0; VCS = VCBOmax
"IE = 0; VCS = Y2VCBOmax; Tj = 150 oc
IS = 0; VCE = Y2VCEOmax
Emitter cut-off current
IC=0;VES=5V

ICBO
ICBO
ICEO

<
<
<

0,2 mA
2 mA
0,5 mA

lEBO

<

5 mA

Forward-bias second-breakdown collector current
V CE = 40 V; t = 0,1 s; non-repetitive
(without heatsink)

'(S8)

>

D.C. current gain*
IC = 3 A; V CE = 3 V
IC= 10A;VCE=3V

hFE
hFE

>

Base-emitter voltage*
IC = 3 A; V CE = 3 V

VSE

<

2,5 V

Collector-emitter saturation voltage*
IC = 3 A; IS = 12 mA
IC=8A; IS=80mA

VCEsat
VCEsat

<
<

2 V
2,5 V

Diode, forward voltage
IF=3A

VF

<

2 V

Turn-off breakdown energy with inductive load (Fig. 6)
-ISoff = 0; L = 5 mH

E(BR)

>

Small-signal current gain at f = 1 MHz
IC=3A;VCE=3V

hfe

>

25

Cut-off frequency
IC=3A;VCE=3V

fhfe

typo

50 kHz

Collector capacitance
VCB=10V;f=1 MHz

Cob

typo

100 pF

D.C. current gain ratio of matched
complementary pairs
IC = 3 A; VCE = 3 V

hFE1/hFE2

<

2,5

* Measured under pulse conditions; tp

typo

2,25 A
1000
3000

100 mJ

--

~
I

< 300 IJ.S; 6 < 2%.
February 1979

3

BDT63; 63A
BDT63B;63C

l

....._ _ _ _ _~-_--------~-~

CHARACTERISTICS (continued)
Switching times
(between 10% and 90% levels)
ICon = 3 A; 'Bon = -IBoff = 12 mA
turn-on time
turn-off time

ton
toff

-

tr
90

------- -

typo
typo

0,5 P.S
2,5 /,lS

'Z7?499.1

lson

ls(%)

_________~__~____

10~~~

90
iC
(%)

10

--

o ~--~-~------+--r+----ton

----

Fig. 3 Switching times waveforms.

V,M

Vce

10
10

=

4 V

=
=

56 0
410 0
560 0
30

= tf =
=

15 ns
10"p.s

-VBB

R1
R2
R3

R4
tr

tp

T

Fig. 4 Switching times test circuit.

4

February 1979

r

V
V

= 500 p.s

BDT63; 63A
BDT63B; 63C

Silicon Darlington power transistors

7Z672571

,

100

~

P tot max
(0/0)

,
,

1\

75

I\,
1\

"

I\,

50

\

r\.
~

25

,

1\

1\

o

o

,

50
Fig. 5 Power derating cunie.

vert.
osCilloscope

+
Vee

hor.
oscilloscope
7Z73863.1

Fig. 6 Turn-off breakdown energy with inductive load.
VIM

t

= 12 V; RB = 270 n; 6 =--E. x
T

100% = 1%; ICC

= 6,3 A.

February 1979

5

BDT63;63A
BDT63B; 63C)

7Z775191

IC
(A)

5 =~,01

ICMmax

." "

10
:: ICmax

1\

,'- 'II~"

"'

~

I--~
I--~
~~

I'

'" I""

(1 )

tp-

0,1 ms

" 1,\

~ ~
~~
~1

(2)

I

\
- 1
\

\' 10

----

~,

~ 10~
d.c.= ~~

BDT63
BDT63A
BDT63B
BDT63C -

I

10- 2

1

10

-

I I

'

Vce(V)

Fig. 7 Sa~e ?perating ARea; T mb = 25 °C.
Region of permissible d.c. operatiOh.
Permissible extension for repetitive pulse operation.
(1) Ptotmax and Ppeakmax lines.
.
'(2) Second-breakdown limits (independent of temperature).
II

6

February 1979

BDT63;63A
BDT63B; 63C

Silicon Darlington power transistors

7Z82148

1,5
8 =1
I
I
I

..........

0,7
...........

-

"'"

1.00'

./

""""

V

1/

1.00'.

V

'"

~

/
/

1..00-""

V

I-

v

l.,.....oo"

./
I)

Ii

0,210'
10'

0,5

v

II

O~

l/

./

1.00-"

"

t..,....

~

~

1/

17

/
./

L..o

.-....iI'"

.~

O,OL"""
...........

......

--o

I

I-

-Itpl-T10- 3

10- 5

10- 1

10- 2

tp
T

6=-

tp (s)

10

Fig. 8 Pulse power rating chart.
7Z82164

.;'

".
~.~
/

.
/

/

.....
./

;

./

./

c=...

"

~. i\
~

v~

;

V//

-

V

----

VV

1\

1\
\ \T-=25 0 C
,

/

JI

'125°C

1/

/

V

/

10

Fig. 9 Typical d.c. current gain at VCE

IC(A)

=3 V.
February 1979

7

l" '- -"'-~,

80T63; 63A
80T638; 63C

_ __ _ . _ 7Z82173

10

0=

~0,01
"-

"

~1

,"- ",
~'

...........0,2......

...........
_ 0,5

......... r"-r"-o
~ r--.... ........ 1'"",
1'""

- r- -r-"""rr-r-r-

~
~
-100.

10

tp (ms)

Fig. 10 S.B. voltage multiplying factor at the IC max level.
7Z82174

--

10 0

0,1

-0,2

0=0,01

- ......

~

i""'-

.......
r""!!Io

r-

"-

.............

K.

~ l"'" ~
.........
r-..;;:
0,5

-

1
10- 1

r-.... r-.. ,....,t'
f:::~ ~~

r- r- I'-t-

r-,...

~ ~ t'-"""

r---...

""t-

10
Fig. 11 S.B. current multiplying factor at VCEO level

8

February 1979

r

tp (ms)

= 60 V and 100 V.

BDT63; 63A
BDT63B; 63C

Silicon Darlington power transistors

7Z82160

VeEsat
(mV)
_'e=lA 2 A 4A6A8Al0A
\

11

\

Il

\

\

\

\ \

\ \

.....'-.... ...

~

,

\

,

1'0..

10

-'B (mA)

Fig. 12 Typical collector-emitter saturation voltage.

--

7Z82152

10

Ie
(A)

IJ

7,5
~

II

I

fl

5

j

!7
j

rJ
j

2,5

II
J

Fig. 13 Typical base-emitter
voltage as a function of the
collector current.

V
IJ

V

o
1

1,5

2 VBE(V) 2,5

February 1979

9

_ _ _ _J

BDT91
BDT93
BDT95

SILICON EPITAXIAL BASE POWER TRANSISTORS·

N-P-N transistors in a plastic envelope intended for use in audio output stages and general amplifier and
switching applications.
P-N-P complements are BDT92, BDT94 and BDT96.
QUICK REFERENCE DATA
BDT91

BDT93

BDT95

VCBO

max.

60

80

100 V

VCEO

max.

60

80

100 V

IC

max.

10

A

20

A

Total power dissipation up to T mb:: 25 oC

ICM
Ptot

max.
max.

90

W

Junction temperature

Tj

max.

150

°C

Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
Collector current (d.c.)
Collector current (peak value)

D.C. current gain
I C = 4 A; V CE
I C = 10 A; V CE

=4 V

=4 V

>

Transition frequency
IC = 0,5 A; VCE = 10 V

20 to 200
5

>

4

Dimensions in mm

MECHANICAL DATA
Fig. 1 TO-220AB.

__ 45

I~-I

Collector connected
to mounting base.

1,3--

2,8

I

I

.,

5,9

....

t

min

1

8
+ 15,
m ax

I
I
I

L--l-J

J

+-~r=;::::::t:I;:::r;~--+-

3,5 max
not tinned

top view

MHz

5,1
max

\,"
I
max'"

I

-

....

J

12,7
min

(2x)

bee

See also chapters
Mounting instructions and Accessories.

i:

__i ..I

2,542,54

O,9 max (3x)

_1

1. - 0,6
.-24

Ir 19~
7Z65872.3

Mareh

---

l

BDT,91
BDT93
BDT95
RATINGS'

Limiting values in accordance with the Absolute Maximum Sy!!tem (lEC 134)
BDT91
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)

BDT93

BDT95

VCBO

max.

60

80

100 V

60

80

100 V

VCEO

max.

Emitter-base voltage (open collector)

VEBO

max.

7

V

Collector current (d.c.)

IC

max.

10

A

Collector current (p~ak value)

ICM

max.

20

A

Base current (d.c.)

IB

,max.

4

A

Total power dissipation up to T mb = 25 °C

max.

90

W

Storage temperature

Ptot
Tstg

Junction temperature

Tj

max.

-65 to +150
150

°C
°C

THERMAL RESISTANCE
From junction to mounting base

Rthj-mb

From junction to ambient (in free air)

Rthj-a

1,39

oC/W

70

°C/W

0,1
5
1

rnA
rnA
rnA

CHARACTERISTICS
Tj = 25 oC unless otherwise specified

---=
=

Collector cut-off current
IE = 0; VCB == VCBOmax
IE = 0; VCB = YzVCBOmax; Tj = 150 °V
IB = 0; VCE = VCEOmax
Emitter cut-off current
IC=0;VEB=7V
D.C., current gain (note 1)
I C = 4 A; V CE = 4 V
I C = 10 A; V CE = 4 V
Base-emitter voltage (notes 1 and 2)
IC = 4 A; VCE = 4 V

<
<

ICBO
ICBO
ICEO

<

lEBO

<

hFE
hFE

>

20 to 200
5

' VBE

<

1,6

V

Collector-emitter saturation voltage (note 1)
I C = 4 A; I B = 0,4 A
IC=10A;IB=3,3A

VCEsat
VCEsat

<
<'

1
3

V
V

Transition frequency at f = 1 MHz
IC = 0,5 A;VCE = 10 V

fT

>

4

MHz

Cut-off frequency
I C = 0,5 A; V CE = 10 V

fhfe

>

20

kHz

Notes
1. Measured under pulse conditions: t ";;300 JlS; l) ..;; 2%.
2. VBE decreases by about 2,3 mV /o(! with increasing temperature.

2

rnA

~

Mareh 1919

(

BDT91
BDT93
BDT95

Silicon epitaxial base power transistors

Second-breakdown collector current
VCE = 60 V; tp = 0,1 s

'(SB)

Switching times
(between 10% and 90% levels)
ICon = 4 A; IBon = -IBoff = 0,4 A
Turn-on time
Turn-off time
tr

typo
typo

0,3 f.1s
1,5 f.1S

----It~---....j-- ISon

II

is (%)

10

1,5 A

-:'Z774991

--*1 :<4---

90

<

1----1-------1\---_--

LC_

:,
1ao

90

1\

ic

1\

(%)

19 -- - -~ - - -,- - - - - - t

-ton

Fig. 2 Switching times waveforms.

VIM
= 45 V
VCC = 20V
-VBB = 3,5 V

V~:JLJL
.... 1 1__

tp

1

R1
R2
R3
R4

=210n
56n
10st
5st
15 ns
10 f.1S
= 500 JLS

--T-7278131

Fig. 3 Switching times test circuit.

March 1979

3

l

BDT91
BDT93
BDT95

..

'--------------------------------------------------10 2

1Z785022

IC

( A)

I---+--+--'+-IH-I+I-I--

ICMmax

6 =0,01

-f-f-+-++++--+--f--+--4

A

++++;+--+--+--+(2)+-+1.....--+---1-+-1

d.c .

......
-

-----

~--+-~~+444~__~BDT91~~+_--~_+~~

BDT93
BDT95 ~I--

10-2~__~~~~~__~~I_~I~UL__~~~

1

10

VCE(V)

Fig. 4 Safe Operating·ARea; T mb = 25 oC.
I Region of permissible d.c. operation.
II. Permissible extension for repetitive pulse operation.
(1) Ptotmaxand Ppeakmax lines•.
(2) Second-breakdown limits (independent of temperature).

4

Mareh

19791 (

BDT91
BDT93
BDT95

Silicon epitaxial base power transistors

7Z67257.1

100

"

I\.

P tot max
(%)

\

,

~

75

\.
1\

"

I\,

50

~

~

\.

25

,

~

~

\
50

100

150
T mb(OC)

Fig. 5 Power derating curve.

----

7Z82149

1.5

0=1

./

-- --- --

O.z. . .
1

-

~

o~

10- 5

,

//

1/

/.

L

/.
,/

1/

- ..-..,.,

~

/~

/.'/.

I

/.

1/

'//
/

JLrL

'f'/
'f'/
I"

~

"

1:::OOi~

fl,
///

0.21'11

0.5

/
/

.......

~~

---

Z~

0.5
'I.
I

~

,

,"

..............-

!LO.l

0.05
0.01

-Itpl- I
--T-

I

10- 3

10- 2

Fig. 6 Pulse power rating chart.

10- 1

r

tp
T

l)=-

tp (s)

M.reh1979

10

5

l___--------

80T91
80193
80T95

7Z82157

{) ~ 0;01 ........"'"
.~

1
I

I--

0,02

r-

-

1--1"-

~ ............

I
0,05
r-l"-- 1--1"-

0,1

10

,

""--........,

-

r-

0,2

I\..
..

~

,

~
~
~

........... to.....

~

"

1\1\r\

"

......

"""

---

.......

-r- t"---

~~..)

I"-

1\1'
" f',,1'
1"'-01-0.

0,5

~
I"-~
.....

~~
r--- r-1

10- 5

tp (s)

Fig. 7 S.B. current mUltiplying factor at the VCEOmax level.

--

7Z82158

MV
0=

~
10

vO,01
vO,02
vO,05

r- r-.

//

...:

~
0,2

I

--

1000..

Iooo...~

~~~

~ ~~

- .

r--

t---

0,5

~~

'""'" b.... r-.... f:::r-.
r-....
r- r-. i't:: ~~
I"'-or---

-

~

I"-~

~

~
r--~r-

"

1

10- 5

6

10- 4

10- 3

tp (s)
Fig. 8 S.B. voltage multiplying factor at the ICmax level.
/

I"'-~

r-

10- 2

80T91
80T93
80T95

Silicon epitaxial base power transistors

1Z185542

-

-

1--

~

V

~

T·=1250C

..1-+- .....-

-I-~

1-1...

~
...... r-.....

~

j..- ~~

~"'" ~

T j == 25°C

"-

" ~~
~

~

" '"

I\.

10

10- 2

'c (A)

10- 1

10

Fig. 9 Typical d.c. current gain at VCE = 4 V.
7 Z 78556

,

~1

Ho,5
V CEsat

2---1

3-;4; 5-

Ie
7r

9A

(mV)

\

'\.

\

1\

,

1\

\

f'..

~
~b-

1\

'\

'"

f'

~

1'.

I"'t"-o

1"-

"

\

I"-or-t--

'\.

""' "
I'....

~ r,.-...-.

t-t--

"

----

~

~

I'-....

-I"--....

10
1

10
Fig. 10 Typical collector-emitter saturation voltage. T mb = 25 oC.

March 1979

7

I .

I

.

_ _ _J

BDT92
BDT94
BDT96

SILICON EPITAXIAL BASE POWER TRANSISTORS

P-N-P transistors in a plastic envelope intended for use in audio output stages and general amplifier and
switching applications.
N-P-N complements are BDT91, BDT93 and BDT95.
QUICK REFERENCE DATA
BDT94

BDT92

BDT96

Collector-base voltage (open emitter)

-VCBO

max.

60

80

100 V

, Collector-emitter voltage (open base)

-VCEO

max.

60

80

100 V

Collector current (d.c.)

-IC

max.

'10

A

Collector current (peak value)

-ICM

max.

20

A

Total power dissipation up to T mb = 25 °C

Ptot

max.

90

W

Junction temperature

Tj

,max.

150

oC

D.C. current gain
-IC=4A;-VCE=4V
-IC= 10A;-VCE=4V

>

5

Transition frequency
-IC = 0,5 A; -VCE = 10 V

>

4

20 to 200

MHz

Dimensions in mm

MECHANICAL DATA
Fig. 1 TO-220AB.

-I~'"I-+-

.-

1,3--

~- )

2,8

5,9
min

+

I

15,8
max

I
I
I

.J

top view

--

.-Il:::ir==;:::::r;Fi=i=;~--+t
~~x I

3,5 max
not tinned

\,~I.I

--t

max

12,7

min

(2x)

See also chapters
Mounting instructions and Accessories.

1

bee

--.1

~ji:-o,9max

2,54 2,54

•

_1

(3x)
--

I

1__ 0,6
--2,4

7Z65872.3

March 1979

BDT92
BDT94
BDT96
RATINGS

l

Limiting values in accordance with the Absolute Maximum System (IEC 134)
BDT92
Collector-base voltage (open emitter)

BDT94

BDT96

-VCBO

max.

60

80

100 V

60

80

100 V

-VCEO

max.

Emitter-base voltage (open collector)

-VEBO

max.

7

V

Collector curr:ent (d.c.)

-IC

max.

10

A

Collector current (peak value)

-ICM

max.

20

A

Base cur~ent (d.c.)

-IB

max.

4

A

Total power dissipation up to T mb = 25 oC

max.

90

W

Storage temperature

Ptot
T stg

-65 to +150

Junction temperature

Tj

max.

°C
oC

Collector-emitter voltage (open base)

150

THERMAL RESISTANCE

From junction to mounting base

Rthj-mb

From junction to ambient (in free air)

Rthj-a

1,39

°C/W

70

°C/W

0,1
5
1

mA
rnA
rnA

CHARACTERISTICS

Tj = 25 0C unless otherwise specified
Collector cut-off current
IE = 0; -VCB = -VCBOmax
IE == 0; -VCB = -%VCBOmax; Tj:: 150 °C
IB == 0; -VCE = -VCEOmax
Emitter cut-off current
IC=0;-VEB=7V

--

-ICBO
-ICBO
-ICEO

<
<
<

-lEBO

<

D.C. current gain (note 1)
-IC=4A;-VCE=4V
-IC = 10 A; -VCE = 4 V

hFE
hFE

>

20 to 200
5

Base-emitter voltage (notes 1 and 2)
-IC=4A;-VCE=4V

,-VBE

<

1,6

V

Collector-emitter saturation voltage (note 1)
-IC = 4 A; -IS = 0,4 A
-IC= 10A;-IB=3,3A

-VCEsat
-VCEsat

<
<

1
3

V
V

Transition frequency at f = 1 MHz
-IC = 0,5 A; -VCE = 10 V

fT

>

4

MHz

Cut-off frequency
-IC = 0,5 A; -VCE = 10 V

fhfe

>

20

kHz

Notes
1: Measured under pulse conditions: t ~ 300 f.lS; l) ~ 2%.
2. VBE decreases by about 2,3 mV /0'8 with increasing temperature.

2

MarCh19791

r.

mA

BDT92
BDT94
BDT96

Silicon epitaxial base power transistors

Second-breakdown collector current
-VCE=60V;tp=O,1 s

-1(58)

<

0,6 'A

Switching times
(between 10% and 90% levels)
-ICon = 4 A; -18on = +18off = 0,4 A
Turn-on time
Turn-off time

ton
toff

typo
typo

0,3
1,5

90
-i s (% )
10

-1[----i1

"

J1,S
J,lS

''''491.1

-Is on

---

-- -

lila.:,
90

---

------

---

j------- f--

-iC
(Ofo)

10

o

-ton

-ICon

-

\
t

-tf
---+

toff

--

t

Fig.2 Switching times waveforms.

-VCC

-VIM = 45 V
-VCC = 20 V
V88 = 3,5 V
= 210 [2
R1
56[2
10[2
5[2

R2
R3
R4

tr = tf
tp
T

=

15 ns
10 J1,S
500 J,lS

7Z78130

Fig. 3 Switching times test circuit.

I(

March 1979

3

l

BDT92
BDT94
BDT96

\

\

7Z78501 1

-IC
(Al

&= 0,01

"""CMmax

, ,I
-

10

I\r--

Cmax

~

" ~t'""
," !", , " 1-""
(1 )' ."\.

tp

"j\\" f\
~

-

-

~I-

1--1-

0,1 ms- ~I-

'" ~
0,5

,~ ~

(2~ 1\

1

I'

I

~
1.0

d.c.

10- 1

BDT92
BDT94
BDT96 1-1I

10- 2
1

I

10

Fig. 4 Safe Operating ARea; T mb = 25 °C. .
I
/I

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.

(1)

Ptotmax and Ppeakmax lines.
Second-breakdown limits (independent of temperature).

(2)

4

Mareh

19791 (

BDT92
BDT94
BDT96

Silicon epitaxial base power transistors

1Z672571

100

"""\

\.

P tot max
. (Ofo)

\.

75

,

-f--

~

""

-

\

50

\.
\

,

i\.

\.

25

",

\.

I

1\

\
100

150
Tmb(OC)

Fig. 5 Power derating curve.
7Z82149

1,5
0=1

----

~~

~

I--f-

-

---

./

V

1::00-

""

/1/.

'/.~

0;5

./ rh
'/A/

1///
r//

I

l-

0,2)1

'('

1

./
~

~

0,5

./

-I

VI
1

.....

---

tV'

0,2,1-I

,...

.-"" .... !!III

~

/./1
'//
./ /'

1/

-

I--""

----

-~

°10-

5

~

....

JLJL
I

"/
't'/
'LO,1
0,05
0,01

-Itpl---T-

1

10- 3

-10- 2

Fig. 6 Pulse power rating chart.

tp
T

0=-

10- 1

10

I(

Mareh 1979

5

l_______

'BDT92
BDT94
BDT96

.7Z82157

&= 0,01 ..............
I

r---- 0,02
I
,0,05

--

~

-r- ...

.............

--

~

0,1

10

,

"'

r""

..

~

'\..

i\.

'"

'\

" ,,

I"'--... .............
....

-

....

r\

\

.... ~ \
.......

........

"'

- --- -

0,2

............

..... '\'

r-

....

0,5

~
... ~
.......

r--- ~ :::::::
~

~

1

10- 5

-

tp (5)

Fig. 7 S.B. current multiplyingfactor at the VCEOmax level.

---

7Z82158

b=

.L/

10

//

/0,01
/0,02
/0,05

--,-

..::

--

....

-I"-

0,1

::--+--0,2

I
0,5

1000.

..............
~

--.;;::o~

-........... ~
-r- "r-........... ~ ~
.......
r"'"-......... ........ ~r--.
r----

-

--- -

::::~ ...~ ....:::~~

~

~

- r--- ~ ........ ~-

1

10- 5

10- 3
Fig. 8 S.B. voltage multiplying factor at the ICmax level.

6
March

19791 ( ____~__~

tp (5)

r""

10- 2

--

--------------.r---~ ,----~~-

BDT92
BDT94
BDT96

Silicon epitaxial base power transistors

7Z785531

1--- 1--

-

l- i- i- ..

T· = 125 0 e
H_L __, Tj

25

0

-

I--

!-'''r-.
I ...

e

r....

....
..........

......

......

'r-.. ...
.........

"

"

. ~I'

'~ 1\
~~,

1",..."I'
10

10- 2

-IC(A)

Fig.9 Typical d.c. current gain at -VCE = 4 V.
7Z78558 1

0,5
-VCEsat
(mV)

1\

,
,

r\1- t-- r\2
\

Ie

t-~ 31\4-\5-17 ...; 9A
C\
[\
\ \

\

\

\

\

~

\ 1\
" ~

1\

I'

"r-...

'"

t'.. r--."",I'-

"" "

"]'..

......... !o..

r...
"-

I"'ii

~

~

----

L...--

10

1

10

Fig. i 0 Typical collector-emitter saturation voltage. T mb = 25 DC.

March 1979

7

---J[

BDV64
BDV64A
BDV64S'

--------------------SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and gen~ral
amplifier and switching applications. N-P-N complements are BDV65, BDV65A and BDV65B. Matched
complementary pairs can be supplied.
QUICK REFERENCE DATA
BDV64

BDV64A

Collector-base voltage (open emitter)

-VCBO

max.

60

80

100V

Collector-emitter voltage (open base)

-VCEO

max.

60

80

100V

Collector current (peak value)

max.

20

A

Total power dissipation up to T mb ~ 25 oC

-ICM
Ptot

max.

125

W

Junction temperature

Tj

max.

150

°C

D.C. current gain
-IC= 1 f',;-VCE =4V
-IC=5A;-VCE=4V

hFE
hFE

>

Cut-off frequency
-IC = 5 A; -VCE = 4 V

fhfe

typo

typo

BDV64B

04-

1500
1000
kHz

100

MECHANICAL DATA

Dimensions in mm
15,2_

Fig. 1 SOT"93.

l4,S-

max

Collector connected
to mounting base.

max

+

-'2j

4,4

t

t

j

21
max

12,7
max

!

LI.!::;:;::=;#====r?l

Wit~

--i

I

dimensions
this zone are
uncontrolled

b'

13,6
min

cl e,~

- ~ I.. _1.1--i-$lo,5 ®I

'
Lrm--!

1,'.5
0,95

11

I

11
.- 0,4

...1,6....

7Z75220

Accessories supplied on request: 56368 (see also data sheet Mounting instructions SOT-93J.

April 1979

l~

BDV64
BDV64A
BDV64B

_________

CI RCUIT DIAGRAM

,-----.-------------;
I
I

b - -....- - - I

.,

I

,

I

I

I

R1

I

R2

L ______ _ __.J

I.

Fig. 2
. R 1 typical 5 k.Q
R2 typical 80 n.

7Z66446.2

e
.RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
BDV64

----

BDV64A

BDV64B

Collector-base voltage (open emitter)

-VCBO

max.

60

80

100 V

Collector-emitter voltage (open base)

-VCEO

max.

60

80

100 V

Emitter-base voltage (open collector)

-VEBO

max.

5

5

5 V

- - Collector current (d.c.)

-IC

max.

12

A'

__ Collector current (peak value)

-ICM

max.

20

A

Base current (d.c:)

-IB

max.

0,5

A

Total power dissipation up to T mb = 25 °C

max.

125

W

Storage temperature

Ptot
T stg

- 65 to + 15.0

°C

Junction temperature

Tj

max.

150

°C:'

THERMAL RESISTANCE
From junction to mounting base

Rthj-mb

* Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction tern'perature of the output transistor part is taken into account.

2

April 1979

~r

°C/W*

BDV64
BDV64A
BDV64B

Silicon Darlington power transistors

CHARACTERISTICS
Tj = 25 °C unless otherwise specified.
Collector cut-off currents
IE = 0; -VCB = -VCBOmax
IE = 0; -VCB = -% VCBOmax; Tj = 150 °C
IB = 0; -VCE = -% VCEOmax
Emitter cut-off current
IC = 0; -VEB = 5 V

-ICBO
-ICBO
-ICEO

<
<
<
<

D.C. current gain*
-IC = 1 A; -VCE = 4 V
-IC=5A;-VCE=4V
-IC= 10A;-VCE=4V

typo

>
typo

~OO /lA

2 mA
mA
5 mA
1500
1000
1000

Base-emitter voltage*
-IC=5A;-VCE=4V

-VBE

<

2,5 V**

Collector-emitter saturation voltage*
-IC= 5 A; -IB = 20 mA

-VCEsat

<

2 V

Collector capacitance at f = 1 MHz
IE= Ie =O;-VCB'" lOV

Cc

typo

200

Cut-off frequency
-IC=5A;-VCE"'4V

fhfe

typo

100 kHz

Diode, forward voltage
IF'" 5 A

VF

typo

1,8 V

Switching times (see also Fig. 4)
-ICon = 5 A; -IBon = IBoff = 20 mA;VCC= -16 V
Turn-on time
Fall time
Turn-off time

ton
tf
toff

typo
typo
typo

0,5 /lS
1,0 /lS
2,0 /lS

pF

* Measured under pulse conditions: t < 300 /lS; 0 < 2%.
** -VBE decreases by about 3,6 mV/8C with increasing temperature.
7Z77491

90
-i s (%)

--\r

10

---

90

---

-I son
..

LiIB~'
------

-ic
(%)

10

o

---- Ij --.----- --

-ton

-Icon

-

~

-tf
-+

toff

\-

--

t

Fig. 3 Waveforms showing ton; ts + tf = toff.

January 1978

3

BDV64
BDV64A
BDV64B

l_._ __
Vee

v;]J

o•
t

--+--1

Fig. 4 Switching times test circuit; Vee = -16 V;
VIM = 16,5 V; tr = tf = 11;) ns; tp = 10 p.s; T = 500 p.s.

-

4

January 1978

(

BDV64
BDV64A
BDV64B

Silicon Darlington power transistors

7Z77496 1

-Ie
(A)

{) '" 0,01

-ICMmax
-I

I

~"
,~
, ,

I

KI

Cmax

,

"

f"

", "

r-

1'\

l'" "
, , I""
'" "'" r-...,
'\1\ \ '"
r\.
(1~

10

I'

"

t P '"
0,05 ms

0,1

\\ \ \ \1\ !\

""I\~.\\ ,\ \ \1\
1\

I

0,2

\~rll\ ~I\

1

(~~~

1\1\

0,5

1\

~~

2

l\
'1\ 1\
~

5
10
20

.--

d.c.

BDV64 _ l BDV64A ;-1BDV64B ;-.1-

10- 1
1

10

-VCE(V)

Fig. 5 Safe Operating ARea; T mb ~ 25 0C.
I
II

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.

(1) Ptot max and Ppeak max lines.
.
(2) Second breakdown limits (independent of temperature).

I

(APril 1979

5

BDV64
BDV64A
BDV64B

l""-----________
n6725H

100

P tot max

,
\.

(010)

\

75

,

~

I\,
~.

"

1\

50

\

,

\.

~

25

\

,
\..

100

50

"

150
Tmb(OC)

Fig. 6.

---

7Z77494

10

8=1
~

~.75
0,5

===...........
;::::::: ~
.....- r-

10- 1

-

'\.

0,33
0,20
11
10 1

r-'

~

0 . ~ ~ .......... 10-

--

--

Ii
~

~ ~~
~

.,...

"'" ~~,05

~

10- 2 F= ~:,02
0,01
f::::=
t--- =0

JlSL
_I
1

tp

tpl ___

10- 3
10- 3

--T10- 2

10- 1

10
Fig. 7 Heating-up curve.

6

January 1978

10

2

t

8=-

p (ms)

T

10

3

BDV64
BDV64A
BDV64B

Silicon Darlington power transistors

7 Z7 7493

MSB(I)

10

~
-

I/0 =0
1/0,01
1/0,02
blO,05

vO,l

~~

/

r-...~

~ t:=:=§t::-

r------ ~
r
033

---..::

0,50
0,75

f----

1
10- 2

~ ~b
-I-- I-t-r-.
-I--

-

~

10- 1
1
10
Fig. 8 S.B. voltage multiplying factor atthe -ICmax level.

102

tp (ms)

7Z77495

I

~

~0,02
~

I

d05
r---:~

r-

r-.

~

f--

~

i'"'--

""t0,1
10
f--

f--

0,2

0,33
0,5
0,75

1
10- 2

'"
-

~
r---.....

'"

~"
"

I'"

""-

r-t-I"'- I-t-

~

..........",.

'"
~ t::::: ~ t:1'--~

-

l""-

t-- I -II-t-

~

---§~

10

tp (ms)

Fig. 9 S.B. current mUltiplying factor at the -VCEOmax level (100 V).

January 1978

7

'l

BDV64
·BDV64A
BDV64B

'-----------------------------------~---------7Z77497

10

7Z77498

2

I

/

If

-Ie

1/

(V)

I

I

/

-VCEsat

·1/

(A)

,I

,

J

V

V

If

. typ

5

typ

/

/

j

I/'

II

/

lL

/

1/

/

,/
1/

/
~

o

2

1,5

1

o

2,5
-VBE (V)

-

Fig. 10 - VeE = 4 V; Tj = 250C.

o

5

Fig. 11 -Ie/-IB

10. -Ie (A) 15

= 250; Tj = 25°C.
7Z77492

10 4

,.

V

y'-"

/

V

/

-r--...

~

"
~

--

......

V
,""

"\
'r\

Tj=150oe
~

25°C

/

/

V

/

/

./

v
/

L

/

10'

Fig. 12 Typical values; -VCE

8

= 4 V.

-Ie (A)

_ _ _J

BDV65
BDV65A
BDV65B

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications. P-N-P complements are BDV64, BDV64A and BDV64B. Matched
complementary pairs can be supplied.
QUICK REFERENCE DATA
BDV65
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)

BDV65A

BDV65B

VCBO

max.

60

80

100 V

VCEO

max.

60

80

100 V

Collector current (peak value)

ICM

max.

20

A

Total power dissipation up to T mb = 25 °C

Ptot

max.

125

W

Junction temperature

Tj

max.

150

°C

typo

1500
1000

D.C. current gain
I C = 1 A; V CE = 4 V
IC=5A;VCE=4V

>

Cut-off frequency
. IC = 5 A; V CE = 4 V

typo

--

kHz

70

Dimensions in mm

MECHANICAL DATA
_15,2_

Fig. 1 SOT-93.

l,6-

max

Col lector connected
to mounting-base.

max

-- 2,--

4,4

t1
21
max

12,7
max

-~

LIC;::;:=:;t===;:?I

Wit~

dimensions
this zone are
uncontrolled

j
.

--i

I

13,6
min

cie,
~
.. '~ 1-- _1,1--l~lo.s®1
b .

'.
L \ill----

',15

0,95

I

Accessories supplied on request: 56368 (see also data sheet Mounting instructions SOT-93J.

April 1979

1

l_________

BDV65
BDV65A
BDV658
CIRCUIT DIAGRAM

.------~......--I--c
b-~p-----f

I
I

! ________
R1
R2
L
_

Fig. 2.
Rl typical 5 kn
R2 typical 80 n.

7Z66 ....S.2

e
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
BDV65
Collector-base voltage (open emitter)

BDV65B

VCBO

max.

60

80

100 V

Collector-emitter voltage (open base)

VCEO

max.

60

80

100 V

Emitter-base voltage (open collector)

VEBO

max.

5

5

5 V

.IC

max.

12

A

ICM

max.

20

A

Base current (d.c.)

IB

max.

0,5

A

Total power dissipation up to T mb = 25 °C

max.

125

W

Storage teinperawre

Ptot
Tstg

Junction temperature

Tj

max.

-.. Collector current (d.c.)
-.. Collector current (peak value)

--

BDV65A

- 65 to

+ 150

150

°C
oC*

THERMAL RESISTANCE
From junction to mounting base

Rthj-mb

* Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.

2

April

1979)(

°C/W*

BDV65
BDV65A
BDV65B

Silicon Darlington power transistors

CHARACTERISTICS
Tj = 25 0C unless otherwise specified.
Collector cut-off currents
IE = 0; VCB = VCBOmax
IE = 0; VCB = %VCBOmax; Tj = 150 °c
IB = 0; VCE = %VCEOmax
Emitter cut-off current
IC=0;VEB=5V

ICBO
ICBO
ICEO

D.C. current gain*
IC= 1 A; VCE = 4 V
IC= 5 A; VCE = 4 V
IC=10A;VCE=4V

<
<
<

400 /lA
2 mA
mA

<

5 mA

typo

>
typo

Base-emitter voltage*
IC= 5 A; VCE = 4 V
Collector-emitter saturation voltage*
IC = 5 A; IB = 20 mA

. VCEsat

1500
1000
1750

<

2,5 V**

<

2 V

Collector capacitance at f = 1 MHz
IE = Ie = 0; VCB = 10 V

Cc

typo

Cut-off frequency
IC= 5 A; V CE = 4 V

fhfe

typo

70 kHz

Diode, forward voltage
IF = 5A

VF

typo

1,2 V

Switching times (see also Fig. 4)
ICon = 5 A; IBon = -IBoff = 20 mA; VCC = 16 V
Turn-on time
Fall time
Turn-off time

ton
tf
toff

typo
typo
typo

0,5 /lS
1,5 /lS
2,5 /lS

150 pF

* Measured under pulse conditions: tp < 300 /lS; /) < 2%.
** VBE decreases by about 3,6 mV/oC with increasing temperature.

90

i s (%)

- -

~- r_-._-_-_-_-_-_-I-- Ison

7Z77499

\

10 ~--_i---------~~~~----

90

ic
(%)

10

--

o ~--~~------_+--~~---ton

I(

Fig. 3 Waveforms showing ton; ts + tf == toff'

January

1978

3

l'----___

BDV65
BDV65A
BDV65B

Vee

;r
+vJ7;

6,5 V
7Z76906

Fig. 4 Switching times test circuit; VCC = 16 V;
V I M = 16,5 V;tr = tf = 15 ns; tp = 10 IlS; T = 500 IlS.
Turn-off breakdown energy with inductive load (see also Fig. 5).
ICon = 6,3 A; .,...1 Boff = 0; tp = 1 ms; T = 1QO ms

E(BR)

vert.
oscilloscope

-0hor.
osci lIoscope
7Z73170

Fig. 5 Test'circuit;,V1 = 12 V; RB = 270 n.

4

Janua~

1978

If

>

100 mJ

BDV65
BDV65A
BDV65B

Silicon Darlington power transistors

7Z77500 1

IC

(A)

,

0=0,01

ICMmax

I

~~
"-

ICmax

X l"-"\:

10

""

"" ,
II

,
"\

r-..

~ t\ i\
"-

1'..,1'.. ,

"'" "" "" '\..
( 11'
,,,,t'\.t\.
'\..

"""'"r\\'"

"

I

1\

"

0,1

t....

1\

tp=

0,05ms

~

S 1\ '\
1\~l\ 1\1\
(~ ~~"

"

1\ \
,\1\

0,2

0,5

2

5
10

r\

20

-

d.c.
\

10- 1
1

10

BDV65-BDV65A - I BDV65B- - I VCE(V)

Fig. 6 Safe Operating ARea; T mb .;;;; 25°C.
I
II

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation

(1) Pto t max and Ppeak max lines.
(2) Second breakdown limits (independent of temperature).

5

l'

BDV6S
BDV65A
BDV65B

'-~--------~----------------------------------7Z67257l

100
P tot max

,
~

(0/0)

\

'" \.

75

,

~

\.

50

~

\

,

~.

\.

25

,

1\

I\,

\
50
Fig. 7.
7Z77494

10

--

cS =

1

~ ~,75

0,5
-== =0,33

:::::::::

10- 1

--

-

0'10
,

-

I---

~~

~

?::?'

....... t:: "'fo'

...

t

•

k-'"

K?,05
§~~,02
'""""

10- 2

t"""_0,20

~

0,01

1==~'O

---'LJL
-Itpl-

--T-

10- 3
10- 3

10- 2 .

10- 1

10
Fig. 8 Heating-up curve.

6

~

January 1978

(

I

tp

[)=-

T

--~~-----------.---.--------------

BDV65
BDV65A
BDV658

Silicon Darlington power transistors

7 Z77493

MSB(I)

10

~
-

°

;8 =
~,01

1/0,02
vO,05
;to,1

~~
/ ~~

~ :::::::§;:t;::
r-

~ ...Qd.

-=----

;::-....
~

---:: ~ ~~

033
0,50
0,75

-r-r-

1

--r-._

~

'-

10- 1
10
Fig. 9 S.B. voltage multiplying factor at the IC max level.

10- 2

tp (ms)

7Z77495

I

rq:
~O,02
.,......."

.......

r--.

d05
I---.-.:~

~

c--

r-.
t--

0,1
10
t------

r-

0,2

0,33
0,5
0,75

1

10- 2

~

~

~ r--..... ,~
i"oo.

-

..... .....

r-.
r-

- .... t--

~.

".................
r-.....

- --I- .::::::::~ ;::::f:::t-.
- r---

-

:::: ..... t--

~::I-

~

~
10

tp (ms)

Fig. 10 S.B. current mUltiplying factor at the VCEOmax level (100 V).

January 1978

7

l

BDV65
BDV65A
BDV658

..

'---------------------------------------~---7Z77502

7Z77503

10

2

I

7

,

J

Ie

veEsat

II

(V)

J

(AI

7

/'

1

/1"

7

/

typ ·1

l

5

I"

J

Vtyp

./

II

1/

1/
II
II

o

1/
1

o
1,5

2 V

BE

(V) 2,5

Fig. 11 VeE=4V;Tj=~50e.

o

5

, 10

Fig. 12 lellB = 250; Tj

It (A)

=25°C.
7Z77501

--l/~

i.o'~

,........1'"

V

~)...

./

--V

.~
~

;/

I-""""

~ ~t...
~

T j =250C

~

150°C

~

./

,/

./

/

/

V
10
Fig. 13 Typical values; VeE = 4 V.

J.nua~19781 (

le(A)

15

BDX35
BDX36
BDX37

J

----------------------------------------------------'

SILICON PLANAR EPITAXIAL POWER TRANSISTORS

N-P-N transistors in TO-126 plastic envelopes intended for high current switching applications, e.g.
inverters, and switching regulator circuits.
QUICK REFERENCE DATA
BDX35

BDX36

BDX37

Collector-base voltage (open emitter)

VCBO

max.

100

120

120

V

Collector-emitter voltage (open base)

VCEO

max.

60

60

80

V

Collector current (peak value)

ICM

max.

10

10

10

A

Total power dissipation
up to T mb = 75 °C

Ptat

max.

15

15

15

W

D.C. current gain
IC = 0,5 A; VCE = 10 V

hFE

>

45

45

45

Collector-emitter saturation voltage
IC=5A;IB=0,5A

VCEsat

<

0,9

0,7

0,9

V

toff

typo

350

350

350

ns

. Turn-off time
ICon = 5 A; IBon = -IBoft = 0,5 A
MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-120 (SOT-32)
Collector connected
to the metal part of
the mounting surface

1""7,8 max

a

--I

-7h.~
~

+

3,2
3,0

+

11,1

i

max

'--n---IIr--Tr-_1

r-

15,3

min

e

....II0,5....

max

7ZS9324.2

I....
~

~

(1) Within this region the cross-section of the leads is uncontrolled.
also chapters Mounting instructions and Accessorie.s.

Se~

1

b 'f"-----'-

C

II.. , ,

0,8s...

I(

Mareh 1979

---

l______- - -

BDX35
BPX36
BDX37
RATINGS

Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages

BDX35

BDX36

Collector-base voltage (open emitter)

VCBO

max.

100

120

120 V

Collector-emitter voltage (VBE = 0)

VCES

max.

100

120

120 V

Collector-emitter voltage (open base)

VCEO

max .

60

60

80 V

. Emitter-base voltage (open collector)

VEBO

max.

5

V

IC

max.

5

A

Collector current (peak value)

ICM

max.

10

Base current (d.c.)

IB

max.

A
A

Base current (peak value)

IBM

max.

2

A

Reverse base current (peak value)

-IBM

max.

2

A

Total power dissipation
uptoTmb=75 0 C
up to Tamb = 25 °C

Ptot
Ptot

max.
max.

15
1,25

W
W

Storage temperature

T stg

Collector current (d.c.)

Junction temperature

. T·J

-65 to
max .

BDX37

+ 150

150

°C
°C

THERMAL RESISTANCE

--

From junction to mounting base

Rthj-mb

From junction to ambient in free air

Rthj-a

5

oC/W

100

oC/W

/'

2

Maroh

1979

1r

.

..... ~...I-L'"~~",J,.I,....J.'_

BDX35
BDX36
BDX37

Silicon planar epitaxial power transistors

I

CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
'E=0;VCB=80V
'E = 0; VCB = 80 V; Tj = 100 0 C
'E = 0; VeB = 100 V
'E = 0; VeB = 100 V; Tj = 100 °C

BDX35
BDX35
BDX36/37
BDX36/37

Emitter cut-off current
'e=0;VEB=4V
IC = 0; VEB = 5 V
D.C. current gain
IC = 0,5 A; VCE = 10 V
Collector-emitter saturation voltage
IC=5A; 'B =0,5A
IC = 7 A; 'B = 0,7 A
IC = 10 A; '8 = 1 A
Base-emitter saturation voltage
IC=5A;IB=0,5A
IC = 7 A; 'B = 0,7 A
'C= lOA; '8= 1 A
Collector capacitance at f = 1 MHz
-IE = Ie = 0; VCB == 10 V
Transition frequency at f::: 35 MHz
IC = 0,5 A; VCE = 5 V; Tamb = 25 °C
Turn-off time
Ie = 5 A; 'Bon = -IBoff = 0,5 A

ICBO
'CBO
'eBO
'eBO

<
<
<
<

10
50
10
50

'EBO

typo

<
<

5 nA
10 p.A

'EBO
hFE

JlA
JlA
JlA
JlA

1 mA

BDX35/36
BDX37

hFE

45 to 450
typo
130
typo
80

BDX35/37
BDX36
BDX35/37
BDX36

VCEsat
VCEsat
VCEsat
VCEsat

<
<
<
<

0,9
0,7
1,2
1,5

BDX35/37
BDX36

VBEsat
VBEsat
VBEsat

<
<
<

1,6 V
1,8 V
2,2 V

Cc

typo

<

40 pF
60 pF

1,-

typo

100 MHz

toff

typo

<

350 ns
800 ns

~FE

'J.i

~

(

Maroh 1979

V
V
V
V

3

l

BDX35
BDX36
BDX37

'rl'

~--

I,

7Z67998'

0= 0,01

10 I CMmax ,

A

'\.

'\.

'\.

~

~

I'\.

ICmax

'\
......

~

"r\.

Ptot max-

~

..:'I.

~

['.. ,~

"

I'.

-"-'

~

'''I

~

~

"' ~"I
~

'\ '\..
:-.~ ~ 1\ f'\,

"

~~ ":--.

~""\
"

\

,

R\\~

I

~

-~

.~

~

second
breakdown 1)

\ f\
\ r'\

100 ~s

~

~~

J

,

~~

\ l\\

\

\

!\ _\

I'

~ 1\
~

-=
--

~

\.

~

1\

~
Tmb ~ 7S

BDX35
BDX36- r- ~

°c

I

BD~37
I

10-2

1

20 o ~s

~\

\ 1\',1\,f\1\
\
f\ 1\
1

n

\

~ ~

\

tp

......

:II

~

-.l

'\

\

1\

10

1\ 50 o jJs

1\

II

1m S
jJ
-1

2 ms

5 ms

1\

~ 1.~

~

Fig. 2 Safe Operating Area with the transistor forward biased.
I Region of permissible d.c. operation
II Permissible extension for repetitive pulse operation.

1) Independent of temperature .

.4

•

BDX35
BDX36
BDX37

Silicon planar epitaxial power transistors

7Z78885

100
Ptat max
(%)

75

,

..,

~

~

\

,

\.

i

\

\

1\

.

11

1\

Tamb \
~

50

,

Tmb'- I--

~

~

,

~

J

I\,

25

I~

~

,.

~11

~~
~

j

50
Fig. 3 Power derating curve.
.-

----

7Z72461

J1Sl
-lt~I-1
_T_

6=!£.

T

10

6=1

~

I

....

0,5

J,2
1

I

0,1

ioo'

1..00' ... 1-'1-'
10-"",,1-'

~

t'"

I""""

~...-

--

~~
~~
"

0,01

1

10

Fig. 4 Pulse power rating chart.

If

Mareh1979_

5

-

l

BDX35
.'BDX36
'BDX37

----

'--'-~

7Z72462

S.B. voltage multiplying factor at the Icmax level

MV

10
5=0,01 '"
I

"
p,2 ..... "'1-

p" - ........ ... ""

~

~~
~

~ ~ ~ -.110.

--

hs

I"'" f=~
1-1"'- i""r-

~ ~ t-,-.......:::::

-

1

10- 2

~

10

tp (ms)

Fig."5 S.B. voltage multiplying factor at the ICmax level.

----

7Z72463

S. B. current multiplying factor at the VCEOmax level
5= 0,011~

0"1

",

-,

~

O'f~
0,5,),(
""

"

,

10

~ ~ "-

<,

-"-

,

'" '"

~

.......

~

~~

~

""'""
I

"-

~~"

~~
~

'"

.....

~~

.... r-...

-

1

10-2

tp (ms)

Fig. 6 S.B. current multiplying factoranhe VCEOmax level.

6

~Mar_Ch1&:J(

.,

10

BDX35
BDX36
BDX37 '

Silicon planar epitaxial power transistors

07539

07538

10

10

Ie lie =10

.1

Tj =25 °C

le/le =10
5

5

Tj =25 °C

veE sat

VBe sat

IV)

IV)

J
MaxJor
eDX36
only

~~.~

~II

~

-'

"1

~\"i" ~ Ii
_,~i-'S'L L

'i""

~
I""

I--- ~

- ---

,,'

~"i-"

100-"'"

~ \'19

-~'
~C>
~~y !(

V

,,11

1;'

,~~~~~ ,I

;'~ ~

,':~~

~

2

V
0.1

I

0.1
1

10

lelA)

Fig. 7 Collector-emitter saturation voltage as
a function of the collector current.

1

10

lelA)

Fig. 8 Base-emitter saturation voltage as
a function of the collector current.

0753&

1000

Vee = 80V BOX35
~~
Vee =100V BOX 36137 tt---

5

leBO
(jJAI

/

2

ft

V

100
maxl£
1.

"I"

'- ~

10

',11

I

~

typ II~
~
~

,2

0.1

..... ~

o

~

l/

Fig. 9 Collector-base current with an open
as a function of junction temperature.

emi~ter

50

March 1979

7

BDX35
BDX36
BDX37
07537

I

I

I

VeE =2V
Tj = 25·C

typo BDX3~/36

100

-

I I IT

~~

typ BDX37
I

100.

I
,I

...... "'"

min

~

"

...........

~

~
~

~

.............

~

""- ~"'" "'~
I'~ 1'1"

~

""

"

......
Above 7A min. ~I'"
for BDX36 only- r-~ ~I~

10

1

I

1

1
7

1.0

0.1

10

Fig. 10 D.C. current gain as a function of collector current.

8

Ma~h 1979,(

Ie (A)

_ _ _J

BDX42
BDX43
BDX44

N-P-N SILICON PLANAR DARLINGTON TRANSISTORS

Silicon n-p-n planar Darlington transistors for industrial switching applications, e.g. print hammer,
solenoid, relay and lamp driving. Encapsulated in a TO-126 plastic envelope with collector connected
to the heatsink.
P-N-P complements are BDX45, BDX46 and BDX47 respectively.

QUICK REFERENCE DATA

Collector-base voltage (open emitter)

VCBO

max.

Collector-emitter voltage

VCER

max.

Collector current

IC

max.

Total power dissipation
up to Tamb = 25 °C
up to T mb = 100 °C

Ptot
Ptot

max.
max.

D.C. current gain
IC == 500 mA; VCE = 10 V

hFE

IC == 1 A; IB = 1 mA

VCEsat

IC == 1 A; IB = 4. mA

BDX42

BDX43

60

80

100 V

45

60

80 V

BDX44

1 A
1,25
5

1,25
5

>

2000

2000

VCEsat

<
<

1,6

toff

typo

1,25 W
5W
2000

Collector-emitter saturation voltage

. Turn-off time
IC == 500 mA; IBon =-IBoff=0,5mA

1,6

1500

Collector connected to the
metal part of mounting
surface.

1500 ns

1500

MECHANICAL DATA
Fig. 1 TO-126.

V
1,6 V

Dimensions in mm

27
. 1
...1 max
....

,

'.... 7.amax ...'

.~.~
~

3.2.
3.0

+

11.1

i

. max

'--rT---1Ir--rr_J
r

15.3

min

...0.511.(1) Dimensions within this zone are uncontrolled.

e
0.88__

C

max

!

b,+,'-------,-

11.... . ,

1.-

~
12.291

I7ZS9324.21
08276

See also chaptersMounting Instructions and Accessories.

March 1979

l____________

BDX42
BDX43
BDX44

r---....:......----,c
I

L_____
7Z64481.1

e

_J

Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BDX42

-

BDX43

Collector-base voltage (open emitter)

VCBO

max.

60

80

Collector-emitter voltage *

VCER

max.

45

60

Emitter-base voltage (open collector)

BDX44
100 V
80

V

VEBO

max.

5

V

Collector current (d.c.)

IC

max.

1

A

Collector current (peak)

'CM
IB

max. ,

2

A

max.

0,1

A

max.
max.

1,25
5

W
W

Storage temperature

Ptot
Ptot
T stg

-65 to + 150

oC

Junction temperature **

Tj

max.

150

oC

100

°C/W

10

°C/W

Base current (d.c.)
Total power dissipation
up to Tamb = 25 °C
up to T mb = 100 °C

THERMAL RESISTANCE **
From junction to ambient

Rthj-a

From junction to mounting base

Rth j-mb

External RBE not to exceed value shown in Fig. 12.
Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.

2

(
1

~a~h 1979

BDX42
BDX43
BDX44

N-P-N silicon planar Darlington transistors

CHARACTERISTICS
Tj = 25 0c unless otherwise specified
Collector cut-off current
VBE=0;VCE=45V

BDX42

ICES

VBE = 0; VCE = 60 V

BDX43

ICES

VBE=0;VCE=80V

BDX44

ICES

<
<
<

Emitter cut-off current
IC = a'; VEB = 4 V

lEBO

<

D.C. current gain
IC = 150 mA; VCE == 10 V

hFE

>
>

IC

= 500 mA; VCE = 10 V

hFE

Collector-emitter saturation voltage
IC = 500 mA; IB = 0,5 mA

VCEsat

I C = 1 A; I B ,,; 1 mA

BDX43

VCEsat

IC = 1 A; IB = 4 mA

BDX42,44

VCEsat

= 500 mA; IB = 0,5 mA; Tj = 150 oC
IC = 1 A; IB = 1 mA; Tj = 150 oc
IC = 1 A; IB = 4 mA; Tj = 150 oc

Ie

VCEsat

<
<
<
<
<
<

10 J1A
10 J1A
10 J1A
10 J1A

1000
2000
1,3 V
1,6 V
1,6 V
1,3 V

BDX43

VCEsat

BDX42,44

VCEsat

BDX43

VBEsat

BDX42,44

VBEsat

<
<
<

hfe

typo

Turn-on time

ton

typo

400 ns

Turn-off time

toff

typo

1500 ns

Turn-on time

ton

typo

40.0 ns

Turn-off time

toff

typo

1500 ns

Base-emitter saturation voltage
IC = 500 mA; IB = 0,5mA
I C = 1 A; I B = 1 mA
-IC = -1 A; I B = 4 mA
Small signal current gain
IC = 500 mA; VCE = 5 V; f

= 35 MHz

VBEsat

1,8 V
1,6 V
1,9 V
2,2 V

-

2,2 V
10

Switching times (see also Fig. 3 and Fig. 4)
IC = 500 mA; IBon = -IBoff = 0,5 mA

IC = 1 A; IBon = -IBoff = 1 mA

Jf~reh

1979

3

l

BDX42
BDX43
BDX44

-2,2 V

+10V

6IJs

S
+3

TI
1"'---1

ICon
ISon

=SOOmA
= -I S0ff = O,SmA
7Z7206S.2

Fig. 3 Test circuit for 500 mA switching.

-E-

,-~------

-

ton

I-

1

OUTPUT

- --

..

t

1
1
1
1
1
I
1

90 %

~10% ~

----

i

1-- I

td

tr

I-

Fig. 4 Switching waveforms.

4

-

toff

ts

-t f

t

7Z72064

BDX42
BDX43
BDX44

N-P-N silicon planar Darlington transistors

06021

7Z67586 1

Ptot
max
(W)

I

5.0
~1-

f-ff-f-

Ic

I--

VeE = 10 V

(rnA)

I--

lj = 25 °c

I
II

J

I'~. ~ f--f-' f-f-

,%-

4.0

II

f-fo'-f1\ .-f1\

1\

n

\ £-~

3.0

typl
i\

\
1

2.0

~I)

II

10

,

\
.-

7

1/

/

...... """ J-q"'b">lo.

1.0

....

o

o

-50

50

""O·e

f--~

;;-"", f-f-I\-

1I 'I "
\
I r.... """
...... ~
1 1 II
100 T("C) 150

_/

1

VV

V

0,5

1,5

7Z67585 1

i--i---

2

Fig. 6.

Fig. 5.

i---

VSE (V)

7Z72907

60

VeE = 10V
1j = 25 °c

-f-

1

1

I

I

VCE =10V

-f-f- typo values

typ
40

~

./

,- VI-"
V

r-,
min ...

./

/

V

V

Ic =,5~0,m,~

20

I J;"l

~

.J.oo1' 1 1
J..,. ...

..... "'"

I

150 rnA

L.,...

J..,.o
J..,.oi-"'

"",i-"'

10

10- 2

1 Ie (A) 5

Fig. 7.

o
o

100

200

Fig. 8.

jf~reh

1979

5

l____

BDX42
BDX43
BDX44

06620

06619

Ie

I-:-

(rnA )~

B DX42,43, 44
---BDX43

Ie
(rnA)

f-- f-f-- I-:t-- t--

t-t--

Tj

1000
I--

51-- I-:-

2

100 I-- t)'P

t--

5

rnA) ~. mAj

Irt

j

1/

~

7 t--

IS=4 ~"=0."4l:

1/

--=

~ Is= 0.5 r-. ~-:4
rnA
rnA

t-t--

.1

lell 8=1000 I-- I-:-

~tYJ J

max

5

5

-0.5

i

max'

1

J

1.5

1.0

1.5 VeE(sat) (V)

-'-

Ii

10
1.0

Fig. 9.

2.0

Fig. 10.

--

7Z72061

VeE

=5

V

f = 35 MHz

lj = 25°C

-

typ

10

L

V

~ ... i"'

1
10

~

'r\.

Ie (rnA)

Fig. 11.

-

lei 18 =1000 -

U
'I

2

~

1/-

~

.l

I

I

.L

1~

IVt pV

typ

100
7

~1 -r--:;"

~J

2

If

7

2

6

t--

;-- t-I-:-I-:-

Tj = 2S·C

=.25·C

1000

10

-

2

2

7

B DX42,43, 44
---BDX43

I-:-

VSE(sat) (V)

BDX42
BDX43
BDX44

N-P-N silicon planar Darlington transistors

7Z72903

max. external RBEvs T j for thermal stability

.....

""'"

r'-'-'--"c

......

"- ........

.......

"-

~I
~~dll._._. J
.

", ,
"
.....

-

I

,~

.
I

e .

~
1"00.

""

......
......

.......
........

100

50

" '"~

.....

,,

~ .......
150

Fig. 12.

March 1979

7

________________________________Jl__~-i-g-~-!~----P-N-P SILICON PLANAR DARLINGTON TRANSISTORS

Silicon p-n-p planar Darlington transistors for industrial switching applications, e.g. print hammer,
solenoid, relay and lamp driving. Encapsulated in a TO-126 plastic envelope with collector connected
to the heatsink.
N-P-N complements are BDX42, BDX43 and BDX44 respectively.

QUICK REFERENCE DATA
BDX45

BDX46

Collector-base voltage (open emitter)

-VC80

max.

60

80

Collector-emitter voltage

-VCER

max.

45

60

Collector current

-IC

max.

Total power dissipation
up to Tamb = 25 oC
uptoT mb=100 0C

Ptot
Ptot

max.
max.

D.C. current gain
-IC = 500 mA;-VCE = 10 V
-VCEsat
-VCEsat

<

Turn-off time
-IC = 500 mA; -IBon = 180ff = 0,5 mA

toff

typo

100 V
80

V

. 1 A

>

Collector-emitter saturation voltage
·-IC = 1 A; -18 = 1 mA
-IC= 1 A;-18=4mA

BDX47

1,25
5

1,25
5

2000

2000

<

2000

1,6

V
1,6 V

1500

1500n5

1,6
1500

1,25 W
5W

MECHANICAL DATA

Dimensions if! mm

Fig. 1 TO-126.

,

Collector connected to
the metal part of mounting
surface.

1--7.8maxl

-~.~
~

3.2
3.0

11.1

IT
-r

+

' ' 1.2·

15.3

min

JI...
0.5

e
0.88__
max

C

---:.1

bljl' _ _

11_ . .
=.l I...

17ZS9324.21
08276

~

(1) Dimensions within this zone are uncontrolled
See also chapters Mounting Instructions and Accessories.

March 1979

"SOX45

BDX46
BDX47

"r - - - - -.- .; ..,
C

I

e

1Z72904

Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)

---

Collector-base voltage (open emitter)

--

Collector-emitter voltage *

BDX45

BDX45

-VCBO

max.

60

80

BDX47
100'V

-VCER

max.

45

50

80 V
V

Emitter-base voltage (open collector)

-VEBO

max.

5

Colleetorcurrent Cd.c.)

-:-IC

max.

1

A

COllector current"'Cpeak)

-ICM

max.

2

A

Base current (d.c.)

-18

max.

0,1

A

Ptot
Ptot
T stg

max.
max.

1,25
5

W
W

-65 to + 150

Tj

max.

°C
'oC

Total power dissipation
up to Tamb =25 0 C
up to tmb = 100 0C'
Storage tempetature
Junction temperature**

150

THERMAL "RESISTANCE **'
From junction to ambient

Rth j-a

From junction to mounting base

Rth j-mb

100'
19

* External RSE not to exceed value shown in Fig. 12.
** Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part istakeninto account.

2

March 1979

r

°C/W
OC!W

BDX45
BDX46
BDX47

P-N-P silicon planar Darlington transistors

CHARACTE R ISTICS
Tj = 25 oC unless otherwise specified
Collector cut-off current
VBE = 0; -VCE =45 V

BDX45

-ICES

VBE=0;-VCE=60V

BDX46

-ICES

VBE =0;-VCE=80V

BDX47

-ICES

<
<
<

10 IlA

Emitter cut-off current
IC = 0; VEB = 4 V

-lEBO

<

10 J.l.A

D.C. current gain
-IC = 150 mA; -VCE = 10 V

hFE

-IC = 500 mA; -VCE = 10 V

hFE

>
>

Collector-emitter saturation voltage
-IC = 500 mA; -IB = 0,5 mA

~VCEsat

-IC = 1 A; -IB = 1 mA

BDX46

-VCEsat

-IC= 1 A;-IB=4mA

8DX45,47

-VCEsat

-IC = 500 mA; -18 = 0,5 mA; Tj

= 150 0C

= 1 mA;Tj = 150 0c
-IC = 1 A; -IB";; 4 mA; Tj = 150· o c
-IC =1 A; -IB

"':"VCEsat
8DX46

-VCEsat

BDX45,47

-VCEsat

Base-emitter saturation voltage
-IC = 500 mA; -IB =0,5 mA
-IC = 1 A;-IB =1 mA

= 4 mA

<
<
<
<
<
<

10 IlA
10 J.l.A

1000
2000
1,3 V
1,6 V
1,6 V
1,3 V
1,8 V
1,6 V

-VBEsat

<

1,9 V

BDX46

-VBEsat

<

2,2 V

BDX45,47

2,2 V

-VBEsat

<

Small signal current gain
-IC = 500 mA;-VCE = 5 V, f = 35 MHz

hfe

typo

Switching times (see also Fig. 3 and Fig. 4)
-IC =500 mA; -IBon =.IBoff = 0,5 mA
Turn-on time

ton

typo

400 ns

. toff

typo

1500 ns

-IC = 1 A; -IBon = I Boff = 1 rnA
Turn-on time

ton

typo

400 ns

Turn-off time

toff

typo

1500 ns

.-IC = 1 A; -IB

Turn-off time

10

March 1979

3

l_________

BDX45
BDX46
BDX47

+2,2V

-10V

9kU
T.U.T.
r-------,.-

---'1

!
!
I

.i
i
i
____ J

-ICon = 500 mA
-I Bon = I Boff = 0,5 mA

7Z72905

Fig. 3 Test circuit for 500 mA switching.

-

toff .

,10%t
90%

7Z72906

Fig. 4 Switching waveforms.

4

March 1979

r

BDX45
BDX46
BDX47

P-N-P silicon planar Darlington transistors

7Z675861A

06021

Ptot

max
(W)

L

-IC
5.0

t--

t--

{mAl

;n'- 1-1-

1

=10 V
1j =25°C

-VCE

II
j

\~"
-= I-t\'
t-t-

~

4.0

I

1-11-1-

II

O"-t-

\ Q-I-

\, z

,
-,

tt-

3.0

typl
l

,

1\

\

2.0

If

1\

"
r"""

1

\

til i.
~ Q06""0.

1.0

/

VoC

t-t-l-

Ij~

I-I-t

r-,...

~11t

,

1 1 I ---"
r""1oJ
1I I
:

o

o

-50

50

II

10

1\

100 T(OC) 150

1 1..".00'
0,5

~

vV"

V
1,5 -VBE (V)

Fig. 5.

~

I---

2

Fig. 6.
7Z67585.1A

I---

IL

7Z72907A

60

~

~

I 1 I 1

-VCE -10V
lj= 25°C

t-t- -V
CE =10V
t-t-

t-t- typo values

typ

,

40

/
~;""

-"

,

",

min

,

/
~

-1 = 500 mA
C I i i J..o'

20

/

r

~

Yr I
... i"'"

... 1-'"
10-' ....

10

10- 2

10- 1
Fig. 7.

150 mA ""'"

""'' ' '

0
1 -I (A)
c

5

0

100

""'"
lj

(oC)

200

Fig. 8.

I

March 1979

5

BDX45
BDX46
BDX47

l'----____08268

08267

-IC (mA

1=

B DX45.46. 47
---BDX46

Tj

--

-IC

--

I-I-I-- -

(rnA)

~

2.

= 25°C
1000

1000
I-- I-5 I-- I--

-le=4

mAl

1

~

J1 i

2

0.5
r- ~ -Is= mA
r-

;=1=

s

-

{jty~ J

max

t p

·100
7

s

-=
=
==

11

L

I
V

2

J

10

1.0

1.0

1.5 -VCE(SQtJ (V)

I.S

Fig. 9.

2.0
Fig. 10.

7Z72061A

-VCE = 5 V
f = 35 ,MHz

lj= 2S °c

- f"1"

typ
~io"

10

1
10

. /"'"""

10 2

Fig. 11.

6

1.

1- -leI-Ie =1000 r-

, ,•

!>

0.5

mA c,..L

I~t p~ mal

J

10

'r(,,=4

Ij

2

7

2

~.L

LI

lc /-I e =1000 l - I--

if

100 I-- hp

Tj ~ 25°C

7-

~;,O. :,
mA~

1

I-BDX4S.46. 47 rr - rr-r---'BDX46,

r--.

-Ic (rnA)

-VeElsatJ (V)

BDX45
BDX46
BDX47

P-N-P silicon planar Darlington transistors

7Z72979

r....

max. external RaE vs T j for thermal stability

.......
.......

r-------'

.......

~

RaE
(U)

I'

"-

[~I
i
i

.......

~x;~

~

"I'

I'

c

I' ~

.

I

", I

L._._.~.j

.......

"

"

I'

"- .......

~

"I'

i'

I' ~

100

50

150

Fig. 12.

March 1979

7

BDX62; 62A
BDX62B;62C

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications: TO-3 envelope, N-P-N complements are BDX63, BDX63A,
BDX63B and BDX63C. Matched complementary pairs can be supplied.
QUICK REFERENCE DATA
BDX62

62A

62B

62C

Collector-base voltage (open emitter)

-VCBO

max.

60

80

100

120 V

Collector-emitter voltage (open base)

-VCEO

max.

60

80

100

120 V

Collector current (peak value)

-ICM

max.

Total power dissipation up to
Tmb= 25 0C

12

A

Ptot

max.

90

W

Junction temperature

Tj

max.

200

°C

D.C. current gain
-IC=0,5A;-VCE=3V
-IC = 3,0 A; -VCE = 3V

hFE
hFE

typo

>

1500
1000

Cut-off frequency
-IC=3A;-VCE=3V

fhfe

typo

kHz

100

Dimensions in mm

MECHANICAL DATA
Fig. 1 TO-3.
Collector connected to case.
-26,6max-

p.1

J

--I j.... 1,6
+
-4,2
_4,0

1
20,3
max

39,S 301

ma'

B,63max ....

1_

J_' _

.... 10,9--

!

t====~+1

+

7Z68064.3! ....

12,B __
11,2

1

See also chapters Mounting instructions and Accessories.

March 1979

BDX62;62A
BDX62B; 62C

l
~----------------------------------------------------

1--------------------:

~---~~~_r-c

I

I

b-~~-__I

I
I

I

Rl typ~ 6 kn
R2typ·80n

I

__ .J
e
Fig. 2 Circuit diagram.
RATINGS
Limiting-values in accordance with the Absolute Maximum System (IEC 134)

==
5:

BDX62

62A

62B

62C

Collector-baSe voltage (open emitter)

-VCBO

max.

60

80

100

120 V

Collector-emitter voltage (open base)

-VCEO

max.

60

80

100

120 V'

Emitter-base voltage (open collector)

-VEBO

max.

5

5

5

Collector current (d.c.)

-IC

max.

8

Collector current (peak value)

-leM

max.

12

Base current (d.c.)

-IB

max.

150

Ptot
T stg
Tj

max.

Total power dissipation up to
Tmb= 25 oC

-

Storage 'temperature
Junction temperature*

max.

5 V
A'
A
mA

90

W

-65 to +200

°C

200

°C

1,94

°C/W

THERMAL RESISTANCE*
From junction to mounting base

~thj-mb

* Based on maximum average junctton temperature in iine with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.

2

Mareh 1979\ (

BDX62; 62A
BDX62B;62C

Silicon Darlington power transistors

CHARACTERISTICS
Tj = 25 0C unless otherwise specified .
. Collector cut-off current
IE = 0; -VCB = -VCBOmax
IE = 0; -VCB = 40 V; Tj = 200 °C; BDX62
IE = 0; -v CB = 50 V; Tj = 200 oC; BDX62A
IE = 0; -VCB = 60 V; Tj = 200 oC; BDX62B

-ICBO

<

0,2 mA

-ICBO-

<

2 mA

1

I

IE = 0; -VCB = 70 V; Tj = 200 oC; BDX62C
-ICEO

<

0,5 mA

Emitter cut-off current
IC = 0; -VEB = 5 V

-lEBO

<

5 mA

D.C. current gain (note 1)
-IC = 0,5 A; -VCE = 3 V

IB = 0; -VCE = -%VCEO

hFE

typo

1500

-IC=

3A;-VCE=3V

hFE

>

1000

-IC=

8A;-VCE=3V

hFE

typo

750

Base-emitter voltage (notes 1 and 2)
-IC = 3 A; -VCE = 3 V

-VBE

<

2,5 V

Collector-emitter saturation voltage (note 1)
-IC=3A;-IB= 12mA

-VCEsat

<

2 V

Collector capacitance at f = 1 MHz
IE= le=O;-VCB= 10V

Cc

typo

100 pF

Cut-off frequency
-IC=3A;-VCE=3V

fhfe

typo

100 kHz

Small-signal current gain
-IC=3A;-VCE=3V;f= 1 MHz

hfe .

typo

100

D.C. current gain ratio of complementary
matched pairs
-IC=3A;-VCE=3V

hFE1/hFE2

<

2,5

--

Notes
1. Measured under pulse conditions: tp < 300 JlS, 6 < 2%.
2. -VBE decreases by about 3,6 mV/oC with increasing temperature.

~ Ma~h
(

1979

3

BDX62; 62A
BDX62B; 62C

l

__________________________________

CHARACTERISTICS (continued)
Switching times
(between 10% and 90% levels)
-ICon = 3 A; -IBon = IBoft = 12 mA
tu rn-on ti me
tu rn-off ti me

ton
toff

tr

7Z77491.1

-+-

90

------- -

typo 0,5 p.s
typo 2,5 p.s

-Is on

- is (Ofo)

10 t - - - - 1 - - - - - - t t - - . , . - - -

90
-ic
(%)

10

--

o ~-~-r_---+-_r+--ton

Fig.3 Switching times waveforms.

---

Vee

-V1M =

-Vee

=

+VBB =
R1
R2
R3
R4
tr = tf

tp
T

10 V
10 V

2,2 V
56
410
560

3

n
n
n
n

15 ns
10 p.s
500 p.s

Fig. 4 Switching times test circuit.
Diode forward voltage .
IF =3 A

4

Ma~h1979l (

typo 1,8 V

BDX62;62A
BDX62B; 62C

Silicon Darlington power transistors

7Z82170

-IC
(A)

0=0,01

-ICMmax

~

""'

10

""-

" "
(1)
~~

ICmax

"'

"

~ \\

tp =
1 ms

(2\1~\
1\

10

\

I

1

'1\

100

!\ WI

---

N
<0

X
0

m

10- 2

I

1

10

10 2

-VCE (V)

Fig. 5 Safe Operating ARea; T mb = 25 oC.
I
II

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.

(1) Ptotmax and Ppeakmax lines.
(2) Second-breakdown limits (independent of temperature).

I(

March 1979

5

BDX62; 62A
BDX62B;62C

l _ ._ _ _ _
727-70841

-IC
(A)

b =:0,01

-ICMmax

I

~,

10

"'

" '" "
(1'""
)' ""

'Cmax

""

II

"r'\

" l\
~

tp
~ 0,1 ms

t:::l=

1--11--1-

1\

\1\1\
1\

1\

I

1

(2)\

I'

--

'\ 10
\

-

100-1--1~

BDX62A~

BDX62B I-BDX62C I--

10- 2

1

, d.c.
I-

10

Fig. 6 Safe Operating ARea; T mb = 25 oC.
I·
II

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.

(1) Ptot max and Ppeak max lines.
.
(2) Second-breakdown limits (independent of temperatur~).

6

Ma~h 19791 (

BDX62; 62A
BDX62B; 62C

Silicon Darlington power transistors

7Z67325

7Z72.448

typo values
VCE - 3V
Pto t max

(%1

100
i"l

I'

- Tj =150oC

""-

........

.JII~"

""

50

~".

/

"

,

I'-

"-

"~

V

~5°C

~~

f

/

"I'
o
o

"

200

100

10

-I C (A)

Fig. 7 Power derating curve.

Fig. 8 D.C. current gain.

----

7Z673331

3

J1IL

•.

-I~~J

6=~
T

6=1

2

--

0,7
~

-

.........-:.:

""

"

... '"

~
~..,.

..

~

~
~:;ii'

~I"'"

i""'"

~

./

--- ....

/

""""
0,2

-

----

O.~

,.",.-

... ""... ~~""
........ ~ ...

.... -

.... 1-

~

illll!1I'

A~
~

'"0,1
0,05
0,01
I
I

10
Fig. 9 Pulse power rating chart.

'I (

March 1979

7

BDX62; 62A
BDX62B;62C

l " , - - - ,_ _ _ _
7Z82175

"'1'

MV

10

0=0,01
~0,1

..........

......

"

"

~ "- "- :".

" ...."

...... ~

0,5

~r-.r-I'-~ r--r--

~~ r--

i'r-r"-I'- ~

-::::::::::: ~ ...::: ::
~

-

::~-

1

10- 1

10

-

tp (ms)

Fig. 10 S.B. voltage mUltiplying factor at the ICmax level.
7Z82176

0=0,01

\
0,02

r---. .............

0,05
~

10

0,1

,

-... r-....

\.

,

""
....

......... ......

'~
......

..........
-0,2
r-

0,5

:---

l"Oo.

........ I"

......
...... ~
............ .......
........

,.....",.

............

-

"

.....

....... ......r--, "'r-t"--I'-o I'-o~~
r-......... t-......
i"'--r-.

I'-or-.~

..............: ----.;:::
~ :;:::

r---

t;::

--- -- --

.......,;; ~ ::::~
~

1

10- 1

10

tp (ms)

Fig. 11 S.B. current multiplying factor at the VCEO 100 V and 60 V level.

8

r--.

...
... ......

~ ::~ ...

::

BDX62; 62A
BDX62B; 62C

Silicon Darlington power transistors

7 Z67316

7267322

6

i

I
I

I I

-IC/-IB=250 r-t1-1Tj = 250C . 1-1-

-VCEsat
(V)

10

-VCE = 3V ITj =25 °c I--

-IC
(A)

4

j

7,5

rT
J

11
7

5

/

if typ

2
1.,.00

j....oo ....

typ

--

.... ~

/

2,5

j....o ....

/

j

I
J

o

_I/'

o

o

5

-IC (A)

V
2

1,5

10

2,5

-VBE (V)
Fig. 13.

Fig. 12.

7Z82155

.......

~

typ

,
\.

\.

\

10

1
1

10

I(

Fig. 14 Small signal current gain at -IC = 3 A; -VCE = 3 V.

Mareh 1979

9

____
', _ _J

-BDX63; 63A
BDX63B; 63C

SILICON DARLINGTON POWER TRANSISTORS

N-P~N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; TO-3 envelope, P-N-P complements are BDX62, BDX62A,
BDX62B and BDX62C. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA
BDX63

63A

63B

Collector-base voltage (open emitter)

VCBO

max.

80

100

120

63C
140 V

Collector-emitter voltage (open base)

VCEO

max.

60

80

100

120 V

Collector current (peak value)

ICM

max.

Total power dissipation up to
T mb = 25°C

Ptot

max.

90

W

Junction temperature

Tj

max.

200

°C

D.C. current gain
IC = 0,5 A; VCE = 3 V

hFE

typo

1500

IC=3,OA;VCE=3V

hFE

>

1000

fhfe

typo

Cut-off frequency
IC = 3 A; VCE = 3 V,

12

A

100

kHz
Dimensions in mm

MECHANICAL DATA
Fig. 1 TO-3.
Collector connected to case.
-26,6max~

Ip,

39,S 301

max

1

_I' _

8'63max

J

1

"-

,

-+[..-1,6
1

-42
4'0

+'

20,3
max

1_
7Z68064,31. . . 12,8

--.

11,2

See also chapters Mounting instructions and Accessories.

I (~~h1979

---

l

BDX63; 63A
BDX63B; 63C

~

'---------------------------------------------------b - . j - -.......- - - I

I·

I

I

I
I
I

!L ________
R1
R2
_

R1 typo
8 kn
R2 typo 100 n

I

7Z66445.2

e
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Collector-base voltage (open emitter)
Collector-emitter voltage (open-base)

63A

63B

63C

VCBO

80

100

120

140 V

60

80

100

120 V

5

5

5

5 V

VCEO

max.

Emitter-base voltage (open collector)

VEBO

max.

Collector current (d.c.)

IC

max.

8

A

Collector current (peak value)

ICM

max.

12

A

Base current (d.c.)

IB

max.

150

Ptot
T stg

max.

Tj

max.

Total power dissipation up to
T mb = 25 °C

--

BDX63
max.

Storage temperature
Junction temperature*

90

mA
W

-65 to +200

oC

200

°C

THERMAL RESISTANCE *
From junction to mounting base

Rthj-mb

1,94

* Based on maximum average junction temperature in line with common industrial practice. The
-resulting higher junction temperature of the output transistor part is taken into account.

2

~

March 1979

(

°C/W

BDX63; 63A
BDX63B; 63C

Silicon Darlington power transistors

CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE = 0; VCB = VCEOmax

ICEO

<
<
<

0,5 mA

Emitter cut-off current
IC = 0; VEB = 5 V

lEBO

<

5 mA

D.C. current gain (note 1)
I C = 0,5 A; V CE = 3 V

ICBO

IE = 0; VCB = Y2VCBOmax; Tj = 200 °c

ICBO

18 = 0; VCE = Y2VCEOmax

0,2 mA
2 mA

hFE

typo

IC=

3A;VCE=3V

hFE

>

1000

IC=

8 A; VCE= 3 V

hFE

typo

2000

Base-emitter voltage (notes 1 and 2)
IC=3A;VCE=3V

VBE

<

2,5 V

Collector-emitter saturation voltage (note 1)
I C = 3 A; I B = 12 mA

VCEsat

<

2 V

Collector capacitance at f = 1 MHz
IE= le=O;VCB= 10V

Cc

typo

100 pF

Cut-off frequency
IC = 3 A; VCE = 3 V

fhfe

typo

100 kHz

Turn-off breakdown energy with inductive load (Fig. 4)
-IBoff = 0; ICon = 4,5 A; tp = 1 ms;
T= 100 ms

E(BR)

>

50 mJ

D.C. current gain ratio of complementary
matched pairs
I C = 3 A; V CE = 3 V

hFE1/hFE2

<

2,5

Notes
1. Measured under pulse conditions: tp < 300 IlS, [) < 2%.
2. VBE decreases by about 3,6 mV IOC with increasing temperature.

I

1500

(MarCh 1979

---

3

BDX63;63A
BDX63B; 63C

l·
'----------------------------------------------------

CHARACTERISTICS (continued)

Switching times
(between 10% and 90% levels)
leon = 3 A; IBon = -IBoff = 12 mA
turn-on time
turn-off time

ton typo
toff typo

----,
---+

90
is!%l
10

0,5 ps
2,5 ps

7Z77499.1

[Ison

---

U-lB.:'
90
iC

!%l
10

o

---

-----"-

\
- - - --

---- ~ ------- -ton

--

ICon

-

t

-tf
t off

t

Ftg.3 Switching time waveforms.

Vee

VIM
Vee
VBB
R1
R2
R3
R4
tr = tf ..;;;

1>

Fig. 4 Switching times test circuit.

4

Ma~h 1979~(

10 V
10 V
-2,2 V
56
410
560
3

n
n
n
n

15 ns
10 ps
500 IlS

~ilicon

BDX63; 63A
BDX63B; 63C

Darlington power transistors

Diode, forward voltage
IF=3 A

typo 1,2 V

vert. '
oscilloscope

+
Vee

hor.
oscilloscope
7Z73863.1

Fig. 5 Test circuit for turn-off breakdown energy.
VIM= 12V; RB=270!2; IC=4,5A;tp = 1 ms;5 = 1%.

-

--

March 1979

5

l___- -

BDX63; 63A
BDX63B;63C

7Z673271

IC
(A)

0=0,01

ICMmax

tp=
0,1 ms

" "

10

~ ICmax

.'-"

'" ."\." r'\."
"II

I"

1

(11'

r\"

io
II

(2)

100
I

III

d.c.

I

----

10- 1

M
(0

X

0

aJ

10

VCE(V)

Fig. 6 Safe Operating ARea, T mb :s;;;; 25 °C.

6

I
II

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.

(1)
(2)

Ptotmax and Ppeakmax lines;
Second-breakdown limits (independent of temperature).

BDX63;63A
BDX63B;63C

Silicon Darlington power transistors

7Z77085 1

IC
(A)

,

ICMmax

8 = 0,01

ICmax

,

~

"
""
"- "

10

'"

"
(1)

II

I'

'\

tp
~ 0,1 ms f--ff--~
f--f-

r\.1'\

~ r\ 1\

1\ 1

'~I\
~

(2)

I

n 10
1\

100- f--fd.c.

--

10- 1

BDX63A
BDX63B
BDX63Cl-

I--

I I I

10- 2
1

10

Fig. 7 Safe Operating ARea, T mb ~ 25 °C.
I
II

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.

(1)
(2)

Ptotmax and Ppeakmax lines.
Second-breakdown limits (independent of temperature).

March 1979

7

l

BDX63; 63A
BDX63B;63C

~______________________~________
7Z67325

7Z72449

typo values
VeE 3 V

=

Ptot max

=25 °c

lj

(%1
Tj

=150 °cV- ~

100
~

I'r\
'\..

I\.

V
~

50

0

/

-

2S °c./

~

"-

i'o

"-

-~ ..... ro-..

tI~

./

L

'"

V'

"

~

o

100

200

10

Ie (Al

Fig. 8 Power derating curve.

--

V

~

Fig. 9 D.C. current gain.

7Z673331

3

JUl.

-1-T-I o=!J:
tpl

-

T

0=1

2

-

--

-I-

0,7

~

~

....

O,~ ~

....

0,2

I"""

""""

~

""'"

...- """",a..
~~

V

~:;..

..",.~'"

I""'"~I""'"

~",.

~

III!lIl"

./
~~

~

L..o""

~""'"
..... ioo"

-'"'"

,/

V

0,1
0,05
0,01
I

:;"'t;..

",

....-

....

I

8

(
1

March 1979

.

10-3

10-2

Fig. 10 Pulse power rating chart.

10- 1

10

BDX63; 63A'
BDX63B;63C

Silicon Darlington power transistors

7Z82177

MV

--

-

0=
10 ~0,01
.......

"'

~1
~,
......

--

0 ,5

io-

"

~ ~

~ r--.....

t---

"~
~ t~

r-- '"
~

......

l - t- "t--.I"I-f-.t-

I"-~ E:;:::
I::::- t-_
t--:::

1

10- 1

10

tp (ms)

Fig. 11 S.B. voltage mUltiplying factor at the ICmax level.
7Z770861

10

--

0=0,01
0,1

""'0,2

I"-

-="
""""... r--....,
i'-...

-t- ~

""2'

~

........

0,5

-

~

r--..;::
r--.... :-.....
~~
1'-0..1' ~r-

1--- t-- r- t-

!"ii fo-jo.

+-t-- H .. ~ ~

t----:

1

10- 1

10

t---~

tp (ms)

Fig. 12 S.B. current mUltiplying factor at the VCEO 100 V and 60V level.

I(

Mareh 1919

9

BDX63; 63A
BDX63B; 63C
7Z82156

hfe

~

:\

,

\

10

1

10

1

Fig. 13 Small-signal current gain at lC = 3 A; VCE

--

= 3 V.

7267321

6

7267317

VCE = 3 V
Tj = 25°C

Ic /1 e=250
Tj = 25°C

10

VCEsat
IC
(A)

(V)

'4,

II

7,5

J

II
II
5

I
t yp/

2

v
typ

.......

~

.... i"""

"""

2,5

I

J
5
Fig~

10

March 19791 (

14.

IC(A)

10

o

1

I

/

/

1.,..00'

1,5

2 VeE (V)

Fig. 15.

2,5

____J

BDX64;64A
BDX64B; 64C

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; TO-3 envelope. N-P-N complements are BDX65, BDX65A,
BDX65B and BDX65C. Matched complementary pairs can be supplied.

QUICK REFERENCE DATA
BDX64

64A

64B

64C

Collector-base voltage (open emitter)

-VCBO

max.

60

80

100

120 V

Collector-emitter voltage (open base)

-VCEO

max.

60

80

100

120 V

-ICM

max.

Junction temperature

Ptot
Tj

D.C. current gain
-IC= 1 A;-VCE =3V
-IC=5A;-VCE=3V

hFE
hFE

>

Cut-off frequency
-IC = 5 A; ~VCE = 3 V

fhfe

typo

Collector current (peak value)
Total power dissipation up to
T mb = 25 °C

16

A

max.

117

W

max.

200

°C

typo

1500
1000
kHz

80

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-3.
Collector connected to case.

-26,6max--

11,l,1

20,3

39,5 301

max

1_

ma'l_' ,
--10,9--

See also chapters Mounting instructions and Accessories.

F===~+1

+

7168064.31 __

12,8 __
11,2

I (Ma~h

1979

----

BDX64; 64A
BDX64B;·64C

l·

....._ _ _ _ _ _ _ _ _---~----

,---------------------;

~------------~~~----+__c

I

I
I
I

b-~~-__t

R1 typo 5 kn
R2 typo 80 n

I

R1
R2
L ___________
_ __ .J
I

.

7Z66446.2

e
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

-=-=

=

BDX64

64A

64B

64C

Collector-base voltage (open emitter)

-VCBO

max.

60

80

100

120 V

Collector-emitter voltage (open base)

-VCEO

max.

60

80

100

120 V

Emitter-base voltage (open collector)

-VEBO

max.

5

5

5

5 V

Collector current (d.c.)

-IC

max.

12

Collector current (peak value)

-ICM

max.

16

Base current (d.c.)

-IB

max.

200

Ptot
T stg

max.

Storage temperature
Junction temperature*

Tj

max.

Total power dissipation up to
T mb = 25 °C

----

A

A
mA

w

117
-65 to

+ 200

200

°C
°C

THERMAL RESISTANCE*
From junction to mounting base

Rthj-mb

1,5

* Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.

2

Ma~h 19791 (

oCIW

BDX64;64A
BDX64B; 64C

Silicon Darlington power transistors

CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE = 0; -VCB = -VCBOmax
IE
IE
IE
IE

=
=
=
=

0;
0;
0;
0;

-VCB = 40 V; Tj = 200 oc: BDX64
-VCB = 50 V; Tj = 200 oc: BDX64A
-VCB = 60 V; Tj = 200 oc: BDX64B
-VCB = 70 V; Tj = 200 oc: BDX64C

-ICBO

<

0,4 mA

-ICBO

<

3 mA

-ICEO

<

mA

Emitter cut-off current
IC = 0; -VEB = 5 V

-lEBO

<

5 mA

D.C. current gain (note 1)
-IC = 1 A; -VCE = 3 V
-IC = 5 A; -VCE = 3 V
-IC = 12 A; -VCE = 3 V

hFE
hFE
hFE

>

Base-emitter voltage (notes 1. and 2)
-IC=5A;-VCE=3V

-VBE

<

2,5 V

Collector-emitter saturation voltage (note 1)
-IC = 5 A; -IB = 20 mA

-VCEsat

<

2 V

Collector capacitance at f = 1 MHz
IE = Ie = 0; -VCB = 10 V

Cc

typo

Cut-off frequency
-IC = 5 A; -VCE = 3 V

fhfe

typo

80 kHz

Small-signal current gain
-IC = 5 A; -VCE = 3 V; f = 1 MHz

hfe

typo

30

D.C. current gain ratio of
complementary matched pairs
-IC = 5 A; -VCE = 3 V

hFE1/hFE2

<

2,5

IB = 0; -VCE = -% VCEOmax

typo
typo

1500
1000
750

200 pF

Notes
1. Measured under pulse conditions: tp < 300 J.I.S, [j < 2%.
2. -VBE decreases by about 3,6 mV/oC with increasing temperature.

March 1979

3

BDX64; 64A
BDX64B;64C

l

~_________________________________

CHARACTERISTICS (continued)
Diode, forward voltage
IF == 5 A

<

Switching times
(between 10% and 90% levels)
-leon = 5 A; -IBon = IBoff = 20 mA
turn-on time
turn-off time

typo
1 IlS
typo 2,5 IlS

-

1,8 V

tr

90

- --- --- -

-I son

-i s (%)

10 ~--i-----*--,---

90
-ic
(%)

10

o

---

--

r--~-+----+--r+--ton

--

Fig~

3 Switching times waveforms.

-VIM

= 16,5

-Vee

Vee

+VBB

=

R1

=

56

R2
R3

=

410

Fig.4 Switching times test circuit.

4

Mareh

19791 ( .

6,5 V

= 560

n
n
n

3fl

R4
tr = tf

V

16 V

~

15 ns

tp

10 IlS

T

= 500 IlS

BDX64; 64A
BDX64B; 64C

Silicon Darlington power transistors

7267927.1

-IC
(AI
-ICMmax

10

ICmax

8 =0,01
r--;--'~

"

~,

"-

~ ~~
(1 i' I'\.
"''\ \
I'-

I'

"-

~

"'r\

\

'

_\

I

tp=
1 ms

(21'

l\\
\

-.1ll 10

10- 1

q
~

100

1\

Wi

I

.;r
<0

x

0

co

10- 2

1

1

10

Fig. 5 Safe Operating ARea; T mb ~ 25 °C.
I
II
(1)
{2)

Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
Ptat max and Ppeak max lines.
Second-breakdown limits (independent of temperature).

March 1979

5

BDX64; 64A
BDX64B; 64C

l""----_ __
7Z67928.1

-IC
(A)
-

-ICMmax
10

-I Cmax

= 0,01

<5
I

I~'\ \,.

,

(1)'

'\

,

,

"-

"-

"-

tp=

II

0,1 ms= =~

I"-

["\

'\

!\

\

1\

'\\
I

\ \ 1\
(2)

1\

1

\

~

1\

---

-

10

100
BDX64A
BDX64B fBDX64C f-

10- 2
1

1\
d.c.

10

Fig. 6 Safe Operating ARea; T mb .;;;; 25 °C.
Region of permissible d.c. operation.
Permissible extension for repetitive pulse operation.
(1) Ptot max and Ppeak max lines.
(2) Second-breakdown .limits (indepenedent of temperature).

I
II

6

March 1979'

r

BDX64; 64A
BDX64B;64C

Silicon Darlington power transistors

7Z67325

Ptot max

(%1

100

"' "'

"

~

I\.

"I"'

50

L'

"

I\.

"'

a
a

100

L"

200

Fig. 7 Power derating curve.
7Z67844

3

JUL
-I~;-J

6=~
T

2

-- -

6=1

-

0;7

~

-

-I--"

o10- 5

10- 4

....

-I-

- -05

~

~

-/

-~-

.......

~ :::;;.~

IijIP"""

~
~~

~

!!::I[jII

~ Ii#IP'
~

0,1
0,05
0,01

10- 3

10-2

10- 1

tp (s)

10

Fig. 8 Pulse power rating chart.

l

March 1979

7

BDX64; 64A
BDX64B; 64C
7Z678471

0=0,01

10

~,1

,

I'-

"

.......

~

"..........

0,5

"

~ .......

.....
"
.
.
.
.
r--" r--r"~I'

I"'-

~~~

r- 1-1"""-1-1"-

r-r=:::::

-F==:r=::t:=
'---

~
~t 1'-1~

~

1

10- 1

10

--

tp (ms)

Fig.9 S.B. voltage multiplying factor at the -IC max level.
7Z67848.1

0=0,01
~

,

0,02

.......

-

0,05

.......... ........

0,1

10

......

,

...........

,,
""
.... ~
~

:~
..........

r-O,2
r-I- r-

0,5

""'

.......... .............

-....

"

.................

........:~
~ 1-....... ' "

.............

....... 1"'-.. t"- ..... 1'1"-

-r--I"'"--

i"""~~

r---r-. I"-r-

~

--.;;;::::

~ rr--- r=:::::: r--

-

~,...

r-,,","

1

10- 1

10

Jr

tp (ms)

Fig. 10 S.B. current multiplying factor at -VCEO 100 V and 60 V level.

8

March 1979

rl'"
r-

BDX64; 64A
BDX64B;64C

Siticon Darlington power transistors

7Z72714

typo values
-VCE = 3V
L--.

~

~

1\

V
./

[7

1/

I/V

~

~Ioo'

I'

--

V

i""'oto-.

~

1~;OC
" i\~T-

./

./

-\ 25 °c

~

i;""

1/

V

/

V

/

10 2
10- 1

10

-Ic (A)

Fig. 11 D.C. current gain.
7267330 1

. Ic - SA
-VCE

Tj

"

=3V

= 25 °c

~

r\
I'

t yp

1\
10

\ ."

,
\

1'1

IrMa~h

f (Hz)

Fig. 12 Small-signal current gain.

1979

9

l

BDX64; 64A
BD~64B;64C

~______________~~~_____________
\

7Z67318

VCE = 3 V
1j = 25°C

10

Il

-I C

7Z67323 1

6

-Ie
-=250
-IB
ToJ == 25°C
'

-VCEsat
(V)

I

(A)

II

7,5

4

I
II
typl

I

5

1
I

2

I
lL

2,5

..... 1-'-

...

-

typ_

...

....

.... ""..
""..

~

J
Il_

o

1

l/'
1,5

2 -VBE (V) 2,5

Fig. 13 Typical collector current.

10

Mareh 1979

If

o
o

5

-Ie (A)

10,

Fig. 14 Typical collector-emitter saturation
voltage.

_ _ _ _J

BDX65; 65A
BDX65B; 65C

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; TO-3 envelope. P-N-P complements are BDX64, BDX64A,
BDX64B and BDX64C. Matched complementary pairs can be supplied.
QUICK REFERENCE DATA
BDX65'

65A

65B

65C

. Collector-base voltage (open emitter)

VCBO

max.

80

100

120

140 V

Collector-emitter voltage (open base)

VCEO

max.

60

80

100

120 V

,Collector current (peak value)

max.

Total power dissipation up to
T mb = 25 °C
Junction temperature
D.C. current gain
'C=lA;VCE=3V
'C=5A;VCE=:=3V
Cut-oft frequency
IC=5A;VCE=3V

16

A

max.

117

w

max.

200

°C

typo

1500

>

1000

typo

50

MECHANICAL DATA

kHz

Dimensions in mm

Fig. 1 TO-3.
Collector connected to case.

-4-;----

111

26,6 max - -

c

39,5 301
max

_I .

,

20,3

max

1_

-1

7268064.31 __

12,8 __
11,2

See also chapters Mounting instructions and Accessories.

April 1979

BOX65; 65A
BOX65B; 65C

l'
'---------------------------------------------------r------~~~--+__c

b-~..._-__I

I
I

Rl typo 5 kn
R2 typo 80 n

R1
R2
L ________
_
I

7Z6644S.2

e
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

==

=

65A

65B

65G

Collector-base voltage (open emitter)

VCBO

max.

80

100

120

140 V

Collector-emitter voltage (open base)

VCEO

max.

60

80

100

120 V

Emitter-base voltage (open collector)

VEBO

max.

5

5

5

5 V

Collector current (d.c.)

.IC

max.

12

A

ICM

max.

16

A

IB

max.

200

mA

Ptot
T stg
Tj

max.

117

W

Collector current (peak value)

~

BDX65

Base current (d.c.)
Total power dissipation up to
T mb = 25 oC
Storage temperature
Junction temperature*

max.

-65 to + 200

°C

200

°C

THERMAL RESISTANCE *
From junction to mounting base

Rth j-mb

1,5

* Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.

2

April

19791 (

°C/W

BDX65;65A
BDX658; 65e

Silicon Darlington power transistors

CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE == 0; VCB = VCEOmax

0,4 mA

ICED

<
<
<

lEBO

<

5 mA

hFE
hFE

typo
typo

1500
1250

hFE

>

1000

hFE
hFE

typo
typo

1250
600

Base-emitter voltage (notes 1 and 2)
IC=5A;VCE=3V

VBE

<

2,5 V

Collector-emitter saturation voltage (note 1)
IC = 5 A; IB = 20 mA

VCEsat

<

2 V

Collector capacitance at f = 1 MHz
IE= le=O;VCB= 10V

Cc

typo

Cut-off frequency
IC=5A;VCE=3V

fhfe

typo

Turn-off breakdown energy with inductive load (Fig. 5)
-IBoff = 0; ICon = 6,3 A

E(BR)

>

100 mJ

D.C. current gain ratio of
complementary matched pairs
IC=5A;VCE=3V

hFE1/hFE2

<

2,5

ICBO

IE = 0; VCB = Yz VCBOmax; Tj = 200 oC

ICBO

IB = 0; VCE = Yz VCEOmax
Emitter cut-off current
IC:: 0; VEB :: 5 V
D.C. current gain (note 1)
IC= 1 A; VCE = 3 V

BDX65; 65A; 65B
BDX65C

IC= 5 A; VCE = 3 V
IC = 12 A; VCE = 3 V

BDX65; 65A; 65B
BDX65C

3 mA
1 mA

200 pF
50 kHz

Notes
1. Measured under pulse conditions: tp < 300 J.1.S, /) < 2%.
2. VBE decreases by about 3,6 mV 10C with increasing temperature.

April 1979

3

l

BDX65; .65A
BDX65B; 65C

'---------------------------------------------------CHARACTERISTICS (continued)
Diode, forward voltage
IF= 5A

typo

Switching times
(between 10% and 90% levels)
ICon = 5 A; 'Son = -ISoff =20 mA
Turn-on time
Turn-off time

-tr

90

1,2 V

ton

typo

1 J.l.S

toff

typo

2,5 IlS

7Z77499.1

- - - - - - - - I Bon

iB (Ofol

10 r---4---------~--~----

90
ic

(%l

10

--

o ~--~-+_------+_~+~----

---

ton

Fig. 3 Switching times waveforms.

VIM

Vce

=

=
-VSS=

- __ 11 __

tp

1

--T-7Z78131

Fig. 4 Switching times test circuit.

4

April

19791 (

R3
R4
tr = tf ~
t p'

T

6,5 V

n
n
n
3 n

56
410
560

R1
R2

V~:JLrL

16,5 V
16 V

15
10
= 500

ns
IlS
IlS

J

Silicon Darlington power transistors

---:...-----

BDX65; 65A
BDX65B; 65C

CHARACTERISTICS (continued)

vert.
oscilloscope

+
Vee

hor.
oscilloscope
7Z73863.1

= 12 V;

Fig.. 5 Test circuit for turn-off breakdown energy. VIM

RB

= 270 Q; Ie = 6,3 A; li.=

1%.

7Z67325

Ptot max
(%)

100

-

"'I'

1,\

"
50

r\.
I\.

....

,

~

"'"

,
o
o

100

Fig.6 Power derating curve.

'\
200

'I

(APril 1979

5

l_______________

BDX65; 65A
BDX65B; 65G

7Z67929 1

Ie
(A)

10

fJ =0,01

ICMmax

~~

lemax

~"\ ~ ~
,~

~

""

(1)~

~f= tp =
1 ms
~

" 165
!'l\

~

.,,~

II

I

r2~

100
III

d.c.

-\.0.

co

X
0

co

10- 2
10

1

veE (V)

Fig. 7 Safe Operating ARea at T mb .;;;;; 25 oe of BDX65.
I

Region of permissible d.c. operation.

II

Permissible extension for repetitive pulse operation.

(1) Ptot max and Ptot peak. max lines.
(2) Second-breakdown limits (independent of temperature).

6

April

19791 (

BDX65; 65A
BDX65B; 65C

Silicon Darlington power transistors

7Z67930 1

IC
(A)

ICMmax
10 t-ICmax

0=0,01
,

I

,

10"'\~ "- "
" ." ,I,
"'

tp =
0,1 ms ~f=

I"

~

'\~

'"

(1) ~ 1"- I'

1

1\1'11.[\
[\
I
(2)

~

IV 5

.\

10

11 100_ r-td.c.

10- 1

---BDX65AT-BDX65BrBDX65C r-

10- 2
1

10

Fig. 8 Safe Operating ARea at T mb

I-

VCE(V)

~

25 °C.

I

Region of permissible d.c. operation.

"

Permissible extension for repetitive pulse operation.

(1) Ptot max and Ptot peak max lines.
(2) Second-breakdown limits (independent of temperature) .

.1r

April 1979

7

l_____~_

BDX65; 65A
BDX65B; 65C

7Z67e44

3

SLfL
-+~;J

Zthj..,mb

(OClWI

-

6=~
T

2

6=1

'-

0,7

0 5 -~
~

i-- ......

...

~
Ioo~

~

L

~

~

i""""'

~

....

-

.....'!!II ~r"'"

fIIIIII"""

"'"

~!'"

.....1-'

~ po !=Iii!

_.......

-

~0-5

~

P'"
L..oo

0,1
0,05
0,01

10-3

10- 4

10- 1

10-2

10

tp (5)

Fig. 9 Pulse power rating chart.

----

7Z67315

7Z67324

6

= 3V
0
1j =25 C .
VCI;

=

10

J

(V)

'I

(A)

I

7,5

Is
1j = 25°C

VCEsat

II

Ic

1.£=250

J
4

J

II
typ

I
II

5

I
I

2
~

2,5

typ

I

........ r-

'I

....

.... 1-"'1"""

.... -1"'"

I

o

1

.......

""

1,5

lr

2

VSE ( V) 2,5

Fig. 10 Typical collector current.

8

Ap,iI 1979

o
o

5

IC

(A)

Fig. 11 Typical collector-emitter
saturation voltage.

10

BDX65; 65A
BDX65B;65C

meon Darlington power transistors

7Z82177

/

0=
10 ~,01
......

"'

~

~.......

"-

['..
.... "- r-....
'--r-.... ........ I"--i"oo, r--.
~ I-- I"'r--. .... r-. ...

-- -

1
10- 1

r---.r-.,

r-I- -r-.Io.

~ ::::::-~
~

- -

10

tp (ms)

Fig. 12 S.B. voltage multiplying factor at the ICmax level.
7Z770861

f--f--

10

-

0=0,01
0,1

r-0,2

-

-r--.

r-I-....

"-

"'-.........::
",

........

--............. ~ ~
i"oo..

0,5

1
10- 1

-

.......

--

..........

~ ::::::~' ::::~
.....

...

r-- r- r-_ 1-1-0 ~ ~ ....
---..:r---

-

10

tp (ms)

l

Fig. 13 S.B. current multiplying factor at VCEO 100 V and 60 V level.

(APril 1979

9

l

BDX65; 65A
BDX65B; 65G

.",-

-

- "" ,

.......

~

,;

\

V

/

/'

/

V

./

,

~

~

-

7Z67336 1

typo values
VeE = 3 V

,
T=

1\1~0 °c

-~ .....

V

i'

.....

~25°C

./

/~

/'

V

/
10

Ie (A)

Fig. 14 Typical d.c. current gain BDX65; 65A and 65B.
7Z72715

VeE

3V

Tj = 25°C

-

typ

~

10 3
./

-'

~~

/

-r--..

i'~

~
\

\

V

/
/'

,/
10 2
10- 1

10
Fig. 15 Typical d.c. current gain for BDX65C.

10

April1979I (

Ie (A)

J

Silicon Darlington power transistors

BDX65; 65A
BDX65B;65C

'--------

7Z67331 1

Ic 5A
VCE - 3V
Tj 25°C

=

....

"
'\.

~
, typ

~.

"
\

10

I'.
\

10 8

f (Hz l

10

9

Fig. 16 Typical small-signal current gain for BDX65; 65A and 65B.
7Z72716

=5 A
VCE =3 V
Tj =25°C
Ic

-

I'-o~

",
~

\

\,

10

,
I~.

1
10 3

,
10 8

10 4

I(

f (Hz)

10 9

Fig. 17 Typical small-signal current gain for BDX65C.

April 1979

11

_ _ _J

BDX66; 66A
BDX66B;66C

SILICON DARLINGTON POWER TRANSISTORS

P-N-P epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; TO-3 envelope. N-P-N complements are BDX67, BDX67 A,
BDX67B and BDX67C. Matched complementary pairs can be supplied.
QUICK REFERENCE DATA
66A

66B

66C

Collector-base voltage (open emitter)

-VCBO

max.

BDX66
60

80

100

120 V

Collector-emitter voltage (open base)

-VCEO

max.

60

80

100

120 V

Collector current (peak value)

-ICM

max.

20

A

Total power dissipation up to
T mb = 25 °C

max.

150

w

Junction temperature

max.

200

oC

D.C. current gain
-IC= 1A;-VCE=3V
-IC= 10A;-VCE=3V

typo

>

2000
1000

Cut-off frequency
~IC=5A;-VCE=3V

typo

MECHANICAL DATA
Fig. 1 TO-3.
-26,6max-

11

39, 5 301

1

rna, 1 _ ' _

J

60

Dimensions in mm

8,63 max

I....

,

-'1 .... 1,6

1

-4,2
_4,0

1

20,3
max

1_
7268064.3

I.... 12,8

.....

11,2

See also chapters Mounting instructions and Accessories.

kHz

I(

April 1979

----

BDX66; 66A
BDX66B; 66G

l
'-------------~-------------------------------------

r----------------;
I

'C

I

b-~~---I

I

R1 typo 3 kn
·typ. 80 n

R~

I

I
e
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
66A

66B

66C

-VCBO

max.

60

80

100

120 V

-VCEO

max.

60

80

100

120 V

-VEBO

max.

5

5

5

5 V

,-IC

max.

16

A

20

A

BOX66
Collector-base voltage (open emitter)
Collector-emitter voltage (open-base)
Emitter-base voltage (open collector)
Collector current (d.c.)

-ICM

max.

Base current

-IB

max.

250

rnA

Total power dissipation up to T mb = 25 °C

Ptot
Tstg

max.

150

W

-65 to +200

°C

Tj

max.

200

°C

1,17

oC/W

Collector current (peak value)

----==
~

Storage temperature
Junction temperature*
THERMAL RESISTANCE *
From junction to mounting base

Rthj-mb

* Based on maximum average junction temperature in line with common industrial practice. The
resulting higher junction temperature of the output transistor part is taken into account.

2

April

19791(

BDX66; 66A
BDX66B;66C

Silicon Darlington power transistors

CHARACTERISTICS
Tj = 25 °C unless otherwise specified.
Collector cLit~off current
IE = 0; -VCB = -VCBOmax

IE = 0; -VCB = 40 V; Tj = 200 oC; BDX66
IE = O;-VCB = 50 V; Tj = 200 °C; BDX66A

I

IE = 0; -VCB = 60 V; Tj = 200 oc; BDX66B

-ICBO

<

1 mA

-ICBO

<

5 mA

-ICED

<

3 mA

-lEBO

<

5 mA

IE = 0; ,-VCB = 70 V; Tj = 20 oc; BDX66C
IB = 0; -VCE = -%VCEOmax
Emitter cut-off current
IC = 0; -VEB = 5 V
D.C. current gain *
-IC= 1 A; -VCE = 3 V

hFE

typo

2000

-IC= 10A;-VCE=3V

hFE

>

1000

-Ie= 16 A; -VCE = 3 V

hFE

typo

1000

Base-emitter voltage *
-IC= 10 A; -VCE = 3 V

-VBE

<

2,5 V

Collector-emitter saturation voltage *
-IC= 10A;-IB=40mA

-VCEsat

<

2 V

Collector capacitance. at f = 1 MHz
IE= le=O;-VCB= 10V

Cc

typo

Cut-off frequency
-IC= 5 A; -VCE = 3 V

fhfe

typo

60 kHz

Small-signal current gain
-IC=5A;-VCE=3V;f= 1 MHz

hfe

typo

50

D.C. current gain ratio of complementary
matched pairs
-IC=10A;-VCE=3V

hFE1/hFE2

<,

Diode, forward voltage
IF = 10 A

VF

typo

* Measured under pulse conditions: tp < 300 /lS, ~

< 2%.

I(

300 pF

---==

2,5

April 1979

2 V

3

66A
BDX66B;66C

BDX66";

l

_

'----------------------------------------------------CHARACTERISTICS (continued)
Tj = 25 0C unless otherwise specified
(between 10% and 90% levels)
-ICon = 10 A; -IBon = I Boff = 40 mA;
turn-on time

ton

turn-off time

toff
tr

90
-is (Ofol

-1"-----111------1-- -Ison

typo

1 p.s

typo

3,Sp.s

7277491.1

1/

10 I - - -......- - - - - - - t t - - . . - - -

li

90

IB.:,

, , - - - - - t - - , - -ICon

-iC

(Ofol

8 -- - -) -- - - - - - -

1

-ton

,.....
--

=

Fig. 3 Switching times waveforms.

Vce

-VIM

-Vee

=

=
+VBB =

R1
R2
R3
R4

18 V
12 V
3 V
56

= 220
= 180

n
n
n

1n

tr = tf = 15 ns
tp
= 10 p.s
T
= 500 p.s

Fig.4 Switching times test circuit.

4

BDX66; 66A
BDX66B; 66G

Silicon Darlington power transistors

7Z67910

10 2

BDX66

~ 25°c

Tmb

0=0,01

-ICMmax

-I Cmax

I-

",. "

10

"

"

1\,

~ 1\
~""I

'" \ 1\
\

,

\

I

\

second~
breakdown (1)

~s

,,
,

""I

~'1

Pta"t max

tp =

II
1\ 500

\

' II'

1 ms

1\

,

1\ \

\

--

Sms

1\

, .11
d.c.

II
10

Fig. 5 Safe Operating ARea with the transistor forward biased.
I Region of permissible d.c. operation.
II Permissible extension for repetitive pulse operation.
(1) I ndependent of temperature.

I(~ril1979

5

l

BDX66; 66A
BDX66B; 66e

7Z770B7.1

-IC
(A)

{j

...;..ICMmax
-I Cmax
10

=0,01

,

I

~
(1 )

,
t

\ "r\
~

"-

~

"\ P

=

0,1 ms

Ii II L\

\ \

\
\1\

I

,

(2)

\

\

~\

\ 0,5

,

1
1\

\
~

,~
10- 1

--

5
d.c. -

BDX66A
BDX66B
BDX66C

10- 2

I

1

10

I

-

I

10 2

-VCE (V)

Fig. 6 Safe Operating ARea.
I Region of permissible d.c. operation.
II Permissible extension for repetitive pulse operation.
(1) Ptot ma~ and Ptot peak max lines.
(2) Second breakdown limits (independent of temperature).

6

April

19791 (

BDX66;66A
BDX66B; 66C

Silicon Darlington power transistors

7Z67325

Ptot max

(%1

100

"I'

1,\

\..
\.
,

I"

50

"":\.

\..

":\.

o
o

200

100

Fig. 7 Power derating curve.

7Z67917

1,5

.J1.Jl..-

Zthj-m b

--It l- I 5=~

(OC/W I

p
__
T__

1,25

5 -1

0,7

0,25

.- :;..

O,~

-

-

..-

0,4

"...

0,3

1,...00

I--

./

,.

"

~..,

~

~

t.,..
~t..~ 1';"-

..,

/'
/'

".

0,2
.....0,1
....."""'" .... ""
L.,...ooo

I..~

I-'"

..",.,...

!'"

~~
~

I~
V
. / l.."

~

i.-i-'

~

."

.....

:;.7 r.;.:::i:.o'

~

"...

0,75

0,5

-

1..-1-

- .....

T

V

...

"".,..

'0,01

°

I
10

Fig.8 Pulse power rating chart.

I(

April 1979

7

l

BDX66; 66A
BDX66B;66C

~______________~________________
7Z77090

S.B. voltage multiplying factor at the ICmax level
MV

t--'~=0,01

~
~
10

k-

=

v0,02
0,~5

~ -~

..... =::1::.-

0,2

~

:"'ill

............ ~
~ .......... ~~

--r....~~~-

I

-

,..0,5

1-1-

~~

1-0..

tp (5)
Fig. 9 S.B. voltage multiplying factor at the ICmax level.

-==-

7Z77089

S.B. current multiplying factor at the V CEOmax level
~~ = 0,01

MI

\
0,02

I\,

,

\.

"0,0~ \ I\.
r--....... ~ I"0,1
~ to... ~i'

10

0,2

"

~,

"""~

'~i'..
.....

~

0,5

~I'oo.

r...;:: ~ t~
r-- r- r--~

fOiiIf=j

1

10- 5

'I

Fig. 10 S.B. current multiplying factor at the VCEOmax level.

8

April19~

tp (5)

10- 1

BDX66; 66A
BDX66B;66C

Silicon Darlington power transistors

7Z67914

typical values I-

1j=150

~

V

/

~

1/
~

./

~~J......--'"

~~

~~

:c

I-

-VCE =3 V

.....

~~

~c

~

'\

~"

,

"

~

V

L

10

-IC (A)

Fig. 11 D.C. current gain.
7Z679051

6

I I I I I I
I I I I
I

-Ic

-=250
-Is

-VCEsot
(V)

Tomb =25°C

---'-r-

I I I

Tomb = 25°C

--4

2

2

typ..~ ....

typ

I I

T TTTT
-IC
-=250
-Is
'

-VSEsot
(V)

4

--

7Z679031

6

""" ...

---

---

t-i-'

1".0"'"

L.ooo"'"

1""''''''

~

o

o

""'' '"'

10

-I C (A)

20

Fig. 12 Collector-emitter saturation voltage.

10

-IC (A)

20

Fig. 13 Base-emitter saturation voltage.

I(

April 1979

9

BDX66; 66A
BDX66B; 66.C

l

'--------------------------------------------------7Z67901 1

2

r-

-- --

-I C=10A- r-

r-

~-

-VSE

(V)

....
......i" ....

...... r---..

r- -.2,5A- i" ......

typical values r-

I--:-

-VeE= 3V

o
o

50

100

..

150
Tj (oC)

Fig. 14 Typical base-emitter voltage.

---

7Z679111

-:-IC=S A .
-VCE =3 V

",
~

typ

,
\

\

10

rl
1
1

10

10'4

Fig. 15 Small-signal current gain.

10

10

5

f (kHz)

10

6

_ _ _J

BDX67; 67A
BDX67B; 67C

SILICON DARLINGTON POWER TRANSISTORS

N-P-N epitaxial base transistors in monolithic Darlington circuit for audio output stages and general
amplifier and switching applications; TO-3 envelope. P-N-P complements are BDX66, BDX66A,
BDX66B and BDX66C. Matched complementary pairs can be supplied.
QU1CK REFERENCE DATA

Collector-base voltage (open emitter)
Collector-emitter voltage (open base)

VCBO
VCEO

BDX67

67 A

67B

67C

max.

80

100

120

140 V

max.

60

80

100

120 V

Collector current (peak value)

max.

Total power dissipation
up to T mb = 25 °C
Junction temperature
D.C. current gain
IC = 1 A; V CE = 3 V
IC=10A;VCE=3V
Cut-off frequency
IC= 5A;VCE=3V

20

A

max.

150

w

max.

200

°C

typo

1350

>

1000

typo

50

MECHANICAL DATA

Dimensions in mm .

. Fig. 1 TO-3.
Collector connected to case.
-26,6max-

j,1"
39,5 301

ma'

kHz

1

j_' _

J

1'-

8.63 max
-., '-1,6

•

-4,2
_4,0

1

!

20,3
max

t_
7Z68064031 __

See also chapters Mounting instructions and Accessories.

12.8-.
11.2

I(

April 1979

--

l

BDX67; 67A
BDX67B;67C

,~________________________________

r-------------~~~----+__c

b-~~---t

R1 typo 3 kn
R2 typo 80 n

I,
!L ________
R1
R2
_
7Z6644S.2

.-.J

e
Fig. 2 Circuit diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)

----

BDX67

67 A

67B·

67C

Collector-base voltage (open emitter)

VCBO

max.

80

100

120

140 V

Collector-emitter voltage (open base)

VCEO

max.

60

80

100

120 V

Emitter-base voltage (open collector)

VEBO

max.

5

5

5

5 V

Collector current (d.c.)

IC

max.

16

ICM

max.

20

IB

max.

250

mA

Ptot
T stg
Tj

max.

Collector current (peak value)
Base current (d.c.)
Total power dissipation
up to T mb = 25 °C
Storage temperature
Junction temperature *

max.

A
A

150

W

-65 to + 200

oC

200

oC

1,17

oCIW

THERMAL RESISTANCE *
From junction to mounting base

Rth j-mb

* Based on maximum average junction temperature in line with common industrial practice. The

I(

resulting higher junction temperature of the output transistor part is taken into account.

2

April 1979

j

Silicon Darlington power transistors

BDX67; 67A
BDX67B; 67C

CHARACTER ISTICS
Tj == 25 0C unless otherwise specified
Collector cut-off current
IE == 0; VCB= VCEOmax
IB == 0; VCE = % VCEOmax
Emitter-cut-off current
IC=0;VEB=5V

ICEO

<
<
<

lEBO

<

D.C. current gain *
IC= 1 A; VCE == 3 V

hFE

typo

1350

IC=10A;VCE==3V

1000

ICBO

IE = 0; VCB = % VCBOmax; Tj == 200 oC

ICBO

mA
5 mA
3 mA
5 mA

hFE

>

IC=16A;VCE=3V

hFE

typo

Base-emitter voltage *
IC = 10 A; VCE = 3 V

VBE

<

2,5 V

Collector-emitter saturation voltage *
IC= 10 A; IB==40mA

VCEsat

<

2 V

Collector capacitance at f == 1 MHz
IE == Ie == 0; VCB == 10 V

Cc

typo

Cut-off frequency
IC == 5 A; VCE == 3 V

fhfe

typo

Turn-off breakdown energy with inductive load
-IBoff == 0; ICon == 7,8 A; see Fig. 5

E(BR)

>

Small-signal current gain
I C == 5 A; V CE == 3 V; f == 1 MHz

hfe

typo

hFE1/hFE2

<

2,5

VF

typo

2,5 V

- D.C. current gain ratio of
complementary matched pairs
IC == 10A; VCE == 3 V
Diode, forward voltage
IF == 10 A

* Measured under pulse conditions: tp

850

300 pF
50 kHz
150 mJ
20

< 300 JlS, {) < 2%.
April 1979

3

l·

BDX67; 67A

BDX67B; 67C

~-------------------------------------------------CHARACTERISTICS (continued)

Tj

= 25 °Cunless otherwise specified

Switching times
(between 10% and 90% levels)
ICon = 10 A; IBon =-IBoft::: 40 mA;
turn-on time
turn-off time

tr

~--"r

90

- - -

ton

typo

toff

typo

1 p.s
3,5 p.s

7177499.1

1+-

-II 1-_-_-_-_-_-_-_--1-- Ison

is(%l

10 r----\------t\--,---

90
iC

(%1

10

--

o r----~-+_---+-_r+---

-----

ton

Fig. 3 Switching times waveforms.

VIM

Vec
VBB
R1

18 V
12 V

-3 V

56n
R2 = 220n
R3
= 180 n
R4
1n
tr = tf< 15 ns
tp
= 10p.s
T
= 500 p.s

4

1[

April19n

Fig. 4 Switching times test circuit.

BDX67; 67A
BDX67B;67C

Silicon Darlington power transistors

CHARACTERISTICS (continued)

vert.
oscilloscope

hor.
oscilloscope
7Z73663;1

Fig. 5 Te~t circuit for turn-off breakdown energy. V,M = 12 V; RS == 270!2; Ie = 7,8 A; tp = 1 ms;
1%.

[j =

April 1979

5

BDX67; 67A
·BDX67B; 67C
7Z67909.1

IC
(A)

{j

ICMmax
ICmax

10

=0,01

r.-----;-'~

~
(1)

~~ 0,5ms

'""
II

"'"
I"-

tp =
1

,,\

I

"-1

10

(2)\
I

------

100
d.c.

10- 1

-

r-..

co

X
0

en

10- 2
1

10

VCE(V)

Fig. 6 Safe Operating ARea at T mb = 25 oC of BDX67.
I

Region of permissible d.c. operation.

II

Permissible extension for repetitive pulse operation.

(1) Ptot max and Ptot peak max lines.
(2) Second breakdown limits (independent of temperature).

6

April 1979

c

BDX67; 67A
BDX67B; 67C

Silicon Darlington power transistors

7Z71088.1

IC
(A)

ICMmax
I
ICmax
10

0=0,01

,

,

I.

~ l~ 1:'

I'

II 1'1'1'

"
(1)'

tp=
O,5ms

....

"

i"..

I"

I'\. 1'\ I'

~~

t--t-

1

[\.1'
I',,~

~

I

(2)

~
10
'\ 100-r-cd.c.

10- 1

BDX67A
BDX67B

BD~6?f ~

10- 2
1

10

~

VCE(V)

Fig. 7 Safe Operating ARea at T mb = 25 0C.
I

Region of permissible d.c. operation.

II

Permissible extension for repetitive pulse operation.

(1) Ptot max and Ptot peak max lines.
(2) Second breakdown limits (independent of temperature).

April 1979

7

l",-----+--/_____

BDX67; 67A
BDX67B; 67C

7Z67125

Ptot max
(%)

100

"' I'

I"

I'I\.
I\.

50

." I',
r\.

"I'

a

a

"

200

100

Fig. 8 Power derating curve.
7Z67917

1,5

JLfLtp
-Itpl-I

Zthj-mb

(OC/W)
1,25

+-T----tr

0=1

-

0,75

0,5

-

...

0,7
r-

........

.........
l...,..oo

0,25

-

-

0,3

~I-

I-~

~

0,2 i."..ooo"'"
".0,1 l"..oo'

~

.... ~
....

",

i-""" 10"

"'"

~~

I'~

~

V
/'

10"

,..

~

....". ..".
~~
~IP""
~

i-"""

V /
/'

i,...ooo'"

~
~
L"

---

1.00""1"

I""

1-1""

_ 0,4 ...... 1""
0,5

--,...,...

10-1""

-'"

0=T

io"
~

V

i-"""

~,01
~

a

1

t~ (s)

Fig. 9 Pulse poyver rating chart.
8

April

19791 (

10

BDX67; 67A
BDX67B; 67C

Silicon Darlington power transistors

7Z82177

0=
10 ~0,01

"'"~

"

~'"
........... ~
.....
.....
............ r-...... r-.... r-...

------ r-"

r--.t i'

............

_0,5

I-

1

r-I- i'I- .... i'-i'-

~ :::~ r--:::

1---

10- 1

10

tp (ms)

Fig. 10 S.B. voltage multiplying factor at the ICmax level.
7Z770861

10

-

0=0,01
0:1
0,2

,.........

"'"-" ..................
r-- -1-1-

0,5

1

10- 1

"'" =-''"

-.............

~

- --..

~

...........I" ~

I"'-.. r--... ::::~~

i""'r--

I--I- r-I-

~~
----..: r--: I-10

tp (rns)

Fig. 11 S.B. current mUltiplying factor at the VCEOmax level.

1-

(APril .1979

9

BDX67; 67A
BDX67B; 67C
7Z679131

,...,,,,./

/

,

-- .....

~

.... ~
~

,~

;V

V

-

I000o-

typical values
VeE = 3 V

r--.,

.............

"i\'7°
Tj=

c

25°C

./
~

./

~

/"

/
10

Ie (AI

Fig. 12 D.C. current gain.

--

7Z67906

6

I
~

~j

Tomb

= 25°C

f--

i--

f---

VSEsot

i-i--

(V)

,"

4

Tomb

ty.!!~

2
ty2.fo-'

....

=25 °c

-f--

i-:---

1--

4

2

.... ....

.........

....

~

....

~~

..... ~

o
o

10

Ie (AI

20

Fig. 13 Collector-emitter saturation voltage.

10

I I I
I \ \
I I
I
I
Ie
- = 250
Is,

I I

Ie
- = 250
Is

veE sot
(VI

7Z67904

6

I I I I

April 1979

r

o

0'

10

It (A)

20

Fig. 14 Base-emitter saturation voltage. '

BDX67; 67A
BDX67B; 67C

Silicon Darlington power transistors

7Z67902

2

r--- I"- '-

IC=10A

r- r--Io...

I--

r- 1"-0-,-

...
-I'
-I"-...

'"

r-- ......

1"-...0,5 A

typical values

VCE = 3 V

°o

50

100

r.

-

-

(OC) 150

J

Fig. 15 Typical base-emitter voltage at Ie

= 10 A and

Ie = 0,5 A.
12679121

IC -5 A
VcE =3V

,

I\,

" typ

1\

10

,

\.

I'

1
1

10

10 4

f (kHz)

Fig. 16 Small-signal current gain.
April 1979

11

II

BDX77

II

SILICON EPITAXIAL-BASE POWER TRANSISTOR

N-P-N transistor in a plastic envelope, intended for industrial amplifier and switching
applications. P-N-P complement is BDX78.
QUICK REFERENCE DATA
Collector-emitter voltage (open base)

VCEO

max.

80

V

Collector current (d. c.)

IC

max.

8

A

Total power dissipation up to T mb = 25 oC

Ptot

max.

60

W

D. C. current gain
IC = 2 A; V CE = 2 V

hFE

>

30

Cut- off frequency
IC = 0,3 A; V CE

fhfe

>

25

=3 V

MECHANICAL DATA

kHz

Dimensions in mm

TO-220

_I ~,5, .--

Collector connected
to mounting base

1,3--

1-

~

5,9
min

I

15,8
max

I
I
I
J

.-It::;;=;::::;lF;::::r:;~
3,5 max
not tinned

~

~~x

\, -.1.1

--t

max

-

,

I

12,7
min

I

(2x)

bee

-.i

•

_lj:-0,9max (3x)

2,54 2,54

-1

1
--

0

,6

--2,4

7Z55872.3

F or moUnting instructions and accessories see section Accessories.

June 1977

II

1

BDX77

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltage
Collector -base voltage (open emitter)

VCBO

max.

100

V

Collector-emitter voltage (open base)

VCEO

max.

-80

V

VEBO

max.

5

V

IC

max.

8

A

ICM

max.

12

A

ICSM

max.

25

A

Emitter -base voltage (open collector)
Current
Collector current (d. c.)
Collector current (peak value, tp

$

10 ms)

Collector current (non -repetitive peak
value, tp :S 2 ms)
Temperature
Storage temperature

T stg

Junction temperature

Tj

max.

150

°c
°c

Ptot

max.

60

W

-65 to +150

Power dissipation
Total power dissipation up to T mb

---

==

25

°c

THERMAL RESISTANCE
From junction to mounting base

Rthj-mb

From junction to ambient in free air

Rthj-a

2

II

II

2,08

°C/W

70

°c/w

May 1974

BDX77

II

II

CHARACTERISTICS

Tj

= 25 °c

unless otherwise specified

Collector cut -off current

= 0; VCE = 30 V
IE = 0; VCB = 40 V;

IB

Tj

= 150 °c

ICEO

<

rnA

ICBO

<

rnA

lEBO

<

5

VBE

<

1,5

VCEK

typo

V

VCEsat

<

V

hPE

>

30

fhfe

>

25

kHz

fT

>

3

MHz

Emitter cut -off current
IC

= 0;

=5 V

V EB

rnA

Base -emitter voltage 1)
IC

= 3 A;

VCE

=2 V

V

Knee voltage 1)
IC
IC

= 3 A; IB = value for which
= 3, 3 A at VCE = 2 V

Saturation voltage 1)
IC

= 3 A;

= 0,3 A

IB

D. C. current gain 1)
IC

= 2 A;

VCE

=2 V

Cut -off frequency
IC

= 0, 3 A;

VCE

=3 V

Transition frequencl at f
-IE

= 0,3 A;

VCB

=3 V

= 1 MHz

1) Measured under pu'ise conditions: tp < 300 fls,

May 1974

II

I)

< 2%.

II

3

--

BDX77

I

I
7Z628SS 1 A

BDX77
I

I

I

Tmb:$ 25 oC -

IC
(A)

() =0,01

ICMmax
10

"-

I

"\

"' "' "\

ICmax

"-

'\
\

\

\

"", \

"'
\

\

1\

\ \
\

" ido

I\.

\

'"

I

"-"\

'\

\

\

Ptot max

tp
20 jJs

\

\

~

~ \ \ I\II \ 20o
second
1\
breakdown 1)- ~
~, ~ \
, ,
, ~Olo
\

\'

~\

\'

\

~

111ms

\~

'~ 10

1',

10- 1
10

VCE (V)

Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation

II Permissible extension for repetitive pulse operation

1) Independent of temperature.

4

II

II

April 1974

BDX77

II

II
7Z672571

,

100

P tot

~

max

(O/o)

\

,

f\

75

\.
~

"

~

50

\

,

~

1\

25

1\

"

I\,
~

\
50

----

7 Z67034A

3

JLJL
~J

5-1

1

2
_ ... 1-

-

1--....

-

0,2, 1-1-

I

0,5
I--'"

--

... io-l-'

/
~
~
~~ j.oo

O,~ 1-""',
;,...;.;;;;.;;

...-

~ r;;.-' [,;1<
~ ...... i""

f-- +-'
~ - ..... ""

I"'"

-'"

r---.

r--

...... ~

""'~

~

II

I-f-"'
i-"""

l'

~

I

~

J..oo

~
~

~V

"/

i""
~

~

10'

0,01

'Jif

10- 2

April 1974

~

J.,...oo ~1

./
~ ./

.-'"

~:,....

-

,I

T

0,1
0,05
-~

F--

t-"
I--

I-P-

tp

0=-

- 10- 1

tp (s)

II

5

10

BDX77

II

II

7Z62BS7

S.B. voltage multiplying factor at the Ie max level

"-..~. :..a........i01

-

10

~?,102'

'" r-.....r-....

~0,05 ....... t--....

1---0,1 ...
~0;2

~

...... r--,

r---..... ~ ~I' r-.r"- I'-

l -I-- 1-0.. r-. ~~ ~~
r-~

I

b==-0,5

~~~

~
--.. ~~

r-r--- t---LI¥ ~~ I==~ t:::-~~

1

10- 5

---

10- 4

--

tp (8)

7Z62856

.......

S.B. current multiplying factor at the VCEOmax 'level

6= 0,01 .......
I ......

l"~

i

MSB(V)

~ ......

t,os

10

t

i"'-i'oo

r- ,l-

"-

r"-, ' \

,~

---

b,2
0,5

~
..........
~

\..
,~

..........

I\.

-

~

"'",J"

r---. .... ~ ~~
~

~

r---:: ~

1
10- 5

6

--r---. ..... 1"- I-I-t-

10- 4

II

li

April 1974
-----_..._-_..._-----_ ... -

II

BDX77

7262403

150

I
I

I IT
I
I

VCE =2V
Tj =25 °c

I-

100

~

.... ~

50

i.o-"
./

.

-""""I"'"

----

typ ...........

.........

"

-----

I'-

"' I\.

'Ii\

./

"

./

./'

~

1

---

7262391

10
1

1

IC

10

IC (A)

1.."..00'

1 I"

VCE=2V
Tj = 25°C

V

(A)

l/

~

L.....

~

I./'

V

/t"
,/

I/'

/

II

~

"

II'

V
10

Anri! lQ74

II

IB (rnA)

II

7

II

BDxn

7Z62393

1,5

VeEsat

r-

(V)

I---'

IC
-=10
IB
Tj =25 0e

7162397

3

I I r r I
I
I I I I

f--'.IIe
1-1-=10
IB
'-Ir-ITj =25 0e 1-1-

VBEsat
(V)

/
V

1

~

2

J
V

i
IJ'
I~

i"

)
1

1/

~~

/

--

I

.J>"

~

l/'

/
o

o
o

---

tyP

i.""

V

Q,5

1.1

5

7Z62399

100

o

10

Ie (A)

---- -

VeB=O

IB

5

10

Ie (A)

7Z52395

15

I I
I I I
1 rIII I

HVCE =2V I-fTj=25 0 e H-

IC
(A)

(rnA)

75

10

V
'\

50

,

....... too..,typ

'-"" V

1/

v

-IE =3A-f-

tyP..,j

""'"

I\.

i' ....

25

1/

5

I'I'iyJ

ii

2A-f-

r7

'--

J

rJ

"

IJ

o
-100

o

o

100 Tj (OC) 200

II

L.;

o

VBE (V)

II

2

April 1974

BDX77

II
7Z62387

I-'--

VCS 40V

~

."

I-'"

max I"'" ",.

....... 1-"

/

~/

10

/

typ
/

~

/V
1
/
~

10- 1

o

50

---

7Z62 406

20
fT
(MHz)

VCS=3V - Tj=25 0 C '--- '---

15

, -

........ r-....

10

r.-.... ......

- -- -typ

r--..;~

..... -r--.
r- ~

--

~ I--

5

o

o

April 1974

1

2

II

3

5 -IE (A)

4

II

6

9

,I

BDX78

II

II

SILICON EPITAXIAL-BASE POWER TRANSISTOR

P-N-P transistor in a plastic envelope, intended for industrial amplifier and switching
applications. N-P-N complement BDX77.

QUICK REFERENCE DATA

-V

Collector.-emitter voltage (open base)

max.

80

V

max.

8

A

max.

60

W

CEO
-IC

Total power dissipation up to T mb = 25 °C

Ptot

D. C. current gain
- IC = 2 A; -V CE

hpi!;

>-

' 30

fhIe

>-

25

Collector current (d. c.)

=2 V

Cut- off frequency
-IC = 0,3 A; -V CE = 3 V

kHz

Dimensions in mm

MECHANICAL DATA

TO-220
Collector connected
to mounting base

-I~~'

.-

1,3-- , -

~-

5;9
min

,I

--

1

15,B
max

1
1
I

J

+-It:;n::::::;:I;::::r~--'-

3,5 max
not tinned

5,1
max

\,
-.1 _I --t
max

.....

r

-

J

12,7

min

(2x)

bee
~-------'-

___I

-.11:-°,9 max (3x)

2,54 2,54

-.1--2,40,6
1
--

-.

7l65872.3

Por mounting instructions and accessories see section Accessories.

June 1977

II

II

1

--

-

BDX78

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IECI34)
Voltage
Collector -base voltage (open emitter)

-VCBO

max.

80

V

Collector-emitter voltage (open base)

-VCEO

max.

80

V

Emitter-base voltage (open collector)

-VEBO

max.

5

V

Collector current (d. c. )

-IC

max.

8

A

Collector current (peak value, tp ::: 10 ms)

-ICM

max.

12

A

Collector current (non -repetitive peak value,
tp :5 2 ms)

-I CSM

max.

25

A

Current

Temperature
Storage temperature

T stg

Junction temperature

Tj

max.

150

°c
°c

Ptot

max.

60

W

-65 to +150

Power diss ipation
Total power dissipation up to T mb = 25 0C

THERMAL RESISTANCE
From' junction to mounting base

Rthj-mb

From junction to mounting base in free air

Rth j-a

2

II

II

2,08

°C(W

70

°C(W

May 1974

II

II

CHARACTERISTICS

TJ = 25

°c unless

BDX78

otherwise specified

Collector cut -off current
IB = 0; -V CE = 30 V
IE = 0; -VCB = 40 V; T j = 150

°c

-I CEO

<

rnA

-I CBO

<

rnA

-lEBO

<

5

-VBE

<

1,5

-VCEK

typo

V

-VCEsat

<

V

Emitter cut -off current
IC ::: 0; -VEB = 5 V

rnA

Base -emitter voltage 1)
-IC = 3 A; -VCE = 2 V

V

Knee voltage 1)
-IC = 3 A; -IB = value at which
-IC = 3,3 A at ':"VCE = 2 V
Saturation voltage 1)
-IC = 3 A; -IB = 0,3 A

D.~. current gain 1)
-Ie =2 A; -VCE = 2 V

--

hFE

>

30

fhfe

>

25

kHz

fT

>

3

MHz

Cut -off frequency
-IC = 0,3 A; -VCE = 3 V
Transition frequency at f = 1 MHz
IE = 0,3 A; -V CB = 3 V

1) Measured under pulse conditions: tp < 300 \ls, 0 <

May 1974

II

2%~

II

3

-

BDX78

II

II
7Z628SS 1

BDX78
I

I I

Tmb!5 25 oC

-Ie

t-

(A)

5 =0,01

-ICMmax
I.

10 -ICmax

" -.l
\.

Ptot max

~

" '"

'\

..'1.

\.

\.

.-J
.-J

~

~

l'l

\ 1\

\

~\

"~

\ \

"

\

" id·o

~
1\
K\ 1\,
second
_
1\
breakdown 1) ~
1\
~
~
1\

I

,

tp
20 (Js

'

II

,,

,

50 o

~

...l.

1\\

----

~ 20 o

1J

\

_'\

~

1\

.II

1 ms

'~

'~

10- 1

10

10

1Jc.

-VCE(V)

Safe Operating Area with the transistor forward biased
Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation

1) Independent of temperature.

4

II

II

April 1974

BDX78

II

II
7Z672S71

,

100

\.

P tot max

(010)

\

,

~

75

\.

,

1\

~

50

~

,

~

25

,

,

~

[\
~

oo

~

50

7Z67034/1

3

JLfL
~j

0-1
2

-

0,2, bo- f-

--

--

0,2
.,

I--

i--'"

0,5

~

~

~

i-""'"

1--""

./

....

--

~

~ -J.,

T

I

.,. ..-

..-

i

~i"""

1/

i

i

~

~

Ll

./
~L ~

-I-'

l,...~

.... ~

1

:-r--

tp

0=-

'"

i

"/

~t;::i

i

~~
~

I"'"

I-"'"
~I""

~ I"-

~~

I-"'"

F--- I"""'"

o ~ '"""'"

......... 1'-..

Ilill

10- 5

April 1974

pte: 0,1
0,05
0,01

V ...... ~r--

~ l"-

I

1

II

tp (8)

5

10

BDX78

II

II
1Z62857A

S.B. voltage multiplying factor at the -Ie max level

MSB(l)

~0101
10

~

~?,OZ-

---.;;0,05
~O,l .. :=;;;-0,2

1"0..

r--... r--...
r--.... I '~r-..

r--.... ~ r-.,I'o ......... ...
..... 1'
1:::r- I-.. r""'o ...:::::::;: :::~

.....

I

=0,5
r---

.

1

10- 5

-----

.......

~

tp (s)

S.B. current multiplying factor at the -VCEOmax level

......

"

6,02

---r-- '"'"""

~,os

10

... .... 1"-

7Z62856

,
0=0,01
MSB(V)

----

~ ;;...,;;::: ==1- :::::--

10- 4

...........

==

~
...........::::
~
........ ~

t
b,2

I'-o~

.-

~

"
-:::~

~" '\

~I-

.........

..........

'" ".

'" r"""

- -,
~

0,5

~

.........

~

r-.~

~~.
~

~

---=:: --- ~~

6

II

11

~

April 1974

II

BDX78

II

150

7Z62404

r
I

-VCE =2V
Tj=25 0 C

100

.....,

",

.....

~",

....

l..o--

---

typ

.........
I'

"

'\..
'\..

"'\.

JII'"

\.

'\.
'\.

,

50

I'\.
'\.
'\.
'\.
\.

a

10- 2

10-1

1

10

-IC (A)

---

7Z62392

10
I

I

.,....- .-

-VCE=2V
Tj =25 0c

-IC

..,.

-

.......",

(A)

.... I-"'~

/

~""

/'::

1
~

i;""

~~

'"

//

//

/
10

April 1974

II

-IS (rnA)

II

7

BDX78

II

II
7Z62394

1.5

7Z6239a

3

i JI LLL
I I I /I

-IC
-VCEsat r - -=10
-IB
(V)
rT j =25 0c

-VBEsat

J

(V)

I

Tj =25

If

1

typ/

I

-IC
- ' =10
-IB

0.5

f-i-f-

2

/

:/
~

~

IL

IL'
jI""

II

1

/

..... 1'

"
V

II'

'j

I.....

I-~

°c

,

V
I

i-f-i-

"""I"'"

'"

"""

IL'

-.l

I

V
o

o
o

5

---

-IC (A)

o

10

5

-IC (A)

10

7Z62396

'15

1 1 I Ll
11I 1I

-VCE =2V
T j =25 0C

-IC
(A)

t-t-t-ti-t--

10

~
~

.L
'f'

5

,

J

L

1/

o
o

8

II

I'

1
'£

1

-VBE (V)

2

II

April 1974

I

·BDX78

II
7Z62400

7Z57556 .

~

100

I-- I--

-VCB=O

-VCB 40V
maxI""""

.... i--""

'(

-IB

,

,(rnA)

IL

1\

75

\
r-

V

V

~

10 2

J IE =3AI'..typ

~

I

~~

V

V

/

1I

10

50
~

""

25

typ

~,.",.

2A r-

typ

./

I

r-~

L

V

J
If'

10- 1

o

o

-100

100 Tj (OC) 200

/

)

0

50

---

7162405

20
fT
(MHz)

-VCB =3V r-- r-T j =25 0C - ,....-

-

15

,

........

r......

......... r-..."

f"".",

'!'oo.

10

~~ ,

" r" r--....

5

o

o

Apri11974

2

II

3

I""-- i""'-o

-r-. r- I--

4

5

II

IE (A)

6

9

BDX91
BDX93
BDX95

SILICON POWER TRANSISTORS

N -P-N transistors in TO -3 envelope for audio output stages and general amplifier and
switching applications. P-N -P complements are BDX92, BDX94 and BDX96.
QUICK REFERENCE DATA

BDX91 BDX93 BDX95
V
CBO
V
CEO

max.

60

80

100

V

max.

60

80

100

V

Collector current (peak value)

ICM

max.

Total power dissipation up to
T
= 25 °c
mb
Junction temperature

P

tot
Tj

,D. C. current gain
IC = 3 A; VCE

hFE

>

20

fT

>

4

Collector-base voltage (open emitter)
Collector-emitter voltage (open base)

=2 V

Transition frequency
IC = 1 A; VCE = 10 V
MECHANICAL DATA

TO-3
Collector connected to envelope
-26,6max-

j,1"
39,S 301

ma,

1

12

A

max.

90

W

max.

200

°c

'
IJ

Dimensions in mm

8,63 max ,--+-1 --1,6

~

4,2
_4,0

1_

--10,9-+

7Z68064.31-.-

For mounting instructions and accessories see section Accessories.

February 1979

II

I

20,3
max

J_' _

MHz

12,8 ......
11,2

BDX91
BDX93
BDX95
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)

Voltages

BDX91

BDX93

BDX95

Collector-base voltage (open emitter)

VCBO

max.

60

80

100

V

Collector-emitter voltage (open base)

VCEO
V
EBO

max.

60

80

100

V

max.

5

5

5

V

Emitter -base voltage (open collector)
Currents
Collector current (d. c.)
Collector current (peak value)

IC

max.

8

A

ICM

max.

12

A

Ptot

max.

90

W

Power dissipation
Total power dissipation up to
Tinb = 25 °c
Temperatures
Storage

~emperature

T

Junction temperature

---

-65 to +200

stg

Tj

max.

200

°c
°c

THERMAL RESISTANCE

From junction to mounting base

2

II

Rth j-mb =

1,94 .

II

°C(W

July 1977

·BDX91
BDX93
BDX95

II
Tj

CHARACTERISTICS

Collector cut- off current

I

==

25

°c unless

otherwise specified

ICBO

<

0,1

rnA

leBO

<

2

rnA

ICEO

<

1

rnA

lEBO

<

1

rnA

hFE

>

20

hFE

>

10

VBE

<

1,4

V

Ie:= 3 A; IB := 0,3 A

VCEsat

<

0,8

V

IC:= 5 A; IB :=

VCEsat

<

1

V

IE := 0; VCB := VeBOmax
IE := 0; V CB

:=

30 V; T j

= 200°C:

BDX91

IE := 0; VCB:= 40 V; Tj := 200 °C: BDX93
IE := 0; V CB := 50 V; T j := 200 °C: BDX95

IB := 0; VCE := VCEOmax

.

Emitter cut-off current
Ie:= 0;

VEB:= 5 V
1)

D. C. current gain

IC:= 3 A; VCE := 2 V
IC:= 5 A; VCE := 2 V
Base-emitter vOltage

1)

Ie:= 3 A; VCE := 2 V
Collector-emitter saturation voltage

lA

Base-emitter saturation voltage
Ie:= 3 A; IB

1)

1)

==

0,3 A

VBEsat

<

1,5

V

Ie:= 5 A; IB :=

lA

VBEsat

<

2

V

. hfe

>

40

fT

>

4

Small- signal current gain at f
Ie := 0,5 A; V CE := 10 V

==

1 kHz

Transition frequency
Ie

==

1 A; VCE := 10 V

MHz

1) Measured uhderpulse conditions: tp < 300 fls, 0 < 2%.

October 1975

II

3

BDX91
BDX93
BDX95

II
°c unless

T j = 25

CHARACTERISTICS (continued)

otherwise specified

Switching times (between 10% and 90% levels)
ICon = 3 A; I

Bon

= -I

Boff

= 0,3 A; VCC = 30 V

0,2 f.1s
1 f.1s

typo

~

Turn-on time

ton

<

~

Turn-off time

toff

<

1,2 f.1s
2 f.1s

typo

Test circuit

Vee

= 55 V
tr = tf = 15 ns
tp
= 10 f.1s
T
= 500 f.1s.
VIM

*

V~

ot

150n

+J;5V

7Z724-78.1

7Z82167

Tmb=

150 0 e

.----..-

~

-

I--1---

r--r-. r--I'-o

25°C

~

:....---

--

-50 o e I----

----

l...--I--

i-'

~'" '"
'"
--...... " '" "
.........

......

I--~

-

.........

.....

"-

.........

......

.........

'\~

"

~I\ '\~

"- .....!'-

i'

r--.~~
~,..

10
10- 2

10

Ie (A)

Typical small- signal current gain as a function of collector current; VCE = 2 V.

4

II

II

March 1979

BDX91
BDX93
BDX95

II
7Z72iJ.52

Tmb~25°C

c;:;

MLn
C1lC1l

xx

X

ICMmax

" " t-..."' "'
"'1 ) , 1\

I\.

Cmax

~

"-

i\\

2~\

"
~

'\
I

~

"'

\

I- I '

coco

co

0=0,01

10

00

0

\

1\

~

IT

'~

500f.JS

1\

"I \\

,I \

1\

~

1ms

,l\
1\)\
1'1'

I'
10

10ms

~ d.c.
10 2

Safe Operating ARea with the transistor forward biased
I Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation

1) Ptot max and Ppeak max lines.
2) Second-breakdown limits (independent of temperature).

October 1975

II

5

BDX91
BDX93
BDX95

II
7Z67325

Ptot max
(%)

100

"' I"

.""-

-

"

5a

"I'

'" "
~

a

I~

a

200

7Z724.S7

3

JUL
_T_

-ltpl_1

5 =1

2

0,7
i"""""'"
~

~

O~

......

,,-~

~

;;i'

~

5=.!£
T

~

1-"'........

.,,, """

1'" ..... 1'"
~

""""I"'"

1

0,2 ~
........:: '/

~

v.........
I-""'"

...,........:......

-10- i""

t-- r......

°

10- 5

6

0lo-I"

r

.... c;..

~

0,1
0,05
1"0,01
I

~

1
1

10- 4

II

10 3

10

2

0- 1

1

II

t pI s)

1o

October 1975

BDX91
BDX93
BDX95

II

7Z72456

S.B. voltage multiplying factor at the ICmax level

,..t=0,01
10

0,02
-005
-0,1
=0,2

- --

r- .......

-

-~

~-

i""'~

.........

......

~

............... ~I'o..

--- ----

............ ["":: ~

.............

0,5

1
10- 5

-

"'" .....
-I"-~

~ ~ ~'"
r- ...... ::::;::::~
"'1'-' ~

~
----...;
~
-...;:

1

t::

-

I--

,...

10- 3

10- 4

10-2

7Z72455

.......

S.B.current multiplying factor
at the VCEOmax level

~

0=0,01 '"

r--.....

1""-1"- ...

)

I""-~ ~~

10

1"'\.
~

...........

~
0,1

0,2

-

r\.,

"-I" \

,

r......

r\ 1\
~~

--I"-...

'"

- r-

'" "'"'...... 1""-"",

........

~

,

0,5
,...

1

1

10- 5

October 1975

10- 4

II

...

l\.

~

----

~ ::...... .......

-

~

~

10-3

7

BDX91
BDX93
BDX95

II
7Z72458

VCE - 2V

Tj = 25°C

typ

"..,

---

-

~

_I"""

I--"""

.........

"""

~

",
"-

10
10- 2

--

10

IC (AI

7Z724S4

IIc~d.5IAI

1A-

-ZA- rJA

VCEsat
(V)

4A SA SA 7A SAl
I

1\ \

\ \\

\ \ \\

_\

,

'\..

"'-

"'- ...........
r--. ... ~
"-r--. ...

!'ool'-

\

"- "
....
~
-....
I'
-'.

\

\..

typo values
Tj = 25°C

•

~

'\.

~

- ....

--

.10- 1

10- 2
1

8

10

II

18 (mAl

II

October 1975

BDX92
BDX94
BDX96

SILICON POWER TRANSISTORS

P -N -P transistors in TO -3 envelope for audio output stages and general amplifier and
switching applications. N -P-N complements· are BDX91, BDX93 and BDX95.
QUICK REFERENCE DATA

BDX92 BDX94 BDX96
Collector -base voltage (open emitter)
Collector-emitter voltage (open base)
Collector current (peak value)
Total power dissipation up to
T
= 25 °c
mb
Junction temperature

-V
max.
CBO
-V
max.
CEO
-I
max.
CM
P

tot
T ..
J

60

80

100

V

60

80

100

V

12

A

max.

90

W

max.

200

°c

D. C. current gain
-IC = 3 A; -VCE

=2 V

hFE

>

20

Transition frequency
-IC = 1 A; -VCE

= 10 V

fT

>

4

---

MHz

Dimensions in mm

MECHANICAL DATA

TO-3
Collector connected to envelope
-26,6max-

J

i

111

..... 1

--1,6

•

-4,2
_4,0

max

1_

J_' _

--10,9 ....

+

1Z68064.31 __

12,8 ....
11,2

For mounting instructions and accessories see section Accessories.

February 1979

II

--

1

20,3

39,5 301

ma'

8 '63 r:nax ,--

BDX92
BDX94
BDX96

I

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
\

Voltages

BDX92 BDX94 BDX96

Collector-base voltage (open emitter)

-VCBO max.

60

80

100

Collector-emitter voltage (open base)

:-VCEO max.
-V
max.
EBO

60

80

100

V

5

5

5

V

Emitter -base voltage (open collector)

V

Currents
Collector current (d. c. )

-IC

max.

8

A

Collector current (peak value)

-I

max.

12

A

max.

90

W

CM

Power dissipation
Total power dissipation up to
T
= 25 °c
mb

P

tot

Temperatures
Storage temperature
Junction temperature

T

stg
T.
J

-65 to +200·

°c

200

°C

max.

THERMAL RESISTANCE

-

From junction to mounting base

2

II

1,94

Rth j-mb

II

°C/W

October 1975

BDX92
BDX94
BDX96
CHARACTERISTICS

Tj = 25 °c unless otherwise specified

Collector cut-off current
IE = 0; -VCB = -VCBOmax
IE = 0; -VCB = 30 V; T j = 200

-ICBO

<

0,1

rnA

-ICBO

<

2

rnA

-ICEO

<

rnA

<

rnA

:C: BDX92)

IE = 0; -VCB = 40 V; T j = 200 C: BDX94
IE = 0; -VCB = 50 V; T j = 200 °C:. BDX96
IB=O; -VCE=-VCEOmax
Emitter cut-off current
IC

= 0;

-V EB

=5 V

D. C. current gain

1)

..,.I C = 3 A; -VCE = 2 V

>

20

- IC = 5 A; -V CE = 2 V

>

10

<

1,4

V

0,8

V·

Base-emitter voltage

1)

- IC = 3 A; -VCE = 2 V
Collector-emitter saturation voltage

1)

-I c =3A; -IB=0,3A

-VCEsat

<

- IC = 5 A; - IB =

-VCEsat

<

-VBEsa~

<

1,5

V

-VBEsat

<

2

V

>

40

>

4

1A

. Base-emitter saturation voltage

V

1)

-Ic =3A; -IB =0,3A
--.IC = 5 A; - IB = 1 A
Small- signal current gain at f == 1 kHz

~e

-IC = 0,5 A; -V CE = 10 V
Transition frequency
- IC

==

1 A; -V CE = 10 V

1) Measured under pulse conditions: tp < 300 \ls,

October 1975

II

<5

MHz

< 2%.

3

BDX92
BDX9,4
BDX96
CHARACTERISTICS (continued)

Tj = 25°C unless otherwise specified

Switching times (between 10% and 90% levels)

= 3 A;

-ICon

-IBon

= IBoff = 0,3 A;

VCC

= -30 V

---.

Turn-on time

ton

---.

Turn - off ti me

toff

typo

55
= 15
= 10
= 500

1 Ils
2 Ils

<

Test circuit
VIM
tr = tf
tp
T

0,2 Ils
1 Ils

typo
<

Vee
V
ns
Ils
IlS

o ~

v;ut
7Z82168

Tmb='

- -- I--

~

----

150°C

-r-. .......

~i"'"'

V

I--

.....

25°C
-50°C

-

r---I-o.,

. . . r-.

--r--I'

r-.~

~

r-."" ......

.......

_.........

~

~

~

i"'-..

"'~

...... 1"00."

~~

1'1"

i'~~

"
10

10- 2

Typical small-signal current gain as a function of collector current; -V CE

4

10

-IC(A)

II

II

= 2 V.

March 1979

BDX92
BDX94
BDX96
7Z72453

25°C

Tmb ::::

N

en
X
0

0=0,01

-I CMmax

"-

10

"-

-1Cmax

'\.

\
~\

\

,

2\\

xx

00

eDeD

"'-

"-

r"\.

"' "'\ "'"' "'

~
1)" \

I

eD

.;tID

en en

"~

I\.

II

\

\~

,
\
5001-1 5

\

\.

\

\

'\
\

1ms

\\

\\

,\
~I\ 1Oms

\d
10

Safe Operating ARea with the transistor forward biased
I Region of permissible d. c. operation
II Permissible extension for repetitive pulse operation

1) P
and P
lines.
2 tot max
peak max
) Second-breakdown limits (independent of temperature).

October

1~75

II

5

BDX92
BDX94
BDX96

I

II
7Z67325

Ptot max

1%1

100

"I"

I'

"

I\.

"-

,

50

I'

I\.
~

l\..

"I'
a

a

~

200

n72t.S7

3

SLJL

-Itpl'-I

_T_ 6=!B
T

6 =1

2

0,7
I"""""
~-

r--

O~ i-"""

_r0,2 ~

1

~

-~

i-"""

""

-

~

.... 10-

-~
10-"

"""........

-

...... ~".

I"' ...... ~
~

~~

~~

~

io"

i-"""

-

to--'

v ......
I"""

....

17'

0,1
0,05
1"0,01
I
1
1

°

10- 5

6

~

...... "'" ...

~ ~I'

-~

I-- ~

~

10- 4

II

10- 3

10-2

10- 1

.

tpls)

II

10

October 1975

BDX92
BDX94
BD·X96

II

7Z72456

S.B. voltage multiplying factor at the ICmax level

~0,01

0,02 r-- rf----005

10

f----O,1

-

-~

- -

1'-00.

r--

0,2

'-

,I-

............

~~

............... ~

..

---

~

0,5

.............. :": ~
............. ~ ~ ...... ~

~
- ...... 1'-0..
t"'~

"""

roo.

~F=S ~

r- I-

1

~ ~ ......
r-----::
r--;::

-

1

10- 5

10-3

1"'"--

r-

r-

10-2

tp(S)

7Z72455

.......

S. B. current multiplying factor
at the VCEOmax level

~

0=0,01 ""

""- .....
)

-I"- 1'-1-

...........
--I"-

10

" r\.
'\.

~2

,

'"

\

r'\
~ ............. \ 1\
0,1

0,2

-

-r--...

-

r-

0,5

~r\

i'..

.......

"

~

-

\
......

:""'-~

1"-1-

I-

r--- ~ ~

1

1

10- 5

October 1975

"

" l\.
~

10- 4

II

10-3

--

r-

tp(S)

II

7

--

BDX92
BDX94
BDX96

II
7Z72460

-VCE = 2V
Tj - 25°C

typ

,---

-r- ~

1""-1"-,..

"
0

-VCEsat
(V)

10

J 1

U

-IcIOS~
r-.

1~1

.....

~

I.......,.
~

1

~

"'~

10

-I C (A)

iA- t-3'A

11

[

1\

1

.~~

,

7Z72459

, 1\ \
1\l\1\

Li

SA 6A 7A 8A
..1..l \

typo values

Tj = 25°C

,
"~ " ......."' ~
~

~

~

\.

~

I'

r\.

"I'

1

"l'- ""

~

1\

"""'"

'"

...............

...........

,.............
t"--...

1"'--1000

.....

r-

2

10

8

II

10 2

10 3

-Is (rnA)

II

October 1975

BDY20

II

II

SILICON DIFFUSED POWER TRANSISTORS

N -P-N transistor in a TO-3 metal envelope, intended for use in linear applications
such as hi-fi amplifiers and signal processing circuits.
QUICK REFERENCE DATA

Collector-base voltage (open emitter)
Collector -emitter voltage (ol?en base)
Collector current (peak value)

VCBO

max. 100

V

VCEO

max.

60

V

rCM

max.

15

A

Ptot

max. 115

W

Junction temperature

Tj

max. 200

°c

D. C. current gain
IC == 4 A; VCE == 4 V

hFE

20 to

fT

typo

Total power dissipation up to T mb

Transition frequency at f
IC == 1 A; VCE == 4 V

==

==

25 oc

1 MHz

MECHANICAL DATA

MHz

Dimensions in mm

Collector connected to envelope
TO-3

-26,6max-

,

J -"

8.63 max I-+.... , -+-1,6

-42
4'0

lJ.1

3.9,S 301

ma'l_' _

i
1_

20,3
max

1Z6B064.31-+-

12.8--.
11,2

For mounting instructions and accessories, see section Accessories.

February 1979

70

-

BDY20
-+

II

II

RATINGS Limitingvalues in accordance with the Absolute MaximumSystem (iEC'134)

Voltages
Collector -base voltage (open emitter)

VCBO

max.

100

Collector -emitter voltage (open base)

. VCEO

max.

60

VI)

VCER

max.

70

V 1)

VEBO

max.

7

IC

max.

15 A

ICM

max.

15 A

-IEM

max.

15 A

Ptot

max.

115 W

Storage temperature

T stg

-65 to +200

°c

Junction temperature

Tj

max.

°c

Collector-emitter voltage (RBE = 100 S1)
Emitter -base voltage (open collector)

V

V

Currents
Collector current (d. c.)
Collector current (peak value)
Emitter current (peak value)
Power dissipation
Total power dissipation up to T rob = 25

°c

Temperatures

--

200

THERMAL RESISTANCE

From junction to ambient in free air

Rth j-a

From junction to mounting base

Rth j-rob

40

°C/W

1,5 °C/W

l)Ic = 0.2 A

2

II

February 1979

II

BDY20

II

CHARACTERISTICS

T j = 25

°c

---

unless otherwise specified

Collector cut-off currents
l E O ; V CB = 100 V

ICBO

typo
<

3
5

pA
rnA

-VBE = 1.5 V; VCE ::; 100 V

ICEX

typo
<

4
5

pA
rnA

leE X

typo 0.3
<
10

rnA
rnA

lEBO

typo
<

nA
rnA

VBE

typo 1.1
<
1.8

V
V

VCEs~t

typo 0.4
<
1.1

V
V

VCEK

<

V

-VBE = 1.5 V; VCE =100 V: Tj

= 150°C

Emitter cut-off current
IC

0; VEB =

7V

1
5

Base -emitter voltage
IC

4 A; VCE=

4 V

Collector-emitter saturation voltage
IC

4 A; IB

= 0.4 A

Knee voltage
IC = 10 A; IB = value for which
IC = 11 A at VCE :: 5 V

o . C.
IC

3.0

-

current gain
4 A; V CE =

hPE

20 to 70

'C c

typo 250

pP

4 V

fT

tyPo

1

MHz

4 V

fhfe

typo

9

kHz

4 V

Collector capacitance at f = 1 MHz
IE

= .I e :: 0; V CB ::

20 V

Transition frequency at f = 1 MHz
Ie

1 A; V CE::

Cut -off frequency
IC

1 A; VCE =

February 1979

II

---

3

BDY2Q

II

11

CHARACTERISTICS (continued)

Tj

= 25 oe unless

otherwise specified

Switching times
Ie

= 4 A;

IB = -IBM
Delay time
Rise time
Storage time
Fall time

= 400

mA
td
tr
. ts
tf

typo 0.4 JJ,s
typo
2 JJ,s
typo
2 JJ,s
typo 2.5 JJ,s

Test circuit:

---

Pulse generator:
Pulse duration

t

>

10

JJ,S

Oscilloscope:
Rise time

tr

Rise time

tr

.::s

10

ns

Input resistance

Ri

4

II

II

~

10

ns

50

n

May 1969

BDY20

II

II
7Z59J21

~

111111

.111

JUL
I
"Itpl-

mb

--T-'

)

o:!E.
T

2

0=
1

1.5

0.75

- - -_
-~

..-

0.5 ~
~

....
........

~ I--~

0.5

0.2

...

~

~ f""'"

--

~

~

-

0.1
0.01

10

tp (s)

7209380

100

,

",,"'

maximum allowable collector-emitter voltage (with:
a resistance between base and emitter and
Ie =0.2 A) versus the base -emitter resistance applied.

VCER
(V)

Tj -25°C

80

60

40

~~E'
RaE

20

10-1

July 1970

10

II

5

BDY20

II

II
n09581

15

7Z09372

15

typical values

IC

1)=25°C

IC

(A)

I I I
\ \ I \
I I I

(A)

typical values
Ti

=25°C

,

I I '1fl..

~e~O.

10

.... Opt;.: \

-....

~<)~

10

~O~:

I0000-1'''''''

lft

1-1""0.4fl.
.~

... 0.3fl.

J
II. """

0.2A

5

0.1 At-t- rr
0.05Ar

0.5 A
0.5A
0.4 A

~r"
100'"

~

,

....

0:3A

...

-

_1..1

0.2A

1/ ""'"

I I

.... 1""

5

i'"

~

I
1/
V"

O.1A
I I

I""

(}J15A

ILl

0.01 A

J I

0.01 A

j

lJol"'"

JJ

111
JJ

I

20

VCE (V)

40

n09374

15

VCE=4V
n =25°C

IC

I-t-tI-t-t-

(A)

2

50

IC
(rnA)

7Z09582

VCE =4V
~.
=25O C
I I
...l1

typ
10

r-t- t-

max t--t-

40

I

J

typ/

-.I

"max- -r-r-

I

II
I
II

5

,

I
II

,

I

I'
)

II

il

20

II

I)

I
J
1/
J
II ....
'-"'II ~"

6

If
I

11

"

IJ'

2

II

VBE(V)

4

!1
i'

500

VBE (mV) 1000

II

August 1968

BDY20
II

7Z09S85

10

VCE :4V
25°C
Tj

IC

.,

(A)

typ

.... ~

V
V

1/

1

j

V
I

1/

11

I
10

10

1

---

7Z09584

150

VCE =4V
1] =25°C .
./

./

,/
,/

100

./
1/

....
~

'\typ
.~

\.
~

./
./

\

.J'

./

50

..---'"

..... ...

\

\
J
\.
\.

'-

,

I'

IC (A)

August 1968

II

II

10

7

II

BDY20

7Z09583

30

~.

fhfe

7Z09373

1.5

VCE=4V

=25°C

fr

,

(MHz)

(kHz)

VCE=4V 1-1-1f
=1MHz 1-1-1-

,
\.

"""

20
typ~
~

~

1) =25°C 1-1-11-1-1-

1

,
"'"

"""

1/

"

I.....

roo.
I'

l""'r-.,tYIJ 1-1I""'r-.,

~

I/"

10

""'' ' '

0.5

"

o0

I C~(A

2

0

o

4

2

IC (A)

4

7Z09376

'llle appropriate neatsink(s)
will be found in the section

Accessories and Heatsinks

)

-f-+-~ ~

100

-f-f-f-~

''''?6
-,,'Q
_

~

I'~

0,>.

I 1\.'

+~~
('~~I

f-I-I;- $(5i
f-I-I-f- ~O

50

.

:I

7~"

0,
~h~

~

~J}~~

--"I

"6~

C!'~

o0

- 8·

II

100

I\.

I'

"
I QC"~.~
~I-fI I I~.f
I I I-I' ~~fI 11-1
T;amb (OC) 200

"

II

August 1968

BDY20

II
7Z0937S

15
I

IC

I

(A )

m

f-~

10
rr~-

rf-f-f5 i-i-IlII-

-i-

r

I

0.2

I

m

Ic

~f-

0.1

"

(AI

\

\

II \"
0

5O'tEM'OO

I l I I i I I 1

o0

II I I l I I I
I I I

I I I

50

~CE V)

10o

--Region of permissible operation under all base-emitter conditions provided no
limitihg values are exceeded.
II Additional region of operation when the transistor is cut -off with - VBE !S 1. 5 V.
III Operation during switching off is allowed, provided the transistor is· cut-off with
-VBE::::: 1. 5 V and the transient energy does not exceed 75 mWs.

August 1968

II

II

9

BDY20

II

-

10

II

II

August 1968

I

BDY90 to 92

II

SILICON DIFFUSED POWER TRANSISTORS
High-speed switching n-p-n transistors in a Il!-etal envelope intended for use in converters, inverters, switching regulators and switching control amplifiers.

QUICK REFERENCE DATA
BDY90 BDY91 BDY92
Collector -base voltage (open emitter)

VCBO

max.

120

100

80 V

Collector-emitter voltage (open base)

VCEO

max.

100

80

60 V

ICM

max.

15

15

15 A

Total power dissipation up to T mb=75 C

Ptot

max.

40

40

40W

Collector -emitter saturation voltage
IC = 10 A; IB = 1 A

VCEsat

<

1.5

1.5

1.0V

:Fall time
IC = 5.0 A; IB
VCC = 30 V

tf

<

0.2

0.2

0.2 Ils

fT

typo

70

70

Collector current (peak value)
0

= -IBM = O.SA

Transition frequency at f = 5 MHz
IC = 0.5 A; VCE = 5 V

70 MHz

MECHANICAL DATA

F

Dimensions in mm

Collector connected to ,case
TO-3

--- 9,5 max

--I

-26,6max-

--3,15

r-1

•

- --4,2
...----+_--11-

r ,}g
39,S 301

-t 4,0

t

~

20,3
max

maXJ~

~

_1

--10,9-7Z69700

'-'1_12,8_
11,2

For mounting instructions and accessories, see section Accessories.

February 1979

II

1

--

BDY90 to 92

II

RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)

Voltages (See also pages 4, 5 and 6)
Collector-base voltage (open emitter)

BDY90

BDY:91

BDY92

VCBO

max. 120

100

80V

Collector -emitter voltage (V EB = 1. 5 V)

VCEX

max. 120

100

80V

Collector -emitter voltage (open base)

VCEO

max. 100

80

60V

Emitter'-base voltage (open collector)

VEBO

max.

6

6

6V

Currents
Collector current (d. c.)

Ie

max.

lOA

Collector current (peak value)

ICM

max.

15 A

Base current (d. c. )

IB

max.

2 A

IBM

max.

3A

Base current (peak value)
Emitter current (d. c.)

max.

llA

-IEM

max.

is

Ptot

max.

40 W

-IE

Emitter current (peak value)

A

Power dissipation
Total power dissipation up to Tmb=75 0 C

--

Temperatures
Storage temperature

T stg

Junction temperature

Tj

-65 to + 175 °c
175 °c

max.

THERMAL RESISTANCE

From junction to mounting base

Rth j-mb

CHARACTERISTICS

Tj = 25 0 C unless otherwi~e specified

2.5 °C/W

Collector cut -off current
VEB = 1.5 V; VCE = VCEXmax;
T m b=150oC

3 mA

<

Saturation vOltages
VCEsat
VBEsat

<
<

0.5 V
1.2 V

BDY90
BDY91

VCEsat

<

1.5 V

BDY92

veE sat

<

1.0 V

BDY90to92

VBEsat

<

1.5 V

IC = 5 A;IB = 0.5 A
IC = 10 A; IB = 1 A

2

II

II

October 1972

II
Tj

CHARACTERISTICS (continued)

= 25 °c

BDY90 fa 92

unless otherwise specified

D. C. current gain
IC =

>

1 A; VCE = 2 V

35

IC = 5 A; V CE = 5 V

30 to 120

IC = 10 A; VeE = 5 V

>

20

typo

70

Transition frequency at f = 5 :MHz
IC =0.5A;VeE=5V

MHz

Switching times
Turn on time
Ie

= 5 A; IB = -IBM = O. 5 A

Vee

=:

<

0.35 i-Ls

ts

<

1.3 i-Ls

tf

<

0.2 i-L s

30 V

Turn off time
Ie = 5 A; I B = - I BM = O. 5 A
Vee = 30 V storage time

fall time
Test circuit

input waveform

Ie
time

-IeM

VeE

30V
-Ves=-6V

time
7ZIO.1U

Pulse generator:
Rise time
tr
Fall time
tf

October 1972

II

<
<

50
50

ns
ns

output waveform

Pulse duration
Duty cycle

tp
{j

20
0.02

i-Ls

3

BDY90 to 92

II
7Z67086

Tmb!S 75 °C t:
IC
(A)

c5 -0,01

ICMmax
\

ICmax

10

\\ \

'\

,

\

\

II \ \ .\
\

~

\

\

\

\

\ 1\ \

\

\ \ 1\ \ \ \

~\

\

1\\ \ \1\1\

~~\\ ~I\ ~

I

~

~".'\
\

"

~\'\l\

~

,,'\

l~l\

\ \

l\

9O~'l\\ rd\ 1\

I

I

10- 1

IC

4

(rnA) 2

-

I

'":><
21

0-

:><

@

1

10

50
100
200
500
1ms
2

5

20
d.c.

~
:><
Cl

!Xl

80
120
VCE (V)

I I I I I I III

10- 2

20

to

III III III
<>-

0
40

i\ ~I\

I

I

I

\~
I J~ ~r\ \~
~~
,~

tp=
lOlls

r-- I-N
~

I

veE

.-!
~

0

~

><>< ><
~~ ~

(V)

Safe Operating Area (Regions I and II forward biased)
Region of permissible d. c. operation
II Permissible extension for repetitive pulse' operation
III Repetitive pulse operation in this region is allowable,
provided - VBE ?: 1, 5 V

For Ptot max versus Tmb see page 10.

1) Independent of temperature

4

II

II

October 1972

II

BDY90 to 92

7259947

JLJL
I

)

-Itpl..

--T--

10

--

,...,........ k

6=1
0)75
0,5
0.33
0)2
100"
01
~
~
~:.- ~
r",i-' 0,05
0.02

0= tp
T

~

...

~0,O1

10

-=

7Z67084

MsB(I) S.B. voltage multiplying factor at the ICmax level
S.B. current multiplying factor at the VCEOmax level (100 V) of BDY90
MsB(V)

0=0,01
1/ 0,02
l/ 0,05

10

~ ~ ~ ~Ioo..

i'---

I---

~

I----

f-O,2

"'"

0,5
0,75
I

.....:"':0....00

...;::~

"""I-" ~~
,....~I-

---

~ t--....

-I:::::::::.

r- ~~ t::b

10- 3

10- 5

October 1972

~

r--

t:=:=:- 1- 0,33

1

-----

-.

II

tp (s)

II

5

-=--

II

BDYIIJO to 92

7Z61083

S.B. current multiplying factor at the V CEOmax level (80 V)

t-- r--

BDY91

MSB(V)

~c5=0,01
~

"

"to,bi

I

"

~ "'0 OS ..... ~t"oor-'I ~

10

~

-,--

-====~

-0,1

........
....

::"'!!.

-.... ~ .~

---..

-

=0,12
1-

~

0 ,33
O,'S

....
i"'-..

I'~

r"--' I'--

1""0""

~

~

t:::::::-r~

0,7S

.

~ 1"'- ...
~

1

I'"

~

lO- S
7Z61085

S.B. current multiplying factor at the VCEOmax level (60V)

t-- t-

BDY92

MSB(V)
~c5

-0,01

'"

',",,-0,02

-'-

l"..... ...... ~
J
r--.~ "

10

~

-.0,1

i'

r--r-. ..

~
~

~

1--0,2
1--0,33

1"'0..

r....

r--1ooo.1'-

r- l"- i"-..

d,s'

~

t-.:::: ~ """

-

0,7S

~

1
lO- S

6

-....

r-..

10- 4

II

10- 3

-

~ ~ ~~~
10- 2

II

tp (s)

10- 1

October 1972

II

BDY90 to 92

II
7Z59944

7Z 599461

150

1

-- VCE=VCEXmax
~I--

VCE=5V
Tj=25 0 C

J

ICEX f-+- -VBE= 11SV
(~A)

1/

I

1/

typ

100

10

II

~

/"""

I)

~

typ
~

........

~

""l'I

50

1"1'

II

1/

II
200

100

7Z59945

typical values t-tf-I-t--tVce= SV
IB
(rnA)

o
1

0,1

10

IC (A)

---

7Z59943

150

VCE=SV
f=SMHz
lj=2SoC

fr
(MHz)

Ic=10A

I

100

SA

(

I

......
10

.

,/
I'-o!ooo.

i"""~

50

1A

...

~

V

/

~ .....

""

---...
typ

"'"
,

oSA
r-

0

1
0

October 1972

100

II

Tj (OC)

200

011

Ic (A)

10

7

BDY90 to 92

II

II

7Z59940

0,75

ITj:25°C
(V)

I I I I

I

I I I I

I

c-f- typical values

I ~~ :10

VeEsat

7Z59941

0,6

VeEsat '-I-

(V)

0,4

0,5

Ie

,.

I-f- =10
f-f- Ie

.

I
Ie=10A....
I-'"

.-j;Oi

II

....

~

~

~

~

....

.........

",.

0,2
>

L,..

L...olo""

SA

0,25

~

J.,.o

'I

//

1A

1- ......

0,5A
I I
Ie (A)

?Z59939

1,5

100

10

200

7Z59942.

1.5

I I

I I I

I I I I I I

ITj:2S0C

typical values

IkIe =10

VSEsat
(V)

VBEsat

Ie =10
Is

(V)

~loo-

j"".o ~~~

Ie=10A- f-II

......

typ_ ~~

I

I
SAI-f-I-

t-Ioo.
.... joo.loo.

..

io"""

I-t-.

...... i"" ....

~

-

I I I I

.......

1-100.

I

"'" """

1"'00

1"'00 ...

i'""Ojoo.

0.5

r-~
joo.

~A 1-1-1-

oJA

Ie(A)

8

II

10

----

100

II

E:+-f-

200

October 1972

BDY90 to 92

II

II

APPLICATION INFORMATION
Typical operation in a 250 W d. c. to d. c. converter with two BDY92 transistors
150.!l

-t
Vo

----------0

•

-~

Each transistor is mounted on a heats ink of Rth h-a = 15 0C/W
+ 28V

Performance at T amb = 55 °C
IS =10,5A
Vo = 240 V
Po = 250 W
n
84 %
f
= 28,5 kHz

B

-Losses at Po = 250 W
In transistors
In diodes
In transformers
Circuit losses

2 x 6W
2

A

x2W
8W
14W

Transformer data

start ing
circuit

c

Tl = Ferroxcube core E55 material 3E 1
Cat. No. 4332 020 34900
n 1 + n i is bifilarly wound

=

120pF

T2 = Ferroxcube core H16 material 3E2
Cat. No. 4322 020 33030
ns + n~ is bifilarly wound

9 turns, cjJ 1,4 mm

ns = n~ = 4 turns, cjJ 0, 7 mm

n2 = n2 = 85 turns, cjJ 0, 5 mm

24 turns, cjJ 0,3 mm

nl = ni

August 1975

II

7259831

9

BDY90'to 92

II
7Z59830

7Z59829

f
Vo
~
(kHz ) (°10) (V)

If

10

/

Is

LLi..L.Li
Lit J Lil

30

typical values

90 260

/

(A)

I

7.5

""" ~
80 250

1/

~

.~

if'

25

t~

II

70 240

/

I
60 230

1/

-

..1
I

~!~o

-~

1.

'I.

~

~

ILf_ .....

1,/

II

1/

""' ....
~

1/

I(

5

~'1.

:""!!!I.

j

/

1-1-

1.1

v

~

J

2.5

J

V

50 220

20

II
100

o

200 Po (W) 300

-=

100

Po(W)

300

7Z6111.Z

,

100

~

Ptot max
(%)

I'

\,
\.

l,

50

\,

1\

\,

o

10

II

\

I

o

100

T rub (OC)

200

October 1972

I

-II

MAINTENANCE TYPES

BDY93
BDY94

SILICON DIFFUSED POWER TRANSISTORS
High voltage, high speed switching n-p-n power transistors in a TO-3 envelope, intended
for use in converters, inverters, switching regulators and motor control systems.
QUICK REFERENCE DATA

Collector-emitter peak voltage (VBE = 0)

BDY93

BDY94
750

VCESM

max.

·750

Collector-emitter voltage (RBE = 100 Q)

VCER

max.

450

400

V

Collector-emitter voltage (open base)

VCEO

max.

350

300

V

Collector current (d. c.)

V

IC

max.

4

4

A

Collector current (peak value)

ICM

max.

7

7

A

Total power dissipation up to
Tmb = 75 °C

Ptot

max.

30

30

W

Collector-emitter saturation
voltage IC = 2 ,SA; IB = 0, 5 A

VCEsat

<

1,5

1,5

V

Fall time
IC = 2, 5 A; IS 1 = 0, 5 A; - IS2 = 1 A

tf

typo

0,4

0,5

fJS

MECHANICAL DATA

Dimensions in mm

Collector connected to case
TO-3

-- 9'5maXF

--I

-26,6 max-

.

--3,15

,.,

c

. - -42

-f 4:0

.-----t_--(I -

.

r

20,3

max

_l~
'-10,9-7Z69700

.

.-12,8_
11,2

For mounting instructions and accessories, see section Accessories.

February 1979

1

-II

MAINTENANCE TYPES

II

BDY96
BDY97

SILICON DIFFUSED POWER TRANSISTORS
High voltage, high speed switching n -p-n power transistors in a TO -3 envelope, intended
for use in converters, inverters, switching regulators and motor control systems.
QUICK REFERENCE DATA

BDY96

BDY97

Collector-emitter peak voltage (VBE = 0)

VCESM

max.

750

750

Collector-emitter voltage (RBE = 100 Q)

V

VCER

max.

450

400

V

Collector-emitter voltage (open base)

VCEO

max.

350

300

V

Collector current (d. c.)

IC

max.

10

10

A

Collector current (peak value)

ICM

max.

1~

15

A

Total power dissipation up to
Tmb = 90 °C

Ptot

max.

40

40

W

Collector-emitter saturation voltage
IC = 5 A; IB = 1 A

VCEsat

<

1,5

1,5

V

Fall time
IC = 5 A; IB 1 = 1 A; - IB2 = 2 A

tf

typo

0,3

0,4

fJS

Dimensions in mm

MECHANICAL DATA

TO-3
Collector connected to case
-- 9,5 max

-26,6 max-

-.,

.

--3,15

~

c

F

--42
......----+...._---11 -

-t 4:0

r
20,3

max

~

_1

-J!_12,8_

--10,9-7Z69700

11,2

For mounting instructions and accessories, see section Accessories

February 1979

I

--

HIGH-VOLTAGE TRANSISTOR
Silicon n-p-n transistor in TO-126 plastic envelope intended for use as a driver for line output transistors
in colour tv receivers.

QUICK REFERENCE DATA
Collector-base voltage (open emitter)

VCBO

max.

300

Collector-emitter voltC!ge (open base)

VCEO

max.

250

V

300

rnA

Total power dissipation up to T mb = 90 °C

ICM
Ptot

max.
max.

6

Junction temperature

Tj

max.

150

hFE

typo

45

ts

typo

0.5

Collector current (peak value)

D.C. current gain
IC = 20 rnA; VCE = 10 V
Storage time

MECHANICAL DATA

V

W
°C

jJ.s

Dimensions in mm

Fig.1 TO-126 (SOT-32)
Collector connected to
mounting base

7.8 max

--

·I~! 1
~

E
;:

I-'--~I~)~ -.: ~

L-.r.[r--1]
_.

--c-.j

J

iil

1.2

j

e

i. 4.58 .i

_ max

o.88

1-

c· b'
-4-

U

229

~I•

?Z59n4

(1) Within this region the cross-section of the leads is uncontrolled

See also chapters Mounting Instructions and Accessories.

March 1979

_B_F41_9

_)l_____________

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-base voltage (open emitter)
Collector-emitter voltage (RBE ~ 1 kU)
Collector-emitter voltage (opEm base)

. VCBO

max.

300

V

VCER

max.

300

V

250

V

VCEo.

max.

Emitter-base voltage (open collector)

VEBO

max.

5

Collector current (continuous)

IC

max.

100

Collector current (peak value) *

ICM

max.

300

Ptot
Ptot

max.

6

max.

0.8

Total power dissipation up to T mb =90 °c
up to T amb = 70 °c
Storage temperature

T stg

Operating junction temperature

Tj

-65 to +150
max.

150

V
mA
mA
W
W
oc
°c

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

From junction to ambient

Rth j-a

10

oCIW

100

°C/W

---

* Precautions should be taken during switch-on of the BF419 where an overshoot of current is likely
to occur. The amplitude of the overshoot depends on the relative magnitude of stray external
capacities to the transistor collector capacity. It is desirable to keep the stray capacities to a minimum
by short lead lengths etc. so as to minimise the area of the switching path.

2

Mareh 1979

~

r

~~

___H_i_9h_.V_o_lt_ag_e_tr_a_ns_is_to_r______________________________

_______B_F_4_1_9_______

CHARACTERISTICS
Tj = 25 0C
Collector cut-off current
IE=0;VCB=250V

ICBO

<

50

nA

Emitter cut-off current
IC = 0; VEB = 3 V

lEBO

<

50

nA

D.C. current gain
I C = 20 mA; V CE = 10 V

hFE

typo

45

Collector-emitter saturation voltage
Ie = 200 mA; I B = 20 mA *

VCEsat

<

11

V

Collector output capacitance at f =.1 MHz
IE = 0; V CB =30 V

CTc

<

4.5

pF

Storage time
(in the typical circuit belowl

ts

typo

0.5

J1.s

* The BF419 is controlled to V CEsat max. 11.0 V and is thermally stable under all operating
conditions where Tj max of 150 oC is not exceeded. For the typical circuit shown below, a heatsink
is not required for operation with T amb';;;; 70 °C.

- - - -.......---~,GOV

E

TBA920
TBA2S90

08248
Fig.2 Typical circuit.
RB is chosen so that the end-of~scan base current for the BU208A is 1.4 A under nominal
conditions. Typical value of RB is 0.5 n plus 0.1 n lead resistance.

March 1979

3

_)l"'---_______

__
BF41_9

08249

Ie

6

I "

ICM max

J II

-'-

Repetitive pulse operation

(mA)

=0.01

"- ~ ~ ,~
5ms

10.

" "-,
""

50

'"

200

~

~ ~~

i emax

~~

Second ~
breakdown
(independent of
temperature

tp =
5ps

~" r'~"

I'

Tmb ~ 90 °C

20
30

\Y\.I\
100

~~

~ 500
d.c.

10
"

1
1

10

F ig.3 Safe Operating. AReas with the transistor forward biased.

---

08250

J1SL

Zth j-mb
(Oe/W)
10

~-J

6 =1

I

~Oi75

--

----~

~0.5
~0.33-r-

f--O~2--

~0:1-

.......

....

... 1-

--- _

_r"
....

i=:::!

~~

~

....

~ :::;;r:~ ...
~

....

~

'"

I

r-

~

~

0.05

~,

.-'J,. ~ "~~ :"0...'-.

0.02

;/"

0.01
0

10

4

......

~

r
1

Mareh 1979

10 2
Fig. 4.

tp (jJs)

S=t
~llli

~~_~

___H_i9_h_.v_o_lta_ge_t_ra_n_si_u_or______________________________

____B_F_4_19
_______

08251

S.B. voltage multiplying factor at the Ie max level

;;~.01
0.02
~0.05

10

~0.1

" ~
Fl.::: r--.
~
~~
.........

.......

!-.....

~

~ r-- r-- r-... ~~ r=::~

-

t:::. 0.5

0.75

r-r-.
r- .... 1- !'-or-I'--r-I'-

1.0

1

~~

=-

F==:

10

Fig. 5.
08252

S.B.current multiplying factor at the VCEOmax level

~.Ol

0.02

~""'" bJ·05
0.1

10

-

~
-0.33

_0.5
0.75
1.0
1
10

~

~~

/

..........

-i"--....

~

""

...... ....... ~

--

~~

t--- r- ... ~ ~~

t-- t-

1' ...

I'-o-r-.

"""
,...

~~

~ t:::::::
~ r--::

,
~~

~

tp (lJs)

Fig. 6.
March 1979

5

_jl_______~___

__
BF41_9

08253

08254

I

100

~

~

P tot max
("!o)

\\

,

I

/
If'

(nAl r- VCB =250V
IE =0
.

1\

\

I

ICBO

V

V'"

\

75

\

~

\

L

~

,,

IL

'.. \
50

---Tmb(Oe)

~

-

-

-

/max

L

~

)1

-,1\
\
1\
\\\
.\
\1

Tomb (Oe)

25

II'

l/

1I

,

~

rl
a

a

100

50

T (Oe)

10

a

150

50

Fig. 7.

----

100

Tj (Oe)

150

Fig. 8.

08255

hFE

I

I

VCE =10V
Tj = 25 °e

50

,-- r.......

./
40

,
typo

~

" ,

~

I'

~

~

30
~

./
./

L

I'

'\.

20

~

-"

'\.
~
~

10

a
100

10

Fig. 9.

6

~~h1979~(

IC(mAl

j

BF457 to BF459

----------------------------------------------------~

SILICON PLANAR TRANSISTORS
for video output stages

N-P-N transistors in a SOT-32 plastic envelope intended for video output stages in black-and-white and
in' colou r television receivers.
QUICK REFERENCE DATA
BF457 BF458 BF459
Collector-base voltage (open emitter)

VCBO

max.

160

250

300

V

Collector-emitter voltage (open base)

VCEO

max.

160

250

300

V

300

max.

6

W

Junction temperature

ICM
Ptot
Tj

max.
max.

150

°C

D.C. current gain at Tj = 25 0C
Ic=30mA;VCE= 10V

hFE

>

26

Transition frequency
IC = 15 mA; VCE = 10 V

fT

typo

90

MHz

Feedback capacitance at f = 1 MHz
IE = 0; VCB = 30 V

Cre

<

3,5

pF

Collector current (peak value)
Total power dissipation up to T mb = 90 °C

MECHANICAL DATA

mA

Dimensions in mm

Collector connected to metal part of mounting surface
TO-126 (SOT-32)

1-

2,7 _
--'1 max
1

7,8max--'1

';5

3,2
3,0

1
11,1

+

max

I

-r

1S!3
min

e

JI.0,5

(1) Within this region the

cross-s~ction

c

---'.1

b'i"_

11_· .

0,88__
max

~

7ZS932<'.2

1__

~

of the leads is uncontrolled.

For mounting instructions see section Accessories type 56326 for non-insulated mounting and type
56333 for insulated mounting.

October 1977

BF457 to 459

·1

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltage
Collector -base I voltage (open e~itter)
Collector-emitter voltage (open base)
Emitter -base voltage (open collector)

VCBO
VCEO
VEBO.

BF457

BF458

BF459

160

250

300

max.

160

250

300

V

max.

5

5

5

V

max.

V

------~~----~

Current
Collector current (d. c. )

IC

max.

100

rnA

Collector current (peak value)

ICM

max.

300

rnA

Base cu:trent (d. c.)

IB

- max.

50

rnA

max.

6

W

-55 to +150

°c

150

°C

104

°C!W

10

°C/W

Power dissipation
Total po~er dissipation up to Tmb = 90°C

Ptot

Temperature
Storage temperature

T stg

Junction temperature

Tj

max.

THERMAL RESISTANCE
From junction to ambient
From junction to mounting base

2

II

Rth j-a
Rth j-mb

II

November 1972

BF457 to 459

CHARACTERISTICS

Tj

=

25

°c

unless otherwise specified

Collector cut -off current
. IE

= 0; VCB = 109 V for BF457

IE = 0; VCB

= 200 V for

IE = 0; V CB

= 250 V for BF459

BF458

<

50

nA

<

50

nA

>

26

Emitter cut -off current
IC = 0; VEB = 3 V
D. C. current gain
IC = 30 rnA; VC E = 10 V
Collector -emitter saturation

vol~age

<

IC = 30 rnA; IB = 6 rnA
High frequency knee voltage at Tj = 150
IC

= 50

rnA

V

°c
VCEK

typo

15

V

The hIgh frequency knee voltage of a transistor is that value of the collector-emitter
voltage at which the small signal gain, measured in a practical circuit, has dropped to
80% of the gain at VCE = 50 V. A further reduction of the collector -em itter volt:lge resuIts in a rapid increase of the distortion of the signal.
Transition frequency at f = 100 MHz
IC = 15 rnA; VCE = 10 V

90

fT

typo

MHz

Cre

<

:-3,5

pF

C oe

<

4,5

pF

Feedback capacitance at f = 1 MHz
IE = 0; VCB = 30 V
Output capacitance at f = 1 MHz
IE =O;VCB =30V

February 1974

---

II

BF457 to 459

II
7Z670681

I

I IL

ICMrnax

IC

I

I

16 = 0,01

I

I

I
tl~

I II

I.~ "-

IIIIIIIII

(rnA) r- repetitive pulse operation

i"I

J slrnls~ \1\
\\

I

.1

ICrnax

second
I.
breakdown
(independent of
temperature)

~I'\I" ~,
" 5 fJs
~0,
" '\ 19,
r'\~
\. '\ r'\ '\ 20

i\

I

0\

~ r--~

I/')

'

50

Transition frequency
. IC = 10 mA; VCE = 10 V

>

60

MHz

Feedback capacitance at f = 0,5 MHz
IE=0;VCB=30V'

<

1,8

pF

MECHANICAL DATA

Dimensions inmm

Fig. 1 TO-126 (SOT-32).
Collector connected
to mounting base

r-

a

-~~

+

3,2
3,0

Ts(

11,1

i

.+

-n--[ -[]r-,

7,smax--,

max

L..rr--tIr---Tr--1

~~~11l

15.3

min

For mounting instructions
see Handbook section Accessories
type 56326 for direct mounting
type 56333 for insulated mounting
types 56353 and 56354 for direct and insulated clip mounting.

e

JI.0,5

max

t

b'f"-----'-

C

0.8s-Jl_ ,. ,
=.l

7Z59324.2

I~

~

January 1979

-.:::z:

BF469
BF471
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BF469

BF471

Collector-base voltage (open emitter)

VCBO

max.

250

300 V

Collector-emitter voltage
RBE = 2,7 kn
open base

VCER
VCEO

max.
max.

250

300 V
V

Emitter-base voltage (open collector)

VEBO

max.

5

Collector current (d.c.)

IC

max.

50

Collector current (peak value)

ICM
Ptot
T stg

max.

100

mA

max.

1,8

W

Tj

max.

Total power dissipation up to T mb = 114 °C *
Storage temperatu re
Junction temperature

V
mA

-65 to + 150 °C
150

°C

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

From junction to ambient in free air *

Rth j-a

20

oC/W

100

°C/W

,* Transistor mounted on a printed-circuit board, maximum lead length 4 mm, mounting pad for
collector lead minimum 10 mm x 10 mm.

2

January 1979

(

BF469
BF471

Silicon planar epitaxial transistors

CHARACTE R ISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
IE = 0; V CB = 200 V
RBE = 2,7 kn; VCE = 200 V; Tj =150 °C

ICBO
ICER

<,
<

10
10

nA
p,A

Emitter cut-off current
IC= 0; VEB = 5V

lEBO

<

10

p,A

D.C. current gain
IC = 25 mA; VCE = 20 V

hFE

>

50

High-frequency knee voltage at Tj = 150 0C*
IC = 25 mA
.

VCEK

typo

20

V

Transistion frequency
IC = 10 mA; V CE = 10 V

fT

>

60

MHz

Feedback capacitance at f = 0,5 MHz
IE=0;VCB=30V

ere

<

1,~

pF

Feedback time constant at f = 10,7 MHz**
-IE = 10 mA; VeB = 20 V

rbb'Cb'c

<

90

ps

-----

* The high-frequency knee voltage of a transistor is that value of the collector-emitter voltage at
which the small-signal gain, measured in a practical circuit, has dropped to 80% of the gain at
VCE=50V.
A further reduction of the collector-emitter voltage results in a rapid increase of the distortion of
the signal.
**

rbb

-z;-.I

'e' -'hrb
bc-

'I (January

1979

3

BF469
BF471

7Z78609

IC
(mA)

0=0,01

ICMmax

/

"'
1'- '-

ICmax

"

""'-."'-"""

''\..

" I'\..
"'- "l2)
"~ - tp =
r\..'\..

""." ~ " """" J
"n_~",~-1O
~~

.

't'\"
~~
(1)

I
10

-1
10

511s

~

" ~'\" ,,~g

~ ~ :;~g
"
200
:\ ...... 500
1 ms
~
--5
"d.c.

VCE(V)
Fig. 2 Safe Operating ARea at T mb = 114 °C.
I

Region of permissible d.c. operation.

II

Permissible extension for repetitive pulse operation.

(1) Ptot max and Ppeak max lines.
(2) Second breakdown limits (independent of temperature).

4

Janua~

1979

~

r

BF469
BF471

Silicon planar expitaxial transistors

7Z78606

200

I I I I
18 =30mA

V

IC

(mA)

L..•••

I-"

-

~

I---" I---"

25mA

II'"
~

~

100

V-

-

II'"

-

20mA
-I--

I-" ......

-I---" I- ~"'"
l-o ~ ~

15mA
-~ l~

l -I-- 1--"'"

o

i""'"
~~

o

-10

I..-

lOmA

,...

L-

5mA

,...
I..- i -

-I---" ~

~

10

20

30

40

50

VCE (V)

Fig. 3 Tj = 25°C.
7Z78608

50
t

8 =1,0

20
10

t---

,th j-mb

°C/W)

-

~

0,5
0,2

~ l -I-....
"'"
--QI~ I--"~~
~F'

f---

-

el::<

~~

~

~ ~'02
0,01
0

JLJL
-Itpl- I tp
10- 1

10- 6

--T-

8=-

T

10- 4
Fig. 4.

i(

January 1979

5

BF469
BF471
7Z78599

150
II

,,

I

I

I

IC
(mA)

0,8
VBe

ty~1 ~t max

V BE

100

I

I

I

I'

II

7Z78596

(V)

"' '-

0,7

"

1

J

~
~

0,6

I

..... ~yp

I.

..........

I

50

,

,

1

....... .....

If
0,5

/
1/

J

'/

"

o

0,8

0,6

VBE(V)

1,0

Fig. 5 VCE = 20 V; Tj = 25°C.

0.4

o

50

100
150
Tamb (OC),

'Fig.6 IC

= 25 mA; VCE = 20 V.

Fig. 7 IE

= 0; f = 1MHz; Tj =25°C.

7Z78595

3
1\
1,

~

J

Cre
(pF)

\

\

1\
1
\

2

[\
~

"' max
I.......

"- - -

\
\

,
~ ~yp
...... r--.,

r-. .....
1

6

o

r--. .....

10

Janua~1979 ~

(

BF469
BF471

Silicon planar epitaxial transistors

7Z78603

200

7Z78601

fT
(MHz)
150

V CE =

)'"
V

/
V' V
100

typ

~20V

/

I"..ooroo"

\

...... ~

min

\

V

-

-, '

""'"

\

l't.

.

'\

~

.......

\

.....,./

i'o.

~\

10V\

~
10

,

50

i

o

1

10

Ie (mA)

Fig. 8 fM = 35 MHz; Tamb = 25

10

2

ac.

I

I

1

1

10

Fig. 9 V~E '" 20 V; Tamb = 25

ac.

72:78605

rCBa

~

1/

(nA)

I
max

I

t

V
~

)

I
,

,
10

IL

wry

1/

V
,

V

1
o

/

50

Fig. 10 VCB = 200 V._

100 T. (DC) 150
J

January 1979

7

_ _ _J

BF470
BF472

SILICON PLANAR EPITAXIAL TRANSISTORS

P-N-P transistors in a plastic envelope intended for class-B video output stages in television receivers
and for high-voltage Lt. output stages.
N-P-N complements are BF469 and BF471 respectively.

QUICK REFERENCE DATA
BF470
Collector-base voltage (open emitter)
Collector-emitter voltage
open base
RBE = 2,7 kn

. -VCBO

max. 250

-VCEO

max. 250

-VCER

max.

BF472
300 V
V
300 V

Collector current (peak value)

-ICM

max.

100

Total power di"ssipation up to T mb = 114 °C

Ptot

max.

1,8

W

Junction temperature

Tj

max.

150

°C

mA

D.C. current gain
-IC = 25 mA; -VCE = 20 V

>

50

Transition frequency
-IC = 10 mA; -VCE = 10 V

>

60

MHz

Feedback capacitance at f = 0,5 MHz
IE == 0; -VCB = 30 V

<

1,8

pF

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-126 (SOT-32).

1"-

2
-'1 max
,7 ,,1

Collector connected
to mounting base.

7,8 max

--I

_~. ~3j51

3,2

~

3,0

+

11,1

I

max

'--n--t!r--rr-'_l
r

15,3
min

e

For mounting instructions
see Handbook section Accessories
--I 14,581
type 56326 for direct mounting
type 56333 for insulated mounting
types 56353 and 56354 for direct and insulated clip mounting.
1
..-

-.11..0,5

0,88__
max

c

1

b ,+,' - - - - - - - - ' -

11..-, ,
~

7Z59324.2

1_ _

~

I

January 1979

-

BF470
BF472

l _ ._ - - : - - -

RATINGS

Limiting values in accordance with the Absolute Maximum System (I EC 134)
BF470

BF472

Collector-base voltage (open emitter)

-:-VCBO

max. 250

300 V

Collector-emitter voltage
RBE = 2,7 kn
open base

-VCER
-VCEO

max.
max. 250

300 V
V

Emitter-base voltage (open collector)

-VEBO

max.

5

Collector current (d.c.)

-IC

max.

50

-ICM
Ptot

max.

100

mA.

max.

1,8

W

T stg
Tj

max.

Collector current (peak value)
Total power dissipation up to T mb

= 114 oC

Storage temperature
Junction temperature

*

V
mA

-65 to + 150

°C

150

°C

20
100

oC/W
°C/W

THERMAL RESISTANCE

From junction to mounting base
From junction to ambient in free air *

Rthj-mb
Rth j-a

--

* Transistor mounted ona printed-circuit board, maximum lead length 4 mm; mounting pad for

(
1

collector lead minimum 10 mm x 10 mm.

2,

J.nua~ 1979

BF470
BF472

Silicon planar epitaxial transistors

CHARACTERISTICS
Tj = 25 °C unless otherwise specified
Collector cut-off current
IE=0;-VCB=200V
RBE = 2,7 k.Q; -VCE = 200 V; Tj = 150 °C

--ICBO
-ICER

<
<

10
10

nA
/-l-A

Emitter cut-off current
IC=0;-VEB=5V

-lEBO

<

10

/-l-A

D.C. current gain
-IC = 25 mA; -VCE = 20 V

hFE

>

50

High-frequency knee voltage at Tj = 150 °C*
-IC=25mA

-VCEK

typo

20

V

Transition frequency
-IC = 10 mA; -VCE = 10 V

fT

>

60

MHz

Feedback capacitance at f = 0,5 MHz
IE=0;-VCB=30V

Cre

<

1,8

pF

Feedback time constant at f = 10,7 MHz**
IE =10 mA; -VCB = 20 V

rbb,Cb,c

<

90

ps

--

--

*

*-K

The high-frequency knee voltage of a transistor is that value of the collector-emitter voltage at
which the small-signal gain, measured in a practical circuit, has dropped to 80% of the gain at
-VCE = 50 V. A further reduction of the collector-emitter voltage results in a rapid increase of
the distortion of the signal.
rbb

'c'
Jhrbl
bc--'
.

w

January 1979

3

l:________--------

BF470
BF472

7Z78609

_IC
(mA)

-

0=0,01

ICMmax

A

/

"'''" "'" "

~ICmax

"'""""",-""- :::....
"

'" I'- "" ""'"
'" ~ (~2)t-r- tp=

I'\.

~~
~

~

" II '"""

,~"

~~ ~
(1)

I

~ 5 IlS

J

"'"~~ -10

~",,<:::~g

~ " '1~~
200
~ /500

10

~

1 ms

--5

'q.c.

---1

10

_ VCE (V)

Fig. 2 Safe Operating AReaat T mb = 114 oC.
Regiol') of permissible d.c. operation.
II Permissible extension for repetitive pulse operation.
(1) Ptot max and Ptot peak max lines.
: (2) Second breakdown limits (independent of temperature).

4

Janua~

'979

I(

BF470
BF472

Silicon planar epitaxial transistors

7Z78607

200

-IC

.- .......
7' ....... .......
.......
r

_

100

if""

~

~

1/

,
o

~

-~

~~

I-

L..- I- ~

~~

-~

o

-10

~

~,......

~

~

~i""

- -----~
~

~

....-

-~ ~-

IS=30mA
25mA I-- --20mA :..- ~
-"",~I-

----------- ----------- -I - ~ I-

(mA)

;:;;;Ii""

1-I -~

10

L..- I - ~

20

~ I--

'5~

--

TT

~
I

5m~

' - .....

40

30

50
...... VCE(V)

Fig. 3 Tj = 25 °C.
7Z78608

50

--- -

0=1,0

20

0,5
10
f--f---

-

0,2

~ i-"'" ~ .... I---

()~ :;:::::1-::

~..

---

~I:I'<:

~~

~

./

~ ~,02
0,01
0

SLSL
-Itpl- I tp
---T-

10- 5

10- 4

10- 3

tp

[j=-

T

(5)

10- 2

Fig. 4.

I

January 1979

5

l

BF470
BF472

7Z78598

150

7Z78697

I
I
I

-IC
(rnA)

-'
II

II

,

I

0,8

VBE
(V)

I

0,7

100
I
If

......

I

~

tyPj r-- 7 max
VBe

J

v

1/

I"- ...!yp
-:--r-.~

0,6

~

r-.

J

50

I

v

If
Ii

1/
1/

1.,-

IJ

~.

-'

0,5

"

.~

a

0,4

0,6

0,8

-VBE (V)

1,0

a

50

100

150

Tamb (oC)

Fig. 5 -VCE = 20 V; Tj = 25°C.

--

Fig. 6 -VCE= 20 V; -IC = 25 rnA.

7Z78594

1\

4

,

I'

\ ~
\1\

,

Cre

,"

~

(pF)

\.

~. ..... max

"

2

...

....

~

-~

.......

ty~ .....
~

a

6

a

10

20

....

.-...... 1"'--

,-NCB (V)

30

BF470
BF472

Silicon planar epitaxial transistors

7Z78602

200

7Z78600

150
~

--

-VCE=

~OV

.".1--'"

100

./

'tI"

f'\.

L,...olo-'
~

,

\ \

/

10V\

\

\

,

50

o

1

10
Fig. 8 fM

\

....-

typ

r--..
min
~

ll.

1\
~,

I,~

,

10

\

10 2

-IC (mA)

= 35 MHz; Tamb = 25 oc.

1
1

10

-IC (mA)

10 2

Fig. 9 -VCE::; 20 V; Tamb::; 25 0C.

7Z78604

-ICBO

1/

(nA)

/
max

./

~

I

't

V
,

~

tyo/

I'
~

10

i'

l,.I

,
V

1

V
o

50
Fig. 10 -VCB

= 200 V.

100 T. (oC) 150
J

January 1979

7

I"

I

J[

MAINTENANCE TYPE

------------------------------------------------------

BU126

'---------------------

SILICON DIFFUSED POWER TRANSISTOR

High voltage, high speed switching n-p-n power transistor intended for use in the switched mode
power supply of 900 and 1100 colour television receivers.
QUICK REFERENCE DATA

Collector-emitter voltage (VBE = 0) (peak value)

VCESM

max.

750.V

Collector current (peak value)

'CM

max.

6 A

Total power dissipation up to
Tmb = 50 0 C·

Ptot

max.

30 W

VCEsat

<

10 V

tf

typo

Collector-emitter saturation voltage
'C= 2,5 A; 'B=0,25A
Fall time
'CM = 2,5 A; 'B(end) = 0,25 A
MECHANICAL DATA

0,15

jJ.S

Dimensions in mm

Collector connected to case.
TO-3
-26,6maxc

t

t 1,0

1_12,8_

'-10,9-7Z69700

4-

11,2

For mounting instructions and accessories, see section Accessories.

February 1979

-/I

MAINTENANCE TYPE

II

BU133

SILICON DIFFUSED POWER TRANSISTOR

High voltage n -p -n power transistor intended for general purpose applications.
QUICK REFERENCE DATA

Collector-emitter voltage (VBE = 0) (peak value)

VCESM

max.

750

V

Collector current (peak value)

ICM

max.

6

A

Total power dissipation up to
Tmb = 50 °C

Ptot

max.

30

W

Collector -emitter saturation voltage
IC = 2.5 A; IB = 0.25 A

VCE sat

<

10

V

tf

typo

0.5

Il s

Fall time
ICM = 2.5 A; IBI

= -IB2 = 0.5

A; VCC

= 125 V

Dimensions in mm

MECHANICAL DATA

F
--I

Collector connected to case

-- 9,5 max

TO-3
-26,6max-

-4--

;--,

c

39.5 301

--42
.---+_---tl -

r 1t

-t 4:0

t

~

20,3

max

~

_1

11-,--'
. --10.9--

7269700

.....JI_12.8_
11,2

For mounting instructions and accessories, see section Accessories.

February 1979

.

3.15

II

---

II

II

BU204 to 206

SILICON DIFFUSED POWER TRANSISTORS
High-voltage, high-speed switching n-p-n transistors in a metal envelope intended for use
in horizontal deflection circuits of television receivers.

QUICK REFERENCE DATA

BU204 BU205
Collector -emitter voltage (VBE = 0,
peak value)

BU206

VCESM max.

1300

1500

1700

V

IC

max.

2,5

2,5

2,5

A

Total power dissipation up to
Tmb = 90 6C

Ptot

max.

10

10

10

D. C. current gain
IC = 2 A; V CE = 5 V

hFE

>

2

2

1,8

Fall time
ICM = 2 A; IB(end) = 1 A

tf

typo

0,75

0,75

0, 75

Collector current (d. c. )

MECHANICAL DATA

TO-3
Collector connected
to case

--. 9,5 max
-26,6max~

. . . .1

.

39,5 301
max

---3,15

~
+
- -4.,2

.-----+_--11 -

r ,19

F

-t 4.,0

I

~

20,3
max

.!.---J

_ 1' -

--10,9-1269700

L.......J1_12,8_
11,2

For mounting instructions and accessories see section Accessories.

September 1975

W

\..Is

--

BU204 to' 206

II

"

RATINGS Limiting values in accordance witp the Absolute Maximum System (IECI34)

Voltage

BU204

BU205· BU206

Collector -emitter voltage
(VBE = 0, peak value)

VCESM

max.

1300

1500

1700

V

Collector -emitter voltage
(RBE ~ 100 Q, peak value)

VCERM

max.

1300

1500

1700

V

Collector -emitter voltage (open base)

VCEO

max.

600

700

800

V

Collector current (d. c.)

IC

max.

Collector current (peak value)

ICM

Current
2,5

A

max.

3

A

IBM

max.

2,5

A

Reverse base current (d. c. or
ave,rage over any 20 ms period)

-IB(AV)

max.

100

rnA

Reverse base current (peak value)1)

-IBM

max.

1,5

A

Ptot

max.

10

W

-65 to +115

Base current (peak value)

Power dissipation
Total power dissipation up to
Tmb = 90 °c

---

Temperature

max.

115

°c
°c

Rth j-mb max.

2,5

°c/w

Storage temperature

T stg

Junction temperature

Tj

THERMAL RESISTANCE

From junction to mounting base

1) Turn -off c urr ent.

2

II

II

June 1972

II
Tj

CHARACTERISTICS

= 25 °c

BU204 to 206

unless otherwise specified

Collector cut-off current
VBE

= 0;

<

VCE == VCESMmax

D. C. current gain
IC

= 2 A;

VCE

rnA
BU204

=5 V

BU205

BU206

>

2

2

1,8

Emitter -base voltage

= 0;

IE == 10 rnA

+VEBO

>

5

5

5

V

IC == 0; IE == 100 rnA

+V EBO

typo

7

7

7

V

VCEsat

<

5

5

VCEsat

<

VBEsat

<

VBEsat

<

IC

Saturation voltage

Ie = 2 A; IB = 1 A
IC == 2 A; 18

= 1, 1 A

IC == 2 A; 18 = 1 A
IC

= 2 A; 18 = 1, 1 A

1,5

V
5

V

1,5

V

800

V

1,5

Collector -emitter sustaining voltage
IB

= 0;

IC == 100 rnA; L

= 25 mH

VCEOsust>

600

700

I

+6V

250r-----________
200

Ie

[mAl
100

oscilloscope

vert ..

o ~----------------~~-V
IV)
CEO

7Z62340

30-60Hz

1n
7Z62752

Oscilloscope display for VCEO$ust

June 1972

II

Test circuit for VCEOsust

3

BU204 to 206

II

II

CHARACTERISTICS (continued)

Tj ::: 25

°c unless

otherwise specified

Transition frequency at f ::: 5 MHz
IC ::: 0,1 A; VCE

=5

V

typo

7,5

typo

65

pF

Fall time

typo

0, 75

f-ls

Storage time

typo

10

jJs

Collector capacitance at f :.::
IE

= Ie = 0;

VCB

r

MHz

MHz

= 10 V

Switching times (in horizontal deflection circuit)
ICM

= 2 A;

IB(end) ::: 1 A; LB

= 25

jJH

ic

----

4

II

September 1975

II

BU204 to 206

I
7Z62739

BU204
Tmb < 90 °c

~.

10

Ic~mlax

f--<5

0,01
~,

ICmax

~
-" ~"
" ~ f\ "'"r"- ~ ~ ~~

,
~

~~

(5)°0 ~t\

"-

,,"-

"'Ii' "-

~Q' '-t\

~"",

-6"'(5)"

~.f.

QQ

~¢ ~

""

I,

'!; ~"
. "'~

I

I'~

tp
/l\-ls

/21

5
10
20
50
1-100
f- 200
500
lms::
2
5
/ld
IL
V d .c .

I~~~ 1
10

10 3 V CE (V) 10 4

Safe Operation Area with the transistor forward biased.
I Region of permissible d. c. operation.
II Permissible extension for repetitive pulse operation.
III Repetitive pulse operation in this region is allowable,
provided RBE :;; 100 Q; tp_:;; 20 \-ls; <5 :;; 0,25.
Note
Information on picture tube arcing is available.

1) Independent of temperature.

September 1972

5

II

BU204 to 206

II

10 3

7Z62718

BU205
T'mb<'90 °C

IC
(A)

,

~

10
0

IClvfm~x
lCmax
1

0,01

~" ~
f\
~ '1\" ~ ~ ~~
'\.

"'"

,

"'"'r\.

'\.

~(':)0 ~t-.

'"

'\..~

I~ 1'-'"
r\r\

~'~

~Q'o"~

~(':)

~

%~'"

1

~,

~ '1~
~~

tp
V Ills
2 'I
5
10
20
f-.-50
100
f-.-200
500
1ms=
2
51
,/10
jd.c.,i-

Ilwl
lO

10 3 VCE (V) lO4

Safe Operation Area with the transistor forward biased.
I Region of permissible d. c. operation.
II Permissible extension for repetitive pulse operation.
III Repetitive pulse operation in this region is allowable,
provided RBE ~ 100 Q; tp ~ 20 !-Is; {j ~ 0, 25.
Note
Information on picure tube arcing is available.

1)

Indepen~ent

6

of temperature.

II

September 1972

II

II

BU204 to 206

7Z62737

BU206
Tmb < 90

°c

10

ICmax
1

0,01

{)

ICl'1m ,ax

~" ~ ~

"\. 1"\.1"

1\
~1\ ,

~ ~ ~~
"'\. '\.1'\

"'

~[\.

;'\. 11' r\

~0 ~~
~ ,,~

r\

Q'o ro...

<-~

'"'f\.

~

% ~

,

"-

~ ~ ~"
'I:~

I

"'~

tp r/1 fls
2
5
10
1--20
- 50
_100
_200
500
1ms=
2_
/ 5I
110

~d.C.

ulI! 1
10
10 3 V CE (V) 10 4
Safe Operating Area with the transistor forward biased.
I Region of permissible d. c. operation.
II Permissible extension-for repetitive pulse operation;
III Repetitive pulse operation in this region is allowable,
provided RBE $ 100 Q; tp $ 20 fls; 0 $ 0, 25.
Note
Information on picture tube arcing is available.

1) Independent of temperature.

September 1972

7

i

BU204 to 206

Ii
7Z 62409

10
Zthj-mb

(Oe/w)

-0 =1.0

;;;;::== ~O:~p

1

-

-==
-

~0:2h

f--

0;10

-

0.05

~

.-""

_1--'--

~

- -::::
..........

--=- 0.02

-

-I-

~

-

0.5

:;;;;;;;;;; ~0.33

.....
~

~:::

~01

JLJL
~j

tp

0=-

T

10

7Z62411

S.B. voltage multiplying factor at the

Ie max level

I I

MSB(l)

o =~~011

.....

r----:- 0.02
I

.........

I J
1

6.05

tlOl

10

I

0.33

0.75
I

~

~ ~.
.........
i---

I'
.....-:

.....

I"

..... r---r-.

~

"'1"-

~

~ ~ ~~
r-=:::: --.:

r-~

I

10

1

8

~
.... r-.

r- 1-1"-

0.50
1

r-.

--

-0.20
I

--......

I

II

II

June 1912

BU204 to 206

II

7262410

S.B. current mUltiplying factor at the VCEO max level

I I

MSB(V)

o

=~.Oll

"'""-

r--0.02
I

......

I

I I

-~ ......

~,

b.lol

r-......... ~ ~~

1

10

"

6.05

"

~

~0.20

r--b.33

-to-..
I"""

I'

1

r1""-1- -r-

0.50
I

~~

~ .....;;
§:: ;::~~
r--... -...::

6.75'
1

t'\..
~

I

10

1

7262736

--+

I

---

10

-~

... ~

-

typ

'"'

VCE=5V
Tj = 25°C

~

"
I\..

"

"

1

June 1972

II

10

IC (A)

9

II

BU204 to 206

II
7Z 62740

750

7Z62741

1250

II

I
VeEsat (mV)

I---

0
VBEsat r--- Tj=25 e
Ie
(mV)
I---- -=2
IB

Tj=25 0 e
Ie
-=2
IB

-

500

~

1000

/

-

".

typ

)1

J

yV

/
typ /

250

/

V

750

/

,., . . . V

I;
",,;

~

~

Ie (A)

10 .

500
10- 1

1

Ie (A)

10

--

'10

II

II

June 1972

_ _ _ _J

BU207A
BU209A

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed switching n-p-n transistors in a metal envelope intended for use in horizontal
deflection circuits of colour television receivers.
QUICK REFERENCE DATA
Collector-emitter voltage (VBE = 0,
peak value)

BU207 A

BU209A

V CESM

max.

1500

1700

V

Collector current (d.c.)

IC

-max.

5

4

A

Total power dissipation up to
T mb=95 0 C

Ptot

max.

12,5

12,5

W

Collector-emitter saturation voltage
IC=4,5A; IB=2A

VCEsat

<
<

5

-,

V

5

V

IC =

3 A;

IB = 1,3 A

VCEsat

Fall time
ICM = 4,5 A; IB(end) = 1,8 A

typo

ICM = 3 A; IB(end) = 1,3 A

typo

0,9

jJ.s

0,7

MECHANICAL DATA

jJ.S

-

Dimensions in mm

TO-3
Collector connected to case.
-- 9,5 max ~

--I

I

~

c

I

.

-4-3,15

--42
-r---+.---II -

-t 4:0

i

16,9

1

20,3
max

39,S 301

lj~'

-----t 1,0

LL
'-'1..-12,8_

--10,9-7Z69700

11,2

See also chapters Mounting instructions and Accessories.
February 1979

1

BU207A
BU209A

l______

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Collector-emitter voltage
(VBE = 0, peak value)

VCESM

Collector-emitter voltage
(RBE";;; 100 n, peak value)

BU207A

BU209A

max.

1500

1700

V

VCERM

max.

1500

1700

V

Collector-emitter voltage (open base)

VCEO

max.

600

800

V

Collector current (d,c.)

IC

max.

5

4

A

Collector current (peak value)

ICM

max.

7,5

6

A

Base current (peak value)

4

4

A

IBM

max.

Reverse base current (d.C. or
average over any 20 ms period)

-IB(AV)

max.

100

mA

Reverse base current (peak value)*

-IBM

max.

3,5

A

Ptot
T stg

max.

Storage temperature
Junction temperature

Tj

max.

Total power dissipation up to
T mb = 95 °C

12,5

W

-65 to + 115

°C

115

°C

1,6

°C/W

THERMAL RESISTANCE
From junction to mounting base

---

* Turn-off current.
2

February 1979

(

Rth j-mb

BU207A
BU209A

Silicon diffused power transistors

CHARACTERISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
V8E = 0; VCE = VCESMmax
D.C. current gain
IC = 4,5 A; VCE

<

ICES

1,0
BU207A

mA
8U209A

=5 V

hFE
hFE

>
>

2,25

IC=3,OA;VCE=5V

+VE80

>

5

5

V

+VE80

typo

7

7

V

VCEsat

5

Emitter-base voltage
IC = 0; IE = 10 mA
IC=O; 'E

= 100mA

Saturation voltage
IC = 4,5 A; 18 = 2 A
IC=3,OA; 18= 1,3A

VCEsat

IC=4,5A;18=2A

V8Esat

IC=3,OA; 18= 1,3A

V8Esat

<
<
<
<

VCEOsust

>

Collector-emitter sustaining voltage
18=0; IC= 100mA; L=25mH

2,25

V
5

V

1,5

V

800

V

1,5

600

+6V

--9

2 5 0 , -_ _ _ __
200

Ic

(mAl

100

o ~--------~------~~VCEO (V)

Oscilloscope display for VCEOsust.

30-60Hz
7Z 62340

Test circuit for VCEOsust.

February 1979

3

l____

BU207A
BU209A

CHARACTER ISTICS (continued)
Tj = 25 °C unlessotherlivise specified
Transition ft:equency at f = 5 MHz
IC=0,1 A;VCE=5V

fT

typo

7.

Collector capacitance at f = 1 MHz
IE = le= 0; VCB = 10 V

Cc

typo

125

tf

typo

Switching times (in line deflection circuit)
LB=10pH
ICM = 4,5 A; IB(end) = 1,8 A

= 3,0 A;

IB(end) = 1,3 A

tf

typo

ICM = 4,5 A; IB(end) = 1,8 A

ts

typo

ICM = 3,0 A; IB(end) = 1,3 A

ts

typo

ICM

ic

4

BU207A

February 1979

r

MHz
pF
BU209A
ps

0,9
0,7

ps

10

ps

10

IJ.s

BU207A
BU209A

Silicon diffused power transistors

10 3

7Z62735

BU207A
Tmb< 95 oC

IC
(A)

10

ICMmax

0=0,01
......

\

~~

"'-"

I'"

"'"'-"
- I'..

l\. I\.: "r-I

ICmax

I I
I==Ptot max

....

~ "I~~

f'0 "

'"'\.
~

,,~

~ 1'\"

'\. 1,\

"~ 1\

,

°0

~Q'

%..

~

I\~

1111

20
50
100

~9°

.~~

1ms

~~

%'~I"\

~"l'\

I

tp
Ills
211
511
10

0~r'I
I'

~

----

511

10
d.c.

mj
10

10 3

V CE (V) 104

Safe Operating ARea with the transistor forward biased.
I
Region of permissible d.c. operation.
" Permissible extension for repetitive pulse operation.
III Repetitive pulse operation in this region is permissible,
provided RBE .;;;; 100 n; tp';;;; 20 IlS; 0';;;; 0,25.
Notes
Information on picture tube arcing is available.
(1) Independent of temperature.

February 1979

5

BU207A
BU209A
7Z62733

10 3

BU209A

Tmb < 95 °C

IC
(A)

ICMmax

10

I--j- I--

0=>0,01

, ",r-...
......

i' ,

~

I~

ICmax

I I
I =Ptot max

,'\.

~ r-...'

~ f\.I~~
,I\.

,

, .....,

""
::.....
"-

i'0 ~ "'1\

~O

I\.

20
50
100
200

,,\

'\. '\.

Q\~

°0~Q' ~
-6~
~

"

~Q:"

----

I

\

II500

lms
"\

0\''''

=

tp
11l s2
5

~,

~
5
10
d.c.
II

11
III
I

10

1

10 3

VCE (V) 104

Safe Operating ARea with the transistor forward biased.
I, Region of permissible d.c. operation.
II Permissible extension for repetitive pulse operation.
III Repetitive pulse operation in this region is permissible,
provided RBE ~ 100 n; tp ~ 20 JlS; [j ~ 0,25.
Notes
Information on picture tube arcing is available.
(1) Independent oftemperature.

6

BU207A
BU209A

Silicon diffused power transistors

7258626

J1SL
-12';=J 5=~

I

IW)

0-

-

-

"
1

......,
10

-

-1

_0

~

1

~
..,.

i-'

f;:=~

"'"

~ ;"

I,...-"

-2

~~

,1

;u,. ,A

~ .....

10

---=

7Z627J2

S.B. multiplying factor at the ICmax and V CEOmax levels

'"
ll~I,L
"

III

....
.........

"~~

0,05

...... ........

~I,~o

--....... r-...... ~ ~

III

10

-

0,02

I

-

~

""'~,
~

",

0,20

..........

-b','33

r......, .....

r--.-:: "........ .......~,

0,50

r---

0,75

III
10- 2

10- 1

1

I

--

;:::~ ~~

tp (ms)

r"""

10

February 1979

7

"

··l

BU207A
BU209A

'-----------------------~--------~----------7Z58620

750

7Z58619

1250
,Ie =2
Ie
Tj =25°C

Ic =2

Ie

VCEsat

VeESQt
(mV)

Tj =25°C

(mV)

/

~

I
. 500

I

1000
)

'f

I

/
/typ

I

250

tyV

-

....... ~

;;

750

V

~i,;'

""'"

/

itt

o0,1

Ic(A)

---

10

500
0,1

10

7Z62753

-

-,

-

10

,.......

~~

I--

--1--

~

VCE=5V
. Tj=25 °c

typ

1-1"-

~
'""-

" '\
~

1

8

February 1979

(

~

IC (A)

10

Jl

------------------------------------------------------

BU208A

----------~----------

SILICON DIFFUSED POWER TRANSISTOR

High-voltage, high-speed switching n-p-n transistor in a metal envelope intended for use in horizontal
deflection circuits of colour television receivers.
QUICK REFERENCE DATA
Collector-emitter voltage (VBE = 0, peak value)

VCESM

max. 1500 V

Collector current (d.c.)

IC

max.

Total power dissipation up to T mb = 25 °C

Ptot

max.

Collector-emitter saturation voltage
IC = 4,5 A; IB = 2 A

VCEsat

<

Fall time
ICM = 4,5 A; IB(end) = 1,4 A

tf

typo

5 A
80

W

1 V
0,7 I1S

MECHANICAL DATA
Fig. 1 TO-3.
Collector connected to case .

.- - - - 26,6 max -

7Z69700

1_12,8_
, 11,2

For mounting instructions and accessories see Handbook section Accessories.

February 1979

__
BU2_0BA_J

l__~. ____________

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Collector-emitter voltage
(VBE ='O,.peak value)

VCESM

Collector-emitter voltage
(RBE";;; 100 S1, peak value)

max.

1500.V
1500 V
700 V

VCERM

max.

Collector-emitter voltage (open base)

VCEO

max.

Collector current (d.c:)

IC

max.

Collector current (peak value)

ICM

max.

5 A
7,5 A

Collector current (non-repetitive peak)

ICSM

max.

15 A

Base current (peak value)

IBM

max.

4 A

Reverse base current (d.c. or
average over any 20 ms period)

-IB(AV)

max.

100 mA

Reverse base current (peak value) *

-IBM

max.

4 A

Total power dissipation up to T mb = 25 °C

max.

Storage temperature .

Ptot
T stg

Junction temperature

Tj

80 W
-65 to + 115 oC
115 0C
max.

Rth j-mb

max.

THERMAL RESISTANCE
From junction to mounting base

=.-E

* Turn-off current.

2

February 1979

(

1,12 OC!W

l___

S.ilicon diffused power transistor

B_U_2_0_8_A_ _

CHARACTE R ISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current
VSE = 0; VCE = VCESMmax
D.C. current gain
IC = 4,5 A; VCE = 5 V

ICES

<

1,0 mA

hFE

>

2,5

Emitter-base voltage
IC = 0; IE = 10 mA

+VESO

>

5 V

IC=O; IE = 100mA

+VESO

typo

7 V

Saturation voltage
IC=4,5A;IS=2A

VCEsat

IC = 4,5 A; IS = 2 A

VSEsat

<
<

1,5 V

VCEOsust

>

700 V

Collector-emitter sustaining voltage
IS=O; IC= 100mA; L=25mH

1 V

Lr+
250r-----________

6V

hor.

200

Ic

(mAl
100

o ~----------------~~V
(V)
CEO

7Z62340

Fig. 2 Oscilloscope display for V CEOsust.

Fig. 3 Test circuit for VCEOsust.

February 1979

3

_B_U20_8A

_Jl____________

CHARACTERISTICS (continued)

Transition frequency at f = 5 MHz
IC=0,1A;VCE=5V

typo

Collector capacitance at f = 1 MHz
IE= le=O;VCB= 10V

typo

125 pF

typo
typo

0,7 J.lS
6,5 IlS

Switching times (in line deflection circuit)
LB=6Il H;-VIM=4V;
ICM = 4,5 A; IB(end) = 1,4 A
(-dIB/dt = 0,6 A/IlS)

ic

Fig. 4 Switching times.

4

February 1979

(

7 MHz

l___

Silicon diffused power transistor

B_U_2_0_8_A_ _

7Z82058

II
I

10

ICM

I-- f-II'\.

IC

IC "-

[) =

0,01
I

II

"-

IV

,

I'\. \1\ !\
r\~ \1\

(A) 1----(1)

I

,,

~ I\~

tp
lOjJs

"

""
\\
\.

\. '\. I',r\
I\i"r-,

1\\I~
'\

'I.

1\

r"I

1-20
1---50
100
1/200

1
'\ 50~

\.\. I\, I\.

\\.\ \

I

t\. r\ ~

''''~
(2)\

~-

'\

,,\

10- 1

1---

1\

~ ~
'r\.

'\

1 ms
....... v2
5
10
..... 20
d.c.

I
IV

III

II

10- 3
10

1
VCE(V)

Fig. 5 Safe Operating ARea with the transistor forward biased. T mb

< 25 0C.

I Region of permissible d.c. operation.
II Permissible extension for repetitive pulse operation.
III Repetitive pulse operation in this region is permissible,
provided RBE < 100 n; tp < 20 jJS; 0 < 0,25.
IV Transient ICN CE limit, e.g. during picture tube flashover
(less than 10 line periods);
for V CE less than 700 V then tp less than or equal to 25 jJS
for VCE greater than 700 V then tp less than 5 jJS.

Notes
1. Ptot max and Ppeak max lines.
2. Second-breakdown limits (independent of temperature).
February 1979

5

)l"",,---~_ _ _- - - -

BU20SA

7Z58620.1

. 750

1250

7Z58619I

VCEsat

.!f.
=2
Ie

VSEsat

(mV )

Tj

(mV)

=25°C

.!£ =2

Ie
Tj =2SoC

.1

1000

500

~

j

[7

/

Vtyp
'I

25 0

tyV
./

-

750

V

~

-

.~

...

~

j"..o!-'

o0,1

Ie (A)

10

500

0,1

Ic(A)

10

Fig. 7 Base-emitter saturation voltage.

Fig. 6 Collector-emitter saturation voltage.

7Z627531

-typ

10

t-

11

-

I - -~

l - i--

1--'1- I-""~

"""""I-

""

111111111111111111.

10-2

10-'

February 1979

(

" 1\
.~

\

II

1

Fig. 8 D.C. current gain. VCE= 5 V; Tj = 25 0C.
6

"-

~

IC (A)

11111
10

l__

Silicon diffused power transistor

B_U_2_0B_A_ _

APPLICATION INFORMATION - HORIZONTAL DEFLECTION CIRCUIT WITH BU208A *
In designing horizontal deflection circuits, allowance has to be made for component and operating
spreads in order not to exceed any Absolute Maximum Rating. Extensive analysis has shown that, for
the peak collector current and the collector-emitter voltage of the output transistor, the total
allowance need not be higher than 25%, and the following recommended base-drive and heatsink
conditions are based on this figure.
To simplify the presentation, the design curves given refer to nominal conditions. Where'the collector
current will be modulated by the E-W correction circuit, the average value of the peak collector current
applies provided the modulation is less than ± 10%.
To obtain a short fall time and minimum turn-off dissipation with a high-voltage transistor, the storage
time must be sufficiently long and, during turn-off, the negative base-emitter voltage must be sufficiently high. Both requirements can easily be'realized by including a small coil in lieries with the base of the
output transistor. However, to reduce base current variations, a series base resistor is also added to
most designs. This has the disadvantage of reducing the energy in the base inductance during turn-off,
which in turn reduces the negative base-emitter voltage and with large resistor values may lead to an
insufficient negative voltage for correct device turn-off. This can be improved by shunting the base
resistor by a diode and/or a capacitor. Instead of giving various detailed base circuits based on these
consid.erations, it is a more direct approach to specify the recommended -diB/dt, see Fig. 11.

+
Rr

I[
BY223

l0,'
L

~•

01

I

..J

02

7Z?3468.1

TR1
driver

Fig. 9 Simplified horizontal deflection circuit.

* Detailed Application Information is available.
February 1979

7

__
BU2_0SA_Jl________
APPLICATION INFORMATION (continued)
The maximum transistor dissipation largely depends on the tolerances in the drive conditions. The
dissipation given, in Fig. 12 allows for base current and -dlB/dt tolerances in the order of ± 20%.
The curve applies for a limit-case transistor at. a mounting base temperature of 100 0C.
The thermal resistance for the heatsink can be calculated from Rth mb-a =

100 - Tamb max

in which
Ptot max
Tamb max is the maximum ambient temperature of the transistor. In order to assure a value' of
thermal resistance at which thermal stability is ascertained, the minimum value for T amb in the above
equation is 45 °C.

r-I

is

\

t.

i

I

- - ISlendJ

f~/

\

\;

-VSE
~-VI

.----------,

1-,

I

H-T

I

L ___

L__

t ....
-VIM

---

=

""\

-ic

V>(

--iE

I I

:I
~

VeE

m'

°1

-'

Fig. 10 Funda,mental waveforms.

8

February 1979

(

)

BU208A

Silicon diffused power transistor

7Z82056

3

I I

0,7

~

I I I
If
I I I
-dlB/dt I

'B(end)
(A)

-dlB/dt

(AljJs)
J

,

2

0,5

If
J

J

If

'B(end) r--

I

0,3
1

o

Fig. 11
Nominal end value of the base current and its
rate of fall during turn-off as a function of
nominal peak collector current to obtain, for
a typical transistor, the recommended storage
time of 6,5jJs. (During the storage time and
the decay time of the collector current the
negative turn-off drive voltage (-V 1M) must
be>4V.)

0,1
1

3

'CM (A)

5

7Z82057

15

Ptot
(W)

I

T=

48J.L5
I

10

'I
J

r-t

64J.L5
I I

I
'/ 1 64,.us

1/

'I

1/ J
If J I

5

V CEM

=

1200V
1200V ~
1000V
1200V
I

o
1

I

1/
V

/

~

~

...

1/
~

I' '( J
1/
1/

,
,,, "
~

~

64p5

" ., . "" "

Fig. 12
Continuous lines are maximum values;
T mb = 100 °C; 5 = 0,18; base tolerances
± 20%.
Total dissipation of a limit-case transistor
under maximum operating conditions for
625 and 819 lines (T mb = 100 OC).
The dashed line gives the total dissipation of
a typical transistor under nominal conditions
(T mb = 50 OC).

I
3

'CM (A)

5

February 1979

9

'\

______~____________--------_____Jl_____~_~_~2_2~_A

____

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed switching n-p-n power transistors in TO-3 envelopes, intended for use in the
switched-mode power supply of 900 and 1100 colour television receivers.
QUICK REFERENCE DATA
. BU326

BU326A

Collector-emitter voltage (VBE ::: 0; peak value)

VCESM

max.

800

900

Collector-emitter voltage (open base)

VCEO

max.

375

400

Collector current (d.c.)

IC

max.

ICM
Ptot

max.

8

A

max.

60

W

Collector-emitter saturation voltage
IC = 2,5 A; IB = 0,5 A

VCEsat

<

1,5

V

Fall time
ICon = 2,5 A; IBon = 0,5 A; ...:...IBoff = 1 A

tf

typo

0,3

IlS

Collector current (peak value; tp

< 2 Q'ls)'

Total power dissipation up to T mb

=

50 oC

6

MECHANICAL DATA

V
V
A

Dimensions in mm

Fig. 1 TO-3.
Collector connected to case.

-- 9,smaXF

--I

-26,6 max-

--3,15

rI

c

•

--42
.,---+_-41-

-t 4:0

r

20,3

t

max

~

1,O

_1

'-10,9-7Z69700

...-12,8_
11,2

See al,so chapters Mounting instructions and Accessories.

March 1979

l_ _ __

BU326
: BU326A
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
BU326
Collector-emitter voltage (VBE = 0; peak value)

BU326A

VCESM

max.

Collector-emitter 'voltage (open base)

VCEO

max.

Collector current (d.c.)

IC

max.

6

A

ICM

max.

8

A

2

A

Collector current (peak value; tp

< 2 ms)

Base current (d.c.)

800

900

V

375

400

V

IB

max.

Base current (peak value)

IBM

max.

3

A

Reverse base current (d.c. or average
over any 20 ms period)

-IB(AV)

max.

0,1

A

-IBM

max.

3

A

max.

60

W

Storage temperature

Ptot
T stg

-65 to + 150

°C

Junction temperature

Tj

max.

Reverse, base current (peak value; turn-off current)
Total power dissipation up to T mb = 50 0 C

150

°C

1,65

°C/W

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

CHARACTE R ISTICS
Tj = 25 0C unless otherwise specified
Collector cut-off current *
VBE = 0; VCEM= VCESMmax

--

ICES

<
<

2

mA

lEBO

<

10

mA

VCEsat
VBEsat

1,5
1,4

V
V

VCEsat
VSEsat

<
<
<
<

3
1,6

V
V

Collector-emitter sustaining voltage (see Figs 2 and 3)
I Boff = 0; IC=0,1 A; L=25mH BU326
BU326A

VCEOsust
VCEOsust

>
>

375
400

V
V

D.C. current gain
IC=0,6A;VCE=5V

hFE

typo

30

Transition frequency at f = 1 MHz
IC = 0,2 A; VCE = 10 V

fT

typo

6

VBE = 0; VCEM = VCESMmax; Tj = 125 oC
Emitter cut-off current
IC=O;VEB= 10V
Saturation voltages
IC = 2,5 A; IB = 0,5
I C = 4 A; I B = 1,25 A

r
1

* Measured with a half sine-wave voltage (curve tracer).
2

Ma~h

1979

ICES

mA

MHz

BU326
BU326A

Silicon diffused power transistors

2 5 0 r -_ _ _~
200

Ie
(mA)

100

01...--------=4-V eEO (V)

7Z62340

Fig. 2 Oscilloscope display for VCEOsust.

Fig. 3 Test circuit for VCEOsust.
tr~30ns

90
iB(OfoI

--~

- - - - - - - ---IBon

10 t--""1-----it--~--

Switching times (see Figs 4 and 5l
ICon = 2,5 A; VCC = 250 V;
ISon = 0,5 A; -I Soft = 1 A
Turn-on time

---I Boff

typo 0,3 J.l.S
ton
< 0,5 IJS

Turn-oft time (toff = ts + tfl
Storage time

ts

<

Fall time
Fall time at T mb = 95 °C

tf
tf

typo 0,3 J.l.S
1 J.l.s.
<

typo

2 J.l.S
3,5 J.l.S

90
ie
(Ofol

10
0

Fig. 4 Waveforms.

+25V-------~----~__,

680
IJF

+ 100
~

IJF

IT_I

VI~JLJl

t.IL
tp

tp
T
VIM

= 20 J.l.S
= 2 ms
= 15 V

I

1

Vi

Pu Ise generator

Vee
250V

T.U.T.

680
IJF

I

Fig. 5 Test circuit.
7Z73191.1

l

March 1979

3

·l

BU326
BU326A

~--------------------------------------------------7Z72650.3
6 =001
10 r=ICMmax
"-

t--I Cmax

,

tp=

,1'1.

."' "'
"' "\:~""""

~

IC
(A)

(1)

~

~ [S

1\

t\
[\\I\t\

I'\~r\
~ I\l\

"'\

"\.

"'"

"'-

'"

".:'\.

10 f.lS
r'\

'"

,1\

2'0

~ \ 1\ i'i
\.
\.

\

\. \.
\. \.

,~~

\.

~

50

100 1\
200

\\ \ \1\
1\ \ \ ' r\ \. 5?OI
I

10- 1

(~\ ~\

",

!"

1:n~
2=

5110-

1\
d.c.

I

m

Tmb~50oC

BU326_
BU326AIY

I

10- 3
2

10

veE

(V)

Fig. 6 Safe Operating ARea.

I Region of permissible d.c. operation
II Permissible extension for repetitive pulse'operation
-III Area of permissible operation during turn-on in
single-transistor converters, providedRBE ~ 100 on and tp
IV Repetitive pulse operation in this region is permissible,
provided VBE < 0 and tp ~ 2 inS
(1) Ptot max and Ppeak max lines.
_
(2) Second-breakdown limits (independent of temperature).

.4

March

19791 (

~

0,6 p.s

BU326
BU326A

Silicon diffused power transistors

?Z72731

100

\

,
\

,

,

~

\
\
\
\

50

\

,
\

\
\

\
~

\
\

\

o
o

50

100

150
T mb (oe)

Fig. 7 Power derating curve.
7Z72653

JUL
--!tpl-I
I_T__

5=!£.

T

10

r-5 1
~0,75

~.o,3

F~,33
~O,2

I

,I

~IO'~I:

~,05

--

f..-'"

....... ,...
.....-- ~
~~

....-~

~~

~

~,0,O2

~~IO,OI1

10- 2

10- 6

10- 5

10-4

10-2

Fig. 8 Pulse power rating chart.

10-1

Ir

tp

(5)

Mamh 1979

5

BU326
BU326A

L , , - - - ._ _ _
7Z72652

S.B. voltage multiplying factor at the ICmQx level
MV

f----O=

~
":t::'
0,02

...
10

f::::

~ I-. ~~I' ~~

f----O,1

.~

......

~

-r--"

1---0,2

--

~0:33
0,5
0,75

.:-....
1'-0..' ~
~

~

~~

:-t-

t'"

r- .........

~

t-::::::
~ ~t--.
t--- ....
10-2

10-3

10- 4

tp (5)

10-1

Fig. 9 S.B. voltage mUltiplying factor at the ICmax level.

---

7Z72651

S.B. current multiplying factor at the VCEOmQx level

0=
0,01

---

-0,02

~

I"~

1"":--.,

0,05

r- r-r- ...
0,1

10

~
.........

~~
'""-... r--.....

- -"""

f-O,2

1"00.

i"'o

r- ...

033

~

~

-

~~

r-- ~ ~ ~~

05
0,75
-

r-r10- 4

Ir

10 - 3

~

10 - 2

tp (5)

Fig. 10 S.B. current multiplying factor at the VCEOmax level ..

6

Mareh 19ro

10- 1

BU326
BU326A

Silicon diffused power transistors

1272649

5V

VCE

typo values
Tj 25°C

=

=25°C

Tj

7Z72648

1,5

VSEsat

,

(V)

---

/
~
".,.-.pol~

f ./

~

po-

~

-4A

I--

3A
2A

1A

i/

'-tY P

"

10

--

I

Ic= _

"

0,5

1

10- 1

o
o

10

Ic (A)
Fig. 11 D.C. current gain.

2

Is (A)

Fig. 12 Base-emitter saturation voltage.

10.0~~:~~~I~I~~TT\~~-r-r-r~~~\~~~~~~____~__~7Z~72~6~41~1

~.

t\

It

Tj =25

VCEsat t-+hl,-+-~I-+-t-+--t-+--1\f.I--+--+-+--t-::-I+--4I-A-+--+-~\-+-.-t-+-+--I

( V)

V

l:rl---""

I

C

=

r---...

°c

- - - max. values

\

--typo values

-----.. . .

I
\
\
\
7,5 1--tIf-1:H+-+-H-,-+I--+--+--f+-\-M,+-+-+-+-+--I--I--+--+-\+--+--+--I--+-+-+-+-+-+--I--I
I
I

3A___..\

i

\

1\

\

\t-\.

I

\

1\

\

I; \
1\ \
\
5,0 1---it--t+-I,r+-A4-I-\H\-+--+-+-.-H\~~\-+-+-+-t----!--+--I--+-+---t-=..'\:+---+-+-t----!--+--I--+--I
2

\

\
\

\

\

\

\

\

~

"\

,

,

\ \
\1\
\
1',
2,5 t--III---+:\~\-+--+---T-\-.\+-I-+-+----tT\+-I....!.rl-,-+--+-+-+-+-+--+-+-+-+-+-.:..ot.I..,...-+-,-+-+-i
r-

~~~

\

\

",~

\

\

~

r\.

,.~

~

,.,
'

...

~---.,~-

ott~~~~~~EE~~EE~DCDCOCDD~
o

0,25

0,5

0,75

1,0

1,25

1

8

(A)

1,5

Fig. 13 Collector-emitter saturation voltage.
March 1979

7

L____
APPLICATION INFORMATION BU326A (detailed information on request)
I mportant factors in the design of SMPS circuits are the power losses and heatsink requirements of the
supply output transistor and the base drive conditions during turn-off. In SMPS circuits for CTV receivers the duty factor of the collector current generally varies between 0,35 and 0,6.
The operating frequency lies between 15 kHz and 35 kHz and the shape of the collector current varies
from rectangular in a forward converter to a sawtooth in a flyback circuit.
As the BU326A will mainly be used in flyback converters the information on optimum base drive and
device dissipation given in the graphs on page 10 is concentrated on this application. In these figures
ICM represents the highest repetitive peak collector current that can occur in the given circuit, e.g.
during ove~load.
The total power dissipation for a limit-case transistor is given in Fig. 18 which applies for a mounting
base temperature of 100 0C. The required thermal resistance for the heatsink can be calculated from

*

T mb max - T amb max
p
tot
Including additional thermal resistances resulting from mounting hardware.
Rth mb-a max

*

=

To ensure thermal stability the thermal resistance of the heatsink used must not exceed the values
plotted in Fig. 19.
A practical SMPS output circuit for an output power in the order of 180 W is given in Fig. 15.
At a collector current of 2,5 A and a base current of 0,25 A in this circuit the following turn-off times
can be expected.

Storage time
Fall time

ts
tf

Lrtll
I
I

leM :
~ 1

i!

I

le1

-

-r-

nlI
8
<'

I

VeE

1

1

<

typo
typo

<
<

1,4
0,15

i'

.l

<

== 100 0 C

,

,
Ie

T m b=25 0 C

_ _ _

<

1

1

I

1

1

__I

1

1

1

~

t

<

I

B

IB1
1
,,'

,

~

:

I

IB(en~l

-- i , t i
I

-vdrive

I

VBE~:
I

r
1

,

<

I

.cr

1

Fig. 14 Relevant waveforms of switching transistor.

8

March 1979

20 J.l.S
0,5 J.l.S

BU326
BU326A

Silicon diffused power transistors

+290V

BAX12
T1

BY208

15°1F22kn

"
Fig. 15 Practical SMPS output circuit.
TRl = BU326A
T1 (driver transformer): Core U20; n 1 = 400 turns; n2 = 25 turns
total inductance in base circuit·~ 4,5 tLH
T2 (output transformer): Lp = 6 mH
VCE(tl)

< 500 V (see Fig.

14)

Next page:
Fig. 16 Recommended nominal "end" valueof the base current versus maximum peak collector current.

Fig. 17 Minimum required base inductance and recommended negative drive voltage versus maximum
peak collector current.
Fig. 18 Maximum total power dissipation of a limit-case transistor if the base current is chosen in
accordance with Fig. 16.
Fig. 19 Maximum permissible thermal resistance of the heatsink versus maximum peak collector current
to ensure thermal stability.
Note: For all curves the duty factor {j = 0,5, as shown in Fig. 14.

March 1979

9

l

BU326
BU326A

.~______________________~_________
7Z77059

600

I C1 /I CM =OorO.4

~

I ~J
I I I I
I I I I

[

IB(end)
(mA)

,
1/
T;32 /-I~II

~

.....

10

4

I\,
~

/
1/

....

",

/

~

~

.....

~

200

~

."..~

./

5

"

2

r--~

r""'-(o..

,."..

..... 1-'"

o

1

2

3

ICM (A)

o

2

1

7Z77061

15
~IB(end) =

±. 20%

T=32/-1sor64J.Ls

\
\

T = 32 /-IS or 64 /-IS

(W)

3

7Z77062

35

T m b';;;;100oC

Ptot

ICM (A)

Fig. 17.

Fig. 16.

--

LB
r--.

r--.

..."

." 64/-1s

.".
~

.......

~

/

(V)

~

,r

I

Vdrive

..... 1""

.....

)

j

400

,

Vdrive

If

6

7Z77060

15

~

\

J
10

ICl IICM = O,~"

\.

/
~

5

"

/

017 ~r--

~

i-""

"
.....

"

"

1'\

1"11.

15

,;'

..... ~

,
\. 'C1 / 'CM=0 r-r-r-r-

1'\

/

I

~

I"

~

"

/I
V

\

25

/

'" ..... ......

I-'"

'"
~

i"

roo..

~

I'.

.....

..... 1""

1......

0 ,4 r-r- ~~

......
1

2

Fig. 18.

10

I

5

0

March 1979

r

ICM (A)

3

1

2
Fig. 19.

I"'"

'CM(A)

3

_ _ _J

BU426
BU426A
BU433

SILICON DIFFUSED POWER TRANSISTORS

High voltage, high speed switching n-p-n power transistor in plastic SOT-93 envelope, intended for use
in the switched-mode power supply of 900 and 1100 colour television receivers.
QUICK REFERENCE DATA
8U426
Collector-emitter voltage (V8E = 0; peak value)

426A

433

VCESM

max.

800

900

800 V

Collector-emitter voltage (open base)

VCEO

max.

375

400

375 V

Collector current (d.c.)

IC

max.

6

A

Collector current (peak value)
tp = 2 ms

ICM

max.

8

Total power dissipation up to T mb = 73 0C

Ptot

max.

70

W

Collector-emitter saturation voltage
IC = 2,5 A; 18 = 0,5 A

VCEsat

<

1,5

V

Fall time
ICon = 2,5 A; 180n

tf

typo

0,3

10,45 p.s

= 0,5 A; -180ff = 1 A

0,3

MECHANICAL DATA

A

Dimensions in mm

Fig. 1 SOT-93.
_15,2 _ _

Collector connected to
mounting base

max

~

.

__ 46

14-

Imax . -

4,25~

21'-

4,15

4,4

.

t

-.
~

:--

i~

1
ax

12,7
max

~

LIC;::;::=:;t==r?l

Wit~

--j

I

dimensions
this zone are
uncontrolled

j

13,6
min

b'

c Ie,

~

- f551 I~ _1.1:--1-$\0,5 ®\
.~

115

0:95

I-lTII---

~1~O,4
1Z75220

1

See also chapters Mounting instructions and Accessories.

March 1979

--

l

BU426
BU426A
BU433
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
BU426
Collector-emitter voltage (VBE = 0, peak value)
Collector~emitter

voltage (open base)

426A

433

VCESM

max.

800

900

BOO V

375

400

375 V

VCEO

max.

Collector current (d.c.)

IC

max.

6

A

Collector current (peak value)
tp < 2 ms

ICM

max.

8

A

2

A
A

Base current (d.c.)

IB

max.

Base current (peak value)

IBM

max.

3

Reverse base current (d.c. or average
over any 20 ms period)

-IB(AV)

max.

100

Reverse base current (peak value)*

-IBM

max.

3

A

max.

70

W

Storage temperature

Ptot
T stg

+ 150

°c

Junction temperature

Tj

max.

150

°C

1,1

°C/W

Total power dissipation up to T mb = 73 °C

-65 to

mA

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

CHARACTERISTICS

---

Tj = 25 °C unless otherwise specified
Collector cut-off current **
VCEM:= 900 V; VBE = 0

<
<

1

mA

2

mA

ICES

D.C. current gain
IC = 0,6 A; VCE = 5 V; BU426; BU426A

hFE

<

30
60

typo

hFE

typo

40

Emitter cut-off current
IC=0;VEB=10V

lEBO

<

10

mA

Transition frequency at f:: 1 MHz
IC = ?,2 A; VCE = 10 V

fT

typo

6

MHz

IC = 0,6 A; VCE = 5 V; BU433

*

2

ICES

VCEM = 900 V; VBE = 0; Tj = 125 °C

Turn-off currento
Measured with a half sine-wave voltage (curveuacer).

Maroh 1979

~

(

BU426
BU426A
BU433

Silicon diffused power transistors

CHARACTERISTICS (continued)
Tj = 25

°c unless otherwise specified

Emitter cut-off current
IC = 0; VE8 :::; 10 V

IE80

Saturation voltages
IC:::; 2,5 A; 18:::; 0,5 A

VCEsat
V8Esat

I C :::; 4 A; 18 :::; 1,25 A

VCEsat
V8Esat

Collector-emitter sustaining voltage
IC:::; 100 mA; 180ff:::; 0; L:::; 25 mH; 8U426; SU433

VCEOsust

Ie:::; 100 mA; ISoff:::; 0; L:::; 25 mH; 8U426A

VCEOsust

<:
<
<
<
<

>
>

10 mA
1,5 V
1,4 V
3 V
1,6 V
375 V
400 V

7Z75254

250 r-"--i....._ _
200

Ic

'

(rnA)

I

100

o ~----------------~r-----min VeE (VI
VCEOsust

Fig. 2 Oscilloscope display for VCEOSllSt.

Fig. 3 Test circuit for VCEOsust.

March 1979

3

l

BU426
BU426A
BU433

_
_

------------------~--------------------CHARACTERISTICS (continued)
Switching times (between 10% and 90% levels)
ICon = 2,5 A; VCC = 250 V
IBon

= 0,5 A; "':'IBoff = 1 A

Turn-on time

ton
Storage time
BU426; 426A
Fall time

Turn-off time (toff = ts + tf)

BU433
BU433
Fall time, Tmb = 9,5 oC

1BU426;426A

typo
typo

ts

<

tf

typo
typo

tf

<

tf

<
<

tf

0,5 IlS
0,6 IlS

<;:

2 IlS
3,5 IlS

0,3

typo

0,7 IlS
1,0 IlS
0,75 IlS

7Z77499

90
is (% )

10

--\r

---

I Son

---

U-

1B.:,

-----

90

ie
(%)

10

o

---

------

ICon

-

\
- - ---- --

---- IJ

--------

ton

t

-tf

t .

t off

Fig. 4 \iVaveforms.

+25V----~------~----~~~

• ,-T_I

Vee

250V

VI~JLJl t
T_iL
I
tp

I

Vi,

I

tp

= 20 IlS
= 2 ms
V I M = 15 V

T

4

~mh

-!--~----4---~---J

1979

1r

Fig. 5 Test circuit.

Il~

0,45 IlS
0,7 IlS

BU426
BU426A
BU433

Silicon diffused power transistors

[j

=0,01

,

10
ICMma x---

, " ,,',
"~ \
.....
..... ~

,"-~ ~

ICmax

I

1

I"
"
"''' "

......

~''''''I\

,~

tp
lOps
20

"- '""" "-

"-

IC
(A) r-(1) ~ ~

7Z77 412.1

"""" '"

e.-

50

~~ ~( ~ ~\
'\.

'\.

\. \.

\.

'\

\~ \
(21\

10- 1

200

'\.

~\.

\.
~\~\

100

\[\

~r\

500

-

1 ms

-

2

III

_I

5
10
20
d.c.

I\, -

10- 2
BU433}
BU426 '
I
BU426A Tmb ~73

°c

,:

IV I

10- 3

1·1

10

VCE (V)

Fig. 6 Safe Operating ARea.
I

Region of permissible d.c. operation.

II

Permissible extension for repetitive pulse operation.

III Area of permissible operation during turn-on in single-transistor converters, provided
RBE ~ 100 nand tp ~ 0,6 ps.
IV Repetitive pulse operation in this region is permissible; provided VBE ~ 0 and tp ~ 2 ms.
(1) Ptot max and Ppeak max lines.
(2) Second-breakdown limits (independent of temperature).

IrMa~h

1979

5

L

BU426
BU426A
BU433

'---------~---------------------------------------7Z77019

maximum power dissipation ~ersus
m

mA
1,5
3
1,1
BUW84
400

V
V
V

I BUW85
450

V

7Z75254

250.--""'-_ __
200

Ic
(mAl

100

o ~----------------~r-----min VCE (V)
VCEOsust

Fig. 2 Oscilloscope display for sustaining voltage.

--

oscilloscope

vert.

1.n.
7Z62283

Fig. 3 Test circuit for VCEOsust.

February 1979

3

l~_ _

BUW84
BUW85

CHARACTERISTICS (continued)
Tj = 25

be unless otherwise specified

Transition frequency at f = 1 MHz
Ie = 0,2 A; VeE = 10 V

fT

typo

Switching times
le~n = 1 A;Vce =250 V
IBon :::: 0,2 A; -IBoff = 0,4 A
Turn-on time

ton

<

'20 MHz

typo 0,2 /J.s
0,5 /J.s

typo

Fall time

tf

2 /J.S
3,5 /J.S
typo 0,4 /J.S

Fall time, T mb = 95 °e

tf

<

Turn-off: Storage time

ts

90
is(%l

--~-

<

1,4 /J.S

7Z77<.99

------- -

Ison

'\

10 ~;;;;..;;;;..;;r------a---_--

90
iC

(otol
10

o ~-~+------+-~+--Fig. 4 Waveforms.

+25V-----------~---1--~

+

L I-- 1 .
T

v~JLJl
t -J L
tp

100

T

/J.F

_.. _

•

I.U.I.

1

Vee
250V

II

I
Vi

I

7Z75253.1 "

Fig. 5 Test circuit.

4

February 1979

(

BUW84
BUW85

Silicon diffused power transistors

7Z77946

10

Icymax- I-- i-r-- b = 0,01

IC

J '

(A)

."(.0~ ~R~
r-..."

ICmax

'"

1:\1'1\

~

~

"-

'"

~\ \

'\

'-

-""
~

~
(2)

'\

~

f\.

~ 1--"0

"

tp=
20J,Ls

/I

50
I~

I\",

"\.
'\"\.
~\

I-j\100

l
\ 200'

~\ ,\1\
~

'"' "

II

500
1 ms
I

~\\

\., 1\

\,

2

'~

I

I

5

" 10
d.c.

III

~I-~
10- 3

IV

10

Fig. 6 Safe Operating ARea at T mb ...;; 25 °C of BUW84.
I Region of permissible d.c. operation
II Permissible extension for repetitive pulse operation
I I I Area of permissible operation during turn-on in single transistor
converters, provided RBE ...;; 100 nand tp"';; 0,6 J,LS .
IV Repetitive pulse operation in this region is permissible,
provided VBE ...;; 0 and tp ...;; 2 ms

(1) Ptot max line.
(2) Second-breakdown limits (independent of temperature).

February 1979

5

l""----_ __ _

BUW84
BUW85

7Z77947

10

,

LUI

Ie IC~'1ax r- ri(A)

, t p=

\

~ l',1"1\

~~ ~~ f\

ICmax (1

I III

b -0,01

.\1\

r-.

"

"I\.

,~ ~ 'i
I\..

"I

"\..

11.'\'

~

~
(2)

It

I\..

1\,\.

.'\ \

"

20

II

I

., 50'
I\..

-~

\\ \ 1,\

lOllS

100

\I~

'\..

'f-

200

~\l\ \ ~r--

500

w

I

" " " 1'(...'\

1 ms

~\

1\\\
~

-=

I

---

\

I

'.

2
5
10
d.c.

~I~

~~ ~
~

III
I

H--tIV

10- 3
10

Fig. 7 Safe Operating ARea at T mb ~ 25 oC of BUW85.
I Region of permissible d.c. operation
II Permissible extension for repetitive pulse operation
iii Area of permissible operation during turn-on in single transistor
converters, provided RBE ~ 100 nand tp ~ 0,61ls
IV Repetitive pulse operation in this region is permissible,
provided VBE ~ 0 and tp ~ 2 ms

(1) Ptot max line.
(2) Second-breakdown limits (independent of temperature).

6

Februa~1979l (

.

BUW84
BUW85

Silicon diffused power transistors

7Z672571

100
P tot max
(%)

75

~

1\

",
1\

1\

,

I\.

1\

50

"

t\.

25

I\,

,

t\.

i\

\
50
Fig. 8 ..
7Z77944

JlJL
I
_!tpl_

---T-

tp

0==-

T

10

t---

.5 = 1

0,75
~ 0,50
!;:= 0,33
t:::;;; 0,20
I--- 0,10

I

f--

t-

1~

~

~
~I
~ 0,05
~0,02

~ ~0,01
I--

o .

10
Fig. 9.

February. 1979

7

Jl

BUW84

_ _B_UW8_5_'

_ _ _ _ _ _ _ _ _ _ _ __ _
7Z77044A

S.B. current multiplying factor at the V CEOmax level

BUW84

I

0,01
~o

f-----

I

~

,

~

r--:

I

I"'--i'

~ r-

I-~

I

10

"

r--. ~r-...

0,10

--....
1--0,20

-

r- 1-1-

0,33

"-

~r-.

0,50

1
10- 2

~
r-- r-~"""

0,75
1

10
Fig.

JO.
7Z77043A

--

S. B. current multiplying factor at the V CEOmax level

BUW85

~=o

.~

~01

~
.......

_

t.0,02

--

0,05

10

........

r- ........

i"'
1'0

i'r-.

r---

0,10

~

~

---

I-~

r---..

-

-n,20
0,33

~

-

-r- ~I-

~

~II!.

0,50

r--- ~ ~

0,75

1

~

1

10- 2

10- 1

10
Fig. 11.

8

February 1979

(

~"'"

Silicon diffused power transistors

BUW84
BUW85
7Z77945

~
.0,02

10

""-.

~0,05

~ 0,10~

i'"'::: 0,20
.

0,33~

_"r-.,:
......

."t-..:r-..

i'~1'
I""'--

I"--r---t-r--=- 0,50_ t-- t-t-t--t-r--- 0,75 ~1

~

~ ~r-...

~~~

~

10

tp (ms)

Fig. 12 S.B. voltage multiplying factor at the ICmax level.
7Z77039

-

VCE 5V
Tj = 25 °c

-......
..........

~

"

~

10

I'r--.

~

~~

"......

~

1
10

'C(mA)
Fig. 13.

February 1979

9

l__~_

BUW84
BUW85

7277037

typo values

Tj =25 °c
.1

~

r-"

1

IC=~ 1 Al.- I- I- ~
0,5 A
0,3 A

1- .....

VBEsat ~~ ~r-"
~
(VI

0,5

o
o

200

100

300

'B (mAl
Fig. 14.

-

4

,

1

VCEsat

,

V

~

~

~

,

~
~
~I

i'

IL

1

1\

Tj

= 25°C

-

-

max. values

- - typo values

--- t-\,

,

l'

l~

~,

,

\

~

l!

\

2

\

l'

,\

1\\
\'
\\

,

... ~

\

~

\
\
1\\0,5

f-

\O,~~\

1\

A'

\l I' ~ rI~ t-

\,
"

~\
.~

1\

'\

~,

\

~

~

1"- "t-'

t- 1-1-

r-

-

0,1,

r

r"

..... r::.. ~ ~

1-

I-

0,2
Fig. 15;

February 1979

I"

R.:~

~- r-~

o

10

r-

0,7A

I

o

I---"'C= 1 A ....

~

J
3

I'

1

1

(V)

7Z77040.1

,

J

'B (A)

.0,3

Il

BUX80
BUX81

I

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed switching n-p-n power transistors in TO-3 envelopes, intended
for use in converters, inverters, switching regulators and motor control systems.
QUICK REFERENCE DATA

BUX80 BUX81
Collector-emitter voltage (VBE = 0, peak value)

VCESM max.

800

1000

V
V

VCER

max.

500

500

Collector-emitter voltage (open base)

VCEO

max.

400

450

Collector current (d. c.)

IC

max.

Collector-emitter voltage (RBE = 50 Q)

10

A

max.

IS

A

max.

100

W

1,5

V

0,3

Il s

Collector current (peak value)
tp = 2 ms

ICM

Total power dissipation up to T mb = 40 oC

Ptot

Collector-emitter saturation voltage
IC = 5 A; IB = 1 A

VCEsat <

Fall time
ICon = 5 A; IBon

tf

= 1 A;

-IBoff

=2 A

V

typo

MECHANICAL DATA

Dimensions in mm

TO-3
Collector connected to case

~

1-26,6 m a x -

9,5 max
. . . .1

F
--3,15

"- - 4+2

c

.---t_---fl -

-t 4:0

r

20,3

max

LL
......
7Z69700

_12,8_
11,2

For mounting instructions and accessories see section Accessories in handbook SC2.

August 1976

II

1

BUX80
BUX81

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
BUX80 BUX81

Collector-emitter voltage
(VBE = 0, peak value)

VCESM

max.

Collector-emitter voltage
(RBE = 50 Q)

VCER

max.

500

500 V

Collector-emitter voltage (open base)

VCEO

max.

400

450 V

Collector current (d. c.)

IC

max.

10

A

Collector current (peak value)
tp = 2 ms

ICM

max.

15

A

Base current (d. c.)

IB

max.

4

A

Base current (peak value)

IBM

max.

6

A

-IB(AV)

max.

100

-IBM

max.

6.

A

P tot

max.

100

W

-65 to +150

°C

800

1000 V

Currents

Reverse base current (d. c. or average
over any 20 ms period)
Reverse base current (peak value) 1)

rnA

Power dissipation

-

Total power dissipation up to T mb = 40 oC
Temperatures
Storage temperature

T stg

Junction temperature

Tj

max.

150

oc

1,1

°C/W

mERMAL RESISTANCE
From junction to mounting base

Rth j-mb

CHARACTERISTICS

Tj = 25 0c unless otherwise specified

Collector cut-off current 2)
VCEM = VCESMmax; VBE = 0
VCEM = VCESMmax; VBE

= 0; Tj = 125

0

C

ICES

<

1

rnA

ICES

<

3

rnA

hPE

typo

D. C. current gain
lC=I,2A;VCE=5V

30

1) Tum-off current.
2) Measured with a half sine wave voltage (curve tracer).

2

II

II

August 1976

BUX80
BUX81

II
CHARACTERISTICS (continued)

T j = 25 oC unless otherwise specified

Emitter cut-off current
Ie = 0; VEB = 10 V

lEBO

<

10

VCEsat

<

1,5

V

VBE sat

<

1,4

V

VCEsat

<

3

V

VBE sat

<

1,8

V

rnA

Saturation voltages
Ie = 5 A; IB = 1 A

Ie =8A;IB=2,5A

Collector -emitter sustaining voltages

BUX80 BUX81

IC = 100 rnA; IBoff = 0; L = 25 mH
Ie = 100 rnA; RBE = 50 Q; L = 15 mH

VCEOsust

>

400

450

V

VCERsust

>

500

500

V

7Z72203

250 . ._ _ __
200

Ic
(rnA)

100

o ~--------------~~---T~----min
min
VCE (V)
VCEOsust VCERsust

Oscilloscope display for sustaining voltages

f----

her.

f----

vert.

3D-60Hz
nn304

Test circuit for VeEOsust

August 1976

II

Test circuit for VCERsust

I

3

BUX80
BUX81

I

II

I

CHARACTERISTICS (continued)

Tj

~

25 oG unless otherwise specified

Transition frequency at f = 1 MHz
IC

= 0,2

A; VCE

= 10 V

typo '

6

MHz

Switching times
ICon =5A;VCC =250V
IBon = 1 A; -IBoff = 2 A
Turn - on time

ton

typo
<

0,35

Turn -:off: Storage time

ts

typo
<

2,5

3,5

f.lS
f.lS

tf

typo

0,3

f.lS

tf

<

0,8

f.lS

Fall time
Fall time, T mb = 95

°c

0,5

fls
fls

7Z72640

- - - - - - - ---Is on

Waveform

=

90
iC
1%)

10

o ~-.......-+----+--t--+-'--

+25V - - - - - - - . . . - - -......----.

Test circuit

1

Vee
250V

LIT_I
vI~JL_JnL-)
t_ll.

I

tp

tp = 20 fJS
T
= 2 ms
VIM = .15 V

4

Vi

I

II

II

August 1976

1

BUX80
BUX81

BUX80
7Z72729 2

10 2

T mb E;;40oC
IC
(A)

."

r-ICMmax
IC'max

10

6= 0,01

~ r-....f'.

...

1\

tp=
101-1 5
-~""
t"-..~, ~
20
'\1'\ I' ~'\. '\ ~ ['\. 50
1'1'
~f- 100
1\
00
~

"1),,, '" ~ I'

"

I

~

~

l'..

l\\\~ l\

\ I---~

2)1\
~

~

~

JI\"' r\." t\

"

f-

~

~~"f\..

,,~

'\'\ '\
'\'\ '\

IC
~

(A)

\

~
~~:

'\

1ms

~~

,\ 1\

2t--

\ '\ 1\
m
10- 1

10- 3

I

VCE (V)

10

3

f\ i\

5
10

, d.c.

m-

10- 2
10

2

VCE (V)

Safe Operating ARea
Region of permissible d. c. operation
II

Permissible extension for repetitive pulse operation

III Area of permissible operation during turn-on in single-transistor
converters, provided RBE :S 100 Q and tp :S 0,6 f..LS
IV Repetitive pulse operation in this region is permissible,
provided VBE :S 0 and tp :S 2 ms

1) Ptot max and Ppeak max lines.
2) Second-breakdown limits (independent of temperature).

August 1976

II

5

BUX80
BUX81

I

II

BUX81
7Z72739 1

Tmb~40

°c

Ie
(A)

6=0,01

-ICMmax
r

ICmax

10

~

'",

'"1~,

I

r:

~"

'

....

~
\.\ 1\
\1\
I\. \1\

2)~ 1\
~

~ Ie

I-

"'" "
"-

'" '"

tp=

, " ~'\. ~II20
~"
\"' 1\.'\ ~ 50 .l
.............. :-....

\\

,

.....

"- 1O~i

.....

~\

~\

\

""
\ \ "\ "
II\. \.1\

(A)

l-

\.

I-

nz:
'- 10-3

=

IT

VCE (V) 10

~

1\ \

3

500
1ms

r-.,\. \,1
~

\ \\.

~

,

100

~ 200

~I

10

I',
d.c:1

m
10- 2

2

10

10 2

I
VeE (V)

103

Safe Operating ARea
Region of permissible d. c. operation
II

Permissible extension for repetitive pulse operation

III Area of permissible operation during.burn-on in Single-transistor
converters, provided RBE :::; 100 Q and tp :::; 0,6 IlS

IV Repetitive pulse. operation in this region is permissible,
provided VBE :::; a and tp :::; 2 ms

1) Ptot max andPpeak max lines.
2) Second-breakdown limits (independent of temperature).

6

II

II

August 1976

BUX80
BUX81

II
1272730

00

~

1\
\

x

,

,

~

,

~

50

\
1\
L-

\

-

,
\.

~

o
o

100

50

150
T mb (oC)

7Z72647

JUL

b

-ltpl_I' p

)

+---T_

0- t
- T

10

1 0-1

Ii;

~O,75
~0,5
~0,33

~0,2:--0,1'" ~
==-~0,05

...... Iiii"

:::;::::::;0 .....

..---:;...
~"

~'~,O2
..... 001

1 I

10- 2
10 5

II

August 1976

10- 4

II

10

3

10 -2

10

1

tp

(5)

10

7

BUX80
BUX81

II

II

1Z72646

S.B. voltage multiplying factor at the Icmax level
MSBIIl

I---

~~,01

/0,02

10

:2~5:::: ;:::t~

-

~

r--

'0,2

-- .-.::::"'

-

0,33

0,5

-

.....
~I:::~

:-.

r-.""

"-

~ S:: ~

-

-..:

-roo- r- -..L

6,75
110 - 5

10- 2

10-3

--

tp (5)

1Z72645

S.B. current multiplying factor at the VCEOmax level
MSB(Yl

0=
~001

r--.

~
O,O~

.

-

to....

.... "'"

r-- r-I-t-

0,1

10

~

~

~

~

.....

1'1'

:--I""'-- .....'.

r-..
.....
.........'-

.,-

1-0,2

.""~

"'

--

~

r--.;..... ~...... ~
r-- ~ ~~ 1--1--

0,33
6,5
0,75
1

10- 5

8

-

r-....

10-3

II

r-- t-~t-

~~
10 2

tp (5)

II

August 1976

BUX80
BUX81

II
7272543

7Z72642

1,5

VCE 5V
Tj = 25°C

I

. typo values

Ic =

Tj = 25°C

8A

VSEsat
~

(V)

10 3

1.,,00 ... -

r-c-

"

_1-"-

~! ~~

......

...

. ."

I

... -~

tt-

.,,-

2A

-~

U
10 2
typ

......

--~

0,5

"

10

"
1

10-1

10

(V)

,

I:

I

,

I

!

\

,,

"

~

II

I

I

r

I
I

II

i

\

~2A

\
\
\

""\

1\

,
~.

,

,

\ \.. .....

Al.lgust 1976

I\.

\

",......

\
1\ \

\

--

- - - max. values
--typo values

\

I
I

o
o

I c =8A \
/ ' i'--.-

\
\

SA

II

3 Is (A) 4

1j =25 °c

\

5

2

",

I

I

o
o

Ic (A)

7Z72741

I

I

VCEsat

10

1\. \

.... .....
'

..... ~
2

II

.....

.....

~

4

Is (A)

II

6

9

l____~_

BUX80
BUX81

APPLICATION INFORMATION ON BUX80 (detailed information on request)
Important factors in the design of SMPS circuits are the power losses and heatsink requirements of the
supply output transistor and the base drive conditions during turn-off. In SMPS circuits with mains
isolation the duty factor of the collector current generally varies between 0,25 and 0,5.
The operating frequency lies between 15 kHz and 50 kHz and the shape of the collector current varies
from rectangular in a forward converter to a sawtooth in a flyback circuit.
As the BUX80 will mainly be used in forward or push-pull converters the information on optimum
base drive and device dissipation given in the graphs on page 12 is concentrated on this application.
In these figures ICM represents the highest repetitive peak collector current that can occur in the given
circuit, e.g. during overload.
The total power dissipation for a limit-case transistor is given in Fig. 5 which applies for a mounting
base temperature of 100 0C. The required thermal resistance for the heatsink can be calculated from

100- T amb max
Rth mb-a =.

P
tot
To ensure thermal stability the minimum value of T amb in the above equation is 40 °C.
A practical SMPS output circuit for an output power in the order of 400 W is given in Fig. 2.
At a collector current of 5 A and a base current of 1 A in this circuit the following turn-off times can
be expected.

T mb = 25 °C
Storage ti me .
Fall time

--

typ
typ

Ie

2
0,18

1 LrI~M
_L:J
____Ll~
t

-v drive
V BE

-~--:-:

_

F[j=

......

=-t;==
7Z77362

Fig. 1 Relevant waveforms of switching transistor.

10

August 1977

(

100 0 C

2,7

0,5

ps
ps

BUX80
BUX81

Silicon diffused power transistors

+24 V

~--------------~~----~~O

330

.n

68

.n

-6V

=

Fig. 2 Practical SMPS output circuit.
T1 (output transformer): Core U64; n1 = n3 = 56 turns; n2 = 17 turns
T2 (base current transformer): Core U20; n1 = 5 turns; n2 = 25 turns
VCE(t1)

< 300 V

(see Fig. 1)

August 1977

11

l___-/-

BUX80
BUX81

7Z77364

1,5

j

J

I

!I

\
)

I

T= 2511s I
IJ
V
/I

Vdriv€
(V)

\
\.

J

,

/

4'\1

5Ol1SjT

/

Vdrive

"\
\

,

.....

J,

7

/
)

.....

7

I>

\

/

""-

JI'

\

~

1/
1/
/

1/

,

V
2

~

....

"

JI'

\

0,5

8

T

1
'S(end)
, (A)

7Z77365

6

L"..o~

L"..o

./

6

"'

.... -

La
-I-

'\

4

1/

~

\
\

"

\
\

o

o
2

4'

'CM (A)

6

~IB(end) = ± 20,%
T m b";;100 o C

Ptot

-,

I I
I I

(W)

6

~

~

/
I~

I'..

V

/
)

.

.~

)

.'

-.:: T= 50l1s
I I r I
I I I

-'---

! !

I

01111111111111111111
2

4
Fig. 5.

August 1977

Fig.3 Recommended nominal "end" value of
the base current versus maximum peak collector current.
Fig. 4 Minimum required base inductance and
recommended negative driye voltage versus
maximum peak collector current.

1/

~

II/'

I/'

.~

1/

I/'
)

v

J
j

I

J

10

J

7

T~ 2511s

12

,ICM (A)

7Z77363

15

5

4
Fig. 4.

Fig. 3.

-=

2
2

ICM (A)

6

Fig. 5 Maximum total power dissipation of a
limit-case transistor if the base current is
chosen in accordance with Fig. 3. Solid lines
for transformer drive and dotted lines for
collector-eoupled current drive.

II

BUX82

~3

SILICON DIFFUSED POWER TRANSISTORS
High-voltage, high-speed switching n-p-n power transistors in TO-3 envelopes, intended
for u"e in converters, inverters, switching regulators and motor control systems.
QUICK REFERENCE DATA

BUX82 BUX83
VCESM

max.

800

1000

V

Collector-emitter voltage (RBE = 100 Q)

VCER

max.

500

500

V

Collector-emitter voltage (open base)

VCEO

max.

400

450

V

Collector current (d. c.)

IC

max.

lCM

max.

8

A

60

W

Collector-emitter voltage (VBE = 0, peak value)

Collector current (peak value)
tp = 2 ms

°c

6

A

Ptot

max.

Collector-emitter saturation voltage
lC = 2,5 A; lB = 0,5 A

VCEsat

<

1,5

V

Fall time
ICon = 2,5 A; lBon = 0,5 A; -IBoff = 1 A

tf

typo

0,3

Ils

Total power dissipation up to T mb = 50

Dimensions in mm

MECHANICAL DATA

TO-3
Collector connected to case

-- 9,5 max !4-

--I

-26,6max-/

"-

c

11

t

...---+_--11 -

t

16,9.

20,3

39,5 301

max

LL

.

--3,15

--4,2

t

4,0

-'

1===~t1,0

l-L----f
'-10,9-7Z69700

For mounting instructions and accessories see section Accessories in handbook SC2.

August 1976

II

----

-

BUX82
BUX83

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEe 134)

1) Turn - off current.
2) Measured with a half sine wave voltage (curve tracer).

2

II

II

August 1976

BUX82
BUX83
CHARACTERISTICS (continued)

T j == 25 oC unless otherwise specified

Emitter cut - off current
IC == 0; VEB == 10 V

<

10

VCEsat

<

1,5

V

VBE sat

<'

1,4

V

lEBO

rnA

Saturation voltages
IC == 2, 5 A; IB == 0, 5 A

Ic ==

4 A; I B == 1, 25 A

VCEsat

<

3

V

VBE sat

<

1,6

V

Collector-emitter sustaining voltages

BUX82 BUX83

IC == 100 rnA; IBoff == 0; L == 25 mH

VCEOsust

>

400

450

V

IC == 100 rnA; RBE == 100Q; L == 15 mH

VCERsust

>

500

500

V

7Z72203

250

,-----I~_~

200

Ic
(rnA)

100

o ____________________

~----~L------

min

min

VCE (V)

VCEOsust VCERsust

Oscilloscope display for sustaining voltages

+ SOV

t - - - - - hor.

t - - - - vert.

30 -60 Hz
7Z722(}2.1

Test circuit for VCEOsust

August 1976

II

Test circuit for VERsust

3

II_.

BUX82
BUX83

'Tj

CHARACTERISTICS (continued)
Transition frequency at f
Ie

==

0,2 A; VeE

==

25

°e

unless otherwise specified

= 1 MHz

= 10 V

typo

6

MHz

Switching times
. leon = 2,5 A; Vee

lBon

==

= 250 V

0,5 A; -IBoff = 1 A

Turn-on time

ton

typo
<

0,3
0,5

fls
flS

TUrn-off: Storage time

Its

typo
<

2
3,5

fls
fls

tf

typo

0,3

flS

tf

<

Fall time
Fall time, Tmb = 95

°e

fJ-S
7212640

90

ie!OfoI

--~-t

- - Ison

'\,

10 I------....(-----~--_--

LL

Waveform

--

90

'-

i-

----~.....---- ICon

---

ie
!Ofol
10

I ••:,

\

-------1-- ~

--

----)

o ~-~+_----+_~~--ton

_

t- t_f -

t

+25V-------------1------~~

Test circuit
680
IJF

LiT_I
VI~JnLJL
t_l~

Vee
250V

I

1

I

tp

tp'

= 20 flS

Vi

I

T
= 2 ms
VIM == 15 V

680
IJF

~-+_-------+_----4-~

7.z73191.1

4

II

August 1976

BUX82
BUX83
BUX82

0=001
,

7Z72644.1

10 ~IeMmax

tp=
10 f.lS

i'-

"

'-~

"'
""1)1"\ 1'1.." " "' "' "- "- 2~
"1,\1\"' ~ " ~~\
I\l\1\

"-

t-1emax
Ie
(A)

~

'-

~

"""

1\

"'"

1\

1\

1\1\
1\

"'"

'" ,,'

~' 1\ i\I56

100
" \. " \. I"\. "
\. 200
l\ \
\

1\\\ \i\.
~ \\' i\. \.

I

5?01

~\ ~ ~

\ 11msI

-\ 2~

"\.

\. 5 f-

10-

\
~

\ d.c.

I
m
Tmb~ 50°C

rr

10- 3
10

2

Safe Operating ARea
Region of permissible d. c. operation
II

Permissible extension for repetitive pulse operation

III Area of permissible operation during turn-on in single-transistor
converters, provided RBE :s 100 Q and tp :s 0, 61ls
IV Repetitive pulse operation in this region is permissible,
provided VBE :s 0 and tp :s 2 ms

1) Ptotmax and Ppeakmax lines.
2) Second-breakdown limits (independent of temperature).

August 1976

II

II

5

BUX82
BUX83
BUX83

7Z72740

6=0,01

10 ~ICMmax

,

..."",.

-ICmax

Ic
(A)

" ""I""

~

" "

~
~~,

1)"'\

~

\\

"-

," "'
"

"-

"-

tp=

"-

'" lOtS

" "-""'r\ I
'"

20

'"

\
\
\ \~
\\
,\
\\
~ \
'\

\.

1\

'\

\.

\.

,\. \.

\

IJ

iOI

100'
.~

\

\\\ \ \ If?
~ \\ i\ \. '~do
\
~\ i\ I)1msI

~

I

'-

2-

"-

'\.

5-

"\ , 1°
I

d.c.

II

m

--

=

Tmb~50

°c

1f

10- 3
10

2

VCE (V)

Safe Operating ARea
Region of permissible d. c. operation
II

Permissible extension for repetitive pulse operation

III Ar:-ea of permissible operation during turn-on in single-transistor
converters, provided RBE S 100 Q and tp S 0, 6 Ils

IV Repetitive pulse operation in this region is permissible,
provided VBE S a and tp S 2 ms

1) Ptot max and Ppeak max lines.

2) Second-breakdown limits (independent of temperature).

II

II

August 1977

BUX82
BUX83

II

II

7Z 72731

100

\

,
\

,

,

~

\

,
\

50

,

,

~

\

,
\

,
\

--!-. ..

I

°°

50

\

-i-t- -~
100

150
T'dl (oe)

--"- -

--

7Z12653

JUL
-I~;J

o:!f.
T

10

0-1
-0,75
.... .0,3
F=;Q,33
~:==p,2

~

-

p,O,\
10- 1 ~,05

----

I- .......
I- ::::::
i,...--

.,

~

~

~,O,02
~E:O,01

I I

10- 2
10- 6

August 1976

10- 5

II

10-4

, 10-3

10-1 tp (5)

10-2

II

7

II_.

BUX82
BUX83

7Z72652

S.B. voltage multiplying factor at the ICmax level
MSBlIl

f--O=

~
~
0,02

~~

~ I-.. r--;:::::::~

10

-Q,1

~
~
~

-02

....... r--.-..... ~

r---"""

=033
0,5

:"""" I::::~

- r- --r---

0,75
110 - 5

10-4

~

r-::::: ~ ~~
~

10-3

10-2

tp (s)

10-1

7Z72651

=

. r--' S.B. current multiplying factor at the VCEOmax level

MSB1V )

i

0=

-.--.
l'

001

---0,02

1"-0.,

H

I"""

r- r---.~

~

0,05

r- I-r- ..
0,1

10

,

~ ....
~ i"'--..
'"

.

"""

. f-0,2

~

i'ooo...~

-

Ioo..~ ~

033

r-- ~ ~ ~~

0,5
0,75

r-

1

10-4

10- 5

8

II

10- 3

~

10

2

tp (s)

II

10- 1

August 1976

II

BUX82
BUX83

II
7272649

7Z72648

1,5

typo values

5V
25°C

VCE -

=

Tj

=25°C

Tj

1

Ie= _I--

VSEsat

---4A

(V)

/ .- ......
i.-- ~ 2A
j~ ~
I;'"

I

f t.,.....--

1/

""-tY P

'"~

10

1

0,5

o
o

10

Ie (A)

2

Is (A)

---

7Z726411

10,0

II I

1~

,
.
, ,
l,
i,
,. \
I

VCEsat

(V)

~

\

~

I

I

7,5

I

5,0

3~ ........

~

2A \

~ --- --\

1A \

V I~

\
\
0

August 1976

1\
\

r----

\

\
\

1\ \

,

\

\

\

I--

--typo values

.\ 1\

11'
\ 1\

- - - max. values

\

\'

\
2,5

Tj =25 °c

\.

Ie =4A r--..

1t-\,

1\
\

-'

\

\

~

I

0

~ ~ 1A

Y

--

1 10

3A

\

,

\
i'~

II

'\

1\

I\.

0,5

", 1',
......

r"....

~

,,

"

I\.

\1\

0,25

,

\

,\

" r\.

'\

\

1\

\1\

,

\
\

~

I ' I"0,75

... .....

....

'

.. 1,0

1,25

Is (A)

....
1,5

9

l____----------

BUX82
BUX83

APPLICATION INFORMATION ON BUX82 (detailed information on request)
I mportant factors in the design of SMPS circuits are the power losses and heatsink requirements of the
supply output transistor and the base drive conditions during turn-off. In SMPS circuits with mains
isolation the duty factor of the collector current generally varies between 0,25 and 0,5.
The'operating frequency lies between 15 kHz and 50 kHz and the shape of the collector current varies
from rectangular in a forward converter to a sawtooth in a flyback circuit.
Information onoptimuOl base drive and device dissipation of the BUX82 in a flyback converter is
given in Figs 3 to 5. Figs 6 to 8 apply to a forward converter. In these figures ICM represents the highest repetitive peak collector current that cim occur in the given circuit, e.g. during overload.
The total power dissipation for a limit-case transistor is given in Figs 5 and 8 which applies for a mounting base temperature of 100 0C. The required thermal resistance for the heatsink can be calculated from

100-T amb max'
Rth mb-a = - - ,- P - - tot
To ensure thermal stability the minimum value of Tamb in the above equation is 40 0C.
A practical forward converter output circuit for an output power in, the order of 200 W is given in
Fig. 2.
At a collector current of 2,5 A and a base current of 0,5 A in this circuit the following turn-off times
can be expected.

Storage time
Fall time

=
-.............
......
~

'e

T mb = 25 °C

100 °C

typ
typ

2,7
0,7

1,9

0,17

' t
Lr-J}
-

_

'e1

,

_'_

'eM

~

t

-Vdrive

L---,:..-----Jr==t=

c;==
7Z77367

Fig. '1 Relevant waveforms of switching transistor.

10

August 1977

(

IJ.s
IJ.S

Silicon diffused power transistors

BUX82
BUX83

+ 290 V - - - -......-~r--....---,
+24 V

+24V
2,1 V

6800

JJ.F
~---~--~--O

T =50JJ.s
0=0,33

Fig. 2 Practical forward converter S'MPS output circuit.
T1 (driver transformer): Core U20; n1 = 75 turns; n2 = 20 turns
T2 (output transformer): Core E55; n1 = n2 = 72 turns; n3 = 19 turns
VCE(t1)

< 300 V (see Fig. 1)

August 1977

11

l

BUX82
BUX83

7Z77371

600

7Z77370

15

I I
I
I I
-Vdrive

1/
j

IB(end)
(mA)

II
T

~

= 25p.Sj~
10 I\.
.....

1/

1./

I/'

1,/
i/
50p.s ~~ 1-+-

V

~

~

200

~

1..1
~

....

1..00'

(V)

L.,..J...-

"

4
.....

"

.....

I'"

" "..... LB

V

...

-VdrivE

'"'""'~

"'Ii

,

..,

~

t-~

I.".J...-

1/

400

.....

6

5

2

~

l..-'

.... to-. ...

1..00'
1.,; .....

o
2

1

3

ICM (A)

1

2

ICM (A)

3

o

Fig. 4.

Fig. 3.

-

o

7Z77372

15
AIB(end)

= ± 20%

Tint)";;; 100 °c

Ptot
(W)

Fig. 3 Recommended nominal "end" value of
the base current versus maximum peak collector current in a flyback converter.

j

10

V

IC1
ICM

V

5

....
I.".~

...

:.,..

.....

V

f-~ t-t-

= 0.4 lit- t-t-

II'
VI
LI I
V
I

Fig. 5 Maximum total power dissipation of a
limit-case transistor if the base current is
chosen in accordance with Fig. 3.

j

0.....

:,...

V

I;-

~

1.,;1'

L.,..I-'"

"
o
2

1

Fig. 5.

12

August 1977

r

ICM (A)

Fig. 4 Minimum required base inductance and
recommended negative drive voltage versus
maximum peak collector current.

3

BUX82
BUX83

Silicon diffused power transistors

7Z77368

700

I I
I I

I

I

T= 25J,.Ls
IB(end)
(mA)

7Z77369

10

I I
I I
I I

\

I

\

I

1/

I

,

LB
(J,.LH)

I

1,...0'

I
I

500

I

, .....

/'

"

.- .....

Vdrive
(V)

-'

.......... "
4

\
\

V

\.

j

II'

1/

,
I\.

6

/

II'

_.....

\

50J,.Ls

I

300

8

/

J

I

II

\

J

J

I

Vdrive

\

6

,/

2

I"

/

" ,
"
'- LB

~

V

......
~

100

i"' ....

4

2

1

3

leM (A)

1

2

leM (A)

a

3

Fig. 7.

Fig. 6.
7Z77373

15

~IB(end) = ± 20%

T mb';;;; 100 °e

Ptot
(W)

Fig. 6 Recommended nominal "end" value of
the base current versus maximum peak collector current in a forward converter.

I

10

T= 25J,.Ls
J
1/
V
/
/

7

Fig. 7 Minimum required base inductance and
recommended negative drive voltage versus
maximum peak collector current.

/
~

SOilS - -

1/

iI""

./

Fig.8 Maximum total power dissipation of a
limit-case transistor if the base current is
chosen in accordance with Fig. 6 .

./

5

10'

/

/
.".

./

;'

;'

~

a
1

2

leM (A)

3

Fig. 8.

August 1977

13

_____J

BUX84
BUX85

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed, glass-passivated n-p-n power transistors in TO-220 envelopes, intended for use
in converters, inverters, switching regulators, motor control systems and switching applications.
QUICK REFERENCE DATA
BUX84 BUX85
Collector-emitter voltage (open base)

VCESM max
max
VCEO

Collector current (d.c.)

IC

Collector current (peak value)
tp = 2 ms

Collector-emitter voltage (VBE = 0, peak value)

800

1000

V

400

450

V

max

2

A

ICM

max

3

Total power dissipation up to T mb = 50 °C

Ptot

max

40

W

Collector-emitter saturation voltage
IC = 1 A; IB = 0,2 A

VCEsat

<

3

V

Fall time
ICon = 1, A; ISon = 0,2 A; -ISoft = 0,4 A

tf

typ

0,4

IlS

A

Dimensions in mm

MECHANICAL DATA

.-

TO-220
Collector connected
to mounting base

+
5,9
min
15,8
+ max

I

J

'-Il:;;:::,:::::;;~~--+-

3,5 max
not tinned

r'
13

5,1
max

m~x--

I - I --t

(2x)

12,7
min
,

bee

__ I

i:-

...1

2,54 2,54

•
O,9 max (3x)

...

_\'-.0,6
-'2,4

7Z65872.3

'I

For mounting instructions and accessories see section Accessories (Handbook SC2).

September 1977

BUX84
BUX85
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
BUX84 BUX85

Collector-emitter voltage
(VBE = 0, peak value)
Collector-emitter voltage (open base)

VCESM

max 800

1000

V

VCEO

max 400

450

V

max

Currents
Collector current (d.c.)

IC

Collector current (peak value)
tp = 2 ms

ICM

max

3

A

Base current (d.c.)

IB

max

0,75

A

Base current (peak value)
Reverse base current (peak value) *

2

A

IBM

max

A

-IBM

max

A

Ptot

max

Power dissipation
Total power dissipation up to T mb

= 50 °C

40

W

Temperatures

---=

Storage temperature

T stg

-65 to +150

°C

Junction temperature

Tj

max

150

°C

THERMAL RESISTANCE
Froll) junction to mounting base

Rth j-mb

2,5

°C/W

From junction to ambient in free air

Rth j-a

70

°C/W

Tj = 25 °C unless otherwise specified

CHARACTE R ISTleS
Collector cut-off current

**

VCEM = VCESMmax; VBE = 0
VCEM = VCESMmax; VBE

= 0; Tj = 125 °C

ICES

<
<

hFE

typ

ICES

200

IlA

1,5

rnA

D.C. current gain
IC=0,1A;VCE=5V

* Turn-off current.
** Measured with a half sine-wave voltage (curve tracer).
2

50

BUX84
BUX85

Silicon diffused power transistors

CHARACTERISTICS (conti'nued)

°c unless otherwise specified

Tj = 25

Emitter cut"offcurrent
IC=0;VEB=5V

lEBO

<

mA

Saturation voltages
I C = 0,3 A; I B = 30 mA

VCEsat

IC =

1 A; I B = 0,2 A

VCEsat

IC=

1 A; IB=0,2A

VB Esat

<
<
<

VCEOsust

>

Collector-emitter sustaining voltage

V

1,0

V

1,1

V

~

BUX84 BUX85

IC = 100 mA; IBoff = 0; L = 25 mH

250

0,8

,---t~

400

450

V

7Z75254

__

200

Ic
(mAl
100

o ~----------------~r-----min VeE (VI
VCEOsust

Oscilloscope display for sustaining voltage.

oscilloscope

~+
30~60HZ

6V

vert.
1!l.
7Z62283

Test circuit for VCEOsust.

February 1979

3

L____
, __- -

BUX84
BUX85

CHARACTERISTICS (continued)

Tj = 25

0c unless otherwise specified

Transition frequency at f = 1 MHz
Ie = 0,2 A; VeE = 10 V

fT

typ

Turn-on time

ton

<

Turn-off: Storage time

ts

<

20 MHz

Switching times
ICon=

1A;VCC=250V

IBon = 0,2 A; -IBoff= 0,4 A

typ 0,2 MS
0,5 MS

typ

2 MS
3,5' MS

Fall time

tf

typ 0,4 MS

Fall time, T mb = 95 °e

tf

<

1,4 MS

7Z72640

- - - - - - - ---Is on

90
is (Ofol

10 i - - - - \ - - - - - i t - - - : : . . . _ _ - -

Waveform

---

90
,
Ie
'(%1

1---

.,,----+--...;--- leon

10

o i----t"-+-----t------t-1~___:'-

+25V--------------~----~--~

Test circuit

+

v~J~L

t __11__
tp

100

TMF

T
I--+;\
\,--n
n

+

Vee
250V
I

T.U.T.

1

v'I
tp = 20 MS
T
= 2 ms
VIM = 15 V

4

August 1977

I

r

7Z75253.1

BUX84
BUX85

Silicon diffused power transistors

7Z77041 1

10

BUX84
1

ICMmax

I

tp -

0=0.01

10

/
(A)
ICma~ ~ 1'1' I'r-.

not~ ~ ~~
I"

2/15

r'\.""

~

"v
v

i'" ~ ~i'1"

5

~

10

.....-vI---

"\.. "" "" " -)
-1\
~ \. '"-'
\ \

1\"

1\'1

50
100

~

~

I\.

I

20

,\\ ~II v
~\ 1\ VV

"

l\

note 2

\:

200
500
1 ms

\.

't-.\.
1\\\ \
\~

2

v

'~

1---1--'
,,1--,11-;-

5
10
d.c.

III
T mb";; 50

°c
1-1-1-

10- 3

IV

10

Safe Operating ARea
I

Region of permissible d.c. operation

II Permissible extension for repetitive pulse operation
II'l Area of permissible operation during turn-on in single transistor
converters, provided RBE ~ 100.n and tp ~ 0,6 J.Ls
IV Repetitive pulse operation in this region is permissible,
,provided VBE ~ 0 and tp ~2 ms
Notes
1. Ptot max and Ppeak max lines.
2. Second-breakdown limits (independent of temperature).

August 1977

5

__~_~_~_~_~_~____jl~______________~________________
7Z77042

10

BUX85
I I

ICMmax

IC

~

/

(A)

II

~ '"
~" 1\
~

ICma~ t\ I'",~

I\.

~~ ~

not~ ~ ~~'"
~

tp=
2J.ls
5

= 0,01

1\
~

I'~

"'\ "

"

"
\. " "

I\. "

\\l\ \

note 2 ~~

10
20

v

50
100
~

200

I\.

.\'\ '\.11"

I

f..-f..i--'

i--'

500
~

1 ms

""- "

~"
I\.~ I\.

2

\,

,~

5
10
d.c.

~ i--'
ef-

---

III

T mb<50 oC
~-

IV

10- 3
10

Safe Operating ARea
I

Region of permissible d.c. operation

II Permissible extension for repetitive pulse operation
III Area of permissible operation during turn-on in single transistor
converters, provided RSE ~ 100 nand tp ~ 0,6p.s
IV Repetitive pulse operation in this region is permissible,
provided VBE ~ 0 and tp ~ 2 ms

Notes
1. Ptot max and Ppeak max lines.
• 2. Second-breakdown limits (independent of temperature).

6

March 1977

r

BUX84
BUX85

Silicon diffused power transistors

7Z72731

,

100

1\

,

~

,

1\

~

\
1\

\

50

~

\
1\

\
~

\
1\

\
~

o

o

\
50

7Z77046

JLSL
I
-Itpl---T-

tp
T

{j=-

10

r-- {j 1
i='= 0,75
r-- 0,50

~ 0,33

F==
~

p-~

0}9
0,10

~

--

.....
,.... .....
JII"' ......

~ ~O 01

0,02

r-- r<0'
10- 2
10- 3

10- 2

10

August 1977

7

BUX84
BUX85
l - . . . . . . . . . . . - ._

_- - - : -

7Z77044

S.B. current multiplying factor at the V CEOmax level

BUX84

)~ol=o

~1

I---

.1

~

~

~

I

1'-1"- I0Il

J

10

~

~
1'-1-

0,10

"I-

""

r--- ~r--..
~

-0,20
.1

--

"'"

r- t-I-

0,33

I-

0,50
1

10-- 2

-=

"

~

~
~ r--

0,75
1

~"""

10- 1

10

7Z77043

S.B. current multiplying factor at the V CEOmax level

BUX85

)~=o·

.~

~01

~,02

'"

L"o.

r--~

---

.......

r...
I"'-r--

~

0,05

10

t-- r-

0,10

t-t-t--

r-:--. ~ f'
~

~-.

1-0,20

August

"-

~

0,50

8

....
r"-I- I-

0,33
.0,75
1
1
10- 2

-

r--- ~ ~~

Ir.

1m

10

.t p (ms)

BUX84
BUX85

Silicon diffused power transistors

7Z77045

S.B. voltage multiplying factor at the.ICmax level

~l

0,02

10

~O,05~ ~

-°'1'° r-r--..:r-...... .....
~

F::~

--'0,20_
i""' ....
:---0,33-I -r-r-Ip===-o,'5u I_0,75

11
1
10- 2

10

~

----

~ ~r--..

r-1

-

;::,.~

10

7Z77039

VCE = 5V
Tj

= 25 °c

-.......

"" '" ~,
'" ....
10

~p

""

1

10

. 'C (rnA)

August 1977

9

l

BUX84
BUX85

~__________________~____________
7Z77037

typo values

Tj=25 0 C
_,

"""'"- I-"'"
~~

VSEsat

~

(V)

I

IC=I- 1 A-'_I--l - I-0,5 A
0,3A

1--1-"

.....

0,5

o
o

--

4

(V)

1
...-::~

V ...

I
I

J

\
\

I'+- t-

o
August 1977

--

1

t- ~ r-

~
,~

"

,
I"

~~

r"

--F=-o ~h-o

r"-."",
r--

0,1

r

i'

~

~

-.-~

\

'l\

~\O,5A'
\
r\,- r- ~
\O,~~\,

\l I'" ~

10

,

,
-\

l\\_
\'

\

1\
\

\

~\

I'
11

1\

\1
J

\

2

- - max. values
_ _ typo values

--- t-\,

~-

,

Tj = 25°C

1\

~'

II

I,

~

o

,

r---

I'

0,7 A

i
i.

r--

~IC=1 A_

~

I

7Z77040 1

I'

I

, I
3

300
IS (mA)

J

!I

,

VCEsat

200

100

r-

~

r--

I-

-

I-

0,2

IS (A)

0,3

BUX84
BUX85

Silicon diffused power transistors

APPLICATION INFORMATION ON BUX84 (detailed information on request)
Important factors in the design of SMPS circuits are the power losses and heatsink requirements of the
supply output transistor and the base drive conditions during turn-off. In most SMPS circuits with
mains isolation the duty factor of the collector current generally varies between 0,25 and 0,5.
The operating frequency lies between 15 kHz and 50 kHz and the shape of the collector current varies
from rectangular in a forward converter to a sawtooth in a flyback circuit.
Information on optimum base drive and device dissipation of the BUX84 in a flyback converter is
given in Figs 3 to 5. Figs 6 to 8 apply to a forward converter. In these figures ICM represents the highest repetitive peak collector current that can occur in the given circuit, e.g. during overload.
The total power dissipation for a limit-case transistor is given in Figs 5 and 8 which apply for a mounting
base temperature of 100 0C. The required thermal resistance for the heatsink can be calculated from

100-Tamb max
Rth mb-a = - - P - - - tot
To ensure thermal stability the minimum value of T amb in the above equation is 40 0C.
A practical SMPS output circuit for an output power in the order of 50 W is given in Fig. 2.
At a collector current of 0,7 A and a base current of 70 mA in this circuit the following turn-off times
can be expected.

T mb =25 °C
typ
typ

Storage time
Fall time

2,2
0,25

100 0 C
2,8
0,85

p.s
p.s

-Vdrive

-LJ==

7Z74469.2

Fig. 1 Relevant waveforms of switching transistor.

August 1977

11

l__________

BUX84
BUX85

+290V------~----------------~--~--~

100kH

22kH

___+-tI~Hr--.-- +24 V

22nF

~
' - . - - -....- - 0

BAX12

47°1~'

J1.Jl.

.

T=30}.ls
0"='0,5

1 kH

'

"

--

Fig. 2 Practical SMPS output circuit.
T1 (driver transformer): Core U15; n1 = 360 turns; n2 = 60 turns
, total inductance in base circuit~' 15 tlH
T2 (output transformer): Core E55; primary inductance Lp = 16 mH
n1 = 116 turns; n2 = 12 turns
VCE(t1)

12

< 30,0 V (see Fig.

August 1977

1)

('

7277374

BUX84
BUX85

Silicon diffused power transistors

7Z77376

7Z77380

150

T = 251's or SOl'S

I
II

IB(end)
(rnA)

II

LS
(I'H)

II

100

25

J
'I

6

30

Vdrive

,

(V)

~

La
~

5

,

1\

1/

)

50

1/

20

II'

o

0,5

1

ICM (A)

"

V

,...

~

'/

10
0,25

t7

V
.\
1/
."\ ........ i-""
... V

15

/

Vdrive

~

I/'

~

o

,

~

1/

.,/

"'"

4

V
3

1"",,.... r--, t-.

2
0,5

0,75 ICM (A) 1

Fig. 4.

Fig. 3.
7Z77378

fl.IS(end)

= ±. 20%

Tmb~1000C

10

Ptot

Fig.3 Recommended nominal "end" value of
the base current versus maximum peak collector current in a flyback converter.

(W)

7,5

)
~

T = 251's

5

~

~

~

\1\ 1/

-'~

...... 1'"

2,5
~
~ I--"
~

,......

\

I.)

~ ~ 10-""

...... 10'
~

~

~ I-'

--

~

I- ~

:~

I...... ' ..

"""

I.,...-

Fig. 4 Minimum required base inductance and
recommended negative drive voltage versus
maximum peak collector current.
Fig. 5 Maximum total power dissipation of a
limit-case transistor if the base current is
chosen in accordan~e with Fig. 3. Solid lines
-for IC11/CM = 0,4 and dotted lines for
IC1/1CM = O.

--

~ 1--1---~ SOps

I--

o
0,25

0,5

0,75 ICM (A) 1
Fig. 5.

August 1977

13 '

Jl

BUX84
_ _B_UX8_5_

~_ _ _ _ _ _ _ _ _ _ _ _ _
7277377

7277376

j

ICl /ICM = 0,9

1/

200

6

)

1/

IB(end
(mA)

)

J
T= 25/-ls

II
j

150

I

)

1/

V

V

V

Vdrive
~

/

'\

/

"""-

~~

15

V

r-.....

V

0,25

0,5

0,75 leM (A) 1

3

:'" i'-...

....t-

:2

0,5

0,75 ICM (A) 1

Fig. 7.

Fig. 6.

---

10
0,25

i...--'

..............

"""' ....

o

4

V

I\.

./

~

V

~

i/

~

50

,

~
20

'/

1/

5

1\

\

j

V

(V)

L8

I

II
/

V

-Vdrive

'/

/

If

100

1/ 5O /-ls

.
~
25

7Z77375

AIB(end) = ± 20%
Tmb ~ lOOoC

10

IC1 /l CM = 0,9
Fig. 6 Recommended nominal "end" value of
the base current versus maximur;n peak collector current in a forward converter.

7,5

Fig. 7 Minimum required base inductance and
recommended negative drive voltage versus
maximum peak collector current.
T = 25/-ls

5

j

50/-l~

V
1/

./

j/

/

1/

2,5

i-'

..... j...-'
j.....o I"

V
i.---'~

t:::: ~""'"

o
0,25

0,5

0,75 ICM (All

Fig. 8.
14

August 1977

r

Fig. 8 Maximum total power dissipation of a
limit-case transistor if the base current is
chosen in accordance with Fig. 6.

_ _ _J

BUX86
BUX87

SILICON DIFFUSED POWER TRANSISTORS

High-voltage, high-speed, glass-passivated n-p-n power transistors in SOT-32 envelopes, for use in converters, inverters, switching regulators, motor control systems and switching applications.

QUICK REFERENCE DATA
BUX86 BUX87
Collector-emitter voltage (open base)

VCESM max
max
VCEO

Collector current (d.c.)

IC

max

ICM
Ptot

max

VCEsat

<

tf

typ

Collector-emitter voltage (VBE

=

Collector current (peak value): tp

0, peak value)

=

2 ms

Total power dissipation up to T mb = 60 °C
Collector-emitter saturation voltage: IC = 0,2 A; 'B = 20 mA
Fall time: ICon

= 0,2 A;

'Bon

= 20 mA; -IBoft = 40 mA

800

1000

400

450

V
V

0,5

A

20

W

A

max

MECHANICAL DATA

3

V

0,4

p.s

Dimensions in mm

TO-126 (SOT-32)

-

Collector connected to metal part of mounting surface
1"'7.8 max

+

--I
,j5 1

-$

3.2
3,0

+

-,l

11,1
max

i

[ ] n [ ~~~(1)
- , - r- _of

15,3
min

e

..II...
0,5

1

c

b ...· - - - - - ' -

0.88....11... ·
max
~

7ZS9321.,2

"

I...
~

Accessories: 56326 (washer) or 56353 (clip) for direct mounting and 56353 + 56354 (package) for
insulated mounting.

* Within this region the cross-section of the leads is uncontrolled.

'I

February 1979

B,-»<86
BUX87
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC134)
Voltages

BUX86 BUX87

Collector-emitter voltage (VBE

= 0, peak value)

Collector-emitter voltage (open base)

VCESM

max

800

1000

V

VCEO

max

400

450

V

IC

max

0,5

1

A

Currents
Collector current (d.c.)
Collector current (peak value): tp

= 2 ms

A

ICM

max

Base current (d.c.)

IB

max

0,2

A

Base current (peak value)

IBM

max

0,3

A

-IBM

max

0,3

A

Ptot

max

20

W

Reverse base current (peak value) (note 1)
Power dissipation
Total power dissipation up to T mb

= 60 °C .

Temperatures
Storage temperature
Junction temperature

Tstg

-65 to +150

oC

150

°C

max

Tj

THERMAL RESISTANCE

-----

.....
.....

From junction to mounting base

Rth j-mb

4,5

°C/W

From junction to ambient in free air

Rth j-a

100

°C/W

CHARACTERISTICS

Tj

= 25 °C unless otlierwise specified

Collector cut-off current (note 2)
VCEM
VCEM

= VCESMmax; VSE = 0
= VCESMmax; VSE = 0; Tj = 125 °c

ICES

<
<

hFE

typ

ICES

100

mA

D.C. current gain
IC=50mA;VCE==5V

\

Notes
1. Turn-off current
2. Measured with a·half sine-wave voltage (curve tracer) .

2

• Mareh

19771 (

#LA

50

BUX86
BUX87

Silicon diffused power transistors

Tj = 25 0C unless otherwise specified

CHARACTERISTICS (continued)
Emitter

cut~off

current
lEBO

<

IC= 0,1 A; IB = 10 rnA

VCEsat

IC = 0,2 A; IB

= 20 rnA

VCEsat

IC = 0,2 A; IB = 20 rnA

VBEsat

<
<
<

IC = 0; VEB = 5 V

rnA

Saturation ~oltage

Collector-emitter sustaining voltages

1,5

V

3
1,0

V
V

BUX86 BUX87

IC = 100 rnA; IBoft = 0; L = 25 rnH

VCEOsust

400

450

V

7Z75254

250,-......_ __
200
Ic
(rnA)

100

o ------------------~r-----min VCE (VI
VCEOsust

Oscilloscope display. for sustaining voltage

Test circuit for, V CEOsust

March 1977

3

l""----___

BUX86
BUX87
/'

CHARACTERISTICS (continued)
Transitio? frequency at f

Tj = 25 °e unless otherwise specified

= 1 MHz

rov

20 MHz

fT

typ

Turn-on time

ton

<"

Turn-off: Storage time

ts

<

2 J.ls
3,5 J.lS

Ie = 50 mA; VeE =
Switching times
ICon

= 0,2 A; Vce = 250 V

IBon = 20 mA; -IBoff = 40 mA

typ
typ

Fall time

tf

typ

0,4 J.lS

Fall time, T mb = 95 °e

tf

<

1,3 J.lS

--~-

90
is (Ofo)

7Z726l.0

- - - - - - - ---Is on

'\

10 p.;;;..~~------tt--___- -

Waveform
90
ic
(%)

10

o r---r-T----~_r+'--~

+25V

------t---t---,

Test circuit

T

Lr 1

Vce

VIM~

CILtp

250V
+1

Vi

100

n

7Z77048

tp = 20 IlS
T
= 2 ms
VIM = 15 V

4

0,25 IlS
0,5 Ils

I

BUX86
BUX87

Silicon diffused power transistors

7Z77054

10

SUX86

T mb ~600C
IC
(A)

tp=
5J.Ls

8=0,01
,

ICMmax
-note 1
ICmax

'\
~

~

~~

I

note 2

10- 1

r'\.

""
"
"-

.

--

"'\. '\.\,
" " ---\

, \ "I\. I\~

~\

~

...,

~ i\

'\.~'\.

,,~'

,,~

'\ 1,\

\.\

~\ \.

--

l~ \
~~ ---\--

2
IC
(mA)

10- 2

---

1

-

-IV

-

10
20
50
100
200

500
1 ms
2
5
10
d.c.

--

- -III

0,5
400 800
VCE (V)

10- 3
10

Safe Operating ARea
I

Region of permissible d.c. operation

II Permissible extension for repetitive pulse operation
III Area of permissible operation during turn-on in single-transistor
converters, provided RSE ~ 100 nand tp ~ 0,6 J.LS
IV Repetitive pulse operation in this region is permissible,
provided VBE ~ a and tp ~ 2 ms

Notes
1. Ppeak max lines.
2. Second-breakdown limits (independent of temperature).

~r Ma~h

1917

5

l_ _~

BUX86,
BUX87

7Z77053

10

BUXfP

Tmb ~600C
I

IC
I

r---.-.

(A)

tp=
5ps

li =0,01
ICMmax
r--.-note 1
\.I\.
~

~

\

'~

I

note 2

"' "

\. \.,
\,

~\
\.'\.\.

\.'-

"
2

~

\.

r\

-

\. \
~\ !'I.

I
400

50

v

100

K

200

500

v

~ 1\\

f-IV
I I

0,5

20

v

,,
'~

IC
\
(mA) 1

-

10

"" ". "
\. "

.'- '-

ICmax

VV

v

1 ms
2
5
10
d.c.

III

'1000

VCE (V)

10- 3
10

Safe Operating ARea
I

Region of permissible d.c. operation

II Permissible extension for repetitive pulse operation
III Area of permissible operCltion during turn-on in single-transistor
converters, provided RBE ~ 100 n an tp ~ 0,6 ps
IV

Repetitiv~ pulse operation in this region is permissible,
provided VBE ~O and tp ~ 2 ms

Notes
1. Ppeak max lines.
2. 'Second-breakdown limits (independent of temperature).

6

Mareh 1977

~

r

BUX86
BUX87

Silicon diffused power transistors

7Z77049

100

~

.'\

Ptot max

1\

(%)

\
75

1\

\

,
~

50

\
1\

\
\

25

\

,
~

\

50

100

150
Tmb(OC)

7Z77058

~tp

-Itpl- I
---T-

5=-

T

10

== ~5 - 1

==
-==
-

:0,75
f-O,50
c- O,33
1-0,20

~ ~O,10

;:::::::;: FO,05

-

I-- I - i'"

V"

.....:

~

-~

10- 1

K"dd~

~ S?,Ol

--

10- 2
10- 3

"-

~: '

r- O

10- 2

10

March 1977

7

BUX86
BUX87
7Z770S6

S.B. current multiplying factor at the V CEOmax level

BUX86

MSB(V )

6='0

~.

~ ;;0,02
L?,01

~

......

-...... ........"......
r--.::~
./

~

~-

rt

~~~

~

~

10 to-== "",0,10

......... ......

t - - - 1-0,20

-"''''

[""0;.. ~

I"'--- I"~

033

r.'-r- r..~

0,50

-r- I-~

0,75

r

1
10- 2

.~ ~
10

7Z77055

S.B. current mUltiplying factor at the V CEOm~x level

BUX87

MSB(V )

~
~

./

-.........

6= 0
0,01
=0,02
~
! .........

""

........ r.......... I"':~

....... 1"-

r=-- [t1'-1"-

10 ~ 0,10

~~

'"

~
---

0,33

" ......
...........
~~
r--- ...... r--:~

0,50

...

t - - - r-O,20

-...

1
10- 2

8

---

....

0,75
1

Mareh 1977

.: 10- 1

~

(

r--~
~
10

BUX86
BUX87

Silicon diffused power transistors

7Z77057

S.B. voltage multiplying factor at the lemax level

~
0,02

10

~

~

~o,o~

~

r--....

010

~

~

-

====0,20

~0,133

......

'"""

""

1"-", ~t--" r--..

~

t- t-I--o

c::::.:: -.......
~

r-

,==-0:50

~
~

r - - t-- r- ~ ~f:: r--~

0~75

r- t--

1

1

~ .....

10- 2

4

,,

I

I

[I

(V)

,

Tj = 25 °e
- -max. values
--typ values

\

\

I

---

7Z77052

~ .

\

\
\

I

VeEsat

10

tp (ms)

I

3

I

I

i \

I

I

~

~

I

I

~l

50
mA
I

\
I',

...... ~ ~-t"

le=

\
\

\

0,2\
[

, ,
'.

1\

\
\

"'

~

"N

\V

[,

I

o

,

\

\

---1 f-O;-l ~
I

o

\
\

\

~

I

2

1

I

\

,

r - ' r-'"

\.
...... r--..,

'- -

20

1' ..
r-

40

60

'B(mA)

<

'I (Ma~h

1977

9

l_____

BUX86
BUX87

7Z77050

10 3

1277061

0,9

typo values

veE5V
Tj =25 0 e

Tj
V8Esat
(V)

10 2

.Ie= 1-10,2A f-f-

......
.........

~p

\~

10

1

10- 2

10- 1

----=

10

I

I I
I I
I

0,8

....... -

March 1977

r

Ie (A)

v

11:",..

0,7

=25 °e

"

L,,;

'"

"'~

-~....

---

_~t"'"

,...~

I--f-r'

O,lA f-~
I
.J.-.I..-~

50mA r-

",..

i.,.;'

10

18 (rnA)

20

BUX86
BUX87

Silicon diffused power transistors

APPLICATION INFORMATION ON BUX86 (detailed information on request)
Important factors in the design of SMPS circuits are the power losses and heatsink requirements of the
supply output transistor and the base drive conditions during turn-off. In SMPS circuits with mains
isolation the duty factor of the collector current generally varies between 0,25 to 0,5.
The operating frequency lies between 15 kHz and 50 kHz and the shape of the collector current varies
from rectangular in a forward converter to a sawtooth in a flyback circuit.
As the BUX86 will mainly be used in low-power flyback converters the information on optimum base
drive and device dissipation given in the graphs on page 13 is concentrated on this appl ication. I n these
figures ICM represents the highest repetitive peak collector current that can occur in the given circuit,
e.g. during overload.
The total power dissipation for a limit-case transistor is given in Fig. 5 which applies for a mounting
base temperatu re of 100 0C. The required thermal resistance for the heatsink can be calculated from

100-Tamb max
Rth mb-a =

P
,
tot
To ensure thermal stability the minimum value of Tamb in the above equation is 40 °C.
A practical SMPS output circuit for an output of power in the order of 15 W is given in Fig. 2.
At a collector current of 200 mA and a base current of 20 mA in this circuit the following turn-off
times can be expected.

T mb = 25 °C
Storage time
Fall time

typ
typ

1,3
0,2

100 0 C
1,8
0,8

Ils
IlS

-

j
's

'S(end)

-Vdrive

C;=='7Z744692

Fig. 1 Relevant waveforms of switching transistor.

August 1977

11

Jl

,BUX86
BUX87

+290 V
BY206
+24V
470
~F

0

to start
and
control
circuit
10
H~

JlJl._
T =30~s
b "='0,5

10kn

7Z77381

Fig. 2 Practical SMPS output circuit.
T1 (output transformer): Core U20; primary inductance Lp = 23 mH
n1 = 252 turns; n2 = 27 turns; n3 = 22 turns
VCE(t1)

12

< 300 V

(see ~ig. 1)

August 1977

(

BUX86
BUX87

Silicon diffused power transistors

7Z77382

7Z77383

LJ'

I

40

/

'B(end)

100

I

30

/

,,-

75

I--

4

Vdrive
(V)

...... V
3

\V
1\

'50

/

r-...

2

.......

......

,I

-~
~

10

-

V

~

V

V

20

~

/v

(pH)

/

I--

/'"

LB

J
V

(mA)

-Vdrive

V

-

LS

I-- I--

1---

25

V

o

200

100

300

400

'eM

o

o

100

200

400

'eM

(mA)

Fig .. 3.

300

(mA)

Fig. 4.

-

7Z77384

d'B(end) == ± 20%

Tmb';;;; 100 °c

4

Ptot
Fig. 3 Recommended nominal "end" value of
the base current versus maximum peak collector current.

(W)

3

--

J

/

V' "'- I7T== 25us

/

2

Li£

~

j
i.'

~~

./

V

,,,'"====:;ii""
",.

.....

_tfIIP
~~

"

.....
..........

V

"
t/50J.lS

. /

I;

_I .....

- ..

Fig. 4 Minimum required base inductance and
recommended negative drive voltage versus
maximum peak collector current.
Fig. 5 Maximum total power dissipation of a
limit-case transistor if the base current is
chosen in accordance with Fig. 3. Solid lines
for IC1/ICM = 0,4 and dotted lines for
IC1/ICM = O.

1-

o
100

200

300

400

'eM

(mA)

Fig. 5.

August 1977

13

2N30S5

MAINTENANCE TYPE

SILICON DIFFUSED POWER TRANSISTOR

N-P-N transistor in a TO-3 metal envelope, intended for use in linear applications
such as hi -fi amplifiers and signal processing circuits.
Matched pairs are available.
QUICK REFERENCE DATA
Collector-base voltage (open emitter)

V CBO

max. 100

V

Collector-emitter voltage (RBE = 100 n)

VCER

max. 70

V

Collector current (d. c. )

IC

max.

15

A

max. 115

W

Junction temperature

Ptot
Tj

max. 200

°C

D . C. current gain
IC = 4 A; VCE = 4 V

hFE

20 to 70

Transition frequency at f = 1 MHz
IC = 1 A; VCE = 4 V

fT

>

Total power dissipation up to T rob

= 25 oC

MECHANICAL DATA

0.8

Dimensions in mm

Collector connected to envelope
TO-3
-26,6max-

111

39,S 301

l-r.

J1
20,3

max

1_

8'63maxl~
+-1,6

,

-'1

-4,2
_4,0

'
1====~'1
+

7Z680,64.3! __

12,8 .......
11,2

For mounting instructions and accessories, see section Accessories.

February 1979

MHz

II

---

2N3442
2N4347

MAINTENANCE TYPES

SILICON DIFFUSED POWER TRANSISTORS

N -P-N transistors in a TO-3 metal envelope, intended for use in a wide variety of linear
power applications in audio amplifiers, converters, voltage regulators, power supplies,
etc.
QUICK REFERENCE DATA
2N3442

2N4347

VCBO

max.

160

140

V

Collector-emitter voltage (open base)

VCEO

max.

140

120

V

Collector current (d. c. )

IC

max.

10

A

Total power dissipation up to T mb =25 °c

Ptot

max.

117

'w

-Junction temperature

Tj .

max.

200

°c

Collector -base voltage (open emitter)

D. C. current gain
IC = 3 A; VCE = 4 V: 2N3442
IC = 2 A; VCE = 4 V: 2N4347

20 to 70

Dimensions in mm

MECHANICAL DATA
Collector connected to envelope
TO-3
--26,6max-

....18.63 max

I....

.... 1 .... 1,6

~42

Jt '
i

4'0

)J,
39,5 301

1

20,3
max

m~j_' _

1--10,9 ....

7Z68064.31 ....

12.8 ....
11,2

For mounting instructions and accessories, see section Accessories.

February 1979

II

II

-----

MOUNTING INSTRUCTIONS

GENERAL NOTE

II
GENERAL NOTE ON FLAT HEATSINKS

All ihlormation on thermal resistances of the accessories combined with flat heatsinks
is valid for square heatsinks of 1,5 mm blackened aluminium.
For a few variations the thermal resistance may be derived as follows:
a. Rectangularheatsinks (sides a and 2a)
When mounted with long side horizontal, multiply by 0, 95.
When mounted with short side horizontal, multiply by 1,10.
b. Unblackened or thinner heatsinks
Multiply by the factor B given below as a function of the heatsink size A.

7Z09250

B

1.4
1mm unblackened

:\.uminium

1.3

--

d ~umin'
1,5 mm unbtackene

1,2

lmm blackened Aluminium

1.1

5

0

II

10

15

20

3(}

25
ACcm 2) one side

II

May 1974

_ _ _J

MOUNTING'
INSTRUCTIONS
SOT -32/S0T -82

MOUNTING INSTRUCTIONS
FOR SOT -32 AND SOT -82 ENVELOPES

GENERAL DATA AND INSTRUCTIONS
General rules
1. First fasten the devices to the heatsink before soldering the leads.
2. Avoid axial stress to the leads.
3. Keep mounting tool (e.g. screwdriver) clear of the plastic body.
Heatsink requirements
Minimum thickness: 2 mm.
Flatness in the mounting area: 0,02 mm maximum per 10 mm.
Mounting holes must be deburred and should also be perpendicular to the plane of the heatsink, within
100 tolerance for M2,5 thread and within 2 0 tolerance for M3 thread. If the hole in the heatsink is
threaded, it should be counter-sunk and free of burrs.
Heatsink compound
Values of the thermal resistance from mounting base to heatsink (Rth mb-h) given for mounting with
heatsink compound refer to the use of a metallic oxide-loaded compound. Ordinary silicone grease is
not recommended.
For insulated mounting, the compound should be applied to the bottom of both device and insulator.
Mounting methods for power transistors

--

1. Clip mounting (SOT-32 and SOT-S2)
Mounting by means of spring clip offers:
a. A good thermal contact under the crystal area.
b. Safe insulation for mains and high voltage operation
2. M2,5 and M3 screw mounting. (SOT-32 only).
The spacing washer should be inserted between screw head and body.
Mounting torque for screw mounting:
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)

0,4 Nm (4 kgcm)
0,6 Nm (6 kgcm)

N.B. when the driven nut or screw is in direct contact with a toothed lock washer the torques are
as follows:
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)

0,55 Nm (5,5 kgcm)
O,SO Nm (S,O kgcm)

3. Body mounting (SOT-S2).
A SOT-S2 envelope can be adhesive mounted or soldered into a hybrid circuit.
For soldering a copper plate or an anodized aluminium plate with copper layer is recommended.
When adhesive mounting is applied also a ceramic substrate may be used.

'I

March 1979

MOUNTING
INSTRUCTIONS
SOT -32/S0T -82

l

.

'------------------------------------------------------Pre-heating
For good soldering and avoiding damage to the SOT-82 device pre-heating is recommended to a
temperature ~ 165 0C at a duration ~ 10 s.
Soldering
Recommended metal-alloy of solder paste (85% metal weight)
a. 62 Sn/36 Pb/2 Ag or b. 60 Sn/40 Pb.
Maximum soldering temperature ~ 250 0C (soldering plate)
Soldering cycle duration: a without pre~heating ~ 14 s.
b with pre-heating
~ 22. s.
Thermal data from mounting base to heatsink

Rth mb-h (OC/W)
clip mounting
direct insulated

SOT-32, with heatsink compound
SOT-32, without heatsink compound

1,0
3,0

3,0
6,0

SOT-82, with heatsink compound
SOT-82, without heatsink compound

0,4
2,0

2,0
5,0

screw mounting
direct insulated
0,5
1,0

3,0
6,0

Lead bending
Maximum permissible tensile force on the body, for 5 seconds is 20 N (2 kgf).
The leads can be bent through 90 0 maximum, twisted or straightened. To keep forces within the abovementioned limits, the leads are generally clamped near the body, using pliers. The leads should neither
be bent nor twisted less than 2,4 mm from the body.
Lead soldering
For devices with a maximum junction temperature ~ 150 0C.

---

a. Dip or wave soldering
Temperature ~ 260 0C at a distance from the body> 5 mm and for a total contact time with
soldering bath or waves < 7 s.
b. Hand soldering
Temperature at a distance from the body> 3 mm for a total contact time < 5 s is < 275 0C or
< 250 0C for a total contact time of < 10 s.
The body of the device must be kept clearof anything with a temperature> 200 0C.
Avoid any force on body and leads during or after soldering; do not correct the position of the device
or of its leads after soldering.

2

Ma~h

1979

1r

MOUNTING
INSTRUCTIONS
SOT -32/S0T -82

Mounting instructions for SOT-32 and SOT-82 envelopes

INSTRUCTIONS FOR CLIP MOUNTING
Direct mounting with clip 56353
1. Place the device on the heatsink, applying heatsink compound tothe mounting base.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
300 to the vertical (see Figs 1 and 2).
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on the plastic body (see Fig. 3).
_30 0

100~

,;"', 7

\ ! ---_

/

1

,

'

I \

, J
'/

2,0
1,5

~~*""''''"''''"~~....,....-.
-t
7Z78764

7276762

Fig. 1 Heatsink requirements.

Fig. 2 Mounting
spring clip.

Fig. 3 Position of
transistor (top view).

Insulated mounting with clip 56353 and mica 56354 (up to 1000 V insulation)
1.'Place the device with the insulator on the heatsink, applying heatsink compound to the bottom of
both device and insulator.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
300 to the vertical (see Figs 4 and 5).
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on the plastic body (Fig. 6). There should be minimum 3 mm
distance between the device and the edge of the insulator for adequate creepage.

-

I~t-=C=jl

"
U

-G

,---t-, , .
t
- - -H
,. -" -h-+{4\--1--- ., - 'i;~•
I I ~--. +----l 1 1__ 1,6..'

1,4

. 11,5

11,0

'..

1,~ _
min

7Z78765

Fig.4 Heatsink requirements.

Fig. 5 Mounting.
(1) spring cl ip 56353.
(2) insulator 56354.

Fig. 6 Position of
transistor (top view).

March 1979

3

l________

MOUNTING

INSTRUCTIONS
SOT -32/S0T-82

INSTRUCTIONS FOR SCREW MOUNTING

Dimensions in mm

Direct mounting with screw and spacing washer

I M3~lt
~

~====(=_rtt·liD'I

TO-126

I

+

a///m

56326

heatsink

ezv//&

atn

lock washer
nut

7Z65398

Fig. 7 Assembly through heatsink with nut.

1M3
-

~

====={=-illiD'I

-

tv/ml

bolt

56326
TO-126

IeVVM

heatsink

Fig. 9 Assembly into tapped heatsink.

4

March 1979

Fig.8 Heatsink requirements.

r

Fig. 10 Heatsink requirements.

MOUNTIN<;3
INSTRUCTIONS
SOT-32/S0T -82

Mounting instructions for SOT-32 and SOT-82 envelopes

INSTRUCTIONS FOR SCREW MOUNTING
Insulated mounting with 56333 (up to 250 V)

T

M2,S bolt

~

~

washer
insulating bush

====r----rLrb I
n,

!
k\\§"!

7265402.2

TO -126
mica washer

I !&,,§\'J

heatsink

~

lock washer

~

nut

Fig. 12 Heatsink requirements.

Fig. 11 Assembly through heatsink with nut.

T

M2,S bolt

~

~

===CIl!bIl'1
!
K\\§'J

4

washer

M 2,5

7Z78768

insulating bush

TO-126

Fig. 14 Heatsink requirements.

mica washer

I b\\\'§'/

he at sin k

Fig. 13 Assembly with tapped heatsink.

March 1979

5

_ _ _J

MOUNTING
INSTRUCTIONS
TO-220

MOUNTING INSTRUCTIONS FOR TO-220 ENVELOPES

GENERAL DATA AND ·INSTRUCTIONS
General ru les
1.
2.
3.
4.

First fasten the devices to the heatsink before soldering the leads.
Avoid axial stress to the leads.
Keep mounting tool (e.g. screwdriver) clear of the plastic body.
The rectangular washer may only touch the plastic part of the body; it should not exert any force on
that part (screw mounting).

Heatsink requirements
Flatness in the mounting area: 0,02 mm maximum per 10 mm.
Mounting holes must be deburred, see further mounting instructions.
Heatsink compound
Values of the thermal resistance from mounting base to heatsink (Rth mb-h) given for mounting with
heatsink compound refer to the use of a metallic oxide-loaded compound. Ordinary silicone grease is
not recommended.
For insulated mounting, the compound should be applied to the bottom of both device and insulator.
Mounting methods for power transistors
1. Clip mounting
Mounting by means of spring clip offers:
a. A good thermal contact under the crystal area, and slightly lower Rth mb-h values than screw
mounting.
b. Safe insulation for mains operation.
2. M3 screw mounting
It is recommended that the rectangular spacing washer is inserted between screw head and mounting
tab.
Mounting torque for screw mounting:
(For thread-forming screws these are final values. Do not use self-tapping screws.)
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)

0,55 Nm (5,5 kgcm)
0,80 Nm (8,0 kgcm)

N.B.: When a nut or screw is not driven direct against a curved spring washer or lock washer (not for
thread-forming screw), the torques are as follows:
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)

N.B.: Data on accessories are given in separate data sheets.

0,4 Nm (4 kgcm)
0,6 Nm (6 kgcm)

I

July 1977

tvtOlNrNG
INSTRUCTIONS
TO-220

l•_____

3. Rivet mounting non-insulated
The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet providing that eyelet rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab.
clip
screw
mou.nting mounting

Thermal data
From mounting base to heatsink
with heatsink compound, direct mounting

Rth mb-h

0,3

0,5

°C/W

without heatsink compound, direct-mounting

Rth mb-h

1,4

1,4

°C/W

with heatsink compound and 0,1 mm
maximum mica washer

Rth mb-h

2,2

°C/W

with heatsink compound and 0,25 mm
maximum alumina insulator

Rth mb-h

0,8

°C/W

with heatsink compound and 0,05 mm mica washer
insulated up to 5QO V
insulated up to 800 V/1000 V

Rth mb-h
Rth mb-h

without heatsink compound and 0,05 mm mica washer
insulated up to 500 V
insulated up to 800 V/1000 V

Rth mb-h
Rth mb-h

)

1,4

=.

1,6

°C/W
°C/W

-

3,0
4,5

°C/W
°C/W

Lead bending
Maximum permissible tensile force on the body, for 5 seconds is 20 N (2 kgf).
The leads can be bent through 900 maximum, twisted or straightened. To keep forces within the abovementioned limits, the leads are generally clamped near the body, using pliers. The leads should neither
be bent nor twisted less than 2,4 mm from the body.
SOldering
Lead soldering temperature at> 3 mm from the body; tsld

< 5 s:

Devices with Tj max";;;; 175 °C, soldering temperature Tsld max = 275 °C.
Devices with Tj max";;;; 110 °C, soldering temperature Tsld max = 240 °C.
Avoid any force on body and leads during or after soldering:. do not correct the position of the device
or of its leads after soldering.
It is not permitted to solder the metal tab of the device to a heatsink, otherwise its junction temperature
rating will be exceeded.

1\

2

_ _ _J

MOUNTNG

INSTRUCTIONS
TO-220

INSTRUCTIONS FOR CLIP MOUNTING
Direct mounting with clip 56363

1. Place the· device on the heatsink, applying heatsink compound to the mounting base.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
30 0 to the vertical (see Figs 1 and 2).

3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on the plastic body, not on the tab (see Fig. 2a).

O

,

0

11_'211,5,0_J I..}s•

1,6 ....

1,4

(

,

,--)

min

'+2':0°

V/2ZI V2ZZZ7A vZ/?Jl

e
~II
. __,

-40
_3:S

... / 'I

JD

\_--

TO-220

7Z7543B

Fig. 1 Heatsink requirements.

Fig.2a Position of
transistor (top view).

Fig. 2 Mounting.
(1) spring clip.

Insulated mounting with clip 56364
With the insulators 56367 or 56369 insulation up to 2 kV is obtained.

1. Place the device with the insulator on the heatsink, applying heatsink compound to the bottom of
both device and insulator.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
300 to the vertical (see Figs 3 and 4).

3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on the plastic body, not on the tab. There should be minimum 3 mm
distance between the device and the edge ofthe insulator for adequate creepage.

.

-,

4,0
O
0-3,S
',6 . . .11_'6,s_II
..}s• .
14
163
.
,
+
tz?2J VZZZZZZZZZl/1 f7ZJ
2,0
+
mm

1,0
7Z75437

Fig. 3 Heatsink requirements.

Fig. 4 Mounting.
(1) spring clip.
(2) insulator 56369 or 56367.

Fig. 4a Position of
transistor (top view).

July 1977

3

~

l- - - -

MOUNTING
INSTRUCTIONS
TO-220

Dimensions in mm

INSTRUCTIONS FOR SCREW MOUNTING
Direct mounting with screw and spacing washer

• through heatsink with nut

. 1_° 3,5-..,
max

+

1,5
min

+
7Z69.693.2

Fig. 5 Assembly.

--

(1)
(2)
(3)
(4)
(5)
(6)

Fig. 6 Heatsink requirements.

M3 screw.
rectangular washer (56360a).
toothed lock washer.
M3 nut.
heatsink.
plain washer.

• into tapped heatsink

Fig. 7 Assembly.
(1) M3 sc~ew.
(2) rectangular washer 56360a.
(5) heatsink.

4

February 1979

r

Fig. 8. Heatsink requirements.

j l IN_S_~_~U_~_~_~_N_S
MOUNTING

________________________------------------

____

____

Insulated mounting with screw and spacing washer (not recommended where mounting tab is on mains
voltage)

• through heatsink with nut

Dimensions in mm

Fig. 9 Assembly.

(1)
(2)
(3)
(4)

M3 screw.
rectangular washer 56360a.
toothed lock washer.
M3 nut.

(5)
(6)
(7)
(8)

heatsink.
mica insulator 56359b.
insulating bush 56359c.
plain washer.

Fig. 10 Heatsink requirements for 500 V insulation.

+

2,0

1-05,~±0,1-1

i

M

•

~

WM I r?C
+
~I fX3 6'+0,21
__
0

±0,1

IU,

1,O±O,1

+

7Z75433

Fig. 11 Heatsink requirements for 800 V insulation.

February 1979

5

MOUNTNG
INSTRUCTIONS
TO-220

l___
· _ __

• into tapped heatsink

1275019.1

Fig. 12 Assembly.
(1) M3 screw.
(2) rectangular washer 56360a.
(3) rectangular insulation bush 56359d.
(4) mica insulator 56359b.
(5) heatsink.

-=
--

5

min

i_~~~
1275435

Fig. 13 Heatsink requirements
for 500 V insulation.

6

February 1979

r

Fig. 14 Heatsink requirements
for 1000 V insulation.

_ _ _J

MOUNTING
INSTRUCTIONS
SOT-93

MOUNTING INSTRUCTIONS FOR SOT -93 ENVELOPES

GENERAL DATA AND INSTRUCTIONS
General rule
Avoid any sudden forces on leads and body; these forces, such as from falling on a hard surface, are
easily underestimated.
Heatsink requirements
Flatness in the mounting area: 0,02 mm maximum per 10 mm.
The mounting hole must be deburred.
Heatsink compound
The thermal resistance from mounting base to heatsink (Rth mb-h) can be reduced by applying a
metallic-oxide heatsink compound between the contact surfaces. For insulated mounting the compound
should be applied to the bottom of both device and insulator.
Maximum play
The bush or the washer may only just touch the plastic part of the body, but should not exert any
force on that part. Keep mounting tool (e.g. screwdriver) clear of the plastic body.
Mounting torques
For M3 screw (insulated mounting):
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)

0,4 Nm ( 4 kgcm)
0,6 Nm ( 6 kgcm)

For M4 screw (direct mounting only):
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)

0,4 Nm ( 4 kgcm)
1,0 Nm (10 kgcm)

Note: The M4 screw head should not touch the plastic part of the envelope.
Lead bending
Maximum permissible tehsile force on the body for 5 s

20 N (2 kgf)

No torsion is permitted at the emergence of the leads.
Bending or twisting is not permitted within a lead length of 0,3 mm.
The leads can be bent through 900 maximum, twisted or straightened; to keep forces within the abovementioned limits, the leads are generally clamped nearthe body.

N.B.: Dataon accessories are given in separate data sheets.

I

February 1979

MOUNTING
INSTRUCTIONS
SOT-93

l~___

Soldering
Recommendations for devices with

a maximum junction temperature rating';;;;; 175 oC:

a. Dip or wave soldering
Maximum permissible solder temperature is 260 0C at a distance from the body of> 5 mm and for
a total contact time with soldering bath or waves of < 7 s.
b. Hand soldering
Maximum permissible temperature is 275 0C at a distance from the body of> 3 mm and for a total
contact time with the soldering iron of < 5 s.
The body of the device must not touch anything with a temperature> 200 0C.
It is not perm itted to solder the metal tab of the device, to a heatsi nk, otherwise the junction temperature rating will be exceeded.
Avoid any force on body and leads during or after soldering; do not correct the position of the device
or of its leads after soldering.
Thermal data

clip
mounting

screw
mounting

Thermal resistance from mounting base to heatsink
direct mounting
with heatsink compound
without heatsink compound,

Rth mb-h
Rth mb-h

0,3
1,5

0,3 °C/W
0,8 oCIW

with 0,05 mm mica washer
with heatsink compound
without heatsink compound

Rthmb-h
Rth mb-h

0,8
3,0

0,8 0C/W
2,2 °CIW

INSTRUCTIONS FOR CLIP MOUNTING

Direct mounting with clip 56379
1. Place the device on the heatsink, applying heatsink compound to the mounting base.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
20 0 to the vertical (see Fig. 1b).
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on t~e plastic body, not on the tab (see Fig. 1(c)).

D

D

+

~6

7,4

3.1-.11_30,2_11.-3+

2·9

:2221

'smi

. 298

PZZZZZ22'ZZ2222J

P22a

Fjg.1a Heatsink requirements.

2

February 1979

(

n

•

2,1

+1,9

Fig. 1b Mounting.
(1) = spring cI ip 56379.

Fig. lc Position
of the device.

MOUNTING
INSTRUCTIONS
SOT-93

Mounting instructions for SOT-93 envelopes

Insulated mounting with clip 56379
With the mica of package 56368 insulation up to 1 kV is obtained.
1. Place the device with the insulator on the heatsink, applying heatsink compound to the bottom of
both device and insulator.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
20 0 to the vertical (see Figs 2a and 2b).
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on the plastic body, not on the tab (see Fig. 2cl. There should be
minimum 3 mm distance between the device and the edge of the insulator for adequate creepage.

-,

D ~:~
3,1J 1_30,2_11.-/
D

2,9

'smi

29,8

PZZd PZZZZZZZZZZZZZJ

ezza

n

t2~

+1,9
7Z75B4B

Fig. 2b Mounting.

Fig. 2a Heatsink requirements.

(1) = spring clip 56379
(2) = insulator 56378

Fig. 2c Position
of the device.

INSTRUCTIONS FOR SCREW MOUNTING
Direct mounting
Where vibrations are to be expected the use of a lock washer or of a curved spring washer is recommended, with a plain washer between aluminium heatsink and spring washer.

--

Insulated screw mounting with nut; up to 800 V.

I

!

insulator
I

l----L---J
Fig. 3 Mica insulator.
The axial deviation (a)
between SOT-93 and mica
should not exceed 50.

7Z75329

February 1979

3

MOUNTING
INSTRUCTIONS
SOT-93'

04±0,1

Fig. 4 Assembly.
See also Fig. 3.

7Z75326.1

Fig.5 Heatsink requirements
up to 800V insulation.

(1) M3 screw
plain washer
insulating bush (56368b)
mica insulator (56368a)
lock washer
(6) M3 nut
(2)
(3)
(4)
(5)

Insulated screw mounting with tapped hol~; up to 800 V.

-

--

Fig. 7 Heatsink requirements
up to 800 V insulation;

Fig. 6 Assembly.
See also Fig. 3.

4

February 1979

(1)
(2)
(3)
(4)
(5)

M3 screw
plain washer
insulating bush
mica insulator
lock washer

(56368b)
(56368a)

MOUNTING
INSTRUCTIONS
SOT-93

Mounting instructions for SOT-93 envelopes

Insulated screw mounting with insert nut; up to 500 V

1,Omin

I~~~~
2,5

t min
t
7Z75323.1

Fig. 8 Assembly and heatsink requirements
for 500 V insulation. See also Fig. 3.
(1)
(2)
(3)
(4)
(5)

M3 screw
plain washer
insulating bush
mica insulator
lock washer

(56368b)
(56368a)

---

February 1979.

5

,_ _ _J

MOUNTING
INSTRUCTIONS
TO-3

MOUNTING INSTRUCTIONS FOR TO-3 ENVELOPES

GENERAL DATA AND INSTRUCT.IONS
Instructions for direct mounting.
Mounting instructions for up to 500 V insulation.
Using insulating bushes 56201c and mica washer 56201d.
Using insulating bushes 56201j or 56261a and mica washer 56201d.
Mounting instructions for 500 to 2000 V insulation.
Using mounting support 56352 and mica washer 56339.
Heatsink requirements
Flatness in the mounting area: 0,05 mm per 40 mm
Mounting holes must be deburred.
Mounting torques
Minimum torque (for good heat transfer)

0,4 Nm (4 kgcm)

Maximum torque (to avoid damaging the transistor)

0,6 Nm (6 kgcm)

N.B.: When the driven nut or screw is in direct contact with a toothed lock washer (e.g. Fig. 10), the
torques are as follows:
Minimum torque

0,55 Nm (5,5 kgcm)

Maximum torque

0,8 Nm (8 kgcm)

Thermal data
The thermal resistance from mounting base to heatsink (Rth mb-h) can be reduced by applying a heat
conducting compound between transistor and heatsink. For insulated mounting the compound should
be applied to the bottom of both device and insulator.
Direct mounting
From mounting base to heatsink
without heatsink compound
with heatsink compound

Insulated mounting
500 V mica
2000 V mica

Rth mb-h

0,6

1,0

1,25

°C/W

Rth mb-h

0,1

0,3

0,5

°C/W

February 1979

MOUNTING
IN'STR'UCTIONS
TO-3

II

INSTRUCTIONS FOR.DIRECT MOUNTING
The transistors should be mounted with M4 screws, see Figs 1 and 2. Minimum heatsink
thickness (for good heat transfer) 1,5 mm. Hole. pattern: Fig. 3.
A heats ink with tapped holes or insert nuts caD. also beused, but a torque washer is necessary between metal washer and transistor. See Fig. 4.

CD

M4

00

®

1,5 •
fZZA
min.

I
I
I ezzzzzazzZZZZZZZZ4 I PZZ)

fZZA

I
I
I ez zzzz azzZZZZZZZZ4 I PZZ)·

(J)

®
(J)

+

®

®

CIlTI

M4

7Z70380

---

-

7Z70381

,

Figs 1 and 2. Direct mounting with nuts

Legend for all figures:
(1)
(2)
(2)(3)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)

= screw
= TO-3 thick base (3,15 mm)

=TO - 3 thick or thin base
=

TO-3 thin base (1,6 mm)

= mica
= heatsink
= insulating bush

= metal washer
= soldering tag
= lock washer
= nut

= tapped hole
= insert nut

~:J'!._------:
W--.- ~ -$-. t
4 +g,2.'
- $ -~
+

i

--$--

10,9±O,1

i

+

i--16,9±O,1-1

I- 3 0 , 1 ± O , 1 -

7Z70376

Fig. 3. Hole pattern for direct
mounting with nuts

Dimensions in mm

2

II

It.

August 1975

J
CD

W W

M4

(J)

®
(J)

®

®®
®

MOUNTING
INSTRUCTIONS
TO-3

T

~

c:: =-

==-=--=r-....:::l

I

c::=t=

+

+

crUd bb

r

~,

Fig. 4 Direct mounting with tapped holes or insert nuts.
MOUNTING INSTRUCTIONS FOR UP TO 500 V INSULATION
Using insulating bushes 56201c and mica washer 56201d
For the comP9nent arrangement with minimum heatsink thickness see Figs 5 and 6. For hole pattern
and shape of holes see Figs 7 and 8.
The accessories can also be used for thinbase transistors on a 2,5 mm heatsink provided with M3
insert nuts in an arrangement like Figs 10 and 12.
Using insulati!lg bushes 56201j or 56261 a and mica washer 56201d

--

For an arrangement with M3 screws and nuts see Fig. 9, mounting holes are given in Figs 7 and 8.
The accessories can also be used in combination with M3 screws and heatsinks provided with tapped
holes or insert nuts. Lock washers are necessary between screw-head and metal washer, see Fig. 10.
For an assembly drawing with tapped holes see Fig. 11, with insert nuts see Fig. 12.

February 1979

3

MOUNTING
INSTRUcTIONS
TO-3

I

MOUNTING INSTRUCTIONS FOR UP TO 500 V INSULATION (continued)

,

CD M3

$

$

+i

I

+f

I

I
I

®®
• f

@ 56201d
f

--

~LW7////~

®

~

(j)

!

-+=

~

.+
lIjIl

+

®
@)

$

M3

------

I

I

I

=az::lj:::za'

®
(f)

JtL

.m.

Jt1

® 56201c

~/lIIZW~

7Z70383.i

+

+

i "" i

Figs 5 and 6. Insulated mounting (500 V) with 56201c and 56201d
Heatsink thickness: 1,5 to 2,5 mm for thick-base TO-3
2 to 2,5mm for thin-base TO-3
For legend see page 2.

5,O±O,1

-'I~I~

*tf

+

-----'--~t

4~-~$-~- =t'~9r'
.

7270377

Fig. 7. Hole pattern for 500 V
insulation, nut fastening

4

11

C:iJ6.5+~~I'"
1

,-.1

i.- 16,9±O,1-.1

-30,1±O,1-

.-.
120 0

I...

04±O,1

7Z70379

FiS"- 8.. Shape of hole for 500 V
insulation ,nut fastening

I

February 1979

_____J
CD

M3

(j)

1M3)

®

, ,

56261a

(j)or@*

(M4)

®

MOUNTING
INSTRUCTIONS
TO-3

a:::j::a

~

1!rI

1!r

®~

56261a
or
56201j

+=-_-:l.-::.::x.,

drQ ~

Fig. 9 Insulated mounting
(500 V) with nuts.

G)

I

I

®

I

®IM3)
M3

I
'Wff~
I

222223
$
'+
,
+

rz

®
@)

I

56201d

+

2min

C$

, 3 min (56261al
.2 min (56201j)

7270385.2,*

For legend 'see page 2.

®(M3)

, I

(J)

(M3)

a::::j:::.:a

®

56261 a

CD M3

~
I

t

(J)or@*

I

(M4)

Fig. 10 Insulated mounting (500 V)
with tapped holes or insert nuts.

drQ

®
®

I

56201d

I

+
+

1tr

oL

--®
6

56261a
or
56201j 4 -

(])

I

~ W~
,

@+@

+ . '

@+@
* Thickness approximately 0,6 mm,
outer diameter 7,5 mm.

~5~
+

,

t

~~6

IrFebru.~
7Z7038S.2

,

+

1979

5

MOUNTING
INSTRUCTIONS·
TO-3

l
.

'-~-----------------------------------------------MOUNTING INSTRUCTIONS FOR UP TO 500 V INSULATION (continued)
9,

1M3)

56261a
or 56201j

Q

+
-.

fZ)4±O,1

--

_06,5+8,2 --+-

7Z70387.2

Fig. 11 Assembly (partial) for Fig. 10-tapped holes.
Q minimum 2 mm for thick-base TO-3 (with 56261a).
Q minimum 3 mm for thin-base TO-3 (with 56261a).
Q minimum 2 mm for thin-base TO-3 (with 56201j).
9 . 1M3)

I

~

56261a
or 56201j

-,0,6 min

t Q•
+

Fig. 12 Assembly (partial) for Fig. 10 - insert nuts and thick-base TOc3.
Q minimum 2 mm for thick-base TO-3 (with 56261a).
Q minimum 3 mm for thin-base TO-3 (with 56261a).
Q

minimum 2 mm for thin-base TO-3 (with 56201j).

* Thickness approximately 0,6 mm, outer diameter 7,5 mm.
6

Fooru.~ 19791 (

_ _ _J

MOUNTING
INSTRUCTIONS
TO-3

Legend for all figures:
(1 )
(2)
(2) (3)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11 )
(12)

screw.
TO-3 thick base (3,15 mm).
TO-3 thick or thin base.
TO-3 thin base (1,6 mm).
mica.
heatsink.
insulating bush.
metal washer.
soldering tag.
lock washer.
nut.
tapped hole.
insert nut.

Dimensions in mm
MOUNT I NG I NSTRUCTIONS FOR 500 V TO 2000 V INSU LATION (Thick-base TO-3 only)
Using mounting support 56352 and mica washer 56339
The transistorshould be mounted with M3 screws. Forcomponent arrangement see Figs 13 and 14.
For hole pattern see Fig. 15. Thickness of heatsink 2,5 mm to 3 mm.

--

February 1979

7

MOUNTING
INSTRUCTIONS
TO-3

l
'-----~-------------------------------------

MOUNTING INSTRUCTIONS FOR 500 V TO 2000 V INSULATION (continued)

c$

+

-. @

c$

+
I

56339

®
__

56352

(j)

®
(j)

®
@M3

__ Figs 13 and 14 Insulated mounting (500 V - 2000 V, thick-base TO-3) with mica 56339 and mounting
support 56352.
For legend see page 2 or 7.

~w~

,

.

' -'f" -------'-,-----:

7, 5 ±n,'

~

ID, --,-.
4+. '.
-$---.~+-------,,----!

.0,+.0"

i-16,9±O,1_j
-30,1±O,1-

?Z70378

Fig. 15 Hole pattern for Figs 13 and 14.

8

February 1979

r

ACCESSORIES

---

j

ACCESSORIES

---------------------------------------------------TYPE NUMBER SURVEY ACCESSORIES

type number

description

envelope

56201c

insulati'lg bushes (up to 500 V)

TO-3

56201d

mica washer (up to 500 V)

TO-3

56201j

insulating bushes (up to 500 V)

TO-3

56261a

insulating bushes (up to 500 V)

TO-3

56326

metal washer

SOT-32

56333

metal washer
mica washer
insulating bush

SOT-32

56339

mica washer (500 to 2000 V)

TO-3

56352

insulating mounting support

56353

spring clip

SOT-32/S0T-82

56354

mica insulator

SOT-32/S0T -82

56359b

mica washer (up to 800 V)

TO-220

56359c

insulating bush (up to 800 V)

TO-220

56359d

rectangular insulating washer (up to 1000 V)

TO-220

56360a

rectangular washer (brass)

TO-220

56363

spring clip (direct mounting)

TO-220

56364

spring clip (insulated mounting)

TO-220

56367

alumina insulator

TO-220

56368a

mica insulator

SOT-93

56368b

insulating bush

SOT-93

56369

mica insulator (up to 2 kV)

TO-220

56378

mica insulator

SOT-93

56379

spring clip

SOT-93

I(

Mareh 1979

--

~, ~s_e_le_~_iO_n_g_U_id_e

ACCESSORIES

______

___________________________________

CLIP MOUNTING
direct mounting

envelope

insulated mounting

clip

mica

clip

TO-126
(SOT-32)

56353

56354

56353

SOT-82

56353

56354

56353

TO-220
(SOT-78)

56363

56369

56364

SOT-93

56379

56378

56379

SCREW MOUNTING
direct mounting
envelope
metal washer
TO-126
(SOT-32)
TO-220
(SOT-78)
up to 800 V

mounting
material

56326

M3

56360a

M3

·up to 1000 V
SOT-93

-

M4

TO-3
(SOT-3)
up to 500 V

-

M4

up to 2000 V

insulated mounting
mica wast1er

2

1r

1979
Mareh

metal washer

56333

mounting
material
M2,5

56359b

56359c

56360a

M3

56359b

56359d

56360a

M3

56368a

56368b

M3

56201d

56201c;
56201jor
56261a

M3

56339

56352

M3

The accessories mentioned can be supplied on request.
See also chapter Mounting Instructions.

insul. bush

J

ACCESSORIES

------------------------~-----------------------

56201c

2 INSULATING BUSHES

Two insulating bushes for up to 500 V insulation of TO-3 envelopes.
MECHANICAL DATA

Dimensions in mm

--I

03,8

1---

Jd:+
1_ ,5_1
07

7Z75445

TEMPERATURE
Maximum permissible temperature

T max

56201d

150 °C

MICA WASHER

Mica washer for up to 500 V insulation of TO-3 envelopes.
MECHANICAL DATA

••

43--~------

4

..

30,1

- - - - - - 1...1

March 1979

ACCESSORIES

l________

56201j

2 INSULA liNG BUSHES

Two insulating bushes for up to 500 V insulation of TO-3 envelopes.
MECHANICAL DATA

-,,03,1

r

Dimensions in mm

n----'

~~s
7Z75448

TEMPERATURE
Maximum permissible temperature

56261a

T max

150 °C

2 INSULAliNG BUSHES

Two insulating bushes for up to 500 V insulation of TO-3 envelopes.
MECHANICAL DATA

Dimensions in mm

-'1

03,8

1'-

-'1 1-03 1
,

gsJsilf

---

1-- 06,5-'

7Z7S449

TEMPERATURE
Maximum permissible temperature

·2

Ma~h 19791 (

T max

150 °C

Jl

ACCESSORIES

---------------------------------------------------56326

WASHER

Flat metal washer for direct mounting of envelope SOT-32 (TO-126).
MECHANICAL DATA

Dimensions in mm

..

E01

-.13,1

VA

+1,6

L7Z65!7

56333
Mounting accessories for insulated mounting of envelope SOT-32 (TO-126); the set consists of a metal
washer, a mica washer and an insulating bush.
MECHANICAL DATA

Dimensions in mm

-+

D~8
1%1 . 1%1

g
o

,
2,1

--1 2•61.- 1Z65~'

Metal washer.

+

2,6

__ 2,95

Mica washer.

1.-

1Z65399

Insulating bush.

TEMPERATURE
Maximum permissible temperature

Tmax

= 150 °C

March 1979

3

l

, ACCESSORIES

-----------------------------------------------

56339

MICA WASHER

Mica washer for 500 to 2000
mounting support 56352.

V insulation of TO-3 envelopes, for which

it should be combined with

MECHANICAL DATA

Dimensions in mm

..

.

46
30,1

•

•

-16,9--+-

t

+

1

4,3 32

10;9

+

+

j
--2.7Z70265,'

--

4

March 1979

r

!

0,075± 0,025

J[

ACCESSORIES

------------------------------------------------56352

MOUNTING SUPPORT

Mounting support for 500 to 2000 V insulation of thick-base TO-3 envelopes, for which it should be
combined with mica washer 56339.

MECHANICAL DATA

Dimensions in mm

-+-1 1- 4 ,85
il Ii 3,8
---'111

Iii 3,1

,

'--~~~I----~+r------£=l~I~1
~--__=_~
__~r-~t
~L'+-H~-;l=f-J-'----'-HI----I-L---.,
t
1 I

----

__ I ' I....

3

•

t

1,5

2,3

5,3

t

~4,85

--2 ....

1

t

21

10,9

•

J
..

..

.'

______
.1

7270266

TEMPERATURE
Maximum permissible temperature

Tmax

125 oC

March 1979

5

ACCESSORIES

l--.........-________

56353

CLIP
for SOT -32 and SOT -82 envelopes

MECHAN ICAl DATA

Dimensions inmm

t
4,83

+

---tt-~-~=-

..!.-.

2,03

t

4,45

•t

t

...13,18 1.-

-- 2,28 1. .1
. - - - - - 11,68 ---".1

7Z69101

Spring clip suitable for heatsink of 1,5 to 2 mm.
See mounting instructions SOT-32/S0T-82 envelopes.

56354

MICA INSULATOR
for SOT ";32 and SOT -82 envelopes

MECHANICAL DATA

Dimensions in mm

1~10---"1

I

14

1
7Z69103

See also chapter Mounting Instructions.

6

March 1979

r

J

ACCESSORIES

-------------------------------------------56359b

MICA WASHER
for TO-220 envelopes (up to 800 V)

...

MECHANICAL DATA

Dimensions in mm

....

3,6± 0,05

.

6:",---,-------

1 ~--o/19

j
7Z73142.1

56359c

1_ _1
15

INSULATING BUSH
for TO-220 envelopes (up to 800 V)

MECHANICAL DATA

Dimensions in mm

,

JJ: 2;7

TEMPERATURE
Maximum permissible
temperature

T max

=

--I 1__

150 °C

03,1

7Z73143.1

56359d

RECTANGULAR INSULATING WASHER
for TO-220 envelopes (up to 1000 V)

,_5,8_,

MECHANICAL DATA

1f

Dimensions in mm

@]
03,5

TEMPERATURE
Maximum permissible
temperature

t
T max = 150 oC

3,8

-Imaxl-

n

+
2,6

·-_1 1_ +
03,1

7Z7392.0.1

March 1979

7

ACCESSORIES

56360a

RECTANGULAR WASHER
for direct and insulated mounting of TO-220 envelopes

,-

MECHANICAL DATA

Dimensions in mm

-- 3,1 ..

material: brass.

10

~-~

1_ 5 ,8 ..1

56363

7Z7314.1

SPRING CLIP
for direct mounting of TO-220 envelopes

MECHANICAL DATA

material: steel, zinc-chromate passivated.

-,

Dimensions in mm

7,2

t
t

4,8

-5:



. ..---.
12,0 -----.~~I

56364

•

. .......1318

7Z75441

'

1--

SPRING CLIP

~.

.for insulated mounting of TO-220 envelopes
MECHANICAL DATA

Dimensions in mm

material: steel, sinc-chromate passivated.

-t
6,9

~

to be used in
conjunction with

t
4,8

Ir

r

I------17,0------t.~,--7-Z75442

... 2,3 ,......

'---8--Ma~-h19...........
7~

56367 or 56369.

.......13,18

L

j

ACCESSORIES

--------------------------------------------------'
56367

ALUMINA INSULATOR
for insulating mounting of TO-220 envelopes

MECHANICAL DATA

Dimensions in mm

0,25

-'11--

I
I

alumina insulator (up to 2 kV)
material: 96-alumina. *

21

7Z75440

* Because alumina is brittle, extreme care must be taken when mounting devices not to crack the
alumina, particularly when used without heatsink compound.

MICA INSULATOR

56368a

for insulated screw mounting of SOT -93 envelopes
MECHANICAL DATA

Dimensions in mm

4±0,05

t

r

r

28

~iJ
-25--.1
1."--11

+0,05
7Z75330

t±O,01

March 1979

9

l______- - -

ACCESSORIES

INSULATING· BUSH

56368b

for insulated screw mounting of SOT-93 envelopes

MECHANICAL DATA

Dimensions in mm

-'1

flJ3,85
±0,05

TEMPERATURE
T max = 150 °C

Maximum permissible temperature

56369

MICA INSULATOR

for insulated clip mounting of TO-220 envelopes (up to 2 kV)
MECHANICAL DATA

Dimensions in mm

----

1~16~1

0,10
0,05

--11'-

I

21

j
7Z75439

10

March 1979

r

Jl

ACCESSORIES

---------------------------------------------56378

MICA INSULATOR
for SOT-93 clip mounting

MECHANICAL DATA

Dimensions in mm

O,05±O,01

-'II~

1

28

7Z75B51

SPRING CLIP

56379

for direct and insu lated mounting of SOT -93 envelopes
MECHANICAL DATA

Dimensions in mm

t

8

~

.-----------30-----------.

7Z75850.1

material: CrNi steel NLN-939; thickness 0,4 ± 0,04.

March 1979

11

HYBRID MODULES

DEVELOPMENT SAMPLE 'DATA
OM931
OM961

This information is derived from development samples made available
for evaluation. It does not form part of our data handbook system and
does not necessarily imply that the device will go into production

HYBRID INTEGRATED CIRCUIT HI-FI AUDIO POWER AMPLIFIERS

The OM931 and OM961 are thin-film hybrid integrated circuit hi-fi audio amplifiers for sinusoidal
output power up to 60 W. The modules offer maximum design possibilities regarding amplification,
ripple rejection, stability for complex loads, etc. The amplifiers have built-in short-circuit protection
(SOAR protected), and are especially designed for low transient and harmonic distortion. All built-in
resistors are dynamically adjusted for optimum performance over a wide temperature range.
QUICK REFERENCE DATA
Sinusoidal output power for dtot
f = 20 Hz to 20 kHz
RL =4n
RL = 8n

> 30 W at ± 23 V > 60 W at ± 31 V
> 30 W at ± 26 V > 60 W at ± 35 V

Total harmonic distortion
Po = 1 W; f = 1 kHz

I

OM961

OM931

< 0,2 %

dtot

0,02 %

0,02

typo

-92--"1

-·~

~,-------

82

- - - - - - - 4..~1

t

4,5-

-t 15,5,

-t•
17

9
2,54--1

i_

t

_11--0,9

5,75-7Z75804

-

I-I'

--0,5

Fig. 1 Outline; dimensions in mm.

I

March 1979

---

OM931
OM961

l
~------------------------

,---------------,

8

----,

---------~

:--------,

1

I

I

I

I

1

19
I

I

I
I
I
_--.J I

I

1

--I

I

I

I

I

1

I

I

1

1

I

I

I

I

I
I12

1

I

1

3
I

I
I
1

.

I

4

---

L
I

~---------..:

I

I

-15----' ----,------------------7i7580j.~
Fig.2 Circuit diagram.

2

~roh 19791 (

OM931
OM961

Hybrid audio power amplifiers

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Symmetrical supply voltage

OM931

Vs

max.

±40 V

OM961

Vs

max.

±45 V

Operating mounting base temperature

T mb

Storage temperature

T stg

CHARACTERISTICS

max.

95 °C

-30 to +100 °C

l________

OM931
OM961

APPLICATION INFORMATION

C3
R4

+

R5

to other
channel

7Z75806

Fig. 3 Example of an amplifier with external components.
List of components:
Rl = 10
R2 =
4,7
R3 =300
R4 = 680
R5 = 10
R6 = 22
R7 =
2,2
R8 = 10

4

kn (0,25 W)
kn (0,25 W)

n
n

(0,25 W)
(0,25 W)

kn (0,25 W)

n
n
n

(0,5 W)
(0,25 W)

(0,5 W)

August 1978

(

Cl = 47 IlF
C2 = 270 pF
C3 = 120 pF
C4 = 100 IlF
C5 = 470 IlF
C6 = 100 nF
C7 = lOIlF
C8 = lOIlF
C9 =
1 IlF

(10V)
(10%)
(10%)

(63 V)
(63 V)
(63 V) .

L = 41lH
RL = 4 or 8

n

OM931
OM961

Hybrid audio power amplifiers

MOUNTING RECOMMENDATIONS
The modules are delivered with leads in 51 L (single in-line) but leads may also be bent to 01 L (dual inline).

Fig. 4:
a. Single in-line (51 L) leads.
b. Dual in-line (01 L) leads.

7Z75803

a

b

Thermal resistance values from
heatsink to ambient for various
heatsink lengths (a):

power modu Ie

Rth h-a = 1,4 oe/W: a = 50 mm
Rth h-a = 1,0 oe/W: a = 75 mm
Rth h-a = 0,8 °e/w: a = 90 mm

printed-circuit
board

heatsink
side view

,.......- - - - - - - 190,5 - - - - - - - - l...1
-,

r

50

L( . ., . ., . . . .,

I.-

I.-

I.-

I.-

I.-

......

I.-

I.-

I.-

I.-

....,

......

~5

-ri- power module

heatSlnk
(e.g. series KL-139
Seifert Electronic)

t

-

- r-- printed-circuit
board

top view

7Z75805

Fig. 5 Example of a heatsink to be used for the module; dimensions in mm.

I(

August 1978

5

OM931
OM961

l_____- - -

PRINTED-CIRCUIT BOARDS for OM931 and OM961

7Z75799

Fig. 6 Component side of SI L-version showing component layout.

---

~

7Z75800

Fig. 7 Component side of DI L-version; for co\nponent layout see Fig. 6.

6

Au~st 19781 (

OM931
OM961

Hybrid audio power amplifiers

Dimensions in mm

I. . .~---------- 83 - - - - - - - - - - - -

51

7275801

Fig.8 Track side of 51 L-version.

------'-------83-----------

.

51

7Z75802

Fig. 9 Track side of 01 L-version.

August 1978

7

I

LOW-FREQUENCY POWER TRANSISTORS

---

-----

-

TYPE NUMBER SURVEY
SELECTION GUIDE
GENERAL

TRANSISTOR DATA

MOUNTING INSTRUCTIONS

ACCESSORIES

HYBRID MODULES

Argentina: FAPESA l.y.C., Av. Crovara 2550, Tablada, Provo de BUENOS AIRES, Tel. 652-743817478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.w., Tel. 427 08 88.
Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-ll0l WIEN, Tel. 62 91 11.
Belgium: M.B.L.E., 80, rue des Deux Gares, B-l070 BRUXELLES, Tel. 5230000.
Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Fari Alima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B lM8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.
Colombia: SADAPES.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KC2lBENHAVN NV., Tel. (01) 691622.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 1 7271.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQijE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915311.
Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. NT 24 51 21.
India: PEICO ELECTRONICS & ELECTRICALS LTD., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457311-5.
Indonesia: P.T. PHILlPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, JI. Jen. Gatot Subroto, P.O. Box 220, JAKARTA, Tel. 44163.
Ireland: PHILIPS ELECTRICAL (IRELAND) L TD.,.Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.pA, Sezione Elcoma, Piazza IV Novembre 3,1-20124 MILANO, Tel. 2-6994.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN, LTD, TOKYO, Tel. (03)230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 794-4202.
Malaysia: PHILIPS MALAYSIA SON. BERHAD, Lot 2, Jalan 222, Section 14, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 77 44 11.
Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 533-11-80.
Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525,5600 PO EINDHOVEN, Tel. (040) 79 33 33.
New Zealand: PHILIPS ELECTRICAL IND. LTD., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867119.
Norway: NORSK A/S PHILIPS, Electronica, S0rkedalsveien 6, OSLO 3, Tel. 463890.
Peru: CADESA, Rocca de Vergallo 247, LIMA 17, Tel. 628599.
Philippines: PHILIPS INDUSTRIAL DEV.INC., 2246Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, TeL 86-89-51 to 59.
Portugal: PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LlSBOA 1, Tel. 6831 21.
Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., P.O.B. 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 538811.
South Africa: EDAC (Pty.) Ltd., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9.
Spain: COPRESA SA, Balmes 22, BARCELONA 7, T~f. JOj6312.
Sweden: A.B. ELCOMA, Lidingovagen 50, S-115 84 STOCKHOLM 27, Tel. 08/679780.
Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZORICH, Tel. 01/432211.
Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.
Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9.
Turkey: TORK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 5910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WCl E 7HD, Tel. 01-5806633.
United States: (Active deviCeS & Materials)AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.
(Passive devices) MEPCO/ELECTRA ING., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.
Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 94321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, CARACAS, Tel. 360511.

A13

, 1979 NY Philips· Gloeilampenfabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does
the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced

iri any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands

9398 106 40011



Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:31 16:14:49-08:00
Modify Date                     : 2017:07:31 19:19-07:00
Metadata Date                   : 2017:07:31 19:19-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:970e313e-222c-4745-acca-d0344a112e92
Instance ID                     : uuid:d2385478-6eb9-ca4d-ae66-3ece8cb3e51b
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 739
EXIF Metadata provided by EXIF.tools

Navigation menu