1980_National_Memory_Data_Book 1980 National Memory Data Book
User Manual: 1980_National_Memory_Data_Book
Open the PDF directly: View PDF .
Page Count: 466
Download | |
Open PDF In Browser | View PDF |
MEMORY DATABOOK NMOS RAMs CMOS RAMs Bipolar RAMs Magnetic Bubble Memories MOS EPROMs Bipolar PROMs MOS ROMs Character Generators Memory Support Circuits Physical Dimensions National Semiconductor Corporation 2900SemiconductorDrive SantaClara,California95051 Tel: (408) 737-5000 TWX:(91 0) 339-9240 National does not assume any responslbllltv for use of any circuitry described. no circuli patent licenses are implied and National reserves the right at any lime without notice to change said circuitry President's Message Dear Customer: The exciting future of memory applications is limited only by our collective abilities to make use of the continuing stream of rapid technological advances. Annual consumption of semiconductor memory components has already surpassed a billion dollars per year and will soon cross the two billion dollar level. Years ago National established the reputation as a high volume supplier of high quality, cost-effective components forthe complete range of discretes, linears, optoelectronics, transducers, AID and DIA, hybrids, large scale integrated memory, microprocessor and logic arrays. We are pleased to continue our expansion of this broad product line to include the m/emories you will require in the future. National is leading the way to higher density memories and we are the innovators of "the system environment approach to memory component testing". * Our world-wide network of factory representatives, local stocking distributors, and field applications engineers is at your service to help meet your needs - just give any of them a call. We appreciate your interest in National's products and services, and look forward to supplying your present and future . requirements. Charles E. Sporck President * Relerto the following page. 2 3:3: MST™ Program CDtb The System Environment Approach to Memory Component Testing o :s: ~. 3~ "tJ Oa Oce 3~ "'C £»3 o ::::S-l CD::::T aCD The Memory System Test (MST) program is designed to provide our customers with mainframe· memory components that have already been through the test/temperature processing that the usernormally implements at the board level. • • • • This program assures memory components of sig_nificantly better quality and higher reliability than that achieved by the usual approach to memory component testing. MST processed components have experienced board level environmental testing over the temperature range of 25°C "to 70°C.The parts are tested 4 separate times with 4 different test set-ups and 3 kinds of testers (this includes the final QA electrical testing) which also contributes to the increased quality. • The result is you get higher quality ~ t lower cost. Present Capability The MST process can be specified for all of the mainframe dynamic RAMs manufactured by National. Tooling exists for the memory components listed here at the time of this printing. Specifying MST processing offers you the following: • • • • Eliminates the need for additional burn-in and testing at independent test laboratories Reduces board rework Reduces field failures and equipment downtime Provides soft error detection during component processing Increases reliability . Part No. Provides parts that have already operated in a system environment within system margins at maximum operating temperature Simplifies system checkout and shortens card burn-in/test Eliminates inventory throughput time at incoming test or at independent test laboratories Eliminates inventory cost and throughput time at board test and reduces inventory cost and throughput time at system test MM5298 MM5290 NMC5295 NMC4164 Organization 8kx1 16kx1 16k x 1 (5V only part) 64k x 1 (5V only part) How to specify MST Contact your local NSC Representative or Sales Office for a full briefing on your options. 3 ~!f tntn ,. ,. --CD ~3 m ::::s s_ a::::s 3 CD ::::s ,. » "'C "'C a £» n ::::T ,. o Table of Contents Edge Index by Product,Family. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . President's Message....................................................... MST™ Program The System Environment Approach to Memory Component Testing ........................ '. . . . . . . . . . . .. . . . . . . . . . . Alpha-Numerical Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Terms .............................. '. . . . . . . . . . . . . . . . . . . . . . . . . . . Proposed Standard Terminology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOS RAM Selection Guide ........................ , . . . . . . . . . . . . . . . . . . . . . . . . . CMOS RAM Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOS EPROM Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bipolar PROM Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOS ROM Selection Guide ................. '. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOS RAM Cross Reference Guige. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , CMOS RAM Cross Reference Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MOS EPROM Cross Reference Guide ........................................ , . Bipolar PROM Cross Reference Guide ........................... : . . . . . . . . . . . . . 1 2 3 8 13 14 15 16 17 18 19 20 20 21 21 Section 1-NMOS RAMs Static RAMs MM2102A, MM2102AL Family 1024-Bit (1024 x 1) Static RAMs. . . . . . . . . . . . . . . . . . . .. MM2114, MM2114L Family 4096-Bit (1024 X 4) Static RAMs. . . . . . . . . . . . . . . . . . . . . . .. MM2147/MM2147L Family 4096 x 1 Static RAMs ............................... MM5257, MM5257L Family 4096-Bit(4096 x 1) Static RAMs ....................... NMC2114A, NMC2114AP 4096-Bit (1024 x 4) Static RAMs ........................ N MC2141, N MC5257 A 4096-Bit (4096 x 1) Static RAMs. . . . . . . . . . . . . . . . . . . . . . . . . .. NMC2142A, NMC2142AP 4096-Bit (1024 x 4) Static RAMs .............. " ........ NMC2148/NMC214aL 1024 x 4 Static RAM .................................... 1-3 1-6 1-10 1-15 1-20 1-24 1-28 1-32 Pseudo-Static RAMs NMC4864 64k Pseudo-Static Byte-Wide RAM .................................. 1-35 NMC6132 32k Pseudo·Static NMOS RAM ..................................... 1-42 Dynamic RAMs MM4280 4096-Bit (4096 x 1) ExtendedTemperature Range Dynamic RAM ........... MM5280 4096-Bit (4096 x 1) Dynamic RAM ..................................... MM5280-5 4096-Bit (4096 x 1) Dynamic RAM ................................... MM5290 16,384-Bit (16,384 x 1) Dynamic RAM .................................. MM5298 8192-Bit (8192 x 1) Dynamic RAM ..................................... NMC4164 65,536-Bit (65,536 x 1) Dynamic RAM ................. _............... NMC529516,384-Bit (16,384 x 1) Dynamic RAM ................................. 1·45 1-49 1·53 1-55 1-61 1-67 1-77 Section 2-CMOS RAMs, MM54C89/MM74C89 64-Bit (16 x 4) TRI-STATE® RAM ............................. , MM54C200/MM74C200 256-Bit (256 x 1) TRI-STATE® RAM. . . . . . . . . . . . . . . . . . . . . . . . .. MM54C910/MM74C910 256-Bit (64 x 4) TRI-SJATE® RAM.... . . . . . . . . . . . . . . . . . . . . . .. MM54C920/MM74C920, MM54C921/MM74C921 1024-Bit (256 x 4) Static RAMs ........ , MM54C929/MM74C929, MM54C930/MM74C930 1024-Bit (1024 x 1) Static RAMs ....... MM54C989/MM74C989 64-Bit (16 x 4) TRI-STATE® RAM .................. ' .......... NMC6504 4096-Bit (4096 x 1) Static RAM ........................................ 4 2-1 2-5 2-8 2-12 2-19 2-26 2-30 Table of Contents (Continued) Section 2-CMOS RAMs NMC6508 NMC6514 NMC6518 N MC6551 NMC6552 (Continued) 1024·Bit (1024 X 1) Static RAM ........................................ 4096·Bit (1024 x 4) Static RAM ........................................ 1024·Bit (1024 x 1) Static RAM ........................................ 1024·Bit (256 x 4) Static RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1024·Bit (256 x 4) Static RAM ....................................... " 2·37 2·43 2·49 2·55 2·61 Section 3- Bipolar RAMs TTL DM7589IDM8589 64·Bit (16 x 4) RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM7599IDM8599 64·Bit (16 x 4) TRI·STATE® RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 3·3 3·6 Schottky DM85S68 16 x 4 Edge Triggered Registers .................................... 3·13 IDM29705/1DM29705A 16·Word by 4·Bit Two·Port RAM/Register File ............... 3·15 Eel DM10414, DM10414A 256 x 1 ECl Random Access Memory ...................... DM10415, DM10415A 1024 x 1 ECl Random Access Memory .................... DM10422 1024·Bit (256 x 4) ECl RAM ............................. '............ DM10470 4096·Bit (4096 x 1) ECl RAM ........................................ DM100414 256·Bit (256 x 1) ECl RAM ......................................... DM100415 1024 x 1 ECl RAM ............................................... DM100422 1024·Bit (256 x 4) ECl RAM .................................. " .... DM100470 4096·Bit (4096 x 1) ECl RAM ....................................... 3·23 3·28 3·33 3·34 3·35 3·36 3·37 3·38 Section 4- Magnetic Bubble Memories DS3615 Bubble Memory Function Driver. . . . . . . . . . . . . DS3616 Bubble Memory Coil Driver. . . . . . . . . . . . . . . . . DS3617 Bubble Memory Sense Amplifier. . . . . . . . . . . . . INS82851 Bubble Memory Controller. . . . . . . . . . . . . . . . N BM2256 Bubble Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .. 4·1 4·2 4·3 4·4 4·5 MM1702A 2048·Bit (256 x 8) UV Erasable PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. MM2708, MM2708·1 8192·Bit (1024 x 8) UV Erasable PROMs. . . . . . . . . . . . . . . . . . . . . . .. MM2716 16,384·Bit (2048 x 8) UV Erasable PROM ................................. M M2716E 16,384·Bit (2048 x 8) UV Erasable PROM Extended Temperature Range. . . . .. MM2716M 16,384·Bit (2048 x 8) UV Erasable PROM Military Temperature Range. " .... MM2758 8192·Bit (1024 x 8) UV Erasable PROM .................................. MM4203/MM5203 2048·Bit(256 x 8 or 512 x 4) UV Erasable PROM ................... MM4204/MM5204 4096·Bit (512 x 8) UV Erasable PROM ............................ MM5204·1 4096·Bit (512 x 8) UV Erasable PROM .................................. NMC2532 32k·Bit (4k x 8) UV Erasable PROM .................... , .............. , N MC2564 64k·Bit (8k x 8) UV Erasable PROM ....... , , ................... , . , . . . .. NMC27C16 16,384·Bit (2048 x 8) UV Erasable CMOS PROM ........................ NMC2724 16k·Bit (2k x 8) UV Erasable PROM .................................... NMC2732 32k·Bit (4k x 8) UV Erasable PROM ................................ , ... 5·1 5·7 5·12 5·18 5·24 5·30 5·36 5·41 5·46 5·49 5·54 5·55 5·61 5·66 Section 5-MOS EPROMs 5 Table of Contents (Continued) Section 6- Bipolar PROMs schottky DM54S188/DM74S188 256-Bit (32 x 8) Open-Collector PROM. . . . . . . . . . . . . . .. . . . . .. DM54S287/DM74S287 1024·Bit (256 x 4) TRI·STATE® PROM .................... " DM54S288/DM74S288 256·Bit (32 x 8) TRI·STATE® PROM. . . . . . . . . . . . . . . . .. . . . . .. DM54S387/DM74S3871024·Bit (256 x 4) Open·Coliector PROM .................. " DM54S472/DM74S472 4096·Bit (512 x 8) TRI·STATE® PROM ............. .' . . . . . . .. DM54S473/DM74S473 4096·Bit (512 x 8) Open-Collector PROM .................. " DM54S474/DM74S474 4096·Bit (512 x 8) TRI·STATE® PROM ...................... DM54S475IDM74S475 4096·Bit (512 x 8) Open·Coliector PROM .................. " DM54S570/DM74S570 2048·Bit (512 x 4) Open·Collector PROM .................... DM54S571/DM74S571 2048·Bit (512 x 4) TRI·STATE® PROM ..................... " DM54S572IDM74S572 4096·Bit (1024 x 4) Open·Collector PROM ................... DM54S573IDM74S573 4096·Bit (1024 x 4) TRI·STATE® PROM ................... " DM77S1801DM87S180, DM77S181/DM87S181 1024 x 8·Bit TTL PROM .............. DM77S184/DM87S184 8192·Bit (2048 x 4) Open·Collector PROM ................ " DM77S185/DM87S185 8192·Bit (2048 x 4) TRI·STATE® PROM ................... " DM77S188/DM87S188, DM77S288/DM87S288 32 x 8·Bit TTL PROM .............. " DM77S190/DM87S190, DM77S191/DM87S191 2048 x 8·Bit TTL PROM ............ " Schottky PROM Programming Procedure ................................... " 6-3 6·5 6·3 6·5 6·8 6·8 6·10 6·10 6·13 6·13 6-16 6·16 6·18 6·20 6-20 6-22 6·24 6·26 Eel DM10416 256 x 4·Bit ECL PROM ........................................... " 6-29 DM100416 256 x 4·Bit ECL PROM ............................................ 6-30 Section 7-MOS ROMs MM5213 2048·Bit (256 x 8 or 512 x 4) ROM ..................................... " MM5214 4096·Bit (512 x 8) ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM5220 1024·Bit (128 x 8 or 256 x 4) ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM52211024·Bit (128 x 8 or 256 x 4) ROM ..................................... " M M5230 2048·Bit (256 x 8 or 512. x 4) ROM .. :. . . . .. . . . .. . . .. .. . . .. . . . . . . .. . . .. . .. MM52312048·Bit (256 x 8 or 512 x 4) ROM ....................................... MM5232 4096·Bit (512 x 8 or 1024 x 4) ROM .................................... " MM5240 2560·Bit Static Character Generator .................................... MM5241 3072·Bit (64 x 6 x 8) ROM ............................................. MM52116 (2316E) 16,384·Bit Read Only Memory ................................. " MM52132 32,768·Bit (4096 x 8) MAXI·ROM™ ..................................... MM52164 65,536·Bit (8192" x 8) MAXI.ROM™ .................................... " MM52264 MAXI~ROMTM 65,536·Bit Clocked Read Only Memory. . . . . . . . . . . . . . . . . . . . .. 7·1 7·3 7·5 7·9 7·13 7·17 7·21 7·24 7·27 7·30 7·33 7·36 7·39 Section 8-Character Generators Bipolar DM8678 Bipolar Character Generator ...................................... " 8·3 DM76S64IDM86S64 Bipolar Character Generator ............................... 8·15 DM76S128/DM86S128 Bipolar Character Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8·26 MOS MM5240AA, MM5240AE, MM5241ABL American and European Character Fonts ... " 8-39 MM52116FDW, MM52116FDX Character Generators .......' .... '." .............. '. 8·43 6 Table of Contents (Continued) Section 9- Memory Support Circuits Memory Support Circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Memory Support Circuits Selection Guide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. CD4518BM/CD4518BC, CD4520BM/CD4520BC Dual Synchronous Up Counters. . . . . . .. DM7555IDM8555, DM7556/DM8556 TRI·STATE® Programmable Decade/Binary Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM54LS373/DM74LS373, DM54LS374IDM74LS374 Octal D·Type Transparent Latches and Edge·Triggered Flip·Flops .................................... , ...... : .. DM54S240/DM 74S240, DM 54S241 IDM74S241 , DM54S940/DM74S940, DM54S941IDM74S941 Octal TRI·STATE® Buffers/Line Drivers/Line Receivers.. . . . .. DP7303IDP8303 8·Bit TRI·STATE® Bidirectional Transceiver (Inverting) ............. " DP7304B/DP8304B 8·Bit TRI·STATE® Bidirectional Transceiver (Non·lnverting) ........ DP7307IDP8307 8·Bit TRI·STATE® Bidirectional Transceiver (Inverting) ..... , . . . . . . . .. DP7308IDP8308 8·Bit TRI·STATE® Bidirectional Transceiver (Non·lnverting) ........... DP8212, DP8212M 8·Bit Input/Output Port. ................ ' ...................... DP8216, DP8216M,DP8226, DP8226M 4·Bit Bidirectional Bus Transceivers .. , ......... DP8350 Series Programmable CRT Controllers .................................. DS3622 Dual Fail·Safe TTL·MOS Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS1628IDS3628 Octal TRI·STATE® MaS Driver ................................. " DS 1631 IDS3631 , DS 1632/DS3632, DS 1633/DS3633, DS 1634IDS3634 CMOS Dual Peripheral Drivers .................................... , ......... DS3643, DS3673 Decoded Quad MOS Clock Drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS1644IDS3644 Quad TTL·MOS Clock Drivers ................................... DS1645IDS3645 Hex TRI·STATE® TTL·MOS Latches/Drivers ........................ DS1647/DS3647 Quad TRI·STATE® MaS Memory I/O Registers ..................... DS1648IDS3648 TRI·STATE® MaS MultiplexerslDrivers ............................ DS1649/DS3649 Hex TRI·STATE® TTL·MOS Drivers ............................. :. DS1674IDS3674 Quad TTL·MOS Clock Driver. ................................... DS1675IDS3675 Hex TRI·STATE® TTL·MOS Latches/Drivers ........................ DS1677/DS3677 Quad TRI·STATE® MOS Memory I/O Registers. . . . . . . . . . . . . . . . . . . .. DS1678IDS3678 TRI·STATE® MaS MultiplexerslDrivers ............................ DS1679/DS3679 Hex TRI·STATE® TTL·MOS Drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS16147IDS36147 Quad TRI·STATE® MOS Memory 110 Registers ................... DS16149IDS36149 Hex MaS Drivers ............................................ DS16177IDS36177 Quad TRI·STATE® MOS Memory I/O Registers ................... DS16179IDS36179 Hex MaS Drivers ................................... '......... DS75322 Dual TTL·MOS Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS8T26A, DS8T26AM, DS8T28, DS8T28M 4·Bit Bidirectional Bus Transceivers. . . . . . . .. MM54C240/MM74C240 (Inverting Outputs), MM54C244/MM74C244 (Non·lnverting Outputs) Octal Buffers and Line Drivers with TRI·STATE® Outputs ................ MM54C373/MM74C373 TRI·STATE® Octal D·Type Latch ........................... MM54C374/MM74C374 TRI·STATE® Octal D·Type Flip·Flop ......................... 9·1 9·4 9·5 9·6 9·7 9·8 9·9 9·10 9·11 9·12 9·13 9·14 9·15 9·25 9·16 9·17 9·23 9·18 9·19 9·20 9·21 9·22 9·18 9·19 9·20 9·21 9·22 9·20 9·24 9·20 9·24 9·25 9·26 9·27 9·28 9·28 Section 10-Physical Dimensions Physical Dimensions ........................................................ 10·1 7 Alpha-Numerical Index CD4518BM Dual Synchronous Up Counter. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. CD4518BC Dual Synchronous Up Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. CD4520BM Dual Synchronous Up Counter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CD4520BC Dual Synchronous Up Counter ........... : . . . . . . . . . . . . . . . . . . . . . . . . . .. DM10414 256 x 1 ECl Random Access Memory .................................. DM10414A 256 x 1 ECl Random Access Memory ................................. DM10415 1024 x 1 ECl Random Access Memory ................................. DM10415A 1024 x 1 ECl Random Access Memory ................................ DM10416 256 x 4-Bit ECl PROM ............................................... DM10422 1024-Bit (256 x 4) ECl RAM ........................................... DM10470 4096-Bit (4096 x 1) ECl RAM .......................................... DM100414 256-Bit (256 x 1) ECl RAM ........................................... DM100415 1024 x 1 ECl RAM ................................................. DM100416 256 x 4-Bit ECl PROM .............................................. DM100422 1024-Bit (256 x 4) EC~ RAM ........... ~ .............................. DM100470 4096-Bit (4096 x 1) ECl RAM ......................................... DM54S188 256-Bit (32 x 8) Open-Collector PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM54lS373 Octal D-Type Transparent latches and Edge-Triggered Flip-Flops. . . . . . . .. DM54lS374 Octal D-Type Transparent latches and Edge-Triggered Flip-Flops. . . . . . . .. DM54S240 Octal TRI-STATE®· Buffer/Line Driver/Line Receiver. . . . . . . . . . . . . . . . . . . . .. DM54S241 Octal TRI-STATE® Buffer/Line Driver/Line Receiver. . . . . . . . . . . . . . . . . . . . .. DM54S287 1024-Bit (256 x 4) TRI-STATE® PROM. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. DM54S288 256-Bit (32 x 8) TRI-STATE® PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM54S387 1024-Bit (256 x 4) Open-Collector PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM54S472 4096-Bit(512 x 8) TRI-STATE® PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM54S473 4096-Bit (512 x 8) Open-Collector PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM54S474 4096-Bit (512 x 8) TRI-STATE® PROM ............ : ..................... DM54S475 4096-Bit (512 x 8) Open-Collector PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM54S570 2048-Bit (512 x 4) Open-Collector PROM ............................... DM54S571 2048-Bit (512 x 4) TRI-STATE® PROM .................................. DM54S572 4096-Bit (1024 x 4) Open-COllector PROM .............................. DM54S573 4096-Bit (1024 x 4) TRI-STATE® PROM ................................. DM54S940 Octal TRI-STATE® Buffer/Line Driver/Line Receiver. . . . . . . . . . . . . . . . . . . . .. DM54S941 Oc.tal TRI-STATE® Buffer/Line Driver/Line Receiver. . . . . . . . . . . . . . . . . . . . .. DM74S188 256-Bit (32 x 8) Open-Collector PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM74lS373 Octal D-Type Transparent latches and Edge-Triggered Flip·Flops. . . . . . . .. DM74lS374 Octal D-Type Transparent latches and Edge-Triggered Flip·Flops. . . . . . . .. DM74S240 Octal TRI·STATE® Buffer/Line Driver/Line Receiver. . . . . . . . . . . . .. . . . . . ... DM74S241 Octal TRI-STATE® Buffer/Line Driver/Line Receiver .................. '.' .. DM74S2871024·Bit (256 x 4) TRI·STATE® PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM74S288 256-Bit (32 x 8) TRI·STATE® PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM74S387 1024·Bit (256 x 4) Open·Collector PROM .............................. . DM74S472 4096-Bit (512 x 8) TRI-STATE® PROM ................................. . DM74S473 4096·Bit (512 x 8) Open-Collector PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM74S474 4096·Bit (512 x 8) TRI-STATE® PROM ............. : ................... . DM74S475 4096·Bit (512 x 8) Open·Collector PROM .............................. . DM74S570 2048·Bit (512 x 4) Open·Coliector PROM .............................. . DM74S571 2048·Bit (512 x 4) TRI·STATE® PROM ................................. . DM74S572 4096·Bit (1024 x 4) Open·Coliector PROM .............................. . 8 9-5 9-5 9-5 9-5 3-23 3-23 3-28 3-28 6-29 3-33 3-34 3-35 3-36 6-29 3-37 3-38 6-3 9-7 9-7 9-8 9-8 6-5 6-3 6-5 6-8 6-8 6-10 6-10 6-13 6-13 6-16 6-16 9-8 9-8 6-3 9·7 9·7 9-8 9·8 6-5 6·3 6·5 6·8" 6-8 6·10 6·10 6·13 6·13 6-16 Alpha-Numerical Index (Continued) DM74S573 4096-Bit (1024 X 4) TRI-STATE® PROM ................................ , DM74S940 Octal TRI-STATE® Buffer/Line Driver/Line Receiver. . . . . . . . . . . . . . . . . . . . .. DM74S941 Octal TRI-STATE® Buffer/Line Driver/Line Receiver. . . . . . . . . . . . . . . . . . . . .. DM7555 TRI-STATE® Programmable Decade/Binary Counter. . . . . . . . . . . . . . . . . . . . . .. DM7556 TRI-STATE® Programmable Decade/Binary Counter ...................... , DM7589 64-Bit (16 x 4) RAM .................................................. , DM7599 64-Bit (16 x 4) TRI-STATE® RAM ....................................... , DM76S64 Bipolar Character Generator ........................................ , DM76S128 Bipolar Character Generator ....................................... , DM77S180 1024 x 8-Bit TTL PROM ............................................. DM77S181 1024 x 8-Bit TTL PROM ............................................. DM77S184 8192-Bit (2048 x 4) Open-Collector PROM .............................. DM77S185 8192-Bit (2048 x 4)TRI-STATE® PROM ................................. DM77S188 32 x 8-Bit TTL PROM ............................................... DM77S190 2048 x 8-Bit TTL PROM ............................................ , DM77S191 2048 x 8-Bit TTL PROM ............................................ , DM77S288 32 x 8-Bit TTL PROM .............................................. , DM8555 TRI-STATE® Programmable Decade/Binary Counter. . . . . . . . . . . . . . . . . . . . . .. DM8556 TRI-STATE® Programmable Decade/Binary Counter. . . . . . . . . . . . . . . . . . . . . .. DM85S6816 x 4 Edge-Triggered Register ........................................ DM8589 64-Bit (16 x 4) RAM .................................................. , DM8599 64·Bit (16 x 4) TRI-STATE® RAM.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DM86S64 Bipolar Character Generator ........ , ............................... , DM8678 Bipolar Character Generator ......................................... , DM86S128 Bipolar Character Generator ....................................... , DM87S180 1024 x 8-Bit TIL PROM ............................................ , DM87S181 1024 x 8-Bit TIL PROM ................................... ; ......... DM87S184 8192-Bit (2048 x 4) Open-Collector PROM ............................. , DM87S185 8192-Bit (2048 x 4) TRI-STATE® PROM ................................. DM87S188 32 x 8-Bit TIL PROM .............................. '.' ............... DM87S190 2048 x 8-Bit TIL PROM ............................................. DM87S191 2048 x 8-Bit TIL PROM ............................................ , DM87S288 32 x 8-Bit TIL PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DP7303 8-Bit TRI-STATE® Bidirectional Transceiver (Inverting). . . . . . . . . . . . . . . . . . . . .. DP7304B 8-Bit TRI-STATE® Bidirectional Transceiver (Non-Inverting) ................ , DP7307 8-Bit TRI-STATE® Bidirectional Transceiver (Inverting) ..................... , DP7308 8-Bit TRI-STATE® Bidirectional Transceiver (Non-Inverting). . . . . . . . . . . . . . . . .. DP8212 8-Bit Input/Output Port. .......................................... , .... DP8212M 8-Bit Input/Output Port ............ : ............................ , ... , DP8216 4-Bit Bidirectional Bus Transceiver ..................................... , DP8216M 4-Bit Bidirectional Bus Transceiver ................................... , DP8226 4-Bit Bidirectional Bus Transceiver ................................. , ... , DP8226M 4-Bit Bidirectional Bus Transceiver ................................... , DP8303 8-Bit TRI-STATE® Bidirectional Transceiver (Inverting) ..................... , DP8304B 8-Bit TRI-STATE® Bidirectional Transceiver (Non-Inverting) ................ , DP8307 8-Bit TRI-STATE® Bidirectional Transceiver (Inverting). . . . . . . . . . . . . . . . . . . . .. DP8308 8-Bit TRI-STATE® Bidirectional Transceiver (Non-Inverting) ................. , DP8350 Series Programmable CRT Controllers .................................. DS8T26A 4-Bit Bidirectional Bus Transceiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 9 6-16 9-8 9-8 9-6 9-6 3-3 3-6 8-15 8-26 6-18 6-18 6-20 6-20 6-22 6-24 6-24 6-22 9-6 9-6 3-13 3-3 3-6 8-15 8-3 8-26 6-18 6-18 6-20 6-20 6-22 6-24 6-24 6-22 9-9 9-10 9-11 9-12 9-13 9-13 9-14 9-14 9-14 9-14 9-9 9-10 9-11 9-12 9-15 9-26 Alpha-Numerical Index (Continued) DS8T26AM 4·Bit Bidirectional Bus Transceiver ................................. " DS8T28 4·Bit Bidirectional Bus Transceiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS8T28M 4·Bit Bidirectional Bus Transceiver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS1628 Octal TRI·STATE® MOS Driver ........................................ " DS1631 CMOS Dual Peripheral Driver ...................... : ................. " DS1632 CMOS Dual Peripheral Driver ........................................ " DS1633 CMOS Dual Peripheral Driver .......................................... DS1634 CMOS Dual Peripheral Driver ........................................ " DS1644 Quad TTL·MOS Clock Driver ......................................... " DS1645 Hex TRI·STATE® TTL·MOS LatchlDriver .................................. DS1647 Quad TRI·STATE® MaS Memory 1/0 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS1648 TRI·STATE® MaS Multiplexer/Driver ............................ , ...... " DS1649 Hex TRI·STATE® TTL·MOS Driver ..................................... " DS1674 Quad TTL·MOS Clock Driver ........................................... DS1675 Hex TRI·STATE® TTL·MOS LatchlDriver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS1677 Quad TRI·STATE® MaS Memory 1/0 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS1678 TRI·STATE® MaS Multiplexer/Driver ................................... " DS1679 Hrx TRI·STATE® TTL·MOS Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS3615 Bubble Memory Function Driver ...................................... " DS3616 Bubble Memory Coil Driver ........................................... ~ DS3617 Bubble Memory Sense Amplifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS3622 Dual Fail·Safe TTL·MOS Driver ....................................... " DS3628 Octal TRI·STATE® MaS Driver ........................................ " DS3631 CMOS Dual Peripheral Driver ................... : .................... " DS3632 CMOS Dual Peripheral Driver; ......................................... DS3633 CMOS Dual Peripheral Driver ....................... .-.................. DS3634 CMOS Dual Peripheral Driver .......................................... DS3643 Decoded Quad MaS Clock Driver ..................................... " DS3644 Quad TTL·MOS Clock Driver ........................................... DS3645 Hex TRI·STATE® TTL·MOS LatchlDriver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS3647 Quad TRI·STATE® MOS Memory 1/0 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS3648 TRI·STATE® MaS MultiplexerlDriver .................................... DS3649 Hex TRI·STATE® TTL·MOS Driver ..................................... " DS3673 Decoded Quad MaS Clock Driver ...................................... " DS3674 Quad TTL·MOS Clock Driver. ........................................ " DS3675 Hex TRI·STATE® TTL·MOS LatchlDriver ................................ " DS3677 Quad TRI·STATE® MOS Memory 1/0 Register ........................... " DS3678 TRI·STATE® MaS MultiplexerlDriver .................................... DS3679 Hex TRI·STATE® TTL·MOS Driver ................................. '. . . . .. DS16147 QuadTRI·STATE® MaS Memory 1/0 Register. . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS16149 Hex MOS Driver ................................................... ~. 0816177 Quad TRI·STATE® MaS Memory 1/0 Register ..........-. . . . . . . . . . . . . . . . . .. DS16179 Hex MOS Driver. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. DS36147 Quad TRI·STATE® MaS Memory 1/0 Register. . . . . . . . . . . . . . . . . . . . . . . . . . .. DS36149 Hex MOS Driver ................................................... " DS36177 Quad TRI·STATE® MaS Memory 1/0 Register. . . . . . . . . . . . . . . . . . . . . . . . . . .. DS36179 Hex MOS Driver ................................................... " DS75322 Dual TTL·MOS Driver ...................... ; ....................... " IDM29705 16·Word by 4·Bit Two·Port RAM/Register File ......................... " 10 9·26 9·26 9·26 9·16 9·17 9·17 9·17 9·17 9·18 9·19 9·20 9~21 9·22 9·18 9·19 9·20 9·21 9·22 4·1 4·2 4·3 9·25 9·16 9·17 9·17 9·17 9·17 9·23 9·18 9·19 9·20 9·21 9·22 9·23 9·18. 9·19 9·20 9·21 9·22 9·20 9·24 9·20 9·24 9·20 9·24 9·20 9·24 9·25 3·15 Alpha-Numerical Index (Continued) IDM29705A 16·Word by 4·Bit Two·Port RAM/Register File .......................... INS82851 Bubble Memory Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM1702A 2048·Bit (256 x 8) UV Erasable PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM2102A Family 1024·Bit (1024 x 1) Static RAMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MM2102AL Family 1024·Bit (1024 x 1) Static RAMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM2114 Family 4096·Bit (1024 x 4) Static RAMs ......... ~ . . . . . . . . . . . . . . . . . . . . . . . . MM2114L Family 4096·Bit (1024 x 4) Static RAMs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM2147 Family 4096 x 1 Static RAMs: ......................................... MM2147L Family 4096 x 1 Static RAMs ......................................... MM2708 8192·Bit (1024 x 8) UV Erasable PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. MM2708·1 8192·Bit (1024 x 8) UV Erasable PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .. MM2716 16,384·Bit (2048 x 8) UV Erasable PROM ................................. MM2716E 16,384·Bit (2048 x 8) UV Erasable PROM Extended Temperature Range ...... MM2716M 16,384·Bit (2048 x 8) UV Erasable PROM Military Temperature Range ....... MM2758 8192·Bit (1024 x 8) UV Erasable PROM .................................. MM4203 2048·Bit (256 x 8 or 512 x 4) UV Erasable PROM ........................... M M4204 4096·Bit (512 x 8) UV Erasable PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM4280 4096·Bit (4096 x 1) Extended Temperature Range Dynamic RAM ............. MM5203 2048·Bit (256 x 8 or 512 x 4) UV Erasable PROM ........................... MM5204 4096·Bit (512 x 8) UV Erasable PROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM5204-1 4096·Bit (512 x 8) UV Erasable PROM .................................. MM5213 2048·Bit (256 x 8 or 512 x 4) ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM5214 4096-Bit (512 x 8) ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM5220 1024·Bit (128 x 8 or 256 x 4) ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM5221 1024-Bit (128 x 8 or 256 x 4) ROM ..................... '. . . . . . . . . . . . . . . . .. MM5230 2048·Bit (256 x 8 or 512 x 4) ROM ....................................... MM5231 2048·Bit (256 x 8 or 512 x 4) ROM ....................................... MM5232 4096·Bit (512 x 8 or 1024 x 4) ROM ...................................... MM5240 2560·Bit Static Character Generator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM5240AA American and European Character Fonts ............................. MM5240AE American and European Character Fonts. . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM5241 3072·Bit (64 x 6 x 8) ROM ............................................. MM5241ABL American and European Character Fonts. . . . . . . . . . . . . . . . . . . . . . . . . . .. MM5257 Family 4096·Bit (4096 x 1) Static RAMs .................................. MM5257L Family 4096·Bit (4096 x 1) Static RAMs ................................. MM5280 4096-Bit (4096 x 1) Dynamic RAM ....................................... MM5280·5 4096-Bit (4096 x 1) Dynamic RAM ..................................... MM5290 16,384·Bit (16,384 x 1) Dynamic RAM .................................... MM5298 8192-Bit (8192 x 1) Dynamic RAM ...................................... MM52116 (2316E) 16,384-Bit Read Only Memory .................................. MM52116FDW Character Generator............................................. MM52116FDX Character Generator.............................................. MM52132 32,768·Bit (4096 x 8) MAXI·ROM™ ...................................... MM52164 65,536·Bit (8192 x 8) MAXI·ROM™ ..................... ; ................ MM52264 MAXI-ROMTM 65,536·Bit Clocked Read Only Memory. . . . . . . . . . . . . . . . . . . .. M M54C89 64·Bit (16 x 4) TRI·STATE® RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 'MM54C200 256·Bit (256 x 1) TRI-STATE® RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM54C240 (Inverting Outputs) Octal Buffers and Line Drivers with TRI·STATE® Outputs .................... : . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 11 3·15 4·4 5·1 1·3 '1·3 1·6 1·6 1·10 1-10 5·7 5-7 5-12 5-18 5-24 5-30 5·36 5-41 1-45 5·36 5·41 5·46 7·1 7·3 7·5 7·9 7·13. 7·17 7·21 7·24 8·39 8·39 7·27 8·39 1·15 1·15 1·49 1·53 1·55 1·61 7·30 8·43 8·43 7-33 7·36 7·39 2·1 2·5 9-27 Alpha-Numerical Index (Continued) MM54C244 (Non·lnverting OutputS) Octal Buffers and Line Drivers with TRI·STATE® Outputs. . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. MM54C373 TRI·STATE® Octal D·Type Latch ...................................... MM54C374 TRI·STATE® Octal D·Type Flip·Flop ................................... MM54C910 256·Bit (64 x 4) TRI·STATE® RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. M M54C920 1024·Bit (256 x 4) Static RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM54C9211024·Bit (256 x 4) Static RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM54C929 1024·Bit (1024 x 1) Static RAM ....................................... MM54C930 1024·Bit (1024 x 1) Static RAM ....................................... MM54C989 64·Bit (16 x 4) TRI·STATE® RAM ... : .................... , ............. MM74C89 64·Bit (16 x 4) TRI·STATE® RAM ........................................ ~ MM74C200 256·Bit (256 x 1) TRI·STATE® RAM .............. : . . . . . . . . . . . . . . . . . . . .. MM74C240 (Inverting Outputs) Octal Buffers and Line Drivers with TRI·STATE® Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM74C244 (Non·lnverting Outputs) Octal Buffers and Line. Drivers with TRI·STATE® Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM74C373 TRI·STATE® Octal D·Type Latch ..................................... MM74C374 TRI·STATE® Octal D·Type Flip·Flop ................................... M M74C910 256·Bit (64 x 4) TRI·STATE® RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM74C920 1024·Bit (256 x 4) Static RAM ........................................ M M74C921 1024·Bit (256 x 4) Static RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. MM74C9291024·Bit (1024 x 1) Static RAM ....................................... MM74C930 1024·Bit (1024 x 1) Static RAM ....................................... MM74C989 64·Bit (16 x 4) TRI·STATE® RAM .... ~ ................................. NBM2256 Bubble Memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. NMC2114A 4096·Bit (1024 x 4) Static RAM .............. , ........................ NMC2114AP.4096·Bit (1024x4) Static RAM ..................................... NMC2141 4096·Bit (4096 x 1) Static RAM ........................................ NMC2142A 4096·Bit (1024 x 4) Static RAM ....................................... NMC2142AP 4096·Bit (1024 x 4) Static RAM ..................................... NMC21481024 x 4 Static RAM ................................................ NMC2148L 1024 x 4 Static RAM ............................................... NMC2532 32k·Bit (4k x 8) UV Erasable PROM .................................... NMC2564 64k·Bit (8k x 8) UV Erasable PROM .................................... N MC27C16 16,384·Bit (2048 x 8) UV Erasable CMOS PROM. . . . . . . . . . . . . . . . . . . . . . .. NMC2724 16k·Bit (2k x 8) UV Erasable PROM .................................... NMC2732 32k·Bit (4k x 8) UV Erasable PROM .................................... NMC4164 65,536·Bit (65,536 x 1) Dynamic RAM .................................. NMC4864 64k Pseudo·Static Byte·Wide RAM .................................... NMC5257A 4096·Bit(4096 x 1) Static RAM ...............•....................... NMC5295 16,384·Bit (16,384 x 1) Dynamic RAM ....... '........................... NMC6132 32k Pseudo·Static NMOS RAM .....................•................. NMC6504 4096·Bit (4096 x 1) Static RAM ........................................ NMC65081024·Bit (1024 x 1) Static RAM ........................................ NMC6514 4096·Bit (1024 x 4) Static RAM ........................................ NMC651.81024·Bit (1024 x 1) Static RAM ........................................ NMC6551 1024·Bit (256 x 4) Static RAM ..... : ................................... NMC6552 1024·Bit (256 x 4) Static RAM .............................. ~ .......... 12 9·27 9·28 9·28 2·8 2·12· 2~ 12 2·19 2·19 2·26 2·1 2·5· 9·27 9·27 9·28 9·28 2·8 2·12 2·12 2·19 2·19 2·26 4·5 1·20 1·20 1·24 1·28 1·28 1·32 1·32 5·49 5·54 5·55 5·61 5·66 1·67 1·35 1·24 1·77 1·42 2·30 2·37 2·43 2·49 2·55 2·61 Definition of Terms The following selection guides as well as the data sheets in this manual include products that represent the state-of-the-art design and processing of semiconductor memories. These devices had not been released to production at the time this book was printed. No orders can be placed for these devices without prior approval by National Semiconductor via your local National representative or distributor. These products are in various stages of design and/or pre-production. Samples may be available as you read this. Contact your local representative or distributor for up-to-date status on product availability. The individual data sheets show the product status at the time of printing. These classif~cation labels are defined as follows: Status Specifications Product Stage PREVIEW Formative or In Design This data sheet contains the design specifications for product development. Specifications may change in any manner without notice. ADVANCE INFORMATION Sampling or Pre-Production This data sheet contains advance information and specifications are subject to change without notice. PRELIMINARY First Production This data sheet contains preliminary data and supplementary data will be published at a later date. NSC reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. 13 Proposed Standard Terminology This databook includes a new set of symbols. This new format is a proposed industry standard for semiconductor memories. It is intended to clarify the symbols, abbreviations and definitions, and to make all memory data sheets consistent. Example: CHIP SELECT S DC Electrical Parameter Abbreviations All abbreviations use upper case letters with no subscripts. The initial symbol is one of these four characters: V I P C Chip Select access time, TSLQV, the time from Chip Select low to Data Out val id, and the time from Chip Select low to Data Out active, TSLQX, are shown. (Voltage) (Current) (Power) (Capacitance) Timing Limits The second letter specifies input (I) or output (0), and the third letter indicates the high (H), low (L) or off (Z) state of the pin during measurements. Examples: The table of timing values shows either a minimum or a maximum limit for each parameter. Input requirements are specified from the external system point of view; e.g., the address set-up time is shown as a minimum since the system must supply at least that much time. On the other hand, responses from the memory are specified from the device pOint of view, e.g., the access time is shown as a maximum since the device never provides data later than that time. VIL-Input Low Voltage 10Z-Output Leakage Current AC Electrical Parameter Abbreviations All timing abbreviations use upper case characters with no subscripts. The initial character is always T and is followed by four or more descriptors. These characters specify two signal points arranged in a "from-to" sequence that define a timing interval. The two or more descriptors for each signal point specify the signal name and signal transitions. The format using four descriptors is: T X X X X Signal name from which Interval is defined Transition direction for first signal Signal name to which interval is defined Transition direction for second signal Waveforms Waveform Symbol JIll Signal Definitions: A =Address o = Data In Q = Data Out W = Write Enable E = Chip Enable S = Chip Select G = Output Enable Transition Definitions: H L V X Z = Transition = Transition = Transition = Transition = Transition to to to to to High Low Valid Invalid or Don't Care Off (High Impedance) Input Output MUST BE VALID WILL BE VALID ~ CHANGE FROM HTO L WILL CHANGE FROM HTOL ~ CHANGE FROM L TO H WILL CHANGE FROM L TO H DON'T CARE: ANY CHANGE PERMITIED CHANGING: STATE UNKNOWN N/A 14 HIGH IMPEDANCE MOS RAM Selection Guide Size 65,536 32,768 16,384 8,192 4,096 4,096 1,024 Organization 65,536 x 1 Part No. NMC4164·2 NMC4164·3 8,192x8 NMC4864 4,096x8 NMC6132·3 NMC6132·4 NMC6132-5 16,384 x 1 NMC5295-2 NMC5295-3 NMC5295-4 MM5290-1 MM5290-2 MM5290-3 MM5290-4 8,192 x 1 MM5298A-2 MM5298A-3 MM5298A-4 MM5298B-2 MM5298B-3 MM5298B-4 4,096 x 1 MM2147 MM2147-3 MM2147L MM2147L-1 NMC2141 NMC5257A MM5257 MM5257L MM5257-2 MM5257-2L 4,096 x 1 MM5257-3 MM5257-3L MM4280 MM5280 MM5280-5 1,024 x4 NMC2148 NMC2148-3 NMC2148L NMC2142A NMC2142AP NMC2114A NMC2114AP MM2114 MM2114L MM2114-2 MM2114-2L MM2114-3 MM2114-3L 1,024 x 1 MM2102A MM2102A-L MM2102A-2 MM2102A-2L MM2102A-4 MM2102A-4L MM2102A-6 MM2102A-6L Operation Dynamic Dynamic Pseudo-Static Pseudo-Static Pseudo-Static Pseudo-Static Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Dynamic Static Static Static Static Static Static Static Static Static Static Static Static Dynamic Dynamic Dynamic Static Static Static Static Static Static Static Static Static Static Static Static Static Static Static Static Static Static Static Static Static Max Max Standby Access Current Supply Time Current (rnA) (rnA) (ns) 45 45 40 40 40 40 35 35 35 40 40 40 40 40 40 40 40 40 40 160 180 140 140 120 120 • 90 65 90 65 90 65 60 60 60 160 180 140 50 15 50 50 100 70 100 70 100 70 50 33 50 33 50 33 50 33 ·c=o·c to 70·C 1= -40'C to +85·C • • See Definition of Terms 15 4 4 6 25 25 25 4 4 4 1_5 1_5 1_5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 20 30 10 10 15 120 90 65 90 65 90 65 ",0 ",0 ",0 20 30 10 50 15 50 15 100 70 100 70 100 70 50 33 50 33 50 33 50 33 120 150 150 200 250 300 80 100 120 120 150 200 250 150 200 250 150 200 250 70 55 70 90 120 120 450 450 200 200 300 300 270 200 270 70 55 70 120 120 120 120 450 450 200 200 300 300 350 350 250 250 450 450 650 650 Supply Voltage Pkg Temp· Range Status·· 16 16 28 28 28 28 16 16 16 16 16 16 16 16 16 16 16 16 16 18 18 18 18 18 18 18 18 18 18 18 18 22 22 22 18 18 18 20 20 20 18 18 18 18 18 18 18 16 16 16 16 16 16 16 16 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C I C C C C C C C C C C C C C C C C C C C C C C C Preview Preview Preview Preview Preview Preview Advance Info Advance Info Advance Info Production Production Production Production Production Production Production Production Production Production Production Production Production Production Preview Preview Production Production Production Production Production Production Production Production Production Preview Preview Preview Preview Preview Preview Preview Production Production Production Production Production Production Production Production Production Production Production Production Production Production (V) +5 +5 +5 +5 +5 +5 +5 +5 +5 ±5, +12 ±5, +12 ±5, +12 ±5, +12 ±5, +12 ±5, +12 ±5, +12 ±5, +12 ±5, +12 ±5, +12 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 ±5, + 12 ±5, + 12 ±5, + 12 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5' +5 +5 +5 +5 +5 +5 Q) :2 ::s CMOS RAM Selection Guide ~ c: o ;: (J Q) Size 4,096 Organization 4,096 x 1 Q) en :E..,.., - i- .. T ~ 30 pF (INCLUDING SCOPEAND JIG) > '---- FIGURE 1. Output Load NORMALIZED ICC FIGURE 2. power On Current Note 1: Guaranteed with transverse air flow greater than 400 linear feet per minute. Note 2: A pull-up resistor to vee on the chip select input is required to keep the device deselected or power on current approaches Ice active (see Figure 21Note 3: This parameter is guaranteed by periodic testing. Note 4: This device requires a 500 ns time delay after vce reaches the specified minimum limit to ensure proper operation after power on. This allows the internally generated substrate bias to reach its functional level. 1-12 Read Cycle AC Electrical Characteristics s: s: TA = O°C to +70°C, VCC = 5V ±10% I\) """'" ~ SYMBOL MM2147·3 MM2147L·l MM2147, MM2147L PARAMETER ALTERNATE UNITS MIN STANDARD Read Cycle Time MAX MIN MAX 70 55 MIN MAX 90 ns ::::! s: s: tRC TAVAV tAA TAVQV Address Access Time 55 70 90 ns I\) tASCl TSLOVI Chip Select Access Time (Note 5) 55 70 90 ns TSLOV2 Chip Select Access Time (Note 6) 65 80 105 ns """' ~" tASC2 IOH TAXOX Output Hold from Address Change 5 5 5 ns ILZ TSLOX Chip Selection to Output Active 10 10 10 ns tHZ TSHOZ Chip Deselectlon to Output TR I STATE 0 tpu TSLICCH Chip SelectIOn to Power Up 0 tpD TSLICCL Chip De-selection to Power Down 40 0 40 0 30 0 50 ns 35 ns ns 0 30 Note 5: Chip deselected for greater than 55 ns prior to selection. Note 6: Chip deselected for a finite time that is less than 55 ns prior to selection. Read Cycle Waveforms '" Read Cycle No.1 (Continuously Selected) *- tRC (TAVAV) ADDRESS ,I DATA OUT PREVIOUS DATA VALID *X X ~E1'------------------------------------DATA VALID Read Cycle No.2 (Chip Select Switched) ~·--------------(T~C~V) -----------------~ ~r I\. r--- (T~taX) -------O-lll HIGH IMPEDANCE 1\ DATA OUT f--IT;~~Z) - X X \1/ , ________ II. DATA VALID r I ,,'-______________+-___Ji HIGH IMPEDANCE tF',----------------------------i"\,\ . POWER ICC ---.-t-----;SUPPlY 7(" CURRENT IS8 1 --+--' - II ' - - - - - - - - - ;~~LlCCH) (TSLlc~8- • The symbols in parentheses are proposed industry standard. 1·13 I- --.... rm "T1 3 -- ~ -e ~ Write Cycle AC Electrical Characteristics If SYMBOL TA = O°C to +70°C, VCC = 5V ±10% MM2147-3 MM2147, MM2147L MM2147L-1 PARAMETER UNITS ~ ALTERNATE ~ ,... twc TAVAV Write Cycle Time 55 70 90 ns tcw TSLWH Chip Selection to End of Write 45 55 60 n, N tAW TAVWH Address Valid to End of Write 45 55 60 n, tAS TAVWL Address Setup Time 0 0 0 n, ns r-... :E :E ti,... N :E :E MAX MIN STANDARD MIN MAX MIN MAX TAVSL twp TWLWL Write Pulse Width 35 40 60 tWR TWHAX Write Recovery Time 10 15 20 ns tow TOVWH Data Valid to End of Write 25 30 35 ns tOH TWHOX Data Hold Time 10 twz TWLOZ Write Enabled to Output in Hi-Z 0 tow TWHOX Output Active from End of Write 0 Write Cycle Waveforms * 10 10 30 0 0 35 0 ns 40 0 ns ns (Note 7) Write Cycle No.1 (WE Controlled) tw C (TAVAV) ADDRESS B(Sl (NOTE 5) , ~~ \" ICW (TSLWH) R IIJ IIII lAS (TAVWL) (TW~~X)- lAW (TAVWH) -(TW"fWL)- I \\' Ie C'-(T~e~H) X DATA IN IDH (TWHDX) X DATA IN VALID f-(~k=1 DATA OUT , '\I DATA UNDEFINED I-(~~~x) HIGH IMPEDANCE 'I '\. Write Cycle No.2 (CS Controlled) IWC (TAVAV) ICW (TSLWH) - - - - - -twp- _ - -_1 _ - (T~~~X) (TWLWL) lOW (TDVWH) DATA IN DATA IN VALID ~ LQ_Z_)_J-----------~------------------- twz DATA OUT _ ________________________________ (TW __ DATA UNDEFINED HIGH IMPEDANCE Note 7: A write occurs during the coincidental low of CS and WE. The output rerrlains TR I-STATE® if Cs and WE go high simultaneously. WE or CS or both must be. high during address transitions_ • The symbols in parentheses are proposed industry slandard. 1·14 ~National NMOS RAMs ~ Semiconductor MM5257, MM5257L Family 4096·Bit (4096 x 1) Static RAMs s: s: c.n General-Description Features The MM5257 family of 4096-word by 1-bit static random access memories is fabricated using N-channel silicon-gate technology. All internal circuits are fully static and therefore require no clocks or refreshing for operation. The data is read out nondestructively and has the same polarity as the input data. • All inputs and outputs directly TTL compatible • Static operation-no clocks or refreshing required • Low power-225 mW typical • High speed-down to 200 ns access time • TRI·STATE output for bus interface The separate chip enable input (CE) controlling the TRI-STATE® output allows easy memory expansion by OR-tying individual devices to a data bus. • Separate Data In and Data Out pins • Single +5V supply The output is held in a high impedance state during write to simplify common I/O applications. • Standard 18-pin dual-in-I ine package Logic Symbol Connection Diagram Dual-ln·Line Package AD A1 A2 AJ AD A1 A2 01 A4 AJ AS A6 A7 A4 AS AS DO A9 A1D WE 01 GNO CE A11 CE Y TOP VIEW Order Number MM5257J, J-2, J-25, J-3, J-L, J-2L, J-25L or J-3L See NS Package J18A Order Number MM5257N, N-2, N-25, N-3, N-L, N-2L, N-25L, or N-3L See NS Package N18A Truth Table CE H WE X L L L L H L DI X H L X DOUT Hi-Z Hi-Z Hi-Z DOUT 1-15 MODE Not Selected Write 1 Write 0 Read WE DO I\) c.n ........ r- ~, 3 -- ~ Functional Description both CE and WE are low. Minimum write-pulse width, twP, refers to this simultaneous low region. Data set-up and hold times are measured with respect to whichever control first rises. Successive write operations may be performed with CE continuously held low. WE then is used to terminate WR ITE between address changes. Alternatively, WE may be held low for successive WRITES and CE used for WRITE interruption between address change. Two pins control the operation of the MM5257. Chip Enable (CE) enables write and read operations and controls TRI-STATING of the data-output buffer. Write Enable (WE) chooses between READ and WR ITE modes and also controls output TRI-STATING. The truth table details the states produced by combinations of the CE and WE controls. READ-cycle timin~shown in the section on Switch~ Time Waveforms. WE is kept high. Independent of CE, any change in address code causes new data to be fetched and brought to the output buffer. CE must be low, however, for the output buffer to be enabled and transfer the data to the output pin. . In any event, either WE or CE (or both) must be high during address transitions to prevent erroneous WRITE. Stand-by operation allows data to be maintained with approximately 50% less operating current. The 2 require· ments to guarantee data retention are: a) the power supply voltage must meet the condition VCC ~ 1.5V, and b) CE must be controlled; to disable the chip prior to reducing VCC, to keep it disabled during the time V CC is reduced, and to maintain the disabled state long enough after VCC is increased to normal for the chip to recover. These requirements are shown by the stand-by waveforms and characteristics. Address access time, tA, is the time required for an address change to produce new data at the output pin, assuming CE has enabled the output buffer prior to data arrival. Chip Enable-to-output delay, teo, is the time required for CE to enable the output buffer and transfer previously fetched data to the output pin. Operation with CE continuously held low is permissible. WR ITE-cycle timing is shown in the section on Switching Time Waveforms. Writing occurs only during the time Block Diagram 18 +-0 A2 (LSB) VCC 9 .--0 GNO A3 AD ROW SELECT 1 OF 64 MEMORY ARRAY 64 ROWS 64 COLUMNS OATAIN CONTROL COLUMN I/O CIRCUITS A1 A6 A7 (MSB) 01 DO COLUMN SELECT REAO/WRITE CONTROL A11 (MSB) A1D A9 1-16 A8 A5 A4 (LSB) Absolute Maximum Ratings Operating Conditions Voltage on Any Pin Relative to Vss Storage Temperature Range Power Dissipation Short-Circuit Output Current Lead Temperature (Soldering, 10 seconds) Supply Voltage (VCC) Ambient Temperature (T A) -0.3V to +7V -65°C to +150°C 1W 50mA 300°C DC Electrical Characteristics SYMBOL MIN 4.75 0 MAX 5.25 +70 UNITS V °c T A = o°c to +70°C, vcc = 5V ±5% PARAMETER MM5257 MM5257-2 MM5257-25 MM5257-3 MAX MIN CONDITIONS MM5257-L MM5257-2L MM5257-25L MM5257-3L MIN MAX UNITS VIH Logical "1" Input Voltage 2.0 VCC 2.0 VCC V VIL Logical "0" Input Voltage -0.5 0.8 -0.5 0.8 V VOH Logical "1" Output Voltage VOL Logical III Input Load Current "a" Output Voltage IOH = -200pA 2.4 2.4 IOL = 2.1 mA V 0.4 VIN = 0 to 5.25V -10 -10 10 -10 10 -10 0.4 V 10 pA ILO Output Leakage Current Vo = 4V to O.4V, CE = VIH 10 pA ICC Power Supply Current All Inputs = 5.25V, T A = 25°C 80 55 mA ICC Power Supply Current All Inputs = 5.25V, T A = O°C 90 65 mA AC Electrical Characteristics SYMBOL PARAMETER T A = o°c to +70°C, vcc = 5V ±5%, (Note 2) MM5257-2 MM5257-2L MIN MAX MM5257-25 MM5257-25L MIN MAX MM5257-3 MM5257-3L MIN MAX MM5257 MM5257-L MIN MAX 200 250 300 450 UNITS READ CYCLE tRC Read Cycle Time (WE = VIH) ns tA Access Time 200 250 300 450 ns tco Chip Enable to Output Valid 80 100 150 200 ns 100 ns tCOT Chip Enable to Output TRI-STATE 0 tOHA Output Hold from Address Change 30 60 0 70 0 80 0 30 30 30 ns WRITE CYCLE twc Write Cycle Time 200 250 300 450 ns twp Write Pulse Width 100 100 150 200 ns twR Write Recovery Time a a a a ns tDS Data Set-Up Time 85 85 120 175 ns tDH Data Hold Time a tWOT Write Enable to Output TRI-STATE 0 two Write Enable to Output Valid a 0 80 80 0 80 80 0 100 100 a a ns 120 ns 120 ns Note 1: Typical values at T A = 25° C. Note 2: All input transitions:; 10 ns. Timing referenced to VIL(MAX) or VIH(MIN) for inputs, 0.8V and 2V for output. For test purposes, input levels should swing between OV and 3V. Output load = 1 TTL gate and CL = 50 pF. 1-17 Switching Time Waveforms Read Cycle 1 - - - - - - - - - ' t R C - - - - - : - - - - - l - - - - - - - - - - t R C ------~ AODRESSES VIH VIL WRITE ENABLE (NOTE 3) VIH VIL -tA-tOHA- CHIP ENABLE VIH VIL DATA OUT - - - - -OPEN- - -OPEN- - - Write Cycle ADDRESSES VIH VIL twp (NOTE 4) CHIP SELECT (NOTE 5) VIH WRITE ENABLE (NOTE 5) VIH DATA IN VIL VIL VIH VIL DATA OUT 2.0 - OPEN-- ~~ VALID O.B Note 3: WE is high during a read cycle (WE? VIH(MIN)1. Note 4: twp defines the period when both CE and WE are low. tAW is referenced to the later of CE or ~ gOing low while tDS. tDH and tWR are referenced to the earlier of CE orWE going high. twOT and two are referenced to WE with CE low. Note 5: Either WE orCE (or both) must be high during address transitions to prevent erroneous write. 1-18 Standby Characteristics SYMBOL T A : 0° C to +70° C PARAMETER CONDITIONS MM5257 MM5257·2 MM5257·25 MM5257·3 MAX MIN MM5257·L MM5257·2L MM5257·25L MM5257·3L MAX MIN UNITS 1.5 1.5 V 2.0 2.0 V VPD VPD V VPD VCC in Stand·by VCES CE Bias in Stand·by 2 ~ VPD ~ VCC(MAX) VCES CE Bias in Stand-by 1.5 ~ VPD ~ 2 IPDl Stand·by Current All Inputs: VPD : 1.5V 70 45 mA IPD2 Stand·by Current All Inputs: VPD : 2V 75 50 mA tcp Chip Deselect to Stand·by Time 0 0 ns tR Recovery Time tRC tRC ns CAPACITANCE TA: 25~C, f : 1 MHz, (Note 6) CIN Input Capacitance All Inputs VIN : OV 5 5 pF COUT Output Capacitance VO: OV 10 10 pF Note 6: This parameter is guaranteed by periodic testing. Standby Waveforms VeES CE VIL Vee Vee )4::5V~ 1':,~5V VpD j 1·19 s: s: (II I\) (II ~ r- ~ 3-- ~ D.. . ~ ,... ~National ,... ~ Semiconductor NMOS RAMs PREVIEW N o :E z.. ~ ,... ,... N o :E z NMC2114A, NMC2114AP 4096·Bit (1024 x 4) Static RAMs General Description Features These 1024-word by 4-bit static random access memories are fabricated using N-channel silicon-gate technology_ All internal circuits are fully static and therefore require no clocks or refreshing for operation_ The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided. •. All inputs and outputs directly TTL compatible • Static operation-no clocks or refreshing required • Low power-225 mW typical • High speed"7'120 ns max access time • TRI-STATE" output for bus interface • Common Data In and Data Out pins • Single 5V supply • Power down option-NMC2114AP The separate chip select input allows easy memory expansion by OR-tying individual devices to a data bus and automatically powers down the NMC2114AP. Block Diagram* Connection Diagram* Dual-ln·Line Package .-J!..oVCC A3 lB A6 ...-!.oVSS 11 A5 A4 AS ROW SELECT Order Number NMC2114AJ or NMC2114APJ See NS Package J18A MEMORY ARRAY 64 ROWS 64 COLUMNS A4 15 A3 A8 Order Number Al NMC2114AN or A2 NMC2114APN _ See NS Package N18A B (SI 16 1/01 (0011 14 1/02 (0021 13 1/03 (0031 12 1104 (0041 11 A9 14 1/01 (0011 13 1102 (0021 12 1/03 (0031 11 1/04 (0041 A6 A7 A7 16 AB AD 17 vcc 10 vss i/iE(WI TOP VIEW COLUMN 110 CIRCUITS Logic Symbol * 1/01 (0011 AI A2 A3 A4 AS A6 A9 ES CS (S) 8 WE 1104 (WI(004) (SI Pin Names* WE 10 (WI * The symbols in parentheses are proposed industry standard. 1-20 AO·A9 Address Inputs WE(W) Write Enable Cs(S) Chip Select 1/01-1104 (OQ1-0Q4) Data Input/Output Operating Conditions Absolute Maximum Ratings Voltage at Any Pin with Respect to VSS Storage Temperature -1.5Vto +7V Ambient Temperature (TA) -65'Cto +150'C Temperature with Bias Units Min Max 4.5 5.5 V +70 'C 0 -10'Cto +85'C 20mA DC Output Current Power Dissipation 1.2W Lead Temperature (Soldering, 10 seconds) 300'C DC Electrical Characteristics TA = O°C to Symbol Supply Voltage (VCC) + 70°C, VCC = 5V ± 10% NMC2114A Parameter Conditions Min Max NMC2114AP Min Max Units III Input Load Current (All Input Pins) VIN = OV to 5.5V 10 10 /LA IILOI I/O Leakage Current CS=2.4V, VI/O = O.4V to VCC 10 10 /LA ICC1 Power Supply Current VIN =5.5V, 11/0=0 mA, TA=25°C 45 45 mA ICC2 Power Supply Current VIN = 5.5V, 11/0 = 0 mA, TA=O°C 50 50 mA V -1.0 0.8 -1.0 0.8 2.0 6.0 2.0 6.0 VIL Input Low Voltage VIH Input High Voltage 10L Output Low Current VOL = O.4V 10H Output High Current VOH =2.4V -4.0 lOS Output Short Circuit Current VI/O = VSS to VCC (Note 1) -120 IS8 Standby Current VCC = Min to Max, CS=VIH IPO Peak Power-On Current VCC = VSS to VCC Min CS = Lower of VCC or VIH Min 8.0 8.0 V mA -4.0 mA 120 mA ICC 15 mA ICC 15 mA 120 -120 Capacitance TA=25°C, f= 1.0 MHz (Note 2) Symbol Parameter NMC2114A Min Max Conditions NMC2114AP Max Min Units CliO Input/Output Capacitance VIIO=OV 10 10 pF CIN Input Capacitance VIN=OV 5 5 pF AC Test Conditions (Note 3) Input Pulse Levels Input Rise and Fall Times Input and Output Timing Levels Output Load 0.8V t02.4V :510 ns 1.5V 1 TILGateandCL= 100pF - Note 1: Maximum duration of 60 seconds. Note 2: This parameter is guaranteed by periodic testing. Note 3: These circuits require 500 P.s time delay after VCC reaches the specified minimum limit to ensure proper operation after power on. This aliows the internaliy generated substrate bias to reach its functional level. 1-21 III c.. ~ ,.... ,.... C\I CJ :!: Read Cycle AC Electrical Characteristics TA=O°C to Symbol Alternate Standard Parameter t RC TAVAV Read Cycle Time tA TAVQV Address Access Time tco TSLQV Chip Select Access Time (Notes 4 and 5) tcx TSLQX Chip Select to Output Active toTO TSHQZ Chip Select to Output TRI-STATE@ CJ tOHA TAXQX Output Hold from Address Change z tpu TSLICCH Chip Select to Power Up tpD TSHICCL Chip Select to Power Down z... ~ ,.... ,.... C\I :E +70°C, VCC=5V ±10% NMC2114A Min Max NMC2114AP Min Max 120 120 Units ns 120 120 ns 70 120 ns 20 20 60 ns 60 10 10 ns ns 0 ns 60 ns Read Cycle Waveforms· Read Cycle 1 (Continuous Selection CS =VIL, WE =VIH) IRC (TAVAV) ADDRESS I ~~ IA (TAVOV) Read Cycle 2 (Chip Select Switched, CHIP SELECTZ --1f- CHIP SELECT 1 ~ ..... -* I WE = VIH) (Note 5) -\- I~---------(TA~;V)-------------<-I _ DATA OUT ____ ,l ~~~~~I~CX~:(T:~:~~:~i)~~~~~*=I======~~~~======~--W:~~) (TSLOX) DATA VALID HIIGH IMPEDANtCE tpu ICC _ _ _ _ _ _ _ _ VCC SUPPLY CURRENT I (TSLICCH) \}---~~=~~tPD HIGH~IMPEDANCE --(TSHICCL)--- 50% 50% IS8 - - - - - - - - - - - - - ---- Note 4: This parameter Is Increa::ed by 10 ns for the NMC2114AP if the device is deselected for less than 55 ns. Note 5: Addresses must be valid coincident with or prior to the chip select transition from high to low for the NMC2114AP. Addresses must be valid 50 ns or more prior to the chip select transition from high to low for the NMC2114A. * Symbols In parentheses are proposed industry standard. 1-22 Write Cycle AC Electrical Characteristics (Note 6) TA =o·e to + 70·e, vee =5V ± 10% z s: o ..... ..... I\) Symbol Alternate Standard NMC2114A Parameter Min NMC2114AP Min Max Max Units 120 120 ns 0 0 ns Write Time 60 60 ns Write Recovery Time 10 10 ns Data Set-Up Time 50 50 ns TWHDX Data Hold Time 10 TWLQZ Write Enable to Output TRI-STATE twc TAVAV Write Cycle Time tAs TAVSL TAVWL Address Set-Up Time tw TWLWL tWR TWHAX tow TDVWH tOH tOTW Write Cycle Waveforms* twc (TAVAV) I-'IWHAM ~ ~"-"-""""""" tw (TWLWL) ~~r -,'I J I DATA OUT .y .:::::« ,f- ~ ~"""'''''''''''' WRITE ENABLE ns tWR -(T~e~L)CHIP SELECT 60 (Note 7) ~ ADDRESS ns 10 60 <'>:«~: 0.': II ~«~ I CS and WE. CS low transition and the WE low transition occur simultaneously. WE or CS or both must be high Note 6: A write occurs during the coincidence low of Note 7: The butputs remain in TRI-STATE if the )-j tOH (TWHOX) during the address transitions. * Symbols in parentheses are proposed industry standard. 1-23 ~ Z s: o I\) ..... ..... ~ "tJ ~National NMOS RAMs PREVIEW U Semiconductor NMC2141, NMC5257A 4096·Bit (4096 x 1) Static RAMs ,... ~ ,... oN :E z General Description Features These 4096·word by 1·bit static random access memories are fabricated using N·channel silicon·gate technology. All internal circuits are fully static and therefore require no clocks or refreshing for operation. The data is read out nondestructively and has the same polarity as the input data. Separate input/output pins are provided. • All inputs and outputs directly TTL compatible • Static operation-no clocks or refreshing required The separate chip select input allows easy memory ex· pal1,sion by OR·tying individual devices to a data bus and automatic~lIy powers down the NMC2141. • • • • Low power-225 mW typical High speed-120 ns max access time TRI-STATE® output for bus interface Common Data In and Data Out pins • Single 5V supp)y • Power down option-NMC2141 Block Diagra,n* Connection Diagr~m* Dual·ln·Line Package 18 AD 4vcc AD VCC AI 9 .........a vss A2 AI Order Number NMC2141J or NMC5257AJ NS See NS Package NumberJ18A A2 MEMORY ARRAY 64 ROWS 64 COLUMNS ROWSELECT • A3 Order Number NMC2141N or NMC5257AN NS See NS Package Number N18A A4 AS A3 A4 NMC2141 NMCS2S7A AS TOP VIEW Logic Symbol* COLUMN I/O CIRCUITS DOUT {Q} COLUMN SELECT A6 A7 A9 A8 AID Pin Names· AD·All All Inputs WE (W) Write Enable CS (S) Chip Select DIN (D) Data Input DOUT (0) Data Output * The symbols in parentheses are proposed Industry standard. 1·24 All Absolute Maximum Ratings .operating Conditions Voltage at Any Pin with Respectto VSS Supply Voltage (VCC) -1.5Vto +7V Storage Temperature -65'Cto +150'C Temperature with Bias -10'Cto +85'C Power Dissipation 20mA 1.2W Lead Temperature (Soldering, 10 seconds) 300'C DC Output Current DC Electrical Characteristics TA=O·C to AmbientTemperature(TA) Min Max 4.5 5.5 V +70 'C 0 Units z s: (") I\) ..... ~ ..... z s: (") (J1 +70·C, VCC=5V±10% I\) (J1 Symbol Parameter NMC5257A Max Min Conditions NMC2141 Min Max Units ill Input Load Current (All input Pins) VIN = OV to 5.5V 10 10 p.A IILOI Output Leakage Current CS=2AV, VOUT = OAV to VCC 10 10 p.A ICC1 Power Supply Current VIN=5.5V, TA = 25·C Output Open 45 45 mA ICC2 Power Supply Current VIN =5.5V, TA = O·C Output Open 50 50 mA VIL Input Low Voltage -1.0 0.8 -1.0 0.8 V VIH input High Voltage 2.0 6.0 2.0 6.0 10L Output Low Current VOL=OAV 8.0 10H Output High Current VOH =2AV -4.0 lOS Output Short Circuit Current VOUT = VSS to VCC (Note 1) -120 IS8 Standby Current VCC = Min to Max, CS=VIH IPO Peak Power-On Current VCC = VSS to VCC Min CS = Lower of VCC or VIH Min 8.0 -4.0 120 V mA mA -120 120 mA ICC 15 mA ICC 15 mA Capacitance TA=25·C, f= 1.0 MHz (Note 2) Symbol Parameter NMC5257A Min Max Conditions NMC2141 Min Max Units COUT Output Capacitance VOUT=OV 6 5 pF CIN Input Capacitance VIN =OV 5 5 pF AC Test Conditions (Note 3) Input Pulse Levels NMC2141 NMC5257A Input Rise and Fall Times input and Output Timing Levels Output Load GNDt03.5V 0.8Vto2AV s10ns 1.5V 1 ITLGateandCL= 100pF Note 1: Maximum duration of 60 seconds. Note 2: This parameter is guaranteed by periodic testing. Note 3: These circuits require 500 p's time delay after VCC reaches the specified minimum lim:. to ensure proper operation after power on. This allows the internally generated substrate biaS to reach its functional level.' 1-25 »....... Read Cycle AC Electrical CharacteristicsTA=o·Cto +70·C, VCC=5V Symbol Alternate Standard ,... ~ ,... C\I o ~ z Parameter tRc TAVAV Read Cycle Time tAA TAVQV Address Access Time tAcs TSLQV Chip Select Access Time (Notes 4 and 5) tLZ TSLQX Chip Select to Output Active tHZ TSHQZ Chip Select to Output TRI-STATE tOH TAXQX Output Hold from Address Change t pu TSLICCH Chip Select to Power Up tpD TSHICCL Chip Select to Power Down ±10% NMC5257A Min Max NMC2141 Min Max 120 120 Units ns 120 120 ns 70 120 ns 20 20 60 ns 60 10 10 ns ns 0 ns 60 ns Read Cycle Waveforms * Read Cycle 1 (Continuous Selection CS =VIL, WE = VIH) tRC \IAVAVI ADDRESS ~I? - DATA DUT tAA (TAVQV) -* I .m\'i<~~J. tOH 1--1 t---(TAXQX) Read Cycle 2 (Chip Select Switched, WE = VIH) (Note 5) tRC (TAVAV) CHIP SElECT"~,- DATA OUT ,'- I-(T;t~X) HIGH IMPEDANCE I ~'" ICC ________ VCC SUPPLY CURRENT ISB tACS (TSLQV) I I~' DATA VALID -(~~~QZ) HIGH IMPEDANCE ., ~ -(TSHICCL)'" (TSLICCH) 50% 50% Note 4: This parameter is increased by 10 ns for the NMC2141lf the device is deselected for less than 55 ns. Note 5: Addresses must be valid coincident with or prior to the chip select transition from high to low for the NMC2141. Addresses must be valid 50 ns or more prior to the chip select transition from high to low for the NMC5257A. * Symbols in parentheses are proposed industry standard. 1-26 Write Cycle AC Electrical Characteristics (Note 6) TA=O·C to Symbol Alternate Standard Parameter t RC TAVAV Write Cycle Time t AS TAVSL TAVWL Address Set-Up Time twp TWLWL Write Pulse Width +70·C, VCC=5V ± 10% NMC5257A Min Max NMC2141 Max Min 120 120 ns 0 0 ns 60 60 ns Units tWR TWHAX Write Recovery Time 10 10 ns tow TDVWH Data Set-Up Time 50 50 ns tOH TWHDX Data Hold Time 10 10 ns twz TWLQZ Write Enable to Output TRI-STATE tow TWHQX Write Enable to Output Active tcw TSLWH tAW TAVWH 60 60 ns 5 5 ns Chip Select to End of Write 110 110 ns Address Valid to End of Write 110 110 ns Write Cycle Waveforms * (Note 7) Write Cycle 1 (Write Enable limited) 'WC (TAVAV) ADDRESS ~f- -ct - ~- ICW (TSLWH) -. lAS (TAVWL) I. lAW 'WR \'t'VVVMI IIVVMAIlI twp (TWLWL)- 1 WRITE ENABLE ~ 1!0 -yflOW (TDVWH) tDH (TWHDX) ~~ -4- DATA IN -(~~liz) \ ~=ttow (TWHQX) HIGH IMPEDANCE DATA OUT ,t,N " Write Cycle 2 (Chip Select Limited) I I 'Wc (TAVAV) ADDRESS i (TAV~~~-~ ~ 'f- [- 1- ICW (TSLWH) ~k- -ltAW (TAVWH) I-(T~~~L) WI\I'fEENABLE~~~~1\ (TW~:X) -- ~~~~ tDH (TWHDX) IDW (TDVWH) DATA IN ~ 'f- 7~ 'Wz (TWLDZ) HIGH IMPEDANCE DATA OUT Note 6: A write occurs during the coincidence low of CS and WE. Note 7: The output remains TRI·STATE If the CS and WE go high simultaneously. * Symbols in parentheses are proposed industry standard. 1-27 WE or CS or both must be high during the address transiticns. z 3: oC1I I\) c.n ~ c.. ~ ,... ~National NMOS RAMs PREVIEW ~ Semiconductor o NMC2142A, NMC2142AP4096·Bit (1024 x 4) Static RAMs :E C\I z General Description Features ~ These 1024-word by 4-bit static random access memories are fabricated using N-channel silicon-gate technology. All internal circuits are fully static and therefore require no clocks or refreshing for operation. The data is read out nondestructively and has the same polarity as the input data. Common input/output pins are provided. • • • • • • • • ,... C\I o :E z The separate chip select inputs allow easy memory expansion by OR-tying individual devices to a data bus and automatically powers down the NMC2142AP.. All inputs and outputs directly TTL compatible Static operation-no clocks or refreshing required Low power-225 mW typical High speed-120 ns max access time TRI-STATE@ output for bus interface Common Data In and Data Out pins Single 5V supply Power down option-NMC2142AP Block Diagram* Connection Diagram* Dual·ln·L1ne Package A3 ~VCC A6 +-.!.!!.o vss AS A4 A4 AS ROW SELECT MEMORY ARRAY 64 ROWS 64 COLUMNS A3 A6 S2 A7 A8 19 AD 18 AI A2 1/01 (001) IS 1/02 (002) 14 1/03 (003) 13 1/04 (004) 12 CSi (si) 11 VSS 10 ~--------------~ WE (W) TOP VIEW Order Number NMC2142AJ or NMC2142APJ See NS Package J20B Order Number NMC2142AN or NMC2142APN See NS Package N20A Lqgic Symbol* CSi (S1)o----...-- tRCD(MAX). Noto 11: Equivalent load is 2 standard TTL inputs plus 100 pF. Noto 12: CAS going high disables the Data Output. tOFF is the delay to the high impedance state. Noto 13: These parameters are referenced to the negative edge of CAS in an early-write cycle and to the negative edge of WE in a Read-ModifyWrite cycle. (See Note 12). Noto 14: If twcs ~ tWCS(MIN), the Data Output is guaranteed to remain in the high impedance state for the duration of the cycle. This is the "early-write" cycle. Note 15: If tCWD ~ tCWD(MIN) and tRWD ~ tRWD(MIN), the Data Output will contain the original data in the selected cell. This is the ReadModify-Write cycle. If either of these conditions is not satisfied, the output will be indeterminate unless the early-write condition of Note 12 is met. 1-57 Switching Time Waveforms Read Cycle WE VIHCVil - .......................""""'""+'...........**.1 ----------------------OPEN----------------------~ Write Cycle (Early Write) m CAS AD-A6 . VIHCVll- VIHCVll- VIHVll- WE 01 DO VIHCVll- VIHVll- VOH- OPEN VOL- 1-58 VALID DATA Switching Time Waveforms 3: 3: (Continued) CJ1 N CO Read-Write Cycle, Read-Modify-Write Cycle AO-A6 o VIHVll""'" WI DO VIHC Vll- VOH VOl- 01 RAS-Only Refresh Cycle DO VoHVOl- Note. CAS = ----------------oPEN---------------V I He, WE = don't care 1-59 o ~ Switching Time Waveforms (Continued) Lt) ~ ~ Page Mode Read Cycle RAS VIHCVll- CAS AD-AS VIHC Vll- VIHVll- VOHDO VOl- wt Page Mode Write Cycle WE VIHCVll- ~~~~~~~~--~~~~~~~~~----~~~~~~P~~~~~-----4~~~~~~~~~ VIH01 Vll- ~~~::.:..:.;." Note. Standard part not tested for page mode 1-60 ~National NMOS RAMs ~ Semiconductor N CO CO MM5298** 8192·Bit (8192 x 1) Dynamic RAM General Description Features The MM5298 is an8192x 1-bitdynamic RAM. It features a multiplexed address input with separate row and column strobes. This added flexibility allows the MM5298 to be used in page mode operation. The MM5298 employs the same masks and highly reliable productionproven 2-layer polysilicon NMOS technology as the MM5290. • 100% DC and AC compatible with MM5290 • Only 64 Refresh cycles every 2 ms • Access Times: 150 ns, 200 ns, 250 ns • Low power: 528 mW max • TTL compatible: all inputs and output • Gated CAS-noncritical timing • Read, Write, Read-Modify-Write and RAS-only Refresh cycles • Page mode operation • Industry standard 16-pin configuration As shown in the block diagram, the MM5298 is available as either the upper or lower half of the MM5290_ Address A5 selects the operating half. For MM5298A, A5 should be low (V I U during row address hold time (tRAH). For MM5298B, A5 should be high (VIH) during tRAH. The MM5298 requires only 64 cycles of Refresh every 2 ms. This can be accomplished by performing any cycle which brings the RAS active including an RAS-only cycle at each of the 64 row addresses used. s: s: en Block Diagram ADAlA2- VOO VCC VSS Vas ~ ~ sv ~ ~ -sv 12V GNO 01 III AJA4ASA6ROW CLOCKS ROW CLOCKS MEMORY ARRAY 64 X 128 COLUMN CLOCKS r:c SENSE AMPLIFIERS (128) o 00 o ~ WRITE CLOCKS Connection Diagram MEMORY ARRAY 64 X 128 Logic Diagram Dual-In-Line Package Vas 01 16 VSS AD IS Al 14 WE 13 rn ill 00 AJ A2 A4 10 Al 9 VOO RAS CAS WE AO-A6 DI DO A2 01 A6 AD Pin Names 00 AS* VCC VDD VCC VSS VBB Row Address Strobe Column Address Strobe Write Enable Address Inputs Data Input Data Output Power (12VI Power (5VI Ground Power (-5VI Order Number MM5298AJ-2, MM5298BJ-2, MM5298AJ-3, MM5298BJ-3, MM5298AJ-4 or MM5298BJ-4 See NS Package J16A Order Number MM5298AN-2, MM5298BN-2, MM5298AN-3, MM5298BN-3, MM5298AN-4 or MM5298BN-4 See NS Package N 16A TOP VIEW *For MM5298A A5 must be at VIL during tRAH' For MM5298B A5 must be at VIH during tRAH. ** See the MST Program pag~ 3. ™ 1-61 Absolute Maximum Ratings Storage Temperature Power Dissipation Voltage on Any Pin Relative to VBB (Note 1) -65°C to +150°C lW -0.3V to +20V (VSS - VBB ~ 4.5V) Lead Temperature (Soldering, 10 seconds) 300°C Recommended DC Operating Conditions SYMBOL MIN PARAMETER TA Ambient Temperature VDD Supply Voltages 0 VCC MAX UNITS 70 °c NOTES 10.8 13.2 V 2, 3 4.5 5.5 V 2,3 VSS 0 0 V 2,3 VBB -4.5 -5.5 V 2, 3 2 VIHC Input High Voltage, RAS, CAS, WE 2.7 7.0 V VIH Input High Voltage"AO-A6, 01 2.4 7.0 V 2 VIL Input Low Voltage, All Inputs -1.0 0.8 V 2 DC Electrical Characteristics SYMBOL Over the range of Recommended DC Operating Conditions unless otherwise noted PARAMETER MIN MAX UNITS 1001 Operating Current ICCl Average Power Supply Operating Current IBBl (RAS, 1002 Standby Current ICC2 Power Supply Standby Current (RAS = VIHC, IBB2 00= High Impedance) 1003 Refresh Current ICC3 Average Power Supply Current, Refresh Mode IBB3 (RAS Cycling, CAS = VIHC; tRC';' tRC MIN) 1004 Page Mode Current ICC4 Average Power Supply Current, Page Mode IBB4 (R'AS = V I L, CAS Cycling; tpc = 225 ns) 200 /1 A II(L) Input Leakage -10 10 /1 A -10 10 /1A CAS Cycling; tRC = 40 mA 200 Il A 1.5 mA NOTES 4 5 tRC MIN) -10 -10 10 IlA 100 Il A 30 mA 10 200 /1 A /1 A 32 mA 4 4 5 Input Leakage Current, Any Input (VBB = -5V, OV -:::; VIN -:::; 7V; All Other Pins not Under Test = OV) IO(L) Output Leakage Output Leakage Current (DO is Disabled, OV -:::; VOUT -:::; 5.5V) Output Levels VOH Output High Voltage (lOUT = -5 mAl VOL Output Low Voltage (lOUT = 4.2 mAl 0.4 V CI Input Capacitance AO-A6, 01 5 pF 6 Cc Input Capacitance RAS, CAS, WE 10 pF 6 Co Output Capacitance, DO 7 pF 6 2.4 V CAPACITANCE Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Recommended OC Operating Conditions" provides conditions for actual device operation. Note 2: All voltages referenced to VSS' When applying voltages to the device, VOO, VCC or VSS should never be O.3V more negative than VBB. Note 3: Several cycles are required after power-up before proper device operation is achieved. Any 8 RAS cycles are adequate for this purpose. Note 4: 1001,1003, and 1004 depend on cycle rate. Note 5: ICC depends on output load. Note 6: Capacitance measured with Boonton Meter or effective capacitance calculated from the equation C = It:.t/t:.V. Capacitance is guaranteed by periodic testing. 1-62 AC Electrical Characteristics Over the range of Recommended DC Operating Conditions unless otherwise noted PARAMETER SYMBOL MM5298-2A, MM6298-2B MAX MIN MM5298-3A, MM5298-3B MIN MAX MM5298-4A, MM5298-4B MIN UNITS NOTES MAX tRC Random Read or Write Cycle Time 375 375 410 ns 7,8 tRWC Read-Write Cycle Time 375 375 515 ns 7,8 tpc Page Mode Cycle Time 170 225 275 ns tRAC Access Time from RAS 150 200 250 ns tCAC Access Time from CAS 100 135 165 ns 10,11 tOFF Output Buffer Turn-Off Delay 0 40 0 50 0 60 ns 12 tT Transition Time (Rise and Fall) 3 35 3 50 3 50 ns tRP RAS Precharge Time 100 tRAS 150 tRCD RAS Pulse Width RAS Hold Time CAS Pulse Width RAS to CAS Delay Time tCRP CAS to RAS Precharge Time tASR tRAH tASC Column Address Set-Up Time tCAH Column Address Hold Time tAR Column Address Hold Time Referenced to RAS 95 tRCS Read Command Set-Up Time 0 tRCH Read Command Hold Time 0 tWCH Write Command Hold Time tWCR tRSH tCAS 120 10,000 100 200 135 100 10,000 20 50 ns 150 10,000 250 10,000 ns 10,000 ns ns 165 135 10,000 25 65 165 9,11 35 85 9 -20 Row Address Set-Up Time 0 0 0 ns Row Address Hold Time 20 25 35 ns -10 -10 -10 ns 45 55 75 ns 120 160 ns 0 0 ns 0 0 ns 45 55 75 ns Write Command Hold Time Referenced to RAS 95 120 160 ns twP Write Command Pulse Width 45 55 75 ns tRWL Write Command to RAS Lead Time 60 80 100 ns tCWL Write Command to CAS Lead Time 60 80- 100 ns tDS Data-In Set-Up Time 0 0 0 ns 13,14 tDH Data-In Hold Time 45 55 75 ns 13,14 tDHR Data-In Hold Time Referenced to RAS 95 120 160 ns tcp CAS Precharge Time (for Page Mode 60 80 100 ns - -20 ns -20 ns Cycle Only) tREF Refresh Period twcs WE to CAS Set-Up Time tCWD CAS to WE - - tRWD Delay RAS to WE Delay 2 2 2 -40 ms -40 -40 70 95 125 ns 15 120 160 200 ns 15 ns 14 Note 7: The specifications for tRC(MIN) and tRWC(MIN) are used only to indicate cycle time at which proper operation over the full temperature range is guaranteed. Note 8: Transition times are measured between VIHC or VIH and V,L' Timing measurements are made between V'HC(M'N) or VIH(MIN) and VIL(MAX), and assume tT = 5 ns. Note 9: Assumes row-limited access, i.e_, tRCD :S. tRCD(MAX). If this condition is not satisfied, then note 10 applies_ Note 10: Assumes column-limited access, Le., tRCD > tRCD(MAXI. Note 11: Equivalent load is 2 standard TTL inputs plus 100 pF. Note 12: CAS going high disables the Data Output. tOFF is the delay to the high impedance state. Note 13: These parameters are referenced to the negative edge of CAS in an early-write cycle and to the negative edge of WE in a Read-ModifyWrite cycle. (See Note 14 belowl. Note 14: If twcs ~ tWCS(MINl, the Data Output is guaranteed to remain in the high impedance state for the duration of the cycle. This is the "early-write" cycle. Note 16: If tCWD ~ tCWD(MIN) and tRWD ~ tRWO(MIN), the Data Output will contain the original data in the selected cell. This is the ReadModify-Write cycle. If either of these conditions is not satisfied, the output will be indeterminate unless the early-write condition of Note 12 is met. 1-63 Switching Time Waveforms Read Cycle WE VIHCVI L- DD VOHVOL - """"""'"''"''4''''''''~ -----------OPEN------------ Write C.ycle (Early Write) rn VIHC- rn VIHC- AD-A6 W£ DI VIL- VIL- VIHVIL- VIHCVIL- VIHVIL - DO VOH- DPEN VOL - 1·64 VALID DATA Switching Time Waveforms (Continued) Read-Write Cycle, Read-Modify-Write Cycle lIAS CAS VIHCVll- VIHC Vll- AD-A6 VIHVll- WI DO VIHC Vll- VOH VOl- RAS-Only Refresh Cycle m VIHC- VIl- . tASR VIHAD-A6 . '"'""'''"'~;..:.:.:....., . Vil - DO VDHVOl- Note. CAS -----------------DPEN----------------- = VIHC, WE = don't care 1-65 I Switching Time Waveforms (Continued) In :E :E Page Mode Read Cycle VIH- AD-A6 VIL- VOH- 00 VOL- Page Mode Write Cycle VIH01 VIL _ ~~~~;1 1"'......-+----1 Note. Standard part not tested for page mode 1-66 ~National NMOS RAMs ZIIII Semiconductor PREVIEW NMC4164t 65,536-Bit (65,536 x 1) Dynamic RAM General Description Features The NMC4164 is a 65,536 x 1 bit dynamic RAM. It features a multiplexed address input with separate row and column strobes. • Single 5V ± 10% supply • 256 cycle 4 ms refresh • Access times: NMC4164-1 NMC4164-2 The NMC4164 must be refreshed every 4 ms. This can be accomplished by performing any cycle which brings the Row Address Strobe actlv'e including an RAS (RE)-only cycle at each of the 256 row addresses. N-channel triple-polysilicon gate technology, developed by National, is used in the manufacture of the NMC4164. This process combines high density and performance with reliability. 120ns 150ns 250mW • • • • Lowpower TIL compatible: all inputs and output Gated CE - noncritical timing Read, write, read-modify-write and RAS (RE)-onIY refresh cycles • • • • • Buried refresh option Page mode operation Industry standard 16-pin configuration TRI-STATE@ output On-chip substrate bias generator Block and Connection Diagrams * * 16k ARRAY 16k ARRAY 1 OF 256 ROW DEC 128 SENSE AMPLIFIERS +--(~I) 128 SENSE AMPLIFIERS 16k ARRAY 16k ARRAY 1 OF 128 COL DECOOER 1 OF 128 COL DECODER AD A7 00 8UFFER ~r~ Dual·ln·Llne Package Pin Names Order Number NMC4164J·X· See NS Package J16A Order Number NMC4164N·X· See NS Package N16A TOP VIEW tSee the MST™ Program page 3. •• Symbols In parentheses are proposed Industry standard. * X = Speed selection 1-67 RAS(RE) Row Address Strobe CAS(CE) Column Address Strobe WErN) AO-A? Write Enable 01(0) Data Input 00(0) vec Data Output Power(5V) VSS Ground Address Inputs Absolute Maximum Ratings (Note 1) Operating Temperature Range Storage Temperature Power Dissipation O·Cto + 70·C - 65 ·C to + 150 ·C 1W Voltage on Any Pin Relative to VSS Lead Temperature (Soldering, 10 seconds) -1.0to +7V 300·C Recommended DC Operating Conditions Symbol TA Parameter Min Max Units Notes 0 70 ·C 4.5 0 5.5 0 V V 2,3 2,3 Input High Voltage, All Inputs 2.4 7.0 V 2 Input Low Voltage, All Inputs -1.0 0.8 V 2 Ambient Temperature VCC VSS Supply Voltages VIH VIL DC Electrical Characteristics Over the range of Recommended DC Operating Conditions unless otherwise noted Symbol ICC1 Parameter Min Operating Current Average Power Supply Operating Current (RE, BE Cycling; TRELREL TRELREL Min) = Max Units Notes 45 mA 4 4 mA ICC2 Standby Current Power Supply Standby Current (RE a:= High Impedance) ICC3 Refresh Current . Average Power Supply Current, Refresh Mode BE Cycling, BE VIH; TRELREL TRELREL Min) 35 mA 4 Page Mode Current Average Power Supply Current, Page Mode (RE VIL, BE Cycling; TCELCEL 100 ns) 37 mA 4 -10 10 p.A -10 10 p.A = ICC4 = = II 10Z =VIH, = Input Leakage Input Leakage Current, Any Input (OVsVIN s7V, All Other Pins not Under Test =OV) Output Leakage Output Leakage Current (a is Disabled, OV s VOUT s 5.5V) Output Levels = - 5 mA) =4;2 mA) VOH Output High Voltage (lOUT VOL Output Low Voltage (lOUT 2.4 V V 0.4 Capacitance Symbol Max Units Notes CI Input Capacitance AO-A6, D Parameter 5 pF 5 CC Input Capacitance RE, CE, W 10 pF 5 ca· Output Capacitance, 7 pF 5 a Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Recommended DC Operating Conditions" provides con· ditions for actual device operation. Note 2: All voltages referenced to VSS. When applying voltages to the device, VCC should never be 1.0V more negative than VSS. Note 3: Several cycles are required after power-up before proper device operation Is achieved. Any 8 RE cycles are adequate for this purpose. Note 4: ICC1,ICC3 and ICC4 depend on cycle rate. Note 5: Capacitance measured with Boonton Meter or effective capacitance calculated from the equation C = IAt/AV. Capacitance is guaranteed by periodic testing. 1·68 Read Cycle AC Electrical Characteristics (Notes 1,2,3 and 4) Symbol Alternate Standard Parameter NMC4164·1 Max Min NMC4164·2 Max Min 305 Units tRC TRELREL Random Read Cycle Time 270 tRAS TRELREH RAS Pulse Width 140 tRP TREHREL RAS Precharge Time 120 tr TH1H2 Rise Time 3 50 3 50 ns tr TL2L1 Fall Time 3 50 3 50 ns tRCO TRELCEL RAS to CAS Delay Time 25 55 30 60 ns TCELREH RAS Hold Time 85 135 tRSH 10,000 ns 165 10,000 ns 130 ns 100 150 tCSH' TRELCEH CAS Hold Time TCELCEH CAS Pulse Width 80 tcp TCEHCEL CAS Precharge Time 70 80 ns tAsR TAVREL Row Address Set·Up Time 0 0 ns 20 25 ns 0 0 ns 100 ns 10,000 ns tRAH TRELAX Row Address Hold Time tASC TAVCEL Column Address Set-Up Time tCAH TCELAX Column Address Hold Time 25 30 ns tAR TRELA(C)X Column Address Hold Time Referenced to RAS 80 90 ns tRCS TWHCEL Read Command Set-Up Time 0 0 ns tRCH TCEHWX Read Command Hold Time 0 0 tRAC TRELQV Access Time from RAS tCAC TCELQV Access Time from CAS tOFF TCEHQZ Output Buffer Turn-Off Delay 120 65 0 50 0 5 ns tCAS 10,000 Notes 6 7 ns 8 150 ns 9, 10 90 ns 10, 11 55 ns 12 Read Cycle Waveforms· _~IJI;. II ROW VIHADDRESS STROBE VIL- 'RAS IIHtLHtHI 'AR 'RP IlntnntL, HtLAI~IXI 0 3I\,G) G)j ~ tTLZL1)- \I COLUMN VIHADDRESS STROBE VIL- 'ASR ~ (TRE~RA~ ADDRESSES VIH VIL - IltlElRElr ~ ADDRE:;S ~ - -I 'CSH HtL~tHI \I - 'RSH ~tLHtHI 'CAS IrAI (TCElAXI Je f ~::~~MN '\c 'RCH (TCEHWX: '~t (TWHC WRITEVIH-~ ENABLE VIL ~ F4 J ~ 'CAC \I DATA VOHOUT VDL- " ~aHIHZ) ~ IIUL~tHI f-;f1e, :El) '0 lI~tLUVI 'RAC HtLUVI (TCE~o;k-j It Hi-Z * Symbols In parentheses are proposed industry standard. 1-69 VALID DATA \. ¥- Write Cycle AC Electrical Characteristics Symbol Alternate Parameter Standard NMC4164·1 NMC4164·2 Min Min Max Max 305 Units twc TRELREL Random Write Cycle Time 270 tRM TRELREH RAS Pulse Width 140 tRP TREHREL RAS Precharge Time 120 tT TH1H2 Rise Time 3 50 3 50 ns tT TL2L1 Fall 'rime 3 50 3 50 ns tRCO TRELCEL RAS to CAS Delay Time 25 55 30 60 ns tRSH TCELREH RAS Hold Time 85 100 tCSH TRELCEH CAS Hold Time 135 150 tCAS TCELCEH CAS Pulse Width 80 tcp TCEHCEL CAS Precharge Time 70 80 ns tASR TAVREL Row Address Set·Up Time 0 0 ns 2b 25 ns 0 0 ns 10,000 165 ns 10,000 130 10,000 100 ns ns ns ns 10,000 ns tRAH TRELAX Row Address Hold Time tAsC TAVCEL Column Address Set·Up Time tCAH TCELAX Column Address Hold Time 25 30· ns tAR TRELA(C)X Column Address Hold Time Referenced toRAS 80 90 ns twcs TWLCEL WE to CAS Set·Up Time tWCH TCELWX Write Command Hold Time twp TWLWH Write Command Pulse Width tCWL TWLCEH Write Command to CAS Lead Time tRwL TWLREH Write Command to RAS Lead Time 90 100 ns tWCR TRELWX Write Command Hold Time Referenced to RAS 90 100 ns tos TDVCEL Data In Set·Up Time 0 0 ns tOH TCELDX Data In Hold Time 35 40 ns tOHR TRELDX Data In Hold Time Referenced to RAS 90 100 ns 0 0 ns 35 45 ns 40 45 ns 85 95 ns Write Cycle (Early-Write) Waveforms· (Note 13) 'AR "ntLA,.,., ROW VIHADDRESS STRDBE VIL- CDLUMN VIHADDRESS STROBE VIL'ASR, ''',"HtL'l VIHVIL- ..L ..'.R_A.H :j I "HtLAX'1 'RSH "."HEHI _'~S~ I"HtW n, ~ r-:::e, :!.Ll 'CAS ".tL.tn, r 'CAH ".tLAX, ... • A~~~:~~S ADDRES 'wcs 'WCH \I.tlWxI 'eWL 'Y/p ,"'L"HI WRITEVIH-~ 'RWL ,,"lHtHI 'Y/eR ntL"AI DATA VIHIN VIL- 'RP "ntnntL/ 1/ ITWleUI ENABLE VIL- L I ~ 'RCD "ntL.tL, ADDRESSES 'RC "ntLntL, 'F AS lint .HtHI I~~~'~ (TDV;~~I- -;-DHR ,ntLU., 'DH "UlUXI DATA VOHDUT VOL- Hi·Z *Symbols In parentheses are proposed industry standard. 1-70 Notes 6 13 z Read-Write and Read-Modify-Write Cycle AC Electrical Characteristics Symbol Alternate Standard NMC4164·1 Parameter Min Read-Write Cycle Time 345 TRELREH RAS Pulse Width 215 TREHREL RAS Precharge Time 120 NMC4164·2 Max Min Max 3: Units tRWC TRELREL (RIW) tRAS tRP tT TH1H2 Rise Time 3 50 3 50 ns tT TL2L1 Fall Time 3 50 3 50 ns tRCO TRELCEL RAS to CAS Delay Time 25 55 30 60 ns tRSH TCELREH RAS Hold Time 85 tCSH TRELCEH CAS Hold Time 135 tCAS TCELCEH CAS Pulse Width 160 tcp TCEHCEL CAS Precharge Time tASR TAVREL Row Address Set·Up Time 385 10,000 245 10,000 Notes ns 14 ns 14 ns 130 100 5 ns 150 ns ns 14 70 80 ns 6 0 0 ns 20 25 ns 0 0 ns 10,000 185 10,000 tRAH TRELAX Row Address Hold Time tASC TAVCEL Column Address Set·Up Time tCAH TCELAX Column Address Hold Time 25 30 ns tAR TRELA(C)X Column Address Hold Time Referenced toRAS 80 90 ns tRCS TWHCEL Read Command Set·Up Time 0 0 ns twp TWLWH Write Command Pulse Width 40 45 ns tcwL TWLCEH Write Command to CAS Lead Time 85 95 ns tRWL TWLREH Write Command to RAS Lead Time 90 100 ns tRWO TRELWL RAS to WE Delay 120 150 ns tcwo TCELWL CAS to WE Delay 65 90 ns tos TDVWL Data In Set·up Time 0 0 ns 35 13 tOH TWLDX Data In Hold Time tRAC TRELQV Access Time from RAS 120 150 ns 9,10 tCAC TCELQV Access Time from CAS 65 90 ns 10,11 tOFF TCEHQZ Output Buffer Turn·Off Delay 55 ns 12 0 40 7 50 0 ns Read-Write and Read-Modify-Write Waveforms· f--------------ITREL'ttt.C{R/WIl----------------l 'RAS (TRELREH) ROW ADDRESS STROBE fg~~:s~ STROBE ADDRESSES WRITE ENABLE VIHVIL- VIHVIL- VIHVIL- VIH- ~WWX'l.;mWW1' VIL ~~~~~~~ D~~~ ~~: DATA IN =___4-_ _ _ __ VIHVIL- * Symbols In parentheses are proposed industry standard. 1-71 0 ..... ~ 0') ~ RAS·Only Refresh and Buried Refresh AC Electrical Characteristics Symbol Alternate Standard NMC4164·1 Min Max Parameter NMC4164·2 Min Max Units TRELREL Random Read or Write Cycle Time 270 TRELREH RAS Pulse Width 140 TREHREL RAS Precharge Time 120 TH1H2 Rise Time 3 50 3 50 ns TL2L1 Fall Time 3 50 3 50 ns 55 30 60 TRELCEL RAS to CAS Delay Time 25 TCELREH RAS Hold Time 85 135 305 10,000 165 ns 10,000 ns ns 130 100 ns TRELCEH CAS Hold Time tCAS TCELCEH CAS Pulse Width 80 tcp TCEHCEL CAS Precharge Time 70 80 ns TAVREL Row Address Set·Up Time o o ns 20 25 ns o o ns ns 150 100 10,00·0 ns TRELAX Row Address Hold Time TAVCEL Column Address Set-Up Time TCELAX Column Address Hold Time 25 30 ns TRELA(C)X Column Address Hold Time Referenced to RAS 80 90 ns o o o o ns TWHCEL Read Command Set-Up Time TCEHWX Read Command Hold Time TRELQV Access Time from RAS 120 tCAC TCELQV Access Time from CAS tOFF TCEHQZ Output Buffer Turn-Off Delay 50 o 6 7 ns 8 ns 9,10 90 ns 10,11 55 ns 12 150 65 o 5 ns tCSH 10,000 RAS·Only Refresh Waveforms· (CAS=VIH, WE = don't care) f-----------(TR~~~ELI----------lJI tRAS (TRELREHI I tRP (TREHRELI I ROW VIHADDRESS STROBE VIL- D~~~ ~~:= -------_--------H;.Z----------------- Buried Refresh Waveforms· * Symbols in parentheses are proposed industry standard. 1·72 Notes Page Mode Read Cycle AC Electrical Characteristics t Symbol Alternate Parameter Standard tpc TRELREL tRAS TRELREH . Page Mode Cycle Time NMC4164·1 NMC4164·2 Min Max Min 10,000 510 235 RAS Pulse Width 445 120 Units Max 270 10,000 ns 14 ns 14 tRP TREHREL RAS Precharge Time tr TH1H2 Rise Time 3 50 3 50 ns tr TL2L1 Fall.Time 3 50 3 50 ns tRCO TRELCEL RAS to CAS Delay Time 25 55 30 60 ns tRSH TCELREH RAS Hold Time 85 tCSH TRELCEH CAS Hold Time 135 tCAS TCELCEH CAS Pulse Width 155 tcp TCEHCEL CAS Precharge Time, Page Mode tASR TAVREL Row Address Set·Up Time tRAH TRELAX Row Address Hold Time tASC TAVCEL Column Address Set·Up Time tCAH TCELAX Column Address Hold Time tAR TRELA(C)X Column Address Hold Time Referenced to RAS 130 ns 100 5 ns 150 10,000 Notes 180 10,000 ns 13 ns 14 6 70 80 ns 0 0 ns 20 25 ns 0 0 ns 25' 30 ns 80 90 ns tRCS TWHCEL Read Command Set·Up Time 0 0 ns twp TWLWH Write Command Pulse Width 40 45 ns tCWL TWLCEH Write Command to CAS Lead Time 85 95 ns tRWL TWLREH Write Command to RAS Lead Time 90 100 ns tRWO TRELWL RAS to WE Delay 120 150 ns tcwp TCELWL CAS to WE Delay 65 90 ns 0 0 ns 35 40 7 13 tos TDVWL Data In Set·Up Time tOH TWLDX Data In Hold Time tRAC TRELQV Access Time from RAS 120 150 ns 9, 10 tCAC TCELQV Access Time from CAS 65 90 ns 10, 11 tOFF TCEHQZ Output Buffer Turn·Off Delay 55 ns 12 50 0 ns 0 Page Mode Read Cycle Waveforms* r(TR~~~EL)1 'RAS (TRElREH) . - (TRE'tA~C)X)ROW VIH- ~ ADDRESS STROBE VIL- (TR':t~El) - 'CSH (TRElCEH) COLUMN VIHADDRESS STROBE VIL -(TRETA\~- t-- ~ ".'L." (TCElCEH) e-.~' i\ 1- !~~~I- I(TnAVC~l) '-- ~ ~ iRAC -(T~mV' [ITRElnV) DATA VOHOUT VOL- 'CAH 1- (TCElAX) LAX) I It-- ~:~I ~lHHnZ) (TWHCEl) (TCE:rJ~)- WRITE VIHENABLE Vll- t Standard part not tested for page mode. * Symbols In parentheses are proposed Industry standard. r-.1 ,_ (TCElnV) "-- ~ 'RC~-j _ ~~l jt .~ ~~.C_ COL r-~ r----, 'CAC _ 'RS~ '""Lntn, ~ \ I--- ~~~ ii (max) (column limited timing). , Note 12: TCEHOZ Is measured to lOUT s IO(L). Note 13: The placement of the negative going edge of Wwith respect to the negative edge of CAS determines the type of Write cycle. I! TWLCEL is greater than o ns (negative edge of W before negative edge of CAS) the memory is In an Early-Write cycle and Data Out is TRI·STATE. If TCELWL is greater than TCELWL(min) (negative edge of Wcoincident with or after Data Out valid) the memory Is In a Read-Write or Read-Modify·Write cycle and Data Out is the original contents of the selected cell. I! Wgoes LOW between these two times the cycle Is a Write cycle and Data Out is Indeterminate. Note 14: (RIW) Indicates a Read-Write or Read-Modify-Wrlte cycle parameter. 1-76 National ~ Semiconductor ~ MOS RAMs ADVANCE INFORMATION NMC5295 t 16,384-Bit (16,384 x 1) Dynamic RAM en Features The NMC5295 is a 16,384 x 1 bit dynamic RAM. It features a multiplexed address input with separate row and column strobes. This added flexibility allows the NMC5295 to be used in page mode operation. • • • • • • • Single 5V ± 10% supply 128 cycle, 2 ms refresh Access times: 80 ns, 100 ns, 120 ns Low power: 200 mW max TTL compatible: all inputs and output Gated CAS (CE)- non-critical timing Read, write, read-modify-write and RAS (RE)-onIY refresh cycles • • • • • Buried refresh option Page mode operation Industry standard 16-pin configuration TRI-STATE~) output On-chip substrate bias generator N-channel triple-polysllicon gate technology, developed by National, is used in the manufacture of the NMC5295. This process combines high density and performance with reliability. Greater system densities are achievable by the use of a 16-pin dual-in-iine package for the NMC5295. Block and Connection Diagrams * * W(RE)----OI ROW TIMING vcc WRITE TIMING vss 11 ROW LATCH AIAD - ] A2 - 01 +--01(0) LATCH ROW DEC A3 - 8k ARRAY A4 A5 A6- COL LATCH 128 SENSE AMPS AND COL DECODER ROW DEC 8k ARRAY CAS (eE) - - - - Q COLUMN +-+ 1/0 CONTROL & BUFFER TIMING Dual-In-Llne Package 00(0) NC Pin Names 15 CAS(eE) 01 (D) 14 00 (0) WE(W) 13 m(RE) 12 AD II A2 10 AI 9 VCC Order Number NMC5295J-X· See NS Package J16A A6 A3 Order Number NMC5295N-X· See NS Package N16A A4 A5 NC RAS(RE) ~AS(CE) Row Address Strobe 'iiE(W) Write Enable AO-A6 Address Inputs 01(0) Data Input OO(Q) Data Output Column Address Strobe VCC Power (5V) VSS Ground tSee the MST™ Program, page 3. ... Symbols in parentheses are proposed Industry standard. TOP VIEW * X = Speed selection 1-77 en I\) CD General Description The NMC5295 must be refreshed every 2 ms. This can be accomplished by performing any cycle which brings the Row Address Strobe active including RAS (RE)-only cycle at each of the 128 row addresses. z s: (') II) m C\I II) o :E z Absolute Maximum Ratings (Note 1) \ O°Cto + 70°C - 65°C to + 150°C 1W Operating Temperature Range Storage Temperature Power Dissipation -1.0to + 7V 300°C Voltage on Any Pin Relative to VSS Lead Temperature (Soldering, 10 seconds) Recommended DC Operating Conditions Symbol Parameter TA Min Ambient Temperature vec Supply Voltages VSS Max Units Notes 0 70 °C 4.5 0 5.5 0 V V 2,3 2,3 VIH Input High Voltage, All Inputs 2.4 7.0 V 2 VIL Input Low Voltage, All Inputs -1.0 0.8 V 2 DC Electrical Characteristics Over the range of Recommended DC Operating Conditions unless otherwise noted. Symbol Parameter ICC1 Max Units Notes Operating Current Average Power Supply Operating Current CE Cycling; TRELREL TRELREL Min) 35 mA 4 Standby Current Power Supply Standby Current Q High Impedance) 4 mA Refresh Current Average Power Supply Current, Refresh Mode (RE Cycling, CE VIH; TRELREL TRELREL Min) .27 mA 4 Page Mode Current Average Power Supply Current, Page Mode (RE VIL, CE Cycling; TCELCEL 100 ns) 27 mA 4 -10 10 p.A -10 10 p.A (RE, ICC2 = = ICC3 = ICC4 Min (RE =VIH, = = = Input Leakage Input Leakage Current, Any Input (OV:5 VI N:5 7V, All Other Pins not Under Test II =OV) Output Leakage Output Leakage Current (Q is Disabled, OV :5 VOUT :5 5.5V) IOZ Output Levels = - 5 mA) =4.2 mA) VOH Output High Voltage (lOUT VOL Output Low Voltage (lOUT 2.4 V 0.4 V Capacitance Symbol Parameter Max Units Notes CI Input Capacitance AO-A6, D 5 pF 5 CC Input Capacitance RE, CE, W 10 pF 5 CQ Output Capacitance, Q 7 pF 5 Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Recommended DC Operating Conditions" provides conditions for actual device operation. Note 2: All voltages referenced to VSS. When applying voltage to the device, VCC should never be 1.0V more negative than VSS. Note 3: Several cycles are required after power-up before proper device operation is aChieved. Any 8 RE cycles are adequate for this purpose. Note 4: ICC1,ICC3 and ICC4 depend on cycle rate. Note 5: CapaCitance measured with Boonton Meter or effective capacitance calculated fro,:" the equation C = 11l.WN. Capacitance is guaranteed by periodic testing. 1-78 z Read Cycle AC Electrical Characteristics (Notes 1,2,3 and 4) Symbol Alternate Standard Parameter 3: NMC5295·2 Min Max NMC5295·3 Min Max NMC5295·4 Min Max 200 235 270 t AC TRELREL Random Read Cycle Time t AAS TRELREH RAS Pulse Width 95 tAP TREHREL RAS Precharge Time 95 10,000 115 10,000 110 Units 10,000 ns ns tr TH1H2 Rise Time 3 50 3 50 3 50 tT TL2L1 Fall Time 3 50 3 50 3 50 ns tACO TRELCEL RAS to CAS Delay Time 15 40 20 50 25 55 ns t ASH TCELREH RAS Hold Time 55 tCSH TRELCEH CAS Hold Time 90 tCAS TCELCEH CAS Pulse Width 50 tcp TCEHCEL CAS Precharge Time 50 60 70 ns t ASA TAVREL Row Address Set·Up Time 0 0 0 ns tAAH TRELAX 10 15 20 ns t ASC TAVCEL Column Address Set·Up Time 0 0 0 ns tCAH TCELAX Column Address Hold Time 15 20 25 ns tAA TRELA(C)X Column Address Hold Time Referenced to RAS 55 70 80 ns tACS TWHCEL Read Command Set·Up Time 0 0 0 ns 0 . Row Address Hold Time tACH TCEHWX Read Command Hold Time t AAC TRELQV Access Time from RAS 60 t CAC TCELQV Access Time from CAS TCEHQZ Output Buffer Turn·Off Delay 10,000 0 40 10,000 6 7 ns 8 ns 9, 10 65 ns 10, 11 50 ns 12 50 45 ns 120 0 0 5 ns 80 100 40 0 ns ns 135 110 10,000 80 tOFF 85 0 Read Cycle Waveforms* tRAS (TRElREH) tAR (TRElA(C)X) ROW VIHADORESS STROBE VIL- 0' 1TL2~r)~ COLUMN VIHADDRESS STROBE VIL- I::- (TRtrC~El) tASR (lAVREl) ~ - J ROW ADDRESS tCSH (TRELCEH) ~ ~;t1~~E )e tRr.~ (TWHCH) WRITE V I H - " ENABLE VIL ~ nH:~~El)1 CD; 11 "kCD ~H (TRELA:O ADDRESSES VIH VIL- tRC (TRHREL) tRSH (TCELREH) tCAS (TCElCEH) I--- :lH1H2) ~ I~.u , (TCHAX) ~ CliLUMN AIIDRESS I \. J tRCH. (TCEHWX) I ~ tCAC (TCElQV) tRAC 1tLUV DATA VOHOUT VDL- - , 0 ~ E~~kl-j \ (TCE VALID DATA Hi·Z * Symbols In parentheses are proposed industry standard. 1-79 I- o C1'I I\) <0 C1'I ns 140 120 65 Notes Write Cycle AC Electrical Characteristics Symbol Alternate Parameter Standard (Notes 1,2,3 and 4) NMC5295-2 Min Max NMC5295-3 Min Max NMC5295-4 Min Max 200 235 270 twc TRELREL Random Write Cycle Time tRAS TRELREH RAS Pulse Width 95 95 10,000 115 10,000 140 Units ns 10,000 ns tRP TREHREL RAS Precharge Time tT TH1H2 Rise Time 3 50 3 50 3 50 ns tT TL2L1 Fall Time 3 50 3 50 3 50 ns tRCO TRELCEL RAS to CAS Delay Time 15 40 20 50 25 55 ns t RSH TCELREH RAS Hold Time 55 65 85 ns tCSH TRELCEH CAS Hold Time 90 110 135 ns tCAS TCELCEH CAS Pulse Width 50 tcp TCEHCEL CAS Precharge Time 50 60 70 ns t ASR TAVREL Row Address Set-Up Time 0 0 0 ns 10 15 20 ns 0 0 0 ns tRAH TRELAX Row Address Hold Time tAse TAVCEL Column Address Set-Up Time 110 10,000 120 10,000 60 80 ns 10,000 ns tCAH TCELAX Column Address Hold Time 15 20 25 ns tAR TRELA(C)X Column Address Hold Time Referenced to RAS 55 70 80 ns twcs TWLCEL WE to CAS Set-Up Time t WCH TCELWX Write Command Hold Time twp TWLWH Write Command Pulse Width 35 35 40 ns tCWL TWLCEH Write Command to CAS Lead Time 55 65 85 ns tRWL TWLREH Write Command to RAS Lead Time 60 70 90 ns tWCR TRELWX Write Command Hold Time Referenced to RAS 70 80 90 ns tos TDVCEL Data In Set-Up Time 0 0 0 ns tOH TCELDX Data In Hold Time 30 30 30 ns tOHR TRELDX Data in Hold Time Referenced to RAS 70 80 90 ns Write Cycle (Early-Write) Waveforms· 0 0 0 ns 30 30 35 ns (Note 13) 'lAS 1t"1 'RC IIRELRELI L II"' 'AR. nRELAI~IX' ROW VIHADDRESS STROBE VIL- • I COLUMN VIHADDRESS STROBE VIL- VIHVIL- ENABLE VIL- DATA VIHIN VIL- n, 'CAS " .... tn, W!I' 'CAH IILtLA', A~~~::~S ADORE! WRITEV'H-~ 'RSH IILtL"tH, 'CSH "no.., -;::e, :~LI --~_h~RR~~~ 'ASR, IIAY"tL'1 ADDRESSES 'RP "ntnntL' V 'RCD "nt"'" • 'WCS ITWLCEL' -'WCH I'GELWx) 'CWL 'RWL ITWLREH, .. 'WCR " ,," IVAI I DATA , (TDVC'~~I-l ~DHR 'DH IIGHUX) II "tLUX) DATA VDHOUT VOL- ...- ~ 'WP II"L"H, Hi·Z * Symbols In parentheses are proposed Industry standard. 1-80 Notes 6 13 z Read-Write and Read-Modify-Write Cycle AC Electrical Characteristics 3: (Notes 1, 2, 3 and 4) (") Symbol Standard Alternate tAwc TRELREL Min Read-Write Cycle Time 250 RAS Pulse Width 145 NMC5295·4 NMC5295·3 Max NMC5295·2 Parameter Max Min Min 295 345 Units Max Notes ns 14 ns 14 (R/W) tAAW TRELREH (RIW) 10,000 175 10,000 215 10,000 120 110 TREHREL RAS Precharge Time TH1H2 Rise Time 3 50 3 50 3 50 tT TL2L1 Fall Time 3 50 3 50 3 50 ns tACO TRELCEL RAS to CAS Delay Time 15 40 20 50 25 55 ns t ASH TCELREH RAS Hold Time 55 tCSH TRELCEH CAS Hold Time tCRW TCELCEH (RIW) CAS Pulse Width 65 tcp TCEHCEL CAS Precharge Time t ASA TAVREL Row Address Set·Up Time 125 10,000 ns 135 160 10,000 ns 10,000 ns 14 6 50 60 70 ns a 0 a ns 10 15 20 ns a 0 0 ns tAAH TRELAX Row Address Hold Time t ASC TAVCEL Column Address Set-Up Time tCAH TCELAX Column Address Hold Time 15 20 25 ns tAA TRELA(C)X Column Address Hold Time Referenced to RAS 55 70 80 ns tACS TWHCEL Read Command Set·Up Time 0 0 a ns twp TWLWH Write Command Pulse Width 35 35 40 ns tCWL TWLCEH Write Command to CAS Lead Time 55 65 85 ns t RWL TWLREH Write Command to RAS Lead Time 60 70 90 ns tAwo TRELWL RAS to WE Delay 80 100 120 ns t cwo TCELWL CAS to WE Delay 40 50 65 ns tos TDVWL Data In Set-Up Time toH TWLDX Data In Hold Time 5 ns 85 110 90 105 a 0 a ns 30 30 35 ns 7 13 t AAC TRELQV Access Time from RAS 80 100 120 ns 9,10 t CAC TCELQV Access Time from CAS 40 50 65 ns 10,11 tOFF TCEHQZ Output Buffer Turn·Off Delay 50 ns 12 40 0 0 a 45 Read-Write and Read-Modify-Write Waveforms· 'Rwe ,TRELRU (RIWII 'RAS ITRELREH) 'AR (TRELA(C)X) I-(TR~~~EL)- ROW VIH- - - - - . ADDRESS 1\ STROBE VIL- It 'RCO (TRELCEL) 'CSH 'RSH ITCELREHI (IREl~EHI COLUMN ADDRESS VIHSTRDBE VIL- ~ ~ (~A;~REL) ADDRESSES VIHVIL- ApDRESS 'RAH (TRELAX) ~ (TWHCE"~-j 'CAS ITCELCEH) ~~ hT~~~~X)- H:leCEL) ~~~~~S~ 'RWD (TRELWL) f- ~ leWD (TCELWL) WRITE VIH-~ ~~ ENABLE VIL 'CAC (TCELQV) ,~ I~ (~~~H) =J DATA VOHDUT VDL- DATA 'RAC (TRELQV) ~TW"LilX) DATA VIHIN VIL- DATA * Symbols in parentheses are proposed industry standard. 1-81 J.- en ns tRP tT 95 en N CO - HQZ) \. Y. III Lt) ~ Lt) RAS·Only Refresh and Buried Refresh AC Electrical Characteristics o :E z Units Notes ns ns ns ns ns ns 5 ns ns ns 15 ns 6 ns ns ns ns ns 7 ns D~~~ ~~~::: - - - - - - - - - - - - - - - - H I - Z - - - - - - - - - - - '_______ Buried Refresh' Waveforms * ROW VIH- ADDRESS STROBE VIL- It•• ITREHREL) r-t •• r 7~~------VALI~D:'~I--------~~~---- -,~ -:~~hQVI II HtL.tLJ • Symbols In parentheses are proposed Industry standard. 1-82 ns 8 ns 9,10 ns 10,11 ns 12 z s: o Page Mode Read Cycle AC Electrical Characteristicst (Notes 1,2,3 and 4) Symbol Alternate Standard Parameter NMC5295·2 Max Min NMC5295·3 Max Min NMC5295·4 Min Max 130 160 tpc TRELREL Page Mode Cycle Time 110 205 300 10,000 ns t RAS TRELREH RAS Pulse Width TREHREL RAS Precharge Time tT TH1H2 Rise Time 3 .50 3 50 3 50 ns tT TL2L1 Fall Time 3 50 3 50 3 50 ns tRCO TRELCEL RAS to CAS Delay Time 15 40 20 50 25 55 tRSH TCELREH RAS Hold Time 55 tCSH TRELCEH CAS Hold Time 90 tCAS TCELCEH CAS Pulse Width 50 tcp TCEHCEL CAS Precharge Time 50 60 70 ns t ASR TAVREL Row Address Set-Up Time 0 0 0 ns tRAH TRELAX Row Address Hold Time 10 15 20 ns t ASC TAVCEL Column Address Set-Up Time 0 0 0 ns tCAH TCELAX Column Address Hold Time 15 20 25 ns tAR TRELA(C)X Column Address Hold Time Referenced to RAS 55 70 80 ns tRCS TWHCEL Read Command Set-Up Time 0 0 tRCH TCEHWX Read Command Hold Time 0 0 tRAC TRELQV Access Time from RAS t CAC TCELQV Access Time from CAS tOFF TCEHQZ Output Buffer Turn-Off Delay 10,000 245 60 80 0 0 45 ns ns 8 ns 9, 10 65 ns 10,11 50 ns 12 ROW VIHADDRESS STROBE VIL- t ~(T~rtCEl) IPC ICSH tTRH~EHI -(lRE~R:x1- VIHVIL- 1- - "U'l (TCELCEH) (~ "j ICAH I- ~ .ICAH f-o~ IIlD -oJ ~, iRAC II HtLUVI ICAC (TCELQV) DATA VOHDUT VDL- , I~ y~ IRSt " ... , tn, ;;~~~"' ~~~ ~~~ ~ iC~~ ~ (lAVREL) ADDRESSES r-- ICAS , .... tn, ~ COLUMN VIHADDRESS STROBE VIL I(TR:~~EL) .1 IRAS (TRELREH) IIH'LAI~IXI ----, IRCSd (TWHCEL) ~ ~~:~i 'lH~(TCElQV) - ~:~tlHQZ) (lCElQV) ~K~WHQZ) ....... J \-U IRCH (TCEHWX')- WRITEVIH-~ ENABLE VIL- ~CAC ----J ICAC t-1 \..-....f ~~~CEl) - W t Standard part not tested for page mode. * Symbols in parentheses are proposed industry standard. 1-83 7 120 Page Mode Read Cycle Waveforms * ,IAR 6 ns 0 50 40 10,000 ° 100 40 0 80 10,000 5 ns 135 110 ns ns 85 65 10,000 ns 120 110 r,IRCH (TCEHWX) en I\) CD en ns tRP 95 10,000 Units Notes Lt) CD C\I Lt) o :E z Page Mode Write Cycle AC Electrical Characteristicst Symbol Alternate Standard twcs Parameter NMC5295-2 Min NMC5295-3 Max Min 10,000 245 NMC5295-4 Max Min 10,000 300 Max Units TRELREL Page Mode Cycle Time 110 TRELREH RAS Pulse Width 205 TREHREL RAS Precharge Time TH1H2 Rise Time 3 50 3 50 3 50 TL2L1 Fall Time 3 50 3 50 3 50 ns TRELCEL RAS to CAS Delay Time 15 40 20 50 25 55 ns 160 130 95 ns 10,000 120 110 ns ns ns TCELREH RAS Hold Time 55 65 85 ns TRELCEH CAS Hold Time 90 110 135 ns TCELCEH CAS Pulse Width 50 TCEHCEL CAS Precharge Time 50 60 70 ns TAVREL Row Address Set-Up Time o o o ns 10 15 20 ns o o o ns 10,000 60 10,000 80 10,000 ns TRELAX Row Address Hold Time TAVCEL Column Address Set-Up Time TCELAX Column Address Hold Time 15 20 25 ns TRELA(C)X Column Address Hold Time Referenced to RAS 55 70 80 ns o o o TWLCEL WE to CAS Set-Up Time TCELWX Write Command Hold Time 30 TWLWH Write Command Pulse Width 35 35 40 ns . TWLCEH Write Command to CAS Lead Time 55 65 85 ns TWLREH Write Command to RAS Lead Time 60 70 90 ns TRELWX Write Command Hold Time Referenced to RAS 70 80 90 ns o ns o 30 o 35 ns ns TOVCEL Data In Set-Up Time TWLDX Data In Hold Time 30 30 35 ns TRELDX Data In Hold Time Referenced to RAS 70 80 90 ns Page Mode Write Cycle Waveforms* ROW ADDRESS STROBE COLUMN ADDRESS STROBE ADDRESSES WRITE ENABLE DATA IN tStandard part not tested for page mode . .. Symbols in parentheses are proposed industry standard. 1-84 Notes 6 13 Symbol Alternate Parameter Standard NMC5295·2 Max Min NMC5295·3 Min Max NMC5295·4 Min Max 190 235 Units tpc TRELREL (R/W) Read·Write Cycle Time 160 tRAS TRELREH (RIW) RAS Pulse Width 300 tRP TREHREL RAS Precharge Time tT TH1H2 Rise Time 3 50 3 50 3 50 ns tT TL2L1 Fail Time 3 50 3 50 3 50 ns 40 20 50 25 55 10,000 110 95 tRCO TRELCEL RAS to CAS Delay Time 15 t RSH TCELREH RAS Hold Time 55 tCSH TRELCEH CAS Hold Time tCAS TCELCEH (R/W) CAS Pulse Width tcp TCEHCEL CAS Precharge Time t ASR TAVREL Row Address Set·Up Time 10,000 360 445 10,000 10,000 ns 14 ns 14 ns 5 ns 135 120 Notes ns 85 110 90 100 10,000 120 65 155 10,000 ns 13 ns 14 6 50 60 70 ns 0 0 0 ns 10 15 20 ns 0 0 0 ns tRAH TRELAX Row Address Hold Time t ASC TAVCEL Column Address Set·Up Time tCAH TCELAX Column Address Hold Time 15 20 25 ns tAR TRELA(C)X Column Address Hold Time Referenced to RAS 55 70 80 ns tRcs TWHCEL Read Command Set·Up Time 0 0 0 ns twp TWLWH Write Command Pulse Width 35 35 40 ns tCWL TWLCEH Write Command to CAS Lead Time 55 65 85 ns t AwL TWLREH Write Command to RAS Lead Time 60 70 90 ns 7 t RWO TRELWL RAS to WE Delay 80 100 120 ns t cwo TCELWL CAS to WE Delay 40 50 65 ns tos TDVWL Data·ln Set·Up Time ns tOH TWLDX Data·ln Hold Time t RAC TRELOV Access Time from RAS 80 100 120 ns 9,10 !cAC TCELOV Access Time from CAS 40 50 65 ns 10,11 tOFF TCEHOZ Output Buffer Turn·Off Delay 50 ns 12 0 0 0 30 30 35 40 0 45 0 Page Mode Read·Modify·Write Waveforms· ROW AOORESS STROBE ~;mHRn' 1-:¥~rLAXI -'-- 1-:ftrLAXI !pC COLUMN AOORESS STROBE AOORESSES WRITE ENABLE .'ACO ITRELCELI VIHVIL- 'A 1'1 rlT~CL~~HI-1 -I _L'WP v . - ~";\!k 'O~ '(lDvwLt- I-:t SSCELI 1- ;,.. VIL- 1- IT~~hvl r>: •. ;:::)\, .~~ V':. _L;fJ:LWH '1 ~ ~;),/"m' 1- :- J?:;:LOXI ...2ill. K§f~2»;<: X~ :)(. ~:~,~X:~;:::::::F>::;:;;A::::;~X -I Jf--'" H;·Z - i~--!t -I 1-;~ttH ~ ITCE -1= ~ .Y. 1-:mLAx, t Standard part not tested for page mode. * Symbols In parentheses are proposed industry standard. 1·85 'CA~ TCELCEHI t:1 h~l~~-I ~~!-1 br~·(~mHI ~~CELI i.-- VIH- DATA VOHOUT VOL- 'CAS ITCELCEHI :, ~~'\~ t~~: VIL-~~~4~ ITW~ ~CdH l~fLWLI I 'CP ITCEHCELI -1 [OL t~~~, !,,,n (max) (column limited timing). Note 12: TCEHOZ is measured to IOUT:s IO(L). Note 13: The placement of the negative going edge ofW with respect to the negative edge of CAS determines the type of Write cycle.IfTWLCEL is greater than o ns (negative edge of W before negative edge of CAS) the memory is in an Early-Write cycle and Data Out Is TRI·STATE. If TCELWL Is greater than TCELWL(min) (negative edge of W coincident with or after Data Out valid) the memory Is In a Read·Write or Read·Modify·Write cycle and Data Out Is the original contents of the selected cell. If W goes LOW between these two times the cycle Is a Write cycle and Data Out Is Indeterminate. Note 14: (R/W) indicates a Read-Write or Read-Modify-Write cycle parameter. Note 15: Max limit does not apply for RAS-Only Refresh. During Buried Refresh CAS can be low and valid output maintained for any desired period of time. 1-86 Section 2 CMOS RAMs CMOS RAMs provide the lowest power of any of the semiconductor read/write memory technologies. National's CMOS memory line may be mixed with our CMOS logic, TTL logic, bipolar microprocessor, MOS microprocessor, custom LSI, and our other semiconductor products to optimize system power/speed/cost tradeoffs. Refer to National's related databooks and catalogs for further details: an order form is included in this book. ~National CMOS RAMs ~ Semiconductor MM54C89/MM74C89 64-Bit (16 x 4) TRI-STATi:® RAM General Description address by bringing write enable and memory enable low. The MM54C89/MM74C89 is a 16-word by 4-bit random access read/write memory_ Inputs to the memory consist of four address lines, four data input lines, a write enable line and a memory enable line. The four binary address inputs are decoded internally to select each of the: 16 possible word locations. An internal address register, latches the address information on the positive to negative transition of the memory enable input. The four TRI-STATE® data output lines working in conjunction with the memory enable input provides for easy memory expansion. Read Operation: The complement of the information which was written into the memory is nondestructively read out at the four outputs. This is accomplished by selecting the desired address and bringing memory enable low and write enable high. When the device is writing or disabled the output assumes a TRI-STATE (Hi-z) condition. Features Address Operation: Address inputs must be stable tSA prior to the positive to negative transition of memory enable. It is thus not necessary to hold address information stable for more than tHA after the memory is enabled (positive to negative transition of memory enable). • Wide supply voltage range • Guaranteed noise margin 3.0V to 15V 1.0V 0.45 Vee typ fan out of 2 driving 74L • High noise immunity • Low power TTL compatibility Note: The timing is different than the DM7489 in that a positive to negative transition of the memory enable must occur for the memory to be selected. • • Input address register Low power consumption Write Operation: Information present at the data inputs is written into the memory at the selected • Fast access time • TRI-STATE output 100 nW/package typ @V ee = 5V 130 ns typ at Vee = 10V Logic and Connection Diagrams DATA DATA DATA DATA DATA DAfli DATA DAfli INPUT 1 iiiiTPUi'1INPUT I iiUfPifl1,NPUTl 0uffiffl,NPUT4 ififffijfi Dual-In-Line Package ADDRESS INPUT A IIDll!IIVfNABU Vee z '5 WRrnfNABU 1 DATA INPUT 1 ~=1 DATA INPUT 2 iiAfAOUfPOlz ADORESSINPUTB 14ADDRESSINPUTC ADDRESS INPUT 0 . 11 DATAINPUT4 "iiAfA0ilfPijf4 J g~iIUfflJTl GND TOPVIEW Order Number MM54C89J or MM74C89J See NS Package J16A Order Number MM74C89N See NS Package N16A 2-1 Absolute Maximum Ratings Operating Conditions Voltage at Anyl'in Ambient Temperature Range MM54CB9 MM74CB9 Supply Voltage Range MM54CB9 MM74C89 -0.3V to Vee + O.3V -65°C to + 150°C Storage Temperature Range Package Dissipation 500mW lBV 300°C Absolute Maximum Vee Lead Temperature (Soldering, 10 seconds) -55°C to +125°C _40° C to +B5° C 3V to 15V 3V to 15V DC Electrical Characteristics Min/max limits apply across temperature range, unless otherwise noted, PARAMETER CONDITIONS MIN TYP MAX UNITS CMOS TO CMOS Logical "1" Input Voltage (V'NI'») Vee = 5.0V Vee = 10V Logical "0" Input Voltage (V ,NIOl ) Vee = 5.0V Vee = 10V Logical "1" Output Voltage Vee = 5.0V, 10 = -lOJ1A Vee = 10V, 10 = -10J1A (VOUTI1l1 Logical "0" Output Voltage 3.5 B.O V V 1.5 2.0 V V 4.5 9.0 Vee = 5.0V, 10 = +IOJ1A Vee;" 10V, 10 = +10J1A (VOUTIOl) Logical "I" Input Current (I,NI1I) Vee = 15V, V ,N = 15V Logical "O"lnput Current (I,NIOlI Vee = 15V, V ,N = OV Output Current in High Impedance State Vee = 15V, Vo = 15V Vee = 15V, Vo = OV Supply Current (I eel Vee = 15V V V 0.005 0.5 1.0 V V 1.0 J1A -1.0 -0.005 1,0 -1.0 0.005 -0.005 J1A J1A 0.05 300 J1A J1A CMOS/LPTTL INTERFACE Logical "I" Input Voltage (V ,NI1I ) 54C, Vee = 4.5V 74C, Vee = 4.75V Logical "0" Input Voltage (V ,NIOl ) 54C, Vee = 4.5V 74C, Vee = 4.75V Logical "1" Output Voltage 54C, Vee = 4.5V, 10 = -360J1A 74C, Vee = 4.75V, 10 = -360J1A (VOUTI')! Logical "0" Output Voltage V V Vee - 1.5 Vee - 1.5 V V 2.4 2.4 V V 0.4 0.4 54C, Vee = 4.5V, 10 = +360J1A 74C, Vee = 4.75V, 10 = +360J1A (VOUTIOl) V V 0.8 0.8 OUTPUT DRIVE (See 54C174C Family Cha·racteristics Data Sheet) Output Source Current (lsouReE I (P·Channel) Vee = 5.0V, V OUT = OV T A = 25°C -1.75 -3.3 rnA Output Source Current (lSOURCE I (P·Channel) Vee = 10V, VOUT = OV T A =25°C -B.O -15 mA Output Sink Current (lSINK) (N-Channel) Vee = 5.0V. V OUT = Vee T A =25°C 1.75 3.6 rnA Output Sink Current (lSINK) (N-Channel) Vee = 10V, V OUT = Vee TA = 25°C 8.0 16 rnA AC Electrical Characteristics (T A = 25°C, C L = 50 pF, unless otherwise noted,) TYP MAX UNITS Vee = 5.0V Vee = 10V 270 100 500 220 ns Access Time from Address Input (tacc ) Vee = 5.0V Vee = 10V 350 130 650 280 ns ns Address Input Setup Time (tSA) Vee = 5.0V Vee = lOV 150 60 ns ns Address Input Hold Time (tHAI Vee = 5.0V Vee = 10V _60 40 ns Memory Enable Pulse Width (tME) Vee = 5.0V Vee = 10V 400 150 250 90 ns ns Memory Enable Pulse Width (tME) Vee = 5.0V Vee = 10V 400 150 200 70 ns ns PARAMETER Propagation Delay from Memory (tpd) CONDITIONS EiliiiJie 2-2 MIN ns ns AC Electrical Characteristics 3: 3: (Continued) PARAMETER MIN CONDITIONS WrIte EnatiTe Setup Time for a Read = 5.0V = 10V = 5.0V = 10V (tSA) Vee Vee Write rnatiIe Setup Time for a Write (tws) Vee Vee Write ~ Pulse Width (twe) Vee Vee Data Input Hold Time (tHO) Vee Vee = 10V MAX TYP UNITS ns ns 0 0 tME tME = 5.0V. tws = 0 = 10V. tws = 0 = 5.0V 300 100 160 60 ns ns 50 = 5.0V = 10V = 5.0V. CL = 5.0 pF. = 10V. CL = 5.0 pF. ns ns 25 ns ns 50 25 ns ns Data Input Setup (tso) Vee Vee Propagation Delay from a Logical "1" or Logical "0" to the High Impedance State from Memory EnatiTe (t IH • tOH) Vee Vee RL = 10k RL = 10k 180 85 300 120 ns ns Propagation Delay from a Logical "1" or Logical "0" to the High Impedance State from Write Enable (tIH. to H ) Vee = 5.0V. CL = 5.0 pF. RL = 10k Vee = 10V. CL = 5.0pF. RL = 10k 180 85 300 120 ns ns Input Capacity (Clt-,il Any Input (Note 2) 5.0 pF Output Capacity (C OUT ) Any Output (Note 2) 6.5 pF Power Dissipation Capacity (C pd ) (Note 3) 230 pF Note 1: "Absolute MaXimum Ratings" are those values beyond which thp. safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Charactenstics" provides conditions for actual device operation. Note 2: Capacitance IS guaranteed by periodic testing. Note 3: CpO determInes the no load ae pOlA-er consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note. AN-gO Truth Table ME WE L L OPERATION Write CONDITION OF OUTPUTS TRI-STATE L H Read Complement of.Selected Word H L Inhibit, Storage TRI·STATE H H Inhibit. Storage TRI·STATE AC Test Circuits tOH Vee Switching Time Waveforms tOH Vee Vee MEMID\Y MEMORY mm fiillTI OV_{"" Vee t~H ~o.tvce -----1 ov r. . .--- t1H J. ." t'"~ 0.1 Vee 0AfA OUTPUT -r 2-3 OV en ~ 0 00 52 3: 3: ~ ~ 0 00 CO Switching Time Waveforms (Continued) Read Cycle Write Cycle ADDRESS INPUT v,, _ _ _ _ _ __ WRITE ENABlE DATA OUT vcc - - - - - - - _ '4:c-----·----··------·----·---------·-----+.....- - - - - . O _ _ _ _ _ ~I~A.::.~~~T~ _ _ / '£" DATA INPUT Read Modify Write Cycle ~~ :~- -------------------------------p~ NOTE: t,"'60m I, '" 10 n~ 2-4 CMOS RAMs ~National ~ Semiconductor M M54C200/M M74C200 256·Bit (256 x 1) TRI·STATi:® . RAM General Description The MM54C200/MM74C200 is a 256-bit random access read/write memory_ Inputs consist of eight address lines. a data input line. a write enable line. and three chip enables_ The eight binary address inputs are decoded internally to select each of the 256 locations_ An internal address register. latches and address information on the positive to negative edge of CE 3 - The TRI· STATE data output line working in conjunction with CE l or CE 2 inputs provides for easy memory expansion_ Read Operation: The data is read out by selecting the proper address and bringing CE 3 low and write enable high_ Holding CE l or CE 2 or CE 3 at a high level forces the output into TRI-STATE_ When used in bus organized systems. CEl. or CE 2 • a TRI-STATE control. provides for fast access times by not totally disabling the chip_ Address Operation: Address inputs must be stable tSA prior to the positive to negative transition of CE 3 _ It is thus not necessary to hold address information stable for more than tHA after the memory is enabled (positive to negative transition)_ Features Write Operation: Data is written into the memory with CE 3 low and write enable low_ The state of CE l or CE 2 has no effect on the write cycle. The output assumes TRI·STATE with write enable low. • • • • Wide supply voltage range 3.0V to 15V Guaranteed noise margin 1.0V High noise immunity 0.45 Vee typ TTL compatibility fan out of 1 driving standard TTL 500 nW typ • Low power • Internal address register Note: The timing is different than the DM74200 in that a positive to negative transition of the memory enable must occur for the memory to be selected_ Logic and Connection Diagrams ADDRESS ADDRESS ADDRESS ADDRESS INPUT D INPUTC INPUT B INPUT A Dual-In-Line Package E:~[~--~------ ________ __ __ ~ ~ ~--~-r~L-~~~~~--~~ + ______________I-__I-__-+I ADDRESS 1 INPUT A 16 Vee ADDRESS 2 INPUT B 15 ADDRESS INPUT C tE, DA~: __ X-DECODER ti, ff,-----------="" 12 WRITE ENABLE 11 ADDRESS INPUT G 10 ADDRESS INPUT F 9 ADDRESS INPUT E ti, CE,----' DATA 6 OUT ADDRESS INPUT 0 CE,----------..-.---i ~.....- ... GND 250·8IT MEMORY ARRAY TOP VIEW Order Number MM54C200J or MM74C200J See NS Package J16A Order Number MM74C200N See NS Package N16A 2-5 Absolute Maximum Ratings Operating Conditions (Note 1) Voltage at Any Pin -0.3V to Vee +0.3V -65°C to +150°C Storage Temperature Range Package Dissipation 500 mW 18V Absolute Maximum Vee Lead Temperature (Soldering, 10 seconds) 300°C Ambient Temperature Range MM54C200 MM74C200 -55°C to +125°C -40°C to +85°C Supply Voltage Range MM54C200 MM74C200 3V to 15V 3V to 15V DC Electrical Characteristics Min/max limits apply across temperature range, unless otherwise noted. PARAMETER CONDITIONS MIN TYP MAX UNITS CMOS TO CMOS Logical "I" Input Voltage (V,N,,,I Vee = 5.0V Vee = 10V "a" Input Voltage Vee ,. 5.0V Vee = 10V Logical (V ,N 1011 Log'cal "I" Output Voltage (VOUTIl,1 Logical "a .. Output Voltage (V OUT '.0,1 V V 3.5 8.0 1.5 2.0 10 = 1Oil A 1Oil A Vee" 5.0V. Vee = 10V. 10 " Vee" 5.0V. Vee = 10V. 10 = 'lOIJA 10 ~ • 1Oil A Logical "I" Input Current (I'NI1,I Vee=15V. V'N = 15V Logical "O"lnput Current (I'N, 0I 1 Vee = 15V V'N = OV Supply Current (Ieel Vee = 15V -1.5 9.0 V V V V 0.5 1.0 0.005 1.0 1.0 0.005 010 V V pA ilA 600 ilA CMOS/TTL INTERFACE Logical "I" Input Voltage (V'N,,,I 54C. Vee = 4.5V 74C. Vee =4.75V Logjcal "O"lnput Voltage (V'N, 0I 1 54C. Vee = 4.5V 74C. Vee = 4.75V Logical "I" Output Voltage (VOUTIl,1 54C. Vee' 4.5V. 10 = -1.6 mA 74C, Vee = 4.75V. 10 = -1.6 mA Logical "a" Output Voltage (V OUT {Q' I 1.5 1.5 Vee Vee V V 08 0.8 V V V V 7..4 2.4 54C. Vee = 4.5V. 10 = 1.6 mA 74C. Vee = 4.75V. 10 = 1.6 mA 0.4 0.4 V V OUTPUT DRIVE (See 54C/74C Family Characteristics Data Sheet) .6 Output Source Current (lsouAeE I (P·Channell Vee = 5.0V. TA = 25"C VOUT = OV -4 . -1.8 -6.0 mA Output Source Current IlsouAeE I (P·Channell Vee = 10V. TA = 25'C V OUT = OV -16.0 -1.50 -25 mA Output Sink Current (lS'NK I IN·Channell Vee ~ 5.0V. TA = 25'C V OUT = Vee 5.0 Output Sink Current (lS'NK I IN·Channell Vee = 10V. TA = 25'C VouT=Vec 20.0 AC Electrical Characteristics PARAMETER Propagation Delay From It pd ) CE3 Propagation Delay From GE, ItpCE') or GE 2 mA 30 mA T A = 25°C, C L = 50 pF, unless ~therwise specified. TYP MAX Vee = 5.0V Vee = 10V 450 200 900 400 ns ns Vee = 5.0V Vee = 10V 360 120 700 300 ns ns Vec=50V Vee = 10V 250 85 500 200 ns ns CONDITIONS Access Time From Address (tAee) 8.0 MIN UNITS Address Setup Time (t SA ) Vee = 5.0V Vee = 10V 200 100 80 30 ns ns Address Hold Time Itl-iA) Vee = 5.0V Vee = 10V 50 25 15 5 ns ns 2-6 AC Electrical Characteristics (Continued) MIN CONDITIONS PARAMETER TYP Write Enable Pulse Width (tw.1 Vee oS.OV Vee = 10V 150 160 70 t-EJ Vee = S.OV Vee = 10V 400 160 200 80 Pulse Widths IteE 1 300 MAX UNITS Input CapaCIty IC 'N 1 Any Input INote 21 5.0 pF Output CapaCIty In TRI·STATE IC our 1 INote 21 9.0 pF Power DISsipation Capacity IC pd 1 INote 31 400 pF Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Capacitance is guaranteed by periodic testing. Note 3: Cpd determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Chatacteristics application note, AN·90. Switching Time Waveforms Read and Write Cycles Using Ce3 (CEl .. CE2 = logic 0) ,-----"'------------- Vce ~-----------DV ,---------Vee ADDRESS INPUT ~--------DV ------Vee ~----,--------DV _----Vee DATA IN ." ~j t~----:I::;E------~vee -~~~- ~ Read and Write Cycles Using CE3 and CE 1 (or CE2) }~----'/_ _ _ _ _ _ o:ee r-------,------------V~ -------oV -------Vee ADDRESS INPUT ~---------oV Vec I r~'.rn DATA IN - - - - - - -- TRI-STATE ~----J------DV ~ ______ r'o< ~'"-_-_-----_-_...J____::e TRI-STATE ----------__________ DV Note: Used for fast Iccess time in bused systems. 2·7 ~National CMOS RAMs D Semiconductor MM54C91 O/MM74C91 0 256·Bit (64 x 4) TRI·STATE® RAM / . General Description The MM54C91 0/MM74C91 0 is a 64 word by 4 bit random access memory. Inputs consist of six address lines, four data input lines, a write enable, and a memory enable line. The six address lines are internally decoded to select one of 64 word locations. An internal address register, latches the address information on the positive to negative transition of memory enable. The TRI·STATE outputs allow for easy memory expansion. Read Operation: Data is nondestructively read from a memory location by an address operation with write enable held high. Outputs are in the TRI·STATE (Hi·Z) condition when the device is writing or disabled. Features Address Operation: Address inputs must be stable (tSA) prior to the positive to negative transition of memory enable, and (tHA) after the positive to negative transition of memory enable. The address register holds the information and stable address inputs are not needed at any other time. Write Operation: Data is written into memory at the selected address if write enable goes low while memory enable is low. Write enable must be held low for tWE and data must remain stable tHO after write enable returns high. • Supply voltage range 3V to 5.5V • High noise immunity • • TTL compatible fan out Input address register 0.45 Vee typ 1 TTL load • Low power consumption 250 nW/package typ (chip enabled or disabled) • • Fast access time TRI·STATE outputs • High voltage inputs 250 ns typ at 5V Logic and Connection Diagrams o INI Input Protection DOUTI OlN2 OOUT2 0 IN) 0 OUT) OlN4 OOUT4 Vee Dual·ln·Line Package Vee 0 CUll o IN4 mfil! MEMORY 0 OUT4!NA'BU ENABLE 10 DOUTl Order Number MM54C910J or MM74C910J See NS Package J1BA Order Number MM74C910N See NS Package N1BA 2-8 Absolute Maximum Ratings Voltage At Any Output Pin Voltage At Any Input Pin Package Dissipation Absolute Maximum VCC Lead Temperature (Soldering, 10 seconds) Operating Conditions (Note 1) -{).3V to VCC +0.3V -{).3V to +15V 500 mW 6.0V 300°C DC Electrical Characteristics Supply Voltage (VCC) MM54C910 MM74C910 Temperature (T A) MM54C910 MM74C910 MIN MAX UNITS 4.5 4.75 5.5 5.25 V V -55 -40 "c °c +125 +85 Operating VCC Range 3.0V to 5.5V Standby VCC Range 1.5V to 5.5V MM54C91O/MM74C91O (Min/max limits apply across the temperature and power supply range indicated)' PARAMETER CONDITIONS V IN (1) Logical "1" Input Voltage Full Range VIN(O) Logical "0" Input Voltage Full Range IIN(1) Logical "1" I nput Current V IN = 15V MIN TYP V 0.8 -1 IIN(o) Logical "0" Input Current V IN = OV V OUT (l) Logical "1" Output Voltage 10 = -150J.1A Icc 10 = 1.6 mA Output Current in High Vo = 5V I mpedence State Vo = OV Supply Current Vcc = 5V AC Electrical Characteristics TA 0.005 2 0.005 1 -0.005 V J.1A J.1A p.A V cc -0.5 10 = -400J.1A Logical "0" Output Voltage UNITS V cc -J:5 V IN = 5V VOUT(O) MAX V 2.4 V V 0.4 0.005 -1 1 J.1A 300 p.A MAX UNITS -0.005 0.05 J.1A MM54C910/MM74C910 = 25°C, Vee = 5V, C L = 50 pF PARAMETER tAcc Access Time from Address tpD Propagation Delay from MIN ME TYP 250 500 ns 180 360 ns tSA Address Input Set-Up Time 140 70 ns tHA Address Input Hold Time 20 10 ns tME Memory Enable Pulse Width 200 100 ns tME Memory Enable Pulse Width 400 200 ns tso Data Input Set-Up Time 0 tHO Data Input Hold Time 30 15 tWE Write Enable Pulse Width 140 70 tlH' tOH Delay to TRI-STATE (Note 4) ,. ns 100 ns ns 200 ns CAPACITANCE CIN Input Capacity Any Input (Note 2) COUT Output Capacity CpD Power Dissipation'Capacity (Note 3) Any Output (Note 2) 2·9 5 pF 9 pF 350 pF ....m0 0 AC Electrical Characteristics CL (Continued) = 50 pF III:t r-- :E :E a.... m 0 ~ :E :E MMS4C910 T A = -SSoC to +12SoC Vee = 4.SV to S.SV PARAMETER MIN MAX MM74C910 T A = -40°c to +8SoC Vee = 4.7SV to S.2SV MIN UNITS MAX 860 700 ns 660 540 ns tAC C Access Time from Address tpDl,tpDO Propagation Delay from tSA Address Input Set·Up Time 200 160 ns tHA Address Input Hold Time 20 20 ns tME Memory Enable Pulse Width 280 260 ns tME Memory Enable Pulse Width 750 600 ns tSD Data Input Set·Up Time 0 0 ns tHD Data Input Hold Time 50 50 ns tiNE Write Enable Pulse Width 200 180 tlH, tOH Delay to TRI·STATE (Note 4) ME ns 200 200 ns Note 1: "Absolute Maximum Ratings" are those values beyond which the safetY of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Capacitance is guaranteed by periodic testing. Note 3: Cpd determines the no load ac power consumption for any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN·90. . Note 4: See ac test ci rcu it for t 1 H, tOH. Typical Performance Characteristics Truth Table Typical Access Time vs Ambient Temperature 400 "' ~ ~ ell .. 300 250 ME 1--''''''' 350 WE OPERATION OUTPUTS TRI·STATE 4.~1--- I.--~ L L Write L,...-V 5~1--- j...ol.--"" L H Read Data H L Inhibit, Store TRI·STATE H H Inhibit, Store TRI·STATE L.,..J.-' ""I--' +-"~ j...o 1's.5V 200 F"" 150 100 50 0 -55 -25 5 35 65 95 125 FREE AIR TEMPERATURE I'C) AC Test Circuits All Other AC Tests tOH l't, l't" .--002 003 001 004 L...-- 2·10 1'1' i ,!, c RL -10k CL "10pF Switching Time Waveforms Read Cycle Write Cycle (See Note 1) (See Note 1) Vee---+-"-----.... Vr.e ~ ENABLE MEMORV ENABLE ADDRESS INPUT Vee - - - - - " " Vee ADDRESS INPUT Vee WAITE ENABLE DATA Vee OUT o_ _ _ _ _ ~I!!.A!!,~N~T~ J Vee DATA __ INPUT Read Modify Wr-ite Cycle (See Note 1) tOH " '~--=f""" r--- 'M' ---- ---- MEMORY vcc--t-r ENABLE DATA OUT ADDRESS '- ;li:i--' -r "' ' ' o LATCHED ADDRESS INPUT 0.1 Vee WRITEvee _ _ _ ENABlE J-'m~'HO~ ~'H ---'X DA~~ vee _ _ _ _ _ _ _ _ _ _ ~ :c= Vee 0.1 Vee DATA OUT Note1: ~ID must he brought high fOI w.e niinosecondsbetwetneveIVaddrench.nge. Not,2: t, ~ If ·2001 for ,II inputs, 2·11 "; ,je o ---TRI-STATE ~National CMOS RAMs ~ Semiconductor MM54C920/MM74C920, MM54C921 1M M74C921 1024-Bit(256 x 4) Static RAMs General Description these RAMs ideal elements for use in microprocessor, minicomputer as well as main frame memory applications. The MM54C920/MM74C920 256 x 4 random access read/write memory is manufactured using silicon gate CMOS technology. Data output is the same polarity as data input. Internal latches store address inputs. CES and data output. This RAM is specifically designed to operate from standard 54/74 TTL power supplies. All inputs and outputs are TTL compatible. Features • 256 x 4·bit organization • The MM54C921/MM74C921 is identical to the MM54C920/MM74C920, except data inputs are inter· nally connected to data outputs; the number of package leads thereby is reduced to 18. Access 250 275 300 • TRI-STATE outputs Complete address decoding as well as 2·chip select functions, CE Land CES, and TR I·ST ATE® outputs allow easy expansion with a minimum of external com· ponents. Versatility plus high speed and low power make • • • • Low power On-chip registers Single 5V supply Data retained with VCC as low as 2V time ns max MM74C920, MM74C921 ns m·ax MM54C920, MM54C921 ns max MM74C921·3 Connection Diagrams Logic Symbols Dual-In-Line Package A3 AD A2 Al AD A5 MM54C920/ MM14C920 A6 m rr 17 m 16 A1 15 GNO 14 011 13 001 10 012 19 18 11 Order Number MM54C920J, MM74C920J or MM74C920J-3 See NS Package J22A 004 014 Order Number MM74C920N or MM74C920N-3 See NS Package N22A 003 013 12 002 TOPVIEW Dual·ln-Line Package 18 A3 A2 Al AD VCC 11 3 AD A5 MM54C9211 MM14C921 16 m 15 m 14S'f 13 AS 6 12 A1 m 01/04 11 01/03 GNO 10 01/01 Al 01/01 A4 01/02 MM54C9211 MM14C921 01/03 Order Number MM54C921J, MM74C921J or MM74C921J-3 See NS Package J18A Order Number MM74C921N or MM74C921N-3 See NS Package N18A 01/02 TOP VIEW 2-12 Functional Description The functional description will reference the logic diagram of the MM54C920/MM74C920 shown in Figure 1. Input addresses and CES are clocked into the input latches by the falling edge of STROBE. Input set·up and hold times must be observed on these signals (see timing diagrams): The true and complement add"ress information is fed to the row and column decoders which access the selected 4-bit memory word. The outputs are in a high impedance state when the chip is not selected (C-ES or GEL high) or when writing (WE lowL Note that the information stored in the output latches will be changed whenever STROBE falls, regardless of the logic states of WE, CEl or CES. The switching time waveforms in Figures 2, 3 and 4 define the read, write, and output enable/disable parameters respectively. The addressed word (4 bits) is fed to 4 sense amplifiers through the column decoders. The information from the sense amplifiers is latched into the output register when STROBE rises. The register drives the TRI-STATE output buffers. Reduced-Voltage Operation Chip select inputs, CE land CES, have identical functions except that CES (Chip Enable Stored) is clocked into a latch on the falling edge of STROBE; CEl (Chip Enable level) is not. These memories will retain data with reduced VCC and hence are useful for battery-backup data storage. Certain precautions must be observed as V CC is reduced: (1) input voltages must remain between the VCC and ground of the RAM or supply latch-up can occur, (2) WRITE mode must be avoided, (3) during power-up of VCC, ST logic state must be maintained (either GND or Vccl while address control lines stabilize. Note that set-up and hold times must be observed on CES. Because CEl is not clocked by STROBE, it may fall after STROBE has fallen without affecting access time provided that the tOE requirement is met" Logic Diagram * AO Al A2 A3 A4 ADDRESS REGISTER AND INVERTERS 32 X 8 ROW DECODER (LATCH) DO 1 011 012 WRITE CONTROL 013 014 DATA OUT REGISTER DO Z (LATCH) DO 4 Sf ill ADDRESS REGISTER AND INVERTERS (LATCH) m WE AS A6 A7 FIGURE 1. MM54C920/MM74C920 * The logic diagram for the MM54C921 /MM74C921 is identical to this except that data inputs (011-0"14) are connpcted to data outputs (001-004). 2-13 DO 3 Absolute Maximum Ratings , Operating Conditions (Note 1) 7V Supply Voltage, Vce Voltage at Any Pin -o.3V to VCC + 0.3V --{i5°C to +150°C Storage Temperature Range Package Dissipation 500mW 300°C lead Temperature (Soldering, 10 seconds) DC Electrical Characteristics SYMBOL PARAMETER VIH Logical "1" Input Voltage VIL Logical VOHl Logical "1" Output Voltage Supply Voltage (VCC) MM54C920, MM54C921 MM74C920, MM74C921 MM74C920·3, MM74C921·3 Ambient Temperature (T A) MM54C920, MM54C921 MM74C920, MM74C921 MM74C920·3, MM74C921·3 Logical "1" Output Voltage VOll logical VOl2 logical III Input leakage 10 Output leakage "a .. Output Voltage "a" Output Voltage CONDITIONS UNITS 4.5 4.5 4.75 5.5 5.5 5.25 V V V +125 +85 +70 °c °e °c -55 -40 0 MM54C920 MM74C920 MM74C920-3 MM54C921 MM74C921 MM74C921·-3 MIN MAX MIN MAX MIN MAX Vee- 2 .O Vee Vee-2.O Vee Vec-l.5 Vce a 0.8 a 0.8 a 0.8 2.4 2.4 10H = -1 mA 10UT= MAX (Note 2) "a" Input Voltage VOH2 MIN a Vec-O.l 2.4 a V V 0.4 0.01 V V Vcc-0. 1 Vcc-O.l 0.4 10l = 2 mA UNITS 0.4 0.01 V 0.01 V OV ~ VIN ~ VCC -1.0 1.0 -1.0 1.0 -1.0 1.0 pA OV ~ Vo ~ Vce, -1.0 1.0 -1.0 1.0 -1.0 1.0 pA 100 pA 0.01 (typ) pA 10UT= CEl = VCC lec Supply Leakage Current 10 20 VIN = VCC, ST = OV, VO=OV VDR VCC for Data Retention (Note 3) lOR ICC for Data Retention CEl = VCC = 2V, Typical at 25°e Capacitance (Note 4) SYMBOL PARAMETER 2.0 2.0 2.0 0.01 (typ) CONDITIONS CIN Input Capacitance VIN = OV, f = 1 MHz, T A = 25°C Co Output Capacitance CliO Data Input/Output Capacitance V O.Ol(typ) MIN TYP MAX UNITS 4 7 pF VIN = OV, f = 1 MHz, T A = 25°C 6 9 pF ~M54C921 8 12 pF /MM74C921 Only Note 1: "Absolute Maximum Ratings" are those values above which the device may be permanently damaged. They do not mean the device may be operated at these values. Note 2: These limits apply over the entire operat~ng range specified in the "Operating Conditions" unless otherwise stated: Note 3: CEl = VCC - 2V or = 2V, whichever is greater. Note 4: Capacitance is guaranteed by periodic testing. 2·14 Truth Table ST -CES* - CEl WE 01* FUNCTION X X 1 X X Output in Hi-Z state 0 1 X X X Output in Hi-Z state X X X 0 X Output in Hi-Z state 0 0 0 0 0 Write "0", output in Hi-Z state 0 0 0 0 1 Write "1", output in Hi-Z state 0 0 0 1 X Read data, output enabled *Set-up and hold times must be met X = don't care , AC Electrical Characteristics SYMBOL (Note 5) MM54C920 MM74C920 MM54C921 MM74C921 PARAMETER MIN MAX MIN MM74C920-3 MM74C921-3 MAX MIN UNITS MAX tc Cycle Time tACC Access Time From Address 275 250 325 ns tACS Access Time From Strobe 250 225 300 ns tAS Address Set-Up Time 25 25 25 ns tAH Address Hold Time 25 25 25 ns tOE Output Enable Time 150 130 130 ns too Output Disable Time 150 130 130 ns - 290 255 330 ns tST ST Pulse Width (Negative) 150 130 165 ns tST ST Pulse Width (Positive) 140 125 165 ns twp Write Pulse Width (Negative) 150 130 165 ns tDS Data Set-Up Time 100 90 90 ns tDH Data Hold Time 60 60 60 ns Note 5: These limits apply over the operating range specified in the "Operating Conditions" with tRISE 50 pF. 2-15 = tFALL = 5 ns, load = 1 TTL gate + Switching Time Waveforms 'ST 'ST AO-AI m: 1 - - - - - - - - - ' A C C - - - - - - - - - - 1 r-_ __ I DOUT - - - - - - - - - - - - - TRI-STATE------------- ,'---*twp (the Write Pulse Width) is the time coincidentally low FIGURE 2. Read Cycle (WE = VIH) ST, eEL and WE are FIGURE 3. Write Cycle m 'DE---j, ____ l!!-sl.All..® _ _ FIGURE 4. Output Enable/Disable 2-16 _ -( .... -_-_-_-_-_-_-_- Typical Performance Characteristics Access Time vs Ambient Temperature Access Time vs Power Supply Voltage 400 300 TA .125 o e 250 300 200 ] 200 - vee=~:"-- L> :f- ~.J-:::t:::~~ 100 - " 150 :f100 r---... 50 I o o -55-40 0 25 85 3 125 4.5 3.5 Minimum Write Pulse Width vs Ambient Temperature Data-In Setup Time vs Ambient Temperature 200 125 100 150 ~ 5.5 Vee (V) TArt) ~ r-- :--- r-- -- 75 100 c Vee 50 50 25 =4.5V -;::::::::. :::::: ~;;- o -55-40 0 25 85 125 TAce) Minimum ST Pulse Width (Positive) vs Ambient Temperature Data In Hold Time vs Ambient Temperature ~ 100 200 75 150 -;:. .100 50 It' Vee 25 =4.5V _ I--- 50 1-- r-r-55 -40 H--t-~""F'-+----t--=:=I-I Vee = 5.5V 0 25 85 125 TAn) Address Setup Time vs Ambient Temperature Address Hold Time vs Ambient Temperature -;, 40 30 30 25 20 CI) Vee :f- = 15 :f- 4.5V V"TV- 10 -5 o -55-40 85 125 Vee = 5.5V L..L.-'-_ _ _ _--'-_ _- - ' _ - - ' ' - ' -55-40 0 25 TA re) 2-17 85 125 Typical Performance Characteristics (Continued) Minimum Sr Pulse Width {Negative) vs Ambient Temperature Output Enable Time vs Ambient Temperature ~ 200 ,...,.......--....--.-----.----.-, 200 150 ~+-+-+----+----H 150 100 e I-+-+--+--+----+---:::;..H -55-40 0 25 85 r-r-..,.---r-.,.---.,.--"""T'"1 ~ 100 -55-40 125 0 25 Dynamic Current vs Power Supply Voltage {VIH = Vec. VIL = OV) ~ 2.5 -20 -12.5 .E -10 '" -7.5 CI > ..... ~ ) I TA· -5S'C '2 ./ V 1.5 I I I I -15 V ~ z ~ VCC'SV -17.5 V ./ .E .L'" ~ . . . V ~ ~-r .~ TA • 125'C V- +-- -5 0.5 -2.5 o o 3 3.S 4.5 125 Output Source Current vs Output Voltage 'rA• 215,C '" 85 TA ('C) TA rC) 5.5 ~ ~ 5 VCC (V) ~ 4.5 I I 4 1.5 3 2.5 VOUT (V) Output Sink Current vs Output Voltage 40 VCC' 5V 35 TA • -55'C 30 '2 .E . . .V 25 .L.l--. TA' 25'C / ....... ..- ~T 20 IV ~ ~+15 '/ 1/~ TA • 125'C 10 /// I I ~ o o 0.5 1 1.5 2 2.5 Vour (V) 2·18 3 --- 3.5 4 2 1.5 1 . U Semiconductor ~National CMOS RAMs MM54C929/M M74C929, M M54C930/M M74C930 1024-Bit(1024 x 1)Static RAMs General Description The MM54C929/MM74C929 and the MM54C930/ MM74C930 1024 x 1 random access read/write memories are manufactured using silicon-gate CMOS technology. These RAMs are specifically designed to operate from standard 54/74 TTL power supplies; all inputs and outputs are TTL compatible. Data output is the same polarity as data input. Internal latches store the address inputs and data output. Chip select input CS1 serves as a chip strobe, controlling address and data latching. The Data·ln and Data·Out terminals can be tied together for common I/O applications. Complete address decoding, 3-chip select functions (MM54C930/MM74C930) and TR I-STATE® output allow easy memory expansion and organization. The MM54C929/MM74C929 differs from the MM54C930/MM74C930 only in that CS1, CS2 and CS3 are internally connected together, providing a single chip-select input Versatility, high speed, and low power make these RAMs ideal elements for use in many microprocessor, minicomputer and main-frame-memory applications. Features • • • • • • • • <:s. Fast access-250 ns max TRI-STATE outputs Low power-1 0 pA max standby On·chip registers Single 5V supply Inputs and output TTL compatible Data retained with VCC as low as 2V Can be operated common I/O Connection Diagrams Logic Symbols Dual·ln-Line Package 16 cs AD VCC AO 01 Al WE A2 AJ A9 MM54C929 MM74C929 AS A4 A7 DO A6 GNO A5 Order Number MM54C929J. MM74C929J or MM74C929J-3 DO See NS Package J16A Order Number MM74C929N or MM74C929N-3 See NS Package N16A TOP VIEW Dual·ln·Line Package m AD 17_ CSJ m 16 AO DI AJ 15 _ WE Al A2 Al A2 MM54C9JO MM74C9JO 14 13 AJ 12 A4 A9 A4 Order Number MM54C930J, MM74C930J or MM74C930J-3 See NS Package J18A AS A7 Order Number MM74C930N or MM74C930N-3 See NS Package N18A 10 GND A6 A7 AS A9 01 11 A6 DO A5 A5 TOP VIEW 2-19 MM54C9JO MM74C9JO DO Functional Description , Reduced-Voltage Operation Address inputs are clocked into the input latches by the fall ing edge of chip strobe CS1; set-up and hold times must be observed on these input signals (see timing diagram). The true and complement address information is fed to the row and column decoders which select one of the 1024-bit locations. The addressed bit is fed, via a sense amplifier, to the output register and TRI-STATE buffer. The information is latched into the output register 01) the rising edge of chip strobe CS1. The output is in a high impedance state when the chip is not selected (CS2 or CS3 high) or when writing (WE low). Output buffer control is independent of chip strobe CS1. These memories will retain data with reduced VCC and hence are useful for battery-backup data storage. Certain precautions must be observed as V CC is reduced: (1) input voltages must remain between the VCC and ground of the_ RAM or supply latch-up can occur, (2) WR ITE mode must be avoided, (3) during power-up of VCC, strobe (CS for the MM74C929 and CSl for the MM74C930) logic state must be maintained (either' GND or VCe! while address control lines stabilize. Logic Diagram * AO---' ADDRESS A l - - - ' REGISTER A2 AND INVERTERS AJ (LATCH) A4 STORAGE MATRIX 10 Ol--------~----~I 00 AS A6 A7 AS A9 ..The MM74C930 has 3 chip selects CS1, CS2 and CS3. The MM74C929 has these internally -, connected together providing a single chip select input CS. FIGURE 1 2-20 Absolute Maximum Ratings Operating Conditions 7V Supply Voltage, VCC Voltage at Any Pin -o.3V to VCC + 0.3V Storage Temperature Range -65°C to +150°C Package Dissipation 500mW Lead Temperature (Soldering 10 seconds) 300°C Operating Temperature Range MM54C929, MM54C930 MM74C929, MM74C930 MM74C929·3, MM74C930-3 DC Electrical Characteristics SYMBOL PARAMETER -55°C to +125°C -40°C to +85°C O°C to +70°C Vee = 5V ±10%, T A = Operating Range, unless otherwise noted CONDITIONS MM54C929, MM74C929, MM54C930 MM74C930 MM74C929·3, MM74C930-3 (NOTE 1) MIN MAX MIN MAX MIN VIH Logical "l"lnput Voltage VCC-2.0 VCC VCC-2.0 VCC VCC-2.0 VIL Logical "0" Input Voltage 0 0.8 0 0.8 a VOHl Logical "1" Output Voltage 10H VOH2 Logical "1" Output Voltage lOUT = 0 VOL1 Logical "0" Output Voltage 10L = 2.0 mA "a" Output Voltage ~ 1 mA 2.4 2.4 VCC-O.l VCe-0 . 1 VOL2 Logical IlL I nput Lea kage OV -::; VIN -::; VCC -1.0 10 Output Leakage OV -::; Vo -::; VCC, (Note 2) -1.0 ICC Supply Leakage Current VIN = VCC, Va = OV VDR VCC for Data Retention (Note 3) IDR ICC for Data Retention VCC = 2V, T A = 25°C, (Note 2) 0.01 lOUT = 0 MAX VCC V 0.8 V 2.4 V V VCC-O.l 0.4 0.4 UNITS 0.4 0.01 0.01 V V 1.0 -1.0 1.0 -1.0 1.0 pA 1.0 -1.0 1.0 -1.0 1.0 pA 100 pA pA 10 20 2.0 2.0 2.0 V 0.01 0.01 0.1 (typ) (typ) (typ) Note 1: VCC = 5V ±5%. Note 2: CS2 = CS3 = VCC or CS = VCC. Note 3: CS2 or CS3 or CS = VCC - 2V or = 2V, whichever is greater. AC Electrical Characteristics TTL Interface (VIH = VCC ~ 2V VIL SYMBOL = 0 8V Vee = 5V ±10%, T A = Operating Range, unless otherwise noted Input tRISE = tFALL PARAMETER = 5 ns Load = 1 TTL Gate + 50 pF) MM54C929, MM74C929, MM54C930 MM74C930 MIN MAX 290 MIN MAX MM74C929-3, MM74C930-3 (NOTE 1) MIN 330 ns tc Cycle Time tACC Access Time From Address tACS,tACSl Access Time From tAS Address Set·Up Time 15 tAH Address Hold Time 50 tOE Output Enable Time 150 130 130 ns tOD Output Disable Time 150 130 130 ns tcs,tcsl (Note 4) CS, CSl CS, CST Pulse Width (Negative) 255 UNITS MAX 265 240 315 250 225 300 50 150 ns ns 15 15 ns ns 50 130 165 ns tCS,tCSl CS, CSl Pulse Width (Positive) 140 125 165 ns twp Write Pu~se Width (Negative) 150 130 165 ns tDS Data Set-Up Time, (Note 5) 150 140 140 ns tDH {)ata Hold Time, (Note 5) 0 0 0 ns Note 4: Greater than minimum CS pulse width must be used when reading data from the MM54C929/MM74C929 to ensure that output TRISTATING does not occur before data becomes valid. Writing has no such limitation. Note 5: tDS and tDH are referenced to the low-to-high transition of CSl or CS2 or CS3 or WE,whichever switches first, for the MM54C930/ MM74C930 and are referenced to the CS or WE low-to-high transition, whichever switches first, for the MM54C929/MM74C929. 2-21 Capacitance (Note 6) SYMBOL PARAMETER MIN CONDITIONS MAX UNITS pF CIN I nput Capacitance VIN=O,f= 1 MHz, TA=25°C 4 7 Co Output Capacitance VIN = 0, f= 1 MHz, TA = 25°C 6 9 pF Ccs Chip Select Capacitance MM54C929/MM74C929, MM74C929-3 8 12 pF Note 6: Capacitance maximum is guaranteed by periodic testing. Truth Tables MM54C930/MM74C930 MM54C929/MM74C929 CS WE 01 1 X X m FUNCTION Output in Hi-Z State CS2 CS3 WE 01 FUNCTION X 1 X X X Output in Hi-Z State X 0 X Output in Hi-Z State X X 1 X X Output in Hi-Z State 0 0 0 Write "0," Output in Hi-Z State X X X 0 X Output in'Hi-Z State 0 0 1 Write "1," Output in Hi-Z State 0 0 0 0 0 Write "0," Output in Hi-Z State 0 1 X Read Data, Output Enabled 0 0 0 0 1 Write "1," Output in Hi-Z State 0 0 0 1 X Read Data, Output Enabled x = Don't care Switching Time Waveforms ~--~----~*---------+---------tcs--------~ AO-A9 tAS =k - - tAH lACS DOUT - - -- - - - - -TRI~:i~TE®-- - - - - - DATA OUT VALID *Greater than minimum CS pulse width must be used when reading data from the MM54C929/MM74C929 to ensure that output TRI-STATING does not occur before data becomes valid. Writing has no such limitation, (Figure 4a)_ FIGURE 2a. MM54C929/MM74C929 Read Cycle t - - - - - - - t C S 1 - - - - - - t - - - - - - tCS1-------...-j AO-A9 t------tOE-----~~ t - - - - - - - - - - - tACS1------------<-i t----------tACC-------------·-I ,---------------DATA OUT VALID DOUT - - - - - - - --TRI-STATE®- - - - - - - FIGURE 2b. MM54C930/MM74C930 Read Cycle 2·22 Switching Time Waveforms (Continued) ~~~~~j~-------tcs--------~I AO-A9 *twp (the Write Pulse widthl is the time CS and WE are coincidentally low FIGURE 3a. MM54C929/MM74C929 Write Cycle *twp (the Write Pulse width) is the time CS1. CS2. CS3 and WE are coincidentally low FIGURE 3b. MM54C930/MM74C930 Write Cycle \ - J,f. ~~--------------~ ~~ ..,{ J ~-------------------- -tOEDOUT - - -tODDATA OUT VALID -TRI-STATE®- - - FIGURE 4a. MM54C929/MM74C929 --tOD- -tOEDOUT - - -TRI-STATE®- - - DATA OUT VALID FIGURE 4b. MM54C930/MM74C930 2-23 Typical Performance Characte~istics Access Time vs Ambient Temperature Access Time vs Power Supply Voltage 400 ,..,.....-,---r----r---,.---"T"'I 300 TA ='25"C 250 H-+--+-+---I---H 300 \. 200 - u !u H-+--+-+---I--+1 200 :J. '\ 150 ........ C[ 100 r--.... r--:- ~ 50 o -55-40 85 125 3 3.5 5.5 4.5 VCC (V) Minimum Write Pulse Width vs Ambient Temperature . Data-In Set-Up Time vs Ambient Temperature 200 """"'-,---,----r---..---""T""I 150 I+-+---+---+---+---f-j ]: 100 H-+---1-,'--+-,---+---:::H 1= 200 n--r--.---r---r--T1 ~ 150 f+-+---+--+---t---f-j 100 t+-+---+--+---t---f-j 50 1-I"'''1'''==---+- OU-...L--...J....-J._ _ _.l....-_.J..j -50-40 125 85 85 125 Minimum CSI Pulse Width (Positive) vs Ambient Temperature Data-In Hold Time vs Ambient Temperature 25 rr'---r-'---.--~ 200 150 ~ ! ~ -25 ~ 100 -50 50 -75 o -- VCC = 4.5V I ~ - I VfC = 5.5V -55-40 85 125 -55-40 Address Hold Time vs Ambient Temperature -;;: 30 60 20 ~ 40 vCC = 5.5V -55-40 0 25 I-~CC=4.5V t1:::::r-- -- VCC = 5.5V f o 10 - f-I- vcc = 4.5V ~ 125 Address Set-Up Time vs Ambient Temperature 80 20 85 'f -10 85 125 -55-40 TA eC) 2-24 Typical Performance Characteristics (Continued) Minimum CSl Pulse Width (Negative) vs Ambient Temperature Output Enable Time vs Ambient Temperature 200 n--r--"T"""--,----,----n Dynamic Current vs Power Supply Voltage (VIH = VCC. VIL =OV) 200 3 TA =1 250C :t: 150 150 2.5 ~ c( .g 0 100 50 ---rr- ~ -- Vcc =4.5V Vcc = 5.5V 25 85 1.5 V ::> <.> ::> o o 25 85 125 4.5 Vec (V) Output Sink Current vs Output Voltage Output Source Current vs Output Voltage 40 -20 VCC = SV VCC = SV 3S I I I I -15 -12.S < .g -10 :t: 0 4 3.5 3 TA ('C) -17.S - TA = -55°C 30 T~ = j5°C < .g ~=2~'C -1.S L / k- -S 0 f-t::C 0 S 4.5 4 3.5 3 2.5 1 I 2 1.5 . . . .V 25 5 1 hV if' 0 VOUT (V) 0.5 1 1.5 2 2.5 VOUT (V) 2-25 - J/ k-"'11/ / ' ......TA = 125°C 15 0 L.l--TA=25°C /~ / 20 10 ~~:,......-~ TA=125°C -2.S ~~ V 0 -55-40 125 /' 0.5 '" TA (OC) V V 1 > _"'---'I_--J._..u 0 a: a: 100 o ............ -55-40 2 lZ 3 3.5 4 5 S.5 6 ~National CMOS RAMs D Semiconductor MM54C989/MM74C989 64·Bit (16 x4) TRI·STATE@ RAM General Description Read Operation: The complement of the information which was written into the memory is non-destructively read out at the 4 outputs. This is accomplished by selecting the desired address and bringing memory enable low and write enable high. The MM54C989/MM74C989 is a 16-word by 4-bit random access read/write memory. Inputs to the memory consist of 4 address lines, 4 data input lines, a write enable line and a memory enable line. The 4 binary address inputs are decoded internally to select each of the 16 possible word locations. An internal address register latches the address information on the positive to negative transition of the memory enable input. The 4 TR I-STATE data output lines working in conjunction with the memory enable input provides for easy memory expansion. When the device is writing or disabled the output assumes a TRI-STATE (Hi-Zl condition. Features Note. The timing is different than the DM7489 in that a positive to negative transition of the memory enable must occur for the memory to be selected. Write Operation: Information present at the data inputs is written into the memory at the selected address by bringing write enable and memory enable low. Logic ~nd 3.0V to 5.5V • Wide supply voltage range Address Operation: Address inputs must be stable tSA prior to the positive to negative transition of memory enable. It is thus not necessary to hold address information stable for more than tHA after the memory is enabled (positive to negative transition of memory enable). 1.0V • Guaranteed noise margin • High noise immunity • Low power TTL compatibility • Input address register • Low power consumption • Fast access time 0.45 VCC typ fan out of 2 driving 74L 250 nW/package typ @VCC=5V 140 ns typ at VCC = 5V • TRI-STATE output Connection Diagrams DATA DATA DATA DATA DATA iiAfA DATA iiAfA INPUT 1 OUTPUT 1 INPUT 2 OUTPUT 2 INPUT 3 OUTPUT 3 INPUT 4 OUTPUT 4 Dual-in-Line Package ADDRESS INPUT A WRITE ENABLE 16 1 f.IDm!Y 2 iiEiiOiiY £JmTI ENABLE wmn: 3 DATA INPUT 1 4 £JmTI iiAfA 5 INPUT A mPilTl DATA INPUT2 6 iiAfA 1 11 DATA il"Uffljf4 10 DATA INPUT 3 9 lim DlJffilT3 01iTPlff2 INPUTB • Vee 15 ADDRESS INPUTB 14 ADDRESS INPUTC 13 ADDRESS INPUT 0 12 DATA INPUT( GND TOP VIEW INPUT e Order Number MM54C989J or MM74C989J See NS Package J16A INPUTB Order Number MM74C989N See NS Package N16A 2-26 Absolute Maximum Ratings Operating Conditions (Note 1) Voltage at Any Pin -{).3V to VCC + 0.3V Package Dissipation 500mW Absolute Maximum VCC 7.0V Lead Temperature (Soldering, 10 seconds) 300°C DC Electrical Characteristics Supply Voltage (VCC) MM54C989 MM74C989 Temperature (TA) MM54C989 MM74C989 MIN MAX UNITS 4.7 4.75 5.5 5.25 V V +125 +85 °c °c -55 -40 Operating V CC Range 3.0V to 5.5V Standby VCC Range 1.5V to 5.5V (Min/max limits apply across the temperature and power supply range indicated). VIN(1) Logical "1" Input Voltage VIN(O) Logical "0" Input Voltage CONDITIONS MIN TYP MAX 0.8 1 Logical "1"lnput Current VIN = 5V Logical "0" I nput Current VIN = 0 VOUT(1) Logical "1" Output Voltage 10 = -360pA 2.4 V 10 = -1501lA VCC-0.5 V 10 = 360pA VO= 5V VO= 0 ICC Supply Current (Active) 0.005 -1 0.4 -1 1 -0.005 0.05 pA pA -0.005 0.005 ME = 0, V pA pA 150 pA 3 pA VCC = 5V Supply Current (Stand-By) AC Electrical Characteristics ME= 5V MM54C989/MM74C989 T A = 25°C, VCC = 5V, CL = 50 pF PARAMETER MIN TYP MAX UNITS ns tACC Access Time From Address 140 500 tPD Propagation Delay From ME 110 360 tSA Address Input Set-Up Time tHA Address Input Hold Time 20 15 ns tME Memory Enable Pulse Width 200 80 ns 100 140 ns ns 30 tME Memory Enable Pulse Width 400 tSD Data Input Set-Up Time 0 tHD Data Input Hold Time 30 20 ns tWE Write Enable Pulse Width 140 70 ns t1H, tOH Delay to TRI-STATE, CL = 5 pF, RL = 10k, (Note 4) ns ns 100 200 ns \ CAPACITANCE pF CIN Input Capacity, Any Input, (Note 2) COUT Output Capacity, Any Output, (Note 2) 8 pF CPD Power Dissipation Capacity, (Note 3) 350 pF 5 2-27 ~ V IIN(1) Logical "0" Output Voltage s: s: ""'-01 V VCc-1.5 Output Current in High Impedance State se UNITS IIN(O) VOUT(O) ~ (') CO CO (') CO CO CO MM54C989/MM74C989 PARAMETER s: s: en fill C) co C) AC Electrical Characteristics 0 MM54C989: TA = -55°C to +125°C, VCC = 4.5V to 5.5V. CL = 50 pF 1'0 MM74C989: T A = -40° C to +85° C, V CC = 4.75V to 5.25V. CL = 50 pF ~ :e :e a; CO (Continued) MM54C989 PARAMETER MM74C989 UNITS MAX MIN MIN MAX C) tACC Access Time From Address 500 620 ns 0 tPD1, tpDO Propagation Delay From ME 350 430 ns tSA Address Input Set.-Up Time 150 140 ns tHA Address Input Hold Time 50 60 ns tME Memory Enable Pulse Width 250 310 ns tME Memory Enable Pulse Width 520 400 ns tSD Data Input Set-Up Time 0 0 ns tHD Data Input Hold Time 60 50 ns tWE Write Enable Pulse Width 220 t1 H, tOH Delay to TRI-STATE, (Note 4) ~ II) :e :e 180 ns 200 200 ns Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Capacitance is guaranteed by periodic testing. Note 3: CPD determines the no load AC power consumption for any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-gO. Note 4: See AC test circuit for tl H, tOH. Truth Table OPERATION CONDITION OF OUTPUTS L L Write TRI-STATE L H Read Complement of Selected Word H L I nhibit, Storage TRI-STATE H H Inhibit, Storage TRI-STATE AC Test Circuits All Other AC Tests tOH Vee o ..=: 10k - DATA OUTPUT --5.0pF T 10k =:... -= 2-28 --. ±:.OPF . DATA OUTPUT l50PF T Switching Time Waveforms Read Cycle (Note 1) Vee Write Cycle (Note 1) ----l--_-----... vee---t-.l------... MfMil1f\' MEMORY [NAm ENABLE Vee------, Vee------" ADDRESS INPUT ADDRESS INPUT 0------./ Vee-----------.. DATA Vee----------------r~------- tm1i li1Tf our Read-Modify-Write Cycle (Note 1) tOH Vee--+-.l----, MEMORY ENABLE v e e - - - - -...... ADDRESS INPUT WRITE ENABLE LATCHED ADDRESS DATA IN qtWE Vee X - Vee ')CHD. ' -_ _ _ __ Note 1: MEMORY ENABLE must be brought high for tME ns between every address change. Note 2: tr = tf = 20 ns for all inputs. 2-29 ~ ~ ~National B :E CMOS RAMs ~ Semiconductor PRELIMINARY z NMC6504 4096·Bit (4096 x 1) Static RAM General Description Features The NMC6504 is a static CMOS random access read/write memory organized as 4096 words of 1 bit each. This device is fabricated with National Semiconductor's silicon·gate CMOS technology and is fully compatible to the TTL environment. Synchronous operation is provided by on-chip address, data, and write latches. The ENABLE input serves as the device strobe controlling the latching functions. The TRI-STATE@ output, in conjunction with the ENABLE input, allows easy memory expansion. • • • • • • • • • • • • • Industry standard pinout Low data retention voltage - 2V Low speed/power product TTL compatible - all inputs and outputs TRI-STATE@ outputs for bus operation High output drive High noise immunity Military temperature range available On-chip address registers (latches) Common I/O - high density packaging Output data latches Input data latches Select latch for microprocessor interface Connection Diagram Logic Symbol Dual-In-Llne Package Order Number NMC6504J-2, NMC6504J-9 or NMC6504J-5 See NS Package J18A Order Number NMC6504N-5 See NS Package N18A n lL GNO E TOP VIEW Pin Names Address Inputs Chip Enable Write Enable Data Input Data Output AO-A11 E iN D Q 2-30 Functional Description An NMC6504 memory cycle is initiated by the falling edge of the ENABLE (E) input which latches the address information Into the on-chip registers. On-chip latches allow selection of a read, early write, or read· modify-write cycle as a function of the ENABLE and WRITE (W) Input levels and timing. Data output is enabled by the failing edge of the ENABLE input and disabled by the rising edge except when performing an early write cycle. The input and output data latches are transparent except during the write pulse (not the WRITE input). An early write cycle is performed by preceding the ENABLE with the HIGH to LOW transition of the WRITE Input. The WRITE Input level Is latched, and set-up and hold times must be met. The data output Is not enabled during an early write cycle. The Input data set·up and hold times are referenced to the leading edge of the write pulse, which is initiated by the falling edge of the ENABLE input and terminated by the rising edge of the ENABLE. A read-modify-write cycle is performed as a read cycle, for the enable access time, followed by the write pulse which is Initiated by the falling edge of the WRITE input and terminated by the rising edge of either the ENABLE or WRITE input, whichever occurs first. The input data set-up and hold times are referenced to the falling edge of the WRITE input. Data is latched when the WRITE input goes LOW, allowing the modified data to be written into the memory while continuing to read the original data.' When performing a read cycle a minimum ENABLE LOW time Is required to assure valid data at the output. This minimum LOW time is defined as the enable access time. A minimum ENABLE HIGH time is required to return the columns to the HIGH state and to precharge the sense amplifiers in preparation of the next cycle. Block Diagram A8----1----, A1----I A6----I AD----f ADDRESS LATCH AND INVERTERS FUNCTIONS ARE POSITIVE LOGIC GATED ROW DECODER 64 64x64 ARRAY DATA LATCHES ON RISING EDGE OF L At----I (:~~}------t-----r----J Lt~ ___... ADDRESSES AND CONTROL LATCHES ON THE RISING EOGE OF L A3 A4 AS All AID A9 (MSB} 2·31 Operating Range Absolute Maximum Ratings Min Supply Voltage vee 7V Voltage at Any Pi n Supply Voltage NMC6504·9 NMC6504·2 NMC6504·5 + 0.3V + 150·C - 0.3V to VCC Storage Temperature Range -65·Cto Package Dissipation 500mW lead Temperature(Soldering. 10 seconds) Temperature NMC6504·9 NMC6504·2 NMC6504·5 300·C Max 4.5V 4.5V 4.75V 5.5V 5.5V 5.25V -40·C -55·C 85·C 125·C 75·C O·C DC Electrical Characteristics over the operating range, unless otherwise noted Symbol Parameter I-N_M~C:-:-65_0_4._9'r-'N_M~C6:-5_0_4._2-t----:-::-:--N_M_Cr65_0_4-:-.5-:-----tU nits Min Max Min Max Conditions V 2.0 2.0 VCCDR Data Retention Supply Voltage ICCSB Standby Supply Current 50 500 p.A ICCOp· Operating Supply Current f=1 MHz, 10=0, VI = VCC or GND 10 10 mA ICCDR Data Retention Supply Current VCC = 3.0V, 10 = 0, VI = VCC or GND 25 500 p.A VI=VCC, GND VI=VCC,GND II Input Leakage Current VIL Input Low Voltage VIH Input High Voltage 10Z Output Leakage Current VOL Output Low Voltage IOL=2.0 mA VOH Output High Voltage 10H= -1.0 mA CI Input Capacitance f= 1 MHz CO Output Capacitance f= 1 MHz -1.0 +1.0 0.8 . -0.3 VCC-2.0 c: SENSE AMPS SENSE AMPS COLUMN DECODER COLUMN DECODER 0 0 0 0 0 0 0 0 0 I I I I I I I I I o I "-----1._ I 0 0 0 0 0 I 0 0 0 0 I - 2·32 I I I I I 0 I I I I I I I I I I I I 0 0 0 0 0 0 0 0 0 0 0 0 V p.A V 8 8 pF 10 10 pF (MSB) (LSB) ROWS A2 AI AO A6 A1 AS I-f-J2 COLUMNS - - +10 0.45 NMC6504 Bit Map and Address Decoding ~ VCC+0.3 V 2.4 Input Rise and Fall Times: ::520 ns All Timing Reference Levels: 1/2 VCC Output Load: 1 TTL Load, 50 pF ~0 0 0 0 V 0.4 2.4 AC Test Conditions '" AIO ~ All A5 u A4 (LSB) AJ p.A 0.8 -10 +1.0 * ICCOP is proportional to operating frequency. (MSB) A9 +10 VCC-2 VCC+0.3 -1.0 VI=VCC, GND -10 -0.3 I I I I I I 0 0 0 i 0 I 0 0 0 0 I I 0 0 0 0 0 0 0 I I 1 0 0 I 0 I 0 z 3: Read Cycle AC Electrical Characteristics over the operating range o 0) UI Symbol NMC6504·9, NMC6504·2 Min Max Parameter NMC6504·5 Min Max Units TAVEL Address Set·up Time 20 20 ns TELAX Address Hold Time 50 50 ns TElQV Enable Access Time 300 350 ns TAVQV Address Access Time 320 370 ns TElEH Enable (E) Minimum low Time 300 TElEl Read or Write Cycle Time 420 350 500 . TEHEl Enable (E) Minimum High Time 120 150 TElQX Output Enable from Enable (E) 100 100 ns TEHQZ Output Disable from Enable (E) 100 100 ns . Read Cycle Waveforms A ~ - TElAX, "/Y TAVEL /Y'x ('y')(y 'IvY ~ - t= '\ILXXXXX f-TElEL TElEH E "&F 'LL:li\ TEHEL ~.- -,~ I ~ - TELQY TAVQV TEHQZ -t- Q ..,'!----TElQX 2·33 ~ ns ns ns o ~ IIII:t 0 Lt') Write Cycle AC Electrical Characteristics over the operating range CD 0 :E z Symbol NMC6504·9, NMC6504·2 Parameter Min Max NMC6504·5 Min Max Units TAVEL Address Set·up Time ns Address Hold Time 20 50· 20 TELAX 50 ns TWLWH Write Pulse Width (W Low) 80 100 ns TELEL Read or Write Cycle Time 420 500 ns TELEH Enable (E) Minimum Low Time 300 350 ns TDVWL Data Set·up Time TEHEL Enable (E) Minimum High Time TWLDX Data Hold Time TELWH Write Pulse Width TELWL Early Write Output Hi·Z Time TWLEH Write Pulse Width (Wand TELQX Output Enable from TELQV Enable Access Time TEHQZ Output Disable from (E and W Low) E Low) 0 30 ns 120 150 ns 80 100 ns 80 100 ns 0 0 ns 200 E E 250 100 ns 300 350 ns 100 100 ns Write Cycle Waveforms Q ------H~~~--- 2·34 ns 100 z. s: 0 Early Write Cycle AC Electrical Characteristics over the operating range 0) Symbol NMC6504·9, NMC6504·2 Min Max Parameter en NMC6504·5 Min Max Units Address Set·up Time 20 20 ns TELAX Address Hold Time 50 50 ns TELWH Write Pulse Width (E and W Low) 80 100 ns TDVEL Early Write Data Set·up Time 0 30 ns TELEH Enable (E) Minimum Low Time 300 350 ns lWLEL Early Write Set·up Time 0 0 ns TEHEL Enable (E) Minimum High Time 120 150 ns TELDX Early Write Data Hold Time TELEL Read or Write Cycle Time TAVEL 80 100 ns 420 500 ns Early Write Cycle Waveforms -------------Hi·Z------------ 2·35 0 .a:a. -.::t 0 Lt) CO Read·Modify·Write Cycle AC Electrical Characteristics over the operating range 0 ~ Z Symbol TAVEL NMC6504·9, NMC6504·2 Min Max Parameter Address Set·up Time NMC6504·5 Max Min Units 20 20 ns 50 50 ns TElAX Address Hold Time TElaV Enable Access Time 300 350 ns TAVaV Address Access Time 320 370 ns TEHEl Enable (E) Minimum High Time TWHEl iN Read Mode Set·up Time Write Pulse Width (iN and E low) TWlEH 120 150 0 0 ns 200 250 ns ns 0 0 ns 80 100 ns 80 100 TaVWl Data Valid to Write Time TWlWH Write Pulse Width TWlDX Data Hold Time TElaX Output Enable from Enable (E) 100 100 ns TEHaZ Output Disable from Enable (E) 100 100 ns TDVWl Data Set·up Time Read·Modify~Write (iN low) 0 ns 30 ns Cycle Waveforms t----TWlEH - - - - t - - - - - 1 E H E l - - - - - i TOVWl o--------------~~~r-----~~------------~---------- 2-36 z o ~National CMOS RAMs 3: ~ Semiconductor 0)' 01 o co NMC65081024·Bit (1024 x 1) Static RAM General Description Features The NMC6508 is a static CMOS random access read/write memory organized as 1024 words of 1 bit each. This device is fabricated with National Semiconductor's silicon-gate CMOS technology and is fully compatible to the TTL environment. Synchronous operation is provided by the onchip latches for the address inputs. The NMC6508 may be used in common I/O applications by externally connecti ng the data input and output terminals. The TRI·STATE"] out· put, in conjunction with the ENABLE input, allows for easy memory expansion. • • • • • Industry standard pinout Low data retention voltage - 2V Low speed/power product TTL compatible - all inputs and outputs TRI·STATE" outputs for bus operation • • • • • • High output drive High noise immunity Military temperature range available On-chip address registers (latches) 16 pin - high density packaging Output data latches Connection Diagram Logic Symbol Dual·ln·Line Package 16 E vee AD , AD Al A2 A9 AJ A4 10 a GND A6 a AS TOP VIEW Order Number NMC6508J·2, NMC6508J·9 or NMC6508J·5 See NS Package J18A Order Number NMC6508N·5 See NS Package N18A Pin Names AO-A9 E IN D Q Address Inputs Chip Enable Write Enable Data Input Data Output 2·37 00 o II) CO o :E z Functional Description return the columns to the HIGH state and to precharge the sense amplifiers in preparation of the next memory cycle. An NMC6508 memory cycle is initiated by the falling edge of the ENABLE (E) input, which latches the address information into the on-chip registers. The output buffer is enabled when the WRITE (W) input is HIGH and the ENABLE input is LOW. When performing a write cycle, the minimum ENABLE LOW time is required to enter new data. The write pulse is created by the coincident LOW of the ENABLE and WRITE inputs. The data set-up and hold times are referenced to the rising edge of either the ENABLE or WRITE input, whichever occurs first. When performing a read cycle a minimum ENABLE LOW time is required to assure valid data at 'the output. This minimum LOW time is defined as the device enable access time. A minimum ENABLE HIGH time is required to Block Diagram FUNCTIONS ARE POSITIVE LOGIC 32 x 32 ARRAY DATA LATCHES ON FALLING EDGEOF"~ TRI·STATE® OUTPUT BUFFER o ADDRESS LATCH AND INVERTERS ADDRESSES ARE LATCHED ON THE RISING EDGE OF L A3 A4 AS A6 A7 (MSB) 2·38 Absolute Maximum Ratings Supply Voltage VCC 7V Voltage at Any Pin -0.3VtoVCC +0.3V Storage Temperature Range Z Operating Range -65'Cto +150'C Package Dissipation 500mW Lead Temperature (Soldering. 10 seconds) 300'C Min Max Supply Voltage NMC6508B·9 NMC6508B·2 NMC6508-9 NMC6508-2 NMC6508·5 4.5V 4.5V 4.5V 4.5V 4.75V 5.5V 5.5V 5.5V 5.5V 5.25V Temperature NMC6508B·9 NMC6508B·2 NMC6508-9 NMC6508·2 NMC6508-5 -40'C -55'C -40'C -55'C O'C 85'C 125'C 85'C 125'C 75'C DC Electrical Characteristics over the operating range, unless otherwise noted Symbol Parameter NMC6508B·9, NMC6508B·2 NMC6508·9, NMC6508·2 Min Max Conditions VCCDR Data Retention Supply Voltage ICCSS Standby Supply Current ICCOP' Operating Supply Current ICCDR VI=VCC,GND NMC6508·5 Min Units Max 2.0 2.0 V 10 100 p.A f=1 MHz, 10=0, VI = VCC or GND 4 4 mA Data Retention Supply Current VCC = 3.0V, 10 = 0, VI = VCC or GND 10 100 p.A VI=VCC, GND II Input Leakage Current VIL Input Low Voltage VIH Input High Voltage 10Z Output Leakage Current VOL Output Low Voltage IOL=3.2 mA VOH Output High Voltage 10H= -0.4 mA CI Input Capacitance f= 1 MHz CO Output Capacitance f = 1 MHz -1.0 +1.0 -1.0 +1.0 p.A -0.3 0.8 -0.3 0.8 V VCC-2.0 VI=VCC, GND -1.0 VCC-2 VCC+0.3 p.A 0.4 V 6 6 pF 10 10 pF 0.4 2.4 AC Test Conditions Input Rise and Fall Times: :::;20 ns All Timing Reference Levels: 1/2 VCC Output Load: 1 TTL Load, 50 pF NMC6508 Bit Map and Address Decoding (MSB) ROWS (LSB) A9 AS A2 AI AD 16 COLUMNS - - D D D D D D D D D D 0 0 r SENSE AMPS SENSE AMPS COLUMN DECODER COLUMN DECODER ~D DOD ~A600 .11 AS 0 0 1 1 3A400 II (LSB) A3 0 1 0 1 ~~ (MSBI A7 3 rI -I - - - -1 -I o o o o 0 • 0 0 1 • '2·39 • - 1 1 I 0 V 2.4 ~ 1 1 I I V +1.0 -1.0 +1.0 *ICCOP is proportional to operating frequency. - VCC+0.3 D D 0 0 1 I 0 D 1 1 0 D D 1 D 1 D I 0 1 I 1 1 I 1 1 1 1 3: 00) ~ CO co o II) Read Cycle AC Electrical Characteristics over the operating range CO o :E z Symbol NMC6508B·9 NMC6508B·2 Min Max Parameter NMC6508·9 NMC6508·2 Min Max NMC6508·5 Min 0 0 10 40 50 70 Units Max ns TAVEL Address Set·up Time TELAX Address Hold Time TElOV Enable Access Time 180 250 300 ns TAVOV Address Access Time 180 250 310 ns TElEH Enable (E) Minimum low Time TElOX Output Enable from Enable (E) 120 160 200 ns Output Disable from Enable (E) 120 160 200 ns TEHOZ TEHEl TElEl 180 280 Read or Write Cycle Time 300 250 100 Enable (E) Minimum High Time A TELAX, 100 ns 350 450 ns - t::: Y'XX'X'/ ~ YXX'A' " I TAVEL I-TELEL TEHEL TELEH E ~Ir 1\ ~~ ~ -.'f- 7 - TElQY TAVQV ~I( Q TEHQZ :....l~ -:If- t---TElQX - 2·40 ns 150 Read Cycle Waveforms ~ ns Z Write Cycle AC Electrical Characteristics over the operating range Symbol NMC6508B·9 NMC6508B·2 Min Max Parameter TAVEL Address Set·up Time TELAX Address Hold Time TEHEL Enable (E) Minimum High Time NMC6508·9 NMC6508·2 Min Max 3: 0 0) NMC6508·5 Min Units Max (X) 0 0 10 40 50 70 ns 100 100 150 ns ns TDVWH Data Set·up Time 80 110 130 ns TELWH Write Pulse Width (E and Vi Low) 100 130 160 ns 1WLWH Write Pulse Width (Vi Low) 100 130 160 ns TELEL Read or Write Cycle Time 280 350 450 ns 1WHDM Data Hold Time 0 0 0 ns 1WLEH Write Pulse Width (E and 100 130 160 ns TELEH Enable (E) Minimum Low Time 180 250 300 TELOX Output Enable from 1WLOZ Output Disable from E Vi Low) ns 120 160 200 ns 120 160 200 ns 1WHOX Vi Output Enable from Vi 120 160 TEHOZ Output Disable from E 120 160 200 200 ns Write Cycle Waveforms Q---------+~~~--------~~~-------------- 2·41 U1 0 ns co ~ Read·Modify-Write Cycle AC Electrical Characteristics over the operating range CD 0 :E Z Symbol Parameter NMC6508B·9 NMC6508B·2 Min Max NMC6508·9 NMC6508·2 Min Max NMC6508·5 Min 0 0 10 40 50 70 TAVEL Address Set·up Time TELAX Address Hold Time TELOV Enable Access Time 180 TAVOV Address Access Time 180 TEHEL Enable (E) Minimum High Time TWHDM Data Hold Time 250 250 Units Max ns ns 300 310 ns ns 100 100 150 ns 0 0 0 ns TOVWL Data Valid to Write Time 0 0 0 ns TWHEL 0 0 130 0 ns TWLWH WRead Mode Set-up Time Write Pulse Width (W Low) TELOX Output Enable from Enable (E) 120 160 TEHOZ Output Disable from Enable (E) 120 TWLOZ Output Disable from Write (W) 120 TDVWH Data S~t-up Time TWHOX Output Enable from Write (W) 100 80 160 ns 160 200 ns 160 ·200 ns 200 ns 130 110 120 160 Read·Modify·Write Cycle Waveforms * Output enable can be avoided by preceding the rising edge of iN with the rising edge of Eby time; TEHQZ 2-42 ns 200 ns ~National CMOS RAMs PRELIMINARY ~ Semiconductor z s: o en en ...... ~ NMC6514 4096-Bit (1024 x 4) Static RAM General Description Features The NMC6514 is a static CMOS random access read/write memory organized as 1024 words of 4 bits each. This device is fabricated with National Semiconductor's silicon·gate CMOS technology and is fully compatible with the TIL environment. Synchronous operation is pro· vided by on·chip address latches. The ENABLE input serves as the device strobe controlling the address latching function. The data I/O terminals, when not output data enabled, represent a high impedance for easy memory expansion. • • • • • Industry standard pinout Low data retention voltage - 2V Low speed/power product TIL compatible - all inputs and outputs TRI·STATE@ outputs for bus operation • • • • • High output drive High noise immunity Military temperature range available On·chip address registers (latches) Common I/O - high density packaging Connection Diagram Logic Symbol Dual·ln·Llne Package A6 Order Number NMC6514J·2, NMC6514J·9 or NMC6514J·5 See NS Package J18A AS A4 AJ Order Number NMC6514N·5 See NS Package N18A AD At A2 Pin Names Address Inputs Chip Enable Write Enable Data In/Out AO-A9 E GND iN TDP VIEW DQO-DQ3, 2·43 ~ ..... CD o it) :E z Functional Description An NMC6514 memory cycle is initiated by the falling edge of the ENABLE (E) input, which latches the address information into the on-chip registers. Read, write, the readmodify-write cycles are selected as a function of the ENABLE and WRITE (W) input levels and timing. Data out· put is enabled by the falling edgeof the ENABLE input and disabled by the rising edge when theWRITE input is HIGH. The output is disabled when writing. When performing a write cycle a minimum ENABLE LOW time is required to enter the new data. The write pulse is created by the coincident LOW of the ENABLE and WRITE inputs. The data set-up and hold time are referenced to the rising edge of either the ENABLE or WRITE inputs whichever occurs first. A read-modify-write cycle is performed as a read cycle, for the enable access time, followed by the write pulse caused by the LOW time of the WRITE input. The output data is disabled by the falling edge of the WRITE input, and input data, meeting the set·up and hold requirements must be provided. When performing a read cycle a minimum ENABLE LOW time is required to assure valid data at the output. This minimum LOW time is defined as the device enable access time. A minimum ENABLE HIGH time is required to return the columns to the HIGH state and to precharge the sense amplifiers in preparation of the next cycle. Block Diagram ~----.... A9 FUNCTIONS ARE POSITIVE LOGIC AS A7 A6 ADDRESS LATCH AND INVERTERS 12 GATED ROW DECODER 64 64 x 64 ARRAY A5 ~----------~----~64~----------------~ ADDRESSES LATCH ON THE RISING EDGE OF L >---I--t-....+-+-+- DIlD >-t--___ ~t-Dlll >-----+-----....+_ 0112 >--+---~..._ ...--........ ~---- AD AI A2 Al 2-44 (MSB) TRI·STATE@ OUTPUT BUFFERS Dill Absolute Maximum Ratings Supply Voltage VCC 7V Voltage at Any Pin -65'Cto +150'C Package Dissipation 500mW Lead Temperature(Soldering, 10 seconds) Temperature NMC6514·9 NMC6514·2 NMC6514·5 300'C 3: Min Max 4.5V 4.5V 4.75V 5.5V 5.5V 5.25V -40'C -55'C O'C 85'C 125'C 75'C DC Electrical Characteristics over the operating range, unless otherwise noted Symbol Parameter NMC6514·9, NMC6514·2 Max Min Conditions NMC6514·5 Min Max Units VCCDR Data Retention Supply Voltage ICCSS Standby Supply Current 50 500 p.A ICCOp· Operating Supply Current f=1 MHz, 10=0, VI = VCC or GND 10 10 mA ICCDR Data Retention Supply Current VCC = 3.0V, 10 = 0, VI = VCC or GND 25 500 p.A VI =VCC, GND VI = VCC, GND II Input Leakage Current VIL Input Low Voltage VIH Input High Voltage IOZ Output Leakage Current 2.0 2.0 V -1.0 + 1.0 -10 +10 p.A -0:3 0.8 -0.3 0.8 V VCC-2:0 VI =VCC, GND VCC+0.3 -1.0 VCC-2 VCC+0.3 -10 +1.0 V +10 p.A 0.4 V VOL Output Low Voltage IOL=2.0 mA VOH Output High Voltage IOH= -1.0 mA CI Input Capacitance f=1 MHz 8 8 pF CO Output Capacitance f=1 MHz 10 10 pF 0.4 2.4 2.4 V • ICCOP is proportional to operating frequency. AC Test Conditions Input Rise and Fall Times: ::520 ns All Timing Reference Levels: 1/2 VCC Output Load: 1 TIL Load, 50 pF NMC6514 Bit Map and Address Decoding f-- 16 COLUMNS-!---16 COLUMNS- 1" (LSB) (MSB) ROWS A4 A5 A6 Al AS A9 ''''.''-1--- """.,,- 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I SENSE AMPS SENSE AMPS COLUMN DECDDER COLUMN DECODER '.~.,~[ • 1 0 0 1 0 0 I 0 0 0 :;; AI 0 0 ~ AO 0 0 (LSB) A3 0 1 1 I SENSE AMPS SENSE AMPS COLUMN DECODER COLUMN DECODER ·3·: 1 1 [0 ~ .. : ~~'3': 0 0 I 0 0 1 0 1 1 0 1 1 2·45 I 1 1 1 1 0 . " j I 1 1 1 ~ ...~ 0 0) Supply Voltage NMC6514·9 NMC6514·2 NMC6514·5 -O.3VtoVCC +O.3V Storage Temperature Range Z Operating Range 00 1 1 1 0 0 1 0 0 C11 ...a. ~ ,.. ~ ll) Read Cycle AC Electrical Characteristics over the operating range CD 0 :E Z Symbol NMC6514·9, NMC6514·2 Min Max Parameter NMC6514·5 Min Max Units TAVEL Address Set·up Time 20 20 TELAX Address Hold Time 50 50 TElOV Enable Access Time 300 350 ns TAVOV Address Access Time 320 370 ns TElEH Enable (E) Minimum low Time 300 350 TEHEL Enable (E) Minimum High Time 120 150 TElOX Output Enable from Enable (E) 100 100 ns TEHQZ Output Disable from (E) 100 100 ns TElEL Read or Write Cycle Time 420 500 Read Cycle Waveforms - TAVEL ~ J-----------TELEL----------J I------TELEH-----t-----TEHEL---~ -lJ 1 - - - - - - TELQY - - - - - - I I-----+---TAVQV TEHQZ ----~ Q OQ I---TELQX 2·46 r-- ns ns ns ns ns Z 3: Write Cycle AC Electrical Characteristics over the operating range Symbol NMC6514·9, NMC6514·2 Min Max Parameter NMC6514·5 Max Min 0Q) en ..,.,. Units TAVEL Address Set·up Time 20 20 TELAX Address Hold Time 50 50 ns TWLEH Write Pulse Width (E and W Low) 300 350 ns ns TEHEl Enable (E) Minimum High Time 120 150 ns TWLWH Write Pulse Width (W low) 300 350 ns 420 TElEl Head or Write Cycle Time TWHOX Output Enable from Write (Vii) 100 100 ns TElOX Output Enable from Enable (E) 100 100 ns TEHOZ Output Disable from Enable (E) 100 100 ns TWLOZ Output Disable from Write (Vii) 100 100 ns TDVWH Data Set·up Time TWHDZ Data Hold Time TElWH Write Pulse Width (E and iN low) 500 ns 200 250 ns 0 0 ns 300 350 ns Write Cycle Waveforms ~---------------------------TELEL-------------------------~~ ______ 1----------- TELWH------------f * Avoid bus contention 2·47 t-------TEHEL------I .a::.- ~ ,... ll) Read·Modify·Write Cycle AC Electrical Characteristics over the operating range CD 0 :E Z Symbol NMC6514·9, NMC6514·2 Parameter Min Max NMC6514·5 Min Max Units TAVEL Address Set·up Time 20 20 ns TELAX Address Hold Time 50 50 ns TELaV Enable Access Time 300 350 ns TAVaV Address Access Time 320 370 ns lWLaZ Output Disable from Write (W) 100 ns TDVWH Data Set·up Time lWHDX Data Hold Time lWLEH Write Pulse Width (Wand E Low) TaVWL Data Valid to Write Time lWLWH Write Pulse Width (W Low) TELaX Output Enable from Enable (E) TEHEL Enable (E) Minimum High Time lWHEL W Read Mode Set·up Time 100 200 250 ns 0 0 ns 300 350 ns 0 0 ns 300 350 100 150 ns 0 0 ns i------TWLEH-------i 2·48 ns 120 Read·Modify·Write Cycle Waveforms * Avoid bus contention ns 100 z oCD ~National CMOS RAMs 3: ~ Semiconductor ..... (J1 CO NMC65181024·Bit (1024 x 1) Static RAM General Description Features The NMC6518 is a static CMOS random access read/write memory organized as 1024 words of 1 bit each. This device is fabricated with National Semiconductor's silicon·gate CMOS technology and is fully compatible with the TIL en· vironment. Synchronous operation is provided by the on· chip latches for the address inputs and data output. The ENABLE input serves as the device strobe controlling the latching functions. The TRI·STATE@ output, in conjunc· tion with the ENABLE input, allow easy memory expansion. • • • • • • • • • • • Industry standard pinout Low data retention voltage - 2V Low speed/power product TIL compatible - all inputs and outputs TRI·STATE@ outputs for bus operation High output drive High noise immunity Military temperature range available On·chip address registers (latches) 18 pin - high density packaging Output data latches Connection Diagram Logic Symbol Dual·ln·Line Package AD A1 A2 AJ o A4 A9 0 10 GND W E S1 S2 AS TOP VIEW Order Number NMC6518J·2, NMC6518J·9 or NMC6518J·5 See NS Package J16A Order Number NMC6518N·5 See NS Package N16A Pin Names AO-A9 E IN D Q Si,S2 Address Inputs Chip Enable Write Enable Data Input Data Output Chip Selects 2·49 co ..... II) CD o :E z Functional Description An NMC6518 memory cycle is initiated by the failing edge of the ENABLE input, which latches the address Information Into the on-chip registers. Data output is enabled when the WRITE (W) input is high and the ENABLE, SELECT 1 (51) and SELECT 2 (82) inputs are LOW. precharge the sense amplifiers in preparation of the next cycle. When performing a write cycle, the minimum ENABLE LOW time Is required to enter new data. The write pulse is created by the coincident LOW of the WRITE, ENABLE and both SELECT Inputs. The input data set·up and hold times are referenced to the rising edge of the WRITE, ENABLE, SELECT 1 or SELECT 2 inputs, whichever oc· curs first. . When performing a read cycle a minimum ENABLE LOW time is required to assure valid data at the output. This minimum ENABLE LOW time is defined as the device enable access time. A minimum ENABLE HIGH time Is required to return the columns to the HIGH state and to Block Diagram FUNCTIONS ARE POSITIVE LOGIC AD A1 A2 A8 ADDRESS LATCH AND INVERTERS 1D GATED ROW DECODER 32 32 x 32 ARRAY DATA LATCHES ON FALLING EDGE OF '"L'" INPUT (WRITE) CONTROL D------------------------~ ~--_+--~ w GATED COLUMN DECODER AND I{O DATA OUTPUT LATCH ADDRESS LATCH AND INVERTERS ADDRESSES ARE LATCHED ON THE RISING EDGE OF L A3 A4 AS A6 A7 (MSB) 2·50 TRI·STATE® OUTPUT BUFFER Q Absolute Maximum Ratings Supply Voltage VCC 7V Voltage at Any Pin - 0.3V to VCC + 0.3V Storage Temperature Range Z Operating Range -65'Cto +150'C Package Dissipation 500mW Lead Temperature (Soldering. 10 seconds) 300'C Min Max Supply Voltage NMC6518B·9 NMC6518B·2 NMC6518·9 NMC6518·2 NMC6518·5 4.5V 4.5V 4.5V 4.5V 4.75V 5.5V 5.5V 5.5V 5.5V 5.25V Temperature NMC6518B·9 NMC6518B·2 NMC6518·9 NMC6518·2 NMC6518·5 -40'C -55'C -40'C -55'C O'C 85'C 125'C 85'C 125'C 75'C 3: 0 m c.n ~ CO DC Electrical Characteristics over the operating range, unless otherwise noted Symbol Parameter NMC6518B·9, NMC6518B·2 NMC6518·9, NMC6518·2 Min Max Conditions NMC6518·5 Min Units Max VCCDR Data Retention Supply Voltage ICCSS Standby Supply Current 10 100 p.A ICCOP' Operating Supply Current f=1 MHz, 10=0, VI = VCC or GND 4 4 mA ICCDR Data Retention Supply Current VCC = 3.0V, 10 = 0, VI = VCC or GND 10 100 p.A VI=VCC, GND p.A VI=VCC, GND 2.0 2.0 V II Input Leakage Current VIL Input Low Voltage -1.0 +1.0 -1.0 +1.0 -0.3 0.8 -0.3 0.8 VIH Input High Voltage V VCC+0.3 V 10Z Output Leakage Current VI=VCC, GND VOL Output Low Voltage IOL=3.2 mA VOH Output High Voltage 10H = -0.4 mA CI Input Capacitance f= 1 MHz 6 6 pF CO Output Capacitance f= 1 MHz 10 10 pF VCC-2.0 -1.0 VCC-2 VCC+0.3 -1.0 +1.0 * ICCOP is proportional to operating frequency. AC Test Conditions Input Rise and Fall Times: :520 ns All Timing Reference Levels: 1/2 vce Output Load: 1 TTL Load, 50 pF NMC6518 Bit Map and Address Decoding ~ (MSB) ROWS (LSB) A9 AD A2 Al AD ' - 16COLUMNS ~ 0 0 1 1 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 (MSB) A7 SENSE AMPS SENSE AMPS COLUMN DECODER ~0 0 0 0 ~ A6 0 0 A5 0 0 ~ SA400 • 1 1 1 1 11 (LSB)A3~~ r - - - -1 -1 1 1 o o o 0 0 ·0 1 1 1 o 1 - 0 2·51 1 1 1 1 0 1 p.A V V 2.4 2.4 COLUMN DECODER +1.0 0.4 0.4 fJI co "I""" It) co Read Cycle AC Electrical Characteristics over the operating range o :E z Symbol NMC6518B·9 NMC6518B·2 Min Max Parameter TAVEL Address Set·up Time TElAX Address Hold Time NMC6518·9 NMC6518·2 Min Max NMC6518·5 Min Units Max 0 0 10 ns 40 50 50 ns TELOV Enable Access Time 180 250 300 ns TAVOV Address Access Time 180 250 310 ns TElEH Enable (E) Minimum low Time 180 250 300 ns TELEl Read or Write Cycle Time 280 350 450 ns TEHEl Enable (E) Minimum High Time 100 100 150 TSHOX Chip Select Output Disable Time 120 160 200 ns TSLOX Chip Select Output Enable Time 120 160 200 ns ns Read Cycle Waveforms A - TAVEL TELAX t--- , 'W ITELEL TELEH E TEHEL I ~t TAvav ~~ ~ TELav S::.( -'t-:lr a __ ~TSl.X~ ~ Sl. S2 2·52 Z Write Cycle AC Electrical Characteristics over the operating range 3: 00) (J1 Symbol NMC6518B·9 NMC6518B·2 Min Max . Parameter TAVEL Address Set·up Time TELAX Address Hold Time TWLWH Write Pulse Width (W Low) NMC6518·9 NMC6518·2 Min Max ..A. NMC6518·5 Min Units Max 0 0 10 40 50 50 ns 100 130 160 ns ns 280 350 450 ns TWLSH Chip Select Write Pulse Set·up Time 100 130 160 ns TWLEH Chip Enable Write Pulse Set·up Time 100 130 160 ns TSLWH Chip Select Write Pulse Hold Time 100 130 160 ns 0 0 0 ns ns TELEL Read or Write Cycle Time TWHDX Data Hold Time TDVWH Data Set·up Time 80 110 130 TEHEL Enable (E) Minimum High Time 100 100 150 ns TELEH Enable (E) Minimum Low Time 180 250 300 ns 100 130 160 ns TELWH Write Pulse Width (E and W Low) CO Write Cycle Waveforms fJI o ____________ ~ ______________ ~H~i.Z~ ___________________________ * TWLWH, thewrite pulse,ls coincidence low of E, W, 51, and S2lnputs 2·53 co orU) Read·Modify·Write Cycle AC Electrical Characteristics over the operating range CD 0 :E Z Symbol Parameter TAVEL Address Set·up Time TELAX Address Hold Time TElOV Enable Access Time TAVOV Address Access Time' NMC6518B·9 NMC6518B·2 Min Max NMC6518·9 NMC6518·2 Min Max NMC6518·5 Min 0 0 10 40 50 50 TSHOX Chip Select Output Disable Time Units Max ns ns 180 250 300 ns 180 ' 120 250 310 ns 160 200 ns lWLWH Write Pulse Width (W Low) 100 130 160 ns TEHEL ns 100 100 150 lWLSH Chip Select Write Pulse Set-up Time 100 130 160 ns lWLEH Chip Enable Write Pulse Set-up Time 100 130 160 ns TSLOX Enable (E) Minimum High Time 120 Chip Select Output Enable Time lWHDX Data Hold Time TDVWH Data Set-up Time 160 200 0 0 0 80 110 130 ns ns ns lWHOX Output Enable from Write (W) 120 160 200 ns lWLOZ Output Disable from Write (W) 120 160 200 ns Read·Modify·Write Cycle Waveforms TSlQX * Precede iN rising edge with Erising edge to avoid unwanted output enabling 2-54 ~National CMOS RAMs ~ Semiconductor General Description Features The NMC6551 is a static CMOS random access read/write memory organized as 256 words of 4 bits each. This device is fabricated with National Semiconductor's silicon-gate CMOS technology and is fully compatible with the TIL environment. Synchronous operation is provided by on·chip address input and data output latches. The ENABLE input serves as the device strobe controlling the latching functions. The 110 terminals when not data output enabled, represent high impedance ports for easy memory expansion. • Industry standard pinout • Low data retention voltage - 2V ill Low speed/power product • TIL compatible - all inputs and outputs • TRI-STATE® outputs for bus operation • • • • • High output drive High noise immunity Military temperature range available On-chip address registers (latches) 22 pin - high density packaging • Output data latches • Select latch for microprocessor interface Connection Diagram Logic Symbol Dual·ln·Llne Package vee A2 AI AD AS Pin Names A6 AD-A? Address Inputs Chip Enable Write Enable Data Input Data Output Chip Selects E W A7 D Q GND 3: oen en en ...... NMC65511024·Bit (256 x 4) Static RAM A3 z S:;,§2 DO 00 Dl TOP VIEW Order Number NMC6551J·2, NMC6551J·9 or NMC6551J-5 See NS Package J22A Order Number NMC6551N-5 See NS Package N22A 2-55 ~ It) It) CD o :E z Functional Description An NMC6551 memory cycle is initiated by the falling edge of the ENABLE (E) input, which latches the ADDRESS and SELECT 2 (52) information into the on-chip registers. Setup and hold times must be met. Data output is enabled when the WRITE (W) input is HIGH and the ENABLE and SELECT 1 Inputs are LOW. . return the columns to the HIGH state and to precharge the sense amplifiers in preparation of the next memory cycle. When performing a write cycle, the minimum ENABLE LOW time is required to enter new data. The write pulse timing is created by the coincident LOW of the WRITE, ENABLE and SELECT 1 inputs. The data set-up and hold times are referenced to the rising edge of the WRITE, ENABLE, or SELECT 1 input, whichever occurs first. When performing a read cycle a minimum ENABLE LOW time is required to assure valid data at the outputs. This minimum LOW time is defined as the device enable access time. A minimum ENABLE HIGH time is required to Block Diagram , . . - - - - - - . . , FUNCTIONS ARE POSITIVE LOGIC AD A1 A2 A3 ADDRESS LATCH AND INVERTERS 10 GATED ROW DECODER 32 DATA LATCHES ON FAlliNG EDGE OF L 32 x 32 ARRAY A4 (MSB) G ~------------~~--~32~------------------------------~ INPUT (WRITE) CONTROL GATED COLUMN DECODER AND I/O DATA OUTPUT LATCH 1 - - - - 1 ~~.f--"-+--+-- Dn1 ~-----+----4~~Dn2 L--r-..rll >--I-TR-I.S-T-AT-E®........__......... OUTPUT BUFFERS ADDRESS AND SElECT LATCHES ON THE RISING EDGE OF L AS· 2-56 A6 A7 (MSB) Dn3 Supply Voltage VCC 7V Voltage at Any Pin Supply Voltage NMC6551B·9 NMC6551B·2 NMC6551·9 NMC6551·2 NMC6551·5 - 0.3V to VCC + O.3V Storage Temperature Range Z Operating Range Absolute Maximum Ratings -65·Cto +150·C Package Dissipation 500mW 300·C Lead Temperature (Soldering, 10 seconds) Temperature NMC6551B·9 NMC6551B·2 NMC6551·9 NMC6551·2 NMC6551·5 Min Max 4.5V 4.5V 4.5V 4.5V 4.75V 5.5V 5.5V 5.5V 5.5V 5.25V -40·C -55·C -40·C -55·C 85·C 125·C 85·C 125·C 75·C o·c DC Electrical Characteristics over the operating range, unless otherwise noted Parameter Symbol NMC6551B·9, NMC6551B·2 NMC6551·9, NMC6551·2 Min Max Conditions VCCDR Data Retention Supply Voltage VI=VCC, GND ICCSS Standby Supply Current ICCOp· Operating Supply Current ICCDR NMC6551·5 Min Units Max V 2.0 2.0 10 1( + 25°C) 100 p.A f=1 MHz, 10=0, VI = VCC or GND 4 4 mA Data Retention Supply Current VCC = 3.0V, 10 = 0, VI = VCC or GND 10 100 p.A. VI=VCC, GND II Input Leakage Current VIL Input Low Voltage VIH Input High Voltage 10Z Output Leakage Current -1.0 +1.0 -1.0 +1.0 p.A -0.3 0.8 -0.3 0.8 V VCC-2.0 VCC+0.3 -1.0 VI=VCC, GND VCC-2 VCC+0.3 -1.0 +1.0 +1.0 0.4 V p.A V VOL Output Low Voltage IOL=3.2 mA VOH Output High Voltage 10H = -0.4 mA CI Input Capacitance f= 1 MHz 6 6 pF CO Output Capacitance f= 1 MHz 10 10 pF 0.4 V 2.4 2.4 • ICCOP is proportional to operating frequency. AC Test Conditions Input Rise and Fall Times: :520 ns All Timing Reference Levels: 1/2 VCC Output Load: 1 TTL Load, 50 pF NMC6551 Bit Map and Address Decoding ~ 1 - t - 8 COLUMNS- - 8 COLUMNS--- - (MSB) ROWS (LSB) A4 A3 A2 Al AD 8COLUMNS--8COLUMNS- 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 CO~~~B~ :~ (LSB) AS SENSE AMPS SENSE AMPS SENSE AMPS SENSE AMPS COLUMN DECDDER CDLUMN DECODER COLUMN DECODER COLUMN DECODER [[ : , •• 1 0 ~ 0 ::. 1 0 3·~ 0 [ [: 1 ••• 1 0 ~--------~ : 0 :, 0: • ~--~----~ 2·57 JJ. :0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 3: 0 en U'I U'I ~ ,.. It) It) CO Read Cycle AC Electrical Characteristics over the operating range 0 :IE Z Symbol Parameter NMC6551B-9 NMC6551 B-2 Min Max NMC6551-9 NMC6551-2 Max Min NMC6551-5 Min 0 0 10 40 50 70 Units Max ns TAVEL Address Set-up Time TELAX Address Hold Time TELQV Enable Access Time 220 300 350 ns TAVQV Address Access Time 220 300 360 ns TELEH Enable (E) Minimum Low Time TELS2X Chip Select 2 Hold Time TEHEL ns 220 300 350 ns 40 50 70 ns Enable (E) Minimum High Time 100 100 150 ns TELEL Read or Write Cycle Time 320 400 500 TS1LQX Chip Select 1 Output Enable Time 130 150 180 ns TS1HQZ Chip Select 1 Output Disable Time 130 150 180 ns TS2LEL Chip Select 2 Set-up Time 0 0 Read Cycle Waveforms 2-58 10 ns ns Z s: 0 Write Cycle AC Electrical Characteristics over the operating range Symbol NMC6551B·9 NMC6551B·2 Min Max Parameter TAVEL Address Set-up Time TElAX Address Hold Time 0 NMC6551·9 NMC6551·2 Max Min 0 NMC6551·5 Min Units Max ns ns 40 50 70 120 180 210 ns TELEl 320 400 500 ns TELEH . Enable (E) Minimum Low Time 220 300 350 ns TS2LEL Chip Select 2 Set-up Time 0 0 10 ns TWHDX Data Hold Time 0 0 0 ns TELS2X Chip Select 2 Hold Time 40 50 70 ns TDVWH Data Set·up Time 100 150 170 ns TELWH Write Pulse Width (E and 120 180 210 ns TEHEL Enable (E) Minimum High Time 100 100 150 ns TWLEH Write Pulse Width W Low) (E and W Low) 120 180 210 ns TS1LWH Chip Select 1 Write Pulse Hold Time 120 180 210 ns TWLS1H Chip Select 1 Write Pulse Set-up Time 120 180 210 TS1LQX Output Enable from TWLQZ S1 130 W W Output Disable from E ns 150 180 ns Output Disable from 130 150 180 ns TWHQX Output Enable from 130 150 180 ns TEHQZ 130 150 180 ns Write Cycle Waveforms * TWLWH; the write pulse, Is the coincidence low of E, W, and S1lnputs 2-59 UI UI ....A. 10 TWLWH Write Pulse Width (W low) Read or Write Cycle Time en ~ Lt) Lt) CO Read-Modify-Write Cycle AC Electrical Characteristics over the operating range 0 :E Symbol Parameter Z NMC6551B·9 NMC6551B·2 Min Max NMC6551·9 NMC6551·2 Min Max NMC6551·5 Min TAVEL Address Set·up Time TELAX Address Hold Time TELOV Enable Access Time 220 300 350 TAVOV Address Access Time 220 300 360 lWLEH Write Pulse Width (IN and E Low) 120 180 0 0 10 40 50 70 Units Max ns ns ns ns 210 ns TEHEL Enable (E) Minimum High Time 100 100 150 ns lWLWH Write Pulse Width (IN Low) 120 180 210 ns TELEL Read or Write Cycle Time 320 400 500 TS1LOX Chip Select 1 Output Enable Time 130 150 180 TS1HOZ Chip Select 1 Output Disable Time 130 150 180 TS2LEL Chip Select 2 Set·up Time lWHDX Data Hold Time TELS2H Chip Select 2 Hold Time lWLS1H Chip Select 1 Write Pulse Set-up Time lWLOZ Output Disable from Write (IN) . TDVWH Data Set-up Time 0 0 ns ns ns 10 ns 0 0 0 ns 40 50 70 ns 120 120 210 130 100 150 150 ns ns TOVWL Data Valid to Write Time 0 0 0 IN Read Mode Set-up Time 0 0 0 TWHOX Output Enable from Write (IN) 150 ns 180 Read-Modify-Write Cycle Waveforms E----__ Q~----+_----~~==][~-t~m~~---- .. Avoid unwanted output by preceding rising edge of iN with rising edge of 51 by time; TS1HQZ 2-60 ns 170 lWHEL 130 ns 180 ns ~National CMOS RAMs z s: D Sem,iconductor (") NMC65521024·Bit (256 x 4) Static RAM N 0') en en General Description Features The NMC6552 is a static CMOS random access read/write memory organized as 256 words of 4 bits each. This device Is fabricated with National Semiconductor's silicon-gate CMOS technology and is fully compatible with the TIL environment. Synchronous operation is provided by the onchip address input and data output registers. The ENABLE input serves as the device strobe controlling the latching functions. The data I/O terminals, when not output data enabled, represent a high impedance for easy memory expansion. • • • • Low data retention voltage - 2V Low speed/power product TIL compatible - all inputs and outputs TRI-STATE® outputs for bus operation • High output drive a High noise immunity • Military temperature range available • On-Chip address registers (latches) • Common I/O - high density packaging • Output data latches • Select latch for microprocessor interface Connection Diagram Logic Symbol Dual-In-Line Package AD A3 Al A2 Order Number NMC6552J·2, NMC6552J·9 or N MC6552J·5 See NS Package J18A Al AD Order Number NMC6552N·5 See NS Package N18A AS A2 A3 A4 AS A6 A7 A6 A7 GNO 000 TOP VIEW Pin Names AO-A7 E iN DQO-DQ3 S1,S2 Address Inputs Chip Enable Write Enable Data In/Out Chip Selects 2-61 Functional Description An NMC6552 memory cycle is initiated by the falling edge of the ENABLE (E) input, which latches the ADDRESS and SELECT 2 (52) information into the on-chip registers. The output data latches are transparent when the ENABLE input is LOW, allowing the state of the memory to be presented to the output buffers. The output buffers are enabled when the WRITE (W) input is HIGH, and the SELECT 1 (51) input is LOW. to return the columns to the HIGH state and to precharge the sense amplifiers in preparation of the next cycle. The data is latched with the rising edge of the ENABLE input, allowing maintenance of output data until the SELECT 1 input goes HIGH. When ·performing a write cycle, a minimum ENABLE LOW time is required for new data entry. The write pulse timing is defined by the coincident LOW of the WRITE, ENABLE and SELECT 1 inputs. The input data set-up and hold times are referenced to the rising edge of the WRITE, ENABLE, or SELECT 1 inputs, whichever occurs first. When performing a read cycle, a minimum ENABLE LOW time is required to assure valid data at the device outputs. This minimum LOW time is defined as the enable access time. A minimum ENABLE HIGH time is required Block Diagram r------.., AD Al A2 A3 ADDRESS LATCH AND INVERTERS 10 GATED ROW DECUDER ·DATA LATCHES ON FALLING EDGE OF L 32 x 32 ARRAY 32 FUNCTIONS ARE POSITIVE LOGIC A4 (MSB) TRI-STATE® OUTPUT BUFFERS INPUT (WRITE) CONTROL DO------------~ >-+--+--QO ~~~_+~~ Dl--------------------~ >-~~~ D2------------------------~ ~----_+~~ GATED COLUMN DECODER AND 1/0 DATA OUTPUT LATCH ADDRESS AND SELECT LATCHES ON THE RISING EDGE OF L 2-62 A6 A7 .>----+-- Q2 Q3 D3---------------------r~?_1it_~~~--J A5 Ql (MSB) Absolute Maximum Ratings Supply Voltage VCC 7V Voltage at Any Pin - 0.3V to VCC + 0.3V Storage Temperature Range Z Operating Range -65·Cto +150'C Package Dissipation 500mW 3OQ·C Lead Temperature (Soldering. 10 seconds) Min Max Supply Voltage NMC6552B·9 NMC6552B·2 NMC6552·9 NMC6552·2 NMC6552-S 4.5V 4.5V 4.5V 4.5V 4.75V 5.SV 5.5V 5.5V 5.5V 5.25V Temperature NMC6552B·9 NMC6S52B·2 NMC6552-9 NMC6552-2 NMC6552-S -40'C -55'C -40'C ';'SS'C O'C 85·C 125'C 85·C 125'C 75'C 3: 0CJ) C1I C1I I\) DC Electrical Characteristics over the operating range, unless otherwise noted Symbol Parameter NMC6552B·9, NMC6552B·2 NMC6552·9, NMC6552·2 Min Max Conditions VCCDR Data Retention Supply Voltage ICCSB Standby Supply Current ICCOp· Operating Supply Current f = 1 MHz, 10 = 0, VI = VCC or GND ICCDR Data Retention Supply Current VCC = 3.0V, 10 = 0, VI = vce or GND VI=VCC, GND VI=VCC, GND II Input Leakage Current VIL Input Low Voltage VIH Input High Voltage 10Z Output Leakage Current VI=VCC, GND VOL Output Low Voltage IOL=3.2 mA VOH Output High Voltage 10H= -0.4 mA CI Input Capacitance f= 1 MHz CO Output Capacitance f= 1 MHz 2.0 NMC6552·5 Min \ Units Max 2.0 V 10 100 p.A 4 mA 100 p.A -1.0 +1.0 -1.0 +1.0 p.A -0.3 0.8 -0.3 0.8 V VCC+0.3 V VCC-2.0 -1.0 VCC+0.3 VCC-2 +1.0 p.A 0.4 V 6 6 pF 10 10 pF -1.0 +1.0 0.4 2.4 V 2.4 * ICCOP is proportional to operating frequency. AC Test Conditions Input Rise and Fall Times: s20 ns All Timing Reference Levels: 1/2 VCC Output Load: 1 TIL Load, 50 pF NMC6552 Bit Map and Address Decoding ~ r--- 8 COLUMNS- 1--f-8 COLUMNS - (MSB) ROWS (LSB) A4 Al A2 AI AD I-- BCOLUMNS--8COLUMNS--- 0 0 0 0 0 0 0 0 0 0 0 I I SENSE AMPS SENSE AMPS SENSE AMPS SENSE AMPS COLUMN DECODER COLUMN DECODER COLUMN DECODER COLUMN DECODER CO~:~B~:~[[I: ~ •• (LSB) A5 I 0 0 :: I 0 .J].~ [[1:" 0 I 0 ~--~--~ ~ :1:0' 0 ~--~--~ 2-63 JJ.~o 0 . I I 0 0 0 0 I I 0 0 I I I I 0 0 I I D I D I 0 I 0 I fJI N Lt) Lt) Read Cycle AC Electrical Characteristics over the operating range CO 0 :E Z Symbol Parameter NMC6552B·9 NMC6552B·2 Min TAVEL Address Set·up Time TElAX Address Hold Time TElQV Enable Access Time TAVQV Address Access Time TElEH Enable (E) Minimum Low Time TElS2X Chip Select 2 Hold Time TEHEl Max NMC6552·9 NMC6552·2 Min Max NMC6552·5 Min 0 0 10 40 50 70 220 300 220 300 Units Max ns ns 350 ns 360 ns 220 300 350 ns 40 50 70 ns Enable (E) Minimum High Time 100 100 150 ns TElEl Read or Write Cycle Time 320 400 500 ns TS1lQX Chip Select 1 Output Enable Time 130 150 180 TS1HQZ Chip Select 1 Output Disable Time 130 150 180 TS2lEl Chip Select 2 Set·up Time 0 0 10 Read Cycle Waveforms DQ--~ma~=r--- 2·64 ns ns ns Z s: 0 Write Cycle AC Electrical Characteristics over the operating range 0') Parameter Symbol TAVEL Address Set·up Time TELAX Address Hold Time TS2LEL Chip Select 2 Set-up Time TWHDX Data Hold Time TELEH Enable (E) Minimum Low Time TWLWH Write Pulse Width TELEL Read or Write Cycle Time TEHEL Enable (E) Minimum High Time TDVWH TELWH NMC6552B-9 NMC6552B·2 Min Max NMC6552·9 NMC6552-2 Min Max NMC6552·5 Min Units Max 0 0 10 40 50 70 ns 0 0 10 ns ns 0 0 0 ns 220 300 350 ns 120 180 210 ns 320 400 500 ns 100 100 150 ns Data Set-up Time 100 150 170 ns 120 180 210 ns TWLEH (E and IN Low) Write Pulse Width (IN and E Low) 120 180 210 ns TELS2H Chip Select 2 Hold Time 40 50 70 ns TWLS1H Chip Select 1 Write Pulse Set-up Time 120 180 210 ns TS1LWL Chip Select 1 Write Pulse Hold Time 120 180 210 ns (IN Low) Write Pulse Width Write Cycle Waveforms w DQ ------------+--~ * TWLWH. the write pulse. is the coincidence low of E. W. and 51 inputs 2-65 en en I\) N II) II) Read-Modify-Write Cycle AC Electrical Characteristics over the operating range CD 0 ::E Z Symbol Parameter TAVEL Address Set·up Time TElAX Address Hold Time TElOV Enable Access Time NMC6552B·9 NMC6552B·2 Min Max NMC6552·9 NMC6552·2 Min Max NMC6552·5 Min 0 0 10 40 50 70 220 300 220 300 Units Max ns ns 350 ns 360 ns TAVOV Address Access Time TS2lEl Chip Select 2 Set·up Time 0 0 10 ns TWHDX Data Hold Time 0 0 0 ns TElS2X Chip Select 2, Hold Time 40 50 70 ns TWlS1H Chip Select 1 Write Pulse Set·up Time 120 180 210 T$1LOX Chip Select 1 Output Enable Time TDVWH Data Set·up Time TWLEH Write Pulse Width fiJ and Elow) 130 ns 180 150 ns 100 . 150 170 ns 120 180 210 ns TOVWl Data Valid to Write Time 0 0 0 ns TWLWH Write Pulse Width (iJ Low) 120 180 210 ns TEHEL Enable (E) Minimum High Time 100 100 150 ns 0 0 ns TOVWL Data Valid to Write Time TWHOX Output Enable from Write (W) 0 130 150 180 ns TWLOZ Output Disable from Write (W) 130 150 180 ns Read-Modify-Write Cycle Waveforms I-----TWLWH:....-----l * Avoid bus contention 2·66 Section 3 Bipolar RAMs Bipolar RAMs offer the best sclution to problems requiring high speed read-write memory. National's product line includes the devices in this section to complement our bipolar microprocessor and logic lines. TTL ~National Bipolar RAMs ~ Semiconductor DM7589/DM8589 64-Bit (16 x 4) RAM General Description Memory Enable input is in the logical "1" state, the outputs will go to the logical "1" state. The DM7589/DM8589 is a fully decoded 64·bit RAM organized as 16 4·bit words. The memory is addressed by applying a binary number to the four Address inputs. After addressing, information may be either written into or read from the memory. To write, both the Memory Enable and the Write Enable inputs must be in the logical "0" state. Information applied to the four Write inputs will then be written into the addressed location. To read information from the memory the Memory Enable input must be in the logical "0" state and the Write Enable input in the logical "1" state. Information will be read as the complement ofwhat was written into the memory. When the Features • • • • • • Series 54/74 compatible Organized as 16 4·bit words Typical access from chip enable 23 ns Typical access 35 ns Typical power dissipation 400 mW Open collector outputs to permit "wire OR" capability Block Diagram ADDRESS INPUTS DATA INPUTS Connection Diagram Truth Table Dual·ln·Line Package .. Order Number DM7589J or DM8589J See NS Package J16A Order Number DM8589N See NS Package N 16A 3·3 MEMORY ENABLE WRITE ENABLE OPERATION OUTPUTS 0 Write Read X Hold Logical "1" State Complement of Data Stored in Memory Logical "1" State en co It) CO :E C CD CO It) Absolute Maximum Ratings Operating Conditions (Note 1) Supply Voltage Input Voltage Output Voltage Operating Temperature Range DM7589 DM8589 7V 5.5V 5.5V Storage Temperature Range Lead Temperature (Soldering, 10 sec) -55°C to +1;15°C O°C to +70°C -65°C to +150°C 300°C r-:E C Electrical Characteristics (Note 2) PARAMETER CONDITIONS MIN Logical "1" Input Voltage DM7589 DM8589 Vcc = 4.5V Vce = 4.75V Logical "0" I nput Voltage DM7589 DM8589 Vce = 4.5V Vee - 4.75V Logical "1" Output Current DM7589 DM8589 Vee = 5.5V Vce - 5.25V Logical "0" Output Voltage DM7589 DM8589 Vee = 4.5V Vee - 4.75V Logical" 1" I nput Current DM7589 DM8589 Vee = 5.5V Vcc - 5.25V V ,N = 2.4V DM7589 DM8589 Vce = 5.5V Vce - 5.25V V ,N = 5.5V Logical "0" Input Current DM7589 DM8589 Vcc = 5.5V Vee = 5.25V Supply Current DM7589 DM8589 Vee = 5.5V Vce - 5.25V Input Clamp Voltage DM7589 DM8589 Vcc = 4.5V Vee = 4.75V Switching Characteristics TYP MAX 2.0 UNITS V 0.8 100 20 Vo = 5.25V 10= 12mA 0.4 40 V IlA IlA V IlA mA -1.6 All Inputs at GND 80 120 -1.5 liN = -12 mA mA mA V (Over recommended operating ranges of Vee and T A·) PARAMETER I CONDITIONS DM7589 MIN tpLH DM8589 TYP MAX MIN TYP MAX UNITS 34 80 34 60 ns 35 80 35 60 ns Access Time From Address tPHL tpLH Disable Time From Memory Enable 23 55 23 40 ns tpHL Enable Time From Memory Enable 23 55 23 40 ns tSETuP Setup Time Address to Write Enable Data to Write Enable Memory Enable To Write Enable tHOLD Hold Time Address From Write RL1 = 300n 0 -14 -14 ns 0 -15 -15 ns -10 -10 ns -7 -7 ns 0 -14 -14 ns 0 -10 -10 ns 20 ns RL2 = 600n CL = 30 pF Enable Data From Write Enable Memory Enable From Write Enable twp Write Pulse Width tSR Sense Recovery Time 50 20 31 40 65 31 Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Unless otherwise specified minImax limits apply across the _55°C to +125°C temperature range for the DM7589 and across the O°C to 70°C range for the DM8589. All typicals are given for Vec = 5.0V and T A = 25°C. 3-4 55 ns Typical Performance Characteristics Delay from Memory Enable to Output Delay from Address to Output 80 80 Vee = 5.0V Vee' 5.0V 10 10 60 60 ] > g 50 30 20 ~ tPlH - 40 .,.,.., -~ ] 50 ~e> 40 ~~ ~ 30 'jHL j"HL r- 20 10 10 o o -15 -50 -25 0 25 50 15 -15 -50 -25 100 125 40 = 25 50 15 100 125 Minimum Write Pulse Width Sense Recovery Time 80 Vee 0 TEMPERATURE (Oe) TEMPERATURE (Oe) 5.0V Vee =5.0V 35 10 60 30 !::c 50 25 - l- e 40 "r- 30 20 3: ~ 15 => 20 'wP :.- f,.-- f- 10 10 o -15 -50 -25 a o 25 50 15 100 125 -15 -50 -25 0 25 50 15 100 125 TEMPERATURE (Oe) TEMPERATURE n) AC Test Circuit and Switching Time Waveforms s.ov Read Cycle Write Cycle ·OUTPUT ME WE--+--'I AOORESS----~ thul 20 g / 15 I - 10 101--~-+--1--+--+--I--+-~ o -75 -50 -25 0 25 50 t- Ilz ~-'--J...~~~~~_~~ TEMPERATURE IC) Vee = 50 75 100 125 Minimum Write Pulse Width Vee = 5.0V 5.0V 35 ·35 30 .., 25 > C[ 20 -- 15 IZH 30 ] :>: .... c ~ .L- ...IZl i-- 10 25 20 l:: -75 -50 -25 0 25 50 75 i-- 15 ::> ~ f..-- O~-'--J...~~~~~-~~ -75 -50 -25 100 125 0 25 SO TEMPERATURE TEMPERATURE 1°C) 75 100 125 ec) Delay from Enable to Output vs Load Capacitance Sense Recovery Time 80 - Iwp 10 o '---'--'-----''---'---"----'--'----' Vee = 5.0V 70 50 tf- 60 40 50 40 ;:: 25 40 40 -~ 0 TEMPERATURE ("'C) Delay from Memory Enable to Low Impedance State c 1HZ -75 -50 -25 75 100 125 -~ - 30 - IZH 20 -- IZl -; 30 f - :5 t- ~ 20 f - i-- ~ ~ tf- .... 10 r-4--+~r-+--+~--+-~ 10 f f- 0'---'--'--'---'--'---'--'---' o '-- -75 -50 -25 0 25 50 75 Ip~HI++-Ht+I+-+-++++ftll 5 10 100 125 50 100 500 Cl (pF) TEMPERATURE 1°C) Test Circuit r-,;l I I .KI ME. ME, STORED "1" STORED "0" ... Note: In a typical application the output of the TRISTATE memories might be wired together and one would be switching to the low impedance state at the same time the circuit previously selected would be switching back into the hi'gh impedance state. The measurements of delay versus load capacitance were made under conditions which simulate actual operating conditions in an application. (See test circuit.l I I : .... ~ u I. u :. I -=1 ONE7rl'lO-;:t Test Circuit for Delay vs Load Capacitance 3-8 c s: """-I AC Test Circuit (J1 CD Vee ~ TEST POINT C RL1 FROM O~:~~~ TEST s: CO -....--... -44...- . (J1 CD CD Cl includes probe and jig capacitance. All diodesarelN1064. Switching Time Waveforms J.OV 3.0V ADDRESS INPUT (SEE NOTE B) L VOH - - - - - OUTPUT _____ AOORESS INPUTS '''"F 3.0V I.SV VOL-------------~------~ 3.0V MEMORY ENABLE 3.0V 3.0V WRITE ENABLE INPUT MEMORY ENABLE (SEE NOTE C) OV----+-'~---------' ~ l.SV WAVEFORM I (SEE NOTE A) WAVEFORM I (SEE NOTE A) VOL VOL -----+---' VOH-------~ VOH WAVEFORM 2 (SEE NOTE A) WAVEFORM 2 (SEE NOTE A) ~ '" l.SV l.SV-----··--·--'--I--J-+---r- NOle A: Waveform I is for Ihe oulpul wilh inlernal condilions such thaI the OUlpul is low excepl when disabled. Waveform 2 is for Ihe oulpul wilh inlernal condilions such Ihallh. oulpul is high excepl when disabled. Nole B: When measuring delay limes from address inputs, Ihe memory enable inpul is low and the wrile enable inpul is high. NOle C: When measuring delay limes from memory enable inpul, the address inpuls are sleadY'slale and Ihe wrile enable inpul is high. Note O. fnpul waveforms are supplied by pulse generalors having Ihe following characterislics: I, S IOns, I, S IOns, PRR S 1.0 MHz, and ZOUT '" SOn. 3-9 Schottky ~National Bipolar RAMs ~ Semiconductor C1I en en DM85568 16 x 4 Edge Triggered Registers CO General Description Features These Schottky memories are addressable "D" register files_ Any of its 16 four-bit words may be asynchronously read or may be written into on the next clock transition_ An input terminal is provided to enable or disable the synchronous writing of the input data into the location specified by the address terminals_ An output disable terminal operates only as a TRI-STATE" output control terminaL The addressable register data may be latched at the outputs and retained as long as the output store terminal is held in a low state_ This memory storage condition is independent of the state of the output disable terminaL • • • • • On-chip output register PNP inputs reduce input loading Edge triggered write High speed-30 ns typ All parameters guaranteed over temperature • • • • TRI-STATE output Schottky-clamped for high speed Optimized for register stack applications Typical power dissipation-350 mW All input terminals are high impedance at all times, and all outputs have low impedance active drive logic states and the high impedance TRI-STATE condition_ Logic and Block Diagram Connection Diagram (WRITE C~~~K INPUT) Dual.ln.Line Package 14 18 01 VCC 17 02 (WRITE ENABLE) 16 04 A2 15_ WE 14 AJ wto--l"X>----------+/ '"~ ~ '-y-,.---.---.----r-.---,---,-I OJ AD 15 C'_K lJ_ 05 Al 12 01 00 11 04 0, Al~~ c s: CO 10 GNO OJ 16x4MEMORY CELL ARRAY A2~ TOPVIEW Order Number DM85S68N See NS Package N18A lJ ~o---~~----+--+~--~~~.-----.-~~--~ (OUTPUT STORE) (OUTPUTS) 3-13 Operating Conditions Absolute Maximum Ratings Supply Voltage Input Voltage , Output Voltage Storage Temperature lead Temperature (Soldering, 10 seconds) -0.5Vlo +7V - 1.2V to + 5.5V - 0.5V to + 5.5V - 65 ·C to + 150'C 300'C MIN Supply Voltage (V CC) Ambient Temperature (TA) Logical "0" Input Voltage (LOw) Logical "1" Input Voltage (High) 4.75 MAX 5.25 UNITS V 0 +70 ·C 0 O.B 2.0 5.5 V V DC Electrical Characteristics (Note 2) Parameter Min Conditions Typ Max Units V VIH High Level Input Voltage V il Low Level Input Voltage VOH High Level Output Voltage Vcc = Min, IOH = - 5.2 mA Val Low Level Output Voltage Vcc= Min, IOl= 16 mA 0.45 V IIH High Level Input Current Vcc= Max, Clock Input V IH = 2.4V All Others 50 25 p.A II High Level Input Current at Maximum Voltage Vcc = Max, VIH = 5.5V 1.0 mA IlL Low Level Input Current Vcc = Max, Clock Input Vil = 0.5V All Others -500 -250 p.A p.A los Short Circuit Output Current Vcc = Max, VOL = OV (Note 3) -55 mA 2 0.8 V V 2.4 -20 mA Icc Supply Current Vcc= Max VIC Input Clamp Voltage Vcc=Min, IIN= -18 mA -1.2 V loz TRI·STATE Output Current Vcc= Max Vo=2.4V Vo=0.5V 40 -40 p.A Units 70 AC Electrical Characteristics (With standard load) 5V ± 5%, O°C to 100 + 70°C Typ Max tZH Output Enable to High Level 20 35 ns tZl Output Enable to Low Level 14 24 ns tHZ Output Disable Time from High Level 10 15 ns tLZ Output Disable Time from Low Level 12 18 ns tAA Access Time Parameter Conditions Min Address to Output 30 40 tOSA Output Store to Output 20 30 tCA Clock to Output 25 40 t ASC Set-Up Time Address to Clock tosc Data to Clock tAsos Address to Output Store tWEsc Write Enable Set-Up Time 15 5 5 5 30 0 5 15 0 Store Before Write (tlO) 10 Address from Clock 10 5 tOHC Data from Clock 15 5 tAHOS Addiess from Output Store 5 a twEHC Write Enable Hold Time 15 5 tossc t AHC Hold Time Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do not mean that the device may be operated at these values. Note 2: These limits apply over the entire operating range unless staled otherwise. All typical values are for VCC =5V and TA =25 ·C. Note 3: During ISC measureme~t, only one output at a time should be grounded. Permanent damage may otherwise result. 3-14 ns ns ns Bipolar RAMs ~National ~ Semiconductor IDM29705/IDM29705A 16-Word by 4-Bit Two-Port RAM/Register File General Description The IDM29705 and IDM29705A are 16-word by 4-bit RAM/Register File chips housed in a standard 28-pin dual-in-line package. The IDM29705 and the IDM29705A feature TRI-STATE® outputs. These RAMs, which are fabricated using SCl® (Schottky ECl Technology) feature two separate output ports that enable any two 4-bit words to be read form these outputs simultaneously. Each output port contains a four-bit latch. A common latch Enable (lE) input is used to control all eight latches. The device, which has two Write Enable (WE) inputs, is designed so that either Write Enable (WEI or 2) and latch Enable (lE) inputs can be wired together to make the operation of the RAM appear edge-triggered. The writing of new data into the RAM is controlled by the Write Enable inputs. With both Write Enable inputs low, data is written into the word selected by the B-address field. The memory outputs follow the data inputs during writing if the latch Enable (lE) is high. With either Write Enable high, no data is written into the RAM. Features and Benefits • 16-Word by 4-Bit, 2-Port RAM/Register Files • Two Output Ports, Each with Separate Output Control • 4-Bit latches on Each Output Port The device, which has fully decoded A-address and B-address fields, can address any of the 16 memory words for the A-output port and, simultaneously, select any of the 16 words for presentation at the B-output port. Incoming data is written into the fourbit RAM word selected by the B-address. The D inputs are used to load the new data into the device. • Non-Inverted Data Output with Respect to Data Input • Output Enable and Write Enable Inputs Provide Ease in Cascading • SCl Technology (Schottky ECl) Provides ECl Speeds While Keeping low Power Schottky Inputl Output Voltage and Power Consumption Compatibility Several of these devices can be cascaded to increase the total number of memory words in the system. When OE-A is high, the A-output port is in the highimpedance mode. OE-B, when high, forces the B-output port to the high-impedance state. • 100% Reliability Testing in Compliance with Mll-STD-883 IDM29705129705A Block Diagram DO A3 02 01 03 B3 • 16-WDRD BY 4·BIT TWO·PORT RAM ADDRES: 1 B ADDRESS DECODER B2 Bl BO B·PORT LE B·OATA 4·BIT LATCH A·DATA 4·BIT LATCH 3-15 Absolute Maximum Ratings Operating Range Storage Temperature . - 65 ·C to + 150 ·C Temperature (Ambient) Under Bias -55·Cto +125·C Supply Voltage to Ground Potential - 0.5V to + 6.3V DC Voltage Applied to Outputs for High Output State -0.5Vto + Vcc max DC Input Voltage - 0.5V to + 5.5V DC Output Current, into Outputs 30mA DC Input Current - 30mA to + 5.0mA Standard Screening Ambient PIN IDM29705JC IDM29705JM, JM/883 IDM29705AJC, NC IDM29705AJM, JM/883 Temperature Vee O'C to + 70'C 4.75V to 5.25V -55'C to +125'C O'C to + 70'C -55'C to +125'C 4.50V to 5.50V 4.75V to 5.25V 4.50V to 5.50V (conforms to MIL·STD·883 for Class C parts) Level Step MIL·STO·883 Method Conditions OC,PC Pre·Seal Visual Inspection 2010 B 100% 100% Stabilization Bake 1008 C: 24·hour 150·C 100% 100% Temperature Cycle 1010 C: - 65·C to + 150·C 10 cycles 100% 100% Centrifuge 2001 B: 10,000 G 100% 100% Fine Leak 1014 Gross Leak 1014 Electrical Test. Subgroups 1 and 7 and 9 5004 A: 5x 10- 8 atm·cc/cm 3 OM, FM 100% 100% C2: Fluorocarbon 100% 100% See below for definitions of subgroups 100% 100% Insert Additional Screening Here for Class B Parts Group A Sample Tests Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 7 Subgroup 8 Subgroup 9 See below for definitions of subgroups 5005 Additional Screening for Class B Parts Level MIL·STO·883 Method Conditions OMB, FMB Burn·ln 1015 0: 125'C, 160 hours min 100% Electrical TeJt Subgroup 1 Subgroup 2 Subgroup 3 Subgroup 7 Subgroup 9 5004 Step 100% 100% 100% 100% 100% Return to Group A Tests in Standard Screening Group A Subgroups (as defined In MIL·STD·883, method 5005) SubQroup P.rlmeter 1 DC 25'C 2 DC Maximum rated temperature 3 DC Minimum rated temperature 7 8 Function 25'C Function Maximum and minimum rated temperature Temperature 9 Switching 25'C 10 Switching Maximum rated temperature 11 Switching Minimum rated temperature 3·16 LTPD LTPD LTPD LTPD LTPD LTPD =5 =7 =7 =7 =7 =7 LTPD LTPD LTPD LTPD LTPD LTPD = = = = = = 5 7 7 5 7 5 Electrical Characteristics (over operating temperature range,unless otherwise noted) VOH VOL Output HIGH Voltage (IDM29705 only) Vee = min VIN = VIH or VIL Output lOW Voltage Vee = min VIN = VIH or VIL Typ (Note 2) Max Min Test Conditions (Note 1) Parameter Mil, IOH = - 2.0mA 2.4 Com'l, IOH = -4.0mA 2.4 Volts IOL = 4.0mA 0.4 IOL = 8.0mA 0.45 IOL = 12mA 0.5 2.0 . Guaranteed input logical HIGH voltage for all inputs VIL Input LOW Level Guaranteed input logical LOW voltage for all inputs VI Input Clamp Voltage IlL Input LOW Current Volts 0.5 Com'l, IOL = 16mA - - - -r - " VIH Input HIGH level Units Volts 0.8 Volts Vee = min, liN = - 18mA -1.5 Volts Vee = max, VIN = OAV -0.25 I Air Bj Others -0.36 1 mA IIH Input HIGH Current Vee = max, VIN = 2.7V 20 IJA II Input HIGH Current Vee = max, VIN = 5.5V 0.1 mA loz Off State (High Impedance) Output Current Vee = max VIN = VIH or VIL 20 -20 IJA Ise Output Short Circuit Current (Note 3) Vee = max -85 mA Icc Power Supply Current Vee = max I I Vo = 2.7V Vo = OAV -30 175 mA = 70·C 110 155 mA IAJM Vee = 5.5V, T = 125·C 145 mA IAJC Vee = 5.25V, T Note 1: For conditions shown as min or max, use the appropriate value specified under Electrical Characteristics for the applicable device type. Note 2: Typical limits are at VCC = 5.0V, 25°C ambient and maximum loading. Note 3: Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second. Switching Characteristics (Input Levels = OV and 3.0V, Transitions measured at 1.5V) Combinational Delays (In nanoseconds) (R L = 430n, CL = 50pF) From Parameters A Address Stable To Conditions YA Stable Access Time Comm'l Mil Max (Note 5) Max (Note 6) 705 705A 705 705A 50 25 55 30 LE= HIGH B Address Stable 50 25 55 30 YA=D LE = HIGH, A= B 45 35 48 40 YB=D LE = HIGH 45 35 48 40 25 20 25 20 20 20 20 20 YB Stable Both WE LOW Turn-On Time OE-A or OE-B LOW Turn-Off Time OE-A or OE-B HIGH Reset Time A-LO LOW YA LOW 30 20 30 25 Enable Time LE HIGH YA and YB Stable 25 20 25 25 Data In YA or YB = D 45 35 45 40 YA or YB Off C L = 5pF LE=HIGH, WE both LOW, A = B 3-17 Switching Characteristics (continued) Minimum Setup and Hold Times (In nanoseconds) Typ Parameters From Conditions To Comm'l Mil Max (Note 5) Max (Note 6) (Note 4) 705 705A 705 705A Data Setup Time o Stable Either WE HIGH 7 20 12 25 15 Data Hold Time Either WE HIGH o Changing 0 0 0 0 0 Address Setup Tim~ 8 Stable 80th WE LOW 0 5 0 5 3 Address Hold Time Either WE HIGH 8 Changing 0 0 0 0 0 Latch Close Before Write Begins LE LOW WE, LOW WE 2 LOW 0 0 0 0 0 LE LOW WE 2 LOW WE, LOW 0 0 0 0 0 8 30 15 40 20 Address Setup A or 8 Stable Before Latch Closes LE LOW Minimum Pulse Widths (In nanoseconds) Typ , Parameters From Conditions To Mil Max (Note 5) Max (Note 6) (Note 4) 705 705A 705 705A WE, HIGH·LOW·HIGH WE 2 LOW 8 25 20 25 20 WE 2 HIGH·LOW·HIGH WE, LOW 8 20 20 20 20 5 20 15 20 15 5 20 15 20 15 Write Pulse Width A Latch Reset Pulse A·LO HIGH·LOW·HIGH Latch Data Capture LE LOW·HIGH·LOW Note 4: TA Note 5: TA Note 6: TA Comm'l Address Stable = 25 ·C, VCC = 5.0V. = O·C to + 70·C, VCC = 5.0V :t 5%. = -55·Cto +125·C, VCC = 5.0V :t 10%. Function Tables Write Control RAM Outputs at Latch Inputs WE1 WE2 Function A·Port B·Port L X H L H X Write 0 Into 8 No write No write A data (A ¢ 8) A data A data o input data 8 data B data VA Read Inputs OE·A A·LO LE VA Output Function H L L L X L H H X X H L Z High Impedance Force VA LOW Latches transparent Latches retain data L A·Port RAM data NC 3·18 Function Tables (continued) YB Read Inputs H L X OE·B LE YB Output Function H L L X H L Z High Impedance Latches transparent Latches retain data = HIGH = LOW = Don't care B·Port RAM data NC Z = High Impedance NC = No change Pinout Descriptions of the I DM29705/29705A OE·B: B·port output enable. When low, data in the B-data latch is presented at the YB I outputs. When high, the YB j outputs are In the hlgh·impedance mode. D3 - Do: Through these inputs new data can be written in the location specified by the B-address inputs. A3 -Ao: The 4·bit address presented at the A inputs selects one of the 16 memory words for presentation at the A-data latch outputs. B3 - Bo: The 4·bit address presented at the B inputs selects one of the 16 memory words for presentation at the B·data latch outputs. This address also selects the location into which data is written. LE: Latch enable. The LE input acts as control for both the RAM·A and RAM·B output ports. When high the latches are transparent and data from the RAM, as selected by the A and B address inputs, is presented at the outputs. When low, the latches retain the last data read from the RAM regardless of the current A and B address Inputs. YA 3 - YAo: The four A·data latch outputs. YB 3 - YBo: The four B-data latch outputs. WE 1, WE 2 : Write enable inputs. When both are low, enables data to be written into the RAM location selected by the B-address field. When either Write Enable input is high, no data can be written into memory. A·LO: Force A to zero. This input operates to force the A·port latch outputs low independent of the LE input or A address inputs, The A-output bus can be forced low using this control input. With A-LO high, the A latches operate in their normal manner. Once forced low, the A latches remain low independent of the A·LO input if the Latch Enable (LE) is low. OE·A: A·port output enable. When low, data in the A·data latch is present at the YA j outputs. When high, the YA j outputs are In the high·impedance mode. IDM29705/29705A Connections Diagram 0100WE1808182B3A·lOlEVBOVAOVB1VA1GNO- 1 28 ~ Vee 2 27 ...... 02 3 26~03 4 25 ...... WE2 5 24~AO 6 23 I - Al 7 IDM29705/ 22 ~A2 B 29705A 21 ...... A3 9 20 to- OE·A 10 19 to-nnI 11 18 to- VA3 12 17 to- VB3 13 16 i - VA2 14 15 i - VB2 3·19 Order Number IDM29705JC, IDM29705JM,IDM29705JM/883, IDM29705AJC,IDM29705AJM, or IDM29705JM/883 See NS Package J28A Order Number IDM29705NC See NS Package N28A Eel Bipolar RAMs ~National C 3: ..... ~ Semiconductor o DM10414, DM10414A 256 x 1 Eel Random Access Memory .P- General Description Features The DM10414, DM10414A is a 256-word by 1-bit ECl random access memory. The fully static memory is designed with active low chip selects and separate I/O pins. The 8 address bits (AD through A71 are fully decoded on the chip. Applications such as scratch pad, cache, and buffer memories are ideal for this high speed RAM. • 3: ..... ~ ..... C • • • • An unterminated emitter-follower output is provided to allow the outputs to be wire-ORed. Separate Data In and non-inverted Data Out pins are provided. These RAMs are compatible with compensated and uncompensated 10k ECl families. Block ~nd • Fully compatible with standard and voltage compensated 10k series ECl Temperature range DoC to +75°C Unterminated emitter-follower output for wire-ORing Power dissipation decreases with increasing temperature Typical address access DM10414 10 ns DM10414A 7 ns Typical chip select access DM10414 4 ns DM10414A 3 ns o ~ ..... ~ Connection Diagrams Dual-in-Line Package AD Al A2 ADDRESS DECDDER WORD DRIVER AD 16 X 16 ARRAY A1 A3 A2 CST A3 rn CST m m A6 rn AS VEE A4 TOP VIEW Order Number DM10414J or DM10414AJ See NS Packag~ J16A A4 AS A6 A7 Logic Symbol AD Truth Table Pin Names AO-A7 Address Inputs DIN Data Input DOUT Data Output CS1, CS2, CS3 Chip Select Inputs WE Write Enable WE DIN H X X L L L H L Write 1 L L L L Write 0 L H X DOUT Read DOUT L = low (-1.7V nominal) H = high (-O.9V nominal) X = don't care 3-23 MODE CS Not Selected • ~ ~ ,... ~ 0,... :E C -ei ,... ~ 0 ,... :E C Absolute Maximum Ratings Operating Conditions Temperature Under Bias (Ambient) Storage Temperature Range VEE Relative to VCC Any Input Relative to VCC Output Current (Output High) Lead Temperature (Soldering, 10 seconds) Supply Voltage (VEE) Ambient Temperature (T A) -55°C to +125°C --65°C to +150°C -7.0V to +0.5V VEE to +0.5V -30 mA to +0.1 mA 300°C MIN MAX -5.72 0 -4.68 +75 UNITS V °c DC Electrical Characteristics VEE = -5.2V ±10%, Output Load = 50n and 30 pF to -2.0V, T A = DoC to +75°C (Notes 1-4) SYMBOL VOH VOL VOHC VOLC VIH PARAMETER Output Voltage High Output Voltage Low Output Voltage High Output Voltage Low Input Voltage High CONDITIONS TA B LIMIT A LIMIT UNITS VIN = VIHA or VILB O°C -1000 -840 +25°C -960 -810 +75°C -900 -720 mV VIN = VIHA or VILB VIN = VIHB or VILA Performed on one input at a time VIN = VIHB or VILA Performed on one input at a time O°C -1870 -1665 +25°C -1850 -1650 +75°C -1830 -1625 O°C -1020 +25°C -980 +75°C -920 mV mV O°C -1645 +25°C -1630 +75°C -1605 mV Guaranteed Input Voltage High for All Inputs VIL Input Voltage Low O°C -1145 -840 +25°C -1105 -810 +75°C -1045 -720 mV Guaranteed Input Voltage Low for All Inputs IIH Input Current H'igh VIN = VIHA Performed on one input at a time O°C -1870 -1490 +25°C -1850 -1475 +75°C -1830 -1450 mV O°C to 220 }1A 170 }1A +75°C IlL lEE Input Current Low, CS All Others VIN = VILB Performed on one input at a time Power Supply Current All Inputs and Outputs Open +25°C 0.5 +25°C -50 O°C -150 (Pin 8) (Note 5) mA Note 1: Conditions for testing not shown in the tables are chosen to guarantee operation under "worst case" conditions. Note 2: The specified limits represent the "worst case" value for the parameter. Since these "worst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Note 3: Guaranteed with transverse air flow exceeding 400 linear F.P.M. and 2-minute warm-up period. Typical resistance values of the package are: 0JA, (Junction to Ambient) = 90°C/W (still air); 0JA (Junction to Ambient) = 50°C/W (at 400 F.P.M. air flow); 0JA (Junction to Case) = 25°C/W. Note 4: "A" indicates the most positive value, "B" indicates the most negative value. Note 5: Typical values at VEE = -5.2V: TA = o°c, lEE = -105 mA; TA = 75°C, lEE = -90 mAo 3-24 Functional Description The device is selected with Cs low and deselected with high. The operating mode is controlled by the active low Write Enable (WE). WE low causes the data at the Data Input (DIN) to be stored at the selected address. WE low also causes the output to be disabled (low due to the 50n pull·down resistor). WE high causes the data stored at the selected address to be present at the Data Out (DOUT) pin. Addressing the DM10414, DM10414A is achieved by means of the 8 address lines AO-A7. Each of the 2 8 one-zero combinations of the address lines corresponds to a bit location in the memory. The active low Chip Selects together with the unterminated emitter·follower output. allows for wire-ORing. A 50n resistor to -2V (or an equivalent network) is required to provide a low at the output when the device is off. This termination is required for both single device or wire·ORed operation. Cs AC Electrical Characteristics VEE = -5.2V ±10%, Output Load = 50n, 30 pF to -2.0V, T A = aOc to 75°C DM10414 DM10414A SYMBOL PARAMETER CONDITIONS MIN TYP (NOTE 61 MAX MIN TYP (NOTE 61 UNITS MAX READ MODE tACS Chip Select Ac,ess Time tRCS Chip Select Recovery Time tAA Measured Between 50% Points 3 I 5 4 7 ns 3 5 4 7 ns 7 10 10 15 ns (Note 7) Address Access Time WRITE MODE tw Write Pulse Width 6 3.5 8 5 ns 2 0 2 0 ns 2 0 2 0 ns 3 0 4 0 ns 2 0 3 1 ns 2 0 2 0 ns 2 0 ns (to Guarantee Writing) tWSD Data Set·Up Time Prior to Write tWHD Data Hold Time After Write tWSA Measured Between 50% Points Address Set·Up Time Prior to Write tWHA Address Hold Time After Write tWSCS Chip Select Set·Up Time Prior to Write \ tWHCS Chip Select Hold Time 2 0 After Write tws Write Disable Time 5 3 7 4 ns tWR Write Recovery Time 5 3 7 4 ns 3 4 ns 3 4 ns RISE TIME AND FALL TIME tr Output Rise Time If Output Fall Time Measured Between 50% Points Capacitance DM10414A SYMBOL PARAMETER CONDITIONS MIN CIN I nput Pin Capacitance COUT Output Pin TYP (NOTE 61 DM10414 MAX MIN TYP (NOTE 61 UNITS MAX 4 5 4 5 pF 7 8 7 8 pF Measure With a Pulse Technique Capacitance Note 6: Typical valuesare at VEE: -S.2V. TA: 2SoC and maximum loading. Note 7: The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern. 3-25 Switching Time Waveforms Chip Select Access Time 50% CHIP SELECT 80% - - - - - - - - - - DATA OUTPUT E Address Access Time ADDRESS INPUTS_ _ _ _ tAA=s¢' ~~V-IH-B---------- DATA OUTPUT _ _ _ _ _ _ _ _ _ _ _ _- J VILA ~~------------ Read Mode ADDRESS INPUTS AO-A7 CHIP SELECT ID. CS2. CS3 DATA INPUT DIN WRITE ENABLE 50% WE -tWHA-- -- DATA OUTPUT DOUT __ 3-26 tAA __ tWSA -- Switching Time Waveforms (Continued) Write Mode ADDRESS INPUTS Ao-A7 50% CHIP SELECT CS1. CS2. CSJ - - - - - - - - - - - - - -- - - - --- 50% DATA INPUT DIN WRITE ENABLE WE DATA OUTPUT DOUT Test Conditions Loading Conditions GND Input Levels 16 -O.9V - - - -.., . . . . . - - - - - - - - - - . VCC -1.7V tr All timing measurements referenced to 50% of input levels CL = 10 pF including jig and stray capacitance DDUT ~1_5-t....._ _~ RT = 50n A8 A9 VEE RT 8 To.01PF -2.0V =tf =2.5 ns TVP CL T 3-27 ~National Bipolar RAMs z.t Semiconductor DM10415, DM10415A 1024 x 1 Eel Random Access Memory General Description Features The DM10415, DM10415A is a 1024-word by 1-bit ECl random access memory. This fully static memory is designed with an active low chip select and separate I/O pins. The 10 address bits (AO through A9) are fully decoded on the chip. Applications such as scratch pad, cache, and buffer memories are ideal for this high speed RAM. • Fully compatible with standard and voltage compensated 10k series ECl • Temperature range • Unterminated emitter-follower output for wire-ORing • Power dissipation decreases with increasing temperature • Typical address access DM10415 DM10415A An unterminated emitter-follower output is provided to allow the outputs to be wire-ORed. Separate Data In and non-inverted Data Out pins are provided. These RAMs are compatible with compensated and uncompensated 10k ECl families. • O°C to +75°C 25 ns 12 ns Typical chip select access DM10415 DM10415A 7 ns 4 ns Block and Connection Diagrams Dual-In-Line Package AD Al ADDRESS DECODER A2 WORD DRIVER DOUT J2 x 32 ARRAY AJ 15 DIN AD A4 Al A2 14 cs 13 WE 12 A9 A3 11 A8 A4 10 Al A5 A6 VEE TOP VIEW Order Number DM10415J or DM10415AJ See NS Package J16A A5 A6 Al A8 A9 Logic Symbol AD Truth Table Pin Names Al A2 AO-A9 DIN DOUT CS WE Address Inputs Data Input Data Output Chip Select Write Enable 3-28 CS WE DIN H X X L DOUT MODE Not Selected L L H L Write 1 L L L L Write 0 L H X DOUT Read L; low (-1.7V nominal) H ; high (-O.9V nominal) X ; don't care Absolute Maximum Ratings Temperature Under Bias (Ambient) Storage Temperature Range VEE Relative to VCC Any Input Relative to VCC Output Current (Output High) Lead Temperature (Soldering, 10 seconds) Operating Conditions Supply Voltage (V EE) Ambient Temperature (T A) -55°C to +125°C u -£5 C to +150°C -7.0V to +0.5V VEE to +0.5V -30 mA to +0.1 mA 300°C MIN MAX UNITS -5,46 -4.94 +75 °c o V DC Electrical Characteristics VEE = -5.2V, Output VOL VOHC = 50n and 30 pF to -2.0V, TA = O°C to +75°C (Notes 1 - 4) CONDITIONS PARAMETER SYMBOL VOH Load Output Voltage High Output Voltage Low Output Voltage High VIN VIN VIN TA B LIMIT VIH Output Voltage Low Input Voltage High VIN UNITS = VIHA or VILB O°C -1000 -840 +25°C -960 -810 +75°C -900 -720 mV = VIHA or VILB = VIHB O°C -1870 -1665 +25°C -1850 -1650 +75°C -1830 -1625 = VIHB mV or VILA O°C VOLC A LIMIT -1020 +25°C -980 +75°C -920 mV or VILA O°C -1645 +25°C -1630 +75°C -1605 mV Guaranteed Input Voltage High for All Inputs VIL Input Voltage Low O°C -1145 -840 +25°C -1105 -810 +75°C -1045 -720 mV Guaranteed I nput Voltage Low for All Inputs IIH Input Current High VIN O°C -1870 -1490 +25°C -1850 -1475 +75°C -1830 -1450 mV = VIHA O°C to 220 pA 170 pA +75°C IlL lEE Input Current Low, CS VIN = VILB , +25°C 0.5 All Others +25°C -50 Power Supply Current All Inputs and Outputs Open (Pin 8) (Note 5) O°C -150 mA Note 1: Conditions for testing not shown in the tables are chosen to guarantee operation under "worst case" conditions. Note 2: The specified limits represent the "worst case" value for the parameter. Since these "wo'rst case" values normally occur at the temperature extremes, additional noise immunity and guard banding can be achieved by decreasing the allowable system operating ranges. Note 3: Guaranteed with transverse air flow exceeding 400 linear F .P.M. and 2-minute warm-up period. Typical resistance values of the package are: 0JA, (Junction to Ambient) = 90°C/W (still air); 0JA (Junction to Ambient) = 50°C/W (at 400 F.P.M. air flow); 0JA (Junction to Case) = 25°C/W. Note 4: "A" indicates the most positive value, "B" indicates the most negative value. Note 5: Typical values at VEE = -5.2V: TA = O°C, lEE =-105mA; TA = 75°C, lEE =-90 mAo 3-29 ~ ,.. Functional Description ::E c Ltf ,.. o ,.. ~ ::E c The device is selected with CS low and deselected with CS high. The operating mode is controlled by the active low Write Enable (WE). WE low causes the data at the Data Input (DIN) to be stored at the selected address. WE low also causes the output to be disabled (low due to the 50n pull·down resistor). WE high causes the data stored at the selected address to be present at the Data Out (DOUT) pin. Addressing the DM1041S/DM1041SA is achieved by means of the 10 address lines AO-A9. Each of the 2 10 one·zero combinations of the address lines corresponds to a bit location in the memory. The active low Chip Select (CS) together with the unterminated emitter· follower output allows for memory array expansion to 2048 words without additional decoding. This emitter· follower output allows for wire·ORing. A son resistor to -2V (or an equivalent network) is required to provide a low at the output when the device is off. This ter· mination is required for both single device or wire· ORed operation. ~ o ,.. AC Electrical Characteristics VEE = -S.2V ±S%; Output Load = son, 30 pF to -2.0V, T A = o°c to +75°C DM10415A CONDITIONS PARAMETER SYMBOL MIN I TYP (NOTE 6) I MAX MIN I DM10415 TYP (NOTE 6) I UNITS MAX READ MODE tACS Chip Select Access tRCS Chip Select Recovery 7 10 ns Input to Valid Output 4 7 10 ns 25 35 ns (Note 7) Time tAA 4 Measured at 50% of Time 12 Address Access Time 20 WRITE MODE tw Write Pulse Width (to Guarantee Writing) tWSD 10 25 20 ns 0 5 0 ns 0 5 0 ns 5 8 5 ns 0 4 1 ns Chip Select Set·Up Time Prior to Write 0 5 0 ns Chip Select Hold Time 0 5 0 ns DM10415A twSA DM10415 tWSA = 8 ns = 20 ns 12 Data Set·Up Time Prior to Write twHD Data Hold Time After Write tWSA Address Set·Up Time Prior to Write twHA DM10415A tw DM10415 tw = 12 ns = 25 ns Address Hold Time After Write tWSCS twHCS After Write tws Write Disable Time 4 7 10 ns twR Write Recovery Time 4 7 10 ns RISE TIME AND tf FAL~ TIME Output Rise Time Measured Between 20% ns Output Fall Time and 80% Points ns Capacitance DM10415 DM10415A SYMBOL PARAMETER CONDITIONS MIN CIN Input Pin Capacitance COUT Output Pin TYP (NOTE 6) MAX MIN TYP (NOTE 6) UNITS MAX 4 5 4 5 pF 7 8 7 8 pF Measure With a Pulse Technique Capacitance Note 6: Typical values are at VEE = -5.2V, T A'" 25°C and maxumum loading. Note 7: The maximum address access time is guaranteed to be the worst case bit in the memory using a pseudorandom testing pattern. 3·30 Switching Time Waveforms Chip Select Access Time CHIP SELECT 80% DATA OUTPUT ---- - -- --- VIHB E='AA5¢- Address Access Time ADDRESS I NPUTS_ _ _ _ _ ~V-IH-8---------- DATA OUTPUT VILA _ _ _ _ _ _ _ _ _ _J ~----------- Read Mode ADDRESS INPUTS AO-A9 CHIP SELECT CS DATA INPUT DIN ~~~~~~~~~~~~~~~~~~~$~~~~ WRITE ENABLE WE DATA OUTPUT DOUT 3-31 Switching Time Waveforms (Continued) Write Mode ADDRESS INPUTS AO-A9 SO% --- ------------------ CHIP SELECT CS DATA INPUT DIN WRITE ENABLE WE DATA OUTPUT DOUT Test Conditions Loading Conditions GND Input Levels -O.9V CS AO WE VCC -1.7 V tr =tf =2.S ns TYP tr A2 A3 A4 DOUT AS 1 All timing measurements referenced to 50% of input levels CL = 30 pF including jig and stray capacitance A6 RT = 50n A7 A8 A9 VEE RT 8 TO.01PF -2.0V Cl T 3·32 ~National Bipolar RAMs PREVIEW D Semiconductor DM104221024·Bit (256 x 4) Eel RAM General Description Features The DM10422 is normally a 256·word by 4·bit random ac· cess memory. However the memory has four Block Select (BSO-BS3) inputs which allow "WIRE OR" of any of the four blocks for a maximum 1024·word by 1·bit memory. The high speed access time allows its use in scratch pad, buffer, and control storage applications. The device is voltage compensated and is compatible with all 10K logic. Separate Data In and Data Out pins allow the set up of data for a write cycle while performing a read. • 4 separate Block Select inputs for from 256 x 4 to 1024 x 1 configuration • Typical address access time-12 ns • Block Select access time-4 ns • 10k logic compatible Block and Connection Diagrams AS Dual·ln·Line Package A7 AS veeo vee DOD BSO 001 A4 A3 BSI A2 Al DID 013 AD 011 we 0 - - - - - 1 012 17 WE 16 AS 000 DID BSO 001 011 liSl 002 012 iiS2 003 013 Pin Names BSO-BS3 Block Selects AO-A7 Address Inputs AD WE Write Enable Al 010-013 000-003 Oata Inputs Data Outputs A2 A2 10 15 11 14 12 13 VEE TOPVIEW A3 A4 Truth Table (Positive Logic) A6 DID 011 003 012 013 WE Y Input 002 A7 BS2 Output Mode BS WE 01 H X X L Disable L L L L Write "0" L L H L Write "1" L H X DO 3-33 AS BS3 Al Logic Symbol A7 Read A5 A4 A3 ~National Bipolar RAMs PREVIEW U Semiconductor DM10470 4096-Bit (4096 x 1) Eel RAM General Description Features The DM100470 is a 4096-bit random access memory organized 4096-words by 1-blt. It is designed for high speed scratch pad and buffer storage applications. It is voltage and temperature compensated and compatible with all 100k logic. It has separate Data In and Data Out pins. The active low Chip Select CS and open emitter outputs allow easy expansion. • • • • • Typical address access time-18 ns Typical Chip Select access time-10 ns 100K logic compatible Open emitter outputs Power dissipation-O.25 mW/bit Logic Diagram WORD DRIVER DDUT 64 X 64 ARRAY SENSE AMPS AND WRITE DRIVERS ADDRESS DECODER ADDRESS DECODER AD A1 A2 AJ A4 A5 Connection Diagram Logic Symbol Truth Table Dual-In-Line Package AD A1 A2 cs WE DIN Open Emitter A2 H X X L AJ L L L L Write "0" A4 L L H L Write"'" L H X Dour A6 DOUT A7 A4 AS A9 A5 Pin Names A6 10 VEE Mode' A1 A5 A3 Output Inputs AD DOUT A7 TOP VIEW 3-34 CS Chip Select Inputs AO-A" WE Address Inputs Write Enable DIN Data Input DOUT Data Output Not Selected Read Bipolar RAMs ~National PREVIEW ~ Semiconductor DM100414 256·Bit (256 X 1) Eel RAM Gener~1 Features Description The DM100414 is a 256-bit random access memory, organized 256-words by 1-bit. It is designed for high speed scratch pads, control and buffer storage applications. The device has three chip selects (CS1-CS3) and separate Data In and Data Out pins. The open emitter output allows "OR" tying for easy expansion. It is both voltage 'and temperature compensated to be compatible with all 100k logic. • • • • Typical address access time-7 ns Typical chip select time-4 ns 50 kfl pull-down resistors Open emitter outputs Logic Diagram AD A1 A2 X AOORESS OECODER WORD DRIVER 16 X 16 ARRAY MEMORY CELL A3 DOUT Y ADDRESS DECODER Connection Diagram Logic Symbol Truth Table Dual·ln-Line Package Input Output AD CS2 CS3 WE DIN X X H* X X L Not Selected L L L L L L Write "0·· L L L L H L Write",,· L L L H X DOUT * One or more Chip Selects HIGH Pin Names TOP VIEW 3-35 Mode CS1 CS1, CS2, CS3 Chip Select Inputs' AD·A7 Address Inputs DIN Data Input Dour Data Output WE Write Enable Input Read Lt) ; ~National 8..... D Semiconductor :e c Bipolar RAMs PREVIEW DM100415 1024 x 1 Eel RAM General Description Features The DM100415 is a 1024-word by 1-bit ECl random access memory_ This fully static memory is designed with an active low chip select and separate 110 pins; The 10 address bits (AO through A9) are fully decoded on the chip. Applications such as scratch pad, cache, and buffer memories are ideal for this high speed RAM. • Fully compatible with standard 100k logic • Temperature range-O °C to + 85 °C • Unterminated emitter-follower output-full wireDRing . An unterminated emitter-follower output is provided to allow the outputs to be wire-ORed. Separate Data In and non-inverted Data Out pins are provided. These RAMs are compatible with all 100k logic. • Typical address access-12 ns • Typical chip select access-5 ns • Power dissipation decreases with temperature increasing Block Diagram AD AI A2 WORD DRIVER ADDRESS DECODER 32 X 32 ARRAY A3 A4 A5 A6 A7 AS A9 Connection Diagram Logic Symbol Truth Table Dual-In-Line Package cs WE H L Mode DIN Dour X X L Not Selected L H L Write "1" Write "0" DOUT AD A1 cs A2 WE A3 A9 DOUT L L L L L H X Dour Read L = low (- 1.7V nominal) H =high (- O.9V nominal) A4 X = don't care Pin Description AO·A9 Address Inputs AS VEE A6 TOP VIEW I 3-36 DIN Data Input Dour CS Data Output Chip Select WE Write Enable ~National Bipolar RAMs PREVIEW ~ Semiconductor N General Description Features The DM100422 is normally a 256-word by 4-bit random access memory. However the memory has four Block Select (BSO-BS3) inputs which allow "wire-OR" of any of the four blocks for a maximum 1024-word by 1-bit memory_ The high speed access time allows its use in scratch pad, buffer, and control storage application. The device is both voltage and temperature compensated and is compatible with all 100k logic_ Separate Data In and Data Out pins allow the set up of data for a write cycle while performing a read. • 4 separate Block Select inputs for 256 x 4 to 1024 x 1 configuration • Typical address access time-10 ns • Block Select access time-3 ns • 100k logic compatible Logic and Connection Diagrams Dual-In-Line Package A7 A6 013 23 A7 002 A4 A3 A2 iiS3 A5 003 A4 Vee AJ Veeo Al 000 AD A2 16 BSO AI 15 AD DOl WED-----I 14 WE 13 010 12 DOD 010 BSD 001 011 BSI 003 002 013 TOPVIEW Logic Symbol Truth Table (Positive Logic) AD Al DOD A2 as I~t H X X L Disable L L L L Write "0" Write "1" WE 01 Output A3 L L H L A4 L H X DO 001 AS A6 002 A7 Pin Names DID BSO·Bs3 Block Select 011 AO·A7 Address Inputs WE Write Enable 003 012 013 WE BSD BSI BS2 BS3 DIO·DI3 Data Inputs DOO-003 Data Outputs Y 3-37 o o ~ DM1004221024·Bit (256 x 4) Eel RAM AS c 3l: ..... Mode Read 011 ~National Bipolar RAMs D Semiconductor PREVIEW DM100470 4096·Bit (4096 x 1) Eel RAM General Description Features The DM10470 is a 4096-bit random access memory organized 4096-words by 1-bit. It is designed for high speed scratch pads and buffer storage applications. It is voltage compensated for high noise immunity and compatible with all 10k series logic. It has, separate Data In and Data Out pins. The active low Chip Select CS and open emitter outputs allow easy expansion. • Typical address access time-30 ns • Typical Chip Select access time-10 ns • 10k logic compatible • Open emitter outputs • Power dissipation-O.25 mW/bit Block Diagram WORD DRIVER 64 X 64 ARRAY ADDRESS DECODER ADDRESS DECODER DOUT 6 7 AD A1 A2 A3 A4 A5 Connection Diagram Logic Symbol Truth Table Dual-ln·Line Package Inputs DOUT WE DIN Open Emitter A1 H X X L Not Selected L L L L Write "0" L L H L Write "1" L H X DOUT A4 A5 A2 DOUT A6 A3 A7 AS A4 A9 A5 Pin Names A1D A6 Mode CS AD A1 Output AD CS A11 CS DIN WE TOP VIEW 3-38 Chip Select Inputs AO·A11 Address Inputs WE Write Enable ' DIN Data Input DOUT Data Output Read Section 4 Magnetic Bubble Memories Magnetic domain memories, provide the highest density of the extant memory technologies. The inherent simplicity in processing and lack of "charged" elements promise high reliability not found in traditional memory technologies. The high density also affords low cost. The non-volatility of bubble memories make them especially suited for portable applications and remote terminals. The solid state nature offers higher reliability and lower maintenance costs than moving medium technologies. Support circuits permitting easy design into any host system are also shown in the section. c Magnetic Bubble Memories en w 0') ~National ~ Semiconductor PREVIEW 083615 Bubble Memory Function Driver General Description Features The DS3615 is a function driver that converts digital TIL level pulses generated by a timing circuit into the current pulses required by National's NBM2256 256K-bit magnetic bubble memory_ The DS3615 consists of input logic gates that are TIL compatible, a D flip-flop, a voltage boost circuit, and six current generators. The current generators deliver constant currents for driving the swap gate, generator element, map gate, and replicator gate of the magnetic bubble memory. Operation is from Q·G to 7Q·G. • TIL compatible inputs • Operates from two standard supplies: +5V, + 12V • PNP inputs minimize loading • Built·in voltage boost circuitry-does not require an extra voltage supply • Power up/down glitch-free protection for both supplies 053615 Functional Block Diagram vec VDD GND IGEN ISWAP IMAP +12V 4-1 -'" CJ1 co 20 ~ c ~ National Magnetic Bubble Memories D Semiconductor PREVIEW 053616 Bubble Memory Coil Driver General Description Features A, B, C, and HLD-EN are TTL compatible low current inputs to insure easy interfacing to MaS controller circuits. Internal logic controls the output sinking and sourcing transistors to drive the X and Y bubble memory coils in a diode bridged push-pull configuration. Sourcing transistors are driven into saturation by the on-chip voltage booster for maximum current drive to the coil. An internal power up/down control circuit prevents glitches and noise on the outputs during system initialization. • • • • • • • CS enables the output drive transistors. The RUN output is used to disable function drivers during power up/down. The DS3616 is characterized to operate from O°C to 70°C. DS3616 Functional Block Diagram GND VDD !+'2VI vee !+5VI 4-2 Two high-current push-pull outputs TTL compatible low current inputs Two power supplies: +5V and +12V Internal clamp diodes Power up/down control circuit Optional internal voltage booster RUN output for function driver control Magnetic Bubble Memories ~National D Semiconductor PREVIEW 053617 Bubble Memory Sense Amplifier General Description Features The DS3617 is a bubble memory sense amplifier that converts low level signals from the magneto-resistive detector of a bubble memory into TTL compatible output levels. Internal functions consist of an input bias circuit, an Internally AC coupled amplifier, a high-speed precision comparator, two flip-flops and a TRISTATE® output stage. TTL compatible control inputs allow either average-to-peak or clamp and strobe (peak-to-peak) senSing of the input signal. The threshold voltage and the input bias voltage are externally adjustable, allowing compatibility with different types of bubble memories. Operation is specified from O·C to 70·C. • +5Vand +12V supply operation • On-chip adjustable detector bias circuit • Choice of average-to-peak or clamp and strobe senSing • Guaranteed tight threshold limits over the specified temperature and supply voltage range • Threshold externally adjustable over OmV to 10mV range • High threshold voltage sensitivity • TRI-STATE® output • Compatible with a wide range of bubble memories • Standard 16-pin DIP DS3617 Functional Block Diagram +12V DATA TRI GND CLAMP 4-3 ,... :8 ~ National ~ U Semiconductor Magnetic Bubble Memories PREVIEW z INS82851 Bubble Memory Controller General Description Features The INS82851 is an NMOS controller specifically programmed for use with National Semiconductor's NBM2256 256K-bit magnetic bubble memory. The controller provides all the system control needed for a single NBM2256 module, and with the addition of a few TTL parts can control 2, 4 or 8 modules. Among the functions provided are power up/down sequencing, error map bootstrap, address initialization, address conversion and cycle counting for data read/write, redundant bit insertion/deletion, error detection and correction, FIFO buffering, timing generator for interface circuits, and data transfer signals for DMA, interrupt or software polling. Operation is from O·C to 70·C. • Controls 1, 2, 4 or 8 N BM2256 modules • MICROBUSTM interface for microprocessor applications • DMA, interrupt or polled transfer signals • Provides complete timing generation for interface circuits • Redundancy insertion/deletion • FIFO buffering • Error detection/correction • 40-pin DIP, +5V supply INS82851 Controller DOUT 00-07 1/0 Buffer DIN AO-A2 cs AD D~~-- ~ I'Bus Control Microcoded Control Section INTR RESET INS82851 4-4 Timing Generator XA XB YA YB REPMAP REPLIC CUT GEN ~ STROBE CLKMAP XIN SRCLK XOUT SWAP Magnetic Bubble Memories ~National . ~ Semiconductor PREVIEW NBM2256 Bubble Memory General Description National Semiconductor's NBM2256 is a low cost, non-volatile, highly reliable solid state memory that uses magnetic bubble technology. The NBM2256 has the form of a dual-in-line package complete with the required in-plane rotating field coils and permanent magnet bias structure. The package has a magnetic shield around it to protect the data from externally induced magnetic fields. The magnetic materials are so chosen that data integrity is guaranteed over a wide temperature range. The NBM2256 memory module has a nominal* capacity of 256k bits organized as 256 storage loops each having 1024 storage locations. The storage loops have an input track with a swap gate on one side and an output track with a replicate gate on the other. The input track is serviced by a generator and the output track leads into a sensing area where bubbles are stretched to produce a signal large enough to be discriminated reliably using standard electronic circuitry. In addition to storage area there is one more storage loop which can be used for the purpose of storing defective loop information and/or the address reference locations. The NBM2256 Bubble Memory can operate asynchronously up to its maximum operating frequency, can be started and stopped at will and does not lose data when power is disconnected. Features o o o o o o o o o o • A usable number: physically there are more loops to Impart de!ee! loleraney Solid State Non-Volatile High Density Low Power Redundant Storage Loops Page-Oriented Access Sequential Read/Write Start/Stop Capability Modular Capacity On-Chip Error Map Chip Organization REP!.)D-_ _ _ _ _ _ _ _ _ _ _ _- . 9 B DEl COM!') 7 REF DETI-) ACTIVE DElI-! 4 YCOILl.) C Y COILl-) 4-5 General Specifications Capacity Bubble Size Chip Size Shift Rate Average Access Time Power Dissipation Magnetic Shielding Operating Temperature 256K bits 3jJm ~ 100K mil2 ~ 100kHz < 7m sec. < 1 Watt > 20 Oe O°C to 70°C (case) with the transfer-in ports of the storage loops. A .. read" operation consists of pulsing the replicate gate at the proper time when the required data block is at the transferout/replicate port. Since data is replicated, a true non-destructive read operation is performed which does not require storing back the data block as in the case of major/minor loop organization. The replicated data block then is sequentially propagated through the detectors to be sensed electronically. A data modifying operation is similar to the "write" operation since "true swap" gates used exchange the new data block with the old one in one step. The old data blo"ck is discarded by propagating . through the guard rails. The swap gates also eliminate the necessity of sustaining power for a duration longer than the swap operation in the event of power failure. ~ Applications o o o o o o o o Microcomputer Mass Storage Word Processing Terminals Stored Program Controllers Measurement and Test Equipment Electronic Disc Applications Point-of-Sale Terminals Operating System Storage Fast Auxiliary Storage Functions What are magnetic bubbles A "write" operation requires current pulsing the generators sequentially according to the data pattern desired and then pulsing the swap gate when the data block propagates and aligns Magnetic bubbles are tiny cylindrical magnetic domains which are formed in a thin magnetic layer when a stabilizing magnetic field of optimum National's Magnetic Bubble Module and Required Interface A Functional Block Diagram +5V---+ +12V---+ NBM2256 +V X COIL ACTIVE REFERENCE DETECTOR DATA BUS y INS82851 CONTROLLER COIL GENERATE SWAP 110 CONTROL REPLICATE Mpp 4-6 OS3617 SENSE AMP Applications magnitude is applied orthogonally to the magnetic layer. This magnetic layer is grown by liquid phase epitaxy techniques over a non-magnetic substrate. The cylindrical magnetic domains can be moved over in a controlled manner with the aid of an in-plane rotating field by the creation of attracting manetic poles in a soft magnetic layer such as Permalloy. These domains can be created and destroyed at will by using magnetic fields generated by current-carrying conductors. The absence or presence of a domain can be used to denote binary information ("0", "1 ") used in digital computers. The detection of the cyclindrical domains is performed by their interaction with a magneto-resistive element whose change in resistance is converted into a voltage by forcing a constant current through the element. Magnetic bubble memories are presently used in portable terminals, as message recorders in telephone systems and as floppy disc replacements where the environment is hazardous to rotating memories. In addition, they are being considered for microprocessor mass storage applications, in word processing machines, in point-of-sale terminals where the small number of terminals can not justify a . rotating memory, in data communication links, in programmable calculators, in diagnostic data logging for large computers, and in military and airborne applications where reliability is of prime importance. They are also being considered as cache between main memory and large capacity disc files to improve performance of the total system. Physical Dimensions inches (millimeters) I?'JI National ~ Semiconductor NBM2256 7909D43--------r~ LOT # AND DATE OF FINAL TEST XXXXXX XXX ~ XXXXXX 1.100 , HEXADECIMAL COOING OF INOPERATIVE LOOPS-2 DIGITS PER LOOP-MAXIMUM 20 LOOPS PINI I t-~---121.941----- I -.L 0.150 CJ.i1i T ~ 0.125 (Jllij' ~10.'001_ ii254i1 ~4'~I~l = I- - - - -----u=====ffi111f _---= I 1.200 130.481----- 4-7 Section 5 MOSEPROMs Customer-reprogram mabie read-only memory has made a remarkable impact upon the art, of logic design. National's EPROMs make practical new applications of microprocessors. National is a volume production source of the products included here, and is developing larger EPROMs for tomorrow's applications. ~National MOS EPROMs ~ Semiconductor MM1702A 2048·Bit (256 x 8) UV Erasable PROM General Description The MM1702A is a 256 word by 8-bit electrically programmable ROM ideally suited for uses where fast turn-around and pattern experimentation are important_ The MM1702A undergoes complete programming and fun,ctional testing on each bit position prior to shipment, thus insuring 100% programmability. The MM1702A is fabricated with silicon gate technology. This low threshold technology- allows the design and production of higher performance MOS circuits and provides a higher functional density on a monolithic chip than conventional MOS technologies_ The MM1702AQ is packaged in a 24-pin dual-in-line package with a transparent lid. The transparent Iid allows the user to expose the chip to ultraviolet light to erase the bit pattern_ A new pattern can then be written into the device. The MM 1702AD is packaged in a 24-pin dual-in-line package with a metal lid and is not erasable. Features • Fast programming-30 seconds for all 2048 bits • All 2048 bits guaranteed programmable-100% factory tested • Fully decoded, 256 x 8 organization Iii Static MOS-no clocks required • Inputs and outputs DTL and TTL compatible • TRI-STATE® output-OR-tie capability • Simple memory expansion-chip select input lead • Direct replacement for the Intel 1702A The circuitry of the MM1702A is entirely static; no clocks are required. A pin-for-pin metal mask programmed ROM, the MM1302 is ideal for large volume production runs of systems initially using the MM 1702A_ Block and Connection Diagrams Dual-I n-Line Package PRO· Voo 124 Vee 23 Vee A3 22 A4 21 AS 20 AS 19 11 A7 Vee 17 Vo• 16 15 e{ GRAM 13 14 DATA OUT 1 - - DATA OUT8 Notl: In the 'lid modi I logic "''',tth •• ddrll.inputslndd,tl outputsil.hiUhlndloyic"O"il • low. I A2 2 Al 3 AO 4 6 8 7 I 8 10 II \~L~~B....;.-..;...-.O.;.A... TA....O;..U-T...;.......;--:M~:a' 1'2 Vee TOPVIEW ·Thilpinillhldu,inputl,ldduringprogrlmming. Pin Names Order Number MM1702AQ See NS Package J24CQ AO-A 7 Address Inputs CS Chip Select Input DOUT 1 - DouT a Data Outputs Pin Connections· MODE/PIN Read Programming 12 13 14 15 16 22 23 (Vee! (PROGRAM) (CS) (Vee) (VGG) (Vee) (Vee) Vee GND Vce Program Pulse GND GND Vee Vas VGG Pulsed VGG (V 1L4P ) Vec GND Vee GND *The external lead connections to the MM 1702A differ, depending on whether the device is being programmed or used in read mode_ (See following table.) In the programming mode, the data inputs are pins 4-11 respectively. 5-1 Absolute Ma~imum Ratings (Note 1) Storage Temperature Power Dissipation Read Operation I nput Voltages and Supply Voltages with Respect to Vee Program Operation Input Voltages and Supply Voltages with Respect to Vec Lead Temperature (Soldering, 10 seconds) -65°C to +125°C 2W +0.5V to .,...20V -48V 300°C Read Operation DC Characteristics TA = o°c to +70°C, Vee = +5V ±5%, Voo = -9V ±5%, V GG = -9V ±5%, unless otherwise noted. voltages and T A = 25°C. (Note 2) SYMBOL III PARAMETER Address and Chip Select CONDITIONS MIN Typic~1 values are at nominal TYP MAX UNITS VIN ;" O.OV 1 J.1A 1 J.1A 5 10 mA 35 50 mA CS = 0.0, 10L = 0.0 mA, T A = 25°C 32 46 mA CS = Vee -2, 10L = 0.0 mA, 38.5 60 mA 8 14 mA 13 mA 1 J.1A V ee -4.1 V V cc -6 V Vee+ 0 .3 V I nput Load Current I LO Output Leakage Current V OUT = O.OV, CS = V ee -2 1000 Power Supply Current VGG = Vee, CS = Vee -2 10L = 0.0 mA, T A = 25°C, (Note 2) 1001 Power Supply Current - CS = Vee -2, 10L ~ 0.0 mA, T A =25°C 1002 Power Supply Current 1003 Power Supply Current - T A = O°c ICF1 Output Clamp Current V OUT = -1.0V, T A = O°C leF2 Output Clamp Current V OUT = -1.0, T A = 25°C IGG Gate Supply Current V IL1 Input Low Voltage for -1.0 TTL Interface V IL2 Input Low Voltage for Voo MOS Interface V IH Address and Chip V ee -2 Select Input High Voltage IOL Output Sink Current V OUT = 0.45V IOH Output Source Current V OUT = O.OV VOL Output Low Voltage 10L = 1.6 mA V OH Output High Voltage 10H = -100J.1A 1.6 4 mA -2.0 mA -D.7 3.5 4.5 0.45 V V Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and and functional operation of the device at these or at any other condition above those indicated in the operational sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Note 2: Power· Down Option: VGG may be clocked to reduce power dissipation. The average 100 will vary between 1000 and 1001 depending on the VGG duty cycle (see typical characteristics)' For this option, please specify MM1702AL. 5·2 Read Operation AC Characteristics T A = o°c to +70°C, Vee = +5V ±5%, V DD = -9V ±5%, VGG =-9V ±5%, unless otherwise noted. PARAMETER SYMBOL Freq. Repetition Rate tOH Previous Read Data Valid tAee Address to Output Delay TYP MIN MAX UNITS 1 0.7 MHz 100 ns 1 ps 100 ns 1 ps tDVGG Clocked VGG Set·Up (Note 1) tes Chip Select Delay teo Output Delay From CS 900 ns tOD Output Deselect 300 ns toHe Data Out Hold in Clocked VGG Mode (Note 1) 5 p.s - Capacitance Characteristics SYMBOL PARAMETER T A = 25°C (Note 3) CONDITIONS = Vee CIN Input Capacitance All Unused COUT Output Capacitance Pins Are CS = Vee CVGG VGG Capacitance (Note 1) At ac Ground VOUT VIN VGG MIN UNITS TYP MAX 8 15 pF 10 15 pF 30 pF = Vee = Vee Note 3: This parameter is periodically sampled and is not 100% tested. Read Operation Switching Time Waveforms (b) Power·Down Option (Note (al Constant VGG Operation 11 I--CYCLETIME'l/l~ ADDRESS v," ""V 10% . -A r A-- ·::-{ ..~ f=".~ ~ CLOCKEO Vcc VGG DATA OUT DATA OUT VOL-+--------~---J· :',~X: VOl DATA OUT OATA OUT INVALIO \1 (NOTE 11 r=_"'"_c____ II DATA OUT INVALID V," jLECTION OF OATA OUTPUT IN DR·TIE OPERATION ~ ~ V'H----l~ II "'+-___"':"~ VOL-----'--..J------- DESELECTION OF DATA DUTPUT IN OR·TIE OPERATION ADDRm VGG VO" _ _ _ tAC_C=-1 VOH-+------~ ADDRESS VOl I V'H ~ fS 90%~ toO VOH----lnr- !-= II VOL teo . t--- VOH--t----,. DATA OUT Conditions of Test: Input pulse amplitudes: 0-4V. tro If $ 50 ns. Outputlold is 1 TTL pte; measure· ments mJd. It output of TTL gue (!Po ~ 15 nsJ,C L -15 pF. Note 1: The output will r.mlin y,lid for toHe IS 10n;l. clocked VaG it.1 Vee. An address thange mly occur IS soon .sthe output is Mnlld (tlocbd VaG mav still bu. Vccl. Dill blcomes invalid for the old Iddress when clocked VaG is returned to VaG' Not. 2: If ES makes. transition hom V1L to V1H whill clockld VaG is It Vaa. thin desllection of output occurs.t IoD IS shown in stltic oplrltion with canstlnt VGG . 5·3 pw Program Pulse Width TYP MAX 20 VGG = -35V, Voo = 3 UNITS % ms V PROG = -48V tow Data Set-Up Time 25 /lS tOH Data Hold Time 10 /ls tvw V oo , VGG Set-Up 100 tvo V oo , VGG Hold 10 tACW Address Complement /ls 100 /lS (Note 6) 25 /lS (Note 6) 25 /lS Set-Up tACH Address Complement Hold tATw Address True Set-Up 10 /ls tATH Address True Hold 10 /ls Note 6: All 8 address bits must be in the complement state when pulsed VOO and VGG move to their negative levels. The addresses (0-255) must be'programmed as shown in the timing diagram until data reads true, then over-programmed 4 times that amount. (Symbolized by x + 4x.l . 5-4 Programming Operation Switching Time Waveforms -40TO -48 PUlSEDV oo PQWERSUPPlV -4610 -48 PUlSEOV GG PQWERSUPPlY . J~ TO ·40 PROGRAMMING PULSE -46TO -48 DATA INPUT CondlllonsofTrst (OEVICE Input pul~t' ~'OV OUTPUT lINES)-46 -48 IIs •• nd hllllmes_ Ij./I Typical Performance Characteristics, Output Current vs VDD Supply Voltage IDD Current vs Temperature ;t ~ ...z a: a: :::> '"'cc 39 38 Vee' +5V 37 \ Vee' -9V VGG • -9V 36 35 ~ INPUTS' Vee 34 OUTPUTS ARE OPEN 1'\ 33 ~ 1 1_ r--r32 I' " CS'V ee _ r - r 31 30 29 r-- c,s', o.~v , 1 "' 2~ 20 40 ~ ...z IA r- s';ECI~IED - r - llPE~~~~~ a: a: :::> '"' - Vee' +5'V I---3 -VGG'-9V _ VOL' +0.45V TA ' +25°C z -3.5 a: """"01. 12 a: a: 10 ... '"' 60 80 100 tsr~ :::> Q t,......-' -4 -3 -1 0 ...z -3 -5 '"' -6 -7 -8 -9 10 -10 ~- ;t .g 45 40 I- CLOCKED VGG ' -9V Vee' -9V 35 lts • V'H • +25°C TA 30 l- c c 25 '" 20 ~ 900 800 V V ] 700 ~ 600 >= 500 /'" ~ ,/ _ ,/ ILi" Access Time vs Temperature 1000 900 -~ 700 600 -- - >= 500 '" '"'..:'"' 400 1 TTL LOAD", 20 pF Vee = +5V Vee = -9V 300 200 100 VfG ~ -9Y I , 10 20 30 40 50 60 70 80 90 AMBIENT TEMPERATURE 5-5 60 70 1-+--+--+-+-+-+--+--+-+--1 1-+--+--+-+-+-+--+--+-+_--1 I---jH-4""",**+=:f=~ 1-+--+--+-+-+-+--+--+-+--1 1-+--+--+-+--+-+--+--+--+---1 I-t-t-+--t-t-t-l TTL LOAD 200 I-t-t-t-t-t-t- VGG • -9V Vee' +5V Veo' -9V Tr~25°f 10 20 30 40 50 60 70 80 90 100 LOAD CAPACITANCE (pF) DUTY CYCLE (%) 800 50 400 300 100 OUTPUT VOLTAGE (V) 40 1000 r-~~-r--r--'-""T""""""''''''''''''''''''''''' 10 20 30 40 50 60 70 80 90 100 1 3D Access Time vs Load Capacitance 15 10 20 AM81ENT TEMPERATURE rC) Average Current vs Duty Cycle for Clocked VGG (Note 1) vr V -2 ~ SUPPLY VOLTAGE (V) ./ '"'z ;t a: a: 1 -4 CC) :::> ... ... '"' :::> 120 Vee' +5V Vee' -9V VGG • -9V TA ' +25"C ""en a: a: :::> , ~ 16 ....~z fi ;t Output Sink Current vs Output Voltage 14 ...z 7- 7- :::> AMBIENT TEMPERATURE ;t ;t ~ a: 1 1 1 1 27 Program Waveforms I ;t re) Operation of the M~1702A in Program Mode Initially, all 2048 bits of the ROM are in the "0" state (output low). Information is introduced by selectively programming "l's" (output high) in the proper bit locations. mInimum of 10)1s before the program pulse is applied. The addresses should be programmed in the sequence 0-255 for a minimum of 32 times. The eight output terminals are used as data inputs to determine the information pattern in the eight bits of each word. A low data input level (-48V) will program a "1" and a high data input level (ground) will leave a "0" (see table on page 4-4). All eight bits of .one word are programmed simultaneously be setting the desired bit information patterns on the data input terminals. Word address selection is done by the same decoding circuitry used in the READ mode (see table for logic levels). All 8 address bits must be in the binary comple· ment state when pulsed V DD and VGG move to their negative levels. The addresses must be held in their binary complement state for a minimum of 25)1s after V DD and V GG have moved to their negative levels. The addresses must then make the transition to their true state a During the programming, V GG , V DD and the Program Pulse are pulsed signals. MM1702A Erasing Procedure out short·wave filters, and the MM 1702A to be erased should be placed about one inch away from the lamp tubes. There exists no absolute rule for erase time. Establish a worst case time required with the equipment. Then over·erase by a factor of 2, i.e., if the device appears erased after 8 minutes, continue exposure for an additional' 16 minutes for a total of 24 minutes. (May be expressed as x + 2x.) The MM1702A may be erased by exposure to high intensity short·wave ultraviolet light at a wavelength of 2537A. The recommended integrated dose (i.e., UV intensity x exposure time) is 6W sec/cm 2 . Examples of ultraviolet sources which can erase the MM1702A in 10 to 20 minutes are the Model UVS·54 and Model S-52 short-wave ultraviolet lamps manufactured by Ultra· Violet Products, Inc. (5114 Walnut Grove Avenue, San Gabriel, California). The lamps should be used with· 5-6 ~National MOS EPROMs ~ Semiconductor 3: 3: I\) ~ o ..... MM2708, MM2708·1 8192·Bit (1024 x 8) UV Erasable PROMs CO General Description Features The MM2708, MM2708-1 are high speed 8192 UV erasable and electrically reprogrammable EPROMs ideally suited for applications where fast turn-around and pattern experimentation are important requirements. • 1024 x 8 organization • 800 mW max • Low power during programming • Access time - MM2708, 450 ns; MM2708-1, 350 ns The MM2708, MM2708-1 are packaged in a 24-pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet Iight to erase the bit pattern. A new pattern can then be written into the devices by following the programming procedure. • Standard power supplies: 12V, 5V, -5V • Static-no clocks required • These EPROMs are fabricated with the reliable, high volume, time proven, N-channel silicon gate technology. Inputs and outputs TTL compatible during both read and program modes • TRI-STATE® output Dual-In-Line Package Block and Connection Diagrams 24 A7 +-VDD+12V +-vee+ 5V +-vss GND +-V BB --5V DATA OUTPUTS (PRDGRAM INPUTS) Dl-08 Vee A6 23 A8 AS 22 A9 A4 21 VBB A3 20 tSlWE A2 19 AI 18 I AD 17 08 I Dl 16 _ _ PROGRAM I PULSE I I 02 I I I 03 I Vss 10 15 11 14 VDD PROGRAM 07 06 05 13 04 12 L ______ ~-------------~ TOPVIEW Drder Number MM2708Q or MM2708Q-1 See NS Package J24CQ Pin Connection During Read or Program MODE PIN NUMBER 18 19 9-11,13-17 12 Read DOUT VSS VSS VDD Program DIN VSS Pulsed VDD 20 21 24 VIL VBB Vee VIHW VBB Vee VIHP 5-7 Pin Description AO-A9 01-08 CS/WE Address inputs Data outputs Chip select/write enable input ~ Absolute Maximum Ratings (Note 1) -25°C to +85°C -65°C to +125°C 20V to -o.3V 15V to -0.3V Temperature Under Bias Storage Temperature VDD with Respect to VSB VCC and VSS with Respect to VSB All Input or Output Voltages with Respect to VBS During Read CSIWE Input with Respect to VSS 20V to-o.3V During Programming 35V to-o.3V Program Input with Respect to VSS Power Dissipation 1.5 W 300°C Lead Temperature (Soldering, 10 seconds) 15V to-0.3V Read Operation DC Operating Characteristics TA = DoC to +70°C, vcc = 5V ±5%, VDD = 12V ±5%, vss = -5V ±5%, vss = OV, CONDITIONS PARAMETER SYMBOL Address and Chip Select Input III unless otherwise noted, (Note 3) VIN MIN = 5.25V or VIN = VIL TYP MAX UNITS 1 10 p.A 1 10 p.A 44 65 mA 7 10 mA 34 45 mA Sink Current = 5.25V, = 5V ILO Output Leakage Current VOUT 100 VDD Supply Current Worst·Case Supply Currents, All Inputs High, CS/WE ICC = 5V, T A = DoC Worst·Case Supply Currents, All Inputs VSS Supply Current High, CS/WE VIL = 5V, T A = DoC Worst·Case Supply Currents,AII Inputs VCC Supply Current High, CS/WE ISS CS/WE = 5V, T A = DoC Input Low Voltage VSS _0.65 3.0 VCC+1 V V VIH Input High Voltage VOH1 Output High Voltage IOH = -100p.A 3.7 V VOH2 Output High Voltage IOH = -1mA 2.4 V VOL Output Low Votlage IOL = 1.6 mA Po Power Dissipation 0.45 V 800 mW :AC Electrical Characteristics T A = DoC to +70°C, SYMBOL tAce vcc = 5V ±5%, VDD = 12V ±5%, vss = -5V ±5%, vss = OV, unless otherwise noted PARAMETER Address to Output Delay teo Chip Select to Output Delay tDF Chip Deselect to Output Delay CONDITIONS Output Load: 1 TTL Gate and CL = 100 pF, Input Rise and Fall Times':; 20 ns: Timing Measurement Reference Levels: O.BV Address to Output Hold tOH CAPACITANCE (Note 2) elN Input Capacitance COUT Output Capacitance MM2708 MIN MAX and 2.BV for Inputs; O.BV and 2.4V for Outputs, Input Pulse Levels: 0.65V to 3V VIN = OV, T A = 25°e, f = 1 MHz VOUT = OV, T A = 25°C. f = 1 MHz a a MM2708-1 MIN MAX UNITS 450 350 ns 120 120 ns 120 120 ns ns 0 6 6 pF 12 12 pF Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Capacitance is guaranteed by periodic testing. T A = 25°C. f = 1 MHz Note 3: Typical conditions are for operation at: T A = 25°C, VCC = 5V, VOO = 12V, VSS = -5V, and VSS = OV. 5·8 Switching Time Waveforms ADDRESS ~/WE DATA~~~~~~~~~~~ DUT,"~~~~~~~~~~ Programming Instructions Initially, and after each erasure, all bits of the MM2708, MM2708·1 are in the "1" state (output high). Inforation is introduced by selectively programming "0" into the desired bit locations. A programmed "0" can only be changed to a "1" by UV erasure. required is a function of the program pulse width (tpW) according to N x tpw ~ 100 ms. The width of the program pulse is from 0.1 to 1 ms. The number of loops (N) is from a minimum of 100 (tpw = 1 ms) to greater than 1000 (tPW = 0.1 ms). There must be N successive loops through all 1024 addresses. It is not permitted to apply N program pulses to an address and then change to the next address to be programmed. Caution should be observed regarding the end of a pro· gram sequence. The CS/WE falling edge transition must occur before the first address transition when changing from a program to a read cycle. The program pin should also be pulled down to VI LP with an active instead of a passive device. This pin will source a small amount of current (lIPL) when CS/WE is at VIHW (12V) and the program pulse is at VILP. The circuit is set up for programming operation by raising the CE/WE input (pin 20) to +12V. The word address is selected in the same manner as in the read mode. Data to be programmed are presented, 8 bits in parallel, to the data output lines (01-08). Logic levels for address and data lines and the supply voltages are the same as for the read mode. After address and data set up, one program pulse per address is applied to the program input (pin 18). One pass through all addresses is defined as a program loop. The number of loops (N) Programming Characteristics TA = 25°C, VCC = 5V ±5%, VDD = 12V ±5%, VBB = -5V ±5%, VSS = OV, unless otherwise noted DC Programming Characteristics SYMBOL III PARAMETER Address and CS/WE Input CONDITIONS VIN MIN TYP = 5.25V MAX UNITS 10 /1 A Sink Current IIPL Program Pulse Source Current 3 mA IIPH Program Pulse Sink Current 20 mA IDO VOO Supply Current 44 65 mA 7 10 mA 34 45 rnA Worst·Case Supply Currents, All Inputs High, CS/WE ICC VCC Supply Current Worst·Case Supply Currents, All Inputs High, CS/WE IBB VBB.SUpply Current = 5V, TA = O°C Worst·Case Supply Currents, All Inputs High, CS/WE VIL = 5V, T A = O°C = 5V, T A = O°C Input Low Level (Except VSS 0.65 V 3.0 VCC+1 V Program) VIH Input High Level, All Addresses and Oata VIHW CS/WE Input High Level Referenced to VSS 11.4 12.6 V VIHP Program Pulse High Level Referenced to VSS 25 27 V VILP Program Pulse Low Level VIHP - VI LP VSS 1 V = 25V Min 5·9 AC Programming Characteristics PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS tAS Address Set-.Up Time 10 /lS tcss CS/WE Set-Up Time 10 /lS tDS Data Set-Up Time 10 /lS tAH Address Hold Time 1 /lS tCH CS/WE Hold Time 0.5 /lS tDH Data Hold Time 1 tDF Chip Deselect to Output Float Delay 0 tDPR Program to Read Delay tpw Program Pulse Width tPR tpF /lS 120 /lS 10 /lS 0.1 1.0 ms Program Pulse Rise Time 0.5 2.0 /lS Program Pulse Fall Time 0.5 2.0 /lS Programming Waveforms READ (AFTER N PRDG ~ LDDPS) 1 OF N PROGRAM LOOPS VIHW C'S"iWE ,,,J ICH(D.5)--j I--ICSS(IO)VIH ADDRESS VIL VIH DATA VIL J J ADDRESS 0 ADDRESS 1 - I-IAS(10)- - I--I0S(1D)IpR(D.5)VIHP f--- (0.1 ms MIN!.-I IpW (1.0 ms MAX) , I - IAH(1) K: I-- 10H(1) -lpF(D.5) ADDRESS 1023 - - I- (NOTE 1) ~ AODRESSD I- IAH(1) IACC MAX DATA DUT~ ~DATADUT~ VALID INVALlO,~ - I-- 10H(1) 10PR(lD MAX) j PROGRAM PULSE VIL \ ~ Note 1: The CS/WE transition must occur after the program pulse transition and before the address transition. Note 2: Numbers in parentheses indicate minimum timing in microseconds unless otherwise specified. 5-10 Functional Description ERASING if a UV lamp with a 12,000 pW/cm 2 power rating is used. The MM2708 to be erased should be placed 1 inch away from the lamp and no filters should be used. The MM2708 is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gate to its initial state through induced photo current. It is recommended that the MM2708 be kept out of direct sunlight. The UV content of sunlight may cause a partial erasure of some bits in a relatively short period of time. Direct sunlight can also cause temporary functional failure. Extended exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this product is to be operated under these lighting conditions. An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at 1 inch. The erasure time is increased by the square of the distance (if the distance is doubled the erasure time goes up by a factor of 4). Lamps lose intensity as they age. When a lamp is changed, the distance is changed, or the lamp is aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be mislea(iing. Programmers, components and system designs have been erroneously suspected when incomplete erasure was the basic problem. An ultraviolet source of 2537 A yielding a total integrated dosage of 15 watt-seconds/cm 2 is required. This will erase the part in approximately 15 to 20 minutes Typical AC Performance Characteristics Access Time vs Load Capacitance Access Time vs Temperature 500 400 TA 1 TTL LOAD + 100 pF -:1 400 ,..,. ;: 300 ..,'" -~ '-' cr 200 ..,I $ ..sw --- 300 :;; ;: ~ ~ =25°C - --- f--~ f-- 200 cr I '-' $ 100 100 o -20 20 40 60 BO 100 TA - AMBIENT TEMPERATURE (OC) 200 300 400 CL - LOAD CAPACITANCE (pF) 5-11 500 s: s: I\) ~ ..... o CO. ~National MOS EPROMs ~ Semiconductor MM271616,384-Bit (2048 x 8) UV Erasable PROM General Description Features The MM2716 is a high speed 16k UV erasable and electrically reprogram mabie EPROM ideally suited for appl ications where fast turn-around and pattern experimentation are important requirements. • 2048 x 8 organization • 525 mW max active power, 132 mW max standby power • Low power during programming • Access time-MM2716, 450 ns; MM2716-1, 350 ns; MM2716-2, 390 ns • Single 5V power supply • Static-no clocks required • Inputs and outputs TTL compatible during both read and program modes • TRI-STATE® output The MM2716 is packaged in a 24-pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device by following the programming procedure. This EPROM is fabricated with the reliable, high volume, tirne proven, N-channel silicon gate technology. Block and Connection Diagrams * Dual-In-Line Package +++- A1 VPP+5V VCC+5V A6 VSSGNO A5 OATA OUTPUTS (PROGRAM INPUTS) 00-01 (00-01) A4 A3 A2 Al 18 CElPGM (E/P) AO 11 01(01) 0 0 (00) 16 06 (06) 01 (01) 10 15 Os (05) 02 (02) 11 14 04 (04) vss 12 13 03 (03) ~------------~ TOP VIEW Order Number MM27160, MM27160-1 or MM27160-2 See NS Package J24CO Pin Connection During Read or Program Pin Names PIN NAME/NUMBER MODE Read Program CE/PGM (E/P) 18 OE VIL Pulsed VIL to VIH VIH (6) VPP VCC OUTPUTS 20 21 24 9-11,13-17 VIL 5 5 DOUT 25 5 DIN AO-Al0 .00-07 (00-07) CE/PGM fE/PI OE(G) VPP vcc vss *Symbols in par'entheses are proposed industry standard 5-12 Address Inputs Data Outputs Chip Enable/Program Output Enable Read 5V, Program 25V Power (5V) Ground Absolute Maximum Ratings Temperature Under Bias Storage Temperature VPP Supply Voltage with Respect to VSS (Note 1) All Input or Output Voltages with Respect to VSS (except VPP) Power Dissipation Lend Tempernture (Soldering, 10 seconds) -25°C to +85°C -65°C to +125°C 26.5V to -0.3V 6V to -0.3V 1.5W 300°C READ OPERATION (Note 2) DC Operating Characteristics O TA = oOe to +7o e, vee = 5V ±5%, (vee = 5V ±10% for MM2716-1), Vpp = vee ±O.6V (Note 3), VSS = OV, unless otherwise noted. SYMBOL PARAMETER CONDITIONS III I nput Current VIN ILO Output Leakage Current VOUT IPPl VPP Supply Current VPP ICCl VCC Supply Current' (Standbyl CE/PGM = VIH, C'E/PGM = = = 5.85V - OE = VIL 10 ICC2 vec Supply VIL Input Low Voltage 0.1 VIH Input High Voltage 2.0 VOH Output High Voltage IOH = VOL Output Low Voltage IOL = 2.1 AC Characteristics MAX = 5.25V, CE/PGM = 5V - Current (Active I TYP MIN = VIL 5.25V or VIN OE = VIL 57 UNITS 10 JJ.A 10 JJ.A 5 III A 25 mA laO mA 0.8 V Vec + 1 V 0.45 V 2.4 400JJ.A V lllA (Note 4) o TA = oOe to +70 e, vee = 5V ±5%, (vee = 5V ±10% for MM2716-1). VPP = vee ±O.6V (Note 3). VSS = OV, unless otherwise noted. SYMBOL MM2716 PARAMETER ALTERNATE TAVOV Address to Output Delay tCE TELOV CE to Output Delay OE=VIL tOE TGLOV Output Enable to Output Delay CE/PGM = VIL tDF TGHOZ Output Enable High to Output Hi·Z CE/PGM = VIL tOH TAXOX Address to Output Hold C'E/PGM = too TEHOZ CE to Output Hi·Z OE CE/PGM = OE - = VIL - - 6E = VIL = VIL MM2716·2 UNITS MIN tACC Capacitance MM2716·1 CONDITIONS STANDARD MAX MIN MAX 350 390 ns 450 350 390 ns 120 lOa 0 100 0 a a MIN 450 120 0 MAX 100 0 100 a 120 ns lOa ns 100 ns 0 0 ns (Note 5) T A = 25°e, f = 1 MHz SYMBOL PARAMETER TYP MAX CI I nput Capacitance VIN = OV 4 6 pF CO Output Capacitance VOUT = OV 8 12 pF CONDITIONS UNITS Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Typical conditions are for operation at: TA = 25°C, VCC= 5V, VPP = VCC, and VSS = OV. Note 3: VPP may be connected to VCC except during program. The ±0.6V tolerance allows a circuit to switch VPP between the read voltage and the program voltage. Note 4: Output load: 1 TTL gate and CL = 100 pF. Input rise and fall times.s. 20 ns. Note 5: Capacitance is guaranteed by periodic testing. 5-13 CD it: Switching Time Waveforms * C\I :E :E Read Cycle (CE/PGM = VI L) VIH ADDRESSES VIL '@ff~~ 'l///" K VALID VALID tOH --(TAXQX)-VIH \ OUTPUT ENABLE VIL .. VOH I ... I tACC (TAVIlV)---- I tOE (TGLOV) tDF (TGHIlZ)-- J Hi-Z OUTPUT .. -, VOL :-~ VAllO Hi-Z 1/ Read Cycle (OE = VI L) VIH~~~~~-'------------------------~ ADDRESSES VIL~~~~~~~ VIH VALID ______________________ VALID ~ ===========I:=======\. CHIP ENABLE VIL-----------t--------~----~--~---------J ~--_-I_- tCE tACC (TELIlV) (TAVIlV)- VOH OUTPUT too (TEHIlZ) --------~H:-::·Z::----~~~-----Jt'---------...., I- VOL--------------------------~ Hi-Z VALID >----.;.;.;..;;._ _ ________________~ Standby Power Down Mode (OE = VI L) VIH~~~~~~~~~~~~~------~------------------ ADDRESSES VALID VIL========================~~ CHIP ENABLE VALID ____________________________ VIH --------~r---------------1\ STANDBY VIL-------I VOH - -- VALID FOR OUTPUT CURRENT ADDRESS VOL~==========~ STANDBY too (TEHIlZ) Hi-Z *Symbols in parentheses are proposed industry standard 5-14 VALID FOR CURRENT ADDRESS Hi-Z PROGRAM OPERATION DC Electrical Characteristics and Operating Conditions (Notes 1 and 2) (T A = 25°C ±5°C) (VCC = 5V ±5%, VPP = 25V ±1 V) SYMBOL PARAMETER III TYP MIN Input Leakage Current (Note 3) VIL Input Low Level -0.1 VIH Input High Level 2.0 ICC VCC Power Supply Current MAX UNITS 10 /lA 0.8 V VCC+ 1 V 100 rnA IPPl VPP Supply Current (Note 4) 5 rnA IPP2 VPP Supply Current During 30 rnA Programming Pulse (Note 5) AC Characteristics and Operating Conditions (Notes 1, 2, and 6) (T A = 25°C ±5°C) (VCC = 5V ±5%, VPP = 25V ± 1V) SYMBOL ALTERNATE PARAMETER STANDARD MIN TYP MAX UNITS tAS TAVPH Address Setup Time 2 /lS tos TGHPH OE Setup Time 2 /lS tDS TDVPH Data Setup Time 2 /lS tAH TPLAX Address Hold Time 2 /lS tOH TPLGX OE Hold Time 2 /lS tDH TPLDX Data Hold Time 2 tDF TGHOZ Chip Disable to Output Float 0 - /lS 100 ns 120 ns 55 ms Delay (Note 4) tCE TGLOV Chip Enable to Output Delay (Note 4) tpw TPHPL Program Pulse Width 45 tPR TPH1PH2 Program Pulse Rise Time 5 ns tpF TPL2PL1 Program Pulse Fall Time 5 ns 50 Note 1: vee must be applied at thE' same time or before VPP and removed after or at the same time as VPP. To prevent damage to the device it must not be inserted into a board with power applied. Note 2: eare must be taken to prevent overshoot of the VPP supply when switching to +25V. N~te 3: 0.45V V IN <:: 5.25V. Note 4: CE/PGM = VIL, VPP = vee + O.6V. Note 5: VPP = 26V. Note 6: Transition times:::. 20 ns unless noted otherwise. s:. 5-15 Timing Diagram * ADDRESSES Program Mode VIH ==+r--------t------"'\ Vil ==;;/-~_--_--+_-----~ DATA VIH =======\ Vll===~ EIP VIH --'-------~ Vll======~ Functional Description DEVICE OPERATION The MM2716 has 3 modes of operation in the normal system environment. These are shown in Table I. Standby Mode (Power Down) The MM2716 may be powered down to the standby mode by making CE/PGM = VIH. This is independent of OE and automatically puts the outputs in their Hi·Z state. The power is reduced to 25% (132 mW max) of the normal operating power. VCC and, VPP must be maintained at 5V. Access time at power up remains either tACC or tCE (see Switching Time Waveforms). Read Mode The MM2716 read operation requires that OE = VIL, CE/PGM = VIL and that addresses AO-A10have been stabilized. Valid data will appear on the output pins' after tACC, tOE or tCE times (see Switching Time Waveforms) depending on which is limiting. Deselect Mode PROGRAMMING The MM2716 is deselected by making OE = VIH. This mode is independent of CE/PGM and the condition of the addresses. The outputs are Hi-Z when OE = VIH. This allows OR-tying 2 or more MM2716's for memory expansion. The MM2716 is shipped from National completely erased. All bits will be at a "1" level (output high) in this initial state and after any full erasure. Table II shows the 3 programming modes. TABLE I. OPERATING MODES (VCC = VPP = 5V) PIN NAME/NUMBER MODE Read Deselect CE/PGM (E/P) 18 OE 20 9-11,13-17 VIL VIL DOUT VIH Hi-Z Don't Care Hi·Z Don't Care Standby OUTPUTS (G) VIH TABLE II. PROGRAMMING MODES (VCC = 5V) PIN NAME/NUMBER MODE Program CE/PGM (E/P) 18 - OE VPP OUTPUTS Q 21 9-11,13-17 (G) 20 Pulsed VI L to VIH VIH 25 Program Verify VIL VIL 25(5) Program Inhibit VIL VIH 25 'Symbols in parentheses are proposed industry standard 5·16 DIN DOUT Hi-Z Functional Description (Continued) Program Mode The MM2716 is programmed by introducing "O"s into the desired locations. This is done 8 bits (a byte) at a time. Any individual address, a sequence of addresses, or addresses chosen at random may be programmed. Any or all of the 8 bits associated with an address location may be programmed with a single program pulse applied to the chip enable pin. All input voltage levels, including the program pulse on chip enable are TTL compatible. The programming sequence 'is: a unit while inhibiting the program pulse to a unit will keep it from being programmed and keeping DE = VIH will put its outputs in the Hi-Z state. ERASING· The MM2716 is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gate to its initial state through induced photo current. It is recommended that the MM2716 be kept out of direct sunlight_ The UV content of sunlight may cause a partial erasure of some bits in a relatively short period of time. Direct sunlight can also cause temporary functional failure. Extended exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this product is to be operated under these lighting conditions. With VPP = 25V, VCC = 5V, DE = VIH and CE/PGM = VIL, an address is selected and the desired data word is applied to the output pins. (VI L = "0" and VIL = "1" for both address and data.) After the address and data signals are stable the program pin is pulsed from V I L to V IH with a pulse width between 45 ms and 55 ms. Multiple pulses are not needed but will not cause device damage. No pins should be left open. A high level (VIH or higher) must not be maintained longer than tpW(MAX) on the program pin during programming. MM2716's may be programmed in parallel with the same data in this mode. . An ultraviolet source of 2537 A yielding a total integrated dosage of 15 watt-seconds/cm 2 is required. This will erase the part in approximately 15 to 20 minutes if a UV lamp with a 12,000 J1W/cm2 power rating is used. The MM2716 to be erased should be placed 1 inch away from the lamp and no filters should be used. Program Verify Mode The programming of the MM2716 may be verified either 1 word at 'a time during the programming (as shown in the timing diagram) or by reading all of the words out at the end of the programming sequence. This can be done with VPP = 25V (or 5V) in either case. An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at 1 inch. The erasure time is increased by the square of the distance (if the distance is doubled the erasure time goes up by a factor of 4). Lamps lose intensity as they age. Whim a lamp is changed, the distance is changed, or the lamp is aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and system designs have been erroneously suspected when incomplete erasure was the basic problem. Program Inhibit Mode The program inhibit mode allows programming several MM2716's simultaneously with different data for each one by controlling which ones receive the program pulse. All similar inputs of the MM2716 may be paralleled. Pulsing the program pin (from VIL to VIH) will program 5-17 MOS EPROMs ~National PRELIMINARY ~ Semiconductor MM2716E ,16,384-Bit (2048 x 8) UV Erasable PROM ExtendedTemperatur~ Range ' General Description Features The MM2716E is a high speed 16k UVerasable and electrically reprogrammable EPROM ideally suited for applications where fast turn·around and pattern ex· perimentation are important requirements. • -40°C to +85°C • 2048 x 8 organization • 550 ITlW max active power, 137.5 mW max standby power • Low power during programming • Access time - 450 ns • Single 5V ±10% power supply • Static-no clocks requ ired • Inputs and outputs TTL compatible during both read and program modes • TRI·STATE@J output The MM2716E is packaged in a 24-pin dual·in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device by following the programming procedure. This EPROM is fabricated with the reliable, high volume, time proven, N-ch,annel silicon gate technology. Block and Connection Diagrams * Dual-In-Line Package +-vPP+SV +-- vee- 5V A7 A6 + - VSS GNO AS OATA OUTPUTS (PROGRAM INPUTSI °0- 0 7100-071 A4 iiEiGl A3 20 A2 19 AID Al 18 fE/PGM (E/P) AD 17 07 (07) 0 0 (00) 16 06(06) 01 (01) 10 15 0S(05) 02 (02) 11 14 04 (04) VSS 12 13 03(03) TOPVIEW Order Number MM2716QE See NS Package J24CQ Pin Names Pin Connection During Read or Program PIN NAME/NUMBER MODE Read Program CE/PGM (E/P) 18 OE (G) VPP VCC OUTPUTS 20 21 24 9-11,13-17 VIL VIL 5 5 DOUT Pulsed VIL to VIH VIH 25 5 DIN *Symbols in parentheses are proposed industry standard 5-18 AO-Al0 00-07 (00-07) CE/PGM (E'/P) OE (3) VPP VCC VSS Address Inputs Data Outputs Chip Enable/Program Output Enable Read 5V, Program 25V Power (5V) Ground Absolute Maximum Ratings (Note 1) -SO°C to +100°C -6SoC to +12SoC Temperature Under Bias Storage Temperature VPP Supply Voltage with Respect to VSS All Input or Output Voltages with Respect to VSS (except VPP) Power Dissipation Lead Temperature (Soldering, 10 seconds) 26.SV to -0.3V 6V to -0.3V 1.SW 300°C READ OPERATION (Note 2) DC Operating Characteristics TA = _4o o e to +85°e, vee = 5V ±10%, vpp = vee ±o.6V PARAMETER SYMBOL = OV, unless otherwise noted. (Note 3), VSS MIN CONDITIONS = 5.5V I nput Current VIN ILO Output Leakage Current VOUT IPPl VPP Supply Current VPP ICCl VCC Supply Current (Standby) CE/PGM = VIH, ICC2 VCC Supply Current (Active) CE/PGM = OE = VIL VIL Input Low Voltage -0.1 VIH Input High Voltage 2.0 VOH Output High Voltage IOH = -400 JJ.A VOL Output Low Voltage IOL = 2.1 AC Characteristics TA or VIN = 5.5V, TYP = VIL III CE/PGM UNITS 10 = 5V = 6.1V OE MAX = VI L 10 57 JJ.A 10 JJ.A 5 mA 25 mA 100 mA 0.8 V V VCC + 1 V 2.4 mA V 0.45 (Note 4) = -40o e to +85°e, vee = 5V ±10%, VPP = vee ±o.6V (Note 3), VSS = OV, unless otherwise noted. SYMBOL PARAMETER CONDITIONS MIN MAX UNITS 450 ns ALTERNATE STANDARD -- tACC TAVOV Address to Output Delay CE/PGM tCE TELOV E to Output Delay OE tOE TGLOV Output Enable to Output Delay CE/PGM tDF TGHOZ Output Enable High to Output Hi-Z CE/PGM = VIL 0 tOH TAXOX Address to Output Hold CE/PGM = OE = VIL 0 tOD TEHOZ E to Output Hi-Z OE = OE = VI L = VIL = VIL = VIL 0 450 ns 120 ns 100 ns ns 100 ns Capacitance (Note 5) T A = 25°e, f = 1 MHz SYMBOL PARAMETER CI Input Capacitance VIN = OV CO Output Capacitance VOUT CONDITIONS = OV TYP MAX 4 6 UNITS pF 8 12 pF Note 1: "Absolute Maximum Ratings" are those values' beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation_ N'ote 2: Typical conditions are for operation at: T A = 2So e, vec = SV, VPP = vee, and VSS = OV. Note 3: VPP may be connected to vec except during program. The ±0.6V tolerance allows a circuit to switch VPP between the read voltage and the program voltage. Note 4: Output load: 1 TTL gate and CL = 100 pF. Input rise and fall times:s. 20 ns. Nota 5: Capacitance is guaranteed by periodic testing. 5-19 Switching Time Waveforms· Read Cycle (CE/PGM = VI L) VIH ~~~~~~------------"'" VALID ________________________ ADDRESSES VIL~~~~~~~ VALID ~ tOH --(TAXQX)-OUTPUT ENABLE vIL-----------t------~~~-------------------J 1_.. _ -...._l-tDE tDF tACC (TGLQV) (TGHQZ)-- VOH------------~~-----(~T~A~V~Q~V)~----·~--------~----------., Hi·Z OUTPUT VOL-------------------------~ VALID _ _ _ _ _ _ _ _ _ _ ___J Hi·Z Read Cycle (DE = VI L) VIH~~~~~~-------------, ADDRESSES VIL~~~QQ~~~ VALID ______________________ VALID ~ tOH --(TAXQX)-VIH ==~~~~~~~~=\ CHIP ENABLE VIL--~------_t--------~--~-------~ ' -_ _-I--tCE ... tACC (TAVQV)-- too (TELQV) (TEHQZ) VOH----------~~--~~~----~-----------1 OUTPUT Hi·Z VALID V O L - - - - - - - - - - - - - - - - - - - - - - - - - - - x_ _ _ _ _ _ _ _ _ _ _--l Hi·Z Standby Power Down Mode (DE = VI L) ADDRESSES VIH ----------~r-------------~ CHIP ENABLE STANDBY VI L - - - - - - - 1 --- I too --(TEHQZ) VOH==~~~~~=X OUTPUT STANDBY VALID FOR CURRENT ADORESS Hi·Z VOL~~~~~~~ ·Symbols in parentheses are proposed industry standard 5-20 VALID FOR CURRENT ADDRESS Hi·Z s: s: I\) PROGRAM OPERATION ........ ...... C') DC Electrical Characteristics and Operating Conditions m (Notes 1 and 2) (TA = 25°C ±5°C) (VCC = 5V ±5%, VPP= 25V ±lV) MIN SYMBOL PARAMETER III Input Leakage Current (Note 3) VIL Input Low Level -0.1 VIH Input High Level 2.0 TYP MAX UNITS 10 J.1A 0.8 V VCC + 1 V ICC VCC Power Supply Current 100 rnA IPPl VPP Supply Current (Note 4) 5 rnA VPP Supply Current During 30 rnA IPP2 Programming Pulse (Note 5) AC Characteristics and Operating Conditions (Notes 1, 2, and 6) (T A' = 25°C ±5°C) (VCC = 5V 15%, VPP = 25V ±lV) SYMBOL ALTERNATE PARAMETER MIN TYP MAX UNITS STANDARD TAVPH Address Setup Time 2 tos TGHPH OE Setup Time 2 J.1S tDS TDVPH Data Setup Time 2 JlS tAH TPLAX Address Hold Time 2 J.1s tOH TPLGX OE Hold Time 2 J.1s tDH TPLDX Data Hold Time 2 tDF TGHOZ Chip Disable to Output Float 0 100 ns tAS J.1S J.1S Delay (Note 4) tCE TGLOV Chip Enable to Output Delay (Note 4) 120 ns tpw TPHPL Program .Pulse Width 45 55 ms tpR TPH1PH2 Program Pulse Rise Time 5 ns tPF TPL2PLl Program Pulse Fall Time 5 ns 50 Note 1: vee must be applied at thp same time or before VPP and removed after or at the same time as VPP. To prevent damage to the device it must not be inserted into a board with power applied. Note 2: eare must be taken to prevent overshoot of the VPP supply when switching to +25V. Note 3: 0.45VS VIN .; 5.25V. Note 4: CE/PGM ~ VIL, VPP ~ vee + 0.6V. Note 5: VPP ~ 26V. Note 6: Transition times S 20 ns unless noted otherwise. 5-21 Timing Diagram* ADDRESSES Program Mode VIH=====\,r--------------t--------------, VIL~~~~_____________+------------~ VIH===~ DATA VIL;;;;;;;;~~;;;;;;( VIH -------+1- E/P VIL-- 'PF - (TPllPlll Functional Description Note: VPP = 25V DEVICE OPERATION The MM27161; has 3 modes of operation in the normal system environment. These are shown in Table I. Standby Mode (Power Down) The MM2716E may be powered down to the standby mode by making CE/PGM = VIH. This is independent of OE and automatically puts the outputs in their Hi-Z state. The power is reduced to 25% (150 mW max) of the normal operating power. VCC and VPP must be maintained at 5V. Access time at power up remains either tACC or tCE (see Switching Time Waveforms). Read Mode The MM2716E read operation requires that OE = VIL, CE/PG M = V I L and that addresses AO-A 10 have been stabilized. Valid data will appear on the output pins after tACC, tOE, tCE times (see Switching Time Waveforms) depending on which is limiting. Deselect Mode PROGRAMMING The MM2716E is deselected by making DE = VIH. This mode is independent of CE/PGM and the condition of the addresses. The outputs are Hi-Z when OE = VIH. This allows OR-tying 2 or more MM2716Es for memory expansion. The MM2716E is shipped from National completely erased. All bits will be at a "1" level (output high) in this initial state and after any full erasure. Table" shows the 3 programming modes. TABLE I. OPERATING MODES (VCC = VPP = 5V) PIN NAME/NUMBER MODE CE/PGM (E'/P) 18 OE 20 9-11,13-17 VIL VIL DOUT Don't Care VIH Hi-Z VIH Don't Care Hi-Z Read Deselect Standby OUTPUTS (<3) TABLE II_ PROGRAMMING MODES (VCC = 5V) PIN NAME/NUMBER MODE Program CE/PGM OE (E/PI (<3) VPP 18 20 Pulsed VIL to VIH VIH 25 21 Program Verify VIL VIL 25(5) Program Inhibit VIL VIH 25 *Symbols in parentheses are proposed industry standard 5-22 OUTPUTS Q 9-11,13-17 DIN DOUT Hi-Z , Functional Description (Continued) Program Mode The MM2716E is programmed by introducing "O"s into the desired locations. This is done 8 bits (a byte) at a time. Any individual address, a sequence of addresses, or addresses chosen at random may be programmed. Any or all of the 8 bits associated with an address location may be programmed with a single program pulse applied to the chip enable pin. All input voltage levels, including the program pulse on chip·enable are TTL compatible. The programming sequence is: With VPP = 25V, VCC = 5V, OE = VIH and CE/PGM = V I L, an address is selected and the desired data word is applied to the output pins. (VI L = "0" and VIH = "1" for both address and data.) After the address and data signals are stable the program pin is pulsed from VIL to VIH with a pulse width between 45 ms and 55 ms. Multiple pulses are not needed but will not cause device damage. No pins should be left open. A high level (VIH or higher) must not be maintained longer than tPW(MAX) on the program pin during programming. MM2716Es may be programmed in parallel with the same data in this mode. Program Verify Mode The programming of the MM2716E may be verified either 1 word at a time during the programming (as shown in the timing diagram) or by reading all of the words out at the end of the programming sequence. This can be done with VPP = 25V (or 5V) in either case. Program Inhibit Mode The program inhibit mode allows programming several MM2716Es simultaneously with different data for each one by controlling which ones receive the program pulse. All similar inputs of the MM2716E may be par· alleled. Pulsing the program pin (from VIL to VIH) will program a unit while inhibiting the program pulse to a unit will keep it from being programmed and keeping OE = VIH will put its outputs in the Hi·Z state. ERASING The MM2716E is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gate to its initial state through induced photo current. It is recommended that .' the MM2716E be kept out of direct sunlight. The UV content of sunlight may cause a partial erasure of some bits in a relatively short period of time. Direct sunlight (any intense light) can cause temporary functional fail· ure due to generation of photo current. Extended expo· sure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this prod· uct is to be operated under these lighting conditions. An ultraviolet source of 2537 A yielding a total inte· grated dosage of 15 watt·seconds/cm 2 is required. This will erase the part in approximately 15 to 20 minutes if a UV lamp with a 12,000 j.NJlcm 2 power rating is used. The MM2I16E to be erased should be placed 1 inch away from the lamp and no filters should be used. An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at 1 inch. The erasure time is increased by the square of the distance (if the distance is doubled the erasure time goes up by a factor of 4). Lamps lose intensity as they age. When a lamp is changed, the distance is changed, or the lamp is aged, the system should be checked to make certain full erasure is occurring. In· complete erasure will cause symptoms that can be misleading. Programmers, components, and system designs have been erroneously suspected when incom· plete erasure was the basic problem. 5·23 ~National MOS EPROMs ~ Semiconductor MM2716M 16,384-Bit (2048 x 8) UV Erasable PROM Military Temperature Range General Description Features The MM2716M is a high speed 16k UV erasable and electrically reprogram mabie EPROM ideally suited for appl ications where fast turn-around and pattern experimentation are important requirements. • -55°C to +125°C • 2048 x 8 organization • 632 mW max active power, 150 mW max standby power The MM2716M is packaged in a 24-pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device by following the programming procedure. This EPROM is fabricated with the reliable, high volume, time proven, N-channel silicon gate technology. • Low power during programming • • Access time - 450 ns Single 5V ±10% power supply • • Static-no clocks required Inputs and outputs TTL compatible during both read and program modes • TRI-STATE® output Block and Connection Diagrams * Dual-In-Line Package +- VPP+sv + - vCC+sv + - VSS GNO OATA OUTPUTS (PROGRAM INPUTS) 00-07 (00-07) A7 24 VCC A6 23 A8 AS 22 A9 A4 21 VPP A3 20 lIT (il) 19 AID Al 18 CElPGM (E/P) AD 17 07 (07) 16 06(06) TOP VIEW Order Number MM2716QM See NS Package J24CQ Pin Names Pin Connection During Read or Program PIN NAME/NUMBER MODE Read Program CE/PGM (E/P) is OE (G) 20 21 24 VIL VIL 5 5 DOUT Pulsed VI L to VIH VIH 25 5 DIN VPP VCC OUTPUTS 9-11,13-17 ·Symbols in parentheses are proposed industry standard 5-24 AO-A10 00-07 (00-07) CE/PGM (E/P) OE (G) VPP VCC VSS Address Inputs Data Outputs Chip Enable/Program Output Enable Read 5V, Program 25V Power (5V) Ground Absolute Maximum Ratings (Note 1) -65°C to +125°C -65°C to +125°C Temperature Under Bias Storage Temperature VPP Supply Voltage with Respect to VSS READ OPERATION All Input or Output Voltages with Respect to VSS (except VPP) Power Dissipation Lead Temperature (Soldering, 10 seconds) 26.5V to -0.3V 6V to -0.3V 1.5W 300°C (Note 2) DC Operating Characteristics TA = -55°e to +125°e, vee = 5V ±10%, vpp = vee ±O.6V (Note 3), VSS = OV, unless otherwise noted. SYMBOL PARAMETER MIN CONDITIONS TYP MAX UNITS III Input Current VIN = 5.5V or VIN = VIL 10 ILO Output Leakage Current VOUT = 5.5V, CE/PGM = 5V 10 pA IPPI VPP Supply Current VPP = 6.1V 5 mA ICCI vee Supply Current ICC2 VCC Supply Current (Active) VIL Input Low Voltage -0.1 VIH Input High Voltage 2.0 (Standby) CE/PGM = VIH, OE = VIL 10 30 mA CE/PGM = OE = VIL 57 115 mA VOH Output High Voltage 10H = -400pA VOL Output Low Voltage 10L AC Characteristics TA pA = 2.1 V 0.8 V VCC + 1 V 2.4 V 0.45 mA (Note 4) = -55°e to +125°e, vee = 5V ±10%, vpp = vee ±a.6V (Note 3), VSS = OV, unless otherwise noted. SYMBOL PARAMETER CONDITIONS MIN MAX UNITS ALTERNATE STANDARD tACC TAVOV Address to Output Delay CE/PGM = OE = VI L 450 ns tCE TELOV E to Output Delay OE = VIL 450 ns tOE TGLOV Output Enable to Output Delay CE/PGM = VIL 150 ns tDF TGHOZ Output Enable High to Output Hi·Z CE/PGM 130 ns tOH TAXOX Address to Output Hold CE/PGM = OE = VIL 0 too TEHOZ E to Output Hi·Z OE = VIL 0 130 ns Capacitance T A = 25°e, f = VIL 0 ns (Note 5) = 1 MHz SYMBOL PARAMETER CI Input Capacitance CO Output Capacitance VOUT=OV CONDITIONS VIN = OV TYP MAX 4 6 UNITS pF 8 12 pF Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Typical conditions are for operation at: T A = 25° C, VCC = 5V, VPP = VCC, and VSS = OV. Note 3: VPP may be connected to VCC except during program. The ±0.6V tolerance allows a circuit to switch VPP between the read voltage and the program voltage. Nota 4: Output load: 1 TTL gate and CL = 100 pF. Input rise and fall times ~ 20 ns. Note 5: Capacitance is guaranteed by periodic testing. 5-25 Switching Time Waveforms* Read Cycle (CE/PGM = VI L) VIH~~~~~~~----------------------~ ADDRESSES VIL~~~~~~~ VALID ________________________ VALID ~ tOH - - (TAXQX)-OUTPUT ENABLE VIL----~-----t--------~~----------------~~ 1~.. __- -.... Joo_r-tOE tDF tACC' (TGLQV) (TGHQZ)-VOH~________~~I~~~r_-_-_~~(~T~A~V~QV~)~___Joo~r-----------~------~ Hi.Z VALID OUTPUT Hi·Z VOL--------------~----------~----------------~ Read Cycle (OE VIH AODRESSES VIL /'l'~ ~ ~I =VIL) K VALID VALID tOH --(TAXQX)-VIH J \ CHIP ENABLE VIL I . VOH tACC (TAVQV)----- , J Hi·Z OUTPUT VOL tCE (TELQV) too (TEHQZi-VALID r--~ Hi·Z 1/ Standby Power Down Mode (OE = VI L) AODRESSES VIH ------------r-------""1\ VIL ----------# CHIP ENABLE -- STANDBY I too -(TEHQZ) VOH~~~~~~~ OUTPUT STANDBY VALID FOR CURRENT AODRESS 'Hi-Z VOL~~~~~~~ *Symbols in parentheses are proposed industry standard 5-26 VALID FOR CURRENT ADDRESS Hi·Z PROGRAM OPERATION DC Electrical Characteristics and Operating Conditions (Notes (T A = 25°C ±5°C) (VCC SYMBOL MIN PARAMETER TYP MAX UNITS 10 pA 0.8 V VCC + 1 V VCC Power Supply Current 100 mA VPP Supply Current (Note 4) 5 mA VPP Supply Current During 30 mA III Input Leakage Current (Note 3) VIL Input Low Level -0.1 VIH Input High Level 2.0 ICC IPPl IPP2 1 and 2) = 5V ±5%, VPP = 25V ±lV) Programming Pulse (Note 5) AC Characteristics and Operating Conditions (Notes (TA = 25°C ±5°C) (VCC SYMBOL ALTERNATE tAS 1,2, and 6) = 5V 15%, VPP = 25V ±lV) PARAMETER MIN TYP MAX UNITS STANDARD TAVPH Address Setup Time 2 ps tos TGHPH OE Setup Time 2 ps tDS TDVPH Data Setup Time 2 ps tAH TPLAX Address Hold Time 2 ps tOH TPLGX OE Hold Time 2 ps tDH TPLDX Data Hold Time 2 ps tDF TGHOZ Chip Disable to Output Float 0 130 ns Delay (Note 4) tCE TGLOV Chip Enable to Output Delay (Note 4) tpw TPHPL Program Pulse Width tpR TPH1PH2 Program Pulse Rise Time 5 ns tpF TPL2PL 1 Program Pulse Fall Time 5 ns 45 50 150 ns 55 ms Note 1: vee must be applied at thE' same time or before VPP and removed after or at the same time as VPP. To prevent damage to the device it must not be inserted into a board with power applied. Note 2: eare must be taken to prevent overshoot of the VPP supply when switching to +25V. Note 3: 0.45V~ VIN:S: 5.25V. Note 4: CE/PGM = VIL. VPP = vee + 0.6V. Note 5: VPP = 26V. Note 6: Transition times :S: 20 ns unless noted otherwise. 5·27 Timing Diagram * Program Mode VIH =====\-r-------t-------, VIL ;;;;;;;;;;;;;;=f"1--------+-______~ ADDRESSES VIH ::::::::::::~ DATA VIL;;;;;;;;;;;:;;;;:;;;;{ GVIH------Jr---1--1--(T-PL~18:~)-~-t--t-~ (T~~~H) VIL --lOS -(TGHPH)- IpW (TPHPl) VIH --------------+--1'- VIL ;;;;;;;;;;;;;;====;:Jf E/P IpF (TPL1PL1) Functional Description Note: Vpp = 25V DEVICE OPERATION The MM2716M has 3 modes of operation in the normal system environment. These are shown in Table I. Standby Mode (Power Down) The MM2716M may be powered down to the standby mode by making CE/PGM = VIH. This is independent of .OE and automatically puts the outputs in their Hi-Z state. The power is reduced to 25% (150 mW max) of the normal operating power. VCC and VPP must be maintained at 5V. Access time at power up remains either tACC or tCE (see Switching Time Waveforms). Read Mode The MM2716M read operation requires that OE = VI L, CE/PGM = VI L and that addresses AO-A 10 have been stabilized. Valid data will appear on the output pins after tACC, tOE, tCE times (see Switching Time Waveforms) depending on which is limiting. Deselect Mode PROGRAMMI~G The MM2716M is deselected by making OE = VIH. This mode is independent of CE/PGM and the condition of the addresses. The outputs are Hi-Z when OE = VIH. This allows OR-tying 2 or more MM2716M's for memory expansion. The MM2716M is shipped from National completely erased. All bits will be at a "1" level (output high) in this initial state and after any full erasure. Table II shows the 3 programming modes. TABLE I. OPERATING MODES (VCC = VPP = 5V) PIN NAME/NUMBER MODE Read Deselect CE/PGM (E/P) 18 OE (0) 20 9-11,13-17 VIL VIL DOUT VIH Hi-Z Don't Care Hi-Z Don't Care Standby VIH OUTPUTS TABLE II. PROGRAMMING MODES (VCC = 5V) PIN NAME/NUMBER MODE Program CE/PGM (E/P) 18 OE (0) 20 Pulsed VIL to VIH VIH 25 VPP OUTPUTS Q 21 9-11,13-17 Program Verify VIL VIL 25(5) Program Inhibit VIL VIH 25 *Symbols in parentheses are proposed industry standard 5-28 DIN DOUT Hi-Z Functional Description (Continued) Program Mode The MM2716M is programmed by introducing "O"s into the desired locations. This is done 8 bits (a byte) at a time. Any individual address, a sequence of addresses, or addresses chosen at random may be programmed. Any or all of the 8 bits associated with an address location may be programmed with a single program pulse applied to the chip enable pin. All input voltage levels, including the program pulse on chip·enable are TTL compatible. The programming sequence is: program a unit while inhibiting the program pulse to a unit will keep it from being programmed and keeping DE = VIH will put its outputs in the Hi-Z state. ERASING The MM2716M is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gate to its initial state through induced photo current. It is recommended that the MM2716M be kept out of direct sunlight. The UV content of sunlight may cause a partial erasure of some bits in a relatively short period of time. Direct sunlight can also cause temporary functional failure. Extended exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this product is to be operated under these lighting conditions. With VPP = 25V, VCC = 5V, DE = VIH and CE/PGM = V I L, an address is selected and the desired data word is applied to the output pins. (VI L = "0" and VIH = "1" for both address and data.) After the address and data signals are stable the program pin is pulsed from VIL to VIH with a pulse width between 45 ms and 55 ms. . Multiple pulses are not needed but will not cause device damage. No pins should be left open. A high level (VIH or higher) must not be maintained longer than tpW(MAX) on the program pin during programming. MM2716M's may be programmed in parallel with the same data in this mode. An ultraviolet source of 2537 A yielding a total inte· grated dosage of 15 watt-seconds/cm 2 is required. This will erase the part in approximately 15 to 20 minutes if a UV lamp with a 12,000 J1W/cm2 power rating is used. The MM2716M to be erased should be placed 1 inch away from the lamp and no filters should be used. Program Verify Mode The programming of the MM2716M may be verified either 1 word at a time during the programming (as shown in the timing diagram) or by reading all of the words out at the end of the programming sequence. This can be done with VPP = 25V (or 5V) in either case. An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at 1 inch. The erasure time is increased by the square of the distance (if the distance is doubled the erasure time goes up by a factor of 4). Lamps lose intensity as they age. When a lamp is changed, the distance is changed, or the lamp is aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and system designs have been erroneously suspected when incomplete erasure was the basic problem. Program Inhibit Mode The program inhibit mode allows programming several MM2716M's simultaneously with different data for each one by controlling which ones receive the program pUlse. All similar inputs of the MM2716M may be par· alleled. Pulsing the program pin (from VIL to VIH) will 5-29 ~National MOS EPROMs D Semiconductor MM2758 8192·Bit (1024 x 8) UV Erasable PROM General Description Features The MM2758 is a high speed 8k UV erasable and electrically reprogrammable EPROM ideally suited for appl ications where fast turn-around and pattern experimentation are important requirements. • 1024 x 8 organization • 525 mW max active power, 132 mW max standby power The MM2758 is packaged in a 24-pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device by following the programming procedure .. This EPROM is fabricated with the reliable:high volume, time proven, N-channel silicon gate technology_ • Low power during programming. • Access time-450 ns • • • Single 5V power supply Static-no clocks required Inputs and outputs TTL compatible during both read and program modes • TRI-STATE® output Block and Connection Diagrams * Dual-In-Line Package +-- VPP+5V A7 +-+-- A6 VCC+5V VSS GND A5 DATA OUTPUTS (PROGRAM INPUTS) 00-07 (UO-07) A4 A3 A2 18 CElPGM (E/P) 17 07(U7) 16 06 (U6) 15 05(U5) 14 04 (U4) 02 (U2) 11 VSS 12 Pin Connection During Read or Program Order Number MM2758AO or MM2758BO See NS Package J24CO PIN NAME/NUMBER MODE Read Program CE/PGM fE/PI 18 OE VIL Pulsed VIL to VIH (G) VPP VCC OUTPUTS 20 21 24 9-11,13-17 VIL 5 5 VIH 25 5 13 03 (U3) TOPVIEW DOUT DIN *Symbols in parentheses are proposed industry standard tFor MM2758A AR = VIL for all operating modes For MM27588 AR = VIH for all operating modes 5-30 Pin Names AO-A10 00-07 (00-07) CE/PGM (E/P) OE (<3) VPP VCC VSS Address Inputs Data Outputs ' Chip Enable/Program Output Enable Read 5V, Program 25V Power (5V) Ground Absolute Maximum Ratings All Input or Output Voltages with Respect to VSS (except VPP) Power Dissipation Lead Temperature (Soldering, 10 seconds) -25°C to +85°C --65°C to +125°C Temperature Under Bias Storage Temperature VPP Supply Voltage with Respect to VSS READ OPERATION (Note 1) 26.5V to -0.3V 6V to -0.3V 1.5W 300°C (Note 2) DC Operating Characteristics oOe to +7oo e, vee = 5V ±5%, vpp = vee ±O.6V (Note 3), VSS = OV, TA = unless otherwise noted. PARAMETER SYMBOL CONDITIONS MIN Input Current VIN ILO Output Leakage Current VOUT = 5.25V. IPPl VPP Supply Current VPP 5.85V ICCl VCC Supply Current (Standby) CE/PGM ICC2 VCC Supply Current (Active) VIL Input Low Voltage 0.1 VIH Input High Voltage 2.0 VOH Output High Voltage IOH = VOL Output Low Voltage IOL = AC Characteristics TYP MAX = 5 25V or VIN = VIL III = CE/PGM VIH. DE = = = UNITS 10 5V VIL 400 f.1A f.1A 10 f.1A 5 rnA 10 25 rnA 57 .100 III A 0.8 Vee V + 1 V 2.4 V 2.1 mA 0.45 V (Note 4) oOe to +7oo e, vee = 5V ±5%, vpp = vee iO.6V (Note 3), VSS = OV, TA = SYMBOL unless otherwise noted. MM2758 CONDITIONS PARAMETER MIN ALTERNATE STANDARD UNITS MAX tACC TAVOV Address to Output Delay CE/PGM = OE = VI L 450 ns tCE TELOV CE to Output Delay 'OE=VIL 450 ns tOE TGLOV Output Enable to Output Delay CE/PGM = VIL 120 ns tDF TGHOZ Output Enable High to Output Hi·Z· CE/PGM = VIL 0 100 ns tOH TAXOX Address to Output Hold CE/PGM = OE = VIL 0 TEHOZ CE to Output Hi·Z OE = VIL 0 tOD Capacitance ns 100 ns (Note 5) T A = 25°e, f = 1 MHz SYMBOL PARAMETER CI Input Capacitance CONDITIONS VIN = OV CO Output Capacitance VOUT = OV TYP MAX 4 6 UNITS pF 12 pF Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Typical conditions are for operation at: T A = 25°C, VCC = 5V, VPP = VCC, and VSS = OV. Note 3: VPP may be connected to VCC except during program. The ±0.6V tolerance allows a circuit to switch VPP between the read voltage and the program voltage. Note 4: Output load: 1 TTL gate and CL = 100 pF. Input rise and fall times::; 20 ns. Note 5: Capacitance is guaranteed by periodic testing. 5·31 co ;e C\I Switching Time Waveforms * :E :E Read Cycle (CE/PGM = VI L) VIHh4~~~~~'-------------------------~ VALID ~ VALID ________________________ ~ ~ ~ ~ ~ ~ L I V ADDRESSES tOH --(TAXUX)-OUTPUT ENABLE VIH =====~====\. vIL-----------t--------~~-------------------I 1_.. _ -... ~_l-tOE tOF tACC (TGLQV) (TGHQZ)--_ __________~~.. ·~~-~-----~(T~A~V~Q~V)~---~_J~------------------~ VOH Hi.Z VALID OUTPUT VDL------~------------------'_________________J Read Cycle (OE Hi·Z = VI L) VIH~~~~~~------------------------~ VIH VALID ________________________ VALID ~ ~ ~ ~ ~ ~ ~ L I V ADDRESSES ========t:=======\. CHIP ENABLE VIL-----------t--------~----~-------------J ' -____-I--tCE tACC (TELQV) (TAVQV)-- too (TEHQZ) VOH----------~~--~~~----i_------~--------1 OUTPUT Hi·Z VOL--------------------------~ VALID __________________J Hi·Z Standby Power Down Mode (OE = VI L) VIH~~~~~~~~~~~~~------~------------------ ADDRESSES VALID VIL======================~~~ VIH VALID __________________________ --------------,,-------------1\ CHIP ENABLE VIL - - - - - - - 1 STANDBY STANDBY too (TEHQZ) VOH=============\ VALID FOR OUTPUT CURRENT ADDRESS VDL~~~~~~~# *Symbols in parentheses are proposed industry standard Hi·Z VALID FOR CURRENT ADDRESS Hi·Z PROGRAM OPERATION DC Electrical Characteristics and Operating Conditions (Notes 1 and 2) (T A = 25°C ±5°C) (VCC = 5V ±5%, VPP = 25V ±lV) SYMBOL TYP MIN PARAMETER III Input Leakage Current (Note 3) VIL I nput Low Level -0.1 VIH Input High Level 2.0 ICC VCC Power Supply Current IPPl IPP2 MAX UNITS 10 pA 0.8 V VCC+ 1 V 100 mA VPP Supply Current (Note 4) 5 mA VPP Supply Current During 30 mA Programming Pulse (Note 5) AC Characteristics and Operating Conditions (Notes 1,2, and 6) (T A = 25°C ±5°C) (VCC = 5V ±5%, VPP = 25V ±lV) SYMBOL ALTERNATE PARAMETER STANDARD MIN TYP MAX UNITS ps TAVPH Address Setup Time tos TGHPH OE Setup Time 2 ps tDS TDVPH Data Setup Time 2 ps tAH TPLAX Address Hold Time tOH TPLGX OE Hold Time tDH TPLDX Data Hold Time 2 tDF TGHOZ Chip Disable to Output Float 0 tAS 2 2 ps 2 ps - ps 100 ns 120 ns 55 ms Delay (Note 4) tCE TGLOV Chip Enable to Output Delay (Note 4) tpw TPHPL Program Pulse Width 45 tpR TPH1PH2 Program Pulse Rise Time 5 ns TPL2PL 1 Program Pulse Fall Time 5 ns tPF 50 Note 1: vee must be applied at thl' same time or before VPP and removed after or at the same time as VPP. To prevent damage to the device it must not be inserted into a board with power applied. Note 2: eare must be taken to prevent overshoot of the VPP supply when switching to +25V. Note 3: 0.45V~ VIN S 5.25V. Note 4: CE/PGM = VI L, VPP = vee + 0.6V. Note 5: VPP = 26V. Note 6: Transition times ~ 20 ns unless noted otherwise. 5-33 Timing Diagram * Program Mode VIH =====\-r------t------, Vll ==;;;;t-"1--------+------~ ADDRESSES VIH :::::::::~ DATA Vll====;f Ii VIH Vll VIH E/P --------t+ Vll======;;;;;1\" Functional Description DEVICE OPERATION The MM2758 has 3 modes of operation in the normal system environment. These are shown in Table I. Standby Mode (Power Down) The MM2758 may be powered down to the standby mode by making CE/PGM = VIH. This is independent of OE and automatically puts the outputs in their Hi·Z state. The power is reduced to 25% (132 mW max) of the normal operating power. VCC and VPP must be maintained at 5V. Access time at- power up remains either tACC or tCE (see Switching Time Wave~orms). Read Mode The MM2758 read operation requires that OE = VI L, CE/PGM = VIL and that addresses AO-A10 have been stabilized. Valid data will appear on the output pins after tACC, tOE or tCE times (see Switching Time Waveforms) depending on which is limiting. Deselect Mode PROGRAMMING The MM2758 is shipped from National completely erased. All bits will be at a "1" level (output high) in this initial state and after any full erasure. Table II shows the 3 programming modes. The MM2758 is deselected by making OE = VIH. This mode is independent of CE/PGM and the condition of the addresses. The outputs are Hi-Z when OE = VIH. This allows OR-tying 2 or more MM2716's for memory expansion. TABLE I. OPERATING MODES (VCC = VPP = 5V) PIN NAME/NUMBER MODE Read Deselect Standby CE/PGM (E/P) 18 OE OUTPUTS 20 9-11,13-17 VIL VIL DOUT VIH Hi-Z Don't Care Hi-Z (<3) Don't Care VIH TABLE II. PROGRAMMING MODES (VCC = 5V) PIN NAME/NUMBER CE/PGM (Em 18 OE Pulsed VI L to VIH VIH Program Verify VIL VIL 25(5) Program Inhibit VIL VIH 25 MODE Program *Symbols in parentheses are proposed industry standard 5-34 VPP OUTPUTS Q (<3) 20 21 25 9-11,13-17 DIN DOUT Hi-Z Functional Description (Continued) Program Mode a unit while inhibiting the program pulse to a unit will keep it from being programmed and keeping DE = VIH will put its outputs in the Hi-Z state. The MM2758 is programmed by introducing "O"s into the desired locations. This is done 8 bits (a byte) at a time. Any individual address, a sequence of addresses, or addresses chosen at random may be programmed. Any or all of the 8 bits associated with an address location may be programmed with a single program pulse applied to the chip enable pin. All input voltage levels, including the program pulse on chip enable are TTL compatible. The programming sequence is: ERASING The MM2758 is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gate to its initial state through induced photo current. It is recommended that the MM2758 be kept out of direct sunlight. The UV content of sunlight may cause a partial erasure of some bits in a relatively short period of time. Direct sunlight can also cause temporary functional failure. Extended exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this product is used under these lighting conditions. With VPP = 25V, VCC = 5V, ()E = VIH and CE/PGM = VIL, an address is selected and the desired data word is appl ied to the output pins. (V I L = "0" and VIL = "1" for both address and data.) After the address and data signals are stable the program pin is pulsed from VIL to VIH with a pulse width between 45 ms and 55 ms. - Multiple pulses are not needed but will not cause device damage. No pins should be left open. A high level (VIH or higher) must not be maintained longer than tPW(MAX) on the program pin during programming. MM2758's may be programmed in parallel with the same data in this mode. An ultraviolet source of 2537 A yielding a total integrated dosage of 15 watt-seconds/cm 2 is required. This will erase the part in approximately 15 to 20 minutes if a UV lamp with a 12,000 pW/cm 2 power rating is used. The MM2758 to be erased should be placed 1 inch away from the lamp and no filters should be used. Program Verify Mode The programming of the MM2758 may be verified either 1 word at a time during the programming (as shown in the timing diagram) or by reading all of the words out at the end of the programming sequence. This can be done with VPP = 25V (or 5V) in either case. An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at 1 inch. The erasure time is increased by the square of the distance (if the distance is doubled the erasure time goes up by a factor of 4). Lamps lose intensity as they age. When a lamp is changed, the distance is changed, or the lamp is aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and system designs have been erroneously suspected when incomplete erasure was the basic problem. Program Inhibit Mode The program inhibit mode allows programming reveral MM2758s' simultaneously with different data for each one by controlling which ones receive the program pulse. All similar inputs of the MM2758 may be paralleled. Pulsing the program pin (from VIL to VIH) will program 5-35 ~National MOSEPROMs D Semiconductor MM4203/MM5203 2048·Bit (256 x 8 or 512 x 4) UV Erasable PROM General Description The MM4203/rylM5203 is a 2048-bit static readonly memory which is electrically programmable and uses silicon gate technology to achieve bipolar compatibility_ The device is a non-volatile memory organized as a 256-8-bit words or 512-4-bit words_ Programming of the memory contents is accomplished by storing a charge in a cell location by programming that location with a 50 volt pulse_ Separate output supply lead is provided to reduce internal power dissipation in the output stage (VLd- • Pin compatible with MM5213, MM5231 mask programmable ROMs • Static operation - no clocks required • Common data busing (TRI-STATE@output) • "0" quartz lid version erasable with short wave ultra-violet light (i.e_ 253.7 n.m_) • Chip select output control • 256 x 8 or 512 x 4 organization Applications • Code conversion • Random logic synthesis • Table look-up • Character generator • Micro-programming Features • • • Field programmable Bipolar compatibility High speed operation +5V, -12V operation 1J1s max access time Block and Connection Diagrams Dual-In-Line Package A31 Z4V LL ., Z ZlV.. B, • II .. ., .. . " .. B,II I.ES Vsslt 13 I, , , I. " .. , I, • 11 VDO At MSI Order Number MM42030 or MM52030 See NS Package J24CO Typical Applications 256 x 8 PROM Showing TTL Interface fA, Operating Modes tSEL~ 1. 256.8 ROM connection (shown) Mode Control - HIGH (Vssl Ag - LOW 512.4 ROM connections A, 17 At .. Mode Control - LOW (GNO or VOOI Ag - Logic HIGH enables the odd (61. 83 .. 871 outputs - Logic LOW enables the even (82. 84· Sa) outputs The outputs are enabled when a logic LOW is applied to the Chip Select line. Programming is accomplished in 256. , " 1 5-36 a mode only. Absolute Maximum Ratings Operating Conditions All Input or Output Voltages with +.3V to -20V Respect to Vaa Except During Programming Power Dissipation lW -65°C to 125°C Storage Temperature Range 300°C Lead Temperature (Soldering, 10 sec) Operating Temperature Range MM4203 MM5203 Electrical Characteristics Vss = +5V ±5%, V DD SYMBOL = V LL = -12V, -55°C to 85°C O°C to 70°C T A within operating temperature range, ±5%, Vss = PROGRAM = Vss unless otherwise noted. PARAMETER MIN CONDITIONS MAX TYP UNITS III Input Current VIN = OV I LO Output Leakage V OUT = OV Iss Power Supply Current T A = 25°C CS = Vss - 2.0 V IL Input LOW Voltage Vss - 10 Vss - 4.0 V V 1H Input HIGH Voltage Vss - 2.0 Vss +.3 V VOL Output LOW Voltage 1.6 mA sink -12.6V ICF Output Clamp Current V LL = -3.0V V OUT = -1.0V (Note 8) T A = O°C V LL = -12.6V V OUT = -1.0V (Note 8) T A = O°C V OH Output HIGH Voltage 0.8 mA source TOH Data Hold Time (Min Access Time) Figures 1 & 2 CS = Vss - 2.0 35 1 /lA 1 /lA mA 55 < V LL < -3V V .40 6.0 15.0 3.5 8.0 mA mA V 2.4 = 25°C Figures 100 ns 1 /lS T Acc Access Time TA Tco Chip Select Time Figures 1 & 3 500 ns Too Chip Deselect Time Figures 1 & 3 500 ns tcs Allowable Chip Select Delay Figures 1 & 2 Allowable delay in selecting chip after change of address without affecting access time. 100 ns C IN Input Capacitance COUT Output Capacitance = Vss } = Vss Cs = Vs~ - 2.0 VIN = 25°C, Vss = OV, Vss = +12V ±10%, SYMBOL = 1.0 MHz .700 (Note 2) V OUT Programming Characteristics TA f 1 & 2 (Note 6) 8 15 pF 8 15 pF (see Figure 4) Cs = OV unless otherwise noted PARAMETER CONDITIONS MIN TYP MAX UNITS mA I LO Address and Data Input Load Current VIN =-50V 0 10 I LP Program Load Current VIN =-50V 0 10 mA I LS Vaa Supply Load Current 0 10 mA I LOD Peak V 1HP Input High Voltage V 1LP Address and Data Input Low Voltage 100 Supply Load Current (Note 3) Voo = Vprogram = -50V Pulsed Input Low Voltage: V oo , and Program, V OLP V LL (Note 5) +.3 V -50 -40 V -50 -50 -48 0 V V Voo Pulse Duty Cycle tpw Program Pulse Width (Note 4) Voo = Vprogram mA 650 -2 = -50V 2 % 20 ms tow Data and Address Set Up Time 1 /lS tOH Data and Address Hold Time, 0 /ls tss Pulsed Voo Supply Overlap, 1 tSH Pulsed Voo Supply Overlap, -.1 V oo , Program, Address, and Input Rise and Fall Times Note 1: During programming. data is always applied in the 256 x 8 mode, regardless of the logic state of Ag and MODE CONTROL. Note 2: Capacitances are not tested on a production basis but are periodically sampled. Note 3: lOOp flows only during program period tpWP. Average power supply current I LDD is typically 15 rnA at 2% duty cycle. Note 4: Maximum duty cycle of tpw should not be greater than 2% of cycle time so that power dissipation is minimized. The program cycle should be repeated until the data reads true, then over-program three times that number of cycles (symbolized as X+3X programming. Note 5: VlL is not needed during programming but may be tied to VOO for convenience. Note 6: TACC '" 1000 ns + 2S(N-11 where N is the number of chips wired-OR together. Note 7: Measured under continuous operation. Note 8: ICF flows out the VlL pin, it does not flow out the VOO pin. 5·37 100 /ls 3 ms 1 /ls Access Time Diagrams +5.0V ±5% INPUT -12V±5% Figure 1 ADDRESS )C ~ • '"'.- - - - - - - - - - - - - - - - CS _----t--,.T CHIP SELECT r- I VSS-2.0V Vss-4.0V Vss - 2.0V --- TOH -- Vss - 4.0V '"'__D_~_T:_L_~~_T "fm.."~.."..",..N-D~-;-e-~-L~-~or,,.~I/~!"!~/!..,,II..,,II..,,~""~I H----..,_mr," DATA OUT I.. ..I: ~~~~L~6 __ TACC Figure 2 H-------..\ ;r------VSS-2.OV CHIP SELECT Vss - 4.0V ~_ _ _ _ _ _ _- . J H~""""~~~~""~~ DATA OUT ________ ~~""~~~~~~ DATA VALID Figure 3 Program Waveforms ADDRESS& DATA INPUTS ~~ W)~ ~ VOD INPUT STABLE -I ~'-I---~l""'~-+- 1T'J,.,.,,.,,,.....------V J L-VDLP 1HP b-tPW---'1-+---:::. Figure 4 5·38 Operation of the MM4203/MM5203 in Program Mode 1-8 are pins 4-11 respectively regardless of the logic state of Ag and mode control. Chip select should be disabled (HIGH). Initially, all 2048 bits of the MM4203/MM5203 are in the HIGH state. Information is introduced by selectively programming LOWS in the proper bit locations. (Note 1) Positive logic is used during the read mode for addresses and data out. Address 0 corresponds to all address inputs at V I L and address 255 10 corresponds to all address inputs at V IH . A "1" or a P at a data output corresponds to V0 H. A "0" or an N at a data output corresponds to VOL' Positive logic is also used during the programming mode for addresses. Address 0 corresponds to all address inputs at V ILP and address 255 10 corresponds to all address inputs at V 1HP . Word address selection is done by the same de.:oding circuitry used in the Read mode. The eight output terminals are used as data inputs to determine the information pattern in the eight bits of each word. A LOW data input level (-50V) will leave a HIGH and a HIGH data input level will allow programming of a LOW. All eight bits of one word are programmed simultaneously by setting the desired bit information patterns on the data input terminals. The duty cycle of the V DD pulse (amplitude and width as specified on page 4) should be limited to 2%. The address should be applied for at least 1 ps before application of the Program pulse. In programming mode, data inputs Negative logic is used during the programming mode for data in. A "1" or a P at a data input corresponds to V ILP . A "0" or an N at a data input corresponds to V IHP . DATA AND ADDRESS LINES MDDE Vss Vas HIGH LOW Read Vss - 2.0 Vss - 4.0 +5 Vss Program Vss -2.0 Vss - 40 GND +12 PROGRAM Cs VLL -12 Vss Vss - 4V -3V lo-12V -48 (Pulse) -48 (Pulse) GND GND 10 -50 V Voo Erasing Procedure minutes. Examples of UV sources include the Model UVS-54 and Model S-2 manufactured by Ultra-Violet Products, Inc. (5114 Walnut Grove Avenue, San Gabriel, California). The lamps should be used without short·wave filters. The MM4203/MM5203 should be placed about one inch away from the lamp for about 20-30 minutes. The MM42030/MM52030 may be erased by exposure to short-wave ultraviolet Iight-253_7 nm_ There exists no absolute rule for erasing time or distance from source. The erasing equipment output capability should be calibrated. Establish a ,worst-case time required with the equipment. Then over-erase by a f~ctor of 2, i.e., if the device appears erased after 8 minutes, continue exposure for an additional 16 minutes for a total of 24 Preferred Tape Format The custom patterns may be sent in on a Telex or submitted as a paper tape in a 7 bit ASCII code Start Character - - , Stop Character ---, Leader: Rubout for T~~ 1~~el:I(~e; I~:S~ , ., r; I from model 33 teletype or TWX. The paper tape should be as the following example: Carriage return line feed allowed between F and B. Data Field' MSB (Pin 11) LSB (Pin 4) Itt B P P P N P P N N F B N N P P N N P P F ... B N P N P N N N N F 25 frames.) Trailer: Rubout for ~~I~~li~:~~:~Y 25 frames.) Word 0 Word 1 All Address Inputs LOW Word 255 All Address Inputs HIGH ·Data Field: Must have only P's or N's typed between Band F. No nulls or rubouts. Must have exactly eight P and N characters between Band F. Any characters except Band F may be typed between the F stop character and the B start character. If an error is made in preparing a tape the entire word including the Band F start and stop characters must be rubbed out. Data for exactly 256 words must be entered, beginning with word O. 5-39 Alternate Format [Punched Tape (Note 1) or Cards] b8. MSB (Pin 11) d MM4203 Positive Logic 2 b l • LSB (Pin 4) Spaces --+---A-O-OO-'~ onoooooo 0 AOO I .~on~ Note 3 Note 1: The code is a 7-bit ASCII code on 8 punch tape. The tape should begin and end with 25 or more "RUBOUT" punches . Note 2: The ROM input address is expressed in decimal form and is preceded by the leiter A. OOOOO(l()'; ~ oonrJOOo~ ~ ____ ~~~~ ~~7:~:;1: ~ 1--1 Space Ano:, 00011100;1 ooooooon 0 00111100. AOOR 00'100000 G A:'II OIGIOIOI. TBR 1.0 T87 150 TB6 2"50 TRS .00 TS. 010 TA3 100 TB2 299 TBI 197 Nota 3: The total number of "1" bits in the output word. Note 4: The total number of "1" bits in each output column or bit position. A006 AnO" Note 4 t 1 Space Typical Performance Characteristics Maximum Access Time IT ACC) as a Function of VOO Supply Voltage Maximum Supply Current ISS as a Functi~n of Temperature 90 r-r--r--r-T-r,.......,....,...-r-r-T""'-"""""-' 80 ~++4-~~I+4_I~~I(N~ot.~7~) 70 60 "' 50 ~ 40 ~ t--t--t--t--t--lt- Vss = +4.75V1600 ~~~ ~~5HUP~L~±lli ~r--t~~. l/NOMSUPPLY ~ ~1300 30 ~-+-+-t-r--t--1---t--+-~+~--l 1zoo 20 1100 10 1OOQ o 0 25 50 = Veo - 1400 t--l'~......,-+-+--+--t---+-t--i tl 1t ~-+-~--5o/.~,S+U~pp-LY~~/~~~~~~~~~ ·50 -25 VLL 1500 t--t--t--t--t-t--+-+--+--i 75 100 125 ""'- f-+-+--+--+-......-F".....I"""'-~- i5'C -9 TA ('C) ....... I-+--t-..... -T"-.d-,......,-""I"oo;;;:t---t--t-~ -10 -11 Vee (Volts) 5·40 -12 -13 MOS EPROMs ~National D Semiconductor MM4204/MM5204 4096·Bit (512 x 8) UV Erasable PROM General Description The MM4204/MM5204 is a 4096-bit static read only memory which is electrically programmable and uses silicon gate technology to achieve bipolar compatibility. The device is a non·volatile memory organized as 512 words by 8 bits per word. Programming of the memory is accomplished by storing a charge in a cell location by applying a -50V pulse. A logic input, Power Saver, is provided which gives a 5:1 decrease in power when the memory is not being accessed. • Static operation-no clock required • Easy memory expansion-TRI-STATE® output Chip Select input (CS) - • "Q" quartz lid version erasable with short wave ultra- violet light (i.e., 253.7 nm) • Low power dissipation • "Power Saver" control for low power applications • Compatible with SC/MP II N·channel microprocessor Features Applications • • Field programmable Fast program time: ten seconds typical fo,r 4096 bits • Fast access time MM4204 MM5204 • • DTLlTTL compatibility Standard power supplies • • Code conversion Random logic synthesis 1.251ls 1 Ils • • Table look-up Character generator 5V,-12V • • Microprogramming Electronic keyboards Block and Connection Diagrams Dual·ln-Line Package AD AI 409&.8IT EPROM MATRIX 512,S A2 A3 ~VLl vaa ~voo POWER SAVER VOO I ~Vaa 12 ~Vss 4 PROGRAM B& AD B5 AI 84 A2 B3 ~PROGRAM A4 AS A6 POWER SAVER A1 A3 AS 16 A4 15 14 AS 13 TOP VIEW BD 81 82 83 84 85 8681 Order Number MM4204D orMM5204D See NS Package D24C Order Number MM4204Q or MM5204Q See NS Package J24CQ 5-41 BI Bo AI A7 Absolute Maximum Ratings All Input or Output Voltages with Respect to VBB Except During Programming Power Dissipation Storage Temperature Range Lead Temperature (Soldering, 10 seconds) Operating Temperature Range MM5204 MM4204 +O.3V to -20V 750mW -65°C to +125°C 300°C DC Electrical Characteristics MM4204: Vss Operating Conditions (Note 1) O°C to +70°C -55°C to +B5°C TA within operating temperature range, VLL = OV, VBB = PROGRAM Vss = 5V ±5%, Voo = -12V ±5%, unless otherwise noted. TYP SYMBOL PARAMETER CONDITIONS MIN (Note 7) MAX V IL Input Low Voltage V ss -14 V ss -4.2 V IH Input High Voltage V ss -1.5 Vss+0.3 ILl Input Current V IN = OV VOL Output Low Voltage IOL = 1.6 mA V LL V OH Output High Voltage IOH = -0.8 mA 2.4 I Lo Output Leakage Current V OUT = OV, CS 100 Power Supply Current MM5204 MM5204 MM4204 MM5204 MM4204 MM5204 Iss 1.0 - MM4204 MM4204 SYMBOL t Aee tpo teo = V IH CS = V IH , Power Saver = V IL T A = O°C, CS = V IH , Power Saver = V IL TA = O°C, CS = V IH , Power Saver = V IH T A = O°C, CS = V IH , Power Saver = V IH TA = O°C, CS = V IH , Power Saver = V IL T A = O°C, CS = V IH , Power Saver = V IL T A = O°C, CS = V IH , Power Saver = V IH T A = O°C, CS = V IH , Power Saver = V IH 28 TA = O°C, AC Electrical Characteristics MM4204: Vss = Vss, = 5V ±10%, Voo = -12V ±10%, MM5204: 6.0 UNITS V V pA 0.4 V Vss V 1.0 pA 40.0 mA 50.0 mA 8.0 mA 10.0 mA 42 mA 52 mA 10 mA 12 mA TA within operating temperature range, VLL = OV, VBB = PROGRAM Vss = 5V ±5%, Voo = -12V ±5%, unless otherwise noted. = Vss, = 5V ±10%, Voo = -12V ±10%, MM5204: CONDITIONS PARAMETER MIN TYP (Note 7) MAX UNITS Access Time = 70°CJFigure MM5204 TA MM4204 T A = 85°C, (Figure 1), (Note 4) 1), (Note 4) 0.75 1.0 ps 1.25 ps Power Saver Set·Up Time MM5204 (Figure 1) 1.8 ps MM4204 (Figure 1) 2.0 ps Chip Select Delay MM5204 (Figure 1) 500 ns MM4204 (Figure 1) 600 ns tOH Data Hold Time (Figure 1) 30 50 tODe Chip Select MM5204 (Figure 1) 30 300 500 ns MM4204 (Figure 1) 30 300 600 ns MM5204 (Figure 1) 30 300 500 ns MM4204 (Figure 1) 30 300 600 ns 5.0 8.0 pF 8.0 15 pF tODP D~select ns Time Power Saver Deselect Time CIN Input Capacitance (All Inputs) V IN = V ss , f = 1.0 MHz, (Note 2) COUT Output Capacitance V OUT (All Outputs) (Note 2) = V ss , CS = V IH , f = 1.0 MHz, \ 5·42 3: 3: Programmer Electrical Characteristics TA = 25°C, SYMBOL Vss = CS = Power Saver = OV, VLL = OV to -14V, unless otherwise specified, (Figure 2), (Note 5). CONDITIONS PARAMETER TYP MIN (Note 7) ~ I\) MAX UNITS I LO Data Input Load Current V 1N =-18V -10 mA IALO Address Input Load Current V 1N = -50V -10 mA I LP Program Load Current V 1N = -50V -10 mA ILSS Vss Load Current 50 mA I LOO Voo Load Current -200 mA V 1HP Address Data and Power Saver 0.3 V VOO = PROGRAM = -50V -2.0 Input High Voltage Address Input Low Voltage -50 -11 V Data Input Low Voltage -18 -11 V V OHP Voo and Program High Voltage -2.0 0.5 V V OLP Voo and Program Low Voltage -50 -48 V V SLP Vss Low Voltage 0 0.4 V V SHP V ss High Voltage 11.4 12.6 V Voo Pulse Duty Cycle 25 % 5.0 ms V 1LP \ tpw _Program Pulse Width 0.5 tos Data and Address Set·Up Time tOH Data and Address Hold Time 0 tss Pulsed Voo Set·Up Time 40 tSH Pulsed Voo Hold Time 1.0 j1S tss Pulsed Vee Set· Up Time 1.0 I1 s tSH Pulsed Vse Hold Time 1.0 j1S t pss Power Saver Set·Up Time 1.0 j1S tpSH Power Saver Hold Time 1.0 j1S t A , tF V oo , Program, Address and Data 40 j1S j1S 100 1.0 j1S j1S Rise and Fall Time Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Capacitance is guaranteed by periodic testing. Note 3: Positive true logic notation is used except on data inputs during programming Logic "1" = most positive voltage level Logic "a" = most negative voltage level Note 4: tAce = 700 ns + 25 (N-1) where N is the n.umber of devices wire-OR'd together. Note 5: The program cycle should be repeated until the data reads true, then over-programmed 5 times that number of cycles. (Symbolized as X + 5X programming). Note 6: The EPROM is initially programmed with all "a's." A VIHP on any data input 80-87 will leave the stored "O's" undisturbed, and a VILP on any data input 80-87 will write a logic "1" into that location. Note 7: Typical values are for nominal voltages and T A = 25°C, unless otherwise specified. Erase Specification The recommended dosage of ultraviolet light exposure\ is 6W sec/cm 2 . Programming The MM4204/MM5204 is normally shipped in the unprogrammed state_ All 4096-bits are at logic "0" state. The table of electrical programming characteristics and Figure 2 give the conditions for programming of the device. In the program mode the device effectively becomes a RAM with the 512 word locations selected by address inputs AO-AB. Data inputs are 80-87 and write operation is controlled by pUlsing the Program input. Since the EROM is initially shipped with all "a's," a VIHP on any data input 80-87 will leave the stored "a's" undisturbed and a VILP on any data input 80-87 will write a logic "'" into that location. 5-43 0 ~ 3: 3: 01 I\) 0 ~ Programming (Continued) National offers programmer options with both the IMP16-P and the PACE IPC-16P Microprocessor Development Systems. Microprocessor System Programmer Part Number IMP16-P IPC-16P IMP16-P/S05 -IPC-16P/S05 Contact the local sales office 'for further information. There are also several commercial programmers available such as the Data I/O Model V. Most National distributors have programming capabilities available. Those' distributors should be contacted directly to determine which data entry formats are available. In addition, data may be submitted to National Semiconductor for factory programming. One of the following formats should be observed: Preferred Format The custom patterns may be sent in on a Telex or submitted as a paper tape in a 7-bit ASCII code from model 33 teletype or TWX. The paper tape should be as the following example: Start Character .l fr l Carriage return line feed allowed between F and B. Stop Character I' - , Data Field" MSB IPin 111 I Leader: Rubout for T~~t::el:~~:I~eS~ LSB IPon 41 Trailer: Rubout for TWX or letter Key for telex lat least 25 framesl. BP P PN P PN N F BN NP PN NP P F ,,, BN P NP N N N N F 25 framesl. Jl...._ _ _ _- - " Word a Word 511 Word 1 , All Address Inputs HIGH All Address Inputs LOW 4Data Field: Must have only P's or N's typed between Band F. No nulls or rubouts. Must have exactly eight P and N characters between Band F. Any characters except Band F may be typed between the F stop character and the B start character. If an error is made in preparing a tape the entire word including the Band F start and stop characters must be rubbed out. Data for exactly 512 words must be entered beginning with word O. Alternate Format [Punched Tape (Note 1) or Cards) " b 7 • MSB (Pin 22) MM5204 Positive Logic bOo LSB (Pin 15) 2 Spaces -,---+--------, i'\nnf) An,)) i\l1fl 5 ~\ () !l f) nqqdl}()fl') 1\ ,) () t~ I, r)., I I I I no 4 O()I1f),)f)nn " - () I ,11 r) I r)) I, 51 I lSI t 4'1 ~--------i-HlG I ~() 165 ,)5i) 1114 4f)'1 TIl3 Ot'1 TB2 tOO lSI 299 I SO 197 ~'\ Note 1: The code is a 7-bit ASCII code on 8 punch tape. The tape should begin and end with 25 or more "RUBDUT" punches. Note 2: The ROM input address is expressed in decimal form and is preceded by the latter A. Note 3: The total number of "1" bits in the output word. Note 4: The total number of "1" bits in each output column or bit position. 1 Space 'l "I .~I1'l~ .. ~ ' ) I ) - ~-~--Note3 Of)f)'lnnnq n nnW)()nn,) n n I n III I "I (V)ltllll i> n(I())IIOf) .l linn? .'f)I)J Note 4 t L - - - - - - - - - t - - l Space Erasing Procedure The MM42040/MM52040 may be erased by exposure to short-wave ultraviolet light-253.7 nm_ There exists no absolute rule for erasing time or distance from source. The erasing equipment output capability should be calibrated. Establish a worse case time required with the equipment. Then over-erase by a factor of 2, i.e., if the device appears erased after S minutes, continue exposure for an additional 16 minutes for a total of 24 minutes. Examples of UV sources include the Model UVS-54 and Model S-52 manufactured by Ultra-Violet Products, Inc. (5114 Walnut Grove Avenue, San Gabriel, California). The lamps should be used without shortwave filters. The MM4204/MM5204 should be placed about one inch away from the lamp for about 20-30 minutes. 5-44 AC Test Circuit 3: 3: Typical Application ~ I\) CHIP SELECT 0 e Cs" AO AO-AS '"'"'" INPUTS MM4204! MM5204 [ AS 12V'5% VOO Vss 12V '5~. OV VBB 5V'5% OV PROGRAM Vu * tACC. tOH. tCD. and too measured POWER ON at output of MM4204/MM5204. Switching Time Waveforms VIH ADDRESS VIL VIH POWER SAVER VIL VIH CHIP SELECT VIL VIH OATA OUT VIL Note. All times measured with respect to 1.5V level with tr and tf ::; 20 ns FIGURE 1. Read Operation Programming Waveforms VOO VOLP----I-'-------------J VIHP POWER SAVER VILP VIHP=='0:':'~.1 AOORESS ANO OATA ,-+--------+---.. VILP VOHP - - - - - - - - . PROGRAM VOLP-------I~-------J------ FIGURE 2. Programming Waveforms 5-45 3: 3: U1 I\) MM4204! MM5204 OMI400 AO-AS BO BI 0 ~ ~National MOS EPROMs ~ Semiconductor MM5204·1 4096·Bit (512 x 8) UV Erasable PROM General Description The MM5204-1 is a 4096-bit static Read Only Memory which is electrically programmable and uses silicon gate technology to achieve bipolar compatibility_ The device is a non-volatile memory organized as 512 words by 8 bits per word. Programming of the memory is accomplished by storing a charge in a cell location by applying a -50V pulse. A logic input, "Power Saver", is provided which gives a 5: 1 decrease in power when the memory is not being accessed. • Static operation-no clock required • Easy memory expansion-TRI-STATE® output Chip Select input (CS) • "Q" quartz lid version erasable with short wave ultraviolet light (i.e., 253.7 nm) • Low power dissipation • "Power Saver" control for low power applications • Compatible with SC/MP II N-channel microprocessor Features Applications • Field programmable • Fast program time: ten seconds typical for 4096 bits • Fast access time MM5204-1 700 ns • DTL/TTL compatibility 5V,-12V • Standard power supplies • • • • .• • Code conversion Random logic synthesis Table look-up Character generator Microprogramming Electronic keyboards Block and Connection Diagrams Dual-In-Line Package AD .,2!..VLL AI .,lLvoo A2 1 +--V88 A] INPUT 8UFFERS 409681T EPROM MATRIX 512.8 24 2] Voo 2287 CHIPSELECT ] 12 ~VSS ~PROGRAM A4 VLL V88 POWER SAVER PROGRAM AO A5 A6 AI 84 A2 8] A7 A] A8 16 81 A4 A5 15 10 1] 12 VSS TOPVIEW 8081828] 84 85 86 87 Order Number MM5204Q-1 See NS Package J24CQ 5-46 80 14 A8 AS 11 A7 Absolute Maximum Ratings (Note 1) All Input or Output Voltages with Respect to VBB Except During Programming Power Dissipation Storage Temperature Range Lead Temrerature (Soldering, 10 seconds) +0.3V to -20V 750mW -65°C to +125°C 300°C DC Electrical Characteristics TA = DoC, to +70°C, VLL = OV, VBB = PROGRAM = VSS, VSS = 5V ±5%, VDD = -12V ±5%, unless otherwise noted. SYMBOL , PARAMETER CONDITIONS VIL Input Low Voltage VIH Input High Voltage III I nput Current VIN VOL Output Low Voltage IOL = 1.6 mA VOH Output High Voltage IOH ILO Output Leakage Current VOUT = OV, CS = VIH 100 Power Supply Current T A = 0° C, CS = V I H, ISS VSS Current MIN TYP (Note 2) VSS-14 VSS-1.5 = = UNITS VSS-4.2 V VSS+0.3 V 1.0 J.1A VLL 0.4 V 2.4 VSS OV -0.8 mA MAX V 1.0 J.1A Power Saver = V I L 28 40.0 mA Power Saver = V I H 6.0 8.0 mA TA=O°C,CS=VIH Power Saver = VI L 42 mA Power Saver = V I H 10 mA AC Electrical Characteristics TA = DoC to +70°C, VLL = SYMBOL ov, VBB = PROGRAM = Vss, Vss = 5V ±5%, VDD = -12V ±5%, unless otherwise noted. PARAMETER CONDITIONS MIN TYP (Note 2) MAX UNITS tACC Access Time T A = 70°C, (Figure 1) 700 ns tpo Power Saver Set-Up Time (Figure 1) 1.4 J.1s tco Chip Se.lect Delay (Figure 1) 250 tOH Data Hold Time (Figure 1) 30 tODC Chip Select Deselect Time (Figure 1) 30 200 500 ns tODP Power Saver Deselect Time (Figure 1) 30 200 500 ns CIN Input Capacitance (All Inputs) VIN = VSS, f = 1.0 MHz, (Note 3) 5.0 8.0 pF COUT Output Capacitance VOUT = VSS, 8.0 15 pF (All Outputs) (Note 3) CS = VIH, f = 1.0 MHz, ns ns 50 Note1:"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Typical values are for nominal voltages and T A = 2SoC, unless otherwise specified. Note 3: Capacitance is guaranteed by periodic testing. 5-47 • Typical Application AC Test Circuit CHIP SELECT 80 ADDRESS [ INPUTS MM5204·1 87 -12V ,5% 0-----1 5V ,5% 0--"'--1 ovO-----I *tACC. tOH. teo and too measured at output of MM5204-1 POWER ON Switching Time Waveforms VIH ADDRESS VIL VIH POWER SAVER VIL VIH CHIPSELECT VIL VIH DATA OUT VIL Note. All times measured with respect to 1.5V level with tr and tf ::; 20 ns FIGURE 1. Read Operation Programming Information Refer to the MM4204/MM5204 data sheet for programming information. 5-48 ~National MOS EPROMs ADVANCE INFORMATION D Semiconductor NMC2532 32k·Bit (4k x 8) UV Erasable PROM General Description Features The NMC2532 Is a 32,768-blt EPROM operating trom a single 5V power supply_ This device Is an ultraviolet erasable, electrically programmable, read only memory fabricated using National's high speed, low power, silicon gate technology. • Single 5V power supply • 450 ns max access time This device Is deselected when pin 20 Is high and automatIcally placed In the standby mode. This mode provides an 85% reduction In power with no Increase In access time. • • • • • Bits may be programmed at random, In sequence or singly. Typical erasure time Is 20 minutes using a 12 mW/cm 2 ultraviolet lamp. • Lowpower: Active -160 mA max Standby - 25 mA max Fullystatlc TRI-STATEI!) output All 110 pins TTL compatible Pin compatible with existing EPROMs and ROMs Single location programming Block and Connection Diagrams* Dual-In-Line Package VCC GNO (VSS) VPP ! ! ! --+ --+ --+ --+ --+ --+ --+ AU-All ADDRESS INPUTS DATA OUTPUTS °1-0a(01-0a) • X DECODER 3Z.768·BIT CELL MATRIX ---+ A7 vcc A6 Aa AS A9 A4 VPP A3 PO/PGM(S/P/ AZ AID Al Al1 AD Oa(oa) 01(01) 07(07) 02(02) 06(06) 03(03) 05(05) GNO(VSS) 04(04) TOP VIEW Modes* Order Number NMC2532Q See NS Package J24CQ Pin Name/Number Mode Read Standby Program Program Verify Program Inhibit PD/PGM (SIP) 20 VIL VIH Pulsed VIH to VIL VIL VIH VPP 21 VCC 24 Outputs 9-11,13-17 5V 5V 25V 5V 5V 5V DOUT Hi-Z DIN 5V 25V 5V 5V DOUT Hi-Z * Symbols In parentheses are proposed Industry standard. 5-49 Pin Names* PD/PGM (SIP) AO-A11 °1-°8(01-08) VPP VCC GND(VSS) Power Down (Chip Select) Address Inputs Data Outputs Program Power (25V) Power (5V) Ground Absolute Maximum Ratings (Note 1) -10·Cto +80·C - 65·C to + 125·C +6Vto -0.3V Temperature under Bias Storage Temperature All Input and Output Voltages with Respect to VSS During Read VPP Supply Voltage with Respect . to VSS During Programming Power Dissipation Lead Temperature (Soldering, 10 seconds) + 26.5V to - 0.3V 1.5W 300·C READ OPERATION Operati~g (Note 2) TA = O·C to 70·C, VCC = 5V ± 5%, VSS = OV, VPP = VCC ± 0.6V (Note 3) DC Characteristics Symbol Max Units VIN =5.25V 10 p.A VOUT=5.25V 10 p.A 25 mA Parameter Min Conditions III Input Load Current ILO Output Leakage Current ICC1 VCC Current Standby PD/PGM (SIP) = VIH PD/PGM (SIP) = VIL ICC2 VCC Current Active VIL Input Low Voltage VIH Input High Voltage VOL Output Low Voltage IOL=2.1 mA VOH Output High Voltage IOH= -400p.A IPP1/1PP2 VPP Standby/Active Current AC Characteristics Typ 15 85 -0.1 2.2 160 mA 0.65 V VCC+1 V 0.45 V 300 p.A 2.4 V TA = o·c to 70·C, VCC = 5V ± 5%, VSS = OV, VPP = VCC ± 0.6V (Note 3) Symbol Parameter Alternate Standard t ACC TAVQV Address to Output Valid t APR TSLQV Select to Output Valid t pxz TSHQZ Select to Output Hi-Z t pvx TAXQX Address to Output Hold Conditions Min PG/PGM=VIL 0 PD/PGM =VIL 0 Max Units 450 ns 450 ns 100 ns ns Capacitance (Note 4) TA = 25 ·C, f = 1 MHz AC Test Conditions Symbol Parameter Conditions Typ Max Units CIN Input Capacitance VIN =OV 4 6 pF COUT Output Capacitance VOUT=OV 8 12 pF Output Load: 1 TTL gate and CL = 100 pF Input Rise and Fall Times: ::520 ns Input Pulse Levels: 0.8V to 2.2V Timing Measurement Reference Level: Wand2V Inputs Outputs O.8V and 2V Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Recommended DC Operating Conditions" provides conditions for actual device operation. Note2: Typical values are forTA =25"C and nominal supply voltages. Note 3: VPPcan be tied directly to VCC(except during programming). Note 4: Capacitance measured with Boonton Meter or effective capacitance calculated from the equation C = l.:l.tI.:l.V. Capacitance is guaranteed by periodic testing. 5-50 z s:: Switching Time Waveforms· o N en W N Read Cycle VIH~~~~~-'------------------------~ ADDRESSES VIL~~~~~~~ VALID ________________________ VALID ~ tpvx --(TAXQX)-VIH ==========~======~ PD/PGM vIL-----------t---------1~ tACC __________________ 1_... _ -.....-1- tAPR (TSLQV) ~ tpxz (TSHQZ) VOH------------~·------(~T~A~VQ~V~)~~----~~------------------~ Hi·Z OUTPUT VOL--------------------------~ VALID ________________J Hi·Z Standby Power Down Mode VIH ADDRESSES VALID VALID VIL VIH PD/PGM VIL VOH OUTPUT VOL STANDBY --- VALID FOR CURRENT ADDRESS STANDBY tpxz -(TSHQZ) Hi·Z * Symbols in parentheses are proposed Industry standard. 5·51 VALID FOR CURRENT ADDRESS Hi·Z PROGRAM OPERATION DC Characteristics TA = 25°C ± SoC, VCC = 5V ± 5%, VPP = 25V ± 1V Symbol Parameter Min Conditions III Input Current All Inputs VIN = VIL or VIH VOL Output Low Voltage During Verify IOL=2.1 rnA VOH Output High Voltage During Verify IOH= -400~A ICC VCC Supply Current VIL Input Low Level All Inputs VIH Input High Level All Inputs Except VPP IPP VPP Supply Current Typ Max Units 10 ~A 0.45 V 160 rnA 2.4 V 85 -0.1 2.2 0.65 V VCC+1 V 30 rnA PD/PGM (SIP) = VIL AC Characteristics TA=25°C±5°C, VCC=5V±5% Symbol Alternate Parameter Typ Min Units Max Standard tSUA TAVPL Address Set·Up Time 2 P.s tsuo TDVPL Data Set-Up Time 2 P.s tsuvpp TVPPHPL VPP Set-Up Time 0 tWPR TPLPH Program Pulse Width 45 tHO TPHDX Data Hold Time 2 p's t HVPP TPHVPPL VPP Hold Time 0 .ns tHPR TVPPLPL VPP Recovery Time 0 tAPR TSLOV Select to Output Valid tHA TSHAX Address Hold Time t pxz TSHOZ ns 50 55 ms ns ns 450 ns 0 Select to Output Hi·Z ns 100 0 Programming Waveforms· (Note5)TA=25°C±5°C, VCC=5V±5%, VPP=25V±1V .. ADDRESSES VIH "- VIL I )( . . .. .. ,~I , ADDRESS X+1 tsuvpp (TVPPHPL) ~r- tAPR (TSLQV)- )r tHVPP \ (TPHVPPL) twPR (TPLPH) .. 1--- +5V 1"- DATA OUT VALID' Hi·Z - tHO (TPHDX)-- +Z5V VPP K tSUA (TAVPL) DATA IN STABLE ~rADD X ..,'f.. VIL tSUD (TDVPL) .. \ ~ Note 5: The Input timing reference level Is O.65V for VIL and 2.2V for VIH, • Symbols In parentheses are proposed Industry standard. 5·52 --- CSHnZ) tpxz tHA (TSHAX)-- ... ,~ ~~ '----I~ -- Hi·Z ADD X 1\ I PD/PGM VIH (S/P) VIL PROGRAM -VERIFY-- ADDRESS X VIH DATA .. PROGRAM tHPR (TVPPLPL) ~ Functional Description data). After the address and data signals are stable the PD/PGM pin is pulsed from VIH to VIL with a pulse width between 45 ms and 55 ms~ DEVICE OPERATION The NMC2532 has two modes of operation in the normal system environment. These are shown in Table I. ~ PD/PGM (SIP) Mode ICC Max 24 Outputs 9-11,13-17 160 rnA 25 rnA DOUT Hi·Z 20, VIL VIH Read Standby Multiple pulses are not needed but will not cause device damage. No pins should be left open. A low level, VIL or lower must not be maintained steady state (DC signal) on the PD/PGM pin during programming. Several NMC2532s may be programmed in parallel (the same data in each one) in this mode. =5V)* TABLE I. OPERATING MODES (VCC Program Verify The programming of the NMC2532 may be verified, either one word at a time during the programming (as shown in the timing diagram) or by reading all of the words out at the end of the programming sequence. Read Mode = The NMC2532 read operation requires that PD/PGM VIL and that addresses AO-A11 have been stabilized. Valid data will apear on the output pins after t ACC or tAPA times (see Switching Time Waveforms) depending on which is limiting. Program Inhibit The program inhibit mode allows programming several NMC2532s In parallel with different data for each one by controlling which ones receive the program pulse. All similar inputs may be paralleled. Pulsing the PD/PGM pin from VIH to VIL on a selected unit or units will cause programming, while inhibiting the PD/PGM pulse will inhibit programming and keep the outputs of the inhibited devices in the Hi-Z state. Standby Mode The NMC2532 Is placed in the standby mode (deselected and powered down) by making PD/PGM = VIH. This automatically controls the outputs to their Hi-Z state. The power dissipation is reduced to 15% of the normal operating power. VCC must be kept at 5V. Access time at power up (chip selection) remains either t ACC or tAPA (see Switching Time Waveforms). ERASURE PROCEDURE The NMC2732 is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gates to their initial state through induced photo current. It is recommended that this device be kept out of direct sunlight. The UV content of sunlight may cause the a partial erasure of some bits in a relatively short period of time. Direct sunlight (any intense light) can cause temporary functional failure due to generation of photo current. Extended exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label etc.) should be placed over the package window if this product is to be operated under these lighting conditions. PROGRAMMING The NMC2532 is shipped from National completely erased. All bits will be at a "1" level (outputs high) in this initial state after any full erasure. Table II shows the three programming modes. TABLE II. PROGRAMMING MODES (VCC = 5V)* I~ Mode Program Program Verify Program Inhibit PD/PGM (SIP) VPP Outputs 20 18 9-11,13-17 VIL VIL VIH 25V 5V 25V DIN DOUT Hi-Z An ultraviolet source of 2537A yielding a total integrated dosage of 15 Watt-seconds/cm 2 is required. This will erase a unit in approximately15t020 minuteswhena UV lampof a 12 mW/cm 2 power rating is used. The NMC2532 to be erased should be placed one inch away from the lamp and no filters should be used . . Program Mode The NMC2532 is programmed by placing "O"s into the desired locations. This is done 8 bits (a byte) at a time. Any individual address, a sequence of addresses, or addresses chosen at random may be programmed. Any or all of the 8 bits associated with an address location may be programmed with a single program pulse applied to the PD/PGM (SIP) pin. All inp~oltage levels, including the program pulse on the PD/PGM pin are TIL compatible. The programming sequence is: An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at one inch. The erasure time increases as the square of the distance. (If distance is doubled the erasure time increases by a factor of 4.) Lamps lose intensity as they age. When a lamp is changed, the distance has changed or the lamp has aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and even system designs have been erroneously suspected when incomplete erasure was the problem. = With the VPP pin at 25V and VCC 5V, an address is selected and the desired data word is applied to the out· put pins (VIL "0" and VIH "1" for both address and = = * Symbols in parentheses are proposed Industry standard. 5-53 ~National MOS EPROMs ~ Semiconductor NMC2564 64k·Bit (8k X PREVIEW 8) UV Erasable PROM General Description Features The NMC2564 is a 65,536-bit EPROM operating from a single 5V power supply. This device is an ultraviolet erasable, electrically programmable, read only memory fabricated using National's high speed, low power, silicon gate technology. • Single 5V power supply This device is deselected when pin 20 is high and automatically placed in the standby mode. This mode provides an 85% reduction in power with no increase in access time. • • • • • 450 ns max access time • Low power: Active - 200 mA max Standby - 30 mA max Bits may be programmed at random, in sequence or singly. Typical erasure time is 20 minutes using a 12 mW/cm 2 ultraviolet lamp. Fully static TRI-STATE® output All 1/0 pins TIL compatible Pin compatible with the 2516 and 2532'EPROMs • Separate chip selects for multiple bus systems • Single location programming Block and Connection Diagrams* VPP VCC Dual-In-Line Package GND (VSS) ! ! ! 5V 25V 28 VPP DATA OUTPUTS (01-08) 0,-08 VCC CSi (Si) GND A7 A6 A5 OUTPUT BUFFERS A4 ---+.r---~----~---+t---------j AJ ---+ A2 Y DECODER y·GATING ~~-----{==~------~ AO-Al1 ADDRESS INPUTS ---+ ---+ ---+ AI AD 0, (01) X DECODER -. -. 32,768·8IT CELL MATRIX 02 (Cl2) (Cl5) 05 --+ GND (VSS) 14 (Cl4) 04 TOP VIEW Modes Pin NamelNumber PD/PGM CS1 CS2 Outputs 1 (SIP) 22 (51) (52) 2 27 (01-08) 11-13.15-19 5 5 VIL VIL VIL DOUr 5 5 VIL VIH X Hi·Z Deselect 5 5 VIL X VIH Hi·Z vee VPP 26,28 Read Deselect Mode Pin Names PD/PGM (SIP) AO-A12 0 1-0 8 (01-08) VPP Standby 5 5 VIH X X Hi·Z Program Inhibit 5 25 VIH X X DIN Program Inhibit 5 25 X VIH X DIN vee Program Inhibit 5 25 X X VIH DIN GND(VSS) Program 5 25 Pulsed VIH toVIL VIL VIL DIN x= don't care • Symbols In parentheses are Industry standard 5-54 Power Down (Chip Select) Address Inputs Data Outputs Program Power (+ 25V) Power (+5V) Ground . ~ Semiconductor ~National MOS EPROMs PREVIEW z s: o I\) """-' o ...... C') NMC27C16 16,384-Bit (2048 x 8) UV Erasable CMOS PROM General Description Features The NMC27C16 Is a high speed 16k UV erasable and electrically reprogrammable EPROM ideally suited for applications where fast turn-around and pattern experimentation are important requirements. • • • • • • The NMC27C16 is packaged in a 24-pin dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern. A new pattern can then be written into the device by following the programming procedure. 2048 x 8 organization Low power during programming Access time-450 ns Single 5V power supply Static-no clocks required Inputs and outputs TIL compatible during both read and program modes • TRI·STATE@ output This ERPOM is fabricated with the reliable, high volume, time proven, CMOS silicon gate technology. Block and Connection Diagrams'" Dual-In-Line Package A7 +-- VPP+5V +-- VCC+5V +-- VSS GNO DATA OUTPUTS (PROGRAM INPUTS) 00-07 (00-07) A6 23 A8 A5 22 A9 A4 21 VPP A3 20 A2 19 AIO AI 18 CEiPGM(E"iP) DE (ii) AO 00 (00) 14 04 (04) VSS 12 13 03(03) TOP VIEW Pin Connection During Read or Program Pin Names AO-A10 0 0-0 7 (00-07) CE/PGM (EJP) OE(G) VPP VCC VSS Pin Name/Number Mode Read Program CE/PGM (ElP) OE (G) 18 20 VIL Pulsed VIL toVIH VIL VIH VPP VCC Outputs 21 24 9-11,13-17 5 25 5 5 DOUr DIN * Symbols In parentheses are proposed Industry standard. 5-55 Addres Inputs Data Outputs Chip Enable/Program Output Enable Read 5V, Program 25V Power5V Ground co (3 t-. N o ~ z Absolute Maximum Ratings (Note 1) - 25°C to + 85°C - 65°C to + 125°C 26.5V to - 0.3V Temperature Under Bias Storage Temperature VPP Supply Voltage with Respect toVSS Allinput or Output Voltages with Respect to VSS (except VPP) Power Dissipation Lead Temperature (Soldering, 10 seconds) VCC + 0.3V to - 0.3V 1.5W 300°C READ OPERATION DC Operating Characteristics TA=O°C to + 70°C, VCC=5V±5%, (VCC = 5V ± 10% for NMC27C16-1), VPP = VCC ± 0.6V (Note 3), VSS = OV, unless otherwise noted. Symbol Parameter Conditions Min Typ Max Units III Input Current VIN = 5.25V or VIN = VIL 10 p.A ILO Output Leakage Current VOUT = 5.25V, CE/PGM = 5V 10 p.A IPP1 VPP Supply Current VPP=5.B5V 5 rnA ICC1 VCC Supply Current (Standby) CE/PGM = VIH, OE = VIL 10 25 rnA ICC2 VCC Supply Current (Active) CE/PGM = OE = VIL 57 100 mA VIL Input Low Voltage O.B V VIH Input High Voltage VCC+1 V VOH Output High Voltage IOH = -400 p.A VOL Output Low Voltage IOL=2.1 rnA -0.1 2.0 2.4 V V 0.45 AC Characteristics (Note 2) TA = O°C to + 70°C, VCC = 5V ± 5%, (VCC = 5V ± 10% for NMC27C16-1), VPP = VCC ± 0.6V (Note 3), VSS = OV, unless otherwise noted. Symbol Alternate Standard Parameter Conditions NMC27C16 Min Max NMC27C16-1 NMC27C16-2 Max Units Min Min Max tACC TAVQV Address to Output Delay CE/PGM = OE = VIL 450 350 390 ns tCE TELQV CE to Output Delay OE=VIL 450 350 390 ns tOE TGLQV Output Enable to Output Delay CE/PGM=VIL 120 120 120 ns tDF TGHQZ Output Enable High to Output Hi·Z CE/PGM=VIL 0 100 ns tOH TAXQX Address to Output Hold CE/PGM = OE = VIL 0 tOD TEHQZ CE to Output Hi·Z OE=VIL 0 Capacitance TA=25°C, f=1 Symbol Parameter 100 0 100 0 100 0 0 0 100 0 ns 100 ns MHz Conditions Typ , Max Units CI Input Capacitance VIN =OV 4 6 pF CO Output Capacitance VOUT=OV B 12 pF AC Test Conditions Output Load: 1 TTL gate and CL = 100 pF Input Rise and Fall Times: ::;20 ns Note 1:"Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to Imply that the devices sh?uld be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Typical conditions are for operation at: TA= 2SoC, VCC=SV, VPP=VCC, and VSS =OV. Note 3: VPP may be connected to VCC except during program. The ± O.6V tolerance allows a circuit to switch VPP between the read voltage and the program voltage. Note 4: Capacitance is guaranteed by periodic testing. TA =2S'C, f = 1 MHz. 5-56 Switching Time Waveforms ~ Read Cycle (CEJPGM = VIL) VIH~~~~~~----------------------~ ADDRESSES VIL~~~~~~ VIH OUTPUT ENABLE VALID ________________________ VALID ~ tDH - - (TAXGX)-- :==========t========\. vIL----------~--------~~-------------------J tOE I-.-.- - -....-~(TGLGV) tDF tACC (TGHGZ) VOH-----------~~~Hi~-Z~--~(T~A~V~G!V)~--~..-J~------------------., OUTPUT VOL--------------------------~ VALID ________________J Hi-Z Read Cycle (OE = VIL) VIH~~~~~~----------------------~ ADDRESSES VIL VIH CHIP ENABLE ~~~~r:i'~ VALID ______ ______ VALID ~ ===========t:=======4- VIL---------~---------r~----------------' tCE too ----I--(TELGV) (TEHGZ) .. VOH----------~~--~~~----~----------------1 OUTPUT Hi-Z VOL--------------------------~ VALID _ _ _ _ _ _ _ ___J Hi-Z Standby Power Down Mode (DE = VIL) VIH======================~'-------------------------- ADDRESSES VALID VIL======================~~ VIH ------------r-------- VIL -------------# CHIP ENABLE VALID __________________________ STANDBY STANDBY too (TEHGZ) VOH~~~~~~~ OUTPUT VOL VALID FOR CURRENT ADDRESS Hi-Z * Symbols in parentheses are proPos~d Industry standard_ 5-57 VALID FOR CURRENT ADDRESS Hi-Z PROGRAM OPERATION DC Electrical Characteristics and Operating Conditions (Notes 1 and 2) =25°C ± 5°C) (VCC =5V ± 5%, VPP =25V ± 1V) (TA Symbol Typ Min Parameter III Input Leakage Current (Note 3) VIL Input Low Level VIH Input High Level ICC VCC Power Supply Current IPP1 IPP2 -0.1 Max Units 10 p.A 0.8 V VCC+1 V 100 mA VPP Supply Current (Note 4)' 5 mA VPP Supply Current During Programming Pulse (Note 5) 30 mA 2.0 AC Characteristics and Operating Conditions (Notes 1, 2, and 6) (TA =25°C ± 5°C) (VCC =5V ± 5%, VPP =25V ± 1V) Symbol Parameter Min Typ Max Units Alternate Standard t AS TAVPH Address Set·up Time 2 p's tos TGHPH OE Set·up Time 2 p's tos TDVPH Data Set·up Time 2 p's tAH TPLAX Address Hold Time 2 p's tOH TPLGX OE Hold Time 2 p's tOH TPLDX Data Hold Time 2 tOF TGHOZ Chip Disable to Output Float Delay (Note 4) 0 tCE TGLOV Chip Enable to Output Delay (Note 4) tpw TPHPL Program Pulse Width 45 tpR TPH1PH2 Program Pulse Rise Time 5 ns tpF TPL2PL1 Program Pulse Fall Time 5 ns p's 130 50 ns 150 ns 55 ms Note 1:' VCC must be applied at the same time or before VPP and removed after or at the same time as VPP. To prevent damage to the device it must not be inserted into a board with power applied. Note 2: Care must be taken to prevent overshoot of the VPP supply when switching to + 25V. Note 3: 0.45V"VIN,,5.25V Note 4: CE/PGM = VIL, VPP = VCC Note 5: VPP = 26V Note 6: Transition times" 20 ns unless noted otherwise. I 5-58 Timing Diagram * Program Mode VIH ===\--1--------+------...., VIL ;;;;;;;;;;;;;;~1_------~------~ VIH ==::::::::::::=\ ADDRESSES DATA VIL===~ VIH G ---r--t-r~;;;;---t-t-~ VIL VIH -------++ E/P VIL ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:;;;;;;:;:;:Jf tPF (TPLlPlI) Functional Description DEVICE OPERATION The NMC27C16 has 3 modes of operation in the normal system environment. These are shown in Table I. Standby Mode (Power Down) The NMC27C16 may be powered down to the standby mode by making CE/PGM VIH. This is independent of 6E and automatically puts the outputs in their Hi-Z state. The power is reduced to 25% (132 mW max) of the normal operating power. VCC and VPP must be maintained at 5V. Access time at power up remains either tAcc or tCE (see Switching Time Waveforms). = Read Mode = The NMC27C16 read operation requires that 6E VIL, CE/PGM VIL and that addresses AO-A10 have been sta· bilized. Valid data will appear on the output pins aftertACC' tOE or tCE times (see Switching Time Waveforms) depend· ing on which is limiting. = Deselect Mode PROGRAMMING = = The NMC27C16 is deselected by making 6E VIH. This mode is independent of CEtPGM and the condition of the addresses. The outputs are Hi-Z when 6E VI H. This allows OR-tying 2 or more NMC27C16's for memory expansion. The NMC27C16 is shipped from National completely erased. All bits will be at a "1" level (output high) in this initial state and after any full erasure. Table II shows the 3 programming modes. TABLE I. OPERATING MODES (VCC =VPP =SV) Pin Name/Number Mode Read Deselect Standby CE/PGM (ElP) 18 OE (G) 20 Outputs 9-11,13-17 VIL Don't Care VIH VIL VIH Don't Care ·DOUT Hi-Z Hi-Z TABLE II. PROGRAMMING MODES (VCC = SV) Pin Name/Number Mode Program Program Verify Program Inhibit CE/PGM (EiP) 18 OE (G) Pulsed VIL to VIH VIL VIL * Symbols In parentheses are proposed industry standard .5-59 VPP 21 Outputs Q 9-11,13-17 VIH 25 DIN VIL VIH 25(5) 25 DOUT Hi·Z 20 CD ..... o '" ,N o :E z . Functional Description (Continued) Program Mode unit while Inhibiting the program pulse to a unit will keep it from being programmed and keeping 6E = VIH will put its outputs in the Hi-Z state. The NMC27C16 is programmed by introducing "O"s into the desired locations. This is done 8 bits (a byte) at a time. Any individual address, a sequence of addresses, or ad· dresses chosen at random may be programmed. Any or all of the 8 bits associated with an address location may be programmed with a Single program pulse applied to the chip enable pin. All input voltage levels, including the program pulse on chip enable are TIL compatible. The programming sequence is: ERASING The NMC27C16 is erased by exposure to high intensity Ultraviolet light through the transparent window. This exposure discharges the floating gate to its initial state through induced photo current. It is recommended that the NMC27C16 be kept out of direct sunlight. The UV content of sunlight may cause a partial erasure of some bits In a relatively short period of time. Direct sunlight can also cause temporary functional failure. Extended exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this product is to be operated under these lighting conditions. With VPP = 25V, VCC = 5V, 6E = VIH and CE/PGM = VIL, an address is selected and the desired data word is applied to the output pins. (VIL="O" and VIL="1" for both address and data.) After the address and data Signals are stable the program pin is pulsed from VIL to VIH with a pulse width between 45 ms and 55 ms. Multiple pulses are not needed but will not cause device damage. No pins should be left opmn. A high level (VIH or higher) must not be maintained longer than tpW(MAX)on the program pin during programming. NMC27C16s may be programmed in parallel with the same data in this mode. An ultraviolet source of 2537A yielding a total integrated dosage of 15 watt·seconds/cm 2 is required. This will erase the part in approximately 15 to 20 minutes if a UV lamp with a 12,000 p.W/cm 2 power rating is used. The NMC27C16 to be erased should be placed 1 inch away from the lamp and no filters should be used. Program Verify Mbde The programming of the NMC27C16 may be verified either 1 word at a time during the programming (as shown in the timing diagram) or by reading all of the words out at the end of the programming sequence. This can be done with VPP = 25V (or 5V) in either case. An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at 1 inch. The erasure time is increased by the square of the distance (if the distance is doubled the erasure time goes up by a factor of 4). Lamps lose intensity as they age. When a lamp is changed, the distance is changed, or the lamp is aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and system designs have been erroneously suspected when incomplete erasure was the basic problem. Program Inhibit Mode The program inhibit mode allows programming several NMC27C16s simultaneously with different data for each one by controlling which ones receive the program pulse. All similar inputs of the NMC27C16 may be paralleled. Pulsing the program pin (from VIL to VIH) will program a 5·60 ~National MOS EPROMs ~ Semiconductor PRELIMINARY NMC272416k·Bit (2k X 8) UV Erasable PROM General Description Features The NMC2724 is a 16,384-bit EPROM operating from a single 5V power supply. This device is an ultraviolet erasable, electrically programmable, read only memory fabricated using National's high speed, low power, silicon gate technology. • Single 5V power supply This device is deselected when pin 18 is high and automatically placed in the standby mode. This mode provides an 80% reduction in power with no increase in access time. The NMC2724 has an output enable control to eliminate bus contention in microprocessor systems. • Fullystatic • TRI-STATE® output • 450 ns max access time • Low power: Active-150 mA max Standby-3D mA max • All 1/0 pinsTTLcompatible • Pin compatible with existing EPROMs and ROMs • Output enable control Bits may be programmed at random, in sequence or singly. Typical erasure time is 20 minutes using a 12 mW/cm 2 ultraviolet lamp. Block and Connection Diagrams· Dual-In-Line Package VCC VPP GND (VSS) ! ! ! 5V o!NPP(G:~:: 25V rt----+-i~~1 ~r_--~----~--_+t--------~ Y D_EC_O_DE_R_ _ -t====~~ ______~ Y.GATING 20 A3 19 A2 18 Al 17 AO AU-AIO ADDRESS INPUTS 16 00(01) 16,384·B1T CELL MATRIX X DECODER °1(02) 02(03) GNO(VSS) 10 15 11 14 12 13 Pin Name/Number (E) 18 A9 ARt OEIVPP(CIVPP) AIO mE) 07(08) °6(07) °5(06) °4(05) °3(04) TOP VIEW Modes* Mode AS 21 A4 OUTPUT BUFFERS I CE VCC 22 A5 ..... TIR_co_L_ _ _ :'r-__ 23 A6 GNO =JL___C~_~G ~ 24 A1 DATA OUTPUTS 00-01 (QI-08) OE/VPP (G/VPP) 20 VCC 24 Outputs 9-11,13-17 5V DOUT Read VIL VIL Standby VIH Don't Care 5V Hi-Z Program VIL 25V DIN DOUT Hi-Z Program Verify VIL VIL 5V 5V Program Inhibit VIH 25V 5V * Symbols in parentheses are proposed industry standard. tNMC2724A, AR '" VIL for all operating modes, NMC2724B, AR2: VIH for all operating modes. 5-61 Order Number NMC2724Q-A or NMC2724Q-B See NS Package J24CQ Pin Names* CE(E) Chip Enable OE(G) Output Enable AD-A1O 0 0 -0 7 (01-08) VPP Address Inputs Data Outputs Program Power 25V VCC Power 5V GND(VSS) AR Ground Select Reference Input Level / Absolute Maximum Ratings (Note 1) Temperature under Bias -10°Cto +80°C Storage Temperature -65°Cto + 125°C All Input and Output Voltages with Respect to VSS During Read + 6Vto - 0.3V VPP Supply Voltage with Respect to VSS During Programming + 26.5V to - 0.3V Power Dissipation 1.5W Lead Temperature(Soldering, 10 seconds) . 300°C· I READ OPERATION DC Operating Characteristics (Note 2) .TA = O°C to 70°C, VCC = 5V ± 5%, VSS = OV Parameter Symbol Conditions Typ Min Max Units ILl1 Input Load Current VIN = 5.25V 10 p.A ILl2 OEIVPP Input Load Current VIN =5.25V 300 p.A ICC1 VCC Current Standby CE = VIH, OE = VIL 15 30 mA ICC2 VCC Current Active OE=CE=VIL 85 150 mA VIL Input Low Voltage VIH Input High VoltagE! VOL Output Low Voltage IOL=2.1 mA VOH Output High Voltage IOH = - 400 p.A -0.1 2.0 0.8 V VCC+1 V 0.45 2.4 V V AC Characteristics TA =O°C to 70°C, VCC = 5V ± 5%, VSS = OV Symbol Alternate Conditions Parameter Min Typ Max Units Standard t ACC TAVQV Address to Output Valid CE=OE=Vll 450 ns tCE TElQV CE to Output Delay OE= VIL 450 ns tOE TGlQV Output Enable to Output Delay CE=Vll 120 ns tOF TGHQZ Output Enable High to Output Hi·Z CE = Vil 0 100 ns tOH TAXQX Address to Output Hold CE = OE = Vil 0 t pF TEHQZ CE (E) to Output Hi·Z OE = Vil 0 100 ns ns Capacitance (Note 3) TA = 25°C, f = 1 MHz AC Test Conditions Symbol CIN1 Parameter Input Capacitance Except CDE/VPP (G/VPP) Conditions VIN =OV CIN2 OE/VPP (GIVPP) Input Capacitance VIN =OV COUT Output Capacitance Typ Max Units 4 6 pF 20 pF 12 pF VOUT=OV Output Load: 1 TTL gate and CL= 100 pF Input Rise and Fall Times: ::;20 ns Input Pulse Levels: 0.8V to 2.2V Timing Measurement Reference Level: Inputs 1Vand2V Outputs 0.8V and 2V Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to Imply that the devices should be operated at these limits. The table of "Recommended DC Operating Conditions" provides con· ditions for actual device operation. Note 2: Typical values are forTA = 25'C and nominal supply voltages. Note 3: Capacitance measured with Boonton Meter or effective capacitance calculated from the equation C = l~t/~V. Capacitance is guaranteed by periodic testing. 5·62 Switching Time Waveforms· Read Cycle(CE =VIL) VALID VALID ADDRESSES __ tOH __ (TAXQX) VIH VIL 1-_____- .. VOH ....._1- tOE (TGLQV) Hi·Z OUTPUT Hi·Z VALID VOL Read Cycle (OE (G) =VI L) VIH ADDRESSES VALID VALID tOH - - (TAXQX)-VIH VIL tCE tACC ~---+-(TELQV) --(TAVnV) Hi·Z tpF (TEHQZ) --,_----------1 VOH OUTPUT Hi·Z VALID VOL Standby Power Down Mode(OE = VIL) VIH ADDRESSES VALID VIL _ _ _ _ _ _ _ _ _ _ _ _ _...J VALID VIH STANDBY STANDBY VIL VOH OUTPUT -----..1 -- tpF. -(TEHQZ) VALID FOR Hi·Z CURRENT ADDRESS VOL _____________ -T * Symbols in parentheses are proposed industry standard. 5-63 VALID FOR .CURRENT ADDRESS Hi·Z PROGRAM OPERATION DC Characteristics TA=25°C±5°C, VCC=5V±5%, VPP=25V± 1V Symbol Parameter Min Conditions III Input Current All Inputs VIN = VIL or VIH VOL Output Low Voltage During Verify IOL=2.1 mA VOH Output High Voltage During Verify IOH = -400 p.A ICC VCC Supply Current VIL Input Low Level All Inputs VIH Input High Level All Inputs Except OEIVPP IPP VPP Supply Current Typ Max Units 10 p.A 0.45 V 2.4 V 85 -0.1 2.0 150 mA 0.8 V VCC+1 V 30 mA CE = VIL, OE = VPP AC Characteristics TA=25°C±5°C, VCC=5V±5% Symbol Alternate Parameter Min Conditions Typ Max Units Standard tAS TAVEL Address Set-Up Tirne 2 tOES TVPPHEL Program Voltage Set-Up Time 2 p's tos TDVEL Data Set-Up Time 2 p's tAH TEHAX Address Hold Time 0 P.s tOEH TEHVPPL OE Hold Time 2 P.s tOH TEHDX Data Hold Time 2 p's tOF TEHOZ Chip Enable to Output Hi-Z tov TELOV Data Valid from CE t pw TELEH CE Pulse Width During Programming tVR TVPPLEL VPP Recovery Time P.s 0 ns 120 OE=VIL 45 50 1 p's 55 ms 2 p's Programming Waveforms· (Note4)TA=25°C±5°C, VCC=5V±5%, VPP=25V± 1V .. ADDRESSES ")(" VIH VIL VIL . . tDS (TDVEL) VPP _VIH CE VIL Note 4: K ADD X + t tAS (TAVEL) DATA IN STABLE ADD X tDH (TEHDX)-- " ~k- Hi-Z "'lr DATA OUT VALID' -,f- -- --tpw (TELEH) tOES (TVPPHEL) • .. tDV (TELQV)- .. f\.1\ ADD X - tAH (TEHAX)-- tOEO (TEHVPPL) • .1 tVR (TVPPLEL) ~~ I/'f. ~ -- -~ \r I!ENpp~e VIL PROGRAM - - VERIFY - - - - ADDRESS X . . I VIH DATA . PROGRAM I\.....-...J j " The Input timing reference level is 1V for VIL and 2V for VIH. * Symbols In parentheses are proposed Industry standard. 5-64 Hi·Z J tDF CTEonll Functional Description DEVICE OPERATION The NMC2724 has two.modes of operation in the normal system environment. These are shown in Table I. TABLE I. OPERATING MODES (VCC = 5V) ~ Mode Read Standby CE (E) OE/VPP (G/VPP) 18 20 VIL VIH VIL Don't Care data). After the address and data signals are stable the CE pin Is pulsed from VIH to VIL with a pulse width between 45 ms and 55 ms. * ICC Max Outputs 24 9·11,13-17 150 rnA 30 rnA DOUT Multiple pulses are not needed but will not cause device damage. No pins should be left open. A low level, VIL or lower must not be maintained steady state (DC signal) on the CE pin during programming. Several NMC2724s may be programmed in parallel (the same data In each one) in this mode. Program Verify HI·Z The programming of the NMC2724 may be verified, either one word at a time during the programming (as shown in the timingdiagram)orby reading all of the words out at the end of the programming sequence. Read Mode = The NMC2724 read operation requires that CE VIL, and OE/VPP VIL and that addresses AO-A1O have been stabilized. Valid data will apear on the output pins after tAcc, tOE, or tCE times (see Switching Time Waveforms) depending on which is limiting. = Program Inhibit The program inhibit mode allows programming several NMC2724s in parallel with different data for each one by controlling which ones receive the program pulse. All similar inputs may be paralleled. Pulsing the CE pin from VIH to VIL on a selected unit or units will cause program· ming, while inhibiting the CE pulse will inhibit programming and keep the outputsof the inhibited devices in the Hi·Z state. Standby Mode The NMC2724 is placed in the standby mode (deselected and powered down) by making CE VIH. This is inde· pendent of the Output Enable control and automatically controls the outputs to their Hi·Z state. The power dissipa' tion is reduced to 20% of the normal operating power. VCC must be kept at 5V. Access time at power up (chip selec· tion) remains either tAce or tCE (see Switching Time Waveforms). = ERASURE PROCEDURE The NMC2724 is erased by exposure to high intensity ultraviolet light through the transparent window. This exposure discharges the floating gates to their initial state through induced photo current. It is recommended that this device be kept out of direct sunlight. The UV content of sunlight may cause the a partial erasure of some bits In a relatively short period of time. Direct sunlight (any in· tense light) can cause temporary functional failure due to generation of photo currents. Extended exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this product is to be operated . under these lighting conditions. PROGRAMMING The NMC2724 is shipped from National completely erased. All bits will be at a "1" level (outputs high) in this in· itial state after any full erasure. Table II shows the three programming modes. TABLE II. PROGRAMMING MODES (VCC = 5V) X Mode Program Program Verify Program Inhibit * CE (E) OE/VPP (G/VPP) 18 20 9·11,13-17 VIL VIL VIH 25V VIL 25V DIN DOUT Hi·Z Outputs An ultraviolet source of 2537A yielding a total integrated dosage of 15 Watt·seconds/cm 2 is required. This will erase a unit in approximately 15t020 minutes when aUV lampof a 12 mW/cm 2 power rating is used. The NMC2724 to be erased should be placed one inch away from the lamp and no fiiters should be used. Program Mode The N MC2724 is programmed by placing "O"s into the desired locations. This isdone8 bits(a byte) at a time. Any individual address, a sequence of addresses, or addresses chosen at random may be programmed. Any or all of the 8 bits associated with an address location may be programmed with a single program pulse applied to the CE pin. All input voltage levels, including the program pulse on the CE pin are TIL compatible. The programming sequence is: An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at one inch. The erasure time increases as the square of the distance. (If distance is doubled the erasure time in· creases by a factor of 4.) Lamps lose intensity as they age. When a lamp is changed, the distance has changed or the lamp has aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and even system designs have been er· roneously suspected when incomplete erasure was the problem. = With the OEIVPP pin at 25V and VCC 5V, an address is selected and the desired data word is applied to the out· put pins (VIL "0" and VIH "1" for both address and = = * Symbols in parentheses are proposed industry standard. 5·65 ~National MOS EPROMs PRELIMINARY D Semiconductor NMC2732 32k·Bit (4k x 8) UV Erasable PROM General Description Features 1he NMC2732 is a 32,768-bit EPROM operating from a single 5V power supply. This device is ,an ultraviolet erasable, electrically programmable, read only memory fabricated using National's high speed, low power, silicon gate technology. • Single 5V power supply • 450 ns max access time • Low power: Active-150 mA max Standby-30 mA max This device is deselected when pin 18 is high and automatically placed in the standby mode. This mode provides an 80% reduction in power with no increase in access time. 1he NMC2732 has an output enable control to eliminate bus contention in microprocessor systems. • • • • • Bits may be programmed at random, in sequence or singly. Typical erasure time is 20 minutes using a 12 mW/cm 2 ultraviolet lamp. Fully static TRI-STATE® output All 1/0 pins TTL compatible Pin compatible with existing EPROMs and ROMs Output enable control Block and Connection Diagrams* Dual-In-Line Package VCC VPP GND (VSS) 5V 25V 24 A7 ! ! ! DATA OUTPUTS 00-07 (01-08) GND 23 A6 22 A5 CONTROL LOGIC '21 A4 OUTPUT 8UFFERS 19 A2 18 Al 17 AD ----. ----. ----. ----. ---+ 16 00(01) X DECODER 32.768·BIT CELL MATRIX 0,(02) 02(03) GND(VSS) AS A9 All 20 ilEIVPP(ilIVPP) A3 AO-Al1 ADDRESS INPUTS VCC 10 15 11 14 12 13 AID mE) °7(OS) 06(07) 05(06) 04(05) 03(04) TOPVIEW Order Number NMC2732Q See NS Package J24CQ Modes* CE Mode (E) 18 Read Standby Program Program Verify Program Inhibit VIL VIH VIL VIL VIH , Pin Name/Number OE/VPP VCC (G/VPP) 24 20 VIL Don't Care 25V VIL 25V 5V 5V 5V 5V 5V Pin Names* Outputs 9-11,13-17 DOUT Hi-Z DIN DOUT Hi-Z * Symbols in parentheses are proposed industry standard.- 5-66 CE (E) OE (G) AO-A11 0 0-0 7 (01-08) VPP VCC GND(VSS) Chip Enable Output Enable Address Inputs Data Outputs Program Power 25V Power5V Ground Absolute Maximum Ratings (Note 1) Temperature under Bias -10°Cto +80·C Storage Temperature -65·Cto + 125·C All Input and Output Voltages with Respect to VSS During Read +6Vto -0.3V VPP Supply Voltage with Respect to VSS During Programming + 26.5V to - 0.3V Power Dissipation 1.5W 300·C Lead Temperature (Soldering, 10 seconds) , READ OPERATION DC Operating Characteristics (Note 2) TA = O·C to 70·C, VCC = 5V ± 5%, VSS = OV Symbol Conditions Max Units ILl1 Input Load Current Parameter VIN = 5.25V 10 p,A ILl2 OEIVPP Input Load Current VIN = 5.25V 300 p,A ICC1 VCC Current Standby CE = VIH, OE = VIL 15 30 mA OE=CE=VIL 85 150 mA 0.8 V ICC2 VCC Current Active VIL Input Low Voltage VIH Input High Voltage VOL Output Low Voltage IOL=2.1 mA VOH Output High Voltage IOH = -400p,A Typ Min -0.1 2.0 VeC+1 V 0.45 V 2.4 V AC Characteristics TA =o·c to 70·e, vcc =5V ± 5%, VSS =OV Symbol Max Units CE=OE=VIL 450 ns OE = VIL 450 ns =VIL 120 ns 100 ns Parameter Conditions Min Alternate Standard t ACC TAVQV Address to Output Valid tCE TELQV CE to Output Delay tOE TGLQV Output Enable to Output Delay CE tDF TGHQZ Output Enable High to Output Hi·Z CE= VIL 0 tOH TAXQX Address to Output Hold CE = OE= VIL 0 tpF TEHQZ CE (E) to Output Hi·Z OE=VIL 0 Typ ns 100 ns Capacitance (Note 3) TA =25·C, f = 1 MHz Symbol Parameter Conditions AC Test Conditions Typ Max Units 4 6 pF CIN1 Input Capacitance Except OE/vPP (G/VPP) CIN2 OE/vPP (G/VPP) Input Capacitance VIN=OV 20 pF COUT Output Capacitance 12 pF VIN =OV VOUT=OV Output Load: 1 TIL gate and CL= 100 pF Input Rise and Fall Times: :520 ns Input Pulse Levels: O.BV to 2.2V Timing Measurement Reference Level: Inputs 1Vand2V Outputs 0.8V and 2V Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Recommended DC Operating Conditions" provides con· ditions for actual device operation. Note 2: Typical values are for TA = 25'C and nominal supply voltages. Note 3: Capacitance measured with Boonton Meter or effective capacitance calculated from the equation C = IAt/AV. Capacitance is guaranteed by periodic testing. 5-67 Switching Time Waveforms· Read Cycle (CE = VIL) VIH ADDRESSES VALID VALID __ VIH tOH __ (TAXnX) ------i-----"'\. --+----- VIL VOH Hi·Z OUTPUT Hi·Z VALID VOL Read Cycle (OE(G) = VIL) '"\ VIH ADDRESSES VALID VALID VIL tOH - - (TAXnX)-VIH CE VIL tCE ~---t-(TELQV) 1- VOH Hi·Z OUTPUT tpF (TEHQZ) Hi·Z VALID VOL Standby Power Down Mode (OE = VIL) VIH ADDRESSES VIL __________________________ VALID -' VALID VIH VIL VOH OUTPUT ----- -- STANDBY STANDBY tpF -(TEHQZ) VALID FOR CURRENT ADDRESS - J VOL ______________ Hi·Z * Symbols In parentheses are proposed Industry standard. 5-68 VALID FOR CURRENT ADDRESS Hi·Z PROGRAM OPERATION DC Characteristics TA=25°C±5°C, VCC=5V±5%, VPP=25V± 1V Symbol Parameter Input Current All Inputs VIN = VIL or VIH VOL Output Low Voltage During Verify IOL=2.1 mA VOH Output High Voltage During Verify IOH = -400p.A ICC VCC Supply Current VIL Input Low Level All Inputs VIH Input High Level All Inputs Except OEIVPP IPP VPP Supply Current Typ Min Conditions III Max Units 10 p.A 0.45 V 2.4 V 85 -0.1 2.0 150 rnA 0.8 V VCC+1 V 30 rnA CE = VIL, OE = VPP AC Characteristics TA=25°C±5°C, VCC=5V±5% Symbol Alternate Parameter Conditions Min Typ Units Max Standard t AS TAVEL Address Set·Up Time 2 P.s ~OES TVPPHEL Program Voltage Set-Up Time 2 P.s tos TDVEL Data Set-Up Time 2 p's tAH TEHAX Address Hold Time 0 p's tOEH TEHVPPL OE Hold Time 2 P.s tOH TEHDX Data Hold Time 2 p's tOF TEHQZ Chip Enable to Output Hi-Z tov TELQV Data Valid from CE t pw TELEH CE Pulse Width During Programming 45 tVR TVPPLEL VPP Recovery Time 2 Programming Waveforms· VIH '\. VIL I • PROGRAM )( . VIH IDS (TDVEL) .. ... tpw (TELEH) tOES Note 4: ms )( tOEH ----- ...(TVPPHEL).. ..(TEHVPPL).. tDV (TELUV)- I \~ '----I The input timing reference level Is 1V for VIL and 2V for VIH. * Symbols In parentheses are proposed Industry standard. 5-69 -- - tAH (TEHAX)-- \. ~~ f\ ...,'- DATAOUTVALID ADD X -'.- ~ iiElVPP _VIH CE VIL 55 ' PROGRAM -VERIFY-- Hi·Z ~ ---\r tDH (TEHDX)-- VPP~{ VIL P.s ADD X + 1 lAS (TAVEL) DATA IN STABLE ADD X VIL ns 1 p's ADDRESS X ... DATA 50 120 (Note4)TA=25°C±5°C, VCC=5V±5%, VPP=25V±1V . ADDRESSES 0 OE=VIL tVR (TVPPlEL) , ~ Hi·Z tDF I~EH.l' Functional Description DEVICE OPERATION The NMC2732 has two modes of operation in the normal system environment. These are shown in Table I. data). After the address and data signals are stable the CE pin is pulsed from VIH to VIL with a pulse width between 45 ms and 55 ms. Multiple pulses are not needed but will not cause device damage. No pins should be left open. A low level, VIL or lower must not be maintained steady state (DC signal) on the CE pin during programming. Several NMC2732s may be programmed in parallel (the same data in each one) in this mode. TABLE I. OPERATING MODES (VCC = 5V)* ~ Mode Read Standby CE (E) 18 OE/VPP (G/VPP) 20 VIL. VIL VIH Don't Care ICC Max 24 Outputs 9·11,13-17 150 rnA 30mA DOUT Hi-Z Program Verify The programming of the NMC2732 may be verified, either one word at a time during the programming (as shown in the timing diagram) or by reading all of the words out at the end of the programming sequence. Read Mode = The NMC2732 read operation requites that CE VIL, and OEIVPP VIL and that addresses AO-A11 have been stabilized. Valid data will apear on the output pins after t ACC ' tOE, or tCE times (see Switching Time Waveforms) depending on which is limiting. = Program Inhibit The program inhibit mode allows programming several NMC2732s in parallel with different data for each one by controlling which ones receive the program pulse. All similar inputs may be paralleled. Pulsing the CE pin from VIH to VIL on a selected unit or units will cause program· ming, while inhibiting the CE pulse will inhibit programming and keep the outputs of the inhibited devices in the Hi·Z state. Standby Mode The NMC2732 is placed in the standby mode (deselected and powered down) by making CE = VIH. This is independent of the Output Enable control and automatically controls the outputs to their Hi-Z state. The power dissipation is reduced to 20% of the normal operating power. VCC must be kept at 5V. Access time at power up (chip selection) remains either tAcc or tCE (see Switching Time Waveforms). ERASURE PROCEDURE The NMC2532 is erased by exposure to high intensity ul$raviolet light through the transparent window. This exposure discharges the floating gates to their initial state through induced photo current. It is recommended that this device be kept out of direct sunlight. The UV content of sunlight may cause the a partial erasure of some bits in a relatively short period of time. Direct sunlight (any intense light) can cause temporary functional failure due to generation of photo currents. Extended exposure to room level fluorescent lighting will also cause erasure. An opaque coating (paint, tape, label, etc.) should be placed over the package window if this product is to be operated under these lighting conditions. PROGRAMMING The NMC2732 is shipped from National completely erased. All bits will be at a "1" level (outputs high) in this initial state after any full erasure. Table II shows the three programming modes. TABLE II. PROGRAMMING MODES (VCC = 5V) * X CE 18 OE/VPP (G/VPP) 20 Outputs 9-11,13-17 VIL VIL VIH 25V VIL 25V DIN DOUT Hi-Z (E) Mode Program Mode An ultraviolet source of 2537..\ yielding a total integrated dosage of 15 Watt-seconds/cm 2 is required. This will erase a unit in approximately 15t020 minutes when a UV lampof a 12 mW/cm 2 power rating is used. The NMC2732 to be erased should be placed one inch away from the lamp and no filters should be used. The NMC2732 is programmed by placing "O"s into the desired locations. This is done 8 bits (a byte) at a time. Any individual address, a sequence of addresses, or addresses chosen at random may be programmed. Any or all of the 8 bits associated with an address location may be programmed with a single program pulse applied to the CE pin. All input voltage levels, including the program pulse on the CE pin are TTL compatible. The programming sequence is: With the OEIVPP pin at 25V and VCC = 5V, an address is selected and the desired data word is applied to the output pins (VIL "0" and VIH "1" for both address and An erasure system should be calibrated periodically. The distance from lamp to unit should be maintained at one inch. The erasure time increases as the square of the distance. (If distance is doubled the erasure time increases by a factor of 4.) Lamps lose intenSity as they age. When a lamp is changed, the distance has changed or the lamp has aged, the system should be checked to make certain full erasure is occurring. Incomplete erasure will cause symptoms that can be misleading. Programmers, components, and even system designs have been erroneously suspected when incomplete erasure was the problem. Program Program Verify Program Inhibit = = .. Symbols In parentheses are proposed Industry standard. 5-70 Section 6 Bipolar PROMs High speed microcontrol storage is made practical at very low cost through the use of National's bipolar PROMs. This generic family utilizes the latest in Schottky circuitry and Titanium-Tungsten fuse link technology. National offers these and other memory and logic products for state-of-the-art solutions to data processing and control logic design problems. Refer to National's Memory Applications Handbook for suggestions on how to use these devices effectively. Schottky PROMs ~National a Bipolar PROMs Semiconductor DM54S188/DM74S188 256·Bit (32 x 8) Open·Coliector PROM DM54S288/DM74S288 256·Bit (32 x 8) TRI·STATE® PROM General Description Features These Schottky PROM memories are organized in the popular 32 words by 8 bits configuration. A memory enable input is provided to control the output states. When the enable input is in the low state, the outputs present the contents of the selected word. .. Advanced titanium-tungsten (Ti-W) fuses .. Schottky-clamped for high speed Address access-35 ns max Enable access-25 ns max If the enable input is raised to a high level, it causes all 8 outputs to go to the "OFF" or high impedance state. The memories are available in both open-collector and TRI-STATE® versions and are available as ROM's as well as PROM's, .. PNP inputs reduce input loading .. All dc and ac parameters guaranteed over temperature PROM's are shipped from the factory with lows in all locations. A high may be programmed into any selected location by following the programming instructions. Once programmed, it is impossible to go back to a low. .. Low voltage TRI-SAFE ™ programming See the last page of this section for detailed programming information. .. Board level programming Commercial OpenCollector DM74S,188 X X DM74S288 X Military DM54S188 X DM54S288 X TRI-STATE Package X N, J N, J X J X Block Diagram J Connection Diagram Dual-I n-Line Package 16 01 03 A3 . Al IS6·BIT ARRAY 31 X881T MEMQRYMATRIX 2 Vee "n 3 04 05 AD 5 12 A2 06 10 AD 08 05 04 03 01 01 Logic Symbol Order Number DM54S188J, DM54S288J, DM74S188J or DM74S288J See NS Package J16A Order Number DM74S188N or DM74S288N See NS Package N16A 6-3 Absolute Maximum Ratings Supply Voltage (Note 2) Input Voltage (Note 2) Output Voltage (Note 2) Storage Temperature Lead Temperature (Soldering, 10 seconds) Operating Conditions (Note 1) -{).5V to +7V -l.2V to +5.5V --o.5V to +5.5V ~5°C to +150°C 300°C DC Electrical Characteristics Supply Voltage (Vee) DM54S188, Dry154S288 DM74S188, DM74S288 Ambient Temperature ITA) . DM54S188, DM54S288 DM74S188, DM74S288 IIH 4.5 4.75 5.5 5.25 V V °c °c +125 +70 Logical "0" Input Voltage (Low) 0 0.8 V Logical "1" Input Voltage (High) 2.0 5.5 V (Note 3) MIN Input Leakage Current, All Inputs UNITS -55 0 DM54S188,54S288 Input Load Current, All Inputs MAX DM74S188,74S288 CONDITIONS PARAMETER IlL MIN TYP -80 VCC = Max, VIN = 0.45V MAX MIN -250 TYP -80 MAX -250· UNITS IlA VCC = Max, VIN = 2.7V 25 25 IlA Input Leakage Current, All Inputs VCC= Max, VIN = 5.5V 1.0 1.0 mA VOL Low Level Output Voltage VCC = Min, IOL = 16 mA VIL Low Level Input Voltage VIH High Level Input Voltage ICE X Output Leakage Current VCC = Max, VCEX 0.35 0.35 0.5 0.80 = 2.4V (Open·Coliector Only) (Note 5) VCC = Max, VCEX = 5.5V Input Clamp Voltage VCC = Min, liN = -18 mAo CIN Input Capacitance Vec = 5V, VIN Co Output Capacitance VCC = 5V, Vo = 2V, TA = 25°C, V V 50 100 --{J.B = 2V, T A = 25°C, V 0.80 2.0 2.0 Vc 0.45 -1.2 --{J.8 50 IlA 100 Il A -1.2 V 4.0 4.0 pF 6.0 6.0 pF 1 MHz 1 MHz, Output "OFF" ICC Power Supply Current VCC = Max, All Inputs Grounded, 70 110 70 110 mA All Outputs Open TRI-STATE PARAMETERS ISC Output Short Circuit Current Vo = OV, VCC = Max, (Note 4) -20 -70 ~20 -70 mA ±50 IlA (Note 5) 1HZ Output Leakage (TRI-STATE) VCC = Max, Vo = 0.45 to 2.4V, ±50 Chip Disabled VOH Output Voltage High, (Note 5) IOH = -2 mA 2.4 3.2 V IOH = -6.5 mA AC Electrical Characteristics 2.4 V (With standard (oad) DM54S188,54S288 PARAMETER 3.2 DM74S188,74S288 5V ±10%;-55°Cto+125°C 5V ±5%; O°C to +70°C CONDITIONS MIN TYP MAX MIN TYP MAX UNITS tAA Address Access Time 22 45 22 35 ns tEA Enable Access Time 15 30 15 20 ns tER Enable Recovery Time 15 35 15 25 ns Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do not mean that the device may be operated at these values. Note 2: These limits do not apply during programming. For the programming ratings, refer to the programming instructions. Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for VCC = 5V and T A = 25°C. Note 4: During ISC measurement, only one output at a time should be grounded. Permanent damage may otherwise result. Note 5: To measure VOH, ICEX or ISC on an unprogrammed part, apply 10.5V to either AO (pin 10) or A4 (pin 14). 6-4 ~National Bipolar PROMs ~ Semiconductor DM54S287/DM74S287 1024·Bit (256 x 4) TRI·STATE® PROM DM54S387/DM74S387 1024·Bit (256 x 4) Open·Collector PROM General Description Features These Schottky memories are organized in the popular 256 words by 4 bits configuration. Two memory enable inputs are provided to control the output states. When both enable inputs are in the low state, the outputs present the contents of the selected word. • Advanced titanium-tungsten -(Ti-W) fuses • Schottky-clamped for high speed Address access-50 ns max Enable access-25 ns max • PNP inputs reduce input loading • All dc and ac parameters guaranteed over temperature • Low voltage TRI-SAFETM programming • Board le~el programming • ROM mates are DM74S187 and DM85S97 If either or both of the enable inputs is raised to a high state, it causes all four outputs to go to the "OF F" or high impedance state. The memories are available in both open-collector and TR I-STATE versions and are available as ROM's as well as PROM's. PROM's are shipped from the factory with lows in all locations. A high may be programmed into any selected location by following the programming instructions. Once programmed, it is impossible to go back to a low. See the last page of this section for detailed programming information. Military DM74S287 DM54S387 Open· Collector X X DM74S387 DM54S287 Commercial TRI·STATE Package X N, J X J X N, J X X X J Connection Diagram Block Diagram Dual-In-Line Package MOST SIGNIFICANT AOORESS BIT A6 ~ A5 A7 16 VCC 15 A4 A6 1014·BIT CEll 32 X 32·BIT MEMORY MATRIX AS A4 A3 A3 TOP VIEW Logic Symbol 01 02 03 02 04 01 Order Number DM54S287J. DM54S387J, DM74S287J or DM74S387J See NS Package J16A A7 Order. Number DM74S287N or DM74S387N See NS Package N16A 6-5 01 02 03 04 Al 03 n 10 A2 GNo AD 13 11 Al A2 n 12 AD A7 14 "en " C CO Absolute Maximum Ratings ~ Supply Voltage (Note 2) Input Voltage (Note 2) Output Voltage (Note 2) Storage Temperature lead Temperature (Soldering, 10 seconds) ('I) ~ r:::: CO Operating Conditions (Note 1) --{).5V to +7V -1.2V to +5.5V --{).5V to +5.5V -65°C to +150°C 300°C Supply Voltage (VCC) DM54S387, DM54S287 DM74S387, DM74S287 Ambient Temperature (TA) DM54S387, DM54S287 DM74S387, DM74S287 ('I) en MIN MAX UNITS 4.5 4:75 5.5 5.25 V V -55 0 +125 +70 °c °c Logical "0" Input Voltage (Low) 0 0.8 V Logical "1" Input Voltage (High) 2.0 5.5 V ~ Lt) ~ C " en "C~ DC Electrical Characteristics PARAMETER CO N ~ r:::: CO N ~ Lt) ~ C (Note 3) CONDITIONS DM54S387/54S287 MIN TYP MAX DM74S387/74S287 MIN TYP UNITS MA?< IF Input load Current, All Inputs VCC = Max, VF = 0.45V IR Input Leakage Current, All Inputs VCC = Max, VR = 2.7V 25 25 /lA IRB Input Leakage Current, All Inputs ,VCC = Max, VRB = 5.5V 1.0 1.0 mA VOL Low Level Output Voltage VIL Low Level Input Voltage VIH High Level Input Voltage ICEX Output Leakage Current VCC = Max, VCEX ~ 2.4V -80 VCC = Min, IOL = 16 mA 0.35 -250 -80 0.5 -250 0.35 0.80 2.0 (Open·Collector Only) (Note 5) VCC = Max, VCEX = 5.5V Vc Input Clamp Voltage VCC = Min, liN = -18 mA CIN Input Capacitance VCC = 5V, VIN = 2V, TA = 25°C, Co Output Capacitance VCC = 5V, Vo = 2V, TA = 25°C, 0.45 V 0.80 V 2.0 V 50 100 -0.8 -1.2 JlA -0.8 50 /lA 100 /lA -1.2 V 4.0 4.0 pF 6.0 6.0 pF 1 MHz 1 MHz, Output "OFF" ICC Power Supply Current VCC = Max, All Inputs Grounded, 80 130 80 130 mA All Outputs Open TRI·STATE PARAMETERS ISC Output Short Circuit Current Vo = OV, VCC = Max, (Note 4) 1HZ Output Leakage (TR I·ST ATE) VCC = Max, Vo = 0.45 to 2.4V, -20 -70 -20 ±50 -70 mA ±50 /lA Chip Disabled VOH Output Voltage High, (Note 5) IOH = -2 mA 2.4 V 3.2 IOH = -6.5 mA AC Electrical Characteristics PARAMETER 2.4 3.2 V (With standard load) CONDITIONS tAA Address Access Time (Figure 1) tEA Enable Access Time (Figure 2) tER Enable Recovery Time (Figure 2) DM54S387/54S287 DM74S387/74S287 5V ±10%;-55°C to +125°C 5V ±5%; o°c to +70 C MIN TYP 10 35 15 15 30 5 MAX o UNITS MIN TYP 60 10 35 50 ns 30 5 15 25 ns 5 15 25 ns MAX Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do n'ot mean that the device may be operated at these values. Note 2: These limits do not apply during programming. For the programming ratings, refer to the programming instructions. Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vce = 5V and T A Note 4: During ISC measurement. only one output at a time should be grounded. Permanent damage may otherwise result. Note 5: To measure VOH or ICEX on an unprogrammed part, apply 10.5V to both A7 and A2 (pin 15 and pin 7). 6·6 = 25°C. Standard Test Load • Input waveforms are supplied by a pulse generator having the following characteristics: PRR = 1 MHz, ZOUT = 50n. tr ~ 2.5 ns and tf ~ 2.5 ns (between 1.0V and 2.0V). • tAA is measured with both enable inputs at a steady low level. • tEA and tER are measured from the 1.5V on inputs and outputs with all address inputs at a steady level and with the unused enable input at a steady low leve)f Vee MEMORY O~J~~~ 0-+---..., T TEST 600 eL =30 PF* * CL includes probe and jig capacitance. Switching Time Waveforms JV ADDRESS INPUT t.5V ENABLE INPUT OV t.5V OUTPUT OUTPUT FIGURE 1. Address Access Time FIGURE 2. Enable Access Time and Recovery Time Typical Performance Characteristics Typical Switching Characteristics as a Function of Temperature (VCC = 5V. Standard Load) Typical Switching Characteristics as a Function of VCC (TA = 25°C. Standard Load) 40 50 t~A- -- ....... 40 -I-- -- - tAA ~ 30 30 :g :g i= 20 tEA i= 20 tEA ~ tER --I-- 10 10 tER o -55 125 25 TA AMBIENT TEMPERATURE 4.5 re) 5.0 5.5 SUPPLY VOLTAGE (V) Equivalent Circuits Equivalent of Each Input , Typical TRI-STATE Output vee Vee INPUTo--. . .--t ......~H...-oOUTPUT 6-7 Typical Open-Collector Output -~'"""' ~National a Bipolar PROMs Semiconductor DM54S473/DM74S473 4096·Bit (512 x 8) Open·Coliector PROM DM54S472/DM74S472 4096·Bit (512 x 8) TRI·STATE® PROM General Description Features These Schottky PROM memories are organized in the popular 512 words by 8 bits configuration. A memory enable input is provided to control the output states. When the enable input is in the low state, the outputs present the contents of the selected word. • • Schottky-clamped for high speed Address access-60 ns max Enable access-30 ns max If the enable input is raised to a high level, it causes all 8 outputs to go to the "OFF" or high impedance state. The memories are available in both open-collector and TRI-STATE versions. PROM's are shipped from the factory with lows in all locations. A high may be programmed into any selected location by following the programming instructions. Once programmed, it is impossible to go back to a low. See the last page of this section for detailed programming information. Military Advanced titanium-tungsten (Ti-W) fuses • PNP inputs reduce input loading • All dc and ac parameters guaranteed over temperature • Low voltage TRI-SAFETM programming • Board level programming • High density 20-pin package Commercial OpenCollector X X X DM74S472 DM54S473 X DM54S472 X TRI-STATE Package X N, J N,J J X X Block Diagram J Connection Diagram Dual-I n·Line Package Vee 4096·BITARRAY 64X64B1T MEMORY MATRIX 16 AS IS n' 02 06 GNO 10 L-.._ _ _ _ _-' TQPVIEW Logic Symbol Order Number DM54S472J, DM54S473J, DM74S472J or DM74S473J See NS Package J20B Order Number DM74S472N or DM74S473N See NS Package N20A 6-8 01 02 05 Absolute Maximum Ratings Supply Voltage (Note 2) Input Voltage (Note 2) Output Voltage (Note 2) Storage Temperature Lead Temperature (Soldering, 10 seconds) Operating Conditions (Note 1) --{).5V to +7V -1.2V to +5.5V --{).5V to +5.5V o ---o5°e to +150 e 300°C DC Electrical Characteristics MIN MAX' 4.5 4.75 5.5 5.25 V V -55 0 +125 +70 °e °e Logical "0" Input Voltage (Low) 0 0.8 V Logical "1" Input Voltage (High) 2.0 5.5 V Supply Voltage (Vee) DM54S473, DM54S472 DM74S473, DM74S472 Ambient Temperature (TA) DM54S473, DM54S472 DM74S473, DM74S472 (Note 3) DM54S473.54S472 DM74S473,74S472 CONDITIONS PARAMETER UNITS MIN TYP -80 MAX MIN -250 TYP. -80 MAX -250 UNITS IlL Input Load Current, All Inputs Vee = Max, VIN = O.45V IIH Input Leakage Current, All Inputs Vee = Max, VIN = 2.7V 25 25 p,A II Input Leakage Current, All Inputs Vee = Max, VIN = S.SV 1.0 1.0 rnA VOL Low Level Output Voltage VCC = Min, IOL = 16 rnA VIL Low Level Input Voltage VIH High Level Input Voltage ICE X Output Leakage Current VCC = Max, VCEX = 2.4V (Open·Coliector Only) (Note 5) VCC = Max, VCEX = 5.5V Vc Input Clamp Voltage VCC = Min, liN = -18 rnA CIN Input Capacitance VCC = 5V, VIN = 2V, TA = 25°C, Co Output Capacitance VCC = 5V, Vo = 2V, T A = 25°C, 0.35 0.35 0.5 0.80 0.45 V 0.80 V 2.0 2.0 V 50 100 -0.8 -0.8 -1.2 p,A 50 p,A 100 p,A -1.2 V 4.0 4.0 pF 6.0 6.0 pF 1 MHz 1 MHz, Output "OFF" ICC Power Supply Current VCC = Max, All Inputs Grounded, 120 120 155 155 rnA All Outputs Open TRI-STATE PARAMETERS ISC Output Short Circuit Current Vo = OV, VCC = Max, (Note 4) -20 -70 -20 -70 rnA ±50 I1A (Note 5) 1HZ Output Leakage (TRI-STATE) ±50 VCC = Max, Vo = 0.45 to 2.4V, Chip Disabled VOH Output Voltage High, (Note 5) 2.4 IOH = -2 rnA 3.2 V IOH = -6.5 rnA AC Electrical Characteristics 2.4 V (With standard load) DM54S473.54S472 PARAMETER 3.2 DM74S473, 74S472 0 5V ±10%;-55°Cto+125°e 5V ±5%; O°C to +70 e CONDITIONS MIN TYP MAX MIN TYP UNITS MAX ns tAA Address Access Time 75 60 tEA Enable Access Time 35 30 ns tER Enable Recovery Time 35 30 ns Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do not mean that the device may be operated at these values. Note 2: These limits do not apply during programming. For the programming ratings, refer to the programming instructions_ Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vee = 5V and T A = 25° e. Note 4: During Ise measurement, only one output at a time should be grounded. Permanent damage may otherwise result. Note 5: To measure VOH, leEX or Ise on an unprogrammed part, apply 10.5V. 6-9 ~National Bipolar PROMs D Semiconductor DM54S474/DM74S474 4096·Bit (512 x 8) TRI·STATE® PROM . DM54S475/DM74S475 4096·Bit (512 x 8) Open·Coliector PROM General Description Features These Schottky memories are organized in the popular 512 words by 8 bits configuration. Four memory enable inputs are provided to control the output states. When E1 and E2 are low and E3 and E4 are high, the output presents the contents of the selected word. • Advanced titanium-tungsten (Ti-W) fuses • Schottky-clamped for high speed Address access-65 ns Enable access-35 ns • PNP inputs reduce input loading • All de and ac parameters guaranteed over temperature • Low voltage TRI·SAFETM programming • Board level programming • ROM mates are DM87S95 and DM87S96 If E1 or E2 are high, or E3 or E4 are low, it causes all 8 outputs to go to the "OFF" or high impedance state. The memories are available in both open·collector and TR I-STATE versions and are available as ROM's as well as PROM's. PROM's are shipped from the factory with lows in all locations. A high may be programmed into any selected location by following' the programming instructions. Once programmed, it is impossible to go back to a low. See the last page of this section for detailed programming information. Connection Diagram Military Commercial OpenCollector X X DM74S475 Dual-I n-Line Package TRI-STATE X DM74S474 DM54S474 X AJ 23 AB N, J A6 N, J AS 22 NC J A4 21 £1 X X X DM54S475 Package X J A] A2 Al Block Diagram 11 AD AS AJ A6 4096·81T CELL 64 X 64 AS MEMORY MATRIX A4 OB 16 OJ 01 02 10 15 06 11 14 05 0] A] 13 04 GND 12 TOP VIEW A2----~ Logic Symbol Al-------t AO------I El E2 E3E4 El E2--....r-I-' ~~--+-~-~+---.~--.-+-~~--+-~-~ E]----,._'" E4 AD A2 OB OJ 06 05 03 04 Order Number DM54S474J, DM54S475J, DM74S474J or DM74S475J See NS Package J24A Order Number DM74S474N or DM74S475N See NS Package N24B 6-10 02 01 A3 A4 AS A6 AJ AS 01 02 03 04 05 06 07 OB Absolute Maximum Ratings Supply Voltage (Note 2) Input Voltage (Note 2) Output Voltage (Note 2) Storage Temperature Lead Temperature (Soldering, 10 seconds) Operating Conditions (Note 1) -D.5V to +7V -1 .2V to +5.5V -D.5V to +5.5V -65°C to +150°C 300°C DC Electrical Characteristics Supply Voltage (VCC) DM54S474, DM54S475 DM74S474, DM74S475 Ambient Temperature (T A) DM54S474, DM54S475 DM74S474, DM74S475 MIN MAX UNITS 4.5 4.75 5.5 5.25 V V -55 0 +125 +70 °c °c Logical "0" Input Voltage (Low) 0 0.8 V Logical "1" I nput Voltage (High) 2.0 5.5 V (Note 3) . DM54S474, DM54S475 DM74S474, DM74S475 CONDITIONS PARAMETER UNITS MIN IlL Input Load Current, All Inputs VCC = Max, VIN = 0.45V IIH Input Leakage Current, All Inputs VCC = Max, VIN = 2.7V II Input Leakage Current, All Inputs VCC = Max, VIN VOL Low Level Output Voltage VCC VIL Low Level Input Voltage TYP MAX -80 -250 = 5.5V = Min, IOL = 16 mA 0.35 MIN TYP MAX -80 -250 25 pA 1.0 1.0 mA 0.35 0.5 0.80 VIH High Level Input Voltage ICEX Output Leakage Current (Open·Coliector Only) (Note 5) = Max, VCEX = 2.4V VCC = Max, VCEX = 5.5V Vc Input Clamp Voltage VCC = Min, liN = -18 mA CIN Input Capacitance VCC = 5V, VIN = 2V, T A = 25°C, Co Output Capacitance VCC 0.45 V 0.80 V 2.0 2.0 V 50 VCC 100 --0.8 pA 25 -1.2 --0.8 50 pA 100 pA -1.2 V 4.0 4.0 pF 6.0 6.0 pF 1 MHz = 5V, Vo = 2V, TA = 25°C, 1 MHz, Output "OFF" ICC Power Supply Current VCC = Max, All Inputs Grounded, 115 170 115 170 mA All Outputs Open TRI-STATE PARAMETERS ISC Output Short Circuit Current Vo = OV, VCC = Max, (Note 4) -70 ·-20 -20 -70 rnA ±50 pA (Note 5) 1HZ Output Leakage (TRI·STATE) VCC = Max, Vo = 0.45 to 2.4V, ±50 Chip Disabled VOH Output Voltage High, (Note 5) IOH IOH = -2 rnA = -6.5 mA AC Electrical Characteristics 2.4 V 3.2 2.4 V (With standard load) DM54S474, DM54S475 PARAMETER 3.2 DM74S474, DM74S475 o 5V ±10%;-55°eto+125°e 5V ±5%; oOe to +70 e CONDITIONS MIN TYP MAX MIN TYP UNITS MAX tAA Address Access Time (Figure 1) 40 75 40 65 ns tEA Enable Access Time (Figure 2) 20 40 20 35 ns tER Enable Recovery Time (Figure 2) 20 40 20 35 ns Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do not mean that the device may be operated at these values. Note 2: These limits do not apply during programming. For the programming ratings, refer to the programming instructions. Note 3: These limits apply over the entire operating range unless stated otherwise. All tYpical values are for Vee = 5V and TA = 25°C. Note 4: During Ise measurement, only one output at a time should be grounded. Permanent damage may otherwise result. Note 5: To measure VOH, leEX or ISC on an unprogrammed part, apply 10.5V to both A7 and A2 (pin 1 and pin 6). 6-11 Standard Test Load • Input waveforms are supplied by a pulse generator having the following characteristics: PRR = 1 MHz, ZOUT = son, tr ~ 2.S ns and tf ~ 2.S ns (between 1.0V and 2.0V). • tAA is measured with both enable inputs at a steady low level. • tEA and tER are measured from the 1.SV on in· puts and outputs with all address inputs at a steady level and with the unused enable input at a steady low level. vcc MEMORY O~J~~~ 0-...- - -.... TEST * CL includes probe and jig capacitance. Switching Time Waveforms 3V ADDRESS INPUT 3V -JI '-_ _ _ _ _ _/1 ,--------- ENABLE INPUT Qy _ _ _ 1.5V QV OUTPUT OUTPUT tEA FIGURE 2. Enable Access Time and Recovery Time FIGURE 1. Address Access Time Typical Performance Characteristics Typical Switching Characteristics as a Function of VCC (TA = 2So C, Standard Load) Typical Switching Characteristics as a Function of Temperature (VCC = SV, Standard Load) 70 50 !.... 40 """" r- '"- r- t~A -.l ] 40 ;:: 3D :g - 4.5 125 I I t~A I o 25 -55 I t~A tEIR 10 I o ~ 20 t~R 10 -- 50 I I ::;; I 1 60 l""- ~A ;:: . 30 20 70 I I I I 60 5.0 5.5 SUPPLY VOLTAGE (VI TA - AMBIENT TEMPERATURE ('C) Equivalent Circuits Equivalent of Each Input vcc Typical Open·Coliector Output Typical TRI·STATE Output VCC \, INPUT 0 - -....- ... L-.~"'-<"l OUTPUT 6-12 ~National Bipolar PROMs D Semiconductor DM54S570/DM74S570 2048·Bit (512 x 4) Open· Collector PROM DM54S571/DM74S571 2048·Bit (512 x 4) TRI·STATE® PROM General Description Features These Schottky memories are organized in the popular 512 words by 4 bits configuration_ A memory enable input is provided to control the output states. When the enable input is in the low state, the outputs present the contents of the selected word. • Advanced titanium-tungsten (Ti-W) fuses • Schottky-clamped for high speed Address access-55 ns max Enable access-30 ns max • PNP inputs reduce input loading • All dc and ac parameters guaranteed over temperature • Low voltage TRI-SAFETM programming • Board level programming • ROM mates are DM74S270 and DM74S370 If the enable input is raised to a high level, it causes all 4 outputs to go to the "OFF" or high impedance state. The memories are available in both open-collector and TRI-STATE versions and are available as ROM's as well as PROM's. PROM's are shipped from the factory with lows in all locations. A high may be programmed into any selected location by following the programming instructions. Once programmed, it is impossible to go back to a low. See the last page of this section for detailed programming information_ Commercial Open· Collector DM74S570 X X DM74S571 X Military DM54S570 X DM54S571 X TRI·STATE Package X N, J .X J N,J X J Block Diagram Connection Diagram Dual-In-Lirte Package MOST SIGNIFICANT AODRESS BIT I AS A7 A6 AS A4 A3 2048·BIT CEL lS 64 X 32·81T MEMORY MATRIX A6 VCC AS A7 A4 AS A3 Ei AD 01 Al 02 A2 A2 03 Al GNO 04 AD TOP VIEW Logic Symbol AD MOST SIG~~;~AB~~ - 0 4 03 02 01 Order Number DM54S570J, DM54S571J, , DM74S570J or DM74S571J See NS Package J16A Al 01 A2 02 A3 OJ A4 04 AS A6 A7 Order Number DM74S570N or DM74S571N See NS Package N16A 6-13 El or- to- Il) Absolute Maximum Ratings Operating Conditions (Note 1) en ~ '" c :E ....... or- Supply Voltage (Note 2) Input Voltage (Note 2) Output Voltage (Note 2) Storage Temperature Lead Temperature (Soldering, 10 seconds) --Q.5V to +7V -1.2V to +5.5V --o.5V to +5.5V -65°C to +150°C 300°C Il) en ~ Il) DC Electrical Characteristics Input Load Current, All Inputs VCC = Max, VIN = 0.45V :E Input Leakage Current, All Inputs VCC = Max, VIN II Input Leakage Current, All Inputs VCC = Max, VIN = 5.5V 25 VOL Low Level Output Voltage VCC = Min, IOL = 16 mA VIL Low Level Input Voltage VIH High Level Input Voltage ICEX Output Leakage Current '" ~ Il) :E c V V -55 0 +125 +70 °c °c Logical "0" Input Voltage (Low) 0 O.S V Logical "1" Input Voltage (High) 2.0 5.5 V MIN IIH Il) 5.5 5.25 CONDITIONS I!L '" c 4.5 4.75 DM54S570, 54S571 PARAMETER Il) en ~ UNITS (Note 3) o to- MAX Ambient Temperature (TA) DM54S570, DM54S571 DM74S570, DM74S571 to- ~ MIN Supply Voltage (VCC) DM54S570, DM54S571 DM74S570, DM74S571 TYP -SO = 2.7V 0.35 DM74S570, 74S571 UNITS MA)~ MIN TYP -SO -250 pA 1.0 1.0 mA 0.5 0.35 VCC = Max, VCEX = 5.5V Input Clamp Voltage VCC = Min, liN = -lS mA CIN I nput Capacitance VCC = 5V, VIN Co Output Capacitance VCC = 5V, Vo = 2V, TA = 25°C, = 2V, T A V O.SO V V 50 100 -O.S = 25°C, 0.45 2.0 VCC = Max, VCEX ~ 2.4V pA 25 2.0 (Open-Collector Only) (Note 5) -250 25 O.SO Vc MAX -1.2 -O.S 50 pA 100 pA -1.2 V 4.0 4.0 pF 6.0 6.0 pF 1 MHz 1 MHz, Output "OFF" ICC Power Supply Current VCC = ~ax, All Inputs Grounded, 90 130 90 130 mA All Outputs Open TRI-STATE PARAMETERS ISC Output Short Circuit Current Vo = OV, VCC = Max, (Note 4) -70 -20 -20 -70 mA ±50 pA (Note 5) 1HZ Output Leakage (TRI-STATE) VCC = Max, Vo = 0.45 to 2.4V, ±50 Chip Disabled VOH Output Voltage High, (Note 5) IOH = -2 mA . 2.4 3.2 V IOH = -6.5 mA AC Electrical Characteristics 2.4 V (With standard load) DM54S570, 54S571 PARAMETER 3.2 DM74S570, 74S571 5V ±10%;-55°Cto+125°C 5V ±5%; O°C to +70°C . CONDITIONS MIN TYP MAX MIN TYP UNITS MAX tAA Address Access Time (Figure 1) 40 65 40 55 ns tEA Enable Access Time (Figure 2) 20 35 20 30 ns tER Enable Recovery Time (Figure 2) 20 35 20 30 ns Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged_ They do not mean that the device may be operated at these values. Note 2: These limits do not apply during programming. For the programming ratings, refer to the programming instructions. Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for VCC = 5V and TA Note 4: During ISC measurement, only one output at a time should be grounded. Permanent damage may otherwise result. Note 5: To measure VOH, ICEX or ISC on an unprogrammed part, apply 10.5V to both AS and A2 (pin 14 and pin 7). 6-14 = 25°C. Standard Test Load • Input waveforms are supplied by a pulse generator having the following characteristics: PR R = 1 MHz, ZOUT = 50n, tr ~ 2.5 ns and tf ~ 2.5 ns (between 1.0V and 2.0V). • tAA is measured with both enable inputs at a steady low level. • tEA and tER are measured from the 1.5V on inputs and outputs with all address inputs at a steady level and with the unused enable input at a steady low level. Vee MEMORY O~Jb~~ 0-....- - - . . . , TEST * CL includes probe and jig capacitance. Switching Time Waveforms 3V 3V ADDRESS INPUT 1.5V 1.5V ENABLE INPUT OV I.SV 1.5V OUTPUT 1.5V OUTPUT 'ER FIGURE 1. Address Access Time FIGURE 2. Enable Access Time and Recovery Time Typical Performance Characteristics Typical Switching Characteristics as a Function 01 V CC (T A = 25°C, Standard Load) Typical Switching Characteristics as a Function of Temperature (VCC = 5V, Standard Load) 70 70 60 60 50 ........ 40 ~ ;:: 30 20 10 -- - ,I ........ _ I, I~A 1 ~ ;:: - I~R ·25 40 30 r--- 20 o 4.5 125 IdA ,I I~A tE,R 10 , -55 --- 50 "':"AA , I, I 5.0 5.5 SUPPLY VOLTAGE (V) TA - AMBIENT TEMPERATURE re) Equivalent Circuits Equivalent of Each Input vee Typical TRI·STATE Output vee INPUTo--....- - t -o OUTPUT L-.. . . . . . . . . . 6-15 Typical Open·Collector Output ~National Bipolar PROMs ~ Semiconductor DM54S572/DM74S572 4096·Bit (1024 x 4) Open·Coliector PROM DM54S573/DM74S573 4096·Bit (1024 x 4) TRI·STATE® PROM General Description Features These Schottky PROM memories are organized in the popular 1024 words by 4 bits configuration. Two memory enable inputs are provided to control the output states. When the enable inputs are in the low state, the outputs present the contents of the selected word. • Advanced titanium-tungsten (Ti-Wl fuses • Schottky-clamped for high speed Address access-60 ns max Enable access-35 ns max If either or both of the enable inputs is raised to a high level, it causes all 4 outputs to go to the "OFF" or high impedance state. The memories are available in both open·collector and TR I·ST ATE® versions. PROM's are shipped from the factory with lows in all locations. A high may be programmed into any selected location by following the programming instructions. Once programmed, it is impossible to go back to a low. See the last page of this section for detailed program· ming information. Military DM74S572 X X DM74S573 DM54S572 DM54S573 Commercial • PNP inputs reduce input loading • All dc and ac parameters guaranteed over temperature • Low voltage TRI-SAFETM programming • Board level programming • High density 18-pin package Open· Collector TRI·STATE Package X N.J X X X N.J X J X Block Diagram J Connection Diagram Logic Symbol Dual·1 n·line Package 4096·BIT ARRAY 64 X 64-8IT MEMORY MATRIX lB A6 11 AS 16 A4 15 A3 14 AD 13 Al 12 A2 7 _ 8 EI AD Vee 01 A7 02 A8 A9 03 01 04 02 03 11 04 IOn GND EI E2 TOP VIEW 04 03 02 01 Order Number DM54S572J, DM54S573J, DM74S572J or DM74S573J See NS Package J18A 6·16 Order Number DM74S572N or DM74S573N See NS Package N 18A Absolute Maximum Ratings Supply Voltage (Note 2) Input Voltage (Note 2) Output Voltage (Note 2) Storage Temperature Lead Temperature (Soldering, 10 seconds) Operating Conditions (Note 1) -{).5V to +7V -1.2V to +5.5V --{).5V to +5.5V -65°C to +150°C 300°C Supply Voltage (VCC) DM54S572, DM54S573 DM74S572, DM74S573 Ambient Temperature (T A) DM54S572, DM54S573 UNITS 4.5 5.5 V 4.75 5.25 V +125 °c 0 +70 °c Logical "0" Input Voltage (Low) 0 0.8 V Logical "1" Input Voltage (High) 2.0 5.5 V (Note 3) DM54S572, 54S573 PARAMETER DM74S572,74S573 CONDITIONS UNITS MIN IlL Input Load Current, All Inputs VCC Input Leakage Current, All Inputs VCC = Max, = Max, VIN IIH VIN = 0.45V = 2.7V II Input Leakage Current, All Inputs VCC = Max, VIN = 5.5V VCC = Min, IOL = 16 mA VOL Low Level Output Voltage VIL Low Level Input Voltage VIH High Level Input Voltage ICEX Output Leakage Current Vc Input Clamp Voltage = Max, VCEX ~ 2.4V VCC = Max, VCEX = 5.5V VCC = Min, liN = -18 mA CIN Input Capacitance VCC Co Output Capacitance (Open-Collector Only) (Note 5) MAX -55 DM74S572, DM74S573 DC Electrical Characteristics MIN TYP -80 0.35 MAX MIN -250 TYP MAX -80 -250 25 IlA 1.0 1.0 mA 0.35 0.50 0.80 2.0 = 5V, = 2V, VIN TA V V V 50 100 -0.8 = 25°C, 0.45 0.80 2.0 VCC Il A 25 -1.2 -0.8 50 IlA 100 IlA -1.2 V 4.0 4.0 pF 6.0 6.0 pF 1 MHz VCC = 5V, Vo = 2V, TA = 25'C, 1 MHz, Output "OFF" ICC Power Supply Current VCC = Max, All Inputs Grounded, 125 140 125 140 mA All Outputs Open TRI-STATE PARAMETERS ISC Output Short Circuit Current Vo = OV, VCC = Max, (Note 4) -70 -20 -20 -70 mA :':50 IlA (Note 5) 1HZ Output Leakage (TRI·STATE) VCC = Max, Vo = 0.45 to 2.4V, :':50 Chip Disabled VOH Output Voltage High, (Note 5) IOH IOH = -2 mA = -6.5 mA AC Electrical Characteristics 2.4 3.2 V 2.4 V (With standard load) DM54S572,54S573 PARAMETER 3.2 CONDITIONS 5V:':10%;-55°C'to+125°C MIN TYP MAX DM74S572,74S573 5V :':5%; OU C to +70°C MIN TYP UNITS MAX tAA Address Access Time 40 75 40 60 ns tEA Enable Access Time 25 45 25 35 ns tER Enable Recovery Time 25 45 25 35 ns Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do not mean that the device may be operated at these values. Note 2: These limits do not apply during programming. For the programming ratings, refer to the programming instructions. Note 3: These limits apply over the entire operating range unless stated otherwise. All typical values are for Vce = 5V and T A Note 4: During Ise measurement, only one output at a time should be grounded. Permanent damage may otherwise result. Note 5: To measure VOH, ICEX or Ise on an unprogrammed part, apply 10.5V to both A5 and A2 (pin 2 and pin 7). 6-17 = 25°e. ,.... ,.... en r-... 00 00 Bipolar PROMs ~National ~ Semiconductor ~ c-.... DM77S180/DM87S180, DM77S181/DM87S181 ,.... 1024 X 8-Bit TTL PROM 00 ,.... en r-... r-... ~ C o en r-... 00 ,.... 00 ~ c oCO ,.... en 1'0 General Description Features These Schottky memqries are organized in the popular 1024 words by 8 bits configuration. Four memory enable inputs are provided to control the output states. When E1 and E2 are low and E3 and E4 are high, the output presents the contents of the selected word. • Advanced titanium-tungsten (Ti-W) fuses • Schottky-clamped for high speed Address access-40 ns typ Enable access-15 ns typ If E1 or E2 are high, or E3 or E4 are low, it causes all 8 outputs to. go to the "OFF" or high impedance state. The memories are available in both open-collector and TRISTATE''' versions. • PNP inputs reduce input loading • All DC and AC parameters guaranteed over temperature • Low voltage TRI-SAFETM programming Military Commercial PROMs are shipped from the factory with lows in alilocalions. A high may be programmed into any selected location by following the programming instructions. See the last page of this section for detailed programming information. DM87S180 X DM87S181 X DM77S180 X DM77S181 X Open· TRI·STATE Package Collector N. J X X N. J J X X J r-... ~ C Connection Diagram Block Diagram Dual·ln-Line Package A9 A8 4096·81T CELL 64 X 128 MEMORY MATRIX A1 A6 AS A7 24 Vec A6 23 A8 22 AS A4 A9, A4 21 El AJ 20 _ E2 A2 19 EJ AJ------t A2------I Al------I AO------I AI 18 E4 AD 11 08 E1 [ 2 - - , . . . ......... EJ r-~~---.-r---~~---.-+--~~~--~+---~~---, 16 01 01 E4 10 15 OJ 11 14 12 13 02 08 01 06 05 04 OJ 02 01 GND Logic Symbol AD 06 05 04 TOPVIEW 01 Order Number DM77S180J, DM77S181J, DM87S180J or DM87S181J See NS Package J24A 02 OJ 04 Pin Names . E1 to E4 Enable Inputs AO to A9 Address Inputs 01 to 08 Data Outputs 6-18 Order Number DM87S180N or DM87S181N See NS Package N24B Absolute Maximum Ratings (Note 1) Operating Conditions Supply Voltage (Note 2) Supply Voltage (Vccl DM77S180, DM77S181 DM87S180, DM87S181 Input Voltage (Note 2) -0.5Vto + 7V -1.2Vto +5.5V Output Voltage (Note 2) - 0.5V to + 5.5V -65·Cto +150·C Storage Temperature 300·C Lead Temperature (Soldering, 10 seconds) Ambient Temperature (TN DM77S180, DM77S181 DM87S180, DM87S181 Units Min Max 4.5 4.75 5.5 5.25 V V +125 +70 0.8 ·C ·C 5.5 V -55 0 0 2.0 Logical "0" InputVoltage(Low) Logical "1" Input Voltage (High) V DC Electrical Characteristics (Note 3) Parameter Conditions DM77S180, DM87S180, Units DM77S181 DM875181 Min Typ Max ' Min Typ Max IlL Input Load Current, All Inputs -100 J1.A IIH Input Leakage Current, All Inputs Vcc= Max, V IN =2.7V 25 25 J1.A II Input Leakage Current, All Inputs Vcc=Max, VIN=5.5V 50 50 J1.A VOL Low Level Output Voltage 0.45 V V IL Low Level Input Voltage V IH High Level Input Voltage leEx Output Leakage Current (Open·Collector Only) -10 Vcc= Max, V IN =0.45V 0.35 Vcc= Min, IOL = 16 mA -100 -10 0.50 0.35 0.80 2.0 0.80 2.0 50 100 Vee=Max, VcEx =2.4V Vcc= Max, VCEX = 5.5V V V 50 100 J1.A J1.A Vc Input Clamp Voltage Vcc=Min, IIN= -18 mA C IN Input Capacitance Vce =5V, V IN =2V, TA =25·C, 1 MHz 4.0 4.0 pF Co Output Capacitance Vcc =5V, Vo=2V, TA =25·C, 1 MHz, Output "OFF" 6.0 6.0 pF Icc Power Supply Current Vcc= Max, All Inputs Grounded, All Outputs Open 115 -0.8 -1.2 -0.8 170 115 -1.2 170 V mA TRI·STATEPARAMETERS Isc Output Short Circuit Current Vo= OV, Vcc= Max, (Note 4) 1HZ Output Leakage (TRI·STATE) Vcc=Max, Vo =0.45to2.4V, Chip Disabled V OH Output Voltage High -20 -20 ±50 2.4 IOH= -2 mA IOH= -6.5 mA -70 -70 mA ±50 J1.A 3.2 2.4 V V 3.2 AC Electrical Characteristics (With standard load) Parameter Conditions DM77S180, DM77S181 5V ± 10%; - 55°C to +125°C Min Typ Max Address Access Time 40 75 tEA Enable Access Time 15 35 tER Enable Recovery Time 15 35 tAA DM87S180, DM875181 Units 5V±5%, O°C to +70 o C Min Typ Max 60 ns 15 30 ns 15 -30 ns 40 Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do not mean that the device may be operated at these values. Note 2: These limits do not apply during programming. For the programming ratings, refer to the programming instructions. Note 3: These limits apply over the entire operating range unles stated otherwise. All typical values are for Vec = SV and TA = 2S·C. Note 4: During ISC measurement, only one output at a time should be grounded. Permanent damage may otherwise result. 6-19 Bipolar PROMs ~National ~ Semiconductor DM77S184/DM87S184 8192-Bit (2048 x 4) Open-Collector PROM DM77S185/DM87S185 8192-Bit (2048 x 4) TRI-STATE@ PROM General Description These Schottky PROM memories are organized in the popular 2048 words by 4 bits configuration_ One memory enable input is provided to control· the output states. When the enable input is in the low state, the outputs present the contents of the selected word. See the last page of this section for detailed programming information_ If the enable input is raised to a high level, it causes all 4 outputs to go to the "OFF" or high impedance state. The memories are available in both open-collector and TRI-STATE®versions. • Advanced titanium-tungsten (Ti-W) fuses • Schottky-clamped for high speed Address access-40 ns max Enable access-15 ns max • PNP inputs reduce input loading • All DC and AC parameters guaranteed over temperature • Low voltage TRI-SAFETM programming Features PROM's are shipped from the factory with lows in all locations. A high may be programmed into any selected· location by following the programming instructions. Commercial OpenCollector DM87S184 X X DM87S185 X Military DM77S184 X DM77S185 X TRI-STATE Package X N, J X J N,J J X Connection Diagram Logic Symbol Block Diagram Dual-In-Line Package 8192·81T ARRAY 128 X 54·BIT MEMORY MATRIX A6 A5 A4 A3 Al A2 AID TOP VIEW 04 03 02 01 Pin Names E Enable Input Order Number DM77S184J, DM77S185J, DM87S184J or DM87S185J See NS Package J18A Order Number DM87S184N or DM87S185N See N S Package N 18A AO-A10 Address Inputs 01-04 Data Outputs 6-20 Absolute Maximum Ratings Supply Voltage (Note 2) Input Voltage (Note 2) Output Voltage (Note 2) Storage Temperature Lead Temperature (Soldering, 10 seconds) -- OU1PUT8 6 OUTPUY8 1 10 MSB OUTPUT 8, INPUTA. L..-________---! Vss 12 4 ....----~~~BLE Order Number MM5221J See NS Package J24A Order Number MM5221 N See NS Package N24B Note: For programming information see Memory Applications Handbook, page 4-6. 7-9 Absolute Maximum· Ratings Operating Conditions VGG Supply Voltage Vss - 20V Voo Supply Voltage Vss - 20V Input Voltage (V ss - 20)V < VIN < (V ss +0.3)V Storage Temperature -65°C to +150°C Lead Temperature (Soldering, 10 sec) 300°C Operating Temperature Electrical Characteristics T A within operating temperature range, Vss = +5V ±5%, VGG = Voo = -12V ±5%, unless otherwise specified. PARAMETER CONDITIONS MIN Output VoltageLevels MOS to TTL Logical "1" Logical "0" 6.8 kD ±5% to V GG Plus One Standard 'Series 54/74 Gate Output Current Capability Logical "0" V OUT = 2.4V 100 IGG (Note 1) UNITS V V mA Vss - 4.2 V V T A = 25°C Vss = +5V VGG = Voo 6.5 12.0 1 mA 1 IlA 5 15 25 pF pF 700 950 I']S = -12V = Vss - 12V VIN Input Capacitance V GG Capacitance (Note 4) f f Address Time (Note 2) See Timing Diagram T A = 25°C, = 1.0 MHz, VIN = OV = 1.0 MHz, VIN = OV VSS = 5V VGG = Voo Output AND Connections (Note 3) +0.4 +2.4 Vss - 2.0 I nput Leakage T ACCESS MAX 2.5 Input Voltage Levels Logical "1" Logical "0" Power Supply Current TYP = -12V 6.8 kD ±5% to V GG Plus One Standard Series 54/74 Gate Note 1: The VGG supply may be clocked to reduce device power without affecting access time. Note 2: Address time is measured from the change of data on any input except mode control or Chip Enable line to the output of a TTL gate. (See Timing Diagram). See curves for guaranteed limit over temperature. Note 3: The address time in the TTL load configuration follows the equation: T ACCESS = The specified limit + (N - 1) (50) ns Where N = Number of AND connections. Note 4: Capacitance guaranteed by design. 7-10 8 IlA Performance Characteristics Power Supply Current vs Power Supply Voltages Power Supply Current vs Ambient Temperature 16 ~-r'-~-r'-~~~~~ 16 rT-r~rT-r'-rT~~~~ N:-t--+-H-t-+ VSS = +5.0V 1'..,..,.. Voo = VGG =-12V H--+-H-t--t-H--+- VDO = VGG 14 14 r+~~-r+-~-rTA=25C 12 l'O. 10 -1-1- MAXIMUM t'S.. .J...t""T H-+--HF-::r-I- MAXIM UM -1--10 I-+-+-+-II-+-+--t-I-+-+--t-I-+-I 12 ~ £ o o I-- ~ £ 8 1-+-+-+-+-+-+-+,-++-+-+-+-+-1 - o o 6 1-+-+-__I-1''''F-r-T"-t-I-+-+--t-I-+-I H-+-H--t TYPICA L-t-~-r+-i 6 4 2H-t--HH-t--t-H-t--t-H-l 21-+-+-+-1-+-+-+-1-+-+--t-1-+-I o O ........-'--'--.L......I.-'--'--.L......I.-'--'--I.......J..-I ~-L~~-L~~-L~~~ 17.0 16.0 18.0 -50 -25 Vss - VGG (V) Typical Access Time vs Power Supply Voltages ] 11 ~1~ 800 +10'C +125'C I' ~ 600 H-t--H-t--t-t-+-+-+-+ +25· C ~ ~ 400 H-t--+-H-t--t-I-t-t--HI-t-l ~ 200 I-+-+-+-I-+-+--t-I-+-+-+-II-+-I 16.0 15 100 r-T-r...,.--rT-r"rT-r~r-r-, t-t-+-"""+-O;-±:::+-1I-+"'==r"~ +12 5 C r-~ - - :;~.~ 120 I-t-+-+~+-H-t--H- VDO = VGG 600 t-+-+--HI-t-+-+-t-+--+-H-+---l 400 H--t-H-t--H-t--t-t-t-t-+--l 200 r++-~-t-+-I-++-+-+-t-+-I 16.0 Vss - VGG (V) 17.0 18.0 Vss - VGG (V) Timing Diagram/Address Time -5V 'JV- INPUT AN rI OV...J L ANYTTl/OTL E'"·~10Pf ~ GATE t OUTPUT BM )0-"'-0 MM5221 10 pf I1- l ~ ANY TTl I:;' GATE Vss-20V~ I EITHER '. ~ t:::::: '''''"; 'JV~ 1,..---- ':: I 125 0 18.0 17.0 50 1400 ] 1::: ~ ~-o s, A, I---D----f.-o e, A" TOP VIEW Order Number MM5232J See NS Package J24A CON~~~i 0 - - - - ' CE,o----------l Order Number MM5232N See NS Package N24B CE, o--------~ Note: For programming information see Memory Applications Handbook, page 4-6. 7-21 BJ Absolute Maximum Ratings Operating Conditions VGG Supply Voltage Vss - 20V V LL Supply Voltage Vss - 20V Input Voltage (V ss - 20) V < V IN < (V ss + .03)V Storage Temperature Range -65°C to +150°C Lead Temperature (Soldering, 10 sec) 300°C Operating Temperature Range Electrical Characteristics (Positive Logic) TA within operating temperature range, Vss = +5.0V ±5%, VGG = VLL = -12V ±5%, unless otherwise noted. PARAMETER Output Voltage Levels Logical "0", VOL Logical "1", V OH CONDITIONS TYP UNITS V V 2.4 VGG Vss - 2.0 Power Supply Current Iss (Note 4) Vss; 5, V GG ; -12, V LL ; -12, T A ; 25°C Input Leakage V ,N Input Capacitance (Note 1) f; 1.0 MHz, V IN ; OV Output Capacitance (Note 1) f; 1.0 MHz, V ,N ; OV Address Time (Note 2) T A; 25°C, Vss; 5 ; MAX .4 I L ; 1.6 mA Sink I L ; 100 J.LA Source I nput Voltage Levels Logical "0", V'L Logical "1", V ,H TACCESS MIN 23 Vss - 4.0 Vss +0.3 V V 37 mA 15 pF 10 pF 1000 ns Vss - 10V J.LA 4 150 VGG ; V LL ; -12V 20 Output AND Connections (Note 3) Note 1: Capacitances are measured periodically only. Note 2: Address time is measured from the change' of data on any input or Chip Enable line to the output of a TTL gate. (See Timing Diagram.) Note 3: The address time follows the following equation: T ACCESS = the specified limit + (N - 1) x 25 ns where N = Number of AND connections. Note 4: Outputs open. Timing Diagram/Address Time E'N +5V EOUT TIME 7·22 Performance Characteristics Typical Access Time vs Supply Voltage Guaranteed Access Time vs Supply Voltage 1600 r-T'""T""T.....-r-r-"T""'T""'-rT-,-,,-T-T"t t-+-t-i'-t--H-+-+-+-+-+ VLL • Vee t400 H--H-t-t++-t-t-H-HH-+-I 125°C I.d:--H-t-t++-t-t-H-I 1200 T... 70oCI:::+'f"'f......8--t-i-+-+-+--t ! 1000 1400 t-++-+-+-H-+-t-+-+-+-HH--+--t 1200 H--H-t-H-+-t-t-H-HH-+-t 1--r--r2;5°-=1Cf--t''A'-;''~FI''''i-H-i ~ 800 t-++-+-+-H--t-i-+-+-+-HH--+--t .. 600 H--H-t-t++-t-t-H-HH-+-t ... 600 H--H-t-H-+-t-t-H-HH-+-t 400 H--H-t-t++-t-t-H-HH--H 400 t-++-+-+-H-+-+-+-+-+-HH-+-t 200 H--H-t-t++-t-t-H--f-;H--H 200 t-++-+-+-H-+-t-+-+-+-HH-+-t 16.2 17.8 17.0 16.2 17.0 17.8 Vss + IVee I (V) Power Supply Current vs Temperature 80 Power Supply Current vs Voltage 80 Vss' 5.0V VLL = -12V vGG ' 70 60 60 ~ ~ 50 ~ TA = 25°CVLL =V GG - 70 .., MAXIMu'M oS 40 MAXIMUM 40 50 Jl 30 30 TYPICAL 20 20 10 10 -50 -25 0 25 50 ThidL 16.2 75 100 125 TEMPERATURE (OC) 17.0 17.8 Vss + IVee I (V) Typical Applications TTL/MOS Interface v,. A, B, A. B. A, A, FIGURE 1. Power Saverfor Small Memory Arrays -, r I I I I .1 L ___ --' B, MMS232 A, FIGURE 2. Power Saver for Large Memory Arrays B, B, A, ASSUME IIV lL IIMIN. II-JV II MOOE CONTROL VGG - VLL MIN· R (1.6 mAl (NI whett N· 1 for 5.1 font. N- 1'0,6 .Slont. eE, 0 - - - - - - 1 CE,o-----....J Operating Modes 512 x 8 ROM connection Mode Control = VIH AID = VIL 1024 x 4 ROM connection ·Mode Control = VI L AIO = VI L enables the odd (8, ... B7) outputs VI H enables the even (B2 ... 88) outputs Note: Both chip enables may be programmed to provide any of four combinations. Example if CE1 = 1 and CE2 = 1 outputs (Positive Logic) would be enabled only when device pins 2 and 3 are Logic "1". The outputs will be in the third state when disabled. - 7-23 I I I I I I I I I L ___ --' III ~National MaS ROMs ~ Semiconductor MM5240 2560·Bit Static Character Generator General Description Features The MM5240 2560-bit static read only memory is a P-channel. enhancement mode monolithic MOS integrated circuit utilizing a low threshold voltage technology to achieve bipolar compatibility_ TRI-STATE@ outputs provide wire ORed capability without loading common data lines or reducing system access times. The ROM is organized in a 64 x 8 word by 5-bit memory organi?ation. • Bipolar compatibility • High speed operation-500 ns max • ±12 volt power suppl ies • Static operation-no clocks required • Multiple ROM logic appl ication-chip enable output control • Standard fonts available-off-the-shelf delivery Applications • • • • The MM5240 may be used as a 512 x 5-bit read only memory for applications other than character generation. Connection Diagram Character generation Random logic synthesis Micro-programming Table look-up Dual-In-Line Package l' "OW ADDRESS INPUTS L2 { l, Order Number MM5240J See NS Package J24A " Order Number MM5240N See NS Package N24B B, DATA OUTPUTS BJ I, I CHII' ENABLE I, Typical Application I, I, .. LOAD/RECIRCULATE CONTROL -~'--------~-- 'AC;ERfFRESH MEMORY lINfREFRESH MEMORY Note: For additional information refer to AN-40. Note: Chip enable tied to VOO to enable. 7-24 Absolute Maximum Ratings Operating Conditions V GG Supply Voltage V ss - 30V V DD Supply Voltage Vss - 15V Input Voltage (V ss - 20)V < V 1N < (V ss +0.3)V Storage Temperature -65°C to +150°C Lead Temperature (Soldering, 10 sec) 300°C Operating Temperature Electrical Characteristics PARAMETER Output Voltage Levels MOSto MOS Logical "1" Logical "0" (Note 1) MIN CONDITIONS MAX UNITS Vss - 9.0 V V +0.4 V V TYP IMSl to GND Vss - 1.0 MOS to TTL Logical "1" Logical "0" 6.8 kSl to V GG Plus One Standard Series 54/74 Gate Output Current Capability Logical "0" V OUT = Vss - 6.0V +2.5 mA 2.5 Input Voltage Levels Logical "1" Logical "0" Vss - 8.0 Vss - 2.0 V V Power Supply Current 25 IDD IGG (Note 2) Input Leakage V 1N = Vss - 12V Input Capacitance (Note 5) VGG Capacitance (Note 5) f=1.0MHz,V 1N =OV f = 1.0 MHz, V 1N = OV Address Time (Note 3) See Timing Diagram T A = 25°C T ACCESS Output AND Connection (Note 4) 150 55 1 mA /lA 1 /lA 5 8 25 40 pF ·pF 425 500 ns 4 MOS Load TTL Load 10 Note 1: These specifications apply for VSS = +12V ±5%, VGG = -12V ±5%, T A = O°C to +70°C unless otherwise specified. Note 2: The V GG supply may be clocked to reduce device power without affecting access time. Note 3: Address time is measured from the change of data on any input or Chip Enable line to the output of a TTL gate. (See Timing Diagram). See curves for guaranteed limit over temperature. Note 4: The address time in the TTL load configuration follows the equation: T ACCESS = The specified limit + (N - 1) (50) ns Where N = Number of AND connections. The number of AND ties in the MOS load configuration can be increased at the expense of MOS "0" level. Note 5: Guaranteed by design. 7·25 Performance Characteristics Guaranteed Access Time IT AI vs Supply Voltage Typical Access Time IT AI vs Supply Voltage . 1000 r - - - - - , - - - - , - - - - , - - . . . , 1200 , 1000 800 " 600 -~ 800 " -. 600 ,I- 400 400 .-;-~ (: 125'C . ....- ~!O°C ':-" 25°C 200 200 10 11 12 13 12,0 lU 14 Voo Power Supply Current vs Temperature Power Supply Current vs Voltage 60 Vss =+12,OV VGG =-12,OV TA = 25°C 50 50 40 ~ ... 30 20 ~ T~P:CAl - - I- -I- 40 C[ -- E. o 30 MA~ ~ ... I J"'.. r- ...TYPICAL :-.""" o --- -r-- 10 13,2 12,0 -50 -25 0 25 Timing Diagram/Address Time +1ZV OV E,. TACC£ss ·12V OV +JV BV EOUT +JV 1,5V OV i - - - - - - - - - - - - - - - - -__ time +12V +JV-r-l L 7-26 r-- 50 15 100 125 150 TEMPERATURE Vss & -VGG (V) DV...J - --. 20 10 10,8 13,2 Vss & -VGG (V) Vss & - VGG (V) C[ t- I I r C) MOS ROMs ~National ~ Semiconductor MM5241 3072·Bit (64 X 6 X 8) ROM General Description Features The MM5241 3072-bit static read only memory is a P-channel enhancement mode monolithic MOS integrated circuit utilizing a low threshold voltage technology to achieve bipolar compatibility. TRI-STATE® outputs provide wire ORed capability without loading common data lines or reducing system access times. The ROM is organized in a 64 x 6 word by 8-bit memory organization. Programmable Chip Enables (CE, and CE 2 ) provide logic control of mUltiple packages without external logic. A separate output supply lead is provided to reduce internal power dissipation in the output stages. • Bipolar compatibility • Standard supplies • Bus ORable output • Static operation • Multiple ROM control No external components required +5V. -12V TRI-STATE outputs No clocks required Two programmable Chip Enable lines Applications • Character generator • Random logic synthesis • • Microprogramming Table look-up Block and Connection Diagrams Dual-In-Line Package "n v" '. A. 10 " · · · 22 11 "'. " " '. " "" "" 12 IJ CE. CE, Ne A, A, A, A. A, , A, DECODE LSB Lo I-----I:::t-t-O " I--i:~f-O " I-----I:::t-t-O '. 1---c~J-o '. 1--. -c::t-f-O •• M[MORY ARRAY A, v~ 21 Vt;t; 20 I 19 1 11 " " " 1---c~J-o., I--i:~t-o •• " Order Number MM5241J See NS Package J24A CE,o----------1 CE,O----------I CHIP ENABLE ARRAY Order Number MM5241N See NS Package N24B Typical Applications D E FIGURE 1. Power Saver for Small Memory Arrays TTL/MOS Interface FIGURE 2_ Power Saver for Large Memory Arrays v v ,,--, I, .,. I, ANVTTllDTl DEVICE ANYTTlIOTL DEVICE CE, v" I I R I I I I I L ___ -.I "----, I A. -::- I I I I I I L ___ -.I v" ASSUME I!VLL .IMIN I I =: II-lV II VGG - V LL MIN'" A (1.6 mAl (N) where N '" 1 fot 5 ... 1 font. N = 810r6 ... 8 font eE,-----' Note: 80th chip enables may be programmed to provide any of four combinations. Example: If CEl = 1 and CE2 = 1 outputs (Negative Logic) would be enabled only when device pins 2 and J are negative (Logic "1"). The outputs will be in the third state when disabled. La, Ll and L2 (device pins 11, 13 and 14) are in positive logic (1 = most positive voltage levels = Vs - 2V; a = most negative voltage level = Vss - 4V). Note: For programming information see Memory Applications Handbook, page 4-6. 7-27 Absolute Maximum Ratings Operating Conditions VGG Supply Voltage Vss - 20V V LL Supply Voltage Vss - 20V Input Voltage (Vss - 20) V < VIN < (V ss + .03)V Storage Temperature Range -65°C to +150°C Lead Temperature (Soldering, 10 sec) 300°C Operating Temperature Range Electrical Characteristics (Negative Logic) (Note 5) TA within operating temperature range, VSS = +5.0V ±5%, VGG = V LL = -12V ±5%, unless otherwise noted. PARAMETER Output Voltage Levels Logical "1" Logical "0" MIN CONDITIONS IL IL ; ; TYP MAX .4 1.6 mA sil'k 100 IlA source 2.4 Input Voltage Levels Logical "1" Logical "0" Vss = 5, VGG ; -12, VLL Input Leakage V1N = Vss - 10V Input Capacitance (Note 1) f ; -12, TA = 25°C 23 = 1.0 MHz, V1N ": OV Output Capacitance (Note 1) f; 1.0 MHz, V 1N Address Time (Note 2) TACCESS TA = 25°C. Vss; 5 VGG ; VLL = -12V ; V V 50 mA 1 IlA 15 pF 4 10 pF 700 900 ns 5 OV 150 V V Vss -4.0 Vss - 2.0 Power Supply Current Iss (Note 4) UNITS 20 Output AND Connections (Note 3) Note 1: Address time is measured from the change of data on any input or Chip Enable line to the output of a TTL gate. (See Timing Diagram.) See curves for guaranteed limit over temperature. Note 2: Capacitances are measured periodically only. Note 3:. The address time follows the following equation: T ACCESS = the specified limit + (N of AND connections. Note 4: Outputs open. 11 x 25 ns where N = Number Note 5: All addresses and ou'tputs are in negative true logic with the exception of LO, L,. and L2 which are in positive logic. 7-28 Performance Characteristics Typical Access Time vs Supply Voltage 1400 ~ 1200 I I 1000 I ! VLL 12~oc Guaranteed Access Time vs Supply Voltage ' 1600 """-'-'r-T'"-,-,-rT""'T-'-"""""T'""""""''' I-++I-++-+-I-IH-+-+ VI I • VGG 1400 H-+-t-++-+--HH-+-t--t-t-t--t-t VGG 125°C~:H-+t-+-H-r+-+, 1200 .... TA " 10°C ... 800 25"C 1000 TA " ~ .. ... 600 ;~:~Io::±-"'-F'poo;.oC:::J>.:;:p"l-i-++-i ~--H~~~~~~~+-+4 ~ 800 I-+-HH-~-r+-+-+~-++-+, 600 H--+-IH-+-tH-+-+-++-+-+-+-+4 400 400 I-+-HH-~-r+-+-+++-++-+, 200 200 1-++-iH-~H-+-+-+++-++-+, 16.2 11.0 16.2 11.8 Power Supply Current vs Temperature 80 < ~ 11.8 Power Supply Current vs Voltage 80 10 Vss= 5.0V VGG " VLL = -12V 10 60 II 60 < E j! 50 MAXIMUM 40 11.0 Vss + IVGGI (V) Vss + IV GG I (V) TA ' 25"CV =V .- iL I t'i- 50 MAXIMUM- 40 30 30 TYPltAll TYPICAL 20 20 10 10 -50 -25 0 25 50 16.2 15 100 125 TEMPERATURE (OC) 11.0 Vss + IVGG I (V) Timing Diagram/Address Time +5V EON EOUT TIME 7·29 11.8 ~National MOS ROMs ~ Semiconductor MM52116 (2316E) 16,384·Bit Read Only Memory General Description Features The MM52116 is a static MOS 16,384-bit read-only memory organized in an 2048-word-by-8-bit format. It is fabricated using N-channel enhancement and depletion-mode technology which provides complete DTL/TTL compatibility and single power-supply operation. • • • • • • • • • • • Three programmable chip selects controlling the TRI5T ATE".: outputs allow for memory expansion. Programming of the memory array. and chip·select active levels is accompl ished by changing two masks during fabrication. Fully decoded Single 5V power supply ±10% tolerance Inputs and outputs TTL compatible Outputs drive 2 TTL loads and 100 pF Static operation TRI-STATE outputs for bus interface Programmable chip selects 2048-word-by-8-bit organization Maximum access time - 450 ns Industry standard pin outs (2316E) Compatible to standard EPROMs Applications • Microprocessor instruction store • Control logic • Table look-up Block and Connection Diagrams Dual-In-Line Package AD Al 02 A3 ROM ARRAY ROW DECODE 23 AS 04 AS 22 A9 05 A4 21 CS3 06 A3 2DCSI A2 19 AID 01 A1 OS IS CS2 Al 11 AD ~ VCC A6 A2 A4 24 A1 OS 16 01 01 DEC. rr AS A9 AID CSI 7-30 CS2 CS3 02 10 IS 06 14 05 03 " 13 04 GND 12 ToPVIEW Order Number MM52116D See NS Package D24C Order Number MM52116N See NS Package N24B Operating Conditions Absolute Maximum Ratings (Note 1) Voltage at Any Pin -0.5V to +7.0V _65°C to +150°C Storage Temperature Range 1W Power Dissipation 300°C Lead Temperature (Soldering, 10 seconds) Operating Temperature Range DC Electrical Characteristics ITA within operating temperature range, VCC = 5V ±10%, unless otherwise specified). PARAMETER (Note 2) CONDITIONS TYP (Note 4) MIN MAX = 0 to VCC UNITS Input Current VIN VIH Logical "1" Input Voltage DoC 2.0 VCC+1.0 V VIH Logical "1" Input Voltage _40°C 2.2 VCC+1.0 V VIL Logical "0" Input Voltage -0.5 0.8 V VOH Logical "1" Output Voltage IOH = -40011A VOL Logical "0" Output Voltage IOL = 3.2 mA ILOH Output Leakage Current VOUT ILOL Output Leakage Current VOUT'" 0.45V, Chip Deselected ICC1 Power Supply Current All Inputs = 5.25V, Data Output Open III 10 2.4 I1A V = 4V, Chip Deselected 0.4 V 10 I1A -10 70 100 TYP (Note 4) MAX I1A mA Capacitance PARAMETER (Note 3) CONDITIONS MIN UNITS CIN Input Capacitance (All Inputs) VIN = OV, T A = 25°C, f = 1 MHz, (Note 2) 7.5 pF COUT Output Capacitance VOUT = OV, T A. = 25°C, f = 1 MHz, (Note 2) 15.0 pF AC Electrical Characteristics (T A within operating temperature range, VCC = 5V ±10%, unless otherwise specified). See AC test circuit and switching time waveforms. . PARAMETER tAC Chip Select Access Time tOFF Output Turn OFF Delay tA Address Access Time MIN CONDITIONS See AC Test Circuit; tAC and tA Measured to Valid Output Levels with tr and tf of Input <20 ns, tOFF Measured to <±20 I1A Output Current TYP (Note 4) MAX UNITS 120 ns 100 ns 450 ns \ Note 1: "Absolute Maximum Ratings" are those values beyond which the. safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Positive true logic notation is used: logical "'" = most positive voltage level, logical "0" Note 3: Capacitance is guaranteed by periodic testing. Note 4: Typical. values are for T A = 25" C and nominal supply voltage. 7-31 = most negative voltage level. Switching Time Waveforms and AC Test Circuit X~____________~x_____ 2.DV ADDRESS -' ADDRESS VALID D.BV X__________~x~__~ 2.DV CHIP SELECT CHIP SELECT VALID D.BV ~H OUTPUT - _ _ _ _TRI·STATE@ ___ - VOL -~ _ l-t --< _t AC OFF DATA VALID -\ r- -\ FIGURE 1. Address Precedes Chip Select 2.DV ---------~ r------------"' r---X~ X ADD:E:~ ____ r---+-t-----------------tA-1 X---+--______-,-________ CHIP SELECT 2.DV - - - - - " " " \ D.BV • VOH TRI·STATE'" ..... -< Xi--------- OU~~~___ - __ -__ - ___ - -__-__ - ___~_ _ _D_A_T_A_IN_V_AL_IO_ _- J ' - -_ _ D_AT_A_V_A_lI_D_ __ FIGURE 2. Address Follows Chip Select TEST POINT ~ ..... lDOPF*r ":" : 25k ~ * Includes jig capacitance ROM Programming Information ROM programs for the MM52116 can be supplied to National in a number of means: A. 2708 PROM sets B. 2516 PROM (or equivalent) C. 2716 PROM (or equivalent) D. Intellec HEX punched paper tape E. Binary punched paper tape Since the MM52116 ha's programmable chip selects, it is imperative that chip select information be provided along with the ROM program. The information should be supplied as shown: CS1 is to be programmed logical _ _ _ (Hi or Lo) CS2 is to be programmed 10gical _ _ _ (Hi or Lo) CS3 is to be programmed 10gical _ _ _ (Hi or Lo) handled internally via a sophisticated computerized system. The original input device (PROM, tape, etc.) is read, the data is reprocessed to formats required by various production machines, and the final reconstructed data is then compared back to the original input device. The verification package returned to the customer for approval will consist of a listing of the program and a PROM or tape which matches the data National will use to create the programmed MM52116. In a normal situation, the verification package returned to the customer for approval, because of the system described, may consist of the original PROM or tape submitted by the customer. This program data, now in National's production format, is stored in archives for future customer re-orders. Given any of the above means of program data is received by National, verification of ROM program:: is 7-32 ~Nalional MOS ROMs U Semiconductor MM52132 32,768·Bit (4096 x 8) MAXI·ROM™ General Description Features The MM52132 is a static MOS 32,768-bit read-only memory organized in a 4096-word-by-8-bit format. I t is fabricated using N-channel enhancement and depletion-mode technology which provides complete DTL/TTL compatibility and single power-supply operation. • • • Fully decoded Single 5V power supply ±10% tolerance Inputs and outputs TTL compatible • Outputs drive 2 TTL loads and 100 pF • • Static operation TRI-STATE outputs for bus interface Two programmable chip selects controlling the TR 1ST ATE® outputs allow for memory expansion. • • Programmable chip selects 4096-word-by-8-bit organization Programming of the memory array and chip-select active levels is accomplished by changing two masks du ring fabrication. • Maximum access time - 450 ns • I ndustry standard pin outs Applications • Microprocessor instruction store • • Control logic Table look-up Block' and Connection Diagrams Dual-in-Line Package AD 01 24 Al Al Vce 02 A2 03 A3 04 ROM ARRAY ROW DECODE A4 05 A6 23 A8 A5 22 A9 06 A2 A6 01 Al 08 20 A3 A5 Al 21 A4 19 AID 18 All 11 AD rr A8 A9 AID All W CSI 08 16 01 01 DEC. eS2 CS1 02 10 15 06 11 14 05 GND 12 13 04 03 TOPV1EW CS2 Order Number MM52132D See NS Package D24C Order Number MM52132N See NS Package N24B 7-33 Absolute Maximum Ratings Operating Conditions (Note 1) Voltage at Any Pin -0.5V to +6.5V -65°C to +150°C Storage Temperature Range Power Dissipation lW 300°C Lead Temperature (Soldering, 10 seconds) Operating Temperature Range DC Electrical Characteristics (T A within operating temperature range, VCC = 5V ±10%, unless otherwise specified). PARAMETER (Note 2) CONDITIONS MIN MAX a to VCC 10 III Input Current VIH Logical "1" Input Voltage 2 VIL Logical "0" Input Voltage -0.5 VOH Logical "1" Output Voltage IOH = -200 /lA VOL Logical "0" Output Voltage IOL ILOH Output Leakage Current VOUT = 4V, Chip Deselected ILOL Output Leakage Current VOUT = 0.45V, Chip Deselected ICCl Power Supply Current All Inputs = 5.25V, Data VIN = TYP (Note 4) VCC+1.0 0.8 UNITS /lA V V V 2.4 = 3.2 mA 0.4 V 10 /lA -20 100 130 /lA mA Output Open Capacita nce PARAMETER (Note 3) CONDITIONS Input Capacitance (All Inputs) MIN TYP (Note 4) V I N = OV, T A = 25° C, MAX UNITS 7.5 pF 15.0 pF f = 1 MHz, (Note 2) COUT Output Capacitance VOUT = OV, T A = 25°C, f = 1 MHz, (Note 2) AC Electrical Characteristics (T A within operating temperature range, Vce = 5V ±10%, unless otherwise specified). See AC test circuit and switching time waveforms. CONDITIONS PARAMETER tAC Chip Select Access Time tOFF Output Turn OFF Delay tA Address Access Time MIN TYP (Note 4) MAX UNITS See AC Test Circuit. All Times (Except tOFF) 120 Measured to 1.5V Level with tr and tf of 100 ns 450 ns Input < 20 ns, (Figures 1 and 2), tOFF TR I·ST ATE Output Level Measured to Less than ±20 /lA ns Output Current Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Positive true logic notation is used: logical "1" ; most positive voltage level, logical "0" = most negative voltage level. Note 3: Capacitance is guaranteed by periodic testing. Note 4: Typical values are for T A; 25° C and nominal supply voltage. 7·34 AC Test Circuit and Switching Time Waveforms IV TEST POINT 2.4V 1.IV ADDRESS R[ D.4V 1.66K 2.4V - - - - " " " ' " , . - - - - - - , 1.,--- CIIiPSElECT O.4V----J IOOPF*r TRI·STATE"·· OUTPUT -----f-----{ tAC *Includes jig capacitance FIGURE 2. Address Follows Chip Select FIGURE 1. Address Precedes Chip Select Custom ROM Programming INFORMATION NEEDED So that National can better serve its customers, the following information must be submitted with each ROM order. NATIONAL PART NUMBER National Semiconductor Corporation 2900 Semiconductor Dr .• Santa Clara. CA. 95051 TWX 910·339·9240 Phone (408) 737·5000 ROM LETTER CODE (NATIONAL USE ONLY) NAME DATE ADDRESS CUSTOMER PRINT OR ID NO. CITY STATE TELEPHONE ZIP PURCHASE ORDER NO. J NAME OF PERSON NATIONAL CAN CONTACT (PRINT) AUTHORIZED SIGNATURE CHIP SELECT INFORMATION LOGIC CS1 o POS JDATE o NEG CS3 .1 CS2 Tape Entry Format A. Binary Complement Format 000 a a a 00 00 a a 000 a 00 Punched Paper Tape -Bitl 000 0 0 000 00 000 00 00 00 0 00 00 0 11 --BitS ~:::; Word Word Word ' - - - - - - - - Word ' - - - - - - - - Start Com,l.m", 2 Complement 2 . 1 Complement 1 POSITIVE Logic: A punch is a "1" or most positive voltage. Omission of a punch is a "0" or the more negative voltage. Pre·Programmed PROM B. Hex Format (I ntel Standard Hex) • • • 2708 2716 Or combinations of the above to make 16k, 32k or 64k bits. 7-35 MOS ROMs ~National ~ Semiconductor MM52164 65,536-Bit (8192 x 8) MAXI-ROMTM General Description Features The MM52164 is a static MOS 65,536-bit read-only memory organized in an 8192-word by 8-bit format. It is fabricated using N-channel enhancement and depletion-mode technology which provides complete DTL/TTL compatibility and single power-supply operation. • • • One programmable chip select controlling the TRISTATE® outputs allow for memory expansions. Programming of the memory array and chip-select active levels is accomplished by changing two masks during fabrication. Fully decoded Single 5V power supply ±10% tolerance Inputs and outputs TTL compatible • Outputs drive 2 TTL loads and 100 pF • • Static operation TRI-STATE outputs for bus interface • • • Programmable chip select 8192-word-by-8-bit organization Maximum access time - 450 ns • Industry standard pin outs Applications • Microprocessor instruction store • • Control logic Table look-up Block and Connection Diagrams Dual-In-Line Package AD 01 AI 02 24 A1 2J A6 A2 AS OJ 22 A9 AS AJ A4 Vee 04 1192 X I ROM ARRAY ROW DECODE 21 A4 05 20 AJ AS 06 A6 01 A7 06 r DEC. rr AI A9 AID All Al2 A12 eSl 19 AID AZ lB All AI 11 AD OB 16 01 01 10 15 06 OJ 11 14 05 02 GND 13 12 04 TOPVIEW CSI Order Number MM52164D See NS Package D24C Order Number MM52164N See NS Package N24B 7-36 Absolute Maximum Ratings Operating Conditions (Note 1) Voltage at Any Pin -0.5V to +6.5V -65°C to +150°C Storage Temperature Range Power Dissipation 1W 300°C Lead Temperature (Soldering, 10 seconds) Operating Temperature Range DC Electrical Characteristics (T A within operating temperature range, VCC = 5V ±10%, unless otherwise specified). PARAMETER (Note 2) CONDITIONS TYP (Note 4) MAX = 0 to VCC 10 III Input Current VIH Logical "1" Input Voltage VIL Logical "0" Input Voltage VOH Logical "1" Output Voltage VOL Logical "0" Output Voltage IOL = 3.2 mA ILOH Output Leakage Current VOUT = 4V, Chip Deselected ILOL Output Leakage Current VOUT = 0.45V, Chip Deselected ICCl Power Supply Current All Inputs VIN MIN 2.2 /lA VCC+l.0 V 0.6 V -0.5 V 2.4 IOH = -200/lA UNITS 0.4 V 10 pA -20 = 5.25V, Data 100 130 pA mA Output Open Capacitance PARAMETER (Note 3) CONDITIONS Input Capacitance (All Inputs) Output Capacitance TYP (Note 4) = OV, T A = 25°C, = 1 MHz, (Note 2) VIN f COUT MIN VOUT = OV, T A = 25°C, MAX UNITS 7.5 pF 15.0 pF f = 1 MHz, (Note 2) AC Electrical Characteristics (T A within operating temperature range, VCC = 5V ±10%, unless otherwise specified). See AC test circuit and switching time waveforms. CONDITIONS PARAMETER Chip Select Access Time See AC Test Circuit. All Times (Except tOFF) tOFF Output Turn OFF Delay Measured to 1.5V Level with tr and tf of tA Address Access Time tAC Input < 20 ns, (Figures 1 and 2), tOFF TRI·STATE Output Level Measured to Less than ±20 pA MIN TYP (Note 4) MAX UNITS 120 ns 100 ns 450 ns Output Current Note 1: "Absolute Maximum Ratings" are those val'ues beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Positive true logic notation is used: logical "'" = most positive voltage level, logical "0" = most negative voltage level. Note 3: Capacitance is guaranteed by periodic testing. Note 4: Typical values are for T A = 25° C and nominal supply vol tage: 7-37 III AC Test Circuit and Switching Time Waveforms sv TEST POINT Z.4V ADDRESS Rl 1.66K I.5V O.4V ·Z.4V----""'\ r-----"""""I CHIPSElECT lDOPf*r O.4V----J OUTPUT TRI·STATE® TRI·STATE"' -----t-----< OUTPUT -----(/J,!J, 'f2lddiiL~ *Includes jig capacitance FIGURE 1. Address Precedes Chip Select FIGURE 2. Address Follows Chip Select Custom ROM Programming INFORMATION NEEDED So that National can better serve its customers, the following information must be submitted with each ROM order. NATIONAL PART NUMBER National Semiconductor Corporation 2900 Semiconductor Dr., Santa Clara. CA. 95051 TWX 910-339-9240 Phone (408) 737-5000 ROM LETTER CODE (NATIONAL USE ONLY) NAME DATE. ADDRESS CUSTOMER PRINTOR IDNO. CITY STATE TELEPHONE ZIP PURCHASE ORDER NO. I NAME OF PERSON NATIONAL CAN CONTACT (PRINT) AUTHORIZED SIGNATURE LOGIC CHIP SELECT INFORMATION o I CSI POS IDATE o NEG CS3 CS2 Tape Entry Format A. Binary Complement Format -Bitl 000 0 0 0 00 00 0 0 000 0 00 Punched Paper Tape 000 0 0 000 00 000 00 00 00 0 00 00 0 0 0 0 0 --BitS \! \I Wo.d 3 Com,l,m," ~Word3 Word Word Word L------Word L------Start 2 Complement 2 1 Complement 1 POSITIVE Logic: A punch is a "1" or most positive voltage. Omission of a punch is a "0" or the more negative voltage. Pre-Programmed PROM B. Hex Format (Intel Standard Hex) • • • 2708 2716 Or combinations of the above to make 16k, 32k or 64k bits. 7-38 ~National MOS ROMs ~ Semiconductor PREVIEW MM52264 MAXI-ROM™ 65,536-Bit Clocked Read Only Memory General Description The MM52264 is a clocked MOS 65,536-bit read-only memory organized in an 8192-word-by-8-bit format. It is fabricated using N-channel enhancement and depletion-mode technology which provides complete DTL/TTL compatibility and single power-supply operation. Programming of the memory array is accomplished by changing two masks during fabrication. Power dissipation increases during a read operation; however once the output data is latched in the TR 1ST ATE® output buffers, most of the dynamic circuitry is automatically switched off to conserve power. The output data remains valid as long as CE is maintained at a "0" voltage level. Switching CE to a "1" voltage level will return the device to the standby mode and all data outputs to a high impedance OFF state. The MM52264 was designed for those ROM applications requiring fast access time and low power dissipation. Dynamic circuitry has been used extensively to reduce access time. The util ization of a clock input allows the device to be put into a low power standby mode during inactive periods. The device is put into the standby mode by maintaining the clock input CE at an input "1" voltage. CE must be maintained at a "1" voltage for the minimum specified time (tp) to allow for adequate precharging of the internal dynamic circuitry. Features After the address data has been applied to the device, a read operation is initiated by bringing CE to an input "0" voltage. The falling-edge of CE triggers the generation of a series of internal clock signals which latch address data in address buffers, decode addresses into row and column lines, and enable output sense amplifiers and buffers. Since the address is latched' in address buffers, the input address data can be changed during a read operation after the address hold time (tAH) specification is met. • • • Fully decoded Single 5V power supply ±1 0% tolerance Inputs and outputs TTL compatible • Outputs drive 2 TTL loadsand 100 pF • • • Clocked operation TRI·STATE outputs for bus interface 8192-word-by-8-bit organization • • Maximum access time - 300 ns Industry standard pin outs Applications II Microprocessor instruction store • • Control logic Table look-up Block and Connection Diagrams Dual-In-Line Package 01 02 0: 04 14 A1 Vee 13 A6 A8 11 A9 A5 11 A4 All 05 06 10 A3 19 AID A2 01 18 Al 08 11 AD 16 01 02 03 GNO A8 A9 AID All Al2 7-39 CE 10 15 11 14 11 13 TOPVIEW A11 OB 01 06 05 04 Absolute Maximum Ratings Operating Conditions (Note 1) Voltage at Any Pin -0.5V to +6.5V Storage Temperature Range -65°C to +150°C Power Dissipation lW Lead Temperature (Soldering, 10 seconds) 300°C Operating Temperature Range DC Electrical Characteristics (T A within operating temperature range, VCC = 5V ±10%, unless otherwise specified). PARAMETER (Note 3) CONDITIONS MIN TYP (Note 4) MAX VIN = 0 to VCC III Input Current VIH Logical "1" Input Voltage 2.0 VIL Logical "0" Input Voltage -0.5 UNITS 10 /lA V VCC+l.0 0.8 V VOH Logical "1" Output Voltage IOH = -200 pA VOL Logical "0" Output Voltage IOL = 3.2 mA 0.4 V ILOH Output Leakage Current VOUT = 4V, Chip Deselected 10 /lA 2.4 ILOL Output Leakage Current VOUT = 0.45V, Chip Deselected ICCl Power Supply Standby Current All Inputs = 5.25V, Data ICC2 Power Supply Active Current V -10 pA 10 15 mA 30 50 mA MAX UNITS Output Open Capacitance PARAMETER (Note 3) CIN I nput Capacitance (All Inputs) CONDITIONS MIN TYP (Note 4) VIN = OV, T A = 25°C, 7.5 pF 15.0 pF f = 1 MHz, (Note 2) COUT Output Capacitance VOUT = OV, TA = 25°C, f = 1 MHz, (Note 2) AC Electrical Characteristics (T A within operating temperature range, VCC = 5V ±10%, unless otherwise specified). See AC test circuit and switching time waveforms. PARAMETER tc CE Cycle Time CONDITIONS MIN See AC Test Circuit and Figure 1. TYP (Note 4) MAX 450 UNITS ns All Times (Except tOFFI tp CE Precharge Time 150 ns tCE CE Pulse Width 300 ns tAH Address Hold Time 50 ns 0 ns from CE tAS Address to CE Setup Time tAC CE to Output' Access 300 ns 150 ns Time tOFF Output Turn OF F Measured to 1.5V TRI·STATE Delay Level with tr and tf of Input < 20 ns Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Positive true logic notation is used: logical "1" = most positive voltage level, logical "0" = most negative voltage level. Note 3: Capacitance is guaranteed by periodic testing. Note 4: Typical values are for T A = 2SoC and nominal supply voltage. 7-40 Section 8 Character Generators The Character Generators included in this section represent very cost effective solutions to problems arising in the design and implementation of CRT display subsystems. National's innovations in these devices in conjuction with the DP8350 series of CRT Controllers have assisted in the growth of this very important marketplace. Contact your local National representative for costs and other assistance. Bipolar Character Generators ~National Character Generators D Semiconductor DM8678 Bipolar Character Generator General Description The DM8678 is a 64-character bipolar character generator with serial output designed primarily for the CRT display marketplace, and packaged in a standard 16-pin DIP. The DM8678 incorporates several CRT system level functions, as well as a 7 x 9 or 5 x 7 row scan character font. The DM8678 performs the system functions of parallel to serial shifting, character address latching, character spacing and character line spacing. These system functions have required extra packages in the past. the character addresses "fall through" the latch. And when the address latch control signal goes low, the character addresses are latched. Features Shifted characters can be generated by the on-chip subtractor. The clear input Load enable is the line clock triggered. When and the load enable input are active low. synchronous with the dot clock_ Both and the dot clock are positive edgethe address latch control signal is high, ROW SCAN 7x9 DM8678BWF X DM8678CAE X X X X DM8678CAB DM8678CAH DM8678CAD DM8678BTK DM8678CAS X X X X • 64-character-row scan • • 5 x 7 or 7 x 9 font Shifted lower case descending characters • • • • Serial output 16-pin package 16 MHz min clock rate On-chip input latches • • On-chip shift register On-chip dot blanking • • On-chip row blanking TRI-STATE® output 5x7 PACKAGE FONT N, J Upper Case Block Letters Shifted Lower Case Block N, J X Upper Case Block Letters N, J X Shifted Lower Case Block N, J X X X Kata Kana N, J Upper Case Script Letters N, J IBM 3741 Selectric N,J Block Diagram Connection Diagram Dual-In-Line Package 16 AJ ADDRESS LATCH CONTROL Order Number DM8678XXX/J See NS Package J16A A6 A5 15 A2 AI ADDRESS LATCH CONTROL 64 X 64 BIT FONT MATRIX DM8678XXX/N See NS Package N16A 13 4 A6 12 OUTPUT II LINE CLOCK 10 CLOCK CONTROL AJ A4 A5 Order Number A4 VCC LOAD mID DOT CLOCK GIIID A2 TOP VIEW AI Logic Symbol ADDRESS LATCH CONTROL AI CO~~~~~----f-'\1 A2 A3 LINE CLOCK A4 A5 Ai fiDffi----------~ SERIAL OUTPUT DOT CLOCK LOAD mm OUTPUT mID LIlliE CLOCK 8-3 rnABTI OUTPUT CLOCK CONTROL co t-- Absolute Maximum Ratings Operating Conditions MIN MAX :E Supply Voltage Input Voltage \ Output Voltage Storage Temperature Lead Temperature (Soldering, 10 seconds) Supply Voltage (Vee) 4.75 5.25 Ambient Temperature (T A) 0 +70 °e Logical "0" Input Voltage (Low) 0 0.8 V Logical "1" Input Voltage (High) 2.0 5.5 V CD CO c -o.5V to +7V -1.5V to +5.5V -o.5V to +5.5V --65° C to +150°C 300°C DC Electrical Characteristics UNITS V (Note 2) CONDITIONS PARAMETER MIN = Max, VIN = 0.45V IlL Input Load Current, All Inputs VCC IIH Input Leakage Current, All Inputs VCC = Max, VIN = 2.4V II Input Leakage Current, All Inputs VCC = Max, VIN = 5.5V VOL Low Level Output Voltage VCC= Min, IOL = 16 mA VIL Low Level Input Voltage VCC';' Min VIH High Level Input Voltage VCC = Min Vc Input Clamp Voltage VCC = Min, CIN Input Capacitance VCC = 5V, Co Output Capacitance VCC TYP MAX -0.8 -1.6 0.35 pA 1 mA 0.45 V 0.80 V V -0.8 = 2V, TA = 25°C, VIN mA 40 2.0 = -12 mA liN UNITS -1.5 V 4.0 pF 6.0 pF 1 MHz = 5V, Vo = 2V, TA = 25°C, 1 MHz, Output "OFF" ICC Power Supply Current VCC = Max, All 115 Inputs Grounded, 145 mA All Outputs Open TRI·STATE PARAMETERS = OV, ISC Output Short·Circuit Current Vo 1HZ Output Leakage VCC VCC = Max -15 = Max, Vo = 0.45 to 2.4V, -50 mA ±40 pA Chip Disabled VOH Output Voltage High AC Electrical Characteristics PARAMETER IOH = -2 mA 2.4 V 3.2 (With standard load) (Note 2) CONDITIONS MIN TYP MAX UNITS Access Time TOO Dot Clock to Output 35 55 ns TEA Output Enable 20 45 ns TER Output Disable 20 45 ns Set·Up Time ns TSl Load to Dot Clock 40 25 TS2 Address to Load 350 200 TS3 Clear to Load 350 ns TS4 Control to Line Clock 40 ns TS5 Line Clock to Load 950 ns TS6 Address to Address Latch 40 ns flS ns See Switching Time Waveforms ns Hold Time THl Load from Dot Clock 0 TH2 Address from Load 0 TH3 Control from Line Clock 100 ns TH4 Address from Address Latch 40 ns 8·4 AC Electrical Characteristics (Continued) (With standard load) (Note 2) PARAMETER CONDITIONS MIN TYP MAX UNITS Minimum Pulse Width TW1 Line Clock 40 ns TW2 TW3 Clear 40 ns 30 ns TW4 Load 40 ns TW5 Address Latch 40 Dot Clock fMAX See Switching Time Waveforms Maximum Clock Frequency 16 ns 20 MHz Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do not mean that the device may be operated at these values. Note 2: These limits apply over the entire operating range unless stated otherwise. All typical values are for VCC = 5V and T A = 25°C. Standard Test Load VCC 300 lk • Input waveforms are supplied by a pulse generator having the following characteristics: PRR = 1 MHz, ZOUT = 50 n, tr < 5 ns and tf < 5 ns (between 1.0V and 2.0V). • TOO is measured with output enable at a steady low level. Switching Time Waveforms ~TS6~~------------TH4------------~ 3V------"'"' ADDRESS INPUT OV-----------J ~====~T;S2~==~------~-------~=-=-=-~~TH2 ADDRESS LATCH CONTROL LINE CLOCK CLOCK CONTROL LOAD ENABLE DDT CLOCK OUTPUT ENABLE OUTPUT 8·5 co t; Truth Tables co :!! C b) Output a) Address Latch ADDRESS LATCH CONTROL FUNCTION PERFORMED OUTPUT ENABLE STATE OF THE OUTPUT 0 Latched Fall Through 1 0 Output Hi·Z Data Out 1 c) 4-Bit Line Counter CLOCK CONTROL LINE CLOCK CLEAR H X .J" H L X L X H """"L H H LINE COUNTER Increment line counter Asynchronous clear resets cou nter Clock inhibited No change on high·to· low clock edge X = Don't care Definitions Load Enable: Active low load command which routes data from the character ROM to the "D" inputs of the 7-bit shift register.' A 1-A6: Character address. A 6-bit code which selects 1 of the 64 characters in the font. Clear: Active low clear for mod 16 row counter, (can be used to truncate mod 16 counter). Dot Clock: A low·to·high transitIOn of the dot clock loads the shift register if load enable is low or shifts data if load enable is high. Line Clock: Clock that advances the line counter. Advances counter on the low·to·high transition. Clock Control: Enables line clock when disables line clock when low. Output Enable: An active low output enable. When high the output is in theHi·Z state. high and Output: A TTL TR I·ST ATE output buffer. Functional Description To select a character, a 6-bit binary word must be present at the address inputs A 1-A6 when the add; ess latch contra) is high. This address can be latched by bringing the address latch control signal low after a 40 ns set·up time. When the clear input receives a low pulse, the counter is reset to zero. The shift register can be loaded (TS2 ns) after the character is addressed. Data, representing one horizontal line of the addressed character, is available at the output when the load enable input is brought low. As shown in Figure 1, valid data arrives serially at the ou'tput. Dot clock pulses beyond that required to shift out one line of the character will add lows to the end of character. This provides a horizontal spacing between characters. pulses at the line clock input. Any additional line clocks beyond that required to display the character will put a vertical space between characters. This spacing can be truncated by bringing the clear input low. Detailed system application infomation is contained in application note AN-167 available from National. A two character display example is shown in Figure 3 and a typical system timing waveform is shown in Figure 4. A chip select input is provided for expansion of the character font. The various standard fonts are shown in Figures 5, 6, 7, 8, 9 and 10. Figure 2 shows how the counter sequences through the rows of addressed lines with the application of clock 8-6 Functional Description (Continued) Character Cycle - ROM data corresponding to one line of characters is loaded into the shift register TS2 after the ROM is addressed. When load enable goes low, ROM data is allowed to be present at the D input of the shift register via the MUX. The first bit of the ROM data is transferred to the output at the next low-to-high transition of the dot clock. After load enable goes back high, the second to seventh clock pulses shift out the rest of the selected row of the addressed character. Additional clock pulses will shift out low data used for spacing. LINE CLOCK " V Line Cycle - The line counter is a mod 16 counter. A low-to-high transition of the line clock advances the line counter to the next count_ If, for any reason, the counts need to be truncated, a low signal at the Clear input resets the counter to zero. The clock control may be used as a line clock disable_ A high signal at the line clock control terminal enables the counter and a low signal disables the line clock_ r J ....JX'___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ CHARACTER _________ AOORESS INPUT C DOT CLOCK OUTPUT OUTPUT (SE~~~TE) / [\ [\ ------'" ~---~ ~-~ ~--------VALID OATA OUT - - - - - - - - - - 1 1-1 Note. Output goes and stays low following the leading edge of the eighth Dot-Clock pulse until Load enable is enabled again and new parallel data is loaded into the shift register. FIGURE 1. Character Cycle CHARACTER ADDRESS INPUT _ _ _ ~ -+-' _______ LINE CLOCK CLOCK CONTROL DISPLAY SECOND LINE OF N CHARACTERS OISPLAY FIRST LINE OF N CHARACTERS FIGURE 2. Line Cycle 8-7 DISPLAY THIRD LINE OF N CHARACTERS co toco co Functional Description (Continued) ::!: c !-.>--------TWO CHARACTER CYCLE Al~~----------------~ --------.1 _________________ 1 A2-------------------------------------------------ASCII COD ED ADDRESS INPUTS A3---, ......- - - - - - - - - - - - - - - - - - - -... A4 - - ,.._______________--' A6-----------------------------------------------LOAD ENABLE L.-I u u DOT CLOCK CLOCK LINE OUTPUT CO NTROL, CLOCK CLEAR ENABLE ADDITIONAL LINE COUNTS FOR VERTICAL SPACE FIGURE 3. Example of Two Character Display Timing 8·8 ~ :::s o C)" :::s ~ C CD en n ... - -S" ci" :::s 625n, CYCLE CHARACTER ADDRESS* ADDRESS LATCH CONTROL* CLEAR ~~ ~~ ~ LINE CLOCK OJ .c.c.n.oo (!) ••••••• oc u.. Y'i 8·23 • • • • • • • 0(1 .00000.00 •••• oo.no ••••••• on ODL.J.OOOOC 000000000 oo.ur][].oo s: aoaoa0800 00.000_00 000 • • • 000 .000000000 000000000 000 • • • • 00 008000000 oo.oooOoD 008000000 00 • • • • • 00 ooonooooo (][][10000[JO u • • • • • ()OO .UOOOU.OO .uc • • • • oo .0U.co.OO [J • • • • • C]OC lln:l(] n:lrJ~lr~ [~ • • • • • rJ~Jl: .C[JCCU.C:l; • • • • cn.nr' [ ~[J(J[JOCLJ(][J 000000000 000000000 eC 000000000 000000000 000000000 000000000 000000.00 • • • • • • • 00 .00000.00 OOOOOoOOD [JO(]UOC(JlJ[l [JOOC[)[JOCC1 000000000 DODDOooOO • • 00 • • • 00 .000.0.00 .00000.00 .00000.00 0 • • • • • 000 • • • • • • 000 DO •• ooooe uu.o.OOO[) u[~c.orJnCJrl • • • • • • • 00 000000000 00.000.00 B8~~~~§Bg Q) 0) en 0) ~ J: (!) u.. ~ ~ Functional Description (Continued) CD CO ~ CD en CD o.oooooao 00 • • • • • 00 00000000. 00000000. 00000000. oooooaooo ooooaoooo oooaooooo 000.00000 00.000000 0.0000000 .00000000 oaooooooo 000000000 0000 • • • • • 000.00000 000.00000 000.00000 00.000000 000.00000 000 • • • • • • 00.000000 t-- c 00000000. aOODOooO. ooooooooa ooooooooa ooooooooa 000000000 0000 • • • • 0 00080000. DooaOODO. 000.0000. oooaoooo. ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ~ :!! 00 • • • • • 00 o.aooooao aODOOooo. aooooooo. C oaooooooo 00.000000 000 • • 0000 00.000000 0.0000000 c cC oaooooooo 000000000 000000000 • 0000000. .0000000. .0000000. 000000000 0000 • • • • 0 OOooaoooo 0000 • • • • • 000.00000 000.00000 0000 • • • • • 000.00000 000.00000 000 • • • • • • oaoo.ooao ooaooaoo. aoo.ooaoo oa00800ao ooaooaoo. aoo.ooaoo oaooaOoao oaooooooo 00.000000 00.000000 0.0000000 .00000000 .00000000 080000000 000000000 0000.0000 0 ••• 0 ••• 0 .0000000. 80000000. 000000000 000000000 00000000. 00000000. 00000000. 00000000. 00000000. 00000000. 0000000.0 000000.00 00000.000 0000.0000 000.00000 00.000000 0.0000000 000000000 000000000 00000000. .0000000. 0.00000.0 00.000.00 000.0.000 0000.0000 00000.000 000000000 000000000 • 0000000. .0000000 • • 0000000. 000000000 00000000. 000.000.0 0000.0.00 00000.000 000000.00 000000000 000000000 000000000 .0000000 • .0000000. 0 ••• 0 ••• 0 0000.0000 000000000 .00000000 • 00000000 •••••••• 0 • 0000000. • 0000000. 00000000. 0000000.0 000000000 • • 000000. .0.00000. 0 •••••••0 0.000000. .00.0000. 80000000. .000.000. • 0000.00. 00000000 • .00000.0. 0000000.0 .000000 • • NOOOoOODOo 000000000 000.0000 • 000 • • 000 • 000.0.00 • 000.00.0 • 000.000 • • 000.0000. .0000000. ODOOOOOOO 000000000 ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... 000000000 .0000000. .0000000. • • 0000000 00.000000 000.00000 • 0000000. .0000000. 000000000 000800000 00.000000 • • 0000000 0000.0000 0000.0000 0000.0000 0000.0000 0000.0000 • • 00000 • • 00.000.00 000.0.000 0000.0000 000.0.000 00.000.00 • • 00000 • • DODO • • • • • 0.000 • • • 0 000000000 000000000 000000000 • • • 00 • • • 0 000000000 000000000 000000000 000000000 000000000 00000000. 0.0 • • • • • • 000.0000 • 000000000 0 •••••••0 0000.000. 00000.00. 00000.00. ouooooooo 00000.00 • 000000000 N 0 • • • • 00.0 000000000 000.0000. 0000.00.0 00000 • • 00 00000 • • 00 0000.00.0 000.0000 • .0000.00. • 0000.00. .0000.00. .0000000. 0.00000.0 00 • • • • • 00 0000000.0 000000.00 0000 • • 000 000000.00 0000000.0 000000000 0 ••••••• 0 00.0.000. 0.000.00. 0.000.00. 0.000.00. NOo • • • oo.o 000 • • • • • 0 00000000 • 00000000. 00000 • • • 0 00000000. 00000000. 000 • • • • • 0 .00000000 .00000000 .00000000 .000.0000 aooo.oooo .000.0000 • • • 000000 000 • • 0000 00000 • • 00 0000000 • • 00000 • • 00 oooa.oooo • • • 000000 000000000 0.0000000 .000.0000 .000.0000 0 •••••••• 0000.0000 0000.0000 000 • • • 000 000000.00 0000000.0 00000000. 0000000.0 000000.00 000 • • • 000 .0000000. .0000000. • 0000000. • 000.000. • 000.000. .oooaooo. •••••••• 0 000000000 0000 • • 000 000.0.00. 000.0.00 • 000.0.00 • 000.0.00. 0000 • • • • 0 000000000 000 • • • • • • 0000000.0 00000000. 00000000. 00000000. 000 • • • • • 0 00 • • • • • 00 0.00000.0 .0000000. • 0000000. • 0000000. .00000000 .00000000 .00000000 000000000 000000000 0000000.0 ooo.ooooa 000.0000 • 0 ••••••• 0 000.00000 000.00000 000.00.0 • 000.0.00 • 000.0.00. 0000800.0 00000000. 00000000 • 00000000. 00000000. 000000008 •••••••• 0 .00000000 .00000000 .0000000. .oaopoooo 0.00000.0 0.000 • • • 0 .000.000. • 000.000. .000.000. .000.000. .000.000. 0 • • • 000.0 000000000 0000.00.0 000.0000 • 000.0000. 000.0000. 000.0000. 0000 • • • • 0 0 • • • 0000. .000.00.0 • 000.0.00 • 000 • • 000 .000.0000 • 000.0000 0000 • • • • 0 000.0000 • 000.0000 • 000.0000 • 0000.00.0 g~~~~:~~~ 00 • • • • • 0 . o.oooooao .00000.0. .0000.00. .0000000. 0800000.0 00 • • • • • 00 00000000. 000000000 0 •••••••• 0000 • • • • 0 000.0.00. 00.0.0000 000.0.00. 0.000.000 0.000.000 000.0.00. 000.0.00. 0.000.000 000000 • • 0 NOO • • • Oooo 0 • • • • 000. .0000.00. . 0 • • • • 00. .0.00.00. . 0 0 • • • 00. 0 • • • 00000 .00080000 .000.0000 .000.0000 .000.0000 .000.0000 000000000 000000000 000000000 000000000 00 • • • 0000 000.00000 0.000.000 • • • 000000 0.000.000 ..0000000 00.0.0000 000000000 000000000 NO • • • • • • • • • 0000000. • 0000000. 0.00000.0 00 • • • • • 00 0 ••• 0 ••• 0 .000.000. .000.000. .000.000. .000.000. 000000000 ......... ......... •........ • 0000000. . aoooo.ooo .0000.000 .0000.000 0.000.000 00 • • • • • • • 0.00000.0 00 • • • • • 00 ......... ~ ~ 8·24 C!J u:: Functional Description (Continued) 0000.000. 0000 • • • • • 0000.000. aoo.oonOD aoao.aooo ~~~g:~ggg 0 • • • 00000 aooo.OOOO aooO.OUOD .0000 • • 0 . .00000000 0 • • 000000 Qooo().aon ooooooaoo 0000000.0 000000000 ooooaooao ooooaoao. Doooaoao. oaoaoaoo. aoaoooooo 000000000 000000000 OOl)O[JOOOO OOOU::JOO • • 080080000 • • • • • 0000 OOOOODOOO 000000000 000000000 oooooaoo. OODo.ooao ooooaoao. ooooaoao. 0000.0000 000000000 80.0aoooo 0000.0000 OUoo.oooe 000.0.000 nnoo.[][]OO 000.0.000 oOOoao •• o ooooaoaoo .000 • • • • • .000.0000 .000.0000 0 • • • 00000 aa.OODuoa . 0 • • 0.00. .000.0000 0 • • • 00000 gBg~~~88g 00.000.00 o.oooooao aooooooo. g~S88~H~~ oooaoaooo ooo.oaooo ooo.oaooo 000080000 0000.0000 000080000 000000000 Dooo.ooao ggggggggg • • • • • 0000 000000000 000000000 000000000 0000 • • 000 0000 • • • 00 a080OO00D 0000000.0 .08000000 ••••• oooe NOOOOOOOOO 00000.000 00000.000 • • • 00 • • • • 00000.00. 00000.00. 00000.00. 0000.0000 000000000 8888:8888 0 ••••••• 0 000000000 0 • • 00 • • 00 0000.0000 ooooao.oo DODoaoaoo .000 • • • • • ao.oooooo aoaoooooo 00080aooo 0000 • • 000 c:( ~~~~~ggBg 0.0000000 00.000000 000.00000 0000.0000 00000 • • • 0 0000.000. 0000.000. aooao ••• o aoaoaOODO aoaoaoooo C oooo.ooao ooooaoao. DOOOaoao. •••• a.oa. 0000.0000 Dooo.oaoa Doooaoao. .oooo.ooa :g~g:g~~g 80000000a 080000080 008000.00 ooo.oaooo 0000.0000 000000000 Donn.oooo 0 • • 00 • • • 0 000.00000 • • • 000000 80a080000 0000.0000 0000.0.00 00000.0.0 0000.0.0. 0000.0.0. .00 •••••• .0.0.0000 .0.0.0000 0.00.0000 00.000.00 000.0.000 0000.0000 0 ••••••• 0 000000000 000 • • 00 • • 00.000.00 000000000 00000 • • • • 000000.00 000000000 000000000 .0.0.0000 • • • • • 0000 • 0000000. 000000000 000000000 0 • • • • • • 00 .000.00.0 .000.000. .000.000 • .000.000. 00000 • • • • 0000000.0 000000.00 .000 • • • • • .000.0000 .000.0000 0 • • • 00000 000000000 000000000 .0000000. 0.00000.0 00 • • • • • 00 000000000 000000000 00000.0.0 0000.0.0. 0000.0.0. .000 • • • • • .0.0.0000 .0.0.0000 • • • • • 0000 000000000 000000000 ..0000000 • • • 000000 000.00000 000000000 000000000 oo[]o.o.oo 000 • • • • • • 000.00000 000.00000 • • • • 00000 00000.000 00000.000 00000 • • • • • • • • • • 000 00.00.000 00.000000 • • • • • 0000 oooo.ooao Doooao.o. 0000.0.0. oao.o.oo. .0.0.0000 • 0.0.0000 • • • • • 0000 00000000. 00000000. 00000000. 0.0.0 •••• • 0.0.0000 .0.0.0000 • • • • • 0000 • • • • • 0000 :g~g:~:~~ 0000.0000 00000000. 0000.0000 NDOOOOOOOO gB8gggggg Bgg~~~8BB 88g~~8g~~ g~~~~~~~8 ~~~~~8gg~ u ;;:: « ~ o ••• o •• ao cg • • 0000000 U ;;:: .000.000. .000.000. .000.000. .000.000. .000.000 • 0 ••• 0 ••• 0 :~~~88ggg .ooo.ooon .0000 • • • • .00000000 • • 0000000 en cg co ~ C « ~ cg en cg 0000.000. 00000.0.0 000000.00 0 •••••••• • 0.000000 • 0.000000 0 • • • • 0000 8ggg~~~:= 0000.000. • 0000 • • • 0 • 0.0.0000 eo.o.oooo ••••• oono 0000.0000 00000.000 000000 • • • :g~~~~g88 .0.0.0000 0.00.0000 ......... 00000.00. 000000 • • 0 0 • • 000 • • 0 .00.0.00. .000.000. .00.0.00. 00000 • • • 0 .000.000. .000.000. .000.000. .000.000 • 0.00.000 • 00 • • • • • • 0 g~~g§~~~g .0000 • • 00 .000800.0 .00.0000. .00.0000 • .00.0000 • .00.0000. • • • • 000.0 o •• ooo •• c 0000.000. 00000_0.0 000000.00 000.00.00 00.000000 0.0000000 • • • • • 0000 0800000ao 00000.000 00000.000 00000 • • • • .000 • • 000 . 0 . 0 • • 000 .0.0.0000 • • • • • 0000 0000000.0 0000 • • • • • 00000.0.0 0 • • • 00 • • 0 .000.00.0 .000.0000 • • • • • 0000 0000.000. 00000.0.0 000000.00 • 000 • • 0.0 .0.0.000. • 0.0.0000 • • • • • 0000 00000.0.0 0000.0.0. 0000.0.0. 0 • • • 0000 • ;ggg:gggg • • • • • 0000 ......... ......... ......... 0.000 • • 00 0.00.00.0 0.00.00.0 0.00.0080 00 • • 000.0 OO:J.O.OOO 000.0.000 000.0.000 000.0.000 ggg88gggg 0 • • • 0.00 • • 000.0000 • 000.0000 • • • • • 0000 • • • 000000 000000000 000000000 • • • 000000 000000000 0000 • • • • • 000000.00 000000.00 .00.00.00 .0.0 ••••• .0.0.0000 0.00.0000 00000000. 0000 • • • • • 00000.00. 0 • • • 00000 .000.0000 .000.0000 • • • • • 0000 000000000 000000000 000000000 • • • • 00 • • 0 000000000 000000000 000000000 00000000. 0 ••• 0 •••• • 000.0000 :~~~:gggg ~ 8·25 0 ••• 0 ••• 0 .000.000. .000.000. .000.000. .000.000. .0000000 • 0.000000 • 000.0.000 ooooeoo •• ggggggg8: ~~~~~~:~~ 0.0000.00 00.000.00 000.00.00 0000.0.00 00000 • • 00 o.oo.oo.c 0000.000. 00000.0.0 000000.00 • 00.0.0.0 .0.0.000. .0.0.0000 0.00.0000 0000 • • • • 0 00000000. • • • • • 000. 000.0000. 00.0 • • • • 0 0.0000000 • • • • • 0000 00000.00. 0000.0.0. ~~~8g~~gg 00000000 888ggggg 00000000 00000000 00000000 0 • • 00000. .00.0000. ~ .oooaooo. .000.000. .000.000 • .0000.00 • 0.0000 • • • ......... 000000000 00000000. 00000000. 0.000000. 00.00000. 000000000 ••••••• 0 0.00000. 00.0000 • 000.000. 0000.00 • 00000.0. ••••••• 0 "C~ ... 0 W CC :::> (!) u: ~National Character Generators D Semiconductor ADVANCE INFQRMATION DM76S128/DM86S128 Bipolar Character Generator General Description The DM76S128/DM86S128 is a 128-character bipolar character generator with serial output designed primarily for the CRT display marketplace, and packaged in a standard 16-pin DIP. The DM76S128iDM86S128 incorporates several CRT system level functions, as well as a 7 x 9 or 5 x 7 row scan character font. The DM76S128/DM86S128 performs the system functions of parallel to serial shifting, character address latching, character spacing and character Iine spacing. These system functions have required extra packages in the past. the character addresses "fall through" the latch. And when the address latch control signal goes low, the character addresses are latched. Features • • Custom fonts available with shift options • Serial output • 16-pin package Shifted characters can be generated by the on-chip adder/subtracter. • 35 MHz typical clock rate • On-chip input latches • On-chip shift register The clear input and the load enable input are active low. Load enable is synchronous with the dot clock. Both the Iine clock and the dot clock are positive edgetriggered. When the address latch control signal is high, 7x9 • On-chip dot blanking • On-chip row blanking • Low power-400 mW typical 5x7 x DM76S128CNC/DM86S128CNC DM76S128CND/DM86S128CND DM76S128COH/DM86S 128COH DM76S128COJ/DM86S128COJ 128 character-row scan • 5 x 7 or 7 x 9 font x x x FONT Upper and Shifted Lower Case Block Upper and Lower Case Block ASCII CHARACTER SET ASCII CHARACTER SET PACKAGE N, J N, J N, J N, J Connection Diagram Block Diagram Dual-ln·Line Package ADDRESS LATCH CONTROL 16 A2 A6 Order Number DM76S128XXX* /J or DM86S128XXX*/J See NS Package J16A Order Number DM76S128XXX*/N or DM86S128XXX* IN See NS Package N16A 65X 12B·BIT FDNT MATRIX ADDRESSLATCH CDNTRDL A3 14 AD AS VCC 15 Al A4 13 4 A5 12 mAR 11 LINE CLDCK A6 OUTPUT 10 LDADrnAm CLDCK CDNTROL 9 GND DOT CLOCK TOPVIEW Logic Symbol CO~~~~~ -----f-" ADDRESS LATCH CDNTROL AD LINE CLOCK SERIAL OUTPUT CITliR -'------~ DOT CLOCK OUTPUT Al A2 A3 A4 AS A6 OOT CLOCK LOAD ENABIT * alpha pattern designators LINE CLOCK 8-26 CLOCK CONTROL Absolute Maximum Ratings C Operating Conditions (Note 1) :s:: en ..... ~ CJ) Supply Voltage Input Voltage Output Voltage Storage Temperature Lead Temperature (Soldering, 10 seconds) DC Electrical Characteristics MIN MAX UNITS 4.5 4.75 5.5 5.25 V V I\) Supply Voltage (Vee) DM76S128 DM86S128 -D.5V to +7V -1.5V to +5.5V -D.5V to +5.5V o -65°e to +150 e 0 300 e Ambient Temperature (TAl DM76S128 DM86S128 -55 0 +125 +70 °e °e Logical "0" Input Voltage (Low) 0 0.8 V Logical "1" Input Voltage (High) 2.0 5.5 V S!! C :s:: en ..... Q) CJ) I\) Q) (Note 2) CONDITIONS PARAMETER MIN TYP MAX UNITS IlL Input Load Current VCC = Max, VIN = 0.45V -800 IIH Input Leakage Current VCC = Max, VIN = 2.4V 40 pA II Input Leakage Current VCC = Max, VIN = 5.5V 1 rnA VOL Low Level. Output Voltage VCC'" Min, IOL = 16 mA VOH Output Voltage High IOH = -2 mA 0.35 VIL Low Level Input Voltage VCC = Min VIH High Level Input Voltage VCC = Min Vc Input Clamp Voltage VCC = Min, liN = -12 mA CIN Input Capacitance VCC = 5V, VIN = 2V, TA = 25°C, Co Output Capacitance VCC = 5V, Vo = 2V, TA = 25°C, 2.4 pA 0.45 V 3.2 V 0.80 V 2.0 V -0.8 -1.5 -. V 4.0 pF 6.0 pF 1 MHz 1 MHz ICC Power Supply Current 100 VCC = Max, All Inputs Grounded, 140 rnA Output Open ISC Output Short·Circuit Current -15 Vo = OV, VCC = Max -70 rnA AC Electrical Characteristics = -55°C to +125°e, Vee = 4.5V to 5.5V. eL = 50 pF. o DM86S128: TA = DoC to +70 e, Vee = 4.75V to 5.25V. eL = 50 pF. DM76S128: TA DM76S128 DM86S128 PARAMETER UNITS MIN TYP MAX MIN TYP MAX Access Time TOO Dot Clock to Output 25 50 25 40 ns Set Up Time TS1 Load to Dot Clock 25 7 20 7 ns TS2 Address to Load 335 54 280 54 ns TS3 Clear to Load 335 14 280 14 ns TS4 Control to Line Clock 50 -10 ns TS5 Line Clock to Load 1140 156 950 156 ns Address to Address Latch 50 6 40 6 ns TS6 ....:.10 40 Hold'Time TH1 Load from Dot Clock 5 -6 0 -6 ns TH2 Address from Load a ~14 0 -14 ns TH3 Control from Line Clock 120 23 100 23 ns TH4 Address from Address Latch 50 3 40 3 ns Pulse Width 8-27 nil co C\I ,.. en CD AC Electrical Characteristics (Continued) (With standard load) (Note 2) CO :e C CO C\I ,.. en CD ~ :e C DM86S128 DM76S128 PARAMETER UNITS TYP MIN MAX MIN TYP MAX TW1 line Clock 50 12 40 12 ns TW2 Clear 50 6 40 6 ns TW3 Dot Clock 25 12 20 12 ns TW4 Load 40 8 30 8 ns Address Latch 50 22 40 22 ns Clock Frequency 18 35 22 35 MHz TW5 fMAX Note 1: Absolute maximum ratings are those values beyond which the device may be permanently damaged. They do not mean that the device may be operated at these values. Note 2: These limits apply over the entire operating range unles's stated otherwise. All typical values are for Vee = 5V and T A = 2 SoC. Standard Test Load Vcc o > :~ ~ DEVICE 0. ...... _ _ _ _ _.- ._ _ _ _. . OUTPUT~ ~ T 300 • Input waveforms are supplied by a pulse generator having the following characteristics: PRR = .1 MHz, ZOUT = 50 n, tr < 5 ns and tf < 5 ns (between 1.0V and 2.0V). 3DPF Truth Tables B) 4-BIT LINE COUNTER A) ADDRESS LATCH ADDRESS LATCH CONTROL o 1 FUNCTION PERFORMED CLOCK CONTROL LINE CLOCK CLEAR H --F H Latched Fall Through X X L L X H ~ H H X C' Don't care 8-28 LINE COUNTER Increment line counter Asynchronous clear resets counter Clock inhibited No change on high·to· low clock edge Switching Time Waveforms JV------- ~~------------TH4------------~ ADDRESS INPUT DV-----------J ~====~T~S2~==~---------------~=-=-=-~~TH2 ADDRESS LATCH CONTROL LINE CLOCK CLOCK CONTROL LOAD ENABLE TWJ-+----t OOT CLOCK OUTPUT Definitions AO-A6: Character address. A 7·bit code which selects 1 of the 128 characters in the font. Load Enable: Active low load command which routes data from the character ROM to the "D" inputs of the 7-bit shift register. Clear: Active low clear for mod 16 row counter. (can be used to truncate mod 16 counter). Dot Clock: A low·to-high transition of the dot clock loads the shift register if load enable is low or shifts data if load enable is high. Line Clock: Clock that advances the line counter. Advances counter on the low·to·high transition. Clock Control: Enables line clock when disables line clock when low. Output: A TTL BI·STATE output buffer. high and 8-29 co ,... N (IJ co co :?! c co N ,... (IJ co t-:?! c Functional Description To select a character, a 7-bit binary word must be present at the address inputs AO-A6 when the address latch control is high. This address can be latched by bringing the address latch control signal low after a 40 ns set-up time. When the clear input receives a low pulse, the counter is reset to zero. The shift register can be loaded (TS2 ns) after the character is addressed. Data, representing one horizontal Iine of the addressed character, is available at the output when the load enable input is brought low. As shown in Figure 1, valid data arrives serially at the output. Dot clock pulses beyond that required to shift out one line of the character will add lows to the end of character. This provides a horizontal spacing between characters. shifted by virtue of their placement in the matrix. Descending characters in the 7 x 9 fonts are shifted (by th on-chip line shifter/counter) the number of lines indicated by the number in the upper left hand corner of the character drawings in the figures. Character Cycle - ROM data corresponding to one line of characters is loaded into the shift register TS2 after the ROM is addressed. When load enable goes low, ROM data is allowed to be present at the D input of the shift register via the MUX. The first bit of the ROM data is transferred to the output at the next low-to-high transition of the dot clock. After load enable goes back high, the second to seventh clock pulses shift out the rest of the selected row of the addressed character. Additional clock pulses will shift out low data used for spacing. Figure 2 shows how the counter sequences through the rows of addressed lines with the application of clock pulses at the line clock input. Any additional line clocks beyond that required to display the character will put a vertical space between characters. This spacing input low. can be truncated by bringing the Line Cycle - The line counter is a mod 16 counter. A low-to-high transition of the line clock advances the line counter to the next count. If, for any reason, the counts need to be truncated, a low signal at the C'l"e"ar input resets the counter to zero. The clock control may be used as a line clock disable. A high signal at the line clock control terminal enables the counter and a low signal disables the line clock. crear A two character display example is shown in Figure 3 and a typical system timing waveform is shown in Figure 4. The standard fonts are shown in Figures 5, 6, 7 and 8. Descending characters in the 5 x 7 fonts are J LlNEv CLOCK CHARACTER ADDRESS INPUT ________________ X ~ ~ _________________________________________________________________ C DOT CLOCK OUTPUT 1\ 1\ ' - - - - _ _ _- - - . - - I _~ - - - - - - - - - V A L I D DATA OUT 1-1 OUTPUT (SE~~~TE) / ~_---J ----------1 Note. Output goes and stays low following the leading edge of the eighth Dot-Clock pulse until Load enable is enabled again and new parallel data is loaded into the shift register. FIGU~E 1. Character Cycle CHARACTER ADDRESS INPUT _ _ _ _ _ _ _ _ _ _ _ _ _ _ -+..J LINE CLOCK CLOCK CONTROL DISPLAY FIRST LINE OF N CHARACTERS FIGURE 2_ Line Cycle 8·30 OISPLAY SECONO LINE OF N CHARACTERS DISPLAY THIRD LINE OF N CHARACTERS Functional Description (Continued) TWO CHARACTER CYCLE OE-HEX-13 AD I \ \ Al----.1 ADDRESS INPUTS A2----.1 \ Al----.l \ A4 / \ A5~ I AS lDADE~ U U DOT ClK ClK CNRl ADDITIONAL LINE COUNTS FOR VERTICAL SPACE FIGURE 3. Example, Two Character Display Timing - DM86S128CNC 8-31 LINE CLK mr DM76S128/DM86S128 ~ :::l n 2)" :J !!. c CD en n F40-f-40--j -o· '---~ oo ~ -6. 455 n. CYCLE CHARACTER AOORESS* ADDRESS LATCH CONTROL* CLEAR ~ -~ ~~ J ~ LINE CLOCK CLOCK CONTROL co iN I\.') LOAD 280 n. OUTPUT :J ~ r-' 3~ ! 2:: 950n. ~.-,".~ I rnm DOT CLOCK 280n. (22 MHz DOT RATE) 1-30- ~'\. ~ 'f/0'/j - ho//f ,~ -40 X X X~ ----- VALID DOT DATA Y ---- ~ -X -I LOW FOR SPACE---I *Shown here for operation with dynamic memory _ For static memory operation the address latch control would be tied high and the character addresses would be stable between each address change occurring 280 ns before the high-to-Iow transition of Load -enable_ FIGURE 4_ Typical System Timing Waveform Functional Description 00 • • • • • 00 o.ooooo.n • 000000D. .0000000. "- • non[10on. o.ooooo.n 00 • • • • • 00 ......... DCJaDOO.OO ......... ......... ooooo.oon [JOoo.oooo (JOo.ooooo oo.ooocou w oo.oouooo ooo.naooo 000[1 • • • 00 C 000.0000(] [Jo.mmeoo u 00000000. ooooonoo. ooooooon. ooooooon. nOOODoon • ooooooon. 00000000. 000000.00 00000.000 0000.0000 000.00000 DOD08DOOCJ ouooo.ouo conooo.oo .......... ........ .onooooo. • coo[]ono. ......... • 0000000. • [)Or;COClJ. • OOCODO~J. ooooCo(]o. OO::::JO[]OOO. OOOODoun. 00000000. ooooonlm. OOOOOOOD. 0000000.0 oD[Jo[JO.O[) 00000.0[1l1 OODo.oonn ooo.ooonn .000LJODQ. [].ooooo.o oC.O[JU.OD UOU.(J8000 [)(]00.000[1 llOOCC.OOO .OO[]OOOO. .COOOO[)o. • • • • • • • 00 ::JCOoOO(J.O UUO[JO(]l]O. OCOOOOOo. OUOrJO[JOO. ......... .., (Continued) oc.oooono 0.0000000 • uouuoO[J. • 0000000. • [)[]O(lOOO. ......... ......... ......... ct [lOD80080o 0000.0 • • 0 000800800 000.00.00 0000.000. 000000080 oocmoo.oo 000000000 .0000000. 0.00000.0 00.000.00 000.0.000 0000.0000 000000000 00 • • • • • 00 0.00000.0 .0000000. • • • • • 000. .oooaooo. 0.00.00.0 00 • • • • • 00 000000000 OOOoDCJOD[) ocooooono 000000 • • 0 O[Jo[)ooooa ooOOOOOClO oocoooooo 000.00.00 00000000. .00000000 .00000000 .00000000 00000000. uooo •• ooo .000.000. .0008000. .000 • • • • • .0000000. .00000008 ......... ......... .......... ........ .0000000. .00000008 .000 • • • • • 80008000 • 80DO.OCO • .0000000. .0000000. • • • • • 000. :888:888: ......... 000000000 0000 • • • • 0 000.0000. 000.0000. 000.0000. 000.0000. 0000 • • • • 0 0.00.00.0 00.00.00 • .00.00.00 0.00.0080 00.00.00. .00.00.00 0.00.00.0 000000000 0000 • • • • • 000.00000 000.00000 000.00000 0000.0000 000 • • • • • • 0.0000000 00.000000 00.000000 0.0000000 .00000000 .00000000 0.0000000 0000 • • • • • 000.00000 000.00000 0000 • • • • • 000.00000 000.00000 000 • • • • • • 000000000 0000.0000 0 ••• 0 ••• 0 .0000000. .0000000. 000000000 000000000 ......... 000000000 000000000 00000000. 000000000 000000000 000000000 • • • 00 • • • 0 000000000 000000000 000000000 000000000 00000000. 000800080 0000.0.00 00000.000 000000.00 000000000 000000000 .0000000 • .0000000 • 0 ••• 0 ••• 0 0000.0000 000000000 .0000000. 000000000 ocooooooo 000000000 000000000 oonooonno 000.00 • • 0 00000000. oooooooou 000000000 00 • • • • • 00 0.00000.0 80000000. .000 • • • • • .000.000. 0.00.00.0 00 • • • • • 00 oo • • • • • ::m 0.00.00.0 .000.000 • • 000.000 • • 000.000 • 0.00.00.0 00 • • • • • 00 000000000 000000000 000000000 000.00.00 000000000 000000000 000000000 ·00 • • • • • 00 0.00.00.0 .000.000. .000 • • • • • .0000000. o.oceoo.o 00 • • • • • 00 0.0000000 .00000000 .00000000 .0000 • • 0 • .oco.oooo .oee.oooo o • • • coooo 000000000 •••••••• 0 .0000000. 00000000. 00000000. 0000000.0 NOooocoooo 000000000 000.0000. 000 • • 000 • 000.0.00. 000.00.0. 000.000 • • OeJO.cooo. o.oeOoo.O 00 • • • • • 00 0.00.r]0.0 • 000.coo • • • • • • 000. • 0000000. 0.00000.0 00 • • • • • 00 ......... oooooooce. 000000000 00000000 • 0.0 • • • • • • 000.0000 • 000000000 000000000 000000000 ••••••••0 000.0000 • 0000.000 • 0000.000 • 0000.000. N • • • • 000.0 .000.00C. • • 00Du:J • • .0.000.8. .00.0.00. .000.000. .co.o.on. 0.00000000 0080 • • • • • 000.00000 000.00000 000.00000 0000.0000 000000000 000.0000 • 0000.00.0 00000 • • 00 00000 • • 00 0000.00.0 000.0000 • 0000.0000 Or.~OD.ODDO ooou.oooo 0 ••••••• 0 0000.0000 Dooe.OODD oDoC.oooo ono.ooooo OC.OOOOOO • • COoOOOO .0000000. 000000000 oOCOOoOOO •• no:::J:):: •• 0 • • 000 • • 0 • 00.0.00. .000.000. .000.000. .000.000. • 00.0.00. 0 • • 000 • • 0 0.00000.0 00.000.00 000.8.000 ......... 000.0.000 Dc.ceO.DU c.ccooo.a OOOCCJ::JOCO 000000000 ......... ooooooomn Dooo.nooa 0000.0000 0000.0000 0000.0000 coooooooo ......... • • CODOO • • OOOC::J.:J::JrJo OO::JC:::JCJOOO .0OODDOU. O.OCooo.o 00 • • • • • 00 OCCODDOO[J occoooooo 0.000 • • • • .0000.0.0 .0000.00. • 0000000. • 0000000. 0.00000.0 00 • • • • • 00 •••••••• 0 lJlJOlJ':..]Uou. 0000000.0 0000 • • • 00 OOODCOO.O 00000000. ••••••••0 000000000 000000000 ..0000000 • • • OOoOoD 000.00000 000000000 000000000 • • • 000000 .00.00000 • 000.0000 .0000.000 .00000.00 .000000.0 .0000000 • 00000 • • • • 0000.000. 000.0000 • 000.0000 • 000.0000. 0000.000. 00000 • • • • 00 • • • • • 00 e.ooooo.o .0000000. .000.000 • .0000000. 0.00000.0 00 • • • • • 00 000000000 ••••••••0 0.0.0000. • 000.000 • .000.000 • .000.000. N 0 • • • 000.0 000 • • • • • 0 00000000. 00000000 • 00000 • • • 0 00000000. 00000000. 000 • • • • • 0 .00000000 .00000000 .000.DoOO .000.0000 • 000.0000 .000.0000 • • • 000000 000 • • • 000 DOoOoO • • o 00000000. (JOoODO • • O 000 • • • 000 • • • CoooOo 00000000 • 00000 • • • 0 000000.0. 0 • • 00.00. .00 • • 000. • 00 • • 000. 0 • • 00 • • • 0 o.oDlJ • • • o .000.000. .000.000. .000.000 • • 000.000. 0.000.00 • OC • • • • • • O • • 0000000 00 • • 00000 0000 • • 000 000000 • • 0 00000000 • 0000000.0 000000.00 00 • • • • • 00 0.00000.0 .00.0.00. .000.000. .00.0.00. 0.00000.0 00 • • • • • 00 000000000 0.0000000 .000.0000 .000.0000 0 •••••••• 0000.0000 0000.0000 000000000 000 • • • • 00 0000000.0 00000000. otJooooo.o 000 • • • • 00 000000000 • • • • • • • oC] 0.00000.0 DO.DOo.O • uuo.OOo.O 0000.0000 0.000.000 .0.000.00 0.00000.0 • 0000 • • • 0 • 000.080. • OOC.OOO • • coo.ooo. .000.000. • ooc.ooo. • • • • • 00.0 • 0000000 • .00.0.00 • .000.000 • .00.0.00. .0000000 • .000.000 • .000.000. .000.000. 0.00.00.0 00.0.0.00 000 • • • 000 0000.0000 oooooooao [JOOO • • Ooo 000.0.00. ouo.o.oo. OUo.o.OO. 000.0.00. 0000 • • • • 0 0000000.0 00000000. 00000000. 00000000. 000 • • • • • 0 B:B~~~~B ooooeo.oo 000000.00 0.00.00.0 0.0000.00 00.000.00 000.00.00 ocoo • • • oo 0000000 • • 000000.00 00000.000 00 • • • • • 00 000.00000 00.000000 ..0000000 00000000 • 00000000 • 00000000. 00000000 • 00000000 • 00000000. .0000000. • 0000000. • 000.000. .000.000. .000.000. .0oc.oOO. OO.OOD.OO Ooo.o.oon OCCO.OoO[l ooo.c.ono Dc.oco.no 0000000.0 00000000. 00000000. 00000000. OOOCOOC.o • • • • • • • 00 • 000.800. .000.000. .coo.ooc • .coo.ooo. ......... ......... ......... .C.DOo.~ • • • CDOOO • • ......... 000000000 coo •••••• ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... ......... 00 • • • • • 00 0.00000.0 • 0000000. • 0000000. .0000000. .. .., N • • 000OUoo .00000000 .OOoOOO[]rJ co Vi 0( I :1 0 • • 00.000 000.00.00 000.00.00 000000000 0000.00.0 000.0000 • 000.0000. 000.0000. 0000 • • • • 0 000000000 0000000.0 000.0000. 000.0000. 0 •••••••0 000.00000 000.00000 000000000 0000.00.0 000.0000. 000.0000 • 000.0000. 000.0000. 0000 • • • • 0 000000000 0000.00.0 000.00.0. 000.00.0. 000.0.00. 000.0.00. 0000.00.0 .000.000. .000.000. • 000.000. .000.000 • • 000.000. .000.000. • 000.000. 000000000 0000 • • • • 0 000.0000 • 000.0000. 000.0000 • 0000.00.0 000000000 0000.0000 000.00000 000.00000 000.00000 0000.0000 000 • • • • • • 000.00.00 000.00.00 0 • • 00.000 .0000000. .00000000 .00000000 • • 0000000 0.00000.0 .0000000. • 0000000. • 0000000 • • 0000000. 0.00000.0 00 • • • • • 00 O.OOOO.OC .0000.0.0 • Uoo.ooo • • 000.000 • • 000.000 • o.o.ooco. 00.0000.0 00.000.00 00.000.00 oo.coo.oo 00.000.00 0 ••• 0 ••• 0 • 000.000. • 000.080 • .000.000 • • 0000000 • • oocoooo. u.oocoo.o 00.000.00 0.0.0.0.0 .000.000. .000.000. .000.000. 0 • • • 0000. .000.00.0 .000.0.00 • 000 • • 000 • 000.0000 .000.0000 000000000 000000000 • • • • 00000 000000000 000000000 • • • • 00000 000000000 0 • • 00000. • 00.0000. • 000.000 • .000.000 • .000.000 • • 0000.00 • 0.0000 • • • 00000000. 00000000 • 00000000 • 000 • • • • • • 00.00.000 0.000.000 • 0000.000 0.000.000 00.00.000 000 • • • • • • 00 • • • • • 0 . 0.00000.0 .00000.0. • 0000.00 • .0000000. 0.00000.0 00 • • • • • 00 000000000 000000000 000000000 • • • • • • 00 • 000000000 000000000 000000000 000000000 00000000. 00000000. .00000000 .00000000 .00000000 .00000000 .00000000 • 00000000 0000.0000 000 • • • 000 00.0.0.00 0.00.00.0 • 000.000. • 000.000 • .000.000 • 00000000. 0000 • • • • 0 000.0.00. 000.0.00. 000.0.00 • 000.0.00 • 000000 • • 0 N 0 • • • • • 0.0 .0000.00. . 0 • • • • 00. .0.00.00. .00 • • • 00. 0.00000.0 00 • • • • • 00 0 • • • 00000 .000.0000 • 000.0000 • 000.0000 • 000.0000 .000.0000 000000000 000000000 000000000 000000000 000000000 000000000 000000000 00 • • • • • 00 0 • • 0000.0 .00.0000. • 000.000 • .0000.00. 0.0000 • • 0 00 • • • • • 00 .0000000. .0000000 • .00qoooO • .0000000 • .Oo[J[JODO. 00000000. 000000 • • 0 00000.000 000 • • 0000 .0.000000 • • 0000000 • • • 000000 000000000 000000000 000.00000 • • • 000000 • • 0000000 000000000 000000000 N ... .0000000. ct • • 00.0000 00 • • • 0000 .COOOCoO. ......... '" co 800000008 ......... 0 • • • • • • 00 .00.000.0 • 000.000. • 000.000. • 000.000. .000.000. G • • • OOO.O oO::JO.OOOO CJooo.Qonn 0000.000[1 OOOO.OODD OCCO.OO:JO ... 80000000. 000.00.00 000800.00 000800800 uu ••••• oo OCO[JCOO~]O ......... ......... ......... 0000.0000 [JODO.O(]OO 0000.0000 (JOOO.OOoo (J(JDC.OOOO ODeO.DODO .000.000. .000.000. • • • • • 000 • 0000.0000 000000000 0000.0000 000.0.000 00.000.00 0.00000.0 .0000000. 000000000 OU0080800 ......... 0000.0000 0000.0000 .00000000 0.0000000 • • 00::1:::;000 00.0:1:1000 OOo.ODOC]O DaDe ••••• 0000.0000 0000.0000 oooo.ooon 000000000 000000000 000000000 00000000. 000000000 000(]00000 000000000 uonCCC.OD coooooooo .... 800000000 ......... oooooo.on 0000000.0 or100o. ;:Jnn 000 on: lOOel .ouoooor]. ......... ......... ......... ... 00000.000 0 • • • 00000 .000.0000 .000.0000 • 0000 • • 0 . • • orJOooo. .CJ.DDO[")O. .OO.oLlOO. • COrJ.OCO. .COoO.OO. .COl;CO.C. .UCCCClO • • LJCCJCSClC.C en 0.0000000 00.000000 000.00000 0000.0000 co ......... - 0.00.00.0 00 • • 000.0 00.000.00 0.000000. 00.00000. 000000000 8-33 00000000. 00000000 • 00000000. ......... ......... ......... .. • • • • • • 000 000000.00 0000000.0 0000000.0 000000.00 • • • • • • 000 '" ... ......... 000000000 0.0.00000 .000.0000 .000.0000 .000.0000 0 • • • 00000 000000000 0 • • • 00000 .ooo.oooc .000.0000 .000.0000 0.0.00000 N ••••••••• ~ u z uCO N en CO CO :2: c .n w a: :::l e" u: Functional Description 000000000 000000000 0 • • • • • 000 .00000.00 .00000.00 .00000.00 0 • • • • • 000 000000000 000000000 000000.00 000000.00 000000.00 000000.00 000000.00 000000000 000000000 0.0000000 w 000000000 000000000 • • • • • • • 00 0000.0000 000.00000 00.000000 • • . • • • • • 00 C 000.00000 0000.0000 00000.000 000000000 000000000 0 • • 000000 .00.00000 .00 • • 0.00 .00000000 0.0000000 000000000 000000000 • • • • • • • 00 000.00000 000.00000 000.00000 000.00000 000000000 000000000 • • • • • • • 00 .00.00.00 • • • • 00.00 .00000.00 • • • • • • • 00 00.000.00 00.000.00 000 • • • 000 000000000 000000000 0.0.0.000 .08080.00 0.0.0.000 .0.0.0.00 0.0.0.000 000000000 000000000 0000.0000 000.00000 000.00000 000.00000 0000.0000 000000000 000000000 000000000 000000000 000000.00 000000000 000000000 000000000 000000000 000.00000 00.0.0000 0.000.000 .00000.00 000000000 000000000 000000000 OOOODLJ.OO • • • • • • • 00 .00000000 • • • • • • • 00 000000.00 000000000 000000000 • • • • • • • 00 .00.00.00 .00 • • • • 00 .00000.00 • • • • • • • 00 000000000 000000000 000 • • • • 00 00.000000 00.000000 00.000000 00 • • • • • 00 000000000 000000000 .00000000 080000000 0.0000000 0.0000000 00.000000 000000000 000000000 • • • • • • • 00 0.0000000 00 • • • 0000 0.0000000 • • • • • • • 00 000000000 000000000 • • • • • • • 00 • • • • • • • 00 .00000.00 .00000.00 .00000.00 mlD.OOOOO 000800000 000.00000 080.00000 000800000 000000000 000000000 000000000 000000000 • • 0.00000 00 • • 00000 000 • • • 000 000000.00 0000 • • 000 000000800 00.0.0000 000080000 • • • • • • • 00 800000.00 .00 • • • • 00 .00.00.00 • • • • • • • 00 000000000 000000000 000 • • • • 00 00.000000 000 • • • • 00 00.000000 00 • • • • • 00 000000000 000000000 000000000 000000000 000000000 000000.00 000000.00 000000.00 000000.00 • • • • • • • 00 000088000 008000000 00000.000 0000.0000 ooo.oOoClO oO.oOOoClO o.OOOOClDo 000000000 000000000 000000000 000000.00 • • • • • • • 00 000000000 000000000 000000000 000000000 • • • 0 • • • 00 000000000 000000000 000000000 000000000 .00000.00 0.000.000 00.0.0000 000.00000 • • • • • • • 00 000000000 000000000 .00000.00 .00000.00 .00000.00 • • • • • • • 00 • • • • • • • 00 (!I u: Functional Description 000000000 • • • • • • • 00 (1(10.00000 .... ooo.aoaoo w 000000000 000000.00 • • • • • • • 00 .00[J00000 • • • • • • • 00 0000[J0.0[J 000000000 000000000 • • • • • • • 00 .OO.OO.[JO .00 • • • • 00 800000.00 • • • • • • • 00 000000000 000000000 000000000 • • • • • • • 00 < C Absolute Maximum Ratings U. <0 (Note 1) Voltage at Any Pin Operating Temperature Range Storage Temperature Range Power Dissipation Lead Temperature (Soldering, 10 seconds) ,... ,... N Lt) :E :E -0.5V to +6.5V D D -25 C to +85 C D D -65 C to +150 C 1W D 300 C DC Electrical Characteristics :t C (T A within operating temperature range, VCC = 5V ±10%, unless oth~rwise specified). u.. <0 ,... ,... PARAMETER (Note 2) N rvp MIN CONDITIONS (Note 4) MAX 10 VIN = 0 to VCC Lt) III Input Current :E :E VIH Logical" 1" Input Voltage 2.0 VIL Logical "0" Input Voltage -0.5 UNITS IlA VCC+l.0 V 0.8 V V V 204 VOH Logical "1" Output Voltage IOH =-400 IlA VOL Logical "0" Output Voltage IOL = 3.2 mA 004 ILOH Output Leakage Current VOUT = 4V, Chip Deselected 10 IlA ILOL Output Leakage Current VOUT = OA5V, Chip Deselected -10 IlA ICCl Power Supply Current All Inputs = 5.25V, Data Output Open 70 100 mA Capacitance PARAMETER (Note 3) CONDITIONS TYP (Note 4) MIN MAX UNITS CIN Input Capacitance (All Inputs) VIN = OV, T A = 25°C, f = 1 MHz, (Note 2) 7.5 pF COUT Output Capacitance VOUT = OV, T A = 25°C, f = 1 MHz, (Note 2) 15.0 pF AC Electrical Characteristics (T A within operating temperature range, VCC = 5V ±10%, unless waveforms. PARAMETER tAC Chip Select Access Time tOFF Output Turn OFF Delay tAO' Address Access Time oth~rwise specified). See AC test circuit and switching time CONDITIONS See AC Test Circuit; tAC and tA Measured to Valid Output Levels with tr and tf of Input <20 ns; tOFF Measured to <±20 IlA Output Current MIN TYP (Note 4) MAX UNITS 120 ns 100 ns 450 ns \ Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation. Note 2: Positive true logic notation is used: logical "1" = most positive voltage level, logical "0" = most negative voltage level. Note 3: Capacitance is guaranteed by periodic testing. Note 4: Typical values are for TA = 2SoC and nominal supply voltage. 8-44 AC Test Circuit and Switching Time Waveforms 5V RL 1.66k * I ncludes jig capacitance 2.0V ADDRESS ------...,.x O.BV X ADDRESS VALID "-------------------' "'------ X'-------------"""X 2.0V - - - - - - - - - - - . . . , . CHIP SELECT CHIP SELECT VALID -! "'---~-- O.BV l--t VOH OFF OUT~~:-_-----------------TR-I-.S-T-AT-E-®------+_---__--__~ __~_______D_A_T_A_V_A_Ll_D________J~-- -I,c-I FIGURE 1. Address Precedes Chip Select 2.0V ADDRESS ----------...,.X O.BV X '---------______ '------ 2.0V - - - - - - ' " " CHIP SELECT O.BV _ _ _ _ _ _J 1-.--------tA--------~·-1 VOH -------T-R-I.S-T-A-T-E®-R------(--j~--------------...,.X, - - - - - - - - - - - - OUT~~: - - - - - - - - - - - - DATA INVALID \._ _ _ _ DA_T_A_VA_L_I_D_ _ __ FIGURE 2. Address Follows Chip Select Functional Description The chip is selected by applying the proper logic levels to the 3·chip select pins: A 7·bit binary word must be present at the character address inputs, AO-A6 to select a character. The dot matrix of selected characters is generated by cycling the line count address inputs LO-L3 through the line counts necessary to generate the char· acters. A dot is generated when an output is a "1" (at VOH). Figure 3 shows an example of the conditions required at the address and line count pins to generate the dot matrix of the character A. Figures 5 and 6 show the character fonts of the MM52116FDW and MM52116FDX. 8·45 c>< u.. Functional Description (Continued) LO L1 L2 L3 co ..... ..... N AD It) A1 ~ ~ A2 ~ C u.. A5 DDT SHIFT REGISTER A3 A4 A6 VIDEO OUTPUT co ..... ..... N It) CHIP SELECT CS1 CS2 CS3 ~ ~ 0 CHARACTER-ADDRESS A6- - ~ A4 A3-- - - 0 0 0 0 AO L3 0 0 0 0 0 0 0 0 0 0 0 0 0 DOT MATRIX 07 - - - - - - - - 01 LINE COUNT LO L2 L1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0 O· 0 Note. A "1" = V IH for address, line count and chip select inputs and a "1" = VOH for outputs. FIGURE 3. Example of Generating the Character A PERIPHERAL INTERFACE VIDEO INTERFACE I I ITO I t--:----""'I--------.....------IATTRIBUTE OECOOE I I I MICRO PROCESSOR I I I I I VIOEO HORI~~;;~~ I I} . _---.;.SY;.;,;N;.;.C. II SYSTEM CONTROL BUS X1 X2 II FIGURE 4. Typical MM52116FDW and MM52116FDX Application 8·46 3·TERMINAL MONITOR Functional Description A6 0 I.S: ..... 000 001 010 011 100 101 .ooa. ..... UU80n Dr..O[J Dono. .norm .n.ou ..... AS A4Al 000 ~~~~~ ..... 00000 0 001 i~~~i gggg~ ••• uo • • 000 .0.00 0 010 ~~~~~ :~~l~: O.U.~J ..... []U.!JO 0 011 ~~f~~~ g~gg8 0 100 IIIII 00.00 0.000 0 101 0 ••• 0 .000. .00 • • .0.0. 110 0 1 000 001 010 011 1 lin 110 111 .0 ••• :ggg: :g~~: .oau. ggggg i~~~~ • • 000 ao.nn ~~~:~ tsH~~g •• noo 00000 ..... ..... 00000 ODO[JO OO[)oO ~~~~~ 00000 .uao. .oau • 0 ••• 0 O[)ULJ. UU[)(18 ••• D. OUO.D • oooa •• 0. ••• (J.D. u.u. (l • • • n (1[J[)(10 00;:]00 5~n5 ~:::g 00000 00000 c ••• o n ••• o g~:~B o.uoo DO.OO nnaoo §~ggg BR~RB ~~g~~ no.u(J uu.uo 8:S:g u.u.a ~B:g~ ~~iCgg ggg8B 00.00 oou.n Ht~~~H []O[][1[] ~~~gg ~g:g~ [)O[JU. 0 ••• 0 oon.u g~:~g .oau. [Jo.au DO.C[J 00000 00000 [J0(J00 [l • • • O .rlnll. (l • • an rJrlllon oooon n ••• o :g:~: ~i~ii ..... • 000. .000. •••• 0 • 000. .000. •••• 0 :gggg .000. .000. 0.0.0 00.00 0.0.0 :ggg: B88gg .non. ~~~~: !llil ..... 00000 00.00 au.oo (]u.uu O[).l)U [JUDOO B8ggB ..... ~§~§§ ggggg §~ggg 00000 00000 [Jo.no u.n.o .uoo. ..... :BRg: nrmOO •••• 0 0 ••• 0 [1 ()OO E] 00000 .u.u. .0.0. 00000 ~i~§~ 000 • • 8~~gg ~~:~~ 111 [JOOO. 0000. 000.0 ooann 000.0 .oeoo .n.oo oanm] OOODD 00000 o ••• u u.u.o o.t.::.o ..0.. .u.n. 8:8:8 oaoaD DOOOO ~~~~g ..... .....o. .000 • .ano • 00000 00000 0000. DODD. 0000. [1 [)[] BBBB: 00000 00000 00000 00000 0 ••• 0 .000. •• 0 •• n ••• n •• 0 •• .uoo. o ••• u u ••• u :s~~: 00.00 00000 00000 0 ••• 0 .oon. no.o. •••• n [JrJ.no nOODO OODUO •• on. ~~~~~ DLJOOO 000.0 00 • • 0 ..... 00000 00000 000.0 00000 00000 ggggg ggg:g 000.0 00.00 ~~~gg 0.000 00.00 000.0 00000 00000 :g:~: :g~~: .[Joo. ~~~gg .0.00 00000 00000 00000 888gB 8BB88 gg~gg .0000 •••• 0 0000. 0000 • ~:~:~ .0.0. ~~~~~ ~~~~~ 00000 00000 g~gB~ .000 • .000 • 00000 • • 000 00000 g§g~8 BH:8R [J • • • [) UUUDo • 000. • 000. • • • 0. 00.00 0 •••• .0.00 0 ••• 0 :H~r~: .nnn. ..... ..... 00000 00000 00000 DDDDD 00 • • • 0.000 .0000 :~~~~ g~~~g 00000 0.000 00.00 ggg~H 00000 00000 00000 00000 00.00 g~ggg •••• 0 .000. ..... ..... 00000 00.00 g8~8g 00000 [)0000 8gggg 00000 00000 0000. oooao 00.00 ~~8gg 00000 00000 00000 ..... onno. ~~~~§ 8g§g~ 0 ••• 0 .0Uo. §g:~g . BB~§g 00000 0 •••• .000 • .0000 .0000 .00 • • .000. .008. :~~~~ [Joooo nnuoo [Joooo :B8g: ~~ni ggggg ~~~Hg 00000 [)OOOO DDOOD i~n~ • 0000 .0000 •••• 0 .0000 .0000 .0000 00000 00000 8~:~B DODO. • onn. aoooo .000 • .000 • .000. ..00• .0.0 • .00 • • .000. .000. .000. :B8B: onooo .000 • 0 ••• 0 00000 00000 DDO[J[] :~~~~ [JoDo • oo.uo ou.oo 00.00 uo.uo 0000. 00000 00000 00000 00000 D ••• D 0 ••• 0 • 000. aooo. :g~g: §~~§~ :ggg: 0.0.0 00.00 gg:gg 8g8gg 00.00 00000 g~~~g 0000. ~~~~: 0 •••• 00000 00000 .0000 .0000 •••• 0 .000. 00.00 ooODO 0 • • 00 no.oo .000. 00000 00000 00.00 00.00 0 •••0 00000 00000 00000 00000 inn n!!1 00000 00000 .000. 0.0.0 00.00 0.0.0 .000. 00000 00000 nnooo g~~~g ou.n[) U~~~g ggggg 00000 00000 00000 -DOD. _oooa :~~~~ .[Joo • ou ••• 00000 00000 o.n.o noooo on.oo 8000 • :ggg: onODO .U[Jua 00.00 0 • • 00 00.00 DaOUD [lnoo. 110 ~~i~~ ..... .ggggg ..... .... .o.n. ..... .0.0. :g:g: ggggg ~~~~~ n~~i g~ggg ~~~~~ ..... BB~gg oo[)oo :~~g~ ~~!!! 00000 00000 aDuoe n ••• lJ (Hl.DO un.o[) [1[].O. 1IIIi 00000 00000 •••• 0 • 0000 .0000 1 ~~~~~ o ••• n ggB~g 1 Dacoo 0 ••• 0 00000 00000 0.000 00.00 100 DOOOO 00000 0 ••• 0 :g:g: (][] •• o c ••• o ~~~~~ 00000 00000 1 UW:~~ 88ggB 888gg 1 • UrH"lU 0 • • 00 00.00 g8:gg gg§gg 1 • O[)DO ~gBB8 [HJUO. g~:~B 0000. 000.0 00 • • 0 0000. .000. 0 ••• 0 00000 00000 • 000. • 000. • 000. 1 :8~gg 0 ••• 0 .000. 0000. 0 ••• 0 • 0000 .800. .OCO. 111 80000 :gggg gggg: ~~gBg 00.00 00000 00000 0 s: s: en (Continued) 0 •••• g8gg: 00000 00000 .000. :ggg: 8~~~: 00 • • 0 8Bgg: • 000. o ••• [] •••• 0 • 000. .000. .0000 .0000 .0000 ..0 •• • 0.0 • ..... ~~~i~ ilill ..... .onoo .OO[J[) 00000 .00.0 .000. 0 ••• 0 • 000 • .0000 0 ••• 0 0000. .000. 0 ••• 0 0000_ • • 000 onooo oacoo 00000 .000 • • 0.0 • 00.00 .noe • ~~~~~ 88888 ..... ..... ~~~~~ ..... gg8:: :~:~g ooono 00000 oooao ..... g~~gg .0000 00000 00000 .0000 .0000 •••• 0 .000. :888: •••• 0 00000 00000 00000 00000 000.0 00000 000.0 000.0 ~g~:g 0 • • 00 38888 D.C • • §:B§§ gg§§§ ..... ..... 00000 00000 000.0 g~~gg 00000 00000 00000 00000 .0000 0.000 00.00 000.0 DODO. ::ggg ~~~~~ g8§g§ ~~~~~ 00000 88ggg 0 •••• • 0000 :gg88 0000. 00000 n!!i II!II 888gg ggggg 0.000 0.000 g:B~~ 0 • • 00 g:g~~ 00000 00000 00000 0 • • 00 00.00 00.00 00000 §~5~§ ~~n~ ggg~g 00000 ~~g~g 00000 00000 .000. 88ggg iii Ii IIIII i!i!i 000.0 00.00 00.00 0.000 00.00 00.00 000.0 00000 00000 B8:88 00.00 :~~g: 0.0.0 0.0.0 00.00 B8BBB 00000 00000 00000 ~~~~~ 00000 00000 00000 00000 000.0 00.00 g~:~g gg:g8 00.00 00000 00000 DOoDO 00000 •••• 0 .000. .000. .000. .000. 00000 00000 00000 5§§§5 8~i~8 .000. .000 • :8~g: :8:g: g~g~8 00000 00000 00000 00000 00000 00000 00000 ..... 00000 00000 00000 00000 D •••• .000 • :888: g~~~: 00 • • 0 00000 00000 0 ••• 0 .000. .000. ~~~~~ 00000 00000 00000 ~ggg~ .000. .0.0• • 0.0. n.o.a ggggg 00000 00000 [lOoo. 0.0.0 .0.0. 0.0.0 .0.0. 0.0.0 .0.0. 00000 gg:gg 000.0 00.00 g~~gB 888gg 00000 00000 00000 00000 [Jo.oa .oooa 0.000 00.00 gg~gg o ••• a 00000 0 ••• 0 .0000 00000 00000 00000 FIGURE 5. MM52116FDW 8·47 00000 ~~~~: 00000 00000 oonoo g~g~g ~ ...... ...... 0) -n c ..:E s: s: en ~ ...... ...... 0) -n c >< >< C Functional Description U. CO ,.... ,.... N A6 U') :E :E ~ c u. CO ,.... ,.... 0 (Continued) K WClOoaoo • • 00eOD WIJ.D.OO 800 • • 00 onanooe cmamlO_ Do.oon. ODD neID • • • O CHJOODOO m:lDDDOO • • • 0000 .00.000 • • • 0000 .0O.U[]0 0 ••• c ••• 001 LllJ ~) • r1 [) rl [;nrlu • • n nnOODO. O(10 • • • U rlnOLJ.1UCl 0000000 • • • 0000 0 .0C.rJO:] .uu.noo • • • ~JUOO DID [H1U.LlOU DOu.OOO OUL. • • • • O(Jll(]l)LlU uUO'.JU['ll N U') :E :E 000 O • • • U[]O .ooonoo .000000 .000000 0 u • • • oOrJ 011 \ 000.00. ouo • • n . C100.0 • • OClO.OU. 0000000 OOOOOOCI 00[1[)000 0 0 0 0 1 100 101 110 111 DOD 0000000 OOOO(J\J[) 0000000 uooouco OOO[lOljl.l OClDOorJO ooocoou OOOOOLJU 1 1 1 1 100 101 110 111 ana. 0000000 0000000 eunanno .oo.nCJo • • • • 0Co .ulJ.olJO .LJlJ.oOIJ uc ••••• rj(lll,I.[JO DODO-DO DUUU.IJU OOOo[JOo 0000000 • • • 0000 .00.000 .00.OlJo .00.rJOD • • • 00.0 oonn • • o 00000.0 0["]00['.0 noon • • • 0000000 0000000 011 100 • • • • 000 • • • • 0rlD aOUaGDO • • • UDDl] 101 110 111 •••••• u .0rJOOUO .oooono .00llOoO • (JOOOaD 0000000 waOD.OO .0lJD.oO .ono.uo • 000 U.O.LJOO • • • • 000 .OOOODo • • • OOUD .OUOODO • ~JO • • • • OIJo.nlJU 000 • • • :1 OOO.OUD ['ilG.O'.JCl 0000000 oLJOOo[Ji-J O • • • []O!l .0COOU(1 .UD!.JO'JLJ .000[1(1U o • • • • • r) OIJr..U,l. DOD • • • :..] UOO.L'.U OCl[J.OC.. 00l.l(J(10[) 00000[10 • • • '-lllOO .00.ClOO • • [~.000 .O • • GOO .ou.oon .00.00 • O,~lJ DO.oOlJ[l 000 .0IJO [mew OClr) 0[J00 0000 .000 .O[J[J .000 .... ODD cnn 000 Q(JQO 000 OOGO [1[][lU.OO 0000.00 OCiLla.DO OGOOoO[1 oOrJnooo • • • 0000 .0D.000 .OO.OCO •••0 •• 0 [lOI)llllll. OOCJD • • u nO[)OU1~. no ••••• Danno.o 0000000 oooOrJOiJ [JOU • • fJU OOO.O.ll oC,U.U(J. oUO:Jouu 0000000 • • • • coo .UOlJDOO • • • ouoo .uouuuo .r-)DlJ • • • 0 • • • 000 .OC[l[)OO .11 • • 000 .ll(].noo U • • {J • • • [1Cl.Ci.[lD nn.n.:.)O ••• 0 .no. .noorJr.o • • • rlono • • • • nnn ll[il"Hl • • • OOrJ.'lnn 000 UOll .ocr; U:J.U.OLJ llU."l.,JU rJClOO[)Oll DOC.;:j[JU oou.ouu 00. .uo .ou. 0000 000 oouu 0" ••• 0 noD [J~JU.lIll[J oonl,UCO o flr1 !.H 10 Ll rl • • • • • u .00[lDO. UOUUUO. DOOO[J'~. Ill[ILl .no n:...' •••• u O(](]O[]ll. ClrJOODO. oooorJO. • • • • • • rJ ODU1JUG[] DnoOOO[] C:L1UIlDllO OOOf]:-nn ....... .0GoLln. .(lUDell. .cn[]cc. OOOOOOlJ OODDOrJO 0 ••••• 0 000.000 ODo.OOrJ 000.000 uUO.QOO [lOO.ODO [Joo.ooo OOO.DrJo 0 ••••• 0 ocoonfJO 0000000 00 • • • 00 O.COCl.U .00000. .000[10. • 0000,1. • 0Cl.00. .000.[1. O.rJOO.u 00 • • • 0 . OOOOOUU 0000000 • 00000. .00000. 0.000.0 rJO.O.OO (l[1[).000 00.0.00 0.000.0 .00000. .00000. lJOoOllOO 0000000 .00000. .OOOUO. O.OOO.rJ rJQ.O.oO 000.000 nOO.OrJD 000.000 OGO.ooo 000.000 oOOOODo oooouoo oO • • OrJO 00 • • 000 000.000 0000.00 oOOIJOO[J 0000000 0000000 UODonOl] ODoOOOrJ DOODOrJn 0 • • • 1100 uuooo.o u ••••• o 0000000 ooonoon 0000000 .ooon.o .0000.0 0 •••• 0. oOOrJooo rJoooooo .000000 .oooouo .DOODOD .U • • • OO • • c..lrJ[1.0 .ODOO.O .lJOCiO.U .0000.0 .0000.0 OOo()OLlt1 OoOO[JOG OOOOClOO - 000.000 O(JoOOOO oo • • noo oOC.GOO 00[1.000 non.ono 000.000 00 • • • 00 OoOo[lO(J OOOODOrJ OOOOoOll 0000000 0000000 . 0 • • 000 0000000 [J[J[1000U 0000000 l} • • • Cl.~ 00 • • ::)00 ... O.lJ:JDOO (1 .000 • • 0 0 • • • 0.0 00000.0 00000.0 00000.0 0000000 0000000 0000000 .0000.rJ 0.00.00 00 • • 000 00 • • 000 0.00.00 .0000.0 0000000 0000000 0000000 [)000000 0000000 .0000.0 .00rJO.0 .00rJO.0 .000 • • 0 0 • • • 0.0 00000.0 .OOOD.O 0 • • • • 00 ~JU • :JL.'LJl; UUG 000 0.00 000 U.OO n.oo 000 .00 .000 0000 [JD • • • • U OO!IOI]LJO 0000000 .ODO.[lO .n.[J[JO[] .un,l.no ••• 0 OOU. • 00 000 • • 00 000. • oc O.'lll .OU OU.Ll OCO • UODO .... ODD. 000 00.0 00. DOD OOUO .cm 0000 0000 .uo OCl.rJ 00.0 (l1l1l0 0000 UOUO ODD 0000 000 OCI.U 000 [JO.O lln.ll ono 0.0 DODO .0 • 000 • • l'O 000 uooo ... ... 000 000 0000 000 nooo ••• 0 000 0.00 00. 0000 0.0 0000 000 0000 DonO.DO (lOlJCl.rJ(l OOQOO(J[1 0000000 • • • (lUOO .no.ooo • • • ouuo .00.::)00 .(lC.;-]OU u • • • • • L1 r1LJ:,.UL:. rJD:::J:1.[FJ oon.rlll!] rHl.l,n.rl c.lr~'J. ~Jn. • • • • • • '.1 U~jL • ..Jun [I [11J I J 'c I '.J '_~ UlJOO[J[l[] ~'l~ H;j~ iii ooooo.u DOl10 • • O 000.0.11 (JU.U[J.l] D.[JOO.U • CHlO(J.U [J[lOnO.:l nncoo.:) OOOOOIJU oocooou OOOO.OU [lO(].CJ[JD nn.Ll[Jrl~l .m:nD!][) U.IlL10[]0 nC,.L.JClnn TJ:1U.:l[lO CC:JD.Oo rJO(JoIJOO coooooo • • • • • 0[1 rJ.ooo.o D.OOOO • O.:1Uoo. o.oLJUlJ. 0.0000 • O.OODn. [1.[]LlrJ.U • • • • • 00 o[JUUUOO rJOOOOOO .Ul1Ll'l.;:l UllDnnCrJ un:1n:lon [JI]llllnnU ~m i~f~ ~~i !~~~ .UiJUC.JL.U ••••• c'u [JUO(lU.(l LJOCDU[J • [IOCl{)rll:. .O[JC10.U {J • • • • [jlJ oOUOl10U OOflOOUU noooooo [lDlJUDOO Olln(JUUO U ••••• O rl • • • • • O nOOl]llOO LJUoO[100 U!lOOOOO OOOO!.lU(l oooooou U • • • UU[J .UOU.'-iO .uou.:Jn u.o.ooo CJ.·I.:lrJ. .LJ[l11 • • U .rlllLl • • O [l • • • r.lLl. nrlrH][lU(] uuuuooo :~ i~ .UULJOc]lJ .UOOOOll .UDOllUO • • • • 000 .U,l{JOUO • 0nn[]OU .llrllJOOO ....... 00000110 0000000 • .COlJUUO .OOOLJ[JO .[JrJUlJr]rJ rJoooouu • o.n.n. • U[J.OO • • llll.no • .[10000 • • rlllrl[JO • • Ol-lm:1IJ • • nonnn. O(]O[)rl[)U CrJooooo ULIl:.:lUO OOO.OUll OC:J.COO O:-Jl:.UOc.1 (J;lU.llCU ooo:~m. rJOIJOrmO .1:....lJO[]ll Oll~-J.ClLlll [, !!'..Jl;:Jl, •• 1 r]~JU:-;".'l C1.1IJrm.n oD80 • • • • • • • DOO .000000 • • • uuuu .000000 •••••• 0 D(]rJ.rJO. [lOo • • • n ono.uo. rJOO • • • [1 nOOOlJCO 0000000 .00.000 .nD.(lOO .00.lJOt1 .no.ooo [, • • 0 • • • nrm.[JOo [lrJllU • • O 0000011. [l(1O • • • rJ oDooCDO OCJQ • • ~O O[IIJ.:JlJLl rlrlflnnorJ 0000000 llooonoo OOOOlJlJO O[]OOOOO ~~ I:: ~§ OLi • • • • :] lJ.L)lJrlll:J .UUUCi'.JU .oor.(-JO(I o .Ul.UU.J • .oooon. .rlLlr:[)'l. iJL;.J1J.Jl] rICJ.~~ l"l[] UO.CJOOO c ••••• , lll;[~ .llLJ OlJUUL;IJn OUlJlJliiJn cn.lnO:I[J OO'10I.'IJ:1 OO.IJODU OOlJ.OOC 0(1 • • • • 0 O.(Jn[J...J. rJD[Jl~.[l[l UOUOO.ll CJUlllJll'J. OUOUlJ.[] O(l(JO.'_Jrl UOC.OO[J oO.UClJU [J[J[lCLll.l[] oouoO!JU [.I [1[J.UrJLJ Q:1OllOULJ O[1O.o[]''] OnnG[lUll OOOOGIJO • LJulJOGO .orJU(100 .UOD(lOO • • • • 000 • UUl.JUOo .0U[]fJO(1 • uoooou .CJ[100UCJ (JO[)LJUUD OOrJDOoO 00 • • • • 0 o.OOOD • .000000 .[JOOooo .000000 .[18 • • • • .annULJ • O.DOllO • OO • • • • U oooonoo OOOOlj(JU ....... ....... .000[100 .UIJIJUO. .!JOOOO • • • rlnrHl. .0.000 • .00.110 • .[I!JU.O • Ollllf;LllJ. • • [j O~J:J[J n.IHH1.n .rlOU[]tl. .(~[][)u • • .IJrlrHllJ • .nr1rJrJn • .oonnn • lIUU[J[lO(] [lnrlOLlUU n.n[JD.O Drl • • • rJO onOQrlOO DlJOOrJOO .LJOO:::lO • .rlllllOO. .U[lflnn. .:JLlnGO. .C1nll[J:1. .C1[lnl1D. .0O[lO[J • .OOODU. .!lOOOO. 0.000.0 [1.OiJrl.U nu.rJ.lJO • rJQ CH]() • .noooo • .(,O'1nn. .UO.OO • OllU.[lll[J [lnD.noo (JOlJu(mo l)(]ll.~!lJU .00000. oUU.OOU .orl(lnn. Doc.r~rJc-J OLJonOOO rJ80U(JU[J OUC;LJLIC(J ~~gg888 [1 • • • • 00 O.UUODU C.OOOOD o.aonu,) o.ouuou O.OoCllJO o.co(Joo 0.00000 c • • • • oo OODUOOO 0000000 0000000 .OCOOOO O.UlJOOO 00.0000 DoO.Cl'ILJ OOOU.')[] oocoo.n OOO[JU:l. OOlJooon OUULJOGo 000iJL10c) 0000000 OOOOOrJo OOOOllOO 0 • • • • 00 .OOlJU.O .oooOrJO .DonODO OOoOO.rJ 00000.0 00000.0 0 • • • 0.0 .ooo • • u .::JOoU.rJ .DOOO.U 0 • • • • 00 ouooooo 0000000 .oo[lono .000000 .000000 .(10[1.00 .0n.nDO • • Il.rJ(]O .ooo.no .oono.o OrJODOOo OrJOoooo 0000000 0000000 0 • • • • 00 0 • • 0000 OOL1Cl aDDu OOOG 000 0000 u •• oooo C[lU[l[l[l. rJno • • • o OOOLlUOQ (JLJODOOO ....... .00llnc;:] c • • • • • (l r:UL.:UULJ • 0 • • • 000 .nnoooo noc.ooo • • • 0Oel • onn.fJ.O [~.n[l~UO .0Oll".C1 .0~1[JOllU ... ... !I[][~.l!n. LJ:~L':"" • • "' UULluLlIJL] UU'... lJlJUU rlrJU.fl:JU L:, • • • • • • .Orl[I[][10 .110l][")(](] 000 0000 .00 .ooo.no • • 00.00 . 0 • • 000 .000000 .000000 .000000 0[1 • • • • 0 0.,100:.1. • UClUDUU .00DCiOO lJ • .j[ tl • • ODOULlCJU 0000 • • 0 000000. noo • • • o OODo[JO(] ormoooo .'~I.ul]n. nno.nno Gnn •••• .UL;ljO(]O O • • lllJOn LJlJu.:lrJU • • • lJ • • I] UiJ(j.OIJ. n[lr1l1 • • 0 nnLJ[JLH1. llUO • • • O UDOo[I[)U U.~.)[J[J.O .~Jc.nno • • • U'.JlJO ni,.l'.J."lr>o rJO[l.:][J[J .UCJ.Uuu ••• nnan •. 1:.Janoo • • • ~lDOD UIJUlJUU:"" (Jlln.~l[](J n.U[J[l[J[1 O·.. J()(iOOO • OOOlJr~.[1 no • • • oo O.:_IlJC.l] .uUUC,L .• .1)Ul")LC • • C'I!l1UU • .Oll.OO1J .0U.OClD .OO.rJOO • • • 00.0 OUC1[1 • • U (lUU.C,.O OOOOOOil ODOrloorJ oOll ••• n (JOnrl oorJ U[J[lO DrJon UOlJD OLJ~[ JO[JlJ Ou[JOUOCI OODCJOOU nOl~.' OUDO (]U[JUlILJ~J rJfl~lnnrl ..'I- • .ur~.ucu aU(:.UlJ. 1)11I: • .J.U 00080 • • .00 0000 ... ... C; • • C][]OL) .~[:.'lOU • • • • GUO • • • ~J • • rJ [JIll,.I', .• OOI]U • • • ()OOCIODO GonaDDLJ fJonn[][J[) (JUO.C.'oD OOO.O()[J onOl]rJOQ OO,JOCllJlJ QO::JOOlJO n •••• r;o D[1l1ua::m •••• orlo WOC:JOtH1 .UGO(lL,J DUUUCOO 0001][,]00 oooooou ....... .UUUl,C. • CCOCJCI. .llLllJO,j. 0 • • • • • '] UUiJ:J[,Ucl OOOOCL.:Ll alluoooo • • • • (1::0 UU • • • • • DODoerll] no[]O.'"]0 0000000 o.uo u.o oaoo o.u u.ou .1[JOO lJ[JilLl '1 • • • • • 0 .[-:rlllnrJ • .n:Juml • .CClOC'l. • 00000. • 00[J00. • OODOO. [jC[lO.~ln 00080.0 oOLl.O[)[] OrJO.O:JlJ OULJ.lJUU oLJU.OlJO lJ • • • • • O • [~( ~LJr:lO. • WU(J('C. .ucc:cn. ....... aoao om OC1UU 00. aUUDL1UU ODoeoau .000 .00 0000 00[10 .000 :llJLJ8CJCQ (IDO[](XJO 00 • • • • ::J o.(loorJ. • ():J • • O. • 0.0.0. • o.n.[~. • c..; • • • • 11 • 000[)nn aouo .00 0000 0" aaGO 00,1 • 000 000 • • • • 000 .0GOOOo • • • UrJDO .OOODOO • • • • 000 oo.noo. on •• D • • 00.0.0. oO.OrlO. ouoonon UOO.O:lO 0" • • L1[]0 Li.U.Ul]n OOO.GOO lJllo.no[] uun.OOD oco.nOG nOO.'lOO n ••••• o OOUOClOn DOOOrJQD •••••• 0 .oooou. • 0OOOrJ. .00000. 011 DOW 1..:: • • • • • 0 .l..JClOULJ. .1"Jono • • .OOU.O. .UI].,.1[]. • n.[l~lll. • • [Iocn. .c-JLlUC".D. .ooor:m. 1 CHl • • • • • DaW[Jooa 00.0000 0000000 lJOoOOOO OrJooooo 0000000 010 IJO.OOO. [lOon.oo 1.l00DlJOo 0000000 .000OrJ. • 00000. 001 n ••• ooo aooonoa Dno.ooo O • • OLlUO ••• n[Joe oO.OrJoo nrm.ClOD 0000.00 o[mo.oo 0000.00 fleno.oo onon.oo .00000. 1 010 0000.00 000.L100 DO.UUOO [10.0000 OO.DUOO [1(1.0000 no.o[mo 00 • • • • • OUU[JGOlJ OOOLJUOO 1 001 A5A4A3 0 • • • • 00 0000000 0000000 000 • • 00 00.0000 00.0000 oo.oono 0.00000 00.0000 00.0000 000 • • 00 0000000 0000000 [Jt1ClOOOO OOUO()Q() 000 • • 00 00.00.0 Oo.cJLJOll OO.OcloO • • • • • rlO OO.UUrl[l oo.oono OOoUClJ:J 0 • • • 0.0 OOOOOlJO oooooou OOIJl1LJ1JO 0 • • • • 00 .uooo.o •••••• 0 .[JOOODO .0OOOlJO O • • • • lJiJ OOIJOo[]O 00000::::10 uo.ooO:J oOUll(l:JO oOrJoOrJO oO::::JOO.O .00110.;"] O • • • • u:J 00 • • 000 OlJfJ.UOrJ 000.000 000.000 OOD.noo oon.ooo ooo.ono ono.ooo 00 • • • 00 O()OmlOO 0000000 noooooo O[]OOLlOO 0000000 ••• 0 •• 0 .on.oo. .00.00. .00.00. .oo.on. .00.00. OOOOOrJO 0000000 0000000 OOrJOoOO 0000000 . 0 • • • 00 • • 0UO.o .0000.0 .0000.0 .0000.0 .0000.0 0000000 0000000 0000000 OOlJoOOO a [JlJ[JoDO O • • • • lJD .UlJllD.O .OOLJU.O .0rJOG.ll .0nLJo.u 0 • • • • 00 0000000 0000 DUO 0000000 on.oooo rJO.DoUO • • • • • 00 0000000 oooooou OrJoOOOO • 0000.0 OOrJoooo OOOOOLJU 0000000 .00000. 0000000 UrJUDOOo oouoooo .00000 • oO.UOLJO 00.0000 00.00.0 000 • • 00 0000000 0000000 .0000.0 .0000.0 • 000 • • 0 0 • • • 0.0 OULJOOOO 0000000 .0DrJoLl. 0.000.0 oO.O.rJO 000.000 0000000 0000000 .00.00. .00.00 • 0 •• 0 •• 0 0000000 uomJOOO 000.000 noo.ooo 000.000 rJOOOOlJD [Joooooo 000.8::]0 000.000 000.000 0000000 oOOOrJoo 0000000 ll(1 • • 0[10 rl(-Ir11·,.r]Q l~ • • onoo .lJO.:JlJ. uuoo • • u OooQUUO O[1[lOOQG r:mnOL10:"1 oononCn OIlOOnrlo FIGURE 6. MM52116FDX 8·48 0 • • • • 00 OOtJll.:JLJ OOO[j.UU (JU[]C.r:iLJ LJU::::lO.;l\l rA1UU.OO (JOL1D.DO ODno.no 0000000 O~lLJOOl]r1 lJCll[l.~lO 0("100.00 OOilrJ['.D no')r:.UlJ orJon.no 000[].1l0 00 • • 000 OOUOUOO 0000000 [)C:'~10000 nuoor.oo OOOOCOU OOOCOOll c • • • o.o .ULJIJ • • O .0Ullll.:J .Gn~ •• o rJ.~l'j.J[1 .CJll.111J. L1IJ.rln.(J O.I)I'.UO .un.DC. [1.00.00 .OO.OD. 00.00.0 OoDOOOO 0000000 Functional Description s: s: (Continued) (J1 I\) ...... ...... m 'T1 C MM52116FDX ASCII CHARACTER SET IN HEXADECIMAL REPRESENTATION Character NUL SOH STX ETX EOT ENO ACK BEL BS HT LF VT FF CR SO SI DLE DCl DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US 7·Bit Hexadecimal Number 00 01 02 03 04 05 06 07 08 09 OA OB OC aD OE OF 10 11 12 13 14 15 16 17 18 19 lA lB lC Character SP ! " # $ % & ( ) * + / a 1 2 3 4 5 6 7 8 9 : ; < 10 = lE 1F > ? 7·Bit Hexadecimal Number Character 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F @ A B C D E F G H I J K L M N 0 p 0 R S T U V W X Y ? [ \ 1 t +- 8·49 7·Bit Hexadecimal Number 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F Character \ a b c d e f 9 h i j k I m n 0 p q ..:E 7·Bit Hexadeci mal Number 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F 70 71 r 72 s 73 74 75 76 t u v w 77 x 78 79 7A 7B 7C 7D 7E 7F y z ALT ESC DEL,RUBOUT s: s: (J1 I\) ...... ...... m "> c~ CJ'I I\) o m 3: -.. o c ~ Truth Table CJ'I I\) CLOCK ENABLE ACTION 1 0 I ncrement counter "-- 0 Increment counter X 0 No change, f 0 "-- f X 0 No change 0 0 No change 1 "-- 0 No change X X 1 01 thru 04·= 0 f X = o RESET m o Don't Care Connection Diagram Dual-In-line and Flat Package Voo 16 RESET 04 CLOCK 10 11 COUNTER 1 c ENABLE ENABLE 01 12 14 15 R CLOCK 02 03 Q1 R COUNTER 2 02 03 TOP VIEW 9-5 04 RESET VSS ~National Memory Support Circuits D Semiconductor DM7555/DM8555, DM7556/DM8556 TRI·STATE® Programmable Deca~e/Binary Counters General Description Features These circuits are synchronous, edge-sensitive, fullyprogrammable 4-bit counters. The counters feature both conventional totem-pole and TRI-STATE outputs; such that when the outputs are in the high-impedance mode, they can be used to enter data from the bus lines. In addition, the clear input operates completely independent of all other inputs. During the programming operation, data is loaded into the flip-flops on the positive-going edge of the clock pulse. To facilitate cascading of these counters, the MAX COUNT output can be tied directly into the count enable input. • DM7555/8555-Decade counter • DM7556/8556-Binary counter 35 MHz • Typical clock frequency • TRI-STATE outputs • Fully independent clear • Synchronous loading • Connection Diagram Cascading circuitry provided internally Truth Table J K M CLEAR On+l 0 1 0 1 X X 0 0 1 1 X X 1 1 1 1 0 0 0 0 0 0 1 On X 1 0 On D O· * Asynchronous Transition Note: See Timing Diagrams Logic Diagrams 55 56 Vee" 06l GND ~ 18) 16) D. IS) D. 9-6 13) Ilc 12) Do ~National Memory Support Circuits ~ Semiconductor DM54LS373/DM74LS373, DM54LS3741DM74LS374 Octal D-Type Transparent Latches and Edge-Triggered Flip-Flops General Description These 8-bit registers feature totem-pole TRI-STATE@ outputs designed specifically for driving highly-capacitive or relatively low impedance loads_ The high impedance TRI-STATE and increased high logic level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components_ They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers. A buffered output control input can be used to place the 8 outputs in either a normal logic state (high or low logic levels) or a high impedance state. In the high impedance state the outputs neither load nor drive the bus lines significantly. The output control does not affect the internal operation of the latches or fl ip-flops. That is, the old data can be retained or new data can be entered even while the outputs are OFF. The 8 latches of the DM54LS373 are transparent Dtype latches meaning that while the enable (G) is high the Q outputs will follow the data (D) inputs. When the enable is taken low the output will be latched at the level of the data that was set up. Features The 8 flip-flops of the DM54LS374/DM74LS374 are edge-triggered D-type fl ip-flops. On the positive transition of the clock, the Q outputs will be set to the logic states that were set up at the D inputs. • Choice of 8 latches or 8 D-type flip-flops in a single package • II TRI-STATE bus driving outputs Full parallel access for loading • • Buffered control inputs PNP inputs reduce DC loading on data lines 05 CLOCK Connection Diagrams and Truth Tables DM54LS373/DM74LS373 Dual-In-Line Package Vce 20 08 19 07 08 18 17 06 07 06 14 15 16 DM54LS374/DM74LS374 Dual-In-Line Package 05 13 05 12 ENABLE G Vce 20 11 08· 19 08 18 07 17 07 06 15 16 06 05 13 14 12 10 10 OUTPUT CONTROL 01 01 02 02 03 03 TOPVIEW ENABLE 0 OUTPUT H H H H L L L X 00 G 04 04 GNO 11 OUTPUT 01 CONTROL 01 02 02 03 TOP VIEW 03 D4 CLOCK t t 0 OUTPUT H H L L L X 00 When output control is high, the output is disabled to high impedance state; however, sequential operation of these devices are not affected. 9-7 Q4 GNO ~National Memory Support Circuits ~ Semiconductor DM54S240/DM74S24O, DM54S241/DM74S241, DM54S940/DM74S94O, DM54S941/DM74S941 Octal TRI·STATE® Buffers/Line Drivers/Line Receivers General Description Features These buffers/line drivers are designed specifically to improve both the performance and PC board density of T R I-ST ATE® buffers/drivers employed as memoryaddress drivers, clock drivers, and bus-oriented transmitters/receivers. Featuring 400 mV of hysteresis at each low current PNP data line input, they provide improved noise rejection and high fanout outputs to restore Schottky TTL levels completely, and can be used to drive term inated Iines down to 133Q. • High performance Schottky TTL line drivers and/or receivers in a high density 20-pin package • TR I-STATE outputs drive bus lines directly • PNP inputs reduce DC loading on bus lines • Hysteresis at inputs improves noise margins Connection Diagrams DM54S240/DM74S240 Vee 20 Ie 21: lYl 19 lAl 18 2Y4 2A4 17 lA2 lY2 2A3 16 2Y3 15 lA3 lY3 14 2Y2 2A2 13 lA4 DM54S241/DM74S241 lY4 12 2Yl Vee 2Al 2G 20 11 GND III 19 lAl lYl 18 2Y4 2M 17 lA2 TDPVIEW DM54S940/DM74S940 lYl 2A4 lY2 11: lAl 2Y4 lA2 2Y3 2A3 2Y] 15 lA3 lY3 2A2 14 2Y2 lY4 13 1M 12 2Y1 2Al 11 GND 1 Y = 1A when 1 G is low 2Y = 2A when 2G is high When 1 G is high, 1Y outputs are at a high impedance Nhen 20 is low 2Y outputs are at a high impedance io 2C 2A3 16 TOPVIEW 1Y = 1Awhen 10 is low 2Y = 2A when is low When 10 is high, 1Y outputs are at a high impedance When 20 is high, 2Y outputs are at a high impedance Vee 1Y2 DM54S941/DM74S941 lY3 2A2 lY4 2Al Vee 211 lYl 2A4 lY2 2A3 lY3 2A2 lY4 2Al 2Y2 lA4 2Yl GND lC lAl 2Y4 lA2 2Y3 lA3 2Y2 1M 2Yl GND' TOPVIEW TDPVIEW I Y = fA when fo and 2<3 are low 2Y = 2A when 10 and 20 are low IY 2Y When,either 1<3 or 2<3 is high, dll, outputs ar,e a high impedance = lA when 10 and iG are low = 2A when 10 and 20 are low When either 10 or 2<3 is high, all outputs are at a high impedance 9-8 ~National Memory Support Circuits ~ Semiconductor C ""C ---.. (,,) o ~ C ""C DP7303/DP8303 8-Bit TRI-STATi:® Bidirectional Transceiver (Inverting) Q) (,,) o (,,) Features • 8-bit bidirectional data flow reduces system package count • Bidirectional TR I-STATE inputs/outputs interface with bus oriented systems • PNP inputs reduce input loading • Output high voltage interfaces with TTL, MOS, and CMOS • 48 mA/300 pF bus drive capability • Pinouts simplify system interconnections • Transmit/Receive and chip disable simplify control logic • Compact 20-pin dual-in-line package • Bus port glitch free power up/down Logic and Connection Diagrams Dual-In-Line Package AD ""><>---e-f--() BO ADo-+-....-f I I AI~_ _ ---.r--<> BI L_ A2o--r- = = AJo-tAPORT [ ::~ A6o--( A10--t... _ Al A2 1 AJ ""t--..oB2 --l A PORT -j-oBJ _~:: A4 B PORT BPORT AS _=:J-o .....r--o B6 B7 A6 TRANSMIT/RECEIVE (lIA) A1 CHIP DISABLE CHIP DISA(~~~O'-"_ _ _ _ _ _ _ _'" GND 10 11 TRAN/REC TOP VIEW Logic Table Chip Disable 0 0 1 INPUTS Transmit/Receive 0 1 X RESULTING CONDITIONS B Port A Port IN OUT OUT IN TRI-STATE X = Don't care 9-9 TRI-STATE m ~ o ~ CO c.. ~National Memory Support Circuits ~ Semiconductor c-.. m DP7304B/DP8304B 8-Bit TRI-STATi:® ~ o Bidirectional Transceiver (Non-Inverting) ~ c" c.. Features • 8-bit bidirectional data flow reduces system package count • Bidirectional TRI-STATE inputs/outputs interface with bus oriented systems • PNP inputs reduce input loading • Output high voltage interfaces with TTL, MOS, and CMOS ' . 48 mA/300 pF bus drive capability • Pinouts simplify system interconnections • TransmitIReceive and chip disable simplify control logic • Compact 20-pin dual-in-line package • Bus port glitch free power up/down Logic and Connection Diagrams Dual-In-Line Package AO AOo-4-+--! APORT ! ">---......-+- --OVCC DIS 1 vee IN 1 0lS2 OUT 2 IN J OUT 4 OUTPUT IN 5 OUT 6 INPUT IN 1 OUT 8 GNO '-----+---4 ><>----11-- OUT 1 ~~----~-IN2 '----~---I '><:>-----11-- OUTJ ~~----~-IN4 ' - - - - - - t - - I ><>-----11-- OUT 5 ~-+------+-- IN 6 '------t---1 ><>-----11-- DUll I--------+-- IN B TOP VIEW GND (ONE INVERTER SHOWN ONL Y) Truth Table Typical Application Disable Input r----..., Input Output I )I~D RES DIS 1 DIS 2 H H X Z H X X Z ...-t++-~ X H X Z '-+-~I+--.l L L H L L L L H t::1a:1a:1:fl~ r~ ~ H = high level L = low level X = don't care Z = high impedance (off) 9·16 LINES MM5290 6k DYNAMIC RAM ~National Memory 5upport Circuits ~ Semiconductor 051631/053631, 051632/053632, 051633/053633, 051634/053634 CM05 Oual Peripheral Orivers General Description high impedance OFF state with the same breakdown levels as when Vee was applied. The DS1631 series of dual peripheral drivers was designed to be a universal set of interface components for CMOS circuits. Pin-outs are the same as the respective logic functions found in the following popular series of circuits: DS75451, DS75461, DS3611. This feature allows direct conversion of present systems to the MM74C CMOS family and DS1631 series circuits with great power savings. Each circuit has CMOS compatible inputs with thresholds that track as a function of Vee (approximately 112 Veel. The inputs are PNPs providing the high impedance necessary for interfacing with CMOS. Outputs have high voltage capability, minimum breakdown voltage is 56V at 250pA. The DS1631 Vee = 5V. The outputs are Darlington connected transistors. This allows high current operation (300 mA max) at low internal Vee current levels since base drive for the output transistor is obtained from the load in proportion to the required loading conditions. This is essential in order to minimize loading on the CMOS logic supply. Features Typical Vee = 5V power is 28 mW with both outputs ON. Vee operating range is 4.5V to 15V. The circuit also features output transistor protection if the Vee supply is lost by forcing the output into the Connection Diagrams Vee B2 Al Bl A2 X2 XI TDPVIEW GND X2 Vee 82 Xl TDPVIEW GND Al Bl GND • CMOS compatible inputs • TTLlDTL compatible inputs PNP's • High impedance inputs • High output voltage breakdown 56V min • High output current capability • Same pin-outs and logic functions as DS75451, DS75461 and DS3611 series circuits 300 mA max • Low Vee power dissipation (28 mW both outputs "ON" at 5V) (Dual-In-Line and Metal Can Packages) A2 Vee series is also TTLlDTL compatible at Al Vee GND Bl A2 X2 Vee B2 A2 X2 XI GND Al Bl Xl GND TDPV1EW TOPVIEW Vee Vee GND TOP VIEW TOPVIEW GND TDPVIEW TOPVIEW (P104 iselectmally connected tothe case.) (PI04iserectricaltyconn~tedtothecase.l (P104 iselectncally connected to the case.) (PIO 4 IS electmally connected to the case.) 9-17 ~ D National Semiconductor Memory Support Circuits OS16441053644, OS167410S3674 Quad TTL-MOS Clock Orivers General Description has a direct, low impedance output for use with or without an external damping resistor. The 051644/053644 and 051674/053674 are quad bipolar·to·M05 clock drivers with TTL/OTL compatible inputs. They are designed to provide high output current and voltage capabilities necessary for optimum driving of high capacitance N·channel M05 memory systems. Features The device features two common enable inputs, a refresh input, and a clock control input for simplified system designs. The circuit was designed for driving highly capacitive ,loads at high speeds and uses 5chottky· clamped transistors. PNP transistors are used on all inputs thereby minimizing input loading. • TTL/OTL compatible inputs • 12V clock or 5V clock driver • Operates from standard bipolar and M05 supplies • PNP inputs minimize loading • High voltage/current outputs • Input and output clamping diodes • Control logic optimized for use with M05 memory systems • Pin and function compatible with MC3460 and 3235 • Built·in damping resistors (051644/053644) The circuit may be connected to provide a 12V clock output amplitude as required by 4k RAMs or a 5V clock output amplitude as required by 16k RAMs. The 051644/053644 contains a 10[2 resistor in series with each output to dampen the transients caused by the fast·switching output, while the 051674/053674 Schematic and Connection Diagrams VCC3 EQUIVALENT INPUT EQUIVALENT QUTPUT I INPUT ' - - - - . -....J\I\i'\r-O I INTERNAL LQGIC CIRCUITRY I I I I I L ___ _ '---.------------~~------....- - - - - - - - - - _ . - - - - _ o G N O * D51644/D53644 only Dual·1 n·Line Package VCCI OUT 0 SEL 0 EN I EN 2 SEL C OUT C VCC3 VCC2 OUT A SEL A CLK IN RFSH IN SEL BOUT B GNO TOP VIEW 9·18 OUTPUT ~National a Memory Support Circuits Semiconductor 081645/083645,081675/083675 Hex TRI·STATE® TTL·MOS Latches/Orivers General Description The circuit employs a fall-through·latch which captures the data in parallel with the output, thereby eliminating the delay normally encountered in other latch circuits. The OS1645/0S3645 and OS1675/DS3675 may be used for input address lines or input/output data lines of a MOS memory systern. The OS1645/0S3645 and OS1675/0S3675 are hex MOS latches/drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are used to reduce input currents, allowing the large fan-out to these drivers needed in memory systems. The circuit has Schottky-clamped transistor logic for minimum propagation delay, and TR I·ST ATE® outputs which allow bus operation. Features • TTL/OTL compatible inputs • PNP inputs minimize loading • Capacitance-driving outputs • TRI-STATE outputs • Built-in damping resistor (OS1645/DS3645) The OS1645/0S3645 has a 15 n resistor in series with the outputs to dampen transilmts caused by the fast switching output circuit. The OS1675/0S3675 has a direct, low impedance output for use with or without an external resistor. Logic and Connection Diagrams DATA A O-~~----------f--"""l Dual·ln-Line Package Vee DDs~~ DATA F IN ENBl DATA A OA OF DATA E DE DATA 0 aD DATA e fie GND DATA9o-C======= DATAe o-C ======= === ::::J-o ====::::J-o = = === ==== DATADo-C======= DATAE o-C DATAF o-C = = = ::J-o DE = == = fie liD ====::::J----<>fi F == = DATA 9 OB TOPVIEW ~~!:~~ O------L~O-------------I Truth Table INPUT ENABLE OUTPUT DISABLE 1 1 OPERATION DATA OUTPUT 0 1 0 Data Feed-Through 0 0 1 Data Feed-Through 0 0 X Q Latched to Data Present when Enable Went Low X 1 X Hi-Z High Impedance Output X = Don·t care Hi-Z = TRI-STATE mode 9-19 t-- t-,.... ~National Memory 8upport Circuits ~ Semiconductor c 081647/083647,081677/083677, ;;:: 0816147/0836147, 0816177/0836177 t-,.... CD ,.... Quad TRI·8TATE® M08 Memory 1/0 Registers CD ('I) en en c General Description 051647/053647 and 051677/053677 they are TRI5TATE_ The "8" port outputs are also designed for use in bus organized data transmission systems and can sink 80 mA and source -5.2 mAo The "A" port outputs in all four types are TRI-5TATE. The 051647/053647 series are 4-bit I/O buffer registers intended for use in M05 memory systems. The circuits employ a fall-through latch for data storage. This method of latching captures the data in parallel with the output, thus eliminating the delays encountered in other designs. The circuits use 5chottky-clamped transistor logic for minimum propagation delay and employ PNP input transistors-so that input currents are low, allowing large fan-out' to' these circuits needed in a memory system. Oata going from port" A" to port "8" is inverted in the 051647/053647 and 0516147/0536147 and is not inverted in the 051677 /053677 and 0516177/0536177. Oata going from port "8" to port "Au is inverted in all four types. Two pins per bit are provided, and data transfer is bidirectional so that the register can handle both input and output data. The direction of data flow is controlled through the input enables. The latch control, when taken low, will cause the register to hold the data present at that time and display it at the outputs. Oata can be latched into the register independent of the output disables or EXPAN510N input. Either or both of the outputs may be taken to the high-impedance state with the output disables. The EXPAN510N pin disables both outputs to facilitate multiplexing with other I/O registers on the same data lines. Features • PNP inputs minimize loading • Fall-through latch design • Propagation delay of only 15 ns • TRI-5TATE outputs • EXPAN510N control • 8i-directional data flow • TTL!OTL compatible The '!8"port outputs in the 0516147/0536147 and 0516177/0536177 are open collectors, and in the • Transmission line driver output Logic and Connection Diagrams r---------------------, I I I I Dual-In-Line Package Bl I Bl B MULTIPLEX I Al I I INPUT ENABLE AI L ____ _ _ _ _ _ _ .J A2o-[== === AJo-[===== A4o-[===== r----- =====}-oB2 === ==}-oBJ =====}-oB4 -----, I I I I I I _ L ____ _ I I _ _ .J A__________.._ B INPUT ENABLES OUTPUT DISABLES EXPANSION *Inverting 051647/053647 and OS16147/0536147 only 9-20 A { B A2 B2 AJ GND B3 TOP VIEW ~National Memory Support Circuits en D Semiconductor ~ c en CN 081648/083648,081678/083678 TRI-8TATE® M08 Multiplexers/Orivers en General Description The OS1648/0S3648 and OS1678/0S3678 are quad 2-input multiplexers with TRI-STATE outputs designed to drive the large capacitive loads (up to 500 pF) associated with MOS memory systems_ A PNP input structure is employed to minimize input currents so that driver loading in large memory systems is reduced_ The circuit employs Schottky-clamped transistors for high speed and TR I-STATE outputs for bus operation_ low impedance output for use with or without an external resistor_ The OS1648/0S3648 has a 15 n resistor in series with the outputs to dampen transients caused by the fastswitching output_ The OS1678/0S3678 has a direct, Features • TRI-STATE outputs interface directly with system bus • Schottky-clamped for better ac performance • PNP inputs to minimize input loading • • • OTL and TTL compatible High-speed capacitive load drivers Built-in damping resistor (OS1648/0S3648 only) 1151 Al~121~------------_;~ Dual-I n-Line Package Bl~IJI------r-------~~ Yl VCC 'A2 151 B2 161 AJ 1111 OUTPUT CONTROL INPUTS __________ A4 B4 OUTPUT Y4 INPUTS __________ AJ BJ OUTPUT YJ Y2 YJ 1101 8J~~----+-----~_;~ 1141 A4~~----+-----~_;~ 84 ~I1J-,-1-----+------Hr-"\ Y4 SELECT SELECT Al Bl ~ INPUTS Yl OUTPUT A2 B2 ~ INPUTS TOP VIEW Schematic Diagram EQUIVALENT OUTPUT EOUIVALENT INPUT r----------------.---------------.----~~----oVCC OUTPUT INPUT INTERNAL LOGIC CIRCUITRY --_.----------------~--------------~----_.----_oGND "D516481053648 only 9-21 Y2 OUTPUT & c en ...... en """-I e Logic and Connection Diagrams OUTPUT CONTROL c en ...... GNO C en CN en """-I CO ~National Memory 8upport Circuits ~ Semiconductor 081649/083649,081679/083679 Hex TRI·8TATE® TTL·M08 Drivers General Description The OS1649/0S3649 and OS1679/0S3679 are Hex TR I-STATE MOS drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MOS memory systems. PNP input transistors are.employed to reduce input currents allowing the large fan-out to these drivers needed in memory systems. The circuit has Schottky-clamped tran·sistor logic for minimum propagation delay, and TR I-STATE outputs for bus operation. ing output. The OS1679/0S3679 has a direct low impedance output for use with or without an external resistor. Features • High speed capabilities, • Typ 9 ns driving 50 pF • Typ 30 ns driving 500 pF • TRI-STATE outputs for data bussing • Built-in 15 n damping resistor (OS1649/0S3649) • Same pin-out as OM8096 and OM74366 The OS 1649/0S3649 has a 15 n resistor in series with the outputs to dampen transients caused by the fast-switch- Schematic Diagram Truth Table EQUIVALENT INPUT VCC EQUIVALENT OUTPUT DISABLE INPUT IS' OUTPUT INPUT OUTPUT DIS 1 DIS 2 0 0 0 1 0 0 1 0 0 1 X Hi-Z 1 1 0 X Hi-Z 1 X Hi-Z x = Don't care Hi-Z L = TRI-STATE mode GNO *OS1649/0S3649 only Connection Diagram Typical Application ..-----...,r-----, Dual-In-line vcc OIS2 IN6 OUT6 INS OUTS t-------t t-------, 6·BITRAM ADDRESS Pack~ge IN4 ADDRESS LINES OUT4 MMS270 OR MMS280 MDS RAM ARRAY H H - " - - - I REFRESH & HH-+-+-----, ~I~~~ESS 6·BITRAM ADDRESS L ___ _ OISI INI OUTI IN2 OUT2 IN3 OUT3 OS3646 OR DS3676 GND TOP VIEW ClOCK MDS COUNTER DRIVER ENABLE ADDRESS OR COUNT SElECT 9-22 "0" ADDRESS "I" COUNTER ~National Memory Support Circuits ~ Semiconductor 053643, 053673 Decoded Quad MOS Clock Drivers General Description The OS3643 and OS3673 are quad bipolar-to-MOS decoder/clock drivers with TTL/OTL compatible inputs. They are designed to provide high output current and voltage capabilities necessary for optimum driving of high capacitance N-channel MOS memory systems. switching output. while the OS3673 has a direct, low impedance output, for use with or without an external resistor. The device features full decoding of input address lines from two inputs to one of four outputs. Also featured is the capability of expanding to three inputs to one of eight outputs with the use of the Expansion and Expansion inputs. Also included are clock and refresh inputs. Features The circuit was designed for driving large capacitive loads at high speeds and uses Schottky-clamped transistors. PNP transistors are used on all inputs, thereby minimizing input loading. The OS3643 has a 10 S1 damping resistor in series with each output to dampen transients caused by the fast • • TTL/OTL compatible inputs Operates from standard bipolar and MOS supplies • PNP inputs minimize input loading • Full logic decoding for either two inputs to one of four outputs or three inputs to one of eight outputs • High voltage/cu rrent outputs • Input and output clamping diodes • Control logic optimized for use with MOS memory systems • Built-in damping resistors (OS3643) Logic and Connection Diagrams Al Dual-I n-Line Package VCCI OUT 4 ClK VCC2 OUT 1 Al RFSH EXPN OUT l VCCl A2 ITi'N OUT 2 GNO TOP VIEW Truth Table OUTPUTS INPUTS CLOCK REFRESH EXPANSION EXPANSION A2 A, OUT 1 OUT 2 OUT 3 1 X X X X X a a a a a a a a a a a 1 X , X X X a a a a a a a a a a , 1 a 1 a a a a 1 1 1 1 X X a a 1 X X a X X 1 1 x = don't care state 9-23 1 1 a a a a a a OUT4 a 1 1 1 a 0 1 a a a a a a a 1 a a a a a a a a a 1 en r--. ,.. CD CW) en ~National Memory 5upport Circuits ~ Semiconductor c 0516149/0536149,0516179/0536179 a; r--. Hex M05 Orivers ,.. CD ,.. en c ~ ,.. CD en c CW) a; ,.. CD ,.. en c ~ General Description switching output. The OS1679/0S3679 has a direct low impedance output for use with or without an external resistor. The OS16149/0S36149 and OS16179/0S36179 are Hex MaS drivers with outputs designed to drive large capacitive loads up to 500 pF associated with MaS memory systems. PNP input transistors are employed to reduce input currents allowing the large fan-out to these drivers needed in memory systems. The circuit has Schottky-clamped transistor logic for minimum propagation delay, and a disable control that places the outputs in the logic "1" state (see truth table). This is especially useful in MaS RAM applications where a set of address lines has to be in the logic "1" state during refresh. Features • High speed capab,ilities • Typ 9 ns driving 50 pF • Typ 29 ns driving 500 pF • TR I-STATE outputs for data bussing • Built-in 15 n damping resistor (OS16149/0S36149) • Same pin-out as OM8096 and OM74366 The OS1649/0S3649 has a 15 n resistor in series with the outputs to dampen transients caused by the fast- Schematic Diagram .... EaUIVALENT OUTPUT EQUIVALENT INPUT r-------------~~--.--- --_oVee 15* JVl.rv--o OUTPUT L - - -.... INPUT L _ __ _ ~-+--------~------~~--~---oGND *OS16149/0S36149 only. Truth Table Connection Diagram Dual-In-Line Package Vee DIS 2 IN 6 OUT6 IN 5 OUTS IN 4 OUT4 DISABLE INPUT IN lOUT I I,N 2 OUT 2 IN J OUT J GND TOPVIEW 9-24 OUTPUT DIS 2 0 0 0 1 0 0 1 0 0 1 X 1 1 0 X 1 1 1 X 1 x = Don't care DIS I INPUT DIS 1 ~National Memory Support Circuits ~ Semiconductor DS75322 Dual TTL-MOS Driver OS3622 Dual Fail-Safe TTL-MOS Driver General Description The OS75322 is a dual TTL-MOS high speed driver. The input structure of the device is TTL and OTL compatible. A common strobe input is provided for gating the outputs to the low state. The outputs provide high current and high voltage levels ideal for driving MOS circuits. The OS75322 specifically meets the requirements for driving N-channel RAMs where low power dissipation is desirable when the driver is in the low state. The OS75322 and the 053622 are ideal for driving the UP04110, MM52BO and the MM5270 4k RAMs. Features • Oual positive-logic and TTL-MOS driver • TTL and OTL compatible inputs • High voltage/current outputs • Operates from standard bipolar and MOS supplies • High speed switching • Input and output clamping diodes • Separate driver address inputs with common strobe The OS3622 provides output fail-safe protection. Powering down VCCl activates the fail-safe circuit, forcing the outputs to the low state. The fail-safe feature eliminates output glitches that may occur in systems that power down VCC1. Functionally, the OS3622 and the OS75322 are identical. • The OS75322, OS3622 require 2 external PNP transistors per package. VOH and VOL compatible with 4k RAMs and other popular MOS RAMs • No current (leakage only) when outputs are in low state (OS75322) The OS75322, OS3622 are characterized for operation from DoC to +70°C. • Outputs forced to low state with loss of VCCl (OS3622) Connection Diagram . Dual-In-Line Package VI 12 Positive Logic Y = AE Recommended PNP Transistors 2N5910,2N5771 VCC2 11 V2 10 A2 Al TOP VIEW 9-25 NC GNo ~National Memory Support Circuits D Semiconductor 058T26A, DSST26AM, 058T28, DSST28M 4-Bit Bidirectional Bus Transceivers General Description Features The DSBT26A, DSBT2B consists of 4 pairs of TR 1STATE® logic elements configured as quad bus drivers/ receivers along with separate buffered receiver enable and driver enable lines. This single IC quad transceiver design distinguishes the DSBT26A, DSBT2B from conventional multi-IC implementations. In addition, the DSBT26A, DSBT2B's ultra high speed while driving heavy bus capacitance (300 pF) makes these devices particularly suitable for memory systems and bidirectional data buses. • • • • • • • • Inverting outputs in the DSBT26A Non-inverting outputs in the DSBT2B TRI-STATE outputs Low current PNP inputs Fast switching times (20 ns) Advanced Schottky processing Driver glitch free power up/down Non-overlapping TRI-STATE Both the driver and receiver gates have TRI-STATE outputs and low current PNP inputs. PNP inputs reduce input loading to 200 pA maximum. Logic and Connection Diagrams . RIE RIE ROUT DOUT DIN 0-----"'" DIN 0-----"'" DDUT RDUT RDUT DOUT .....- - - - Q O I N Dual·ln·Line Package 16 Vee RIE 15 RDUT DIE 14 ROUT DDUT IN RDUT IN DDUT ROUT 10 IN DDUT GND IN TDPVIEW 9-26 Memory Support Circuits ~National ~ Semiconductor ADVANCE INFORMATION MM54C240/MM74C240 Inverting Outputs MM54C2441MM74C244 Non-Inverting Outputs Octal Buffers and Line Drivers with TRI-STATE® Outputs General Description Features These octal buffers and line drivers are monolithic complementary MOS (CMOS) integrated circuits with TR 1ST ATE® outputs_ These outputs have been specially designed to drive highly capacitive loads such as busoriented systems. These devices have a fan-out of 6 low power Schottky loads. A high logic level on th~ output disable control input G makes the outputs go into the high impedance state. • Wide supply voltage range - 3 V to 15 V • High noise immunity - 0.45 VCC typ • Low power consumption • High capacitive load • TRI-STATE® outputs • Input protection • TTL compatibility • Connection Diagrams Vee 20-pin dual-in-line package (TOPVIEWI 2G lYl 2A4 lY2 2A3 lY3 2A2 lY4 2Al 10 lG lAl 2Y4 lA2 2Y3 lA3 2Y2 lA4 2Y4 GNO lY3 2A2 lY4 2Al MM74C240 _ (TOPVIEWI Vee 2G lYl 2A4 lY2 2A3 10 fG' lAl 2Y4 lA2 2Y3 lA3 MM74C244 9-27 2Y2 lA4 2Y4 GNO Memory Support Circuits ~National ~ Semiconductor MM54C373/MM74C373 TRI-STATE® Octal D-Type Latch MM54C3741MM74C374 TRI-STATE® Octal D-Type Flip-Flop General Description The MM54C373/MM74C373, MM54C374/MM74C374 are integrated, complementary MaS (CMOS), 8-bit storage elements with TR I-ST ATE® outputs. These outputs have been specially designed to drive highly capacitive loads, such as one might find when driving a bus, and to have a fan-out of 1 when driving standard TTL. When a high logic level is applied to the OUTPUT DISABLE input, all outputs go to a high impedance state, regardless of what signals are present at the other inputs and the state of the storage elements. the set-up and hold time requirements, is transferred to the Q outputs on positive-going transitions of the CLOCK input. Both the MM54C373/MM74C373 and the MM54C374/ MM74C374 are being assembled in 20-pin dual-in-line packages with 0.300" pin centers. Features The MM54C373/MM74C373 is an 8·bit latch. When LATCH ENABLE is high the Q outputs will follow the D inputs. When LATCH ENABLE goes low, data at the D inputs, which meets the set-up and hold time requirements, will be retained at the outputs until LATCH ENABLE returns high again. The MM54C374/MM74C374 is an 8-bit, D·type, positiveedge triggered flip-flop. Data at the D inputs, meeting • Wide supply voltage range • High noise immunity 3.0V to 15V 0.45 VCC typ • Low power consumption • TTL compatibility fan·out of 1 driving standard TTL • Bus driving capability • • TRI-STATE outputs Eight storage elements in one package • Single CLOCK/LATCH DISABLE control inputs • 20-pin dual-in-line package with 0.300" centers takes half the board space of a 24-pin package ENABLE and OUTPUT Connection Diagrams MM54C374/MM74C374 Dual-I n- Line Package MM54C373/MM74C373 Dual-In-Line Package OUTPUT DISABLE OUTPUT DISABLE VCC 01 01 DB 01-+--H 02--+---+-4 VCC I-I---+-~ 07 DB 01-+--H H---+;;""OB 02--+---H 1-1"";""--+"-- 01 02 07 02 07 03 06 03 06 03-+--+-4 1-1---+-;;""06 OJ--+---H H---+"'-- 06 04""';+---+-4 1-1---+-;"-'05 04-T--H I-f---+=-- 05 04 04 05 05 GNO GNO TOP VIEW CLOCK TOPVIEW 9-28 Section 10 Physical Dimensions' "tJ ~National Physical Dimensions ~ Semiconductor ::r '< (f) -- (') -cm -3 CD :l (f) o-- :l (f) PACKAGES Dual-In-Line Packages (N) Devices ordered with "N" suffix are supplied in molded dual-in-line package. Molding material is EPOXY 82, a highly reliable compound suitable for military as well as commercial temperature range applications. Lead material is Alloy 42 with a hot solder dipped surface to allow for ease of solderability. (J) Devices ordered with the "J" suffix are supplied in a ceramic dual-in-line package. The body and lid of the package are made of ceramic. Hermeticity is accomplished through a high temperature sealing glass. Lead material is tin-plated kovar. (0) Devices ordered with the "0" suffix are supplied in glass/metal dual-in-line package. The top and bottom of the package are gold-plated kovar. The side walls are glass, through which the leads extend forming a hermetic seal. The kovar leads may be either gold or tin~plated. (0) Devices ordered with the "Q" suffix are supplied in a glass/metal dual-in-line package with a round quartz window. Note: All dimensions expressed as inches (millimeters) 0.050 u~ (~:~:: :~:~~:) -j f-- (::~!~=:::!!) --I f- 0.165 (4.191) MAX 0.125 (3.175) MIN NS Package D22B 22-Lead Cavity DIP (D) 10-1 0.020-0.060 (0.508-1.524) o c .2 o 1-------(3~~28081------l1 c MAX Q) 1 E .- 0.598 (15.1891 c -as .~ ~ .c D.. ~~::r-r:-:r-r.::rj ND.lIDENT o ~ ~ I II l IIi3.208II 0520 0.050 11.2701 TVP 0.165 i4llii ~b'::::::' m"", 0.008-0.015 (0203-0.3811 0.125 1---(~~6~:1----l I I I- " Dl00,0010 (2540'02541-1 REF ·0D15-0D23 -11-(0:381-0:5841 (3.1751 MIN NS Package D24C 24-Lead Hermetic DIP (D) 0.025 (0.6351 RAD (7.391) MAX L,."-...,,......,.-::-r-r:'T""T':'1-r:T"~:r-'~ 1 ""'4"" U . ., " 0.160 ''. 0.200 GLASS ~~~:~ J~~~~~~~~~. ~~: ~ (9.719,0.6351 ~ (~~::I MAX I- --11- L0018'O'002 (0457,00511. 0.125 (3.1751 0.100,0.010 (2.540 ,0.2541 MIN NS Package J16A 16-Lead Cavity DIP (J) b 1 0.025 (0.635) RAD 11 16 15 ~~0.310 (23241) (7.8741 MAX 14 13 12 11 r MAX o ,GLASS 0.290 (7.3661 MAX L.--.~...............,..,..,....,...,.......,..,.,....,..,......,.."..~ 0.290-0.320 (7.386-8.128) GLASS SEALANT 0.020-0.070 (0.508-1.1781 \{;;;;~~~;;;~;6~~~1 'h ~t 86'94' TVP 0.018'0.003 (0.457,0.0761 -l NS Package J18A 18-Lead Cavity DIP (J) t ~ MAX ~ (3.1751 MIN 0.025 (0.6351 RAD c -- 3 ~ CD (5.9691 )~0.020_O.010 :=it "... ~ ~ ~~ 0.I00io.olo 0.011io.002 (2.54oio.2541 (0.432'0.0511 ~."" (3.1151 MIN . NS Package J20B 20-lead Cavity DIP (J) ------11 0.420 MAX :-L!!J....I.!.!J~:J....1!!U.!!.L..J.!.:J...J.!!JL....,L!;:.L....L::uI.!.!.L.J.!.!.L---I-f(10.6611 GLASS 0.025 . (0.6351 RAD 0.400 (10.161 L-~~~~~~~~~~~~~~~ 0.200 (5.0801 ~':~~::~:' II (~::~:I r-1f- MIN 0.018,0.003 (0.451,0.0761 NS Package J22A 22-lead Cavity DIP (J) 0.600 (15.2401 fMAX :-1!!.LJ.!!J~J...J..:;!.L.J.!!!.L...L!!J...J.!!JL....1.:;~::U.:.:J...J..:.:.L...L:.:.L......t1 GLASS I 0.025 (0.6351 RAD 0.515-0.525 L-~~~~~~~~~TT~~~~~(13.011rI3.3351 I- 0.590-0.620 95'i5' " ~-( +0.635)---1 15.875 -G.311 6.250 -G.015 0.200 ---I fll', ... ..,J 0.001-0.012 "~,, 0.060-0.100 (1.524-2.5401 f-- 0.100'0.010 (2.540,0.2541 I ~ I- NS Package J24A 24-lead Cavity DIP (J) 10-3 _11_ 0.018,0.002 --11--(0.451 '0.0511 ::J t/) 0.125 TYP (~~I.~:1 MAX ::J t/) -o 86' 0.125 94' (3.1151 TYP MIN U) C o .U) C CI) E .- 0.025 10.6351 c RAD - '" .9 U) ~ .c Q. f--- 1,m 0.200 (5.0801 0.160 0.590-0.620 §f14.0641 (Ii~m ~u"'H'.' J i 0.008-0.012 " 0. 685 -l1.060 f---(11399 +0.635)---1· . -1.524 0.060-0.100 11.524-2.5401 ,m 10.508-1.71BI • f-- I I -4h:::~~ ::::~:I f-- 0.100'0.010 (2.540 ,0.2541-1 0.125 13.1751 MIN NS Package J24CQ 24-Lead UV Window Cavity DIP (J) 1.490 t - - - - - - - - - - 1 3 1 . 8 4 6 1 MAX I ------~il0~~~~1 MAX GLASS 0.025 10.6351 0.515-0.525 RAD ~~~~~~~~~~TT~~~~~~~ 0.048-0.055 0.200 h 0.060-0.100 11.524-2.5401 -j h 0.100'0.010 12.540,0.2541 ~h 0.018'0.002 10.451 '0.5081 NS Package J28A 28-Lead Hermetic DIP (J) 16.350'0.1211 ~:::;:::;:=;r:;:r:r.:;:::::;::::;:::::;:::;=;:::;:=;:;;:;:=1~ 0.300-0.320 ~ """["'" 0.030 10.1621 MAX 0.040 f-J 0.100 (2.5401 TVP NS Package N16A 16-Lead Molded DIP (N) 10-4 (5: 0.130'0.005 0.092 (2.ll7) olA NOM PIN NO. IIOENT c-3 O.OlO (0.762) MAX. 0.lOO-0.l20 ~ (:::~:=::~~~). 1 0.025,0.015 0.l25 +0.025 -0.015 (0.6n,0.l81) (8255:~:~m CD ::l en cr::l en ~J 0.100 (2.540) TYP NS Package N1BA 1B-Lead Molded DIP (N) 0.092 (2.ll7) olA NOM -r D.250±0.005 PIN No.lloENT FDJ1BlITffR~rr.~~~~~d::JL·127) 0.ll0±0.005 ~=r----------++-------- ~ ~(::~:~) MAX -l I- 0.075 '0.005 (1.905'0.127) -+0. I 0 2'0 II ~ (OM~~) (0.457 ,0.076) -11- (~1~5) 0.018 ±O.OOl NS Package N20A 20-Lead Molded DIP (N) 0.062 RAo (1.575) PIN NO.1 loENT ~0.ll0±0.005 ~____________________~~ (l.l02,O.127) -r --..1--.l. _0.020 (0.508) JtMIN r-l 0.100±0.010 (2.540,0.254) NS Package N22A 22-Lead Molded DIP (N) 10-5 r-lt-... ~ O.OUtO.OOl (l.175) (0.457±0.076) MIN o c: o -U) c: 1.270 1--------(32.2581-----~-I1 MAX 1 0.062 (1.5751 RAD (1) E -- 0.540.0.005 c -CO br:=;=;r.;=ffi"i'fi""'r.'Fi':'FF.rffi"'F.'r=r.;;;=;;TffiF]""" U -U) 0.030 ~ ~ 0040 0.160,0005 "~jm; .c: c.. 0009-0 015 (0.229-0.3811 , 0075,0015 (1905,03811 .----t ~ I-- -I 0100 1--(25401 TYP 0018,0003 --H---(0457 ,00761 + 0015 0125 iD3aiI -(3 51 MIN .11 MIN NS Package N24A 24-Lead Molded DIP (N) I 1 - - - - - - - - ( 3 21.270 .2581-------1 MAX I 0.063 (1.6001 RAD 0.540 '0.005 Ir"u"-"''''=:+r. "~ ~:=""' 0.600-0.620 (1.9051 '(1:0161 0.160.0.005 ~,::::, t f IIt ' 0'009-0'015~ I-- +0.025 0.625 -0 015 . (15.875 ~:~m~ --1 --(0.229-0.3811 ---j I 0.075 to.015 (1.905'0.3811 I-- f-- 0.100 (2.5401 TYP ---j I-- 0.018.0.003 (0.457 '0.0761 MIN 0.125 (3.1751 MIN NS Package N24B 24-Lead Molded DIP (N) 0.030 (0.7621 ~ ".~"~" ---I ." 0.050 ." "M" ~-= lr=~IDt~ ~""'; r 0.625 +0.025 I---~----J (15.875 ~:~m 0.009_0.015J (0.229-0.3811 0.075'0.015 (1.905.0.3811 I t- I --j I r-- 0.100 (2.5401 TYP NS Package N28A 28-Lead Molded DIP (N) 10·6 II --i r-- ----+t 0.018.0.003 (0.457.0.0761 + 0.020 0.125(0.5 08 1 (3.1751 MIN MIN
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c043 52.372728, 2009/01/18-15:56:37 Create Date : 2014:08:02 13:54:51-08:00 Modify Date : 2014:08:02 13:23:08-07:00 Metadata Date : 2014:08:02 13:23:08-07:00 Producer : Adobe Acrobat 9.55 Paper Capture Plug-in Format : application/pdf Document ID : uuid:5fff25b5-6dc3-a948-82b7-bd96bc20cb0b Instance ID : uuid:76ef1248-c183-a74f-9bf7-2d01e0df94b1 Page Layout : SinglePage Page Mode : UseNone Page Count : 466EXIF Metadata provided by EXIF.tools