1980_Philips_Semiconductors_Part_2_Diodes_Thyristors_Triacs 1980 Philips Semiconductors Part 2 Diodes Thyristors Triacs
User Manual: 1980_Philips_Semiconductors_Part_2_Diodes_Thyristors_Triacs
Open the PDF directly: View PDF
.
Page Count: 871
| Download | |
| Open PDF In Browser | View PDF |
Semiconductors
Part 2
May 1980
Rectifier diodes
Regulator diodes
------~----~--~
High-voltage rectifier stacks
Thyristors
Triacs
SEMICONDUCTORS
Part 2-MAY 1 980
POWER DIODES, THYRISTORS, TRIACS
,
SELECTION GUIDE
GENERAL SECTION
A
RECTIFIER DIODES
8
REGULATOR DIODES
C
HIGH-VOLTAGE RECTIFIER STACKS
0
THYRISTORS
E
TRIACS
F
ACCESSORIES
G
HEATSINKS
H
INDEX
--
,
_ _ _ _Jl__
DATA HANDBOOK SYSTEM
Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.
ELECTRON TUBES
BLUE
RED
SEMICONDUCTORS AND INTEGRATED CIRCUITS
COMPONENTS AND MATERIALS
GREEN
The several parts contain all pertinent data available at the time of publication, and each is revised and
reissued periodically.
Where ratings or specifications differ from those published in the preceding edition they are pointed
out by arrows. Where application information is given it is advisory and does not form part of the
product specification.
If you need confirmation that the published data about any of our products are the latest available,
please contact our representative. He is at your service and will be glad to answer your inquiries.
This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence
under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of
goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the
written consent of the publisher.
October 1977
__Jl_ _ __
ELECTRON TUBES (BLUE SERIES)
Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of
the preceding issue is given in brackets under the new code.
Part 1
February 1980
T1 02-80
(Ena 12-75)
Part 2
April 1980
T2 04-80
Transmitting tubes for communications
(ET1b 08-77)
Tubes for r.f. heating
Part 2a November 1977
ET2a 11-77
Microwave tubes
Communication magnetrons, magnetrons for microwave
heating, klystrons, travelling-wave tubes, diodes, triodes
T-R switches
Part 2b May 1978
ET2b 05-78
Microwave semiconductors and components
Gunn, Impatt and noise diodes, mixer and detector diodes,
backward diodes, varactor diodes, Gunn oscillators, subassemblies, circulators and isolators
Part 3
January 1975
ET301-75
Special Quality tubes, miscellaneous devices
Part 4
March 1975
ET403-75
Receiving tubes
Part 5a October 1979
ET5a 10-79
Cathode-ray tubes
Instrument tubes, monitor and display tubes, C.R. tubes
for special applications
Part 5b December 1978
ET5b 12-78
Camera tubes and accessories, image intensifiers
Part 6
ET601-77
Products for nuclear technology
Channel electron multipliers, neutron tubes, Geiger-Muller
tubes
Part 7a March 1977
ET7a 03-77
Gas-filled tubes
Thyratrons, industrial rectifying tubes, ignitrons,
high·voltage rectifying tubes
Part 7b May 1979
ET7b 05-79
Gas-filled tubes
Segment indicator tubes, indicator tubes, switching diodes,
dry reed contact units
Part 8
July 1979
ET807-79
Picture tubes and components
Colour TV picture tubes, black and white TV picture tubes,
monitor tubes, components for colour television, components for black and white television.
Part 9
March 1978
ET903-78
Photomultiplier tubes; phototubes
January 1977
February 1980
r
II
_ _ _Jl__
SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)
Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of
the preceding issue is given in brackets under the new code.
Part 1
March 1980
S1
03-80
(SClb 05-77)
Diodes
Small-signal germanium diodes, small-signal silicon diodes,
special diodes, voltage regulator diodes « 1,5 Wl. voltage
reference diodes, tuner diodes, rectifier diodes
Part 2
May 1980
S2
05-80
(SCla 08-78)
Power diodes, thyristors, triacs
Rectifier diodes, voltage regulator diodes (> 1,5 Wl.
rectifier stacks, thyristors, triacs
Part 2
June 1979
SC2 06-79
Low-frequency power transistors
Part 3
January 1978
SC3 01-78
High-frequency, switching and field·effect transistors*
Part 3
April 1980
S3
04-80
Small-signal transistors
(SC2 11-77, partly)
(SC3 01-78, partly)
Part 4a
December 1978 SC4a 12-78
Transmitting transistors and modules
Part 4b
September 1978 SC4b 09-78
Devices for optoelectronics
Photosensitive diodes and transistors, light-emitting diodes,
photocouplers, infrared sensitive devices,
photoconductive devices
Part 4c
July 1978
Disc'rete semiconductors for hybrid thick and thin·film circuits
Part 5a
November 1976 SC5a 11·76
Professional analogue integrated circuits
Part 5b
March 1977
SC5b03·77
Consumer integrated circuits
Radio, audio, television
Part 6
October 1977
SC6 10·77
Digital integrated circuits
LOCMOS HE4000B family
Part 6b
August 1979
SC6b08-79
ICs for digital systems in radio and television receivers
Signetics integrated circuits
SC4c 07·78
Bipolar and MOS memories 1979
Bipolar and MOS microprocessors 1978
Analogue circuits 1979
Logic - TTL 1978
* Field-effect transistors and wideband transistors will be transferred to S5 and SC3c respectively.
The old book SC3 01-78 should be kept until then.
February 1980
__Jl____
COMPONENTS AND MATERIALS (GREEN SERIES)
Starting in 1980, new part numbers and corresponding codes are being introduced.
The former code of the preceding issue is given in brackets under the new code.
CM107-79
Assemblies for industrial use
PLC modules, high noise immunity logic FZ/30 series,
NO Rbits 60-series, 61-series, gO-series, input devices,
hybrid integrated circuits, peripheral devices
Part 1
July 1979
Part 3a
September 1978 CM3a 09-78
Part 3b
October 1978
Part 4a
November 1978 CM4a 11-78
Soft Ferrites
Ferrites for radio, audio and television, beads and chokes,
Ferroxcube potcores and square cores, Ferroxcube transformer cores
Part 4b
February 1979
CM4b 02-79
Piezoelectric ceramics, permanent magnet materials
Part 6
April 1977
CM604-77
Electric motors and accessories
Small synchronous motors, stepper motors, miniature
direct current motors
Part 7
September 1971 CM709-71
Circuit blocks
Circuit blocks 100 kHz-series, circuit blocks 1-series, circuit
blocks 1O-series, circuit blocks for ferrite core memory drive
Part 7a
January 1979
CM7a 01-79
Assemblies
Circuit blocks 40-series and CSA70 (L), counter modules
50-series, input/output devices
Part 8
June 1979
CM806-79
Variable mains transformers
Part 9
August 1979
CM908-79
Piezoelectric quartz devices
Quartz crystal units, temperature compensated crystal
oscillators
Part 10
April 1978
CM1004-78
Connectors
Part 11
December 1979 CM1112-79
Non-linear resistors
Voltage dependent resistors (VORl. light dependant resistors (LOR), negative temperature coefficient thermistors
(NTCl, positive temperature coefficient thermistors (PTC)
Part 12
November 1979 CM 12 11-79
Variable resistors and test switches
Fixed resistors
CM3b 10-78
FM tuners, television tuners, surface acoustic wave filters
Loudspeakers
Part 13
December 1979 CM1312-79
Part 14
April 1980
C1404-80
Electrolytic and solid capacitors
(CM2b 02-78)
Part 15
May 1980
C1505-80
Film capacitors, ceramic capacitors, variable capacitors
(CM2b 02-78)
April 1980
I(
II
Jl
INDEX
INDEX OF TYPE NUMBERS
Data Handbooks Semiconductors
The inclusion of a type number in this publication does not necessarily imply its availability.
type no.
part
section
type no.
part
section
type no.
part
section
AAl19
AAZ13
AAZ15
AAZ17
AAZ18
81
81
81
81
81
PC
GB
GB
GB
GB
BAV20
BAV21
BAV45
BAV70
BAV99
81
81
81
4c
4c
WD
BB405G
BBY31
BC107
BC108
BC109
81
4c
83
83
83
T
Mm
8m
8m
8m
BA182
BA220
BA221
BA223
BA243
81
81
81
81
81
T
4c
81
81
81
81
Mm
T
T
BAW56
BAW62
BAX12
BAX12A
BAX13
BC140
BC141
BC146
BC147
BC148
83
83
83
83
83
8m
8m
8m
8m
8m
BA244
BA280
BA314
BA315
BA316
81
81
81
81
81
T
T
Vrg
Vrg
WD
BAX14A
BAX16
BAX17
BAX18A
BB105B
81
81
81
81
81
WD
WD
T
BC149
BC157
BC158
BC159
BC160
83
83
83
83
83
8m
8m
8m
8m
8m
BA317
BA318
BA379
BA811
BA816
81
81
81
81
4c
WD
WD
BB105G
BB106
BB109G
BBll0B
BBll0G
81
81
81
81
81
T
T
T
T
T
BC161
BCl77
BC178
BC179
BC200
83
83
83
83
83
8m
8m
8m
8m
8m
BAT17
BAT18
BAV10
BAV18
BAV19
4c
4c
81
81
81
BBl19
BB204B
BB204G
BB212
BB405B
81
81
81
81
81
T
T
T
T
T
BC264A
BC264B
BC264C
BC264D
BC327
WD
WD
T
WD
Mm
Mm
Mm
WD
WD
WD
F ET = Field-effect transistors
GB = Germanium gold bonded diodes
Mm = Discrete semiconductors for hybrid
thick and thin-film circuits
PC = Germanium point contact diodes
WD
8p
Mm
Mm
WD
WD
WD
WD
WD
WD
Sm
Sp
T
Vrg
WD
8C3
8C3
8C3
8C3
83
FET
FET
FET
FET
8m
= Small-signal transistors
= Special diodes
=
Tuner diodes
= Voltage regulator diodes
= Silicon whiskerless diodes
February 1980
Jl________
_IN_DEX
___
type no.
part
BC328
BC337
BC338
BC368
BC369
section
type no.
part
section
83
8m
838m
83
8m
83
8m
838m
BCX55
BCX56
BCY30A
BCY31A
BCY32A
4c
Mm
4c
Mm
838m
838m
83
8m
8D231
BD232
BD233
8D234
8D235
SC2
SC2
SC2
SC2
SC2
P
P
BC375
BC376
BC546
BC547
BC548
838m
838m
83
8m
838m
83
8m
BCY33A
BCY34A
BCY56
BCY57
BCY58
83
8m
S3
8m
S3
8m
838m
838m
8D236
BD237
8D238
8D291
BD292
SC2
SC2
SC2
SC2
SC2
P
P
P
P
P
BC549
BC550
BC556
BC557
BC558
838m
83
8m
83
8m
838m
83
8m
BCY59
BCY70
BCY71
BCY72
BCY78
83
83
S3
83
S3
8m
8m
8m
8m
8m
BD293
BD294
BD295
BD296
BD329
8C2
SC2
8C2
8C2
8C2
P
P
P
P
P
BC559
BC560
BC635
BC636
BC637
838m
83
Sm
S3
Sm
83
8m
S3
Sm
BCY79
BCY87
BCY88
BCY89
BD131
83
83
S3
83
8C2
8m
8m
Sm
8m
P
BD330
BD331
BD332
BD333
BD334
SC2
8C2
SC2
8C2
SC2
P
P
BC638
BC639
BC640
BCW29iR
BCW30;R
83
83
S3
4c
4c
8m
Sm
Sm
Mm
Mm
BD132
BD133
BD135
BD136
BD137
8C2
SC2
SC2
8C2
SC2
P
P
P
P
P
BD335
BD336
BD337
BD338
BD433
8C2
SC2
8C2
8C2
8C2
P
P
P
BCW31iR
BCW32;R
BCW33iR
BCW69iR
BCW70iR
4c
4c
4c
4c
4c
Mm
Mm
Mm
Mm
Mm
BD138
BD139
BD140
BD181
BD182
SC2
SC2
SC2
8C2
SC2
P
P
P
P
P
BD434
BD435
BD436
BD437
BD438
8C2
8C2
8C2
8C2
8C2
P
P
P
P
P
BCW71iR
BCW72;R
BCX17iR
BCX18iR
BCX19;R
4c
4c
4c
4c
4c
Mm
Mm
Mm
Mm
Mm
BD183
BD201
BD202
BD203
BD204
8C2
SC2
SC2
8C2
8C2
P
P
P
P
P
BD645
BD646
BD647
BD648
BD649
8C2
8C2
8C2
SC2
8C2
P
P
P
P
P
BCX20iR
BCX51
BCX52
BCX53
BCX54
4c
4c
4c
4c
4c
Mm
Mm
Mm
Mm
Mm
BD226
BD227
BD228
BD229
BD230
8C2
SC2
SC2
8C2
8C2
P
P
P
P
P
BD650
BD651
BD652
BD675
BD676
8C2
8C2
8C2
8C2
8C2
P
P
P
P
P
type no.
part
section
P
P
P
P
P
P
P
P
~..--------------------------------------------------------------------------~
FET = Field-effect transistors
2
February 1980
(
II
Mm = Discrete semiconductors for hybrid
thick and thin-film circuits
________Jl__
IN_DE_X_
P
type no.
part
B0677
B0678
B0679
B0680
B0681
SC2
SC2
SC2
SC2
SC2
B0682
B0683
B0684
B0933
B0934
SC2
SC2
SC2
SC2
SC2
p
B0935
B0936
B0937
B0938
B0939
SC2
SC2
SC2
SC2
SC2
p
B094D
B0941
B0942
B0943
B0944
SC2
SC2
SC2
SC2
SC2
B0945
B0946
B0947
B0948
B0949
SC2
SC2
SC2
SC2
SC2
p
B0950
B0951
B0952
B0953
B0954
SC2
SC2
SC2
SC2
SC2
B0955
B0956
BOT62
BOT62A
BOT62B
8C2
SC2
SC2
SC2
SC2
BOT62C
BOT63
BOT63A
BOT63B
BOT63C
SC2
8C2
SC2
SC2
8C2
=
section
type no.
part
BOX66C
BOX67
BOX67A
BDX67B
BDX67C
SC2
8C2
SC2
SC2
SC2
BOX77
BDX78
BDX91
BOX92
BDX93
SC2
SC2
SC2
SC2
SC2
p
p
p
p
p
p
p
p
p
p
BDX94
BOX95
BOX96
BOY20
p
p
BOY9D
SC2
SC2
SC2
SC2
SC2
p
p
BOY91
BOY92
BOY93
BOY94
BOY96
SC2
SC2
SC2
SC2
8C2
p
p
p
p
p
SC2
SC2
8C2
SC2
SC2
p
p
p
p
p
BOY97
BF115
BF18D
BF181
BF182
8C2
83
S3
83
83
BDX63
BDX63A
BDX63B
BDX63C
BDX64
8C2
8C2
8C2
SC2
SC2
p
p
BF183
BF194
BF195
BF196
BF197
S3
S3
S3
83
83
Sm
8C2
SC2
SC2
8C2
8C2
BF198
BF199
BF200
BF24D
BF241
83
S3
S3
S3
S3
Sm
p
BDX64A
BDX64B
BDX64C
BDX65
BDX65A
p
p
p
p
p
BDX65B
BDX65C
BDX66
BDX66A
BDX66B
SC2
8C2
8C2
SC2
8C2
SC3
SC3
SC3
SC3
SC3
FET
FET
FET
FET
FET
type no.
part
BOT91
BOT92
BOT93
BOT 94
BOT95
8C2
SC2
SC2
SC2
8C2
BOT96
BOV64
BOV64A
BOV64B
BOV65
SC2
SC2
SC2
8C2
SC2
p
BOV65A
BOV6SB
BOX35
BOX36
BOX37
SC2
SC2
SC2
SC2
8C2
BOX42
BOX43
BOX44
BOX45
BOX46
8C2
8C2
SC2
SC2
SC2
p
BOX47
BDX62
BDX62A
BOX62B
BDX62C
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
Low-frequency power transistors
section
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
BF245A
BF245B
BF245C
BF256A
BF256B
p
p
p
p
Sm
=
section
p
p
p
p
p
p
p
p
p
Sm
8m
Sm
Sm
8m
Sm
Sm
Sm
8m
8m
Sm
Sm
Small-signal transistors
February 1980
3
_IN_DEX_Jl________
type no.
part
section
type no.
part
type no.
part
section
4c
8C3
SC3
SC3
SC3
Mm
BF256C
BF324
BF327
BF336
BF337
SC3
83
SC3
S3
83
FET
Sm
FET
8m
8m
BFQ17
BFQ18A
BFQ19
BFQ23
BFQ24
4c
4c
4c
SC3
SC3
Mm
Mm
Mm
HFSW
HFSW
BFT93iR
BFW10
BFW11
BFW12
BFW13
BF338
BF362
BF363
BF419
BF422
83
83
S3
8C2
83
8m
8m
8m
BFQ32
BFQ34
BFQ42
BFQ43
BFR29
SC3
SC3
4a
4a
SC3
HFSW
HFSW
Tra
Tra
FET
BFW16A
BFW17A
BFW30
BFW45
BFW61
SC3
SC3
8C3
SC3
SC3
HFSW
HFSW
HFSW
HFSW
FET
BF423
BF450
BF451
BF457
BF458
S3
S3
S3
8C2
SC2
Sm
8m
Sm
Mm
HFSW
Mm
Sm
BFW92
BFW93
BFX29
BFX30
BFX34
SC3
SC3
S3
S3
S3
HFSW
HFSW
Sm
Sm
Sm
BF459
BF469
BF470
BF471
BF472
SC2
SC2
SC2
SC2
SC2
HFSW
HFSW
FET
HFSW
HFSW
BFX84
BFX85
BFX86
BFX87
BFX88
83
83
S3
S3
S3
p
8m
p
p
p
BFR30
4c
BFR31
4c
BFR49
SC3
BFR53iR
4c
BFR54
S3
Mm
FET
FET
FET
FET
Sm
Sm
Sm
Sm
Sm
p
BFR64
BFR65
BFR84
BFR90
BFR91
BF550iR
S3
S3
83
S3
4c
8m
8m
Sm
8m
Mm
BFR92iR
4c
BFR93iR
4c
BFR94
SC3
BFR95
SC3
BFR96
SC3
Mm
Mm
HFSW
HFSW
HFSW
BFX89
BFY50
BFY51
BFY52
BFY55
SC3
S3
83
S3
S3
HFSW
Sm
Sm
Sm
Sm
BF622
BF623
BF926
BF936
BF939
4c
4c
S3
S3
S3
Mm
Mm
Sm
Sm
Sm
BFS17iR
4c
4c
BFS18iR
BFS19iR
4c
4c
BFS20iR
BFS21
SC3
Mm
Mm
FET
BFY90
BGY22
BGY22A
BGY23
BGY23A
SC3
4a
4a
4a
4a
HFSW
Tra
Tra
Tra
Tra
FET
Tra
Tra
FET
HFSW
BGY32
BGY33
BGY35
BGY36
BGY37
4a
4a
4a
4a
SC3
Tra
Tra
Tra
Tra
HFSW
Mm
BLV10
BLV11
BLV20
BLV21
BLW29
4a
4a
4a
4a
4a
BF480
BF494
BF495
BF496
p
p
p
BF967
BF970
BF979
BFQ10
BFQ11
S3
S3
S3
SC3
SC3
Sm
Sm
Sm
FET
FET
BFS21A
BF822A
BF823A
BFS28
BFT24
BFQ12
BFQ13
BFQ14
BFQ15
BFQ16
SC3
SC3
SC3
SC3
SC3
FET
FET
FET
FET
FET
BFT25iR
BFT44
BFT45
BFT46
BFT92iR
SC3
SC3
SC3
SC3
SC3
SC3
4a
4a
SC3
SC3
FET
= Field-effect transistors
HFSW = High-frequency and switching transistors
4
section
February 1980
(
II
4c
83
S3
4c
4c
Mm
Mm
Sm
Sm
Mm
Mm
Tra
Tra
Tra
Tra
Tra
Mm = Discrete semiconductors for hybrid
thick and thin-film circuits
_______________Jl__
IN_DE_X_
type no.
part
section
type no.
part
section
type no.
part
section
BLW31
BLW32
BLW33
BLW34
BLW60
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BLY87A
BLY87C
BLY88A
BLY88C
BLY89A
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BSR4l
BSR42
BSR43
BSR50
BSR5l
4c
4c
4c
S3
83
Mm
Mm
Mm
Sm
Sm
BLW60C
BLW64
BLW75
BLW76
BLW77
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BLY89C
BLY90
BLY91A
BLY91C
BLY92A
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BSR52
BSR56
BSR57
BSR58
BSR60
S3
4c
4c
4c
S3
Sm
Mm
BLW78
BLW79
BLW80
BLW81
BLW82
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BLY92C
BLY93A
BLY93C
BLY94
BPW22
4a
4a
4a
4a
4b
Tra
Tra
Tra
Tra
PDT
BSR6l
BSR62
BSS38
BSS50
BSS5l
S3
S3
S3
83
S3
8m
Sm
8m
Sm
Sm
BLW83
BLW84
BLW85
BLW86
BLW87
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BPW34
BPX25
BPX29
BPX40
BPX4l
4b
4b
4b
4b
4b
PDT
PDT
PDT
PDT
PDT
BSS52
BSS60
BSS6l
BSS62
BSS63;R
S3
S3
S3
S3
4c
Sm
Sm
8m
Sm
Mm
BLW95
BLW98
BLX13
BLX13C
BLX14
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BPX42
BPX47A
BPX70
BPX7l
BPX72
4b
4b
4b
4b
4b
PDT
PDT
PDT
PDT
PDT
BSS64;R
BSS68
BSV15
BSV16
BSV17
4c
S3
83
S3
S3
Mm
8m
Sm
8m
8m
BLX15
BLX39
BLX65
BLX66
BLX67
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BPX94
4b
BPX95B
4b
BR100/03 82
BR10l
83
83
BRY39P
PDT
PDT
Th
BSV52;R
4c
BSV64
S3
BSV78
8C3
BSV79
8C3
BSV80
SC3
MIn
BLX68
BLX69A
BLX91A
BLX92A
BLX93A
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BRY39S
S3
BRY39T S2/83
BRY56
83
BRY6l
4c
B8R12;R
4c
Sm
Th/Sm
8m
BLX94A
BLX95
BLX96
BLX97
BLX98
4a
4a
4a
4a
4a
Tra
Tra
Tra
Tra
Tra
BSR30
BSR3l
B8R32
BSR33
BSR40
MIn
Mm
P
= Low-frequency power transistors
PDT = Photodiodesor transistors
R = Rectifier diodes
4c
4c
4c
4c
4c
8m
Sm
MIn
MIn
B8X20
B8X2l
BSX45
BSX46
BSX47
MIn
Mm
Mm
Sm
Th
Tra
BSV8l
BSW66A
B8W67A
BSW68A
BSX19
=
=
=
MIn
MIn
Sm
Sm
FET
FET
FET
FET
8C3
S3
83
83
83
8m
8m
8m
8m
83
83
83
S3
83
8m
Sm
8m
8m
Sm
Small-signal transistors
Thyristors
Transmitting transistors and modules
February 1980
5
_IN_DEX_Jl________
type no.
part
section
type no.
BSX59
BSX60
BSX61
BSY59A
BT136 *
S3
S3
S3
S3
S2
Sm
Sm
8m
8m
Tri
BU326A
BU426
BU426A
BU433
BUW84
*
*
*
S2
S2
82
S2
S2
Tri
Tri
Tri
Th
Th
BUW85
BUX80
BUX81
BUX82
BUX83
BT137
BT138
BT139
BT151
BT152
*
*
part
section
type no.
part
section
SC2
SC2
SC2
SC2
8C2
P
P
P
P
P
BY476
BY477
BY478
BY509
BYV21
R
R
R
*
S1
S1
S1
S1
S2
SC2
5C2
SC2
SC2
SC2
P
P
P
P
P
BYV30 *
BYV92 *
BYV95A
BYV95B
BYV95C
S2
S2
S1
S1
S1
R
R
R
p
BYV96D,E
BYW19 *
BYW29 *
BYW30 *
BYW31 *
S1
S2
S2
S2
S2
R
BYW54
BYW55
BYW56
BYW92 *
BYW95A
S1
S1
S1
S2
S1
R
BYW95B
BYW95C
BYW96D,E
BYX10
BYX22 *
S1
81
S1
81
S2
R
BYX25 *
BYX30 *
BYX32 *
BYX36 *
BYX38 *
S2
S2
S2
S1
82
R
R
R
R
BYX39
BYX42
BYX45
BYX46
BYX49
*
*
*
*
*
S2
S2
S2
S2
S2
BYX50
BYX52
BYX55
BYX56
BYX71
*
*
*
*
*
S2
52
81
52
52
BT153
BT154
BTW23 *
BTW24 *
BTW30S*
S2
S2
S2
S2
S2
Th
Th
Th
Th
Th
BUX84
BUX85
BUX86
BUX87
BY126M
SC2
SC2
SC2
SC2
81
BTW31W*
BTW33 *
BTW34 *
BTW38 *
BTW40 *
82
S2
S2
S2
S2
Th
Th
Tri
Th
Th
BY127M
BY164
BY179
BY184
BY206
81
82
S2
S1
81
BTW41
BTW42
BTW43
BTW45
BTW47
*
82
S2
82
82
S2
Tri
Th
Tri
Th
Th
BY207
BY208
BY210
BY223
BY224
BTW92
BTX18
BTX94
BTY79
BTY87
*
S2
S2
52
S2
S2
Th
Th
Tri
Th
Th
BY225
BY226
BY227
BY228
BY229
S2
SC2
8C2
5C2
SC2
Th
BY256
BY257
BY260
BY261
BY277
SC2
SC2
SC2
SC2
8C2
p
BTY91
BU126
BU133
BU204
BU205
BU206
BU207A
BU208A
BU209A
BU326
*
*
*
*
*
*
*
*
*
p
p
p
p
BY409
BY409A
BY438
BY448
BY458
p
p
p
p
*
*
*
*
*
*
*
51
51
S1
S2
S2
S2
S1
51
51
S2
S2
S2
82
82
82
51
81
S1
81
81
p
p
P
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
* = series.
GB =
I
=
LED =
Mm =
6
Germanium gold bonded diodes
Infrared devices
Light-emitting diodes
Discrete semiconductors for hybrid
thick and thin-film circuits
February 1980
r
II
P
PC
Ph
PhC
R
==
=
==
==
==
Low-frequency power transistors
Germanium point contact diodes
Photoconductive devices
Photocouplers
Rectifier diodes
________Jl__
IN_DE_X_
section
type no.
part
section
4b
4b
4b
4b
4b
PhC
PhC
PhC
LED
LED
08B9310
08B9410
08M9110
08M9210
08M9310
82
82
82
82
82
St
8t
St
St
St
Vrf
Vrf
Vrf
CQY24A
CQY46A
CQY47A
CQY49B
CQY49C
4b
4b
4b
4b
4b
LED
LED
LED
LED
LED
08M9410
08M9510
08M9511
08M9512
0889110
82
82
82
82
82
St
St
8t
St
St
Vrf
Vrf
Vrg
Vrg
Vrg
CQY50
CQY52
CQY54
CQY58
CQY88
4b
4b
4b
4b
4b
LED
LED
LED
LED
LED
0889210
OSS9310
OS89410
PH2369
RPY58A
82
82
82
S3
4b
St
St
St
Sm
Ph
TS
4b
4b
4b
4b
4b
LED
LED
LED
LED
LED
RPY71
RPY76A
RPY82
RPY84
RPY85
4b
4b
4b
4b
4b
Ph
Vrg
CQY89
CQY94
CQY95
CQY96
CQY97
82
81
4c
81
81
Vrg
Vrg
Mm
Vrg
Vrf
OA47
OA90
OA91
OA95
OA200
81
81
81
81
81
GB
PC
PC
PC
RPY86
RPY87
RPY88
RPY89
4b
4b
4b
4b
I
81
81
81
81
81
Vrf
Vrf
Vrf
Vrf
Vrg
OA202
OM931
OM961
ORP10
ORP13
81
8C2
8C2
4b
4b
WD
82
82
82
82
4b
Vrg
Vrg
Vrg
Vrg
PhC
ORP23
ORP52
ORP60
ORP61
ORP62
4b
4b
4b
4b
4b
Ph
Ph
Ph
Ph
Ph
4b
4b
4b
4b
4b
PhC
PhC
PhC
PhC
PhC
ORP66
ORP68
ORP69
08B9110
08B9210
4b
4b
4b
82
82
Ph
Ph
Ph
8t
8t
type no.
part
section
type no.
part
BYX90
BYX91
BYX94
BYX96
BYX97
81
81
81
82
82
R
CNY47
CNY47A
CNY48
CQY11B
CQY11C
82
82
81
81
81
R
81
81
82
81
81
BYX98
BYX99
BZV10
BZV11
BZV12
BZV13
BZV14
BZV15
BZV46
BZV85
BZW10
BZW70
BZW86
BZW91
BZX61
BZX70
BZX79
BZX84
BZX87
BZX90
BZX91
BZX92
BZX93
BZX94
BZY88
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
BZY91 *
BZY93 *
BZY95 *
BZY96 *
CNY22
CNY23
CNY42
CNY43
CNY44
CNY46
82
82
82
82
81
R
R
R
R
R
T8
T8
T8
I
Ph
Ph
Ph
I
I
I
WD
P
P
I
I
* = series.
Sm
St
Th
Tri
=
=
=
=
Small-signal transistors
Rectifier stacks
Thyristors
Triacs
TS
Vrf
Vrg
WD
=
=
=
=
Transient suppressor diodes
Voltage rL>ference diodes
Voltage regulator diodes
Silicon whiskerless diodes
February 1980
7
_IN_DEX_Jl________
type no.
part
section
type no.
1N821
1N823
1N825
1N827
1N829
81
81
81
81
81
Vrf
Vrf
Vrf
Vrf
Vrf
2N918
2N929
2N930
2N1613
2N1711
1N914
1N916
1N3879
1N3880
1N3881
81
81
82
_82
82
WD
type no.
part
8C3
HF8W
838m
838m
838m
838m
2N3903
2N3904
2N3924
2N3926
2N3927
838m
838m
4a
Tra
4a
Tra
4a
Tra
R
2N1893
2N2218
2N2218A
2N2219
2N2219A
838m
838m
838m
838m
838m
2N3966
2N4030
2N4031
2N4032
2N4033
8C3
FET
838m
838m
838m
838m
1N3882
1N3889
1N3890
1N3891
1N3892
82
82
82
82
82
R
R
R
R
R
2N2221
2N2221A
2N2222
2N2222A
2N2297
838m
838m
838m
838m
838m
2N4091
2N4092
2N4093
2N4123
2N4124
8C3
FET
8C3
FET
8C3
FET
838m
838m
1N3899
1N3900
1N390 1
1N3902
1N3903
82
82
82
82
82
R
2N2368
2N2369
2N2369A
2N2483
2N2484
838m
838m
838m
838m
83
8m
2N4347
2N4391
2N4392
2N4393
2N4427
8C2
8C3
8C3
8C3
4a
P
FET
FET
FET
Tra
1N3909
1N3910
1N3911
1N3912
1N3913
82
82
82
82
82
R
2N2904
2N2904A
2N2905
2N2905A
2N2906
838m
838m
838m
838m
838m
2N4856
2N4857
2N4858
2N4859
2N4860
8C3
8C3
8C3
8C3
8C3
FET
FET
FET
FET
FET
1N4001
to 4007
1N4148
1N4150
1N4151
81
81
81
81
R
2N2906A
2N2907
2N2907A
2N3019
2N3020
83
83
83
83
83
2N4861
2N5415
2N5416
618V
8C3
83
83
FET
8m
8m
1N4154
1N4446
1N4448
1N5060
1N5061
81
81
81
81
81
1N5062
81
WD
R
R
R
R
R
R
R
R
R
R
WD
WD
WD
WD
WD
WD
R
R
R
A
= Accessories
DH = Diecast heatsinks
'FET = Field-effect transistors
8
February 1980
(
II
part
section
8m
8m
8m
8m
8m
2N3053
2N3055
2N3375
2N3439
2N3440
838m
8C2
P
4a
Tra
838m
838m
2N3442
2N3553
2N3632
2N3823
2N3866
8C2
4a
4a
8C3
4a
4b
section
I
P
Tra
Tra
FET
Tra
HE
= Heatsink extrusions
HFSW = High-frequency and switching transistors
I
= Infrared devices
Jl
type no.
Sm
section
type no.
part
section
type no.
part
section
56201c
56201d
56201j
56230
56231
8C2
8C2
8C2
82
82
A
A
A
HE
HE
56295
56312
56313
56314
56315
82
82
82
82
82
A
DH
DH
DH
DH
56359c 8C2
56359d 8C2
56360a 8C2
56363 82,8C2
56364 82,8C2
A
A
A
A
A
56233
56234
56245
56246
56253
82
82
83,4a
82,83
82
A
A
A
A
DH
56316
56317
56318
56319
56326
82
82
82
82
8C2
A
A
DH
DH
A
56366
82
56367 82,8C2
56368a 8C2
56368b 8C2
56369 82,8C2
A
A
A
A
A
56256
56261a
56262A
56264A
56268
82
8C2
82
82
82
DH
A
A
A
DH
56333
56334
56339
56348
56349
8C2
82
8C2
82
82
A
DH
A
DH
DH
56378
56379
A
A
82
82
82
82
82
DH
DH
DH
HE
HE
56350
56352
56353
56354
56359b
82
8C2
8C2
8C2
8C2
DH
A
A
A
A
56271
56278
56280
56290
56293
P
R
part
INDEX
= Low-frequency power transistors
= Rectifier diodes
= Small·signal transistors
8C2
8C2
Tra = Transmitting transistors and modules
Vrf = Voltage reference diodes
WD = Silicon whiskerless diodes
February 1980
9
SELECTION GUIDE
l____
SELECTION GUIDE
RECTIFIER DIODES
General purpose
VRRMmax (V)
IF(AV)max
300
A
600
800
1000
1200
1600
--f---...----I-----I--......--~
1.4
BYX22
6
BYX49 -~--~~--_+----~----.---~
6
BYX38 -~----...------I-----I----
......---~
10
BYX98 --~-~~--_+---~----.---~
12
BYX42
15
BYX99 -~---~----r----;---~----~
30
BYX96 -~-~~-_+--~--~-
47
BYX97 --~----...----~~---I---
48
BYX52 --~----~--~r---;----~--~
150
BYX32 --~----~--~~--~~--~--~
.......
......---~
Avalanche
VRWMmax (V)
IF(AV)max
A
600
1.5
BYX45
9.5
BYX39
20
BYX25
48
BYX56
Bridges
800
1000
1200
III!
f
VI(RMS)max (V)
IO(AV)max
A
50
60
80
140
750
1500
PCB-mounted types
1
BY179
1.2
BY164
1.5
BY256
1.5
BY257
4.8
BY224
4.8
BY225
Bolt-down types
12
BY260
25
BY261
Efficiency diodes
VRRMmax (V)
IFWMmax
A
600
5
BY223
10
BY277
January 1980
1400
r
II
1 1 t
220
280
420
Fast-recovery rectifier diodes
Schottky types
A
28
BYV21
30
35
~
~
Ultra-fast types
40
45
VRRMmax (V)
IF(AV)max
A
7
..
VRRMmax (V)
IF(AV)max
50
100
150
200 300
350
400
500 600
800 1000
BYW29
12
BYW30
25
BYW31
35
BYW92
Super-fast types
7
BYX50
12
BYV30
35
BYV92
Very-fast types
6
6
6
6
1N3879
1N3880
1N3881
1N3882
12
1N3889
12
1N3890
12
1N3891
12
1N3892
14
BYX30*
20
1N3899
20
1N3900
20
1N3901
20
1N3902
20
1N3903
22
BYX46*
30
1N3909
30
1N3910
30
1N3911
30
1N3912
30
1N3913
Fast types
7
BY229
7
BYW19
7
BYX71
40
BYW25
*With avalanche characterisitics
January 1980
2
l_________
SELECTION GUIDE
REGULATOR DIODES
REGULATOR SERVICE
Regulated
voltage
Suppression
stand-off
voltage
4.7V
3.6 V
5.1 V
3.9 V
5.6 V
4.3 V
6.2 V
4.7V
c.
~
11 V
8.2 V
12 V
9.1 V
13 V
10V
15 V
11 V
16 V
12V
18 V
13V
20 V
15V
22 V
18V
27 V
20V
30V
22V
33 V
24V
36V
27V
39V
30V
43 V
33V
47 V
36 V
51 V
39V
56V
43V
62V
47V
68V
51 V
75V
56V
82V
0
co
0
It)
en
>
N
co
0
It)
:;
N
co
0
0
"N~
co
0
M
en
>
N
co
0
C;;
>
N
co
0
0
~
co
0
z
I-
l-
I-
Z
Z
Z
Z
!.
!.
!.
l-
c.
>-
I-
l-
I-
l-
c.
>-
>-
N
co
..c.
.
>-
....
en
~
Z
Z
!.
>-
co
N
<0
..
Z
>-
>-
!.
>-
62 V
Outline
00·1
SOO-18
00-1
Polarity
normal
normal
normal
Transient suppressor bridges
Type No.
3
-
"NX
16 V
24 V
27 kW
0
..
7.5V
-
en
z
10 V
I
co
5.1 V
6.2 V
-
PRSM max
700 W
700 W 9.5 kW 25kW
<0
5.6 V
6.8 V
Ptot max
I 20 W \100 W!
>
N
6.8 V
8.2V
-
700 W
190 W
7.5V
9.1 V
I
!15W
SUPPRESSOR SERVICE
2.5 W
BZW10-12
VI
V
12
VO(CL)
V
30
BZW10-15
15
34
January 1980
I(CL)SM
A
50
40
(
II
SOO-38 SOO-18
00-4
00-5
00-30
00-5
normal
both
both
both
both
both
Normal polarity (cathode to stud) no end-letter
Reverse polarity (anode to stud)
R
Both polarities available
(R)
HIGH-VOLTAGE RECTIFIER STACKS
Type No_
IF(AV)
VRWM
max.
max.
OSS9.110-3
to-30
3.5 A
(6 A in oil)
OSS921 0-3
to-30
5A
(20 A in oil)
OSS9310-3
to-30
4A
(12 A in oil)
OSS941 0-3
to-30
lOA
(30 A in oil)
OSB9110-4
to-3D
7A
(12 A in oil)
OSB9210-4
to -30
lOA
(40 A in oil)
OSB9310-4
to -30
4A
(12 A in oil)
OSB941 0-4
to -30
20A
(60 A in oil)
OSM9110-4
to -30
3.5A
(6A in oil)
OSM9210-4
to-30
5A
(20 A in oil)
OSM9310-4
to -30
4A
(12 A in oil)
OSM9410-4
to-30
10 A
(30 A in oil)
OSM9510-8
to -12
1.5 A
3 kV to 30 kV
2 kV to 15 kV
Configu ration
ano~------~hOde
I.
7259127
~rB--I--~~
centre -tap
V
I . - - RWM"-'
2 kV to 15 kV
.I
VRWM
+
7259125
ano~--I--~hode
V M1- R W
centre-tap
~
?Z59126
8 kV to 12 kV
ano~--I--~hode
centre-tap
V M1- R W
~
?Z59126
January 1980
4
l____
SELECTION GUIDE
THYRISTORS
General purpose thyristors
VRRMmax (V)
fT(RMS)max
A
1.6
100
200
300
400
500 600 650
800 1000 1200 1400 1600
BTX18
12
BT151
16
BTY79
16
BTW38
16
BTW42
20
BT152
25
BTW45
25
BTW47
25
BTY87
25
BTY91
32
BTW40
32
BTW92
55
BTW24
140
BTW23
Fast turn-off thyristors
VORMmax (V)
IT(RMS)max
A
500
6
BT153
8
BT154
24
BTW30S
31
BTW31W
110
750 800
1000 1200
BTW33
Thyristor tetrode BRY39T: VRRMmax
= 70
V; ITrnax
Bi-directional trigger device BR100/03: V(BO)
5
January 1980
r
II
= 28
= 250
rnA
to 36 V; IFRMmax
=2
A
TRIACS
IT(RMS)max
400
A
4
BT136
8
BT137
12
15
15
16
25
25
55
55
VORMmax (V)
500
600
800
1000
1200
1400
1600
BT138
BTW43G
BTW43H
BT139
BTX94H
BTX94J
BTW34G
BTW34H
January 1980
6
GENERAL SECTION
Type Designation
Rating Systems
Letter Symbols
Quality Conformance
and Reliability
A
------
A
_ _ _J
TYPE
DESIGNA TION
PRO ELECTRON TYPE DESIGNATION CODE
FOR SEMICONDUCTOR DEVICES
This type designation code applies to discrete semiconductor devices - as opposed to integrated
circuits -, multiples of such devices and semiconductor chips.
A basic type number consists of:
TWO LETTERS FOLLOWED BY A SERIAL NUMBER
FIRST LETTER
The first letter gives information about the material used for the active part of the devices.
A.
B.
C.
R.
GERMANIUM or other material with band gap of 0,6 to 1,0 eV.
SI LI CON or other material with band gap of 1,0 to 1,3 eV.
GALLIUM-ARSENIDE or other material with band gap of 1,3 eV or more.
COMPOUND MATERIALS (e.g. Cadmium-Sulphide).
SECOND LETTER
The second letter indicates the function for which the device is primarily designed.
A.
B.
C.
D.
E.
F.
G.
H.
L.
N.
P.
Q.
R.
S.
T.
U.
X.
Y.
Z.
DIODE; signal, low power
DIODE; variable capacitance
TRANSISTOR; low power, audio frequency (Rth j-mb > 15 °C/W)
TRANSISTOR; power, audio frequency (Rthj-mb';;; 15 °C/W)
DIODE; tunnel
TRANSISTOR; low power, high frequency (Rth j-mb > 15 °C/W)
MULTIPLE OF DISSIMI LAR DEVICES - MISCELLANEOUS; e.g. oscillator
DIODE; magnetic sensitive
TRANSISTOR; power, high frequency (Rth j-mb';;; 15 °C/W)
PHOTO-COUPLER
RADIATION DETECTOR; e.g. high sensitivity phototransistor
RADIATION GENERATOR; e.g. light-emitting diode (LED)
CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power (Rthj-mb > 15 °C/W)
TRANSISTOR; low power, switching (Rth j-mb > 15 °C/W)
CONTROL AND SWITCHING DEVICE; e.g. thyristor, power (Rth j-mb';;; 15 °C/W)
TRANSISTOR; power, switching (Rth j-mb';;; 15 °C/W)
DIODE: multiplier, e.g. varactor, step recovery
DIODE; rectifying, booster
DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)
"I (
Mareh 1978
The remainder of the type number is a serial number indicating a particular design or development and
is in one of the following two groups:
(a)
A serial number consisting of three figures from 100 to 999.
(b)
A serial number consisting of one letter (Z, Y, X, W, etc.) followed by two figures.
RANG E NUMBE RS
Where there is a range of variants of a basic type of rectifier diode, thyristor or voltage regulator diode
the type number as defined above is often used to identify the range; further letters and figures are added
after a hyphen to identify associated types within the range. These additions are as follows:
RECTIFIER DIODES, THYRISTORS AND TRIACS
A group of figures indicating the rated repetitive peak reverse voltage, V R R M, or the rated repetitive
peak off-state voltage, VDRM, whichever value is lower, in volts for each type.
The final letter R is used to denote a reverse polarity version (stud-anode) where appl icable. The normal
polarity version (stud cathode) has no special final letter.
REGULATOR DIODES
A first letter indicating the nom inal percentage tolerance in the operating voltage VZ'
A. 1% (according
B. 2% (according
C. 5% (according
D. 10% (according
E. 20% (according
to
to
to
to
to
I EC 63:
IEC 63:
IEC 63:
IEC 63:
IEC 63:
series
series
series
series
series
E96)
E48)
E24)
E12)
E6)
A group of figures indicating the typical operating voltage Vz for each type at the nominal operating
current IZ rating of the range.
The letter V is used to denote a decimal sign.
The final letter R is used to denote a reverse polarity version (stud anode) where appl icable. The normal
polarity version (stud cathode) has no special final letter.
Examples:
2
BYX38-600
Silicon rectifier in the BYX38 range with 600 V maximum repetitive peak voltage,
normal polarity, stud connected to cathode.
BTW24-800R
Silicon thyristor in the BTW24 range with 800 V maximum repetitive peak Voltage,
reverse polarity, stud connected to anode.
BZY91-C7V5
Silicon voltage regulator diode in the BZY91 range with 7.5 V operating ±5%
tolerance, normal polarity, stud connected to cathode.
November
19791 (
II
_ _ _Jl__
RATING SYSTEMS
The rating systems described are those recommended by the International Electrotechnical Commission
(lEC) in its Publication 134.
./
DEFINITIONS OF TERMS USED
Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note·
This definition excludes inductors, capacitors, resistors and similar components.
Characteristic. A characteristic is an inherent and measurable property of a device. Such a property
may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed
as a value for stated or recognized conditions. A characteristic may also be a set of related values,
usually shown in graphical form.
Bogey electronic device. An electronic device whose characteristics have the published nominal values
for the type. A bogey electronic device for any particular application can be obtained by considering
only those characteristics which are directly related to the application.
Rating. A value which establishes either a limiting capability or a limiting condition for an electronic
device. It is determined for specified values of environment and operation, and may be stated in any
suitable terms.
Note
Limiting conditions may be either maxima or minima.
Rating system. The set of principles upon which ratings are established and which determine their
interpretation.
Note
The rating system indicates the division of responsibility between the device manufacturer and the
circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.
ABSOLUTE MAXIMUM RATING SYSTEM
Absolute maximum ratings are limiting values of operating and environmental conditions applicable to
any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device,
taking no responsibility for equipment variations, environmental variations, and the effects of changes
in operating conditions due to variations in the characteristics of the device under consideration and
of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and throughout life, no absolute maximum
value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control
adjustment, load variations, signal variation, environmental conditions, and variations in characteristics
of the device under consideration and of all other electronic devices in the equipment.
'I (
Octobec 1977
___Jl_ _ __
DESIGN MAXIMUM RATING SYSTEM
Design maximum ratings are limiting values of operating and environmental conditions applicable to a
bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device,
taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.
The equipment manufacturer should design so that, initially and throughout life, no design maximum
value for the intended service is exceeded with a bogey device under the worst probable operating
conditions with respect to supply voltage variation, equipment component variation, variation in
characteristics of all other devices in the equipment, equipment control adjustment, load variation,
signal variation and environmental conditions.
DESIGN CENTRE RATING SYSTEM
Design centre ratings are limiting values of operating and environmental conditions applicable to a
bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device
in average applications, taking responsibility for normal changes in operating conditions due to rated
supply voltage variation, equipment component variation, equipment control adjustment, load variation,
signal variation, environmental conditions, and variations in the characteristics of all electronic devices.
The equipment manufacturer should design so that, initially, no design centre value for the intended
service is exceeded with a bogey electronic device in equipment operating at the stated normal supply
voltage.
2
October
19771 (
II
~
LETTER SYMBOLS
____B_a_s_e_d_o_n__IE_C__P_U_b_lic_a_t_io_n_1_4_B_____________________
LETTER SYMBOLS FOR
RECTIFIER DIODES, THYRISTORS AND TRIACS
LETTER SYMBOLS FOR CURRENTS, VOLTAGES AND POWERS
Basic letters: - The basic letters to be used are:
I, i := current
v,
v := voltage
P, p:= power
Lower-case basic letters shall be used for the rcpre::;cntatioll of instantaneous values
which vary with time. In all other instances upper-case letters shall be used.
Subscripts
amb
(AY), (av)
(BO)
(BR)
case
D,d
F ,f
G,g
H
I, i
J ,j
L
M,m
min
0,0
(OY)
P,p
Q,q
R,r
(RMS) , (rms)
S,s
stg
T,t
th
(TO)
tot
W
Z
Ambient
Average value
Breakover
Breakdown
Case
Forward off-state 1), non-triggered (gate voltage or current)
Forward 1), fall
Gate terminal
Holding
Input
Junction
Latching
Peak or crest value
Minimum
Output, open circuit
Overload
Pulse
Turn-off
As first subscript: reverse, rise
As second subscri pt : repetitive, recovery
R.M.S. value
As first subscript: storage, stray, series, source
As second subscript: non -repetitive
Storage
Forward on-state 1), triggered (gate voltage or current)
Thermal
Threshold
Total
Working
Reference or regulator (i. e. zener)
For power rectifier diodes, thyristors and triacs, the terminals are not indicated in the
subscript, except for the gate-terminal of thyristors and triacs.
1) For the anode-cathode voltage of thyristors and triacs, F is replaced either by D or
T, to distinguish between" off-state" (non -triggered) and" on -state" (triggered).
December 1979
LEDER SYMBOLS
l"'-----_ __
Example of the use of letter symbols
Simplified thyristor characteristic together with an anodecathode voltage as a function of time (no gate signal).
2
December 1979
(
_Ll
_ _ _ _Jl"----_
QUALITY CONFORMANCE AND RELIABILITY
In addition to 100% testing of all major device parameters in production department, independently
controlled statistical sampling for conformance and reliability takes place using 856001 'Sampling
Procedures and Tables'. 856001 is consistent with MI L-STD-105D, DEF 131 A, IS02859, CA-C-115.
The methods used and standards applied are compatible with CECC, BS and lEG rules and procedures,
and many products are available to 8S9300 and CECC 50000 series detail specifications.
High reliability products, which have had special inspections and 'burn-in', are also available.
December 1979
RECTIFIER DIODES
B
9
B
_ _ _ _J
~;J[: 1'.... 1::. MRL
EXPLANATORY
NOTES
RECTIFIER DIODES
REVERSE RECOVERY
When a semiconductor rectifier diode has been conducting in the forward direction sufficiently long to
establish the steady state, there will be a charge due to minority carriers present. Before the device can
block in the reverse direction this charge must be extracted. This extraction takes the form of a transient reverse current and this, together with the reverse bias voltage results in additional power dissipation
which reduces the rectification efficiency. At sine-wave frequencies up to about 400 Hz these effects
can often be ignored, but at higher frequencies and for square waves the switching losses must be considered.
Stored charge
The area under the I R- time curve is known as the stored charge (Os) and is normally quoted in microor nanocoulombs. Low stored charge devices are preferred for fast switching applications.
Reverse recovery time
Another parameter which can be used to determine the speed of the rectifier is the reverse recovery
time (t rr ). This is measured from the instant the current passes through zero (from forward to reverse)
to the instant the current recovers to 10% of its peak reverse value. Low reverse recovery times are
associated with low stored charge devices.
The conditions which need to be specified are:
a. Steady-state forward cu rrent (I F); high cu rrents increase recovery time.
b. Reverse bias voltage (V R); low reverse voltage increases recovery time.
c. Rate of fall of anode current (dIF/dt); high rates of fall reduce recovery time, but increase stored
charge.
d. Junction temperature (Tj); high temperatures increase both recovery time and stored charge.
•
10%
time
t
100 0 /0
!
Fig. 1 Waveform showing the reverse recovery aspects.
December 1979
UL..I "L..nr\L...
EXPLANATORY
NOTES
l_ _ __
REVERSE RECOVERY (continued)
Softness of recovery
In many switching circuits it is not just the magnitude but the shape of the reverse recovery characteristic
that is important. )f the positive-going edge of the characteristic has a fast rise time (as in a so-called
'snap-off' device) this edge may cause conducted or radiated r.f.i., or it may generate high voltages across
inductors which may be in series with the rectifier. The maximum slope of the reverse recovery current
(dlR/dt) is quoted as a measure of the 'softness' of the characteristic. Low values are less liable to give
r.f.i. problems. The measurement conditions which need to be specified are as above. When stored charges
are very low, e.g. for epitaxial and Schottky-barrier rectifier diodes,this softness characteristic can be
ignored.
DOUBLE-DIFFUSED RECTIFIER DIODES
A single-diffused diode with a two layer p-n structure cannot combine a high forward current density with
a high reverse blocking voltage.
A way out of this dilemma is provided by the three layer double-diffused structure. A lightly doped silicon
layer, called the base, is sandwiched between highly doped diffused p+ and n+ outer layers giving a p+ -pn+
or p+ -nn+ layer. Generally, the base gives the diode its high reverse voltage, and the two diffused regions
give the high forward current rating.
Although double-diffused diodes are highly efficient, a slight compromise is still necessary. Generally, for
a given silicon chip area, the thicker the base layer the higher the VR and the lower the IF' Reverse
switching characteristics also determine the base design. Fast recovery diodes usually have n-type base
regions to give 'soft' recovery. Other diodes have the base type, nor p, chosen to meet their specific
requirements.
ULTRA FAST RECTIFIER DIODES
Ultra fast rectifier diodes, made by epitaxial technology, are intended for use in applications where low
conduction and switching losses are of paramount importance and relatively low reverse blocking voltage
(VRWM = 150 V) is required: e.g., switched-mode power supplies operating at frequencies of about 50 kHz.
The use of epitaxial technology means that there is very close control over the almost ideal diffusion
profile and base width giving very high carrier injection efficiencies leading to lower conduction losses than
conventional technology permits. The well defined diffusion profile also allows a tight control of stored
minority carriers in the base region, so that very fast turn-off times (35 ns) can be achieved. The range of
devices also has a soft reverse recovery and a low forward recovery voltage.
SCHOTTKY-BARRIER RECTIFIER DIODES
Schottky-barrier rectifiers find application in low-voltage switched-mode power supplies (e.g. 5 V output)
where they give an increase in efficiency due to the very low forward drop, and low switching losses.
Power Schottky diodes are made by a metal-semiconductor barrier process to minimise forward voltage
losses, and being majority carrier devices have no stored charge. They are therefore capable of operating at
extremely high speeds. Electrical performance in forward and reverse conduction is uniquely defined by the
device's metal-semiconductor 'barrier height'. We have a process to minimise forward voltage, whilst maintaining reverse leakage current at full rated working voltage and Tj max at an acceptable level.
To obtain the maximum benefit from the use of Schottky devices it is recommended that particular
attention be paid to the adequate suppression of voltage transients in practical circuit designs.
2
December 1979
(
Lt
J
---Rectifier diodes
GENERAL
EXPLANATORY
NOTES
SWITCHING LOSSES (see also Fig.3)
The product of transient reverse current and reverse bias voltage is a power dissipation, most of which
occurs during the fall time. In repetitive operation an average power can be calculated. This is then
added to the forward dissipation to give the total power.
The conditions which need to be specified are:
a. Forward current (I F); high currents increase switching losses.
b. Rate of fall of anode current (dl F/dt); high rates of fall increase switching losses. This is particularly
important in square-wave operation. Power losses in sine-wave operation for a given frequency are
considerably less due to the much lower d I F/dt.
c. Frequency (f); high frequency means high losses.
d. Reverse bias voltage (VR); high reverse bias means high losses.
e. Junction temperature (Tj); high temperature means high losses.
t
t
time
10%
time
7Z77074
Fig. 2 Waveforms showing the reverse switching losses aspects.
December 1979
3
l________
Ucl'lCMf\L
EXPLANATORY
NOTES
SWITCHING LOSSES (continued)
7Z77077
I
t
I
II
r..
L1
I I
~ lOA/JJ.~
1
I I
I
1 1"-1
~/
~
l'..4.r
-I""" ....
I I~J
60
""I
I\.. "'9.......
"
'\.
.....
J
'I
.....,.
-1'00.
" .....""" ""
I
-
./
J
,..... 1 AI p.s
I'
~
11/
I
/.:~"
,....
I
.....
'S~
H--+--:+7,5 -f- H-5 -f-f- 2,5 f-- ~p ~~
-IF (A)
'""""'-
o
"
/
1/
1/
"
I""
1
""I
./
.;'
~
1/
1/
I{
'\~f.-1.0¥-~~
,<:)~
~
J
1\
I~
I 'f-Y'
1.-::
'*"~:/
*'
I/~J
~
1'.'- 1,\
ro--
1 ~Y'
1
5 mm. Rth j-a
= 40 °C/W
2. Mounted on printed-wiring board at a = maximum
lead-length. Rth j-a = 50 °C/W
3. Mounted on printed-wiring board at a lead-length
a = 5 mm. Rth j-a = 55 °C/W
4. Mounted on printed-wiring board at a lead-length
a = 1.5 mm. Rth j-a = 60 °C/W
(distance -a- includes printed-wiring board thickness)
Fig.2
MOUNTING INSTRUCTIONS
1. The maximum permissible temperature of the soldering iron or bath is 270 oC; it must not be in
contact with the joint for more than 3 seconds.
2. Avoid hot spots due to handling or mounting; the body of the device must not come into contact
with or be exposed to a temperature higher than 150 °C.
3. Exert no axial pull when bending.
CHARACTERISTICS
Forward voltage (2 diodes in series)
IF = 2 A; Tj = 25 °C
<
2.2
V*
"Measured under pulse conditions to avoid excessive dissipation.
January 1980
3
Jl__________
_B_Y164_ _ _
From the left-hand graph the total power dissipation can be found as a function of the average output
current.
I (
)
R + Rd-ff
The parameter a = F RMS per diode depends on wR L CL and t
I
and can be found from
IF(AV) per diode
RL
existing graphs.
See Application Book: RECTIFIER DIODES.
Once the power dissipation is known, the max. permissible ambient temperature follows from the righthand graph.
For the series resistance, added to limit the initial peak rectifier current, the required minimum value
can be found from Fig.5.
Rdiff is shown in Fig.4.
4
January 1980
'I (
II
9
_____
Si_li_CO_"__
br_id__e_r_ec_t_if_ie_r________________________________
7Z09437
6
forward current versus maximum
tor ward voltage of the assembly
I (two diodes in series)
{A }
1.5
U
7Z094382
10
I\,
\.I\'
0
,,1 1~
10
4
I I
1
max. permissible
average output
current for R
and L load
"
(A }
()
0
, \ _ VI(RMS} ~ 42V -r-
,,
1\1\
,
1\ 1\
\
0.5
J
Rdift = cot 0= J
1111
,,
1\ 1\
0.17.n. 1/11
1'1'
J ,
lilT"
0
i:
60V -c-
1\1\
III
II
II
"
J
i-' ~..vI(RMS} ~
J ,
~
J
~:l
[
b-r-r-r-
I I
I\~
1
,::: .1 I
2
B_Y
__16
__4_______
I-r- mounting method 1(see page 3)
f1I
I
~,J ~,_______
1\ \
n
2
V (V)
4
100 Tomb (Oe)
200
Fig.5
Fig.4
Example: Rectifier with C load
7Z09439
1.5
mounting method 1
VI(~~<~ =lJ ~fL I~ ~L}a
10
(A)
1\
max. permissible caverage output ffcurrent for the
fcircuit shown
~
I\,
~
VO,IO t characteristics for the
circuit shown
Vo
(V)
I"o!
40
I\,
,...
I\,
0.5
I\.
,
20
I\,
\.
a
10 (A)
2
Fig.6
January 1980
5
_BY_164_Jl"'--_______
~7ZIG~
60
-.!-t ~" ~U-4-'~
-b()~~ f-H:~~lI
r-~~f- \ol~ r-- r--r-~~
~
II~
~~ ~tt~~
;,~J
Vt(RNS)
ti
(V)
II
40
II
'I
,
IJ
IJ
.J
1/
V
I'
i
i
~
r--
,~, rr--r--r-r--
required minimum value of Rt
Rt Includes the transformer
1-resistance
I'
I I
....
V
i
I
Vl~
"
IJ'
1
I I I II
II II I
the graph takes the possibility of
the following spreads into account:
mains voltage, +10%
capacitance ,+ 30010
resistance
, -10%
If'
II
,J
20
IJ
0
o
3
4
Fig.7
30r-____r-~~~~~~----~--,__r_r~_r~c_----------7~Z~O~94~4~1~
II
IIII~
- - - - ... ISM
IrSMI----t--t---t--t---t-+-I-t-f each current pulse is followed by
the crest working reverse voltage.
(A)
time
I---+--+-l-H-++-t+-----+---+-+--+-+-f-+-H
maximum permissible non repeti ti ve peak input cu rrent based
20r-____~--_r~--~-+~;_----~--~--+-+-+-~++-o-n-s-ln-us-·o~id-a-l-cu~r-r_enrt_s~(f-=r5~O~HrzH
O~~~~~~~~~--~--~~~~~--~~~~~~~
2
3
5
7 9
100
Fig.8
6
January 1980
'I (
JI
number of cycles 1000
________Jl__
B_Y17_9_
SILICON BRIDGE RECTIFIER
Plastic-encapsulated bridge rectifier comprising four silicon double-diffused diodes. It is primarily
intended for equipment drawing its power from mains with frequencies up to 400 Hz.
QUICK REFERENCE DATA
Input
R.M.S. voltage
Repetitive peak voltage
Non-repetitive peak current
VI(RMS)
max.
280
VIRM
max.
800
V
115M
max.
25
A
10(AV)
max.
V
Output
Average cu rrent
A
MECHANICAL DATA
Dimensions in mm
Fig.150D-28
chamfer to
indicate positive
5'08Effi-~
-+-
5,08L
5,08L_
I
_15,31_
max
r~
19
max
(>
~
I
_110 max
I~
19 min
J
t+1,05
max
7Z75526
The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation
68-2 (test D, severity IV, 6 cycles).
January 1980
Jl___________
_B_Y179_ _ _
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Input
R.M.S. voltage
VI(RMS)
max.
Crest working voltage
VIWM
Repetitive peak voltage
VIRM
Non repetitive peak voltage; t
~
10 ms
Non repetitive peak current (see also Fig.8)
280
V
max.
400
V
max.
800
V
VISM
max.
800
V
IISM
max.
25
A
Output
Average current with C load
See Figs 3, 6
Average current with Rand L load
up to T amb = 40 °C (see also Fig.5)
IO(AV)
max.
IORM
max.
Repetitive peak current
A
5
A
Temperatures
2
Storage temperature
T stg
Junction temperature
Tj
January 1980
'I (
LI
-55 to +125
max.
125
°C
°C
,J~______
B_Y_1_7_9______
____S_ili_co_n_b_ri_dg_e_re_ct_if_ie_r____________________________
THERMAL RESISTANCE
Influence of mounting method
The quoted values of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point
1. Mounted to solder tags at a
lead-length a > 5 mm. Rth j-a = 40 0C/W
2. Mounted on printed-wiring board at a = maximum
lead-length. Rth j-a = 50 °C/W
3. Mounted on printed-wiring board at a
lead-length a = 5 mm. Rth j-a = 55 oC/W
4. Mounted on printed-wiring board at a
lead length a = 1.5 mm. Rth j-a = 60 °C/W
(distance -a- includes printed-wiring board thickness)
Fig.2
MOUNTING INSTRUCTIONS
1. The maximum permissible temperature ofthe soldering iron or bath is 270 oC; it must not be in
contact with the joint for more than 3 seconds.
2. Avoid hot spots due to handling or mounting; the body of the device must not come into contact
with or be exposed to a temperature higher than 150 0C.
3. Exert no axial pull when bending.
CHARACTERISTICS
Forward voltage (2 diodes in series)
IF=2A;Tj=25 0 C
<
2.2
V*
*Measured under pulse conditions to avoid excessive dissipation.
January 1980
3
_B_Y179--"",jl~_______
0.5
25
10 (A)
75
Tomb (OC)
125
Fig.3
From the left-hand graph the total power dissipation can be found as a function of the average output
current.
The parameter a = IF (RMS) per diode depends on wR L CL and Rt + Rdiff and can be found from
IF(AV) per diode
RL
existing graphs.
See Application Book: RECTIFIER DIODES
Once the power dissipation is known, the max. permissible ambient temperature follows from the righthand graph.
For the series resistance, added to limit the initial peak rectifier current, the required minimum value
can be found from Fig.7.
Rdiff is shown in Fig.4.
4
January
1980
1(
lL
Jl____
B_Y_1_7_9____
Silicon bridge rectifi_e_r_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
6
I
7Z105421
mounting methOd 1 ~see page 3)
maximum permissible average output
current for Rand L load
10 VI(RMS) up to 2aoV
(A )
J I
(A )
7 Z 10 543
1.5
forward current versus maximum
forward voltage of the assembly
(two diodes in series)
I
~f ~;:
~
N
II
1==:'1
4
1
I ,
1\
,IJ
1\
\
;
i
1\
I-r-,-+ '
i I
1111
f\
~
1111
2
0.5
1\
I
III
_\.
1111
II
~
JrJ I'-.
Rdiff -cot 6= o.17J1
•
~I
e'"
1111
'"
II I I
I
I I
I I
I I
I I
I I
Ll
4
V (V)
2
L~
100
Fig.5
FigA
Example: Rectifier with C load
_~ZIQ546.1
mounting method 1(see page 3)
vI(RMS)=
Rt= 4.0. +
--
220V
I I I
I I I
10
(A)
....
0.5
IJF 10
,
,
~r
~J
I
I
400
-
max. permissible
average output current for the circuit shown
-
,
\.
~+
400~
_Ll
1J
Vo
(V)
--
Vo.IO,characteristics r-r- - for the circuit shown r-r- - -
200
~
,.
1\
.
\
\
\
100
lOmb(0 C)
0
200
Fig.6
a
0.5
IO (AJ
January 1980
5
jl~--__-----------
___
BY1_79_ _
7210547
300
I
I
I
I I
14!
'/
I I
b,~
I
",(}(}
;;,.
10""
1/
IIV
IV
I'
~
L.;
~
~
"
J
200
LI
L..o
I'
""
1.0"
L,..o
L,..o
I .....
VI
~
V
II
'I
~ !~l
"'"
required minimum value of Rt
Rt includes the transformer
resistance
LI
~
II.
100
'"
"
1;0
I'
(.;
~I~Y~
ro(}(} j.ii'
I-'"
~
~
J
II
~~
~
L.;
0"
II
I I I
~~~
1.~
~')
~"
VI(RMS)
(V)
I I
the graph takes the possibility of
the following spreads into account:
mains voltage, +10 %
capacitance • +30%
resistance ,-10%
JI~
If.
lL
J
II
I
o0If
4.
2
6
R (.0.)
Fig.7
7Z1054§
30
maximum permissible non repetitive
peak input current based on
sinusoidal currents (f =50Hz)
I rSM
(\---r
(A)
I
IISM
V-'
20
~
~
... ,.
10
each current pulse is followed by
the crest working reverse voltage
..........
I
..........
..........
-
....
I
I
I
7i 1
-""" ::: 250c(, .
~r'or 1;
-~t.troE')
i""-
o
2
3 4. 5
7 9
100
Fig.8
6
January 1980
'I (
JJ
number of cycles
1000
_______----'Jl___
BY_223_
PARALLEL-EFFICIENCY AND ENERGY-RECOVERY DIODE
Silicon double-diffused rectifier diode in a plastic envelope, intended for use as efficiency diode in
transistorised horizontal deflection circuits of colour television receivers, and as an energy"recovery diode
in thyristor commutation circuits such as 3-phase a.c. motor speed control inverters.
QUICK REFERENCE DATA
Repetitive peak reverse voltage
VRRM
max.
1500
V
Average forward current
IF(AV)
max.
A
IFWM
max.
4.5
5
IFRM
max.
200
A
trr
<
1.0
,us
Working peak forward current
Repetitive peak forward current (tp
= 100 ,us) ,
Reverse recovery time
MECHANICAL DATA
A
Dimensions in mm
Fig.1 500-38
.. 5,2 ....
, max
--.
1
3,7
3,6
..-
~
5,3
5,0
metal base
plate
t
18,0
max
~~
L
_,
14,5
min
08043
(7Z6000l,51
1-
.....
!
0,65 .......
max
5,0
..
Polarity of connections: tag 1 =anode, tag 2
I
--.131, ...
=cathode
2,5-+
1,2
,'-. I... max
...
The exposed metal base-plate is directly connected to tag 1
Net mass: 2.5 g
Accessories:
supplied with the device: washer 56355
available on request: 56316 (mica insulating washer)
Torque on screw: min. 0.95 Nm
(9.5 kg cm)
max. 1.5 Nm
(15 kg cm)
December 1979
___BY_223~jl~_______________
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
Transient rating (subsequent to flashover)
VRM(flashover)
max.
1650
V
Non-repetitive peak reverse voltage (t ~ 10 ms)
VRSM
max.
1500
V
Repetitive peak reverse voltage
VRRM
max.
1500
V
Working reverse voltage*
VRW
max.
1500
V
Continuous reverse voltage
VR
max.
800
V
Average forward current (averaged over any 20 ms period)
up to T mb = 85 °C
IF(AV)
max.
4.5
A
Currents
R.M.S. forward current
IF(RMS)
max.
Working peak forward current (see Fig.8)
IFWM
max.
5
A
Repetitive peak forward cu rrent (t p = 100 J,ts)
IFRM
max.
200
A
Repetitive peak forward cu rrent
IFRM
max.
10
A
Non-repetitive peak forward current
(t = 10 ms; half-sinewave)
Tj = 125 0C prior to surge
IFSM
max.
20
A
Storage temperature
T stg
-40 to +125
°C
Junction temperature
Tj
max.
125
°C
Rth j-mb
4.5
°C/W
Zth j-mb
0.3
°C/W
10 . A
Temperatures
THERMAL RESISTANCE
From junction t6 mounting base
Transient thermal impedance; t
= 1 ms
Influence of mounting method
1. Heatsink mounted
From mounting base to heatsink
a. with heatsink compound
Rth mb-h
1.5
°C/W
b. with heatsink compound and
56316 mica washer
c. without heatsink compound
Rth mb-h
Rth mb-h
2.7
°C/W
2.7
°C/W
d. without heatsink compound;
with 56316 mica washer
Rth mb-h
5
°C/W
* At tp
2
< 20 J,tS; 0 = tp/T ~ 0.25; see Fig.8.
December 1979
(
II
l___
Parallel-efficiency and energy-recovery diodes
B_Y_22_3_ __
THERMAL RESISTANCE (continued)
2. Free air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components
run to the same tie-points.
From junction to ambient in free air
mounted on a printed circuit board
at a = maximum lead length
and with a copper laminate
a.
> 1 cm 2
b.
< 1 cm 2
o
Rth j-a = 50 °C/W.
Rth j-a = 55 °C/W
08044 (7Z62315.11
c.
d.
at a lead length a = 3 mm
and with a copper laminate
> 1 cm 2
< 1 cm 2
Rth j-a = 55 °C
Rth j-a = 60 °C
SOLDERING AND MOUNTING NOTES
:J;l
•
•
080'5 (7Z623141
1.
Soldered joints must be at least 2.5 mm from the seal.
2.
The maximum permissible temperature of the soldering iron or bath is 270 °C; contact with the
joint must not exceed 3 seconds.
3.
The device should not be immersed in oil, and few potting resins are suitable for re-encapsulation.
Advice on these materials is available on request.
4.
Leads should not be bent less than 2.5 mm from the seal. Exert no axial pull when bending.
5.
For good thermal contact, heatsink compound should be used between base-plate and heatsink.
December 1979
"~rtl'lll!'l_~
_ _ _ _ _ _ .. _ _ _ _ _ _ .,_"
.,
n.
______ • _ _ _ _ _ _ • • • _ . ___ _
3
_____8_Y_22_3__
~jl~________________________________
CHARACTERISTICS
Forward voltage
IF = 20 A; Tj = 25 °C
<
2.3
V*
<
0.6
mA
<
20
JlS
<
1.0
Jls
<
1.0
JlS
Reverse cu rrent
Reverse recovery when switched from
IFWM = 4 A; -dl Fldt
total recovery time
IF = 2 A; -dl Fldt
recovery time
= 0.2 AIJls; Tj = 125 °C
= 20 AIJls; Tj =
ttot
125 °C
Forward recovery time
when switched to IF RM = 5 A with tr = 0.1 JlS;
Tj = 125 °C
tfr
7Z67044.2A
08046
17Z696991
time
90%
--
tr
time
__
t
Fig.2 Definition of reverse recovery times.
t
100% 110%
+ +time
Fig.3 Definition of forward recovery time
* Measured under pulse conditions to avoid excessive dissipation.
4
December 1979
r
l___
Parallel-efficiency and energy-recovery diode
B_Y_2_2_3_ _
111.5
3
P
819 lines
(W)
I
11'/
2
sis lines
I)
,
1#
\..
, \.
"""'\",,"
~
""'.,.fo .,\" \
/.
Z
AI'
W'
o
\
\
\
\
~,
\
r...... ~ \
116
';xl
~
,
()
\
r~
120.5
~ r\.\ \
~ l\\
'" '"
1/
If
o
\
~~('~'b ~~\
~Q' 1\
~Q)\ ,
\ \~
,~
~rr
)
\
2.5
5
7.5 0
50
""~~
~~
100
125
150
Fig.4 Interrelationship between the power dissipation (based on the waveforms shown in Fig.B) and
the maximum permissible temperatures.
P = power dissipation including switching losses.
December 1979
5
jl~
___
BY2_23_ _
_______________
08660
p
(W)
~
~
10
2.8 I- 1.9 1.57
a=4'
II
1/
II
.,
I
5
1/
IJ
./""~
'" "'"
I/'~
1/"
~
J V
~
'"
O'b
/\~"d'
~~~~f\0
"-
"70 "-
~
i/.~
o
,
oS
~ ......
~
l\. 't
I\.
I'
VI.)'
J
If
/
,,-
l/
l/
J
V
j
80
%
I\
II:~
:"
~
I" \. \
, ,1\
"" ..... "" "'
"-
~l\.'
~
i"'\i ~"
~~
N
" " '1~1\.
~l"'\lWI
"
101
0
102.5
2.5
5 0
50
\.
~
125
100
Fig.5 The right-hand part shows the interrelationship between the power dissipation (derived from the
left-hand part) and the maximum permissible temperatures.
P = power dissipation including switching losses.
a= form factor = IF(RMS)/IF(AV)
6
December 1979
(
l___
Parallel-efficiency and energy-recovery diode
B_Y_2_23
_ __
08049 11269698)
max. values
20
III
,"
J
I
1/
I
II
r
10
J
D
~I
J
n
r-- t--
"
'25°C
-T=125OC~
J
I -I
'J -j i
Vy
I
a
o
~
Fig.6
08050 17Z72510 11
10
,...
j"....ol-
1.--"""'"
./
v
10- 1 lL
v
10-2
10-4.
10- 3
10-2
10- 1
10
time (s)
10
2
Fig.7
December 1979
7
__
BY2_23-""",J
l"""---_ _- - - - -
APPLICATION INFORMATION
-
---- ------- --
-
-
--- ----- -
- ' - IFWM
-
-- --
-
IFRM
time
I
I
I
I
I
I
I
I
I
~~-----------~-4I
I
I
:
time
7Z72368.3
------T-----~
E.H.T.
~
'----o+vs
7Z73165.1
Fig.S Basic circuit and waveforms
8
December 1979
(
SILICON BRIDGE RECTIFIERS
Ready-for-use mains full-wave bridges, each consisting of four double-diffused silicon diodes, in a
plastic encapsulation. The bridges are intended for use in equipment supplied from mains with r.m.s.
voltages up to 280 V and are capable of delivering up to 1000 W into cap.acitive loads. They may be
used in free air or clipped to a heatsink.
QUICK REFERENCE DATA
Input
BY224-400
R.M.S. voltage
220
280 V
400
600 V
600 V
VI(RMS)
max.
Repetitive peak voltage
VIRM
max.
Non-repetitive peak current
IISM
max.
100 A
Peak inrush current
111M
max.
200 A
IO(AV)
max.
4,8 A
Output
Average current
MECHANICAL DATA (see also Fig.1a)
Fig. 1 SOT-112.
1.
4---
Dimensions in mm
22,5 max - - -••
-1
1
5,5 max
14-
heatsink
face
(mounting
base) ""
24,5
max
-t
10,6
9,1
+ "" "" -
1
~~~~~~~--'
4,6
max
-t
~
13 ...
,
....
\1- 1max
1. . .
7Z692S7.6
Net mass: 6,8 9
Accessories supplied on request: 56366 (clip); for mounting instructions see data 56366,
The seal ing of the plastic withstands the accelerated damp heat test of I EC recommendation 68-2
(test 0, severity IV, 6 cycles),
December 1979
BY224 SERIES
l_____
MECHANICAL DATA (continued)
-? Fig.la
08470
A version with cranked pins (as shown in figure 1a) is available on request.
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Input
BY224-400
< 10 ms)
600
VISM
max.
400
Repetitive peak voltage
VIRM
max.
400
600 V
Crest working voltage
V'WM
max.
350
400 V
R.M.S. voltage (sine-wave)
V'(RMS)
max.
220
280 V
IISM
'ISM
max.
max.
100 A
85 A
111M
max.
200 A
IO(AV)
max.
4,8 A
IO(AV)
max.
2,5 A
IORM
max.
50 A
Non-repetitive peak voltage (t
Non-repetitive peak current
half sine-wave; t = 20 ms; with reapplied V'WMmax
Tj = 25 0C prior to surge
Tj = 150 °C prior to surge
-?
Peak inrush current (see Fig. 6)
600 V
----
Output
Average current (averaged over any 20 ms period;
see Figs 2 and 3)
heatsink operation up to T mb = 90 °C
free-air operation at T amb = 45 °C;
(mounting method 1a)
Repetitive peak current
~
2
Temperatures
Storage temperature
T stg
Junction temperature
Tj
December 1979
(
-40 to +150 °C
max.
150 °C
Silicon bridge rectifiers
J
BY224 SERIES
- - THERMAL RESISTANCE
From junction to mounting base
4,0 0C/W
Rth j-mb
Influence of mounting method
1. Free-air operation
The quoted values of Rth j-a should be used only when no loads of other dissipating components run to
the same tie-point (see Fig. 3).
Thermal resistance from junction to ambient in free air
a. Mounted on a printed-circuit board with 4 cm 2
of copper laminate to + and - leads
Rth j-a
19,5 °C/W
b. Mounted on a printed-circuit board with
minimal copper laminate
Rth j-a
25 °C/W
2. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
a. With zinc-oxide heatsink compound
b. Without heatsink compound
Rth mb-h
1,0 0C/W
Rth mb-h
2,0 0C/W
MOUNTING INSTRUCTIONS
1. Soldered joints must be at least 4 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is 270 oC; contact with the
joint must not exceed 3 seconds.
3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact
with or be exposed to a temperature higher than 150 °C.
~
4. Leads should not be bent less than 4 mm from the seal. Exert no axial pull when bending.
5. Recommended force of clip on device is 120 N (12 kgf).
6. The heatsink should be in contact with the entire mounting base of the device and heatsink
compound should be used.
CHARACTERISTICS
Forward voltage (2 diodes in series)
IF = 10 A; Tj = 25 °C
<
2,3 V*
Reverse current (2 diodes in parallel)
VR = VIWMmax; Tj = 25 °C
<
200 JlA
* Measured under pulse conditions to avoid excessive dissipation.
December 1979
3
BY224 SERIES
15
FREE - AIR OPERATION
7Z729861
p
(W)
10
cv~ C'I,~ cv": ....'?
II
,
I,
'ito
JV
~
1/
j
II
/
1/
))
1/
.....bo. .....",;
1/ 1/
1/ 1/
V
V
1a
,/1/' 1/.) V
5
v
I/.
1.1.11
~
v/
r)l)
mounting
method
I'.
L..--
V
~
',;',;
~
~ 1b
CI~
I"
~~~
~~~
"'
~"'
~~
I,..;
""
L
o
o
2
4
6 0
50
IO(AV) (A)
~
~
~
100
150
Tamb (oC)
Fig. 2 The right~hand part shows the interrelationship between the power (derived from the left-hand
graph) and the maximum permissible ambient temperature.
Output form factor ao
4
December 1979
= IO(RMS)/IO(AV) =0,707 x IF(RMS)/IF(AV) per diode.
(
j
Silicon bridge rectifiers
BY224 SERIES
- - -
p
(W) ~~~++~~+4~~~~+4~~~~++~~~~~~~~~~~
o
o
150
150
1 1'4
2
4
60
IO(AV) (A)
100
50
Tamb (oe)
Fig. 3 The right-hand part shows the interrelationship between the power (derived from the left-hand
graph) and the maximum permissible temperatures.
Output form factor ao
= IO(RMS)/IO(AV) =0,707 x IF(RMS)/IF(AV) per diode.
December 1979
5
l____
BY224 SERIES
7Z72373.2A
150
IIS(RMS)
(A)
,
"
100
~
"- ~
IISM
I'
I,
...........
50
"'" f""
'"""I'-
[""-00......
r--
o
10- 3
duration (s)
10
Fig.4 Maximum permissible non-repetitive r.m.s. input current based on sinusoidal currents (f = 50 Hz);
150 °C prior to surge; with reapplied VIWMmax.
-+ Tj =
60
= 25°C
---1j =150°C
--Tj
~
I
2 diodes in series
IIS
R f t I IS(RMS)
-- -----.-
,,
7Z725371A
time
/I
I
II
II I
max_I-
,
typ L..fVF f-I- I VF
'--
I
f
40
I"
~
I
II
,
I
II
20
-'
-'
I I
Ilf
rI
fJ
J
I
'/
.'11
-"
~~
~'"
l/~
~
2
6
December 1979
f
4
Fig.5
j
Silicon bridge rectifiers
BY224 SERIES
---
7Z72598.1
300
II "
"
~lJll()~~'
~
~
I \()()
I
I I
I
VI(RMS)
(V)
f/
/
I"""
:,.....
..... 1"""
~
I"'"
...........
.".
I
l...o' .....
V
If
I--"
.....
~
100
j
~
~
"'"
~
"'" ~
i.o"'"
~
k..-
/.'
"'"
I'
10-'"
......
.....~~~~
i.;'
.".
~
J
i,..-'
.."
10-'"
1/
_L~
f*J(()()~~~
~
~
If ...........
L:1o'
200
~~
~~
1-()~()'~
~
c,\...
~~
~J
"'"
...... 1"'"
...... 1"'"
l)
ll-
1/
oV
o
2
+
3
4
The graph takes the possibility of the
following spreads into account:
mains voltage +10%
capacitance
+50%
resistance
-1 0%
Fig. 6 Minimum value of the total series resistance Rtot (including the transformer resistance)
required to limit the peak inrush current.
December 1979
7
SE_R_IE_S~jl________________________________
__B_Y_2_24__
APPLICATION INFORMATION
mains
filter
mains rv
suppression
network
..............--0+
7274198
(1) External capacitor.
Fig. 7 Because smoothing capacitor C2 is not always connected directly across the bridge (a suppression
network may be sited between capacitor and bridge as shown), it is necessary to connect a capacitor of
about 1 ~F, C1, between the + and - terminals of the bridge. This capacitor should be as close to the
bridge as possible, to give optimum suppression of mains transients.
10
CAPACITIVE LOAD
7Z72371 1
mounting method:
10 - - - 1b--10(AV)
(A)
1\
~
~
5
\
,
,'""
\
~ "~'I
~
"~...
...
i'...
~
-........ '-
--
....... ......
"------
V
10
5
Fig.8
8
December 1979
(
Tamb
= 35°C
1/ I I I I
Tamb
=65°C
overload time (min)
15
SILICON BRIDGE RECTIFIERS
Ready-for-use full-wave bridge rectifiers in a plastic encapsulation. The bridges are intended for use in
equipment supplied from a.c. with r.m.s. voltages up to 80 V and are capable of delivering output
currents up to 4,8 A. They are also suitable for use in hi-fi audio eql!ipments and low-voltage
industrial power supplies. They may be used in free air or clipped to a heatsink.
QUICK REFERENCE DATA
BY225-100
Input
200
R.M.S. voltage
V'(RMS)
max.
50
80 V
Repetitive peak voltage
V,RM
max.
100
200 V
Non-repetitive peak current
',5M
Peak inrush current
'"M
max.
100 A
max.
200 A
max.
4,8 A
Output
Average current
'OlAV)
Dimensions in mm
MECHANICAL DATA
Fig. 1 SOT-112.
1."--- 22,5 ---"·1
max
. . . . .1
5'5 max
I+-
heatsink
face
(mounting
base) "'.t.
24,5
max
+"V"V-
4,6
max
--+
10,6
9,1
+
Net mass: 6,8 g
1
~~~~~~~~--'
-j
t ~i~ I
,'o~;\...lil--1.1 O'254@/13"'11..
... 3,9 ......-........-...--..
15,0 81 15,081 IS,081
I
.....
1... 1 max
m92S1.6
Accessories supplied on request: 56366 (clip); for mounting instructions see data 56366.
The sealing of the plastic withstands the accelerated damp heat test of I EC recommendation 68·2
(test D, severity IV, 6 cycles).
"I'
January 1980
BY225 SERIES
l"'---_ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Input
BY225-100
200
Non-repetitive peak voltage (t .;;;;; 10 ms)
VISM
max.
100
200 V
Repetitive peak voltage
VIRM
max.
100
200 V
Crest working voltage
VIWM
max.
70
112 V
R.M.S. voltage (sine-wave)
VI(RMS)
max.
50
80 V
Non-repetitive peak current;
half sine-wave; t = 20 ms; with reapplied V IWMmax
Tj = 25 °C prior to surge
Tj = 150 °c prior to surge
IISM
IISM
max.
max.
100 A
85 A
Peak inrush current (see Fig. 6)
111M
max.
200 A
IO(AV)
IO(AV)
max.
max.
3,6 A
IO(AV)
max.
3,2 A
IORM
max.
50 A
Output
Average current (averaged over any 20 ms period;
see Figs 2 and 3)
heatsink operation up to T mb = 115 °c
heatsink operation at T mb = 125 °c
free-air operation at T amb = 45 °C;
(mounting method 1a)
Repetitive peak current
4,8 A
Temperatures
2
Storage temperature
T stg
Junction temperature
Tj
March
19781 (
-40 to +150 0c
max.
150 °c
BY225 SERIES
Silicon bridge rectifiers
THERMAL RESISTANCE
From junction to mounting base
4,0 0C/W
Rthj-mb
Influence of mounting method
1. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run
to the same tie-point (see Fig. 2).
Thermal resistance from junction to ambient in free air
a. Mounted on a printed-circuit board with 4 cm 2
of copper laminate to + and - leads
Rthj-a
19,5 0C/W
b. Mounted on a printed-circuit board with
minimal copper laminate
Rthj-a
25 0C/W
2. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
a. With zinc-oxide heatsink compound
Rth mb-h
1,0 °C/W
b. Without heatsink compound
Rth mb-h
2,0 0C/W
MOUNTING INSTRUCTIONS
1. Soldered joints must be at least 4 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is 270 oC; contact with the
joint must not exceed 3 seconds.
3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact
with or be exposed to a temperature higher than 150 °C.
4. Leads should not be bent less than 4 mm from the seal. Exert no axial puff when bending.
5. Recommended force of clip on device is 120 N (12 kgf).
6. The heatsink should be in contact with the entire mounting base of the device and heatsink
compound should be used.
CHARACTERISTICS
Forward voltage (2 diodes in series)
IF = lOA; Tj = 25 °C
<
2,3 V*
Reverse current (2 diodes in parallel)
VR = VIWMmax; Tj = 25 °C
<
200 J1.A
* Measured under pulse conditions to avoid excessive dissipation.
March 1978
3
FREE - AIR OPERATION
15
7Z72986 1
p
(W)
10
rv~ (I~ rv~ ....~
1/
,I 1/
VI/
I/I V/
AI/
~
5
1/
V
I
1/
1/
.I"
~
,~
1/
1.1"
1/
'tI0
,?,
I,
~ l~
V
I"
"
V
"
v"
,/
/.
"'"
~
/
~z
......
mounting
method
1a
~ lb
[.1/
.....
~~ ~I'
"'
~r;;:::~
~~
"
1':'
,:'1\
./
~
..... 1'
o
o
2
4
60
50
IO(AV) (A)
~
,
100
150
Tamb (oC)
Fig. 2 The right-hand part shows the interrelationship between the power (derived from the left-hand
graph) and the maximum permissible ambient temperature.
Output form factor ao
4
March
= IO(RMS)/IO(AV) =0,707 x IF(RMS)/IF(AV) per diode.
19781(
BY225 SERIES
Silicon bridge rectifiers
p
(W) ~~-rr+~-rr+~-r++~~++44~++44~~44~++~~++~~
1.1
IO(AV) (A)
Fig. 3 The right-hand part shows the interrelationship between the power (derived from the left-hand
graph) and the maximum permissible temperatures.
Output form factor ao = IO(RMS)/IO(AV) = 0,707 x IF(RMS)/IF(AV) per diode.
March 1978
5
l_____- -
BY225 SERIES
7Z723732A
150
IIS(RMS)
(A)
"
100
""-
IISM
'"
I"
,
I'....
50
~
i""""-o
1""' ...
r---....
--
r-
o
10- 3
duration (s)
10
Fig. 4 Maximum permissible non-repetitive r.m.s. input current based on sinusoidal currents (f = 50 Hz);
Tj = 150 °C prior to surge; with reapplied V'WMmax'
, ,
7Z12369 1
60
I
T J
- - T j = 25°C
- - - Tj = 150°C
-- -----.- IS(RMS)
IIS~I
,
time
I
I
I
I
typ -r-, max IVF f-f--J VF 1 ~
1
2 diodes in series
II
I.
40
II
,
•,
~
20
.',
~J
~
.~'
,
7
I J
1/11
IJj
rl
,
'/
.'1/
~' /
,
2
November 1979
:
II
i
6
1_'
,
(
4
Fig. 5.
j
Silicon bridge rectifiers
BY225 SERIES
- - 08618
100
~~ r-
VI(RMS)
(V)
c~~
V
1/
~
lL~
11'...... ~
50
I
1~'fI"
V V'
~ ~ '/
) .....
~~
o
"o
...... ",
V
...... ~ /'"
V
C(
C(
r-
~
LL ""'"
~ ~~,..
...... ~
~
~
)~ ..... ~
..L.~ ..L.~
~
~ ~
...... ~ ....... ",
V
l/
--,V'
j
if ~
)
~
C(
~()()~;....-- ~() ~ ~() of ()()() ~
j
V
~""'"
V
V
"
1.5
0.5
The graph takes the possibility of the
following spreads into account:
+
input voltage
capacitance
resistance
+10%
+50%
-10%
Fig. 6 Minimum value of the total series resistance Rtot (including the transformer resistance) required
to limit the peak inrush current.
November 1979
7
l'----_--
BY225 SERIES
10
CAPACITIVE LOAD
7Z72371.1
mounting method:
10 - - - 1bIO(AV)
(Al
~
\
1\
5
,
1\ I"
I\.
1\.'
'''-.
~""r ...
r-
. . "- ""
~:t
.... '" -
---
~ 1"'-' 1'"-
0
o
- :r
Qmb
1/ 1
...
V
10
5
Fig. 7.
8
I(
March 1978
= 35°C
1
1
1
:rQmb =65°C
overload time (min)
15
FAST SOFT-RECOVERY RECTIFIER DIODES
Glass-passivated double-diffused rectifier diodes in plastic envelopes, featuring fast reverse recovery
times and non-snap-off characteristics. They are intended for use in chopper appl ications as well as in
switched-mode power supplies, as efficiency diodes and scan rectifiers in television receivers.
The series consists of normal polarity (cathode to mounting base) types.
aUICK REFERENCE DATA
BY229-200
Repetitive peak reverse voltage
max.
800
800,
,200
V
Average forward cu rrent
max.
7
A
Non-repetitive peak forward current
max.
60
A
Reverse recovery time
<
450
ns
MECHANICAL DATA
Dimensions in mm
Fig.1 SO~-59 (TO-220AC).
1'3~~:
-, 1
5,9
min
L,joo"""""",.r--,.+ 15,8
I
max·
I
I
I _____ .JI
L
j
LIt:;=;:=~~
3,5 max
r-
not tinned
5,1
max
~
I
1,3.... ..
max
12x) k
min
I
a
,
113,5
•
-.1\'1...0,9 max 12x)
-+-I 5,08 ...
08402
Note: The exposed metal mounting base is directly connected to the cathode. Accessories supplied on
request: see data sheets Mounting instructions and accessories for TO-220 envelopes.
July 1979
BY229 SERIES
l_______
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages*
BY229-200 400 600 800
Non-repetitive peak reverse voltage
VRSM
max.
VRRM
max.
VRWM
max.
VR
max.
Repetitive peak reverse voltage
Crest working reverse voltage
Continuous reverse voltage
200 400 600
200 400 600
150 300 500
150 300 500
800
800
600
600
V
V
V
V
V
Currents
Average forward current assuming zero
switching losses
square-wave; {j = 0.5; up to T mb = 100 °C
square-wave; {j = 0.5; at T mb = 125 °C
sinusoidal; up to T mb = 101 °C
sinusoidal; at T mb = 125 °C
max.
max.
max.
max.
7
4.1
6.5
4
A
A
A
A
IF(RMS) max.
max.
IFRM
10
A
Repetitive peak forward current
60
A
Repetitive peak forward current
tp = 20 J.lS; {j ~0.02
lFRM
max.
75
A
Non-repetitive peak forward current; t = 10 ms
half sine-wave; Tj = 150 °e prior to surge;
with reapplied VRWMmax
lFSM
max.
60
A
R.M.S. forward current
IF(AV)
IF(AV)
IF(AV)
IF(AV)
Temperatures
Storage temperature
Junction temperature
T stg
Tj
max.
-40 to +150
150
*To ensure thermal stability: Rth j-a ~ 15 °e/W for continuous reverse voltage.
2
July
19791(
oe
oe
BY229 SERIES
Fast soft-recovery rectifier diodes
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
4.5 °C/W
Influence of mounting method
1. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
b. with heatsink compound and 0.06 mm maximum mica insulator
Rth mb-h = 0.3 °C/W
Rth mb-h = 1.4 °C/W
c. with heatsink compound and 0.1 mm maximum mica insulator (56369)
Rth mb-h = 2.2 °C/W
a. with heatsink compound
d. with heatsink compound and 0.25 mm maximum alumina
insulator (56367)
Rth mb-h = 0.8 °C/W
Rth mb-h = 1.4 °C/W
e. without heatsink compound
2. Free-air operation
The quoted value of Rth j-a should be used only when no leads
of other dissipating components run to the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = any lead length.
Rth j-a
60
°C/W
ia
Fig.2
~
V/L / / 'LLJ
08397
7Z78248
MOUNTING INSTRUCTIONS
1. The device may be soldered directly into the circuit, but the maximum permissible temperature of
the soldering iron or bath is 275 oC; it must not be in contact with the joint for more than 5
seconds. Soldered joints must be at least 4.7 mm from the seal.
2. The leads should not be bent less than 2.4 mm from the seal, and should be supported during
bending.
3. It is recommended that the circuit connection be made to the cathode tag, rather than direct to the
heatsink.
4. Mounting by means of a spring clip is the best mounting methode because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting;
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between base-plate and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-riveted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled
so as to avoid shock and deformation of either heatsink or mounting tab.
July 1979
3
CHARACTERISTICS
Forward voltage
IF = 20 A; Tj = 25 °C
VF
<
1.85
V*
IR
<
0.4
mA
Os
trr
<
<
0.7
450
p,C
ns
IdlR/dtl
<
60
Reverse current
VR = VRWMmax; Tj = 125 °C
Reverse recovery when switched from
IF = 2 A to VR ;;. 30 V with -dIF/dt = 20 A/p,s; Tj
Recovered charge
Recovery time
= 25 °C
Maximum slope of the reverse recovery current
IF = 2 A; -dIF/dt = 20 A/p,s
+
10%
time
7Z70134.2
Fig.3 Definition of trr and Os
*Measured under pulse conditions to avoid excessive dissipation.
4
July 1979
~
(
t
100 %
~
08403
A/p,s
Fast soft-recovery rectifier diodes
l_B_Y_2_2_9_S_ER_'_ES__
SQUARE-WAVE OPERATION
08378
p
1.0
(W)
7
7
I
0.5
I
10
0.2
1--
I
V
5
I
il
\.
\.
I
1\
\
\
\.
\ --
S-
\3
\
'" \
\
\.
\.
1\
I\L.>~
\
1\ 'V>o
~\O
116.25
tP,\ I\.. r\H ~
'\
II )
II
\ \b
~.\>
,
~'\
,/
\'"
\
\
105
\c;
\
\
\
II
II
II
7
I
I
f-+- 0=0.1 I
II
I
93.75
\.
,
1\.1\ ,
1\
I'
1\.1\. I\. 1\ \ \
127.5
1//
'III 1/
11/
1/ J/
/V,'/
.... Rtf) .
~~
"~,,
--f..::.. a ""6
0
I I I
I I I
I
I
~C/W
//0
o~
o
.\\ \
I\,\
\1'
:\.
N\
./
5
o
50
...,....,..
I
100
~"
138.75
,
,~
:....
\.l
150
0
150 T amb ( C)
Fig.4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses but excluding switching losses.
IF(AV)
= IF(RMS) x~
July 1979
5
BY229 SERIES
jl
'----------------------------------------------------
SINUSOIDAL OPERATION
08379
p
(W)
,
1.57
1.9 1/
/
10
II
"
2.8 II 1/J
I
1111
"
['-.,
~
l'\.
I'
'" '"
l'\.
t....
111/
t"-..
"
1/1/
t-t-......
).
)IJ~
o
2.5
1>'"
,
~
"
1
1
-.l
50
rr-r-I I
1
-.l-.l-.l
116.25
......
, L'l
'" , "- I"- l'II
Rth i-a "'60°C/
.I~
W
Ll
105
~,
~I'
I'
I I
1I
'I)"
JI..I
o~
~?d'
1\
,~<>
~ r-~ ('l
v ~r-r-t-' ~
~
I' 6'
1\
''S
~
1. ~ I'
1'\ ~
o I', I'
1\ 1\
1/'1
I J 'J
II V If.
J r/
1/1/ Ih
93.75
~
l\.,-;
"L"I '\. "'" \
i"I.
I"I"-.
If
r
5
"-
I
r-c- f- a "'4.01
'"
i'
,
'\.
127.5
L1
l).
1'\1\
r-..r-..
l\
""'~l\
I"'l:'
r-t- t-~
100
138.75
1..'1\
~~~
N
1\
r-t- ~~~ 150
°
T amb ( C)
150
Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses but excluding switching losses.
a = form factor = IF(RMS)/IF(AV)'
6
July 1979
II
BY229 SERIES
Fast soft-recovery rectifier diodes
08380
100
'FS(RMS)
(A)
,
\
75
~
"
I FSM
1\
50
I'
~
~
" ......
~
...... r-- ...
25
o
""
10- 2
10- 3
10- 1
08381
25
,
1
II
I:
Jr.
II
II
20
1
1"-01000
---
I"--
duration (s)
10
Fig, 6 Maximum permissible non-repetitive r,m.s,
forward current based on sinusoidal
currents (f = 50 Hz); Tj = 150 °C prior to
surge; with reapplied VRWMmax'
/\---I FSM
I \: 'FS(RMS)
time
'I
JI,r
I'
fl
,
J
15
II
typ
VF
10
1
,
,,
5
.,
.F
~
If max
J
VF
~
'I
IJ
'/
'I
,
",J
I
I[~
J
o
......... ......
I'..
'J
... JOi"
July 1979
7
l_ _ __
BY229 SERIES
08382
I I
--"-
..... !!o.
I
1""'"",
f-
5A/p.s
"""
-,I
-"",
I
f-
Ip.s
f-
~&,~s
%.'
~
.... ~
-~
r-I-
.!)A/~ts
?ca
I~
~
11
I' "'
1M
I
10
f-f- 17.5
r-I-'-
1£
,
I~
1£
~
~
~
.... ,....
....
~
I'FI~\
I,..
I"' ....
!-...
~
""" ~
-r--....
I
11
... !I""
!;:~~
~~~ ~~
"""
:;,O\~\-\l.l.... ~,..'"'"
iI!!I~ i""'r"'"
......
r""",
~~
"I~
'"
I
~0 1
'"
""'" "
'""~6'~~r-~~
~ ~
'" "" ~""'
~
11.-./\
"Q>~
1'-. l?6'o
v.
0
I"
"
1"-
'(J
~
I"
I'-
I"
" "I,
..-- a o =2.8
"--11-1-
~
~
1\
1\
"
;,
"--1-
"".' ,
N"
"~,,
-f-tl
,/I
iJIII
~
,,~~
•
"
-r-'--
~~
o
0
~'"
I'~
1-1-
j
0.5
1
1.5 0
50
100
"
~
1,5 o
Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand
graph) and the maximum permissible ambient temperature.
Output form factor ao = IO(RMS)/IO(AV) = 0.707 x IF(RMS)/IF(AV) per diode.
December 1979
5
_____
BY_2_5_6__
~~l~__________--------------------08496
IISM
(A)
50
~
,
"-
,
~
40
"
\..
\..
" "" '" """-
30
20
1'0..
r""o
...
"
10
~
-...
-"",
10- 1
--10
duration (s)
102
Fig.4 Maximum permissible non-repetitive peak input current based on sinusoidal currents (f = 50 Hz);
Tj = 150 oC prior to surge;with reapplied VIWMmax'
DUi7
I
I
I I
I
typ VF -max VF
IF
(A)
5
,•
\I
I'
•
•
II
,I
,
4
,
r
,
,
II
II
I'
J
1'II
I
I'
2
•
,••
J
I'
I
,,
o
I'
0.5
6
I.
,
I
3
J
II
December 1979
'I
I
I
~
..,.
t'
1.5
(
"
Fig.5 - - T j = 25 oC; - - - Tj = 150 oC;
2 diodes in series.
S_il_ico_n_b_r_id_ge_r_~_t_if_ie_rs
____
~~,
_______________________________
_____B
__Y_2_5_6_______
08657
100
~ -~~~
-~y
~V- ~- y~
'Of:;j~
~~
~')- -~~~ ~
./
VI(RMS)
~/
(V)
II
v"j
..,.
1/
V
50
/
/
~
J~
~,
"
.LI
~
/
/
~,
./,r
V
./'
~
./
~
/'
/
.",'
';II'"
i/
J,/'
~
J
I
I
oI
o
2
The graph takes the possibility of the
following spreads into account:
+
input voltage
capacitance
resistance
+10%
+50%
-10%
Fig.6 Minimum value of the total series resistance Rtot (including the transformer resistance) required
to limit the peak inrush current.
December 1979
7
______Jl__
BY2_S7_
SILICON BRIDGE RECTIFIER
Ready-for-use full-wave bridge rectifier in a plastic encapsulation. The bridge is intended for use in
equipment supplied from mains with r.m.s. voltages up to 280 V and is capable of delivering output
currents up to 1.5 A.
QUICK REFERENCE DATA
Input
R.M.S. voltage
VI(RMS)
max.
Repetitive peak voltage
VIRM
max.
280
600
V
Non-repetitive peak current
IISM
max.
50
A
IOA(V)
max.
1.5
A
V
Output
Average current
MECHANICAL DATA
Dimensions in mm
Fig. 1 SOD-28
chamfer to
indicate positive
r~J:::===:=::J
19
max
~
?~========~
I
+
_110
max 1--19 min
J
~1,05
max
t
7Z75526
The sealing of the plastic envelope withstands the accelerated damp heat test of I EC recommendation
68-2 (test D, severity IV, 6 cycles).
'I
December 1979
__BY_2S7_Jl""'---_ _ _ _ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Input
Non-repetitive peak voltage (t ~ 10 ms)
V'SM
max.
600
V
Repetitive peak voltage
V'RM
max.
600
V
Crest working voltage
VIWM
max.
400
V
R.M.S. voltage (sine-wave)
VI(RMS)
max.
280
V
Non-repetitive peak current;*
half sine-wave; t = 20 ms; with reapplied V'WMmax
Tj = 150 0C prior to surge
IISM
max.
50
A
'OlAV)
max.
1.5
A
IORM
max.
10
A
Storage temperature
T stg
-55 to +150
°C
Junction temperature
Tj
max.
°C
Output
Average current (averaged over any 20 ms period;
see Fig.3)
free-air operation at T amb = 45 oC;
(mounting method a)
Repetitive peak current
Temperatures
2
December 1979
(
150
J
Silicon bridge rectifier
BY257
- - THERMAL RESISTANCE
Influence of mounting method
1. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run
to the same tie-point.
Thermal resistance from junction to ambient in free air
a. Mounted on a printed-circuit board with 4 cm 2
of copper laminate to + and - leads
Rth j-a
38
°C/W
b. Mounted on a printed-circuit board with
minimal copper laminate; 1.5 mm lead length
Rth j-a
52
°C/W
c. Mounted on a printed-circuit board with
minimal copper laminate; maximum lead length
Rth j-a
44
°C/W
MOUNTING INSTRUCTIONS
1. The maximum permissible temperature of the soldering iron or bath is 270 oC; it must not be in
contact with the joint for more than 3 seconds.
2. Avoid hot spots due to handling or mounting; the body of the device must not come into contact
with or be exposed to a temperature higher than 150 0C.
3. Exert no axial pull when bending.
CHARACTERISTICS
Forward voltage (2 diodes in series)
IF = 2 A; Tj = 25 0C
<
2.1
V*
*Measured under pulse conditions to avoid excessive dissipation.
December 1979
3
jl~_______________
___
BY_257_ _
OPERATING NOTES
The various components of junction temperature rise above ambient are illustrated below.
junction
Rth e-tp
Rth e-a
Rth tp-a
ambient
Fig.2
The thermal resistance between envelope and tie-point and between envelope and ambient depend on
lead length:
lead length
Rth e-tp
Rth e-a
1.5
1.2
110
5
10
15
max.
mm
4
8
12
15.2
°C/W
87
73
65
60
°C/W
The thermal resistance between tie-point and ambient depends on the mounting method. For mounting
on a 1.5 mm thick epoxy-glass printed-circuit board with a copper-thickness> 40 ,um, the following
values apply:
1.
Mounting with minimal copper laminate: Rth tp-a == 70 °C/W
2.
Mounted on a printed-circuit board with a copper laminate to the + and - lead of:
1 cm 2 : Rth tp-a = 55 °C/W
2.25 cm 2 : Rth tp-a = 45 °C/W
4 cm 2 : Rth tp-a == 40 °C/W
Note: Any temperature can be calculated by using the dissipation graphs and the above thermal model.
4
December 1979
(
~~
___S_il_ic_on_b_r_id_g_e_re_ct_if_ie_r_______________________________
B_Y_2_5_7________
_______
FREE-AIR OPERATION
,
3
1.8
2,1 ) J J
11"- 1['
J
p
(W)
fJ 'I"
III[ 'J
IJ.I
JII 'J'- 1.4
'I,'J I/" i' 1.1
2
08496
1
j
"
!\.
l~
I\.
I"
I\.
~
"!'.
~
l~
fL'fj
1/')'f
'JlJ
I~
I~
I' 1>
,
~0 I
......
'\. o'~
f\.. i.YS-o
I\.
" ~~r- %.
~~~r-'ts:~~
,
12,,5 J'I)
'I)
,
I'
I' ~ " 1'11.." ~
I' 1\.1'1,
I'
I'
r- a o =2.8
f-+r-r-
r-f--Il
,.
I~
rf
I'
~l'-l
l\
I" "",-'~
l'-l' ~l"
I''''
I'l'\:
f-+-
III
"-
~
~~J..)
•
I'~ t-tr-r~r-
o
0
-.l~
0.5
1
1.5 0
50
100
~
~
15 o
IO(AV)(A)
Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand
graph) and the maximum permissible ambient temperature.
Output form factor ao
= IO(RMS)/IO(AV) = 0.707
x IF(RMS)/IF(AV) per diode.
December 1979
5
__
BY_257--"",J
l"""--_ _ _ _ _ _ __
08498
IISM
(A)
50
~
"." ,
~
40
I'
1'1..
" ""
30
~
"- 1'0..
20
I"'"
...
""'-
~
"'"
10
~I'oo
r---. ....
o
10- 1
10- 2
10
duration (s)
Fig.4 Maximum permissible non-repetitive peak input current based on sinusoidal currents (f
= 150 oC prior to surge; with reapplied VIWMmax;
102
= 50 Hz);
Tj
01487
I I
I I I
I I
I I I
typ VF f-
max Vf
v
5
~
IY
II
I
I
\1
,
II
4
J
\,
\I
J
"r
~
1/
I
3
,
II
II
II
\I
:.
2
If
~
'I
j
I
I
II
'I
\I
I
o
_I~
0.5
6
/I
II
V
I"
December 1979
V
j,o'
J..,.
1.5
(
Fig.5 - - T j = 25 oC; - - - Tj = 150 oC;
2 diodes in series
BY257
Silicon bridge rectifier
08658
300
I I I
I I I
I I ~
~
I I
~*~~«
§~i. t-->--.r;:,r;:,~
t-->-~/
~
VI(RMS)
(V)
II
r;:,r;:,~ I' ""'"
'!>
I
u"'"
I..;
J~
200
.j
1/
'
I~
~
"
I"
""'"
~
I..;
~
1/
I'
I
"""
..;
I
;/
100
V
1""-
"""
[II
1/
il
If
J
oV
o
2
+
3
The graph takes the possibility of the
following spreads into account:
input voltage
capacitance
resistance
+10%
+50%
-10%
Fig.6 Minimum value of the total series resistance Rtot(including the transformer resistance) required
to limit the peak inrush current.
December 1979
7
SILICON BRIDGE RECTIFIERS
Ready for use full-wave bridge rectifiers in a plastic encapsulation.
The bridges are intended for use in equipment supplied from a.c. with r.m.s. voltages up to 420 Vand
are capable of delivering output currents up to 12A. They are also suitable for use in hi-fi audio equipments and low-voltage industrial power supplies. They may be used in free air or on a heatsink.
OUICK REFERENCE DATA
Input
BY260-200
400
600
R.M.S. voltage
V/{RMS)
max.
140
280
420
V
Repetitive peak voltage
V'RM
max.
200
600
V
Non-repetitive peak current
'ISM
max.
400
v
125
Peak inrush current
'11M
max.
250
A
IO(AV)
max_
12
A
A
Output
Average cu rrent
MECHANICAL DATA
Dimensions in mm
Fig. 1.
3.8 dia. hole
Epoxy
1,35 fast-ons
Metal
base
7,6
max
~
08453
September 1979
BY260 SERIES
l_ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC134).
BY260-200
400
600
V'SM
max.
200
400
600
V
VIRM
max.
200
400
600
V
VIWM
max.
200
400
600
V
VI(RMS)
max.
140
280
420
V
Input
Non-repetitive peak voltage (t
~
10 ms)
Repetitive peak voltage
Crest working voltage
R.M.S. voltage (sine-wave)
,,---'
Non-repetitive peak current
half-sinewave; t = 20 ms; with reapplied VIWMmax
A
Tj == 25 °C prior to surge
Tj == 150 0C prior to su rge
max.
max.
125
100
Peak inrush current (see Fig. 5)
max.
250
A
A
Output
Average current (averaged over any 20 ms period)
heatsink operation up to T mb = 60 °C (R-Ioad)
heatsink operation up to T mb = 60 0C (e-Ioad)
'OlAV)
'OlAV)
max.
max.
12
7.5
A
A
Repetitive peak current
IORM
max.
20
A
Temperatures
Storage temperature
T stg
Junction temperature
Tj
-55 to +150
oC
150
°C
4.5
°C/W
max.
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
CHARACTER ISTICS
Forward voltage (2 diodes in series)
IF == 7 A; Tj = 25 °C
VF
<
2.0
V*
Reverse current (2 diodes in parallel)
VR = V'WMmax; Tj == 100 °C
'R
<
150
p.A
*Measured under pulse conditions to avoid excessive dissipation.
2
September 1979
(
j
Silicon bridge rectifiers
BY260 SERIES
- - 08464
p
(W)
20
- oad,
I
J
I
f
'I-
15
II
I
10
J
~
"
J
"""
""
f"II~~
~
......
"
" .....
60
1'.:'J6
"I
"I
"'" "-
I~~
I"" 'So
"I
I
J
I
"' +
L-I oc:d
....
1'1..'
~~
i"o..
1 cm 2
b. < 1 cm 2
Rth j-a = 50 °C/W
Rth j-a = 55 °C/W
o
I
a
~
///L
- /~ / / / / /
7Z6231S.1
at a lead length a = 3 mm
and with a copper laminate
c. > 1 cm 2
d. < 1 cm 2
Rth j-a = 55 OC
Rth j-a = 60 °C
J;L
+
April 1977
II
7Z62314
3
BY277
II
SERIES
II
CHARACTERISTICS
Forward voltage
= 10
Ip
A; Tj
= 25
°C
Vp
<
1,4
V 1)
IR
<
0,2
rnA
Qs
<
0,9
\-lC
trr
<
400
ns
IdIR/dtl
<
2
Reverse current
VR
= VRWmax;
Tj
= 100
°C
Reverse recovery when switched from
Ip = 2 A to VR ~ 30 V;
-dIp /dt = 20 A/\-ls; Tj
Recovery charge
Ip=lAtoVR~30V;
-dIp/dt = 20 A/\-ls; Tj
Recovery time
= 25 °C
=25 °c
Maximum slope of the reverse recover.:i current
(in horizontal deflection circuits)
when switched from
IF =5AtoVR~30V:with
-dIF/dt = 1 A/lls: Tj = 25 °c
A/Il s
IF
IF
+
10%
time
t
100 0 /0
~
1) Measured under pulse conditions to avoid excessive dissipation.
4
Pebruary 1978
11
II
BY277
II
SERIES
CHARACTERISTICS (continued)
Forward recovery when switched to
IF = 1 A; Tj = 25 oC
Recovery time
Recovery voltage
tfr
Vfr
<
<
0,3
13
f.JS
V
IF = 20 rnA; Tj = 25 oC
Recovery time
Recovery voltage
tfr
Vfr
<
<
0,3
5
f.JS
V
1272964
IF
10%
time
-tfrVF
If""
April 1977
II
---rt
r
Vfr
1000t 110%
•
0
•
I
time
I
5
BY277
SERIES
II
II
MOUNTING INSTRUCTIONS
l. Soldered jOints must be at least 2,5 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is 270 oC;
contact with the joint must not exceed 3 seconds.
3. The devices should not be immersed in oil, and few potting resins are suitable for
re-encapsulation. Advice on these materials is available on request.
4. Leads should not be bent less than 2,5 mm from the seal. Exert no axial pull when
bending.
5. Por good thermal contact heatsink compound should be used between base-plate and
heatsink.
OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated
below:
junction
mounting
base
Rth j-a
heatsink
7Z66853
ambient
b. The method of using the graph on page 7 is as follows:
Starting with the required current on the IpWM axis, trace upwards to meet the
appropriate 625/819-curve. Trace right horizontally and upwards from the appropriate
value on the Tamb scale. The intersection determines the Rth mb-a.
The heatsink thermal resistance value (Rth h-a) can now be calculated from:
Rth h-a ::: Rth mb-a - Rth mb-h·
Any measurement of heatsink temperature should be made immediately adjacent to
the device.
6
II
II
April 1977
BY277
II
SERIES
7Z725142
Ptot = power dissipation including
switching losses
interrelation between the dissipation
(derived from the left-hand graph) and
the maximum permissible temperatures
,
819 lines
3
/
//
VI
/y
Ptot
(WI
I
I
I
\
625 lines
I\..
IV
2
h
VJ
,
~ \~
\~ ~
'9
"-'6)0
$0
,
o
111,5
-,J I
~- ~~%-
\ ~ 0>
,
1\
\
\
c;.-, ~i\ ~
~/ ~'tv ',\ \
00'
"
116
~
\
\,
\'~
~\ 1\ ~
"~ \~\ \
W
" I\..
I\..
120,5
I~ i\\
"I\.. ~\1
"I\..~~
"~
J
o
...>
o~
\
\
0
~v
/
,
~I,\\ ~
/1
Ib
1\
5
10
15 0
100
50
125
150
Tamb (oC)
IFWM(A)
7Z7251J 2
60
- - l j = 25°C
---lj =12S oc
I
I
I
!
!
typ
VF
~r-
t-r-
~
~
max ~
VF-f-:'
~
,
!
I!
40
'1
,'1fi
1
rl
"
I
LJ
11
~
i
II
II
~
20
f
i
I.'~
Ii
0'
J
,
~,.
o
o
April 1977
II
~.
rl
I
j
l'l/
,'1/
"
2
7
BY277
II
SERIES
II
7Z72510 1
10
./
10- 1 . /
10-2
10- 4
10- 3
10- 2
10- 1
10
time (5)
10 2
7Z590341
......
.......
"-
Rthh-a
........ ~
"..-
'"
~
......
-
......
r-....
"
.....
~
~~
10
~~
"
~
.......
~'"
~~
/1}
~/2
I"~
~'"
....... ~ I' r-.~
r-.;;~
a
~,
~~ ~~
~ ~....
b{~ ~
~
~
~ ~ .....~~t--.t'-"""......
~
~
"
~
1
10
1
10 2
AI heatsink surface km 2 )
...
103
Thermal resistance Rthh-a from aluminium heatsink to ambient (free air) versus heatsink surface (one side). 1,2 and 3 are thicknesses in mm, a is for a bright surface,
b is for a black surface.
8
Il
II
April 1977
BY277 SERIES
Parallel efficiency diodes
APPLICATION INFORMATION
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ______________ IL
time
_~
I
I
I
I
I
J--VRW
I
I
I
time
T - - - - - -...
7Z69764-
BY277-750R
commutation
circuitry
BY277-600R
E-W drive
Basic circuit and waveforms
October 1979
9
j
BYV21 SERIES
--------------------------------------------------------SCHOTTKY-BARRIER RECTIFIER DIODES
High-efficiency rectifier diodes in 00-4 metal envelopes, featuring low forward voltage drop, low
capacitance, absence of stored charge and high temperature stability. They are intended for use in low
output voltage switched-mode power supplies and high-frequency circuits in general, where low conduction and switching losses are important.
The series consists of normal polarity (cathode to stud) types: BYV21-30, BYV21-35, BYV21-40 and
BYV21-45.
QUICK REFERENCE DATA
Repetitive peak reverse voltage
VRRM
BYV21-30
45
30
45
max.
Average forward current
IF(AV)
max.
Forward voltage
VF
<
28
A
0.55
V
MECHANICAL DATA
Fig.1
V
Dimensions in mm
00-4 with 10-32 UN F stud (1)4.83 mm) as standard.
Metric M5 stud (1)5 mm) is available on request.
-'
t
4,8 9,3
max max
1'-"f-~+
•
-.1
2,3
__ 3,5
~
max
min
_10,3_
max
___ 11,5 _ _ _ _ _ 20,3 -----....1
10,7
max
7269802.1 A
Net mass: 7 g
Torque on nut:
Diameter of clearance hole: 5.2 mm
min. 0.9 (9 kg em),
max. 1.7 (17 kg cm).
Accessories supplied on request: 56295
(PTF E bush, 2 mica washers, plain washer, tag).
Supplied with device: 1 nut, 1 lock washer.
Nut dimensions across the flats: M5, 8.0 mm
10-32 UNF, 9.5 mm
'I
January 1980
l_____
BYV21 SERIES
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC134).
Voltages
BYV21-30
35
40
45
Non-repetitive peak reverse voltage
max.
36
42
48
54
V
Repetitive peak reverse voltage*
max.
30
35
40
45
V
Crest working reverse voltage
max.
30
35
40
45
V
Continuous reverse voltage* *
max.
30
35
40
45
V
Currents
Average forward current; switching losses
negligible
sinusoidal; up to T mb == 100 °C
square-wave; up to T mb == 100 °C; S == 0.5
IF(AV)
IF(AV)
max.
max.
25
28
A
A
R.M.S. forward current
IF(RMS)
max.
40
A
Non-repetitive peak forward current
t == 10 ms; half sine-wave;
Tj == 125 0C prior to surge;
with reappl ied V RWMmax
IFSM
max.
600
A
12 t
max.
1800
2
1
t for fusing
A2 s
Temperatures
Storage temperature
T stg
Junction temperature; with full applied
continuous reverse voltage V Rmax
Tj
max.
From junction to mounting base
Rth j-mb
<
From mounting base to heatsink
with heatsink compound
without heatsink compound
Rth mb-h
Rth mb-h
Transient thermal impedance; t:= 1 ms
Zth j-mb
-55 to +150
oC
125
oC
THERMAL RESISTANCE
°C/W
0.3
0.5
°C/W
°C/W
0.15 °C/W
MOUNTING INSTRUCTIONS
The top connector should be neither bent nor twisted; it should be soldered into the circuit so that there
is no strain on it.
During soldering the he~t conduction to the junction should be kept to a minimum.
For tp == 200 ns a 20% increase in VRRM is allowed.
To ensure thermal stability: Rth j-a
2
January 1980
~(
< 2 °C/W
BYV21 SERIES
Schottky-barrier rectifier diodes
CHARACTERISTICS
Forward voltage
<
<
0.55
V*
0.88
V*
<
1500
V/IlS
IR
<
150
mA
Cd
typo
900
pF
IF'" 30 A;Tj '" 100°C
VF
IF'" 80 A; T j = 25°C
VF
Rate of rise of reverse voltage
VR = VRWMmax
dVR
Cit
Reverse current
VR == VRWMmax; Tj == 125°C
Capacitance at f
= 1 MHz
VR '" 5 V; Tj '" 25 to 125°C
*Measured under pulse conditions to avoid excessive dissipation.
January 1980
3
l"---_ __
BYV21 SERIES
SINUSOIDAL OPERATION
30
D8488
95
I
I
I
I
1.57
p
(W)
1\
II
19
I
:2.8
20
II
1"'1
II I
a-=4
J
,
,
1\%
\
'" "!'o
III
....
"
"-
....
.....
'Jif
J l'fj
1Ir},
"'"
"'"
.....0
I' ~ I-~~
~
,~
r-Z,o
,
1\
:\.
r-...0
~
105
1\0l"
\
LI'I
I'
"
....
~
Jr~
"'{
,
115
~
~
"" ,
" " ....""-.r.
1\1\
...... 10...
1JJr/
,
I\.
i"1o..
jfh~
....
'\.1\
:'\
100".1,"\
'Itt
1"10...
o
0
r\~
I\.
J I/!I
1/
rJ
I
....
'I
I
'I'
I II J J
IJ
10
l-j:)
",
I
10
20
30 0
50
,,~
100
125
15
o
Fig.2 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
a == form factor == IF(RMS)/IF(AV).
*T mb scale is for comparison purpose and is correct only for Rth mb-a
4
January 1980
(
< 6.4 °C/W.
BYV21 SERIES
Schottky-barrier rectifier diodes
SQUARE-WAVE OPERATION
08489
30
If
02
20
II
II
IJI/
10
/'f
Jr~
If."
~-? f--f-- ,,~
j
"
r\%1\
,
II
~
II J
II J
j
J
J
I'
1/
II
j
I'
IJ
II
15 011 J
II 1/
,,~
V
J
(W)
I I
I\~
1'\
1/
05
p
95
I
,
10
I
I
50
100
,
" ,
1\.~
125
12 5
Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
tp
T
I~II
I
tp
5=V
1... __ ..1
L.. __
J
IF(AV) = IF(RMS)
T
xV8
*T mb scale is for comparison purpose and is correct only for Rth mb-a
< 6.4 oC/W.
January 1980
5
l"-----_--
BYV21 SERIES
08490
1000
IFS(RMS)
(A)
~
"- ~
IFSM
~"'-
l'
500
I'
'"
'"
f'-..~
,....~
------
"- I-~I-
-
I"-- ~ +-1-
o
10- 3
10- 1
10- 2
duration (s)
10
Fig.4 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents (f= 50 Hz);
Tj = 125 0C prior to surge; with reapplied VRWMmax·
f\---I FSM
08672
I
r:
IFS(RMS)
time
IF
(AI
typ ~ V
V F -~ ~ l~ """"
.*"
~~
rl
'.'r'/
"h
-, !.r/
II ~
/l~
10
~ ~max
IT
I
li~
j~J
o
6
January 1980
0.5
(
VF
BYV21 SERIES
Schottky-barrier rectifier diodes
08492
'-.. r-.... ,J)'P
~
.......
I"""'o~
10
10
Fig.6 f = 1 MHz; Tj = 25 to 1250C
08493
Zth j-mb
(OC/W)
~
--
1",..0'10-
.. r
•
>~
~
10- 1
/~
1.00'
10- 2
10- 3
10- 5
10- 4
10- 3
10- 2
10- 1
"
time (s)
10
Fig.7
January 1980
7
j
BYV30 SERIES
----------------------------------------------------~
VERY FAST SOFT-RECOVERY RECTIFIER DIODES
High-efficiency rectifier diodes in 00-4 metal envelopes, featuring low forward voltage drop, high
reverse voltage capability, very fast reverse recovery times and non-snap-off characteristics.
They are intended for use in switched-mode power supplies and high-frequency inverter circuits, in
general, where high output voltages and low conduction and switching losses are essential.
The series consists of the following types:
Normal polarity (cathode to stud): BYV30-200, BYV30-300 and BYV30-400.
Reverse polarity (anode to stud): BYV30-200R, BYV30-300R, and BYV30-400R.
QUICK REFERENCE DATA
Repetitive peak reverse voltage
VRRM
BYV30-200(R)
400(R)
max .
400
Average forward current
IF(AV)
max.
Forward voltage
VF
Reverse recovery time
trr
<
<
.... 200
MECHANICAL DATA
12
V
A
1.05
V
100
ns
Dimensions in mm
Fig.1DO-4
1,0
0,8
-'11'max
4,0
u--*----':~~___:O_+\_ _tTI_0- - Lm~)
4,83
max
+
1,98____I . ____ 3,2 __
1,6
min
max
~
e .
I- 1 1 , 0 -I
max
_9,3 ___
max
___ 11,5 _..' .....t - - - - - - 20,3 _ _---l.~1
10,7
max
7Z6S35S.2
Net mass: 6 g
Diameter of clearance hole: max. 5.2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag).
Torque on nut:
min. 0.9 Nm (9 kg em),
max. 1.7 Nm (17 kg em)
Supplied with device: 1 nut, 1 lock washer.
Nut dimensions across the flats: 9.5 mm
The mark shown appl ies to the normal polarity types.
September 1979
BYV30 SERIES
l_______
RATINGS
Limiting values in accordance with the Absolute Maximum System IIEC134)
Voltages
BYV30-200(R)
300(R)
400(R)
Non-repetitive peak reverse voltage
(t';;;;;; 10 ms)
max.
250
350
450
v
Repetitive peak reverse voltage
max.
200
300
400
v
Crest working reverse voltage
max.
200
300
400
V
~------~v~------~
Currents
Average forward current assuming zero
switching losses (averaged over any 20 ms period)
up to T mb = 100 oC
at T mb = 125 °C
IF(AV)
IF(AV)
max.
12
A
max.
7
A
R.M.S. forward current
JF(RMS)
max.
20
A
Repetitive peak forward current
JFRM
max.
140
A
Non-repetitive peak forward current
Tj = 150 °C prior to surge;
half sine-wave with reapplied VRWMmax;
t= 10 ms
t= 8.3 ms
JFSM
JFSM
max.
max.
140
150
A
A
12t for fusing (t= 10 ms)
J2 t
max.
100
A 2s
Temperatures
Storage temperature
T stg
Operating junction temperature
Tj
max.
-65 to +175
oC
150
°C
THERMAL RESISTANCE
From junction to ambient in free air
From junction to mounting base
From mounting base to heatsink
Transient thermal impedance; t = 1 ms
2
September 1979
(
50
°C/W
Rth j-mb
2.2
°C/W
Rth mb-h
0.5
°C/W
Zth j-mb
0.8
°C/W
Rth j-a
BYV30 SERIES
Very fast soft-recovery rectifier diodes
CHARACTE R 1ST ICS
Forward voltage
IF==10A;Tj==25 0 C
VF
V*
VF
<
<
1.35
IF == 10 A; Tj == 150 °C
1.05
V*
IR
<
3
IF == 1 A to V R == 30 V;
-dl F/dt == 35 Alps; Tj == 25 0C
Recovery time
trr
<
100
ns
IF == 2 A to V R == 30 V;
-dfF/dt == 20 Alps; Tj == 25 °C
Recovery charge
Os
<
125
nC
I F == 1 A to V R = 30 V;
-dl F/dt = 2 AIIlS; Tj == 25 °C
Max. slope of the reverse recovery current
IdlR/dtl
<
5
Reverse cu rrent
VR == VRWMmax; Tj == 125 °C
mA
Reverse recovery when switched from
IF
Alps
IF
08403
Fig. 2 Definition of trr and Os.
*Measured under pulse conditions to avoid excessive dissipation.
September 1979
3
7Z72610
p= power dissipation excluding
switching losses
11
IF(RMSl
a=
IF(AVl
I
I I
I
T1
I
116
,
II
I I I
1,75 fI I
III
I I1
rJ
a=2,4
J
I 1'1
II
20
p
(W)
interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures
I
,9",11
"'" ~
"
JII
15
I
III,
10
111/,
'I,
r'l
V
:1
"" ""'"l"-
'" '"
(
I\.~ \\
1
C~
I\,
r\.
"
..... 10...
'"
~
r-..
"
, ,
"r...;
1\
,
"
" "" ""
1\
J'oo.,
/'fi
r\..
~
i""",...
I'
rJ
I'
1""'"",
"Ii
f'
I'"
1"
1"
~
i"
I"'"
.... ..... .....
~
"
128
~
r-...
....
I~
""
,
139
I\.. .,
~['.
...
I'~
~
o
o
117
~
I\.
I'
r--
r!..O
....
r-.. .....
,,8
r-.
""
..... 6'
:/Y
I~
I
I
0?<1
i'..<;('
J'oo.,
'/
~
V
5
9
I I
-p I I
~
Jo::::IlSl
~.
5
10
150
50
IF(Av) (A)
Fig.3
150
7Z72611 1
1\
~
maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )
I FsM
I~
IFS(RMS)
(A)
IFV\
I\,
~
~-IFSM
~~IFS(RMS)
time
100
I\.
with reapplied V RWMmax
,
'\..
'\..
"'I'
50
.......... ..... ~=150 °c (prior
to surge)
-jo...
I"'---
o10-3
10-2
10- 1
Fig. 4
4
September 1979
(
150
150
100
-
duration (s)
10
BYV30 SERIES
Very fast soft-recovery rectifier diodes
60
,
II
D8445
7272609 1
104
'/ --lj= 25°C
"
,~
IJ
I
----
- -lj=150oC
I----
trr
Ii
(ns)
I
I
"--
------J-
,
I
I
I
I
40
/J
:1
r----
~~
:
....
~
1 r----I'-.lr
I'r
J
I
i
......t....
max
JV
20
I
IF"'10A
5A
/ 2A
/ / / lA
1-,....
I
1-- If-.
tl
t:::::::-=-t---
II
- - r-- typ
I
I
!
-------
!
I
II
10 2
I
I I
I /
J
I
I
I,
1/
o
o
J
10
...t.~:;'"
2
102
10
-dlF/dt (AIJIs)
Fig. 5
Fig. 6 Maximum values; Tj
150 0C.
=:
7Z72691
JLJL
-ltpl_1
___ T_ 5 =.!£
T
10
5=1
~ 1-1-
......
-
5 0......
V
.... 1'
10- 4
10-3
10- 2
10-1
tp(S)
10
Fig.7
September 1979
5
VERY FAST SOFT-RECOVERY DIODES
High-efficiency rectifier diodes in 00-5 metal envelopes, featuring low forward voltage drop, high
reverse voltage capability, very fast reverse recovery times and non-snap-off characteristics.
They are intended for use in switched-mode power supplies and high-frequency inverter circuits, in
general, where high output voltages and low conduction and switching losses are essential.
The series consists of the following types:
Normal polarity (cathode to stud): BYV92-200, BYV92-300 and BYV92-400.
Reverse polarity (anode to stud): BYV92-200R, BYV92-300R and BYV92-400R.
QUICK REFERENCE DATA
BYV92-200(R)
Repetitive peak reverse voltage
VRRM
max.
Average forward current
IF(AV)
max.
Forward voltage
VF
Reverse recovery time
trr
<
<
200
300(R)
400(R)
300
400
35
v
A
1.05
V
100
ns
MECHANICAL DATA
Dimensions in mm
Fig.1 00-5; Supplied with device: 1 nut, 1 lock-washer
Nut dimensions across the flats: 11.1 mm
15,3 max
114 in x 28 UNF
._F=~/=---I
_t
6,35
8,0
max
max
+-
-t
2,2_
max
....
1
___ 5,0 __
-17,0-
max
-
1101,5 _ , ....t - - - - - 25,4 _ _ _--,...,
,7
max
Net mass: 22 g
Diameter of clearance hole: max. 6.5 mm
Accessories supplied on request:
56264A (mica washer, insulating ring, tag)
7Z75506.1
Torque on nut:
min. 1.7 Nm (17 kg cm)
max. 2.5 Nm (25 kg cm)
'I
December 1979
~
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages*
-+
BYV92-200(R)
Non-repetitive peak reverse voltage
Repetitive peak reverse voltage
300(R)
400(R)
VRSM
max.
200
300
400
200
300
400
V
V
VRRM
max.
Crest working reverse voltage
VRWM
max.
200
300
400
V
Continuous reverse voltage
VR
max.
200
300
400
V
Currents
Average forward current assuming zero switching losses;
sinusoidal; up to T mb = 100 °C
1F (AV)
sinusoidal; at T mb = 125 °c
IF(AV)
square wave; 0 = 0.5; up to T mb = 95 °c
square wave; 0 = 0.5; at T mb = 125 °c
IF(AV)
IF(AV)
max.
35
A
max.
max.
max.
20
40
19
A
A
A
R.M.S. forward current
max.
55
A
Repetitive peak forward current
max.
500
A
A
Non-repetitive peak forward current
t = 10 ms; half sine-wave;
Tj = 150 °c prior to surge; with re-applied
VRWMmax
IFSM
max.
500
t for fusing (t= 10 ms)
12 t
max.
1250
Storage temperatures
T stg
-55 to +150
°C
Junction tempeature
Tj
max.
150
°C
2
1
A2 s
Temperatures
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
1.0
°C/W
From mounting base to heatsink
with heatsink compound
without heatsink compound
Rth mb-h
Rth mb-h
0.3
0.5
°C/W
°C/W
Transient thermal impedance; t = 1 ms
Zth j-mb
0.2
°C/W
MOUNTING INSTRUCTIONS
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
*To ensure thermal stability: Rth j-a ~ 6 °C/W (continuous reverse voltage) up to T amb = 110°C
2
December 1979
r
BYV92 SERIES
Very fast soft-recovery rectifier diodes
CHARACTERISTICS
Forward voltage
'F == 100 A; Tj == 25 °C
VF
V*
VF
<
<
1.4
'F = 35 A; Tj = 100 0 C
1.05
V*
'R
<
1.5
mA
'F = 1 A to VR ~ 30 V with -dlF/dt = 50 A/p.s; Tj = 25 °C
Recovery time
trr
<
100
ns
'F == 2 A to VR ~ 30 V with -dlF/dt = 20 A/p.s; Tj = 25 °C
Recovered charge
Os
<
100
nC
I dlR/dti <
5
Reverse current
VR = VRWMmax; Tj = 100 0 C
Reverse recovery when switched from
Maximum slope of the reverse recovery current
when switched from 'F =1 A to VR ~ 30 V;
with -dlF/dt = 2 A/p.s; Tj = 25 °C
+
10%
A/p.s
time
i
100%
~
v_ _
08403
Fig. 2 Defi n it ions of trr and Os.
*Measured under pulse conditions to avoid excessive dissipation.
July 1979
3
BYV92 SERIES
jl
'------------------------------------------------
SQUARE-WAVE OPERATION
08420
p
I
1.0
(W)
V
-'-
60
0.5
))
V~
0.2
40
I
0-0.1 I{
I
I
I If V/
'/ Ih
20
IIV
V
!
"\
"
~
1,\
~
~
//~ V
~~ W
20
40
60 0
l1~
,
1,\
~~
...... ~
...... 1'..
.....
r-....
-r---.."",
r- i"-
50
",
"', "
....... r--...
110
1\
\.
~
~
..............
~
~
,~
o ~~
0
' ·Olo
" '\
I"
90
l1~o
/
~
I. /.V
'~6\
~
I\.
"~
IX
V
1\
~
--iLL
/j
,I ~
.....
...... r-..
\
'\
I"
............... r-....
......
\
~
'\. \
130
I
..
-
1\.1\
r--.... r--.... I"'- r-:::: ..:::: 1\.\
~'
i"- ~ ~ ~~
-...~
~ 150
100
150
Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses but excluding switching losses.
IF(AV) = IF(RMS)
4
1979
July
x.,j8
1r
l
Very fast soft-recovery rectifier diodes
BYV92 SERIES
SINUSOIDAL OPERATION
p
(W)
50
-~+
, i
I
-+- I
I
-+--+-t '
-i--- - -
c. ___
--t
- +-t-
+
t·~
---+-_+ ___
-'.- -
1
-- -~
a=4
30
J
1I1I
,
1.57
I-l +-
1.9
/
~
2.8
II
I
--f--
t=l=f+-t- - -t--- ;
+_ -t- -- -t
f---f--.-
.ll40
08419
-
J
1i--- -+-+-
J
r/)
/
20
I
r/
,
1\-::0
"'
\.~
"\ .)
~Y"i\.
'/1/
~
I"i:
~
~
, ,,"'
10 ~+i.hr/
·ff/V
;////
-~
\
110
/-~ ~
~.
-w=
I\,
\
1"\
l\.
,
i\.
~
I......
120
"
\
\
1\
130
\ 1\
\ \
~
.\.
'-""
'I"\:
.\ ~
'\
140
~\
,~ ~.\.
o ~+
0
\
~
"-
)
r;-
\- --- ~ 9
\
\,1
"
JI
II V
'I )1/
S'\
\
"""
I /
I
l"'..
100
\":»
\
,
_.
/
\
\'
i
I'..~ ~1~\
......
10
20
30
40
50 0
50
100
\
""
150
150
Fig.4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses but excluding switching losses.
a = form factor = IF(RMS)/IF(AV)'
July 1979
5
BYV92 SERIES
jl
----------------------------------------------------D8421
1000
I
I
I
'FS(RMS)
~
\
(A)
500
~
"l\.,
'FSM
" """
1'0",
"""
10- 2
r"-,..."
!"-I'-~
--10- 1
""""""" --r-- r--,...
---...l"-
I'-.
duration (s)
Fig.5 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents
(f == 50 Hz); Tj == 150 °C prior to surge; with reapplied VRWMmax'
1\- -- 'FSM
/
\:'FS(RMS)
time
6
July
19791 (
10
BYV92 SERIES
Very fast soft-recovery rectifier diodes
08422
150
• + •
1"
-.- + t
.. -t·t
t
-+.";-
+-
+--+- -+
-+
IF
(A)
' +
4- -~
..
t
+.
t
+
+-
-to ..... - +-
t ...
-+---+
+
+
• +
100
+ +
• +
'+'..j.
+
+ t
o
0.5
I-
+
lc...f +++++--
--+---+-~-++++++----__+__+++++1-1+----+----f---+++1f-ttt--
_I""""
-
1---
-----
r-
-----+~+-+++-f-+tt-----f_____IH__+_H+++_~-_+____+___H__1+H+_______+__+_+_+++_'+t_-+__+_+++t+H
r--
---
--
1O~3
10- 2
10- 1
time (s)
10
Fig. 7
I
July 1979
7
I
_ _ _ _J
BYW19 SERIES
FAST SOFT-RECOVERY RECTIFIER DIODES
Silicon double-diffused rectifier diodes in plastic envelopes. They are intended for use as clamp diode,
dV /dt limiter and output rectifier diodes in professional and consumer switched-mode power supply
applications and as scan rectifier diodes in television receivers. The devices feature non-snap-off characteristics and a very fast turn-on behaviour, which makes them extremely suitable for clamp and dV /dt
limiting applications.
QUICK REFERENCE DATA
1000(R)
BYW19-800(R)
Repetitive peak reverse voltage
800
VRRM
max
1000
V
Average forward current
IF(AV)
max
7
A
Non-repetitive peak forward current
IFSM
max
40
A
Reverse recovery time
trr
<
450
MECHANICAL DATA (see also page 2)
ns
Dimensions in mm
SOD-38
1--11,0 max-I
-4-
S,2
I l
max
metal base
plate
18,0
max
1
r-
t-I.=:::r:::=T::f:::::T:1~~
4max
not tinned
2,5
--t
•
14,5
min
J_
....
tag1,
tag2
0,65-.. ...
max
5,0
.--
-.1 3,1
I
'1 _ _
--
11__ 1,2
max
2,5-"
--
The exposed metal base-plate is directly connected to tag 1.
July 1977
7Z60001.5
l_ _ __
BYW19 SERIES
MECHANICAL DATA (continued)
Net mass: 2,5 g
Recommended diameter·of fixing screw: 3,5 mm
Torque on screw
when using washer and heatsink compound: min 0,95 Nm (9,5 kg cm)
max 1,5 Nm (15 kg cm)
Accessories:
supplied with device: washer
available on request: 56316 (mica insulating washer)
POLARITY OF CONNECTIONS
BYW19-800R
and BYW19-1000R
BYW19-800
and BYW19-1000
Base-plate
Tag 1
Tag 2
cathode
cathode
anode
anode
anode
cathode
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BYW19-800(R)
Voltages
~
1000(R)
Non-repetitive peak reverse voltage
VRSM
max
1000
1000
V
Repetitive peak reverse voltage
VRRM
max
800
1000
V
Working reverse voltage
VRW
max
800
800
V
Continuous reverse voltage
VR
max
800
800
V
~---
Currents
Average forward current assuming zero switching
losses (averaged over any 20 ms period; see page 7)
square-wave; [) = 0,5; up to T mb = 98 °C
square-wave; 0 = 0,5; at T mb = 125 °C
sinusoidal; up to T mb = 98 °C
sinusoidal; at T mb = 125
IF(AV)
IF(AV)
IF(AV)
IF(AV)
max
max
max
max
"7
4
7
4
A
A
A
A
IFRM
max
75
A
IFSM
max
40
A
Storage temperature
T stg
-40 to +125
°C
Junction temperature
Tj
max
°C
oc
Repetitive peak forward current; tp = 20 JlS; 0
Non-repetitive peak forward current
square-wave; t = 10 ms; Tj = 150 °C prior
to surge; with reapplied VRWmax
~
0,02
Temperatures
2
October 1979
f
150
BYW19 SERIES
Fast soft-recovery rectifier diodes
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
4,5 °C/W
Transient thermal impedance (t = 1 ms)
Zth j-mb
0,3 °C/W
a. with heatsink compound
Rth mb-h
1,5 °C/W
b. with heatsink compound and
56316 mica washer
Rth mb-h
2,7 °C/W
c. without heatsink compound
Rth mb-h
2,7 °C/W
d. without heatsink compound
with 56316 mica washer
Rth mb-h
Influence of mounting method
1. Heatsink mounted
Thermal resistance from mounting base to heatsink
0 C/W
5
2. Free air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run
to the same tie-points.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = maximum lead length
and with a copper laminate
a. > 1 cm
b.< 1 cm 2
2
Rth j-a = 50 °C/W
Rth j-a = 55 °C/W
0
I
•
~
j
~
a
~
LLLL 'LL
'LLL'L
7Z6231S.1
mounted on a printed-circuit board at a lead length a = 3 mm
and with a copper laminate
c.
> 1 cm 2
d.< 1 cm 2
Rth j-a = 55 °C/W
Rth j-a = 60 °C/W
:Jl
+
7Z62314
July 1977
3
BYW19 SERIES
l_ _ __
CHARACTERISTICS
Forward voltage
IF
= 20 A; Tj = 25 oC
<
2,3 V *
<
0,6 mA
<
<
450 ns
Reverse current
VR = VRWmax; Tj = 125 °C
Reverse recovery when switched from
IF = 2 A to VR ~ 30 V; -dlF/dt = 20 AIJ.l.s; Tj = 25 °C
Recovered charge
Recovery time
0,7 J.l.C
Maximum slope of the reverse recovery current
when switched from IF = 2 A to VR ~ 30 V;
with -dlF/dt = 2 AIJ.l.s; Tj = 25 °c
5 A/IlS
•
10
time
~/o 100i
~
r
* Measured under pulse conditions to avoid excessive dissipation.
4
July
19771
0 /0
BYW19 SERIES
Fast soft-recovery rectifier diodes
CHARACTER (STICS (continued)
Forward recovery when switched to
IF = 10 A with tr = 1 }lS at Tj = 25 °C
Recovery time
Recovery voltage
<
<
1 }lS
15 V
7Z67044.2
time
time
Forward output waveform
'I (JUlY
1977
5
MOUNTING INSTRUCTIONS
1. Soldered joints must be at least 2,5 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is 270 oC; contact with the
joint must not exceed 3 seconds.
3. The devices should not be immersed in oil, and few potting resins are suitable for re-encapsulation.
Advice on these materials is available on request.
4. Leads should not be bent less than 2,5 rnm from the seal. Exert no axial pull when bending_
5. For good thermal contact heatsink compound should be used between base-plate and heatsink.
OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated below:
junction
mounting
base
Rth j-a
heatsink
7Z66853
ambient
b. The method of using the graphs on page 7 is as follows:
Starting with the required current on the IF(AV} axis, trace upwards to meet the appropriate form
factor curve. Trace right horizontally and upwards from the appropriate value on the T amb scale.
The intersection determines the Rth mb-a' The heatsink thermal resistance value (Rth h-a) can now
be calculated from:
Rth h-a = Rth mb-a - Rth mb-h·
Any measurement of heatsink temperature should be made immediately adjacent to the device.
c. The heatsink curves are optimized to allow the junction temperature to run up to a maximum of
150°C (Tj max) whilst limiting T mb to 125°C (or less).
6
July 1977
~
r
BYW19 SERIES
Fast soft-recovery rectifier diodes
SINUSOIDAL OPERATION
7277081
interrelation between the power
(derived from the left - hand graph)
and the maximum permissible
temperatures
V RW =800V
IF(RMS)
a=--IF(AV)
1,57
P = power excluding
switching losses
1,911
I
I
10
r-r-
'\
......
2,2 1 1/
'" "- ,
I'
III/
-f- -
P
11111
I
I
......
I
1[1
IIi
[/
5
I"
/'1
I
r-..
.....
'S
.....
r?e .....
'I,
11//
I\,
'\
1"\
"' , '"
"' ....
i"'"
~
I"
I r/J
1/ IJrt
1fL
~
\..
I\..
0>
r--.~O r-...
.....
r--.
I).
oS
.......
i"'"
a=4
-,~
tp
r-...
......
......
r-..
.............
"\.
i'
......
......
...........
j
~
i"'"
""" .....
~
......
I......
..... ~
116
~
\.\
"-
, "' "'"
!'-...
/11'
J '/.1/
Ju. V
,
[\.
'\
~
t"-.
\. \.
'\
1"\
I'..
.!..S
~..o
1
-,
....
......
I
I
J~o0~ [
6'-'~ --'~r-.('
1\
......
.......
I~I
X
1,\
~
'- 1"\
r--.
I"'--
/
interrelation between the
power and the maximum
permissible temperatures
I
I\..
i'..
If
V
"-
,
/
\, \
~
,
~
,\\
.\ \1\
" ,,,
..........
",,'
\~
~,
.....
......
IW~~
0
•
~
0
o IL
"
...... N: l
..... ~
...... !'oo..
In"
5
-f-
,
I\,
"
[/',~
rhV
o~
-
~-
Z
\\1\
'\
~
""\
[\
r--.~
~\
~
~
~
5
IF(AV) (A)
10 0
50
0
Tamb ( C)
100
July 1977
r
7
_________________
B~~R~jl
7Z77082
60
\
\
\
maximum permissible non - repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )
\
IFS(RMS)
It~
(A)
\
\
\
40
,
--- I FSM
~IFS(RMS)
time
with reapplied V RWmax
IFS M
Tj
"
=150 °c prior to surge
I'
"' .....
20
.......
~
~
--1-00....
---
-~
o
10- 3
10- 1
60
duration (s)
7Z72509.1
--
--
Tj = 25 0 C
I
Tj = 125 °c
/
J
II
~
/
I
I
tYP-l '-f-. f- ma\ ~-1VFt - l - I - V F Jr--cl--
/
40
I
II
-'
I '
/'
If
II
,
L.
I
~
j
I
20
'/
t
IF
IJ
I
,
8
'I)
1/''''
,~,
o
o
8
July
19771
r
~~
~;;.
2
....
V F (V)
4
10
BYW19 SERIES
Fast soft-recovery rectifier diodes
7Z77077
I
I I i"'.
I I I I
11 1
a
I.....
11
1
l.....p~
II~
NOMOGRAM
Power loss LlPR(AV) due to switching only (to be added to steady state power losses).
IF = forward current just before switching off; Tj = 150 0C
t
time
10%
time
7Z77074
July 1977
9
B~
_____1_9_S_E_R_IE_S_jl________________________________
10
7Z77078
ITVo
dl F
IR
Os
Tj
= 25°c
max values
~
./
~
~
V
L V
V/
.~ L"
~V
~'"
V
k::::::
V
~
.... r-I-
~
......
----
IF =
lOA
1
5A
1
--- --
v
...... ~
~
~~
~
2Ar-
r--
10- I- 1 A
r-r- t-~
~V
.~
10- 1
~~ ~
10- 1
10
7Z77079
10
IF~
/'
IR
dt
f-- f f-- .-r r
~
I
.~
Os
Tj
=
150°C
...... ~
~ ~~
max values
~ ~ .......
~
/ / L"
///
v ......
~
.--
~
....
~I-:"'"
..... 1-' I""'"
~
k::-:"
~
~
~ r--
lOA
-
I
--
1-'"............
10
dl F
dt
July
19771 (
1
1Af-
~,;
10
I
5A
_...... 21A
~~
10- 1
10- 1
I_I
F-
(AIMS)
BYW19 SERIES
Fast soft-recovery rectifier diodes
7Z7708:l
max value
Tj
= 25 DC
~
I"'"
Vfr
(V)
/
~~
Y
./
,/
~/
",'"
10
i-"'"
L
./
./
V
/
1
:,.;-
. . . .V
~
-"
I""'~
10- 1
~
10
dt
7Z77076
10
(A/J-Ls)
7Z77075
10
max values
max values
Tj - 25 DC
Tj = 150 DC
t rr
(ps)
t rr
(J-Ls)
--
I=--
-....
~ ~:::
....
.
t:::::::..... ........
lOA
"' ....... I '
..........
"
.........
..............
"'-......
...............
10- 1
......
....... .......
.,.",
.....
~
IF=10A~
r'-W
1'0..
)~
SA/' . .)I~>
2A y
1 A/'
2A
~4-U
1A
10- 2
1
---
IF =
10
dl F
- Tt(A/J-Ls)
10 2
10- 2
1
10
'I
2
dl
-CitF (A/J-Ls) 10
July 1977
11
Jl_________________________________
___B_Y_W_19__S_ER_'_ES__
1272510 1
10
..-~
[/
1,.;''''"
V
I,....-
10- 1 V
10-2
10- 4
12
Ju1V1977
10- 3
Ir
10
time (s)
10 2
________Jl__
BY_W2_5_
FAST SOFT-RECOVERY RECTIFIER DIODE
The BYW25 is a fast soft-recovery rectifier diode in a 00-5 metal envelope especially suitable for
operation as main and commutating diode in 3-phase a.c. motor speed control inverters and in high
frequency power supplies in general.
Two polarity versions are available:
Normal polarity (cathode to stud); BYW25.
Reverse polarity (anode to stud): BYW25R.
QUICK REFERENCE DATA
Repetitive peak reverse voltage
Average forward current
VRRM
max.
800 V
40 A
IF(AV)
max.
Repetitive peak forward current
IFRM
max.
600 A
Reverse recovery time
trr
<
450 ns
MECHANICAL DATA
Fig. 1 00-5: with metric M6 stud (>6 mm)
15,3 max
M6
'6-f=====/===r-1
_t
+-
-t
8.0
max
max
2,2 -max
-4-
I
-17,0-
__ 5,0 ..max
_
11.5_,.......-----25,4----l.~,
10.7
max
Net mass: 22 g
Diameter of clearance hole: max. 6,5 mm
Torque on nut: min. 1,7 Nm (17 kg cm)
max. 3,5 Nm (35 kg cm)
7Z75506.1A
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 10 mm
Supplied on request: accessories 56264A
(mica washer, insulating ring, tag)
January 1980
Jl________________________________
____B_Y_W_2_5____
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages *
Non-repetitive peak reverse voltage
max.
1000 V
Repetitive peak reverse voltage
max.
800 V
Continuous reverse voltage
max.
650 V
IF(AV)
IF(AV)
max.
max.
40 A
23 A
R.M.S. forward current
IF(RMS)
max.
60 A
Repetitive peak forward current
IFRM
max.
600 A
IFSM
12 t
max.
Storage temperature
T stg
Junction temperature
Tj
-55 to + 150 °C
max.
150 °C
Currents
Average forward current;
switching losses negligible up to 20 kHz
sinusoidal; up to T mb == 100 °C
sinusoidal; at T mb = 125 °C
Non-repetitive peak forward current;
t = 10 ms; half sine-wave;
Tj = 150 °C prior to surge
12 t for fusing (t = 10 ms)
max.
550 A
1500 A 2 s
Temperatu res
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
0,6 °C/W
From mounting base to heatsink
withheatsink compound
without heatsink compound
Rth mb-h
Rth mb-h
0,3 °C!W
0,5 °C/W
* To ensure thermal stability: Rth j-a';;;; 1 °C/W (continuous reverse voltage).
2
January 1980
(
BYW25
Fast recovery rectifier diode
CHARACTERISTICS
Forward voltage
IF=: 35 A; Tj =: 25°C
! F =: 150 A; Tj =: 25°C
VF
VF
<
<
1,55 V*
2,25 V "
IR
<
7 mA
trr
<
trr
<
1 /lS
<
100 A//ls
Reverse current
V R =: 650 V; Tj =: 125°C
Reverse recovery when switched from
IF =:10AtoVR =: 30 V with -dlF/dt =: 50 A//ls; Tj
Recovery time
=:
25°C
IF =: 600 A to VR? 30 V with -dlF/dt =: 70 A//ls; T mb
Recovery time
=:
450
ns
85°C
Maximum slope of the reverse recovery current
when switched from 'F=: 600 A to V R ? 30 V;
with -dIF/dt=: 35 A//ls; Tj = 25°C
IdlR/dtl
+
time
7Z78500
200
I
I
typ V F
max V F
I--
/'
I
t!
J
I
II
'I
I
I
;'
J
1
:/
11
Fig. 2 Definitions of Os' trr and dl R/dt.
~.
I
~.
i
1/
100
1
," ~"~~
'(
o
o
J -'-
It
l
I
1
I
I
I
I
If
I
I
IJ
'J
2
VF(V)
3
Fig. 3 - - Tj =: 250C; - - - Tj =: 1500C.
" Measured under pulse conditions to avoid excessive dissipation.
January 1980
3
Jl_______________
___
BYW_25_ _
7Z78499
150
60
p
(W)
90
100
r-..
:"
~
a = 1,57
50
',/
I'
"'"
1/
i""
'"'9......,1?°6.
"
'/
120
..... q ~ 10
..... i""C'/tz;
.....
:.....
I.;'
",
~
o
o
20
40 25
IF(AV) (A)
50
75
100
125
Tamb (oC)
.....
i""
r-.
150
150
Fig. 4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P == power including reverse current losses and switching losses up to f = 20 kHz.
a == IF(RMS)/IF(AV)'
4
January 1980
(
l___
Fast recovery rectifier diode
B_YW_2_5_ _
+
01
03
04
02
7277891.1
0
Fig. 5 One phase of a three-phase inverter for a.c. motor speed control.
01 to 04 are BYW25 types.
January 1980
5
j
BYW29 SERIES
--------------------------------------------------~
.e:
w:=.
VERY FAST RECOVERY RECTIFIER DIODES
Glass-passivated, high-efficiency, eutectically-bonded rectifier diodes in plastic envelopes, featuring low
forward voltage drop, very fast reverse recovery times, very low stored charge and non-snap-off. They
are intended for use in switched-mode power supplies, and high-frequency circuits in general, where
low conduction and switching losses are essential. The series consists of normal polarity (cathode to
mounting base) types.
QUICK REFERENCE DATA
BYW29-50
Repetitive peak reverse voltage
max.
Average forward cu rrent
IF(AV)
max.
Forward voltage
VF
Reverse recovery time
trr
<
<
MECHANICAL DATA
Fig.1 SOD-59
(TO-220AC)
1 100
50
100
1 150
150 V
-----7
A
0,85
V
35
ns
Dimensions in mm
1'3:1~: -,
~'i~ 1
mounting
base _ (see note) L....J..-==:+------:II
+ 15,8
I
I
I
I
I
I
L
_____ J
.-It::;n=:=:r=;~
3,5 max
+--
not tinned
max
I
I
-r
J
1
+
5,1
max
I
1,3 ....
max
(2x) k
---.T
~
a .
-.1 5,08"'1"--.....
13,5
min
l
0,9 max (2x)
7l76167.lA
Note: The exposed metal mounting base is directly connected to the cathode.
Accessories supplied on request: see data sheets Mounting instructions and accessories for TO-220
envelopes.
E
Products approved to CECC 50009-014, available on request.
January 1980
__
~B_Y_W~2_9_S_E_R_IE_S_jl________________________________
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages*
BYW29-50
100
150
Non-repetitive peak reverse voltage
VRSM
max.
50
100
150 V
Repetitive peak reverse voltage
VRRM
max.
50
100
150 V
Crest working reverse voltage
VRWM
max.
50
100
150 V
Continuous reverse voltage
VR
max.
50
100
150 V
Average forward current; switching losses
negligible up to 500 kHz
sinusoidal; up to T mb == 125 °C
square-wave; [) == 0,5; up to T mb = 125 °C
IF(AV)
IF(AV)
max.
max.
7
7,6
A
A
R.M.S. forward current
IF(RMS)
max.
12
A
Repetitive peak forward current
IFRM
max.
80
A
IFSM
Ft
max.
80
A
max.
32
A2s
-40 to +150
°C
Currents
Non-repetitive peak forward current; t = 10 ms;
half sine-wave; Tj == 150 0C prior to surge;
with reapplied VRWMmax
2
1
t for fusing (t == 10 ms)
Temperatures
Storage temperature
T stg
Junction temperature
Tj
max.
* To ensure thermal stability: Rth j-a ..;;; 16 °C/W (continuous reverse voltage).
2
March 1978
(
150
°C
BYW29 SERIES
Very fast recovery rectifier diodes
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
2,7 0C/W
Transient thermal impedance; t = 1 ms
Zth j-mb
0,26 0C/W
Influence of mounting method
1. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
a. with heatsink compound
Rth mb-h
Rth mb-h
0,3 °C/W
c. with heatsink compound and 0,1 mm maximum mica insulator (56369) Rth mb-h
2,2 0C/W
d. with heatsink compound and 0,25 mm maximum alumina
insulator (56367)
Rth mb-h
0,8 °C/W
e. without heatsink compound
Rth mb-h
1,4 °C/W
b. with heatsink compound and 0,06 mm maximum mica insulator
1,4 °C/W
2. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = any lead length and with
copper lam inate
Rth j-a
60 °C/W
~
t
a
~
0
~
1
V//
/
//}
7Z78248
Fig. 2.
March 1978
3
CHARACTERISTICS
Forward voltage
IF = 5 A; Tj = 100 °C
IF = 20 A; Tj = 25 °C
VF
VF
<
<
Reverse current
VR = VRWMmax; Tj = 100 °C
IR
<
0,6 mA
trr
<
35 ns
Os
trr
<
<
15 nC
50 ns
Vfr
typo
1,0 V
Reverse recovery when switched from
IF = 1 A to VR ~ 30 V with -dl F/dt
= 50 AIMS; Tj = 25 °C
Recovery time
IF
=2 A
to VR ~ 30 V with -dlF/dt
0,85 V*
1,3 V*
= 20 AIMS; Tj = 25 0C
Recovered charge
Recovery time
Forward recovery when switched to IF = 1 A
with dlF/dt = 10 AIMS
Recovery voltage
7Z72984.A
•
10%
time
i
time
100 0 /0
~
7Z70734.2A
Fig. 3 Definitions of trr and Os.
time
Fig.4 Definition of Vfr.
* Measured under pulse conditions to avoid excessive dissipation.
4
March
19781 (
BYW29 SERIES
Very fast recovery rectifier diodes
MOUNTING INSTRUCTIONS
1. The device may be soldered directly into the circuit, but the maximum permissible temperature of
the soldering iron or bath is 275 °C; it must not be in contact with the joint for more than 5
seconds. Soldered joints must be at least 4,7 mm from the seal.
2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during
bending.
3. It is recommended that the circuit connection be made to the cathode tag, rather than direct to the
heatsink.
4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between base-plate and heatsink.
Values of Rth mb-h 'given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled
so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated below:
junction
7Z73725
mounting
base
Rth j-a
heatsink
R th
h-a
ambient
b. The method of using Figs 5 and 6 is as follows:
Starting with the required current on the IF(AV) axis, trace upwards to meet the appropriate form
factor or duty factor curve. Trace right horizontally and upwards from the appropriate value on the
T amb scale. The intersection determines the Rth mb-a' The heatsink thermal resistance value
(Rth h-a) can now be calcu lated from:
Rth h-a = Rth mb-a - Rth mb-h'
c. Any measurement of heatsink temperature should be made immediately adjacent to the device.
March 1978
5
10
SINUSOIDAL OPERATION
7Z77064 1
,
1,57
P
,19
(w)
J
7,5
I
~,8
a=4
5
I
J /
I
V
I
8
10
I
\
\.
/ /
I
V
j
6
\
~
\
4
2 O,5 C/w
~
,
'\
/ /
', ,~ :\\~
\1
\
1\
l\. l\ \ \
'36,5
\. \ 1\ \
\
\ 1\'
'.\ \'\
\.' !\\1\\
i\
I IV V
~
/ ~V
/ lj ~
VV
fi
rh
i-a "'600
~ C/W
~
5
7,5 0
IF(AV) (A)
50
1\\
143,25
~\ ~\'
-- ........ ......
V
2,5
129,75
~
~
vv
Ifl '/ ~
o
o
\
\
~
if /1
/ J
If I V/
2,5
123
O
~
V 1/ /
1
, \, , :\
;\
1\ \
\ \
\ \
I\, \
\ ,\
1\ \ ,
Rth mb-a =
\~~ ~
I~ ~
-I"- 1-0....
100
\
~ 150
150
Tamb (oC)
Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses and switching losses up to f = 500 kHz.
a = form factor = IF(RMS)/IF(AV)'
6
(
1
March 1978
BYW29 SERIES
Very fast recovery rectifier diodes
SQUARE-WAVE OPERATION
7Z77065 1
15
1
I 1
d.c.
P
1/
(W)
/
j
10
0,5
1/
1 1 1
.1 1 I I 1 1
1
I
1
Rth mb-a =
8-f-6 1-41- 2 0,3 0 C!W
I{
I{
1\
10 I,
fT rT
\
1\ 1\
I\,
\
,
,
v
,
1\
,,
1\
r-t--- I-~ 8 = 0,1 I
\
5
1/
V
v
~
I\,
/
1/)
I
II
1/
1\
~
\ r,
,
/,
I~
,..
~
1\
IX' 1\ \
)~
o
\ \
136,5
\
\ \1\
\
r-.. i\
.\
~
A
~
\. .,I."
r-!!!..j~a ~ 6 00
~
r...,......,.,.
1 1 1
I I 1
~
o~
\
1\ ,
/
11/
1\
fT
1\ \
i\"
1\
II
.~
123
1\
\
)
0,2
,
1\
1/
V
109,5
5
10
15 0
IF(AV) (A)
50
C/
~
I I
:\
~,
1\
~
l\
w-- f-~~
r"",
~
150
100
150
Tamb (oC)
Fig.6 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses and switching losses up to f = 500 kHz.
tp
8=-
T
V
IF(AV) = IF(RMS) x.."j"8
March 1978
7
l
BYW29 SERIES
~-------------------------------------------------7Z78247
150
IFS(RMS)
(A)
1\
\.
100 \..
"-
""-"'
I FSM
I'..
"'............
50
i"'oo.
,..."",
--
-""'"
~
r--
duration (s)
Fig. 7 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents
(f = 50 Hz); Tj = 1500C prior to surge; with reapplied VRWMmax.
7Z77063 1
30
--Tj= 25°C
--Tj =100 0 C
1\--I C
IFSM
IFS(RMS)
time
I
20
I
j
I
typ i--~ax max
V F L - VF
VF
If
1
,
1
1111
II
10
I
I II
I
I'
I
II J
IJ
.~
o
o
8
~~
Fig. 8.
..
Ma~h 1978~
2
(
10
BYW29 SERIES
Very fast recovery rectifier diodes
7 Z7 8250
7 Z78249
IF = lOA
L.f'
IF
V~ ~d2
= lOA
5
JI/
/~I/
1
V
U/
~
1/ y 2
~V
II
;V
10
~II'
1I
10
/
I)
7
I)
/
1I
1
1
1
1
Fig. 9 Tj = 25°C; maximum values.
Fig. 10 Tj = 100°C; maximum values.
7Z78251
t rr
(ns)
IF
t--:: L-~k
10
2~ t=::::
Definition of Os in
Figs 9 and 10.
lOA
1/5
=
S=I.:::~
10
5
1/'
1
1"-_.........
........
r-
,...
1"'-,...
10
Fig. 11 Maximum values; - - Tj = 250C;
- - - - Tj = 1000C.
1
1
March 1978
9
BYW29 SERIES
l_ _ __
7Z78245
- --- -
1--,-
-
typ
r-:-:-
l"- i'---
r--
10
10 2
10
1
V R (V)
Fig. 12 f = 1 MHz; Tj = 250C.
7278246
10
...... '"
.....
V'
~
........ f-"'
~
10- 2
Fig. 13.
10
March 1978
c
time (5)
10
j
BYW30 SERIES
---------------------------------------------------VERY FAST RECOVERY RECTIFIER DIODES
Glass-passivated, high-efficiency rectifier diodes in 00-4 metal envelopes, featuring low forward
voltage drop, very fast reverse recovery times, very low stored charge and non-snap-off. They are
intended for use in switched-mode power supplies, and high-frequency circuits in general, where low
conduction and switching losses are essential. The series consists of normal polarity (cathode to stud)
types.
QUICK REFERENCE DATA
Repetitive peak reverse voltage
VRRM
Average forward current
IF(AV)
VF
Forward voltage
Reverse recovery time
trr
BYW30-50
100
150
max.
100
150 V
12
A
max.
<
<
MECHANICAL DATA
50
0,85
V
35
ns
Dimensions in mm
Fig. 1 00-4: with metric M5 stud (>5 mm); e.g. BYW30-50.
with 10-32 UNF stud (>4,83 mm); e.g. BYW30-50U.
$
1,0
0,8
-'II~
max
4,0
___ 3,2.-max
_9,3_
max
__ 11,5 --., ....1--_ _ 20,3 _ _---i.~,
10,7
max
7Z65355.2A
Net mass: 6 g
Diameter of clearance hole: max. 5,2 mm
Torque on nut: min. 0,9 Nm (9 kg em)
max. 1,7 Nm (17 kgcm)
Accessories supplied on request: 56295
(PTFE bush, 2 mica washers, plain washer,'tag)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats; M5: 8,0 mm
10-32 UNF: 9,5 mm
~Products approved to CECC 50 009-001, available on request.
January 1980
___B_YW
__3_0_S_E_RI_E_S_jl________________________________
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages*
BYW30-50
100
150
Non-repetitive peak reverse voltage
VRSM
max.
50
100
150 V
Repetitive peak reverse voltage
VRRM
max.
50
100
150 V
Crest working reverse voltage
VRWM
max.
50
100
150 V
Continuous reverse voltage
VR
max.
50
100
150 V
Currents
Average forward current; switching losses
negligible up to 500 kHz
sinusoidal; up to T mb = 120 °C
sinusoidal; at T mb = 125 °C
square-wave; lj = 0,5; up to T mb = 114 °C
square-wave; lj = 0,5; at T mb= 125 °C
'F(AV)
IF(AV)
'F(AV)
'F(AV)
max.
max.
max.
max.
R.M.S. forward current
IF(RMS)
max.
20 A
Repetitive peak forward current
'FRM
max.
200 A
'FSM
12 t
max.
200 A
max.
200 Ns
Non-repetitive peak forward current
t = 10 ms; half sine-wave; Tj = 150 0C prior to surge
with reapplied V RWMmax
12 t for fusing (t = 10 ms)
12
10
14
10
A
A
A
A
Temperatures
Storage temperature
T stg
Junction temperature
Tj
-55 to +150 °C
150 °C
max.
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
2,2 °C/W
From mounting base to heatsink
a. with heatsink compound
Rthmb-h
0,5 0C/W
b. without heatsink compound
Rth mb-h
Transient thermal impedance; t = 1 ms
Zth j-mb
0,6 °C/W
0,3 °C/W
MOUNTING INSTRUCTIONS
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
* To ensure thermal stability: Rth j-a';;; 8,2 °C/W (continuous reverse voltage).
2
March 1978 }
(
BYW30 SERIES
Very fast recovery rectifier diodes
CHARACTERISTICS
Forward voltage
IF = 10 A; Tj = 100 °C
IF = 50 A; Tj =
Reverse current
VR = VRWMmax; Tj
VF
<
<
IR
<
1,3 mA
trr
<
35 ns
Os
trr
<
<
50 ns
Vfr
typo
1,0 V
VF
25 °C
= 100°C
0,85 V*
1,3 V*
Reverse recovery when switched from
IF = 1 A to VR ~ 30 V with -dlF/dt = 20 A/}.J.s; Tj = 25 °C
Recovery time
IF = 2 A to VR ~ 30 V with -dlF/dt = 20 A/}.J.s; Tj = 25 °C
Recovery charge
Recovery time
Forward recovery when switched to IF = 10 A
with dlF/dt = 10 A/}.J.s
15 nC
7Z72984.A
+
10%
time
t
time
100 0 10
~
7Z70734.2A
Fig. 2 Definitions of trr and Os.
time
Fig.3 Definition of Vfr'
* Measured under pulse conditions to avoid excessive dissipation.
March 1978
3
SINUSOIDAL OPERATION
7Z77068
interrelation between the power
(derived from the left -hand graph)
and the maximum permissible
temperatures
IF(RMS)
a=--IF(AV)
P = power excluding
switching losses but
including reverse
current losses
P
(W )
I
10
2,~
1.9) /
'"
V
V)
,
r\.
I"
VV
L LL
a=4
5
1,5~
1\
l\.
I"
1'\
I"
.... 6'
1\
,,~
~
'\ & '\
......
t--
"r-...
~ ~
'~
~
~~
15 0
'F(AV) (A)
Fig. 4.
4
March 1978
(
"1
~' "~
"
~~
~
.... ~\I\
10
5
128
1\
, "~ ~
~,..
o~
o
'--
~
~v
1~1r
I.
r-
_\~Ql\\-
" \ "1\
~
K~~
03
~q
1\
'\
'\
11 'L
IL If Ii
lL lli
VL 'AI{'
117
I
o "1l-r-
50
100
139
~ ~.'l\
~ ~\
~ 150
150
Tamb (oC)
BYW30 SERIES
Very fast recovery rectifier diodes
SQUARE-WAVE OPERATION
7Z770671
1,0
V
20
/
P
/
0,2
(W)
r - - '--f-
a=0,1
f
10
I
I
I
/
11
VI'"
'/
~
"
I'
~
I'
1/
/
'/
/
, ':P-r-+\"" r---~:5 -r---r--\3 -1--+f-+-
\.
I'.
0,5
c9
'/
6'
'9
I\.
"
cr
I\,
Ol
,
i\.
"" , '\,o~"
/
/
I\,
\
128
,\
1/
I\.
r-..."\
\.
,i'.,.
\.
r-...~
/ / I/V
r--..:
'//.
~~
:'-!~
,
1\:\
\
139
,\
~~~
~~'\
~
o
a
\I '-f-
\ o-f-\ -(j"\ fOf--
1\
\
10
o
20
IF(AV) (A)
50
N 150
100
150
Tamb (oC)
Fig. 5 The right-hand pact shows the interrelationship between the power (deriyed from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses and switching losses up to f = 500 kHz.
I(
March 1978
5
j L________________
BYW30 SERIES
7Z78252
400
IFS(RMS)
\
\
(A)
\
"'\.
IFS M
'\.
200
\,
"t'-.
.~
i'...
...... ,,~
r-.....
--
i'-....
-duration (s)
Fig. 6 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents
(f = 50 Hz); Tj = 1500C prior to surge; with reapplied VRWMmax'
60
,
-T·= 25°C
• J
__ T = 100°C
7Z77066.1
1\--- I FSM
j
/ C
"
,
I
40
I
typ
VF
max
I
If
J~ax
VF~ V F
ill
I
~I
II
,II
!l
.
I,
I
,
20
I
,I
I
II
J
IIJ
I
/,
,
o
o
6
March
i
')
I
Fig. 7.
,~
1r
1978
IFS(RMS)
time
2
10
BYW30 SERIES
Very fast recovery rectifier diodes
7 Z78250
7278249
I F =lOA
t..I"
V~ ~~2
I F =lOA
5
/~~
//1/
1/
//
~V
~
L
2
U/
IY
J /'
10
I'
V
10
/
/
II
/
V
1
10
1
- dl F/dt (Ai}1s)
10 2
1
1
10
- dlF/dt (Ai}1s)
10 2
Fig. 9 Tj = 100 oC; maximum values.
Fig. 8 Tj = 25 °C; maximum values.
7278251
Definition of Os in
Figs 8 and 9.
t rr
IF = lOA
(ns)
v,
:;.-- ~ L-/ !£:'V
I"-
~ ~ ~-=
~
10
5
1/
5
1
-- - t"'-_
..........
.......
.....
.........
t"'-
"r-.
10
Fig. 10 Maximum values; - - Tj = 25 oC;
- - - Tj = 100 DC.
1
1
10
- dl F/dt (Ai}1s)
10 2
March 1978
7
7 Z7 8254
-
typ
10
1
10
V R (V)
Fig. 11 f
= 1 MHz; Tj = 25 aC.
7Z78253
10
--'
~~
~
~
I--
/
1
~I--
V
--
V
8
March 1978[
r
10- 2
Fig. 12.
time (5)
10
_ _ _ _J
BYW31 SERIES
VERY FAST RECOVERY RECTIFIER DIODES
Glass-passivated, high-efficiency rectifier diodes in DO-4 metal envelopes, featuring low forward voltage
drop, very fast reverse recovery times, very low stored charge and non-snap-off. They are intended for
use in switched-mode power supplies, and high frequency circuits in general, where low conduction
and switching losses are essential. The series consists of normal polarity (cathode to stud) types.
QUICK REFERENCE DATA
Repetitive peak reverse voltage
VRRM
BYW31-50
150
max.
150 V
Average forward current
IF(AV)
max.
Forward voltage
VF
<
<
Reverse recovery time
trr
50
25
A
0,85
V
50
ns
Dimensions in mm
MECHANICAL DATA
Fig. 1 DO-4: with metric M5 stud (¢5 mm); e.g. BYW31-50.
with 10-32 UNF stud (<1>4,83 mm); e.g. BYW31-50U.
,
~
rr-
I~
~-----Z8
if r--------~ ma x
I
• •
l)-
1,98J
max
t
9, 3
ma x
'--
--
~2,3'"
min
3,5 __
--.. max
_10,3_
___ 11,5 _____ •
10,7
max
20,3
max
Net mass: 7 g
Diameter of clearance hole: max. 5,2 mm
•
7Z6980 l.lA
Torque on nut: min. 0,9 (9 kg cm)
max. 1,7 (17 kg cm)
Accessories supplied on request: 56295
(PTFE bush, 2 mica washers, plain washer, tag)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats; M5: 8,0 mm
10-32 UNF: 9,5 mm
~
Products available to CECC 50 009-002, available on request.
January 1980
3_1_S_E_R_IE_S_~L~_______________________________
___B_YW
__
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Voltages *
BYW31-50
100
150
Non-repetitive peak reverse voltage
VRSM
max.
50
100
150 V
Repetitive peak reverse voltage
VRRM
max.
50
100
150 V
Crest working reverse voltage
VRWM
max.
50
100
150 V
Continuous reverse voltage
VR
max.
50
100
150 V
Average forward current; switching losses
negligible up to 500 kHz
sinusoidal; up to T mb = 120 oC
sinusoidal; at T mb = 125 °C
square-wave; 0 = 0,5; up to T mb = 119 °C
square-wave; 0 = 0,5; at T mb = 125 °C
IF(AV)
IF(AV)
Ip(AV)
IF(AV)
max.
max.
max.
max.
25
23
A
A
A
A
R.M.S. forward current
IF(RMS)
max.
40
A
Repetitive peak forward current
IFRM
max.
320
A
Non-repetitive peak forward current
t == 10 ms; half sine-wave; Tj = 150 °C prior to surge;
with reapplied VRWMmax
IFSM
12 t
12 t for fusing (t = 10 ms)
max.
320
A
max.
500
A 2s
Currents
28
23
Temperatures
Storage temperature
T stg
Junction temperature
Tj
-55 to +150
°C
150
°C
max.
THERMAL RESISTANCE
Rth j-mb
1,0
°C/W
a. with heatsink compound
Rth mb-h
0,3
°C/W
b. without heatsink compound
Rth mb-h
0,5
°C/W
Zth j-mb
0,2
°C/W
From junction to mounting base
From mounting base to heatsink
Transient thermal impedance: t
= 1 ms
MOUNTING INSTRUCTIONS
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
* To ensure thermal stability: Rth j-a ~ 6 °C/W (continuous reverse voltage).
2
March
19781 (
BYW31 SERIES
Very fast recovery rectifier diodes
CHARACTERISTICS
Forward voltage
IF = 20 A; Tj = 100 °C
<
<
IF = 100 A; Tj = 25 °C
Reverse current
VR = VRWMmax; Tj = 100 °C
0,85 V*
1,3 V*
<
1,5 mA+-
Reverse recovery when switched from
IF = 1 A to V R ;;;. 30 V with -d I F/dt = 50 Alps; Tj = 25 °C
Recovery time
<
50 ns
<
20 nC
typo
1,0 V
IF = 2 A to VR;;;' 30 V with -dlF/dt = 20 Alps; Tj = 25 °C
Recovered charge
Forward recovery when switched to IF = lOA
with dl F/dt = 10 Alps
Recovery voltage
7Z72984.A
time
t
10%
time
t
100 0 10
-------:--~
....
7Z70734.iA
time
Fig. 2 Definitions of trr and Os'
Fig.3 Definition of Vfr.
* Measured under pulse conditions to avoid excessive dissipation.
October 1979
3
jl
BYW31 SERIES
-----------------------------------------------40
SINUSOIDAL OPERATION
P
7 Z7 8258
1}7
1,9
-'I V
(W)
a=4
I
If
/
If
II
~
I
VI
""
"
" ""
I / /V
I I //
'\
\
["\.
'-,,-
1/ lj
,-\;-r-+,%- r----
,
~-c-
1\
\
r\.
\
i\.
\I
\ 9-r--c..Jr--- 130
\
I'. "\. 1\
,-z-
\~1\
\ 1\
~
~ .'\ \ \ 1
['.. I'. !\. \. \'
'i'..
i\.' .\1\
I'.
"\
120
1\
,
140
~l\
"- '\
........
~\
~
~~
o
\~
1\
'7
"
\
"\0>
h~
o~
,
r\.
..... ~
/ 'l
J/. lj
/
~
\.
/ 1/
2,8
20
['\,
110
10
20
30 0
IF(AV) (A)
50
N 150
100
150
Tamb (oC)
Fig. 4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses and switching losses up to f = 500 kHz.
a = form factor = IF(RMS)/IF(AV).
4
March
19781 (
Very fast recovery rectifier diodes
60
SQUARE -WAVE OPERATION
p
(W)
1,0
40
1\
\
1\
0,5
I
~
1-1- - I -
0,2
0= 0,1 I
I
/
'/
/
/1/
')
1/
~
/
'"
I\. I"
L
V'
'"
/
/
V
~
~Vl
"
~
~
130
~
'\,.
L\'
" '" ,
'\ 1\
\
'\.1\
1'\.'
...... ~ til. .\
~I'\
~
~
~~~
~'l
"-.1
~
o
II '-I0_1\ -til I -
1\
'"I" \.. \ 1\ 1\ \ ~'z.......
\ \
'\.
~i'
a
~"3 - , I t5 -1-1~ '-I-
\
I\,
It..
.J.!i~r/
~ f--'-I/- ~ t--I-
,~ 1-",'-
'''7
6'~~
1/
V
u
20
:A
)
ILl
I\,
20
a
40
150
100
150
Tamb (DC)
50
IF(AV) (A)
Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses and switching losses up to f = 500 kHz.
IF(AV) = IF(RMS)
xy'i
I(
October 1979
5
Fig. 6.
150
7Z78256
Fig. 7
6
T-- 25 °C', --- TJ• == 100 o C.
J
ery fast recovery rectifier diodes
7278260
I
I I III
IF=10A
~~
~v
!~ '""""'~ ~~
I F =lOA
l{
IJ
LA'
1//
1/1....
~/
//[.....
1.1'
J,>
I-" 2
~ (/
"
10
If
I
1
1I
V
V
10
7
/
/
1
1
1
Fig. 8 Tj = 25 oC; maximum values.
10
- dl F/dt (AIMS)
10 2
Fig.9 Tj = 100 DC; maximum values.
7Z78261
Definition of Os in
Figs 8 and 9.
t rr
(ns)
IF
~.- r.::...
~ ~-~
t:-t
v
~
= lOA
/ 5
1
~-
10
'-
-
-10......
5/
1
10
Fig. 10 Maximum values; - - Tj '" 25 0C;
- - - Tj = 100°C.
1
1
10
- dl F/dt (AIMS)
10 2
1
(MarCh 1978
7
f~s ~ l"'--___________
~103
7278259
~
r-- r- to-
1-1- i"-t-t-
typ
~ r--
r- t- 1-1-
!-f-
r---
10
1
10
1C
Fig. 11 f::: 1 MHz; Tj'== 250C.
10
7 l..77
or
time (s)
1
...----I--"
__ ~I-o
io'"
.....
I"
10- 2
March 1978
r
Fig. 12.
_ _ _J
BYW92 SERIES
VERY FAST RECOVERY RECTIFIER DIODES
Glass-passivated, high-efficiency rectifier diodes in 00-5 metal envelopes, featuring low forward voltage
drop, very fast reverse recovery times, very low stored charge and non-snap-off. They are intended for use
in switched-mode power supplies and high-frequency inverter circuits in general, where low conduction
and switching losses are essential. The series consists of normal polarity (cathode-to-stud) types.
QUICK REFERENCE DATA
Repetitive peak reverse voltage
VRRM
max.
Average forward current
IF(AV)
max.
Forward voltage
VF
Reverse recovery time
trr
<
<
MECHANICAL DATA
---35
A
0,95
V
50
ns
Dimensions in mm
Fig. 1 00-5: with metric M6 stud (if> 6 mm); e.g. BYW92-50.
with %in x 28UNF stud(q, 6,35mm); e.g. BYW92-50U.
15,3 max
3,8
..... min-
8,0
max
2,2 -max
--
I
-17,0--
___ 5,0 . max
_
11,5
10,7
_ I .....~_ _ _
25,4 ______
7275506.18
max
Net mass: 22 9
Diameter of clearance hole: max. 6,5 mm
Torque on nut: min. 1,7 Nm (17 kgcm)
max. 3,5 Nm (35 kg cm)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats;
M6: 10 mm
% in x 28UNF: 11,1 mm
Supplied on request: accessories 56264A
(mica washer, insulating ring, tag)
~ Products approved to CECC 50 009-003, available on request.
'I
January 1980
BYW92 SERIES
j l________________
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Voltages*
BYW92-50 100 150
Non-repetitive peak reverse voltage
Repetitive peak reverse voltage
Crest working reverse voltage
Continuous reverse voltage
VRSM
max.
50 100 150 V
VRRM
max.
50 100 150 V
VRWM
max.
50 100 150 V
VR
max.
50 100 150 V
~
Currents
Average forward current; switching losses negligible up to 500 kHz
sinusoidal; up to T mb = 105 °C
sinusoidal; at T mb = 125 °C
square wave; 0 = 0,5; up to T mb = 102 0C
square wave; 0 = 0,5; at T mb = 125 0C
R.M.S. forward current
Repetitive peak forward current
Non-repetitive peak forward current; t = 10 ms; half sine-wave;
Tj = 150 °C prior to surge; with re-applied VRWMmax
12t for fusing (t = 10 ms)
IF(AV)
IF(AV)
IF(AV)
IF(AV)
max.
max.
max.
max.
35
23
40
23
A
A
A
A
IF(RMS) max.
max.
IFRM
500 A
max.
500 A
IFSM
12 t
55 A
max. 1250 Ns
Temperatures
Storage temperature
T stg
Junction temperature
Tj
-55 to +150 °C
max.
150 °C
THERMAL RESISTANCE
From junction to mounting base
Rthj-mb =
1,0 °C/W
From mounting base to heatsink
a. with heatsink compound
b. without heatsink compound
Rth mb-h =
Rth mb-h =
0,3 0C/W
0,5 °C/W
=
0,2 0C/W
Transient thermal impedance; t
= 1 ms
Zthj-mb
MOUNTING INSTRUCTIONS
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
* To ensure thermal stability: Rth j-a';;;; 6 0C/W (continuous reverse voltage).
2
March
19781 (
l
Very fast recovery rectifier diodes
BVW92 SERIES
CHARACTERISTICS
Forward voltage
IF = 35 A; Tj = 100 °C
IF = 100 A; Tj = 25 °C
VF
VF
<
<
Reverse current
VR = VRWMmax; Tj = 100 °C
IR
<
2,5 mA
trr
<
50 ns
Os
<
20 nC
Reverse recovery when switched from
IF = 1 A to VR ~30 V with -dIF/dt
Recovery time
IF = 2 A to VR ~30 V with -dIF/dt
Recovered charge
0,95 V*
1,3 V*
= 50 A//ls; Tj = 25 °C
= 20 A//ls; Tj = 25 °C
Forward recovery when switched to IF = 10 A
with dl F/dt = 10 A//ls
Recovery voltage
Vfr typo
1,0 V
7Z72984.A
IF
time
•
10%
time
i
100 %
~
7Z70734.2A
t
100%
+
Fig. 2 Definitions of trr and Os.
time
Fig.3 Definition of Vfr'
* Measured under pulse conditions to avoid excessive dissipation.
March 1978
3
j l________________
BYW92 SERIES
50
P
SINUSOIDAL OPERATION
7Z77391
I
I I
1,5~
I
I
(W)
40
1\
/
j
I
1/
j
[I
I
~
"-
,6
.......
II'
/
I I
, I
.;-~~-;-:P r--
,
03 - -
,
('l tr - -
\~~ II -_
\
~
1'\
r-....
I""-
,,
, ,\
1'\
[I\.
\ 1\
"'\\.
10
.......
I/IL
'.I~
~~
o
o
140
1'\1\.. 1\.\
1'\
['..:" ~ ~\
,~ ~'\
1.Jj~
10
20
30
40
50
o
:-.J 150
50
IF(AV) (A)
Fig. 4 P = power including reverse current losses and switching losses up to f
a = form factor = IF(RMS}/IF(AV}'
4
130
1\ \
\.
I'\.
"'\
\
\
'\
"
120
,
\
[I\.
~r--
\
~
\
.J
r--
I
1\ -
~
/
1/[/ ~
J
1"-
'"
/
j
I
/
II\.
Vi
1/
'I L
J
[I
20
1/
[I
\
I\~
If
1/
30 -r-r- a=4
",
/
1,9
2,8
I
I
I
March 1978
J(
100
150
Tamb (oC)
= 500
kHz.
BYW92 SERIES
Very fast recovery rectifier diodes
60
SQUARE-WAVE OPERATION
7Z77390
1j
P
(W)
I
50
0,5
1
r
1/
/
,
1/
~
0,2,
"
30
I
L I
I
1/
l.t
rX
\I\..
/
L
L
~
,
'\
I\..
'- 1"\
f"'o.
V/
II LV
'//
10
03-
()~- -e-
o
o
"
120
,
1\
\
i\
" ,
\
1,\ \
i\
1"\ I\.. \.
\
1"\
\
t'-- ...... 1"\
\.
1\ 1\
\
r-.. '-'
1"\'\ \
1"\
130
,
140
V\~
'N
"'I'
l...&:r .......
~,
,\
~\'
\
\
'..I
10
20
30
40
o
50
110
\
hr//
....
r-r-
- r-f-
, ,
.......
')r/
e-e-
0>\\
1\
\.
I\.
I- e-+-
\
1\
"
i/
I
0 :P
-t,,:):;I - -rr-+-
\Z
\
\.
I\.I?
/
I
20
'(
/
,
~
i/
/
1
J
1\ ..... - H
I\.~
\
'{
1/
0==0,1,
1\
\
li
I 1
I
I
\
1\
/
40
i\
50
100
'F(AV) (A)
150
150
Tamb (oC)
Fig. 5 P == power including reverse current losses
and switching losses up to f = 500 kHz.
7Z77389
150
Tj==
2S o e
-Tj = 100 0
e
'F
(A)
II
II
r
'F(AV) = 'F(RMS)
xv'S
I
100
I
II
'/j
typ'
~1
V
If
max r-r-r-rVF r-r-r-r-
I
I
I
I
I
50
III
'I
I
l I
I
I
J
'1
If
1
Fig. 6.
o
o
1;'
'
~
1'1/
1/
.......
2
March 1978
5
l_ _ __
BYW92 SERIES
7Z78262
1000
IFS(RMS)
1\
\
(A)
\
500
\
r\.
'\
I FSM
,
~
"
~~
I"""'~i'"
[""---
r- ~~
~
--
......
duration (5)
Fig. 7 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents
(f = 50 Hz); Tj = 150 °C prior to surge; with reapplied VRWMmax'
I\---I FSM
I ,='FS(RMS)
time
6
Mareh
19lat (
10
l__
Very fast recovery rectifier diodes
B_Y_W_9_2_S_ER_I_ES_
7Z78260
7Z78255
I
,
"
"
IF = 10A
V~
IF = 10A
~
...
~v ~q
I~ r...... V
......
~
,
1/ 1/ ..J'
~r/ ~ 2
v/[/
A~
I;'
IF
10
L
~
/
1
r/
I
1
)1
10
V
1
1
1
Fig. 8 Tj = 25 oC; maximum values.
Fig. 9 Tj = 100 oC; maximum values.
Definition of as in
Figs 8 and 9.
Fig. 10 Maximum values; - - Tj = 25 oC;
- - - - Tj = 100 aC.
I
-------1
._____________. _. ._. _. r:~~h 1978
7
l____
BYW92 SERIES
7Z782S9
t-...
r-
- -r-
1'--
typ
~
r--- 0....- r- t-- t-t-
~
10
1
10
Fig. 11 f
= 1 MHz; Tj = 25 aC.
7Z77073
10
......
".., ~
......... 10-
.....
.....
i-"""
10- 3
10- 5
10- 1
Fig. 12.
8
March
19781 (
time (s)
10
j
BYX22 SERIES
-----------------------------------------------------'
SILICON RECTIFIER DIODES
Also available to BS9331-F131
The BYX22-GOO and BYX22-1200 are silicon diodes in a metal 00-1 envelope, intended for power
rectifier appl ications up to 1.4 A.
QUICK REFERENCE DATA
BYX22-600
1200
Crest working reverse voltage
VRWM
max.
400
800
Repetitive peak reverse voltage
VRRM
max.
600
1200
Average forward current
IF(AV)
max.
1.4
A
Non-repetitive peak forward cu rrent
IFSM
max.
40
A
MECHANICAL DATA
V
V
Dimensions in mm
00-1
-17.2max----- 7.7max-
1.1maX
~m~a-x----j-----J·a
t
-35min-~----51min
1Z10969.1
•
9.6max -
MOUNTING METHODS see page 3
'I
October 1979
BYX22
SERIES
II
II
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
All information applies to frequencies up to 400Hz
Voltages
BYX22-600
1200
Crest working reverse voltage
V RWM
max. 400
800
V
Repetitive peak reverse voltage (d 'S. 1%)
VRRM
max. 600
1200
Y
Y RSM
max. 600
1200
Y
Non repetitive peak reverse voltage
(t ::;. 10 ms)
Currents
Average forward current (averaged over any
20 ms period) for R -load up to T amb =30 °c
IFAY
max.
1.4
A
IF
max.
1.6
A
Repetitive peak forward current
IFRM
max.
15
A
Non repetitive peak forward current
t = 10 mS;Tj ::: ISOoC (see page 6 )
IFSM
max.
40
A
T stg
-65 to +150
Tamb
max.
Rth j-a
See page 3
VF
<
Forward current (d.c.) up to Tamb
=30 0 C
Temperatures
Storage temperature
Ambient temperature
150
°c
°C
THERMAL RESISTANCE
From junction to ambient
CHARACTERISTICS
Forward voltage at IF = SA; T amb = 25
°c
Reverse current at VR = VRWMmax; Tamb = I2S o C IR
<
1.5
120
Vi)
J.1A
1) Measured under pulsed conditions to avoid excessive dissipation.
2
II
II
May 1970
BYX22
II
SERIES
THERMAL RESISTANCE
Effect of mounting on thermal resistance Rth j-a
The quoted values apply when no other leads run to the tie-points. If leads of other
dissipating components share the same tie-points, the thermal resistance will be
higher than that quoted.
1. Mounted to solder tags at a
lead-length a =10 mm. Rth j-a
= 60
o
C/W
2. Mounted to solder tags at a = maximum
lead-length. Rth j-a = 70 °C/W
3. Mounted on printed-wiring board at a
lead-length. Rth j-a = 80 °C/W
=
I~Q--I
=---ID
7Z59016
maximum
4. Mounted on printed-wiring board at ;5
lead-length a= 10 mm. Rth j-a = 90 C/W
7259017
SOLDERING AND MOUNTING NOTES
1. At a soldering iron or bath temperature of up to 245 °C, the maximum permissible soldering time is 10 s if the joint is 5 mm from the seal, 3 s if it is 1. 5
mm from the seal.
2. At a temperature between 245 0c and 400 °c (max.), the joint must be more
than 5 mm from the seal and soldering time must not exceed 5 s.
3. Leads should not be bent less than 1. 5 mm from the seal; excert no axial pull
when bending.
May 1970
JL
3
BYX22
II
SERIES
72108261
1
1
1
1
IF(RMS)
a=-IFAV
1
~
1/
0
2
I-
I
II
I
Ptot
J
(W)
;S- ~.e>~ -~.
IJ
/1/
1
/
J V
I
JI/ 1/
I[ /
,..1/
,..1/
1 1
I
I I
I
I I
I I I
1
I
r
1
I
1--1-
I--r-r---r-r---r--
1-,----
I 1
•
~CC~ <
'\.~ I-~~
~
v~
'"
C-~
(5"
~
1'\.60
~
i'\.~
1'\1'\ 1'\ ,
"
\
!\.
I f.I I'
1/
1 1
1 1
~
I.J!~
1
interrelation between the total power
dissipation (derived from the Left hand
graph) and the maximum aLLowable
temperature
11
1
Jl/V,
1.lV"
J~
~
1 1
"I'
/
1/1/ I/ V
1 /
r
1
...'l'\.
~.
~~,
1/
N\~
~
/
I'
11"'111
J L I'
1/
o0
1
IFAV (A)
2 0
100
Tamb(OC)
200
Ip(RMS) per diode
depends on nwRLCL and Rt + Rdiff and can
IFAV per diode
nRL
he found from existing graphs.
See Application Book: RECTIFIER DIODES.
The form factor a
4
=
II
II
May 1970
BYX22
II
SERIES
7Z071361
400
Required minimum value of Rt
Rt includes the transformer resistance
VI(RMS )
(V)
300
CL:S: 50~F
100~F
200
600ilF
The graph takes the pos
sibility of the following
spreads into accou nt :
mains voltage, + 10%
capacitance
, +30%
, 10%
resistance
10001 F
100
1400~F
300~F
200liF
2000,lF
v=: ~tF
Rt
6000liF
5
4
3
DRL
Rt (.£1)
6
7Z 10 82LL
20
Tj = 25°C to 150°C
1---
-
)
1/
I
V
J
10
If
I
II
II
Rdiff (cot9)=Qllll.
II "[
J 91\
V
\
2
May 1970
II
VF (V)
3
5
BYX22
II
SERIES
7Z108251
150~--~~~~~M---~~~~I~I~ITI~I--TI--~II-~ITTII~II~I--~ir-~i~~~~
IIIII
I
I I I IIII
I
11111
I
I I I 11111
I
IFSM 1---t-----1f---1I--t-HI-+++---+-t-1-I maximum permissible non-repetitive
(A)
peak forward current based on
1001---t-----1f---11--t-H1-+++---+-t-1-I
s;~R~~~~s-R
IF5I<
L----Ao--......-L----L..-time
1---t-----1f---1I--t-HI-+++---+-t-1-I each current pulse is foLLowed by the t-+-t-++H
1---t-----1f---1I--t-HI-+++---+-t-1-I cres t work ing reverse vo l tage
,
I\.
I
I
10
6
II
I
I
I
IIIII
11111
duration (s)
1
II
10
May 1970
CONTROLLED AVALANCHE RECTIFIER DIODES
Also available to BS9333-F003
Diffused sil icon diodes in DO-4 metal envelopes, capable of absorbing transients and intended for
power rectifier applications. The series consists of the following types:
Normal polarity (cathode to stud): BYX25-600 to BYX25-1400.
Reverse polarity (anode to stud): BYX25-600R to BYX25-1400R.
QUICK REFERENCE DATA
BYX25-600(R)
max. 600
Crest working reverse voltage VRWM
Reverse avalanche breakdown
voltage
>
750
800(R)
1000(R)
1200(R)
1400(R)
800
1000
1200
1400
1000
1250
1450
1650
v
v
"
Average forward current
max.
20
A
Non-repetitive peak forward
current
max.
360
A
Non-repetitive peak reverse
power
max.
18
MECHANICAL DATA
Fig. 1 DO-4.
Dimensions in mm
10-32UNF
•
4 ,83
m ax
t
kW
J
~
rl)-
I
*
'r-
"gJ -I~
max
--
•
~---Z8
v max
~
t
9, 3
ma x
• •
~2,31 ....
3,5 __
min
max
_10,3_
max
. . - 11,5 ---. •
10,7
20,3
max
Net mass: 7 g.
Diameter of clearance hole: max. 5.2 mm.
Accessories supplied on request:
56295 (PTF E bush, 2 mica washers, plain washer, tag).
56262A (mica washer, insulating ring, plain washer).
Supplied with device: 1 nut, 1 lock washer.
Nut dimensions across the flats: 9.5 mm
The mark shown applies to the normal polarity types.
~
7Z698 02.1
Torque on nut:
min. 0.9 Nm (9 kg ern),
max. 1.7 Nm (17 kg em).
BYX25 SERIES
L_ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC134)
~
Voltages*
BYX25-600(R)
800(R)
1000(R)
1200(R)
1400(R)
Crest working reverse voltage VRWM
max.
600
800
1000
1200
1400
V
Continuous reverse voltage
max.
600
800
1000
1200
1400
V
v
Currents
IF(AV)
max.
20
A
Repetitive peak forward current
IFRM
max.
440
A
Non-repetitive peak forward current
t = 10 ms (half sine-wave); Tj = 175 0C prior to surge;
with reappl ied V RWMmax
I FSM
max.
360
A
max.
650
Average reverse power dissipation
(averaged over any 20 ms period); Tj = 175 °C
max.
38
Repetitive peak reverse power dissipation
t = 10 J.1S (square-wave; f = 50 Hz); Tj = 175 °C
max.
3
kW
Non-repetitive peak reverse power dissipation
t= 10J.1s (square-wave)
Tj = 25 0C prior to surge
max.
18
kW
max.
3
kW
-55 to +175
°C
175
oC
Average forward current (averaged over any 20 ms period)
2
1
2
t for fusing
1
t
Reverse power dissipation
Tj = 175 °C prior to surge
W
Temperatures
Storage temperature
max.
Junction temperature
*To ensure thermal stability: Rth j-a
2
September 1979
(
< 5 °C/W
(a.c.)
BYX25 SERIES
Controlled avalanche rectifier diodes
THERMAL RESISTANCE
From junction to ambient in free air
Rth j-a
50
°C/W
From junction to mounting base
Rth j-mb
1.3
°C/W
From mounting base to heatsink
Rth mb-h
0.5
°C/W
CHARACTERISTICS
BYX25-600(R) BOO(R)
1000(R)
1200(R)
1400(R)
Forward voltage
IF = 50 A; Tj = 25°C
VF
<
1.B
1.B
1.B
1.B
1.B
Reverse avalanche
breakdown voltage
I R = 5 mA; T j == 25°C
V(BR)R
>
<
750
2000
1000
2000
1250
2000
1450
2200
1650 V
2400 V
Peak reverse cu rrent
VR = VRWMmax;
Tj= 1250C
IR
<
1.0
O.B
0.6
0.5
0.5
*-
V*
mA
*Measured under pulse conditions to avoid excessive dissipation.
September 1979
3
BYX25 SERIES
l_ _ __
OPERATING NOTES
1. Voltage sharing of series connected controlled avalanche diodes.
If diodes with avalanche characteristics are connected in series, the usual Rand C elements for voltage
sharing can be omitted.
2. The top connector should not be bent; it should be soldered into the circuit so that there is no strain
on it.
During soldering the heat conduction to the junction should be kept to a minimum by using a thermal
shunt.
Determination of the heatsink thermal resistance
Example:
Assume a diode, used in a three phase rectifier circuit.
frequency
average forward current
ambient temperature
repetitive peak reverse power dissipation
in the avalanche region
duration of PRRM
IFAV
Tamb
50 Hz
10 A (per diode)
40 0 C
PR RM = 2 kW (per diode)
40 JiS
t
From the left hand part of the upper graph on page 5 it follows that at IF A V = 10 A in a three phase
rectifier circuit the average forward power + average leakage power = 19.5 W per diode (point A). The
average reverse power in the avalanche region, averaged over any cycle, follows from:
40 JiS
PRAV = 8 x PRRM, where the duty cycle 8 = 20 ms = 0.002
Thus: PRAV = 0.002 x 2 kW = 4 W
Therefore the total device power dissipation Ptot = (19.5 + 4) W = 23.5 W (point B).
In order to avoid excessive peak junction temperatures resulting from the pulse character of the
repetitive peak reverse power in the avalanche region, the value of the maximum junction temperature
should be reduced. If the repetitive peak reverse power in the avalanche region is 2 kW; t = 40 JiS;
f = 50 Hz, the maximum allowable junction temperature should be 1630C instead of 175 0C, thus
12 °C lower (see the lower graph on page 5).
Allowance can be made for this by assuming an ambient temperature 12 0C higher than before, in this
case 52 0C instead of 40 °C.
Using this in the curve leads to a thermal resistance
Rth mb-a "'" 4 °C/W
The contact thermal resistance Rth mb-h = 0.5 °C/W
Hence the heatsink thermal resistance should be:
Rth h-a = Rth mb-a -Rth mb-h = (4 - 0.5) °C/W = 3.5 °C/W
4
September 1979
(
BYX25 SERIES
Controlled avalanche rectifier diodes
7Z057332
f-- P=power dissipation, excZuslve
f-the reverse power in the
(W) f-avalanche region
Interrelation between the total dissipation
(derived from the left hand graph) and
the max. allowable ambient temperature
P
60
-~
i\
\
'-
\
\
_' . .0-1r
"Z._,
,'X ~e''X
7.~~
q
B
20
A
,..
1-1-1-
-
1"""1"7 ~
.J'A;I
~
...
V
..... -
~
l..IIII~
,...
1%
....
V
/
V
1/
~~
1/
1-""
1
I-
~~r
"-
I'"
~
~K~
1/
6'°c
-...J.r,.....
)'Oo~
/Ji/i'
1/
1/
1
i-"
'-
\..,
\.
Q
I\~
1\,
"\.1\
.....
.....
1\
"\. 1\.1\
I\.
"
I
1\
"'I\. 'I' \ I\.,
I\.
,I "
~~
",
o0" ....
I\,
~I
I\~
,
0
1\
,
~o_t
""-
"-
v
~
'V>o~-t\~ \:-\f- b\\
e
~-
-:0
,~o ~ -~~
'-0
~~-01\. ~
f o~V"
~
~o~ =-o~
,.,.
(0
,
\
~
\
~
40
\
I'
....
\.
r-....
....
",,=' ",I"
70
20
Ii
~'l'
j
I.FAV (A)
\'l\\
"' ....
I"'-~
1
~
.\ \
0
700 Tamb(OC)
200
Fig.2
70,----,--,-r-""~----~--=_~~--~--~--------~~
Max. allowable repetitive peak reverse power+ ~
(f =50Hz)
--I ~
0--
~ RM ~:::.::::"......::====t===t=:j==t:j=t:1:j:j=====::jdissipation versus duration
(kW)
~~~ "
i'oo...
Fkl
. . . . r-............. :--.....
~ ~L ~
~t:'-
L.........
~l""""'"
~
tirne~--~~-r~~'_H
I
i""-.........
"-'t-....... . . . . . ~r:::t:{::t-....
21
-PRRMI-----+---+-+-+-+--+/+-l
pulse duration
1;
~
"'~t--~~~~~OOC'-+---_?~-o--'J----,--..:..,:-,-;:.c..,..,--.----+------+---+-f-+-!H11--H
r.....1 .......
I ....
I-.:/~-T.
........ -.....J.~
r....................
75,
jl
°c
f' 'I-.L .......
~7~Oo~.......
o~oC~+,~r-~~~H_--~~~-J~~~~~~
. .
1------+----+---t--f--+--+~....~~~.......::~.l?Oo '---'1"...........
rl"'.......
~--+-+-l-Hoperatlon in this region ------+---+---+-+--+-+-H-~....
~~~
...... C
....... .......~
is not allowed
t
f---_·-._·===~~===~=~==~~=~~~~==------7?S~.............
I'....
.....
Q5f--____~~~~-,~~+_----C+_............
~~~~~_f_,~~,~----+_--~+_+_~~~
in this region a
....... , ........ ,
~
------ junction temperaturef-------+----+------+~-.....d-r__.~~.....-l--t---=~
..........
--+-----+------+----l----+---t--~
of 775°C is allowed
............. 1-00.... _ ........
-------r---,~--,,~,,+__----~--~--+_+_~~~L~
~~~~--~~___+_~~~
~~~
!l!
Q2
Q02
Q05
07
02
0.5
duration (rns)
70
Fig.3
September 1979
5
FklII:--
Max. allowable non repetitive peak reverse pulse
dissipation in avalanche re'lion versus duration
f-_-+--+-----+---+-+-++++-_----ipower
-f1?SM :
~~!m~
~~+-..po...t---t-"lo.ol--+t1I------I
po...,:--~+-~....J"-+I'-,~,,,t-------
T' I~-,-
~a,--illi~~-~tam
T--+-t--t--t--t-ti
timet I
_" ~l
pulst/ur~~ion
-t-~
I
--+",-+-_+-+-+--+1
~t- ~~~~+~T-t~iiIIH+;i I~!
t'-t"'~~~t-~~~o- --:-+-1 1 il
1
, '1
.............
i
r
:
!?So C
C
I'..
'I I
!
j
I,
I
:
I
'II
I
!
I
1
:
i
-
Q7
70 duratIOn (msJ
700
Fig.4
I
I
300
1
typ
lL
IF
oC
(AJ
{>
qlZil-
~\
200
1/
V
~
c,
H-\"':>c;,.. ....
.
V'
'"
I....
];'
,I.
700
.... /
1/
1/
1/
V
I::::
3
2
Fig.5
6
September 1979
(
5
l
Controlled avalanche rectifier diodes
BYX25 SERIES
72725451
1000
maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )
I FS( RMS)
(A)
rFb
750
-
-- I
~-IFS(RMS)
FSM
time
with reapplied V RWMmax
500
1\
\
"\
IFsM
"I'.
250
~
Tj
...........
r-I'--
o10- 3
I--
10- 2
L
10- 1
=175°C
-
prior to surge
r-- r-tduration (s)
10
Fig.6
September 1979
7
j
BYX30 SERIES
----------------------------------------------------FAST SOFT-RECOVERY RECTIFIER DIODES
Also available to BS9333-F002
• With controlled avalanche
Diffused silicon diodes in 00-4 metal envelopes, capable of absorbing transients.
They are pril!larily intended for use in high-frequency power supplies, thyristor
inverters and multi -phase power rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX30-200 to BYX30-600
Reverse polarity (anode to stud): BYX30-200R to BYX30-600R.
QUICK REFERENCE DATA
BYX30-200(R) 300(R) 400(R) 500(R) 600(R)
Crest working reverse voltage VRWM
max. 200
300
400
500
600 V
Reverse avalanche breakdown
voltage
>
250
375
500
625
750 V
V (BR)R
\.
IF (AV)
max.
14
A
Non -repetitive peak forward current
IFSM
max.
250
A
Non -repetitive peak reverse power
PRSM
max.
18
trr
<
Average forward current
Reverse recovery time
200
kW
ns
Dimensions in mm
MECHANICAL DATA
00-4; Supplied with device: 1 nut, 1 lock-washer
Nut dimensions across the flats: 9.5 mm
10-32UNF
+
4 ,83
max
t
J
~
~
I
,.9J
--
max
t
+
~
*
~
r----Q~8
-----..,
,,-
max ma
• •
'--
.-
9, 3
--. 2,3'"
.max
3,5
min
_10,3_
max
4--
11,5 ____
10,7
4
20,3
max
~
7ZS9SD 2.1
Net mass: 7g
Diameter of clearance hole: max. 5.2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)
Torque on nut: min. O. 9 Nm
(9 kg em)
max. 1. 7 Nm
(I7 kg em)
The mark shown applies to the normal polarity types.
January 1980
BYX30 SERIES
l_ _ __
RATINGS Limiting values in accordance with the Absolute Maximum System (IECl34)
Voltages
1)
BYX30-200(R) 300(R) 400(R) 500(R) 600(R)
Crest working reverse voltage
VRWM
Continuous reverse voltage
max. 200
300
400
500
600
V
max. 200
300
400
500
600
V
Currents
Average forward current (averaged
over any 20 ms period) up to T mb = 100 0 C
at Tmb = 125 0 c
Ip(AV)
IF (A V)
max.
max.
14
7.5
A
A
R. M. S. forward current
Ip(RMS)
max.
22
A
Repetitive peak forward current
IpRM
max.
310
A
IFSM
max.
250
A
I 2t
max.
312
A 2s
Repetitive peak reverse power dissipation
t = 10 J-LS (square wave; f = 50 Hz) Tj = 150 °c
PRRM
max.
5.5
kW
Non-repetitive peak reverse power-dissipation
t = 10 J-LS (square wave) T. = 25 °c prior to surge
= 150 °c prior to surge
PRSM
PRSM
max.
max.
18
5.5
kW
kW
Storage temperature
T stg
-55 to +150
°c
Junction temperature
Tj
max.
150
°c
Non -repetitive peak forward current
(t = 10 ms; half-sinewave) Tj = 150 °c prior to surge;
with reapplied VRWMmax.
12t for fusing (t = 10 ms)
Reverse power dissipation
1j
Temperatures
THERMAL RESISTANCE
From junction to ambient in free air
From junction to mounting base
From mounting base to heatsink
50
°c/w
Rth j-mb
1.3
°C/W
Rth mb-h
0.5
°C/W
Rth j-a
1) To ensure thermal stability: Rth j-a <2.5 0C/W (continuous reverse Voltage) or
< 5 °C/W (a. c.).
For smaller heatsinks Tj max should be derated. Por a. c. see page 5.
For continuous reverse voltage :. if Rth j -a = 5 °C/W, then Tj max = 135 oc.
if Rth j-a = 10 °C/W, then T j max = 120 °c.
2
March 1978](
BYX30 SERIES
Fast soft-recovery rectifier diodes with controlled avalanche
CHARACTERISTICS
BYX 30 - 200 (l\) 300(R) 400(R) 500(R) 600(R)
Porward voltage
IF
= 50 A;
Tj
= 25 °C
<
VF
3.2
3.2
3.2
3.2
3.2
>
250
V(BR)R < 1050
375
1050
500
1050
625
1050
750
1050
4.0
4.0
4.0
4.0
V 1)
Reverse breakdown voltage
IR
= 5 mA;
Tj
= 25 0 C
V
V
Reverse current
VR
= VRWMmax; Tj = 125 °C
'R
<
4.0
rnA
v
Reverse recovery charge when switched from
IF = 2 A to VR ~ 30 V;
with -dIp /dt = 100 A /J.LS; Tj
= 25 0 C
Q
s
<
0.70
J.LC
trr
<
200
ns
Reverse recovery time when switched from
IF = 1 A to VR ~ 30 V;
-dIp/dt = 50 A/J.Ls; T j = 25 °c
•
10%
time
t
100 %
7Z?0734.2
~
OPERATING NOTES
1. Square-wave operation
When IF has been flowing sufficiently long for the steady state to be established, there
will be a charge due to minority carriers present. Before the device can block in the
reverse direction this charge must be extracted. This extraction takes the form of a
reverse transient (see figure above). The majority of the power dissipation due to the
reverse transient occurs during fall time as the rectifier gradually becomes reverse
biased, and the mean power will be proportional to the operating frequency. The mean
value of this power loss Can be derived from the graphs on page 10.
1) Measured under pulse conditions to avoid excessive dissipation.
March 1978
3
BYX30
II
SERIES
OPERATING NOTES (continued)
2. Sine wave operation
Power loss in sine wave operation will he considerahly less owing to the much
slower rate of change of the applied voltage (and consequently lower values of
IRRM). so that power loss due to reverse recovery may he safely ignored for
frequencies up to 20 kHz.
3. Determination of the heatsink thermal resistance
Example:
Assume a diode. used in an inverter.
frequency
duty cycle
amhient temperature
switched from
to
20
0.5
45
12
f
a
Tamb
IF
VR
dI
tit
at a rate
4()()
20
kHz
°C
A
V
A//J.s
At a duty cycle a = 0.5 the average forward current IFAV 6 A.
From the upper graph on page 5 it follows. that at IFAV = 6 A the average forward power + average leakage power = 15 W (point A).
The additional power losses due to switching-off can be read from the nomogram
on page 10 (the example being hased on optimum use, i. e. T j = 1 SO °C). Starting
from IF = 12 A on the horizontal scale trace upwards until the appropriate line
-
~~
= 20 A/ f.1,S.
From the intersection trace horizontally to the right until the
lini! for f = 20 kHz. Then trace downwards to the line V R = 400 V and ultimatdy
trace horizontally to the left and on the vertical axis read the additional average
power dissipation PRA V = 4 W.
Therefore the total power dissipation Ptot = 15 W + 4 W = 19 W (point B of the
upper graph on page 5). From the right hand part follows the thermal resistance.
required at T amb = 45 °C.
Rth mb-a "'"
4 °C/W
The contact thermal resistance Rth mb-h = 0.5 °C/W.
Hence the heatsink thermal resistance should be:
Rth h-a = Rth mb-a - Rth mb-h
= (4
- 0.5) °C/W
= 3.5 °C/W.
The applicable heatsink(s) may then be found in the Section HEATSINKS.
4
II
II
June 1970
BYX30
II
SERIES
7Z063633
p P= power dissipation, exclusive thet-t- Interrelation between the total dissipationt-r-t-r- Tmb
t-r-t-rr-r-r-r- (0C)
60~++++~~~+++4~~~++~~~~++~~~r+++~-rrrr+~~r70
(W)
reverse power in the avalanche r-t- (derived from the left hand graph)
region and switching losses
t-r- and the max. allowable temperatures
aos
a02
May 1970
II
Q7
Q2
QS
2
duration
S
(ms)
70
5
l_______
BYX30 SERIES
FRSM
(kW)
10
Max. allowable non repetitive peak reverse
pulse power dissipation in avaZanche
region versus duration
~
..... .....
5
2
'"""- ........ .......
.....
....... ,
.......
"- ...... ~
f'
~
lo:
---F/?SM
.....
~
~
....
'I' '~
........
1
~
time
I.....c:.f-pulse duration
l;':
~~..?
....
:s''b
~,
V'b ........ i"i"o
~ ....... r-...r-.
~'b
;Sot.......
as
r....
.... ...
!'-....
,
..........
...
..... r....
~
..........
.... 1'
....
.......
~
........
.......
i'-
r--...
........
......... 1-0..
............
.........
1' ...
""
1"-""
.....1'-0
roI"-
l'-. i'-ro-.
10 duration (ms)
Q1
)
-----
08057
Tj
=25°C
~ =150 0 C
,
100
~
~1
I.
II,
,
80
"
III
Ii
~'-
f-r--
II
f
40
I
II
20
If
~
19781 (
~
~I~ .... io""
If
.'
~
~
.~
,, f
J
Ii
~
2
/
"
'f--f max_
l- r-r VF
VF
J
.'
March
II
typ ~- max-,
VF
6
.' 1
I
60
o
o
rJ
II
-
100
BYX30 SERIES
Fast soft-recovery rectifier diodes with controlled avalanche
04569
I FS
Maximum permissible non -repetitive
r,m.s, forward current based on
sinusoidal currents (1= 50Hz)
R.M.S.
(AI
IFV\
\
~
\
300
fltime
each current pulse is followed by
the crest working reverse voltage
,
1\
",
IFSM
\
200
1\
\.
\.
,
100
"-
'
......
Tj =ISO·C prior to surge
i"'~ ...
I
II U
o
10ms
Ims
I
2
Is
lOOms
5
7
lOs
Surge duration
04571
10
1.0
./
./
0.1
:,....-~
V
0.01
lL~
IO)JS 2
5
7
100)JS 2
5
7
Ims
2
5
7
10ms
2
5
7100ms2
5
7
15
5
7
March 1978
lOs
7
BYX30
II
SERIES
7Z09323
1000
typical values
I
~
I
......
~ ~ ~~ ... ""
...... ~~ ...~ ~~
--
~
1/
~~ """'" ~
~ 1:::3
~
r-..
200
III
BYX30-200(R
-300(R)
v -400(R)
v 500(R)
VI'
~~ -600(R)
.:::: ~~ ~:::
~
..@~
100
~~
r-..
50
20
5
2
10
50
20
100
200
VR (V)
1000
7Z09322
30
IR
.~ I-~£
(A)
t-.S
Tj=25°C
E -E I-E
c
·E
20
c
.~
(k r-~ r-(k I-Lk
- 0 r-o 1-0'
- 0 r-O 1-,0
_...r-
er-
~ , ,
0'
0
_In 1-<.0
N
10
e;
g 0x
0
I
' I
I
0
0:-
X
>
m
"gj
,
II
.J
NJ
'll
,
I
'I
500
8
I-
0
-JJ
(\")
II
~
1
L.t
IJ
"'"
IJ.
v
1000
1500
VR (V)
II
2000
March 1968
BYX30 SERIES
Fast soft-recovery rectifeir diodes with controlled avalanche
7Z09319
10
7Z09318
10
~
111.1
\.« ~
~
I
V~~~
)~V ~':>~
./
'2.~
I/"
~
V
v~
./
/.%~
V
~ ~
~
~ /~ ....
0.1
~
~V
./
~~io"
-'""'
,P>-
~
i---" .... ~
.........
I--"'r-'
~
~f-
i~
rm
--
'/II/"
~,,/
~
*
~\~tt
~~~
SA
.....
:/-
I
~
iA
,
I
0.1
.,'A'
fl.
1
I
0.01
III
il
1
-1I
I
I
!
r-i
i I
I
I
I
I'll
Iii Ii
10 _ d I (A/[.l.s) 100
0.01
I
I
i
i
i
I
I I
I
[
1
=
i
II
i
I
r
!
dt
25 °C; switched
I
I
t"
Maximum values; Tj = 150 oC; switched
from 'F to VR ~ 30 V.
from 'F to VR ~ 30 V.
D8055
D8056
Max. values
Tj 25°C
trr
...........
(ns)
~~
....
......
I F= lOA
//5A
.......... ~V
t........
..............
IF= lOA
b~~
1A
:--.:--.
r'"
1'00..
......
:-.......
""" ..........
~ .......... r---.... .......
-............:
t'--.
..........
.......... ~ ....... "'" !"............ ...:--.
r-.......
I/'r-.
t"-o i""-r-. ......
i"-
.......
~
Max. values
r - - Tj 150°C
1~
~ ........ r5~""
1'00....
~r--... . . . r-.
I
10 _dI (Allis) 100
dt
Maximum values; Tj
I ,
i
....... 100..
....
I'-
"'" .,.
!"-
10
1
10
_ ~ (Ai/us)
10
102
dt
March 1978
9
BYX30
II
SERIES
IRRM (A)
5A/~s
IF (A) 10
--I-
)
--:
~ ..........
--t-O
~I-..
1-+-_+___11-+-+-+-+-+-+---+-1
__
PRAV J-+_+___1I-+-+-+-+-+-+-+-f--+-+--l-l--+-+-!I"----1"ood-~-+---1~
.....-f""oI.I"""::-f
500 V-
Tj =2 5°C 1-+-+-+-+-+--r('--',-W-'-4I)-+-+-+-+-+-+-+-+-+----t--t----+-+-+-++--+-t-----t-+6P2 y-+--+-t-+-t-+--!--I
~----~~~~~30~~~~-L~~~~~~~~~~~-L~~
\
o-~ IRRM(A)
...-.
~:t-~~O '...
- -
I
1I
I
...
,
.....
-r- 1::;.
OOA/~s
~A/~s
r-..
J
I
I
~
I
I
I I I
Tj =150 o C
X'-'"
,
,",
.....
~
..........
.....
I
I I I I
I I
~~1.IIc::.,O_ .... _
~
~
..... "
......
In
1-
11
IF=forward current 10
just before switching off
I
I
I
,
,
,
//
foo'"
'/ ~I"'"
~
5
J
I
I
\~
"'1000.1'
~IF(A)10 - - -
J
I(
1\
"-, .,.,
f
1I 1
I
I\, \
I"'-
I
20A/~s
I
4~ r- ~ ~-t--.Q·-t---it~
,
I
r70A/~J
720932.42.
I
J ~20
PRAV
(W)
1 130
~
... r-- I-r--I--....
="""~ I"""i"oo
..... l""o
....
i'o..l""0
......
r--.
.....
~
-I--....
....
r"-Ioo.
I"
r-r-.-- ...
.....1--
r"""
1""0 ....
i'o..
I"
I'-.
..... "'"
I"
I"""to..,
1""""",
I"
. . J6b~-ii-t-I
1"""1'-0
i'o..
VRWM=
200V--
~
........ 40'oV f.... 500V-t--
6POV- -~
I I
i"i i-t-1
Nomogram: Power loss PRAV due to switching only (square wave operation)
10
II
May 1970
SILICON RECTIFIER DIODES
Diffused silicon diodes in metal envelopes with ceramic insulation, intended for power rectifier
application. The series consists of the following types:
Normal polarity (cathode to stud): BYX32-600 to BYX32-1600
Reverse polarity (anode to stud): BYX32-600R to BYX32-1600R
QUICK REFERENCE DATA
600
800
1000
1200
1200R
1600
1600R
800
1000
1200
_B_Y_X_32_--=-60.:...:0:....;,R-+-..:.8~00.:...:R~.....;1..:..0-=-00....:.R..:....j.
Crest working reverse voltage VRWM
max.
600
1200
v
Repetitive peak reverse
voltage
max.
~60.:...:0~-=-8~00~~1~0~~0~1~2~0~0__~16.:...:0~0
v
VRRM
Average forward current
max.
150
A
Non-repetitive peak forward cu rrent
max.
1600
A
MECHANICAL DATA
Dimensions in mm
022
r
--'
insulating tube
- 24'5~1~21J
-50_
r . . _ - - - - - - - 156 - - - - - -_ _
.. 1
Normal polarity
H+): blue cable.
7270229
Reverse polarity ( * ) : red cable.
Net mass: 115 9
Diameter of clearance hole: max. 13.0 mm
Torque on nut: min.
(100
max.
(250
I:
10 Nm
kgcm)
25 Nm
kg em)
October 1979
BYX32
SERIES
II
II
All information applies to frequencies up to 400 Hz.
RATINGS L imitingvalues in accordance with the Absolute Maximum System (IEC la4)
BYX32-
Voltages 1)
600
800
1000
1200
1600
600R 800R 1000R 1200R 1600R
Continuous reverse
voltage
VR
max.
600
800
1000
1200
1200 V
Crest working
rev~rse voltage
VRWM
max.
600
800
1000
1200
1200 V
Repetitive peak
reverse voltage
VRRM
max.
600
800
1000
1200
1600 V
Non-repetitive peak
reverse voltage
(t So 10 ms)
VRSM
max.
650
900
1100
1300
1600 V
Currents
Average forward current (averaged
over any 20 ms period) up to T mb = 100 °c
at Tmb = 125 °c
IF1AV)
IF~AV)
max.
max.
150 A
115 A
Forward current (d. c.)
lp
max.
240 A
R. M. S. forward current
IF(RMS) max.
240 A
IFRM
max.
750 A
IFSM
12t
max. 1600 A
max.12800A 2s
Storage temperature
T stg
-5Sto+200 °c
Operating junction temperature
Tj
max.
Repetitive peak forward current
Non-repetitive peak forward current
(t = 10 ms; half sine wave) Tj = 190 °c prior to surge
I squared t for fusing (t = 10 ms)
Temperatures
190°C
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
From mounting base to heats ink
without heatsink compound
Rth mb-h
O.l C/W
From mounting base to heatsink
with heats ink compound
(Dow Corning 340)
Transient thermal impedance; t = 1 ms
Rth mb-h
Zth j-mb
o
0.04 C/W
0.02SoC/W
o
1) To ensure thermal stability: Rth j-a < 0.75 °C/W (continuous reverse voltage)
or < 1. 5 °C/W (a. c. )
For smaller heats inks T j should be derated. For a. c. see graph on page 3.
Por continuous reverse voltage: Rth j-a =1 ~C/W, then Tjmax = 184 ~C
Rth ~-a :1.2oC/W, then '!Jmax ==- 180 oC
Rth ]-a -1.5 C/W, then Tjmax - 175 C
2
II
II
June 1974
BYX32
II
SERIES
CHARACTERISTICS
BYX32- 600(R)
Forward voltage
IF = 500 A; T j
= 25
°c
1200(R) 1600(R)
1000(R)
<
1,6
1,6
1,6
1,6
1,6
IRM <
24
18
15
12
12
VF
Peak reverse current
VRM = VRWMmax
Tj = 175 oC
800(R)
V 1)
rnA
7Z58648
p
single phase: a;: 1.6
: 0=1.75
6-phase
: 0=2.4
250
,,
/11
YI
/
1-'01°C/W'
.
'"
0.2'~
';
R'th mb-Q, ,
, , , /d.~.
1
II
ri~2.14
200
,
1.75- 1.6
,
1
11
interrelation between the power
(derived from the left hand graph)
and the max. allowable temperatures
Q= IFIRMS)
IFIAV )
(W ) 3- phase
I
'I
I
150
I
I
If
100
~
/
IJ
i' ,
~~
I/'
I(
IJ
IJ
..,....
.,....
-....L..
hr/
50
~
~~
~
~
1/
50
100
110
,,
""- ,
..... """ ,
,.....
" " ""- ,
.....
"" .,
.... ....
.... .... ,,"
130
1\ ,
"
~
"-
\.
1\
1\
.... 1.5
.... 21
II/.
rJ"£
\..
~
~
F
)
II
~
1'0.8
,
1\
~
"NJ·6
J
'1/
I'~
IL
,,
,0.4
'/'
o
2.5
1
1
1
1
~
r-..
1\
,~
r-...
i'o..
....
150
"
.....
,
\..
,.
I'\."~
~,
=
i"""-.;;~l:'
1
I"'"
50
170
..... ~ ~"-\,
~, ..... ~~I
i""" .... ,,~
~~ r - 100
':<) T mb -scale is for comparison purposes only andis correct only for Rth mb-a
~
1. 1 °C/W
APPLICATION INFORMATION AND OPERATING NOTES
See general pages at the beginning of this section.
1) Measured under pulse conditions to avoid excessive dissipation.
June 1974
II
3
BYX32
SERIES
3000
II
II
?ZS6S47
I
I
I
I
IIIIII1
I
II III
I I
maximum permissible non-repetitive
r,m,s, forward current based on
sinusoidal currents (f=50Hz)
IFS(R MS)
(A)
It~
~
~
2000
~time
each current pulse is followed by
the crest working reverse voltage
\.
,
I\,
"-
I\"
\..
1000
" "-i'
Tj =190°C (prior to surge)
1""'--0..
r-..
103
10 2
10
duration (s)
600
IF
(A)
500
7Z56646
I I I I I
I I
I
I I
I
I-r- r- -Tj=2SoC
I-r- r- --1j=190oC
max
I I
II.
I
ty~:
400
I
1
.
/I
lL
, JV'.'
300
!1
II
I
II
I
I
1
IL
200
II
II
'I
III
1
100
~
,...
• J I
lL
,~
" '"
1/
0,5
4
II
II
June 1970
BYX32
SERIES
II
7Z59115
10
1== transient
thermal impedance from junction to mounting base versus time
mb
)
V~
-
--
,.
V"
10
June 1970
[1
5
j
BYX38 SERIES
--------------------------------------------------------SILICON RECTIFIER DIODES
Also available to BS9331-F127
Silicon rectifier diodes in 00-4 metal envelopes, intended for use in power rectifier applications. The
series consists of the following types:
Normal polarity (cathode to stud): BYX38-300 to 1200.
Reverse polarity (anode to stud): BYX38-300R to 1200R.
QUICK REFERENCE DATA
BYX38-300( R)
1200(R)
1200 V
300
Repetitive peak reverse voltage
VRRM
max.
Average forward current
IF(AV)
max.
6
A
Non-repetitive peak forward current
IFSM
max.
50
A
MECHANICAL DATA
Dimensions in mm
1,0
0,8
00-4
-'11'max
4,0
~
I
Il---~~~-~~o-~ ~h Elj. .
4,83
max
I
~~~_
I
~----------+-1.---t----+------6 I
__
min
:
----11,0---
-.. 3,2 __
max
_9,3_
max
___ 11,5
l - - - - - - - 20,3 _ _~•• ,
10,7
max
7Z65355.2
_I. .
Net mass: 6 9
Diameter of clearance hole: max. 5,2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)
56262A (mica washer, insulating ring, plain washer)
Torque on nut: min. 0,9 Nm
(9 kg cm)
max. 1,7 Nm
(17kgcm)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 9,5 mm
The mark shown applies to normal polarity types.
'I
January 1980
BYX38
SERIES
JI
II
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
BYX38- 300(R) 600(R) 1200(R)
Non - repetiti ve peak reverse
voltage (t :5 10 ms)
VRSM
Repetitive peak reverse
voltage (8 :5 0,01)
max.
300
600
1200
V
VRRM
max.
300
600
1200
V
Crest working reverse voltage
VRWM
max.
200
400
800
V
Continuous reverse voltage
VR
max.
200
400
800
V
Currents
Average forward current (averaged over
any 20 ms period) up to T mb = 110°C
atTmb = 125 °c
IF(AV)
IF(A V)
max.
max.
R.M.S. forward current
6
4
A
A
IF (RMS)
max.
10
A
Repetitive peak forward current
IFRM
max.
50
A
Non-repetitive peak forward current
(t = 10 ms; half sine-wave) Tj =1500C prior to surge;
with reapplied VRWMmax
12 t for fusing (t = 10 ms)
IFSM
max.
50
A
I 2t
max.
13
A2s
Temperatures
Storage temperature
T stg
-55 to +150
Junction temperature
Tj
max.
150
°c
°c
THERMAL RESISTANCE
From junction to ambient in free air
Rth j~a
50
°c/w
From junction to mounting base
Rth j~mb
4
°C/W
From mounting base to heatsink
with heats ink compound
Rth mb-h
0,5
°C/W
Rth mb-h
0,6
°C/W
Zth j-mb
0,3
°C/W
without heats ink compound
Transient thermal impedance; t
2
II
= 1 ms
February 1978
II
II
BYX38
SERIES
CHARACTERISTICS
Forward voltage
IF
= 20 A; T j = 25
°c
VF
<
Reverse current
VR
= VRWMmax; Tj = 125
°C
<
200
!JA
OPERATING NOTES
1. The top connector should neither be bent nor twisted; it should be soldered into the
circuit so that there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
2. Where there is a possibility that transients, due to the energy stored in the transformer, will exceed the maximum permissible non - repetitive peak reverse voltage,
see General Section for information on damping circuits in Data Handbook Part SC 1a.
1) Measured under pulse conductions to avoid excessive dissipation.
3
BYX38
II
SERIES
II
7272547
single phase: a = 1,6
: a = 1)5
3-phase
: a = 2,4
6-J1hase
interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures
IF(RMS)
a=
IF(AV)
90
15
p
(W)
10
"- 101'8
...... r--..,.
1,75/ /1,6
"
/ 1/
0=2,4/
/ /
L/ /
~
,
~~
V/ /
5
i'~
"
f'\.
'",.........
..............
~~
~~ V
~~
.....
o
o
5
2,5
7,5 0
,
\.
l"\
I'!..
~
110
\
\
\
\ \
b.... ~ '\ \ \
130
"- ~ ~
......~ ~ \..' \
I"- ~
........
......... ~ ~ ~
.............
~ ~~
-....;::
~ 150
r-.... ~
50
""- '\
100
150
Tamb (oel
(AI
IF!AV)
Rth mb-a=_
'-6 1'\.4 1\2 \0,5°e/W
7Z72254
60
I
I
I
I - T j = 25°C
o
I I ---lj =150 C
,
I I'
iy~ Imla~
,
-'
,
,
40
II
I'
[I
,
I
I
I'
~
,
20
III
-'
rl
:1
II
I
If
1
J
I I I
.'
./
I.l
2
4
1.1
4
II
November 1975
II
BYX38
II
SERIES
7Z72546
60
maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )
1\
\
IFS(RMS)
\
(Al
,
IFV\
I FSM
1\
~-IFS(RMS)
time
"
40
~-IFSM
~
with reapplied V RWMmax
"
"\.
.~
,
I'-
.....
T""
20
~j
=150°C prior to surge
-~
o
10- 3
duration (s)
10
7Z72548
10
. / i--"" ""~
k.....- r-
/'
L
i"'"
~ .....
time (5)
November 1975
II
10
5
CONTROLLED AVALANCHE RECTIFIER DIODES
Also available to BS9333-F005
Silicon diodes in a DO-4 metal envelope, capable of absorbing transients and intended for use in power
rectifier appl ication.
The series consists of the following types:
Normal polarity (cathode to stud): BYX39-600 to BYX39-1400.
Reverse polarity (anode to stud): BYX39-600R to BYX39-1400R.
QUICK REFERENCE DATA
BYX39-600(R) aOO(R)
Crest working reverse voltage VRWM
max.
Reverse avalanche breakdown
voltage
V(BR)R
>
1000(R)
1200(R)
1400(R)
600
aoo
1000
1200
1400
V
750
1000
1250
1450
1650
V
~----------~vr-------------~
Average forward current
max.
9.5
A
Non-repetitive peak forward
current
max.
125
A
Non-repetitive peak reverse
power dissipation
max.
4
IF(AV)
MECHANICAL DATA
kW
Dimensions in mm
1,0
0,8
Fig. 1 DO-4
---II~
max
11 ~h
4,0
4,83
max
.---_ ___."'-'0
1,98 ____.1
max
1,6
min
__
~
e
I---11,0 _______I
__ 3,2 __
max
_9,3 ____
max
___ 11,5 _
10,7
___ __ 20,3_
max
_ __
7Z653S5.2
Net mass: 6 g
Diameter of clearance hole: max. 5.2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag).
Torque on nut:
min. 0.9 Nm (9 kg em),
max. 1.7 Nm (17 kg em).
Supplied with device: 1 nut, 1 lock-washer.
Nut dimensions across the flats: 9.5 mm.
The mark shown applies to normal polarity types.
I
September 1979
+-
l
BYX39 SERIES
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC134)
~
Voltages*
Continuous reverse voltage
VR
Crest working reverse voltage VRWM
BYX39-600(R) 800(R)
1000(R)
1200(R)
1400(R)
max.
max.
600
800
1000
1200
1400
V
600
800
1000
1200
1400
V
"
;
y
Currents
Average forward current (averaged over any
20 ms period) up to T mb = 85 0 C
at T mb = 125 °C
IF(AV)
IF(AV)
max.
max.
9.5
6.0
A
A
R.M.S. forward current
IF(RMS)
max.
15
A
Repetitive peak forward current
IFRM
max.
100
A
Non-repetitive peak forward current
t = 10 ms (half sine-wave); Tj = 175 °C prior to surge;
with reapplied VRWMmax
IFSM
max.
125
A
t
max.
78
A2 s
PR(AV)
max.
10
W
Repetitive peak reverse power dissipation
t = 10 p.s (square-wave; f = 50 Hz); Tj = 125 0C
PRRM
max.
2
kW
Non-repetitive peak reverse power dissipation
t = 10 p.s (square-wave)
Tj = 250C prior to surge
Tj = 1750C prior to surge
PRSM
PRSM
max.
max.
4
0.8
kW
kW
-55 to +175
°C
175
°C
2
1
t for fusing (t
= 10 ms)
12
Reverse power dissipation
Average reverse power dissipation
(averaged over any 20 ms period); Tj
= 1250C
Temperatures
Storage temperature
T stg
Junction temperatu re
Tj
max.
*To ensure thermal stability: Rth j-a ,,;;; 5 °C/W (continuouse reverse voltage) or";;; 20 0C/W (a.c.)
2
September 1979
(
BYX39 SERIES
Controlled avalanche rectifier diodes
THERMAL RESISTANCE
From junction to ambient in free air
Rth j-a
50
°C/W
From junction to mounting base
Rth j-mb
4.5
°C/W
From mounting base to heatsink
without heatsink compound
with heatsink compound
with mica washer
Rth mb-h
Rth mb-h
Rth mb-h
1.0
0.5
2.0
°C/W
°C/W
°C/W
Transient thermal impedance; t = 1 ms
Zth j-mb
0.35
°C/W
CHARACTERISTICS
BYX39-600(R) 800(R)
Forward voltage
IF = 20 A; Tj = 25 °C
VF
Reverse avalanche breakdown
voltage
I R = 5 mA; Tj = 25 °C
V(BR)R
1000(R)
1200(R)
1400(R)
<
1.7
1.7
1.7
1.7
1.7
V*
>
750
1000
1250
1450
1650
V
<
2000
2000
2000
2200
2400
V
<
200
200
200
200
200
JJ..A
+-
Reverse current
VR = VRWMmax;
Tj = 125 °C
IR
OPERATING NOTES
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
*Measured under pulse conditions to avoid excessive dissipation.
September 1979
3
BYX39 SERIES
L"'-----_ __
7Z668551
20
I
II
p
l
(W)
I
,
17
a=2,4
l- V; _ 1,75
fjl-- -1,6
15
Z
I IJ
'I
I!J
II) r.t
5
\
\
,
~I
.......
~
\?~
\.
\
'I
r--....
"-
"
"0
'r-....
....... ~$
I" ~O ....... r--...,
........ ~S ... ........ ......
'\~
-
'\
~
......... r.....
.........
~
\
\.
"-
\
r\
"-
I\.
~
........ ........ ......... r--....
....... ...... ..............
...... """"
.........
Ii V
10,
5
15 25
r--...,
100..
~
o
\ -1$'0
\vto-.. '-\~i:.
\..
,
107,5
\~
\
'\
IVI
W.V
o
\1l
\
\..
T III
I
85
\
\.
'\
'\..
I II
7 II
10
~
\.
75
r-....
130
~
\
\
.'.:
,
r\
"'\f\:f\
152,5
....... ~ r'\ 1\.\
-r--.: ~ ~ ~ ~~.... 1'=: ~ ~
175
125
175
Tamb (oC)
IF(AV) (A)
Fig.2
The right-hand part shows the interrelationship between the power (derived
from the left-hand part) and the maximum
permissible temperatures.
P = dissipation excluding power in the
avalanche region.
single phase: a::: 1.6
3-phase
: a::: 1.75
6-phase
: a ::: 2.4
D2640 Q
60
I
IF
",
)
(A)
I
50
I
I
I
II
max VF
30
Tj=25°C
,
I
rT
J
",
J
II
40
I
I
'f max
a = IF(RMS)/IF(AV)
VF
1~ Tj =17SoC
-I-I-'---I--
II
JT
IJ
20
,
10
,,"
'1'1
o
4
.... ~
~
o
September 1979
Fig.3
(
BYX39 SERIES
Controlled avalanche rectifier diodes
n66857
60
1'- IX" PRRM = 2 kW
I
I
1
"- ~
J'-
V
I
1
Fl,5! '"
7
I
I
II
II
40
f
1/
I
~
'"
if
,,
I
square pulse lf = 50 Hz I-
1J
J
,
7
,,
I
I
I
""""
j
500W/
II
20
I
I
I
11'0..
"- i"-
I
"
V
/
......
......
I
~
200,
V
/
/
J
/
V
/
o
1/
V
V
I I
,
r-...
"
.........
'/
)
/
~
.........
100 )
/
!/
/
r-....
.........
.........
?O)'
r-....
r--
10- 3
10- 2
square pulse duration (8)
10- 5
Fig.4
7Z66856
30
I
I
I I
T I I I
square pulse
f - 400 Hz
~
f-
I-
\
~PRRM - 1,5 kW
lV\
20 1/ \
I-
H
\
\
1
1\
f---ll
1 1\
I
\
\
I
10
\
I
\
I
I
I'\.
7
1L-750W!
I
/
o
10- 5
/
""
1'1...
500]
.A'
~""~ J9?
I
y
10- 4
Fig.5
square pulse duration (s)
JC
September 1979
5
........ _ _ _ _ _ _ .,.JL......IIW.. . . . . . .".,..... 'L.uJI.J.lJL.
l_ _ __
BYX39 SERIES
7Z66859
10
max. allowable non-repetitive peak
reverse power dissipation in
avalanche region versus pulse duration
P RSM
(kW)
PRlJIPRSM
~
~
.............
~
""
~
......
r--......
r--......... ...........
........
r--.....
r--....
i"'" :-"1"-
~i"'"
l::stOc
r-.I"- 1"-"",
r--.....
............
.....
II
........
i"-o..
125
~
f'......
~~"'"
'"
~
150...............
~
I"-
~
1'-"
""~
. . . . 1'"
~1~5
~
['.....
i"- ,....
f'
t"-I"-
""r......
I.....
~
t"-"
J'..r--.",
10- 4
IFS(RMS)
10- 3
,
1\
150
"
.....
~ f'.. ~
'"
i"I"
I'..
1......
1'
r--..~
t'1'
I"
pulse duration (s)
""
10- 2
7Z66858.1
\
(A)
.......... ~
"~
Fig.6
200
-tlme
I.- pulse duration
prior to surge
f""'..
!'.....
r-.....
-
....................75 ...................
..........
i""ooo..
............
_I
r--...... .........
.
maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )
IF
,
\
time
,
~
I'
V\----~ I FSM
I FSM
with reapplied VRWMmax
Tj
,
= 175 °c prior to surge
100
i'..
"- ..........
I'-r-.
50
r---.....
o
10- 1
10- 3
Fig.7
6
September 1979
(
---
t--r-.
r--- t-duration (s)
10
_ _ _ _J
BYX42 SERIES
SILICON RECTIFIER DIODES
Also available to BS9331-F128
Diffused silicon rectifier diodes in DO-4 metal envelopes, intended for power rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX42-300 to 1200.
Reserve polarity (anode to stud):
BYX42-300R to 1200R.
QUICK REFERENCE DATA
BYX42-300(R)
1200(R)
VRRM
max.
1200 V
Average forward current
IF(AV)
max.
12
A
Non-repetitive peak forward current
IFSM
max.
125
A
Repetitive peak reverse voltage
300
Dimensions in mm
MECHANICAL DATA
DO-4
1,0
0,8
-'11<4max
~
u---*~.--_-_-_~___-:j-o+J+-1_~-,-h ED .
4,0
4,83
max
I
1,98_1
max
_
1,6
min
__
•
..
I
-----11,0-
3,2 __
max
_9,3 ____
max
___ 11,5 ---..---- __ 20,3 _____ ___
10,7
max
7Z65355.2
Net mass: 6 9
Diameter of clearance hole: 5,2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)
56262A (mica washer, insulating ring, plain washer)
Torque on nut: min. 0,9 Nm
(9 kg em)
max. 1,7 Nm
(17 kg em)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions accross the flats: 9,5 mm
The mark shown applies to normal polarity types.
January 1980
BYX42
II
SERIES
II
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
BYX42 - 300(R)
600(R)
1200(R)
Non-repetitive peak reverse
voltage (t s 10 ms)
VRSM
max.
300
600
1200
V
Repetitive peak reverse voltage
(6 s 0,01)
VRRM
max.
300
600
1200
V
Crest working reverse voltage
VRWM
max.
200
400
800
V
VR
max.
200
400
800
V
Continuous reverse voltage
Currents
A verage forward current (averaged
over any 20 ms period) up to T mb = 115 °C
at T mb = 125°C
IF(AV)
IF (AV)
max.
max.
12
10
A
A
R. M. S. forward current
IF(RMS)
max.
20
A
IFRM
max.
60
A
Non-repetitive peak forward current
(t = 10 ms; half sine-wave) T j = 175°C prior to surge;
IFSM
with reapplied VR WMmax
max.
125
A
Repetitive peak forward current
Temperatures
Storage temperature
T stg
-55 to +175
°c
Junction temperature
Tj
max.
°c
175
THERMAL RESISTANCE
50
oC!W
Rth j-mb
3
°C/W
Rth mb-h
0,5
°C/W
From junction to ambient in free air
Rth j-a
From junction to mounting base
From mounting base to heatsink
CHARACTERISTICS
Forward voltage at IF
Reverse
curreJ.~
at VR
= 15 A;
Tj
= 25
°c
= VRWMmax; Tj
= 125 °C
VF
<
1,4
V
IR
<
200
f.!A
1)
MOUNTING INSTRUCTIONS
The top connector should neither be bent nor twisted; it should be soldered into the
circuit so that there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
1) Measured under pulse conditions to avoid excessive dissipation.
2
II
February 1978
BYX42
II
SERIES
II
7Z72553
interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures
'F(RMS)
a=
'F(AV)
I
2,2/
2,8J
0=4/
II
(W)
J
j
1/ 1/
11"/
I
10
I
I
1/
I
j
1J
/
/
I'\.
/
"
~V
~V
/
,
o
o
I
....
-t--Iooo.
o
10
.....
......
r-...
.......
...........
......
c-t--I-100
1\
,
1\
'\.
...... ~
I
I
I
IF(AVl (A)
.......
r"
i""'o ....
~
5
~
1\
\
,
,
~
~O .....
Ir-...
I
I
,
\.
.....
1-..... ~
l..!ii:1IIi
03
\ () <{
\~ "\\
I'\.
~S
~
,
'\
......
/. ~~
...
I\.S
",",0
~~
/.~
I/.
,
1/
1// 1/
/
/
115
, t-'- ~~~
'\
1/
If
1/
If
I
1,9 f-+-1.6
,
20
P
I
I
I\.
,
145
1\
,
1\
'\
\
,
..... '\.\\
..... ~
~~
r-
~
175
200
':') Tmb-scale is for comparison purposes only and is correct only for Rth mb-a ::s 22
7Z72552
75
II
max. values
1/
II
I
I
I
Tj
=25°C I-r--r.
1/
I
I
II
50
I
II J
'I
J
III
I,
,
25
rl
J
I~
r
, rl
1//
o
o
//
..... I-"":~
2
II
I
175°C
-
°ejW
BYX42
II
SERIES
7Z72554.
200
maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )
IFSIRMS)
(AI
\
150
lt~
,
l\.
~-IFSIRMS)
time
,
with reapplied V RWMmax
IFSM
I\.
100
~-IFSM
,
I\.
"-
"'
50
"
. . . r--.
ro-ro-
Tj =175 °c prior to surge
~ lillill
lill
o10-3
4
10- 2
II
10- 1
lJll
duration (s I
II
10
November 1975
jl
BYX45 SERIES
---------------------------------------------------------'
CONTROLLED AVALANCHE RECTIFIER DIODES
Also available to BS9333-FOO4
Diffused silicon diodes in a DO-1 metal envelope, capable of absorbing transients. They are intended
for rectifier appl ications and particu larly su ited for seri es operation.
The series consists of the following reverse polarity types (anode to case):
BYX45-600R, BYX45-800R, BYX45-1000R, BYX45-1200R and BYX45-1400R.
~
QUICK REFERENCE DATA
BYX45-600R
BOOR
1000R
1200R
1400R
~
Crest working reverse voltage
VRWM
max.
600
800
1000
1200
1400 V
Reverse breakdown voltage
V{BR)R
>
750
1000
1250
1450
1650 V
v
Average forward current
IF (AV)
max.
1.5
A
Non repetitive peak forward current
IFSM
max.
40
A
Non repetitive peak reverse power
PRSM
max.
2.5
kW
Dimensions in mm
MECHANICAL DATA
Fig. 1 DO-1
-17.2max7.7max -
l.lmax
a
t
-
k
~~a-x~--~----J
----35min-----I...·f-------51 min
7Z11073"
9.6max
September 1979
l_ _ __
BYX45 SERIES
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC134)
~
Voltages
BYX45-600R
800R
1000R
1200R
1400R
Crest working reverse voltage
VRWM
max.
600
800
1000
1200
1400 V
Continuous reverse voltage
VR
max.
600
800
1000
1200
1400 V
~----------~vr-------------J
Currents
Average forward current
(averaged over any 20 ms period)
IF(AV)
max.
1.5
R.M.S. forward current
IF(RMS)
max.
2.4
A
Repetitive peak forward current
IFRM
max.
15
A
Non-repetitive peak forward current
t = 10 ms (half sine-wave); Tj = 150 oC prior to surge;
with reapplied VRWMmax.
IFSM
max.
40
A
12 t for fusing (t = 10 ms)
12 t
max.
8
Repetitive peak reverse power dissipation
t = 10 JIS (square-wave; f = 50 Hz); Tj = 125 °C
PRRM
max.
800
W
Non-repetitive peak reverse power dissipation
t = 10 JIS (square-wave)
Tj = 250C prior to surge
Tj = 150 0C prior to surge
PRSM
PRSM
max.
max.
2.5
800
kW
W
-55 to +150
°C
150
°C
A
A 2s
Reverse power dissipation
Temperatures
2
Storage temperature
T stg
Junction temperature
Tj
September 1979
.(
max.
BYX45 SERIES
Controlled avalanche rectifier diodes
THERMAL RESISTANCE
Effect of mounting on thermal resistance Rth j-a
The quoted values apply when no other leads run to the tie-points. If leads of other dissipating
components share the same tie-points, the thermal resistance will be higher than that quoted.
1.
Mounted on solder tags at a
lead-length a = 10 mm. Rth j-a
= 60
°C/W
2.
Mounted on solder tags at a = maximum
lead-length. Rth j-a = 70 °C/W
3.
Mounted on printed-wiring board at a = maximum
lead-length. Rth j-a = 80 °C/W
4.
Mounted on printed-wiring board at a
lead-length a = 10 mm. Rth j-a = 90 °C/W
1-=~_-Ir-----II
0 __ 1
7Z59016
7Z59017
SOLDERING AND MOUNTING NOTES
1.
At a soldering iron or bath temperature of up to 245 oC, the maximum permissible soldering time
is 10 s if the joint is 5 mm from the seal, 3 s if it is 1.5 mm from the seal.
2.
At a temperature between 245 °C and 400 0C (max.), the joint must be more than 5 mm from the
seal and soldering time must not exceed 5 s.
3.
Leads should not be bent less than 1.5 mm from the seal; exert no axial pull when bending.
September 1979
3
BYX45 SERIES
l
CHARACTERISTICS
-r
Forward voltage
IF = 5 A; Tj = 25 °C
Reverse avalanche breakdown
voltage
I R = 1 mA; Tj = 25 °C
Reverse cu rrent
VR = VRWMmax; Tj = 125°C
VF
V(BR)R
IR
BYX45-600R
800R
1000R
1200R
1400R
<
1.45
1.45
1.45
1.45
1.45
V*
>
750
1000
1250
1450
1650
V
<
2000
2000
2000
2200
2400
V
<
100
100
100
100
100
JlA
*Measured under pulse conditions to avoid excessive dissipation.
4
September 1979 , (
BYX45 SERIES
Controlled avalanche rectifier diodes
7Z11022 2
interrelation between the power
(derived from the left hand graph)
and the max. allowable ambient
temperature
P:: power dissipation.
excluding the reverse power
in the avalanche region
a=
h(RMS)
I FAv
C/
~.
2
I)
,I\.~~
J
I\.IY
.
, \>
~ V
P
(W)
t-..~/
q;,
~-
cJ
If
)
1/
J
VV'"
,,'\",,~°
1/
1/
~
~
I\.
~
~J
ry.
1\
1/11' If"
1/1/ V
If /r/ /
~
17
1/
1/
V
<2I\I\~
~
"'It'"
0
70 C/W
v
800 C/W
v
90o C/W
f\.
"
'V, "I\.
~'I\.'
111/11' I.f'
r/. v
"
~"
~.,
~~
~~
~
II:~'.....
~r.~
..
....
~
""
o
o
.1
o
2
IFAV (A)
100
Tamb (OC)
200
Fig.2
7Z 11021.
P RSM
(kW)
max. allowable non repetitive
peak reverse pulse power
dissipation in avalanche
region versus pulse duration
'~ i'-.
......... r--- . . .
""-
......
........
,...."
" I'-.. ~ r-...
PRUr:
- - PRSM
"-
t-
"...
""" "
i""..
I-.....
.........
f".,..
~
'"
-I
1'-,...."
............
..........
r-.....
I"'"
"'"
1"-"", "'"
~ r-..... "
time
1- puLse duration
I'
"
~ r--..... r.....
~
I"'iiO:
~
100..
Tj (prior to surge)
.....
""~
100..
'"
3
10
Fig.3
............
.....
"
t'-....
1''''''
25°C
75°C
125°C
150°C
104 puLse duration(l-ls)10 5
September 1979
5
BYX45 SERIES
l_ _ __
7Z 1102.02
100
max. permissible non repetitive r.m.s.
forward current based on sinusoidaL
currents (f:50Hz)
IFV\
IFS(RMS)
(A)
1\
\
,
1\
t
I_duration-I
each current pulse is followed by
the crest working reverse vo Ltage
1\
50
f\
\
~
\..
"'-
.......... t--,
100..
r- r-.
Tj ::15
I-
°c (prior
II III
to surge)
I
FigA
7Z11071
maximum vaLues
I-- I-- I--
V~
~ t::
10
~
~
I..-
r,
1/
~
/
Tj =150°C 1/ il25°C
II II
I
I
I I
II II
II
1
2
I
,
I
I
II I
II II
2
Fig.5
6
September 1979
VF (V)
I liT
10 2
duration (s)
10
3
j
BYX46 SERIES
----------------------------------------------------FAST SOFT-RECOVERY RECTIFIER DIODES
• With controlled avalanche
Diffused silicon diodes in 00-4 metal envelopes, capable of absorbing transients_ They are primarily
intended for use in high-frequency power supplies, thyristor inverters and multi-phase power rectifier
appl ications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX46-200 to BYX46-600.
Reverse polarity (anode to stud): BYX46-200R to BYX46-600R
QUICK REFERENCE DATA
BYX46-200(R) 300(R) 400(R) 500(R) 600{R)
Crest working reverse voltage
VRWM
max.
200
300
400
500
600 V
Reverse avalanche breakdown voltage
V(BR)R
>
250
375
500
625
750 V
Average forward current
IF(AV)
max.
22
300
18
IFSM
max.
Non-repetitive peak reverse power
PRSM
max.
Reverse recovery time
trr
<
Non-repetitive peak forward current
A
A
kW
ns
200
Dimensions in mm
MECHANICAL DATA
00-4 Supplied with device: 1 nut, 1 lock-washer
Nut dimensions across the flats: 9,5 mm
10-32UNF
•
4 ,S3
max
t
J
~
t-
+ t
~
*
I
~
-o-Zs
max
-.....
r
• •
'--
1,9SJ
3,5 ..........
--- _10,3_
max
~
... 23 .....
max
..-- 11,5 __ _
10,7
max
9, 3
ma x
min
20,3
max
Net mass: 7 g
Diameter of clearance hole: max. 5,2 mm
Accessories supplied on request: 56295
(PTFE bush, 2 mica washers, plain washer, tag)
~
7Z6980 2.1
Torque on nut: min. 0,9 Nm
(9 kg cm)
max. 1,7 Nm
(17 kg cm)
The mark shown applies to the normal polarity types.
February 1978
BYX46 SERIES
l_ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages *
BYX46-200(R) 300(R) 400(R) 500(R) 600(R)
Crest working reverse voltage
VRWM
max.
200
300
400
500
600 V
Continuous reverse voltage
VR
max.
200
300
400
500
600 V
Currents
Average forward current (averaged over
any 20 ms period)
uptoTmb= 100 0 C
IF(AV) max.
at T mb = 125 °C
IF(AV) max.
R.M.S. forward current
IF(RMS) max.
Repetitive peak forward current
22
15
A
A
35
A
400
A
IFRM
max.
IFSM
12 t
max.
300
A
max.
450
A2 s
Repetitive peak reverse power dissipation
t == 10 p,s (square wave; f = 50 Hz)
Tj = 100 0 C
PRRM
max.
9,5
kW
Non-repetitive peak reverse power
dissipation t = 10 p,s (square wave)
Tj = 25 °C prior to surge
Tj == 165 °C prior to surge
max.
max.
18
4
kW
kW
-55 to +165
oC
165
°C
Non-repetitive peak forward current
(t = 10 ms; half-sinewave) Tj = 165 0C
prior to surge; with reapplied
VRWMmax
12 t for fusing (t = 10 ms)
Reverse power dissipation
PRSM
PRSM
Temperatures
Storage temperature
Tstg
Junction temperature
Tj
max.
THERMAL RESISTANCE
From junction to ambient in free air
Rthj-a
50
From junction to mounting base
Rthj-mb
1,3
°C/w
From mounting base to heatsink
Rth mb-h =
0,5
°C/W
°C/W
* To ensure thermal stability: Rth j-a < 2,5 °C/W (continuous reverse voltage) or < 5 °C/W (a.c.). For
smaller heatsinks Tj max should be derated. For a.c. see page 5. For continuous reverse voltage: if
Rth j-a == 5 °C/W, then Tj max = 135 °C; if Rth j-a = 10 oC/W, then Tj max = 125 °C.
2
March
19781 (
BYX46 SERIES
Fast soft-recovery rectifier diodes with controlled avalanche
CHARACTERISTICS
BYX46-200(R) 300(R) 400(R) 500(R) 600(R)
Forward voltage
IF = 50 A; Tj = 25 °C
VF
Reverse breakdown voltage
I R = 5 mA; Tj = 25 °C
V(BR)R
Reverse current
VR = VRWMmax; Tj = 125 °C
IR
Reverse recovery charge when switched from
IF = 2 A to V R ~ 30 V;
-d I F/dt = 100 A/J.ls; Tj = 25 0C
Os
Reverse recovery time when switched from
IF = 1 A to V R ~ 30 V;
-dlF/dt = 50 A/J.ls; Tj = 25 0C
trr
<
2,0
2,0
2,0
2,0
>
<
250
1050
375
1050
500
1050
625
1050
<
4,0
4,0
4,0
4,0
2,0 V *
750 V
1050 V
4,0 mA
<
0,70
J.lC
<
200
ns
•
10%
time
t
100%
7270734.2
~
OPERATING NOTES
1. Square-wave operation
When I F has been flowing sufficiently long for the steady state to be established, there will be a
charge due to minority carriers present. Before the device can block in the reverse direction this
charge must be extracted. This extraction takes the form of a reverse transient (see figure above).
The majority of the power dissipation due to the reverse transient occurs during fall time as the
rectifier gradually becomes reverse biased, and the mean power will be proportional to the operating
frequency. The mean value of this power loss can be derived from the graphs on page 10.
* Measured under pulse conditions to avoid excessive dissipation.
March 1978
3
BYX46
SERIES
II
II
OPERATING NOTES (continued)
2. Sine wave operation
Power loss in sine wave operation will be considerably less owing to the much
slower rate of change of the applied voltage (and consequently lower values of
IRRM), so that power loss due to reverse recovery may be safely ignored for
frequencie s up to 50 kHz.
3. Determination of the heatsink thermal resistance
Example:
Assume a diode, used in an inverter.
frequency
duty cycle
ambient temperature
switched from
to
20
0.5
40
12
300
o
kHz
°C
Tamb
A
IF
V
VR
dI
at a rate
50 A/!J.s
dt
At a duty cycle 0 = 0.5 the average forward current IFAV = 6 A.
From the upper graph on page 5 it follows. that at IpAV = 6 A the average forward power + average leakage power = 13 W (point A).
The additional power losses due to switching-off can be read from the nomogram
on page 10 (the example being based on optimum use. i.e. Tj = 165 °C). Starting
from IF = 12 A on the horizontal scale trace upwards until the appropriate line
dI
- dt =50 A/!J.s. From the intersection trace horizontally to the right until the line
for f = 20 kHz. Then trace downwards to the line VR = 300 V and ultimately trace
horizontally to the left and on the vertical axis read the additional average power
dissipation PRAY :: 6 W.
Therefore the total power dissipation P tot = 13 W + 6 W = 19 W (point B of the
upper graph on page 5).
From the right hand part of the upper graph on page 5 follows the thermal resistance, required at T amb = 40 °C.
Rth mb-a ""
5 °C/W
The contact thermal resistance Rth mb-h:: O.5 0 C/W.
Hence the heatsink thermal resistance should be:
Rth h-a :: Rth mb-a - Rth mb-h
= (5
- 0.5) °C/W
= 4.5 °C/W.
The applicable heatsink(s ) may then be found in the Section HEA TSINKS.
4
II
II
May 1970
BYX46
II
SERIES
7Z58794
60 P:power excluding avalanche and switching losses
single phase: a=1.6
: a=1.75
3- phase
P 6-phase
a=2.4
(W )
I
I
I j
III
intl.'rrelation between the power
(derived from the left hand graph)
and the max. allowable temperatures
IFIRMS)
a=-IFIAV)
iUs ""]1. 6 f-rJ d.c.
40
--
/
I
J
rJ r/
rT
fIr}
II
flV
...
~
"'
'(
I
B
"' "- "'
I
I PI
I
20
1\
~
I
II
/
--
-1-
H- 1-1-
f---
II
f}
!"
1\
1"\
~
.\
126
1\ ,
1\
1\ 1\
,
"' ~" 1\ ,
l\.1\.
"-
.....
.....
•
~
1"\1\::\
I'\:~~\
.......
~~
"l~\
I
20
10
30
o
40
152
,..... 1'J..'t\
I
/
139
"., \1\
.......
rJ 1/
1/
~n
,....
8
V
113
" ,
~3.5
,.....
'I. -;
Rthlm~-Ia =
\ 0.5°CjW
\ 1 \
2.5
f"';~
j j
I
\
I\. 1.5\
"\
"'I'\.
f-I-
A I---/J
II
\
~
,....
1/
't-i'H 't-ilIN
1\
1"\
1
-,- a:2.4/ I!I
, ,,
I\,
J
If
165
200
50
I F1AV ) (A)
7Z10273j
10
.............................
PRRM
(kW)
:--.....
~
.........~
~,,--......:: ~
/
.......
'-"'''- ~ ~~
~~
--
~"
~
/
~
~~ r-.1"-1"r-.
"
1
Tj =110 o C
120°C
/130 o C
/140 o C
Vv / V)50°C
1600C
/
~lrr=:
~ ~ r; ll
- - PRRM
17
V,165°
I
1
......
""
~"""-
!"X . . . . .
.......
"- ........
,, '"
........
' repetitive operation
in this region
t....
is not allowed
I-~
f------ in this region a junction
f--~
temperature of 16S o C is
f------ allowed
~
~I=
f--ff--f-
I
time
plJ\se 1duration
............
I""~~
,..... .....
0.1
'maximum allowable repetitive
peak reverse power dissipation
versus duration (f = 50 Hz)
...
~~
--
~~
"'"
"r-...
"'1'-
0.01
0.01
May 1970
0.1
II
10 pulse duration (ms)
5
BYX46
II
SERIES
II
7Z10049.1
~....
-
(k W)
10
Max. allowabl~ non ~p~titiv~ ~ak r~v"rSff
puIsff poW"r dissipation in avalanchff
rffgion
~
---FkSM
'" '"
" r-...." I" ....
5 " ............
1\."
J
~,
1
as
~lrr:
~
" '~
"
..... ~
"
....
~~ 1"....
~~ ~~
~"c ~
~
~~
timff
\.....c:.t-Puls~ duration
;;O~~
~
"c
....
I"'-
"
....
~'t'
......
.......
I' -irs.
~
to
"'~
I'...
""'" ~ i'
Q2
Ql
""""
.....
~
.....
~
~ ....
~
"'
i'....
.........
...... j'-....
I-..
~
....
........
............
j'-....
....
.....
..
.....
~
"r-I"-I"-
.... ....1"- ""'I"10 duratIon (ms)
Q1
0.01
100
7Z10039
1000
typical values
I
I I
~
..;::: """'
t"" ~:::t--
-.. r-... ::::::
200
~~ ~ ......
/
::;::
~ ~ :::s
.........,;
I
BYX46-200(R
-3QO(R)
/
/ v -400(R)
v -SOO(R)
/v v -60O(R)
:;:
...,; ~K
=- '"
- I ' ""
~:: ~~
~'"
100
~~
~
--
50
20
2
6
5
II
10
20
50
100
200
VR (V)
II
1000
May 1969
BYX46
II
SERIES
7Z10045
1) 25°C
~l±t±:±:f.:rllIT~I
VR increases by about 0.1%tC with increasin91]
I
l
10
II
1
I
I
1
I
I
e ', , ~'1::"
E!
1
-- l'e
~S k- ~.S
"£ J£
fi __ -
IJ£
1J:>.c
~g
1 £
V
Ij
III
, II
II
~~
1
1
U
1
I
1/:-' 1~
g
0=
0
0
~-
,
0
("I')
CD
-.;t
f
~
0
0
,
-.;t
-
I
CD
I
.e
11
11
l-
I~
'~
0
0
ii
1
I
0
10
CD
I
f
T
><
;:...
CD
,
I'
Ij I'
0
0
I
i
II
I
I
-3
10
May 1969
250
II
500
750
1000 VR(V) 1250
7
l_____
BYX46 SERIES
600
\
IFS(RMS )
(A)
1 II II
1 I I II
Maximum permissible non- repetitive
r.m.s. forward current based on
sinusoidal currents (f= 50Hz)
\
\
\
1\
\
400
04695
-+
\
\
1FV\ f\
\
,
,
time
I-
each current pulse is followed by the IIcrest working reverse voltage
~
- - - - \--
-----
--- f-
,
I'
--
I FSM
1--
I"
-
.... _- 1--
1---- -
-I-
~
200
"-
"' "-
_.. - --- _.-
Iio".,
1000..
-
[""Io~
Tj =1650 C prior surge
1" 1
rI I
1
TT 1
o
2
0.001
0.1
0.01
08128
150
- - Tj =25°C --11-Tj ==165°C
---
~f-fI
)
1,
~
1
'I
U
I,
III 1--
I
I
1~
I
+
-I,
100
-
I
-j
.~
1.1
-f
'1 1
typ llmax max
VF ~ VF) VF
l
t
+ +
t
t- t
~-
---
.11
II
.
II
50
f
1
I
I IJIJ
'I J j
~IJ
It Ji}
j
a
8
-
I(
March 1978
~r...
a
2
4
5
7
Surge duration
(5)
10
BYX46 SERIES
Fast soft-recovery rectifier diodes with controlled avalanche
7Z10043
10
7Z10044
10
-~~
~IL,~~
~>'~~
~~
~~\~R
~P~A
~y i---"io"'
1./
~~~~
A ~V
I-"
./
/.'/
"
J,
...
/
~ :if;
V
~~~
~
'l~
.-'~
~v
I
~
/
./
0.1
~~~
~
~1""
VI
~
'\~
~~
~~
1..1-"
I
I
I
1A
!
lilt
• ,I
1/ ..... 1-"
I~
~mr
--
17
7.~
"
~I-
I
0.1
~
~
I
--+-I
0.01
1
10 _ dl (A/lis) 100
dt
t""
0.01
I
\
1
I
10 _dI (A/lIs) 100
dt
r-
08055
08056
Max. values
Max. values
Tj _25°C
)
)
1'00..
............. r-.... I)' ,...~,..
I~OA
r.... r...~
A~
1A
I"'!oO
~
............ 1'00....,
-...........:: :ZVvTt
....... ~
.............. .....
->~
......
~r-.. ""~i"
IF/~~~
-- -- ,
"'" ........... ........ ....."'"
~
......... .........
T
r--- j
-150 ·C
...
r......
r-..:::
~ I'-.. "r...
~
.......
1'-0
"'1'-0
~~
"'"
foO.;
1'-0
10
1
10
_ ~ (A/us)
dt
102
10
1
"I
(MarCh 1978
9
BYX46
II
SERIES
II
IRRM(A)
30
,-+- r- _Q! =200A//Js
-r- r- dt I...L
-r-r-- 100A//Js
......
1'0...
I I
,
I
-r- ....I
-f--
--
,
1\ \
1"0
.....
10A~s
~\
,
i""'r-,
i""' .... ~
5A/lJs I
IF(A) -20 r-i-- - 10 r-r- -0
I I
I
I
I
,,
~ ~JJ...
II
iE'
I
I
I
I I
f- -
1,/
I II
II J
If
..
,
!/
111/
[/
---
i""'iooo
;;:::~ ~r-r-,
10
Io...r--.... .... ....
-iooo VJ?=:::200 V
r-..r-~
.... r--....
~
~ i"'o ....
........
r-,
I' I""'"
....
r-~odv
r-.. r-Io.. r--~ 4.01"'"
....
~
I'
I
J
1
"'
20A//Js
...
....
I"""'~
0/1
...~
I_~
{eO~v
I
",/
f---'~ A/~s
.......
Nllf"'"
I I , , I
lew,
I
I-""
1".000
~
~
..... l'""o
I I
I I
''6ct.,~.;z.
,
1".000 ....
1
I
v~'k
1.I~~
, ,
/
/
./
~
IL
./
20
PRAV
- - lj=25°C
j
~
J
IF =forward current i
just before switching-off
, I
I
I
~
I
~- r-r-
If
"'10..
I I f
r20A//Js
'
20
I
I\.
50A/~r-,
-f-
1
1\
7Z10041
I
:z:'"
J
J./
1/1/
r- If'/ ./ ,
,..'1"
I
f
I
I
1
I
Nomogram: Power loss PRAV due to switching only (square wave operation)
10
II
II
May 1969
BYX46 SERIES
Fast soft-recovery rectifier diodes with controlled avalanche
oa96
f-- I--
- F=
--
~-.
-- -- 1--
f----
---
f---I--
10
1.0
I""
----
1---"1'
l/
0.1
~
",.
0.01
/
V
2
10jJs
5 7
2
100jJs
5
7
5
lms
7
2
10ms
5
7
2
lOOms
5
7
5 7
ls
March 1978
105
11
BYX49
II
SERIES
SILICON RECTIFIER DIODES
Plastic -encapsulated rectifier diodes intended for power rectifier applications.
Normal and reverse polarity types are available.
QUICK REFERENCE DATA
BYX49- 300(R)
VRRM
Repetitive peak reverse voltage
300
max.
I 600(R) I 1200(R)
I 600
11200
V
Average forward current
IF(AV)
max.
6
A
Non-repetitive peak forward current
IFSM
max.
40
A
MECHANICAL DATA (see also page 2)
Dimensions in mm
SOD-38
5,2_/
,..max
metal base
plate
18,0
max
j
r-
' -L!;;;;;;;=::r=F=i=I=1=='I-'
4max
not tinned
2,5
--t
+
14,5
min
1_
--.
tag1
tag2
0,65 __ __
max
5,0
....
---.1
I
3,1 . -
'1 _ _
2,5-
The exposed metal base-plate is directly connected to tag 1.
e:
~
Products approved to CECC 50 009-011, available on reguest
January 1980
II
11. -
.-
1,2
max
7Z60001.5
BYX49
SERIES
II
II
MECHANICAL DATA (continued)
Net mass: 2,5 g
Recommended diameter of fixing screw: 3,5 mm
Torque on screw
when using washer and heatsink compound: min. 0,95 Nm (9,5 kg cm)
max. 1,5 Nm (15 kg cm)
Accessories:
supplied with device: washer
available on request: 56316 (mica insulating washer)
POLARITY OF CONNECTIONS
BYX49-300
to BYX49-1200
Base-plate:
Tag 1
Tag 2
2
cathode
cathode
anode
II
BYX49-300R
to BYX49-1200R
anode
anode
cathode
II
November 1975
BYX49
II
SERIES
All information applies to frequencies up to 400 Hz.
RATINGS Limiting values in accordance with the Absolute Maximum System (IECI34)
BYX49-300(R)
Voltages
600(R)
1200(R)
Cont inuous reverse voltage
VR
max.
200
400
800
v
Crest working reverse voltage
VRWM
max.
200
400
800
V
Repetitive peak reverse voltage
(6 = 0,01)
VRRM
max.
300
600
1200
V
Non -repetitive peak reverse voltage
(t :s 10 ms)
VRSM
max.
300
600
1200
V
Currents
Average forward current (averaged over
any 20 ms period) up to T mb = 85 °c
IF (AV)
max.
6,0
A
= 120 °c
IF (AV)
max.
3,0
A
at Tamb = 50 0 C
IF(AV)
max.
1,1
A
Forward current (d. c. )
IF
max.
9,5
A
R. M. S. forward current
at Tmb
without heatsink;
IF(RMS)
max.
9,5
A
Repetitive peak forward current
IFRM
max.
20
A
Non -repetitive peak forward current
(t = 10 ms; half sine wave)
T j = 150 °c prior to surge
I 2t for fusing (t = 10 ms)
IFSM
I 2t
max.
40
A
max.
8,0
A 2s
Temperatures
Storage temperature
T stg
Junction temperature
Tj
February
~~_I
-55 to +125
max.
150
°c
°c
3
BYX49
SERIES
II
"
THERMAL RESISTANCE
From junction to mounting base
Transient thermal impedance; t
= 1 ms
Rth j -mb
4,5
°CjW
Zth j -mb
0,3
°CjW
Rth mb-h
1,5
°CjW
Rth mb-h
Rth mb-h
2,7
2, 7
°CjW
°CjW
Rth mb-h
5
°CjW
Influence of mounting method.
1. Heatsink mounted
From mounting base to heatsink
a. with heatsink compound
b. with heatsink compound and
56316 mica washer
c. without heatsink compound
d. without heatsink compound;
with 56316 mica washer
2. Free air operation
The quoted values of Rth .i -a should be used only when no other leads run to the
tie-points.
From junction to ambient in free air
mounted on a printed circuit board
at a = maximum lead length
and with a copper laminate
a. > 1 cm 2
Rth j -a = 50 °CjW
b. < 1 cm 2
Rth j -a = 55 °CjW
0
1
1~1~
a
~
7777 77
7777
7Z6231S.1
at a lead -length a = 3 mm
and with a copper laminate
c. > 1 cm 2
d. < 1 cm 2
Rth j -a
Rth j-a
= 55
= 60
°CjW
°CjW
!~
•
4
II
7Z62314
II
October 1972
II
II
BYX49
SERIES
CHARACTERISTICS
Forward voltage
IF
= 20 A;
Tj
= 25
0C
VF
<
Reverse current
<
200
jJA
SOLDERING AND MOUNTING NOTES
1. Soldered joints must be at least 2,5 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is 270 oC;
contact with the joint must not exceed 3 seconds.
3. The devices should not be immersed in oil, and few potting resins are suitable for
re-encapsulation. Advice on these materials is available on request.
4. Leads should not be bent less than 2,5 mm from the seal; exert no axial pull when
bending.
5. For good thermal contact heats ink compound should be used between base-plate and
heatsink.
1) Measured under pulse conditions to avoid excessive dissipation.
November 1975
II
5
BYX49
SERIES
II
II
OPERATING NOTES
Dissipation and heatsink considerations:
a.
The various components of junction temperature rise above ambient are illustrated
below:
junction
mounting
base
Rthj-a
heatsink
7Z66853
ambient
b.
The method of using the graph on page 7 is as follows:
Starting with the curve of maximum dissipation as a function of IF(AV)' for a particular current value trace upwards to meet the appropriate form factor curve. Trace
horizontally until the Rth mb-a curve is reached.
Finally trace upwards from the Tamb scale. The intersection determines the
Rth mb-a required.
The heatsink thermal resistance value (Rth h -a) can now be calculated from:
Rth h-a
= Rth mb-a
- Rth mb-h
Any measurement of heatsink temperature should be made immediately adjacent to
the device.
c.
The heatsink curves are optimised to allow the junction temperature to run up to
150 °c (Tj max) whilst limiting T mb to 125 °c (or less).
6
II
II
October 1972
BYX49
II
II
SERIES
7Z59990 2
interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures
iF(RMS)
a=
IF(AV)
15
Ptot
(W)
I
1,~
2,~
10
-
r--
1/ /
0=4 ,
-
I
I
I
'\
I(
V
J
VJ
"
,
........
~
I JV/
'/ /
" '"
..... ~
I
ih
:fA V
(
\.
.....
~
,
T
'" , ,"" ~,
f' " ", ......... ,'\ \. \ ,
a
~
J I
5
~~
\{'-- ~~-4:,."6~\\
"
~
~
V/ V
J
8 2,5
..pI
1,6
lj '/
"-
"I",
........
~
'I'\..
1\ ~
\ \
\ \
..... ~,
............
~
1as
.....
".\ ~ ~,
.......... ~.....
4~
12~
~ ~\
t': ~~
~~
a
a
2,5
5
I F1Av ) (A)
7,5
a
50
100
0
Tamb ( C)
150
7Z66652 1
3
iF(RMS)
IF(AV)
I
a=
P
(W )
I
II J
II
'(
J
I
"-
II
0~4t 2,8 '-1,91 f-~1,6
I
2
I
I
II J
., I.
IJ 1/
J/~
5~
'\
i"'o..
IlL
"-
I I I I
.....
'\
I
I'
I I J I
I
I
I
I
I I
I
I
~
V
'" " '" "
""
V
1'\
......
.....
III
,.,J
'I
'(
IfIf
'J
I
I
I
I
I
I
mounting method 20
......
II'
II
I
If I
,"" ,
II II
J
II
J II
'I
interrelation between the power (derived
from the left-hand graph) and the maximum permissible ambient temperature
'\
r\..
2b; 2c
)d
/"
/"
/"
,1)'1
~"
,,'\"'1
1\..'\'
"'"l"I'~'
,[','\
...... ~"
..... ~
~
~
'/.
rJ'I'
~
~
a
a
November 1975
•
~
r.fII
IF(AV) (A)
II
2
a
50
100
"" ,
7
BYX49
II
II
SERIES
7Z59969
100
I II
maximum permissible non-repetitive
peak forward current based on
sinusoidal currents (f = 50Hz)
IF~----~ : : :
75
\
each current pulse is followed by
the crest working reverse voltage
\
\
\
so
\
I'
'""'"",-
25
~=125°C (prior to surge)
r-..... 1--0
r--
duration (5)
10
7Z599881
30
I I
I
I
I
--Tj= 25°C - -- --Tp= 1500C --
IF
(A)
I
typ
20
I
II
II
II
11
I
~
II
I'
/
J
I
I
10
I
I
I
I
I
I
I
I
max
I
I
III
I
I'
I
.,
/,
f/
'-
J
I
o
o
8
II
LZ~7
2
VF(V)
4
II
October 1972
BYX49
II
SERIES
10 2
1Z66851 1
Zth j-mb
(oC/W)
10
-~
V
V
./
10- 1 ....,..".
V~
If'
October 1972
II
ime (s) 10 2
9
j
BYX50 SERIES
--------------------------------------------------~
FAST SOFT-RECOVERY RECTIFIER DIODES
Also available to BS9331-F028
Silicon diodes in DO-4 metal envelopes, intended for use in high-frequency power
supplies, thyristor inverters and multi-phase power rectifier applications. The series
consists of the following types:
Normal polarity (cathode to stud): BYX50- 200, 300
Reverse polarity (anode to stud): BYX50-200R, 300R
These devices feature non-snap-off characteristics.
QUICK REFERENCE DATA
BYX50-200(R)
Repetitive peak reverse voltage
300(R)
VRRM
max.
Average forward current
Ip(AV)
max.
7
A
Non-repetitive peak forward current
IpSM
max.
80
A
Reverse recovery time
trr
<
100
ns
200
:I)O
MECHANICAL DATA
V
Dimensions in mm
DO-4, Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 9.5 mm
1,0
0,8
U--
10-32UNF . .
J
4,83 ~
max ~
+
max
*~w')~))
40
I
___1,6
I l.
min
~
I
e
I
-11,0- . 3,2 __
max
_9,3_
max
____ 11,5 __ ,.......----- 20,3· _ _----1... 1
10,7
max
7Z65355.2
Net mass: 6 g
Diameter of clearance hole: max. 5. 2 mm
Accessories supplied on request:
56295 (pTFE bush, 2 mica washers, plain washer, tag)
The mark shown applies to the normal polarity types.
Torque on nut: min. 0.9 Nm
(9 kg cm)
max. 1.7 Nm
(17 kg cm)
I
January 1980
BYXSO
SERIES
II
II
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
BYX50-200(R)
300(R)
Non-repetitive peak reverse voltage;
t :5 10 ms
VRSM
max.
250
350
V
Repetitive peak reverse voltage
VRRM
max.
200
300
V
Crest working reverse voltage
V RWM
max.
200
300
V
VR
max.
200
300
V
7
4
A
A
Continuous reverse voltage
Currell1s
Average on -stu1 C ClIITcnt assuming zero
switching losses (averaged over any 20 ms period)
up to T mb = 103°C
at Tmb = 125°C
IF(AV)
IF(AV)
max.
max.
R. M. S. forward current
IF(RMS)
max.
11
A
Repetitive peak forward current
IFRM
max.
80
A
Non-repetitive pcok forward current
t =: 10 ms; T j =: 150°C prior to surge
with rcopplied VR WMmax
r2 t for fusing (t = 10 ms)
IFSM
12 t
max.
80
A
max.
32
A2s
Rote of change of commutation current
See nomogram on page 5
Temperatures
Storage temperature
T stg
-55 to +150
°e
Junction temperature
Tj
max.
oe
150
THERMAL RESISTANCE
From junction to ambient in free air
50
oe/W
Rth j-mb
3,5
°e/W
Rth mb-h
0,5
°C/W
Rth j-a
From junction to mounting base
From mounting base to heatsink
Transient thermal impedance; t = 1 ms
Zth j-mb
2
II
°e/W
November 1975
II
II
BYXSO
SERIES
CHARACTERISTICS
Forward voltage
= 20 A; Tj = 25 °c
V 1)
VF
<
1,95
IR
<
3
trr
<
100
ns
IF = 1 A to VR = 30 V;
-dIF/dt = 35 A/fls; Tj = 25 °e
Recovery time
trr
<
150
ns
IF = 2 A to VR = 30 V;
-dIF/dt = 20 A/fls; Tj = 25°C
Recovered charge
Qs
<
250
ne
IF = 2 A to VR = 50 V;
-dIF /dt = 2 A/fls; T j = 25 °e
Max. slope of the reverse recovery current
IdIR/dtl
<
5
IF
Reverse current
VR
= VRWMmax; Tj = 125 °c
rnA
Reverse recovery when switched from
IF = 1 A to VR = 30 V;
-dIF /dt = 100 A/fls; Tj
Recovery time
IF
= 25 °c
A/fl s
IF
•
time
• i
10%
100%
~
IR
1) Measured under pulse conditions to avoid excessive dissipation.
______________ J
I
3
BYX50
II
SERIES
II
7Z67278 1
15
p=
P
power dissipation excluding
switching losses
I I
'F(RMS)
a=
'F(AV)
(W)
~
I
a= 2,4
L
10
11
.1.1 II V
'-1 ·11
1,751. 111,6
'I.
~
11L
'I
IL
1'00.
1 IL
V 'I,
If
" ......
I""
'" "- , :'"
......
,...
....
IL
"'
"
I"
" ... , ,-1\~1>\\
\
\
~
~
~6'
~
e
I'
~JO
'"
1'00.
'"
"
I'\.
"
1'\
L'Il
I""
" r..I'"
~
1\
"1'0."
~
1\ \
132,5
~
1 .....
I"ooo.~
,,~
III
I~
I\. ,
L'."
I"'::S
".
1\,1\
•
.'11'\1\
I
0
o
,
"
l'-
I""
~
~'(l
~
~
II
~
i"
.....
l\.
1,\
~
~
"-
115
\.
,
I\.
.....
rt
(
1"
~
1'0 .../,,/~,"
II
,_ 1
lj 0
I
~'" ~
I
l) ~_
t-1i0?(f 1
I\.
J/~
5
5
2,5
97,5
interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures
7,5 0
100
50
IF(AV) (A)
60
0
Tomb ( C)
N 150
15 o
7Z67276
11
1
II
J
-,
IF
(A)
'I
I
'II
t
LL
I'
1
lL
~
40
L!
II
J,
.'1
'L
I
If
L
I!
'1
1/
.....~ r
~1 Ilk
t- qh
,
20
II
S
JIL
I
,
I
o
4
I
:L
T j =25 °c trTj = 1500C t-
llL
Il"
I"':~ 10'
o
I
2
I
1
V F (V)
11
4
November 1975
11
BYX50
II
SERIES
7Z110L.51
100
maximum allowable non-repetitive
r.m.s. forward current based on
sinusoidal currents (f=50Hz)
F5
IFM---------I
"
~----hl~5IRM5I
\
I
1\
IFS(RMS)
V IFsM
\
(A)
\
time
each current pulse is followed by the
crest working reverse voltage
1\
"
I\.
'\.
,
50
"
............
..... 1"-
Tj=150oC (prior to surge)
............... ~
-
-~ ~I--
r- -- -~
duration (s)
.,...."""
"
50
-l"- t-_
1-"""
I
11)
r-...
II
,
"-
""
.....
-l- I--
"'
.....
0
I
2,5
1--1t--
II II
I I I I
February 1978
I
I
II
I I
I I
I
I
II
/
~
.... "
~
V
V
,,-~
~
V
\.~~~
V
r-_~W===100V-
"'t"-t.... -I-I"-
.....
,,-
.... "
,,-"
.... "
....
1IiS:~~
i'.
V
L
1/
/
/
V
\
10 I - t - IF (A) 1-1- -5
I--f-
~
?::Jr;::::,~
/
I\. \
-r-::i!
IF = forward current
just before switching
off; Tj=150 °c
1/
fa
-. l~
'V
If
........ l'.\'
-dI/dt 5A/(Js
1--1-
"1
II
:1
I II
I
I I
r-...
..... 1'-
1"--
7Z672771
~J
..... '--1 f-h
20
10
I,
$
r-- ....
I
~~
I
r-- .....100
,10
.....
i""-
'"
1T'"t-;--
.....
i'.
f"'oo
\t-j--+--
1"'t....
1000(R)
1200(R)
1400(R)
600
800
1000
1200
1400
V
750
1000
1250
1450
1650
V
~
~-----------,v~------------~
Average forward current
'F(AV)
max.
48
A
Non-repetitive peak forward
current
IFSM
max.
800
A
Non-repetitive peak reverse
power dissipation
PRSM
max.
40
kW
Dimensions in mm
MECHANICAL DATA
Fig. 1 DO-5
15,3 max
1/4
in x 28 UNF
_t
i_f===/===r-1
6,35
max
8,0
max
--f+-
+1--------'_
~13,O i.-
t
min
(flat)
2,2 --..
max
_
-4--:
___ 5,0 . max
11,5_1......t------25,4------l...~1
10,7
max
Net mass: 22 g
Diameter of clearance hole: max. 6.5 mm
Accessories supplied on request:
56264A (mica washer, insulating ring, tag).
-17,07275506. ,
Torque on nut:
min. 1.7 Nm (17 kg em),
max. 2.5 Nm (25 kg em).
Supplied with device: 1 nut, 1 lock washer.
Nut dimensions across the flats: 11.1 mm.
The mark shown appl ies to normal polarity types.
'I
September 1979
+-
BYX56 SERIES
l_ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC134)
-+
Voltages*
BYX56-600(R)
Crest working reverse voltage VRWM
max.
Continuous reverse voltage
max.
VR
SOO(R)
1000(R)
1200(R)
1400(R)
600
SOO
1000
1200
1400
V
600
SOO
1000
1200
1400
V
~------------~v~--------------~
Currents
Average forward current
(averaged over any 20 ms period)
uptoT mb=112 0 C
at T mb = 125 °C
IF(AV)
IF(AV)
max.
max.
4S
40
A
A
R.M.S. forward current
IF(RMS)
max.
75
A
Repetitive peak forward current
IF RM
max.
450
A
Non-repetitive peak forward current
t = 10 ms (half sine-wave);
Tj = 175 0c prior to surge;
with reappl ied V RWMmax
IFSM
max.
SOO
A
12 t for fusing (t < 10 ms)
12 t
max.
3200
Repetitive peak reverse power dissipation
t = 10 IlS (square-wave; f = 50 Hz);
Tj = 175 °c
PRRM
max.
6.5
kW
Non-repetitive peak reverse power dissipation
t = 10 IlS (square-wave)
Tj = 25 °c prior to surge
Tj = 175 0c prior to surge
PRSM
PRSM
max.
max.
40
6.5
kW
kW
-55 to +175
°C
175
°C
Reverse power dissipation
Temperatures
Storage temperature
T stg
Junction temperature
Tj
max.
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
O.S
°C/W
From mounting base to heatsink
Rth mb-h
0.2
°C/W
Transient thermal impedance; t = 1 ms
Zth j-h
0.03
°C/W
*To ensure thermal stability: Rth j-a
2
September 1979
(
< 2.2 °C/W (a.c.)
BYX56 SERIES
Controlled avalanche rectifier diodes
CHARACTERISTICS
Forward voltage
IF= 150A;Tj=25 0 C
VF
Reverse avalanche breakdown
voltage
IR = 5 mA; Tj = 25°C V(BR}R
Reverse current
VR = VRWMmax;
Tj = 125 °C
IR
BYX56-600(R} BOO(R}
1000(R}
1200(R)
1400(R)
<
1.B
1.8
1.8
1.8
1.8
V*
>
750
1000
1250
1450
1650
V
<
2000
2000
2000
2200
2400
V
<
1.6
1.6
1.6
1.6
1.6
mA
*-
OPERATING NOTES
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum by using a thermal
shunt.
08494
600
T(25 to 175°C
400
J
"
"
J
~I
./!
~I
~I
E:
,I
200
II
IJ
o
I,;
o
J
II
2
4
Fig.2
*Measured under pulsed conditions to avoid excessive dissipation.
September 1979
3
~~~mjl_________________
7259128
p= power excluding avalanche losses
interrelation between the power
(derived from the left hand graph)
and the max. allowable temperatures
a= IFIRMS)
I F1AV )
, ,
P
(W)
T
Rt~ ~b~a~
) d.c.
'" f\. "I ,0.2°C/W
1\
100
1/
"j
V
If
1.9J
IV
')
2.8 If
II If.
50 .... 1- a=4II 1/
I
II 11f)
'" '" 1
J
,
I\.
..... 1.5
/
~
~
r-...2
1\
~
~
I\.
I\.
f\.
110..
I\.
r-...
,,4 I'.
J ) '1/1/
il 'j,rj
51'-0.
""-
'j~
...
~
~
r"-Io...
....1'
~
.....
/
25
75
50
a
100
~~
..... '-.:1'... 1'1,. , \ .
1'0",
..... 1"0 ~"\'
t--. .....
,["iii
LX~~
t.....
!ooo,
135
1\
.....
~
HJ.
V
95
1../
1\
,
"
'" "
,",
""
~
""'"' ""- ,
1/
1.6
,{l.5
50
~~x
100
150
Tamb(OC)
IF(AV) (A)
Fig.3
7Z11065
5
PRSM
(kW)
maximum allowable non repetitive peak
reverse pulse power dissipation in
-""""""100..
r-.. r--.~
r-..
~ r-..... r--.~ "" ~
.......
.........
1'-0..
2~
a.valanche region
.......
PR~
:-'1-0
10
......
5
"" '""""'" I"t---
......
"- ........... .......
I"'....... 1'-,
..............
1'~
2
'""
~
--PRSM
.......
r-.
"
t.~~
~1'.. ""
""r-
~~" ~
"" ~
°c
J'..
~ 1S0
......
"'" I......
5
.........
4
September 1979
r
1
Fig.4
,..
"
,,~
!!"oJ'>$:
"'X
l'o
t"-"
r-...t"- ,....
..... "-.
1"0
21-----
time
pulse duration
-.l
K'<§~
f"".",
I'l'o
175
200
,..
~ I\..
10 pulse duration(ms)
BYX56 SERIES
Controlled avalanche rectifier diodes
7Z59129
80
I square pulse
I f=50Hz
"~
1'0.,
60
f'...
P RRM =
20kW.I
40
~
/
:/
j
/
'(
/
/
V
V
V
/
I-'
/'
/
/
71
V
/
V
/
51/
/
"
J
>-...
i'
3/
/
/""
V
',-
II
/
J
r--
10}
1/
/
)r-...
/
15/
L
20
.......
/
'(
It
/
.... /
V
2
/
./
r-.....
1/,
V
.... ~
f--
0.2
10
square pulse duration (ms)
Fig.5
7Z59130
80
I square
I
60
~
\.
\
II\,
L \
I
I
40
I\,
'-
i'l_/P
50kW
/
I,
\.
RRM =
20
pulse
f=400Hz
I
I
~
20
~
J
V
/
,.../
10
:.1
""'~ I
/
7L
""'- .... )-orV
2T- ~ f-0.5
0.1
10
square pulse duration (ms)
Fig.6
6T = neccessary derating of Tjmax to accommodate repetitive transients in the reverse direction.
Allowance can be made for this by assuming the ambient temperature 6T higher.
September 1979
5
l____
BYX56 SERIES
7Z11069
1500
maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents (f=50Hz)
IFS(RMS)
(A)
1250
~~dU'OtionQ
1\
\
.~
1000
I\.
\
each current pulse is tollowed by the
crest working rever5e voltage
I\,
750
t
\
1\
""
500
I"...
........
,
1""'""
250
Tj
= 175°C(prior to
r--o-..
---
'"-
I-
surge)
r-- t-duration (s)
10
Fig.7
n11066
10
Zth J-h
(OC/W )
transient thermal impedance from
junctionto heatsink versus time
~
~i-"
V'
I
I
t--r-
~t
-f-H+t+
!lil,
! I
-±,
./
~"..
./
:2
r-
---
!
1
3
10
Fig.S
6
September 1979
(
103 time (ms)
104
BYX71
II
SERIES
FAST SOFT-RECOVERY RECTIFIER DIODES
Silicon double-diffused rectifier diodes in plastic envelopes. They are intended for use
in chopper applications as well as in switched-mode power supplies, as efficiency diodes
and scan rectifiers in television receivers. The devices feature non -snap-off characteristics. Normal and reverse polarity types are available.
QUICK REFERENCE DATA
BYX71-350(R)
Repetitive peak reverse voltage
VRRM
max.
600(R)
v
~_6_0~0
A verage forward current
Ip(AV)
max.
7
A
Non-repetitive peak forward current
IpSM
max.
60
A
450
ns
Reverse recovery time
<
MECHANICAL DATA (see also page 2)
Dimensions in mm
SOD-38
1~11,omax-1
•
1
-
5,2_
max
1
3,7 _
3,6
•
fF=i=*==t====:i'I5,3
5,0
metal base
plate
t
18,0
max
j
r-
t-L!::::::r=;r=f:=;rt=r=::::Y~
4max
not tinned
+
14,5
min
J_
-.
tag1
5,0
...
tag2
0,65-. ... '
max
I
_13,1 __
'1-..11__ max
1,2
2,5-
The exposed metal base-plate is directly connected to tag 1.
November 1975
II
--
7260001.5
BYX71
II
SERIES
II
MECHANICAL DATA (continued)
Net mass: 2,5 g
Recommended diameter of fixing screw: 3,5 mm
Torque on screw
when using washer and heats ink compound: min. 0,95 Nm (9,5 kg cm)
max. 1,5 Nm (15 kg cm)
Accessories:
supplied with the device: 56355 (washer)
available on request: 56316 (mica insulating washer)
POLARITY OF CONNECTIONS
BYX71-350
and BYX71-600
Base-plate:
Tag 1
Tag 2
2
cathode
cathode
anode
II
BYX71-350R
and BYX71-600R
anode
anode
cathode
II
BYX71
II
II
SERIES
RATINGS Limiting values in accordance with the Absolute Maximum System (IECI34)
BYX71-350(R)
Voltages
600(R)
Continuous reverse voltage
VR
max.
300
500
V
Working reverse voltage
VRW
max.
300
500
V
Repetitive peak reverse voltage (6 s 0,01)
V RRM
max.
350
600
V
Non -repet itive peak reverse
voltage (t :::: 10 ms)
VRSM
max.
350
600
V
Currents
Average on -state current as suming zero
switching losses
(averaged over any 20 ms period)
square wave: 6 = 0,5; up to Tmb = 85°C
without heatsink at T amb = 50 °c
IF(AV)
IF(AV)
max.
max.
1,4
A
A
= 85 °c
IF(AV)
max.
6,5
A
R. M. S. forward current
IF(RMS)
max.
10
A
Repetitive peak forward current
IpRM
max.
25
A
Non -repetitive peak forward current
half sine wave; t = 10 ms; Tj = 150°C prior
to surge
square pulse; t = 5 ms; T j = 150°C prior to surge
IpSM
IpSM
max.
m!lx.
60
60
A
A
dI
max.
50
A/[Js
sinusoidal:
at T mb
Rate of change of commutation current
-d"t
7
Temperatures
Storage temperature
T stg
Junction temperature
T·
J
October 1972
II
-55 to +125
max.
150
°c
°c
3
BYX71
SERIES
II
II
THERMAL RESISTANCE
From junction to mounting base
Transient thermal impedance; t
= 1 ms
Rth j-mb
6,5
°C/W
Zth j-mb
0,3
°C/W
Rth mb-h
1,5
°C/W
Rth mb-h
Rth mb-h
2, 7
2,7
°C/W
°C/W
Rth mb-h
5
°e/W
Influence of mounting method
l. Heatsink mounted
From mounting base to heatsink
a. with heatsink compound
b. with heatsink compound and
56316 mica washer
c. without heatsink compound
d. without heatsink compound;
with 56316 mica washer
2. Free air operation
The quoted values of Rth j -a should be used only when no other leads run to the
tie -points.
From junction to ambient in free air
mounted on a printed circuit board
at a = maximum lead length
and with a copper laminate
a. > 1 cm 2
Rth j -a
b. < 1 cm 2
Rth j -a
0
= 50
= 55
°C/W
°C/W
i
t ) ~ ~
a
~
////
/ / '/////
7262315.1
at a lead -length a = 3 mm
and with a copper laminate
c. > 1 cm 2
d. < 1 cm 2
Rth j-a
Rth j -a
= 55
= 60
°C/W
°C/W
:J;l
•
7262311.
4
II
II
October 1972
BYX71
II
SERIES
SOLDERING AND MOUNTING NOTES
1. Soldered joints must be at least 2,5 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is 270 °C;
contact with the joint must not exceed 3 seconds.
3. The device should not be immersed in oil, and few potting resins are suitable for
re-encapsulation. Advice on these materials is available on request.
4. Leads should not be bent less than 2,5 mm from the seal; exert no axial pull when
bending.
5. For good thermal contact heatsink compound should be used between base-plate and
heats ink.
CHARACTERISTICS
Forward voltage
IF = 5 A; T j = 25
°c
<
1,25
<
0,4
rnA
<
<
700
450
<
5
nC
ns
A/\ls
V
1)
Reverse current
Reverse recovery when switched from
IF = 2 A to VR = 30 V with
-dIF/dt = 20 A/j.lS; Tj = 25 °C
Recovery charge
Recovery time
Max. slope of the reverse recovery current
with -dIF/dt = 2 A/flS
,
10%
time
i
100°/0
~
1) Measured under pulse conditions to avoid excessive dissipation.
February 1978
II
5
BYX71
SERIES
II
II
CHARACTERISTICS (continued)
Forward recovery when switched to
IF = 25 A with tr = 0, 51ls at Tj
Recovery time
Recovery voltage
= 25
°C
<
<
0, 8
3,5
!lS
V
7Z67044.2
90%
10%
time
--
tr
..-
-4--tfr-
time
Forward output waveform
6
II
II
November 197.<;
BYX71
II
SERIES
OPERATING NOTES
Dissipation and heatsink considerations:
a.
The various components of junction .temperature rise above ambient are illustrated
below:
junction
mounting
base
R thj - a
heatsink
7Z62955
ambient
b.
The method of using the graph on page 8 is as follows:
Starting with the curve of maximum dissipation as a function of IF(AV)' for a particular current trace horizontally to meet the appropriate form factor; upwards to the
operating duty cycle (6) line; horizontally until the Rth mb-a curve is reached.
Finally trace upwards from the T amb scale. The intersection determines the
Rth mb-a required.
The heatsink thermal resistance value (R th h -a) can now be calculated from:
Rth h-a == Rth mb-a - Rth mb-h
Any measurement of heats ink temperature should be made immediately adjacent to
the device.
c.
The heatsink curves are optimised to allow the junction temperature to run up to
150 °c (Tj max) whilst limiting Tmb to 125 °c (or less).
October 1972
II
7
BYX71
II
SERIES
II
CHOPPER APPLICATIONS
I~
7Z67042
1 1
I
I I
tp
0=T
1>'
~
°0
I'-T-.1
V
1 1
J
1
I
I
1 1
0=0 1
1
1p
/0,25
0,50
/V"
/IL LO,75
'-
f-I--
t
-1---
V-
r-....
I"-
P
'"
·(W)
i"
~l
I
r-I-- ._-
c-±=-
~.-
'-
t'\.
'1'\
" ""
1"'\
"~ . . ./O~ "
0-
.......
..... to-..
5
........
~
1'\
c9.
.............. ./S
II
<0
i'
85
,,~{;S~~~
-f- :"'Ioi;. 1--1 - I-f-
II
II
I~~
"--20
"J.~ (>
"
........
......
1'\
'-
"""
,,,
"\
1"'\
r-.... ...........
......
I'l" .....
....... ...........
"
,
P (W)
f--?
II
,
'!
~
N
N
:;;;:: - 0:.
...-i'-\O . ...-i
II
. cd
-...-i'
~
.",
.i/
..... ~
I
I
.d. ....
~~
~
...
AI~
,
'"
......
......
'\.1\. \,
i"\
...... ~
..... ;::::.
~
o r-f-
"-
.....
......
.......
...... .......
......
......
......
.......
'\ '1\
......
~
1\.."\ ,\ \
......
\ 1-'1\
i"
.....
.,
,
25
f-- r-
50 -
f-f-
r
•
k-
125
75 -f- -100- f- -12 5
Tamb (OC)
..... r:;.- ~~V"
..-:;~
~~ ~I/
N~ ~" ,/
~~
5
-1
/
,/
~
Ip(AV)
(A)
/
Y
u
-d
I
10
a= Ip(RMS) per diode
Ip(AV) per diode
P = power excluding
switching losses
8
II
II
June 1974
BYX71
II
II
SERIES
SWITCHED-MODE APPLICATION
II
i - - W~J
v~~
t - - I- II
i-i--
IF~RMSl per diode
IF(AV) per diode
a
2
I
interrelation between the dissipation
(derived from the left hand graph) and
the max. allowable ambient temperature
II
~Uy;-~t7
,'I
II
P = power excluding
switching losses
J
7 Z62958
I
I
I
I
I
I
I
If~.g ~
I ~ Y:.v
i/'I>I-
If
"-
'1''1'
I
p
(W)
1Ii/1/1/
//V
II
I\..
I
I
I
1 1 1 I,
I I I I
I
I I
1 1
./; 2d
, ,I/'"
./
~
'/r/
"- \.
"I'
~~
V
),v
0.
IIh~
rl
""".".""."L,\
~
~~
~
'l[/
~/'
~
IbV
~
'/.V
'"
50
IF(AV) (A) 2 0
Tamb (OC)
SCAN RECTIFICATION
vfV~-~--tr
Ct
r-r-
i-fr'rt~
i- ~ 'I
r--
IF(A V) per diode
J
If
P = power excluding
2
switching losses
I
,
(W)
I
I,
I
1/1
J
'I
p
7-'i--
'V
-I--~ 'V'J'-h
-i-'n'
= lp(RMS) per diode
"
IIQ~
I VI
II I
I~{
i/'~
'r'
'I'
/'1'
~
"
,
\.
'--I--
I\.
"- '\..
"-
V
V
"""
,
" ",
/'
V
V
./
~I'\.
Ii/.
\.
"
...'\
//.. v.. V
.:\~
~
~~
~
~V
~V
,~
1/.'1'..
V~
./.r,/
~
~
o
October 1972
1
II
~
~;~;2C -r-
I\.
, IL. '~V
o
'"
100
interrelation between the dissipation (derived from the left hand graph) and the
max. allowable ambient temperature
I
I I I
I
I I I I I I I I I I I I I
-r-mounting method 2a
\..
-I--
IiI IV
'/
, I IIh
II r//.
..
7Z62957
--~~-I
l'j
20%
-I--
- 1-1--
V
/'
"-./
/1/ r/
I ) ~'l
o
o
1_ - I - -
~2b;2C= -r-
I\.
11/ / v
I11
I
I I
I Ihl dl 21 I
mountmg met 0
a
""
If y
IF(AV) (A) 2 0
50
T amb (OC) 100
II
~
'" "
9
BYX71
II
SERIES
II
7Z62961
60 I\.
"-\..
I FSM
(A)
40
maximum permissible non-repetitive
peak forward current based on
sinusoidal currents (f = 50 Hz)
,
\..
'"'"
V\-----~
IF
"."
:::
each current pulse is followed by
the working reverse voltage
I'...
I
"-......
I
""'" i"'.. 1"0
I
I
~
I I IIII
1 I ~ill1
I I IIIII
I
I I IIIII
I
°c prior to surge
Tj = 150
20
i'o..
............
..........
.... ....
....
-I"---
10
60
I
I
.I
I
I
(A)
--Tj=25 0 C
- I - - - T j =150 °c
duration (s)
10 2
7ZG29SG
I
-I-
IF
I-r-.
J
/
L
-r-
.
J
~t - I - r- >1~L
~Ii!if.
I 1$-
I"
40
f
1/
•
.
I
J
II
J
J
•
20
"
L'
l
/
IJ
'1
I
II
II
I
o
10
II
,,= .,.
o
,,,"
I'll'"
VF (V)
2
11
June 1974
BYX71
SERIES
II
7Z62960 1
I"... ,
I
iIo...~
I I Ko;..' I
I-~
I
~~
1"'""-1-
I
I
<-~
i"
1"'- ....
2A/IJS
,,
1\
.....
0,5A/fJS
10 IF(A) 7,5 r - - -r- 5 r-r- -
~~
'\';.1" I
1/
J
'\.
-r--,
~
v,*~
I'
1A/lJs
1/
j
. . .II/-_ r-f-~~
l\ \S'
.....
io'"
~
1. I tff!\~1
r-..:.0~
0
I ~S t-K.%
t"-o ....
~
I
~
\\
)
-O~ .
~~
~
,..
r-..
"
..... r--.
......
~
:
I I
I I T
200 ,;
t"-o ....
r-~
-...~
~
"""
1
I , 1
1,..- ....
-,...;:
......
J
boo
"
tVRW
I
_~OO V'--I--
I"'--~
t":""'i"'-o
......
"""
L,..oo ....
t- IR
I ...... ,...
......
t--..
~v
,
I--
......
So
I .....".
I .....
15
-......
I
~Ov
......
rbefore switching off I--~PR(AV)
r- Tj =Tj max = 150°C
r--t- (W)I
I I I
L,..oo
.1
0,5
I ,
... 1-"'"
.....
~~
~
~
.-.r ~_
~IF~
~ ~t\l- t:
dlO%
1-~
r- IF = forward current just
y..1, ,..
-~\'\Z-
1:::= ....
I!!!: ....
2,5 r-r--
./
V
,..
1/
'/
\Q¥~
V
~
"
Nomogram: power loss .6.PR(AV) due to switching only (to be added to forward
and reverse power losses).
7Z62346
10
7Z62348
--Tj=25 °c
---- Tj = 125°C
max. values
... ~
l-
_-- -.. ~"I- .........
..
I-
IF151
IF
.........
..... r--.
f= 1 MHz
Tj =25 to 1250C
....
5A=
~ I~": lJt~
I
b-.....
IF= 1A-
10- 1
r---.. r... ...... ~~
typ
10
r-
10- 2
1
10
February 1978
II
dI
- dt (A/Ils)
lO
VR (V)
11
BYX71
II
SERIES
10
IFhkdt
Qs
IR
II
7Z67039
.1
~
I I
T j =25 °c
max. valuel'1
-
- -
TT
IF =
""..
/
/
/'"
,/
/
/
/
/.
/ . ......
~ V.......
V/h v/ V'
)
j
.....
..... ~
-- 3t5~~
--~
-------
..... ~
~Ioo-~
I~A
i--- I--'"'
4A
I
2A1
AI--
~ ~~
V~~
~ ~~ ... ""
lI.
10- 1
10- 1
10
~V
/
~ :::::
..- ~~ ..-""1
,;' ..".
~
~
~
v~
.... ~
~
"..-
1/
./
~
.",.'
,."
10
dI
- dt (A/Ils)
7Z67040
IF~ -dt
IR
Qs
-_ T·J =150 0C
max. values
-
~
/
/
V
V
~~
::::~
~ I-
~ ..... ""..
....
/ , ; ' .JI"
..........
.///
~
/
.......
......-
-I-"
I".oo~""
...... ~
..... 100..... 100-
~
~
V
---
--
IF =
lOA
I
SAl--
I--'
I
~~
41A
~""~ f--- ~II -- 3A
~""~ :...-- ~
21
""----
lA-
~~
~
/~ ~
I/'
~~ Ii'?'~~
~
~
10- 1
10- 1
12
10
II
dI
- dt (A/jJs)
II
October 1972
BYX71
II
SERIES
7Z67041
lO
i""""
i"""
~~
V
.,;'
1/
j...--~
./
10- 3
October 1972
II
10 time (8) 10 2
13
________________________________Jl__
B_Y_X_96__
SE_R_IE_S__
RECTIFIER DIODES
Also available to BS9331-F129
Silicon rectifier diodes in metal envelopes similar to 00-4, intended for use in power
rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX96- 300 to 1600.
Reverse polarity (anode to stud): BYX96- 300R to 1600R.
I
QUICK REFERENCE DATA
Repetitive peak reverse voltage
BYX96-300
BYX96-300R
600 1200
1600
600R 1200R 1600R
max.
600
300
1200
I
1600
V
A
Average forward current
max.
30
Non -repetitive peak forward current
max.
400
A
Dimensions in mm
MECHANICAL DATA
Fig. 1 00-4: with metric M5 stud (cf>5 mm); e.g. BYX96-300{R).
Types with 10-32 UNF stud (cf> 4,83 mm) are available on request. These are indicated by the suffix U;
e.g. BYX96-300U{RU).
~
9,3 max
-.13,1i
..
min
7,6
max
~~~J _I
-.
... 3,5 ..
max
__ 10,28 ___
max
_
11,50
10,72
_ 1 ....
1-----
24,3 _ _ _-I.~I
7273129.1B
max
Supplied with device: 1 nut, 1 lock-washer
Nut dimensions across the flats', M5 thread: 8 mm, 10-32 UNF thread: 9.5 mm
Net mass: 7 g
Diameter of clearance hole: max. 5. 2 mm
Supplied on request: accessories 56295
(PTFE bush, 2 mica washers, plain washer, tag)
a version with insulated flying leads
The mark shown applies to normal polarity types
Torque on nut: min. O. 9 Nm
(9 kg em)
max. 1. 7 Nm
(17 kg em)
January 1980
BYX96
SERIES
II
II
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages 1)
BYX96- 300(R)
600(R)
1200(R) 1600(R)
Non-repetitive peak reverse
voltage (t :-:; 10 ms)
VRSM
max.
300
600
1200
1600
V
Repetiti ve peak reverse
voltage (6 :-:; 0,01)
VRRM
max.
300
600
1200
1600
V
Crest working reverse voltage
VRWM
max.
200
400
800
800
V
VR
max.
200
400
800
800
V
Continuous reverse voltage
Currents
A verage forward current (averaged
over any 20 ms period) up to T mb
= 125
°c
Ip(AV)
max.
30
A
R. M. S. forward current
Ip(RMS)
max.
48
A
Repetitive peak forward current
IpRM
max.
400
A
Non-repetitive peak forward current
(t == 10 ms; half sine-wave) Tj = 175 0c prior to surge;
with reapplied VRWMmax
2
r t for fusing (t = 10 ms)
IpSM
r2 t
max.
400
A
max.
800
A2s
Storage temperature
T stg
-55 to +175
°c
Junction temperature
Tj
max.
175
°c
1,0
°c/w
Temperatures
THERMAL RESISTANCE
Prom junction to mounting base
Rth j-inb
Prom mounting base to heatsink
without heats ink compound
Rth mb-h
0,5
°C/W
Rth mb-h
0,3
°C/W
Zth j-mb
0,2
°C/W
with heats ink compound
Transient thermal impedance; t
= 1 ms
1) To ensure thermal stability: Rth j-a :-:; 2 °C/W (continuous
:-:; 8 0C/W (a.c.)
Por smaller heats inks T j max should be derated. Por a. c.
Por continuous reverse voltage: if Rth j-a = 4 oC/W, then
if Rth j-a = 6 OC/W, then
2
II
reverse voltage) or
see page 4.
Tj max = 138 oc,
Tjmax = 125 0C.
I
Pebruary 1978
BYX96
II
SERIES
CHARACTERISTICS
Forward voltage
IF == 100 A; T j == 25 oC
VF
<
Reverse current
mA
<
OPERATING NOTES
1. The top connector should neither be bent nor twisted; it should be soldered into the
circuit so that there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
2. Where there is a possibility that transients, due to the energy stored in the transformer, will exceed the maximum permissible non -repetitive peak reverse voltage,
see General Section for information on damping circuits in Data Handbook Part SC lao
1) Measured under pulse conditions to avoid excessive dissipation.
November 1975
3
BYX96
II
SERIES
II
7Z72265 1
50
1-1- 1-1-
single phase: a = 1,6
3-phase
: a = 1,75
6-phase
: a = 2,4
p
IF(RMS)
IF{AV)
a=
(W)
I
1-1- 1-1-
1-1- f-I1-1- 1-1-
1/ 1/1
I I I I
0=2,41 I-~ f-1,7~ ~17 k"1,5
I.)
V
1/
I.'
~
!,Ii"
1/
1/
1/
II'"
;-
LI
i.oI'
II'"
.....
..... 1'
.... 1'
~
./
V
....
1
\
o
I I It-f-f~
'0' ~-I-I-
,
~--;"- I-~~~
I
,~
\.
\ ~ ~
L-I-
1\
~
~~
.l\,.
I\:
I
~
IY
I"\:
\
~
~
I'\:
~
I'
135
"_I-I-
~
1\
I\.
155
1\
1\ ,
~
I"\:
I'\:
1\\
I"
1"'1.1\..'\
"
I'
~,) T mb-scale
-~~
< ""'" , ,
I'
" ,
I"
." "
"'
'" "
'" "- ""1'1 , ,
~
~
1/
......... "'"
r-o..~
o
o
4
~
~
~
L,,;
,;'
I.'
\
1"1
~
1/
V
~
20
./
I'
~
I.'
I
I
i.I"
II'
II'
I.J"
I
III
I I
40
115
interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures
10
20
IF(AV) (A)
30 25
125
75
~
l""'Oii~lI{
N 175
175
Tamb (oC)
is for comparison purposes only and is correct only for Rth mb-a :56,5 °C/W
II
II
November 1975
600
\
II
"
\
7Z72264 1
IFV\
\
\
(A)
,
Ll
400
,
1\
SERIES
maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )
1\
IFS(RMS)
BYX96
~-IFSM
~-IFS(RMS)
time
I FSM
with reapplied V RWMmax
1\
"-
"'
200
.........
'"
~
Tj =175°C prior to surge
...........
-I'~
0
10- 3
10-2
10
-
1
duration (5)
1o
7272262.1
~Ll
Tj = 25°C
--_lj =175°C
~
;
200
I
/;
I
1
I'
t
yp I--
!
i
150
II~~ax
//
I
,
r--
'/
J
II
!
J
100
I
(/
Ii
"
ill
/I
I
50
:J
11/
,. "j
~~
o
o
November 1975
If/V
OJ
~~
_1__._._ . _ _ . _ .___ . _ _
2
3
I
5
BYX96
SERIES
II
II
7Z72263
10
",..
,..,
....-
...... 1-"''''
, ....
~
time (5)
6
II
II
10
November 1975
j
BYX97 SERIES
----------------------------------------------------RECTIFIER DIODES
Also available to BS9331·F130
Silicon rectifier diodes in metal envelopes similar to 00-5. intended for use in power
rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX97- 300 to 1600.
Reverse polarity (anode to stud): BYX97-300R to 1600R.
QUICK REFERENCE DATA
BYX97-300
BYX97-300R
Repetitive peak reverse voltage
1600
600 1200
600R l200R 1600R
max. 300
VRRM
600
1200
1600,
V
Average forward current
IF (AV)
max.
47
A
Non-repetitive peak forward current
IFSM
max.
800
A
Dimensions in mm
MECHANICAL DATA
00- 5 (except for M6 stud); Supplied with device: 1 nut, 1 lock -washer
Nut dimensions across the flats: 10 mm
15,3 max
M6
,_ I
8,0
6
max
max
+r-------'-
2,2-.
max
...
..... 5,0
L
-.13,0 i.min
(flat)
-17,0-
max
_
11,5_,.....t-----25,4---~.~,
10,7
max
Net mass: 22 g
Diameter of clearance hole: max. 6. 5 mm
Supplied on request: accessories 56264A
(mica washer, insulating ring, tag)
a version with insulated flying leads
The mar k shown applies to normal polarity types
7Z?5506.1A
Torque on nut: min. 1. 7 Nm
(17 kg cm)
max. 3.5 Nm
(35 kg cm)
'I
January 1980
BYX97
SERIES
II
II
RATINGS Limiting values in
accQ~dance
Voltages 1)
Non - repetitive peak reverse
voltage (t :s 10 ms)
Repetitive peak reverse
voltage (6 :s 0, 01)
Crest working reverse voltage
Continuous reverse voltage
with the Absolute Maximum System (IEC 134)
BYX97 - 300(R)
600(R)
l200(R) 1600(R)
VRSM
max.
300
600
1200
1600
V
VRRM
VRWM
max.
300
600
1200
1600
V
max.
200
400
800
800
V
VR
max.
200
400
800
800
V
Currents
Average forward current (averaged over
any 20 ms period) up to T mb :::: 120°C
at Tmb:::: 125°C
Ip(AV)
Ip(AV)
max.
max.
47 A
40 A
R.M.S. forward current
Ip(RMS)
max.
75 A
Repetitive peak forward current
IpRM
max.
550 A
Non -repetitive peak forward current
(t :::: 10 ms; half sine-wave) Tj :::: l50 0 C prior to surge;
with reapplied VRWMmax
IpSM
r 2t for fusing (t = 10 ms)
I 2t
max.
800 A
max.
3200 A 2 s
Temperatures
Storage temperature
Tstg
Junction temperature
Tj
-55 to +150 °C
max.
150 °c
THERMAL RESISTANCE
Prom junction to mounting base
Rth j-mb
Prom mounting base to heatsink
without heats ink compound
Rth mb-h
0,3 °C/W
Rth mb-h
0,2 °C/W
Zth j-mb
0,1 °C/W
with heatsink compound
Transient thermal impedance; t :::: 1 ms
1) To ensure thermal stability: Rth j-a :s 1 °C/W (continuous
:s 4 °C/W (a. c.)
Por smaller heatsinks Tj max should be derated. For a. c.
For continuous reverse voltage: if Rth j-a :::: 2 °C/W, then
if Rth j-a :::: 3 °C/W, then
2
II
0,6 °C/W
reverse voltage) or
see page 4.
Tj max:::: 138°C,
Tj max:::: 125°C.
II
February 1978
BYX97
II
SERIES
CHARACTERISTICS
Forward voltage
IF
==
150A;Tj =25 0 C
VF
<
1,45
<
4
V 1)
Reverse current
VR
==
VRWMmax; Tj
==
125 °C
rnA
OPERA TING NOTES
1. The top connector should neither be bent nor twisted; it should be soldered into the
circuit so that there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
2. Where there is a possibility that transients, due to the energy stored in the transformer, will exceed the maximum permissible non-repetitive peak reverse voltage,
see General Section for information on damping circuits in Data Handbook Part SC 1a.
1) Measured under pulse conditions to avoid excessive dissipation.
November
197~~
_____
3
BYX97
II
SERIES
II
7Z72282 1
60
single phase: a = 1,6
3-phase
: a = 1,75
6-phase
: a = 2,4
p
(W)
~f- f-I-
interrelation between the power (derived
IF(RMS) 1-1-1-1from the left-hand graph) and the maxia=
~f- f-IIF(AV) 1-1-1-1- mum permissible temperatures
120,
\ -I
T
1\ 1\
I
1
1,75) ~171,6
f\ T
1\
I I I
Tmb*)
,
1/
1 1
Ii
0=2,4"
40
J
"
"
1/
i
V
V
1/
1/1/
v
1/
~
I\.
I\.
,J
""" I\..
1/
,
1\
~
~ o,,_e-
I\..
\
"'-
~~
'"
I\~
""
~I':I'
138
'If
" \\
rT
[\
"'" ~
VV~
~'
'"
~""
I
144
1"\
~~
v-
o
Ir
\ 1\
"" I\..
"~
I/"",r;...
o
132
"
I\. ,
1\1\. 1\:' \ \
~
(OC)
126
1\
'\
\..
\ -I-
1\
1\
rt..l'\
I'
I~
-
\~....ll-
I\.~
~~
I"-
:"';
~tl-
1
..>- nO'
..i'N'1\
I\.
l'-~
~
$' I\..
~,J
T
[o~ ~
I\...>~f-,
~
1/
I";
1\
I\.
1..11.1
V
20
,
I"-'!\
, 20
40
IF(AV) (A)
60 0
100
50
1'-'1 150
150
Tomb (OC)
,:,) Tmb-scale is for comparison purposes only and is correct only for Rth mb-a ~ 3,4 oC/W
4
II
II
November 1975
BYX97
II
1000
I
SERIES
n72264 1
\
FS(RMS)
(A)
750
maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )
,
1\
l~
I FSM
r\
~-ITSM
~-ITS(RMS)
time
with reapplied V RWMmax
I'
l~
500
"'"
~
"r--
r-!l:.150oC prior to surge
--
250
r-,....
r---
-
r-I-
o
10- 3
duration (s)
10
7Z72265
300
- - l j = 25°C
---lj =150 oC
v
typ- max
I(
i
I
200
II
l'
.i
I
I
jil
ILl
!
r'
i
II
I
J
1/
III
V
100
II
I
L'
II
Ii
J
II
Ii f I
J
'I
~,~'
/
~..:" L.".o
2
November 1975
II
5
BYX97
II
SERIES
II
7Z?2283
10
~
V
...... ~
-
i--""~
-
V
1
6
II
It
time (s)
10
November 1975
_ _ _ _J
BYX98 SERIES
RECTIFIER DIODES
Silicon rectifier diodes in DO-4 metal envelopes, intended for use in power rectifier
applications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX98- 300 to 1200.
Reverse polarity (anode to stud): BYX98- 300R to 1200R.
QUICK REFERENCE DATA
BYX98-300 600 11200
BYX98-300R 600R
1200R
max.
Repetitive peak reverse voltage
300
Average forward current
Non -repetitive peak forward current
600
I 1200 v
max.
10
A
max.
75
A
Dimensions in mm
MECHANICAL DATA
00-4: Supplied with device: 1 nut, 1 lock-washer
Nut dimensions across the flats: 9. 5 mm
1,0
0,8
-'11'max
4,0
~
4,83
max
___ 3,2 .-max
_9,3_
max
__ 11,5 ___.1 ...... _ _ - - 20,3_ _----i..~,
10,7
max
7Z6535S.2
Net mass: 6 g
Diameter of clearance hole: max. 5. 2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)
The mark shown applies to the normal polarity types.
E
Torque on nut: min. O. 9 Nm
(9 kg cm)
max. 1.7 Nm
(17 kg cm)
Products approved to CECC 50 009-004, available on request
January 1980
BYX98
SERIES
II
II
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
BYX98- 300(R)
600(R)
1200(R)
Non-repetitive peak reverse
voltage (t :s 10 ms)
VRSM
max.
300
600
1200
V
Repetitive peak reverse
voltage (0 :s 0, 01)
VRRM
max.
300
600
1200
V
Crest working reverse voltage
VRWM
max.
200
400
800
V
Continuous reverse voltage
VR
max.
200
400
800
V
Currents
Average forward current (averaged over
any 20 ms period) up to T mb :::: 97°C
at Tmb :::: 125°C
Ip(AV)
Ip(A V)
R.M.S. forward current
Ip(RMS)
10
6
A
A
max.
16
A
IpRM
max.
75
A
IpSM
12 t
max.
75
A
max.
28
A2 s
Storage temperature
T stg
-55 to + 150
°c
JlUlction temperature
Tj
max.
°c
Repetitive peak forward current
max.
max.
Non-repetitive peak forward current
(t :::: 10 ms; half sine-wave) T j :::: 150°C prior to surge;
with reapplied VR WMmax
12t for fusing (t :::: 10 ms)
Temperatures
150
THERMAL RESISTANCE
Prom jlUlction to ambient in free air
Rth j-a
Prom jlUlction to mOlUlting base
Prom mOlUlting base to heats ink
with heats ink compolUld
without heatsink compound
Transient thermal impedance; t :::: 1 ms
2
II
50
°c/w
Rth j-mb
3
°c/w
Rth mb-h
0,5
°c/w
Rth mb-h
0,6
°c/w
Zth j-mb
0,3
°CjW
II
Pebruary 1978
BYX98
II
SERIES
CHARACTERISTICS
Forward voltage
IF
= 20 A;
Tj
= 25
VF
°C
<
1,7
V 1)
<
200
jJA
Reverse current
OPERATING NOTES
1. The top connector should neither be bent nor twisted; it should be soldered into the
circuit so that there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
2. Where there is a possibility that transients, due to the energy stored in the transformer, will exceed the maximum permissible non-repetitive peak reverse voltage,
see General Section for information on damping circuits in Data Handbook Part SC la.
7Z72256 1
single phase: a'" 1,6
3-phase
: a'" 1)5
6-phase
: a'" 2,4
a=
f-+--- -f- interrelation between the power (derived
IF(RMS) 1-+- '---1-- from the left-hand graph) and the maxif-f- -fIF(AV) f - f - - f - mum permissible temperatures
90
20
P
/
Q::2,~
(W)
1,7~
1/
~
1.1
I)
1,6
,
r--..
I'\.
"""
)
r-.
~
1.1
1...-
1...1
I'~
~
I.....
J.;"l/
....
1.1
""-
"""
'" !''" I"""
'"
••..15I"'" r" ..... r-r"~
~~
v.~"'"
20 r""-"",
I"'- ~
....
,
"- 1\
I\.
"-
I""'
r--.~O
1...-
LI V.V
I\..~f- -~\;
~ \\
~~
i'o...6
V
1/
I"
....
)
10
'P
,0 ~
'S' 0 '?6
~
"'"
r--
r""-Io..
r-~+--
I..... :..,.~
""-
" ,
120
I\.
I\.
I\.
,... I'
1'\
I\.
I\.
""'"'" '" """ I\. '"
...........
t-o.I' .....1\.1'\
1'\0...
-""'....
""+0.;;
r--joo. Io..fiiOOj....
f":1S: lSr"l'I:
.... ..-; ~~~
~I:::;:'
I""
o
o
5
IF(AV) (A)
10 25
75
1"""'P- I...~ 150
125
1) Measured under pulse conditions to avoid excessive dissipation.
November 1975
II
3
BYX98
II
II
SERIES
7Z72257 1
100
\
maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz l
\
IFS(RMS)
rFb
1\
(A)
\
75
"
1'\
I FSM
~-IFSM
~-IFS(RMS)
time
with reapplied V RWMmax
"
50
'\.
~
f'..
1"""
Tj =150
°c
prior to surge
25
o10-3
10- 2
10- 1
duration (5)
10
7Z72254
60
-Tj
= 25°C
- _ -lj =150 oC
.1
I
1
typ max
II
40
II
II'
I
1
IL
I.'
I
1
11
~I
1I
.
I
"
_4
11
20
rl
-'
"
IL
'I
lill
I
I II/
~/I.'-
:--1/
1/
2
4
II
4
II
November 1975
II
II
BYX98
SERIES
7Z72255
10
.--- _r./
.",.. 1--'"
"
...... ~i-'"
....
time (5)
10
5
_ _ _ _J
BYX99 SERIES
RECTIFIER DIODES
Silicon rectifier diodes in DO-4 metal envelopes, intended for use in power rectifier
applications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX99- 300 to 1200.
Reverse polarity (anode to stud): BYX99-300R to l200R.
QUICK REFERENCE DATA
BYX99-300
BYX99-300R
Repetitive peak reverse voltage
VRRM
max.
600
600R
1200
1200R
600
1200,
V
v
Average forward current
IF (AV)
max.
15
A
Non -repetitive peak forward current
IpSM
max.
180
A
Dimensions in mm
MECHANICAL DATA
DO -4; Supplied with device: 1 nut, 1 lock -washer
Nut dimensions across the flats: 9.5 mrn
1,0
0,8
---11<4max
4,0
.
Ju-_*~~.===. .:o-+-'h+-_~--,-h
4,83
max
1,98-.I
max
__
~
e .
I
1,6:
min
-11,0-
____ 3,2 __
max
_9,3_
-+-
max
11,5 __ '..4 1 - - - - 20,3 _ _ _"~1
10,7
max
7Z65355.2
Net mass: 6 g
Diameter of clearance hole: 5. 2 mm
Accessories supplied on request:
56295 (PTPE bush, 2 mica washers, plain washer, tag)
Torque on nut: min. O. 9 Nm
(9 kg cm)
max. 1.7 Nm
(17 kg cm)
The mark shown applies to the normal polarity types
=
Products approved to CECC 50 009-005, available on request
II
January 1980
BYX99
SERIES
II
II
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
BYX99- 300(R)
600(R)
l200(R)
600
1200
Non-repetitive peak reverse
voltage (t :s 10 ms)
VRSM
max.
300
Repetitive peak reverse
voltage (0 :s 0,01)
VRRM
max.
300
600
1200
V
Crest working reverse voltage
VRWM
max.
200
400
800
V
Continuous reverse voltage
VR
max.
200
400
800
V
V
Currents
Average forward current (averaged over
any 20 ms period) up to T mb = 129 °c
Ip(AV)
max.
15
A
R. M. S. forward current
Ip(RMS)
max.
24
A
Repetitive peak forward current
IpRM
max.
180
A
Non -repetitive peak forward current
(t = 10 ms; half sine-wa ve) T j =175 °c prior to surge;
with reapplied VR WMmax
IpSM
J2 t
J2t for fUSing (t = 10 ms)
max.
180
A
max.
162
A2 s
Temperatures
Storage temperature
Tstg
Junction temperature
Tj
-55 to + 175
max.
175
°c
°c
THERMAL RESISTANCE
Prom junction to ambient in free air
50
Rth j-a
°C!W
°C!W
Prom junction to mounting base
Rth j-mb
2,3
From mounting base to heats ink
with heats ink compound
Rth mb-h
0,5
Rth mb-h
0,6
°C!W
°C!W
Zth j-mb
0, 13
°C/W
without heats ink compound
Transient thermal impedance; t
2
II
= 1 ms
II
February 1978
BYX99
II
SERIES
CHARACTERISTICS
Forward voltage
IF
= 50 A; Tj = 25 °c
VF
<
1,55
<
200
V 1)
Reverse current
[.LA
OPERATING NOTES
1. The top connector should neither be bent nor twisted; it should be soldered into the
circuit so that there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
2. Where there is a possibility that transients, due to the energy stored in the transformer, will exceed the maximum permissible non -repetitive peak reverse voltage,
see General Section for information on damping circuits in Data Handbook Part SC 1a.
1) Measured under pulse conductions to avoid excessive dissipation.
November 1975
---_
_
,_.
...... ",....... ....._........ _...
11
II
3
BYX99
II
SERIES
II
7Z72261 1
f-f- f-f-
single phase: a = 1,6
3-phase
:a=1,75
6-phase
: a = 2,4
a=
interrelation between the power (derived
IF(RMS) f-f- f-ffrom the left-hand graph) and the maxif-f- f-fIF(AV) f-f- f-f- mum permissible temperatures
Tl
Tl
20
~
1/'
V
1 1
1~-f-~
,
1\
~
~
0=2,4 1-1- 1,7§, ~~ ~,6 f-I- f-I\ -s'~
p
I/.~
10'
~
!/
~"'"
~~
I'\.. ,
"'"
I/~
10
"'1\
tI..
r-!..S
.....
10'
~~r;...
~~r..,..
I\..
'"
.....
"
~C::; r:;... .....
.....
l\.
.....,
l,\:~\.1\
.....
~i'
o
o
10
5
IF(AV)
15 25
(AI
75
152
ir
1\.1\ \
'\.'" "
"
"- I\..
,
I(
\.1\
I\..
•••d::::1i r:;...
1\
~r\:
~~
i.o"~
-f-
\
1\
1\ \
I\.
i;'"
~
I-f- 129
I-~
1\% P\\_~
e '" '" "~ ,
I/~
i;"'l..I
(WI
~? r;.
1\
t-'~
11'0 3
~~ ~f- I--' Q'f
I
"
125
~
175
175
Tomb
(oCI
7Z72258
--Tj
25°C
:
---lj :175°C
100
typ
max
max
II
I!
J
:
I
75
1/
J
I
I: I
I
II
we
I'
II
50
:
J J
J I
I
I
.j
i
I
IIJI
Ii J
11
25
I
/1
II ~'j
ill
V
J
o
o
4
II
I_~
2
II
November 1975
BYX99
II
SERIES
7Z72549
300
maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )
IFV\
I FS(RMS)
(A)
~
~-IFSM
~-IFS(RMS)
\
time
\.
200
with reapplied V RWMmax
,
'\.
I FSM
"- ~
"
r--...
........
J""ooo....
100
...... """
r--
10- 2
---
Tj =175
°c
prior to surge
....
10- 1
duration (5)
10
7Z72259
10
v
~
....
10.'
~
V
.."
~ ...
V
10
time (5)
November 1975
II
5
_ _ _ _J
1N3879 to 1N3882
FAST SOFT-RECOVERY RECTIFIER DIODES
Silicon diodes, each in a DO-4 metal envelope, featuring non-snap-off characteristics, and intended for
use in high-frequency power supplies, thyristor inverters and multi-phase power rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): 1N3879, 1 N3880, 1N3881 and 1 N3882.
Reverse polarity (anode to stud): 1N3879R, 1N3880R, 1 N3881 Rand 1 N3882R.
QUICK REFERENCE DATA
1N3879(R)
Repetitive peak reverse voltage
VRRM
max.
1N3882(R)
50
Average forward current
max.
Non-repetitive peak forward current
max.
Reverse recovery time
<
MECHANICAL DATA
300
V
6
A
80
A
200
ns
Dimensions in mm
DO-4
1,0
0,8
-'11'-
10 - 32UNF
L
4 ,83
m ax
+
~
~
* =oh~~•
I
TT~
~1.
1,6
,.9J ----
max
40
max
j
. . . .1
min
__ 3,2 ____
max
_9,3_
max
.---- 11,5 ____ ..
10,7
Net mass:
20,3
max
~
7Z6S3SS.2
6g
Diameter of clearance hole: max. 5,2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)
Torque on nut: min. 0,9 Nm
(9 kg cm)
max.1,7 Nm
(17 kg cm)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 9,5 mm
The mark shown applies to the normal polarity types.
E
Products approved to CECC 50 009-006, available on request.
January 1980
1N3879 to 1N3882
II
RATINGS Limiting values in accordance with the Absolute Maximum System (lEe 134)
Voltages
IN3879(R)
Non-repetitive peak reverse voltage
VRSM max. 100
(t ~ 10 ms)
1N3880(R)
1N3881(R)
1N3882(R)
150
250
350
V
Repetitive peak reverse voltage
(0 ~ 0,01)
VRRM max.
50
100
200
300
V
Crest working reverse voltage VRWM max.
50
100
200
300
V
Currents
Average on-state current assuming zero
switching losses (averaged over any 20 ms period)
up to T mb := 100°C
at T mb := 125 °C
Ip(AV)
Ip(AV)
max.
max.
6
3,5
A
R. M. S. forward current
Ip(RMS)
max.
10
A
Repetitive peak forward current
IpRM
max.
75
A
IpSM
IFSM
r2 t
max.
max.
75
80
A
A
max.
28
A2p,
Storage temperature
T stg
-65 to +175
°c
Operating junction temperature
Tj
max.
°c
Non-repetitive peak forward current
T j := 150°C prior to surge;
half sine-wave with reapplied VRWMmax;
t := 10 ms
t := 8,3 ms
12 t for fusing (t
:=
10 ms)
A
Temperatures
150
THERMAL RESISTANCE
Prom junction to ambient in free air
Rth j-a
Prom junction to mounting base
Prom mounting base to heatsink
Transient thermal impedance; t
2
II
:=
1 ms; 0
:=
0
50
°c/w
Rth j-mb
4,4
°C/W
Rth mb-h
0,5
°c/w
°c/w
Zth j-mb
II
February 1978
1N3879 to 1N3882
II
CHARACTERISTICS
Forward voltage 1)
IF = 6 A; T j = 25
°e
<
1,4
<
3
IF = 1 A to VR = 30 V;
-dIF/dt = 35 A/fls; Tj := 25 °C
Recovery time
<
200
ns
IF = 2 A to VR = 30 V;
-dIF/dt = 20 A/flS; Tj
Recovery charge
<
250
ne
VF
V
Reverse current
rnA
Reverse recovery when switched from
:=
25
°e
IF = 1 A to VR = 30 V;
-dIF /dt := 2 A/fls; Tj := 25 °e
Max. slope of the reverse recovery current
5
+
10%
A/fls
time
t
100%
~
1) Measured under pulse conditions to avoid excessive dissipation.
February 1978
II
3
~~_________________________________
1N3879ro1N3882
7Z72721
15
p= power dissipation excluding
switching losses
p
IFIRMS)
a=
(W )
interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures
iF(AV)
1
!
10
f-~ ~
,...
III
IJ
..... 0=2,41
I..
..
" "
'"
1,75 1/-,1,6
'/
I"
I
II
"
I'
r-....
6'
"
i9.
.... ~
......
II(,
"'~~
IJ
C')'i:1
I\.
"""
"
o
o
"" ...... "- ...........
117
I\.
I\,
128
\.
I\"
\.
" ""'"
"-I\. I\" "
,,~
1\.'"
~
139
~-
2,5
5
7,50
100
50
IF(AV) (A)
08469
60
'I
-T(25°C
III
II,
fI'
,
- - - Tt150°CI
JI
••
I
I
I
40
--,
II
I
1'1•
II.
f.
II
JII
1->->- typ,
20
HI- 'IfIII
f.,..
max
j~
,,
111'1/
.I~
o
l':
o
4
~
'" "
III
IjI
1\
1'\
I'
J'f/
..
,
"'I
"
'J
1
I\'~\\
I\.
\.
" I'" '"
1/11.
5
\S'o~
,~
1"'1
"'"
I I
I
I 1'1l'
[.\9 .;
~
~
I~
I [}
II I
I/IJ.
"
I'
I
I
,
November 1979
(
1/
r
2
4
0
Tamb ( C)
15
150
o
1N3879 to 1N3882
II
7Z72723
100
\
\
maximum permissible non-repetitive
romoso forward current based on
sinusoidal currents ( f = 50 Hz )
\
I'b
~
\
IFS(RMS )
(A)
IFsM
~
~-IFSM
--=---=--
IFs(RMS)
time
with reapplied V RWMmax
~
1\
50
"
'\..
~
"~
......
"
T j = 150 °c (prior to surge)
~
i""-
o10- 3
--
r--
10- 1
10-2
10
duration (5)
7Z72722
JlJL
_jtpl_j
__ T_
o:.!£.
T
10
0-1
,.- ...... .......
- --
--
0=0
1/ ....
/
10- 2
10
5
10
4
10
3
10- 2
10- 1
tp
(s)
10
1N3879 to 1N3882
l"""---_-7Z67277.1
"""1-0-
I
1--
I I'
100
1-0- ....
"'.....
50
'-
~
"
20
-1-1~
--...
-dI/dt 5A/J-ls
I-f.-- f-+-
1/
...... 1--,
r-I-o-
10
1/
II')
~I-I-
I
IJ
1/
~ ~O ~
.....,
" ,'-I- I~
I'--.
~
j
~
-1
I
~
".........."....
,
II I
1/
"
f\ \
\
~
_~~I
10 t - t - IF (A) f - t - 1--5
0
2,5
7
II
..,./
V
.".
/
/
/
G:>~/
/
/
1/
..........
/
.... ,
...... 1'
\.~I'
..,,-'
......
./'
......
I;::ro;; ...
r-;:I"--
r""'t-I-
..... r-..
I-~
1"" .....
'"
.....
.....
just before switching
_.- off; Tj = 150°C
'--
I I I
I
I
I I
I I
--
(W)
I
A-+--I-
r-..
I
7,5
NOMOGRAM
Power loss ~PR (AV) due to switching only (to be added to steady state power losses).
IF
+
time
10%
IR
VF
time
JR
6
November 1979
7Z77074
(
I
100V~
-,-.,...
I
r~V--
5
- ' - 1--,..I - - ~PR(AV)
vr ==
,..... I20I 0
......
- - IF =forward current
,..--
I
!
V
~~
~oJf 1-~,-
i'.
.....
_____J
1N3889 to 1N3892
FAST SOFT-RECOVERY RECTIFIER DIODES
Silicon diodes, each in a 00-4 metal envelope, featuring non-snap-off characteristics, and intended for
use in high-frequency power supplies, thyristor inverters and mUlti-phase power rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): 1N3889, 1 N3890, 1N3891 and 1N3892.
Reverse polarity (anode to stud): 1N3889R, 1N3890R, 1N3891 Rand 1N3892R.
QUICK REFERENCE DATA
1N3889(R)
Repetitive peak reverse voltage
max.
1N3892(R)
50
Average forward current
max.
300
V
12
A
Non-repetitive peak forward current
IFSM
max.
150
A
Reverse recovery time
trr
<
200
ns
MECHANICAL DATA
Dimensions in mm
00-4
1,0 -
0,8
-'/1"
4,0
max
4,83
max
+
.... 3,2 __
max
_9,3_
max
___ 11,5
10,7
_+_I .....t - - - - - - -
20,3 _ _------I.~,
max
7Z6S3SS.2
Net mass: 6 g
Diameter of clearance hole: max. 5,2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)
Torque on nut: min. 0,9 Nm
(9 kg em)
max. 1,7 Nm
(17 kg em)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 9,5 mm
The mark shown applies to the normal polarity types.
IS
Products approved to CECC 50 009-007, available on request
January 1980
1N3889 to 1N3892
II
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Non-repetitive peak reverse voltage
(t ~ 10 ms)
VRSM
Repetitive peak reverse voltage
(0 ~ 0,01)
VRRM
Crest working reverse voltage VRWM
IN3889(R)
1N3890(R) 1N3891(R) 1N3892(R)
max.
100
150
250
350 V
max.
50
100
200
300 V
max.
50
100
200
300 V
Currents
Average on-state current assuming zero
switching losses (averaged over any 20 ms period)
up to Tmb == 100 °c
IF(AV)
at Tmb == 125 °c
IF(AV)
max.
max.
12
7
A
A
R. M. S. forward current
IF(RMS)
max.
20
A
Repetitive peak forward current
IFRM
max.
140
A
Non -repetitive peak forward current
T j = 150 0C prior to surge;
half sine-wave with reapplied VRWMmax;
t == 10 ms
t = 8,3 IDS
IFSM
IFSM
max.
max.
140
150
A
A
12t for fusing (t = 10 ms)
12t
max.
100
A2 s
Temperatures
Storage temperature
Tstg
Operating junction temperature
Tj
-65 to +175
max.
150
°c
°c
THERMAL RESISTANCE
From junction to ambient in free air
Rth j-a
50
°C/W
From junction to mounting base
Rth j-mb
2,2
°C/W
From mounting base to heatsink
Rth mb-h
0,5
°C/W
Zth j-mb
0,8
°C/W
Transient thermal impedance; t = 1 ms; 0 = 0
2
II
II
February 1978
1N3889 to 1N3892
II
CHARACTERISTICS
Forward voltage 1)
VF
<
1,4
IR
<
3
IF = 1 A to VR = 30 V;
-dlF /dt = 35 A/I-ls; Tj = 25°C
Recovery time
trr
<
200
ns
IF = 2 A to V R = 30 V;
-dIF/dt = 20 A/I-ls; Tj = 25°C
Recovery charge
Qs
<
250
nC
IF = 1 A to V R = 30 V;
-dIF/dt = 2 A/I-ls; Tj = 25°C
Max. slope of the reverse recovery current
IdlR/dtl
<
5
IF
= 12 A; T j = 25°C
V
Reverse current
VR
= VRWMmax; Tj = 125°C
rnA
Reverse recovery when switched from
,
A/fJ
time
7l70?34.2
1) Measured under pulse conditions to avoid excessive dissipation.
F ebru_ar_y_l_9_78__
l
3
1N3889 to 1N3892
II
II
7Z72MO
p=
power dissipation excluding
switching losses
I r
I I
I I
I.
IF(RMS)
a=
IF(AV)
I I I
I
L
interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures
I
1
I
I
20
P
....
'"
1/
(W)
JII
15
"
'I
I
'III
"
rl
10
I'"
'"
'"
r-..
r--,8
0
1..
"
8.
I......
'"
...."
I'
11'
o
o
~
""
"'I'
1\
117
!
,
1'\
"-
["'0.
["'iiO
"""....
i'.
1
\.
r....
r....
rJ
IA
"
~
~~
IIY
5
~c. ~
I\, ~ \\
"' i'
i""o
"
"
f/
(
~ o~d
"r-..
IIII,
i/ll.
,q..s'~
....
,....""",
VII
'/
9
I
1l
1,75 I-- 1:S
III
I I L
II
a= 2,4
'J
J I
,
\.
128
1"0..
r--,
i"""""
~
r--,
~
r-..
r--.
r--,
I\.
I'.
r-...
1''''''' ......
'"
"'-
""
r--.J:"'o
J:II"
"'1"\ "-
~
"-
"["'0. "'''
1"100:10.;:
1""'oF::i
5
10
150
139
..,
~1110.:~
j"III:l8! 150
150
50
IF(AV) (A)
7Z72609,1
so
II
II
~
f1 --lj= 25°C
JII _ -lj=150oC
I,
Ii
I
I
!I
I
,-II
I
II
II
40
"
II
'I
I
r-r- ~-+- typ IJ-I-- It, max
.I~
'L
I
I II
20
I
I
,
J
II II
I
II I,' I
II
o
o
4
II
~
)
V
t..
2
3 VF (V) 4
II
February 1978
1N3889 to 1N3892
II
7Z7 2611.1
150
\
I FSM
\
IFSIRMS )
(A)
maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )
,
It\
~-IFSM
~-IFSIRMS)
time
100
r\.
with reapplied V RWMmax
"-
""-
'"
!'
50
""
o
10
10-2
3
~ =150 °c (prior to surge)
10- 1
--
-
--
I--
10
duration (5)
7Z72691
JUL
-ltpl_1
-T-
O=~
T
10
0=1
r0-
~ ~-
O 0
.-
.... 1-'
/"
10- 2
10- 5
10- 4
February 1978
1_
10-3
10- 2
10
tp(S)
5
1N3889 to 1N3892
L_____- 08662
~~~~~4-~4-~~~~~4-~~f2~.55~~-r~-r+S~~~~'~_~~~~I;O~~
I"'"
~1-~4-~4-~4-~4-~~~4,~A.~D
I""';:.v ~
V'\I~r+~r+~r+~~~~~~~~~~~
JW)VI~++++~~~~++~~~
NOMOGRAM
Power loss t.PR (AV) due to switching only (to be added to steady state power losses).
IF
= forward current just before switching off; Tj = 150 °C
t
time
10%
time
7Z77074
6
December 1979
r
~
1N3899to1N3903
---------------------------------------------------------FAST SOFT-RECOVERY RECTIFIER DIODES
Silicon diodes in 00-5 metal envelopes, featuring non-snap-off characteristics. They are intended
for use in high-frequency power supplies, thyristor inverters and mUlti-phase power rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): 1 N3899, 1N3900, 1 N3901, 1N3902, 1N3903.
Reverse polarity (anode to stud), 1 N3899R, 1N3900R, 1 N3901 R, 1N3902R, 1 N3903R.
QUICK REFERENCE DATA
1N3899(R) 3900(R) 3901(R) 3902(R) 3903(R)
Repetitive peak reverse
voltage
VRRM
max.
50
'00
200
300
400
V
max.
v
20
A
Average forward current
IF(AV)
Non-repetitive peak
forward current
IFSM
max.
225
A
trr
<
200
ns
Reverse recovery time
MECHANICAL DATA
Dimensions in mm
Fig.1 00-5; Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 11.1 mm
15,3 max
1/4 in x 28 UNF
,_ I
_t
6,35
max
8,0
max
-t
2,2-.
max
_
11,5
10,7
-... 5,0
max
L
_ 1 ....... . - - - - -
-17,025,4 _ _ _-.1
max
Net mass: 22 g
Diameter of clearance hole: max. 6.5 mm
Accessories supplied on request:
56264A (mica washer, insulating ring, tag)
The mark shown applies to normal po~ lrity types.
7l75506.1
Torque on nut:
min. 1.7 Nm (17 kg cm)
max.2.5 Nm (25 kg cm)
July 1979
1N3899 to 1N3903
l_ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
1N3899(R) 3900(R) 3901(R) 3902(R) 3903(R)
Non-repetitive peak reverse
voltage (t ,,;; 10 ms)
VRSM
max.
75
200
300
400
500
V
Repetitive peak reverse
voltage (8 ~ 0.01)
VRRM
max.
50
100
200
300
400
V
Crest working voltage
VRWM
max.
50
100
200
300
400
V
v
Currents
Average on-state current assuming zero
switching losses (averaged over any 20 ms period)
up to T mb = 100 °C
at T mb = 125 °C
IF(AV)
IF(AV)
max.
max.
20
10
A
A
R.M.S. forward current
IF(RMS)
max.
30
A
Repetitive peak forward current
IFRM
max.
100
A
Non-repetitive peak forward current
Tj = 150 °C prior to surge;
half sine-wave; with reapplied VRWMmax;
t = 10 ms
t = 8.3 ms
IFSM
IFSM
max.
max.
200
A
225
A
Ilt for fusing (t = 10 ms)
12 t
max.
210
A2 s
Temperatures
Storage temperature
T stg
Operating junction temperature
Tj
max.
-65 to 175
°C
150
°C
THERMAL RESISTANCE
2
From junction to mounting base
Rth j-Jnb
1.5
°C/W
From mounting base to heatsink
with heatsink compound
Rth mb-h
0.3
°C/W
Transient thermal impeadance; t = 1 ms
Zth j-mb
0.3
°C/W
1N3899 to 1N3903
Fast soft-recovery rectifier diodes
CHARACTER ISTICS
Forward voltage
IF=20A;Tj=25 0 C
VF
<
1.4
IR
<
6
trr
<
200
ns
Os
<
250
nC
IdlR/dtl
<
5
V*
Reverse current
VR = VRWMmax; Tj = 100 °C
mA
Reverse recovery when switched from
IF = lA to VR ~ 30 V; -dlF/dt = 35 AIMS; Tj = 25 °C
Recovery time
IF = 2 A to VR ~ 30 V; -dlF/dt = 20 AIMS; Tj
Recovered charge
=
25 °C
Maximum slope of the reverse recovery current
when switched from IF = 1 A to VR
-dlF/dt = 2 AIJls; Tj = 25 0C
~
30 V;
A/Jls
IF
IF
+
10%
time
t
100°/0
~
D8403
Fig.2 Definitions of trr and
Os.
*Measured under pulse conditions to avoid excessive dissipation.
July 1979
3
~
1N3899w1N3903
____________________________________
SINUSOIDAL OPERATION
o
P
413
(W)
I
1.9
30
1.57
i
\
I
~
'\
/ I
1----
I
I(
I
I
I
a=2.8
/
f ,
'" '",
I
II I
20
I
if J
J/I/
1/ "I
f'
I
Vi 'I
I
I'll
\.
~--
\~ -
,, " , ,
,
...... ~
......
'-
"'-
, ,
f'
. -c--
120
\
~
'\
'~
.............
.....
~
~
\
\.
~
,
~
, f'\. \
"',- \
135
...... ....:::: ........ ~~
""" ~ ~~k\ 150
I
10
0
\·~o
()-
"\9'
1/..1
hV
o
105
X~\I0
\
r"~
--~--
\.~
..... ~
~~
/1'1
10
-:P
'S-\?
20
30 0
50
100
"'"150
'F(AV)(A)
Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power dissipation excluding switching losses.
a= form factor = IF(RMS)/IF(AV).
4
1r
1979
July
1N3899 to 1N3903
Fast soft-recovery rectifier diodes
SQUARE WAVE OPERATION
08414
P
(W)
50
75
1.0
40
0.5
~
0.2
30
~
J
o=O.li1""
V
I...,
".~
'1/ V
VI/ V ioo""
1..",1
'/1/
20
10
~,/,-,
~P'.:
l.oII~~ ~
o
.... ,...~
"'~
~
~
~
~
""
'"
I...-
'"
'"
V
~
~
, -:P '
,
I~
,3a-
I'-
1..1"
[\O'b
I'
'- ~
/
~
~
.....91'0
20
30 0
~
I~
'"r-...'"
~.",.
10
,
"'iii
....
50
105
1\ r - r-I-f--
~~
I'
() .- f-I~'----- f-I-
\
'l~
I\..
...... &
f--- f-f-f-
1\ ·~o-I- 1-1-
1\.
Iiro.
ioo""
0
90
\
I\.
,
"""'Iii
1"\
~
..... "'''
'"
120
I{
1\
~
'f
135
'-,,~
~~
..... '"
~
1\
"';J 150
150
100
Fig.4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power dissipation excluding switching losses.
tp
T
I~II
I
tp
0=V
L __ ..1
L.. __
J
IF(AV) = IF(RMS)
T
x...j8
July 1979
5
1N3899 to 1N3903
l_ _ __
D8415
300
IFS(RMS)
(A)
~
~
----
""
200
I FSM
1"-
" "" .....
i'
...........
1--
~
..........
""100
"'"
--
-
.....
...........
...... 10",.
......
...
--.
-~
....
a
10- 3
10- 2
10- 1
duration (s)
Fig.5 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents
(f = 50 Hz); Tj = 150 °C prior to surge; with reapplied VRWMmax.
/\---I FSM
I \: IFS(RMS)
time
6
r
1
July 1979
10
1N3899 to 1N3903
Fast soft-recovery rectifier diodes
08416
IF
(A)
I
I
I
+ "1--
+-
max V F
50
,
I
'-
II II
II
,
I
40
I
I
II
1 II
30
,
[I
J
I.
20
i
:1
!
t+
~
I
I
/I
Fig.6 - - Tj
= 25 0 C;
- - - Tj
= 150 0 C
D8417
10
Zth j-mb
(OC/W)
10-
-
L,.
.-'
VI-'"
r-
10- 1
./
l/
10- 2
10- 3
10- 5
10- 4
10- 2
10- 3
10- 1
1 time (s)
10
Fig.7
July 1979
7
j
1N3909
to 1N3913
---------------------------------------------------------'
FAST SOFT-RECOVERY RECTIFIER DIODES
Silicon diodes in 00-5 metal envelopes, featuring non-snap-off characteristics. They are intended for
use in high-frequency power supplies, thyristor inverters and mUlti-phase power rectifier applications.
The series consists of the following types:
Normal polarity (cathodetostud): lN3909, lN3910, lN3911, lN3912, lN3913.
Reverse polarity (anode to stud): 1N3909R, 1N3910R, 1N3911 R, 1 N3912R, 1 N3913R.
QUICK REFERENCE DATA
1N3909(R) 3910(R) 3911(R) 3912(R) 3913(R)
Repetitive peak reverse
voltage
VRRM
max.
Average forward current
IF(AV)
max.
30
A
Non-repetitive peak
forward current
IFSM
max.
300
A
trr
<
200
ns
Reverse recovery time
"-
100
50
200
300
400
'-------------~v~--------------~
V
Dimensions in mm
MECHANICAL DATA
Fig.l 00-5; Supplied with device: 1 nut, 1 lock-washer
Nut dimensions across the flats: 11.1 mm
15,3 max
1/4 in x 28 UNF
,_ I
_f
6,35
8,0
,-
max
max
-t
2,2 --+
max
.-
I
-17,0-
__ 5,0 .-max
____ 11,5
10,7
_ I ......~_ _ _
25,4 ------4~
..1
7Z75506.1
max
Net mass: 22 g
Diameter of clearance hole: max. 6.5 mm
Accessories supplied on request:
56264A (mica washer, insulating ring, tag)
The mark shown applies to normal polarity types.
Torque on nut:
min. 1.7 Nm (17 kg cm)
max. 2.5 Nm (25 kg cm)
July 1979
1N3909 to 1N3913
l________
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
1N3909(R} 3910(R) 3911(R) 3912(R) 3913(R)
Non-repetitive peak reverse
voltage (t = 10 ms)
VRSM
max.
75
200
300
400
500
V
Repetitive peak reverse
voltage (5 ~ 0.01)
VRRM
max.
50
100
200
300
400
V
Crest working voltage
VRWM
max.
50
100
200
300
400
V
30
15
A
A
v
Currents
Average on-state current assuming zero
switching losses (averaged over any 20 ms period)
up to T mb == 100 °C
at T mb = 125 °C
IF(AV)
IF(AV)
max.
max.
R.M.S. forward current
IF(RMS)
max.
45
A
Repetitive peak forward current
IFRM
max.
125
A
Non-repetitive peak forward current
Tj = 150 0C prior to surge;
half sine-wave with reapplied VRWMmax;
t= 10 ms
t = 8.3 ms
IFSM
IFSM
max.
max.
275
300
A
A
12 t
12 t
max.
375
A2 s
for fusing (t = 10 ms)
Temperatures
Storage temperature
Tstg
Operating junction temperature
Tj
-65 to 175
max.
°C
150
°C
THERMAL RESISTANCE
2
From junction to mounting base
Rth j-mb
1.0
°C/W
From mounting base to heatsink
with heatsink compound
Rth mb-h
0.3
°C/W
Transient thermal impedance; t == 1 ms
Zth j-mb
0.2
°C/W
~IV
1979
r
1
1N3909 to 1N3913
Fast soft-recovery rectifier diodes
CHARACTERISTICS
Forward voltage
IF=30A;Tj=25 0 C
VF
<
1.4
V*
IR
<
10
mA
Reverse current
VR::: VRWMmax; Tj::: 100 °C
Reverse recovery when switched from
IF::: 1 A to VR ;;;. 30 V; -dIF/dt::: 35 AlJis; Tj = 25 °C
Recovery time
IF::: 2 A to VR ;;;. 30 V; -dIF/dt::: 20 A/Jis; Tj ::: 25 °C
Recovered charge
trr
<
200
ns
Os
<
250
nC
Maximum slope of the reverse recovery current
when switched from IF::: 1 A to VR ;;;. 30 V;
-dIF/dt::: 2 A/Jis; Tj ::: 25 °C
jdl R/dtj
<
5
+
10%
AlJis
time
i
100 0 /0
~
D8403
Fig.2 Definitions of trr and Os.
*Measured under pulse conditions to avoid excessive dissipation.
July 1979
3
1N3909 to 1N3913
l_ _ __
SINUSOIDAL OPERATION
08408
p
t--+-t-+--+-+-+~-t-+I- ~- ~--+-+--l---+--~---+--+- L
-t-r' ·t+·+ t·
(W)
f-+-+-+-+--+-+-+--+j--t--++-+-+--t-++--+-+--+--+-+-++ -+- --+-+
t
t--+-t-+--+-+--~--+--+--i---+--+--f--+-t-+--+-+--~--+--+---t- ++_+-LL 1 . -
f-rt--:
1-+-+--+---t-+-~---+--+-1--+-t-+--+·-+-+---t-+-~---+---t---
~ <1
I V 1/ 17
'I) / V
r-.... ~
" ~""
.........
r"'
1/)VJ
jVjV
r"
~
""
.....
60 0
1'...
110
\
~
\
~
"
\.
""
...... J'.. f""'. ,..." t'-,.
~V
40
'"
.....t'-,. ~
....... ~
o~
20
\
.;>
...... ~
$ ....... ~
'j
0
90
,0> '0
50
\
,
130
1\
1"- ~ ~ ~..... ~
.......
r::::: ~ ~~
!"-.... ~
100
1
Fig.4 The right-hand p.art shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power dissipation excluding switching losses.
tp
T
i~'1
: 8=tp
V
L.. __ ..1
L.. __
J
iF(AV) = iF(RMS)
T
xY8
l'---_--
1N3909 to 1N3913
08410
400
'FS(RMS)
(A)
I\.
"-
,
...,.",
300
'FSM
"~
r--~
"-
200
f'....
I':00.""
--
~
.........
100
""
r-...
I
i""'~",
1----
~
r--
""""'
o
10- 3
10- 2
10- 1
10
duration (s)
Fig.5 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents
(f = 50 Hz); Tj = 150 0C prior to surge; with reapplied VRWMmax.
f\----I FSM
,:'FS{RMS)
I
time
6
~Iy
1979
1r
1N3909 to 1N3913
Fast soft-recovery rectifier diodes
08411
I I
I
I I
'T
111111
max VF .--+-
50
I
I,
I'
40
,
,,
I
30
I
,I
20
II
1/
I
l
,
II
'I
10
J
".
I
~
o
I
II
./
~
o
0.5
"'"
. --f--
time (s)
July 1979
10
7
REGULATOR DIODES
c
c
--
:::
=
=
=
BZV15
II
SERIES
VOLTAGE REGULATOR DIODES
A range of voltage regulator diodes in plastic envelopes intended for use as voltage
stabilizers in power supply circuits.
Normal and reverse polarity types are available: BZV 15-C lO(R) to C75(R).
QUICK REFERENCE DATA
Working voltage range (5% range)
= 25 oC
= 82 °C
Total power dissipation at T amb
at T mb
Junction temperature
Vz
nom.
10 to 75
V
Ptot
max.
2,2
W
Ptot
max.
15
W
Tj
max.
150
°c
Dimensions in mm
MECHANICAL DATA
SOD-38
1---11,0 max
-I
r; 5,2+-,
I max
t
3,7 3,6
~~I===fI-
5,3
5,0
metal base
plate
t
18,0
max
j
r-
'-L!::::::;:=:::r=Fr~~
4max
not tinned
2,5
•
14,5
min
l_
....
tag1
tag2
0,65 ......
max
5,0
...
....1
I
', __11..- max
1,2
3,1 .....
2,5-
..-
7Z60001.5
Net rna s s; 2, 5 g
Torque on screw: min. 0,95 Nm
Accessories:
(9,5 kg cm)
supplied with device : washer
max. 1,5 Nm
available on request : 56316 (mica insulating washer)
(15 kg cm)
Tag 1 is connected to the metal base-plate, which should be mounted in contact with the
heLltsink used.
November 1975
BZV15
II
II
SERIES
POLARITY OF CONNECTIONS
Base-plate:
Tag 1
Tag 2
BZV 15-C 10
to C7S
BZVIS-ClOR
to C7SR
cathode
cathode
anode
anode
anode
cathode
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Currents
Average forward current (averaged
over any 20 ms period) at T mb = 82
°c
Repetitive peak forward current
max.
7,5
A
max.
50
A
max.
max.
2,2
15
W
W
max.
400
W
Power dissipation
Total power dissipation at T amb = 25 °c (method a)
at Tmb = 82 °c
Non-repetitive peak reverse power dissipation
T amb ::: 25 oC; t ::: I ms (square pulse)
PZS M
Temperatures
Storage temperature
-55 to + 125
Junction temperature
max.
150
°c
°c
SOLDERING AND MOUNTING NOTES
1. The devices may be soldered directly into the circuit.
2. The maximum permissible temperature of the soldering iron or bath is 270 oC;
contact with the joint must not exceed 3 seconds.
3. The devices should not be immersed in oil, and few potting resins are suitable for
re-encapsulation. Advice on these materials is available on request.
4. Leads should not be bent less than 2,5 mm from the seal; exert no axial pull when
bending.
5. Soldered joints must be at least 2,5 mm from the seal.
6. For good thermal contact heatsink compound should be used between base-plate and
heatsink.
2
II
II
November 1975
BZV1S
SERIES
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
4,5
°C/W
Transient thermal impedance; t == 1 ms
Zth j-mb
0,3
°C/W
a. With heats ink compound
Rth mb-h
1,5
°C/W
b. With heats ink compound and
56316 mIca washer
Influence of mounting method
1. Heatsink operation
From mounting base to heats ink
R th mb-h
=
2 7
°C/W
c. Without heats ink compound
Rth mb-h
=
2,7
°C/W
d. Without heatsink compound
with 56316 mica washer
Rth mb-h
=
5
°C/W
2. Free air operation
The quoted values of Rth j -a should be used only when no other leads run to the tie-points.
From junction to ambient in free air
mounted on a printed circuit board
at a == maximum lead length
and with a copper laminate
a. > 1 cm2
Rth j-a = 50 °C/W
b. < 1 cm2
Rth j-a = 55 °C/W
o
a
~
LLLL.
-
LL LLLLL
-
n62315.1
at a lead -length a == 3 mm
and with a copper laminate
c. > 1 cm2
d. < 1 cm 2
Rth j-a = 55 °C/W
Rth j-a = 60 °C/W
:Jl
•
November 1975
II
7Z62314
II
3
BZV1S
II
SERIES
CHARACTERISTICS
Tj ::: 250C unless otherwise specified
Forward voltage at IF -= 10 A
2
Reverse current at V R = 3" V Znom
Working voltage
Vz (V) 1)
at IZ
=1 A
Differential
resistance
r
(Q) 1)
diff
at IZ = 1 A
Vp
<
1,5
V
IR
<
50
fJA
Temperature
coefficient
Sz (mV/oC)I)
at IZ = 1 A
J3ZVI5- ..
min.
max.
max.
typo
C10(R)
C11(R)
C12(R)
CI3(R)
CI5(R)
9,4
10,4
10,6
11,6
12,7
14,1
15,6
0,5
1,0
1,0
°
9
9,9
10,8
11,7
13,5
at IZ = 0,5 A
at IZ = 0,5 A
11,4
12,4
13,8
at IZ
C 16(R)
C 18(R)
C20(R)
C22(R)
C24(R)
C27(R)
C30(R)
C33(R)
15,3
16,8
18,8
20,8
22,7
25, 1
28
31
at IZ
C36(R)
C39(R)
C43(R)
C47(R)
C51(R)
C56(R)
C62(R)
C68(R)
C75(R)
34
37
40
44
48
52
58
64
70
=0,5 A
1,
1,2
1,2
1,5
1,5
1,8
2,0
2,0
2,5
3,0
17,1
19,1
21,2
23,3
25,9
28,9
32
35
=0,2 A
at IZ =0,2 A
38
41
46
50
54
60
66
4,0
5,0
6,5
7,0
7,5
8,0
9,0
72
10,
10,5
79
1) Measured by a pulse method with tp ::; 100
4
II
14,4
16,2
15
16,5
19,2
22,1
25,5
29
°
jJS,
at IZ = 0,2 A
32,4
35,1
39,6
43,7
47,4
52,6
58,3
63,9
71,3
duty cycle 0 ::; 0,001 and T j ::::: 250C.
II
November 1975
BZV1S
II
SERIES
II
7Z67243
3
7Z72278
20
Ptot
(W)
2
"~~
"
15
~ f- mounting method a
r
v
"
v
b;c
I' ..,. ~
..,. "-
1/
"..,.'1)1
~~
1/
V
V
V
1\
~
d
~
/'
,
~
10
~
I'..N'
~,,~
\
"""
~l'-:I\.
,~
5
,,~
~
~
~
'"
o
25
75
.. ,
o
o
T amb (DC) 125
50
100
0
Tmb ( C)
150
7Z72277
10
-l-
i-"""
V ~"'"
-- """
V
V
L..oo'"
10- 2
10- 4
November 1975
UJ'_-..JJ_m.'-" _ _ _ _ _ _ _
10- 3
II
10- 2
10- 1
10
time (5)
10 2
5
BZV15
II
SERIES
15
7Z69790
10
7,5
10- 3
BZV15-C10 typical values
dynamic characteristics
typical values
..... i"'"
V
"
Vz (V) 12,5
V ....... "
:,....-i"""
I
I
I
I
/ :/~
/~ V
10
I
J~
~
'l~
Tj =150 oC
25°C
I z =lA
200mA
.1
1
if
/,
'/
I
Iz
(A)
1
o
25
50
Vz (V) 37,5
40
V (V)
z
35
10
7Z69793
75
32,5 3
10-
BZV15-C33 typical values
dynamic characteristics
90
Vz (V)
85
80
75
10-3
BZV15-C75 typical values
dynamic characteristics
I
10- 2
Tj=150oC
25°C
Tj=150oC
25°C
10- 1
•
I
J
I{
.Jt
./
,J
Iz
(A)
10
7Z69791
6
~
II
-"
lL
1I
L
/
V
Iz
(AI
10
7Z69792
I
November 1975
TRANSIENT SUPPRESSOR BRIDGES
Plastic encapsulated bridge assembly comprising four silicon double diffused transient suppressor
diodes. It is specifically intended for use as line polarity guard and transient protection element in
telephony equipment, and as suppressor element in electrical and electronic equipment in general.
QUICK REFERENCE DATA
BZW10-12
15
Input stand-off voltage
V,
max.
12
15
V
Output clamping voltage
VO(CL)
<
30
34
V
Non-repetitive peak clamping current
I(CL)SM
max.
50
40
A
Output voltage
Vo
>
10
13
V
'MECHANICAL DATA
Dimensions in mm
Fig. 1 SOD-28
chamfer to
indicate positive
5'088lJ-~5,08L
5,oaL_
-$0
rr-;I=======:=l
19
max
I
+
2
~==========~
_15,31_ _110 1-max
t 1 05
I ~=======::J~t max
max
19 min
--I
7Z75526
The seal ing of the plastic envelope withstands the accelerated damp heat test of IE C recommendation 68-2
(test D, severity IV, 6 cycles).
I
AU9ust 1979
l_ _ __
BZW10 SERIES
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC134)
Input stand-off voltage (note 1)
15
max.
12
15
150
150
50
40
Average output current
(averaged over any 20 ms period)
10(AV)
max.
Non-repetitive peak clamping current
full load prior to surge (see note 2)
I(CL)SM
max.
---7 Storage temperatu re
~
BZW10-12
T stg
Operating ambient temperature
Tamb
V
mA
A
-55 to +150
°C
-25 to +85
°C
THERMAL RESISTANCE
From junction to ambient
60
Rth j-a
°C/W
CHARACTERISTICS
~ Tamb = -25 to +85
Output voltage
VI = Vlmax; 10
°c
= 10 mA
Output clamping voltage at I (CL)SM
at rated load conditions
Leakage current
VI = Vlmax; at rated load conditions
Vo
>
10
13
V
VO(CL)
<
30
34
V
<
40
40
I1A
MOUNTING INSTRUCTIONS
1.
The maximum permissible temperature of the soldering iron or bath is 270 oC; it must not be in
contact with the joint for more than 3 seconds.
2.
Avoid hot spots due to handling or mounting; the body of the device must not come into contact
with or be exposed to a temperature higher than 150 0C.
3.
Exert no axial pull when bending the leads.
Notes
2
1.
The stand-off voltage is the maximum bridge input voltage permitted for continuous operation.
2.
In accordance with F.T.Z. requirement 10/700 with 2 kV test voltage: BZW10-12 and 1.6 kV:
BZW10-15 (see also page 3).
December 1979
(
BZW10 SERIES
Transient suppressor bridges
terr
voltage
15H
10 f.1 F
J
25 S2
08484
-
o---~~------~------~-------<~----~
device
under
+
test
"v
Fig.2 Test set-up in accordance with F .T.Z. 10/700
100
l(eLl
(%)
50
OL-r-------------~----------------------
-210/1sFig. 3 Output clamping current as a function of time.
'I (
August 1979
3
l__
For full information see BZX70 data sheet
B_Z_W_7_0_S_E_R_IE_S_ _
TRANSIENT SUPPRESSOR DIODES
A range of diffused silicon diodes in a plastic envelope intended for use in the protection
of electrical and electronic equipment against voltage transients.
The series consists of the following types: BZW70 -5V6 to BZW70-62.
QUICK REFERENCE DATA
Stand -off voltage (15% range) ':'
VR
5,6to62
V
Rever se breakdown voltage
V(BR)R
6,4 to 70
V
max.700
W
N on -repetitive peak reverse power
dissipation; exponential pulse
,,' The stand-off voltage is the maximum reverse voltage recommended for
continuous operation; at this value non -conduction is ensured.
MECHANICAL DATA
SOD-I8
...max
4.,.,
...max
4.,.
)f-----J~ ~l
U'---------ll
k
I...-----...,Ja
___ 6,5_
max
Dimensions in mm
_____ not tinned _______
_2~_1 ...____ 12,5 _ _ _-t.~1_2~ _
min
max
\
min
7Z69747
The rounded end indicates the cathode!
The sealing of the plastic envelope withstands the accelerated damp heat test of IEe
recommendation 68-2 (test D, severity IV, 6 cycles).
December 1979
CHARACTERISTICS - WHEN USED AS TRANSI ENT SUPPRESSOR DIODES; T amb = 25 °C
clamping
voltage
tp = 500 MS
expo pulse
V(CL)R
V
typo
2
at
non-repetitive
peak reverse
current
IRSM
A
max.
reverse cu rrent
at recommended
stand-off voltage
IR
mA
VR
BZW70- ...
V
max.
9
10
20
0.5
5.6
5V6
10
11.2
20
0.5
6.2
6V2
11
12.5
20
0.5
6.8
6V8
12
14
20
0.1
7.5
7V5
13.5
15.5
20
0.1
8.2
8V2
15
17.5
20
0.1
9.1
9Vl
17
19
20
0.1
10
10
19
21
20
0.1
11
11
21
23
20
0.1
12
12
23
26
20
0.1
13
13
22
26
10
0.1
15
15
25
29
10
0.1
16
16
28
33
10
0.1
18
18
32
38
10
0.1
20
20
36
43
10
0.1
22
22
41
48
10
0.1
24
24
47
54
10
0.1
27
27
44
52
5
0.1
30
30
49
58
5
0.1
33
33
56
65
0.1
36
36
63
72
5
5
0.1
39.
39
71
82
5
0.1
43
43
80
93
5
0.1
47
47
89
104
5
0.1
51
51
98
116
5
0.1
56
56
104
116
5
0.1
62
62
December 1979
r
BZW86
II
SERIES
TRANSIENT SUPPRESSOR DIODES
A range of diffused silicon diodes in a DO -30 metal envelope intended for use in the protection of the electrical and electronic equipment against voltage transients.
The series consists of the following types:
Normal polarity (cathode to stud): BZW86-7VS to 56
Reverse polatity (anode to stud) : BZW86 -7VSR to 56R
QUICK REFERENCE DATA
Stand-off voltage (15% range) >:'
VR
7,5 to 56
V
Reverse breakdown voltage
V(BR)R
9,4 to 64
V
Non -repetitive peak reverse power
dissipation; exponential pulse
PRSM
25
max.
kW
The stand-off voltage is the maximum reverse voltage recommended for continu0us operation; at this value non -conduction is ensured.
i
Dimensions in mm
MECHANICAL DATA
DO-30
3,0,..
max
-I:;~-L
max
0rJ~?
-t "x2o
-t.
~+
NF
-4-
~~~------------~·l
,
-4-
I
~-+
~ ~~:~
~~ BZW"-B'~
63,5 max
I
lead bent at right - I
angles
-
8,7
8,3
1
1--_....--.._. f
----:.
23
21 DO
20.24"
__I12,3
11,4
,","'.:'-ng-:Ube
BZW86R-Red insulating tube
7260651.1
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 19 mm
Diameter of clearance hole: max. 13 mm
Net weight: 123 g
The mark shown applies to the normal
polarity types.
May 1978
II
Torque on nut: min. 9 Nm
(90 kgcm)
max. 17,5 Nm
(175 kgcm)
BIW86
SERIES
II
II
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Stand -off voltage *
VR
equal to type number suffix
IRSM
IRSM
IRSM
max.
max.
max.
3700
1200
700
A
A
A
IRSM
IRSM
IRSM
max.
max.
max.
1200
400
250
A
A
A
Repetitive peak reverse power dissipation
Tmb = 65 oC; f = 50 Hz;tp=lO IJs(square
pulse; see also graphs on page 6)
PRRM
max.
50
kW
Non -repetitive peak reverse power dissipation
Tj = 25 °c prior to surge; exponential
pulse: see also graph on page 5
tp = 100 \ls
tp = 1 ms
PRSM
PRSM
max.
max.
60
25
kW
kW
-55 to +175
°c
175
°C
Currents
N on -repetitive peak reverse current
T j == 25 °c prior to surge
tp = 10 IJs; square pulse
BZW86-9V1(R)
BZW86 -27(R)
BZW86 -56(R)
tp = 1 ms; exponential pulse
BZW86-9V1(R)
BZW86 -27(R)
BZW86 -56(R)
Power dissipation
Temperatures
Storage temperature
T stg
Junction temperature
Tj
max.
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
0,3
°C/W
From mounting base to heatsink
Rth mb-h
0, 1
°C/W
1,5
V **
CHARACTERISTICS
Forward voltage
IF = 500 A at T j = 25°C
VF
<
* The stand-off voltage is the maximum reverse voltage recommended for continuous
operation; at this value non -conduction is ensured.
** Measured under pulse condition.
2
II
II
May 1978
BZW86
II
SERIES
CHARACTERISTICS (continued)
Clamping voltages (exp. pulse)
at T j = 25 °c prior to surge; tp=SOO (Js
V(CL)R (V)
BZW86 -7V5(R)
-8V2(R)
-9Vl(R)
-lO(R)
-ll(R)
-12(R)
-13(R)
-15(R)
-16(R)
-18(R)
-20(R)
-22(R)
-24(R)
-27(R)
-30(R)
-33(R)
-36(R)
-39(R)
-43(R)
-47(R)
-SI(R)
-56(R)
Reverse breakdown voltage
at Tj = 2S °c
V(BR)R (V)
typo
max.
min.
12
13
14
15,5
17
18,5
20
23
27
31
34
37
40
44
47
51
55
60
66
14
15,5
17
18,5
20
22
24
27
32
36
40
43
47
52
55
60
65
70
8,5
9,4
10,4
11,4
12,4
13,8
15,3
16,8
18,8
20,8
22,8
25,1
28
31
34
37
40
44
48
52
58
64
72
78
85
77
84
92
102
IR
= 1000 A
IR = 500 A
IR
= 250 A
IR = 10 A
IR = S A
IR =2 A
The maximum clamping voltage is the maximum reverse voltage which appear across the
diode at the specified pulse duration and junction temperature.
See curves on pages 8 and 9 for square pulses and pages 10 and 11 for exponential pulses.
May 1978
II
3
BZW86
SERIES
II
II
CHARACTERISTICS (continued)
Tj = 25
°c unless
otherwise specified
Peak reverse current
VRM = recommended stand-off voltage
Temperature coefficient of clamping voltage
<
s
2
typo
-to,
rnA
I
OPERATING NOTES
Heatsink considerations
(a)
For non -repetitive transients, the device may be used without a heatsink for pulses up to 10 ms in duration.
(b)
For repetitive transients which fall within the permitted operating range shown in
the curves on page 6 the required heatsink is found as follows:
T j max - Tamb
Rth j -mb + Rth mb -h + Rth h -a = - - - - - - -
where Tj max
thus
ambient temperature
Tamb
=
Ps
= any steady
state dissipation excluding that in pulses
o
= duty factor
(~/T)
Rth j-mb
= 0,3
Rth mb-h
=
°C/W
0, 1 °C/W
Rth h -a can be found.
4
II
July 1972
BZW86
II
SERIES
7Z62828
- - square current pulse
- - - exponential current pulse
PRSM
(kW)
-, .... .... .....
~-..
-- - ..
............... r-...... :
~
........ ;--...
i""-.... r-...
Tj 25 0 C
65 0 C
/,125 0 C
._/
r ..
I.....
"""'r--I"I"-
--I ....
..... - .. fo(~ ~I.....
~ ~.. . '''~ I"- ...............
r-.. t'--- r...r-.
r"'~ ~~
..... 1" ... ~
p........r-.....
I"t"o..
~ r--.. . . r"- .. r- .,...
~
I--..
y'"
Tj=25 0 C /
lO
65 0 C
~
125 0 C
~prior to surge
r===
.
...
..........
r-..
......
... ...
'
roo
._
f'"
....
::--
I=:....~ I..........
i"'"
1"-1"-
-~
~ ~ ~ ..--"I ....
....
-.............. I'--..
r--. I'....." ~I"-
I""'1
lO-2
~
r"" 1"-1"-
10 duration (ms)
10 2
Duration of an exponential pulse is defined as the time taken for the pulse to fall to 37% of
its initial value. It is assumed that the energy content does not continue beyond twice this
time.
July 1972
II
5
BZW86
II
II
SERIES
7Z62824
7Z62825
t
tp::::lO\lsi=
PRRM
(kW)
I'
"
I'r--,
'"~_t'.
-, r"r-.,
1,-
10
Tmb::::650C
r"r-.
'"
""'1""- 1"'1--
r"'t-
~
f""'o
r-t--
\
1
T""
1
i~ I'.
t\~
1"'1....... 1-""
....
10ms
---1
l"'"
I ' ....
......
1ms
~
I'
r-
\lst-
Tmb= 125°C
~ro...
L""I"'..'+--",,"
\""000
j ....
~,
,,~
r-r-
~'I\
,\
l\
100 \ls=f=
,-t-
I'
\ 1\
1\
10
1- 11() 1
. p-
PRRM
(kW)
"""
r-"",
100\ls-t-
""'too-
r-r-
". "I'
-=
--
--
I'..
r-r-
1\
10- 1
~
I"
\
~Olmls
1"1'
- ....
1m~- 1=-;::
1"'- ......
r-r-
10- 1
o
100
200
300
400
repetition frequency (Hz)
o
100
200
300
400
repetition frequency (Hz)
square current pulses
exponential current pulses
6
II
II
July 1972
BZW86
II
SERIES
7262826
10
/
at VR == stand-off voltage
,,"
,
,
.".
.",
,i..-
max
.. ""
~
..
~,
~"
"
,/
"
/
ty
./
10- 1
V
V
a
July 1972
V
V
/
,/
50
II
/'
V
/'
v
..V
/
V
100
7
BZW86
SERIES
II
II
V(CL)R (V)
125
100
75
! :;
I ~
50
7Z62827
;'M&:,::E~6
"""
"""
M
MMM
I
1
,....j
N
N
00
.-t
N
~
I
I
\0
\0
00
00
~
-
;-IA[~
N
N
r--
\0
max. values
Tj = 25 oC prior
to pulse intermediate voltage types may be
interpolated
25
~
N
N
o:l
o:l
1
I
10
~
J
J
:1
11
I";'
II
7 1
17
I
If
I
J
~f
- -
J
...,.Q,I
I
If
./
I
-'II 'l
~
Is
b~
......,
II
~
III
Ii-I
IRSM
(A)
~1
, (f.),
~I
SJ
VIr
I
T
-r
6-1
;,
,I
II
I
square pulses
8
II
II
July 1972
BZW86
II
25
SERIES
V(CL)R (V)
20
is i3
15
il 'iD
i2
10
8V2 7\15
7Z62830
5
10
o-i
>-
0--
1/ \0,
max. values
Tj =25 0C prior
to pulse
intermediate voltage types may be
interpolated
1/
OCJ
~
N
CO
I
I
II
$/
~
V
~
...,~) J
II
1/
I
II
I
4L IJ
0"-
max. value~
Tj ~ 2.5 0C prior
to pulse
intermediate voltage types may be
interpolated
J
\0
00
~
N
o::l
~
0
II
~'/ !II
II
I
...,Q,J
II /11
II
0
1
.....,ll,
II
II
I
,
I
I 1/
0
g:::J..1
;;/
J
IRSM
I
!if
(A)
~I
v, .I
V
I
exponential pulses
July 1972
II
11
BZW91 SERIES
For full information see BZY91 data sheet
TRANSIENT SUPPRESSOR DIODES
A range of diffused silicon diodes in a DO -5 metal envelope intended for URe in the protection of the electrical and electronic equipment againRt voltage transientR.
The series consists of the following types:
Normal polarity (cathode to stut): BZW91- 6V2 to 62
Reverse polarity (anode to stud) : BZW91 - 6V2R to 62R
QUICK REFERENCE DATA
Stand -off voltage (15% range) >:<
6,2 to 62
V
Reverse breakdown voltage
7,0 to 70
V
Non-repetitive peak reverse power
dissipation; T j = 25 °c prior to surge;
tp = 100 fls (exponential pulse)
~:::
max.
27
kW
The stand-off voltage is the maximum reverse voltage recommended for continuous operation; at this value non -conduction is ensured .
Dimensions in mm
. MECHANICAL DATA
15,3 max
00-5
1/1. in x 28 UNF
'_F=~/===r-i
-'
, 8,0
6,35
max
max
+-
~----J_ -.13,~ i.-
-t
min
(flat)
2,2__
max
...
!
-17,0-
--. 5,0 . max
_
11,5 _ , ....t - - - - - 25,4 _ _ _~~~I
10,7
max
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 11,1 mm
Diameter of clearance hole: max. 6,5 mm
Net mass: 16, 5 kg
Accessories available: 56264A; 56309B; 56309R
The mark shown applies to the normal
polarity types.
7Z75506.1A
Torque on nut: min. 1, 7 Nm.
(17 kgcm)
max. 3,5 Nm
(35 kgcm)
December 1979
l_ _ __
BZW91 SERIES
CHARACTERISTICS - WHEN USED AS TRANSIENT SUPPRESSOR DIODES; T mb = 25 °C
clamping
voltage
tp = 500 tJ.s
expo pulse
V(CL)R
V
2
at
non-repetitive
peak reverse
current
IRSM
A
reverse current
at recommended
stand-off voltage
IR
mA
VR
V
BZW91- ...
typo
max.
9.5
10.5
150
20
6.2
6V2(R)
10
11
150
20
6.8
6V8(R)
11
12.5
150
5
7.5
7V5(R)
12
13.5
150
5
8.2
8V2(R)
9V1(R)
max.
13
15
150
5
9.1
14.5
17
150
5
10
10(R)
16
19
150
5
11
11(R)
17.5
22
150
5
12
12(R)
19
26
150
5
13
13(R)
22
28
100
5
15
15(R)
24
31
100
5
16
16(R)
26
34
100
5
18
18(R)
28
37
100
5
20
20(R)
31
40
100
5
22
22(R)
34
44
100
5
24
24(R)
38
48
100
5
27
27(R)
40
52
50
5
30
30(R)
44
56
50
10
33
33(R)
49
61
50
10
36
36(R)
54
66
50
10
39
39(R)
60
72
50
10
43
43(R)
66
79
50
10
47
47(R)
72
87
50
10
51
51(R)
79
97
50
10
56
56(R)
86
97
50
10
62
62(R)
December 1979
(
_ _ _ _J
BZX70 SERIES
REGULATOR DIODES
A range of diffused silicon diodes in plastic envelopes, intended for use as voltage regulator and transient suppressor diodes in medium power regulators and transient suppression circuits.
The series consists of the following types: BZX70-C7V5 to BZX70-C75.
QUICK REFERENCE DATA
voltage regulator
Working voltage (5% range)
Vz
Stand-off voltage
Total power dissipation
VR
Ptot
max.
Non-repetitive peak reverse
power dissipation
PRSM
max.
transient suppressor
7,5 to 75
nom.
V
5,6 to 56
2,5
V
W
700
MECHANICAL DATA
W
Dimensions in mm
Fig. 1 SOO-18.
The rounded end indicates the cathode.
______ not tinned ______
... 4 .... ,
.. 4 ...
max
max
J~u~k
I
,---------,a{/' - - - - - I
__ 6,5_
max
_24
min
_1. . .
>-----12,5
max
-----il.~I_ min
2~ _
1Z69747
December 1979
BZX70 SERIES
l_ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Peak working current
IZM
max.
5 A
Average forward current
(averaged over any 20 ms period)
IF(AV)
max.
1 A
Non-repetitive peak reverse current
Tj '" 25 °C prior to surge;
tp'" 1 ms (exponential pulse);
BZX70-C7V5 to BZX70-C75
IRSM
max.
44 to 6 A
Total power dissipation
at T amb '" 25 oC; with 10 mm tie-points; Fig. 5
Ptot
max.
2,5 W
Non-repetitive peak reverse power dissipation
Tj '" 25 °C prior to surge;
tp'" 1 ms (exponential pulse)
PRSM
max.
700
Storage temperature
T stg
Junction temperature
Tj
W
-55 to + 150 °c
max.
150 °C
THERMAL RESISTANCE
From junction to ambient in free air
see Figs 4 and 5
CHARACTE R ISTICS
Forward voltage
IF'" 1 A; T amb '" 25 °C
2
December 1979
r
<
1,5 V
J
Regulator diodes
BZX70 SERIES
- - - OPERATION AS A VOLTAGE REGULATOR (see page 4)
Dissipation and heatsink considerations
a. Steady-state conditions
The maximum permissible steady-state dissipation Ps max is given by the relationship
Tj max - Tamb
Ps max
'=
Rth j-a
where: Tj max is the maximum permissible operating junction temperature
T amb is the ambient temperature
Rth j-a is the total thermal resistance from junction to ambient
b. Pulse conditions (see Fig. 2)
The maximum permissible pulse power Pp max is given by the formula
(Tj max - Tamb) - (P s · Rth j-a)
R
th t
where: Ps is any steady-state dissipation excluding that in pulses
Rth t is the effective transient thermal resistance of the device between junction and ambient.
It is a function of the pulse duration tp and duty factor o.
{j is the duty factor (tp/T)
Pp max =
The steady-state power Ps when biased in the zener direction at a qiven zener current can be found
from Fig. 3. With the additional pulse power dissipation Pp max calculated from the above expression,
the total peak zener power dissipation Ptot = PZRM = Ps + Pp . From Fig. 3 the corresponding maximum repetitive peak zener current at Ptat can now be read. This repetitive peak zener current is subject to the absolute maximum rating. For pulse durations longer than the temperature stabilization
time of the diode tstab, the maximum permissible repetitive peak dissipation PZRM is equal to the
steady-state power Ps. The temperature stabilization time for the BZX70 is 100 seconds (see Figs 17
and 18).
Fig. 2.
NOTES WHEN OPERATING AS A TRANSIENT SUPPRESSOR (see page 5)
1. Recommended stand-off voltage is defined as being the maximum reverse voltaqe to be applied without causing conduction in the avalanche mode or significant reverse dissipation.
2. Maximum clamping voltage is the maximum reverse avalanche breakdown voltage which will appear
across the diode at the specified pulse duration and junction temperature. For square pulses see
Figs 19 and 20, for exponential pulses see Figs 21 and 22.
3. Duration of an exponential pulse is defined as the time taken for the pulse to fall to 37% of its
initial value. It is assumed that energy content does not continue beyond twice this time.
December 1979
3
_________________________________
~l
___B_Z_X_70__
SE_R_IE_S__
CHARACTERISTICS - WHEN USED AS VOLTAGE REGULATOR DIODES; T amb = 25 °C
working
voltage
*VZ
V
BZX70-...
differential
resistance
*rZ
n
temperatu re
coefficient
*SZ
mV/oC
test IZ
A
reverse
reverse
current at voltage
IR
JJ.A
min.
max.
typo
max.
typo
max.
C7V5
7.0
7.9
0.45
3.5
3.0
50
50
CSV2
7.7
S.7
0.45
3.5
4.0
50
20
5.6
C9V1
8.5
9.6
0.55
4.0
5.5
50
10
6.2
C10
9.4
10.6
0.75
4.0
7.0
50
10
6.8
7.5
2.0
C11
10.4
11.6
0.8
4.5
7.5
50
10
C12
11.4
12.7
0.85
5.0
8.0
50
10
8.2
C13
12.4
14.1
0.9
6.0
8.6
50
10
9.1
C15
13.8
15.6
1.0
8.0
10
50
10
10
C16
15.3
17.1
2.4
9.0
11
20
10
11
C18
16.8
19.1
2.5
11
12
20
10
12
13
C20
18.8
21.2
2.8
12
14
20
10
C22
20.8
23.3
3.0
13
16
20
10
15
C24
22.7
25.9
3.4
14
18
20
10
16
C27
25.1
28.9
3.8
18
20
20
10
18
C30
28
32
4.5
22
25
20
10
20
C33
31
35
5.0
25
30
20
10
22
C36
34
38
5.5
30
32
20
10
24
C39
37
41
12
35
35
10
10
27
C43
40
46
13
40
40
10
10
30
C47
44
50
14
50
45
10
10
33
C51
48
54
15
55
50
10
10
36
C56
52
60
17
63
55
10
10
39
C62
58
66
18
75
60
10
10
43
C68
64
72
18
90
65
10
10
47
C75
70
79
20
100
70
10
10
51
*At test IZ; measured using a pulse method with tp ~ 100}.Ls and [j ~ 0.001 so that the values
correspond to a Tj of approximately 25 0c.
4
VR
V
December 1979
r
j
Regulator diodes
BZX70 SERIES
- - - CHARACTERISTICS - WHEN USED AS TRANSIENT SUPPRESSOR DIODES; T amb =
clamping
at
voltage
tp = 500lls
expo pulse
V(CL)R
V
typo
IRSM
A
max.
9
10
11
12
13.5
15
17
19
21
23
22
25
28
32
36
10
11.2
12.5
14
15.5
17.5
19
21
23
26
26
29
33
38
43
41
48
47
54
52
58
65
44
49
56
63
71
non-repetitive
peak reverse
current
reverse current
at recommended
stand-off voltage
IR
VR
rnA
V
BZX70-...
max.
20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
5
5
5
72
5
80
82
93
89
98
116
5
5
5
5
104
25 °c
0.5
0.5
0.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
5.6
6.2
6.8
7.5
8.2
9.1
10
11
12
13
15
16
18
20
22
24
27
30
33
36
39
43
47
51
56
C7V5
C8V2
C9Vl
Cl0
ell
C12
C13
C15
C16
C18
C20
C22
C24
C27
C30
C33
C36
C39
C43
C47
C51
C56
C62
C6B
C75
December
1979
5
__________________________________
,J~
___B_Z_X7_0_S_E_R_IE_S__
SOLDERING AND MOUNTING INSTRUCTIONS
1. When using a soldering iron, diodes may be soldered directly into the circuit, but heat conducted to
the junction should be kept to a minimum.
2. Diodes may be dip-soldered at a solder temperature of 245 0C for a maximum soldering time of
5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum
storage temperature. These recommendations apply to a diode with the anode end mounted flush
on a printed-circuit board having punched-through holes. For mounting the anode end onto a
printed-circuit board, the diode must be spaced at least 5 mm from the underside of the printed-circuit board having punched-through holes, or 5 mm from the top of the printed circuit board having
plated-through holes.
3. Care should be taken not to bend the leads nearer than 1,5 mm from the seal; exert no axial pull
when bending.
6
December 1979
(
I
I.
~~t) 17101200
I .I' I' ITIITI ' "I ' II' I~i,x~~,
Series
I ' III T~TITI'I
J'J
nI
IQ
c
iii
r+
~
a.
a.
III
o·
10
IE
"OIF
o
~
nI
3
0-
I I I I I IIII
I
IIIIIII~
0·1, I U/Nt.
--t-
-b
+-
.
~'»
~
... 0'1.
1·0
Ji
t-W
r~-
-
-t
'~
.
e"Q" ~
Qr
-
j-
-c-
I
~
~
1'~QO'.., ~
en
U
I
\
10
1..... 0-
___
,J~
___R_eg_U_lat_or_d_iod_e_s__________________________
B_Z_X_7_0_S_E_R_IE_S__
V(CL)R (V)
125
I--
III I)
tp= 10 ms
)
--1-=
~
V/
II
1/
/
I
Y
I
tp= 10 ms
I
LO
I
X
N
V
)
II
I
I
II
I-- I-I-- 1--:::: lOf.ls
N
X
X
N
I
I
III
co
N
I--
tp =10 msf co
,
II
I.
~
=lml/
J
I
~
~+--+--+--+--+l-"'~
,...
,...
}~
I
J
100f.l s
J I
I
I
~
J
~
-
LO
,...
()
6,...
I
~
25
Ia;n~
co co LO
I co
=lms /
,"
50
75
100
111
=1 ms
V I
1/
=lOOf.ls
10
I
I
l
,
I
•
I
:::: lOf.ls
J
I
max. values
I
_
Tj = 25 0C prior I---I--+-+-+-+-+-+--+-_+_:::: 10 f.l s-I--to pulse
intermediate vol-I--+--+--+--+-+-+-+-+---+--+---+---+--+--I
I - - tage types may
I-- be interpolated
I RSM
(A)
Fig. 22 Exponential pulses.
December 1979
19
___
BZ_X_7_0_S_E_R_IE_S_Jl________________________________
7Z67153
7Z67152
square current pulse
- - - exponential current pulse
T'r-.,
I.... ".
I' ...
"T'
i'.
Tamb=65
T'I....
i'or-.,
I'
"'r-o.
~
I..... ~
~~ 1'1'
,
"
t"--
"
I.
If.
f-~
.. ,...~
......
i'
~
'i'..
.
l
I
~~
......
....
.....
l ii
il
.....
200
300
400
Fig. 23.
~
~
50
100
Fig. 25.
r
100
~
I.......
150
T j (oC)
~r-..
1"'1-
r""i~p 101l~-
~,
\ 1\,
i-rViiSI
o
~.
~~
"........
=
lOOIlS=:
"~.
'~ N.....~sl. . "I .... r....
200
300
400
repetition frequency (Hz)
Fig. 24.
10 - 2 L-..L--'--.1........L-~I........1.---'---'-~'O""-.........---'-.....
December 1979
\.
1\
repetition frequency (Hz)
o
, " ..
t"--
100
"
'1'\ r.....
\
i\
10 \
'''1""
1 ms
1\
"
1
o
i-
I ...
[\
[\
i\;\1\
""",....
1
20
'1\
....
100IlS~""
r,
,
1\ ,
"'"
tp= lOllS
i' .....
~\
f--
..... 1 . . .
Tamb= 125°C
~.
r\~ h
l"-
..... r--.
0c r-
~"
~
10
,
r ...
.....
square current pulse
- - - exponential current pulse
j
Regulator diodes
BZX70 SERIES
- - ............
~"'" .........
~
r--.
...
'
T·, ="'b"25 C
.... i'
~
~ t-.... r-..
~I'"
~ f::: . . . ro-
r-.~ . . . /
I' ......~,
"
'"
"/ J 65 0 C 125°C
7Z67156
- - square current pulse
--- exponential current pulse
~V'
..... ~ro- t':.~
....... "1"-
"'" ......../"X
.7'...
~
/7' ""
...... "
r-..
Tj=250C/
0
65 C /
125°C
prior to surge
""i:~
ro-
r......
'
I'~
r0-
...
"
l'1li
~~
"
C'........"' ~ ....... Ioo"'i'. ...
~ ~r-.
........
~~ ~
"
""'""'"
'"
"
~
~~
,~
~
"-
'""'"
""
,
r""-
'~ "'" ~"r-I'
10
10- 2
....
r""- .....
1' ....
i'
10 duration (ms)
"
10 2
Fig. 26.
December 1979
21
j
BZY91 SERIES
----------------------------------------------------~
REGULATOR DIODES
Also available to BS9305-F052
A range of diffused silicon diodes in 00-5 metal envelopes, intended for use as voltage regulator and
transient suppressor diodes in power stabilization and transient suppression circuits.
The series consists of the following types:
Normal polarity (cathode to stud): BZY91-C7V5 to BZY91-C75.
Reverse polarity (anode to stud): BZY91-C7V5R to BZY91-C75R.
QUICK REFERENCE DATA
voltage regulator
Working voltage (5% range)
Vz
Stand-off voltage
VR
Total power dissipation
Ptot
Non-repetitive peak reverse
power dissipation
PRSM max.
nom.
transient suppressor
7,5 to 75
V
5,6 to 56
max.
100
W
9,5
MECHANICAL DATA
V
kW
Dimensions in mm
Fig. 1 00-5.
15,3 max
l/4inx2BUNF
'--F='=/====r1
6,35
8,0
max
max
-t
__I
2.2 _
max
-17,0--
__ 5,0 . max
---
1',5~.
10,7
__ _
____ 25,4 ____ _
7Z7550S.1A
max
Net mass: 22 g
Diameter of clearance hole: max. 6,5 mm
Torque on nut: min. 1,7 Nm (17 kg cm)
max. 3,5 Nm (35 kg cm)
Accessories supplied on request: 56264A
(mica washer, insulating ring, tag)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 11,1 mm
September 1979
l_ _ __
BZY91 SERIES
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Peak working current
IZM
max.
400 A
Average forward current
(averaged over any 20 ms period)
,IF(AV)
max.
20 A
Non-repetitive peak reverse current
Tj ::: 25 °C prior to surge;
tp::: 1 ms (exponential pulse);
BZY91-C7V5(R) to BZY91-C75(R)
IRSM
max.
1000 to 85 A
Total power dissipation
up to T mb ::: 25 °C
at T mb::: 65 °C
Ptot
Ptat
max.
max.
100 W
75 W
Non-repetitive peak reverse power dissipation
Tj = 25 °C prior to surge;
tp = 1 ms (exponential pulse)
PRSM
max.
Storage temperature
T stg
Junction temperature
Tj
9,5 kW
-55 to + 175 °C
max.
175 °C
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
1,5 °C/W
From mounting base to heatsink
Rth mb-h
0,2 °C/W
CHARACTERISTICS
Forward voltage
IF::: lOA; T mb ::: 25 °C
VF
<
1,5 V
OPERATION AS A VOLTAGE REGULATOR (see page 4)
Dissipation and heatsink considerations
a. Steady-state conditions
The maximum permissible steady-state dissipation Ps max is given by the relationship
Ps max =
Tj max - Tamb
~-----
Rth j-a
where: Tj max is the maximum permissible operating junction temperature
T ambis the ambient temperature
Rth j-a is the total thermal resistance from junction to ambient
Rth j-a ::: Rth j-mb + Rth mb-h + Rth h-a
Rth mb-h is the thermal resistance from mounting base to heatsink, that is, 0,2 °C/W.
Rth h-a is the thermal resistance of the heatsink.
b. Pulse conditions (see Fig. 2)
The heating effect of repetitive poWer pulses can be found from the curves in Figs 5 and 6 which are
given for operation as a transient suppressor at 50 Hz and 400 Hz respectively. This value Ll T is in
addition to the mean heating effect. The value of Ll T found from the curves for the particu lar
operating condition should be added tv the known value for ambient temperature used in calculating
the required heatsink.
The value of the peak power for a given peak zener current is found from the curves in Figs 3 and 4.
2
September 1979
[
__J
Regulator diodes
BZY91 SERIES
The required heatsink is calculated as follows:
Rth j-a
where: Tj max
T amb
AT
Ps
Pp
=
:=
Tj max - T amb - AT
p + <5 • P
s
p
175 °C
= ambient temperature
= from Fig. 5 or 6
o
any steady-state dissipation excluding that in pulses
peak pulse power
= duty factor (tp/T)
Rth j-a
= Rth j-mb + Rth
=
=
mb-h + Rth h-a
= 1,5 + 0,2 + Rth
h-a °C/W.
Thus Rth h-a can be found.
Fig. 2.
OPERATION AS A TRANSIENT SUPPRESSOR (see page 5)
Heatsink considerations
a. For non-repetitive transients, the device may be used without a heatsink for pu Ises up to 10 ms in
duration.
b. For repetitive transients which fall within the permitted operating range shown in Figs 26 and 27
the required heatsink is found as follows:
Tj max - Tamb
Rth j-mb
+ Rth mb-h + Rth h-a = P + <5' PRRM
s
175 °C
= ambient temperature
= any steady-state dissipation excluding that in pulses
o
= duty factor (tp!T)
Rth j-mb = 1,5 °C!W
Rth mb-h = 0,2 OC!W
where:Tj max
T amb
Ps
=
Thus Rth h-a can be found.
Notes
1. The stand-off voltage is the maximum reverse voltage recommended for continuous operation; at
this value non-conduction is ensured.
2. The maximum clamping voltage is the maximum reverse voltage which appears across the diode at the
specified pulse duration and junction temperature. For square pulses see Figs 22 and 23, for
exponential pulses see Figs 24 and 25.
3. Duration of an exponential pulse is defined as the time taken for the pulse to fall to 37% of its
initial value. It is assumed that the energy content does not continue beyond twice this time.
4. Surge suppressor diodes are extremely fast in clamping, switching on in less than 5 ns.
September 1979
3
~~~~jl~
________________
CHARACTERISTICS - WHEN USED AS VOLTAGE REGULATOR DIODES; T mb = 25 °C
working
voltage
*VZ
differential
resistance
*rz
V
n
temperature
coefficient
*SZ
%/oC
max.
max.
typo
BZY91-...
min.
A
reverse at reverse
current voltage
IR
mA
VR
V
max.
C7V5(R)
7.0
7.9
0.2
0.09
5.0
5.0
2.0
CSV2(R)
7.7
S.7
0.3
0.09
5.0
5.0
5.6
C9V1 (R)
8.5
9.6
0.4
0.07
2.0
5.0
6.2
C10(R)
9.4
10.6
0.4
0.07
2.0
1.0
6:8
C11 (R)
10.4
11.6
0.4
0.07
2.0
1.0
7.5
C12(R)
11.4
12.7
0.5
0.07
2.0
1.0
8.2
C13(R)
12.4
14.1
0.5
0.07
2.0
1.0
9.1
C15(R)
13.S
15.6
0.6
0.075
2.0
1.0
10
C16(R)
15.3
17.1
0.6
0.075
2.0
1.0
11
C18(R)
16.8
19.1
0.7
0.075
2.0
1.0
12
C20(R)
18.8
21.2
O.S
0.075
1.0
1.0
13
C22(R)
20.8
23.3
0.8
0.075
1.0
1.0
15
C24(R)
22.7
25.9
0.9
0.08
1.0
1.0
16
C27(R)
25.1
28.9
1.0
0.082
1.0
1.0
18
C30(R)
28
32
1.1
0.085
1.0
1.0
20
C33(R)
31
35
1.2
0.088
1.0
1.0
22
C36(R)
34
38
1.3
0.09
1.0
1.0
24
C39(R)
37
41
1.4
0.09
0.5
1.0
27
C43(R)
40
46
1.5
0.092
0.5
1.0
30
C47(R)
44
50
1.7
0.093
0.5
1.0
33
C51(R)
48
54
1.S
0.093
0.5
1.0
36
C56(R)
52
60
2.0
0.094
0.5
1.0
39
C62(R)
58
66
2.2
0.094
0.5
1.0
43
C68(R)
64
72
2.4
0.094
0.5
1.0
47
C75(R)
70
79
2.6
0.095
0.5
1.0
51
* At test IZ; measured using a pulse method with tp
correspond to a Tj of approximately 25 0C.
4
test IZ
September 1979
r
< 100 J.Ls and () < 0.001
so that the values
j
Regulator diodes
BZY91 SERIES
- - -
CHARACTERISTICS - WHEN USED AS TRANSIENT SUPPRESSOR DIODES; T mb = 25 °C
clamping
at
voltage
tp = 500 JlS
expo pulse
V(CL)R
V
typo
reverse current
at recommended
stand-off voltage
non-repetitive
peak reverse
current
IRSM
A
max.
IR
mA
VR
V
BZY91-...
C7V5(R)
max.
-
-
-
-
9.5
10.5
150
20
6.2
C8V2(R)
10
11
150
20
6.8
C9Vl (R)
11
12.5
150
5
7.5
Cl0(R)
12
13.5
150
5
8.2
Cll(R)
-
13
15
150
5
9.1
C12(R)
14.5
17
150
5
10
C13(R)
16
19
150
5
11
C15(R)
17.5
22
150
5
12
C16(R)
19
26
150
5
13
C18(R)
22
28
100
5
15
C20(R)
24
31
100
5
16
C22(R)
26
34
100
5
18
C24(R)
28
37
100
5
20
C27(R)
31
40
100
5
22
C30(R)
34
44
100
5
24
C33(R)
38
48
100
5
27
C36(R)
40
52
50
5
30
C39(R)
44
56
50
10
33
C43(R)
49
61
50
10
36
C47(R)
54
66
50
10
39
C51(R)
60
72
50
10
43
C56(R)
66
79
50
10
47
C62(R)
72
87
50
10
51
C68(R)
79
97
50
10
56
C75(R)
September 1979
5
BZY91 SERIES
l_ _ __
MOUNTING INSTRUCTIONS
The top connector should neither be bent not twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
6
September 1979
r
j
Regulator diodes
BZY91 SERIES
- - - D2656
PZM
(W)
/'r-'"
V~
V
At any pOint on the curves the device
is shown
dissipating Its maximum peak
aHowed time
power for the maximum
II
I
:/
V
V
17/
r/
)IIJ
/1/
V/
.J
Other devices may be
interpolated
/./
~""
~
',>
-¢ ~ ¢~
jl],11W'
(,
c.,
(,
/
r--
-
V
II
/
<0
(00
<0
5
c.,
/~
7
100
2
Fig. 3.
02657
SZY91 Series
i'oo..
~ ::-.......
R
7
'=: ~ ~~
......... r-... ~~ ~-- ~
-- """'" ""r-...
~
..........
.......
.....
-......
,..
r""
"'r"",..
"
~
~~ ~
~ ~ t::: r--.."
~
r" r--..",..
l'-.1"-
r--..~to-
........
I~=
25°C
V=
175°C
t%~l~~:g
~
......... .........
1'0
r".... f"" ~
~ ""~
""~ to-
lOO)J
1m
7
10m
5
7
100m
Pulse duration (s)
Fig. 4.
September 1979
7
,
,,,
,
,
30
/
I
20 1/
/
I
I
I
L
I
I
1
/
Repetitive operation in this
area is not permissible
11
\
\
lSkW'
,
'-r-
\
11
IOkW I \
I \
II
\
I
I
IJ
r
\
\
/
/
/
\
/
/
\
/
7kW/
I
/
I
J
/
./
L
I
I
L
'f
I
10
'f
J
~
-~
/
J
/
o
\
,,
PZM=20kW,
40
02658
BZY91 Series
I
J
'f
""L\..
/
""
SkW1
1
II
I
./
./
./
IL
~
/
~
)0..
~
3kW1
Y
2kW
,/
""--
IkW
1m
100J.l
10m
7
50Hz Repetitive pulse duration (5)
Fig. 5.
02659
60
IBZY91 Series
~T
(OC)
50
Repetitive operation in this farea is not permitted
f-
40
'",, , .........
r ....
~
30 "20kW
'I
I
.....
......
I
/
IIOkW
1
J
I
20
.....
...
/SkW
I
, ........
II
......
I
10
/
o
I
1
/
L
I
J
I
/
I
if .........
2kW
I
I
i'-...
1'0.
I
11kW
J
I
J
'f
Ir"J SOOW
I
I
L
Fig. 6.
September 1979
(
i'....
-....
1m
7
10m
400Hz Repetitive pulse duration (5)
100J.l
8
.....
j
Regulator diodes
BZY91 SERIES
- - - ,
100
D2655
BZY9' Series
"
Ptot
f\..
max
(W)
~
'!I.\
75
I'\.
,
r\.
\
50
r\.
,
r\.
\
25
Permissible area of operation
\.
,
\.
\
o
-100
-50
o
100
50
\.
150
~
Tmb(OC) 200
Fig. 7.
02660
100
II
Vz
Typical
zener
characteristics
Tmb = 'OOoC
(V)
BU91 -C75
75
.---
{
""
... ~
T
=25°C
mb
~
50
Tmb =150 o C
""
~
Tmb =25°C
C33 {
25
~"'"
-C7V5 {
7
10
"",l-
Tmb = ISOoC
Tmb =25°C
,
Fig. 8 Typical dynamic zener characteristics.
September 1979
9
jl~_________________________________
___B_Z_Y_91_S_E_R_I_ES__
VzeVl
70
so
60
40
30
20
o
10
r-r-r-
0.01
~
l - f- 2
~
r---r--
I-- 1--t-- I-- - 5
t-- t-- r-t-- t-- r-- 7
t -r-ft -r-tt -r-t-
0.1
r-r-t-
t-r-tf-f- -
I-r- -
1--1- 1-1- f-
,.
t--t-- r--
J
,..
·
1/
C7S
I
C68
1-1- rt-r- t-
1/ ~v ~ ~L -..~
""""""
C51
C62
C56
V D'~ r-,~ ....
C36
3(
1e4 l;,v Cl3
Vl/ ).C~ K
I
C3
gV
I
I
C30
I
C22
I
I
I I I
!
J .1
C10
Jr20
(
I
r--
1
C13
I
1
C12
I
I
C7V5-
II
V V
C16 C15
Fig.9 Typical static zener characteristics.
September 1979
C8V2
C~8 V V ~
02661
10
Cll
C9V1
II
C27 "
C24 V 1/ ~ V
I
Tmb= 25°C
Typical static zener
characteristics
~
C~ 7
1.0
P
11-~
11
5
z=
IZ
75W
7 (AI
P
I I·
1 1
10
j
Regulator diodes
BZY91 SERIES
- - -
:-: :'J ;-::: ;: ~ :rT':: tl~: t-r-'t-;--IT-+++-t-++-1--++++-t--i-'H-+++++H
:-rf: l-! 1 • : : : : f--< ~ t ; ~ t f.i.-H· ~ t-+-- .
r-J
E±f
O.OS. :
a
h
20
40
60
80
VZ (
Range
f--;-·, --+-#t--I--"'~~ -... + -~-,
v)
~.
I+~
_.L_l+- -L-_+-I +-+++ '--t -H---j-+-+-++++-i-+-',.+-++++++-+-t--H
Fig. 10.
September 1979
l____
BZY91 SERIES
02665
4
(~'
B
_S ~l'Ies
I I I
I Z =O.SA
Tm b=2SoC
rZ
W)
3
Max
,.,.
2
~~
-~ .....
ioooo~'"'"
....
.... ... """
o
""' ....
""" ....
o
."."'"
~""I"""
~
40
20
60
80
Vz (V)
02666
4
9' :: erJes
B
I
I Z =1.0A
Tmb= 2SoC
rZ
(n)
3
Max
.......
2
~
"-"""
o
1'""-
o
~.".
.....
l"""~
.... '"'"
........ 1"""
i"'"
.... ~-
40
20
60
80
Vz (V)
02667
2.0
I
B Y91 Series
=
I I
Max
IZ
2.0A
Tmb= 2SoC
rZ
(.0.)
tt'
,,-
1.5
:."
~
".
1..00'"
1.0
.......
..... i"'"
....
1..00"
,.,. "'"
~
"",-
0.5
....
"",,""
0
0
20
40
Fig. 11.
12
September 1979
(
60
80
Vz (V)
j
Regulator diodes
BZY91 SERIES
- - -
02668
Tmb
25°C
I
Lil
Typical curves
""~'-'-
\\'\
~~
-"
" "
1\ \
\,
\~
I'
" "" ~"' ~
C75
C56
"""Cl~
""
~
1TC
~
9
sr JI LII
7
1'
5
7
10- 2
2
5
10-'
7
5
2
7
10 1
2
Fig. 12.
...
D34870
~
PRSM t-.., ......
(W)
"
l'
~ r.:::
............
I... 1"'
~
I"
I--
.. ~ :::~
r::::: ~
... ~
r - - - T· -25°C
r--t---- J=65°C
t---r - - - =125°C
prior to
t---surge
II
--
BZY91
-- --
II
I--- = 65°C
I-- =125°C
"k
l't-- 1"-",
t:::~
Tj = 25°C
I......
"~
'" ...... ...........
f - .............
I ....
'" I'" ...
.....
.......
.........
Square current pulse
tp=t
Exponential current
pulse
tp=CR
1=0 after 2 C R
-'!..
~
I'-...
..... 1'0",
....
...
~
~
....
~ ......
~
b-,., ....... ~ .....
""
~
:::.....N ==== "'I'"
..... ~ ........ lI- I'"
.......
.......
........ .... ~~
.... '" ~ I'
"'
.......
"
.... .....-='" r""Io.~h.
~ ~
['.
-~
._J---
5
7
lO0/-ls
2
7
lms
Fig. 13.
5
7
lams
2
!t!
....
....
- t--
5
7'00ms
PuLse duration
September 1979
13
Jl_________________________________
___B_Z_Y_9_1_S_ER_I_ES__
B85.?JL
BZY91 C7V5
BZY91- C7V5R
7
5
B8557
BZY91-C7V5
BZY91-C7V5R
7
) 5
3
3
/
°V
.;\~O
7c------3
7
5
3
-<-«'~T-
7
V
R
6V
5
~
-
..J..~. .--- ~v
,
..."..V
~
I'"
~
V
5V-
/
2V'
V
/'
..
""2.~
./
- - r---
'/.~
~-
~
/Y'
.-
5
--
L
3
/
1V
..L/
V
./
7
7
5
--1-----
V
,
5
~."
./
-~
V
3
o
25
50
..
~.--
.. -
3-
....... V
10
r---
r·--
7
./
/f'
/
3
3~
./
...... 1'
.1
-
5
75
100
125
o
150T (OC)
mb
4'
•. -
~-.-
5
Fig. 1'5.
Fig. 14.
-....-- -_ ...- .----.-- - - ---- r-----c---
1
- --10~~~~
-' ,_
-..
I------+-~___t~~-+--~--+-------
1-----+---.-1----+-----l----+...-- - - - .
o
Fig. 16.
14
September 1979
(
4
8
Fig. 17.
10
V (V)
R
J
- - -
BZY91 SERIES
Regulator diodes
T:i~=ri;' -fv~~i""
w'
:i iT::.
7r----:= f---..- 8ZY91
8ZY91
5
±-- tL
r---
3
=;r~ib
.L
:;:,==,,::•.:::1:=
.. :::t:::::;:::.
'I·:
t()O~
3
10
f------ r--"~
51----
L
~.Ut=.
r -~r--~
r------
-~
L
--~~.
,r----
;
8$561
C33
C33 R
r----
--=r -
t.~
r-~
£t--
3-·~
/.
V
I"
f-------
.~
--.~
r----
7
10
5tT=-::: r--
J
3
I
I
1
I
7
.L
I
5
I
II
o
10
o
o
20
40
60
80
100 120
140
160
.-
I
3
5
15
10
20
25
30 VR(V)
Tmb(·C)
Fig. 18.
Fig. 19.
88563
,=,o·C
7
5r---)
r--- "l.0'..£.
L':.
.1
~
3
.1
1.
/""
L
7
5
yc'(jL
"t.
10
2
.~t---.
--r---
.U L
3
BZY91-C75
BZY91-C75R
_.
t-----
~~
7
5
--
I
·~r~
I
3
I
V
10
I
1
,
1
I
5
L
3
J
L
0
Fig. 20.
25
50
75 V (V)
R
Fig. 21.
I
September 1979
15
BZY91 SERIES
j l_________________
V(CL)R max
25
20
(V)
20
is
is
12 Iii iO
i3
~
r~
Square pulses
Tj = 25°C prior ~.
to puls.e
Intermediate
voltage types f - - - f may be
f--i nte rpolated f - I
I
IJ
I
II
I I I
I
tp=10ms
.
./
V
j
tp=lms
,
I
SZY 91-C9V1
V
j
JJ
'I
I
II
J
'(
I
10
j
I I
V
-- r-
91-~~~
SZY
I
.
j
I
"
,
,I
JI
tp=10ms
I
J
/
~
/ II
L
I
1
,
tp=lmjl
I
r
t p= 100j.ls j
1
I
~ tp =100jJs
100
)/ J
I
J
f--
5
IsVi
l
'-r-- -
~.
-------
10
15
I
1
1
I
I
II
tp ~10}Js
I
t p'S.10j..L'S
I
1
-.l
1
.1
1
1000
08027
16
September 1979
r
Fig. 22.
j
Regulator diodes
BZY91 SERIES
V(CL)R max
125
(V)
100
75
68
50
-
-
56
62
25
---
47 43
39 36
III
-
-
Square pulses
Tj = 25°C prior
J
to pulse
Intermediate
voltage types [I J
may be
r I
interpolated I I
I I
t =10ms II III
I
V
PI
Y'J
BZY91-C75
V
./
~V
I
JJ
I I
tp=lms
II I
I
I
I J
I
tp=10ms:
BJ~IL51
tp= I
1ms J
~
/
j
I
j
J
I I1'
'l
I
I
:I
J
~.
tp=lms J
j
t P ~lO)Js
I
L
II
I.
I
r
J
10
'f
j
II
r---
BZY91- C2
.,I
J
l:
tp=10ms
I I
J
t p =100JJ
.1
if
'/
~
J
tp~10ps
,
J 1
I
I
I I
J
f
I
tp=100ps 4'f
22
J
I
I
30
33 27
100
I
t P=l:JJS
II
J
I
tp~lOps
I
I
1000
I
08028
Fig. 23.
September 1979
17
j l_.________________
BZY91 SERIES
V(CLlRmax
25
(V)
-,
- 20
16
18
2°1
15
113
12
10
,-
I- I-
11
10
5
8V2
I
Exponential pulse s
=25°C prior
~
J to pulse
I - - Intermediate
voltage types
I-may be
~
interpolated
~
r.
IRSM
(A)
I
I
10
I
I
BZ y 91-C15
BZ Y 91-C9Vl
~
tp=10msJ~
I
..,I
I
~
~
I
I
V
)1
J
I
I
I
I
J
I
I
•
100
V
t p =1mSj
V
/
~
tp=100J,Js
I
I
I
tp=lms
l
)'
I
J
/
,
J
tp=10ms
J'
1/
I
-,
~
t P =100 jJs
tp~lOjJs I
I
I
I
I
I
I
tp~10jJs
I
1000
D8029
18
September 1979
r
Fig. 24.
j
Regulator diodes
BZY91 SERIES
- - V{CL)R max
125
(V)
75
100
Sa
Exponential pulses
Tj = 25°C prior
~
to pulse
Intermediate
r---voltage type s
r---may be
interpolated
-
4~
56
62
25
:3 rg ~-ro- 22•
(A)
-,J
l-
f--
tp=10ms
J
10
Iy 9\-c~~1
J
if
VI
V
IIV
BZ y91-C7V
/
BZ
BZ Y
J
,
I
V
I
I
I
I
I
tP=100JJ
fl
I
I
,
t p~lO)Js
r
~
J
,I
,
ll_
I
tP!,OOJJ'l
4
I
I
I
II
r
I
/
I
tp=10ms J
t p =lms'
I
~
91-C2~
I I I
j
tp =lms
1.0
33 27
I RSM
~
tp:10ms
50
I
'
IJ
(
,
•
tP=lm~/
100
J
.J
,
tp~lO)Js
tp=100)Js j
,
tp~10)Js
I
I
I
j
J
r----
1000
08030
Fig. 25.
I
September 1979
19
Jl_________________
BZY91 SERIES
D3485
Tmb
=
65°C
~
!'-I- ~
10
03L86
100
100
Tmb
=125°C
"""' ....
I""'~
P RRM
...
(kW)
= IOJ,Js
t
J
---
~""'Io..
10
"""
!'"oliili ....
r-.'.P 1"'0~ '00
.... JJs
i"""
~
~
~
-~ ;""!'-o
~
~j."
t
~~\
r--
-~~~s
1""'0 .... "'"
i"""1--
~
100W
100
100
200
300 (Hz) 400
Repetition frequency
Fig. 26.
at VR stand-off
.voltage
Ll J (1 L I
BZY91-C7V5 toC9Vl
"" .........
~
.. --
(rnA)
j.~
BlY91-C43 to C75
0.1
BZY91 C1Q to C39
o
50
Fig. 28.
20
September 1979
(
""' .../'s
~,...."""
....
,..;;
:~
o
f-f-~"'?-s'
"'"
.....
100
~~
.... t--
t--I--Io..
200
300 (Hz) 400
Repetition frequency
Fig. 27.
08031
10
II) "',
..... ~ 00
~~L- f\~
I---~~
1'"""
r-~
100
,,~
~
i\[\
lA
""
1"'--..
i\
o
"""';.... t--1--~;"'IOJJS
~~~
REGULATOR DIODES
Also available to BS9305-F051
A range of diffused silicon diodes in 00-4 metal envelopes, intended for use as voltage regulator and
transient suppressor diodes in power stabilization and transient suppression circuits.
The series consists of the following types:
Normal polarity (cathode to stud): BZY93-C7V5 to BZY93-C75.
Reverse polarity (anode to stud): BZY93-C7V5R to BZY93-C75R.
QUICK REFERENCE DATA
voltage regu lator
Working voltage (5% range)
nom.
Vz
Stand-off voltage
VR
Total power dissipation
Ptot
Non-repetitive peak reverse
power dissipation
PRSM max.
transient suppressor
7,5 to 75
V
5,6 to 56
20
max.
V
W
W
700
MECHANICAL DATA
Dimensions in mm
Fig. 1 00-4.
1,0
0,8
-'11'max
4,0
4,83
max
I
u--_:~_-_--..:o---+-\fiI--0--,-m~)
$e
I
1,6
min
.
I
-----110-
- . 3,2 ___
max
_9,3_
max
__ 11,5 ---., .....1-----_ _ 20,3_ _--t... 1
10,7
max
Net mass: 6 g
Diameter of clearance hole: max. 5,2 mm
7Z65355.2A
Torque on nut: min. 0,9 Nm (9 kg cm)
max. 1,7 Nm (17 kg cm)
Accessories supplied on request: 56295
(PTF E bush, 2 mka washers, plain washer, tag)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 9,5 mm
I
September 1979
________________________________
j~
___B_Z_Y_93__S_E_RI_ES__
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Peak working current
IZM
max.
20 A
Average forward {;urrent
(averaged over any 20 ms period)
IF(AV)
max.
5 A
Non-repetitive peak reverse current
Tj == 25 °C prior to surge;
tp == 1 ms (exponential pulse);
BZY93-C7V5(R) to BZY93-C75(R)
IRSM
max.
55 to 6 A
Total power dissipation
up to T mb == 75 °C
Ptot
max.
Non-repetitive peak reverse power dissipation
Tj == 25 °c prior to surge;
tp == 1 ms (exponential pulse)
PRSM
max.
Storage temperature
T stg
Junction temperature
Tj
20
W
700 W
-55 to + 175 °C
max.
175 °C
THERMAL RESISTANCE
From junction to mounting base
From junction to
5 °C/W
Rth j-mb
ambi~nt
50 °C/W
Rth j-a
From mounting base to heatsink
(minimum torque: 0,9 Nm)
0,6 °C/W
Rth mb-h
CHARACTERISTICS
Forward voltage
IF == 5 A; T mb == 25
°c
<
1,5 V
OPERATION AS A VOLTAGE REGULATOR (see page 4)
Dissipation and heatsink considerations
a. Steady-state conditions
The maximum permissible steady-state dissipation Ps max is given by the relationship
Tj max - Tamb
Psmax ==--"-----Rth j-a
where: Tj max is the maximum permissible operating junction temperature
T amb is the ambient temperature
Rth j-a is the total thermal resistance from junction to ambient
Rth j-a == Rth j-mb + Rth mb-h + Rth h-a
Rth mb-h is the thermal resistance from mounting base to heatsink, that is, 0,6 0C/W.
Rth h-a is the thermal resistance of the heatsink.
b. Pulse conditions (see Fig. 2)
The maximum permissible pulse power Pp max is given by the formula
(Tj max - Tamb) - (P s ' Rth j-a)
Pp max == - - - ' - - - - - - - - - - - ' - Rth t +
Rth mb-a
2
September 1979
r
o·
J
- - Regulator diodes
BZY93 SERIES
where: Ps is any steady-state dissipation excluding that in pulses
Rth t is the effective transient thermal resistance of the device between junction and mounting
base. It is a function of the pulse duration tp and duty factor o.
is duty factor (tplTl
Rth mb-a is the total thermal resistance between the mounting base and ambient
(Rth mb-a = Rth mb-h + Rth h-a l .
o
The steady-state power Ps when biased in the zener direction at a given zener current can be found
from Fig. 14. With the additional pulse power dissipation Pp max calculated from the above expression,
the total peak zener power dissipation Ptot = PZRM == Ps + Pp . From Fig. 14 the corresponding maximum repetitive peak zener current at PZRM can now be read. This repetitive peak zener current is
subject to the absolute maximum rating. For pulse durations larger than the temperature stabilization
time of the diode tstab, the maximum permissible repetitive peak dissipation PZRM is equal to the
steady-state power Ps. The temperature stabilization time for the BZY93 is 5 seconds (see Fig. 9).
Fig. 2.
OPERATION AS A TRANSIENT SUPPRESSOR (see page 5)
Heatsink considerations
a. For non-repetitive transients, the device may be used without a heatsink for pulses up to 10 ms in
duration.
b. For repetitive transients which fall within the permitted operating range shown in Figs 19 and 20
the required heatsink is found as follows:
Tj max - Tamb
Rth j-mb + Rth mb-h + Rth h-a == P + o' PR RM
s
where: Tj max
T amb
Ps
o
= 175 °C
== ambient temperature
=
any steady-state dissipation excluding that in pulses
= duty factor (tp/T)
Rth j-mb == 5 °C/W
Rth mb-h = 0,6 °C/W
Thus Rth h-a can be found.
Notes
1. The stand-off voltage is the maximum reverse voltage recommended for continuous operation; at
this value non-conduction is ensured.
2. The maximum clamping voltage is the maximum reverse voltage which appears across the diode at
the specified pulse duration and junction temperature. For square pulses see Figs 15 and 16, for
exponential pulses see Figs 17 and 18.
3. Duration of an exponential pulse is defined as the time taken for the pulse to fall to 37% of its
initial value. It is assumed that the energy content does not continue beyond twice this time.
4. Surge suppressor diodes are extremely fast in clamping, switching on in less than 5 ns.
September 1979
3
CHARACTERISTICS - WHEN USED AS VOLTAGE REGULATOR DIODES; T mb = 25 °C
working
voltage
*VZ
V
BZY93-...
min.
differential
resistance
*rZ
n
max.
typo
max.
temperature
coefficient
*SZ
mV/oC
test IZ
A
typo
reverse
reverse
current atvoltage
IR
p,A
max.
C7V5(R)
7.0
7.9
0.04
0.3
3.0
2.0
100
caV2(R)
7.7
8.7
0.05
0.3
4.0
2.0
100
5.6
C9Vl (R)
8.5
9.6
0.07
0.5
5.0
1.0
50
6.2
Cl0(R)
9.4
10.6
0.07
0.5
7.0
1.0
50
6.8
Cl1(R)
10.4
11.6
0.08
1.0
7.5
1.0
50
7.5
C12(R)
11.4
12.7
0.08
1.0
8.0
1.0
50
8.2
2.0
C13(R)
12.4
14.1
0.08
1.0
8.5
1.0
50
9.1
C15(R)
13.8
15.6
0.10
1.2
10
1.0
50
10
C16(R)
15.3
17.1
0.18
1.2
11
0.5
50
11
C18(R)
16.8
19.1
0.2
1.5
12
0.5
50
12
C20(R)
18.8
21.2
0.2
1.5
14
0.5
50
13
C22(R)
20.8
23.3
0.21
1.8
16
0.5
50
15
C24(R)
22.7
25.9
0.22
2.0
18
0.5
50
16
C27(R)
25.1
28.9
0.25
2.0
21
0.5
50
18
C30(R)
28
32
0.3
2.5
25
0.5
50
20
C33(R)
31
35
0.32
3.0
30
0.5
50
22
C36(R)
34
38
0.75
4.0
32
0.2
50
24
C39(R)
37
41
0.85
5.0
35
0.2
50
27
C43(R)
40
46
0.90
6.5
40
0.2
50
30
C47(R)
44
50
1.0
7.0
45
0.2
50
33
50
36
C51(R)
48
1.2
7.5
50
0.2
60
1.3
8.0
55
0.2
50
39
66
1.5
9.0
60
0.2
50
43
1.8
10
65
0.2
50
47
2.0
10.5
70
0.2
50
51
54
C56(R)
52
C62(R)
58
C68(R)
64
72
C75(R)
70
79
*At test IZ; measured using a pulse method with tp:< 100 p,s and l) :<0.001 so that the values
correspond to a Tj of approximately 25
ac.
4
VR
V
September 1979
(
j
Regulator diodes
BZY93 SERIES
- - -
CHARACTERISTICS - WHEN USED AS TRANSIENT SUPPRESSOR DIODES; T mb
clamping
at
voltage
tp = 500 J1S
expo pulse
V(CL)R
V
typo
non-repeti tive
peak reverse
current
'RSM
A
max.
=
25
0
C
reverse current
at recommended
stand-off voltage
IR
mA
VR
V
BZY93-...
max.
8
9.2
20
0.5
5.6
C7V5(R)
9
10.2
20
0.5
6.2
C8V2(R)
10
11.5
20
0.5
6.8
C9Vl(R)
11
12.5
20
0.1
7.5
Cl0(R)
12.3
14
20
0.1
8.2
Cll (R)
14
16
20
0.1
9.1
C12(R)
15.3
17.5
20
0.1
10
C13(R)
17
19.5
20
0.1
11
C15(R}
19.3
22
20
0.1
12
C16(R)
21
24
20
0.1
13
C18(R}
23
27
10
0.1
15
C20(R)
26
30
10
0.1
16
C22(R)
29
34
10
0.1
18
C24(R)
33
39
10
0.1
20
C27(R)
38
44
10
0.1
22
C30(R)
42
50
10
0.1
24
C33(R)
47
56
10
0.1
27
C36(R}
40
47
5
0.1
30
C39(R)
45
52
5
0.1
33
C43(R)
51
59
5
0.1
36
C47(R)
57
66
5
0.1
39
C51(R)
64
75
5
0.1
43
C56(R)
73
85
5
0.1
47
C62(R}
81
94
5
0.1
51
C68(R)
90
105
5
0.1
56
C75(R)
I
September 1979
5
BZY93 SERIES
l_ _ __
MOUNTING INSTRUCTIONS
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
6
September 1979
(
j
Regulator diodes
BZY93 SERIES
- - - Vz(V)
70
60
50
40
20
30
o
10
r-r-r-
B5535c
0-01
0-03
r
0·05
0·07
0'1
J
V ~
J
I
~i1 1"-1"00
~L
V
IJ
~
J
/~ t--~
J
~t-- U J J
/v / . . . v V ~D 1"ooJ. 1
C75 1/ /
C68
...... ......1--"
C47 /v v . . . ...... ....-"~ .... ]
C62
......
C43
......
C56
V v ...... ...... ......
C39
II
./
"
./
,//
C51
C36 vI--'"
f-C33
r:---~
/
L--
/
/
"-..f.-+-
0·5
)I .....
./ 'UII
v
~
0·7
I
/vv ""
//v vv
Vv V
v~
C30 / / / / /
~
C27 / / / / /
C24 / / ...... / ......
vl!ll
VV vf-C22 / / ............
C20 ............ /v ...... V Vv
CI8
v v
v
11
1-1- t-t-
Tmb::25·C
J IJ I I
1-0
~
/
I~~I/
r/,
/1/11
I.--8:~v v
BZY93 Stlritls
0'3
CI3
CI2
CII
CIO
C9VI
~~~;
1~~r;I/l! i\
3'0
ti'l;
500
tljr/I/;
1/
L7
r7
I
Pz =20W (
z
A)
IIII
IIII
Io
Fig. 3 Typical static zener characteristics.
September 1979
7
________________________________
~l
___B_Z_Y_93__S_ER_I_ES__
V
z
(V
r----- c---
- - - - --+---+---+-+-+
l
---
~--f---
----------
~-
~--
-~
--- f-----I---
++++++----- ---
-;-~
-
9ZY93 Sllrills
~---+------l---+--+-++++----+-+--__!
-
--~
--~
95537
----~f_
I--~~-
-
8·5r_---+--~_r~r++++_--~--_r_r_r~~+_--~~_r_+_r~_H;_----r__+~_+~rrH
-
---- - - -
----
+-+-~--+-f-+I--- ----~- ~-
- - - ---
--~-
--
---1---1-- -
--1----
- f-
- / ---- ---- - r - '---------1------ - -
~-
c- -
--- +--1-
~
---
---
- --
-
~~_~~ _T",~ =150·C
---
--I_-e--
~__!~_+_+-++H
-----
- 1---
-
-~
-
-
--
I--
-
0·01
0·1
f----
'·0
1Z (Al
10
Fig.4 Typical dynamic zener characteristics for BZY93-C7V5.
Vz
~"
Square pulse
tp = t
I
Ti = 25·C
..--- V
~- ...
~
""'" -..... -.....
"
""
2
--
~
i""illill
-.....
"""'1000..
1""
~
.....
2
~"
- I...
tl. . I....
'" ~ ~
......
Tj =2S·C
Tj =6S·C
~l'-~ ~~"~ ...
Ti =l2S·C
prior to
surge
7
Exponential pulse
(tp=CR:I=O after2CR)
....
~
~
10
-
I"'~
10.:
i""o... i""'o.
5
Ti =65·C >---Ti =12S· C
"
5
.....
~
---
~
..........
~
.....
-
~
~
....
~~
1'1 ..
i""'-o r...",-
2
10
lOps
2
5
7
lOOps
2
lms
lams
t
"""' ..... ~
5
~'"
7
100ms
Surge duration or "CR"value
Fig. 22.
18
September 1979
r
____J
BZY95 SERIES
REGULATOR DIODES
Also available to BS9305-F050
A range of diffused silicon diodes in 00-1 envelopes, intended for use as voltage regulator and transient
suppressor diodes in medium power regulators and transient suppression circuits.
The series consists of the following types: BZY95-C10 to BZY95-C75.
QUICK REFERENCE DATA
voltage regulator
Working voltage (5% range)
nom.
Stand-off voltage
Vz
VR
Total power dissipation
Ptot
max.
Non-repetitive peak reverse
power dissipation
PRSM max.
transient suppressor
10 to 75
7,5 to 56
2,5
V
V
W
700
MECHANICAL DATA
W
Dimensions in mm
Fig. 1 00-1.
-17.2max7.7max -
1.1maX
~~-~~
tI
-
-16ma,
I----35min-I.....t--------51min-7-Z-10969.1A
:
•
9.6max -
September 1979
_________________________________
j~
___B_Z_Y_9_5_S_ER_'_ES__
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Peak working current
IZM
max.
Average forward cu rrent
(averaged over any 20 ms period)
5
A
IF(AV)
max.
Non-repetitive peak reverse current
Tj = 25 °C prior to surge;
tp = 1 ms (exponential pulse);
BZY95-C10 to BZY95-C75
IRSM
max.
70 to 5
A
Ptot
Ptot
max.
max.
2,5
1,67
W
W
PRSM
T stg
max.
700
W
Storage temperature
Junction temperature
Tj
max.
A
Total power dissipation
up to T amb = 25 °C
at T amb = 75 °C
Non-repetitive peak reverse power dissipation
Tj = 25 °C prior to surge;
tp = 1 ms (exponential pulse)
-65 to +175
175
°C
°C
THERMAL RESISTANCE
The quoted values of Rth j-a should be used only when no leads of other dissipating components run
to the same tie-points.
Thermal resistance from junction to ambient in free air:
mounted on soldering tags
at lead length a = 10 mm
Rth j-a = 60 o C/W
at lead length a = maximum
Rth j-a = 70 °C/W
mounted on a printed-circuit board
at lead length a = maximum
at lead length a = 10 mm
I--a-./
~---ID
7259016
Rth j-a = 80 °C/W
Rth j-a = 90 °C/W
Fig.2
CHARACTERISTICS
Forward voltage
IF= 1 A;T am b=25 0 C
2
September 1979
(
<
1,5
V
J
- - -
BZY95 SERIES
Regulator diodes
OPERATION AS A VOLTAGE REGULATOR (see page 4)
Dissipation and heatsink considerations
a. Steady-state conditions
The maximum permissible steady-state dissipation Ps max is given by the relationship
P
s max
Tj max - Tamb
Rth j-a
=~-----
where: Tj max is the maximum permissible operating junction temperature
T amb is the ambient temperature
Rth j-a is the total thermal resistance from junction to ambient
b. Pulse conditions (see Fig.3)
The maximum permissible pulse power Pp max is given by the formula
(Tj max - T amb) - (P s ' Rth j-a)
Pp max = - - - ' ' - - - - - - - - - - - - ' - - Rth t
where: Ps is any steady-state dissipation excluding that in pulses.
Rth t is the effective transient thermal resistance of the device between junction and ambient.
It is a function of the pulse duration tp and duty factor o.
is the duty factor (tp/T).
o
The steady-state power Ps when biased in the zener direction at a given zener current can be found
from Fig. 4. With the additional pulse power dissipation Pp max calculated from the above expression,
the total peak zener power dissipation Ptot = PZRM = Ps + Pp . From Fig. 4 the corresponding maximum repetitive peak zener current at Ptot can now be read. This repetitive peak zener current is subject to the absolute maximum rating. For pulse durations longer than the temperature stabilization
time of the diode tstab, the maximum permissible repetitive peak dissipation PZRM is equal to the
steady-state power Ps. The temperature stabilization time for the BZY95 is 100 seconds (see Fig. 10).
Fig. 3.
NOTES WHEN OPERATING AS A TRANSIENT SUPPRESSOR (see page 5)
1. The stand-off voltage is the maximum reverse voltage recommended for continuous operation; at
this value non-conduction is ensured.
2. The maximum clamping voltage is the maximum reverse voltage which appears across the diode at
the specified pulse duration and junction temperature. For square pulses see Figs 14 and 15, for
exponential pulses see Figs 16 and 17.
3. Duration of an exponential pulse is defined as the time taken for the pulse to fall to 37% of its
initial value. It is assumed that the energy content does not continue beyond twice this time.
4. Surge suppressor diodes are extremely fast in clamping, switching on in less than 5 ns.
September 1979
3
l_______
BZY95 SERIES
CHARACTERISTICS - WHEN USED AS VOLTAGE REGULATOR DIODES; T mb = 25 °C
working
voltage
*VZ
V
BZY95-...
min.
differential
resistance
*rz
n
max.
typo
max.
temperature
coefficient
*SZ
mV/oC
test IZ
mA
typo
reverse at reverse
voltage
current
VR
IR
[.LA
V
max.
C10
9.4
10.6
0.75
4.0
7.0
50
10
Cll
10.4
11.6
0.8
4.5
7.5
50
10
7.5
C12
11.4
12.7
0.85
5.0
8.0
50
10
8.2
C13
12.4
14.1
0.9
6.0
8.5
50
10
9.1
C15
13.8
15.6
1.0
8.0
10
50
10
10
C16
15.3
17.1
2.4
9.0
11
20
10
11
C18
16.8
19.1
2.5
11
12
20
10
12
C20
18.8
21.2
2.8
12
14
20
10
13
C22
20.8
23.3
3.0
13
16
20
10
15
C24
22.7
25.9
3.4
14
18
20
10
16
C27
25.1
28.9
3.8
18
20
20
10
18
C30
28
32
4.5
22
25
20
10
20
C33
31
35
5.0
25
30
20
10
22
C36
34
38
5.5
30
32
20
10
24
C39
37
41
12
35
35
10
10
27
C43
40
46
13
40
40
10
10
30
C47
44
50
14
50
45
10
10
33
C51
48
54
15
55
50
10
10
36
C56
52
60
17
63
55
10
10
39
C62
58
66
18
75
60
10
10
43
C68
64
72
18
90
65
10
10
47
C75
70
79
20
100
70
10
10
51
*At test IZ; measured using a pulse method with tp";;; 100 [.LS and {j";;; 0.001 so that the values
correspond to a Tj of approximately 250C.
4
6.8
September 1979
(
j
Regulator diodes
BZY95 SERIES
- - CHARACTERISTICS - WHEN USED AS TRANSIENT SUPPRESSOR DIODES; T mb =
clamping
at
voltage
tp = 500 ps
expo pulse
V (CLl R
V
typo
11
12.3
14
15.3
17
19.3
21
23
26
29
33
38
42
47
40
45
51
57
64
73
81
90
IR
mA
VR
V
BZY95-...
max.
max.
12.5
14
16
17.5
19.5
22
24
27
30
34
39
44
50
56
47
52
59
66
75
85
94
105
reverse current
at recommended
stand-off vol tage
non-repetitive
peak reverse
current
IRSM
A
25 °C
20
20
20
20
20
20
20
10
10
10
10
10
10
10
5
5
5
5
5
5
5
5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
7.5
8.2
9.1
10
11
12
13
15
16
18
20
22
24
27
30
33
36
39
43
47
51
56
C10
C1l
C12
C13
C15
C16
C18
C20
C22
C24
C27
C30
C33
C36
C39
C43
C47
C51
C56
C62
C68
C75
September
1979
5
BZY95 SERIES
l""---____-
SOLDERING AND MOUNTING INSTRUCTIONS
1. When using a soldering iron, diodes may be soldered directly into the circuit, but heat conducted to
the junction should be kept to a minimum.
2. Diodes may be dip-soldered at a solder temperature of 245 0C for a maximum soldering time of
5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum
storage temperature. These recommendations apply to a diode with the anode end mounted flush
on a printed-circuit board having punched-through holes. For nrounting the anode end onto a
printed-circuit board, the diode must be spaced at least 5 mm flrom the underside of the printedcircuit board having punched-through holes, or 5 mm from t~~top ofthe printed-circuit board
,/'
having plated-through holes.
3. Care should be taken not to bend the leads nearer than 1,5 mm from the seal; exert no axial pull
when bending.
6
September 1979
r
j
Regulator diodes
8ZY95 SERIES
- - ~B
7!Max
r dissipation
Iversus zener current
'95
LC
SCi! I ICi!S
ZL.
~
rLLL.. rLL.;~
~
~ ~~
f?'fffi f?'h: ~
C30
C33
C36
C39
C43
C47
C51
C56
C62
C68
C75
10
I~
%~~ ~
lj': W.
...,.
czo
""
"\.1'\
-"'" ~
"\.
",-",,"
t%
4
I@
~~
O·
A ~~
,
~~
'/?5<1
:n
'l/. ' l/.
~/>
V/////
I'
1\
<0
'\..
1'\/\
~ t/"" ~ I"\.f\-/\1"-
/, '/.
/,
~ t/"
§?l\t\~~
IJ
1·0
~~
~
L0
"lh ~
~
rz
~ Ii0 0~~
'l.
1"\.)'\..1'\
)'\..1"
/\
'/' ' /
lj':V;
@
~~
C10
Cll
C12
C13
C15
C16
C18
C20
C22
C24
.C27
f0
~V
v~
~
5
0·1
0·01
0·001
"0
Fig.4 Maximum permissible repetitive peak dissipation (P tat = PZRM)'
D8500
Ptot
i
I
(W)
1
3
!
I
I
i
!
I
I
[
I
"""I
j
j
!
I
I
~I
r---~-iI
r-- r - -
_e-"
o
-100
i
t
i
I
~-
'''"
,
~
I
i
i
area of operation
--, -rPermissible
---
r--- I - - -
If- .
!
"~I
t- -t-- ~t±
+- -+--
1--+
I
I
I
I
I
I
I
I - -I - -
J
!
i
!
2
L-
i
i
i
1
i
:
I
!
I
1
+
i
'-
~I"!i.
"""~
I
•
~
-
- I-- r-
~
" '"
-
""""~
-50
0
50
100
150
Tamb(OC)
Fig. 5 Maximum permissible total power dissipation versus ambient temperature.
September 1979
7
j l________________
BZY95 SERIES
Vz(V)
50
60
70
40
30
I
/
20
o
10
I
,B5601a I'0
, I " - 1"-1"-
'-I"-
r--- 3·0
J
II
5·0
I
'I
i'I
~~
1\
\
J
~
J
i"""~
J
II
j
V
~
V
C75 II V1/
C6S r/v V
C62
C56 VI/
C51 V
vV
V
(0
II
J
J
"""I- t,il- ~
~ II
V~ ~~
/
r--"""
II VV V
7·0
,
l
1
II
,
./
)/
I1II
II IJ
I
V
"
V /v
V V
./
C47
C43 VV 1/ V
VI/
C39
/'
........
C36
Vv Vv V
C33
Vv V
C30
C27 v/ V
C24 V
V V I"'~U
.... v
V
V
....
Vv
Vv
I
BZY95
S~ri~s
/I
I
Tam b=25°C
-
I./'
50
".
September 1979
V8
VVVV
j/I/V V ~v
j/'/V /1 ~ V
C20
CIS
CI6
CI5
CI3
CI2
CII
CIO
~!VVl!//
v,:;vv.~V
V/VV
V/
L
~V
V
I I
r
70
11 /
I 1
Typical static zener characteristics ' I I
Fig.
8
30
1/ t)r---,... ~
V V IL V ~J)II~ J
r""1'-
6 Typical static zener characteristics.
I00
"',
'~
~ 300
1"-1"--
500
IZ
(mA)
j
Regulator diodes
Vz
I-
BZ Y 95 Sar ia 5
8ZY95 SERIES
+___I-~t--l--+-+++_--+_--I----j
(V)
-----~-+-~~~~~--r__+-r_~-~~r_--r--4--~~-r+++---+---I-+-+--t--+-~
- - - - 1-- - -+- +-4--j_rH---_r-+_ 4--+-+-++++--__+_ --+_+--+-+-+--+-l-+----+--+-_r-+-4--j-+-H
-f--_r-+-4--j_r~-f---- -- --- ---cf--Ie-+-+-I-+-cl-- ----- f---'--+-_r_r4--j--f-H---_r--+---+---+-+__I-++-I
- - - - ----+-I---f-4-+-H-I------
12~--~r__+~-+_+_++++----_+_--+_~_+_r+~+_----+_~--~r+~HH----_+--_r_+_+_+_rr~
-----
-- - - - - - --t--t-++++---
---
--If---+-+--cf-++t-+----+---r-----f-
-----+--f--+-+-~_It_t+__
----- -
- - - - - f - - - - - --f---r-- -
1-----
- - f - - f---
f--
r----- --- - -- r------I-- 1-- -
+---+--+-+-It-++-t- ------1- -If---1t--t--+-++++----t---j----t---t---t--+-t-H
-+----If---+-+-f-+++t------- ---- ----- - - I-
f------ --
1-----
f--
-------- ---I--- -+-+-++++-c __
-------
-------+-I-+4~--__I--+__I__I_++~_+_I
-- - --- - -+-~+++__--+-----l-- -+_~-+--f--H
-- - - --
----r----
+-++++___ _
CIO
---
---
-
f-
f__--
-
t--- ----
r------+---+--+--+--4--j-l--H
7
3
0·001
5
7
0·01
5 7
1 Z (Al
7
0·1
1·0
Fig. 7 Typical dynamic zener characteristics for BZY95-ClO.
Vz I------+----I--I---t--l-++++-- ---- 1-- (V)
9Z Y9 5 Sarias
---
95603
--1--+-+-+++---1----- - - - - f - - - -+-+-+-I-+-H----- ------ -1------
1------1-------,--
38rf--__
----___rI------~f-----~=~~=~~~~=====~--+___+_+_+_~++----_+--~_+_+~++++-----+--_+_~I~~_r~~
f------- ----------+---j-,jI!~.+- r-++-+~-- - -f---- t-- - ------- --- -r- --- --t--I+-1-++++----- f-- --- - - - t---- 1-7~-1r---- -r----- ----+-+-+--1-+++---
---f--
I-
- - - f - - - - --
-
-- r-I---
-r---
Tamtrl50'C
r------,---
t--- -
-
-----
+--'t- t-+t-t- - - ---
- - - ---
+-
f------------
-
-
1--,-
- f---
-------f--
36r---__+---I__+-~_++++_----+___If--+1\~_+_++++----_+--_+__+_+1-_r-~~~~t--~~~~~~-~~+__+__+_~~H
\
--K
f---- --r--
-~-f 1\
f--
----I---
-
- - - -
-or -
I-
- r- -
----t-- -
C-_____
--------
f--------- ---
r---
---f------ -
1--- -
--f--f----
C33
1-----1-------
- - - --- f--
-I-
- -- 1---1--
I-
----f- 1-~
I------Ir--+--I-+-f-++++-----+--+--+---+-+*~
- r---= f---I-_----_+'-+--+-t--t+- ___-__-_-_I-__--_--+-- - - ']1
f-----
r--=----::= __--
--1--,- -
r---17~
-
----f-----
---f---
- f----t--f---
--t---+--+--+- H+-t-- -- -- ---
To rrfb=25'C
32
-
1--
=-~~1=J~---+----
-t-
3
0·001
5
-
-----1-----
r
1---- -
--1-++++---------- -----if-_-+_I--_-+-r---r++++---___
7
7
0·01
--1--+-+-+-++++---- -- e---+--t-+l-f--f-H
1
-1-+-1--1H;-I
--==~ ;=~:-5
0·1
~~==-:....~_+-~---::---:f-c----++
7
5
1·0
7
1Z (A)
Fig. 8 Typical dynamic zener characteristics for BZY95-C33.
,
_ _ _- - - - 1
I
September 1979
9
Jl
BZY95 SERIES
Vz
1--
{Vl
f------.
B5604
BZ Y95 Scarias 1---+---1f---l---++-t+t-----+---+---i
--+-----+--+__~+++__--.-+_______4__l
--'--.
1----.
87·5
,
r-----. r· -
f - - -.
_.-
-
--f---
~
-+++++---
L
f----
---.---.-
r
82· 5
---+---+--j--+-+++-_. -- t_--.- t_--+---+-+--+-+++-/--- r - - --.-
1---1--.,;..,...
tf--~~-t~tf---=jt-tj~T.~a~m~b~=~15;0~·C~~~~~~~tt~:::t::~~J=~~~====t===~~~~~
_ 1-_1-
___4~-H-+-+-+-++
I- _
-.-f---- --ff-- I-- -.
.-~
f-
- ..:.-~-:::- ---l---+r\*+_+~_
- -.-- - .+-+-+-+-++1----
----/---- _ __l._-1-- ---- t_- --I------j---t--i-r--t-t-t----j---;- ---
- 1-[\
I- ---- --- -
--1--
-
r- -- --
1--
- +--++-HH-- - --
---j
-!.rl-t-+H
--~
--t--t-t--t-i-t-t----- -----.- C75 r----~ f-----+--++-+-+-++__
- -+-/
77.5~---+--_i_rl__i_b+~r_--_+--__t_~__t_b+ftH~--_+--+__i_+_i_rHH----_+~~~~_+~HHH
---- ---f- -- -1-- .-t+++----L~~V-----r-I_-I_f-'-------
.. _--
- t--
f-----
--
-------- .. -- --t_-[--
/---
0-001
-
- t-
-- -1-4-+-++++----- -
72·51---- --3
7
- :--r -
- t---- -- - r- ·+t--t+----+-·-+-f--+-+--+t-+-l
. - -t---- t-- -+-+t-t i--t----+--I--+-+~r+_t_H
.--f-
r--
.-/--
IL:
----1--
t--r- -
.-1----f-
---...--f-----1---.---1---
--
.-
'-1-- -
.-/-- Tamb=25"C
7
0·01
---+--+---i-~-+-+__t_---t_-
7
0·1
5
'·0
7
IZ{Al
Fig.9 Typical dynamic zener characteristics for BZY95-C75.
BZY95 SGrlos
Rillt
85612
("C/W )7
5
3
100
d -1·0
-0,75
7
5'---'0'5
-~~
0·3
3
0·2
--
0·1
7t::::=::" 0'05
5
~.02
3
...-
~
....
~
r-I-
.....-: ......
~
V
~~
JO[
.....
V
-
1
-
----
--
0,01
--
I- I-"~
f-"' .... f"
__ f_ _ f-
T
F= 0.00 ""
5
./
~ f-"'~r-
I
3 f-----
~
I--"
d (duty eyela).
0- I
3
5
7
3
5
1
3
10
2
5
7
1
10
PulSQ duration t (s)
Fig. 10.
10
September 1979
(
t
Rlh I =(Rills - Rill 10) d. Rtll 10
Rills = Steady state thermal resistance
Rlhlo = Transienl thermal resistance d=O
3
5
7
3
~Jll
10
3
I
11
7
10
2
J
Regulator diodes
BZY95 SERIES
- - - - Sz
95605
BZY95 Series
(mV/oC ) 7
I
T I.
,YPlcal curves
I
5
-';
3
I
i I
i
I
I
!
I
I
;
I
:
I
I
,
;
"
!
I
I
I
I
-
i i
100
IZ
7
=20~
,\omA~
5
~
~~
3
I
!
.hV-
I
I
.
U~ ~
,
10
,
,
711£
i
5
i
l
I
3
i!
I I
I
:
i
i
i
i ;
i
1'0
,
:
I
I
I
I
i
i
7
5
1
,
3
j
I
I
,
I
i
I
I
:
I
I
'
:
I
!
I
I
I
I
;
Iii
i : ;
i
' I
I
l
'
I
!
!
I
I
i
0'1
i i
10
I
,
I
i
Ii
30
•
!
50
i
I
!
I
,
I
,
70
V
z (V)
Fig. 11.
September 1979
11
l_ _ __
BZY95 SERIES
.A"
5"
0·01
I
ii
~
I
i1 Ii: I i
10
30
............
1
50
Fig. 12.
12
September 1979
r
~.........L-"-.............I.--J.-'-~
I,!
-'---'_IL-"-......
Ii
'-'-...l-J...-'---'.....L-.L-..I-...l-J...-,---,_iL-"-l.....
ii
I
,I
70
V
z (V)
j
Regulator diodes
BZY95 SERIES
- - -
85606
BZY95 Stlritls
7
I
5
r'OIii~
"" ~~
10
~1111
"'"
5
""
~~ l1li
~
~
~
"' 1"'11..
"
r\..
3
iii.:
" "'
."
7
I
Tam b=25°C
typical curves
1',,-
3
I
~
"-~
1·0
~
~
"-"-..
i'-~
r"II~
~
" ' , C75
--~ ~
"-
"
7
'" C33
'"
5
3
-- ~
"-
CIO
I
0·1
3
0·001
5
7
3
0·01
5
7
3
0·1
5
7
1Z (A)
Fig. 13.
September 1979
13
l
BZY95 SERIES
V(CL)R max
03809Q
IV)
25
20
is
2'0
,-
is
13
Square pulses
Tj =25°C prior
r-to pulse
r-- Intermediate r----,
voltage types
r-may be
r-interpolated vJ
1/ I
tp=10ms / I II
r--fI
15
10
-,
12
5
1-
11
BZY95-C15
tI-
I
I
tp=lm/
~
V
~
/
~
10
~
V
L. ~p =lOOps
I
I
,
I
•
100
J
tp~'O}lS I
1000
Fig. 14.
14
September 1979
. (
j
Regulator diodes
BZY95 SERIES
- - V(CL)R max
125
(V)
100
75
6e
Square pulses
T =25°C prior
J
to pulse
Intermediate
voltage types
may be
Interpolated
~
~
~
-
r
IJ
1..1
I I
r--tp=
,
L
1
I
I
l
,
t P =-10ms iJ
t Q=10ms
I,
I I I
BZY95-C24
/J
tp=lm~~~
j
/
I I III
BZY95-C51
I
V
t p =lms/
V
j
j
I
~
V
J
tp=
I
I'"-
I
J
'/
lL 1/
100~s
1
if"
tp=lms~
I
V
J
tp=100jJs
1
1/
I
I
l"-
rI"-
to
j
~
I'
10
J
l
tp""IOjJs /
II
(A)
1
L
/
I RSM
1
~
I
0.1
i
J
~
tp~10~s
2i
-
J
J
36 30
~
V
V
1I
I I I
jg -jj-i1
-
!
I
4743
25
r---
8ZY95-C75
JJS
56
50
r--
tp=10ms I
I
~100
-
III r
I
I
6i
03810
r
J
.I
tp~10jJS
I
Fig. 15.
I
I
100
September 1979
15
BZY~SERES jl~~~~~~~~~~~~~~~~~
V(CUR max
25
D3807Q
20
(V)
~
•
I18
10
15
~
16
13
•
12
5
r11
Exponential pulses
T =25°C prior
r-- j
to pulse
Intermediate
voltage types
f-may be
f-interpolated
I--
~r
~
J
I
t p.,0mS II
4
:j
V/
10
~
~tp=lms"
I
J
1/
,./
tp=100p;
J
I
I
I.
J
I
I
100
I
)
BZY95-C15
I
I
I
I--
V
I
tp ~1 Ops
~
I
1000
16
September 1979
r
Fig. 16.
j
Regulator diodes
BZY95 SERIES
- - - 125
- -1 tp=10msJ
J
~
/
I
/
I
I('
tp=100)JS
,
I
I
~
1
-t p$10)JS
I
r-
I
30
tp=lomsl
IJ
I
1
tp= 1ms) J1 IJ
I
,
I
r
J
V
~
/ I
J
,I
I
-- tp: 100).Js
I
I
I
J-----
I I
I' I I I
--
-
I
r
I
•
tp~10)Js
-
I
I
8ZY95 -C75
10
)
t p=lms/
J
t p=100)JV,
I
27 22
I
1(1
I
I
33
I,
I
I
36
tp:l0ms} J
J~
V
,I
47 43 39
56
I
J
J
25
~
f
)/
62
1
'(
tp= lms ,
•68
>------
I
/
- - -- ----- •
50
75
100
(V)
03808
100
II
8ZY95 -C51
I
Exponential pulses
Tj - 25°C prior
"---to put se
f----- Intermediate
voltage types
may be
interpolated
-
tp~10)JsT
8ZY95 -C24
~
-
I
I
I
I
1000
Fig. 17.
September 1979
17
_________________
~Y~~~~jl
03806
10kW
"~
~
Exponential pulse
-Square pulse
L i ~
" "-
'-.
"'- ,
"
......
,
IOOW
1'10..
I'~
"-
~
'"
"-
""
" I', '\
1\\
\1 ,
p=10)Js
I"
IOOW
'" I' " '"
\
10
200
400
(Hz)
100
~
10
~
~~
v"<"
,0
,. ..J..o,,(,j ~
~".,;.~~
~
(OC)
100
Fig. 20.
18
September 1979
-
•
"'200
_l
Tomb 150
tp=1O)Js ~
t--
=
-
tp=100)Js
;=
....
,
tp=10ms"
o
I
... ~
..... ,~=lms
400 (Hz)
Repetition frequency
Fig. 19.
atV R=
stand- off voltage
IR
(mA )
50
\ r\.
,
1
038040
o
......
,
11,,- -'
....
'\.
r-r-
Fig. 18.
0.01
,'
~
\
Repetition frequency
0.1
" ~ ...
~~ \\ ~
'" tp=100)Js
" tp=lms
~~
,
\.
tp=1 )ms
o
Tamb=12S°C
_" Il
"-
1
Square pulse
\~
,~
10
-
",
~
"
Exponential pulse
,,
Tamb"'SSoC
"~
\' "- ~ '."-
l\. "
03805
10kW
~~
__R_eg_U_lat_o_rd_iO_de_s____________________________
B_Z_Y_9_5_S_E_R__
IE_S___
___
03811
"'
i'oo...
............
~~ ~
RSM
V)
2
'"
l ' ..... ~
........
""1'0
1'0
~
~ ~ .....
/"~
. . . r..... ..... ~ 1'1"0
..... 1'0 I'~
I'
/
C'(
./
Tj =25°C
=65°C
V/)125°C
~
~ ..
......
-
Square current pulse
tp= t
Exponential current pulse
tp=CR
I =0 after 2CR
-
./
... ~
'" "" .....
..... ............
7
~
5
-
Tj
2
""'~ .-;:;
.....~
~
:/~
=25°~>
=65°C
=125°C/
prior to surge
.........
.......
'-
:,
~
, "-""
'"
"-
~~
.......... ,......
..........
....
"~~ ...
r"'-~ ~ ~
""
5
".........
~
I .....
...... ~
J-.
..........
~
~
.......
.....
1'...
-,."".......
......... """"
........
2
10
10).lS
2
5
7
100).15
2
5
7
1ms
2
5
~
""-l1li
~ ....
.....
... ~
.... ~
i'
5
lOOms
lams
Surge duration or "CR" value
Fig. 21.
September 1979
19
_______________________________Jl__
B_Z_Y_9_6_S_ER_IE_S___
REGULATOR DIODES
Also available to BS9305-F049
A range of alloyed silicon diodes in 00-1 envelopes, intended for use as voltage regulator and transient
suppressor diodes in medium power regulators and transient suppression circuits.
The series consists of the following types: BZY96-C4V7 to BZY96-C9V1.
QUICK REFERENCE DATA
voltage regulator
Working voltage (5% range)
Vz
Stand-off voltage
VR
Total power dissipation
Ptot
Non-repetitive peak reverse
power dissipation
PRSM max.
nom.
transient suppressor
4,7to9,1
V
3,6 to 6,8
max.
2,5
V
W
190
MECHANICAL DATA
W
Dimensions in mm
Fig. 1 00-1.
-17.2max7.7max - -
~
1.1 max=+===:::::l~====::::::t
t
~~_o~
-1.6max
I'
1-35m;n-----------I....O---------51min--
..
7Z10969.1A
September 1979
____
BZ_Y_9_6_S_E_R_IE_S_Jl_______________________________
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Peak working current
IZM
max.
3,5 A
Average forward current
(averaged over any 20 ms period)
IF(AV)
max.
1 A
Non-repetitive peak reverse current
Tj = 25 °C prior to surge; .
tp = 1 ms (exponential pulse);
BZY96-C4V7 to BZY96-C9V1
IRSM
max.
22 to 12 A
Total power dissipation
up to Tamb = 25 °C
at Tamb = 75°C
Ptot
Ptot
max.
max.
2,5 W
1,67 W
Non-repetitive peak reverse power dissipation
Tj = 25 0C prior to surge;
tp = 1 ms (exponential pulse)
PRSM
max.
190 W
Storage temperature
T stg
Junction temperature
Tj
-65 to + 175 °C
max.
175 °C
THERMAL RESISTANCE
The quoted values of Rth j-a should be used only when no leads of other dissipating components run
to the same tie-points.
Thermal resistance from junction to ambient in free air:
mounted on soldering tags
at lead length a = 10 mm
Rth j-a = 60 °C/W
at lead length a = maximum
Rth j-a = 70 °C/W
mounted on a printed-circuit board
at lead length a = maximum
at lead length a = 10 mm
,--0-'1
=---10
7259016
Rth j-a = 80 °C/W
Rth j-a = 90 °C/W
7259017
Fig. 2.
CHARACTERISTICS
Forward voltage
IF = 1 A; T amb
2
September 1979
= 25°C
(
<
1,5 V
:xl
CHARACTERISTICS
Tamb
=
(!)
to
C
25 °C
WHEN USED AS VOLTAGE REGULATOR DIODES
WHEN USED AS TRANSIENT SUPPRESSOR DIODES
~
0..
c)'
working
voltage
differential
resistance
*VZ
V
*rZ
BZY96-...
min;
max.
*SZ
mV/oC
.Q
typo
temperature
coefficient
max.
test IZ
reverse
reverse
current atvoltage
IR
mA
typo
J1A
clamping non-repetitive
voltage at peak reverse
current
tp = 500 J1S
expo pulse
V(CL)R
IRSM
V
A
VR
V
max.
I
typo
max.
0..
reverse cu rrent
at recommended
stand-off voltage
at
IR
mA
VR
V
~
BZY96-..
max.
I
C4V7
4.4
5.0
2.5
10
-0.6
100
20
1.0
6.5
7.8
10
2.0
3.6
C4V7
C5Vl
4.8
5.4
1.0
5.0
-0.4
100
20
1.0
7.0
8.2
10
2.0
3.9
C5Vl
C5V6
5.2
6.0
0.7
4.0
+1.0
100
20
1.0
7.5
8.8
10
0.2
4.3
C5V6
C6V2
5.8
6.6
0.6
3.0
+2.0
100
20
2.0
8.0
9.4
10
0.2
4.7
C6V2
C6V8
6.4
7.2
0.6
3.0
+3.0
100
20
2.0
8.5
10
10
0.2
5.1
C6V8
C7V5
7.0
7.9
1.0
3.5
+4.0
50
20
3.0
9.5
11
10
0.2
5.6
C7V5
C8V2
7.7
8.7
1.2
3.5
+5.0
50
20
5.6
11
13
10
0.1
6.2
C8V2
C9Vl
8.5
9.6
1.8
4.5
+6.4
50
20
6.2
13
15
10
0.1
6.8
C9Vl
I
- - - -
-
-
en
(!)
"0
OJ
3
c~
<.0
-...I
(0
* At test IZ; using a pulse method with tp';;;; 100 J1S and D .;;;; 0.001 so that the values correspond to a Tj of approximately 25 0C
CD
N
-<
CD
0>
(j)
m
::IJ
m
Co)
(j)
OPERATION AS A VOLTAGE REGULATOR
Dissipation and heatsink considerations
a. Steady-state conditions
The maximum permissible steady-state dissipation Ps max is given by the relationship
Psmax =
Tj max - Tamb
-=------
Rth j-a
where: Tj max is the maximum permissible operating junction temperature
T amb is the ambient temperature
Rth j-a is the total thermal resistance from junction to ambient
b. Pulse conditions (see Fig. 3)
The maximum permissible pulse power Pp max is given by the formula
(Tj max - Tamb) - (P s ' Rth j-a)
R
th t
Where: Ps is any steady-state dissipation excluding that in pulses
Rth t is the effective transient thermal resistance of the device between junction and ambient.
It is a function of the pulse duration tp and duty factor o.
[) is the duty factor (tp/T)
Ppmax =
The steady-state power Ps when biased in the zener direction at a given zener current can be found
from Fig. 4. With the additional pulse power dissipation Pp max calculated from the above expression,
the total peak zener power dissipation Ptot =t PZRM = Ps + Pp . From Fig. 4thecorresponding maximum
repetitive peak zener current at Ptot can now be read. This repetitive peak zener current is subject to
the absolute maximum rating. For pulse durations longer than the temperature stabilization time of
the diode tstab, the maximum permissible repetitive peak dissipation PZRM is equal to the steadystate power Ps. The temperature stabilization time for the BZY96 is 100 seconds (see Fig. 10).
Fig. 3.
4
September 1979
(
~~
___
Re_gU_la_to_r_diO_d_es____________________________
B_Z_Y_9_6_S_E_R_I_E_S__
___
NOTES WHEN OPERATING AS A TRANSIENT SUPPRESSOR
1. The stand-off voltage is the maximum reverse voltage recommended for continuous operation; at
this value non-conduction is ensured.
2. The maximum clamping voltage is the maximum reverse voltage which appears across the diode at
the specified pulse duration and junction temperature. For square pulses see Fig. 13 and for exponential pulses see Fig. 14.
3. Duration of an exponential pulse is defined as the time taken for the pulse to fall to 37% of its
initial value. It is assumed that the energy content does not continue beyond twice this time.
4. Surge suppressor diodes are extremely fast in clamping, switching on in less than 5 ns.
SOLDERING AND MOUNTING INSTRUCTIONS
1. When using a soldering iron, diodes may be soldered directly into the circuit, but heat conducted
to the junction should be kept to a minimum.
2. Diodes may be dip-soldered at a solder temperature of 245 °C for a maximum soldering time of
5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum
storage temperature. These recommendations apply to a diode with the anode end mounted flush
on a printed-circuit board having punched-through holes. For mounting the anode end onto a
printed-circuit board, the diode must be spaced at least 5 mm from the underside of the printedcircuit board having punched-through holes, or 5 mm from the top of the printed-circuit board
hflving plated-through holes.
3. Care should be taken not to bend the leads nearer than 1,5 mm from the seal; exert no axial pull
when bending.
September 1979
5
Jl________________________________
___B_Z_Y_96__
SE_R_I_ES__
Ptot
(W)
Max zener dissipation
17 versus zener r:lln ~e
II
Is
I.,
,...
~
I,
(; ~I" I
CaV2
C7V5
C6Va
15
!3
"-
~"
~"'''
~"
"
~
I ..
"'-,"
1"- " "-
Is
"-
i3
C6V2
C5V6
C5VI
C4V7
a ·1
3
0·001
IZ(A)
1·0
0·1
Fig. 4 Maximum permissible repetitive peak dissipation (P tot = PZRM).
Ptot
08500
(W)
3
1
'",,-
~~
2
~
~
I'
"'",,-
~,
~
Permissible area of operation
a
-100
a
-50
50
~
""
--
"'~
100
Fig. 5 Maximum permissible total power dissipation versus ambient temperature.
6
September 1979
(
BZY96 SERIES
Regulator diodes
Vz(V)
12
o
8·0
'·0
85732b
BZY96 S~
il
II
~"t-{
0.,'0'
9'-1\~
'"
",""
0.1
I.... ~~
o
~
..... ~
£>'-I1.\~'"
~~I
o.,'O'~
TIll I I
50
Fig. 17.
14
September 1979
(
=
"
I"'~ ....
~ ........
Tomb =125°C
Exponential pulset
I-Square pulse
--
... f-~L.
1-..",,........
'" """
=100)Js
.... ~~
1\'
h,
5
="1 ,
o
100.
I ....
!'~ ....
~
........ ~ ....
.. ~ ....
=lms
........ -4J..
100
200
300 (Hz) kOO
Repetition frequency
Fig. 16.
oe025
lOa
"-
.........
tp :10)Js ~~
'\.
1
300 (Hz) kOO
200
I- -
~
I,
f.....-+---
Repetition frequency
1.0
10
' ....
\~ \
\'
N--~
T amb :: 65°C
a
",
,,
~I\
V lms-
~
=10ms
\
'''~
..........
'"
-
r""r-."""
X
I--f-
,
.... ....
r-..Ioo...
'""'
Fl00)Js
I""'ilo..
I...
~\
\.
\
f""oo
,....
,
PRRM
(W)
~
I,
10
03708
1000
,....
j
Regulator diodes
8ZY96 SERIES
- - D3709Q
~
,
..
,
,
I
"
.......
t"oo..
T.=2SoC
65°C
/J=
1~125°C
......
.....
:-
......
..............
..
1"-' ....
~ ~.'"
....
'
;'
........
~"'i'"
r--. .....
l"-
" ......
~" ...
....
~ ~ 'I' r-.. I"
r--..:: -..::"""" ~~ ..."'1 ~
r-...~ ... ~
~
'"
2
10
.......
1"'00.
10
7
100).15
,,
...... I"
......
..........
.........
~
i"o
V
T· = 25°C Vv
J = 650C V
=12SoC/
prior to surge
5
Square current pulse
tp = t
Exponential current
pulse
tp=CR
1=0 after 2CR
--
BZY96
...... ......
.........
--
I
t".....
....
, .. "'
.........
......... I" ro....:!'
to--I'
to--
1"",
i""o
........... "'""""'" f:::: .....
~
r--.... ..... ~~
r--",
1J
2
1ms
5
7
....
~~ "
""",
~ ","1'
~~~
'""
10ms
....
f' ::::: r--. ~:::
~ ...
~~
7100ms
Pulse duration
Fig. 18.
September 1979
15
HIGH-VOLTAGE
RECTIFIER STACKS
- -
------------·-·-·----~-·~-----~,~ .............. _
• ...., ...... 'JU~_IIWU.WlJL_ .. JU..J.
'.J. ___ ...,,'......-......"IIIWuw:.lllIIII.JL
D
OSB 9110 SERIES
OSM9110 SERIES
OSS 9110 SERIES
II
HIGH VOLTAGE RECTIFIER STACKS
The OSB9110, OSM9110 and OSS9110series are ranges of high voltage rectifier assemblies, incorporating controlled avalanche diodes mounted on fire prooftriangular formers. The OSB9110series is intended for application in two phase half wave
rectifier circuits. The OSM9110series is intended for application in single phase or
three phase bridges or in voltage doubler circuits.
The OSS911 Oseries is intended for all kinds of high voltage rectification. The assembUes are supplied with M6 studs or with standard valve bases. The OSB9110series and OSM9110series are supplied with a centre tap (8-32UNC). The maximum
crest working voltages of the OSB9110 and OSM9110series cover the range from
2 kV to 15 kV, and of the OSS9110series the range from 3 kVto 30 kV, in 1 kV steps.
CIRCUIT OSS 9110
CIRCUIT
CIRCUIT 05S9110
OSM 9110
~r-el --I--&~ ano~--I--~hOdeanO~------~hOde
+-- VRWM~
I
centre -tap
+
-VRWM-
7Z591Z5
I
centre-tap
~
•
1259126
VRWM
..
QUICK REFERENCE DATA
Crest working reverse voltage
from centre tap to end
VRWM
Crest working reverse
voltage
OSB9110 -4
OSM9110-4
max.
OSS9110 -3
VRWM
max.
A verage forward current
with Rand L load
(averaged over any
20 ms period)
in free air up to T amb = 35 °C
in oil up to Toil
= 100 °c
Non-repetitive peak forward current
=10'ms; half sine wave; Tj =175 °Cprior to surge
t
MECHANICAL DATA see pages 4 and 5.
May 1978
II
2
3
-6 ..
-28
-28
-6 ..
3
-41·
4
-30
-30
14
15
.1- 29
-30
29
30
I. .1
I
7Z59127
kV
kV
Ip(AV)
max.
3.5
A
Ip(AV)
max.
6
A
IpSM
max.
125
A
U~ts YIIUSERIES
OSM9110SERIES
OSS 9110 SERIES
II
All information applies to frequencies up to 400 Hz
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
OSB9110 -4 -6
OSM9110-4 -6
Voltages
Crest working reverse voltage
VRWM
max.
2
-28
-28
3
VRWM
max.
3
15 kV
14
OSS9110 -3 -4
Crest working reverse voltage
-30
-30
-29
4
-30
30 kV
29
Currents
Average forward current (averaged
over any 20 ms period)
in free air up to Tamb == 35 °c
IF(AV)
max.
A
3.5
IF(AV)
max.
6
A
Repetitive peak forward current
IFRM
max.
120
A
Non -repetiti ve peak forward current
t = 10ms; half sine wave; Tj::: 175 °Cprior to surge
IFSM
max.
125
A
in oil up to Toil := 100 °c
Reverse power dissipation
Repetitive peak reverse power
t:= 10 i-!s (square wave; f == 50 Hz)
Tj::: 1750C
Non -repetiti ve peak reverse power
t::: 10 j-Ls (square wave)
Tj:= 25 °Cpriorto surge
Tj:=125 0 C prior to surge
OSB9110 -4 -6
OSM9110-4 -6
-28
-28
PRRM
max. 1.2 1.8
8.4
P
RSM
PRSM
6
max.
9
max. 1.2 1.8
Repetitive peak reverse
power dissipation
t == 10 I-lS (s.quare wave; f:= 50 Hz)
T j = 175°C
PRRM
max.
1.8 2.4 .,
Non-repetitive peak reverse
power dissipation
t := 10 j-Ls (square wave)
Tj = 25 °c prior to surge
Tj =175 °c prior to surge
PRSM
PRSM
max.
max.
9 12
1.8 2.4
OSS9110 -3
42
8.4
-4
-29
.
-30
-30
9 kW
45 kW
9 kW
-30
17.4
18 kW
87
17.4
90 kW
18 kW
Temperatures
Storage temperature
Tstg
Junction temperature
Tj
2
It
-55 to +175
max.
175
II
°c
°c
May 1978
OSB 9110 SERIES
OSM9110 SERIES
OSS 9110 SERIES
CHARACTERISTICS (See note 1)
OSB9110 -4 -6
OSM9110-4 -6
Forward voltage
IF
= 20 A;
Tj
= 25 °c
<
4
-28
-28
6
28
> 2.5 3.75
V(BR)R < 3.,76 5.64
17.5
26.32
VF
-30
-30
30 V
Reverse avalanche breakdown voltag:e 1)
IR
= 5 mA;
= 25
Tj
0
C
OSS9110 -3
Forward voltage
IF
= 20 A;
Tj
= 25 °c
<
-4
6
-29
8
58
> 3.75 5.0
V(BR)R < 5.64 7.52
36.25
54.52
VF
18.75 kV
28.2 kV
-30
60 V
Reverse avalanche breakdown voltag:e 1)
IR
=5
rnA; Tj
= 25 °c
37.5 kV
56.4 kV
Reverse current
VRM
= VRWMmax;
Tj
= 125
0
C
IRM
<
0.6
mA
NOTES
l. The Ratings and Characteristics given apply from centre tap to end. (Not for
OSS 911 Oseries)
2. Type number suffix
The suffix consists of a figure indicating the total number of diodes, followed by
a letter indicating the base.
A = M6 studs at the ends
B =: 4 pin Super Jumbo (B4D)
C =: Goliath
E =: 4 pin Jumbo (B4F)
F = A3-20
3. Operating: position
The rectifier units can be operated at their maximum ratings when mounted in
any position.
1) The breakdown voltage increases by approximately O. 1 %per
junction temperature.
May 1978
II
°c with
II
increasing
3
as B 911 0 SERIES
as M 911 0 SERIES
ass 9110 SERIES
II
MECHANICAL DATA
Dimensions in mm
n = total number of diodes
OSM9110-nC
OSM9110-nB
OSM9110-nA
N.C.
l--_rn ox75
o
M6
Q
<{
....J
@
7Z07503.'
k
N.C.
The drawings show the OSM9110series; the OSB9110 and OSS911Oseries differ in the
following respects:
OSB9110series - terminals marked a( -) and k(+) in the drawings are both marked'\! ;
the centre-tap is marked + (instead of'" as in the drawings).
OSS9110series - has no centre-tap.
4
II
II
May 1978
IOSB9110SERIES
OSM9110SERIES
OSS9110SERIES
MECHANICAL DATA (continued)
n = total number of diodes.
OSM9110 -nE
max 75
•
OSM9110-nF
III
max75
a
a
~~+--'''''''''''''''---r1'''''''''''''?a.
rJT-~-'r----'~'--'-''''''''''''.au..
I
...J
~
+'
............r-r-.,.........",.........,.--r"T~ C
. o·
5
"% (\~o-
. l
("10
~~~~" ~/. ~ ~ o~
-~
-r-
...
cOt)~I' ~
i"ooo:
v..I.~l
,0-
....~Cti ~ "- ,
~'>
I l ' "'~'"
....':\:
L J
I
?Z09305
30
2xOSM9110
,~ ~
10
(A )
~~ '10
30
10
(A )
Rb
~~ ~~
I I
I
maximum allowable average DutIput current versus ambient temperature
20
1.
I I I
I I 1
II I
1
l
,--
","""
~I')
·"1"
I 1 1" I":\:
II
maximum allowable average output current
versus ambient temperature
I 1
I I
-a g..'-0>~
~ ~o- ~CO
~
....
....~Ct;; .~ "- ,
8
LO
1\
""'~0~v.1
.....0'>"" .1."""1
100
:m
?Z09315
3 xOSM9110
I--~ ....~~ ,~
~~~ C ,~ ~I ~,o-
I
1
I 11
l""illita.
1 ~/. ~~. ~
"c>:
10 ;; ~~f"1:IIoS'
I l l \ . . I\.
~ ~
~~~
"S~ ~o- ("10
;;~", .o?>~ 0",
1'0..
10
20
•
"-)
~Ct."
~I\
" "II')
'0
"-.'\.1\
....
r--. . . . l\\
""iiIII~
"'"
"I\.'
N~
r-..;~
..... "'"
Tamb(OC) 200
II
June 1970
IOSM9110SERIES
OSB9110SERIES
II
OSS9110SERIES
\
APPLICATION INFORMATION
05B911O-4
r
iT
~ I ~+
I
I
I
-
IO =2xI F(AV)
7ZS9118
OSM9110series
-
Io=3IFIAV)
ref) ¢ ¢
VI" :
'\,
'V
:
0+
:
'V
<
3.6
-6
-6
-28
-28
-30·
-30
5.4
25.2
27
V
Reverse breakdown voltage 1)
°c
IR = 5 rnA; Tj = 25
2.5 3.75
3.76 5.64
°c
VF
<
V(BR)R
>
<
17.5 18.75
6.32 28.2
-4
-29
-30
7.2
52.2
54
3. 75 5.0
5.64 7.52
36.25
54.52
37.5
56.4
OSS9210 -3
Forward voltage
IF = 50 A; Tj = 25
5.4
kV
kV
V
Reverse breakdown voltage 1)
IR=5mA;Tj=25
IU SERIES
0
C
kV
kV
Reverse current
IRM
<
0.6
rnA
NOTES
1. The Ratings and Characteristics given apply from centre tap to end. (Not for
OSS9210series) .
2. Type number suffix
The suffix sonsists of a figure indicating the total number of diodes, followed by
a letter indicating the base.
A = M6 studs at the ends
B = 4 pin Super Jumbo (B4D)
C = Goliath
E = 4 pin Jumbo (B4F)
F = A3-20
3. Operating position
The rectifier units can be operated at their maximum ratings when mounted in
any position.
1) The breakdov.Tl1 voltage increases by approximately 0.1
junction temperature.
%per 0c
with increasing
3
,,~u
., ~ I V
~I:K.II:~
OSM9210 SERIES
055 9210 SERIES
II
MECHANICAL DATA
Dimensions in mm
n = ototal number of diodes
OSM921O-nA
OSM9210-nB
OSM9210-nC
N.C.
max75
max75
°max75
a
a
M6
CD'
/;..
10
~~
~~~I'
('~
:'>J"
1-11- ....
tt-Ir (;\& I ~>"
~Q'I/" , ~
I
i""'~COI')II&.!..~ ~
~ctiol')
I
~
I
II'+..
~~
I I
100
1,\
~
"I'I'" ~"'
I"--
~~
I"f'III
Tomb (OC)
200
725]265
maximum allowable average output
current versus ambient temperature
I
I I I
I
I
I I
OSM9210 (2x)
Ia
(A)
40
t-t-- t--~g./
<'a-t-- t--I~ l - I--
~
- .... .... ~....c
~O'
20
ar
'"
,
Rb
7Z592.66
maximum allowable average output
current versus ambient temperature
~
_Ll _Ll i
t-
-
-
-
-
,
I'\.
1"-<>",;,
~~
~~C'I!I
~s:"
?> I\.
I"'f <>/;.. ~
- l....
- I- J~e!;--t-M"
I - f're(;\
2.5
V(BR)R <
4
OSS9310 -3
3.75
6
-4
17.5
28
-29
Forward voltage
IF
= 50 A;
Tj
= 25 °c
Vp
<
-30
-30
37.5 V
Reverse breakdown voltage 1)
IR
= 5 rnA;
= 25 °c
Tj
Porward voltage
IP
= 50 A;
Tj
= 25 °c
Vp
18.75 kV
30 kV
-30
<
7.5
10
72.5
75 V
>
3.75
6
5
8
36.25
58
37.5 kV
60 kV
Reverse breakdown voltage 1)
IR
= 5 rnA;
Tj
= 25 °c
V(BR)R <
Reverse current
IRM
<
0.3
rnA
NOTES
1. The Ratings and Characteristics given apply from centre tap to end. (Not for
OSS9310series).
2. Type number suffix
The suffix consists of a figure indicating the total number of diodes, followed by
a letter indicating the base.
A = M6 studs at the ends
B = 4 pin Super Jumbo (B4D)
C = Goliath
E = 4 pin Jumbo (B4F)
p = A3-20
3. Operating position
The rectifier units can be operated at their maximum ratings when mounted in
any position.
1) The breakdown voltage increases by approximately 0.1% per °Cwithincreasing
junction temperature.
" _ May
19~
_____
lL
3
V~D
yo)
IV 5ERIE5
IL
OSM9310 SERIES
OSS 9310 SERIES
MECHANICAL DATA
Dimensions in mm
n = total number of diodes
OSM931O-nA
OSM9310-nB
OSM931O-nC
N.C.
'omax75
max75
a
a
M6
CD'
4
...J
~
...J
a.
0
+'
I
QJ
L-
+'
C
QJ
U
@
7Z07503~
k
N.C.
The drawings show the OSM9310series; the OSB9310 and OSS9310series differ in the
following respects:
OSB931Oseries - terminals marked a(-) and k(+) in the drawings are both marked
'V; the centre-tap is marked + (instead of'V as in the drawings).
OSS9310series - has no centre-tap.
4
II
II
May 1978
IOSM9310SERIES
OSB9310SERIES
II
OSS 9310SERIES
MECHANICAL DATA
n
= total number of diodes
OSM931O-nE
OSM9310-nF
..
max75
max75
a
a
W
...J
~
Cl.
.s
I
"" 1
~~"'t:
I'
~'>
.... r--
,
,1\
.....
...,~
~
!"'II~
100
200
7Z59269
7Z59268
maximum allowable average output
current versus ambient temperature
1 I I I I "
10
I I 111 11
(A)
OSM9310(2x) r-
,~+--
1\0--
20
'\ -=
,
()o
r-- ~~
r---
-
"
{o--I-I-~
I I~~'-IIl\.~
~~
;r
"'.
\
~~~
"'' l'iIQ'
"-.Q/;..
\
~
,
lI..
~~ ~..(r.
I "f,;:~'
\.
1
'X
J I
r--"O,>"" I 1
~'>
r-
rrr-
"
....
,
20
I'
II
~I-i-
"'"
I~oi-
CO!.1
0...,::
~.~~
-~"
.s. I \.
1 .,{o' Q' ~~
1 I r""'tt,
I I~~'"
.1
~O,t
...,\.
~
200
o
o
,,
I"'oi..
r---~'>"ect·1
\,1\
....
I I I
-I'@ ~~_~I
>-fl
;:;~ ~r--ree
"'iii~
8
I-
\.
,
RbIl-
I'()'-
,
mr~
l-
-~
.........
;
100
~
40
r-
1\
~~
~~C''t.
(A)
~
I'<~I
10
Rb
rr-
maximum allowable average output
current versus ambient temperature
I I I
I
I I
I
I I I
I
I
10
OSM9310 (3x)
I-
....
1 T"""",
1I
1I
100
II
.....
.....
"
l\.
~~
..... !O:II~
200
August 1970
aSB9310SERIES
as M 931 OSERIES
ass 9310SERtES
APPLICATION INFORMATION
OSB9310series
-[
iT
~+
~I
I
I
I
I o =2xI F (AV)
-+
7Z59118
OSM931Oseries
I o=31F(AV)
¢
: : :
-+
refS Cf5
V
0+
T
tV~----.
'\,
tV
0---+----.
tV
0---1----+------+
tV
r
1'
VRWM
I
I
I
I
I
I
¢¢
-CP
I
7Z59119
voltage doubler
rectifier circuits
2x OSM9310
II
I
q?Cf?Cf?
0-
Ix OSM9310
___August 1970
I
0-
with respectively
and
3x OSM9310
9
OSB 9410
OSM9410
OSS 9410
II
HIGH VOLTAGE RECTIFIER STACKS
Ranges of high voltage rectifier as semblies, incorporating controlled avalanche diodes
mounted on fire proof triangular formers. They are supplied with M6 studs.
The OSB941Oseries is intended for application in two phase half wave rectifier circuits.
The OSM941Oseries is intended for application in single phase or three phase bridges
or in voltage doubler circuits.
The OSS9410series is intended for all kinds of high voltage rectification.
The OSB9410series and OSM9410series are supplied with a centre tap (8 -32UNC).
The maximum crest working voltages of the OSB9410 and OSM941Oseries cover the
range from 2 kV to 15 kV, and of the OSS9410series the range from 3 kV to 30 kV,
in 1 kV steps.
CIRCUIT OSB941O
CIRCUIT OSM941O
ano~--I--~hode
~rB--I--~~
I
_
centre - tap
V
RWM-----+
+
centre-tap
V
1- R W M -
7Z59125
~
7259126
CIRCUIT OSS941O
ano~------~hOde
I.
.1
VRWM
7Z591;[7
QUICK REFERENCE DATA
Crest working reverse voltage
from centre tap to end
VRWM
Crest working reverse
voltage
VRWM
OSB9410
OSM9410
-4
-4
-6
-6
max.
OSS941O
2
-3
3
4
max.
3
= 35 °c
Non-repetitive peak forward current
t =10 ms; half sine wave; Tj =175 °c prior to surge
-28
-28
1
-30
-30
I
I
1-4 1'..... I
Average forward current with Rand L load
(averaged over any 20 ms period)
in free air up to T amb = 35 °c
in oil up to Toil
I ...., .
14
15 kV
-29 , -30
29
IF(AV) max.
IF(AV) max.
I FSM
30 kV
10 A
30 A
max. 800 A
MECHANICAL DATA see page 4
II
1
SERIES
SERIES
SERIES
05B941USERIE51
OSM9410sERIES
OSS 9410SERIES
II
All information applies to frequencies up to 400 Hz
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
-30
-30
OSB9410 -41
OSM9410 -4
Voltages
Crest working reverse voltage
VRWM
max.
OSS9410
Crest working reverse voltage
VRWM
15 kV
2
max.
-30
29
-4
4
1
29
30 kV
Currents
Average forward current (averaged
over any 20 ms period)
in free air up to T amb = 35 °c
Ip(AV)
max.
10
A
Ip(AV)
max.
30
A
Repetitive peak forward current
IpRM
max.
450
A
Non -repetitive peak forward current
t = 10 ms; half sine wave; T j = 175 °C prior to surge
IpSM
max.
800
A
in oil up to Toil = 35
°c
Reverse power dissipation
-30
-28
OSB9410 -4
-6
-28
-30
Repetitive peak reverse power dis sipation 0=SM=9...:4;.;.:1..:.0_-...:4==---+_-...::6--+.-:....:....:.-+--=~+-....::...;;,
t= lOps (square wave; f = 50 Hz)
63 67.5 kW
Tj=175 0 C
PRRM
max.
913.5
Non -repetitive peak reverse power dissipation
t = lOps (square wave)
Tj = 25 °C prior to surge
PRSM
max.
55
T j = 175 °C prior to surge
PRSM
max. 8.5
375
60.5
80
13
400 kW
65 kW
-29
-30
Repeti ti ve peak rever se
.:::.0...::S...::S.:....9..:.4_10=----...:3=---+_-...:4=-i~~+_--=:-=--+_--=-=power dissipation
t = lOps (square wave;f =50Hz)
18
. .. 130.5
135 kW
T j = 175 °C
PRRM
max. 13.5
Non -repetitive peak reverse
power dissipation
t = lOps (square wave)
800 kW
775
T j = 25 0c prior to surge
max. 80 105
130 kW
126
max.
13
17
T j = 175 °c prior to surge
Temperatures
Storage tempetature
- 55 to
Junction temperature
max.
2
II
+ 175
175
II
August 1970
aSB 9410 SERIES
aSM9410SERIES
ass 9410 SERIES
II
CHARACTERISTICS (See note 1)
OSB9410 -4
OSM9410 -4
Forward voltage
IF = 150 A; T j = 25 °C
VF
Reverse avalanche breakdown voltage 1)
IR = 5 mA; Tj = 25 oC
V(BR)R
Forward voltage
IF = 150 A; T j = 25
0
C
VF
Reverse avalanche breakdown voltage 1)
IR = 5 rnA; Tj = 25 °C
V(BR)R
-6
-6
-28
-28
25.2
<
3.6
5.4
>
<
2.5
3.75
4
6
OSS9410 -3
-4
-29
<
5.4
7.2
52.2
>
<
3. 75
5
8
36.25
58
6
-30
-30
27 V
17.5 18. 75 kV
28
30 kV
-30
54 V
37.5 kV
60 kV
Reverse current
IRM
<
1. 6 mA
NOTES
1.
The Ratings and Characteristics given apply from centre tap to end. (Not for
OSS9410series).
2.
Type number suffix
The suffix consists of a figure indicating the total number of diodes, followed by
a letter indicating the base.
A = M6 studs at the ends.
3.
Operating position
The rectifier units can be operated at their maximum ratings when mounted in
any position.
1) The breakdown voltage increases, by approximately 0.1% per oC with increasing
junction temperature.
May 1978
II
3
I
05B9410SERIES
OSM9410SERIES
OSS 9410SERIES
II
Dimensions in mm
MECHANICAL DATA
n
= total
number of diodes.
OSS9410-nA
The drawing shows the OSS9410series.
The OSB941O and OSM9410series differ in the following respects:
OSB9410 series - has a centre tap marked +; anode and cathode terminals are both
marked"V .
OSM9410series - has a centre tap marked",.
Table of lengths and weights (mm and g)
number of diodes
n
maximum lengths
3
4 to 6
7 to 9
LA
143
184
224
264
305
weights
WA
215
413
611
809
1007
number of diodes
n
maximum lengths
LA
345
385
426
466
506
weights
WA
1208
1406
1604
1802
2000
4
II
16 to 18 19 to 21
22 to 24
10 to 12
25 to 27
II
13 to 15
28 to 30
August 1970
OSB9410SERIES
05M9410SERIES
0559410 SERIES
II
12592761
1000
maximum permissible non-repetitive tpeak forward current based on
tsinusoidal currents (f =50Hz)
rFb
tl-
(Ltime
teach current pulse is followed by
the crest working reverse voltage t-
t----
r-r--
r-
500
~
Tj=175°C prior to surge
...............
o
1
............... "-
r-- r--
~
-r-
number of cycles
10
100
7Z 59 275
maximum allowable non -repetitive
r.m.s. forward current(sub cycle
surge curve)
1
IFS(R MS)
(A)
1\
.J
~
1000
~
" Tj =175°C prior to -"......
surge -i'
~
1""-......
500
o
o
August 1970
5
duratlon(ms)
--
10
5
OSB9410SERIES
OSM9410SERIES
OSS9410SERIES
I
II
72592.72
maximum allowable average forward
current versus ambient temperatl:Jre
IF(AV )
IA)
40
~/
I,<'°o/.
20 r--- JO;~
r-+-
- tL"~Q'
I'
t;;;;;;; r-.~II"~"
"f - - 'F~ 1"N.7~'»~
E'E'co'~"""
.... ~VE'Ct~
I\..
~f) .......... r-... ,
<$
1
....
....
""
I"~
'"
t"-o~ !ll.,;l\..
I"""~
1
oo
200
100
72 592.73
7Z592.74
maximum allowable average output
current versus ambient temperature
I
(
10
I
I
(A)
1
q,.
X"/(\'-r-00
-,1\
""""""
I--f-
~V
--
'"
"
~~II
-
~
100
-
~_,.,.,IM
....f!I~ ("
.s'
I'l. 1\.
....of}v~l~
11
mr~
Rb ff-
~~ ~r'"
r--
X/
1
"
so 1--1-'""'.10
I"'
~('~Q'I
,
..... '" "
~
"'
1--1-'"'" " )i..Q/ir--7
t:::= t:::E'E'
I\..
F'~~
~
"~J.
COf)v
~
..!!.ctiOf')
~
~ l"o
r....
11
I
~~
6
1
~{'
'''1'.... "1
...... ~~
100
I I
~o
'...... Cot·
rf.,0f) "-
o
o
I I
1
r--
-
,
1 ~/;.. ~.$'
1 1 ~~'?;I ~..-::
~I-
Rb
r-r-r--
r
I
10
(A)
.....~
1-1- I-~Q'~;"
25
I
1
at
--
f- - , -
_\:~o--
so
I I
I
I I I I
maximum allowable average output
current versus ambient temperature
1'\
.....:"
..... '\.
~~
~
~
11
200
,
100
II
200
August 1970
OSB9410SERIES
OSM9410SERIES
OSS 9410SERIES
II
APPLICATION INFORMATION
OSB9410 series
-I
iT
~-1
I
I
I
-
Io =2xI F(AVI
7259118
OSM941Oseries
-
lo::3IF(AV)
'\, 0 - - - t - - - - +
'\,
'"
'\, 0 - - - 1 - - - - - + - - - - - .
r
1
_Cf'
VRWM
I
I
I
I
¢ cP cP
voltage doubler
rectifier circuits
Ix OSM9410
2x OSM9410
August 1970
0-
7259119
II
with respectively
and
3x OSM9410
7
jl
OSM9510-12
--------------------------------------------------~
HIGH-VOLTAGE RECTIFIER STACK
The OSM9510-12 is a silicon rectifier stack for high voltage applications,
up to 12kV in half-wave circuits, or up to 6kV as one of the arms of a
bridge configuration, where the centre-tap is utilised. Because of its controlled avalanche characteristics it is capable of withstanding reverse
transients generated in the circuit.
QUICK REFERENCE DATA
max.
12
kV
V(BR)R min.
15
kV
V
RWM
o
IF(AV) max., in free air, Tamb =50 C
o
P RSM max., t = lOllS, Tamb == 25 C
1.5
20
A
kW
OUTLINE AND DIMENSIONS
For details see page 3
CIRCUIT DIAGRAM
+
C.T.
Also available: 8 kV type with V(BR)R min = 12.5 kV
December 1979
jl~________________________________
___O_S_M_9_5_10_-_12__
RATINGS
Limiting values of operation according to the absolute maximum system.
These ratings apply for the frequency range 50 to 400Hz.
Simultaneous application of all ratings is inferred unless otherwise stated.
Electrical
V
RWM
max.
12
Crest working reverse voltage
kV
IF(AV) max.
Mean forward current in free air,
T b <50°C, 180° conduction
1.5
A
am See derating curves on page 4
IFRM max.
Repetitive peak forward
current, 30° conduction
15
A
I
Surge forward current, 1 cycle
(10ms peak of half sinewave)
35
A
Non-repetitive peak reverse power
(10MS square wave, T.=25°C)
20
kW
FSM
P
max.
max.
RSM
J
P
RRM
max.
50Hz repetitive peak reverse
transient power
(10MS square wave, T.=150°C)
J
5.0
kW
Temperature
T
stg
T.
Storage temperature
-55 to 150
°c
Junction temperature
-55 to 150
°c
J
ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)
J
Min.
Max.
*V
F
IR
17.5
Forward voltage at IF = 5A
Reverse current at VRWM' T j =125 ° C
V(BR)R **Avalanche breakdown voltage,
I
=1mA
(BR)R
* Measured under
15
V
100
MA
25
kV
pulsed conditions so that T j is at, or near, the stated value.
**The avalanche voltage increases by approximately O.l%/degC with increasing T j .
MECHANICAL DATA
130
Weight
g
MOUNTING POSITION
The rectifier units can be operated at their maximum ratings when mounted
in any position.
2
December 1979
(
l__
High-voltage silicon rectifier stack
O_S_M_9_51_0_-1_2_ _
OUTLINE AND DIMENSIONS
fIl
0
~
C":)
~
OC!
OC!
~
~
@
~ <
M
co
C"I
0
M
0
~
~
co
M
C)
~
r.::I
r.t
d
:r:
(.!)
I
.....:
u
'0
0
~
+
I
L.
.c
....
E
E
"'f
$
December 1979
3
jl_______________________________
___O_S_M_9_5_10_-_12__
f-+-+-+++++-+-f-+-+-++++-++-+l-,,'IH·++-I-t-lfIH-+-.J..-+++-+-f-++-+-I-++-+-+-+-++ U
+- 0
++t
f-+-+-+-+++-f-+-+--+++++-+--f'-l.'--t-#'.'
Repetitive peak current
IFRM
max.
28 to 36
v
5
2
A
V
Dimensions in mm
MECHANICAL DATA
Fig. 1
~~::F===1 I F=~ ~
1_ _ - -
21. _ _ 1. . - ft..5
min
max
--.1..--
24 ___ -..1
min
~11.B51.
max
D8059
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC134)
Total power dissipation up to T amb = 50 °C
Repetitive peak current (t
< 20 /1s)
Storage temperatu re
Junction temperature
Ptot
max.
150
IFRM
max.
2
T stg
Tj
mW
A
-55 to +125
°C
100
°C
max.
THERMAL RESISTANCE
From junction to ambient in free air
0.33
Rth j-a
'I
July 1979
K/mW
~
__________________________________
~l
_____B_R_1_00_/_0_3__
CHARACTERISTICS
Tj = 25 °C
dV
Breakover voltage at dt
10 V/ms
=
VIBO)
28 to 36
IV(BO)I - V(BO)lIiI
<
3
V·
Output voltage at - = 10 VIms
dt
Vo
>
5
V
Breakover current at V = 0.98 V (BO)
I(BO)
<
100
Breakover voltage symmetry
dV
\
\
'\
1(80} ill
~-_'_,....,-1IIBO)
f 1--,-,,---
I
v
'\
\
08463
Fig.2
BR100
220Vj 50Hz
20n
mains
08464
Fig. 3 Test circuit for output voltage
2
v
July
19791(
p.A
_______________Jl__
B_RY_39T_ _
THYRISTOR TETRODE
The BRY39T is a planar p-n-p-n trigger device in a TO-72 metal envelope, intended for use in low-power
switching applications such as relay and lamp drivers, sensing network for temperature and as a trigger
device for thyristors and triacs.
For BRY39P and BRY39S see 'Small signal transistors' handbook.
QUICK REFERENCE DATA
Repetitive peak voltages
Non-repetitive peak on-state current
= VRRM
max.
70
'T(AV)
max.
250
'TSM
max.
3
VDRM
Average on-state cu rrent
MECHANICAL DATA
V
mA
A
Dimensions in mm
Fig.1 TO-72; Anode gate connected to case.
~J ~F===
1_max
5,3 _L 12,7min
_I """.,
anode
Q
k--~~Odegate
cathodega~~1
k
cathode
7Z60690.1
Accessories supplied on request: 56246 (distance disc)
October 1979
jl___________---------------------
_____
B_RY_3_9_T____
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Anode to cathode
Non-repetitive peak voltages
VOSM = VRSM
max.
70
V*
Repetitive peak voltages
VDRM = VRRM
max.
70
V*
Continuous voltages
VD=VR
max.
70
V*
Average on-state cu rrent up to Tcase = 85 °C
in free air up to T amb = 25 °C
IT(AV)
IT(AV)
max.
max.
250
175
mA
mA
ITRM
max.
2.5
A
ITSM
max.
3
A
max.
20
Repetitive peak on-state current
t=10J,Ls;o=0.01
Non-repetitive peak on-state current
t = 10 J,LS; Tj = 150 °C prior to surge
Rate of rise of on-state current after
triggering to IT = 2.5 A
dlT
dt
AIJ,Ls
Cathode gate to cathode
Peak reverse voltage
Peak forward current
VRGKM
max.
5
IFGKM
max.
100
V
mA
Anode gate to anode
Peak reverse voltage
Peak forward current
VRGAM
max.
70
IFGAM
max.
100
V
mA
Temperatures
Storage temperature
Junction temperature
Tstg
-65 to +200
°C
Tj
max.
150
°C
THERMAL RESISTANCE
From junction to ambient in free air
From junction to case
Rth j-a
0.45
°C/mW
Rth j-c
0.15
°C/mW
*These ratings apply for zero or negative bias on the cathode gate with respect to the cathode, and
when a resistor R ,,;;; 10 kn is connected between cathode gate and cathode.
2
October 1979
(
Jl
Thyristor tetrode
CHARACTE R ISTI CS
BRY39T
Anode to cathode
On-state voltage
IT = 100 mA; Tj = 25 °C
Rate of rise of off-state voltage
that will not trigger any device
Reverse current
VR = 70 V; Tj'= 25 oC
Tj= 150 °C
Off-state cu rrent
Vo = 70 V; Tj = 25 °C
VT
<
1.4
V*
typo
1
100
nA
nA
2
p.A
1
100
nA
nA
2
p.A
p.A
dVO**
dt
IR
JR
<
<
typo
10
10
<
<
IH
<
250
Voltage that will trigger all devices
Vo = 6 V; Tj = 25 °C
VGKT
>
0.5' V
Current that will trigger all devices
Vo = 6 V; Tj = 25°C
IGKT
>
Voltage that will trigger all devices
VO=6V;Tj=25 0 C
-VGAT
>
Current that will trigger all devices
Vo = 6 V; RGK = 10 kQ; Tj = 25°C
-IGAT
>
Tj=150 0 C
Holding current
RGK = 10 kQ; RGA = 220 kQ; Tj = 25 °C
Cathode gate to cathode
r' p.A
Anode gate to anode
V
100
p.A
*Measured under pulse conditions to avoid excessive dissipation.
**The dVD/dt is unlimited when the anode gate lead is returned to the supply voltage through a
current limiting resistor.
October 1979
3
__B_RY_39T~Jl________________
Switching characteristics
Gate-controlled turn-on time (tgt = td
when switched from V D = 15 V
to IT = 150 mA; IGK = 5 JlA;
dlGK/dt == 5p,A/p,s; Tj = 25 °C
Circuit-commutated turn-off time
when switched from IT = 150 mA
to VR = 15 V; -dlT/dt = 3 A/Jls;
dVD/dt = 70 V IJls; VD = 15 V
+ t r)
<
300
ns
<
3
JlS
t
IT
+
I
Yo
I.------tq------.I
o
---+--+=---
.!..-....j-l
1272539.'
IGT
O~·~~~------~-
Fig.2 Gate-controlled turn-on time
definition.
4
October 1979
(
Fig.3 Circuit-commutated turn-off time
definition.
Th_Yr_ist_or_t~_ro_de
___
jl____
8_R_Y_3_9T____
_______________________
08530(7Z6069111
300
08531 (7Z606931
600
I I I I
I I
-f-
\
(mA)
II
max values
IT
IT
III
I
I
I
I I
(mA)
II
Tj = 25°C
Tj=150oC f-f- - f -
\ ."
200
'0;-
400
1
t>
-~
\ 'b
-~ 1>
~
O
,~<
If
C>
,C;>"
\ ~
_\
,
~~
, 00
I\, ~
-,
J
II
it
\
,
~~
100
•
\ ~
-I-",
200
Jj
II
:\
\
I\.
\.
I
~I\
I
.\
100
'1
IJ
'1
:/ .
I~
o
o
II
II
'11
o
o
200
2
Fig.4
V T (V)
Fig.5
08532 (7Z6041411
v
..... ~
i-"
10
~
10-1
10
10 2
10 3
tp (5)
10 4
Fig.6
I
October 1979
5
Jl"---_______
_B_RY_39T___
D853317Z60694 I}
Vo= VR = 70V
~
I.J
1I
)
~1I
rl
,
V'
I
I;'
tyP/
V
10
7
V
!/
iI
II'
'f'
V'
"I
if
150
50
Fig.7
6
October 1979
J[
~~
___
Th_Y_ris_ro_r_mt_ro_d_e____________________________
_T_____
_____B_R_Y_3_9
APPLICATION INFORMATION
Sensing network
r-------<..------1~O
+12 V
100
kn
-12V
Fig.8
RS must be chosen in accordance with the light, temperature, or radiation intensity to be sensed; its
resistance should be of the same order as that of the potentiometer.
In the arrangement shown, a dec! ine in resistance of RS triggers the thyristor, closing the relay that
activates the warning system. If the positions of RS and the potentiometer are interchanged, an increase
in the resistance of RS triggers the thyristor.
October 1979
7
J
BT151 SERIES
--------------------------------------------------~
THYRISTORS
Glass-passivated thyristors in TO-220AB envelopes, featuring eutectic bonding, thus being particularly
suitable in situations creating high fatigue stresses involved in thermal cycling and repeated switching.
Applications include temperature control, motor control, regulators in transformerless power supply
applications, relay and coil pulsing and power supply crowbar protection circuits.
QUICK REFERENCE DATA
BT151-500R
I 650R
VDRMIVRRM
max.
Average on-state current
'T(AV)
max.
7,5
A
R.M.S. on-state current
'T(RMS)
max.
12
A
Non-repetitive peak on-state current
'TSM
max.
100
A
Repetitive peak voltages
500
650 V
MECHANICAL DATA
Fig. 1 TO-220AB.
__ 45
Dimensions in mm
I
1,3--
..-
max
-
a~k
mounting
base ---.
(see note)
g
II-
,--- •
5,9
I
I
I
I
.J
5,1
l
--t
13,5
'_Ib~f;:::;:::::;~ __. _
3~ max
not tinned
Net mass: 2 g
max
tI
1,3-- -
Note: The exposed metal mounting
base is directly connected to the
anode.
Accessories supplied on request:
see data sheets Mounting instructions
and accessories for TO-220 envelopes.
I
max
( 2 x) k
a
--..i
9
-
l
-..1
1
+ m15,ax8
min
-..li:o,9max (3x)
2,54 2,54
---
-
min
1.... 0,6
.-24
October 1979
I
~
jl_________________________________
___B_T_15_1_S_E_R_IE_S__
RATINGS
Limiting values in accorclance with the Absolute ~~aximum System (I EC 134)
Anode to cathode
~
~
BT151-500R
650R
Non-repetitive peak voltages (t .;;;; 10 ms)
VOSMIVRSM
max.
500
650 V*
Repetitive peak voltages (8 .;;;; 0,01)
VORMIVRRM
max.
500
650 V
Crest working voltages
VOWMIVRWM
max.
400
400 V
Continuous voltages
VOIVR
max.
400
400 V
Average on-state current (averaged over any
20 ms period) up to T mb = 95 oC
IT(AV)
max.
R.M.S. on-state current
IT(RMS)
max.
12 A
'Repetitive peak on-state current
ITRM
max.
65 A
100 A
Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 110 0C prior to surge;
with reapplied VRWMmax
7,5 A
ITSM
max.
12 t
max.
50 A 2 s
dlT/dt
max.
50 AIIlS
Reverse peak voltage
VRGM
max.
5 V
Average power dissipation (averaged over any 20 ms
period)
PG(AV)
max.
0,5 W
PGM
max.
5W
2
1
t for fusing (t = 10 ms)
Rate of rise of on-state current after triggering with
IG = 50 mA to IT = 20 A; dlG/dt = 50 mAills
Gate to cathode
Peak power dissipation
Temperatures
--+
Storage temperature
T stg
Operating junction temperature
Tj
-40 to +125 °C
max.
110 °C
* Although not recommended, higher off-state voltages may be applied without damage, but the
thyristor may switch into the on-state. The rate of rise of on-state cu rrent shou Id not exceed 15 AIIlS.
2
October 1979
J
- - Thyristors
BT151 SERIES
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
1,3 °C/W
Transient thermal impedance; t = 1 ms
Zthj-mb
0,2 0C/W
a. with heatsink compound
Rth mb-h
0,3 0C/W
b. with heatsink compound and 0,06 mm maximum mica insulator
Rth mb-h
1,4 °C/W
c. with heatsink compound and 0,1 mm maximum mica insulator (56369)
Rth mb-h
2,2 0C/W
d. with heatsink compound and 0,25 mm max. alumina insulator (56367)
Rth mb-h
0,8 °C/W
e. without heatsink compound
Rth mb-h
1,4 °C/W
Influence of mounting method
1. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
2. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = any lead length
and with copper laminate
~
t
a
1
V//
*
0
Rth j-a
60 °C/W
~
J
///J
7Z75493
Fig. 2.
'I
(october 1979
3
8T151 SERIES
-+
l_____- -
CHARACTERISTICS
Anode to cathode
On-state voltage
IT = 23 A; Tj = 25°C
VT
<
1,75
V*
Rate of rise of off-state voltage that will not trigger any
device; Tj = 110 oC; see Fig.10
RGK = open circuit
RGK = 100.n
dVo/dt
dVO/dt
<
<
50
200
V/lls
Reverse cu rrent
VR = VRWMmax; Tj = 110°C
IR
<
0,5
rnA
Off-state current
Vo = VOWMmax; Tj = 110°C
10
rnA
IL
40
rnA
Holding current; Tj = 250C
IH
<
<
<
0,5
Latching current; Tj = 250C
20
rnA
Voltage that will trigger all devices
V 0 = 6 V; Tj = 25 °C
V 0 = 6 V; T j = -40 °C
VGT
VGT
>
>
1,5
2,3
Voltage that will not trigger any device
Vo = VORMrnax; Tj = 110 °C
VGO
<
250
mV
Current that will trigger all devices
VO=6V;Tj=25 0 C
V 0 = 6 V; Tj = -40 °C
IGT
IGT
>
>
15
20
mA
rnA
V/lls
Gate to cathode
V
V
Switching characteristics
Gate-controlled turn-on time (tgt = td + trl when
switched from Vo = VORMmax to IT = 40 A;
IGT = 100 rnA; dlG/dt = 5A/lls; Tj = 25 °c
t
IT
+
- t d - tr
_tgt-
I<;T
O~+~~--------~
Fig.2a Gate controlled turn-on time definition.
*Measured under pulse conditions to avoid excessive dissipation.
4
October
19791 (
typo
2
IJS
J
Thyristors
BT151 SERIES
- - MOUNTING INSTRUCTIONS
1. The device may be soldered directly into the circu it, but the maximum permissible temperature of
the soldering iron or bath is 275 oC; it must not be in contact with the joint for more than 5 seconds.
Soldered joints must be at least 4,7 mm from the seal.
2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during
bending.
3. It is recommended that the circuit connection be made to the anode tag, rather than direct to the
heatsink.
4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between mounting base and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated in Fig. 3.
junct ion
mounting
base
Rth j-a
heatsink
Fig. 3.
7Z73725
ambient
b. The method of using Fig. 4 is as follows:
Starting with the required current on the IT(AV) axis, trace upwards to meet the appropriate form
factor curve. Trace right horizontally and upwards from the appropriate value on the T amb scale.
The intersection determines the Rth mb-a' The heatsink thermal resistance value (Rth h-a) can now
be calculated from:
Rth h-a
=
Rth mb-a - Rth mb-h·
c. Any measurement of heatsink temperature should be made immediately adjacent to the device.
October 1979
5
l_____________~___
SE~
8T151
08560
15
90
1
1
1
1
p
(W)
1.57
,
1 1.9 J
2.2 'J J
l
10
I'
I\,
~
~
J J V'
2.8
ILl 1
J
I
II J
J J IIV'
'I If '}
...... .>
;,
'"
j~,
J J'"
'/ '(L
,JI/l/
"
:"
II VJ
I'"
'}/JV'
I'
~
~~
.?;
5
0
'T(AV)(A)
10 0
t-
f'.
'"
!"
""0'_
11
LlLlLl
...'1
103.5
1\
"'" "
t--,
~~11
"\
1\,1\
~"
~~
Il
r.... """" '"
I-r50
~
I'.N
1"-
~
97
t-t-t(')
r-r-r:\I\~- t-t-tII ...L\ ;. t-t-t1\\
1,\
.../!.."ee air'
-r-tJ..i
1
1
-' 1
r-r-t.....'1»\1p ._. . . t-t-t-
,
I\,
"- "
{..S
t--.
o 111'1 1 1
1 J~
l\.
f""
I-
1\
,
~,:,O
I'"
?J
'5
113
-1.
_~d'
iJ
-.l
'"
~~'f-
~
I\.
J1//
V'V'jff
5
11
~
J
I
a=4
f - - f-f-
II
\
r
Tamb(OC)
l\
~\
~
-.l
110
r-!;;;:
100
125
Fig. 4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
ex = conduction angle per half cycle
a
= form
factor
= IT(RMS)
IT(AV)
6
ex
a
300
60 0
900
1200
1800
2,8
2,2
1,9
1,57
4
October
19791 (
J
Thyristors
BT151 SERIES
- - - 7Z77405
150
ITS(RMS)
(A)
-'
100
,
1\
ITSM
"-
"
~
50
"
I"
I.....
r--...
I-1--1-
o
10- 3
duration (s)
10
Fig.5 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents
(f = 50 Hz); Tj = 110 °C prior to surge; with reapplied VRWMmax.
time
October 1979
7
_________________________________
~l
___B_T_15_1_S_E_R_IE_S__
7 Z77402.,A
3
7Z77401.A
30
IGT
(mA)
'\
2
20
'\
"- \.
~
.....
"-
,
......
min
I"1'\
I\..
o
0
50
100
'"
-50
150
Tj (oC)
0
50
7Z77400 A
30
I
,,
- - T j = 25°C
--Tj=110oC
IT
I
(A)
I
typ
L
I
1// I I
ft
I
,-/J\ max
VT
--
---
I
VT
I
20
II
II
II
r7
I
I
I'J
rl
,
,I
'I
10
II
:,
11
-,Iii
'I
1111
o
0,5
October 1979
(
,
I)
100
150
Tj (oC)
Fig. 7 Minimum gate current that will trigger
all devices as a function of junction temperature.
Fig. 6 Minimum gate voltage that will trigger
all devices as a function of junction temperature.
8
min
~
10
o
-50
......
J
Fig. 8.
1,5
2,5
j
- - - ~~~
BT151 SERIES
7Z77406
10
./
"fo"
V
10- 3
10- 5
10- 1
time (5)
10
Fig. 9.
08561
dV O
Cit
(V/p.s)
~
~
~
~
" l'1'..I"
R
=100n
N GK
I
~
I
I
I
I-- t--
I
i'~RGK=open circuit
.....
I"'..
Fig. 10 Maximum rate of rise of off-state voltage
that will not trigger any device (exponential method)
as a function of junction temperature.
10
o
50
October 1979
9
_ _ _ _J
8T152 SERIES
THYRISTORS
Glass-passivated thyristors in TO-220AB envelopes, featuring eutectic bonding, thus being particularly
suitable in situations creating high fatigue stresses involved in thermal cycling and repeated switching.
Applications include temperature control, motor control, regulators in transformerless power supply
applications, relay and coil pulsing and power supply crowbar protection circuits.
QUICK REFERENCE DATA
BT152-400R
Repetitive peak voltages
max.
400
J
600R
BOOR
600
BOO
V
Average on-state current
IT(AV)
max.
13
R.M.S. on-state current
IT(RMS)
max.
20
A
Non-repetitive peak on-state cu rrent
ITSM
max.
200
A
MECHAN ICAl DATA
A
Dimensions in mm
Fig.1 TO-220AB
-.. 45
Irna,
1,3-"
1-
.-
,
-
a~k
ri-
mounting_
base
(see note)
9
-1
.-Il:i~~~--'
3~ max
not tinned
5,1
tI
1,3--
I
-.1
-
.J
.........
......
+
I
15,8
m ax
j
- - A 13,5
T min
-
a
k
I
I
I
max
l
max
(2x)
I
5,9
min
9
-.li~0,9max
2,54 2,54
(3x)
-'1..."'0,6
24
1
Net mass: 2 g
Note: The exposed metal mounting
base is directly connected to the
anode.
Accessories suppl ied on request:
see data sheets Mounting instructions
and accessories for TO-220 envelopes.
October 1979
Jl,________________________________
___B_T_15_2_S_E_R_IE_S__
RATINGS
Limiting values in accordance with the Absolute Maximum System (J EC 134)
Anode to cathode
Non-repetitive peak voltages
BT152-400R
600R
800R
VOSMNRSM
max.
450
650
850
V
Repetitive peak voltages
VORMNRRM
max.
400
600
800
V
Crest working voltages
VOWMNRWM
max.
400
400
400
V
Average on-state current (averaged over
any 20 ms period) up to T mb= 93 °C
R.M.S. on-state current
Repetitive peak on-state current
IT(AV)
max.
13
A
IT(RMS)
max.
20
A
ITRM
max.
200
A
Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 115 0C prior to surge;
with reappl ied V RWMmax
ITSM
max.
200
A
12 t for fusing (t = 10 ms)
12 t
max.
200
A2 s
Rate of rise of on-state current after triggering
with IG = 160 mA to IT = 50 A; dlG/dt = 160 Alms
dlTldt
max.
200
Alps
Gate to cathode
Reverse peak voltage
VRGM
max.
5
V
Average powerdissipation (averaged over any 20 ms period)
PG(AV)
max.
0.5
W
Peak power dissipation; t:S;;; 10 ps
PGM
max.
20
W
T stg
Tj
-40 to +150
°C
max.
115
°C
Temperature
Storage temperature
Junction temperature
THERMAL RESISTANCE
2
From junction to mounting base
Rth j-mb
1.1
°C/W
From mounting base to heatsink
with heatsink compound
Rth mb-h
0.3
°C/W
October 1979
r
Jl
Thyristors
BT152 SERIES
CHARACTERISTICS
Anode to cathode
On-state voltage (measured under pulse conditions)
VT
<
1.75·
Rate of rise of off-state voltage
that will not trigger any device
Tj = 115°C; RGK = open circuit
dVo/dt
<
200
Vlp.s
Reverse current
VR = VRWMmax; Tj = 115°C
'R
<
1.0
mA
Off-state current
Vo = VOWMmax; Tj = 115°C
10
1.0
mA
Latching current; Tj = 25°C
Holding current; Tj = 25°C
IL
IH
<
<
<
80
60
mA
mA
VGT
VGT
>
>
1.5
1.0
V
V
VGO
<
0.25
V
IGT
IGT
>
>
50
32
Gate-controlled turn-on time (tgt = td + t r ) when
switched from Vo = VORMmax to IT = 40 A;
IGT = 100 mA; dlG/dt = 5 A/p.s; Tj = 25 °C
tgt
typo
2
p.s
Circuit-commutated turn-off time when switched
from IT = 40 A to VR > 50 V with -dlT/dt = 10 A/p.s;
dVo/dt = 50 V/p.s; Tj = 115°C
tq
typo
35
p.s
IT = 40 A; Tj = 25 °C
Gate to cathode
Voltage that will trigger all devices
Vo = 12 V;Tj = -40°C
VD = 12 V; Tj = 25°C
Voltage that will not trigger any device
Vo = VORMmax; Tj = 115°C
Current that will trigger all devices
VD = 12 V;Tj = -40°C
VO=12V;Tj=250C
V
mA
mA
Switching characteristics
t
IT
+
IT
r
VD
IR
o
1
tq
VD
IGT
O~+~~--------~_
Fig.3 Circuit-commutated turn-off
time definition.
Fig.2 Gate-controlled turn-on
time definition.
October 1979
"""""'_ _ :r.t'~I~I'.U''''!JlIl~~IIIIIII'IIUI!~LJUIIIIIrIn!I _ _ _ ~_lDIlIlII1LlIlIIJlDIIl_''IiLII''''''''''''lJlL.lJL''_II....LLJUI1.J.&JIUw...JLIIOUJJlIIWI" ............... _.-,.,........-•
...-......... ", .. _
..L..I._ _ _ _ _ _ __
•• _ _ _
3
B_T_15_2_S_E_R_IE_S~j~________________________________
___
MOUNTING INSTRUCTIONS
1. The device may be soldered directly into the circuit, but the maximum permissible temperature of
the soldering iron or bath is 275 oC; it must not be in contact with the joint for more than 5 second:
Soldered joints must be at least 4.7 mm from the seal.
2. The leads should not be bent less than 2.4 mm from the seal, and should be supported during bendin!
3. It is recommended that the circuit connection be made to the anode tag, rather than direct to the
heatsink.
4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between mounting base and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled
so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated in Fig.4.
junct ion
mounting
base
Rth j-a
heatsink
7273725
ambient
Fig.4
b. The method of using Fig.5 is as follows:
Starting with the required current on the IT(AV) axis, trace upwards to meet the appropriate form
factor curve. Trace right horizontally and upwards from the appropriate value on the T amb scale.
The intersection determines the Rth mb-a. The heatsink thermal resistance value (Rth h-a) can now
be calculated from:
Rth h-a = Rth mb-a - Rth mb-h·
c. Any measurement of heatsink temperature should be made immediately adjacent to the device.
4
October 1979
r
j
Thyristors
8T152 SERIES
- - - D8550
82
p
(W)
,
1.57
I
20
""I"'" "i\. '" "
""
19"
• J
2.2 II
2.8
a-4
111I
......
r--.
I II 'Jf
IIrJ
II,rl.
'I fJ.r/
"""
~.
r-
I
o IV'
1
""'~
1--
5
0
10
" "',..."
.....
"
10
15
0
\.
,,
1\
~
\
,
\. 1\
93
\%\
0>\\
-I-f\~f'!'\.,) ,>~
~c
ot-- - 1 - r-
.....
II
JIll
III
I
II
I JI
-:P
I,
i"
r--.
.....
~u>
~
9
I"
",,$
r!.0"
"
> ""
,...
20
r--.
50
\~- 1-1--
1\ \ \
'"
104
\
.,
\ \ 1\ ,
\.
,\\
'''''
".... ......'"I"'"".'." ~" .\1\.,
-~ -r-.""" ........
""'- Free ai-; ~"""
I I
I
\ 0 -- 1 - -
1\
\
I'\.
1'01.
I'
r"'"
\
' \ \
I'"
I' """"'
.....
1-1-
~\. ~\
Iii:=--'
H
115
100
Fig.5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
conduction angle per half cycle
a
IT (RMS)
form factor = - - IT(AV)
:I::
a
0'
30 0
60 0
90 0
1200
180 0
0' ;;
4
2.8
2_2
1.9
1.57
5
_ _ _ _ _ _ _ _ _1-----'-'-----( October
1979
l_____
8T152 SERIES
08551
300
ITS(RMS)
(A)
""
200
"""
I'-.
""-
ITSM
'"
I"
""
""'",
I""....
"
100
"""
"--
r--...
~Ioo.
~
o
r--. .....
""
10-3
10- 2
duration (5)
10
Fig.6 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents (f= 50 Hz);
Tj = 115 0C prior to surge; with reapplied VRWMmax'
1~-n_ttITSM
r---
-
- - ITS(RMS)
time
6
October 1979
J
Thyristors
BT152 SERIES
- - - - D8552
50
D8553
dVD
IGT
(mAl
dt
(V /J1..sl
"'"
,
1\
1,\
40
~
i'
I\..
l\.
"""" 1"'100...
""
~
......
"- I""
........
1\.
~ ~GK=100.s1
RGK=open circuit
~
ftI..
30
........
~
'"
I""
~
1\.
"
i'-
20
I.....
~
10
o
10
-50
o
50
100
150
o
50
100
Tj(OCl
Fig. 7 Minimum gate current that will trigger
all devices as a function of junction temperature.
Fig.8 Maximum rate of rise of off-state voltage
that will not trigger any device as a function of
junction temperature.
D8554
IT
(Al
50
I
J.
II
J
typ 1.. 11
II
19
1'
VF
~
J
II
40
rl
~I
A
30
.J.~
JII
II,
II
J
1/11
J
20
max
VF
,I I J
111111
III I
10
1/
I
II
o
,
II
Fig.9 - - Tj = 25 °C; - - - Tj= 115 0 C
JII J
o
2
October 1979
7
~l~
___B_T_15_2_S_E_R_IE_S__
_________________________________
08615
10
.....
l..".oo'io'"
V
10- 1
/
""
10- 2
10- 3
10- 5
10- 4
10- 3
10- 2
Fig. 10
8
October 1979
(
10- 1
1
time (s) 10
_______jl__
B_T153_
FAST TURN-OFF THYRISTOR
Glass-passivated, eutectically bonded, fast turn-off thyristor in a TO-220AB envelope, intended for use
in inverter, pulse and switching applications. Its characteristics make the device extremely suitable for
use in regulator, vertical deflection, and east/west correction circuits of colour television receivers.
QUICK REFERENCE DATA
Repetitive peak off-state voltage
Average on-state current
R.M.S. on-state current
VDRM
max.
IT(AV)
max.
4 A
IT(RMS)
max.
6 A
500 V
Repetitive peak on-state cu rrent
ITRM
max.
30 A
Circuit-commutated turn-off time
tq
<
20 IlS
MECHANICAL DATA
Dimensions in mm
Fig. 1 TO-220AB.
_I ~a5, .--
~°ci~
-
-. 3,6
1
.-----+--+---;
'-&-k
1-
1,3--
--+2,8
rrr• mounti ng ____
base
r- I (see note)
I
t
,
5,9
min
t
I
I
g
1
15,8
max
.J
.-Il::r=;::::::::;j;::::::::;::::::)~
3,5 max
not tinned
I
'
-t
.1
1,3-max
Accessories supplied on request:
see data sheets Mounting instructions
and accessories for TO-220 envelopes.
~
k
13,5
min
I
I
(2 x)
Note: The exposed metal mounting
base is directly connected to the
anode.
"'-
5,1
max
t
Net mass: 2 9
-I
,
I
-..1
a
•
9
-.11..-- 0,6
-.1'11..--0,9 max (3x)
......
2,54 2,54
--
'--2,4
7Z73583.SA
January 1980
j
jl_______________
___
BT_153_ _
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEe 134)
Anode to cathode
Non-repetitive peak voltages (t :s;;; 10 ms)
max.
550 V
VORMIVR RM
max.
500 V
V OWN RW
max.
400 V *
Average on-state current (averaged over any
20 ms period) up to T mb = 95 °e
IT(AV)
max.
4 A
R.M.S. on-state current
IT(RMS)
max.
6 A
Working peak on-state current
ITWM
max.
10A
Repetitive peak on-state current
ITRM
max.
30 A
dlT/dt
max.
PG(AV)
max.
1W
PGM
max.
25 W
Storage temperature
T stg
-40 to + 125 °e
Operating junction temperature
Tj
max.
Repetitive peak voltages
Working voltages
V OSMIV RSM
Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 110 0e prior to surge;
with reapplied VRWMmax
2
1
t for fusing; t
= 10 ms; Tj = 25
oe
Rate of rise of on-state current after triggering
up to f = 20 kHz; V OM = 300 V to ITM = 6 A
200 A/p.s
Gate to cathode
Average power dissipation (averaged over any 20 ms
period)
Peak power dissipation; t = 10 p.s
Temperatures
* Voltage shapes as occurring in the intended application.
2
January 1979
(
110 DC
j
Fast turn-off thyristor
8T153
- - - THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
1,5 0C/W
Transient thermal impedance; t == 1 ms
Zth j-mb
0,2 °C/W
a. with heatsink compound
Rth mb-h
0,3 °C/W
b. with heatsink compound and 0,06 mm maximum mica insulator
Rth mb-h
1,4 °C/W
c. with heatsink compound and 0,1 mm maximum mica insulator (56369)
Rth mb-h
2,2 °C/W
d. with heatsink compound and 0,25 mm max. alumina insulator (56367)
Rth mb-h
0,8 °C/W
e. without heatsink compound
Rth mb-h
1,4 °C/W
Influence of mounting method
1. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
2. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a == any lead length
and with copper laminate
~
0
t
60 °C/W
~
J
a
~
Rth j-a
///)
V//
7 Z7 5493
Fig. 2.
January 1979
3
jl_______________
___
BT_153_ _
CHARACTERISTICS
Anode to cathode
On-state voltage
IT = 10 A; Tj = 25 °C
Rate of rise of off-state voltage that will not
trigger any device; Tj .;;;; 110 0C
Off-state current
Vo = VORMrnax; Tj
dVo/dt
<
2,5 V *
<
200 V/Jls
1,5 rnA
= 110 °C
100 rnA
Holding current; Tj = 25 0C
Gate to cathode
Voltage that will trigger all devices
Vo = 6 V; Tj = 25 oC; tp;;' 5 Jls
>
Current that will trigger all devices
Vo = 6 V; Tj = 25 oC; tp ;;. 5 JlS
>
40 rnA
<
20 JlS
2,5 V
Switching characteristics
Circuit-commutated turn-off time (in regulating circuits)
when switched from IT = 6 A to VR;;' 50 V with
-dlT/dt = 10 A/Jls; dVo/dt = 200 V/Jls; VOM = 500 V;
RGK = 68 r2; T rnb = 80 oC; tp';;;; 50 JlS
Fig. 3 Circuit-commutated turn-off time definition.
* Measured under pulse conditions to avoid excessive dissipation.
4
January 1979
(
___F_a_st_tu_r_n-_of_f_th_y_ris_to_r____________________________
~~~
______8_T
__
15_3
_________
MOUNTING INSTRUCTIONS
1. The device may be soldered directly into the circuit, but the maximum permissible temperature of
the soldering iron or bath is 275 oC; it must not be in contact with the joint for more than 5 seconds.
Soldered joints must be at least 4,7 mm from the seal.
2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during bending.
3. It is recommended that the circuit connection be made to the anode tag, rather than direct to the
heatsink.
4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between mounting base and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated in Fig. 4.
junction
mounting
base
Rth
j-a
heatsink
Fig. 4.
7Z73 7 25
ambient
b. The method of using Fig. 5 is as follows:
Starting with the required current on the IT(AV) axis, trace upwards to meet the appropriate form
factor curve. Trace right horizontally and upwards from the appropriate value on the T amb scale.
The intersection determines the Rth mb-a' The heatsink thermal resistance value (Rth h-a) can now
be calculated from:
Rth h-a
= Rth
mb-a - Rth mb-h'
c. Any measurement of heatsink temperature should be made immediately adjacent to the device.
January 1979
5
~_BT_153_ _jl_______________
7Z82061
15
p
(W)
10
1,57"
1,9
I.....
2,2 IL V'
I
V
2,8
J
a=4
I
I
5
I
VV
/1//
'/
~
"
,,~
f
Ih?
r-.
30
1I
~ir
2
IT(AV) (A)
1'01.
\
.......
~Ioo.
.... 1-0.,
I"--~
.....
i'..
"r-- ...."
....
.....
-
II
r-f--I-r-- 98,75
11 \
,
1\ \ 1\
1\
1"\
I"\,
I.....
'-
I" I'
1"--_....
\
\
~
95
cr Q)
~
~
I'.
......
I 1 I
1I I
I
~
\
1\
1'\
....
1"1-0..
1
r-~
IL.~
/~
~I'"
~Ir
"\
~
\
1"-
~
i""'-
~
o ""
o
I.....
r-!?
<'0
I"
\
,~
~~O
I"-..
11/~
~
i'..
.....
.... :P
~ ~ f--f--r-r-',,"p' ~~ ~O~3i-f---
'-
I"
102,5
\ \
.\1\
\,H
~\ ,\
'-I~l\'
106,25
~,
to-.:r'I.:
.:n.
.... =-- ~IS'\
I"-F==,-
110
4 0
Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
0/ =
conduction angle per half cycle
'T(RMS)
a = form factor = - - 'T(AV)
6
0/
a
300
600
90 0
1200
1800
4
2,8
2,2
1,9
1,57
January 1979
(
,J~_______
8_T_1_5_3______
___F_a_st_t_ur_n-_of_f_th_Y_ri_sto_r______________________________
7Z82062.1
6
Ptot
(W)
625
es
4
lir
Y
r
,
I\..
r-...
,
"- i'.
2
/
v
V
fI"
......
.....
\.
::0-- ~~- 104
~- r-r--
l>
g%\
\
\
1\ \
r-r--
1-1--
~ ~
\I
r-r--
1\
\
1\ \
,
"''\ ,
r-.. 1'\ \.!\ \ 1\
""'1\ \ l\1
\
107
.......
1" .....
,/
,
1\
\.
,
,
1\
I\"
i"l'o..ree ·
a
...... ~/r
1/
.\:....l~
\
\
I\"
''\.
......
IV"~
1\l7
<0'\
~o
V a = 2,32
.'!. ./
",
~
..,;
~
......
.......
1" ......
'1\'1\
I' "
Nn
~ ...... ~~\
o
r-.
a
5
ITWM (AI
50
10 0
100
110
Fig. 6 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
Ptot = maximum power dissipation including gate and switching losses.
ITWM = maximum working peak on-state current.
_I
time
Fig. 7 Waveform defining ITWM.
frame period
7Z82060.1
horizontal output transformer
L...-_ _
~~_ _~_-+ vertical
deflection
Fig. 8 Basic circuit of a vertical
deflection system.
7Z75870
January 1979
7
jl_______________
___
BT_153_ _
7278736
60
ITS(RMS)
(A)
l
\
40
ITSM
~
~
I'
""'
""
20
........
~
r"-
........
-.......
r-_
o
10- 3
duration (s)
Fig. 9 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents
(f = 50 Hz); Tj = 110 °C prior to surge; with reapplied VRWMmax'
time
8
January 1979
(
10
~~
______B
__T_1_5_3______
___F_a_st_tu_r_n-_of_f_th_Y_ris_to_r______________________________
7Z82063
4
7Z82064
60
!GT
(mA)
"
I,
3
I"
"I
"I
40
"- I\.
min
"'-
!'I..
"min
"\..
",
1',
"' "'
2
1"\
"-
"
20
"-
"
1'1..
o
1
-50
0
50
100
150
-50
o
50
100
150
Tj (DC)
Tj (oC)
Fig. 10 Minimum gate voltage that will trigger
all devices as a function of junction temperature.
7Z82065
15
Fig. 11 Minimum gate current that will trigger
all devices as a function of junction temperature.
7Z82066
30
II 1/
"
,
I I,
'T
(AI
'/
,/
I IJ
I'
10
'I
rI
I-
tvp
20
max
VT, P;1 ~ VT
It III
I
I
, I
/
1/
~
/
I
typ./ ~
II
5
,
10
I
I
I'"
,.. .,..
II'
I
I"
."
I
/i/
I
II I
o
o
Fig. 12
I
II
o
2
Tj
= 25 DC; -
VT(V)
- - Tj
4
= 110 DC.
-50
o
50
Fig. 13.
January 1979
9
jl~______________
___
BT_153_ _
,
100
7282067
\
\
_\
IGT
(mA)
~
\
"
~
50
o
r--.... ~
o
r- I--
2
typ
Fig. 14 Gate current that will trigger all devices as a function of rectangular pulse width; Tj
IGT~
a
.
- I t p 1_ time
7282059
10
January 1979
(
6
4
=
25 °C.
,J~______
8_T_1_5_3______
___F_a_st_tu_rn_-O_ff_t_hy_r_ist_or____________________________
7Z77406
10
-I-""
/
100"'1-'
V
....
time
(5)
10
Fig. 15.
January 1979
11
________jl__
B_T154_
FAST TURN-OFF THYRISTOR
Glass-passivated, eutectically bonded, fast turn-off forward blocking thyristor in a TO-220AB envelope,
intended for use in high-frequency inverters, power supply, motor control, electronic flash systems and
for horizontal deflection circuits of colour television receivers.
QUICK REFERENCE DATA
Repetitive peak off-state voltage
VDRM
max.
Average on-state current
IT(AV)
max.
5 A
R.M.S. on-state current
IT(RMS)
max.
8 A
750 V
Repetitive peak on-state current
ITRM
max.
60 A
Circuit-commutated turn-off time
tq
<
2,4 p.s
MECHANICAL DATA
Dimensions in mm
Fig. 1 TO-220AB.
I.~~ ~Oa~
I
-- 3,6
~-+--+--~-~
2,8
I
I
I
L
I
"3:1~~fi .t
mounting •
base
(see note)
I
I
I
-
5,9
_
min
--i--_J
J
·-ll::::r==;::::rf;::::::;~ __ t
3,5 max
not tinned
r 1,3-.1
Net mass: 2 g.
+
II
I
I
I
15,8
max
-_. j
5,1
max
--
~--f ~;~
max
(2 x)
Note: The exposed metal
mounting base is directly
connected to the anode.
-1
Accessories supplied on request:
see data sheets Mounting instructions and accessories for
TO-220 envelopes.
1
..-
0 ,6
-2,4
"/735R3
"I
s:.
January 1980
jl_______________________________
_____B_T_15_4____
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Anode to cathode
Non-repetitive peak off-state voltage; t
< 10 ms
VDSM
max.
800 V
Repetitive peak off-state voltage
VORM
max.
750 V
Working off-state voltage
tp < 20 }1S; [) = tp/T < 0,25
VOW
max.
600 V
Average on-state current (averaged over any
20 ms period) up to T mb = 77 oC;
at T mb = 85 °c
IT(AV)
IT(AV}
max.
max.
5 A
4 A
R.M.S. on-state current
IT(RMS)
max.
8 A
Working peak on-state current (horizontal deflection application)
ITWM
max.
10 A
Repetitive peak on-state current
ITRM
max.
60 A
Peak pulse on-state current
12 t for fusing; t = 10 ms; Tj = 250C
ITM
12 t
max.
240 A
max.
18 A 2 s
Rate of rise of on-state current
after triggering up to f = 20 kHz
dlT/dt
max.
60 AI}1s
PGM
max.
25 W
Gate to cathode
Peak power dissipation
Temperatures
2
Storage temperature
T stg
Operating junction temperature
T·J
January 1979
(
-40 to +125 oC
max.
110
0c
Jl
Fast turn-off thyristor
BT154
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
2,5 °C/W
Transient thermal impedance; t = 1 ms
Zth j-mb
0,24 °C!W
a. with heatsink compound
Rth mb-h
0,3 °C!W
b. with heatsink compound and 0,06 mm maximum mica insulator
Rth mb-h
c. with heatsink compound and 0,1 mm maximum mica insulator (56369)
Rth mb-h
1,4 °e!W
2,2 0e/w
d. with heatsink compound and 0,25 mm max. alumina insulator (56367)
Rth mb-h
0,8 0e!W
e. without heatsink compound
Rth mb-h
1,4 oelW
Influence of mounting method
1. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
2. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = any lead length
and with copper laminate
~
t
a
~
0
I
Rth j-a
60 Oe!W
~
J
~/
///)
7Z75493
Fig. 2.
January 1979
3
BT154
Jl
CHARACTE R ISTI CS
Anode to cathode
On-state voltage
IT = 20 A; Tj = 25 °C
VT
<
Rate of rise of off-state voltage that will
not trigger any device; exponential method;
VD = 2/3 VDRMmax; Tj < 110 °C
VGK = 0 V
-VGK=6V
dVD/dt
dVD/dt
<
<
1000 V/p.s
Off-state current
VD = VDRMmax; Tj = 110 °C
ID
<
1,5 mA
Voltage that will trigger all devices
V D = 6 V; Tj = 25 °C
VGT
>
2,5 V
Current that will trigger all devices
V D = 6 V; Tj = 25 °C
IGT
>
40 mA
tq
tq
<
<
2,4 p.s
4,8 p.s
3 V*
200 V/p.s
Gate to cathode
Switching characteristics
Circuit-commutated turn-off time (in horizontal
deflection trace switch) when switched from
IT = 8 A to VR = 0,8 V; VDM = 700 V; -VGG = 25 V
from Rtot = 62 Q**; T mb = 80 oC; see also Fig. 11
t p < 30 p.s
tp < 150 p.s
Fig.3 Circuit-commutated turn-off time definition.
* Measured under pulse conditions to avoid excessive dissipation.
* * Rtot is the total series resistance including source resistance.
4
January 1979
(
~~
___F_as_t_tu_rn_-o_f_ft_hy_r_ist_o_r____________________________
_______
8_T_1_5_4______
MOUNTING INSTRUCTIONS
1. The device may be soldered directly into the circuit, but the maximum permissible temperature of
the soldering iron or bath is 275 oC; it must not be in contact with the joint for more than 5 seconds.
Soldered joints must be at least 4,7 mm from the seal.
2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during
bending.
3. It is recommended that the circuit connection be made to the anode tag, rather than direct to the
heatsink.
4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between mounting base and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated in Fig. 4.
junction
mounting
base
Rth j-a
heatsink
Fig. 4.
7273725
ambient
b. The method of using Fig. 5 is as follows:
Starting with the required current on the IT(AV} axis, trace upwards to meet the appropriate form
factor curve. Trace right horizontally and upwards from the appropriate value on the T amb scale.
The intersection determines the Rth mb-a' The heatsink thermal resistance value (Rth h-a) can now
be calculated from:
Rth h-a = Rth mb-a - Rth mb-h'
c. Any measurement of heatsink temperature should be made immediately adjacent to the device.
January 1979
5
~_BT_154
jl___~______~__
__
7Z82026
15
I
I I
I
I
I
I 1
(W)
1,9 1
2,2 J
10
JJ
2,8
1/ J /1/
I
\.
"
\
85
1\
70
N
II"
~
\
I\.
,I
r/
1 1
\
I'..
... $
.....
~
'"
!Z!
'" ,
\
.....
t-....
,....
I/'~~~
~,.
1\
I\.
,
......
.....
\
I'
I\.
.....
t-....
r..
o
~ \\
~
V"j'"
~
,-t:.
oS
/
/
J
'0'?
, - (5
j
11/,'/
J/~
:A~
"
1/
.
If II
j
5
~~o~
j
a='4
I'-..
~
"-
""'
97,5
,
,\
I\, \
... 1'
.....
~~~
~
o
2,5
IT(AV) (A)
72,5
~I
1,6,
Ptot
I
I
I
110
5 0
Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
cy =' conduction angle per half cycle
a =' form factor = IT(RMS)
IT(AV)
30 0
600
900
1200
1800
6
4
2,8
2,2
1,9
1,57
January
19791 (
J
Fast turn-off thyristor
BT154
- - 7Z82027
6
819
lines
I I
1
.)
~
,
.)
Ptot
~I
~
-
I
1
-f-
I\
(W)
~
./
/
4
I'
V
V
./ 625
lines
IQ
2
~
~
v.
r-\~:r
,_ 3
\
,
,
\~
,
\
crGl
II
,
,
1\
'\
V
, ,
, ,
\
r-r--
-
f-f--
1\
\
\
\
\
\.
\
100
\
\
, ,
,
1\
\
\.
L'
'1/
:\.
\.
'\
~,
105
1\
!\I\
\ \
,
1\
I'
o
_
1\
1\
:\.
95
:Xl
\.
V
v.
IV
f\o- -r- ~O'
\.
1
1 1 I
I
I
\
"
\.,~\
.\
,'4
o
5
ITWM (AI
110
100
10 0
Fig. 6 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures (horizontal deflection application).
7Z82028
10
Zthj-mb
(oC/W)
~
.... 1-
-
,
V"
l...--'
10- 1
...... ~
.......
/
10- 3
10- 5
10- 4
10- 3
10- 2
10- 1
time (s)
10
Fig. 7.
January 1979
7
_B_T15_4
_Jl_______
7Z82023
6
7Z82024
60
"
1\
IGT
l~
{mAl
~
,
40
4
.
I\.min
I""-
:"...
~
""
...... ~
1""-"
"
2
i""'~
o
0
50
100
o
-50
150
7Z82022
60
40
l.
1/'
J.
...
max
VT
~
I
'I
'j,t:
20
J
"1
I
1'1/
~I;o'
o
"
~~
o
2
V (V)
4
T
Fig. 10 - - Tj = 25 oC; - - - Tj = 110 0C.
19791 (
50
100
150
Fig. 9 Minimum gate current that will trigger all
devices as a function of junction temperature.
Fig. 8 Minimum gate voltage that will trigger all
devices as a function of junction temperature.
January
I"!..
Tj (oC)
Tj (oC)
8
I ......
20
i"'"
o
-50
"
"min
J
Fast turn-off thyristor
8T154
- - -
7Z82025
15
-VGG=
10
_I-
OV
--
f--i--
~I
,
I I
3V
I I
..... 1-""
I
.....
loa
5
-fo- 1 - -
I
..... 1""'"
,'"
o
10V
o
25V
-20
40
60
'TM (A)
80
7Z82029
Fig. 11 Typical variation of tq with 'TM and -VGG at -dlT/dt = 10 AIJ.ls;
dVD/dt = 200 to 700 V IJ.ls; tp = 150 J.ls.
January 1978
9
.__BT_154_Jl________
APPLICATION INFORMATION
IT
J!
-t--i--1TRM
I
I
I
I
1
I
I
I
I
: 1 - - - - - - - - - - - " ~---VoW
I
I
Vo
~~
-Ll--ITWM
I
I
I
I
I
-.1 tp 1__
I...
1
time
T
7Z69815
E.H.T.
commutation
circuitry
Fig. 12 Basic ci rcu it and waveforms.
Note
For reverse blocking operation use a series diode, for reverse conducting operation use an anti-parallel
diode.
10
January 1979
(
_ _ _ _J
BTW23 SERIES
THYRISTORS
Silicon thyristors in metal envelopes, intended for general purpose single-phase or three-phase mains
operation.
The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW23-600R to
1600R.
QUICK REFERENCE DATA
I
BOOR
1000R
1200R
1400R
1600R
6001
BOO
1000
1200
1400
1600
BTW23-600R
Repetitive peak voltages
VORM = VRRM
max.
v
Average on-state current
IT(AV)
max.
90 A
R.M.S. on-state current
IT(RMS)
max.
140 A
Non-repetitive peak on-state current
ITSM
max. 2000 A
Rate of rise of off-state voltage
that will not trigger any device
dVo/dt
On request (see ordering note on page 4)
dVD/dt
<
<
MECHANICAL DATA
200 V/Jls
1000 V/Jls
Oimensions in mm
Fig. 1 TO-94: with metric M12 stud (012 mm); e.g. BTW23-600R.
Types with 1t2 in x 20 UN F stud (0 12,7 mm) are available on request. These are indicated by the suffix
U: e.g. BTW23-600RU.
9,6min_
-
__
--8,8 max
thickness 2,6
1,7
9
I
t
...I --25max
'
... 1--
--.
-*-1
*' ~~E;;;\~~~k~I ~[
yellow
8,9 max
10 mm
21,0 __ 28,6
20,24
max
___ min, mounting height 63,5 - -
_I
2
I
_8.3
conducting cross 8,1
section nominal
--.' -4,2
4,05
158 ______________~~~,
147
,~.~_________________ 190 ________________~~~,
174
~
I
27,0thickness 0,9
0,5
1~4r-_____________
Net mass: 134 g
Diameter of clearance hole: max. 13,0 mm
Torque on nut: min. 9 Nm (90 kg em)
max. 17,5 Nm (175 kg em)
7Z75733
Supplied with 'device: 1 nut, 1 lock washer
Nut dimensions across the flats;
M12:19mm
1t2 in x 20 UNF: 19 mm
April 1978
BTW23 SERIES
l_ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Anode to cathode
BTW23-600R 800R 1000R 1200R 1400R 1600R
Non-repetitive peak voltages
(t";;;; 10 ms)
VOSMIVRSM max.
Repetitive peak voltages
VORMIVRRM max.
600
800
1000
1200
1400
1600 V
600
800
1000
1200
1400
1600 V
Crest working voltages
400
600
700
800
800
VOWMIVRWM max.
800 V*
Average on-state current (averaged over
any 20 ms period) up to T mb = 85 °C
'T(AV)
max.
90 A
R.M.S. on-state current
'T(RMS)
max.
140 A
Repetitive peak on-state current
'TRM
max.
1250 A
'TSM
Non-repetitive peak on-state cu rrent; t = 10 ms;
half sine-wave; Tj = 125 0C prior to surge;
with reapplied V RWM max
max.
2000 A
1 t
max.
20000 A 2 s
Rate of rise of on-state current after triggering
with IG = 750 mA to 'T = 300 A; dlG/dt = 1 AIJ1.s
dlT/dt
max.
300 AIJ1.s
Rate of change of commutation current
see Fig. 14
2
1 t for fusing (t = 10 ms)
2
Gate to cathode
Reverse peak voltage
VRGM
Average power dissipation (averaged over
any 20 ms period)
PG(AV)
max.
2 W
Peak power dissipation
PGM
max.
10 W
max.
10 V
Temperatures
Storage temperature
T stg
-55 to + 125 °C
Junction temperature
Tj
max.
125 °C
THERMAL RESISTANCE
From junction to mounting base
Rthj-mb
0,3 °CIW
From mounting base to heatsink
Rth mb-h
0,1 °CIW
Transient thermal impedance (t = 1 ms)
Zthj-mb
0,015 oCIW
* To ensure thermal stability: Rth j-a < 0,75 OC/W (d.c. blocking) or < 1,5 °C/W (a.c.). For smaller
heatsinks Tj max should be derated. For a.c. see Fig. 4.
2
APri119781(
j
Thyristors
BTW23 SERIES
- - - CHARACTE R 1ST ICS
Anode to cathode
On-state voltage
<
2,2 V*
<
200 V/l1s
<
15 rnA
<
<
200 rnA
Voltage that will trigger all devices
V D = 6 V; Tj = 25 °C
>
2,5 V
Voltage that will not trigger any device
VD = VDRM max; Tj = 125 °C
<
250 mV
Current that will trigger any device
V D = 6 V; Tj = 25 °C
>
150 rnA
<
2,5 I1S
1 I1S
IT
= 500 A; Tj = 25 °C
Rate of rise of off-state voltage that will not trigger
any device; exponential method; VD = 2/3 VDRM max;
Tj = 125 0C
dVD/dt
Reverse current
VR = VRWM max; Tj = 125 °C
Off-state current
VD = VDWM max; Tj = 125 °C
Holding current; Tj = 25 °C
15 rnA
Gate to cathode
Switching characteristics
Gate-controlled turn-on time (tgt = td + trl when
switched from VD = VDWM max to IT = 100 A;
IGT = 200 rnA; dlG/dt = 1 All1s; Tj = 25 °C
typo
* Measured under pulse conditions to avoid
excessive dissipation.
t
IT
+
T
r
vD
1
o .!...-..f-- - + - - + = - -
Fig. 2 Gate-controlled turn-on
time definitions.
IGT
O~+~~--------~
J(
April 1978
I
I
3
" ........ J.IIIJ.I~UO" ........... IId ..... ,III • ..1.II. _ _ . .ULJLWI-..
CHARACTERISTICS (continued)
Circuit-commutated turn-off when switched
from IT = 50 A to VR ~ 50 V with -dlT/dt
dV D/dt = 200 V I p.s;
Tj = 125 0C
= 50 A/p.s;
typo
<
typo
Tj = 25 0C
<
I.------tq-------I
100 p.s
200 p.s
60 p.s
120 p.s
reapplied VDM
Fig. 3 Circuit-commutated turn-off time definition.
OPERATING NOTE
Switching losses in commutation
For applications in which the thyristor is forced to switch from an on-state current ITRM to a high
reverse voltage at a high commutation rate (-dIT/dt), consult Fig. 14 (nomogram) to find the increase
in total average power. This increase must be added to the loss from the curves in Fig. 4.
ORDERING NOTE
Types with dVD/dt of 1000 V Ip.s are available on request. Add suffix C to the type number when
ordering; e.g. BTW23-600RC.
4
April
19781 (
J
- - - -
BTW23 SERIES
Thyristors
7Z59352.1
A
p
---i " 1_
(W)
form
factor
condo
angle
"
IT(RMS)
a=-IT(AV)
Q
interrelation between the power (derived
from the left hand graph) and the max.
permissible temperatures
a=4
2,8
2,2
1,9
1,6
= 30 °
60°
90°
120 0
180°
200
l 6
l
1,9
11",/1/
a =4
1/1/'/
J 1.// l/V i.-'
l.-"
j
, " I" ~
'" ~r--'''
0"i1- r-f\~o
['.. 1'\'
~->-
~
.........
~
"
""
-~ r->-
I"'-r--Io..
I'
1"00,
"",,~OO_ ->-
....
~
I
" ""
'"N.1
406- 1--11""'1
~(Wl
I I
11
60
Fig. 13.
I
I
I-
50'1"00,
r--.
26
r-...
I'
r- ....
I
~
I
I--d I/dt =1OA/l-Is
I I
'-
",
~
2 00H-t11~0 t - t - I - 1pO- t - I I I
1'i
1.1
V
AP IAV ) due to switchingoff: Tj =125OC
ITRM
"\;;dl/dt t
IRRMV
I
I
1-1- I-
1/
1/
~
~
I~
I....-
so 1-1- r-p
I
NOMOGRAM: power loss
II'
II J
II II
1"-1\
"-
"
II
[J
I
'/
~
J
J
II
t-tT~MI(A)
I I
'2 00 '
I
~=400Hz-
,
i\ (Al
-r--~
7ZS11801
H-~O 1/-1- rJ 100 1--~200
\ I RRM
30
1
I-
100.\I -
~
50
'j
I
I
I
~I"
VRRM=100V I-
I"'-I-o+-.
1'1'\ .....
1\1'\
"'" I"
r-I-o~
,...~+-.
l"""
f"-
1'-
'"
1'\
f"-
"-
1-1- HOO
,
I"
1'\
.... 10....
1'\
"
1\~610~_ ~~p~O
t:.. PIAV)
I-I-\~ll
t-
1"\1 I
~I
I 150
t
I'"
1'\
t\.
2bd-t--~
N
'"
I" 500
1-1-1-
" '"
'"
Fig. 14.
1~
April1978
9
S_E_R_IE_S_jl~________________________________
___
BT_W
__
23
__
750
r -__~~~-,~-rTOOT-----r--.-_..-Tl".-------------------------------7-Z-67-0-2-4_.
envelope of average
I'~'~"'
10
I"(A)r---r~~-r+++H+---+-~~~TH
for safe operation at a given
temperature, the average current envelope of successive
cycles (see drawing above) must lie within the
region bounded by the curve shown below for
that temperature
500 r----t-__+_-+--t'Id--t+H---__+_-+--+-+-t-Hrt1
I - - - f - - -........
" I"",....--I-+-+-+I'"'kt+ '1'.
J .:::- '1'
~
~--+-~~~~~rHK+~~........
~ ~':::-6S ~H+--~I--+-~~1+r---+--r~r+++H
~
!"oo..
f-----r--~~~rN+----T~.~~-~'
~
..........
00
~
1-----t-""""""""t.....-r~-H-t+--~~..-t-·8S 0 ,I
.....
250
:c to St1--+-+-+--+1-t+t---t--t--+-H-H-ii
""
~C
... ~
I
~~~~of----~I--~~++~++----~-r-r~-HH1
q
~
. . . . r--.,...........
10-.
~tjlJ.
8')-+-+++-H--+--+-++-IH-1--H
1"'-""",
~10S~0~01:t!ttttr:~~~~~~~~~~qp~
1--~r---+-;-+-r~TT--~~~~
a
10- 2
1
time (s)
10
mJ-
1000 r---~~~-,~-rTOOT-----r--.--..-Tl".------e-n-ve~l-ope--o~f~a-v-er-a-g-e------______7~Z_67_0_26__~
:~)
750
t----+I\;\-+-t--+--H+++--t--t--;--t+++ti
I.
~"~em
0
~
t-----t---tI\"',rt--t-+-++t+-----t---t--Hr-+-H1-t1
t-----1r----+----i'\-t-t-++++---t---t--+--t-H+H
"
t-----1""..-t--+--f'\o;;H+t-t---+-_t---1H_++t-+i
1---If----~-t_t+~'lod-+''1'.
1
for safe operation at a given
temperature, the average current envelope of successive
cycles (see drawing above) must lie within the
--t--r--t--t-t-t-t+1 region bounded by the curve shown below for
I-_-If----_+~~~+++~~J.:::-F
~_+++-~H_t-h-at-t_e,m-p-er-artu-rTe_r._rrnr---._--r_,_~rr._rl
500~--+-~~~~rH+r~~~~+-~':::-6So~~r---+--r~rrrH+---+--r~rr++H
r---~__+_-+-++""'+"'-Nd--"__+_'~""'dl--r (> ~~. '+----t---t-+--t-t--t-I--t+---t-t-t-+++-t+1
_,
~
'bJ.
~--+-~......
'-+,~f-+1-++-"""-;-"""",..J..S Or! ,,~
'--
~t'-o
250
1'",
r----t-__+_-r++-t+Hr--...--~-.!.O~h
~O~ t.
0
St
q
~
~ ~
~tj '-+-~-HI-H-----r-+--t--t-IH--H-1
~)-t-+-t-t-t-H-----t---j----t-t-H--t-t-I
-- ..... - ....
a ~--~~~~~~~--~~~~~~----~~~~~~__~__~~~~
10- 2
1
J(
10
Fig. 15 Limits for starting or inrush currents.
10
April 1978
time (s)
j
BTW24 SERIES
--------------------------------------------------------'
THYRISTORS
Silicon thyristors in metal envelopes, intended for general purpose single-phase or three-phase mains
operation.
The series consists of reverse polarity types (anode to stud) identified by a suffix R:
BTW24-600R to 1600R.
QUICK REFERENCE DATA
Repetitive peak voltages
VDRM = VRRM
BTW24-600R
800R
1000R
1600R
max.
800
1000
1600
V
600
IT(AV)
max.
R.M.S. on-state current
IT(RMS)
max.
35
55
A
Non-repetitive peak on-state current
ITSM
max.
800
A
Rate of rise of off-state voltage
that will not trigger any device
dVD/dt
dVD/dt
<
<
200
On request (see ordering note on page 4)
V/p.s
V/p.s
Average on-state current
MECHANICAL DATA
1000
A
Dimensions in mm
Fig. 1 TO-103.
1-----------155/145
20
r
M8x 1,25
--------1
maXl
4/3
I
L==rl
r~~nOde
45 min
leads
I
I
14/13 -t_*_t----at right Qngles---~·I
:
19 nom ---.I
o 3i.. 3L..a
I.
Net mass: 46 9
Diameter of clearance hole: 8,5 mm
Torque on nut: min. 4 Nm (40 kg cm)
max. 6 Nm (60 kg cm)
165/155
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 13 mm
'I
April 1978
___B_T_W_2_4_S_E_R_IE_S_Jl_________________________________
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Anode to cathode
Non-repetitive peak voltages
(t ~ 10 ms)
VDSMIVRSM
8TW24-600R 800R 1000R 1200R 1400R 1600R
max.
600
800
1000
1200
1400
1600 V
Repetitive peak voltages V DR MIV R RM max.
600
800
1000
1200
1400
1600 V
VDWMIVRWM max.
400
600
700
800
800
Crest working voltages
Average on-state current (averaged over
any 20 ms period) up to T mb = 85 °C
R.M.S. on-state current
Repetitive peak on-state current
Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 125 0C prior to surge;
with reapplied V RWMmax
800 V*
'T(AV)
max.
'T(RMS)
max.
55 A
'TRM
max.
450 A
35 A
'TSM
max.
800 A
12 t
max.
3200 A 2 s
Rate of rise of on-state current after triggering
with IG = 500 mA to 'T = 100 A; dlG/dt = 1 A/p.s
dlT/dt
max.
Rate of change of commutation current
see Fig. 14
12 t for fusing (t
= 10 ms)
300 A/p.s
Gate to cathode
10 V
VRGM
max.
Average power dissipation (averaged over
any 20 ms period)
PG(AV)
max.
1W
Peak power dissipation
PGM
max.
5W
Storage temperature
T stg
-55 to + 125 °C
Junction temperature
Tj
max.
Reverse peak voltage
Temperatures
125 °C
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
From mounting base to heatsink
Rth mb-h
0,2 0C/W
Zth j-mb
0,04 0C/W
Transient thermal impedance (t
= 1 ms)
0,6 °C/W
* To ensure thermal stability: Rth j-a < 1 0C/W (d.c. blocking) or < 2 °C/W (a.c.). For smaller
heatsinks Tj max should be derated. For a.c. see Fig. 4.
2
April
19781 (
J
Thyristors
BTW24 SERIES
- - - CHARACTERISTICS
Anode to cathode
On-state voltage
'T = 100 A; Tj = 25 °C
VT
<
1,9 V *
Rate of rise of off-state voltage that will not trigger
any device; exponential method; Vo = 2/3 VORMmax;
Tj = 125 0C
dVo/dt
<
200 V/IlS
Reverse current
VR = VRWMmax; Tj = 125 °C
'R
<
10 mA
Off-state current
Vo = VOWMmax; Tj = 125 °C
10
<
<
<
300 mA
Latching current; Tj = 25 °C
'L
Holding current; Tj = 25 0C
'H
10 mA
200 mA
Gate to cathode
Voltage that will trigger all devices
VO=6V;Tj=25 0 C
>
2,5 V
Voltage that will not trigger any device
Vo = VORMmax; Tj = 125 °C
<
200 mV
Current that will trigger all devices
V 0 = 6 V; Tj = 25 °C
>
100 mA
Switching characteristics
Gate-controlled turn-on time (tgt = td + t r ) when
switched from Vo = VOWMmax to 'T = 100 A;
IGT = 150 mA; dlG/dt = 1 A/IlS; Tj = 25 °C
typo
typo
2 IlS
1 IlS
t
IT
•
- t d - t,
--tgt-
IGT
o .!-+.....L'-c:........:..._ _ _ _- " - Fig. 2 Gate-controlled turn-on time definitions.
* Measured under pulse conditions to avoid excessive dissipation.
April 1978
3
CHARACTER ISTICS (continued)
Circuit-commutated turn-off time when switched
from IT = 30 A to VR ~ 50 V with -dlT/dt = 30 A/l1s;
dVD/dt = 100 Vll1s;
Tj = 125 0C
typo
Tj = 25 °C
1 _ - - tq - - - . 1
<
140 I1s
200 I1S
<
100 Ils
reapplied VOM
Fig. 3 Circuit-commutated turn-off time definition.
OPERATING NOTE
Switching losses in commutation
For applications in which the thyristor is forced to switch from an on-state current ITRM to a high
reverse voltage at a high commutation rate (-dIT/dt), consult Fig. 14 (nomogram) to find the increase
in total average power. This increase must be added to the loss from the curves in Fig. 4.
ORDERING NOTE
Types with dVD/dt of 1000 V IllS are available on request. Add suffix C to the type number when
ordering; e.g. BTW24-600RC.
4
April1978~
(
j
Thyristors
BTW24 SERIES
- - -
n
100
7Z59351.2
"
--J
form
factor
condo
angle
1_
a = 30 0
60 0
IT(RMS)
90 0
a=-120°
IT(AV)
180°
p
(W)
a
J
1/
J
VI
a=4
\
\.
,
" ",
I
~
/
J1/1II V
ill )
I"JVI rill
If/, ifill '/
Jl/h rJ)
\
1\
\
1
'I
2,2/,I{
2,81
I
\.
I
1-r9 J
\
\
II
1,6
50
,
d.c.
a=4
2,8
2,2
1,9
1,6
\
\Ss'
\%
\
\
\
'\
\~-
\~\\
110
~U'
95
-t-J 0
~o
, ,, ,
,{sl\. 1\ \~
I\.
\
1\1\
1\'\
110
" ".~ \' \\
~v
"-
80
\~
~
~
65
interrelation between
the power (derived
from the left hand graph)
and the max. allowable
temperatures
~
,,~
,~
"l~
o ITI
a
25
50
75
IT(AV) (A)
a
50
125
100
150
Tamb(oC)
Fig. 4.
1000
~S(RMS)
(A)
7Z62015.1
\
\
\
1TSM
IV\--n
L---->i- -=--=
-; ITSM
\
750
maximum permissible non-repetitive
r .m.s. on state current based on
sinusoidal currents (f::: 50 Hz)
'\
IT.S(RMS)
time
with reapplied VRWM max
,
"-
500
"'-
10- 3
"'
......
....
T j ::: 125 °c prior to surge
"'"
250
a
"-.....,
10- 2
10- 1
Fig. 5.
............ r-.....
........
--......
-- --
- ..
duration (s)
"I (
April 1978
10
5
l_ _ __
BTW24 SERIES
7Z72550
4
7Z72555
300
IGT
(mA)
200
3
~
I\.
'" " "
min
'"
""
2
,,
I'-
"
.......
100
I......
"
..... min
.....
"
1
-50
o
50
100
150
-50
II
I
I
II
.I
J
I!
'I
400
I
I
I
I
typ
,/
1/
"
IjJ
,/
I
o
-~~
,
~
I
rl
I
1
VT=~
'I
'/
I
I
II I
VTI
200
J
'I
It-- >- max_I-
1-- 'T
I
I{
I
I
II
'L
J!!.
o
Fig. 8.
2,5
April
197BI (
V T (V)
5
o
50
100
150
Tj (oC)
Fig. 7 Minimum gate current that will trigger all
devices plotted against junction temperature.
7Z620132
I
I!/
6
o
Tj (OC)
I I I
t- - - T j ==25 0C
t - - - T ·==1250C
tJ
....
I'
Fig. 6 Minimum gate voltage that will trigger all
devices plotted against junction temperature.
600
.....
J
- - -
BTW24 SERIES
Thyristors
1261176
2000
dVo
dVo
\:
1500
~
I I I
I I I I
I
~ I I
1\
1000
\
,
-,--+--
Tj -125°C
\
\
1000
max. rate of rise of offstate voltage that will
not trigger any device
(exp. method) plotted
against applied voltage
dt
(V/lJs)
dt
(V!fl s )
Z61175
1500
max, rate of rise of offstate voltage that will
not trigger any device
(exp. method) plotted
against junction temp.
\
,
,
~
500
1,\
,
,
I\.
500
"- ~
" '\ .....
:....
.....
so
so
.... 1-0.
(Ofo) 100
VOM
VORMmax
Fig. 9.
Fig. 10.
7Z62016
.....
Zthj-mb
(OC/W)
V
1
"",
~
"",10-
'/
2
~
L;'"
3
10 - 4
10 - 3
10 - 2
Fig. 11.
time (5)
'I
(APril 1978
10
7
l_ _ __
BTW24 SERIES
7Z66847
300
r-1p
IO(RMS)
-
(A)
-
=120~l
I
Th=550C
IO(RMS)
~""
100
200
(A)
I--tp =20ms
!o...
~
200
L"\
t:::::~~
i---
~~
400
L---
1\
Is
2
1-100
1- 200
400
\
I'~
100
7Z66846
300
Th =35 °c
- ... ""r--
40
200
I
4
o
"'-
~~
-..:::: ~
-
Is
2
4
100
"
r- ...
~
I'\.
M
1\
O~--~~~~~~--~~~~~
10
1
0(%)
100
7Z66848
300
0
Th =85 C
70
(W)
IO(RMS)
60
(A)
10
1
p
max. power loss versus con- 1-+-+-+--+-+--+--1
duction angle; device under
intermittent operating conditions valid for curve·s
Th =35 °C, 55 °C and 85 0C f---i>A--+-+-+-+--I
200
---
-tp =20ms
-100
............ ~ls
I
2
',/
200°
0°
~
conduction angle
~ ~"
r:::: ~~~
l""
-'20d
-400
v
v
40
~
---t40- ~I'-I'-
100
0(%)
r -________________-r~_.7~Z6~70~3~3~
v
100
~
fMM. ~"J
4
I.____T_II "'t,,,,,,
o
10
1
0(%)
100
Fig. 12 Intermittent overload capability of two BTW24 thyristors in anti-parallel connection in a
single phase a.c. control circuit (e.g. welding); conduction angle: 360 0 .
8
April
19781 (
J
Thyristors
BTW24 SERIES
- - - NOMOGRAM
7Z620141
I
I
" I"
1
H-S0
11'
&P~A
200
i'
I'
" .....
I'r-.,
I't--.
r-.
I'
,,
"' I'
r....
r-.
~lr-
300 500
I".
dI I
t"'i'
d t =20A/j.ls
I\.
I\. ,
'"
1\
I\' .,
~
I/~
JI/, r/
~\
~
IJfO
~
~"
i"~
r+-ITRM(A)
_1-100_
4
3
500
1-1- 1°
9°,+ 1- 1 9°1-1-1-?9° -
ITtlilTRM
H+,
I
I
I
J,.
r
,
,
I
I
~P(A~)
dt=~6t~
t
1'0...
,
r-...
~
......
,
f
1'0...
.-e--
r- 50Hz '-
....
r-_ -I.-
....
10O-I-r-
~
i"
1\
I (I~) 20
-.16th.-
-r-_
..........
r-.
I\.
10
definition:
dI 1/2ITRM
--"1
j
III/
l\\
...... ~
V
:::..QJ 1/
1/
I)
II )
If I
I
II 1/ 1/1/
1\.1\ 1\.\
"" I'
i"
C5 ~c:s-)
~~~~
S
,
1\
j
......
I
f4-~~
II
I'..
I
J
V
II I )
'c::, J I V II
I~
100'
200- f-f-
r-...
I
,1kHz f-f- ~~9°,
I
T1
Fig. 13 Power loss ~P(AV) due to switching-on; Tj = 125 oC; IG = 500 mA; dlG/dt = 1 Alp.s.
"
1
1100
....... ' - -
~ ~ 50
.....
ff.:
~r--
.~
~
,
,
......... i'oo.
"-
7Z66849
I.~.l y / V /
~
\hod
'\
"l '
\.
]".. ,......, 'r-.,.
~1/
~~t7)~~~
,
\.
50 J I
100
I-ITRM(A)
r--.. r.::::: ~[\
°
....
~'" ~
~ .......... ,......, -I"- 1"-.....
'y
IRRM
V
25
1
f-~P(AV)
dI/dt
t
l"-I--.
..........
['\
NOMOGRAM: poWer loss 6P(AV)
ITRM
V
~~
['\
°c
~
1/
j~ ~
-~ ~ ~
50
due to switching off; T j = 125
V
~V
"
l/
V V l/f/
J V ~V
dI.l
...... r---. 1'0......
t..... ~ \
--=10 A/j.ls
""'1'-- ~ i'-- ~ I\.
dt
I
1""- ~
~
'1:3
~
/
II ~~
150
~
""
]""..
"-
f== SOHz-
~~
l"- t-. ~1001
I"- r]""..1-0...
]"..<00
['\
~
['\
['\
~
r-.;,.
"'" r"
l'\
Fig. 14.
9
BTW24 SERIES
7Z67025
300
envelope of average
,O~=:'
10
(A)
"-
200
" "- "-
~
I"..
"'lj""""'/'0.6 ~6S
....... I
~I
\'00..
i:'o..
...... ~
...........
,
I'"
100
l"-
.........
I
I
0
0rp
I """
8S I i'
~.iO.l"t. 1
00
J""'oo.:
I
~m
for safe operation at a given
temperature, the average current envelope of successive
cycles (see drawing above) must lie within the
region bounded by the curve shown below for
that temperature
.....
......
_10
0 oS
'tCi.l"t .
100..
J'W-)
..........
i""...
1050
1'---0
r--
..........
....
I--
-
-I-~
o
10- 2
400
10
(A)
300
10- 1
1
10
time (s)
,""eo,
~====:=~::=:=::::::=====:==:=:=:::::~
~mJ
r -__~__-r-r-r~,,~____r-~~-T~~~____________________________~7Z~6~7~02~3~
envelope of average
'0
_'0
for safe operation at a ;ven
t---+--+--+~-H+++---I--+-+-++l-+-l-t temperature, the average cur-
rent envelope of successive
t------il.---+--+-+-+"I..H+---I---+--+-+-+-H-t-I cycles (see drawing above) must lie within the
t---+-""k:--+-+--H++~--1'
-t---+-+-+-H-IH region bounded by the curve shown below for
t---+---+-~~~++~"'-~j~~
200
....... ,
+-r+++t--ili_a_tt_e~m_p_er~a~tu_rre-r,,~~_-'r--r~-r.-rrrl
~lJ~6
f'l.l S 00
t-----+----l--++++++-I...............
---'I~f___, _r:H-.
1--_+--+-+-+-l,..-H+t-_--t_.......
--+~-----F85~oC
i"-..
100
I
1'1'-
(P.l"iO.l" t.
............
r-.........
-"'1"'--
r--- __~5 0c
'-+-++-H-IH--t---+-+-+-+-t-t-H
0 oStq.l"t.
J'W-)
~++---+--I--+-~-+-HH
- ... 1'"
o
10- 2
1
10
Fig. 15 Limits for starting or inrush currents.
10
April
19781 (
time (s)
_ _ _ _J
BTW30
S SERIES
FAST TURN-OFF THYRISTORS
A range of medium current fast turn-off thyristors in metal envelopes, intended for use in inverter
applications.
The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW30-800RS
to 1200RS.
QUICK REFERENCE DATA
BTW30-800RS 110GORS
Repetitive peak voltages
max.
800
I 1200RS
1000
1200 V
Average on-state current
'T(AV)
max.
16 A
R.M.S. on-state current
'T( RMS)
max.
24 A
Non-repetitive peak on-state current
'TSM
max.
max.
Rate of rise of on-state current
Rate of rise of off-state voltage
that will not trigger any device
dVD/dt
Circuit-commutated turn-off time
tq
MECHANICAL DATA
3,2
~
a
i
~
t
'-'
2,26_
max
-12,8
,~
min
'\
-+kj
max
Dimensions in mm
-- -'
124max
H
6
15 ps
max
max
r-'I
200 V/p.s
_ 7,6
3,4
-'1 1'-
Alps
__ 4,2 __
Fig. 1 TO-48: with metric M6 stud (¢ 6 mm)
M6
-.
<
<
150 A
100
I
I
g~t
max-I
....1 L 1,9
1,6
. - - 22,2 m a x __ 11,5
10,72
_ I .....t - - - - - 303 max - - - - - - t..
~1
Net mass: 14 g
Diameter of clearance hole: max. 6,5 mm
Accessories supplied on request: 56264A
(mica washer, ins!Jlating rin~, soldering tag)
7Z69755.1
Torque on nut: min. 1,7 Nm (17 k~cm)
max. 3,5 Nm (35 kg cm)
Supplied with device:
1 nut, 1 lock washer
Nut dimensions across the flats: 10 mm
April 1978
l____
BTW30
S SERIES
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Anode to cathode
BTW30-800RS
1000RS
1200RS
Non-repetitive peak voltages
(t:(;10ms)
VOSM**NRSM
max.
800
1000
1200 V
Repetitive peak voltages
VORMNRRM
max.
800
1000
1200 VJJ.
max.
,600
800
1000 V*
Crest working off-state voltage
square-wave; 0 = 0,5
VOWM
Average on-state current assuming zero
switching losses (averaged over any 20 ms period)
square-wave; 0 = 0,5; up to T mb = 65 °C
square-wave; 0 = 0,5; at T mb = 85 °C
sinusoidal; at T mb = 85 °C
IT(AV)
IT(AV)
IT(AV)
max.
max.
max.
IT(RMS)
max.
24 A
ITRM
max.
150 A
max.
max.
150 A
150 A
12 t for fusing (t = 10 ms)
ITSM
ITSM
12 t
max.
115 A 2s
Rate of rise of on-state current after triggering
with IG = 1 A to IT = 50 A; dlG/dt = 1 A/IlS
dlT/dt
max.
100 A/IlS
Reverse peak voltage
VRGM
max.
Average power dissipation (averaged over
any 20 ms period)
PG(AV)
max.
1W
PGM
max.
5 W
T stg
T·
max.
R.M.S. on-state current
Repetitive peak on-state current
Non-repetitive peak on-state current
Tj = 125 °C prior to surge (see Fig. 6)
t = 10 ms; half sine-wave
t = 5 ms; square pulse
16 A
12 A
10 A
Gate to cathode
Peak power dissipation
10 V
Temperatures
Storage temperature
Junction temperature
J
-55 to
+ 125 °C
125 °c
THERMAL RESISTANCE
Rth j-mh
1 oCIW
From mounting base to heatsink
Rth mb-h
0,2 °C/W
Transient thermal impedance (t = 1 ms)
Zthj-mb
0,06 °C/VIJ
From junction to mounting base
To ensure thermal stability: Rth j-a < 3 0C/W (d.c. blocking) or < 6 °C/W (square-wave; 0 = 0,5).
For smaller heatsinks Tj max should be derated. For square-wave see Fig. 5.
** Although not recommended, higher off-state voltages may be applied without damage, but the
thyristor may switch into the on-state. The rate of rise of on-state current should not exceed
30 A/IlS.
JJ. Thermal stability at higher voltage ratings is dependent on duty factor. See Figs 15 and 16.
*
2
Ap,i1 1978
I(
j
Fast turn-off thyristors
BTW30
S SERIES
- - CHARACTE R ISTICS
Anode to cathode
On-state voltage
IT = 20 A; Tj = 25°C
<
3,5 V*
<
200 V/p.s
<
<
200 mA
Voltage that will trigger all devices
V D = 6 V; Tj = 25 °C
>
2,5 V
Voltage that will not trigger any device
VD = VDRM max; Tj = 125°C
<
0,2 V
Current that will trigger all devices
VD = 6 V; Tj = 25°C
>
200 mA
Rate of rise of off-state voltage that will not trigger
any device; exponential method; Vo = 2/3 VORM max;
Tj = 125 0C
Off-state current
Vo = VDWM max; Tj = 125 °C
Holding current; Tj
= 25°C
dVO/dt
7 mA
Gate to cathode
Switching characteristics
Gate-controlled turn-on time (tgt = td + trl when
switched from VD = VOWM max to IT = 50 A;
IGT = 200 mA; dlG/dt = 1 A/p.s; Tj = 25°C
<
<
p.s
p.s
t
IT
+
_tgt--
IGT
O~+~~--------~
Fig. 2 Gate-controlled turn-on time definitions.
* Measured under pulse conditions to avoid excessive dissipation.
April 1978
3
l____
BTW30
S SERIES
CHARACTERISTICS (continued)
Circuit-com mutated turn-off time when switched
from IT = 10 A to VR;;;:' 50 V with -dlT/dt = 10 A/IlS;
dVD/dt = 50 V/lls; Tj = 125 0C
<
15 IlS
reapplied VOM
Fig. 3 Circuit-commutated turn-off time definitions.
OPERATING NOTES
1. The terminals should neither be bent nor twisted; they should be soldered into the circuit so that
there is no strain on them.
During soldering the heat conduction to the junction should be kept to a minimum.
2. High frequency operation.
a. The curves in Figs 13 and 14 show the additional average power losses due to turning on and
turning off the thyristor in square pulse operation. This power should be added to that derived
from the curves in Fig. 5.
b. Power loss due to turn-off may be discounted if an inverse parallel diode is connected across
the thyristor to clip any reverse voltage which may occur following commutation. Note should
be taken of the consequent increase in turn-off time (see Fig. 11).
4
April 1978
'I (
j
Fast turn-off thyristors
BTW30
S SERIES
- - 60
~
-..I 1..-
tand
form
angle
~
O(~
P
(WI
= ITIRMSI
I TiAVI
-I-
-Ill
Q::-
60°
90°
120 0
1800
CK
Q
_II
C1
II
~.~
J
I
II
2.e
I
1.G II
I
I II
J
~. I-;"'J I-IDJ
~
I
J
I
I
1
I I
I
If
II I J
1/1
.J .i 1/
1111 If J
I
,
"I' " "1\
"
"b'J
/
.....
J
J
....
1/
j
"-.
~
...... ~
"'\
po".
....
r....
I"
.....
"" ....
~
~
....
')
1,\
"'"
.....
"
i"""" 1'"
11/, 1/
, If, r/)
.....
"-
,~~0, c;,o
\()"
" I\.:?- ~J'rtl~
1,\
-%.
,
<
.]
I
-p
\~
"'
r....
l""-
....
....
'f'
~
IT(AVI(A)
105
1,\1\
",,-" i' '.\
....
1\
1'-0.:" .....
IY\,
'\:~
~
i"""~ s:::i~l.
I'o..:~
1/
fill. 125
50
20 0
Tmb-scale is for comparison purposes only and is correct only for Rth mb-a E 6°C/W
Fig. 4.
7Z60921 2
-.nn
·Itpl- I
-T-
1/
ITIRMSI=2..
t
6=-f
P
(WI -1-6=0.05
I TlAVI
V6
interrelation between the power
(derived from the left hand graph)
and the max. allowable temperatures
'I
o·if, 0. 2J1f-I-O.5/ -11
If
I
I
II
'I
J
If
I I
J 'I
I
If
1
I
J I'
I
I
I I
II I
J
If If )
J I J J
I III
If
20
I
I
,"
"-.
J
r....
,
"
J
"
'f'
~
~
.... t--:""o~
<'
....
6
roo..
~.]
~
......
""
~
.....
:"""t--i"",
I"~
\I~(),\
~
......
....
-p
I\~
r\.
i"
..........
I
I
I
"
"' "I\.? V?,j'
I'-
IlUi
~
0
'~o
0.,
\-%.
, I, , ,
"
l\
I'\.
\
105
\1\
r\.
r--.
i""'o ....
V
i/
,
1\
'\
....
Ifi 1//
\
l\
~
~
1\
'\
I\.
1/ /
'I
, ,
1\
"
'I
40
:"
I"
l\\
.... roo....... r....
....
r--. ....
"I' '.\
........
'" '\"\.~
1" .... ..... ~ ,~
r--.Iooo.. 1"'"",
1/
200
•
I\.
i"""~
10
•
\
",1\
"..... i" ..... ....
r- .... :"
I\..
...... ~ .... roo..
r--
V
i/
,
I"-
6
IN)
VI.
I
1\
1\
1'01..
If
J
,
1\
I\.
/
J
I
I
(;
"
1
I
j
L IL
J
1Z609191
interrelation between the power
(derived from the left hand graph)
and the max. allowable temperatures
If
4
40
20
J
50
..... ~l.
i"""';:::~""1 25
Tmb-scale is for comparison purposes only and is correct only for Rth mb-a E 2°C/W
Fig. 5.
April 1978
5
l_ _ __
BTW30
S SERIES
7262267
400
maximum permissible non-repetitive
peak on-state current for
one square pu Ise
1 T5M
I.
(AI
300
K.
~r----
IT5M
in the case of re-applied off-state
voltage the thyristor may
temporari Iy lose control
,
200
pulse
duration
\
"-
1'",-
"to.
Tj=125°C prior to surge
r--....
100
"'-,,I'-."
""
-
t-...
1 pulse duration (5) 10
Fig. 6.
D7477
D7476
4
Minimum gate voltage
that will trigger all
devices plotted against
junction temperature
300
Minimum gate current
that will trigger all
devices plotted against
junction temperature
)"'",
1'00..
! ....
3
'"
,.....
200
po.,.
I""- min.
I.........
r-..
t-...
min.
'" "
"""i'"
2
-50
o
6
April 1978
50
Ir
Fig. 7.
r-..
po.,.
1""-"
1
f""o
.... """
100
a
-50
o
50
100
Fig. 8.
"
j
Fast turn-off thyristors
BTW30
S SERIES
---726"76
max. rate of rise of offstate voltage that will
not trigger any device
(exp. method) p'otted
against junction temp.
2000
~
dt
( VIps)
1500
7261175
1500
dVo
dt
(V/I./S)
\
max. rate of rise of offstate voltage that will
not trigger any device
(exp. method) plotted
against applied voltage
I I
I I
T
I I
--'1
J
I
li- /
j
,,}- V
I(
/
I
-~
~
~ ~ ~ ~~-~r5
ITRM
IRRM
8
April
!\.'
~
r
~6':
'" ~:!~J!r°;;-K
~
".Xoo
7. <90 0
OOO-'Kt-
t
V
19781
V
~V'
~
---Vdl/dt
V
1)'/
~P(AV)
NOMOGRAM: power loss
1/
~
..... ~ ~
10
If
10
Fig. 14.
"
I\. "' t\..
I1\. "'~
j
Fast turn-off thyristors
BTW30
S SERIES
- - 1500
7Z62272 2
VORM
1500
VOWM
~R
(V)
I
~OR
I
I
1000
(V)
1""",...
I
~
1"-,... ....
....... """ ......
r--....
800R
1000
~
r-.....
-
I----.
-~
t-- ....
I""ii~
~
!"'it-.
~t-.
500
500
10
Fig. 15.
1500
1000
7Z62264 2
--
1500
VRWM
(VI
1200R
...........
I
..........
--..!OOOR
,--.....
-
800R
t--
" to...
to....
....... "
'"
.....
",...........
1000
.....
....... t...,
i"o
""
500
'"
'"""'''
"
"" ""'""-"' "
500
'""f'o..
"
0 1
10-
10
Fi~.
6
(0/0)
0
10 2
16.
'I
April 1978
9
BTW30
S SERIES
l_ _ __
7Z'S90'S9
10
t==
transient thermal impedance from junction to mounting base versus time
I
mb
)
. / "'"
~
1,..0
"...,.~
-~ ""'~
10- 2
Fig. 17.
10
April 1978 \
(
time(s)
10
_ _ _J
BTW31
W SERIES
FAST TURN-OFF THYRISTORS
A range of medium current fast turn-off thyristors in metal envelopes, intended for use in inverter
applications.
The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW31-800RW to
1200RW.
QUICK REFERENCE DATA
BTW31-800RW
1200RW
1200 V
Repetitive peak voltages
VDRMIVRRM max.
Average on-state current
IT(AV)
max.
22
R.M.S. on-state current
IT(RMS)
max.
31
A
Non-repetitive peak on-state current
ITSM
max.
240
A
Rate of rise of on-state current
dlT/dt
max.
100
A//J.s
Rate of rise of off-state voltage
that will not trigger any device
dVD/dt
tq
<
<
200
Circuit-commutated turn-off time
MECHANICAL DATA
Fig. 1 TO-48: with metric M6 stud (¢ 6 mm)
___ 4,2
3,2
800
20
-.
A
V//J.s
JlS
Dimensions in mm
4-
_ 7,6
max
M6
~
•
124max
'1
a
-'
--- , --min
6
max
t
IH
"
\...J
2,26--.
max
-12,Bmax_1
g~t
--.1
I. 1,9
1,6
-22,2max__ 11,5
10,72
- 1 ....-----303max---------i..~1
Net mass: 14 9
Diameter of clearance hole: max. 6,5 mm
Accessories supplied on request: 56264A
(mica washer, insulating ring, soldering tag)
7Z69755.1
Torque on nut: min. 1,7 Nm (17 kg cm)
max. 3,5 Nm (35 kg em)
Supplied with device:
1 nut, 1 lock washer
Nut dimensions across the flats: 10 mm
"I
April 197B
BTW31
W SERIES
l____
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Anode to cathode
Non-repetitive peak voltages
(t';;;; 10 ms)
Repetitive peak voltages
BTW31-800RW 1000RW 1200RW
VOSM**/VRSM max.
VORM/VRRM max.
800
1000
1200 V
800
1000
1200 Vii.
max.
600
800
1000 V*
Crest working off-state voltage
square-wave; [) = 0,5
VOWM
Average on-state current assuming zero
switching losses (averaged over any 20 ms period)
square-wave; [) = 0,5; up to T mb = 65 °C IT(AV)
square-wave; [) = 0,5; at T mb = 85 °C
IT(AV)
sinusoidal; at T mb = 85 °C
IT(AV)
max.
max.
22
16
A
A
max.
15
A
R.M.S. on-state current
IT(RMS)
max.
31
A
Repetitive peak on-state current
ITRM
max.
240
A
ITSM
ITSM
12 t
max.
max.
240
240
A
A
max.
290
A2 s
max.
100
A/p.s
10
V
5
W
Non-repetitive peak on-state current
Tj = 125 °C prior to surge (see Fig. 6)
t = 10 ms; half sine-wave
t= 5 ms; square pulse
12 t for fusing (t = 10 ms)
Rate of rise of on-state current after triggering
with I G = 1 A to IT = 50 A;
dlG/dt = 1 A/p.s
dlT/dt
Gate to cathode
Reverse peak voltage
VRGM
max.
Average power dissipation (averaged over
any 20 ms period)
PG(AV)
max.
Peak power dissipation
PGM
max.
W
Temperatures
Storage temperature
Junction temperature
T stg
Tj
max.
-55 to +125
oC
125
oC
0,2
°C/W
0,06
°C/W
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
From mounting base to heatsink
Rth mb-h
Transient thermal impedance (t = 1 ms)
Zthj-mb
°C/W
* To ensure thermal stability: Rth j-a < 3 °C/W (d.c. blocking) or < 6 °C/W (square-wave; [) = 0,5).
For smaller heatsinks Tj max should be derated. For square-wave see Fig. 5.
** Although not recommended, higher off-state voltages may be applied without damage, but the
thyristor may switch into the on-state. The rate of rise of on-state current should not exceed
30 A/p.s.
Ii.
2
Thermal stability at higher voltage ratings is dependent on duty factor. See Figs 15 and 16.
April
19781 (
J
Fast turn-off thyristors
BTW31
W SERIES
- - CHARACTERISTICS
Anode to cathode
On-state voltage
IT = 50 A; Tj = 25 °C
Rate of rise of off-state voltage that will not trigger any device;
exponential method; Vo = 2/3VORMmax; Tj = 125 °C
dVo/dt
<
2,9 V *
<
200 V/p.s
Off-state current
Vo = VOWMmax; Tj = 125 °C
7 mA
Holding current; Tj = 25 0C
200 mA
Gate to cathode
Voltage that will trigger all devices
VO=6V;Tj=25 0 C
>
2,5 V
Voltage that will not trigger any device
Vo = VORMmax; Tj == 125 °C
<
0,2 V
Current that will trigger all devices
VO=6V;Tj= 25 0 C
>
200 mA
<
<
0,7 ILS
Switching characteristics
Gate-controlled turn-on time (tgt = td + t r ) when
switched from Vo = VOWMmax to IT = 50 A;
IGT = 200 mA; dlG/dt = 1 A/p.s; Tj = 25 °C
1 p.s
t
IT
+
IGT
o .!-+.....tC-:..::....c.:.._ _ _ _~
7Z73514.1
Fig. 2 Gate-controlled turn-on time definitions.
* Measured under pulse conditions to avoid excessive dissipation.
April 1978
3
l_ _ __
BTW31
W SERIES
CHARACTERISTICS (continued)
Circuit-com mutated turn-off time when switched
from IT = 10 A to VR ~ 50 V with -dlT/dt = 10 A/f.ls;
dVD/dt = 50 Vlf.ls; Tj = 125 °C
<
20 f.lS
I~-----tq------~I
Fig.3 Circuit-commutated turn-off time definitions.
OPERATING NOTES
1. The terminals should neither be bent nor twisted; they should be soldered into the circuit so that
there is no strain on them.
During soldering the heat conduction to the junction should be kept to a minimum.
2. High frequency operation.
a. The curves in Figs 13 and 14 show the additional average power losses due to turning on and
turning off the thyristor in square pulse operation. This power should be added to that derived
from the curves in Fig. 5.
b. Power loss due to turn-off may be discounted if an inverse parallel diode is connected across the
thyristor to clip any reverse voltage which may occur following commutation. Note should be
taken of the consequent increase in turn-off time (see Fig. 11).
4
April
19781 (
J
----
BTW31
W SERIES
Fast turn-off thyristors
60
cond.
A
-..I ()( I_
a = I T IRM51
P
form
60'
90'
28
2.2
0
19
1.6
120
0
180
ITIAVI
L
(WI
-f-
-i-
I
~~
01:=30° Q=4
I
I
I
J
II
t\j"
MI
II
d
40
I
II
/
, ",
,
20
I
I
II
I
II I
1//1/
I
/
,
/
~f:>~
.....
Ii'
.....
.....
~
..... ,.."",
....
'f' ~
" ,
~t ~--~
,
, ",
"
.....
"
........ ..... " ,
.... ......... '" ..... "
r-.
\J1,-
I'
.~
f\.
.....~
I'.
~
1\
I'
.....
..... ~
I"
,\
105
\.
..........
I'
6
9 ......
.....1'-..... ~-
..... 1\..'\'
......... 1-0
1..1
200
I
\
~
~-
......
..... i"oo.
.... "'"
,
2,5 V
Voltage that will not trigger any device
VD = VDRMmax; Tj == 125 °C
VGD
<
0,2 V
Current that will trigger all devices
V D = 6 V; Tj = 25 °C
IGT
>
150 mA
td
tr
<
'H
Holding current; Tj = 25 0C
Latching current; Tj
= 25 0C
25 mA
400 mA
Gate to cathode
Switching characteristics
Gate-controlled turn-on time (tgt = td + t r) when
switched from VD = VDWMmax to 'T = 200 A;
IGT = 200 rnA; dlG/dt = 1 A/jJ.s; Tj = 25 °C
<
2
2
jJ.S
jJ.S
t
IT
+
r
Vo
o
--+---+=---
:rE
"'---1-1
t
"-
'i
Fig. 2 Gate-controlled turn-on time definitions.
* Measured under pulse. conditions to avoid excessive dissipation.
April 1978
3
CHARACTERISTICS (continued)
Circuit-commutated turn-off time when switched
from IT = 50 A to VR ~ 50 V with -dlT/dt = 50 A/Ils;
dVD/dt= 25 V/lls; Tj = 125 °C
<
25 IlS
l---tq---,
Fig. 3 Circuit-commutated turn-off time definitions.
7Z62529
10
Zth j-mb
(OC/W)
1
~
10- 1
...... -
~
...... ~
V
,,-
i-"
V
10- 3
10- 5
4
10- 4
AP'il19781
r
10- 1
10- 3
Fig. 4.
1 time (8)
10
~_~_~_m_~_ff_t_~_ri_~_~
__
____________
~jl B~33SEruES
P =dissipation excluding switching losses
condo
A
p
(W)
angle
()( =30
60
90
120
180
-..l ex 1..-IT(RMS)
a=-IT(AV)
a
~
0
0
0
0
0
7Z62534
interrelation between the power (derivedfrom the left-hand graph) and the max.
allowable temperatures.
form
factor
a=4
2,8
2,2
1,9
1,6
,...+-~
1
1
a
50 IT(AV) (A) 100
a
50
Tmb
(oC)
125
100
Tamb (OC)
Fig. 5.
P = dissipation excluding switching losses
IT(RMS)
=-
IT(AV)
p
(W)
7Z62533
interrelation between the power (derivedfrom the left-hand graph) and the max.
allowable temperatures.
]
V6
SLJl
~I;~o
200
tp
T
I
1
j
I
<5
=0,1
100
"-
V
I'
'"
I'
1/
1..-
V
1/11/
I~
0,2
/
I'
I"""
1/
1..1'
1"""
ro...
I"
I'
""
t
-...Q
I'
~
I"~~
1\.0
I'
I'
r\
"'"
o;\<' 0
~'~t-1\0
"" ~.z~-rs~t-"~~
" " " ..... I' I""'~" ,,!\.
~
.8....
I' " ' ' '
""'''''-
....
I"iiO ....1 0
l/V..I'
"""t-....
..-~.,
r- .... ....
2
~
I
50 IT(AV) (A) 100
a
~
"
95
~
r, "
.... ""I" N'
1'1\..
i""""",
1 ~"""r....
I
a
l\~O,
1'",,-
~I/LI
~!.o"
o
65
l\.
1'\
0,5
1
J-I'-....
ro....
.... ~
I';
,....~ I::::!~N
F=:IiIill1l ~"
I""'t-- ....
50
100
""'~ 125
-,' T mb-scale is for comparison purposes only and is correct only for Rth mb-a::; 1,0 °CjW,
Fig. 6.
2000
SQUARE WAVE OPERATION
ITSM
~
\
(A)
7Z62531
max. permissible nOnrepetitive peak on-state
current for one square pulse
,
~
1500
I~ puls~
..r----
ITSM
duratIOn
in the case of re-applied
off-state voltage the thyristor
may temporarily lose control
,
I'
l"
1000
"- I\.
,~ Tj =125 0c prior to surge
""'r"
~ ...
500
~
~~
"'r-r-
o
10- 3
10- 2
10- 1
~
-r--
-
1
10
. pulse duration (s)
Fig. 7.
2000 SINE WAVE OPERATION
7Z62530
JU
the device may temporarily lose
IT(RMS)
control following the surge
l\.
(A)
i\
1500
,,
ITSM
L
~,.
,
~
1000
"-
~
'-
Tj =125 oC prior to surge
"""~
~
500
'"
o
10- 3
10- 2
~
10- 1
Fig. 8.
6
April
19781 (
I'"-.....
--~ i'-~
---
to--
duration (s)
10
F_a_st_tu_rn_-O_f _t_hY_ri_~_or_s
__
~~
___
B_T_VV
__3_3_S_E_R__IE_S___
__________________________
07500
07499
4
300
Minimum gate voltage
that will trigger all
devices plotted against
junction temperature
Minimum gate current
that will trigger all
devices plotted against
junction temperature
IGT
(mA)
3
1\
"- I\.
200
~
i'o..
"'-
I"
">/~
I"~/"'.
"
i'o..
,...
"'"
~
I"
i'o
2
1"'0-
I"'-
a
a
50
a
-50
100
50
7Z62537
l - I- t--
2000
l - I- I-I-- I-- t--
(V l[1s)
,
1500
1\
dVO
l - I- I--
dt
max. rate of rise of offstate voltage that will not
trigger any device (exp. method) plotted against
junction temperature
7Z62538
1500
max. rate of rise of offstate voltage that will not
trigger any device (exp. method) plotted against
applied voltage
dVO
dt
(V l[1s)
1\
1
\
1
1000
\
\
,
\
1\
r\.
,
~
500
\
'\.
~Tj=1250C
I'
r\.
500
,
Il
\
1\
I\.
1000
"-
~
I'\.
"
I\.
"'-
o
o
100
Fig. 10.
Fig. 9.
l - I- I--
I"'-
100
1"0
-50
" ""
50
100 Tj (OC) 150
Fig. 11.
o
a
:"'I""
I'
---
50
....
VOM
100
VORMmax (%)
Fig. 12.
BTW33 SERIES
j l. . ________________
7Z62541
7Z62730
max. turn-off time when
switched from IT to VR ~ 50 V ;
Tj = 125 °c ; -dIT/dt = 50 A/\-ls
50
VR >50V
---VR=I,5V
40
IT ==
1/
IT =
V
~
V
....
~
..... ~
i.oo-' ~-
20
..... i.oo-'
.... """
f- f-
59 AI_ f - I--
... 1/
10'
20 A'-
---~
~ i-"'"
/
~~
I
I
-
f-
~
./
1/
I~
~ 1/ ..J
.... ~
~
~
~m
}50 A
~}20A
~
"
V' / ~
.,.'
~
-I
.J
~
~} lOA
V'
1/
,,- ~ ~~ ~
~ fI'~ ~ I..t- '="~
.. ~ l....II ~ ~
t'. I.--"
~
.... lOA_ f - f -
...
,
-.~....
10
""""
17
,
20
~
V
I=-+-
/ }l~O AI
I~~
30
!,"
~
-~
./ l~Ot-
1/
~
30
~
I-- I--
dVD/dt == 25 V /\-ls
-dI/dt == IT/\-lS
10
a
a
200
dVD
100
300
dt
Fig. 13.
o
50
100 T j (OC) 150
Fig. 14.
(V/\-ls)
7Z62527
7Z62528
3
1000
max. VT values
IT
II
(A)
2
750
l'
I-- f - I-Tj=25
"
,...,
......
"
°c
f-+-I-
~I
r-;....J.
1' ...
1
lib
1
125 C
1-1'-...
~~\!oo
500
I--
J
r7
~
I
IT
II
"""I"Tj==25 0 C::: f-I-t--
,...,
fI--
/125
°C-
J
II
I
1 V
I J
1-1-1-
r-,...~
111
~
250
'I
A
~r/
a
a
500
r
Fig. 15.
8
April
19781
IaT (rnA)
1000
a
a
~~
2.5
5 VT (V) 7.5
Fig. 16.
j
Fast turn-off thyristors
BTW33 SERIES
- - 7Z62532
Fig. 17.
7Z62693
I
..
~
I I I
-dIfdt = 100 A/I-ls
75
50
25
10
II
"-<
l""- I--
r- r- .......
r- r- r- .......
~ r--.,
200
I 150
- ::::
~ ~~
r- ~
50
1 I L .,..,
III /
~ "-
-:,
due to switching off; T j = 125
-v
to
ITRM
."
V
r - r-
r-
I
~~o -~
}?o~
(~)I
:'\ i'.
,~ ~
~
ko
Fig. 18.
RRM"'= 25OV
t:t::::b;~
~
c--- r - r-b.P(AV)
t
-r- :;;;; ~
~~~~ ~
1
~d1/dt
..-
~ .;: ~ -~100 r-~ ~I 'J"oo.. I.60I~
- ~
'\ ~I"' C£ 0
-
,
°c
".,.,.
...... ~o
~ ~~
NOMOGRAM: power loss b.P(AV)
IRRM
/
-a
~
~
~
~
J
JJ /
-r--.. to-.. S ~
100
-ITRM(A)
I
-r--., t'-..
r-
-'-
V
r--~ if
V
r~~ r
1,5 V
Voltage that will not trigger any device
Vo = VORMmax; Tj = 125 °C
VGO
<
200 mV
Current that will trigger all devices
VO=6V;t'=25 0 C
IGT
>
50 mA
tgt
tr
<
3 mA
75 mA
Gate to cathode
Switching characteristics
Gate-controlled turn-on time (tgt = td + t r ) when
switched from Vo = 800 V to IT = 25 A;
IGT = 250 mA; dlG/dt = 0,25 A/)ls; Tj = 25 °C
typo
1,5 )lS
0,2 )lS
t
IT
+
-td----
tr
_tgt--
IGT
__
O~·~~------ ~
Fig. 2 Gate-controlled turn-on time
definitions.
72735141
* Measured under pulse conditions to avoid excessive dissipation.
April 1978
3
l'----_ __
BTW38 SERIES
7Z67629.1
30
1'L
p
.... 1
(W)
a
IT(RMS)
a=--IT(AV)
1__
a
a
30°
60°
20 90°
120°
180°
I
1,6
4
1,9
2,8
II
2
r---r-;r- 2,8 -2i
2,2
1,9 a=4
J ,/ /
1,57 JI
)
/ If
II
I
J
10
'I
If
~
,/
~
"
i'..
~
~""~
,
6'1"
I"'-
1"'~<9
11'1/
j
i'oo..
II'Il II.~
r....
l""
Ii tIlL
~~
~~
I\.
l"
'" '"'"
i'"
"" ,.... r--.
.",.
\
I'\.
1\
1\ ,
I'
..... 1'--
!/
1\
~
1\
,....
"1,\
"
"I""
I.....
,....
.....
89
\~~\\
I\.
I'"
lI"" 6,35 mm) are available on request. These are indicated by the
suffix U: e.g. BTW40-400RU.
-.
-.4,2.-
3,2
_ 7,6
max
3,4-
ft
-'
124-max
-. min
'
'\
---
tF===a=p-1I1IM
~
H
I
\.....J
2,26_
max
-12,8max-
r
:ft
1.9
1,6
-22,2max-
__ 11,5 - 1 .....t-----303max-----t.~1
10,72
Net mass: 14 g
Diameter of clearance hole: max. 6,5 mm
Accessories supplied on request: 56264A
(mica washer, insulating ring, soldering tag)
7Z69755,A
Torque on nut: min. 1,7 Nm (17 kg cm)
max. 3,5 Nm (35 kg cm)
Supplied with the device:
1 nut, 1 lock washer
Nut dimensions across the flats;
M6: 10 mm
%inx28UNF: 11,1 mm
'I
April 1978
BTW40 SERIES
l____
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Anode to cathode
BTW40-400R 600R 800R
Non-repetitive peak voltages (t";;;; 10 ms)
Repetitive peak voltages
Crest working voltages
VOSMIVRSM
max.
400
600
800 V
VORMIVRRM
max.
400
600
800 V
VOWMIVRWM
max.
300
400
600 V
IT(AV)
max.
20 A
R.M.S. on-state current
IT(RMS)
max.
32 A
Repetitive peak on-state current
ITRM
max.
200 A
Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 125 0C prior to surge;
with reapplied VRWMmax
ITSM
2
1 t
for fusing (t = 10 ms)
Rate of rise of on-state current after triggering
with IG = 400 mA to IT = 60 A; dlG/dt = 0,4 A/p.s
*
~
Average on-state current (averaged over
any 20 ms period) up to T mb = 85 °C
max.
400 A
1 t
max.
800 A 2 s
dlT/dt
max.
100 A/p.s
2
Gate to cathode
Reverse peak voltage
VRGM
max.
Average power dissipation (averaged over
any 20 ms period)
PG(AV)
max.
lW
Peak power dissipation
PGM
max.
5 W
Storage temperatu re
T stg
-55 to + 125 °C
Junction temperature
Tj
max.
10 V
Temperatures
125 °C
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
1 0C/W
From mounting base to heatsink
with heatsink compound
Rth mb-h
0,2 °C/W
Transient thermal impedance (t = 1 ms)
Zth j-mb
0,1 °C/W
OPERATING NOTE
The terminals should neither be bent not twisted; they should be soldered into the circuit so that
there is no strain on them.
Ouring soldering the heat conduction to the junction should be kept to a minimum.
< 6,5 °C/W (d.c. blocking) or < 13 0C/W (a.c.). For smaller
heatsinks Tj max should be derated. For a.c. see Fig. 3.
* To ensure thermal stability: Rth j-a
2
April
19781 (
j
Thyristors
BTW40 SERIES
- - CHARACTERISTICS
Anode to cathode
On-state voltage
IT = 50 A; Tj = 25°C
VT
<
2,1 V *
Rate of rise of off-state voltage that will not trigger
any device; exponential method; VD = 2/3 VDRMmax;
Tj = 125 0C
dVD/dt
<
100 V/p.s
Reverse cu rrent
VR = VRWMmax; Tj
'R
<
3 mA
<
<
<
150 mA
Voltage that will trigger all devices
VD = 6 V; Tj = 25 °C
>
1,5 V
Voltage that will not trigger any device
VD = VDRMmax; Tj = 125 °C
<
200 mV
Current that will trigger all devices
V D = 6 V; Tj = 25 °C
>
75 mA
= 125 °C
Off-state current
VD = VDWMmax; Tj = 125°C
ID
Latching current; Tj = 250C
IL
Holding current; Tj = 250C
IH
Gate to
3 mA
75 mA
catho!!~_
Switching characteristics
~
Gate-controlled turn-on time (tgt = td + t r ) when
switched from V D = V DWMmax to IT = 100 A;
IGT = 400 mA; dlG/dt = 1 A/p.s; Tj = 25°C
<
<
1 p.s
0,5 p.s
Vo
o
----+-_+=__
-,----+-1
117'"'-
J'lL \
Gate-controlled turn-on time definition
*Measured under pulse conditions to avoid excessive dissipation.
November 1979
3
l________________~
~w~~ru~
7Z72517
A
I
I
_I
a
=
interrelation between the power (derived
~
from the left-hand graph) and the maxi~an:g~le~~~~I=t~~~~=t~~
a = ~~~ a ~,8 H-f-+-l-++-t-+-f-+-l mum permissible temperatures
condo
a 1_
I
T( RMS)
IT (A VI
ffaOcrtmor
90°
1200
180°
2,2 H-+-+-l-++-t-+-+-+-l"-r""T"""r-r""""""T"""1r-T"""T"""T"""'T""""""'--r-T"""T"""T"""T"""""..,....-t
I
1,9 H-f-+-l-++-t-+-++-t-++-t-+-++-lt-++-t-t~--+-+-t-++-t-t--+-+-t
1,6 H-f-+-l-++-t-+-++-l-++-+-t-f-+-f-+-I-+-+t-+-+-f-+-I-+-+-++-I
.)
I
J
I
II
I/'
j
I...... ""
II 1/1) .i
r-...
"'r-.~
6
I'r--.
t\.
~
r-...
i"o..
I......
""'r-..
I"-.
r-..
,
Dl
t' ....
t"
I\.
1'1.
I""'t....
~
Fig. 2.
,
500
7Z72516
,
maximum permissible non-repetitive
r.m.s. on-state current based on
sinusoidal currents ( f = 50 Hz )
1\
hS(RMS)
(A)
~
Ib
ITSM
\
375
~-ITSM
~-ITS(RMS)
time
~
with reapplied V RWMmax
\.
'\.
'\.
250
'"
"- I"r--
125
Tj
~ ...........
1""--""",
o10-3
10-2
10- 1
Fig. 3.
4
=125°C prior to surge
April
19781 (
r---_
duration (5)
10
j
Thyristors
BTW40 SERIES
---600
7Z72534
7Z72535
\\
\
lj=125°C
,
1000
\
,
\
dVo
dt
\
\
4.00
(V/i-I S )
1\
\
1\
\
,
1\
\
1\
\\
\
500
\
,
\\
200
~
I\"
~
,
1,\
~
~
I\.:
""r-...
""
o
o
o
50
o
100 T (oC) 150
J
..... r-..,
50 _ V
100
OM_ (%)
_
VORMmax
Fig. 4 Maximum rate of rise of off-state
voltage that will not trigger any device
(exponential method) as a function of Tj.
7Z72515
100
~
Fig. 5 Maximum rate of rise of off-state
voltage that will not trigger any device
(exponential method) as a function of
applied voltage.
--1j= 25°C
---lj =125 °c
typ
max
II
I
75
I
J 1I
j
V I
I
~
14
I/iI
I
_4
II
iii
IJ
50
I
i
II'
~
1/
i
I
'J
I
25
"V"
iI~
l,~ L'
o
o
JV
11/
j
V
Fig. 6.
~_V
2
3
"I (
April 1978
5
l
BTW40 SERIES
'----------------------------------------------------7Z67965
7Z72521
150
1\
\.
\.
\.
IGT
(mA)
_\
1\
2 ......
100
....
......
,
~
.... I'
I" min
min
'"......
,
i'o...
!"
......
i'o...
50
......
r-.
o
o
-50
50
100
1j
o
-50
150
o
(oC)
50
"
~
100
150
Tj(oC)
Fig. 7 Minimum gate voltage that will
trigger all devices as a function of Tj.
Fig.8 Minimum gate current that will
trigger all devices as a function of Tj.
7Z72522
10
~
~
./
10- 1
V
./
10- 3
10- 5
....
-
"
~
10- 4
10-3
10- 2
Fig. 9.
6
""I'
AP'il19781 (
10-1
time (5)
10
_ _ _ _J
BTW42 SERIES
THYRISTORS
Also available to BS9341-F084
Silicon thyristors in metal envelopes with high dVo/dt capabilities. They are intended for use in power
control circu its and switching systems where high transients can occur (e.g. phase control in three-phase
systems).
The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW42-600R to
1200R.
QUICK REFERENCE DATA
1200R
Repetitive peak voltages
Average on-state current
IT(AV)
max.
R.M.S. on-state current
IT(RMS)
max.
Non-repetitive peak on-state current
ITSM
max.
1200
V
10
A
16 A
150
A
Rate of rise of off-state voltage
that will not trigger any device
dVD/dt
<
200 V/lls
On request (see ordering note on page 2)
dVo/dt
<
1000 V//1s
MECHANICAL DATA
Dimensions in mm
Fig. 1 TO-64: with metric M5 stud (r/>5 mm); e.g. BTW42-600R.
+-
~,~ (2x)
~
,,98-1
max
_I
9,3
max
-.3,5_
max
_10,28_
__ 11.5 __ .. max 21,72
10,72
max
~1
- - - - - l..
Net mass: 7 g
Diameter of clearance hole: max. 5,2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)
56262A (mica washer, insulating ring, plain washer)
7Z65305.A
Torque on nut: min. 0,9 Nm
(9 kg cm)
max. 1,7 Nm
(17kgcm)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats; M5: 8,0 mm
December 1979
BTW42 SERIES
l_____
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Anode to cathode
Non-repetitive peak voltages
(t.os;;;; 10 ms)
BTW42-600R 800R 1000R 1200R
VOSMNRSM
max.
600
800
1000
1200 V
VORMNRRM
max.
600
800
1000
1200 V
VOWMNRWM
max.
400
600
700
Repetitive peak voltages
Crest working voltages
800 V *
Average on-state current (averaged over
any 20 ms period) up to T mb = 85 °c
IT(AV)
max.
RM.S. on-state current
IT(RMS)
max.
16 A
'TRM
max.
75 A
ITSM
2
1 t
max.
150 A
max.
112 A 2 s
dlT/dt
max.
50 A/p.s
Average power dissipation (averaged over
any 20 ms period)
PG(AV)
max.
0,5 W
Peak power dissipation
PGM
max.
5W
Storage temperature
Tstg
Junction temperature
Tj
-55 to + 125 °C
max.
125 °c
Repetitive peak on-state current
Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 125 0c prior to surge;
with reapplied VRWMmax
12 t for fusing (t
= 10 ms)
Rate of rise of on-state current after triggering
with IG = 250 mA to IT = 25 A; dlG/dt = 0,25 A/p.s
10 A
Gate to cathode
Temperatures
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
1,8 °C/W
From mounting base to heatsink
with heatsink compound
Rth mb-h
0,5 °C/W
From junction to ambient in free air
Rth j-a
Transient thermal impedance (t = 1 ms)
Zth j-mb
45 0C/W
0,1 °C/W
OPERATING NOTE
The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there
is no strain on them.
During soldering the heat conduction to the junction should be kept to a minimum.
ORDERING NOTE
Types with dVo/dt of 1000 V/p.s are available on request. Add suffix C to the type number when
ordering; e.g. BTW42-600RC.
* To ensure thermal stability: Rth j-a < 4 °C/W (d.c. blocking) or < 8 °C/W (a.c.). For smaller
heatsinks Tj max should be derated. For a.c. see Fig. 3.
2
April
19781 (
j
~~~
BTW42 SERIES
- - - CHARACTERISTICS
Anode to cathode
On-state voltage
'T = 20 A; Tj = 25 °C
VT
<
Rate of rise of off-state voltage that will not trigger
any device; exponential method; VD = 2/3 VDRMmax;
Tj = 125 °C
dVD/dt
<
Reverse current
VR = VRWMmax; Tj = 125 °C
'R
<
3 mA
Off-state current
VD::: VDWMmax; Tj::: 125 °C
'D
<
<
<
150 mA
Voltage that will trigger all devices
VD:::6V;Tj:::25 0 C
>
1,5 V
Voltage that will not trigger any device
VD ::: VDRMmax; Tj = 125 °C
<
200 mV
Current that will trigger all devices
V D = 6 V; Tj = 25 °C
>
50 mA
Latching current; Tj ::: 25 °C
'L
Holding current; Tj ::: 25 0C
'H
2 V *
200 Vips
3 mA
75 mA
Gate to cathode
Switching characteristics
Gate-controlled turn-on time (tgt ::: td + t r ) when
switched from V D = 800 V to 'T ::: 25 A;
'GT::: 250 mA; dlGldt = 0,25 Alp.s; Tj ::: 25 °C
<
typo
1,5 p.s
0,2 p.s
t
IT
+
i
Vo
o
~l
----+-_+=__
Fig. 2 Gate-controlled turn-on time definitions.
* Measured under pulse conditions to avoid excessive dissipation.
April 1978
3
l_ _ __
BTW42 SERIES
7267629.1
n
30
p
interrelation between the power
(d~rived from the left· hand graph)
and the maximum permissible
tem peratu res
IT(RMS)
a=--IT(AV)
a i_
1
a
a
I
0
30 4
I
1,9
I
600 2,8
900 2,2 f - - - f- 2,8 ~2i2
If
1200 1,9 a=4
J /
/
1800 1,57
1
I
/
,I
J !/
-.1
(W)
1,6
,
20
I
I
J
10
II
1/
/
'1'/
, ILIL
!/I~
"
.....
1/
"
J
I"
~
"'"
r-...
/
V J
J
'(1/'/
ioo..
11/ /.~
'0
......
,-
......
~d'o~
'\
"-
,
~
~
..........
'"
.....
......
,
1\.
89
\~o,\\
1\
"-
i' ....
~
I"
r--
~I?
"
\
I\, ,
\",
I\.
\
I'
......
[/.~
,'.dillY
......
, .... " ""
~
I"
I\.
,
1\
,,
107
.\
\
",,'I'
.....
l\
....... l"
..... r-- ,....
." 1"\.1'\'
-..;:~ ~I\.'~
i'
"'
........... ,....
IL~
~
o
L
('l~
1\
~
I
~
~$
...... 6' .......
"r--
~I
~-l O~I
~
~
'.;
.... 9
""" ,....~a
~
I\..
I\..
,
.....
"
I\..
I \.
1
~~~"
..... "l"'1li \
.....'" ~~
o
5
IT(AV) (A)
10 0
Fig. 3 (1) T mb-scale is for comparison purposes only and is correct only for Rth mb-a ~ 6 oC/W.
1267630 Z
300
maximum allowable non-repetitive
r. m. s. on state current based on
sinusoidal currents (f = SO Hz)
ITS(RMS )
(A)
200
[V\f==~=:~::"SI
1\
time
'\
.\.
with reapplied VRWMmax
'\.
I TSM
'\
"\.
1\
100
"'"'-
'"
.......
t--
lj
~
=125 °c
r-
prior to surge
-
duration (5)
Fig. 4.
4
April
19781 (
71
10
125
j
Thyristors
BTW42 SERIES
----
7Z67964
7Z67965
IGT
(rnA)
2
"
100
r-....
1\
"
\
I' min
I\.
""
""
"'" I,min
1'0...
"
50
.......
to..
o
o
-50
100
50
1j
150
o
-50
(oC)
7Z679661
II
I
I
- - - l j = 25°C
---lj =125 °c
=
I
I
I
I/ typ
J
100
i
VT
III
II
I
, J
Im~~. f-V-+VT 'r:!- Itt-+-
j
I
I
I
,
11
-' J
Ii J
50
1/
J
1_'
Ii
II
~1/
L'
o
o
.~
I"
i/
V
J
V
V
1/
l~~J...J
Fig. 7.
2
"
50
'" ......
"
100
.....
lj
150
(oC)
Fig. 6 Minimum gate current that will
trigger all devices as a function of Tj.
Fig. 5 Minimum gate voltage that will
trigger all devices as a function of Tj.
150
o
'"
3 VT (V) 4
1500
7Z67968 2
\
7Z67967 3
1500
~I
I ~J
I I I I I
,
1\
lj =125 °c
r----r--
,
1\
\
\
\
,
1000
~
1000
1\
1\
1\
\
,
~
,
1\
~
I\.
"
500
1\
500
I\.
~
roo..
"
,
~
I'
I\.
f'~
I'["'I"
I"
~
75
125
o
o
50
V
I"'"
_ _D_M_ (0/0)
100
VDRMmax
Fig. 8 Maximum rate of rise of off-state
voltage that will not trigger any device
(exponential method) as a function of Tj.
6
April
19781(
Fig.9 Maximum rate of rise of off-state
voltage that will not trigger any device
(exponential method) as a function of
applied voltage.
j
Thyristors
BTW42 SERIES
- - - 7Z72292
75
li:;:,:t []
envelope of average
10
(A)
"-
"
for safe operation at a given
temperature, the average current envelope of successive
cycles (see drawing above) must lie within the region
bounded by the curve shown below for that temperature
\.
50
-10
"
~
~
"-
"
...........
......
25
"lj =Tmb = 25 °c
..... ......
......
...
l'...
~5°C
~
i"'oo"
~
.......85°C ...... ........
........
~
.....
prior to starting
...........
"""
10
105 C
...........
...... """
r-~
~~
1"""1-
.......
-
""'-
'"
-
-r--,
r""'-....
I--.
10
r-
time
(s)
rrv;:":t ~i:]
7Z72291
150
envelope of average
I,
10
(A)
1\
"-
"
for safe operation at a given
temperature, the average current envelope of successive
cycles (see drawing above) must lie within the region
bounded by the curve shown below for that temperature
\.
100
-10
"'\..
I\.
I'
~
50
.....
......
.........lj = Tmb = 25°C
.....
......
....
l'o..
............65°C
...........
'" !"
........ 85°C ...... .......
......
""I..
..... """
prior to starting
..........
105°C
.......
r-r- ...
-10....
1"""1-
..........
------
""'-
............
-r--.
....
~
I"'"
10
r- ~
time
(s)
Fig. 10 Limits for starting or inrush currents.
7
___B_TW
__4_2_S_E_R_IE_S_Jl_________________________________
7Z72290
150
'\..
'\...
10
I't..
10
s·~g·
"
~
(A)
t
'\...
'\...
" "-
""-
"-
" " .....
"'
!'I..
I II I
a
"lj=Tmb =25 C prior to starting
.........
:.......
1'0.
"
~
1'0...
......
i""-o..
50
65°C
~
...........
........
...... """ .....~oC r--
.....
~mJ
for safe operation at a given
temperature, the average current envelope of successive
cycles (see drawing abovel must lie within the region
bounded by the curve shown below for that temperature
,
\.
100
-10
output current
--......
.,...
......... 105°C
1"0...
.....
...........
.........
...........
r-
i"'--
~
r--I-
-I--
~
::--
10
-
time
(s)
Fig. 11 Limits for starting or inrush currents.
7Z679691
10
.... ~
I--'-
~
~
/'
~
.-
.".'"
~
10
Fig. 12.
8
April
19781 (
time (s)
_ _ _ _J
BTW45 SERIES
THYRISTORS
Silicon thyristors in metal envelopes, intended for power control applications.
The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW45-400R to
1200R.
QUICK REFERENCE DATA
I 1200R
BTW45-400R 1 600R 1 800R 11000R
Repetitive peak voltages
VDRM = VRRM
max.
400
600
Average on-state current
800
1000
1200 V
IT(AV)
max.
R.M.S. on-state current
IT(RMS)
max.
25 A
Non-repetitive peak on-state current
ITSM
max.
300 A
Rate of rise of off-state voltage
that will not trigger any device
dVD/dt
On request (see ordering note on page 3)
dVD/dt
<
<
MECHANICAL DATA
16 A
200 Vips
1000 Vips
Dimensions in mm
Fig. 1 T0-48: with metric M6 stud (¢ 6 mm); e.g. BTW45-400R.
Types with Y.. in x 28 UNF stud (¢ 6,35 mm) are available on request. These are indicated by the
suffix U: BTW45-400RU.
--.4,2.3,2
-.
_ 7,6
max
--. min
,
---'
1F===a='f'"-lIIIH
II
H
_12,smax-1
\......J
2,26_
max
g~t
-.1
I. 1,9
1,6
-22,2max. . - 11,5 _ 1 ......1 - - - - - 303 max - - - - - - i••1
10,72
7Z697SS.A
Net mass: 14 9
Diameter of clearance hole: max. 6,5 mm
Accessories supplied on request: 56264A
(mica washer, insulating ring, soldering tag)
~
Torque on nut: min. 1,7 Nm (17 kg cm)
max. 3,5 Nm (35 kq cm)
Supplied with the device:
1 nut, 1 lock washer
Nut dimensions across the flats;
M6: 10 mm
%inx28UNF: 11,1 mm
Products approved to CECC 50 011-002, available on request
IC
January 1980
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ._. _ _---'
_......_'"--_ _ •
_. ____ .__ •••""•.. "_",,",.,.
. .'
"_'.·.'n~
BTW45 SERIES
l_ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Anode to cathode
BTW45-400R
600R
800R
1000R
1200R
VDSMIVRSM
max.
400
600
800
1000
1200 V
VDRMIVRRM
max.
400
600
800
1000
1200 V
VDWMIVRWM
Average on-state current (averaged over
any 20 ms period) up to T mb = 85 °C
max.
300
400
600
700
Non-repetitive peak voltages
(t~ 10 ms)
Repetitive peak voltages
Crest working voltages
800 V*
IT(AV)
max.
16 A
R.M.S. on-state current
IT(RMS)
max.
25 A
Repetitive peak on-state current
ITRM
max.
200 A
ITSM
12 t
max.
300 A
12 t for fusing (t = 10 ms)
max.
450 A 2 s
Rate of rise of on-state current after triggering
with IG = 400 mA to IT = 60 A; dlG/dt = 0,4 A/l1s
dlT/dt
max.
100 A Ills
Reverse peak voltage
VRGM
max.
Average power dissipation (averaged over
any 20 ms period)
PG(AV)
max.
1W
PGM
max.
5 W
Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 125 0C prior to surge;
with reapplied VRWM max
Gate to cathode
Peak power dissipation
10 V
Temperatu res
Storage temperature
T stg
-55 to + 125 °C
Junction temperature
Tj
max.
125 °C
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
1,33 0C/W
From mounting base to heatsink; with heatsink compound
Rth mb-h
0,2 °C/W
Transient thermal impedance (t = 1 ms)
Zth j-mb
0,1 0C/W
OPERATING NOTE
The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there
is no strain on them.
During soldering the heat conduction to the junction should be kept to a minimum.
* To ensure thermal stability: Rth j-a < 6,5 °C/W (d.c. blocking) or < 13 °C/W (a.c.). For smaller
heatsinks Tj max should be derated. For a.c. see Fig. 2.
2
November 1979
(
J
Thyristors
BTW45 SERIES
--CHARACTE R ISTICS
Anode to cathode
On-state voltage
IT = 50 A; Tj
= 25
VT
<
2 V*
Rate of rise of off-state voltage that will not trigger
any device; exponential method;VO = 2/3 VORM max;
Tj = 125 0C
dVD/dt
<
200 VIlls
Reverse current
VR = VRWM max; Tj = 125 °C
°C
IR
<
3 mA
Off-state current
Vo = VDWM max; Tj = 125 °C
ID
Latching current; Tj = 25 0C
IL
150 mA
Holding current; Tj = 25 °C
IH
<
<
<
3 mA
75 mA
Gate to cathode
Voltage that will trigger all devices
VD=6V;Tj=25 0 C
>
Voltage that will not trigger any device
VD = VDRM max: Tj = 125 °C
<
200 mV
Current that will trigger all devices
V D = 6 V; T j =- 25 °C
>
75 mA
1,5 V
Switching characteristics
~
Gate-controlled turn-on time (tgt = td + trl when
switched from VD = VDWM max to IT = 100 A;
IGT = 400 mA; dlGldt = 1 AIIlS; Tj:: 25 °C
t
IT
+
<
<
1 IlS
0,5 IlS
T
IGT
O~*~~--------~-
Gate-co ntrolled
turn-on time definition.
ORDERING NOTE
Types with dVD/dt of 1000 V Ills are available on request. Add suffix C to the type number when
ordering; e.g. BTW45-400RC.
*Measured under pulse conditions to avoid excessive dissipation.
November 1979
3
l__________
BTW45 SERIES
7Z12520.1
30
.1
1 1,6t
J
1,9 ILl/..
p
(W)
I\.
\
1\
1/,/
2,2
I'
II
1/11
1-1- r-t-
"-
II
1'1.6'
III rl
IIrJ
I [lJl
I HI.
fN/
I"
I
I
ll.~
10
\
1\
" r\
I/,r
1\
!'
......
o
,
\
1\
\.
_\
I\.
I\.
......
\
......
'"
.....
~
10
I\.
,
98
\
,
1'1,
......
t-.....
Ihr
1/,
I'
1\
1\
~
I\.
""-
"
rfJ
'IJ
1\
i"
""-
'0
.........
I'"
..z.0'"
,
1\
1\
('I,.
'"
~-.
1\
3,5 V
Voltage that will not trigger any device
Vo = VORMmax; Tj = 125 °C
<
200 mV
Current that will trigger all devices
V D = 6 V; Tj :::: 25 °C
>
100 rnA
typo
typo
1,2 p.s
200 rnA
Gate to cathode
Switching characteristics
Gate-controlled turn-on time (tgt = td + trl when
switched from Vo = VOWMmax to IT = 10 A;
IGT = 150 rnA; dlG/dt = 1 A/p.s; Tj = 25 0C
2 p.s
t
IT
•
IGT
0""'+......c...."""----'-_ _ _ _...3000.-
Fig. 2 Gate-controlled turn-on time definitions.
* Measured under pulse conditions to avoid excessive dissipation.
l____
BTW47 SERIES
OPERATING NOTES
1. The terminals should neither be bent nor twisted; they should be soldered into the circuit so that
there is no strain on them.
During soldering the heat conduction to the junction should be kept to a minimum.
2. Switching losses in commutation
For applications in which the thyristor is forced to switch from an on-state current ITRM to a high
reverse voltage at a high commutation rate (-dIT/dt), consult Fig. 9 (nomogram) to find the increase
in total average power. This increase must be added to the loss from the curves in Fig. 3.
ORDERING NOTE
Types with dVD/dt of 1000 V Ip,s are available on request. Add suffix C to the type number when
ordering; e.g. BTW47-800RC.
7Z 615771
A 1_
ex = 30
-i()(
50
(w)
0
a= 4
0
60
0
90
0
120
0
180
a = IT (RMSl
I T(AY)
p
2,8
2,2
1,9
1,6
I
r
40
2,2
1,9
I 28 J 1 J
I
I
0=4
I
30
II I
I
I
I
,
16
7
'(
7
J
I
~
......
V.
,
....<'
~
.....
/
'./v
..........
II~ ~I'"
.~~~
r-...
..... ~
......
.....
I/.~
1.11,;
r.....
6
\1 9\\
"
r-..
°sh°
7_ ~'.,~
·~o
....\
1-("1
,
.....
.....
......
......
.....
\
•
5
10
15
20 0
I T!AY) (A)
25
April
19781 (
\
105
\.\
\..
" .....
~
".....
......
r-t--.,
75
Tmb .... scale is for comparison purposes only and is correct only for
Fig. 3.
4
50
,
'\
......
r""-t--.,
o
o
95
\.z.
\.
'\
.......
!'.... .;;:
1"'-0
\'?>(5
"- \.
......
......
~
\~
\.
II\.
,
.....
1/
1\
\
"- \.
.......
I
i/I/.
I
10
II\.
1,\
I J
IIJ
1\
1\
I'\.
,
I J
II / /
I
20
interrelation between the power
(derived from the left-hand graph]
and the max. permissible temp.
condo form
angle factor
r....
I,\:'
1\
I'..
"I \
I"- I"\~
r-.. ......
I'....
~
.......... .....
100
Tamb (OC)
Rth mb-a :s;
115
\.'~
to....~
~~
.....~1 25
150
2°C/W
J
Thyristors
BTW47 SERIES
---,
400
\
ITSIRMS)
~
(A)
1\
\
~
300
7Z61578 1
maximum permissible non-repetitive
r.m.s. on-state current based on
sinusoidal currents ( f = 50 Hz )
I TSM
\
1\
~-ITSM
~-ITSIRMS)
time
with reapplied V RWMmax
1\
\
200
'\.
"\
r\:
~
I".i'oo..
100
...
Tj =125
...............
o
10- 3
°c
prior to surge
r-- -I-
10- 1
10
duration Is)
Fig. 4.
7Z615761
300
max. VT values
200
7Z611431
\
"\.
'\
"\.
IT
\.. I\..IG= I GT
(A)
I
150
I
"
200
Tj = 25°C 17
I
~
""-
[/125°C
"
I I
If I
100
I
II
II
100
J/
I
50
IV
IU
o
o
_t?
'/
./
5
2,5
Fig. 5.
VT IV)
7,5
00
100
ITM (A)
200
Fig.6.
I
April 1978
5
l_ _ __
BTW47 SERIES
1261140
7261232.
1500
2000
dVD
,
dt
dVD
dt
,
(V/fJ s)
"
1500
~
(V/lJs)
Tj=125°C
\
,
~
f-f-
\
1000
\
\
1\
\
'\
1000
'-
1\
,
~
,
~
'\.
500
I\.
'\
"'
"\
500
""
1"0..
......
I"
so
50
~(%)100
VORMmax
Fig. 7 Maximum rate of rise of off-state voltage
that with not trigger any device (exponential
method) as a function of Tj.
Fig. 8 Maximum rate of rise of off-state voltage
that with not trigger any device (exponential
method) as a function of applied voltage.
7Z61l33
-I- 1-1-
=~
I
'dI I I
I I I I
50 - l -I- - dt =100A/~s IRRM
.... ~
'"
(AI
1""0
200
"
1""-100.
1""0
If~SOHz I
100 1-1- I- 200
IL
I
:1
"
I
~
I
I I I
1-1-1~0
"'"
~
"-
1p
I
I
ITRM
---Ydl/dt t
IRRMY
r- 20
APIAV)
I-(WI,
'30
\
"
',
April
19781 (
...
,\
1
~
....
1""0
...
....
I'
1000 I- ~O?
I I
Fig. 9.
6
"'"
~
.,;
N
I
NOMOGRAM: power loss
~PIAV) due to 5witchingoff; Tj=12SoC
"
~
:/
1""0
}~R~ (IA
IL
I'
-10
2 00 I-
.,
I
II
I I
I
400 r-f-
200
VRV M=100V
J
Thyristors
BTW47 SERIES
- - - 7Z72551
6
7Z72557
300
IGT
(rnA)
I""-
'"
4
200
I"
I'
I'o..min
r-..
"
"-I'
"-
"
2
~
100
" ""
"'" .....
min
l'
o
o
-50
50
100
150
o-50
o
50
i'~
100
150
Tj (OC)
Tj (oC)
Fig. 10 Minimum gate voltage that will trigger
all devices as a function of Tj.
r-...
Fig. 11 Minimum gate current that will trigger all
devices as a function of Tj.
7Z59059
10
~ transient thermal impedance from junction to mounting base versus time
Zthj -mb
('t/w )
1/
1
2
.- ..... 10-
----
3
time(s)
Fig. 12.
10
BTW47 SERIES
7Z61579
300
envelope of average
l~·:
10
(A)
-m
-10
for safe operation at a given
temperature. the average current envelope of successive
cycles (see drawing above) must lie within the region
bounded by the curve shown below for that temperature
200
"-
100
.....
...
'" ....
~
......
I"..........Tj=Tmb=6SoC prior to starting
---- --........
......
r'"
I
-"",,-
J.,..
..... l"l°C
110~of
I
10
time (s)
7Z61580
300
envelope of average
",_~","M
10
(AI
for safe operation at a given
temperature. the average cur-
-1 0
~mJ
rent envelope of successive
200
cycles (see drawing abovel must lie within the region
bounded by the curve shown below for that temperat ure
I
.......
" '"
100
roo.
.....
"
I
1
,Tj=T mb=6SoC prior to starting
.........
.........
.......
i"o
100....
-
.....
.......
........
....
--- --
85°C
"I
""" ..........
10~
r---
~"I
I
I
I
I
I
10
time (5)
Fig. 13 Limits for starting or inrush currents.
8
April
19781
r
j
BTW92 SERIES
--------------------------------------------------------~
THYRISTORS
Also available to BS9341-F039
Silicon thyristors in metal envelopes, intended for use in general purpose three-phase power control
circuits.
The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW92-800R to
1600R.
QUICK REFERENCE DATA
1600R
BTW92-800R
Repetitive peak voltages
VDRMiVRRM
max.
1600 V
800
~ _ _ _ _ _ _ _ _ _ _~ _ _ _ _ _ _ _ _ _ _- J
Average on-state cu rrent
IT(AV)
max.
R.M.S. on-state current
IT(RMS)
max.
31 A
Non-repetitive peak on-state current
400 A
'TSM
max.
Rate of rise of off-state voltage
that will not trigger any device
dVo/dt
On request (see ordering note on page 4)
dVo/dt
<
<
MECHANICAL DATA
20 A
300 V/JlS
1000 V/JlS
Oimensions in mm
Fig. 1 T0-48: with metric M6 stud (cf> 6 mm); e.g. BTW92-800R.
Types with ~ in x 28 UN F stud (cf> 6,35 mm) are available on request. These are indicated by the
suffix U: BTW92-800RU.
-+- 4,2 ..3,2
124.max
'\
ff====a""'l"-1VH
II
H
\.....J
2,26_
max
I
:
-12,8max-
-+-
, -min
t
ft
1
1,6
,g
-22,2max__ 11,5 ----303max-------4.~1
10,72
Net mass: 14 g
Diameter of clearance hole: max. 6,5 mm
Accessories supplied on request: 56264A
(mica washer, insulating ring, soldering tag)
7Z69755.A
Torque on nut: min. 1,7 Nm (17 kg cm)
max. 3,5 Nm (35 kg cm)
Supplied with the device:
1 nut, 1 lock washer
Nut dimensions across the flats;
M6: 10 mm
% in x 28 UNF: 11,1 mm
April 1978
__B_nN
__9_2_S_E_R_IE_S_jl_________________________________
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEG 134)
Anode to cathode
Non-repetitive peak voltages
(t";;;10ms)
BTW92-800R 1000R 1200R 1400R 1600R
v
VOSMIVRSM
max.
800
1000
1200
1400
1600
Repetitive peak voltages
VORMIVRRM
max.
800
1000
1200
1400
1600 V
Crest working voltages
VOWMIVRWM
max.
600
700
800
800
Average on-state current (averaged over
any 20 ms period) up to T mb = 85 °C
800 V*
IT(AV)
max.
20 A
R.M.S. on-state current
IT(RMS)
max.
31 A
Repetitive peak on-state current
ITRM
max.
200 A
ITSM
2
1 t
max.
400 A
max.
800 A 2 s
Rate of rise of on-state current after triggering
with IG = 500 mA to IT = 60 A
dlT/dt
max.
300 A//J.s
Rate of change of commutation current
see Fig. 9
Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 125 0C prior to surge;
with reapplied V RWMmax
12 t forfusing
It = 10 ms)
Gate to cathode
Reverse peak voltage
VRGM
max.
Average power dissipation (averaged over
any 20 ms period)
PG(AV)
max.
1W
Peak power dissipation
PGM
max.
5W
Storage temperature
T stg
-55 to + 125 °C
Junction temperature
Tj
max.
10 V
Temperatures
125 °C
THERMAL RESISTANCE
Rth j-mb
1 0C/W
From mounting base to heatsink
Rth mb-h
0,2 0C/W
Transient thermal impedance (t = 1 ms)
Zth j-mb
0,06 0C/W
From junction to mounting base
* To ensure thermal stability: Rth j-a < 1,5 0C/W (d.c. blocking) or < 3 0C/W (a.c.). For smaller
heatsinks Tj max should be derated. For a.c. see Fig. 3.
2
April
19781 (
j
Thyristors
BTW92 SERIES
---CHARACTERISTICS
Anode to cathode
On-state voltage
'T = 50 A; Tj = 25 °C
VT
<
2,3 V *
Rate of rise of off-state voltage that will not trigger
any device; exponential method; Vo = 2/3 VORMmax;
Tj = 125 0C
dVo/dt
<
300 V/JLs
Reverse current
VR = VRWMmax; Tj = 125 °C
IR
<
5 rnA
Off-state current
Vo = VDWMmax; Tj = 125 °c
10
Latching current; Tj = 25 0C
IL
200 mA
Holding current; Tj = 25 0C
IH
<
<
<
Voltage that will trigger all devices
VD=6V;Tj=25 0 C
>
3,5 V
Voltage 'that will not trigger any device
VD = VORMmax; Tj = 125 °C
<
200 mV
Current that will trigger all devices
V 0 = 6 V; Tj = 25 °c
>
100 rnA
typo
typo
2 JLS
1,2 JLS
5 rnA
200 rnA
Gate to cathode
Switching characteristics
Gate-controlled turn-on time (1gt = td + t r ) when
switched from Vo = VOWMmax to IT = 10 A;
IGT = 150 rnA; dlG/dt = 1 A/JLs; Tj = 25 °C
t
IT
+
IGT
O~~~~--------~
71>'73514.1
Fig. 2 Gate-controlled turn-on time definitions.
* Measured under pulse conditions to avoid excessive dissipation.
April 1978
3
l_ _ __
BTW92 SERIES
OPERATING NOTES
1. The terminals should neither be bent nor twisted; they should be soldered into the circuit so that
there is no strain on them.
During soldering the heat conduction to the junction should be kept to a minimum.
2. Switching losses in commutation.
For applications in which the thyristor is forced to switch from an on-state current ITRM to a high
reverse voltage at a high commutation rate (-dIT/dt), consult Fig. 9 (nomogram) to find the increase
in total average power. This increase must be added to the loss from the curves in Fig. 3.
ORDERING NOTE
Types with dVD/dt of 1000 V Ills are available on request. Add suffix C to the type number when
ordering; e.g. BTW92-800RC.
72612341
condo form
angle factor
A
interrelation between the power
(derived from the left-hand graph)
and the max. permissible temperatures
0
= 30 0=4
0
60
2,8
gOO
2,2
120 0
1,9
0
180
1,6
Q(
-lex 1_
a = IT(RMS)
IT(AV)
75
I
T
f-- -
I 1._
2,8 -2,2- 19 -1,6/
40
"}
j
I
a=4 I
J I
p
(W)
I
I J
20
,
'//~
.~
/..~ ~
~~V'
'I'
'/ /'
1// /
Ii /
~
~
~
~
\
\..
7
~
j
:"
......
:" .....
*
.)
..........
1'1000..
'//
....
\..
~
r-...
i"-~
~
,
.....
......
I"~
I'
'1>
\ %--+-- - f.--~ "?> L
'\ \,0;
\9"
0\ 9~\.
"'l
......
'\.
'\.
-+f-- 95
~
'\1
,
~
i"
I
t=
I\.\.
\..
......
...... iooo..
...... 1'
!
+:-i-;--
"' ~.$'\: C -+-
'\. ?,-
'-
r-... ......
I'!.....
......... 6
"r-...
j.....~ r-.~r--.
~Io..:"
105
,'\\
I'. \.\.
ts ~\ ~~I-
"' ~
~"':::~~,
115
to-..
125
10
IT (Av)A
20 0
50
Tomb (oC)
100
Tmb-scale is for comparison purposes only and is correct only for Rth mb-a E: 2°C!W
Fig. 3.
4
.~
...... -2
~
~
o
o
.....
.......... ~
,
......
I'
.....
1/
I\.
'\.
......
'-
I
1/ / "
f
1111 1/11"
1/
7
)
/1
I
/
~
~
April
19781 (
j
Thyristors
BTW92 SERIES
---600
\
7Z61235 1
,
maximum permissible non-repetitive
r.m.s_ on-state current based on
sinusoidal currents ( f = 50 Hz )
.~
\
ITS(RMSJ
(AI
l'\
\.
,
I\,
~
400
ITSM
I'
~-ITSfI
~-ITS(RMS)
time
with reapplied \! RWMmax
1\
\.
\.
"-
"' ....
200
.........
.....
....
Tj
=125°C
~
a
.10- 3
prior to s'Jrge
I
......... ~
....
r-t-o
10- 1
10
duration (5)
Fig. 4.
,
7Z611421
\.
I
'" ,
max. VT values
200
I
I
I
l"\
L1
IT
(AI
150
f--
-
_Tj =2SoC
7Z611431
,
300
I I
I lL 125°C
'- I\,.IG=IGT
['..
~
200
...... to-..
r--.
I I
II
/1
I
1/
100
I
"
"
100
I
so
iJ
h
a
o
.-.?/
V
0
2,5
5
Fig. 5.
VT (V)
7,5
0
100
ITM (A)
200
Fig.6.
I
April 1978
5
7261140
7 Z61232.
1500
~~
2000
dVo
Cit
(V/fJ s )
1500
1\
1\
,
dt
dVo
~
,
(V/fJ S )
"
1000
,
1\
Tj=12S0C f-+-
1\
\
\
1\
,
1\
\
1000
'\
I\.
~
I\.
'\
I'\.
500
~
'\
"
500
,
1".......
""
o
o
so
so
~
~(%)100
VDRMmax
Fig. 8 Maximum rate of rise of off-state
voltage that will not trigger any device
(exponential method) as a function of
applied voltage.
Fig. 7 Maximum rate of rise of off-state
voltage that will not trigger any device
(exponential method) as a function of Tj.
7Z6,233
T
I
1
'dI I
Tf~50Hz
f-r- H--- 50 f-f-f- - dt =100A/ps IRRM
100H- f- 200
(AI
i""po..
II I J
I'
f7
1""
I\.
200
1""
1,.1
V
I\.
~O
I.;
II
II
I'
1
""1-100.
po..
I/IJ
"
1""
1""
10
'"
I/iJ
'""
2 00f-
~PIAV)
due to switchingoff; Tj=125°C
ITRM
--YdIldt t
IRRMY
10
I
1
I
f-i- 20
f-
f- ~P(AV)
H-(Wli
30
1,\
1\
"
,
April
19781 (
""
V
I.;
I""
po..
100.
p...
I"
JoO.,;;
1\
\
1\
1\
1p~0 ~ ~O?
VRWM =100V
I"'i
I':
Fig. 9.
6
~f-
'""po..
1'\
1
NOMOGRAM; power loss
I.."
....
N
lITIR~ (IA~_ f-1~0
1
1.1
1
400
"'"
'"
,..
200
j
Thyristors
BTW92 SERIES
- - - 7272551
6
7Z72557
300
IGT
(rnA)
"-
.....
t-...
4
200
"
""-
.....
"min
I"
~
'"
"
I"
~
'" I"
1"'-
100
2
1"'('0.,.
min
I"
I'
i""'1"!!..
~
o
a
-50
50
a-50
Fig. 10 Minimum gate voltage that will
trigger all devices as a function of Tj.
o
50
Fig. 11 Minimum gate current that will
trigger all devices as a function of Tj.
7Z59059
10
J==
transient thermal impedance from junction to mounting base versus time
Zthj- mb
(tt/W )
/'
1
./
_i---'"""
time(s)
10
Fig. 12.
April 1978
7
IOrv;:::":
300
envelope of average
10
(A)
for safe operation at a given
temperature, the average current envelope of successive
200
"
I'..
r.....
........
I"""
........
...........
1'0.
r--
105°C
l
prior to starting
r-..
I~
'"
I"
............
...........
"""
r--.
r-
--
"'"'-
10
envelope of average
IO~_""'"'
10
(A)
t
" ........
"
~
1
I
1''-
"'
~SoC
10
~mJ
"" Tj = Tmb= 65°C
I
I
prior to starting
......
" ........ ......."
........
.......
'"
~soC
--..
......
""
...........
---.
:-
10
Fig. 13 Limits for starting or inrush currents.
April
--+
for safe operation at a given
temperature, the average current envelope of successive
cycles (see drawing above) must lie within the region
bounded by the curve shown below for that temperature
200
8
time(s)
7Z61145
300
100
Io
~
........T j = Tm b=6SoC
85°C
100
--+
cycles (see drawing above) must lie within the region
bounded by the curve shown below for that temperature
""
"
-;
7Z61146
19781 (
time(s)
BTX18
II
II
SERIES
SILICON THYRISTORS
The BTXlSseries is a range of p-gate reverse blocking thyristors. in a TO-5 metal
envelope, intended for use in general low power applications up to 1 A average onstate current
QUICK REFERENCE DATA
VRWM
BTXlS-100 200 300 400 500
max. 100 200 300 400 500
V
Crest working off-state voltage
VDWM
max. 100 200 300 400 500
V
Average on-state current
up to Tcase = 105 °C
IT(AV)
max.
1.0
A
IT(AV)
max.
250
rnA
Non -repetitive peak on - state current
t = 10 ms ; T j. = 125 oC prior to surge ITSM
max.
10
A
Junction temperature
max.
125
oC
Crest working reverse voltage
Tamb
=
60 °C; in free air
Tj
MECHANICAL DATA
Dimensions in mm
Anode connected to the case
TO-39
t-D==~~~~
=
9
8.5
max
a
L
=
L
1_ 12.7
min
6.6 .....
max
_
9.4_
max
Acce ssories supplied on request: 56218; 56245.
August 1972
II
_I
7Z61386
BTX18
SERIES
II
"
All information applies to frequencies up to 400 Hz
RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)
ANODE TO CATHODE
BTX1S-100 200 300 400 500
Voltages 1)
Continuous reverse voltage
VR
max. 100 200 300 400 500 V
c.rest working reverse voltage
VRWM
max. 100 200 300 400 500 V
Repetitive peak reverse voltage
(6 = 0.01; f = 50 Hz)
VRRM
max. 120 240 350 500 600 V
Non-repetitive peak reverse
voltage (t:::; 10 ms)
VRSM
max. 120 240 350 500 600 V
Continuous off -state voltage
Vo
max. 100 200 300 400 500 V
Cre st working off - state voltage
\ VOWM
max. 100 200 300 400 500 V
Repetitive peak off-state voltage
(6 = 0.01; f =: 50 Hz)
VORM
max. 120 240 350 500 600 V 2 )
Non-repetitive peak off-state
voltage (t:::; lO ms)
VOSM
max. 120 240 350 500 600 V 2 )
Currents
Average on-state current (averaged over
any 20 ms period) up to Tease = 105 oC
IT (AV)
max.
1.0
A
IT(AV)
max.
250
rnA
On - state current (d. c. )
T case = 100 oC
IT
max.
1.6
A
R. M. S. on -state current
IT(RMS)
max.
1.6
A
Repetiti ve peak on - state current
ITRM
max.
10
A
Non-repetitive peak on -state current
( t = 10 ms, half sinewave)
ITSM
max.
10
A
at T arnb= 60
°c
1) These ratings apply for zero or negative bias on the gate with respect to the cathode, and when a resistor R ~ 1 kS1 is connected between gate and cathode.
2) The device is not suitable for operation in the forward breakover mode.
2
September 1971
BTX18
SERIES
RATINGS
GATE TO CATHODE (with 1 kQ resistor between gate and cathode)
Voltages
Forward peak voltage
max.
10
V
Reverse peak voltage
max.
5
V
max.
0.2
A
Current
Forward peak current
Power dissipation
Average power dissipation (averaged over
any 20 ms period)
PG(AV)
max. 0.05
W
Peak power dissipation
PGM
max.
0.5
W
TE MPERA TVRES
Storage temperature
Junction temperature
Tstg
-55 to +125
°c
Tj
max.
125
°c
10
°c/w
Rth j-a
200
°c/w
Zth j-c
2.5
oc/w
THERMAL RESISTANCE
From junction to case
Rth j-c
From junction to ambient
Transient thermal resistance (t
= 10 ms)
CHARACfERISTICS
ANODE TO CATHODE
Voltages
BTX 18 -100 200 300 400' SOO
On-state voltage
IT
= 1.0 A; Tj = 25
1)
°c
< 1.5 1.5 1.5 1.5 1.5 V
Rate of rise of off-state voltage that
will not trigger any device
RGK = 1 kQ; Tj = 125 oC
See page 6
Currents
Peak reverse current
VRM
= VRWMmax;
Tj
= 125 °c
< 800 400 275 200 160 IlA
= 125 oc
< 800 400 275 200 160 IlA
Peak off - state current
VDM
= VDWMmax;
Tj
1) VT is measured along the leads at 1 em from the case.
September 1971
IJ
II
3
BTX18
SERIES
CHARACTERISTICS
(continued)
Latching current; Tj
= 125 0C
typo
10 rnA
<
5.0 I).1A. 1)
VGT
>
2.0 V
VGO
<
200 mV
IGT
>
5.0 rnA
tq
typo
20 Ils
tq
typo
35 IlS
Holding current; T j = 25 0C
GATE TO CATHODE
Voltages
= 25 °c
Voltage that will not trigger any device; Tj = 125 °c
Voltage that will trigger all devices; Tj
Current
Current that will trigger all devices; Tj
SWITCHING
= 25 oc
CHARAcrERISTIC~
Turn off time when switched from
IT
= 300
rnA to IR
= 175 rnA; Tj = 25 0 C
Tj = 125 0c
NOTES
1. When using a soldering iron the thyristor may be soldered directly into the circuit, but the heat conduction to the junction should be kept to a minimum by using a thermal shunt.
2. Thyristors may be dip soldered at a solder temperature of 245 oc, for a maximum soldering time of 5 seconds. The case temperature during dip soldering
must not at any time exceed the maximum storage temperature. These recommendations apply to a thyristor mounted flush on a board with punched-through
holes, or spaced 1. 5 mm above a board having plated-through holes.
3. Care should be taken not to bend the leads nearer than 1. 5 mm from the seal.
1) Measured under the following conditions: Anode supply voltage = +6.0 V.
Initial on - state current after gate triggering = 50 rnA.
The current is reduced until the device turns of.
4
II
I
September 197:
BTX18
II
SERIES
7Z10300 2
3
Ptot
(W)
~I---
I I -t---!S
I I
I
I L C7)
.
Q)
'!"'1
t---~r- C'\i
r'>v1J Il
1--+--
i
JII
1/'1 r)
'Jil 1/
'"
~,
II
rJJ
o
J
~
I'-
I'-
IL
I'-
~Oo
IL
I"'-C'/Ip
I
-,...::
,I
V
-~I'-
I-
'"
+_+++
t\.
1
I'-
~
r-.
--
1
ITAV (A)
i
I\.
l'
l'
t"-
r-...
~
.....
t-..
I
-1'00.
for operation in this area
.~ refer to curve below
0
I\.
1',
t"'-
I
~
I .....
i"'r-..,
j
1\
~
""
2%,IW
105
' ~d
°0
I'- <:'//i t---t---I-I'\~_
~
J
l-
\C\~
I'-I'-~Oo
//1/
lO~
.,......" //11'"
'/
-\1J
~ ..
~,
a.
",POC.I
r/l/
I
II
1-11-1---
J
J
111/11
--
\
I\.
i"'"
115
,
""1\..• 1\..t.1\.,
........ !"
--
~
I'
..... ~t"'-
"I\.1\..~
"
1-1-
.l\,.
1"--
50 Tamb (Oe)
20
95
-,
-1
-
I
I
)
,--
interrelation between the power (deri ved from
the left hand graph) and the max. allowable
temperatures
I'-
If
I111 1/'1
I
II
II
1---1-. I-t---
"ti
1.6
-I--- I---ot---
+- -
v· 1
1.9
I
i
I
I
2
IC\
Form
factor
a-4
2.8
2.2
Condo
angle
0<" 30 0
60 0
90 0
120 0
180 0
~~
'1"'" !=II. 125
100
7Z1030u 1
0.4
d.c.
-l--
ITAV 0:1.6
(A)
1.9
~
0.3
,.
..
_
t-
2.2
2.
-+--
~
•
~
4
0.2
0.1
I
50
June 1969
II
II
5
BTX18
1000
II
II
SERIES
RGK= lk.!1
7210308
max. rate of rise of forward
off-state voltage not to trigger any device against junction temperature
~
dVo
--at
II
I
I
I
I
(V/ l-1s)
I
100
7Z10309
__ max. rate of rise of forward
off-state voltage not to trigger
t-'---+--t~ , -t-+-~r r- - any device plotted against gate
to cathode resil~rnce
1000 T·=125°C
J-~-- ~
dVo
-at
r- ~_
-r--~
It
1\
(V1~s) t---- I
~
\
Il
100
-H
t-t- t-t-
I'
+{
_\L~
I!
I
I
i"'i'"
1\-i\
I
"-
-~
--1-
--
t- --
I_
())Q.t
"'l-
I-r--r--
~
I
10
10
~~
-;'::-rrISS; ~f=
~~
I
Ii
!
i
I
J
I
i
!
I
I
i
I
Ii i
50
1 ~
11
I
':
!
1
I
I
!
i I
II
i
I
! I
100 Tj (OC) 150
7Z10301
typical turn off time when switched fr om
IT = 300 rnA t o IR = 175 rnA versus junct ion
temperature
2.0
10
50
6
II
100 Tj (Oe) 150
II
June 1969
BTX18
II
SERIES
7ZI0305
6
7ZI0303
t--t--t-+H++H++~~"rHH'++'+"+H~rH++H
Gate characteristics ~-1with curves r-r-ll'~R=
VFG t--PGAV:r-~h-005WI-I-- r , I--~' ._~\
( V)
Ll~
4
PGM max =0.5W
VFG
±
min. gate current to
trigger all devices at T = ~-
(V) t--t--t-~+H~~-+H~H+H+~+H~
\
4
-I-
1\,
\1
,
3~m2i~n~.gaS9t:e~vo~1~t_f~5,al!E81tE8t~r8
area of certain
triggering ~
\1
age to trigg~+
all devices
~
\1
h-r..,...,...,rr-r-r-riH.',IlH
+t~
-1-1\
-r
~
Ru
I,{')
+,,0
-t-++-+ N
rt+
G
rr~' I
....T 11,{') r~ in
It-
t~+' -tff:
\
:\
,
2
\ 6=1.0
I"
/.l
I
...
~
1"'
t--~
..........
......
... 1-'"
1..-1""'"
Vvi',
~
IFG (rnA)
100
2
7ZI030?
Tj = 25 to 125°C
8
, I
IT
(A)
6
~
i~C5)
~
.+ .
4
+H=-:=
max. gate voltage not to trig
ger any device at Tj =125°C
i""
50
<¥ ' /
1+'±:: ~ ...
.....
'
t-
~r-:
'~ltt
;j~ '+
l~ ~
+ ~:t
-+
2
.l-
++::..o!"'"
+
~.-l.
2
VT (V) 3
4 IFG (rnA) 6
BTX18
SER1ES
100
II
II
7Z 10302
....-
1---
t-
Zth j-c
(OCI W)
transient thermal resistance from
junction to case versus time
I,
II
!
10
.... r'"
~
I
~
_.-
II
I
I
II
I
I
f--
time (s)
10
7Z103062.
30 I
max. permissible non repetitive
r. m. s on -state current
I
I
ITS(R MS)
(A)
..
-f-
20
'-'----
t- Tj =125°C (prior to surge)1\
,
1\
I'\.
".....
10
""-
~
'to-.
-l"- i-...
I
I
1
, !
o
o
' i
1 I
I
; I
5
m
duration of surge (ms)
8
II
11
June 1969
_ _ _ _J
BTY79 SERIES
THYRISTORS
Also available to BS9341-F001 to F009
Silicon thyristors in metal envelopes, intended for use in power control circuits (e.g. light and motor
control) and power switching systems.
The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTY79-400R to
1000R.
QUICK REFERENCE DATA
BTY79-400R
Repetitive peak voltages V DR MIV R RM max.
1000R
1000 V
400
Average on-state current
'T(AV)
max.
10 A
R.M.S. on-state current
'T(RMS) max.
max.
'TSM
150 A
Non-repetitive peak on-state current
MECHANICAL DATA
16 A
Dimensions in mm
Fig. 1 TO-64: with 10-32 UNF stud (¢ 4,83 mm).
4,83
max
t
1,98J
_I
9,3
max
... 3,5_
max
_10,28_
__ 11,5 ____ II max 21,72 -------i~~1
10,72
max
max
Net mass: 7 g
Diameter of clearance hole: max. 5,2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)
56262A (mica washer, insulating ring, plain washer)
7Z6590S
Torque on nut: min. 0,9 Nm
(9 kg cm)
max. 1,7 Nm
(17 kg cm)
Supplied with devic.e: 1 nut, 1 lock washer
Nut dimensions: across the flats: 9,5 mm
April 1978
BTY79 SERIES
l~_ __
RATINGS
Limiting values in accordance with .the Absolute Maximum System (IEC 134)
Anode to cathode
BTY79-400R
Non-repetitive peak off-state voltage
(t';;;;; 10 ms)
VOSM** max.
Non-repetitive peak reverse voltage
(t';;;;; 5 ms)
500
500R
600R
800R 1000R
1100
1100
1100
1100 V
VRSM
max.
500
600
720
960
1100 V
Repetitive peak voltages
VORMNRRM
max.
400
500
600
800
1000 V
Crest working voltages
VOWMNRWM
max.
400
500
600
800
1000 V*
10 A
Average on-state current (averaged over
any 20 ms period) up to T mb = 85 oC
IT(AV)
max.
R.M.S. on-state current
'T(RMS)
max.
16 A
Repetitive peak on-state current
'TRM
max.
75 A
'TSM
12 t
max.
150 A
max.
112 A 2 s
dlT/dt
max.
50 A!lls
PG(AV)
max.
0,5 W
PGM
max.
5W
Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 125 0C prior to surge;
with reapplied V RWMmax
2
1
t for fusing (t = 10 ms)
Rate of rise of on-state current after triggering with
IG = 150 mA to 'T = 30 A; dlG/dt = 0,25 A/IlS
Gate to cathode
Average power dissipation (averaged over any 20 ms period)
Peak power dissipation
Temperatures
Storage temperature
T stg
Junction temperature
Tj
-55 to +125 °C
max.
125 °C
THERMAL RESISTANCE
From junction to mounting base
Rthj-mb
1,8 0C/W
From mounting base to heatsink
with heatsink compound
Rthmb-h
0,5 oCIW
From junction to ambient in free air
Rthj-a
45 oCIW
Transient thermal impedance (t = 1 ms)
Zthj-mb
0,1 oCIW
* To ensure thermal stability: Rth j-a < 4 oCIW (d.c. blocking) or < 8 oCIW (a.c.). For smaller heatsinks Tj max should be derated. For a.c. see Fig. 3.
** Although not recommended, higher off-state voltages may be applied without damage, but the
thyristor may switch into the on-state. The rate of rise of on-state current should not exceed
100 A/IlS.
2
AP'il19781 (
J
~~
----
BTY79 SERIES
CHARACTERISTICS
Anode to cathode
On-state voltage
IT = 20 A; Tj = 25°C
VT
<
2 V*
Rate of rise of off-state voltage that will not trigger any device;
exponential method; VD = 2/3 VDRMmax; Tj = 125°C
dVo/dt
<
50 V/J1.s
Reverse current
VR = VRWMmax; Tj = 125°C
IR
<
3 mA
Off-state current
VD= VDWMmax; Tj = 125°C
10
<
<
<
150 mA
Voltage that will trigger all devices
V D = 6 V; Tj = 25°C
>
1,5 V
Voltage that will not trigger any device
VD = VDRMmax; Tj = 125°C
<
200 mV
>
>
30 mA
<
1,5 J1.S
0,2 J1.S
Latching current; Tj = 250C
IL
Holding current; Tj = 25°C
IH
3 mA
75 mA
Gate to cathode
Current that will trigger all devices
VD = 6 V; Tj = 25°C
On request (see ordering note on page 4)
20 mA
Switching characteristics
Gate-controlled turn-on time (tgt = td + t r ) when switched
from Vo = 800 V to IT = 25 A; IGT = 250 mA;
dlG/dt = 0,25 A/J1.s; Tj = 25°C
typo
r
Vo
a
~l
--t--t-=---
\
Fig. 2 Gate-controlled turn-on time
definitions.
* Measured under pulse conditions to avoid excessive dissipation.
3
l_ _ __
BTY79 SERIES
OPERATING NOTE
The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there
is no strain on them.
During soldering the heat conduction to the junction should be kept to a minimum.
ORDERING NOTE
Types with low gate trigger current, IGT > 20 rnA, are available on request. Add suffix A to the type
number when ordering: e.g. BTY79A-400R.
30
p
(W)
20
n
__ I
Oi
7Z67629.1
interrelation between the power
(derived from the left-hand graph)
and the maximum permissible
temperatures
IT(RMS)
a=--IT(AV)
1_
a
300 4
600 2,8
900 2,2 t-t-t- r- 2,8
1200 1,9 a=4
1800 1,57
J
II
Oi
II
10
V
II
1/11
J
'r-2/
j
II'
1,6
j
/
1/
I'.
1/
/
I""
I
II
I'
ro...
I
/
I"'
~
,$
I.....
""
j
~V/
f"
r--.
i'
t....
l/
~
~
I\, ,
I....
I....
1\
l"l.
~,
,,
I"'
I......
"
~
1'-0,1'"
I......
l'
I'
I'
~
107
~
I\.
"'" 1'.1"'
r-.[""o.
l.... L...
~
I'
.......... ~~ ~~
r"N ~i\~
1""-1"'""""
~
89
Ll
I"\,
--to-.
/~~
I/I""
...
~
I I\. ;--'
'I
" "- "-
f"
/V
VilLI
~
I,
~
J
II
J
1,9
S=1Ill~
I' 1""-[""1
II
h~~
o
5
IT(AV) (A)
10
71
125
a
Fig. 3 (1) T mb-scale is for comparison purposes only and is correct only for Rth mb-a"'; 6 oCIW.
4
April 1978
I(
J
Thyristors
BTY79 SERIES
----
7Z67630.2
300
maximum allowable non-repetitive
r, m, s, on state current based on
sinusoidal currents (f = 50 Hz)
ITS(RMS )
(Al
200
'V\--A=-'TSM
~ - - ~-
,,
1\
ITS(RMS)
time
I'\.
with reapplied VRWMmax
,
ITs M
i"I
~
I'
100
~
"' .....
.......
-
lj = 125°C prior to surge
t"-
~
~
duration (s)
10
Fig. 4.
150
7Z679661
~
II
~J
11
r- - - l j = 25°C
---lj =125°C
I
:=
I
I
lL typ
VTI
II
I
I
I
J
Im~x. 'r-Lr-rVT
I
100
I
~
I
I!-rJ
I
I
I(
-'
L#
Ii
50
I,'
1/
j
V
j
1/
L'
lL
V
II
V
..1.
~'
IL
a
a
Ii'"
1'1/
I'
~
.~J;.-'
3 VT (V) 4
Fig. 5.
5
l_______
BTY79 SERIES
7Z67965
7Z78440
75
IGT
\
\
,
(rnA)
\
2 ......
,
50
i'o..
1\
\
......
""
\
1\
I" min
""......
1\
.....
......
,
, ,
\.
\.
i'o..
......
,
I'
25
,
"'
.....
BTY79
'"
......
BTY79A' ....
I
1
o
-50
o
50
o
-50
f---
I'
.... """
I
I I I
o
50
100
150
T (oC)
j
Fig. 6 Minimum gate voltage that will trigger all
devices as a function of Tj.
6
April 1978
y
Fig. 7 Minimum gate current that will trigger all
devices as a function of Tj.
J
Thyristors
BTY79 SERIES
---7Z72228 1
7272227 1
300
Tj=125°C
11
1000
1\
dVO
Cit
dVo
(V/J.lS)
Cit
(V/J.ls)
750
200
\
,
\
,
1\
\
,
,
1\
saO
,
:\
1\
1\,
1\
"
250
,
1\
100
,
I\.
I\..
1,\
'" r.....
a
a
,
1\
1'\
50
,
I'
a
a
..... r-.,
50
VOM
VORMmax
Fig. 8 Maximum rate of rise of off·state voltage
that will not trigger any device (exponential
method) as a function of Tj.
(0/) 100
°
Fig. 9 Maximum rate of rise of off-state voltage
that will not trigger any device (exponential
method) as a function of applied voltage.
7
l______
[]
BTY79 SERIES
7Z72292
75
envelope of average
I,~:t
10
(A)
-10
I\.
"
\.
\.
"
50
for safe operation at a given
temperature, the average current envelope of successive
cycles (see drawing above) must lie within the region
bounded by the curve shown below for that temperature
'\..
\.
I
I
..........
.....
i""o..
......
25
..........1j =Tmb = 25°C prior to starting
..... ......
.........
l'..
~5°c
.....
~
I'
...........
.........
....... S5°c
"'-I..
.... 105 1oC
i'..
~
r-..
I"
...
i""'-....
i""
... ~
--... t--
r---
- .......
.............-~
--
1"""1-
1-00-.
~
-
150r-__~r-~~-'-'TTTr____- '__~'-'-rTlI~____________________________~7~Z~72~2~91~,
envelope of average
10
t------1I-,,-+-+-+-t-++++---I---+---1r-f-+-++-H I,
~":t
(A)
1------1--'\~-+-+_+_++++----_+_--+-+-+-H-+H for safe operation at a given
1----t----+'I\IH-+-+-t+H------+---+-+-+-t-+++I ~:~p:~~!~~~~t:; sa:ce:~;~v~ur100
I'\.
cycles (see drawing above) must
1-------1---+--+~_+_++++-----_+_--+-+_+-t-++H
lie within the region
bounded by the curve shown below for that temperature
I
I
1---+..........
....3oo,d-.....
--+-+-H-H~..,....
.......... lj =Tmb = 25°C prior to starting
-~
1"--_
----
t-t-HH-t---+--t-HH-+t+t
-
~
Fig. 10 Limits for starting or inrush currents.
8
April 1978
J(
r--_
j
Thyristors
BTY79 SERIES
----150
"-
Io
"-
10
"
R"a,.
t
"-
'" "-"'- , "
100
"-
'" ....."-1j =T
mb
~
"-
........
50
r-....
............
....
...........
...... 65°C "
.........
~
8 ° ""
~7
T..,...
..............
I I
IIIII
°
= 25 C prior to starting
"'-.J I
N
"'-.........
.....
~mJ
for safe operation at a given
temperature, the average current envelope of successive
cycles (see drawing above) must lie within the region
bounded by the curve shown below for that temperature
I\..
.........
-10
output current
I\..
(A)
7Z72290
-
i"""-o.. 105°C
...
..........
-.......
...........
...........
....."
r-
r--.....
:"""-""",,
10
time
(5)
Fig. 11 Limits for starting or inrush currents.
7Z679691
10
~
~
~
-'
,"'"
./
,
./
10- 1
10
time
(s)
Fig. 12.
April 1978
9
j
BTY8? SERIES
----------------------------------------------------THYRISTORS
Silicon thyristors in metal envelopes, intended for power control and power switching applications.
The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTY87 -400R to
800R.
QUICK REFERENCE DATA
BTY87-400R
Repetitive peak voltages
max.
VDRMNRRM
Average on-state current
400
800 V
'T(AV}
max.
R.M.S. on-state current
'T(RMS}
max.
25 A
Non-repetitive peak on-state current
'TSM
max.
140 A
MECHANICAL DATA
Fig. 1 TO-48: with
~
16 A
Dimensions in mm
in x 28 UNF stud (¢ 6,35 mm).
•
7,6
3,4
max
1/4 in x 28UNF
-'1,-..1--
-If"'===~=a==r.....w
--- min
'\
'
H
-,----t
6,35
max
124 max
~
--
I
1'1
1
H
t
~12,8maxJ
9)Q{t
-.1 I.
\.....J
2,26_
max
1,9
1,6
------ 22,2 max - ____ 11,5 - 1 ....- - - -..... 303 max -----t~~1
10,72
Net mass: 14 g
Diameter of clearance hole: max. 6,5 mm
Accessories supplied on request: 56264A
(mica washer, insulating ring, soldering tag)
7Z69755.B
Torque on nut: min. 1,7 Nm (17 kg cm)
max. 3,5 Nm (35 kg cm)
Supplied with the device:
1 nut, 1 lock washer
Nut dimensions across the flats: 11,1 mm
April 1978
l____
BTY87 SERIES
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Anode to cathode
BTY87-400R 500R 600R 800R
Non-repetitive peak off-state voltage (t:O:;;; 10 ms)
V DSM
max.
500
850
850
850 V
Non-repetitive peak reverse voltage (t:O:;;; 5 ms)
V RSM
max.
500
600
850
960 V
Repetitive peak voltages
VDRMIVRRM
max.
400
500
600
800 V
Crest working voltages
V DWMIV RWM
max.
400
500
600
800 V *
Average on-state current (averaged over
any 20 ms period) up to T mb = 52 °C
. at T mb = 85 °C
IT(AV)
max .
max.
R.M.S. on-state current
IT(RMS)
max.
25 A
ITRM
max.
140 A
ITSM
12 t
max.
140 A
max.
100 A 2 s
dlT/dt
max.
VRGM
max.
5 V
Repetitive peak on-state current
Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 125 0C prior to surge;
with reapplied VRWMmax
2
1
t for fusing (t
= 10 ms)
Rate of rise of on-state current after triggering
with IG = 325 mA to IT = 50 A
~T(AV)
16 A
10 A
20 A/Ils
Gate to cathode
Reverse peak voltage
Average power dissipation (averaged over
any 20 ms period)
PG(AV)
max.
0,5 W
Peak power dissipation
PGM
max.
5W
Storage temperature
T stg
-55 to + 125 oC
Junction temperature
Tj
max.
Temperatures
125 oC
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
From mounting base to heatsink
with heatsink compound
Rth mb-h
Transient thermal impedance (t = 1 ms)
Zth j-mb
1,6 0C/W
0,2 0C/W
0,09 0C/W
OPERATING NOTE
The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there
is no strain on them.
During soldering the heat conduction to the junction should be kept to a minimum.
* To ensure thermal stability: Rth j-a < 4,5 oC/W (d.c. blocking) or < 9 °C/W (a.c.). For smaller heatsinks Tj max should be derated. For a.c. see Fig. 3.
2
April 1978
j(
J
Thyristors
SlY87 SERIES
CHARACTERISTICS
Anode to cathode
On-state voltage
IT = 50 A; Tj = 25 °C
VT
<
3 V*
Rate of rise of off-state voltage that will not trigger any device;
exponential method; Vo = 2/3 VORMmax; Tj = 125 °C
dVo/dt
<
20 V//ls
IR
<
3 mA
10
<
IL
typo
IH
typo
VGT
>
3,5 V
VGD
<
200 mV
IGT
>
65 rnA
tgt
typo
Reverse current
VR = VRWMrnax; Tj = 125 °C
Off-state current
Vo = VOWMrnax; Tj = 125 °C
Latching current; Tj = 25 oC
Holding current; Tj
= 25 0C
3 mA
20 mA
10 mA
Gate to cathode
Voltage that will trigger all devices
Vo = 6 V; Tj = 25 °C
Voltage that will not trigger any device
Vo = VORMmax; Tj = 125 °C
Current that will trigger all devices
V 0 = 6 V; Tj = 25 °C
Switching characteristics
Gate-controlled turn-on time (tgt = td + t r ) when switched
'from Vo = 400 V to IT = 50 A; IGT = 200 mA; Tj = 25 °C
t
2 ./lS
T
IT
•
I
Vo
o
~l
---+---+-=---
---tct---' t,
------tgt -
1-
-
\
Fig. 2 Gate-controlled turn-on time definitions.
* Measured under pulse conditions to avoid excessive dissipation.
April 1978
3
l_ _ __
BTY87 SERIES
7Z62027
60
interrelation between the power
(derived from the !lift hand graph)
and the max. allowable temperatures
condo form
angle factor
ex=300 0=4
60°
2.8
.......locigOO
2.2
oc =conduction 120°
1.9
ongle
1800
1.6
~
P
(WI
I l11.9
! ... 2.2 11
40
V
2.8
1/
J
!/
0=4
II
rl
I
II JI
I
Jil
r~
:/
V
IJ
1.6
"
"
I~
1'\
,
I'\.
I~
I".
1'\
i"I
.p
~
I\.
"'?>
",,\,6,
I"
j
I'
"
'"
" <-
" ""....
lJ:jrf·~
~I.J
~
6
ro- ...
r°l"-...
~
.... '"
""" ....
...
~
~
I"'"
roo.
1""' ....
r- ...
I\.~~
'" I" '\.
"
r-- ...
77
93
""'-
I"'"
8 ....
I
'" I'\.
J
....
""" ~ ....
r- ...
I
,
_
~- I-,,",~~'~o
I"'"
...."""
q$~"O
I"
1'00..
f-f-h
f-rff-
1'\
1/
IJ
Ii'
I\.
I\.
d.c:) I\.
J
[I
f--f-- f- ....
20
I-
""''''
,,\.
" "-""
roo.
roo.
.... "
,
°°~""
10
I
T(AV)
20
109
~
~~
'I~~
°
50
125
100
Fig. 3.
7Z077761
max. pl'rmissihle non reperilive peak on-stall'
current hasedoll sinusoidal CUt-rem,.; (f= 50Hz)
200
I TSM
--
(A)
---
v\
7'\
ITSM
t
each current pulse is followed by .
the crest working reverse voltage
150
100
t-
-f-
Tj =125°C (prior to surge)
t------
l-
f-
50 r - - - - '
a
3
45678910
50
number of cycles
Fig. 4.
4
AP'il19781 (
100
J
~~
STY87 SERIES
- - 400
V
7Z05850 - 2. 2.02.5hg
Typical turn on characteristics when switched from
VO=400V or 50V respectively to I T=IA,10A or SOA
Gate source SV.2SJ1
(V)
300
60
V
I T=
200
(V)
50A
fOA
IA
IT=
50A
fOA
-fA
40
20
100
0
o
4
2
t fflS)
2
4-
6
t
Fig. 5.
filS)
7Z09364
1] =25 to 125°C
200
IT
(A)
150
.,..rt,
100
.Q
:P:
:\-.
I:
50
2
4
Vr(V) 6
Fig. 6.
April 1978
5
STya7 SERIES
l_ _ __
7Z05196-2 2Q25 hg
12
VFG
(V)
10
'fGMmaJC -10V
1/
I/V
1/,/
1/
~
1/
£
/
8
1/
IA
1/
6
GMmox
Vl
V
SW
/
~
1\
1/
1//
1/
I/I~
1//
~v/
1//
1/,/
1.
/~
Area uf certain
triggering
V I.)' "'/,VI.I
1/1/ 170'(I~ -f--f,,(',
1/ /
4
1/
1/
1/
V
IV
1/
2
1/
IJI"'I/
V'
1/
1/
1/
1/
1/
~
1/
~('l~
~
r/
~
17171/I/?lt..
/1./1/1
/QIS,/ 1/17Ld....
...
""
OS
1
.....
t-
~S
11
""' ~ .. "" .. 1-(,""'''"ll5 IFG (A)
Gate characteristics with curves ~AV=Q5W
Fig. 7.
6
.,
100
~~s.
11 1
I I
00
,
I'
I/./V
.... 100
I'"t-
1
\_ 1 I
~I
V/ I/'~.L
r/I/
~
~""'
1
/I?}-~Q/
\/1/ \/1/1/1/
,... ....
-2A
f~";1max-;..
1//1//
f'.,
1\
Z
2
j
Thyristors
STya7 SERIES
- - 1Z01314.1
(V)
2
20
60
Fig. 8.
7Z10137
10
transient thermal resistance from junction
to mounting base versus time
Zth j-mb
(OC/W)
~i"'"
17'
/~
1
v
V
l,..o~
1 time (5) 10
Fig. 9.
April 1978
7
l
STY8? SERIES
-------------------------------------------------------------1Z09361
~'.", of tho "'kIoo
1
0
80
I
\ r\
~
,\
':l
I i.." V".'
10
(A)
~
AI/@rag@ output
"
~~ ~~
r~
"
~
time
~~ ~~
maximum allowable starting and inrush currents for various mounting base temperalures versus time in a single phase hridge.
60
"
40
~
J~
......
....
Tmb=~50(
"""
I"""
20
85°C
r--
105°~-
10- 1
10
time (s)
Fig. 10.
7Z09362
10
80
""'"
-10
of the bridQlt
"\I\~
~ ~ ~ ~ ~~
1\"" 1\1'
10
(A)
....
",0---
'"
"....
time
-
maximum allowable starting and inrush currents for various mounting base temperatures versus time in a three phase bridge.
60
"
" ....
Tmb 65°
.......
""
'"
.....
85°C
--
20
o -z
~
105°C=
10 -1
10
10
Fig. 11.
8
Apcil
19781 (
~
~ ~ ~ ~ ~~ i
~
'"
40
~m
time (s)
j
BTY91 SERIES
--------------------------------------------------------THYRISTORS
Silicon thyristors in metal envelopes, intended for power control and power switching applications.
The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTY91-400R to
800R.
QUICK REFERENCE DATA
BTY91-400R
Repetitive peak voltages
max.
VDRMIVRRM
Average on-state current
400
800 V
IT(AV)
max.
16 A
R.M.S. on-state current
IT(RMS)
max.
25 A
Non-repetitive peak on-state current
ITSM
max.
200 A
MECHANICAL DATA
~
Fig. 1 TO-48: with
Dimensions in mm
in x 28 UNF stud (¢ 6,35 mm).
-.
___ 4,2 __
3,2
_ 7,6
max
3,4
max
1/4 in x 28 UNF
-IF===~
-'--..
--I ,..,[..-
=a=-r-1I1H
6,35
max
t
124max
'\
-'
min
'
--
I-~J,...--_-, ~
--'kj ~It:=r-I~~~
H
I
\....J
2,26_
max
---
-12,8max-
:R
r
1,9
1,6
-22,2max-
___ 11,5 _ 1 .....1 - - - - - - 303 max -------i~~1
10,72
Net mass: 14 g
Diameter of clearance hole: max. 6,5 mm
Accessories supplied on request: 56264A
(mica washer, insulating ring, soldering tag)
7Z69755.B
Torque on nut: min. 1,7 Nm (17 kg cm)
max. 3,5 Nm (35 kg cm)
Supplied with the device:
1 nut, 1 lock washer
Nut dimensions across the flats: 11,1 mm
'I
Apri11978
l_ _ __
BTY91 SERIES
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Anode to cathode
BTY91-400R 500R 600R 800R
Non-repetitive peak off-state voltage (t';;;;; 10 ms)
VOSM
max.
500
850
850
850 V
Non-repetitive peak reverse voltage (t ~ 5 msl
V RSM
max.
500
600
720
960 V
Repetitive peak voltages
VORMIVRRM
max.
400
500
600
800 V
Crest working voltages
VOWMIVRWM
max.
400
500
600
800 V*
Average on-state current (averaged over
any 20 ms period) up to T mb = 77 °C
at T mb =85 °C
IT(AV)
IT(AV)
max.
max.
R.M.S. on-state current
IT(RMS)
max.
25 A
ITRM
max.
200 A
ITSM
12 t
max.
200 A
12 t for fusing (t = 10 ms)
max.
200 A 2 s
Rate of rise of on-state current after triggering
with I G = 200 mA to IT = 50 A
dlT/dt
max.
Repetitive peak on-state current
Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 125 0C prior to surge;
with reapplied V RWMmax
16 A
14 A
20 A//ls
Gate to cathode
Reverse peak voltage
VRGM
max.
5 V
Average power dissipation (averaged over
any 20 ms period)
PG(AV)
max.
0,5 W
Peak power dissipation
PGM
max.
5 W
Storage temperature
Tstg
-55 to
Junction temperature
Tj
max.
Temperatures
+ 125 °C
125 °C
THERMAL RESISTANCE
From junction to mounting base
Rth j-mb
1,6 °C/W
From mounting base to heatsink
with heatsink compound
Rth mb-h
0,2 0C/W
Transient thermal impedance (t = 1 ms)
Zth j-mb
0,09 °C/W
OPERATING NOTE
The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there
is no strain on them.
Ouring soldering the heat conduction to the junction should be kept to a minimum.
* To ensure thermal stability: Rth j-a < 4,5 °C/W (d.c. blocking) or < 9 °C/W (a.c.). For smaller heatsinks Tj max should be derated. For a.c. see Fig. 3.
2
April 1978
j(
j
Thyristors
BTY91 SERIES
--CHARACTERISTICS
Anode to cathode
On-state voltage
IT = 50 A; Tj = 25 °C
VT
<
2 V*
Rate of rise of off-state voltage that will not trigger any device;
exponential method; VD = 2/3 VDRMmax; Tj = 125 °C
dVO/dt
<
20 V/lJ,s
IR
<
3 mA
Reverse current
VR = VRWMmax; Tj = 125 °C
Off-state current
Vo = VOWMmax; Tj = 125 °C
Latching current; Tj = 25 0C
Holding current; Tj = 25 °C
ID
<
IL
typo
20 mA
'H
typo
10 mA
3 mA
Gate to cathode
Voltage that will trigger al/ devices
V D = 6 V; Tj = 25 °C
Voltage that will not trigger any device
VD = VDRMmax; Tj = 125 °c
Current that will trigger all devices
V D = 6 V; Tj = 25 °C
>
3 V
<
200 mV
>
40 mA
Switching characteristics
Gate-controlled turn-on time (tgt = td + t r ) when switched
from VD = 400 V to 'T = 10 A; IGT = 200 mA; Tj = 25 °C
typo
2
IJ,S
T
i
Vo
o~l--+-~
IGT
o~+~----------~Fig. 2 Gate-controlled turn-on time definitions.
* Measured under pulse conditions to avoid excessive dissipation.
April 1978
3
l_ _ __
BTY91 SERIES
60 . -____________________~~~~~~~----------~7Z~~101~345~29
(W)
a=
300'
bOo
900
a =
4
2.X
2.2
1200'
1.'1
IXoa
1.6
+
1-+-+-+-1I-1--4L-+-+'~
U
Cando Farm
angle factar
Ptot
~
r++1-f-~~~++4-~+4~S'"~~~~u~,IL+~~~~~~~~
l.I
~~~
o
Tmb
(OC)
r~.=,CrO,n~d_uc.t~io_nroa,n~~,e~_+~~4-_~~+~~~'~?)~-~~~ _1~4-~-+-+-~~~~~
40
0"""
interrelatian between the power
I\.?!.
(deri vcd from the left hand graph)
H-+-+-+-P'l;.lol.,'L
f- and the max. allowable-tempera1-+-+-+-1.......~T\."~.'-f- lures.
,
,~~~~
~ ~~
1'1I
ITAV~A)
10
~O
iO
~125
Tamb(o ... 100
Fig. 3.
7Z0777?1
max. permissible non repetitive peak on-Slale
current based on sinusoidal currents (f = 50 Hz)
200
ITSM
--
(A)
IV\
1\
ITSM
t
each current pulse is follawed by
the c rest working reverse voltage
150
'--
.... ....
100
-!i. =125°C (prior
- ....
to surgeL I-~
I-~
50
o
3
4
5 6 769 10
Fig. 4.
4
April 1978J[
50
100
number of cycles
J
Thvristors
BTY91 SERIES
--400
Typical turn on characteristics when switched from
VD =400V or SOV respectively to' IT =lA, 'lOA or SOA
Gate source 5 V 2S.n.
V
(V)
300
60
V
(V)
IT=
200
SOA
10A
lA
IT=
SOA
10A
1A
40
20
100
4
2
0
o
t(/-Is)
2
4-
t(/-IS)
6
Fig. 5.
7Z09371
1)=25 to 1250C
200
IT
(A )
&
150
E
~
>(
E
100
50
2
4
\'-reV) 6
Fig. 6.
April 1978
5
l_______
BTY91 SERIES
7Z05187-22025ja
12
VFG
(V)
10
VFGMmax -KJV
,,,- "-
"" 1't"""1\
N"""~
"
" "1"- "'''\
""".,
I"
" "'" ,"""
8
'"
\
PGMmax=5W
/
,"\.
"''\
"- I"
I'\.
6
, '"
~
"
1'\
"
1'\ 1'\
" '" " '" " "" "'"
"
" ""~
'"
""
"
" 1"-" ,""'''
"'""'''"'~1'\' IFGMmax = 2A,....
" Area of certain triggerln::l
1"Of.tt.
""'
'" "',
" "1"- 1"-" " """
1"-""'''
"',
"
"
"'''NiilII.. "'" '"
"
" "'I'..
~7- t~r
~'"
"" '" , " "-" :'\'\
1"- " "- "1",
~~~ " " :-.""
""" r-- .... Q.2S
"1"- 1"- " "- "'"
1'\
~
'1l"
~It
~
I'\~
1'\1'\ 1'\1'\r\\.
'\..:1\..
I~
~
1'\
~
"l"-
~
,~
~
".
"'" r--
'I
('~('l
I"~ ,,~~
~~~
~~
:""I
-~
'
....
...
l-
I
I
~
I--
'pS
~-
II
,.. r-tI
Q5
1
15
Gate characteristics with curves ~AV =O,SW
Fig. 7.
6
April
19781 (
I I I
I I I
I I
~cf
r;;:"",,-~([
f'..
l"\. I"!'.
I'\.
'f'..
2
II
r-o,,:.J'
'\.
:'-,~~'\
I- '''''
--
-I-
-""
2
j
Thyristors
BTY91 SERIES
----------------------------------------------------~
Min. gate current to trigger all devices at 77
,"
°
10
~
+
3
...
I
l'lr
~
(J
(J
t,1
°
10
<'iI
SO?
+
10
I
I
~in. gate voltage
to trigger all devices
2
Area of possible triggering
Max. gate voltage
not to. trigger any
deVIce at 1] =
55°C
+ 125°C
40
20
60
80
100 IFG (rnA) 120
Fig. 8.
7Z10137
10
tranSient thermal resistance from junction
to mounting base versus time
~th j-mb
(OCIW)
~
--
.
io"""
,
./
1
,/
V
l/'"
+
1 time (s) 10
Fig. 9.
April 1978
7
l_ __
BTY91 SERIES
150
(~~
100
7Z09368
1
1---+--+-+-+-++-++4---1 0
~
Average output
~"I\
f';;:f:~
(~\#.
bridgo
"X
time
~9 ~9 ~
~
1>--t---I
~--t--~H-t-I+If+_---4
::--...
)
-,.sj ~ -,.sj ~
~~ ~~
b---+-I--+-t-+H-If+-----t maximum allowable starting and inrush cur -
rents for various mounting base temperatures versus time in a single phase bridge.
J)
1
r-.. .....
......
.... .........
.....
50
......
........
~
I"'-
-~
.........
--
0 -2
10
~
-I'-
Tmb=65°C
85°C
....
10~o~+-
10- 1
10
10 2
tlme(s)
Fig. 10.
7Z09310
150
10
10
""\,
of the bridge
~nt
\I\,\~
'"", ,\"
(A)
.....10
~~ ~
~ ~ ~~
'V ....
!'I...
100
"I"
["'.,.
time
I'-
"
....
........
"
50
.......
maximum allowable starting and inrush currents for various mounting base temperatures versus time in a three phase bridge,
~~ ~ ~ ~~
........
I'..
""'"....... ........ .... r-...
....
.....
r'"
~
r---...
r--
Tmb=65°C
... ........
85°C
I
10~~
I
~i
10
Fig. 11.
8
AP'il19781 (
time(s)
fo-
TRIACS
F
_ _ _ _J
GENERAL
EXPLANA TORY
NOTES
TRIACS
SWITCHING CHARACTERISTICS
Triacs are not perfect switches. They take a finite time to go from the off to the on-state and vice-versa.
At frequencies up to about 400 Hz these effects can often be ignored, but in many applications involving
fast switching action the departure from the ideal is important.
Gate-controlled turn-on time
Anode current does not commence flowing at the instant the gate current is applied.
There is a period which elapses between the application of gate current and the onset of anode current
known as delay time (td)' The rise time of anode current is known as tr and is measured as the time for
the anode voltage to fall from 90% to 10% of its initial value.
The conditions which need to be specified are:
a) Off-state voltage (VDI.
b) On-state current (IT).
c) Gate trigger current (lG) - high gate currents reduce turn-on time.
d) Rate of rise of gate trigger current (dIG/dt) - high values reduce turn-on time.
e) Junction temperature (Tj) - high temperatures reduce turn-on time.
The waveforms are shown in the following diagram:
t
IT
•
r ,
r
I
O~-r------4--+~-----
I-td-
t ,
I-~tgt--
I!l7
o~ ~
\
December 1979
\.:lC''ICMJ-\L
EXPLANATORY
NOTES
l_____
COMMUTATION dVcom/dt
When a triac has been conducting current in one direction and is then required to block voltage in the
other, it is faced with a difficult task. Reverse recovery current adds to the capacitive current from the
reapplied dVo/dt in such a fashion that the device's ability to withstand high rates of reapplication of
voltage is impaired. For this reason the commutation dVo/dt is invariably worse than the static dVo/dt.
The conditions which need to be specified are:
a) R.M.S. current (IT(RMS)) - high currents make commutation harder.
b) Re-applied off-state voltage (Vol. normally VORM max. - high voltage will make commutation
harder.
c) Temperature (Tj or T mb) - high temperatures make commutation harder.
d) -dl/dt - high rates of change make commutation harder.
The waveforms are shown in the following diagram:
v
2
December 1979
(
Triacs
j
- - - -
GENERAL
EXPLANATORY
NOTES
MOUNTING INSTRUCTIONS FOR TO-220 ENVELOPES
GENERAL DATA AND INSTRUCTIONS FOR HEATSINK OPERATION
General rules
1. First fasten the devices to the heatsink before soldering the leads.
2. Use of heatsink compound is recommended.
3. Avoid axial stress to the leads.
4. Keep mounting tool (e.g. screwdriver) clear of the plastic body.
5. It is recommended that the circuit connections be made to the leads rather than direct to the heatsink.
Heatsink requirements
Flatness in the mounting area: 0,02 mm maximum per 10 mm.
Mounting holes must be deburred.
Heatsink compound
Values of the thermal resistance from mounting base to heatsink (Rth mb-h) given for mounting with
heatsink compound refer to the use of a metallic oxide-loaded compound. The compound should be
an electrical insulator and be applied sparingly and evenly to both interfaces. Ordinary silicone
grease is not recommended.
For insulated mounting, the compound should be applied to the bottom of both device and insulator.
Mounting methods for thyristors and triacs
1. Clip mounting.
Mounting by means of spring clip offers:
a. A good thermal contact under the crystal area, and slightly lower Rth mb-h values than screw
mounting.
b. Safe insulation for mains operation.
Recommended force of clip on device is 120 N (12 kgfl.
2. M3 screw mounting.
Care should be taken to avoid damage to the plastic body. It is therefore recommended that a crossrecess pan-headed screw be used. Do not use self-tapping screws.
Mounting torque for screw mounting:
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)
0,55 Nm (5,5 kgcm)
0,80 Nm (8,0 kgcm)
N.B.: When a nut or screw is not driven direct against a curved spring washer or lock washer, the
torques are as follows:
Minimum torque (for good heat transfer)
Maximum torque (to avoid damaging the device)
0,4 Nm (4 kgcm)
0,6 Nm (6 kgcm)
N.B.: Data on accessories are given in separate data sheets.
3. Rivet mounting (only possible for non-insulated mounting)
Devices may be rivetted to flat heatsinks; such a process must neither deform the mounting tab,
nor enlarge the mounting hole.
December 1979
3
llt:.Nt:.HAL
EXPLANATORY
NOTES
l_ _ __
GENERAL DATA AND INSTRUCTIONS FOR HEATSINK OPERATION (continued)
Thermal data
clip
mounting
Thermal resistance from mounting base to heatsink
with heatsink compound, direct mounting
screw
mounting
Rth mb-h
0,3
0,5 °C/W
without heatsink compound, direct mounting
Rth mb-h
1,4
1,4 °C/W
with heatsink compound and mica
insulator 56369
Rth mb-h
2,2
°C/W
with heatsink compound and alumina
insulator 56367
Rth mb-h
0,8
°C/W
Lead bending
Maximum permissible tensile force on the body, for 5 seconds is 5 N (0,5 kgf).
The leads can be bent through 900 maximum, twisted or straightened. To keep forces within the abovementioned limits, the leads are generally clamped near the body. The leads should neither be bent nor
twisted less than 2,4 mm from the body.
Soldering
Lead soldering temperature at 4,7 mm from the body; tsld
< 5 s: Tsld max = 275 °C.
Avoid any force on body and leads during or after soldering: do not move the device or leads after
soldering.
It is not permitted to solder the metal tab of the device to a heatsink, otherwise its junction temperature
rating will be exceeded.
4
December 1979
(
j
~~
----
GENERAL
EXPLANATORY
NOTES
INSTRUCTIONS FOR CLIP MOUNTING (TO-220 envelopes)
Direct mounting with clip 56363
1. Place the device on the heatsink, applying heatsink compound to the mounting base.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
300 to the vertical (see Fig. 1).
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on the plastic body, not on the tab (see Fig. 1(c)).
e
~~I
1
\
_, .., m
--)
... /
l___
TO-220
I
7Z75L.38
(b)
(c)
Fig. 1 (a) Heatsink requirements; (b) mounting (1 = spring clip); (c) position of the device
(top view).
(a)
Insulated mounting with clip 56364
With the insulators 56367 or 56369 insulation up to 2 kV is obtained.
1. Place the device with the insulator on the heatsink, applying heatsink compound to the bottom of
both device and insulator.
2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to
300 to the vertical (see Fig. 2).
3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the
heatsink. The clip should bear on the plastic body, not on the tab (see Fig. 2(c)). There should be
minimum 3 mm distance between the device and the edge of the insulator for adequate creepage.
7Z75437.1
(a)
(b)
(c)
Fig. 2 (a) Heatsink requirements; (b) mounting (1 = spring clip, 2 = insulator 56369 or
56367); (c) position of the device (top view).
December 1979
5
\..j t:.1\I t:. ti PI. L
EXPLANATORY
NOTES
l____
INSTRUCTIONS FOR SCREW MOUNTING (TO-220 envelopes)
Direct mounting with screw
• into tapped heatsink
cross-recess pan-head screw;
M3 ( 6 mm long)
shake-proof lock washer;
internal teeth
TO-220
device
heatsink; hole drilled 2,70 mm dia
D7509A
• through heatsink with nut
cross-recess pan-head screw;
M3 (8 mm long)
TO-220
device
heatsink;
hole drilled
for M3 clearance
6
December 1979
f
M3 hexagon nut
D7510A
j
Triacs
GENERAL
EXPLANATORY
NOTES
---MOUNTING CONSIDERATIONS FOR STUD-MOUNTED TRIACS
Losses generated in a silicon device must flow through the case and to a lesser extent the leads.
The greatest proportion of the losses flow out through the case into a heat exchanger which can be
either free convection cooled, forced convection or even liquid cooled. For the majority of devices in
our range natural convection is generally adequate, however, where other considerations such as space
saving must be takem into account then methods such as forced convection etc. can be considered.
The thermal path from junction to ambient may be considered as a number of resistances in series.
The first thermal resistance will be that of junction to mounting base, usually denoted by Rth j-mb'
The second is the contact thermal resistance Rth mb-h and finally there is the thermal resistance of
the heatsink Rth h-a'
In the rating curves, the contact thermal resistance and heatsink thermal resistances are combined as a
single figure - Rth mb-a'
In addition to the steady state thermal conditions of the system, consideration should also be given to
the possibility of any transient thermal excursions. These can be caused for example by starting conditions or overloads and in order to calculate the effect on the device, a graph of transient thermal
resistance Zth j-mb as a function of time is given in each data sheet.
junct ion
mounting
base
Rth j-a
heatsink
7Z73725
ambient
When mounting the device on the heatsink, care should be taken that the contact surfaces are free from
burrs or projections of any kind and must be thoroughly clean.
In the case where an anodised heatsink is used, the anodising should be removed from the contact surface
ensuring good electrical and thermal contact.
The contact surfaces should be smeared with a metallic oxide-loaded grease to ensure good heat transfer.
Where the device is mounted in a tapped hole, care should be taken that the hole is perpendicular to the
surface of the heatsink. When mounting the device to the heatsink, it is essential that a proper torque
wrench is used, applying the correct amount of torque as specified in the published data.
Excessive torque can distort the threads of the device and may even cause mechanical stress on the wafer,
leading to the possible failure.
Where isolation of the device from the heatsink is required, it is common practice to use a mica washer
between contact surfaces, and where a clearance hole is used, a p.t.f.e. insulating bush is inserted. A
metallic oxide-loaded heatsink compound should be smeared on all contact surfaces, including the mica
washer, to ensure optimum heat transfer. The use of ordinary silicone grease is not recommended.
____l,-__
D_ec_e_m_b_e_,_
197~ ~
___
J~_B_T_1_36__SE_R_IE_S____
_________________________________
TRIACS
Glass-passivated, eutectic-bonded triacs intended for use in applications requiring high bidirectional
transient and blocking voltage capability, and high thermal cycling performance with very low thermal
resistances, e.g. a.c. power control applications such as lighting, industrial and domestic heating, motor
control and switching systems.
QUiCK REFERENCE DATA
BT136-500
I 600
Repetitive peak off-state voltage
VDRM
max.
R.M.S. on-state current
IT(RMS)
max.
4
A
Non-repetitive peak on-state current
ITSM
max.
25
A
500
MECHANICAL DATA
Fig.1 TO-220AB
~
V
Dimensions in mm
10,3
max
_
600
,-
--. 45
1
3,6
ma,
1,3 --.
1
-
2,8
.-
--mounting_
+
base
(see note)
+
5,9
-, -
min
I
I
I
+
1
15,8
m ax
...J
L_Il:::i=i::::::;fi:::~
3,5 max
not tinned
+
-I
5,1
--
1
max
tI I
1,3-- ..
- - A 13,5
T min
max
(2x)
T1
T2
___ I
9
-.1
i:
2,54 2,54
l
T
0,9 max (3 x)
-.1..-24
1
..- 0,6
Net mass: 2 g
Note: The exposed metal mounting base is directly connected to terminal T2.
Supplied on request: accessories (see data sheets Mounting instructions and accessories for TO-220
envelopes)
January 1980
BT136 SERIES
j l_________________
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages (in either direction)
BT136-500
600
Non-repetitive peak off-state voltage (t ~ 10 ms)
VOSM
max.
500
600
V*
Repetitive peak off-state voltage (5 ~ 0.01)
VORM
max.
500
600
V
Crest working off-state voltage
VOWM
max.
400
-------
V
Currents (in either direction)
400
R.M.S. on-state current (conduction angle 360 0 )
up to T mb = 102 °C
IT(RMS) max.
4
A
Average on-state current for half-cycle operation
(averaged over any 20 ms period) up to T mb = 92 0C
IT(AV)
max.
2.5
A
ITRM
max.
25
A
ITSM
12 t
max.
25
A
12 t for fusing (t = 10 ms)
max.
4
A 2s
Rate of rise of on-state current after triggering with
IG = 200 mA to IT = 6 A; dlG/dt = 0.2 AIMS
dlT/dt
max.
10
AIMS
Average power dissipation (averaged over any 20 ms
period)
PG(AV)
max.
0.5
W
Peak power dissipation
PGM
max.
5
W
Repetitive peak on-state current
Non-repetitive peak on-state current; Tj
to surge; t = 20 ms; full sine-wave
= 120 0C prior
Gate to terminal 1
POWER DISSIPATION
Temperatures
Storage temperature
T stg
Operating junction temperature
full-cycle operation
half-cycle operation
Tj
Tj
max.
max.
-40 to +125
°C
120
110
°C
°C
* Although not recommended, off-state voltages up to 800 V may be applied without damage, but the
triac may switch into the on-state. The rate of rise of on-state current should not exceed 3 AIMS.
2
January 1980
r
j
Triacs
8T136 SERIES
---THERMAL RESISTANCE
From junction to mounting base
full-cycle operation
half-cycle operation
Rth j-mb
Rth j-mb
3.0 °C/W
Zth j-mb
0.6 °C/W
a. with heatsink compound
Rth mb-h
0.3 oelW
b. with heatsink compound and 0.06 mm maximum mica insulator
Rth mb-h
1.4 °C/W
c. with heatsink compound and 0.1 mm max. mica insulator (56369)
Rth mb-h
2.2 °C/W
d. with heatsink compound and 0.25 mm max. alumina insulator (56367) Rth mb-h
0.8 °C/W
1.4 °C/W
Transient thermal impedance; t = 1 ms
3.7 °C/W
Influence of mounting method
1. Heatsink mounted with clip (see mountin~ instructions)
Thermal resistance from mounting base to heatsink
e. without heatsink compound
Rth mb-h
2. Free-air operation
The quoted value of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = any lead length
~
60 °C/W
~
I
t
a
~
0
Rth j-a
V//
08401
//J
7Z75493
Fig.2.
Notes
1. Values of Rth mb-h given for mounting with heatsink compound refer to the use of a zinc-oxideloaded compound. Ordinary silicone grease is not recommended.
2. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
January 1980
3
8T136 SERIES
l_____
CHARACTERISTICS
Polarities, positive or negative, are identified with respect to T 1.
Voltages and currents (in either direction)
On-state voltage (Note 1)
<
1.70
dVo/dt
<
50
dVcom/dt
<
6
10
<
0.5
mA
<
15
mA
'T = 5 A; Tj = 25 °C
Rate of rise of off-state voltage that will not trigger any
device; Tj = 120 oC; see also Figs.9 and 10; gate open circuit
Rate of rise of commutating voltage that will not trigger any device;
'T(RMS) = 4 A; Vo = VOWM max; Tj = 120 °C; gate open circuit;
see also Figs. 9 and 10
BT136 series
-dlT/dt = 2.5 Alms
BT136 series F
-d 'T/dt = 2.5 Alms
r
BT136 series E
-dlT/dt = 1.25 Alms
I
V
V//lS
Off-state current
Vo
= VOWM max; Tj = 120 °C
Holding current; Tj = 25 °C
T 2 and G positive or negative
Gate voltage and current that will trigger all devices
Latching current
Vo = 12 V;Tr= 25 °C
BT136 series
T2+
G+
G to T1
BT136 series F
e.g. BT136-500F
G to T1
BT136 series E
G to T1
BT136 series D (Note 2)
G toTl
{VGT
IGT
'L
{VGT
IGT
IL
{ VGT
IGT
'L
{VGT
IGT
'L
> 1.5
> 35
<
20
> 1.5
> 25
<
20
> 1.5
> 15
<
20
> 1.5
> 8
<
15
T2+
G-
T2G-
T2G+
1.5
35
30
1.5
35
20
1.5
70
30
V
mA
mA
1.5
25
30
1.5
25
20
1.5
70
30
V
mA
mA
1.5
15
20
1.5
15
20
1.5
50
20
V
rnA
mA
1.5
8
20
1.5
8
15
**
**
**
V
mA
mA
Gate to terminal 1
Voltage that will not trigger an" device VD = VORM max;
Tj = 120 oC; T2 and G positive or negative
Note 1. Measured under pulse conditions to avoid excessive dissipation.
Note 2. A version with IGT = 5 mA max. is available on request.
**Triggerable
4
January 1980
r
VGD
<
250 mV
j
Triacs
BT136 SERIES
- - - MOUNTING INSTRUCTIONS
1. The triac may be soldered directly into the circuit, but the maximum permissible temperature of the
soldering iron or bath is 275 DC; it must not be in contact with the joint for more than 5 seconds.
Soldered joints must be at least 4.7 mm from the seal.
2. The leads should not be bent less than 2.4 mm from the seal, and should be supported during
bending.
3. It is recommended that the circu it connection be made to tag T 2, rather than direct to the heatsink.
4. Clip mounting offers lower thermal resistance than screw mounting. However, if a screw is used, it
should be M3. Care should be taken to avoid damage to the plastic body.
5. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled
so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated in Fig.3.
junction
mounting
base
Rth j-a
heatsink
ambient
7Z73725
Fig.3
b. The method of using Figs 4 and 5 is as follows:
Starting with the required current on the 'T(AV) or 'T(RMS) axis, trace upwards to meet the
appropriate form factor or conduction angle curve. Trace right horizontally and upwards from the
appropriate value on the T amb scale. The intersection determines the Rth mb-a' The heatsink
thermal resistance value (Rth h-a) can now be calculated from:
Rth h-a = Rth mb-a - Rth mb-h'
c. Any measurement of heatsink temperature should be made immediately adjacent to the device.
January 1980
5
l____
8T136 SERIES
FULL-CYCLE OPERATION
6
I
p
I
(W)
5
~
I\..
"
I
I\..
I
,
II
II J J
II
"II I
4
r---- I--
3
----
..... ...J
........
,
I
=180°
"
J J
"...."1 ~~
=120° I"""
~
'(..,.. ~~ If'
= 90° i-'"
s..-. I
= 60° ".... .... 7)
~
,J
= 30° "'" If'. If'
/I~ 11'1)'
0'
....
-- I-f--
r--
-r--- f--
r/I~
,J
,,,. ,
2
~~
,
1/
'"
I-1-f--
o r7
0
~
=~
7.
""
......
.....
~
1\
\
I\.
\
,
"
~~O
'6-
V
0
I\.
1\
too..
.....
"
\ \
'\.
I\.
I'
,
,
1"'\
I. . . . .
I
110..
2
3
4 0
114
Il-
f-
117
I'N
"'" .....
50
111
\\
"
......
~
(OC)
105
~-I- 108
1\ " ,\
'\.,
\'
I\.\.
\
~
......
\
\.
I'\..
Tmb
o-f(")-f-
i\ \ \
\
I I I
I I I
1
\ \
\
102
·w-I-
\
\
I'..
<1.;-
r- ~f1
~
l-
1\
\
\
1\
... 'I?!rati
~
1(0
-b-r-
~
\'
\
---
, " " ,
'" '" , , ,
'"
" ""'"
"'I\.
I
frse...... ·
.... __a
-Ir
-.:Y
3
1\
\
\
!
.... [0.
\
r5
\
'\0 '\. ,
~
,.-+ ---
1\
1\
\
\
1\
\.
I'\.
I)'/';
,J~~
,
,
I'\.
08384
11 i' :p
I
l.
120
·100
Fig.4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
a = al = a2: conduction angle per half cycle
6
January 1980
(
j
Triacs
8T136 SERIES
---HALF-CYCLE OPERATION
08385
P
I
I
I
(W)
1.57
5
1.9 I'
"
I
4
- --
2.2 I
2.81 J I
a=4
,
3
I
II
"
,
I I 77
If
J
I I 1/1/
1/
III
""-
II I III
'I. I
rJi~
-f--
-h
~, .P-1~
\,...
\. ... \0 \
.$'1\
20
1<0
iii. \
I\..
~~~
e. . . .
Ir
0
I"'"
I
I
I\,
r-....
I'\..
!../:..er
1
2
3
0
,z- f...-f---
98.9
102.6
\/\
iii. ,\
--
...... 106.3
'-~l\'
..... ~~ ~+. . --
..... "'" .....
....
0
---
,2- f-+--
1\ \1\
If
1\ ,\
r\.\. \ \ \
,\
I .......
~
95.2
b--'w- - - ~-
1\ IT
\
1\
I\..
~
\
OJ
1\
I\..
II')
o
\
,
" "!.~$ " , , ,
,
,"
.....
·
'-roo.o
"'" "" 1\.., ,
or
, ,"
~f1
Ire
~ ...
\ \
\ \
\
~
fJII
'3
\0"
\
\
\
~
91.5
.. :xl
\
\
\.
~
I"'"
III
2
, ,
"" ,
"'I
II rJ J
I
\.
\.
'I...
~
, .., ,S-
..
,
i"
,,
"'" ""iI1II.I
110
50
Fig.5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
(X
= conduction angle per half cycle
IT(RMS)
a = form factor = --'------'IT(AV)
(X
30 0
60 0
90 0
120 0
180 0
a
4
2.8
2.2
1.9
1.57
J_
January 1980
7
8T136 SERIES
l____
OVERLOAD OPERATION
08614
500
IO(RMS)
(%)
- - t-- -t-t-tttt----t---t---t-t-Hffi
~-+-+~~~--~~~H+~-+
i'o..
r--+-+~rK~--~-1-~-H+~~~~~~-r++rHff----r-+i~iii~--- -t-t++~---~-~
\-
i-----t---H--t+t-tj
-1
1-----+-+-+-H-+~-----+-_+_~H+~____1I-f___+++_H_t_t -----tr"-----1''''-l::-H-+Ht----r- --+
1--+---+-+-H-++++-----t--+-f--+--II--t-t1-+-------t---t-+~~--__t-
100
t--
1"01"
- --1 --t---t-t~t-tt-
1-----+-+4--t++~-__t___t_rH-+~---+-~++~--_r_r_t__t_~~~~
10- 2
10- 1
10
10 2
Fig.6 Maximum permissible duration of steady overload (provided that T mb does not exceed 120 oC
during and after overload) expressed as a percentage of the steady state r.m.s. rated current. For high
r.m.s. overload currents precautions should be taken so that the temperature of the terminals does not
exceed 125 °C. During these overload conditions the triac may lose control. Therefore the overload
should be terminated by a separate protection device.
8
January 1980
(
J
Triacs
8T136 SERIES
----,
30
08386
\
ITSM
1\
\
ITS(RMS)
(A)
I~
,
~
20
1"0.
" ......
..
"""
roo.
~
10
.........
...... 100..
.....
"'"
100..
.........
""'100.
t-
r---
o
10- 3
10- 1
10- 2
duration (s)
10
Fig.7 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents
(f = 50 Hz); Tj = 120 °C prior to surge. The triac may temporarily lose control following the surge.
ITS
08387
I
10
i
1
typ
•
I
v,~
J:/T
"
II/
-+-
time
:
1
~\;
i
I
maxL W-
VT
("-i
/II
•
I
i i
i
Jrt
i
:
I
:
',7
III
i
I
i
!III
.
,
;
!
/ill
".f! ,
•
:
VV
~_+-J
5
--'-
~
:::!f
.
Lll-- ~------ -ITSM
rr-,---j
-\ -_-ITS(RMS)
1
1
II(
I
1
o
i
I
,
I
)
I
I
--~, 1/1
I} li
i
--+----1---.-J
I
;
1
i
I
I
I
:
1
I
:
i
i
:
.1
i
I
I
;
I
I
)
1
1
i
!
o
January 1980
9
8T136 SERIES
103
083801
BT136 and BT136F series
dV
dt
........... """
(V/lls)
~
t-.....
\
10 2
~
"" \' ~
,
dVD/.
~~/imit
,
\
,
\
-dIT/dt=
10
""
\
1\
~9.3
" "
,
1\
\
\
\
~5.5
\7.1
,
\
\
\
"-
\
1\
,
\
~
,
\
\
1
\
~
\
\
\
"-
,,
I'
\
~
1\
\
"\
\4.2' \3.3 \2.5 Alms
~
\
--
~~
~
o
50
100
150
Tj(OC)
Fig.9 Limit commutation dV Idt for BT136 and F series versus T j. The triac should commutate when
the dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt. .
103
dV
dt
08389
BT136E' series
I""'""--po.,
~~
(V/lls)
"'" \
102
~
"
,
\
dVD/.
~~ limit
, 1\'"" \
\
\
\
\
-dIT/dt=
10
~4.6 \3.6
,
,
\
\
\
1\
~
o
I"
'\
~
\
,"
.......
~
\
\
1 2.8
\
~
~1.~\ 1.3 Alms
\2.1
\
~
\
~
\
1\
\
\
~
,
\
\
\
.........
~
\ 1\
50
100
150
Tj(OCI
Fig.l0 Limit commutation dV/dt for BT136E series versus Tj. The triac should commutate when
the dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt.
10
January 1980
(
j
Triacs
BT136 SERIES
_ . _ -
08569
08573
150
3
VGT
IGT
(V)
(mA)
100 r-~ T 2 neg., gate pos. to T 1
2
.... .....
"~
.....
..... ~
""
'"
f"oo.
~
I"
~
..... ~
I'~
...... ~
1"
50
~
I"""
~
1""""
i
r""
1"
I""""'~
....
r-r-r--- all other condition;-~ r""
I "
_L1...1
a
o
-50
o
100
50
-50
150
Tj(OC)
Fig.ll Minimum gate voltage that will trigger
all devices; all conditions
"
I I
a
I I I I I
_1...1_1...1...1
..1 11..lJ
50
100
150
Tj(OC)
Fig.12 Minimum gate current that will trigger
all devices
D8570
10
~~
...
~~
""""
./
1.000'"
unidirectional
-
Qidirectional
'ttl'
/'"
...
10- 1
10- 2
I
+
I
-
10- 5
10- 4
10- 3
10- 2
10- 1
it
II'l
'll
I
10- 3
:
time (s)
10
Fig.13
I
January 1980
11
j
BT137 SERIES
---------------------------------------------------TRIACS
Glass-passivated, eutectic-bonded triacs intended for use in applications requiring high bidirectional
transient and blocking voltage capability, and high thermal cycling performance with very low thermal
resistances, e.g. a.c. power control applications such as lighting, industrial and domestic heating and
motor control and switching systems.
QUICK REFERENCE DATA
BT137-500 600
Repetitive peak off-state voltage
VDRM
R.M.S. on-state current
IT(RMS) max.
max.
max.
500 600 V
'-v--'
Non-repetitive peak on-state current
MECHANICAL DATA
8 A
55 A
Dimensions in mm
Fig. 1 TO-220AB.
__ 45
10,3
Irna, .-
max
1-
1,3-..----+--+---i - - '
mounting
base .....
(see note)
t
tt-
r-,I
I
I
J
.-Il:::;=:~:::::;::::;:~
3,5 max
not tinned
r---
,
-
2,8
-t
,
:-
5,9
min
1
~ 15,8
m ax
J
~
5,1
max
1,3-'I -
max
--t
I
(2 x)
T1
T2
_I
9
I
13,5
min
1
-.11~0,9max (3x)
-,1
2,54 2,54
1. - 0,6
.-24
Net mass: 2 g
Note: The exposed metal mounting base is directly
connected to terminal T 2.
Supplied on request: accessories (see data sheets Mounting instructions and accessories for TO-220
envelopes)
"I
Janua"l1980
---
8T137 SERIES
l_ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Voltages (in either direction)
-.
BT137-500
600
600 V*
Non-repetitive peak off-state voltage (t';;;;; 10 ms)
VOSM
max.
500
Repetitive peak off-state voltage (cS ,;;;;; 0,01)
VORM
max.
500
600 V
Crest working off-state voltage
VOWM
max.
400
400 V
--,,-
Currents (in either direction)
R.M.S. on-state current (conduction angle 3600 )
up to T mb = 97 0C
IT(RMS) max.
8 A
Average on-state current for half-cycle operation
(averaged over any 20 ms period) up to T mb = 87 0 C
IT(AV)
max.
5 A
Repetitive peak on-state current
ITRM
max.
55 A
ITSM
12 t
max.
55 A
max.
15 A 2 s
dlT/dt
max.
20 A/p.s
PG(AV)
max.
0,5 W
PGM
max.
5W
Non-repetitive peak on-state current; Tj = 120 0C prior
to surge; t = 20 ms; full sine-wave
1
2
t for fusing (t = 10 ms)
Rate of rise of on-state current after triggering with
IG = 200 mA to IT = 12 A; dlG/dt = 0,2 A/p.s
Gate to terminal 1
POWER DISSIPATION
Average power dissipation (averaged over any 20 ms period)
Peak power dissipation
Temperatures
-.
Storage temperature
T stg
Operating junction temperature
full-cycle operation
half-cycle operation
Tj
Tj
-40 to +125 °C
max.
max.
120 °C
110 °C
* Although not recommended, off-state voltages up to 800 V may be applied without damage, but the
triac may switch into the on-state. The rate of rise of on-state current should not exceed 6 A/p.s.
2
January 1980
(
j
~~
----
8T137 SERIES
THERMAL RESISTANCE
From junction to mounting base
full-cycle operation
half-cycle operation
Rthj-mb
Rth j-mb
2,0 0C/W
Zthj-mb
0,3 °C/W
a. with heatsink compound
Rth mb-h
0,3 °C/W
b. with heatsink compound and 0,06 mm maximum mica insulator
Rth mb-h
1,4 °C/W
c. with heatsink compound and 0,1 mm max. mica insulator (56369)
Rth mb-h
2,2 °C/W
d. with heatsink compound and 0,25 mm max. alumina insulator (56367)
Rth mb-h
0,8 °C/W
e. without heatsink compound
Rth mb-h
1,4 °C/W
Transient thermal impedance; t = 1 ms
2,4 °C/W
Influence of mounting method
1. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
2. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run to'
the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = any lead length
~
t
a
~
I
~//
0
Rth j-a
60 0 C/W
~
r
//J
7Z75493
Fig. 2.
January 1980
3
l____
8T137 SERIES
- - CHARACTERISTICS
Polarities, positive or negative, are identified with respect to T 1.
Voltages and currents (in either direction)
On-state voltage (Note 1 )
<
1,65
dVo/dt
<
50
V//ls
dVcom/dt
<
6
V//ls
10
<
0,5
rnA
<
<
20
15
rnA
rnA
IT = 10 A; Tj = 25 °C
Rate of rise of off-state voltage that will not trigger any
device; Tj = 120 °C; see also Figs. 9 and 10; gate open circuit
V
Rate of rise of commutating voltage that will not trigger any device;
IT(RMS} = 8 A; Vo = VOWM max;
Tj = 120 °C; gate open circuit; see also Figs. 9 and 10
BT137 series
-d IT/dt = 4,2 Alms
BT137 series F
-dlT/dt = 4,2 Alms
BT137seriesE
-dIT/dt=2,1 Alms
I
I
Off-state cu rrent
Vo = VOWM max; Tj = 120
°c
Holding current; Tj = 25 °C
T 2 and G positive or negative
BT137, F and E series
BT137 0 series
Gate voltage and current that will trigger all devices
Latching current
VO=12V;Tj=25
0
C
BT137 series
G to T1
BT137 series F
e.g. BT137-500F
G toT1
BT137 series E
G to T1
BT137 series 0 (Note 2)
T2+
G-
T2G-
T2G+
1,5
35
45
1,5
35
30
1,5
70
30
V
rnA
rnA
1,5
25
45
1,5
25
30
1,5
70
30
V
rnA
rnA
1,5
15
35
1,5
15
25
1,5
50
25
V
rnA
rnA
> 1,5
> 8
1,5
1,5
**
8
8
15
20
15
**
**
V
rnA
rnA
250
mV
T2+
G+
G toT1
J VGT
IIGT
IL
J VGT
IIGT
IL
J VGT
IIGT
IL
IVGT
IIGT
IL
> 1,5
> 35
<
30
> 1,5
> 25
<
30
> 1,5
> 15
<
<
25
Gate to terminal 1
Voltage that will not trigger any deviceVO = VORM max;
Tj = 120 °C; T2 and G positive or negative
Note 1. Measured under pulse conditions to avoid excessive dissipation.
Note 2. A version with IGT = 5 rnA max. is available on request .
.. *Triggerable
4
January 1980
(
<
J
~~
8T137 SERIES
- - MOUNTING INSTRUCTIONS
1. The triac may be soldered directly into the circuit, but the maximum permissible temperature of the
soldering iron or bath is 275 °C; it must not be in contact with the joint for more than 5 seconds.
Soldered joints must be at least 4,7 mm from the seal.
2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during
bending.
3. It is recommended that the circuit connection be made to tag T 2, rather than direct to the heatsink.
4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between mounting base and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled
so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated in Fig. 3.
junction
mounting
base
Rth j-a
heatsink
Fig. 3.
7273725
ambient
b. The method of using Figs 4 and 5 is as follows:
Starting with the required current on the IT(AV) or IT( R MS) axis, trace upwards to meet the
appropriate form factor or conduction angle curve. Trace right horizontally and upwards from the
appropriate value on the T amb scale. The intersection determines the Rth mb-a' The heatsink
thermal resistance value (Rth h-a l can now be calculated from:
Rth h-a := Rth mb-a - Rth mb-h'
c. Any measurement of heatsink temperature should be made immediately adjacent to the device.
January 1980
5
FU LL-CYCLE OPERATION
08564
15
90
IT I
fT r
I I
1
I I
1
a =180°
I
p
(W)
],
0
T 120
J,
'77 90°
--
J
J
III I,
J
JII
~
IIII1/'
'J
17
"1/
11/1/, J
./~
j'/~
If
I-~
,,
V
"
""
~"
:".
5
10 0
('l '-~
~
,\ \ \
\..
I"
t-...
....... <$
I
I
o4-~
~rt
.>
I'
..... ~
r-r-,
~
~
I
\\
~
.....
.....
free air
1
l...:!Eeratio n
~
100
\~
\.
~
~
.......
I I
I 1
I I
\
----
,cr~ -,.---'--r---
'\~
II 1...--. _ _
~
.....
-r-t
I
,
\
-,l
~
~~-+-~
, ", ,'7 , ~-r(O
" I\. , \ 110
""~$
l"~
::A"
r-iI
-~
I I
I ! ! !
~
\ \
\
\
~
......
V
,
\
'\.
1'0
1"""0
-
0
"
""
r/
')~
o
..,
r~1/
5
\.
60°
30°
,
"
~
...
,\1\
\
, ..... " "
,
~
~
~
.......
1-
, l\
......
,~
"'~
.......
~
~
50
~l£
\
=== ....
120
100
IT(RMS)(A)
Fig.4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
a
6
January 1980
'I (
=
a1
=
a2: conduction angle per half cycle
j
Triacs
8T137 SERIES
--HALF-CYCLE OPERATION
08565
15
74
P
(W)
10
2.8
a=4
II
1/
II
5
J
~
II
'I
2.2
LJ
",J
I)
1/
IJ
J
"
"
Ii!...
~ 'A....
I'
1'1
I'
I\..
~
l'
I'
r-..
,..,.....
"
I I I
I
1 1
1
5 0
,I'
'" 70"'
<$ ""
l""-
~~~
""l..-
.>
l' 0'1""-
free air
,...,.. . Operation
2.5
,
~
1"1..
l"o.
I"""
."
ll~
L\
\
~
I....
r..."
.....
86
~
~
'""
v.;~p
0
'-I'.
Ij
IJI.JI
..... r....o~
,
~
I.J i.J "
1f.I~ ~
~~~
o WIi
II
". I.J
I/~
J
1.9
1.57
50
1\
-'%~\
~
1\
~
1<
~r-I\
I".
I' ,
1\
I"
I"
I'
i""""",
I....
I\..
"""
1\
c - r-r-r-
Q- r-r-r- 98
!\.,Z r-r-r1\1\
~ '1\
1'1.
1"""""" l'
r-r-
1\0)11
~'z,r- r-r-r-
.J
L\'
~NI\
J"oo~
~
""" r-rI=IIJ
110
100
Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
~ =
conduction angle per half cycle
a = form factor = IT(RMS)
IT(AV)
a
30 0
60 0
900
1200
1800
a
4
2,8
2,2
1,9
1,57
January 1980
7
OVERLOAD OPERATION
08814
500
IO(RMS)
(%)
400
-
'"
...
300
"". . . r-.,.
~
~
~
i"o
200
~
~
100
10- 2
10- 1
10
...
"
......
103 time (5) 104
Fig.6 Maximum permissible duration of steady overload (provided that T mb does not exceed 120 oC
during and after overload) expressed as a percentage of the steady state r.m.s. rated current. For high
r.m.s. overload currents precautions should be taken so that the temperature of the terminals does not
exceed 125 0C. During these overload conditions the triac may lose control. Therefore the overload
should be terminated by a separate protection device.
8
January 1980
'I (
j
Triacs
8T137 SERIES
-----60
I TSM
\
ITS(RMS )
7Z17398
-
1\
\
(A)
\
"
40
I\-
.....
........
........
r-.
~
.......
.........
20
--
......
-t-.,
duration (5)
Fig.7 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents
(f = 50 Hz); Tj = 120 0C prior to surge. The triac may temporarily lose control following the surge.
7Z77393A
15
--Tj=
-
-
Tj =
25 0 C
120 °c
IT
I
(A)
I I
I
ITS
['
max
VT
Il
/"
-
---
-
---
V\}
I
If
/
Vj-----n-------I TS ( RMS)
10
1TSM
time
---
•
typ
IS
V T ,/
I
10
II
I
II
17
I
/ II
fl
, J
I
5
'I
I
I.
II. I
"
II I
I 1/
/J
o
0,5
iii
1/
Fig.8
1,5
2
V T (V)
2,5
J(
January 1980
9
103
BT137 and BT137F series
I---- ' - - - _ I---
dV
dt
~ 100..
""'IIiiiiii
(V/J.1s)
r--t- -
~E r--- t---
,
~ I:h..
_
dl/
~~ ~ ~/dt
r--..... /"'mit
t------1t--
r - t---r -r-
.-1
,
a
.-1
\.
f--
I---- , - -
10
~-
1\
.1
1\
1\
:.......
1\
\
:~-'~/dt~15112 ~ 9.2 \7.1 '
...
•\.
,
\.
_\
~
o
1
i\
5.5 \4.2A/ms
\
,
\
II
Il
1
\
1\
\.
.\
\
1\
,
\
\
\
~
.\
f"""'oo..
"-
\
\
\
,
I'
'\.
\.. .-
.'-
\
~
150
100
50
Fig.9 Limit commutation dV Idt for BT137 and F series versus Tj. The triac should commutate when
the dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt.
D8567
BT137E series
dV
dt
f"""""oo.. .....
""" ~ ,
\ ~
~
(V/J.1s)
10 2
,
\.
1
,
-dIT/dt=
dv
~/dt /"
s,:'lIJit
\.
-'\
It
.1
10
:s:...
"'\.
'-
1\
1
" " ..........
,
\
\
~.7
"-
5•9 ~4.6 \3.5
\
\2.7 \2.1A/ms
.1.
\.
\.
1
,
J
~
o
50
ll.
.1
\
\
,
\
~
\.
1\
\
1\
,
\
\
\
100
~
150
Fig.l0 Limit commutation dV/dt for BT137E series versus Tj. The triac should commutate when
the dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt.
10
January 1980
J(
j
Triacs
BT137 SERIES
- - - -
08569
08573
150
3
VGT
IGT
(V)
(mA)
2
100
~
--
f-~ T 2 neg., gate pas. to T 1
..... to-..
I'
~
r-....
""
r-....
r-....
.....
I'
I'
50
..... 1-...
1"0
""
....... """
..... ....
I'
..... 10....
I-...
1--I-
all other condition;-- .....
I I
o
o
o
-50
100
50
I I
-50
150
,....
I
I
I
I
o
I
I
50
TlC)
100
150
Tj(OC)
Fig.12 Minimum gate current that will trigger
all devices.
Fig.11 Minimum gate voltage that will trigger
all devices; all conditions
7Z77399
10
unidirecti?n,al
~
j...o
./
~ L..~
j.....--
bidirectional
~
/"
./
V"""
~
/"
10- 2
10- 3
10- 2
time (5)
10
Fig.13
Ju
January 1980
11
_________________________________~L___
B_T1_3_8_S_E_R_IE_S___
TRIACS
Glass-passivated, eutectic-bonded triacs intended for use in applications requiring high bidirectional
transient and blocking voltage capability, and high thermal cycling performance with very low thermal
resistances, e.g. a.c. power control applications such as motor, industrial lighting, industrial and domestic
heating control and static switching systems.
QUICK REFERENCE DATA
BT138-500 600
Repetitive peak off-state voltage
VDRM
max.
500 600 V
--,-~
R.M.S. on-state current
'T(RMS) max.
max.
'TSM
Non-repetitive peak on-state current
+-
Ima, ...
10,3
max
I ...
A
A
Dimensions in mm +-
MECHAN ICAl OAT A
Fig.1 TO-220AB
_
12
90
45
I-
1,3 ...
3,6
-
2,8
II-
mounting_
base
(see note)
I
I
I
I
-
f
5,9
min
1
,8
+ m15ax
J
._Il:::i=~::::::;::::::;~
3,5 max
not tinned
r--
f
'-
5,1
max
--t
I
1,3-+max
(Zx)
-I
1
-
13,5
min
T, T2
--.1 ..
1 :
0,9 max
. . 1 1_ _
(3x)
0,6
--24
1
2,54 2,54
Net mass: 2 g
Note: The exposed metal mounting base is directly connected
to terminal T2.
Accessories supplied on request: see data sheet Mounting instructions and accessories for TO-220 envelopes.
January 1980
jl_______________________________
____B_T_13_8_S_E_R_IE_S__
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages (in either direction)
8T138-500 600
Non-repetitive peak off-state voltage (t";;;; 10 ms)
max.
Repetitive peak off-state voltage (5 ..;;;; 0,01)
max.
500 600 V
Crest working off-state voltage
max.
400 400 V
~ Currents
500 600 V*
(in either direction)
R.M.S. on-state current (conduction angle 3600)
up to T mb = 95 °C
IT(RMS)
Average on-state current for half-cycle operation
(averaged over any 20 ms period) up to T mb = 83 0C
max.
12
IT(AV)
max.
7,5
A
ITRM
max.
90
A
ITSM
12 t
max.
90
A
12 t for fusing (t = 10 ms)
max.
40
A2s
Rate of rise of on-state current after triggering with
IG = 200 mA to IT = 20 A; dlG/dt = 0,2 A/IlS
dlT/dt
max.
30
A/lls
Average power dissipation (averaged over any 20 ms period)
PG(AV)
max.
0,5
W
Peak power dissipation
PGM
max.
5,0
W
-40 to +125
°C
Repetitive peak on-state current
Non-repetitive peak on-state current; Tj = 120 0C prior
to surge; t = 20 ms; full sine-wave
A
Gate to terminal 1
Power dissipation
Temperatures
Storage temperature
T stg
~Operating
junction temperature
full-cycle operation
half-cycle operation
Tj
Tj
max.
max.
120
110
°C
°C
* Although not recommended, off-state voltages up to 800 V may be applied without damage, but
the triac may switch into the on-state. The rate of rise of on-state current should not exceed
15 A/IlS.
2
January 1980
r
Jl___
___T_ri_ac_s____________________________
BT_1_3_B_S_ER_I_ES__
THERMAL RESISTANCE
From junction to mounting base
full-cycle operation
half-cycle operation
Rth j-mb
Rth j-mb
Transient thermal impedance; t = 1 ms
1,5
2,0
0C/W+0C/W~
Zth j-mb
0,1 °C/W
Rth mb-h
Rth mb-h
0,3 0C/W
Influence of mounting method
1. Heatsink mounted with cI ip (see mounting instructions)
Thermal resistance from mounting base to heatsink
a. with heatsink compound
b. with heatsink compound and 0,06 mm maximum mica insulator
1,4 °C/W
0
c. with heatsink compound and 0,1 mm maximum mica insulator (56369) Rth mb-h
2,2
d. with heatsink compound and 0,25 mm maximum alumina
insulator (56367)
Rth mb-h
0,8 0C/W
e. without heatsink compound
Rth mb-h
1,4 °C/W
C/W
2. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point.
Thermal resistance from junction to ambient in free air:
Rth j-a
60 0C/W
mounted on a printed-circuit board at a = any lead length
~
t
I
0
~
J
a
~
V//
//)
Fig.2
7Z75493
3
8T138 SERIES
l____
----CHARACTE R 1ST ICS
Polarities, positive or negative, are identified with respect to T 1.
Voltages and currents (in either direction)
On-state voltage (Note 1)
IT= 15A;Tj==25 0 C
<
1,65
dVD/dt
<
50
V/p.s
dVcom/dt
<
6
V/p.s
<
0,5
mA
<
<
30
20
mA
mA
V
Rate of rise of off-state voltage that will not trigger any device;
Tj = 120 oC; see also Figs.9 and 10; gate open circuit
Rate of rise of commutating voltage that will not trigger any device;
IT(RMS) = 12 A; VD == VDWM max;
Tj = 120 oC; gate open circuit; see also Figs.9 and 10
BT138 series
-dlT/dt == 4,2 Alms t
BT138 series F
-dlT/dt == 4,2 Alms
BT138 series E
-dlT/dt == 2,1 Alms
I
Off-state current
VD == VDWM max; Tj == 120 oC
Holding current; Tj == 25 0C
T 2 and G positive or negative
BT138, F and E series
BT138 D series
Gate voltage and current that will trigger all devices
Latching current
VD== 12V;Tj==25 0 C
BT138 series
T2+
G-
T2G-
T2G+
IVGT
\ IGT
IL
>
>
<
1,5
35
40
1,5
35
60
1,5
35
40
1,5
70
40
V
mA
mA
J VGT
>
>
<
1,5
25
40
1,5
25
60
1,5
25
40
1,5
70
40
V
mA
mA
G to T1
I VGT >
t IGT >
IL
<
1,5
15
30
1,5
15
40
1,5
15
30
1,5
50
30
V
mA
mA
G toT1
I VGT >
>
\ IGT
IL
<
1,5
8
25
1,5
8
35
1,5
8
25
**
**
**
V
mA
mA
250
mV
G to T1
BT138 series F
e.g. BT138-500F
T2+
G+
G toT1
BT138 series E
BT138 series D (Note 2)
IIGT
IL
Gate to terminal 1
Voltage that will not trigger any device VD = VDRM max;
Tj == 120 °C; T 2 and G positive or negative
Note 1. Measured under pulse conditions to avoid excessive dissipation.
Note 2. A version with IGT == 5 mA max. is available on request.
** Triggerable
4
January 1980
r
<
j
Triacs
8T138 SER IES
---MOUNTING INSTRUCTIONS
1. The triac may be soldered directly into the circuit, but the maximum permissible temperature of
the soldering iron or bath is 275 °C; it must not be in contact with the joint for more than 5
seconds. Soldered joints must be at least 4,7 mm from the seal.
2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during
bending.
3. It is recommended that the circuit connection be made to tag T2, rather than direct to the heatsink.
4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between mounting base and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES
:::'lissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated in Fig.3
junction
mounting
base
Rth j-a
heatsink
7273725
ambient
Fig.3
b. The method of using F igs.4 and 5 is as follows:
Starting with the required current on the IT(AV) or IT(RMS) axis, trace upwards to meet the
appropriate form factor or conduction angle curve. Trace right horizontally and upwards from the
appropriate value on the T amb scale. The intersection determines the Rth mb-a. The heatsink
thermal resistance val ue (Rth h-a) can now be calcu lated from:
Rth h-a = Rth mb-a - Rth mb-h·
c. Any measurement of heatsink temperature should be made immediately adjacent to the device.
5
l_ _ __
8T138 SERIES
FULL-CYCLE OPERATION
D8608
20
90
P
01=
0
180
(vy)
II
15
J
J
vv
I IV
I( 'j I
I V V'J
J 'j V / V
if "J 1/ i/
10
.
J~ /
)th 1/,/
120
90
60
lb ~
D. ~
o~
I~ ~ [ /
~ ~ ;..'
/
"" ,
~
I"\.
\
"1'.-\
~
"\
\ \
,I\.
~
15 0
,&
97.5
\
\~\\
'JP
r--1 vJ
~ ~l\~
105
J 111
11 , 1
~
..
rJ~~on
10
~,
,='"
1 tLl
~
free_a;;
5
,
1\
'\ ~j [1'
r\. ~ ~iJ
...... 1'..
~ ~ ~1
i"" r\. 1\.1\ \
""r-
J
J I 1/, ~I
,
'\
80
':P
~
I\.
\
\
"\i
I
J/
1/
1
, ,
~
I
J 7
1/ I I I
I
""-
I
J
JJ I
I
,
1.57
1.9
P
08609
1
1
--
1"0
1\
\
!!!oJ
110
100
Fig.5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
0' =
conduction angle per half cycle
a = form factor = IT(RMS)
IT(AV)
0'
30 0
a
4
60 0
90 0
120 0
2,8
2,2
1,9
180 0
1,57
8T138 SERIES
l""---____- -
OVERLOAD OPERATION
08654
500
IO(RMS)
(%)
400
I"
~
300
..... ~
..... ~
""
.....
200
""
f".."""
["'.....
100
10- 2
10- 1
...
~
10
Fig.6 Maximum permissible duration of steady overload (provided that T mb does not exceed 120 °C
during and after overload) expressed as a percentage of the steady state r.m.s. rated current. For high
r.m.s. overload currents precautions should be taken so that the temperature of the terminals does not
exceed 125 0C. During these overload conditions the triac may lose control. Therefore the overload
should be terminated by a separate protection device.
8
~nua~
Ir
1900
___
~l
___
T_ria_cs_____________________________
BT_1_38__S_ER_IE_S__
7Z77138A
150
ITS(RMS)
(A)
\
\
maximum permissible non ·repetitive
r.m.s. on·state current based on
sinusoidal currents (f = 50 Hz)
1\
\
ITSV\_--A--ITS(RMS)
\
100
1\
\
VV
~
1\
the triac may temporarily lose
control following the surge
I TSM
\
time
1\
Tj = 120 'lC prior to surge
r---,
'"
50
...
r--....
.......
o
-
r- ~ ....
10 1
10 3
duration (s)
Fig.7
7Z17122A
30
--Tj=
25
°c
i
- - Tj ~ 120°C
III
,1
)
I
rI
ill
I
20
.
11
10
I
II
typ ~~
V T ,....f-
~~
If
l,.;
o
o
1/
~
.'
I
II
max ~
V T f-
II
J
I
I--
J
I
I
1/
rl
III
j
I'
V
'l.,..oo
2
Fig.8
10
___B_T_13_8_S_E_R_IE_S~jl~_________________________________
08610
BT138 and BT138F series
dV
dt
(V//1s)
..........
-\
~~ ~
~
v
~ ~ ~~"
",
d
-,
II!'hit
,
~
,
, ",
\
\
(
\
\
\
~
\
\
"-
\
\
.........
"-
\
\
\
-dIT/dt::\,5 \12 \9.2 \7.1 \ 1\5.5 \4.2 Alms
10
,
,,
,
T
1\
\
\
\
\
1\
\
\
1\
\
\
o
\
~
\ \
1
,
\
\
~
100
50
150
Fig.9 Limit commutation dV Idt for BT138 and F series versus Tj. The triac should commutate when
dV Idt is below the value on the appropriate curve for pre-commutation dlT/dt.
D8611
BT138E series
dV
dt
(V l/1s1
.........
~
~
\
....,
....;;, Imit
~ ~ ~/dt
dll
f'
""",
y
\
\
l
rl
\
1
-dIT/dt=
10
\
~7.7
Y
\
\5.9
,
\
1
o
\3.5
'\.
I{
,
\
\
\
\2.7 \2.1 Alms
\
\
\
\
..........
1\
\
\
\
\
\
\
\
~4.6
="-
~
~
\
T
l
",
\
\
1\
\
\
\
\
\ \
50
100
150
Tj(OC)
Fig.10 Limit commutation dV Idt for BT138E series versus Tj. The triac should commutate when the
dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt.
10
January 1980
r
jl
Triacs
'---
----,-----IZ77121A
3
7Z77124A
150
minimum gate voltage
that will trigger all devices
minimum gate current that
will trigger all devices
all conditions
1
1
IGT
(mA )f-
2
~l
1
1
1
,
j\T2 neg., gate pas. to T1
1\
100
;"t-..,
BT138 SERIES
1\
,.....
l\
1\
f'..
1\
f'..
l""T"'"
L\
1\
~
!\
\
50
1\
"....
I"
~
roo..
" ""
I""..... i"ooo
r-r- \- all other conditions ....
o
-50
o
o
-50
50
o
11
111
Fig.l1
~~
-
l 1
50
Fig. 12
D8616
10
l
~m
unidirectional
~
r±1tmtF
bidirectional
iJ'
~
iJ'
./
..,;"
V
10- 1
L
I'
•
lL
10- 2
10- 3
10- 5
10- 4
10- 3
10- 2
Fig.13
10- 1
time (s)
10
B_T_13_8_S_E_R_IE_S~~·~~________________________________
___
LIMITS FOR STARTING OR INRUSH CURRENTS - FULL-CYCLE OPERATION
60
10
A.-Ai
10(RMS)
'""A-_
IO(RMS)
(A)
Tj
V
= T mb = 75 °c
prior to starting
I
r-...
""
40
85 0 C
............ I
i"o..
.,.....
95
0
..........
20
V
t
for safe operation at a given temperature the
r.m.s. of successive cycles (see drawing above)
must lie within the region bounded by the
curve shown below for that temperature
"....,..
"'- i""""o
I
V
C
.....
~
r--
.......
...........
r--...
...........
..........
1"1'-~
"'-
"" .................
I"'---..
r--
.......
r-
.....
--
i"'-
...
~
o
10- 2
time (s)
10
Fig.14
LIMITS FOR STARTING OR INRUSH CURRENTS - HALF-CYCLE OPERATION
30r---~r-~--~~'-rMr---~--~-----------------------------,
IO(AV}~---4--~-+-+~++++----~~
(A)
20
- T j = T mb = 75 °c -+-+-+-+-++---f----l
.
.
~rlor to starting
-
...........
Fig.15
12
January 1980
r
for safe operation at a given temperature the
average of successive cycles (see drawing above)
must lie within the region bounded by the curve
shown below for that temperature
_ _ _ _J
8T139 SERIES
TRIACS
Glass-passivated eutectic-bonded triacs intended for use in applications requiring high bidirectional
transient and blocking voltage capability, and high thermal cycling performance with very low thermal
resistances, e.g. a.c. power control applications such as motor, industrial lighting, industrial and
domestic heating control and static switching systems.
QUICK REFERENCE DATA
BT139-500 600
Repetitive peak off-state voltage
VDRM
R.M.S. on-state current
IT( RMS) max.
16 A
max.
115 A
Non-repetitive peak on-state current
MECHANICAL DATA
500 600 V
max.
+-
Dimensions in mm
Fig.1 TO-220AB
1I
--
__1~~'5X
1- -- ,
10,3
max
1,3--
3,6
2,8
-
t
mounting _
base
(see note)
5,9
min
+
:
I
I
.~Il:::;==;:::=:;:1:;::::;~
3,5 max
,
--t
max
T,
T2
-.1
g
T.-T
1
2
max
t1,3-"i l
(2 x)
-r
15,8
max
j
.J
5,1
not tinned
1
9
13,5
min
l
~11--o,6
~11~o,9max (3x)
-..
2,54 2,54
--2,4
Net mass: 2 g
Note: The exposed metal mounting base is directly connected
to terminal T2.
Accessories supplied on request: see data sheet Mounting instructions and accessories for TO-220 envelopes.
u~ ~~~~"m~~ . . .~ ._~..~_ .~~~~. ~___ ._'(~ua~.::_. . . .
__
•
_____
u
BT139 SERIES
l_ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
BT139-500 600
Voltages (in either direction)
-+
Non-repetitive peak off-state voltage (t ..;;; 10 ms)
VOSM
max.
Repetitive peal( off-state voltage (0 ..;;; 0,01)
VORM
max.
500 600 V
Crest working off-state voltage
V OWM
max.
400 400 V
R.M.S. on-state current (conduction angle 360 0 )
up to T mb = 93 °C
IT(RMS) max.
16 A
Average on-state current for half-cycle operation
(averaged over any 20 ms period) up to T mb = 79 0 C
IT(AV)
max.
10 A
Repetitive peak on-state current
ITRM
max.
115 A
ITSM
12 t
max.
115 A
max.
65 A 2 s
dlT/dt
max.
30 A/IJ-s
PG(AV)
max.
0,5 W
PGM
max.
5 W
500 600 V*
Currents (in either direction)
Non-repetitive peak on-state current; Tj = 120 0C prior
to surge; t = 20 ms; full sine-wave
2
1
t for fusing (t= 10ms)
Rate of rise of on-state current after triggering with
IG = 200 mA to IT = 20 A; dlG/dt = 0,2 A/Ils
Gate to terminal 1
Power dissipation
Average power dissipation (averaged over any 20 ms period)
Peak power dissipation
Temperatures
-+
Storage temperature
T stg
Operating junction temperature
full-cycle operation
half-cycle operation
Tj
Tj
-40 to +125 °C
max.
max.
120 °c
110 °c
* Although not recommended, off-state voltages up to 800 V may be applied without damage, but
the triac may switch into the on-state. The rate of rise of on-state current should not exceed
15 A/Ils.
2
January 1980
(
j
Triacs
BT139 SERIES
- - THERMAL RESISTANCE
From junction to mounting base
full-cycle operation
half-cycle operation
Rth j-mb
Rth j-mb
1,2 0C/W
1,7 0C/W
Transient thermal impedance; t = 1 ms
Zth j-mb
0,1 °C/W
a. with heatsink compound
Rth mb-h
0,3 0C/W
b. with heatsink compound and 0,06 mm maximum mica insulator
Rth mb-h
c. with heatsink compound and 0,1 mm maximum mica insulator (56369) Rth mb-h
1,4 0 C/W
2,2 0C/W
d. with heatsink compound and 0,25 mm maximum alumina
insulator (56367)
Rth mb-h
0,8 °C/W
e. without heatsink compound
Rth mb-h
1,4 °C/W
~
+-
Influence of mounting method
1. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
2. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = any lead length
~
i
a
~
0
Rth j-a
60 °C/W
~
I
Fig.2
V//
l'
LL1
7Z75493
January 1980
3
BT139 SERIES
l_____
--CHARACTER ISTICS
Polarities, positive or negative, are identified with respect to T 1.
Voltages and currents (in either direction)
On-state voltage (Note 1)
<
1,6 V
dVo/dt
<
50 ViliS
dVcom/dt
<
6 ViliS
10
<
0,5 mA
<
30 mA
20 mA
IT = 20 A; Tj = 25 °C
Rate of rise of off-state voltage that will not trigger any device;
Tj = 120 oC; see also Figs.9 and 10; gate open circuit
Rate of rise of commutating voltage that will not trigger any device;
IT(RMS) = 16 A; Vo = VOWM max;
Tj = 120 °C; gate open circuit; see also Figs.9 and 10
BT139 series
-dlT/dt = 6,7 A/m~ }
-dlT/dt = 6,7 Alms
BT139 series F
-dlT/dt = 3,35 Alms
BT139 series E
Off-state current
Vo = VOWM max; Tj = 120 °C
Holding current; Tj = 25 0C
T2 and G positive or negative
BT139, F and E series
BT139 0 series
<
Gate voltage and current that will trigger all devices
Latching current
Vo = 12 V; Tj = 25 °C
BT139 series
BT139 series F
e.g. BT139-500F
G toTl
{ VGT
IGT
IL
G to Tl
{VGT
IGT
IL
BT139 series E
T2+
G-
T2G-
T2G+
> 1,5
> 35
< 40
1,5
35
60
1,5
35
40
1,5
50
40
V
mA
mA
> 1,5
> 25
< 40
> 1,5
> 15
< 30
> 1,5
> 8
< 25
1,5
25
60
1,5
25
40
1,5
50
40
V
mA
mA
1,5
15
40
1,5
15
30
1,5
50
30
V
mA
mA
1,5
8
35
1,5
8
25
**
**
**
V
mA
mA
T2+
G+
G to Tl
BT139 series 0 (Note 2)
G toTl
J VGT
I IGT
IL
f VGT
\IGT
IL
Gate to terminal 1
Voltage that will not trigger any device Vo = VORM max;
Tj = 120 oC; T2 and G positive or negative
Note 1. Measured under pulse conditions to avoid excessive dissipation.
Note 2. A version with IGT = 5 mA max. is available on request.
Triggerable
4
January 1980
(
<
250 mV
J
Triacs
BT139 SERIES
- - MOUNTING INSTRUCTIONS
1. The triac may be soldered directly into the circuit, but the maximum permissible temperature of the
soldering iron or bath is 275 oC; it must not be in contact with the joint for more than 5 seconds.
Soldered joints must be at least 4,7 mm from the seal.
2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during
bending.
3. It is recommended that the circuit connection be made to tag T2, rather than direct to the heatsink.
4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between mounting base and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated in Fig.3.
junction
mounting
base
Rth j-a
heatsink
Fig.3
7273725
ambient
b. The method of using Figs.4 and 5 is as follows:
Starting with the required current on the IT(AVI or IT(RMSI axis, trace upwards to meet the
appropriate from factor or conduction angle curve. Trace right horizontally and upwards from the
appropriate value on the T amb scale. The intersection determines the Rth mb-a. The heatsink
thermal resistance value (Rth h-a l can now be calculated from:
Rth h-a = Rth mb-a - Rth mb-h·
c. Any measurement of heatsink temperature should be made immediately adjacent to the device.
January 1980
5
FULL-CYCLE OPERATION
08604
30
84
p
a=
(W)
,
0
II
~
20
J
'f l/'
II I I
,
,J
''''-~
rl/I/
Jf
,
~
,J
J,.
'I//.
1/
1/
90
0
60
0
f f f,J
JlI
10
180
I
0
120
300-
~
,
'"' ,
", ,
~
I'
~
~
~
"
"
I""-
"
....
I.....
"- I""-
1'0
i"
"
~
.....
~
,
0
'0
~ ~
r"
"""
1I1.,....,;:1~
10
L'
~
~
I
20 0
I
I
,
,\ 1\0}"
I'
~
.?
..;
~
free-air operation
o ~i""'"
'-
I
-
96
'%1\-\
0
~- ~',Q
'" "- ~~" " ,
,
IO~ 'f"'/
V
,::l"
\
l'rI..
~
1,1l
~
~
~/.. ,,~
~~ ,~
6'~ 11""111"'"
~~~
L1L
~
"vJ - f--f.--0-
.z.
\
r+-f--+--
f-+--
\
\ \
'" " ""' '- \ , 1\
"'l"- ,I\.,1\ \
~
108
~
~
~
~
r""o
.....
,,'
'" ... I'.C'-.....
50
~, l'..~I\
.\
~"I\.
N~\'
~
--
~~1
~I
'\
.~ ~I~.l
120
100
Fig. 4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
(X = (Xl = (X2: conduction angle per half cycle
6
January 1980
'I (
J
Triacs
BT139 SERIES
- - HALF-CYCLE OPERATION
08605
20
~
---
+ __
__ --l--__
~
~--+--
-----+-- +---+--
P
:
----+----
(W)
1
+-- H
I
I
15
•
~
1.57~;
'i
-+---<--+-
-+
-
I
-+---
+-
____
r¥ 'l
:I/)~,
~
.
[\,
\
Vt~
-
~
->-
i
1---
~-+--!--
"'
"'! \ \: , [\~~'
X rf
-- _'\i 'is~\
12
\,
I'\.
"\ \ \
"
\:"1\ 1\' \ 1\
\' .\
\
~---+-+---+-----
~--+.-
-
.
.
'\
+
+-
.... - -
..
-+
+
ld t lim'
\
\11
\19 ' ,15
\
\
\
,
1\
\
\
\
a
1\
~8., \6.7 Alms
,
\
.-l
\
\
)
1
\
1
1
\
~
\
~
~
lie
\
\
" --....
,
\
~
50
\
1
~
100
150
Fig.9 Limit commutation dV/dt for BT139 and F series versus Tj. The triac should commutate when
the dV Idt is below the value on the appropriate curve for pre-commutation d IT/dt.
08607
3T 139E series
dV
dt
I""""--
(V IJ.Ls)
-==:
t---
~~
\
........
1\
f\ F'\"
dll
~/dt/" .
~
,
\
1\
-dIT/dt=
I\,2
\
\
\
I
\
\ \
1
a
~
\
\
\
1
-'-
1\
\
\
\
\ 5.7 ' \4.4 \ 3.4 Alms
-'-
1\
~
~7.3
-- -......
"-
L\.
II
\
\9.5
\
"
~
\
Il
\
10
,
\
\
'm,t
\
\
~
\
1
,
.-l
\
l
50
100
150
Fig.l0 Limit commutation dV/dt for BT139E series versus Tj. The triac should commutate when
the dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt.
10
January 1980
r
j
Triacs
8T139 SERIES
---7Z77121A
3
150
I I
1 T
all conditions
)
TI
TI
r-\T 2 neg., gate pos.
I
to T 1
,
\
100
2
7Z77 1 24A
minimum gate current that
wi II trigger all devices
minimum gate voltage
that will trigger all devices
\
\
to.....
1\
.......
r-...
1\
\
r--.
\
1\
.............
~
\.
\
50
"-
'\
" .....""-
.......
.......
,,~
condition'? .....
e-e- f- allI other
I
[
o
o
-50
I I
I I I
a
-50
50
1 1
I I I
a
50
Fig.12
11
Fig.
1
1
D8617
10
~~
=~
--
II If
unidirectional
-
~~
---
.,.
--f--
---- - - '-~
--
-~
-
----
-- f--
10- 1
/
io"'"
~
----
~
II TI
bidirectional
-
",
~,
,/'
~~
V
10- 2
--
f-~~~
10- 3
10- 5
--
---
10- 4
10- 3
10- 2
10- 1
time (s)
10
Fig.13
11
Bn~~RES l~
_________________
LIMITS FOR STARTING OR INRUSH CURRENTS - FULL-CYCLE OPERATION
60
I
Tj
I
I
I
10
= Tmb = 75°C
-A_
""'- I
I
-,.... I
I """l
(A)
1
I ' .....
""'~50C
40
"
.....
~
""'.....
.......
r-....
""'-
["....
..........
"""'- ........
......
r--1-0..
20
""'-
t
V
for safe operation at a given temperature the
r.m.s. of successive cycles (see drawing above)
must lie within the region bounded by the
curve shown below for that temperature
......
............. 95 0 C
rA.-fY.
VV
'OIRMS)
...... prior to starting
IO(RMS)
-
..........
I--.
.....
......
..... ~
-r-
......
....
--
=--
o
10- 2
10
time (s)
Fig.14
LIMITS FOR STARTING OR INRUSH CURRENTS - HALF-CYCLE OPERATION
30~--~~-~1~~~~~----~~----------------------------'
10~
I1
10(AV)
......
_-L--AL--t..;=.:fA.::I,.-...-;,<>,
...
· _
t
for safe operation at a given temperature the
average of successive cycles (see drawing above)
must lie within the region bounded by the curve
shown below for that temperature
---
-1-0
Fig.15
12
January 1980
(
j
BTW34 SERIES
----------------------------------------------------TRIACS
Silicon triacs in metal envelopes, intended for industrial a.c. power control, and are particularly suitable
for static switching of 3-phase induction motors. They may also be used for furnace control, lighting
control and other static switching applications up to an r.m.s. on-state current of 55 A.
Two grades of commutation performance are available, 30 V Ip.s at 25 Alms (suffix G) and 30 V Ip.s at
50 Alms (suffix HI.
QUICK REFERENCE DATA
Repetitive peak off-state voltage
VDRM
max.
R.M.S. on-state current
IT(RMS)
max.
Non-repetitive peak on-state current
ITSM
max. 400 A
Rate of rise of commutating voltage
that will not trigger any device (see page 3)
dVcom/dt
<
MECHANICAL DATA
55 A
30 V/p.s
Dimensions in mm
Fig. 1 TO-103.
~-------155/145 -------~
2.5 max
20 maxl
Terminal 2
1
i
I
I
....._ - - - 4 5 min leads
at right angles
033&7
Net mass: 46 g
Diameter of clearance hole: 8,5 mm
Torque on nut: min. 4 Nm (40 kg cm)
max. 6 Nm (60 kg em)
.1
165/155
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 13 mm
April 1978
BTW34 SERIES
l_ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages (in either direction)*
Non-repetitive peak off-state
voltage (t ~ 10 ms)
BTW34-600 800 1000 1200 1400 1600
VOSM
max.
700 900 1100 1300 1400 1600 V**
Repetitive peak off-state voltage
VORM
max.
600 800 1000 1200 1400 1600 V
Crest working off-state voltage
V OWM
max.
400 600
700
800
800
800 V
Currents (in either direction)
R.M.S. on-state current (conduction angle 360 0 )
up to T mb = 75 °C
at T mb = 85°C
55 A
45 A
IT(RMS)
IT(RMS)
max.
max.
Average on-state current for half-cycle operation
(averaged over any 20 ms period) at T mb = 85 °C
IT(AV)
max.
21 A
Repetitive peak on-state current
ITRM
max.
300 A
ITSM
12 t
max.
400 A
max.
800 A 2 s
dlT/dt
max.
50 A/l1s
Non-repetitive peak on-state current
Tj = 125 0C prior to surge; t = 20 ms; full sine-wave
2
1
t for fusing (t = 10 ms)
Rate of rise of on-state current after triggering with
IG = 1 A to IT = 100 A; dlG/dt = 1A/I1s
Gate to terminal 1
Power dissipation
Average power dissipation (averaged over any 20 ms period)
max.
2W
Peak power dissipation
max.
10 W
Temperatu res
Storage temperature
-55 to
Junction temperature
max.
+ 125 0C
125 0C
THERMAL RESISTANCE
From junction to mounting base
full-cycle operation
half-cycle operation
Rthj-mb
Rthj-mb
From mounting base to heatsink with heatsink compound
Rth mb-h
0,2 0C/W
Zth j-mb
0,08 0C/W
Transient thermal impedance; t = 1 ms
0,6 0C/W
1,2 °C/W
To ensure thermal stability: Rth j-a < 2 °C/W (full-cycle or half-cycle operation). For smaller
heatsinks Tj max should be derated (see Figs 2 and 3).
** Although not recommended, higher off-state voltages may be applied without damage, but the
triac may switch into the on-state. The rate of rise of on-state current should not exceed 20 A/l1s.
*
2
April
19781(
J
Triacs
BTW34 SERIES
- - CHARACTE R ISTICS
Polarities, positive or negative, are identified with respect to T 1.
Voltages (in either direction)
On-state voltage
IT = 65 A; Tj = 25 oC
Rate of rise of off-state voltage that will not trigger any device;
exponential method; Vo = 2/3 VORM max; Tj = 125 °C
dVD/dt
<
2,1 V*
<
200 V Ills
Rate of rise of commutating voltage that will not trigger any device;
IT(RMS) = 45 A; Vo = VDRM max; T mb = 85 °C
dVcom/dt (V/IlS)/-dIT/dt (Alms)
BTW34-600G to 1600G
<30
I
25
BTW34·600H to 1600H
<30
50
Currents (in either direction)
Off-state cu rrent
VD = VDWM max; Tj = 125 °C
<
10
T2 pos.
10 mA
T2 neg.
Latching current; Tj = 25 °C
G positive
G negative
IL
IL
<250
<500
mA
250 mA
Holding current; Tj = 25 °C
G positive or negative
IH
<200
200 mA
VGT> 2,5
IGT > 200
J -VGT> 2,5
-IGT > 200
V
mA
Gate to terminal 1
Voltage and current that will trigger all devices
V D = 12 V; Tj = 25 °C
G positive
G negative
Voltage that will not trigger any device
Vo = VDRM max; Tj = 125 oC; G positive or negative
* Measured under pulse conditions to avoid excessive dissipation.
1
2,5 V
200 mA
0,2 V
l_________________
BM~~RES
FUll CYCLE OPERAT,ION
ex
( \ !'
'"
\
" ,
\
\
I\.
10
20 IT(AV) (A)
'0
50
\
' 0
,£.
\ 1\
\ \
105
~
\,
"-
\1\
\ '.\
"- r\ 1\'
'l
"- r\..' -~~
125
100 Tamb(OC) 15 o
0
Tmb- scale is for comparison purposes only and is correct only for Rth mb-a::: 0, 8 C/
Fig. 3.
4
,"'" \~o
\.
L'
0
\
~
\
~r
o
\%-
~~
I\.
'/
\p"
\
"\.
80
t~
\
~
I\.
mb-a t>1.4°C/W
,
\.
If
Rth
125
Tamb (oC)150
7Z66860
,
\
/I~
I
100
interrelation between the power
(derived from the left hand graph)
and the max. allowable temperatures
1\
/ /
J / 1/
I I II /
1/ I)
I I 1//
II /1 IJ
r-- - Q ' = 30°'
20
,
form
factor
condo
angle
a=30
60 0
a = conduction 90 0
angle
120 0
0
180
30
a
~\
"~ ~
r---.. 1'0..... ~l
is for comparison purposes only and is correct only for
40 HALF CYCLE OPERATION
.1\.
\~
,~
50
Fig. 2.
110
" .\
~ "-:'\
I"
~~
25
95
\%
~
.....
~s
VV/ /
1/ / /
I) '//
25
"fl
, ',j'
"
'"", "
I
60°
I
J
~
April
19781 (
J
Triacs
BTW34 SERIES
- - 7Z62077
600
ITS(RMS )
(A)
400
maximum permissible non-repetitive
r.m.s. on-state current based on
sinusoidal currents (f=50Hz)
A
,
I\,
\.
I T_
SV
_\- - - -
,,
1\
- - - ITS (RMS)
VV
rlI
I'
-
time
the triac may temporarily lose
control following the surge
"ITSM
"
,,
1\
I\.
200
........rL =12SoC
r-I. J.
~
prior to surge
IIIII
I
~
j
I
I
~
III11
III11
I
I
duration (s)
10
Fig. 4.
7Z620762
- - T j = 25°C
100
1
II
- - - T j = 125°C
j
I
typ
I
VT r---~
I'
,
I
II
,
VT -
~
I
50
I
.h
I
.'
'-.:r-.max_
~
1/
I
I I
II
I
'I
Vi
"
-
'/
I/. f..')'
o
~~
o
3
Fig. 5.
5
~~~RES l~
_______________~
7Z62935
max. rate of rise of offstate voltage that will not
trigger any device (exp.method) plotted against
junction temperature
I--1-1t-- 1-1-
2000
dVD
(it
(V Ills)
1500
f- 1-1f- f - I f- f-I-
,
7Z62932
600
dVD
1\
for safe operation at a given temperature the r.m.s. of successive
cycles (see drawing above) must
lie within the region bounded by
the curve shown below for that
temperature
100
~=
T mb = 45 °C prior to starting
I III
I II
I I II
'""'t-.LJI
i""""'--.
~
0
r- ....65 C
..........
1l""Hi"'-I-o.
II
-....
50 .......
..........
........
8~-
--..
-
-r--..
""r-...io-.
r- ...
-------..
10- 1
10
time (8)
Fig. 11.
7
3_4_S_E_R_IE_S_jL~_______________________________
___B_nN
__
7Z62940
7Z62941
conduction angle: 360 0
conduction angle: 360 0
~XlOO%
IT(RMS)
(A)
T
150
Tmb=45 0 C
tp= 20ms
1
100
""""""'-
"
lOci
~
r----...... 1\
---~-~
50
c:-.....
~ls
.........
~
~
°c
~
~
1\
2j
~
1
50
Tmb= 85
~~
200 .
t--- ~400
'\
,
I - - - t-2s
I"""--
1 sl
r- I'"
I - - - t-ldo
N
I
f---
tp=20ms
40
f - - 2OO
_ _ 400
I---
T
100
r--I'- ...
40
~
~XlOO%
IT(RMS)
(A)
o
10
5 (%)
1
10
5 (%)
Fig. 12 Intermittent overload capability of one triac in a single phase a.c. control circuit.
7Z62939
uni-directional
I,...000o
~
~
10- 1
~-directional -
~
~I-'
~
./
10- 2
~~
10- 4
8
April 1978
J(
10- 2
Fig. 13.
1 time (s)
10
,Jl.___B_TW__4_1_S_E_R_IE_S__
___M_A_'_N_TE_N_A_N_C_E_T_Y_P_E______________________
TRIACS
A range of glass-passivated triacs in plastic envelopes with push-on connectors. They are intended for
use in industrial a.c. power control applications such as motor and heating controls, and switching
systems.
QUICK REFERENCE DATA
BTW41-500G
Repetitive peak off-state voltage
VDRM
max.
800G
500
800 V
R.M.S. on-state current
IT(RMS)
max.
40
A
Non-repetitive peak on-state vurrent
ITSM
max.
260
A
Rate of rise of commutating voltage
that will not trigger any device
dVcom/dt
<
Vips
5
Dimensions in mm
MECHANICAL DATA
Fig.1 SOT-80
exposed metal
(see note)
,
l='~'I 1:
4
max
T2*Tl
4,7min
9
0,8
•+ I
-18max-
--I
o
6,35
(2x)
a
,+-
,t
2,4
7Z64964.1
Recommended diameter of fixing screws: 4 mm
T 1 and T 2: AMP250 series
g:
AMP110 series
The exposed metal base-plate
is electrically connected to
main terminal T2.
Net mass: 15 g
Torque on fixing screws:
min. 0,8 Nm (8 kg cm)
max. 1,5 Nm (15 kg cm)
-----------------j~~~~~
TRIACS
Also available to BS9343-F001
Silicon triacs in metal envelopes, intended for industrial a.c. power control and are particularly suitable
for static switching of 3-phase induction motors. They may also be used for furnace control, lighting
control and other static switching applications up to an r.m.s. on-state current of 15 A.
Two grades of commutation performance are available, 10 V IflS at 5 Alms (suffix G) and 10 V IflS at
12 Alms (suffix H).
QUICK REFERENCE DATA
BTW43-600
Repetitive peak off-state voltage
VDRM
max.
600
800
1200
800
1200 V
R.M.S. on-state current
max.
15 A
Non-repetitive peak on-state current
max.
120 A
Rate of rise of commutating voltage
that will not trigger any device (see page 3)
dVcom/dt
<
10 V/flS
Dimensions in mm
MECHANICAL DATA
Fig. 1 TO-64: with metric M5 stud (rjJ 5 mm).
1
,,98j-1
ma,
max
__ 3,5 _
9,3
max
max
_10,28_
max
..--- 11,5 _____ . . 2
1,72 ___
10,72
max
I
Net mass: 7 g
Diameter of clearance hole: max. 5,2 mm
Accessories supplied on request: 56295
(PTFE bush, 2 mica washers, plain washer, tag)
Supplied with the device: 1 nut, 1 lock washer
Nut dimensions across the flats: 8,0 mm
7Z65906.1A
Torque on nut: min. 0,9 Nm
(9 kg cm)
max. 1,7 Nm
(17 kg cm)
BTW43 SERIES
l________
RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Voltages (in either direction) *
BTW43-600
Non-repetitive peak off-state voltage
(t ~ 10 ms)
VOSM
max.
Repetitive peak off-state voltage
VORM
max.
Crest working off-state voltage
VOWM
max.
800
1000
1200
600
800
1000
1200 V
600
800
1000
1200 V
400
600
700
800 V
Currents (in either direction)
on-state current (conduction angle 3600 )
up to T mb = 75 °C
at T mb = 85 °C
R~M.S.
IT(RMS)
IT(RMS)
max.
max.
15 A
12 A
Average on-state current for half-cycle operation
(averaged over any 20 ms period)
up to T mb = 35 °C
at T mb = 85 °C
IT(AV)
IT(AV)
max.
max.
9,5 A
5,5 A
Repetitive peak on-state current
ITRM
max.
50 A
ITSM
12 t
max.
120 A
max.
72 A 2 s
dlT/dt
max.
50 AIMS
Average power dissipation (averaged over any 20 ms period)
PG(AV)
max.
1W
Peak power dissipation
PGM
max.
10 W
Non-repetitive peak on-state current
Tj = 125 0C prior to surge; t = 20 ms; full sine-wave
2
1
t for fusing (t = 10 ms)
Rate of rise of on-state current after triggering with
IG = 0,5 A to IT = 25 A; dlG/dt = 0,5 AIMS
Gate to terminal 1
Power dissipation
Temperatures
Storage temperature
Tstg
Junction temperature
Tj
- 55 to + 125 °C
max.
125 °C
THERMAL RESISTANCE
From junction to mounting base
full-cycle operation
half-cycle operation
Rth j-mb
Rthj-mb
2,0 oC/W
4,0 0C/W
From mounting base to heatsink with heatsink compound
Rth mb-h
0,5 0C/W
Transient thermal impedance; t = 1 ms
Zthj-mb
0,2 °C/W
* To ensure thermal stability: Rth j-a < 6 0C/W (full-cycle or half-cycle operation). For smaller heatsinks Tj max should be derated (see Figs 2 and 3).
2
April
19781 (
J
~~
BTW43 SERIES
---CHARACTERISTICS
Polarities positive or negative, are identified with respect to T 1.
Voltages (in either direction)
On-state voltage
'T = 20 A; Tj = 25 °C
Rate of rise of off-state voltage that will not trigger any device;
exponential method; VD = 2/3 VDRMmax; Tj = 125 °C
dVD/dt
<
2,2 V*
<
200 V//ls
Rate of rise of commutating voltage that will not trigger any device;
'T(RMS) = 12 A; VD = VDWMmax; T mb = 85 °C
dVcom/dt (V//ls)
-dlT/dt (Alms)
< 10
< 10
BTW43-600G to 1200G
BTW43-600H to 1200H
5
12
Currents (in either direction)
Off-state current
VD = VDWMmax; Tj
= 125 °C
<
'D
T2 pos.
Latching current; Tj = 25 0C
G positive
G negative
Holding current; Tj = 25 0C
G positive or negative
5 mA
T2 neg.
'L
'L
< 200
< 200
200 mA
200 mA
'H
< 100
100 mA
VGT
'GT
> 2,5
> 100
5,0 V
200 mA
-VGT> 2,5
{ -IGT > 100
2,5 V
100 mA
Gate to terminal 1
Voltage and current that will trigger all devices
V D = 12 V; Tj = 25 °C
G positive
G negative
Voltage that will not trigger any device
VD = VDRMmax; Tj = 125 °C; G positive or negative
{
VGD
<
0,2
0,2 V
* Measured under pulse conditions to avoid excessive dissipation.
3
l_ _ __
BTW43 SERIES
Fig.2. FULL CYCLE OPERATION
.
r-I
1.-.1\
p
Q
0'1
(W)
I
II
20
I
I
1/
" I
)
1/
""
120 0
II
I
I
I
"I 1/ I
"
I
II
II I
III 1I11
~
i .......
r-....
""
"'"
" "'" "
J
I"'"
.....
",,<.9
"
~
I"'oj.."
i"""~
I.....
'"
i'
~
~
r...
1"-
r/.If.
'"
I.......
I'"
~~
a
50
1"1.
"
"
105
~
,
1'\
I"
1AijP'
10 IT(RMS) (A) 20
~
~
1..... 1"-00
a
,
~
"
r-t-t-
,~- t-t-t-
1'\
~
iO I"
I/V:
a
r
,-~t-j--'
..... ;> ....
r""-
I~ ~rJ'
~~~-~ ~
'" I""'" S
..... 1"'0-
r.l
J\ \
I "\I "" ~
JI\'o
-/
~
85
~
~~6
"'\.
.....
I'-..
r-~
/1/ vv
)1) 1/1/
~t
I\.
I"
l'
I"
1/
J
1,\
.....
t"'--
1
I
~
~
~
:-..
30 0 .
VI/
/
~
60 0
II
,
1,\
I
/
)
interrelation between the power
(derived from the left hand graph)
and the max. allowable temp.
= 180 0
I
0' = 0' 1 = 0' 2
conduction angle
per half cycle
10
7Z67799
1
1
JI
I
I I I I
0'2
~~~
I'~\.'
"I . . . . ~~
/"""01"00
r....1"Q 125
T amb (OC) 100
* T mb-scale is for comparison purposes only and is correct only for Rth mb-a ~ 4 0CIW.
Fig. 3. HALF-CYCLE OPERATION
A
-i 0' 1_ 0'=30°
60°
0' = conduction 90°
angle
120°
180°
p
(W)
I
I I
2,2
2,8
/
II
,/
I
II
10
I
II
I
I
I
I
II
11/1.1
"
lI'
/
V
/
/
/
"-
/
/
to....
i'
I-f-
I-~
a
~~
~
r-
I'"
'"';>1'"S
..... t--,
a
.....
r-....
i'
,
~<.S
~S
......
II I IV. V"
'/.v
I/V.
1\.~ ~
.....
/
I
1/
~
45
~1;o
I'
d.c.
/
,1
"'" ,,1
, "
C"Io
j
If
j
1/.
II
/
II
II
1,6 ~
/
1,9
I
i/
a=4
interrelation between the power
(derived from the left hand graph)
and the max. allowable temp.
"
a=4
2,8
2,2
1,9
1,6
20
I
I
7Z67798
form
factor
cond.
angle
:
"-
~.
" ,
~
.....
I'
I.....
.....
.....
~ ..... ~
'" "-
I"
I~
85
'\.
I....
....
~
"
.....
I.....
......
I
.....
....
,...~
r-...
~
1"-0
I
a
~~
I"
r-....
I"
April
~
~~
I"'IS: ~~ 125
5
IT(AV) (A) 10
a
50
T amb (OC) 100
* T mb-scale is for comparison purposes only and is correct only for Rth mb-a ~ 2 0CIW.
4
1"00.:
19781(
J
~~
BTW43 SERIES
----200
ITS(RMS)
~
(A)
\
150
\
'TSh~V0T:~::'
A
,
~
~
\
100
7Z67797 1
max. allowable non-repetitive
r. m. s. on-state current based
on sinusoidal currents (f = 50 Hz)
,
~
I TSM
r--,
the triac may temporarily lose
control following the surge
'~
1
1'1'
I II
I II
01
I I I I III
lj = 125 C prior to surge
......: ........
--
50
o
10-1
10-3
duration (s)
10
Fig. 4.
7Z67800
60
--Tj=25 oC
- - - Tj = 125 oC
I
I
II
IT
(A)
I
II
I typ
/
VT
max ~Lf-f-
40
Vr/
I
rl maxr-
I
,/,
I
VT-
t - - i-f-
I.
II
W
~
20
I
J
I
I~
I
r
"
q
I
/)
l' /1
I 1/
o
'~i/
~~
o
2
VT (V)
4
I(
Fig. 5.
~
.... .• _." •. "..,.. _,._ •. _ ..
_~_~._._ ~
.•
April 1978
.. _... _..... _.• __ ._ ,,,,, •...• _ .. _ ._._.
~_, ~ '~ '.L _L.~,".". . . . _. ~ . _. . . ."~ .". ,_ _
.._ ... _ .
._
5
l____
BTW43 SERIES
7Z67802.1
.....
'
7Z678031
600
7,5
.....
'" I'
5
400
.....
"-
.....
,
I"
I"
"
""1--
i'.
r"~
2,5
~
....
.
200
~
"
'" I'
...
i'.
.....
r--
r--.
r--.Io..
~
o
-50
o
o
50
Fig. 6 Minimum gate voltage that will trigger all
devices as a function of Tj.
-50
- - T 2 negative, gate positive with respect to T 1
- - - - all other conditions
AP'il1978/ (
"I-
--
50
Fig. 7 Minimum gate current that will trigger all
devices as a function of Tj.
Conditions for Figs 6 and 7:
6
o
.""
j
~~
BTW43 SERIES
- - - 10 2 BTW43-600G to 1200G
7Z77780
10 2 BTW43-600H to 1200H
dVcom
dt
dVcom
dt
(V IjJs)
(V IjJs)
Tj=
125°C
T-=
95
J
65
10
1
10
125
95
65°C
1
1
7Z67801.2
10 2
-dlT/dt (Alms)
10
10
-dlT/dt (Alms)
F~g. 8 Maximum rate of rise of commutating voltage that will not trigger any device as a function of
rate of fall of on-state current; IT(RMS) = 12 A; Vo = VOWMmax'
7Z72279
10 2
10
I"'"
....".
--
~ ~-
uni - directional
CJ..
I
I Uil
II I
bi-directional
..,.
,./
..,.,.""
10- 1
10
time (5)
10
2
Fig. 9.
April 1978
7
__B_T_W_4_3_S_E_R_IE_S_Jl_________________________________
FULL CYCLE OPERATION
7Z72300
60
for safe operation at a given temperature the r. m. s.
of successive cycles (see drawing below) must lie
within the region bounded by the curve shown below
for that temperature
IT(RMS)
"-
(AI
IT~"SI
" "I'
.......
40
.........
.......
.....
"- .........
r.....
.........
..... "'"
~
......
1111
lill
111..1
......
t-..
.......
r....
1'-0.
............
20
~
lj =Tmb = 45°C
I
J.
J.
prior to starting
~
65...........
.........
~
r"'-
-
85
1""-000
I"--
--
-,... i'"
~
10
t--
time (5)
Fig. 10.
40
HALF CYCLE OPERATION
7Z72303
for safe operation at a given temperature the average
level of successive cycles (see drawing below) must
lie within the region bounded by the curve shown below
for that temperature
IT(AV)
(AI
30
IT~
"-"
20
...........
............
InAVI
Ak .-
,~
"-
1'0"",
1""-"
"'""" ~r--.
10
""
~""
=Tmb = 45°C
~ r--.. ~
lj
~8S
--
r--.~
r----.. ~
prior to starting
~
r---_
I'---
10
8
(
1
April 1978
Fig. 11.
time (5)
_________________________________Jl__
B_T_X_9_4_S_E_R_IE_S_
TRIACS
Silicon triacs in metal envelopes, intended for industrial single-phase and three-phase inductive load
applications such as regenerative motor control systems. They are also suitable for furnace temperature
control and static switching systems.
Two grades of commutation performance are available, 30 V Ip.s at 25 Alms (suffix H) and 30 V Ip.s at
50 Alms (suffix J).
QUICK REFERENCE DATA
Repetitive peak off-state voltage
VDRM
max.
R.M.S. on-state current
IT(RMS)
max.
25 A
Non-repetitive peak on-state current
ITSM
max.
250 A
Rate of rise of commutating voltage
that will not trigger any device (see page 3)
dVcom/dt
<
MECHANICAL DATA
30 V/p.s
Dimensions in mm
Fig. 1 TO-48.
__ 4,2 __
3,2
3,4
max
I" 1--
1/4in x 28 UNF ....
-IF=='=~
'\
,
min
=T=::::2=r-iUH
-,-+
6,35
max
-- --
124max
I
II
~
t
'-'
2,26 __
max
g~t 1,9
....11.
-12,smax-1
1,6
-22,2max___ 11,5 - 1 ....4t-----303max----..~1
10,72
Net mass: 14 9
Diameter of clearance hole: max. 6,5 mm
Accessories supplied on request: 56264A
(mica washer, insulating ring, soldering tag)
7Z69755.1C
Torque on nut: min. 1,7 Nm (17 kg cm)
max. 3,5 Nm (35 kg cm)
Supplied with the device:
1 nut, 1 lock washer
Nut dimensions across the flats; 11,1 mm
._,~" ___., . . ,__________,_ ,_ ,._ ._______r_~::~~.
___B_T_X_94__S_E_RI_E_S_Jl________________________________
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages (in either direction) *
BTX94-400 600 800 1000 1200
Non-repetitive peak off-state
voltage (t ~ 10 ms)
V DSM
max.
400 600 800 1000 1200 V * *
Repetitive peak off-state voltage
VDRM
max.
400 600 800 1000 1200 V
Crest working off-state voltage
V DWM
max.
200 400 600
700
800 V
Currents (in either direction)
R;M.S. on-state current (conduction angle 360 0 )
at T mb = 85 °c
IT(RMS)
max.
25 A
Repetitive peak on-state current
ITRM
max.
100 A
ITSM
2
1 t
max.
250 A
max.
320 A 2 s
dlT/dt
max.
Non-repetitive peak on-state current
Tj = 125 0C prior to surge; t = 20 ms; full sine-wave
2
1
t for fusing (t = 10 ms)
Rate of rise of on-state current after triggering with
IG = 750 mA to IT = 100 A
50 Alps
Gate to terminal 1
Power dissipation
Average power dissipation (averaged over any 20 ms period)
max.
1W
Peak power dissipation
max.
5W
Temperatures
Storage temperature
-55 to
Junction temperature
max.
+ 125 °C
125 0C
THERMAL RESISTANCE
From junction to mounting base
full-cycle operation
half-cycle operation
Rth j-mb
Rth j-mb
From mounting base to heatsink with heatsink compound
Rth mb-h
0,2 °C/W
Zth j-mb
0,12 0C/W
Transient thermal impedance; t = 1 ms
1,0 0C/W
2,0 0C/W
To ensure thermal stability: Rth j-a < 3,5 °C/W (full-cycle or half-cycle operation). For smaller
heatsinks Tj max should be derated (see Figs 2 and 3).
Although not recommended, higher off-state voltages may be applied without damage, but the triac
may switch into the on-state. The rate of rise of on-state current should not exceed 50 Alps.
2
April 1978
~(
j
n~
BTX94 SERIES
- - - CHARACTERISTICS
Polarities, positive or negative, are identified with respect to T 1.
Voltages (in either direction)
On-state voltage
IT = 50 A; Tj = 25 °C
Rate of rise of off-state voltage that will not
trigger any device; exponential method;
Vo = 2/3 VORMmax; Tj = 125 °C
Rate of rise of commutating voltage that will
not trigger any device;
IT(RMS) = 25 A; Vo = VOWMmax;T mb = 85°C
dVo/dt
dVcom/dt (V/j1s)
BTX94-400H to 1200H
BTX94-400J to 1200J
<
2 V *
<
100 V/j1s
-dlT/dt (Alms)
25
50
<30
<30
Currents (in either direction)
Off-state current
Vo = VOWMmax; Tj = 125 °C
<
T2 pos.
Latching current; Tj = 25 °C
G positive
G negative
5 mA
T2 neg.
< 350
150 mA
150 mA
G positive
>3,0
> 150
5,0 V
200 mA
G negative
-VGT> 3,0
{ -IGT > 150
3,0 V
150 mA
< 150
Gate to terminal 1
Voltage and current that will trigger all devices
VO=12V;Tj=25 0 C
* Measured under pulse conditions to avoid excessive dissipation.
Oecember 1979
3
l________________~
~~4~~S
FULL-CYCLE OPERATION
:~I
7Z59087
interrelation between the power
(derived from the left hand graph)
and the max. allowable temperatures
0<= 0<1 = 0<2
conduction angle
per half cycle
I--IV
0<1
60
Rth mb-a =
0.2°C/W
0< =180~
40
~
/
1f".I.120°1
1/ 1/
V. V V . /
20
~ ~~ ~ ~
"
"' 1
~
~
~ 90°
/~ ~600
/~
""i"o..
I'...
1'0..
i"3
'" 30°
i" ~5
..... ~ ~ ~ r..---
I--
10-
"" I"'
,
~
r\
.....
~
105
i""'"
"' '\ ~,
I"""- ,
r-....
""",
...... i""oo.
'""'' '
~
~ ~~
l"""- r-.... I' [ ' N
""""'r'" ~~
125
( ) 0
50
100
°
150
IT(RMS) A
Tamb ( C)
Tmb - scale is for comparison purposes only and is correct only for Rth mb-a to 2.5 °C/W
o~
o
*
~
I'\.
'~
~Io'"
.....
.....
,
~
'\
K
85
10
20
Fig. 2.
40 HALF-CYCLE OPERATION
condo form
angle factor
=30 00 a=4
-10< 160
2.8
90 00
2.2
ex = conduction 120
1.9
angle
1800
1.6
30
7Z59086
interrelation between the power
(derived from the left hand graph)
and the max. allowable temperatures
..!\..
I
,
'\
1.9 ~1.6
\
2.2 '/
2.8. /1 I
a=4
20
I
~
fJ,
r\.3
IJ~ rf
~
J JI~
Ih rtf
I--
---
10 10- f0-
~
~~
(OC)
I
Rth mb-a=
~ 0.2°C/W
1\
\
~,
\
" ,
'\
I\,
85
\
~
~~
"", r" "r'\. f'-"' ,.\
~
'\
J
~,
...... 1'..
~
~
iT
"
*
,,,
1\
\
r'\.
I"'
65
1
'\
{
~
105
~ l"\ .\.
......
,
r\. '\. ~\
1'0..
~~
~ ~l.
10
20
IT(AV) (A)
0
50
100
125
°
150
Tamb( C)
Tmb -scale is for comparison purposes only and is correct only for Rth mb-a .. 1.5 °C/W
Fig. 3.
4
April
19781 (
Tmb·
j
Triacs
BTX94 SERIES
----
?Z59088
400
IrSIR
1,1
~S)
maximum permissible non-repetitive
r.m.s. on-state !:urrent based on
sinusoidal currents (f=SOHz)
(A)
300
1\
\
IV\ !\
,
V-V
1\
time
"
200
"I\,.
"'"
---~
\.
\.
\.
100
"-
r"o Tj =125°C prior to surge
...............
duration (s)
10
Fig. 4.
7Z59083.1
150
= 25°C
Tj = 125°C
- - Tj
- - -
I I
I I I
I I I
max
VT
100
typ ,
V
I1I1
'I
I:
'I
T"
1"1
II
,"
II
I
r
I
50
It
,
lL
1#
rL
If
lL
.1
I'
IlL/if"
o
~~~
o
2
4
Fig. 5.
April 1978
5
___
BT_X_9_4_S_E_R_IE_S_Jl________________________________
7Z10225
(V)
IGTililililililili~ ~
(mA)
300
6
1111111111
4
1
200
10:_
2
a
a
-100
100 Tj (OC) 200
Fig. 6 Minimum gate voltage that will
trigger all devices as a function of Tj.
Conditions for Figs 6 and 7:
- - T 2 negative, gate positive with respect to T 1
- - - all other conditions
6
7Z10229.1
April
19781 (
-100
a
100 Tj COe) 200
Fig. 7 Minimum gate current that will
trigger all devices as a function of Tj.
j
n~
BTX94 SERIES
- - - 100
HALF-CYCLE OPERATION
7Z62025
IT
~
IT(AV)
IliAVI
:ALA
c>-
(AI
for safe operation at a given temperature
the r.m.s. of successive cycles
'see drawing above) must lie within the
region bounded by the curve shown
below for that temperature
75
50
f'...
~
'i'.
Tj=T m b=85°C
~
25
prior to starting
[""'... 1"0..
.... r-.""
-..... I"--io-.
time (s)
10
Fig. 8.
100
FULL-CYCLE OPERATION
7Z 62026
IT~
IT(RMS )
(A)
for safe operation at a given temperature
the r.m.s. of successive cycles
'see drawing above) must lie within the
region bounded by the curve shown
below for that temperature
75
~
"-
II
l"I'
50
I'"
J1
Tj =Tmb = 85°C
~
'
prior to starting
........ ......
.........
I----
25
time lsI
10
Fig. 9.
April 1978
7
~4~~S l~
________________
7Z10251
800EHEUmamfimam
dVO
Fig. 10 Maximum rate of rise of off-state
voltage that will not trigger any device
(exponential method) as a function of Tj.
50
100 Tj (OC) 150
7Z10250
10
Zthej- mb)
(OC/W)
III
I I
IIIIII
h~1f-'cYc1e"'"
50Hz operation.... ........ 1-i-"""'"
/
'"
V'
i"""'
......
"' ....
l-FuU-cycle
50 Hz operation
_i-'"
1 time (5) 10
Fig. 11.
8
April
19781 (
ACCESSORIES
G
G
_______________jl__
5_624_6_
DISTANCE DISC
For use with BRY39T
Dimensions in mm
MECHANICAL DATA
~p1
.
I--
5
•
I
7Z08949
Insulating material
TEMPERATURE
Maximum allowable temperature
December 1979
_____5_62_6_2_A__
~j~~_________________________________
MOUNTING ACCESSORIES
MECHANICAL DATA
Dimensions in mm
---10-
--5 .....
1~~~-----1a------~·~1
~
WP-+_1,a+
l_a_1
~ 0,1 ±O,01
t
+
0,9
7Z69812
7Z698C9
m-ica washer
V;;.,..,.,:ij."']----"V!:'T.z~:?J
~ 1,0
7Z6981:t
plain washer
material: brass, nickel plated
insulating ring
- . THERMAL RESISTANCE
From mounting base to heatsink (with mica washer)
without heatsink compound
with heatsink compound
5
Rth mb-h
Rth mb-h
2.5
°C/W
°C/W
Tmax.
125
°c
TEMPERATURE
Maximum permissible temperature
--MOUNTING INSTRUCTIONS
n----10-32UNF
~ I~
~~:~s~:sher
~~------- hole max. 8.3 mm; min. 8.1 mm
insulating ring
-r
rza=::::m
~
7Z698C8
~
plain washer
lock washer
nut (10-32UNF}
Note: When using a tag for electrical contact, insert tag between nut and plain washer or replace plain
washer by tag.
December 1979
(
________________________________jl_____
56_2_6_4_A____
MOUNTING ACCESSORIES
MECHANICAL DATA
.11.0.034
Dimensions in mm
Mica washer
7208958
Insulating ring
16
THERMAL RESISTANCE
Soldering tag
From mounting base to heatsink
with mica washer, without heatsink compound
with mica washer; with heatsink compound
Rth mb-h
Rth mb-h
4
1.5
0C/W
°C/W
T max
175
°C
TEMPERATURE
Maximum allowable temperature
MOUNTING INSTRUCTIONS
i'4'X28UNF
mica washer
insulating ring
I:5:E!.
soldering tag
lock washer
1/4" x 28UNF
cx::D
nut
7Z012lL9,1
__56_295_jl________
MOUNTING ACCESSORIES
MECHANICAL DATA
Dimensions in mm
_91
5,03
I
7,27
701
I
-
,
va
fA
7Z75773
t 1,19
9,9
-9,8-
t 1,09
5
PTFE bush
1.....0 - - - -
16
-+
+----t--j.--~
5
2
-
- - - - 1.. 1
+0,8
1~-----16----~"1
7Z75775
7Z75774
2 mica washers
t
plain washer
4,2
5,3
t
10 THERMAL RESISTANCE
!
From mounting base to heatsink
without heatsink compound Rth mb-h = 5 0 C/W
with heatsink compound
Rth mb-h = 2.5 °C/W
TEMPERATURE
Maximum allowable temperature T max = 175 °C
e2i
I.
terminal tag
7Z75772
MOUNTING INSTRUCTIONS
~1O-32UNF
tag
mica washer
'*t:'
I~
0'"
!>
~
0'"
~
~
0
Fig.7 Three phase full wave rectifier
with diodes of different polarity
on extruded aluminium heatsinks
Heatsinks
GENERAL
II
II
EXAMPLES OF HEATSINK CALCULATION
1. Devices without controlled avalanche properties.
Assume that the diode of which the outlines are shown, is used in a three phase 50 Hz
rectifier circuit at Tamb = 50 °C. Further assume: average forward current per
diode IF(AV) = 65 A; contact thermal resistance Rthmb-h =0,1 °C/W.
Mmmh!l.:···'t:;. :·, · ·:·:w· ,· , ·:·:·~\·A'\'Y·: :
~" •.;.;,'.~'~'"
.....••.....
~.....
II
~~,.,.
Stud: M12
Mounting base, across
....•:j"">.O:S....'.':.'. :..
~. ••.. .; .• ~
.. I
the flats: max. 27 mm
From the data of the diode the graph to be used is shown below.
110
p
Tmb
(W)
50
50
100
From the lefthand graph it foll0ws that Ptat = 90 W per diode (point A).
From the righthand graph it follows that Rth mb-a :::: 1, 2 °C/W.
Thus Rth h-a = Rth mb-a - Rth mb-h = (1,2 - 0,1) °C/W = 1,1 °C/W.
This may be achieved by different types of heatsinks as shown below.
Free convection
Type
-
flat, blackened
bright
diecast
--
56280
Forced cooling
125 cm 2 ; 2 mls or 300 cm 2 ; 1 m/s
175 cm 2 ; 2 m/s
applicable
extrusion
56230 bright
blackened
56231 bright
blackened
P. = 12 cm
P. = 8cm
P. = 7cm
I. = 5 cm 1)
P. = 5 cm 1); 1 nils
£ =5cm 1); 1m/s
1) Practical minimum length
5
II
II
August 1972
Heatsinks
GENERAL
I
II
EXAMPLES OF HEATSINK CALCULATION
(continued)
2. Devices with controlled avalanche properties
Assume that the diode of which the outlines are shown, is used in a three phase 50 Hz
rectifier circuit at T amb = 40 °C. Further assume: average forward current per
diode IF(A V) = 10 A; contact thermal resistance:
Rth mb-h = 0,5 °C/W; repetitive peak reverse power in the avalanche region (t =40 jJs)
PRRM = 2 kW (per diode).
~='2=""'".'''1='='CC~
Stud: M12
Mounting base, across
the flats: max. 27 mm
From the data of this diode the graph to be used is shown below.
7Z0573~ 2
Interrelation between the total dissipation
(derived from the left hand graph) and
the max. allowable ambient temperature
P -r- P=power dissipation, exclusive
the reverse power in the
avalanche region
-"-
(W) - -
60
1\
1\
I\,
I\.
40
~e
\
\
\.
1\
\.
\-'0
,~o ~ r- -
l
[-7
\.0
I\.
e,1/.
~~
,~~-
" . ~~e
r!f- .,.
20
r
1/
-r
./
~
A
'./
~;..'
I'
~
r-
~
r-
*k
~
l
~
70
I"
r-....
I FAV (A)
20
\
''-" , , \
1\.1\ ,
\.
I\.I\.\.
I\.
.\ \
I\.
I' ~ ,\~
"'''' .\.,
I\.
....
No 1-"""
IOOC""-
1/
i;'
o01..0'' '
r-
I\'\~
\.
r-....
aN
/
~
~
I,..
1
\\
\. 1\
I\,
~-I
1'0.. C'/Ji;
1/
'/r;..-'
~
- -
~
:2:. ~t:T
r-
,\ 1\ \~
,0Q
, I\.
1\.
C~
1//
I'
-
~o_1
L
/-,\~
":G
II\..~o~-I\~ :"\r-\r- 6
:.('o~~o.,e =r-6~ ~~I\.\.
'0~
\
.....
/Jj;;--.
1'0..
1
1
l
I
1'-0..
~
r--.
".....
Ii
I':
~~~
100 Tamb(OC)
0
200
From the lefthand graph it follows that Ptot = 19,5 W per diode (point A). The average
reverse power in the avalanche region, averaged over any cycle, follows from
PR(A V)
=
0 x P RRM , where the duty cycle 0 =
Thus PR(AV)
= 0,002
x 2 kW
=4
~~ ~:
=
0,002.
W.
Therefore the total device power dissipation Ptot = 19,5 + 4 = 23,5 W (point B). From
the righthand graph it follows that Rth mb-a = 4 °C/W. Hence the heatsink thermal
resistance should be:
Rth h-a = Rth mb-a - Rth mb-h = (4 - 0,5) °CjW = 3,5 °CjW.
A table of applicable heatsinks, similar to that on the foregoing page, can de derived
for this case.
Flat heatsink
II
II
Thermal resistance of flat heatsinks of 2 mm copper or 3 mm aluminium.
The graphs are valid for the combination of device and heatsink.
Studs: lO-32UNF
Mounting bases, across the flats: max. 11,0 mm
2
20
40
60
80
100
120
Heatslnk area
10
side)
Bright~
free convection
(OClW)
ratio between length
and wIdth : max 1.25
~
8
6
4
.2
5mls
20
II
40
60
80
100
120
140
Heatsink area (cm 2;one side)
II
August 1972
Flat heatsink
II
II
Thermal resistance of flat heatsinks of 2 mm copper or 3 mm aluminium.
The graphs are valid for the combination of device and heats ink.
~
~
Stud: M6
Stud: i" x 28 UNF
Mounting base, across
the flats: max. 14,Omm
Stud: M8
Mounting base, across the flats: max. 19 mm
5
Rthh-a
(OC/W)
4
ratio between length
and width : max 1.25
~
~
§
a:
~
;;>~
3
.S
2
l
.el
w.
/1)/8
2m'S
sm",
50
100
150
200
250
300
350
Heatsfnk area .rem 2; one side)
5
Rthh - a
(OCfW)
free convection
ratio between length
and wIdth: max 1.25
4
C>!
3
·s
2
.el:!
§
1:
2
'S
5m/s
50
August 1972
II
100
150
200
250
300
350
Heatsink area (cm 2 ; one side)
Diecast heatsin ks
II
"
RECTIFIER CIRCUITS ON SINGLE HEATSINKS
Single phase
half wave
Two phase
half wave
w
w
flw
~
'"
Single phase
Three phase
full wave
half wave
(Single phase bridge) (Three phase star)
+
-
o
+
60
7Z04178
w
mJt
P1{ijl
0 0 +
+
Three phase
full wave
(Three phase bridge)
Six phase
half wave
(~ix phase star)
Three phase double Y
with interphase
transformer
+
Diecast heats ink
~
without insulator
1
II
Diecast heats ink
~
with insulator
II
August 1972
Diecast heatsinks
II
II
MOUNTING INSTRUCTION FOR DIECAST HEATSINKS
1. At free convection cooling or forced air flow
< 0,5 m/s the heatsinks should be mounted with
the fins vertical and with a distance to the chassis
bottom> 100 mm.
2. At forced air flow> 0,5 m/s the heatsinks may be mounted in any position.
3. Minimum distance between heatsinks in a row.
Heatsink
Distance (mm)
a
b
56256/268
56334
56253/334
56271
> 5,
> 5,
> 10,
> la, a
°°
°
>
>
>
>
25,0
40,0
50,0
50,0
4. The rectifier devices should be fixed to their heatsinks with the torques specified in
the relevant published data. Use the torque spanner.
5. For insulated mounting of heats inks two sizes of mounting strips made of insulating
material are available.
o,,""
~
deb
----
--Jci-
Strip
56233
56234
Dimensions (mm)
abc
d
10,03614,1
13,5
50 20,1
22
28
Weight (g)
(with cover)
330
615
Length 750 mm
6. Mounting holes to be made in the strips:
90 0
Heatsink
Strip
Dimensions in mm
a
b
c
56256/268
56253/271
56277 /334
56233
56234
56234
< 1,5
< 1,3
< 1,3
7,5
10,2
10,2
4,3
6,3
6,3
II
II
MOUNTING STRIPS
56233
---r=:
MECHANICAL DATA
ill
--~~)----------~
('T')
'-,
Dimensions in mm
'-~------------
i ----------- .
_____________
~
1-:--1
gj
yr---=*
I
_____________ 1
1
56233
56234
____________ _
1--------------
.1
750
•
7Z452700
W
~
JbO.1
mounting strip of
insulating material
Weight with cover:
330 g
insulating plate (cover)
56234
MECHANICAL DATA
---.:----------=--=-.:-------.:-J
Dimensions in mm
~-----=--------------------
!i
I', !
:::::j:~ ~r=.~
__
mounting strip of
insulating material
Weight with cover:
615 g
=__=-__=__=__=__=__ =__=__=__=__=__=__
t=__
L-I~
______
I.
=1_
II_ _ _ _ _ _ _ _
~
750
~
.1
72452720
{CO
1
•
June 1974
750
.1
7Z452730
~
JbO:1
insulating plate (cover)
56253
Jl
-------------------'
K3
,-----------------------------------------------DIECAST HEA TSINK
Diecast heatsink of aluminium alloy, painted black, with %" x 28 UNF tap hole for devices in DO-5 or
TO-48 envelopes.
Weight: 305 g
Dimensions in mm
2x
Fig.1
cp
M3''+
+
+~
t$
"S~
t+
btl
I
I
II
n
;1;
-J.,
c'-
'T.T
4J
~
I
I
I
cp
+
+
I
&"S
:O:~1
82
I
~
I
1l
;:M6
I'
1/4"x28 UNF
December 1979
(
jl--56-253-
_K3_ _ _ _ _ _ _
The graphs are valid for the combination of device and heatsink.
Rthh-a
{"CIW}
3
free convection
2
10
20
30
50 Ptot (W) 60
40
Fig.2
(OC/W)
1.5
2
3
Fig.3
4
air velocity (m/s)
5
Jl________
__
562_56_____
K9
DIECAST HEATSINK
Diecast heatsink of aluminium alloy, painted black, with 10-32 UNF tap hole for devices in DO-4 or
TO-64 envelopes.
Weight: 55 g
Dimensions in mm
Fig.1
I
W
M4
+
/' t l'
btl i
1
t
~_-11_--,
,
,
/
/
I
I.
10-32 UNF
December 1979
(
_K9_------jl--562-56The graphs are valid for the combination of device and heatsink.
15
10
Free convection
5
10
15
20 Ptot (W)
25
Fig.2
3
Forced cooUng
2
2
3
4
5
6
air velocity (m/s)
Fig.3
2
Jl'--______
__
5626_8__
Kl_S
DIECAST HEATSINK
Diecast heatsink of aluminium alloy, painted black, with 10-32 UNF tap hole for devices in DO-4 or
TO-64 envelopes.
Weight: 33 g
Dimensions in mm
Fig.1
~M4
~
T
~I
I
I
I
max20
December 1979
(
Ir==
~
I
,Jl_____
5_6_2_68_____
___
Kl_S_______________________________
The graphs are valid for the combination of device and heatsink
I?th h-a
(OC/W)
15
free convection
10
5
2
6
8
Ptot (W)
10
Fig.2
forced cooling
4
2
2
3
5
oir velocity (m/s)
Fig.3
______
5_6_27_1____
-',J~______
M_A_I_N_TE_N_A_N_C_E__
TY_P_E__________________K_3___
OIECAST HEATSINK
Diecast heatsink of aluminium alloy,
painted black, with M8 tap hole for
rectifier device.
Dimensions in mm
~
Weight: 270 g
+
/'
"I
~ I(~\\
,
I I
~~J~)
Fig.1
c::b
rn
M6~
I
II
II
II
II
II
III
~.L,
r:p
r I t -'I--,
'--I r'
I I
+
I.,,.J
+
T
F
....... $
I
m
I
1-14 1+-11
•
:
:
~I 82
40
£M6
i
20.1
a
MS
'I
M8
"l
co
~
31
December 1979
(
33.1
58
103
7%_
K_l~
_____
,J~
__ _____________
M_A_IN_T_E_N_A_N_C_E_T_Y_P_E__________
5_6_2_7_8______
DIECAST HEATSINK
Diecast heatsink of aluminium alloy, painted black, with
~"x
28 UNF tap hole for rectifier device.
Weight: 690 g
Dimensions in mm
~-r_-_-~£~~~
-'\
';
\
_Ll_
Fig.1
--r-r.I
•
I
I
I
I
I
r-LJ-,
r--l-...,.
~-+-l
~~1~~~
~T·T~
:I:
1'1
o.,.~.,J
.~
f
..... -
C
r-
,.... ,.....
h
r-;r~
rt"i-
h
~
.
h
d::~
.
i
I
rt
,
'--
1T'QX68.3
./
max 90.5
106.5
December 1979
~~
______5_6_2_8_0_____
___K_l_J__________M_A_I_N_T_EN_A_N_C_E__
TY_P_E____________
DIECAST HEA TSINK
Dimensions in mm
Diecast heatsink of aluminium alloy,
painted black, with M12 tap hole for
rectifier device.
=---'-----.d:==-=-~\'\\
Weight: 690 g
I
I
I
I
I
I
_LJ_
Fig.1
-
[---r-
I
I
I
I
I
I
I
I
,-!-IJ- l
r- 4 --:
r-t-i
[~l=O;J
I
I
I
I
i
I
~J,j
I
,.....:-1'-
-
~
e-
"
,-.
"
rh
r- ~EJ
ihi :::
rr
.....
I
I
I
WM8
4J
-!-
=F=
I
I
•
<
o
E
~
max 90.5
max68.3
o
It)
December 1979
_____\_56_3_12____
~j~___________--------~----------K-3-DIECAST HEATSINK
For 00-5 rectifier diodes and TO-48 thyristors and triacs.
Weight: 270 g
Dimensions in mm
Fig.1
m
87,3
76,3
:
67
59
I
t:P
I
~
........
,/
20,1
82 .
VX 72 0238
08664
M6
L33 .1:=33
14-----100--------t
Tap hole for fixing the heatsink: M6
December 1979
(
--"""J l_5_631_2_
_K_3_ _ _ _ _
The graphs are valid for the combination of device and heatsink.
Rthh-a
(OCIW)
3
free convection
.2
10
20
30
50 Ptot (W) 60
Fig.2
Rthh-a
(OClW)
1.5
forced coollngl-+-f-++++++++H
2
3
4
air v.lIIclty (mls)
5
Fig.3
2
jl______________________________K_l_~
______5_63_1_3____
DIECAST HEATSINK
For DO-5 rectifiers and TO-48 thyristors and triacs.
Dimensions in mm
Weight: 690 g
Fig.1
~
I
I
"......,
r-
11111
r-
h
r--
"......,
li'll
~- J
1~
rh
I
I
-
-
+
6
I
10o
./
68 max
08671
(VX 72 0116.21
90 max
~-------75------~~
M6
L~_
2 x M8
----45---~
~---------90----------~
December 1979
.(
t
__
Kl_~
jl_____
5_6_3_13_____
___ _____________________________
The graphs are valid for the combination of device and heatsink.
Rth h-a
(OC/W)
2
1.5
'fr~
convection
Q5
20
40
60
80
100
120 Pr:oIW)140
Fig.2
Rth h- a
(OC/W')
Q6
'forced cooling
0.4
0.2
2
3
4air veLocity' (m/s)
Fig.3
5
______5_63_1_4__
____________
~Jl
-------------------Kl-J-
DIECAST HEATSINK
For 00-5 rectifiers and TO-48 thyristors and triacs.
Weight: 690 g
Dimensions in mm
Fig.1
M5~
1
~
I
I--
I: ! II
~
r.
~~
r--
v-..
~
Ir-
mI
I
It
I
,
16
~
I
r-
r
100
\,,0
'"
'"
'"
\,,0
./
""t---'-
90 max
68 max
08671
(VX 72 0116.21
2 x M8
14---45--~
~-----90~----~
December
19791 (
_____
~l
___
Kl_,1_____________________________
5_63_1_4_____
The graphs are valid for the combination of device and heatsink.
Rth h-a
(OC/W)
2
7.5
free convection
Q5
20
40
80
60
100
120 fhlW)14O
Fig.2
Rthh_allllllllli;l
I
(~/W)
a6
forced cooZing
Q2
%~~~~~LW~~LL2~LU~~~3LLLU~~4~LLLLLU~5
air velocity (m!s)
Fig.3
2
,J~,_____
M_A_IN_T_E_N_A_N_C_E_T_Y_P_E________________K_O_,S_S___
______5_6_3_1_5_____
DIECAST HEATSINK
Dimensions in mm
Weight: 1.9 kg
Fig.1
,, ,
+
~
+
1~
\.
~
j
LO
LO
r
,..
A~
Jo
..l
"11
1
,,1
I
1"
I
~
'I J
~
,1,
'1Ui
"'r
r
' II I
t: ....J-l-i t::
t~
L()
-
M
h
h
I
~
-'---
....
100
-"
~max.122
.....
-4xM8
M12
',.. . ."~-M8
14---100-~
December
19791 (
,J~______
5_6_31_8______
_K_O_,_55___________
M_A_IN_T_E_N_A_N_C_E_T_Y_P_E____________
DIECAST HEATSINK
Weight: 1.9 kg
Dimensions in mm
Fig.1
+
t
LO
..-
r '\
t
Ln
LO
•t
;::r
-
\J
I
r
I
I
),
j~
I
I
I
"
II
II
II
II
I
I
I
I
I
~ L~_: ~
Ln
r r
M
..-
).
-.l
~
um
r
t
j o.--
xo
tE
~
I'
_L..-
....
100
~max.122
4xM8
M8x1.25
M8
~-100-~
______
5_63_1_9____
~,J~'_____
M_A_IN_T_E_N_A_N_C_E_T_Y_P_E_________________K_3___
DIECAST HEATSINK
Dimensions in mm
Weight: 270 g
Fig.1
M6
M6
r-r~--+--·
-_.87,3
I
•
76,3
,
I
67
!
1
-ll
,~
I
cP
!
I
59
LLL~
'-
i
........
./
--G;l..-
1144--- ------.t.!
82
10-32 UNF 2 B ---=tn-b:\:l.J--~
Tap hole for fixing the heatsink: M8
D~emb.rn~~~~~~~~~~~~~~~~~~~~~~---
___K_5_______________M_A_I_N_T_E_NA
__
N_CE__
TY_P_E______
~,J~______
5_6_3_3_4____
DIECAST HEATSINK
Dimensions in mm
Diecast heatsink of aluminium alloy,
painted black, with 10-32 UNF tap hole
for rectifier device.
Weight: 135 9
Fig.1
1-~
60
f
44
!
I
1
(:
I
;
I
I
I
:'
~
I
........
1"'20 ...1 I
~3SmQx-
./
I
I- - 6 1 - "
1_20,1 ..1
---""J
_5_634_8
l--._______
K3_
DIECAST HEATSINK
For 00-4 and TO-64 devices with M5 stud
Weight: 270 g
Dimensions in mm
Fig.1
it;
M6
6
I
1]
,
,
~
!
I
~
~.
-MS
Tap hole for fixing the heatsink: M6
December 1979
j(
82
c:p
jl__
5_634_8_ _
_K_3_ _ _ _ _ _ _ _ _ _ _ _ _
The graphs are valid for the combination of device and heatsink.
3
free convection
2
10
20
30
40
50 Ptot (W) 60
Fig.2
(OC/W)
1.5
forced coollngH-H-H-H-H--+--l
2
3
4
air velocity (mls)
5
Fig.3
December 1979
2
______
~l.
___K_5__________M_A_I_N_TE_N_A_N_C_E_T_Y_P_E____________
5_63_4_9______
DIECAST HEATSINK
Dimensions in mm
Diecast heatsink of aluminium alloy,
painted black, with M5 tap hole for
rectifier device.
Weight: 135 g
Fig.1
1-~
60
1
II
~1--20 ...1 I
1-35max_
I_..
1_20,1
..1
I
61-"
M5
December 1979
_5_635_0
_jl_____
----K9-
DIECAST HEATSINK
Diecast heatsink of aluminium alloy, painted black, with M5 tap hole for devices in DO-4 and TO-64
envelopes.
Weight: 55 g
Dimensions in mm
Fig.1
45
,'-
,
,,
';:
(
,/
(Vl 72 0133.1)
08659
M5
Tap hole for fixing the heatsink: M4
December 1979j(
jl__
56_350_
_K_9_ _ _ _ _ _
The graphs are valid for the combination of device and heatsink.
Rth h-af-+H-H-++++++++++++++-+-++t+t-HH--ir-t--f+f+t+t+t+++++++++-H:~
(OC/W)
i§
Rthh-a
(OCIW)
~
1.5
~
§
jll;
~
1011;
JOW
l
100111..
"i
111/1$
d s
§
0.5
0
0
August 1972
~
5mls
5
10
15
20
25lergth (cm) 30
2
56290
Heatsink extrusions
EXTRUDED ALUMINIUM HEATSINK
Extruded heatsink of aluminium alloy.
The extrusion is supplied unpainted, in lengths of 1,5 m.
Dimensions in mm
Weight: 2,4 kg per 1,5 m.
II
II
'August 1972
Heatsink extrusions
II
56290
II
The graphs are valid for the combination of device and heats ink.
5
Rthh-a
(OC/W)
4
right ~
~t
~
§
~
.1w
3
~w
·s
2
§
~
.1Ow
Ims
.e
3mls
5m/s
00
2
4
6
8
10
12
14
ler¢h (em)
10
12
14
length (em)
5
Rthh-a
(OC/W)
4
c:
oS!
i§
~
3
§
2
1
'j;
/7VS
5m/s
2
6
8
~~
_______5_6_2_9_3_____
________M_A_I_NT_E_N_A_N_C_E_T_Y_P_E___________________
EXTRUDED ALUMINIUM HEATSINK
Extruded heatsink of aluminium alloy.
The extrusion is supplied unpainted, in lengths of 1.5 m.
Dimensions in mm
Weight: 16.2 kg per 1.5 m.
Fig.l
--.6.35
.--.--
r
.!;
E
C.D
~
C")
c;)
C")
x
~
,...,
l
-.
~
,...,
r-\
,.....,
g
,.....,
t"'"'I
r'
r""I
-~
l!)
v
v
v
v
v
v
114.3 max
7Z04624.1
December 1979
(
~ .-
1~18
INDEX
Power diodes
Thyristors
l___
Triacs
IN_D_E_X_ __
Rectifier diodes
Regulator diodes
Thyristors
Accessories
Section B
Section C
Section E
Section G
BR100/03
56246
BRY39T
BT151 series
BT152 series
56262A
56264A
56295
56316
56317
56363
56364
56367
BY164
BY 179
BY223
BY224 series
BY225 series
BY229 series
BY256
BY257
BY260 series
BY261 series
BY277 series
BYV21 series
BYV30 series
BYV92 series
BYW19 series
BYW25
BYW29 series
BYW30 series
BYW31 series
BYW92 series
BYX22 series
BYX25 series
BYX30 series
BYX32 series
BYX38 series
BYX39 series
BYX42 series
BYX45 series
BYX46 series
BYX49 series
BYX50 series
BYX52 series
BYX56 series
BYX71 series
BYX96 series
BYX97 series
BYX98 series
BYX99 series
1N3879-3882
1N3889-3892
1N3899-3903
1N3909-3913
BZV15 series
BZW10 series
BZW70 series
BZW86 series
. BZW91 series
BZX70
BZY91
BZY93
BZY95
BZY96
series
series
series
series
series
High-voltage
rectifier stacks
Section 0
aSB/M/S 9110
aSB/M/S 9210
aSB/M/S 9310
aSB/M/S 9410
aSM9510-12
BT153
BT154
BTW23 series
BTW24 series
BTW30S series
BTW31W series
BTW33 series
BTW38 series
BTW40
BTW42
BTW45
BTW47
series
series
series
series
BTW92 series
BTX 18 series
BTY79 series
BTY87 series
BTY91 series
Triacs
Section F
BT136 series
BT137 series
BT138 series
BT139 series
BTW34 series
BTW41 series
BTW43 series
BTX94 series
56369
56366
Heatsinks
Section H
56233
56234
56253
56256
56268
56271
56278
56280
56312
56313
56314
56315
56318
56319
56334
56348
56349
56350
56230
56231
56290
56293
-
-
POWER DIODES, THYRISTORS, TRIACS
CONTENTS
+
SELECTION GUIDE
A
GENERAL SECTION
B
RECTIFIER DIODES
C
REGULATOR DIODES
0
HIGH-VOLTAGE RECTIFIER STACKS
E
THYRISTORS
F
TRIACS
G
ACCESSORIES
H
HEATSINKS
+
INDEX
Argentina: FAPESA l.y.C.,Av. Crovara 2550, Tablada, Provo de BUENOS AIRES, Tel. 652-743817478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.SW., Tel. 4270888.
Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-ll0l WIEN, Tel. 62 91 11
Belgium: M.B.L.E., 80, rue des Deux Gares, B-l070 BRUXELLES, Tel. 5230000.
Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, MIB lM8, Tel. 292-5161.
Chile: PHILIPS CHilENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.
Colombia: SADAPE S.A., P. O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. SOO 600.
Denmark: MINIWA TT AIS, Emdrupvej 115A, DK-2400 K0BENHAVN NV, Tel. (01) 691622.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 1 72 71.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, 0-2 HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLEN IQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915311
Hong Kong: PHILIPS HONG KONG LTD, Elcoma Div, 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. NT 24 51 21
India: PEICO ELECTRONICS& ELECTRICALS LTD, Ramon House, 169 Backbay Reclamation, BOMBAY 400020, Tel. 295144
Indonesia: P.T. PHILlPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, JI. Jen. Gatot Subroto, P.O. Box 220, JAKARTA, T el. 44163
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clbnskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3,1-20124 MILANO, Tel. 2-6994
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg, 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611
(IC Products) SIGNETICS JAPAN, LTD, TOKYO, Tel. (03)230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel 794-4?02
Malaysia: PHILIPS MALAYSIA SON. BERHAD, Lot 2, Jalan 222, Section 14, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 714411
Mexico: ELECTRONICA SA deC.V, Varsovia No. 36, MEXICO 6, D.F., Tel. 533-11-80
Netherlands: PHILIPS NEDERLAND B.V., Ald. Elonco, Boschdijk 525,5600 PB EINDHOVEN, Tel. (040) 7933 33.
New Zealand: PHILIPS ELECTRICAL IND. LTD., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867119
Norway: NORSK A IS PHILIPS, Electronica, S0rkedalsveien 6, OSLO 3, Tel. 463890.
Peru: CADESA, Rocca de Vergallo 247, LIMA 17, Tel. 628599
Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59
Portugal: PHILIPS PORTUGESA S.A.RL, Av. Eng. Duharte Pacheco 6, LlSBOA 1, Tel. 683121
Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., P.O.B. 340, Toa Payoh CPO, lorong 1, Toa Payoh, SINGAPORE 12, Tel. 538811
South Africa: EDAC (Pty.)ltd., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel 614-2362/9
Spain: COPRESA SA, Balmes 22, BARCELONA 7, Tel. 3016312.
Sweden: A.B. ELCOMA, Lidingbvagen 50, S-11584 STOCKHOLM 27, Tel. 08/679780.
Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZURICH, Tel. 01/432211
Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5
Thailand: PHILIPS ElECTR ICAl CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9
Turkey: TURK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 5910
United Kingdom: MULLARO lTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-5806633
United Slates: (Active devices & Materials) AMPEREX SALES CORP, Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000
(Passive devices) MEPCO/ELECTRA INC, Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000
(IC Producls)SIGNETICS CORPORATION. 811 East Arques Avenue. SUNNYVALE, California 94086, Tel. (408) 739-7700
Uruguay: LUZILECTRON S.A., Rondeau 1567, pi so 5, MONTEVIDEO, Tel. 94321.
Venezuela: IND. VENEZOlANAS PHILIPS S.A ,Elcoma Dept., A. Ppal de los Ruices, Edi!. Centro Colgate, CARACAS, Tel. 360511
A15
Printed in England
.---
.. ~-
, 1980 N.V Philips' Gloellampentabrleken
9398 108 00011
Source Exif Data:
File Type : PDF File Type Extension : pdf MIME Type : application/pdf PDF Version : 1.3 Linearized : No XMP Toolkit : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19 Create Date : 2017:07:31 16:32:48-08:00 Modify Date : 2017:07:31 18:02:37-07:00 Metadata Date : 2017:07:31 18:02:37-07:00 Producer : Adobe Acrobat 9.0 Paper Capture Plug-in Format : application/pdf Document ID : uuid:1869e4d7-9bec-3544-9abc-4d46542aa72e Instance ID : uuid:2bee9a1e-a65b-9341-b17f-26dc2c840ca1 Page Layout : SinglePage Page Mode : UseNone Page Count : 871EXIF Metadata provided by EXIF.tools