1980_Philips_Semiconductors_Part_2_Diodes_Thyristors_Triacs 1980 Philips Semiconductors Part 2 Diodes Thyristors Triacs

User Manual: 1980_Philips_Semiconductors_Part_2_Diodes_Thyristors_Triacs

Open the PDF directly: View PDF PDF.
Page Count: 871

Download1980_Philips_Semiconductors_Part_2_Diodes_Thyristors_Triacs 1980 Philips Semiconductors Part 2 Diodes Thyristors Triacs
Open PDF In BrowserView PDF
Semiconductors
Part 2

May 1980

Rectifier diodes
Regulator diodes
------~----~--~

High-voltage rectifier stacks
Thyristors
Triacs

SEMICONDUCTORS

Part 2-MAY 1 980

POWER DIODES, THYRISTORS, TRIACS

,

SELECTION GUIDE
GENERAL SECTION

A

RECTIFIER DIODES

8

REGULATOR DIODES

C

HIGH-VOLTAGE RECTIFIER STACKS

0

THYRISTORS

E

TRIACS

F

ACCESSORIES

G

HEATSINKS

H

INDEX

--

,

_ _ _ _Jl__
DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic components, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.

ELECTRON TUBES

BLUE
RED

SEMICONDUCTORS AND INTEGRATED CIRCUITS
COMPONENTS AND MATERIALS

GREEN

The several parts contain all pertinent data available at the time of publication, and each is revised and
reissued periodically.
Where ratings or specifications differ from those published in the preceding edition they are pointed
out by arrows. Where application information is given it is advisory and does not form part of the
product specification.
If you need confirmation that the published data about any of our products are the latest available,
please contact our representative. He is at your service and will be glad to answer your inquiries.

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence
under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of
goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part without the
written consent of the publisher.

October 1977

__Jl_ _ __
ELECTRON TUBES (BLUE SERIES)
Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of
the preceding issue is given in brackets under the new code.
Part 1

February 1980

T1 02-80
(Ena 12-75)

Part 2

April 1980

T2 04-80
Transmitting tubes for communications
(ET1b 08-77)

Tubes for r.f. heating

Part 2a November 1977

ET2a 11-77

Microwave tubes
Communication magnetrons, magnetrons for microwave
heating, klystrons, travelling-wave tubes, diodes, triodes
T-R switches

Part 2b May 1978

ET2b 05-78

Microwave semiconductors and components
Gunn, Impatt and noise diodes, mixer and detector diodes,
backward diodes, varactor diodes, Gunn oscillators, subassemblies, circulators and isolators

Part 3

January 1975

ET301-75

Special Quality tubes, miscellaneous devices

Part 4

March 1975

ET403-75

Receiving tubes

Part 5a October 1979

ET5a 10-79

Cathode-ray tubes
Instrument tubes, monitor and display tubes, C.R. tubes
for special applications

Part 5b December 1978

ET5b 12-78

Camera tubes and accessories, image intensifiers

Part 6

ET601-77

Products for nuclear technology
Channel electron multipliers, neutron tubes, Geiger-Muller
tubes

Part 7a March 1977

ET7a 03-77

Gas-filled tubes
Thyratrons, industrial rectifying tubes, ignitrons,
high·voltage rectifying tubes

Part 7b May 1979

ET7b 05-79

Gas-filled tubes
Segment indicator tubes, indicator tubes, switching diodes,
dry reed contact units

Part 8

July 1979

ET807-79

Picture tubes and components
Colour TV picture tubes, black and white TV picture tubes,
monitor tubes, components for colour television, components for black and white television.

Part 9

March 1978

ET903-78

Photomultiplier tubes; phototubes

January 1977

February 1980

r

II

_ _ _Jl__
SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

Starting in 1980, new part numbers and corresponding codes are being introduced. The former code of
the preceding issue is given in brackets under the new code.
Part 1

March 1980

S1
03-80
(SClb 05-77)

Diodes
Small-signal germanium diodes, small-signal silicon diodes,
special diodes, voltage regulator diodes « 1,5 Wl. voltage
reference diodes, tuner diodes, rectifier diodes

Part 2

May 1980

S2
05-80
(SCla 08-78)

Power diodes, thyristors, triacs
Rectifier diodes, voltage regulator diodes (> 1,5 Wl.
rectifier stacks, thyristors, triacs

Part 2

June 1979

SC2 06-79

Low-frequency power transistors

Part 3

January 1978

SC3 01-78

High-frequency, switching and field·effect transistors*

Part 3

April 1980

S3
04-80
Small-signal transistors
(SC2 11-77, partly)
(SC3 01-78, partly)

Part 4a

December 1978 SC4a 12-78

Transmitting transistors and modules

Part 4b

September 1978 SC4b 09-78

Devices for optoelectronics
Photosensitive diodes and transistors, light-emitting diodes,
photocouplers, infrared sensitive devices,
photoconductive devices

Part 4c

July 1978

Disc'rete semiconductors for hybrid thick and thin·film circuits

Part 5a

November 1976 SC5a 11·76

Professional analogue integrated circuits

Part 5b

March 1977

SC5b03·77

Consumer integrated circuits
Radio, audio, television

Part 6

October 1977

SC6 10·77

Digital integrated circuits
LOCMOS HE4000B family

Part 6b

August 1979

SC6b08-79

ICs for digital systems in radio and television receivers

Signetics integrated circuits

SC4c 07·78

Bipolar and MOS memories 1979
Bipolar and MOS microprocessors 1978
Analogue circuits 1979
Logic - TTL 1978

* Field-effect transistors and wideband transistors will be transferred to S5 and SC3c respectively.
The old book SC3 01-78 should be kept until then.

February 1980

__Jl____
COMPONENTS AND MATERIALS (GREEN SERIES)
Starting in 1980, new part numbers and corresponding codes are being introduced.
The former code of the preceding issue is given in brackets under the new code.
CM107-79

Assemblies for industrial use
PLC modules, high noise immunity logic FZ/30 series,
NO Rbits 60-series, 61-series, gO-series, input devices,
hybrid integrated circuits, peripheral devices

Part 1

July 1979

Part 3a

September 1978 CM3a 09-78

Part 3b

October 1978

Part 4a

November 1978 CM4a 11-78

Soft Ferrites
Ferrites for radio, audio and television, beads and chokes,
Ferroxcube potcores and square cores, Ferroxcube transformer cores

Part 4b

February 1979

CM4b 02-79

Piezoelectric ceramics, permanent magnet materials

Part 6

April 1977

CM604-77

Electric motors and accessories
Small synchronous motors, stepper motors, miniature
direct current motors

Part 7

September 1971 CM709-71

Circuit blocks
Circuit blocks 100 kHz-series, circuit blocks 1-series, circuit
blocks 1O-series, circuit blocks for ferrite core memory drive

Part 7a

January 1979

CM7a 01-79

Assemblies
Circuit blocks 40-series and CSA70 (L), counter modules
50-series, input/output devices

Part 8

June 1979

CM806-79

Variable mains transformers

Part 9

August 1979

CM908-79

Piezoelectric quartz devices
Quartz crystal units, temperature compensated crystal
oscillators

Part 10

April 1978

CM1004-78

Connectors

Part 11

December 1979 CM1112-79

Non-linear resistors
Voltage dependent resistors (VORl. light dependant resistors (LOR), negative temperature coefficient thermistors
(NTCl, positive temperature coefficient thermistors (PTC)

Part 12

November 1979 CM 12 11-79

Variable resistors and test switches
Fixed resistors

CM3b 10-78

FM tuners, television tuners, surface acoustic wave filters
Loudspeakers

Part 13

December 1979 CM1312-79

Part 14

April 1980

C1404-80
Electrolytic and solid capacitors
(CM2b 02-78)

Part 15

May 1980

C1505-80
Film capacitors, ceramic capacitors, variable capacitors
(CM2b 02-78)

April 1980

I(
II

Jl

INDEX

INDEX OF TYPE NUMBERS
Data Handbooks Semiconductors

The inclusion of a type number in this publication does not necessarily imply its availability.
type no.

part

section

type no.

part

section

type no.

part

section

AAl19
AAZ13
AAZ15
AAZ17
AAZ18

81
81
81
81
81

PC
GB
GB
GB
GB

BAV20
BAV21
BAV45
BAV70
BAV99

81
81
81
4c
4c

WD

BB405G
BBY31
BC107
BC108
BC109

81
4c
83
83
83

T
Mm
8m
8m
8m

BA182
BA220
BA221
BA223
BA243

81
81
81
81
81

T

4c
81
81
81
81

Mm

T
T

BAW56
BAW62
BAX12
BAX12A
BAX13

BC140
BC141
BC146
BC147
BC148

83
83
83
83
83

8m
8m
8m
8m
8m

BA244
BA280
BA314
BA315
BA316

81
81
81
81
81

T
T
Vrg
Vrg
WD

BAX14A
BAX16
BAX17
BAX18A
BB105B

81
81
81
81
81

WD
WD

T

BC149
BC157
BC158
BC159
BC160

83
83
83
83
83

8m
8m
8m
8m
8m

BA317
BA318
BA379
BA811
BA816

81
81
81
81
4c

WD
WD

BB105G
BB106
BB109G
BBll0B
BBll0G

81
81
81
81
81

T
T
T
T
T

BC161
BCl77
BC178
BC179
BC200

83
83
83
83
83

8m
8m
8m
8m
8m

BAT17
BAT18
BAV10
BAV18
BAV19

4c
4c
81
81
81

BBl19
BB204B
BB204G
BB212
BB405B

81
81
81
81
81

T
T
T
T
T

BC264A
BC264B
BC264C
BC264D
BC327

WD
WD

T
WD

Mm
Mm

Mm
WD
WD
WD

F ET = Field-effect transistors
GB = Germanium gold bonded diodes
Mm = Discrete semiconductors for hybrid
thick and thin-film circuits
PC = Germanium point contact diodes

WD

8p
Mm
Mm

WD
WD
WD
WD

WD
WD

Sm
Sp
T
Vrg
WD

8C3
8C3
8C3
8C3
83

FET
FET
FET
FET
8m

= Small-signal transistors
= Special diodes
=

Tuner diodes

= Voltage regulator diodes
= Silicon whiskerless diodes

February 1980

Jl________

_IN_DEX
___
type no.

part

BC328
BC337
BC338
BC368
BC369

section

type no.

part

section

83
8m
838m
83
8m
83
8m
838m

BCX55
BCX56
BCY30A
BCY31A
BCY32A

4c
Mm
4c
Mm
838m
838m
83
8m

8D231
BD232
BD233
8D234
8D235

SC2
SC2
SC2
SC2
SC2

P
P

BC375
BC376
BC546
BC547
BC548

838m
838m
83
8m
838m
83
8m

BCY33A
BCY34A
BCY56
BCY57
BCY58

83
8m
S3
8m
S3
8m
838m
838m

8D236
BD237
8D238
8D291
BD292

SC2
SC2
SC2
SC2
SC2

P
P
P
P
P

BC549
BC550
BC556
BC557
BC558

838m
83
8m
83
8m
838m
83
8m

BCY59
BCY70
BCY71
BCY72
BCY78

83
83
S3
83
S3

8m
8m
8m
8m
8m

BD293
BD294
BD295
BD296
BD329

8C2
SC2
8C2
8C2
8C2

P
P
P
P
P

BC559
BC560
BC635
BC636
BC637

838m
83
Sm
S3
Sm
83
8m
S3
Sm

BCY79
BCY87
BCY88
BCY89
BD131

83
83
S3
83
8C2

8m
8m
Sm
8m
P

BD330
BD331
BD332
BD333
BD334

SC2
8C2
SC2
8C2
SC2

P
P

BC638
BC639
BC640
BCW29iR
BCW30;R

83
83
S3
4c
4c

8m
Sm
Sm
Mm
Mm

BD132
BD133
BD135
BD136
BD137

8C2
SC2
SC2
8C2
SC2

P
P
P
P
P

BD335
BD336
BD337
BD338
BD433

8C2
SC2
8C2
8C2
8C2

P
P
P

BCW31iR
BCW32;R
BCW33iR
BCW69iR
BCW70iR

4c
4c
4c
4c
4c

Mm
Mm
Mm
Mm
Mm

BD138
BD139
BD140
BD181
BD182

SC2
SC2
SC2
8C2
SC2

P
P
P
P
P

BD434
BD435
BD436
BD437
BD438

8C2
8C2
8C2
8C2
8C2

P
P
P
P
P

BCW71iR
BCW72;R
BCX17iR
BCX18iR
BCX19;R

4c
4c
4c
4c
4c

Mm
Mm
Mm
Mm
Mm

BD183
BD201
BD202
BD203
BD204

8C2
SC2
SC2
8C2
8C2

P
P
P
P
P

BD645
BD646
BD647
BD648
BD649

8C2
8C2
8C2
SC2
8C2

P
P
P
P
P

BCX20iR
BCX51
BCX52
BCX53
BCX54

4c
4c
4c
4c
4c

Mm
Mm
Mm
Mm
Mm

BD226
BD227
BD228
BD229
BD230

8C2
SC2
SC2
8C2
8C2

P
P
P
P
P

BD650
BD651
BD652
BD675
BD676

8C2
8C2
8C2
8C2
8C2

P
P
P
P
P

type no.

part

section

P
P
P

P
P
P

P
P

~..--------------------------------------------------------------------------~

FET = Field-effect transistors

2

February 1980

(
II

Mm = Discrete semiconductors for hybrid
thick and thin-film circuits

________Jl__

IN_DE_X_

P

type no.

part

B0677
B0678
B0679
B0680
B0681

SC2
SC2
SC2
SC2
SC2

B0682
B0683
B0684
B0933
B0934

SC2
SC2
SC2
SC2
SC2

p

B0935
B0936
B0937
B0938
B0939

SC2
SC2
SC2
SC2
SC2

p

B094D

B0941
B0942
B0943
B0944

SC2
SC2
SC2
SC2
SC2

B0945
B0946
B0947
B0948
B0949

SC2
SC2
SC2
SC2
SC2

p

B0950
B0951
B0952
B0953
B0954

SC2
SC2
SC2
SC2
SC2

B0955
B0956
BOT62
BOT62A
BOT62B

8C2
SC2
SC2
SC2
SC2

BOT62C
BOT63
BOT63A
BOT63B
BOT63C

SC2
8C2
SC2
SC2
8C2

=

section

type no.

part

BOX66C
BOX67
BOX67A
BDX67B
BDX67C

SC2
8C2
SC2
SC2
SC2

BOX77
BDX78
BDX91
BOX92
BDX93

SC2
SC2
SC2
SC2
SC2

p
p
p
p
p

p
p
p
p
p

BDX94
BOX95
BOX96
BOY20

p
p

BOY9D

SC2
SC2
SC2
SC2
SC2

p

p

BOY91
BOY92
BOY93
BOY94
BOY96

SC2
SC2
SC2
SC2
8C2

p
p
p
p
p

SC2
SC2
8C2
SC2
SC2

p
p
p
p
p

BOY97
BF115
BF18D
BF181
BF182

8C2
83
S3
83
83

BDX63
BDX63A
BDX63B
BDX63C
BDX64

8C2
8C2
8C2
SC2
SC2

p
p

BF183
BF194
BF195
BF196
BF197

S3
S3
S3
83
83

Sm

8C2
SC2
SC2
8C2
8C2

BF198
BF199
BF200
BF24D
BF241

83
S3
S3
S3
S3

Sm

p

BDX64A
BDX64B
BDX64C
BDX65
BDX65A

p
p
p
p
p

BDX65B
BDX65C
BDX66
BDX66A
BDX66B

SC2
8C2
8C2
SC2
8C2

SC3
SC3
SC3
SC3
SC3

FET
FET
FET
FET
FET

type no.

part

BOT91
BOT92
BOT93
BOT 94
BOT95

8C2
SC2
SC2
SC2
8C2

BOT96
BOV64
BOV64A
BOV64B
BOV65

SC2
SC2
SC2
8C2
SC2

p

BOV65A
BOV6SB
BOX35
BOX36
BOX37

SC2
SC2
SC2
SC2
8C2

BOX42
BOX43
BOX44
BOX45
BOX46

8C2
8C2
SC2
SC2
SC2

p

BOX47
BDX62
BDX62A
BOX62B
BDX62C

p
p
p
p
p

p

p
p
p
p
p

p

p

p
p

p
p

p
p

p
p
p
p
p

p
p
p

p
p
p

Low-frequency power transistors

section
p
p
p
p
p

p
p
p
p

p
p
p

p
p

p
p
p
p
p

p
p

BF245A
BF245B
BF245C
BF256A
BF256B

p
p
p
p

Sm

=

section
p
p

p
p
p

p
p
p

p

Sm
8m

Sm
Sm

8m

Sm
Sm
Sm

8m
8m

Sm
Sm

Small-signal transistors
February 1980

3

_IN_DEX_Jl________
type no.

part

section

type no.

part

type no.

part

section

4c
8C3
SC3
SC3
SC3

Mm

BF256C
BF324
BF327
BF336
BF337

SC3
83
SC3
S3
83

FET
Sm
FET
8m
8m

BFQ17
BFQ18A
BFQ19
BFQ23
BFQ24

4c
4c
4c
SC3
SC3

Mm
Mm
Mm

HFSW
HFSW

BFT93iR
BFW10
BFW11
BFW12
BFW13

BF338
BF362
BF363
BF419
BF422

83
83
S3
8C2
83

8m
8m
8m

BFQ32
BFQ34
BFQ42
BFQ43
BFR29

SC3
SC3
4a
4a
SC3

HFSW
HFSW
Tra
Tra
FET

BFW16A
BFW17A
BFW30
BFW45
BFW61

SC3
SC3
8C3
SC3
SC3

HFSW
HFSW
HFSW
HFSW
FET

BF423
BF450
BF451
BF457
BF458

S3
S3
S3
8C2
SC2

Sm
8m
Sm

Mm
HFSW
Mm
Sm

BFW92
BFW93
BFX29
BFX30
BFX34

SC3
SC3
S3
S3
S3

HFSW
HFSW
Sm
Sm
Sm

BF459
BF469
BF470
BF471
BF472

SC2
SC2
SC2
SC2
SC2

HFSW
HFSW
FET
HFSW
HFSW

BFX84
BFX85
BFX86
BFX87
BFX88

83
83
S3
S3
S3

p

8m

p

p
p

BFR30
4c
BFR31
4c
BFR49
SC3
BFR53iR
4c
BFR54
S3

Mm

FET
FET
FET
FET

Sm
Sm
Sm
Sm
Sm

p

BFR64
BFR65
BFR84
BFR90
BFR91

BF550iR

S3
S3
83
S3
4c

8m
8m
Sm
8m
Mm

BFR92iR
4c
BFR93iR
4c
BFR94
SC3
BFR95
SC3
BFR96
SC3

Mm
Mm
HFSW
HFSW
HFSW

BFX89
BFY50
BFY51
BFY52
BFY55

SC3
S3
83
S3
S3

HFSW
Sm
Sm
Sm
Sm

BF622
BF623
BF926
BF936
BF939

4c
4c
S3
S3
S3

Mm
Mm
Sm
Sm
Sm

BFS17iR
4c
4c
BFS18iR
BFS19iR
4c
4c
BFS20iR
BFS21
SC3

Mm
Mm

FET

BFY90
BGY22
BGY22A
BGY23
BGY23A

SC3
4a
4a
4a
4a

HFSW
Tra
Tra
Tra
Tra

FET
Tra
Tra
FET
HFSW

BGY32
BGY33
BGY35
BGY36
BGY37

4a
4a
4a
4a
SC3

Tra
Tra
Tra
Tra
HFSW

Mm

BLV10
BLV11
BLV20
BLV21
BLW29

4a
4a
4a
4a
4a

BF480
BF494
BF495
BF496

p
p
p

BF967
BF970
BF979
BFQ10
BFQ11

S3
S3
S3
SC3
SC3

Sm
Sm
Sm
FET
FET

BFS21A
BF822A
BF823A
BFS28
BFT24

BFQ12
BFQ13
BFQ14
BFQ15
BFQ16

SC3
SC3
SC3
SC3
SC3

FET
FET
FET
FET
FET

BFT25iR
BFT44
BFT45
BFT46
BFT92iR

SC3
SC3
SC3
SC3
SC3

SC3
4a
4a
SC3
SC3

FET
= Field-effect transistors
HFSW = High-frequency and switching transistors

4

section

February 1980

(
II

4c
83
S3
4c
4c

Mm
Mm

Sm
Sm
Mm
Mm

Tra
Tra
Tra
Tra
Tra

Mm = Discrete semiconductors for hybrid
thick and thin-film circuits

_______________Jl__

IN_DE_X_

type no.

part

section

type no.

part

section

type no.

part

section

BLW31
BLW32
BLW33
BLW34
BLW60

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BLY87A
BLY87C
BLY88A
BLY88C
BLY89A

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BSR4l
BSR42
BSR43
BSR50
BSR5l

4c
4c
4c
S3
83

Mm
Mm
Mm
Sm
Sm

BLW60C
BLW64
BLW75
BLW76
BLW77

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BLY89C
BLY90
BLY91A
BLY91C
BLY92A

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BSR52
BSR56
BSR57
BSR58
BSR60

S3
4c
4c
4c
S3

Sm
Mm

BLW78
BLW79
BLW80
BLW81
BLW82

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BLY92C
BLY93A
BLY93C
BLY94
BPW22

4a
4a
4a
4a
4b

Tra
Tra
Tra
Tra
PDT

BSR6l
BSR62
BSS38
BSS50
BSS5l

S3
S3
S3
83
S3

8m
Sm
8m
Sm
Sm

BLW83
BLW84
BLW85
BLW86
BLW87

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BPW34
BPX25
BPX29
BPX40
BPX4l

4b
4b
4b
4b
4b

PDT
PDT
PDT
PDT
PDT

BSS52
BSS60
BSS6l
BSS62
BSS63;R

S3
S3
S3
S3
4c

Sm
Sm
8m
Sm
Mm

BLW95
BLW98
BLX13
BLX13C
BLX14

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BPX42
BPX47A
BPX70
BPX7l
BPX72

4b
4b
4b
4b
4b

PDT
PDT
PDT
PDT
PDT

BSS64;R
BSS68
BSV15
BSV16
BSV17

4c
S3
83
S3
S3

Mm
8m
Sm
8m
8m

BLX15
BLX39
BLX65
BLX66
BLX67

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BPX94
4b
BPX95B
4b
BR100/03 82
BR10l
83
83
BRY39P

PDT
PDT
Th

BSV52;R
4c
BSV64
S3
BSV78
8C3
BSV79
8C3
BSV80
SC3

MIn

BLX68
BLX69A
BLX91A
BLX92A
BLX93A

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BRY39S
S3
BRY39T S2/83
BRY56
83
BRY6l
4c
B8R12;R
4c

Sm
Th/Sm
8m

BLX94A
BLX95
BLX96
BLX97
BLX98

4a
4a
4a
4a
4a

Tra
Tra
Tra
Tra
Tra

BSR30
BSR3l
B8R32
BSR33
BSR40

MIn
Mm

P
= Low-frequency power transistors
PDT = Photodiodesor transistors
R = Rectifier diodes

4c
4c
4c
4c
4c

8m
Sm

MIn
MIn

B8X20
B8X2l
BSX45
BSX46
BSX47

MIn

Mm
Mm

Sm
Th
Tra

BSV8l
BSW66A
B8W67A
BSW68A
BSX19

=
=
=

MIn
MIn

Sm

Sm
FET
FET
FET

FET

8C3
S3
83
83
83

8m
8m
8m
8m

83
83
83
S3
83

8m
Sm
8m
8m
Sm

Small-signal transistors
Thyristors
Transmitting transistors and modules
February 1980

5

_IN_DEX_Jl________
type no.

part

section

type no.

BSX59
BSX60
BSX61
BSY59A
BT136 *

S3
S3
S3
S3
S2

Sm
Sm
8m
8m
Tri

BU326A
BU426
BU426A
BU433
BUW84

*
*
*

S2
S2
82
S2
S2

Tri
Tri
Tri
Th
Th

BUW85
BUX80
BUX81
BUX82
BUX83

BT137
BT138
BT139
BT151
BT152

*
*

part

section

type no.

part

section

SC2
SC2
SC2
SC2
8C2

P
P
P
P
P

BY476
BY477
BY478
BY509
BYV21

R
R
R

*

S1
S1
S1
S1
S2

SC2
5C2
SC2
SC2
SC2

P
P
P
P
P

BYV30 *
BYV92 *
BYV95A
BYV95B
BYV95C

S2
S2
S1
S1
S1

R
R
R

p

BYV96D,E
BYW19 *
BYW29 *
BYW30 *
BYW31 *

S1
S2
S2
S2
S2

R

BYW54
BYW55
BYW56
BYW92 *
BYW95A

S1
S1
S1
S2
S1

R

BYW95B
BYW95C
BYW96D,E
BYX10
BYX22 *

S1
81
S1
81
S2

R

BYX25 *
BYX30 *
BYX32 *
BYX36 *
BYX38 *

S2
S2
S2
S1
82

R
R
R
R

BYX39
BYX42
BYX45
BYX46
BYX49

*
*
*
*
*

S2
S2
S2
S2
S2

BYX50
BYX52
BYX55
BYX56
BYX71

*
*
*
*
*

S2
52
81
52
52

BT153
BT154
BTW23 *
BTW24 *
BTW30S*

S2
S2
S2
S2
S2

Th
Th
Th
Th
Th

BUX84
BUX85
BUX86
BUX87
BY126M

SC2
SC2
SC2
SC2
81

BTW31W*
BTW33 *
BTW34 *
BTW38 *
BTW40 *

82
S2
S2
S2
S2

Th
Th
Tri
Th
Th

BY127M
BY164
BY179
BY184
BY206

81
82
S2
S1
81

BTW41
BTW42
BTW43
BTW45
BTW47

*

82
S2
82
82
S2

Tri
Th
Tri
Th
Th

BY207
BY208
BY210
BY223
BY224

BTW92
BTX18
BTX94
BTY79
BTY87

*

S2
S2
52
S2
S2

Th
Th
Tri
Th
Th

BY225
BY226
BY227
BY228
BY229

S2
SC2
8C2
5C2
SC2

Th

BY256
BY257
BY260
BY261
BY277

SC2
SC2
SC2
SC2
8C2

p

BTY91
BU126
BU133
BU204
BU205
BU206
BU207A
BU208A
BU209A
BU326

*

*
*

*
*
*
*
*
*

p
p
p

p

BY409
BY409A
BY438
BY448
BY458

p

p
p

p

*
*
*

*

*

*
*

51
51
S1
S2
S2
S2
S1
51
51
S2
S2
S2
82
82
82
51
81
S1
81
81

p

p
P
R

R
R

R
R
R
R
R

R
R
R
R

R
R

R
R
R
R
R
R

R
R
R

R
R

R

R
R

R

R

R

R
R
R

R
R
R

R

R

R
R
R

R

R
R
R
R

R
R
R

R
R
R

* = series.
GB =
I
=
LED =
Mm =

6

Germanium gold bonded diodes
Infrared devices
Light-emitting diodes
Discrete semiconductors for hybrid
thick and thin-film circuits

February 1980

r

II

P
PC
Ph
PhC
R

==
=
==
==
==

Low-frequency power transistors
Germanium point contact diodes
Photoconductive devices
Photocouplers
Rectifier diodes

________Jl__

IN_DE_X_

section

type no.

part

section

4b
4b
4b
4b
4b

PhC
PhC
PhC
LED
LED

08B9310
08B9410
08M9110
08M9210
08M9310

82
82
82
82
82

St
8t
St
St
St

Vrf
Vrf
Vrf

CQY24A
CQY46A
CQY47A
CQY49B
CQY49C

4b
4b
4b
4b
4b

LED
LED
LED
LED
LED

08M9410
08M9510
08M9511
08M9512
0889110

82
82
82
82
82

St
St
8t
St
St

Vrf
Vrf
Vrg
Vrg
Vrg

CQY50
CQY52
CQY54
CQY58
CQY88

4b
4b
4b
4b
4b

LED
LED
LED
LED
LED

0889210
OSS9310
OS89410
PH2369
RPY58A

82
82
82
S3
4b

St
St
St
Sm
Ph

TS

4b
4b
4b
4b
4b

LED
LED
LED
LED
LED

RPY71
RPY76A
RPY82
RPY84
RPY85

4b
4b
4b
4b
4b

Ph

Vrg

CQY89
CQY94
CQY95
CQY96
CQY97

82
81
4c
81
81

Vrg
Vrg
Mm
Vrg
Vrf

OA47
OA90
OA91
OA95
OA200

81
81
81
81
81

GB
PC
PC
PC

RPY86
RPY87
RPY88
RPY89

4b
4b
4b
4b

I

81
81
81
81
81

Vrf
Vrf
Vrf
Vrf
Vrg

OA202
OM931
OM961
ORP10
ORP13

81
8C2
8C2
4b
4b

WD

82
82
82
82
4b

Vrg
Vrg
Vrg
Vrg
PhC

ORP23
ORP52
ORP60
ORP61
ORP62

4b
4b
4b
4b
4b

Ph
Ph
Ph
Ph
Ph

4b
4b
4b
4b
4b

PhC
PhC
PhC
PhC
PhC

ORP66
ORP68
ORP69
08B9110
08B9210

4b
4b
4b
82
82

Ph
Ph
Ph
8t
8t

type no.

part

section

type no.

part

BYX90
BYX91
BYX94
BYX96
BYX97

81
81
81
82
82

R

CNY47
CNY47A
CNY48
CQY11B
CQY11C

82
82
81
81
81

R

81
81
82
81
81

BYX98
BYX99
BZV10
BZV11
BZV12
BZV13
BZV14
BZV15
BZV46
BZV85
BZW10
BZW70
BZW86
BZW91
BZX61
BZX70
BZX79
BZX84
BZX87
BZX90
BZX91
BZX92
BZX93
BZX94
BZY88

*
*
*
*
*

*

*

*
*
*

*
*
*

*

*

BZY91 *
BZY93 *
BZY95 *
BZY96 *
CNY22
CNY23
CNY42
CNY43
CNY44
CNY46

82
82
82
82
81

R
R
R
R

R

T8
T8
T8

I

Ph
Ph
Ph

I
I
I

WD

P
P
I
I

* = series.
Sm
St
Th
Tri

=
=
=
=

Small-signal transistors
Rectifier stacks
Thyristors
Triacs

TS
Vrf
Vrg
WD

=
=
=
=

Transient suppressor diodes
Voltage rL>ference diodes
Voltage regulator diodes
Silicon whiskerless diodes
February 1980

7

_IN_DEX_Jl________
type no.

part

section

type no.

1N821
1N823
1N825
1N827
1N829

81
81
81
81
81

Vrf
Vrf
Vrf
Vrf
Vrf

2N918
2N929
2N930
2N1613
2N1711

1N914
1N916
1N3879
1N3880
1N3881

81
81
82
_82
82

WD

type no.

part

8C3
HF8W
838m
838m
838m
838m

2N3903
2N3904
2N3924
2N3926
2N3927

838m
838m
4a
Tra
4a
Tra
4a
Tra

R

2N1893
2N2218
2N2218A
2N2219
2N2219A

838m
838m
838m
838m
838m

2N3966
2N4030
2N4031
2N4032
2N4033

8C3
FET
838m
838m
838m
838m

1N3882
1N3889
1N3890
1N3891
1N3892

82
82
82
82
82

R
R
R
R
R

2N2221
2N2221A
2N2222
2N2222A
2N2297

838m
838m
838m
838m
838m

2N4091
2N4092
2N4093
2N4123
2N4124

8C3
FET
8C3
FET
8C3
FET
838m
838m

1N3899
1N3900
1N390 1
1N3902
1N3903

82
82
82
82
82

R

2N2368
2N2369
2N2369A
2N2483
2N2484

838m
838m
838m
838m
83
8m

2N4347
2N4391
2N4392
2N4393
2N4427

8C2
8C3
8C3
8C3
4a

P
FET
FET
FET
Tra

1N3909
1N3910
1N3911
1N3912
1N3913

82
82
82
82
82

R

2N2904
2N2904A
2N2905
2N2905A
2N2906

838m
838m
838m
838m
838m

2N4856
2N4857
2N4858
2N4859
2N4860

8C3
8C3
8C3
8C3
8C3

FET
FET
FET
FET
FET

1N4001
to 4007
1N4148
1N4150
1N4151

81
81
81
81

R

2N2906A
2N2907
2N2907A
2N3019
2N3020

83
83
83
83
83

2N4861
2N5415
2N5416
618V

8C3
83
83

FET
8m
8m

1N4154
1N4446
1N4448
1N5060
1N5061

81
81
81
81
81

1N5062

81

WD

R
R

R
R

R
R

R
R
R

R

WD
WD
WD
WD

WD
WD
R
R
R

A
= Accessories
DH = Diecast heatsinks
'FET = Field-effect transistors

8

February 1980

(
II

part

section

8m
8m
8m
8m
8m

2N3053
2N3055
2N3375
2N3439
2N3440

838m
8C2
P
4a
Tra
838m
838m

2N3442
2N3553
2N3632
2N3823
2N3866

8C2
4a
4a
8C3
4a

4b

section

I

P
Tra
Tra
FET
Tra

HE
= Heatsink extrusions
HFSW = High-frequency and switching transistors
I
= Infrared devices

Jl
type no.

Sm

section

type no.

part

section

type no.

part

section

56201c
56201d
56201j
56230
56231

8C2
8C2
8C2
82
82

A
A
A
HE
HE

56295
56312
56313
56314
56315

82
82
82
82
82

A
DH
DH
DH
DH

56359c 8C2
56359d 8C2
56360a 8C2
56363 82,8C2
56364 82,8C2

A
A
A
A
A

56233
56234
56245
56246
56253

82
82
83,4a
82,83
82

A
A
A
A
DH

56316
56317
56318
56319
56326

82
82
82
82
8C2

A
A
DH
DH
A

56366
82
56367 82,8C2
56368a 8C2
56368b 8C2
56369 82,8C2

A
A
A
A
A

56256
56261a
56262A
56264A
56268

82
8C2
82
82
82

DH
A
A
A
DH

56333
56334
56339
56348
56349

8C2
82
8C2
82
82

A
DH
A
DH
DH

56378
56379

A
A

82
82
82
82
82

DH
DH
DH
HE
HE

56350
56352
56353
56354
56359b

82
8C2
8C2
8C2
8C2

DH
A
A
A
A

56271
56278
56280
56290
56293

P
R

part

INDEX

= Low-frequency power transistors
= Rectifier diodes
= Small·signal transistors

8C2
8C2

Tra = Transmitting transistors and modules
Vrf = Voltage reference diodes
WD = Silicon whiskerless diodes

February 1980

9

SELECTION GUIDE

l____

SELECTION GUIDE

RECTIFIER DIODES
General purpose
VRRMmax (V)

IF(AV)max

300

A

600

800

1000

1200

1600

--f---...----I-----I--......--~

1.4

BYX22

6

BYX49 -~--~~--_+----~----.---~

6

BYX38 -~----...------I-----I----

......---~

10

BYX98 --~-~~--_+---~----.---~

12

BYX42

15

BYX99 -~---~----r----;---~----~

30

BYX96 -~-~~-_+--~--~-

47

BYX97 --~----...----~~---I---

48

BYX52 --~----~--~r---;----~--~

150

BYX32 --~----~--~~--~~--~--~

.......

......---~

Avalanche
VRWMmax (V)

IF(AV)max

A

600

1.5

BYX45

9.5

BYX39

20

BYX25

48

BYX56

Bridges

800

1000

1200

III!

f

VI(RMS)max (V)

IO(AV)max

A

50

60

80

140

750

1500

PCB-mounted types
1

BY179

1.2

BY164

1.5

BY256

1.5

BY257

4.8

BY224

4.8

BY225

Bolt-down types
12

BY260

25

BY261

Efficiency diodes
VRRMmax (V)

IFWMmax

A

600

5

BY223

10

BY277

January 1980

1400

r

II

1 1 t

220

280

420

Fast-recovery rectifier diodes
Schottky types

A
28

BYV21

30

35

~

~

Ultra-fast types

40

45

VRRMmax (V)

IF(AV)max
A
7

..

VRRMmax (V)

IF(AV)max

50

100

150

200 300

350

400

500 600

800 1000

BYW29

12

BYW30

25

BYW31

35
BYW92
Super-fast types
7
BYX50
12

BYV30

35

BYV92

Very-fast types

6
6
6
6

1N3879
1N3880
1N3881
1N3882

12

1N3889

12

1N3890

12

1N3891

12

1N3892

14

BYX30*

20

1N3899

20

1N3900

20

1N3901

20

1N3902

20

1N3903

22

BYX46*

30

1N3909

30

1N3910

30

1N3911

30

1N3912

30

1N3913

Fast types
7

BY229

7

BYW19

7

BYX71

40

BYW25

*With avalanche characterisitics
January 1980

2

l_________

SELECTION GUIDE

REGULATOR DIODES
REGULATOR SERVICE
Regulated
voltage

Suppression
stand-off
voltage

4.7V

3.6 V

5.1 V

3.9 V

5.6 V

4.3 V

6.2 V

4.7V

c.

~

11 V

8.2 V

12 V

9.1 V

13 V

10V

15 V

11 V

16 V

12V

18 V

13V

20 V

15V

22 V

18V

27 V

20V

30V

22V

33 V

24V

36V

27V

39V

30V

43 V

33V

47 V

36 V

51 V

39V

56V

43V

62V

47V

68V

51 V

75V

56V

82V

0

co
0

It)

en

>
N

co
0

It)

:;
N

co
0

0

"N~

co
0

M

en

>
N
co

0

C;;

>
N

co
0

0

~

co
0

z

I-

l-

I-

Z

Z

Z

Z

!.

!.

!.

l-

c.
>-

I-

l-

I-

l-

c.
>-

>-

N

co

..c.

.

>-

....
en

~

Z

Z

!.

>-

co

N

<0

..

Z

>-

>-

!.

>-

62 V
Outline

00·1

SOO-18

00-1

Polarity

normal

normal

normal

Transient suppressor bridges
Type No.

3

-

"NX

16 V

24 V

27 kW

0

..

7.5V

-

en

z

10 V

I

co

5.1 V
6.2 V

-

PRSM max
700 W
700 W 9.5 kW 25kW

<0

5.6 V
6.8 V

Ptot max

I 20 W \100 W!

>
N

6.8 V
8.2V

-

700 W

190 W

7.5V
9.1 V

I

!15W
SUPPRESSOR SERVICE

2.5 W

BZW10-12

VI
V
12

VO(CL)
V
30

BZW10-15

15

34

January 1980

I(CL)SM
A
50
40

(
II

SOO-38 SOO-18

00-4

00-5

00-30

00-5

normal

both

both

both

both

both

Normal polarity (cathode to stud) no end-letter
Reverse polarity (anode to stud)
R
Both polarities available
(R)

HIGH-VOLTAGE RECTIFIER STACKS

Type No_

IF(AV)

VRWM

max.

max.

OSS9.110-3
to-30

3.5 A
(6 A in oil)

OSS921 0-3
to-30

5A
(20 A in oil)

OSS9310-3
to-30

4A
(12 A in oil)

OSS941 0-3
to-30

lOA
(30 A in oil)

OSB9110-4
to-3D

7A
(12 A in oil)

OSB9210-4
to -30

lOA
(40 A in oil)

OSB9310-4
to -30

4A
(12 A in oil)

OSB941 0-4
to -30

20A
(60 A in oil)

OSM9110-4
to -30

3.5A
(6A in oil)

OSM9210-4
to-30

5A
(20 A in oil)

OSM9310-4
to -30

4A
(12 A in oil)

OSM9410-4
to-30

10 A
(30 A in oil)

OSM9510-8
to -12

1.5 A

3 kV to 30 kV

2 kV to 15 kV

Configu ration

ano~------~hOde

I.

7259127

~rB--I--~~
centre -tap

V

I . - - RWM"-'

2 kV to 15 kV

.I

VRWM

+

7259125

ano~--I--~hode
V M1- R W

centre-tap
~

?Z59126

8 kV to 12 kV

ano~--I--~hode
centre-tap

V M1- R W
~

?Z59126

January 1980

4

l____

SELECTION GUIDE

THYRISTORS
General purpose thyristors
VRRMmax (V)

fT(RMS)max

A
1.6

100

200

300

400

500 600 650

800 1000 1200 1400 1600

BTX18

12

BT151

16

BTY79

16

BTW38

16

BTW42

20

BT152

25

BTW45

25

BTW47

25

BTY87

25

BTY91

32

BTW40

32

BTW92

55

BTW24

140

BTW23

Fast turn-off thyristors
VORMmax (V)

IT(RMS)max
A

500

6

BT153

8

BT154

24

BTW30S

31

BTW31W

110

750 800

1000 1200

BTW33

Thyristor tetrode BRY39T: VRRMmax

= 70

V; ITrnax

Bi-directional trigger device BR100/03: V(BO)

5

January 1980

r

II

= 28

= 250

rnA

to 36 V; IFRMmax

=2

A

TRIACS
IT(RMS)max

400

A

4

BT136

8

BT137

12
15
15
16
25
25
55
55

VORMmax (V)

500

600

800

1000

1200

1400

1600

BT138
BTW43G
BTW43H
BT139
BTX94H
BTX94J
BTW34G
BTW34H

January 1980

6

GENERAL SECTION
Type Designation
Rating Systems
Letter Symbols
Quality Conformance
and Reliability

A

------

A

_ _ _J

TYPE
DESIGNA TION

PRO ELECTRON TYPE DESIGNATION CODE
FOR SEMICONDUCTOR DEVICES

This type designation code applies to discrete semiconductor devices - as opposed to integrated
circuits -, multiples of such devices and semiconductor chips.
A basic type number consists of:
TWO LETTERS FOLLOWED BY A SERIAL NUMBER
FIRST LETTER
The first letter gives information about the material used for the active part of the devices.
A.
B.
C.
R.

GERMANIUM or other material with band gap of 0,6 to 1,0 eV.
SI LI CON or other material with band gap of 1,0 to 1,3 eV.
GALLIUM-ARSENIDE or other material with band gap of 1,3 eV or more.
COMPOUND MATERIALS (e.g. Cadmium-Sulphide).

SECOND LETTER
The second letter indicates the function for which the device is primarily designed.
A.
B.
C.
D.
E.
F.
G.
H.
L.
N.
P.
Q.

R.
S.
T.
U.
X.
Y.
Z.

DIODE; signal, low power
DIODE; variable capacitance
TRANSISTOR; low power, audio frequency (Rth j-mb > 15 °C/W)
TRANSISTOR; power, audio frequency (Rthj-mb';;; 15 °C/W)
DIODE; tunnel
TRANSISTOR; low power, high frequency (Rth j-mb > 15 °C/W)
MULTIPLE OF DISSIMI LAR DEVICES - MISCELLANEOUS; e.g. oscillator
DIODE; magnetic sensitive
TRANSISTOR; power, high frequency (Rth j-mb';;; 15 °C/W)
PHOTO-COUPLER
RADIATION DETECTOR; e.g. high sensitivity phototransistor
RADIATION GENERATOR; e.g. light-emitting diode (LED)
CONTROL AND SWITCHING DEVICE; e.g. thyristor, low power (Rthj-mb > 15 °C/W)
TRANSISTOR; low power, switching (Rth j-mb > 15 °C/W)
CONTROL AND SWITCHING DEVICE; e.g. thyristor, power (Rth j-mb';;; 15 °C/W)
TRANSISTOR; power, switching (Rth j-mb';;; 15 °C/W)
DIODE: multiplier, e.g. varactor, step recovery
DIODE; rectifying, booster
DIODE; voltage reference or regulator (transient suppressor diode, with third letter W)

"I (

Mareh 1978

The remainder of the type number is a serial number indicating a particular design or development and
is in one of the following two groups:
(a)

A serial number consisting of three figures from 100 to 999.

(b)

A serial number consisting of one letter (Z, Y, X, W, etc.) followed by two figures.

RANG E NUMBE RS

Where there is a range of variants of a basic type of rectifier diode, thyristor or voltage regulator diode
the type number as defined above is often used to identify the range; further letters and figures are added
after a hyphen to identify associated types within the range. These additions are as follows:
RECTIFIER DIODES, THYRISTORS AND TRIACS
A group of figures indicating the rated repetitive peak reverse voltage, V R R M, or the rated repetitive
peak off-state voltage, VDRM, whichever value is lower, in volts for each type.
The final letter R is used to denote a reverse polarity version (stud-anode) where appl icable. The normal
polarity version (stud cathode) has no special final letter.
REGULATOR DIODES
A first letter indicating the nom inal percentage tolerance in the operating voltage VZ'
A. 1% (according
B. 2% (according
C. 5% (according
D. 10% (according
E. 20% (according

to
to
to
to
to

I EC 63:
IEC 63:
IEC 63:
IEC 63:
IEC 63:

series
series
series
series
series

E96)
E48)
E24)
E12)
E6)

A group of figures indicating the typical operating voltage Vz for each type at the nominal operating
current IZ rating of the range.
The letter V is used to denote a decimal sign.
The final letter R is used to denote a reverse polarity version (stud anode) where appl icable. The normal
polarity version (stud cathode) has no special final letter.
Examples:

2

BYX38-600

Silicon rectifier in the BYX38 range with 600 V maximum repetitive peak voltage,
normal polarity, stud connected to cathode.

BTW24-800R

Silicon thyristor in the BTW24 range with 800 V maximum repetitive peak Voltage,
reverse polarity, stud connected to anode.

BZY91-C7V5

Silicon voltage regulator diode in the BZY91 range with 7.5 V operating ±5%
tolerance, normal polarity, stud connected to cathode.

November

19791 (
II

_ _ _Jl__
RATING SYSTEMS

The rating systems described are those recommended by the International Electrotechnical Commission
(lEC) in its Publication 134.
./

DEFINITIONS OF TERMS USED

Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note·
This definition excludes inductors, capacitors, resistors and similar components.

Characteristic. A characteristic is an inherent and measurable property of a device. Such a property
may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed
as a value for stated or recognized conditions. A characteristic may also be a set of related values,
usually shown in graphical form.

Bogey electronic device. An electronic device whose characteristics have the published nominal values
for the type. A bogey electronic device for any particular application can be obtained by considering
only those characteristics which are directly related to the application.

Rating. A value which establishes either a limiting capability or a limiting condition for an electronic
device. It is determined for specified values of environment and operation, and may be stated in any
suitable terms.
Note
Limiting conditions may be either maxima or minima.

Rating system. The set of principles upon which ratings are established and which determine their
interpretation.
Note
The rating system indicates the division of responsibility between the device manufacturer and the
circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

ABSOLUTE MAXIMUM RATING SYSTEM
Absolute maximum ratings are limiting values of operating and environmental conditions applicable to
any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device,
taking no responsibility for equipment variations, environmental variations, and the effects of changes
in operating conditions due to variations in the characteristics of the device under consideration and
of all other electronic devices in the equipment.
The equipment manufacturer should design so that, initially and throughout life, no absolute maximum
value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control
adjustment, load variations, signal variation, environmental conditions, and variations in characteristics
of the device under consideration and of all other electronic devices in the equipment.

'I (

Octobec 1977

___Jl_ _ __
DESIGN MAXIMUM RATING SYSTEM
Design maximum ratings are limiting values of operating and environmental conditions applicable to a
bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device,
taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.
The equipment manufacturer should design so that, initially and throughout life, no design maximum
value for the intended service is exceeded with a bogey device under the worst probable operating
conditions with respect to supply voltage variation, equipment component variation, variation in
characteristics of all other devices in the equipment, equipment control adjustment, load variation,
signal variation and environmental conditions.

DESIGN CENTRE RATING SYSTEM
Design centre ratings are limiting values of operating and environmental conditions applicable to a
bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.
These values are chosen by the device manufacturer to provide acceptable serviceability of the device
in average applications, taking responsibility for normal changes in operating conditions due to rated
supply voltage variation, equipment component variation, equipment control adjustment, load variation,
signal variation, environmental conditions, and variations in the characteristics of all electronic devices.
The equipment manufacturer should design so that, initially, no design centre value for the intended
service is exceeded with a bogey electronic device in equipment operating at the stated normal supply
voltage.

2

October

19771 (
II

~

LETTER SYMBOLS

____B_a_s_e_d_o_n__IE_C__P_U_b_lic_a_t_io_n_1_4_B_____________________

LETTER SYMBOLS FOR
RECTIFIER DIODES, THYRISTORS AND TRIACS
LETTER SYMBOLS FOR CURRENTS, VOLTAGES AND POWERS

Basic letters: - The basic letters to be used are:
I, i := current

v,

v := voltage

P, p:= power

Lower-case basic letters shall be used for the rcpre::;cntatioll of instantaneous values
which vary with time. In all other instances upper-case letters shall be used.
Subscripts
amb
(AY), (av)
(BO)
(BR)
case
D,d
F ,f
G,g
H
I, i
J ,j
L
M,m
min
0,0
(OY)
P,p
Q,q
R,r
(RMS) , (rms)
S,s
stg
T,t
th
(TO)
tot
W
Z

Ambient
Average value
Breakover
Breakdown
Case
Forward off-state 1), non-triggered (gate voltage or current)
Forward 1), fall
Gate terminal
Holding
Input
Junction
Latching
Peak or crest value
Minimum
Output, open circuit
Overload
Pulse
Turn-off
As first subscript: reverse, rise
As second subscri pt : repetitive, recovery
R.M.S. value
As first subscript: storage, stray, series, source
As second subscript: non -repetitive
Storage
Forward on-state 1), triggered (gate voltage or current)
Thermal
Threshold
Total
Working
Reference or regulator (i. e. zener)

For power rectifier diodes, thyristors and triacs, the terminals are not indicated in the
subscript, except for the gate-terminal of thyristors and triacs.
1) For the anode-cathode voltage of thyristors and triacs, F is replaced either by D or
T, to distinguish between" off-state" (non -triggered) and" on -state" (triggered).

December 1979

LEDER SYMBOLS

l"'-----_ __

Example of the use of letter symbols

Simplified thyristor characteristic together with an anodecathode voltage as a function of time (no gate signal).

2

December 1979

(
_Ll

_ _ _ _Jl"----_
QUALITY CONFORMANCE AND RELIABILITY

In addition to 100% testing of all major device parameters in production department, independently
controlled statistical sampling for conformance and reliability takes place using 856001 'Sampling
Procedures and Tables'. 856001 is consistent with MI L-STD-105D, DEF 131 A, IS02859, CA-C-115.
The methods used and standards applied are compatible with CECC, BS and lEG rules and procedures,
and many products are available to 8S9300 and CECC 50000 series detail specifications.
High reliability products, which have had special inspections and 'burn-in', are also available.

December 1979

RECTIFIER DIODES

B

9

B

_ _ _ _J

~;J[: 1'.... 1::. MRL

EXPLANATORY
NOTES

RECTIFIER DIODES

REVERSE RECOVERY

When a semiconductor rectifier diode has been conducting in the forward direction sufficiently long to
establish the steady state, there will be a charge due to minority carriers present. Before the device can
block in the reverse direction this charge must be extracted. This extraction takes the form of a transient reverse current and this, together with the reverse bias voltage results in additional power dissipation
which reduces the rectification efficiency. At sine-wave frequencies up to about 400 Hz these effects
can often be ignored, but at higher frequencies and for square waves the switching losses must be considered.
Stored charge
The area under the I R- time curve is known as the stored charge (Os) and is normally quoted in microor nanocoulombs. Low stored charge devices are preferred for fast switching applications.
Reverse recovery time
Another parameter which can be used to determine the speed of the rectifier is the reverse recovery
time (t rr ). This is measured from the instant the current passes through zero (from forward to reverse)
to the instant the current recovers to 10% of its peak reverse value. Low reverse recovery times are
associated with low stored charge devices.
The conditions which need to be specified are:
a. Steady-state forward cu rrent (I F); high cu rrents increase recovery time.
b. Reverse bias voltage (V R); low reverse voltage increases recovery time.
c. Rate of fall of anode current (dIF/dt); high rates of fall reduce recovery time, but increase stored
charge.
d. Junction temperature (Tj); high temperatures increase both recovery time and stored charge.

•

10%

time

t

100 0 /0

!
Fig. 1 Waveform showing the reverse recovery aspects.

December 1979

UL..I "L..nr\L...

EXPLANATORY
NOTES

l_ _ __

REVERSE RECOVERY (continued)
Softness of recovery
In many switching circuits it is not just the magnitude but the shape of the reverse recovery characteristic
that is important. )f the positive-going edge of the characteristic has a fast rise time (as in a so-called
'snap-off' device) this edge may cause conducted or radiated r.f.i., or it may generate high voltages across
inductors which may be in series with the rectifier. The maximum slope of the reverse recovery current
(dlR/dt) is quoted as a measure of the 'softness' of the characteristic. Low values are less liable to give
r.f.i. problems. The measurement conditions which need to be specified are as above. When stored charges
are very low, e.g. for epitaxial and Schottky-barrier rectifier diodes,this softness characteristic can be
ignored.
DOUBLE-DIFFUSED RECTIFIER DIODES
A single-diffused diode with a two layer p-n structure cannot combine a high forward current density with
a high reverse blocking voltage.
A way out of this dilemma is provided by the three layer double-diffused structure. A lightly doped silicon
layer, called the base, is sandwiched between highly doped diffused p+ and n+ outer layers giving a p+ -pn+
or p+ -nn+ layer. Generally, the base gives the diode its high reverse voltage, and the two diffused regions
give the high forward current rating.
Although double-diffused diodes are highly efficient, a slight compromise is still necessary. Generally, for
a given silicon chip area, the thicker the base layer the higher the VR and the lower the IF' Reverse
switching characteristics also determine the base design. Fast recovery diodes usually have n-type base
regions to give 'soft' recovery. Other diodes have the base type, nor p, chosen to meet their specific
requirements.
ULTRA FAST RECTIFIER DIODES
Ultra fast rectifier diodes, made by epitaxial technology, are intended for use in applications where low
conduction and switching losses are of paramount importance and relatively low reverse blocking voltage
(VRWM = 150 V) is required: e.g., switched-mode power supplies operating at frequencies of about 50 kHz.
The use of epitaxial technology means that there is very close control over the almost ideal diffusion
profile and base width giving very high carrier injection efficiencies leading to lower conduction losses than
conventional technology permits. The well defined diffusion profile also allows a tight control of stored
minority carriers in the base region, so that very fast turn-off times (35 ns) can be achieved. The range of
devices also has a soft reverse recovery and a low forward recovery voltage.
SCHOTTKY-BARRIER RECTIFIER DIODES
Schottky-barrier rectifiers find application in low-voltage switched-mode power supplies (e.g. 5 V output)
where they give an increase in efficiency due to the very low forward drop, and low switching losses.
Power Schottky diodes are made by a metal-semiconductor barrier process to minimise forward voltage
losses, and being majority carrier devices have no stored charge. They are therefore capable of operating at
extremely high speeds. Electrical performance in forward and reverse conduction is uniquely defined by the
device's metal-semiconductor 'barrier height'. We have a process to minimise forward voltage, whilst maintaining reverse leakage current at full rated working voltage and Tj max at an acceptable level.
To obtain the maximum benefit from the use of Schottky devices it is recommended that particular
attention be paid to the adequate suppression of voltage transients in practical circuit designs.

2

December 1979

(

Lt

J
---Rectifier diodes

GENERAL
EXPLANATORY
NOTES

SWITCHING LOSSES (see also Fig.3)
The product of transient reverse current and reverse bias voltage is a power dissipation, most of which
occurs during the fall time. In repetitive operation an average power can be calculated. This is then
added to the forward dissipation to give the total power.
The conditions which need to be specified are:
a. Forward current (I F); high currents increase switching losses.
b. Rate of fall of anode current (dl F/dt); high rates of fall increase switching losses. This is particularly
important in square-wave operation. Power losses in sine-wave operation for a given frequency are
considerably less due to the much lower d I F/dt.
c. Frequency (f); high frequency means high losses.
d. Reverse bias voltage (VR); high reverse bias means high losses.
e. Junction temperature (Tj); high temperature means high losses.

t
t

time

10%

time

7Z77074

Fig. 2 Waveforms showing the reverse switching losses aspects.

December 1979

3

l________

Ucl'lCMf\L

EXPLANATORY
NOTES

SWITCHING LOSSES (continued)
7Z77077

I

t
I

II

r..

L1
I I

~ lOA/JJ.~
1
I I

I

1 1"-1

~/

~

l'..4.r

-I""" ....

I I~J

60

""I

I\.. "'9.......

"

'\.

.....

J
'I

.....,.

-1'00.

" .....""" ""

I

-

./

J

,..... 1 AI p.s
I'
~
11/
I
/.:~"
,....
I
.....
'S~
H--+--:+7,5 -f- H-5 -f-f- 2,5 f-- ~p ~~
-IF (A)
'""""'-

o

"

/
1/

1/

"

I""

1

""I

./

.;'

~

1/

1/
I{

'\~f.-1.0¥-~~

,<:)~
~

J

1\

I~
I 'f-Y'
1.-::

'*"~:/

*'
I/~J

~

1'.'- 1,\

ro--

1 ~Y'

1

 5 mm. Rth j-a

= 40 °C/W

2. Mounted on printed-wiring board at a = maximum
lead-length. Rth j-a = 50 °C/W

3. Mounted on printed-wiring board at a lead-length
a = 5 mm. Rth j-a = 55 °C/W
4. Mounted on printed-wiring board at a lead-length
a = 1.5 mm. Rth j-a = 60 °C/W
(distance -a- includes printed-wiring board thickness)

Fig.2

MOUNTING INSTRUCTIONS
1. The maximum permissible temperature of the soldering iron or bath is 270 oC; it must not be in
contact with the joint for more than 3 seconds.

2. Avoid hot spots due to handling or mounting; the body of the device must not come into contact
with or be exposed to a temperature higher than 150 °C.

3. Exert no axial pull when bending.

CHARACTERISTICS
Forward voltage (2 diodes in series)
IF = 2 A; Tj = 25 °C

<

2.2

V*

"Measured under pulse conditions to avoid excessive dissipation.

January 1980

3

Jl__________

_B_Y164_ _ _

From the left-hand graph the total power dissipation can be found as a function of the average output
current.
I (
)
R + Rd-ff
The parameter a = F RMS per diode depends on wR L CL and t
I
and can be found from
IF(AV) per diode
RL
existing graphs.
See Application Book: RECTIFIER DIODES.
Once the power dissipation is known, the max. permissible ambient temperature follows from the righthand graph.
For the series resistance, added to limit the initial peak rectifier current, the required minimum value
can be found from Fig.5.
Rdiff is shown in Fig.4.

4

January 1980

'I (
II

9
_____
Si_li_CO_"__
br_id__e_r_ec_t_if_ie_r________________________________

7Z09437

6

forward current versus maximum
tor ward voltage of the assembly
I (two diodes in series)
{A }

1.5

U

7Z094382

10

I\,
\.I\'

0

,,1 1~
10

4

I I
1
max. permissible
average output
current for R
and L load

"

(A }

()

0

, \ _ VI(RMS} ~ 42V -r-

,,

1\1\

,

1\ 1\
\

0.5

J

Rdift = cot 0= J
1111

,,

1\ 1\

0.17.n. 1/11

1'1'

J ,
lilT"

0

i:

60V -c-

1\1\

III
II
II

"

J

i-' ~..vI(RMS} ~

J ,

~

J

~:l

[

b-r-r-r-

I I

I\~

1

,::: .1 I

2

B_Y
__16
__4_______

I-r- mounting method 1(see page 3)

f1I

I

~,J ~,_______

1\ \

n

2

V (V)

4

100 Tomb (Oe)

200

Fig.5

Fig.4

Example: Rectifier with C load
7Z09439

1.5

mounting method 1

VI(~~<~ =lJ ~fL I~ ~L}a

10
(A)
1\

max. permissible caverage output ffcurrent for the
fcircuit shown

~

I\,
~

VO,IO t characteristics for the
circuit shown

Vo
(V)
I"o!

40

I\,

,...

I\,

0.5

I\.

,
20
I\,

\.

a

10 (A)

2

Fig.6

January 1980

5

_BY_164_Jl"'--_______
~7ZIG~

60

-.!-t ~" ~U-4-'~
-b()~~ f-H:~~lI
r-~~f- \ol~ r-- r--r-~~

~
II~
~~ ~tt~~

;,~J

Vt(RNS)

ti

(V)

II

40
II
'I

,

IJ

IJ

.J

1/

V

I'

i
i

~

r--

,~, rr--r--r-r--

required minimum value of Rt
Rt Includes the transformer
1-resistance

I'

I I

....
V

i
I

Vl~

"

IJ'

1

I I I II

II II I

the graph takes the possibility of
the following spreads into account:
mains voltage, +10%
capacitance ,+ 30010
resistance
, -10%

If'

II

,J
20
IJ

0

o

3

4

Fig.7

30r-____r-~~~~~~----~--,__r_r~_r~c_----------7~Z~O~94~4~1~
II

IIII~
- - - - ... ISM

IrSMI----t--t---t--t---t-+-I-t-f each current pulse is followed by

the crest working reverse voltage.

(A)

time

I---+--+-l-H-++-t+-----+---+-+--+-+-f-+-H

maximum permissible non repeti ti ve peak input cu rrent based

20r-____~--_r~--~-+~;_----~--~--+-+-+-~++-o-n-s-ln-us-·o~id-a-l-cu~r-r_enrt_s~(f-=r5~O~HrzH

O~~~~~~~~~--~--~~~~~--~~~~~~~

2

3

5

7 9

100

Fig.8

6

January 1980

'I (
JI

number of cycles 1000

________Jl__

B_Y17_9_

SILICON BRIDGE RECTIFIER

Plastic-encapsulated bridge rectifier comprising four silicon double-diffused diodes. It is primarily
intended for equipment drawing its power from mains with frequencies up to 400 Hz.
QUICK REFERENCE DATA

Input
R.M.S. voltage
Repetitive peak voltage
Non-repetitive peak current

VI(RMS)

max.

280

VIRM

max.

800

V

115M

max.

25

A

10(AV)

max.

V

Output
Average cu rrent

A

MECHANICAL DATA

Dimensions in mm

Fig.150D-28
chamfer to
indicate positive

5'08Effi-~
-+-

5,08L

5,08L_

I

_15,31_
max

r~
19
max

(>

~

I

_110 max

I~

19 min

J

t+1,05
max
7Z75526

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation
68-2 (test D, severity IV, 6 cycles).

January 1980

Jl___________

_B_Y179_ _ _
RATINGS

Limiting values in accordance with the Absolute Maximum System (lEC 134)
Input
R.M.S. voltage

VI(RMS)

max.

Crest working voltage

VIWM

Repetitive peak voltage

VIRM

Non repetitive peak voltage; t

~

10 ms

Non repetitive peak current (see also Fig.8)

280

V

max.

400

V

max.

800

V

VISM

max.

800

V

IISM

max.

25

A

Output
Average current with C load

See Figs 3, 6

Average current with Rand L load
up to T amb = 40 °C (see also Fig.5)

IO(AV)

max.

IORM

max.

Repetitive peak current

A

5

A

Temperatures

2

Storage temperature

T stg

Junction temperature

Tj

January 1980

'I (
LI

-55 to +125
max.

125

°C
°C

,J~______

B_Y_1_7_9______

____S_ili_co_n_b_ri_dg_e_re_ct_if_ie_r____________________________

THERMAL RESISTANCE
Influence of mounting method

The quoted values of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point
1. Mounted to solder tags at a
lead-length a > 5 mm. Rth j-a = 40 0C/W
2. Mounted on printed-wiring board at a = maximum
lead-length. Rth j-a = 50 °C/W

3. Mounted on printed-wiring board at a
lead-length a = 5 mm. Rth j-a = 55 oC/W
4. Mounted on printed-wiring board at a
lead length a = 1.5 mm. Rth j-a = 60 °C/W
(distance -a- includes printed-wiring board thickness)
Fig.2

MOUNTING INSTRUCTIONS
1. The maximum permissible temperature ofthe soldering iron or bath is 270 oC; it must not be in
contact with the joint for more than 3 seconds.
2. Avoid hot spots due to handling or mounting; the body of the device must not come into contact
with or be exposed to a temperature higher than 150 0C.

3. Exert no axial pull when bending.
CHARACTERISTICS
Forward voltage (2 diodes in series)
IF=2A;Tj=25 0 C

<

2.2

V*

*Measured under pulse conditions to avoid excessive dissipation.
January 1980

3

_B_Y179--"",jl~_______

0.5

25

10 (A)

75

Tomb (OC)

125

Fig.3
From the left-hand graph the total power dissipation can be found as a function of the average output
current.
The parameter a = IF (RMS) per diode depends on wR L CL and Rt + Rdiff and can be found from
IF(AV) per diode
RL
existing graphs.
See Application Book: RECTIFIER DIODES
Once the power dissipation is known, the max. permissible ambient temperature follows from the righthand graph.
For the series resistance, added to limit the initial peak rectifier current, the required minimum value
can be found from Fig.7.
Rdiff is shown in Fig.4.

4

January

1980

1(
lL

Jl____

B_Y_1_7_9____

Silicon bridge rectifi_e_r_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

6
I

7Z105421

mounting methOd 1 ~see page 3)
maximum permissible average output
current for Rand L load
10 VI(RMS) up to 2aoV
(A )

J I

(A )

7 Z 10 543

1.5

forward current versus maximum
forward voltage of the assembly
(two diodes in series)

I

~f ~;:
~
N

II

1==:'1

4

1

I ,

1\

,IJ

1\

\

;

i

1\

I-r-,-+ '

i I
1111

f\
~

1111
2

0.5

1\

I

III

_\.

1111
II

~

JrJ I'-.

Rdiff -cot 6= o.17J1

•

~I

e'"

1111

'"

II I I
I
I I
I I

I I
I I
I I

Ll

4

V (V)

2

L~

100

Fig.5

FigA

Example: Rectifier with C load
_~ZIQ546.1

mounting method 1(see page 3)

vI(RMS)=

Rt= 4.0. +

--

220V

I I I
I I I

10
(A)

....

0.5

IJF 10

,
,

~r

~J

I
I

400

-

max. permissible
average output current for the circuit shown
-

,
\.

~+
400~

_Ll
1J

Vo
(V)

--

Vo.IO,characteristics r-r- - for the circuit shown r-r- - -

200

~

,.

1\

.

\
\
\

100

lOmb(0 C)

0

200

Fig.6

a

0.5

IO (AJ

January 1980

5

jl~--__-----------

___
BY1_79_ _

7210547

300

I
I
I

I I
14!
'/

I I

b,~

I
",(}(}

;;,.

10""

1/

IIV
IV

I'
~

L.;

~

~

"

J

200

LI

L..o

I'

""

1.0"

L,..o

L,..o
I .....

VI

~

V

II

'I

~ !~l
"'"

required minimum value of Rt
Rt includes the transformer
resistance

LI
~

II.
100

'"

"

1;0

I'

(.;

~I~Y~
ro(}(} j.ii'

I-'"
~

~

J

II

~~

~

L.;

0"
II

I I I

~~~

1.~

~')

~"

VI(RMS)
(V)

I I

the graph takes the possibility of
the following spreads into account:
mains voltage, +10 %
capacitance • +30%
resistance ,-10%

JI~

If.
lL

J

II
I

o0If

4.

2

6

R (.0.)

Fig.7
7Z1054§

30

maximum permissible non repetitive
peak input current based on
sinusoidal currents (f =50Hz)

I rSM

(\---r

(A)

I

IISM

V-'

20

~
~

... ,.

10

each current pulse is followed by
the crest working reverse voltage

..........

I

..........

..........

-

....

I
I
I

7i 1
-""" ::: 250c(, .
~r'or 1;

-~t.troE')
i""-

o

2

3 4. 5

7 9

100

Fig.8

6

January 1980

'I (
JJ

number of cycles

1000

_______----'Jl___

BY_223_

PARALLEL-EFFICIENCY AND ENERGY-RECOVERY DIODE

Silicon double-diffused rectifier diode in a plastic envelope, intended for use as efficiency diode in
transistorised horizontal deflection circuits of colour television receivers, and as an energy"recovery diode
in thyristor commutation circuits such as 3-phase a.c. motor speed control inverters.

QUICK REFERENCE DATA
Repetitive peak reverse voltage

VRRM

max.

1500

V

Average forward current

IF(AV)

max.

A

IFWM

max.

4.5
5

IFRM

max.

200

A

trr

<

1.0

,us

Working peak forward current
Repetitive peak forward current (tp

= 100 ,us) ,

Reverse recovery time

MECHANICAL DATA

A

Dimensions in mm

Fig.1 500-38

.. 5,2 ....
, max

--.

1

3,7
3,6

..-

~
5,3
5,0

metal base
plate

t

18,0
max

~~

L

_,

14,5
min

08043
(7Z6000l,51

1-

.....

!

0,65 .......

max

5,0

..

Polarity of connections: tag 1 =anode, tag 2

I

--.131, ...
=cathode

2,5-+

1,2
,'-. I... max
...

The exposed metal base-plate is directly connected to tag 1
Net mass: 2.5 g
Accessories:
supplied with the device: washer 56355
available on request: 56316 (mica insulating washer)

Torque on screw: min. 0.95 Nm
(9.5 kg cm)
max. 1.5 Nm
(15 kg cm)

December 1979

___BY_223~jl~_______________
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
Transient rating (subsequent to flashover)

VRM(flashover)

max.

1650

V

Non-repetitive peak reverse voltage (t ~ 10 ms)

VRSM

max.

1500

V

Repetitive peak reverse voltage

VRRM

max.

1500

V

Working reverse voltage*

VRW

max.

1500

V

Continuous reverse voltage

VR

max.

800

V

Average forward current (averaged over any 20 ms period)
up to T mb = 85 °C
IF(AV)

max.

4.5

A

Currents

R.M.S. forward current

IF(RMS)

max.

Working peak forward current (see Fig.8)

IFWM

max.

5

A

Repetitive peak forward cu rrent (t p = 100 J,ts)

IFRM

max.

200

A

Repetitive peak forward cu rrent

IFRM

max.

10

A

Non-repetitive peak forward current
(t = 10 ms; half-sinewave)
Tj = 125 0C prior to surge

IFSM

max.

20

A

Storage temperature

T stg

-40 to +125

°C

Junction temperature

Tj

max.

125

°C

Rth j-mb

4.5

°C/W

Zth j-mb

0.3

°C/W

10 . A

Temperatures

THERMAL RESISTANCE
From junction t6 mounting base
Transient thermal impedance; t

= 1 ms

Influence of mounting method
1. Heatsink mounted
From mounting base to heatsink
a. with heatsink compound

Rth mb-h

1.5

°C/W

b. with heatsink compound and
56316 mica washer
c. without heatsink compound

Rth mb-h
Rth mb-h

2.7

°C/W

2.7

°C/W

d. without heatsink compound;
with 56316 mica washer

Rth mb-h

5

°C/W

* At tp

2

< 20 J,tS; 0 = tp/T ~ 0.25; see Fig.8.

December 1979

(

II

l___

Parallel-efficiency and energy-recovery diodes

B_Y_22_3_ __

THERMAL RESISTANCE (continued)

2. Free air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components
run to the same tie-points.
From junction to ambient in free air
mounted on a printed circuit board
at a = maximum lead length
and with a copper laminate
a.
> 1 cm 2
b.
< 1 cm 2

o
Rth j-a = 50 °C/W.
Rth j-a = 55 °C/W

08044 (7Z62315.11

c.
d.

at a lead length a = 3 mm
and with a copper laminate
> 1 cm 2
< 1 cm 2

Rth j-a = 55 °C
Rth j-a = 60 °C

SOLDERING AND MOUNTING NOTES

:J;l
•

•
080'5 (7Z623141

1.

Soldered joints must be at least 2.5 mm from the seal.

2.

The maximum permissible temperature of the soldering iron or bath is 270 °C; contact with the
joint must not exceed 3 seconds.

3.

The device should not be immersed in oil, and few potting resins are suitable for re-encapsulation.
Advice on these materials is available on request.

4.

Leads should not be bent less than 2.5 mm from the seal. Exert no axial pull when bending.

5.

For good thermal contact, heatsink compound should be used between base-plate and heatsink.

December 1979

"~rtl'lll!'l_~

_ _ _ _ _ _ .. _ _ _ _ _ _ .,_"

.,

n.

______ • _ _ _ _ _ _ • • • _ . ___ _

3

_____8_Y_22_3__

~jl~________________________________

CHARACTERISTICS
Forward voltage
IF = 20 A; Tj = 25 °C

<

2.3

V*

<

0.6

mA

<

20

JlS

<

1.0

Jls

<

1.0

JlS

Reverse cu rrent

Reverse recovery when switched from
IFWM = 4 A; -dl Fldt
total recovery time
IF = 2 A; -dl Fldt
recovery time

= 0.2 AIJls; Tj = 125 °C

= 20 AIJls; Tj =

ttot
125 °C

Forward recovery time
when switched to IF RM = 5 A with tr = 0.1 JlS;
Tj = 125 °C

tfr

7Z67044.2A
08046
17Z696991

time

90%

--

tr

time

__

t

Fig.2 Definition of reverse recovery times.

t

100% 110%

+ +time
Fig.3 Definition of forward recovery time

* Measured under pulse conditions to avoid excessive dissipation.
4

December 1979

r

l___

Parallel-efficiency and energy-recovery diode

B_Y_2_2_3_ _

111.5

3

P

819 lines

(W)

I

11'/

2

sis lines

I)

,

1#

\..

, \.

"""'\",,"
~
""'.,.fo .,\" \
/.

Z
AI'
W'

o

\

\

\

\

~,

\

r...... ~ \

116

';xl
~

,

()

\

r~

120.5

~ r\.\ \
~ l\\

'" '"

1/

If

o

\

~~('~'b ~~\
~Q' 1\
~Q)\ ,
\ \~
,~

~rr

)

\

2.5

5

7.5 0

50

""~~
~~

100

125

150

Fig.4 Interrelationship between the power dissipation (based on the waveforms shown in Fig.B) and
the maximum permissible temperatures.
P = power dissipation including switching losses.

December 1979

5

jl~

___
BY2_23_ _

_______________
08660

p
(W)
~

~

10

2.8 I- 1.9 1.57

a=4'

II

1/

II

.,

I

5

1/

IJ
./""~

'" "'"

I/'~

1/"
~

J V
~

'"

O'b

/\~"d'

~~~~f\0
"-

"70 "-

~

i/.~

o

,

oS

~ ......

~

l\. 't

I\.

I'

VI.)'

J

If

/

,,-

l/

l/

J

V

j

80

%
I\

II:~

:"

~

I" \. \
, ,1\

"" ..... "" "'
"-

~l\.'

~

i"'\i ~"
~~
N

" " '1~1\.
~l"'\lWI

"

101

0

102.5

2.5

5 0

50

\.
~

125

100

Fig.5 The right-hand part shows the interrelationship between the power dissipation (derived from the
left-hand part) and the maximum permissible temperatures.
P = power dissipation including switching losses.
a= form factor = IF(RMS)/IF(AV)

6

December 1979

(

l___

Parallel-efficiency and energy-recovery diode

B_Y_2_23
_ __

08049 11269698)

max. values

20

III

,"
J

I
1/
I
II

r

10

J

D

~I
J

n

r-- t--

"

'25°C
-T=125OC~
J
I -I
'J -j i
Vy
I

a

o

~

Fig.6

08050 17Z72510 11

10

,...

j"....ol-

1.--"""'"

./

v
10- 1 lL

v

10-2
10-4.

10- 3

10-2

10- 1

10

time (s)

10

2

Fig.7

December 1979

7

__
BY2_23-""",J

l"""---_ _- - - - -

APPLICATION INFORMATION

-

---- ------- --

-

-

--- ----- -

- ' - IFWM

-

-- --

-

IFRM

time

I

I
I
I
I
I
I

I
I

~~-----------~-4I

I

I

:

time
7Z72368.3

------T-----~

E.H.T.

~
'----o+vs

7Z73165.1

Fig.S Basic circuit and waveforms

8

December 1979

(

SILICON BRIDGE RECTIFIERS
Ready-for-use mains full-wave bridges, each consisting of four double-diffused silicon diodes, in a
plastic encapsulation. The bridges are intended for use in equipment supplied from mains with r.m.s.
voltages up to 280 V and are capable of delivering up to 1000 W into cap.acitive loads. They may be
used in free air or clipped to a heatsink.
QUICK REFERENCE DATA
Input

BY224-400

R.M.S. voltage

220

280 V

400

600 V

600 V

VI(RMS)

max.

Repetitive peak voltage

VIRM

max.

Non-repetitive peak current

IISM

max.

100 A

Peak inrush current

111M

max.

200 A

IO(AV)

max.

4,8 A

Output
Average current
MECHANICAL DATA (see also Fig.1a)
Fig. 1 SOT-112.

1.

4---

Dimensions in mm

22,5 max - - -••

-1

1

5,5 max

14-

heatsink
face
(mounting
base) ""

24,5

max

-t

10,6

9,1

+ "" "" -

1

~~~~~~~--'
4,6
max

-t

~
13 ...
,

....

\1- 1max
1. . .

7Z692S7.6

Net mass: 6,8 9
Accessories supplied on request: 56366 (clip); for mounting instructions see data 56366,
The seal ing of the plastic withstands the accelerated damp heat test of I EC recommendation 68-2
(test 0, severity IV, 6 cycles),
December 1979

BY224 SERIES

l_____

MECHANICAL DATA (continued)
-? Fig.la

08470

A version with cranked pins (as shown in figure 1a) is available on request.

RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Input

BY224-400

< 10 ms)

600

VISM

max.

400

Repetitive peak voltage

VIRM

max.

400

600 V

Crest working voltage

V'WM

max.

350

400 V

R.M.S. voltage (sine-wave)

V'(RMS)

max.

220

280 V

IISM
'ISM

max.
max.

100 A
85 A

111M

max.

200 A

IO(AV)

max.

4,8 A

IO(AV)

max.

2,5 A

IORM

max.

50 A

Non-repetitive peak voltage (t

Non-repetitive peak current
half sine-wave; t = 20 ms; with reapplied V'WMmax
Tj = 25 0C prior to surge
Tj = 150 °C prior to surge
-?
Peak inrush current (see Fig. 6)

600 V

----

Output
Average current (averaged over any 20 ms period;
see Figs 2 and 3)
heatsink operation up to T mb = 90 °C
free-air operation at T amb = 45 °C;
(mounting method 1a)
Repetitive peak current
~

2

Temperatures
Storage temperature

T stg

Junction temperature

Tj

December 1979

(

-40 to +150 °C
max.

150 °C

Silicon bridge rectifiers

J

BY224 SERIES

- - THERMAL RESISTANCE
From junction to mounting base

4,0 0C/W

Rth j-mb

Influence of mounting method

1. Free-air operation
The quoted values of Rth j-a should be used only when no loads of other dissipating components run to
the same tie-point (see Fig. 3).
Thermal resistance from junction to ambient in free air
a. Mounted on a printed-circuit board with 4 cm 2
of copper laminate to + and - leads

Rth j-a

19,5 °C/W

b. Mounted on a printed-circuit board with
minimal copper laminate

Rth j-a

25 °C/W

2. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
a. With zinc-oxide heatsink compound
b. Without heatsink compound

Rth mb-h

1,0 0C/W

Rth mb-h

2,0 0C/W

MOUNTING INSTRUCTIONS

1. Soldered joints must be at least 4 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is 270 oC; contact with the
joint must not exceed 3 seconds.

3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact
with or be exposed to a temperature higher than 150 °C.

~

4. Leads should not be bent less than 4 mm from the seal. Exert no axial pull when bending.
5. Recommended force of clip on device is 120 N (12 kgf).

6. The heatsink should be in contact with the entire mounting base of the device and heatsink
compound should be used.

CHARACTERISTICS
Forward voltage (2 diodes in series)
IF = 10 A; Tj = 25 °C

<

2,3 V*

Reverse current (2 diodes in parallel)
VR = VIWMmax; Tj = 25 °C

<

200 JlA

* Measured under pulse conditions to avoid excessive dissipation.
December 1979

3

BY224 SERIES

15

FREE - AIR OPERATION

7Z729861

p
(W)

10

cv~ C'I,~ cv": ....'?
II

,

I,

'ito

JV

~

1/
j

II

/

1/

))

1/

.....bo. .....",;

1/ 1/
1/ 1/
V

V

1a

,/1/' 1/.) V

5

v

I/.

1.1.11

~

v/

r)l)

mounting
method

I'.
L..--

V

~

',;',;

~

~ 1b

CI~

I"

~~~
~~~

"'

~"'

~~

I,..;

""

L

o
o

2

4

6 0

50

IO(AV) (A)

~

~

~

100
150
Tamb (oC)

Fig. 2 The right~hand part shows the interrelationship between the power (derived from the left-hand
graph) and the maximum permissible ambient temperature.
Output form factor ao

4

December 1979

= IO(RMS)/IO(AV) =0,707 x IF(RMS)/IF(AV) per diode.

(

j

Silicon bridge rectifiers

BY224 SERIES

- - -

p

(W) ~~~++~~+4~~~~+4~~~~++~~~~~~~~~~~

o

o

150
150

1 1'4

2

4

60
IO(AV) (A)

100

50

Tamb (oe)

Fig. 3 The right-hand part shows the interrelationship between the power (derived from the left-hand
graph) and the maximum permissible temperatures.
Output form factor ao

= IO(RMS)/IO(AV) =0,707 x IF(RMS)/IF(AV) per diode.

December 1979

5

l____

BY224 SERIES

7Z72373.2A

150

IIS(RMS)
(A)

,

"

100

~

"- ~

IISM

I'

I,
...........

50

"'" f""
'"""I'-

[""-00......

r--

o

10- 3

duration (s)

10

Fig.4 Maximum permissible non-repetitive r.m.s. input current based on sinusoidal currents (f = 50 Hz);
150 °C prior to surge; with reapplied VIWMmax.

-+ Tj =

60

= 25°C
---1j =150°C

--Tj

~

I

2 diodes in series

IIS
R f t I IS(RMS)
-- -----.-

,,

7Z725371A

time

/I
I
II
II I
max_I-

,

typ L..fVF f-I- I VF

'--

I
f
40

I"

~

I
II

,
I
II

20

-'

-'

I I
Ilf
rI

fJ
J

I

'/

.'11

-"
~~

~'"

l/~
~

2

6

December 1979

f

4

Fig.5

j

Silicon bridge rectifiers

BY224 SERIES

---

7Z72598.1

300
II "
"
~lJll()~~'

~
~

I \()()

I

I I
I

VI(RMS)
(V)

f/
/

I"""

:,.....

..... 1"""
~

I"'"

...........

.".

I
l...o' .....

V
If

I--"

.....

~

100

j

~

~

"'"

~

"'" ~

i.o"'"
~

k..-

/.'

"'"
I'
10-'"

......

.....~~~~

i.;'

.".

~

J

i,..-'

.."

10-'"

1/

_L~

f*J(()()~~~

~

~

If ...........

L:1o'

200

~~

~~

1-()~()'~

~

c,\...

~~
~J

"'"

...... 1"'"
...... 1"'"

l)

ll-

1/

oV
o

2

+

3

4

The graph takes the possibility of the
following spreads into account:
mains voltage +10%
capacitance
+50%
resistance
-1 0%

Fig. 6 Minimum value of the total series resistance Rtot (including the transformer resistance)
required to limit the peak inrush current.

December 1979

7

SE_R_IE_S~jl________________________________

__B_Y_2_24__

APPLICATION INFORMATION

mains
filter

mains rv

suppression
network

..............--0+

7274198

(1) External capacitor.
Fig. 7 Because smoothing capacitor C2 is not always connected directly across the bridge (a suppression
network may be sited between capacitor and bridge as shown), it is necessary to connect a capacitor of
about 1 ~F, C1, between the + and - terminals of the bridge. This capacitor should be as close to the
bridge as possible, to give optimum suppression of mains transients.

10

CAPACITIVE LOAD

7Z72371 1

mounting method:

10 - - - 1b--10(AV)

(A)

1\
~

~

5

\

,

,'""

\

~ "~'I
~

"~...

...

i'...
~

-........ '-

--

....... ......

"------

V

10

5

Fig.8
8

December 1979

(

Tamb

= 35°C

1/ I I I I
Tamb

=65°C

overload time (min)

15

SILICON BRIDGE RECTIFIERS
Ready-for-use full-wave bridge rectifiers in a plastic encapsulation. The bridges are intended for use in
equipment supplied from a.c. with r.m.s. voltages up to 80 V and are capable of delivering output
currents up to 4,8 A. They are also suitable for use in hi-fi audio eql!ipments and low-voltage
industrial power supplies. They may be used in free air or clipped to a heatsink.
QUICK REFERENCE DATA
BY225-100

Input

200

R.M.S. voltage

V'(RMS)

max.

50

80 V

Repetitive peak voltage

V,RM

max.

100

200 V

Non-repetitive peak current

',5M

Peak inrush current

'"M

max.

100 A

max.

200 A

max.

4,8 A

Output
Average current

'OlAV)

Dimensions in mm

MECHANICAL DATA
Fig. 1 SOT-112.

1."--- 22,5 ---"·1
max

. . . . .1

5'5 max

I+-

heatsink
face
(mounting
base) "'.t.

24,5

max

+"V"V-

4,6
max

--+

10,6

9,1

+
Net mass: 6,8 g

1

~~~~~~~~--'

-j

t ~i~ I

,'o~;\...lil--1.1 O'254@/13"'11..

... 3,9 ......-........-...--..
15,0 81 15,081 IS,081

I

.....

1... 1 max

m92S1.6

Accessories supplied on request: 56366 (clip); for mounting instructions see data 56366.
The sealing of the plastic withstands the accelerated damp heat test of I EC recommendation 68·2
(test D, severity IV, 6 cycles).

"I'

January 1980

BY225 SERIES

l"'---_ __

RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Input

BY225-100

200

Non-repetitive peak voltage (t .;;;;; 10 ms)

VISM

max.

100

200 V

Repetitive peak voltage

VIRM

max.

100

200 V

Crest working voltage

VIWM

max.

70

112 V

R.M.S. voltage (sine-wave)

VI(RMS)

max.

50

80 V

Non-repetitive peak current;
half sine-wave; t = 20 ms; with reapplied V IWMmax
Tj = 25 °C prior to surge
Tj = 150 °c prior to surge

IISM
IISM

max.
max.

100 A
85 A

Peak inrush current (see Fig. 6)

111M

max.

200 A

IO(AV)
IO(AV)

max.
max.

3,6 A

IO(AV)

max.

3,2 A

IORM

max.

50 A

Output

Average current (averaged over any 20 ms period;
see Figs 2 and 3)
heatsink operation up to T mb = 115 °c
heatsink operation at T mb = 125 °c
free-air operation at T amb = 45 °C;
(mounting method 1a)
Repetitive peak current

4,8 A

Temperatures

2

Storage temperature

T stg

Junction temperature

Tj

March

19781 (

-40 to +150 0c
max.

150 °c

BY225 SERIES

Silicon bridge rectifiers

THERMAL RESISTANCE
From junction to mounting base

4,0 0C/W

Rthj-mb

Influence of mounting method
1. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run
to the same tie-point (see Fig. 2).
Thermal resistance from junction to ambient in free air
a. Mounted on a printed-circuit board with 4 cm 2
of copper laminate to + and - leads

Rthj-a

19,5 0C/W

b. Mounted on a printed-circuit board with
minimal copper laminate

Rthj-a

25 0C/W

2. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
a. With zinc-oxide heatsink compound

Rth mb-h

1,0 °C/W

b. Without heatsink compound

Rth mb-h

2,0 0C/W

MOUNTING INSTRUCTIONS

1. Soldered joints must be at least 4 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is 270 oC; contact with the
joint must not exceed 3 seconds.

3. Avoid hot spots due to handling or mounting; the body of the device must not come into contact
with or be exposed to a temperature higher than 150 °C.

4. Leads should not be bent less than 4 mm from the seal. Exert no axial puff when bending.
5. Recommended force of clip on device is 120 N (12 kgf).

6. The heatsink should be in contact with the entire mounting base of the device and heatsink
compound should be used.
CHARACTERISTICS
Forward voltage (2 diodes in series)
IF = lOA; Tj = 25 °C

<

2,3 V*

Reverse current (2 diodes in parallel)
VR = VIWMmax; Tj = 25 °C

<

200 J1.A

* Measured under pulse conditions to avoid excessive dissipation.
March 1978

3

FREE - AIR OPERATION

15

7Z72986 1

p
(W)

10

rv~ (I~ rv~ ....~
1/

,I 1/
VI/

I/I V/

AI/
~

5

1/

V

I

1/

1/

.I"

~

,~

1/

1.1"

1/

'tI0

,?,

I,

~ l~

V

I"

"

V

"

v"

,/

/.

"'"

~

/
~z

......

mounting
method
1a
~ lb

[.1/

.....

~~ ~I'

"'

~r;;:::~

~~

"

1':'
,:'1\

./

~

..... 1'

o

o

2

4

60

50

IO(AV) (A)

~

,

100
150
Tamb (oC)

Fig. 2 The right-hand part shows the interrelationship between the power (derived from the left-hand
graph) and the maximum permissible ambient temperature.
Output form factor ao

4

March

= IO(RMS)/IO(AV) =0,707 x IF(RMS)/IF(AV) per diode.

19781(

BY225 SERIES

Silicon bridge rectifiers

p

(W) ~~-rr+~-rr+~-r++~~++44~++44~~44~++~~++~~

1.1

IO(AV) (A)
Fig. 3 The right-hand part shows the interrelationship between the power (derived from the left-hand
graph) and the maximum permissible temperatures.
Output form factor ao = IO(RMS)/IO(AV) = 0,707 x IF(RMS)/IF(AV) per diode.

March 1978

5

l_____- -

BY225 SERIES

7Z723732A

150

IIS(RMS)
(A)

"

100

""-

IISM

'"
I"

,

I'....

50

~

i""""-o
1""' ...

r---....

--

r-

o

10- 3

duration (s)

10

Fig. 4 Maximum permissible non-repetitive r.m.s. input current based on sinusoidal currents (f = 50 Hz);
Tj = 150 °C prior to surge; with reapplied V'WMmax'

, ,

7Z12369 1

60

I
T J

- - T j = 25°C
- - - Tj = 150°C

-- -----.- IS(RMS)
IIS~I

,

time

I

I

I
I
typ -r-, max IVF f-f--J VF 1 ~
1

2 diodes in series

II

I.

40

II

,

•,

~

20

.',
~J
~

.~'

,

7

I J
1/11
IJj
rl

,

'/
.'1/

~' /

,

2

November 1979

:

II

i

6

1_'

,

(

4

Fig. 5.

j

Silicon bridge rectifiers

BY225 SERIES

- - 08618

100

~~ r-

VI(RMS)

(V)

c~~

V

1/
~

lL~

11'...... ~
50

I
1~'fI"

V V'
~ ~ '/

) .....
~~

o

"o

...... ",

V

...... ~ /'"

V

C(

C(

r-

~

LL ""'"

~ ~~,..

...... ~

~

~

)~ ..... ~

..L.~ ..L.~

~

~ ~
...... ~ ....... ",

V
l/

--,V'

j

if ~

)

~

C(

~()()~;....-- ~() ~ ~() of ()()() ~

j

V

~""'"

V

V

"

1.5

0.5

The graph takes the possibility of the
following spreads into account:

+

input voltage
capacitance
resistance

+10%
+50%
-10%

Fig. 6 Minimum value of the total series resistance Rtot (including the transformer resistance) required
to limit the peak inrush current.

November 1979

7

l'----_--

BY225 SERIES

10

CAPACITIVE LOAD

7Z72371.1

mounting method:

10 - - - 1bIO(AV)

(Al

~

\
1\

5

,

1\ I"

I\.

1\.'

'''-.

~""r ...

r-

. . "- ""

~:t

.... '" -

---

~ 1"'-' 1'"-

0

o

- :r

Qmb

1/ 1

...

V

10

5
Fig. 7.

8

I(

March 1978

= 35°C
1

1

1

:rQmb =65°C

overload time (min)

15

FAST SOFT-RECOVERY RECTIFIER DIODES
Glass-passivated double-diffused rectifier diodes in plastic envelopes, featuring fast reverse recovery
times and non-snap-off characteristics. They are intended for use in chopper appl ications as well as in
switched-mode power supplies, as efficiency diodes and scan rectifiers in television receivers.
The series consists of normal polarity (cathode to mounting base) types.

aUICK REFERENCE DATA
BY229-200
Repetitive peak reverse voltage

max.

800
800,

,200

V

Average forward cu rrent

max.

7

A

Non-repetitive peak forward current

max.

60

A

Reverse recovery time

<

450

ns

MECHANICAL DATA

Dimensions in mm

Fig.1 SO~-59 (TO-220AC).

1'3~~:

-, 1
5,9

min

L,joo"""""",.r--,.+ 15,8

I

max·

I

I

I _____ .JI
L

j

LIt:;=;:=~~

3,5 max

r-

not tinned

5,1
max

~

I

1,3.... ..
max
12x) k

min

I
a

,

113,5

•

-.1\'1...0,9 max 12x)

-+-I 5,08 ...

08402

Note: The exposed metal mounting base is directly connected to the cathode. Accessories supplied on
request: see data sheets Mounting instructions and accessories for TO-220 envelopes.

July 1979

BY229 SERIES

l_______

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages*

BY229-200 400 600 800

Non-repetitive peak reverse voltage

VRSM

max.

VRRM

max.

VRWM

max.

VR

max.

Repetitive peak reverse voltage
Crest working reverse voltage
Continuous reverse voltage

200 400 600
200 400 600
150 300 500
150 300 500

800
800
600
600

V
V
V
V

V

Currents
Average forward current assuming zero
switching losses
square-wave; {j = 0.5; up to T mb = 100 °C
square-wave; {j = 0.5; at T mb = 125 °C
sinusoidal; up to T mb = 101 °C
sinusoidal; at T mb = 125 °C

max.
max.
max.
max.

7
4.1
6.5
4

A
A
A
A

IF(RMS) max.
max.
IFRM

10

A

Repetitive peak forward current

60

A

Repetitive peak forward current
tp = 20 J.lS; {j ~0.02

lFRM

max.

75

A

Non-repetitive peak forward current; t = 10 ms
half sine-wave; Tj = 150 °e prior to surge;
with reapplied VRWMmax

lFSM

max.

60

A

R.M.S. forward current

IF(AV)
IF(AV)
IF(AV)
IF(AV)

Temperatures
Storage temperature
Junction temperature

T stg
Tj

max.

-40 to +150
150

*To ensure thermal stability: Rth j-a ~ 15 °e/W for continuous reverse voltage.

2

July

19791(

oe
oe

BY229 SERIES

Fast soft-recovery rectifier diodes

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

4.5 °C/W

Influence of mounting method

1. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
b. with heatsink compound and 0.06 mm maximum mica insulator

Rth mb-h = 0.3 °C/W
Rth mb-h = 1.4 °C/W

c. with heatsink compound and 0.1 mm maximum mica insulator (56369)

Rth mb-h = 2.2 °C/W

a. with heatsink compound

d. with heatsink compound and 0.25 mm maximum alumina
insulator (56367)

Rth mb-h = 0.8 °C/W
Rth mb-h = 1.4 °C/W

e. without heatsink compound
2. Free-air operation
The quoted value of Rth j-a should be used only when no leads
of other dissipating components run to the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = any lead length.
Rth j-a

60

°C/W

ia

Fig.2

~

V/L / / 'LLJ
08397

7Z78248

MOUNTING INSTRUCTIONS
1. The device may be soldered directly into the circuit, but the maximum permissible temperature of
the soldering iron or bath is 275 oC; it must not be in contact with the joint for more than 5
seconds. Soldered joints must be at least 4.7 mm from the seal.
2. The leads should not be bent less than 2.4 mm from the seal, and should be supported during
bending.
3. It is recommended that the circuit connection be made to the cathode tag, rather than direct to the
heatsink.
4. Mounting by means of a spring clip is the best mounting methode because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting;
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between base-plate and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-riveted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled
so as to avoid shock and deformation of either heatsink or mounting tab.

July 1979

3

CHARACTERISTICS
Forward voltage
IF = 20 A; Tj = 25 °C

VF

<

1.85

V*

IR

<

0.4

mA

Os
trr

<
<

0.7
450

p,C
ns

IdlR/dtl

<

60

Reverse current
VR = VRWMmax; Tj = 125 °C
Reverse recovery when switched from
IF = 2 A to VR ;;. 30 V with -dIF/dt = 20 A/p,s; Tj
Recovered charge
Recovery time

= 25 °C

Maximum slope of the reverse recovery current
IF = 2 A; -dIF/dt = 20 A/p,s

+
10%

time

7Z70134.2

Fig.3 Definition of trr and Os

*Measured under pulse conditions to avoid excessive dissipation.

4

July 1979

~

(

t

100 %

~
08403

A/p,s

Fast soft-recovery rectifier diodes

l_B_Y_2_2_9_S_ER_'_ES__

SQUARE-WAVE OPERATION
08378

p

1.0

(W)

7
7

I

0.5
I

10
0.2
1--

I

V

5

I
il

\.
\.

I

1\
\

\

\.

\ --

S-

\3

\

'" \

\

\.
\.

1\

I\L.>~

\

1\ 'V>o
~\O

116.25

tP,\ I\.. r\H ~

'\

II )

II

\ \b
~.\>

,

~'\

,/

\'"

\

\

105

\c;

\

\

\

II

II

II

7

I

I

f-+- 0=0.1 I
II
I

93.75

\.

,

1\.1\ ,

1\

I'
1\.1\. I\. 1\ \ \

127.5

1//

'III 1/
11/
1/ J/
/V,'/

.... Rtf) .

~~

"~,,

--f..::.. a ""6

0

I I I
I I I

I
I

~C/W

//0

o~
o

.\\ \
I\,\
\1'
:\.
N\

./

5

o

50

...,....,..
I
100

~"

138.75

,

,~

:....

\.l

150
0

150 T amb ( C)

Fig.4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses but excluding switching losses.

IF(AV)

= IF(RMS) x~

July 1979

5

BY229 SERIES

jl
'----------------------------------------------------

SINUSOIDAL OPERATION
08379

p
(W)

,
1.57
1.9 1/
/

10

II

"

2.8 II 1/J

I
1111

"

['-.,

~

l'\.

I'

'" '"

l'\.

t....

111/

t"-..

"

1/1/

t-t-......

).
)IJ~

o

2.5

1>'"

,

~

"

1
1
-.l

50

rr-r-I I
1
-.l-.l-.l

116.25

......

, L'l
'" , "- I"- l'II

Rth i-a "'60°C/
.I~
W

Ll

105

~,

~I'
I'

I I
1I

'I)"
JI..I

o~

~?d'

1\
,~<>
~ r-~ ('l
v ~r-r-t-' ~
~
I' 6'
1\
''S
~
1. ~ I'
1'\ ~
o I', I'
1\ 1\

1/'1

I J 'J
II V If.
J r/
1/1/ Ih

93.75
~

l\.,-;

"L"I '\. "'" \
i"I.

I"I"-.

If

r

5

"-

I

r-c- f- a "'4.01

'"

i'

,

'\.

127.5

L1
l).

1'\1\

r-..r-..

l\

""'~l\

I"'l:'

r-t- t-~
100

138.75

1..'1\

~~~

N

1\

r-t- ~~~ 150

°

T amb ( C)

150

Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses but excluding switching losses.
a = form factor = IF(RMS)/IF(AV)'

6

July 1979

II

BY229 SERIES

Fast soft-recovery rectifier diodes

08380

100
'FS(RMS)

(A)

,

\

75

~

"

I FSM

1\

50

I'
~

~

" ......

~
...... r-- ...

25

o

""
10- 2

10- 3

10- 1

08381

25

,

1

II

I:

Jr.

II

II

20

1

1"-01000

---

I"--

duration (s)

10

Fig, 6 Maximum permissible non-repetitive r,m.s,
forward current based on sinusoidal
currents (f = 50 Hz); Tj = 150 °C prior to
surge; with reapplied VRWMmax'

/\---I FSM
I \: 'FS(RMS)
time

'I

JI,r
I'
fl

,
J

15

II

typ
VF

10

1

,

,,

5

.,

.F

~

If max
J
VF
~
'I

IJ
'/
'I

,

",J

I

I[~

J

o

......... ......

I'..

'J

... JOi"

July 1979

7

l_ _ __

BY229 SERIES

08382
I I

--"-

..... !!o.
I

1""'"",

f-

5A/p.s

"""

-,I

-"",

I

f-

Ip.s

f-

~&,~s

%.'
~

.... ~

-~

r-I-

.!)A/~ts

?ca

I~

~
11

I' "'

1M

I

10

f-f- 17.5

r-I-'-

1£

,

I~

1£
~

~
~

.... ,....

....

~

I'FI~\
I,..

I"' ....

!-...

~

""" ~

-r--....

I

11

... !I""

!;:~~
~~~ ~~
"""

:;,O\~\-\l.l.... ~,..'"'"

iI!!I~ i""'r"'"

......

r""",

~~
"I~

'"

 I
~0 1

'"
""'" "
'""~6'~~r-~~
~ ~
'" "" ~""'
~

11.-./\

"Q>~
1'-. l?6'o
v.
0

I"

"

1"-

'(J

~

I"

I'-

I"

" "I,

..-- a o =2.8

"--11-1-

~
~

1\
1\

"

;,

"--1-

"".' ,
N"

"~,,

-f-tl

,/I

iJIII
~

,,~~

•

"

-r-'--

~~

o
0

~'"

I'~

1-1-

j

0.5

1

1.5 0

50

100

"

~

1,5 o

Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand
graph) and the maximum permissible ambient temperature.
Output form factor ao = IO(RMS)/IO(AV) = 0.707 x IF(RMS)/IF(AV) per diode.

December 1979

5

_____
BY_2_5_6__

~~l~__________--------------------08496

IISM
(A)

50

~

,

"-

,

~

40

"

\..

\..

" "" '" """-

30

20

1'0..
r""o

...

"
10

~

-...

-"",

10- 1

--10

duration (s)

102

Fig.4 Maximum permissible non-repetitive peak input current based on sinusoidal currents (f = 50 Hz);
Tj = 150 oC prior to surge;with reapplied VIWMmax'
DUi7

I
I
I I
I
typ VF -max VF

IF
(A)

5

,•

\I

I'

•
•

II

,I

,

4

,

r

,

,

II

II
I'

J

1'II

I

I'

2

•

,••

J
I'

I

,,

o

I'

0.5
6

I.

,

I

3

J

II

December 1979

'I

I
I

~

..,.

t'

1.5

(

"

Fig.5 - - T j = 25 oC; - - - Tj = 150 oC;

2 diodes in series.

S_il_ico_n_b_r_id_ge_r_~_t_if_ie_rs

____

~~,

_______________________________

_____B
__Y_2_5_6_______

08657

100

~ -~~~
-~y
~V- ~- y~
'Of:;j~
~~
~')- -~~~ ~
./

VI(RMS)

~/

(V)

II

v"j
..,.

1/

V

50

/

/
~

J~

~,

"

.LI

~

/

/

~,

./,r

V

./'

~

./

~

/'

/

.",'

';II'"

i/

J,/'

~

J

I
I
oI
o

2

The graph takes the possibility of the
following spreads into account:

+

input voltage
capacitance
resistance

+10%
+50%
-10%

Fig.6 Minimum value of the total series resistance Rtot (including the transformer resistance) required
to limit the peak inrush current.

December 1979

7

______Jl__

BY2_S7_

SILICON BRIDGE RECTIFIER
Ready-for-use full-wave bridge rectifier in a plastic encapsulation. The bridge is intended for use in
equipment supplied from mains with r.m.s. voltages up to 280 V and is capable of delivering output
currents up to 1.5 A.

QUICK REFERENCE DATA
Input
R.M.S. voltage

VI(RMS)

max.

Repetitive peak voltage

VIRM

max.

280
600

V

Non-repetitive peak current

IISM

max.

50

A

IOA(V)

max.

1.5

A

V

Output
Average current

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-28
chamfer to
indicate positive

r~J:::===:=::J
19
max

~

?~========~
I

+

_110

max 1--19 min

J

~1,05
max

t

7Z75526

The sealing of the plastic envelope withstands the accelerated damp heat test of I EC recommendation
68-2 (test D, severity IV, 6 cycles).

'I

December 1979

__BY_2S7_Jl""'---_ _ _ _ _ __
RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)

Input
Non-repetitive peak voltage (t ~ 10 ms)

V'SM

max.

600

V

Repetitive peak voltage

V'RM

max.

600

V

Crest working voltage

VIWM

max.

400

V

R.M.S. voltage (sine-wave)

VI(RMS)

max.

280

V

Non-repetitive peak current;*
half sine-wave; t = 20 ms; with reapplied V'WMmax
Tj = 150 0C prior to surge

IISM

max.

50

A

'OlAV)

max.

1.5

A

IORM

max.

10

A

Storage temperature

T stg

-55 to +150

°C

Junction temperature

Tj

max.

°C

Output
Average current (averaged over any 20 ms period;
see Fig.3)
free-air operation at T amb = 45 oC;
(mounting method a)
Repetitive peak current

Temperatures

2

December 1979

(

150

J

Silicon bridge rectifier

BY257

- - THERMAL RESISTANCE
Influence of mounting method
1. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run
to the same tie-point.
Thermal resistance from junction to ambient in free air
a. Mounted on a printed-circuit board with 4 cm 2
of copper laminate to + and - leads

Rth j-a

38

°C/W

b. Mounted on a printed-circuit board with
minimal copper laminate; 1.5 mm lead length

Rth j-a

52

°C/W

c. Mounted on a printed-circuit board with
minimal copper laminate; maximum lead length

Rth j-a

44

°C/W

MOUNTING INSTRUCTIONS

1. The maximum permissible temperature of the soldering iron or bath is 270 oC; it must not be in
contact with the joint for more than 3 seconds.

2. Avoid hot spots due to handling or mounting; the body of the device must not come into contact
with or be exposed to a temperature higher than 150 0C.
3. Exert no axial pull when bending.
CHARACTERISTICS
Forward voltage (2 diodes in series)

IF = 2 A; Tj = 25 0C

<

2.1

V*

*Measured under pulse conditions to avoid excessive dissipation.
December 1979

3

jl~_______________

___
BY_257_ _

OPERATING NOTES

The various components of junction temperature rise above ambient are illustrated below.

junction

Rth e-tp

Rth e-a
Rth tp-a

ambient
Fig.2
The thermal resistance between envelope and tie-point and between envelope and ambient depend on
lead length:
lead length
Rth e-tp
Rth e-a

1.5
1.2
110

5

10

15

max.

mm

4

8

12

15.2

°C/W

87

73

65

60

°C/W

The thermal resistance between tie-point and ambient depends on the mounting method. For mounting
on a 1.5 mm thick epoxy-glass printed-circuit board with a copper-thickness> 40 ,um, the following
values apply:
1.

Mounting with minimal copper laminate: Rth tp-a == 70 °C/W

2.

Mounted on a printed-circuit board with a copper laminate to the + and - lead of:
1 cm 2 : Rth tp-a = 55 °C/W
2.25 cm 2 : Rth tp-a = 45 °C/W
4 cm 2 : Rth tp-a == 40 °C/W

Note: Any temperature can be calculated by using the dissipation graphs and the above thermal model.

4

December 1979

(

~~

___S_il_ic_on_b_r_id_g_e_re_ct_if_ie_r_______________________________

B_Y_2_5_7________

_______

FREE-AIR OPERATION

,

3

1.8
2,1 ) J J

11"- 1['
J

p
(W)

fJ 'I"
III[ 'J

IJ.I
JII 'J'- 1.4
'I,'J I/" i' 1.1

2

08496

1

j

"

!\.
l~

I\.

I"

I\.

~

"!'.

~

l~

fL'fj

1/')'f
'JlJ

I~
I~

I' 1>

,

~0 I
......

'\. o'~
f\.. i.YS-o

I\.

" ~~r- %.
~~~r-'ts:~~
,

12,,5 J'I)

'I)

,

I'
I' ~ " 1'11.." ~
I' 1\.1'1,
I'

I'

r- a o =2.8
f-+r-r-

r-f--Il

,.

I~

rf

I'

~l'-l

l\

I" "",-'~

l'-l' ~l"
I''''
I'l'\:

f-+-

III

"-

~

~~J..)

•

I'~ t-tr-r~r-

o
0

-.l~

0.5

1

1.5 0

50

100

~

~

15 o

IO(AV)(A)
Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand
graph) and the maximum permissible ambient temperature.
Output form factor ao

= IO(RMS)/IO(AV) = 0.707

x IF(RMS)/IF(AV) per diode.

December 1979

5

__
BY_257--"",J

l"""--_ _ _ _ _ _ __
08498

IISM
(A)

50

~

"." ,
~

40

I'

1'1..

" ""

30

~

"- 1'0..

20

I"'"

...
""'-

~

"'"

10

~I'oo

r---. ....

o
10- 1

10- 2

10

duration (s)

Fig.4 Maximum permissible non-repetitive peak input current based on sinusoidal currents (f
= 150 oC prior to surge; with reapplied VIWMmax;

102

= 50 Hz);

Tj

01487

I I

I I I

I I

I I I

typ VF f-

max Vf

v

5

~

IY

II

I

I

\1

,

II

4

J

\,

\I

J

"r

~

1/
I

3

,

II

II
II

\I

:.

2

If

~

'I
j

I

I

II

'I

\I
I

o

_I~

0.5

6

/I

II

V
I"

December 1979

V
j,o'

J..,.

1.5

(

Fig.5 - - T j = 25 oC; - - - Tj = 150 oC;
2 diodes in series

BY257

Silicon bridge rectifier

08658

300

I I I
I I I
I I ~

~

I I

~*~~«
§~i. t-->--.r;:,r;:,~
t-->-~/
~

VI(RMS)

(V)

II

r;:,r;:,~ I' ""'"

'!>

I

u"'"

I..;

J~

200

.j

1/

'

I~
~

"

I"

""'"

~

I..;
~

1/

I'

I

"""

..;

I
;/

100

V

1""-

"""

[II

1/

il
If
J

oV

o

2

+

3

The graph takes the possibility of the
following spreads into account:
input voltage
capacitance
resistance

+10%
+50%
-10%

Fig.6 Minimum value of the total series resistance Rtot(including the transformer resistance) required
to limit the peak inrush current.

December 1979

7

SILICON BRIDGE RECTIFIERS
Ready for use full-wave bridge rectifiers in a plastic encapsulation.
The bridges are intended for use in equipment supplied from a.c. with r.m.s. voltages up to 420 Vand
are capable of delivering output currents up to 12A. They are also suitable for use in hi-fi audio equipments and low-voltage industrial power supplies. They may be used in free air or on a heatsink.
OUICK REFERENCE DATA
Input

BY260-200

400

600

R.M.S. voltage

V/{RMS)

max.

140

280

420

V

Repetitive peak voltage

V'RM

max.

200

600

V

Non-repetitive peak current

'ISM

max.

400
v
125

Peak inrush current

'11M

max.

250

A

IO(AV)

max_

12

A

A

Output
Average cu rrent

MECHANICAL DATA

Dimensions in mm

Fig. 1.

3.8 dia. hole

Epoxy

1,35 fast-ons

Metal
base

7,6
max

~
08453

September 1979

BY260 SERIES

l_ _ __

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC134).
BY260-200

400

600

V'SM

max.

200

400

600

V

VIRM

max.

200

400

600

V

VIWM

max.

200

400

600

V

VI(RMS)

max.

140

280

420

V

Input
Non-repetitive peak voltage (t

~

10 ms)

Repetitive peak voltage
Crest working voltage
R.M.S. voltage (sine-wave)

,,---'

Non-repetitive peak current
half-sinewave; t = 20 ms; with reapplied VIWMmax

A

Tj == 25 °C prior to surge
Tj == 150 0C prior to su rge

max.
max.

125
100

Peak inrush current (see Fig. 5)

max.

250

A
A

Output
Average current (averaged over any 20 ms period)
heatsink operation up to T mb = 60 °C (R-Ioad)
heatsink operation up to T mb = 60 0C (e-Ioad)

'OlAV)
'OlAV)

max.
max.

12
7.5

A
A

Repetitive peak current

IORM

max.

20

A

Temperatures
Storage temperature

T stg

Junction temperature

Tj

-55 to +150

oC

150

°C

4.5

°C/W

max.

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

CHARACTER ISTICS
Forward voltage (2 diodes in series)
IF == 7 A; Tj = 25 °C

VF

<

2.0

V*

Reverse current (2 diodes in parallel)
VR = V'WMmax; Tj == 100 °C

'R

<

150

p.A

*Measured under pulse conditions to avoid excessive dissipation.

2

September 1979

(

j

Silicon bridge rectifiers

BY260 SERIES

- - 08464

p
(W)

20
- oad,

I

J

I

f

'I-

15

II

I

10

J

~

"

J

"""
""

f"II~~

~

......

"

" .....

60

1'.:'J6
"I

"I

"'" "-

I~~

I"" 'So

"I

I

J

I

"' +

L-I oc:d

....

1'1..'

~~

i"o..

 1 cm 2
b. < 1 cm 2

Rth j-a = 50 °C/W
Rth j-a = 55 °C/W

o

I
a

~

///L

- /~ / / / / /
7Z6231S.1

at a lead length a = 3 mm
and with a copper laminate
c. > 1 cm 2
d. < 1 cm 2

Rth j-a = 55 OC
Rth j-a = 60 °C

J;L
+

April 1977

II

7Z62314

3

BY277

II

SERIES

II

CHARACTERISTICS
Forward voltage

= 10

Ip

A; Tj

= 25

°C

Vp

<

1,4

V 1)

IR

<

0,2

rnA

Qs

<

0,9

\-lC

trr

<

400

ns

IdIR/dtl

<

2

Reverse current
VR

= VRWmax;

Tj

= 100

°C

Reverse recovery when switched from
Ip = 2 A to VR ~ 30 V;
-dIp /dt = 20 A/\-ls; Tj
Recovery charge
Ip=lAtoVR~30V;

-dIp/dt = 20 A/\-ls; Tj
Recovery time

= 25 °C
=25 °c

Maximum slope of the reverse recover.:i current
(in horizontal deflection circuits)
when switched from
IF =5AtoVR~30V:with
-dIF/dt = 1 A/lls: Tj = 25 °c

A/Il s

IF
IF

+
10%

time

t

100 0 /0

~

1) Measured under pulse conditions to avoid excessive dissipation.

4

Pebruary 1978

11

II

BY277

II

SERIES

CHARACTERISTICS (continued)
Forward recovery when switched to
IF = 1 A; Tj = 25 oC
Recovery time
Recovery voltage

tfr
Vfr

<
<

0,3
13

f.JS
V

IF = 20 rnA; Tj = 25 oC
Recovery time
Recovery voltage

tfr
Vfr

<
<

0,3
5

f.JS
V

1272964

IF

10%
time
-tfrVF

If""

April 1977

II

---rt

r

Vfr

1000t 110%
•

0

•

I

time

I

5

BY277
SERIES

II

II

MOUNTING INSTRUCTIONS
l. Soldered jOints must be at least 2,5 mm from the seal.

2. The maximum permissible temperature of the soldering iron or bath is 270 oC;
contact with the joint must not exceed 3 seconds.
3. The devices should not be immersed in oil, and few potting resins are suitable for
re-encapsulation. Advice on these materials is available on request.
4. Leads should not be bent less than 2,5 mm from the seal. Exert no axial pull when
bending.
5. Por good thermal contact heatsink compound should be used between base-plate and
heatsink.
OPERATING NOTES

Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated
below:
junction

mounting
base
Rth j-a

heatsink

7Z66853

ambient

b. The method of using the graph on page 7 is as follows:
Starting with the required current on the IpWM axis, trace upwards to meet the
appropriate 625/819-curve. Trace right horizontally and upwards from the appropriate
value on the Tamb scale. The intersection determines the Rth mb-a.
The heatsink thermal resistance value (Rth h-a) can now be calculated from:
Rth h-a ::: Rth mb-a - Rth mb-h·
Any measurement of heatsink temperature should be made immediately adjacent to
the device.

6

II

II

April 1977

BY277

II

SERIES

7Z725142

Ptot = power dissipation including
switching losses

interrelation between the dissipation
(derived from the left-hand graph) and
the maximum permissible temperatures

,

819 lines

3

/
//
VI
/y

Ptot
(WI

I

I

I

\

625 lines

I\..

IV

2

h

VJ

,

~ \~

\~ ~

'9

"-'6)0

$0

,

o

111,5

-,J I

~- ~~%-

\ ~ 0>

,

1\

\
\

c;.-, ~i\ ~
~/ ~'tv ',\ \

00'

"

116

~

\
\,

\'~
~\ 1\ ~
"~ \~\ \

W

" I\..

I\..

120,5

I~ i\\

"I\.. ~\1

"I\..~~
"~

J

o

...>

o~

\

\

0

~v

/

,

~I,\\ ~

/1

Ib

1\

5

10

15 0

100

50

125
150

Tamb (oC)

IFWM(A)

7Z7251J 2

60

- - l j = 25°C
---lj =12S oc

I
I
I

!
!

typ
VF

~r-

t-r-

~

~

max ~
VF-f-:'
~

,
!
I!

40

'1

,'1fi
1
rl
"

I

LJ
11
~

i

II

II
~

20

f
i

I.'~

Ii
0'

J

,
~,.

o
o

April 1977

II

~.

rl

I

j

l'l/

,'1/

"

2

7

BY277

II

SERIES

II
7Z72510 1

10

./

10- 1 . /

10-2
10- 4

10- 3

10- 2

10- 1

10

time (5)

10 2

7Z590341

......

.......

"-

Rthh-a

........ ~

"..-

'"

~

......

-

......

r-....

"

.....

~

~~

10

~~

"

~

.......

~'"
~~

/1}

~/2

I"~
~'"
....... ~ I' r-.~
r-.;;~

a

~,

~~ ~~

~ ~....
b{~ ~
~
~
~ ~ .....~~t--.t'-"""......
~

~

"

~

1

10

1

10 2

AI heatsink surface km 2 )

...

103

Thermal resistance Rthh-a from aluminium heatsink to ambient (free air) versus heatsink surface (one side). 1,2 and 3 are thicknesses in mm, a is for a bright surface,
b is for a black surface.

8

Il

II

April 1977

BY277 SERIES

Parallel efficiency diodes

APPLICATION INFORMATION

I
I
I
I
I
I

I
I
I
I
I
I
I

I

I ______________ IL

time

_~

I

I
I
I

I

J--VRW

I
I

I

time

T - - - - - -...

7Z69764-

BY277-750R
commutation
circuitry
BY277-600R

E-W drive
Basic circuit and waveforms

October 1979

9

j

BYV21 SERIES

--------------------------------------------------------SCHOTTKY-BARRIER RECTIFIER DIODES

High-efficiency rectifier diodes in 00-4 metal envelopes, featuring low forward voltage drop, low
capacitance, absence of stored charge and high temperature stability. They are intended for use in low
output voltage switched-mode power supplies and high-frequency circuits in general, where low conduction and switching losses are important.
The series consists of normal polarity (cathode to stud) types: BYV21-30, BYV21-35, BYV21-40 and
BYV21-45.

QUICK REFERENCE DATA

Repetitive peak reverse voltage

VRRM

BYV21-30

45

30

45

max.

Average forward current

IF(AV)

max.

Forward voltage

VF

<

28

A

0.55

V

MECHANICAL DATA
Fig.1

V

Dimensions in mm

00-4 with 10-32 UN F stud (1)4.83 mm) as standard.
Metric M5 stud (1)5 mm) is available on request.

-'
t
4,8 9,3

max max
1'-"f-~+

•

-.1
2,3

__ 3,5

~

max

min

_10,3_
max

___ 11,5 _ _ _ _ _ 20,3 -----....1
10,7
max

7269802.1 A

Net mass: 7 g

Torque on nut:

Diameter of clearance hole: 5.2 mm

min. 0.9 (9 kg em),
max. 1.7 (17 kg cm).

Accessories supplied on request: 56295
(PTF E bush, 2 mica washers, plain washer, tag).
Supplied with device: 1 nut, 1 lock washer.
Nut dimensions across the flats: M5, 8.0 mm
10-32 UNF, 9.5 mm

'I

January 1980

l_____

BYV21 SERIES

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC134).
Voltages

BYV21-30

35

40

45

Non-repetitive peak reverse voltage

max.

36

42

48

54

V

Repetitive peak reverse voltage*

max.

30

35

40

45

V

Crest working reverse voltage

max.

30

35

40

45

V

Continuous reverse voltage* *

max.

30

35

40

45

V

Currents
Average forward current; switching losses
negligible
sinusoidal; up to T mb == 100 °C
square-wave; up to T mb == 100 °C; S == 0.5

IF(AV)
IF(AV)

max.
max.

25
28

A
A

R.M.S. forward current

IF(RMS)

max.

40

A

Non-repetitive peak forward current
t == 10 ms; half sine-wave;
Tj == 125 0C prior to surge;
with reappl ied V RWMmax

IFSM

max.

600

A

12 t

max.

1800

2

1

t for fusing

A2 s

Temperatures
Storage temperature

T stg

Junction temperature; with full applied
continuous reverse voltage V Rmax

Tj

max.

From junction to mounting base

Rth j-mb

<

From mounting base to heatsink
with heatsink compound
without heatsink compound

Rth mb-h
Rth mb-h

Transient thermal impedance; t:= 1 ms

Zth j-mb

-55 to +150

oC

125

oC

THERMAL RESISTANCE
°C/W
0.3
0.5

°C/W
°C/W

0.15 °C/W

MOUNTING INSTRUCTIONS
The top connector should be neither bent nor twisted; it should be soldered into the circuit so that there
is no strain on it.
During soldering the he~t conduction to the junction should be kept to a minimum.

For tp == 200 ns a 20% increase in VRRM is allowed.
To ensure thermal stability: Rth j-a

2

January 1980

~(

< 2 °C/W

BYV21 SERIES

Schottky-barrier rectifier diodes

CHARACTERISTICS
Forward voltage

<
<

0.55

V*

0.88

V*

<

1500

V/IlS

IR

<

150

mA

Cd

typo

900

pF

IF'" 30 A;Tj '" 100°C

VF

IF'" 80 A; T j = 25°C

VF

Rate of rise of reverse voltage
VR = VRWMmax

dVR

Cit

Reverse current
VR == VRWMmax; Tj == 125°C
Capacitance at f

= 1 MHz

VR '" 5 V; Tj '" 25 to 125°C

*Measured under pulse conditions to avoid excessive dissipation.

January 1980

3

l"---_ __

BYV21 SERIES

SINUSOIDAL OPERATION
30

D8488

95

I

I
I
I
1.57

p
(W)

1\

II

19

I

:2.8

20

II

1"'1

II I

a-=4

J

,

,

1\%
\

'" "!'o

III

....

"

"-

....
.....

'Jif

J l'fj
1Ir},

"'"

"'"

.....0

I' ~ I-~~
~
,~

r-Z,o

,

1\

:\.

r-...0
~

105

1\0l"
\

LI'I

I'

"

....
~

Jr~

"'{

,

115

~

~

"" ,
" " ....""-.r.
1\1\

...... 10...

1JJr/

,
I\.

i"1o..

jfh~

....

'\.1\

:'\

100".1,"\

'Itt

1"10...

o
0

r\~

I\.

J I/!I
1/

rJ

I

....

'I

I
'I'
I II J J
IJ
10

l-j:)

",

I

10

20

30 0

50

,,~

100

125
15

o

Fig.2 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
a == form factor == IF(RMS)/IF(AV).

*T mb scale is for comparison purpose and is correct only for Rth mb-a

4

January 1980

(

< 6.4 °C/W.

BYV21 SERIES

Schottky-barrier rectifier diodes

SQUARE-WAVE OPERATION

08489

30

If

02
20

II

II

IJI/

10

/'f
Jr~

If."

~-? f--f-- ,,~

j

"

r\%1\

,

II

~

II J
II J

j

J

J

I'

1/

II
j

I'

IJ

II

15 011 J
II 1/

,,~

V

J

(W)

I I
I\~

1'\

1/

05

p

95

I

,

10

I
I

50

100

,

" ,
1\.~

125
12 5

Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.

tp

T

I~II
I
tp
5=V

1... __ ..1

L.. __

J

IF(AV) = IF(RMS)

T

xV8

*T mb scale is for comparison purpose and is correct only for Rth mb-a

< 6.4 oC/W.
January 1980

5

l"-----_--

BYV21 SERIES

08490

1000

IFS(RMS)
(A)

~

"- ~

IFSM

~"'-

l'

500

I'

'"

'"

f'-..~

,....~

------

"- I-~I-

-

I"-- ~ +-1-

o
10- 3

10- 1

10- 2

duration (s)

10

Fig.4 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents (f= 50 Hz);
Tj = 125 0C prior to surge; with reapplied VRWMmax·

f\---I FSM

08672

I

r:

IFS(RMS)

time

IF
(AI

typ ~ V
V F -~ ~ l~ """"

.*"

~~

rl

'.'r'/
"h

-, !.r/

II ~

/l~

10

~ ~max

IT

I

li~

j~J
o
6

January 1980

0.5

(

VF

BYV21 SERIES

Schottky-barrier rectifier diodes

08492

'-.. r-.... ,J)'P
~

.......
I"""'o~

10
10
Fig.6 f = 1 MHz; Tj = 25 to 1250C
08493

Zth j-mb
(OC/W)

~

--

1",..0'10-

.. r
•

>~

~

10- 1

/~

1.00'

10- 2

10- 3
10- 5

10- 4

10- 3

10- 2

10- 1

"

time (s)

10

Fig.7

January 1980

7

j

BYV30 SERIES

----------------------------------------------------~

VERY FAST SOFT-RECOVERY RECTIFIER DIODES
High-efficiency rectifier diodes in 00-4 metal envelopes, featuring low forward voltage drop, high
reverse voltage capability, very fast reverse recovery times and non-snap-off characteristics.
They are intended for use in switched-mode power supplies and high-frequency inverter circuits, in
general, where high output voltages and low conduction and switching losses are essential.
The series consists of the following types:
Normal polarity (cathode to stud): BYV30-200, BYV30-300 and BYV30-400.
Reverse polarity (anode to stud): BYV30-200R, BYV30-300R, and BYV30-400R.
QUICK REFERENCE DATA

Repetitive peak reverse voltage

VRRM

BYV30-200(R)

400(R)

max .

400

Average forward current

IF(AV)

max.

Forward voltage

VF

Reverse recovery time

trr

<
<

.... 200

MECHANICAL DATA

12

V
A

1.05

V

100

ns
Dimensions in mm

Fig.1DO-4

1,0
0,8

-'11'max
4,0

u--*----':~~___:O_+\_ _tTI_0- - Lm~)

4,83
max

+

1,98____I . ____ 3,2 __

1,6
min

max

~

e .

I- 1 1 , 0 -I

max

_9,3 ___
max

___ 11,5 _..' .....t - - - - - - 20,3 _ _---l.~1
10,7
max
7Z6S35S.2

Net mass: 6 g
Diameter of clearance hole: max. 5.2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag).

Torque on nut:
min. 0.9 Nm (9 kg em),
max. 1.7 Nm (17 kg em)

Supplied with device: 1 nut, 1 lock washer.
Nut dimensions across the flats: 9.5 mm
The mark shown appl ies to the normal polarity types.

September 1979

BYV30 SERIES

l_______

RATINGS
Limiting values in accordance with the Absolute Maximum System IIEC134)
Voltages
BYV30-200(R)

300(R)

400(R)

Non-repetitive peak reverse voltage
(t';;;;;; 10 ms)

max.

250

350

450

v

Repetitive peak reverse voltage

max.

200

300

400

v

Crest working reverse voltage

max.

200

300

400

V

~------~v~------~

Currents
Average forward current assuming zero
switching losses (averaged over any 20 ms period)
up to T mb = 100 oC
at T mb = 125 °C

IF(AV)
IF(AV)

max.

12

A

max.

7

A

R.M.S. forward current

JF(RMS)

max.

20

A

Repetitive peak forward current

JFRM

max.

140

A

Non-repetitive peak forward current
Tj = 150 °C prior to surge;
half sine-wave with reapplied VRWMmax;
t= 10 ms
t= 8.3 ms

JFSM
JFSM

max.
max.

140
150

A
A

12t for fusing (t= 10 ms)

J2 t

max.

100

A 2s

Temperatures
Storage temperature

T stg

Operating junction temperature

Tj

max.

-65 to +175

oC

150

°C

THERMAL RESISTANCE
From junction to ambient in free air
From junction to mounting base
From mounting base to heatsink
Transient thermal impedance; t = 1 ms

2

September 1979

(

50

°C/W

Rth j-mb

2.2

°C/W

Rth mb-h

0.5

°C/W

Zth j-mb

0.8

°C/W

Rth j-a

BYV30 SERIES

Very fast soft-recovery rectifier diodes

CHARACTE R 1ST ICS
Forward voltage
IF==10A;Tj==25 0 C

VF

V*

VF

<
<

1.35

IF == 10 A; Tj == 150 °C

1.05

V*

IR

<

3

IF == 1 A to V R == 30 V;
-dl F/dt == 35 Alps; Tj == 25 0C
Recovery time

trr

<

100

ns

IF == 2 A to V R == 30 V;
-dfF/dt == 20 Alps; Tj == 25 °C
Recovery charge

Os

<

125

nC

I F == 1 A to V R = 30 V;
-dl F/dt = 2 AIIlS; Tj == 25 °C
Max. slope of the reverse recovery current

IdlR/dtl

<

5

Reverse cu rrent
VR == VRWMmax; Tj == 125 °C

mA

Reverse recovery when switched from

IF

Alps

IF

08403

Fig. 2 Definition of trr and Os.

*Measured under pulse conditions to avoid excessive dissipation.

September 1979

3

7Z72610

p= power dissipation excluding
switching losses

11

IF(RMSl

a=

IF(AVl

I

I I

I

T1

I
116
,

II
I I I
1,75 fI I
III
I I1
rJ
a=2,4
J
I 1'1
II

20
p
(W)

interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures
I

,9",11

"'" ~

"

JII

15

I
III,

10

111/,

'I,
r'l

V
:1

"" ""'"l"-

'" '"

(

I\.~ \\

1

C~
I\,

r\.

"

..... 10...

'"

~

r-..

"

, ,
"r...;
1\
,
"
" "" ""
1\

J'oo.,

/'fi

r\..

~

i""",...

I'

rJ

I'

1""'"",

"Ii

f'

I'"

1"
1"

~

i"

I"'"

.... ..... .....
~

"

128
~

r-...

....

I~

""
,

139

I\.. .,

~['.

...

I'~

~

o
o

117

~

I\.

I'

r--

r!..O

....

r-.. .....

,,8

r-.

""

..... 6'

:/Y
I~

I
I

0?<1

i'..<;('

J'oo.,

'/

~

V

5

9

I I

-p I I

~

Jo::::IlSl

~.

5

10

150

50

IF(Av) (A)

Fig.3

150

7Z72611 1

1\

~

maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )

I FsM
I~

IFS(RMS)

(A)

IFV\

I\,
~

~-IFSM

~~IFS(RMS)
time

100

I\.

with reapplied V RWMmax

,

'\..
'\..

"'I'

50

.......... ..... ~=150 °c (prior

to surge)

-jo...

I"'---

o10-3

10-2

10- 1
Fig. 4

4

September 1979

(

150

150

100

-

duration (s)

10

BYV30 SERIES

Very fast soft-recovery rectifier diodes

60

,

II

D8445

7272609 1

104

'/ --lj= 25°C

"

,~

IJ

I

----

- -lj=150oC

I----

trr

Ii

(ns)

I

I

"--

------J-

,
I

I

I
I

40

/J

:1

r----

~~

:

....

~
1 r----I'-.lr

I'r

J
I

i

......t....

max

JV

20

I

IF"'10A
5A
/ 2A
/ / / lA
1-,....

I

1-- If-.

tl

t:::::::-=-t---

II
- - r-- typ

I

I

!

-------

!

I

II

10 2

I
I I
I /

J

I

I

I,

1/

o
o

J
10

...t.~:;'"

2

102

10

-dlF/dt (AIJIs)
Fig. 5

Fig. 6 Maximum values; Tj

150 0C.

=:

7Z72691

JLJL

-ltpl_1

___ T_ 5 =.!£
T

10

5=1
~ 1-1-

......

-

5 0......

V

.... 1'

10- 4

10-3

10- 2

10-1

tp(S)

10

Fig.7

September 1979

5

VERY FAST SOFT-RECOVERY DIODES

High-efficiency rectifier diodes in 00-5 metal envelopes, featuring low forward voltage drop, high
reverse voltage capability, very fast reverse recovery times and non-snap-off characteristics.
They are intended for use in switched-mode power supplies and high-frequency inverter circuits, in
general, where high output voltages and low conduction and switching losses are essential.
The series consists of the following types:
Normal polarity (cathode to stud): BYV92-200, BYV92-300 and BYV92-400.
Reverse polarity (anode to stud): BYV92-200R, BYV92-300R and BYV92-400R.

QUICK REFERENCE DATA
BYV92-200(R)
Repetitive peak reverse voltage

VRRM

max.

Average forward current

IF(AV)

max.

Forward voltage

VF

Reverse recovery time

trr

<
<

200

300(R)

400(R)

300

400

35

v
A

1.05

V

100

ns

MECHANICAL DATA

Dimensions in mm

Fig.1 00-5; Supplied with device: 1 nut, 1 lock-washer
Nut dimensions across the flats: 11.1 mm

15,3 max
114 in x 28 UNF

._F=~/=---I

_t

6,35

8,0

max

max

+-

-t
2,2_
max

....

1

___ 5,0 __

-17,0-

max

-

1101,5 _ , ....t - - - - - 25,4 _ _ _--,...,
,7
max

Net mass: 22 g
Diameter of clearance hole: max. 6.5 mm
Accessories supplied on request:
56264A (mica washer, insulating ring, tag)

7Z75506.1

Torque on nut:
min. 1.7 Nm (17 kg cm)
max. 2.5 Nm (25 kg cm)

'I

December 1979

~

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages*

-+

BYV92-200(R)

Non-repetitive peak reverse voltage
Repetitive peak reverse voltage

300(R)

400(R)

VRSM

max.

200

300

400

200

300

400

V
V

VRRM

max.

Crest working reverse voltage

VRWM

max.

200

300

400

V

Continuous reverse voltage

VR

max.

200

300

400

V

Currents
Average forward current assuming zero switching losses;
sinusoidal; up to T mb = 100 °C
1F (AV)
sinusoidal; at T mb = 125 °c
IF(AV)
square wave; 0 = 0.5; up to T mb = 95 °c
square wave; 0 = 0.5; at T mb = 125 °c

IF(AV)
IF(AV)

max.

35

A

max.
max.
max.

20
40
19

A
A
A

R.M.S. forward current

max.

55

A

Repetitive peak forward current

max.

500

A

A

Non-repetitive peak forward current
t = 10 ms; half sine-wave;
Tj = 150 °c prior to surge; with re-applied
VRWMmax

IFSM

max.

500

t for fusing (t= 10 ms)

12 t

max.

1250

Storage temperatures

T stg

-55 to +150

°C

Junction tempeature

Tj

max.

150

°C

2

1

A2 s

Temperatures

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

1.0

°C/W

From mounting base to heatsink
with heatsink compound
without heatsink compound

Rth mb-h
Rth mb-h

0.3
0.5

°C/W
°C/W

Transient thermal impedance; t = 1 ms

Zth j-mb

0.2

°C/W

MOUNTING INSTRUCTIONS
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.

*To ensure thermal stability: Rth j-a ~ 6 °C/W (continuous reverse voltage) up to T amb = 110°C

2

December 1979

r

BYV92 SERIES

Very fast soft-recovery rectifier diodes

CHARACTERISTICS
Forward voltage
'F == 100 A; Tj == 25 °C

VF

V*

VF

<
<

1.4

'F = 35 A; Tj = 100 0 C

1.05

V*

'R

<

1.5

mA

'F = 1 A to VR ~ 30 V with -dlF/dt = 50 A/p.s; Tj = 25 °C
Recovery time

trr

<

100

ns

'F == 2 A to VR ~ 30 V with -dlF/dt = 20 A/p.s; Tj = 25 °C
Recovered charge

Os

<

100

nC

I dlR/dti <

5

Reverse current
VR = VRWMmax; Tj = 100 0 C
Reverse recovery when switched from

Maximum slope of the reverse recovery current
when switched from 'F =1 A to VR ~ 30 V;
with -dlF/dt = 2 A/p.s; Tj = 25 °C

+
10%

A/p.s

time

i

100%

~

v_ _

08403

Fig. 2 Defi n it ions of trr and Os.

*Measured under pulse conditions to avoid excessive dissipation.

July 1979

3

BYV92 SERIES

jl
'------------------------------------------------

SQUARE-WAVE OPERATION

08420

p

I

1.0

(W)

V

-'-

60

0.5

))
V~

0.2

40

I

0-0.1 I{

I

I

I If V/
'/ Ih

20

IIV

V

!

"\

"

~

1,\

~

~

//~ V

~~ W

20

40

60 0

l1~
,
1,\

~~

...... ~
...... 1'..

.....

r-....

-r---.."",

r- i"-

50

",

"', "

....... r--...

110
1\

\.

~

~

..............

~

~

,~

o ~~
0

' ·Olo

" '\

I"

90

l1~o

/

~

I. /.V

'~6\

~
I\.

"~

IX
V

1\

~

--iLL

/j

,I ~

.....

...... r-..

\
'\

I"
............... r-....

......

\
~

'\. \

130

I
..

-

1\.1\

r--.... r--.... I"'- r-:::: ..:::: 1\.\
~'
i"- ~ ~ ~~
-...~
~ 150
100

150

Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses but excluding switching losses.

IF(AV) = IF(RMS)

4

1979
July

x.,j8

1r

l

Very fast soft-recovery rectifier diodes

BYV92 SERIES

SINUSOIDAL OPERATION
p
(W)

50

-~+
, i

I

-+- I

I

-+--+-t '

-i--- - -

c. ___

--t

- +-t-

+

t·~

---+-_+ ___

-'.- -

1

-- -~

a=4

30

J

1I1I

,

1.57

I-l +-

1.9

/

~

2.8
II

I

--f--

t=l=f+-t- - -t--- ;
+_ -t- -- -t
f---f--.-

.ll40

08419

-

J

1i--- -+-+-

J

r/)

/

20
I
r/

,

1\-::0

"'

\.~

"\ .)

~Y"i\.

'/1/

~

I"i:

~

~

, ,,"'

10 ~+i.hr/
·ff/V

;////

-~

\

110

/-~ ~
~.

-w=
I\,

\
1"\

l\.

,

i\.
~

I......

120

"

\

\

1\

130

\ 1\
\ \

~

.\.
'-""
'I"\:

.\ ~
'\

140

~\

,~ ~.\.

o ~+
0

\

~

"-

)

r;-

\- --- ~ 9

\
\,1

"

JI
II V
'I )1/

S'\

\

"""

I /
I

l"'..

100

\":»

\

,

_.

/

\

\'
i

I'..~ ~1~\

......

10

20

30

40

50 0

50

100

\

""

150

150

Fig.4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses but excluding switching losses.
a = form factor = IF(RMS)/IF(AV)'

July 1979

5

BYV92 SERIES

jl
----------------------------------------------------D8421

1000

I
I
I

'FS(RMS)

~

\

(A)

500

~

"l\.,

'FSM

" """

1'0",

"""
10- 2

r"-,..."
!"-I'-~

--10- 1

""""""" --r-- r--,...

---...l"-

I'-.

duration (s)

Fig.5 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents
(f == 50 Hz); Tj == 150 °C prior to surge; with reapplied VRWMmax'

1\- -- 'FSM
/

\:'FS(RMS)
time

6

July

19791 (

10

BYV92 SERIES

Very fast soft-recovery rectifier diodes

08422

150

• + •

1"

-.- + t
.. -t·t

t

-+.";-

+-

+--+- -+

-+

IF
(A)

' +

4- -~

..

t

+.

t

+

+-

-to ..... - +-

t ...

-+---+

+
+

• +

100

+ +
• +

'+'..j.

+

+ t

o

0.5

I-

+

lc...f +++++--

--+---+-~-++++++----__+__+++++1-1+----+----f---+++1f-ttt--

_I""""
-

1---

-----

r-

-----+~+-+++-f-+tt-----f_____IH__+_H+++_~-_+____+___H__1+H+_______+__+_+_+++_'+t_-+__+_+++t+H

r--

---

--

1O~3

10- 2

10- 1

time (s)

10

Fig. 7

I

July 1979

7

I

_ _ _ _J

BYW19 SERIES

FAST SOFT-RECOVERY RECTIFIER DIODES

Silicon double-diffused rectifier diodes in plastic envelopes. They are intended for use as clamp diode,
dV /dt limiter and output rectifier diodes in professional and consumer switched-mode power supply
applications and as scan rectifier diodes in television receivers. The devices feature non-snap-off characteristics and a very fast turn-on behaviour, which makes them extremely suitable for clamp and dV /dt
limiting applications.

QUICK REFERENCE DATA
1000(R)

BYW19-800(R)
Repetitive peak reverse voltage

800

VRRM

max

1000

V

Average forward current

IF(AV)

max

7

A

Non-repetitive peak forward current

IFSM

max

40

A

Reverse recovery time

trr

<

450

MECHANICAL DATA (see also page 2)

ns

Dimensions in mm

SOD-38

1--11,0 max-I

-4-

S,2

I l
max

metal base
plate

18,0
max

1

r-

t-I.=:::r:::=T::f:::::T:1~~
4max
not tinned

2,5

--t

•

14,5
min

J_
....

tag1,

tag2

0,65-.. ...

max

5,0

.--

-.1 3,1

I
'1 _ _

--

11__ 1,2

max

2,5-"

--

The exposed metal base-plate is directly connected to tag 1.

July 1977

7Z60001.5

l_ _ __

BYW19 SERIES

MECHANICAL DATA (continued)
Net mass: 2,5 g
Recommended diameter·of fixing screw: 3,5 mm
Torque on screw
when using washer and heatsink compound: min 0,95 Nm (9,5 kg cm)
max 1,5 Nm (15 kg cm)
Accessories:
supplied with device: washer
available on request: 56316 (mica insulating washer)
POLARITY OF CONNECTIONS
BYW19-800R
and BYW19-1000R

BYW19-800
and BYW19-1000
Base-plate
Tag 1
Tag 2

cathode
cathode
anode

anode
anode
cathode

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
BYW19-800(R)

Voltages
~

1000(R)

Non-repetitive peak reverse voltage

VRSM

max

1000

1000

V

Repetitive peak reverse voltage

VRRM

max

800

1000

V

Working reverse voltage

VRW

max

800

800

V

Continuous reverse voltage

VR

max

800

800

V

~---

Currents
Average forward current assuming zero switching
losses (averaged over any 20 ms period; see page 7)
square-wave; [) = 0,5; up to T mb = 98 °C
square-wave; 0 = 0,5; at T mb = 125 °C
sinusoidal; up to T mb = 98 °C
sinusoidal; at T mb = 125

IF(AV)
IF(AV)
IF(AV)
IF(AV)

max
max
max
max

"7
4
7
4

A
A
A
A

IFRM

max

75

A

IFSM

max

40

A

Storage temperature

T stg

-40 to +125

°C

Junction temperature

Tj

max

°C

oc

Repetitive peak forward current; tp = 20 JlS; 0
Non-repetitive peak forward current
square-wave; t = 10 ms; Tj = 150 °C prior
to surge; with reapplied VRWmax

~

0,02

Temperatures

2

October 1979

f

150

BYW19 SERIES

Fast soft-recovery rectifier diodes

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

4,5 °C/W

Transient thermal impedance (t = 1 ms)

Zth j-mb

0,3 °C/W

a. with heatsink compound

Rth mb-h

1,5 °C/W

b. with heatsink compound and
56316 mica washer

Rth mb-h

2,7 °C/W

c. without heatsink compound

Rth mb-h

2,7 °C/W

d. without heatsink compound
with 56316 mica washer

Rth mb-h

Influence of mounting method

1. Heatsink mounted
Thermal resistance from mounting base to heatsink

0 C/W

5

2. Free air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run
to the same tie-points.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = maximum lead length
and with a copper laminate

a. > 1 cm
b.< 1 cm 2

2

Rth j-a = 50 °C/W
Rth j-a = 55 °C/W

0

I

•

~

j

~

a

~

LLLL 'LL

'LLL'L
7Z6231S.1

mounted on a printed-circuit board at a lead length a = 3 mm
and with a copper laminate
c.

> 1 cm 2

d.< 1 cm 2

Rth j-a = 55 °C/W
Rth j-a = 60 °C/W

:Jl
+

7Z62314

July 1977

3

BYW19 SERIES

l_ _ __

CHARACTERISTICS
Forward voltage
IF

= 20 A; Tj = 25 oC

<

2,3 V *

<

0,6 mA

<
<

450 ns

Reverse current
VR = VRWmax; Tj = 125 °C
Reverse recovery when switched from
IF = 2 A to VR ~ 30 V; -dlF/dt = 20 AIJ.l.s; Tj = 25 °C
Recovered charge
Recovery time

0,7 J.l.C

Maximum slope of the reverse recovery current
when switched from IF = 2 A to VR ~ 30 V;
with -dlF/dt = 2 AIJ.l.s; Tj = 25 °c

5 A/IlS

•

10

time

~/o 100i

~

r

* Measured under pulse conditions to avoid excessive dissipation.
4

July

19771

0 /0

BYW19 SERIES

Fast soft-recovery rectifier diodes

CHARACTER (STICS (continued)

Forward recovery when switched to
IF = 10 A with tr = 1 }lS at Tj = 25 °C
Recovery time
Recovery voltage

<
<

1 }lS
15 V

7Z67044.2

time

time

Forward output waveform

'I (JUlY

1977

5

MOUNTING INSTRUCTIONS
1. Soldered joints must be at least 2,5 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is 270 oC; contact with the
joint must not exceed 3 seconds.
3. The devices should not be immersed in oil, and few potting resins are suitable for re-encapsulation.
Advice on these materials is available on request.
4. Leads should not be bent less than 2,5 rnm from the seal. Exert no axial pull when bending_
5. For good thermal contact heatsink compound should be used between base-plate and heatsink.

OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated below:
junction

mounting
base
Rth j-a

heatsink

7Z66853

ambient

b. The method of using the graphs on page 7 is as follows:
Starting with the required current on the IF(AV} axis, trace upwards to meet the appropriate form
factor curve. Trace right horizontally and upwards from the appropriate value on the T amb scale.
The intersection determines the Rth mb-a' The heatsink thermal resistance value (Rth h-a) can now
be calculated from:
Rth h-a = Rth mb-a - Rth mb-h·
Any measurement of heatsink temperature should be made immediately adjacent to the device.
c. The heatsink curves are optimized to allow the junction temperature to run up to a maximum of
150°C (Tj max) whilst limiting T mb to 125°C (or less).

6

July 1977

~

r

BYW19 SERIES

Fast soft-recovery rectifier diodes

SINUSOIDAL OPERATION

7277081

interrelation between the power
(derived from the left - hand graph)
and the maximum permissible
temperatures

V RW =800V
IF(RMS)
a=--IF(AV)
1,57
P = power excluding
switching losses
1,911
I
I
10

r-r-

'\

......

2,2 1 1/

'" "- ,
I'

III/
-f- -

P

11111

I
I

......

I

1[1
IIi
[/

5

I"

/'1

I

r-..

.....

'S
.....

r?e .....

'I,

11//

I\,

'\

1"\

"' , '"
"' ....

i"'"
~

I"

I r/J
1/ IJrt
1fL

~

\..

I\..

0>

r--.~O r-...

.....

r--.

I).

oS

.......

i"'"

a=4

-,~ 

tp

r-...
......

......

r-..

.............

"\.

i'
......

......

...........

j

~

i"'"

""" .....

~

......
I......

..... ~

116

~

\.\

"-

, "' "'"
!'-...

/11'
J '/.1/
Ju. V

,
[\.

'\

~

t"-.

\. \.
'\

1"\
I'..

.!..S
~..o

1

-,

....

......

I

I

J~o0~ [

6'-'~ --'~r-.('
1\

......

.......

I~I

X

1,\
~

'- 1"\

r--.
I"'--

/

interrelation between the
power and the maximum
permissible temperatures
I

I\..

i'..

If

V

"-

,

/

\, \
~

,

~

,\\
.\ \1\

" ,,,
..........
",,'

\~

~,

.....

......

IW~~

0

•
~

0

o IL

"

...... N: l
..... ~

...... !'oo..

In"

5

-f-

,

I\,

"

[/',~

rhV

o~

-

~-

Z

\\1\

'\

~

""\

[\

r--.~

~\

~

~
~

5

IF(AV) (A)

10 0

50

0

Tamb ( C)

100

July 1977

r
7

_________________

B~~R~jl

7Z77082

60

\
\
\

maximum permissible non - repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )

\

IFS(RMS)

It~

(A)

\

\
\

40

,

--- I FSM

~IFS(RMS)

time
with reapplied V RWmax

IFS M

Tj

"

=150 °c prior to surge

I'

"' .....

20

.......
~
~

--1-00....

---

-~

o

10- 3

10- 1

60

duration (s)

7Z72509.1

--

--

Tj = 25 0 C

I

Tj = 125 °c

/

J

II
~

/

I

I

tYP-l '-f-. f- ma\ ~-1VFt - l - I - V F Jr--cl--

/

40

I
II

-'

I '

/'

If

II

,

L.

I
~

j

I

20

'/

t

IF
IJ
I

,

8
'I)
1/''''

,~,

o
o

8

July

19771

r

~~

~;;.

2

....

V F (V)

4

10

BYW19 SERIES

Fast soft-recovery rectifier diodes

7Z77077

I

I I i"'.

I I I I
11 1

a

I.....
11
1

l.....p~
II~

NOMOGRAM
Power loss LlPR(AV) due to switching only (to be added to steady state power losses).
IF = forward current just before switching off; Tj = 150 0C

t

time

10%

time

7Z77074

July 1977

9

B~

_____1_9_S_E_R_IE_S_jl________________________________
10

7Z77078

ITVo

dl F

IR

Os

Tj

= 25°c

max values

~
./
~

~

V

L V

V/

.~ L"

~V

~'"

V

k::::::

V
~

.... r-I-

~

......

----

IF =
lOA

1

5A
1

--- --

v

...... ~

~

~~

~

2Ar-

r--

10- I- 1 A

r-r- t-~

~V

.~

10- 1

~~ ~

10- 1

10

7Z77079

10

IF~
/'

IR

dt

f-- f f-- .-r r
~

I

.~

Os

Tj

=

150°C

...... ~
~ ~~

max values

~ ~ .......
~

/ / L"

///

v ......
~

.--

~

....

~I-:"'"

..... 1-' I""'"

~

k::-:"

~
~

~ r--

lOA

-

I

--

1-'"............

10

dl F
dt

July

19771 (

1

1Af-

~,;

10

I

5A

_...... 21A

~~

10- 1
10- 1

I_I

F-

(AIMS)

BYW19 SERIES

Fast soft-recovery rectifier diodes

7Z7708:l

max value
Tj

= 25 DC
~

I"'"
Vfr
(V)

/
~~

Y

./

,/

~/

",'"

10
i-"'"

L

./

./

V

/

1

:,.;-

. . . .V

~

-"

I""'~

10- 1

~

10

dt

7Z77076

10

(A/J-Ls)

7Z77075

10

max values

max values

Tj - 25 DC

Tj = 150 DC
t rr
(ps)

t rr
(J-Ls)

--

I=--

-....

~ ~:::

....

.

t:::::::..... ........

lOA

"' ....... I '

..........

"

.........

..............

"'-......
...............

10- 1

......

....... .......

.,.",

.....

~

IF=10A~

r'-W

1'0..
)~

SA/' . .)I~>
2A y
1 A/'

2A

~4-U
1A

10- 2
1

---

IF =

10

dl F

- Tt(A/J-Ls)

10 2

10- 2
1

10

'I

2
dl
-CitF (A/J-Ls) 10

July 1977

11

Jl_________________________________

___B_Y_W_19__S_ER_'_ES__

1272510 1

10
..-~

[/

1,.;''''"

V

I,....-

10- 1 V

10-2
10- 4

12

Ju1V1977

10- 3

Ir

10

time (s)

10 2

________Jl__

BY_W2_5_

FAST SOFT-RECOVERY RECTIFIER DIODE

The BYW25 is a fast soft-recovery rectifier diode in a 00-5 metal envelope especially suitable for
operation as main and commutating diode in 3-phase a.c. motor speed control inverters and in high
frequency power supplies in general.
Two polarity versions are available:
Normal polarity (cathode to stud); BYW25.
Reverse polarity (anode to stud): BYW25R.
QUICK REFERENCE DATA
Repetitive peak reverse voltage
Average forward current

VRRM

max.

800 V
40 A

IF(AV)

max.

Repetitive peak forward current

IFRM

max.

600 A

Reverse recovery time

trr

<

450 ns

MECHANICAL DATA
Fig. 1 00-5: with metric M6 stud (6 mm)

15,3 max
M6

'6-f=====/===r-1

_t

+-

-t

8.0
max

max

2,2 -max

-4-

I

-17,0-

__ 5,0 ..max

_

11.5_,.......-----25,4----l.~,
10.7
max

Net mass: 22 g
Diameter of clearance hole: max. 6,5 mm
Torque on nut: min. 1,7 Nm (17 kg cm)
max. 3,5 Nm (35 kg cm)

7Z75506.1A

Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 10 mm
Supplied on request: accessories 56264A
(mica washer, insulating ring, tag)

January 1980

Jl________________________________

____B_Y_W_2_5____
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages *
Non-repetitive peak reverse voltage

max.

1000 V

Repetitive peak reverse voltage

max.

800 V

Continuous reverse voltage

max.

650 V

IF(AV)
IF(AV)

max.
max.

40 A
23 A

R.M.S. forward current

IF(RMS)

max.

60 A

Repetitive peak forward current

IFRM

max.

600 A

IFSM
12 t

max.

Storage temperature

T stg

Junction temperature

Tj

-55 to + 150 °C
max.
150 °C

Currents
Average forward current;
switching losses negligible up to 20 kHz
sinusoidal; up to T mb == 100 °C
sinusoidal; at T mb = 125 °C

Non-repetitive peak forward current;
t = 10 ms; half sine-wave;
Tj = 150 °C prior to surge
12 t for fusing (t = 10 ms)

max.

550 A
1500 A 2 s

Temperatu res

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

0,6 °C/W

From mounting base to heatsink
withheatsink compound
without heatsink compound

Rth mb-h
Rth mb-h

0,3 °C!W
0,5 °C/W

* To ensure thermal stability: Rth j-a';;;; 1 °C/W (continuous reverse voltage).

2

January 1980

(

BYW25

Fast recovery rectifier diode

CHARACTERISTICS
Forward voltage
IF=: 35 A; Tj =: 25°C
! F =: 150 A; Tj =: 25°C

VF
VF

<
<

1,55 V*
2,25 V "

IR

<

7 mA

trr

<

trr

<

1 /lS

<

100 A//ls

Reverse current
V R =: 650 V; Tj =: 125°C
Reverse recovery when switched from
IF =:10AtoVR =: 30 V with -dlF/dt =: 50 A//ls; Tj
Recovery time

=:

25°C

IF =: 600 A to VR? 30 V with -dlF/dt =: 70 A//ls; T mb
Recovery time

=:

450

ns

85°C

Maximum slope of the reverse recovery current
when switched from 'F=: 600 A to V R ? 30 V;
with -dIF/dt=: 35 A//ls; Tj = 25°C

IdlR/dtl

+

time

7Z78500

200

I

I

typ V F

max V F

I--

/'

I

t!

J

I

II
'I

I

I

;'

J

1
:/

11

Fig. 2 Definitions of Os' trr and dl R/dt.

~.

I

~.

i

1/
100

1

," ~"~~
'(

o
o

J -'-

It
l

I
1
I
I
I

I

If
I
I
IJ

'J

2

VF(V)

3

Fig. 3 - - Tj =: 250C; - - - Tj =: 1500C.
" Measured under pulse conditions to avoid excessive dissipation.

January 1980

3

Jl_______________

___
BYW_25_ _

7Z78499

150

60

p
(W)

90

100

r-..
:"

~

a = 1,57
50

',/

I'

"'"

1/

i""

'"'9......,1?°6.

"

'/

120

..... q ~ 10

..... i""C'/tz;

.....
:.....

I.;'
",

~

o
o

20

40 25
IF(AV) (A)

50

75

100
125
Tamb (oC)

.....

i""

r-.

150
150

Fig. 4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P == power including reverse current losses and switching losses up to f = 20 kHz.
a == IF(RMS)/IF(AV)'

4

January 1980

(

l___

Fast recovery rectifier diode

B_YW_2_5_ _
+

01

03

04

02

7277891.1

0

Fig. 5 One phase of a three-phase inverter for a.c. motor speed control.
01 to 04 are BYW25 types.

January 1980

5

j

BYW29 SERIES

--------------------------------------------------~

.e:

w:=.

VERY FAST RECOVERY RECTIFIER DIODES

Glass-passivated, high-efficiency, eutectically-bonded rectifier diodes in plastic envelopes, featuring low
forward voltage drop, very fast reverse recovery times, very low stored charge and non-snap-off. They
are intended for use in switched-mode power supplies, and high-frequency circuits in general, where
low conduction and switching losses are essential. The series consists of normal polarity (cathode to
mounting base) types.

QUICK REFERENCE DATA
BYW29-50
Repetitive peak reverse voltage

max.

Average forward cu rrent

IF(AV)

max.

Forward voltage

VF

Reverse recovery time

trr

<
<

MECHANICAL DATA
Fig.1 SOD-59
(TO-220AC)

1 100

50

100

1 150
150 V

-----7

A

0,85

V

35

ns

Dimensions in mm

1'3:1~: -,

~'i~ 1

mounting

base _ (see note) L....J..-==:+------:II

+ 15,8

I
I
I

I

I

I
L
_____ J

.-It::;n=:=:r=;~
3,5 max

+--

not tinned

max

I
I

-r

J

1

+

5,1

max

I

1,3 ....
max

(2x) k

---.T

~

a .

-.1 5,08"'1"--.....

13,5
min

l
0,9 max (2x)

7l76167.lA

Note: The exposed metal mounting base is directly connected to the cathode.
Accessories supplied on request: see data sheets Mounting instructions and accessories for TO-220
envelopes.

E

Products approved to CECC 50009-014, available on request.
January 1980

__

~B_Y_W~2_9_S_E_R_IE_S_jl________________________________
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages*

BYW29-50

100

150

Non-repetitive peak reverse voltage

VRSM

max.

50

100

150 V

Repetitive peak reverse voltage

VRRM

max.

50

100

150 V

Crest working reverse voltage

VRWM

max.

50

100

150 V

Continuous reverse voltage

VR

max.

50

100

150 V

Average forward current; switching losses
negligible up to 500 kHz
sinusoidal; up to T mb == 125 °C
square-wave; [) == 0,5; up to T mb = 125 °C

IF(AV)
IF(AV)

max.
max.

7
7,6

A
A

R.M.S. forward current

IF(RMS)

max.

12

A

Repetitive peak forward current

IFRM

max.

80

A

IFSM
Ft

max.

80

A

max.

32

A2s

-40 to +150

°C

Currents

Non-repetitive peak forward current; t = 10 ms;
half sine-wave; Tj == 150 0C prior to surge;
with reapplied VRWMmax
2

1

t for fusing (t == 10 ms)

Temperatures
Storage temperature

T stg

Junction temperature

Tj

max.

* To ensure thermal stability: Rth j-a ..;;; 16 °C/W (continuous reverse voltage).
2

March 1978

(

150

°C

BYW29 SERIES

Very fast recovery rectifier diodes

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

2,7 0C/W

Transient thermal impedance; t = 1 ms

Zth j-mb

0,26 0C/W

Influence of mounting method

1. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink
a. with heatsink compound

Rth mb-h
Rth mb-h

0,3 °C/W

c. with heatsink compound and 0,1 mm maximum mica insulator (56369) Rth mb-h

2,2 0C/W

d. with heatsink compound and 0,25 mm maximum alumina
insulator (56367)

Rth mb-h

0,8 °C/W

e. without heatsink compound

Rth mb-h

1,4 °C/W

b. with heatsink compound and 0,06 mm maximum mica insulator

1,4 °C/W

2. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = any lead length and with
copper lam inate
Rth j-a
60 °C/W

~

t

a

~

0

~

1
V//

/

//}
7Z78248

Fig. 2.

March 1978

3

CHARACTERISTICS
Forward voltage
IF = 5 A; Tj = 100 °C
IF = 20 A; Tj = 25 °C

VF
VF

<
<

Reverse current
VR = VRWMmax; Tj = 100 °C

IR

<

0,6 mA

trr

<

35 ns

Os
trr

<
<

15 nC
50 ns

Vfr

typo

1,0 V

Reverse recovery when switched from
IF = 1 A to VR ~ 30 V with -dl F/dt

= 50 AIMS; Tj = 25 °C

Recovery time
IF

=2 A

to VR ~ 30 V with -dlF/dt

0,85 V*
1,3 V*

= 20 AIMS; Tj = 25 0C

Recovered charge
Recovery time
Forward recovery when switched to IF = 1 A
with dlF/dt = 10 AIMS
Recovery voltage

7Z72984.A

•

10%

time

i

time

100 0 /0

~

7Z70734.2A

Fig. 3 Definitions of trr and Os.
time

Fig.4 Definition of Vfr.

* Measured under pulse conditions to avoid excessive dissipation.

4

March

19781 (

BYW29 SERIES

Very fast recovery rectifier diodes

MOUNTING INSTRUCTIONS
1. The device may be soldered directly into the circuit, but the maximum permissible temperature of
the soldering iron or bath is 275 °C; it must not be in contact with the joint for more than 5
seconds. Soldered joints must be at least 4,7 mm from the seal.

2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during
bending.

3. It is recommended that the circuit connection be made to the cathode tag, rather than direct to the
heatsink.

4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan head. Care should be taken to avoid
damage to the plastic body.

5. For good thermal contact heatsink compound should be used between base-plate and heatsink.
Values of Rth mb-h 'given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled
so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated below:
junction

7Z73725

mounting
base
Rth j-a

heatsink

R th

h-a

ambient
b. The method of using Figs 5 and 6 is as follows:
Starting with the required current on the IF(AV) axis, trace upwards to meet the appropriate form
factor or duty factor curve. Trace right horizontally and upwards from the appropriate value on the
T amb scale. The intersection determines the Rth mb-a' The heatsink thermal resistance value
(Rth h-a) can now be calcu lated from:
Rth h-a = Rth mb-a - Rth mb-h'
c. Any measurement of heatsink temperature should be made immediately adjacent to the device.

March 1978

5

10

SINUSOIDAL OPERATION

7Z77064 1

,

1,57

P

,19

(w)

J

7,5

I

~,8
a=4

5

I

J /
I

V

I

8

10

I

\

\.

/ /
I
V

j

6

\

~

\

4

2 O,5 C/w

~

,

'\

/ /

', ,~ :\\~
\1
\

1\

l\. l\ \ \

'36,5

\. \ 1\ \

\
\ 1\'
'.\ \'\
\.' !\\1\\

i\

I IV V
~

/ ~V
/ lj ~
VV

fi
rh
i-a "'600
~ C/W

~

5

7,5 0
IF(AV) (A)

50

1\\

143,25

~\ ~\'

-- ........ ......

V

2,5

129,75

~

~

vv

Ifl '/ ~

o
o

\

\

~

if /1
/ J
If I V/
2,5

123

O

~

V 1/ /
1

, \, , :\
;\
1\ \
\ \
\ \
I\, \
\ ,\
1\ \ ,

Rth mb-a =

\~~ ~
I~ ~

-I"- 1-0....

100

\

~ 150
150

Tamb (oC)

Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses and switching losses up to f = 500 kHz.
a = form factor = IF(RMS)/IF(AV)'

6

(
1

March 1978

BYW29 SERIES

Very fast recovery rectifier diodes

SQUARE-WAVE OPERATION

7Z77065 1

15

1
I 1

d.c.

P

1/

(W)
/
j

10
0,5

1/

1 1 1
.1 1 I I 1 1

1

I
1

Rth mb-a =
8-f-6 1-41- 2 0,3 0 C!W
I{
I{
1\
10 I,
fT rT
\
1\ 1\
I\,
\

,

,

v

,

1\

,,

1\

r-t--- I-~ 8 = 0,1 I

\

5

1/

V

v

~

I\,

/

1/)

I

II
1/

1\
~

\ r,

,

/,

I~

,..

~

1\

IX' 1\ \

)~

o

\ \

136,5

\

\ \1\
\
r-.. i\
.\

~

A

~

\. .,I."

r-!!!..j~a ~ 6 00

~

r...,......,.,.

1 1 1
I I 1

~

o~

\

1\ ,

/

11/

1\
fT
1\ \

i\"
1\

II
.~

123

1\
\

)

0,2

,

1\

1/

V

109,5

5

10

15 0
IF(AV) (A)

50

C/

~

I I

:\

~,

1\

~

l\

w-- f-~~

r"",

~
150
100
150
Tamb (oC)

Fig.6 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses and switching losses up to f = 500 kHz.
tp
8=-

T

V
IF(AV) = IF(RMS) x.."j"8

March 1978

7

l

BYW29 SERIES

~-------------------------------------------------7Z78247

150

IFS(RMS)
(A)

1\
\.
100 \..

"-

""-"'

I FSM
I'..

"'............

50

i"'oo.
,..."",

--

-""'"

~

r--

duration (s)
Fig. 7 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents
(f = 50 Hz); Tj = 1500C prior to surge; with reapplied VRWMmax.
7Z77063 1

30

--Tj= 25°C
--Tj =100 0 C

1\--I C

IFSM
IFS(RMS)

time
I

20

I
j

I

typ i--~ax max
V F L - VF
VF

If
1

,

1
1111

II

10

I

I II

I

I'
I

II J

IJ

.~

o
o
8

~~

Fig. 8.

..

Ma~h 1978~

2

(

10

BYW29 SERIES

Very fast recovery rectifier diodes

7 Z7 8250

7 Z78249

IF = lOA
L.f'
IF

V~ ~d2

= lOA
5

JI/
/~I/

1

V

U/

~

1/ y 2

~V

II

;V

10

~II'

1I

10
/

I)

7

I)

/

1I
1

1

1

1
Fig. 9 Tj = 25°C; maximum values.

Fig. 10 Tj = 100°C; maximum values.

7Z78251

t rr
(ns)

IF

t--:: L-~k

10

2~ t=::::

Definition of Os in
Figs 9 and 10.

lOA
1/5

=

S=I.:::~
10

5
1/'

1

1"-_.........

........

r-

,...
1"'-,...

10

Fig. 11 Maximum values; - - Tj = 250C;
- - - - Tj = 1000C.

1
1

March 1978

9

BYW29 SERIES

l_ _ __
7Z78245

- --- -

1--,-

-

typ

r-:-:-

l"- i'---

r--

10

10 2

10

1

V R (V)

Fig. 12 f = 1 MHz; Tj = 250C.

7278246

10

...... '"
.....

V'

~

........ f-"'

~

10- 2
Fig. 13.

10

March 1978

c

time (5)

10

j

BYW30 SERIES

---------------------------------------------------VERY FAST RECOVERY RECTIFIER DIODES
Glass-passivated, high-efficiency rectifier diodes in 00-4 metal envelopes, featuring low forward
voltage drop, very fast reverse recovery times, very low stored charge and non-snap-off. They are
intended for use in switched-mode power supplies, and high-frequency circuits in general, where low
conduction and switching losses are essential. The series consists of normal polarity (cathode to stud)
types.

QUICK REFERENCE DATA

Repetitive peak reverse voltage

VRRM

Average forward current

IF(AV)
VF

Forward voltage
Reverse recovery time

trr

BYW30-50

100

150

max.

100

150 V

12

A

max.

<
<

MECHANICAL DATA

50

0,85

V

35

ns

Dimensions in mm

Fig. 1 00-4: with metric M5 stud (5 mm); e.g. BYW30-50.
with 10-32 UNF stud (4,83 mm); e.g. BYW30-50U.

$

1,0

0,8

-'II~
max
4,0

___ 3,2.-max

_9,3_
max

__ 11,5 --., ....1--_ _ 20,3 _ _---i.~,
10,7
max
7Z65355.2A
Net mass: 6 g
Diameter of clearance hole: max. 5,2 mm

Torque on nut: min. 0,9 Nm (9 kg em)
max. 1,7 Nm (17 kgcm)

Accessories supplied on request: 56295
(PTFE bush, 2 mica washers, plain washer,'tag)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats; M5: 8,0 mm
10-32 UNF: 9,5 mm

~Products approved to CECC 50 009-001, available on request.
January 1980

___B_YW
__3_0_S_E_RI_E_S_jl________________________________
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages*

BYW30-50

100

150

Non-repetitive peak reverse voltage

VRSM

max.

50

100

150 V

Repetitive peak reverse voltage

VRRM

max.

50

100

150 V

Crest working reverse voltage

VRWM

max.

50

100

150 V

Continuous reverse voltage

VR

max.

50

100

150 V

Currents
Average forward current; switching losses
negligible up to 500 kHz
sinusoidal; up to T mb = 120 °C
sinusoidal; at T mb = 125 °C
square-wave; lj = 0,5; up to T mb = 114 °C
square-wave; lj = 0,5; at T mb= 125 °C

'F(AV)
IF(AV)
'F(AV)
'F(AV)

max.
max.
max.
max.

R.M.S. forward current

IF(RMS)

max.

20 A

Repetitive peak forward current

'FRM

max.

200 A

'FSM
12 t

max.

200 A

max.

200 Ns

Non-repetitive peak forward current
t = 10 ms; half sine-wave; Tj = 150 0C prior to surge
with reapplied V RWMmax
12 t for fusing (t = 10 ms)

12
10
14
10

A
A
A
A

Temperatures
Storage temperature

T stg

Junction temperature

Tj

-55 to +150 °C
150 °C

max.

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

2,2 °C/W

From mounting base to heatsink
a. with heatsink compound

Rthmb-h

0,5 0C/W

b. without heatsink compound

Rth mb-h

Transient thermal impedance; t = 1 ms

Zth j-mb

0,6 °C/W
0,3 °C/W

MOUNTING INSTRUCTIONS
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.

* To ensure thermal stability: Rth j-a';;; 8,2 °C/W (continuous reverse voltage).
2

March 1978 }

(

BYW30 SERIES

Very fast recovery rectifier diodes

CHARACTERISTICS
Forward voltage
IF = 10 A; Tj = 100 °C
IF = 50 A; Tj =

Reverse current
VR = VRWMmax; Tj

VF

<
<

IR

<

1,3 mA

trr

<

35 ns

Os
trr

<
<

50 ns

Vfr

typo

1,0 V

VF

25 °C

= 100°C

0,85 V*
1,3 V*

Reverse recovery when switched from
IF = 1 A to VR ~ 30 V with -dlF/dt = 20 A/}.J.s; Tj = 25 °C
Recovery time
IF = 2 A to VR ~ 30 V with -dlF/dt = 20 A/}.J.s; Tj = 25 °C
Recovery charge
Recovery time
Forward recovery when switched to IF = 10 A
with dlF/dt = 10 A/}.J.s

15 nC

7Z72984.A

+
10%

time

t

time

100 0 10

~

7Z70734.2A

Fig. 2 Definitions of trr and Os.

time

Fig.3 Definition of Vfr'

* Measured under pulse conditions to avoid excessive dissipation.

March 1978

3

SINUSOIDAL OPERATION

7Z77068

interrelation between the power
(derived from the left -hand graph)
and the maximum permissible
temperatures

IF(RMS)
a=--IF(AV)
P = power excluding
switching losses but
including reverse
current losses
P

(W )
I

10

2,~

1.9) /

'"

V

V)

,

r\.

I"

VV
L LL

a=4

5

1,5~

1\

l\.

I"

1'\

I"

.... 6'

1\

,,~

~

'\ & '\
......

t--

"r-...

~ ~

'~

~

~~

15 0
'F(AV) (A)
Fig. 4.

4

March 1978

(

"1
~' "~
"
~~

~

.... ~\I\

10

5

128

1\

, "~ ~

~,..

o~
o

'--

~

~v
1~1r

I.

r-

_\~Ql\\-

" \ "1\
~

K~~
03

~q

1\

'\
'\

11 'L
IL If Ii
lL lli
VL 'AI{'

117

I

o "1l-r-

50

100

139

~ ~.'l\
~ ~\
~ 150
150

Tamb (oC)

BYW30 SERIES

Very fast recovery rectifier diodes

SQUARE-WAVE OPERATION

7Z770671

1,0
V

20
/

P
/

0,2

(W)
r - - '--f-

a=0,1
f

10

I
I

I

/

11
VI'"

'/

~

"

I'
~

I'
1/

/

'/

/

, ':P-r-+\"" r---~:5 -r---r--\3 -1--+f-+-

\.

I'.

0,5

c9

'/

6'

'9
I\.

"

cr

I\,

Ol

,

i\.

"" , '\,o~"

/

/

I\,

\

128

,\

1/

I\.

r-..."\

\.

,i'.,.

\.

r-...~

/ / I/V

r--..:

'//.
~~
:'-!~

,

1\:\

\

139

,\
~~~

~~'\

~

o
a

\I '-f-

\ o-f-\ -(j"\ fOf--

1\

\

10

o

20
IF(AV) (A)

50

N 150
100
150
Tamb (oC)

Fig. 5 The right-hand pact shows the interrelationship between the power (deriyed from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses and switching losses up to f = 500 kHz.

I(

March 1978

5

j L________________

BYW30 SERIES

7Z78252

400

IFS(RMS)

\

\

(A)

\

"'\.

IFS M

'\.

200

\,

"t'-.
.~

i'...

...... ,,~

r-.....

--

i'-....

-duration (s)

Fig. 6 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents
(f = 50 Hz); Tj = 1500C prior to surge; with reapplied VRWMmax'

60

,

-T·= 25°C
• J
__ T = 100°C

7Z77066.1

1\--- I FSM

j

/ C

"

,
I

40

I

typ
VF

max

I
If

J~ax

VF~ V F
ill
I
~I
II
,II
!l

.

I,
I

,

20

I
,I

I
II

J

IIJ

I

/,

,
o
o
6

March

i

')

I
Fig. 7.

,~

1r

1978

IFS(RMS)

time

2

10

BYW30 SERIES

Very fast recovery rectifier diodes

7 Z78250

7278249

I F =lOA

t..I"

V~ ~~2

I F =lOA

5

/~~

//1/

1/

//

~V

~

L
2

U/

IY

J /'

10

I'

V

10
/

/

II

/

V
1

10

1

- dl F/dt (Ai}1s)

10 2

1
1

10

- dlF/dt (Ai}1s)

10 2

Fig. 9 Tj = 100 oC; maximum values.

Fig. 8 Tj = 25 °C; maximum values.

7278251

Definition of Os in
Figs 8 and 9.

t rr

IF = lOA

(ns)

v,

:;.-- ~ L-/ !£:'V
I"-

~ ~ ~-=

~

10

5
1/

5
1

-- - t"'-_

..........

.......
.....

.........

t"'-

"r-.

10

Fig. 10 Maximum values; - - Tj = 25 oC;
- - - Tj = 100 DC.

1
1

10

- dl F/dt (Ai}1s)

10 2

March 1978

7

7 Z7 8254

-

typ

10

1

10

V R (V)

Fig. 11 f

= 1 MHz; Tj = 25 aC.
7Z78253

10

--'

~~

~

~

I--

/

1

~I--

V

--

V

8

March 1978[

r

10- 2
Fig. 12.

time (5)

10

_ _ _ _J

BYW31 SERIES

VERY FAST RECOVERY RECTIFIER DIODES

Glass-passivated, high-efficiency rectifier diodes in DO-4 metal envelopes, featuring low forward voltage
drop, very fast reverse recovery times, very low stored charge and non-snap-off. They are intended for
use in switched-mode power supplies, and high frequency circuits in general, where low conduction
and switching losses are essential. The series consists of normal polarity (cathode to stud) types.
QUICK REFERENCE DATA

Repetitive peak reverse voltage

VRRM

BYW31-50

150

max.

150 V

Average forward current

IF(AV)

max.

Forward voltage

VF

<
<

Reverse recovery time

trr

50
25

A

0,85

V

50

ns

Dimensions in mm

MECHANICAL DATA
Fig. 1 DO-4: with metric M5 stud (¢5 mm); e.g. BYW31-50.
with 10-32 UNF stud (<1>4,83 mm); e.g. BYW31-50U.

,

~

rr-

I~

~-----Z8
if r--------~ ma x

I

• •

l)-

1,98J

max

t

9, 3
ma x

'--

--

~2,3'"
min

3,5 __
--.. max

_10,3_
___ 11,5 _____ •

10,7

max

20,3

max

Net mass: 7 g
Diameter of clearance hole: max. 5,2 mm

•

7Z6980 l.lA

Torque on nut: min. 0,9 (9 kg cm)
max. 1,7 (17 kg cm)

Accessories supplied on request: 56295
(PTFE bush, 2 mica washers, plain washer, tag)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats; M5: 8,0 mm
10-32 UNF: 9,5 mm

~

Products available to CECC 50 009-002, available on request.

January 1980

3_1_S_E_R_IE_S_~L~_______________________________

___B_YW
__

RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Voltages *

BYW31-50

100

150

Non-repetitive peak reverse voltage

VRSM

max.

50

100

150 V

Repetitive peak reverse voltage

VRRM

max.

50

100

150 V

Crest working reverse voltage

VRWM

max.

50

100

150 V

Continuous reverse voltage

VR

max.

50

100

150 V

Average forward current; switching losses
negligible up to 500 kHz
sinusoidal; up to T mb = 120 oC
sinusoidal; at T mb = 125 °C
square-wave; 0 = 0,5; up to T mb = 119 °C
square-wave; 0 = 0,5; at T mb = 125 °C

IF(AV)
IF(AV)
Ip(AV)
IF(AV)

max.
max.
max.
max.

25
23

A
A
A
A

R.M.S. forward current

IF(RMS)

max.

40

A

Repetitive peak forward current

IFRM

max.

320

A

Non-repetitive peak forward current
t == 10 ms; half sine-wave; Tj = 150 °C prior to surge;
with reapplied VRWMmax
IFSM
12 t
12 t for fusing (t = 10 ms)

max.

320

A

max.

500

A 2s

Currents

28
23

Temperatures
Storage temperature

T stg

Junction temperature

Tj

-55 to +150

°C

150

°C

max.

THERMAL RESISTANCE
Rth j-mb

1,0

°C/W

a. with heatsink compound

Rth mb-h

0,3

°C/W

b. without heatsink compound

Rth mb-h

0,5

°C/W

Zth j-mb

0,2

°C/W

From junction to mounting base
From mounting base to heatsink

Transient thermal impedance: t

= 1 ms

MOUNTING INSTRUCTIONS
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.

* To ensure thermal stability: Rth j-a ~ 6 °C/W (continuous reverse voltage).

2

March

19781 (

BYW31 SERIES

Very fast recovery rectifier diodes

CHARACTERISTICS
Forward voltage
IF = 20 A; Tj = 100 °C

<
<

IF = 100 A; Tj = 25 °C
Reverse current
VR = VRWMmax; Tj = 100 °C

0,85 V*
1,3 V*

<

1,5 mA+-

Reverse recovery when switched from
IF = 1 A to V R ;;;. 30 V with -d I F/dt = 50 Alps; Tj = 25 °C
Recovery time

<

50 ns

<

20 nC

typo

1,0 V

IF = 2 A to VR;;;' 30 V with -dlF/dt = 20 Alps; Tj = 25 °C
Recovered charge
Forward recovery when switched to IF = lOA
with dl F/dt = 10 Alps
Recovery voltage

7Z72984.A

time

t
10%

time

t

100 0 10

-------:--~

....

7Z70734.iA

time

Fig. 2 Definitions of trr and Os'

Fig.3 Definition of Vfr.

* Measured under pulse conditions to avoid excessive dissipation.

October 1979

3

jl

BYW31 SERIES

-----------------------------------------------40

SINUSOIDAL OPERATION

P

7 Z7 8258

1}7
1,9
-'I V

(W)

a=4

I

If

/

If

II

~

I

VI

""
"
" ""

I / /V
I I //

'\

\

["\.

'-,,-

1/ lj

,-\;-r-+,%- r----

,

~-c-

1\
\

r\.

\

i\.

\I

\ 9-r--c..Jr--- 130

\

I'. "\. 1\

,-z-

\~1\

\ 1\
~
~ .'\ \ \ 1
['.. I'. !\. \. \'
'i'..
i\.' .\1\

I'.

"\

120

1\

,

140

~l\
"- '\
........
~\
~

~~

o

\~

1\

'7

"

\

"\0>

h~

o~

,

r\.

..... ~

/ 'l
J/. lj

/

~

\.

/ 1/

2,8

20

['\,

110

10

20
30 0
IF(AV) (A)

50

N 150
100
150
Tamb (oC)

Fig. 4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses and switching losses up to f = 500 kHz.
a = form factor = IF(RMS)/IF(AV).

4

March

19781 (

Very fast recovery rectifier diodes

60

SQUARE -WAVE OPERATION

p
(W)

1,0

40

1\
\

1\
0,5
I

~

1-1- - I -

0,2
0= 0,1 I

I

/
'/
/

/1/

')

1/
~

/

'"
I\. I"

L

V'

'"

/

/

V

~

~Vl

"

~

~

130

~

'\,.

L\'

" '" ,

'\ 1\
\
'\.1\
1'\.'
...... ~ til. .\

~I'\

~

~

~~~

~'l
"-.1

~

o

II '-I0_1\ -til I -

1\

'"I" \.. \ 1\ 1\ \ ~'z.......
\ \

'\.

~i'

a

~"3 - , I t5 -1-1~ '-I-

\

I\,

It..

.J.!i~r/

~ f--'-I/- ~ t--I-

,~ 1-",'-

'''7
6'~~

1/
V

u

20

:A

)

ILl

I\,

20

a

40

150
100
150
Tamb (DC)

50

IF(AV) (A)

Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power including reverse current losses and switching losses up to f = 500 kHz.

IF(AV) = IF(RMS)

xy'i

I(

October 1979

5

Fig. 6.

150

7Z78256

Fig. 7

6

T-- 25 °C', --- TJ• == 100 o C.
J

ery fast recovery rectifier diodes

7278260

I

I I III

IF=10A

~~

~v
!~ '""""'~ ~~

I F =lOA

l{

IJ

LA'

1//

1/1....
~/

//[.....

1.1'

J,>

I-" 2

~ (/

"

10

If

I

1

1I

V

V

10
7
/

/

1
1

1

Fig. 8 Tj = 25 oC; maximum values.

10

- dl F/dt (AIMS)

10 2

Fig.9 Tj = 100 DC; maximum values.

7Z78261

Definition of Os in
Figs 8 and 9.

t rr

(ns)

IF

~.- r.::...
~ ~-~

t:-t

v
~

= lOA
/ 5

1

~-

10

'-

-

-10......

5/
1

10

Fig. 10 Maximum values; - - Tj '" 25 0C;
- - - Tj = 100°C.

1

1

10

- dl F/dt (AIMS)

10 2

1

(MarCh 1978

7

f~s ~ l"'--___________
~103

7278259

~

r-- r- to-

1-1- i"-t-t-

typ

~ r--

r- t- 1-1-

!-f-

r---

10
1

10

1C

Fig. 11 f::: 1 MHz; Tj'== 250C.

10

7 l..77

or

time (s)

1

...----I--"
__ ~I-o

io'"

.....

I"

10- 2

March 1978

r

Fig. 12.

_ _ _J

BYW92 SERIES

VERY FAST RECOVERY RECTIFIER DIODES

Glass-passivated, high-efficiency rectifier diodes in 00-5 metal envelopes, featuring low forward voltage
drop, very fast reverse recovery times, very low stored charge and non-snap-off. They are intended for use
in switched-mode power supplies and high-frequency inverter circuits in general, where low conduction
and switching losses are essential. The series consists of normal polarity (cathode-to-stud) types.
QUICK REFERENCE DATA

Repetitive peak reverse voltage

VRRM

max.

Average forward current

IF(AV)

max.

Forward voltage

VF

Reverse recovery time

trr

<
<

MECHANICAL DATA

---35

A

0,95

V

50

ns

Dimensions in mm

Fig. 1 00-5: with metric M6 stud (if> 6 mm); e.g. BYW92-50.
with %in x 28UNF stud(q, 6,35mm); e.g. BYW92-50U.

15,3 max
3,8
..... min-

8,0
max

2,2 -max

--

I

-17,0--

___ 5,0 . max

_

11,5
10,7

_ I .....~_ _ _

25,4 ______

7275506.18

max

Net mass: 22 9
Diameter of clearance hole: max. 6,5 mm
Torque on nut: min. 1,7 Nm (17 kgcm)
max. 3,5 Nm (35 kg cm)

Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats;
M6: 10 mm
% in x 28UNF: 11,1 mm
Supplied on request: accessories 56264A
(mica washer, insulating ring, tag)

~ Products approved to CECC 50 009-003, available on request.

'I

January 1980

BYW92 SERIES

j l________________

RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Voltages*

BYW92-50 100 150

Non-repetitive peak reverse voltage
Repetitive peak reverse voltage
Crest working reverse voltage
Continuous reverse voltage

VRSM

max.

50 100 150 V

VRRM

max.

50 100 150 V

VRWM

max.

50 100 150 V

VR

max.

50 100 150 V
~

Currents

Average forward current; switching losses negligible up to 500 kHz
sinusoidal; up to T mb = 105 °C
sinusoidal; at T mb = 125 °C
square wave; 0 = 0,5; up to T mb = 102 0C
square wave; 0 = 0,5; at T mb = 125 0C
R.M.S. forward current
Repetitive peak forward current
Non-repetitive peak forward current; t = 10 ms; half sine-wave;
Tj = 150 °C prior to surge; with re-applied VRWMmax
12t for fusing (t = 10 ms)

IF(AV)
IF(AV)
IF(AV)
IF(AV)

max.
max.
max.
max.

35
23
40
23

A
A
A
A

IF(RMS) max.
max.
IFRM

500 A

max.

500 A

IFSM
12 t

55 A

max. 1250 Ns

Temperatures
Storage temperature

T stg

Junction temperature

Tj

-55 to +150 °C
max.

150 °C

THERMAL RESISTANCE
From junction to mounting base

Rthj-mb =

1,0 °C/W

From mounting base to heatsink
a. with heatsink compound
b. without heatsink compound

Rth mb-h =
Rth mb-h =

0,3 0C/W
0,5 °C/W

=

0,2 0C/W

Transient thermal impedance; t

= 1 ms

Zthj-mb

MOUNTING INSTRUCTIONS
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.

* To ensure thermal stability: Rth j-a';;;; 6 0C/W (continuous reverse voltage).
2

March

19781 (

l

Very fast recovery rectifier diodes

BVW92 SERIES

CHARACTERISTICS
Forward voltage
IF = 35 A; Tj = 100 °C
IF = 100 A; Tj = 25 °C

VF
VF

<
<

Reverse current
VR = VRWMmax; Tj = 100 °C

IR

<

2,5 mA

trr

<

50 ns

Os

<

20 nC

Reverse recovery when switched from
IF = 1 A to VR ~30 V with -dIF/dt
Recovery time
IF = 2 A to VR ~30 V with -dIF/dt
Recovered charge

0,95 V*
1,3 V*

= 50 A//ls; Tj = 25 °C
= 20 A//ls; Tj = 25 °C

Forward recovery when switched to IF = 10 A
with dl F/dt = 10 A//ls
Recovery voltage

Vfr typo

1,0 V

7Z72984.A

IF

time
•

10%

time

i

100 %

~

7Z70734.2A

t

100%

+
Fig. 2 Definitions of trr and Os.

time

Fig.3 Definition of Vfr'

* Measured under pulse conditions to avoid excessive dissipation.

March 1978

3

j l________________

BYW92 SERIES

50
P

SINUSOIDAL OPERATION

7Z77391

I

I I
1,5~

I
I

(W)

40

1\

/
j

I

1/

j

[I

I

~

"-

,6

.......

II'

/

I I
, I

.;-~~-;-:P r--

,

03 - -

,

('l tr - -

\~~ II -_
\

~

1'\
r-....

I""-

,,

, ,\
1'\

[I\.

\ 1\

"'\\.

10

.......

I/IL
'.I~

~~

o
o

140

1'\1\.. 1\.\
1'\
['..:" ~ ~\

,~ ~'\

1.Jj~

10

20

30

40

50

o

:-.J 150

50

IF(AV) (A)

Fig. 4 P = power including reverse current losses and switching losses up to f
a = form factor = IF(RMS}/IF(AV}'

4

130

1\ \

\.

I'\.

"'\

\
\

'\

"

120

,

\

[I\.

~r--

\

~

\

.J

r--

I

1\ -

~

/

1/[/ ~
J

1"-

'"

/

j

I
/

II\.

Vi

1/

'I L

J

[I

20

1/

[I

\

I\~

If

1/
30 -r-r- a=4

",

/

1,9
2,8

I
I
I

March 1978

J(

100

150

Tamb (oC)

= 500

kHz.

BYW92 SERIES

Very fast recovery rectifier diodes

60

SQUARE-WAVE OPERATION

7Z77390

1j

P
(W)

I

50

0,5

1

r

1/

/

,

1/

~

0,2,

"

30

I

L I
I

1/

l.t

rX

\I\..

/

L

L

~

,

'\

I\..

'- 1"\

f"'o.

V/
II LV
'//

10

03-

()~- -e-

o
o

"

120

,

1\
\

i\

" ,
\

1,\ \
i\
1"\ I\.. \.
\
1"\
\
t'-- ...... 1"\
\.
1\ 1\
\
r-.. '-'
1"\'\ \

1"\

130

,

140

V\~

'N
"'I'

l...&:r .......
~,

,\
~\'

\
\
'..I

10

20

30

40

o

50

110

\

hr//

....

r-r-

- r-f-

, ,

.......

')r/

e-e-

0>\\

1\

\.

I\.

I- e-+-

\

1\

"

i/

I

0 :P
-t,,:):;I - -rr-+-

\Z

\

\.

I\.I?

/

I

20

'(

/

,

~

i/
/

1

J

1\ ..... - H
I\.~

\

'{

1/

0==0,1,

1\

\

li

I 1
I
I

\

1\

/

40

i\

50

100

'F(AV) (A)

150

150

Tamb (oC)

Fig. 5 P == power including reverse current losses
and switching losses up to f = 500 kHz.
7Z77389

150
Tj==

2S o e

-Tj = 100 0

e

'F
(A)

II
II

r

'F(AV) = 'F(RMS)

xv'S

I

100

I

II

'/j

typ'

~1

V

If

max r-r-r-rVF r-r-r-r-

I

I

I
I

I

50

III
'I

I

l I

I

I

J

'1

If
1

Fig. 6.

o
o

1;'

'

~

1'1/

1/

.......

2

March 1978

5

l_ _ __

BYW92 SERIES

7Z78262

1000

IFS(RMS)

1\

\

(A)

\

500

\

r\.

'\

I FSM

,
~

"

~~

I"""'~i'"

[""---

r- ~~
~

--

......

duration (5)
Fig. 7 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents
(f = 50 Hz); Tj = 150 °C prior to surge; with reapplied VRWMmax'

I\---I FSM
I ,='FS(RMS)
time

6

Mareh

19lat (

10

l__

Very fast recovery rectifier diodes

B_Y_W_9_2_S_ER_I_ES_

7Z78260

7Z78255

I

,

"

"

IF = 10A

V~

IF = 10A

~

...

~v ~q
I~ r...... V

......

~

,

1/ 1/ ..J'
~r/ ~ 2

v/[/

A~

I;'

IF

10

L

~

/

1

r/

I

1

)1

10

V
1

1

1

Fig. 8 Tj = 25 oC; maximum values.

Fig. 9 Tj = 100 oC; maximum values.

Definition of as in
Figs 8 and 9.

Fig. 10 Maximum values; - - Tj = 25 oC;
- - - - Tj = 100 aC.
I

-------1

._____________. _. ._. _. r:~~h 1978

7

l____

BYW92 SERIES

7Z782S9

t-...

r-

- -r-

1'--

typ
~

r--- 0....- r- t-- t-t-

~

10
1

10
Fig. 11 f

= 1 MHz; Tj = 25 aC.
7Z77073

10

......
".., ~

......... 10-

.....

.....

i-"""

10- 3
10- 5

10- 1
Fig. 12.

8

March

19781 (

time (s)

10

j

BYX22 SERIES

-----------------------------------------------------'
SILICON RECTIFIER DIODES
Also available to BS9331-F131
The BYX22-GOO and BYX22-1200 are silicon diodes in a metal 00-1 envelope, intended for power
rectifier appl ications up to 1.4 A.
QUICK REFERENCE DATA
BYX22-600

1200

Crest working reverse voltage

VRWM

max.

400

800

Repetitive peak reverse voltage

VRRM

max.

600

1200

Average forward current

IF(AV)

max.

1.4

A

Non-repetitive peak forward cu rrent

IFSM

max.

40

A

MECHANICAL DATA

V
V

Dimensions in mm

00-1
-17.2max----- 7.7max-

1.1maX

~m~a-x----j-----J·a

t

-35min-~----51min

1Z10969.1

•

9.6max -

MOUNTING METHODS see page 3

'I

October 1979

BYX22
SERIES

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

All information applies to frequencies up to 400Hz
Voltages
BYX22-600

1200

Crest working reverse voltage

V RWM

max. 400

800

V

Repetitive peak reverse voltage (d 'S. 1%)

VRRM

max. 600

1200

Y

Y RSM

max. 600

1200

Y

Non repetitive peak reverse voltage
(t ::;. 10 ms)
Currents
Average forward current (averaged over any
20 ms period) for R -load up to T amb =30 °c

IFAY

max.

1.4

A

IF

max.

1.6

A

Repetitive peak forward current

IFRM

max.

15

A

Non repetitive peak forward current
t = 10 mS;Tj ::: ISOoC (see page 6 )

IFSM

max.

40

A

T stg

-65 to +150

Tamb

max.

Rth j-a

See page 3

VF

<

Forward current (d.c.) up to Tamb

=30 0 C

Temperatures
Storage temperature
Ambient temperature

150

°c
°C

THERMAL RESISTANCE

From junction to ambient
CHARACTERISTICS

Forward voltage at IF = SA; T amb = 25

°c

Reverse current at VR = VRWMmax; Tamb = I2S o C IR

<

1.5
120

Vi)

J.1A

1) Measured under pulsed conditions to avoid excessive dissipation.

2

II

II

May 1970

BYX22

II

SERIES

THERMAL RESISTANCE
Effect of mounting on thermal resistance Rth j-a
The quoted values apply when no other leads run to the tie-points. If leads of other
dissipating components share the same tie-points, the thermal resistance will be
higher than that quoted.
1. Mounted to solder tags at a
lead-length a =10 mm. Rth j-a

= 60

o

C/W

2. Mounted to solder tags at a = maximum
lead-length. Rth j-a = 70 °C/W

3. Mounted on printed-wiring board at a
lead-length. Rth j-a = 80 °C/W

=

I~Q--I

=---ID

7Z59016

maximum

4. Mounted on printed-wiring board at ;5
lead-length a= 10 mm. Rth j-a = 90 C/W
7259017

SOLDERING AND MOUNTING NOTES

1. At a soldering iron or bath temperature of up to 245 °C, the maximum permissible soldering time is 10 s if the joint is 5 mm from the seal, 3 s if it is 1. 5
mm from the seal.
2. At a temperature between 245 0c and 400 °c (max.), the joint must be more
than 5 mm from the seal and soldering time must not exceed 5 s.
3. Leads should not be bent less than 1. 5 mm from the seal; excert no axial pull
when bending.

May 1970

JL

3

BYX22

II

SERIES

72108261

1
1

1
1

IF(RMS)

a=-IFAV
1

~
1/
0

2

I-

I

II

I

Ptot

J

(W)

;S- ~.e>~ -~.
IJ
/1/

1

/

J V

I

JI/ 1/

I[ /

,..1/
,..1/

1 1

I

I I

I

I I

I I I

1

I

r

1

I
1--1-

I--r-r---r-r---r--

1-,----

I 1

•

~CC~ <

'\.~ I-~~

~

v~

'"

C-~

(5"

~

1'\.60

~

i'\.~

1'\1'\ 1'\ ,

"

\

!\.

I f.I I'

1/

1 1

1 1

~

I.J!~

1

interrelation between the total power
dissipation (derived from the Left hand
graph) and the maximum aLLowable
temperature
11
1

Jl/V,
1.lV"
J~
~

1 1

"I'

/
1/1/ I/ V
1 /

r

1

...'l'\.
~.

~~,

1/

N\~
~

/

I'

11"'111
J L I'

1/

o0

1

IFAV (A)

2 0

100

Tamb(OC)

200

Ip(RMS) per diode
depends on nwRLCL and Rt + Rdiff and can
IFAV per diode
nRL
he found from existing graphs.
See Application Book: RECTIFIER DIODES.
The form factor a

4

=

II

II

May 1970

BYX22

II

SERIES

7Z071361

400

Required minimum value of Rt
Rt includes the transformer resistance

VI(RMS )

(V)

300

CL:S: 50~F

100~F

200

600ilF

The graph takes the pos
sibility of the following
spreads into accou nt :
mains voltage, + 10%
capacitance
, +30%
, 10%
resistance

10001 F

100

1400~F

300~F

200liF

2000,lF

v=: ~tF
Rt

6000liF

5

4

3

DRL

Rt (.£1)

6

7Z 10 82LL

20
Tj = 25°C to 150°C

1---

-

)

1/

I
V

J

10

If

I
II
II
Rdiff (cot9)=Qllll.

II "[
J 91\

V

\
2

May 1970

II

VF (V)

3

5

BYX22

II

SERIES

7Z108251

150~--~~~~~M---~~~~I~I~ITI~I--TI--~II-~ITTII~II~I--~ir-~i~~~~

IIIII
I
I I I IIII
I
11111
I
I I I 11111
I
IFSM 1---t-----1f---1I--t-HI-+++---+-t-1-I maximum permissible non-repetitive
(A)
peak forward current based on
1001---t-----1f---11--t-H1-+++---+-t-1-I

s;~R~~~~s-R

IF5I<

L----Ao--......-L----L..-time
1---t-----1f---1I--t-HI-+++---+-t-1-I each current pulse is foLLowed by the t-+-t-++H
1---t-----1f---1I--t-HI-+++---+-t-1-I cres t work ing reverse vo l tage

,

I\.

I
I

10

6

II

I
I

I

IIIII

11111

duration (s)

1

II

10

May 1970

CONTROLLED AVALANCHE RECTIFIER DIODES
Also available to BS9333-F003
Diffused sil icon diodes in DO-4 metal envelopes, capable of absorbing transients and intended for
power rectifier applications. The series consists of the following types:
Normal polarity (cathode to stud): BYX25-600 to BYX25-1400.
Reverse polarity (anode to stud): BYX25-600R to BYX25-1400R.

QUICK REFERENCE DATA
BYX25-600(R)
max. 600

Crest working reverse voltage VRWM
Reverse avalanche breakdown
voltage

>

750

800(R)

1000(R)

1200(R)

1400(R)

800

1000

1200

1400

1000

1250

1450

1650

v
v
"

Average forward current

max.

20

A

Non-repetitive peak forward
current

max.

360

A

Non-repetitive peak reverse
power

max.

18

MECHANICAL DATA
Fig. 1 DO-4.

Dimensions in mm

10-32UNF

•

4 ,83

m ax

t

kW

J

~

rl)-

I

*

'r-

"gJ -I~

max

--

•

~---Z8
v max
~

t

9, 3
ma x

• •

~2,31 ....

3,5 __

min

max

_10,3_
max

. . - 11,5 ---. •
10,7

20,3

max

Net mass: 7 g.
Diameter of clearance hole: max. 5.2 mm.
Accessories supplied on request:
56295 (PTF E bush, 2 mica washers, plain washer, tag).
56262A (mica washer, insulating ring, plain washer).
Supplied with device: 1 nut, 1 lock washer.
Nut dimensions across the flats: 9.5 mm
The mark shown applies to the normal polarity types.

~

7Z698 02.1

Torque on nut:
min. 0.9 Nm (9 kg ern),
max. 1.7 Nm (17 kg em).

BYX25 SERIES

L_ _ __

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC134)
~

Voltages*

BYX25-600(R)

800(R)

1000(R)

1200(R)

1400(R)

Crest working reverse voltage VRWM

max.

600

800

1000

1200

1400

V

Continuous reverse voltage

max.

600

800

1000

1200

1400

V

v
Currents
IF(AV)

max.

20

A

Repetitive peak forward current

IFRM

max.

440

A

Non-repetitive peak forward current
t = 10 ms (half sine-wave); Tj = 175 0C prior to surge;
with reappl ied V RWMmax

I FSM

max.

360

A

max.

650

Average reverse power dissipation
(averaged over any 20 ms period); Tj = 175 °C

max.

38

Repetitive peak reverse power dissipation
t = 10 J.1S (square-wave; f = 50 Hz); Tj = 175 °C

max.

3

kW

Non-repetitive peak reverse power dissipation
t= 10J.1s (square-wave)
Tj = 25 0C prior to surge

max.

18

kW

max.

3

kW

-55 to +175

°C

175

oC

Average forward current (averaged over any 20 ms period)

2

1

2

t for fusing

1

t

Reverse power dissipation

Tj = 175 °C prior to surge

W

Temperatures
Storage temperature
max.

Junction temperature

*To ensure thermal stability: Rth j-a

2

September 1979

(

< 5 °C/W

(a.c.)

BYX25 SERIES

Controlled avalanche rectifier diodes

THERMAL RESISTANCE
From junction to ambient in free air

Rth j-a

50

°C/W

From junction to mounting base

Rth j-mb

1.3

°C/W

From mounting base to heatsink

Rth mb-h

0.5

°C/W

CHARACTERISTICS
BYX25-600(R) BOO(R)

1000(R)

1200(R)

1400(R)

Forward voltage
IF = 50 A; Tj = 25°C

VF

<

1.B

1.B

1.B

1.B

1.B

Reverse avalanche
breakdown voltage
I R = 5 mA; T j == 25°C

V(BR)R

>
<

750
2000

1000
2000

1250
2000

1450
2200

1650 V
2400 V

Peak reverse cu rrent
VR = VRWMmax;
Tj= 1250C

IR

<

1.0

O.B

0.6

0.5

0.5

*-

V*

mA

*Measured under pulse conditions to avoid excessive dissipation.

September 1979

3

BYX25 SERIES

l_ _ __

OPERATING NOTES
1. Voltage sharing of series connected controlled avalanche diodes.
If diodes with avalanche characteristics are connected in series, the usual Rand C elements for voltage
sharing can be omitted.
2. The top connector should not be bent; it should be soldered into the circuit so that there is no strain
on it.
During soldering the heat conduction to the junction should be kept to a minimum by using a thermal
shunt.
Determination of the heatsink thermal resistance
Example:
Assume a diode, used in a three phase rectifier circuit.
frequency
average forward current
ambient temperature
repetitive peak reverse power dissipation
in the avalanche region
duration of PRRM

IFAV
Tamb

50 Hz
10 A (per diode)
40 0 C

PR RM = 2 kW (per diode)
40 JiS

t

From the left hand part of the upper graph on page 5 it follows that at IF A V = 10 A in a three phase
rectifier circuit the average forward power + average leakage power = 19.5 W per diode (point A). The
average reverse power in the avalanche region, averaged over any cycle, follows from:

40 JiS
PRAV = 8 x PRRM, where the duty cycle 8 = 20 ms = 0.002
Thus: PRAV = 0.002 x 2 kW = 4 W
Therefore the total device power dissipation Ptot = (19.5 + 4) W = 23.5 W (point B).
In order to avoid excessive peak junction temperatures resulting from the pulse character of the
repetitive peak reverse power in the avalanche region, the value of the maximum junction temperature
should be reduced. If the repetitive peak reverse power in the avalanche region is 2 kW; t = 40 JiS;
f = 50 Hz, the maximum allowable junction temperature should be 1630C instead of 175 0C, thus
12 °C lower (see the lower graph on page 5).
Allowance can be made for this by assuming an ambient temperature 12 0C higher than before, in this
case 52 0C instead of 40 °C.
Using this in the curve leads to a thermal resistance
Rth mb-a "'" 4 °C/W
The contact thermal resistance Rth mb-h = 0.5 °C/W
Hence the heatsink thermal resistance should be:
Rth h-a = Rth mb-a -Rth mb-h = (4 - 0.5) °C/W = 3.5 °C/W

4

September 1979

(

BYX25 SERIES

Controlled avalanche rectifier diodes

7Z057332

f-- P=power dissipation, excZuslve
f-the reverse power in the
(W) f-avalanche region

Interrelation between the total dissipation
(derived from the left hand graph) and
the max. allowable ambient temperature

P

60
-~

i\

\

'-

\

\

_' . .0-1r
"Z._,

,'X ~e''X
7.~~

q

B

20

A

,..

1-1-1-

-

1"""1"7 ~
.J'A;I
~

...

V

..... -

~
l..IIII~
,...

1%

....

V

/
V

1/

~~

1/

1-""

1

I-

~~r

"-

I'"
~

~K~

1/

6'°c

-...J.r,.....

)'Oo~
/Ji/i'

1/

1/

1

i-"

'-

\..,

\.

Q

I\~

1\,

"\.1\

.....
.....

1\

"\. 1\.1\

I\.

"

I

1\

"'I\. 'I' \ I\.,

I\.

,I "

~~

",

o0" ....

I\,

~I

I\~
,
0

1\

,

~o_t

""-

"-

v

~

'V>o~-t\~ \:-\f- b\\

e

~-

-:0

,~o ~ -~~
'-0

~~-01\. ~
f o~V"
~
~o~ =-o~
,.,.

(0

,
\

~

\

~

40

\

I'

....

\.

r-....
....
",,=' ",I"

70

20

Ii

~'l'

j

I.FAV (A)

\'l\\

"' ....
I"'-~

1

~

.\ \

0

700 Tamb(OC)

200

Fig.2

70,----,--,-r-""~----~--=_~~--~--~--------~~

Max. allowable repetitive peak reverse power+ ~
(f =50Hz)
--I ~

0--

~ RM ~:::.::::"......::====t===t=:j==t:j=t:1:j:j=====::jdissipation versus duration
(kW)

~~~ "
i'oo...

Fkl

. . . . r-............. :--.....
~ ~L ~

~t:'-

L.........

~l""""'"

~

tirne~--~~-r~~'_H
I

i""-.........
"-'t-....... . . . . . ~r:::t:{::t-....

21

-PRRMI-----+---+-+-+-+--+/+-l

pulse duration

1;

~
"'~t--~~~~~OOC'-+---_?~-o--'J----,--..:..,:-,-;:.c..,..,--.----+------+---+-f-+-!H11--H
r.....1 .......

I ....

I-.:/~-T.

........ -.....J.~

r....................

75,

jl

°c

f' 'I-.L .......
~7~Oo~.......
o~oC~+,~r-~~~H_--~~~-J~~~~~~
. .
1------+----+---t--f--+--+~....~~~.......::~.l?Oo '---'1"...........
rl"'.......
~--+-+-l-Hoperatlon in this region ------+---+---+-+--+-+-H-~....
~~~
...... C
....... .......~
is not allowed
t

f---_·-._·===~~===~=~==~~=~~~~==------7?S~.............

I'....

.....

Q5f--____~~~~-,~~+_----C+_............
~~~~~_f_,~~,~----+_--~+_+_~~~
in this region a
....... , ........ ,
~
------ junction temperaturef-------+----+------+~-.....d-r__.~~.....-l--t---=~
..........
--+-----+------+----l----+---t--~
of 775°C is allowed
............. 1-00.... _ ........

-------r---,~--,,~,,+__----~--~--+_+_~~~L~
~~~~--~~___+_~~~

~~~

!l!

Q2

Q02

Q05

07

02

0.5

duration (rns)

70

Fig.3

September 1979

5

FklII:--

Max. allowable non repetitive peak reverse pulse
dissipation in avalanche re'lion versus duration

f-_-+--+-----+---+-+-++++-_----ipower

-f1?SM :

~~!m~

~~+-..po...t---t-"lo.ol--+t1I------I

po...,:--~+-~....J"-+I'-,~,,,t-------

T' I~-,-

~a,--illi~~-~tam
T--+-t--t--t--t-ti

timet I
_" ~l

pulst/ur~~ion

-t-~
I

--+",-+-_+-+-+--+1

~t- ~~~~+~T-t~iiIIH+;i I~!
t'-t"'~~~t-~~~o- --:-+-1 1 il
1

, '1

.............

i

r

:

!?So C
C
I'..

'I I

!
j

I,

I

:

I

'II

I

!

I

1

:

i

-

Q7

70 duratIOn (msJ

700

Fig.4

I
I

300

1

typ
lL

IF

oC

(AJ

{>

qlZil-

~\

200

1/

V

~

c,

H-\"':>c;,.. ....

.

V'

'"

I....
];'
,I.

700
.... /
1/

1/
1/

V

I::::

3

2
Fig.5

6

September 1979

(

5

l

Controlled avalanche rectifier diodes

BYX25 SERIES
72725451

1000

maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )

I FS( RMS)
(A)

rFb

750

-

-- I

~-IFS(RMS)
FSM

time
with reapplied V RWMmax

500

1\

\

"\

IFsM

"I'.

250

~

Tj

...........
r-I'--

o10- 3

I--

10- 2

L
10- 1

=175°C

-

prior to surge

r-- r-tduration (s)

10

Fig.6

September 1979

7

j

BYX30 SERIES

----------------------------------------------------FAST SOFT-RECOVERY RECTIFIER DIODES
Also available to BS9333-F002

• With controlled avalanche

Diffused silicon diodes in 00-4 metal envelopes, capable of absorbing transients.
They are pril!larily intended for use in high-frequency power supplies, thyristor
inverters and multi -phase power rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX30-200 to BYX30-600
Reverse polarity (anode to stud): BYX30-200R to BYX30-600R.

QUICK REFERENCE DATA
BYX30-200(R) 300(R) 400(R) 500(R) 600(R)
Crest working reverse voltage VRWM

max. 200

300

400

500

600 V

Reverse avalanche breakdown
voltage

>

250

375

500

625

750 V

V (BR)R

\.

IF (AV)

max.

14

A

Non -repetitive peak forward current

IFSM

max.

250

A

Non -repetitive peak reverse power

PRSM

max.

18

trr

<

Average forward current

Reverse recovery time

200

kW
ns

Dimensions in mm

MECHANICAL DATA
00-4; Supplied with device: 1 nut, 1 lock-washer
Nut dimensions across the flats: 9.5 mm
10-32UNF

+
4 ,83
max

t

J

~

~

I

,.9J
--

max

t

+

~

*

~

r----Q~8

-----..,

,,-

max ma

• •

'--

.-

9, 3

--. 2,3'"

.max
3,5

min

_10,3_
max

4--

11,5 ____
10,7

4

20,3

max

~

7ZS9SD 2.1

Net mass: 7g
Diameter of clearance hole: max. 5.2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)

Torque on nut: min. O. 9 Nm
(9 kg em)
max. 1. 7 Nm
(I7 kg em)

The mark shown applies to the normal polarity types.
January 1980

BYX30 SERIES

l_ _ __

RATINGS Limiting values in accordance with the Absolute Maximum System (IECl34)
Voltages

1)

BYX30-200(R) 300(R) 400(R) 500(R) 600(R)

Crest working reverse voltage

VRWM

Continuous reverse voltage

max. 200

300

400

500

600

V

max. 200

300

400

500

600

V

Currents
Average forward current (averaged
over any 20 ms period) up to T mb = 100 0 C
at Tmb = 125 0 c

Ip(AV)
IF (A V)

max.
max.

14
7.5

A
A

R. M. S. forward current

Ip(RMS)

max.

22

A

Repetitive peak forward current

IpRM

max.

310

A

IFSM

max.

250

A

I 2t

max.

312

A 2s

Repetitive peak reverse power dissipation
t = 10 J-LS (square wave; f = 50 Hz) Tj = 150 °c

PRRM

max.

5.5

kW

Non-repetitive peak reverse power-dissipation
t = 10 J-LS (square wave) T. = 25 °c prior to surge
= 150 °c prior to surge

PRSM
PRSM

max.
max.

18
5.5

kW
kW

Storage temperature

T stg

-55 to +150

°c

Junction temperature

Tj

max.

150

°c

Non -repetitive peak forward current
(t = 10 ms; half-sinewave) Tj = 150 °c prior to surge;
with reapplied VRWMmax.
12t for fusing (t = 10 ms)
Reverse power dissipation

1j

Temperatures

THERMAL RESISTANCE
From junction to ambient in free air
From junction to mounting base
From mounting base to heatsink

50

°c/w

Rth j-mb

1.3

°C/W

Rth mb-h

0.5

°C/W

Rth j-a

1) To ensure thermal stability: Rth j-a <2.5 0C/W (continuous reverse Voltage) or
< 5 °C/W (a. c.).
For smaller heatsinks Tj max should be derated. Por a. c. see page 5.
For continuous reverse voltage :. if Rth j -a = 5 °C/W, then Tj max = 135 oc.
if Rth j-a = 10 °C/W, then T j max = 120 °c.
2

March 1978](

BYX30 SERIES

Fast soft-recovery rectifier diodes with controlled avalanche

CHARACTERISTICS
BYX 30 - 200 (l\) 300(R) 400(R) 500(R) 600(R)

Porward voltage
IF

= 50 A;

Tj

= 25 °C

<

VF

3.2

3.2

3.2

3.2

3.2

>
250
V(BR)R < 1050

375
1050

500
1050

625
1050

750
1050

4.0

4.0

4.0

4.0

V 1)

Reverse breakdown voltage
IR

= 5 mA;

Tj

= 25 0 C

V
V

Reverse current

VR

= VRWMmax; Tj = 125 °C

'R

<

4.0

rnA

v

Reverse recovery charge when switched from
IF = 2 A to VR ~ 30 V;
with -dIp /dt = 100 A /J.LS; Tj

= 25 0 C

Q

s

<

0.70

J.LC

trr

<

200

ns

Reverse recovery time when switched from
IF = 1 A to VR ~ 30 V;
-dIp/dt = 50 A/J.Ls; T j = 25 °c

•

10%

time

t

100 %

7Z?0734.2

~

OPERATING NOTES
1. Square-wave operation

When IF has been flowing sufficiently long for the steady state to be established, there
will be a charge due to minority carriers present. Before the device can block in the
reverse direction this charge must be extracted. This extraction takes the form of a
reverse transient (see figure above). The majority of the power dissipation due to the
reverse transient occurs during fall time as the rectifier gradually becomes reverse
biased, and the mean power will be proportional to the operating frequency. The mean
value of this power loss Can be derived from the graphs on page 10.

1) Measured under pulse conditions to avoid excessive dissipation.
March 1978

3

BYX30

II

SERIES
OPERATING NOTES (continued)

2. Sine wave operation
Power loss in sine wave operation will he considerahly less owing to the much
slower rate of change of the applied voltage (and consequently lower values of
IRRM). so that power loss due to reverse recovery may he safely ignored for
frequencies up to 20 kHz.

3. Determination of the heatsink thermal resistance
Example:
Assume a diode. used in an inverter.
frequency
duty cycle
amhient temperature
switched from
to

20
0.5
45
12

f

a
Tamb
IF
VR
dI
tit

at a rate

4()()

20

kHz
°C
A
V
A//J.s

At a duty cycle a = 0.5 the average forward current IFAV 6 A.
From the upper graph on page 5 it follows. that at IFAV = 6 A the average forward power + average leakage power = 15 W (point A).
The additional power losses due to switching-off can be read from the nomogram
on page 10 (the example being hased on optimum use, i. e. T j = 1 SO °C). Starting
from IF = 12 A on the horizontal scale trace upwards until the appropriate line
-

~~

= 20 A/ f.1,S.

From the intersection trace horizontally to the right until the

lini! for f = 20 kHz. Then trace downwards to the line V R = 400 V and ultimatdy
trace horizontally to the left and on the vertical axis read the additional average
power dissipation PRA V = 4 W.
Therefore the total power dissipation Ptot = 15 W + 4 W = 19 W (point B of the
upper graph on page 5). From the right hand part follows the thermal resistance.
required at T amb = 45 °C.
Rth mb-a "'"

4 °C/W

The contact thermal resistance Rth mb-h = 0.5 °C/W.
Hence the heatsink thermal resistance should be:
Rth h-a = Rth mb-a - Rth mb-h

= (4

- 0.5) °C/W

= 3.5 °C/W.

The applicable heatsink(s) may then be found in the Section HEATSINKS.

4

II

II

June 1970

BYX30

II

SERIES

7Z063633

p P= power dissipation, exclusive thet-t- Interrelation between the total dissipationt-r-t-r- Tmb

t-r-t-rr-r-r-r- (0C)
60~++++~~~+++4~~~++~~~~++~~~r+++~-rrrr+~~r70

(W)

reverse power in the avalanche r-t- (derived from the left hand graph)
region and switching losses
t-r- and the max. allowable temperatures

aos

a02

May 1970

II

Q7

Q2

QS

2

duration

S
(ms)

70

5

l_______

BYX30 SERIES

FRSM
(kW)

10

Max. allowable non repetitive peak reverse
pulse power dissipation in avaZanche
region versus duration

~
..... .....

5

2

'"""- ........ .......
.....
....... ,
.......
"- ...... ~
f'

~

lo:
---F/?SM

.....
~
~

....

'I' '~
........

1

~

time
I.....c:.f-pulse duration

l;':
~~..?

....

:s''b

~,
V'b ........ i"i"o

~ ....... r-...r-.
~'b
;Sot.......

as

r....

.... ...

!'-....

,

..........

...

..... r....
~

..........

.... 1'

....

.......

~

........

.......

i'-

r--...

........

......... 1-0..

............

.........

1' ...

""

1"-""
.....1'-0
roI"-

l'-. i'-ro-.

10 duration (ms)

Q1

)

-----

08057

Tj

=25°C

~ =150 0 C

,

100

~
~1

I.

II,

,

80

"

III

Ii

~'-

f-r--

II
f

40
I

II

20

If
~

19781 (

~

~I~ .... io""

If

.'

~

~

.~

,, f
J

Ii

~

2

/

"

'f--f max_

l- r-r VF

VF

J

.'

March

II

typ ~- max-,
VF

6

.' 1
I

60

o
o

rJ

II

-

100

BYX30 SERIES

Fast soft-recovery rectifier diodes with controlled avalanche

04569

I FS

Maximum permissible non -repetitive
r,m.s, forward current based on
sinusoidal currents (1= 50Hz)

R.M.S.

(AI

IFV\

\
~

\

300

fltime
each current pulse is followed by
the crest working reverse voltage

,

1\

",

IFSM

\

200

1\

\.
\.

,

100

"-

'

......

Tj =ISO·C prior to surge

i"'~ ...

I

II U

o
10ms

Ims

I
2

Is

lOOms

5

7

lOs

Surge duration

04571

10

1.0

./

./

0.1

:,....-~

V

0.01

lL~
IO)JS 2

5

7

100)JS 2

5

7

Ims

2

5

7

10ms

2

5

7100ms2

5

7

15

5

7

March 1978

lOs

7

BYX30

II

SERIES

7Z09323

1000

typical values

I

~

I

......

~ ~ ~~ ... ""
...... ~~ ...~ ~~

--

~

1/

~~ """'" ~

~ 1:::3
~
r-..

200

III

BYX30-200(R
-300(R)
v -400(R)
v 500(R)
VI'
~~ -600(R)

.:::: ~~ ~:::
~

..@~

100

~~
r-..

50

20

5

2

10

50

20

100

200

VR (V)

1000

7Z09322

30

IR
.~ I-~£

(A)

t-.S

Tj=25°C

E -E I-E

c

·E

20

c

.~

(k r-~ r-(k I-Lk
- 0 r-o 1-0'
- 0 r-O 1-,0
_...r-

er-

~ , ,

0'

0

_In 1-<.0

N

10

e;
g 0x
0

I

' I

I

0

0:-

X

>
m

"gj

,
II
.J

NJ

'll

,

I

'I

500

8

I-

0

-JJ

(\")

II

~

1

L.t

IJ

"'"

IJ.

v
1000

1500

VR (V)

II

2000

March 1968

BYX30 SERIES

Fast soft-recovery rectifeir diodes with controlled avalanche

7Z09319

10

7Z09318

10

~

111.1

\.« ~
~

I

V~~~

)~V ~':>~
./

'2.~

I/"
~

V
v~

./

/.%~

V

~ ~

~

~ /~ ....

0.1

~

~V
./

~~io"

-'""'

,P>-

~

i---" .... ~

.........

I--"'r-'

~

~f-

i~

rm

--

'/II/"

~,,/

~

*

~\~tt
~~~
SA
.....
:/-

I

~

iA

,

I

0.1

.,'A'
fl.

1

I

0.01

III
il

1

-1I

I

I

!

r-i

i I
I
I

I

I'll

Iii Ii

10 _ d I (A/[.l.s) 100

0.01

I

I
i

i

i

I

I I

I

[

1

=

i

II

i

I

r

!

dt

25 °C; switched

I

I

t"

Maximum values; Tj = 150 oC; switched

from 'F to VR ~ 30 V.

from 'F to VR ~ 30 V.
D8055

D8056

Max. values
Tj 25°C

trr

...........

(ns)

~~

....

......

I F= lOA
//5A

.......... ~V

t........

..............

IF= lOA

b~~
1A

:--.:--.

r'"

1'00..

......

:-.......

""" ..........
~ .......... r---.... .......
-............:

t'--.

..........

.......... ~ ....... "'" !"............ ...:--.

r-.......

I/'r-.
t"-o i""-r-. ......
i"-

.......

~

Max. values
r - - Tj 150°C

1~

~ ........ r5~""

1'00....

~r--... . . . r-.

I

10 _dI (Allis) 100

dt

Maximum values; Tj

I ,

i

....... 100..

....

I'-

"'" .,.

!"-

10

1

10

_ ~ (Ai/us)

10
102

dt

March 1978

9

BYX30

II

SERIES

IRRM (A)

5A/~s
IF (A) 10

--I-

)

--:

~ ..........

--t-O

~I-..

1-+-_+___11-+-+-+-+-+-+---+-1

__

PRAV J-+_+___1I-+-+-+-+-+-+-+-f--+-+--l-l--+-+-!I"----1"ood-~-+---1~
.....-f""oI.I"""::-f

500 V-

Tj =2 5°C 1-+-+-+-+-+--r('--',-W-'-4I)-+-+-+-+-+-+-+-+-+----t--t----+-+-+-++--+-t-----t-+6P2 y-+--+-t-+-t-+--!--I

~----~~~~~30~~~~-L~~~~~~~~~~~-L~~

\

o-~ IRRM(A)

...-.

~:t-~~O '...
- -

I

1I

I

...

,

.....

-r- 1::;.

OOA/~s
~A/~s

r-..

J
I
I

~

I
I

I I I

Tj =150 o C

X'-'"

,
,",

.....

~

..........

.....

I

I I I I
I I
~~1.IIc::.,O_ .... _

~
~

..... "

......

In
1-

11
IF=forward current 10
just before switching off
I

I

I

,
,
,

//
foo'"
'/ ~I"'"

~

5

J

I
I

\~

"'1000.1'

~IF(A)10 - - -

J

I(

1\

"-, .,.,

f

1I 1

I

I\, \

I"'-

I

20A/~s

I

4~ r- ~ ~-t--.Q·-t---it~
,

I

r70A/~J

720932.42.
I

J ~20
PRAV
(W)
1 130

~

... r-- I-r--I--....

="""~ I"""i"oo

..... l""o

....

i'o..l""0
......

r--.

.....
~

-I--....

....

r"-Ioo.
I"

r-r-.-- ...

.....1--

r"""
1""0 ....

i'o..
I"

I'-.

..... "'"

I"
I"""to..,
1""""",

I"

. . J6b~-ii-t-I

1"""1'-0

i'o..

VRWM=
200V--

~

........ 40'oV f.... 500V-t--

6POV- -~
I I

i"i i-t-1

Nomogram: Power loss PRAV due to switching only (square wave operation)

10

II

May 1970

SILICON RECTIFIER DIODES

Diffused silicon diodes in metal envelopes with ceramic insulation, intended for power rectifier
application. The series consists of the following types:
Normal polarity (cathode to stud): BYX32-600 to BYX32-1600
Reverse polarity (anode to stud): BYX32-600R to BYX32-1600R

QUICK REFERENCE DATA
600

800

1000

1200
1200R

1600
1600R

800

1000

1200

_B_Y_X_32_--=-60.:...:0:....;,R-+-..:.8~00.:...:R~.....;1..:..0-=-00....:.R..:....j.
Crest working reverse voltage VRWM

max.

600

1200

v

Repetitive peak reverse
voltage

max.

~60.:...:0~-=-8~00~~1~0~~0~1~2~0~0__~16.:...:0~0

v

VRRM

Average forward current

max.

150

A

Non-repetitive peak forward cu rrent

max.

1600

A

MECHANICAL DATA

Dimensions in mm

022
r

--'

insulating tube

- 24'5~1~21J

-50_
r . . _ - - - - - - - 156 - - - - - -_ _
.. 1

Normal polarity

H+): blue cable.

7270229

Reverse polarity ( * ) : red cable.

Net mass: 115 9
Diameter of clearance hole: max. 13.0 mm

Torque on nut: min.
(100
max.
(250

I:

10 Nm
kgcm)
25 Nm
kg em)

October 1979

BYX32
SERIES

II

II

All information applies to frequencies up to 400 Hz.

RATINGS L imitingvalues in accordance with the Absolute Maximum System (IEC la4)
BYX32-

Voltages 1)

600
800
1000
1200
1600
600R 800R 1000R 1200R 1600R

Continuous reverse
voltage

VR

max.

600

800

1000

1200

1200 V

Crest working
rev~rse voltage

VRWM

max.

600

800

1000

1200

1200 V

Repetitive peak
reverse voltage

VRRM

max.

600

800

1000

1200

1600 V

Non-repetitive peak
reverse voltage
(t So 10 ms)

VRSM

max.

650

900

1100

1300

1600 V

Currents
Average forward current (averaged
over any 20 ms period) up to T mb = 100 °c
at Tmb = 125 °c

IF1AV)

IF~AV)

max.
max.

150 A
115 A

Forward current (d. c.)

lp

max.

240 A

R. M. S. forward current

IF(RMS) max.

240 A

IFRM

max.

750 A

IFSM
12t

max. 1600 A
max.12800A 2s

Storage temperature

T stg

-5Sto+200 °c

Operating junction temperature

Tj

max.

Repetitive peak forward current
Non-repetitive peak forward current
(t = 10 ms; half sine wave) Tj = 190 °c prior to surge
I squared t for fusing (t = 10 ms)
Temperatures

190°C

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

From mounting base to heats ink
without heatsink compound

Rth mb-h

O.l C/W

From mounting base to heatsink
with heats ink compound
(Dow Corning 340)
Transient thermal impedance; t = 1 ms

Rth mb-h
Zth j-mb

o
0.04 C/W
0.02SoC/W

o

1) To ensure thermal stability: Rth j-a < 0.75 °C/W (continuous reverse voltage)
or < 1. 5 °C/W (a. c. )
For smaller heats inks T j should be derated. For a. c. see graph on page 3.
Por continuous reverse voltage: Rth j-a =1 ~C/W, then Tjmax = 184 ~C
Rth ~-a :1.2oC/W, then '!Jmax ==- 180 oC
Rth ]-a -1.5 C/W, then Tjmax - 175 C

2

II

II

June 1974

BYX32

II

SERIES

CHARACTERISTICS

BYX32- 600(R)
Forward voltage
IF = 500 A; T j

= 25

°c

1200(R) 1600(R)

1000(R)

<

1,6

1,6

1,6

1,6

1,6

IRM <

24

18

15

12

12

VF

Peak reverse current
VRM = VRWMmax
Tj = 175 oC

800(R)

V 1)

rnA

7Z58648

p

single phase: a;: 1.6
: 0=1.75
6-phase
: 0=2.4

250

,,

/11

YI

/

1-'01°C/W'
.
'"
0.2'~
';

R'th mb-Q, ,

, , , /d.~.

1

II

ri~2.14

200

,

1.75- 1.6

,

1
11

interrelation between the power
(derived from the left hand graph)
and the max. allowable temperatures

Q= IFIRMS)
IFIAV )

(W ) 3- phase

I
'I

I

150
I
I

If

100

~

/

IJ

i' ,

~~

I/'

I(

IJ
IJ

..,....

.,....

-....L..

hr/

50
~
~~

~

~

1/

50

100

110

,,

""- ,
..... """ ,
,.....
" " ""- ,
.....
"" .,
.... ....
.... .... ,,"

130

1\ ,

"

~

"-

\.

1\

1\

.... 1.5

.... 21

II/.
rJ"£

\..
~

~

F
)

II

~

1'0.8

,

1\
~

"NJ·6

J

'1/

I'~

IL

,,

,0.4

'/'

o

2.5
1
1
1
1

~

r-..

1\

,~

r-...

i'o..

....

150

"

.....

,

\..

,.

I'\."~
~,

=

i"""-.;;~l:'

1

I"'"

50

170

..... ~ ~"-\,

~, ..... ~~I
i""" .... ,,~
~~ r - 100

':<) T mb -scale is for comparison purposes only andis correct only for Rth mb-a

~

1. 1 °C/W

APPLICATION INFORMATION AND OPERATING NOTES
See general pages at the beginning of this section.

1) Measured under pulse conditions to avoid excessive dissipation.

June 1974

II

3

BYX32
SERIES

3000

II

II
?ZS6S47

I
I
I
I

IIIIII1
I
II III
I I
maximum permissible non-repetitive
r,m,s, forward current based on
sinusoidal currents (f=50Hz)

IFS(R MS)
(A)

It~

~

~

2000

~time

each current pulse is followed by
the crest working reverse voltage

\.

,

I\,

"-

I\"
\..

1000

" "-i'

Tj =190°C (prior to surge)
1""'--0..

r-..

103

10 2

10

duration (s)

600
IF
(A)

500

7Z56646

I I I I I
I I

I

I I

I

I-r- r- -Tj=2SoC
I-r- r- --1j=190oC

max
I I
II.
I

ty~:

400

I
1

.

/I

lL

, JV'.'

300

!1
II

I

II
I

I
1

IL

200

II

II

'I
III

1

100
~

,...

• J I

lL

,~

" '"

1/

0,5

4

II

II

June 1970

BYX32
SERIES

II

7Z59115

10

1== transient

thermal impedance from junction to mounting base versus time

mb

)

V~

-

--

,.
V"

10

June 1970

[1

5

j

BYX38 SERIES

--------------------------------------------------------SILICON RECTIFIER DIODES
Also available to BS9331-F127
Silicon rectifier diodes in 00-4 metal envelopes, intended for use in power rectifier applications. The
series consists of the following types:
Normal polarity (cathode to stud): BYX38-300 to 1200.
Reverse polarity (anode to stud): BYX38-300R to 1200R.

QUICK REFERENCE DATA
BYX38-300( R)

1200(R)
1200 V

300

Repetitive peak reverse voltage

VRRM

max.

Average forward current

IF(AV)

max.

6

A

Non-repetitive peak forward current

IFSM

max.

50

A

MECHANICAL DATA

Dimensions in mm
1,0
0,8

00-4

-'11'max
4,0

~
I

Il---~~~-~~o-~ ~h Elj. .

4,83

max
I

~~~_

I

~----------+-1.---t----+------6 I

__

min

:

----11,0---

-.. 3,2 __
max
_9,3_
max
___ 11,5
l - - - - - - - 20,3 _ _~•• ,
10,7
max
7Z65355.2

_I. .

Net mass: 6 9
Diameter of clearance hole: max. 5,2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)
56262A (mica washer, insulating ring, plain washer)

Torque on nut: min. 0,9 Nm
(9 kg cm)
max. 1,7 Nm
(17kgcm)

Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 9,5 mm
The mark shown applies to normal polarity types.

'I

January 1980

BYX38
SERIES

JI

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

BYX38- 300(R) 600(R) 1200(R)

Non - repetiti ve peak reverse
voltage (t :5 10 ms)

VRSM

Repetitive peak reverse
voltage (8 :5 0,01)

max.

300

600

1200

V

VRRM

max.

300

600

1200

V

Crest working reverse voltage

VRWM

max.

200

400

800

V

Continuous reverse voltage

VR

max.

200

400

800

V

Currents
Average forward current (averaged over
any 20 ms period) up to T mb = 110°C
atTmb = 125 °c

IF(AV)
IF(A V)

max.
max.

R.M.S. forward current

6
4

A
A

IF (RMS)

max.

10

A

Repetitive peak forward current

IFRM

max.

50

A

Non-repetitive peak forward current
(t = 10 ms; half sine-wave) Tj =1500C prior to surge;
with reapplied VRWMmax
12 t for fusing (t = 10 ms)

IFSM

max.

50

A

I 2t

max.

13

A2s

Temperatures
Storage temperature

T stg

-55 to +150

Junction temperature

Tj

max.

150

°c
°c

THERMAL RESISTANCE

From junction to ambient in free air

Rth j~a

50

°c/w

From junction to mounting base

Rth j~mb

4

°C/W

From mounting base to heatsink
with heats ink compound

Rth mb-h

0,5

°C/W

Rth mb-h

0,6

°C/W

Zth j-mb

0,3

°C/W

without heats ink compound
Transient thermal impedance; t

2

II

= 1 ms

February 1978

II

II

BYX38
SERIES

CHARACTERISTICS
Forward voltage
IF

= 20 A; T j = 25

°c

VF

<

Reverse current
VR

= VRWMmax; Tj = 125

°C

<

200

!JA

OPERATING NOTES
1. The top connector should neither be bent nor twisted; it should be soldered into the
circuit so that there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
2. Where there is a possibility that transients, due to the energy stored in the transformer, will exceed the maximum permissible non - repetitive peak reverse voltage,
see General Section for information on damping circuits in Data Handbook Part SC 1a.

1) Measured under pulse conductions to avoid excessive dissipation.

3

BYX38

II

SERIES

II
7272547

single phase: a = 1,6
: a = 1)5
3-phase
: a = 2,4
6-J1hase

interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures

IF(RMS)

a=

IF(AV)

90

15
p
(W)

10

"- 101'8
...... r--..,.

1,75/ /1,6

"

/ 1/
0=2,4/

/ /

L/ /

~

,
~~

V/ /

5

i'~

"

f'\.
'",.........

..............

~~
~~ V
~~
.....

o
o

5

2,5

7,5 0

,

\.

l"\

I'!..

~

110

\

\

\
\ \
b.... ~ '\ \ \
130
"- ~ ~
......~ ~ \..' \
I"- ~
........
......... ~ ~ ~
.............
~ ~~
-....;::
~ 150
r-.... ~

50

""- '\
100

150
Tamb (oel

(AI

IF!AV)

Rth mb-a=_

'-6 1'\.4 1\2 \0,5°e/W

7Z72254

60

I
I
I

I - T j = 25°C
o
I I ---lj =150 C

,

I I'

iy~ Imla~

,
-'

,

,

40

II

I'

[I

,
I

I

I'
~

,

20

III

-'

rl

:1

II
I

If

1
J
I I I

.'

./

I.l

2

4

1.1

4

II

November 1975

II

BYX38

II

SERIES

7Z72546

60

maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )

1\
\
IFS(RMS)

\

(Al

,

IFV\

I FSM

1\

~-IFS(RMS)
time

"

40

~-IFSM

~

with reapplied V RWMmax

"

"\.
.~

,

I'-

.....

T""

20

~j

=150°C prior to surge
-~

o

10- 3

duration (s)

10

7Z72548

10

. / i--"" ""~

k.....- r-

/'

L

i"'"

~ .....

time (5)

November 1975

II

10

5

CONTROLLED AVALANCHE RECTIFIER DIODES
Also available to BS9333-F005
Silicon diodes in a DO-4 metal envelope, capable of absorbing transients and intended for use in power
rectifier appl ication.
The series consists of the following types:
Normal polarity (cathode to stud): BYX39-600 to BYX39-1400.
Reverse polarity (anode to stud): BYX39-600R to BYX39-1400R.
QUICK REFERENCE DATA
BYX39-600(R) aOO(R)
Crest working reverse voltage VRWM

max.

Reverse avalanche breakdown
voltage
V(BR)R

>

1000(R)

1200(R)

1400(R)

600

aoo

1000

1200

1400

V

750

1000

1250

1450

1650

V

~----------~vr-------------~

Average forward current

max.

9.5

A

Non-repetitive peak forward
current

max.

125

A

Non-repetitive peak reverse
power dissipation

max.

4

IF(AV)

MECHANICAL DATA

kW
Dimensions in mm

1,0

0,8

Fig. 1 DO-4

---II~
max

11 ~h

4,0
4,83

max

.---_ ___."'-'0
1,98 ____.1
max

1,6
min

__

~

e

I---11,0 _______I

__ 3,2 __
max

_9,3 ____
max

___ 11,5 _
10,7

___ __ 20,3_
max

_ __
7Z653S5.2

Net mass: 6 g
Diameter of clearance hole: max. 5.2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag).

Torque on nut:
min. 0.9 Nm (9 kg em),
max. 1.7 Nm (17 kg em).

Supplied with device: 1 nut, 1 lock-washer.
Nut dimensions across the flats: 9.5 mm.
The mark shown applies to normal polarity types.

I

September 1979

+-

l

BYX39 SERIES

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC134)
~

Voltages*
Continuous reverse voltage

VR

Crest working reverse voltage VRWM

BYX39-600(R) 800(R)

1000(R)

1200(R)

1400(R)

max.
max.

600

800

1000

1200

1400

V

600

800

1000

1200

1400

V

"

;

y

Currents
Average forward current (averaged over any
20 ms period) up to T mb = 85 0 C
at T mb = 125 °C

IF(AV)
IF(AV)

max.
max.

9.5
6.0

A
A

R.M.S. forward current

IF(RMS)

max.

15

A

Repetitive peak forward current

IFRM

max.

100

A

Non-repetitive peak forward current
t = 10 ms (half sine-wave); Tj = 175 °C prior to surge;
with reapplied VRWMmax

IFSM

max.

125

A

t

max.

78

A2 s

PR(AV)

max.

10

W

Repetitive peak reverse power dissipation
t = 10 p.s (square-wave; f = 50 Hz); Tj = 125 0C

PRRM

max.

2

kW

Non-repetitive peak reverse power dissipation
t = 10 p.s (square-wave)
Tj = 250C prior to surge
Tj = 1750C prior to surge

PRSM
PRSM

max.
max.

4
0.8

kW
kW

-55 to +175

°C

175

°C

2

1

t for fusing (t

= 10 ms)

12

Reverse power dissipation
Average reverse power dissipation
(averaged over any 20 ms period); Tj

= 1250C

Temperatures
Storage temperature

T stg

Junction temperatu re

Tj

max.

*To ensure thermal stability: Rth j-a ,,;;; 5 °C/W (continuouse reverse voltage) or";;; 20 0C/W (a.c.)

2

September 1979

(

BYX39 SERIES

Controlled avalanche rectifier diodes

THERMAL RESISTANCE
From junction to ambient in free air

Rth j-a

50

°C/W

From junction to mounting base

Rth j-mb

4.5

°C/W

From mounting base to heatsink
without heatsink compound
with heatsink compound
with mica washer

Rth mb-h
Rth mb-h
Rth mb-h

1.0
0.5
2.0

°C/W
°C/W
°C/W

Transient thermal impedance; t = 1 ms

Zth j-mb

0.35

°C/W

CHARACTERISTICS
BYX39-600(R) 800(R)
Forward voltage
IF = 20 A; Tj = 25 °C

VF

Reverse avalanche breakdown
voltage
I R = 5 mA; Tj = 25 °C
V(BR)R

1000(R)

1200(R)

1400(R)

<

1.7

1.7

1.7

1.7

1.7

V*

>

750

1000

1250

1450

1650

V

<

2000

2000

2000

2200

2400

V

<

200

200

200

200

200

JJ..A

+-

Reverse current
VR = VRWMmax;
Tj = 125 °C

IR

OPERATING NOTES
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.

*Measured under pulse conditions to avoid excessive dissipation.

September 1979

3

BYX39 SERIES

L"'-----_ __
7Z668551

20

I
II

p

l

(W)

I

,

17

a=2,4
l- V; _ 1,75
fjl-- -1,6

15

Z

I IJ

'I

I!J
II) r.t

5

\

\

,

~I

.......

~
\?~

\.

\

'I

r--....

"-

"

"0
'r-....

....... ~$

I" ~O ....... r--...,
........ ~S ... ........ ......

'\~

-

'\

~
......... r.....
.........

~

\

\.

"-

\

r\

"-

I\.

~
........ ........ ......... r--....
....... ...... ..............
...... """"
.........

Ii V

10,

5

15 25

r--...,

100..

~

o

\ -1$'0

\vto-.. '-\~i:.

\..

,

107,5

\~

\

'\

IVI
W.V

o

\1l

\
\..

T III
I

85

\

\.
'\

'\..

I II
7 II

10

~

\.

75

r-....

130

~

\

\

.'.:

,

r\

"'\f\:f\

152,5

....... ~ r'\ 1\.\
-r--.: ~ ~ ~ ~~.... 1'=: ~ ~
175
125
175
Tamb (oC)

IF(AV) (A)

Fig.2
The right-hand part shows the interrelationship between the power (derived
from the left-hand part) and the maximum
permissible temperatures.
P = dissipation excluding power in the
avalanche region.
single phase: a::: 1.6
3-phase
: a::: 1.75
6-phase
: a ::: 2.4

D2640 Q

60
I

IF

",
)

(A)

I

50
I

I

I
II

max VF
30

Tj=25°C

,

I

rT

J
",
J

II

40

I

I

'f max

a = IF(RMS)/IF(AV)
VF

1~ Tj =17SoC

-I-I-'---I--

II
JT
IJ

20

,

10

,,"

'1'1

o

4

.... ~

~

o

September 1979

Fig.3

(

BYX39 SERIES

Controlled avalanche rectifier diodes

n66857

60

1'- IX" PRRM = 2 kW

I
I

1

"- ~
J'-

V

I

1

Fl,5! '"
7
I
I
II

II

40

f
1/

I

~

'"

if

,,
I

square pulse lf = 50 Hz I-

1J

J

,

7

,,

I

I

I

""""
j

500W/

II

20

I

I
I

11'0..

"- i"-

I

"

V

/

......

......

I

~

200,
V

/

/

J

/

V

/

o

1/

V

V

I I

,

r-...

"

.........

'/

)

/
~

.........

100 )
/

!/

/

r-....

.........

.........

?O)'

r-....

r--

10- 3
10- 2
square pulse duration (8)

10- 5
Fig.4

7Z66856

30

I

I

I I

T I I I
square pulse
f - 400 Hz

~

f-

I-

\

~PRRM - 1,5 kW
lV\
20 1/ \
I-

H

\

\

1
1\
f---ll
1 1\
I
\
\
I
10
\
I

\
I
I
I'\.
7
1L-750W!
I

/

o
10- 5

/

""

1'1...

500]
.A'

~""~ J9?
I

y

10- 4
Fig.5

square pulse duration (s)

JC

September 1979

5

........ _ _ _ _ _ _ .,.JL......IIW.. . . . . . .".,..... 'L.uJI.J.lJL.

l_ _ __

BYX39 SERIES

7Z66859

10

max. allowable non-repetitive peak
reverse power dissipation in
avalanche region versus pulse duration

P RSM
(kW)

PRlJIPRSM

~

~

.............
~

""

~

......

r--......

r--......... ...........
........

r--.....

r--....

i"'" :-"1"-

~i"'"

l::stOc

r-.I"- 1"-"",

r--.....

............

.....

II

........

i"-o..

125

~

f'......

~~"'"

'"

~

150...............

~

I"-

~

1'-"

""~

. . . . 1'"

~1~5

~

['.....

i"- ,....

f'

t"-I"-

""r......

I.....

~

t"-"

J'..r--.",

10- 4

IFS(RMS)

10- 3

,
1\

150

"

.....

~ f'.. ~

'"

i"I"

I'..

1......

1'

r--..~

t'1'
I"

pulse duration (s)

""
10- 2

7Z66858.1

\

(A)

.......... ~

"~

Fig.6
200

-tlme

I.- pulse duration

prior to surge

f""'..

!'.....

r-.....

-

....................75 ...................

..........

i""ooo..

............

_I

r--...... .........

.

maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )
IF

,

\

time

,

~

I'

V\----~ I FSM

I FSM

with reapplied VRWMmax
Tj

,

= 175 °c prior to surge

100

i'..

"- ..........
I'-r-.

50

r---.....

o

10- 1

10- 3

Fig.7

6

September 1979

(

---

t--r-.

r--- t-duration (s)

10

_ _ _ _J

BYX42 SERIES

SILICON RECTIFIER DIODES
Also available to BS9331-F128
Diffused silicon rectifier diodes in DO-4 metal envelopes, intended for power rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX42-300 to 1200.
Reserve polarity (anode to stud):
BYX42-300R to 1200R.
QUICK REFERENCE DATA
BYX42-300(R)

1200(R)

VRRM

max.

1200 V

Average forward current

IF(AV)

max.

12

A

Non-repetitive peak forward current

IFSM

max.

125

A

Repetitive peak reverse voltage

300

Dimensions in mm

MECHANICAL DATA
DO-4

1,0

0,8

-'11<4max

~

u---*~.--_-_-_~___-:j-o+J+-1_~-,-h ED .
4,0

4,83

max

I

1,98_1
max

_

1,6
min

__

•

..

I

-----11,0-

3,2 __
max

_9,3 ____
max

___ 11,5 ---..---- __ 20,3 _____ ___
10,7

max

7Z65355.2

Net mass: 6 9
Diameter of clearance hole: 5,2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)
56262A (mica washer, insulating ring, plain washer)

Torque on nut: min. 0,9 Nm
(9 kg em)
max. 1,7 Nm
(17 kg em)

Supplied with device: 1 nut, 1 lock washer
Nut dimensions accross the flats: 9,5 mm
The mark shown applies to normal polarity types.

January 1980

BYX42

II

SERIES

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

BYX42 - 300(R)

600(R)

1200(R)

Non-repetitive peak reverse
voltage (t s 10 ms)

VRSM

max.

300

600

1200

V

Repetitive peak reverse voltage
(6 s 0,01)

VRRM

max.

300

600

1200

V

Crest working reverse voltage

VRWM

max.

200

400

800

V

VR

max.

200

400

800

V

Continuous reverse voltage
Currents

A verage forward current (averaged
over any 20 ms period) up to T mb = 115 °C
at T mb = 125°C

IF(AV)
IF (AV)

max.
max.

12
10

A
A

R. M. S. forward current

IF(RMS)

max.

20

A

IFRM

max.

60

A

Non-repetitive peak forward current
(t = 10 ms; half sine-wave) T j = 175°C prior to surge;
IFSM
with reapplied VR WMmax

max.

125

A

Repetitive peak forward current

Temperatures
Storage temperature

T stg

-55 to +175

°c

Junction temperature

Tj

max.

°c

175

THERMAL RESISTANCE

50

oC!W

Rth j-mb

3

°C/W

Rth mb-h

0,5

°C/W

From junction to ambient in free air

Rth j-a

From junction to mounting base
From mounting base to heatsink
CHARACTERISTICS

Forward voltage at IF
Reverse

curreJ.~

at VR

= 15 A;

Tj

= 25

°c

= VRWMmax; Tj

= 125 °C

VF

<

1,4

V

IR

<

200

f.!A

1)

MOUNTING INSTRUCTIONS

The top connector should neither be bent nor twisted; it should be soldered into the
circuit so that there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.

1) Measured under pulse conditions to avoid excessive dissipation.

2

II

February 1978

BYX42

II

SERIES

II

7Z72553

interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures

'F(RMS)

a=

'F(AV)

I

2,2/
2,8J

0=4/
II

(W)

J

j

1/ 1/
11"/

I
10

I

I
1/

I
j

1J

/
/

I'\.

/

"

~V
~V

/

,

o
o

I

....

-t--Iooo.

o

10

.....

......

r-...

.......

...........

......
c-t--I-100

1\

,

1\

'\.

...... ~

I
I
I

IF(AVl (A)

.......

r"

i""'o ....

~
5

~

1\
\

,

,

~

~O .....
Ir-...

I
I

,

\.

.....

1-..... ~

l..!ii:1IIi

03
\ () <{
\~ "\\

I'\.

~S

~

,

'\

......

/. ~~

...

I\.S

",",0

~~
/.~

I/.

,

1/

1// 1/
/
/

115

, t-'- ~~~

'\

1/

If

1/

If

I

1,9 f-+-1.6

,

20

P

I
I

I\.

,

145

1\

,

1\

'\

\

,

..... '\.\\
..... ~

~~

r-

~

175

200

':') Tmb-scale is for comparison purposes only and is correct only for Rth mb-a ::s 22
7Z72552

75

II

max. values

1/
II

I

I

I

Tj

=25°C I-r--r.
1/

I
I
II

50

I
II J
'I

J

III
I,

,

25

rl

J

I~

r

, rl
1//

o
o

//
..... I-"":~

2

II
I

175°C

-

°ejW

BYX42

II

SERIES

7Z72554.

200

maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )

IFSIRMS)

(AI

\

150

lt~

,
l\.

~-IFSIRMS)

time

,

with reapplied V RWMmax

IFSM

I\.

100

~-IFSM

,
I\.

"-

"'

50

"

. . . r--.
ro-ro-

Tj =175 °c prior to surge
~ lillill

lill

o10-3

4

10- 2

II

10- 1

lJll

duration (s I

II

10

November 1975

jl

BYX45 SERIES

---------------------------------------------------------'
CONTROLLED AVALANCHE RECTIFIER DIODES
Also available to BS9333-FOO4

Diffused silicon diodes in a DO-1 metal envelope, capable of absorbing transients. They are intended
for rectifier appl ications and particu larly su ited for seri es operation.
The series consists of the following reverse polarity types (anode to case):
BYX45-600R, BYX45-800R, BYX45-1000R, BYX45-1200R and BYX45-1400R.

~

QUICK REFERENCE DATA
BYX45-600R

BOOR

1000R

1200R

1400R

~

Crest working reverse voltage

VRWM

max.

600

800

1000

1200

1400 V

Reverse breakdown voltage

V{BR)R

>

750

1000

1250

1450

1650 V

v
Average forward current

IF (AV)

max.

1.5

A

Non repetitive peak forward current

IFSM

max.

40

A

Non repetitive peak reverse power

PRSM

max.

2.5

kW
Dimensions in mm

MECHANICAL DATA
Fig. 1 DO-1

-17.2max7.7max -

l.lmax

a

t

-

k

~~a-x~--~----J

----35min-----I...·f-------51 min

7Z11073"

9.6max

September 1979

l_ _ __

BYX45 SERIES

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC134)
~

Voltages

BYX45-600R

800R

1000R

1200R

1400R

Crest working reverse voltage

VRWM

max.

600

800

1000

1200

1400 V

Continuous reverse voltage

VR

max.

600

800

1000

1200

1400 V

~----------~vr-------------J

Currents
Average forward current
(averaged over any 20 ms period)

IF(AV)

max.

1.5

R.M.S. forward current

IF(RMS)

max.

2.4

A

Repetitive peak forward current

IFRM

max.

15

A

Non-repetitive peak forward current
t = 10 ms (half sine-wave); Tj = 150 oC prior to surge;
with reapplied VRWMmax.

IFSM

max.

40

A

12 t for fusing (t = 10 ms)

12 t

max.

8

Repetitive peak reverse power dissipation
t = 10 JIS (square-wave; f = 50 Hz); Tj = 125 °C

PRRM

max.

800

W

Non-repetitive peak reverse power dissipation
t = 10 JIS (square-wave)
Tj = 250C prior to surge
Tj = 150 0C prior to surge

PRSM
PRSM

max.
max.

2.5
800

kW
W

-55 to +150

°C

150

°C

A

A 2s

Reverse power dissipation

Temperatures

2

Storage temperature

T stg

Junction temperature

Tj

September 1979

.(

max.

BYX45 SERIES

Controlled avalanche rectifier diodes

THERMAL RESISTANCE

Effect of mounting on thermal resistance Rth j-a
The quoted values apply when no other leads run to the tie-points. If leads of other dissipating
components share the same tie-points, the thermal resistance will be higher than that quoted.
1.

Mounted on solder tags at a
lead-length a = 10 mm. Rth j-a

= 60

°C/W

2.

Mounted on solder tags at a = maximum
lead-length. Rth j-a = 70 °C/W

3.

Mounted on printed-wiring board at a = maximum
lead-length. Rth j-a = 80 °C/W

4.

Mounted on printed-wiring board at a
lead-length a = 10 mm. Rth j-a = 90 °C/W

1-=~_-Ir-----II

0 __ 1

7Z59016

7Z59017

SOLDERING AND MOUNTING NOTES

1.

At a soldering iron or bath temperature of up to 245 oC, the maximum permissible soldering time
is 10 s if the joint is 5 mm from the seal, 3 s if it is 1.5 mm from the seal.

2.

At a temperature between 245 °C and 400 0C (max.), the joint must be more than 5 mm from the
seal and soldering time must not exceed 5 s.

3.

Leads should not be bent less than 1.5 mm from the seal; exert no axial pull when bending.

September 1979

3

BYX45 SERIES

l

CHARACTERISTICS

-r
Forward voltage
IF = 5 A; Tj = 25 °C
Reverse avalanche breakdown
voltage
I R = 1 mA; Tj = 25 °C
Reverse cu rrent
VR = VRWMmax; Tj = 125°C

VF

V(BR)R

IR

BYX45-600R

800R

1000R

1200R

1400R

<

1.45

1.45

1.45

1.45

1.45

V*

>

750

1000

1250

1450

1650

V

<

2000

2000

2000

2200

2400

V

<

100

100

100

100

100

JlA

*Measured under pulse conditions to avoid excessive dissipation.

4

September 1979 , (

BYX45 SERIES

Controlled avalanche rectifier diodes

7Z11022 2

interrelation between the power
(derived from the left hand graph)
and the max. allowable ambient
temperature

P:: power dissipation.
excluding the reverse power
in the avalanche region
a=

h(RMS)

I FAv
C/

~.

2

I)

,I\.~~

J

I\.IY
.
, \>

~ V

P
(W)

t-..~/
q;,

~-

cJ
If

)

1/

J
VV'"

,,'\",,~°

1/

1/
~

~

I\.

~

~J

ry.

1\

1/11' If"
1/1/ V
If /r/ /
~
17
1/
1/
V

<2I\I\~

~

"'It'"
0

70 C/W
v
800 C/W
v
90o C/W

f\.
"

'V, "I\.

~'I\.'

111/11' I.f'
r/. v

"

~"

~.,

~~

~~
~

II:~'.....
~r.~

..
....

~

""

o
o

.1

o

2

IFAV (A)

100

Tamb (OC)

200

Fig.2
7Z 11021.

P RSM
(kW)

max. allowable non repetitive
peak reverse pulse power
dissipation in avalanche
region versus pulse duration

'~ i'-.
......... r--- . . .

""-

......

........

,...."

" I'-.. ~ r-...

PRUr:

- - PRSM

"-

t-

"...

""" "

i""..

I-.....

.........

f".,..

~

'"

-I

1'-,...."

............
..........

r-.....

I"'"

"'"
1"-"", "'"

~ r-..... "

time

1- puLse duration

I'

"

~ r--..... r.....
~

I"'iiO:

~

100..

Tj (prior to surge)

.....

""~

100..

'"
3

10
Fig.3

............

.....

"

t'-....

1''''''

25°C
75°C
125°C
150°C
104 puLse duration(l-ls)10 5

September 1979

5

BYX45 SERIES

l_ _ __
7Z 1102.02

100

max. permissible non repetitive r.m.s.
forward current based on sinusoidaL
currents (f:50Hz)

IFV\

IFS(RMS)

(A)

1\
\

,
1\

t

I_duration-I
each current pulse is followed by
the crest working reverse vo Ltage

1\
50

f\

\

~

\..

"'-

.......... t--,
100..

r- r-.

Tj ::15

I-

°c (prior
II III

to surge)

I

FigA
7Z11071

maximum vaLues

I-- I-- I--

V~

~ t::

10

~

~

I..-

r,
1/

~

/
Tj =150°C 1/ il25°C

II II
I

I

I I

II II
II

1

2

I

,

I

I

II I
II II
2

Fig.5

6

September 1979

VF (V)

I liT

10 2
duration (s)

10

3

j

BYX46 SERIES

----------------------------------------------------FAST SOFT-RECOVERY RECTIFIER DIODES
• With controlled avalanche
Diffused silicon diodes in 00-4 metal envelopes, capable of absorbing transients_ They are primarily
intended for use in high-frequency power supplies, thyristor inverters and multi-phase power rectifier
appl ications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX46-200 to BYX46-600.
Reverse polarity (anode to stud): BYX46-200R to BYX46-600R

QUICK REFERENCE DATA
BYX46-200(R) 300(R) 400(R) 500(R) 600{R)
Crest working reverse voltage

VRWM

max.

200

300

400

500

600 V

Reverse avalanche breakdown voltage

V(BR)R

>

250

375

500

625

750 V

Average forward current

IF(AV)

max.

22
300
18

IFSM

max.

Non-repetitive peak reverse power

PRSM

max.

Reverse recovery time

trr

<

Non-repetitive peak forward current

A
A
kW
ns

200

Dimensions in mm

MECHANICAL DATA
00-4 Supplied with device: 1 nut, 1 lock-washer
Nut dimensions across the flats: 9,5 mm

10-32UNF

•

4 ,S3
max

t

J

~

t-

+ t

~

*

I
~

-o-Zs
max
-.....

r

• •

'--

1,9SJ
3,5 ..........
--- _10,3_

max

~

... 23 .....

max

..-- 11,5 __ _
10,7

max

9, 3
ma x

min

20,3
max

Net mass: 7 g
Diameter of clearance hole: max. 5,2 mm
Accessories supplied on request: 56295
(PTFE bush, 2 mica washers, plain washer, tag)

~

7Z6980 2.1

Torque on nut: min. 0,9 Nm
(9 kg cm)
max. 1,7 Nm
(17 kg cm)

The mark shown applies to the normal polarity types.

February 1978

BYX46 SERIES

l_ _ __

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages *

BYX46-200(R) 300(R) 400(R) 500(R) 600(R)

Crest working reverse voltage

VRWM

max.

200

300

400

500

600 V

Continuous reverse voltage

VR

max.

200

300

400

500

600 V

Currents
Average forward current (averaged over
any 20 ms period)
uptoTmb= 100 0 C
IF(AV) max.
at T mb = 125 °C
IF(AV) max.
R.M.S. forward current
IF(RMS) max.
Repetitive peak forward current

22
15

A
A

35

A

400

A

IFRM

max.

IFSM
12 t

max.

300

A

max.

450

A2 s

Repetitive peak reverse power dissipation
t == 10 p,s (square wave; f = 50 Hz)
Tj = 100 0 C
PRRM

max.

9,5

kW

Non-repetitive peak reverse power
dissipation t = 10 p,s (square wave)
Tj = 25 °C prior to surge
Tj == 165 °C prior to surge

max.
max.

18
4

kW
kW

-55 to +165

oC

165

°C

Non-repetitive peak forward current
(t = 10 ms; half-sinewave) Tj = 165 0C
prior to surge; with reapplied
VRWMmax
12 t for fusing (t = 10 ms)

Reverse power dissipation

PRSM
PRSM

Temperatures
Storage temperature

Tstg

Junction temperature

Tj

max.

THERMAL RESISTANCE
From junction to ambient in free air

Rthj-a

50

From junction to mounting base

Rthj-mb

1,3

°C/w

From mounting base to heatsink

Rth mb-h =

0,5

°C/W

°C/W

* To ensure thermal stability: Rth j-a < 2,5 °C/W (continuous reverse voltage) or < 5 °C/W (a.c.). For
smaller heatsinks Tj max should be derated. For a.c. see page 5. For continuous reverse voltage: if
Rth j-a == 5 °C/W, then Tj max = 135 °C; if Rth j-a = 10 oC/W, then Tj max = 125 °C.

2

March

19781 (

BYX46 SERIES

Fast soft-recovery rectifier diodes with controlled avalanche

CHARACTERISTICS
BYX46-200(R) 300(R) 400(R) 500(R) 600(R)
Forward voltage
IF = 50 A; Tj = 25 °C

VF

Reverse breakdown voltage
I R = 5 mA; Tj = 25 °C

V(BR)R

Reverse current
VR = VRWMmax; Tj = 125 °C

IR
Reverse recovery charge when switched from
IF = 2 A to V R ~ 30 V;
-d I F/dt = 100 A/J.ls; Tj = 25 0C
Os
Reverse recovery time when switched from
IF = 1 A to V R ~ 30 V;
-dlF/dt = 50 A/J.ls; Tj = 25 0C
trr

<

2,0

2,0

2,0

2,0

>

<

250
1050

375
1050

500
1050

625
1050

<

4,0

4,0

4,0

4,0

2,0 V *
750 V
1050 V
4,0 mA

<

0,70

J.lC

<

200

ns

•

10%

time

t

100%

7270734.2

~

OPERATING NOTES
1. Square-wave operation
When I F has been flowing sufficiently long for the steady state to be established, there will be a
charge due to minority carriers present. Before the device can block in the reverse direction this
charge must be extracted. This extraction takes the form of a reverse transient (see figure above).
The majority of the power dissipation due to the reverse transient occurs during fall time as the
rectifier gradually becomes reverse biased, and the mean power will be proportional to the operating
frequency. The mean value of this power loss can be derived from the graphs on page 10.

* Measured under pulse conditions to avoid excessive dissipation.

March 1978

3

BYX46
SERIES

II

II

OPERATING NOTES (continued)

2. Sine wave operation
Power loss in sine wave operation will be considerably less owing to the much
slower rate of change of the applied voltage (and consequently lower values of
IRRM), so that power loss due to reverse recovery may be safely ignored for
frequencie s up to 50 kHz.
3. Determination of the heatsink thermal resistance
Example:
Assume a diode, used in an inverter.
frequency
duty cycle
ambient temperature
switched from
to

20
0.5
40
12
300

o

kHz

°C
Tamb
A
IF
V
VR
dI
at a rate
50 A/!J.s
dt
At a duty cycle 0 = 0.5 the average forward current IFAV = 6 A.
From the upper graph on page 5 it follows. that at IpAV = 6 A the average forward power + average leakage power = 13 W (point A).
The additional power losses due to switching-off can be read from the nomogram
on page 10 (the example being based on optimum use. i.e. Tj = 165 °C). Starting
from IF = 12 A on the horizontal scale trace upwards until the appropriate line
dI
- dt =50 A/!J.s. From the intersection trace horizontally to the right until the line
for f = 20 kHz. Then trace downwards to the line VR = 300 V and ultimately trace
horizontally to the left and on the vertical axis read the additional average power
dissipation PRAY :: 6 W.
Therefore the total power dissipation P tot = 13 W + 6 W = 19 W (point B of the
upper graph on page 5).
From the right hand part of the upper graph on page 5 follows the thermal resistance, required at T amb = 40 °C.
Rth mb-a ""

5 °C/W

The contact thermal resistance Rth mb-h:: O.5 0 C/W.
Hence the heatsink thermal resistance should be:

Rth h-a :: Rth mb-a - Rth mb-h

= (5

- 0.5) °C/W

= 4.5 °C/W.

The applicable heatsink(s ) may then be found in the Section HEA TSINKS.

4

II

II

May 1970

BYX46

II

SERIES

7Z58794

60 P:power excluding avalanche and switching losses
single phase: a=1.6
: a=1.75
3- phase
P 6-phase
a=2.4
(W )
I
I
I j
III

intl.'rrelation between the power
(derived from the left hand graph)
and the max. allowable temperatures

IFIRMS)

a=-IFIAV)

iUs ""]1. 6 f-rJ d.c.
40

--

/

I

J

rJ r/
rT
fIr}

II

flV

...

~

"'

'(

I

B

"' "- "'

I

I PI

I

20

1\
~

I

II
/

--

-1-

H- 1-1-

f---

II

f}

!"

1\

1"\

~

.\
126

1\ ,

1\

1\ 1\
,

"' ~" 1\ ,

l\.1\.

"-

.....

.....

•

~

1"\1\::\

I'\:~~\

.......

~~

"l~\

I

20

10

30

o

40

152

,..... 1'J..'t\

I

/

139

"., \1\

.......

rJ 1/

1/

~n

,....

8

V

113

" ,

~3.5

,.....

'I. -;

Rthlm~-Ia =
\ 0.5°CjW
\ 1 \

2.5

f"';~

j j

I

\

I\. 1.5\

"\

"'I'\.

f-I-

A I---/J

II

\

~

,....

1/

't-i'H 't-ilIN

1\

1"\

1

-,- a:2.4/ I!I

, ,,

I\,

J
If

165

200

50

I F1AV ) (A)

7Z10273j

10
.............................

PRRM
(kW)

:--.....

~
.........~
~,,--......:: ~

/

.......

'-"'''- ~ ~~
~~

--

~"

~

/
~

~~ r-.1"-1"r-.

"

1

Tj =110 o C
120°C
/130 o C
/140 o C

Vv / V)50°C
1600C

/

~lrr=:

~ ~ r; ll

- - PRRM

17
V,165°

I

1

......

""

~"""-

!"X . . . . .

.......

"- ........

,, '"
........

' repetitive operation
in this region
t....
is not allowed

I-~

f------ in this region a junction
f--~
temperature of 16S o C is
f------ allowed

~

~I=
f--ff--f-

I

time

plJ\se 1duration

............

I""~~

,..... .....

0.1

'maximum allowable repetitive
peak reverse power dissipation
versus duration (f = 50 Hz)

...

~~

--

~~
"'"

"r-...
"'1'-

0.01
0.01

May 1970

0.1

II

10 pulse duration (ms)

5

BYX46

II

SERIES

II
7Z10049.1

~....

-

(k W)

10

Max. allowabl~ non ~p~titiv~ ~ak r~v"rSff
puIsff poW"r dissipation in avalanchff
rffgion

~

---FkSM

'" '"

" r-...." I" ....

5 " ............

1\."
J

~,

1

as

~lrr:

~

" '~

"

..... ~

"

....

~~ 1"....
~~ ~~
~"c ~

~

~~

timff
\.....c:.t-Puls~ duration

;;O~~
~
"c

....

I"'-

"

....

~'t'

......

.......
I' -irs.

~

to

"'~

I'...

""'" ~ i'

Q2

Ql

""""

.....
~

.....

~

~ ....

~

"'
i'....

.........

...... j'-....

I-..

~

....

........

............

j'-....

....

.....

..

.....

~

"r-I"-I"-

.... ....1"- ""'I"10 duratIon (ms)

Q1

0.01

100

7Z10039

1000

typical values

I

I I

~

..;::: """'
t"" ~:::t--

-.. r-... ::::::

200

~~ ~ ......

/
::;::
~ ~ :::s
.........,;

I

BYX46-200(R
-3QO(R)
/
/ v -400(R)
v -SOO(R)
/v v -60O(R)
:;:
...,; ~K

=- '"

- I ' ""
~:: ~~
~'"

100

~~

~

--

50

20

2

6

5

II

10

20

50

100

200

VR (V)

II

1000

May 1969

BYX46

II

SERIES

7Z10045

1) 25°C

~l±t±:±:f.:rllIT~I

VR increases by about 0.1%tC with increasin91]
I

l
10

II

1

I

I

1
I

I

e ', , ~'1::"

E!

1

-- l'e

~S k- ~.S

"£ J£
fi __ -

IJ£

1J:>.c

~g

1 £

V

Ij

III

, II

II

~~

1
1

U
1

I

1/:-' 1~
g
0=
0
0

~-

,

0

("I')

CD
-.;t

f

~

0
0

,

-.;t

-

I

CD

I

.e

11

11

l-

I~

'~

0
0

ii

1

I

0

10

CD
I

f

T

><
;:...
CD

,

I'

Ij I'

0
0

I
i

II

I

I

-3

10

May 1969

250

II

500

750

1000 VR(V) 1250

7

l_____

BYX46 SERIES

600

\

IFS(RMS )

(A)

1 II II
1 I I II

Maximum permissible non- repetitive
r.m.s. forward current based on
sinusoidal currents (f= 50Hz)

\
\
\
1\
\

400

04695

-+

\
\

1FV\ f\
\

,

,

time

I-

each current pulse is followed by the IIcrest working reverse voltage

~

- - - - \--

-----

--- f-

,
I'

--

I FSM
1--

I"

-

.... _- 1--

1---- -

-I-

~

200

"-

"' "-

_.. - --- _.-

Iio".,
1000..

-

[""Io~

Tj =1650 C prior surge
1" 1
rI I
1
TT 1

o

2

0.001

0.1

0.01

08128

150

- - Tj =25°C --11-Tj ==165°C

---

~f-fI

)

1,

~
1

'I
U
I,
III 1--

I

I

1~

I

+

-I,

100
-

I
-j

.~

1.1

-f

'1 1
typ llmax max
VF ~ VF) VF
l

t

+ +

t

t- t

~-

---

.11
II

.
II

50

f

1
I

I IJIJ
'I J j
~IJ

It Ji}
j

a

8

-

I(

March 1978

~r...

a

2

4

5

7

Surge duration

(5)

10

BYX46 SERIES

Fast soft-recovery rectifier diodes with controlled avalanche

7Z10043

10

7Z10044

10

-~~

~IL,~~
~>'~~

~~
~~\~R
~P~A
~y i---"io"'

1./

~~~~

A ~V

I-"

./

/.'/

"

J,
...

/

~ :if;

V

~~~

~

'l~

.-'~

~v

I

~

/

./

0.1

~~~

~

~1""

VI

~

'\~

~~

~~

1..1-"
I

I

I

1A

!

lilt
• ,I

1/ ..... 1-"

I~

~mr

--

17
7.~

"

~I-

I

0.1

~

~

I

--+-I

0.01

1

10 _ dl (A/lis) 100
dt
t""

0.01

I

\

1

I

10 _dI (A/lIs) 100
dt
r-

08055

08056

Max. values

Max. values

Tj _25°C
)

)

1'00..

............. r-.... I)' ,...~,..

I~OA

r.... r...~

A~

1A

I"'!oO
~

............ 1'00....,
-...........:: :ZVvTt

....... ~
.............. .....
->~

......

~r-.. ""~i"

IF/~~~

-- -- ,

"'" ........... ........ ....."'"
~

......... .........

T
r--- j

-150 ·C

...

r......
r-..:::
~ I'-.. "r...
~

.......
1'-0
"'1'-0

~~

"'"

foO.;

1'-0

10
1

10

_ ~ (A/us)
dt

102

10
1

"I

(MarCh 1978

9

BYX46

II

SERIES

II
IRRM(A)

30

,-+- r- _Q! =200A//Js

-r- r- dt I...L
-r-r-- 100A//Js

......
1'0...

I I

,

I
-r- ....I
-f--

--

,

1\ \

1"0

.....

10A~s

~\

,

i""'r-,

i""' .... ~
5A/lJs I
IF(A) -20 r-i-- - 10 r-r- -0

I I

I
I
I

,,

~ ~JJ...

II

iE'

I
I
I

I I

f- -

1,/

I II
II J
If

..

,

!/

111/
[/

---

i""'iooo

;;:::~ ~r-r-,

10

Io...r--.... .... ....
-iooo VJ?=:::200 V
r-..r-~
.... r--....
~
~ i"'o ....
........
r-,
I' I""'"
....
r-~odv
r-.. r-Io.. r--~ 4.01"'"
....

~

I'

I

J

1

"'

20A//Js
...

....

I"""'~

0/1

...~

I_~

{eO~v
I

",/

f---'~ A/~s

.......

Nllf"'"
I I , , I

lew,

I

I-""

1".000

~

~

..... l'""o

I I
I I

''6ct.,~.;z.

,

1".000 ....

1

I

v~'k

1.I~~

, ,

/
/
./

~

IL

./

20
PRAV

- - lj=25°C
j

~

J

IF =forward current i
just before switching-off
, I
I
I

~

I

~- r-r-

If

"'10..

I I f

r20A//Js
'

20

I

I\.

50A/~r-,

-f-

1
1\

7Z10041
I

:z:'"

J

J./
1/1/

r- If'/ ./ ,

,..'1"

I

f

I

I
1

I

Nomogram: Power loss PRAV due to switching only (square wave operation)

10

II

II

May 1969

BYX46 SERIES

Fast soft-recovery rectifier diodes with controlled avalanche

oa96
f-- I--

- F=

--

~-.

-- -- 1--

f----

---

f---I--

10

1.0
I""

----

1---"1'

l/

0.1
~

",.

0.01

/

V
2

10jJs

5 7

2

100jJs

5

7

5

lms

7

2

10ms

5

7

2

lOOms

5

7

5 7

ls

March 1978

105

11

BYX49

II

SERIES

SILICON RECTIFIER DIODES

Plastic -encapsulated rectifier diodes intended for power rectifier applications.
Normal and reverse polarity types are available.
QUICK REFERENCE DATA

BYX49- 300(R)

VRRM

Repetitive peak reverse voltage

300

max.

I 600(R) I 1200(R)
I 600

11200

V

Average forward current

IF(AV)

max.

6

A

Non-repetitive peak forward current

IFSM

max.

40

A

MECHANICAL DATA (see also page 2)

Dimensions in mm

SOD-38
5,2_/
,..max

metal base
plate

18,0
max

j

r-

' -L!;;;;;;;=::r=F=i=I=1=='I-'

4max
not tinned

2,5

--t

+

14,5
min

1_
--.

tag1

tag2

0,65 __ __
max

5,0

....

---.1

I
3,1 . -

'1 _ _

2,5-

The exposed metal base-plate is directly connected to tag 1.

e:

~

Products approved to CECC 50 009-011, available on reguest

January 1980

II

11. -

.-

1,2

max
7Z60001.5

BYX49
SERIES

II

II

MECHANICAL DATA (continued)
Net mass: 2,5 g
Recommended diameter of fixing screw: 3,5 mm
Torque on screw
when using washer and heatsink compound: min. 0,95 Nm (9,5 kg cm)
max. 1,5 Nm (15 kg cm)
Accessories:
supplied with device: washer
available on request: 56316 (mica insulating washer)

POLARITY OF CONNECTIONS
BYX49-300
to BYX49-1200
Base-plate:
Tag 1
Tag 2

2

cathode
cathode
anode

II

BYX49-300R
to BYX49-1200R
anode
anode
cathode

II

November 1975

BYX49

II

SERIES

All information applies to frequencies up to 400 Hz.
RATINGS Limiting values in accordance with the Absolute Maximum System (IECI34)

BYX49-300(R)

Voltages

600(R)

1200(R)

Cont inuous reverse voltage

VR

max.

200

400

800

v

Crest working reverse voltage

VRWM

max.

200

400

800

V

Repetitive peak reverse voltage
(6 = 0,01)

VRRM

max.

300

600

1200

V

Non -repetitive peak reverse voltage
(t :s 10 ms)

VRSM

max.

300

600

1200

V

Currents
Average forward current (averaged over
any 20 ms period) up to T mb = 85 °c

IF (AV)

max.

6,0

A

= 120 °c

IF (AV)

max.

3,0

A

at Tamb = 50 0 C

IF(AV)

max.

1,1

A

Forward current (d. c. )

IF

max.

9,5

A

R. M. S. forward current

at Tmb
without heatsink;

IF(RMS)

max.

9,5

A

Repetitive peak forward current

IFRM

max.

20

A

Non -repetitive peak forward current
(t = 10 ms; half sine wave)
T j = 150 °c prior to surge
I 2t for fusing (t = 10 ms)

IFSM
I 2t

max.

40

A

max.

8,0

A 2s

Temperatures
Storage temperature

T stg

Junction temperature

Tj

February

~~_I

-55 to +125
max.

150

°c
°c

3

BYX49
SERIES

II

"

THERMAL RESISTANCE
From junction to mounting base
Transient thermal impedance; t

= 1 ms

Rth j -mb

4,5

°CjW

Zth j -mb

0,3

°CjW

Rth mb-h

1,5

°CjW

Rth mb-h
Rth mb-h

2,7
2, 7

°CjW
°CjW

Rth mb-h

5

°CjW

Influence of mounting method.
1. Heatsink mounted
From mounting base to heatsink
a. with heatsink compound
b. with heatsink compound and
56316 mica washer
c. without heatsink compound
d. without heatsink compound;
with 56316 mica washer
2. Free air operation
The quoted values of Rth .i -a should be used only when no other leads run to the
tie-points.
From junction to ambient in free air
mounted on a printed circuit board
at a = maximum lead length
and with a copper laminate
a. > 1 cm 2
Rth j -a = 50 °CjW
b. < 1 cm 2
Rth j -a = 55 °CjW

0

1

1~1~

a

~

7777 77

7777
7Z6231S.1

at a lead -length a = 3 mm
and with a copper laminate
c. > 1 cm 2
d. < 1 cm 2

Rth j -a
Rth j-a

= 55
= 60

°CjW
°CjW

!~
•

4

II

7Z62314

II

October 1972

II

II

BYX49
SERIES

CHARACTERISTICS
Forward voltage
IF

= 20 A;

Tj

= 25

0C

VF

<

Reverse current
<

200

jJA

SOLDERING AND MOUNTING NOTES

1. Soldered joints must be at least 2,5 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is 270 oC;
contact with the joint must not exceed 3 seconds.
3. The devices should not be immersed in oil, and few potting resins are suitable for
re-encapsulation. Advice on these materials is available on request.
4. Leads should not be bent less than 2,5 mm from the seal; exert no axial pull when
bending.
5. For good thermal contact heats ink compound should be used between base-plate and
heatsink.

1) Measured under pulse conditions to avoid excessive dissipation.

November 1975

II

5

BYX49
SERIES

II

II

OPERATING NOTES
Dissipation and heatsink considerations:
a.

The various components of junction temperature rise above ambient are illustrated
below:
junction

mounting
base
Rthj-a

heatsink

7Z66853

ambient

b.

The method of using the graph on page 7 is as follows:
Starting with the curve of maximum dissipation as a function of IF(AV)' for a particular current value trace upwards to meet the appropriate form factor curve. Trace
horizontally until the Rth mb-a curve is reached.
Finally trace upwards from the Tamb scale. The intersection determines the
Rth mb-a required.
The heatsink thermal resistance value (Rth h -a) can now be calculated from:
Rth h-a

= Rth mb-a

- Rth mb-h

Any measurement of heatsink temperature should be made immediately adjacent to
the device.
c.

The heatsink curves are optimised to allow the junction temperature to run up to
150 °c (Tj max) whilst limiting T mb to 125 °c (or less).

6

II

II

October 1972

BYX49

II

II

SERIES

7Z59990 2

interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures

iF(RMS)

a=

IF(AV)

15
Ptot
(W)

I

1,~
2,~

10

-

r--

1/ /

0=4 ,

-

I

I

I

'\

I(

V

J

VJ

"

,

........

~

I JV/
'/ /

" '"

..... ~

I

ih

:fA V

(

\.

.....

~

,

T

'" , ,"" ~,
f' " ", ......... ,'\ \. \ ,
a

~

J I

5

~~

\{'-- ~~-4:,."6~\\

"

~

~

V/ V

J

8 2,5

..pI

1,6

lj '/

"-

"I",

........

~

'I'\..

1\ ~

\ \
\ \

..... ~,

............

~

1as

.....

".\ ~ ~,

.......... ~.....

4~

12~

~ ~\
t': ~~

~~

a

a

2,5

5

I F1Av ) (A)

7,5

a

50

100

0

Tamb ( C)

150

7Z66652 1

3

iF(RMS)
IF(AV)
I

a=

P

(W )

I

II J

II

'(

J
I

"-

II

0~4t 2,8 '-1,91 f-~1,6
I

2

I

I

II J

., I.
IJ 1/
J/~

5~

'\

i"'o..

IlL

"-

I I I I
.....

'\

I

I'

I I J I
I

I

I

I

I I
I

I

~

V

'" " '" "
""

V

1'\
......

.....

III

,.,J
'I

'(

IfIf
'J

I

I

I

I

I

I

mounting method 20

......

II'

II

I
If I

,"" ,

II II

J

II

J II
'I

interrelation between the power (derived
from the left-hand graph) and the maximum permissible ambient temperature

'\

r\..

2b; 2c

)d

/"
/"
/"
,1)'1

~"
,,'\"'1
1\..'\'

"'"l"I'~'
,[','\

...... ~"
..... ~

~

~

'/.
rJ'I'
~

~

a
a

November 1975

•

~

r.fII

IF(AV) (A)

II

2

a

50

100

"" ,

7

BYX49

II

II

SERIES

7Z59969

100

I II
maximum permissible non-repetitive
peak forward current based on
sinusoidal currents (f = 50Hz)

IF~----~ : : :

75

\

each current pulse is followed by
the crest working reverse voltage

\

\
\

so

\
I'

'""'"",-

25

~=125°C (prior to surge)

r-..... 1--0

r--

duration (5)

10

7Z599881

30

I I

I
I

I

--Tj= 25°C - -- --Tp= 1500C --

IF
(A)

I

typ

20

I

II

II

II

11

I

~

II
I'

/
J

I

I

10

I

I

I

I
I

I

I

I

max

I

I

III
I

I'

I

.,

/,
f/

'-

J

I

o
o

8

II

LZ~7

2

VF(V)

4

II

October 1972

BYX49

II

SERIES

10 2

1Z66851 1

Zth j-mb
(oC/W)
10
-~

V

V

./

10- 1 ....,..".

V~

If'

October 1972

II

ime (s) 10 2

9

j

BYX50 SERIES

--------------------------------------------------~

FAST SOFT-RECOVERY RECTIFIER DIODES
Also available to BS9331-F028

Silicon diodes in DO-4 metal envelopes, intended for use in high-frequency power
supplies, thyristor inverters and multi-phase power rectifier applications. The series
consists of the following types:
Normal polarity (cathode to stud): BYX50- 200, 300
Reverse polarity (anode to stud): BYX50-200R, 300R
These devices feature non-snap-off characteristics.
QUICK REFERENCE DATA

BYX50-200(R)
Repetitive peak reverse voltage

300(R)

VRRM

max.

Average forward current

Ip(AV)

max.

7

A

Non-repetitive peak forward current

IpSM

max.

80

A

Reverse recovery time

trr

<

100

ns

200

:I)O

MECHANICAL DATA

V

Dimensions in mm

DO-4, Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 9.5 mm
1,0

0,8

U--

10-32UNF . .

J
4,83 ~
max ~

+

max

*~w')~))
40

I

___1,6
I l.
min

~
I

e

I

-11,0- . 3,2 __

max

_9,3_
max

____ 11,5 __ ,.......----- 20,3· _ _----1... 1
10,7
max
7Z65355.2

Net mass: 6 g
Diameter of clearance hole: max. 5. 2 mm
Accessories supplied on request:
56295 (pTFE bush, 2 mica washers, plain washer, tag)
The mark shown applies to the normal polarity types.

Torque on nut: min. 0.9 Nm
(9 kg cm)
max. 1.7 Nm
(17 kg cm)

I

January 1980

BYXSO
SERIES

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

BYX50-200(R)

300(R)

Non-repetitive peak reverse voltage;
t :5 10 ms

VRSM

max.

250

350

V

Repetitive peak reverse voltage

VRRM

max.

200

300

V

Crest working reverse voltage

V RWM

max.

200

300

V

VR

max.

200

300

V

7
4

A
A

Continuous reverse voltage
Currell1s

Average on -stu1 C ClIITcnt assuming zero
switching losses (averaged over any 20 ms period)
up to T mb = 103°C
at Tmb = 125°C

IF(AV)
IF(AV)

max.
max.

R. M. S. forward current

IF(RMS)

max.

11

A

Repetitive peak forward current

IFRM

max.

80

A

Non-repetitive pcok forward current
t =: 10 ms; T j =: 150°C prior to surge
with rcopplied VR WMmax
r2 t for fusing (t = 10 ms)

IFSM
12 t

max.

80

A

max.

32

A2s

Rote of change of commutation current

See nomogram on page 5

Temperatures
Storage temperature

T stg

-55 to +150

°e

Junction temperature

Tj

max.

oe

150

THERMAL RESISTANCE
From junction to ambient in free air

50

oe/W

Rth j-mb

3,5

°e/W

Rth mb-h

0,5

°C/W

Rth j-a

From junction to mounting base
From mounting base to heatsink
Transient thermal impedance; t = 1 ms

Zth j-mb

2

II

°e/W

November 1975

II

II

BYXSO
SERIES

CHARACTERISTICS
Forward voltage

= 20 A; Tj = 25 °c

V 1)

VF

<

1,95

IR

<

3

trr

<

100

ns

IF = 1 A to VR = 30 V;
-dIF/dt = 35 A/fls; Tj = 25 °e
Recovery time

trr

<

150

ns

IF = 2 A to VR = 30 V;
-dIF/dt = 20 A/fls; Tj = 25°C
Recovered charge

Qs

<

250

ne

IF = 2 A to VR = 50 V;
-dIF /dt = 2 A/fls; T j = 25 °e
Max. slope of the reverse recovery current

IdIR/dtl

<

5

IF

Reverse current
VR

= VRWMmax; Tj = 125 °c

rnA

Reverse recovery when switched from
IF = 1 A to VR = 30 V;
-dIF /dt = 100 A/fls; Tj
Recovery time

IF

= 25 °c

A/fl s

IF

•

time

• i

10%

100%

~
IR

1) Measured under pulse conditions to avoid excessive dissipation.

______________ J
I

3

BYX50

II

SERIES

II
7Z67278 1

15

p=

P

power dissipation excluding
switching losses

I I

'F(RMS)

a=

'F(AV)

(W)

~

I
a= 2,4
L

10

11

.1.1 II V
'-1 ·11
1,751. 111,6

'I.

~

11L
'I
IL
1'00.

1 IL
V 'I,

If

" ......
I""

'" "- , :'"
......

,...

....

IL

"'

"

I"

" ... , ,-1\~1>\\
\
\

~

~

~6'
~

e

I'
~JO

'"
1'00.

'"

"
I'\.

"

1'\

L'Il

I""

" r..I'"

~

1\

"1'0."

~

1\ \

132,5

~

1 .....

I"ooo.~

,,~

III
I~

I\. ,

L'."
I"'::S

".

1\,1\

•
.'11'\1\

I

0

o

,
"

l'-

I""

~

~'(l

~
~

II

~

i"

.....

l\.

1,\
~

~

"-

115

\.

,

I\.

.....

rt

(

1"

~

1'0 .../,,/~,"

II

,_ 1
lj 0
I
~'" ~
I
l) ~_
t-1i0?(f 1

I\.

J/~

5

5

2,5

97,5

interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures

7,5 0

100

50

IF(AV) (A)

60

0

Tomb ( C)

N 150
15 o

7Z67276

11

1

II

J

-,

IF
(A)

'I

I
'II
t

LL

I'

1

lL

~

40

L!
II

J,

.'1
'L
I

If

L

I!

'1
1/

.....~ r

~1 Ilk
t- qh

,

20

II

S

JIL
I

,
I

o

4

I
:L

T j =25 °c trTj = 1500C t-

llL

Il"
I"':~ 10'

o

I

2

I

1
V F (V)

11
4

November 1975

11

BYX50

II

SERIES

7Z110L.51

100

maximum allowable non-repetitive
r.m.s. forward current based on
sinusoidal currents (f=50Hz)

F5
IFM---------I
"
~----hl~5IRM5I

\
I

1\

IFS(RMS)

V IFsM

\

(A)

\

time
each current pulse is followed by the
crest working reverse voltage

1\

"
I\.
'\.

,

50

"

............
..... 1"-

Tj=150oC (prior to surge)

............... ~

-

-~ ~I--

r- -- -~

duration (s)

.,...."""

"

50
-l"- t-_

1-"""

I

11)

r-...

II

,

"-

""

.....

-l- I--

"'
.....

0
I

2,5

1--1t--

II II
I I I I

February 1978

I
I

II

I I
I I

I
I

II

/

~

.... "

~

V

V

,,-~

~

V

\.~~~

V
r-_~W===100V-

"'t"-t.... -I-I"-

.....

,,-

.... "

,,-"

.... "

....

1IiS:~~

i'.

V

L

1/

/

/

V

\

10 I - t - IF (A) 1-1- -5

I--f-

~

?::Jr;::::,~

/
I\. \

-r-::i!

IF = forward current
just before switching
off; Tj=150 °c

1/

fa
-. l~
'V

If

........ l'.\'

-dI/dt 5A/(Js

1--1-

"1

II

:1

I II
I
I I

r-...

..... 1'-

1"--

7Z672771

~J

..... '--1 f-h

20

10

I,

$

r-- ....

I
~~

I

r-- .....100

,10

.....

i""-

'"

1T'"t-;--

.....
i'.

f"'oo

\t-j--+--

1"'t....

1000(R)

1200(R)

1400(R)

600

800

1000

1200

1400

V

750

1000

1250

1450

1650

V

~

~-----------,v~------------~

Average forward current

'F(AV)

max.

48

A

Non-repetitive peak forward
current

IFSM

max.

800

A

Non-repetitive peak reverse
power dissipation

PRSM

max.

40

kW
Dimensions in mm

MECHANICAL DATA
Fig. 1 DO-5

15,3 max
1/4

in x 28 UNF

_t

i_f===/===r-1
6,35
max

8,0
max

--f+-

+1--------'_

~13,O i.-

t

min

(flat)

2,2 --..
max
_

-4--:

___ 5,0 . max
11,5_1......t------25,4------l...~1
10,7
max

Net mass: 22 g
Diameter of clearance hole: max. 6.5 mm
Accessories supplied on request:
56264A (mica washer, insulating ring, tag).

-17,07275506. ,

Torque on nut:
min. 1.7 Nm (17 kg em),
max. 2.5 Nm (25 kg em).

Supplied with device: 1 nut, 1 lock washer.
Nut dimensions across the flats: 11.1 mm.
The mark shown appl ies to normal polarity types.

'I

September 1979

+-

BYX56 SERIES

l_ _ __

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC134)

-+

Voltages*

BYX56-600(R)

Crest working reverse voltage VRWM

max.

Continuous reverse voltage

max.

VR

SOO(R)

1000(R)

1200(R)

1400(R)

600

SOO

1000

1200

1400

V

600

SOO

1000

1200

1400

V

~------------~v~--------------~

Currents

Average forward current
(averaged over any 20 ms period)
uptoT mb=112 0 C
at T mb = 125 °C

IF(AV)
IF(AV)

max.
max.

4S
40

A
A

R.M.S. forward current

IF(RMS)

max.

75

A

Repetitive peak forward current

IF RM

max.

450

A

Non-repetitive peak forward current
t = 10 ms (half sine-wave);
Tj = 175 0c prior to surge;
with reappl ied V RWMmax

IFSM

max.

SOO

A

12 t for fusing (t < 10 ms)

12 t

max.

3200

Repetitive peak reverse power dissipation
t = 10 IlS (square-wave; f = 50 Hz);
Tj = 175 °c

PRRM

max.

6.5

kW

Non-repetitive peak reverse power dissipation
t = 10 IlS (square-wave)
Tj = 25 °c prior to surge
Tj = 175 0c prior to surge

PRSM
PRSM

max.
max.

40
6.5

kW
kW

-55 to +175

°C

175

°C

Reverse power dissipation

Temperatures

Storage temperature

T stg

Junction temperature

Tj

max.

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

O.S

°C/W

From mounting base to heatsink

Rth mb-h

0.2

°C/W

Transient thermal impedance; t = 1 ms

Zth j-h

0.03

°C/W

*To ensure thermal stability: Rth j-a

2

September 1979

(

< 2.2 °C/W (a.c.)

BYX56 SERIES

Controlled avalanche rectifier diodes

CHARACTERISTICS

Forward voltage
IF= 150A;Tj=25 0 C

VF

Reverse avalanche breakdown
voltage
IR = 5 mA; Tj = 25°C V(BR}R
Reverse current
VR = VRWMmax;
Tj = 125 °C

IR

BYX56-600(R} BOO(R}

1000(R}

1200(R)

1400(R)

<

1.B

1.8

1.8

1.8

1.8

V*

>

750

1000

1250

1450

1650

V

<

2000

2000

2000

2200

2400

V

<

1.6

1.6

1.6

1.6

1.6

mA

*-

OPERATING NOTES
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum by using a thermal
shunt.

08494

600

T(25 to 175°C

400

J

"
"
J

~I

./!

~I
~I
E:
,I

200

II
IJ

o

I,;

o

J
II

2

4

Fig.2

*Measured under pulsed conditions to avoid excessive dissipation.

September 1979

3

~~~mjl_________________
7259128

p= power excluding avalanche losses
interrelation between the power
(derived from the left hand graph)
and the max. allowable temperatures

a= IFIRMS)
I F1AV )

, ,

P
(W)

T

Rt~ ~b~a~

) d.c.

'" f\. "I ,0.2°C/W
1\

100

1/
"j

V

If

1.9J

IV
')

2.8 If
II If.
50 .... 1- a=4II 1/
I
II 11f)

'" '" 1

J

,

I\.

..... 1.5

/

~

~

r-...2

1\

~

~

I\.

I\.

f\.

110..

I\.

r-...

,,4 I'.

J ) '1/1/
il 'j,rj

51'-0.

""-

'j~

...

~

~

r"-Io...

....1'

~

.....

/
25

75

50

a

100

~~

..... '-.:1'... 1'1,. , \ .
1'0",
..... 1"0 ~"\'
t--. .....
,["iii
LX~~

t.....

!ooo,

135

1\

.....

~

HJ.
V

95

1../

1\

,
"
'" "
,",
""
~
""'"' ""- ,

1/

1.6

,{l.5

50

~~x

100

150

Tamb(OC)

IF(AV) (A)

Fig.3
7Z11065

5

PRSM
(kW)

maximum allowable non repetitive peak
reverse pulse power dissipation in

-""""""100..

r-.. r--.~
r-..
~ r-..... r--.~ "" ~
.......
.........
1'-0..

2~

a.valanche region

.......

PR~

:-'1-0

10

......
5

"" '""""'" I"t---

......

"- ........... .......

I"'....... 1'-,

..............
1'~

2

'""

~

--PRSM

.......

r-.

"

t.~~

~1'.. ""

""r-

~~" ~

"" ~
°c

J'..

~ 1S0

......

"'" I......

5

.........

4

September 1979

r

1
Fig.4

,..

"
,,~

!!"oJ'>$:

"'X

l'o

t"-"
r-...t"- ,....

..... "-.

1"0

21-----

time
pulse duration

-.l

K'<§~

f"".",
I'l'o

175
200

,..

~ I\..
10 pulse duration(ms)

BYX56 SERIES

Controlled avalanche rectifier diodes

7Z59129

80

I square pulse
I f=50Hz

"~
1'0.,

60

f'...
P RRM =
20kW.I
40

~

/

:/
j

/

'(

/
/

V

V

V

/
I-'
/'

/

/

71

V

/

V

/

51/

/

"

J

>-...
i'

3/

/

/""

V

',-

II

/

J

r--

10}

1/

/

)r-...

/

15/

L
20

.......

/

'(

It

/

.... /

V

2

/
./

r-.....
1/,
V

.... ~

f--

0.2
10

square pulse duration (ms)

Fig.5

7Z59130

80

I square

I
60

~

\.
\

II\,

L \
I
I

40

I\,

'-

i'l_/P

50kW

/

I,
\.

RRM =

20

pulse

f=400Hz

I

I

~

20

~

J

V

/
,.../

10

:.1

""'~ I

/

7L

""'- .... )-orV

2T- ~ f-0.5

0.1
10
square pulse duration (ms)

Fig.6
6T = neccessary derating of Tjmax to accommodate repetitive transients in the reverse direction.
Allowance can be made for this by assuming the ambient temperature 6T higher.

September 1979

5

l____

BYX56 SERIES

7Z11069

1500

maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents (f=50Hz)

IFS(RMS)

(A)

1250

~~dU'OtionQ

1\

\
.~

1000

I\.
\

each current pulse is tollowed by the
crest working rever5e voltage

I\,

750

t

\

1\

""

500

I"...

........

,

1""'""
250

Tj

= 175°C(prior to

r--o-..

---

'"-

I-

surge)

r-- t-duration (s)

10

Fig.7
n11066

10
Zth J-h

(OC/W )

transient thermal impedance from
junctionto heatsink versus time

~

~i-"

V'

I

I

t--r-

~t

-f-H+t+
!lil,
! I

-±,
./
~"..

./

:2

r-

---

!

1

3

10

Fig.S

6

September 1979

(

103 time (ms)

104

BYX71

II

SERIES

FAST SOFT-RECOVERY RECTIFIER DIODES

Silicon double-diffused rectifier diodes in plastic envelopes. They are intended for use
in chopper applications as well as in switched-mode power supplies, as efficiency diodes
and scan rectifiers in television receivers. The devices feature non -snap-off characteristics. Normal and reverse polarity types are available.
QUICK REFERENCE DATA
BYX71-350(R)
Repetitive peak reverse voltage

VRRM

max.

600(R)

v

~_6_0~0

A verage forward current

Ip(AV)

max.

7

A

Non-repetitive peak forward current

IpSM

max.

60

A

450

ns

Reverse recovery time

<

MECHANICAL DATA (see also page 2)

Dimensions in mm

SOD-38
1~11,omax-1

•

1

-

5,2_
max
1

3,7 _
3,6

•

fF=i=*==t====:i'I5,3
5,0

metal base
plate

t

18,0
max

j

r-

t-L!::::::r=;r=f:=;rt=r=::::Y~
4max
not tinned

+

14,5
min

J_
-.

tag1

5,0

...

tag2

0,65-. ... '
max

I

_13,1 __

'1-..11__ max
1,2

2,5-

The exposed metal base-plate is directly connected to tag 1.

November 1975

II

--

7260001.5

BYX71

II

SERIES

II

MECHANICAL DATA (continued)
Net mass: 2,5 g
Recommended diameter of fixing screw: 3,5 mm
Torque on screw
when using washer and heats ink compound: min. 0,95 Nm (9,5 kg cm)
max. 1,5 Nm (15 kg cm)
Accessories:
supplied with the device: 56355 (washer)
available on request: 56316 (mica insulating washer)

POLARITY OF CONNECTIONS
BYX71-350
and BYX71-600
Base-plate:
Tag 1
Tag 2

2

cathode
cathode
anode

II

BYX71-350R
and BYX71-600R
anode
anode
cathode

II

BYX71

II

II

SERIES

RATINGS Limiting values in accordance with the Absolute Maximum System (IECI34)

BYX71-350(R)

Voltages

600(R)

Continuous reverse voltage

VR

max.

300

500

V

Working reverse voltage

VRW

max.

300

500

V

Repetitive peak reverse voltage (6 s 0,01)

V RRM

max.

350

600

V

Non -repet itive peak reverse
voltage (t :::: 10 ms)

VRSM

max.

350

600

V

Currents
Average on -state current as suming zero
switching losses
(averaged over any 20 ms period)
square wave: 6 = 0,5; up to Tmb = 85°C
without heatsink at T amb = 50 °c

IF(AV)
IF(AV)

max.
max.

1,4

A
A

= 85 °c

IF(AV)

max.

6,5

A

R. M. S. forward current

IF(RMS)

max.

10

A

Repetitive peak forward current

IpRM

max.

25

A

Non -repetitive peak forward current
half sine wave; t = 10 ms; Tj = 150°C prior
to surge
square pulse; t = 5 ms; T j = 150°C prior to surge

IpSM
IpSM

max.
m!lx.

60
60

A
A

dI

max.

50

A/[Js

sinusoidal:

at T mb

Rate of change of commutation current

-d"t

7

Temperatures
Storage temperature

T stg

Junction temperature

T·
J

October 1972

II

-55 to +125
max.

150

°c
°c

3

BYX71
SERIES

II

II

THERMAL RESISTANCE
From junction to mounting base
Transient thermal impedance; t

= 1 ms

Rth j-mb

6,5

°C/W

Zth j-mb

0,3

°C/W

Rth mb-h

1,5

°C/W

Rth mb-h
Rth mb-h

2, 7
2,7

°C/W
°C/W

Rth mb-h

5

°e/W

Influence of mounting method

l. Heatsink mounted

From mounting base to heatsink
a. with heatsink compound
b. with heatsink compound and
56316 mica washer
c. without heatsink compound
d. without heatsink compound;
with 56316 mica washer
2. Free air operation

The quoted values of Rth j -a should be used only when no other leads run to the
tie -points.
From junction to ambient in free air
mounted on a printed circuit board
at a = maximum lead length
and with a copper laminate
a. > 1 cm 2
Rth j -a
b. < 1 cm 2
Rth j -a

0
= 50

= 55

°C/W
°C/W

i

t ) ~ ~

a

~

////

/ / '/////
7262315.1

at a lead -length a = 3 mm
and with a copper laminate
c. > 1 cm 2
d. < 1 cm 2

Rth j-a
Rth j -a

= 55
= 60

°C/W
°C/W

:J;l
•
7262311.

4

II

II

October 1972

BYX71

II

SERIES

SOLDERING AND MOUNTING NOTES
1. Soldered joints must be at least 2,5 mm from the seal.
2. The maximum permissible temperature of the soldering iron or bath is 270 °C;
contact with the joint must not exceed 3 seconds.
3. The device should not be immersed in oil, and few potting resins are suitable for
re-encapsulation. Advice on these materials is available on request.
4. Leads should not be bent less than 2,5 mm from the seal; exert no axial pull when
bending.

5. For good thermal contact heatsink compound should be used between base-plate and
heats ink.

CHARACTERISTICS
Forward voltage
IF = 5 A; T j = 25

°c

<

1,25

<

0,4

rnA

<
<

700
450

<

5

nC
ns
A/\ls

V

1)

Reverse current

Reverse recovery when switched from
IF = 2 A to VR = 30 V with
-dIF/dt = 20 A/j.lS; Tj = 25 °C
Recovery charge
Recovery time
Max. slope of the reverse recovery current
with -dIF/dt = 2 A/flS

,
10%

time

i

100°/0

~

1) Measured under pulse conditions to avoid excessive dissipation.

February 1978

II

5

BYX71
SERIES

II

II

CHARACTERISTICS (continued)
Forward recovery when switched to
IF = 25 A with tr = 0, 51ls at Tj
Recovery time
Recovery voltage

= 25

°C
<

<

0, 8
3,5

!lS

V

7Z67044.2

90%

10%
time
--

tr

..-

-4--tfr-

time

Forward output waveform

6

II

II

November 197.<;

BYX71

II

SERIES

OPERATING NOTES
Dissipation and heatsink considerations:
a.

The various components of junction .temperature rise above ambient are illustrated
below:
junction

mounting
base

R thj - a
heatsink

7Z62955

ambient

b.

The method of using the graph on page 8 is as follows:
Starting with the curve of maximum dissipation as a function of IF(AV)' for a particular current trace horizontally to meet the appropriate form factor; upwards to the
operating duty cycle (6) line; horizontally until the Rth mb-a curve is reached.
Finally trace upwards from the T amb scale. The intersection determines the
Rth mb-a required.
The heatsink thermal resistance value (R th h -a) can now be calculated from:
Rth h-a == Rth mb-a - Rth mb-h
Any measurement of heats ink temperature should be made immediately adjacent to
the device.

c.

The heatsink curves are optimised to allow the junction temperature to run up to
150 °c (Tj max) whilst limiting Tmb to 125 °c (or less).

October 1972

II

7

BYX71

II

SERIES

II

CHOPPER APPLICATIONS

I~

7Z67042

1 1

I
I I

tp
0=T

1>'
~

°0

I'-T-.1

V

1 1

J

1

I

I

1 1
0=0 1

1

1p

/0,25
0,50
/V"
/IL LO,75

'-

f-I--

t

-1---

V-

r-....

I"-

P
'"
·(W)
i"

~l
I

r-I-- ._-

c-±=-

~.-

'-

t'\.

'1'\

" ""

1"'\

"~ . . ./O~ "
0-

.......

..... to-..

5

........

~

1'\

c9.

.............. ./S

II

<0

i'

85

,,~{;S~~~

-f- :"'Ioi;. 1--1 - I-f-

II
II

I~~
"--20
"J.~ (>

"
........

......

1'\

'-

"""
,,,

"\

1"'\

r-.... ...........

......

I'l" .....
....... ...........

"

,

P (W)

f--?

II

,

'!

~

N
N

:;;;:: - 0:.
...-i'-\O . ...-i

II
. cd

-...-i'

~

.",

.i/

..... ~

I
I

.d. ....

~~

~

...

AI~

,

'"
......
......

'\.1\. \,

i"\
...... ~

..... ;::::.

~

o r-f-

"-

.....
......
.......
...... .......
......
......
......
.......
'\ '1\
......
~
1\.."\ ,\ \
......
\ 1-'1\
i"
.....

.,

,

25

f-- r-

50 -

f-f-

r
•
k-

125

75 -f- -100- f- -12 5
Tamb (OC)

..... r:;.- ~~V"

..-:;~

~~ ~I/

N~ ~" ,/

~~

5

-1

/

,/

~

Ip(AV)
(A)

/

Y
u

-d
I

10
a= Ip(RMS) per diode
Ip(AV) per diode
P = power excluding
switching losses

8

II

II

June 1974

BYX71

II

II

SERIES

SWITCHED-MODE APPLICATION
II
i - - W~J

v~~

t - - I- II

i-i--

IF~RMSl per diode
IF(AV) per diode

a

2

I

interrelation between the dissipation
(derived from the left hand graph) and
the max. allowable ambient temperature

II

~Uy;-~t7
,'I

II

P = power excluding
switching losses

J

7 Z62958

I

I

I

I

I

I
I

If~.g ~

I ~ Y:.v
i/'I>I-

If

"-

'1''1'

I

p
(W)

1Ii/1/1/
//V

II

I\..

I

I

I

1 1 1 I,

I I I I
I
I I

1 1

./; 2d

, ,I/'"

./

~

'/r/

"- \.

"I'

~~

V

),v

0.
IIh~

rl

""".".""."L,\
~
~~
~

'l[/

~/'

~

IbV

~

'/.V

'"

50

IF(AV) (A) 2 0

Tamb (OC)

SCAN RECTIFICATION

vfV~-~--tr
Ct

r-r-

i-fr'rt~
i- ~ 'I

r--

IF(A V) per diode

J

If

P = power excluding

2

switching losses

I

,

(W)

I

I,

I

1/1

J

'I

p

7-'i--

'V
-I--~ 'V'J'-h

-i-'n'

= lp(RMS) per diode

"

IIQ~

I VI

II I

I~{
i/'~

'r'

'I'
/'1'

~

"
,
\.

'--I--

I\.

"- '\..

"-

V

V

"""
,
" ",

/'

V

V

./

~I'\.

Ii/.

\.

"
...'\

//.. v.. V

.:\~

~
~~
~

~V

~V
,~

1/.'1'..

V~
./.r,/

~

~

o

October 1972

1

II

~

~;~;2C -r-

I\.

, IL. '~V

o

'"

100

interrelation between the dissipation (derived from the left hand graph) and the
max. allowable ambient temperature
I
I I I
I
I I I I I I I I I I I I I
-r-mounting method 2a
\..
-I--

IiI IV
'/

, I IIh
II r//.

..

7Z62957

--~~-I
l'j

20%

-I--

- 1-1--

V

/'

"-./

/1/ r/
I ) ~'l

o
o

1_ - I - -

~2b;2C= -r-

I\.

11/ / v
I11

I

I I

I Ihl dl 21 I
mountmg met 0
a

""

If y

IF(AV) (A) 2 0

50

T amb (OC) 100

II

~

'" "
9

BYX71

II

SERIES

II
7Z62961

60 I\.

"-\..

I FSM
(A)

40

maximum permissible non-repetitive
peak forward current based on
sinusoidal currents (f = 50 Hz)

,

\..

'"'"

V\-----~

IF

"."

:::

each current pulse is followed by
the working reverse voltage
I'...

I

"-......

I

""'" i"'.. 1"0

I

I

~

I I IIII
1 I ~ill1
I I IIIII

I

I I IIIII

I

°c prior to surge

Tj = 150

20

i'o..

............

..........

.... ....

....

-I"---

10

60
I

I

.I

I
I

(A)

--Tj=25 0 C
- I - - - T j =150 °c

duration (s)

10 2

7ZG29SG

I

-I-

IF

I-r-.

J

/
L

-r-

.
J

~t - I - r- >1~L

~Ii!if.
I 1$-

I"

40

f

1/

•

.
I

J

II

J

J

•

20

"

L'

l

/

IJ

'1

I

II

II
I

o

10

II

,,= .,.

o

,,,"
I'll'"

VF (V)

2

11

June 1974

BYX71
SERIES

II
7Z62960 1

I"... ,
I
iIo...~
I I Ko;..' I

I-~

I

~~

1"'""-1-

I

I

<-~

i"
1"'- ....

2A/IJS

,,

1\

.....

0,5A/fJS
10 IF(A) 7,5 r - - -r- 5 r-r- -

~~

'\';.1" I

1/
J

'\.

-r--,

~

v,*~

I'

1A/lJs

1/

j

. . .II/-_ r-f-~~

l\ \S'

.....

io'"

~

1. I tff!\~1
r-..:.0~
0
I ~S t-K.%

t"-o ....

~

I

~

\\

)

-O~ .

~~

~

,..

r-..

"

..... r--.

......

~

:

I I

I I T
200 ,;

t"-o ....
r-~

-...~

~

"""

1

I , 1

1,..- ....

-,...;:

......
J

boo

"

tVRW

I

_~OO V'--I--

I"'--~

t":""'i"'-o

......

"""

L,..oo ....

t- IR

I ...... ,...

......
t--..

~v

,

I--

......

So

I .....".
I .....

15

-......

I

~Ov

......

rbefore switching off I--~PR(AV)
r- Tj =Tj max = 150°C
r--t- (W)I
I I I

L,..oo

.1

0,5

I ,

... 1-"'"

.....

~~

~

~

.-.r ~_
~IF~
~ ~t\l- t:
dlO%

1-~

r- IF = forward current just

y..1, ,..

-~\'\Z-

1:::= ....

I!!!: ....

2,5 r-r--

./

V

,..

1/

'/

\Q¥~

V

~

"

Nomogram: power loss .6.PR(AV) due to switching only (to be added to forward
and reverse power losses).
7Z62346

10

7Z62348

--Tj=25 °c
---- Tj = 125°C
max. values

... ~
l-

_-- -.. ~"I- .........

..

I-

IF151
IF

.........

..... r--.

f= 1 MHz
Tj =25 to 1250C

....

5A=

~ I~": lJt~

I

b-.....

IF= 1A-

10- 1

r---.. r... ...... ~~

typ

10
r-

10- 2

1

10

February 1978

II

dI
- dt (A/Ils)

lO

VR (V)

11

BYX71

II

SERIES

10

IFhkdt

Qs

IR

II
7Z67039

.1
~

I I

T j =25 °c
max. valuel'1

-

- -

TT

IF =
""..

/

/

/'"

,/

/

/

/

/.

/ . ......
~ V.......

V/h v/ V'
)
j

.....

..... ~

-- 3t5~~

--~

-------

..... ~
~Ioo-~

I~A

i--- I--'"'

4A
I

2A1

AI--

~ ~~

V~~
~ ~~ ... ""
lI.

10- 1
10- 1

10

~V

/

~ :::::

..- ~~ ..-""1

,;' ..".
~
~
~

v~

.... ~

~

"..-

1/

./

~

.",.'

,."

10

dI
- dt (A/Ils)

7Z67040

IF~ -dt

IR

Qs

-_ T·J =150 0C
max. values

-

~

/

/

V

V

~~

::::~
~ I-

~ ..... ""..
....
/ , ; ' .JI"
..........

.///
~
/

.......

......-

-I-"

I".oo~""
...... ~
..... 100..... 100-

~

~

V

---

--

IF =
lOA

I

SAl--

I--'

I

~~

41A

~""~ f--- ~II -- 3A
~""~ :...-- ~

21

""----

lA-

~~
~
/~ ~
I/'

~~ Ii'?'~~
~
~

10- 1
10- 1

12

10

II

dI

- dt (A/jJs)

II

October 1972

BYX71

II

SERIES

7Z67041

lO
i""""

i"""
~~

V

.,;'

1/
j...--~

./

10- 3

October 1972

II

10 time (8) 10 2

13

________________________________Jl__

B_Y_X_96__
SE_R_IE_S__

RECTIFIER DIODES
Also available to BS9331-F129

Silicon rectifier diodes in metal envelopes similar to 00-4, intended for use in power
rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX96- 300 to 1600.
Reverse polarity (anode to stud): BYX96- 300R to 1600R.

I

QUICK REFERENCE DATA

Repetitive peak reverse voltage

BYX96-300
BYX96-300R

600 1200
1600
600R 1200R 1600R

max.

600

300

1200

I

1600

V

A

Average forward current

max.

30

Non -repetitive peak forward current

max.

400

A

Dimensions in mm

MECHANICAL DATA

Fig. 1 00-4: with metric M5 stud (cf>5 mm); e.g. BYX96-300{R).
Types with 10-32 UNF stud (cf> 4,83 mm) are available on request. These are indicated by the suffix U;
e.g. BYX96-300U{RU).

~

9,3 max

-.13,1i
..
min

7,6

max

~~~J _I

-.

... 3,5 ..

max

__ 10,28 ___

max
_

11,50
10,72

_ 1 ....
1-----

24,3 _ _ _-I.~I

7273129.1B

max

Supplied with device: 1 nut, 1 lock-washer
Nut dimensions across the flats', M5 thread: 8 mm, 10-32 UNF thread: 9.5 mm
Net mass: 7 g
Diameter of clearance hole: max. 5. 2 mm
Supplied on request: accessories 56295
(PTFE bush, 2 mica washers, plain washer, tag)
a version with insulated flying leads
The mark shown applies to normal polarity types

Torque on nut: min. O. 9 Nm
(9 kg em)
max. 1. 7 Nm
(17 kg em)
January 1980

BYX96
SERIES

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages 1)

BYX96- 300(R)

600(R)

1200(R) 1600(R)

Non-repetitive peak reverse
voltage (t :-:; 10 ms)

VRSM

max.

300

600

1200

1600

V

Repetiti ve peak reverse
voltage (6 :-:; 0,01)

VRRM

max.

300

600

1200

1600

V

Crest working reverse voltage

VRWM

max.

200

400

800

800

V

VR

max.

200

400

800

800

V

Continuous reverse voltage
Currents

A verage forward current (averaged
over any 20 ms period) up to T mb

= 125

°c

Ip(AV)

max.

30

A

R. M. S. forward current

Ip(RMS)

max.

48

A

Repetitive peak forward current

IpRM

max.

400

A

Non-repetitive peak forward current
(t == 10 ms; half sine-wave) Tj = 175 0c prior to surge;
with reapplied VRWMmax
2
r t for fusing (t = 10 ms)

IpSM
r2 t

max.

400

A

max.

800

A2s

Storage temperature

T stg

-55 to +175

°c

Junction temperature

Tj

max.

175

°c

1,0

°c/w

Temperatures

THERMAL RESISTANCE
Prom junction to mounting base

Rth j-inb

Prom mounting base to heatsink
without heats ink compound

Rth mb-h

0,5

°C/W

Rth mb-h

0,3

°C/W

Zth j-mb

0,2

°C/W

with heats ink compound
Transient thermal impedance; t

= 1 ms

1) To ensure thermal stability: Rth j-a :-:; 2 °C/W (continuous
:-:; 8 0C/W (a.c.)
Por smaller heats inks T j max should be derated. Por a. c.
Por continuous reverse voltage: if Rth j-a = 4 oC/W, then
if Rth j-a = 6 OC/W, then

2

II

reverse voltage) or
see page 4.
Tj max = 138 oc,
Tjmax = 125 0C.

I

Pebruary 1978

BYX96

II

SERIES

CHARACTERISTICS
Forward voltage
IF == 100 A; T j == 25 oC

VF

<

Reverse current
mA

<

OPERATING NOTES
1. The top connector should neither be bent nor twisted; it should be soldered into the
circuit so that there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
2. Where there is a possibility that transients, due to the energy stored in the transformer, will exceed the maximum permissible non -repetitive peak reverse voltage,
see General Section for information on damping circuits in Data Handbook Part SC lao

1) Measured under pulse conditions to avoid excessive dissipation.

November 1975

3

BYX96

II

SERIES

II
7Z72265 1

50
1-1- 1-1-

single phase: a = 1,6
3-phase
: a = 1,75
6-phase
: a = 2,4

p

IF(RMS)
IF{AV)

a=

(W)

I

1-1- 1-1-

1-1- f-I1-1- 1-1-

1/ 1/1
I I I I
0=2,41 I-~ f-1,7~ ~17 k"1,5
I.)

V

1/
I.'

~

!,Ii"

1/

1/
1/

II'"

;-

LI
i.oI'
II'"

.....
..... 1'
.... 1'

~

./

V

....

1

\

o

I I It-f-f~

'0' ~-I-I-

,

~--;"- I-~~~

I
,~

\.

\ ~ ~

L-I-

1\

~

~~
.l\,.

I\:

I

~

IY

I"\:

\

~

~

I'\:

~

I'

135

"_I-I-

~

1\

I\.

155

1\

1\ ,

~

I"\:

I'\:

1\\

I"

1"'1.1\..'\

"

I'

~,) T mb-scale

-~~

< ""'" , ,
I'
" ,
I"
." "
"'
'" "
'" "- ""1'1 , ,

~

~

1/

......... "'"

r-o..~

o
o

4

~

~

~
L,,;

,;'

I.'

\

1"1

~

1/
V

~

20

./

I'

~

I.'

I

I

i.I"

II'

II'

I.J"

I

III

I I

40

115

interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures

10

20

IF(AV) (A)

30 25

125

75

~

l""'Oii~lI{

N 175
175

Tamb (oC)

is for comparison purposes only and is correct only for Rth mb-a :56,5 °C/W

II

II

November 1975

600

\

II

"

\

7Z72264 1

IFV\

\
\

(A)

,

Ll

400

,

1\

SERIES

maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )

1\
IFS(RMS)

BYX96

~-IFSM
~-IFS(RMS)
time

I FSM

with reapplied V RWMmax

1\

"-

"'

200

.........

'"

~

Tj =175°C prior to surge

...........
-I'~

0

10- 3

10-2

10

-

1

duration (5)

1o

7272262.1
~Ll

Tj = 25°C
--_lj =175°C

~

;

200

I

/;

I

1

I'
t

yp I--

!

i

150

II~~ax
//

I

,

r--

'/

J
II

!

J

100

I

(/

Ii

"

ill

/I

I

50

:J

11/
,. "j
~~

o
o

November 1975

If/V

OJ

~~

_1__._._ . _ _ . _ .___ . _ _

2

3

I

5

BYX96
SERIES

II

II

7Z72263

10

",..

,..,

....-

...... 1-"''''

, ....
~

time (5)

6

II

II

10

November 1975

j

BYX97 SERIES

----------------------------------------------------RECTIFIER DIODES
Also available to BS9331·F130

Silicon rectifier diodes in metal envelopes similar to 00-5. intended for use in power
rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX97- 300 to 1600.
Reverse polarity (anode to stud): BYX97-300R to 1600R.
QUICK REFERENCE DATA

BYX97-300
BYX97-300R
Repetitive peak reverse voltage

1600
600 1200
600R l200R 1600R

max. 300

VRRM

600

1200

1600,

V

Average forward current

IF (AV)

max.

47

A

Non-repetitive peak forward current

IFSM

max.

800

A

Dimensions in mm

MECHANICAL DATA

00- 5 (except for M6 stud); Supplied with device: 1 nut, 1 lock -washer
Nut dimensions across the flats: 10 mm
15,3 max
M6

,_ I

8,0

6
max

max

+r-------'-

2,2-.
max

...
..... 5,0

L

-.13,0 i.min

(flat)

-17,0-

max

_

11,5_,.....t-----25,4---~.~,
10,7
max

Net mass: 22 g
Diameter of clearance hole: max. 6. 5 mm
Supplied on request: accessories 56264A
(mica washer, insulating ring, tag)
a version with insulated flying leads
The mar k shown applies to normal polarity types

7Z?5506.1A

Torque on nut: min. 1. 7 Nm
(17 kg cm)
max. 3.5 Nm
(35 kg cm)

'I

January 1980

BYX97
SERIES

II

II

RATINGS Limiting values in

accQ~dance

Voltages 1)
Non - repetitive peak reverse
voltage (t :s 10 ms)
Repetitive peak reverse
voltage (6 :s 0, 01)
Crest working reverse voltage
Continuous reverse voltage

with the Absolute Maximum System (IEC 134)
BYX97 - 300(R)

600(R)

l200(R) 1600(R)

VRSM

max.

300

600

1200

1600

V

VRRM
VRWM

max.

300

600

1200

1600

V

max.

200

400

800

800

V

VR

max.

200

400

800

800

V

Currents
Average forward current (averaged over
any 20 ms period) up to T mb :::: 120°C
at Tmb:::: 125°C

Ip(AV)
Ip(AV)

max.
max.

47 A
40 A

R.M.S. forward current

Ip(RMS)

max.

75 A

Repetitive peak forward current

IpRM

max.

550 A

Non -repetitive peak forward current
(t :::: 10 ms; half sine-wave) Tj :::: l50 0 C prior to surge;
with reapplied VRWMmax
IpSM
r 2t for fusing (t = 10 ms)
I 2t

max.

800 A

max.

3200 A 2 s

Temperatures
Storage temperature

Tstg

Junction temperature

Tj

-55 to +150 °C
max.

150 °c

THERMAL RESISTANCE
Prom junction to mounting base

Rth j-mb

Prom mounting base to heatsink
without heats ink compound

Rth mb-h

0,3 °C/W

Rth mb-h

0,2 °C/W

Zth j-mb

0,1 °C/W

with heatsink compound
Transient thermal impedance; t :::: 1 ms

1) To ensure thermal stability: Rth j-a :s 1 °C/W (continuous
:s 4 °C/W (a. c.)
Por smaller heatsinks Tj max should be derated. For a. c.
For continuous reverse voltage: if Rth j-a :::: 2 °C/W, then
if Rth j-a :::: 3 °C/W, then

2

II

0,6 °C/W

reverse voltage) or
see page 4.
Tj max:::: 138°C,
Tj max:::: 125°C.

II

February 1978

BYX97

II

SERIES

CHARACTERISTICS
Forward voltage
IF

==

150A;Tj =25 0 C

VF

<

1,45

<

4

V 1)

Reverse current
VR

==

VRWMmax; Tj

==

125 °C

rnA

OPERA TING NOTES
1. The top connector should neither be bent nor twisted; it should be soldered into the
circuit so that there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
2. Where there is a possibility that transients, due to the energy stored in the transformer, will exceed the maximum permissible non-repetitive peak reverse voltage,
see General Section for information on damping circuits in Data Handbook Part SC 1a.

1) Measured under pulse conditions to avoid excessive dissipation.

November

197~~

_____

3

BYX97

II

SERIES

II
7Z72282 1

60
single phase: a = 1,6
3-phase
: a = 1,75
6-phase
: a = 2,4

p
(W)

~f- f-I-

interrelation between the power (derived
IF(RMS) 1-1-1-1from the left-hand graph) and the maxia=
~f- f-IIF(AV) 1-1-1-1- mum permissible temperatures
120,
\ -I
T
1\ 1\
I
1
1,75) ~171,6
f\ T
1\
I I I
Tmb*)

,

1/

1 1

Ii

0=2,4"

40

J

"
"

1/
i

V

V

1/
1/1/

v
1/
~

I\.
I\.

,J

""" I\..

1/

,

1\
~

~ o,,_e-

I\..

\

"'-

~~

'"

I\~

""

~I':I'

138

'If
" \\

rT

[\

"'" ~

VV~

~'

'"
~""

I

144

1"\

~~

v-

o

Ir
\ 1\

"" I\..

"~

I/"",r;...

o

132

"

I\. ,

1\1\. 1\:' \ \

~

(OC)

126

1\

'\

\..

\ -I-

1\
1\

rt..l'\

I'

I~

-

\~....ll-

I\.~
~~

I"-

:"';

~tl-

1

..>- nO'

..i'N'1\
I\.

l'-~
~
$' I\..

~,J

T

[o~ ~
I\...>~f-,

~

1/
I";

1\

I\.

1..11.1

V

20

,

I"-'!\

, 20

40

IF(AV) (A)

60 0

100

50

1'-'1 150
150

Tomb (OC)

,:,) Tmb-scale is for comparison purposes only and is correct only for Rth mb-a ~ 3,4 oC/W

4

II

II

November 1975

BYX97

II
1000
I

SERIES

n72264 1

\

FS(RMS)

(A)

750

maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )

,

1\

l~

I FSM

r\

~-ITSM

~-ITS(RMS)

time

with reapplied V RWMmax

I'

l~

500

"'"

~

"r--

r-!l:.150oC prior to surge

--

250

r-,....

r---

-

r-I-

o

10- 3

duration (s)

10

7Z72265

300

- - l j = 25°C
---lj =150 oC

v
typ- max
I(

i
I

200

II

l'

.i

I

I

jil

ILl

!

r'

i
II
I

J

1/
III

V
100

II
I

L'

II

Ii
J
II

Ii f I
J
'I
~,~'

/

~..:" L.".o

2

November 1975

II

5

BYX97

II

SERIES

II
7Z?2283

10

~

V
...... ~

-

i--""~

-

V

1

6

II

It

time (s)

10

November 1975

_ _ _ _J

BYX98 SERIES

RECTIFIER DIODES

Silicon rectifier diodes in DO-4 metal envelopes, intended for use in power rectifier
applications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX98- 300 to 1200.
Reverse polarity (anode to stud): BYX98- 300R to 1200R.
QUICK REFERENCE DATA
BYX98-300 600 11200
BYX98-300R 600R
1200R

max.

Repetitive peak reverse voltage

300

Average forward current
Non -repetitive peak forward current

600

I 1200 v

max.

10

A

max.

75

A

Dimensions in mm

MECHANICAL DATA
00-4: Supplied with device: 1 nut, 1 lock-washer
Nut dimensions across the flats: 9. 5 mm
1,0
0,8

-'11'max
4,0

~

4,83
max

___ 3,2 .-max

_9,3_
max

__ 11,5 ___.1 ...... _ _ - - 20,3_ _----i..~,
10,7
max
7Z6535S.2

Net mass: 6 g
Diameter of clearance hole: max. 5. 2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)
The mark shown applies to the normal polarity types.

E

Torque on nut: min. O. 9 Nm
(9 kg cm)
max. 1.7 Nm
(17 kg cm)

Products approved to CECC 50 009-004, available on request

January 1980

BYX98
SERIES

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

BYX98- 300(R)

600(R)

1200(R)

Non-repetitive peak reverse
voltage (t :s 10 ms)

VRSM

max.

300

600

1200

V

Repetitive peak reverse
voltage (0 :s 0, 01)

VRRM

max.

300

600

1200

V

Crest working reverse voltage

VRWM

max.

200

400

800

V

Continuous reverse voltage

VR

max.

200

400

800

V

Currents
Average forward current (averaged over
any 20 ms period) up to T mb :::: 97°C
at Tmb :::: 125°C

Ip(AV)
Ip(A V)

R.M.S. forward current

Ip(RMS)

10
6

A
A

max.

16

A

IpRM

max.

75

A

IpSM
12 t

max.

75

A

max.

28

A2 s

Storage temperature

T stg

-55 to + 150

°c

JlUlction temperature

Tj

max.

°c

Repetitive peak forward current

max.
max.

Non-repetitive peak forward current
(t :::: 10 ms; half sine-wave) T j :::: 150°C prior to surge;
with reapplied VR WMmax
12t for fusing (t :::: 10 ms)
Temperatures

150

THERMAL RESISTANCE
Prom jlUlction to ambient in free air

Rth j-a

Prom jlUlction to mOlUlting base
Prom mOlUlting base to heats ink
with heats ink compolUld
without heatsink compound
Transient thermal impedance; t :::: 1 ms

2

II

50

°c/w

Rth j-mb

3

°c/w

Rth mb-h

0,5

°c/w

Rth mb-h

0,6

°c/w

Zth j-mb

0,3

°CjW

II

Pebruary 1978

BYX98

II

SERIES

CHARACTERISTICS

Forward voltage

IF

= 20 A;

Tj

= 25

VF

°C

<

1,7

V 1)

<

200

jJA

Reverse current

OPERATING NOTES
1. The top connector should neither be bent nor twisted; it should be soldered into the

circuit so that there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
2. Where there is a possibility that transients, due to the energy stored in the transformer, will exceed the maximum permissible non-repetitive peak reverse voltage,
see General Section for information on damping circuits in Data Handbook Part SC la.
7Z72256 1

single phase: a'" 1,6
3-phase
: a'" 1)5
6-phase
: a'" 2,4

a=

f-+--- -f- interrelation between the power (derived
IF(RMS) 1-+- '---1-- from the left-hand graph) and the maxif-f- -fIF(AV) f - f - - f - mum permissible temperatures

90

20

P

/

Q::2,~

(W)

1,7~

1/

~

1.1

I)

1,6

,

r--..

I'\.

"""

)

r-.

~

1.1
1...-

1...1

I'~

~

I.....
J.;"l/

....

1.1

""-

"""

'" !''" I"""
'"
••..15I"'" r" ..... r-r"~

~~

v.~"'"

20 r""-"",
I"'- ~

....

,

"- 1\
I\.

"-

I""'

r--.~O

1...-

LI V.V

I\..~f- -~\;
~ \\

~~
i'o...6

V

1/

I"

....

)

10

'P

,0 ~
'S' 0 '?6

~

"'"

r--

r""-Io..
r-~+--

I..... :..,.~

""-

" ,

120

I\.

I\.
I\.

,... I'

1'\

I\.

I\.

""'"'" '" """ I\. '"
...........
t-o.I' .....1\.1'\

1'\0...

-""'....

""+0.;;
r--joo. Io..fiiOOj....

f":1S: lSr"l'I:

.... ..-; ~~~

~I:::;:'

I""

o
o

5

IF(AV) (A)

10 25

75

1"""'P- I...~ 150

125

1) Measured under pulse conditions to avoid excessive dissipation.

November 1975

II

3

BYX98

II

II

SERIES

7Z72257 1

100

\

maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz l

\

IFS(RMS)

rFb

1\

(A)

\
75

"

1'\

I FSM

~-IFSM

~-IFS(RMS)

time
with reapplied V RWMmax

"

50

'\.

~

f'..

1"""

Tj =150

°c

prior to surge

25

o10-3

10- 2

10- 1

duration (5)

10

7Z72254

60

-Tj

= 25°C

- _ -lj =150 oC
.1
I
1

typ max
II

40

II
II'

I

1
IL

I.'

I

1
11

~I
1I

.

I

"

_4
11

20

rl

-'

"

IL

'I
lill

I

I II/
~/I.'-

:--1/

1/

2

4

II

4

II

November 1975

II

II

BYX98
SERIES

7Z72255

10

.--- _r./

.",.. 1--'"

"
...... ~i-'"

....

time (5)

10

5

_ _ _ _J

BYX99 SERIES

RECTIFIER DIODES

Silicon rectifier diodes in DO-4 metal envelopes, intended for use in power rectifier
applications.
The series consists of the following types:
Normal polarity (cathode to stud): BYX99- 300 to 1200.
Reverse polarity (anode to stud): BYX99-300R to l200R.
QUICK REFERENCE DATA
BYX99-300
BYX99-300R
Repetitive peak reverse voltage

VRRM

max.

600
600R

1200
1200R

600

1200,

V

v

Average forward current

IF (AV)

max.

15

A

Non -repetitive peak forward current

IpSM

max.

180

A

Dimensions in mm

MECHANICAL DATA
DO -4; Supplied with device: 1 nut, 1 lock -washer
Nut dimensions across the flats: 9.5 mrn
1,0

0,8

---11<4max
4,0

.

Ju-_*~~.===. .:o-+-'h+-_~--,-h

4,83
max

1,98-.I

max

__

~

e .
I

1,6:
min

-11,0-

____ 3,2 __
max

_9,3_

-+-

max
11,5 __ '..4 1 - - - - 20,3 _ _ _"~1
10,7
max
7Z65355.2

Net mass: 6 g
Diameter of clearance hole: 5. 2 mm
Accessories supplied on request:
56295 (PTPE bush, 2 mica washers, plain washer, tag)

Torque on nut: min. O. 9 Nm
(9 kg cm)
max. 1.7 Nm
(17 kg cm)

The mark shown applies to the normal polarity types

=

Products approved to CECC 50 009-005, available on request

II

January 1980

BYX99
SERIES

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134)

Voltages

BYX99- 300(R)

600(R)

l200(R)

600

1200

Non-repetitive peak reverse
voltage (t :s 10 ms)

VRSM

max.

300

Repetitive peak reverse
voltage (0 :s 0,01)

VRRM

max.

300

600

1200

V

Crest working reverse voltage

VRWM

max.

200

400

800

V

Continuous reverse voltage

VR

max.

200

400

800

V

V

Currents
Average forward current (averaged over
any 20 ms period) up to T mb = 129 °c

Ip(AV)

max.

15

A

R. M. S. forward current

Ip(RMS)

max.

24

A

Repetitive peak forward current

IpRM

max.

180

A

Non -repetitive peak forward current
(t = 10 ms; half sine-wa ve) T j =175 °c prior to surge;
with reapplied VR WMmax
IpSM
J2 t
J2t for fUSing (t = 10 ms)

max.

180

A

max.

162

A2 s

Temperatures
Storage temperature

Tstg

Junction temperature

Tj

-55 to + 175
max.

175

°c
°c

THERMAL RESISTANCE

Prom junction to ambient in free air

50

Rth j-a

°C!W
°C!W

Prom junction to mounting base

Rth j-mb

2,3

From mounting base to heats ink
with heats ink compound

Rth mb-h

0,5

Rth mb-h

0,6

°C!W
°C!W

Zth j-mb

0, 13

°C/W

without heats ink compound
Transient thermal impedance; t

2

II

= 1 ms

II

February 1978

BYX99

II

SERIES

CHARACTERISTICS
Forward voltage

IF

= 50 A; Tj = 25 °c

VF

<

1,55

<

200

V 1)

Reverse current

[.LA

OPERATING NOTES
1. The top connector should neither be bent nor twisted; it should be soldered into the
circuit so that there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.
2. Where there is a possibility that transients, due to the energy stored in the transformer, will exceed the maximum permissible non -repetitive peak reverse voltage,
see General Section for information on damping circuits in Data Handbook Part SC 1a.

1) Measured under pulse conductions to avoid excessive dissipation.

November 1975
---_
_

,_.

...... ",....... ....._........ _...

11

II

3

BYX99

II

SERIES

II
7Z72261 1

f-f- f-f-

single phase: a = 1,6
3-phase
:a=1,75
6-phase
: a = 2,4

a=

interrelation between the power (derived
IF(RMS) f-f- f-ffrom the left-hand graph) and the maxif-f- f-fIF(AV) f-f- f-f- mum permissible temperatures

Tl
Tl
20
~

1/'

V

1 1
1~-f-~

,

1\

~

~

0=2,4 1-1- 1,7§, ~~ ~,6 f-I- f-I\ -s'~

p

I/.~

10'

~

!/

~"'"
~~

I'\.. ,

"'"

I/~

10

"'1\

tI..

r-!..S

.....

10'

~~r;...

~~r..,..

I\..

'"

.....

"

~C::; r:;... .....

.....

l\.

.....,

l,\:~\.1\

.....

~i'

o
o

10

5

IF(AV)

15 25

(AI

75

152

ir
1\.1\ \
'\.'" "

"

"- I\..

,

I(

\.1\

I\..

•••d::::1i r:;...

1\

~r\:

~~

i.o"~

-f-

\

1\
1\ \

I\.

i;'"

~

I-f- 129
I-~

1\% P\\_~

e '" '" "~ ,

I/~
i;"'l..I

(WI

~? r;.
1\
t-'~
11'0 3
~~ ~f- I--' Q'f

I

"

125

~

175

175

Tomb

(oCI

7Z72258

--Tj

25°C

:

---lj :175°C

100

typ

max

max

II

I!
J

:
I

75

1/

J

I

I: I

I

II

we

I'

II
50

:

J J
J I

I
I

.j

i

I

IIJI

Ii J
11

25
I

/1

II ~'j

ill
V

J

o
o

4

II

I_~

2

II

November 1975

BYX99

II

SERIES

7Z72549

300

maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )

IFV\

I FS(RMS)

(A)
~

~-IFSM

~-IFS(RMS)

\

time

\.

200

with reapplied V RWMmax

,

'\.

I FSM

"- ~

"

r--...

........
J""ooo....

100

...... """

r--

10- 2

---

Tj =175

°c

prior to surge

....

10- 1

duration (5)

10

7Z72259

10

v

~

....

10.'

~

V
.."
~ ...

V
10

time (5)

November 1975

II

5

_ _ _ _J

1N3879 to 1N3882

FAST SOFT-RECOVERY RECTIFIER DIODES

Silicon diodes, each in a DO-4 metal envelope, featuring non-snap-off characteristics, and intended for
use in high-frequency power supplies, thyristor inverters and multi-phase power rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): 1N3879, 1 N3880, 1N3881 and 1 N3882.
Reverse polarity (anode to stud): 1N3879R, 1N3880R, 1 N3881 Rand 1 N3882R.
QUICK REFERENCE DATA
1N3879(R)
Repetitive peak reverse voltage

VRRM

max.

1N3882(R)

50

Average forward current

max.

Non-repetitive peak forward current

max.

Reverse recovery time

<

MECHANICAL DATA

300

V

6

A

80

A

200

ns

Dimensions in mm

DO-4
1,0
0,8

-'11'-

10 - 32UNF

L
4 ,83

m ax

+

~

~

* =oh~~•

I

TT~

~1.
1,6

,.9J ----

max

40
max

j

. . . .1

min

__ 3,2 ____
max

_9,3_
max

.---- 11,5 ____ ..
10,7
Net mass:

20,3
max

~

7Z6S3SS.2

6g

Diameter of clearance hole: max. 5,2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)

Torque on nut: min. 0,9 Nm
(9 kg cm)
max.1,7 Nm
(17 kg cm)

Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 9,5 mm
The mark shown applies to the normal polarity types.

E

Products approved to CECC 50 009-006, available on request.

January 1980

1N3879 to 1N3882

II

RATINGS Limiting values in accordance with the Absolute Maximum System (lEe 134)
Voltages
IN3879(R)
Non-repetitive peak reverse voltage
VRSM max. 100
(t ~ 10 ms)

1N3880(R)

1N3881(R)

1N3882(R)

150

250

350

V

Repetitive peak reverse voltage
(0 ~ 0,01)
VRRM max.

50

100

200

300

V

Crest working reverse voltage VRWM max.

50

100

200

300

V

Currents
Average on-state current assuming zero
switching losses (averaged over any 20 ms period)
up to T mb := 100°C
at T mb := 125 °C

Ip(AV)
Ip(AV)

max.
max.

6
3,5

A

R. M. S. forward current

Ip(RMS)

max.

10

A

Repetitive peak forward current

IpRM

max.

75

A

IpSM
IFSM
r2 t

max.
max.

75
80

A
A

max.

28

A2p,

Storage temperature

T stg

-65 to +175

°c

Operating junction temperature

Tj

max.

°c

Non-repetitive peak forward current
T j := 150°C prior to surge;
half sine-wave with reapplied VRWMmax;
t := 10 ms
t := 8,3 ms

12 t for fusing (t

:=

10 ms)

A

Temperatures

150

THERMAL RESISTANCE
Prom junction to ambient in free air

Rth j-a

Prom junction to mounting base
Prom mounting base to heatsink
Transient thermal impedance; t

2

II

:=

1 ms; 0

:=

0

50

°c/w

Rth j-mb

4,4

°C/W

Rth mb-h

0,5

°c/w
°c/w

Zth j-mb

II

February 1978

1N3879 to 1N3882

II
CHARACTERISTICS
Forward voltage 1)
IF = 6 A; T j = 25

°e

<

1,4

<

3

IF = 1 A to VR = 30 V;
-dIF/dt = 35 A/fls; Tj := 25 °C
Recovery time

<

200

ns

IF = 2 A to VR = 30 V;
-dIF/dt = 20 A/flS; Tj
Recovery charge

<

250

ne

VF

V

Reverse current
rnA

Reverse recovery when switched from

:=

25

°e

IF = 1 A to VR = 30 V;
-dIF /dt := 2 A/fls; Tj := 25 °e
Max. slope of the reverse recovery current

5

+
10%

A/fls

time

t

100%

~

1) Measured under pulse conditions to avoid excessive dissipation.

February 1978

II

3

~~_________________________________

1N3879ro1N3882

7Z72721

15

p= power dissipation excluding
switching losses

p

IFIRMS)

a=

(W )

interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures

iF(AV)

1

!

10
f-~ ~

,...

III
IJ

..... 0=2,41

I..

..

" "
'"

1,75 1/-,1,6
'/

I"

I

II

"

I'

r-....

6'

"

i9.

.... ~
......

II(,

"'~~

IJ

C')'i:1

I\.

"""

"

o
o

"" ...... "- ...........

117
I\.
I\,

128

\.
I\"

\.

" ""'"

"-I\. I\" "
,,~
1\.'"

~

139

~-

2,5

5

7,50

100

50

IF(AV) (A)

08469

60

'I

-T(25°C

III
II,
fI'

,

- - - Tt150°CI

JI

••

I

I
I

40

--,

II

I

1'1•
II.
f.

II

JII

1->->- typ,

20

HI- 'IfIII

f.,..

max

j~

,,

111'1/
.I~

o

l':

o
4

~

'" "

III

IjI

1\

1'\

I'

J'f/

..

,

"'I

"

'J

1

I\'~\\

I\.

\.

" I'" '"

1/11.

5

\S'o~

,~

1"'1

"'"

I I
I
I 1'1l'

[.\9 .;

~

~

I~

I [}
II I

I/IJ.

"

I'

I
I

,

November 1979

(

1/

r
2

4

0

Tamb ( C)

15

150

o

1N3879 to 1N3882

II
7Z72723

100

\

\

maximum permissible non-repetitive
romoso forward current based on
sinusoidal currents ( f = 50 Hz )

\

I'b

~

\

IFS(RMS )

(A)

IFsM

~

~-IFSM

--=---=--

IFs(RMS)

time
with reapplied V RWMmax

~

1\
50

"

'\..
~
"~
......

"

T j = 150 °c (prior to surge)

~

i""-

o10- 3

--

r--

10- 1

10-2

10

duration (5)

7Z72722

JlJL
_jtpl_j
__ T_

o:.!£.
T

10

0-1

,.- ...... .......

- --

--

0=0

1/ ....

/

10- 2
10

5

10

4

10

3

10- 2

10- 1

tp

(s)

10

1N3879 to 1N3882

l"""---_-7Z67277.1

"""1-0-

I

1--

I I'

100
1-0- ....

"'.....

50

'-

~

"

20
-1-1~

--...

-dI/dt 5A/J-ls
I-f.-- f-+-

1/

...... 1--,

r-I-o-

10

1/

II')

~I-I-

I

IJ
1/

~ ~O ~
.....,
" ,'-I- I~

I'--.
~

j

~

-1

I

~

".........."....

,

II I
1/
"

f\ \
\
~

_~~I

10 t - t - IF (A) f - t - 1--5

0

2,5

7

II

..,./

V

.".

/

/

/

G:>~/
/

/

1/

..........

/

.... ,

...... 1'

\.~I'

..,,-'

......

./'

......

I;::ro;; ...

r-;:I"--

r""'t-I-

..... r-..

I-~

1"" .....

'"

.....

.....

just before switching
_.- off; Tj = 150°C

'--

I I I
I

I

I I
I I

--

(W)

I

A-+--I-

r-..

I

7,5

NOMOGRAM
Power loss ~PR (AV) due to switching only (to be added to steady state power losses).

IF

+

time

10%

IR
VF

time

JR

6

November 1979

7Z77074

(

I

100V~

-,-.,...
I

r~V--

5
- ' - 1--,..I - - ~PR(AV)

vr ==

,..... I20I 0

......

- - IF =forward current
,..--

I
!

V

~~
~oJf 1-~,-

i'.

.....

_____J

1N3889 to 1N3892

FAST SOFT-RECOVERY RECTIFIER DIODES

Silicon diodes, each in a 00-4 metal envelope, featuring non-snap-off characteristics, and intended for
use in high-frequency power supplies, thyristor inverters and mUlti-phase power rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): 1N3889, 1 N3890, 1N3891 and 1N3892.
Reverse polarity (anode to stud): 1N3889R, 1N3890R, 1N3891 Rand 1N3892R.
QUICK REFERENCE DATA
1N3889(R)
Repetitive peak reverse voltage

max.

1N3892(R)

50

Average forward current

max.

300

V

12

A

Non-repetitive peak forward current

IFSM

max.

150

A

Reverse recovery time

trr

<

200

ns

MECHANICAL DATA

Dimensions in mm

00-4
1,0 -

0,8

-'/1"

4,0
max

4,83

max

+
.... 3,2 __
max

_9,3_
max

___ 11,5
10,7

_+_I .....t - - - - - - -

20,3 _ _------I.~,
max

7Z6S3SS.2

Net mass: 6 g
Diameter of clearance hole: max. 5,2 mm
Accessories supplied on request:
56295 (PTFE bush, 2 mica washers, plain washer, tag)

Torque on nut: min. 0,9 Nm
(9 kg em)
max. 1,7 Nm
(17 kg em)

Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 9,5 mm
The mark shown applies to the normal polarity types.

IS

Products approved to CECC 50 009-007, available on request
January 1980

1N3889 to 1N3892

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Non-repetitive peak reverse voltage
(t ~ 10 ms)
VRSM
Repetitive peak reverse voltage
(0 ~ 0,01)
VRRM
Crest working reverse voltage VRWM

IN3889(R)

1N3890(R) 1N3891(R) 1N3892(R)

max.

100

150

250

350 V

max.

50

100

200

300 V

max.

50

100

200

300 V

Currents
Average on-state current assuming zero
switching losses (averaged over any 20 ms period)
up to Tmb == 100 °c
IF(AV)
at Tmb == 125 °c
IF(AV)

max.
max.

12
7

A
A

R. M. S. forward current

IF(RMS)

max.

20

A

Repetitive peak forward current

IFRM

max.

140

A

Non -repetitive peak forward current
T j = 150 0C prior to surge;
half sine-wave with reapplied VRWMmax;
t == 10 ms
t = 8,3 IDS

IFSM
IFSM

max.
max.

140
150

A
A

12t for fusing (t = 10 ms)

12t

max.

100

A2 s

Temperatures
Storage temperature

Tstg

Operating junction temperature

Tj

-65 to +175
max.

150

°c
°c

THERMAL RESISTANCE
From junction to ambient in free air

Rth j-a

50

°C/W

From junction to mounting base

Rth j-mb

2,2

°C/W

From mounting base to heatsink

Rth mb-h

0,5

°C/W

Zth j-mb

0,8

°C/W

Transient thermal impedance; t = 1 ms; 0 = 0

2

II

II

February 1978

1N3889 to 1N3892

II
CHARACTERISTICS

Forward voltage 1)
VF

<

1,4

IR

<

3

IF = 1 A to VR = 30 V;
-dlF /dt = 35 A/I-ls; Tj = 25°C
Recovery time

trr

<

200

ns

IF = 2 A to V R = 30 V;
-dIF/dt = 20 A/I-ls; Tj = 25°C
Recovery charge

Qs

<

250

nC

IF = 1 A to V R = 30 V;
-dIF/dt = 2 A/I-ls; Tj = 25°C
Max. slope of the reverse recovery current

IdlR/dtl

<

5

IF

= 12 A; T j = 25°C

V

Reverse current
VR

= VRWMmax; Tj = 125°C

rnA

Reverse recovery when switched from

,

A/fJ

time

7l70?34.2

1) Measured under pulse conditions to avoid excessive dissipation.

F ebru_ar_y_l_9_78__

l

3

1N3889 to 1N3892

II

II
7Z72MO

p=

power dissipation excluding
switching losses

I r
I I
I I

I.

IF(RMS)

a=

IF(AV)

I I I
I
L

interrelation between the power (derived
from the left-hand graph) and the maximum permissible temperatures

I
1

I

I

20
P

....

'"

1/

(W)

JII

15

"

'I

I

'III

"

rl
10

I'"

'"

'"

r-..

r--,8

0

1..

"

8.

I......

'"

...."

I'

11'

o
o

~

""

"'I'

1\

117
!

,

1'\

"-

["'0.
["'iiO

"""....

i'.

1

\.

r....

r....

rJ

IA

"

~

~~

IIY

5

~c. ~
I\, ~ \\

"' i'

i""o

"
"

f/

(

~ o~d

"r-..

IIII,

i/ll.

,q..s'~

....

,....""",

VII
'/

9

I

1l

1,75 I-- 1:S
III
I I L
II
a= 2,4
'J
J I

,
\.

128

1"0..

r--,
i"""""

~

r--,

~

r-..

r--.

r--,

I\.

I'.

r-...

1''''''' ......

'"

"'-

""

r--.J:"'o

J:II"

"'1"\ "-

~

"-

"["'0. "'''

1"100:10.;:
1""'oF::i

5

10

150

139

..,

~1110.:~

j"III:l8! 150
150

50

IF(AV) (A)

7Z72609,1

so

II
II

~

f1 --lj= 25°C

JII _ -lj=150oC

I,
Ii

I
I

!I

I

,-II

I
II
II

40

"

II

'I
I

r-r- ~-+- typ IJ-I-- It, max
.I~

'L

I

I II

20

I

I

,

J

II II

I

II I,' I
II

o
o

4

II

~

)

V

t..

2

3 VF (V) 4

II

February 1978

1N3889 to 1N3892
II

7Z7 2611.1

150

\

I FSM

\
IFSIRMS )

(A)

maximum permissible non-repetitive
r.m.s. forward current based on
sinusoidal currents ( f = 50 Hz )

,

It\

~-IFSM

~-IFSIRMS)
time

100

r\.

with reapplied V RWMmax

"-

""-

'"
!'

50

""
o

10

10-2

3

~ =150 °c (prior to surge)

10- 1

--

-

--

I--

10

duration (5)

7Z72691

JUL
-ltpl_1
-T-

O=~
T

10

0=1
r0-

~ ~-

O 0

.-

.... 1-'

/"

10- 2
10- 5

10- 4

February 1978

1_

10-3

10- 2

10

tp(S)

5

1N3889 to 1N3892

L_____- 08662

~~~~~4-~4-~~~~~4-~~f2~.55~~-r~-r+S~~~~'~_~~~~I;O~~
I"'"

~1-~4-~4-~4-~4-~~~4,~A.~D

I""';:.v ~

V'\I~r+~r+~r+~~~~~~~~~~~

JW)VI~++++~~~~++~~~

NOMOGRAM

Power loss t.PR (AV) due to switching only (to be added to steady state power losses).
IF

= forward current just before switching off; Tj = 150 °C

t

time

10%

time

7Z77074

6

December 1979

r

~

1N3899to1N3903

---------------------------------------------------------FAST SOFT-RECOVERY RECTIFIER DIODES
Silicon diodes in 00-5 metal envelopes, featuring non-snap-off characteristics. They are intended
for use in high-frequency power supplies, thyristor inverters and mUlti-phase power rectifier applications.
The series consists of the following types:
Normal polarity (cathode to stud): 1 N3899, 1N3900, 1 N3901, 1N3902, 1N3903.
Reverse polarity (anode to stud), 1 N3899R, 1N3900R, 1 N3901 R, 1N3902R, 1 N3903R.

QUICK REFERENCE DATA
1N3899(R) 3900(R) 3901(R) 3902(R) 3903(R)
Repetitive peak reverse
voltage

VRRM

max.

50

'00

200

300

400

V

max.

v
20

A

Average forward current

IF(AV)

Non-repetitive peak
forward current

IFSM

max.

225

A

trr

<

200

ns

Reverse recovery time

MECHANICAL DATA

Dimensions in mm

Fig.1 00-5; Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 11.1 mm

15,3 max
1/4 in x 28 UNF

,_ I

_t

6,35
max

8,0
max

-t
2,2-.
max

_

11,5

10,7

-... 5,0
max

L

_ 1 ....... . - - - - -

-17,025,4 _ _ _-.1
max

Net mass: 22 g
Diameter of clearance hole: max. 6.5 mm
Accessories supplied on request:
56264A (mica washer, insulating ring, tag)
The mark shown applies to normal po~ lrity types.

7l75506.1

Torque on nut:
min. 1.7 Nm (17 kg cm)
max.2.5 Nm (25 kg cm)

July 1979

1N3899 to 1N3903

l_ _ __

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
1N3899(R) 3900(R) 3901(R) 3902(R) 3903(R)
Non-repetitive peak reverse
voltage (t ,,;; 10 ms)

VRSM

max.

75

200

300

400

500

V

Repetitive peak reverse
voltage (8 ~ 0.01)

VRRM

max.

50

100

200

300

400

V

Crest working voltage

VRWM

max.

50

100

200

300

400

V

v

Currents
Average on-state current assuming zero
switching losses (averaged over any 20 ms period)
up to T mb = 100 °C
at T mb = 125 °C

IF(AV)
IF(AV)

max.
max.

20
10

A
A

R.M.S. forward current

IF(RMS)

max.

30

A

Repetitive peak forward current

IFRM

max.

100

A

Non-repetitive peak forward current
Tj = 150 °C prior to surge;
half sine-wave; with reapplied VRWMmax;
t = 10 ms
t = 8.3 ms

IFSM
IFSM

max.
max.

200

A

225

A

Ilt for fusing (t = 10 ms)

12 t

max.

210

A2 s

Temperatures
Storage temperature

T stg

Operating junction temperature

Tj

max.

-65 to 175

°C

150

°C

THERMAL RESISTANCE

2

From junction to mounting base

Rth j-Jnb

1.5

°C/W

From mounting base to heatsink
with heatsink compound

Rth mb-h

0.3

°C/W

Transient thermal impeadance; t = 1 ms

Zth j-mb

0.3

°C/W

1N3899 to 1N3903

Fast soft-recovery rectifier diodes

CHARACTER ISTICS
Forward voltage
IF=20A;Tj=25 0 C

VF

<

1.4

IR

<

6

trr

<

200

ns

Os

<

250

nC

IdlR/dtl

<

5

V*

Reverse current
VR = VRWMmax; Tj = 100 °C

mA

Reverse recovery when switched from
IF = lA to VR ~ 30 V; -dlF/dt = 35 AIMS; Tj = 25 °C
Recovery time
IF = 2 A to VR ~ 30 V; -dlF/dt = 20 AIMS; Tj
Recovered charge

=

25 °C

Maximum slope of the reverse recovery current
when switched from IF = 1 A to VR
-dlF/dt = 2 AIJls; Tj = 25 0C

~

30 V;
A/Jls

IF
IF

+
10%

time

t

100°/0

~
D8403

Fig.2 Definitions of trr and

Os.

*Measured under pulse conditions to avoid excessive dissipation.
July 1979

3

~

1N3899w1N3903

____________________________________

SINUSOIDAL OPERATION

o

P

413

(W)

I

1.9

30

1.57
i

\

I

~

'\

/ I

1----

I

I(

I

I

I

a=2.8
/

f ,

'" '",

I

II I

20

I

if J
J/I/
1/ "I

f'

I

Vi 'I

I

I'll

\.

~--

\~ -

,, " , ,

,

...... ~

......

'-

"'-

, ,
f'

. -c--

120

\

~

'\

'~
.............
.....

~

~

\

\.

~

,
~

, f'\. \

"',- \

135

...... ....:::: ........ ~~

""" ~ ~~k\ 150

I

10

0

\·~o
()-

"\9'

1/..1
hV
o

105

X~\I0

\

r"~

--~--

\.~

..... ~

~~

/1'1

10

-:P

'S-\?

20

30 0

50

100

"'"150

'F(AV)(A)
Fig.3 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power dissipation excluding switching losses.
a= form factor = IF(RMS)/IF(AV).

4

1r

1979
July

1N3899 to 1N3903

Fast soft-recovery rectifier diodes

SQUARE WAVE OPERATION
08414

P
(W)

50

75
1.0

40

0.5
~

0.2

30

~

J

o=O.li1""
V
I...,
".~
'1/ V
VI/ V ioo""
1..",1
'/1/

20

10

~,/,-,

~P'.:
l.oII~~ ~

o

.... ,...~

"'~

~
~

~

~

""

'"

I...-

'"

'"

V

~

~

, -:P '

,

I~
,3a-

I'-

1..1"

[\O'b

I'

'- ~

/
~
~

.....91'0

20

30 0

~

I~

'"r-...'"

~.",.

10

,

"'iii

....

50

105

1\ r - r-I-f--

~~

I'

() .- f-I~'----- f-I-

\

'l~
I\..

...... &

f--- f-f-f-

1\ ·~o-I- 1-1-

1\.

Iiro.

ioo""

0

90

\

I\.

,

"""'Iii

1"\
~

..... "'''

'"

120

I{

1\

~

'f

135

'-,,~

~~

..... '"
~
1\
"';J 150
150
100

Fig.4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power dissipation excluding switching losses.
tp

T

I~II
I
tp
0=V

L __ ..1

L.. __

J

IF(AV) = IF(RMS)

T

x...j8

July 1979

5

1N3899 to 1N3903

l_ _ __
D8415

300
IFS(RMS)
(A)

~

~

----

""

200

I FSM

1"-

" "" .....

i'
...........

1--

~

..........

""100

"'"

--

-

.....
...........
...... 10",.

......

...

--.

-~

....

a
10- 3

10- 2

10- 1

duration (s)

Fig.5 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents
(f = 50 Hz); Tj = 150 °C prior to surge; with reapplied VRWMmax.

/\---I FSM

I \: IFS(RMS)
time

6

r
1

July 1979

10

1N3899 to 1N3903

Fast soft-recovery rectifier diodes

08416

IF
(A)

I
I
I

+ "1--

+-

max V F

50

,

I

'-

II II

II

,

I

40

I

I

II

1 II

30

,
[I

J
I.

20

i

:1

!

t+

~

I

I
/I

Fig.6 - - Tj

= 25 0 C;

- - - Tj

= 150 0 C

D8417

10
Zth j-mb

(OC/W)
10-

-

L,.

.-'

VI-'"

r-

10- 1
./

l/

10- 2

10- 3
10- 5

10- 4

10- 2

10- 3

10- 1

1 time (s)

10

Fig.7

July 1979

7

j

1N3909

to 1N3913

---------------------------------------------------------'
FAST SOFT-RECOVERY RECTIFIER DIODES
Silicon diodes in 00-5 metal envelopes, featuring non-snap-off characteristics. They are intended for
use in high-frequency power supplies, thyristor inverters and mUlti-phase power rectifier applications.
The series consists of the following types:
Normal polarity (cathodetostud): lN3909, lN3910, lN3911, lN3912, lN3913.
Reverse polarity (anode to stud): 1N3909R, 1N3910R, 1N3911 R, 1 N3912R, 1 N3913R.
QUICK REFERENCE DATA
1N3909(R) 3910(R) 3911(R) 3912(R) 3913(R)
Repetitive peak reverse
voltage

VRRM

max.

Average forward current

IF(AV)

max.

30

A

Non-repetitive peak
forward current

IFSM

max.

300

A

trr

<

200

ns

Reverse recovery time

"-

100

50

200

300

400

'-------------~v~--------------~

V

Dimensions in mm

MECHANICAL DATA
Fig.l 00-5; Supplied with device: 1 nut, 1 lock-washer
Nut dimensions across the flats: 11.1 mm

15,3 max
1/4 in x 28 UNF

,_ I

_f

6,35

8,0

,-

max

max

-t
2,2 --+
max

.-

I

-17,0-

__ 5,0 .-max

____ 11,5
10,7

_ I ......~_ _ _

25,4 ------4~
..1

7Z75506.1

max

Net mass: 22 g
Diameter of clearance hole: max. 6.5 mm
Accessories supplied on request:
56264A (mica washer, insulating ring, tag)
The mark shown applies to normal polarity types.

Torque on nut:
min. 1.7 Nm (17 kg cm)
max. 2.5 Nm (25 kg cm)

July 1979

1N3909 to 1N3913

l________

RATINGS
Limiting values in accordance with the Absolute Maximum System (lEC 134)
Voltages
1N3909(R} 3910(R) 3911(R) 3912(R) 3913(R)
Non-repetitive peak reverse
voltage (t = 10 ms)
VRSM

max.

75

200

300

400

500

V

Repetitive peak reverse
voltage (5 ~ 0.01)

VRRM

max.

50

100

200

300

400

V

Crest working voltage

VRWM

max.

50

100

200

300

400

V

30
15

A
A

v
Currents
Average on-state current assuming zero
switching losses (averaged over any 20 ms period)
up to T mb == 100 °C
at T mb = 125 °C

IF(AV)
IF(AV)

max.
max.

R.M.S. forward current

IF(RMS)

max.

45

A

Repetitive peak forward current

IFRM

max.

125

A

Non-repetitive peak forward current
Tj = 150 0C prior to surge;
half sine-wave with reapplied VRWMmax;
t= 10 ms
t = 8.3 ms

IFSM
IFSM

max.
max.

275
300

A
A

12 t

12 t

max.

375

A2 s

for fusing (t = 10 ms)

Temperatures
Storage temperature

Tstg

Operating junction temperature

Tj

-65 to 175
max.

°C

150

°C

THERMAL RESISTANCE

2

From junction to mounting base

Rth j-mb

1.0

°C/W

From mounting base to heatsink
with heatsink compound

Rth mb-h

0.3

°C/W

Transient thermal impedance; t == 1 ms

Zth j-mb

0.2

°C/W

~IV

1979

r
1

1N3909 to 1N3913

Fast soft-recovery rectifier diodes

CHARACTERISTICS
Forward voltage
IF=30A;Tj=25 0 C

VF

<

1.4

V*

IR

<

10

mA

Reverse current
VR::: VRWMmax; Tj::: 100 °C
Reverse recovery when switched from
IF::: 1 A to VR ;;;. 30 V; -dIF/dt::: 35 AlJis; Tj = 25 °C
Recovery time
IF::: 2 A to VR ;;;. 30 V; -dIF/dt::: 20 A/Jis; Tj ::: 25 °C
Recovered charge

trr

<

200

ns

Os

<

250

nC

Maximum slope of the reverse recovery current
when switched from IF::: 1 A to VR ;;;. 30 V;
-dIF/dt::: 2 A/Jis; Tj ::: 25 °C

jdl R/dtj

<

5

+
10%

AlJis

time

i

100 0 /0

~
D8403

Fig.2 Definitions of trr and Os.

*Measured under pulse conditions to avoid excessive dissipation.

July 1979

3

1N3909 to 1N3913

l_ _ __

SINUSOIDAL OPERATION

08408

p
t--+-t-+--+-+-+~-t-+I- ~- ~--+-+--l---+--~---+--+- L
-t-r' ·t+·+ t·
(W)
f-+-+-+-+--+-+-+--+j--t--++-+-+--t-++--+-+--+--+-+-++ -+- --+-+
t
t--+-t-+--+-+--~--+--+--i---+--+--f--+-t-+--+-+--~--+--+---t- ++_+-LL 1 . -

f-rt--:

1-+-+--+---t-+-~---+--+-1--+-t-+--+·-+-+---t-+-~---+---t---

~ <1

I V 1/ 17
'I) / V

r-.... ~

" ~""

.........

r"'

1/)VJ
jVjV

r"
~

""

.....

60 0

1'...

110

\
~

\

~

"

\.

""

...... J'.. f""'. ,..." t'-,.

~V
40

'"

.....t'-,. ~
....... ~

o~

20

\

.;>

...... ~

$ ....... ~

'j

0

90

,0> '0

50

\

,

130

1\
1"- ~ ~ ~..... ~
.......
r::::: ~ ~~
!"-.... ~
100

1

Fig.4 The right-hand p.art shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
P = power dissipation excluding switching losses.
tp

T

i~'1
: 8=tp
V

L.. __ ..1

L.. __

J

iF(AV) = iF(RMS)

T

xY8

l'---_--

1N3909 to 1N3913

08410

400
'FS(RMS)

(A)

I\.

"-

,

...,.",

300

'FSM

"~

r--~

"-

200

f'....

I':00.""
--

~

.........

100

""

r-...

I

i""'~",
1----

~

r--

""""'

o
10- 3

10- 2

10- 1

10

duration (s)

Fig.5 Maximum permissible non-repetitive r.m.s. forward current based on sinusoidal currents
(f = 50 Hz); Tj = 150 0C prior to surge; with reapplied VRWMmax.

f\----I FSM
,:'FS{RMS)

I

time

6

~Iy

1979

1r

1N3909 to 1N3913

Fast soft-recovery rectifier diodes

08411

I I
I
I I

'T

111111
max VF .--+-

50
I
I,
I'

40

,

,,
I

30

I

,I
20

II

1/
I

l

,

II
'I

10

J
".

I

~

o

I

II

./
~

o

0.5

"'"

. --f--

time (s)

July 1979

10

7

REGULATOR DIODES

c

c

--

:::

=

=

=

BZV15

II

SERIES

VOLTAGE REGULATOR DIODES

A range of voltage regulator diodes in plastic envelopes intended for use as voltage
stabilizers in power supply circuits.
Normal and reverse polarity types are available: BZV 15-C lO(R) to C75(R).
QUICK REFERENCE DATA

Working voltage range (5% range)

= 25 oC
= 82 °C

Total power dissipation at T amb
at T mb
Junction temperature

Vz

nom.

10 to 75

V

Ptot

max.

2,2

W

Ptot

max.

15

W

Tj

max.

150

°c

Dimensions in mm

MECHANICAL DATA

SOD-38
1---11,0 max

-I

r; 5,2+-,
I max

t

3,7 3,6

~~I===fI-

5,3

5,0

metal base
plate

t

18,0
max

j

r-

'-L!::::::;:=:::r=Fr~~

4max
not tinned

2,5

•

14,5
min

l_
....

tag1

tag2

0,65 ......

max

5,0

...

....1

I

', __11..- max
1,2

3,1 .....
2,5-

..-

7Z60001.5

Net rna s s; 2, 5 g
Torque on screw: min. 0,95 Nm
Accessories:
(9,5 kg cm)
supplied with device : washer
max. 1,5 Nm
available on request : 56316 (mica insulating washer)
(15 kg cm)
Tag 1 is connected to the metal base-plate, which should be mounted in contact with the
heLltsink used.

November 1975

BZV15

II

II

SERIES

POLARITY OF CONNECTIONS

Base-plate:
Tag 1
Tag 2

BZV 15-C 10
to C7S

BZVIS-ClOR
to C7SR

cathode
cathode
anode

anode
anode
cathode

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Currents

Average forward current (averaged
over any 20 ms period) at T mb = 82

°c

Repetitive peak forward current

max.

7,5

A

max.

50

A

max.
max.

2,2
15

W
W

max.

400

W

Power dissipation
Total power dissipation at T amb = 25 °c (method a)
at Tmb = 82 °c
Non-repetitive peak reverse power dissipation
T amb ::: 25 oC; t ::: I ms (square pulse)

PZS M

Temperatures
Storage temperature

-55 to + 125

Junction temperature

max.

150

°c
°c

SOLDERING AND MOUNTING NOTES

1. The devices may be soldered directly into the circuit.

2. The maximum permissible temperature of the soldering iron or bath is 270 oC;
contact with the joint must not exceed 3 seconds.
3. The devices should not be immersed in oil, and few potting resins are suitable for
re-encapsulation. Advice on these materials is available on request.
4. Leads should not be bent less than 2,5 mm from the seal; exert no axial pull when
bending.
5. Soldered joints must be at least 2,5 mm from the seal.
6. For good thermal contact heatsink compound should be used between base-plate and
heatsink.

2

II

II

November 1975

BZV1S
SERIES

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

4,5

°C/W

Transient thermal impedance; t == 1 ms

Zth j-mb

0,3

°C/W

a. With heats ink compound

Rth mb-h

1,5

°C/W

b. With heats ink compound and
56316 mIca washer

Influence of mounting method

1. Heatsink operation
From mounting base to heats ink

R th mb-h

=

2 7

°C/W

c. Without heats ink compound

Rth mb-h

=

2,7

°C/W

d. Without heatsink compound
with 56316 mica washer

Rth mb-h

=

5

°C/W

2. Free air operation
The quoted values of Rth j -a should be used only when no other leads run to the tie-points.
From junction to ambient in free air
mounted on a printed circuit board
at a == maximum lead length
and with a copper laminate
a. > 1 cm2
Rth j-a = 50 °C/W
b. < 1 cm2
Rth j-a = 55 °C/W

o
a

~

LLLL.

-

LL LLLLL

-

n62315.1

at a lead -length a == 3 mm
and with a copper laminate
c. > 1 cm2
d. < 1 cm 2

Rth j-a = 55 °C/W
Rth j-a = 60 °C/W

:Jl
•

November 1975

II

7Z62314

II

3

BZV1S

II

SERIES

CHARACTERISTICS

Tj ::: 250C unless otherwise specified

Forward voltage at IF -= 10 A
2

Reverse current at V R = 3" V Znom
Working voltage
Vz (V) 1)
at IZ

=1 A

Differential
resistance
r
(Q) 1)
diff
at IZ = 1 A

Vp

<

1,5

V

IR

<

50

fJA

Temperature
coefficient
Sz (mV/oC)I)
at IZ = 1 A

J3ZVI5- ..

min.

max.

max.

typo

C10(R)
C11(R)
C12(R)
CI3(R)
CI5(R)

9,4
10,4

10,6
11,6
12,7
14,1
15,6

0,5
1,0
1,0

°

9
9,9
10,8
11,7
13,5

at IZ = 0,5 A

at IZ = 0,5 A

11,4
12,4
13,8
at IZ

C 16(R)
C 18(R)
C20(R)
C22(R)
C24(R)
C27(R)
C30(R)
C33(R)

15,3
16,8
18,8
20,8
22,7
25, 1
28
31
at IZ

C36(R)
C39(R)
C43(R)
C47(R)
C51(R)
C56(R)
C62(R)
C68(R)
C75(R)

34
37
40
44
48
52
58
64
70

=0,5 A

1,
1,2

1,2
1,5
1,5
1,8
2,0
2,0
2,5
3,0

17,1
19,1
21,2
23,3
25,9
28,9
32
35

=0,2 A

at IZ =0,2 A

38
41
46
50
54
60
66

4,0
5,0
6,5
7,0
7,5
8,0
9,0

72

10,
10,5

79

1) Measured by a pulse method with tp ::; 100

4

II

14,4
16,2
15
16,5
19,2
22,1
25,5
29

°

jJS,

at IZ = 0,2 A

32,4
35,1
39,6
43,7
47,4
52,6
58,3
63,9
71,3

duty cycle 0 ::; 0,001 and T j ::::: 250C.

II

November 1975

BZV1S
II

SERIES

II
7Z67243

3

7Z72278

20
Ptot
(W)

2

"~~
"

15

~ f- mounting method a
r
v
"
v
b;c

I' ..,. ~
..,. "-

1/

"..,.'1)1

~~

1/

V

V

V

1\
~

d

~

/'

,

~

10

~

I'..N'

~,,~

\

"""

~l'-:I\.
,~

5

,,~

~
~

~

'"

o
25

75

.. ,

o
o

T amb (DC) 125

50

100

0

Tmb ( C)

150

7Z72277

10
-l-

i-"""

V ~"'"

-- """
V

V

L..oo'"

10- 2
10- 4

November 1975

UJ'_-..JJ_m.'-" _ _ _ _ _ _ _

10- 3

II

10- 2

10- 1

10

time (5)

10 2

5

BZV15

II

SERIES

15

7Z69790

10

7,5

10- 3

BZV15-C10 typical values
dynamic characteristics

typical values
..... i"'"

V

"

Vz (V) 12,5

V ....... "
:,....-i"""

I

I

I

I

/ :/~

/~ V

10

I

J~

~

'l~

Tj =150 oC

25°C

I z =lA
200mA

.1

1

if

/,

'/

I

Iz
(A)

1

o

25

50

Vz (V) 37,5

40

V (V)

z

35

10

7Z69793

75

32,5 3
10-

BZV15-C33 typical values
dynamic characteristics

90

Vz (V)

85

80

75

10-3

BZV15-C75 typical values
dynamic characteristics

I

10- 2
Tj=150oC

25°C

Tj=150oC

25°C

10- 1

•
I

J

I{
.Jt

./

,J

Iz
(A)

10

7Z69791

6

~

II

-"

lL

1I

L
/

V

Iz

(AI

10

7Z69792

I

November 1975

TRANSIENT SUPPRESSOR BRIDGES
Plastic encapsulated bridge assembly comprising four silicon double diffused transient suppressor
diodes. It is specifically intended for use as line polarity guard and transient protection element in
telephony equipment, and as suppressor element in electrical and electronic equipment in general.

QUICK REFERENCE DATA

BZW10-12

15

Input stand-off voltage

V,

max.

12

15

V

Output clamping voltage

VO(CL)

<

30

34

V

Non-repetitive peak clamping current

I(CL)SM

max.

50

40

A

Output voltage

Vo

>

10

13

V

'MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-28
chamfer to
indicate positive

5'088lJ-~5,08L

5,oaL_

-$0

rr-;I=======:=l

19
max

I

+

2

~==========~

_15,31_ _110 1-max

t 1 05

I ~=======::J~t max

max

19 min

--I

7Z75526

The seal ing of the plastic envelope withstands the accelerated damp heat test of IE C recommendation 68-2
(test D, severity IV, 6 cycles).

I

AU9ust 1979

l_ _ __

BZW10 SERIES

RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC134)

Input stand-off voltage (note 1)

15

max.

12

15

150

150

50

40

Average output current
(averaged over any 20 ms period)

10(AV)

max.

Non-repetitive peak clamping current
full load prior to surge (see note 2)

I(CL)SM

max.

---7 Storage temperatu re
~

BZW10-12

T stg

Operating ambient temperature

Tamb

V
mA

A

-55 to +150

°C

-25 to +85

°C

THERMAL RESISTANCE
From junction to ambient

60

Rth j-a

°C/W

CHARACTERISTICS
~ Tamb = -25 to +85

Output voltage
VI = Vlmax; 10

°c

= 10 mA

Output clamping voltage at I (CL)SM
at rated load conditions
Leakage current
VI = Vlmax; at rated load conditions

Vo

>

10

13

V

VO(CL)

<

30

34

V

<

40

40

I1A

MOUNTING INSTRUCTIONS
1.

The maximum permissible temperature of the soldering iron or bath is 270 oC; it must not be in
contact with the joint for more than 3 seconds.

2.

Avoid hot spots due to handling or mounting; the body of the device must not come into contact
with or be exposed to a temperature higher than 150 0C.

3.

Exert no axial pull when bending the leads.

Notes

2

1.

The stand-off voltage is the maximum bridge input voltage permitted for continuous operation.

2.

In accordance with F.T.Z. requirement 10/700 with 2 kV test voltage: BZW10-12 and 1.6 kV:
BZW10-15 (see also page 3).

December 1979

(

BZW10 SERIES

Transient suppressor bridges

terr

voltage

15H

10 f.1 F

J

25 S2

08484

-

o---~~------~------~-------<~----~

device
under

+

test

"v

Fig.2 Test set-up in accordance with F .T.Z. 10/700

100

l(eLl
(%)

50

OL-r-------------~----------------------

-210/1sFig. 3 Output clamping current as a function of time.

'I (

August 1979

3

l__

For full information see BZX70 data sheet

B_Z_W_7_0_S_E_R_IE_S_ _

TRANSIENT SUPPRESSOR DIODES

A range of diffused silicon diodes in a plastic envelope intended for use in the protection
of electrical and electronic equipment against voltage transients.
The series consists of the following types: BZW70 -5V6 to BZW70-62.
QUICK REFERENCE DATA

Stand -off voltage (15% range) ':'

VR

5,6to62

V

Rever se breakdown voltage

V(BR)R

6,4 to 70

V

max.700

W

N on -repetitive peak reverse power
dissipation; exponential pulse

,,' The stand-off voltage is the maximum reverse voltage recommended for
continuous operation; at this value non -conduction is ensured.

MECHANICAL DATA
SOD-I8

...max
4.,.,

...max
4.,.

)f-----J~ ~l

U'---------ll

k

I...-----...,Ja

___ 6,5_
max

Dimensions in mm

_____ not tinned _______

_2~_1 ...____ 12,5 _ _ _-t.~1_2~ _
min

max

\

min

7Z69747

The rounded end indicates the cathode!
The sealing of the plastic envelope withstands the accelerated damp heat test of IEe
recommendation 68-2 (test D, severity IV, 6 cycles).

December 1979

CHARACTERISTICS - WHEN USED AS TRANSI ENT SUPPRESSOR DIODES; T amb = 25 °C

clamping
voltage
tp = 500 MS
expo pulse
V(CL)R
V
typo

2

at

non-repetitive
peak reverse
current
IRSM
A

max.

reverse cu rrent
at recommended
stand-off voltage
IR
mA

VR

BZW70- ...

V

max.

9

10

20

0.5

5.6

5V6

10

11.2

20

0.5

6.2

6V2

11

12.5

20

0.5

6.8

6V8

12

14

20

0.1

7.5

7V5

13.5

15.5

20

0.1

8.2

8V2

15

17.5

20

0.1

9.1

9Vl

17

19

20

0.1

10

10

19

21

20

0.1

11

11

21

23

20

0.1

12

12

23

26

20

0.1

13

13

22

26

10

0.1

15

15

25

29

10

0.1

16

16

28

33

10

0.1

18

18

32

38

10

0.1

20

20

36

43

10

0.1

22

22

41

48

10

0.1

24

24

47

54

10

0.1

27

27

44

52

5

0.1

30

30

49

58

5

0.1

33

33

56

65

0.1

36

36

63

72

5
5

0.1

39.

39

71

82

5

0.1

43

43

80

93

5

0.1

47

47

89

104

5

0.1

51

51

98

116

5

0.1

56

56

104

116

5

0.1

62

62

December 1979

r

BZW86

II

SERIES

TRANSIENT SUPPRESSOR DIODES

A range of diffused silicon diodes in a DO -30 metal envelope intended for use in the protection of the electrical and electronic equipment against voltage transients.
The series consists of the following types:
Normal polarity (cathode to stud): BZW86-7VS to 56
Reverse polatity (anode to stud) : BZW86 -7VSR to 56R

QUICK REFERENCE DATA
Stand-off voltage (15% range) >:'

VR

7,5 to 56

V

Reverse breakdown voltage

V(BR)R

9,4 to 64

V

Non -repetitive peak reverse power
dissipation; exponential pulse

PRSM

25

max.

kW

The stand-off voltage is the maximum reverse voltage recommended for continu0us operation; at this value non -conduction is ensured.

i

Dimensions in mm

MECHANICAL DATA
DO-30

3,0,..
max

-I:;~-L
max

0rJ~?

-t "x2o

-t.

~+
NF

-4-

~~~------------~·l

,

-4-

I

~-+

~ ~~:~

~~ BZW"-B'~

63,5 max
I
lead bent at right - I
angles

-

8,7
8,3

1

1--_....--.._. f
----:.
23

21 DO
20.24"

__I12,3
11,4

,","'.:'-ng-:Ube
BZW86R-Red insulating tube
7260651.1

Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 19 mm
Diameter of clearance hole: max. 13 mm
Net weight: 123 g
The mark shown applies to the normal
polarity types.

May 1978

II

Torque on nut: min. 9 Nm
(90 kgcm)
max. 17,5 Nm
(175 kgcm)

BIW86
SERIES

II

II

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Stand -off voltage *

VR

equal to type number suffix

IRSM
IRSM
IRSM

max.
max.
max.

3700
1200
700

A
A
A

IRSM
IRSM
IRSM

max.
max.
max.

1200
400
250

A
A
A

Repetitive peak reverse power dissipation
Tmb = 65 oC; f = 50 Hz;tp=lO IJs(square
pulse; see also graphs on page 6)

PRRM

max.

50

kW

Non -repetitive peak reverse power dissipation
Tj = 25 °c prior to surge; exponential
pulse: see also graph on page 5
tp = 100 \ls
tp = 1 ms

PRSM
PRSM

max.
max.

60

25

kW
kW

-55 to +175

°c

175

°C

Currents
N on -repetitive peak reverse current
T j == 25 °c prior to surge
tp = 10 IJs; square pulse
BZW86-9V1(R)
BZW86 -27(R)
BZW86 -56(R)
tp = 1 ms; exponential pulse
BZW86-9V1(R)
BZW86 -27(R)
BZW86 -56(R)
Power dissipation

Temperatures
Storage temperature

T stg

Junction temperature

Tj

max.

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

0,3

°C/W

From mounting base to heatsink

Rth mb-h

0, 1

°C/W

1,5

V **

CHARACTERISTICS
Forward voltage
IF = 500 A at T j = 25°C

VF

<

* The stand-off voltage is the maximum reverse voltage recommended for continuous
operation; at this value non -conduction is ensured.
** Measured under pulse condition.

2

II

II

May 1978

BZW86

II

SERIES

CHARACTERISTICS (continued)

Clamping voltages (exp. pulse)
at T j = 25 °c prior to surge; tp=SOO (Js
V(CL)R (V)
BZW86 -7V5(R)
-8V2(R)
-9Vl(R)
-lO(R)
-ll(R)
-12(R)
-13(R)
-15(R)
-16(R)
-18(R)
-20(R)
-22(R)
-24(R)
-27(R)
-30(R)
-33(R)
-36(R)
-39(R)
-43(R)
-47(R)
-SI(R)
-56(R)

Reverse breakdown voltage
at Tj = 2S °c
V(BR)R (V)

typo

max.

min.

12
13
14
15,5
17
18,5
20
23
27
31
34
37
40
44
47
51
55
60
66

14
15,5
17
18,5
20
22
24
27
32
36
40
43
47
52
55
60
65
70

8,5
9,4
10,4
11,4
12,4
13,8
15,3
16,8
18,8
20,8
22,8
25,1
28
31
34
37
40
44
48
52
58
64

72

78
85

77

84
92
102

IR

= 1000 A

IR = 500 A

IR

= 250 A

IR = 10 A

IR = S A

IR =2 A

The maximum clamping voltage is the maximum reverse voltage which appear across the
diode at the specified pulse duration and junction temperature.
See curves on pages 8 and 9 for square pulses and pages 10 and 11 for exponential pulses.

May 1978

II

3

BZW86
SERIES

II

II

CHARACTERISTICS (continued)

Tj = 25

°c unless

otherwise specified

Peak reverse current
VRM = recommended stand-off voltage
Temperature coefficient of clamping voltage

<

s

2

typo

-to,

rnA

I

OPERATING NOTES
Heatsink considerations
(a)

For non -repetitive transients, the device may be used without a heatsink for pulses up to 10 ms in duration.

(b)

For repetitive transients which fall within the permitted operating range shown in
the curves on page 6 the required heatsink is found as follows:
T j max - Tamb
Rth j -mb + Rth mb -h + Rth h -a = - - - - - - -

where Tj max

thus

ambient temperature

Tamb

=

Ps

= any steady

state dissipation excluding that in pulses

o

= duty factor

(~/T)

Rth j-mb

= 0,3

Rth mb-h

=

°C/W

0, 1 °C/W

Rth h -a can be found.

4

II

July 1972

BZW86

II

SERIES

7Z62828

- - square current pulse
- - - exponential current pulse

PRSM
(kW)

-, .... .... .....

~-..

-- - ..

............... r-...... :
~

........ ;--...

i""-.... r-...

Tj 25 0 C
65 0 C
/,125 0 C

._/

r ..

I.....

"""'r--I"I"-

--I ....

..... - .. fo(~ ~I.....
~ ~.. . '''~ I"- ...............
r-.. t'--- r...r-.
r"'~ ~~
..... 1" ... ~
p........r-.....
I"t"o..
~ r--.. . . r"- .. r- .,...
~

I--..

y'"

Tj=25 0 C /
lO
65 0 C
~
125 0 C
~prior to surge

r===

.

...

..........

r-..

......

... ...
'

roo

._

f'"

....

::--

I=:....~ I..........

i"'"
1"-1"-

-~

~ ~ ~ ..--"I ....

....

-.............. I'--..

r--. I'....." ~I"-

I""'1
lO-2

~

r"" 1"-1"-

10 duration (ms)

10 2

Duration of an exponential pulse is defined as the time taken for the pulse to fall to 37% of
its initial value. It is assumed that the energy content does not continue beyond twice this
time.

July 1972

II

5

BZW86

II

II

SERIES

7Z62824

7Z62825

t

tp::::lO\lsi=
PRRM
(kW)

I'

"

I'r--,

'"~_t'.
-, r"r-.,
1,-

10

Tmb::::650C

r"r-.

'"

""'1""- 1"'1--

r"'t-

~

f""'o

r-t--

\

1

T""

1
i~ I'.

t\~

1"'1....... 1-""

....
10ms

---1

l"'"

I ' ....

......

1ms
~

I'

r-

\lst-

Tmb= 125°C

~ro...

L""I"'..'+--",,"

\""000

j ....

~,

,,~

r-r-

~'I\

,\

l\

100 \ls=f=
,-t-

I'

\ 1\

1\
10

1- 11() 1

. p-

PRRM
(kW)

"""

r-"",

100\ls-t-

""'too-

r-r-

". "I'

-=
--

--

I'..

r-r-

1\

10- 1

~

I"
\

~Olmls

1"1'

- ....

1m~- 1=-;::
1"'- ......

r-r-

10- 1

o

100

200

300
400
repetition frequency (Hz)

o

100

200
300
400
repetition frequency (Hz)

square current pulses
exponential current pulses

6

II

II

July 1972

BZW86

II

SERIES

7262826

10

/

at VR == stand-off voltage

,,"

,

,

.".

.",

,i..-

max

.. ""

~

..

~,

~"

"

,/

"

/

ty

./

10- 1

V

V

a

July 1972

V

V

/

,/

50

II

/'

V

/'

v

..V

/

V

100

7

BZW86
SERIES

II

II

V(CL)R (V)
125
100

75

! :;

I ~

50

7Z62827

;'M&:,::E~6
"""

"""

M

MMM

I

1

,....j

N
N

00
.-t

N

~

I

I

\0

\0

00

00

~

-

;-IA[~
N
N

r--

\0

max. values
Tj = 25 oC prior
to pulse intermediate voltage types may be
interpolated

25

~

N

N

o:l

o:l

1

I

10

~
J

J
:1

11
I";'
II

7 1

17

I

If

I

J

~f

- -

J

...,.Q,I

I

If

./

I

-'II 'l

~

Is

b~

......,

II

~

III

Ii-I

IRSM
(A)

~1
, (f.),

~I

SJ

VIr

I

T
-r

6-1
;,
,I

II
I

square pulses

8

II

II

July 1972

BZW86

II
25

SERIES

V(CL)R (V)
20

is i3

15

il 'iD

i2

10

8V2 7\15

7Z62830

5
10

o-i

>-

0--

1/ \0,

max. values
Tj =25 0C prior
to pulse
intermediate voltage types may be
interpolated

1/

OCJ

~

N

CO

I

I

II

$/

~
V

~
...,~) J
II

1/

I

II

I

4L IJ

0"-

max. value~
Tj ~ 2.5 0C prior
to pulse
intermediate voltage types may be
interpolated

J

\0

00

~
N

o::l

~

0

II

~'/ !II

II

I

...,Q,J

II /11
II

0

1

.....,ll,
II

II
I

,

I

I 1/

0

g:::J..1

;;/
J

IRSM
I

!if

(A)

~I
v, .I
V
I

exponential pulses

July 1972

II

11

BZW91 SERIES

For full information see BZY91 data sheet

TRANSIENT SUPPRESSOR DIODES

A range of diffused silicon diodes in a DO -5 metal envelope intended for URe in the protection of the electrical and electronic equipment againRt voltage transientR.
The series consists of the following types:
Normal polarity (cathode to stut): BZW91- 6V2 to 62
Reverse polarity (anode to stud) : BZW91 - 6V2R to 62R
QUICK REFERENCE DATA

Stand -off voltage (15% range) >:<

6,2 to 62

V

Reverse breakdown voltage

7,0 to 70

V

Non-repetitive peak reverse power
dissipation; T j = 25 °c prior to surge;
tp = 100 fls (exponential pulse)
~:::

max.

27

kW

The stand-off voltage is the maximum reverse voltage recommended for continuous operation; at this value non -conduction is ensured .
Dimensions in mm

. MECHANICAL DATA
15,3 max

00-5
1/1. in x 28 UNF

'_F=~/===r-i

-'

, 8,0

6,35

max

max

+-

~----J_ -.13,~ i.-

-t

min
(flat)

2,2__
max

...

!

-17,0-

--. 5,0 . max

_

11,5 _ , ....t - - - - - 25,4 _ _ _~~~I
10,7
max

Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 11,1 mm
Diameter of clearance hole: max. 6,5 mm
Net mass: 16, 5 kg
Accessories available: 56264A; 56309B; 56309R
The mark shown applies to the normal
polarity types.

7Z75506.1A

Torque on nut: min. 1, 7 Nm.
(17 kgcm)
max. 3,5 Nm
(35 kgcm)

December 1979

l_ _ __

BZW91 SERIES

CHARACTERISTICS - WHEN USED AS TRANSIENT SUPPRESSOR DIODES; T mb = 25 °C

clamping
voltage
tp = 500 tJ.s
expo pulse
V(CL)R
V

2

at

non-repetitive
peak reverse
current
IRSM
A

reverse current
at recommended
stand-off voltage
IR
mA

VR
V

BZW91- ...

typo

max.

9.5

10.5

150

20

6.2

6V2(R)

10

11

150

20

6.8

6V8(R)

11

12.5

150

5

7.5

7V5(R)

12

13.5

150

5

8.2

8V2(R)
9V1(R)

max.

13

15

150

5

9.1

14.5

17

150

5

10

10(R)

16

19

150

5

11

11(R)

17.5

22

150

5

12

12(R)

19

26

150

5

13

13(R)

22

28

100

5

15

15(R)

24

31

100

5

16

16(R)

26

34

100

5

18

18(R)

28

37

100

5

20

20(R)

31

40

100

5

22

22(R)

34

44

100

5

24

24(R)

38

48

100

5

27

27(R)

40

52

50

5

30

30(R)

44

56

50

10

33

33(R)

49

61

50

10

36

36(R)

54

66

50

10

39

39(R)

60

72

50

10

43

43(R)

66

79

50

10

47

47(R)

72

87

50

10

51

51(R)

79

97

50

10

56

56(R)

86

97

50

10

62

62(R)

December 1979

(

_ _ _ _J

BZX70 SERIES

REGULATOR DIODES

A range of diffused silicon diodes in plastic envelopes, intended for use as voltage regulator and transient suppressor diodes in medium power regulators and transient suppression circuits.

The series consists of the following types: BZX70-C7V5 to BZX70-C75.

QUICK REFERENCE DATA
voltage regulator
Working voltage (5% range)

Vz

Stand-off voltage
Total power dissipation

VR
Ptot

max.

Non-repetitive peak reverse
power dissipation

PRSM

max.

transient suppressor

7,5 to 75

nom.

V

5,6 to 56
2,5

V

W
700

MECHANICAL DATA

W

Dimensions in mm

Fig. 1 SOO-18.
The rounded end indicates the cathode.

______ not tinned ______

... 4 .... ,

.. 4 ...

max

max

J~u~k

I

,---------,a{/' - - - - - I

__ 6,5_
max

_24

min

_1. . .

>-----12,5

max

-----il.~I_ min
2~ _

1Z69747

December 1979

BZX70 SERIES

l_ _ __

RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Peak working current

IZM

max.

5 A

Average forward current
(averaged over any 20 ms period)

IF(AV)

max.

1 A

Non-repetitive peak reverse current
Tj '" 25 °C prior to surge;
tp'" 1 ms (exponential pulse);
BZX70-C7V5 to BZX70-C75

IRSM

max.

44 to 6 A

Total power dissipation
at T amb '" 25 oC; with 10 mm tie-points; Fig. 5

Ptot

max.

2,5 W

Non-repetitive peak reverse power dissipation
Tj '" 25 °C prior to surge;
tp'" 1 ms (exponential pulse)

PRSM

max.

700

Storage temperature

T stg

Junction temperature

Tj

W

-55 to + 150 °c
max.

150 °C

THERMAL RESISTANCE
From junction to ambient in free air

see Figs 4 and 5

CHARACTE R ISTICS
Forward voltage
IF'" 1 A; T amb '" 25 °C

2

December 1979

r

<

1,5 V

J

Regulator diodes

BZX70 SERIES

- - - OPERATION AS A VOLTAGE REGULATOR (see page 4)
Dissipation and heatsink considerations
a. Steady-state conditions
The maximum permissible steady-state dissipation Ps max is given by the relationship
Tj max - Tamb

Ps max

'=

Rth j-a

where: Tj max is the maximum permissible operating junction temperature
T amb is the ambient temperature
Rth j-a is the total thermal resistance from junction to ambient
b. Pulse conditions (see Fig. 2)
The maximum permissible pulse power Pp max is given by the formula
(Tj max - Tamb) - (P s · Rth j-a)
R
th t
where: Ps is any steady-state dissipation excluding that in pulses
Rth t is the effective transient thermal resistance of the device between junction and ambient.
It is a function of the pulse duration tp and duty factor o.
{j is the duty factor (tp/T)
Pp max =

The steady-state power Ps when biased in the zener direction at a qiven zener current can be found
from Fig. 3. With the additional pulse power dissipation Pp max calculated from the above expression,
the total peak zener power dissipation Ptot = PZRM = Ps + Pp . From Fig. 3 the corresponding maximum repetitive peak zener current at Ptat can now be read. This repetitive peak zener current is subject to the absolute maximum rating. For pulse durations longer than the temperature stabilization
time of the diode tstab, the maximum permissible repetitive peak dissipation PZRM is equal to the
steady-state power Ps. The temperature stabilization time for the BZX70 is 100 seconds (see Figs 17
and 18).

Fig. 2.

NOTES WHEN OPERATING AS A TRANSIENT SUPPRESSOR (see page 5)
1. Recommended stand-off voltage is defined as being the maximum reverse voltaqe to be applied without causing conduction in the avalanche mode or significant reverse dissipation.
2. Maximum clamping voltage is the maximum reverse avalanche breakdown voltage which will appear
across the diode at the specified pulse duration and junction temperature. For square pulses see
Figs 19 and 20, for exponential pulses see Figs 21 and 22.
3. Duration of an exponential pulse is defined as the time taken for the pulse to fall to 37% of its
initial value. It is assumed that energy content does not continue beyond twice this time.

December 1979

3

_________________________________

~l

___B_Z_X_70__
SE_R_IE_S__

CHARACTERISTICS - WHEN USED AS VOLTAGE REGULATOR DIODES; T amb = 25 °C

working
voltage
*VZ
V

BZX70-...

differential
resistance
*rZ

n

temperatu re
coefficient
*SZ
mV/oC

test IZ

A

reverse
reverse
current at voltage
IR
JJ.A

min.

max.

typo

max.

typo

max.

C7V5

7.0

7.9

0.45

3.5

3.0

50

50

CSV2

7.7

S.7

0.45

3.5

4.0

50

20

5.6

C9V1

8.5

9.6

0.55

4.0

5.5

50

10

6.2

C10

9.4

10.6

0.75

4.0

7.0

50

10

6.8
7.5

2.0

C11

10.4

11.6

0.8

4.5

7.5

50

10

C12

11.4

12.7

0.85

5.0

8.0

50

10

8.2

C13

12.4

14.1

0.9

6.0

8.6

50

10

9.1

C15

13.8

15.6

1.0

8.0

10

50

10

10

C16

15.3

17.1

2.4

9.0

11

20

10

11

C18

16.8

19.1

2.5

11

12

20

10

12
13

C20

18.8

21.2

2.8

12

14

20

10

C22

20.8

23.3

3.0

13

16

20

10

15

C24

22.7

25.9

3.4

14

18

20

10

16

C27

25.1

28.9

3.8

18

20

20

10

18

C30

28

32

4.5

22

25

20

10

20

C33

31

35

5.0

25

30

20

10

22

C36

34

38

5.5

30

32

20

10

24

C39

37

41

12

35

35

10

10

27

C43

40

46

13

40

40

10

10

30

C47

44

50

14

50

45

10

10

33

C51

48

54

15

55

50

10

10

36

C56

52

60

17

63

55

10

10

39

C62

58

66

18

75

60

10

10

43

C68

64

72

18

90

65

10

10

47

C75

70

79

20

100

70

10

10

51

*At test IZ; measured using a pulse method with tp ~ 100}.Ls and [j ~ 0.001 so that the values
correspond to a Tj of approximately 25 0c.

4

VR
V

December 1979

r

j

Regulator diodes

BZX70 SERIES

- - - CHARACTERISTICS - WHEN USED AS TRANSIENT SUPPRESSOR DIODES; T amb =

clamping
at
voltage
tp = 500lls
expo pulse

V(CL)R
V
typo

IRSM
A

max.

9
10
11
12
13.5
15
17
19
21
23
22
25
28
32
36

10
11.2
12.5
14
15.5
17.5
19
21
23
26
26
29
33
38
43

41

48

47

54
52
58
65

44

49
56
63
71

non-repetitive
peak reverse
current

reverse current
at recommended
stand-off voltage
IR

VR

rnA

V

BZX70-...

max.

20
20
20
20
20
20
20
20
20
20
10
10
10
10
10
10
10
5
5
5

72

5

80

82
93

89
98

116

5
5
5
5

104

25 °c

0.5
0.5
0.5
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

5.6
6.2
6.8
7.5
8.2
9.1
10
11
12
13
15
16
18
20
22

24
27
30
33
36
39
43
47
51
56

C7V5
C8V2
C9Vl
Cl0

ell
C12
C13
C15
C16
C18
C20
C22
C24
C27
C30
C33
C36
C39
C43
C47
C51
C56
C62

C6B
C75

December

1979

5

__________________________________

,J~

___B_Z_X7_0_S_E_R_IE_S__

SOLDERING AND MOUNTING INSTRUCTIONS
1. When using a soldering iron, diodes may be soldered directly into the circuit, but heat conducted to
the junction should be kept to a minimum.
2. Diodes may be dip-soldered at a solder temperature of 245 0C for a maximum soldering time of
5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum
storage temperature. These recommendations apply to a diode with the anode end mounted flush
on a printed-circuit board having punched-through holes. For mounting the anode end onto a
printed-circuit board, the diode must be spaced at least 5 mm from the underside of the printed-circuit board having punched-through holes, or 5 mm from the top of the printed circuit board having
plated-through holes.
3. Care should be taken not to bend the leads nearer than 1,5 mm from the seal; exert no axial pull
when bending.

6

December 1979

(

I

I.

~~t) 17101200

I .I' I' ITIITI ' "I ' II' I~i,x~~,

Series

I ' III T~TITI'I

J'J

nI

IQ

c

iii

r+

~

a.
a.
III

o·

10

IE

"OIF

o

~

nI

3

0-

I I I I I IIII

I

IIIIIII~

0·1, I U/Nt.

--t-

-b

+-

.

~'»
~

... 0'1.

1·0

Ji

t-W

r~-

-

-t

'~
.
e"Q" ~
Qr

-

j-

-c-

I

~
~

1'~QO'.., ~ 
en

U

I
\

10
1..... 0-

___

,J~

___R_eg_U_lat_or_d_iod_e_s__________________________

B_Z_X_7_0_S_E_R_IE_S__

V(CL)R (V)

125

I--

III I)

tp= 10 ms

)

--1-=

~

V/

II

1/

/

I

Y

I

tp= 10 ms
I

LO

I

X

N

V
)

II
I
I
II
I-- I-I-- 1--:::: lOf.ls

N

X

X

N

I

I

III

co

N

I--

tp =10 msf co

,

II

I.

~

=lml/

J

I

~

~+--+--+--+--+l-"'~
,...
,...

}~

I

J

100f.l s

J I

I

I

~

J

~

-

LO
,...
()
6,...

I

~

25

Ia;n~
co co LO

I co

=lms /

,"

50

75

100

111

=1 ms

V I
1/

=lOOf.ls

10

I

I

l

,
I

•

I

:::: lOf.ls

J

I

max. values
I
_
Tj = 25 0C prior I---I--+-+-+-+-+-+--+-_+_:::: 10 f.l s-I--to pulse
intermediate vol-I--+--+--+--+-+-+-+-+---+--+---+---+--+--I
I - - tage types may
I-- be interpolated

I RSM
(A)

Fig. 22 Exponential pulses.

December 1979

19

___
BZ_X_7_0_S_E_R_IE_S_Jl________________________________
7Z67153

7Z67152

square current pulse
- - - exponential current pulse

T'r-.,
I.... ".

I' ...

"T'

i'.

Tamb=65

T'I....
i'or-.,

I'

"'r-o.

~

I..... ~

~~ 1'1'

,

"

t"--

"

I.

If.

f-~

.. ,...~

......

i'

~

'i'..

.
l

I
~~

......

....

.....

l ii

il

.....

200

300

400

Fig. 23.

~

~

50

100
Fig. 25.

r

100

~

I.......

150
T j (oC)

~r-..

1"'1-

r""i~p 101l~-

~,

\ 1\,

i-rViiSI

o

~.

~~

"........

=

lOOIlS=:

"~.
'~ N.....~sl. . "I .... r....
200

300

400

repetition frequency (Hz)
Fig. 24.

10 - 2 L-..L--'--.1........L-~I........1.---'---'-~'O""-.........---'-.....

December 1979

\.

1\

repetition frequency (Hz)

o

, " ..

t"--

100

"

'1'\ r.....

\

i\

10 \

'''1""

1 ms

1\

"

1

o

i-

I ...

[\

[\

i\;\1\

""",....

1

20

'1\

....

100IlS~""

r,

,

1\ ,

"'"

tp= lOllS

i' .....

~\

f--

..... 1 . . .

Tamb= 125°C

~.

r\~ h
l"-

..... r--.

0c r-

~"

~

10

,

r ...

.....

square current pulse
- - - exponential current pulse

j

Regulator diodes

BZX70 SERIES

- - ............

~"'" .........
~

r--.

...

'

T·, ="'b"25 C

.... i'

~

~ t-.... r-..

~I'"

~ f::: . . . ro-

r-.~ . . . /

I' ......~,

"
'"

"/ J 65 0 C 125°C

7Z67156

- - square current pulse
--- exponential current pulse

~V'
..... ~ro- t':.~
....... "1"-

"'" ......../"X
.7'...

~

/7' ""
...... "
r-..

Tj=250C/
0
65 C /
125°C
prior to surge

""i:~

ro-

r......

'

I'~

r0-

...

"

l'1li

~~

"

C'........"' ~ ....... Ioo"'i'. ...
~ ~r-.
........
~~ ~
"

""'""'"

'"

"
~

~~
,~

~

"-

'""'"

""

,
r""-

'~ "'" ~"r-I'

10
10- 2

....

r""- .....

1' ....

i'

10 duration (ms)

"
10 2

Fig. 26.

December 1979

21

j

BZY91 SERIES

----------------------------------------------------~

REGULATOR DIODES
Also available to BS9305-F052
A range of diffused silicon diodes in 00-5 metal envelopes, intended for use as voltage regulator and
transient suppressor diodes in power stabilization and transient suppression circuits.
The series consists of the following types:
Normal polarity (cathode to stud): BZY91-C7V5 to BZY91-C75.
Reverse polarity (anode to stud): BZY91-C7V5R to BZY91-C75R.
QUICK REFERENCE DATA
voltage regulator
Working voltage (5% range)

Vz

Stand-off voltage

VR

Total power dissipation

Ptot

Non-repetitive peak reverse
power dissipation

PRSM max.

nom.

transient suppressor

7,5 to 75

V
5,6 to 56

max.

100

W
9,5

MECHANICAL DATA

V

kW

Dimensions in mm

Fig. 1 00-5.
15,3 max

l/4inx2BUNF

'--F='=/====r1

6,35

8,0

max

max

-t

__I

2.2 _

max

-17,0--

__ 5,0 . max

---

1',5~.

10,7

__ _

____ 25,4 ____ _
7Z7550S.1A

max

Net mass: 22 g
Diameter of clearance hole: max. 6,5 mm

Torque on nut: min. 1,7 Nm (17 kg cm)
max. 3,5 Nm (35 kg cm)

Accessories supplied on request: 56264A
(mica washer, insulating ring, tag)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 11,1 mm

September 1979

l_ _ __

BZY91 SERIES

RATINGS
Limiting values in accordance with the Absolute Maximum System (I EC 134)
Peak working current

IZM

max.

400 A

Average forward current
(averaged over any 20 ms period)

,IF(AV)

max.

20 A

Non-repetitive peak reverse current
Tj ::: 25 °C prior to surge;
tp::: 1 ms (exponential pulse);
BZY91-C7V5(R) to BZY91-C75(R)

IRSM

max.

1000 to 85 A

Total power dissipation
up to T mb ::: 25 °C
at T mb::: 65 °C

Ptot
Ptat

max.
max.

100 W
75 W

Non-repetitive peak reverse power dissipation
Tj = 25 °C prior to surge;
tp = 1 ms (exponential pulse)

PRSM

max.

Storage temperature

T stg

Junction temperature

Tj

9,5 kW
-55 to + 175 °C

max.

175 °C

THERMAL RESISTANCE
From junction to mounting base

Rth j-mb

1,5 °C/W

From mounting base to heatsink

Rth mb-h

0,2 °C/W

CHARACTERISTICS
Forward voltage
IF::: lOA; T mb ::: 25 °C

VF

<

1,5 V

OPERATION AS A VOLTAGE REGULATOR (see page 4)
Dissipation and heatsink considerations
a. Steady-state conditions
The maximum permissible steady-state dissipation Ps max is given by the relationship
Ps max =

Tj max - Tamb

~-----

Rth j-a
where: Tj max is the maximum permissible operating junction temperature
T ambis the ambient temperature
Rth j-a is the total thermal resistance from junction to ambient
Rth j-a ::: Rth j-mb + Rth mb-h + Rth h-a
Rth mb-h is the thermal resistance from mounting base to heatsink, that is, 0,2 °C/W.
Rth h-a is the thermal resistance of the heatsink.
b. Pulse conditions (see Fig. 2)
The heating effect of repetitive poWer pulses can be found from the curves in Figs 5 and 6 which are
given for operation as a transient suppressor at 50 Hz and 400 Hz respectively. This value Ll T is in
addition to the mean heating effect. The value of Ll T found from the curves for the particu lar
operating condition should be added tv the known value for ambient temperature used in calculating
the required heatsink.
The value of the peak power for a given peak zener current is found from the curves in Figs 3 and 4.

2

September 1979

[

__J

Regulator diodes

BZY91 SERIES

The required heatsink is calculated as follows:
Rth j-a
where: Tj max
T amb
AT
Ps
Pp

=

:=

Tj max - T amb - AT
p + <5 • P
s
p

175 °C

= ambient temperature
= from Fig. 5 or 6

o

any steady-state dissipation excluding that in pulses
peak pulse power
= duty factor (tp/T)

Rth j-a

= Rth j-mb + Rth

=
=

mb-h + Rth h-a

= 1,5 + 0,2 + Rth

h-a °C/W.

Thus Rth h-a can be found.

Fig. 2.

OPERATION AS A TRANSIENT SUPPRESSOR (see page 5)
Heatsink considerations
a. For non-repetitive transients, the device may be used without a heatsink for pu Ises up to 10 ms in
duration.
b. For repetitive transients which fall within the permitted operating range shown in Figs 26 and 27
the required heatsink is found as follows:
Tj max - Tamb
Rth j-mb

+ Rth mb-h + Rth h-a = P + <5' PRRM

s
175 °C
= ambient temperature
= any steady-state dissipation excluding that in pulses
o
= duty factor (tp!T)
Rth j-mb = 1,5 °C!W
Rth mb-h = 0,2 OC!W

where:Tj max
T amb
Ps

=

Thus Rth h-a can be found.
Notes
1. The stand-off voltage is the maximum reverse voltage recommended for continuous operation; at
this value non-conduction is ensured.
2. The maximum clamping voltage is the maximum reverse voltage which appears across the diode at the
specified pulse duration and junction temperature. For square pulses see Figs 22 and 23, for
exponential pulses see Figs 24 and 25.
3. Duration of an exponential pulse is defined as the time taken for the pulse to fall to 37% of its
initial value. It is assumed that the energy content does not continue beyond twice this time.
4. Surge suppressor diodes are extremely fast in clamping, switching on in less than 5 ns.

September 1979

3

~~~~jl~

________________

CHARACTERISTICS - WHEN USED AS VOLTAGE REGULATOR DIODES; T mb = 25 °C

working
voltage
*VZ

differential
resistance
*rz

V

n

temperature
coefficient
*SZ
%/oC

max.

max.

typo

BZY91-...

min.

A

reverse at reverse
current voltage
IR
mA

VR
V

max.

C7V5(R)

7.0

7.9

0.2

0.09

5.0

5.0

2.0

CSV2(R)

7.7

S.7

0.3

0.09

5.0

5.0

5.6

C9V1 (R)

8.5

9.6

0.4

0.07

2.0

5.0

6.2

C10(R)

9.4

10.6

0.4

0.07

2.0

1.0

6:8

C11 (R)

10.4

11.6

0.4

0.07

2.0

1.0

7.5

C12(R)

11.4

12.7

0.5

0.07

2.0

1.0

8.2

C13(R)

12.4

14.1

0.5

0.07

2.0

1.0

9.1

C15(R)

13.S

15.6

0.6

0.075

2.0

1.0

10

C16(R)

15.3

17.1

0.6

0.075

2.0

1.0

11

C18(R)

16.8

19.1

0.7

0.075

2.0

1.0

12

C20(R)

18.8

21.2

O.S

0.075

1.0

1.0

13

C22(R)

20.8

23.3

0.8

0.075

1.0

1.0

15

C24(R)

22.7

25.9

0.9

0.08

1.0

1.0

16

C27(R)

25.1

28.9

1.0

0.082

1.0

1.0

18

C30(R)

28

32

1.1

0.085

1.0

1.0

20

C33(R)

31

35

1.2

0.088

1.0

1.0

22

C36(R)

34

38

1.3

0.09

1.0

1.0

24

C39(R)

37

41

1.4

0.09

0.5

1.0

27

C43(R)

40

46

1.5

0.092

0.5

1.0

30

C47(R)

44

50

1.7

0.093

0.5

1.0

33

C51(R)

48

54

1.S

0.093

0.5

1.0

36

C56(R)

52

60

2.0

0.094

0.5

1.0

39

C62(R)

58

66

2.2

0.094

0.5

1.0

43

C68(R)

64

72

2.4

0.094

0.5

1.0

47

C75(R)

70

79

2.6

0.095

0.5

1.0

51

* At test IZ; measured using a pulse method with tp
correspond to a Tj of approximately 25 0C.

4

test IZ

September 1979

r

< 100 J.Ls and () < 0.001

so that the values

j

Regulator diodes

BZY91 SERIES

- - -

CHARACTERISTICS - WHEN USED AS TRANSIENT SUPPRESSOR DIODES; T mb = 25 °C

clamping
at
voltage
tp = 500 JlS
expo pulse
V(CL)R
V
typo

reverse current
at recommended
stand-off voltage

non-repetitive
peak reverse
current
IRSM
A

max.

IR
mA

VR
V

BZY91-...

C7V5(R)

max.

-

-

-

-

9.5

10.5

150

20

6.2

C8V2(R)

10

11

150

20

6.8

C9Vl (R)

11

12.5

150

5

7.5

Cl0(R)

12

13.5

150

5

8.2

Cll(R)

-

13

15

150

5

9.1

C12(R)

14.5

17

150

5

10

C13(R)

16

19

150

5

11

C15(R)

17.5

22

150

5

12

C16(R)

19

26

150

5

13

C18(R)

22

28

100

5

15

C20(R)

24

31

100

5

16

C22(R)

26

34

100

5

18

C24(R)

28

37

100

5

20

C27(R)

31

40

100

5

22

C30(R)

34

44

100

5

24

C33(R)

38

48

100

5

27

C36(R)

40

52

50

5

30

C39(R)

44

56

50

10

33

C43(R)

49

61

50

10

36

C47(R)

54

66

50

10

39

C51(R)

60

72

50

10

43

C56(R)

66

79

50

10

47

C62(R)

72

87

50

10

51

C68(R)

79

97

50

10

56

C75(R)

September 1979

5

BZY91 SERIES

l_ _ __

MOUNTING INSTRUCTIONS
The top connector should neither be bent not twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.

6

September 1979

r

j

Regulator diodes

BZY91 SERIES

- - - D2656

PZM
(W)

/'r-'"

V~

V

At any pOint on the curves the device
is shown
dissipating Its maximum peak
aHowed time
power for the maximum

II
I

:/

V

V

17/

r/

)IIJ

/1/

V/

.J

Other devices may be
interpolated

/./
~""
~
',>
-¢ ~ ¢~
jl],11W'
(,

c.,

(,

/

r--

-

V

II

/
<0

(00

<0

5

c.,

/~

7

100

2

Fig. 3.
02657

SZY91 Series
i'oo..

~ ::-.......

R
7

'=: ~ ~~

......... r-... ~~ ~-- ~

-- """'" ""r-...
~

..........

.......

.....

-......

,..
r""

"'r"",..
"

~

~~ ~

~ ~ t::: r--.."

~

r" r--..",..
l'-.1"-

r--..~to-

........

I~=

25°C

V=

175°C

t%~l~~:g

~

......... .........
1'0
r".... f"" ~
~ ""~

""~ to-

lOO)J

1m

7

10m

5

7

100m

Pulse duration (s)

Fig. 4.
September 1979

7

,
,,,
,

,

30

/
I
20 1/

/

I

I
I
L
I
I
1
/

Repetitive operation in this
area is not permissible

11
\
\

lSkW'

,

'-r-

\
11
IOkW I \
I \
II
\

I
I
IJ

r

\
\

/

/
/

\

/
/

\

/

7kW/

I

/

I

J

/
./

L

I

I
L

'f

I

10

'f

J

~
-~

/

J

/

o

\

,,

PZM=20kW,

40

02658

BZY91 Series

I

J
'f

""L\..

/

""

SkW1

1

II

I

./
./
./

IL
~

/

~

)0..
~

3kW1

Y

2kW

,/

""--

IkW

1m

100J.l

10m

7

50Hz Repetitive pulse duration (5)

Fig. 5.
02659

60

IBZY91 Series

~T

(OC)

50

Repetitive operation in this farea is not permitted
f-

40

'",, , .........
r ....
~

30 "20kW
'I

I

.....

......

I

/

IIOkW

1
J
I

20

.....

...

/SkW

I

, ........

II

......

I

10

/

o

I
1

/

L

I

J

I

/

I

if .........

2kW

I

I

i'-...

1'0.

I
11kW

J

I

J

'f

Ir"J SOOW

I
I

L

Fig. 6.

September 1979

(

i'....

-....

1m
7
10m
400Hz Repetitive pulse duration (5)

100J.l

8

.....

j

Regulator diodes

BZY91 SERIES

- - - ,
100

D2655

BZY9' Series

"

Ptot

f\..

max
(W)

~

'!I.\

75

I'\.

,

r\.

\

50

r\.

,

r\.

\
25

Permissible area of operation

\.

,

\.

\
o
-100

-50

o

100

50

\.

150

~

Tmb(OC) 200

Fig. 7.
02660

100

II

Vz

Typical

zener

characteristics
Tmb = 'OOoC

(V)
BU91 -C75

75

.---

{

""

... ~

T
=25°C
mb

~

50
Tmb =150 o C

""
~

Tmb =25°C

C33 {

25
~"'"

-C7V5 {
7

10

"",l-

Tmb = ISOoC
Tmb =25°C

,

Fig. 8 Typical dynamic zener characteristics.
September 1979

9

jl~_________________________________

___B_Z_Y_91_S_E_R_I_ES__
VzeVl

70

so

60

40

30

20

o

10

r-r-r-

0.01

~

l - f- 2

~

r---r--

I-- 1--t-- I-- - 5
t-- t-- r-t-- t-- r-- 7

t -r-ft -r-tt -r-t-

0.1

r-r-t-

t-r-tf-f- -

I-r- -

1--1- 1-1- f-

,.

t--t-- r--

J

,..

·

1/

C7S
I

C68

1-1- rt-r- t-

1/ ~v ~ ~L -..~

""""""

C51

C62

C56

V D'~ r-,~ ....
C36
3(
1e4 l;,v Cl3
Vl/ ).C~ K
I

C3

gV

I

I

C30

I

C22

I

I

I I I

!

J .1

C10

Jr20

(

I

r--

1

C13

I
1

C12

I

I

C7V5-

II

V V
C16 C15

Fig.9 Typical static zener characteristics.

September 1979

C8V2

C~8 V V ~

02661

10

Cll

C9V1

II
C27 "
C24 V 1/ ~ V
I

Tmb= 25°C
Typical static zener
characteristics

~

C~ 7

1.0

P

11-~

11

5

z=

IZ

75W

7 (AI

P

I I·

1 1

10

j

Regulator diodes

BZY91 SERIES

- - -

:-: :'J ;-::: ;: ~ :rT':: tl~: t-r-'t-;--IT-+++-t-++-1--++++-t--i-'H-+++++H
:-rf: l-! 1 • : : : : f--< ~ t ; ~ t f.i.-H· ~ t-+-- .
r-J
E±f

O.OS. :

a

h

20

40

60

80

VZ (

Range

f--;-·, --+-#t--I--"'~~ -... + -~-,

v)

~.

I+~

_.L_l+- -L-_+-I +-+++ '--t -H---j-+-+-++++-i-+-',.+-++++++-+-t--H

Fig. 10.

September 1979

l____

BZY91 SERIES

02665

4

(~'

B

_S ~l'Ies

I I I
I Z =O.SA
Tm b=2SoC

rZ
W)
3

Max

,.,.

2

~~

-~ .....

ioooo~'"'"

....

.... ... """

o

""' ....

""" ....

o

."."'"

~""I"""
~

40

20

60

80

Vz (V)
02666

4

9' :: erJes

B

I
I Z =1.0A
Tmb= 2SoC

rZ
(n)

3
Max

.......

2
~

"-"""

o

1'""-

o

~.".

.....

l"""~

.... '"'"

........ 1"""

i"'"

.... ~-

40

20

60

80

Vz (V)
02667

2.0

I

B Y91 Series

=

I I
Max

IZ
2.0A
Tmb= 2SoC

rZ
(.0.)

tt'

,,-

1.5

:."

~

".

1..00'"

1.0

.......

..... i"'"

....

1..00"

,.,. "'"
~

"",-

0.5

....

"",,""

0

0

20

40

Fig. 11.

12

September 1979

(

60

80

Vz (V)

j

Regulator diodes

BZY91 SERIES

- - -

02668

Tmb

25°C

I
Lil
Typical curves

""~'-'-

\\'\

~~

-"

" "

1\ \

\,

\~

I'

" "" ~"' ~

C75
C56

"""Cl~
""
~
1TC
~
9

sr JI LII
7

1'

5

7

10- 2

2

5

10-'

7

5

2

7

10 1

2

Fig. 12.

...

D34870

~

PRSM t-.., ......
(W)

"
l'

~ r.:::
............

I... 1"'
~

I"

I--

.. ~ :::~

r::::: ~

... ~

r - - - T· -25°C
r--t---- J=65°C
t---r - - - =125°C
prior to
t---surge

II

--

BZY91

-- --

II

I--- = 65°C
I-- =125°C

"k

l't-- 1"-",

t:::~

Tj = 25°C

I......

"~
'" ...... ...........
f - .............

I ....

'" I'" ...

.....

.......

.........

Square current pulse
tp=t
Exponential current
pulse
tp=CR
1=0 after 2 C R

-'!..

~

I'-...
..... 1'0",

....

...

~

~

....
~ ......
~

b-,., ....... ~ .....

""

~

:::.....N ==== "'I'"

..... ~ ........ lI- I'"

.......
.......

........ .... ~~

.... '" ~ I'
"'
.......

"
.... .....-='" r""Io.~h.

~ ~

['.

-~

._J---

5

7

lO0/-ls

2

7

lms

Fig. 13.

5

7

lams

2

!t!

....
....

- t--

5

7'00ms

PuLse duration

September 1979

13

Jl_________________________________

___B_Z_Y_9_1_S_ER_I_ES__

B85.?JL

BZY91 C7V5
BZY91- C7V5R

7

5

B8557

BZY91-C7V5
BZY91-C7V5R

7
) 5

3

3

/

°V

.;\~O

7c------3

7

5
3

-<-«'~T-

7

V
R
6V

5

~

-

..J..~. .--- ~v
,

..."..V

~

I'"

~

V

5V-

/

2V'

V

/'

..

""2.~

./
- - r---

'/.~

~-

~

/Y'

.-

5

--

L

3

/

1V

..L/

V

./

7

7

5

--1-----

V

,

5
~."

./

-~

V

3

o

25

50

..

~.--

.. -

3-

....... V
10

r---

r·--

7

./

/f'

/

3

3~

./

...... 1'

.1

-

5

75

100

125

o

150T (OC)
mb

4'

•. -

~-.-

5

Fig. 1'5.

Fig. 14.

-....-- -_ ...- .----.-- - - ---- r-----c---

1

- --10~~~~
-' ,_
-..

I------+-~___t~~-+--~--+-------

1-----+---.-1----+-----l----+...-- - - - .

o
Fig. 16.

14

September 1979

(

4

8

Fig. 17.

10

V (V)
R

J
- - -

BZY91 SERIES

Regulator diodes

T:i~=ri;' -fv~~i""

w'

:i iT::.

7r----:= f---..- 8ZY91
8ZY91
5

±-- tL

r---

3

=;r~ib

.L

:;:,==,,::•.:::1:=
.. :::t:::::;:::.

'I·:

t()O~

3

10

f------ r--"~

51----

L

~.Ut=.

r -~r--~

r------

-~

L

--~~.

,r----

;

8$561

C33
C33 R

r----

--=r -

t.~

r-~

£t--

3-·~

/.
V
I"

f-------

.~

--.~

r----

7

10

5tT=-::: r--

J

3

I

I

1

I

7

.L
I

5

I

II

o

10

o
o

20

40

60

80

100 120

140

160

.-

I

3

5

15

10

20

25

30 VR(V)

Tmb(·C)

Fig. 18.

Fig. 19.
88563

,=,o·C

7

5r---)

r--- "l.0'..£.

L':.

.1

~

3

.1

1.

/""

L
7

5

yc'(jL

"t.
10

2

.~t---.

--r---

.U L

3

BZY91-C75
BZY91-C75R

_.

t-----

~~

7

5

--

I

·~r~

I

3

I

V
10

I

1

,
1
I

5

L

3

J

L
0

Fig. 20.

25

50

75 V (V)
R

Fig. 21.

I

September 1979

15

BZY91 SERIES

j l_________________

V(CL)R max
25

20

(V)

20

is

is

12 Iii iO

i3

~

r~

Square pulses
Tj = 25°C prior ~.
to puls.e
Intermediate
voltage types f - - - f may be
f--i nte rpolated f - I

I

IJ

I

II

I I I

I

tp=10ms

.

./

V

j

tp=lms

,

I

SZY 91-C9V1

V
j

JJ

'I

I

II

J

'(

I

10

j

I I

V

-- r-

91-~~~

SZY

I

.

j
I

"

,

,I

JI

tp=10ms

I

J

/

~

/ II

L

I

1

,
tp=lmjl

I

r

t p= 100j.ls j

1
I

~ tp =100jJs

100

)/ J

I
J

f--

5

IsVi

l

'-r-- -

~.

-------

10

15

I

1

1

I

I

II

tp ~10}Js

I

t p'S.10j..L'S
I

1

-.l

1

.1

1

1000
08027

16

September 1979

r

Fig. 22.

j

Regulator diodes

BZY91 SERIES

V(CL)R max
125

(V)

100

75

68

50

-

-

56

62

25

---

47 43

39 36

III

-

-

Square pulses
Tj = 25°C prior
J
to pulse
Intermediate
voltage types [I J
may be
r I
interpolated I I
I I
t =10ms II III

I

V

PI

Y'J

BZY91-C75

V
./
~V

I

JJ
I I

tp=lms

II I
I
I

I J
I

tp=10ms:

BJ~IL51
tp= I
1ms J
~

/

j

I
j

J

I I1'

'l

I

I
:I

J

~.

tp=lms J

j

t P ~lO)Js

I

L

II

I.

I

r

J

10

'f

j

II

r---

BZY91- C2

.,I
J

l:

tp=10ms

I I

J

t p =100JJ

.1

if

'/

~

J

tp~10ps

,

J 1

I

I

I I
J

f

I

tp=100ps 4'f

22

J

I

I

30
33 27

100

I

t P=l:JJS

II

J
I

tp~lOps
I
I

1000

I

08028

Fig. 23.
September 1979

17

j l_.________________

BZY91 SERIES

V(CLlRmax
25

(V)

-,

- 20

16

18

2°1

15
113

12

10

,-

I- I-

11

10

5

8V2

I

Exponential pulse s
=25°C prior
~
J to pulse
I - - Intermediate
voltage types
I-may be
~
interpolated
~

r.

IRSM
(A)

I
I

10

I

I

BZ y 91-C15

BZ Y 91-C9Vl

~

tp=10msJ~

I

..,I

I

~

~

I
I

V

)1

J

I
I

I

I

J

I
I
•

100

V

t p =1mSj

V
/

~

tp=100J,Js
I

I

I

tp=lms

l
)'

I

J

/

,

J

tp=10ms

J'

1/

I

-,

~

t P =100 jJs
tp~lOjJs I
I

I

I

I
I

I

tp~10jJs
I

1000
D8029

18

September 1979

r

Fig. 24.

j

Regulator diodes

BZY91 SERIES

- - V{CL)R max

125

(V)

75

100

Sa
Exponential pulses
Tj = 25°C prior
~
to pulse
Intermediate
r---voltage type s
r---may be
interpolated

-

4~

56

62

25

:3 rg ~-ro- 22•

(A)

-,J

l-

f--

tp=10ms

J

10

Iy 9\-c~~1
J
if
VI
V

IIV

BZ y91-C7V
/

BZ

BZ Y

J

,

I

V

I

I

I

I

I

tP=100JJ

fl

I

I

,

t p~lO)Js

r

~

J

,I

,

ll_

I

tP!,OOJJ'l

4

I

I

I

II
r

I

/

I

tp=10ms J

t p =lms'

I

~

91-C2~

I I I

j

tp =lms

1.0

33 27

I RSM

~

tp:10ms

50

I

'

IJ
(

,
•
tP=lm~/

100

J

.J

,

tp~lO)Js

tp=100)Js j

,

tp~10)Js
I
I
I

j
J

r----

1000
08030

Fig. 25.

I

September 1979

19

Jl_________________

BZY91 SERIES

D3485

Tmb

=

65°C

~

!'-I- ~
10

03L86

100

100

Tmb

=125°C

"""' ....

I""'~

P RRM

...

(kW)

= IOJ,Js

t

J
---

~""'Io..

10

"""

!'"oliili ....

r-.'.P 1"'0~ '00
.... JJs

i"""

~

~

~

-~ ;""!'-o

~

~j."

t

~~\

r--

-~~~s
1""'0 .... "'"

i"""1--

~

100W

100

100

200
300 (Hz) 400
Repetition frequency

Fig. 26.
at VR stand-off
.voltage
Ll J (1 L I

BZY91-C7V5 toC9Vl

"" .........

~

.. --

(rnA)
j.~

BlY91-C43 to C75

0.1

BZY91 C1Q to C39

o

50

Fig. 28.

20

September 1979

(

""' .../'s

~,...."""

....

,..;;

:~
o

f-f-~"'?-s'

"'"

.....

100

~~

.... t--

t--I--Io..

200
300 (Hz) 400
Repetition frequency

Fig. 27.
08031

10

II) "',
..... ~ 00

~~L- f\~
I---~~

1'"""

r-~

100

,,~

~

i\[\

lA

""

1"'--..

i\

o

"""';.... t--1--~;"'IOJJS

~~~

REGULATOR DIODES
Also available to BS9305-F051

A range of diffused silicon diodes in 00-4 metal envelopes, intended for use as voltage regulator and
transient suppressor diodes in power stabilization and transient suppression circuits.
The series consists of the following types:
Normal polarity (cathode to stud): BZY93-C7V5 to BZY93-C75.
Reverse polarity (anode to stud): BZY93-C7V5R to BZY93-C75R.

QUICK REFERENCE DATA
voltage regu lator
Working voltage (5% range)

nom.

Vz

Stand-off voltage

VR

Total power dissipation

Ptot

Non-repetitive peak reverse
power dissipation

PRSM max.

transient suppressor

7,5 to 75

V

5,6 to 56
20

max.

V

W

W

700

MECHANICAL DATA

Dimensions in mm

Fig. 1 00-4.
1,0
0,8

-'11'max
4,0

4,83

max

I

u--_:~_-_--..:o---+-\fiI--0--,-m~)

$e
I

1,6
min

.
I

-----110-

- . 3,2 ___
max

_9,3_
max

__ 11,5 ---., .....1-----_ _ 20,3_ _--t... 1
10,7

max

Net mass: 6 g
Diameter of clearance hole: max. 5,2 mm

7Z65355.2A

Torque on nut: min. 0,9 Nm (9 kg cm)
max. 1,7 Nm (17 kg cm)

Accessories supplied on request: 56295
(PTF E bush, 2 mka washers, plain washer, tag)
Supplied with device: 1 nut, 1 lock washer
Nut dimensions across the flats: 9,5 mm

I

September 1979

________________________________

j~

___B_Z_Y_93__S_E_RI_ES__
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Peak working current

IZM

max.

20 A

Average forward {;urrent
(averaged over any 20 ms period)

IF(AV)

max.

5 A

Non-repetitive peak reverse current
Tj == 25 °C prior to surge;
tp == 1 ms (exponential pulse);
BZY93-C7V5(R) to BZY93-C75(R)

IRSM

max.

55 to 6 A

Total power dissipation
up to T mb == 75 °C

Ptot

max.

Non-repetitive peak reverse power dissipation
Tj == 25 °c prior to surge;
tp == 1 ms (exponential pulse)

PRSM

max.

Storage temperature

T stg

Junction temperature

Tj

20

W

700 W

-55 to + 175 °C
max.

175 °C

THERMAL RESISTANCE
From junction to mounting base
From junction to

5 °C/W

Rth j-mb

ambi~nt

50 °C/W

Rth j-a

From mounting base to heatsink
(minimum torque: 0,9 Nm)

0,6 °C/W

Rth mb-h

CHARACTERISTICS
Forward voltage
IF == 5 A; T mb == 25

°c

<

1,5 V

OPERATION AS A VOLTAGE REGULATOR (see page 4)
Dissipation and heatsink considerations
a. Steady-state conditions
The maximum permissible steady-state dissipation Ps max is given by the relationship
Tj max - Tamb
Psmax ==--"-----Rth j-a
where: Tj max is the maximum permissible operating junction temperature
T amb is the ambient temperature
Rth j-a is the total thermal resistance from junction to ambient
Rth j-a == Rth j-mb + Rth mb-h + Rth h-a
Rth mb-h is the thermal resistance from mounting base to heatsink, that is, 0,6 0C/W.
Rth h-a is the thermal resistance of the heatsink.
b. Pulse conditions (see Fig. 2)
The maximum permissible pulse power Pp max is given by the formula
(Tj max - Tamb) - (P s ' Rth j-a)
Pp max == - - - ' - - - - - - - - - - - ' - Rth t +
Rth mb-a

2

September 1979

r

o·

J
- - Regulator diodes

BZY93 SERIES

where: Ps is any steady-state dissipation excluding that in pulses
Rth t is the effective transient thermal resistance of the device between junction and mounting
base. It is a function of the pulse duration tp and duty factor o.
is duty factor (tplTl
Rth mb-a is the total thermal resistance between the mounting base and ambient
(Rth mb-a = Rth mb-h + Rth h-a l .

o

The steady-state power Ps when biased in the zener direction at a given zener current can be found
from Fig. 14. With the additional pulse power dissipation Pp max calculated from the above expression,
the total peak zener power dissipation Ptot = PZRM == Ps + Pp . From Fig. 14 the corresponding maximum repetitive peak zener current at PZRM can now be read. This repetitive peak zener current is
subject to the absolute maximum rating. For pulse durations larger than the temperature stabilization
time of the diode tstab, the maximum permissible repetitive peak dissipation PZRM is equal to the
steady-state power Ps. The temperature stabilization time for the BZY93 is 5 seconds (see Fig. 9).

Fig. 2.
OPERATION AS A TRANSIENT SUPPRESSOR (see page 5)
Heatsink considerations
a. For non-repetitive transients, the device may be used without a heatsink for pulses up to 10 ms in
duration.
b. For repetitive transients which fall within the permitted operating range shown in Figs 19 and 20
the required heatsink is found as follows:
Tj max - Tamb
Rth j-mb + Rth mb-h + Rth h-a == P + o' PR RM
s
where: Tj max
T amb
Ps

o

= 175 °C

== ambient temperature
=

any steady-state dissipation excluding that in pulses

= duty factor (tp/T)

Rth j-mb == 5 °C/W
Rth mb-h = 0,6 °C/W
Thus Rth h-a can be found.
Notes
1. The stand-off voltage is the maximum reverse voltage recommended for continuous operation; at
this value non-conduction is ensured.
2. The maximum clamping voltage is the maximum reverse voltage which appears across the diode at
the specified pulse duration and junction temperature. For square pulses see Figs 15 and 16, for
exponential pulses see Figs 17 and 18.
3. Duration of an exponential pulse is defined as the time taken for the pulse to fall to 37% of its
initial value. It is assumed that the energy content does not continue beyond twice this time.
4. Surge suppressor diodes are extremely fast in clamping, switching on in less than 5 ns.

September 1979

3

CHARACTERISTICS - WHEN USED AS VOLTAGE REGULATOR DIODES; T mb = 25 °C

working
voltage
*VZ
V

BZY93-...

min.

differential
resistance
*rZ

n

max.

typo

max.

temperature
coefficient
*SZ
mV/oC

test IZ

A

typo

reverse
reverse
current atvoltage
IR
p,A

max.

C7V5(R)

7.0

7.9

0.04

0.3

3.0

2.0

100

caV2(R)

7.7

8.7

0.05

0.3

4.0

2.0

100

5.6

C9Vl (R)

8.5

9.6

0.07

0.5

5.0

1.0

50

6.2

Cl0(R)

9.4

10.6

0.07

0.5

7.0

1.0

50

6.8

Cl1(R)

10.4

11.6

0.08

1.0

7.5

1.0

50

7.5

C12(R)

11.4

12.7

0.08

1.0

8.0

1.0

50

8.2

2.0

C13(R)

12.4

14.1

0.08

1.0

8.5

1.0

50

9.1

C15(R)

13.8

15.6

0.10

1.2

10

1.0

50

10

C16(R)

15.3

17.1

0.18

1.2

11

0.5

50

11

C18(R)

16.8

19.1

0.2

1.5

12

0.5

50

12

C20(R)

18.8

21.2

0.2

1.5

14

0.5

50

13

C22(R)

20.8

23.3

0.21

1.8

16

0.5

50

15

C24(R)

22.7

25.9

0.22

2.0

18

0.5

50

16

C27(R)

25.1

28.9

0.25

2.0

21

0.5

50

18

C30(R)

28

32

0.3

2.5

25

0.5

50

20

C33(R)

31

35

0.32

3.0

30

0.5

50

22

C36(R)

34

38

0.75

4.0

32

0.2

50

24

C39(R)

37

41

0.85

5.0

35

0.2

50

27

C43(R)

40

46

0.90

6.5

40

0.2

50

30

C47(R)

44

50

1.0

7.0

45

0.2

50

33

50

36

C51(R)

48

1.2

7.5

50

0.2

60

1.3

8.0

55

0.2

50

39

66

1.5

9.0

60

0.2

50

43

1.8

10

65

0.2

50

47

2.0

10.5

70

0.2

50

51

54

C56(R)

52

C62(R)

58

C68(R)

64

72

C75(R)

70

79

*At test IZ; measured using a pulse method with tp:< 100 p,s and l) :<0.001 so that the values
correspond to a Tj of approximately 25

ac.

4

VR
V

September 1979

(

j

Regulator diodes

BZY93 SERIES

- - -

CHARACTERISTICS - WHEN USED AS TRANSIENT SUPPRESSOR DIODES; T mb

clamping
at
voltage
tp = 500 J1S
expo pulse

V(CL)R
V
typo

non-repeti tive
peak reverse
current

'RSM
A

max.

=

25

0

C

reverse current
at recommended
stand-off voltage

IR
mA

VR
V

BZY93-...

max.

8

9.2

20

0.5

5.6

C7V5(R)

9

10.2

20

0.5

6.2

C8V2(R)

10

11.5

20

0.5

6.8

C9Vl(R)

11

12.5

20

0.1

7.5

Cl0(R)

12.3

14

20

0.1

8.2

Cll (R)

14

16

20

0.1

9.1

C12(R)

15.3

17.5

20

0.1

10

C13(R)

17

19.5

20

0.1

11

C15(R}

19.3

22

20

0.1

12

C16(R)

21

24

20

0.1

13

C18(R}

23

27

10

0.1

15

C20(R)

26

30

10

0.1

16

C22(R)

29

34

10

0.1

18

C24(R)

33

39

10

0.1

20

C27(R)

38

44

10

0.1

22

C30(R)

42

50

10

0.1

24

C33(R)

47

56

10

0.1

27

C36(R}

40

47

5

0.1

30

C39(R)

45

52

5

0.1

33

C43(R)

51

59

5

0.1

36

C47(R)

57

66

5

0.1

39

C51(R)

64

75

5

0.1

43

C56(R)

73

85

5

0.1

47

C62(R}

81

94

5

0.1

51

C68(R)

90

105

5

0.1

56

C75(R)

I

September 1979

5

BZY93 SERIES

l_ _ __

MOUNTING INSTRUCTIONS
The top connector should neither be bent nor twisted; it should be soldered into the circuit so that
there is no strain on it.
During soldering the heat conduction to the junction should be kept to a minimum.

6

September 1979

(

j

Regulator diodes

BZY93 SERIES

- - - Vz(V)

70

60

50

40

20

30

o

10

r-r-r-

B5535c

0-01

0-03
r

0·05
0·07
0'1

J

V ~

J

I

~i1 1"-1"00

~L
V

IJ
~

J
/~ t--~

J

~t-- U J J
/v / . . . v V ~D 1"ooJ. 1
C75 1/ /
C68
...... ......1--"
C47 /v v . . . ...... ....-"~ .... ]
C62
......
C43
......
C56
V v ...... ...... ......
C39

II

./

"

./

,//

C51

C36 vI--'"
f-C33

r:---~

/

L--

/
/

"-..f.-+-

0·5

)I .....
./ 'UII

v

~

0·7
I

/vv ""
//v vv
Vv V

v~
C30 / / / / /
~
C27 / / / / /
C24 / / ...... / ......
vl!ll
VV vf-C22 / / ............
C20 ............ /v ...... V Vv
CI8
v v

v

11
1-1- t-t-

Tmb::25·C

J IJ I I

1-0

~

/

I~~I/
r/,
/1/11

I.--8:~v v

BZY93 Stlritls

0'3

CI3
CI2
CII
CIO
C9VI

~~~;

1~~r;I/l! i\

3'0

ti'l;

500

tljr/I/;
1/
L7

r7

I
Pz =20W (

z

A)

IIII
IIII

Io

Fig. 3 Typical static zener characteristics.

September 1979

7

________________________________

~l

___B_Z_Y_93__S_ER_I_ES__
V

z

(V

r----- c---

- - - - --+---+---+-+-+

l

---

~--f---

----------

~-

~--

-~
--- f-----I---

++++++----- ---

-;-~

-

9ZY93 Sllrills

~---+------l---+--+-++++----+-+--__!

-

--~

--~

95537

----~f_

I--~~-

-

8·5r_---+--~_r~r++++_--~--_r_r_r~~+_--~~_r_+_r~_H;_----r__+~_+~rrH

-

---- - - -

----

+-+-~--+-f-+I--- ----~- ~-­

- - - ---

--~-

--

---1---1-- -

--1----

- f-

- / ---- ---- - r - '---------1------ - -

~-

c- -

--- +--1-

~

---

---

- --

-

~~_~~ _T",~ =150·C

---

--I_-e--

~__!~_+_+-++H

-----

- 1---

-

-~

-

-

--

I--

-

0·01

0·1

f----

'·0

1Z (Al

10

Fig.4 Typical dynamic zener characteristics for BZY93-C7V5.
Vz

~"

Square pulse
tp = t

I

Ti = 25·C
..--- V

~- ...

~

""'" -..... -.....

"

""

2

--

~

i""illill

-.....

"""'1000..

1""

~

.....

2

~"

- I...

tl. . I....
'" ~ ~
......
Tj =2S·C
Tj =6S·C
~l'-~ ~~"~ ...
Ti =l2S·C
prior to
surge

7

Exponential pulse
(tp=CR:I=O after2CR)

....
~

~

10

-

I"'~
10.:

i""o... i""'o.

5

Ti =65·C >---Ti =12S· C

"

5

.....

~

---

~

..........

~

.....

-

~

~

....

~~

1'1 ..
i""'-o r...",-

2

10
lOps

2

5

7

lOOps

2

lms

lams

t

"""' ..... ~

5

~'"
7

100ms

Surge duration or "CR"value

Fig. 22.

18

September 1979

r

____J

BZY95 SERIES

REGULATOR DIODES
Also available to BS9305-F050
A range of diffused silicon diodes in 00-1 envelopes, intended for use as voltage regulator and transient
suppressor diodes in medium power regulators and transient suppression circuits.
The series consists of the following types: BZY95-C10 to BZY95-C75.
QUICK REFERENCE DATA
voltage regulator
Working voltage (5% range)

nom.

Stand-off voltage

Vz
VR

Total power dissipation

Ptot

max.

Non-repetitive peak reverse
power dissipation

PRSM max.

transient suppressor

10 to 75
7,5 to 56
2,5

V
V
W

700

MECHANICAL DATA

W

Dimensions in mm

Fig. 1 00-1.

-17.2max7.7max -

1.1maX

~~-~~

tI
-

-16ma,

I----35min-I.....t--------51min-7-Z-10969.1A

:
•

9.6max -

September 1979

_________________________________

j~

___B_Z_Y_9_5_S_ER_'_ES__
RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)
Peak working current

IZM

max.

Average forward cu rrent
(averaged over any 20 ms period)

5

A

IF(AV)

max.

Non-repetitive peak reverse current
Tj = 25 °C prior to surge;
tp = 1 ms (exponential pulse);
BZY95-C10 to BZY95-C75

IRSM

max.

70 to 5

A

Ptot
Ptot

max.
max.

2,5
1,67

W
W

PRSM
T stg

max.

700

W

Storage temperature
Junction temperature

Tj

max.

A

Total power dissipation
up to T amb = 25 °C
at T amb = 75 °C
Non-repetitive peak reverse power dissipation
Tj = 25 °C prior to surge;
tp = 1 ms (exponential pulse)

-65 to +175
175

°C
°C

THERMAL RESISTANCE
The quoted values of Rth j-a should be used only when no leads of other dissipating components run
to the same tie-points.
Thermal resistance from junction to ambient in free air:
mounted on soldering tags
at lead length a = 10 mm
Rth j-a = 60 o C/W
at lead length a = maximum
Rth j-a = 70 °C/W
mounted on a printed-circuit board
at lead length a = maximum
at lead length a = 10 mm

I--a-./

~---ID

7259016

Rth j-a = 80 °C/W
Rth j-a = 90 °C/W

Fig.2
CHARACTERISTICS
Forward voltage

IF= 1 A;T am b=25 0 C

2

September 1979

(

<

1,5

V

J
- - -

BZY95 SERIES

Regulator diodes

OPERATION AS A VOLTAGE REGULATOR (see page 4)
Dissipation and heatsink considerations
a. Steady-state conditions
The maximum permissible steady-state dissipation Ps max is given by the relationship

P

s max

Tj max - Tamb
Rth j-a

=~-----

where: Tj max is the maximum permissible operating junction temperature
T amb is the ambient temperature
Rth j-a is the total thermal resistance from junction to ambient
b. Pulse conditions (see Fig.3)
The maximum permissible pulse power Pp max is given by the formula
(Tj max - T amb) - (P s ' Rth j-a)
Pp max = - - - ' ' - - - - - - - - - - - - ' - - Rth t
where: Ps is any steady-state dissipation excluding that in pulses.
Rth t is the effective transient thermal resistance of the device between junction and ambient.
It is a function of the pulse duration tp and duty factor o.
is the duty factor (tp/T).

o

The steady-state power Ps when biased in the zener direction at a given zener current can be found
from Fig. 4. With the additional pulse power dissipation Pp max calculated from the above expression,
the total peak zener power dissipation Ptot = PZRM = Ps + Pp . From Fig. 4 the corresponding maximum repetitive peak zener current at Ptot can now be read. This repetitive peak zener current is subject to the absolute maximum rating. For pulse durations longer than the temperature stabilization
time of the diode tstab, the maximum permissible repetitive peak dissipation PZRM is equal to the
steady-state power Ps. The temperature stabilization time for the BZY95 is 100 seconds (see Fig. 10).

Fig. 3.

NOTES WHEN OPERATING AS A TRANSIENT SUPPRESSOR (see page 5)
1. The stand-off voltage is the maximum reverse voltage recommended for continuous operation; at
this value non-conduction is ensured.
2. The maximum clamping voltage is the maximum reverse voltage which appears across the diode at
the specified pulse duration and junction temperature. For square pulses see Figs 14 and 15, for
exponential pulses see Figs 16 and 17.
3. Duration of an exponential pulse is defined as the time taken for the pulse to fall to 37% of its
initial value. It is assumed that the energy content does not continue beyond twice this time.
4. Surge suppressor diodes are extremely fast in clamping, switching on in less than 5 ns.

September 1979

3

l_______

BZY95 SERIES

CHARACTERISTICS - WHEN USED AS VOLTAGE REGULATOR DIODES; T mb = 25 °C

working
voltage
*VZ
V

BZY95-...

min.

differential
resistance
*rz

n

max.

typo

max.

temperature
coefficient
*SZ
mV/oC

test IZ

mA

typo

reverse at reverse
voltage
current
VR
IR
[.LA
V

max.

C10

9.4

10.6

0.75

4.0

7.0

50

10

Cll

10.4

11.6

0.8

4.5

7.5

50

10

7.5

C12

11.4

12.7

0.85

5.0

8.0

50

10

8.2

C13

12.4

14.1

0.9

6.0

8.5

50

10

9.1

C15

13.8

15.6

1.0

8.0

10

50

10

10

C16

15.3

17.1

2.4

9.0

11

20

10

11

C18

16.8

19.1

2.5

11

12

20

10

12

C20

18.8

21.2

2.8

12

14

20

10

13

C22

20.8

23.3

3.0

13

16

20

10

15

C24

22.7

25.9

3.4

14

18

20

10

16

C27

25.1

28.9

3.8

18

20

20

10

18

C30

28

32

4.5

22

25

20

10

20

C33

31

35

5.0

25

30

20

10

22

C36

34

38

5.5

30

32

20

10

24

C39

37

41

12

35

35

10

10

27

C43

40

46

13

40

40

10

10

30

C47

44

50

14

50

45

10

10

33

C51

48

54

15

55

50

10

10

36

C56

52

60

17

63

55

10

10

39

C62

58

66

18

75

60

10

10

43

C68

64

72

18

90

65

10

10

47

C75

70

79

20

100

70

10

10

51

*At test IZ; measured using a pulse method with tp";;; 100 [.LS and {j";;; 0.001 so that the values
correspond to a Tj of approximately 250C.

4

6.8

September 1979

(

j

Regulator diodes

BZY95 SERIES

- - CHARACTERISTICS - WHEN USED AS TRANSIENT SUPPRESSOR DIODES; T mb =

clamping
at
voltage
tp = 500 ps
expo pulse
V (CLl R
V
typo

11
12.3
14
15.3
17
19.3
21
23
26
29
33
38
42
47
40
45
51
57
64
73
81
90

IR
mA

VR
V

BZY95-...

max.

max.

12.5
14
16
17.5
19.5
22
24
27
30
34
39
44
50
56
47
52
59
66
75
85
94
105

reverse current
at recommended
stand-off vol tage

non-repetitive
peak reverse
current
IRSM
A

25 °C

20
20
20
20
20
20
20
10
10
10
10
10
10
10
5
5
5
5
5
5
5
5

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

7.5
8.2
9.1
10
11
12
13
15
16
18
20
22
24
27
30
33
36
39
43
47
51
56

C10
C1l
C12
C13
C15
C16
C18
C20
C22
C24
C27
C30
C33
C36
C39
C43
C47
C51
C56
C62
C68
C75

September

1979

5

BZY95 SERIES

l""---____-

SOLDERING AND MOUNTING INSTRUCTIONS
1. When using a soldering iron, diodes may be soldered directly into the circuit, but heat conducted to
the junction should be kept to a minimum.

2. Diodes may be dip-soldered at a solder temperature of 245 0C for a maximum soldering time of
5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum
storage temperature. These recommendations apply to a diode with the anode end mounted flush
on a printed-circuit board having punched-through holes. For nrounting the anode end onto a
printed-circuit board, the diode must be spaced at least 5 mm flrom the underside of the printedcircuit board having punched-through holes, or 5 mm from t~~top ofthe printed-circuit board
,/'
having plated-through holes.

3. Care should be taken not to bend the leads nearer than 1,5 mm from the seal; exert no axial pull
when bending.

6

September 1979

r

j

Regulator diodes

8ZY95 SERIES

- - ~B

7!Max
r dissipation
Iversus zener current

'95

LC

SCi! I ICi!S

ZL.

~

rLLL.. rLL.;~

~

~ ~~

f?'fffi f?'h: ~
C30
C33
C36
C39
C43
C47
C51
C56
C62
C68
C75

10

I~

%~~ ~
lj': W.
...,.
czo

""

"\.1'\

-"'" ~
"\.
",-",,"

t%

4

I@

~~

O·

A ~~

,

~~

'/?5<1

:n

'l/. ' l/.

~/>

V/////

I'
1\

<0
'\..

1'\/\

~ t/"" ~ I"\.f\-/\1"-

/, '/.

/,

~ t/"

§?l\t\~~

IJ

1·0

~~

~

L0

"lh ~

~

rz

~ Ii0 0~~
'l.

1"\.)'\..1'\
)'\..1"

/\

'/' ' /
lj':V;

@

~~

C10
Cll
C12
C13
C15
C16
C18
C20
C22
C24
.C27

f0

~V

v~
~

5

0·1

0·01

0·001

"0

Fig.4 Maximum permissible repetitive peak dissipation (P tat = PZRM)'
D8500

Ptot

i

I

(W)

1

3

!

I

I

i

!

I

I

[

I

"""I

j
j

!

I

I

~I

r---~-iI

r-- r - -

_e-"

o
-100

i

t
i

I
~-

'''"

,

~

I

i

i

area of operation
--, -rPermissible
---

r--- I - - -

If- .

!

"~I

t- -t-- ~t±

+- -+--

1--+

I

I

I
I

I

I

I

I - -I - -

J

!

i
!

2

L-

i

i

i

1

i

:

I

!

I

1

+
i

'-

~I"!i.

"""~

I
•

~

-

- I-- r-

~

" '"

-

""""~

-50
0
50
100
150
Tamb(OC)
Fig. 5 Maximum permissible total power dissipation versus ambient temperature.
September 1979

7

j l________________

BZY95 SERIES

Vz(V)

50

60

70

40

30

I

/

20

o

10

I

,B5601a I'0

, I " - 1"-1"-

'-I"-

r--- 3·0

J

II

5·0

I

'I

i'I

~~
1\
\

J

~

J

i"""~

J
II

j

V

~

V

C75 II V1/
C6S r/v V
C62
C56 VI/
C51 V

vV

V

(0

II

J
J
"""I- t,il- ~
~ II
V~ ~~
/
r--"""

II VV V

7·0

,

l
1

II

,

./

)/

I1II

II IJ

I

V

"

V /v
V V

./
C47
C43 VV 1/ V
VI/
C39
/'
........
C36
Vv Vv V
C33
Vv V
C30
C27 v/ V
C24 V

V V I"'~U
.... v

V

V

....

Vv
Vv

I
BZY95

S~ri~s

/I

I

Tam b=25°C

-

I./'

50

".

September 1979

V8

VVVV
j/I/V V ~v
j/'/V /1 ~ V

C20
CIS
CI6
CI5
CI3
CI2
CII
CIO

~!VVl!//

v,:;vv.~V

V/VV

V/

L

~V
V

I I

r

70

11 /

I 1
Typical static zener characteristics ' I I

Fig.

8

30

1/ t)r---,... ~
V V IL V ~J)II~ J
r""1'-

6 Typical static zener characteristics.

I00

"',

'~

~ 300

1"-1"--

500

IZ
(mA)

j

Regulator diodes

Vz

I-

BZ Y 95 Sar ia 5

8ZY95 SERIES

+___I-~t--l--+-+++_--+_--I----j

(V)

-----~-+-~~~~~--r__+-r_~-~~r_--r--4--~~-r+++---+---I-+-+--t--+-~

- - - - 1-- - -+- +-4--j_rH---_r-+_ 4--+-+-++++--__+_ --+_+--+-+-+--+-l-+----+--+-_r-+-4--j-+-H
-f--_r-+-4--j_r~-f---- -- --- ---cf--Ie-+-+-I-+-cl-- ----- f---'--+-_r_r4--j--f-H---_r--+---+---+-+__I-++-I
- - - - ----+-I---f-4-+-H-I------

12~--~r__+~-+_+_++++----_+_--+_~_+_r+~+_----+_~--~r+~HH----_+--_r_+_+_+_rr~

-----

-- - - - - - --t--t-++++---

---

--If---+-+--cf-++t-+----+---r-----f-

-----+--f--+-+-~_It_t+__

----- -

- - - - - f - - - - - --f---r-- -

1-----

- - f - - f---

f--

r----- --- - -- r------I-- 1-- -

+---+--+-+-It-++-t- ------1- -If---1t--t--+-++++----t---j----t---t---t--+-t-H

-+----If---+-+-f-+++t------- ---- ----- - - I-

f------ --

1-----

f--

-------- ---I--- -+-+-++++-c __

-------

-------+-I-+4~--__I--+__I__I_++~_+_I

-- - --- - -+-~+++__--+-----l-- -+_~-+--f--H

-- - - --

----r----

+-++++___ _

CIO
---

---

-

f-

f__--

-

t--- ----

r------+---+--+--+--4--j-l--H
7

3
0·001

5

7

0·01

5 7
1 Z (Al

7
0·1

1·0

Fig. 7 Typical dynamic zener characteristics for BZY95-ClO.
Vz I------+----I--I---t--l-++++-- ---- 1-- (V)

9Z Y9 5 Sarias

---

95603

--1--+-+-+++---1----- - - - - f - - - -+-+-+-I-+-H----- ------ -1------

1------1-------,--

38rf--__
----___rI------~f-----~=~~=~~~~=====~--+___+_+_+_~++----_+--~_+_+~++++-----+--_+_~I~~_r~~
f------- ----------+---j-,jI!~.+- r-++-+~-- - -f---- t-- - ------- --- -r- --- --t--I+-1-++++----- f-- --- - - - t---- 1-7~-1r---- -r----- ----+-+-+--1-+++---

---f--

I-

- - - f - - - - --

-

-- r-I---

-r---

Tamtrl50'C

r------,---

t--- -

-

-----

+--'t- t-+t-t- - - ---

- - - ---

+-

f------------

-

-

1--,-

- f---

-------f--

36r---__+---I__+-~_++++_----+___If--+1\~_+_++++----_+--_+__+_+1-_r-~~~~t--~~~~~~-~~+__+__+_~~H

\

--K

f---- --r--

-~-f 1\

f--

----I---

-

- - - -

-or -

I-

- r- -

----t-- -

C-_____

--------

f--------- ---

r---

---f------ -

1--- -

--f--f----

C33

1-----1-------

- - - --- f--

-I-

- -- 1---1--

I-

----f- 1-~
I------Ir--+--I-+-f-++++-----+--+--+---+-+*~

- r---= f---I-_----_+'-+--+-t--t+- ___-__-_-_I-__--_--+-- - - ']1
f-----

r--=----::= __--

--1--,- -

r---17~

-

----f-----

---f---

- f----t--f---

--t---+--+--+- H+-t-- -- -- ---

To rrfb=25'C
32

-

1--

=-~~1=J~---+----

-t-

3
0·001

5

-

-----1-----

r

1---- -

--1-++++---------- -----if-_-+_I--_-+-r---r++++---___
7

7
0·01

--1--+-+-+-++++---- -- e---+--t-+l-f--f-H
1
-1-+-1--1H;-I

--==~ ;=~:-5

0·1

~~==-:....~_+-~---::---:f-c----++

7

5
1·0

7
1Z (A)

Fig. 8 Typical dynamic zener characteristics for BZY95-C33.
,
_ _ _- - - - 1

I

September 1979

9

Jl

BZY95 SERIES

Vz

1--

{Vl

f------.

B5604

BZ Y95 Scarias 1---+---1f---l---++-t+t-----+---+---i

--+-----+--+__~+++__--.-+_______4__l
--'--.

1----.

87·5

,

r-----. r· -

f - - -.

_.-

-

--f---

~

-+++++---

L

f----

---.---.-

r

82· 5

---+---+--j--+-+++-_. -- t_--.- t_--+---+-+--+-+++-/--- r - - --.-

1---1--.,;..,...

tf--~~-t~tf---=jt-tj~T.~a~m~b~=~15;0~·C~~~~~~~tt~:::t::~~J=~~~====t===~~~~~
_ 1-_1-

___4~-H-+-+-+-++

I- _

-.-f---- --ff-- I-- -.

.-~

f-

- ..:.-~-:::- ---l---+r\*+_+~_

- -.-- - .+-+-+-+-++1----

----/---- _ __l._-1-- ---- t_- --I------j---t--i-r--t-t-t----j---;- ---

- 1-[\

I- ---- --- -

--1--

-

r- -- --

1--

- +--++-HH-- - --

---j

-!.rl-t-+H

--~

--t--t-t--t-i-t-t----- -----.- C75 r----~ f-----+--++-+-+-++__
- -+-/
77.5~---+--_i_rl__i_b+~r_--_+--__t_~__t_b+ftH~--_+--+__i_+_i_rHH----_+~~~~_+~HHH
---- ---f- -- -1-- .-t+++----L~~V-----r-I_-I_f-'-------

.. _--

- t--

f-----

--

-------- .. -- --t_-[--

/---

0-001

-

- t-

-- -1-4-+-++++----- -

72·51---- --3

7

- :--r -

- t---- -- - r- ·+t--t+----+-·-+-f--+-+--+t-+-l
. - -t---- t-- -+-+t-t i--t----+--I--+-+~r+_t_H

.--f-

r--

.-/--

IL:

----1--

t--r- -

.-1----f-

---...--f-----1---.---1---

--

.-

'-1-- -

.-/-- Tamb=25"C

7

0·01

---+--+---i-~-+-+__t_---t_-

7

0·1

5

'·0

7

IZ{Al

Fig.9 Typical dynamic zener characteristics for BZY95-C75.
BZY95 SGrlos

Rillt

85612

("C/W )7
5
3

100

d -1·0
-0,75
7
5'---'0'5

-~~

0·3

3

0·2

--

0·1

7t::::=::" 0'05
5

~.02

3

...-

~

....

~

r-I-

.....-: ......

~

V

~~

JO[

.....

V

-

1

-

----

--

0,01

--

I- I-"~
f-"' .... f"

__ f_ _ f-

T
F= 0.00 ""
5

./

~ f-"'~r-

I

3 f-----

~

I--"

d (duty eyela).

0- I

3

5

7

3

5

1

3

10

2

5

7

1
10
PulSQ duration t (s)

Fig. 10.

10

September 1979

(

t

Rlh I =(Rills - Rill 10) d. Rtll 10
Rills = Steady state thermal resistance
Rlhlo = Transienl thermal resistance d=O

3

5

7

3

~Jll
10

3

I

11

7

10

2

J

Regulator diodes

BZY95 SERIES

- - - - Sz

95605

BZY95 Series

(mV/oC ) 7
I
T I.
,YPlcal curves

I

5

-';

3

I

i I
i

I

I

!

I

I

;
I

:

I

I

,

;

"

!

I

I

I

I

-

i i

100

IZ

7

=20~
,\omA~

5

~

~~

3
I
!

.hV-

I
I

.

U~ ~
,

10

,

,

711£

i

5

i

l
I

3

i!

I I
I

:
i

i

i

i ;

i

1'0

,

:

I
I
I

I

i

i

7

5

1
,

3

j
I

I

,

I

i

I

I

:

I

I

'

:

I

!

I
I
I

I

;

Iii

i : ;

i

' I

I

l
'

I

!

!
I

I

i

0'1

i i

10

I
,

I

i

Ii

30

•

!

50

i
I

!

I

,

I

,

70

V

z (V)

Fig. 11.

September 1979

11

l_ _ __

BZY95 SERIES

.A"

5"

0·01

I

ii

~

I

i1 Ii: I i

10

30

............
1

50

Fig. 12.

12

September 1979

r

~.........L-"-.............I.--J.-'-~

I,!
-'---'_IL-"-......
Ii

'-'-...l-J...-'---'.....L-.L-..I-...l-J...-,---,_iL-"-l.....
ii

I

,I

70

V

z (V)

j

Regulator diodes

BZY95 SERIES

- - -

85606

BZY95 Stlritls
7

I

5

r'OIii~

"" ~~
10

~1111

"'"

5

""

~~ l1li
~

~

~

"' 1"'11..

"

r\..

3

iii.:

" "'

."

7

I

Tam b=25°C
typical curves

1',,-

3

I

~

"-~

1·0

~

~

"-"-..

i'-~
r"II~

~

" ' , C75

--~ ~
"-

"

7

'" C33

'"

5

3

-- ~

"-

CIO

I

0·1
3

0·001

5

7

3

0·01

5

7

3

0·1

5

7

1Z (A)

Fig. 13.

September 1979

13

l

BZY95 SERIES

V(CL)R max
03809Q

IV)

25

20

is

2'0

,-

is

13

Square pulses
Tj =25°C prior
r-to pulse
r-- Intermediate r----,
voltage types
r-may be
r-interpolated vJ
1/ I
tp=10ms / I II

r--fI

15

10

-,
12

5

1-

11

BZY95-C15

tI-

I

I

tp=lm/
~

V
~

/

~

10

~

V

L. ~p =lOOps

I

I

,
I

•

100

J

tp~'O}lS I

1000
Fig. 14.

14

September 1979

. (

j

Regulator diodes

BZY95 SERIES

- - V(CL)R max
125

(V)

100

75

6e
Square pulses
T =25°C prior
J
to pulse
Intermediate
voltage types
may be
Interpolated

~

~

~

-

r

IJ

1..1

I I

r--tp=

,

L

1

I

I

l

,

t P =-10ms iJ

t Q=10ms

I,

I I I
BZY95-C24

/J
tp=lm~~~

j

/

I I III
BZY95-C51

I

V

t p =lms/

V

j
j

I

~

V

J

tp=

I

I'"-

I

J

'/

lL 1/

100~s

1

if"

tp=lms~

I

V
J
tp=100jJs

1

1/

I

I

l"-

rI"-

to

j

~
I'

10

J
l

tp""IOjJs /

II

(A)

1

L

/

I RSM

1

~

I

0.1

i

J

~

tp~10~s

2i

-

J

J

36 30

~

V
V
1I

I I I

jg -jj-i1

-

!

I

4743

25

r---

8ZY95-C75

JJS

56

50

r--

tp=10ms I

I

~100

-

III r

I

I

6i

03810

r

J

.I

tp~10jJS

I

Fig. 15.

I

I

100
September 1979

15

BZY~SERES jl~~~~~~~~~~~~~~~~~
V(CUR max
25

D3807Q

20

(V)

~

•

I18

10

15
~

16

13

•

12

5

r11

Exponential pulses
T =25°C prior
r-- j
to pulse
Intermediate
voltage types
f-may be
f-interpolated
I--

~r

~

J

I

t p.,0mS II
4

:j

V/

10

~

~tp=lms"

I

J

1/

,./
tp=100p;

J
I
I
I.

J

I

I

100

I

)

BZY95-C15

I

I

I

I--

V

I

tp ~1 Ops

~

I

1000

16

September 1979

r

Fig. 16.

j

Regulator diodes

BZY95 SERIES

- - - 125

- -1 tp=10msJ
J

~

/

I

/

I

I('

tp=100)JS

,
I

I

~

1

-t p$10)JS

I

r-

I

30

tp=lomsl

IJ

I

1

tp= 1ms) J1 IJ
I
,

I
r

J

V

~

/ I

J

,I

I

-- tp: 100).Js

I

I

I

J-----

I I

I' I I I

--

-

I

r

I

•

tp~10)Js

-

I

I

8ZY95 -C75

10

)

t p=lms/

J

t p=100)JV,

I

27 22

I

1(1

I

I

33

I,

I

I

36

tp:l0ms} J

J~

V

,I

47 43 39

56

I

J

J

25

~

f

)/

62

1

'(

tp= lms ,

•68

>------

I

/

- - -- ----- •
50

75

100

(V)

03808

100

II

8ZY95 -C51

I

Exponential pulses
Tj - 25°C prior
"---to put se
f----- Intermediate
voltage types
may be
interpolated
-

tp~10)JsT

8ZY95 -C24

~

-

I
I

I
I

1000
Fig. 17.

September 1979

17

_________________

~Y~~~~jl

03806

10kW

"~

~

Exponential pulse
-Square pulse
L i ~

" "-

'-.
"'- ,

"

......

,

IOOW

1'10..

I'~

"-

~

'"

"-

""

" I', '\
1\\

\1 ,

p=10)Js

I"
IOOW

'" I' " '"

\
10

200

400

(Hz)

100

~

10

~

~~

v"<"

,0

,. ..J..o,,(,j ~
~".,;.~~
~

(OC)

100

Fig. 20.

18

September 1979

-

•

"'200

_l

Tomb 150

tp=1O)Js ~
t--

=
-

tp=100)Js

;=

....

,

tp=10ms"

o

I

... ~

..... ,~=lms
400 (Hz)
Repetition frequency

Fig. 19.

atV R=
stand- off voltage
IR
(mA )

50

\ r\.

,

1

038040

o

......

,

11,,- -'
....

'\.

r-r-

Fig. 18.

0.01

,'

~

\

Repetition frequency

0.1

" ~ ...

~~ \\ ~

'" tp=100)Js

" tp=lms

~~

,

\.

tp=1 )ms

o

Tamb=12S°C

_" Il

"-

1

Square pulse

\~

,~

10

-

",

~

"

Exponential pulse

,,

Tamb"'SSoC

"~
\' "- ~ '."-

l\. "

03805

10kW

~~

__R_eg_U_lat_o_rd_iO_de_s____________________________

B_Z_Y_9_5_S_E_R__
IE_S___

___

03811

"'

i'oo...
............

~~ ~

RSM

V)
2

'"

l ' ..... ~
........

""1'0
1'0

~

~ ~ .....

/"~
. . . r..... ..... ~ 1'1"0
..... 1'0 I'~
I'

/

C'(

./

Tj =25°C
=65°C
V/)125°C

~
~ ..
......

-

Square current pulse
tp= t
Exponential current pulse
tp=CR
I =0 after 2CR

-

./

... ~

'" "" .....
..... ............

7

~

5

-

Tj

2

""'~ .-;:;

.....~

~

:/~

=25°~>

=65°C
=125°C/
prior to surge

.........
.......

'-

:,

~

, "-""

'"

"-

~~

.......... ,......

..........

....

"~~ ...

r"'-~ ~ ~

""

5

".........
~

I .....

...... ~

J-.

..........

~

~

.......

.....
1'...

-,."".......

......... """"

........

2

10
10).lS

2

5

7

100).15

2

5

7

1ms

2

5

~

""-l1li

~ ....
.....

... ~

.... ~

i'

5

lOOms
lams
Surge duration or "CR" value

Fig. 21.

September 1979

19

_______________________________Jl__

B_Z_Y_9_6_S_ER_IE_S___

REGULATOR DIODES
Also available to BS9305-F049
A range of alloyed silicon diodes in 00-1 envelopes, intended for use as voltage regulator and transient
suppressor diodes in medium power regulators and transient suppression circuits.
The series consists of the following types: BZY96-C4V7 to BZY96-C9V1.

QUICK REFERENCE DATA
voltage regulator
Working voltage (5% range)

Vz

Stand-off voltage

VR

Total power dissipation

Ptot

Non-repetitive peak reverse
power dissipation

PRSM max.

nom.

transient suppressor

4,7to9,1

V
3,6 to 6,8

max.

2,5

V
W

190

MECHANICAL DATA

W

Dimensions in mm

Fig. 1 00-1.

-17.2max7.7max - -

~

1.1 max=+===:::::l~====::::::t

t

~~_o~
-1.6max

I'

1-35m;n-----------I....O---------51min--

..

7Z10969.1A

September 1979

____
BZ_Y_9_6_S_E_R_IE_S_Jl_______________________________
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Peak working current

IZM

max.

3,5 A

Average forward current
(averaged over any 20 ms period)

IF(AV)

max.

1 A

Non-repetitive peak reverse current
Tj = 25 °C prior to surge; .
tp = 1 ms (exponential pulse);
BZY96-C4V7 to BZY96-C9V1

IRSM

max.

22 to 12 A

Total power dissipation
up to Tamb = 25 °C
at Tamb = 75°C

Ptot
Ptot

max.
max.

2,5 W
1,67 W

Non-repetitive peak reverse power dissipation
Tj = 25 0C prior to surge;
tp = 1 ms (exponential pulse)

PRSM

max.

190 W

Storage temperature

T stg

Junction temperature

Tj

-65 to + 175 °C
max.

175 °C

THERMAL RESISTANCE
The quoted values of Rth j-a should be used only when no leads of other dissipating components run
to the same tie-points.
Thermal resistance from junction to ambient in free air:
mounted on soldering tags
at lead length a = 10 mm
Rth j-a = 60 °C/W
at lead length a = maximum
Rth j-a = 70 °C/W

mounted on a printed-circuit board
at lead length a = maximum
at lead length a = 10 mm

,--0-'1
=---10

7259016

Rth j-a = 80 °C/W
Rth j-a = 90 °C/W
7259017

Fig. 2.
CHARACTERISTICS
Forward voltage
IF = 1 A; T amb

2

September 1979

= 25°C

(

<

1,5 V

:xl

CHARACTERISTICS

Tamb

=

(!)

to
C

25 °C

WHEN USED AS VOLTAGE REGULATOR DIODES

WHEN USED AS TRANSIENT SUPPRESSOR DIODES

~

0..

c)'
working
voltage

differential
resistance

*VZ
V

*rZ

BZY96-...

min;

max.

*SZ
mV/oC

.Q

typo

temperature
coefficient

max.

test IZ

reverse
reverse
current atvoltage

IR
mA

typo

J1A

clamping non-repetitive
voltage at peak reverse
current
tp = 500 J1S
expo pulse
V(CL)R
IRSM
V
A

VR
V

max.

I

typo

max.

0..

reverse cu rrent
at recommended
stand-off voltage
at

IR
mA

VR
V

~

BZY96-..

max.

I

C4V7

4.4

5.0

2.5

10

-0.6

100

20

1.0

6.5

7.8

10

2.0

3.6

C4V7

C5Vl

4.8

5.4

1.0

5.0

-0.4

100

20

1.0

7.0

8.2

10

2.0

3.9

C5Vl

C5V6

5.2

6.0

0.7

4.0

+1.0

100

20

1.0

7.5

8.8

10

0.2

4.3

C5V6

C6V2

5.8

6.6

0.6

3.0

+2.0

100

20

2.0

8.0

9.4

10

0.2

4.7

C6V2

C6V8

6.4

7.2

0.6

3.0

+3.0

100

20

2.0

8.5

10

10

0.2

5.1

C6V8

C7V5

7.0

7.9

1.0

3.5

+4.0

50

20

3.0

9.5

11

10

0.2

5.6

C7V5

C8V2

7.7

8.7

1.2

3.5

+5.0

50

20

5.6

11

13

10

0.1

6.2

C8V2

C9Vl

8.5

9.6

1.8

4.5

+6.4

50

20

6.2

13

15

10

0.1

6.8

C9Vl

I

- - - -

-

-

en
(!)
"0

OJ
3

c~

<.0
-...I
(0

* At test IZ; using a pulse method with tp';;;; 100 J1S and D .;;;; 0.001 so that the values correspond to a Tj of approximately 25 0C

CD

N

-<

CD

0>
(j)

m
::IJ

m

Co)

(j)

OPERATION AS A VOLTAGE REGULATOR
Dissipation and heatsink considerations
a. Steady-state conditions
The maximum permissible steady-state dissipation Ps max is given by the relationship
Psmax =

Tj max - Tamb

-=------

Rth j-a
where: Tj max is the maximum permissible operating junction temperature
T amb is the ambient temperature
Rth j-a is the total thermal resistance from junction to ambient
b. Pulse conditions (see Fig. 3)
The maximum permissible pulse power Pp max is given by the formula
(Tj max - Tamb) - (P s ' Rth j-a)
R
th t
Where: Ps is any steady-state dissipation excluding that in pulses
Rth t is the effective transient thermal resistance of the device between junction and ambient.
It is a function of the pulse duration tp and duty factor o.
[) is the duty factor (tp/T)

Ppmax =

The steady-state power Ps when biased in the zener direction at a given zener current can be found
from Fig. 4. With the additional pulse power dissipation Pp max calculated from the above expression,
the total peak zener power dissipation Ptot =t PZRM = Ps + Pp . From Fig. 4thecorresponding maximum
repetitive peak zener current at Ptot can now be read. This repetitive peak zener current is subject to
the absolute maximum rating. For pulse durations longer than the temperature stabilization time of
the diode tstab, the maximum permissible repetitive peak dissipation PZRM is equal to the steadystate power Ps. The temperature stabilization time for the BZY96 is 100 seconds (see Fig. 10).

Fig. 3.

4

September 1979

(

~~

___
Re_gU_la_to_r_diO_d_es____________________________

B_Z_Y_9_6_S_E_R_I_E_S__

___

NOTES WHEN OPERATING AS A TRANSIENT SUPPRESSOR
1. The stand-off voltage is the maximum reverse voltage recommended for continuous operation; at
this value non-conduction is ensured.
2. The maximum clamping voltage is the maximum reverse voltage which appears across the diode at
the specified pulse duration and junction temperature. For square pulses see Fig. 13 and for exponential pulses see Fig. 14.
3. Duration of an exponential pulse is defined as the time taken for the pulse to fall to 37% of its
initial value. It is assumed that the energy content does not continue beyond twice this time.
4. Surge suppressor diodes are extremely fast in clamping, switching on in less than 5 ns.

SOLDERING AND MOUNTING INSTRUCTIONS
1. When using a soldering iron, diodes may be soldered directly into the circuit, but heat conducted
to the junction should be kept to a minimum.
2. Diodes may be dip-soldered at a solder temperature of 245 °C for a maximum soldering time of
5 seconds. The case temperature during dip-soldering must not at any time exceed the maximum
storage temperature. These recommendations apply to a diode with the anode end mounted flush
on a printed-circuit board having punched-through holes. For mounting the anode end onto a
printed-circuit board, the diode must be spaced at least 5 mm from the underside of the printedcircuit board having punched-through holes, or 5 mm from the top of the printed-circuit board
hflving plated-through holes.
3. Care should be taken not to bend the leads nearer than 1,5 mm from the seal; exert no axial pull
when bending.

September 1979

5

Jl________________________________

___B_Z_Y_96__
SE_R_I_ES__
Ptot
(W)

Max zener dissipation
17 versus zener r:lln ~e

II

Is
I.,

,...
~

I,

(; ~I" I
CaV2
C7V5
C6Va

15

!3

"-

~"

~"'''
~"

"

~

I ..

"'-,"

1"- " "-

Is

"-

i3

C6V2
C5V6
C5VI
C4V7

a ·1
3

0·001

IZ(A)

1·0

0·1

Fig. 4 Maximum permissible repetitive peak dissipation (P tot = PZRM).
Ptot

08500

(W)

3

1

'",,-

~~

2

~

~

I'

"'",,-

~,

~

Permissible area of operation

a
-100

a

-50

50

~

""

--

"'~

100

Fig. 5 Maximum permissible total power dissipation versus ambient temperature.

6

September 1979

(

BZY96 SERIES

Regulator diodes

Vz(V)

12

o

8·0

'·0

85732b

BZY96 S~

il
II

~"t-{

0.,'0'

9'-1\~

'"

",""
0.1

I.... ~~

o

~

..... ~

£>'-I1.\~'"
~~I
o.,'O'~

TIll I I

50

Fig. 17.

14

September 1979

(

=

"

I"'~ ....

~ ........

Tomb =125°C
Exponential pulset
I-Square pulse

--

... f-~L.

1-..",,........

'" """

=100)Js

.... ~~

1\'

h,

5
="1 ,

o

100.
I ....

!'~ ....

~

........ ~ ....

.. ~ ....
=lms
........ -4J..

100
200
300 (Hz) kOO
Repetition frequency

Fig. 16.
oe025

lOa

"-

.........

tp :10)Js ~~

'\.

1

300 (Hz) kOO

200

I- -

~

I,

f.....-+---

Repetition frequency

1.0

10

' ....

\~ \
\'

N--~
T amb :: 65°C

a

",

,,

~I\

V lms-

~

=10ms

\

'''~

..........

'"

-

r""r-."""

X

I--f-

,

.... ....

r-..Ioo...

'""'

Fl00)Js

I""'ilo..

I...

~\

\.

\

f""oo

,....

,

PRRM
(W)

~

I,

10

03708

1000

,....

j

Regulator diodes

8ZY96 SERIES

- - D3709Q

~

,
..

,
,

I

"

.......
t"oo..

T.=2SoC
65°C

/J=
1~125°C

......

.....

:-

......
..............

..

1"-' ....
~ ~.'"

....

'

;'

........

~"'i'"

r--. .....

l"-

" ......
~" ...

....

~ ~ 'I' r-.. I"
r--..:: -..::"""" ~~ ..."'1 ~
r-...~ ... ~
~

'"

2

10

.......

1"'00.

10
7

100).15

,,

...... I"

......
..........

.........

~

i"o

V

T· = 25°C Vv
J = 650C V
=12SoC/
prior to surge

5

Square current pulse
tp = t
Exponential current
pulse
tp=CR
1=0 after 2CR

--

BZY96

...... ......
.........

--

I

t".....

....

, .. "'

.........

......... I" ro....:!'

to--I'

to--

1"",
i""o
........... "'""""'" f:::: .....
~

r--.... ..... ~~

r--",

1J
2

1ms

5

7

....

~~ "

""",

~ ","1'

~~~

'""

10ms

....

f' ::::: r--. ~:::

~ ...

~~

7100ms
Pulse duration

Fig. 18.

September 1979

15

HIGH-VOLTAGE
RECTIFIER STACKS

- -

------------·-·-·----~-·~-----~,~ .............. _

• ...., ...... 'JU~_IIWU.WlJL_ .. JU..J.

'.J. ___ ...,,'......-......"IIIWuw:.lllIIII.JL

D

OSB 9110 SERIES
OSM9110 SERIES
OSS 9110 SERIES

II
HIGH VOLTAGE RECTIFIER STACKS

The OSB9110, OSM9110 and OSS9110series are ranges of high voltage rectifier assemblies, incorporating controlled avalanche diodes mounted on fire prooftriangular formers. The OSB9110series is intended for application in two phase half wave
rectifier circuits. The OSM9110series is intended for application in single phase or
three phase bridges or in voltage doubler circuits.
The OSS911 Oseries is intended for all kinds of high voltage rectification. The assembUes are supplied with M6 studs or with standard valve bases. The OSB9110series and OSM9110series are supplied with a centre tap (8-32UNC). The maximum
crest working voltages of the OSB9110 and OSM9110series cover the range from
2 kV to 15 kV, and of the OSS9110series the range from 3 kVto 30 kV, in 1 kV steps.
CIRCUIT OSS 9110

CIRCUIT

CIRCUIT 05S9110

OSM 9110

~r-el --I--&~ ano~--I--~hOdeanO~------~hOde
+-- VRWM~

I

centre -tap

+

-VRWM-

7Z591Z5

I

centre-tap
~

•

1259126

VRWM

..

QUICK REFERENCE DATA

Crest working reverse voltage
from centre tap to end
VRWM
Crest working reverse
voltage

OSB9110 -4
OSM9110-4
max.

OSS9110 -3
VRWM

max.

A verage forward current
with Rand L load
(averaged over any
20 ms period)
in free air up to T amb = 35 °C
in oil up to Toil

= 100 °c

Non-repetitive peak forward current
=10'ms; half sine wave; Tj =175 °Cprior to surge

t

MECHANICAL DATA see pages 4 and 5.

May 1978

II

2

3

-6 ..

-28
-28

-6 ..
3
-41·
4

-30
-30

14

15

.1- 29

-30

29

30

I. .1

I

7Z59127

kV

kV

Ip(AV)

max.

3.5

A

Ip(AV)

max.

6

A

IpSM

max.

125

A

U~ts YIIUSERIES
OSM9110SERIES
OSS 9110 SERIES

II

All information applies to frequencies up to 400 Hz

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
OSB9110 -4 -6
OSM9110-4 -6

Voltages
Crest working reverse voltage

VRWM

max.

2

-28
-28

3

VRWM

max.

3

15 kV

14

OSS9110 -3 -4
Crest working reverse voltage

-30
-30

-29

4

-30
30 kV

29

Currents
Average forward current (averaged
over any 20 ms period)
in free air up to Tamb == 35 °c

IF(AV)

max.

A

3.5

IF(AV)

max.

6

A

Repetitive peak forward current

IFRM

max.

120

A

Non -repetiti ve peak forward current
t = 10ms; half sine wave; Tj::: 175 °Cprior to surge

IFSM

max.

125

A

in oil up to Toil := 100 °c

Reverse power dissipation
Repetitive peak reverse power
t:= 10 i-!s (square wave; f == 50 Hz)
Tj::: 1750C
Non -repetiti ve peak reverse power
t::: 10 j-Ls (square wave)
Tj:= 25 °Cpriorto surge
Tj:=125 0 C prior to surge

OSB9110 -4 -6
OSM9110-4 -6

-28
-28

PRRM

max. 1.2 1.8

8.4

P
RSM
PRSM

6
max.
9
max. 1.2 1.8

Repetitive peak reverse
power dissipation
t == 10 I-lS (s.quare wave; f:= 50 Hz)
T j = 175°C

PRRM

max.

1.8 2.4 .,

Non-repetitive peak reverse
power dissipation
t := 10 j-Ls (square wave)
Tj = 25 °c prior to surge
Tj =175 °c prior to surge

PRSM
PRSM

max.
max.

9 12
1.8 2.4

OSS9110 -3

42
8.4

-4

-29

.

-30
-30

9 kW

45 kW
9 kW
-30

17.4

18 kW

87
17.4

90 kW
18 kW

Temperatures
Storage temperature

Tstg

Junction temperature

Tj

2

It

-55 to +175
max.

175

II

°c
°c

May 1978

OSB 9110 SERIES
OSM9110 SERIES
OSS 9110 SERIES
CHARACTERISTICS (See note 1)
OSB9110 -4 -6
OSM9110-4 -6

Forward voltage
IF

= 20 A;

Tj

= 25 °c

<

4

-28
-28

6

28

> 2.5 3.75
V(BR)R < 3.,76 5.64

17.5
26.32

VF

-30
-30
30 V

Reverse avalanche breakdown voltag:e 1)
IR

= 5 mA;

= 25

Tj

0

C

OSS9110 -3

Forward voltage
IF

= 20 A;

Tj

= 25 °c

<

-4

6

-29

8

58

> 3.75 5.0
V(BR)R < 5.64 7.52

36.25
54.52

VF

18.75 kV
28.2 kV
-30
60 V

Reverse avalanche breakdown voltag:e 1)
IR

=5

rnA; Tj

= 25 °c

37.5 kV
56.4 kV

Reverse current
VRM

= VRWMmax;

Tj

= 125

0

C

IRM

<

0.6

mA

NOTES
l. The Ratings and Characteristics given apply from centre tap to end. (Not for
OSS 911 Oseries)

2. Type number suffix

The suffix consists of a figure indicating the total number of diodes, followed by
a letter indicating the base.
A = M6 studs at the ends
B =: 4 pin Super Jumbo (B4D)
C =: Goliath
E =: 4 pin Jumbo (B4F)
F = A3-20
3. Operating: position
The rectifier units can be operated at their maximum ratings when mounted in
any position.

1) The breakdown voltage increases by approximately O. 1 %per
junction temperature.

May 1978

II

°c with

II

increasing

3

as B 911 0 SERIES
as M 911 0 SERIES
ass 9110 SERIES

II

MECHANICAL DATA

Dimensions in mm

n = total number of diodes
OSM9110-nC

OSM9110-nB

OSM9110-nA

N.C.

l--_rn ox75
o
M6

Q

<{
....J

@

7Z07503.'

k

N.C.

The drawings show the OSM9110series; the OSB9110 and OSS911Oseries differ in the
following respects:
OSB9110series - terminals marked a( -) and k(+) in the drawings are both marked'\! ;
the centre-tap is marked + (instead of'" as in the drawings).
OSS9110series - has no centre-tap.

4

II

II

May 1978

IOSB9110SERIES
OSM9110SERIES
OSS9110SERIES
MECHANICAL DATA (continued)
n = total number of diodes.

OSM9110 -nE

max 75

•

OSM9110-nF

III

max75
a

a

~~+--'''''''''''''''---r1'''''''''''''?a.

rJT-~-'r----'~'--'-''''''''''''.au..
I

...J

~

+'
............r-r-.,.........",.........,.--r"T~ C
. o·

5

"% (\~o-

. l

("10

~~~~" ~/. ~ ~ o~
-~

-r-

...

cOt)~I' ~

i"ooo:

v..I.~l

,0-

....~Cti ~ "- ,

~'>
I l ' "'~'"
....':\:
L J
I

?Z09305

30

2xOSM9110

,~ ~

10
(A )

~~ '10

30
10
(A )

Rb

~~ ~~
I I
I
maximum allowable average DutIput current versus ambient temperature

20

1.

I I I
I I 1
II I

1

l

,--

","""

~I')
·"1"
I 1 1" I":\:

II

maximum allowable average output current
versus ambient temperature

I 1
I I

-a g..'-0>~
~ ~o- ~CO
~

....

....~Ct;; .~ "- ,

8

LO

1\

""'~0~v.1

.....0'>"" .1."""1

100

:m

?Z09315

3 xOSM9110

I--~ ....~~ ,~

~~~ C ,~ ~I ~,o-

I
1
I 11

l""illita.

1 ~/. ~~. ~
"c>:
10 ;; ~~f"1:IIoS'
I l l \ . . I\.

~ ~
~~~
"S~ ~o- ("10

;;~", .o?>~ 0",
1'0..

10

20

•

"-)
~Ct."
~I\
" "II')
'0
"-.'\.1\

....

r--. . . . l\\
""iiIII~

"'"

"I\.'

N~
r-..;~

..... "'"

Tamb(OC) 200

II

June 1970

IOSM9110SERIES
OSB9110SERIES

II

OSS9110SERIES

\
APPLICATION INFORMATION

05B911O-4

r

iT
~ I ~+
I
I
I

-

IO =2xI F(AV)

7ZS9118

OSM9110series

-

Io=3IFIAV)

ref) ¢ ¢
VI" :
'\,

'V

:

0+

:

'V 
<

3.6

-6
-6

-28
-28

-30·
-30

5.4

25.2

27

V

Reverse breakdown voltage 1)

°c

IR = 5 rnA; Tj = 25

2.5 3.75
3.76 5.64

°c

VF

<

V(BR)R

>
<

17.5 18.75
6.32 28.2

-4

-29

-30

7.2

52.2

54

3. 75 5.0
5.64 7.52

36.25
54.52

37.5
56.4

OSS9210 -3

Forward voltage
IF = 50 A; Tj = 25

5.4

kV
kV

V

Reverse breakdown voltage 1)
IR=5mA;Tj=25

IU SERIES

0

C

kV
kV

Reverse current
IRM

<

0.6

rnA

NOTES

1. The Ratings and Characteristics given apply from centre tap to end. (Not for
OSS9210series) .
2. Type number suffix
The suffix sonsists of a figure indicating the total number of diodes, followed by
a letter indicating the base.
A = M6 studs at the ends
B = 4 pin Super Jumbo (B4D)
C = Goliath
E = 4 pin Jumbo (B4F)
F = A3-20
3. Operating position
The rectifier units can be operated at their maximum ratings when mounted in
any position.

1) The breakdov.Tl1 voltage increases by approximately 0.1
junction temperature.

%per 0c

with increasing

3

,,~u

., ~ I V

~I:K.II:~

OSM9210 SERIES
055 9210 SERIES

II

MECHANICAL DATA

Dimensions in mm

n = ototal number of diodes
OSM921O-nA

OSM9210-nB

OSM9210-nC

N.C.
max75

max75

°max75

a
a

M6

CD'

/;..

10

~~

~~~I'
('~
:'>J"

1-11- ....

tt-Ir (;\& I ~>"

~Q'I/" , ~

I

i""'~COI')II&.!..~ ~
~ctiol')

I
~

I

II'+..
~~

I I
100

1,\
~

"I'I'" ~"'
I"--

~~

I"f'III

Tomb (OC)

200

725]265

maximum allowable average output
current versus ambient temperature

I
I I I
I
I
I I
OSM9210 (2x)

Ia
(A)

40

t-t-- t--~g./
<'a-t-- t--I~ l - I--

~

- .... .... ~....c

~O'

20

ar

'"

,

Rb

7Z592.66

maximum allowable average output
current versus ambient temperature
~
_Ll _Ll i

t-

-

-

-

-

,

I'\.

1"-<>",;,

~~

~~C'I!I

~s:"
?> I\.

I"'f <>/;.. ~
- l....
- I- J~e!;--t-M"
I - f're(;\

2.5
V(BR)R <
4
OSS9310 -3

3.75
6

-4

17.5
28
-29

Forward voltage
IF

= 50 A;

Tj

= 25 °c

Vp

<

-30
-30
37.5 V

Reverse breakdown voltage 1)

IR

= 5 rnA;

= 25 °c

Tj

Porward voltage

IP

= 50 A;

Tj

= 25 °c

Vp

18.75 kV
30 kV
-30

<

7.5

10

72.5

75 V

>

3.75
6

5
8

36.25
58

37.5 kV
60 kV

Reverse breakdown voltage 1)

IR

= 5 rnA;

Tj

= 25 °c

V(BR)R <

Reverse current

IRM

<

0.3

rnA

NOTES
1. The Ratings and Characteristics given apply from centre tap to end. (Not for
OSS9310series).
2. Type number suffix
The suffix consists of a figure indicating the total number of diodes, followed by
a letter indicating the base.
A = M6 studs at the ends
B = 4 pin Super Jumbo (B4D)
C = Goliath
E = 4 pin Jumbo (B4F)
p = A3-20
3. Operating position
The rectifier units can be operated at their maximum ratings when mounted in
any position.

1) The breakdown voltage increases by approximately 0.1% per °Cwithincreasing
junction temperature.

" _ May

19~

_____

lL

3

V~D

yo)

IV 5ERIE5

IL

OSM9310 SERIES
OSS 9310 SERIES
MECHANICAL DATA

Dimensions in mm

n = total number of diodes
OSM931O-nA

OSM9310-nB

OSM931O-nC

N.C.

'omax75

max75

a

a

M6

CD'

4

...J

~

...J

a.
0

+'
I

QJ

L-

+'
C
QJ
U

@

7Z07503~

k

N.C.

The drawings show the OSM9310series; the OSB9310 and OSS9310series differ in the
following respects:
OSB931Oseries - terminals marked a(-) and k(+) in the drawings are both marked
'V; the centre-tap is marked + (instead of'V as in the drawings).
OSS9310series - has no centre-tap.

4

II

II

May 1978

IOSM9310SERIES
OSB9310SERIES
II

OSS 9310SERIES

MECHANICAL DATA
n

= total number of diodes
OSM931O-nE

OSM9310-nF

..

max75

max75
a

a

W

...J

~
Cl.

.s
I
"" 1
~~"'t:
I'

~'>

.... r--

,

,1\

.....

...,~
~
!"'II~

100

200
7Z59269

7Z59268

maximum allowable average output
current versus ambient temperature
1 I I I I "
10
I I 111 11
(A)
OSM9310(2x) r-

,~+--

1\0--

20

'\ -=

,

()o

r-- ~~

r---

-

"
{o--I-I-~

I I~~'-IIl\.~

~~

;r

"'.

\

~~~
"'' l'iIQ'

"-.Q/;..

\

~

,

lI..

~~ ~..(r.

I "f,;:~'
\.
1
'X
J I
r--"O,>"" I 1

~'>

r-

rrr-

"

....

,

20

I'

II

~I-i-

"'"
I~oi-

CO!.1
0...,::

~.~~
-~"
.s. I \.
1 .,{o' Q' ~~
1 I r""'tt,
I I~~'"
.1

~O,t

...,\.
~

200

o
o

,,

I"'oi..

r---~'>"ect·1

\,1\

....

I I I

-I'@ ~~_~I

>-fl
;:;~ ~r--ree

"'iii~

8

I-

\.

,

RbIl-

I'()'-

,

mr~

l-

-~

.........

;

100

~

40

r-

1\

~~

~~C''t.

(A)

~

I'<~I

10

Rb

rr-

maximum allowable average output
current versus ambient temperature
I I I
I
I I
I
I I I
I
I
10
OSM9310 (3x)
I-

....

1 T"""",
1I
1I
100

II

.....

.....

"

l\.
~~

..... !O:II~
200

August 1970

aSB9310SERIES

as M 931 OSERIES
ass 9310SERtES

APPLICATION INFORMATION
OSB9310series

-[

iT
~+

~I

I

I
I

I o =2xI F (AV)

-+
7Z59118

OSM931Oseries
I o=31F(AV)

¢
: : :

-+

refS Cf5
V

0+

T

tV~----.

'\,

tV

0---+----.

tV

0---1----+------+

tV

r
1'

VRWM

I
I

I
I

I
I

¢¢

-CP

I

7Z59119

voltage doubler

rectifier circuits

2x OSM9310

II

I

q?Cf?Cf?

0-

Ix OSM9310

___August 1970

I

0-

with respectively

and

3x OSM9310

9

OSB 9410
OSM9410
OSS 9410

II
HIGH VOLTAGE RECTIFIER STACKS

Ranges of high voltage rectifier as semblies, incorporating controlled avalanche diodes
mounted on fire proof triangular formers. They are supplied with M6 studs.
The OSB941Oseries is intended for application in two phase half wave rectifier circuits.
The OSM941Oseries is intended for application in single phase or three phase bridges
or in voltage doubler circuits.
The OSS9410series is intended for all kinds of high voltage rectification.
The OSB9410series and OSM9410series are supplied with a centre tap (8 -32UNC).
The maximum crest working voltages of the OSB9410 and OSM941Oseries cover the
range from 2 kV to 15 kV, and of the OSS9410series the range from 3 kV to 30 kV,
in 1 kV steps.

CIRCUIT OSB941O

CIRCUIT OSM941O

ano~--I--~hode

~rB--I--~~
I

_

centre - tap

V

RWM-----+

+

centre-tap

V

1- R W M -

7Z59125

~

7259126

CIRCUIT OSS941O

ano~------~hOde

I.

.1

VRWM

7Z591;[7

QUICK REFERENCE DATA

Crest working reverse voltage
from centre tap to end
VRWM
Crest working reverse
voltage

VRWM

OSB9410
OSM9410

-4
-4

-6
-6

max.
OSS941O

2
-3

3
4

max.

3

= 35 °c

Non-repetitive peak forward current
t =10 ms; half sine wave; Tj =175 °c prior to surge

-28
-28

1

-30
-30

I

I

1-4 1'..... I

Average forward current with Rand L load
(averaged over any 20 ms period)
in free air up to T amb = 35 °c
in oil up to Toil

I ...., .

14
15 kV
-29 , -30
29

IF(AV) max.
IF(AV) max.
I FSM

30 kV

10 A
30 A

max. 800 A

MECHANICAL DATA see page 4

II

1

SERIES
SERIES
SERIES

05B941USERIE51

OSM9410sERIES
OSS 9410SERIES

II

All information applies to frequencies up to 400 Hz

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
-30
-30

OSB9410 -41
OSM9410 -4

Voltages
Crest working reverse voltage

VRWM

max.
OSS9410

Crest working reverse voltage

VRWM

15 kV

2

max.

-30

29

-4
4

1

29

30 kV

Currents
Average forward current (averaged
over any 20 ms period)
in free air up to T amb = 35 °c

Ip(AV)

max.

10

A

Ip(AV)

max.

30

A

Repetitive peak forward current

IpRM

max.

450

A

Non -repetitive peak forward current
t = 10 ms; half sine wave; T j = 175 °C prior to surge

IpSM

max.

800

A

in oil up to Toil = 35

°c

Reverse power dissipation
-30
-28
OSB9410 -4
-6
-28
-30
Repetitive peak reverse power dis sipation 0=SM=9...:4;.;.:1..:.0_-...:4==---+_-...::6--+.-:....:....:.-+--=~+-....::...;;,
t= lOps (square wave; f = 50 Hz)
63 67.5 kW
Tj=175 0 C
PRRM
max.
913.5
Non -repetitive peak reverse power dissipation
t = lOps (square wave)
Tj = 25 °C prior to surge
PRSM
max.
55
T j = 175 °C prior to surge
PRSM
max. 8.5

375
60.5

80
13

400 kW
65 kW

-29
-30
Repeti ti ve peak rever se
.:::.0...::S...::S.:....9..:.4_10=----...:3=---+_-...:4=-i~~+_--=:-=--+_--=-=power dissipation
t = lOps (square wave;f =50Hz)
18
. .. 130.5
135 kW
T j = 175 °C
PRRM
max. 13.5
Non -repetitive peak reverse
power dissipation
t = lOps (square wave)
800 kW
775
T j = 25 0c prior to surge
max. 80 105
130 kW
126
max.
13
17
T j = 175 °c prior to surge
Temperatures
Storage tempetature

- 55 to

Junction temperature

max.

2

II

+ 175
175

II

August 1970

aSB 9410 SERIES
aSM9410SERIES
ass 9410 SERIES

II
CHARACTERISTICS (See note 1)
OSB9410 -4
OSM9410 -4

Forward voltage
IF = 150 A; T j = 25 °C

VF

Reverse avalanche breakdown voltage 1)
IR = 5 mA; Tj = 25 oC
V(BR)R

Forward voltage
IF = 150 A; T j = 25

0

C

VF

Reverse avalanche breakdown voltage 1)
IR = 5 rnA; Tj = 25 °C
V(BR)R

-6

-6

-28
-28
25.2

<

3.6

5.4

>
<

2.5

3.75

4

6

OSS9410 -3

-4

-29

<

5.4

7.2

52.2

>
<

3. 75

5
8

36.25
58

6

-30
-30
27 V

17.5 18. 75 kV
28
30 kV
-30
54 V
37.5 kV
60 kV

Reverse current
IRM

<

1. 6 mA

NOTES
1.

The Ratings and Characteristics given apply from centre tap to end. (Not for
OSS9410series).

2.

Type number suffix
The suffix consists of a figure indicating the total number of diodes, followed by
a letter indicating the base.
A = M6 studs at the ends.

3.

Operating position
The rectifier units can be operated at their maximum ratings when mounted in
any position.

1) The breakdown voltage increases, by approximately 0.1% per oC with increasing
junction temperature.

May 1978

II

3

I

05B9410SERIES

OSM9410SERIES
OSS 9410SERIES

II
Dimensions in mm

MECHANICAL DATA
n

= total

number of diodes.

OSS9410-nA

The drawing shows the OSS9410series.
The OSB941O and OSM9410series differ in the following respects:
OSB9410 series - has a centre tap marked +; anode and cathode terminals are both
marked"V .
OSM9410series - has a centre tap marked",.
Table of lengths and weights (mm and g)
number of diodes

n

maximum lengths

3

4 to 6

7 to 9

LA

143

184

224

264

305

weights

WA

215

413

611

809

1007

number of diodes

n

maximum lengths

LA

345

385

426

466

506

weights

WA

1208

1406

1604

1802

2000

4

II

16 to 18 19 to 21

22 to 24

10 to 12

25 to 27

II

13 to 15

28 to 30

August 1970

OSB9410SERIES
05M9410SERIES
0559410 SERIES

II

12592761

1000

maximum permissible non-repetitive tpeak forward current based on
tsinusoidal currents (f =50Hz)

rFb

tl-

(Ltime
teach current pulse is followed by
the crest working reverse voltage t-

t----

r-r--

r-

500

~

Tj=175°C prior to surge

...............

o

1

............... "-

r-- r--

~

-r-

number of cycles

10

100

7Z 59 275

maximum allowable non -repetitive
r.m.s. forward current(sub cycle
surge curve)
1
IFS(R MS)
(A)

1\

.J
~

1000

~

" Tj =175°C prior to -"......
surge -i'
~
1""-......

500

o
o

August 1970

5

duratlon(ms)

--

10

5

OSB9410SERIES
OSM9410SERIES
OSS9410SERIES

I
II
72592.72

maximum allowable average forward
current versus ambient temperatl:Jre
IF(AV )

IA)

40

~/
I,<'°o/.

20 r--- JO;~
r-+-

- tL"~Q'

I'

t;;;;;;; r-.~II"~"
"f - - 'F~ 1"N.7~'»~
E'E'co'~"""
.... ~VE'Ct~
I\..
~f) .......... r-... ,

<$

1

....
....

""

I"~

'"

t"-o~ !ll.,;l\..
I"""~

1

oo

200

100

72 592.73

7Z592.74

maximum allowable average output
current versus ambient temperature
I

(

10

I

I

(A)

1
q,.
X"/(\'-r-00

-,1\

""""""

I--f-

~V

--

'"

"

~~II

-

~

100

-

~_,.,.,IM
....f!I~ ("

.s'

I'l. 1\.

....of}v~l~

11

mr~
Rb ff-

~~ ~r'"

r--

X/

1

"

so 1--1-'""'.10

I"'

~('~Q'I

,
..... '" "
~

"'

1--1-'"'" " )i..Q/ir--7
t:::= t:::E'E'

I\..

F'~~
~
"~J.
COf)v

~

..!!.ctiOf')

~

~ l"o

r....

11
I

~~

6

1

~{'

'''1'.... "1
...... ~~

100

I I

~o

'...... Cot·
rf.,0f) "-

o
o

I I

1

r--

-

,

1 ~/;.. ~.$'
1 1 ~~'?;I ~..-::

~I-

Rb

r-r-r--

r

I

10
(A)

.....~

1-1- I-~Q'~;"

25

I

1

at

--

f- - , -

_\:~o--

so

I I
I
I I I I

maximum allowable average output
current versus ambient temperature

1'\

.....:"
..... '\.
~~
~

~

11

200

,

100

II

200

August 1970

OSB9410SERIES
OSM9410SERIES
OSS 9410SERIES

II
APPLICATION INFORMATION
OSB9410 series

-I

iT

~-1
I

I
I

-

Io =2xI F(AVI

7259118

OSM941Oseries

-

lo::3IF(AV)

'\, 0 - - - t - - - - +

'\,

'"

'\, 0 - - - 1 - - - - - + - - - - - .

r
1
_Cf'

VRWM

I
I

I

I

¢ cP cP

voltage doubler

rectifier circuits

Ix OSM9410

2x OSM9410

August 1970

0-

7259119

II

with respectively

and

3x OSM9410

7

jl

OSM9510-12

--------------------------------------------------~

HIGH-VOLTAGE RECTIFIER STACK

The OSM9510-12 is a silicon rectifier stack for high voltage applications,
up to 12kV in half-wave circuits, or up to 6kV as one of the arms of a
bridge configuration, where the centre-tap is utilised. Because of its controlled avalanche characteristics it is capable of withstanding reverse
transients generated in the circuit.
QUICK REFERENCE DATA
max.

12

kV

V(BR)R min.

15

kV

V

RWM

o

IF(AV) max., in free air, Tamb =50 C
o

P RSM max., t = lOllS, Tamb == 25 C

1.5

20

A

kW

OUTLINE AND DIMENSIONS
For details see page 3
CIRCUIT DIAGRAM

+

C.T.

Also available: 8 kV type with V(BR)R min = 12.5 kV

December 1979

jl~________________________________

___O_S_M_9_5_10_-_12__
RATINGS

Limiting values of operation according to the absolute maximum system.
These ratings apply for the frequency range 50 to 400Hz.
Simultaneous application of all ratings is inferred unless otherwise stated.
Electrical
V

RWM

max.

12

Crest working reverse voltage

kV

IF(AV) max.

Mean forward current in free air,
T b <50°C, 180° conduction
1.5
A
am See derating curves on page 4

IFRM max.

Repetitive peak forward
current, 30° conduction

15

A

I

Surge forward current, 1 cycle
(10ms peak of half sinewave)

35

A

Non-repetitive peak reverse power
(10MS square wave, T.=25°C)

20

kW

FSM

P

max.
max.

RSM

J

P

RRM

max.

50Hz repetitive peak reverse
transient power
(10MS square wave, T.=150°C)
J

5.0

kW

Temperature
T

stg
T.

Storage temperature

-55 to 150

°c

Junction temperature

-55 to 150

°c

J

ELECTRICAL CHARACTERISTICS (T. = 25°C unless otherwise stated)
J
Min.
Max.
*V

F

IR

17.5

Forward voltage at IF = 5A
Reverse current at VRWM' T j =125 ° C

V(BR)R **Avalanche breakdown voltage,
I
=1mA
(BR)R

* Measured under

15

V

100

MA

25

kV

pulsed conditions so that T j is at, or near, the stated value.

**The avalanche voltage increases by approximately O.l%/degC with increasing T j .
MECHANICAL DATA
130

Weight

g

MOUNTING POSITION
The rectifier units can be operated at their maximum ratings when mounted
in any position.

2

December 1979

(

l__

High-voltage silicon rectifier stack

O_S_M_9_51_0_-1_2_ _

OUTLINE AND DIMENSIONS

fIl

0

~

C":)

~

OC!

OC!

~

~

@
~ <

M

co
C"I

0

M

0

~

~

co
M

C)

~

r.::I

r.t

d

:r:

(.!)

I
.....:

u

'0
0
~

+

I

L.

.c

....
E

E
"'f

$

December 1979

3

jl_______________________________

___O_S_M_9_5_10_-_12__

f-+-+-+++++-+-f-+-+-++++-++-+l-,,'IH·++-I-t-lfIH-+-.J..-+++-+-f-++-+-I-++-+-+-+-++ U

+- 0

++t

f-+-+-+-+++-f-+-+--+++++-+--f'-l.'--t-#'.'



Repetitive peak current

IFRM

max.

28 to 36

v

5
2

A

V

Dimensions in mm

MECHANICAL DATA
Fig. 1

~~::F===1 I F=~ ~
1_ _ - -

21. _ _ 1. . - ft..5

min

max

--.1..--

24 ___ -..1

min

~11.B51.
max

D8059

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC134)
Total power dissipation up to T amb = 50 °C
Repetitive peak current (t

< 20 /1s)

Storage temperatu re
Junction temperature

Ptot

max.

150

IFRM

max.

2

T stg
Tj

mW
A

-55 to +125

°C

100

°C

max.

THERMAL RESISTANCE
From junction to ambient in free air

0.33

Rth j-a

'I

July 1979

K/mW

~

__________________________________

~l

_____B_R_1_00_/_0_3__

CHARACTERISTICS

Tj = 25 °C
dV

Breakover voltage at dt

10 V/ms

=

VIBO)

28 to 36

IV(BO)I - V(BO)lIiI

<

3

V·

Output voltage at - = 10 VIms
dt

Vo

>

5

V

Breakover current at V = 0.98 V (BO)

I(BO)

<

100

Breakover voltage symmetry
dV

\

\
'\

1(80} ill

~-_'_,....,-1IIBO)

f 1--,-,,---

I

v

'\

\

08463

Fig.2

BR100

220Vj 50Hz

20n

mains
08464

Fig. 3 Test circuit for output voltage

2

v

July

19791(

p.A

_______________Jl__

B_RY_39T_ _

THYRISTOR TETRODE

The BRY39T is a planar p-n-p-n trigger device in a TO-72 metal envelope, intended for use in low-power
switching applications such as relay and lamp drivers, sensing network for temperature and as a trigger
device for thyristors and triacs.
For BRY39P and BRY39S see 'Small signal transistors' handbook.
QUICK REFERENCE DATA
Repetitive peak voltages
Non-repetitive peak on-state current

= VRRM

max.

70

'T(AV)

max.

250

'TSM

max.

3

VDRM

Average on-state cu rrent

MECHANICAL DATA

V
mA

A

Dimensions in mm

Fig.1 TO-72; Anode gate connected to case.

~J ~F===
1_max
5,3 _L 12,7min

_I """.,

anode
Q

k--~~Odegate

cathodega~~1

k
cathode

7Z60690.1

Accessories supplied on request: 56246 (distance disc)

October 1979

jl___________---------------------

_____
B_RY_3_9_T____
RATINGS

Limiting values in accordance with the Absolute Maximum System (lEC 134)
Anode to cathode
Non-repetitive peak voltages

VOSM = VRSM

max.

70

V*

Repetitive peak voltages

VDRM = VRRM

max.

70

V*

Continuous voltages

VD=VR

max.

70

V*

Average on-state cu rrent up to Tcase = 85 °C
in free air up to T amb = 25 °C

IT(AV)
IT(AV)

max.
max.

250
175

mA
mA

ITRM

max.

2.5

A

ITSM

max.

3

A

max.

20

Repetitive peak on-state current

t=10J,Ls;o=0.01
Non-repetitive peak on-state current
t = 10 J,LS; Tj = 150 °C prior to surge
Rate of rise of on-state current after
triggering to IT = 2.5 A

dlT
dt

AIJ,Ls

Cathode gate to cathode
Peak reverse voltage
Peak forward current

VRGKM

max.

5

IFGKM

max.

100

V
mA

Anode gate to anode
Peak reverse voltage
Peak forward current

VRGAM

max.

70

IFGAM

max.

100

V
mA

Temperatures
Storage temperature
Junction temperature

Tstg

-65 to +200

°C

Tj

max.

150

°C

THERMAL RESISTANCE
From junction to ambient in free air
From junction to case

Rth j-a

0.45

°C/mW

Rth j-c

0.15

°C/mW

*These ratings apply for zero or negative bias on the cathode gate with respect to the cathode, and
when a resistor R ,,;;; 10 kn is connected between cathode gate and cathode.

2

October 1979

(

Jl

Thyristor tetrode

CHARACTE R ISTI CS

BRY39T

Anode to cathode
On-state voltage
IT = 100 mA; Tj = 25 °C
Rate of rise of off-state voltage
that will not trigger any device
Reverse current
VR = 70 V; Tj'= 25 oC
Tj= 150 °C
Off-state cu rrent
Vo = 70 V; Tj = 25 °C

VT

<

1.4

V*

typo

1
100

nA
nA

2

p.A

1
100

nA
nA

2

p.A

p.A

dVO**
dt
IR
JR

<
<
typo

10
10

<
<

IH

<

250

Voltage that will trigger all devices
Vo = 6 V; Tj = 25 °C

VGKT

>

0.5' V

Current that will trigger all devices
Vo = 6 V; Tj = 25°C

IGKT

>

Voltage that will trigger all devices
VO=6V;Tj=25 0 C

-VGAT

>

Current that will trigger all devices
Vo = 6 V; RGK = 10 kQ; Tj = 25°C

-IGAT

>

Tj=150 0 C
Holding current
RGK = 10 kQ; RGA = 220 kQ; Tj = 25 °C
Cathode gate to cathode

r' p.A

Anode gate to anode
V
100

p.A

*Measured under pulse conditions to avoid excessive dissipation.
**The dVD/dt is unlimited when the anode gate lead is returned to the supply voltage through a
current limiting resistor.
October 1979

3

__B_RY_39T~Jl________________
Switching characteristics
Gate-controlled turn-on time (tgt = td
when switched from V D = 15 V
to IT = 150 mA; IGK = 5 JlA;
dlGK/dt == 5p,A/p,s; Tj = 25 °C
Circuit-commutated turn-off time
when switched from IT = 150 mA
to VR = 15 V; -dlT/dt = 3 A/Jls;
dVD/dt = 70 V IJls; VD = 15 V

+ t r)

<

300

ns

<

3

JlS

t
IT

+

I

Yo

I.------tq------.I

o

---+--+=---

.!..-....j-l

1272539.'

IGT

O~·~~~------~-

Fig.2 Gate-controlled turn-on time
definition.

4

October 1979

(

Fig.3 Circuit-commutated turn-off time
definition.

Th_Yr_ist_or_t~_ro_de

___

jl____

8_R_Y_3_9T____

_______________________

08530(7Z6069111

300

08531 (7Z606931

600

I I I I
I I
-f-

\

(mA)

II

max values

IT

IT

III
I

I

I

I I

(mA)

II

Tj = 25°C

Tj=150oC f-f- - f -

\ ."
200

'0;-

400
1

t>

-~

\ 'b

-~ 1>

~

O

,~<

If

C>

,C;>"

\ ~
_\

,

~~

, 00
I\, ~

-,

J

II

it
\

,

~~

100

•

\ ~

-I-",

200
Jj

II

:\
\

I\.
\.

I

~I\

I

.\

100

'1

IJ
'1

:/ .

I~

o
o

II
II

'11

o
o

200

2

Fig.4

V T (V)

Fig.5

08532 (7Z6041411

v
..... ~
i-"

10
~

10-1

10

10 2

10 3

tp (5)

10 4

Fig.6

I

October 1979

5

Jl"---_______

_B_RY_39T___

D853317Z60694 I}

Vo= VR = 70V

~

I.J

1I

)

~1I
rl

,
V'

I
I;'

tyP/

V

10
7

V
!/

iI

II'

'f'

V'

"I
if

150

50
Fig.7

6

October 1979

J[

~~

___
Th_Y_ris_ro_r_mt_ro_d_e____________________________

_T_____

_____B_R_Y_3_9

APPLICATION INFORMATION
Sensing network
r-------<..------1~O

+12 V

100

kn

-12V

Fig.8
RS must be chosen in accordance with the light, temperature, or radiation intensity to be sensed; its
resistance should be of the same order as that of the potentiometer.
In the arrangement shown, a dec! ine in resistance of RS triggers the thyristor, closing the relay that
activates the warning system. If the positions of RS and the potentiometer are interchanged, an increase
in the resistance of RS triggers the thyristor.

October 1979

7

J

BT151 SERIES

--------------------------------------------------~

THYRISTORS

Glass-passivated thyristors in TO-220AB envelopes, featuring eutectic bonding, thus being particularly
suitable in situations creating high fatigue stresses involved in thermal cycling and repeated switching.
Applications include temperature control, motor control, regulators in transformerless power supply
applications, relay and coil pulsing and power supply crowbar protection circuits.
QUICK REFERENCE DATA
BT151-500R

I 650R

VDRMIVRRM

max.

Average on-state current

'T(AV)

max.

7,5

A

R.M.S. on-state current

'T(RMS)

max.

12

A

Non-repetitive peak on-state current

'TSM

max.

100

A

Repetitive peak voltages

500

650 V

MECHANICAL DATA
Fig. 1 TO-220AB.

__ 45

Dimensions in mm

I
1,3--

..-

max

-

a~k

mounting
base ---.
(see note)

g

II-

,--- •
5,9

I
I
I
I

.J

5,1

l

--t

13,5

'_Ib~f;:::;:::::;~ __. _

3~ max
not tinned

Net mass: 2 g

max

tI
1,3-- -

Note: The exposed metal mounting
base is directly connected to the
anode.
Accessories supplied on request:
see data sheets Mounting instructions
and accessories for TO-220 envelopes.

I

max

( 2 x) k

a

--..i

9

-

l

-..1

1

+ m15,ax8

min

-..li:o,9max (3x)

2,54 2,54

---

-

min

1.... 0,6

.-24

October 1979

I

~

jl_________________________________

___B_T_15_1_S_E_R_IE_S__
RATINGS

Limiting values in accorclance with the Absolute ~~aximum System (I EC 134)
Anode to cathode

~

~

BT151-500R

650R

Non-repetitive peak voltages (t .;;;; 10 ms)

VOSMIVRSM

max.

500

650 V*

Repetitive peak voltages (8 .;;;; 0,01)

VORMIVRRM

max.

500

650 V

Crest working voltages

VOWMIVRWM

max.

400

400 V

Continuous voltages

VOIVR

max.

400

400 V

Average on-state current (averaged over any
20 ms period) up to T mb = 95 oC

IT(AV)

max.

R.M.S. on-state current

IT(RMS)

max.

12 A

'Repetitive peak on-state current

ITRM

max.

65 A

100 A

Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 110 0C prior to surge;
with reapplied VRWMmax

7,5 A

ITSM

max.

12 t

max.

50 A 2 s

dlT/dt

max.

50 AIIlS

Reverse peak voltage

VRGM

max.

5 V

Average power dissipation (averaged over any 20 ms
period)

PG(AV)

max.

0,5 W

PGM

max.

5W

2

1

t for fusing (t = 10 ms)

Rate of rise of on-state current after triggering with
IG = 50 mA to IT = 20 A; dlG/dt = 50 mAills
Gate to cathode

Peak power dissipation
Temperatures

--+

Storage temperature

T stg

Operating junction temperature

Tj

-40 to +125 °C
max.

110 °C

* Although not recommended, higher off-state voltages may be applied without damage, but the
thyristor may switch into the on-state. The rate of rise of on-state cu rrent shou Id not exceed 15 AIIlS.

2

October 1979

J
- - Thyristors

BT151 SERIES

THERMAL RESISTANCE

From junction to mounting base

Rth j-mb

1,3 °C/W

Transient thermal impedance; t = 1 ms

Zthj-mb

0,2 0C/W

a. with heatsink compound

Rth mb-h

0,3 0C/W

b. with heatsink compound and 0,06 mm maximum mica insulator

Rth mb-h

1,4 °C/W

c. with heatsink compound and 0,1 mm maximum mica insulator (56369)

Rth mb-h

2,2 0C/W

d. with heatsink compound and 0,25 mm max. alumina insulator (56367)

Rth mb-h

0,8 °C/W

e. without heatsink compound

Rth mb-h

1,4 °C/W

Influence of mounting method

1. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink

2. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = any lead length
and with copper laminate

~

t

a

1
V//

*

0

Rth j-a

60 °C/W

~

J
///J

7Z75493

Fig. 2.

'I

(october 1979

3

8T151 SERIES

-+

l_____- -

CHARACTERISTICS
Anode to cathode
On-state voltage
IT = 23 A; Tj = 25°C

VT

<

1,75

V*

Rate of rise of off-state voltage that will not trigger any
device; Tj = 110 oC; see Fig.10
RGK = open circuit
RGK = 100.n

dVo/dt
dVO/dt

<
<

50
200

V/lls

Reverse cu rrent
VR = VRWMmax; Tj = 110°C

IR

<

0,5

rnA

Off-state current
Vo = VOWMmax; Tj = 110°C

10

rnA

IL

40

rnA

Holding current; Tj = 250C

IH

<
<
<

0,5

Latching current; Tj = 250C

20

rnA

Voltage that will trigger all devices
V 0 = 6 V; Tj = 25 °C
V 0 = 6 V; T j = -40 °C

VGT
VGT

>
>

1,5
2,3

Voltage that will not trigger any device
Vo = VORMrnax; Tj = 110 °C

VGO

<

250

mV

Current that will trigger all devices
VO=6V;Tj=25 0 C
V 0 = 6 V; Tj = -40 °C

IGT
IGT

>
>

15
20

mA
rnA

V/lls

Gate to cathode
V
V

Switching characteristics
Gate-controlled turn-on time (tgt = td + trl when
switched from Vo = VORMmax to IT = 40 A;
IGT = 100 rnA; dlG/dt = 5A/lls; Tj = 25 °c

t
IT

+

- t d - tr
_tgt-

I<;T

O~+~~--------~
Fig.2a Gate controlled turn-on time definition.
*Measured under pulse conditions to avoid excessive dissipation.

4

October

19791 (

typo

2

IJS

J

Thyristors

BT151 SERIES

- - MOUNTING INSTRUCTIONS

1. The device may be soldered directly into the circu it, but the maximum permissible temperature of
the soldering iron or bath is 275 oC; it must not be in contact with the joint for more than 5 seconds.
Soldered joints must be at least 4,7 mm from the seal.
2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during
bending.

3. It is recommended that the circuit connection be made to the anode tag, rather than direct to the
heatsink.

4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between mounting base and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.

6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES

Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated in Fig. 3.
junct ion

mounting
base
Rth j-a

heatsink

Fig. 3.
7Z73725

ambient

b. The method of using Fig. 4 is as follows:
Starting with the required current on the IT(AV) axis, trace upwards to meet the appropriate form
factor curve. Trace right horizontally and upwards from the appropriate value on the T amb scale.
The intersection determines the Rth mb-a' The heatsink thermal resistance value (Rth h-a) can now
be calculated from:
Rth h-a

=

Rth mb-a - Rth mb-h·

c. Any measurement of heatsink temperature should be made immediately adjacent to the device.

October 1979

5

l_____________~___

SE~

8T151

08560

15

90

1
1
1
1

p
(W)

1.57

,

1 1.9 J

2.2 'J J

l

10

I'

I\,
~

~

J J V'

2.8

ILl 1

J

I

II J

J J IIV'
'I If '}

...... .>

;,

'"

j~,

J J'"
'/ '(L
,JI/l/

"
:"

II VJ

I'"

'}/JV'

I'

~
~~

.?;

5

0

'T(AV)(A)

10 0

t-

f'.

'"

!"

""0'_

11
LlLlLl

...'1

103.5

1\

"'" "

t--,

~~11
"\

1\,1\
~"
~~
Il

r.... """" '"

I-r50

~

I'.N

1"-

~

97

t-t-t(')
r-r-r:\I\~- t-t-tII ...L\ ;. t-t-t1\\

1,\

.../!.."ee air'
-r-tJ..i
1
1

-' 1

r-r-t.....'1»\1p ._. . . t-t-t-

,

I\,

"- "

{..S
t--.

o 111'1 1 1

1 J~

l\.

f""

I-

1\

,

~,:,O

I'"

?J

'5

113

-1.

_~d'

iJ

-.l

'"
~~'f-

~

I\.

J1//

V'V'jff

5

11

~

J

I

a=4

f - - f-f-

II

\

r

Tamb(OC)

l\

~\

~

-.l

110

r-!;;;:

100

125

Fig. 4 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.

ex = conduction angle per half cycle
a

= form

factor

= IT(RMS)
IT(AV)

6

ex

a

300
60 0
900
1200
1800

2,8
2,2
1,9
1,57

4

October

19791 (

J

Thyristors

BT151 SERIES

- - - 7Z77405

150

ITS(RMS)
(A)

-'
100

,

1\

ITSM

"-

"

~

50

"

I"

I.....

r--...
I-1--1-

o

10- 3

duration (s)

10

Fig.5 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents
(f = 50 Hz); Tj = 110 °C prior to surge; with reapplied VRWMmax.

time

October 1979

7

_________________________________

~l

___B_T_15_1_S_E_R_IE_S__

7 Z77402.,A

3

7Z77401.A

30
IGT
(mA)

'\

2

20

'\

"- \.

~

.....
"-

,
......

min
I"1'\
I\..

o

0

50

100

'"

-50

150
Tj (oC)

0

50

7Z77400 A

30

I

,,

- - T j = 25°C
--Tj=110oC
IT

I

(A)

I
typ

L

I
1// I I
ft
I
,-/J\ max
VT

--

---

I

VT
I

20

II

II

II
r7

I

I

I'J

rl

,
,I

'I

10

II

:,

11

-,Iii

'I

1111

o
0,5

October 1979

(

,

I)

100
150
Tj (oC)

Fig. 7 Minimum gate current that will trigger
all devices as a function of junction temperature.

Fig. 6 Minimum gate voltage that will trigger
all devices as a function of junction temperature.

8

min
~

10

o

-50

......

J
Fig. 8.

1,5

2,5

j
- - - ~~~

BT151 SERIES

7Z77406

10

./
"fo"

V

10- 3
10- 5

10- 1

time (5)

10

Fig. 9.

08561

dV O

Cit

(V/p.s)

~

~

~

~

" l'1'..I"

R
=100n
N GK
I

~

I

I

I

I-- t--

I

i'~RGK=open circuit

.....
I"'..

Fig. 10 Maximum rate of rise of off-state voltage
that will not trigger any device (exponential method)
as a function of junction temperature.

10

o

50

October 1979

9

_ _ _ _J

8T152 SERIES

THYRISTORS
Glass-passivated thyristors in TO-220AB envelopes, featuring eutectic bonding, thus being particularly
suitable in situations creating high fatigue stresses involved in thermal cycling and repeated switching.
Applications include temperature control, motor control, regulators in transformerless power supply
applications, relay and coil pulsing and power supply crowbar protection circuits.
QUICK REFERENCE DATA
BT152-400R
Repetitive peak voltages

max.

400

J

600R

BOOR

600

BOO

V

Average on-state current

IT(AV)

max.

13

R.M.S. on-state current

IT(RMS)

max.

20

A

Non-repetitive peak on-state cu rrent

ITSM

max.

200

A

MECHAN ICAl DATA

A

Dimensions in mm

Fig.1 TO-220AB

-.. 45

Irna,
1,3-"
1-

.-

,

-

a~k

ri-

mounting_
base
(see note)

9

-1

.-Il:i~~~--'
3~ max

not tinned

5,1

tI
1,3--

I

-.1

-

.J

.........

......

+

I

15,8
m ax

j

- - A 13,5
T min

-

a

k

I
I
I

max

l

max

(2x)

I

5,9
min

9

-.li~0,9max

2,54 2,54

(3x)

-'1..."'0,6
24
1

Net mass: 2 g
Note: The exposed metal mounting
base is directly connected to the
anode.
Accessories suppl ied on request:
see data sheets Mounting instructions
and accessories for TO-220 envelopes.

October 1979

Jl,________________________________

___B_T_15_2_S_E_R_IE_S__
RATINGS

Limiting values in accordance with the Absolute Maximum System (J EC 134)
Anode to cathode
Non-repetitive peak voltages

BT152-400R

600R

800R

VOSMNRSM

max.

450

650

850

V

Repetitive peak voltages

VORMNRRM

max.

400

600

800

V

Crest working voltages

VOWMNRWM

max.

400

400

400

V

Average on-state current (averaged over
any 20 ms period) up to T mb= 93 °C
R.M.S. on-state current
Repetitive peak on-state current

IT(AV)

max.

13

A

IT(RMS)

max.

20

A

ITRM

max.

200

A

Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 115 0C prior to surge;
with reappl ied V RWMmax

ITSM

max.

200

A

12 t for fusing (t = 10 ms)

12 t

max.

200

A2 s

Rate of rise of on-state current after triggering
with IG = 160 mA to IT = 50 A; dlG/dt = 160 Alms

dlTldt

max.

200

Alps

Gate to cathode
Reverse peak voltage

VRGM

max.

5

V

Average powerdissipation (averaged over any 20 ms period)

PG(AV)

max.

0.5

W

Peak power dissipation; t:S;;; 10 ps

PGM

max.

20

W

T stg
Tj

-40 to +150

°C

max.

115

°C

Temperature
Storage temperature
Junction temperature
THERMAL RESISTANCE

2

From junction to mounting base

Rth j-mb

1.1

°C/W

From mounting base to heatsink
with heatsink compound

Rth mb-h

0.3

°C/W

October 1979

r

Jl

Thyristors

BT152 SERIES

CHARACTERISTICS
Anode to cathode
On-state voltage (measured under pulse conditions)
VT

<

1.75·

Rate of rise of off-state voltage
that will not trigger any device
Tj = 115°C; RGK = open circuit

dVo/dt

<

200

Vlp.s

Reverse current
VR = VRWMmax; Tj = 115°C

'R

<

1.0

mA

Off-state current
Vo = VOWMmax; Tj = 115°C

10

1.0

mA

Latching current; Tj = 25°C
Holding current; Tj = 25°C

IL
IH

<
<
<

80
60

mA
mA

VGT
VGT

>
>

1.5
1.0

V
V

VGO

<

0.25

V

IGT
IGT

>
>

50
32

Gate-controlled turn-on time (tgt = td + t r ) when
switched from Vo = VORMmax to IT = 40 A;
IGT = 100 mA; dlG/dt = 5 A/p.s; Tj = 25 °C

tgt

typo

2

p.s

Circuit-commutated turn-off time when switched
from IT = 40 A to VR > 50 V with -dlT/dt = 10 A/p.s;
dVo/dt = 50 V/p.s; Tj = 115°C

tq

typo

35

p.s

IT = 40 A; Tj = 25 °C

Gate to cathode
Voltage that will trigger all devices
Vo = 12 V;Tj = -40°C
VD = 12 V; Tj = 25°C
Voltage that will not trigger any device
Vo = VORMmax; Tj = 115°C
Current that will trigger all devices
VD = 12 V;Tj = -40°C
VO=12V;Tj=250C

V

mA
mA

Switching characteristics

t
IT

+

IT

r

VD

IR

o

1

tq

VD

IGT

O~+~~--------~_

Fig.3 Circuit-commutated turn-off
time definition.

Fig.2 Gate-controlled turn-on
time definition.

October 1979

"""""'_ _ :r.t'~I~I'.U''''!JlIl~~IIIIIII'IIUI!~LJUIIIIIrIn!I _ _ _ ~_lDIlIlII1LlIlIIJlDIIl_''IiLII''''''''''''lJlL.lJL''_II....LLJUI1.J.&JIUw...JLIIOUJJlIIWI" ............... _.-,.,........-•

...-......... ", .. _

..L..I._ _ _ _ _ _ __

•• _ _ _

3

B_T_15_2_S_E_R_IE_S~j~________________________________

___

MOUNTING INSTRUCTIONS
1. The device may be soldered directly into the circuit, but the maximum permissible temperature of
the soldering iron or bath is 275 oC; it must not be in contact with the joint for more than 5 second:
Soldered joints must be at least 4.7 mm from the seal.
2. The leads should not be bent less than 2.4 mm from the seal, and should be supported during bendin!
3. It is recommended that the circuit connection be made to the anode tag, rather than direct to the
heatsink.
4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between mounting base and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled
so as to avoid shock and deformation of either heatsink or mounting tab.

OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated in Fig.4.
junct ion

mounting
base
Rth j-a

heatsink

7273725

ambient

Fig.4

b. The method of using Fig.5 is as follows:
Starting with the required current on the IT(AV) axis, trace upwards to meet the appropriate form
factor curve. Trace right horizontally and upwards from the appropriate value on the T amb scale.
The intersection determines the Rth mb-a. The heatsink thermal resistance value (Rth h-a) can now
be calculated from:
Rth h-a = Rth mb-a - Rth mb-h·
c. Any measurement of heatsink temperature should be made immediately adjacent to the device.

4

October 1979

r

j

Thyristors

8T152 SERIES

- - - D8550

82
p
(W)

,

1.57
I

20

""I"'" "i\. '" "
""

19"
• J

2.2 II
2.8
a-4

111I

......

r--.

I II 'Jf
IIrJ

II,rl.
'I fJ.r/

"""

~.

r-

I

o IV'

1

""'~

1--

5

0

10

" "',..."
.....

"

10

15

0

\.

,,

1\

~

\

,

\. 1\

93

\%\
0>\\

-I-f\~f'!'\.,) ,>~
~c
ot-- - 1 - r-

.....

II
JIll
III
I
II
I JI

-:P

I,

i"

r--.

.....

~u>

~

9

I"
",,$

r!.0"

"

> ""

,...

20

r--.

50

\~- 1-1--

1\ \ \

'"

104

\

.,

\ \ 1\ ,
\.
,\\

'''''
".... ......'"I"'"".'." ~" .\1\.,

-~ -r-.""" ........
""'- Free ai-; ~"""
I I
I

\ 0 -- 1 - -

1\

\

I'\.

1'01.

I'

r"'"

\

' \ \

I'"
I' """"'

.....

1-1-

~\. ~\

Iii:=--'

H

115

100

Fig.5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.

conduction angle per half cycle

a

IT (RMS)
form factor = - - IT(AV)

:I::

a

0'

30 0
60 0
90 0
1200
180 0

0' ;;

4

2.8
2_2

1.9
1.57

5

_ _ _ _ _ _ _ _ _1-----'-'-----( October

1979

l_____

8T152 SERIES

08551

300

ITS(RMS)
(A)

""

200

"""

I'-.

""-

ITSM

'"

I"

""

""'",

I""....

"

100

"""

"--

r--...

~Ioo.

~

o

r--. .....

""

10-3

10- 2

duration (5)

10

Fig.6 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents (f= 50 Hz);
Tj = 115 0C prior to surge; with reapplied VRWMmax'

1~-n_ttITSM
r---

-

- - ITS(RMS)

time

6

October 1979

J

Thyristors

BT152 SERIES

- - - - D8552

50

D8553

dVD

IGT
(mAl

dt
(V /J1..sl

"'"

,

1\

1,\

40

~

i'

I\..
l\.

"""" 1"'100...

""

~

......

"- I""

........

1\.

~ ~GK=100.s1

RGK=open circuit
~

ftI..

30

........

~

'"

I""

~

1\.

"

i'-

20

I.....

~

10

o

10

-50

o

50

100

150

o

50

100

Tj(OCl
Fig. 7 Minimum gate current that will trigger
all devices as a function of junction temperature.

Fig.8 Maximum rate of rise of off-state voltage
that will not trigger any device as a function of
junction temperature.

D8554

IT
(Al

50

I

J.

II

J

typ 1.. 11

II
19

1'

VF

~

J

II

40

rl

~I

A

30

.J.~

JII
II,
II
J
1/11
J

20

max
VF

,I I J
111111
III I

10

1/
I

II

o

,

II
Fig.9 - - Tj = 25 °C; - - - Tj= 115 0 C

JII J

o

2
October 1979

7

~l~

___B_T_15_2_S_E_R_IE_S__

_________________________________
08615

10

.....
l..".oo'io'"

V

10- 1

/

""

10- 2

10- 3
10- 5

10- 4

10- 3

10- 2
Fig. 10

8

October 1979

(

10- 1

1

time (s) 10

_______jl__

B_T153_

FAST TURN-OFF THYRISTOR

Glass-passivated, eutectically bonded, fast turn-off thyristor in a TO-220AB envelope, intended for use
in inverter, pulse and switching applications. Its characteristics make the device extremely suitable for
use in regulator, vertical deflection, and east/west correction circuits of colour television receivers.
QUICK REFERENCE DATA
Repetitive peak off-state voltage
Average on-state current
R.M.S. on-state current

VDRM

max.

IT(AV)

max.

4 A

IT(RMS)

max.

6 A

500 V

Repetitive peak on-state cu rrent

ITRM

max.

30 A

Circuit-commutated turn-off time

tq

<

20 IlS

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-220AB.

_I ~a5, .--

~°ci~

-

-. 3,6
1

.-----+--+---;

'-&-k

1-

1,3--

--+2,8

rrr• mounti ng ____
base
r- I (see note)
I

t

,

5,9
min

t

I
I

g

1

15,8
max

.J

.-Il::r=;::::::::;j;::::::::;::::::)~
3,5 max
not tinned

I

'

-t

.1

1,3-max

Accessories supplied on request:
see data sheets Mounting instructions
and accessories for TO-220 envelopes.

~

k

13,5
min

I

I

(2 x)

Note: The exposed metal mounting
base is directly connected to the
anode.

"'-

5,1
max

t
Net mass: 2 9

-I
,

I

-..1

a

•

9

-.11..-- 0,6

-.1'11..--0,9 max (3x)
......

2,54 2,54

--

'--2,4
7Z73583.SA

January 1980

j

jl_______________

___
BT_153_ _
RATINGS

Limiting values in accordance with the Absolute Maximum System (lEe 134)
Anode to cathode
Non-repetitive peak voltages (t :s;;; 10 ms)

max.

550 V

VORMIVR RM

max.

500 V

V OWN RW

max.

400 V *

Average on-state current (averaged over any
20 ms period) up to T mb = 95 °e

IT(AV)

max.

4 A

R.M.S. on-state current

IT(RMS)

max.

6 A

Working peak on-state current

ITWM

max.

10A

Repetitive peak on-state current

ITRM

max.

30 A

dlT/dt

max.

PG(AV)

max.

1W

PGM

max.

25 W

Storage temperature

T stg

-40 to + 125 °e

Operating junction temperature

Tj

max.

Repetitive peak voltages
Working voltages

V OSMIV RSM

Non-repetitive peak on-state current; t = 10 ms;
half sine-wave; Tj = 110 0e prior to surge;
with reapplied VRWMmax
2

1

t for fusing; t

= 10 ms; Tj = 25

oe

Rate of rise of on-state current after triggering
up to f = 20 kHz; V OM = 300 V to ITM = 6 A

200 A/p.s

Gate to cathode
Average power dissipation (averaged over any 20 ms
period)
Peak power dissipation; t = 10 p.s
Temperatures

* Voltage shapes as occurring in the intended application.
2

January 1979

(

110 DC

j

Fast turn-off thyristor

8T153

- - - THERMAL RESISTANCE

From junction to mounting base

Rth j-mb

1,5 0C/W

Transient thermal impedance; t == 1 ms

Zth j-mb

0,2 °C/W

a. with heatsink compound

Rth mb-h

0,3 °C/W

b. with heatsink compound and 0,06 mm maximum mica insulator

Rth mb-h

1,4 °C/W

c. with heatsink compound and 0,1 mm maximum mica insulator (56369)

Rth mb-h

2,2 °C/W

d. with heatsink compound and 0,25 mm max. alumina insulator (56367)

Rth mb-h

0,8 °C/W

e. without heatsink compound

Rth mb-h

1,4 °C/W

Influence of mounting method

1. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink

2. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a == any lead length
and with copper laminate

~

0

t

60 °C/W

~

J

a

~

Rth j-a

///)

V//

7 Z7 5493

Fig. 2.

January 1979

3

jl_______________

___
BT_153_ _

CHARACTERISTICS
Anode to cathode
On-state voltage
IT = 10 A; Tj = 25 °C
Rate of rise of off-state voltage that will not
trigger any device; Tj .;;;; 110 0C
Off-state current
Vo = VORMrnax; Tj

dVo/dt

<

2,5 V *

<

200 V/Jls
1,5 rnA

= 110 °C

100 rnA

Holding current; Tj = 25 0C
Gate to cathode
Voltage that will trigger all devices
Vo = 6 V; Tj = 25 oC; tp;;' 5 Jls

>

Current that will trigger all devices
Vo = 6 V; Tj = 25 oC; tp ;;. 5 JlS

>

40 rnA

<

20 JlS

2,5 V

Switching characteristics
Circuit-commutated turn-off time (in regulating circuits)
when switched from IT = 6 A to VR;;' 50 V with
-dlT/dt = 10 A/Jls; dVo/dt = 200 V/Jls; VOM = 500 V;
RGK = 68 r2; T rnb = 80 oC; tp';;;; 50 JlS

Fig. 3 Circuit-commutated turn-off time definition.

* Measured under pulse conditions to avoid excessive dissipation.
4

January 1979

(

___F_a_st_tu_r_n-_of_f_th_y_ris_to_r____________________________

~~~

______8_T
__
15_3
_________

MOUNTING INSTRUCTIONS
1. The device may be soldered directly into the circuit, but the maximum permissible temperature of
the soldering iron or bath is 275 oC; it must not be in contact with the joint for more than 5 seconds.
Soldered joints must be at least 4,7 mm from the seal.
2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during bending.
3. It is recommended that the circuit connection be made to the anode tag, rather than direct to the
heatsink.
4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between mounting base and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.
6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES
Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated in Fig. 4.
junction

mounting
base

Rth

j-a

heatsink

Fig. 4.

7Z73 7 25

ambient

b. The method of using Fig. 5 is as follows:
Starting with the required current on the IT(AV) axis, trace upwards to meet the appropriate form
factor curve. Trace right horizontally and upwards from the appropriate value on the T amb scale.
The intersection determines the Rth mb-a' The heatsink thermal resistance value (Rth h-a) can now
be calculated from:
Rth h-a

= Rth

mb-a - Rth mb-h'

c. Any measurement of heatsink temperature should be made immediately adjacent to the device.

January 1979

5

~_BT_153_ _jl_______________
7Z82061

15

p
(W)

10

1,57"
1,9
I.....
2,2 IL V'
I
V

2,8
J

a=4

I

I

5

I

VV

/1//
'/

~

"

,,~

f

Ih?

r-.

30

1I

~ir

2

IT(AV) (A)

1'01.

\

.......

~Ioo.
.... 1-0.,

I"--~

.....

i'..

"r-- ...."

....

.....

-

II

r-f--I-r-- 98,75

11 \

,

1\ \ 1\
1\

1"\
I"\,
I.....

'-

I" I'

1"--_....

\
\

~

95

cr Q)

~

~

I'.

......

I 1 I
1I I
I

~

\

1\

1'\

....

1"1-0..

1

r-~

IL.~
/~
~I'"
~Ir

"\

~

\

1"-

~

i""'-

~

o ""
o

I.....

r-!?

<'0

I"

\

,~

~~O
I"-..

11/~

~

i'..

.....

.... :P

~ ~ f--f--r-r-',,"p' ~~ ~O~3i-f---

'-

I"

102,5

\ \

.\1\
\,H
~\ ,\
'-I~l\'

106,25

~,

to-.:r'I.:

.:n.

.... =-- ~IS'\
I"-F==,-

110

4 0

Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.

0/ =

conduction angle per half cycle
'T(RMS)

a = form factor = - - 'T(AV)

6

0/

a

300
600
90 0
1200
1800

4
2,8
2,2
1,9
1,57

January 1979

(

,J~_______

8_T_1_5_3______

___F_a_st_t_ur_n-_of_f_th_Y_ri_sto_r______________________________

7Z82062.1

6

Ptot
(W)

625
es

4

lir
Y

r

,

I\..

r-...

,

"- i'.

2

/

v

V

fI"

......

.....

\.

::0-- ~~- 104
~- r-r--

l>

g%\
\

\
1\ \

r-r--

1-1--

~ ~
\I

r-r--

1\
\
1\ \

,

"''\ ,
r-.. 1'\ \.!\ \ 1\
""'1\ \ l\1
\

107

.......

1" .....

,/

,

1\

\.

,
,

1\

I\"

i"l'o..ree ·
a
...... ~/r

1/

.\:....l~
\

\

I\"
''\.

......

IV"~

1\l7

<0'\

~o

V a = 2,32

.'!. ./

",

~

..,;
~

......

.......
1" ......

'1\'1\
I' "

Nn

~ ...... ~~\

o

r-.

a

5

ITWM (AI

50

10 0

100

110

Fig. 6 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.
Ptot = maximum power dissipation including gate and switching losses.
ITWM = maximum working peak on-state current.

_I

time

Fig. 7 Waveform defining ITWM.

frame period
7Z82060.1

horizontal output transformer

L...-_ _

~~_ _~_-+ vertical

deflection
Fig. 8 Basic circuit of a vertical
deflection system.
7Z75870

January 1979

7

jl_______________

___
BT_153_ _

7278736

60

ITS(RMS)

(A)

l
\

40

ITSM

~

~

I'

""'
""

20

........

~

r"-

........

-.......

r-_

o

10- 3

duration (s)

Fig. 9 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents
(f = 50 Hz); Tj = 110 °C prior to surge; with reapplied VRWMmax'

time

8

January 1979

(

10

~~

______B
__T_1_5_3______

___F_a_st_tu_r_n-_of_f_th_Y_ris_to_r______________________________
7Z82063

4

7Z82064

60
!GT
(mA)

"

I,
3

I"

"I
"I

40

"- I\.

min

"'-

!'I..

"min

"\..

",
1',

"' "'

2

1"\

"-

"

20

"-

"

1'1..

o

1

-50

0

50

100

150

-50

o

50

100
150
Tj (DC)

Tj (oC)
Fig. 10 Minimum gate voltage that will trigger
all devices as a function of junction temperature.
7Z82065

15

Fig. 11 Minimum gate current that will trigger
all devices as a function of junction temperature.
7Z82066

30

II 1/
"

,

I I,

'T
(AI

'/

,/
I IJ
I'

10

'I
rI

I-

tvp

20
max

VT, P;1 ~ VT
It III
I
I
, I

/
1/
~

/

I

typ./ ~

II

5

,

10

I
I

I'"

,.. .,..

II'
I

I"

."

I

/i/
I

II I

o
o
Fig. 12

I

II

o
2

Tj

= 25 DC; -

VT(V)
- - Tj

4

= 110 DC.

-50

o

50
Fig. 13.

January 1979

9

jl~______________

___
BT_153_ _

,

100

7282067

\

\
_\

IGT
(mA)

~

\

"

~

50

o

r--.... ~

o

r- I--

2

typ

Fig. 14 Gate current that will trigger all devices as a function of rectangular pulse width; Tj

IGT~
a

.

- I t p 1_ time
7282059

10

January 1979

(

6

4

=

25 °C.

,J~______

8_T_1_5_3______

___F_a_st_tu_rn_-O_ff_t_hy_r_ist_or____________________________

7Z77406

10

-I-""

/
100"'1-'

V

....

time

(5)

10

Fig. 15.

January 1979

11

________jl__

B_T154_

FAST TURN-OFF THYRISTOR

Glass-passivated, eutectically bonded, fast turn-off forward blocking thyristor in a TO-220AB envelope,
intended for use in high-frequency inverters, power supply, motor control, electronic flash systems and
for horizontal deflection circuits of colour television receivers.
QUICK REFERENCE DATA

Repetitive peak off-state voltage

VDRM

max.

Average on-state current

IT(AV)

max.

5 A

R.M.S. on-state current

IT(RMS)

max.

8 A

750 V

Repetitive peak on-state current

ITRM

max.

60 A

Circuit-commutated turn-off time

tq

<

2,4 p.s

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-220AB.

I.~~ ~Oa~

I

-- 3,6

~-+--+--~-~
2,8

I

I
I

L

I

"3:1~~fi .t
mounting •
base
(see note)

I
I
I

-

5,9

_

min

--i--_J

J

·-ll::::r==;::::rf;::::::;~ __ t

3,5 max
not tinned

r 1,3-.1

Net mass: 2 g.

+

II
I
I

I

15,8
max

-_. j

5,1
max

--

~--f ~;~

max
(2 x)

Note: The exposed metal
mounting base is directly
connected to the anode.

-1

Accessories supplied on request:
see data sheets Mounting instructions and accessories for
TO-220 envelopes.

1
..-

0 ,6

-2,4
"/735R3

"I

s:.

January 1980

jl_______________________________

_____B_T_15_4____
RATINGS

Limiting values in accordance with the Absolute Maximum System (I EC 134)
Anode to cathode
Non-repetitive peak off-state voltage; t

< 10 ms

VDSM

max.

800 V

Repetitive peak off-state voltage

VORM

max.

750 V

Working off-state voltage
tp < 20 }1S; [) = tp/T < 0,25

VOW

max.

600 V

Average on-state current (averaged over any
20 ms period) up to T mb = 77 oC;
at T mb = 85 °c

IT(AV)
IT(AV}

max.
max.

5 A
4 A

R.M.S. on-state current

IT(RMS)

max.

8 A

Working peak on-state current (horizontal deflection application)

ITWM

max.

10 A

Repetitive peak on-state current

ITRM

max.

60 A

Peak pulse on-state current
12 t for fusing; t = 10 ms; Tj = 250C

ITM
12 t

max.

240 A

max.

18 A 2 s

Rate of rise of on-state current
after triggering up to f = 20 kHz

dlT/dt

max.

60 AI}1s

PGM

max.

25 W

Gate to cathode
Peak power dissipation
Temperatures

2

Storage temperature

T stg

Operating junction temperature

T·J

January 1979

(

-40 to +125 oC
max.

110

0c

Jl

Fast turn-off thyristor

BT154

THERMAL RESISTANCE

From junction to mounting base

Rth j-mb

2,5 °C/W

Transient thermal impedance; t = 1 ms

Zth j-mb

0,24 °C!W

a. with heatsink compound

Rth mb-h

0,3 °C!W

b. with heatsink compound and 0,06 mm maximum mica insulator

Rth mb-h

c. with heatsink compound and 0,1 mm maximum mica insulator (56369)

Rth mb-h

1,4 °e!W
2,2 0e/w

d. with heatsink compound and 0,25 mm max. alumina insulator (56367)

Rth mb-h

0,8 0e!W

e. without heatsink compound

Rth mb-h

1,4 oelW

Influence of mounting method

1. Heatsink mounted with clip (see mounting instructions)
Thermal resistance from mounting base to heatsink

2. Free-air operation
The quoted values of Rth j-a should be used only when no leads of other dissipating components run to
the same tie-point.
Thermal resistance from junction to ambient in free air:
mounted on a printed-circuit board at a = any lead length
and with copper laminate

~

t

a

~

0

I

Rth j-a

60 Oe!W

~

J

~/

///)

7Z75493

Fig. 2.

January 1979

3

BT154

Jl

CHARACTE R ISTI CS
Anode to cathode
On-state voltage
IT = 20 A; Tj = 25 °C

VT

<

Rate of rise of off-state voltage that will
not trigger any device; exponential method;
VD = 2/3 VDRMmax; Tj < 110 °C
VGK = 0 V
-VGK=6V

dVD/dt
dVD/dt

<
<

1000 V/p.s

Off-state current
VD = VDRMmax; Tj = 110 °C

ID

<

1,5 mA

Voltage that will trigger all devices
V D = 6 V; Tj = 25 °C

VGT

>

2,5 V

Current that will trigger all devices
V D = 6 V; Tj = 25 °C

IGT

>

40 mA

tq
tq

<
<

2,4 p.s
4,8 p.s

3 V*

200 V/p.s

Gate to cathode

Switching characteristics
Circuit-commutated turn-off time (in horizontal
deflection trace switch) when switched from
IT = 8 A to VR = 0,8 V; VDM = 700 V; -VGG = 25 V
from Rtot = 62 Q**; T mb = 80 oC; see also Fig. 11
t p < 30 p.s
tp < 150 p.s

Fig.3 Circuit-commutated turn-off time definition.

* Measured under pulse conditions to avoid excessive dissipation.
* * Rtot is the total series resistance including source resistance.

4

January 1979

(

~~

___F_as_t_tu_rn_-o_f_ft_hy_r_ist_o_r____________________________

_______
8_T_1_5_4______

MOUNTING INSTRUCTIONS

1. The device may be soldered directly into the circuit, but the maximum permissible temperature of
the soldering iron or bath is 275 oC; it must not be in contact with the joint for more than 5 seconds.
Soldered joints must be at least 4,7 mm from the seal.

2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during
bending.
3. It is recommended that the circuit connection be made to the anode tag, rather than direct to the
heatsink.
4. Mounting by means of a spring clip is the best mounting method because it offers:
a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw
mounting.
b. safe isolation for mains operation.
However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid
damage to the plastic body.
5. For good thermal contact heatsink compound should be used between mounting base and heatsink.
Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide
loaded compound. Ordinary silicone grease is not recommended.

6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet
providing that rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab.
OPERATING NOTES

Dissipation and heatsink considerations:
a. The various components of junction temperature rise above ambient are illustrated in Fig. 4.
junction

mounting
base
Rth j-a

heatsink

Fig. 4.
7273725

ambient

b. The method of using Fig. 5 is as follows:
Starting with the required current on the IT(AV} axis, trace upwards to meet the appropriate form
factor curve. Trace right horizontally and upwards from the appropriate value on the T amb scale.
The intersection determines the Rth mb-a' The heatsink thermal resistance value (Rth h-a) can now
be calculated from:
Rth h-a = Rth mb-a - Rth mb-h'
c. Any measurement of heatsink temperature should be made immediately adjacent to the device.

January 1979

5

~_BT_154

jl___~______~__

__

7Z82026

15

I
I I
I

I
I
I 1

(W)

1,9 1

2,2 J
10

JJ
2,8
1/ J /1/

I

\.

"

\

85
1\

70
N
II"

~

\

I\.

,I

r/

1 1

\
I'..

... $

.....

~

'"

!Z!

'" ,

\
.....

t-....

,....

I/'~~~
~,.

1\

I\.

,

......

.....

\
I'

I\.

.....

t-....

r..

o

~ \\

~

V"j'"

~

,-t:.

oS

/

/

J

'0'?
, - (5

j

11/,'/
J/~
:A~

"

1/

.

If II
j

5

~~o~

j

a='4

I'-..

~

"-

""'

97,5

,
,\
I\, \

... 1'
.....

~~~

~

o

2,5

IT(AV) (A)

72,5

~I

1,6,

Ptot

I
I
I

110

5 0

Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures.

cy =' conduction angle per half cycle
a =' form factor = IT(RMS)
IT(AV)

30 0
600
900
1200
1800

6

4
2,8
2,2

1,9
1,57

January

19791 (

J

Fast turn-off thyristor

BT154

- - 7Z82027

6

819
lines

I I
1

.)

~

,

.)

Ptot

~I

~

-

I
1

-f-

I\

(W)
~
./

/

4

I'

V

V

./ 625
lines

IQ

2

~

~

v.

r-\~:r
,_ 3

\

,

,

\~
,

\

crGl
II

,

,

1\
'\

V

, ,
, ,

\

r-r--

-

f-f--

1\
\
\

\
\

\.

\

100

\

\

, ,
,
1\

\

\.

L'

'1/

:\.

\.

'\
~,

105

1\
!\I\
\ \

,

1\

I'

o

_

1\

1\
:\.

95

:Xl

\.

V

v.

IV

f\o- -r- ~O'
\.

1

1 1 I

I
I

\

"

\.,~\

.\
,'4

o

5

ITWM (AI

110

100

10 0

Fig. 6 The right-hand part shows the interrelationship between the power (derived from the left-hand
part) and the maximum permissible temperatures (horizontal deflection application).
7Z82028

10
Zthj-mb
(oC/W)
~

.... 1-

-

,
V"

l...--'

10- 1

...... ~

.......

/

10- 3
10- 5

10- 4

10- 3

10- 2

10- 1

time (s)

10

Fig. 7.

January 1979

7

_B_T15_4

_Jl_______
7Z82023

6

7Z82024

60

"

1\

IGT

l~

{mAl
~

,

40

4

.
I\.min

I""-

:"...
~

""
...... ~
1""-"

"

2

i""'~

o
0

50

100

o

-50

150

7Z82022

60

40
l.
1/'
J.

...

max

VT

~

I

'I

'j,t:

20
J

"1

I
1'1/

~I;o'

o

"

~~

o

2
V (V)
4
T
Fig. 10 - - Tj = 25 oC; - - - Tj = 110 0C.

19791 (

50

100

150

Fig. 9 Minimum gate current that will trigger all
devices as a function of junction temperature.

Fig. 8 Minimum gate voltage that will trigger all
devices as a function of junction temperature.

January

I"!..

Tj (oC)

Tj (oC)

8

I ......

20

i"'"

o
-50

"

"min

J

Fast turn-off thyristor

8T154

- - -

7Z82025

15

-VGG=

10

_I-

OV

--

f--i--

~I

,

I I
3V
I I

..... 1-""

I

.....

loa

5

-fo- 1 - -

I
..... 1""'"

,'"

o

10V

o

25V

-20

40

60

'TM (A)

80

7Z82029

Fig. 11 Typical variation of tq with 'TM and -VGG at -dlT/dt = 10 AIJ.ls;
dVD/dt = 200 to 700 V IJ.ls; tp = 150 J.ls.

January 1978

9

.__BT_154_Jl________
APPLICATION INFORMATION

IT

J!

-t--i--1TRM

I

I
I

I

1

I

I

I

I

: 1 - - - - - - - - - - - " ~---VoW

I
I
Vo

~~
-Ll--ITWM
I

I

I

I

I

-.1 tp 1__
I...

1

time

T

7Z69815

E.H.T.

commutation
circuitry

Fig. 12 Basic ci rcu it and waveforms.

Note
For reverse blocking operation use a series diode, for reverse conducting operation use an anti-parallel
diode.

10

January 1979

(

_ _ _ _J

BTW23 SERIES

THYRISTORS
Silicon thyristors in metal envelopes, intended for general purpose single-phase or three-phase mains
operation.
The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW23-600R to
1600R.
QUICK REFERENCE DATA

I

BOOR

1000R

1200R

1400R

1600R

6001

BOO

1000

1200

1400

1600

BTW23-600R
Repetitive peak voltages
VORM = VRRM

max.

v

Average on-state current

IT(AV)

max.

90 A

R.M.S. on-state current

IT(RMS)

max.

140 A

Non-repetitive peak on-state current

ITSM

max. 2000 A

Rate of rise of off-state voltage
that will not trigger any device

dVo/dt

On request (see ordering note on page 4)

dVD/dt

<
<

MECHANICAL DATA

200 V/Jls
1000 V/Jls

Oimensions in mm

Fig. 1 TO-94: with metric M12 stud (012 mm); e.g. BTW23-600R.
Types with 1t2 in x 20 UN F stud (0 12,7 mm) are available on request. These are indicated by the suffix
U: e.g. BTW23-600RU.
9,6min_

-

__
--8,8 max
thickness 2,6
1,7

9

I

t

...I --25max
'

... 1--

--.

-*-1

*' ~~E;;;\~~~k~I ~[
yellow

8,9 max
10 mm
21,0 __ 28,6
20,24
max
___ min, mounting height 63,5 - -

_I

2

I

_8.3

conducting cross 8,1
section nominal

--.' -4,2
4,05

158 ______________~~~,
147
,~.~_________________ 190 ________________~~~,
174

~

I

27,0thickness 0,9
0,5

1~4r-_____________

Net mass: 134 g
Diameter of clearance hole: max. 13,0 mm
Torque on nut: min. 9 Nm (90 kg em)
max. 17,5 Nm (175 kg em)

7Z75733

Supplied with 'device: 1 nut, 1 lock washer
Nut dimensions across the flats;
M12:19mm
1t2 in x 20 UNF: 19 mm

April 1978

BTW23 SERIES

l_ _ __

RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Anode to cathode
BTW23-600R 800R 1000R 1200R 1400R 1600R
Non-repetitive peak voltages
(t";;;; 10 ms)
VOSMIVRSM max.
Repetitive peak voltages
VORMIVRRM max.

600

800

1000

1200

1400

1600 V

600

800

1000

1200

1400

1600 V

Crest working voltages

400

600

700

800

800

VOWMIVRWM max.

800 V*

Average on-state current (averaged over
any 20 ms period) up to T mb = 85 °C

'T(AV)

max.

90 A

R.M.S. on-state current

'T(RMS)

max.

140 A

Repetitive peak on-state current

'TRM

max.

1250 A

'TSM

Non-repetitive peak on-state cu rrent; t = 10 ms;
half sine-wave; Tj = 125 0C prior to surge;
with reapplied V RWM max

max.

2000 A

1 t

max.

20000 A 2 s

Rate of rise of on-state current after triggering
with IG = 750 mA to 'T = 300 A; dlG/dt = 1 AIJ1.s

dlT/dt

max.

300 AIJ1.s

Rate of change of commutation current

see Fig. 14

2

1 t for fusing (t = 10 ms)

2

Gate to cathode
Reverse peak voltage

VRGM

Average power dissipation (averaged over
any 20 ms period)

PG(AV)

max.

2 W

Peak power dissipation

PGM

max.

10 W

max.

10 V

Temperatures
Storage temperature

T stg

-55 to + 125 °C

Junction temperature

Tj

max.

125 °C

THERMAL RESISTANCE
From junction to mounting base

Rthj-mb

0,3 °CIW

From mounting base to heatsink

Rth mb-h

0,1 °CIW

Transient thermal impedance (t = 1 ms)

Zthj-mb

0,015 oCIW

* To ensure thermal stability: Rth j-a < 0,75 OC/W (d.c. blocking) or < 1,5 °C/W (a.c.). For smaller
heatsinks Tj max should be derated. For a.c. see Fig. 4.

2

APri119781(

j

Thyristors

BTW23 SERIES

- - - CHARACTE R 1ST ICS
Anode to cathode
On-state voltage

<

2,2 V*

<

200 V/l1s

<

15 rnA

<
<

200 rnA

Voltage that will trigger all devices
V D = 6 V; Tj = 25 °C

>

2,5 V

Voltage that will not trigger any device
VD = VDRM max; Tj = 125 °C

<

250 mV

Current that will trigger any device
V D = 6 V; Tj = 25 °C

>

150 rnA

<

2,5 I1S
1 I1S

IT

= 500 A; Tj = 25 °C

Rate of rise of off-state voltage that will not trigger
any device; exponential method; VD = 2/3 VDRM max;
Tj = 125 0C

dVD/dt

Reverse current
VR = VRWM max; Tj = 125 °C
Off-state current
VD = VDWM max; Tj = 125 °C
Holding current; Tj = 25 °C

15 rnA

Gate to cathode

Switching characteristics
Gate-controlled turn-on time (tgt = td + trl when
switched from VD = VDWM max to IT = 100 A;
IGT = 200 rnA; dlG/dt = 1 All1s; Tj = 25 °C

typo

* Measured under pulse conditions to avoid
excessive dissipation.

t
IT

+

T

r

vD

1

o .!...-..f-- - + - - + = - -

Fig. 2 Gate-controlled turn-on
time definitions.

IGT

O~+~~--------~

J(

April 1978
I

I

3

" ........ J.IIIJ.I~UO" ........... IId ..... ,III • ..1.II. _ _ . .ULJLWI-..

CHARACTERISTICS (continued)
Circuit-commutated turn-off when switched
from IT = 50 A to VR ~ 50 V with -dlT/dt
dV D/dt = 200 V I p.s;
Tj = 125 0C

= 50 A/p.s;
typo

<
typo

Tj = 25 0C

<

I.------tq-------I

100 p.s
200 p.s
60 p.s
120 p.s

reapplied VDM

Fig. 3 Circuit-commutated turn-off time definition.
OPERATING NOTE
Switching losses in commutation
For applications in which the thyristor is forced to switch from an on-state current ITRM to a high
reverse voltage at a high commutation rate (-dIT/dt), consult Fig. 14 (nomogram) to find the increase
in total average power. This increase must be added to the loss from the curves in Fig. 4.
ORDERING NOTE
Types with dVD/dt of 1000 V Ip.s are available on request. Add suffix C to the type number when
ordering; e.g. BTW23-600RC.

4

April

19781 (

J
- - - -

BTW23 SERIES

Thyristors

7Z59352.1

A
p

---i " 1_

(W)

form
factor

condo
angle

"

IT(RMS)

a=-IT(AV)

Q

interrelation between the power (derived
from the left hand graph) and the max.
permissible temperatures

a=4
2,8
2,2
1,9
1,6

= 30 °
60°
90°
120 0
180°

200

l 6
l

1,9

11",/1/
a =4
1/1/'/
J 1.// l/V i.-'

l.-"

j

, " I" ~
'" ~r--'''
0"i1- r-f\~o
['.. 1'\'
~

->- ~ ......... ~ " "" -~ r->- I"'-r--Io.. I' 1"00, "",,~OO_ ->- .... ~ I " "" '"N.1 406- 1--11""'1 ~(Wl I I 11 60 Fig. 13. I I I- 50'1"00, r--. 26 r-... I' r- .... I ~ I I--d I/dt =1OA/l-Is I I '- ", ~ 2 00H-t11~0 t - t - I - 1pO- t - I I I 1'i 1.1 V AP IAV ) due to switchingoff: Tj =125OC ITRM "\;;dl/dt t IRRMV I I 1-1- I- 1/ 1/ ~ ~ I~ I....- so 1-1- r-p I NOMOGRAM: power loss II' II J II II 1"-1\ "- " II [J I '/ ~ J J II t-tT~MI(A) I I '2 00 ' I ~=400Hz- , i\ (Al -r--~ 7ZS11801 H-~O 1/-1- rJ 100 1--~200 \ I RRM 30 1 I- 100.\I - ~ 50 'j I I I ~I" VRRM=100V I- I"'-I-o+-. 1'1'\ ..... 1\1'\ "'" I" r-I-o~ ,...~+-. l""" f"- 1'- '" 1'\ f"- "- 1-1- HOO , I" 1'\ .... 10.... 1'\ " 1\~610~_ ~~p~O t:.. PIAV) I-I-\~ll t- 1"\1 I ~I I 150 t I'" 1'\ t\. 2bd-t--~ N '" I" 500 1-1-1- " '" '" Fig. 14. 1~ April1978 9 S_E_R_IE_S_jl~________________________________ ___ BT_W __ 23 __ 750 r -__~~~-,~-rTOOT-----r--.-_..-Tl".-------------------------------7-Z-67-0-2-4_. envelope of average I'~'~"' 10 I"(A)r---r~~-r+++H+---+-~~~TH for safe operation at a given temperature, the average current envelope of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature 500 r----t-__+_-+--t'Id--t+H---__+_-+--+-+-t-Hrt1 I - - - f - - -........ " I"",....--I-+-+-+I'"'kt+ '1'. J .:::- '1' ~ ~--+-~~~~~rHK+~~........ ~ ~':::-6S ~H+--~I--+-~~1+r---+--r~r+++H ~ !"oo.. f-----r--~~~rN+----T~.~~-~' ~ .......... 00 ~ 1-----t-""""""""t.....-r~-H-t+--~~..-t-·8S 0 ,I ..... 250 :c to St1--+-+-+--+1-t+t---t--t--+-H-H-ii "" ~C ... ~ I ~~~~of----~I--~~++~++----~-r-r~-HH1 q ~ . . . . r--.,........... 10-. ~tjlJ. 8')-+-+++-H--+--+-++-IH-1--H 1"'-""", ~10S~0~01:t!ttttr:~~~~~~~~~~qp~ 1--~r---+-;-+-r~TT--~~~~ a 10- 2 1 time (s) 10 mJ- 1000 r---~~~-,~-rTOOT-----r--.--..-Tl".------e-n-ve~l-ope--o~f~a-v-er-a-g-e------______7~Z_67_0_26__~ :~) 750 t----+I\;\-+-t--+--H+++--t--t--;--t+++ti I. ~"~em 0 ~ t-----t---tI\"',rt--t-+-++t+-----t---t--Hr-+-H1-t1 t-----1r----+----i'\-t-t-++++---t---t--+--t-H+H " t-----1""..-t--+--f'\o;;H+t-t---+-_t---1H_++t-+i 1---If----~-t_t+~'lod-+''1'. 1 for safe operation at a given temperature, the average current envelope of successive cycles (see drawing above) must lie within the --t--r--t--t-t-t-t+1 region bounded by the curve shown below for I-_-If----_+~~~+++~~J.:::-F ~_+++-~H_t-h-at-t_e,m-p-er-artu-rTe_r._rrnr---._--r_,_~rr._rl 500~--+-~~~~rH+r~~~~+-~':::-6So~~r---+--r~rrrH+---+--r~rr++H r---~__+_-+-++""'+"'-Nd--"__+_'~""'dl--r (> ~~. '+----t---t-+--t-t--t-I--t+---t-t-t-+++-t+1 _, ~ 'bJ. ~--+-~...... '-+,~f-+1-++-"""-;-"""",..J..S Or! ,,~ '-- ~t'-o 250 1'", r----t-__+_-r++-t+Hr--...--~-.!.O~h ~O~ t. 0 St q ~ ~ ~ ~tj '-+-~-HI-H-----r-+--t--t-IH--H-1 ~)-t-+-t-t-t-H-----t---j----t-t-H--t-t-I -- ..... - .... a ~--~~~~~~~--~~~~~~----~~~~~~__~__~~~~ 10- 2 1 J( 10 Fig. 15 Limits for starting or inrush currents. 10 April 1978 time (s) j BTW24 SERIES --------------------------------------------------------' THYRISTORS Silicon thyristors in metal envelopes, intended for general purpose single-phase or three-phase mains operation. The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW24-600R to 1600R. QUICK REFERENCE DATA Repetitive peak voltages VDRM = VRRM BTW24-600R 800R 1000R 1600R max. 800 1000 1600 V 600 IT(AV) max. R.M.S. on-state current IT(RMS) max. 35 55 A Non-repetitive peak on-state current ITSM max. 800 A Rate of rise of off-state voltage that will not trigger any device dVD/dt dVD/dt < < 200 On request (see ordering note on page 4) V/p.s V/p.s Average on-state current MECHANICAL DATA 1000 A Dimensions in mm Fig. 1 TO-103. 1-----------155/145 20 r M8x 1,25 --------1 maXl 4/3 I L==rl r~~nOde 45 min leads I I 14/13 -t_*_t----at right Qngles---~·I : 19 nom ---.I o 3i.. 3L..a I. Net mass: 46 9 Diameter of clearance hole: 8,5 mm Torque on nut: min. 4 Nm (40 kg cm) max. 6 Nm (60 kg cm) 165/155 Supplied with device: 1 nut, 1 lock washer Nut dimensions across the flats: 13 mm 'I April 1978 ___B_T_W_2_4_S_E_R_IE_S_Jl_________________________________ RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Anode to cathode Non-repetitive peak voltages (t ~ 10 ms) VDSMIVRSM 8TW24-600R 800R 1000R 1200R 1400R 1600R max. 600 800 1000 1200 1400 1600 V Repetitive peak voltages V DR MIV R RM max. 600 800 1000 1200 1400 1600 V VDWMIVRWM max. 400 600 700 800 800 Crest working voltages Average on-state current (averaged over any 20 ms period) up to T mb = 85 °C R.M.S. on-state current Repetitive peak on-state current Non-repetitive peak on-state current; t = 10 ms; half sine-wave; Tj = 125 0C prior to surge; with reapplied V RWMmax 800 V* 'T(AV) max. 'T(RMS) max. 55 A 'TRM max. 450 A 35 A 'TSM max. 800 A 12 t max. 3200 A 2 s Rate of rise of on-state current after triggering with IG = 500 mA to 'T = 100 A; dlG/dt = 1 A/p.s dlT/dt max. Rate of change of commutation current see Fig. 14 12 t for fusing (t = 10 ms) 300 A/p.s Gate to cathode 10 V VRGM max. Average power dissipation (averaged over any 20 ms period) PG(AV) max. 1W Peak power dissipation PGM max. 5W Storage temperature T stg -55 to + 125 °C Junction temperature Tj max. Reverse peak voltage Temperatures 125 °C THERMAL RESISTANCE From junction to mounting base Rth j-mb From mounting base to heatsink Rth mb-h 0,2 0C/W Zth j-mb 0,04 0C/W Transient thermal impedance (t = 1 ms) 0,6 °C/W * To ensure thermal stability: Rth j-a < 1 0C/W (d.c. blocking) or < 2 °C/W (a.c.). For smaller heatsinks Tj max should be derated. For a.c. see Fig. 4. 2 April 19781 ( J Thyristors BTW24 SERIES - - - CHARACTERISTICS Anode to cathode On-state voltage 'T = 100 A; Tj = 25 °C VT < 1,9 V * Rate of rise of off-state voltage that will not trigger any device; exponential method; Vo = 2/3 VORMmax; Tj = 125 0C dVo/dt < 200 V/IlS Reverse current VR = VRWMmax; Tj = 125 °C 'R < 10 mA Off-state current Vo = VOWMmax; Tj = 125 °C 10 < < < 300 mA Latching current; Tj = 25 °C 'L Holding current; Tj = 25 0C 'H 10 mA 200 mA Gate to cathode Voltage that will trigger all devices VO=6V;Tj=25 0 C > 2,5 V Voltage that will not trigger any device Vo = VORMmax; Tj = 125 °C < 200 mV Current that will trigger all devices V 0 = 6 V; Tj = 25 °C > 100 mA Switching characteristics Gate-controlled turn-on time (tgt = td + t r ) when switched from Vo = VOWMmax to 'T = 100 A; IGT = 150 mA; dlG/dt = 1 A/IlS; Tj = 25 °C typo typo 2 IlS 1 IlS t IT • - t d - t, --tgt- IGT o .!-+.....L'-c:........:..._ _ _ _- " - Fig. 2 Gate-controlled turn-on time definitions. * Measured under pulse conditions to avoid excessive dissipation. April 1978 3 CHARACTER ISTICS (continued) Circuit-commutated turn-off time when switched from IT = 30 A to VR ~ 50 V with -dlT/dt = 30 A/l1s; dVD/dt = 100 Vll1s; Tj = 125 0C typo Tj = 25 °C 1 _ - - tq - - - . 1 < 140 I1s 200 I1S < 100 Ils reapplied VOM Fig. 3 Circuit-commutated turn-off time definition. OPERATING NOTE Switching losses in commutation For applications in which the thyristor is forced to switch from an on-state current ITRM to a high reverse voltage at a high commutation rate (-dIT/dt), consult Fig. 14 (nomogram) to find the increase in total average power. This increase must be added to the loss from the curves in Fig. 4. ORDERING NOTE Types with dVD/dt of 1000 V IllS are available on request. Add suffix C to the type number when ordering; e.g. BTW24-600RC. 4 April1978~ ( j Thyristors BTW24 SERIES - - - n 100 7Z59351.2 " --J form factor condo angle 1_ a = 30 0 60 0 IT(RMS) 90 0 a=-120° IT(AV) 180° p (W) a J 1/ J VI a=4 \ \. , " ", I ~ / J1/1II V ill ) I"JVI rill If/, ifill '/ Jl/h rJ) \ 1\ \ 1 'I 2,2/,I{ 2,81 I \. I 1-r9 J \ \ II 1,6 50 , d.c. a=4 2,8 2,2 1,9 1,6 \ \Ss' \% \ \ \ '\ \~- \~\\ 110 ~U' 95 -t-J 0 ~o , ,, , ,{sl\. 1\ \~ I\. \ 1\1\ 1\'\ 110 " ".~ \' \\ ~v "- 80 \~ ~ ~ 65 interrelation between the power (derived from the left hand graph) and the max. allowable temperatures ~ ,,~ ,~ "l~ o ITI a 25 50 75 IT(AV) (A) a 50 125 100 150 Tamb(oC) Fig. 4. 1000 ~S(RMS) (A) 7Z62015.1 \ \ \ 1TSM IV\--n L---->i- -=--= -; ITSM \ 750 maximum permissible non-repetitive r .m.s. on state current based on sinusoidal currents (f::: 50 Hz) '\ IT.S(RMS) time with reapplied VRWM max , "- 500 "'- 10- 3 "' ...... .... T j ::: 125 °c prior to surge "'" 250 a "-....., 10- 2 10- 1 Fig. 5. ............ r-..... ........ --...... -- -- - .. duration (s) "I ( April 1978 10 5 l_ _ __ BTW24 SERIES 7Z72550 4 7Z72555 300 IGT (mA) 200 3 ~ I\. '" " " min '" "" 2 ,, I'- " ....... 100 I...... " ..... min ..... " 1 -50 o 50 100 150 -50 II I I II .I J I! 'I 400 I I I I typ ,/ 1/ " IjJ ,/ I o -~~ , ~ I rl I 1 VT=~ 'I '/ I I II I VTI 200 J 'I It-- >- max_I- 1-- 'T I I{ I I II 'L J!!. o Fig. 8. 2,5 April 197BI ( V T (V) 5 o 50 100 150 Tj (oC) Fig. 7 Minimum gate current that will trigger all devices plotted against junction temperature. 7Z620132 I I!/ 6 o Tj (OC) I I I t- - - T j ==25 0C t - - - T ·==1250C tJ .... I' Fig. 6 Minimum gate voltage that will trigger all devices plotted against junction temperature. 600 ..... J - - - BTW24 SERIES Thyristors 1261176 2000 dVo dVo \: 1500 ~ I I I I I I I I ~ I I 1\ 1000 \ , -,--+-- Tj -125°C \ \ 1000 max. rate of rise of offstate voltage that will not trigger any device (exp. method) plotted against applied voltage dt (V/lJs) dt (V!fl s ) Z61175 1500 max, rate of rise of offstate voltage that will not trigger any device (exp. method) plotted against junction temp. \ , , ~ 500 1,\ , , I\. 500 "- ~ " '\ ..... :.... ..... so so .... 1-0. (Ofo) 100 VOM VORMmax Fig. 9. Fig. 10. 7Z62016 ..... Zthj-mb (OC/W) V 1 "", ~ "",10- '/ 2 ~ L;'" 3 10 - 4 10 - 3 10 - 2 Fig. 11. time (5) 'I (APril 1978 10 7 l_ _ __ BTW24 SERIES 7Z66847 300 r-1p IO(RMS) - (A) - =120~l I Th=550C IO(RMS) ~"" 100 200 (A) I--tp =20ms !o... ~ 200 L"\ t:::::~~ i--- ~~ 400 L--- 1\ Is 2 1-100 1- 200 400 \ I'~ 100 7Z66846 300 Th =35 °c - ... ""r-- 40 200 I 4 o "'- ~~ -..:::: ~ - Is 2 4 100 " r- ... ~ I'\. M 1\ O~--~~~~~~--~~~~~ 10 1 0(%) 100 7Z66848 300 0 Th =85 C 70 (W) IO(RMS) 60 (A) 10 1 p max. power loss versus con- 1-+-+-+--+-+--+--1 duction angle; device under intermittent operating conditions valid for curve·s Th =35 °C, 55 °C and 85 0C f---i>A--+-+-+-+--I 200 --- -tp =20ms -100 ............ ~ls I 2 ',/ 200° 0° ~ conduction angle ~ ~" r:::: ~~~ l"" -'20d -400 v v 40 ~ ---t40- ~I'-I'- 100 0(%) r -________________-r~_.7~Z6~70~3~3~ v 100 ~ fMM. ~"J 4 I.____T_II "'t,,,,,, o 10 1 0(%) 100 Fig. 12 Intermittent overload capability of two BTW24 thyristors in anti-parallel connection in a single phase a.c. control circuit (e.g. welding); conduction angle: 360 0 . 8 April 19781 ( J Thyristors BTW24 SERIES - - - NOMOGRAM 7Z620141 I I " I" 1 H-S0 11' &P~A 200 i' I' " ..... I'r-., I't--. r-. I' ,, "' I' r.... r-. ~lr- 300 500 I". dI I t"'i' d t =20A/j.ls I\. I\. , '" 1\ I\' ., ~ I/~ JI/, r/ ~\ ~ IJfO ~ ~" i"~ r+-ITRM(A) _1-100_ 4 3 500 1-1- 1° 9°,+ 1- 1 9°1-1-1-?9° - ITtlilTRM H+, I I I J,. r , , I I ~P(A~) dt=~6t~ t 1'0... , r-... ~ ...... , f 1'0... .-e-- r- 50Hz '- .... r-_ -I.- .... 10O-I-r- ~ i" 1\ I (I~) 20 -.16th.- -r-_ .......... r-. I\. 10 definition: dI 1/2ITRM --"1 j III/ l\\ ...... ~ V :::..QJ 1/ 1/ I) II ) If I I II 1/ 1/1/ 1\.1\ 1\.\ "" I' i" C5 ~c:s-) ~~~~ S , 1\ j ...... I f4-~~ II I'.. I J V II I ) 'c::, J I V II I~ 100' 200- f-f- r-... I ,1kHz f-f- ~~9°, I T1 Fig. 13 Power loss ~P(AV) due to switching-on; Tj = 125 oC; IG = 500 mA; dlG/dt = 1 Alp.s. " 1 1100 ....... ' - - ~ ~ 50 ..... ff.: ~r-- .~ ~ , , ......... i'oo. "- 7Z66849 I.~.l y / V / ~ \hod '\ "l ' \. ]".. ,......, 'r-.,. ~1/ ~~t7)~~~ , \. 50 J I 100 I-ITRM(A) r--.. r.::::: ~[\ ° .... ~'" ~ ~ .......... ,......, -I"- 1"-..... 'y IRRM V 25 1 f-~P(AV) dI/dt t l"-I--. .......... ['\ NOMOGRAM: poWer loss 6P(AV) ITRM V ~~ ['\ °c ~ 1/ j~ ~ -~ ~ ~ 50 due to switching off; T j = 125 V ~V " l/ V V l/f/ J V ~V dI.l ...... r---. 1'0...... t..... ~ \ --=10 A/j.ls ""'1'-- ~ i'-- ~ I\. dt I 1""- ~ ~ '1:3 ~ / II ~~ 150 ~ "" ]"".. "- f== SOHz- ~~ l"- t-. ~1001 I"- r]""..1-0... ]"..<00 ['\ ~ ['\ ['\ ~ r-.;,. "'" r" l'\ Fig. 14. 9 BTW24 SERIES 7Z67025 300 envelope of average ,O~=:' 10 (A) "- 200 " "- "- ~ I".. "'lj""""'/'0.6 ~6S ....... I ~I \'00.. i:'o.. ...... ~ ........... , I'" 100 l"- ......... I I 0 0rp I """ 8S I i' ~.iO.l"t. 1 00 J""'oo.: I ~m for safe operation at a given temperature, the average current envelope of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature ..... ...... _10 0 oS 'tCi.l"t . 100.. J'W-) .......... i""... 1050 1'---0 r-- .......... .... I-- - -I-~ o 10- 2 400 10 (A) 300 10- 1 1 10 time (s) ,""eo, ~====:=~::=:=::::::=====:==:=:=:::::~ ~mJ r -__~__-r-r-r~,,~____r-~~-T~~~____________________________~7Z~6~7~02~3~ envelope of average '0 _'0 for safe operation at a ;ven t---+--+--+~-H+++---I--+-+-++l-+-l-t temperature, the average cur- rent envelope of successive t------il.---+--+-+-+"I..H+---I---+--+-+-+-H-t-I cycles (see drawing above) must lie within the t---+-""k:--+-+--H++~--1' -t---+-+-+-H-IH region bounded by the curve shown below for t---+---+-~~~++~"'-~j~~ 200 ....... , +-r+++t--ili_a_tt_e~m_p_er~a~tu_rre-r,,~~_-'r--r~-r.-rrrl ~lJ~6 f'l.l S 00 t-----+----l--++++++-I............... ---'I~f___, _r:H-. 1--_+--+-+-+-l,..-H+t-_--t_....... --+~-----F85~oC i"-.. 100 I 1'1'- (P.l"iO.l" t. ............ r-......... -"'1"'-- r--- __~5 0c '-+-++-H-IH--t---+-+-+-+-t-t-H 0 oStq.l"t. J'W-) ~++---+--I--+-~-+-HH - ... 1'" o 10- 2 1 10 Fig. 15 Limits for starting or inrush currents. 10 April 19781 ( time (s) _ _ _ _J BTW30 S SERIES FAST TURN-OFF THYRISTORS A range of medium current fast turn-off thyristors in metal envelopes, intended for use in inverter applications. The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW30-800RS to 1200RS. QUICK REFERENCE DATA BTW30-800RS 110GORS Repetitive peak voltages max. 800 I 1200RS 1000 1200 V Average on-state current 'T(AV) max. 16 A R.M.S. on-state current 'T( RMS) max. 24 A Non-repetitive peak on-state current 'TSM max. max. Rate of rise of on-state current Rate of rise of off-state voltage that will not trigger any device dVD/dt Circuit-commutated turn-off time tq MECHANICAL DATA 3,2 ~ a i ~ t '-' 2,26_ max -12,8 ,~ min '\ -+kj max Dimensions in mm -- -' 124max H 6 15 ps max max r-'I 200 V/p.s _ 7,6 3,4 -'1 1'- Alps __ 4,2 __ Fig. 1 TO-48: with metric M6 stud (¢ 6 mm) M6 -. < < 150 A 100 I I g~t max-I ....1 L 1,9 1,6 . - - 22,2 m a x __ 11,5 10,72 _ I .....t - - - - - 303 max - - - - - - t.. ~1 Net mass: 14 g Diameter of clearance hole: max. 6,5 mm Accessories supplied on request: 56264A (mica washer, ins!Jlating rin~, soldering tag) 7Z69755.1 Torque on nut: min. 1,7 Nm (17 k~cm) max. 3,5 Nm (35 kg cm) Supplied with device: 1 nut, 1 lock washer Nut dimensions across the flats: 10 mm April 1978 l____ BTW30 S SERIES RATINGS Limiting values in accordance with the Absolute Maximum System (I EC 134) Anode to cathode BTW30-800RS 1000RS 1200RS Non-repetitive peak voltages (t:(;10ms) VOSM**NRSM max. 800 1000 1200 V Repetitive peak voltages VORMNRRM max. 800 1000 1200 VJJ. max. ,600 800 1000 V* Crest working off-state voltage square-wave; 0 = 0,5 VOWM Average on-state current assuming zero switching losses (averaged over any 20 ms period) square-wave; 0 = 0,5; up to T mb = 65 °C square-wave; 0 = 0,5; at T mb = 85 °C sinusoidal; at T mb = 85 °C IT(AV) IT(AV) IT(AV) max. max. max. IT(RMS) max. 24 A ITRM max. 150 A max. max. 150 A 150 A 12 t for fusing (t = 10 ms) ITSM ITSM 12 t max. 115 A 2s Rate of rise of on-state current after triggering with IG = 1 A to IT = 50 A; dlG/dt = 1 A/IlS dlT/dt max. 100 A/IlS Reverse peak voltage VRGM max. Average power dissipation (averaged over any 20 ms period) PG(AV) max. 1W PGM max. 5 W T stg T· max. R.M.S. on-state current Repetitive peak on-state current Non-repetitive peak on-state current Tj = 125 °C prior to surge (see Fig. 6) t = 10 ms; half sine-wave t = 5 ms; square pulse 16 A 12 A 10 A Gate to cathode Peak power dissipation 10 V Temperatures Storage temperature Junction temperature J -55 to + 125 °C 125 °c THERMAL RESISTANCE Rth j-mh 1 oCIW From mounting base to heatsink Rth mb-h 0,2 °C/W Transient thermal impedance (t = 1 ms) Zthj-mb 0,06 °C/VIJ From junction to mounting base To ensure thermal stability: Rth j-a < 3 0C/W (d.c. blocking) or < 6 °C/W (square-wave; 0 = 0,5). For smaller heatsinks Tj max should be derated. For square-wave see Fig. 5. ** Although not recommended, higher off-state voltages may be applied without damage, but the thyristor may switch into the on-state. The rate of rise of on-state current should not exceed 30 A/IlS. JJ. Thermal stability at higher voltage ratings is dependent on duty factor. See Figs 15 and 16. * 2 Ap,i1 1978 I( j Fast turn-off thyristors BTW30 S SERIES - - CHARACTE R ISTICS Anode to cathode On-state voltage IT = 20 A; Tj = 25°C < 3,5 V* < 200 V/p.s < < 200 mA Voltage that will trigger all devices V D = 6 V; Tj = 25 °C > 2,5 V Voltage that will not trigger any device VD = VDRM max; Tj = 125°C < 0,2 V Current that will trigger all devices VD = 6 V; Tj = 25°C > 200 mA Rate of rise of off-state voltage that will not trigger any device; exponential method; Vo = 2/3 VORM max; Tj = 125 0C Off-state current Vo = VDWM max; Tj = 125 °C Holding current; Tj = 25°C dVO/dt 7 mA Gate to cathode Switching characteristics Gate-controlled turn-on time (tgt = td + trl when switched from VD = VOWM max to IT = 50 A; IGT = 200 mA; dlG/dt = 1 A/p.s; Tj = 25°C < < p.s p.s t IT + _tgt-- IGT O~+~~--------~ Fig. 2 Gate-controlled turn-on time definitions. * Measured under pulse conditions to avoid excessive dissipation. April 1978 3 l____ BTW30 S SERIES CHARACTERISTICS (continued) Circuit-com mutated turn-off time when switched from IT = 10 A to VR;;;:' 50 V with -dlT/dt = 10 A/IlS; dVD/dt = 50 V/lls; Tj = 125 0C < 15 IlS reapplied VOM Fig. 3 Circuit-commutated turn-off time definitions. OPERATING NOTES 1. The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there is no strain on them. During soldering the heat conduction to the junction should be kept to a minimum. 2. High frequency operation. a. The curves in Figs 13 and 14 show the additional average power losses due to turning on and turning off the thyristor in square pulse operation. This power should be added to that derived from the curves in Fig. 5. b. Power loss due to turn-off may be discounted if an inverse parallel diode is connected across the thyristor to clip any reverse voltage which may occur following commutation. Note should be taken of the consequent increase in turn-off time (see Fig. 11). 4 April 1978 'I ( j Fast turn-off thyristors BTW30 S SERIES - - 60 ~ -..I 1..- tand form angle ~ O(~ P (WI = ITIRMSI I TiAVI -I- -Ill Q::- 60° 90° 120 0 1800 CK Q _II C1 II ~.~ J I II 2.e I 1.G II I I II J ~. I-;"'J I-IDJ ~ I J I I 1 I I I If II I J 1/1 .J .i 1/ 1111 If J I , "I' " "1\ " "b'J / ..... J J .... 1/ j "-. ~ ...... ~ "'\ po". .... r.... I" ..... "" .... ~ ~ .... ') 1,\ "'" ..... " i"""" 1'" 11/, 1/ , If, r/) ..... "- ,~~0, c;,o \()" " I\.:?- ~J'rtl~ 1,\ -%. , < .] I -p \~ "' r.... l""- .... .... 'f' ~ IT(AVI(A) 105 1,\1\ ",,-" i' '.\ .... 1\ 1'-0.:" ..... IY\, '\:~ ~ i"""~ s:::i~l. I'o..:~ 1/ fill. 125 50 20 0 Tmb-scale is for comparison purposes only and is correct only for Rth mb-a E 6°C/W Fig. 4. 7Z60921 2 -.nn ·Itpl- I -T- 1/ ITIRMSI=2.. t 6=-f P (WI -1-6=0.05 I TlAVI V6 interrelation between the power (derived from the left hand graph) and the max. allowable temperatures 'I o·if, 0. 2J1f-I-O.5/ -11 If I I II 'I J If I I J 'I I If 1 I J I' I I I I II I J If If ) J I J J I III If 20 I I ," "-. J r.... , " J " 'f' ~ ~ .... t--:""o~ <' .... 6 roo.. ~.] ~ ...... "" ~ ..... :"""t--i"", I"~ \I~(),\ ~ ...... .... -p I\~ r\. i" .......... I I I " "' "I\.? V?,j' I'- IlUi ~ 0 '~o 0., \-%. , I, , , " l\ I'\. \ 105 \1\ r\. r--. i""'o .... V i/ , 1\ '\ .... Ifi 1// \ l\ ~ ~ 1\ '\ I\. 1/ / 'I , , 1\ " 'I 40 :" I" l\\ .... roo....... r.... .... r--. .... "I' '.\ ........ '" '\"\.~ 1" .... ..... ~ ,~ r--.Iooo.. 1"'"", 1/ 200 • I\. i"""~ 10 • \ ",1\ "..... i" ..... .... r- .... :" I\.. ...... ~ .... roo.. r-- V i/ , I"- 6 IN) VI. I 1\ 1\ 1'01.. If J , 1\ I\. / J I I (; " 1 I j L IL J 1Z609191 interrelation between the power (derived from the left hand graph) and the max. allowable temperatures If 4 40 20 J 50 ..... ~l. i"""';:::~""1 25 Tmb-scale is for comparison purposes only and is correct only for Rth mb-a E 2°C/W Fig. 5. April 1978 5 l_ _ __ BTW30 S SERIES 7262267 400 maximum permissible non-repetitive peak on-state current for one square pu Ise 1 T5M I. (AI 300 K. ~r---- IT5M in the case of re-applied off-state voltage the thyristor may temporari Iy lose control , 200 pulse duration \ "- 1'",- "to. Tj=125°C prior to surge r--.... 100 "'-,,I'-." "" - t-... 1 pulse duration (5) 10 Fig. 6. D7477 D7476 4 Minimum gate voltage that will trigger all devices plotted against junction temperature 300 Minimum gate current that will trigger all devices plotted against junction temperature )"'", 1'00.. ! .... 3 '" ,..... 200 po.,. I""- min. I......... r-.. t-... min. '" " """i'" 2 -50 o 6 April 1978 50 Ir Fig. 7. r-.. po.,. 1""-" 1 f""o .... """ 100 a -50 o 50 100 Fig. 8. " j Fast turn-off thyristors BTW30 S SERIES ---726"76 max. rate of rise of offstate voltage that will not trigger any device (exp. method) p'otted against junction temp. 2000 ~ dt ( VIps) 1500 7261175 1500 dVo dt (V/I./S) \ max. rate of rise of offstate voltage that will not trigger any device (exp. method) plotted against applied voltage I I I I T I I --'1 J I li- / j ,,}- V I( / I -~ ~ ~ ~ ~ ~~-~r5 ITRM IRRM 8 April !\.' ~ r ~6': '" ~:!~J!r°;;-K ~ ".Xoo 7. <90 0 OOO-'Kt- t V 19781 V ~V' ~ ---Vdl/dt V 1)'/ ~P(AV) NOMOGRAM: power loss 1/ ~ ..... ~ ~ 10 If 10 Fig. 14. " I\. "' t\.. I1\. "'~ j Fast turn-off thyristors BTW30 S SERIES - - 1500 7Z62272 2 VORM 1500 VOWM ~R (V) I ~OR I I 1000 (V) 1""",... I ~ 1"-,... .... ....... """ ...... r--.... 800R 1000 ~ r-..... - I----. -~ t-- .... I""ii~ ~ !"'it-. ~t-. 500 500 10 Fig. 15. 1500 1000 7Z62264 2 -- 1500 VRWM (VI 1200R ........... I .......... --..!OOOR ,--..... - 800R t-- " to... to.... ....... " '" ..... ",........... 1000 ..... ....... t..., i"o "" 500 '" '"""''' " "" ""'""-"' " 500 '""f'o.. " 0 1 10- 10 Fi~. 6 (0/0) 0 10 2 16. 'I April 1978 9 BTW30 S SERIES l_ _ __ 7Z'S90'S9 10 t== transient thermal impedance from junction to mounting base versus time I mb ) . / "'" ~ 1,..0 "...,.~ -~ ""'~ 10- 2 Fig. 17. 10 April 1978 \ ( time(s) 10 _ _ _J BTW31 W SERIES FAST TURN-OFF THYRISTORS A range of medium current fast turn-off thyristors in metal envelopes, intended for use in inverter applications. The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW31-800RW to 1200RW. QUICK REFERENCE DATA BTW31-800RW 1200RW 1200 V Repetitive peak voltages VDRMIVRRM max. Average on-state current IT(AV) max. 22 R.M.S. on-state current IT(RMS) max. 31 A Non-repetitive peak on-state current ITSM max. 240 A Rate of rise of on-state current dlT/dt max. 100 A//J.s Rate of rise of off-state voltage that will not trigger any device dVD/dt tq < < 200 Circuit-commutated turn-off time MECHANICAL DATA Fig. 1 TO-48: with metric M6 stud (¢ 6 mm) ___ 4,2 3,2 800 20 -. A V//J.s JlS Dimensions in mm 4- _ 7,6 max M6 ~ • 124max '1 a -' --- , --min 6 max t IH " \...J 2,26--. max -12,Bmax_1 g~t --.1 I. 1,9 1,6 -22,2max__ 11,5 10,72 - 1 ....-----303max---------i..~1 Net mass: 14 9 Diameter of clearance hole: max. 6,5 mm Accessories supplied on request: 56264A (mica washer, insulating ring, soldering tag) 7Z69755.1 Torque on nut: min. 1,7 Nm (17 kg cm) max. 3,5 Nm (35 kg em) Supplied with device: 1 nut, 1 lock washer Nut dimensions across the flats: 10 mm "I April 197B BTW31 W SERIES l____ RATINGS Limiting values in accordance with the Absolute Maximum System (I EC 134) Anode to cathode Non-repetitive peak voltages (t';;;; 10 ms) Repetitive peak voltages BTW31-800RW 1000RW 1200RW VOSM**/VRSM max. VORM/VRRM max. 800 1000 1200 V 800 1000 1200 Vii. max. 600 800 1000 V* Crest working off-state voltage square-wave; [) = 0,5 VOWM Average on-state current assuming zero switching losses (averaged over any 20 ms period) square-wave; [) = 0,5; up to T mb = 65 °C IT(AV) square-wave; [) = 0,5; at T mb = 85 °C IT(AV) sinusoidal; at T mb = 85 °C IT(AV) max. max. 22 16 A A max. 15 A R.M.S. on-state current IT(RMS) max. 31 A Repetitive peak on-state current ITRM max. 240 A ITSM ITSM 12 t max. max. 240 240 A A max. 290 A2 s max. 100 A/p.s 10 V 5 W Non-repetitive peak on-state current Tj = 125 °C prior to surge (see Fig. 6) t = 10 ms; half sine-wave t= 5 ms; square pulse 12 t for fusing (t = 10 ms) Rate of rise of on-state current after triggering with I G = 1 A to IT = 50 A; dlG/dt = 1 A/p.s dlT/dt Gate to cathode Reverse peak voltage VRGM max. Average power dissipation (averaged over any 20 ms period) PG(AV) max. Peak power dissipation PGM max. W Temperatures Storage temperature Junction temperature T stg Tj max. -55 to +125 oC 125 oC 0,2 °C/W 0,06 °C/W THERMAL RESISTANCE From junction to mounting base Rth j-mb From mounting base to heatsink Rth mb-h Transient thermal impedance (t = 1 ms) Zthj-mb °C/W * To ensure thermal stability: Rth j-a < 3 °C/W (d.c. blocking) or < 6 °C/W (square-wave; [) = 0,5). For smaller heatsinks Tj max should be derated. For square-wave see Fig. 5. ** Although not recommended, higher off-state voltages may be applied without damage, but the thyristor may switch into the on-state. The rate of rise of on-state current should not exceed 30 A/p.s. Ii. 2 Thermal stability at higher voltage ratings is dependent on duty factor. See Figs 15 and 16. April 19781 ( J Fast turn-off thyristors BTW31 W SERIES - - CHARACTERISTICS Anode to cathode On-state voltage IT = 50 A; Tj = 25 °C Rate of rise of off-state voltage that will not trigger any device; exponential method; Vo = 2/3VORMmax; Tj = 125 °C dVo/dt < 2,9 V * < 200 V/p.s Off-state current Vo = VOWMmax; Tj = 125 °C 7 mA Holding current; Tj = 25 0C 200 mA Gate to cathode Voltage that will trigger all devices VO=6V;Tj=25 0 C > 2,5 V Voltage that will not trigger any device Vo = VORMmax; Tj == 125 °C < 0,2 V Current that will trigger all devices VO=6V;Tj= 25 0 C > 200 mA < < 0,7 ILS Switching characteristics Gate-controlled turn-on time (tgt = td + t r ) when switched from Vo = VOWMmax to IT = 50 A; IGT = 200 mA; dlG/dt = 1 A/p.s; Tj = 25 °C 1 p.s t IT + IGT o .!-+.....tC-:..::....c.:.._ _ _ _~ 7Z73514.1 Fig. 2 Gate-controlled turn-on time definitions. * Measured under pulse conditions to avoid excessive dissipation. April 1978 3 l_ _ __ BTW31 W SERIES CHARACTERISTICS (continued) Circuit-com mutated turn-off time when switched from IT = 10 A to VR ~ 50 V with -dlT/dt = 10 A/f.ls; dVD/dt = 50 Vlf.ls; Tj = 125 °C < 20 f.lS I~-----tq------~I Fig.3 Circuit-commutated turn-off time definitions. OPERATING NOTES 1. The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there is no strain on them. During soldering the heat conduction to the junction should be kept to a minimum. 2. High frequency operation. a. The curves in Figs 13 and 14 show the additional average power losses due to turning on and turning off the thyristor in square pulse operation. This power should be added to that derived from the curves in Fig. 5. b. Power loss due to turn-off may be discounted if an inverse parallel diode is connected across the thyristor to clip any reverse voltage which may occur following commutation. Note should be taken of the consequent increase in turn-off time (see Fig. 11). 4 April 19781 ( J ---- BTW31 W SERIES Fast turn-off thyristors 60 cond. A -..I ()( I_ a = I T IRM51 P form 60' 90' 28 2.2 0 19 1.6 120 0 180 ITIAVI L (WI -f- -i- I ~~ 01:=30° Q=4 I I I J II t\j" MI II d 40 I II / , ", , 20 I I II I II I 1//1/ I / , / ~f:>~ ..... Ii' ..... ..... ~ ..... ,.."", .... 'f' ~ " , ~t ~--~ , , ", " ..... " ........ ..... " , .... ......... '" ..... " r-. \J1,- I' .~ f\. .....~ I'. ~ 1\ I' ..... ..... ~ I" ,\ 105 \. .......... I' 6 9 ...... .....1'-..... ~- ..... 1\..'\' ......... 1-0 1..1 200 I \ ~ ~- ...... ..... i"oo. .... "'" , 2,5 V Voltage that will not trigger any device VD = VDRMmax; Tj == 125 °C VGD < 0,2 V Current that will trigger all devices V D = 6 V; Tj = 25 °C IGT > 150 mA td tr < 'H Holding current; Tj = 25 0C Latching current; Tj = 25 0C 25 mA 400 mA Gate to cathode Switching characteristics Gate-controlled turn-on time (tgt = td + t r) when switched from VD = VDWMmax to 'T = 200 A; IGT = 200 rnA; dlG/dt = 1 A/jJ.s; Tj = 25 °C < 2 2 jJ.S jJ.S t IT + r Vo o --+---+=--- :rE "'---1-1 t "- 'i Fig. 2 Gate-controlled turn-on time definitions. * Measured under pulse. conditions to avoid excessive dissipation. April 1978 3 CHARACTERISTICS (continued) Circuit-commutated turn-off time when switched from IT = 50 A to VR ~ 50 V with -dlT/dt = 50 A/Ils; dVD/dt= 25 V/lls; Tj = 125 °C < 25 IlS l---tq---, Fig. 3 Circuit-commutated turn-off time definitions. 7Z62529 10 Zth j-mb (OC/W) 1 ~ 10- 1 ...... - ~ ...... ~ V ,,- i-" V 10- 3 10- 5 4 10- 4 AP'il19781 r 10- 1 10- 3 Fig. 4. 1 time (8) 10 ~_~_~_m_~_ff_t_~_ri_~_~ __ ____________ ~jl B~33SEruES P =dissipation excluding switching losses condo A p (W) angle ()( =30 60 90 120 180 -..l ex 1..-IT(RMS) a=-IT(AV) a ~ 0 0 0 0 0 7Z62534 interrelation between the power (derivedfrom the left-hand graph) and the max. allowable temperatures. form factor a=4 2,8 2,2 1,9 1,6 ,...+-~ 1 1 a 50 IT(AV) (A) 100 a 50 Tmb (oC) 125 100 Tamb (OC) Fig. 5. P = dissipation excluding switching losses IT(RMS) =- IT(AV) p (W) 7Z62533 interrelation between the power (derivedfrom the left-hand graph) and the max. allowable temperatures. ] V6 SLJl ~I;~o 200 tp T I 1 j I <5 =0,1 100 "- V I' '" I' 1/ 1..- V 1/11/ I~ 0,2 / I' I""" 1/ 1..1' 1""" ro... I" I' "" t -...Q I' ~ I"~~ 1\.0 I' I' r\ "'" o;\<' 0 ~'~t-1\0 "" ~.z~-rs~t-"~~ " " " ..... I' I""'~" ,,!\. ~ .8.... I' " ' ' ' ""'''''- .... I"iiO ....1 0 l/V..I' """t-.... ..-~., r- .... .... 2 ~ I 50 IT(AV) (A) 100 a ~ " 95 ~ r, " .... ""I" N' 1'1\.. i""""", 1 ~"""r.... I a l\~O, 1'",,- ~I/LI ~!.o" o 65 l\. 1'\ 0,5 1 J-I'-.... ro.... .... ~ I'; ,....~ I::::!~N F=:IiIill1l ~" I""'t-- .... 50 100 ""'~ 125 -,' T mb-scale is for comparison purposes only and is correct only for Rth mb-a::; 1,0 °CjW, Fig. 6. 2000 SQUARE WAVE OPERATION ITSM ~ \ (A) 7Z62531 max. permissible nOnrepetitive peak on-state current for one square pulse , ~ 1500 I~ puls~ ..r---- ITSM duratIOn in the case of re-applied off-state voltage the thyristor may temporarily lose control , I' l" 1000 "- I\. ,~ Tj =125 0c prior to surge ""'r" ~ ... 500 ~ ~~ "'r-r- o 10- 3 10- 2 10- 1 ~ -r-- - 1 10 . pulse duration (s) Fig. 7. 2000 SINE WAVE OPERATION 7Z62530 JU the device may temporarily lose IT(RMS) control following the surge l\. (A) i\ 1500 ,, ITSM L ~,. , ~ 1000 "- ~ '- Tj =125 oC prior to surge """~ ~ 500 '" o 10- 3 10- 2 ~ 10- 1 Fig. 8. 6 April 19781 ( I'"-..... --~ i'-~ --- to-- duration (s) 10 F_a_st_tu_rn_-O_f _t_hY_ri_~_or_s __ ~~ ___ B_T_VV __3_3_S_E_R__IE_S___ __________________________ 07500 07499 4 300 Minimum gate voltage that will trigger all devices plotted against junction temperature Minimum gate current that will trigger all devices plotted against junction temperature IGT (mA) 3 1\ "- I\. 200 ~ i'o.. "'- I" ">/~ I"~/"'. " i'o.. ,... "'" ~ I" i'o 2 1"'0- I"'- a a 50 a -50 100 50 7Z62537 l - I- t-- 2000 l - I- I-I-- I-- t-- (V l[1s) , 1500 1\ dVO l - I- I-- dt max. rate of rise of offstate voltage that will not trigger any device (exp. method) plotted against junction temperature 7Z62538 1500 max. rate of rise of offstate voltage that will not trigger any device (exp. method) plotted against applied voltage dVO dt (V l[1s) 1\ 1 \ 1 1000 \ \ , \ 1\ r\. , ~ 500 \ '\. ~Tj=1250C I' r\. 500 , Il \ 1\ I\. 1000 "- ~ I'\. " I\. "'- o o 100 Fig. 10. Fig. 9. l - I- I-- I"'- 100 1"0 -50 " "" 50 100 Tj (OC) 150 Fig. 11. o a :"'I"" I' --- 50 .... VOM 100 VORMmax (%) Fig. 12. BTW33 SERIES j l. . ________________ 7Z62541 7Z62730 max. turn-off time when switched from IT to VR ~ 50 V ; Tj = 125 °c ; -dIT/dt = 50 A/\-ls 50 VR >50V ---VR=I,5V 40 IT == 1/ IT = V ~ V .... ~ ..... ~ i.oo-' ~- 20 ..... i.oo-' .... """ f- f- 59 AI_ f - I-- ... 1/ 10' 20 A'- ---~ ~ i-"'" / ~~ I I - f- ~ ./ 1/ I~ ~ 1/ ..J .... ~ ~ ~ ~m }50 A ~}20A ~ " V' / ~ .,.' ~ -I .J ~ ~} lOA V' 1/ ,,- ~ ~~ ~ ~ fI'~ ~ I..t- '="~ .. ~ l....II ~ ~ t'. I.--" ~ .... lOA_ f - f - ... , -.~.... 10 """" 17 , 20 ~ V I=-+- / }l~O AI I~~ 30 !," ~ -~ ./ l~Ot- 1/ ~ 30 ~ I-- I-- dVD/dt == 25 V /\-ls -dI/dt == IT/\-lS 10 a a 200 dVD 100 300 dt Fig. 13. o 50 100 T j (OC) 150 Fig. 14. (V/\-ls) 7Z62527 7Z62528 3 1000 max. VT values IT II (A) 2 750 l' I-- f - I-Tj=25 " ,..., ...... " °c f-+-I- ~I r-;....J. 1' ... 1 lib 1 125 C 1-1'-... ~~\!oo 500 I-- J r7 ~ I IT II """I"Tj==25 0 C::: f-I-t-- ,..., fI-- /125 °C- J II I 1 V I J 1-1-1- r-,...~ 111 ~ 250 'I A ~r/ a a 500 r Fig. 15. 8 April 19781 IaT (rnA) 1000 a a ~~ 2.5 5 VT (V) 7.5 Fig. 16. j Fast turn-off thyristors BTW33 SERIES - - 7Z62532 Fig. 17. 7Z62693 I .. ~ I I I -dIfdt = 100 A/I-ls 75 50 25 10 II "-< l""- I-- r- r- ....... r- r- r- ....... ~ r--., 200 I 150 - :::: ~ ~~ r- ~ 50 1 I L .,.., III / ~ "- -:, due to switching off; T j = 125 -v to ITRM ." V r - r- r- I ~~o -~ }?o~ (~)I :'\ i'. ,~ ~ ~ ko Fig. 18. RRM"'= 25OV t:t::::b;~ ~ c--- r - r-b.P(AV) t -r- :;;;; ~ ~~~~ ~ 1 ~d1/dt ..- ~ .;: ~ -~100 r-~ ~I 'J"oo.. I.60I~ - ~ '\ ~I"' C£ 0 - , °c ".,.,. ...... ~o ~ ~~ NOMOGRAM: power loss b.P(AV) IRRM / -a ~ ~ ~ ~ J JJ / -r--.. to-.. S ~ 100 -ITRM(A) I -r--., t'-.. r- -'- V r--~ if V r~~ r 1,5 V Voltage that will not trigger any device Vo = VORMmax; Tj = 125 °C VGO < 200 mV Current that will trigger all devices VO=6V;t'=25 0 C IGT > 50 mA tgt tr < 3 mA 75 mA Gate to cathode Switching characteristics Gate-controlled turn-on time (tgt = td + t r ) when switched from Vo = 800 V to IT = 25 A; IGT = 250 mA; dlG/dt = 0,25 A/)ls; Tj = 25 °C typo 1,5 )lS 0,2 )lS t IT + -td---- tr _tgt-- IGT __ O~·~~------ ~ Fig. 2 Gate-controlled turn-on time definitions. 72735141 * Measured under pulse conditions to avoid excessive dissipation. April 1978 3 l'----_ __ BTW38 SERIES 7Z67629.1 30 1'L p .... 1 (W) a IT(RMS) a=--IT(AV) 1__ a a 30° 60° 20 90° 120° 180° I 1,6 4 1,9 2,8 II 2 r---r-;r- 2,8 -2i 2,2 1,9 a=4 J ,/ / 1,57 JI ) / If II I J 10 'I If ~ ,/ ~ " i'.. ~ ~""~ , 6'1" I"'- 1"'~<9 11'1/ j i'oo.. II'Il II.~ r.... l"" Ii tIlL ~~ ~~ I\. l" '" '"'" i'" "" ,.... r--. .",. \ I'\. 1\ 1\ , I' ..... 1'-- !/ 1\ ~ 1\ ,.... "1,\ " "I"" I..... ,.... ..... 89 \~~\\ I\. I'" lI"" 6,35 mm) are available on request. These are indicated by the suffix U: e.g. BTW40-400RU. -. -.4,2.- 3,2 _ 7,6 max 3,4- ft -' 124-max -. min ' '\ --- tF===a=p-1I1IM ~ H I \.....J 2,26_ max -12,8max- r :ft 1.9 1,6 -22,2max- __ 11,5 - 1 .....t-----303max-----t.~1 10,72 Net mass: 14 g Diameter of clearance hole: max. 6,5 mm Accessories supplied on request: 56264A (mica washer, insulating ring, soldering tag) 7Z69755,A Torque on nut: min. 1,7 Nm (17 kg cm) max. 3,5 Nm (35 kg cm) Supplied with the device: 1 nut, 1 lock washer Nut dimensions across the flats; M6: 10 mm %inx28UNF: 11,1 mm 'I April 1978 BTW40 SERIES l____ RATINGS Limiting values in accordance with the Absolute Maximum System (I EC 134) Anode to cathode BTW40-400R 600R 800R Non-repetitive peak voltages (t";;;; 10 ms) Repetitive peak voltages Crest working voltages VOSMIVRSM max. 400 600 800 V VORMIVRRM max. 400 600 800 V VOWMIVRWM max. 300 400 600 V IT(AV) max. 20 A R.M.S. on-state current IT(RMS) max. 32 A Repetitive peak on-state current ITRM max. 200 A Non-repetitive peak on-state current; t = 10 ms; half sine-wave; Tj = 125 0C prior to surge; with reapplied VRWMmax ITSM 2 1 t for fusing (t = 10 ms) Rate of rise of on-state current after triggering with IG = 400 mA to IT = 60 A; dlG/dt = 0,4 A/p.s * ~ Average on-state current (averaged over any 20 ms period) up to T mb = 85 °C max. 400 A 1 t max. 800 A 2 s dlT/dt max. 100 A/p.s 2 Gate to cathode Reverse peak voltage VRGM max. Average power dissipation (averaged over any 20 ms period) PG(AV) max. lW Peak power dissipation PGM max. 5 W Storage temperatu re T stg -55 to + 125 °C Junction temperature Tj max. 10 V Temperatures 125 °C THERMAL RESISTANCE From junction to mounting base Rth j-mb 1 0C/W From mounting base to heatsink with heatsink compound Rth mb-h 0,2 °C/W Transient thermal impedance (t = 1 ms) Zth j-mb 0,1 °C/W OPERATING NOTE The terminals should neither be bent not twisted; they should be soldered into the circuit so that there is no strain on them. Ouring soldering the heat conduction to the junction should be kept to a minimum. < 6,5 °C/W (d.c. blocking) or < 13 0C/W (a.c.). For smaller heatsinks Tj max should be derated. For a.c. see Fig. 3. * To ensure thermal stability: Rth j-a 2 April 19781 ( j Thyristors BTW40 SERIES - - CHARACTERISTICS Anode to cathode On-state voltage IT = 50 A; Tj = 25°C VT < 2,1 V * Rate of rise of off-state voltage that will not trigger any device; exponential method; VD = 2/3 VDRMmax; Tj = 125 0C dVD/dt < 100 V/p.s Reverse cu rrent VR = VRWMmax; Tj 'R < 3 mA < < < 150 mA Voltage that will trigger all devices VD = 6 V; Tj = 25 °C > 1,5 V Voltage that will not trigger any device VD = VDRMmax; Tj = 125 °C < 200 mV Current that will trigger all devices V D = 6 V; Tj = 25 °C > 75 mA = 125 °C Off-state current VD = VDWMmax; Tj = 125°C ID Latching current; Tj = 250C IL Holding current; Tj = 250C IH Gate to 3 mA 75 mA catho!!~_ Switching characteristics ~ Gate-controlled turn-on time (tgt = td + t r ) when switched from V D = V DWMmax to IT = 100 A; IGT = 400 mA; dlG/dt = 1 A/p.s; Tj = 25°C < < 1 p.s 0,5 p.s Vo o ----+-_+=__ -,----+-1 117'"'- J'lL \ Gate-controlled turn-on time definition *Measured under pulse conditions to avoid excessive dissipation. November 1979 3 l________________~ ~w~~ru~ 7Z72517 A I I _I a = interrelation between the power (derived ~ from the left-hand graph) and the maxi~an:g~le~~~~I=t~~~~=t~~ a = ~~~ a ~,8 H-f-+-l-++-t-+-f-+-l mum permissible temperatures condo a 1_ I T( RMS) IT (A VI ffaOcrtmor 90° 1200 180° 2,2 H-+-+-l-++-t-+-+-+-l"-r""T"""r-r""""""T"""1r-T"""T"""T"""'T""""""'--r-T"""T"""T"""T"""""..,....-t I 1,9 H-f-+-l-++-t-+-++-t-++-t-+-++-lt-++-t-t~--+-+-t-++-t-t--+-+-t 1,6 H-f-+-l-++-t-+-++-l-++-+-t-f-+-f-+-I-+-+t-+-+-f-+-I-+-+-++-I .) I J I II I/' j I...... "" II 1/1) .i r-... "'r-.~ 6 I'r--. t\. ~ r-... i"o.. I...... ""'r-.. I"-. r-.. , Dl t' .... t" I\. 1'1. I""'t.... ~ Fig. 2. , 500 7Z72516 , maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents ( f = 50 Hz ) 1\ hS(RMS) (A) ~ Ib ITSM \ 375 ~-ITSM ~-ITS(RMS) time ~ with reapplied V RWMmax \. '\. '\. 250 '" "- I"r-- 125 Tj ~ ........... 1""--""", o10-3 10-2 10- 1 Fig. 3. 4 =125°C prior to surge April 19781 ( r---_ duration (5) 10 j Thyristors BTW40 SERIES ---600 7Z72534 7Z72535 \\ \ lj=125°C , 1000 \ , \ dVo dt \ \ 4.00 (V/i-I S ) 1\ \ 1\ \ , 1\ \ 1\ \\ \ 500 \ , \\ 200 ~ I\" ~ , 1,\ ~ ~ I\.: ""r-... "" o o o 50 o 100 T (oC) 150 J ..... r-.., 50 _ V 100 OM_ (%) _ VORMmax Fig. 4 Maximum rate of rise of off-state voltage that will not trigger any device (exponential method) as a function of Tj. 7Z72515 100 ~ Fig. 5 Maximum rate of rise of off-state voltage that will not trigger any device (exponential method) as a function of applied voltage. --1j= 25°C ---lj =125 °c typ max II I 75 I J 1I j V I I ~ 14 I/iI I _4 II iii IJ 50 I i II' ~ 1/ i I 'J I 25 "V" iI~ l,~ L' o o JV 11/ j V Fig. 6. ~_V 2 3 "I ( April 1978 5 l BTW40 SERIES '----------------------------------------------------7Z67965 7Z72521 150 1\ \. \. \. IGT (mA) _\ 1\ 2 ...... 100 .... ...... , ~ .... I' I" min min '"...... , i'o... !" ...... i'o... 50 ...... r-. o o -50 50 100 1j o -50 150 o (oC) 50 " ~ 100 150 Tj(oC) Fig. 7 Minimum gate voltage that will trigger all devices as a function of Tj. Fig.8 Minimum gate current that will trigger all devices as a function of Tj. 7Z72522 10 ~ ~ ./ 10- 1 V ./ 10- 3 10- 5 .... - " ~ 10- 4 10-3 10- 2 Fig. 9. 6 ""I' AP'il19781 ( 10-1 time (5) 10 _ _ _ _J BTW42 SERIES THYRISTORS Also available to BS9341-F084 Silicon thyristors in metal envelopes with high dVo/dt capabilities. They are intended for use in power control circu its and switching systems where high transients can occur (e.g. phase control in three-phase systems). The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW42-600R to 1200R. QUICK REFERENCE DATA 1200R Repetitive peak voltages Average on-state current IT(AV) max. R.M.S. on-state current IT(RMS) max. Non-repetitive peak on-state current ITSM max. 1200 V 10 A 16 A 150 A Rate of rise of off-state voltage that will not trigger any device dVD/dt < 200 V/lls On request (see ordering note on page 2) dVo/dt < 1000 V//1s MECHANICAL DATA Dimensions in mm Fig. 1 TO-64: with metric M5 stud (r/>5 mm); e.g. BTW42-600R. +- ~,~ (2x) ~ ,,98-1 max _I 9,3 max -.3,5_ max _10,28_ __ 11.5 __ .. max 21,72 10,72 max ~1 - - - - - l.. Net mass: 7 g Diameter of clearance hole: max. 5,2 mm Accessories supplied on request: 56295 (PTFE bush, 2 mica washers, plain washer, tag) 56262A (mica washer, insulating ring, plain washer) 7Z65305.A Torque on nut: min. 0,9 Nm (9 kg cm) max. 1,7 Nm (17kgcm) Supplied with device: 1 nut, 1 lock washer Nut dimensions across the flats; M5: 8,0 mm December 1979 BTW42 SERIES l_____ RATINGS Limiting values in accordance with the Absolute Maximum System (I EC 134) Anode to cathode Non-repetitive peak voltages (t.os;;;; 10 ms) BTW42-600R 800R 1000R 1200R VOSMNRSM max. 600 800 1000 1200 V VORMNRRM max. 600 800 1000 1200 V VOWMNRWM max. 400 600 700 Repetitive peak voltages Crest working voltages 800 V * Average on-state current (averaged over any 20 ms period) up to T mb = 85 °c IT(AV) max. RM.S. on-state current IT(RMS) max. 16 A 'TRM max. 75 A ITSM 2 1 t max. 150 A max. 112 A 2 s dlT/dt max. 50 A/p.s Average power dissipation (averaged over any 20 ms period) PG(AV) max. 0,5 W Peak power dissipation PGM max. 5W Storage temperature Tstg Junction temperature Tj -55 to + 125 °C max. 125 °c Repetitive peak on-state current Non-repetitive peak on-state current; t = 10 ms; half sine-wave; Tj = 125 0c prior to surge; with reapplied VRWMmax 12 t for fusing (t = 10 ms) Rate of rise of on-state current after triggering with IG = 250 mA to IT = 25 A; dlG/dt = 0,25 A/p.s 10 A Gate to cathode Temperatures THERMAL RESISTANCE From junction to mounting base Rth j-mb 1,8 °C/W From mounting base to heatsink with heatsink compound Rth mb-h 0,5 °C/W From junction to ambient in free air Rth j-a Transient thermal impedance (t = 1 ms) Zth j-mb 45 0C/W 0,1 °C/W OPERATING NOTE The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there is no strain on them. During soldering the heat conduction to the junction should be kept to a minimum. ORDERING NOTE Types with dVo/dt of 1000 V/p.s are available on request. Add suffix C to the type number when ordering; e.g. BTW42-600RC. * To ensure thermal stability: Rth j-a < 4 °C/W (d.c. blocking) or < 8 °C/W (a.c.). For smaller heatsinks Tj max should be derated. For a.c. see Fig. 3. 2 April 19781 ( j ~~~ BTW42 SERIES - - - CHARACTERISTICS Anode to cathode On-state voltage 'T = 20 A; Tj = 25 °C VT < Rate of rise of off-state voltage that will not trigger any device; exponential method; VD = 2/3 VDRMmax; Tj = 125 °C dVD/dt < Reverse current VR = VRWMmax; Tj = 125 °C 'R < 3 mA Off-state current VD::: VDWMmax; Tj::: 125 °C 'D < < < 150 mA Voltage that will trigger all devices VD:::6V;Tj:::25 0 C > 1,5 V Voltage that will not trigger any device VD ::: VDRMmax; Tj = 125 °C < 200 mV Current that will trigger all devices V D = 6 V; Tj = 25 °C > 50 mA Latching current; Tj ::: 25 °C 'L Holding current; Tj ::: 25 0C 'H 2 V * 200 Vips 3 mA 75 mA Gate to cathode Switching characteristics Gate-controlled turn-on time (tgt ::: td + t r ) when switched from V D = 800 V to 'T ::: 25 A; 'GT::: 250 mA; dlGldt = 0,25 Alp.s; Tj ::: 25 °C < typo 1,5 p.s 0,2 p.s t IT + i Vo o ~l ----+-_+=__ Fig. 2 Gate-controlled turn-on time definitions. * Measured under pulse conditions to avoid excessive dissipation. April 1978 3 l_ _ __ BTW42 SERIES 7267629.1 n 30 p interrelation between the power (d~rived from the left· hand graph) and the maximum permissible tem peratu res IT(RMS) a=--IT(AV) a i_ 1 a a I 0 30 4 I 1,9 I 600 2,8 900 2,2 f - - - f- 2,8 ~2i2 If 1200 1,9 a=4 J / / 1800 1,57 1 I / ,I J !/ -.1 (W) 1,6 , 20 I I J 10 II 1/ / '1'/ , ILIL !/I~ " ..... 1/ " J I" ~ "'" r-... / V J J '(1/'/ ioo.. 11/ /.~ '0 ...... ,- ...... ~d'o~ '\ "- , ~ ~ .......... '" ..... ...... , 1\. 89 \~o,\\ 1\ "- i' .... ~ I" r-- ~I? " \ I\, , \", I\. \ I' ...... [/.~ ,'.dillY ...... , .... " "" ~ I" I\. , 1\ ,, 107 .\ \ ",,'I' ..... l\ ....... l" ..... r-- ,.... ." 1"\.1'\' -..;:~ ~I\.'~ i' "' ........... ,.... IL~ ~ o L ('l~ 1\ ~ I ~ ~$ ...... 6' ....... "r-- ~I ~-l O~I ~ ~ '.; .... 9 """ ,....~a ~ I\.. I\.. , ..... " I\.. I \. 1 ~~~" ..... "l"'1li \ .....'" ~~ o 5 IT(AV) (A) 10 0 Fig. 3 (1) T mb-scale is for comparison purposes only and is correct only for Rth mb-a ~ 6 oC/W. 1267630 Z 300 maximum allowable non-repetitive r. m. s. on state current based on sinusoidal currents (f = SO Hz) ITS(RMS ) (A) 200 [V\f==~=:~::"SI 1\ time '\ .\. with reapplied VRWMmax '\. I TSM '\ "\. 1\ 100 "'"'- '" ....... t-- lj ~ =125 °c r- prior to surge - duration (5) Fig. 4. 4 April 19781 ( 71 10 125 j Thyristors BTW42 SERIES ---- 7Z67964 7Z67965 IGT (rnA) 2 " 100 r-.... 1\ " \ I' min I\. "" "" "'" I,min 1'0... " 50 ....... to.. o o -50 100 50 1j 150 o -50 (oC) 7Z679661 II I I - - - l j = 25°C ---lj =125 °c = I I I I/ typ J 100 i VT III II I , J Im~~. f-V-+VT 'r:!- Itt-+- j I I I , 11 -' J Ii J 50 1/ J 1_' Ii II ~1/ L' o o .~ I" i/ V J V V 1/ l~~J...J Fig. 7. 2 " 50 '" ...... " 100 ..... lj 150 (oC) Fig. 6 Minimum gate current that will trigger all devices as a function of Tj. Fig. 5 Minimum gate voltage that will trigger all devices as a function of Tj. 150 o '" 3 VT (V) 4 1500 7Z67968 2 \ 7Z67967 3 1500 ~I I ~J I I I I I , 1\ lj =125 °c r----r-- , 1\ \ \ \ , 1000 ~ 1000 1\ 1\ 1\ \ , ~ , 1\ ~ I\. " 500 1\ 500 I\. ~ roo.. " , ~ I' I\. f'~ I'["'I" I" ~ 75 125 o o 50 V I"'" _ _D_M_ (0/0) 100 VDRMmax Fig. 8 Maximum rate of rise of off-state voltage that will not trigger any device (exponential method) as a function of Tj. 6 April 19781( Fig.9 Maximum rate of rise of off-state voltage that will not trigger any device (exponential method) as a function of applied voltage. j Thyristors BTW42 SERIES - - - 7Z72292 75 li:;:,:t [] envelope of average 10 (A) "- " for safe operation at a given temperature, the average current envelope of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature \. 50 -10 " ~ ~ "- " ........... ...... 25 "lj =Tmb = 25 °c ..... ...... ...... ... l'... ~5°C ~ i"'oo" ~ .......85°C ...... ........ ........ ~ ..... prior to starting ........... """ 10 105 C ........... ...... """ r-~ ~~ 1"""1- ....... - ""'- '" - -r--, r""'-.... I--. 10 r- time (s) rrv;:":t ~i:] 7Z72291 150 envelope of average I, 10 (A) 1\ "- " for safe operation at a given temperature, the average current envelope of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature \. 100 -10 "'\.. I\. I' ~ 50 ..... ...... .........lj = Tmb = 25°C ..... ...... .... l'o.. ............65°C ........... '" !" ........ 85°C ...... ....... ...... ""I.. ..... """ prior to starting .......... 105°C ....... r-r- ... -10.... 1"""1- .......... ------ ""'- ............ -r--. .... ~ I"'" 10 r- ~ time (s) Fig. 10 Limits for starting or inrush currents. 7 ___B_TW __4_2_S_E_R_IE_S_Jl_________________________________ 7Z72290 150 '\.. '\... 10 I't.. 10 s·~g· " ~ (A) t '\... '\... " "- ""- "- " " ..... "' !'I.. I II I a "lj=Tmb =25 C prior to starting ......... :....... 1'0. " ~ 1'0... ...... i""-o.. 50 65°C ~ ........... ........ ...... """ .....~oC r-- ..... ~mJ for safe operation at a given temperature, the average current envelope of successive cycles (see drawing abovel must lie within the region bounded by the curve shown below for that temperature , \. 100 -10 output current --...... .,... ......... 105°C 1"0... ..... ........... ......... ........... r- i"'-- ~ r--I- -I-- ~ ::-- 10 - time (s) Fig. 11 Limits for starting or inrush currents. 7Z679691 10 .... ~ I--'- ~ ~ /' ~ .- .".'" ~ 10 Fig. 12. 8 April 19781 ( time (s) _ _ _ _J BTW45 SERIES THYRISTORS Silicon thyristors in metal envelopes, intended for power control applications. The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW45-400R to 1200R. QUICK REFERENCE DATA I 1200R BTW45-400R 1 600R 1 800R 11000R Repetitive peak voltages VDRM = VRRM max. 400 600 Average on-state current 800 1000 1200 V IT(AV) max. R.M.S. on-state current IT(RMS) max. 25 A Non-repetitive peak on-state current ITSM max. 300 A Rate of rise of off-state voltage that will not trigger any device dVD/dt On request (see ordering note on page 3) dVD/dt < < MECHANICAL DATA 16 A 200 Vips 1000 Vips Dimensions in mm Fig. 1 T0-48: with metric M6 stud (¢ 6 mm); e.g. BTW45-400R. Types with Y.. in x 28 UNF stud (¢ 6,35 mm) are available on request. These are indicated by the suffix U: BTW45-400RU. --.4,2.3,2 -. _ 7,6 max --. min , ---' 1F===a='f'"-lIIIH II H _12,smax-1 \......J 2,26_ max g~t -.1 I. 1,9 1,6 -22,2max. . - 11,5 _ 1 ......1 - - - - - 303 max - - - - - - i••1 10,72 7Z697SS.A Net mass: 14 9 Diameter of clearance hole: max. 6,5 mm Accessories supplied on request: 56264A (mica washer, insulating ring, soldering tag) ~ Torque on nut: min. 1,7 Nm (17 kg cm) max. 3,5 Nm (35 kq cm) Supplied with the device: 1 nut, 1 lock washer Nut dimensions across the flats; M6: 10 mm %inx28UNF: 11,1 mm Products approved to CECC 50 011-002, available on request IC January 1980 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ._. _ _---' _......_'"--_ _ • _. ____ .__ •••""•.. "_",,",.,. . .' "_'.·.'n~ BTW45 SERIES l_ _ __ RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Anode to cathode BTW45-400R 600R 800R 1000R 1200R VDSMIVRSM max. 400 600 800 1000 1200 V VDRMIVRRM max. 400 600 800 1000 1200 V VDWMIVRWM Average on-state current (averaged over any 20 ms period) up to T mb = 85 °C max. 300 400 600 700 Non-repetitive peak voltages (t~ 10 ms) Repetitive peak voltages Crest working voltages 800 V* IT(AV) max. 16 A R.M.S. on-state current IT(RMS) max. 25 A Repetitive peak on-state current ITRM max. 200 A ITSM 12 t max. 300 A 12 t for fusing (t = 10 ms) max. 450 A 2 s Rate of rise of on-state current after triggering with IG = 400 mA to IT = 60 A; dlG/dt = 0,4 A/l1s dlT/dt max. 100 A Ills Reverse peak voltage VRGM max. Average power dissipation (averaged over any 20 ms period) PG(AV) max. 1W PGM max. 5 W Non-repetitive peak on-state current; t = 10 ms; half sine-wave; Tj = 125 0C prior to surge; with reapplied VRWM max Gate to cathode Peak power dissipation 10 V Temperatu res Storage temperature T stg -55 to + 125 °C Junction temperature Tj max. 125 °C THERMAL RESISTANCE From junction to mounting base Rth j-mb 1,33 0C/W From mounting base to heatsink; with heatsink compound Rth mb-h 0,2 °C/W Transient thermal impedance (t = 1 ms) Zth j-mb 0,1 0C/W OPERATING NOTE The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there is no strain on them. During soldering the heat conduction to the junction should be kept to a minimum. * To ensure thermal stability: Rth j-a < 6,5 °C/W (d.c. blocking) or < 13 °C/W (a.c.). For smaller heatsinks Tj max should be derated. For a.c. see Fig. 2. 2 November 1979 ( J Thyristors BTW45 SERIES --CHARACTE R ISTICS Anode to cathode On-state voltage IT = 50 A; Tj = 25 VT < 2 V* Rate of rise of off-state voltage that will not trigger any device; exponential method;VO = 2/3 VORM max; Tj = 125 0C dVD/dt < 200 VIlls Reverse current VR = VRWM max; Tj = 125 °C °C IR < 3 mA Off-state current Vo = VDWM max; Tj = 125 °C ID Latching current; Tj = 25 0C IL 150 mA Holding current; Tj = 25 °C IH < < < 3 mA 75 mA Gate to cathode Voltage that will trigger all devices VD=6V;Tj=25 0 C > Voltage that will not trigger any device VD = VDRM max: Tj = 125 °C < 200 mV Current that will trigger all devices V D = 6 V; T j =- 25 °C > 75 mA 1,5 V Switching characteristics ~ Gate-controlled turn-on time (tgt = td + trl when switched from VD = VDWM max to IT = 100 A; IGT = 400 mA; dlGldt = 1 AIIlS; Tj:: 25 °C t IT + < < 1 IlS 0,5 IlS T IGT O~*~~--------~- Gate-co ntrolled turn-on time definition. ORDERING NOTE Types with dVD/dt of 1000 V Ills are available on request. Add suffix C to the type number when ordering; e.g. BTW45-400RC. *Measured under pulse conditions to avoid excessive dissipation. November 1979 3 l__________ BTW45 SERIES 7Z12520.1 30 .1 1 1,6t J 1,9 ILl/.. p (W) I\. \ 1\ 1/,/ 2,2 I' II 1/11 1-1- r-t- "- II 1'1.6' III rl IIrJ I [lJl I HI. fN/ I" I I ll.~ 10 \ 1\ " r\ I/,r 1\ !' ...... o , \ 1\ \. _\ I\. I\. ...... \ ...... '" ..... ~ 10 I\. , 98 \ , 1'1, ...... t-..... Ihr 1/, I' 1\ 1\ ~ I\. ""- " rfJ 'IJ 1\ i" ""- '0 ......... I'" ..z.0'" , 1\ 1\ ('I,. '" ~-. 1\ 3,5 V Voltage that will not trigger any device Vo = VORMmax; Tj = 125 °C < 200 mV Current that will trigger all devices V D = 6 V; Tj :::: 25 °C > 100 rnA typo typo 1,2 p.s 200 rnA Gate to cathode Switching characteristics Gate-controlled turn-on time (tgt = td + trl when switched from Vo = VOWMmax to IT = 10 A; IGT = 150 rnA; dlG/dt = 1 A/p.s; Tj = 25 0C 2 p.s t IT • IGT 0""'+......c...."""----'-_ _ _ _...3000.- Fig. 2 Gate-controlled turn-on time definitions. * Measured under pulse conditions to avoid excessive dissipation. l____ BTW47 SERIES OPERATING NOTES 1. The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there is no strain on them. During soldering the heat conduction to the junction should be kept to a minimum. 2. Switching losses in commutation For applications in which the thyristor is forced to switch from an on-state current ITRM to a high reverse voltage at a high commutation rate (-dIT/dt), consult Fig. 9 (nomogram) to find the increase in total average power. This increase must be added to the loss from the curves in Fig. 3. ORDERING NOTE Types with dVD/dt of 1000 V Ip,s are available on request. Add suffix C to the type number when ordering; e.g. BTW47-800RC. 7Z 615771 A 1_ ex = 30 -i()( 50 (w) 0 a= 4 0 60 0 90 0 120 0 180 a = IT (RMSl I T(AY) p 2,8 2,2 1,9 1,6 I r 40 2,2 1,9 I 28 J 1 J I I 0=4 I 30 II I I I I , 16 7 '( 7 J I ~ ...... V. , ....<' ~ ..... / './v .......... II~ ~I'" .~~~ r-... ..... ~ ...... ..... I/.~ 1.11,; r..... 6 \1 9\\ " r-.. °sh° 7_ ~'.,~ ·~o ....\ 1-("1 , ..... ..... ...... ...... ..... \ • 5 10 15 20 0 I T!AY) (A) 25 April 19781 ( \ 105 \.\ \.. " ..... ~ "..... ...... r-t--., 75 Tmb .... scale is for comparison purposes only and is correct only for Fig. 3. 4 50 , '\ ...... r""-t--., o o 95 \.z. \. '\ ....... !'.... .;;: 1"'-0 \'?>(5 "- \. ...... ...... ~ \~ \. II\. , ..... 1/ 1\ \ "- \. ....... I i/I/. I 10 II\. 1,\ I J IIJ 1\ 1\ I'\. , I J II / / I 20 interrelation between the power (derived from the left-hand graph] and the max. permissible temp. condo form angle factor r.... I,\:' 1\ I'.. "I \ I"- I"\~ r-.. ...... I'.... ~ .......... ..... 100 Tamb (OC) Rth mb-a :s; 115 \.'~ to....~ ~~ .....~1 25 150 2°C/W J Thyristors BTW47 SERIES ---, 400 \ ITSIRMS) ~ (A) 1\ \ ~ 300 7Z61578 1 maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents ( f = 50 Hz ) I TSM \ 1\ ~-ITSM ~-ITSIRMS) time with reapplied V RWMmax 1\ \ 200 '\. "\ r\: ~ I".i'oo.. 100 ... Tj =125 ............... o 10- 3 °c prior to surge r-- -I- 10- 1 10 duration Is) Fig. 4. 7Z615761 300 max. VT values 200 7Z611431 \ "\. '\ "\. IT \.. I\..IG= I GT (A) I 150 I " 200 Tj = 25°C 17 I ~ ""- [/125°C " I I If I 100 I II II 100 J/ I 50 IV IU o o _t? '/ ./ 5 2,5 Fig. 5. VT IV) 7,5 00 100 ITM (A) 200 Fig.6. I April 1978 5 l_ _ __ BTW47 SERIES 1261140 7261232. 1500 2000 dVD , dt dVD dt , (V/fJ s) " 1500 ~ (V/lJs) Tj=125°C \ , ~ f-f- \ 1000 \ \ 1\ \ '\ 1000 '- 1\ , ~ , ~ '\. 500 I\. '\ "' "\ 500 "" 1"0.. ...... I" so 50 ~(%)100 VORMmax Fig. 7 Maximum rate of rise of off-state voltage that with not trigger any device (exponential method) as a function of Tj. Fig. 8 Maximum rate of rise of off-state voltage that with not trigger any device (exponential method) as a function of applied voltage. 7Z61l33 -I- 1-1- =~ I 'dI I I I I I I 50 - l -I- - dt =100A/~s IRRM .... ~ '" (AI 1""0 200 " 1""-100. 1""0 If~SOHz I 100 1-1- I- 200 IL I :1 " I ~ I I I I 1-1-1~0 "'" ~ "- 1p I I ITRM ---Ydl/dt t IRRMY r- 20 APIAV) I-(WI, '30 \ " ', April 19781 ( ... ,\ 1 ~ .... 1""0 ... .... I' 1000 I- ~O? I I Fig. 9. 6 "'" ~ .,; N I NOMOGRAM: power loss ~PIAV) due to 5witchingoff; Tj=12SoC " ~ :/ 1""0 }~R~ (IA IL I' -10 2 00 I- ., I II I I I 400 r-f- 200 VRV M=100V J Thyristors BTW47 SERIES - - - 7Z72551 6 7Z72557 300 IGT (rnA) I""- '" 4 200 I" I' I'o..min r-.. " "-I' "- " 2 ~ 100 " "" "'" ..... min l' o o -50 50 100 150 o-50 o 50 i'~ 100 150 Tj (OC) Tj (oC) Fig. 10 Minimum gate voltage that will trigger all devices as a function of Tj. r-... Fig. 11 Minimum gate current that will trigger all devices as a function of Tj. 7Z59059 10 ~ transient thermal impedance from junction to mounting base versus time Zthj -mb ('t/w ) 1/ 1 2 .- ..... 10- ---- 3 time(s) Fig. 12. 10 BTW47 SERIES 7Z61579 300 envelope of average l~·: 10 (A) -m -10 for safe operation at a given temperature. the average current envelope of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature 200 "- 100 ..... ... '" .... ~ ...... I"..........Tj=Tmb=6SoC prior to starting ---- --........ ...... r'" I -"",,- J.,.. ..... l"l°C 110~of I 10 time (s) 7Z61580 300 envelope of average ",_~","M 10 (AI for safe operation at a given temperature. the average cur- -1 0 ~mJ rent envelope of successive 200 cycles (see drawing abovel must lie within the region bounded by the curve shown below for that temperat ure I ....... " '" 100 roo. ..... " I 1 ,Tj=T mb=6SoC prior to starting ......... ......... ....... i"o 100.... - ..... ....... ........ .... --- -- 85°C "I """ .......... 10~ r--- ~"I I I I I I 10 time (5) Fig. 13 Limits for starting or inrush currents. 8 April 19781 r j BTW92 SERIES --------------------------------------------------------~ THYRISTORS Also available to BS9341-F039 Silicon thyristors in metal envelopes, intended for use in general purpose three-phase power control circuits. The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTW92-800R to 1600R. QUICK REFERENCE DATA 1600R BTW92-800R Repetitive peak voltages VDRMiVRRM max. 1600 V 800 ~ _ _ _ _ _ _ _ _ _ _~ _ _ _ _ _ _ _ _ _ _- J Average on-state cu rrent IT(AV) max. R.M.S. on-state current IT(RMS) max. 31 A Non-repetitive peak on-state current 400 A 'TSM max. Rate of rise of off-state voltage that will not trigger any device dVo/dt On request (see ordering note on page 4) dVo/dt < < MECHANICAL DATA 20 A 300 V/JlS 1000 V/JlS Oimensions in mm Fig. 1 T0-48: with metric M6 stud (cf> 6 mm); e.g. BTW92-800R. Types with ~ in x 28 UN F stud (cf> 6,35 mm) are available on request. These are indicated by the suffix U: BTW92-800RU. -+- 4,2 ..3,2 124.max '\ ff====a""'l"-1VH II H \.....J 2,26_ max I : -12,8max- -+- , -min t ft 1 1,6 ,g -22,2max__ 11,5 ----303max-------4.~1 10,72 Net mass: 14 g Diameter of clearance hole: max. 6,5 mm Accessories supplied on request: 56264A (mica washer, insulating ring, soldering tag) 7Z69755.A Torque on nut: min. 1,7 Nm (17 kg cm) max. 3,5 Nm (35 kg cm) Supplied with the device: 1 nut, 1 lock washer Nut dimensions across the flats; M6: 10 mm % in x 28 UNF: 11,1 mm April 1978 __B_nN __9_2_S_E_R_IE_S_jl_________________________________ RATINGS Limiting values in accordance with the Absolute Maximum System (lEG 134) Anode to cathode Non-repetitive peak voltages (t";;;10ms) BTW92-800R 1000R 1200R 1400R 1600R v VOSMIVRSM max. 800 1000 1200 1400 1600 Repetitive peak voltages VORMIVRRM max. 800 1000 1200 1400 1600 V Crest working voltages VOWMIVRWM max. 600 700 800 800 Average on-state current (averaged over any 20 ms period) up to T mb = 85 °C 800 V* IT(AV) max. 20 A R.M.S. on-state current IT(RMS) max. 31 A Repetitive peak on-state current ITRM max. 200 A ITSM 2 1 t max. 400 A max. 800 A 2 s Rate of rise of on-state current after triggering with IG = 500 mA to IT = 60 A dlT/dt max. 300 A//J.s Rate of change of commutation current see Fig. 9 Non-repetitive peak on-state current; t = 10 ms; half sine-wave; Tj = 125 0C prior to surge; with reapplied V RWMmax 12 t forfusing It = 10 ms) Gate to cathode Reverse peak voltage VRGM max. Average power dissipation (averaged over any 20 ms period) PG(AV) max. 1W Peak power dissipation PGM max. 5W Storage temperature T stg -55 to + 125 °C Junction temperature Tj max. 10 V Temperatures 125 °C THERMAL RESISTANCE Rth j-mb 1 0C/W From mounting base to heatsink Rth mb-h 0,2 0C/W Transient thermal impedance (t = 1 ms) Zth j-mb 0,06 0C/W From junction to mounting base * To ensure thermal stability: Rth j-a < 1,5 0C/W (d.c. blocking) or < 3 0C/W (a.c.). For smaller heatsinks Tj max should be derated. For a.c. see Fig. 3. 2 April 19781 ( j Thyristors BTW92 SERIES ---CHARACTERISTICS Anode to cathode On-state voltage 'T = 50 A; Tj = 25 °C VT < 2,3 V * Rate of rise of off-state voltage that will not trigger any device; exponential method; Vo = 2/3 VORMmax; Tj = 125 0C dVo/dt < 300 V/JLs Reverse current VR = VRWMmax; Tj = 125 °C IR < 5 rnA Off-state current Vo = VDWMmax; Tj = 125 °c 10 Latching current; Tj = 25 0C IL 200 mA Holding current; Tj = 25 0C IH < < < Voltage that will trigger all devices VD=6V;Tj=25 0 C > 3,5 V Voltage 'that will not trigger any device VD = VORMmax; Tj = 125 °C < 200 mV Current that will trigger all devices V 0 = 6 V; Tj = 25 °c > 100 rnA typo typo 2 JLS 1,2 JLS 5 rnA 200 rnA Gate to cathode Switching characteristics Gate-controlled turn-on time (1gt = td + t r ) when switched from Vo = VOWMmax to IT = 10 A; IGT = 150 rnA; dlG/dt = 1 A/JLs; Tj = 25 °C t IT + IGT O~~~~--------~ 71>'73514.1 Fig. 2 Gate-controlled turn-on time definitions. * Measured under pulse conditions to avoid excessive dissipation. April 1978 3 l_ _ __ BTW92 SERIES OPERATING NOTES 1. The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there is no strain on them. During soldering the heat conduction to the junction should be kept to a minimum. 2. Switching losses in commutation. For applications in which the thyristor is forced to switch from an on-state current ITRM to a high reverse voltage at a high commutation rate (-dIT/dt), consult Fig. 9 (nomogram) to find the increase in total average power. This increase must be added to the loss from the curves in Fig. 3. ORDERING NOTE Types with dVD/dt of 1000 V Ills are available on request. Add suffix C to the type number when ordering; e.g. BTW92-800RC. 72612341 condo form angle factor A interrelation between the power (derived from the left-hand graph) and the max. permissible temperatures 0 = 30 0=4 0 60 2,8 gOO 2,2 120 0 1,9 0 180 1,6 Q( -lex 1_ a = IT(RMS) IT(AV) 75 I T f-- - I 1._ 2,8 -2,2- 19 -1,6/ 40 "} j I a=4 I J I p (W) I I J 20 , '//~ .~ /..~ ~ ~~V' 'I' '/ /' 1// / Ii / ~ ~ ~ ~ \ \.. 7 ~ j :" ...... :" ..... * .) .......... 1'1000.. '// .... \.. ~ r-... i"-~ ~ , ..... ...... I"~ I' '1> \ %--+-- - f.--~ "?> L '\ \,0; \9" 0\ 9~\. "'l ...... '\. '\. -+f-- 95 ~ '\1 , ~ i" I t= I\.\. \.. ...... ...... iooo.. ...... 1' ! +:-i-;-- "' ~.$'\: C -+- '\. ?,- '- r-... ...... I'!..... ......... 6 "r-... j.....~ r-.~r--. ~Io..:" 105 ,'\\ I'. \.\. ts ~\ ~~I- "' ~ ~"':::~~, 115 to-.. 125 10 IT (Av)A 20 0 50 Tomb (oC) 100 Tmb-scale is for comparison purposes only and is correct only for Rth mb-a E: 2°C!W Fig. 3. 4 .~ ...... -2 ~ ~ o o ..... .......... ~ , ...... I' ..... 1/ I\. '\. ...... '- I 1/ / " f 1111 1/11" 1/ 7 ) /1 I / ~ ~ April 19781 ( j Thyristors BTW92 SERIES ---600 \ 7Z61235 1 , maximum permissible non-repetitive r.m.s_ on-state current based on sinusoidal currents ( f = 50 Hz ) .~ \ ITS(RMSJ (AI l'\ \. , I\, ~ 400 ITSM I' ~-ITSfI ~-ITS(RMS) time with reapplied \! RWMmax 1\ \. \. "- "' .... 200 ......... ..... .... Tj =125°C ~ a .10- 3 prior to s'Jrge I ......... ~ .... r-t-o 10- 1 10 duration (5) Fig. 4. , 7Z611421 \. I '" , max. VT values 200 I I I l"\ L1 IT (AI 150 f-- - _Tj =2SoC 7Z611431 , 300 I I I lL 125°C '- I\,.IG=IGT ['.. ~ 200 ...... to-.. r--. I I II /1 I 1/ 100 I " " 100 I so iJ h a o .-.?/ V 0 2,5 5 Fig. 5. VT (V) 7,5 0 100 ITM (A) 200 Fig.6. I April 1978 5 7261140 7 Z61232. 1500 ~~ 2000 dVo Cit (V/fJ s ) 1500 1\ 1\ , dt dVo ~ , (V/fJ S ) " 1000 , 1\ Tj=12S0C f-+- 1\ \ \ 1\ , 1\ \ 1000 '\ I\. ~ I\. '\ I'\. 500 ~ '\ " 500 , 1"....... "" o o so so ~ ~(%)100 VDRMmax Fig. 8 Maximum rate of rise of off-state voltage that will not trigger any device (exponential method) as a function of applied voltage. Fig. 7 Maximum rate of rise of off-state voltage that will not trigger any device (exponential method) as a function of Tj. 7Z6,233 T I 1 'dI I Tf~50Hz f-r- H--- 50 f-f-f- - dt =100A/ps IRRM 100H- f- 200 (AI i""po.. II I J I' f7 1"" I\. 200 1"" 1,.1 V I\. ~O I.; II II I' 1 ""1-100. po.. I/IJ " 1"" 1"" 10 '" I/iJ '"" 2 00f- ~PIAV) due to switchingoff; Tj=125°C ITRM --YdIldt t IRRMY 10 I 1 I f-i- 20 f- f- ~P(AV) H-(Wli 30 1,\ 1\ " , April 19781 ( "" V I.; I"" po.. 100. p... I" JoO.,;; 1\ \ 1\ 1\ 1p~0 ~ ~O? VRWM =100V I"'i I': Fig. 9. 6 ~f- '""po.. 1'\ 1 NOMOGRAM; power loss I.." .... N lITIR~ (IA~_ f-1~0 1 1.1 1 400 "'" '" ,.. 200 j Thyristors BTW92 SERIES - - - 7272551 6 7Z72557 300 IGT (rnA) "- ..... t-... 4 200 " ""- ..... "min I" ~ '" " I" ~ '" I" 1"'- 100 2 1"'('0.,. min I" I' i""'1"!!.. ~ o a -50 50 a-50 Fig. 10 Minimum gate voltage that will trigger all devices as a function of Tj. o 50 Fig. 11 Minimum gate current that will trigger all devices as a function of Tj. 7Z59059 10 J== transient thermal impedance from junction to mounting base versus time Zthj- mb (tt/W ) /' 1 ./ _i---'""" time(s) 10 Fig. 12. April 1978 7 IOrv;:::": 300 envelope of average 10 (A) for safe operation at a given temperature, the average current envelope of successive 200 " I'.. r..... ........ I""" ........ ........... 1'0. r-- 105°C l prior to starting r-.. I~ '" I" ............ ........... """ r--. r- -- "'"'- 10 envelope of average IO~_""'"' 10 (A) t " ........ " ~ 1 I 1''- "' ~SoC 10 ~mJ "" Tj = Tmb= 65°C I I prior to starting ...... " ........ ......." ........ ....... '" ~soC --.. ...... "" ........... ---. :- 10 Fig. 13 Limits for starting or inrush currents. April --+ for safe operation at a given temperature, the average current envelope of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature 200 8 time(s) 7Z61145 300 100 Io ~ ........T j = Tm b=6SoC 85°C 100 --+ cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature "" " -; 7Z61146 19781 ( time(s) BTX18 II II SERIES SILICON THYRISTORS The BTXlSseries is a range of p-gate reverse blocking thyristors. in a TO-5 metal envelope, intended for use in general low power applications up to 1 A average onstate current QUICK REFERENCE DATA VRWM BTXlS-100 200 300 400 500 max. 100 200 300 400 500 V Crest working off-state voltage VDWM max. 100 200 300 400 500 V Average on-state current up to Tcase = 105 °C IT(AV) max. 1.0 A IT(AV) max. 250 rnA Non -repetitive peak on - state current t = 10 ms ; T j. = 125 oC prior to surge ITSM max. 10 A Junction temperature max. 125 oC Crest working reverse voltage Tamb = 60 °C; in free air Tj MECHANICAL DATA Dimensions in mm Anode connected to the case TO-39 t-D==~~~~ = 9 8.5 max a L = L 1_ 12.7 min 6.6 ..... max _ 9.4_ max Acce ssories supplied on request: 56218; 56245. August 1972 II _I 7Z61386 BTX18 SERIES II " All information applies to frequencies up to 400 Hz RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134) ANODE TO CATHODE BTX1S-100 200 300 400 500 Voltages 1) Continuous reverse voltage VR max. 100 200 300 400 500 V c.rest working reverse voltage VRWM max. 100 200 300 400 500 V Repetitive peak reverse voltage (6 = 0.01; f = 50 Hz) VRRM max. 120 240 350 500 600 V Non-repetitive peak reverse voltage (t:::; 10 ms) VRSM max. 120 240 350 500 600 V Continuous off -state voltage Vo max. 100 200 300 400 500 V Cre st working off - state voltage \ VOWM max. 100 200 300 400 500 V Repetitive peak off-state voltage (6 = 0.01; f =: 50 Hz) VORM max. 120 240 350 500 600 V 2 ) Non-repetitive peak off-state voltage (t:::; lO ms) VOSM max. 120 240 350 500 600 V 2 ) Currents Average on-state current (averaged over any 20 ms period) up to Tease = 105 oC IT (AV) max. 1.0 A IT(AV) max. 250 rnA On - state current (d. c. ) T case = 100 oC IT max. 1.6 A R. M. S. on -state current IT(RMS) max. 1.6 A Repetiti ve peak on - state current ITRM max. 10 A Non-repetitive peak on -state current ( t = 10 ms, half sinewave) ITSM max. 10 A at T arnb= 60 °c 1) These ratings apply for zero or negative bias on the gate with respect to the cathode, and when a resistor R ~ 1 kS1 is connected between gate and cathode. 2) The device is not suitable for operation in the forward breakover mode. 2 September 1971 BTX18 SERIES RATINGS GATE TO CATHODE (with 1 kQ resistor between gate and cathode) Voltages Forward peak voltage max. 10 V Reverse peak voltage max. 5 V max. 0.2 A Current Forward peak current Power dissipation Average power dissipation (averaged over any 20 ms period) PG(AV) max. 0.05 W Peak power dissipation PGM max. 0.5 W TE MPERA TVRES Storage temperature Junction temperature Tstg -55 to +125 °c Tj max. 125 °c 10 °c/w Rth j-a 200 °c/w Zth j-c 2.5 oc/w THERMAL RESISTANCE From junction to case Rth j-c From junction to ambient Transient thermal resistance (t = 10 ms) CHARACfERISTICS ANODE TO CATHODE Voltages BTX 18 -100 200 300 400' SOO On-state voltage IT = 1.0 A; Tj = 25 1) °c < 1.5 1.5 1.5 1.5 1.5 V Rate of rise of off-state voltage that will not trigger any device RGK = 1 kQ; Tj = 125 oC See page 6 Currents Peak reverse current VRM = VRWMmax; Tj = 125 °c < 800 400 275 200 160 IlA = 125 oc < 800 400 275 200 160 IlA Peak off - state current VDM = VDWMmax; Tj 1) VT is measured along the leads at 1 em from the case. September 1971 IJ II 3 BTX18 SERIES CHARACTERISTICS (continued) Latching current; Tj = 125 0C typo 10 rnA < 5.0 I).1A. 1) VGT > 2.0 V VGO < 200 mV IGT > 5.0 rnA tq typo 20 Ils tq typo 35 IlS Holding current; T j = 25 0C GATE TO CATHODE Voltages = 25 °c Voltage that will not trigger any device; Tj = 125 °c Voltage that will trigger all devices; Tj Current Current that will trigger all devices; Tj SWITCHING = 25 oc CHARAcrERISTIC~ Turn off time when switched from IT = 300 rnA to IR = 175 rnA; Tj = 25 0 C Tj = 125 0c NOTES 1. When using a soldering iron the thyristor may be soldered directly into the circuit, but the heat conduction to the junction should be kept to a minimum by using a thermal shunt. 2. Thyristors may be dip soldered at a solder temperature of 245 oc, for a maximum soldering time of 5 seconds. The case temperature during dip soldering must not at any time exceed the maximum storage temperature. These recommendations apply to a thyristor mounted flush on a board with punched-through holes, or spaced 1. 5 mm above a board having plated-through holes. 3. Care should be taken not to bend the leads nearer than 1. 5 mm from the seal. 1) Measured under the following conditions: Anode supply voltage = +6.0 V. Initial on - state current after gate triggering = 50 rnA. The current is reduced until the device turns of. 4 II I September 197: BTX18 II SERIES 7Z10300 2 3 Ptot (W) ~I--- I I -t---!S I I I I L C7) . Q) '!"'1 t---~r- C'\i r'>v1J Il 1--+-- i JII 1/'1 r) 'Jil 1/ '" ~, II rJJ o J ~ I'- I'- IL I'- ~Oo IL I"'-C'/Ip I -,...:: ,I V -~I'- I- '" +_+++ t\. 1 I'- ~ r-. -- 1 ITAV (A) i I\. l' l' t"- r-... ~ ..... t-.. I -1'00. for operation in this area .~ refer to curve below 0 I\. 1', t"'- I ~ I ..... i"'r-.., j 1\ ~ "" 2%,IW 105 ' ~d °0 I'- <:'//i t---t---I-I'\~_ ~ J l- \C\~ I'-I'-~Oo //1/ lO~ .,......" //11'" '/ -\1J ~ .. ~, a. ",POC.I r/l/ I II 1-11-1--- J J 111/11 -- \ I\. i"'" 115 , ""1\..• 1\..t.1\., ........ !" -- ~ I' ..... ~t"'- "I\.1\..~ " 1-1- .l\,. 1"-- 50 Tamb (Oe) 20 95 -, -1 - I I ) ,-- interrelation between the power (deri ved from the left hand graph) and the max. allowable temperatures I'- If I111 1/'1 I II II 1---1-. I-t--- "ti 1.6 -I--- I---ot--- +- - v· 1 1.9 I i I I 2 IC\ Form factor a-4 2.8 2.2 Condo angle 0<" 30 0 60 0 90 0 120 0 180 0 ~~ '1"'" !=II. 125 100 7Z1030u 1 0.4 d.c. -l-- ITAV 0:1.6 (A) 1.9 ~ 0.3 ,. .. _ t- 2.2 2. -+-- ~ • ~ 4 0.2 0.1 I 50 June 1969 II II 5 BTX18 1000 II II SERIES RGK= lk.!1 7210308 max. rate of rise of forward off-state voltage not to trigger any device against junction temperature ~ dVo --at II I I I I (V/ l-1s) I 100 7Z10309 __ max. rate of rise of forward off-state voltage not to trigger t-'---+--t~ , -t-+-~r r- - any device plotted against gate to cathode resil~rnce 1000 T·=125°C J-~-- ~ dVo -at r- ~_ -r--~ It 1\ (V1~s) t---- I ~ \ Il 100 -H t-t- t-t- I' +{ _\L~ I! I I i"'i'" 1\-i\ I "- -~ --1- -- t- -- I_ ())Q.t "'l- I-r--r-- ~ I 10 10 ~~ -;'::-rrISS; ~f= ~~ I Ii ! i I J I i ! I I i I Ii i 50 1 ~ 11 I ': ! 1 I I ! i I II i I ! I 100 Tj (OC) 150 7Z10301 typical turn off time when switched fr om IT = 300 rnA t o IR = 175 rnA versus junct ion temperature 2.0 10 50 6 II 100 Tj (Oe) 150 II June 1969 BTX18 II SERIES 7ZI0305 6 7ZI0303 t--t--t-+H++H++~~"rHH'++'+"+H~rH++H Gate characteristics ~-1with curves r-r-ll'~R= VFG t--PGAV:r-~h-005WI-I-- r , I--~' ._~\ ( V) Ll~ 4 PGM max =0.5W VFG ± min. gate current to trigger all devices at T = ~- (V) t--t--t-~+H~~-+H~H+H+~+H~ \ 4 -I- 1\, \1 , 3~m2i~n~.gaS9t:e~vo~1~t_f~5,al!E81tE8t~r8 area of certain triggering ~ \1 age to trigg~+ all devices ~ \1 h-r..,...,...,rr-r-r-riH.',IlH +t~ -1-1\ -r ~ Ru I,{') +,,0 -t-++-+ N rt+ G rr~' I ....T 11,{') r~ in It- t~+' -tff: \ :\ , 2 \ 6=1.0 I" /.l I ... ~ 1"' t--~ .......... ...... ... 1-'" 1..-1""'" Vvi', ~ IFG (rnA) 100 2 7ZI030? Tj = 25 to 125°C 8 , I IT (A) 6 ~ i~C5) ~ .+ . 4 +H=-:= max. gate voltage not to trig ger any device at Tj =125°C i"" 50 <¥ ' / 1+'±:: ~ ... ..... ' t- ~r-: '~ltt ;j~ '+ l~ ~ + ~:t -+ 2 .l- ++::..o!"'" + ~.-l. 2 VT (V) 3 4 IFG (rnA) 6 BTX18 SER1ES 100 II II 7Z 10302 ....- 1--- t- Zth j-c (OCI W) transient thermal resistance from junction to case versus time I, II ! 10 .... r'" ~ I ~ _.- II I I II I I f-- time (s) 10 7Z103062. 30 I max. permissible non repetitive r. m. s on -state current I I ITS(R MS) (A) .. -f- 20 '-'---- t- Tj =125°C (prior to surge)1\ , 1\ I'\. "..... 10 ""- ~ 'to-. -l"- i-... I I 1 , ! o o ' i 1 I I ; I 5 m duration of surge (ms) 8 II 11 June 1969 _ _ _ _J BTY79 SERIES THYRISTORS Also available to BS9341-F001 to F009 Silicon thyristors in metal envelopes, intended for use in power control circuits (e.g. light and motor control) and power switching systems. The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTY79-400R to 1000R. QUICK REFERENCE DATA BTY79-400R Repetitive peak voltages V DR MIV R RM max. 1000R 1000 V 400 Average on-state current 'T(AV) max. 10 A R.M.S. on-state current 'T(RMS) max. max. 'TSM 150 A Non-repetitive peak on-state current MECHANICAL DATA 16 A Dimensions in mm Fig. 1 TO-64: with 10-32 UNF stud (¢ 4,83 mm). 4,83 max t 1,98J _I 9,3 max ... 3,5_ max _10,28_ __ 11,5 ____ II max 21,72 -------i~~1 10,72 max max Net mass: 7 g Diameter of clearance hole: max. 5,2 mm Accessories supplied on request: 56295 (PTFE bush, 2 mica washers, plain washer, tag) 56262A (mica washer, insulating ring, plain washer) 7Z6590S Torque on nut: min. 0,9 Nm (9 kg cm) max. 1,7 Nm (17 kg cm) Supplied with devic.e: 1 nut, 1 lock washer Nut dimensions: across the flats: 9,5 mm April 1978 BTY79 SERIES l~_ __ RATINGS Limiting values in accordance with .the Absolute Maximum System (IEC 134) Anode to cathode BTY79-400R Non-repetitive peak off-state voltage (t';;;;; 10 ms) VOSM** max. Non-repetitive peak reverse voltage (t';;;;; 5 ms) 500 500R 600R 800R 1000R 1100 1100 1100 1100 V VRSM max. 500 600 720 960 1100 V Repetitive peak voltages VORMNRRM max. 400 500 600 800 1000 V Crest working voltages VOWMNRWM max. 400 500 600 800 1000 V* 10 A Average on-state current (averaged over any 20 ms period) up to T mb = 85 oC IT(AV) max. R.M.S. on-state current 'T(RMS) max. 16 A Repetitive peak on-state current 'TRM max. 75 A 'TSM 12 t max. 150 A max. 112 A 2 s dlT/dt max. 50 A!lls PG(AV) max. 0,5 W PGM max. 5W Non-repetitive peak on-state current; t = 10 ms; half sine-wave; Tj = 125 0C prior to surge; with reapplied V RWMmax 2 1 t for fusing (t = 10 ms) Rate of rise of on-state current after triggering with IG = 150 mA to 'T = 30 A; dlG/dt = 0,25 A/IlS Gate to cathode Average power dissipation (averaged over any 20 ms period) Peak power dissipation Temperatures Storage temperature T stg Junction temperature Tj -55 to +125 °C max. 125 °C THERMAL RESISTANCE From junction to mounting base Rthj-mb 1,8 0C/W From mounting base to heatsink with heatsink compound Rthmb-h 0,5 oCIW From junction to ambient in free air Rthj-a 45 oCIW Transient thermal impedance (t = 1 ms) Zthj-mb 0,1 oCIW * To ensure thermal stability: Rth j-a < 4 oCIW (d.c. blocking) or < 8 oCIW (a.c.). For smaller heatsinks Tj max should be derated. For a.c. see Fig. 3. ** Although not recommended, higher off-state voltages may be applied without damage, but the thyristor may switch into the on-state. The rate of rise of on-state current should not exceed 100 A/IlS. 2 AP'il19781 ( J ~~ ---- BTY79 SERIES CHARACTERISTICS Anode to cathode On-state voltage IT = 20 A; Tj = 25°C VT < 2 V* Rate of rise of off-state voltage that will not trigger any device; exponential method; VD = 2/3 VDRMmax; Tj = 125°C dVo/dt < 50 V/J1.s Reverse current VR = VRWMmax; Tj = 125°C IR < 3 mA Off-state current VD= VDWMmax; Tj = 125°C 10 < < < 150 mA Voltage that will trigger all devices V D = 6 V; Tj = 25°C > 1,5 V Voltage that will not trigger any device VD = VDRMmax; Tj = 125°C < 200 mV > > 30 mA < 1,5 J1.S 0,2 J1.S Latching current; Tj = 250C IL Holding current; Tj = 25°C IH 3 mA 75 mA Gate to cathode Current that will trigger all devices VD = 6 V; Tj = 25°C On request (see ordering note on page 4) 20 mA Switching characteristics Gate-controlled turn-on time (tgt = td + t r ) when switched from Vo = 800 V to IT = 25 A; IGT = 250 mA; dlG/dt = 0,25 A/J1.s; Tj = 25°C typo r Vo a ~l --t--t-=--- \ Fig. 2 Gate-controlled turn-on time definitions. * Measured under pulse conditions to avoid excessive dissipation. 3 l_ _ __ BTY79 SERIES OPERATING NOTE The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there is no strain on them. During soldering the heat conduction to the junction should be kept to a minimum. ORDERING NOTE Types with low gate trigger current, IGT > 20 rnA, are available on request. Add suffix A to the type number when ordering: e.g. BTY79A-400R. 30 p (W) 20 n __ I Oi 7Z67629.1 interrelation between the power (derived from the left-hand graph) and the maximum permissible temperatures IT(RMS) a=--IT(AV) 1_ a 300 4 600 2,8 900 2,2 t-t-t- r- 2,8 1200 1,9 a=4 1800 1,57 J II Oi II 10 V II 1/11 J 'r-2/ j II' 1,6 j / 1/ I'. 1/ / I"" I II I' ro... I / I"' ~ ,$ I..... "" j ~V/ f" r--. i' t.... l/ ~ ~ I\, , I.... I.... 1\ l"l. ~, ,, I"' I...... " ~ 1'-0,1'" I...... l' I' I' ~ 107 ~ I\. "'" 1'.1"' r-.[""o. l.... L... ~ I' .......... ~~ ~~ r"N ~i\~ 1""-1"'"""" ~ 89 Ll I"\, --to-. /~~ I/I"" ... ~ I I\. ;--' 'I " "- "- f" /V VilLI ~ I, ~ J II J 1,9 S=1Ill~ I' 1""-[""1 II h~~ o 5 IT(AV) (A) 10 71 125 a Fig. 3 (1) T mb-scale is for comparison purposes only and is correct only for Rth mb-a"'; 6 oCIW. 4 April 1978 I( J Thyristors BTY79 SERIES ---- 7Z67630.2 300 maximum allowable non-repetitive r, m, s, on state current based on sinusoidal currents (f = 50 Hz) ITS(RMS ) (Al 200 'V\--A=-'TSM ~ - - ~- ,, 1\ ITS(RMS) time I'\. with reapplied VRWMmax , ITs M i"I ~ I' 100 ~ "' ..... ....... - lj = 125°C prior to surge t"- ~ ~ duration (s) 10 Fig. 4. 150 7Z679661 ~ II ~J 11 r- - - l j = 25°C ---lj =125°C I := I I lL typ VTI II I I I J Im~x. 'r-Lr-rVT I 100 I ~ I I!-rJ I I I( -' L# Ii 50 I,' 1/ j V j 1/ L' lL V II V ..1. ~' IL a a Ii'" 1'1/ I' ~ .~J;.-' 3 VT (V) 4 Fig. 5. 5 l_______ BTY79 SERIES 7Z67965 7Z78440 75 IGT \ \ , (rnA) \ 2 ...... , 50 i'o.. 1\ \ ...... "" \ 1\ I" min ""...... 1\ ..... ...... , , , \. \. i'o.. ...... , I' 25 , "' ..... BTY79 '" ...... BTY79A' .... I 1 o -50 o 50 o -50 f--- I' .... """ I I I I o 50 100 150 T (oC) j Fig. 6 Minimum gate voltage that will trigger all devices as a function of Tj. 6 April 1978 y Fig. 7 Minimum gate current that will trigger all devices as a function of Tj. J Thyristors BTY79 SERIES ---7Z72228 1 7272227 1 300 Tj=125°C 11 1000 1\ dVO Cit dVo (V/J.lS) Cit (V/J.ls) 750 200 \ , \ , 1\ \ , , 1\ saO , :\ 1\ 1\, 1\ " 250 , 1\ 100 , I\. I\.. 1,\ '" r..... a a , 1\ 1'\ 50 , I' a a ..... r-., 50 VOM VORMmax Fig. 8 Maximum rate of rise of off·state voltage that will not trigger any device (exponential method) as a function of Tj. (0/) 100 ° Fig. 9 Maximum rate of rise of off-state voltage that will not trigger any device (exponential method) as a function of applied voltage. 7 l______ [] BTY79 SERIES 7Z72292 75 envelope of average I,~:t 10 (A) -10 I\. " \. \. " 50 for safe operation at a given temperature, the average current envelope of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature '\.. \. I I .......... ..... i""o.. ...... 25 ..........1j =Tmb = 25°C prior to starting ..... ...... ......... l'.. ~5°c ..... ~ I' ........... ......... ....... S5°c "'-I.. .... 105 1oC i'.. ~ r-.. I" ... i""'-.... i"" ... ~ --... t-- r--- - ....... .............-~ -- 1"""1- 1-00-. ~ - 150r-__~r-~~-'-'TTTr____- '__~'-'-rTlI~____________________________~7~Z~72~2~91~, envelope of average 10 t------1I-,,-+-+-+-t-++++---I---+---1r-f-+-++-H I, ~":t (A) 1------1--'\~-+-+_+_++++----_+_--+-+-+-H-+H for safe operation at a given 1----t----+'I\IH-+-+-t+H------+---+-+-+-t-+++I ~:~p:~~!~~~~t:; sa:ce:~;~v~ur100 I'\. cycles (see drawing above) must 1-------1---+--+~_+_++++-----_+_--+-+_+-t-++H lie within the region bounded by the curve shown below for that temperature I I 1---+.......... ....3oo,d-..... --+-+-H-H~..,.... .......... lj =Tmb = 25°C prior to starting -~ 1"--_ ---- t-t-HH-t---+--t-HH-+t+t - ~ Fig. 10 Limits for starting or inrush currents. 8 April 1978 J( r--_ j Thyristors BTY79 SERIES ----150 "- Io "- 10 " R"a,. t "- '" "-"'- , " 100 "- '" ....."-1j =T mb ~ "- ........ 50 r-.... ............ .... ........... ...... 65°C " ......... ~ 8 ° "" ~7 T..,... .............. I I IIIII ° = 25 C prior to starting "'-.J I N "'-......... ..... ~mJ for safe operation at a given temperature, the average current envelope of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature I\.. ......... -10 output current I\.. (A) 7Z72290 - i"""-o.. 105°C ... .......... -....... ........... ........... ....." r- r--..... :"""-""",, 10 time (5) Fig. 11 Limits for starting or inrush currents. 7Z679691 10 ~ ~ ~ -' ,"'" ./ , ./ 10- 1 10 time (s) Fig. 12. April 1978 9 j BTY8? SERIES ----------------------------------------------------THYRISTORS Silicon thyristors in metal envelopes, intended for power control and power switching applications. The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTY87 -400R to 800R. QUICK REFERENCE DATA BTY87-400R Repetitive peak voltages max. VDRMNRRM Average on-state current 400 800 V 'T(AV} max. R.M.S. on-state current 'T(RMS} max. 25 A Non-repetitive peak on-state current 'TSM max. 140 A MECHANICAL DATA Fig. 1 TO-48: with ~ 16 A Dimensions in mm in x 28 UNF stud (¢ 6,35 mm). • 7,6 3,4 max 1/4 in x 28UNF -'1,-..1-- -If"'===~=a==r.....w --- min '\ ' H -,----t 6,35 max 124 max ~ -- I 1'1 1 H t ~12,8maxJ 9)Q{t -.1 I. \.....J 2,26_ max 1,9 1,6 ------ 22,2 max - ____ 11,5 - 1 ....- - - -..... 303 max -----t~~1 10,72 Net mass: 14 g Diameter of clearance hole: max. 6,5 mm Accessories supplied on request: 56264A (mica washer, insulating ring, soldering tag) 7Z69755.B Torque on nut: min. 1,7 Nm (17 kg cm) max. 3,5 Nm (35 kg cm) Supplied with the device: 1 nut, 1 lock washer Nut dimensions across the flats: 11,1 mm April 1978 l____ BTY87 SERIES RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134) Anode to cathode BTY87-400R 500R 600R 800R Non-repetitive peak off-state voltage (t:O:;;; 10 ms) V DSM max. 500 850 850 850 V Non-repetitive peak reverse voltage (t:O:;;; 5 ms) V RSM max. 500 600 850 960 V Repetitive peak voltages VDRMIVRRM max. 400 500 600 800 V Crest working voltages V DWMIV RWM max. 400 500 600 800 V * Average on-state current (averaged over any 20 ms period) up to T mb = 52 °C . at T mb = 85 °C IT(AV) max . max. R.M.S. on-state current IT(RMS) max. 25 A ITRM max. 140 A ITSM 12 t max. 140 A max. 100 A 2 s dlT/dt max. VRGM max. 5 V Repetitive peak on-state current Non-repetitive peak on-state current; t = 10 ms; half sine-wave; Tj = 125 0C prior to surge; with reapplied VRWMmax 2 1 t for fusing (t = 10 ms) Rate of rise of on-state current after triggering with IG = 325 mA to IT = 50 A ~T(AV) 16 A 10 A 20 A/Ils Gate to cathode Reverse peak voltage Average power dissipation (averaged over any 20 ms period) PG(AV) max. 0,5 W Peak power dissipation PGM max. 5W Storage temperature T stg -55 to + 125 oC Junction temperature Tj max. Temperatures 125 oC THERMAL RESISTANCE From junction to mounting base Rth j-mb From mounting base to heatsink with heatsink compound Rth mb-h Transient thermal impedance (t = 1 ms) Zth j-mb 1,6 0C/W 0,2 0C/W 0,09 0C/W OPERATING NOTE The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there is no strain on them. During soldering the heat conduction to the junction should be kept to a minimum. * To ensure thermal stability: Rth j-a < 4,5 oC/W (d.c. blocking) or < 9 °C/W (a.c.). For smaller heatsinks Tj max should be derated. For a.c. see Fig. 3. 2 April 1978 j( J Thyristors SlY87 SERIES CHARACTERISTICS Anode to cathode On-state voltage IT = 50 A; Tj = 25 °C VT < 3 V* Rate of rise of off-state voltage that will not trigger any device; exponential method; Vo = 2/3 VORMmax; Tj = 125 °C dVo/dt < 20 V//ls IR < 3 mA 10 < IL typo IH typo VGT > 3,5 V VGD < 200 mV IGT > 65 rnA tgt typo Reverse current VR = VRWMrnax; Tj = 125 °C Off-state current Vo = VOWMrnax; Tj = 125 °C Latching current; Tj = 25 oC Holding current; Tj = 25 0C 3 mA 20 mA 10 mA Gate to cathode Voltage that will trigger all devices Vo = 6 V; Tj = 25 °C Voltage that will not trigger any device Vo = VORMmax; Tj = 125 °C Current that will trigger all devices V 0 = 6 V; Tj = 25 °C Switching characteristics Gate-controlled turn-on time (tgt = td + t r ) when switched 'from Vo = 400 V to IT = 50 A; IGT = 200 mA; Tj = 25 °C t 2 ./lS T IT • I Vo o ~l ---+---+-=--- ---tct---' t, ------tgt - 1- - \ Fig. 2 Gate-controlled turn-on time definitions. * Measured under pulse conditions to avoid excessive dissipation. April 1978 3 l_ _ __ BTY87 SERIES 7Z62027 60 interrelation between the power (derived from the !lift hand graph) and the max. allowable temperatures condo form angle factor ex=300 0=4 60° 2.8 .......locigOO 2.2 oc =conduction 120° 1.9 ongle 1800 1.6 ~ P (WI I l11.9 ! ... 2.2 11 40 V 2.8 1/ J !/ 0=4 II rl I II JI I Jil r~ :/ V IJ 1.6 " " I~ 1'\ , I'\. I~ I". 1'\ i"I .p ~ I\. "'?> ",,\,6, I" j I' " '" " <- " "".... lJ:jrf·~ ~I.J ~ 6 ro- ... r°l"-... ~ .... '" """ .... ... ~ ~ I"'" roo. 1""' .... r- ... I\.~~ '" I" '\. " r-- ... 77 93 ""'- I"'" 8 .... I '" I'\. J .... """ ~ .... r- ... I , _ ~- I-,,",~~'~o I"'" ....""" q$~"O I" 1'00.. f-f-h f-rff- 1'\ 1/ IJ Ii' I\. I\. d.c:) I\. J [I f--f-- f- .... 20 I- ""'''' ,,\. " "-"" roo. roo. .... " , °°~"" 10 I T(AV) 20 109 ~ ~~ 'I~~ ° 50 125 100 Fig. 3. 7Z077761 max. pl'rmissihle non reperilive peak on-stall' current hasedoll sinusoidal CUt-rem,.; (f= 50Hz) 200 I TSM -- (A) --- v\ 7'\ ITSM t each current pulse is followed by . the crest working reverse voltage 150 100 t- -f- Tj =125°C (prior to surge) t------ l- f- 50 r - - - - ' a 3 45678910 50 number of cycles Fig. 4. 4 AP'il19781 ( 100 J ~~ STY87 SERIES - - 400 V 7Z05850 - 2. 2.02.5hg Typical turn on characteristics when switched from VO=400V or 50V respectively to I T=IA,10A or SOA Gate source SV.2SJ1 (V) 300 60 V I T= 200 (V) 50A fOA IA IT= 50A fOA -fA 40 20 100 0 o 4 2 t fflS) 2 4- 6 t Fig. 5. filS) 7Z09364 1] =25 to 125°C 200 IT (A) 150 .,..rt, 100 .Q :P: :\-. I: 50 2 4 Vr(V) 6 Fig. 6. April 1978 5 STya7 SERIES l_ _ __ 7Z05196-2 2Q25 hg 12 VFG (V) 10 'fGMmaJC -10V 1/ I/V 1/,/ 1/ ~ 1/ £ / 8 1/ IA 1/ 6 GMmox Vl V SW / ~ 1\ 1/ 1// 1/ I/I~ 1// ~v/ 1// 1/,/ 1. /~ Area uf certain triggering V I.)' "'/,VI.I 1/1/ 170'(I~ -f--f,,(', 1/ / 4 1/ 1/ 1/ V IV 1/ 2 1/ IJI"'I/ V' 1/ 1/ 1/ 1/ 1/ ~ 1/ ~('l~ ~ r/ ~ 17171/I/?lt.. /1./1/1 /QIS,/ 1/17Ld.... ... "" OS 1 ..... t- ~S 11 ""' ~ .. "" .. 1-(,""'''"ll5 IFG (A) Gate characteristics with curves ~AV=Q5W Fig. 7. 6 ., 100 ~~s. 11 1 I I 00 , I' I/./V .... 100 I'"t- 1 \_ 1 I ~I V/ I/'~.L r/I/ ~ ~""' 1 /I?}-~Q/ \/1/ \/1/1/1/ ,... .... -2A f~";1max-;.. 1//1// f'., 1\ Z 2 j Thyristors STya7 SERIES - - 1Z01314.1 (V) 2 20 60 Fig. 8. 7Z10137 10 transient thermal resistance from junction to mounting base versus time Zth j-mb (OC/W) ~i"'" 17' /~ 1 v V l,..o~ 1 time (5) 10 Fig. 9. April 1978 7 l STY8? SERIES -------------------------------------------------------------1Z09361 ~'.", of tho "'kIoo 1 0 80 I \ r\ ~ ,\ ':l I i.." V".' 10 (A) ~ AI/@rag@ output " ~~ ~~ r~ " ~ time ~~ ~~ maximum allowable starting and inrush currents for various mounting base temperalures versus time in a single phase hridge. 60 " 40 ~ J~ ...... .... Tmb=~50( """ I""" 20 85°C r-- 105°~- 10- 1 10 time (s) Fig. 10. 7Z09362 10 80 ""'" -10 of the bridQlt "\I\~ ~ ~ ~ ~ ~~ 1\"" 1\1' 10 (A) .... ",0--- '" ".... time - maximum allowable starting and inrush currents for various mounting base temperatures versus time in a three phase bridge. 60 " " .... Tmb 65° ....... "" '" ..... 85°C -- 20 o -z ~ 105°C= 10 -1 10 10 Fig. 11. 8 Apcil 19781 ( ~ ~ ~ ~ ~ ~~ i ~ '" 40 ~m time (s) j BTY91 SERIES --------------------------------------------------------THYRISTORS Silicon thyristors in metal envelopes, intended for power control and power switching applications. The series consists of reverse polarity types (anode to stud) identified by a suffix R: BTY91-400R to 800R. QUICK REFERENCE DATA BTY91-400R Repetitive peak voltages max. VDRMIVRRM Average on-state current 400 800 V IT(AV) max. 16 A R.M.S. on-state current IT(RMS) max. 25 A Non-repetitive peak on-state current ITSM max. 200 A MECHANICAL DATA ~ Fig. 1 TO-48: with Dimensions in mm in x 28 UNF stud (¢ 6,35 mm). -. ___ 4,2 __ 3,2 _ 7,6 max 3,4 max 1/4 in x 28 UNF -IF===~ -'--.. --I ,..,[..- =a=-r-1I1H 6,35 max t 124max '\ -' min ' -- I-~J,...--_-, ~ --'kj ~It:=r-I~~~ H I \....J 2,26_ max --- -12,8max- :R r 1,9 1,6 -22,2max- ___ 11,5 _ 1 .....1 - - - - - - 303 max -------i~~1 10,72 Net mass: 14 g Diameter of clearance hole: max. 6,5 mm Accessories supplied on request: 56264A (mica washer, insulating ring, soldering tag) 7Z69755.B Torque on nut: min. 1,7 Nm (17 kg cm) max. 3,5 Nm (35 kg cm) Supplied with the device: 1 nut, 1 lock washer Nut dimensions across the flats: 11,1 mm 'I Apri11978 l_ _ __ BTY91 SERIES RATINGS Limiting values in accordance with the Absolute Maximum System (I EC 134) Anode to cathode BTY91-400R 500R 600R 800R Non-repetitive peak off-state voltage (t';;;;; 10 ms) VOSM max. 500 850 850 850 V Non-repetitive peak reverse voltage (t ~ 5 msl V RSM max. 500 600 720 960 V Repetitive peak voltages VORMIVRRM max. 400 500 600 800 V Crest working voltages VOWMIVRWM max. 400 500 600 800 V* Average on-state current (averaged over any 20 ms period) up to T mb = 77 °C at T mb =85 °C IT(AV) IT(AV) max. max. R.M.S. on-state current IT(RMS) max. 25 A ITRM max. 200 A ITSM 12 t max. 200 A 12 t for fusing (t = 10 ms) max. 200 A 2 s Rate of rise of on-state current after triggering with I G = 200 mA to IT = 50 A dlT/dt max. Repetitive peak on-state current Non-repetitive peak on-state current; t = 10 ms; half sine-wave; Tj = 125 0C prior to surge; with reapplied V RWMmax 16 A 14 A 20 A//ls Gate to cathode Reverse peak voltage VRGM max. 5 V Average power dissipation (averaged over any 20 ms period) PG(AV) max. 0,5 W Peak power dissipation PGM max. 5 W Storage temperature Tstg -55 to Junction temperature Tj max. Temperatures + 125 °C 125 °C THERMAL RESISTANCE From junction to mounting base Rth j-mb 1,6 °C/W From mounting base to heatsink with heatsink compound Rth mb-h 0,2 0C/W Transient thermal impedance (t = 1 ms) Zth j-mb 0,09 °C/W OPERATING NOTE The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there is no strain on them. Ouring soldering the heat conduction to the junction should be kept to a minimum. * To ensure thermal stability: Rth j-a < 4,5 °C/W (d.c. blocking) or < 9 °C/W (a.c.). For smaller heatsinks Tj max should be derated. For a.c. see Fig. 3. 2 April 1978 j( j Thyristors BTY91 SERIES --CHARACTERISTICS Anode to cathode On-state voltage IT = 50 A; Tj = 25 °C VT < 2 V* Rate of rise of off-state voltage that will not trigger any device; exponential method; VD = 2/3 VDRMmax; Tj = 125 °C dVO/dt < 20 V/lJ,s IR < 3 mA Reverse current VR = VRWMmax; Tj = 125 °C Off-state current Vo = VOWMmax; Tj = 125 °C Latching current; Tj = 25 0C Holding current; Tj = 25 °C ID < IL typo 20 mA 'H typo 10 mA 3 mA Gate to cathode Voltage that will trigger al/ devices V D = 6 V; Tj = 25 °C Voltage that will not trigger any device VD = VDRMmax; Tj = 125 °c Current that will trigger all devices V D = 6 V; Tj = 25 °C > 3 V < 200 mV > 40 mA Switching characteristics Gate-controlled turn-on time (tgt = td + t r ) when switched from VD = 400 V to 'T = 10 A; IGT = 200 mA; Tj = 25 °C typo 2 IJ,S T i Vo o~l--+-~ IGT o~+~----------~Fig. 2 Gate-controlled turn-on time definitions. * Measured under pulse conditions to avoid excessive dissipation. April 1978 3 l_ _ __ BTY91 SERIES 60 . -____________________~~~~~~~----------~7Z~~101~345~29 (W) a= 300' bOo 900 a = 4 2.X 2.2 1200' 1.'1 IXoa 1.6 + 1-+-+-+-1I-1--4L-+-+'~ U Cando Farm angle factar Ptot ~ r++1-f-~~~++4-~+4~S'"~~~~u~,IL+~~~~~~~~ l.I ~~~ o Tmb (OC) r~.=,CrO,n~d_uc.t~io_nroa,n~~,e~_+~~4-_~~+~~~'~?)~-~~~ _1~4-~-+-+-~~~~~ 40 0""" interrelatian between the power I\.?!. (deri vcd from the left hand graph) H-+-+-+-P'l;.lol.,'L f- and the max. allowable-tempera1-+-+-+-1.......~T\."~.'-f- lures. , ,~~~~ ~ ~~ 1'1I ITAV~A) 10 ~O iO ~125 Tamb(o ... 100 Fig. 3. 7Z0777?1 max. permissible non repetitive peak on-Slale current based on sinusoidal currents (f = 50 Hz) 200 ITSM -- (A) IV\ 1\ ITSM t each current pulse is follawed by the c rest working reverse voltage 150 '-- .... .... 100 -!i. =125°C (prior - .... to surgeL I-~ I-~ 50 o 3 4 5 6 769 10 Fig. 4. 4 April 1978J[ 50 100 number of cycles J Thvristors BTY91 SERIES --400 Typical turn on characteristics when switched from VD =400V or SOV respectively to' IT =lA, 'lOA or SOA Gate source 5 V 2S.n. V (V) 300 60 V (V) IT= 200 SOA 10A lA IT= SOA 10A 1A 40 20 100 4 2 0 o t(/-Is) 2 4- t(/-IS) 6 Fig. 5. 7Z09371 1)=25 to 1250C 200 IT (A ) & 150 E ~ >( E 100 50 2 4 \'-reV) 6 Fig. 6. April 1978 5 l_______ BTY91 SERIES 7Z05187-22025ja 12 VFG (V) 10 VFGMmax -KJV ,,,- "- "" 1't"""1\ N"""~ " " "1"- "'''\ """., I" " "'" ,""" 8 '" \ PGMmax=5W / ,"\. "''\ "- I" I'\. 6 , '" ~ " 1'\ " 1'\ 1'\ " '" " '" " "" "'" " " ""~ '" "" " " 1"-" ,""''' "'""'''"'~1'\' IFGMmax = 2A,.... " Area of certain triggerln::l 1"Of.tt. ""' '" "', " "1"- 1"-" " """ 1"-""''' "', " " "'''NiilII.. "'" '" " " "'I'.. ~7- t~r ~'" "" '" , " "-" :'\'\ 1"- " "- "1", ~~~ " " :-."" """ r-- .... Q.2S "1"- 1"- " "- "'" 1'\ ~ '1l" ~It ~ I'\~ 1'\1'\ 1'\1'\r\\. '\..:1\.. I~ ~ 1'\ ~ "l"- ~ ,~ ~ ". "'" r-- 'I ('~('l I"~ ,,~~ ~~~ ~~ :""I -~ ' .... ... l- I I ~ I-- 'pS ~- II ,.. r-tI Q5 1 15 Gate characteristics with curves ~AV =O,SW Fig. 7. 6 April 19781 ( I I I I I I I I ~cf r;;:"",,-~([ f'.. l"\. I"!'. I'\. 'f'.. 2 II r-o,,:.J' '\. :'-,~~'\ I- ''''' -- -I- -"" 2 j Thyristors BTY91 SERIES ----------------------------------------------------~ Min. gate current to trigger all devices at 77 ," ° 10 ~ + 3 ... I l'lr ~ (J (J t,1 ° 10 <'iI SO? + 10 I I ~in. gate voltage to trigger all devices 2 Area of possible triggering Max. gate voltage not to. trigger any deVIce at 1] = 55°C + 125°C 40 20 60 80 100 IFG (rnA) 120 Fig. 8. 7Z10137 10 tranSient thermal resistance from junction to mounting base versus time ~th j-mb (OCIW) ~ -- . io""" , ./ 1 ,/ V l/'" + 1 time (s) 10 Fig. 9. April 1978 7 l_ __ BTY91 SERIES 150 (~~ 100 7Z09368 1 1---+--+-+-+-++-++4---1 0 ~ Average output ~"I\ f';;:f:~ (~\#. bridgo "X time ~9 ~9 ~ ~ 1>--t---I ~--t--~H-t-I+If+_---4 ::--... ) -,.sj ~ -,.sj ~ ~~ ~~ b---+-I--+-t-+H-If+-----t maximum allowable starting and inrush cur - rents for various mounting base temperatures versus time in a single phase bridge. J) 1 r-.. ..... ...... .... ......... ..... 50 ...... ........ ~ I"'- -~ ......... -- 0 -2 10 ~ -I'- Tmb=65°C 85°C .... 10~o~+- 10- 1 10 10 2 tlme(s) Fig. 10. 7Z09310 150 10 10 ""\, of the bridge ~nt \I\,\~ '"", ,\" (A) .....10 ~~ ~ ~ ~ ~~ 'V .... !'I... 100 "I" ["'.,. time I'- " .... ........ " 50 ....... maximum allowable starting and inrush currents for various mounting base temperatures versus time in a three phase bridge, ~~ ~ ~ ~~ ........ I'.. ""'"....... ........ .... r-... .... ..... r'" ~ r---... r-- Tmb=65°C ... ........ 85°C I 10~~ I ~i 10 Fig. 11. 8 AP'il19781 ( time(s) fo- TRIACS F _ _ _ _J GENERAL EXPLANA TORY NOTES TRIACS SWITCHING CHARACTERISTICS Triacs are not perfect switches. They take a finite time to go from the off to the on-state and vice-versa. At frequencies up to about 400 Hz these effects can often be ignored, but in many applications involving fast switching action the departure from the ideal is important. Gate-controlled turn-on time Anode current does not commence flowing at the instant the gate current is applied. There is a period which elapses between the application of gate current and the onset of anode current known as delay time (td)' The rise time of anode current is known as tr and is measured as the time for the anode voltage to fall from 90% to 10% of its initial value. The conditions which need to be specified are: a) Off-state voltage (VDI. b) On-state current (IT). c) Gate trigger current (lG) - high gate currents reduce turn-on time. d) Rate of rise of gate trigger current (dIG/dt) - high values reduce turn-on time. e) Junction temperature (Tj) - high temperatures reduce turn-on time. The waveforms are shown in the following diagram: t IT • r , r I O~-r------4--+~----- I-td- t , I-~tgt-- I!l7 o~ ~ \ December 1979 \.:lC''ICMJ-\L EXPLANATORY NOTES l_____ COMMUTATION dVcom/dt When a triac has been conducting current in one direction and is then required to block voltage in the other, it is faced with a difficult task. Reverse recovery current adds to the capacitive current from the reapplied dVo/dt in such a fashion that the device's ability to withstand high rates of reapplication of voltage is impaired. For this reason the commutation dVo/dt is invariably worse than the static dVo/dt. The conditions which need to be specified are: a) R.M.S. current (IT(RMS)) - high currents make commutation harder. b) Re-applied off-state voltage (Vol. normally VORM max. - high voltage will make commutation harder. c) Temperature (Tj or T mb) - high temperatures make commutation harder. d) -dl/dt - high rates of change make commutation harder. The waveforms are shown in the following diagram: v 2 December 1979 ( Triacs j - - - - GENERAL EXPLANATORY NOTES MOUNTING INSTRUCTIONS FOR TO-220 ENVELOPES GENERAL DATA AND INSTRUCTIONS FOR HEATSINK OPERATION General rules 1. First fasten the devices to the heatsink before soldering the leads. 2. Use of heatsink compound is recommended. 3. Avoid axial stress to the leads. 4. Keep mounting tool (e.g. screwdriver) clear of the plastic body. 5. It is recommended that the circuit connections be made to the leads rather than direct to the heatsink. Heatsink requirements Flatness in the mounting area: 0,02 mm maximum per 10 mm. Mounting holes must be deburred. Heatsink compound Values of the thermal resistance from mounting base to heatsink (Rth mb-h) given for mounting with heatsink compound refer to the use of a metallic oxide-loaded compound. The compound should be an electrical insulator and be applied sparingly and evenly to both interfaces. Ordinary silicone grease is not recommended. For insulated mounting, the compound should be applied to the bottom of both device and insulator. Mounting methods for thyristors and triacs 1. Clip mounting. Mounting by means of spring clip offers: a. A good thermal contact under the crystal area, and slightly lower Rth mb-h values than screw mounting. b. Safe insulation for mains operation. Recommended force of clip on device is 120 N (12 kgfl. 2. M3 screw mounting. Care should be taken to avoid damage to the plastic body. It is therefore recommended that a crossrecess pan-headed screw be used. Do not use self-tapping screws. Mounting torque for screw mounting: Minimum torque (for good heat transfer) Maximum torque (to avoid damaging the device) 0,55 Nm (5,5 kgcm) 0,80 Nm (8,0 kgcm) N.B.: When a nut or screw is not driven direct against a curved spring washer or lock washer, the torques are as follows: Minimum torque (for good heat transfer) Maximum torque (to avoid damaging the device) 0,4 Nm (4 kgcm) 0,6 Nm (6 kgcm) N.B.: Data on accessories are given in separate data sheets. 3. Rivet mounting (only possible for non-insulated mounting) Devices may be rivetted to flat heatsinks; such a process must neither deform the mounting tab, nor enlarge the mounting hole. December 1979 3 llt:.Nt:.HAL EXPLANATORY NOTES l_ _ __ GENERAL DATA AND INSTRUCTIONS FOR HEATSINK OPERATION (continued) Thermal data clip mounting Thermal resistance from mounting base to heatsink with heatsink compound, direct mounting screw mounting Rth mb-h 0,3 0,5 °C/W without heatsink compound, direct mounting Rth mb-h 1,4 1,4 °C/W with heatsink compound and mica insulator 56369 Rth mb-h 2,2 °C/W with heatsink compound and alumina insulator 56367 Rth mb-h 0,8 °C/W Lead bending Maximum permissible tensile force on the body, for 5 seconds is 5 N (0,5 kgf). The leads can be bent through 900 maximum, twisted or straightened. To keep forces within the abovementioned limits, the leads are generally clamped near the body. The leads should neither be bent nor twisted less than 2,4 mm from the body. Soldering Lead soldering temperature at 4,7 mm from the body; tsld < 5 s: Tsld max = 275 °C. Avoid any force on body and leads during or after soldering: do not move the device or leads after soldering. It is not permitted to solder the metal tab of the device to a heatsink, otherwise its junction temperature rating will be exceeded. 4 December 1979 ( j ~~ ---- GENERAL EXPLANATORY NOTES INSTRUCTIONS FOR CLIP MOUNTING (TO-220 envelopes) Direct mounting with clip 56363 1. Place the device on the heatsink, applying heatsink compound to the mounting base. 2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to 300 to the vertical (see Fig. 1). 3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the heatsink. The clip should bear on the plastic body, not on the tab (see Fig. 1(c)). e ~~I 1 \ _, .., m --) ... / l___ TO-220 I 7Z75L.38 (b) (c) Fig. 1 (a) Heatsink requirements; (b) mounting (1 = spring clip); (c) position of the device (top view). (a) Insulated mounting with clip 56364 With the insulators 56367 or 56369 insulation up to 2 kV is obtained. 1. Place the device with the insulator on the heatsink, applying heatsink compound to the bottom of both device and insulator. 2. Push the short end of the clip into the narrow slot in the heatsink with the clip at an angle of 100 to 300 to the vertical (see Fig. 2). 3. Push down the clip over the device until the long end of the clip snaps into the wide slot in the heatsink. The clip should bear on the plastic body, not on the tab (see Fig. 2(c)). There should be minimum 3 mm distance between the device and the edge of the insulator for adequate creepage. 7Z75437.1 (a) (b) (c) Fig. 2 (a) Heatsink requirements; (b) mounting (1 = spring clip, 2 = insulator 56369 or 56367); (c) position of the device (top view). December 1979 5 \..j t:.1\I t:. ti PI. L EXPLANATORY NOTES l____ INSTRUCTIONS FOR SCREW MOUNTING (TO-220 envelopes) Direct mounting with screw • into tapped heatsink cross-recess pan-head screw; M3 ( 6 mm long) shake-proof lock washer; internal teeth TO-220 device heatsink; hole drilled 2,70 mm dia D7509A • through heatsink with nut cross-recess pan-head screw; M3 (8 mm long) TO-220 device heatsink; hole drilled for M3 clearance 6 December 1979 f M3 hexagon nut D7510A j Triacs GENERAL EXPLANATORY NOTES ---MOUNTING CONSIDERATIONS FOR STUD-MOUNTED TRIACS Losses generated in a silicon device must flow through the case and to a lesser extent the leads. The greatest proportion of the losses flow out through the case into a heat exchanger which can be either free convection cooled, forced convection or even liquid cooled. For the majority of devices in our range natural convection is generally adequate, however, where other considerations such as space saving must be takem into account then methods such as forced convection etc. can be considered. The thermal path from junction to ambient may be considered as a number of resistances in series. The first thermal resistance will be that of junction to mounting base, usually denoted by Rth j-mb' The second is the contact thermal resistance Rth mb-h and finally there is the thermal resistance of the heatsink Rth h-a' In the rating curves, the contact thermal resistance and heatsink thermal resistances are combined as a single figure - Rth mb-a' In addition to the steady state thermal conditions of the system, consideration should also be given to the possibility of any transient thermal excursions. These can be caused for example by starting conditions or overloads and in order to calculate the effect on the device, a graph of transient thermal resistance Zth j-mb as a function of time is given in each data sheet. junct ion mounting base Rth j-a heatsink 7Z73725 ambient When mounting the device on the heatsink, care should be taken that the contact surfaces are free from burrs or projections of any kind and must be thoroughly clean. In the case where an anodised heatsink is used, the anodising should be removed from the contact surface ensuring good electrical and thermal contact. The contact surfaces should be smeared with a metallic oxide-loaded grease to ensure good heat transfer. Where the device is mounted in a tapped hole, care should be taken that the hole is perpendicular to the surface of the heatsink. When mounting the device to the heatsink, it is essential that a proper torque wrench is used, applying the correct amount of torque as specified in the published data. Excessive torque can distort the threads of the device and may even cause mechanical stress on the wafer, leading to the possible failure. Where isolation of the device from the heatsink is required, it is common practice to use a mica washer between contact surfaces, and where a clearance hole is used, a p.t.f.e. insulating bush is inserted. A metallic oxide-loaded heatsink compound should be smeared on all contact surfaces, including the mica washer, to ensure optimum heat transfer. The use of ordinary silicone grease is not recommended. ____l,-__ D_ec_e_m_b_e_,_ 197~ ~ ___ J~_B_T_1_36__SE_R_IE_S____ _________________________________ TRIACS Glass-passivated, eutectic-bonded triacs intended for use in applications requiring high bidirectional transient and blocking voltage capability, and high thermal cycling performance with very low thermal resistances, e.g. a.c. power control applications such as lighting, industrial and domestic heating, motor control and switching systems. QUiCK REFERENCE DATA BT136-500 I 600 Repetitive peak off-state voltage VDRM max. R.M.S. on-state current IT(RMS) max. 4 A Non-repetitive peak on-state current ITSM max. 25 A 500 MECHANICAL DATA Fig.1 TO-220AB ~ V Dimensions in mm 10,3 max _ 600 ,- --. 45 1 3,6 ma, 1,3 --. 1 - 2,8 .- --mounting_ + base (see note) + 5,9 -, - min I I I + 1 15,8 m ax ...J L_Il:::i=i::::::;fi:::~ 3,5 max not tinned + -I 5,1 -- 1 max tI I 1,3-- .. - - A 13,5 T min max (2x) T1 T2 ___ I 9 -.1 i: 2,54 2,54 l T 0,9 max (3 x) -.1..-24 1 ..- 0,6 Net mass: 2 g Note: The exposed metal mounting base is directly connected to terminal T2. Supplied on request: accessories (see data sheets Mounting instructions and accessories for TO-220 envelopes) January 1980 BT136 SERIES j l_________________ RATINGS Limiting values in accordance with the Absolute Maximum System (lEC 134) Voltages (in either direction) BT136-500 600 Non-repetitive peak off-state voltage (t ~ 10 ms) VOSM max. 500 600 V* Repetitive peak off-state voltage (5 ~ 0.01) VORM max. 500 600 V Crest working off-state voltage VOWM max. 400 ------- V Currents (in either direction) 400 R.M.S. on-state current (conduction angle 360 0 ) up to T mb = 102 °C IT(RMS) max. 4 A Average on-state current for half-cycle operation (averaged over any 20 ms period) up to T mb = 92 0C IT(AV) max. 2.5 A ITRM max. 25 A ITSM 12 t max. 25 A 12 t for fusing (t = 10 ms) max. 4 A 2s Rate of rise of on-state current after triggering with IG = 200 mA to IT = 6 A; dlG/dt = 0.2 AIMS dlT/dt max. 10 AIMS Average power dissipation (averaged over any 20 ms period) PG(AV) max. 0.5 W Peak power dissipation PGM max. 5 W Repetitive peak on-state current Non-repetitive peak on-state current; Tj to surge; t = 20 ms; full sine-wave = 120 0C prior Gate to terminal 1 POWER DISSIPATION Temperatures Storage temperature T stg Operating junction temperature full-cycle operation half-cycle operation Tj Tj max. max. -40 to +125 °C 120 110 °C °C * Although not recommended, off-state voltages up to 800 V may be applied without damage, but the triac may switch into the on-state. The rate of rise of on-state current should not exceed 3 AIMS. 2 January 1980 r j Triacs 8T136 SERIES ---THERMAL RESISTANCE From junction to mounting base full-cycle operation half-cycle operation Rth j-mb Rth j-mb 3.0 °C/W Zth j-mb 0.6 °C/W a. with heatsink compound Rth mb-h 0.3 oelW b. with heatsink compound and 0.06 mm maximum mica insulator Rth mb-h 1.4 °C/W c. with heatsink compound and 0.1 mm max. mica insulator (56369) Rth mb-h 2.2 °C/W d. with heatsink compound and 0.25 mm max. alumina insulator (56367) Rth mb-h 0.8 °C/W 1.4 °C/W Transient thermal impedance; t = 1 ms 3.7 °C/W Influence of mounting method 1. Heatsink mounted with clip (see mountin~ instructions) Thermal resistance from mounting base to heatsink e. without heatsink compound Rth mb-h 2. Free-air operation The quoted value of Rth j-a should be used only when no leads of other dissipating components run to the same tie-point. Thermal resistance from junction to ambient in free air: mounted on a printed-circuit board at a = any lead length ~ 60 °C/W ~ I t a ~ 0 Rth j-a V// 08401 //J 7Z75493 Fig.2. Notes 1. Values of Rth mb-h given for mounting with heatsink compound refer to the use of a zinc-oxideloaded compound. Ordinary silicone grease is not recommended. 2. Mounting by means of a spring clip is the best mounting method because it offers: a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw mounting. b. safe isolation for mains operation. January 1980 3 8T136 SERIES l_____ CHARACTERISTICS Polarities, positive or negative, are identified with respect to T 1. Voltages and currents (in either direction) On-state voltage (Note 1) < 1.70 dVo/dt < 50 dVcom/dt < 6 10 < 0.5 mA < 15 mA 'T = 5 A; Tj = 25 °C Rate of rise of off-state voltage that will not trigger any device; Tj = 120 oC; see also Figs.9 and 10; gate open circuit Rate of rise of commutating voltage that will not trigger any device; 'T(RMS) = 4 A; Vo = VOWM max; Tj = 120 °C; gate open circuit; see also Figs. 9 and 10 BT136 series -dlT/dt = 2.5 Alms BT136 series F -d 'T/dt = 2.5 Alms r BT136 series E -dlT/dt = 1.25 Alms I V V//lS Off-state current Vo = VOWM max; Tj = 120 °C Holding current; Tj = 25 °C T 2 and G positive or negative Gate voltage and current that will trigger all devices Latching current Vo = 12 V;Tr= 25 °C BT136 series T2+ G+ G to T1 BT136 series F e.g. BT136-500F G to T1 BT136 series E G to T1 BT136 series D (Note 2) G toTl {VGT IGT 'L {VGT IGT IL { VGT IGT 'L {VGT IGT 'L > 1.5 > 35 < 20 > 1.5 > 25 < 20 > 1.5 > 15 < 20 > 1.5 > 8 < 15 T2+ G- T2G- T2G+ 1.5 35 30 1.5 35 20 1.5 70 30 V mA mA 1.5 25 30 1.5 25 20 1.5 70 30 V mA mA 1.5 15 20 1.5 15 20 1.5 50 20 V rnA mA 1.5 8 20 1.5 8 15 ** ** ** V mA mA Gate to terminal 1 Voltage that will not trigger an" device VD = VORM max; Tj = 120 oC; T2 and G positive or negative Note 1. Measured under pulse conditions to avoid excessive dissipation. Note 2. A version with IGT = 5 mA max. is available on request. **Triggerable 4 January 1980 r VGD < 250 mV j Triacs BT136 SERIES - - - MOUNTING INSTRUCTIONS 1. The triac may be soldered directly into the circuit, but the maximum permissible temperature of the soldering iron or bath is 275 DC; it must not be in contact with the joint for more than 5 seconds. Soldered joints must be at least 4.7 mm from the seal. 2. The leads should not be bent less than 2.4 mm from the seal, and should be supported during bending. 3. It is recommended that the circu it connection be made to tag T 2, rather than direct to the heatsink. 4. Clip mounting offers lower thermal resistance than screw mounting. However, if a screw is used, it should be M3. Care should be taken to avoid damage to the plastic body. 5. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet providing that rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab. OPERATING NOTES Dissipation and heatsink considerations: a. The various components of junction temperature rise above ambient are illustrated in Fig.3. junction mounting base Rth j-a heatsink ambient 7Z73725 Fig.3 b. The method of using Figs 4 and 5 is as follows: Starting with the required current on the 'T(AV) or 'T(RMS) axis, trace upwards to meet the appropriate form factor or conduction angle curve. Trace right horizontally and upwards from the appropriate value on the T amb scale. The intersection determines the Rth mb-a' The heatsink thermal resistance value (Rth h-a) can now be calculated from: Rth h-a = Rth mb-a - Rth mb-h' c. Any measurement of heatsink temperature should be made immediately adjacent to the device. January 1980 5 l____ 8T136 SERIES FULL-CYCLE OPERATION 6 I p I (W) 5 ~ I\.. " I I\.. I , II II J J II "II I 4 r---- I-- 3 ---- ..... ...J ........ , I =180° " J J "...."1 ~~ =120° I""" ~ '(..,.. ~~ If' = 90° i-'" s..-. I = 60° ".... .... 7) ~ ,J = 30° "'" If'. If' /I~ 11'1)' 0' .... -- I-f-- r-- -r--- f-- r/I~ ,J ,,,. , 2 ~~ , 1/ '" I-1-f-- o r7 0 ~ =~ 7. "" ...... ..... ~ 1\ \ I\. \ , " ~~O '6- V 0 I\. 1\ too.. ..... " \ \ '\. I\. I' , , 1"'\ I. . . . . I 110.. 2 3 4 0 114 Il- f- 117 I'N "'" ..... 50 111 \\ " ...... ~ (OC) 105 ~-I- 108 1\ " ,\ '\., \' I\.\. \ ~ ...... \ \. I'\.. Tmb o-f(")-f- i\ \ \ \ I I I I I I 1 \ \ \ 102 ·w-I- \ \ I'.. <1.;- r- ~f1 ~ l- 1\ \ \ 1\ ... 'I?!rati ~ 1(0 -b-r- ~ \' \ --- , " " , '" '" , , , '" " ""'" "'I\. I frse...... · .... __a -Ir -.:Y 3 1\ \ \ ! .... [0. \ r5 \ '\0 '\. , ~ ,.-+ --- 1\ 1\ \ \ 1\ \. I'\. I)'/'; ,J~~ , , I'\. 08384 11 i' :p I l. 120 ·100 Fig.4 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures. a = al = a2: conduction angle per half cycle 6 January 1980 ( j Triacs 8T136 SERIES ---HALF-CYCLE OPERATION 08385 P I I I (W) 1.57 5 1.9 I' " I 4 - -- 2.2 I 2.81 J I a=4 , 3 I II " , I I 77 If J I I 1/1/ 1/ III ""- II I III 'I. I rJi~ -f-- -h ~, .P-1~ \,... \. ... \0 \ .$'1\ 20 1<0 iii. \ I\.. ~~~ e. . . . Ir 0 I"'" I I I\, r-.... I'\.. !../:..er 1 2 3 0 ,z- f...-f--- 98.9 102.6 \/\ iii. ,\ -- ...... 106.3 '-~l\' ..... ~~ ~+. . -- ..... "'" ..... .... 0 --- ,2- f-+-- 1\ \1\ If 1\ ,\ r\.\. \ \ \ ,\ I ....... ~ 95.2 b--'w- - - ~- 1\ IT \ 1\ I\.. ~ \ OJ 1\ I\.. II') o \ , " "!.~$ " , , , , ," ..... · '-roo.o "'" "" 1\.., , or , ," ~f1 Ire ~ ... \ \ \ \ \ ~ fJII '3 \0" \ \ \ ~ 91.5 .. :xl \ \ \. ~ I"'" III 2 , , "" , "'I II rJ J I \. \. 'I... ~ , .., ,S- .. , i" ,, "'" ""iI1II.I 110 50 Fig.5 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures. (X = conduction angle per half cycle IT(RMS) a = form factor = --'------'IT(AV) (X 30 0 60 0 90 0 120 0 180 0 a 4 2.8 2.2 1.9 1.57 J_ January 1980 7 8T136 SERIES l____ OVERLOAD OPERATION 08614 500 IO(RMS) (%) - - t-- -t-t-tttt----t---t---t-t-Hffi ~-+-+~~~--~~~H+~-+ i'o.. r--+-+~rK~--~-1-~-H+~~~~~~-r++rHff----r-+i~iii~--- -t-t++~---~-~ \- i-----t---H--t+t-tj -1 1-----+-+-+-H-+~-----+-_+_~H+~____1I-f___+++_H_t_t -----tr"-----1''''-l::-H-+Ht----r- --+ 1--+---+-+-H-++++-----t--+-f--+--II--t-t1-+-------t---t-+~~--__t- 100 t-- 1"01" - --1 --t---t-t~t-tt- 1-----+-+4--t++~-__t___t_rH-+~---+-~++~--_r_r_t__t_~~~~ 10- 2 10- 1 10 10 2 Fig.6 Maximum permissible duration of steady overload (provided that T mb does not exceed 120 oC during and after overload) expressed as a percentage of the steady state r.m.s. rated current. For high r.m.s. overload currents precautions should be taken so that the temperature of the terminals does not exceed 125 °C. During these overload conditions the triac may lose control. Therefore the overload should be terminated by a separate protection device. 8 January 1980 ( J Triacs 8T136 SERIES ----, 30 08386 \ ITSM 1\ \ ITS(RMS) (A) I~ , ~ 20 1"0. " ...... .. """ roo. ~ 10 ......... ...... 100.. ..... "'" 100.. ......... ""'100. t- r--- o 10- 3 10- 1 10- 2 duration (s) 10 Fig.7 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents (f = 50 Hz); Tj = 120 °C prior to surge. The triac may temporarily lose control following the surge. ITS 08387 I 10 i 1 typ • I v,~ J:/T " II/ -+- time : 1 ~\; i I maxL W- VT ("-i /II • I i i i Jrt i : I : ',7 III i I i !III . , ; ! /ill ".f! , • : VV ~_+-J 5 --'- ~ :::!f . Lll-- ~------ -ITSM rr-,---j -\ -_-ITS(RMS) 1 1 II( I 1 o i I , I ) I I --~, 1/1 I} li i --+----1---.-J I ; 1 i I I I : 1 I : i i : .1 i I I ; I I ) 1 1 i ! o January 1980 9 8T136 SERIES 103 083801 BT136 and BT136F series dV dt ........... """ (V/lls) ~ t-..... \ 10 2 ~ "" \' ~ , dVD/. ~~/imit , \ , \ -dIT/dt= 10 "" \ 1\ ~9.3 " " , 1\ \ \ \ ~5.5 \7.1 , \ \ \ "- \ 1\ , \ ~ , \ \ 1 \ ~ \ \ \ "- ,, I' \ ~ 1\ \ "\ \4.2' \3.3 \2.5 Alms ~ \ -- ~~ ~ o 50 100 150 Tj(OC) Fig.9 Limit commutation dV Idt for BT136 and F series versus T j. The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt. . 103 dV dt 08389 BT136E' series I""'""--po., ~~ (V/lls) "'" \ 102 ~ " , \ dVD/. ~~ limit , 1\'"" \ \ \ \ \ -dIT/dt= 10 ~4.6 \3.6 , , \ \ \ 1\ ~ o I" '\ ~ \ ," ....... ~ \ \ 1 2.8 \ ~ ~1.~\ 1.3 Alms \2.1 \ ~ \ ~ \ 1\ \ \ ~ , \ \ \ ......... ~ \ 1\ 50 100 150 Tj(OCI Fig.l0 Limit commutation dV/dt for BT136E series versus Tj. The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt. 10 January 1980 ( j Triacs BT136 SERIES _ . _ - 08569 08573 150 3 VGT IGT (V) (mA) 100 r-~ T 2 neg., gate pos. to T 1 2 .... ..... "~ ..... ..... ~ "" '" f"oo. ~ I" ~ ..... ~ I'~ ...... ~ 1" 50 ~ I""" ~ 1"""" i r"" 1" I""""'~ .... r-r-r--- all other condition;-~ r"" I " _L1...1 a o -50 o 100 50 -50 150 Tj(OC) Fig.ll Minimum gate voltage that will trigger all devices; all conditions " I I a I I I I I _1...1_1...1...1 ..1 11..lJ 50 100 150 Tj(OC) Fig.12 Minimum gate current that will trigger all devices D8570 10 ~~ ... ~~ """" ./ 1.000'" unidirectional - Qidirectional 'ttl' /'" ... 10- 1 10- 2 I + I - 10- 5 10- 4 10- 3 10- 2 10- 1 it II'l 'll I 10- 3 : time (s) 10 Fig.13 I January 1980 11 j BT137 SERIES ---------------------------------------------------TRIACS Glass-passivated, eutectic-bonded triacs intended for use in applications requiring high bidirectional transient and blocking voltage capability, and high thermal cycling performance with very low thermal resistances, e.g. a.c. power control applications such as lighting, industrial and domestic heating and motor control and switching systems. QUICK REFERENCE DATA BT137-500 600 Repetitive peak off-state voltage VDRM R.M.S. on-state current IT(RMS) max. max. max. 500 600 V '-v--' Non-repetitive peak on-state current MECHANICAL DATA 8 A 55 A Dimensions in mm Fig. 1 TO-220AB. __ 45 10,3 Irna, .- max 1- 1,3-..----+--+---i - - ' mounting base ..... (see note) t tt- r-,I I I J .-Il:::;=:~:::::;::::;:~ 3,5 max not tinned r--- , - 2,8 -t , :- 5,9 min 1 ~ 15,8 m ax J ~ 5,1 max 1,3-'I - max --t I (2 x) T1 T2 _I 9 I 13,5 min 1 -.11~0,9max (3x) -,1 2,54 2,54 1. - 0,6 .-24 Net mass: 2 g Note: The exposed metal mounting base is directly connected to terminal T 2. Supplied on request: accessories (see data sheets Mounting instructions and accessories for TO-220 envelopes) "I Janua"l1980 --- 8T137 SERIES l_ _ __ RATINGS Limiting values in accordance with the Absolute Maximum System (I EC 134) Voltages (in either direction) -. BT137-500 600 600 V* Non-repetitive peak off-state voltage (t';;;;; 10 ms) VOSM max. 500 Repetitive peak off-state voltage (cS ,;;;;; 0,01) VORM max. 500 600 V Crest working off-state voltage VOWM max. 400 400 V --,,- Currents (in either direction) R.M.S. on-state current (conduction angle 3600 ) up to T mb = 97 0C IT(RMS) max. 8 A Average on-state current for half-cycle operation (averaged over any 20 ms period) up to T mb = 87 0 C IT(AV) max. 5 A Repetitive peak on-state current ITRM max. 55 A ITSM 12 t max. 55 A max. 15 A 2 s dlT/dt max. 20 A/p.s PG(AV) max. 0,5 W PGM max. 5W Non-repetitive peak on-state current; Tj = 120 0C prior to surge; t = 20 ms; full sine-wave 1 2 t for fusing (t = 10 ms) Rate of rise of on-state current after triggering with IG = 200 mA to IT = 12 A; dlG/dt = 0,2 A/p.s Gate to terminal 1 POWER DISSIPATION Average power dissipation (averaged over any 20 ms period) Peak power dissipation Temperatures -. Storage temperature T stg Operating junction temperature full-cycle operation half-cycle operation Tj Tj -40 to +125 °C max. max. 120 °C 110 °C * Although not recommended, off-state voltages up to 800 V may be applied without damage, but the triac may switch into the on-state. The rate of rise of on-state current should not exceed 6 A/p.s. 2 January 1980 ( j ~~ ---- 8T137 SERIES THERMAL RESISTANCE From junction to mounting base full-cycle operation half-cycle operation Rthj-mb Rth j-mb 2,0 0C/W Zthj-mb 0,3 °C/W a. with heatsink compound Rth mb-h 0,3 °C/W b. with heatsink compound and 0,06 mm maximum mica insulator Rth mb-h 1,4 °C/W c. with heatsink compound and 0,1 mm max. mica insulator (56369) Rth mb-h 2,2 °C/W d. with heatsink compound and 0,25 mm max. alumina insulator (56367) Rth mb-h 0,8 °C/W e. without heatsink compound Rth mb-h 1,4 °C/W Transient thermal impedance; t = 1 ms 2,4 °C/W Influence of mounting method 1. Heatsink mounted with clip (see mounting instructions) Thermal resistance from mounting base to heatsink 2. Free-air operation The quoted values of Rth j-a should be used only when no leads of other dissipating components run to' the same tie-point. Thermal resistance from junction to ambient in free air: mounted on a printed-circuit board at a = any lead length ~ t a ~ I ~// 0 Rth j-a 60 0 C/W ~ r //J 7Z75493 Fig. 2. January 1980 3 l____ 8T137 SERIES - - CHARACTERISTICS Polarities, positive or negative, are identified with respect to T 1. Voltages and currents (in either direction) On-state voltage (Note 1 ) < 1,65 dVo/dt < 50 V//ls dVcom/dt < 6 V//ls 10 < 0,5 rnA < < 20 15 rnA rnA IT = 10 A; Tj = 25 °C Rate of rise of off-state voltage that will not trigger any device; Tj = 120 °C; see also Figs. 9 and 10; gate open circuit V Rate of rise of commutating voltage that will not trigger any device; IT(RMS} = 8 A; Vo = VOWM max; Tj = 120 °C; gate open circuit; see also Figs. 9 and 10 BT137 series -d IT/dt = 4,2 Alms BT137 series F -dlT/dt = 4,2 Alms BT137seriesE -dIT/dt=2,1 Alms I I Off-state cu rrent Vo = VOWM max; Tj = 120 °c Holding current; Tj = 25 °C T 2 and G positive or negative BT137, F and E series BT137 0 series Gate voltage and current that will trigger all devices Latching current VO=12V;Tj=25 0 C BT137 series G to T1 BT137 series F e.g. BT137-500F G toT1 BT137 series E G to T1 BT137 series 0 (Note 2) T2+ G- T2G- T2G+ 1,5 35 45 1,5 35 30 1,5 70 30 V rnA rnA 1,5 25 45 1,5 25 30 1,5 70 30 V rnA rnA 1,5 15 35 1,5 15 25 1,5 50 25 V rnA rnA > 1,5 > 8 1,5 1,5 ** 8 8 15 20 15 ** ** V rnA rnA 250 mV T2+ G+ G toT1 J VGT IIGT IL J VGT IIGT IL J VGT IIGT IL IVGT IIGT IL > 1,5 > 35 < 30 > 1,5 > 25 < 30 > 1,5 > 15 < < 25 Gate to terminal 1 Voltage that will not trigger any deviceVO = VORM max; Tj = 120 °C; T2 and G positive or negative Note 1. Measured under pulse conditions to avoid excessive dissipation. Note 2. A version with IGT = 5 rnA max. is available on request . .. *Triggerable 4 January 1980 ( < J ~~ 8T137 SERIES - - MOUNTING INSTRUCTIONS 1. The triac may be soldered directly into the circuit, but the maximum permissible temperature of the soldering iron or bath is 275 °C; it must not be in contact with the joint for more than 5 seconds. Soldered joints must be at least 4,7 mm from the seal. 2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during bending. 3. It is recommended that the circuit connection be made to tag T 2, rather than direct to the heatsink. 4. Mounting by means of a spring clip is the best mounting method because it offers: a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw mounting. b. safe isolation for mains operation. However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid damage to the plastic body. 5. For good thermal contact heatsink compound should be used between mounting base and heatsink. Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide loaded compound. Ordinary silicone grease is not recommended. 6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet providing that rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab. OPERATING NOTES Dissipation and heatsink considerations: a. The various components of junction temperature rise above ambient are illustrated in Fig. 3. junction mounting base Rth j-a heatsink Fig. 3. 7273725 ambient b. The method of using Figs 4 and 5 is as follows: Starting with the required current on the IT(AV) or IT( R MS) axis, trace upwards to meet the appropriate form factor or conduction angle curve. Trace right horizontally and upwards from the appropriate value on the T amb scale. The intersection determines the Rth mb-a' The heatsink thermal resistance value (Rth h-a l can now be calculated from: Rth h-a := Rth mb-a - Rth mb-h' c. Any measurement of heatsink temperature should be made immediately adjacent to the device. January 1980 5 FU LL-CYCLE OPERATION 08564 15 90 IT I fT r I I 1 I I 1 a =180° I p (W) ], 0 T 120 J, '77 90° -- J J III I, J JII ~ IIII1/' 'J 17 "1/ 11/1/, J ./~ j'/~ If I-~ ,, V " "" ~" :". 5 10 0 ('l '-~ ~ ,\ \ \ \.. I" t-... ....... <$ I I o4-~ ~rt .> I' ..... ~ r-r-, ~ ~ I \\ ~ ..... ..... free air 1 l...:!Eeratio n ~ 100 \~ \. ~ ~ ....... I I I 1 I I \ ---- ,cr~ -,.---'--r--- '\~ II 1...--. _ _ ~ ..... -r-t I , \ -,l ~ ~~-+-~ , ", ,'7 , ~-r(O " I\. , \ 110 ""~$ l"~ ::A" r-iI -~ I I I ! ! ! ~ \ \ \ \ ~ ...... V , \ '\. 1'0 1"""0 - 0 " "" r/ ')~ o .., r~1/ 5 \. 60° 30° , " ~ ... ,\1\ \ , ..... " " , ~ ~ ~ ....... 1- , l\ ...... ,~ "'~ ....... ~ ~ 50 ~l£ \ === .... 120 100 IT(RMS)(A) Fig.4 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures. a 6 January 1980 'I ( = a1 = a2: conduction angle per half cycle j Triacs 8T137 SERIES --HALF-CYCLE OPERATION 08565 15 74 P (W) 10 2.8 a=4 II 1/ II 5 J ~ II 'I 2.2 LJ ",J I) 1/ IJ J " " Ii!... ~ 'A.... I' 1'1 I' I\.. ~ l' I' r-.. ,..,..... " I I I I 1 1 1 5 0 ,I' '" 70"' <$ "" l""- ~~~ ""l..- .> l' 0'1""- free air ,...,.. . Operation 2.5 , ~ 1"1.. l"o. I""" ." ll~ L\ \ ~ I.... r..." ..... 86 ~ ~ '"" v.;~p 0 '-I'. Ij IJI.JI ..... r....o~ , ~ I.J i.J " 1f.I~ ~ ~~~ o WIi II ". I.J I/~ J 1.9 1.57 50 1\ -'%~\ ~ 1\ ~ 1< ~r-I\ I". I' , 1\ I" I" I' i""""", I.... I\.. """ 1\ c - r-r-r- Q- r-r-r- 98 !\.,Z r-r-r1\1\ ~ '1\ 1'1. 1"""""" l' r-r- 1\0)11 ~'z,r- r-r-r- .J L\' ~NI\ J"oo~ ~ """ r-rI=IIJ 110 100 Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures. ~ = conduction angle per half cycle a = form factor = IT(RMS) IT(AV) a 30 0 60 0 900 1200 1800 a 4 2,8 2,2 1,9 1,57 January 1980 7 OVERLOAD OPERATION 08814 500 IO(RMS) (%) 400 - '" ... 300 "". . . r-.,. ~ ~ ~ i"o 200 ~ ~ 100 10- 2 10- 1 10 ... " ...... 103 time (5) 104 Fig.6 Maximum permissible duration of steady overload (provided that T mb does not exceed 120 oC during and after overload) expressed as a percentage of the steady state r.m.s. rated current. For high r.m.s. overload currents precautions should be taken so that the temperature of the terminals does not exceed 125 0C. During these overload conditions the triac may lose control. Therefore the overload should be terminated by a separate protection device. 8 January 1980 'I ( j Triacs 8T137 SERIES -----60 I TSM \ ITS(RMS ) 7Z17398 - 1\ \ (A) \ " 40 I\- ..... ........ ........ r-. ~ ....... ......... 20 -- ...... -t-., duration (5) Fig.7 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents (f = 50 Hz); Tj = 120 0C prior to surge. The triac may temporarily lose control following the surge. 7Z77393A 15 --Tj= - - Tj = 25 0 C 120 °c IT I (A) I I I ITS [' max VT Il /" - --- - --- V\} I If / Vj-----n-------I TS ( RMS) 10 1TSM time --- • typ IS V T ,/ I 10 II I II 17 I / II fl , J I 5 'I I I. II. I " II I I 1/ /J o 0,5 iii 1/ Fig.8 1,5 2 V T (V) 2,5 J( January 1980 9 103 BT137 and BT137F series I---- ' - - - _ I--- dV dt ~ 100.. ""'IIiiiiii (V/J.1s) r--t- - ~E r--- t--- , ~ I:h.. _ dl/ ~~ ~ ~/dt r--..... /"'mit t------1t-- r - t---r -r- .-1 , a .-1 \. f-- I---- , - - 10 ~- 1\ .1 1\ 1\ :....... 1\ \ :~-'~/dt~15112 ~ 9.2 \7.1 ' ... •\. , \. _\ ~ o 1 i\ 5.5 \4.2A/ms \ , \ II Il 1 \ 1\ \. .\ \ 1\ , \ \ \ ~ .\ f"""'oo.. "- \ \ \ , I' '\. \.. .- .'- \ ~ 150 100 50 Fig.9 Limit commutation dV Idt for BT137 and F series versus Tj. The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt. D8567 BT137E series dV dt f"""""oo.. ..... """ ~ , \ ~ ~ (V/J.1s) 10 2 , \. 1 , -dIT/dt= dv ~/dt /" s,:'lIJit \. -'\ It .1 10 :s:... "'\. '- 1\ 1 " " .......... , \ \ ~.7 "- 5•9 ~4.6 \3.5 \ \2.7 \2.1A/ms .1. \. \. 1 , J ~ o 50 ll. .1 \ \ , \ ~ \. 1\ \ 1\ , \ \ \ 100 ~ 150 Fig.l0 Limit commutation dV/dt for BT137E series versus Tj. The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt. 10 January 1980 J( j Triacs BT137 SERIES - - - - 08569 08573 150 3 VGT IGT (V) (mA) 2 100 ~ -- f-~ T 2 neg., gate pas. to T 1 ..... to-.. I' ~ r-.... "" r-.... r-.... ..... I' I' 50 ..... 1-... 1"0 "" ....... """ ..... .... I' ..... 10.... I-... 1--I- all other condition;-- ..... I I o o o -50 100 50 I I -50 150 ,.... I I I I o I I 50 TlC) 100 150 Tj(OC) Fig.12 Minimum gate current that will trigger all devices. Fig.11 Minimum gate voltage that will trigger all devices; all conditions 7Z77399 10 unidirecti?n,al ~ j...o ./ ~ L..~ j.....-- bidirectional ~ /" ./ V""" ~ /" 10- 2 10- 3 10- 2 time (5) 10 Fig.13 Ju January 1980 11 _________________________________~L___ B_T1_3_8_S_E_R_IE_S___ TRIACS Glass-passivated, eutectic-bonded triacs intended for use in applications requiring high bidirectional transient and blocking voltage capability, and high thermal cycling performance with very low thermal resistances, e.g. a.c. power control applications such as motor, industrial lighting, industrial and domestic heating control and static switching systems. QUICK REFERENCE DATA BT138-500 600 Repetitive peak off-state voltage VDRM max. 500 600 V --,-~ R.M.S. on-state current 'T(RMS) max. max. 'TSM Non-repetitive peak on-state current +- Ima, ... 10,3 max I ... A A Dimensions in mm +- MECHAN ICAl OAT A Fig.1 TO-220AB _ 12 90 45 I- 1,3 ... 3,6 - 2,8 II- mounting_ base (see note) I I I I - f 5,9 min 1 ,8 + m15ax J ._Il:::i=~::::::;::::::;~ 3,5 max not tinned r-- f '- 5,1 max --t I 1,3-+max (Zx) -I 1 - 13,5 min T, T2 --.1 .. 1 : 0,9 max . . 1 1_ _ (3x) 0,6 --24 1 2,54 2,54 Net mass: 2 g Note: The exposed metal mounting base is directly connected to terminal T2. Accessories supplied on request: see data sheet Mounting instructions and accessories for TO-220 envelopes. January 1980 jl_______________________________ ____B_T_13_8_S_E_R_IE_S__ RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134) Voltages (in either direction) 8T138-500 600 Non-repetitive peak off-state voltage (t";;;; 10 ms) max. Repetitive peak off-state voltage (5 ..;;;; 0,01) max. 500 600 V Crest working off-state voltage max. 400 400 V ~ Currents 500 600 V* (in either direction) R.M.S. on-state current (conduction angle 3600) up to T mb = 95 °C IT(RMS) Average on-state current for half-cycle operation (averaged over any 20 ms period) up to T mb = 83 0C max. 12 IT(AV) max. 7,5 A ITRM max. 90 A ITSM 12 t max. 90 A 12 t for fusing (t = 10 ms) max. 40 A2s Rate of rise of on-state current after triggering with IG = 200 mA to IT = 20 A; dlG/dt = 0,2 A/IlS dlT/dt max. 30 A/lls Average power dissipation (averaged over any 20 ms period) PG(AV) max. 0,5 W Peak power dissipation PGM max. 5,0 W -40 to +125 °C Repetitive peak on-state current Non-repetitive peak on-state current; Tj = 120 0C prior to surge; t = 20 ms; full sine-wave A Gate to terminal 1 Power dissipation Temperatures Storage temperature T stg ~Operating junction temperature full-cycle operation half-cycle operation Tj Tj max. max. 120 110 °C °C * Although not recommended, off-state voltages up to 800 V may be applied without damage, but the triac may switch into the on-state. The rate of rise of on-state current should not exceed 15 A/IlS. 2 January 1980 r Jl___ ___T_ri_ac_s____________________________ BT_1_3_B_S_ER_I_ES__ THERMAL RESISTANCE From junction to mounting base full-cycle operation half-cycle operation Rth j-mb Rth j-mb Transient thermal impedance; t = 1 ms 1,5 2,0 0C/W+0C/W~ Zth j-mb 0,1 °C/W Rth mb-h Rth mb-h 0,3 0C/W Influence of mounting method 1. Heatsink mounted with cI ip (see mounting instructions) Thermal resistance from mounting base to heatsink a. with heatsink compound b. with heatsink compound and 0,06 mm maximum mica insulator 1,4 °C/W 0 c. with heatsink compound and 0,1 mm maximum mica insulator (56369) Rth mb-h 2,2 d. with heatsink compound and 0,25 mm maximum alumina insulator (56367) Rth mb-h 0,8 0C/W e. without heatsink compound Rth mb-h 1,4 °C/W C/W 2. Free-air operation The quoted values of Rth j-a should be used only when no leads of other dissipating components run to the same tie-point. Thermal resistance from junction to ambient in free air: Rth j-a 60 0C/W mounted on a printed-circuit board at a = any lead length ~ t I 0 ~ J a ~ V// //) Fig.2 7Z75493 3 8T138 SERIES l____ ----CHARACTE R 1ST ICS Polarities, positive or negative, are identified with respect to T 1. Voltages and currents (in either direction) On-state voltage (Note 1) IT= 15A;Tj==25 0 C < 1,65 dVD/dt < 50 V/p.s dVcom/dt < 6 V/p.s < 0,5 mA < < 30 20 mA mA V Rate of rise of off-state voltage that will not trigger any device; Tj = 120 oC; see also Figs.9 and 10; gate open circuit Rate of rise of commutating voltage that will not trigger any device; IT(RMS) = 12 A; VD == VDWM max; Tj = 120 oC; gate open circuit; see also Figs.9 and 10 BT138 series -dlT/dt == 4,2 Alms t BT138 series F -dlT/dt == 4,2 Alms BT138 series E -dlT/dt == 2,1 Alms I Off-state current VD == VDWM max; Tj == 120 oC Holding current; Tj == 25 0C T 2 and G positive or negative BT138, F and E series BT138 D series Gate voltage and current that will trigger all devices Latching current VD== 12V;Tj==25 0 C BT138 series T2+ G- T2G- T2G+ IVGT \ IGT IL > > < 1,5 35 40 1,5 35 60 1,5 35 40 1,5 70 40 V mA mA J VGT > > < 1,5 25 40 1,5 25 60 1,5 25 40 1,5 70 40 V mA mA G to T1 I VGT > t IGT > IL < 1,5 15 30 1,5 15 40 1,5 15 30 1,5 50 30 V mA mA G toT1 I VGT > > \ IGT IL < 1,5 8 25 1,5 8 35 1,5 8 25 ** ** ** V mA mA 250 mV G to T1 BT138 series F e.g. BT138-500F T2+ G+ G toT1 BT138 series E BT138 series D (Note 2) IIGT IL Gate to terminal 1 Voltage that will not trigger any device VD = VDRM max; Tj == 120 °C; T 2 and G positive or negative Note 1. Measured under pulse conditions to avoid excessive dissipation. Note 2. A version with IGT == 5 mA max. is available on request. ** Triggerable 4 January 1980 r < j Triacs 8T138 SER IES ---MOUNTING INSTRUCTIONS 1. The triac may be soldered directly into the circuit, but the maximum permissible temperature of the soldering iron or bath is 275 °C; it must not be in contact with the joint for more than 5 seconds. Soldered joints must be at least 4,7 mm from the seal. 2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during bending. 3. It is recommended that the circuit connection be made to tag T2, rather than direct to the heatsink. 4. Mounting by means of a spring clip is the best mounting method because it offers: a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw mounting. b. safe isolation for mains operation. However, if a screw is used, it should be M3 cross-recess pan head. Care should be taken to avoid damage to the plastic body. 5. For good thermal contact heatsink compound should be used between mounting base and heatsink. Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide loaded compound. Ordinary silicone grease is not recommended. 6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet providing that rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab. OPERATING NOTES :::'lissipation and heatsink considerations: a. The various components of junction temperature rise above ambient are illustrated in Fig.3 junction mounting base Rth j-a heatsink 7273725 ambient Fig.3 b. The method of using F igs.4 and 5 is as follows: Starting with the required current on the IT(AV) or IT(RMS) axis, trace upwards to meet the appropriate form factor or conduction angle curve. Trace right horizontally and upwards from the appropriate value on the T amb scale. The intersection determines the Rth mb-a. The heatsink thermal resistance val ue (Rth h-a) can now be calcu lated from: Rth h-a = Rth mb-a - Rth mb-h· c. Any measurement of heatsink temperature should be made immediately adjacent to the device. 5 l_ _ __ 8T138 SERIES FULL-CYCLE OPERATION D8608 20 90 P 01= 0 180 (vy) II 15 J J vv I IV I( 'j I I V V'J J 'j V / V if "J 1/ i/ 10 . J~ / )th 1/,/ 120 90 60 lb ~ D. ~ o~ I~ ~ [ / ~ ~ ;..' / "" , ~ I"\. \ "1'.-\ ~ "\ \ \ ,I\. ~ 15 0 ,& 97.5 \ \~\\ 'JP r--1 vJ ~ ~l\~ 105 J 111 11 , 1 ~ .. rJ~~on 10 ~, ,='" 1 tLl ~ free_a;; 5 , 1\ '\ ~j [1' r\. ~ ~iJ ...... 1'.. ~ ~ ~1 i"" r\. 1\.1\ \ ""r- J J I 1/, ~I , '\ 80 ':P ~ I\. \ \ "\i I J/ 1/ 1 , , ~ I J 7 1/ I I I I ""- I J JJ I I , 1.57 1.9 P 08609 1 1 -- 1"0 1\ \ !!!oJ 110 100 Fig.5 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures. 0' = conduction angle per half cycle a = form factor = IT(RMS) IT(AV) 0' 30 0 a 4 60 0 90 0 120 0 2,8 2,2 1,9 180 0 1,57 8T138 SERIES l""---____- - OVERLOAD OPERATION 08654 500 IO(RMS) (%) 400 I" ~ 300 ..... ~ ..... ~ "" ..... 200 "" f"..""" ["'..... 100 10- 2 10- 1 ... ~ 10 Fig.6 Maximum permissible duration of steady overload (provided that T mb does not exceed 120 °C during and after overload) expressed as a percentage of the steady state r.m.s. rated current. For high r.m.s. overload currents precautions should be taken so that the temperature of the terminals does not exceed 125 0C. During these overload conditions the triac may lose control. Therefore the overload should be terminated by a separate protection device. 8 ~nua~ Ir 1900 ___ ~l ___ T_ria_cs_____________________________ BT_1_38__S_ER_IE_S__ 7Z77138A 150 ITS(RMS) (A) \ \ maximum permissible non ·repetitive r.m.s. on·state current based on sinusoidal currents (f = 50 Hz) 1\ \ ITSV\_--A--ITS(RMS) \ 100 1\ \ VV ~ 1\ the triac may temporarily lose control following the surge I TSM \ time 1\ Tj = 120 'lC prior to surge r---, '" 50 ... r--.... ....... o - r- ~ .... 10 1 10 3 duration (s) Fig.7 7Z17122A 30 --Tj= 25 °c i - - Tj ~ 120°C III ,1 ) I rI ill I 20 . 11 10 I II typ ~~ V T ,....f- ~~ If l,.; o o 1/ ~ .' I II max ~ V T f- II J I I-- J I I 1/ rl III j I' V 'l.,..oo 2 Fig.8 10 ___B_T_13_8_S_E_R_IE_S~jl~_________________________________ 08610 BT138 and BT138F series dV dt (V//1s) .......... -\ ~~ ~ ~ v ~ ~ ~~" ", d -, II!'hit , ~ , , ", \ \ ( \ \ \ ~ \ \ "- \ \ ......... "- \ \ \ -dIT/dt::\,5 \12 \9.2 \7.1 \ 1\5.5 \4.2 Alms 10 , ,, , T 1\ \ \ \ \ 1\ \ \ 1\ \ \ o \ ~ \ \ 1 , \ \ ~ 100 50 150 Fig.9 Limit commutation dV Idt for BT138 and F series versus Tj. The triac should commutate when dV Idt is below the value on the appropriate curve for pre-commutation dlT/dt. D8611 BT138E series dV dt (V l/1s1 ......... ~ ~ \ ...., ....;;, Imit ~ ~ ~/dt dll f' """, y \ \ l rl \ 1 -dIT/dt= 10 \ ~7.7 Y \ \5.9 , \ 1 o \3.5 '\. I{ , \ \ \ \2.7 \2.1 Alms \ \ \ \ .......... 1\ \ \ \ \ \ \ \ ~4.6 ="- ~ ~ \ T l ", \ \ 1\ \ \ \ \ \ \ 50 100 150 Tj(OC) Fig.10 Limit commutation dV Idt for BT138E series versus Tj. The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt. 10 January 1980 r jl Triacs '--- ----,-----IZ77121A 3 7Z77124A 150 minimum gate voltage that will trigger all devices minimum gate current that will trigger all devices all conditions 1 1 IGT (mA )f- 2 ~l 1 1 1 , j\T2 neg., gate pas. to T1 1\ 100 ;"t-.., BT138 SERIES 1\ ,..... l\ 1\ f'.. 1\ f'.. l""T"'" L\ 1\ ~ !\ \ 50 1\ ".... I" ~ roo.. " "" I""..... i"ooo r-r- \- all other conditions .... o -50 o o -50 50 o 11 111 Fig.l1 ~~ - l 1 50 Fig. 12 D8616 10 l ~m unidirectional ~ r±1tmtF bidirectional iJ' ~ iJ' ./ ..,;" V 10- 1 L I' • lL 10- 2 10- 3 10- 5 10- 4 10- 3 10- 2 Fig.13 10- 1 time (s) 10 B_T_13_8_S_E_R_IE_S~~·~~________________________________ ___ LIMITS FOR STARTING OR INRUSH CURRENTS - FULL-CYCLE OPERATION 60 10 A.-Ai 10(RMS) '""A-_ IO(RMS) (A) Tj V = T mb = 75 °c prior to starting I r-... "" 40 85 0 C ............ I i"o.. .,..... 95 0 .......... 20 V t for safe operation at a given temperature the r.m.s. of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature "....,.. "'- i""""o I V C ..... ~ r-- ....... ........... r--... ........... .......... 1"1'-~ "'- "" ................. I"'---.. r-- ....... r- ..... -- i"'- ... ~ o 10- 2 time (s) 10 Fig.14 LIMITS FOR STARTING OR INRUSH CURRENTS - HALF-CYCLE OPERATION 30r---~r-~--~~'-rMr---~--~-----------------------------, IO(AV}~---4--~-+-+~++++----~~ (A) 20 - T j = T mb = 75 °c -+-+-+-+-++---f----l . . ~rlor to starting - ........... Fig.15 12 January 1980 r for safe operation at a given temperature the average of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature _ _ _ _J 8T139 SERIES TRIACS Glass-passivated eutectic-bonded triacs intended for use in applications requiring high bidirectional transient and blocking voltage capability, and high thermal cycling performance with very low thermal resistances, e.g. a.c. power control applications such as motor, industrial lighting, industrial and domestic heating control and static switching systems. QUICK REFERENCE DATA BT139-500 600 Repetitive peak off-state voltage VDRM R.M.S. on-state current IT( RMS) max. 16 A max. 115 A Non-repetitive peak on-state current MECHANICAL DATA 500 600 V max. +- Dimensions in mm Fig.1 TO-220AB 1I -- __1~~'5X 1- -- , 10,3 max 1,3-- 3,6 2,8 - t mounting _ base (see note) 5,9 min + : I I .~Il:::;==;:::=:;:1:;::::;~ 3,5 max , --t max T, T2 -.1 g T.-T 1 2 max t1,3-"i l (2 x) -r 15,8 max j .J 5,1 not tinned 1 9 13,5 min l ~11--o,6 ~11~o,9max (3x) -.. 2,54 2,54 --2,4 Net mass: 2 g Note: The exposed metal mounting base is directly connected to terminal T2. Accessories supplied on request: see data sheet Mounting instructions and accessories for TO-220 envelopes. u~ ~~~~"m~~ . . .~ ._~..~_ .~~~~. ~___ ._'(~ua~.::_. . . . __ • _____ u BT139 SERIES l_ _ __ RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) BT139-500 600 Voltages (in either direction) -+ Non-repetitive peak off-state voltage (t ..;;; 10 ms) VOSM max. Repetitive peal( off-state voltage (0 ..;;; 0,01) VORM max. 500 600 V Crest working off-state voltage V OWM max. 400 400 V R.M.S. on-state current (conduction angle 360 0 ) up to T mb = 93 °C IT(RMS) max. 16 A Average on-state current for half-cycle operation (averaged over any 20 ms period) up to T mb = 79 0 C IT(AV) max. 10 A Repetitive peak on-state current ITRM max. 115 A ITSM 12 t max. 115 A max. 65 A 2 s dlT/dt max. 30 A/IJ-s PG(AV) max. 0,5 W PGM max. 5 W 500 600 V* Currents (in either direction) Non-repetitive peak on-state current; Tj = 120 0C prior to surge; t = 20 ms; full sine-wave 2 1 t for fusing (t= 10ms) Rate of rise of on-state current after triggering with IG = 200 mA to IT = 20 A; dlG/dt = 0,2 A/Ils Gate to terminal 1 Power dissipation Average power dissipation (averaged over any 20 ms period) Peak power dissipation Temperatures -+ Storage temperature T stg Operating junction temperature full-cycle operation half-cycle operation Tj Tj -40 to +125 °C max. max. 120 °c 110 °c * Although not recommended, off-state voltages up to 800 V may be applied without damage, but the triac may switch into the on-state. The rate of rise of on-state current should not exceed 15 A/Ils. 2 January 1980 ( j Triacs BT139 SERIES - - THERMAL RESISTANCE From junction to mounting base full-cycle operation half-cycle operation Rth j-mb Rth j-mb 1,2 0C/W 1,7 0C/W Transient thermal impedance; t = 1 ms Zth j-mb 0,1 °C/W a. with heatsink compound Rth mb-h 0,3 0C/W b. with heatsink compound and 0,06 mm maximum mica insulator Rth mb-h c. with heatsink compound and 0,1 mm maximum mica insulator (56369) Rth mb-h 1,4 0 C/W 2,2 0C/W d. with heatsink compound and 0,25 mm maximum alumina insulator (56367) Rth mb-h 0,8 °C/W e. without heatsink compound Rth mb-h 1,4 °C/W ~ +- Influence of mounting method 1. Heatsink mounted with clip (see mounting instructions) Thermal resistance from mounting base to heatsink 2. Free-air operation The quoted values of Rth j-a should be used only when no leads of other dissipating components run to the same tie-point. Thermal resistance from junction to ambient in free air: mounted on a printed-circuit board at a = any lead length ~ i a ~ 0 Rth j-a 60 °C/W ~ I Fig.2 V// l' LL1 7Z75493 January 1980 3 BT139 SERIES l_____ --CHARACTER ISTICS Polarities, positive or negative, are identified with respect to T 1. Voltages and currents (in either direction) On-state voltage (Note 1) < 1,6 V dVo/dt < 50 ViliS dVcom/dt < 6 ViliS 10 < 0,5 mA < 30 mA 20 mA IT = 20 A; Tj = 25 °C Rate of rise of off-state voltage that will not trigger any device; Tj = 120 oC; see also Figs.9 and 10; gate open circuit Rate of rise of commutating voltage that will not trigger any device; IT(RMS) = 16 A; Vo = VOWM max; Tj = 120 °C; gate open circuit; see also Figs.9 and 10 BT139 series -dlT/dt = 6,7 A/m~ } -dlT/dt = 6,7 Alms BT139 series F -dlT/dt = 3,35 Alms BT139 series E Off-state current Vo = VOWM max; Tj = 120 °C Holding current; Tj = 25 0C T2 and G positive or negative BT139, F and E series BT139 0 series < Gate voltage and current that will trigger all devices Latching current Vo = 12 V; Tj = 25 °C BT139 series BT139 series F e.g. BT139-500F G toTl { VGT IGT IL G to Tl {VGT IGT IL BT139 series E T2+ G- T2G- T2G+ > 1,5 > 35 < 40 1,5 35 60 1,5 35 40 1,5 50 40 V mA mA > 1,5 > 25 < 40 > 1,5 > 15 < 30 > 1,5 > 8 < 25 1,5 25 60 1,5 25 40 1,5 50 40 V mA mA 1,5 15 40 1,5 15 30 1,5 50 30 V mA mA 1,5 8 35 1,5 8 25 ** ** ** V mA mA T2+ G+ G to Tl BT139 series 0 (Note 2) G toTl J VGT I IGT IL f VGT \IGT IL Gate to terminal 1 Voltage that will not trigger any device Vo = VORM max; Tj = 120 oC; T2 and G positive or negative Note 1. Measured under pulse conditions to avoid excessive dissipation. Note 2. A version with IGT = 5 mA max. is available on request. Triggerable 4 January 1980 ( < 250 mV J Triacs BT139 SERIES - - MOUNTING INSTRUCTIONS 1. The triac may be soldered directly into the circuit, but the maximum permissible temperature of the soldering iron or bath is 275 oC; it must not be in contact with the joint for more than 5 seconds. Soldered joints must be at least 4,7 mm from the seal. 2. The leads should not be bent less than 2,4 mm from the seal, and should be supported during bending. 3. It is recommended that the circuit connection be made to tag T2, rather than direct to the heatsink. 4. Mounting by means of a spring clip is the best mounting method because it offers: a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw mounting. b. safe isolation for mains operation. However, if a screw is used, it should be M3 cross-recess pan head. Care should be taken to avoid damage to the plastic body. 5. For good thermal contact heatsink compound should be used between mounting base and heatsink. Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide loaded compound. Ordinary silicone grease is not recommended. 6. The device should not be pop-rivetted to the heatsink. However, it is permissible to press-rivet providing that rivets of soft material are used, and the press forces are slowly and carefully controlled so as to avoid shock and deformation of either heatsink or mounting tab. OPERATING NOTES Dissipation and heatsink considerations: a. The various components of junction temperature rise above ambient are illustrated in Fig.3. junction mounting base Rth j-a heatsink Fig.3 7273725 ambient b. The method of using Figs.4 and 5 is as follows: Starting with the required current on the IT(AVI or IT(RMSI axis, trace upwards to meet the appropriate from factor or conduction angle curve. Trace right horizontally and upwards from the appropriate value on the T amb scale. The intersection determines the Rth mb-a. The heatsink thermal resistance value (Rth h-a l can now be calculated from: Rth h-a = Rth mb-a - Rth mb-h· c. Any measurement of heatsink temperature should be made immediately adjacent to the device. January 1980 5 FULL-CYCLE OPERATION 08604 30 84 p a= (W) , 0 II ~ 20 J 'f l/' II I I , ,J ''''-~ rl/I/ Jf , ~ ,J J,. 'I//. 1/ 1/ 90 0 60 0 f f f,J JlI 10 180 I 0 120 300- ~ , '"' , ", , ~ I' ~ ~ ~ " " I""- " .... I..... "- I""- 1'0 i" " ~ ..... ~ , 0 '0 ~ ~ r" """ 1I1.,....,;:1~ 10 L' ~ ~ I 20 0 I I , ,\ 1\0}" I' ~ .? ..; ~ free-air operation o ~i""'" '- I - 96 '%1\-\ 0 ~- ~',Q '" "- ~~" " , , IO~ 'f"'/ V ,::l" \ l'rI.. ~ 1,1l ~ ~ ~/.. ,,~ ~~ ,~ 6'~ 11""111"'" ~~~ L1L ~ "vJ - f--f.--0- .z. \ r+-f--+-- f-+-- \ \ \ '" " ""' '- \ , 1\ "'l"- ,I\.,1\ \ ~ 108 ~ ~ ~ ~ r""o ..... ,,' '" ... I'.C'-..... 50 ~, l'..~I\ .\ ~"I\. N~\' ~ -- ~~1 ~I '\ .~ ~I~.l 120 100 Fig. 4 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures. (X = (Xl = (X2: conduction angle per half cycle 6 January 1980 'I ( J Triacs BT139 SERIES - - HALF-CYCLE OPERATION 08605 20 ~ --- + __ __ --l--__ ~ ~--+-- -----+-- +---+-- P : ----+---- (W) 1 +-- H I I 15 • ~ 1.57~; 'i -+---<--+- -+ - I -+--- +- ____ r¥ 'l :I/)~, ~ . [\, \ Vt~ - ~ ->- i 1--- ~-+--!-- "' "'! \ \: , [\~~' X rf -- _'\i 'is~\ 12 \, I'\. "\ \ \ " \:"1\ 1\' \ 1\ \' .\ \ ~---+-+---+----- ~--+.- - . . '\ + +- .... - - .. -+ + ld t lim' \ \11 \19 ' ,15 \ \ \ , 1\ \ \ \ a 1\ ~8., \6.7 Alms , \ .-l \ \ ) 1 \ 1 1 \ ~ \ ~ ~ lie \ \ " --.... , \ ~ 50 \ 1 ~ 100 150 Fig.9 Limit commutation dV/dt for BT139 and F series versus Tj. The triac should commutate when the dV Idt is below the value on the appropriate curve for pre-commutation d IT/dt. 08607 3T 139E series dV dt I""""-- (V IJ.Ls) -==: t--- ~~ \ ........ 1\ f\ F'\" dll ~/dt/" . ~ , \ 1\ -dIT/dt= I\,2 \ \ \ I \ \ \ 1 a ~ \ \ \ 1 -'- 1\ \ \ \ \ 5.7 ' \4.4 \ 3.4 Alms -'- 1\ ~ ~7.3 -- -...... "- L\. II \ \9.5 \ " ~ \ Il \ 10 , \ \ 'm,t \ \ ~ \ 1 , .-l \ l 50 100 150 Fig.l0 Limit commutation dV/dt for BT139E series versus Tj. The triac should commutate when the dV/dt is below the value on the appropriate curve for pre-commutation dlT/dt. 10 January 1980 r j Triacs 8T139 SERIES ---7Z77121A 3 150 I I 1 T all conditions ) TI TI r-\T 2 neg., gate pos. I to T 1 , \ 100 2 7Z77 1 24A minimum gate current that wi II trigger all devices minimum gate voltage that will trigger all devices \ \ to..... 1\ ....... r-... 1\ \ r--. \ 1\ ............. ~ \. \ 50 "- '\ " .....""- ....... ....... ,,~ condition'? ..... e-e- f- allI other I [ o o -50 I I I I I a -50 50 1 1 I I I a 50 Fig.12 11 Fig. 1 1 D8617 10 ~~ =~ -- II If unidirectional - ~~ --- .,. --f-- ---- - - '-~ -- -~ - ---- -- f-- 10- 1 / io"'" ~ ---- ~ II TI bidirectional - ", ~, ,/' ~~ V 10- 2 -- f-~~~ 10- 3 10- 5 -- --- 10- 4 10- 3 10- 2 10- 1 time (s) 10 Fig.13 11 Bn~~RES l~ _________________ LIMITS FOR STARTING OR INRUSH CURRENTS - FULL-CYCLE OPERATION 60 I Tj I I I 10 = Tmb = 75°C -A_ ""'- I I -,.... I I """l (A) 1 I ' ..... ""'~50C 40 " ..... ~ ""'..... ....... r-.... ""'- [".... .......... """'- ........ ...... r--1-0.. 20 ""'- t V for safe operation at a given temperature the r.m.s. of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature ...... ............. 95 0 C rA.-fY. VV 'OIRMS) ...... prior to starting IO(RMS) - .......... I--. ..... ...... ..... ~ -r- ...... .... -- =-- o 10- 2 10 time (s) Fig.14 LIMITS FOR STARTING OR INRUSH CURRENTS - HALF-CYCLE OPERATION 30~--~~-~1~~~~~----~~----------------------------' 10~ I1 10(AV) ...... _-L--AL--t..;=.:fA.::I,.-...-;,<>, ... · _ t for safe operation at a given temperature the average of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature --- -1-0 Fig.15 12 January 1980 ( j BTW34 SERIES ----------------------------------------------------TRIACS Silicon triacs in metal envelopes, intended for industrial a.c. power control, and are particularly suitable for static switching of 3-phase induction motors. They may also be used for furnace control, lighting control and other static switching applications up to an r.m.s. on-state current of 55 A. Two grades of commutation performance are available, 30 V Ip.s at 25 Alms (suffix G) and 30 V Ip.s at 50 Alms (suffix HI. QUICK REFERENCE DATA Repetitive peak off-state voltage VDRM max. R.M.S. on-state current IT(RMS) max. Non-repetitive peak on-state current ITSM max. 400 A Rate of rise of commutating voltage that will not trigger any device (see page 3) dVcom/dt < MECHANICAL DATA 55 A 30 V/p.s Dimensions in mm Fig. 1 TO-103. ~-------155/145 -------~ 2.5 max 20 maxl Terminal 2 1 i I I ....._ - - - 4 5 min leads at right angles 033&7 Net mass: 46 g Diameter of clearance hole: 8,5 mm Torque on nut: min. 4 Nm (40 kg cm) max. 6 Nm (60 kg em) .1 165/155 Supplied with device: 1 nut, 1 lock washer Nut dimensions across the flats: 13 mm April 1978 BTW34 SERIES l_ _ __ RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages (in either direction)* Non-repetitive peak off-state voltage (t ~ 10 ms) BTW34-600 800 1000 1200 1400 1600 VOSM max. 700 900 1100 1300 1400 1600 V** Repetitive peak off-state voltage VORM max. 600 800 1000 1200 1400 1600 V Crest working off-state voltage V OWM max. 400 600 700 800 800 800 V Currents (in either direction) R.M.S. on-state current (conduction angle 360 0 ) up to T mb = 75 °C at T mb = 85°C 55 A 45 A IT(RMS) IT(RMS) max. max. Average on-state current for half-cycle operation (averaged over any 20 ms period) at T mb = 85 °C IT(AV) max. 21 A Repetitive peak on-state current ITRM max. 300 A ITSM 12 t max. 400 A max. 800 A 2 s dlT/dt max. 50 A/l1s Non-repetitive peak on-state current Tj = 125 0C prior to surge; t = 20 ms; full sine-wave 2 1 t for fusing (t = 10 ms) Rate of rise of on-state current after triggering with IG = 1 A to IT = 100 A; dlG/dt = 1A/I1s Gate to terminal 1 Power dissipation Average power dissipation (averaged over any 20 ms period) max. 2W Peak power dissipation max. 10 W Temperatu res Storage temperature -55 to Junction temperature max. + 125 0C 125 0C THERMAL RESISTANCE From junction to mounting base full-cycle operation half-cycle operation Rthj-mb Rthj-mb From mounting base to heatsink with heatsink compound Rth mb-h 0,2 0C/W Zth j-mb 0,08 0C/W Transient thermal impedance; t = 1 ms 0,6 0C/W 1,2 °C/W To ensure thermal stability: Rth j-a < 2 °C/W (full-cycle or half-cycle operation). For smaller heatsinks Tj max should be derated (see Figs 2 and 3). ** Although not recommended, higher off-state voltages may be applied without damage, but the triac may switch into the on-state. The rate of rise of on-state current should not exceed 20 A/l1s. * 2 April 19781( J Triacs BTW34 SERIES - - CHARACTE R ISTICS Polarities, positive or negative, are identified with respect to T 1. Voltages (in either direction) On-state voltage IT = 65 A; Tj = 25 oC Rate of rise of off-state voltage that will not trigger any device; exponential method; Vo = 2/3 VORM max; Tj = 125 °C dVD/dt < 2,1 V* < 200 V Ills Rate of rise of commutating voltage that will not trigger any device; IT(RMS) = 45 A; Vo = VDRM max; T mb = 85 °C dVcom/dt (V/IlS)/-dIT/dt (Alms) BTW34-600G to 1600G <30 I 25 BTW34·600H to 1600H <30 50 Currents (in either direction) Off-state cu rrent VD = VDWM max; Tj = 125 °C < 10 T2 pos. 10 mA T2 neg. Latching current; Tj = 25 °C G positive G negative IL IL <250 <500 mA 250 mA Holding current; Tj = 25 °C G positive or negative IH <200 200 mA VGT> 2,5 IGT > 200 J -VGT> 2,5 -IGT > 200 V mA Gate to terminal 1 Voltage and current that will trigger all devices V D = 12 V; Tj = 25 °C G positive G negative Voltage that will not trigger any device Vo = VDRM max; Tj = 125 oC; G positive or negative * Measured under pulse conditions to avoid excessive dissipation. 1 2,5 V 200 mA 0,2 V l_________________ BM~~RES FUll CYCLE OPERAT,ION ex ( \ !' '" \ " , \ \ I\. 10 20 IT(AV) (A) '0 50 \ ' 0 ,£. \ 1\ \ \ 105 ~ \, "- \1\ \ '.\ "- r\ 1\' 'l "- r\..' -~~ 125 100 Tamb(OC) 15 o 0 Tmb- scale is for comparison purposes only and is correct only for Rth mb-a::: 0, 8 C/ Fig. 3. 4 ,"'" \~o \. L' 0 \ ~ \ ~r o \%- ~~ I\. '/ \p" \ "\. 80 t~ \ ~ I\. mb-a t>1.4°C/W , \. If Rth 125 Tamb (oC)150 7Z66860 , \ /I~ I 100 interrelation between the power (derived from the left hand graph) and the max. allowable temperatures 1\ / / J / 1/ I I II / 1/ I) I I 1// II /1 IJ r-- - Q ' = 30°' 20 , form factor condo angle a=30 60 0 a = conduction 90 0 angle 120 0 0 180 30 a ~\ "~ ~ r---.. 1'0..... ~l is for comparison purposes only and is correct only for 40 HALF CYCLE OPERATION .1\. \~ ,~ 50 Fig. 2. 110 " .\ ~ "-:'\ I" ~~ 25 95 \% ~ ..... ~s VV/ / 1/ / / I) '// 25 "fl , ',j' " '"", " I 60° I J ~ April 19781 ( J Triacs BTW34 SERIES - - 7Z62077 600 ITS(RMS ) (A) 400 maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents (f=50Hz) A , I\, \. I T_ SV _\- - - - ,, 1\ - - - ITS (RMS) VV rlI I' - time the triac may temporarily lose control following the surge "ITSM " ,, 1\ I\. 200 ........rL =12SoC r-I. J. ~ prior to surge IIIII I ~ j I I ~ III11 III11 I I duration (s) 10 Fig. 4. 7Z620762 - - T j = 25°C 100 1 II - - - T j = 125°C j I typ I VT r---~ I' , I II , VT - ~ I 50 I .h I .' '-.:r-.max_ ~ 1/ I I I II I 'I Vi " - '/ I/. f..')' o ~~ o 3 Fig. 5. 5 ~~~RES l~ _______________~ 7Z62935 max. rate of rise of offstate voltage that will not trigger any device (exp.method) plotted against junction temperature I--1-1t-- 1-1- 2000 dVD (it (V Ills) 1500 f- 1-1f- f - I f- f-I- , 7Z62932 600 dVD 1\ for safe operation at a given temperature the r.m.s. of successive cycles (see drawing above) must lie within the region bounded by the curve shown below for that temperature 100 ~= T mb = 45 °C prior to starting I III I II I I II '""'t-.LJI i""""'--. ~ 0 r- ....65 C .......... 1l""Hi"'-I-o. II -.... 50 ....... .......... ........ 8~- --.. - -r--.. ""r-...io-. r- ... -------.. 10- 1 10 time (8) Fig. 11. 7 3_4_S_E_R_IE_S_jL~_______________________________ ___B_nN __ 7Z62940 7Z62941 conduction angle: 360 0 conduction angle: 360 0 ~XlOO% IT(RMS) (A) T 150 Tmb=45 0 C tp= 20ms 1 100 """"""'- " lOci ~ r----...... 1\ ---~-~ 50 c:-..... ~ls ......... ~ ~ °c ~ ~ 1\ 2j ~ 1 50 Tmb= 85 ~~ 200 . t--- ~400 '\ , I - - - t-2s I"""-- 1 sl r- I'" I - - - t-ldo N I f--- tp=20ms 40 f - - 2OO _ _ 400 I--- T 100 r--I'- ... 40 ~ ~XlOO% IT(RMS) (A) o 10 5 (%) 1 10 5 (%) Fig. 12 Intermittent overload capability of one triac in a single phase a.c. control circuit. 7Z62939 uni-directional I,...000o ~ ~ 10- 1 ~-directional - ~ ~I-' ~ ./ 10- 2 ~~ 10- 4 8 April 1978 J( 10- 2 Fig. 13. 1 time (s) 10 ,Jl.___B_TW__4_1_S_E_R_IE_S__ ___M_A_'_N_TE_N_A_N_C_E_T_Y_P_E______________________ TRIACS A range of glass-passivated triacs in plastic envelopes with push-on connectors. They are intended for use in industrial a.c. power control applications such as motor and heating controls, and switching systems. QUICK REFERENCE DATA BTW41-500G Repetitive peak off-state voltage VDRM max. 800G 500 800 V R.M.S. on-state current IT(RMS) max. 40 A Non-repetitive peak on-state vurrent ITSM max. 260 A Rate of rise of commutating voltage that will not trigger any device dVcom/dt < Vips 5 Dimensions in mm MECHANICAL DATA Fig.1 SOT-80 exposed metal (see note) , l='~'I 1: 4 max T2*Tl 4,7min 9 0,8 •+ I -18max- --I o 6,35 (2x) a ,+- ,t 2,4 7Z64964.1 Recommended diameter of fixing screws: 4 mm T 1 and T 2: AMP250 series g: AMP110 series The exposed metal base-plate is electrically connected to main terminal T2. Net mass: 15 g Torque on fixing screws: min. 0,8 Nm (8 kg cm) max. 1,5 Nm (15 kg cm) -----------------j~~~~~ TRIACS Also available to BS9343-F001 Silicon triacs in metal envelopes, intended for industrial a.c. power control and are particularly suitable for static switching of 3-phase induction motors. They may also be used for furnace control, lighting control and other static switching applications up to an r.m.s. on-state current of 15 A. Two grades of commutation performance are available, 10 V IflS at 5 Alms (suffix G) and 10 V IflS at 12 Alms (suffix H). QUICK REFERENCE DATA BTW43-600 Repetitive peak off-state voltage VDRM max. 600 800 1200 800 1200 V R.M.S. on-state current max. 15 A Non-repetitive peak on-state current max. 120 A Rate of rise of commutating voltage that will not trigger any device (see page 3) dVcom/dt < 10 V/flS Dimensions in mm MECHANICAL DATA Fig. 1 TO-64: with metric M5 stud (rjJ 5 mm). 1 ,,98j-1 ma, max __ 3,5 _ 9,3 max max _10,28_ max ..--- 11,5 _____ . . 2 1,72 ___ 10,72 max I Net mass: 7 g Diameter of clearance hole: max. 5,2 mm Accessories supplied on request: 56295 (PTFE bush, 2 mica washers, plain washer, tag) Supplied with the device: 1 nut, 1 lock washer Nut dimensions across the flats: 8,0 mm 7Z65906.1A Torque on nut: min. 0,9 Nm (9 kg cm) max. 1,7 Nm (17 kg cm) BTW43 SERIES l________ RATINGS Limiting values in accordance with the Absolute Maximum System (I EC 134) Voltages (in either direction) * BTW43-600 Non-repetitive peak off-state voltage (t ~ 10 ms) VOSM max. Repetitive peak off-state voltage VORM max. Crest working off-state voltage VOWM max. 800 1000 1200 600 800 1000 1200 V 600 800 1000 1200 V 400 600 700 800 V Currents (in either direction) on-state current (conduction angle 3600 ) up to T mb = 75 °C at T mb = 85 °C R~M.S. IT(RMS) IT(RMS) max. max. 15 A 12 A Average on-state current for half-cycle operation (averaged over any 20 ms period) up to T mb = 35 °C at T mb = 85 °C IT(AV) IT(AV) max. max. 9,5 A 5,5 A Repetitive peak on-state current ITRM max. 50 A ITSM 12 t max. 120 A max. 72 A 2 s dlT/dt max. 50 AIMS Average power dissipation (averaged over any 20 ms period) PG(AV) max. 1W Peak power dissipation PGM max. 10 W Non-repetitive peak on-state current Tj = 125 0C prior to surge; t = 20 ms; full sine-wave 2 1 t for fusing (t = 10 ms) Rate of rise of on-state current after triggering with IG = 0,5 A to IT = 25 A; dlG/dt = 0,5 AIMS Gate to terminal 1 Power dissipation Temperatures Storage temperature Tstg Junction temperature Tj - 55 to + 125 °C max. 125 °C THERMAL RESISTANCE From junction to mounting base full-cycle operation half-cycle operation Rth j-mb Rthj-mb 2,0 oC/W 4,0 0C/W From mounting base to heatsink with heatsink compound Rth mb-h 0,5 0C/W Transient thermal impedance; t = 1 ms Zthj-mb 0,2 °C/W * To ensure thermal stability: Rth j-a < 6 0C/W (full-cycle or half-cycle operation). For smaller heatsinks Tj max should be derated (see Figs 2 and 3). 2 April 19781 ( J ~~ BTW43 SERIES ---CHARACTERISTICS Polarities positive or negative, are identified with respect to T 1. Voltages (in either direction) On-state voltage 'T = 20 A; Tj = 25 °C Rate of rise of off-state voltage that will not trigger any device; exponential method; VD = 2/3 VDRMmax; Tj = 125 °C dVD/dt < 2,2 V* < 200 V//ls Rate of rise of commutating voltage that will not trigger any device; 'T(RMS) = 12 A; VD = VDWMmax; T mb = 85 °C dVcom/dt (V//ls) -dlT/dt (Alms) < 10 < 10 BTW43-600G to 1200G BTW43-600H to 1200H 5 12 Currents (in either direction) Off-state current VD = VDWMmax; Tj = 125 °C < 'D T2 pos. Latching current; Tj = 25 0C G positive G negative Holding current; Tj = 25 0C G positive or negative 5 mA T2 neg. 'L 'L < 200 < 200 200 mA 200 mA 'H < 100 100 mA VGT 'GT > 2,5 > 100 5,0 V 200 mA -VGT> 2,5 { -IGT > 100 2,5 V 100 mA Gate to terminal 1 Voltage and current that will trigger all devices V D = 12 V; Tj = 25 °C G positive G negative Voltage that will not trigger any device VD = VDRMmax; Tj = 125 °C; G positive or negative { VGD < 0,2 0,2 V * Measured under pulse conditions to avoid excessive dissipation. 3 l_ _ __ BTW43 SERIES Fig.2. FULL CYCLE OPERATION . r-I 1.-.1\ p Q 0'1 (W) I II 20 I I 1/ " I ) 1/ "" 120 0 II I I I "I 1/ I " I II II I III 1I11 ~ i ....... r-.... "" "'" " "'" " J I"'" ..... ",,<.9 " ~ I"'oj.." i"""~ I..... '" i' ~ ~ r... 1"- r/.If. '" I....... I'" ~~ a 50 1"1. " " 105 ~ , 1'\ I" 1AijP' 10 IT(RMS) (A) 20 ~ ~ 1..... 1"-00 a , ~ " r-t-t- ,~- t-t-t- 1'\ ~ iO I" I/V: a r ,-~t-j--' ..... ;> .... r""- I~ ~rJ' ~~~-~ ~ '" I""'" S ..... 1"'0- r.l J\ \ I "\I "" ~ JI\'o -/ ~ 85 ~ ~~6 "'\. ..... I'-.. r-~ /1/ vv )1) 1/1/ ~t I\. I" l' I" 1/ J 1,\ ..... t"'-- 1 I ~ ~ ~ :-.. 30 0 . VI/ / ~ 60 0 II , 1,\ I / ) interrelation between the power (derived from the left hand graph) and the max. allowable temp. = 180 0 I 0' = 0' 1 = 0' 2 conduction angle per half cycle 10 7Z67799 1 1 JI I I I I I 0'2 ~~~ I'~\.' "I . . . . ~~ /"""01"00 r....1"Q 125 T amb (OC) 100 * T mb-scale is for comparison purposes only and is correct only for Rth mb-a ~ 4 0CIW. Fig. 3. HALF-CYCLE OPERATION A -i 0' 1_ 0'=30° 60° 0' = conduction 90° angle 120° 180° p (W) I I I 2,2 2,8 / II ,/ I II 10 I II I I I I II 11/1.1 " lI' / V / / / "- / / to.... i' I-f- I-~ a ~~ ~ r- I'" '"';>1'"S ..... t--, a ..... r-.... i' , ~<.S ~S ...... II I IV. V" '/.v I/V. 1\.~ ~ ..... / I 1/ ~ 45 ~1;o I' d.c. / ,1 "'" ,,1 , " C"Io j If j 1/. II / II II 1,6 ~ / 1,9 I i/ a=4 interrelation between the power (derived from the left hand graph) and the max. allowable temp. " a=4 2,8 2,2 1,9 1,6 20 I I 7Z67798 form factor cond. angle : "- ~. " , ~ ..... I' I..... ..... ..... ~ ..... ~ '" "- I" I~ 85 '\. I.... .... ~ " ..... I..... ...... I ..... .... ,...~ r-... ~ 1"-0 I a ~~ I" r-.... I" April ~ ~~ I"'IS: ~~ 125 5 IT(AV) (A) 10 a 50 T amb (OC) 100 * T mb-scale is for comparison purposes only and is correct only for Rth mb-a ~ 2 0CIW. 4 1"00.: 19781( J ~~ BTW43 SERIES ----200 ITS(RMS) ~ (A) \ 150 \ 'TSh~V0T:~::' A , ~ ~ \ 100 7Z67797 1 max. allowable non-repetitive r. m. s. on-state current based on sinusoidal currents (f = 50 Hz) , ~ I TSM r--, the triac may temporarily lose control following the surge '~ 1 1'1' I II I II 01 I I I I III lj = 125 C prior to surge ......: ........ -- 50 o 10-1 10-3 duration (s) 10 Fig. 4. 7Z67800 60 --Tj=25 oC - - - Tj = 125 oC I I II IT (A) I II I typ / VT max ~Lf-f- 40 Vr/ I rl maxr- I ,/, I VT- t - - i-f- I. II W ~ 20 I J I I~ I r " q I /) l' /1 I 1/ o '~i/ ~~ o 2 VT (V) 4 I( Fig. 5. ~ .... .• _." •. "..,.. _,._ •. _ .. _~_~._._ ~ .• April 1978 .. _... _..... _.• __ ._ ,,,,, •...• _ .. _ ._._. ~_, ~ '~ '.L _L.~,".". . . . _. ~ . _. . . ."~ .". ,_ _ .._ ... _ . ._ 5 l____ BTW43 SERIES 7Z67802.1 ..... ' 7Z678031 600 7,5 ..... '" I' 5 400 ..... "- ..... , I" I" " ""1-- i'. r"~ 2,5 ~ .... . 200 ~ " '" I' ... i'. ..... r-- r--. r--.Io.. ~ o -50 o o 50 Fig. 6 Minimum gate voltage that will trigger all devices as a function of Tj. -50 - - T 2 negative, gate positive with respect to T 1 - - - - all other conditions AP'il1978/ ( "I- -- 50 Fig. 7 Minimum gate current that will trigger all devices as a function of Tj. Conditions for Figs 6 and 7: 6 o ."" j ~~ BTW43 SERIES - - - 10 2 BTW43-600G to 1200G 7Z77780 10 2 BTW43-600H to 1200H dVcom dt dVcom dt (V IjJs) (V IjJs) Tj= 125°C T-= 95 J 65 10 1 10 125 95 65°C 1 1 7Z67801.2 10 2 -dlT/dt (Alms) 10 10 -dlT/dt (Alms) F~g. 8 Maximum rate of rise of commutating voltage that will not trigger any device as a function of rate of fall of on-state current; IT(RMS) = 12 A; Vo = VOWMmax' 7Z72279 10 2 10 I"'" ....". -- ~ ~- uni - directional CJ.. I I Uil II I bi-directional ..,. ,./ ..,.,."" 10- 1 10 time (5) 10 2 Fig. 9. April 1978 7 __B_T_W_4_3_S_E_R_IE_S_Jl_________________________________ FULL CYCLE OPERATION 7Z72300 60 for safe operation at a given temperature the r. m. s. of successive cycles (see drawing below) must lie within the region bounded by the curve shown below for that temperature IT(RMS) "- (AI IT~"SI " "I' ....... 40 ......... ....... ..... "- ......... r..... ......... ..... "'" ~ ...... 1111 lill 111..1 ...... t-.. ....... r.... 1'-0. ............ 20 ~ lj =Tmb = 45°C I J. J. prior to starting ~ 65........... ......... ~ r"'- - 85 1""-000 I"-- -- -,... i'" ~ 10 t-- time (5) Fig. 10. 40 HALF CYCLE OPERATION 7Z72303 for safe operation at a given temperature the average level of successive cycles (see drawing below) must lie within the region bounded by the curve shown below for that temperature IT(AV) (AI 30 IT~ "-" 20 ........... ............ InAVI Ak .- ,~ "- 1'0"", 1""-" "'""" ~r--. 10 "" ~"" =Tmb = 45°C ~ r--.. ~ lj ~8S -- r--.~ r----.. ~ prior to starting ~ r---_ I'--- 10 8 ( 1 April 1978 Fig. 11. time (5) _________________________________Jl__ B_T_X_9_4_S_E_R_IE_S_ TRIACS Silicon triacs in metal envelopes, intended for industrial single-phase and three-phase inductive load applications such as regenerative motor control systems. They are also suitable for furnace temperature control and static switching systems. Two grades of commutation performance are available, 30 V Ip.s at 25 Alms (suffix H) and 30 V Ip.s at 50 Alms (suffix J). QUICK REFERENCE DATA Repetitive peak off-state voltage VDRM max. R.M.S. on-state current IT(RMS) max. 25 A Non-repetitive peak on-state current ITSM max. 250 A Rate of rise of commutating voltage that will not trigger any device (see page 3) dVcom/dt < MECHANICAL DATA 30 V/p.s Dimensions in mm Fig. 1 TO-48. __ 4,2 __ 3,2 3,4 max I" 1-- 1/4in x 28 UNF .... -IF=='=~ '\ , min =T=::::2=r-iUH -,-+ 6,35 max -- -- 124max I II ~ t '-' 2,26 __ max g~t 1,9 ....11. -12,smax-1 1,6 -22,2max___ 11,5 - 1 ....4t-----303max----..~1 10,72 Net mass: 14 9 Diameter of clearance hole: max. 6,5 mm Accessories supplied on request: 56264A (mica washer, insulating ring, soldering tag) 7Z69755.1C Torque on nut: min. 1,7 Nm (17 kg cm) max. 3,5 Nm (35 kg cm) Supplied with the device: 1 nut, 1 lock washer Nut dimensions across the flats; 11,1 mm ._,~" ___., . . ,__________,_ ,_ ,._ ._______r_~::~~. ___B_T_X_94__S_E_RI_E_S_Jl________________________________ RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages (in either direction) * BTX94-400 600 800 1000 1200 Non-repetitive peak off-state voltage (t ~ 10 ms) V DSM max. 400 600 800 1000 1200 V * * Repetitive peak off-state voltage VDRM max. 400 600 800 1000 1200 V Crest working off-state voltage V DWM max. 200 400 600 700 800 V Currents (in either direction) R;M.S. on-state current (conduction angle 360 0 ) at T mb = 85 °c IT(RMS) max. 25 A Repetitive peak on-state current ITRM max. 100 A ITSM 2 1 t max. 250 A max. 320 A 2 s dlT/dt max. Non-repetitive peak on-state current Tj = 125 0C prior to surge; t = 20 ms; full sine-wave 2 1 t for fusing (t = 10 ms) Rate of rise of on-state current after triggering with IG = 750 mA to IT = 100 A 50 Alps Gate to terminal 1 Power dissipation Average power dissipation (averaged over any 20 ms period) max. 1W Peak power dissipation max. 5W Temperatures Storage temperature -55 to Junction temperature max. + 125 °C 125 0C THERMAL RESISTANCE From junction to mounting base full-cycle operation half-cycle operation Rth j-mb Rth j-mb From mounting base to heatsink with heatsink compound Rth mb-h 0,2 °C/W Zth j-mb 0,12 0C/W Transient thermal impedance; t = 1 ms 1,0 0C/W 2,0 0C/W To ensure thermal stability: Rth j-a < 3,5 °C/W (full-cycle or half-cycle operation). For smaller heatsinks Tj max should be derated (see Figs 2 and 3). Although not recommended, higher off-state voltages may be applied without damage, but the triac may switch into the on-state. The rate of rise of on-state current should not exceed 50 Alps. 2 April 1978 ~( j n~ BTX94 SERIES - - - CHARACTERISTICS Polarities, positive or negative, are identified with respect to T 1. Voltages (in either direction) On-state voltage IT = 50 A; Tj = 25 °C Rate of rise of off-state voltage that will not trigger any device; exponential method; Vo = 2/3 VORMmax; Tj = 125 °C Rate of rise of commutating voltage that will not trigger any device; IT(RMS) = 25 A; Vo = VOWMmax;T mb = 85°C dVo/dt dVcom/dt (V/j1s) BTX94-400H to 1200H BTX94-400J to 1200J < 2 V * < 100 V/j1s -dlT/dt (Alms) 25 50 <30 <30 Currents (in either direction) Off-state current Vo = VOWMmax; Tj = 125 °C < T2 pos. Latching current; Tj = 25 °C G positive G negative 5 mA T2 neg. < 350 150 mA 150 mA G positive >3,0 > 150 5,0 V 200 mA G negative -VGT> 3,0 { -IGT > 150 3,0 V 150 mA < 150 Gate to terminal 1 Voltage and current that will trigger all devices VO=12V;Tj=25 0 C * Measured under pulse conditions to avoid excessive dissipation. Oecember 1979 3 l________________~ ~~4~~S FULL-CYCLE OPERATION :~I 7Z59087 interrelation between the power (derived from the left hand graph) and the max. allowable temperatures 0<= 0<1 = 0<2 conduction angle per half cycle I--IV 0<1 60 Rth mb-a = 0.2°C/W 0< =180~ 40 ~ / 1f".I.120°1 1/ 1/ V. V V . / 20 ~ ~~ ~ ~ " "' 1 ~ ~ ~ 90° /~ ~600 /~ ""i"o.. I'... 1'0.. i"3 '" 30° i" ~5 ..... ~ ~ ~ r..--- I-- 10- "" I"' , ~ r\ ..... ~ 105 i""'" "' '\ ~, I"""- , r-.... """, ...... i""oo. '""'' ' ~ ~ ~~ l"""- r-.... I' [ ' N """"'r'" ~~ 125 ( ) 0 50 100 ° 150 IT(RMS) A Tamb ( C) Tmb - scale is for comparison purposes only and is correct only for Rth mb-a to 2.5 °C/W o~ o * ~ I'\. '~ ~Io'" ..... ..... , ~ '\ K 85 10 20 Fig. 2. 40 HALF-CYCLE OPERATION condo form angle factor =30 00 a=4 -10< 160 2.8 90 00 2.2 ex = conduction 120 1.9 angle 1800 1.6 30 7Z59086 interrelation between the power (derived from the left hand graph) and the max. allowable temperatures ..!\.. I , '\ 1.9 ~1.6 \ 2.2 '/ 2.8. /1 I a=4 20 I ~ fJ, r\.3 IJ~ rf ~ J JI~ Ih rtf I-- --- 10 10- f0- ~ ~~ (OC) I Rth mb-a= ~ 0.2°C/W 1\ \ ~, \ " , '\ I\, 85 \ ~ ~~ "", r" "r'\. f'-"' ,.\ ~ '\ J ~, ...... 1'.. ~ ~ iT " * ,,, 1\ \ r'\. I"' 65 1 '\ { ~ 105 ~ l"\ .\. ...... , r\. '\. ~\ 1'0.. ~~ ~ ~l. 10 20 IT(AV) (A) 0 50 100 125 ° 150 Tamb( C) Tmb -scale is for comparison purposes only and is correct only for Rth mb-a .. 1.5 °C/W Fig. 3. 4 April 19781 ( Tmb· j Triacs BTX94 SERIES ---- ?Z59088 400 IrSIR 1,1 ~S) maximum permissible non-repetitive r.m.s. on-state !:urrent based on sinusoidal currents (f=SOHz) (A) 300 1\ \ IV\ !\ , V-V 1\ time " 200 "I\,. "'" ---~ \. \. \. 100 "- r"o Tj =125°C prior to surge ............... duration (s) 10 Fig. 4. 7Z59083.1 150 = 25°C Tj = 125°C - - Tj - - - I I I I I I I I max VT 100 typ , V I1I1 'I I: 'I T" 1"1 II ," II I r I 50 It , lL 1# rL If lL .1 I' IlL/if" o ~~~ o 2 4 Fig. 5. April 1978 5 ___ BT_X_9_4_S_E_R_IE_S_Jl________________________________ 7Z10225 (V) IGTililililililili~ ~ (mA) 300 6 1111111111 4 1 200 10:_ 2 a a -100 100 Tj (OC) 200 Fig. 6 Minimum gate voltage that will trigger all devices as a function of Tj. Conditions for Figs 6 and 7: - - T 2 negative, gate positive with respect to T 1 - - - all other conditions 6 7Z10229.1 April 19781 ( -100 a 100 Tj COe) 200 Fig. 7 Minimum gate current that will trigger all devices as a function of Tj. j n~ BTX94 SERIES - - - 100 HALF-CYCLE OPERATION 7Z62025 IT ~ IT(AV) IliAVI :ALA c>- (AI for safe operation at a given temperature the r.m.s. of successive cycles 'see drawing above) must lie within the region bounded by the curve shown below for that temperature 75 50 f'... ~ 'i'. Tj=T m b=85°C ~ 25 prior to starting [""'... 1"0.. .... r-."" -..... I"--io-. time (s) 10 Fig. 8. 100 FULL-CYCLE OPERATION 7Z 62026 IT~ IT(RMS ) (A) for safe operation at a given temperature the r.m.s. of successive cycles 'see drawing above) must lie within the region bounded by the curve shown below for that temperature 75 ~ "- II l"I' 50 I'" J1 Tj =Tmb = 85°C ~ ' prior to starting ........ ...... ......... I---- 25 time lsI 10 Fig. 9. April 1978 7 ~4~~S l~ ________________ 7Z10251 800EHEUmamfimam dVO Fig. 10 Maximum rate of rise of off-state voltage that will not trigger any device (exponential method) as a function of Tj. 50 100 Tj (OC) 150 7Z10250 10 Zthej- mb) (OC/W) III I I IIIIII h~1f-'cYc1e"'" 50Hz operation.... ........ 1-i-"""'" / '" V' i"""' ...... "' .... l-FuU-cycle 50 Hz operation _i-'" 1 time (5) 10 Fig. 11. 8 April 19781 ( ACCESSORIES G G _______________jl__ 5_624_6_ DISTANCE DISC For use with BRY39T Dimensions in mm MECHANICAL DATA ~p1 . I-- 5 • I 7Z08949 Insulating material TEMPERATURE Maximum allowable temperature December 1979 _____5_62_6_2_A__ ~j~~_________________________________ MOUNTING ACCESSORIES MECHANICAL DATA Dimensions in mm ---10- --5 ..... 1~~~-----1a------~·~1 ~ WP-+_1,a+ l_a_1 ~ 0,1 ±O,01 t + 0,9 7Z69812 7Z698C9 m-ica washer V;;.,..,.,:ij."']----"V!:'T.z~:?J ~ 1,0 7Z6981:t plain washer material: brass, nickel plated insulating ring - . THERMAL RESISTANCE From mounting base to heatsink (with mica washer) without heatsink compound with heatsink compound 5 Rth mb-h Rth mb-h 2.5 °C/W °C/W Tmax. 125 °c TEMPERATURE Maximum permissible temperature --MOUNTING INSTRUCTIONS n----10-32UNF ~ I~ ~~:~s~:sher ~~------- hole max. 8.3 mm; min. 8.1 mm insulating ring -r rza=::::m ~ 7Z698C8 ~ plain washer lock washer nut (10-32UNF} Note: When using a tag for electrical contact, insert tag between nut and plain washer or replace plain washer by tag. December 1979 ( ________________________________jl_____ 56_2_6_4_A____ MOUNTING ACCESSORIES MECHANICAL DATA .11.0.034 Dimensions in mm Mica washer 7208958 Insulating ring 16 THERMAL RESISTANCE Soldering tag From mounting base to heatsink with mica washer, without heatsink compound with mica washer; with heatsink compound Rth mb-h Rth mb-h 4 1.5 0C/W °C/W T max 175 °C TEMPERATURE Maximum allowable temperature MOUNTING INSTRUCTIONS i'4'X28UNF mica washer insulating ring I:5:E!. soldering tag lock washer 1/4" x 28UNF cx::D nut 7Z012lL9,1 __56_295_jl________ MOUNTING ACCESSORIES MECHANICAL DATA Dimensions in mm _91 5,03 I 7,27 701 I - , va fA 7Z75773 t 1,19 9,9 -9,8- t 1,09 5 PTFE bush 1.....0 - - - - 16 -+ +----t--j.--~ 5 2 - - - - - 1.. 1 +0,8 1~-----16----~"1 7Z75775 7Z75774 2 mica washers t plain washer 4,2 5,3 t 10 THERMAL RESISTANCE ! From mounting base to heatsink without heatsink compound Rth mb-h = 5 0 C/W with heatsink compound Rth mb-h = 2.5 °C/W TEMPERATURE Maximum allowable temperature T max = 175 °C e2i I. terminal tag 7Z75772 MOUNTING INSTRUCTIONS ~1O-32UNF tag mica washer '*t:' I~ 0'" !> ~ 0'" ~ ~ 0 Fig.7 Three phase full wave rectifier with diodes of different polarity on extruded aluminium heatsinks Heatsinks GENERAL II II EXAMPLES OF HEATSINK CALCULATION 1. Devices without controlled avalanche properties. Assume that the diode of which the outlines are shown, is used in a three phase 50 Hz rectifier circuit at Tamb = 50 °C. Further assume: average forward current per diode IF(AV) = 65 A; contact thermal resistance Rthmb-h =0,1 °C/W. Mmmh!l.:···'t:;. :·, · ·:·:w· ,· , ·:·:·~\·A'\'Y·: : ~" •.;.;,'.~'~'" .....••..... ~..... II ~~,.,. Stud: M12 Mounting base, across ....•:j"">.O:S....'.':.'. :.. ~. ••.. .; .• ~ .. I the flats: max. 27 mm From the data of the diode the graph to be used is shown below. 110 p Tmb (W) 50 50 100 From the lefthand graph it foll0ws that Ptat = 90 W per diode (point A). From the righthand graph it follows that Rth mb-a :::: 1, 2 °C/W. Thus Rth h-a = Rth mb-a - Rth mb-h = (1,2 - 0,1) °C/W = 1,1 °C/W. This may be achieved by different types of heatsinks as shown below. Free convection Type - flat, blackened bright diecast -- 56280 Forced cooling 125 cm 2 ; 2 mls or 300 cm 2 ; 1 m/s 175 cm 2 ; 2 m/s applicable extrusion 56230 bright blackened 56231 bright blackened P. = 12 cm P. = 8cm P. = 7cm I. = 5 cm 1) P. = 5 cm 1); 1 nils £ =5cm 1); 1m/s 1) Practical minimum length 5 II II August 1972 Heatsinks GENERAL I II EXAMPLES OF HEATSINK CALCULATION (continued) 2. Devices with controlled avalanche properties Assume that the diode of which the outlines are shown, is used in a three phase 50 Hz rectifier circuit at T amb = 40 °C. Further assume: average forward current per diode IF(A V) = 10 A; contact thermal resistance: Rth mb-h = 0,5 °C/W; repetitive peak reverse power in the avalanche region (t =40 jJs) PRRM = 2 kW (per diode). ~='2=""'".'''1='='CC~ Stud: M12 Mounting base, across the flats: max. 27 mm From the data of this diode the graph to be used is shown below. 7Z0573~ 2 Interrelation between the total dissipation (derived from the left hand graph) and the max. allowable ambient temperature P -r- P=power dissipation, exclusive the reverse power in the avalanche region -"- (W) - - 60 1\ 1\ I\, I\. 40 ~e \ \ \. 1\ \. \-'0 ,~o ~ r- - l [-7 \.0 I\. e,1/. ~~ ,~~- " . ~~e r!f- .,. 20 r 1/ -r ./ ~ A './ ~;..' I' ~ r- ~ r- *k ~ l ~ 70 I" r-.... I FAV (A) 20 \ ''-" , , \ 1\.1\ , \. I\.I\.\. I\. .\ \ I\. I' ~ ,\~ "'''' .\., I\. .... No 1-""" IOOC""- 1/ i;' o01..0'' ' r- I\'\~ \. r-.... aN / ~ ~ I,.. 1 \\ \. 1\ I\, ~-I 1'0.. C'/Ji; 1/ '/r;..-' ~ - - ~ :2:. ~t:T r- ,\ 1\ \~ ,0Q , I\. 1\. C~ 1// I' - ~o_1 L /-,\~ ":G II\..~o~-I\~ :"\r-\r- 6 :.('o~~o.,e =r-6~ ~~I\.\. '0~ \ ..... /Jj;;--. 1'0.. 1 1 l I 1'-0.. ~ r--. "..... Ii I': ~~~ 100 Tamb(OC) 0 200 From the lefthand graph it follows that Ptot = 19,5 W per diode (point A). The average reverse power in the avalanche region, averaged over any cycle, follows from PR(A V) = 0 x P RRM , where the duty cycle 0 = Thus PR(AV) = 0,002 x 2 kW =4 ~~ ~: = 0,002. W. Therefore the total device power dissipation Ptot = 19,5 + 4 = 23,5 W (point B). From the righthand graph it follows that Rth mb-a = 4 °C/W. Hence the heatsink thermal resistance should be: Rth h-a = Rth mb-a - Rth mb-h = (4 - 0,5) °CjW = 3,5 °CjW. A table of applicable heatsinks, similar to that on the foregoing page, can de derived for this case. Flat heatsink II II Thermal resistance of flat heatsinks of 2 mm copper or 3 mm aluminium. The graphs are valid for the combination of device and heatsink. Studs: lO-32UNF Mounting bases, across the flats: max. 11,0 mm 2 20 40 60 80 100 120 Heatslnk area 10 side) Bright~ free convection (OClW) ratio between length and wIdth : max 1.25 ~ 8 6 4 .2 5mls 20 II 40 60 80 100 120 140 Heatsink area (cm 2;one side) II August 1972 Flat heatsink II II Thermal resistance of flat heatsinks of 2 mm copper or 3 mm aluminium. The graphs are valid for the combination of device and heats ink. ~ ~ Stud: M6 Stud: i" x 28 UNF Mounting base, across the flats: max. 14,Omm Stud: M8 Mounting base, across the flats: max. 19 mm 5 Rthh-a (OC/W) 4 ratio between length and width : max 1.25 ~ ~ § a: ~ ;;>~ 3 .S 2 l .el w. /1)/8 2m'S sm", 50 100 150 200 250 300 350 Heatsfnk area .rem 2; one side) 5 Rthh - a (OCfW) free convection ratio between length and wIdth: max 1.25 4 C>! 3 ·s 2 .el:! § 1: 2 'S 5m/s 50 August 1972 II 100 150 200 250 300 350 Heatsink area (cm 2 ; one side) Diecast heatsin ks II " RECTIFIER CIRCUITS ON SINGLE HEATSINKS Single phase half wave Two phase half wave w w flw ~ '" Single phase Three phase full wave half wave (Single phase bridge) (Three phase star) + - o + 60 7Z04178 w mJt P1{ijl 0 0 + + Three phase full wave (Three phase bridge) Six phase half wave (~ix phase star) Three phase double Y with interphase transformer + Diecast heats ink ~ without insulator 1 II Diecast heats ink ~ with insulator II August 1972 Diecast heatsinks II II MOUNTING INSTRUCTION FOR DIECAST HEATSINKS 1. At free convection cooling or forced air flow < 0,5 m/s the heatsinks should be mounted with the fins vertical and with a distance to the chassis bottom> 100 mm. 2. At forced air flow> 0,5 m/s the heatsinks may be mounted in any position. 3. Minimum distance between heatsinks in a row. Heatsink Distance (mm) a b 56256/268 56334 56253/334 56271 > 5, > 5, > 10, > la, a °° ° > > > > 25,0 40,0 50,0 50,0 4. The rectifier devices should be fixed to their heatsinks with the torques specified in the relevant published data. Use the torque spanner. 5. For insulated mounting of heats inks two sizes of mounting strips made of insulating material are available. o,,"" ~ deb ---- --Jci- Strip 56233 56234 Dimensions (mm) abc d 10,03614,1 13,5 50 20,1 22 28 Weight (g) (with cover) 330 615 Length 750 mm 6. Mounting holes to be made in the strips: 90 0 Heatsink Strip Dimensions in mm a b c 56256/268 56253/271 56277 /334 56233 56234 56234 < 1,5 < 1,3 < 1,3 7,5 10,2 10,2 4,3 6,3 6,3 II II MOUNTING STRIPS 56233 ---r=: MECHANICAL DATA ill --~~)----------~ ('T') '-, Dimensions in mm '-~------------ i ----------- . _____________ ~ 1-:--1 gj yr---=* I _____________ 1 1 56233 56234 ____________ _ 1-------------- .1 750 • 7Z452700 W ~ JbO.1 mounting strip of insulating material Weight with cover: 330 g insulating plate (cover) 56234 MECHANICAL DATA ---.:----------=--=-.:-------.:-J Dimensions in mm ~-----=-------------------- !i I', ! :::::j:~ ~r=.~ __ mounting strip of insulating material Weight with cover: 615 g =__=-__=__=__=__=__ =__=__=__=__=__=__ t=__ L-I~ ______ I. =1_ II_ _ _ _ _ _ _ _ ~ 750 ~ .1 72452720 {CO 1 • June 1974 750 .1 7Z452730 ~ JbO:1 insulating plate (cover) 56253 Jl -------------------' K3 ,-----------------------------------------------DIECAST HEA TSINK Diecast heatsink of aluminium alloy, painted black, with %" x 28 UNF tap hole for devices in DO-5 or TO-48 envelopes. Weight: 305 g Dimensions in mm 2x Fig.1 cp M3''+ + +~ t$ "S~ t+ btl I I II n ;1; -J., c'- 'T.T 4J ~ I I I cp + + I &"S :O:~1 82 I ~ I 1l ;:M6 I' 1/4"x28 UNF December 1979 ( jl--56-253- _K3_ _ _ _ _ _ _ The graphs are valid for the combination of device and heatsink. Rthh-a {"CIW} 3 free convection 2 10 20 30 50 Ptot (W) 60 40 Fig.2 (OC/W) 1.5 2 3 Fig.3 4 air velocity (m/s) 5 Jl________ __ 562_56_____ K9 DIECAST HEATSINK Diecast heatsink of aluminium alloy, painted black, with 10-32 UNF tap hole for devices in DO-4 or TO-64 envelopes. Weight: 55 g Dimensions in mm Fig.1 I W M4 + /' t l' btl i 1 t ~_-11_--, , , / / I I. 10-32 UNF December 1979 ( _K9_------jl--562-56The graphs are valid for the combination of device and heatsink. 15 10 Free convection 5 10 15 20 Ptot (W) 25 Fig.2 3 Forced cooUng 2 2 3 4 5 6 air velocity (m/s) Fig.3 2 Jl'--______ __ 5626_8__ Kl_S DIECAST HEATSINK Diecast heatsink of aluminium alloy, painted black, with 10-32 UNF tap hole for devices in DO-4 or TO-64 envelopes. Weight: 33 g Dimensions in mm Fig.1 ~M4 ~ T ~I I I I max20 December 1979 ( Ir== ~ I ,Jl_____ 5_6_2_68_____ ___ Kl_S_______________________________ The graphs are valid for the combination of device and heatsink I?th h-a (OC/W) 15 free convection 10 5 2 6 8 Ptot (W) 10 Fig.2 forced cooling 4 2 2 3 5 oir velocity (m/s) Fig.3 ______ 5_6_27_1____ -',J~______ M_A_I_N_TE_N_A_N_C_E__ TY_P_E__________________K_3___ OIECAST HEATSINK Diecast heatsink of aluminium alloy, painted black, with M8 tap hole for rectifier device. Dimensions in mm ~ Weight: 270 g + /' "I ~ I(~\\ , I I ~~J~) Fig.1 c::b rn M6~ I II II II II II III ~.L, r:p r I t -'I--, '--I r' I I + I.,,.J + T F ....... $ I m I 1-14 1+-11 • : : ~I 82 40 £M6 i 20.1 a MS 'I M8 "l co ~ 31 December 1979 ( 33.1 58 103 7%_ K_l~ _____ ,J~ __ _____________ M_A_IN_T_E_N_A_N_C_E_T_Y_P_E__________ 5_6_2_7_8______ DIECAST HEATSINK Diecast heatsink of aluminium alloy, painted black, with ~"x 28 UNF tap hole for rectifier device. Weight: 690 g Dimensions in mm ~-r_-_-~£~~~ -'\ '; \ _Ll_ Fig.1 --r-r.I • I I I I I r-LJ-, r--l-...,. ~-+-l ~~1~~~ ~T·T~ :I: 1'1 o.,.~.,J .~ f ..... - C r- ,.... ,..... h r-;r~ rt"i- h ~ . h d::~ . i I rt , '-- 1T'QX68.3 ./ max 90.5 106.5 December 1979 ~~ ______5_6_2_8_0_____ ___K_l_J__________M_A_I_N_T_EN_A_N_C_E__ TY_P_E____________ DIECAST HEA TSINK Dimensions in mm Diecast heatsink of aluminium alloy, painted black, with M12 tap hole for rectifier device. =---'-----.d:==-=-~\'\\ Weight: 690 g I I I I I I _LJ_ Fig.1 - [---r- I I I I I I I I ,-!-IJ- l r- 4 --: r-t-i [~l=O;J I I I I i I ~J,j I ,.....:-1'- - ~ e- " ,-. " rh r- ~EJ ihi ::: rr ..... I I I WM8 4J -!- =F= I I • < o E ~ max 90.5 max68.3 o It) December 1979 _____\_56_3_12____ ~j~___________--------~----------K-3-DIECAST HEATSINK For 00-5 rectifier diodes and TO-48 thyristors and triacs. Weight: 270 g Dimensions in mm Fig.1 m 87,3 76,3 : 67 59 I t:P I ~ ........ ,/ 20,1 82 . VX 72 0238 08664 M6 L33 .1:=33 14-----100--------t Tap hole for fixing the heatsink: M6 December 1979 ( --"""J l_5_631_2_ _K_3_ _ _ _ _ The graphs are valid for the combination of device and heatsink. Rthh-a (OCIW) 3 free convection .2 10 20 30 50 Ptot (W) 60 Fig.2 Rthh-a (OClW) 1.5 forced coollngl-+-f-++++++++H 2 3 4 air v.lIIclty (mls) 5 Fig.3 2 jl______________________________K_l_~ ______5_63_1_3____ DIECAST HEATSINK For DO-5 rectifiers and TO-48 thyristors and triacs. Dimensions in mm Weight: 690 g Fig.1 ~ I I "......, r- 11111 r- h r-- "......, li'll ~- J 1~ rh I I - - + 6 I 10o ./ 68 max 08671 (VX 72 0116.21 90 max ~-------75------~~ M6 L~_ 2 x M8 ----45---~ ~---------90----------~ December 1979 .( t __ Kl_~ jl_____ 5_6_3_13_____ ___ _____________________________ The graphs are valid for the combination of device and heatsink. Rth h-a (OC/W) 2 1.5 'fr~ convection Q5 20 40 60 80 100 120 Pr:oIW)140 Fig.2 Rth h- a (OC/W') Q6 'forced cooling 0.4 0.2 2 3 4air veLocity' (m/s) Fig.3 5 ______5_63_1_4__ ____________ ~Jl -------------------Kl-J- DIECAST HEATSINK For 00-5 rectifiers and TO-48 thyristors and triacs. Weight: 690 g Dimensions in mm Fig.1 M5~ 1 ~ I I-- I: ! II ~ r. ~~ r-- v-.. ~ Ir- mI I It I , 16 ~ I r- r 100 \,,0 '" '" '" \,,0 ./ ""t---'- 90 max 68 max 08671 (VX 72 0116.21 2 x M8 14---45--~ ~-----90~----~ December 19791 ( _____ ~l ___ Kl_,1_____________________________ 5_63_1_4_____ The graphs are valid for the combination of device and heatsink. Rth h-a (OC/W) 2 7.5 free convection Q5 20 40 80 60 100 120 fhlW)14O Fig.2 Rthh_allllllllli;l I (~/W) a6 forced cooZing Q2 %~~~~~LW~~LL2~LU~~~3LLLU~~4~LLLLLU~5 air velocity (m!s) Fig.3 2 ,J~,_____ M_A_IN_T_E_N_A_N_C_E_T_Y_P_E________________K_O_,S_S___ ______5_6_3_1_5_____ DIECAST HEATSINK Dimensions in mm Weight: 1.9 kg Fig.1 ,, , + ~ + 1~ \. ~ j LO LO r ,.. A~ Jo ..l "11 1 ,,1 I 1" I ~ 'I J ~ ,1, '1Ui "'r r ' II I t: ....J-l-i t:: t~ L() - M h h I ~ -'--- .... 100 -" ~max.122 ..... -4xM8 M12 ',.. . ."~-M8 14---100-~ December 19791 ( ,J~______ 5_6_31_8______ _K_O_,_55___________ M_A_IN_T_E_N_A_N_C_E_T_Y_P_E____________ DIECAST HEATSINK Weight: 1.9 kg Dimensions in mm Fig.1 + t LO ..- r '\ t Ln LO •t ;::r - \J I r I I ), j~ I I I " II II II II I I I I I ~ L~_: ~ Ln r r M ..- ). -.l ~ um r t j o.-- xo tE ~ I' _L..- .... 100 ~max.122 4xM8 M8x1.25 M8 ~-100-~ ______ 5_63_1_9____ ~,J~'_____ M_A_IN_T_E_N_A_N_C_E_T_Y_P_E_________________K_3___ DIECAST HEATSINK Dimensions in mm Weight: 270 g Fig.1 M6 M6 r-r~--+--· -_.87,3 I • 76,3 , I 67 ! 1 -ll ,~ I cP ! I 59 LLL~ '- i ........ ./ --G;l..- 1144--- ------.t.! 82 10-32 UNF 2 B ---=tn-b:\:l.J--~ Tap hole for fixing the heatsink: M8 D~emb.rn~~~~~~~~~~~~~~~~~~~~~~--- ___K_5_______________M_A_I_N_T_E_NA __ N_CE__ TY_P_E______ ~,J~______ 5_6_3_3_4____ DIECAST HEATSINK Dimensions in mm Diecast heatsink of aluminium alloy, painted black, with 10-32 UNF tap hole for rectifier device. Weight: 135 9 Fig.1 1-~ 60 f 44 ! I 1 (: I ; I I I :' ~ I ........ 1"'20 ...1 I ~3SmQx- ./ I I- - 6 1 - " 1_20,1 ..1 ---""J _5_634_8 l--._______ K3_ DIECAST HEATSINK For 00-4 and TO-64 devices with M5 stud Weight: 270 g Dimensions in mm Fig.1 it; M6 6 I 1] , , ~ ! I ~ ~. -MS Tap hole for fixing the heatsink: M6 December 1979 j( 82 c:p jl__ 5_634_8_ _ _K_3_ _ _ _ _ _ _ _ _ _ _ _ _ The graphs are valid for the combination of device and heatsink. 3 free convection 2 10 20 30 40 50 Ptot (W) 60 Fig.2 (OC/W) 1.5 forced coollngH-H-H-H-H--+--l 2 3 4 air velocity (mls) 5 Fig.3 December 1979 2 ______ ~l. ___K_5__________M_A_I_N_TE_N_A_N_C_E_T_Y_P_E____________ 5_63_4_9______ DIECAST HEATSINK Dimensions in mm Diecast heatsink of aluminium alloy, painted black, with M5 tap hole for rectifier device. Weight: 135 g Fig.1 1-~ 60 1 II ~1--20 ...1 I 1-35max_ I_.. 1_20,1 ..1 I 61-" M5 December 1979 _5_635_0 _jl_____ ----K9- DIECAST HEATSINK Diecast heatsink of aluminium alloy, painted black, with M5 tap hole for devices in DO-4 and TO-64 envelopes. Weight: 55 g Dimensions in mm Fig.1 45 ,'- , ,, ';: ( ,/ (Vl 72 0133.1) 08659 M5 Tap hole for fixing the heatsink: M4 December 1979j( jl__ 56_350_ _K_9_ _ _ _ _ _ The graphs are valid for the combination of device and heatsink. Rth h-af-+H-H-++++++++++++++-+-++t+t-HH--ir-t--f+f+t+t+t+++++++++-H:~ (OC/W) i§ Rthh-a (OCIW) ~ 1.5 ~ § jll; ~ 1011; JOW l 100111.. "i 111/1$ d s § 0.5 0 0 August 1972 ~ 5mls 5 10 15 20 25lergth (cm) 30 2 56290 Heatsink extrusions EXTRUDED ALUMINIUM HEATSINK Extruded heatsink of aluminium alloy. The extrusion is supplied unpainted, in lengths of 1,5 m. Dimensions in mm Weight: 2,4 kg per 1,5 m. II II 'August 1972 Heatsink extrusions II 56290 II The graphs are valid for the combination of device and heats ink. 5 Rthh-a (OC/W) 4 right ~ ~t ~ § ~ .1w 3 ~w ·s 2 § ~ .1Ow Ims .e 3mls 5m/s 00 2 4 6 8 10 12 14 ler¢h (em) 10 12 14 length (em) 5 Rthh-a (OC/W) 4 c: oS! i§ ~ 3 § 2 1 'j; /7VS 5m/s 2 6 8 ~~ _______5_6_2_9_3_____ ________M_A_I_NT_E_N_A_N_C_E_T_Y_P_E___________________ EXTRUDED ALUMINIUM HEATSINK Extruded heatsink of aluminium alloy. The extrusion is supplied unpainted, in lengths of 1.5 m. Dimensions in mm Weight: 16.2 kg per 1.5 m. Fig.l --.6.35 .--.-- r .!; E C.D ~ C") c;) C") x ~ ,..., l -. ~ ,..., r-\ ,....., g ,....., t"'"'I r' r""I -~ l!) v v v v v v 114.3 max 7Z04624.1 December 1979 ( ~ .- 1~18 INDEX Power diodes Thyristors l___ Triacs IN_D_E_X_ __ Rectifier diodes Regulator diodes Thyristors Accessories Section B Section C Section E Section G BR100/03 56246 BRY39T BT151 series BT152 series 56262A 56264A 56295 56316 56317 56363 56364 56367 BY164 BY 179 BY223 BY224 series BY225 series BY229 series BY256 BY257 BY260 series BY261 series BY277 series BYV21 series BYV30 series BYV92 series BYW19 series BYW25 BYW29 series BYW30 series BYW31 series BYW92 series BYX22 series BYX25 series BYX30 series BYX32 series BYX38 series BYX39 series BYX42 series BYX45 series BYX46 series BYX49 series BYX50 series BYX52 series BYX56 series BYX71 series BYX96 series BYX97 series BYX98 series BYX99 series 1N3879-3882 1N3889-3892 1N3899-3903 1N3909-3913 BZV15 series BZW10 series BZW70 series BZW86 series . BZW91 series BZX70 BZY91 BZY93 BZY95 BZY96 series series series series series High-voltage rectifier stacks Section 0 aSB/M/S 9110 aSB/M/S 9210 aSB/M/S 9310 aSB/M/S 9410 aSM9510-12 BT153 BT154 BTW23 series BTW24 series BTW30S series BTW31W series BTW33 series BTW38 series BTW40 BTW42 BTW45 BTW47 series series series series BTW92 series BTX 18 series BTY79 series BTY87 series BTY91 series Triacs Section F BT136 series BT137 series BT138 series BT139 series BTW34 series BTW41 series BTW43 series BTX94 series 56369 56366 Heatsinks Section H 56233 56234 56253 56256 56268 56271 56278 56280 56312 56313 56314 56315 56318 56319 56334 56348 56349 56350 56230 56231 56290 56293 - - POWER DIODES, THYRISTORS, TRIACS CONTENTS + SELECTION GUIDE A GENERAL SECTION B RECTIFIER DIODES C REGULATOR DIODES 0 HIGH-VOLTAGE RECTIFIER STACKS E THYRISTORS F TRIACS G ACCESSORIES H HEATSINKS + INDEX Argentina: FAPESA l.y.C.,Av. Crovara 2550, Tablada, Provo de BUENOS AIRES, Tel. 652-743817478. Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.SW., Tel. 4270888. Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-ll0l WIEN, Tel. 62 91 11 Belgium: M.B.L.E., 80, rue des Deux Gares, B-l070 BRUXELLES, Tel. 5230000. Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600. Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, MIB lM8, Tel. 292-5161. Chile: PHILIPS CHilENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001. Colombia: SADAPE S.A., P. O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. SOO 600. Denmark: MINIWA TT AIS, Emdrupvej 115A, DK-2400 K0BENHAVN NV, Tel. (01) 691622. Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 1 72 71. France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99. Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, 0-2 HAMBURG 1, Tel. (040) 3296-1. Greece: PHILIPS S.A. HELLEN IQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915311 Hong Kong: PHILIPS HONG KONG LTD, Elcoma Div, 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. NT 24 51 21 India: PEICO ELECTRONICS& ELECTRICALS LTD, Ramon House, 169 Backbay Reclamation, BOMBAY 400020, Tel. 295144 Indonesia: P.T. PHILlPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, JI. Jen. Gatot Subroto, P.O. Box 220, JAKARTA, T el. 44163 Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clbnskeagh, DUBLIN 14, Tel. 693355. Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3,1-20124 MILANO, Tel. 2-6994 Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg, 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611 (IC Products) SIGNETICS JAPAN, LTD, TOKYO, Tel. (03)230-1521. Korea: PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel 794-4?02 Malaysia: PHILIPS MALAYSIA SON. BERHAD, Lot 2, Jalan 222, Section 14, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 714411 Mexico: ELECTRONICA SA deC.V, Varsovia No. 36, MEXICO 6, D.F., Tel. 533-11-80 Netherlands: PHILIPS NEDERLAND B.V., Ald. Elonco, Boschdijk 525,5600 PB EINDHOVEN, Tel. (040) 7933 33. New Zealand: PHILIPS ELECTRICAL IND. LTD., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867119 Norway: NORSK A IS PHILIPS, Electronica, S0rkedalsveien 6, OSLO 3, Tel. 463890. Peru: CADESA, Rocca de Vergallo 247, LIMA 17, Tel. 628599 Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59 Portugal: PHILIPS PORTUGESA S.A.RL, Av. Eng. Duharte Pacheco 6, LlSBOA 1, Tel. 683121 Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., P.O.B. 340, Toa Payoh CPO, lorong 1, Toa Payoh, SINGAPORE 12, Tel. 538811 South Africa: EDAC (Pty.)ltd., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel 614-2362/9 Spain: COPRESA SA, Balmes 22, BARCELONA 7, Tel. 3016312. Sweden: A.B. ELCOMA, Lidingbvagen 50, S-11584 STOCKHOLM 27, Tel. 08/679780. Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZURICH, Tel. 01/432211 Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5 Thailand: PHILIPS ElECTR ICAl CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9 Turkey: TURK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 43 5910 United Kingdom: MULLARO lTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-5806633 United Slates: (Active devices & Materials) AMPEREX SALES CORP, Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000 (Passive devices) MEPCO/ELECTRA INC, Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000 (IC Producls)SIGNETICS CORPORATION. 811 East Arques Avenue. SUNNYVALE, California 94086, Tel. (408) 739-7700 Uruguay: LUZILECTRON S.A., Rondeau 1567, pi so 5, MONTEVIDEO, Tel. 94321. Venezuela: IND. VENEZOlANAS PHILIPS S.A ,Elcoma Dept., A. Ppal de los Ruices, Edi!. Centro Colgate, CARACAS, Tel. 360511 A15 Printed in England .--- .. ~- , 1980 N.V Philips' Gloellampentabrleken 9398 108 00011


Source Exif Data:
File Type                       : PDF
File Type Extension             : pdf
MIME Type                       : application/pdf
PDF Version                     : 1.3
Linearized                      : No
XMP Toolkit                     : Adobe XMP Core 4.2.1-c041 52.342996, 2008/05/07-21:37:19
Create Date                     : 2017:07:31 16:32:48-08:00
Modify Date                     : 2017:07:31 18:02:37-07:00
Metadata Date                   : 2017:07:31 18:02:37-07:00
Producer                        : Adobe Acrobat 9.0 Paper Capture Plug-in
Format                          : application/pdf
Document ID                     : uuid:1869e4d7-9bec-3544-9abc-4d46542aa72e
Instance ID                     : uuid:2bee9a1e-a65b-9341-b17f-26dc2c840ca1
Page Layout                     : SinglePage
Page Mode                       : UseNone
Page Count                      : 871
EXIF Metadata provided by EXIF.tools

Navigation menu